4032500003605102 a007 Real Root Of 671*x^4-935*x^3-47*x^2-366*x-219 4032500018725789 h001 (-5*exp(-1)-4)/(-9*exp(-3)-1) 4032500028702278 p001 sum(1/(605*n+258)/(8^n),n=0..infinity) 4032500029736310 m008 (1/5*Pi^3+1/4)/(1/6*Pi^6-1/4) 4032500034976999 r009 Re(z^3+c),c=-35/86+3/22*I,n=10 4032500038914504 r008 a(0)=4,K{-n^6,14-50*n^3+49*n^2-44*n} 4032500044437280 r005 Re(z^2+c),c=-69/122+1/35*I,n=35 4032500045108652 r008 a(0)=4,K{-n^6,-42-39*n^3-12*n^2+62*n} 4032500047595477 r008 a(0)=4,K{-n^6,-2-10*n+26*n^2-45*n^3} 4032500054119012 a001 47/29*(1/2*5^(1/2)+1/2)^29*29^(21/23) 4032500054943269 r005 Re(z^2+c),c=-43/78+12/55*I,n=62 4032500057550547 r002 46th iterates of z^2 + 4032500063520513 m001 1/Paris^2/ln(FeigenbaumB)*FeigenbaumD^2 4032500068926951 r005 Im(z^2+c),c=-19/30+60/103*I,n=7 4032500078998198 r005 Re(z^2+c),c=-17/31+3/53*I,n=11 4032500079942637 a001 1/46347*4181^(3/40) 4032500085967338 r005 Re(z^2+c),c=25/74+3/7*I,n=6 4032500093913456 v002 sum(1/(3^n+(24*n^2-56*n+90)),n=1..infinity) 4032500096102366 r009 Im(z^3+c),c=-11/25+29/53*I,n=54 4032500111238320 r008 a(0)=4,K{-n^6,12-32*n^3-6*n^2-5*n} 4032500112141610 m001 (3^(1/2)-MasserGramain)/(OneNinth+Sierpinski) 4032500118879400 r005 Re(z^2+c),c=-21/34+4/89*I,n=12 4032500120664413 a007 Real Root Of -72*x^4-253*x^3+294*x^2+562*x-66 4032500121578484 a001 7/75025*21^(25/52) 4032500133353041 a005 (1/sin(86/193*Pi))^95 4032500137101418 r005 Im(z^2+c),c=-45/86+3/49*I,n=13 4032500142327799 r002 57th iterates of z^2 + 4032500163269653 r009 Im(z^3+c),c=-12/29+4/11*I,n=21 4032500171961159 r005 Im(z^2+c),c=-23/18+122/231*I,n=3 4032500205497534 m001 Robbin*FibonacciFactorial*ln(OneNinth)^2 4032500214237339 r002 46th iterates of z^2 + 4032500215463411 r005 Im(z^2+c),c=-17/14+17/210*I,n=40 4032500215849195 a007 Real Root Of 164*x^4+631*x^3+47*x^2+649*x-136 4032500217652121 r005 Re(z^2+c),c=-35/62+3/56*I,n=28 4032500224754616 l006 ln(6026/9019) 4032500228971243 r008 a(0)=4,K{-n^6,6-9*n^3-78*n^2+50*n} 4032500231873177 a001 87403803/233*144^(16/17) 4032500232612540 m002 3*Sinh[Pi]^2+Pi*Tanh[Pi] 4032500234174296 r009 Im(z^3+c),c=-31/114+25/36*I,n=26 4032500249743621 m009 (Pi^2+3/4)/(4/5*Psi(1,3/4)+3/5) 4032500264380253 m005 (1/5*Pi+4/5)/(1/2*Catalan-4) 4032500282749555 r005 Re(z^2+c),c=5/82+7/51*I,n=7 4032500301104082 a001 233/39603*199^(4/11) 4032500302706976 r005 Re(z^2+c),c=-25/48+25/58*I,n=55 4032500303842971 r005 Re(z^2+c),c=-61/106+5/46*I,n=17 4032500309415924 a007 Real Root Of 122*x^4+359*x^3-654*x^2-457*x+73 4032500314812761 r005 Re(z^2+c),c=-15/28+19/61*I,n=52 4032500324355065 r001 7i'th iterates of 2*x^2-1 of 4032500331628433 r005 Im(z^2+c),c=-7/10+39/121*I,n=3 4032500332813638 r005 Im(z^2+c),c=-5/28+39/56*I,n=11 4032500336653780 a001 1/98209*13^(22/41) 4032500350086883 m001 1/Paris/LaplaceLimit^2/ln(sqrt(Pi)) 4032500359564587 r005 Im(z^2+c),c=-7/31+47/63*I,n=26 4032500373217900 a007 Real Root Of -861*x^4+864*x^3+374*x^2+983*x+415 4032500375088020 m006 (1/3*Pi+3/4)/(1/6*exp(Pi)+3/5) 4032500392305441 p003 LerchPhi(1/125,5,403/212) 4032500399286576 m001 Totient/MinimumGamma*TreeGrowth2nd 4032500423213144 a007 Real Root Of 812*x^4-868*x^3-825*x^2-974*x-337 4032500428895502 m001 Ei(1,1)^KhinchinHarmonic*Ei(1,1)^Magata 4032500436869447 b008 Tan[E^Sin[5]] 4032500466077867 r002 55th iterates of z^2 + 4032500503551789 r002 51th iterates of z^2 + 4032500506908440 r005 Im(z^2+c),c=-2/23+16/27*I,n=28 4032500512047895 r005 Im(z^2+c),c=-3/82+20/37*I,n=58 4032500526963285 a001 38/17*701408733^(14/15) 4032500527411978 p001 sum(1/(464*n+61)/n/(5^n),n=1..infinity) 4032500529530693 p004 log(27073/26003) 4032500530160251 r005 Re(z^2+c),c=-53/102+7/18*I,n=60 4032500530513750 m001 GAMMA(19/24)/BesselK(0,1)/ln(Zeta(7))^2 4032500543211012 r009 Im(z^3+c),c=-15/31+5/16*I,n=29 4032500544746060 l006 ln(3465/5186) 4032500546581474 m005 (1/2*2^(1/2)-3/11)/(2/3*Zeta(3)-10/11) 4032500547783796 r005 Re(z^2+c),c=-14/27+13/27*I,n=46 4032500554593827 a001 843/591286729879*8^(1/2) 4032500556837552 a007 Real Root Of -94*x^4-264*x^3+523*x^2+248*x+40 4032500568365894 r005 Im(z^2+c),c=2/15+23/54*I,n=22 4032500583542481 m001 (MadelungNaCl+PlouffeB)/(Psi(2,1/3)+gamma(2)) 4032500588400702 a001 1926/329*317811^(51/58) 4032500613685448 r005 Re(z^2+c),c=-31/82+24/29*I,n=4 4032500615314613 r008 a(0)=4,K{-n^6,-13+8*n^3-26*n^2-n} 4032500615399812 r008 a(0)=4,K{-n^6,-15+30*n^3-61*n^2+7*n} 4032500629140066 m008 (1/5*Pi^5+5/6)/(1/2*Pi^5+5/6) 4032500629514332 r005 Re(z^2+c),c=-53/102+1/52*I,n=7 4032500640315875 r002 7th iterates of z^2 + 4032500650526323 p004 log(27283/18229) 4032500702054950 m001 (Trott2nd+ZetaP(3))/(ln(Pi)-Cahen) 4032500715720882 m005 (1/2*exp(1)+3/7)/(6/11*Zeta(3)-7/10) 4032500740906131 a008 Real Root of x^4-2*x^3-26*x^2+24*x+124 4032500746877344 g007 Psi(2,1/6)+Psi(2,4/5)-Psi(2,7/11)-Psi(2,3/7) 4032500752332229 q001 134/3323 4032500758737066 m001 (ln(2)-OneNinth)/(PlouffeB-Tetranacci) 4032500759447137 r002 8th iterates of z^2 + 4032500772677541 a007 Real Root Of -914*x^4-94*x^3-883*x^2-366*x+14 4032500784427465 a007 Real Root Of -836*x^4+881*x^3-282*x^2+613*x-237 4032500792628044 a007 Real Root Of 227*x^4+755*x^3-574*x^2+294*x+3 4032500799710388 h001 (-5*exp(4)+10)/(-12*exp(4)+3) 4032500805206198 r005 Im(z^2+c),c=-11/122+33/56*I,n=31 4032500819603605 l006 ln(112/6317) 4032500822284813 m001 (CareFree+ZetaP(3)*ZetaQ(4))/ZetaP(3) 4032500829155382 r004 Im(z^2+c),c=1/6+2/5*I,z(0)=I,n=50 4032500834189749 r002 57th iterates of z^2 + 4032500863252698 r008 a(0)=4,K{-n^6,-69-54*n^3+20*n^2+72*n} 4032500865554495 m001 (5^(1/2)+cos(1))/(-BesselJ(0,1)+ZetaP(4)) 4032500869967378 r008 a(0)=0,K{-n^6,26-19*n-8*n^2+5*n^3} 4032500879424199 a003 cos(Pi*31/112)-cos(Pi*19/45) 4032500880169861 h001 (-4*exp(3)+5)/(-3*exp(1/3)+4) 4032500889944324 r005 Re(z^2+c),c=-27/50+5/21*I,n=21 4032500896003263 m004 4+125*Pi+10/ProductLog[Sqrt[5]*Pi] 4032500896858462 m005 (-15/8+1/8*5^(1/2))/(1/4*Catalan+1/6) 4032500897696423 a001 3571/2971215073*4807526976^(6/23) 4032500897733801 a001 3571/165580141*75025^(6/23) 4032500901163420 m001 (Zeta(3)-FellerTornier)/(Niven+PlouffeB) 4032500910430202 r008 a(0)=4,K{-n^6,-13-49*n^3+33*n^2-2*n} 4032500917693586 m001 (Salem+ZetaP(4))/(gamma(2)-ln(2)/ln(10)) 4032500928805300 r008 a(0)=4,K{-n^6,-43-39*n^3-12*n^2+63*n} 4032500945945080 s002 sum(A104917[n]/(2^n+1),n=1..infinity) 4032500947634767 r005 Re(z^2+c),c=-65/118+5/26*I,n=25 4032500951628026 r009 Im(z^3+c),c=-47/126+25/56*I,n=6 4032500953694856 r008 a(0)=4,K{-n^6,-23-36*n^3-11*n^2+39*n} 4032500958173663 m001 (FeigenbaumD-OneNinth)/(Pi-FeigenbaumAlpha) 4032500974928041 g005 GAMMA(7/11)*GAMMA(2/9)/GAMMA(10/11)/GAMMA(2/3) 4032500975848104 m008 (1/6*Pi^3+3)/(3/4*Pi^3-3) 4032500978705309 m005 (1/2*gamma+1/8)/(1/3*Zeta(3)+5/8) 4032500982479838 m001 (Cahen+OrthogonalArrays)/(Shi(1)+ln(gamma)) 4032500982857549 m005 (1/2*Catalan+4/7)/(1/5*5^(1/2)-3) 4032500984389115 a001 11/21*75025^(2/11) 4032500986098400 l006 ln(4369/6539) 4032500989795209 m005 (1/3*5^(1/2)+1/4)/(1/9*2^(1/2)-2/11) 4032500990794828 a001 38/3278735159921*89^(5/18) 4032500992293401 m004 (-15*Pi)/2-Sin[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi] 4032500998816656 r008 a(0)=4,K{-n^6,-21+56*n-40*n^2-26*n^3} 4032501011432784 r008 a(0)=4,K{-n^6,49-35*n^3+22*n^2-67*n} 4032501019796281 a001 46/141*1597^(15/44) 4032501023718949 r008 a(0)=4,K{-n^6,29-62*n-6*n^2+7*n^3} 4032501056174947 r005 Re(z^2+c),c=-13/40+37/64*I,n=21 4032501057239815 r005 Re(z^2+c),c=-27/52+2/11*I,n=10 4032501060676938 a007 Real Root Of -958*x^4-133*x^3+829*x^2+938*x-479 4032501080354598 r005 Re(z^2+c),c=-27/46+18/49*I,n=42 4032501081091105 r002 43th iterates of z^2 + 4032501087133795 a001 15127/55*17711^(14/51) 4032501098594986 r005 Im(z^2+c),c=7/94+22/37*I,n=61 4032501118283393 r009 Im(z^3+c),c=-3/70+29/62*I,n=9 4032501119145891 m005 (1/2*2^(1/2)+5/6)/(5/6*Pi-3) 4032501123654049 r005 Im(z^2+c),c=3/64+20/41*I,n=48 4032501123931289 a003 cos(Pi*2/109)*sin(Pi*9/68) 4032501131272806 m001 (Cahen-Landau)/(Riemann3rdZero-ZetaP(3)) 4032501145507833 r008 a(0)=4,K{-n^6,45-13*n-52*n^2-11*n^3} 4032501147341354 r005 Im(z^2+c),c=-49/86+3/41*I,n=33 4032501148627528 p001 sum(1/(174*n+25)/(16^n),n=0..infinity) 4032501149353978 m001 (Psi(2,1/3)+GAMMA(3/4))/(ln(2)+Cahen) 4032501152020879 a007 Real Root Of 256*x^4+929*x^3-168*x^2+835*x-676 4032501152555835 m001 (-Conway+Kac)/(2^(1/3)+BesselK(0,1)) 4032501152872405 m001 gamma/(3^(1/3)-Trott) 4032501156252494 m001 (OneNinth+Salem)/(gamma-sin(1/12*Pi)) 4032501157035438 r008 a(0)=4,K{-n^6,12-34*n-24*n^2+14*n^3} 4032501160306348 r005 Re(z^2+c),c=-41/78+3/43*I,n=7 4032501163054034 r005 Im(z^2+c),c=1/23+23/47*I,n=33 4032501164667257 r009 Re(z^3+c),c=-3/122+39/50*I,n=10 4032501167783907 a001 9349/7778742049*4807526976^(6/23) 4032501167821285 a001 9349/433494437*75025^(6/23) 4032501171756236 m001 Mills^FeigenbaumDelta-ln(gamma) 4032501175173240 a005 (1/cos(14/225*Pi))^1270 4032501193350165 r008 a(0)=4,K{-n^6,-69+27*n^3-43*n^2+55*n} 4032501207189140 a001 12238/10182505537*4807526976^(6/23) 4032501207226518 a001 12238/567451585*75025^(6/23) 4032501212938286 a001 64079/53316291173*4807526976^(6/23) 4032501212975664 a001 64079/2971215073*75025^(6/23) 4032501213777075 a001 167761/139583862445*4807526976^(6/23) 4032501213814453 a001 167761/7778742049*75025^(6/23) 4032501213899453 a001 219602/182717648081*4807526976^(6/23) 4032501213917307 a001 1149851/956722026041*4807526976^(6/23) 4032501213919912 a001 3010349/2504730781961*4807526976^(6/23) 4032501213920292 a001 3940598/3278735159921*4807526976^(6/23) 4032501213920382 a001 4250681/3536736619241*4807526976^(6/23) 4032501213920527 a001 4870847/4052739537881*4807526976^(6/23) 4032501213921522 a001 1/832040*4807526976^(6/23) 4032501213928342 a001 710647/591286729879*4807526976^(6/23) 4032501213936831 a001 219602/10182505537*75025^(6/23) 4032501213954685 a001 1149851/53316291173*75025^(6/23) 4032501213957290 a001 3010349/139583862445*75025^(6/23) 4032501213957670 a001 3940598/182717648081*75025^(6/23) 4032501213957726 a001 20633239/956722026041*75025^(6/23) 4032501213957734 a001 54018521/2504730781961*75025^(6/23) 4032501213957735 a001 70711162/3278735159921*75025^(6/23) 4032501213957735 a001 4868641/225749145909*75025^(6/23) 4032501213957736 a001 87403803/4052739537881*75025^(6/23) 4032501213957739 a001 16692641/774004377960*75025^(6/23) 4032501213957760 a001 12752043/591286729879*75025^(6/23) 4032501213957905 a001 4870847/225851433717*75025^(6/23) 4032501213958900 a001 930249/43133785636*75025^(6/23) 4032501213965720 a001 710647/32951280099*75025^(6/23) 4032501213975086 a001 90481/75283811239*4807526976^(6/23) 4032501214012464 a001 271443/12586269025*75025^(6/23) 4032501214295475 a001 51841/43133785636*4807526976^(6/23) 4032501214332853 a001 1/46368*75025^(6/23) 4032501216491454 a001 13201/10983760033*4807526976^(6/23) 4032501216528832 a001 39603/1836311903*75025^(6/23) 4032501231542913 a001 15127/12586269025*4807526976^(6/23) 4032501231580291 a001 15127/701408733*75025^(6/23) 4032501235580936 a007 Real Root Of 448*x^4+192*x^3+472*x^2-982*x-472 4032501237932726 m001 Khinchin*(ln(2^(1/2)+1)+Riemann1stZero) 4032501244720046 r005 Im(z^2+c),c=17/74+15/43*I,n=19 4032501262302231 r002 55th iterates of z^2 + 4032501267486075 m001 (gamma(1)-Otter)/(Sarnak+Trott2nd) 4032501273773745 r005 Im(z^2+c),c=-47/98+2/29*I,n=39 4032501276120361 l006 ln(5273/7892) 4032501277892038 m001 cos(1/5*Pi)/(ln(2)/ln(10)+Niven) 4032501288291965 s002 sum(A127756[n]/(n^2*pi^n-1),n=1..infinity) 4032501304244588 m001 (-Otter+ReciprocalLucas)/(LambertW(1)+Ei(1)) 4032501318214716 a007 Real Root Of 910*x^4-944*x^3-621*x^2-744*x-285 4032501326769081 r005 Re(z^2+c),c=-7/13+14/47*I,n=54 4032501334707152 a001 321/267084832*4807526976^(6/23) 4032501334744530 a001 2889/133957148*75025^(6/23) 4032501347544653 r002 41th iterates of z^2 + 4032501356990848 a001 47*(1/2*5^(1/2)+1/2)^3*199^(2/15) 4032501360318286 m001 (ln(5)+exp(-Pi)*GAMMA(7/24))/exp(-Pi) 4032501360318286 m001 exp(Pi)*ln(5)+GAMMA(7/24) 4032501360318286 m001 exp(Pi)*ln(5)+Pi*csc(7/24*Pi)/GAMMA(17/24) 4032501377972553 m001 (Trott-ZetaQ(4))/(BesselJ(1,1)+Tribonacci) 4032501385707602 a007 Real Root Of 914*x^4+678*x^3+884*x^2-413*x-290 4032501387091547 m005 (1/2*3^(1/2)-2/7)/(3/7*2^(1/2)-3/4) 4032501387665188 m001 1/GAMMA(1/6)*LaplaceLimit*ln(Zeta(3))^2 4032501389469204 a005 (1/cos(17/228*Pi))^1963 4032501398054177 a007 Real Root Of -253*x^4+643*x^3+976*x^2+498*x-395 4032501423043124 m005 (1/3*5^(1/2)-2/11)/(2/5*Zeta(3)+11/12) 4032501425195578 r005 Re(z^2+c),c=-35/66+10/29*I,n=56 4032501425779506 r002 60th iterates of z^2 + 4032501430571610 a007 Real Root Of 140*x^4-297*x^3-359*x^2-446*x+254 4032501455433470 a007 Real Root Of 83*x^4+332*x^3-26*x^2+157*x+879 4032501472253856 m009 (3/5*Psi(1,3/4)+4/5)/(1/4*Psi(1,2/3)+5) 4032501481253260 l006 ln(6177/9245) 4032501488370595 r005 Im(z^2+c),c=2/21+5/11*I,n=32 4032501489812651 r002 13th iterates of z^2 + 4032501494104952 r005 Re(z^2+c),c=-13/12+43/87*I,n=4 4032501501740332 m005 (13/42+1/6*5^(1/2))/(11/12*exp(1)-4/5) 4032501502048521 r005 Re(z^2+c),c=29/98+3/64*I,n=51 4032501521992959 m001 (Trott-ZetaQ(2))/(Kac+TreeGrowth2nd) 4032501529200037 m001 1/RenyiParking*LaplaceLimit^2/exp(GAMMA(1/3)) 4032501530074469 b008 -13*Pi+SinIntegral[Pi/6] 4032501535237535 r005 Im(z^2+c),c=-6/17+32/51*I,n=27 4032501540203583 m001 exp(Si(Pi))/ErdosBorwein*Zeta(7)^2 4032501551117021 r009 Im(z^3+c),c=-29/62+21/64*I,n=59 4032501563239514 m001 sin(Pi/12)/Si(Pi)/ln(sqrt(2)) 4032501566021407 r005 Im(z^2+c),c=9/25+11/53*I,n=57 4032501568338637 m001 (KhinchinLevy+Magata)/(BesselJ(0,1)+Artin) 4032501579525589 r005 Re(z^2+c),c=23/62+12/59*I,n=34 4032501580724548 a001 123/832040*377^(52/55) 4032501600500155 r005 Re(z^2+c),c=-3/4+2/101*I,n=44 4032501604945732 m001 (Conway-cos(1))/(-Porter+ReciprocalFibonacci) 4032501607820680 r002 3th iterates of z^2 + 4032501616084483 a007 Real Root Of 976*x^4+318*x^3-23*x^2-426*x-173 4032501628229525 r009 Re(z^3+c),c=-5/12+9/61*I,n=23 4032501629709535 m001 (-CopelandErdos+Landau)/(Cahen-LambertW(1)) 4032501664922261 m001 (gamma(2)-Kolakoski)/(MertensB3+Robbin) 4032501666406139 r002 54th iterates of z^2 + 4032501669297622 r009 Im(z^3+c),c=-10/23+7/20*I,n=26 4032501673884276 a007 Real Root Of 90*x^4+434*x^3+317*x^2+221*x+397 4032501678312217 m001 (Zeta(1,-1)-exp(1/Pi))/(Magata+ThueMorse) 4032501688473764 m001 arctan(1/2)/ln(Artin)^2*sin(1) 4032501696483913 m001 (-Khinchin+PlouffeB)/(Psi(2,1/3)+arctan(1/3)) 4032501697977482 r002 63th iterates of z^2 + 4032501699194323 r002 22th iterates of z^2 + 4032501699194323 r002 22th iterates of z^2 + 4032501701205840 r005 Im(z^2+c),c=23/126+32/55*I,n=54 4032501703230090 a007 Real Root Of 113*x^4+264*x^3-346*x^2-811*x+363 4032501729675205 m001 (3^(1/2)+cos(1))/(-BesselI(1,1)+ZetaQ(4)) 4032501730945955 m008 (2/5*Pi^4-1/3)/(2/3*Pi^2+3) 4032501744498884 b008 49/55+Pi 4032501747940734 m001 Zeta(9)/ln(MertensB1)^2/sinh(1)^2 4032501748308793 m001 (ArtinRank2-Niven)/(Ei(1,1)+BesselI(0,2)) 4032501751805352 r008 a(0)=4,K{-n^6,-38-4*n^3+66*n^2-54*n} 4032501772541483 m001 (Pi-2^(1/3))/(Mills+ReciprocalFibonacci) 4032501779640149 a007 Real Root Of -345*x^4-286*x^3+709*x^2+857*x-433 4032501793569214 m001 (1+LambertW(1))/(BesselI(0,2)+ErdosBorwein) 4032501800402554 r008 a(0)=4,K{-n^6,-14-49*n^3+33*n^2-n} 4032501805242946 r008 a(0)=4,K{-n^6,-24*n+43*n^2-50*n^3} 4032501806478958 r008 a(0)=4,K{-n^6,-34+39*n+8*n^2-44*n^3} 4032501807692623 r008 a(0)=4,K{-n^6,4-30*n+45*n^2-50*n^3} 4032501818013366 m001 TwinPrimes^2/ln(ArtinRank2)/sqrt(3)^2 4032501818762749 r005 Re(z^2+c),c=-10/19+20/57*I,n=46 4032501833451569 r002 2th iterates of z^2 + 4032501836870150 a007 Real Root Of -900*x^4+367*x^3-63*x^2+213*x+144 4032501851425468 h005 exp(cos(Pi*1/12)/cos(Pi*10/39)) 4032501855367624 r008 a(0)=4,K{-n^6,-26+49*n-21*n^2-33*n^3} 4032501869668079 a001 64079*610^(31/48) 4032501871502830 a007 Real Root Of 576*x^4-774*x^3-23*x^2-473*x+230 4032501872320659 r005 Im(z^2+c),c=29/90+15/64*I,n=33 4032501873874568 r005 Re(z^2+c),c=-71/110+1/21*I,n=12 4032501874295022 r002 51th iterates of z^2 + 4032501878105962 a001 521/34*6557470319842^(11/19) 4032501878962580 r008 a(0)=4,K{-n^6,-30-27*n^3-41*n^2+67*n} 4032501880237240 r005 Re(z^2+c),c=-19/36+13/34*I,n=43 4032501889644746 q001 1067/2646 4032501889644746 r002 2th iterates of z^2 + 4032501889644746 r002 2th iterates of z^2 + 4032501896551759 r009 Re(z^3+c),c=-49/102+3/52*I,n=41 4032501898124420 r009 Im(z^3+c),c=-35/106+17/42*I,n=29 4032501900374290 m001 (Pi-exp(1/exp(1)))/(FeigenbaumAlpha+Niven) 4032501914453858 r008 a(0)=4,K{-n^6,-19+22*n^3-3*n^2-30*n} 4032501928798050 r005 Re(z^2+c),c=-14/25+4/29*I,n=44 4032501934058739 r005 Im(z^2+c),c=-5/94+28/45*I,n=41 4032501942881837 r009 Im(z^3+c),c=-31/110+11/26*I,n=16 4032501944733806 a004 Fibonacci(14)*Lucas(13)/(1/2+sqrt(5)/2)^32 4032501955676020 m005 (1/2*2^(1/2)-7/10)/(4/9*Catalan-7/12) 4032501956977589 r009 Re(z^3+c),c=-27/52+8/41*I,n=37 4032501965844708 q001 2/49597 4032501978279851 r005 Im(z^2+c),c=1/64+22/43*I,n=26 4032501997205302 r005 Re(z^2+c),c=6/19+20/39*I,n=23 4032502017909741 r009 Im(z^3+c),c=-43/102+20/33*I,n=6 4032502033889085 m001 GAMMA(3/4)/exp(Robbin)^2/cos(Pi/5) 4032502041805367 a001 2207/1836311903*4807526976^(6/23) 4032502041842745 a001 2207/102334155*75025^(6/23) 4032502042993909 r005 Im(z^2+c),c=-1/5+33/53*I,n=48 4032502083324042 m001 BesselK(1,1)^2*exp(FeigenbaumD)/GAMMA(1/4)^2 4032502083870915 m004 -5+Sqrt[5]*Pi+Cot[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 4032502087412573 m005 (1/2*gamma+3/10)/(7/8*2^(1/2)+2/9) 4032502121185864 r005 Im(z^2+c),c=-3/70+11/20*I,n=32 4032502121795241 m001 (ln(5)+ln(2+3^(1/2)))/(gamma(3)+Sarnak) 4032502135342854 m001 Psi(2,1/3)/Grothendieck/ZetaP(4) 4032502136693823 a007 Real Root Of -301*x^4+810*x^3+329*x^2+968*x-489 4032502137621934 m005 (1/2*Pi+1/6)/(21/22+3/2*5^(1/2)) 4032502148848251 p001 sum((-1)^n/(371*n+247)/(100^n),n=0..infinity) 4032502152504058 m001 exp(Catalan)^2*Paris*cos(Pi/5)^2 4032502154024082 r005 Im(z^2+c),c=11/50+17/48*I,n=32 4032502158591114 r005 Re(z^2+c),c=-9/14+63/223*I,n=38 4032502160991658 m005 (1/3*3^(1/2)+2/11)/(11/10+7/20*5^(1/2)) 4032502166547726 a007 Real Root Of 7*x^4+275*x^3-299*x^2-249*x-887 4032502176134923 a007 Real Root Of -12*x^4+127*x^3+656*x^2-417*x-848 4032502176925159 h001 (3/10*exp(1)+2/5)/(7/9*exp(1)+9/10) 4032502184523701 m001 2*gamma(3)*Pi/GAMMA(5/6)-PrimesInBinary 4032502186615701 r008 a(0)=4,K{-n^6,-17-31*n-5*n^2+23*n^3} 4032502189284654 a001 521/514229*4181^(28/39) 4032502207816202 m001 1/(3^(1/3))*exp(KhintchineHarmonic)^2*sqrt(Pi) 4032502208740667 r005 Re(z^2+c),c=-27/50+11/41*I,n=22 4032502220641636 b008 -5/28+E^6 4032502228663357 r009 Im(z^3+c),c=-10/19+5/21*I,n=36 4032502234758174 r002 27th iterates of z^2 + 4032502235389115 a001 281/233802911*102334155^(4/21) 4032502235389115 a001 281/1602508992*2504730781961^(4/21) 4032502237952962 v003 sum((4+n^2+5*n)/n^(n-2),n=1..infinity) 4032502239911998 r009 Im(z^3+c),c=-1/106+39/49*I,n=16 4032502244177013 a001 281/34111385*4181^(4/21) 4032502253254973 r005 Im(z^2+c),c=7/27+6/19*I,n=51 4032502254414614 r009 Im(z^3+c),c=-59/114+16/55*I,n=58 4032502254638312 p003 LerchPhi(1/3,2,314/185) 4032502258740904 r005 Im(z^2+c),c=-9/98+37/64*I,n=39 4032502269414721 m008 (2/5*Pi^5+5/6)/(Pi^5-2/5) 4032502273717942 r002 45th iterates of z^2 + 4032502286640817 r002 62th iterates of z^2 + 4032502293450942 h001 (-8*exp(3)-6)/(-9*exp(3/2)-1) 4032502298762412 r002 58th iterates of z^2 + 4032502299069725 l006 ln(107/6035) 4032502307363318 r005 Im(z^2+c),c=5/66+22/47*I,n=63 4032502319713195 p004 log(30893/20641) 4032502341061603 a007 Real Root Of 923*x^4-367*x^3+946*x^2-215*x-289 4032502342225861 m005 (1/2*gamma-2/9)/(4/9*Pi+1/4) 4032502342853902 a001 521/8*75025^(7/9) 4032502351925398 r005 Im(z^2+c),c=5/29+19/48*I,n=29 4032502353240892 r005 Re(z^2+c),c=-9/16+11/106*I,n=32 4032502367953747 a007 Real Root Of 420*x^4-649*x^3-84*x^2-766*x+354 4032502396624263 r005 Re(z^2+c),c=-45/82+13/42*I,n=30 4032502407758149 r005 Re(z^2+c),c=-19/34+5/33*I,n=61 4032502415819859 a001 29/102334155*4807526976^(16/19) 4032502416197545 a001 29/46368*514229^(16/19) 4032502416819268 h001 (6/7*exp(2)+4/7)/(2/5*exp(1)+5/8) 4032502417500970 a001 521/53316291173*89^(6/19) 4032502423505083 r005 Im(z^2+c),c=-24/23+5/18*I,n=10 4032502426810619 r002 55th iterates of z^2 + 4032502429183845 r002 16th iterates of z^2 + 4032502465720953 a007 Real Root Of -12*x^4-468*x^3+624*x^2-693*x-9 4032502477402979 a007 Real Root Of 944*x^4+313*x^3+888*x^2-789*x-467 4032502482188821 r009 Im(z^3+c),c=-17/106+5/11*I,n=15 4032502486801886 r009 Re(z^3+c),c=-27/52+13/58*I,n=43 4032502511897305 a007 Real Root Of -778*x^4+28*x^3-47*x^2+978*x-368 4032502513685189 r009 Re(z^3+c),c=-5/56+21/29*I,n=42 4032502517321470 a007 Real Root Of 785*x^4+49*x^3+243*x^2-905*x-422 4032502524105442 r002 9th iterates of z^2 + 4032502536991717 m001 Thue*ZetaQ(2)^sin(1/12*Pi) 4032502549046186 r009 Im(z^3+c),c=-8/17+15/46*I,n=47 4032502558721582 s002 sum(A162677[n]/(n*exp(n)-1),n=1..infinity) 4032502561270249 a007 Real Root Of -154*x^4-533*x^3+96*x^2-883*x+649 4032502566878634 r008 a(0)=4,K{-n^6,-87-82*n^3+96*n^2+42*n} 4032502567086904 m001 (FellerTornier-ThueMorse)/(ln(3)+GAMMA(5/6)) 4032502575832910 r002 9th iterates of z^2 + 4032502641931728 r005 Im(z^2+c),c=-28/31+2/63*I,n=16 4032502643524261 a001 1/116*(1/2*5^(1/2)+1/2)^27*4^(1/22) 4032502646883386 r002 34th iterates of z^2 + 4032502649733958 r008 a(0)=4,K{-n^6,-69-54*n^3+21*n^2+71*n} 4032502649934117 r005 Im(z^2+c),c=29/78+14/47*I,n=44 4032502650023946 r005 Re(z^2+c),c=-35/62+3/46*I,n=42 4032502652437092 r005 Im(z^2+c),c=2/13+16/39*I,n=57 4032502657461189 m001 Artin^(2/3)/Zeta(1/2)^(2/3) 4032502658169174 r002 11th iterates of z^2 + 4032502665610102 m001 Zeta(3)^2/ln(CareFree)^2/cos(1)^2 4032502670141005 b008 1/27+PolyLog[2,1/3] 4032502671365034 r005 Im(z^2+c),c=-17/62+1/17*I,n=8 4032502677786115 l006 ln(904/1353) 4032502682155009 r002 56th iterates of z^2 + 4032502687726207 r002 22th iterates of z^2 + 4032502703071578 r008 a(0)=4,K{-n^6,-35+40*n+8*n^2-44*n^3} 4032502705876134 r005 Re(z^2+c),c=-11/90+48/59*I,n=6 4032502733408559 r005 Im(z^2+c),c=5/29+17/43*I,n=36 4032502743303106 r002 34th iterates of z^2 + 4032502745372692 r008 a(0)=4,K{-n^6,5-12*n+16*n^2-40*n^3} 4032502754573192 a008 Real Root of x^4-2*x^3+15*x^2-x-3 4032502762467879 m005 (1/2*Pi-3/11)/(1/4*3^(1/2)-1/9) 4032502764238456 r008 a(0)=4,K{-n^6,-11+26*n-13*n^2-33*n^3} 4032502774551253 m001 BesselI(1,2)^ReciprocalFibonacci-Sarnak 4032502785608267 a007 Real Root Of -127*x^4-528*x^3+186*x^2+872*x-549 4032502787911414 m005 (1/3*Catalan-1/2)/(4/5*Catalan-1/4) 4032502814922037 r002 6th iterates of z^2 + 4032502819295893 m005 (1/3*Catalan+2/11)/(5*5^(1/2)+9/10) 4032502820653473 r008 a(0)=4,K{-n^6,29-24*n-8*n^2-28*n^3} 4032502838504788 r008 a(0)=4,K{-n^6,37-26*n^3-10*n^2-32*n} 4032502841058428 m001 (ArtinRank2+Sierpinski)/(BesselJ(1,1)+Artin) 4032502851351241 m005 (1/3*gamma+2/7)/(7/12*exp(1)-2/5) 4032502856438481 r005 Im(z^2+c),c=17/50+11/50*I,n=53 4032502864199111 a007 Real Root Of 332*x^4-570*x^3-262*x^2-984*x+468 4032502871746871 r002 38th iterates of z^2 + 4032502874175684 m005 (1/2*Catalan-5)/(1/2*Pi-4/9) 4032502879137292 a001 1/36*144^(3/40) 4032502887094007 r008 a(0)=4,K{-n^6,63-63*n-9*n^2-22*n^3} 4032502893096949 a001 817138163596/3*3^(5/14) 4032502899129381 m001 (Thue+ZetaQ(2))/(ln(2)/ln(10)+ReciprocalLucas) 4032502903996522 a007 Real Root Of -97*x^4-384*x^3-212*x^2-750*x+892 4032502909150463 m005 (-13/20+1/4*5^(1/2))/(7/9*3^(1/2)+10/11) 4032502914929614 m001 GAMMA(1/12)^2*ln(Robbin)/GAMMA(2/3) 4032502917194536 r008 a(0)=4,K{-n^6,25+16*n-61*n^2-11*n^3} 4032502921129830 a007 Real Root Of 406*x^4-700*x^3-815*x^2-828*x-258 4032502922824645 s002 sum(A188539[n]/(n^2*exp(n)+1),n=1..infinity) 4032502926857827 a007 Real Root Of 256*x^4-916*x^3+569*x^2+849*x+183 4032502931893494 g005 GAMMA(1/11)/GAMMA(7/12)/GAMMA(9/11)/GAMMA(3/5) 4032502939649911 g005 GAMMA(5/11)/GAMMA(7/12)^2/GAMMA(3/7) 4032502947231381 a007 Real Root Of -809*x^4-725*x^3-756*x^2+866*x+446 4032502950003101 m001 Lehmer/(BesselJ(0,1)+CareFree) 4032502960955332 r005 Im(z^2+c),c=19/48+26/63*I,n=4 4032502965647732 r005 Im(z^2+c),c=9/50+19/49*I,n=22 4032502969809759 a007 Real Root Of 424*x^4+123*x^3+385*x^2-938*x-444 4032502977769470 r002 27th iterates of z^2 + 4032502980806120 r005 Im(z^2+c),c=1/14+17/37*I,n=13 4032502982616048 r002 46th iterates of z^2 + 4032502982914714 a007 Real Root Of 257*x^4+912*x^3-676*x^2-532*x+693 4032502989700537 r005 Im(z^2+c),c=41/118+3/11*I,n=39 4032502996303098 a001 2/53316291173*514229^(12/17) 4032503011375066 m001 (-Riemann1stZero+TwinPrimes)/(3^(1/2)+ln(5)) 4032503015645005 r009 Re(z^3+c),c=-11/26+3/20*I,n=11 4032503024345088 r002 53th iterates of z^2 + 4032503024456484 m005 (1/2*gamma-2)/(5/7*Pi+2) 4032503029181784 a001 144/64079*322^(1/2) 4032503032868487 b008 1/16+7*ProductLog[1] 4032503034093014 m005 (1/2*Pi+5/11)/(29/80+1/16*5^(1/2)) 4032503047960286 s002 sum(A021392[n]/((2^n+1)/n),n=1..infinity) 4032503051574063 r005 Im(z^2+c),c=2/13+16/39*I,n=54 4032503060277880 r009 Im(z^3+c),c=-7/32+19/43*I,n=17 4032503067220319 b008 1+9*Log[79] 4032503077535338 m001 Sierpinski^(2^(1/2))*Zeta(5)^(2^(1/2)) 4032503087490088 a001 377/3010349*521^(12/13) 4032503089118187 m006 (1/3/Pi-4)/(2/5*exp(Pi)+2/5) 4032503090931882 r002 19th iterates of z^2 + 4032503093424285 m001 FeigenbaumDelta^(Pi*2^(1/2)/GAMMA(3/4)*Robbin) 4032503096146599 g007 2*Psi(2,1/10)+Psi(2,2/5)-Psi(2,7/8) 4032503097706490 a007 Real Root Of 537*x^4-947*x^3+228*x^2+53*x-92 4032503099260194 r009 Re(z^3+c),c=-43/110+7/60*I,n=24 4032503104344829 p004 log(25933/17327) 4032503110231131 a007 Real Root Of -757*x^4+895*x^3-990*x^2+958*x-264 4032503134535337 a001 987/64079*199^(2/11) 4032503138823956 m001 (-exp(-1/2*Pi)+Salem)/(5^(1/2)-Zeta(1,-1)) 4032503156363443 r002 64th iterates of z^2 + 4032503158352571 r005 Re(z^2+c),c=1/126+45/61*I,n=20 4032503167637225 a007 Real Root Of 614*x^4-907*x^3+330*x^2-130*x+42 4032503171575653 r005 Re(z^2+c),c=-53/94+4/49*I,n=48 4032503196860289 m001 1/CopelandErdos^2*Artin^2/exp(FeigenbaumC) 4032503216841093 p004 log(20521/13711) 4032503218521157 m001 (-Zeta(1/2)+CareFree)/(Chi(1)-ln(2)/ln(10)) 4032503239740960 a007 Real Root Of -623*x^4-16*x^3-357*x^2+961*x+461 4032503248136727 r009 Im(z^3+c),c=-35/106+17/42*I,n=25 4032503276064357 a007 Real Root Of -242*x^4+349*x^3-658*x^2+344*x+275 4032503281372494 r002 19th iterates of z^2 + 4032503289418073 r009 Re(z^3+c),c=-14/27+3/22*I,n=32 4032503290661620 m001 Kolakoski/(sin(1)+GAMMA(5/6)) 4032503292995591 m001 (gamma+FeigenbaumAlpha)/(-Stephens+Totient) 4032503296786895 m001 1/Kolakoski*exp(FransenRobinson)*GAMMA(5/24)^2 4032503306549655 a002 5^(12/5)-17^(7/10) 4032503338341216 r005 Re(z^2+c),c=-8/15+13/40*I,n=61 4032503395804963 r005 Re(z^2+c),c=-15/26+29/73*I,n=38 4032503418619357 r005 Im(z^2+c),c=-23/70+1/2*I,n=6 4032503422999956 r002 14th iterates of z^2 + 4032503423218411 m001 (Ei(1)+MertensB3)/(cos(1/5*Pi)-ln(5)) 4032503427282181 r005 Im(z^2+c),c=-19/29+4/49*I,n=45 4032503444706446 r005 Im(z^2+c),c=8/23+8/51*I,n=10 4032503449581015 r005 Re(z^2+c),c=-9/16+11/47*I,n=22 4032503453425640 m001 (Grothendieck-MertensB3)/(RenyiParking-Thue) 4032503483654244 r008 a(0)=4,K{-n^6,-16+2*n^3+35*n^2-50*n} 4032503486513801 m001 FibonacciFactorial/(2^(1/3)+Grothendieck) 4032503494692768 r005 Im(z^2+c),c=1/62+32/63*I,n=50 4032503495197687 r005 Im(z^2+c),c=-45/98+8/15*I,n=29 4032503496445660 r005 Re(z^2+c),c=-39/118+11/19*I,n=42 4032503513662536 m005 (1/2*Zeta(3)+3)/(2/5*Pi-4/11) 4032503516270267 a001 843/55*4181^(20/51) 4032503520391451 m001 (GAMMA(23/24)+CareFree)/(TreeGrowth2nd-Trott) 4032503533046963 r008 a(0)=4,K{-n^6,-60+41*n+50*n^2-62*n^3} 4032503551298937 r008 a(0)=4,K{-n^6,-36+9*n+56*n^2-60*n^3} 4032503553678543 r005 Re(z^2+c),c=-19/34+10/63*I,n=32 4032503561375854 a007 Real Root Of 823*x^4-492*x^3+725*x^2-764*x-480 4032503564511645 r005 Im(z^2+c),c=23/86+16/53*I,n=23 4032503572746058 r005 Im(z^2+c),c=-33/86+28/51*I,n=17 4032503576226840 a003 cos(Pi*16/53)-cos(Pi*50/113) 4032503578342804 r005 Re(z^2+c),c=-19/42+11/39*I,n=6 4032503578703892 r008 a(0)=4,K{-n^6,-40+33*n+27*n^2-51*n^3} 4032503579654078 r008 a(0)=4,K{-n^6,-13+30*n^3-24*n^2-23*n} 4032503580643772 a001 12238/17*514229^(15/49) 4032503586532477 r005 Re(z^2+c),c=-35/74+16/39*I,n=21 4032503591952574 q001 1/2479849 4032503596933506 r005 Re(z^2+c),c=-16/31+17/46*I,n=34 4032503601305972 r008 a(0)=4,K{-n^6,-14-49*n^3+34*n^2-2*n} 4032503601492825 m001 FeigenbaumMu*Zeta(5)^ReciprocalFibonacci 4032503602211264 m005 (1/2*Pi-2)/(5/11*Pi-4/11) 4032503607979155 m001 Artin/(polylog(4,1/2)+HardyLittlewoodC5) 4032503612268051 a001 1/5*6765^(44/51) 4032503629018179 r002 49th iterates of z^2 + 4032503637061836 r002 14th iterates of z^2 + 4032503638098895 m001 cos(1/12*Pi)*CareFree*Lehmer 4032503642006101 r008 a(0)=4,K{-n^6,18-40*n+35*n^2-44*n^3} 4032503644542937 m001 (Catalan+Zeta(1/2))/(-Zeta(1,2)+ThueMorse) 4032503645276145 r005 Re(z^2+c),c=5/62+14/37*I,n=34 4032503651538604 m001 (MertensB3+Sarnak)/(CareFree-DuboisRaymond) 4032503657540566 m001 Artin^Zeta(3)-Rabbit 4032503664814855 m004 -5/4+4*Cot[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 4032503665034839 m002 4+Sinh[Pi]/(36*Pi^2) 4032503666969769 m005 (1/2*Zeta(3)-2/7)/(3/10*5^(1/2)+1/9) 4032503667602268 m008 (1/6*Pi^3-1/5)/(4*Pi^3-5/6) 4032503669071653 r005 Im(z^2+c),c=37/98+5/17*I,n=12 4032503670632526 a001 1/3010349*29^(43/58) 4032503697594830 r005 Re(z^2+c),c=-35/64+1/7*I,n=16 4032503707229966 m001 (GAMMA(3/4)+Backhouse*PlouffeB)/PlouffeB 4032503708901654 h005 exp(cos(Pi*8/43)/sin(Pi*10/49)) 4032503709967836 r002 28th iterates of z^2 + 4032503712138599 r002 26th iterates of z^2 + 4032503716377906 m001 (LambertW(1)*GAMMA(23/24)+Niven)/LambertW(1) 4032503749295073 m005 (2/5*Pi+1/2)/(3/4*Pi+2) 4032503749295073 m006 (1/2/Pi+2/5)/(2/Pi+3/4) 4032503749295073 m008 (2/5*Pi+1/2)/(3/4*Pi+2) 4032503755545458 m009 (Psi(1,1/3)+1/2)/(3/10*Pi^2-1/3) 4032503766565170 a007 Real Root Of -2*x^4+352*x^3-853*x^2+461*x+20 4032503785335492 r005 Re(z^2+c),c=-13/25+17/42*I,n=62 4032503790947536 m004 -2-125*Pi-Sqrt[5]*Pi-ProductLog[Sqrt[5]*Pi] 4032503792504752 r008 a(0)=4,K{-n^6,62-62*n-9*n^2-22*n^3} 4032503802452037 r005 Im(z^2+c),c=7/74+17/28*I,n=59 4032503807605515 h001 (5/8*exp(1)+4/5)/(4/5*exp(2)+2/7) 4032503809040121 q001 794/1969 4032503811690616 a007 Real Root Of 220*x^4+729*x^3-599*x^2-61*x-876 4032503818486239 r008 a(0)=4,K{-n^6,32+n-51*n^2-13*n^3} 4032503818545889 l006 ln(6479/9697) 4032503822247146 a001 6765/47*7^(9/17) 4032503822287277 m005 (1/2*gamma-3/7)/(11/12*gamma-4) 4032503823018483 r008 a(0)=4,K{-n^6,6-8*n^3-79*n^2+50*n} 4032503823514544 r005 Re(z^2+c),c=-23/94+17/22*I,n=6 4032503840795244 a001 2584/167761*199^(2/11) 4032503848932185 m001 (Psi(2,1/3)+gamma(2))/(CareFree+LaplaceLimit) 4032503849735930 r002 62th iterates of z^2 + 4032503852259568 m001 StolarskyHarborth*(BesselI(0,2)+FeigenbaumD) 4032503853230378 a005 (1/cos(3/101*Pi))^1376 4032503861068867 r005 Re(z^2+c),c=-31/54+11/37*I,n=23 4032503861834817 m001 (ln(5)+Otter)/(Psi(1,1/3)+GAMMA(3/4)) 4032503865698723 h002 exp(6^(2/3)*(11^(3/4)-4^(3/4))) 4032503873261422 a007 Real Root Of -940*x^4+74*x^3-540*x^2+579*x+351 4032503883867937 a007 Real Root Of 115*x^4+719*x^3+860*x^2-638*x+181 4032503884475720 r002 25th iterates of z^2 + 4032503895171737 r005 Re(z^2+c),c=-11/8+162/169*I,n=2 4032503896912405 a007 Real Root Of 796*x^4-337*x^3+842*x^2-657*x-445 4032503907702533 r002 62th iterates of z^2 + 4032503915349062 r005 Im(z^2+c),c=-7/106+29/60*I,n=5 4032503918583600 r005 Re(z^2+c),c=31/94+8/63*I,n=11 4032503921114819 m005 (1/2*Zeta(3)-4/9)/(5/6*Catalan-3/8) 4032503923579022 l006 ln(102/5753) 4032503925709582 m001 1/log(1+sqrt(2))/Kolakoski*ln(sin(Pi/5))^2 4032503934731807 m001 (Chi(1)+sin(1))/(-exp(-1/2*Pi)+GolombDickman) 4032503940544465 a007 Real Root Of -178*x^4-727*x^3+60*x^2+273*x-479 4032503943837176 a001 6765/439204*199^(2/11) 4032503945083803 r005 Re(z^2+c),c=-9/40+21/34*I,n=25 4032503946706246 r002 62th iterates of z^2 + 4032503951291815 a007 Real Root Of -192*x^4+839*x^3+960*x^2+786*x-523 4032503958870791 a001 17711/1149851*199^(2/11) 4032503961064166 a001 46368/3010349*199^(2/11) 4032503961384175 a001 121393/7881196*199^(2/11) 4032503961430864 a001 10959/711491*199^(2/11) 4032503961437675 a001 832040/54018521*199^(2/11) 4032503961438669 a001 2178309/141422324*199^(2/11) 4032503961438814 a001 5702887/370248451*199^(2/11) 4032503961438835 a001 14930352/969323029*199^(2/11) 4032503961438838 a001 39088169/2537720636*199^(2/11) 4032503961438839 a001 102334155/6643838879*199^(2/11) 4032503961438839 a001 9238424/599786069*199^(2/11) 4032503961438839 a001 701408733/45537549124*199^(2/11) 4032503961438839 a001 1836311903/119218851371*199^(2/11) 4032503961438839 a001 4807526976/312119004989*199^(2/11) 4032503961438839 a001 12586269025/817138163596*199^(2/11) 4032503961438839 a001 32951280099/2139295485799*199^(2/11) 4032503961438839 a001 86267571272/5600748293801*199^(2/11) 4032503961438839 a001 7787980473/505618944676*199^(2/11) 4032503961438839 a001 365435296162/23725150497407*199^(2/11) 4032503961438839 a001 139583862445/9062201101803*199^(2/11) 4032503961438839 a001 53316291173/3461452808002*199^(2/11) 4032503961438839 a001 20365011074/1322157322203*199^(2/11) 4032503961438839 a001 7778742049/505019158607*199^(2/11) 4032503961438839 a001 2971215073/192900153618*199^(2/11) 4032503961438839 a001 1134903170/73681302247*199^(2/11) 4032503961438839 a001 433494437/28143753123*199^(2/11) 4032503961438839 a001 165580141/10749957122*199^(2/11) 4032503961438839 a001 63245986/4106118243*199^(2/11) 4032503961438840 a001 24157817/1568397607*199^(2/11) 4032503961438848 a001 9227465/599074578*199^(2/11) 4032503961438904 a001 3524578/228826127*199^(2/11) 4032503961439283 a001 1346269/87403803*199^(2/11) 4032503961441885 a001 514229/33385282*199^(2/11) 4032503961459719 a001 196418/12752043*199^(2/11) 4032503961581951 a001 75025/4870847*199^(2/11) 4032503962419746 a001 28657/1860498*199^(2/11) 4032503962469223 m001 (GAMMA(17/24)-FeigenbaumC)/(Sarnak-Thue) 4032503968162076 a001 10946/710647*199^(2/11) 4032503970206685 a007 Real Root Of 377*x^4-267*x^3-831*x^2-348*x+283 4032503973476029 a001 7/4*(1/2*5^(1/2)+1/2)^9*4^(4/5) 4032503985823817 r005 Re(z^2+c),c=-39/64+4/17*I,n=4 4032503996645600 m004 75*Pi+5*E^(Sqrt[5]*Pi)*Sin[Sqrt[5]*Pi] 4032504003522888 l006 ln(5575/8344) 4032504007520592 a001 4181/271443*199^(2/11) 4032504020175320 r005 Im(z^2+c),c=1/9+18/41*I,n=20 4032504023665740 m001 (ln(2)+ln(5))/(arctan(1/2)-MertensB2) 4032504025697880 a007 Real Root Of 135*x^4+408*x^3-371*x^2+969*x+997 4032504043752682 r005 Im(z^2+c),c=19/64+9/22*I,n=36 4032504056246619 r005 Re(z^2+c),c=-103/86+4/5*I,n=2 4032504061236455 r005 Re(z^2+c),c=4/13+32/61*I,n=51 4032504074418139 r005 Re(z^2+c),c=-9/16+9/86*I,n=51 4032504079330919 m001 (Stephens-TwinPrimes)/(exp(1/exp(1))+Cahen) 4032504081429005 m001 1/ln(cos(Pi/5))^2*GAMMA(7/24)*sin(Pi/5) 4032504084860938 r009 Re(z^3+c),c=-17/94+26/37*I,n=22 4032504088802733 m008 (3*Pi+5/6)/(5/6*Pi^3-2/5) 4032504103589725 m005 (1/6*exp(1)+2)/(2*Pi-1/5) 4032504114247339 r002 43th iterates of z^2 + 4032504119603811 m001 (Zeta(3)+ln(Pi))/(CareFree-MasserGramain) 4032504120103270 r005 Re(z^2+c),c=-19/34+21/122*I,n=19 4032504134282660 m001 (Catalan+cos(1/5*Pi))/(Artin+ZetaQ(2)) 4032504145323533 r005 Re(z^2+c),c=-11/21+8/19*I,n=50 4032504147988661 b008 1/3+Sech[Pi!!] 4032504160830056 r005 Im(z^2+c),c=-27/58+10/21*I,n=8 4032504161931199 m001 ln(GAMMA(5/6))^2*Lehmer*arctan(1/2) 4032504166025249 a007 Real Root Of -277*x^4-909*x^3+771*x^2-34*x+965 4032504169592933 r005 Re(z^2+c),c=-51/110+19/51*I,n=9 4032504174496212 a003 cos(Pi*11/35)-cos(Pi*24/53) 4032504175153623 r009 Im(z^3+c),c=-47/126+19/43*I,n=6 4032504185756082 r002 49th iterates of z^2 + 4032504194374700 a007 Real Root Of -772*x^4-440*x^3-827*x^2+972*x+518 4032504202065319 r005 Im(z^2+c),c=1/98+19/37*I,n=19 4032504203973327 p003 LerchPhi(1/5,3,12/191) 4032504214538646 m005 (1/3*Zeta(3)+1/10)/(7/12*2^(1/2)+5/12) 4032504222870152 m001 (MertensB3-Thue)/(BesselJ(1,1)-FellerTornier) 4032504230244639 a001 377/1860498*521^(11/13) 4032504237557579 r005 Im(z^2+c),c=-6/5+15/52*I,n=15 4032504260098771 l006 ln(4671/6991) 4032504260107063 r005 Re(z^2+c),c=-49/86+16/35*I,n=46 4032504263518400 r005 Im(z^2+c),c=7/50+8/19*I,n=40 4032504277287871 a001 1597/103682*199^(2/11) 4032504286304540 a007 Real Root Of -192*x^4+660*x^3-84*x^2+264*x-131 4032504298607307 r005 Im(z^2+c),c=1/66+30/59*I,n=60 4032504302596500 r005 Re(z^2+c),c=25/122+3/8*I,n=32 4032504304258363 a007 Real Root Of -274*x^4-995*x^3+455*x^2-33*x-325 4032504306655923 r008 a(0)=4,K{-n^6,-9-21*n-34*n^2+34*n^3} 4032504309980657 r005 Im(z^2+c),c=-45/34+5/112*I,n=53 4032504311168122 a007 Real Root Of -177*x^4-502*x^3+963*x^2+220*x-887 4032504332248344 m005 (1/3*exp(1)-4/5)/(3/5*exp(1)+1) 4032504333920367 h001 (5/11*exp(2)+3/10)/(1/5*exp(1)+4/11) 4032504334020677 r005 Re(z^2+c),c=-73/106+1/47*I,n=16 4032504338058325 l003 Si(35/86) 4032504338058325 l004 Si(35/86) 4032504338219503 r005 Im(z^2+c),c=-17/118+23/41*I,n=22 4032504339850565 m001 (CareFree+FeigenbaumDelta)/MertensB3 4032504350547940 r005 Re(z^2+c),c=-5/8+53/223*I,n=4 4032504372757905 a001 2/233*514229^(2/17) 4032504376036776 a005 (1/cos(70/163*Pi))^45 4032504376044175 r009 Re(z^3+c),c=-43/94+5/26*I,n=44 4032504381532251 m005 (5*Pi+2/3)/(3/4*2^(1/2)+3) 4032504382091931 m005 (-13/44+1/4*5^(1/2))/(2/9*Catalan-6/7) 4032504383323776 r005 Im(z^2+c),c=7/23+13/49*I,n=58 4032504389402168 m001 1/GAMMA(1/12)^2*Paris*ln(GAMMA(11/12)) 4032504391788128 a001 123/63245986*317811^(8/19) 4032504391791490 a001 123/2971215073*2971215073^(8/19) 4032504403576792 r005 Re(z^2+c),c=-65/118+34/61*I,n=45 4032504403641961 r002 54th iterates of z^2 + 4032504414356234 r009 Im(z^3+c),c=-1/82+15/32*I,n=14 4032504428929772 r002 32th iterates of z^2 + 4032504430193953 s002 sum(A191924[n]/(exp(n)),n=1..infinity) 4032504431852734 m001 GAMMA(17/24)*RenyiParking^2/exp(gamma) 4032504457763795 p003 LerchPhi(1/100,1,542/217) 4032504464403238 h003 exp(Pi*(12^(11/12)+13^(6/7))) 4032504464403238 h008 exp(Pi*(12^(11/12)+13^(6/7))) 4032504465169612 a001 199/75025*28657^(2/49) 4032504485134798 a007 Real Root Of 237*x^4-106*x^3-383*x^2-811*x+390 4032504488309721 r008 a(0)=4,K{-n^6,-41+34*n+27*n^2-51*n^3} 4032504489371548 a007 Real Root Of 769*x^4+591*x^3+303*x^2-784*x-347 4032504492970572 r008 a(0)=4,K{-n^6,9-58*n^3+73*n^2-55*n} 4032504495612134 r005 Im(z^2+c),c=19/118+13/34*I,n=7 4032504500219177 r005 Im(z^2+c),c=-9/10+47/204*I,n=18 4032504503059329 r005 Re(z^2+c),c=-5/9+11/60*I,n=55 4032504505196057 r005 Re(z^2+c),c=-37/122+16/27*I,n=24 4032504512157973 m001 (Zeta(1,2)+ZetaQ(2))/(GAMMA(3/4)-exp(Pi)) 4032504517476157 r008 a(0)=4,K{-n^6,-35+39*n+9*n^2-44*n^3} 4032504517873231 a007 Real Root Of -410*x^4+607*x^3+270*x^2+841*x-412 4032504519879786 r005 Re(z^2+c),c=37/98+16/45*I,n=57 4032504524945313 r005 Re(z^2+c),c=-27/50+18/59*I,n=37 4032504529975493 a007 Real Root Of -263*x^4-932*x^3+427*x^2-610*x-974 4032504558054728 r008 a(0)=4,K{-n^6,-17-37*n^3-3*n^2+26*n} 4032504563259716 a007 Real Root Of 137*x^4+596*x^3+213*x^2+342*x+771 4032504566726965 r005 Re(z^2+c),c=-13/18+8/77*I,n=23 4032504571245995 r008 a(0)=4,K{-n^6,-17+32*n-12*n^2-34*n^3} 4032504583092725 m002 -(E^Pi/Pi^5)+Pi^6/E^Pi-Log[Pi] 4032504583534411 r005 Im(z^2+c),c=5/17+13/50*I,n=13 4032504595973808 r008 a(0)=4,K{-n^6,15-16*n+4*n^2-34*n^3} 4032504606685221 r002 5th iterates of z^2 + 4032504608806772 r005 Im(z^2+c),c=-3/74+25/46*I,n=47 4032504612233822 p001 sum((-1)^n/(379*n+245)/(32^n),n=0..infinity) 4032504613835632 r008 a(0)=4,K{-n^6,-47+21*n^3-83*n^2+79*n} 4032504627000489 a001 1/2576*17711^(52/55) 4032504633357596 r009 Im(z^3+c),c=-39/94+35/51*I,n=12 4032504634835444 m001 (LambertW(1)-gamma)/(3^(1/3)+GAMMA(11/12)) 4032504638172477 m001 (exp(Pi)+Niven)/(-Paris+TravellingSalesman) 4032504639820167 l006 ln(3767/5638) 4032504640098612 m001 (KomornikLoreti-Salem)/(3^(1/3)-gamma(1)) 4032504640397783 r005 Im(z^2+c),c=3/50+29/60*I,n=24 4032504657479603 a001 55/18*76^(28/47) 4032504666882997 m005 (1/3*5^(1/2)+1/2)/(6*gamma-3/8) 4032504668968957 r005 Im(z^2+c),c=-13/118+31/54*I,n=38 4032504680504870 m005 (1/2*exp(1)+3/8)/(5/7*Zeta(3)-3/7) 4032504684076638 r008 a(0)=4,K{-n^6,-19-12*n^3-79*n^2+79*n} 4032504691887396 r005 Im(z^2+c),c=-21/32+23/50*I,n=10 4032504712961737 m001 (Mills+Robbin)/(Zeta(1,-1)-FellerTornier) 4032504719846693 m001 Zeta(1,-1)*Landau^Zeta(1/2) 4032504725471774 m001 (Paris+Tribonacci)/(ln(2)-GAMMA(19/24)) 4032504725799409 r009 Im(z^3+c),c=-25/52+20/63*I,n=39 4032504730957576 r008 a(0)=4,K{-n^6,31+2*n-51*n^2-13*n^3} 4032504749349348 r008 a(0)=4,K{-n^6,65-16*n^3-25*n^2-55*n} 4032504763713933 r005 Re(z^2+c),c=-51/98+17/44*I,n=41 4032504785522913 r002 13th iterates of z^2 + 4032504812346159 m001 1/ln(Zeta(9))^2*FeigenbaumD/sqrt(1+sqrt(3)) 4032504823495519 a003 cos(Pi*11/102)*cos(Pi*23/64) 4032504836922702 r005 Im(z^2+c),c=17/126+17/40*I,n=54 4032504838259633 r002 64th iterates of z^2 + 4032504851980545 a001 843*4181^(37/50) 4032504861828173 r005 Re(z^2+c),c=-19/34+17/112*I,n=49 4032504868967604 r005 Re(z^2+c),c=-57/94+16/51*I,n=34 4032504878209032 r005 Re(z^2+c),c=-7/10+5/27*I,n=45 4032504894776613 h001 (1/9*exp(2)+1/7)/(5/6*exp(1)+1/8) 4032504907343333 l006 ln(6630/9923) 4032504937488739 a007 Real Root Of -471*x^4+648*x^3+647*x^2+881*x+305 4032504948082945 r005 Re(z^2+c),c=-13/25+4/13*I,n=17 4032504953767482 r002 19th iterates of z^2 + 4032504963462306 r002 16th iterates of z^2 + 4032504968240688 a007 Real Root Of 298*x^4+354*x^3-465*x^2-701*x+29 4032504968874329 m001 ln(PisotVijayaraghavan)^2/Niven/GAMMA(1/12) 4032504971477820 b008 ArcCoth[Pi+ExpIntegralEi[1+Pi]] 4032504974113321 m001 (Trott2nd+ZetaQ(2))/(CareFree-exp(1)) 4032504974779027 r002 2th iterates of z^2 + 4032504980206436 a007 Real Root Of 650*x^4-151*x^3+205*x^2-991*x+359 4032504990941982 m001 (exp(1)+gamma(3))/(Paris+Stephens) 4032504995927777 m008 (4/5*Pi+3/4)/(5/6*Pi^4-1/4) 4032504998728037 m002 -Pi^4-Pi^5+(ProductLog[Pi]*Tanh[Pi])/6 4032505001366657 r002 18th iterates of z^2 + 4032505002714705 r005 Re(z^2+c),c=-51/82+10/61*I,n=17 4032505003295480 r009 Re(z^3+c),c=-43/94+7/37*I,n=19 4032505016989447 m001 Riemann2ndZero^2*MinimumGamma/ln(GAMMA(19/24)) 4032505021470782 m001 (MertensB1-ThueMorse)/(Pi+BesselK(1,1)) 4032505023895273 a001 1/3*196418^(9/44) 4032505032237762 a005 (1/cos(7/177*Pi))^1668 4032505039547389 h001 (-exp(5)+1)/(-4*exp(2)-7) 4032505045586480 a005 (1/sin(71/175*Pi))^1169 4032505047577394 m001 Champernowne^Gompertz*OrthogonalArrays 4032505050388635 r005 Re(z^2+c),c=-37/58+16/53*I,n=47 4032505050572410 a008 Real Root of x^4-x^3-38*x^2-90*x-75 4032505067752176 r005 Im(z^2+c),c=-63/52+2/35*I,n=41 4032505068216630 a007 Real Root Of -832*x^4+152*x^3+98*x^2+822*x+33 4032505082542155 a007 Real Root Of 362*x^4-9*x^3+703*x^2-899*x-487 4032505094146995 a007 Real Root Of 43*x^4-17*x^3-788*x^2-117*x-143 4032505094917363 r005 Re(z^2+c),c=-19/34+19/125*I,n=47 4032505099554353 r005 Re(z^2+c),c=-14/25+9/59*I,n=30 4032505102119849 m005 (1/3*Pi+1/8)/(11/12*5^(1/2)+6/7) 4032505111976327 m001 GAMMA(11/24)^Zeta(3)/(exp(sqrt(2))^Zeta(3)) 4032505116143155 m001 (Zeta(1/2)+exp(1/Pi))/(2^(1/2)-Zeta(3)) 4032505149105715 r005 Im(z^2+c),c=7/94+14/29*I,n=18 4032505150256765 r009 Im(z^3+c),c=-4/11+23/59*I,n=22 4032505152780845 r002 21th iterates of z^2 + 4032505155304690 r005 Re(z^2+c),c=-2/3+54/203*I,n=46 4032505179973095 r002 36th iterates of z^2 + 4032505183599902 m001 (cos(1)+GAMMA(3/4))/(-Kac+LandauRamanujan2nd) 4032505193663809 r005 Im(z^2+c),c=-15/52+1/18*I,n=5 4032505199705965 m005 (1/2*Catalan+5/12)/(7/12*exp(1)+7/12) 4032505203767264 m001 1/GAMMA(1/24)*GolombDickman*exp(exp(1)) 4032505208533926 m001 1/exp(GAMMA(5/6))/GAMMA(3/4)/cos(Pi/5)^2 4032505209228608 r008 a(0)=4,K{-n^6,-32-51*n+51*n^2+2*n^3} 4032505211105883 r002 32th iterates of z^2 + 4032505235688699 m005 (1/2*5^(1/2)+3/11)/(1/7*2^(1/2)+1/7) 4032505240299119 m001 (Pi-cos(1/5*Pi))/(ln(2+3^(1/2))-exp(1/Pi)) 4032505248421682 r009 Im(z^3+c),c=-1/86+15/32*I,n=18 4032505254868722 r005 Im(z^2+c),c=9/62+23/55*I,n=27 4032505259337651 l006 ln(2863/4285) 4032505267114932 m002 4+(5*Sech[Pi]^2)/Log[Pi] 4032505271204709 m001 1/GAMMA(3/4)^2*exp(Kolakoski)^2/cos(Pi/5) 4032505271703423 a007 Real Root Of -97*x^4+362*x^3-977*x^2-484*x-10 4032505291775261 m006 (3/5*Pi+4)/(2/3*exp(Pi)-5/6) 4032505311842323 r005 Im(z^2+c),c=-155/118+7/46*I,n=3 4032505315036111 m002 6+E^Pi-Log[Pi]/Pi+Sinh[Pi] 4032505316716516 m002 3+E^Pi/Pi^3+Log[Pi]/4 4032505321904881 a001 322*(1/2*5^(1/2)+1/2)^27*7^(7/13) 4032505344879422 p001 sum(1/(278*n+43)/n/(8^n),n=1..infinity) 4032505347602680 r002 55th iterates of z^2 + 4032505352641161 r005 Im(z^2+c),c=-23/122+14/23*I,n=44 4032505356315231 a007 Real Root Of 857*x^4-707*x^3-22*x^2-971*x-457 4032505366452008 q001 1315/3261 4032505368229972 r008 a(0)=4,K{-n^6,-54-60*n^3+48*n^2+35*n} 4032505373005338 a001 377/1149851*521^(10/13) 4032505374689021 m002 Pi^4+Pi^5-Cosh[Pi]/Pi^2+Tanh[Pi] 4032505375986703 r005 Re(z^2+c),c=-19/34+5/33*I,n=52 4032505395210235 m001 Bloch^2/exp(Backhouse)^2*gamma^2 4032505398864369 r008 a(0)=4,K{-n^6,-16-16*n+58*n^2-57*n^3} 4032505405896882 m001 (ln(3)+ErdosBorwein)/(MertensB3-Robbin) 4032505409019366 r009 Re(z^3+c),c=-15/44+1/37*I,n=8 4032505409398205 r008 a(0)=4,K{-n^6,8-58*n^3+73*n^2-54*n} 4032505415921631 r002 22th iterates of z^2 + 4032505416683480 m002 -1+Pi+Sinh[Pi]/4-Tanh[Pi] 4032505416835071 r002 8th iterates of z^2 + 4032505426467502 r005 Re(z^2+c),c=1/46+3/11*I,n=16 4032505427257956 r005 Im(z^2+c),c=8/25+11/50*I,n=22 4032505438163570 r005 Im(z^2+c),c=13/40+9/38*I,n=50 4032505440255200 r002 19th iterates of z^2 + 4032505456375145 r009 Im(z^3+c),c=-53/114+11/38*I,n=10 4032505473087041 a001 521/144*233^(23/52) 4032505473453729 m001 (-Conway+Riemann1stZero)/(exp(1)+arctan(1/2)) 4032505475228377 r008 a(0)=4,K{-n^6,-18-37*n^3-3*n^2+27*n} 4032505487743140 a007 Real Root Of 22*x^4+865*x^3-910*x^2-700*x-988 4032505488574064 r008 a(0)=4,K{-n^6,-18+33*n-12*n^2-34*n^3} 4032505498943274 r005 Re(z^2+c),c=33/122+5/12*I,n=47 4032505502769071 m002 4/3+Cosh[Pi]/(4*ProductLog[Pi]) 4032505510775701 r005 Im(z^2+c),c=1/98+22/43*I,n=60 4032505512008961 r008 a(0)=4,K{-n^6,-30-27*n^3-39*n^2+65*n} 4032505513594217 r008 a(0)=4,K{-n^6,14-15*n+4*n^2-34*n^3} 4032505518604744 r009 Re(z^3+c),c=-2/17+45/61*I,n=64 4032505529493196 r005 Im(z^2+c),c=-1/8+33/59*I,n=22 4032505552647216 a007 Real Root Of -166*x^4-525*x^3+726*x^2+618*x+155 4032505557386015 r009 Im(z^3+c),c=-13/29+13/38*I,n=29 4032505562351902 m001 1/GAMMA(1/12)/exp(MinimumGamma)*sqrt(2)^2 4032505582371940 a007 Real Root Of 226*x^4+957*x^3+64*x^2-675*x-769 4032505582394950 h003 exp(Pi*(13^(5/12)+17^(3/2))) 4032505582394950 h008 exp(Pi*(13^(5/12)+17^(3/2))) 4032505584167837 r002 3th iterates of z^2 + 4032505595117592 m001 (Conway+ZetaP(2))/(ln(2)-ArtinRank2) 4032505604347508 a007 Real Root Of -281*x^4-905*x^3+740*x^2-745*x-78 4032505604732809 r008 a(0)=4,K{-n^6,42-22*n^3-18*n^2-33*n} 4032505605081072 a007 Real Root Of -67*x^4-236*x^3+61*x^2-99*x+850 4032505611286860 a007 Real Root Of -80*x^4-179*x^3+545*x^2+92*x+925 4032505611861479 r008 a(0)=4,K{-n^6,12-27*n-34*n^2+17*n^3} 4032505614628939 m001 exp(Trott)^2/Si(Pi)^2/exp(1)^2 4032505618458735 h005 exp(cos(Pi*1/54)+cos(Pi*10/27)) 4032505623079315 h001 (-8*exp(2)-9)/(-9*exp(-1)+5) 4032505623463007 a007 Real Root Of -610*x^4-451*x^3-967*x^2+861*x+491 4032505625748485 r008 a(0)=4,K{-n^6,62-63*n-8*n^2-22*n^3} 4032505649376315 r005 Im(z^2+c),c=25/122+13/36*I,n=16 4032505652015739 r005 Re(z^2+c),c=-4/3+5/209*I,n=16 4032505662065925 r002 63th iterates of z^2 + 4032505663111138 a001 11/610*377^(11/21) 4032505663711475 m001 (LaplaceLimit+Niven)/(ThueMorse+ZetaP(3)) 4032505668869082 r008 a(0)=4,K{-n^6,64-16*n^3-25*n^2-54*n} 4032505672780430 r005 Im(z^2+c),c=-7/12+37/94*I,n=10 4032505684853205 m001 cos(1)+2/3*Pi*3^(1/2)/GAMMA(2/3)*Conway 4032505687188980 m001 gamma^ln(5)*gamma^exp(-Pi) 4032505712445232 r002 3th iterates of z^2 + 4032505714423162 r009 Re(z^3+c),c=-47/98+11/51*I,n=46 4032505715560443 l006 ln(97/5471) 4032505715560443 p004 log(5471/97) 4032505715654420 l006 ln(9259/9640) 4032505720426715 r005 Re(z^2+c),c=-57/74+7/62*I,n=58 4032505737854384 r005 Im(z^2+c),c=19/58+9/38*I,n=53 4032505741417258 r002 43i'th iterates of 2*x/(1-x^2) of 4032505743311568 l006 ln(4822/7217) 4032505745936442 m005 (1/2*Catalan-2/3)/(7/12*2^(1/2)-6) 4032505765627218 m001 (-Weierstrass+ZetaQ(3))/(3^(1/2)-Stephens) 4032505786558816 h001 (-8*exp(6)+2)/(-2*exp(6)+7) 4032505794182477 m001 (3^(1/3)-gamma(3))/(AlladiGrinstead-ZetaP(2)) 4032505802994505 r005 Im(z^2+c),c=-59/48+2/39*I,n=61 4032505803264892 a003 cos(Pi*4/117)-sin(Pi*27/67) 4032505812733990 r009 Re(z^3+c),c=-47/98+5/23*I,n=29 4032505814857485 r005 Re(z^2+c),c=-85/126+1/29*I,n=14 4032505814901526 a007 Real Root Of -643*x^4+881*x^3+82*x^2+461*x-240 4032505816448894 a007 Real Root Of 643*x^4-240*x^3+733*x^2-941*x+259 4032505839253760 r005 Re(z^2+c),c=-51/82+8/49*I,n=17 4032505848774516 r005 Re(z^2+c),c=-37/66+8/61*I,n=51 4032505857113652 p001 sum((-1)^n/(583*n+245)/(24^n),n=0..infinity) 4032505859137269 a007 Real Root Of -10*x^4-411*x^3-323*x^2-441*x-702 4032505860437939 r005 Re(z^2+c),c=9/22+21/61*I,n=17 4032505884838905 a007 Real Root Of 905*x^4-754*x^3+651*x^2+256*x-76 4032505887826809 r005 Re(z^2+c),c=-67/122+11/39*I,n=20 4032505898613605 m001 1/cosh(1)^2/TreeGrowth2nd^2/exp(sin(1))^2 4032505900142413 a007 Real Root Of -162*x^4-370*x^3+865*x^2-915*x+819 4032505904974227 a007 Real Root Of 253*x^4+787*x^3-880*x^2+413*x+682 4032505910629620 m001 Kolakoski/ln(Cahen)^2*Pi^2 4032505935300714 m009 (1/12*Pi^2+5/6)/(8/5*Catalan+1/5*Pi^2+2/3) 4032505942143795 a007 Real Root Of -218*x^4-920*x^3-247*x^2-574*x-981 4032505949212313 r002 54th iterates of z^2 + 4032505952889917 a007 Real Root Of 540*x^4+174*x^3+529*x^2-840*x+33 4032505968836678 m001 (3^(1/3)+GAMMA(17/24))/(Landau-PlouffeB) 4032505974880621 m001 1/ln(GAMMA(5/12))*Salem*sin(Pi/12) 4032505980539689 b008 -4+Zeta[-Sqrt[2]] 4032505987398850 a007 Real Root Of 244*x^4+716*x^3-926*x^2+378*x-987 4032506013678597 r005 Re(z^2+c),c=-59/106+11/62*I,n=37 4032506014376806 r002 19th iterates of z^2 + 4032506015704342 r009 Re(z^3+c),c=-3/122+43/52*I,n=6 4032506022877837 m001 (Pi-Pi^(1/2))/(Khinchin+Rabbit) 4032506030479816 a001 47/144*2^(18/59) 4032506030705333 h001 (-6*exp(2)+1)/(-8*exp(1)+11) 4032506042126076 r009 Im(z^3+c),c=-1/5+25/56*I,n=15 4032506043729443 m001 (LaplaceLimit+OneNinth)/(ln(2)/ln(10)+ln(5)) 4032506050674449 r005 Im(z^2+c),c=1/36+34/55*I,n=7 4032506051423947 r005 Im(z^2+c),c=-1/110+37/50*I,n=24 4032506054522323 r005 Im(z^2+c),c=5/27+5/13*I,n=49 4032506056639017 s002 sum(A222316[n]/(n^2*2^n-1),n=1..infinity) 4032506075079037 h001 (11/12*exp(2)+1/6)/(1/9*exp(2)+9/10) 4032506098851798 a007 Real Root Of 868*x^4-313*x^3+968*x^2+518*x+8 4032506104564097 r005 Im(z^2+c),c=-51/118+3/47*I,n=11 4032506116517249 r005 Im(z^2+c),c=-1/54+23/43*I,n=32 4032506119035898 m005 (1/2*5^(1/2)-1/11)/(5/12*Catalan-7/11) 4032506121169084 r005 Re(z^2+c),c=-61/110+9/47*I,n=45 4032506122451979 m001 exp(Zeta(1/2))*MinimumGamma/sin(1) 4032506126300309 a001 610/39603*199^(2/11) 4032506129997716 r009 Im(z^3+c),c=-45/118+11/28*I,n=6 4032506135717993 a007 Real Root Of -10*x^4-427*x^3-948*x^2+375*x-644 4032506139763904 a008 Real Root of x^4-2*x^3-2*x^2-54*x+117 4032506142028965 a001 2207/377*317811^(51/58) 4032506145854656 a007 Real Root Of 116*x^4+357*x^3-627*x^2-712*x+61 4032506146710478 r002 8th iterates of z^2 + 4032506170677915 m001 exp(-1/2*Pi)^exp(Pi)/(ZetaQ(4)^exp(Pi)) 4032506176357113 r002 50th iterates of z^2 + 4032506179510893 r002 10th iterates of z^2 + 4032506185420950 m001 (-GAMMA(11/12)+PlouffeB)/(BesselI(0,2)-sin(1)) 4032506203466684 a007 Real Root Of 887*x^4+807*x^3+677*x^2-177*x-152 4032506212996671 r005 Im(z^2+c),c=-1/32+22/37*I,n=38 4032506223465096 h001 (4/5*exp(2)+2/9)/(1/9*exp(2)+7/10) 4032506231496267 s001 sum(exp(-4*Pi)^(n-1)*A133068[n],n=1..infinity) 4032506238055052 r005 Re(z^2+c),c=-27/26+8/125*I,n=12 4032506242748109 a001 2/139583862445*1836311903^(10/17) 4032506242749903 a001 1/567451585*514229^(10/17) 4032506249033237 r008 a(0)=4,K{-n^6,-57-74*n^3+89*n^2+11*n} 4032506255809429 a007 Real Root Of 327*x^4-234*x^3+921*x^2-752*x-477 4032506268892799 a001 72/51841*322^(7/12) 4032506273288632 a007 Real Root Of -437*x^4-370*x^3-686*x^2+417*x+267 4032506284649464 r009 Re(z^3+c),c=-47/98+19/33*I,n=48 4032506288943416 r008 a(0)=4,K{-n^6,-35-64*n^3+70*n^2-2*n} 4032506299768507 a007 Real Root Of -205*x^4+52*x^3-643*x^2+557*x+338 4032506306146093 r008 a(0)=4,K{-n^6,-69-53*n^3+20*n^2+71*n} 4032506309696852 p003 LerchPhi(1/256,4,404/181) 4032506322019443 r008 a(0)=4,K{-n^6,-17-15*n+58*n^2-57*n^3} 4032506326060495 m008 (1/6*Pi^6+1/4)/(2/5*Pi^4+5/6) 4032506329093844 r008 a(0)=4,K{-n^6,-41+33*n+28*n^2-51*n^3} 4032506329342519 r005 Im(z^2+c),c=5/27+5/13*I,n=58 4032506335101291 r008 a(0)=4,K{-n^6,-25+7*n+39*n^2-52*n^3} 4032506347252474 r005 Im(z^2+c),c=11/74+12/29*I,n=29 4032506352755063 r005 Im(z^2+c),c=-1/66+16/29*I,n=22 4032506357915360 r002 19i'th iterates of 2*x/(1-x^2) of 4032506357915360 r002 20i'th iterates of 2*x/(1-x^2) of 4032506359028689 r008 a(0)=4,K{-n^6,-5-49*n^3+40*n^2-17*n} 4032506368188476 a007 Real Root Of 3*x^4+142*x^3+838*x^2-395*x+51 4032506369659855 r009 Im(z^3+c),c=-37/82+17/50*I,n=28 4032506371426279 a007 Real Root Of -937*x^4+865*x^3-362*x^2+996*x+542 4032506372374904 r008 a(0)=4,K{-n^6,-27-42*n^3+8*n^2+30*n} 4032506376002685 a007 Real Root Of 181*x^4+494*x^3-846*x^2+637*x+858 4032506386511978 a007 Real Root Of -816*x^4+923*x^3+430*x^2+622*x+263 4032506394845862 r008 a(0)=4,K{-n^6,29-62*n+48*n^2-46*n^3} 4032506397984004 r009 Im(z^3+c),c=-33/64+11/40*I,n=39 4032506402208641 r005 Re(z^2+c),c=-5/9+9/49*I,n=43 4032506412828022 m001 TreeGrowth2nd-ZetaP(3)^Ei(1) 4032506430232249 a001 3/1134903170*14930352^(7/23) 4032506430232250 a001 1/10983760033*956722026041^(7/23) 4032506432850599 a007 Real Root Of 172*x^4+567*x^3-493*x^2+38*x-131 4032506436474222 r008 a(0)=4,K{-n^6,-31-27*n^3-39*n^2+66*n} 4032506440141699 m001 exp(Robbin)/Niven^2/sqrt(1+sqrt(3)) 4032506440526888 r002 63th iterates of z^2 + 4032506441628003 s002 sum(A079661[n]/(n^2*pi^n+1),n=1..infinity) 4032506450620013 l006 ln(1959/2932) 4032506457694766 r005 Re(z^2+c),c=-9/16+11/105*I,n=59 4032506474180456 r008 a(0)=4,K{-n^6,43-32*n^3+13*n^2-55*n} 4032506498381383 r008 a(0)=4,K{-n^6,39-27*n^3-4*n^2-39*n} 4032506500030458 a007 Real Root Of -206*x^4-892*x^3-110*x^2+712*x+640 4032506502516832 b008 4+5*ExpIntegralE[4,Pi] 4032506503072904 r005 Im(z^2+c),c=3/118+21/41*I,n=16 4032506507011657 a008 Real Root of x^5-2*x^4-14*x^3+36*x^2-22*x+3 4032506510033697 a007 Real Root Of -747*x^4+577*x^3+553*x^2+534*x+183 4032506514525933 a001 2/1597*144^(4/17) 4032506515751112 a001 377/710647*521^(9/13) 4032506530330888 r008 a(0)=4,K{-n^6,41-22*n^3-18*n^2-32*n} 4032506541084734 a005 (1/cos(25/168*Pi))^134 4032506542000386 m001 1/ln(Zeta(7))*GAMMA(5/24)^2*log(2+sqrt(3))^2 4032506552721861 a007 Real Root Of 59*x^4-34*x^3-936*x^2+587*x-243 4032506554456569 r005 Im(z^2+c),c=25/82+14/53*I,n=47 4032506575265145 m001 1/ln(Zeta(7))*TreeGrowth2nd^2/gamma 4032506578372182 m007 (-gamma-3*ln(2)-1/2*Pi-2)/(-2*gamma+1) 4032506578734820 r008 a(0)=4,K{-n^6,31+n-50*n^2-13*n^3} 4032506592727783 b008 (-30+Sqrt[Pi])/7 4032506647083307 r005 Re(z^2+c),c=-43/78+12/55*I,n=64 4032506649398204 a007 Real Root Of -212*x^4-862*x^3+63*x^2+264*x-426 4032506653023707 m001 1/Zeta(1,2)/ln(GAMMA(23/24))/Zeta(5) 4032506656248592 m001 ln(3)*(FeigenbaumC+Tribonacci) 4032506665729696 r005 Im(z^2+c),c=13/42+9/35*I,n=42 4032506665816819 r008 a(0)=4,K{-n^6,45-4*n^3-70*n^2-2*n} 4032506672018414 m001 Landau/(MasserGramainDelta-PlouffeB) 4032506674270021 r002 56th iterates of z^2 + 4032506680382757 g006 Psi(1,1/7)-Psi(1,7/12)-Psi(1,2/9)-Psi(1,1/8) 4032506689867922 a007 Real Root Of 105*x^4-988*x^3-743*x^2-360*x+328 4032506694847474 a007 Real Root Of 126*x^4-639*x^3-378*x^2-481*x+294 4032506695707670 r005 Re(z^2+c),c=-69/122+1/32*I,n=41 4032506698145202 r005 Im(z^2+c),c=-11/114+11/19*I,n=45 4032506702955268 r005 Im(z^2+c),c=-65/122+1/14*I,n=50 4032506709055375 r002 50th iterates of z^2 + 4032506710002290 a003 sin(Pi*9/43)*sin(Pi*25/109) 4032506717996297 r009 Im(z^3+c),c=-33/64+18/55*I,n=33 4032506745075974 r009 Re(z^3+c),c=-11/70+51/62*I,n=10 4032506745924951 r005 Re(z^2+c),c=-19/34+5/33*I,n=55 4032506749763879 m001 (Tribonacci-Zeta(1,-1)*PlouffeB)/PlouffeB 4032506775159874 a007 Real Root Of 553*x^4-994*x^3+926*x^2-929*x-605 4032506787546511 r005 Im(z^2+c),c=-11/60+28/41*I,n=29 4032506790178120 m008 (1/6*Pi^3+1)/(5*Pi^5-3/5) 4032506791264765 a004 Fibonacci(16)*Lucas(13)/(1/2+sqrt(5)/2)^34 4032506794532589 m001 ArtinRank2/(Ei(1)+Zeta(1,-1)) 4032506797834108 r008 a(0)=4,K{-n^6,4*n-59*n^2+23*n^3} 4032506807230231 r009 Im(z^3+c),c=-11/64+19/42*I,n=20 4032506807545524 r005 Re(z^2+c),c=-33/58+20/61*I,n=30 4032506816969595 r005 Im(z^2+c),c=-15/14+59/164*I,n=3 4032506841048574 m001 (-Salem+ThueMorse)/(gamma+ln(2+3^(1/2))) 4032506844172241 q001 1/2479847 4032506846709872 m001 (3^(1/2)-Zeta(1,-1))/(-Bloch+HeathBrownMoroz) 4032506847820703 r005 Im(z^2+c),c=-85/98+19/61*I,n=4 4032506855903594 r005 Re(z^2+c),c=23/60+13/36*I,n=51 4032506859249391 m001 FeigenbaumDelta-ZetaP(3)^sin(1/12*Pi) 4032506867503744 r009 Im(z^3+c),c=-37/106+23/58*I,n=31 4032506875187940 a001 47/2584*6765^(13/37) 4032506877718966 r008 a(0)=4,K{-n^6,-18+5*n-35*n^2+21*n^3} 4032506885154074 m001 Zeta(1/2)^2*exp(KhintchineLevy)*gamma 4032506888122531 m001 1/ln(Rabbit)/FibonacciFactorial^2*(3^(1/3))^2 4032506888328628 a001 281/233802911*4807526976^(6/23) 4032506888366006 a001 843/39088169*75025^(6/23) 4032506894851807 a007 Real Root Of -337*x^4+631*x^3+541*x^2+542*x-339 4032506898665346 m001 (GAMMA(7/12)+TwinPrimes)/(Psi(2,1/3)+sin(1)) 4032506907171714 m002 (6*Pi*ProductLog[Pi]*Tanh[Pi])/5 4032506911789854 a002 14^(9/10)+6^(10/3) 4032506914305030 a007 Real Root Of -15*x^4-590*x^3+604*x^2+191*x+998 4032506923298180 r005 Re(z^2+c),c=-69/122+1/33*I,n=46 4032506931111215 r005 Im(z^2+c),c=1/102+26/53*I,n=15 4032506950942027 m002 -4-4*Pi^2+Pi*Coth[Pi] 4032506964639987 r005 Re(z^2+c),c=-31/52+15/44*I,n=12 4032506969412543 r005 Im(z^2+c),c=2/25+20/43*I,n=52 4032506975533847 m001 (Pi*csc(5/12*Pi)/GAMMA(7/12))^gamma(1)-Landau 4032506984438841 a001 19/36*233^(35/44) 4032506986094360 r002 4th iterates of z^2 + 4032506989306328 a007 Real Root Of -125*x^4+198*x^3-630*x^2+328*x+251 4032506989332949 m001 BesselJ(1,1)^(ln(Pi)/MertensB2) 4032506998212468 r005 Im(z^2+c),c=27/94+2/7*I,n=30 4032507000997799 m004 (-15*Pi)/2-Cosh[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 4032507003705249 p001 sum((-1)^n/(248*n+247)/(125^n),n=0..infinity) 4032507006261288 m001 (5^(1/2))^OrthogonalArrays-Zeta(1,2) 4032507015535371 a008 Real Root of (-2+2*x+6*x^2+8*x^4+9*x^8) 4032507017052477 l006 ln(7971/8299) 4032507019147690 r005 Re(z^2+c),c=-71/126+3/34*I,n=48 4032507032340731 m005 (1/3*gamma-2/9)/(6*Zeta(3)+2/11) 4032507044850675 r005 Im(z^2+c),c=19/94+35/64*I,n=22 4032507045754910 r002 44th iterates of z^2 + 4032507049466048 a001 233/29*18^(24/43) 4032507054934700 m001 cos(1/5*Pi)^FeigenbaumB/exp(-1/2*Pi) 4032507055294425 h001 (9/10*exp(2)+7/9)/(2/9*exp(2)+1/5) 4032507058915367 m001 (-Cahen+Mills)/(Si(Pi)-exp(-1/2*Pi)) 4032507072535835 r009 Im(z^3+c),c=-13/82+20/43*I,n=5 4032507078996951 m001 (Pi+ln(5))/(BesselI(1,2)-ThueMorse) 4032507093615797 a003 sin(Pi*1/105)/sin(Pi*29/109) 4032507099872172 a008 Real Root of x^4-10*x^2-25*x-1 4032507101071083 r005 Re(z^2+c),c=-53/94+3/23*I,n=8 4032507109550695 r002 34th iterates of z^2 + 4032507115524376 r002 31th iterates of z^2 + 4032507127243158 r009 Im(z^3+c),c=-5/44+17/37*I,n=4 4032507136451721 l006 ln(4973/7443) 4032507142208605 b008 ArcCot[(2*(E+Pi))/5] 4032507164146344 m001 Porter^2*CareFree^2/ln(Riemann1stZero) 4032507175056889 a007 Real Root Of -198*x^4-656*x^3+663*x^2+250*x-433 4032507188144312 r002 5th iterates of z^2 + 4032507224913277 s002 sum(A078017[n]/(pi^n-1),n=1..infinity) 4032507230611533 a001 13201*34^(19/60) 4032507232433053 r008 a(0)=4,K{-n^6,-45-7*n+39*n^2-19*n^3} 4032507243924220 r005 Re(z^2+c),c=-17/31+14/53*I,n=29 4032507264088674 r008 a(0)=4,K{-n^6,8-58*n^3+74*n^2-55*n} 4032507272612568 r005 Re(z^2+c),c=-9/16+11/105*I,n=61 4032507277831192 r008 a(0)=4,K{-n^6,6-54*n^3+61*n^2-44*n} 4032507281354692 r009 Im(z^3+c),c=-14/29+13/41*I,n=52 4032507285307132 p002 log(17^(7/5)+3^(7/6)) 4032507285509742 r005 Im(z^2+c),c=-15/98+12/19*I,n=33 4032507288209938 r008 a(0)=4,K{-n^6,-14-48*n^3+33*n^2-2*n} 4032507289526225 r008 a(0)=4,K{-n^6,-6-49*n^3+40*n^2-16*n} 4032507297568399 r008 a(0)=4,K{-n^6,-36-42*n^3+4*n^2+43*n} 4032507304393550 r008 a(0)=4,K{-n^6,-2-16*n+33*n^2-46*n^3} 4032507308838190 a001 199/13*28657^(33/43) 4032507313976649 r005 Re(z^2+c),c=-9/16+11/105*I,n=57 4032507317445848 m005 (1/2*gamma+5/12)/(47/55+2/5*5^(1/2)) 4032507318236332 r005 Im(z^2+c),c=-19/102+4/5*I,n=42 4032507325758887 r008 a(0)=4,K{-n^6,28-61*n+48*n^2-46*n^3} 4032507325948417 a003 cos(Pi*25/107)-cos(Pi*23/59) 4032507331502424 a007 Real Root Of 512*x^4-999*x^3-193*x^2-76*x+114 4032507331714929 r008 a(0)=4,K{-n^6,-18-37*n^3-2*n^2+26*n} 4032507334695343 r008 a(0)=4,K{-n^6,22-46*n+36*n^2-43*n^3} 4032507344844610 a007 Real Root Of 733*x^4+725*x^3-558*x^2-980*x+419 4032507345434759 r008 a(0)=4,K{-n^6,-18+32*n-11*n^2-34*n^3} 4032507349442590 m001 (Ei(1)-GolombDickman)/(Grothendieck-Porter) 4032507358087036 r008 a(0)=4,K{-n^6,-20-31*n^3-21*n^2+41*n} 4032507371165241 r008 a(0)=4,K{-n^6,14-16*n+5*n^2-34*n^3} 4032507371977508 m001 Salem*exp(GolombDickman)^2/Zeta(7)^2 4032507375313984 r008 a(0)=4,K{-n^6,-29-17*n^2+17*n^3} 4032507377097955 r009 Im(z^3+c),c=-1/86+15/32*I,n=20 4032507394075924 r005 Re(z^2+c),c=-11/106+13/20*I,n=26 4032507398673980 r005 Re(z^2+c),c=-115/86+1/27*I,n=4 4032507403421107 r009 Im(z^3+c),c=-17/106+5/11*I,n=17 4032507406041949 r008 a(0)=4,K{-n^6,42-32*n^3+13*n^2-54*n} 4032507417226706 r008 a(0)=4,K{-n^6,-24-19*n^3-59*n^2+71*n} 4032507430483310 r002 54th iterates of z^2 + 4032507476749360 r005 Re(z^2+c),c=-4/7+1/121*I,n=20 4032507479352077 m001 (-Bloch+FransenRobinson)/(gamma+gamma(3)) 4032507479848940 m001 (-BesselI(0,2)+Bloch)/(2^(1/2)-cos(1/12*Pi)) 4032507481337077 m005 (1/2*Zeta(3)-2/11)/(1/12*Pi+7/9) 4032507489378249 m001 (cos(1/12*Pi)+Artin)/(OneNinth-TreeGrowth2nd) 4032507498364103 a004 Fibonacci(18)*Lucas(13)/(1/2+sqrt(5)/2)^36 4032507500494291 r005 Re(z^2+c),c=-19/34+19/121*I,n=7 4032507506010485 s002 sum(A059238[n]/(n^2*pi^n+1),n=1..infinity) 4032507506980375 a007 Real Root Of -633*x^4+665*x^3-816*x^2+543*x+412 4032507526172616 a001 377/15127*199^(1/11) 4032507528580828 a005 (1/sin(88/221*Pi))^1354 4032507529563244 r005 Re(z^2+c),c=6/29+23/61*I,n=57 4032507531118389 r008 a(0)=4,K{-n^6,64-16*n^3-24*n^2-55*n} 4032507548637878 m001 (BesselJ(1,1)-PisotVijayaraghavan)/Ei(1,1) 4032507548933820 a007 Real Root Of 113*x^4+272*x^3-979*x^2-880*x+327 4032507550350459 p001 sum(1/(537*n+25)/(6^n),n=0..infinity) 4032507572126822 m001 1/Zeta(1,2)/KhintchineHarmonic/exp(exp(1)) 4032507574992995 r005 Im(z^2+c),c=5/106+20/41*I,n=35 4032507580526861 r005 Im(z^2+c),c=-1/11+31/52*I,n=37 4032507582219551 l006 ln(3014/4511) 4032507601528506 a004 Fibonacci(20)*Lucas(13)/(1/2+sqrt(5)/2)^38 4032507613209906 h001 (1/7*exp(1)+7/9)/(11/12*exp(1)+2/5) 4032507616579989 a004 Fibonacci(22)*Lucas(13)/(1/2+sqrt(5)/2)^40 4032507618775971 a004 Fibonacci(24)*Lucas(13)/(1/2+sqrt(5)/2)^42 4032507619096360 a004 Fibonacci(26)*Lucas(13)/(1/2+sqrt(5)/2)^44 4032507619143105 a004 Fibonacci(28)*Lucas(13)/(1/2+sqrt(5)/2)^46 4032507619149925 a004 Fibonacci(30)*Lucas(13)/(1/2+sqrt(5)/2)^48 4032507619150920 a004 Fibonacci(32)*Lucas(13)/(1/2+sqrt(5)/2)^50 4032507619151065 a004 Fibonacci(34)*Lucas(13)/(1/2+sqrt(5)/2)^52 4032507619151086 a004 Fibonacci(36)*Lucas(13)/(1/2+sqrt(5)/2)^54 4032507619151089 a004 Fibonacci(38)*Lucas(13)/(1/2+sqrt(5)/2)^56 4032507619151089 a004 Fibonacci(40)*Lucas(13)/(1/2+sqrt(5)/2)^58 4032507619151089 a004 Fibonacci(42)*Lucas(13)/(1/2+sqrt(5)/2)^60 4032507619151089 a004 Fibonacci(44)*Lucas(13)/(1/2+sqrt(5)/2)^62 4032507619151089 a004 Fibonacci(46)*Lucas(13)/(1/2+sqrt(5)/2)^64 4032507619151089 a004 Fibonacci(48)*Lucas(13)/(1/2+sqrt(5)/2)^66 4032507619151089 a004 Fibonacci(50)*Lucas(13)/(1/2+sqrt(5)/2)^68 4032507619151089 a004 Fibonacci(52)*Lucas(13)/(1/2+sqrt(5)/2)^70 4032507619151089 a004 Fibonacci(54)*Lucas(13)/(1/2+sqrt(5)/2)^72 4032507619151089 a004 Fibonacci(56)*Lucas(13)/(1/2+sqrt(5)/2)^74 4032507619151089 a004 Fibonacci(58)*Lucas(13)/(1/2+sqrt(5)/2)^76 4032507619151089 a004 Fibonacci(60)*Lucas(13)/(1/2+sqrt(5)/2)^78 4032507619151089 a004 Fibonacci(62)*Lucas(13)/(1/2+sqrt(5)/2)^80 4032507619151089 a004 Fibonacci(64)*Lucas(13)/(1/2+sqrt(5)/2)^82 4032507619151089 a004 Fibonacci(66)*Lucas(13)/(1/2+sqrt(5)/2)^84 4032507619151089 a004 Fibonacci(68)*Lucas(13)/(1/2+sqrt(5)/2)^86 4032507619151089 a004 Fibonacci(70)*Lucas(13)/(1/2+sqrt(5)/2)^88 4032507619151089 a004 Fibonacci(72)*Lucas(13)/(1/2+sqrt(5)/2)^90 4032507619151089 a004 Fibonacci(74)*Lucas(13)/(1/2+sqrt(5)/2)^92 4032507619151089 a004 Fibonacci(76)*Lucas(13)/(1/2+sqrt(5)/2)^94 4032507619151089 a004 Fibonacci(78)*Lucas(13)/(1/2+sqrt(5)/2)^96 4032507619151089 a004 Fibonacci(80)*Lucas(13)/(1/2+sqrt(5)/2)^98 4032507619151089 a004 Fibonacci(82)*Lucas(13)/(1/2+sqrt(5)/2)^100 4032507619151089 a004 Fibonacci(81)*Lucas(13)/(1/2+sqrt(5)/2)^99 4032507619151089 a004 Fibonacci(79)*Lucas(13)/(1/2+sqrt(5)/2)^97 4032507619151089 a004 Fibonacci(77)*Lucas(13)/(1/2+sqrt(5)/2)^95 4032507619151089 a004 Fibonacci(75)*Lucas(13)/(1/2+sqrt(5)/2)^93 4032507619151089 a004 Fibonacci(73)*Lucas(13)/(1/2+sqrt(5)/2)^91 4032507619151089 a004 Fibonacci(71)*Lucas(13)/(1/2+sqrt(5)/2)^89 4032507619151089 a004 Fibonacci(69)*Lucas(13)/(1/2+sqrt(5)/2)^87 4032507619151089 a004 Fibonacci(67)*Lucas(13)/(1/2+sqrt(5)/2)^85 4032507619151089 a004 Fibonacci(65)*Lucas(13)/(1/2+sqrt(5)/2)^83 4032507619151089 a004 Fibonacci(63)*Lucas(13)/(1/2+sqrt(5)/2)^81 4032507619151089 a004 Fibonacci(61)*Lucas(13)/(1/2+sqrt(5)/2)^79 4032507619151089 a004 Fibonacci(59)*Lucas(13)/(1/2+sqrt(5)/2)^77 4032507619151089 a004 Fibonacci(57)*Lucas(13)/(1/2+sqrt(5)/2)^75 4032507619151089 a004 Fibonacci(55)*Lucas(13)/(1/2+sqrt(5)/2)^73 4032507619151089 a004 Fibonacci(53)*Lucas(13)/(1/2+sqrt(5)/2)^71 4032507619151089 a004 Fibonacci(51)*Lucas(13)/(1/2+sqrt(5)/2)^69 4032507619151089 a004 Fibonacci(49)*Lucas(13)/(1/2+sqrt(5)/2)^67 4032507619151089 a004 Fibonacci(47)*Lucas(13)/(1/2+sqrt(5)/2)^65 4032507619151089 a004 Fibonacci(45)*Lucas(13)/(1/2+sqrt(5)/2)^63 4032507619151089 a004 Fibonacci(43)*Lucas(13)/(1/2+sqrt(5)/2)^61 4032507619151090 a004 Fibonacci(41)*Lucas(13)/(1/2+sqrt(5)/2)^59 4032507619151090 a004 Fibonacci(39)*Lucas(13)/(1/2+sqrt(5)/2)^57 4032507619151091 a004 Fibonacci(37)*Lucas(13)/(1/2+sqrt(5)/2)^55 4032507619151099 a004 Fibonacci(35)*Lucas(13)/(1/2+sqrt(5)/2)^53 4032507619151154 a004 Fibonacci(33)*Lucas(13)/(1/2+sqrt(5)/2)^51 4032507619151534 a004 Fibonacci(31)*Lucas(13)/(1/2+sqrt(5)/2)^49 4032507619154139 a004 Fibonacci(29)*Lucas(13)/(1/2+sqrt(5)/2)^47 4032507619171994 a004 Fibonacci(27)*Lucas(13)/(1/2+sqrt(5)/2)^45 4032507619205819 a001 2/233*(1/2+1/2*5^(1/2))^8 4032507619294372 a004 Fibonacci(25)*Lucas(13)/(1/2+sqrt(5)/2)^43 4032507620133162 a004 Fibonacci(23)*Lucas(13)/(1/2+sqrt(5)/2)^41 4032507625882318 a004 Fibonacci(21)*Lucas(13)/(1/2+sqrt(5)/2)^39 4032507626065099 r002 21th iterates of z^2 + 4032507628635067 m001 (ln(2)-LandauRamanujan)/(Tribonacci-ZetaP(4)) 4032507631384934 r005 Re(z^2+c),c=-47/82+17/50*I,n=28 4032507636117268 r002 36th iterates of z^2 + 4032507640225842 h001 (-3*exp(2)-4)/(-10*exp(2)+9) 4032507658537133 a001 377/439204*521^(8/13) 4032507665287613 a004 Fibonacci(19)*Lucas(13)/(1/2+sqrt(5)/2)^37 4032507679518365 m005 (1/2*5^(1/2)-8/11)/(3/11*2^(1/2)+7/12) 4032507681995712 r009 Im(z^3+c),c=-11/90+27/58*I,n=5 4032507689332955 m001 (sin(1/5*Pi)+exp(1/exp(1)))/(3^(1/2)-5^(1/2)) 4032507692170968 r005 Re(z^2+c),c=-79/122+3/62*I,n=12 4032507702318699 l006 ln(92/5189) 4032507730155926 a007 Real Root Of -84*x^4-476*x^3-630*x^2-287*x+86 4032507732672451 r002 31th iterates of z^2 + 4032507739938080 a001 521/2584*8^(1/3) 4032507739938080 q001 521/1292 4032507747640893 r002 62th iterates of z^2 + 4032507753958339 a007 Real Root Of 914*x^4+48*x^3+588*x^2-358*x-261 4032507763471634 r002 49th iterates of z^2 + 4032507770145060 m008 (2/3*Pi+1/3)/(1/5*Pi^5-1) 4032507790705970 m005 (3/5*gamma+5)/(5*exp(1)-1/3) 4032507814536935 s002 sum(A183200[n]/(n^3*2^n+1),n=1..infinity) 4032507821096690 r005 Re(z^2+c),c=-57/106+10/33*I,n=51 4032507836542782 a001 521*144^(7/17) 4032507846864140 r005 Im(z^2+c),c=-17/48+40/53*I,n=3 4032507849919849 r009 Im(z^3+c),c=-1/86+15/32*I,n=22 4032507857351857 r005 Re(z^2+c),c=2/25+17/45*I,n=15 4032507882517728 r005 Re(z^2+c),c=-13/10+7/170*I,n=30 4032507891976164 r005 Im(z^2+c),c=1/114+22/43*I,n=38 4032507892678733 r005 Re(z^2+c),c=-9/16+5/48*I,n=45 4032507910268726 a007 Real Root Of 245*x^4+869*x^3-456*x^2+86*x-39 4032507915884286 r005 Re(z^2+c),c=-31/56+3/29*I,n=14 4032507925878908 m006 (3*ln(Pi)+5)/(5/Pi+1/2) 4032507927459851 r009 Re(z^3+c),c=-15/32+10/49*I,n=36 4032507929454546 m009 (5*Psi(1,1/3)-4/5)/(5*Psi(1,2/3)-3) 4032507934022040 a001 987/7881196*521^(12/13) 4032507935375527 a004 Fibonacci(17)*Lucas(13)/(1/2+sqrt(5)/2)^35 4032507936257246 r009 Re(z^3+c),c=-10/19+21/58*I,n=57 4032507941414929 r004 Re(z^2+c),c=1/46+3/11*I,z(0)=I,n=24 4032507942165254 r005 Im(z^2+c),c=27/86+2/5*I,n=19 4032507953098233 r005 Im(z^2+c),c=8/25+12/49*I,n=53 4032507953719144 r009 Im(z^3+c),c=-1/86+15/32*I,n=24 4032507954126853 r005 Re(z^2+c),c=3/22+4/9*I,n=15 4032507956152751 r009 Im(z^3+c),c=-13/62+27/61*I,n=6 4032507967962716 m005 (1/3*Zeta(3)+3/7)/(6/7*Pi-7/11) 4032507976193802 r009 Im(z^3+c),c=-1/86+15/32*I,n=26 4032507980979267 r009 Im(z^3+c),c=-1/86+15/32*I,n=28 4032507981977067 r009 Im(z^3+c),c=-1/86+15/32*I,n=30 4032507982179480 r009 Im(z^3+c),c=-1/86+15/32*I,n=32 4032507982219008 r009 Im(z^3+c),c=-1/86+15/32*I,n=34 4032507982226299 r009 Im(z^3+c),c=-1/86+15/32*I,n=36 4032507982227519 r009 Im(z^3+c),c=-1/86+15/32*I,n=38 4032507982227676 r009 Im(z^3+c),c=-1/86+15/32*I,n=41 4032507982227678 r009 Im(z^3+c),c=-1/86+15/32*I,n=43 4032507982227682 r009 Im(z^3+c),c=-1/86+15/32*I,n=45 4032507982227684 r009 Im(z^3+c),c=-1/86+15/32*I,n=47 4032507982227685 r009 Im(z^3+c),c=-1/86+15/32*I,n=40 4032507982227685 r009 Im(z^3+c),c=-1/86+15/32*I,n=49 4032507982227685 r009 Im(z^3+c),c=-1/86+15/32*I,n=51 4032507982227685 r009 Im(z^3+c),c=-1/86+15/32*I,n=53 4032507982227685 r009 Im(z^3+c),c=-1/86+15/32*I,n=55 4032507982227685 r009 Im(z^3+c),c=-1/86+15/32*I,n=57 4032507982227685 r009 Im(z^3+c),c=-1/86+15/32*I,n=59 4032507982227685 r009 Im(z^3+c),c=-1/86+15/32*I,n=61 4032507982227685 r009 Im(z^3+c),c=-1/86+15/32*I,n=63 4032507982227685 r009 Im(z^3+c),c=-1/86+15/32*I,n=64 4032507982227685 r009 Im(z^3+c),c=-1/86+15/32*I,n=62 4032507982227685 r009 Im(z^3+c),c=-1/86+15/32*I,n=60 4032507982227685 r009 Im(z^3+c),c=-1/86+15/32*I,n=58 4032507982227685 r009 Im(z^3+c),c=-1/86+15/32*I,n=56 4032507982227685 r009 Im(z^3+c),c=-1/86+15/32*I,n=54 4032507982227685 r009 Im(z^3+c),c=-1/86+15/32*I,n=52 4032507982227685 r009 Im(z^3+c),c=-1/86+15/32*I,n=50 4032507982227685 r009 Im(z^3+c),c=-1/86+15/32*I,n=48 4032507982227687 r009 Im(z^3+c),c=-1/86+15/32*I,n=46 4032507982227689 r009 Im(z^3+c),c=-1/86+15/32*I,n=44 4032507982227694 r009 Im(z^3+c),c=-1/86+15/32*I,n=42 4032507982227726 r009 Im(z^3+c),c=-1/86+15/32*I,n=39 4032507982228194 r009 Im(z^3+c),c=-1/86+15/32*I,n=37 4032507982231225 r009 Im(z^3+c),c=-1/86+15/32*I,n=35 4032507982248353 r009 Im(z^3+c),c=-1/86+15/32*I,n=33 4032507982338310 r009 Im(z^3+c),c=-1/86+15/32*I,n=31 4032507982789503 r009 Im(z^3+c),c=-1/86+15/32*I,n=29 4032507984981144 r009 Im(z^3+c),c=-1/86+15/32*I,n=27 4032507991013626 m001 (Backhouse-CareFree)/(Trott2nd-ZetaQ(3)) 4032507992068804 r005 Im(z^2+c),c=5/13+11/49*I,n=14 4032507992845645 a007 Real Root Of -125*x^4+633*x^3-347*x^2+111*x+146 4032507995375927 r009 Im(z^3+c),c=-1/86+15/32*I,n=25 4032507995688497 a001 322/1597*832040^(3/59) 4032507997107207 m001 1/exp(Salem)^2/GaussAGM(1,1/sqrt(2))*Ei(1)^2 4032507997754085 r009 Im(z^3+c),c=-11/64+19/42*I,n=22 4032508021344795 a007 Real Root Of 91*x^4+240*x^3-374*x^2+381*x-707 4032508023450392 a005 (1/cos(11/138*Pi))^262 4032508024359624 r005 Re(z^2+c),c=-63/118+10/31*I,n=33 4032508031365546 a003 sin(Pi*1/78)/cos(Pi*1/58) 4032508033784079 r005 Re(z^2+c),c=-17/30+1/98*I,n=28 4032508039566484 m001 (2^(1/2)+ln(Pi))/(BesselJ(1,1)+DuboisRaymond) 4032508042386588 r002 7th iterates of z^2 + 4032508043766691 r009 Im(z^3+c),c=-1/86+15/32*I,n=23 4032508053989214 a001 1568397607/233*144^(14/17) 4032508066306742 r005 Im(z^2+c),c=11/32+9/44*I,n=54 4032508077818090 m001 1/GAMMA(1/6)^2*exp(Khintchine)/GAMMA(19/24) 4032508079513594 a001 2/109801*3^(34/47) 4032508087502900 m001 sin(1/5*Pi)/(DuboisRaymond^Salem) 4032508089458811 r002 47th iterates of z^2 + 4032508093410706 r009 Re(z^3+c),c=-21/86+31/43*I,n=48 4032508101208184 a007 Real Root Of 124*x^4+684*x^3+716*x^2-14*x+364 4032508110409490 r002 26th iterates of z^2 + 4032508112582292 h001 (1/12*exp(1)+7/10)/(3/5*exp(1)+2/3) 4032508114013349 a008 Real Root of x^4-x^3+10*x^2+111*x-45 4032508127022527 l006 ln(4069/6090) 4032508137582774 m001 Shi(1)*Otter^ReciprocalFibonacci 4032508145684349 r002 23th iterates of z^2 + 4032508166668570 m005 (5/6*Catalan-1/6)/(1/4*exp(1)+4/5) 4032508170487005 m005 (3/4*Catalan-2/5)/(2*Pi+5/6) 4032508176339153 r008 a(0)=4,K{-n^6,-29-59*n^3+59*n^2-2*n} 4032508190364441 r008 a(0)=4,K{-n^6,-17-16*n+59*n^2-57*n^3} 4032508199241104 m001 1/exp(GAMMA(23/24))^2*Catalan/cos(1)^2 4032508211549286 r009 Im(z^3+c),c=-5/82+7/15*I,n=8 4032508212993893 r002 42th iterates of z^2 + 4032508214273871 m002 -2/3-Log[Pi]/Pi^5+ProductLog[Pi] 4032508222685445 r005 Re(z^2+c),c=-57/106+19/61*I,n=35 4032508232434420 r008 a(0)=4,K{-n^6,-35+39*n+8*n^2-43*n^3} 4032508234023715 r005 Re(z^2+c),c=-27/40+1/8*I,n=8 4032508235164538 r008 a(0)=4,K{-n^6,-37-42*n^3+4*n^2+44*n} 4032508242068808 r008 a(0)=4,K{-n^6,-3-15*n+33*n^2-46*n^3} 4032508249753130 m004 -5+130*Pi-(25*Sqrt[5]*Pi)/E^(Sqrt[5]*Pi) 4032508259130714 r008 a(0)=4,K{-n^6,-48+10*n+n^2+8*n^3} 4032508265653924 r009 Im(z^3+c),c=-1/86+15/32*I,n=21 4032508272725429 r008 a(0)=4,K{-n^6,21-45*n+36*n^2-43*n^3} 4032508276076875 r005 Im(z^2+c),c=-73/118+4/53*I,n=53 4032508282924996 m001 1/RenyiParking/exp(CareFree)/GAMMA(13/24) 4032508297223544 r002 40th iterates of z^2 + 4032508307980107 r008 a(0)=4,K{-n^6,-31-27*n^3-38*n^2+65*n} 4032508332441314 m001 exp(-1/2*Pi)/MertensB3*Sierpinski 4032508333849790 r002 48th iterates of z^2 + 4032508342197138 m001 (3^(1/2)-BesselI(0,1))/(ln(Pi)+Trott) 4032508352276215 r002 16th iterates of z^2 + 4032508361913470 r005 Im(z^2+c),c=3/34+35/53*I,n=10 4032508374009778 r005 Re(z^2+c),c=-49/90+8/21*I,n=38 4032508374851424 h001 (10/11*exp(2)+4/11)/(3/5*exp(1)+1/8) 4032508379658426 r002 55th iterates of z^2 + 4032508381755931 a007 Real Root Of 245*x^4-852*x^3+713*x^2-785*x+250 4032508383745467 r008 a(0)=4,K{-n^6,33-25*n-15*n^2-24*n^3} 4032508389932623 r002 14th iterates of z^2 + 4032508400783510 r009 Re(z^3+c),c=-12/25+11/51*I,n=40 4032508403691579 a007 Real Root Of -78*x^4-446*x^3-800*x^2-842*x+993 4032508404282359 m001 (gamma(3)+Pi^(1/2))/BesselJ(1,1) 4032508404613285 r008 a(0)=4,K{-n^6,41-22*n^3-17*n^2-33*n} 4032508405940407 p004 log(36131/34703) 4032508406005827 m001 (Psi(1,1/3)+gamma)/(Backhouse+Riemann3rdZero) 4032508410934174 r008 a(0)=4,K{-n^6,8-3*n^3+15*n^2-52*n} 4032508416571144 m005 (1/3*Pi-1/12)/(5/6*exp(1)+1/8) 4032508420391913 a007 Real Root Of -221*x^4+766*x^3+577*x^2+478*x+155 4032508434128426 a007 Real Root Of 144*x^4+534*x^3-146*x^2+151*x-78 4032508435484315 r009 Re(z^3+c),c=-33/74+29/47*I,n=3 4032508447482343 l006 ln(5124/7669) 4032508451850073 m002 Pi^3+(Pi^3*ProductLog[Pi])/4+Tanh[Pi] 4032508460272921 m004 Cos[Sqrt[5]*Pi]/20+(25*Pi)/Log[Sqrt[5]*Pi] 4032508462271201 r002 34th iterates of z^2 + 4032508486748028 a007 Real Root Of 150*x^4+462*x^3-755*x^2-963*x-975 4032508498179997 m001 BesselI(1,1)-Pi-Backhouse 4032508503387685 r005 Im(z^2+c),c=-1/44+33/62*I,n=52 4032508504637118 r005 Re(z^2+c),c=31/82+14/45*I,n=46 4032508509178617 r002 33th iterates of z^2 + 4032508519501386 g007 Psi(2,3/10)+Psi(2,5/7)-Psi(2,5/12)-Psi(2,5/9) 4032508521708427 a007 Real Root Of 372*x^4-403*x^3+166*x^2-678*x+263 4032508532910186 b008 EulerGamma*(-1/7+Sin[1]) 4032508535478026 m005 (1/2*Zeta(3)-3/10)/(4/7*gamma+5/12) 4032508547248024 r005 Re(z^2+c),c=-5/9-13/71*I,n=51 4032508550118958 r009 Im(z^3+c),c=-5/48+25/44*I,n=2 4032508566501534 r005 Im(z^2+c),c=1/12+25/54*I,n=17 4032508567767673 r005 Im(z^2+c),c=11/52+17/47*I,n=40 4032508582248439 r005 Re(z^2+c),c=-17/28+4/17*I,n=20 4032508587997699 a007 Real Root Of -913*x^4-917*x^3+672*x^2+553*x-248 4032508589762457 m001 Niven^2/exp(GlaisherKinkelin)*sqrt(5)^2 4032508593731834 p002 log(10^(3/10)+11^(5/3)) 4032508595358224 a007 Real Root Of 666*x^4-934*x^3-459*x^2-39*x+134 4032508607979417 r005 Re(z^2+c),c=-29/52+8/49*I,n=61 4032508634297202 b008 3+2^(3/65) 4032508634302024 m001 (cos(1)+LambertW(1))/(Zeta(1,-1)+BesselJ(1,1)) 4032508637376000 m001 1/Porter^2*exp(MertensB1)*Sierpinski^2 4032508641121523 a001 2584/20633239*521^(12/13) 4032508649595693 a007 Real Root Of 240*x^4+877*x^3-174*x^2+638*x-552 4032508658511791 l006 ln(6179/9248) 4032508668789133 r002 17th iterates of z^2 + 4032508678400217 r005 Re(z^2+c),c=-19/34+5/33*I,n=59 4032508685950411 r005 Re(z^2+c),c=-13/23+3/58*I,n=35 4032508687704439 r004 Im(z^2+c),c=1/38+4/9*I,z(0)=I,n=8 4032508688224090 r005 Re(z^2+c),c=-9/16+11/105*I,n=63 4032508692987131 b008 40+PolyLog[4,Pi^(-1)] 4032508698793641 m005 (11/20+1/4*5^(1/2))/(3/11*Catalan-3) 4032508704587572 a001 75025/123*47^(26/53) 4032508706155649 g002 Psi(4/7)-Psi(7/12)-Psi(5/9)-Psi(3/7) 4032508708603765 m005 (1/2*gamma+1/4)/(7/12*exp(1)-1/4) 4032508716179082 m005 (1/2*Zeta(3)+10/11)/(2*5^(1/2)-8/11) 4032508718099811 a007 Real Root Of -230*x^4-348*x^3-683*x^2+515*x+302 4032508721047605 a003 -2*cos(7/18*Pi)+2*cos(11/24*Pi)+cos(4/21*Pi) 4032508732106681 r002 37th iterates of z^2 + 4032508735259537 a007 Real Root Of -49*x^4+288*x^3-145*x^2+858*x-340 4032508744285947 a001 6765/54018521*521^(12/13) 4032508759337434 a001 17711/141422324*521^(12/13) 4032508761533416 a001 46368/370248451*521^(12/13) 4032508761853805 a001 121393/969323029*521^(12/13) 4032508761900550 a001 317811/2537720636*521^(12/13) 4032508761907369 a001 832040/6643838879*521^(12/13) 4032508761908364 a001 2178309/17393796001*521^(12/13) 4032508761908510 a001 1597/12752044*521^(12/13) 4032508761908531 a001 14930352/119218851371*521^(12/13) 4032508761908534 a001 39088169/312119004989*521^(12/13) 4032508761908534 a001 102334155/817138163596*521^(12/13) 4032508761908534 a001 267914296/2139295485799*521^(12/13) 4032508761908534 a001 701408733/5600748293801*521^(12/13) 4032508761908534 a001 1836311903/14662949395604*521^(12/13) 4032508761908534 a001 2971215073/23725150497407*521^(12/13) 4032508761908534 a001 1134903170/9062201101803*521^(12/13) 4032508761908534 a001 433494437/3461452808002*521^(12/13) 4032508761908534 a001 165580141/1322157322203*521^(12/13) 4032508761908535 a001 63245986/505019158607*521^(12/13) 4032508761908536 a001 24157817/192900153618*521^(12/13) 4032508761908544 a001 9227465/73681302247*521^(12/13) 4032508761908599 a001 3524578/28143753123*521^(12/13) 4032508761908979 a001 1346269/10749957122*521^(12/13) 4032508761911584 a001 514229/4106118243*521^(12/13) 4032508761929439 a001 196418/1568397607*521^(12/13) 4032508762051817 a001 75025/599074578*521^(12/13) 4032508762890608 a001 28657/228826127*521^(12/13) 4032508768639764 a001 10946/87403803*521^(12/13) 4032508769365300 a007 Real Root Of 986*x^4-710*x^3+960*x^2-881*x-584 4032508778940239 l006 ln(179/10096) 4032508789261366 m001 (CareFree+CopelandErdos)/(GolombDickman-Otter) 4032508796389919 m001 1/Tribonacci/exp(CopelandErdos)^2/sin(1) 4032508797693905 a005 (1/cos(23/124*Pi))^212 4032508801209578 r005 Re(z^2+c),c=-7/10+2/179*I,n=18 4032508801218956 a001 377/271443*521^(7/13) 4032508802789983 m001 1/OneNinth*exp(MadelungNaCl)/GAMMA(1/12)^2 4032508806851173 r005 Im(z^2+c),c=17/106+11/27*I,n=24 4032508808045067 a001 4181/33385282*521^(12/13) 4032508814322594 m001 GAMMA(1/4)/PrimesInBinary*exp(GAMMA(7/12)) 4032508816828786 m006 (1/5*ln(Pi)+3/4)/(1/2*ln(Pi)-3) 4032508820081720 l006 ln(6683/6958) 4032508829487789 r009 Im(z^3+c),c=-19/42+20/59*I,n=39 4032508840471861 m001 (GaussAGM-ln(5)*PrimesInBinary)/PrimesInBinary 4032508841154665 r009 Re(z^3+c),c=-25/58+10/63*I,n=11 4032508855201379 r005 Im(z^2+c),c=15/46+13/55*I,n=56 4032508856885275 m005 (-7/36+1/4*5^(1/2))/(6*2^(1/2)+5/9) 4032508879983266 m001 FeigenbaumC^2/FeigenbaumDelta/exp(gamma) 4032508892653921 m005 (1/2*2^(1/2)-5/11)/(7/10*2^(1/2)-4/11) 4032508894426497 m005 (1/3*Zeta(3)+1/5)/(7/8*exp(1)-8/9) 4032508895738499 r005 Im(z^2+c),c=-153/118+1/49*I,n=12 4032508904206239 m001 (HardyLittlewoodC5+Otter)/GaussAGM 4032508908641770 a007 Real Root Of 255*x^4+784*x^3-954*x^2-39*x-663 4032508913006160 r005 Re(z^2+c),c=-2/3+21/158*I,n=17 4032508930440019 a007 Real Root Of -923*x^4-55*x^3+539*x^2+999*x+336 4032508954343446 r005 Re(z^2+c),c=-139/102+1/47*I,n=64 4032508964612199 h001 (3/5*exp(1)+8/9)/(8/11*exp(2)+7/8) 4032508975447958 r002 28th iterates of z^2 + 4032508978781953 r005 Im(z^2+c),c=-43/122+43/62*I,n=3 4032508982463008 a003 sin(Pi*11/112)/cos(Pi*8/35) 4032508987674277 m001 (-ln(3)+TravellingSalesman)/(Psi(1,1/3)-gamma) 4032508995081821 r002 14th iterates of z^2 + 4032509005830508 a001 41/48*433494437^(17/22) 4032509006927998 r009 Re(z^3+c),c=-7/15+6/11*I,n=61 4032509007319434 m001 (Champernowne-sin(1))/(-Grothendieck+ZetaQ(4)) 4032509016086552 m001 (gamma+Bloch)/(FeigenbaumAlpha+Paris) 4032509027217816 m001 1/GAMMA(17/24)*ln(Riemann3rdZero)^2*sqrt(5)^2 4032509037688564 r005 Im(z^2+c),c=1/23+29/59*I,n=31 4032509039102183 r009 Im(z^3+c),c=-9/62+27/58*I,n=5 4032509051035642 r005 Re(z^2+c),c=35/118+2/51*I,n=51 4032509056840104 m001 (GAMMA(3/4)-Sarnak)^ln(2+3^(1/2)) 4032509064997910 m001 (Si(Pi)+Khinchin*exp(1/Pi))/exp(1/Pi) 4032509064997910 m001 (Si(Pi)+exp(1/Pi)*Khinchin)/exp(1/Pi) 4032509075629960 b008 ArcTanh[1+Cos[Sqrt[5]]] 4032509076779340 a001 987/4870847*521^(11/13) 4032509078133036 a001 1597/12752043*521^(12/13) 4032509083096893 a007 Real Root Of 663*x^4-599*x^3+414*x^2-575*x-356 4032509107390359 m001 (-ArtinRank2+Riemann2ndZero)/(3^(1/2)-5^(1/2)) 4032509118421394 r005 Re(z^2+c),c=-19/34+25/88*I,n=23 4032509120349028 r008 a(0)=4,K{-n^6,-30-59*n^3+59*n^2-n} 4032509120756061 r005 Re(z^2+c),c=-9/16+7/61*I,n=27 4032509124052583 m001 ln(3)*(Otter+TravellingSalesman) 4032509131685267 a007 Real Root Of -135*x^4-642*x^3-599*x^2-884*x-225 4032509132127030 r008 a(0)=4,K{-n^6,-28-56*n^3+51*n^2+2*n} 4032509134648856 r002 13th iterates of z^2 + 4032509137949947 a007 Real Root Of -343*x^4+822*x^3+474*x^2+402*x+148 4032509148823413 r009 Im(z^3+c),c=-11/64+19/42*I,n=24 4032509149317129 a007 Real Root Of -152*x^4-747*x^3-461*x^2+285*x-145 4032509153589045 a007 Real Root Of 306*x^4+437*x^3-328*x^2-926*x+390 4032509158813653 r005 Re(z^2+c),c=-7/15+13/35*I,n=9 4032509161229260 m001 (ln(Pi)-Totient)/(Weierstrass+ZetaQ(3)) 4032509172319323 a007 Real Root Of -97*x^4-601*x^3-773*x^2+383*x+354 4032509172972480 r008 a(0)=4,K{-n^6,-6-49*n^3+41*n^2-17*n} 4032509173806976 r005 Re(z^2+c),c=-59/122+23/56*I,n=14 4032509180305902 m001 (Pi-GAMMA(7/12))/(Lehmer+Magata) 4032509181688000 r002 42th iterates of z^2 + 4032509191283811 m001 (ln(Pi)+arctan(1/2))/(GAMMA(7/12)-Tetranacci) 4032509194238842 m001 Backhouse+Champernowne-Salem 4032509196868239 r008 a(0)=4,K{-n^6,10-35*n+40*n^2-46*n^3} 4032509209712390 r009 Im(z^3+c),c=-11/64+19/42*I,n=27 4032509210206937 r008 a(0)=4,K{-n^6,28-62*n+49*n^2-46*n^3} 4032509213111670 a007 Real Root Of -151*x^4+377*x^3+746*x^2+481*x-336 4032509216189750 r009 Im(z^3+c),c=-11/64+19/42*I,n=25 4032509238542192 m001 Pi+1/Catalan/GAMMA(3/4) 4032509239979030 a001 47/121393*3^(1/27) 4032509252307840 r009 Im(z^3+c),c=-11/64+19/42*I,n=29 4032509255380797 a007 Real Root Of -219*x^4-729*x^3+433*x^2-524*x+952 4032509257398225 m001 1/Trott/exp(Cahen)/Zeta(3) 4032509258984365 p004 log(34913/619) 4032509259306117 r009 Im(z^3+c),c=-11/64+19/42*I,n=32 4032509260674845 r009 Im(z^3+c),c=-11/64+19/42*I,n=34 4032509261118165 r009 Im(z^3+c),c=-11/64+19/42*I,n=37 4032509261152594 r009 Im(z^3+c),c=-11/64+19/42*I,n=39 4032509261175325 r009 Im(z^3+c),c=-11/64+19/42*I,n=42 4032509261175484 r009 Im(z^3+c),c=-11/64+19/42*I,n=41 4032509261175685 r009 Im(z^3+c),c=-11/64+19/42*I,n=44 4032509261176576 r009 Im(z^3+c),c=-11/64+19/42*I,n=46 4032509261176676 r009 Im(z^3+c),c=-11/64+19/42*I,n=49 4032509261176707 r009 Im(z^3+c),c=-11/64+19/42*I,n=47 4032509261176707 r009 Im(z^3+c),c=-11/64+19/42*I,n=51 4032509261176714 r009 Im(z^3+c),c=-11/64+19/42*I,n=54 4032509261176715 r009 Im(z^3+c),c=-11/64+19/42*I,n=56 4032509261176716 r009 Im(z^3+c),c=-11/64+19/42*I,n=59 4032509261176716 r009 Im(z^3+c),c=-11/64+19/42*I,n=61 4032509261176716 r009 Im(z^3+c),c=-11/64+19/42*I,n=58 4032509261176716 r009 Im(z^3+c),c=-11/64+19/42*I,n=63 4032509261176716 r009 Im(z^3+c),c=-11/64+19/42*I,n=64 4032509261176716 r009 Im(z^3+c),c=-11/64+19/42*I,n=62 4032509261176716 r009 Im(z^3+c),c=-11/64+19/42*I,n=60 4032509261176716 r009 Im(z^3+c),c=-11/64+19/42*I,n=57 4032509261176717 r009 Im(z^3+c),c=-11/64+19/42*I,n=55 4032509261176717 r009 Im(z^3+c),c=-11/64+19/42*I,n=53 4032509261176717 r009 Im(z^3+c),c=-11/64+19/42*I,n=52 4032509261176738 r009 Im(z^3+c),c=-11/64+19/42*I,n=50 4032509261176763 r009 Im(z^3+c),c=-11/64+19/42*I,n=48 4032509261177194 r009 Im(z^3+c),c=-11/64+19/42*I,n=45 4032509261178303 r009 Im(z^3+c),c=-11/64+19/42*I,n=43 4032509261185632 r009 Im(z^3+c),c=-11/64+19/42*I,n=40 4032509261202031 r009 Im(z^3+c),c=-11/64+19/42*I,n=36 4032509261221992 r009 Im(z^3+c),c=-11/64+19/42*I,n=38 4032509261305247 r009 Im(z^3+c),c=-11/64+19/42*I,n=35 4032509261840575 r009 Im(z^3+c),c=-11/64+19/42*I,n=30 4032509262322619 r009 Im(z^3+c),c=-11/64+19/42*I,n=33 4032509263061369 r009 Im(z^3+c),c=-11/64+19/42*I,n=31 4032509270255131 r009 Im(z^3+c),c=-1/86+15/32*I,n=19 4032509272187723 r009 Im(z^3+c),c=-13/42+29/49*I,n=5 4032509274360484 r002 46th iterates of z^2 + 4032509280892940 a001 64079/233*377^(2/31) 4032509281853213 a007 Real Root Of 757*x^4-951*x^3-741*x^2-665*x+431 4032509286956618 a007 Real Root Of -143*x^4+702*x^3-209*x^2+923*x+456 4032509287179519 r009 Im(z^3+c),c=-11/64+19/42*I,n=28 4032509292797692 r008 a(0)=4,K{-n^6,42-32*n^3+14*n^2-55*n} 4032509310116738 r008 a(0)=4,K{-n^6,18-25*n^3-19*n^2-5*n} 4032509311868887 r009 Im(z^3+c),c=-11/64+19/42*I,n=19 4032509312233787 m005 (1/2*Pi+1/2)/(-13/40+3/8*5^(1/2)) 4032509330220560 r008 a(0)=4,K{-n^6,32-24*n-15*n^2-24*n^3} 4032509332795006 r009 Im(z^3+c),c=-11/64+19/42*I,n=26 4032509339753200 m001 (-Sierpinski+Thue)/(Chi(1)-HardyLittlewoodC5) 4032509349877467 m001 exp(GAMMA(7/24))/LandauRamanujan*sqrt(2) 4032509355898004 m001 OneNinth/Porter*ln(gamma) 4032509355898004 m001 ln(gamma)*OneNinth/Porter 4032509378032392 m001 (GolombDickman-Otter)/(Ei(1)-ln(2+3^(1/2))) 4032509379009328 r002 44th iterates of z^2 + 4032509382783352 r008 a(0)=4,K{-n^6,62-63*n-9*n^2-21*n^3} 4032509392010779 m005 (1/2*5^(1/2)-4/5)/(1/6*3^(1/2)+1/2) 4032509413727511 m001 MadelungNaCl^2/ln(Bloch)/Zeta(7) 4032509417162605 a007 Real Root Of -362*x^4-377*x^3-302*x^2+320*x+163 4032509426224460 r009 Im(z^3+c),c=-47/106+10/29*I,n=33 4032509446835935 m001 Ei(1)*((1+3^(1/2))^(1/2)+Weierstrass) 4032509450011777 r002 42th iterates of z^2 + 4032509452238489 r005 Re(z^2+c),c=-61/114+5/33*I,n=12 4032509466963380 r008 a(0)=4,K{-n^6,92-15*n^3-12*n^2-96*n} 4032509471085559 m001 1/exp(1)*exp(PrimesInBinary)/sinh(1)^2 4032509472417002 a007 Real Root Of -182*x^4-651*x^3+527*x^2+723*x-217 4032509473760766 r002 21th iterates of z^2 + 4032509488107972 r002 20th iterates of z^2 + 4032509489197886 a001 1/567451585*1836311903^(8/17) 4032509489197886 a001 2/53316291173*6557470319842^(8/17) 4032509489199320 a001 2/24157817*514229^(8/17) 4032509495417530 r009 Im(z^3+c),c=-13/86+26/57*I,n=9 4032509501827407 r008 a(0)=4,K{-n^6,68-7*n^3-48*n^2-44*n} 4032509510361025 r009 Im(z^3+c),c=-23/102+15/16*I,n=12 4032509510482009 a001 144/167761*322^(2/3) 4032509527264891 s002 sum(A163772[n]/(n^2*pi^n+1),n=1..infinity) 4032509539085345 a007 Real Root Of -175*x^4-693*x^3+217*x^2+449*x-886 4032509539712755 r002 17th iterates of z^2 + 4032509544236255 r005 Re(z^2+c),c=-29/56+19/48*I,n=59 4032509558986928 r005 Re(z^2+c),c=-7/12+21/67*I,n=11 4032509567179534 a001 233/24476*199^(3/11) 4032509570581330 m001 (-Cahen+Rabbit)/(BesselK(0,1)+GAMMA(3/4)) 4032509600953793 a001 1/1515744265389*433494437^(11/14) 4032509600956189 a001 7/53316291173*514229^(11/14) 4032509603407821 r005 Re(z^2+c),c=-47/86+19/47*I,n=50 4032509626205360 r005 Re(z^2+c),c=-1/27+57/61*I,n=3 4032509633733878 r009 Re(z^3+c),c=-53/118+9/49*I,n=26 4032509640668794 r005 Im(z^2+c),c=9/26+4/19*I,n=54 4032509666504292 m001 GAMMA(11/12)/(GAMMA(1/12)^BesselI(0,2)) 4032509667380848 m001 Landau/(LaplaceLimit-Riemann1stZero) 4032509675051089 r002 16th iterates of z^2 + 4032509679641781 r002 60th iterates of z^2 + 4032509682331301 m001 (ZetaP(2)+ZetaQ(3))/(polylog(4,1/2)+Kac) 4032509683454752 l006 ln(1055/1579) 4032509690589756 r005 Re(z^2+c),c=-14/31+25/44*I,n=11 4032509718988725 m005 (3/4*exp(1)+1)/(1/4*2^(1/2)+2/5) 4032509720467265 s002 sum(A126652[n]/(n^3*2^n-1),n=1..infinity) 4032509720492439 r009 Im(z^3+c),c=-37/82+18/53*I,n=38 4032509726270187 a001 9/31622993*55^(2/23) 4032509730804531 r008 a(0)=4,K{-n^6,10-4*n^3+24*n^2-62*n} 4032509735055469 r005 Im(z^2+c),c=-17/26+59/127*I,n=11 4032509735964853 a001 233/817138163596*2^(1/2) 4032509739621798 r002 21th iterates of z^2 + 4032509741420133 m008 (1/2*Pi^6-1)/(4/5*Pi^2+4) 4032509745629184 m008 (4*Pi^4+1/2)/(3*Pi+1/4) 4032509751642767 m001 (BesselJ(0,1)+gamma(3))/(GAMMA(7/12)+Artin) 4032509755105507 r002 2th iterates of z^2 + 4032509765218869 a001 2207/13*377^(7/48) 4032509772812229 r005 Re(z^2+c),c=-7/13+22/61*I,n=23 4032509778375902 r009 Re(z^3+c),c=-27/50+10/33*I,n=37 4032509781680254 r009 Im(z^3+c),c=-11/64+19/42*I,n=23 4032509783879223 a001 2584/12752043*521^(11/13) 4032509785624818 r008 a(0)=4,K{-n^6,-58-2*n^3+16*n^2+18*n} 4032509786585625 a004 Fibonacci(15)*Lucas(13)/(1/2+sqrt(5)/2)^33 4032509798859391 m002 4*Coth[Pi]+(5*ProductLog[Pi])/Pi^5 4032509806328059 a007 Real Root Of -303*x^4+956*x^3+92*x^2+358*x-214 4032509817599749 a007 Real Root Of -893*x^4-583*x^3-670*x^2+205*x+177 4032509821837173 m001 MasserGramain/FibonacciFactorial/Mills 4032509822803682 r005 Re(z^2+c),c=-19/34+17/121*I,n=27 4032509839265095 r005 Re(z^2+c),c=-35/62+2/53*I,n=23 4032509840098675 r009 Re(z^3+c),c=-55/114+7/32*I,n=46 4032509841673372 r005 Re(z^2+c),c=-47/78+11/25*I,n=37 4032509854022023 r009 Im(z^3+c),c=-25/48+16/59*I,n=55 4032509854962979 r005 Im(z^2+c),c=-15/82+13/19*I,n=29 4032509869702616 a007 Real Root Of 88*x^4-375*x^3+206*x^2-180*x-133 4032509871470699 r002 47th iterates of z^2 + 4032509877649288 s002 sum(A212894[n]/(n^3*2^n-1),n=1..infinity) 4032509887043706 a001 6765/33385282*521^(11/13) 4032509893389451 r002 61th iterates of z^2 + 4032509894068797 l006 ln(8167/8200) 4032509902095201 a001 17711/87403803*521^(11/13) 4032509904291184 a001 46368/228826127*521^(11/13) 4032509904611574 a001 121393/599074578*521^(11/13) 4032509904658318 a001 317811/1568397607*521^(11/13) 4032509904665138 a001 832040/4106118243*521^(11/13) 4032509904666133 a001 987/4870846*521^(11/13) 4032509904666278 a001 5702887/28143753123*521^(11/13) 4032509904666300 a001 14930352/73681302247*521^(11/13) 4032509904666303 a001 39088169/192900153618*521^(11/13) 4032509904666303 a001 102334155/505019158607*521^(11/13) 4032509904666303 a001 267914296/1322157322203*521^(11/13) 4032509904666303 a001 701408733/3461452808002*521^(11/13) 4032509904666303 a001 1836311903/9062201101803*521^(11/13) 4032509904666303 a001 4807526976/23725150497407*521^(11/13) 4032509904666303 a001 2971215073/14662949395604*521^(11/13) 4032509904666303 a001 1134903170/5600748293801*521^(11/13) 4032509904666303 a001 433494437/2139295485799*521^(11/13) 4032509904666303 a001 165580141/817138163596*521^(11/13) 4032509904666303 a001 63245986/312119004989*521^(11/13) 4032509904666305 a001 24157817/119218851371*521^(11/13) 4032509904666313 a001 9227465/45537549124*521^(11/13) 4032509904666368 a001 3524578/17393796001*521^(11/13) 4032509904666748 a001 1346269/6643838879*521^(11/13) 4032509904669353 a001 514229/2537720636*521^(11/13) 4032509904687208 a001 196418/969323029*521^(11/13) 4032509904809586 a001 75025/370248451*521^(11/13) 4032509905648377 a001 28657/141422324*521^(11/13) 4032509911397536 a001 10946/54018521*521^(11/13) 4032509914668702 r002 42th iterates of z^2 + 4032509917435319 l006 ln(87/4907) 4032509919995459 a007 Real Root Of -552*x^4+533*x^3+107*x^2+814*x-366 4032509922541094 m005 (1/2*5^(1/2)+1/8)/(5/8*3^(1/2)+2) 4032509925962037 a005 (1/cos(11/101*Pi))^756 4032509935469851 a007 Real Root Of -435*x^4+566*x^3-158*x^2+640*x-258 4032509943749605 m001 (Zeta(1/2)-exp(1))/(-LaplaceLimit+Robbin) 4032509944174747 a001 377/167761*521^(6/13) 4032509944231894 r005 Im(z^2+c),c=11/126+29/63*I,n=26 4032509945402164 m005 (1/3*3^(1/2)-2/11)/(8/9*Catalan+1/6) 4032509949185987 r005 Re(z^2+c),c=-5/4+15/59*I,n=6 4032509950802862 a001 4181/20633239*521^(11/13) 4032509961783634 p003 LerchPhi(1/25,2,23/146) 4032509971511761 r005 Re(z^2+c),c=-51/94+14/33*I,n=34 4032509973988694 r008 a(0)=4,K{-n^6,-47+6*n^3-9*n^2+26*n} 4032509987040458 r009 Im(z^3+c),c=-23/60+19/50*I,n=26 4032509993535652 a007 Real Root Of 71*x^4-389*x^3+491*x^2+70*x-79 4032509994101361 r005 Re(z^2+c),c=-53/94+4/49*I,n=44 4032510006097229 r005 Re(z^2+c),c=-91/74+25/44*I,n=2 4032510013452320 a007 Real Root Of -719*x^4-497*x^3+898*x^2+659*x-28 4032510017874688 a007 Real Root Of 842*x^4-687*x^3+148*x^2-929*x-466 4032510027313885 r008 a(0)=4,K{-n^6,-34-15*n+14*n^2+6*n^3} 4032510028764844 r009 Im(z^3+c),c=-1/11+13/28*I,n=16 4032510031063676 r005 Im(z^2+c),c=-11/114+53/61*I,n=36 4032510044321412 r005 Im(z^2+c),c=13/114+26/59*I,n=40 4032510051709135 a007 Real Root Of 178*x^4+610*x^3-270*x^2+505*x-641 4032510078651275 a001 196418/123*199^(7/40) 4032510083427653 r008 a(0)=4,K{-n^6,-29-56*n^3+51*n^2+3*n} 4032510084628596 r005 Im(z^2+c),c=1/74+33/62*I,n=23 4032510094915133 r002 49th iterates of z^2 + 4032510098331754 r008 a(0)=4,K{-n^6,-41+33*n+27*n^2-50*n^3} 4032510108827020 r002 20th iterates of z^2 + 4032510117788780 a001 8/321*123^(1/10) 4032510119761470 a007 Real Root Of 666*x^4+848*x^3+115*x^2-829*x-315 4032510129820259 r005 Im(z^2+c),c=11/106+13/29*I,n=40 4032510133101030 r008 a(0)=4,K{-n^6,-37-42*n^3+5*n^2+43*n} 4032510135251605 r005 Re(z^2+c),c=-23/42+23/61*I,n=31 4032510139595434 m001 GAMMA(1/24)^2*Conway^2/exp(sin(1)) 4032510140195796 r008 a(0)=4,K{-n^6,-3-16*n+34*n^2-46*n^3} 4032510148917151 r008 a(0)=4,K{-n^6,9-34*n+40*n^2-46*n^3} 4032510154868875 r008 a(0)=4,K{-n^6,-13-41*n^3+14*n^2+9*n} 4032510159092740 r005 Im(z^2+c),c=-3/34+10/17*I,n=28 4032510159424532 s002 sum(A187362[n]/(64^n),n=1..infinity) 4032510159424820 q001 129/3199 4032510170650045 h001 (9/11*exp(2)+3/10)/(6/11*exp(1)+1/11) 4032510171709487 r008 a(0)=4,K{-n^6,21-46*n+37*n^2-43*n^3} 4032510177171983 a007 Real Root Of 11*x^4+57*x^3+218*x^2+859*x+748 4032510181809576 m001 ZetaQ(4)^(2/3*Pi*3^(1/2)/GAMMA(2/3)*Sarnak) 4032510182872436 r008 a(0)=4,K{-n^6,-1-n+8*n^2-37*n^3} 4032510198945437 m001 1/MinimumGamma/exp(CareFree)^2/PrimesInBinary 4032510202798306 r008 a(0)=4,K{-n^6,-1+7*n-4*n^2-33*n^3} 4032510207625693 r002 23th iterates of z^2 + 4032510207943371 r008 a(0)=4,K{-n^6,5-33*n^3-n^2-2*n} 4032510219537813 a001 987/3010349*521^(10/13) 4032510220890984 a001 1597/7881196*521^(11/13) 4032510226137054 a001 1/5*3^(30/47) 4032510232627580 m005 (1/2*exp(1)-1/2)/(8/9*exp(1)-2/7) 4032510237077598 m001 BesselK(0,1)^Robbin*TravellingSalesman 4032510246011914 p003 LerchPhi(1/32,3,700/239) 4032510263535297 r008 a(0)=4,K{-n^6,17-25*n^3-19*n^2-4*n} 4032510266118519 r005 Re(z^2+c),c=-9/16+3/43*I,n=22 4032510269214583 r005 Re(z^2+c),c=-59/78+1/5*I,n=13 4032510279725770 r008 a(0)=4,K{-n^6,39-26*n^3-5*n^2-39*n} 4032510282318181 a005 (1/cos(14/215*Pi))^1596 4032510322787638 r009 Re(z^3+c),c=-18/29+21/44*I,n=3 4032510330389956 a007 Real Root Of 801*x^4-737*x^3+482*x^2-871*x+300 4032510351322820 m005 (1/3*gamma+1/4)/(9/10*Catalan+3/11) 4032510363140690 a007 Real Root Of -319*x^4+661*x^3+6*x^2+122*x+100 4032510363359145 r005 Re(z^2+c),c=-37/56+4/15*I,n=35 4032510364340508 h001 (1/9*exp(1)+5/12)/(5/8*exp(1)+1/12) 4032510366441333 r008 a(0)=4,K{-n^6,31+n-51*n^2-12*n^3} 4032510415580532 a003 sin(Pi*1/83)/cos(Pi*55/117) 4032510416547674 r005 Im(z^2+c),c=17/74+10/29*I,n=43 4032510422069197 r009 Re(z^3+c),c=-23/44+15/58*I,n=60 4032510422407262 r008 a(0)=4,K{-n^6,91-15*n^3-12*n^2-95*n} 4032510426030469 m002 5+2/Pi^2-Sinh[Pi]/Pi^2 4032510432724647 r005 Re(z^2+c),c=-9/13+5/28*I,n=36 4032510447004664 a007 Real Root Of -701*x^4+299*x^3-242*x^2+217*x+165 4032510457742603 r008 a(0)=4,K{-n^6,67-7*n^3-48*n^2-43*n} 4032510467074024 m001 Ei(1)*Tribonacci^2/exp(arctan(1/2)) 4032510468860838 p004 log(24137/16127) 4032510497545624 g005 GAMMA(10/11)*GAMMA(6/11)/GAMMA(1/7)^2 4032510498570616 r008 a(0)=4,K{-n^6,-72-28*n^3+53*n^2+15*n} 4032510514231204 m001 gamma(1)^Shi(1)*Cahen 4032510522399909 r009 Im(z^3+c),c=-2/17+26/49*I,n=2 4032510528644937 r009 Im(z^3+c),c=-55/118+19/58*I,n=28 4032510531459403 r009 Re(z^3+c),c=-13/66+31/43*I,n=22 4032510556009861 r008 a(0)=4,K{-n^6,40-58*n-23*n^2+9*n^3} 4032510561435257 a007 Real Root Of -524*x^4+234*x^3-976*x^2-218*x+100 4032510572832998 m005 (1/2*gamma+9/10)/(6/7*gamma-1/5) 4032510589716285 r009 Re(z^3+c),c=-16/31+7/34*I,n=5 4032510597783850 a003 -1-2*cos(1/7*Pi)-cos(3/10*Pi)-cos(5/18*Pi) 4032510603524063 r005 Re(z^2+c),c=-13/23+1/28*I,n=27 4032510619654862 m001 (gamma+FeigenbaumDelta)/(1+ln(2)/ln(10)) 4032510660097481 a007 Real Root Of 645*x^4-109*x^3-477*x^2-267*x-10 4032510660637581 l006 ln(6481/9700) 4032510661718083 m001 Magata*Porter-cos(1/12*Pi) 4032510665611897 r002 32th iterates of z^2 + 4032510682067217 m001 (FeigenbaumD+Magata)/(MertensB2+PlouffeB) 4032510687695935 r005 Im(z^2+c),c=-3/34+11/19*I,n=46 4032510689674570 a007 Real Root Of -44*x^4+46*x^3+809*x^2-332*x+157 4032510694098488 a005 (1/cos(20/69*Pi))^130 4032510706402571 m005 (1/3*Zeta(3)-2/11)/(3/10*exp(1)-3/11) 4032510706628465 a007 Real Root Of 201*x^4+802*x^3-301*x^2-860*x+867 4032510708898461 r002 45th iterates of z^2 + 4032510734560273 a001 505019158607/34*3^(10/11) 4032510735748329 a007 Real Root Of 286*x^4+971*x^3-804*x^2-464*x-751 4032510738627234 a007 Real Root Of 788*x^4-126*x^3+126*x^2-988*x-448 4032510740744660 a007 Real Root Of -895*x^4-206*x^3-628*x^2-147*x+53 4032510743674760 a007 Real Root Of 766*x^4-655*x^3+164*x^2-531*x-304 4032510749181721 a007 Real Root Of 165*x^4+622*x^3-356*x^2-813*x-333 4032510755951441 r005 Im(z^2+c),c=-5/52+18/31*I,n=49 4032510757506655 a007 Real Root Of -219*x^4+687*x^3+832*x^2+693*x+195 4032510765142214 r005 Re(z^2+c),c=-14/15+3/20*I,n=20 4032510765149494 m002 Pi^4+Pi^5-Log[Pi]/(6*ProductLog[Pi]) 4032510769361740 r002 51th iterates of z^2 + 4032510771962506 h001 (1/8*exp(1)+5/6)/(4/11*exp(2)+2/9) 4032510772530805 r005 Im(z^2+c),c=-3/28+32/55*I,n=46 4032510774694674 a007 Real Root Of 273*x^4+105*x^3+568*x^2-746*x-31 4032510781829114 b008 1/25+Pi+Csch[1] 4032510782979036 m001 LandauRamanujan*CopelandErdos^2*ln(Sierpinski) 4032510788244569 m005 (1/2*exp(1)-11/12)/(9/11*gamma+5/8) 4032510788833917 r009 Re(z^3+c),c=-47/102+5/26*I,n=19 4032510802861779 a001 11/24157817*225851433717^(11/21) 4032510802916514 a001 11/121393*9227465^(11/21) 4032510803054425 r008 a(0)=4,K{-n^6,-59+45*n-35*n^2+13*n^3} 4032510808303657 r005 Im(z^2+c),c=5/42+13/30*I,n=21 4032510809529136 p001 sum(1/(433*n+93)/n/(5^n),n=1..infinity) 4032510814716186 r008 a(0)=4,K{-n^6,-42+4*n-14*n^2+22*n^3} 4032510816401933 r009 Re(z^3+c),c=-31/122+39/43*I,n=5 4032510819465123 s002 sum(A203884[n]/(exp(n)-1),n=1..infinity) 4032510822704615 m001 (Trott-Thue)/(cos(1/12*Pi)-Salem) 4032510832493543 r009 Im(z^3+c),c=-63/122+6/19*I,n=42 4032510847109974 r005 Im(z^2+c),c=-17/26+39/95*I,n=63 4032510847611911 m005 (1/3*3^(1/2)+1/11)/(49/66+9/22*5^(1/2)) 4032510850120038 r009 Im(z^3+c),c=-27/62+7/20*I,n=36 4032510850635338 l006 ln(5426/8121) 4032510856385430 a003 cos(Pi*1/44)-sin(Pi*16/79) 4032510870854173 a007 Real Root Of 16*x^4+630*x^3-608*x^2+193*x-367 4032510877753567 a003 cos(Pi*17/47)*sin(Pi*11/27) 4032510892805889 m001 ZetaQ(4)*(Chi(1)+ErdosBorwein) 4032510898661343 r002 34th iterates of z^2 + 4032510902946462 r005 Re(z^2+c),c=-71/126+3/34*I,n=40 4032510917405367 r005 Im(z^2+c),c=23/82+17/58*I,n=54 4032510918549663 m001 BesselK(1,1)^2*Lehmer^2/ln(GAMMA(1/24)) 4032510924675907 r008 a(0)=4,K{-n^6,-21+14*n^3-52*n^2+27*n} 4032510926637371 a001 646/1970299*521^(10/13) 4032510929343515 a001 610/4870847*521^(12/13) 4032510936333903 a007 Real Root Of -599*x^4+285*x^3-833*x^2+682*x+445 4032510936515445 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)/GaussAGM/Mills 4032510941199508 m005 (1/2*2^(1/2)+1/8)/(5/8*Pi+1/10) 4032510945283305 r009 Im(z^3+c),c=-1/10+19/41*I,n=11 4032510951560828 a001 3/39088169*233^(7/23) 4032510956374476 m001 ln(Porter)^2*LandauRamanujan^2/GAMMA(5/12) 4032510961694493 r009 Im(z^3+c),c=-47/126+23/52*I,n=6 4032510972038430 a001 47*(1/2*5^(1/2)+1/2)*521^(4/15) 4032510983174698 m005 (1/2*Catalan+1/5)/(5/12*5^(1/2)+7/10) 4032510983202256 r005 Re(z^2+c),c=-19/34+7/71*I,n=12 4032510991360958 b008 5*EllipticPi[2,4/5] 4032510997040199 r005 Re(z^2+c),c=-13/23+2/45*I,n=42 4032510998195155 r005 Re(z^2+c),c=-69/122+1/33*I,n=40 4032511006003202 r009 Re(z^3+c),c=-14/31+8/43*I,n=34 4032511013426565 r002 57th iterates of z^2 + 4032511013789958 r008 a(0)=4,K{-n^6,-48+21*n+57*n^2-61*n^3} 4032511015910157 m005 (1/3*gamma-1/8)/(2/5*5^(1/2)-8/11) 4032511016608990 m001 (-FellerTornier+Paris)/(1-GAMMA(11/12)) 4032511022986874 r002 11th iterates of z^2 + 4032511023643395 r009 Re(z^3+c),c=-7/114+28/41*I,n=19 4032511029801806 a001 615/1875749*521^(10/13) 4032511031106492 r008 a(0)=4,K{-n^6,-30-59*n^3+60*n^2-2*n} 4032511034123497 r005 Re(z^2+c),c=-7/12+7/18*I,n=54 4032511035123397 r009 Im(z^3+c),c=-1/98+15/32*I,n=13 4032511044853295 a001 17711/54018521*521^(10/13) 4032511046284968 r005 Re(z^2+c),c=-37/64+11/47*I,n=4 4032511047049277 a001 11592/35355581*521^(10/13) 4032511047369667 a001 121393/370248451*521^(10/13) 4032511047416411 a001 317811/969323029*521^(10/13) 4032511047423231 a001 610/1860499*521^(10/13) 4032511047424226 a001 2178309/6643838879*521^(10/13) 4032511047424371 a001 5702887/17393796001*521^(10/13) 4032511047424392 a001 3732588/11384387281*521^(10/13) 4032511047424395 a001 39088169/119218851371*521^(10/13) 4032511047424396 a001 9303105/28374454999*521^(10/13) 4032511047424396 a001 66978574/204284540899*521^(10/13) 4032511047424396 a001 701408733/2139295485799*521^(10/13) 4032511047424396 a001 1836311903/5600748293801*521^(10/13) 4032511047424396 a001 1201881744/3665737348901*521^(10/13) 4032511047424396 a001 7778742049/23725150497407*521^(10/13) 4032511047424396 a001 2971215073/9062201101803*521^(10/13) 4032511047424396 a001 567451585/1730726404001*521^(10/13) 4032511047424396 a001 433494437/1322157322203*521^(10/13) 4032511047424396 a001 165580141/505019158607*521^(10/13) 4032511047424396 a001 31622993/96450076809*521^(10/13) 4032511047424397 a001 24157817/73681302247*521^(10/13) 4032511047424405 a001 9227465/28143753123*521^(10/13) 4032511047424461 a001 1762289/5374978561*521^(10/13) 4032511047424841 a001 1346269/4106118243*521^(10/13) 4032511047427446 a001 514229/1568397607*521^(10/13) 4032511047445300 a001 98209/299537289*521^(10/13) 4032511047567678 a001 75025/228826127*521^(10/13) 4032511048406469 a001 28657/87403803*521^(10/13) 4032511054155626 a001 5473/16692641*521^(10/13) 4032511057791848 m001 2*BesselI(0,1)*Pi/GAMMA(5/6)/ZetaP(3) 4032511062204988 r008 a(0)=4,K{-n^6,8-57*n^3+73*n^2-55*n} 4032511076872869 r008 a(0)=4,K{-n^6,6-53*n^3+60*n^2-44*n} 4032511085114182 m001 Porter*LaplaceLimit/exp(BesselJ(1,1))^2 4032511086114411 a003 cos(Pi*1/104)*cos(Pi*32/87) 4032511086414450 a001 377/103682*521^(5/13) 4032511087520177 r005 Re(z^2+c),c=-17/30+3/77*I,n=22 4032511091791683 a007 Real Root Of -951*x^4+773*x^3+768*x^2+976*x-544 4032511093560934 a001 4181/12752043*521^(10/13) 4032511095659348 m001 LaplaceLimit^2/ln(CareFree)*LambertW(1)^2 4032511098424139 r005 Re(z^2+c),c=-17/30+9/92*I,n=23 4032511098840677 r005 Im(z^2+c),c=-13/102+35/59*I,n=26 4032511104188434 h001 (4/9*exp(2)+2/7)/(1/8*exp(1)+6/11) 4032511107103607 r002 9th iterates of z^2 + 4032511108246777 r008 a(0)=4,K{-n^6,-46-37*n^3-14*n^2+66*n} 4032511111458582 m001 gamma^ln(5)+gamma(2) 4032511113557391 r008 a(0)=4,K{-n^6,7-2*n-62*n^2+25*n^3} 4032511114240146 r008 a(0)=4,K{-n^6,-14-41*n^3+14*n^2+10*n} 4032511123295559 l006 ln(169/9532) 4032511126154677 a001 142129/3524578 4032511126162727 a004 Fibonacci(14)/Lucas(14)/(1/2+sqrt(5)/2)^5 4032511127373089 r005 Im(z^2+c),c=-5/48+29/53*I,n=14 4032511129731031 r008 a(0)=4,K{-n^6,-36-34*n^3-18*n^2+57*n} 4032511131342687 r002 48th iterates of z^2 + 4032511132350146 l006 ln(4371/6542) 4032511134493284 r008 a(0)=4,K{-n^6,-18-36*n^3-3*n^2+26*n} 4032511136861947 m005 (1/2*2^(1/2)+5/6)/(1/11*Zeta(3)+3/11) 4032511142143689 m005 (1/2*exp(1)+2)/(5/11*Catalan+5/12) 4032511149192086 r008 a(0)=4,K{-n^6,-18+32*n-12*n^2-33*n^3} 4032511153694211 a007 Real Root Of 229*x^4+791*x^3-347*x^2+930*x+708 4032511162743253 r008 a(0)=4,K{-n^6,-2+8*n-4*n^2-33*n^3} 4032511162757234 r008 a(0)=4,K{-n^6,-20-30*n^3-22*n^2+41*n} 4032511176787809 r008 a(0)=4,K{-n^6,14-16*n+4*n^2-33*n^3} 4032511187287754 a007 Real Root Of 106*x^4+301*x^3-745*x^2-771*x+714 4032511191613886 r002 17th iterates of z^2 + 4032511197991970 r005 Re(z^2+c),c=-47/86+1/4*I,n=41 4032511198899241 r008 a(0)=4,K{-n^6,-22+58*n-44*n^2-23*n^3} 4032511199880280 r002 33th iterates of z^2 + 4032511203925858 a008 Real Root of x^4-x^3-6*x^2+22*x-190 4032511204047298 m001 1/ln(Zeta(7))/Riemann1stZero^2*sin(Pi/12)^2 4032511216773746 r009 Re(z^3+c),c=-9/44+61/63*I,n=58 4032511221780248 a007 Real Root Of 258*x^4+852*x^3-939*x^2-800*x-310 4032511238520172 r008 a(0)=4,K{-n^6,48-28*n^3+6*n^2-57*n} 4032511246953809 r008 a(0)=4,K{-n^6,32-25*n-14*n^2-24*n^3} 4032511262518487 r005 Re(z^2+c),c=-25/24+1/56*I,n=8 4032511269273920 m001 (FeigenbaumC+Magata)/(TreeGrowth2nd+Thue) 4032511276477521 r002 4th iterates of z^2 + 4032511278015273 m001 (GAMMA(1/24)+1)/(GAMMA(1/6)+1/2) 4032511287961728 r005 Im(z^2+c),c=-1/22+31/57*I,n=39 4032511293034620 r005 Im(z^2+c),c=3/25+19/44*I,n=14 4032511294264685 r005 Re(z^2+c),c=-9/16+11/105*I,n=54 4032511301457164 r009 Im(z^3+c),c=-37/106+23/58*I,n=34 4032511303938810 a001 7/267914296*610^(11/14) 4032511310503937 b008 EulerGamma*(6+Cos[1/6]) 4032511330309954 r008 a(0)=4,K{-n^6,-62-29*n^3+61*n^2-2*n} 4032511335026392 r002 13th iterates of z^2 + 4032511336906365 m005 (1/2*Zeta(3)+1/11)/(73/66+3/11*5^(1/2)) 4032511349242837 r008 a(0)=4,K{-n^6,64-15*n^3-25*n^2-55*n} 4032511359998735 m008 (1/3*Pi^5-1/6)/(3/4*Pi^3+2) 4032511362294384 a001 329/620166*521^(9/13) 4032511363648932 a001 1597/4870847*521^(10/13) 4032511373825565 r002 60th iterates of z^2 + 4032511373830577 r009 Im(z^3+c),c=-6/17+19/60*I,n=2 4032511390072734 r005 Im(z^2+c),c=-1/56+25/48*I,n=17 4032511392603019 r005 Im(z^2+c),c=-37/118+2/33*I,n=13 4032511399589273 m001 (2^(1/3)+Ei(1))/(-Thue+ZetaP(4)) 4032511406901229 m003 33/8+(Sqrt[5]*Sec[1/2+Sqrt[5]/2])/512 4032511431678188 r005 Re(z^2+c),c=-67/122+25/51*I,n=8 4032511433488127 r005 Re(z^2+c),c=7/25+2/49*I,n=23 4032511441127351 r009 Im(z^3+c),c=-11/64+19/42*I,n=21 4032511444533622 r009 Im(z^3+c),c=-5/23+15/34*I,n=9 4032511452132112 k008 concat of cont frac of 4032511484019768 l006 ln(5395/5617) 4032511495597132 a007 Real Root Of -847*x^4+781*x^3-536*x^2+194*x+239 4032511507077324 r005 Re(z^2+c),c=35/94+28/57*I,n=6 4032511507857870 a007 Real Root Of 144*x^4+441*x^3-657*x^2-375*x+12 4032511508531780 a007 Real Root Of 649*x^4+42*x^3+826*x^2-700*x-431 4032511513937648 a007 Real Root Of -295*x^4-147*x^3+477*x^2+761*x-367 4032511514550509 a007 Real Root Of -241*x^4+655*x^3-190*x^2+205*x-8 4032511532010408 a007 Real Root Of -320*x^4+847*x^3-998*x^2+711*x+513 4032511533220300 r005 Re(z^2+c),c=-59/114+11/31*I,n=32 4032511556641483 a007 Real Root Of 681*x^4-791*x^3+211*x^2-569*x+229 4032511571729611 a007 Real Root Of 218*x^4+910*x^3+273*x^2+777*x+721 4032511576003143 m003 4*Sin[1/2+Sqrt[5]/2]+Tanh[1/2+Sqrt[5]/2]/25 4032511588222405 a001 3665737348901/36*53316291173^(17/19) 4032511590906652 r005 Im(z^2+c),c=29/114+9/38*I,n=4 4032511590954358 m001 (GAMMA(19/24)-HardyLittlewoodC3)/(Kac+Rabbit) 4032511593322552 l006 ln(3316/4963) 4032511598100398 r009 Re(z^3+c),c=-9/17+8/31*I,n=56 4032511600871422 r005 Im(z^2+c),c=5/27+5/13*I,n=55 4032511604225048 m001 exp(GAMMA(11/12))/LaplaceLimit/Zeta(5)^2 4032511613079894 r002 16th iterates of z^2 + 4032511622786234 r005 Im(z^2+c),c=5/27+5/13*I,n=24 4032511623339983 r005 Re(z^2+c),c=-69/122+1/32*I,n=43 4032511636274172 r009 Im(z^3+c),c=-13/25+19/54*I,n=50 4032511637882656 r005 Re(z^2+c),c=-9/16+11/105*I,n=55 4032511640138052 m001 ZetaP(3)-Stephens-gamma(3) 4032511647649310 a007 Real Root Of 4*x^4-492*x^3+455*x^2+48*x-87 4032511649610957 r005 Im(z^2+c),c=-9/8+5/101*I,n=25 4032511649895487 r009 Re(z^3+c),c=-43/94+5/26*I,n=45 4032511690776382 r005 Im(z^2+c),c=-9/28+20/39*I,n=9 4032511693477343 m001 Riemann1stZero/ln(Artin)^2/BesselK(1,1)^2 4032511707524172 r009 Im(z^3+c),c=-1/11+13/28*I,n=18 4032511711232169 k006 concat of cont frac of 4032511711542516 a003 sin(Pi*13/66)*sin(Pi*23/94) 4032511721237672 r005 Im(z^2+c),c=13/46+16/55*I,n=51 4032511751724180 r001 40i'th iterates of 2*x^2-1 of 4032511760896308 r009 Im(z^3+c),c=-3/118+29/60*I,n=4 4032511762821899 r005 Re(z^2+c),c=45/122+14/59*I,n=31 4032511766727877 a007 Real Root Of -180*x^4-551*x^3+502*x^2-816*x+12 4032511770364017 r008 a(0)=4,K{-n^6,-72-27*n^3+50*n^2+17*n} 4032511779704997 r009 Im(z^3+c),c=-33/86+29/46*I,n=31 4032511780682639 m001 1/ln(FeigenbaumC)*Khintchine^2*Tribonacci^2 4032511783784809 r002 9th iterates of z^2 + 4032511788146736 a007 Real Root Of -598*x^4+882*x^3+21*x^2+542*x-264 4032511788191859 r005 Re(z^2+c),c=-63/118+19/60*I,n=43 4032511798636601 q001 769/1907 4032511801043965 r005 Im(z^2+c),c=1/102+22/43*I,n=45 4032511804047593 r005 Im(z^2+c),c=1/20+23/43*I,n=6 4032511826575442 r002 59th iterates of z^2 + 4032511834171743 r005 Re(z^2+c),c=-19/34+5/33*I,n=57 4032511844122358 m001 Rabbit^2*KhintchineLevy^2/exp(Sierpinski)^2 4032511846385563 h001 (5/12*exp(1)+5/11)/(5/12*exp(2)+6/7) 4032511850768655 m001 Zeta(3)^2*exp(GAMMA(5/6))^2*cos(1)^2 4032511886081340 a007 Real Root Of -93*x^4+757*x^3+830*x^2+553*x+21 4032511894147140 r005 Im(z^2+c),c=5/27+5/13*I,n=62 4032511924608796 m005 (1/3*3^(1/2)-2/5)/(5*Catalan-2/11) 4032511926195876 r002 33th iterates of z^2 + 4032511927884946 m005 (5*Catalan-1/6)/(2/3*Pi-1) 4032511929469527 r008 a(0)=4,K{-n^6,-59+7*n^3-40*n^2+70*n} 4032511946919490 r005 Im(z^2+c),c=4/17+18/53*I,n=51 4032511954611829 l006 ln(5577/8347) 4032511958390772 r005 Re(z^2+c),c=-9/17+11/32*I,n=53 4032511967417727 r002 47th iterates of z^2 + 4032511970457452 h001 (-5*exp(1)-4)/(-3*exp(5)+9) 4032511979335610 r008 a(0)=4,K{-n^6,-49+22*n+57*n^2-61*n^3} 4032512009078027 r008 a(0)=4,K{-n^6,-29-56*n^3+52*n^2+2*n} 4032512009824905 m001 1/exp(cos(Pi/12))^2*LaplaceLimit/cosh(1)^2 4032512016636778 r008 a(0)=4,K{-n^6,-17-16*n+58*n^2-56*n^3} 4032512018705349 r005 Im(z^2+c),c=5/27+5/13*I,n=59 4032512019199290 r008 a(0)=4,K{-n^6,-25+48*n^2-54*n^3} 4032512035578352 r005 Re(z^2+c),c=-7/13+17/52*I,n=26 4032512035921090 a003 cos(Pi*36/109)/cos(Pi*40/87) 4032512039038000 r008 a(0)=4,K{-n^6,-13-12*n+45*n^2-51*n^3} 4032512043434103 m001 (Shi(1)+Khinchin)/(-KomornikLoreti+Thue) 4032512053025912 h001 (-8*exp(-1)-1)/(-2*exp(2)+5) 4032512069395518 a001 2584/4870847*521^(9/13) 4032512072102512 a001 610/3010349*521^(11/13) 4032512076364049 r008 a(0)=4,K{-n^6,9-35*n+41*n^2-46*n^3} 4032512088672009 r008 a(0)=4,K{-n^6,25-59*n+49*n^2-46*n^3} 4032512092700242 r005 Im(z^2+c),c=-7/20+3/5*I,n=63 4032512108868296 a001 13/199*29^(20/37) 4032512110200986 a003 cos(Pi*6/107)*sin(Pi*9/67) 4032512111201452 k006 concat of cont frac of 4032512119858614 m001 (GAMMA(17/24)+Magata)/(Sarnak+TreeGrowth2nd) 4032512121143341 k006 concat of cont frac of 4032512121395400 r008 a(0)=4,K{-n^6,-1-35*n^3+3*n^2+2*n} 4032512128396188 m001 KhintchineHarmonic^2/Bloch*exp(Catalan)^2 4032512142479759 r008 a(0)=4,K{-n^6,-31-26*n^3-39*n^2+65*n} 4032512145036747 m001 StolarskyHarborth-HardHexagonsEntropy-exp(1) 4032512147734097 m001 Robbin^Sarnak/Tribonacci 4032512150415736 r002 41th iterates of z^2 + 4032512164849704 r002 61th iterates of z^2 + 4032512166632601 r008 a(0)=4,K{-n^6,-23+59*n-44*n^2-23*n^3} 4032512172560183 a001 2255/4250681*521^(9/13) 4032512172713953 r002 26th iterates of z^2 + 4032512182189721 r005 Re(z^2+c),c=-39/74+18/49*I,n=52 4032512182681008 a007 Real Root Of -866*x^4+675*x^3+970*x^2+32*x-192 4032512183047454 r002 47th iterates of z^2 + 4032512183347956 r005 Im(z^2+c),c=25/118+22/61*I,n=29 4032512184968363 r005 Im(z^2+c),c=-5/48+32/55*I,n=57 4032512187611705 a001 17711/33385282*521^(9/13) 4032512187883874 r005 Re(z^2+c),c=-103/110+9/62*I,n=40 4032512189807693 a001 15456/29134601*521^(9/13) 4032512190128083 a001 121393/228826127*521^(9/13) 4032512190174827 a001 377/710646*521^(9/13) 4032512190181647 a001 832040/1568397607*521^(9/13) 4032512190182642 a001 726103/1368706081*521^(9/13) 4032512190182787 a001 5702887/10749957122*521^(9/13) 4032512190182809 a001 4976784/9381251041*521^(9/13) 4032512190182812 a001 39088169/73681302247*521^(9/13) 4032512190182812 a001 34111385/64300051206*521^(9/13) 4032512190182812 a001 267914296/505019158607*521^(9/13) 4032512190182812 a001 233802911/440719107401*521^(9/13) 4032512190182812 a001 1836311903/3461452808002*521^(9/13) 4032512190182812 a001 1602508992/3020733700601*521^(9/13) 4032512190182812 a001 12586269025/23725150497407*521^(9/13) 4032512190182812 a001 7778742049/14662949395604*521^(9/13) 4032512190182812 a001 2971215073/5600748293801*521^(9/13) 4032512190182812 a001 1134903170/2139295485799*521^(9/13) 4032512190182812 a001 433494437/817138163596*521^(9/13) 4032512190182812 a001 165580141/312119004989*521^(9/13) 4032512190182812 a001 63245986/119218851371*521^(9/13) 4032512190182814 a001 24157817/45537549124*521^(9/13) 4032512190182822 a001 9227465/17393796001*521^(9/13) 4032512190182877 a001 3524578/6643838879*521^(9/13) 4032512190183257 a001 1346269/2537720636*521^(9/13) 4032512190185862 a001 514229/969323029*521^(9/13) 4032512190203717 a001 196418/370248451*521^(9/13) 4032512190326095 a001 75025/141422324*521^(9/13) 4032512191164888 a001 28657/54018521*521^(9/13) 4032512194315930 r008 a(0)=4,K{-n^6,17-25*n^3-18*n^2-5*n} 4032512195295583 a003 cos(Pi*8/113)-cos(Pi*15/49) 4032512196914057 a001 10946/20633239*521^(9/13) 4032512199007324 g006 Psi(1,1/8)+Psi(1,5/6)+Psi(1,1/3)-Psi(1,1/6) 4032512210996569 r008 a(0)=4,K{-n^6,39-26*n^3-4*n^2-40*n} 4032512213885446 r005 Im(z^2+c),c=35/114+5/19*I,n=43 4032512216082252 r005 Re(z^2+c),c=-16/31+9/47*I,n=10 4032512225890673 a007 Real Root Of -204*x^4+960*x^3+713*x^2+708*x-459 4032512230530070 a001 377/64079*521^(4/13) 4032512232210647 r005 Re(z^2+c),c=-25/42+2/15*I,n=13 4032512233720988 a001 2/987*13^(11/41) 4032512236319453 a001 4181/7881196*521^(9/13) 4032512239403887 r005 Re(z^2+c),c=-19/34+19/126*I,n=40 4032512244060452 m001 1/3*3^(1/2)*exp(-1/2*Pi)*ReciprocalFibonacci 4032512245782220 p001 sum(1/(404*n+123)/n/(5^n),n=1..infinity) 4032512246086877 a003 sin(Pi*10/73)*sin(Pi*43/103) 4032512246486083 r008 a(0)=4,K{-n^6,41-21*n^3-18*n^2-33*n} 4032512246535075 r008 a(0)=4,K{-n^6,11-16*n^3-48*n^2+22*n} 4032512249054367 r005 Re(z^2+c),c=-65/122+17/52*I,n=59 4032512250597796 m001 Pi-1/(polylog(4,1/2)-GAMMA(13/24)) 4032512255948836 r009 Re(z^3+c),c=-49/102+3/52*I,n=62 4032512259188480 a007 Real Root Of -68*x^4-7*x^3-123*x^2+572*x+252 4032512283607904 m001 Salem/exp(KhintchineLevy)^2/exp(1) 4032512285538781 a001 47/843*(1/2*5^(1/2)+1/2)^11*843^(8/15) 4032512290834401 r002 56th iterates of z^2 + 4032512293713596 r009 Re(z^3+c),c=-43/98+5/29*I,n=23 4032512304094990 m006 (3/4*exp(Pi)-3)/(2/3*exp(2*Pi)-1) 4032512306250775 a007 Real Root Of 726*x^4+197*x^3+871*x^2-211*x-233 4032512311416079 r005 Re(z^2+c),c=-11/20+13/56*I,n=38 4032512323265241 a007 Real Root Of 241*x^4+844*x^3-574*x^2-71*x+665 4032512327174431 r008 a(0)=4,K{-n^6,27+14*n-64*n^2-8*n^3} 4032512327751316 r002 36th iterates of z^2 + 4032512329800359 r008 a(0)=4,K{-n^6,77-16*n^3-15*n^2-77*n} 4032512340511856 r005 Im(z^2+c),c=-47/102+14/29*I,n=8 4032512341227989 m002 4*Pi^4+Cosh[Pi]^2/Pi^2 4032512346068084 a007 Real Root Of -121*x^4+213*x^3-597*x^2+834*x-250 4032512349644746 r005 Re(z^2+c),c=-55/98+1/45*I,n=19 4032512358211797 r008 a(0)=4,K{-n^6,91-15*n^3-11*n^2-96*n} 4032512387761784 a001 329/13201*199^(1/11) 4032512394731941 r008 a(0)=4,K{-n^6,67-7*n^3-47*n^2-44*n} 4032512396783088 m001 (Zeta(3)-Cahen)/(Robbin+Sarnak) 4032512402682272 l006 ln(82/4625) 4032512403799187 m005 (1/3*gamma-3/7)/(9/11*2^(1/2)-4/7) 4032512414028806 r002 29th iterates of z^2 + 4032512447740883 r002 43th iterates of z^2 + 4032512452713849 r002 8th iterates of z^2 + 4032512478403003 r005 Re(z^2+c),c=-63/118+1/44*I,n=9 4032512480188859 r005 Im(z^2+c),c=5/52+24/53*I,n=10 4032512483656060 m001 (FeigenbaumD+Mills)/(polylog(4,1/2)+Bloch) 4032512484481440 l006 ln(2261/3384) 4032512496722459 m005 (1/2*Pi-1)/(7/12*Zeta(3)+5/7) 4032512498031183 r005 Im(z^2+c),c=-135/118+17/58*I,n=16 4032512505057105 a001 987/1149851*521^(8/13) 4032512506408053 a001 1597/3010349*521^(9/13) 4032512509139122 r009 Im(z^3+c),c=-3/8+10/23*I,n=6 4032512510230209 r005 Im(z^2+c),c=17/58+17/61*I,n=55 4032512517460230 m001 (BesselJ(1,1)-Rabbit)^ln(2) 4032512532000791 r009 Im(z^3+c),c=-1/12+20/43*I,n=11 4032512534966121 r008 a(0)=4,K{-n^6,-62+34*n^3-60*n^2+58*n} 4032512542250288 a007 Real Root Of -697*x^4+626*x^3-837*x^2-180*x+123 4032512547683136 m005 (1/2*Zeta(3)-1/9)/(2/11*3^(1/2)+9/10) 4032512557315741 r005 Re(z^2+c),c=-13/23+1/20*I,n=22 4032512561813054 m001 HardHexagonsEntropy/BesselJ(0,1)/ZetaP(2) 4032512572231467 a001 5/15251*7^(5/47) 4032512573841061 r005 Re(z^2+c),c=-25/44+7/60*I,n=21 4032512585925345 r005 Im(z^2+c),c=-49/86+7/11*I,n=4 4032512610450779 a007 Real Root Of 199*x^4+599*x^3-796*x^2+256*x+634 4032512639089409 r009 Im(z^3+c),c=-37/106+23/58*I,n=37 4032512639611049 a007 Real Root Of 862*x^4+223*x^3-377*x^2-588*x+261 4032512644369053 r005 Re(z^2+c),c=-33/62+19/58*I,n=52 4032512663317635 a003 1/2+3^(1/2)+cos(1/24*Pi)+cos(1/5*Pi) 4032512664714398 m001 1/FeigenbaumKappa^2/ArtinRank2/exp(TwinPrimes) 4032512692305542 r009 Im(z^3+c),c=-53/118+29/51*I,n=16 4032512705834944 r009 Re(z^3+c),c=-49/102+3/52*I,n=55 4032512706617708 m001 BesselK(0,1)/(MertensB2^BesselI(0,1)) 4032512718914413 r005 Im(z^2+c),c=-59/52+15/59*I,n=36 4032512720917039 r002 38th iterates of z^2 + 4032512723527350 m008 (1/2*Pi^4+2/3)/(4*Pi^5+1/4) 4032512726648775 m001 Psi(1,1/3)^(ln(gamma)*TravellingSalesman) 4032512735648304 a001 2/514229*514229^(6/17) 4032512735650268 a001 2/9227465*1836311903^(6/17) 4032512735650278 a001 2/165580141*6557470319842^(6/17) 4032512741882575 a007 Real Root Of -97*x^4-385*x^3-190*x^2-681*x+747 4032512751357411 a001 48/90481*322^(3/4) 4032512751585469 a007 Real Root Of 215*x^4+878*x^3-218*x^2-919*x+561 4032512753315937 a007 Real Root Of -24*x^4-989*x^3-875*x^2-792*x+960 4032512758816605 r005 Im(z^2+c),c=-79/114+17/46*I,n=30 4032512763506869 r002 43th iterates of z^2 + 4032512766152679 r005 Im(z^2+c),c=23/62+4/37*I,n=12 4032512771760858 v002 sum(1/(2^n+(9/2*n^2+25/2*n-16)),n=1..infinity) 4032512775250042 r009 Re(z^3+c),c=-49/102+3/52*I,n=48 4032512778146910 m001 (polylog(4,1/2)+Trott)/(ln(Pi)-Zeta(1,-1)) 4032512786002553 m005 (1/2*Zeta(3)+5)/(-6/11+2/11*5^(1/2)) 4032512799039836 a007 Real Root Of 152*x^4+571*x^3-120*x^2+121*x-311 4032512799182542 a007 Real Root Of -588*x^4+832*x^3-92*x^2+595*x+325 4032512800846868 r005 Im(z^2+c),c=-53/98+30/49*I,n=64 4032512835404679 r005 Re(z^2+c),c=-45/86+23/59*I,n=57 4032512839811790 m001 Kolakoski-OneNinth^BesselK(0,1) 4032512842732996 r009 Re(z^3+c),c=-43/74+19/41*I,n=29 4032512847927940 m001 (3^(1/2)-gamma)/(-Landau+Magata) 4032512849752023 m001 (ErdosBorwein+Totient)/(sin(1/12*Pi)+Bloch) 4032512861570655 r002 60th iterates of z^2 + 4032512877528330 b008 5*(-1+ProductLog[11]) 4032512893462657 m001 (Zeta(3)-cos(1/12*Pi))/(exp(1/exp(1))-Thue) 4032512895874965 m001 Paris/ln(FeigenbaumDelta)/(2^(1/3))^2 4032512897857096 r005 Im(z^2+c),c=1/24+29/59*I,n=38 4032512913486963 r005 Re(z^2+c),c=-7/15+27/58*I,n=41 4032512916759616 a007 Real Root Of 537*x^4+255*x^3-447*x^2-933*x+418 4032512920225891 a001 228826127/610*144^(16/17) 4032512944439921 r005 Im(z^2+c),c=31/114+18/59*I,n=30 4032512957196998 r002 46th iterates of z^2 + 4032512969095577 r005 Re(z^2+c),c=-9/16+5/47*I,n=34 4032512973122906 r005 Im(z^2+c),c=1/118+21/41*I,n=34 4032512977261824 r005 Re(z^2+c),c=-69/122+1/18*I,n=25 4032512996646146 r005 Re(z^2+c),c=-32/25+3/58*I,n=22 4032513000382743 l006 ln(5728/8573) 4032513018220260 r008 a(0)=4,K{-n^6,6-53*n^3+61*n^2-45*n} 4032513031057353 r008 a(0)=4,K{-n^6,-6-48*n^3+40*n^2-17*n} 4032513036036629 r009 Im(z^3+c),c=-37/106+23/58*I,n=40 4032513041486304 r005 Im(z^2+c),c=23/78+7/26*I,n=18 4032513044839514 m005 (1/3*2^(1/2)+1/5)/(3/7*exp(1)+1/2) 4032513056629774 r008 a(0)=4,K{-n^6,-14-41*n^3+15*n^2+9*n} 4032513062892502 r008 a(0)=4,K{-n^6,24-58*n+49*n^2-46*n^3} 4032513070453346 b008 3+6^(1/56) 4032513070897419 r008 a(0)=4,K{-n^6,28-62*n+48*n^2-45*n^3} 4032513075892154 m001 arctan(1/3)/Ei(1)/BesselK(0,1) 4032513078942805 r005 Re(z^2+c),c=-3/5+1/106*I,n=14 4032513084087312 r008 a(0)=4,K{-n^6,8-20*n+20*n^2-39*n^3} 4032513097058088 a001 1292/51841*199^(1/11) 4032513099378020 a007 Real Root Of -743*x^4+209*x^3-960*x^2+351*x+331 4032513106523415 r008 a(0)=4,K{-n^6,-2+7*n-3*n^2-33*n^3} 4032513106537967 r008 a(0)=4,K{-n^6,-20-30*n^3-21*n^2+40*n} 4032513114414415 r005 Im(z^2+c),c=1/114+28/55*I,n=14 4032513123377345 a007 Real Root Of 211*x^4+720*x^3-399*x^2+761*x+976 4032513134794705 m001 1/5*5^(1/2)*Si(Pi)/gamma(3) 4032513136199345 a007 Real Root Of 97*x^4+202*x^3-668*x^2+215*x-674 4032513139471924 r005 Im(z^2+c),c=-2/17+50/57*I,n=24 4032513146755472 r002 64th iterates of z^2 + 4032513151907942 r009 Im(z^3+c),c=-37/106+23/58*I,n=43 4032513153805111 m005 (1/3*3^(1/2)+1/7)/(4/5*Pi-8/11) 4032513157569869 r008 a(0)=4,K{-n^6,16-27*n^3-12*n^2-8*n} 4032513159560076 r008 a(0)=4,K{-n^6,42-31*n^3+13*n^2-55*n} 4032513181876864 m001 gamma(2)^ln(Pi)/(gamma(2)^ZetaP(2)) 4032513182397912 r008 a(0)=4,K{-n^6,64-31*n^3+24*n^2-88*n} 4032513185160204 r009 Im(z^3+c),c=-37/106+23/58*I,n=46 4032513186722695 r008 a(0)=4,K{-n^6,38-26*n^3-4*n^2-39*n} 4032513190040205 r005 Im(z^2+c),c=-57/122+12/23*I,n=46 4032513194530375 r009 Im(z^3+c),c=-37/106+23/58*I,n=49 4032513197117864 r009 Im(z^3+c),c=-37/106+23/58*I,n=52 4032513197623889 r009 Im(z^3+c),c=-37/106+23/58*I,n=50 4032513197815826 r009 Im(z^3+c),c=-37/106+23/58*I,n=55 4032513197821909 r009 Im(z^3+c),c=-37/106+23/58*I,n=53 4032513197843112 r009 Im(z^3+c),c=-37/106+23/58*I,n=47 4032513197957816 r009 Im(z^3+c),c=-37/106+23/58*I,n=56 4032513197998817 r009 Im(z^3+c),c=-37/106+23/58*I,n=58 4032513198020392 r009 Im(z^3+c),c=-37/106+23/58*I,n=59 4032513198045069 r009 Im(z^3+c),c=-37/106+23/58*I,n=61 4032513198045262 r009 Im(z^3+c),c=-37/106+23/58*I,n=62 4032513198056180 r009 Im(z^3+c),c=-37/106+23/58*I,n=64 4032513198074008 r009 Im(z^3+c),c=-37/106+23/58*I,n=63 4032513198109940 r009 Im(z^3+c),c=-37/106+23/58*I,n=60 4032513198229988 r009 Im(z^3+c),c=-37/106+23/58*I,n=57 4032513198624444 r009 Im(z^3+c),c=-37/106+23/58*I,n=54 4032513199898020 r009 Im(z^3+c),c=-37/106+23/58*I,n=51 4032513200543024 a001 2255/90481*199^(1/11) 4032513201555781 r009 Im(z^3+c),c=-37/106+23/58*I,n=44 4032513203049119 r008 a(0)=4,K{-n^6,-14+30*n^3-24*n^2-22*n} 4032513203932153 r009 Im(z^3+c),c=-37/106+23/58*I,n=48 4032513205167649 a001 233/199*322^(19/31) 4032513209830446 r005 Im(z^2+c),c=1/13+8/17*I,n=25 4032513212154839 a001 2584/3010349*521^(8/13) 4032513214516083 a007 Real Root Of -253*x^4+875*x^3-714*x^2+870*x+531 4032513214859609 a001 305/930249*521^(10/13) 4032513215641272 a001 17711/710647*199^(1/11) 4032513216436872 r009 Im(z^3+c),c=-37/106+23/58*I,n=45 4032513217844077 a001 2576/103361*199^(1/11) 4032513218165462 a001 121393/4870847*199^(1/11) 4032513218212352 a001 105937/4250681*199^(1/11) 4032513218219193 a001 416020/16692641*199^(1/11) 4032513218220191 a001 726103/29134601*199^(1/11) 4032513218220336 a001 5702887/228826127*199^(1/11) 4032513218220358 a001 829464/33281921*199^(1/11) 4032513218220361 a001 39088169/1568397607*199^(1/11) 4032513218220361 a001 34111385/1368706081*199^(1/11) 4032513218220361 a001 133957148/5374978561*199^(1/11) 4032513218220361 a001 233802911/9381251041*199^(1/11) 4032513218220361 a001 1836311903/73681302247*199^(1/11) 4032513218220361 a001 267084832/10716675201*199^(1/11) 4032513218220361 a001 12586269025/505019158607*199^(1/11) 4032513218220361 a001 10983760033/440719107401*199^(1/11) 4032513218220361 a001 43133785636/1730726404001*199^(1/11) 4032513218220361 a001 75283811239/3020733700601*199^(1/11) 4032513218220361 a001 182717648081/7331474697802*199^(1/11) 4032513218220361 a001 139583862445/5600748293801*199^(1/11) 4032513218220361 a001 53316291173/2139295485799*199^(1/11) 4032513218220361 a001 10182505537/408569081798*199^(1/11) 4032513218220361 a001 7778742049/312119004989*199^(1/11) 4032513218220361 a001 2971215073/119218851371*199^(1/11) 4032513218220361 a001 567451585/22768774562*199^(1/11) 4032513218220361 a001 433494437/17393796001*199^(1/11) 4032513218220361 a001 165580141/6643838879*199^(1/11) 4032513218220361 a001 31622993/1268860318*199^(1/11) 4032513218220363 a001 24157817/969323029*199^(1/11) 4032513218220371 a001 9227465/370248451*199^(1/11) 4032513218220426 a001 1762289/70711162*199^(1/11) 4032513218220808 a001 1346269/54018521*199^(1/11) 4032513218223421 a001 514229/20633239*199^(1/11) 4032513218241331 a001 98209/3940598*199^(1/11) 4032513218364089 a001 75025/3010349*199^(1/11) 4032513218503339 m001 exp(1/Pi)*FeigenbaumC/GolombDickman 4032513219205486 a001 28657/1149851*199^(1/11) 4032513223879409 r009 Im(z^3+c),c=-37/106+23/58*I,n=41 4032513224972503 a001 5473/219602*199^(1/11) 4032513229721196 r008 a(0)=4,K{-n^6,52-22*n^3-9*n^2-52*n} 4032513230834407 m001 1/GAMMA(11/24)^2*exp(Robbin)*log(1+sqrt(2))^2 4032513233855462 r002 31th iterates of z^2 + 4032513234019836 a007 Real Root Of -177*x^4-638*x^3+241*x^2-294*x-137 4032513234536269 r005 Im(z^2+c),c=5/27+5/13*I,n=63 4032513254217530 r009 Im(z^3+c),c=-37/106+23/58*I,n=42 4032513258452980 r002 10th iterates of z^2 + 4032513264500232 a001 4181/167761*199^(1/11) 4032513279887853 r005 Re(z^2+c),c=-35/62+1/15*I,n=45 4032513284470018 r005 Re(z^2+c),c=-33/70+25/52*I,n=61 4032513287476096 r009 Re(z^3+c),c=-8/23+3/62*I,n=8 4032513288537062 r005 Im(z^2+c),c=11/82+27/64*I,n=21 4032513291874925 m005 (1/2*exp(1)+2/5)/(-71/132+1/22*5^(1/2)) 4032513304092540 r002 16th iterates of z^2 + 4032513307073804 r008 a(0)=4,K{-n^6,76-16*n^3-15*n^2-76*n} 4032513307719545 r002 33th iterates of z^2 + 4032513315319008 a001 6765/7881196*521^(8/13) 4032513318065774 r002 15th iterates of z^2 + 4032513318370746 a005 (1/cos(29/213*Pi))^405 4032513321138168 a007 Real Root Of 225*x^4+964*x^3+158*x^2-330*x-183 4032513328925247 r002 6th iterates of z^2 + 4032513330370458 a001 17711/20633239*521^(8/13) 4032513330928864 r009 Im(z^3+c),c=-37/106+23/58*I,n=38 4032513332566435 a001 46368/54018521*521^(8/13) 4032513332886823 a001 233/271444*521^(8/13) 4032513332933568 a001 317811/370248451*521^(8/13) 4032513332940387 a001 832040/969323029*521^(8/13) 4032513332941382 a001 2178309/2537720636*521^(8/13) 4032513332941528 a001 5702887/6643838879*521^(8/13) 4032513332941549 a001 14930352/17393796001*521^(8/13) 4032513332941552 a001 39088169/45537549124*521^(8/13) 4032513332941552 a001 102334155/119218851371*521^(8/13) 4032513332941552 a001 267914296/312119004989*521^(8/13) 4032513332941552 a001 701408733/817138163596*521^(8/13) 4032513332941552 a001 1836311903/2139295485799*521^(8/13) 4032513332941552 a001 4807526976/5600748293801*521^(8/13) 4032513332941552 a001 12586269025/14662949395604*521^(8/13) 4032513332941552 a001 20365011074/23725150497407*521^(8/13) 4032513332941552 a001 7778742049/9062201101803*521^(8/13) 4032513332941552 a001 2971215073/3461452808002*521^(8/13) 4032513332941552 a001 1134903170/1322157322203*521^(8/13) 4032513332941552 a001 433494437/505019158607*521^(8/13) 4032513332941552 a001 165580141/192900153618*521^(8/13) 4032513332941553 a001 63245986/73681302247*521^(8/13) 4032513332941554 a001 24157817/28143753123*521^(8/13) 4032513332941562 a001 9227465/10749957122*521^(8/13) 4032513332941617 a001 3524578/4106118243*521^(8/13) 4032513332941997 a001 1346269/1568397607*521^(8/13) 4032513332944602 a001 514229/599074578*521^(8/13) 4032513332962457 a001 196418/228826127*521^(8/13) 4032513333084835 a001 75025/87403803*521^(8/13) 4032513333923623 a001 28657/33385282*521^(8/13) 4032513336827162 l006 ln(3467/5189) 4032513336827162 p004 log(5189/3467) 4032513339672765 a001 10946/12752043*521^(8/13) 4032513352718477 m001 (1/3)^(exp(1/exp(1))/MadelungNaCl) 4032513355253603 r008 a(0)=4,K{-n^6,-8-4*n^3+27*n^2-49*n} 4032513357635593 l006 ln(9502/9893) 4032513359833646 r005 Re(z^2+c),c=-17/30+2/25*I,n=23 4032513364774071 r009 Im(z^3+c),c=-37/106+23/58*I,n=39 4032513369579907 r002 22th iterates of z^2 + 4032513369735644 a001 377/39603*521^(3/13) 4032513370005039 a007 Real Root Of 884*x^4-72*x^3-669*x^2-520*x-129 4032513371037344 r005 Re(z^2+c),c=-9/16+10/103*I,n=30 4032513373366951 a007 Real Root Of -129*x^4+202*x^3-717*x^2+969*x+524 4032513376081852 r008 a(0)=4,K{-n^6,68-7*n^3-46*n^2-46*n} 4032513377906826 m005 (1/3*Pi-1/10)/(11/12*exp(1)-1/7) 4032513379077971 a001 4181/4870847*521^(8/13) 4032513382676877 r005 Re(z^2+c),c=-41/78+14/43*I,n=24 4032513403457557 a001 4/13*365435296162^(7/8) 4032513409237427 r005 Re(z^2+c),c=-49/94+14/51*I,n=17 4032513423731353 m001 1/gamma^2/TreeGrowth2nd/exp(sqrt(2))^2 4032513430899141 a005 (1/cos(13/166*Pi))^874 4032513431325802 r009 Im(z^3+c),c=-11/27+40/63*I,n=14 4032513433809415 r005 Re(z^2+c),c=-59/110+11/34*I,n=39 4032513436244902 r005 Re(z^2+c),c=-18/31+1/8*I,n=17 4032513437680107 r002 22th iterates of z^2 + 4032513438223934 r005 Im(z^2+c),c=17/50+31/50*I,n=8 4032513439436503 m001 (CareFree-PrimesInBinary)/(Rabbit+ZetaQ(3)) 4032513457999629 m001 (Ei(1)-Mills)/(MinimumGamma-ZetaQ(4)) 4032513470444837 r008 a(0)=4,K{-n^6,40+38*n^3-46*n^2-61*n} 4032513471536660 m001 (cos(1)+gamma(3))/(-MertensB3+Porter) 4032513473792812 m001 1/(3^(1/3))*FeigenbaumB^2*exp(GAMMA(5/12)) 4032513527972870 r002 3th iterates of z^2 + 4032513531694979 r009 Im(z^3+c),c=-33/82+17/46*I,n=25 4032513535427312 a001 1597/64079*199^(1/11) 4032513547463146 h001 (1/10*exp(2)+1/5)/(5/9*exp(1)+9/11) 4032513567405802 m004 (-115*Sqrt[5]*Pi)/2+Sin[Sqrt[5]*Pi] 4032513568644399 r005 Re(z^2+c),c=-69/122+1/32*I,n=39 4032513574928662 m005 (1/2*3^(1/2)-1/5)/(-31/12+5/12*5^(1/2)) 4032513592099444 r005 Im(z^2+c),c=-4/3+7/251*I,n=32 4032513596826950 r002 34th iterates of z^2 + 4032513598211197 r005 Im(z^2+c),c=10/27+3/55*I,n=5 4032513606095861 r005 Im(z^2+c),c=-5/48+25/44*I,n=25 4032513606798578 m005 (-19/36+1/4*5^(1/2))/(1/7*gamma-6/7) 4032513615834902 s002 sum(A109275[n]/(n^3*exp(n)+1),n=1..infinity) 4032513635127480 r009 Im(z^3+c),c=-25/94+33/49*I,n=7 4032513640127270 r005 Re(z^2+c),c=-9/17+19/54*I,n=38 4032513646933034 m001 GAMMA(1/12)^2*KhintchineHarmonic/ln(sqrt(Pi)) 4032513647804900 a001 141/101521*521^(7/13) 4032513649165273 a001 1597/1860498*521^(8/13) 4032513663537207 r009 Im(z^3+c),c=-43/106+18/49*I,n=16 4032513669160321 r002 42th iterates of z^2 + 4032513672751628 a007 Real Root Of 890*x^4+436*x^3+465*x^2-874*x-423 4032513672904256 a007 Real Root Of -536*x^4+212*x^3+667*x^2+126*x-159 4032513674803708 r009 Im(z^3+c),c=-37/106+23/58*I,n=36 4032513682872399 r002 53th iterates of z^2 + 4032513684552099 p004 log(32303/32173) 4032513694856349 r009 Im(z^3+c),c=-7/52+47/63*I,n=28 4032513709949235 r005 Re(z^2+c),c=-13/62+29/45*I,n=17 4032513716188353 m001 Pi*2^(1/2)/GAMMA(3/4)*Bloch*CopelandErdos 4032513725082302 r002 23th iterates of z^2 + 4032513749228949 l006 ln(4673/6994) 4032513753980307 m001 Paris/Magata*exp(log(2+sqrt(3)))^2 4032513762531764 l006 ln(159/8968) 4032513763435168 r002 16th iterates of z^2 + 4032513766402027 m005 (1/5*Pi+1)/(1/6*gamma-1/2) 4032513766658500 b008 5*Sqrt[Tan[1+E]] 4032513766993675 p003 LerchPhi(1/256,1,470/189) 4032513769311609 r009 Im(z^3+c),c=-1/86+15/32*I,n=17 4032513792962953 r009 Im(z^3+c),c=-37/106+23/58*I,n=35 4032513802401385 r009 Im(z^3+c),c=-35/106+17/42*I,n=26 4032513819742968 r005 Re(z^2+c),c=-33/58+13/61*I,n=20 4032513837069301 m001 (Trott2nd-Thue)/(BesselI(1,2)+Bloch) 4032513842754468 r005 Re(z^2+c),c=-69/122+1/33*I,n=44 4032513845666412 m001 exp(Riemann1stZero)/Rabbit*(3^(1/3))^2 4032513848674041 a008 Real Root of x^4-11*x^2-17*x-17 4032513853626380 r002 17th iterates of z^2 + 4032513857019610 a007 Real Root Of -318*x^4+977*x^3+60*x^2+242*x-163 4032513859022024 a007 Real Root Of 252*x^4+840*x^3-611*x^2+370*x-126 4032513869936682 r009 Im(z^3+c),c=-8/17+20/61*I,n=29 4032513870394076 m001 (CareFree+OneNinth)/(GAMMA(13/24)+Artin) 4032513875440129 m001 (Backhouse-CareFree)/(KomornikLoreti+ZetaP(4)) 4032513875497736 m004 5-(5*Sqrt[5]*Cos[Sqrt[5]*Pi]^2)/(2*Pi) 4032513877874702 q001 1017/2522 4032513889978973 r005 Re(z^2+c),c=-53/94+4/49*I,n=50 4032513890122542 r002 20th iterates of z^2 + 4032513894571427 r002 14th iterates of z^2 + 4032513895221434 m001 ln(Conway)^2/Cahen^2/BesselK(0,1) 4032513904692889 r005 Im(z^2+c),c=5/66+22/47*I,n=62 4032513906142783 m001 GAMMA(11/24)^2*Trott^2*ln(GAMMA(2/3))^2 4032513913937832 r002 30th iterates of z^2 + 4032513918343376 m001 (Zeta(3)+OrthogonalArrays)/MasserGramain 4032513924690860 r008 a(0)=4,K{-n^6,-53+23*n+62*n^2-63*n^3} 4032513929478850 a001 7/5702887*53316291173^(8/19) 4032513929533544 a001 7/121393*5702887^(8/19) 4032513931944228 a003 sin(Pi*12/103)-sin(Pi*19/69) 4032513933886947 r008 a(0)=4,K{-n^6,-49+21*n+58*n^2-61*n^3} 4032513934827203 m001 Catalan^Mills*ZetaP(2) 4032513941199548 m001 ErdosBorwein-MinimumGamma^Tribonacci 4032513951155229 a003 cos(Pi*23/63)*sin(Pi*52/119) 4032513964112192 r005 Im(z^2+c),c=1/66+30/59*I,n=56 4032513967796666 r005 Re(z^2+c),c=-33/64+15/49*I,n=10 4032513978293462 a007 Real Root Of -115*x^4-293*x^3+914*x^2+977*x+273 4032513988761628 m001 (ZetaP(3)+ZetaQ(3))/(Ei(1,1)+CopelandErdos) 4032513992433057 l006 ln(5879/8799) 4032513995888538 r005 Re(z^2+c),c=45/118+9/38*I,n=18 4032513999419176 r008 a(0)=4,K{-n^6,5-53*n^3+61*n^2-44*n} 4032514018078898 m001 (2^(1/2))^BesselI(0,2)*Conway^BesselI(0,2) 4032514020309729 r005 Im(z^2+c),c=-11/17+20/59*I,n=38 4032514021346381 r008 a(0)=4,K{-n^6,-37-41*n^3+4*n^2+43*n} 4032514028935720 r008 a(0)=4,K{-n^6,-3-16*n+33*n^2-45*n^3} 4032514029726063 r005 Re(z^2+c),c=-19/34+4/19*I,n=24 4032514032961240 a007 Real Root Of 647*x^4+563*x^3+998*x^2-899*x-505 4032514035150847 m001 GaussKuzminWirsing*cos(Pi/12)*exp(1/Pi) 4032514035150847 m001 cos(1/12*Pi)*exp(1/Pi)*GaussKuzminWirsing 4032514044003717 a007 Real Root Of -768*x^4+845*x^3-325*x^2+564*x+356 4032514048708371 m001 (3^(1/3))-Zeta(3)^exp(-1/2*Pi) 4032514048708371 m001 3^(1/3)-Zeta(3)^exp(-1/2*Pi) 4032514057487104 r005 Re(z^2+c),c=-13/24+5/18*I,n=44 4032514060182507 m001 PrimesInBinary^gamma(2)/Riemann3rdZero 4032514062683957 r008 a(0)=4,K{-n^6,21-46*n+36*n^2-42*n^3} 4032514067928748 h001 (4/7*exp(2)+1/6)/(1/11*exp(2)+5/12) 4032514080812641 r008 a(0)=4,K{-n^6,-48+12*n-2*n^2+9*n^3} 4032514088517539 r009 Re(z^3+c),c=-41/98+13/49*I,n=2 4032514088779240 r002 4th iterates of z^2 + 4032514088795351 r008 a(0)=4,K{-n^6,-21-30*n^3-21*n^2+41*n} 4032514100432663 m005 (17/66+1/6*5^(1/2))/(4/9*Pi+1/6) 4032514101560045 r008 a(0)=4,K{-n^6,5-32*n^3-2*n^2-2*n} 4032514116232577 m001 Kolakoski/FransenRobinson^2/exp(Catalan) 4032514123339822 r009 Re(z^3+c),c=-27/52+4/27*I,n=26 4032514126461248 r008 a(0)=4,K{-n^6,-23+58*n-43*n^2-23*n^3} 4032514131305323 b008 BesselY[0,7*Pi]/3 4032514146558157 a007 Real Root Of 710*x^4+74*x^3+386*x^2-772*x-388 4032514153517256 m001 1/2*(2^(1/3)*FransenRobinson+cosh(1))*2^(2/3) 4032514155772525 r002 31th iterates of z^2 + 4032514159978782 m001 exp(Zeta(1,2))/Paris^2*Zeta(9) 4032514169873594 r005 Re(z^2+c),c=-29/74+32/55*I,n=21 4032514171584549 m001 sin(1/12*Pi)+Otter^GAMMA(3/4) 4032514174652080 r005 Im(z^2+c),c=-1/78+28/55*I,n=18 4032514178670365 g007 Psi(2,10/11)+Psi(2,4/9)-14*Zeta(3)-Psi(2,8/9) 4032514180285595 r002 34th iterates of z^2 + 4032514201656459 m002 4*Coth[Pi]+(2*Csch[Pi])/Pi^2 4032514207117933 r005 Re(z^2+c),c=-59/106+4/23*I,n=56 4032514213530994 r008 a(0)=4,K{-n^6,51-22*n^3-9*n^2-51*n} 4032514232685244 r008 a(0)=4,K{-n^6,-8+36*n^3-39*n^2-19*n} 4032514236246078 m003 -1/2+(33*Sqrt[5])/64-Sin[1/2+Sqrt[5]/2]/4 4032514243659212 r005 Im(z^2+c),c=-47/40+1/19*I,n=40 4032514251145980 r008 a(0)=4,K{-n^6,45-16*n^3-30*n^2-30*n} 4032514252742204 m005 (1/2*gamma-3)/(1/8*3^(1/2)-8/9) 4032514258478537 m001 (Champernowne-Trott)/(Zeta(3)+BesselI(1,2)) 4032514266584008 p004 log(12409/8291) 4032514270282646 r005 Im(z^2+c),c=5/56+21/44*I,n=18 4032514286430559 m005 (1/3*gamma+1/8)/(1/9*Catalan-8/9) 4032514298423359 a007 Real Root Of 238*x^4+941*x^3+211*x^2+918*x-958 4032514310265923 m005 (1/2*2^(1/2)-5/9)/(7/9*Catalan-3/4) 4032514315670265 p001 sum((-1)^n/(493*n+486)/n/(25^n),n=1..infinity) 4032514327534938 p003 LerchPhi(1/2,4,464/201) 4032514333837057 a001 2/182717648081*55^(9/10) 4032514347142788 r005 Im(z^2+c),c=1/86+45/53*I,n=13 4032514354912259 a001 1292/930249*521^(7/13) 4032514357622855 a001 610/1149851*521^(9/13) 4032514396045280 r005 Im(z^2+c),c=-1/44+14/27*I,n=21 4032514396662470 h001 (1/5*exp(1)+4/7)/(5/6*exp(1)+1/2) 4032514410747837 a007 Real Root Of 179*x^4+893*x^3+792*x^2+492*x+330 4032514426574950 r005 Re(z^2+c),c=-17/30+53/115*I,n=46 4032514438278051 a007 Real Root Of 52*x^4+358*x^3+805*x^2-777*x+30 4032514439364231 r005 Im(z^2+c),c=-55/94+7/11*I,n=10 4032514448647472 r005 Re(z^2+c),c=-67/118+3/37*I,n=17 4032514458077833 a001 6765/4870847*521^(7/13) 4032514461301658 m001 Artin^Tribonacci/(Artin^Catalan) 4032514472189488 m001 (PrimesInBinary-Salem)/(FeigenbaumD-Kolakoski) 4032514473129487 a001 17711/12752043*521^(7/13) 4032514475325494 a001 144/103681*521^(7/13) 4032514475645887 a001 121393/87403803*521^(7/13) 4032514475692632 a001 317811/228826127*521^(7/13) 4032514475699452 a001 416020/299537289*521^(7/13) 4032514475700447 a001 311187/224056801*521^(7/13) 4032514475700592 a001 5702887/4106118243*521^(7/13) 4032514475700613 a001 7465176/5374978561*521^(7/13) 4032514475700616 a001 39088169/28143753123*521^(7/13) 4032514475700616 a001 14619165/10525900321*521^(7/13) 4032514475700617 a001 133957148/96450076809*521^(7/13) 4032514475700617 a001 701408733/505019158607*521^(7/13) 4032514475700617 a001 1836311903/1322157322203*521^(7/13) 4032514475700617 a001 14930208/10749853441*521^(7/13) 4032514475700617 a001 12586269025/9062201101803*521^(7/13) 4032514475700617 a001 32951280099/23725150497407*521^(7/13) 4032514475700617 a001 10182505537/7331474697802*521^(7/13) 4032514475700617 a001 7778742049/5600748293801*521^(7/13) 4032514475700617 a001 2971215073/2139295485799*521^(7/13) 4032514475700617 a001 567451585/408569081798*521^(7/13) 4032514475700617 a001 433494437/312119004989*521^(7/13) 4032514475700617 a001 165580141/119218851371*521^(7/13) 4032514475700617 a001 31622993/22768774562*521^(7/13) 4032514475700618 a001 24157817/17393796001*521^(7/13) 4032514475700626 a001 9227465/6643838879*521^(7/13) 4032514475700681 a001 1762289/1268860318*521^(7/13) 4032514475701062 a001 1346269/969323029*521^(7/13) 4032514475703667 a001 514229/370248451*521^(7/13) 4032514475721521 a001 98209/70711162*521^(7/13) 4032514475843901 a001 75025/54018521*521^(7/13) 4032514476682701 a001 28657/20633239*521^(7/13) 4032514479090087 s002 sum(A078950[n]/((2^n+1)/n),n=1..infinity) 4032514482431921 a001 5473/3940598*521^(7/13) 4032514491365954 p001 sum(1/(305*n+258)/(12^n),n=0..infinity) 4032514491887920 r009 Im(z^3+c),c=-37/106+23/58*I,n=33 4032514492062146 a001 47/2207*(1/2*5^(1/2)+1/2)^13*2207^(7/15) 4032514495693389 m001 (ArtinRank2+Bloch)/(2^(1/3)+GAMMA(13/24)) 4032514496186855 r002 56th iterates of z^2 + 4032514517266919 r002 34th iterates of z^2 + 4032514521797062 a001 13/844*521^(2/13) 4032514521837664 a001 4181/3010349*521^(7/13) 4032514522002808 r002 34th iterates of z^2 + 4032514525693249 r009 Im(z^3+c),c=-1/11+13/28*I,n=15 4032514534449442 a001 1/5473*34^(11/49) 4032514541128869 r005 Re(z^2+c),c=-43/78+4/19*I,n=34 4032514546763746 g002 Psi(11/12)+Psi(5/9)+Psi(2/5)-Psi(4/5) 4032514575006830 m001 (Salem-Stephens)/(Pi-(1+3^(1/2))^(1/2)) 4032514578957508 r009 Im(z^3+c),c=-1/11+13/28*I,n=20 4032514585517084 r005 Re(z^2+c),c=-71/126+5/57*I,n=49 4032514595336467 m001 (Zeta(3)-Mills)/(Riemann3rdZero+Thue) 4032514619647305 r002 34th iterates of z^2 + 4032514622666636 r009 Im(z^3+c),c=-47/126+27/61*I,n=6 4032514625964886 p004 log(26849/17939) 4032514629486480 m005 (5/36+1/4*5^(1/2))/(3/5*gamma-4/11) 4032514633145474 a004 Fibonacci(14)*Lucas(15)/(1/2+sqrt(5)/2)^34 4032514635795541 a001 123/377*377^(1/28) 4032514637874984 m001 GolombDickman^ZetaQ(3)-Lehmer 4032514646230458 a007 Real Root Of 2*x^4+805*x^3-604*x^2+832*x+782 4032514656602506 r009 Re(z^3+c),c=-57/122+13/64*I,n=29 4032514658692258 r009 Im(z^3+c),c=-8/17+7/50*I,n=4 4032514658899509 a005 (1/cos(13/187*Pi))^58 4032514678549571 r009 Re(z^3+c),c=-17/36+11/52*I,n=12 4032514721195804 a007 Real Root Of -733*x^4+914*x^3-495*x^2-741*x-139 4032514724036060 a007 Real Root Of -904*x^4-934*x^3-666*x^2+382*x+225 4032514738633224 s002 sum(A235990[n]/(n*pi^n+1),n=1..infinity) 4032514740707117 r005 Im(z^2+c),c=1/19+15/31*I,n=44 4032514745282840 a007 Real Root Of 124*x^4+450*x^3-313*x^2-461*x-50 4032514747954549 m007 (-5/6*gamma-5/2*ln(2)+5/12*Pi-4/5)/(1-gamma) 4032514749047689 m001 ZetaQ(3)^FeigenbaumDelta*ZetaQ(3)^GAMMA(2/3) 4032514749397846 r009 Im(z^3+c),c=-35/106+17/42*I,n=22 4032514768586488 r005 Im(z^2+c),c=-4/27+3/59*I,n=5 4032514771438278 a001 599074578/1597*144^(16/17) 4032514773227653 a005 (1/sin(83/203*Pi))^366 4032514777641467 a001 377/7881196*1364^(14/15) 4032514790592943 a001 987/439204*521^(6/13) 4032514791928641 a001 1597/1149851*521^(7/13) 4032514794616573 r002 32th iterates of z^2 + 4032514794815761 r005 Re(z^2+c),c=-19/34+39/121*I,n=25 4032514827541504 r005 Im(z^2+c),c=-7/6+55/236*I,n=48 4032514830419784 r009 Im(z^3+c),c=-47/126+23/50*I,n=6 4032514850478225 r002 11th iterates of z^2 + 4032514866221597 m005 (1/2*Zeta(3)-3/11)/(1/9*gamma+3/4) 4032514877699697 a001 1364/1346269*4181^(28/39) 4032514887512516 r005 Im(z^2+c),c=-5/74+33/59*I,n=62 4032514912613976 r008 a(0)=4,K{-n^6,-54+24*n+62*n^2-63*n^3} 4032514922137166 a001 377/4870847*1364^(13/15) 4032514925324621 v002 sum(1/(3^n+(25*n^2-54*n+84)),n=1..infinity) 4032514927397287 r009 Re(z^3+c),c=-33/64+19/64*I,n=20 4032514930275973 r008 a(0)=4,K{-n^6,-42+12*n+59*n^2-60*n^3} 4032514931202553 a001 47/39603*(1/2*5^(1/2)+1/2)^25*39603^(1/15) 4032514933667722 a001 47/64079*(1/2*5^(1/2)+1/2)^6*64079^(14/15) 4032514933773658 a001 47*(1/2*5^(1/2)+1/2)^3*39603^(1/15) 4032514934798505 l006 ln(1206/1805) 4032514939291107 r002 47th iterates of z^2 + 4032514939753798 a001 47/9349*(1/2*5^(1/2)+1/2)^7*9349^(13/15) 4032514945123062 r008 a(0)=4,K{-n^6,-30-58*n^3+59*n^2-2*n} 4032514957576328 s001 sum(exp(-Pi/3)^n*A277520[n],n=1..infinity) 4032514962247254 m005 (1/3*2^(1/2)+1/6)/(1/8*Catalan-3/11) 4032514962871333 a001 7/2584*610^(8/19) 4032514970049007 r008 a(0)=4,K{-n^6,2-57*n^3+72*n^2-48*n} 4032514971416793 r008 a(0)=4,K{-n^6,-8-55*n^3+61*n^2-29*n} 4032514981577167 a007 Real Root Of 215*x^4+802*x^3-169*x^2+416*x+164 4032514983488353 r005 Re(z^2+c),c=-9/17+7/20*I,n=54 4032514998812527 r002 50th iterates of z^2 + 4032515002844140 r008 a(0)=4,K{-n^6,-24+15*n+23*n^2-45*n^3} 4032515006191592 r005 Im(z^2+c),c=1/58+28/45*I,n=45 4032515010489495 m001 (MertensB3+Niven)/(Si(Pi)-ln(3)) 4032515012992519 m001 1/LambertW(1)*KhintchineLevy^2/ln(cos(1)) 4032515017928924 a001 47/3571*(1/2*5^(1/2)+1/2)^9*3571^(11/15) 4032515018382708 m001 ln(Porter)*Paris/Zeta(1,2) 4032515027549103 r008 a(0)=4,K{-n^6,-46-36*n^3-15*n^2+66*n} 4032515032626791 r009 Re(z^3+c),c=-2/31+9/17*I,n=12 4032515035569802 r008 a(0)=4,K{-n^6,24-59*n+50*n^2-46*n^3} 4032515041526667 a001 1568397607/4181*144^(16/17) 4032515043980252 r005 Im(z^2+c),c=2/13+16/39*I,n=53 4032515050002364 m001 2*gamma(2)*Pi/GAMMA(5/6)*RenyiParking 4032515050566221 r008 a(0)=4,K{-n^6,-36-33*n^3-19*n^2+57*n} 4032515051317244 r009 Im(z^3+c),c=-47/118+18/41*I,n=6 4032515066633720 a001 377/3010349*1364^(4/5) 4032515080932035 a001 4106118243/10946*144^(16/17) 4032515086681201 a001 10749957122/28657*144^(16/17) 4032515087519993 a001 28143753123/75025*144^(16/17) 4032515087642371 a001 73681302247/196418*144^(16/17) 4032515087660226 a001 192900153618/514229*144^(16/17) 4032515087662831 a001 505019158607/1346269*144^(16/17) 4032515087663211 a001 1322157322203/3524578*144^(16/17) 4032515087663266 a001 3461452808002/9227465*144^(16/17) 4032515087663274 a001 9062201101803/24157817*144^(16/17) 4032515087663275 a001 23725150497407/63245986*144^(16/17) 4032515087663276 a001 14662949395604/39088169*144^(16/17) 4032515087663279 a001 5600748293801/14930352*144^(16/17) 4032515087663300 a001 2139295485799/5702887*144^(16/17) 4032515087663446 a001 817138163596/2178309*144^(16/17) 4032515087664441 a001 28374454999/75640*144^(16/17) 4032515087671260 a001 119218851371/317811*144^(16/17) 4032515087718005 a001 45537549124/121393*144^(16/17) 4032515087809367 r005 Im(z^2+c),c=-5/8+17/228*I,n=42 4032515088038395 a001 17393796001/46368*144^(16/17) 4032515090234381 a001 6643838879/17711*144^(16/17) 4032515094367669 a007 Real Root Of 223*x^4+914*x^3+226*x^2+642*x-119 4032515102986843 r008 a(0)=4,K{-n^6,28-34*n^3+16*n^2-41*n} 4032515104318706 a001 192900153618/55*7778742049^(5/24) 4032515104348557 a001 2139295485799/55*75025^(5/24) 4032515105153649 m001 (Cahen+MasserGramain)/(exp(Pi)+Psi(2,1/3)) 4032515105241363 a001 34/73681302247*18^(3/4) 4032515105285892 a001 230701876/615*144^(16/17) 4032515105914126 a001 1364/139583862445*89^(6/19) 4032515113420108 m001 1/2*(2^(1/2)*FransenRobinson+3^(1/2))*2^(1/2) 4032515113420108 m001 cos(1/12*Pi)+sin(1/12*Pi)+FransenRobinson 4032515119679214 m001 (ln(2+3^(1/2))+Thue)/(Ei(1,1)+Zeta(1,-1)) 4032515137160991 r008 a(0)=4,K{-n^6,50-32*n^3+21*n^2-70*n} 4032515141820732 m005 (1/2*5^(1/2)+2/3)/(3/11*gamma-3/5) 4032515141855275 q001 1265/3137 4032515145115111 k007 concat of cont frac of 4032515146000504 r002 31th iterates of z^2 + 4032515152761133 r005 Im(z^2+c),c=31/102+7/23*I,n=21 4032515156409069 b008 1/4+(1/2+E)/21 4032515165099628 m001 (Champernowne+Thue)/(GAMMA(7/12)-GAMMA(17/24)) 4032515176625210 r008 a(0)=4,K{-n^6,32-25*n-15*n^2-23*n^3} 4032515179401767 a007 Real Root Of 25*x^4-46*x^3-509*x^2+464*x+521 4032515180304066 r005 Re(z^2+c),c=-45/82+5/12*I,n=55 4032515185280185 r005 Im(z^2+c),c=7/114+29/61*I,n=26 4032515190058324 s002 sum(A078132[n]/(exp(n)-1),n=1..infinity) 4032515208450490 a001 969323029/2584*144^(16/17) 4032515210681138 l006 ln(77/4343) 4032515211128054 a001 377/1860498*1364^(11/15) 4032515211643678 r005 Im(z^2+c),c=9/28+10/47*I,n=22 4032515217394718 r002 17th iterates of z^2 + 4032515218413235 r002 42i'th iterates of 2*x/(1-x^2) of 4032515220294183 r009 Im(z^3+c),c=-14/29+11/35*I,n=29 4032515221323427 m005 (1/2*2^(1/2)-2)/(3*Zeta(3)-2/5) 4032515230017193 r008 a(0)=4,K{-n^6,52-47*n-17*n^2-19*n^3} 4032515243077668 r008 a(0)=4,K{-n^6,44-16*n^3-30*n^2-29*n} 4032515245386004 m005 (-5/28+1/4*5^(1/2))/(2/7*Zeta(3)+3/5) 4032515253892937 a007 Real Root Of 141*x^4-939*x^3+256*x^2-821*x-438 4032515259507252 m001 ln(GolombDickman)*DuboisRaymond*BesselJ(1,1) 4032515260948302 m001 sin(1/12*Pi)*KomornikLoreti+FeigenbaumMu 4032515262957699 m001 (GAMMA(3/4)-FeigenbaumD)/(Trott2nd+ZetaQ(3)) 4032515267533123 r008 a(0)=4,K{-n^6,26+10*n-57*n^2-10*n^3} 4032515268206910 a007 Real Root Of 297*x^4-238*x^3-660*x^2-776*x+428 4032515277116500 r005 Im(z^2+c),c=-1/12+13/23*I,n=44 4032515287259804 r008 a(0)=4,K{-n^6,76-16*n^3-14*n^2-77*n} 4032515292396064 g007 Psi(2,4/9)+Psi(2,3/8)+Psi(2,3/7)-Psi(2,1/4) 4032515295608381 a007 Real Root Of 81*x^4+115*x^3-842*x^2-11*x-230 4032515300392416 m003 8+Sqrt[5]/4-(3*Sec[1/2+Sqrt[5]/2])/2 4032515310332142 m001 (Stephens-Totient)/(sin(1/5*Pi)+Mills) 4032515326498476 a007 Real Root Of -37*x^4+300*x^3-458*x^2-543*x-251 4032515331141910 a007 Real Root Of -521*x^4+645*x^3+566*x^2+936*x-498 4032515343570789 r005 Im(z^2+c),c=-41/70+6/49*I,n=6 4032515346216397 m002 3*Pi^2+(Sinh[Pi]*Tanh[Pi])/ProductLog[Pi] 4032515350032131 r002 17th iterates of z^2 + 4032515355628218 a001 377/1149851*1364^(2/3) 4032515365745748 a001 8/199*11^(25/26) 4032515369334773 p003 LerchPhi(1/3,4,52/233) 4032515375030938 r005 Im(z^2+c),c=5/66+22/47*I,n=58 4032515380887041 a003 sin(Pi*9/58)*sin(Pi*34/103) 4032515392389148 a001 305/12238*199^(1/11) 4032515403944251 r002 56th iterates of z^2 + 4032515409066142 m001 ln(Rabbit)^2/CopelandErdos*cos(Pi/5) 4032515419434043 m005 (1/3*Pi-2/3)/(1/5*exp(1)+2/5) 4032515435410969 r009 Re(z^3+c),c=-13/38+1/32*I,n=12 4032515436829827 m003 33/10+(Sqrt[5]*Cosh[1/2+Sqrt[5]/2])/8 4032515441231969 r005 Im(z^2+c),c=3/58+16/31*I,n=13 4032515447874000 m001 (Bloch+Trott)/(Shi(1)+Zeta(1,2)) 4032515449215281 r005 Im(z^2+c),c=-5/8+16/211*I,n=35 4032515455953575 h001 (7/12*exp(1)+8/9)/(9/11*exp(2)+1/11) 4032515458481575 r002 37th iterates of z^2 + 4032515465439195 m001 (GAMMA(2/3)-exp(1))/(-GAMMA(5/6)+Porter) 4032515486036705 a007 Real Root Of -21*x^4-853*x^3-237*x^2+501*x+890 4032515497675828 a001 2584/1149851*521^(6/13) 4032515500113138 a001 377/710647*1364^(3/5) 4032515500371175 a001 610/710647*521^(8/13) 4032515510488962 r005 Re(z^2+c),c=-8/15+15/46*I,n=62 4032515512888612 a007 Real Root Of -375*x^4+849*x^3+368*x^2+616*x-354 4032515515217228 a005 (1/sin(83/212*Pi))^179 4032515523150930 r005 Im(z^2+c),c=-9/58+31/51*I,n=30 4032515529924684 m001 (OneNinth+Tetranacci)/(3^(1/3)+Zeta(1,2)) 4032515542109944 a007 Real Root Of 163*x^4+588*x^3-60*x^2+971*x+347 4032515546653087 m002 -6+Pi^2-Cosh[Pi]+Cosh[Pi]/Pi 4032515562478081 a007 Real Root Of 746*x^4+134*x^3+515*x^2+272*x+15 4032515577278306 m008 (Pi^6-1/4)/(1/4*Pi^6-2) 4032515580729781 r005 Re(z^2+c),c=-43/78+12/55*I,n=60 4032515584921160 r005 Im(z^2+c),c=-7/60+7/12*I,n=53 4032515594098417 m001 (Shi(1)+gamma)/(-Zeta(5)+3^(1/3)) 4032515600837831 a001 6765/3010349*521^(6/13) 4032515613200071 r009 Im(z^3+c),c=-7/90+20/43*I,n=6 4032515615888964 a001 89/39604*521^(6/13) 4032515618084895 a001 46368/20633239*521^(6/13) 4032515618405277 a001 121393/54018521*521^(6/13) 4032515618452020 a001 317811/141422324*521^(6/13) 4032515618458840 a001 832040/370248451*521^(6/13) 4032515618459835 a001 2178309/969323029*521^(6/13) 4032515618459980 a001 5702887/2537720636*521^(6/13) 4032515618460001 a001 14930352/6643838879*521^(6/13) 4032515618460004 a001 39088169/17393796001*521^(6/13) 4032515618460004 a001 102334155/45537549124*521^(6/13) 4032515618460004 a001 267914296/119218851371*521^(6/13) 4032515618460004 a001 3524667/1568437211*521^(6/13) 4032515618460004 a001 1836311903/817138163596*521^(6/13) 4032515618460004 a001 4807526976/2139295485799*521^(6/13) 4032515618460004 a001 12586269025/5600748293801*521^(6/13) 4032515618460004 a001 32951280099/14662949395604*521^(6/13) 4032515618460004 a001 53316291173/23725150497407*521^(6/13) 4032515618460004 a001 20365011074/9062201101803*521^(6/13) 4032515618460004 a001 7778742049/3461452808002*521^(6/13) 4032515618460004 a001 2971215073/1322157322203*521^(6/13) 4032515618460004 a001 1134903170/505019158607*521^(6/13) 4032515618460004 a001 433494437/192900153618*521^(6/13) 4032515618460005 a001 165580141/73681302247*521^(6/13) 4032515618460005 a001 63245986/28143753123*521^(6/13) 4032515618460006 a001 24157817/10749957122*521^(6/13) 4032515618460014 a001 9227465/4106118243*521^(6/13) 4032515618460069 a001 3524578/1568397607*521^(6/13) 4032515618460449 a001 1346269/599074578*521^(6/13) 4032515618463054 a001 514229/228826127*521^(6/13) 4032515618480909 a001 196418/87403803*521^(6/13) 4032515618603284 a001 75025/33385282*521^(6/13) 4032515619442055 a001 28657/12752043*521^(6/13) 4032515621971743 r005 Im(z^2+c),c=-13/114+7/12*I,n=52 4032515625191076 a001 10946/4870847*521^(6/13) 4032515635179310 p001 sum((-1)^n/(438*n+241)/(12^n),n=0..infinity) 4032515638995047 m008 (4*Pi-3/4)/(3*Pi^4+4/5) 4032515640195525 r005 Re(z^2+c),c=-11/102+39/40*I,n=3 4032515640202603 a001 377/15127*521^(1/13) 4032515641239493 m001 (5^(1/2)-gamma)/(GAMMA(7/12)+Sierpinski) 4032515644637987 a001 377/439204*1364^(8/15) 4032515653003304 r009 Im(z^3+c),c=-1/11+13/28*I,n=22 4032515661956323 a003 sin(Pi*1/91)-sin(Pi*15/104) 4032515662184338 m001 (Catalan+BesselI(1,1))/(-OneNinth+Weierstrass) 4032515664595455 a001 4181/1860498*521^(6/13) 4032515665702829 r009 Im(z^3+c),c=-37/106+23/58*I,n=32 4032515669258081 a005 (1/cos(10/203*Pi))^499 4032515671599751 r005 Re(z^2+c),c=-95/78+9/40*I,n=4 4032515675217427 r009 Re(z^3+c),c=-55/122+5/31*I,n=10 4032515676823950 m005 (1/3*Pi-3)/(3*2^(1/2)+3/5) 4032515690261733 a007 Real Root Of 117*x^4+208*x^3-847*x^2+964*x+362 4032515691240850 r005 Re(z^2+c),c=-49/102+17/62*I,n=8 4032515703815374 r009 Im(z^3+c),c=-43/90+11/35*I,n=7 4032515719285210 r005 Im(z^2+c),c=-1/25+9/16*I,n=15 4032515720659352 h001 (2/9*exp(2)+7/8)/(3/4*exp(2)+7/10) 4032515721808099 r009 Re(z^3+c),c=-7/94+17/25*I,n=57 4032515740671473 r009 Im(z^3+c),c=-3/50+56/57*I,n=8 4032515743563102 r005 Re(z^2+c),c=-21/38+9/43*I,n=44 4032515746426280 m001 (Paris+Trott2nd)/(BesselJ(1,1)+Khinchin) 4032515756169063 r005 Im(z^2+c),c=13/44+8/29*I,n=44 4032515762185848 h001 (3/11*exp(1)+1/10)/(1/2*exp(1)+8/11) 4032515789058318 a001 377/271443*1364^(7/15) 4032515791605966 m005 (1/3*3^(1/2)+2/11)/(5/12*exp(1)+3/4) 4032515791686495 m001 (Magata+ZetaQ(3))/(2^(1/2)-LambertW(1)) 4032515811233611 s002 sum(A059631[n]/(2^n-1),n=1..infinity) 4032515818837726 l006 ln(4107/4276) 4032515821038954 m001 (DuboisRaymond-Weierstrass)/(Pi-Psi(1,1/3)) 4032515831120452 l006 ln(6181/9251) 4032515868774958 m001 arctan(1/2)/DuboisRaymond*exp(sqrt(2))^2 4032515876120426 a001 28143753123/233*144^(12/17) 4032515882035638 m001 (Cahen+FellerTornier)/(BesselK(1,1)-sin(1)) 4032515883363338 m002 5+Pi^2-(Cosh[Pi]*Coth[Pi])/ProductLog[Pi] 4032515886318219 m001 (ln(2)+Zeta(1,2))/(ArtinRank2-Conway) 4032515887723263 r005 Im(z^2+c),c=-35/82+23/45*I,n=16 4032515891615940 a007 Real Root Of 266*x^4+920*x^3-638*x^2-89*x+6 4032515891619308 m001 ln(gamma)^(ln(5)/ZetaP(3)) 4032515897820354 r005 Re(z^2+c),c=-37/66+8/61*I,n=45 4032515901490263 r005 Re(z^2+c),c=-35/62+2/31*I,n=40 4032515915542844 r009 Im(z^3+c),c=-1/11+13/28*I,n=24 4032515915551303 a001 370248451/987*144^(16/17) 4032515926063589 r008 a(0)=4,K{-n^6,-43+13*n+59*n^2-60*n^3} 4032515933276786 a001 329/90481*521^(5/13) 4032515933752300 a001 377/167761*1364^(2/5) 4032515934677084 a001 1597/710647*521^(6/13) 4032515937453497 m001 GAMMA(2/3)^2/GAMMA(1/6)^2/ln(GAMMA(5/6))^2 4032515944941937 r008 a(0)=4,K{-n^6,-25-10*n+62*n^2-58*n^3} 4032515944954575 r002 54th iterates of z^2 + 4032515949006783 r009 Im(z^3+c),c=-1/11+13/28*I,n=27 4032515951288427 r009 Im(z^3+c),c=-1/11+13/28*I,n=29 4032515952927780 r009 Im(z^3+c),c=-1/11+13/28*I,n=31 4032515953458873 r009 Im(z^3+c),c=-1/11+13/28*I,n=33 4032515953575074 r009 Im(z^3+c),c=-1/11+13/28*I,n=35 4032515953583649 r009 Im(z^3+c),c=-1/11+13/28*I,n=38 4032515953585415 r009 Im(z^3+c),c=-1/11+13/28*I,n=40 4032515953586273 r009 Im(z^3+c),c=-1/11+13/28*I,n=36 4032515953586302 r009 Im(z^3+c),c=-1/11+13/28*I,n=42 4032515953586557 r009 Im(z^3+c),c=-1/11+13/28*I,n=44 4032515953586606 r009 Im(z^3+c),c=-1/11+13/28*I,n=46 4032515953586606 r009 Im(z^3+c),c=-1/11+13/28*I,n=47 4032515953586607 r009 Im(z^3+c),c=-1/11+13/28*I,n=49 4032515953586608 r009 Im(z^3+c),c=-1/11+13/28*I,n=51 4032515953586608 r009 Im(z^3+c),c=-1/11+13/28*I,n=53 4032515953586608 r009 Im(z^3+c),c=-1/11+13/28*I,n=55 4032515953586608 r009 Im(z^3+c),c=-1/11+13/28*I,n=58 4032515953586608 r009 Im(z^3+c),c=-1/11+13/28*I,n=60 4032515953586608 r009 Im(z^3+c),c=-1/11+13/28*I,n=62 4032515953586608 r009 Im(z^3+c),c=-1/11+13/28*I,n=64 4032515953586608 r009 Im(z^3+c),c=-1/11+13/28*I,n=63 4032515953586608 r009 Im(z^3+c),c=-1/11+13/28*I,n=61 4032515953586608 r009 Im(z^3+c),c=-1/11+13/28*I,n=57 4032515953586608 r009 Im(z^3+c),c=-1/11+13/28*I,n=59 4032515953586608 r009 Im(z^3+c),c=-1/11+13/28*I,n=56 4032515953586608 r009 Im(z^3+c),c=-1/11+13/28*I,n=54 4032515953586609 r009 Im(z^3+c),c=-1/11+13/28*I,n=52 4032515953586609 r009 Im(z^3+c),c=-1/11+13/28*I,n=50 4032515953586611 r009 Im(z^3+c),c=-1/11+13/28*I,n=48 4032515953586624 r009 Im(z^3+c),c=-1/11+13/28*I,n=45 4032515953586742 r009 Im(z^3+c),c=-1/11+13/28*I,n=43 4032515953587241 r009 Im(z^3+c),c=-1/11+13/28*I,n=41 4032515953588634 r009 Im(z^3+c),c=-1/11+13/28*I,n=39 4032515953589801 r009 Im(z^3+c),c=-1/11+13/28*I,n=37 4032515953632091 r009 Im(z^3+c),c=-1/11+13/28*I,n=34 4032515953892796 r009 Im(z^3+c),c=-1/11+13/28*I,n=32 4032515954128951 r008 a(0)=4,K{-n^6,-29-55*n^3+51*n^2+2*n} 4032515954878409 r009 Im(z^3+c),c=-1/11+13/28*I,n=30 4032515956626838 r009 Im(z^3+c),c=-1/11+13/28*I,n=26 4032515957194601 r009 Im(z^3+c),c=-1/11+13/28*I,n=28 4032515960339132 r009 Im(z^3+c),c=-1/11+13/28*I,n=25 4032515967168081 r009 Re(z^3+c),c=-53/114+5/22*I,n=10 4032515969025944 m005 1/6*5^(1/2)/(4/11*gamma+5/7) 4032515972696726 a001 28623/709805 4032515972696906 a004 Fibonacci(14)/Lucas(16)/(1/2+sqrt(5)/2)^3 4032515972704720 a004 Fibonacci(16)/Lucas(14)/(1/2+sqrt(5)/2)^7 4032515975374758 a001 1/5473*514229^(4/17) 4032515977289469 a007 Real Root Of -703*x^4+278*x^3+56*x^2+447*x-189 4032515981962000 a001 2/75025*1836311903^(4/17) 4032515982102232 a001 2/514229*6557470319842^(4/17) 4032515986754734 r005 Im(z^2+c),c=-25/52+20/33*I,n=29 4032515987163763 r005 Im(z^2+c),c=-17/52+21/41*I,n=9 4032515991471215 q001 1513/3752 4032515992509064 a001 36/109801*322^(5/6) 4032516011078027 r009 Im(z^3+c),c=-49/102+26/61*I,n=16 4032516015542742 a007 Real Root Of 134*x^4+684*x^3+777*x^2+639*x-639 4032516026064091 r008 a(0)=4,K{-n^6,9-35*n+40*n^2-45*n^3} 4032516042368846 r009 Im(z^3+c),c=-51/106+7/22*I,n=59 4032516048399690 l006 ln(4975/7446) 4032516049971182 m001 (-FeigenbaumAlpha+MertensB2)/(Shi(1)-ln(2)) 4032516050698475 m001 1/Zeta(5)^2*FransenRobinson/ln(sqrt(5))^2 4032516064643600 m001 ln(2^(1/2)+1)/(GaussAGM+Riemann2ndZero) 4032516065270715 r008 a(0)=4,K{-n^6,19-39*n^3+27*n^2-38*n} 4032516065850065 s002 sum(A253342[n]/(n^2*exp(n)+1),n=1..infinity) 4032516072052938 r009 Im(z^3+c),c=-1/11+13/28*I,n=23 4032516072815704 a007 Real Root Of 256*x^4+737*x^3-992*x^2+933*x+528 4032516072983637 r009 Re(z^3+c),c=-33/74+9/50*I,n=37 4032516074248082 m001 (Shi(1)+BesselK(0,1))/(sin(1/12*Pi)+Magata) 4032516074352417 r008 a(0)=4,K{-n^6,-1-34*n^3+2*n^2+2*n} 4032516076352546 a007 Real Root Of 396*x^4-995*x^3+344*x^2-229*x-224 4032516077729873 a001 377/103682*1364^(1/3) 4032516091195306 r008 a(0)=4,K{-n^6,5-32*n^3-n^2-3*n} 4032516100841107 r008 a(0)=4,K{-n^6,27-34*n^3+16*n^2-40*n} 4032516107645884 r002 9th iterates of z^2 + 4032516108611547 r008 a(0)=4,K{-n^6,-1+3*n^3+12*n^2-46*n} 4032516109124928 r005 Re(z^2+c),c=-4/7+33/52*I,n=49 4032516112756191 m001 1/ln(Zeta(9))/PisotVijayaraghavan/cos(Pi/12)^2 4032516120808851 m001 gamma^(2*Pi/GAMMA(5/6))*Thue 4032516142111419 r005 Im(z^2+c),c=11/90+26/61*I,n=17 4032516152795425 r008 a(0)=4,K{-n^6,17-24*n^3-19*n^2-5*n} 4032516156215001 m001 (FeigenbaumDelta-Robbin)/(Zeta(5)+Zeta(1,2)) 4032516170491390 m002 -E^Pi/4+6/Pi^2+Log[Pi] 4032516172388219 a007 Real Root Of -258*x^4+852*x^3+257*x^2+665*x-359 4032516177480310 a001 18/1597*514229^(28/45) 4032516183904327 m001 1/LambertW(1)*LandauRamanujan^2*exp(Zeta(1,2)) 4032516195925202 m001 (GAMMA(2/3)+gamma(3))/(BesselI(1,2)+Pi^(1/2)) 4032516206598256 r008 a(0)=4,K{-n^6,51-22*n^3-8*n^2-52*n} 4032516208162216 m001 (CareFree+FellerTornier)/(ln(5)-Zeta(1,2)) 4032516211596411 r008 a(0)=4,K{-n^6,49-21*n^3-12*n^2-47*n} 4032516212967576 m001 (Thue-ThueMorse)/(FeigenbaumC-Sarnak) 4032516223583047 a001 377/64079*1364^(4/15) 4032516229501431 r008 a(0)=4,K{-n^6,51-46*n-17*n^2-19*n^3} 4032516232034941 m009 (1/5*Psi(1,2/3)+3/4)/(16*Catalan+2*Pi^2-3/5) 4032516243697519 r005 Re(z^2+c),c=-9/17+16/39*I,n=55 4032516266997731 m001 (Lehmer+1/3)/(-GAMMA(1/24)+1/2) 4032516285033334 m001 MadelungNaCl*PisotVijayaraghavan-exp(1) 4032516299792589 h001 (1/8*exp(2)+9/10)/(4/7*exp(2)+3/10) 4032516300526467 m001 Zeta(3)^Conway/(ThueMorse^Conway) 4032516308622552 a007 Real Root Of -102*x^4-651*x^3-795*x^2+899*x+836 4032516318385277 m001 (-ZetaP(4)+ZetaQ(2))/(gamma+gamma(2)) 4032516319672260 m001 (HardyLittlewoodC3-Niven)/(BesselI(0,2)+Artin) 4032516324081516 m001 GAMMA(5/24)^2*Robbin/exp(gamma)^2 4032516330248353 r008 a(0)=4,K{-n^6,91-14*n^3-12*n^2-96*n} 4032516350513097 r002 23th iterates of z^2 + 4032516359926917 m009 (8/5*Catalan+1/5*Pi^2+3)/(1/4*Psi(1,2/3)-3/4) 4032516364525852 a001 377/39603*1364^(1/5) 4032516365003565 h001 (1/7*exp(2)+5/7)/(4/7*exp(2)+1/6) 4032516370023352 r008 a(0)=4,K{-n^6,67-6*n^3-48*n^2-44*n} 4032516378712288 r005 Im(z^2+c),c=1/21+19/39*I,n=46 4032516387293317 a001 76/377*2178309^(25/48) 4032516387614427 r002 46th iterates of z^2 + 4032516393745027 r005 Im(z^2+c),c=5/27+5/13*I,n=51 4032516404728406 l006 ln(3769/5641) 4032516404728406 p004 log(5641/3769) 4032516418816032 r005 Im(z^2+c),c=1/110+21/41*I,n=44 4032516423091381 a007 Real Root Of 492*x^4-367*x^3-942*x^2-850*x+507 4032516433551717 r009 Im(z^3+c),c=-37/106+23/58*I,n=30 4032516457068363 m001 ln(Pi)^exp(1/2)-sqrt(1+sqrt(3)) 4032516466515926 m001 (Landau-Tribonacci)/(GAMMA(23/24)-CareFree) 4032516484359788 a004 Fibonacci(14)*Lucas(17)/(1/2+sqrt(5)/2)^36 4032516487019350 m008 (3/4*Pi^5-4/5)/(3/5*Pi^2-1/4) 4032516500052403 r005 Re(z^2+c),c=-17/26+14/67*I,n=17 4032516502961276 a001 13/711491*3571^(16/17) 4032516516464974 m001 Zeta(1/2)^arctan(1/3)*FeigenbaumMu 4032516517472392 m005 (1/3*5^(1/2)+1/5)/(6/11*Zeta(3)-3) 4032516518324191 a001 13/844*1364^(2/15) 4032516521562721 a001 377/12752043*3571^(15/17) 4032516540164290 a001 377/7881196*3571^(14/17) 4032516553772481 r002 28th iterates of z^2 + 4032516558765535 a001 377/4870847*3571^(13/17) 4032516562878212 r002 58th iterates of z^2 + 4032516565391468 a008 Real Root of x^4-x^3+7*x^2-92*x+36 4032516572304559 a001 15127/8*987^(7/9) 4032516577367629 a001 377/3010349*3571^(12/17) 4032516592379771 r005 Re(z^2+c),c=-13/23+1/22*I,n=48 4032516594630314 m001 1/exp(Trott)^2*Bloch^2/cos(1) 4032516595967499 a001 377/1860498*3571^(11/17) 4032516614573194 a001 377/1149851*3571^(10/17) 4032516618154785 r005 Im(z^2+c),c=17/126+17/40*I,n=53 4032516625279985 a007 Real Root Of -239*x^4-104*x^3+451*x^2+431*x-234 4032516628180453 r009 Im(z^3+c),c=-1/11+13/28*I,n=21 4032516632669052 m005 (1/3*2^(1/2)-1/5)/(10/11*Catalan-9/10) 4032516633163638 a001 377/710647*3571^(9/17) 4032516633962355 r009 Re(z^3+c),c=-69/118+19/41*I,n=38 4032516634245246 m001 1/ln(GAMMA(23/24))*DuboisRaymond^2*exp(1) 4032516638466321 a001 377/15127*1364^(1/15) 4032516640059615 m001 BesselK(1,1)/(FeigenbaumKappa^ln(2+3^(1/2))) 4032516640424471 a001 2584/710647*521^(5/13) 4032516640615087 r005 Re(z^2+c),c=-17/24+5/52*I,n=33 4032516643159742 a001 305/219602*521^(7/13) 4032516651794008 a001 377/439204*3571^(8/17) 4032516663660852 a001 3/4181*8^(44/53) 4032516665826314 s002 sum(A101508[n]/(n^3*2^n+1),n=1..infinity) 4032516670319854 a001 377/271443*3571^(7/17) 4032516671357150 r002 47th iterates of z^2 + 4032516679797682 a001 974168/24157817 4032516679797687 a004 Fibonacci(14)/Lucas(18)/(1/2+sqrt(5)/2) 4032516679805668 a004 Fibonacci(18)/Lucas(14)/(1/2+sqrt(5)/2)^9 4032516681934070 r002 4th iterates of z^2 + 4032516684692921 l006 ln(6332/9477) 4032516685410290 r005 Im(z^2+c),c=1/90+23/45*I,n=53 4032516689119346 a001 377/167761*3571^(6/17) 4032516702073948 r009 Re(z^3+c),c=-21/46+15/28*I,n=13 4032516702992637 m005 (1/2*Pi-1)/(7/12*5^(1/2)+1/9) 4032516707202424 a001 377/103682*3571^(5/17) 4032516709796596 a007 Real Root Of 308*x^4-680*x^3-387*x^2-737*x-287 4032516727161098 a001 377/64079*3571^(4/17) 4032516732446995 r008 a(0)=4,K{-n^6,1+6*n^3+24*n^2-59*n} 4032516732705830 m001 Artin^Cahen/ln(2+3^(1/2)) 4032516732705830 m001 Artin^Cahen/ln(2+sqrt(3)) 4032516734039799 a001 20633239/34*75025^(11/19) 4032516734331974 a001 51841/17*701408733^(11/19) 4032516742209397 a001 377/39603*3571^(3/17) 4032516743595927 a001 55/15126*521^(5/13) 4032516746915052 m001 (Kac+Rabbit)/(cos(1/5*Pi)+FeigenbaumAlpha) 4032516754448316 a004 Fibonacci(14)*Lucas(19)/(1/2+sqrt(5)/2)^38 4032516756019431 l006 ln(149/8404) 4032516756876561 a001 377/54018521*9349^(18/19) 4032516758648440 a001 17711/4870847*521^(5/13) 4032516759304800 a001 377/33385282*9349^(17/19) 4032516760844572 a001 15456/4250681*521^(5/13) 4032516761164983 a001 121393/33385282*521^(5/13) 4032516761211731 a001 105937/29134601*521^(5/13) 4032516761218551 a001 832040/228826127*521^(5/13) 4032516761219546 a001 726103/199691526*521^(5/13) 4032516761219691 a001 5702887/1568397607*521^(5/13) 4032516761219713 a001 4976784/1368706081*521^(5/13) 4032516761219716 a001 39088169/10749957122*521^(5/13) 4032516761219716 a001 831985/228811001*521^(5/13) 4032516761219716 a001 267914296/73681302247*521^(5/13) 4032516761219716 a001 233802911/64300051206*521^(5/13) 4032516761219716 a001 1836311903/505019158607*521^(5/13) 4032516761219716 a001 1602508992/440719107401*521^(5/13) 4032516761219716 a001 12586269025/3461452808002*521^(5/13) 4032516761219716 a001 10983760033/3020733700601*521^(5/13) 4032516761219716 a001 86267571272/23725150497407*521^(5/13) 4032516761219716 a001 53316291173/14662949395604*521^(5/13) 4032516761219716 a001 20365011074/5600748293801*521^(5/13) 4032516761219716 a001 7778742049/2139295485799*521^(5/13) 4032516761219716 a001 2971215073/817138163596*521^(5/13) 4032516761219716 a001 1134903170/312119004989*521^(5/13) 4032516761219716 a001 433494437/119218851371*521^(5/13) 4032516761219716 a001 165580141/45537549124*521^(5/13) 4032516761219716 a001 63245986/17393796001*521^(5/13) 4032516761219718 a001 24157817/6643838879*521^(5/13) 4032516761219726 a001 9227465/2537720636*521^(5/13) 4032516761219781 a001 3524578/969323029*521^(5/13) 4032516761220161 a001 1346269/370248451*521^(5/13) 4032516761222766 a001 514229/141422324*521^(5/13) 4032516761240622 a001 196418/54018521*521^(5/13) 4032516761363009 a001 75025/20633239*521^(5/13) 4032516761733056 a001 13/711491*9349^(16/19) 4032516762201856 a001 28657/7881196*521^(5/13) 4032516764161266 a001 377/12752043*9349^(15/19) 4032516764360840 a001 377/15127*3571^(1/17) 4032516766589599 a001 377/7881196*9349^(14/19) 4032516767571818 m001 (Niven-Robbin)/(Tetranacci+TwinPrimes) 4032516767951405 a001 10946/3010349*521^(5/13) 4032516769017608 a001 377/4870847*9349^(13/19) 4032516770113227 a001 13/844*3571^(2/17) 4032516771446466 a001 377/3010349*9349^(12/19) 4032516773873100 a001 377/1860498*9349^(11/19) 4032516776305559 a001 377/1149851*9349^(10/19) 4032516778722767 a001 377/710647*9349^(9/19) 4032516779390930 r005 Im(z^2+c),c=11/126+23/50*I,n=58 4032516780534077 a001 377/15127*9349^(1/19) 4032516781179901 a001 377/439204*9349^(8/19) 4032516782641785 a001 377/15127*24476^(1/21) 4032516782919622 a001 377/15127*64079^(1/23) 4032516782962321 a001 2550405/63245986 4032516782962321 a001 377/30254+377/30254*5^(1/2) 4032516782970306 a004 Fibonacci(20)/Lucas(14)/(1/2+sqrt(5)/2)^11 4032516782977951 a001 377/15127*103682^(1/24) 4032516783079189 a001 377/15127*39603^(1/22) 4032516783532510 a001 377/271443*9349^(7/19) 4032516783843452 a001 377/15127*15127^(1/20) 4032516786158766 a001 377/167761*9349^(6/19) 4032516788068607 a001 377/103682*9349^(5/19) 4032516788516043 r005 Re(z^2+c),c=-29/54+19/62*I,n=59 4032516789672724 a001 377/15127*5778^(1/18) 4032516790729108 a001 377/39603*9349^(3/19) 4032516790819483 r005 Re(z^2+c),c=29/98+1/57*I,n=43 4032516791854046 a001 377/64079*9349^(4/19) 4032516793167247 r005 Im(z^2+c),c=-13/58+31/50*I,n=53 4032516793853701 a004 Fibonacci(14)*Lucas(21)/(1/2+sqrt(5)/2)^40 4032516794174237 a001 377/141422324*24476^(20/21) 4032516794417785 m001 GAMMA(23/24)*Tribonacci/exp(cosh(1)) 4032516794494772 a001 377/87403803*24476^(19/21) 4032516794815309 a001 377/54018521*24476^(6/7) 4032516795135839 a001 377/33385282*24476^(17/21) 4032516795320671 m001 BesselI(1,1)/(FibonacciFactorial+ZetaP(3)) 4032516795456388 a001 13/711491*24476^(16/21) 4032516795776889 a001 377/12752043*24476^(5/7) 4032516796097514 a001 377/7881196*24476^(2/3) 4032516796417815 a001 377/4870847*24476^(13/21) 4032516796738965 a001 377/3010349*24476^(4/7) 4032516797052232 a001 377/39603*24476^(1/7) 4032516797057890 a001 377/1860498*24476^(11/21) 4032516797382641 a001 377/1149851*24476^(10/21) 4032516797692141 a001 377/710647*24476^(3/7) 4032516797885742 a001 377/39603*64079^(3/23) 4032516798011516 a001 377/39603*439204^(1/9) 4032516798013833 a001 377/39603*7881196^(1/11) 4032516798013839 a001 6677047/165580141 4032516798013839 a001 377/39603*141422324^(1/13) 4032516798013839 a001 377/39603*2537720636^(1/15) 4032516798013839 a001 377/39603*45537549124^(1/17) 4032516798013839 a001 377/39603*14662949395604^(1/21) 4032516798013839 a001 377/39603*(1/2+1/2*5^(1/2))^3 4032516798013839 a001 377/39603*192900153618^(1/18) 4032516798013839 a001 377/39603*10749957122^(1/16) 4032516798013839 a001 377/39603*599074578^(1/14) 4032516798013839 a001 377/39603*33385282^(1/12) 4032516798013955 a001 377/39603*1860498^(1/10) 4032516798021824 a004 Fibonacci(22)/Lucas(14)/(1/2+sqrt(5)/2)^13 4032516798041566 a001 377/439204*24476^(8/21) 4032516798060729 a001 377/39603*103682^(1/8) 4032516798174324 a001 521/5702887*34^(8/19) 4032516798286468 a001 377/271443*24476^(1/3) 4032516798364444 a001 377/39603*39603^(3/22) 4032516798607148 a001 377/103682*24476^(5/21) 4032516798658646 r005 Re(z^2+c),c=-5/8+45/148*I,n=5 4032516798805015 a001 377/167761*24476^(2/7) 4032516799602870 a004 Fibonacci(14)*Lucas(23)/(1/2+sqrt(5)/2)^42 4032516799645569 a001 377/370248451*64079^(22/23) 4032516799688267 a001 377/228826127*64079^(21/23) 4032516799730967 a001 377/141422324*64079^(20/23) 4032516799773665 a001 377/87403803*64079^(19/23) 4032516799777067 r009 Im(z^3+c),c=-27/56+20/63*I,n=42 4032516799816366 a001 377/54018521*64079^(18/23) 4032516799859060 a001 377/33385282*64079^(17/23) 4032516799901772 a001 13/711491*64079^(16/23) 4032516799944436 a001 377/12752043*64079^(15/23) 4032516799987225 a001 377/7881196*64079^(14/23) 4032516799996331 a001 377/103682*64079^(5/23) 4032516800029689 a001 377/4870847*64079^(13/23) 4032516800073003 a001 377/3010349*64079^(12/23) 4032516800114092 a001 377/1860498*64079^(11/23) 4032516800161006 a001 377/1149851*64079^(10/23) 4032516800181169 a001 377/103682*167761^(1/5) 4032516800192670 a001 377/710647*64079^(9/23) 4032516800209824 a001 377/103682*20633239^(1/7) 4032516800209825 a001 17480736/433494437 4032516800209825 a001 377/103682*2537720636^(1/9) 4032516800209825 a001 377/103682*312119004989^(1/11) 4032516800209825 a001 377/103682*(1/2+1/2*5^(1/2))^5 4032516800209825 a001 377/103682*28143753123^(1/10) 4032516800209826 a001 377/103682*228826127^(1/8) 4032516800210020 a001 377/103682*1860498^(1/6) 4032516800217810 a004 Fibonacci(24)/Lucas(14)/(1/2+sqrt(5)/2)^15 4032516800231323 a001 377/271443*64079^(7/23) 4032516800264258 a001 377/439204*64079^(8/23) 4032516800284878 a001 377/64079*24476^(4/21) 4032516800287975 a001 377/103682*103682^(5/24) 4032516800391292 m001 (GaussAGM(1,1/sqrt(2))+GAMMA(5/24))^sin(1) 4032516800441662 a004 Fibonacci(14)*Lucas(25)/(1/2+sqrt(5)/2)^44 4032516800470319 a001 377/141422324*167761^(4/5) 4032516800472034 a001 377/167761*64079^(6/23) 4032516800498950 a001 377/12752043*167761^(3/5) 4032516800530214 a001 377/271443*20633239^(1/5) 4032516800530216 a001 45765161/1134903170 4032516800530216 a001 377/271443*17393796001^(1/7) 4032516800530216 a001 377/271443*14662949395604^(1/9) 4032516800530216 a001 377/271443*(1/2+1/2*5^(1/2))^7 4032516800530216 a001 377/271443*599074578^(1/6) 4032516800530682 a001 377/1149851*167761^(2/5) 4032516800532212 a001 377/271443*710647^(1/4) 4032516800538201 a004 Fibonacci(26)/Lucas(14)/(1/2+sqrt(5)/2)^17 4032516800564040 a004 Fibonacci(14)*Lucas(27)/(1/2+sqrt(5)/2)^46 4032516800566363 a001 377/969323029*439204^(8/9) 4032516800568686 a001 377/228826127*439204^(7/9) 4032516800569992 a001 377/710647*439204^(1/3) 4032516800571010 a001 377/54018521*439204^(2/3) 4032516800573306 a001 377/12752043*439204^(5/9) 4032516800576099 a001 377/3010349*439204^(4/9) 4032516800576942 a001 377/710647*7881196^(3/11) 4032516800576960 a001 377/710647*141422324^(3/13) 4032516800576960 a001 377/710647*2537720636^(1/5) 4032516800576960 a001 119814747/2971215073 4032516800576960 a001 377/710647*45537549124^(3/17) 4032516800576960 a001 377/710647*14662949395604^(1/7) 4032516800576960 a001 377/710647*(1/2+1/2*5^(1/2))^9 4032516800576960 a001 377/710647*192900153618^(1/6) 4032516800576960 a001 377/710647*10749957122^(3/16) 4032516800576960 a001 377/710647*599074578^(3/14) 4032516800576961 a001 377/710647*33385282^(1/4) 4032516800577309 a001 377/710647*1860498^(3/10) 4032516800581895 a004 Fibonacci(14)*Lucas(29)/(1/2+sqrt(5)/2)^48 4032516800583758 a001 377/1860498*7881196^(1/3) 4032516800583780 a001 24129160/598364773 4032516800583780 a001 377/1860498*312119004989^(1/5) 4032516800583780 a001 377/1860498*(1/2+1/2*5^(1/2))^11 4032516800583780 a001 377/1860498*1568397607^(1/4) 4032516800584500 a004 Fibonacci(14)*Lucas(31)/(1/2+sqrt(5)/2)^50 4032516800584775 a001 377/4870847*141422324^(1/3) 4032516800584775 a001 821222493/20365011074 4032516800584775 a001 377/4870847*(1/2+1/2*5^(1/2))^13 4032516800584775 a001 377/4870847*73681302247^(1/4) 4032516800584880 a004 Fibonacci(14)*Lucas(33)/(1/2+sqrt(5)/2)^52 4032516800584886 a001 13/599786069*7881196^(10/11) 4032516800584891 a001 377/12752043*7881196^(5/11) 4032516800584892 a001 377/4106118243*7881196^(9/11) 4032516800584898 a001 377/969323029*7881196^(8/11) 4032516800584902 a001 377/370248451*7881196^(2/3) 4032516800584903 a001 377/228826127*7881196^(7/11) 4032516800584911 a001 377/54018521*7881196^(6/11) 4032516800584916 a001 377/12752043*20633239^(3/7) 4032516800584920 a001 377/12752043*141422324^(5/13) 4032516800584920 a001 377/12752043*2537720636^(1/3) 4032516800584920 a001 377/12752043*45537549124^(5/17) 4032516800584920 a001 2149988399/53316291173 4032516800584920 a001 377/12752043*312119004989^(3/11) 4032516800584920 a001 377/12752043*14662949395604^(5/21) 4032516800584920 a001 377/12752043*(1/2+1/2*5^(1/2))^15 4032516800584920 a001 377/12752043*192900153618^(5/18) 4032516800584920 a001 377/12752043*28143753123^(3/10) 4032516800584920 a001 377/12752043*10749957122^(5/16) 4032516800584920 a001 377/12752043*599074578^(5/14) 4032516800584920 a001 377/12752043*228826127^(3/8) 4032516800584922 a001 377/12752043*33385282^(5/12) 4032516800584935 a004 Fibonacci(14)*Lucas(35)/(1/2+sqrt(5)/2)^54 4032516800584937 a001 13/599786069*20633239^(6/7) 4032516800584937 a001 377/6643838879*20633239^(4/5) 4032516800584938 a001 377/1568397607*20633239^(5/7) 4032516800584939 a001 377/228826127*20633239^(3/5) 4032516800584940 a001 377/141422324*20633239^(4/7) 4032516800584941 a001 377/33385282*45537549124^(1/3) 4032516800584941 a001 5628742704/139583862445 4032516800584941 a001 377/33385282*(1/2+1/2*5^(1/2))^17 4032516800584943 a004 Fibonacci(14)*Lucas(37)/(1/2+sqrt(5)/2)^56 4032516800584944 a001 3524573/87403802 4032516800584944 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^19/Lucas(38) 4032516800584945 a001 377/87403803*87403803^(1/2) 4032516800584945 a004 Fibonacci(14)*Lucas(39)/(1/2+sqrt(5)/2)^58 4032516800584945 a001 377/312119004989*141422324^(12/13) 4032516800584945 a001 377/228826127*141422324^(7/13) 4032516800584945 a001 377/73681302247*141422324^(11/13) 4032516800584945 a001 13/599786069*141422324^(10/13) 4032516800584945 a001 377/4106118243*141422324^(9/13) 4032516800584945 a001 377/2537720636*141422324^(2/3) 4032516800584945 a001 377/969323029*141422324^(8/13) 4032516800584945 a001 377/228826127*2537720636^(7/15) 4032516800584945 a001 377/228826127*17393796001^(3/7) 4032516800584945 a001 377/228826127*45537549124^(7/17) 4032516800584945 a001 38579976435/956722026041 4032516800584945 a001 377/228826127*14662949395604^(1/3) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^21/Lucas(40) 4032516800584945 a001 377/228826127*192900153618^(7/18) 4032516800584945 a001 377/228826127*10749957122^(7/16) 4032516800584945 a001 377/228826127*599074578^(1/2) 4032516800584945 a004 Fibonacci(14)*Lucas(41)/(1/2+sqrt(5)/2)^60 4032516800584945 a001 101003689592/2504730781961 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^23/Lucas(42) 4032516800584945 a001 377/599074578*4106118243^(1/2) 4032516800584945 a004 Fibonacci(14)*Lucas(43)/(1/2+sqrt(5)/2)^62 4032516800584945 a001 377/1568397607*2537720636^(5/9) 4032516800584945 a001 377/1568397607*312119004989^(5/11) 4032516800584945 a001 20340853257/504420793834 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^25/Lucas(44) 4032516800584945 a001 377/1568397607*28143753123^(1/2) 4032516800584945 a004 Fibonacci(14)*Lucas(45)/(1/2+sqrt(5)/2)^64 4032516800584945 a001 377/4106118243*2537720636^(3/5) 4032516800584945 a001 377/5600748293801*2537720636^(14/15) 4032516800584945 a001 377/2139295485799*2537720636^(8/9) 4032516800584945 a001 377/1322157322203*2537720636^(13/15) 4032516800584945 a001 377/312119004989*2537720636^(4/5) 4032516800584945 a001 377/192900153618*2537720636^(7/9) 4032516800584945 a001 377/73681302247*2537720636^(11/15) 4032516800584945 a001 13/599786069*2537720636^(2/3) 4032516800584945 a001 377/4106118243*45537549124^(9/17) 4032516800584945 a001 377/4106118243*817138163596^(9/19) 4032516800584945 a001 377/4106118243*14662949395604^(3/7) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^27/Lucas(46) 4032516800584945 a001 377/4106118243*192900153618^(1/2) 4032516800584945 a001 377/4106118243*10749957122^(9/16) 4032516800584945 a004 Fibonacci(14)*Lucas(47)/(1/2+sqrt(5)/2)^66 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^29/Lucas(48) 4032516800584945 a001 377/10749957122*1322157322203^(1/2) 4032516800584945 a004 Fibonacci(14)*Lucas(49)/(1/2+sqrt(5)/2)^68 4032516800584945 a001 377/5600748293801*17393796001^(6/7) 4032516800584945 a001 377/192900153618*17393796001^(5/7) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^31/Lucas(50) 4032516800584945 a001 377/28143753123*9062201101803^(1/2) 4032516800584945 a001 377/73681302247*45537549124^(11/17) 4032516800584945 a004 Fibonacci(14)*Lucas(51)/(1/2+sqrt(5)/2)^70 4032516800584945 a001 377/23725150497407*45537549124^(15/17) 4032516800584945 a001 377/5600748293801*45537549124^(14/17) 4032516800584945 a001 377/1322157322203*45537549124^(13/17) 4032516800584945 a001 377/312119004989*45537549124^(12/17) 4032516800584945 a001 377/119218851371*45537549124^(2/3) 4032516800584945 a001 377/73681302247*312119004989^(3/5) 4032516800584945 a001 377/73681302247*817138163596^(11/19) 4032516800584945 a001 377/73681302247*14662949395604^(11/21) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^33/Lucas(52) 4032516800584945 a001 377/73681302247*192900153618^(11/18) 4032516800584945 a004 Fibonacci(14)*Lucas(53)/(1/2+sqrt(5)/2)^72 4032516800584945 a001 377/192900153618*312119004989^(7/11) 4032516800584945 a001 377/192900153618*14662949395604^(5/9) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^35/Lucas(54) 4032516800584945 a001 377/192900153618*505019158607^(5/8) 4032516800584945 a004 Fibonacci(14)*Lucas(55)/(1/2+sqrt(5)/2)^74 4032516800584945 a001 13/505618944676*312119004989^(4/5) 4032516800584945 a001 377/2139295485799*312119004989^(8/11) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^37/Lucas(56) 4032516800584945 a004 Fibonacci(14)*Lucas(57)/(1/2+sqrt(5)/2)^76 4032516800584945 a001 377/1322157322203*14662949395604^(13/21) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^39/Lucas(58) 4032516800584945 a004 Fibonacci(14)*Lucas(59)/(1/2+sqrt(5)/2)^78 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^41/Lucas(60) 4032516800584945 a004 Fibonacci(14)*Lucas(61)/(1/2+sqrt(5)/2)^80 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^43/Lucas(62) 4032516800584945 a001 377/23725150497407*14662949395604^(5/7) 4032516800584945 a004 Fibonacci(14)*Lucas(63)/(1/2+sqrt(5)/2)^82 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^45/Lucas(64) 4032516800584945 a004 Fibonacci(14)*Lucas(65)/(1/2+sqrt(5)/2)^84 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^47/Lucas(66) 4032516800584945 a004 Fibonacci(14)*Lucas(67)/(1/2+sqrt(5)/2)^86 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^49/Lucas(68) 4032516800584945 a004 Fibonacci(14)*Lucas(69)/(1/2+sqrt(5)/2)^88 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^51/Lucas(70) 4032516800584945 a004 Fibonacci(14)*Lucas(71)/(1/2+sqrt(5)/2)^90 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^53/Lucas(72) 4032516800584945 a004 Fibonacci(14)*Lucas(73)/(1/2+sqrt(5)/2)^92 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^55/Lucas(74) 4032516800584945 a004 Fibonacci(14)*Lucas(75)/(1/2+sqrt(5)/2)^94 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^57/Lucas(76) 4032516800584945 a004 Fibonacci(14)*Lucas(77)/(1/2+sqrt(5)/2)^96 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^59/Lucas(78) 4032516800584945 a004 Fibonacci(14)*Lucas(79)/(1/2+sqrt(5)/2)^98 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^61/Lucas(80) 4032516800584945 a004 Fibonacci(14)*Lucas(81)/(1/2+sqrt(5)/2)^100 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^63/Lucas(82) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^65/Lucas(84) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^67/Lucas(86) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^69/Lucas(88) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^71/Lucas(90) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^73/Lucas(92) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^75/Lucas(94) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^77/Lucas(96) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^79/Lucas(98) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^80/Lucas(99) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^81/Lucas(100) 4032516800584945 a004 Fibonacci(7)*Lucas(7)/(1/2+sqrt(5)/2)^19 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^78/Lucas(97) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^76/Lucas(95) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^74/Lucas(93) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^72/Lucas(91) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^70/Lucas(89) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^68/Lucas(87) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^66/Lucas(85) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^64/Lucas(83) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^62/Lucas(81) 4032516800584945 a004 Fibonacci(14)*Lucas(80)/(1/2+sqrt(5)/2)^99 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^60/Lucas(79) 4032516800584945 a004 Fibonacci(14)*Lucas(78)/(1/2+sqrt(5)/2)^97 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^58/Lucas(77) 4032516800584945 a004 Fibonacci(14)*Lucas(76)/(1/2+sqrt(5)/2)^95 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^56/Lucas(75) 4032516800584945 a004 Fibonacci(14)*Lucas(74)/(1/2+sqrt(5)/2)^93 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^54/Lucas(73) 4032516800584945 a004 Fibonacci(14)*Lucas(72)/(1/2+sqrt(5)/2)^91 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^52/Lucas(71) 4032516800584945 a004 Fibonacci(14)*Lucas(70)/(1/2+sqrt(5)/2)^89 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^50/Lucas(69) 4032516800584945 a004 Fibonacci(14)*Lucas(68)/(1/2+sqrt(5)/2)^87 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^48/Lucas(67) 4032516800584945 a004 Fibonacci(14)*Lucas(66)/(1/2+sqrt(5)/2)^85 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^46/Lucas(65) 4032516800584945 a004 Fibonacci(14)*Lucas(64)/(1/2+sqrt(5)/2)^83 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^44/Lucas(63) 4032516800584945 a001 13/505618944676*23725150497407^(11/16) 4032516800584945 a004 Fibonacci(14)*Lucas(62)/(1/2+sqrt(5)/2)^81 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^42/Lucas(61) 4032516800584945 a004 Fibonacci(14)*Lucas(60)/(1/2+sqrt(5)/2)^79 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^40/Lucas(59) 4032516800584945 a001 377/2139295485799*23725150497407^(5/8) 4032516800584945 a004 Fibonacci(14)*Lucas(58)/(1/2+sqrt(5)/2)^77 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^38/Lucas(57) 4032516800584945 a004 Fibonacci(14)*Lucas(56)/(1/2+sqrt(5)/2)^75 4032516800584945 a001 377/312119004989*14662949395604^(4/7) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^36/Lucas(55) 4032516800584945 a001 377/312119004989*505019158607^(9/14) 4032516800584945 a001 377/1322157322203*192900153618^(13/18) 4032516800584945 a001 377/23725150497407*192900153618^(5/6) 4032516800584945 a004 Fibonacci(14)*Lucas(54)/(1/2+sqrt(5)/2)^73 4032516800584945 a001 377/312119004989*192900153618^(2/3) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^34/Lucas(53) 4032516800584945 a001 377/1322157322203*73681302247^(3/4) 4032516800584945 a001 377/2139295485799*73681302247^(10/13) 4032516800584945 a001 13/505618944676*73681302247^(11/13) 4032516800584945 a004 Fibonacci(14)*Lucas(52)/(1/2+sqrt(5)/2)^71 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^32/Lucas(51) 4032516800584945 a001 377/45537549124*23725150497407^(1/2) 4032516800584945 a001 377/45537549124*505019158607^(4/7) 4032516800584945 a001 377/45537549124*73681302247^(8/13) 4032516800584945 a001 377/192900153618*28143753123^(7/10) 4032516800584945 a001 377/2139295485799*28143753123^(4/5) 4032516800584945 a001 377/23725150497407*28143753123^(9/10) 4032516800584945 a004 Fibonacci(14)*Lucas(50)/(1/2+sqrt(5)/2)^69 4032516800584945 a001 13/599786069*45537549124^(10/17) 4032516800584945 a001 13/599786069*312119004989^(6/11) 4032516800584945 a001 13/599786069*14662949395604^(10/21) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^30/Lucas(49) 4032516800584945 a001 13/599786069*192900153618^(5/9) 4032516800584945 a001 13/599786069*28143753123^(3/5) 4032516800584945 a001 377/73681302247*10749957122^(11/16) 4032516800584945 a001 377/119218851371*10749957122^(17/24) 4032516800584945 a001 377/45537549124*10749957122^(2/3) 4032516800584945 a001 377/312119004989*10749957122^(3/4) 4032516800584945 a001 377/817138163596*10749957122^(19/24) 4032516800584945 a001 377/1322157322203*10749957122^(13/16) 4032516800584945 a001 377/2139295485799*10749957122^(5/6) 4032516800584945 a001 377/5600748293801*10749957122^(7/8) 4032516800584945 a001 13/505618944676*10749957122^(11/12) 4032516800584945 a001 377/23725150497407*10749957122^(15/16) 4032516800584945 a004 Fibonacci(14)*Lucas(48)/(1/2+sqrt(5)/2)^67 4032516800584945 a001 13/599786069*10749957122^(5/8) 4032516800584945 a001 377/6643838879*17393796001^(4/7) 4032516800584945 a001 377/6643838879*14662949395604^(4/9) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^28/Lucas(47) 4032516800584945 a001 377/6643838879*505019158607^(1/2) 4032516800584945 a001 377/6643838879*73681302247^(7/13) 4032516800584945 a001 377/6643838879*10749957122^(7/12) 4032516800584945 a001 377/45537549124*4106118243^(16/23) 4032516800584945 a001 13/599786069*4106118243^(15/23) 4032516800584945 a001 377/119218851371*4106118243^(17/23) 4032516800584945 a001 377/312119004989*4106118243^(18/23) 4032516800584945 a001 377/817138163596*4106118243^(19/23) 4032516800584945 a001 377/2139295485799*4106118243^(20/23) 4032516800584945 a001 377/5600748293801*4106118243^(21/23) 4032516800584945 a001 13/505618944676*4106118243^(22/23) 4032516800584945 a001 377/6643838879*4106118243^(14/23) 4032516800584945 a004 Fibonacci(14)*Lucas(46)/(1/2+sqrt(5)/2)^65 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^26/Lucas(45) 4032516800584945 a001 427858495090/10610209857723 4032516800584945 a001 377/2537720636*73681302247^(1/2) 4032516800584945 a001 377/2537720636*10749957122^(13/24) 4032516800584945 a001 377/2537720636*4106118243^(13/23) 4032516800584945 a001 13/599786069*1568397607^(15/22) 4032516800584945 a001 377/6643838879*1568397607^(7/11) 4032516800584945 a001 377/45537549124*1568397607^(8/11) 4032516800584945 a001 377/73681302247*1568397607^(3/4) 4032516800584945 a001 377/119218851371*1568397607^(17/22) 4032516800584945 a001 377/312119004989*1568397607^(9/11) 4032516800584945 a001 377/817138163596*1568397607^(19/22) 4032516800584945 a001 377/2139295485799*1568397607^(10/11) 4032516800584945 a001 377/5600748293801*1568397607^(21/22) 4032516800584945 a001 377/2537720636*1568397607^(13/22) 4032516800584945 a004 Fibonacci(14)*Lucas(44)/(1/2+sqrt(5)/2)^63 4032516800584945 a001 377/969323029*2537720636^(8/15) 4032516800584945 a001 377/969323029*45537549124^(8/17) 4032516800584945 a001 377/969323029*14662949395604^(8/21) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^24/Lucas(43) 4032516800584945 a001 163427402749/4052739537881 4032516800584945 a001 377/969323029*192900153618^(4/9) 4032516800584945 a001 377/969323029*73681302247^(6/13) 4032516800584945 a001 377/969323029*10749957122^(1/2) 4032516800584945 a001 377/969323029*4106118243^(12/23) 4032516800584945 a001 377/969323029*1568397607^(6/11) 4032516800584945 a001 377/4106118243*599074578^(9/14) 4032516800584945 a001 377/2537720636*599074578^(13/21) 4032516800584945 a001 377/6643838879*599074578^(2/3) 4032516800584945 a001 13/599786069*599074578^(5/7) 4032516800584945 a001 377/45537549124*599074578^(16/21) 4032516800584945 a001 377/73681302247*599074578^(11/14) 4032516800584945 a001 377/119218851371*599074578^(17/21) 4032516800584945 a001 377/192900153618*599074578^(5/6) 4032516800584945 a001 377/312119004989*599074578^(6/7) 4032516800584945 a001 377/817138163596*599074578^(19/21) 4032516800584945 a001 377/1322157322203*599074578^(13/14) 4032516800584945 a001 377/2139295485799*599074578^(20/21) 4032516800584945 a001 377/969323029*599074578^(4/7) 4032516800584945 a004 Fibonacci(14)*Lucas(42)/(1/2+sqrt(5)/2)^61 4032516800584945 a001 377/370248451*312119004989^(2/5) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^22/Lucas(41) 4032516800584945 a001 62423713157/1548008755920 4032516800584945 a001 377/370248451*10749957122^(11/24) 4032516800584945 a001 377/370248451*4106118243^(11/23) 4032516800584945 a001 377/370248451*1568397607^(1/2) 4032516800584945 a001 377/370248451*599074578^(11/21) 4032516800584945 a001 377/1568397607*228826127^(5/8) 4032516800584945 a001 377/969323029*228826127^(3/5) 4032516800584945 a001 377/2537720636*228826127^(13/20) 4032516800584945 a001 377/6643838879*228826127^(7/10) 4032516800584945 a001 13/599786069*228826127^(3/4) 4032516800584945 a001 377/45537549124*228826127^(4/5) 4032516800584945 a001 377/119218851371*228826127^(17/20) 4032516800584945 a001 377/192900153618*228826127^(7/8) 4032516800584945 a001 377/312119004989*228826127^(9/10) 4032516800584945 a001 377/370248451*228826127^(11/20) 4032516800584945 a001 377/817138163596*228826127^(19/20) 4032516800584945 a004 Fibonacci(14)*Lucas(40)/(1/2+sqrt(5)/2)^59 4032516800584945 a001 377/141422324*2537720636^(4/9) 4032516800584945 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^20/Lucas(39) 4032516800584945 a001 377/141422324*23725150497407^(5/16) 4032516800584945 a001 23843736722/591286729879 4032516800584945 a001 377/141422324*505019158607^(5/14) 4032516800584945 a001 377/141422324*73681302247^(5/13) 4032516800584945 a001 377/141422324*28143753123^(2/5) 4032516800584945 a001 377/141422324*10749957122^(5/12) 4032516800584945 a001 377/141422324*4106118243^(10/23) 4032516800584945 a001 377/141422324*1568397607^(5/11) 4032516800584945 a001 377/141422324*599074578^(10/21) 4032516800584945 a001 377/141422324*228826127^(1/2) 4032516800584945 a001 377/370248451*87403803^(11/19) 4032516800584945 a001 377/969323029*87403803^(12/19) 4032516800584945 a001 377/2537720636*87403803^(13/19) 4032516800584945 a001 377/6643838879*87403803^(14/19) 4032516800584945 a001 13/599786069*87403803^(15/19) 4032516800584945 a001 377/45537549124*87403803^(16/19) 4032516800584945 a001 377/119218851371*87403803^(17/19) 4032516800584945 a001 377/141422324*87403803^(10/19) 4032516800584945 a001 377/312119004989*87403803^(18/19) 4032516800584945 a004 Fibonacci(14)*Lucas(38)/(1/2+sqrt(5)/2)^57 4032516800584946 a001 377/54018521*141422324^(6/13) 4032516800584946 a001 377/54018521*2537720636^(2/5) 4032516800584946 a001 377/54018521*45537549124^(6/17) 4032516800584946 a001 377/54018521*14662949395604^(2/7) 4032516800584946 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^18/Lucas(37) 4032516800584946 a001 24157817/599075421 4032516800584946 a001 377/54018521*192900153618^(1/3) 4032516800584946 a001 377/54018521*10749957122^(3/8) 4032516800584946 a001 377/54018521*4106118243^(9/23) 4032516800584946 a001 377/54018521*1568397607^(9/22) 4032516800584946 a001 377/54018521*599074578^(3/7) 4032516800584946 a001 377/54018521*228826127^(9/20) 4032516800584946 a001 377/54018521*87403803^(9/19) 4032516800584947 a001 377/228826127*33385282^(7/12) 4032516800584947 a001 377/141422324*33385282^(5/9) 4032516800584947 a001 377/370248451*33385282^(11/18) 4032516800584947 a001 377/969323029*33385282^(2/3) 4032516800584947 a001 377/2537720636*33385282^(13/18) 4032516800584948 a001 377/4106118243*33385282^(3/4) 4032516800584948 a001 377/6643838879*33385282^(7/9) 4032516800584948 a001 13/599786069*33385282^(5/6) 4032516800584948 a001 377/54018521*33385282^(1/2) 4032516800584948 a001 377/45537549124*33385282^(8/9) 4032516800584948 a001 377/73681302247*33385282^(11/12) 4032516800584948 a001 377/119218851371*33385282^(17/18) 4032516800584948 a004 Fibonacci(14)*Lucas(36)/(1/2+sqrt(5)/2)^55 4032516800584954 a001 377/33385282*12752043^(1/2) 4032516800584954 a001 13/711491*(1/2+1/2*5^(1/2))^16 4032516800584954 a001 13/711491*23725150497407^(1/4) 4032516800584954 a001 3478754305/86267571272 4032516800584954 a001 13/711491*73681302247^(4/13) 4032516800584954 a001 13/711491*10749957122^(1/3) 4032516800584954 a001 13/711491*4106118243^(8/23) 4032516800584954 a001 13/711491*1568397607^(4/11) 4032516800584954 a001 13/711491*599074578^(8/21) 4032516800584954 a001 13/711491*228826127^(2/5) 4032516800584955 a001 13/711491*87403803^(8/19) 4032516800584956 a001 13/711491*33385282^(4/9) 4032516800584959 a001 377/54018521*12752043^(9/17) 4032516800584960 a001 377/141422324*12752043^(10/17) 4032516800584961 a001 377/370248451*12752043^(11/17) 4032516800584962 a001 377/969323029*12752043^(12/17) 4032516800584964 a001 377/2537720636*12752043^(13/17) 4032516800584965 a001 377/6643838879*12752043^(14/17) 4032516800584966 a001 13/711491*12752043^(8/17) 4032516800584967 a001 13/599786069*12752043^(15/17) 4032516800584968 a001 377/45537549124*12752043^(16/17) 4032516800584970 a004 Fibonacci(14)*Lucas(34)/(1/2+sqrt(5)/2)^53 4032516800585006 a001 377/7881196*20633239^(2/5) 4032516800585010 a001 377/7881196*17393796001^(2/7) 4032516800585010 a001 377/7881196*14662949395604^(2/9) 4032516800585010 a001 377/7881196*(1/2+1/2*5^(1/2))^14 4032516800585010 a001 377/7881196*505019158607^(1/4) 4032516800585010 a001 1328765906/32951280099 4032516800585010 a001 377/7881196*10749957122^(7/24) 4032516800585010 a001 377/7881196*4106118243^(7/23) 4032516800585010 a001 377/7881196*1568397607^(7/22) 4032516800585010 a001 377/7881196*599074578^(1/3) 4032516800585010 a001 377/7881196*228826127^(7/20) 4032516800585010 a001 377/7881196*87403803^(7/19) 4032516800585011 a001 377/7881196*33385282^(7/18) 4032516800585020 a001 377/7881196*12752043^(7/17) 4032516800585039 a001 13/711491*4870847^(1/2) 4032516800585042 a001 377/54018521*4870847^(9/16) 4032516800585051 a001 377/141422324*4870847^(5/8) 4032516800585062 a001 377/370248451*4870847^(11/16) 4032516800585072 a001 377/969323029*4870847^(3/4) 4032516800585083 a001 377/2537720636*4870847^(13/16) 4032516800585084 a001 377/7881196*4870847^(7/16) 4032516800585094 a001 377/6643838879*4870847^(7/8) 4032516800585104 a001 13/599786069*4870847^(15/16) 4032516800585115 a004 Fibonacci(14)*Lucas(32)/(1/2+sqrt(5)/2)^51 4032516800585366 a001 377/3010349*7881196^(4/11) 4032516800585390 a001 377/3010349*141422324^(4/13) 4032516800585390 a001 377/3010349*2537720636^(4/15) 4032516800585390 a001 377/3010349*45537549124^(4/17) 4032516800585390 a001 377/3010349*817138163596^(4/19) 4032516800585390 a001 377/3010349*14662949395604^(4/21) 4032516800585390 a001 377/3010349*(1/2+1/2*5^(1/2))^12 4032516800585390 a001 377/3010349*192900153618^(2/9) 4032516800585390 a001 377/3010349*73681302247^(3/13) 4032516800585390 a001 507543413/12586269025 4032516800585390 a001 377/3010349*10749957122^(1/4) 4032516800585390 a001 377/3010349*4106118243^(6/23) 4032516800585390 a001 377/3010349*1568397607^(3/11) 4032516800585390 a001 377/3010349*599074578^(2/7) 4032516800585390 a001 377/3010349*228826127^(3/10) 4032516800585390 a001 377/3010349*87403803^(6/19) 4032516800585391 a001 377/3010349*33385282^(1/3) 4032516800585399 a001 377/3010349*12752043^(6/17) 4032516800585454 a001 377/3010349*4870847^(3/8) 4032516800585503 a001 377/12752043*1860498^(1/2) 4032516800585553 a001 377/7881196*1860498^(7/15) 4032516800585576 a001 13/711491*1860498^(8/15) 4032516800585645 a001 377/54018521*1860498^(3/5) 4032516800585722 a001 377/141422324*1860498^(2/3) 4032516800585760 a001 377/228826127*1860498^(7/10) 4032516800585799 a001 377/370248451*1860498^(11/15) 4032516800585856 a001 377/3010349*1860498^(2/5) 4032516800585877 a001 377/969323029*1860498^(4/5) 4032516800585916 a001 377/1568397607*1860498^(5/6) 4032516800585954 a001 377/2537720636*1860498^(13/15) 4032516800585993 a001 377/4106118243*1860498^(9/10) 4032516800586032 a001 377/6643838879*1860498^(14/15) 4032516800586110 a004 Fibonacci(14)*Lucas(30)/(1/2+sqrt(5)/2)^49 4032516800587992 a001 377/1149851*20633239^(2/7) 4032516800587995 a001 377/1149851*2537720636^(2/9) 4032516800587995 a001 377/1149851*312119004989^(2/11) 4032516800587995 a001 377/1149851*(1/2+1/2*5^(1/2))^10 4032516800587995 a001 377/1149851*28143753123^(1/5) 4032516800587995 a001 377/1149851*10749957122^(5/24) 4032516800587995 a001 193864333/4807526976 4032516800587995 a001 377/1149851*4106118243^(5/23) 4032516800587995 a001 377/1149851*1568397607^(5/22) 4032516800587995 a001 377/1149851*599074578^(5/21) 4032516800587995 a001 377/1149851*228826127^(1/4) 4032516800587995 a001 377/1149851*87403803^(5/19) 4032516800587996 a001 377/1149851*33385282^(5/18) 4032516800588002 a001 377/1149851*12752043^(5/17) 4032516800588048 a001 377/1149851*4870847^(5/16) 4032516800588383 a001 377/1149851*1860498^(1/3) 4032516800588812 a001 377/3010349*710647^(3/7) 4032516800589002 a001 377/7881196*710647^(1/2) 4032516800589517 a001 13/711491*710647^(4/7) 4032516800590079 a001 377/54018521*710647^(9/14) 4032516800590649 a001 377/141422324*710647^(5/7) 4032516800590847 a001 377/1149851*710647^(5/14) 4032516800590933 a001 377/228826127*710647^(3/4) 4032516800591219 a001 377/370248451*710647^(11/14) 4032516800591765 a004 Fibonacci(30)/Lucas(14)/(1/2+sqrt(5)/2)^21 4032516800591789 a001 377/969323029*710647^(6/7) 4032516800592359 a001 377/2537720636*710647^(13/14) 4032516800592760 a004 Fibonacci(32)/Lucas(14)/(1/2+sqrt(5)/2)^23 4032516800592905 a004 Fibonacci(34)/Lucas(14)/(1/2+sqrt(5)/2)^25 4032516800592926 a004 Fibonacci(36)/Lucas(14)/(1/2+sqrt(5)/2)^27 4032516800592929 a004 Fibonacci(38)/Lucas(14)/(1/2+sqrt(5)/2)^29 4032516800592930 a004 Fibonacci(40)/Lucas(14)/(1/2+sqrt(5)/2)^31 4032516800592930 a004 Fibonacci(42)/Lucas(14)/(1/2+sqrt(5)/2)^33 4032516800592930 a004 Fibonacci(44)/Lucas(14)/(1/2+sqrt(5)/2)^35 4032516800592930 a004 Fibonacci(46)/Lucas(14)/(1/2+sqrt(5)/2)^37 4032516800592930 a004 Fibonacci(48)/Lucas(14)/(1/2+sqrt(5)/2)^39 4032516800592930 a004 Fibonacci(50)/Lucas(14)/(1/2+sqrt(5)/2)^41 4032516800592930 a004 Fibonacci(52)/Lucas(14)/(1/2+sqrt(5)/2)^43 4032516800592930 a004 Fibonacci(54)/Lucas(14)/(1/2+sqrt(5)/2)^45 4032516800592930 a004 Fibonacci(14)*Lucas(28)/(1/2+sqrt(5)/2)^47 4032516800592930 a004 Fibonacci(58)/Lucas(14)/(1/2+sqrt(5)/2)^49 4032516800592930 a004 Fibonacci(60)/Lucas(14)/(1/2+sqrt(5)/2)^51 4032516800592930 a004 Fibonacci(62)/Lucas(14)/(1/2+sqrt(5)/2)^53 4032516800592930 a004 Fibonacci(64)/Lucas(14)/(1/2+sqrt(5)/2)^55 4032516800592930 a004 Fibonacci(66)/Lucas(14)/(1/2+sqrt(5)/2)^57 4032516800592930 a004 Fibonacci(68)/Lucas(14)/(1/2+sqrt(5)/2)^59 4032516800592930 a004 Fibonacci(70)/Lucas(14)/(1/2+sqrt(5)/2)^61 4032516800592930 a004 Fibonacci(72)/Lucas(14)/(1/2+sqrt(5)/2)^63 4032516800592930 a004 Fibonacci(74)/Lucas(14)/(1/2+sqrt(5)/2)^65 4032516800592930 a004 Fibonacci(76)/Lucas(14)/(1/2+sqrt(5)/2)^67 4032516800592930 a004 Fibonacci(78)/Lucas(14)/(1/2+sqrt(5)/2)^69 4032516800592930 a004 Fibonacci(80)/Lucas(14)/(1/2+sqrt(5)/2)^71 4032516800592930 a004 Fibonacci(82)/Lucas(14)/(1/2+sqrt(5)/2)^73 4032516800592930 a004 Fibonacci(84)/Lucas(14)/(1/2+sqrt(5)/2)^75 4032516800592930 a004 Fibonacci(86)/Lucas(14)/(1/2+sqrt(5)/2)^77 4032516800592930 a004 Fibonacci(88)/Lucas(14)/(1/2+sqrt(5)/2)^79 4032516800592930 a004 Fibonacci(90)/Lucas(14)/(1/2+sqrt(5)/2)^81 4032516800592930 a004 Fibonacci(92)/Lucas(14)/(1/2+sqrt(5)/2)^83 4032516800592930 a004 Fibonacci(94)/Lucas(14)/(1/2+sqrt(5)/2)^85 4032516800592930 a004 Fibonacci(96)/Lucas(14)/(1/2+sqrt(5)/2)^87 4032516800592930 a004 Fibonacci(100)/Lucas(14)/(1/2+sqrt(5)/2)^91 4032516800592930 a004 Fibonacci(98)/Lucas(14)/(1/2+sqrt(5)/2)^89 4032516800592930 a004 Fibonacci(99)/Lucas(14)/(1/2+sqrt(5)/2)^90 4032516800592930 a004 Fibonacci(97)/Lucas(14)/(1/2+sqrt(5)/2)^88 4032516800592930 a004 Fibonacci(95)/Lucas(14)/(1/2+sqrt(5)/2)^86 4032516800592930 a004 Fibonacci(93)/Lucas(14)/(1/2+sqrt(5)/2)^84 4032516800592930 a004 Fibonacci(91)/Lucas(14)/(1/2+sqrt(5)/2)^82 4032516800592930 a004 Fibonacci(89)/Lucas(14)/(1/2+sqrt(5)/2)^80 4032516800592930 a004 Fibonacci(87)/Lucas(14)/(1/2+sqrt(5)/2)^78 4032516800592930 a004 Fibonacci(85)/Lucas(14)/(1/2+sqrt(5)/2)^76 4032516800592930 a004 Fibonacci(83)/Lucas(14)/(1/2+sqrt(5)/2)^74 4032516800592930 a004 Fibonacci(81)/Lucas(14)/(1/2+sqrt(5)/2)^72 4032516800592930 a004 Fibonacci(79)/Lucas(14)/(1/2+sqrt(5)/2)^70 4032516800592930 a004 Fibonacci(77)/Lucas(14)/(1/2+sqrt(5)/2)^68 4032516800592930 a004 Fibonacci(75)/Lucas(14)/(1/2+sqrt(5)/2)^66 4032516800592930 a004 Fibonacci(73)/Lucas(14)/(1/2+sqrt(5)/2)^64 4032516800592930 a004 Fibonacci(71)/Lucas(14)/(1/2+sqrt(5)/2)^62 4032516800592930 a004 Fibonacci(69)/Lucas(14)/(1/2+sqrt(5)/2)^60 4032516800592930 a004 Fibonacci(67)/Lucas(14)/(1/2+sqrt(5)/2)^58 4032516800592930 a004 Fibonacci(65)/Lucas(14)/(1/2+sqrt(5)/2)^56 4032516800592930 a004 Fibonacci(63)/Lucas(14)/(1/2+sqrt(5)/2)^54 4032516800592930 a004 Fibonacci(61)/Lucas(14)/(1/2+sqrt(5)/2)^52 4032516800592930 a004 Fibonacci(59)/Lucas(14)/(1/2+sqrt(5)/2)^50 4032516800592930 a004 Fibonacci(57)/Lucas(14)/(1/2+sqrt(5)/2)^48 4032516800592930 a004 Fibonacci(55)/Lucas(14)/(1/2+sqrt(5)/2)^46 4032516800592930 a004 Fibonacci(53)/Lucas(14)/(1/2+sqrt(5)/2)^44 4032516800592930 a004 Fibonacci(51)/Lucas(14)/(1/2+sqrt(5)/2)^42 4032516800592930 a004 Fibonacci(49)/Lucas(14)/(1/2+sqrt(5)/2)^40 4032516800592930 a004 Fibonacci(47)/Lucas(14)/(1/2+sqrt(5)/2)^38 4032516800592930 a004 Fibonacci(45)/Lucas(14)/(1/2+sqrt(5)/2)^36 4032516800592930 a004 Fibonacci(43)/Lucas(14)/(1/2+sqrt(5)/2)^34 4032516800592930 a004 Fibonacci(41)/Lucas(14)/(1/2+sqrt(5)/2)^32 4032516800592930 a004 Fibonacci(39)/Lucas(14)/(1/2+sqrt(5)/2)^30 4032516800592931 a004 Fibonacci(37)/Lucas(14)/(1/2+sqrt(5)/2)^28 4032516800592939 a004 Fibonacci(35)/Lucas(14)/(1/2+sqrt(5)/2)^26 4032516800592995 a004 Fibonacci(33)/Lucas(14)/(1/2+sqrt(5)/2)^24 4032516800593375 a004 Fibonacci(31)/Lucas(14)/(1/2+sqrt(5)/2)^22 4032516800595980 a004 Fibonacci(29)/Lucas(14)/(1/2+sqrt(5)/2)^20 4032516800605850 a001 377/439204*(1/2+1/2*5^(1/2))^8 4032516800605850 a001 377/439204*23725150497407^(1/8) 4032516800605850 a001 377/439204*505019158607^(1/7) 4032516800605850 a001 377/439204*73681302247^(2/13) 4032516800605850 a001 377/439204*10749957122^(1/6) 4032516800605850 a001 377/439204*4106118243^(4/23) 4032516800605850 a001 74049586/1836311903 4032516800605850 a001 377/439204*1568397607^(2/11) 4032516800605850 a001 377/439204*599074578^(4/21) 4032516800605850 a001 377/439204*228826127^(1/5) 4032516800605850 a001 377/439204*87403803^(4/19) 4032516800605850 a001 377/439204*33385282^(2/9) 4032516800605855 a001 377/439204*12752043^(4/17) 4032516800605892 a001 377/439204*4870847^(1/4) 4032516800606160 a001 377/439204*1860498^(4/15) 4032516800608131 a001 377/439204*710647^(2/7) 4032516800609044 a001 377/1149851*271443^(5/13) 4032516800610649 a001 377/3010349*271443^(6/13) 4032516800612139 a001 377/4870847*271443^(1/2) 4032516800613834 a004 Fibonacci(27)/Lucas(14)/(1/2+sqrt(5)/2)^18 4032516800614479 a001 377/7881196*271443^(7/13) 4032516800618634 a001 13/711491*271443^(8/13) 4032516800622689 a001 377/439204*271443^(4/13) 4032516800622836 a001 377/54018521*271443^(9/13) 4032516800627044 a001 377/141422324*271443^(10/13) 4032516800631254 a001 377/370248451*271443^(11/13) 4032516800635464 a001 377/969323029*271443^(12/13) 4032516800639625 a001 377/271443*103682^(7/24) 4032516800639674 a004 Fibonacci(14)*Lucas(26)/(1/2+sqrt(5)/2)^45 4032516800657232 a001 377/39603*15127^(3/20) 4032516800717630 a001 377/710647*103682^(3/8) 4032516800723582 a001 377/167761*439204^(2/9) 4032516800728216 a001 377/167761*7881196^(2/11) 4032516800728228 a001 377/167761*141422324^(2/13) 4032516800728228 a001 377/167761*2537720636^(2/15) 4032516800728228 a001 377/167761*45537549124^(2/17) 4032516800728228 a001 377/167761*14662949395604^(2/21) 4032516800728228 a001 377/167761*(1/2+1/2*5^(1/2))^6 4032516800728228 a001 377/167761*10749957122^(1/8) 4032516800728228 a001 377/167761*4106118243^(3/23) 4032516800728228 a001 377/167761*1568397607^(3/22) 4032516800728228 a001 377/167761*599074578^(1/7) 4032516800728228 a001 28284425/701408733 4032516800728228 a001 377/167761*228826127^(3/20) 4032516800728228 a001 377/167761*87403803^(3/19) 4032516800728228 a001 377/167761*33385282^(1/6) 4032516800728232 a001 377/167761*12752043^(3/17) 4032516800728260 a001 377/167761*4870847^(3/16) 4032516800728461 a001 377/167761*1860498^(1/5) 4032516800729939 a001 377/167761*710647^(3/14) 4032516800730889 a001 377/439204*103682^(1/3) 4032516800736213 a004 Fibonacci(25)/Lucas(14)/(1/2+sqrt(5)/2)^16 4032516800740857 a001 377/167761*271443^(3/13) 4032516800744295 a001 377/1149851*103682^(5/12) 4032516800755710 a001 377/1860498*103682^(11/24) 4032516800772949 a001 377/3010349*103682^(1/2) 4032516800787965 a001 377/4870847*103682^(13/24) 4032516800794168 a001 377/103682*39603^(5/22) 4032516800803829 a001 377/7881196*103682^(7/12) 4032516800819370 a001 377/12752043*103682^(5/8) 4032516800822008 a001 377/167761*103682^(1/4) 4032516800835034 a001 13/711491*103682^(2/3) 4032516800850651 a001 377/33385282*103682^(17/24) 4032516800866286 a001 377/54018521*103682^(3/4) 4032516800881914 a001 377/87403803*103682^(19/24) 4032516800897544 a001 377/141422324*103682^(5/6) 4032516800913174 a001 377/228826127*103682^(7/8) 4032516800928804 a001 377/370248451*103682^(11/12) 4032516800944434 a001 377/599074578*103682^(23/24) 4032516800960064 a004 Fibonacci(14)*Lucas(24)/(1/2+sqrt(5)/2)^43 4032516801348295 a001 377/271443*39603^(7/22) 4032516801396224 a001 377/64079*64079^(4/23) 4032516801429438 a001 377/167761*39603^(3/11) 4032516801540797 a001 377/439204*39603^(4/11) 4032516801567020 a001 377/64079*(1/2+1/2*5^(1/2))^4 4032516801567020 a001 377/64079*23725150497407^(1/16) 4032516801567020 a001 377/64079*73681302247^(1/13) 4032516801567020 a001 377/64079*10749957122^(1/12) 4032516801567020 a001 377/64079*4106118243^(2/23) 4032516801567020 a001 377/64079*1568397607^(1/11) 4032516801567020 a001 377/64079*599074578^(2/21) 4032516801567020 a001 377/64079*228826127^(1/10) 4032516801567020 a001 28657/710648 4032516801567020 a001 377/64079*87403803^(2/19) 4032516801567020 a001 377/64079*33385282^(1/9) 4032516801567023 a001 377/64079*12752043^(2/17) 4032516801567041 a001 377/64079*4870847^(1/8) 4032516801567175 a001 377/64079*1860498^(2/15) 4032516801568161 a001 377/64079*710647^(1/7) 4032516801575005 a004 Fibonacci(23)/Lucas(14)/(1/2+sqrt(5)/2)^14 4032516801575440 a001 377/64079*271443^(2/13) 4032516801628776 a001 377/710647*39603^(9/22) 4032516801629540 a001 377/64079*103682^(1/6) 4032516801756679 a001 377/1149851*39603^(5/11) 4032516801869333 a001 377/1860498*39603^(1/2) 4032516801987811 a001 377/3010349*39603^(6/11) 4032516802034494 a001 377/64079*39603^(2/11) 4032516802104065 a001 377/4870847*39603^(13/22) 4032516802221168 a001 377/7881196*39603^(7/11) 4032516802337947 a001 377/12752043*39603^(15/22) 4032516802454850 a001 13/711491*39603^(8/11) 4032516802459701 a001 13/844*9349^(2/19) 4032516802571705 a001 377/33385282*39603^(17/22) 4032516802688579 a001 377/54018521*39603^(9/11) 4032516802805445 a001 377/87403803*39603^(19/22) 4032516802922314 a001 377/141422324*39603^(10/11) 4032516803039182 a001 377/228826127*39603^(21/22) 4032516803156051 a004 Fibonacci(14)*Lucas(22)/(1/2+sqrt(5)/2)^41 4032516803484873 a007 Real Root Of -249*x^4-857*x^3+528*x^2-115*x+596 4032516804615481 a001 377/103682*15127^(1/4) 4032516805091545 a001 377/64079*15127^(1/5) 4032516806015015 a001 377/167761*15127^(3/10) 4032516806675117 a001 13/844*24476^(2/21) 4032516806698134 a001 377/271443*15127^(7/20) 4032516807230790 a001 13/844*64079^(2/23) 4032516807316188 a001 13/844*(1/2+1/2*5^(1/2))^2 4032516807316188 a001 13/844*10749957122^(1/24) 4032516807316188 a001 13/844*4106118243^(1/23) 4032516807316188 a001 13/844*1568397607^(1/22) 4032516807316188 a001 13/844*599074578^(1/21) 4032516807316188 a001 13/844*228826127^(1/20) 4032516807316188 a001 13/844*87403803^(1/19) 4032516807316188 a001 4126642/102334155 4032516807316188 a001 13/844*33385282^(1/18) 4032516807316190 a001 13/844*12752043^(1/17) 4032516807316199 a001 13/844*4870847^(1/16) 4032516807316266 a001 13/844*1860498^(1/15) 4032516807316759 a001 13/844*710647^(1/14) 4032516807320398 a001 13/844*271443^(1/13) 4032516807324173 a004 Fibonacci(21)/Lucas(14)/(1/2+sqrt(5)/2)^12 4032516807347448 a001 13/844*103682^(1/12) 4032516807359394 a001 4181/1149851*521^(5/13) 4032516807549925 a001 13/844*39603^(1/11) 4032516807654899 a001 377/439204*15127^(2/5) 4032516808507141 a001 377/710647*15127^(9/20) 4032516809078451 a001 13/844*15127^(1/10) 4032516809399307 a001 377/1149851*15127^(1/2) 4032516810276223 a001 377/1860498*15127^(11/20) 4032516811158964 a001 377/3010349*15127^(3/5) 4032516812039480 a001 377/4870847*15127^(13/20) 4032516812920847 a001 377/7881196*15127^(7/10) 4032516813801888 a001 377/12752043*15127^(3/4) 4032516814683054 a001 13/711491*15127^(4/5) 4032516815564172 a001 377/33385282*15127^(17/20) 4032516816445308 a001 377/54018521*15127^(9/10) 4032516817326437 a001 377/87403803*15127^(19/20) 4032516818145049 a001 377/39603*5778^(1/6) 4032516818207569 a004 Fibonacci(14)*Lucas(20)/(1/2+sqrt(5)/2)^39 4032516820736995 a001 13/844*5778^(1/9) 4032516826964049 m001 (RenyiParking+Tribonacci)^Porter 4032516828408633 a001 377/64079*5778^(2/9) 4032516829730467 m001 (ln(5)-GolombDickman)/(Magata+Riemann2ndZero) 4032516833761842 a001 377/103682*5778^(5/18) 4032516834705329 a001 377/15127*2207^(1/16) 4032516837218130 r009 Re(z^3+c),c=-14/27+5/27*I,n=24 4032516840990648 a001 377/167761*5778^(1/3) 4032516846721574 a001 377/9349 4032516846729558 a004 Fibonacci(19)/Lucas(14)/(1/2+sqrt(5)/2)^10 4032516847503039 a001 377/271443*5778^(7/18) 4032516851561214 m001 1/sinh(1)*ln(cos(Pi/5))*sqrt(5) 4032516854289077 a001 377/439204*5778^(4/9) 4032516857120921 m006 (1/5*ln(Pi)+4/5)/(3/5*Pi+2/3) 4032516857643791 a007 Real Root Of 81*x^4-15*x^3+87*x^2-586*x+221 4032516859761269 s001 sum(exp(-2*Pi/5)^n*A127504[n],n=1..infinity) 4032516859761269 s002 sum(A127504[n]/(exp(2/5*pi*n)),n=1..infinity) 4032516860970590 a001 377/710647*5778^(1/2) 4032516864562254 r005 Re(z^2+c),c=-14/27+13/35*I,n=22 4032516867692029 a001 377/1149851*5778^(5/9) 4032516874398217 a001 377/1860498*5778^(11/18) 4032516876593089 r005 Im(z^2+c),c=-63/58+3/64*I,n=19 4032516881110231 a001 377/3010349*5778^(2/3) 4032516887820019 a001 377/4870847*5778^(13/18) 4032516894530658 a001 377/7881196*5778^(7/9) 4032516901240971 a001 377/12752043*5778^(5/6) 4032516907951409 a001 13/711491*5778^(8/9) 4032516909712255 m005 (1/3*5^(1/2)-2/9)/(2*gamma+1/7) 4032516910802205 a001 13/844*2207^(1/8) 4032516912711955 r008 a(0)=4,K{-n^6,-54+23*n+63*n^2-63*n^3} 4032516914661800 a001 377/33385282*5778^(17/18) 4032516916488291 r005 Im(z^2+c),c=-69/56+6/47*I,n=20 4032516921372207 a004 Fibonacci(14)*Lucas(18)/(1/2+sqrt(5)/2)^37 4032516923410728 m001 (StolarskyHarborth-Thue)/(Gompertz+MertensB3) 4032516949251976 r002 31th iterates of z^2 + 4032516953242865 a001 377/39603*2207^(3/16) 4032516953844953 a008 Real Root of x^4-x^3-15*x^2+2*x+37 4032516957128657 a001 3571/365435296162*89^(6/19) 4032516958811419 r005 Im(z^2+c),c=-23/94+37/62*I,n=40 4032516966663203 m001 (Kolakoski+Mills)/(GAMMA(13/24)+FeigenbaumMu) 4032516973096745 m005 (1/2*Pi-8/11)/(11/9+7/18*5^(1/2)) 4032516975352772 r002 2th iterates of z^2 + 4032516976835496 a007 Real Root Of 310*x^4-810*x^3+680*x^2-616*x-26 4032516980954945 m005 (1/2*2^(1/2)-1/12)/(17/24+3/8*5^(1/2)) 4032516988533511 r002 35th iterates of z^2 + 4032516992619359 a007 Real Root Of -637*x^4-717*x^3-326*x^2+603*x+266 4032517008539056 a001 377/64079*2207^(1/4) 4032517015894207 r009 Im(z^3+c),c=-7/27+35/51*I,n=19 4032517018040581 r005 Re(z^2+c),c=-59/122+23/62*I,n=18 4032517019808536 r005 Re(z^2+c),c=-19/36+21/62*I,n=24 4032517020098439 r005 Im(z^2+c),c=-67/114+18/41*I,n=52 4032517030630164 r005 Im(z^2+c),c=-25/78+33/56*I,n=52 4032517030819427 r008 a(0)=4,K{-n^6,-46-36*n^3-14*n^2+65*n} 4032517034006383 r005 Im(z^2+c),c=-109/94+3/58*I,n=48 4032517037420767 r008 a(0)=4,K{-n^6,-14-40*n^3+14*n^2+9*n} 4032517037641933 a007 Real Root Of 698*x^4-474*x^3-487*x^2-550*x+23 4032517054499733 r008 a(0)=4,K{-n^6,-36-33*n^3-18*n^2+56*n} 4032517058924873 a001 377/103682*2207^(5/16) 4032517061123290 a001 1/305*1836311903^(2/17) 4032517061421116 r002 2th iterates of z^2 + 4032517061421116 r002 2th iterates of z^2 + 4032517068198319 r005 Im(z^2+c),c=11/34+15/62*I,n=47 4032517076234599 a001 987/167761*521^(4/13) 4032517077465775 a001 1597/439204*521^(5/13) 4032517079404400 m001 (3^(1/2)+cos(1))/(BesselJ(1,1)+Champernowne) 4032517088835308 a003 sin(Pi*8/43)*sin(Pi*6/23) 4032517089181840 m001 (gamma(3)+Backhouse)/(Otter+TwinPrimes) 4032517090957323 r008 a(0)=4,K{-n^6,-2+7*n-4*n^2-32*n^3} 4032517096392577 l006 ln(2563/3836) 4032517096716166 r008 a(0)=4,K{-n^6,4-32*n^3-n^2-2*n} 4032517102833226 r005 Im(z^2+c),c=-19/16+5/127*I,n=5 4032517104385828 g006 Psi(1,7/9)+Psi(1,1/7)-Psi(1,7/12)-Psi(1,4/11) 4032517109233000 a007 Real Root Of -142*x^4-487*x^3+349*x^2+59*x+177 4032517111186286 a001 377/167761*2207^(3/8) 4032517116810106 a001 602069/14930352 4032517116810127 a004 Fibonacci(14)/Lucas(17)/(1/2+sqrt(5)/2)^2 4032517116818087 a004 Fibonacci(17)/Lucas(14)/(1/2+sqrt(5)/2)^8 4032517128349717 m001 Lehmer^2*ln(Bloch)*GAMMA(7/12) 4032517129198770 v002 sum(1/(5^n+(22*n^2-65*n+88)),n=1..infinity) 4032517139409382 r008 a(0)=4,K{-n^6,22-28*n^3-4*n^2-21*n} 4032517154016746 m001 (gamma(3)-OneNinth)/(Riemann3rdZero+Salem) 4032517157371387 r005 Re(z^2+c),c=-69/122+1/33*I,n=42 4032517162485380 m001 (cos(1)+GAMMA(3/4))/(-gamma(3)+TreeGrowth2nd) 4032517162731286 a001 377/271443*2207^(7/16) 4032517164727611 a007 Real Root Of -733*x^4-91*x^3-717*x^2-310*x+5 4032517180725947 r009 Im(z^3+c),c=-23/44+22/63*I,n=50 4032517188278497 a001 377/15127*843^(1/14) 4032517195536613 a007 Real Root Of -865*x^4+805*x^3-670*x^2-495*x-15 4032517204806059 r005 Re(z^2+c),c=-49/90+13/49*I,n=52 4032517204926990 a007 Real Root Of -860*x^4+391*x^3+868*x^2+724*x-436 4032517214549933 a001 377/439204*2207^(1/2) 4032517218143630 m001 1/exp(GAMMA(5/24))/FeigenbaumDelta*GAMMA(7/12) 4032517218657774 r008 a(0)=4,K{-n^6,48-21*n^3-12*n^2-46*n} 4032517227217217 a001 9349/956722026041*89^(6/19) 4032517228560223 m005 (1/2*exp(1)+8/11)/(4/11*Pi-5/8) 4032517231359396 r002 35th iterates of z^2 + 4032517231564032 m005 (1/3*gamma+2/7)/(3/4*2^(1/2)+1/8) 4032517242128703 r008 a(0)=4,K{-n^6,42-29*n-27*n^2-17*n^3} 4032517245485421 r005 Re(z^2+c),c=-23/31+1/61*I,n=34 4032517252927027 r008 a(0)=4,K{-n^6,44-16*n^3-29*n^2-30*n} 4032517266264057 a001 377/710647*2207^(9/16) 4032517266622607 a001 24476/2504730781961*89^(6/19) 4032517267385183 r005 Im(z^2+c),c=5/27+5/13*I,n=64 4032517271844893 m001 (Porter-Riemann2ndZero)/(3^(1/3)+Magata) 4032517271910261 r004 Im(z^2+c),c=-1/30+7/13*I,z(0)=I,n=56 4032517272371776 a001 64079/6557470319842*89^(6/19) 4032517273728970 a001 2206/225749145909*89^(6/19) 4032517275924957 a001 39603/4052739537881*89^(6/19) 4032517278824061 a003 cos(Pi*5/32)*cos(Pi*15/43) 4032517282400846 a003 cos(Pi*19/105)*cos(Pi*29/85) 4032517290976477 a001 15127/1548008755920*89^(6/19) 4032517294742623 r005 Re(z^2+c),c=-19/34+13/75*I,n=28 4032517300886296 r002 9th iterates of z^2 + 4032517306933664 r005 Re(z^2+c),c=-27/50+17/59*I,n=49 4032517318018106 a001 377/1149851*2207^(5/8) 4032517320974891 m008 (1/3*Pi^4+3/5)/(5/6*Pi^4+5/6) 4032517323396879 m001 (Catalan+Paris)/(Salem+Totient) 4032517323636122 r005 Re(z^2+c),c=-9/16+1/75*I,n=21 4032517341876211 a007 Real Root Of -17*x^4-708*x^3-925*x^2-739*x+788 4032517350519921 m003 -1+(33*Sqrt[5])/64+Csc[1/2+Sqrt[5]/2]/4 4032517360472345 m001 1/LaplaceLimit*exp(FransenRobinson)^2*Paris^2 4032517363730437 r005 Im(z^2+c),c=11/36+13/49*I,n=39 4032517369756905 a001 377/1860498*2207^(11/16) 4032517382189048 m001 (PrimesInBinary+Thue)/(FeigenbaumD+PlouffeB) 4032517382364616 r005 Re(z^2+c),c=-7/12+19/67*I,n=20 4032517383263729 m001 (1+Pi^(1/2))/(-LandauRamanujan+ZetaP(4)) 4032517388540316 m001 GAMMA(17/24)/(FeigenbaumC+FeigenbaumKappa) 4032517394141127 a001 5778/591286729879*89^(6/19) 4032517394679030 m006 (3/4*Pi^2-3/5)/(3/5*ln(Pi)+1) 4032517402310418 a007 Real Root Of -59*x^4-456*x^3-941*x^2+38*x+140 4032517404086980 r005 Re(z^2+c),c=-17/29+17/49*I,n=37 4032517415752880 r009 Im(z^3+c),c=-23/62+7/16*I,n=6 4032517417871621 m001 ErdosBorwein/(exp(1)+BesselI(0,1)) 4032517421501531 a001 377/3010349*2207^(3/4) 4032517422036782 s002 sum(A057408[n]/(n^3*2^n-1),n=1..infinity) 4032517437430407 a007 Real Root Of 194*x^4-466*x^3-855*x^2-906*x-262 4032517445021584 r009 Re(z^3+c),c=-33/86+3/28*I,n=13 4032517453351143 b008 -1+(2/7)^Pi+EulerGamma 4032517454902952 r005 Im(z^2+c),c=-1/31+32/59*I,n=28 4032517455521892 r008 a(0)=4,K{-n^6,60+57*n^3-68*n^2-79*n} 4032517473243932 a001 377/4870847*2207^(13/16) 4032517473891965 a001 317811/47*11^(35/47) 4032517484110369 r009 Im(z^3+c),c=-5/13+11/29*I,n=29 4032517489638604 m002 -(E^Pi*Pi^3)+Pi^4*Sinh[Pi]*Tanh[Pi] 4032517492665996 m001 MertensB1*GolombDickman^2/exp(arctan(1/2))^2 4032517498503037 l006 ln(6483/9703) 4032517502555157 r002 24th iterates of z^2 + 4032517510077331 r005 Re(z^2+c),c=-79/126+5/28*I,n=17 4032517511620894 m004 1/15-Tan[Sqrt[5]*Pi]/Log[Sqrt[5]*Pi] 4032517511927286 h001 (3/8*exp(2)+2/3)/(3/11*exp(1)+1/9) 4032517524987184 a001 377/7881196*2207^(7/8) 4032517534449759 r009 Re(z^3+c),c=-5/82+16/33*I,n=11 4032517538137370 m001 BesselK(0,1)^2*CopelandErdos^2/ln(GAMMA(1/12)) 4032517538250216 m002 -Pi^4-Pi^5+2/(Pi^2*Log[Pi]) 4032517546612070 r008 a(0)=4,K{-n^6,-23+39*n^3-87*n^2+28*n} 4032517555754006 m001 exp(sinh(1))^2*exp(1)*sqrt(2) 4032517560902700 r005 Re(z^2+c),c=-27/52+21/58*I,n=39 4032517575456728 r005 Re(z^2+c),c=1/48+37/57*I,n=50 4032517576730111 a001 377/12752043*2207^(15/16) 4032517584594115 r008 a(0)=4,K{-n^6,-73-16*n^3+28*n^2+28*n} 4032517597219195 r002 37th iterates of z^2 + 4032517600622159 a007 Real Root Of -327*x^4-77*x^3-562*x^2+558*x+320 4032517602765973 r005 Re(z^2+c),c=-14/25+4/29*I,n=46 4032517607070394 m005 (1/2*Catalan-4/7)/(4/5*Pi+3/10) 4032517614143367 r002 2th iterates of z^2 + 4032517617948587 a001 13/844*843^(1/7) 4032517628473154 a004 Fibonacci(14)*Lucas(16)/(1/2+sqrt(5)/2)^35 4032517655974136 a007 Real Root Of -124*x^4+549*x^3+527*x^2+559*x+179 4032517655992612 r005 Re(z^2+c),c=-19/34+11/127*I,n=16 4032517667049594 r005 Re(z^2+c),c=-67/122+7/30*I,n=55 4032517681137945 m001 BesselK(0,1)^GAMMA(3/4)/Thue 4032517681585494 m005 (1/2*5^(1/2)-5/7)/(8/11*5^(1/2)-5/8) 4032517681712301 a001 1/17*10946^(5/11) 4032517690728988 r002 62th iterates of z^2 + 4032517704847835 r005 Re(z^2+c),c=-31/48+25/59*I,n=51 4032517706284501 m001 1/FeigenbaumB*FeigenbaumAlpha*ln((3^(1/3)))^2 4032517707249934 r005 Im(z^2+c),c=5/27+5/13*I,n=53 4032517714272859 m001 (Mills+Riemann2ndZero)/(Zeta(5)-BesselI(1,2)) 4032517718659089 r009 Im(z^3+c),c=-63/122+14/23*I,n=54 4032517727742950 m001 (Catalan-arctan(1/2))^ln(Pi) 4032517736372718 r005 Im(z^2+c),c=1/126+17/33*I,n=27 4032517761413516 l006 ln(3920/5867) 4032517765089387 r005 Re(z^2+c),c=-59/82+1/62*I,n=22 4032517783213362 a001 34/5779*521^(4/13) 4032517785844111 a001 610/271443*521^(6/13) 4032517785870732 r005 Re(z^2+c),c=-9/16+11/105*I,n=64 4032517795844110 r005 Re(z^2+c),c=-11/18+3/64*I,n=12 4032517797934003 m001 (-KhinchinLevy+Trott2nd)/(2^(1/2)-Zeta(1/2)) 4032517800001498 r005 Re(z^2+c),c=-71/122+23/59*I,n=30 4032517803237395 a007 Real Root Of -311*x^4-994*x^3+955*x^2-372*x+27 4032517815366314 r005 Im(z^2+c),c=-53/98+30/49*I,n=44 4032517827368194 s002 sum(A005716[n]/(10^n-1),n=1..infinity) 4032517836054165 h001 (-3*exp(6)+7)/(-exp(8)-3) 4032517840132202 r002 41th iterates of z^2 + 4032517843739999 a007 Real Root Of -398*x^4-336*x^3-295*x^2+842*x+376 4032517844053435 m001 1/Zeta(1,2)^2*GAMMA(19/24)*ln(gamma)^2 4032517864180818 h001 (7/11*exp(2)+3/5)/(1/6*exp(2)+1/12) 4032517864391239 a005 (1/sin(97/207*Pi))^1231 4032517864990369 r005 Im(z^2+c),c=-5/31+23/49*I,n=4 4032517873028173 a001 1/987*4181^(28/39) 4032517881021573 r009 Im(z^3+c),c=-11/64+19/42*I,n=18 4032517884131561 r005 Im(z^2+c),c=5/27+5/13*I,n=61 4032517886360173 a001 6765/1149851*521^(4/13) 4032517899180546 r005 Im(z^2+c),c=21/64+4/17*I,n=59 4032517901409090 a001 17711/3010349*521^(4/13) 4032517903604697 a001 11592/1970299*521^(4/13) 4032517903925032 a001 121393/20633239*521^(4/13) 4032517903971768 a001 317811/54018521*521^(4/13) 4032517903978587 a001 208010/35355581*521^(4/13) 4032517903979582 a001 2178309/370248451*521^(4/13) 4032517903979727 a001 5702887/969323029*521^(4/13) 4032517903979748 a001 196452/33391061*521^(4/13) 4032517903979751 a001 39088169/6643838879*521^(4/13) 4032517903979752 a001 102334155/17393796001*521^(4/13) 4032517903979752 a001 66978574/11384387281*521^(4/13) 4032517903979752 a001 701408733/119218851371*521^(4/13) 4032517903979752 a001 1836311903/312119004989*521^(4/13) 4032517903979752 a001 1201881744/204284540899*521^(4/13) 4032517903979752 a001 12586269025/2139295485799*521^(4/13) 4032517903979752 a001 32951280099/5600748293801*521^(4/13) 4032517903979752 a001 1135099622/192933544679*521^(4/13) 4032517903979752 a001 139583862445/23725150497407*521^(4/13) 4032517903979752 a001 53316291173/9062201101803*521^(4/13) 4032517903979752 a001 10182505537/1730726404001*521^(4/13) 4032517903979752 a001 7778742049/1322157322203*521^(4/13) 4032517903979752 a001 2971215073/505019158607*521^(4/13) 4032517903979752 a001 567451585/96450076809*521^(4/13) 4032517903979752 a001 433494437/73681302247*521^(4/13) 4032517903979752 a001 165580141/28143753123*521^(4/13) 4032517903979752 a001 31622993/5374978561*521^(4/13) 4032517903979753 a001 24157817/4106118243*521^(4/13) 4032517903979761 a001 9227465/1568397607*521^(4/13) 4032517903979817 a001 1762289/299537289*521^(4/13) 4032517903980197 a001 1346269/228826127*521^(4/13) 4032517903982801 a001 514229/87403803*521^(4/13) 4032517904000653 a001 98209/16692641*521^(4/13) 4032517904123010 a001 75025/12752043*521^(4/13) 4032517904961657 a001 28657/4870847*521^(4/13) 4032517910709832 a001 5473/930249*521^(4/13) 4032517920863181 s001 sum(exp(-Pi/4)^n*A111903[n],n=1..infinity) 4032517932337906 a007 Real Root Of 257*x^4-318*x^3+381*x^2-368*x-238 4032517932342794 r008 a(0)=4,K{-n^6,-53-61*n^3+58*n^2+25*n} 4032517938501120 r008 a(0)=4,K{-n^6,-49+21*n+57*n^2-60*n^3} 4032517942249820 r008 a(0)=4,K{-n^6,-43+12*n+60*n^2-60*n^3} 4032517943762165 r005 Re(z^2+c),c=-3/118+32/47*I,n=9 4032517950108408 a001 4181/710647*521^(4/13) 4032517957464587 m001 (Cahen+Salem)/(Sierpinski+Tetranacci) 4032517969144532 r005 Re(z^2+c),c=1/48+13/48*I,n=11 4032518004806645 v002 sum(1/(5^n+(9/2*n^2-11/2*n+45)),n=1..infinity) 4032518007094538 m001 BesselJ(0,1)/exp(Bloch)^2*GAMMA(2/3) 4032518007132843 r005 Im(z^2+c),c=1/64+32/63*I,n=41 4032518007581635 a007 Real Root Of -575*x^4+443*x^3-640*x^2+515*x+356 4032518013429234 r004 Re(z^2+c),c=-2/9+5/18*I,z(0)=I,n=4 4032518013962495 a001 377/39603*843^(3/14) 4032518027509391 m001 1/Khintchine/Bloch^2*exp(BesselJ(1,1))^2 4032518029121789 r005 Re(z^2+c),c=-9/16+8/77*I,n=43 4032518040706490 r009 Re(z^3+c),c=-31/64+12/53*I,n=23 4032518043406111 r008 a(0)=4,K{-n^6,-47-36*n^3-14*n^2+66*n} 4032518047360719 m005 (1/3*gamma-1/11)/(7/9*5^(1/2)+7/9) 4032518047994498 a008 Real Root of x^4-4*x^2-104*x+220 4032518053475247 r008 a(0)=4,K{-n^6,-5-41*n^3+22*n^2-7*n} 4032518057696693 a007 Real Root Of 101*x^4+268*x^3-702*x^2-584*x-73 4032518060122871 a007 Real Root Of 453*x^4+775*x^3+53*x^2-425*x+17 4032518067374946 r008 a(0)=4,K{-n^6,-37-33*n^3-18*n^2+57*n} 4032518072009135 m001 Pi*csc(11/24*Pi)/GAMMA(13/24)-Si(Pi)^MertensB2 4032518075866516 r009 Re(z^3+c),c=-5/13+37/60*I,n=11 4032518083098093 r005 Re(z^2+c),c=-21/40+11/30*I,n=43 4032518084394305 m001 (-exp(1/Pi)+3)/(-cos(1)+1/2) 4032518084409268 l006 ln(5277/7898) 4032518084468511 m001 (2^(1/3))*ln(FeigenbaumKappa)*GAMMA(23/24)^2 4032518085017585 r005 Re(z^2+c),c=9/86+21/61*I,n=9 4032518093407575 m005 (1/2*Pi+4)/(3/11*3^(1/2)+10/11) 4032518094731720 r008 a(0)=4,K{-n^6,-1-34*n^3+3*n^2+n} 4032518101242157 a001 2207/225851433717*89^(6/19) 4032518122009721 r008 a(0)=4,K{-n^6,27-34*n^3+17*n^2-41*n} 4032518128488269 r005 Im(z^2+c),c=23/78+7/27*I,n=15 4032518128846096 m008 (3/5*Pi^2+1/4)/(5*Pi^5+2/5) 4032518141009581 r005 Im(z^2+c),c=9/118+29/62*I,n=53 4032518141964038 r002 6th iterates of z^2 + 4032518144819651 r008 a(0)=4,K{-n^6,-23+58*n-44*n^2-22*n^3} 4032518153345229 r008 a(0)=4,K{-n^6,21-28*n^3-4*n^2-20*n} 4032518157821045 p003 LerchPhi(1/8,1,112/41) 4032518161723314 m005 (1/2*exp(1)-11/12)/(1/10*5^(1/2)-1/3) 4032518162426658 r005 Re(z^2+c),c=-15/28+4/11*I,n=31 4032518170946429 a007 Real Root Of 988*x^4+15*x^3-957*x^2-827*x+462 4032518193028331 m005 (1/3*Catalan-1/5)/(1/8*gamma-1/3) 4032518199430471 m001 (Pi^(1/2)-cos(1))/(-QuadraticClass+Stephens) 4032518207523235 r005 Re(z^2+c),c=-9/16+3/29*I,n=35 4032518218476321 a001 21/2206*521^(3/13) 4032518220150266 a001 1597/271443*521^(4/13) 4032518224631602 m001 sin(1/5*Pi)^(Psi(2,1/3)*FibonacciFactorial) 4032518225950919 r008 a(0)=4,K{-n^6,47-47*n-9*n^2-22*n^3} 4032518234091204 r005 Re(z^2+c),c=-119/82+1/55*I,n=4 4032518243529620 m008 (1/5*Pi^5+4/5)/(1/2*Pi^5+3/4) 4032518254682029 r008 a(0)=4,K{-n^6,51-47*n-16*n^2-19*n^3} 4032518261708277 m001 (Lehmer-ln(2)/ln(10)*sin(1))/sin(1) 4032518275265963 l006 ln(6634/9929) 4032518283475073 m005 (1/3*Catalan-1/12)/(1/8*2^(1/2)-8/11) 4032518287028486 m001 (Ei(1)-Zeta(1,-1))/(GAMMA(19/24)-LaplaceLimit) 4032518288444496 r009 Im(z^3+c),c=-39/82+15/46*I,n=23 4032518307526767 r005 Re(z^2+c),c=-1/118+32/51*I,n=25 4032518314077765 r005 Re(z^2+c),c=-51/94+17/60*I,n=36 4032518315442725 r009 Im(z^3+c),c=-41/106+10/27*I,n=9 4032518317402813 r005 Re(z^2+c),c=-71/122+2/17*I,n=15 4032518317778231 a007 Real Root Of 619*x^4-37*x^3-672*x^2-820*x+426 4032518319265034 r005 Re(z^2+c),c=-9/16+11/105*I,n=56 4032518330862620 r009 Im(z^3+c),c=-23/60+22/57*I,n=6 4032518340502676 m001 ReciprocalFibonacci^sin(1)+2^(1/3) 4032518341190322 r005 Im(z^2+c),c=-1/21+17/35*I,n=8 4032518360846666 r005 Im(z^2+c),c=-11/18+17/43*I,n=31 4032518395968700 a007 Real Root Of 879*x^4-560*x^3-949*x^2-985*x+565 4032518400223774 r005 Re(z^2+c),c=23/74+2/31*I,n=2 4032518408670242 l006 ln(72/4061) 4032518419901216 m001 (Gompertz-Kolakoski)/(Pi+Pi^(1/2)) 4032518422831978 a001 377/64079*843^(2/7) 4032518428754314 r005 Re(z^2+c),c=-69/122+31/56*I,n=16 4032518429806894 r005 Re(z^2+c),c=-19/110+37/58*I,n=52 4032518464911981 m001 (Artin-Rabbit)^FeigenbaumB 4032518470968987 r009 Re(z^3+c),c=-37/86+7/43*I,n=25 4032518483588904 m001 Artin+ZetaP(4)^exp(1/Pi) 4032518492176503 r002 43th iterates of z^2 + 4032518505415184 r009 Im(z^3+c),c=-1/11+13/28*I,n=19 4032518515668842 p001 sum(1/(261*n+253)/(25^n),n=0..infinity) 4032518522523258 r005 Im(z^2+c),c=17/126+17/40*I,n=58 4032518523030080 r002 14th iterates of z^2 + 4032518532067477 r005 Im(z^2+c),c=17/48+1/5*I,n=49 4032518569951667 a007 Real Root Of -230*x^4-771*x^3+555*x^2-521*x-865 4032518570097366 r009 Re(z^3+c),c=-7/82+33/47*I,n=6 4032518579528444 m001 (5^(1/2)+GAMMA(2/3))/(PlouffeB+PrimesInBinary) 4032518580071057 m003 -33/8+Sqrt[5]/16+Cot[1/2+Sqrt[5]/2] 4032518588478800 r005 Re(z^2+c),c=-8/15+19/55*I,n=40 4032518601551154 r009 Re(z^3+c),c=-14/31+5/31*I,n=10 4032518602957439 a001 956722026041/47*7881196^(21/23) 4032518602957498 a001 39088169/47*505019158607^(21/23) 4032518602957498 a001 4052739537881/47*141422324^(16/23) 4032518602957498 a001 102287808*969323029^(22/23) 4032518602957498 a001 12586269025/47*2537720636^(20/23) 4032518602957498 a001 1836311903/47*9062201101803^(16/23) 4032518602957498 a001 12586269025/47*3461452808002^(15/23) 4032518602957498 a001 12586269025/47*28143753123^(18/23) 4032518602957498 a001 32951280099/47*5600748293801^(14/23) 4032518602957498 a001 956722026041/47*14662949395604^(11/23) 4032518602957498 a001 4052739537881/47*73681302247^(12/23) 4032518602957498 a001 4052739537881/47*10749957122^(13/23) 4032518602957498 a001 2971215073/47*45537549124^(19/23) 4032518602957498 a001 2971215073/47*817138163596^(17/23) 4032518602957517 a001 225749145909*12752043^(17/23) 4032518605385681 r002 45th iterates of z^2 + 4032518613190494 a007 Real Root Of -933*x^4+209*x^3+42*x^2+903*x-360 4032518615415136 r008 a(0)=4,K{-n^6,-14+30*n^3-62*n^2+8*n} 4032518616634466 m009 (2/3*Psi(1,2/3)+2)/(3*Psi(1,2/3)+5/6) 4032518629993362 a007 Real Root Of 870*x^4+707*x^3+722*x^2-538*x-311 4032518633228584 a007 Real Root Of 297*x^4+13*x^3-228*x^2-710*x+29 4032518643814838 a007 Real Root Of 974*x^4+893*x^3+986*x^2-574*x-359 4032518665300290 r002 3th iterates of z^2 + 4032518671518655 r002 7th iterates of z^2 + 4032518674542194 a007 Real Root Of -366*x^4+845*x^3-949*x^2+490*x+417 4032518681075189 m001 1/exp(FeigenbaumKappa)/Porter/TwinPrimes^2 4032518686501391 g007 Psi(2,7/11)+Psi(2,1/6)-Psi(2,5/9)-Psi(2,3/7) 4032518702808746 m001 (-GAMMA(19/24)+1/3)/(-Catalan+3) 4032518705179687 m001 (3^(1/2)-HardHexagonsEntropy)/GaussAGM 4032518709929231 a007 Real Root Of 130*x^4-506*x^3+934*x^2+522*x+22 4032518711495542 r005 Im(z^2+c),c=19/74+7/22*I,n=41 4032518716719192 m006 (2*Pi^2+1/6)/(1/5/Pi-5) 4032518730329090 r002 10th iterates of z^2 + 4032518733459563 m005 (1/2*2^(1/2)+4/9)/(1/12*3^(1/2)-3) 4032518740280907 m001 1/GAMMA(5/12)*Khintchine*exp(sqrt(3))^2 4032518740604411 r002 62th iterates of z^2 + 4032518743686767 r002 38th iterates of z^2 + 4032518755380632 m001 GAMMA(5/24)^(cos(Pi/12)/GAMMA(23/24)) 4032518764726441 a001 29/10946*1346269^(27/52) 4032518778406330 a003 sin(Pi*5/108)/cos(Pi*18/47) 4032518794994642 r009 Re(z^3+c),c=-43/94+5/26*I,n=39 4032518799620045 a001 233/15127*199^(2/11) 4032518807154130 r009 Im(z^3+c),c=-16/31+7/24*I,n=54 4032518808429670 m001 ln(Zeta(7))*GolombDickman*log(1+sqrt(2))^2 4032518811164228 m001 Sarnak-Weierstrass^GAMMA(7/12) 4032518826791124 a001 377/103682*843^(5/14) 4032518831900928 a001 199/139583862445*514229^(21/22) 4032518833616791 a007 Real Root Of 173*x^4+836*x^3+492*x^2-221*x+182 4032518862070054 m001 OneNinth+exp(-1/2*Pi)^StronglyCareFree 4032518867353175 r005 Re(z^2+c),c=-5/11+19/39*I,n=22 4032518880627730 r002 38th iterates of z^2 + 4032518884128054 r008 a(0)=4,K{-n^6,66+35*n^3-64*n^2-69*n} 4032518891181217 a007 Real Root Of -914*x^4-327*x^3-6*x^2+857*x-299 4032518903510312 m005 (1/3*Zeta(3)+1/4)/(6/11*Pi-1/10) 4032518910937005 r002 22th iterates of z^2 + 4032518911347364 b008 47*E^(-1+Pi)+Pi 4032518912337578 a001 2/1597*6557470319842^(2/17) 4032518914213886 r002 21th iterates of z^2 + 4032518925898053 a001 2584/271443*521^(3/13) 4032518928802449 a001 610/167761*521^(5/13) 4032518940999098 m005 (1/3*gamma-1/6)/(4*3^(1/2)-6/11) 4032518949107832 r008 a(0)=4,K{-n^6,-46-63*n^3+68*n^2+10*n} 4032518959079562 r005 Im(z^2+c),c=5/27+5/13*I,n=57 4032518964163694 r005 Im(z^2+c),c=5/66+22/47*I,n=59 4032518966303442 m005 (1/2*5^(1/2)-4/9)/(9/11*Pi-9/10) 4032518968024440 a001 229970/5702887 4032518968025581 a004 Fibonacci(14)/Lucas(15)/(1/2+sqrt(5)/2)^4 4032518968032401 a004 Fibonacci(15)/Lucas(14)/(1/2+sqrt(5)/2)^6 4032518982143194 m001 (FeigenbaumC+Otter)/(2^(1/3)+gamma(1)) 4032518982226089 a007 Real Root Of 711*x^4-994*x^3-568*x^2-666*x-26 4032518983154709 m001 ln(cos(Pi/12))/GAMMA(7/12)^2*exp(1) 4032519006735851 a007 Real Root Of 447*x^4+529*x^3-274*x^2-807*x-258 4032519017455155 l006 ln(1357/2031) 4032519029109493 a001 6765/710647*521^(3/13) 4032519030210762 r005 Re(z^2+c),c=-13/23+2/43*I,n=47 4032519044018186 a007 Real Root Of -960*x^4+281*x^3+890*x^2+933*x-514 4032519044167839 a001 17711/1860498*521^(3/13) 4032519046364822 a001 46368/4870847*521^(3/13) 4032519046685357 a001 121393/12752043*521^(3/13) 4032519046732123 a001 317811/33385282*521^(3/13) 4032519046738946 a001 832040/87403803*521^(3/13) 4032519046739941 a001 46347/4868641*521^(3/13) 4032519046740087 a001 5702887/599074578*521^(3/13) 4032519046740108 a001 14930352/1568397607*521^(3/13) 4032519046740111 a001 39088169/4106118243*521^(3/13) 4032519046740111 a001 102334155/10749957122*521^(3/13) 4032519046740111 a001 267914296/28143753123*521^(3/13) 4032519046740111 a001 701408733/73681302247*521^(3/13) 4032519046740111 a001 1836311903/192900153618*521^(3/13) 4032519046740111 a001 102287808/10745088481*521^(3/13) 4032519046740111 a001 12586269025/1322157322203*521^(3/13) 4032519046740111 a001 32951280099/3461452808002*521^(3/13) 4032519046740111 a001 86267571272/9062201101803*521^(3/13) 4032519046740111 a001 225851433717/23725150497407*521^(3/13) 4032519046740111 a001 139583862445/14662949395604*521^(3/13) 4032519046740111 a001 53316291173/5600748293801*521^(3/13) 4032519046740111 a001 20365011074/2139295485799*521^(3/13) 4032519046740111 a001 7778742049/817138163596*521^(3/13) 4032519046740111 a001 2971215073/312119004989*521^(3/13) 4032519046740111 a001 1134903170/119218851371*521^(3/13) 4032519046740111 a001 433494437/45537549124*521^(3/13) 4032519046740111 a001 165580141/17393796001*521^(3/13) 4032519046740112 a001 63245986/6643838879*521^(3/13) 4032519046740113 a001 24157817/2537720636*521^(3/13) 4032519046740121 a001 9227465/969323029*521^(3/13) 4032519046740176 a001 3524578/370248451*521^(3/13) 4032519046740557 a001 1346269/141422324*521^(3/13) 4032519046743163 a001 514229/54018521*521^(3/13) 4032519046761026 a001 196418/20633239*521^(3/13) 4032519046883459 a001 75025/7881196*521^(3/13) 4032519047722632 a001 28657/3010349*521^(3/13) 4032519048690709 a003 cos(Pi*8/101)-cos(Pi*29/94) 4032519048941988 r005 Re(z^2+c),c=-59/58+16/63*I,n=18 4032519052098734 r009 Im(z^3+c),c=-17/28+27/61*I,n=8 4032519053474409 a001 10946/1149851*521^(3/13) 4032519054188113 a005 (1/cos(19/122*Pi))^454 4032519057943970 m005 (4*gamma+1/4)/(1/5*gamma-3/4) 4032519057943970 m007 (-4*gamma-1/4)/(-1/5*gamma+3/4) 4032519061639063 r002 30th iterates of z^2 + 4032519066684808 h001 (-8*exp(7)-9)/(-2*exp(2)-7) 4032519071236112 r005 Re(z^2+c),c=3/38+35/58*I,n=23 4032519079330672 r008 a(0)=4,K{-n^6,24-59*n+49*n^2-45*n^3} 4032519079334725 r008 a(0)=4,K{-n^6,18-44*n^3+43*n^2-48*n} 4032519091212739 r009 Im(z^3+c),c=-4/23+19/42*I,n=10 4032519092897670 a001 4181/439204*521^(3/13) 4032519098499928 r005 Re(z^2+c),c=45/122+13/64*I,n=20 4032519113862968 m001 (Ei(1,1)+sin(1/12*Pi))/(Gompertz-Grothendieck) 4032519114752313 r005 Im(z^2+c),c=-7/16+27/49*I,n=54 4032519115906552 r008 a(0)=4,K{-n^6,-2-34*n^3+3*n^2+2*n} 4032519161760055 r002 38th iterates of z^2 + 4032519169544021 r009 Im(z^3+c),c=-29/62+21/64*I,n=52 4032519181927975 m001 ReciprocalFibonacci+ZetaR(2)^exp(-1/2*Pi) 4032519195439225 l006 ln(6926/7211) 4032519212023262 r005 Re(z^2+c),c=-17/30+1/97*I,n=28 4032519216307464 r002 6th iterates of z^2 + 4032519232291875 a007 Real Root Of 122*x^4-912*x^3+15*x^2-594*x-305 4032519232625909 a001 377/167761*843^(3/7) 4032519233558799 a001 144/710647*322^(11/12) 4032519246075916 r005 Re(z^2+c),c=-5/9-12/65*I,n=41 4032519251789633 r005 Im(z^2+c),c=17/126+17/40*I,n=57 4032519259192992 r008 a(0)=4,K{-n^6,48-21*n^3-11*n^2-47*n} 4032519262527443 h001 (7/8*exp(1)+5/7)/(2/11*exp(1)+3/11) 4032519263926073 r005 Re(z^2+c),c=-9/16+11/105*I,n=62 4032519265884622 r005 Im(z^2+c),c=-47/98+2/29*I,n=41 4032519295125169 r009 Im(z^3+c),c=-49/110+12/35*I,n=27 4032519320451921 r009 Re(z^3+c),c=-15/28+15/43*I,n=47 4032519351071244 r008 a(0)=4,K{-n^6,76-15*n^3-15*n^2-77*n} 4032519362593965 a001 987/64079*521^(2/13) 4032519363108728 a001 1597/167761*521^(3/13) 4032519429072177 r002 8th iterates of z^2 + 4032519429359252 m005 (1/2*5^(1/2)-1/7)/(exp(1)-3/10) 4032519437149003 r009 Re(z^3+c),c=-4/9+7/38*I,n=11 4032519437355278 a007 Real Root Of -90*x^4-331*x^3+418*x^2+942*x-905 4032519443768148 a001 3/610*514229^(4/25) 4032519455745372 a007 Real Root Of 4*x^4+161*x^3-17*x^2-172*x+985 4032519464613493 r005 Re(z^2+c),c=-23/31+1/43*I,n=32 4032519467175155 a007 Real Root Of -43*x^4+232*x^3-268*x^2+770*x-281 4032519479691683 a004 Fibonacci(16)*Lucas(15)/(1/2+sqrt(5)/2)^36 4032519499869403 m001 1/exp(CareFree)^2*Backhouse^2/GAMMA(17/24) 4032519508425976 m001 (Bloch-Stephens)/(cos(1/5*Pi)+Pi^(1/2)) 4032519521841685 r009 Im(z^3+c),c=-7/24+21/50*I,n=11 4032519522572597 r009 Re(z^3+c),c=-15/38+11/52*I,n=2 4032519545832897 m001 ln(3)*GolombDickman^GAMMA(5/12) 4032519548483254 m008 (2/3*Pi^5-3)/(5*Pi^2+1/2) 4032519558373334 a007 Real Root Of -279*x^4+911*x^3-963*x^2+581*x+458 4032519560121159 m001 (Stephens+ThueMorse)/(ln(Pi)+Mills) 4032519568114955 s002 sum(A094271[n]/(exp(n)-1),n=1..infinity) 4032519568114955 s002 sum(A094272[n]/(exp(n)-1),n=1..infinity) 4032519588997266 r002 54th iterates of z^2 + 4032519609146885 r005 Re(z^2+c),c=-69/122+2/63*I,n=34 4032519624187794 a001 987/20633239*1364^(14/15) 4032519637744319 a001 377/271443*843^(1/2) 4032519639939842 r005 Im(z^2+c),c=-13/14+76/255*I,n=11 4032519643080503 m005 (1/2*exp(1)-3/8)/(3/5*Pi+5/9) 4032519643990743 r002 14th iterates of z^2 + 4032519644725444 a003 sin(Pi*3/77)*sin(Pi*3/28) 4032519646746298 m001 Bloch^((1+3^(1/2))^(1/2))*HardHexagonsEntropy 4032519653541399 a007 Real Root Of -13*x^4-525*x^3-10*x^2+839*x-558 4032519661230373 m001 ln(GAMMA(17/24))^2*MertensB1^2*Zeta(1,2) 4032519671392260 m001 (Pi-Psi(2,1/3)*sin(1/5*Pi))/ln(2^(1/2)+1) 4032519684437612 r005 Re(z^2+c),c=-31/102+37/55*I,n=4 4032519695111721 m006 (1/2/Pi-2/3)/(3/4*ln(Pi)+2/5) 4032519712695322 r009 Im(z^3+c),c=-27/62+7/20*I,n=40 4032519732321529 r008 a(0)=4,K{-n^6,-45-8*n^3+20*n^2-n} 4032519744542280 r009 Im(z^3+c),c=-47/126+4/9*I,n=6 4032519762867873 a001 321/8*196418^(31/41) 4032519768683867 a001 329/4250681*1364^(13/15) 4032519778455734 a007 Real Root Of 706*x^4-497*x^3+453*x^2-516*x-333 4032519785047955 m001 exp(Zeta(3))^2*GAMMA(1/6)*cos(Pi/5)^2 4032519795377401 m001 MertensB1*(CopelandErdos+Mills) 4032519799914634 r005 Im(z^2+c),c=-1/110+29/46*I,n=10 4032519830645498 b008 -6+ExpIntegralEi[1]^6 4032519845805538 m001 ln(Niven)^2*Champernowne^2/OneNinth 4032519848386537 a001 199/591286729879*6557470319842^(17/24) 4032519848386537 a001 199/165580141*63245986^(17/24) 4032519857329010 r005 Im(z^2+c),c=-11/52+41/58*I,n=29 4032519861382941 r005 Im(z^2+c),c=-5/4+29/247*I,n=49 4032519872960599 a007 Real Root Of -212*x^4-675*x^3+525*x^2-713*x+384 4032519881371334 a001 5/29*4^(19/31) 4032519888028684 m001 LandauRamanujan^(Ei(1)*Grothendieck) 4032519899993728 l006 ln(5579/8350) 4032519913180070 a001 987/7881196*1364^(4/5) 4032519924625155 r002 22th iterates of z^2 + 4032519935468784 a007 Real Root Of 125*x^4+409*x^3+971*x^2-190*x-211 4032519959792693 r009 Re(z^3+c),c=-33/74+9/50*I,n=36 4032519961319937 r005 Im(z^2+c),c=-5/7+28/81*I,n=24 4032519987752726 m001 ln(gamma)*(GAMMA(19/24)-TreeGrowth2nd) 4032519994704879 a007 Real Root Of 211*x^4-816*x^3-435*x^2-753*x-292 4032519998316059 r005 Re(z^2+c),c=-53/94+3/37*I,n=40 4032520001180829 r005 Re(z^2+c),c=-117/98+4/17*I,n=4 4032520012017754 r005 Re(z^2+c),c=8/27+4/61*I,n=16 4032520022450404 r002 55th iterates of z^2 + 4032520024041580 a001 377/15127*322^(1/12) 4032520026810603 r005 Re(z^2+c),c=-15/31+10/27*I,n=18 4032520039732266 r005 Re(z^2+c),c=-39/58+19/43*I,n=38 4032520043136416 a001 377/439204*843^(4/7) 4032520043397430 r009 Im(z^3+c),c=-31/60+1/3*I,n=29 4032520052238387 a007 Real Root Of -763*x^4+217*x^3+345*x^2+706*x+263 4032520057460128 r009 Im(z^3+c),c=-43/106+18/49*I,n=18 4032520057675952 a001 987/4870847*1364^(11/15) 4032520059882930 m004 -124*Pi-Sqrt[5]*Pi*Log[Sqrt[5]*Pi] 4032520065665330 m001 ln(5)*(Pi*csc(7/24*Pi)/GAMMA(17/24)-Stephens) 4032520068856714 a001 2584/167761*521^(2/13) 4032520071044696 a001 305/51841*521^(4/13) 4032520084554027 r009 Re(z^3+c),c=-13/27+13/59*I,n=28 4032520094045746 r002 27th iterates of z^2 + 4032520101989909 g002 Psi(3/10)+Psi(7/9)+Psi(4/9)-Psi(3/8) 4032520111087132 m001 (MadelungNaCl+MertensB3)/(Salem-ThueMorse) 4032520118437547 a007 Real Root Of -318*x^4+835*x^3-289*x^2+751*x+413 4032520124682563 m001 arctan(1/3)+Champernowne*TwinPrimes 4032520124712849 r005 Re(z^2+c),c=9/74+9/34*I,n=16 4032520128563538 a007 Real Root Of -602*x^4+464*x^3-462*x^2-145*x+63 4032520133142739 r002 64th iterates of z^2 + 4032520135622109 r009 Im(z^3+c),c=-37/106+23/58*I,n=27 4032520144108005 a007 Real Root Of 266*x^4+891*x^3-636*x^2+226*x-658 4032520148784332 m001 2*Pi/GAMMA(5/6)*TravellingSalesman+ZetaQ(2) 4032520158277177 r005 Re(z^2+c),c=-6/11+8/31*I,n=59 4032520162635818 r005 Im(z^2+c),c=11/58+21/38*I,n=33 4032520171899061 a001 6765/439204*521^(2/13) 4032520173199992 a007 Real Root Of -277*x^4-892*x^3+902*x^2+154*x+708 4032520173829392 r009 Im(z^3+c),c=-21/94+26/59*I,n=21 4032520180213761 l006 ln(139/7840) 4032520183651893 l006 ln(4222/6319) 4032520186793245 a004 Fibonacci(18)*Lucas(15)/(1/2+sqrt(5)/2)^38 4032520186932736 a001 17711/1149851*521^(2/13) 4032520189126120 a001 46368/3010349*521^(2/13) 4032520189446130 a001 121393/7881196*521^(2/13) 4032520189492819 a001 10959/711491*521^(2/13) 4032520189499631 a001 832040/54018521*521^(2/13) 4032520189500625 a001 2178309/141422324*521^(2/13) 4032520189500770 a001 5702887/370248451*521^(2/13) 4032520189500791 a001 14930352/969323029*521^(2/13) 4032520189500794 a001 39088169/2537720636*521^(2/13) 4032520189500795 a001 102334155/6643838879*521^(2/13) 4032520189500795 a001 9238424/599786069*521^(2/13) 4032520189500795 a001 701408733/45537549124*521^(2/13) 4032520189500795 a001 1836311903/119218851371*521^(2/13) 4032520189500795 a001 4807526976/312119004989*521^(2/13) 4032520189500795 a001 12586269025/817138163596*521^(2/13) 4032520189500795 a001 32951280099/2139295485799*521^(2/13) 4032520189500795 a001 86267571272/5600748293801*521^(2/13) 4032520189500795 a001 7787980473/505618944676*521^(2/13) 4032520189500795 a001 365435296162/23725150497407*521^(2/13) 4032520189500795 a001 139583862445/9062201101803*521^(2/13) 4032520189500795 a001 53316291173/3461452808002*521^(2/13) 4032520189500795 a001 20365011074/1322157322203*521^(2/13) 4032520189500795 a001 7778742049/505019158607*521^(2/13) 4032520189500795 a001 2971215073/192900153618*521^(2/13) 4032520189500795 a001 1134903170/73681302247*521^(2/13) 4032520189500795 a001 433494437/28143753123*521^(2/13) 4032520189500795 a001 165580141/10749957122*521^(2/13) 4032520189500795 a001 63245986/4106118243*521^(2/13) 4032520189500796 a001 24157817/1568397607*521^(2/13) 4032520189500804 a001 9227465/599074578*521^(2/13) 4032520189500860 a001 3524578/228826127*521^(2/13) 4032520189501239 a001 1346269/87403803*521^(2/13) 4032520189503841 a001 514229/33385282*521^(2/13) 4032520189521675 a001 196418/12752043*521^(2/13) 4032520189643908 a001 75025/4870847*521^(2/13) 4032520190481706 a001 28657/1860498*521^(2/13) 4032520195323663 r005 Im(z^2+c),c=-5/94+25/47*I,n=20 4032520196224059 a001 10946/710647*521^(2/13) 4032520199573209 m001 (Mills-Thue)^GAMMA(5/6) 4032520201666889 r005 Im(z^2+c),c=17/126+17/40*I,n=47 4032520202172690 a001 987/3010349*1364^(2/3) 4032520207470116 r008 a(0)=4,K{-n^6,21-28*n^3-3*n^2-21*n} 4032520207791702 m009 (3/4*Psi(1,2/3)+1/4)/(24/5*Catalan+3/5*Pi^2-4) 4032520207995145 m004 -2/3+5*Sqrt[5]*Pi+(25*Cos[Sqrt[5]*Pi])/Pi 4032520213405508 m001 1/Robbin^2*exp(ArtinRank2)*Zeta(1,2)^2 4032520235582733 a001 4181/271443*521^(2/13) 4032520253081021 m008 (3*Pi^2+1)/(1/4*Pi^5-3/5) 4032520253326423 r005 Im(z^2+c),c=-17/98+31/46*I,n=32 4032520255440479 r002 4th iterates of z^2 + 4032520260912794 r004 Re(z^2+c),c=-13/18-1/10*I,z(0)=-1,n=55 4032520269427362 a003 sin(Pi*5/42)/cos(Pi*16/115) 4032520271422884 r009 Im(z^3+c),c=-33/70+22/63*I,n=18 4032520289444333 m005 (1/2*Catalan+7/10)/(1/4*gamma+1/7) 4032520289957973 a004 Fibonacci(20)*Lucas(15)/(1/2+sqrt(5)/2)^40 4032520293329610 a003 sin(Pi*9/58)-sin(Pi*31/92) 4032520295616809 r008 a(0)=4,K{-n^6,51-21*n^3-9*n^2-52*n} 4032520303001722 m009 (1/5*Psi(1,3/4)-4)/(40*Catalan+5*Pi^2+3/5) 4032520305009504 a004 Fibonacci(22)*Lucas(15)/(1/2+sqrt(5)/2)^42 4032520306580536 m001 (StolarskyHarborth-cos(1/12*Pi))/Ei(1,1) 4032520307163660 a007 Real Root Of 409*x^4-306*x^3-301*x^2-493*x+257 4032520307205492 a004 Fibonacci(24)*Lucas(15)/(1/2+sqrt(5)/2)^44 4032520307525883 a004 Fibonacci(26)*Lucas(15)/(1/2+sqrt(5)/2)^46 4032520307572627 a004 Fibonacci(28)*Lucas(15)/(1/2+sqrt(5)/2)^48 4032520307579447 a004 Fibonacci(30)*Lucas(15)/(1/2+sqrt(5)/2)^50 4032520307580442 a004 Fibonacci(32)*Lucas(15)/(1/2+sqrt(5)/2)^52 4032520307580587 a004 Fibonacci(34)*Lucas(15)/(1/2+sqrt(5)/2)^54 4032520307580608 a004 Fibonacci(36)*Lucas(15)/(1/2+sqrt(5)/2)^56 4032520307580612 a004 Fibonacci(38)*Lucas(15)/(1/2+sqrt(5)/2)^58 4032520307580612 a004 Fibonacci(40)*Lucas(15)/(1/2+sqrt(5)/2)^60 4032520307580612 a004 Fibonacci(42)*Lucas(15)/(1/2+sqrt(5)/2)^62 4032520307580612 a004 Fibonacci(44)*Lucas(15)/(1/2+sqrt(5)/2)^64 4032520307580612 a004 Fibonacci(46)*Lucas(15)/(1/2+sqrt(5)/2)^66 4032520307580612 a004 Fibonacci(48)*Lucas(15)/(1/2+sqrt(5)/2)^68 4032520307580612 a004 Fibonacci(50)*Lucas(15)/(1/2+sqrt(5)/2)^70 4032520307580612 a004 Fibonacci(52)*Lucas(15)/(1/2+sqrt(5)/2)^72 4032520307580612 a004 Fibonacci(54)*Lucas(15)/(1/2+sqrt(5)/2)^74 4032520307580612 a004 Fibonacci(56)*Lucas(15)/(1/2+sqrt(5)/2)^76 4032520307580612 a004 Fibonacci(58)*Lucas(15)/(1/2+sqrt(5)/2)^78 4032520307580612 a004 Fibonacci(60)*Lucas(15)/(1/2+sqrt(5)/2)^80 4032520307580612 a004 Fibonacci(62)*Lucas(15)/(1/2+sqrt(5)/2)^82 4032520307580612 a004 Fibonacci(64)*Lucas(15)/(1/2+sqrt(5)/2)^84 4032520307580612 a004 Fibonacci(66)*Lucas(15)/(1/2+sqrt(5)/2)^86 4032520307580612 a004 Fibonacci(68)*Lucas(15)/(1/2+sqrt(5)/2)^88 4032520307580612 a004 Fibonacci(70)*Lucas(15)/(1/2+sqrt(5)/2)^90 4032520307580612 a004 Fibonacci(72)*Lucas(15)/(1/2+sqrt(5)/2)^92 4032520307580612 a004 Fibonacci(74)*Lucas(15)/(1/2+sqrt(5)/2)^94 4032520307580612 a004 Fibonacci(76)*Lucas(15)/(1/2+sqrt(5)/2)^96 4032520307580612 a004 Fibonacci(78)*Lucas(15)/(1/2+sqrt(5)/2)^98 4032520307580612 a004 Fibonacci(80)*Lucas(15)/(1/2+sqrt(5)/2)^100 4032520307580612 a004 Fibonacci(79)*Lucas(15)/(1/2+sqrt(5)/2)^99 4032520307580612 a004 Fibonacci(77)*Lucas(15)/(1/2+sqrt(5)/2)^97 4032520307580612 a004 Fibonacci(75)*Lucas(15)/(1/2+sqrt(5)/2)^95 4032520307580612 a004 Fibonacci(73)*Lucas(15)/(1/2+sqrt(5)/2)^93 4032520307580612 a004 Fibonacci(71)*Lucas(15)/(1/2+sqrt(5)/2)^91 4032520307580612 a004 Fibonacci(69)*Lucas(15)/(1/2+sqrt(5)/2)^89 4032520307580612 a004 Fibonacci(67)*Lucas(15)/(1/2+sqrt(5)/2)^87 4032520307580612 a004 Fibonacci(65)*Lucas(15)/(1/2+sqrt(5)/2)^85 4032520307580612 a004 Fibonacci(63)*Lucas(15)/(1/2+sqrt(5)/2)^83 4032520307580612 a004 Fibonacci(61)*Lucas(15)/(1/2+sqrt(5)/2)^81 4032520307580612 a004 Fibonacci(59)*Lucas(15)/(1/2+sqrt(5)/2)^79 4032520307580612 a004 Fibonacci(57)*Lucas(15)/(1/2+sqrt(5)/2)^77 4032520307580612 a004 Fibonacci(55)*Lucas(15)/(1/2+sqrt(5)/2)^75 4032520307580612 a004 Fibonacci(53)*Lucas(15)/(1/2+sqrt(5)/2)^73 4032520307580612 a004 Fibonacci(51)*Lucas(15)/(1/2+sqrt(5)/2)^71 4032520307580612 a004 Fibonacci(49)*Lucas(15)/(1/2+sqrt(5)/2)^69 4032520307580612 a004 Fibonacci(47)*Lucas(15)/(1/2+sqrt(5)/2)^67 4032520307580612 a004 Fibonacci(45)*Lucas(15)/(1/2+sqrt(5)/2)^65 4032520307580612 a004 Fibonacci(43)*Lucas(15)/(1/2+sqrt(5)/2)^63 4032520307580612 a004 Fibonacci(41)*Lucas(15)/(1/2+sqrt(5)/2)^61 4032520307580612 a004 Fibonacci(39)*Lucas(15)/(1/2+sqrt(5)/2)^59 4032520307580613 a004 Fibonacci(37)*Lucas(15)/(1/2+sqrt(5)/2)^57 4032520307580622 a004 Fibonacci(35)*Lucas(15)/(1/2+sqrt(5)/2)^55 4032520307580677 a004 Fibonacci(33)*Lucas(15)/(1/2+sqrt(5)/2)^53 4032520307581057 a004 Fibonacci(31)*Lucas(15)/(1/2+sqrt(5)/2)^51 4032520307581777 a001 1/305*(1/2+1/2*5^(1/2))^10 4032520307583662 a004 Fibonacci(29)*Lucas(15)/(1/2+sqrt(5)/2)^49 4032520307601517 a004 Fibonacci(27)*Lucas(15)/(1/2+sqrt(5)/2)^47 4032520307723895 a004 Fibonacci(25)*Lucas(15)/(1/2+sqrt(5)/2)^45 4032520308562688 a004 Fibonacci(23)*Lucas(15)/(1/2+sqrt(5)/2)^43 4032520313769234 r002 15th iterates of z^2 + 4032520314311861 a004 Fibonacci(21)*Lucas(15)/(1/2+sqrt(5)/2)^41 4032520325203252 a001 124/615*8^(1/3) 4032520325203252 q001 124/3075 4032520325203252 q001 248/615 4032520325203252 r002 2th iterates of z^2 + 4032520325203252 r002 2th iterates of z^2 + 4032520325203252 r005 Im(z^2+c),c=-23/30+31/41*I,n=2 4032520327007349 m001 exp(GAMMA(5/6))^2/Catalan/sin(Pi/12) 4032520331289374 a001 2584/54018521*1364^(14/15) 4032520337742572 h001 (4/11*exp(1)+1/3)/(3/7*exp(2)+1/9) 4032520339911633 r005 Im(z^2+c),c=-1/25+29/45*I,n=18 4032520340614422 r008 a(0)=4,K{-n^6,47-34*n-29*n^2-15*n^3} 4032520341026836 a007 Real Root Of 251*x^4+970*x^3-417*x^2-897*x+399 4032520346667208 a001 329/620166*1364^(3/5) 4032520353389519 r002 6th iterates of z^2 + 4032520353717281 a004 Fibonacci(19)*Lucas(15)/(1/2+sqrt(5)/2)^39 4032520358575690 r009 Im(z^3+c),c=-61/126+6/19*I,n=62 4032520360324869 r009 Re(z^3+c),c=-9/31+31/43*I,n=3 4032520360994855 r002 4th iterates of z^2 + 4032520377354332 m001 (cos(1)-ln(Pi))/(-KhinchinLevy+Khinchin) 4032520389746564 r005 Im(z^2+c),c=21/110+21/43*I,n=15 4032520401092656 r009 Im(z^3+c),c=-17/38+13/38*I,n=34 4032520404749912 m001 1/Riemann3rdZero^2/exp(Conway)/OneNinth 4032520420057848 m005 (1/3*Zeta(3)+1/2)/(5/7*5^(1/2)+7/11) 4032520421990571 r008 a(0)=4,K{-n^6,-31+13*n-33*n^2+22*n^3} 4032520434454104 a001 6765/141422324*1364^(14/15) 4032520434839984 m001 (exp(1/Pi)+Rabbit)/(Shi(1)-cos(1)) 4032520437873493 r005 Re(z^2+c),c=-41/74+11/56*I,n=57 4032520441983011 m001 (Ei(1)+ZetaQ(3))/(2^(1/3)-3^(1/2)) 4032520448424031 a001 377/710647*843^(9/14) 4032520449505635 a001 17711/370248451*1364^(14/15) 4032520451701624 a001 46368/969323029*1364^(14/15) 4032520452022015 a001 121393/2537720636*1364^(14/15) 4032520452068759 a001 317811/6643838879*1364^(14/15) 4032520452075579 a001 832040/17393796001*1364^(14/15) 4032520452076574 a001 2178309/45537549124*1364^(14/15) 4032520452076719 a001 5702887/119218851371*1364^(14/15) 4032520452076740 a001 14930352/312119004989*1364^(14/15) 4032520452076743 a001 4181/87403804*1364^(14/15) 4032520452076744 a001 102334155/2139295485799*1364^(14/15) 4032520452076744 a001 267914296/5600748293801*1364^(14/15) 4032520452076744 a001 701408733/14662949395604*1364^(14/15) 4032520452076744 a001 1134903170/23725150497407*1364^(14/15) 4032520452076744 a001 433494437/9062201101803*1364^(14/15) 4032520452076744 a001 165580141/3461452808002*1364^(14/15) 4032520452076744 a001 63245986/1322157322203*1364^(14/15) 4032520452076745 a001 24157817/505019158607*1364^(14/15) 4032520452076753 a001 9227465/192900153618*1364^(14/15) 4032520452076809 a001 3524578/73681302247*1364^(14/15) 4032520452077189 a001 1346269/28143753123*1364^(14/15) 4032520452079794 a001 514229/10749957122*1364^(14/15) 4032520452097649 a001 196418/4106118243*1364^(14/15) 4032520452220027 a001 75025/1568397607*1364^(14/15) 4032520453058820 a001 28657/599074578*1364^(14/15) 4032520453701898 m001 (MertensB2+Niven)/(ZetaP(4)-ZetaQ(3)) 4032520458807993 a001 10946/228826127*1364^(14/15) 4032520462134224 a007 Real Root Of 240*x^4-471*x^3+560*x^2+152*x-67 4032520465268982 m001 ln(Sierpinski)^2/Cahen^2/cos(1) 4032520475785502 a001 1292/16692641*1364^(13/15) 4032520476967319 r005 Re(z^2+c),c=-9/16+11/105*I,n=60 4032520484712075 s002 sum(A144746[n]/(exp(n)+1),n=1..infinity) 4032520485783650 r002 46th iterates of z^2 + 4032520486259760 r005 Re(z^2+c),c=-71/126+5/57*I,n=38 4032520491167557 a001 987/1149851*1364^(8/15) 4032520498213414 a001 4181/87403803*1364^(14/15) 4032520498454863 m001 OneNinth^2/Robbin^2*exp(BesselK(0,1)) 4032520501801554 a001 329/13201*521^(1/13) 4032520503649321 r008 a(0)=0,K{-n^6,24+66*n^3-52*n^2-13*n} 4032520505351098 a001 1597/103682*521^(2/13) 4032520531209323 r005 Im(z^2+c),c=9/26+8/35*I,n=53 4032520553452589 a007 Real Root Of -891*x^4+674*x^3+725*x^2+698*x-420 4032520557998166 m001 1/Lehmer/exp(LaplaceLimit)*arctan(1/2) 4032520564324470 a007 Real Root Of 179*x^4-619*x^3-850*x^2-926*x-36 4032520566882265 b008 -54+Sqrt[187] 4032520576465370 r005 Im(z^2+c),c=-1/114+11/21*I,n=46 4032520578950240 a001 2255/29134601*1364^(13/15) 4032520594001772 a001 17711/228826127*1364^(13/15) 4032520596197761 a001 2576/33281921*1364^(13/15) 4032520596518152 a001 121393/1568397607*1364^(13/15) 4032520596564896 a001 105937/1368706081*1364^(13/15) 4032520596571716 a001 416020/5374978561*1364^(13/15) 4032520596572711 a001 726103/9381251041*1364^(13/15) 4032520596572856 a001 5702887/73681302247*1364^(13/15) 4032520596572877 a001 2584/33385281*1364^(13/15) 4032520596572880 a001 39088169/505019158607*1364^(13/15) 4032520596572881 a001 34111385/440719107401*1364^(13/15) 4032520596572881 a001 133957148/1730726404001*1364^(13/15) 4032520596572881 a001 233802911/3020733700601*1364^(13/15) 4032520596572881 a001 1836311903/23725150497407*1364^(13/15) 4032520596572881 a001 567451585/7331474697802*1364^(13/15) 4032520596572881 a001 433494437/5600748293801*1364^(13/15) 4032520596572881 a001 165580141/2139295485799*1364^(13/15) 4032520596572881 a001 31622993/408569081798*1364^(13/15) 4032520596572882 a001 24157817/312119004989*1364^(13/15) 4032520596572890 a001 9227465/119218851371*1364^(13/15) 4032520596572946 a001 1762289/22768774562*1364^(13/15) 4032520596573326 a001 1346269/17393796001*1364^(13/15) 4032520596575931 a001 514229/6643838879*1364^(13/15) 4032520596593786 a001 98209/1268860318*1364^(13/15) 4032520596716164 a001 75025/969323029*1364^(13/15) 4032520597554957 a001 28657/370248451*1364^(13/15) 4032520597882770 m001 GAMMA(7/24)^GAMMA(5/12)/exp(1) 4032520603304131 a001 5473/70711162*1364^(13/15) 4032520620281653 a001 2584/20633239*1364^(4/5) 4032520623806044 a004 Fibonacci(17)*Lucas(15)/(1/2+sqrt(5)/2)^37 4032520629489784 m002 Pi^(-5)+(Coth[Pi]*Log[Pi])/Pi^3 4032520629764132 r005 Re(z^2+c),c=-9/16+11/105*I,n=58 4032520635536304 h001 (6/11*exp(1)+6/7)/(8/11*exp(2)+3/7) 4032520635652660 a001 141/101521*1364^(7/15) 4032520640560593 m005 (1/2*exp(1)+2)/(1/4*3^(1/2)+2/5) 4032520642709554 a001 4181/54018521*1364^(13/15) 4032520647232276 r002 24th iterates of z^2 + 4032520647741445 r005 Re(z^2+c),c=-23/42+9/47*I,n=16 4032520648530754 r005 Im(z^2+c),c=2/13+16/39*I,n=50 4032520657793093 m001 GAMMA(1/6)^(FeigenbaumAlpha/GAMMA(7/24)) 4032520664791984 a007 Real Root Of 81*x^4+155*x^3-521*x^2+541*x-601 4032520671057861 m006 (4/5*Pi^2-3/5)/(1/6*ln(Pi)-2) 4032520674442766 r002 23th iterates of z^2 + 4032520683212523 r008 a(0)=0,K{-n^6,20+66*n^3-54*n^2-7*n} 4032520699713268 a007 Real Root Of 94*x^4-937*x^3+635*x^2-865*x-516 4032520721824150 r005 Im(z^2+c),c=-21/122+13/19*I,n=50 4032520723446383 a001 6765/54018521*1364^(4/5) 4032520729164947 a007 Real Root Of -275*x^4+951*x^3+820*x^2+175*x-259 4032520736017979 l006 ln(2865/4288) 4032520738497915 a001 17711/141422324*1364^(4/5) 4032520740693903 a001 46368/370248451*1364^(4/5) 4032520741014294 a001 121393/969323029*1364^(4/5) 4032520741061038 a001 317811/2537720636*1364^(4/5) 4032520741067858 a001 832040/6643838879*1364^(4/5) 4032520741068853 a001 2178309/17393796001*1364^(4/5) 4032520741068998 a001 1597/12752044*1364^(4/5) 4032520741069019 a001 14930352/119218851371*1364^(4/5) 4032520741069023 a001 39088169/312119004989*1364^(4/5) 4032520741069023 a001 102334155/817138163596*1364^(4/5) 4032520741069023 a001 267914296/2139295485799*1364^(4/5) 4032520741069023 a001 701408733/5600748293801*1364^(4/5) 4032520741069023 a001 1836311903/14662949395604*1364^(4/5) 4032520741069023 a001 2971215073/23725150497407*1364^(4/5) 4032520741069023 a001 1134903170/9062201101803*1364^(4/5) 4032520741069023 a001 433494437/3461452808002*1364^(4/5) 4032520741069023 a001 165580141/1322157322203*1364^(4/5) 4032520741069023 a001 63245986/505019158607*1364^(4/5) 4032520741069024 a001 24157817/192900153618*1364^(4/5) 4032520741069033 a001 9227465/73681302247*1364^(4/5) 4032520741069088 a001 3524578/28143753123*1364^(4/5) 4032520741069468 a001 1346269/10749957122*1364^(4/5) 4032520741072073 a001 514229/4106118243*1364^(4/5) 4032520741089928 a001 196418/1568397607*1364^(4/5) 4032520741212306 a001 75025/599074578*1364^(4/5) 4032520742051099 a001 28657/228826127*1364^(4/5) 4032520742366541 a001 4106118243/610*144^(14/17) 4032520747800273 a001 10946/87403803*1364^(4/5) 4032520753461257 r005 Re(z^2+c),c=-10/19+19/52*I,n=49 4032520762099053 a001 141422324/377*144^(16/17) 4032520762279590 r009 Im(z^3+c),c=-13/31+9/25*I,n=31 4032520764777761 a001 2584/12752043*1364^(11/15) 4032520768302184 a001 1597/33385282*1364^(14/15) 4032520770855008 r005 Re(z^2+c),c=-9/23+21/41*I,n=22 4032520773512365 r008 a(0)=0,K{-n^6,-24-65*n^3+49*n^2+15*n} 4032520780177693 a001 987/439204*1364^(2/5) 4032520786494743 r005 Im(z^2+c),c=5/27+5/13*I,n=60 4032520787205693 a001 4181/33385282*1364^(4/5) 4032520796305543 r005 Re(z^2+c),c=-23/42+12/49*I,n=42 4032520800677721 a007 Real Root Of 87*x^4-245*x^3+80*x^2-690*x+279 4032520816478283 m005 (4/5*gamma+5)/(2*gamma+1/5) 4032520816478283 m007 (-4/5*gamma-5)/(-2*gamma-1/5) 4032520819244553 a001 974169/24157817 4032520819244724 a004 Fibonacci(16)/Lucas(16)/(1/2+sqrt(5)/2)^5 4032520833988317 a001 10946/199*76^(23/50) 4032520840031255 r005 Im(z^2+c),c=-43/122+31/44*I,n=3 4032520841758544 r005 Im(z^2+c),c=-9/32+27/50*I,n=7 4032520843831779 r002 53th iterates of z^2 + 4032520853751611 a001 377/1149851*843^(5/7) 4032520861811632 r009 Im(z^3+c),c=-55/122+17/50*I,n=43 4032520867942525 a001 6765/33385282*1364^(11/15) 4032520882452963 r005 Im(z^2+c),c=21/110+1/50*I,n=9 4032520882994061 a001 17711/87403803*1364^(11/15) 4032520885190051 a001 46368/228826127*1364^(11/15) 4032520885510441 a001 121393/599074578*1364^(11/15) 4032520885557186 a001 317811/1568397607*1364^(11/15) 4032520885564005 a001 832040/4106118243*1364^(11/15) 4032520885565000 a001 987/4870846*1364^(11/15) 4032520885565146 a001 5702887/28143753123*1364^(11/15) 4032520885565167 a001 14930352/73681302247*1364^(11/15) 4032520885565170 a001 39088169/192900153618*1364^(11/15) 4032520885565170 a001 102334155/505019158607*1364^(11/15) 4032520885565170 a001 267914296/1322157322203*1364^(11/15) 4032520885565170 a001 701408733/3461452808002*1364^(11/15) 4032520885565170 a001 1836311903/9062201101803*1364^(11/15) 4032520885565170 a001 4807526976/23725150497407*1364^(11/15) 4032520885565170 a001 2971215073/14662949395604*1364^(11/15) 4032520885565170 a001 1134903170/5600748293801*1364^(11/15) 4032520885565170 a001 433494437/2139295485799*1364^(11/15) 4032520885565170 a001 165580141/817138163596*1364^(11/15) 4032520885565171 a001 63245986/312119004989*1364^(11/15) 4032520885565172 a001 24157817/119218851371*1364^(11/15) 4032520885565180 a001 9227465/45537549124*1364^(11/15) 4032520885565235 a001 3524578/17393796001*1364^(11/15) 4032520885565615 a001 1346269/6643838879*1364^(11/15) 4032520885568220 a001 514229/2537720636*1364^(11/15) 4032520885586075 a001 196418/969323029*1364^(11/15) 4032520885708453 a001 75025/370248451*1364^(11/15) 4032520886547247 a001 28657/141422324*1364^(11/15) 4032520892110675 a001 199/144*514229^(43/55) 4032520892296422 a001 10946/54018521*1364^(11/15) 4032520893958493 m001 ln(Rabbit)^2/MertensB1/GAMMA(11/12)^2 4032520895337311 m005 (1/2*3^(1/2)-2/11)/(5/6*5^(1/2)-1/6) 4032520903830343 r005 Im(z^2+c),c=23/98+16/47*I,n=37 4032520909273999 a001 646/1970299*1364^(2/3) 4032520912798345 a001 1597/20633239*1364^(13/15) 4032520917856309 r005 Re(z^2+c),c=-69/118+32/51*I,n=36 4032520924598208 a001 329/90481*1364^(1/3) 4032520926875236 m001 (exp(-1/2*Pi)+Zeta(1,2))/(2^(1/3)-ln(gamma)) 4032520931701855 a001 4181/20633239*1364^(11/15) 4032520935218707 a007 Real Root Of -169*x^4-466*x^3+950*x^2+224*x-414 4032520940246738 r005 Re(z^2+c),c=-69/122+1/32*I,n=45 4032520942926687 m001 Cahen*(ln(gamma)+Salem) 4032520955268562 s001 sum(1/10^(n-1)*A028015[n],n=1..infinity) 4032520955268562 s001 sum(1/10^n*A028015[n],n=1..infinity) 4032520965980552 r002 57th iterates of z^2 + 4032520966849368 p004 log(15121/10103) 4032520972478096 a001 3/2*322^(31/32) 4032520972992129 m001 FeigenbaumD/ln(PisotVijayaraghavan)^2/sin(1) 4032520974298250 r002 9th iterates of z^2 + 4032520979071608 p004 log(27017/479) 4032520986612913 r002 55th iterates of z^2 + 4032521001014418 m008 (3/4*Pi^3-2/3)/(1/2*Pi^2+2/3) 4032521010558467 a007 Real Root Of -992*x^4+410*x^3+864*x^2+978*x+307 4032521011696213 r008 a(0)=4,K{-n^6,-54+23*n+62*n^2-62*n^3} 4032521012438690 a001 615/1875749*1364^(2/3) 4032521022833981 r009 Im(z^3+c),c=-23/54+21/59*I,n=30 4032521027490215 a001 17711/54018521*1364^(2/3) 4032521029686203 a001 11592/35355581*1364^(2/3) 4032521030006594 a001 121393/370248451*1364^(2/3) 4032521030053338 a001 317811/969323029*1364^(2/3) 4032521030060158 a001 610/1860499*1364^(2/3) 4032521030061153 a001 2178309/6643838879*1364^(2/3) 4032521030061298 a001 5702887/17393796001*1364^(2/3) 4032521030061319 a001 3732588/11384387281*1364^(2/3) 4032521030061322 a001 39088169/119218851371*1364^(2/3) 4032521030061323 a001 9303105/28374454999*1364^(2/3) 4032521030061323 a001 66978574/204284540899*1364^(2/3) 4032521030061323 a001 701408733/2139295485799*1364^(2/3) 4032521030061323 a001 1836311903/5600748293801*1364^(2/3) 4032521030061323 a001 1201881744/3665737348901*1364^(2/3) 4032521030061323 a001 7778742049/23725150497407*1364^(2/3) 4032521030061323 a001 2971215073/9062201101803*1364^(2/3) 4032521030061323 a001 567451585/1730726404001*1364^(2/3) 4032521030061323 a001 433494437/1322157322203*1364^(2/3) 4032521030061323 a001 165580141/505019158607*1364^(2/3) 4032521030061323 a001 31622993/96450076809*1364^(2/3) 4032521030061324 a001 24157817/73681302247*1364^(2/3) 4032521030061332 a001 9227465/28143753123*1364^(2/3) 4032521030061388 a001 1762289/5374978561*1364^(2/3) 4032521030061768 a001 1346269/4106118243*1364^(2/3) 4032521030064373 a001 514229/1568397607*1364^(2/3) 4032521030082228 a001 98209/299537289*1364^(2/3) 4032521030204606 a001 75025/228826127*1364^(2/3) 4032521031043399 a001 28657/87403803*1364^(2/3) 4032521036792570 a001 5473/16692641*1364^(2/3) 4032521041788268 m001 Zeta(1,2)*exp((3^(1/3)))*Zeta(7)^2 4032521051927469 m001 (FransenRobinson+Trott)/(1-ln(2)/ln(10)) 4032521053769918 a001 2584/4870847*1364^(3/5) 4032521056103638 m001 1/ln(LandauRamanujan)^2*Si(Pi)^2/Salem 4032521057294464 a001 1597/12752043*1364^(4/5) 4032521057910545 a001 86000486440*141422324^(16/17) 4032521057910545 a001 133957148/9*9062201101803^(15/17) 4032521057910545 a001 233802911/6*23725150497407^(14/17) 4032521057910545 a001 233802911/6*505019158607^(16/17) 4032521057910545 a001 182717648081/9*2537720636^(15/17) 4032521057910545 a001 591286729879/18*6643838879^(14/17) 4032521057910545 a001 4052739537881/18*2139295485799^(10/17) 4032521057910545 a001 86000486440*73681302247^(12/17) 4032521057910545 a001 86000486440*10749957122^(13/17) 4032521061672262 m001 (-PlouffeB+TreeGrowth2nd)/(BesselK(0,1)-Mills) 4032521069292374 a001 987/167761*1364^(4/15) 4032521076197975 a001 4181/12752043*1364^(2/3) 4032521079131681 m001 (GaussAGM+ReciprocalLucas)^FeigenbaumKappa 4032521100488698 m001 (-gamma(2)+BesselJ(1,1))/(Psi(1,1/3)+Shi(1)) 4032521105122812 k007 concat of cont frac of 4032521107175190 r009 Re(z^3+c),c=-45/86+5/18*I,n=61 4032521108697686 r002 18th iterates of z^2 + 4032521115165934 p001 sum(1/(365*n+257)/(12^n),n=0..infinity) 4032521116848862 a007 Real Root Of 134*x^4+532*x^3+64*x^2+362*x-129 4032521120559028 s002 sum(A212996[n]/((pi^n-1)/n),n=1..infinity) 4032521124137625 r002 37th iterates of z^2 + 4032521127340572 a007 Real Root Of -867*x^4+901*x^3-486*x^2+419*x+330 4032521136222701 r008 a(0)=4,K{-n^6,-30+35*n+2*n^2-38*n^3} 4032521139660141 r002 29th iterates of z^2 + 4032521146135924 m005 (1/2*Zeta(3)-7/10)/(5/7*5^(1/2)+6/7) 4032521149169362 r005 Re(z^2+c),c=-17/30+7/97*I,n=19 4032521156934813 a001 2255/4250681*1364^(3/5) 4032521171986368 a001 17711/33385282*1364^(3/5) 4032521174182360 a001 15456/29134601*1364^(3/5) 4032521174502751 a001 121393/228826127*1364^(3/5) 4032521174549496 a001 377/710646*1364^(3/5) 4032521174556316 a001 832040/1568397607*1364^(3/5) 4032521174557311 a001 726103/1368706081*1364^(3/5) 4032521174557456 a001 5702887/10749957122*1364^(3/5) 4032521174557477 a001 4976784/9381251041*1364^(3/5) 4032521174557480 a001 39088169/73681302247*1364^(3/5) 4032521174557481 a001 34111385/64300051206*1364^(3/5) 4032521174557481 a001 267914296/505019158607*1364^(3/5) 4032521174557481 a001 233802911/440719107401*1364^(3/5) 4032521174557481 a001 1836311903/3461452808002*1364^(3/5) 4032521174557481 a001 1602508992/3020733700601*1364^(3/5) 4032521174557481 a001 12586269025/23725150497407*1364^(3/5) 4032521174557481 a001 7778742049/14662949395604*1364^(3/5) 4032521174557481 a001 2971215073/5600748293801*1364^(3/5) 4032521174557481 a001 1134903170/2139295485799*1364^(3/5) 4032521174557481 a001 433494437/817138163596*1364^(3/5) 4032521174557481 a001 165580141/312119004989*1364^(3/5) 4032521174557481 a001 63245986/119218851371*1364^(3/5) 4032521174557482 a001 24157817/45537549124*1364^(3/5) 4032521174557490 a001 9227465/17393796001*1364^(3/5) 4032521174557546 a001 3524578/6643838879*1364^(3/5) 4032521174557926 a001 1346269/2537720636*1364^(3/5) 4032521174560531 a001 514229/969323029*1364^(3/5) 4032521174578385 a001 196418/370248451*1364^(3/5) 4032521174700764 a001 75025/141422324*1364^(3/5) 4032521175539558 a001 28657/54018521*1364^(3/5) 4032521181288741 a001 10946/20633239*1364^(3/5) 4032521182537986 a007 Real Root Of -487*x^4+106*x^3-8*x^2+685*x-269 4032521184177642 m001 Zeta(5)/(ln(3)-sin(1)) 4032521192902226 m005 (1/2*2^(1/2)-2/7)/(1/5*Pi+5/12) 4032521197572578 m001 ThueMorse^BesselI(1,2)*ZetaQ(4) 4032521198266691 a001 2584/3010349*1364^(8/15) 4032521201790713 a001 1597/7881196*1364^(11/15) 4032521211099284 a001 1292/51841*521^(1/13) 4032521213270131 a001 21/2206*1364^(1/5) 4032521214335238 m001 Magata^2*Artin^2/ln(Zeta(9))^2 4032521214511118 r005 Re(z^2+c),c=-13/106+11/14*I,n=12 4032521215162866 a001 610/64079*521^(3/13) 4032521220694224 a001 4181/7881196*1364^(3/5) 4032521221412870 r009 Im(z^3+c),c=-3/16+9/20*I,n=8 4032521221962960 m001 ln(arctan(1/2))*GAMMA(1/24)*sqrt(5) 4032521237555678 m001 LandauRamanujan/(Si(Pi)+exp(-Pi)) 4032521238914368 r008 a(0)=4,K{-n^6,26-30*n^3+6*n^2-33*n} 4032521240073479 m008 (1/3*Pi^3+3)/(1/3*Pi^4+3/5) 4032521240727867 a007 Real Root Of 98*x^4-826*x^3-894*x^2-754*x+501 4032521243618551 m001 (CareFree-ZetaQ(3))^FeigenbaumAlpha 4032521244242535 r005 Im(z^2+c),c=5/27+16/39*I,n=9 4032521252426619 m003 3+Sqrt[5]/64+Tan[1/2+Sqrt[5]/2]^2/12 4032521254505319 r002 18th iterates of z^2 + 4032521259063982 a001 377/1860498*843^(11/14) 4032521265259733 m009 (3*Psi(1,1/3)-5/6)/(2/3*Psi(1,1/3)-6) 4032521267385698 r005 Im(z^2+c),c=17/126+17/40*I,n=49 4032521269310797 l006 ln(4373/6545) 4032521274154503 r009 Re(z^3+c),c=-6/13+22/63*I,n=5 4032521277271446 p003 LerchPhi(1/12,1,433/164) 4032521280570490 r005 Im(z^2+c),c=-11/118+29/53*I,n=20 4032521284927762 r008 a(0)=4,K{-n^6,-38-4*n^3+67*n^2-55*n} 4032521301431065 a001 6765/7881196*1364^(8/15) 4032521304243215 r002 40th iterates of z^2 + 4032521313029872 r005 Im(z^2+c),c=11/126+23/50*I,n=57 4032521314584429 a001 2255/90481*521^(1/13) 4032521316482544 a001 17711/20633239*1364^(8/15) 4032521318149262 r005 Im(z^2+c),c=-157/126+11/48*I,n=7 4032521318558609 m001 1/GAMMA(5/12)^2/Sierpinski/ln(cos(Pi/5)) 4032521318678525 a001 46368/54018521*1364^(8/15) 4032521318998914 a001 233/271444*1364^(8/15) 4032521319045659 a001 317811/370248451*1364^(8/15) 4032521319052479 a001 832040/969323029*1364^(8/15) 4032521319053474 a001 2178309/2537720636*1364^(8/15) 4032521319053619 a001 5702887/6643838879*1364^(8/15) 4032521319053640 a001 14930352/17393796001*1364^(8/15) 4032521319053643 a001 39088169/45537549124*1364^(8/15) 4032521319053643 a001 102334155/119218851371*1364^(8/15) 4032521319053643 a001 267914296/312119004989*1364^(8/15) 4032521319053644 a001 701408733/817138163596*1364^(8/15) 4032521319053644 a001 1836311903/2139295485799*1364^(8/15) 4032521319053644 a001 4807526976/5600748293801*1364^(8/15) 4032521319053644 a001 12586269025/14662949395604*1364^(8/15) 4032521319053644 a001 20365011074/23725150497407*1364^(8/15) 4032521319053644 a001 7778742049/9062201101803*1364^(8/15) 4032521319053644 a001 2971215073/3461452808002*1364^(8/15) 4032521319053644 a001 1134903170/1322157322203*1364^(8/15) 4032521319053644 a001 433494437/505019158607*1364^(8/15) 4032521319053644 a001 165580141/192900153618*1364^(8/15) 4032521319053644 a001 63245986/73681302247*1364^(8/15) 4032521319053645 a001 24157817/28143753123*1364^(8/15) 4032521319053653 a001 9227465/10749957122*1364^(8/15) 4032521319053708 a001 3524578/4106118243*1364^(8/15) 4032521319054088 a001 1346269/1568397607*1364^(8/15) 4032521319056693 a001 514229/599074578*1364^(8/15) 4032521319074548 a001 196418/228826127*1364^(8/15) 4032521319196926 a001 75025/87403803*1364^(8/15) 4032521320035716 a001 28657/33385282*1364^(8/15) 4032521325784870 a001 10946/12752043*1364^(8/15) 4032521329682708 a001 17711/710647*521^(1/13) 4032521330075741 m004 3+(125*Pi*Sech[Sqrt[5]*Pi])/6+Tan[Sqrt[5]*Pi] 4032521330322423 a007 Real Root Of -39*x^4+798*x^3+701*x^2+96*x-204 4032521330908221 a004 Fibonacci(16)*Lucas(17)/(1/2+sqrt(5)/2)^38 4032521330979619 a007 Real Root Of 33*x^4-994*x^3-871*x^2-940*x+585 4032521331885517 a001 2576/103361*521^(1/13) 4032521332206903 a001 121393/4870847*521^(1/13) 4032521332253792 a001 105937/4250681*521^(1/13) 4032521332260633 a001 416020/16692641*521^(1/13) 4032521332261631 a001 726103/29134601*521^(1/13) 4032521332261777 a001 5702887/228826127*521^(1/13) 4032521332261798 a001 829464/33281921*521^(1/13) 4032521332261801 a001 39088169/1568397607*521^(1/13) 4032521332261802 a001 34111385/1368706081*521^(1/13) 4032521332261802 a001 133957148/5374978561*521^(1/13) 4032521332261802 a001 233802911/9381251041*521^(1/13) 4032521332261802 a001 1836311903/73681302247*521^(1/13) 4032521332261802 a001 267084832/10716675201*521^(1/13) 4032521332261802 a001 12586269025/505019158607*521^(1/13) 4032521332261802 a001 10983760033/440719107401*521^(1/13) 4032521332261802 a001 43133785636/1730726404001*521^(1/13) 4032521332261802 a001 75283811239/3020733700601*521^(1/13) 4032521332261802 a001 182717648081/7331474697802*521^(1/13) 4032521332261802 a001 139583862445/5600748293801*521^(1/13) 4032521332261802 a001 53316291173/2139295485799*521^(1/13) 4032521332261802 a001 10182505537/408569081798*521^(1/13) 4032521332261802 a001 7778742049/312119004989*521^(1/13) 4032521332261802 a001 2971215073/119218851371*521^(1/13) 4032521332261802 a001 567451585/22768774562*521^(1/13) 4032521332261802 a001 433494437/17393796001*521^(1/13) 4032521332261802 a001 165580141/6643838879*521^(1/13) 4032521332261802 a001 31622993/1268860318*521^(1/13) 4032521332261803 a001 24157817/969323029*521^(1/13) 4032521332261811 a001 9227465/370248451*521^(1/13) 4032521332261867 a001 1762289/70711162*521^(1/13) 4032521332262248 a001 1346269/54018521*521^(1/13) 4032521332264861 a001 514229/20633239*521^(1/13) 4032521332282772 a001 98209/3940598*521^(1/13) 4032521332405530 a001 75025/3010349*521^(1/13) 4032521333246928 a001 28657/1149851*521^(1/13) 4032521339013958 a001 5473/219602*521^(1/13) 4032521341165860 a003 cos(Pi*1/44)*cos(Pi*43/117) 4032521342761245 a001 1292/930249*1364^(7/15) 4032521343863011 r008 a(0)=4,K{-n^6,-64+15*n+39*n^2-22*n^3} 4032521346286642 a001 1597/4870847*1364^(2/3) 4032521349509724 a001 987/54018521*3571^(16/17) 4032521350465402 a003 cos(Pi*1/70)-cos(Pi*9/98) 4032521359123491 a001 987/64079*1364^(2/15) 4032521365190154 a001 4181/4870847*1364^(8/15) 4032521365695837 m001 (Tetranacci-Trott)/(GAMMA(17/24)-MertensB3) 4032521368111221 a001 141/4769326*3571^(15/17) 4032521368797334 r008 a(0)=4,K{-n^6,38-15*n^3-33*n^2-21*n} 4032521369693052 h001 (-3*exp(2/3)+8)/(-7*exp(-3)-5) 4032521370081906 r002 16th iterates of z^2 + 4032521377596451 r008 a(0)=4,K{-n^6,44-15*n^3-30*n^2-30*n} 4032521378541765 a001 4181/167761*521^(1/13) 4032521380562811 r008 a(0)=4,K{-n^6,46-33*n-29*n^2-15*n^3} 4032521383690412 m005 (47/44+1/4*5^(1/2))/(8/11*2^(1/2)-5/8) 4032521383821552 m001 1/GAMMA(1/12)/ln(Riemann2ndZero)/sin(1)^2 4032521383924153 m006 (4*Pi+2/5)/(3/5*exp(2*Pi)+1/4) 4032521384032322 a001 199/46368*610^(17/24) 4032521384549296 r005 Im(z^2+c),c=2/13+23/53*I,n=11 4032521386712736 a001 987/20633239*3571^(14/17) 4032521391079027 r002 12th iterates of z^2 + 4032521405314203 a001 329/4250681*3571^(13/17) 4032521409027501 r005 Re(z^2+c),c=-71/126+2/41*I,n=19 4032521422210492 m004 3+(125*Pi)/(3*E^(Sqrt[5]*Pi))+Tan[Sqrt[5]*Pi] 4032521423915795 a001 987/7881196*3571^(12/17) 4032521424868383 r005 Re(z^2+c),c=-11/30+16/27*I,n=62 4032521442517062 a001 987/4870847*3571^(11/17) 4032521445926997 a001 6765/4870847*1364^(7/15) 4032521446448505 m001 (BesselI(0,1)+PrimesInBinary)^Khinchin 4032521448879092 a005 (1/cos(3/193*Pi))^1169 4032521449186842 m001 (3^(1/2)+MasserGramain)^ln(5) 4032521460978678 a001 17711/12752043*1364^(7/15) 4032521461119179 a001 987/3010349*3571^(10/17) 4032521463174688 a001 144/103681*1364^(7/15) 4032521463495082 a001 121393/87403803*1364^(7/15) 4032521463541827 a001 317811/228826127*1364^(7/15) 4032521463548647 a001 416020/299537289*1364^(7/15) 4032521463549642 a001 311187/224056801*1364^(7/15) 4032521463549787 a001 5702887/4106118243*1364^(7/15) 4032521463549808 a001 7465176/5374978561*1364^(7/15) 4032521463549811 a001 39088169/28143753123*1364^(7/15) 4032521463549811 a001 14619165/10525900321*1364^(7/15) 4032521463549812 a001 133957148/96450076809*1364^(7/15) 4032521463549812 a001 701408733/505019158607*1364^(7/15) 4032521463549812 a001 1836311903/1322157322203*1364^(7/15) 4032521463549812 a001 14930208/10749853441*1364^(7/15) 4032521463549812 a001 12586269025/9062201101803*1364^(7/15) 4032521463549812 a001 32951280099/23725150497407*1364^(7/15) 4032521463549812 a001 10182505537/7331474697802*1364^(7/15) 4032521463549812 a001 7778742049/5600748293801*1364^(7/15) 4032521463549812 a001 2971215073/2139295485799*1364^(7/15) 4032521463549812 a001 567451585/408569081798*1364^(7/15) 4032521463549812 a001 433494437/312119004989*1364^(7/15) 4032521463549812 a001 165580141/119218851371*1364^(7/15) 4032521463549812 a001 31622993/22768774562*1364^(7/15) 4032521463549813 a001 24157817/17393796001*1364^(7/15) 4032521463549821 a001 9227465/6643838879*1364^(7/15) 4032521463549876 a001 1762289/1268860318*1364^(7/15) 4032521463550257 a001 1346269/969323029*1364^(7/15) 4032521463552862 a001 514229/370248451*1364^(7/15) 4032521463570716 a001 98209/70711162*1364^(7/15) 4032521463693096 a001 75025/54018521*1364^(7/15) 4032521464531897 a001 28657/20633239*1364^(7/15) 4032521470281128 a001 5473/3940598*1364^(7/15) 4032521477523693 r008 a(0)=4,K{-n^6,50+45*n^3-62*n^2-62*n} 4032521479719071 a001 329/620166*3571^(9/17) 4032521480859653 r009 Im(z^3+c),c=-29/86+23/57*I,n=7 4032521484902893 r008 a(0)=4,K{-n^6,-43+28*n^3-32*n^2+17*n} 4032521487261629 a001 2584/1149851*1364^(2/5) 4032521490765116 a003 cos(Pi*38/101)+cos(Pi*32/65) 4032521490783426 a001 1597/3010349*1364^(3/5) 4032521491781361 a001 13/47*18^(3/23) 4032521498324788 a001 987/1149851*3571^(8/17) 4032521500066475 a001 329/13201*1364^(1/15) 4032521503385424 m001 FeigenbaumC^(Landau/CopelandErdos) 4032521509686939 a001 4181/3010349*1364^(7/15) 4032521513468424 m001 (-Bloch+KomornikLoreti)/(5^(1/2)+GAMMA(23/24)) 4032521514345388 m004 3+(125*Pi*Csch[Sqrt[5]*Pi])/6+Tan[Sqrt[5]*Pi] 4032521516915255 a001 141/101521*3571^(7/17) 4032521524357814 a007 Real Root Of -69*x^4-64*x^3+963*x^2+270*x-522 4032521524821986 a007 Real Root Of -6*x^4+151*x^3-592*x^2+453*x+289 4032521526346351 a001 1275204/31622993 4032521526346355 a004 Fibonacci(16)/Lucas(18)/(1/2+sqrt(5)/2)^3 4032521526346522 a004 Fibonacci(18)/Lucas(16)/(1/2+sqrt(5)/2)^7 4032521529110807 l006 ln(5881/8802) 4032521529784782 m004 120/Pi+Cot[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi] 4032521531416225 a007 Real Root Of -933*x^4+977*x^3+213*x^2+52*x-95 4032521531977302 r009 Re(z^3+c),c=-29/60+9/41*I,n=59 4032521535545647 a001 987/439204*3571^(6/17) 4032521542829250 r008 a(0)=4,K{-n^6,-5+22*n^3+5*n^2-52*n} 4032521545889848 m001 (ln(gamma)+TreeGrowth2nd)/exp(1) 4032521547618622 m001 (Shi(1)-Zeta(1/2))/(-HardyLittlewoodC3+Trott) 4032521554071516 a001 329/90481*3571^(5/17) 4032521572871031 a001 987/167761*3571^(4/17) 4032521588086002 m005 (1/6*Catalan-3)/(1/3*exp(1)-1/5) 4032521590423785 a001 6765/3010349*1364^(2/5) 4032521590954130 a001 21/2206*3571^(3/17) 4032521597325006 a001 1292/9*199^(8/41) 4032521600997075 a004 Fibonacci(16)*Lucas(19)/(1/2+sqrt(5)/2)^40 4032521603425321 a001 987/141422324*9349^(18/19) 4032521605251345 r009 Im(z^3+c),c=-17/44+14/37*I,n=31 4032521605474940 a001 89/39604*1364^(2/5) 4032521605853567 a001 329/29134601*9349^(17/19) 4032521607670874 a001 46368/20633239*1364^(2/5) 4032521607991257 a001 121393/54018521*1364^(2/5) 4032521608038000 a001 317811/141422324*1364^(2/5) 4032521608044820 a001 832040/370248451*1364^(2/5) 4032521608045815 a001 2178309/969323029*1364^(2/5) 4032521608045960 a001 5702887/2537720636*1364^(2/5) 4032521608045981 a001 14930352/6643838879*1364^(2/5) 4032521608045984 a001 39088169/17393796001*1364^(2/5) 4032521608045985 a001 102334155/45537549124*1364^(2/5) 4032521608045985 a001 267914296/119218851371*1364^(2/5) 4032521608045985 a001 3524667/1568437211*1364^(2/5) 4032521608045985 a001 1836311903/817138163596*1364^(2/5) 4032521608045985 a001 4807526976/2139295485799*1364^(2/5) 4032521608045985 a001 12586269025/5600748293801*1364^(2/5) 4032521608045985 a001 32951280099/14662949395604*1364^(2/5) 4032521608045985 a001 53316291173/23725150497407*1364^(2/5) 4032521608045985 a001 20365011074/9062201101803*1364^(2/5) 4032521608045985 a001 7778742049/3461452808002*1364^(2/5) 4032521608045985 a001 2971215073/1322157322203*1364^(2/5) 4032521608045985 a001 1134903170/505019158607*1364^(2/5) 4032521608045985 a001 433494437/192900153618*1364^(2/5) 4032521608045985 a001 165580141/73681302247*1364^(2/5) 4032521608045985 a001 63245986/28143753123*1364^(2/5) 4032521608045986 a001 24157817/10749957122*1364^(2/5) 4032521608045994 a001 9227465/4106118243*1364^(2/5) 4032521608046050 a001 3524578/1568397607*1364^(2/5) 4032521608046430 a001 1346269/599074578*1364^(2/5) 4032521608049035 a001 514229/228826127*1364^(2/5) 4032521608066889 a001 196418/87403803*1364^(2/5) 4032521608189264 a001 75025/33385282*1364^(2/5) 4032521608281815 a001 987/54018521*9349^(16/19) 4032521609028036 a001 28657/12752043*1364^(2/5) 4032521610710057 a001 141/4769326*9349^(15/19) 4032521610912829 a001 987/64079*3571^(2/17) 4032521613138317 a001 987/20633239*9349^(14/19) 4032521614777066 a001 10946/4870847*1364^(2/5) 4032521615566529 a001 329/4250681*9349^(13/19) 4032521617994865 a001 987/7881196*9349^(12/19) 4032521618737419 a007 Real Root Of -315*x^4-606*x^3-303*x^2+903*x+382 4032521620422877 a001 987/4870847*9349^(11/19) 4032521622851738 a001 987/3010349*9349^(10/19) 4032521625278375 a001 329/620166*9349^(9/19) 4032521625961146 a001 329/13201*3571^(1/17) 4032521627710836 a001 987/1149851*9349^(8/19) 4032521628156944 r005 Im(z^2+c),c=-11/23+27/52*I,n=43 4032521629511113 a001 6677055/165580141 4032521629511114 a004 Fibonacci(16)/Lucas(20)/(1/2+sqrt(5)/2) 4032521629511283 a004 Fibonacci(20)/Lucas(16)/(1/2+sqrt(5)/2)^9 4032521630128048 a001 141/101521*9349^(7/19) 4032521631746768 a001 2584/710647*1364^(1/3) 4032521632585184 a001 987/439204*9349^(6/19) 4032521634937797 a001 329/90481*9349^(5/19) 4032521635277990 a001 1597/1860498*1364^(8/15) 4032521637564055 a001 987/167761*9349^(4/19) 4032521639473899 a001 21/2206*9349^(3/19) 4032521640402507 a004 Fibonacci(16)*Lucas(21)/(1/2+sqrt(5)/2)^42 4032521640723043 a001 987/370248451*24476^(20/21) 4032521641043579 a001 21/4868641*24476^(19/21) 4032521641364115 a001 987/141422324*24476^(6/7) 4032521641684650 a001 329/29134601*24476^(17/21) 4032521642005187 a001 987/54018521*24476^(16/21) 4032521642134403 a001 329/13201*9349^(1/19) 4032521642325718 a001 141/4769326*24476^(5/7) 4032521642646267 a001 987/20633239*24476^(2/3) 4032521642966769 a001 329/4250681*24476^(13/21) 4032521643259342 a001 987/64079*9349^(2/19) 4032521643287394 a001 987/7881196*24476^(4/7) 4032521643607695 a001 987/4870847*24476^(11/21) 4032521643928846 a001 987/3010349*24476^(10/21) 4032521644242114 a001 329/13201*24476^(1/21) 4032521644247772 a001 329/620166*24476^(3/7) 4032521644519950 a001 329/13201*64079^(1/23) 4032521644562649 a001 17480757/433494437 4032521644562649 a001 329/26402+329/26402*5^(1/2) 4032521644562819 a004 Fibonacci(22)/Lucas(16)/(1/2+sqrt(5)/2)^11 4032521644572522 a001 987/1149851*24476^(8/21) 4032521644578279 a001 329/13201*103682^(1/24) 4032521644640396 r005 Re(z^2+c),c=-9/16+40/109*I,n=30 4032521644679518 a001 329/13201*39603^(1/22) 4032521644882023 a001 141/101521*24476^(1/3) 4032521645231449 a001 987/439204*24476^(2/7) 4032521645443782 a001 329/13201*15127^(1/20) 4032521645476350 a001 329/90481*24476^(5/21) 4032521645797031 a001 21/2206*24476^(1/7) 4032521645994898 a001 987/167761*24476^(4/21) 4032521646151682 a004 Fibonacci(16)*Lucas(23)/(1/2+sqrt(5)/2)^44 4032521646194381 a001 987/969323029*64079^(22/23) 4032521646237080 a001 329/199691526*64079^(21/23) 4032521646279779 a001 987/370248451*64079^(20/23) 4032521646322478 a001 21/4868641*64079^(19/23) 4032521646365177 a001 987/141422324*64079^(18/23) 4032521646407876 a001 329/29134601*64079^(17/23) 4032521646450576 a001 987/54018521*64079^(16/23) 4032521646493270 a001 141/4769326*64079^(15/23) 4032521646535982 a001 987/20633239*64079^(14/23) 4032521646578647 a001 329/4250681*64079^(13/23) 4032521646621436 a001 987/7881196*64079^(12/23) 4032521646630542 a001 21/2206*64079^(3/23) 4032521646663900 a001 987/4870847*64079^(11/23) 4032521646707214 a001 987/3010349*64079^(10/23) 4032521646748303 a001 329/620166*64079^(9/23) 4032521646756316 a001 21/2206*439204^(1/9) 4032521646758633 a001 21/2206*7881196^(1/11) 4032521646758639 a001 21/2206*141422324^(1/13) 4032521646758639 a001 22882608/567451585 4032521646758639 a001 21/2206*2537720636^(1/15) 4032521646758639 a001 21/2206*45537549124^(1/17) 4032521646758639 a001 21/2206*14662949395604^(1/21) 4032521646758639 a001 21/2206*(1/2+1/2*5^(1/2))^3 4032521646758639 a001 21/2206*192900153618^(1/18) 4032521646758639 a001 21/2206*10749957122^(1/16) 4032521646758639 a001 21/2206*599074578^(1/14) 4032521646758639 a001 21/2206*33385282^(1/12) 4032521646758755 a001 21/2206*1860498^(1/10) 4032521646758809 a004 Fibonacci(24)/Lucas(16)/(1/2+sqrt(5)/2)^13 4032521646795217 a001 987/1149851*64079^(8/23) 4032521646805529 a001 21/2206*103682^(1/8) 4032521646826881 a001 141/101521*64079^(7/23) 4032521646865535 a001 329/90481*64079^(5/23) 4032521646898469 a001 987/439204*64079^(6/23) 4032521646990476 a004 Fibonacci(16)*Lucas(25)/(1/2+sqrt(5)/2)^46 4032521647019132 a001 987/370248451*167761^(4/5) 4032521647047785 a001 141/4769326*167761^(3/5) 4032521647050373 a001 329/90481*167761^(1/5) 4032521647076890 a001 987/3010349*167761^(2/5) 4032521647079028 a001 329/90481*20633239^(1/7) 4032521647079029 a001 119814891/2971215073 4032521647079029 a001 329/90481*2537720636^(1/9) 4032521647079029 a001 329/90481*312119004989^(1/11) 4032521647079029 a001 329/90481*(1/2+1/2*5^(1/2))^5 4032521647079029 a001 329/90481*28143753123^(1/10) 4032521647079029 a001 329/90481*228826127^(1/8) 4032521647079199 a004 Fibonacci(26)/Lucas(16)/(1/2+sqrt(5)/2)^15 4032521647079224 a001 329/90481*1860498^(1/6) 4032521647106246 a001 987/167761*64079^(4/23) 4032521647109245 a001 21/2206*39603^(3/22) 4032521647112854 a004 Fibonacci(16)*Lucas(27)/(1/2+sqrt(5)/2)^48 4032521647115177 a001 987/2537720636*439204^(8/9) 4032521647117499 a001 329/199691526*439204^(7/9) 4032521647119822 a001 987/141422324*439204^(2/3) 4032521647122141 a001 141/4769326*439204^(5/9) 4032521647124533 a001 987/7881196*439204^(4/9) 4032521647125625 a001 329/620166*439204^(1/3) 4032521647125772 a001 141/101521*20633239^(1/5) 4032521647125774 a001 24129189/598364773 4032521647125774 a001 141/101521*17393796001^(1/7) 4032521647125774 a001 141/101521*14662949395604^(1/9) 4032521647125774 a001 141/101521*(1/2+1/2*5^(1/2))^7 4032521647125774 a001 141/101521*599074578^(1/6) 4032521647125944 a004 Fibonacci(28)/Lucas(16)/(1/2+sqrt(5)/2)^17 4032521647127770 a001 141/101521*710647^(1/4) 4032521647130709 a004 Fibonacci(16)*Lucas(29)/(1/2+sqrt(5)/2)^50 4032521647132576 a001 329/620166*7881196^(3/11) 4032521647132594 a001 329/620166*141422324^(3/13) 4032521647132594 a001 329/620166*2537720636^(1/5) 4032521647132594 a001 410611740/10182505537 4032521647132594 a001 329/620166*45537549124^(3/17) 4032521647132594 a001 329/620166*817138163596^(3/19) 4032521647132594 a001 329/620166*14662949395604^(1/7) 4032521647132594 a001 329/620166*(1/2+1/2*5^(1/2))^9 4032521647132594 a001 329/620166*192900153618^(1/6) 4032521647132594 a001 329/620166*10749957122^(3/16) 4032521647132594 a001 329/620166*599074578^(3/14) 4032521647132595 a001 329/620166*33385282^(1/4) 4032521647132764 a004 Fibonacci(30)/Lucas(16)/(1/2+sqrt(5)/2)^19 4032521647132943 a001 329/620166*1860498^(3/10) 4032521647133314 a004 Fibonacci(16)*Lucas(31)/(1/2+sqrt(5)/2)^52 4032521647133567 a001 987/4870847*7881196^(1/3) 4032521647133589 a001 2149990983/53316291173 4032521647133589 a001 987/4870847*312119004989^(1/5) 4032521647133589 a001 987/4870847*(1/2+1/2*5^(1/2))^11 4032521647133589 a001 987/4870847*1568397607^(1/4) 4032521647133694 a004 Fibonacci(16)*Lucas(33)/(1/2+sqrt(5)/2)^54 4032521647133700 a001 987/45537549124*7881196^(10/11) 4032521647133706 a001 987/10749957122*7881196^(9/11) 4032521647133711 a001 987/2537720636*7881196^(8/11) 4032521647133715 a001 987/969323029*7881196^(2/3) 4032521647133717 a001 329/199691526*7881196^(7/11) 4032521647133723 a001 987/141422324*7881196^(6/11) 4032521647133725 a001 141/4769326*7881196^(5/11) 4032521647133734 a001 329/4250681*141422324^(1/3) 4032521647133734 a001 5628749469/139583862445 4032521647133734 a001 329/4250681*(1/2+1/2*5^(1/2))^13 4032521647133734 a001 329/4250681*73681302247^(1/4) 4032521647133749 a004 Fibonacci(16)*Lucas(35)/(1/2+sqrt(5)/2)^56 4032521647133751 a001 987/45537549124*20633239^(6/7) 4032521647133751 a001 141/4769326*20633239^(3/7) 4032521647133751 a001 987/17393796001*20633239^(4/5) 4032521647133752 a001 329/1368706081*20633239^(5/7) 4032521647133753 a001 329/199691526*20633239^(3/5) 4032521647133753 a001 987/370248451*20633239^(4/7) 4032521647133755 a001 141/4769326*141422324^(5/13) 4032521647133755 a001 141/4769326*2537720636^(1/3) 4032521647133755 a001 141/4769326*45537549124^(5/17) 4032521647133755 a001 141/4769326*312119004989^(3/11) 4032521647133755 a001 7368128712/182717648081 4032521647133755 a001 141/4769326*14662949395604^(5/21) 4032521647133755 a001 141/4769326*(1/2+1/2*5^(1/2))^15 4032521647133755 a001 141/4769326*192900153618^(5/18) 4032521647133755 a001 141/4769326*28143753123^(3/10) 4032521647133755 a001 141/4769326*10749957122^(5/16) 4032521647133755 a001 141/4769326*599074578^(5/14) 4032521647133755 a001 141/4769326*228826127^(3/8) 4032521647133757 a001 141/4769326*33385282^(5/12) 4032521647133757 a004 Fibonacci(16)*Lucas(37)/(1/2+sqrt(5)/2)^58 4032521647133758 a001 329/29134601*45537549124^(1/3) 4032521647133758 a001 38580022803/956722026041 4032521647133758 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^17/Lucas(38) 4032521647133758 a004 Fibonacci(16)*Lucas(39)/(1/2+sqrt(5)/2)^60 4032521647133758 a001 987/817138163596*141422324^(12/13) 4032521647133758 a001 329/64300051206*141422324^(11/13) 4032521647133758 a001 987/45537549124*141422324^(10/13) 4032521647133758 a001 987/10749957122*141422324^(9/13) 4032521647133758 a001 987/6643838879*141422324^(2/3) 4032521647133758 a001 987/2537720636*141422324^(8/13) 4032521647133758 a001 329/199691526*141422324^(7/13) 4032521647133759 a001 101003810985/2504730781961 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^19/Lucas(40) 4032521647133759 a004 Fibonacci(16)*Lucas(41)/(1/2+sqrt(5)/2)^62 4032521647133759 a001 329/199691526*2537720636^(7/15) 4032521647133759 a001 329/199691526*17393796001^(3/7) 4032521647133759 a001 329/199691526*45537549124^(7/17) 4032521647133759 a001 24157812/599074577 4032521647133759 a001 329/199691526*14662949395604^(1/3) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^21/Lucas(42) 4032521647133759 a001 329/199691526*192900153618^(7/18) 4032521647133759 a001 329/199691526*10749957122^(7/16) 4032521647133759 a001 329/199691526*599074578^(1/2) 4032521647133759 a004 Fibonacci(16)*Lucas(43)/(1/2+sqrt(5)/2)^64 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^23/Lucas(44) 4032521647133759 a001 141/224056801*4106118243^(1/2) 4032521647133759 a004 Fibonacci(16)*Lucas(45)/(1/2+sqrt(5)/2)^66 4032521647133759 a001 329/1368706081*2537720636^(5/9) 4032521647133759 a001 987/14662949395604*2537720636^(14/15) 4032521647133759 a001 987/5600748293801*2537720636^(8/9) 4032521647133759 a001 141/494493258286*2537720636^(13/15) 4032521647133759 a001 987/817138163596*2537720636^(4/5) 4032521647133759 a001 21/10745088481*2537720636^(7/9) 4032521647133759 a001 329/64300051206*2537720636^(11/15) 4032521647133759 a001 987/45537549124*2537720636^(2/3) 4032521647133759 a001 987/10749957122*2537720636^(3/5) 4032521647133759 a001 329/1368706081*312119004989^(5/11) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^25/Lucas(46) 4032521647133759 a001 329/1368706081*3461452808002^(5/12) 4032521647133759 a001 329/1368706081*28143753123^(1/2) 4032521647133759 a004 Fibonacci(16)*Lucas(47)/(1/2+sqrt(5)/2)^68 4032521647133759 a001 987/10749957122*45537549124^(9/17) 4032521647133759 a001 987/10749957122*817138163596^(9/19) 4032521647133759 a001 987/10749957122*14662949395604^(3/7) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^27/Lucas(48) 4032521647133759 a001 987/10749957122*192900153618^(1/2) 4032521647133759 a001 987/10749957122*10749957122^(9/16) 4032521647133759 a004 Fibonacci(16)*Lucas(49)/(1/2+sqrt(5)/2)^70 4032521647133759 a001 987/14662949395604*17393796001^(6/7) 4032521647133759 a001 21/10745088481*17393796001^(5/7) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^29/Lucas(50) 4032521647133759 a001 329/9381251041*1322157322203^(1/2) 4032521647133759 a004 Fibonacci(16)*Lucas(51)/(1/2+sqrt(5)/2)^72 4032521647133759 a001 987/14662949395604*45537549124^(14/17) 4032521647133759 a001 141/494493258286*45537549124^(13/17) 4032521647133759 a001 329/64300051206*45537549124^(11/17) 4032521647133759 a001 987/817138163596*45537549124^(12/17) 4032521647133759 a001 987/312119004989*45537549124^(2/3) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^31/Lucas(52) 4032521647133759 a001 141/10525900321*9062201101803^(1/2) 4032521647133759 a004 Fibonacci(16)*Lucas(53)/(1/2+sqrt(5)/2)^74 4032521647133759 a001 329/64300051206*312119004989^(3/5) 4032521647133759 a001 329/64300051206*14662949395604^(11/21) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^33/Lucas(54) 4032521647133759 a001 21/10745088481*312119004989^(7/11) 4032521647133759 a004 Fibonacci(16)*Lucas(55)/(1/2+sqrt(5)/2)^76 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^35/Lucas(56) 4032521647133759 a004 Fibonacci(16)*Lucas(57)/(1/2+sqrt(5)/2)^78 4032521647133759 a001 21/10745088481*505019158607^(5/8) 4032521647133759 a001 987/14662949395604*817138163596^(14/19) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^37/Lucas(58) 4032521647133759 a004 Fibonacci(16)*Lucas(59)/(1/2+sqrt(5)/2)^80 4032521647133759 a001 141/494493258286*14662949395604^(13/21) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^39/Lucas(60) 4032521647133759 a004 Fibonacci(16)*Lucas(61)/(1/2+sqrt(5)/2)^82 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^41/Lucas(62) 4032521647133759 a004 Fibonacci(16)*Lucas(63)/(1/2+sqrt(5)/2)^84 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^43/Lucas(64) 4032521647133759 a004 Fibonacci(16)*Lucas(65)/(1/2+sqrt(5)/2)^86 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^45/Lucas(66) 4032521647133759 a004 Fibonacci(16)*Lucas(67)/(1/2+sqrt(5)/2)^88 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^47/Lucas(68) 4032521647133759 a004 Fibonacci(16)*Lucas(69)/(1/2+sqrt(5)/2)^90 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^49/Lucas(70) 4032521647133759 a004 Fibonacci(16)*Lucas(71)/(1/2+sqrt(5)/2)^92 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^51/Lucas(72) 4032521647133759 a004 Fibonacci(16)*Lucas(73)/(1/2+sqrt(5)/2)^94 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^53/Lucas(74) 4032521647133759 a004 Fibonacci(16)*Lucas(75)/(1/2+sqrt(5)/2)^96 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^55/Lucas(76) 4032521647133759 a004 Fibonacci(16)*Lucas(77)/(1/2+sqrt(5)/2)^98 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^57/Lucas(78) 4032521647133759 a004 Fibonacci(16)*Lucas(79)/(1/2+sqrt(5)/2)^100 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^59/Lucas(80) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^61/Lucas(82) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^63/Lucas(84) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^65/Lucas(86) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^67/Lucas(88) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^69/Lucas(90) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^71/Lucas(92) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^73/Lucas(94) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^75/Lucas(96) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^77/Lucas(98) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^79/Lucas(100) 4032521647133759 a004 Fibonacci(8)*Lucas(8)/(1/2+sqrt(5)/2)^21 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^78/Lucas(99) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^76/Lucas(97) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^74/Lucas(95) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^72/Lucas(93) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^70/Lucas(91) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^68/Lucas(89) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^66/Lucas(87) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^64/Lucas(85) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^62/Lucas(83) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^60/Lucas(81) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^58/Lucas(79) 4032521647133759 a004 Fibonacci(16)*Lucas(78)/(1/2+sqrt(5)/2)^99 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^56/Lucas(77) 4032521647133759 a004 Fibonacci(16)*Lucas(76)/(1/2+sqrt(5)/2)^97 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^54/Lucas(75) 4032521647133759 a004 Fibonacci(16)*Lucas(74)/(1/2+sqrt(5)/2)^95 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^52/Lucas(73) 4032521647133759 a004 Fibonacci(16)*Lucas(72)/(1/2+sqrt(5)/2)^93 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^50/Lucas(71) 4032521647133759 a004 Fibonacci(16)*Lucas(70)/(1/2+sqrt(5)/2)^91 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^48/Lucas(69) 4032521647133759 a004 Fibonacci(16)*Lucas(68)/(1/2+sqrt(5)/2)^89 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^46/Lucas(67) 4032521647133759 a004 Fibonacci(16)*Lucas(66)/(1/2+sqrt(5)/2)^87 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^44/Lucas(65) 4032521647133759 a004 Fibonacci(16)*Lucas(64)/(1/2+sqrt(5)/2)^85 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^42/Lucas(63) 4032521647133759 a004 Fibonacci(16)*Lucas(62)/(1/2+sqrt(5)/2)^83 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^40/Lucas(61) 4032521647133759 a004 Fibonacci(16)*Lucas(60)/(1/2+sqrt(5)/2)^81 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^38/Lucas(59) 4032521647133759 a004 Fibonacci(16)*Lucas(58)/(1/2+sqrt(5)/2)^79 4032521647133759 a001 987/817138163596*14662949395604^(4/7) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^36/Lucas(57) 4032521647133759 a001 987/14662949395604*505019158607^(3/4) 4032521647133759 a004 Fibonacci(16)*Lucas(56)/(1/2+sqrt(5)/2)^77 4032521647133759 a001 987/817138163596*505019158607^(9/14) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^34/Lucas(55) 4032521647133759 a001 141/494493258286*192900153618^(13/18) 4032521647133759 a001 987/817138163596*192900153618^(2/3) 4032521647133759 a001 987/14662949395604*192900153618^(7/9) 4032521647133759 a004 Fibonacci(16)*Lucas(54)/(1/2+sqrt(5)/2)^75 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^32/Lucas(53) 4032521647133759 a001 987/119218851371*23725150497407^(1/2) 4032521647133759 a001 987/119218851371*505019158607^(4/7) 4032521647133759 a001 987/817138163596*73681302247^(9/13) 4032521647133759 a001 141/494493258286*73681302247^(3/4) 4032521647133759 a001 987/5600748293801*73681302247^(10/13) 4032521647133759 a001 987/119218851371*73681302247^(8/13) 4032521647133759 a004 Fibonacci(16)*Lucas(52)/(1/2+sqrt(5)/2)^73 4032521647133759 a001 987/45537549124*45537549124^(10/17) 4032521647133759 a001 987/45537549124*312119004989^(6/11) 4032521647133759 a001 987/45537549124*14662949395604^(10/21) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^30/Lucas(51) 4032521647133759 a001 987/45537549124*192900153618^(5/9) 4032521647133759 a001 21/10745088481*28143753123^(7/10) 4032521647133759 a001 987/5600748293801*28143753123^(4/5) 4032521647133759 a001 987/45537549124*28143753123^(3/5) 4032521647133759 a004 Fibonacci(16)*Lucas(50)/(1/2+sqrt(5)/2)^71 4032521647133759 a001 987/17393796001*17393796001^(4/7) 4032521647133759 a001 987/17393796001*14662949395604^(4/9) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^28/Lucas(49) 4032521647133759 a001 987/17393796001*73681302247^(7/13) 4032521647133759 a001 987/119218851371*10749957122^(2/3) 4032521647133759 a001 987/45537549124*10749957122^(5/8) 4032521647133759 a001 329/64300051206*10749957122^(11/16) 4032521647133759 a001 987/312119004989*10749957122^(17/24) 4032521647133759 a001 987/817138163596*10749957122^(3/4) 4032521647133759 a001 987/2139295485799*10749957122^(19/24) 4032521647133759 a001 141/494493258286*10749957122^(13/16) 4032521647133759 a001 987/5600748293801*10749957122^(5/6) 4032521647133759 a001 987/14662949395604*10749957122^(7/8) 4032521647133759 a001 987/17393796001*10749957122^(7/12) 4032521647133759 a004 Fibonacci(16)*Lucas(48)/(1/2+sqrt(5)/2)^69 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^26/Lucas(47) 4032521647133759 a001 987/6643838879*73681302247^(1/2) 4032521647133759 a001 987/6643838879*10749957122^(13/24) 4032521647133759 a001 987/45537549124*4106118243^(15/23) 4032521647133759 a001 987/17393796001*4106118243^(14/23) 4032521647133759 a001 987/119218851371*4106118243^(16/23) 4032521647133759 a001 987/312119004989*4106118243^(17/23) 4032521647133759 a001 987/817138163596*4106118243^(18/23) 4032521647133759 a001 987/2139295485799*4106118243^(19/23) 4032521647133759 a001 987/5600748293801*4106118243^(20/23) 4032521647133759 a001 987/14662949395604*4106118243^(21/23) 4032521647133759 a001 987/6643838879*4106118243^(13/23) 4032521647133759 a004 Fibonacci(16)*Lucas(46)/(1/2+sqrt(5)/2)^67 4032521647133759 a001 987/2537720636*2537720636^(8/15) 4032521647133759 a001 987/2537720636*45537549124^(8/17) 4032521647133759 a001 987/2537720636*14662949395604^(8/21) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^24/Lucas(45) 4032521647133759 a001 987/2537720636*192900153618^(4/9) 4032521647133759 a001 987/2537720636*73681302247^(6/13) 4032521647133759 a001 987/2537720636*10749957122^(1/2) 4032521647133759 a001 987/2537720636*4106118243^(12/23) 4032521647133759 a001 987/17393796001*1568397607^(7/11) 4032521647133759 a001 987/6643838879*1568397607^(13/22) 4032521647133759 a001 987/45537549124*1568397607^(15/22) 4032521647133759 a001 987/119218851371*1568397607^(8/11) 4032521647133759 a001 329/64300051206*1568397607^(3/4) 4032521647133759 a001 987/312119004989*1568397607^(17/22) 4032521647133759 a001 987/817138163596*1568397607^(9/11) 4032521647133759 a001 987/2139295485799*1568397607^(19/22) 4032521647133759 a001 987/5600748293801*1568397607^(10/11) 4032521647133759 a001 987/2537720636*1568397607^(6/11) 4032521647133759 a001 987/14662949395604*1568397607^(21/22) 4032521647133759 a004 Fibonacci(16)*Lucas(44)/(1/2+sqrt(5)/2)^65 4032521647133759 a001 987/969323029*312119004989^(2/5) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^22/Lucas(43) 4032521647133759 a001 433494437/10749959329 4032521647133759 a001 987/969323029*10749957122^(11/24) 4032521647133759 a001 987/969323029*4106118243^(11/23) 4032521647133759 a001 987/969323029*1568397607^(1/2) 4032521647133759 a001 987/2537720636*599074578^(4/7) 4032521647133759 a001 987/6643838879*599074578^(13/21) 4032521647133759 a001 987/10749957122*599074578^(9/14) 4032521647133759 a001 987/17393796001*599074578^(2/3) 4032521647133759 a001 987/45537549124*599074578^(5/7) 4032521647133759 a001 987/119218851371*599074578^(16/21) 4032521647133759 a001 329/64300051206*599074578^(11/14) 4032521647133759 a001 987/312119004989*599074578^(17/21) 4032521647133759 a001 21/10745088481*599074578^(5/6) 4032521647133759 a001 987/817138163596*599074578^(6/7) 4032521647133759 a001 987/2139295485799*599074578^(19/21) 4032521647133759 a001 987/969323029*599074578^(11/21) 4032521647133759 a001 141/494493258286*599074578^(13/14) 4032521647133759 a001 987/5600748293801*599074578^(20/21) 4032521647133759 a004 Fibonacci(16)*Lucas(42)/(1/2+sqrt(5)/2)^63 4032521647133759 a001 987/370248451*2537720636^(4/9) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^20/Lucas(41) 4032521647133759 a001 987/370248451*23725150497407^(5/16) 4032521647133759 a001 163427599167/4052739537881 4032521647133759 a001 987/370248451*505019158607^(5/14) 4032521647133759 a001 987/370248451*73681302247^(5/13) 4032521647133759 a001 987/370248451*28143753123^(2/5) 4032521647133759 a001 987/370248451*10749957122^(5/12) 4032521647133759 a001 987/370248451*4106118243^(10/23) 4032521647133759 a001 987/370248451*1568397607^(5/11) 4032521647133759 a001 987/370248451*599074578^(10/21) 4032521647133759 a001 987/969323029*228826127^(11/20) 4032521647133759 a001 987/2537720636*228826127^(3/5) 4032521647133759 a001 329/1368706081*228826127^(5/8) 4032521647133759 a001 987/6643838879*228826127^(13/20) 4032521647133759 a001 987/17393796001*228826127^(7/10) 4032521647133759 a001 987/45537549124*228826127^(3/4) 4032521647133759 a001 987/119218851371*228826127^(4/5) 4032521647133759 a001 987/312119004989*228826127^(17/20) 4032521647133759 a001 21/10745088481*228826127^(7/8) 4032521647133759 a001 987/370248451*228826127^(1/2) 4032521647133759 a001 987/817138163596*228826127^(9/10) 4032521647133759 a001 987/2139295485799*228826127^(19/20) 4032521647133759 a004 Fibonacci(16)*Lucas(40)/(1/2+sqrt(5)/2)^61 4032521647133759 a001 987/141422324*141422324^(6/13) 4032521647133759 a001 21/4868641*87403803^(1/2) 4032521647133759 a001 987/141422324*2537720636^(2/5) 4032521647133759 a001 987/141422324*45537549124^(6/17) 4032521647133759 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^18/Lucas(39) 4032521647133759 a001 10403964697/258001459320 4032521647133759 a001 987/141422324*192900153618^(1/3) 4032521647133759 a001 987/141422324*10749957122^(3/8) 4032521647133759 a001 987/141422324*4106118243^(9/23) 4032521647133759 a001 987/141422324*1568397607^(9/22) 4032521647133759 a001 987/141422324*599074578^(3/7) 4032521647133759 a001 987/141422324*228826127^(9/20) 4032521647133759 a001 987/370248451*87403803^(10/19) 4032521647133759 a001 987/969323029*87403803^(11/19) 4032521647133759 a001 987/2537720636*87403803^(12/19) 4032521647133759 a001 987/6643838879*87403803^(13/19) 4032521647133759 a001 987/17393796001*87403803^(14/19) 4032521647133759 a001 987/45537549124*87403803^(15/19) 4032521647133759 a001 987/119218851371*87403803^(16/19) 4032521647133759 a001 987/141422324*87403803^(9/19) 4032521647133759 a001 987/312119004989*87403803^(17/19) 4032521647133759 a001 987/817138163596*87403803^(18/19) 4032521647133759 a004 Fibonacci(16)*Lucas(38)/(1/2+sqrt(5)/2)^59 4032521647133760 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^16/Lucas(37) 4032521647133760 a001 23843765379/591286729879 4032521647133760 a001 987/54018521*73681302247^(4/13) 4032521647133760 a001 987/54018521*10749957122^(1/3) 4032521647133760 a001 987/54018521*4106118243^(8/23) 4032521647133760 a001 987/54018521*1568397607^(4/11) 4032521647133760 a001 987/54018521*599074578^(8/21) 4032521647133760 a001 987/54018521*228826127^(2/5) 4032521647133760 a001 987/54018521*87403803^(8/19) 4032521647133761 a001 987/141422324*33385282^(1/2) 4032521647133761 a001 987/370248451*33385282^(5/9) 4032521647133761 a001 329/199691526*33385282^(7/12) 4032521647133761 a001 987/969323029*33385282^(11/18) 4032521647133761 a001 987/2537720636*33385282^(2/3) 4032521647133761 a001 987/6643838879*33385282^(13/18) 4032521647133761 a001 987/10749957122*33385282^(3/4) 4032521647133761 a001 987/17393796001*33385282^(7/9) 4032521647133762 a001 987/54018521*33385282^(4/9) 4032521647133762 a001 987/45537549124*33385282^(5/6) 4032521647133762 a001 987/119218851371*33385282^(8/9) 4032521647133762 a001 329/64300051206*33385282^(11/12) 4032521647133762 a001 987/312119004989*33385282^(17/18) 4032521647133762 a004 Fibonacci(16)*Lucas(36)/(1/2+sqrt(5)/2)^57 4032521647133764 a001 987/20633239*20633239^(2/5) 4032521647133768 a001 987/20633239*17393796001^(2/7) 4032521647133768 a001 987/20633239*14662949395604^(2/9) 4032521647133768 a001 987/20633239*(1/2+1/2*5^(1/2))^14 4032521647133768 a001 987/20633239*505019158607^(1/4) 4032521647133768 a001 33360835/827294629 4032521647133768 a001 987/20633239*10749957122^(7/24) 4032521647133768 a001 987/20633239*4106118243^(7/23) 4032521647133768 a001 987/20633239*1568397607^(7/22) 4032521647133768 a001 987/20633239*599074578^(1/3) 4032521647133768 a001 987/20633239*228826127^(7/20) 4032521647133768 a001 987/20633239*87403803^(7/19) 4032521647133769 a001 987/20633239*33385282^(7/18) 4032521647133770 a001 329/29134601*12752043^(1/2) 4032521647133772 a001 987/54018521*12752043^(8/17) 4032521647133772 a001 987/141422324*12752043^(9/17) 4032521647133773 a001 987/370248451*12752043^(10/17) 4032521647133775 a001 987/969323029*12752043^(11/17) 4032521647133776 a001 987/2537720636*12752043^(12/17) 4032521647133778 a001 987/6643838879*12752043^(13/17) 4032521647133778 a001 987/20633239*12752043^(7/17) 4032521647133779 a001 987/17393796001*12752043^(14/17) 4032521647133780 a001 987/45537549124*12752043^(15/17) 4032521647133782 a001 987/119218851371*12752043^(16/17) 4032521647133783 a004 Fibonacci(16)*Lucas(34)/(1/2+sqrt(5)/2)^55 4032521647133800 a001 987/7881196*7881196^(4/11) 4032521647133823 a001 987/7881196*141422324^(4/13) 4032521647133824 a001 987/7881196*2537720636^(4/15) 4032521647133824 a001 987/7881196*45537549124^(4/17) 4032521647133824 a001 987/7881196*817138163596^(4/19) 4032521647133824 a001 987/7881196*14662949395604^(4/21) 4032521647133824 a001 987/7881196*(1/2+1/2*5^(1/2))^12 4032521647133824 a001 987/7881196*192900153618^(2/9) 4032521647133824 a001 1739379243/43133785636 4032521647133824 a001 987/7881196*73681302247^(3/13) 4032521647133824 a001 987/7881196*10749957122^(1/4) 4032521647133824 a001 987/7881196*4106118243^(6/23) 4032521647133824 a001 987/7881196*1568397607^(3/11) 4032521647133824 a001 987/7881196*599074578^(2/7) 4032521647133824 a001 987/7881196*228826127^(3/10) 4032521647133824 a001 987/7881196*87403803^(6/19) 4032521647133825 a001 987/7881196*33385282^(1/3) 4032521647133832 a001 987/7881196*12752043^(6/17) 4032521647133842 a001 987/20633239*4870847^(7/16) 4032521647133845 a001 987/54018521*4870847^(1/2) 4032521647133854 a001 987/141422324*4870847^(9/16) 4032521647133865 a001 987/370248451*4870847^(5/8) 4032521647133875 a001 987/969323029*4870847^(11/16) 4032521647133886 a001 987/2537720636*4870847^(3/4) 4032521647133887 a001 987/7881196*4870847^(3/8) 4032521647133897 a001 987/6643838879*4870847^(13/16) 4032521647133904 a004 Fibonacci(34)/Lucas(16)/(1/2+sqrt(5)/2)^23 4032521647133907 a001 987/17393796001*4870847^(7/8) 4032521647133918 a001 987/45537549124*4870847^(15/16) 4032521647133925 a004 Fibonacci(36)/Lucas(16)/(1/2+sqrt(5)/2)^25 4032521647133928 a004 Fibonacci(38)/Lucas(16)/(1/2+sqrt(5)/2)^27 4032521647133929 a004 Fibonacci(40)/Lucas(16)/(1/2+sqrt(5)/2)^29 4032521647133929 a004 Fibonacci(42)/Lucas(16)/(1/2+sqrt(5)/2)^31 4032521647133929 a004 Fibonacci(44)/Lucas(16)/(1/2+sqrt(5)/2)^33 4032521647133929 a004 Fibonacci(46)/Lucas(16)/(1/2+sqrt(5)/2)^35 4032521647133929 a004 Fibonacci(48)/Lucas(16)/(1/2+sqrt(5)/2)^37 4032521647133929 a004 Fibonacci(50)/Lucas(16)/(1/2+sqrt(5)/2)^39 4032521647133929 a004 Fibonacci(52)/Lucas(16)/(1/2+sqrt(5)/2)^41 4032521647133929 a004 Fibonacci(54)/Lucas(16)/(1/2+sqrt(5)/2)^43 4032521647133929 a004 Fibonacci(56)/Lucas(16)/(1/2+sqrt(5)/2)^45 4032521647133929 a004 Fibonacci(58)/Lucas(16)/(1/2+sqrt(5)/2)^47 4032521647133929 a004 Fibonacci(60)/Lucas(16)/(1/2+sqrt(5)/2)^49 4032521647133929 a004 Fibonacci(62)/Lucas(16)/(1/2+sqrt(5)/2)^51 4032521647133929 a004 Fibonacci(16)*Lucas(32)/(1/2+sqrt(5)/2)^53 4032521647133929 a004 Fibonacci(66)/Lucas(16)/(1/2+sqrt(5)/2)^55 4032521647133929 a004 Fibonacci(68)/Lucas(16)/(1/2+sqrt(5)/2)^57 4032521647133929 a004 Fibonacci(70)/Lucas(16)/(1/2+sqrt(5)/2)^59 4032521647133929 a004 Fibonacci(72)/Lucas(16)/(1/2+sqrt(5)/2)^61 4032521647133929 a004 Fibonacci(74)/Lucas(16)/(1/2+sqrt(5)/2)^63 4032521647133929 a004 Fibonacci(76)/Lucas(16)/(1/2+sqrt(5)/2)^65 4032521647133929 a004 Fibonacci(78)/Lucas(16)/(1/2+sqrt(5)/2)^67 4032521647133929 a004 Fibonacci(80)/Lucas(16)/(1/2+sqrt(5)/2)^69 4032521647133929 a004 Fibonacci(82)/Lucas(16)/(1/2+sqrt(5)/2)^71 4032521647133929 a004 Fibonacci(84)/Lucas(16)/(1/2+sqrt(5)/2)^73 4032521647133929 a004 Fibonacci(86)/Lucas(16)/(1/2+sqrt(5)/2)^75 4032521647133929 a004 Fibonacci(88)/Lucas(16)/(1/2+sqrt(5)/2)^77 4032521647133929 a004 Fibonacci(90)/Lucas(16)/(1/2+sqrt(5)/2)^79 4032521647133929 a004 Fibonacci(92)/Lucas(16)/(1/2+sqrt(5)/2)^81 4032521647133929 a004 Fibonacci(94)/Lucas(16)/(1/2+sqrt(5)/2)^83 4032521647133929 a004 Fibonacci(96)/Lucas(16)/(1/2+sqrt(5)/2)^85 4032521647133929 a004 Fibonacci(100)/Lucas(16)/(1/2+sqrt(5)/2)^89 4032521647133929 a004 Fibonacci(98)/Lucas(16)/(1/2+sqrt(5)/2)^87 4032521647133929 a004 Fibonacci(99)/Lucas(16)/(1/2+sqrt(5)/2)^88 4032521647133929 a004 Fibonacci(97)/Lucas(16)/(1/2+sqrt(5)/2)^86 4032521647133929 a004 Fibonacci(95)/Lucas(16)/(1/2+sqrt(5)/2)^84 4032521647133929 a004 Fibonacci(93)/Lucas(16)/(1/2+sqrt(5)/2)^82 4032521647133929 a004 Fibonacci(91)/Lucas(16)/(1/2+sqrt(5)/2)^80 4032521647133929 a004 Fibonacci(89)/Lucas(16)/(1/2+sqrt(5)/2)^78 4032521647133929 a004 Fibonacci(87)/Lucas(16)/(1/2+sqrt(5)/2)^76 4032521647133929 a004 Fibonacci(85)/Lucas(16)/(1/2+sqrt(5)/2)^74 4032521647133929 a004 Fibonacci(83)/Lucas(16)/(1/2+sqrt(5)/2)^72 4032521647133929 a004 Fibonacci(81)/Lucas(16)/(1/2+sqrt(5)/2)^70 4032521647133929 a004 Fibonacci(79)/Lucas(16)/(1/2+sqrt(5)/2)^68 4032521647133929 a004 Fibonacci(77)/Lucas(16)/(1/2+sqrt(5)/2)^66 4032521647133929 a004 Fibonacci(75)/Lucas(16)/(1/2+sqrt(5)/2)^64 4032521647133929 a004 Fibonacci(73)/Lucas(16)/(1/2+sqrt(5)/2)^62 4032521647133929 a004 Fibonacci(71)/Lucas(16)/(1/2+sqrt(5)/2)^60 4032521647133929 a004 Fibonacci(69)/Lucas(16)/(1/2+sqrt(5)/2)^58 4032521647133929 a004 Fibonacci(67)/Lucas(16)/(1/2+sqrt(5)/2)^56 4032521647133929 a004 Fibonacci(65)/Lucas(16)/(1/2+sqrt(5)/2)^54 4032521647133929 a004 Fibonacci(63)/Lucas(16)/(1/2+sqrt(5)/2)^52 4032521647133929 a004 Fibonacci(61)/Lucas(16)/(1/2+sqrt(5)/2)^50 4032521647133929 a004 Fibonacci(59)/Lucas(16)/(1/2+sqrt(5)/2)^48 4032521647133929 a004 Fibonacci(57)/Lucas(16)/(1/2+sqrt(5)/2)^46 4032521647133929 a004 Fibonacci(55)/Lucas(16)/(1/2+sqrt(5)/2)^44 4032521647133929 a004 Fibonacci(53)/Lucas(16)/(1/2+sqrt(5)/2)^42 4032521647133929 a004 Fibonacci(51)/Lucas(16)/(1/2+sqrt(5)/2)^40 4032521647133929 a004 Fibonacci(49)/Lucas(16)/(1/2+sqrt(5)/2)^38 4032521647133929 a004 Fibonacci(47)/Lucas(16)/(1/2+sqrt(5)/2)^36 4032521647133929 a004 Fibonacci(45)/Lucas(16)/(1/2+sqrt(5)/2)^34 4032521647133929 a004 Fibonacci(43)/Lucas(16)/(1/2+sqrt(5)/2)^32 4032521647133929 a004 Fibonacci(41)/Lucas(16)/(1/2+sqrt(5)/2)^30 4032521647133929 a004 Fibonacci(39)/Lucas(16)/(1/2+sqrt(5)/2)^28 4032521647133930 a004 Fibonacci(37)/Lucas(16)/(1/2+sqrt(5)/2)^26 4032521647133938 a004 Fibonacci(35)/Lucas(16)/(1/2+sqrt(5)/2)^24 4032521647133994 a004 Fibonacci(33)/Lucas(16)/(1/2+sqrt(5)/2)^22 4032521647134201 a001 987/3010349*20633239^(2/7) 4032521647134204 a001 987/3010349*2537720636^(2/9) 4032521647134204 a001 987/3010349*312119004989^(2/11) 4032521647134204 a001 987/3010349*(1/2+1/2*5^(1/2))^10 4032521647134204 a001 442922501/10983760033 4032521647134204 a001 987/3010349*28143753123^(1/5) 4032521647134204 a001 987/3010349*10749957122^(5/24) 4032521647134204 a001 987/3010349*4106118243^(5/23) 4032521647134204 a001 987/3010349*1568397607^(5/22) 4032521647134204 a001 987/3010349*599074578^(5/21) 4032521647134204 a001 987/3010349*228826127^(1/4) 4032521647134204 a001 987/3010349*87403803^(5/19) 4032521647134205 a001 987/3010349*33385282^(5/18) 4032521647134211 a001 987/3010349*12752043^(5/17) 4032521647134257 a001 987/3010349*4870847^(5/16) 4032521647134290 a001 987/7881196*1860498^(2/5) 4032521647134312 a001 987/20633239*1860498^(7/15) 4032521647134337 a001 141/4769326*1860498^(1/2) 4032521647134374 a004 Fibonacci(31)/Lucas(16)/(1/2+sqrt(5)/2)^20 4032521647134381 a001 987/54018521*1860498^(8/15) 4032521647134458 a001 987/141422324*1860498^(3/5) 4032521647134535 a001 987/370248451*1860498^(2/3) 4032521647134574 a001 329/199691526*1860498^(7/10) 4032521647134592 a001 987/3010349*1860498^(1/3) 4032521647134613 a001 987/969323029*1860498^(11/15) 4032521647134691 a001 987/2537720636*1860498^(4/5) 4032521647134729 a001 329/1368706081*1860498^(5/6) 4032521647134768 a001 987/6643838879*1860498^(13/15) 4032521647134807 a001 987/10749957122*1860498^(9/10) 4032521647134846 a001 987/17393796001*1860498^(14/15) 4032521647134924 a004 Fibonacci(16)*Lucas(30)/(1/2+sqrt(5)/2)^51 4032521647136809 a001 987/1149851*(1/2+1/2*5^(1/2))^8 4032521647136809 a001 987/1149851*23725150497407^(1/8) 4032521647136809 a001 987/1149851*505019158607^(1/7) 4032521647136809 a001 987/1149851*73681302247^(2/13) 4032521647136809 a001 507544023/12586269025 4032521647136809 a001 987/1149851*10749957122^(1/6) 4032521647136809 a001 987/1149851*4106118243^(4/23) 4032521647136809 a001 987/1149851*1568397607^(2/11) 4032521647136809 a001 987/1149851*599074578^(4/21) 4032521647136809 a001 987/1149851*228826127^(1/5) 4032521647136809 a001 987/1149851*87403803^(4/19) 4032521647136809 a001 987/1149851*33385282^(2/9) 4032521647136814 a001 987/1149851*12752043^(4/17) 4032521647136851 a001 987/1149851*4870847^(1/4) 4032521647136979 a004 Fibonacci(29)/Lucas(16)/(1/2+sqrt(5)/2)^18 4032521647137055 a001 987/3010349*710647^(5/14) 4032521647137119 a001 987/1149851*1860498^(4/15) 4032521647137246 a001 987/7881196*710647^(3/7) 4032521647137761 a001 987/20633239*710647^(1/2) 4032521647138323 a001 987/54018521*710647^(4/7) 4032521647138892 a001 987/141422324*710647^(9/14) 4032521647139090 a001 987/1149851*710647^(2/7) 4032521647139462 a001 987/370248451*710647^(5/7) 4032521647139747 a001 329/199691526*710647^(3/4) 4032521647140032 a001 987/969323029*710647^(11/14) 4032521647140603 a001 987/2537720636*710647^(6/7) 4032521647141173 a001 987/6643838879*710647^(13/14) 4032521647141744 a004 Fibonacci(16)*Lucas(28)/(1/2+sqrt(5)/2)^49 4032521647150018 a001 987/439204*439204^(2/9) 4032521647153648 a001 987/1149851*271443^(4/13) 4032521647154652 a001 987/439204*7881196^(2/11) 4032521647154663 a001 987/439204*141422324^(2/13) 4032521647154663 a001 987/439204*2537720636^(2/15) 4032521647154663 a001 987/439204*45537549124^(2/17) 4032521647154663 a001 987/439204*14662949395604^(2/21) 4032521647154663 a001 987/439204*(1/2+1/2*5^(1/2))^6 4032521647154663 a001 987/439204*10749957122^(1/8) 4032521647154663 a001 987/439204*4106118243^(3/23) 4032521647154663 a001 98209/2435424 4032521647154663 a001 987/439204*1568397607^(3/22) 4032521647154663 a001 987/439204*599074578^(1/7) 4032521647154663 a001 987/439204*228826127^(3/20) 4032521647154663 a001 987/439204*87403803^(3/19) 4032521647154664 a001 987/439204*33385282^(1/6) 4032521647154668 a001 987/439204*12752043^(3/17) 4032521647154695 a001 987/439204*4870847^(3/16) 4032521647154833 a004 Fibonacci(27)/Lucas(16)/(1/2+sqrt(5)/2)^16 4032521647154896 a001 987/439204*1860498^(1/5) 4032521647155253 a001 987/3010349*271443^(5/13) 4032521647156374 a001 987/439204*710647^(3/14) 4032521647157179 a001 329/90481*103682^(5/24) 4032521647159083 a001 987/7881196*271443^(6/13) 4032521647161098 a001 329/4250681*271443^(1/2) 4032521647163238 a001 987/20633239*271443^(7/13) 4032521647167293 a001 987/439204*271443^(3/13) 4032521647167440 a001 987/54018521*271443^(8/13) 4032521647171648 a001 987/141422324*271443^(9/13) 4032521647175858 a001 987/370248451*271443^(10/13) 4032521647180068 a001 987/969323029*271443^(11/13) 4032521647184278 a001 987/2537720636*271443^(12/13) 4032521647188488 a004 Fibonacci(16)*Lucas(26)/(1/2+sqrt(5)/2)^47 4032521647235184 a001 141/101521*103682^(7/24) 4032521647248443 a001 987/439204*103682^(1/4) 4032521647261849 a001 987/1149851*103682^(1/3) 4032521647273264 a001 329/620166*103682^(3/8) 4032521647277042 a001 987/167761*(1/2+1/2*5^(1/2))^4 4032521647277042 a001 987/167761*23725150497407^(1/16) 4032521647277042 a001 987/167761*73681302247^(1/13) 4032521647277042 a001 987/167761*10749957122^(1/12) 4032521647277042 a001 987/167761*4106118243^(2/23) 4032521647277042 a001 987/167761*1568397607^(1/11) 4032521647277042 a001 74049675/1836311903 4032521647277042 a001 987/167761*599074578^(2/21) 4032521647277042 a001 987/167761*228826127^(1/10) 4032521647277042 a001 987/167761*87403803^(2/19) 4032521647277042 a001 987/167761*33385282^(1/9) 4032521647277045 a001 987/167761*12752043^(2/17) 4032521647277063 a001 987/167761*4870847^(1/8) 4032521647277197 a001 987/167761*1860498^(2/15) 4032521647277212 a004 Fibonacci(25)/Lucas(16)/(1/2+sqrt(5)/2)^14 4032521647278182 a001 987/167761*710647^(1/7) 4032521647285462 a001 987/167761*271443^(2/13) 4032521647290504 a001 987/3010349*103682^(5/12) 4032521647305519 a001 987/4870847*103682^(11/24) 4032521647321383 a001 987/7881196*103682^(1/2) 4032521647336924 a001 329/4250681*103682^(13/24) 4032521647339562 a001 987/167761*103682^(1/6) 4032521647352588 a001 987/20633239*103682^(7/12) 4032521647368205 a001 141/4769326*103682^(5/8) 4032521647383840 a001 987/54018521*103682^(2/3) 4032521647399468 a001 329/29134601*103682^(17/24) 4032521647415099 a001 987/141422324*103682^(3/4) 4032521647430728 a001 21/4868641*103682^(19/24) 4032521647446358 a001 987/370248451*103682^(5/6) 4032521647461988 a001 329/199691526*103682^(7/8) 4032521647474763 a001 987/64079*24476^(2/21) 4032521647477618 a001 987/969323029*103682^(11/12) 4032521647493248 a001 141/224056801*103682^(23/24) 4032521647508878 a004 Fibonacci(16)*Lucas(24)/(1/2+sqrt(5)/2)^45 4032521647663372 a001 329/90481*39603^(5/22) 4032521647733703 r005 Re(z^2+c),c=-9/16+23/56*I,n=64 4032521647744516 a001 987/167761*39603^(2/11) 4032521647855875 a001 987/439204*39603^(3/11) 4032521647943854 a001 141/101521*39603^(7/22) 4032521648030437 a001 987/64079*64079^(2/23) 4032521648071757 a001 987/1149851*39603^(4/11) 4032521648115835 a001 987/64079*(1/2+1/2*5^(1/2))^2 4032521648115835 a001 987/64079*10749957122^(1/24) 4032521648115835 a001 987/64079*4106118243^(1/23) 4032521648115835 a001 987/64079*1568397607^(1/22) 4032521648115835 a001 987/64079*599074578^(1/21) 4032521648115835 a001 9428153/233802911 4032521648115835 a001 987/64079*228826127^(1/20) 4032521648115835 a001 987/64079*87403803^(1/19) 4032521648115835 a001 987/64079*33385282^(1/18) 4032521648115836 a001 987/64079*12752043^(1/17) 4032521648115846 a001 987/64079*4870847^(1/16) 4032521648115913 a001 987/64079*1860498^(1/15) 4032521648116005 a004 Fibonacci(23)/Lucas(16)/(1/2+sqrt(5)/2)^12 4032521648116405 a001 987/64079*710647^(1/14) 4032521648120045 a001 987/64079*271443^(1/13) 4032521648147095 a001 987/64079*103682^(1/12) 4032521648184411 a001 329/620166*39603^(9/22) 4032521648302890 a001 987/3010349*39603^(5/11) 4032521648349572 a001 987/64079*39603^(1/11) 4032521648419143 a001 987/4870847*39603^(1/2) 4032521648536247 a001 987/7881196*39603^(6/11) 4032521648653026 a001 329/4250681*39603^(13/22) 4032521648769929 a001 987/20633239*39603^(7/11) 4032521648886784 a001 141/4769326*39603^(15/22) 4032521649003658 a001 987/54018521*39603^(8/11) 4032521649120524 a001 329/29134601*39603^(17/22) 4032521649237394 a001 987/141422324*39603^(9/11) 4032521649354262 a001 21/4868641*39603^(19/22) 4032521649402036 a001 21/2206*15127^(3/20) 4032521649469391 a001 1597/64079*521^(1/13) 4032521649471131 a001 987/370248451*39603^(10/11) 4032521649587999 a001 329/199691526*39603^(21/22) 4032521649704868 a004 Fibonacci(16)*Lucas(22)/(1/2+sqrt(5)/2)^43 4032521649878099 a001 987/64079*15127^(1/10) 4032521650801571 a001 987/167761*15127^(1/5) 4032521651273061 a001 329/13201*5778^(1/18) 4032521651484691 a001 329/90481*15127^(1/4) 4032521652441457 a001 987/439204*15127^(3/10) 4032521653293700 a001 141/101521*15127^(7/20) 4032521653865010 a001 987/24476 4032521653865180 a004 Fibonacci(21)/Lucas(16)/(1/2+sqrt(5)/2)^10 4032521654181503 a001 4181/1860498*1364^(2/5) 4032521654185867 a001 987/1149851*15127^(2/5) 4032521655062784 a001 329/620166*15127^(9/20) 4032521655945526 a001 987/3010349*15127^(1/2) 4032521656826043 a001 987/4870847*15127^(11/20) 4032521657707411 a001 987/7881196*15127^(3/5) 4032521658588453 a001 329/4250681*15127^(13/20) 4032521659469620 a001 987/20633239*15127^(7/10) 4032521660350739 a001 141/4769326*15127^(3/4) 4032521661231876 a001 987/54018521*15127^(4/5) 4032521661536658 a001 987/64079*5778^(1/9) 4032521662113007 a001 329/29134601*15127^(17/20) 4032521662994139 a001 987/141422324*15127^(9/10) 4032521663435938 m001 exp(sqrt(2))-ln(5)+GAMMA(7/12) 4032521663875271 a001 21/4868641*15127^(19/20) 4032521664382218 a001 377/3010349*843^(6/7) 4032521664756404 a004 Fibonacci(16)*Lucas(20)/(1/2+sqrt(5)/2)^41 4032521666889873 a001 21/2206*5778^(1/6) 4032521667807444 a007 Real Root Of -720*x^4+459*x^3-699*x^2+737*x+460 4032521674118687 a001 987/167761*5778^(2/9) 4032521680631087 a001 329/90481*5778^(5/18) 4032521682369783 m001 HardHexagonsEntropy^gamma(3)-OrthogonalArrays 4032521685189684 r009 Re(z^3+c),c=-35/106+29/41*I,n=54 4032521687417132 a001 987/439204*5778^(1/3) 4032521693270443 a001 196507/4873055 4032521693270443 a004 Fibonacci(16)/Lucas(19)/(1/2+sqrt(5)/2)^2 4032521693270613 a004 Fibonacci(19)/Lucas(16)/(1/2+sqrt(5)/2)^8 4032521694098654 a001 141/101521*5778^(7/18) 4032521695892312 m001 (-FeigenbaumKappa+Porter)/(Si(Pi)+Catalan) 4032521696305720 a001 329/13201*2207^(1/16) 4032521700820100 a001 987/1149851*5778^(4/9) 4032521707526297 a001 329/620166*5778^(1/2) 4032521710413464 m008 (5*Pi-1/5)/(4*Pi^6+1/6) 4032521711211511 k006 concat of cont frac of 4032521714238318 a001 987/3010349*5778^(5/9) 4032521720948115 a001 987/4870847*5778^(11/18) 4032521727658761 a001 987/7881196*5778^(2/3) 4032521734369083 a001 329/4250681*5778^(13/18) 4032521734918353 a001 55/15126*1364^(1/3) 4032521741079529 a001 987/20633239*5778^(7/9) 4032521747789927 a001 141/4769326*5778^(5/6) 4032521749970884 a001 17711/4870847*1364^(1/3) 4032521751601976 a001 987/64079*2207^(1/8) 4032521752167019 a001 15456/4250681*1364^(1/3) 4032521752487430 a001 121393/33385282*1364^(1/3) 4032521752534178 a001 105937/29134601*1364^(1/3) 4032521752540998 a001 832040/228826127*1364^(1/3) 4032521752541993 a001 726103/199691526*1364^(1/3) 4032521752542138 a001 5702887/1568397607*1364^(1/3) 4032521752542160 a001 4976784/1368706081*1364^(1/3) 4032521752542163 a001 39088169/10749957122*1364^(1/3) 4032521752542163 a001 831985/228811001*1364^(1/3) 4032521752542163 a001 267914296/73681302247*1364^(1/3) 4032521752542163 a001 233802911/64300051206*1364^(1/3) 4032521752542163 a001 1836311903/505019158607*1364^(1/3) 4032521752542163 a001 1602508992/440719107401*1364^(1/3) 4032521752542163 a001 12586269025/3461452808002*1364^(1/3) 4032521752542163 a001 10983760033/3020733700601*1364^(1/3) 4032521752542163 a001 86267571272/23725150497407*1364^(1/3) 4032521752542163 a001 53316291173/14662949395604*1364^(1/3) 4032521752542163 a001 20365011074/5600748293801*1364^(1/3) 4032521752542163 a001 7778742049/2139295485799*1364^(1/3) 4032521752542163 a001 2971215073/817138163596*1364^(1/3) 4032521752542163 a001 1134903170/312119004989*1364^(1/3) 4032521752542163 a001 433494437/119218851371*1364^(1/3) 4032521752542163 a001 165580141/45537549124*1364^(1/3) 4032521752542163 a001 63245986/17393796001*1364^(1/3) 4032521752542165 a001 24157817/6643838879*1364^(1/3) 4032521752542173 a001 9227465/2537720636*1364^(1/3) 4032521752542228 a001 3524578/969323029*1364^(1/3) 4032521752542608 a001 1346269/370248451*1364^(1/3) 4032521752545213 a001 514229/141422324*1364^(1/3) 4032521752563069 a001 196418/54018521*1364^(1/3) 4032521752685456 a001 75025/20633239*1364^(1/3) 4032521753524304 a001 28657/7881196*1364^(1/3) 4032521754500344 a001 987/54018521*5778^(8/9) 4032521756042780 m001 (ln(3)-ln(5))/(Porter-Riemann1stZero) 4032521759273860 a001 10946/3010349*1364^(1/3) 4032521761210754 a001 329/29134601*5778^(17/18) 4032521767921166 a004 Fibonacci(16)*Lucas(18)/(1/2+sqrt(5)/2)^39 4032521769555502 p001 sum(1/(559*n+253)/(16^n),n=0..infinity) 4032521776271837 a001 34/5779*1364^(4/15) 4032521779778384 a001 1597/1149851*1364^(7/15) 4032521779844354 m001 Bloch^GAMMA(17/24)/(Bloch^Pi) 4032521787873723 m001 (Catalan+ln(2))/(-HardyLittlewoodC5+Trott) 4032521798681898 a001 4181/1149851*1364^(1/3) 4032521801987852 a001 21/2206*2207^(3/16) 4032521805772283 r002 27th iterates of z^2 + 4032521808525576 r005 Im(z^2+c),c=-145/126+17/53*I,n=9 4032521815987137 r005 Im(z^2+c),c=-5/56+26/55*I,n=4 4032521816363263 s002 sum(A118537[n]/((2*n+1)!),n=1..infinity) 4032521827486677 r005 Re(z^2+c),c=-47/90+14/37*I,n=55 4032521833837173 r009 Im(z^3+c),c=-51/98+11/38*I,n=52 4032521840535328 m005 (1/2*3^(1/2)-2/5)/(6/11*Zeta(3)+1/2) 4032521850861976 r005 Im(z^2+c),c=1/90+25/54*I,n=8 4032521854249327 a001 987/167761*2207^(1/4) 4032521859565567 r002 49th iterates of z^2 + 4032521864691757 a003 sin(Pi*7/81)/sin(Pi*22/95) 4032521869449553 r008 a(0)=4,K{-n^6,35-43*n-59*n^2+39*n^3} 4032521870714173 m005 (1/3*gamma-2/3)/(3*gamma-5/9) 4032521871795868 r002 51th iterates of z^2 + 4032521871795868 r002 51th iterates of z^2 + 4032521871930651 b008 -4+(-1+EulerGamma)/13 4032521879418750 a001 6765/1149851*1364^(4/15) 4032521890519285 s002 sum(A204607[n]/(n^2*10^n+1),n=1..infinity) 4032521894467682 a001 17711/3010349*1364^(4/15) 4032521896663292 a001 11592/1970299*1364^(4/15) 4032521896983627 a001 121393/20633239*1364^(4/15) 4032521897030363 a001 317811/54018521*1364^(4/15) 4032521897037182 a001 208010/35355581*1364^(4/15) 4032521897038177 a001 2178309/370248451*1364^(4/15) 4032521897038322 a001 5702887/969323029*1364^(4/15) 4032521897038343 a001 196452/33391061*1364^(4/15) 4032521897038346 a001 39088169/6643838879*1364^(4/15) 4032521897038347 a001 102334155/17393796001*1364^(4/15) 4032521897038347 a001 66978574/11384387281*1364^(4/15) 4032521897038347 a001 701408733/119218851371*1364^(4/15) 4032521897038347 a001 1836311903/312119004989*1364^(4/15) 4032521897038347 a001 1201881744/204284540899*1364^(4/15) 4032521897038347 a001 12586269025/2139295485799*1364^(4/15) 4032521897038347 a001 32951280099/5600748293801*1364^(4/15) 4032521897038347 a001 1135099622/192933544679*1364^(4/15) 4032521897038347 a001 139583862445/23725150497407*1364^(4/15) 4032521897038347 a001 53316291173/9062201101803*1364^(4/15) 4032521897038347 a001 10182505537/1730726404001*1364^(4/15) 4032521897038347 a001 7778742049/1322157322203*1364^(4/15) 4032521897038347 a001 2971215073/505019158607*1364^(4/15) 4032521897038347 a001 567451585/96450076809*1364^(4/15) 4032521897038347 a001 433494437/73681302247*1364^(4/15) 4032521897038347 a001 165580141/28143753123*1364^(4/15) 4032521897038347 a001 31622993/5374978561*1364^(4/15) 4032521897038348 a001 24157817/4106118243*1364^(4/15) 4032521897038356 a001 9227465/1568397607*1364^(4/15) 4032521897038412 a001 1762289/299537289*1364^(4/15) 4032521897038792 a001 1346269/228826127*1364^(4/15) 4032521897041396 a001 514229/87403803*1364^(4/15) 4032521897059248 a001 98209/16692641*1364^(4/15) 4032521897181605 a001 75025/12752043*1364^(4/15) 4032521898020253 a001 28657/4870847*1364^(4/15) 4032521899422089 m001 (Champernowne-Otter)/(Zeta(1,2)+GAMMA(13/24)) 4032521903768434 a001 5473/930249*1364^(4/15) 4032521905794387 a001 329/90481*2207^(5/16) 4032521911014082 a001 1/34*121393^(29/47) 4032521918891941 r005 Im(z^2+c),c=-3/26+31/54*I,n=29 4032521920692387 a001 2584/271443*1364^(1/5) 4032521924263534 a001 1597/710647*1364^(2/5) 4032521926443085 r002 55th iterates of z^2 + 4032521936845576 r005 Im(z^2+c),c=-37/40+2/59*I,n=11 4032521936967247 b008 E^Csch[2/3] 4032521943167049 a001 4181/710647*1364^(4/15) 4032521951515769 r002 11th iterates of z^2 + 4032521956717572 r009 Im(z^3+c),c=-1/11+13/28*I,n=17 4032521957613095 a001 987/439204*2207^(3/8) 4032521959702742 r005 Re(z^2+c),c=-4/7+1/120*I,n=20 4032521963359296 a001 1576239/39088169 4032521963359321 a004 Fibonacci(16)/Lucas(17)/(1/2+sqrt(5)/2)^4 4032521963359466 a004 Fibonacci(17)/Lucas(16)/(1/2+sqrt(5)/2)^6 4032521973516731 a001 29/13*6765^(33/56) 4032521981967718 r009 Im(z^3+c),c=-17/38+20/63*I,n=10 4032521991233216 r001 40i'th iterates of 2*x^2-1 of 4032521992237899 m001 (-FeigenbaumD+MertensB2)/(5^(1/2)+Si(Pi)) 4032522003971002 r005 Re(z^2+c),c=-37/66+8/49*I,n=24 4032522008387187 r002 29th iterates of z^2 + 4032522009327280 a001 141/101521*2207^(7/16) 4032522017478370 r005 Re(z^2+c),c=-65/118+13/58*I,n=35 4032522023903904 a001 6765/710647*1364^(1/5) 4032522027504148 m001 AlladiGrinstead*MertensB1^(5^(1/2)) 4032522038010108 a004 Fibonacci(18)*Lucas(17)/(1/2+sqrt(5)/2)^40 4032522038962261 a001 17711/1860498*1364^(1/5) 4032522041159246 a001 46368/4870847*1364^(1/5) 4032522041479781 a001 121393/12752043*1364^(1/5) 4032522041526547 a001 317811/33385282*1364^(1/5) 4032522041533370 a001 832040/87403803*1364^(1/5) 4032522041534365 a001 46347/4868641*1364^(1/5) 4032522041534511 a001 5702887/599074578*1364^(1/5) 4032522041534532 a001 14930352/1568397607*1364^(1/5) 4032522041534535 a001 39088169/4106118243*1364^(1/5) 4032522041534535 a001 102334155/10749957122*1364^(1/5) 4032522041534536 a001 267914296/28143753123*1364^(1/5) 4032522041534536 a001 701408733/73681302247*1364^(1/5) 4032522041534536 a001 1836311903/192900153618*1364^(1/5) 4032522041534536 a001 102287808/10745088481*1364^(1/5) 4032522041534536 a001 12586269025/1322157322203*1364^(1/5) 4032522041534536 a001 32951280099/3461452808002*1364^(1/5) 4032522041534536 a001 86267571272/9062201101803*1364^(1/5) 4032522041534536 a001 225851433717/23725150497407*1364^(1/5) 4032522041534536 a001 139583862445/14662949395604*1364^(1/5) 4032522041534536 a001 53316291173/5600748293801*1364^(1/5) 4032522041534536 a001 20365011074/2139295485799*1364^(1/5) 4032522041534536 a001 7778742049/817138163596*1364^(1/5) 4032522041534536 a001 2971215073/312119004989*1364^(1/5) 4032522041534536 a001 1134903170/119218851371*1364^(1/5) 4032522041534536 a001 433494437/45537549124*1364^(1/5) 4032522041534536 a001 165580141/17393796001*1364^(1/5) 4032522041534536 a001 63245986/6643838879*1364^(1/5) 4032522041534537 a001 24157817/2537720636*1364^(1/5) 4032522041534545 a001 9227465/969323029*1364^(1/5) 4032522041534600 a001 3524578/370248451*1364^(1/5) 4032522041534981 a001 1346269/141422324*1364^(1/5) 4032522041537587 a001 514229/54018521*1364^(1/5) 4032522041555450 a001 196418/20633239*1364^(1/5) 4032522041677883 a001 75025/7881196*1364^(1/5) 4032522042517057 a001 28657/3010349*1364^(1/5) 4032522043898771 m001 (2*Pi/GAMMA(5/6))^BesselJ(0,1)*Trott 4032522048268838 a001 10946/1149851*1364^(1/5) 4032522049879314 a001 329/13201*843^(1/14) 4032522053003918 r005 Im(z^2+c),c=5/36+18/43*I,n=21 4032522054009323 r008 a(0)=4,K{-n^6,-57+27*n+61*n^2-62*n^3} 4032522056611613 a001 646/35355581*3571^(16/17) 4032522058668850 r002 21th iterates of z^2 + 4032522059044508 r002 7th iterates of z^2 + 4032522061081389 a001 987/1149851*2207^(1/2) 4032522065386589 a001 2584/167761*1364^(2/15) 4032522066013170 r009 Im(z^3+c),c=-9/34+31/42*I,n=40 4032522068788613 a001 1597/439204*1364^(1/3) 4032522069698270 a001 377/4870847*843^(13/14) 4032522074843047 r008 a(0)=4,K{-n^6,-43+12*n+59*n^2-59*n^3} 4032522075213118 a001 2584/87403803*3571^(15/17) 4032522083958522 l006 ln(67/3779) 4032522083958522 p004 log(3779/67) 4032522085306427 p004 log(33629/22469) 4032522087692129 a001 4181/439204*1364^(1/5) 4032522092238207 r005 Im(z^2+c),c=9/26+9/41*I,n=20 4032522093814624 a001 2584/54018521*3571^(14/17) 4032522094356282 m001 (cos(1)+ln(3))/(-ln(2^(1/2)+1)+Weierstrass) 4032522096314667 a003 cos(Pi*32/117)*cos(Pi*17/59) 4032522099413491 r002 4th iterates of z^2 + 4032522105644544 r008 a(0)=4,K{-n^6,-53+45*n+27*n^2-50*n^3} 4032522112278658 r002 53th iterates of z^2 + 4032522112416124 a001 1292/16692641*3571^(13/17) 4032522112820250 a001 329/620166*2207^(9/16) 4032522114507691 r008 a(0)=4,K{-n^6,-41+27*n+33*n^2-50*n^3} 4032522124004889 m001 BesselI(0,2)+(5^(1/2))^ArtinRank2 4032522124224554 m001 (Lehmer+ZetaP(4))/(AlladiGrinstead-Cahen) 4032522126119474 m001 (GolombDickman+KhinchinLevy)/(exp(1)+Pi^(1/2)) 4032522131017643 a001 2584/20633239*3571^(12/17) 4032522141174883 a004 Fibonacci(20)*Lucas(17)/(1/2+sqrt(5)/2)^42 4032522147827118 a005 (1/cos(33/172*Pi))^221 4032522149619113 a001 2584/12752043*3571^(11/17) 4032522156226421 a004 Fibonacci(22)*Lucas(17)/(1/2+sqrt(5)/2)^44 4032522158422411 a004 Fibonacci(24)*Lucas(17)/(1/2+sqrt(5)/2)^46 4032522158742802 a004 Fibonacci(26)*Lucas(17)/(1/2+sqrt(5)/2)^48 4032522158789546 a004 Fibonacci(28)*Lucas(17)/(1/2+sqrt(5)/2)^50 4032522158796366 a004 Fibonacci(30)*Lucas(17)/(1/2+sqrt(5)/2)^52 4032522158797361 a004 Fibonacci(32)*Lucas(17)/(1/2+sqrt(5)/2)^54 4032522158797506 a004 Fibonacci(34)*Lucas(17)/(1/2+sqrt(5)/2)^56 4032522158797527 a004 Fibonacci(36)*Lucas(17)/(1/2+sqrt(5)/2)^58 4032522158797530 a004 Fibonacci(38)*Lucas(17)/(1/2+sqrt(5)/2)^60 4032522158797531 a004 Fibonacci(40)*Lucas(17)/(1/2+sqrt(5)/2)^62 4032522158797531 a004 Fibonacci(42)*Lucas(17)/(1/2+sqrt(5)/2)^64 4032522158797531 a004 Fibonacci(44)*Lucas(17)/(1/2+sqrt(5)/2)^66 4032522158797531 a004 Fibonacci(46)*Lucas(17)/(1/2+sqrt(5)/2)^68 4032522158797531 a004 Fibonacci(48)*Lucas(17)/(1/2+sqrt(5)/2)^70 4032522158797531 a004 Fibonacci(50)*Lucas(17)/(1/2+sqrt(5)/2)^72 4032522158797531 a004 Fibonacci(52)*Lucas(17)/(1/2+sqrt(5)/2)^74 4032522158797531 a004 Fibonacci(54)*Lucas(17)/(1/2+sqrt(5)/2)^76 4032522158797531 a004 Fibonacci(56)*Lucas(17)/(1/2+sqrt(5)/2)^78 4032522158797531 a004 Fibonacci(58)*Lucas(17)/(1/2+sqrt(5)/2)^80 4032522158797531 a004 Fibonacci(60)*Lucas(17)/(1/2+sqrt(5)/2)^82 4032522158797531 a004 Fibonacci(62)*Lucas(17)/(1/2+sqrt(5)/2)^84 4032522158797531 a004 Fibonacci(64)*Lucas(17)/(1/2+sqrt(5)/2)^86 4032522158797531 a004 Fibonacci(66)*Lucas(17)/(1/2+sqrt(5)/2)^88 4032522158797531 a004 Fibonacci(68)*Lucas(17)/(1/2+sqrt(5)/2)^90 4032522158797531 a004 Fibonacci(70)*Lucas(17)/(1/2+sqrt(5)/2)^92 4032522158797531 a004 Fibonacci(72)*Lucas(17)/(1/2+sqrt(5)/2)^94 4032522158797531 a004 Fibonacci(74)*Lucas(17)/(1/2+sqrt(5)/2)^96 4032522158797531 a004 Fibonacci(76)*Lucas(17)/(1/2+sqrt(5)/2)^98 4032522158797531 a004 Fibonacci(78)*Lucas(17)/(1/2+sqrt(5)/2)^100 4032522158797531 a004 Fibonacci(77)*Lucas(17)/(1/2+sqrt(5)/2)^99 4032522158797531 a004 Fibonacci(75)*Lucas(17)/(1/2+sqrt(5)/2)^97 4032522158797531 a004 Fibonacci(73)*Lucas(17)/(1/2+sqrt(5)/2)^95 4032522158797531 a004 Fibonacci(71)*Lucas(17)/(1/2+sqrt(5)/2)^93 4032522158797531 a004 Fibonacci(69)*Lucas(17)/(1/2+sqrt(5)/2)^91 4032522158797531 a004 Fibonacci(67)*Lucas(17)/(1/2+sqrt(5)/2)^89 4032522158797531 a004 Fibonacci(65)*Lucas(17)/(1/2+sqrt(5)/2)^87 4032522158797531 a004 Fibonacci(63)*Lucas(17)/(1/2+sqrt(5)/2)^85 4032522158797531 a004 Fibonacci(61)*Lucas(17)/(1/2+sqrt(5)/2)^83 4032522158797531 a004 Fibonacci(59)*Lucas(17)/(1/2+sqrt(5)/2)^81 4032522158797531 a004 Fibonacci(57)*Lucas(17)/(1/2+sqrt(5)/2)^79 4032522158797531 a004 Fibonacci(55)*Lucas(17)/(1/2+sqrt(5)/2)^77 4032522158797531 a004 Fibonacci(53)*Lucas(17)/(1/2+sqrt(5)/2)^75 4032522158797531 a004 Fibonacci(51)*Lucas(17)/(1/2+sqrt(5)/2)^73 4032522158797531 a004 Fibonacci(49)*Lucas(17)/(1/2+sqrt(5)/2)^71 4032522158797531 a004 Fibonacci(47)*Lucas(17)/(1/2+sqrt(5)/2)^69 4032522158797531 a004 Fibonacci(45)*Lucas(17)/(1/2+sqrt(5)/2)^67 4032522158797531 a004 Fibonacci(43)*Lucas(17)/(1/2+sqrt(5)/2)^65 4032522158797531 a004 Fibonacci(41)*Lucas(17)/(1/2+sqrt(5)/2)^63 4032522158797531 a004 Fibonacci(39)*Lucas(17)/(1/2+sqrt(5)/2)^61 4032522158797532 a004 Fibonacci(37)*Lucas(17)/(1/2+sqrt(5)/2)^59 4032522158797540 a004 Fibonacci(35)*Lucas(17)/(1/2+sqrt(5)/2)^57 4032522158797556 a001 2/1597*(1/2+1/2*5^(1/2))^12 4032522158797596 a004 Fibonacci(33)*Lucas(17)/(1/2+sqrt(5)/2)^55 4032522158797976 a004 Fibonacci(31)*Lucas(17)/(1/2+sqrt(5)/2)^53 4032522158800581 a004 Fibonacci(29)*Lucas(17)/(1/2+sqrt(5)/2)^51 4032522158818436 a004 Fibonacci(27)*Lucas(17)/(1/2+sqrt(5)/2)^49 4032522158940814 a004 Fibonacci(25)*Lucas(17)/(1/2+sqrt(5)/2)^47 4032522159776389 a001 6765/370248451*3571^(16/17) 4032522159779607 a004 Fibonacci(23)*Lucas(17)/(1/2+sqrt(5)/2)^45 4032522161368640 a001 3571/17711*8^(1/3) 4032522164564936 a001 987/3010349*2207^(5/8) 4032522165528783 a004 Fibonacci(21)*Lucas(17)/(1/2+sqrt(5)/2)^43 4032522168220708 a001 646/1970299*3571^(10/17) 4032522168428987 a001 6765/439204*1364^(2/15) 4032522174827927 a001 17711/969323029*3571^(16/17) 4032522177023916 a001 11592/634430159*3571^(16/17) 4032522177344307 a001 121393/6643838879*3571^(16/17) 4032522177391051 a001 10959/599786069*3571^(16/17) 4032522177397871 a001 208010/11384387281*3571^(16/17) 4032522177398866 a001 2178309/119218851371*3571^(16/17) 4032522177399011 a001 5702887/312119004989*3571^(16/17) 4032522177399033 a001 3732588/204284540899*3571^(16/17) 4032522177399036 a001 39088169/2139295485799*3571^(16/17) 4032522177399036 a001 102334155/5600748293801*3571^(16/17) 4032522177399036 a001 10946/599074579*3571^(16/17) 4032522177399036 a001 433494437/23725150497407*3571^(16/17) 4032522177399036 a001 165580141/9062201101803*3571^(16/17) 4032522177399036 a001 31622993/1730726404001*3571^(16/17) 4032522177399038 a001 24157817/1322157322203*3571^(16/17) 4032522177399046 a001 9227465/505019158607*3571^(16/17) 4032522177399101 a001 1762289/96450076809*3571^(16/17) 4032522177399481 a001 1346269/73681302247*3571^(16/17) 4032522177402086 a001 514229/28143753123*3571^(16/17) 4032522177419941 a001 98209/5374978561*3571^(16/17) 4032522177542319 a001 75025/4106118243*3571^(16/17) 4032522178377894 a001 6765/228826127*3571^(15/17) 4032522178381113 a001 28657/1568397607*3571^(16/17) 4032522181280721 r008 a(0)=4,K{-n^6,-13-41*n^3+20*n^2+3*n} 4032522183462670 a001 17711/1149851*1364^(2/15) 4032522184130289 a001 5473/299537289*3571^(16/17) 4032522184140037 r005 Im(z^2+c),c=-3/29+4/7*I,n=41 4032522185656055 a001 46368/3010349*1364^(2/15) 4032522185976065 a001 121393/7881196*1364^(2/15) 4032522186022754 a001 10959/711491*1364^(2/15) 4032522186029566 a001 832040/54018521*1364^(2/15) 4032522186030560 a001 2178309/141422324*1364^(2/15) 4032522186030705 a001 5702887/370248451*1364^(2/15) 4032522186030726 a001 14930352/969323029*1364^(2/15) 4032522186030729 a001 39088169/2537720636*1364^(2/15) 4032522186030729 a001 102334155/6643838879*1364^(2/15) 4032522186030729 a001 9238424/599786069*1364^(2/15) 4032522186030729 a001 701408733/45537549124*1364^(2/15) 4032522186030729 a001 1836311903/119218851371*1364^(2/15) 4032522186030729 a001 4807526976/312119004989*1364^(2/15) 4032522186030729 a001 12586269025/817138163596*1364^(2/15) 4032522186030729 a001 32951280099/2139295485799*1364^(2/15) 4032522186030729 a001 86267571272/5600748293801*1364^(2/15) 4032522186030729 a001 7787980473/505618944676*1364^(2/15) 4032522186030729 a001 365435296162/23725150497407*1364^(2/15) 4032522186030729 a001 139583862445/9062201101803*1364^(2/15) 4032522186030729 a001 53316291173/3461452808002*1364^(2/15) 4032522186030729 a001 20365011074/1322157322203*1364^(2/15) 4032522186030729 a001 7778742049/505019158607*1364^(2/15) 4032522186030729 a001 2971215073/192900153618*1364^(2/15) 4032522186030729 a001 1134903170/73681302247*1364^(2/15) 4032522186030729 a001 433494437/28143753123*1364^(2/15) 4032522186030730 a001 165580141/10749957122*1364^(2/15) 4032522186030730 a001 63245986/4106118243*1364^(2/15) 4032522186030731 a001 24157817/1568397607*1364^(2/15) 4032522186030739 a001 9227465/599074578*1364^(2/15) 4032522186030794 a001 3524578/228826127*1364^(2/15) 4032522186031174 a001 1346269/87403803*1364^(2/15) 4032522186033776 a001 514229/33385282*1364^(2/15) 4032522186051609 a001 196418/12752043*1364^(2/15) 4032522186173843 a001 75025/4870847*1364^(2/15) 4032522186484791 m005 (1/2*Catalan+5/6)/(49/16+1/16*5^(1/2)) 4032522186700121 r009 Re(z^3+c),c=-43/110+7/60*I,n=23 4032522186821979 a001 2584/4870847*3571^(9/17) 4032522187011641 a001 28657/1860498*1364^(2/15) 4032522189757756 r008 a(0)=4,K{-n^6,-39-3*n^3+18*n^2-5*n} 4032522192753997 a001 10946/710647*1364^(2/15) 4032522193072135 r005 Re(z^2+c),c=-9/16+11/105*I,n=53 4032522193429432 a001 17711/599074578*3571^(15/17) 4032522195625422 a001 6624/224056801*3571^(15/17) 4032522195945812 a001 121393/4106118243*3571^(15/17) 4032522195992557 a001 317811/10749957122*3571^(15/17) 4032522195999377 a001 832040/28143753123*3571^(15/17) 4032522196000372 a001 311187/10525900321*3571^(15/17) 4032522196000517 a001 5702887/192900153618*3571^(15/17) 4032522196000538 a001 14930352/505019158607*3571^(15/17) 4032522196000541 a001 39088169/1322157322203*3571^(15/17) 4032522196000541 a001 6765/228826126*3571^(15/17) 4032522196000542 a001 267914296/9062201101803*3571^(15/17) 4032522196000542 a001 701408733/23725150497407*3571^(15/17) 4032522196000542 a001 433494437/14662949395604*3571^(15/17) 4032522196000542 a001 165580141/5600748293801*3571^(15/17) 4032522196000542 a001 63245986/2139295485799*3571^(15/17) 4032522196000543 a001 24157817/817138163596*3571^(15/17) 4032522196000551 a001 9227465/312119004989*3571^(15/17) 4032522196000606 a001 3524578/119218851371*3571^(15/17) 4032522196000987 a001 1346269/45537549124*3571^(15/17) 4032522196003592 a001 514229/17393796001*3571^(15/17) 4032522196021446 a001 196418/6643838879*3571^(15/17) 4032522196111025 r005 Re(z^2+c),c=-9/16+13/126*I,n=37 4032522196143825 a001 75025/2537720636*3571^(15/17) 4032522196979400 a001 6765/141422324*3571^(14/17) 4032522196982618 a001 28657/969323029*3571^(15/17) 4032522201874861 r009 Im(z^3+c),c=-47/98+15/47*I,n=50 4032522202731794 a001 10946/370248451*3571^(15/17) 4032522204934221 a004 Fibonacci(19)*Lucas(17)/(1/2+sqrt(5)/2)^41 4032522205424099 a001 2584/3010349*3571^(8/17) 4032522209033054 m001 HardHexagonsEntropy^Rabbit/Pi 4032522209364381 a001 1292/51841*1364^(1/15) 4032522211270743 r005 Re(z^2+c),c=-13/10+7/169*I,n=34 4032522212030937 a001 17711/370248451*3571^(14/17) 4032522213209174 a001 1597/271443*1364^(4/15) 4032522214226927 a001 46368/969323029*3571^(14/17) 4032522214547318 a001 121393/2537720636*3571^(14/17) 4032522214594062 a001 317811/6643838879*3571^(14/17) 4032522214600882 a001 832040/17393796001*3571^(14/17) 4032522214601877 a001 2178309/45537549124*3571^(14/17) 4032522214602022 a001 5702887/119218851371*3571^(14/17) 4032522214602043 a001 14930352/312119004989*3571^(14/17) 4032522214602047 a001 4181/87403804*3571^(14/17) 4032522214602047 a001 102334155/2139295485799*3571^(14/17) 4032522214602047 a001 267914296/5600748293801*3571^(14/17) 4032522214602047 a001 701408733/14662949395604*3571^(14/17) 4032522214602047 a001 1134903170/23725150497407*3571^(14/17) 4032522214602047 a001 433494437/9062201101803*3571^(14/17) 4032522214602047 a001 165580141/3461452808002*3571^(14/17) 4032522214602047 a001 63245986/1322157322203*3571^(14/17) 4032522214602048 a001 24157817/505019158607*3571^(14/17) 4032522214602057 a001 9227465/192900153618*3571^(14/17) 4032522214602112 a001 3524578/73681302247*3571^(14/17) 4032522214602492 a001 1346269/28143753123*3571^(14/17) 4032522214605097 a001 514229/10749957122*3571^(14/17) 4032522214622952 a001 196418/4106118243*3571^(14/17) 4032522214745330 a001 75025/1568397607*3571^(14/17) 4032522215580904 a001 2255/29134601*3571^(13/17) 4032522215584124 a001 28657/599074578*3571^(14/17) 4032522216307398 a001 987/4870847*2207^(11/16) 4032522220743118 a008 Real Root of (-5+5*x^2+3*x^3+3*x^4-x^5) 4032522221333299 a001 10946/228826127*3571^(14/17) 4032522223535726 a001 4181/228826127*3571^(16/17) 4032522224023995 a001 1292/930249*3571^(7/17) 4032522230632443 a001 17711/228826127*3571^(13/17) 4032522230984523 r005 Im(z^2+c),c=3/7+23/54*I,n=6 4032522232112690 a001 4181/271443*1364^(2/15) 4032522232828433 a001 2576/33281921*3571^(13/17) 4032522233148823 a001 121393/1568397607*3571^(13/17) 4032522233195568 a001 105937/1368706081*3571^(13/17) 4032522233202388 a001 416020/5374978561*3571^(13/17) 4032522233203383 a001 726103/9381251041*3571^(13/17) 4032522233203528 a001 5702887/73681302247*3571^(13/17) 4032522233203549 a001 2584/33385281*3571^(13/17) 4032522233203552 a001 39088169/505019158607*3571^(13/17) 4032522233203553 a001 34111385/440719107401*3571^(13/17) 4032522233203553 a001 133957148/1730726404001*3571^(13/17) 4032522233203553 a001 233802911/3020733700601*3571^(13/17) 4032522233203553 a001 1836311903/23725150497407*3571^(13/17) 4032522233203553 a001 567451585/7331474697802*3571^(13/17) 4032522233203553 a001 433494437/5600748293801*3571^(13/17) 4032522233203553 a001 165580141/2139295485799*3571^(13/17) 4032522233203553 a001 31622993/408569081798*3571^(13/17) 4032522233203554 a001 24157817/312119004989*3571^(13/17) 4032522233203562 a001 9227465/119218851371*3571^(13/17) 4032522233203618 a001 1762289/22768774562*3571^(13/17) 4032522233203998 a001 1346269/17393796001*3571^(13/17) 4032522233206603 a001 514229/6643838879*3571^(13/17) 4032522233224457 a001 98209/1268860318*3571^(13/17) 4032522233346836 a001 75025/969323029*3571^(13/17) 4032522233448273 a001 6677056/165580141 4032522233448276 a004 Fibonacci(18)/Lucas(18)/(1/2+sqrt(5)/2)^5 4032522234182412 a001 6765/54018521*3571^(12/17) 4032522234185629 a001 28657/370248451*3571^(13/17) 4032522238578141 r005 Re(z^2+c),c=-31/56+6/17*I,n=35 4032522239934805 a001 5473/70711162*3571^(13/17) 4032522242137232 a001 4181/141422324*3571^(15/17) 4032522242629715 a001 2584/1149851*3571^(6/17) 4032522247059166 r009 Re(z^3+c),c=-23/48+8/37*I,n=33 4032522249233949 a001 17711/141422324*3571^(12/17) 4032522251429938 a001 46368/370248451*3571^(12/17) 4032522251750329 a001 121393/969323029*3571^(12/17) 4032522251797073 a001 317811/2537720636*3571^(12/17) 4032522251803893 a001 832040/6643838879*3571^(12/17) 4032522251804888 a001 2178309/17393796001*3571^(12/17) 4032522251805033 a001 1597/12752044*3571^(12/17) 4032522251805055 a001 14930352/119218851371*3571^(12/17) 4032522251805058 a001 39088169/312119004989*3571^(12/17) 4032522251805058 a001 102334155/817138163596*3571^(12/17) 4032522251805058 a001 267914296/2139295485799*3571^(12/17) 4032522251805058 a001 701408733/5600748293801*3571^(12/17) 4032522251805058 a001 1836311903/14662949395604*3571^(12/17) 4032522251805058 a001 2971215073/23725150497407*3571^(12/17) 4032522251805058 a001 1134903170/9062201101803*3571^(12/17) 4032522251805058 a001 433494437/3461452808002*3571^(12/17) 4032522251805058 a001 165580141/1322157322203*3571^(12/17) 4032522251805058 a001 63245986/505019158607*3571^(12/17) 4032522251805060 a001 24157817/192900153618*3571^(12/17) 4032522251805068 a001 9227465/73681302247*3571^(12/17) 4032522251805123 a001 3524578/28143753123*3571^(12/17) 4032522251805503 a001 1346269/10749957122*3571^(12/17) 4032522251808108 a001 514229/4106118243*3571^(12/17) 4032522251825963 a001 196418/1568397607*3571^(12/17) 4032522251948341 a001 75025/599074578*3571^(12/17) 4032522252783912 a001 6765/33385282*3571^(11/17) 4032522252787135 a001 28657/228826127*3571^(12/17) 4032522258536310 a001 10946/87403803*3571^(12/17) 4032522260738737 a001 4181/87403803*3571^(14/17) 4032522261220186 a001 2584/710647*3571^(5/17) 4032522265082582 r009 Re(z^3+c),c=-27/56+12/55*I,n=49 4032522266291681 a007 Real Root Of -912*x^4+469*x^3-400*x^2+740*x-240 4032522267574921 r008 a(0)=4,K{-n^6,27-33*n^3+16*n^2-41*n} 4032522267731336 r005 Im(z^2+c),c=17/126+17/40*I,n=61 4032522267835454 a001 17711/87403803*3571^(11/17) 4032522268050711 a001 987/7881196*2207^(3/4) 4032522270031444 a001 46368/228826127*3571^(11/17) 4032522270351835 a001 121393/599074578*3571^(11/17) 4032522270398579 a001 317811/1568397607*3571^(11/17) 4032522270405399 a001 832040/4106118243*3571^(11/17) 4032522270406394 a001 987/4870846*3571^(11/17) 4032522270406539 a001 5702887/28143753123*3571^(11/17) 4032522270406560 a001 14930352/73681302247*3571^(11/17) 4032522270406564 a001 39088169/192900153618*3571^(11/17) 4032522270406564 a001 102334155/505019158607*3571^(11/17) 4032522270406564 a001 267914296/1322157322203*3571^(11/17) 4032522270406564 a001 701408733/3461452808002*3571^(11/17) 4032522270406564 a001 1836311903/9062201101803*3571^(11/17) 4032522270406564 a001 4807526976/23725150497407*3571^(11/17) 4032522270406564 a001 2971215073/14662949395604*3571^(11/17) 4032522270406564 a001 1134903170/5600748293801*3571^(11/17) 4032522270406564 a001 433494437/2139295485799*3571^(11/17) 4032522270406564 a001 165580141/817138163596*3571^(11/17) 4032522270406564 a001 63245986/312119004989*3571^(11/17) 4032522270406565 a001 24157817/119218851371*3571^(11/17) 4032522270406574 a001 9227465/45537549124*3571^(11/17) 4032522270406629 a001 3524578/17393796001*3571^(11/17) 4032522270407009 a001 1346269/6643838879*3571^(11/17) 4032522270409614 a001 514229/2537720636*3571^(11/17) 4032522270427469 a001 196418/969323029*3571^(11/17) 4032522270549847 a001 75025/370248451*3571^(11/17) 4032522271385431 a001 615/1875749*3571^(10/17) 4032522271388641 a001 28657/141422324*3571^(11/17) 4032522277137818 a001 10946/54018521*3571^(11/17) 4032522279340245 a001 4181/54018521*3571^(13/17) 4032522279850582 a001 34/5779*3571^(4/17) 4032522281245939 m001 (Psi(1,1/3)-Si(Pi))/(gamma+Porter) 4032522282496343 l006 ln(1508/2257) 4032522285234863 a007 Real Root Of -508*x^4+976*x^3-869*x^2-44*x+201 4032522285648939 r009 Re(z^3+c),c=-49/94+8/31*I,n=62 4032522286436962 a001 17711/54018521*3571^(10/17) 4032522288488268 r008 a(0)=4,K{-n^6,-21+29*n^3-24*n^2-14*n} 4032522288632950 a001 11592/35355581*3571^(10/17) 4032522288953341 a001 121393/370248451*3571^(10/17) 4032522289000085 a001 317811/969323029*3571^(10/17) 4032522289006905 a001 610/1860499*3571^(10/17) 4032522289007900 a001 2178309/6643838879*3571^(10/17) 4032522289008045 a001 5702887/17393796001*3571^(10/17) 4032522289008066 a001 3732588/11384387281*3571^(10/17) 4032522289008069 a001 39088169/119218851371*3571^(10/17) 4032522289008070 a001 9303105/28374454999*3571^(10/17) 4032522289008070 a001 66978574/204284540899*3571^(10/17) 4032522289008070 a001 701408733/2139295485799*3571^(10/17) 4032522289008070 a001 1836311903/5600748293801*3571^(10/17) 4032522289008070 a001 1201881744/3665737348901*3571^(10/17) 4032522289008070 a001 7778742049/23725150497407*3571^(10/17) 4032522289008070 a001 2971215073/9062201101803*3571^(10/17) 4032522289008070 a001 567451585/1730726404001*3571^(10/17) 4032522289008070 a001 433494437/1322157322203*3571^(10/17) 4032522289008070 a001 165580141/505019158607*3571^(10/17) 4032522289008070 a001 31622993/96450076809*3571^(10/17) 4032522289008071 a001 24157817/73681302247*3571^(10/17) 4032522289008079 a001 9227465/28143753123*3571^(10/17) 4032522289008135 a001 1762289/5374978561*3571^(10/17) 4032522289008515 a001 1346269/4106118243*3571^(10/17) 4032522289011120 a001 514229/1568397607*3571^(10/17) 4032522289028975 a001 98209/299537289*3571^(10/17) 4032522289151353 a001 75025/228826127*3571^(10/17) 4032522289290984 r005 Re(z^2+c),c=-17/29+5/24*I,n=15 4032522289986903 a001 2255/4250681*3571^(9/17) 4032522289990146 a001 28657/87403803*3571^(10/17) 4032522293136959 a007 Real Root Of 79*x^4-70*x^3-556*x^2-826*x+426 4032522295739319 a001 5473/16692641*3571^(10/17) 4032522297520366 m001 1/Conway^2/exp(Artin)/Zeta(9)^2 4032522297941746 a001 4181/33385282*3571^(12/17) 4032522298376454 a001 2584/271443*3571^(3/17) 4032522305038462 a001 17711/33385282*3571^(9/17) 4032522307234455 a001 15456/29134601*3571^(9/17) 4032522307554846 a001 121393/228826127*3571^(9/17) 4032522307601591 a001 377/710646*3571^(9/17) 4032522307608411 a001 832040/1568397607*3571^(9/17) 4032522307609406 a001 726103/1368706081*3571^(9/17) 4032522307609551 a001 5702887/10749957122*3571^(9/17) 4032522307609572 a001 4976784/9381251041*3571^(9/17) 4032522307609575 a001 39088169/73681302247*3571^(9/17) 4032522307609576 a001 34111385/64300051206*3571^(9/17) 4032522307609576 a001 267914296/505019158607*3571^(9/17) 4032522307609576 a001 233802911/440719107401*3571^(9/17) 4032522307609576 a001 1836311903/3461452808002*3571^(9/17) 4032522307609576 a001 1602508992/3020733700601*3571^(9/17) 4032522307609576 a001 12586269025/23725150497407*3571^(9/17) 4032522307609576 a001 7778742049/14662949395604*3571^(9/17) 4032522307609576 a001 2971215073/5600748293801*3571^(9/17) 4032522307609576 a001 1134903170/2139295485799*3571^(9/17) 4032522307609576 a001 433494437/817138163596*3571^(9/17) 4032522307609576 a001 165580141/312119004989*3571^(9/17) 4032522307609576 a001 63245986/119218851371*3571^(9/17) 4032522307609577 a001 24157817/45537549124*3571^(9/17) 4032522307609585 a001 9227465/17393796001*3571^(9/17) 4032522307609641 a001 3524578/6643838879*3571^(9/17) 4032522307610021 a001 1346269/2537720636*3571^(9/17) 4032522307612626 a001 514229/969323029*3571^(9/17) 4032522307630481 a001 196418/370248451*3571^(9/17) 4032522307752859 a001 75025/141422324*3571^(9/17) 4032522308099009 a004 Fibonacci(18)*Lucas(19)/(1/2+sqrt(5)/2)^42 4032522308588499 a001 6765/7881196*3571^(8/17) 4032522308591654 a001 28657/54018521*3571^(9/17) 4032522310527256 a001 2584/370248451*9349^(18/19) 4032522312849551 a001 2255/90481*1364^(1/15) 4032522312955503 a001 2584/228826127*9349^(17/19) 4032522314340838 a001 10946/20633239*3571^(9/17) 4032522315383750 a001 646/35355581*9349^(16/19) 4032522316269428 r002 43th iterates of z^2 + 4032522316543265 a001 4181/20633239*3571^(11/17) 4032522317175972 a001 2584/167761*3571^(2/17) 4032522317811996 a001 2584/87403803*9349^(15/19) 4032522318890055 m001 gamma(1)^Conway*FibonacciFactorial 4032522319793699 a001 329/4250681*2207^(13/16) 4032522320240245 a001 2584/54018521*9349^(14/19) 4032522322668487 a001 1292/16692641*9349^(13/19) 4032522323639982 a001 17711/20633239*3571^(8/17) 4032522325096747 a001 2584/20633239*9349^(12/19) 4032522325835963 a001 46368/54018521*3571^(8/17) 4032522326156353 a001 233/271444*3571^(8/17) 4032522326203097 a001 317811/370248451*3571^(8/17) 4032522326209917 a001 832040/969323029*3571^(8/17) 4032522326210912 a001 2178309/2537720636*3571^(8/17) 4032522326211057 a001 5702887/6643838879*3571^(8/17) 4032522326211078 a001 14930352/17393796001*3571^(8/17) 4032522326211081 a001 39088169/45537549124*3571^(8/17) 4032522326211082 a001 102334155/119218851371*3571^(8/17) 4032522326211082 a001 267914296/312119004989*3571^(8/17) 4032522326211082 a001 701408733/817138163596*3571^(8/17) 4032522326211082 a001 1836311903/2139295485799*3571^(8/17) 4032522326211082 a001 4807526976/5600748293801*3571^(8/17) 4032522326211082 a001 12586269025/14662949395604*3571^(8/17) 4032522326211082 a001 20365011074/23725150497407*3571^(8/17) 4032522326211082 a001 7778742049/9062201101803*3571^(8/17) 4032522326211082 a001 2971215073/3461452808002*3571^(8/17) 4032522326211082 a001 1134903170/1322157322203*3571^(8/17) 4032522326211082 a001 433494437/505019158607*3571^(8/17) 4032522326211082 a001 165580141/192900153618*3571^(8/17) 4032522326211082 a001 63245986/73681302247*3571^(8/17) 4032522326211083 a001 24157817/28143753123*3571^(8/17) 4032522326211091 a001 9227465/10749957122*3571^(8/17) 4032522326211147 a001 3524578/4106118243*3571^(8/17) 4032522326211527 a001 1346269/1568397607*3571^(8/17) 4032522326214132 a001 514229/599074578*3571^(8/17) 4032522326231986 a001 196418/228826127*3571^(8/17) 4032522326354364 a001 75025/87403803*3571^(8/17) 4032522326366900 r005 Re(z^2+c),c=-19/34+9/59*I,n=43 4032522327189770 a001 6765/4870847*3571^(7/17) 4032522327193155 a001 28657/33385282*3571^(8/17) 4032522327524960 a001 2584/12752043*9349^(11/19) 4032522327947834 a001 17711/710647*1364^(1/15) 4032522329953296 a001 646/1970299*9349^(10/19) 4032522330150644 a001 2576/103361*1364^(1/15) 4032522330472029 a001 121393/4870847*1364^(1/15) 4032522330518919 a001 105937/4250681*1364^(1/15) 4032522330525760 a001 416020/16692641*1364^(1/15) 4032522330526758 a001 726103/29134601*1364^(1/15) 4032522330526904 a001 5702887/228826127*1364^(1/15) 4032522330526925 a001 829464/33281921*1364^(1/15) 4032522330526928 a001 39088169/1568397607*1364^(1/15) 4032522330526929 a001 34111385/1368706081*1364^(1/15) 4032522330526929 a001 133957148/5374978561*1364^(1/15) 4032522330526929 a001 233802911/9381251041*1364^(1/15) 4032522330526929 a001 1836311903/73681302247*1364^(1/15) 4032522330526929 a001 267084832/10716675201*1364^(1/15) 4032522330526929 a001 12586269025/505019158607*1364^(1/15) 4032522330526929 a001 10983760033/440719107401*1364^(1/15) 4032522330526929 a001 43133785636/1730726404001*1364^(1/15) 4032522330526929 a001 75283811239/3020733700601*1364^(1/15) 4032522330526929 a001 182717648081/7331474697802*1364^(1/15) 4032522330526929 a001 139583862445/5600748293801*1364^(1/15) 4032522330526929 a001 53316291173/2139295485799*1364^(1/15) 4032522330526929 a001 10182505537/408569081798*1364^(1/15) 4032522330526929 a001 7778742049/312119004989*1364^(1/15) 4032522330526929 a001 2971215073/119218851371*1364^(1/15) 4032522330526929 a001 567451585/22768774562*1364^(1/15) 4032522330526929 a001 433494437/17393796001*1364^(1/15) 4032522330526929 a001 165580141/6643838879*1364^(1/15) 4032522330526929 a001 31622993/1268860318*1364^(1/15) 4032522330526930 a001 24157817/969323029*1364^(1/15) 4032522330526938 a001 9227465/370248451*1364^(1/15) 4032522330526994 a001 1762289/70711162*1364^(1/15) 4032522330527375 a001 1346269/54018521*1364^(1/15) 4032522330529988 a001 514229/20633239*1364^(1/15) 4032522330547898 a001 98209/3940598*1364^(1/15) 4032522330670657 a001 75025/3010349*1364^(1/15) 4032522330864372 r002 37th iterates of z^2 + 4032522331512055 a001 28657/1149851*1364^(1/15) 4032522332381308 a001 2584/4870847*9349^(9/19) 4032522332942310 a001 10946/12752043*3571^(8/17) 4032522334810170 a001 2584/3010349*9349^(8/19) 4032522335144736 a001 4181/12752043*3571^(10/17) 4032522335259075 a001 1292/51841*3571^(1/17) 4032522336613053 a001 17480760/433494437 4032522336613053 a004 Fibonacci(18)/Lucas(20)/(1/2+sqrt(5)/2)^3 4032522336613056 a004 Fibonacci(20)/Lucas(18)/(1/2+sqrt(5)/2)^7 4032522337236807 a001 1292/930249*9349^(7/19) 4032522337279086 a001 5473/219602*1364^(1/15) 4032522339669269 a001 2584/1149851*9349^(6/19) 4032522342086481 a001 2584/710647*9349^(5/19) 4032522342241453 a001 17711/12752043*3571^(7/17) 4032522344437464 a001 144/103681*3571^(7/17) 4032522344543618 a001 34/5779*9349^(4/19) 4032522344757858 a001 121393/87403803*3571^(7/17) 4032522344804603 a001 317811/228826127*3571^(7/17) 4032522344811423 a001 416020/299537289*3571^(7/17) 4032522344812418 a001 311187/224056801*3571^(7/17) 4032522344812563 a001 5702887/4106118243*3571^(7/17) 4032522344812584 a001 7465176/5374978561*3571^(7/17) 4032522344812587 a001 39088169/28143753123*3571^(7/17) 4032522344812588 a001 14619165/10525900321*3571^(7/17) 4032522344812588 a001 133957148/96450076809*3571^(7/17) 4032522344812588 a001 701408733/505019158607*3571^(7/17) 4032522344812588 a001 1836311903/1322157322203*3571^(7/17) 4032522344812588 a001 14930208/10749853441*3571^(7/17) 4032522344812588 a001 12586269025/9062201101803*3571^(7/17) 4032522344812588 a001 32951280099/23725150497407*3571^(7/17) 4032522344812588 a001 10182505537/7331474697802*3571^(7/17) 4032522344812588 a001 7778742049/5600748293801*3571^(7/17) 4032522344812588 a001 2971215073/2139295485799*3571^(7/17) 4032522344812588 a001 567451585/408569081798*3571^(7/17) 4032522344812588 a001 433494437/312119004989*3571^(7/17) 4032522344812588 a001 165580141/119218851371*3571^(7/17) 4032522344812588 a001 31622993/22768774562*3571^(7/17) 4032522344812589 a001 24157817/17393796001*3571^(7/17) 4032522344812597 a001 9227465/6643838879*3571^(7/17) 4032522344812653 a001 1762289/1268860318*3571^(7/17) 4032522344813033 a001 1346269/969323029*3571^(7/17) 4032522344815638 a001 514229/370248451*3571^(7/17) 4032522344833493 a001 98209/70711162*3571^(7/17) 4032522344955872 a001 75025/54018521*3571^(7/17) 4032522345791891 a001 6765/3010349*3571^(6/17) 4032522345794674 a001 28657/20633239*3571^(7/17) 4032522346814661 r002 9th iterates of z^2 + 4032522346896231 a001 2584/271443*9349^(3/19) 4032522347504448 a004 Fibonacci(18)*Lucas(21)/(1/2+sqrt(5)/2)^44 4032522347824984 a001 2584/969323029*24476^(20/21) 4032522348145520 a001 1292/299537289*24476^(19/21) 4032522348466056 a001 2584/370248451*24476^(6/7) 4032522348786592 a001 2584/228826127*24476^(17/21) 4032522349107128 a001 646/35355581*24476^(16/21) 4032522349427663 a001 2584/87403803*24476^(5/7) 4032522349522490 a001 2584/167761*9349^(2/19) 4032522349748201 a001 2584/54018521*24476^(2/3) 4032522350068731 a001 1292/16692641*24476^(13/21) 4032522350389280 a001 2584/20633239*24476^(4/7) 4032522350709782 a001 2584/12752043*24476^(11/21) 4032522351030408 a001 646/1970299*24476^(10/21) 4032522351350708 a001 2584/4870847*24476^(3/7) 4032522351432334 a001 1292/51841*9349^(1/19) 4032522351543905 a001 5473/3940598*3571^(7/17) 4032522351664591 a001 1346036/33379505 4032522351664591 a004 Fibonacci(18)/Lucas(22)/(1/2+sqrt(5)/2) 4032522351664595 a004 Fibonacci(22)/Lucas(18)/(1/2+sqrt(5)/2)^9 4032522351671859 a001 2584/3010349*24476^(8/21) 4032522351990785 a001 1292/930249*24476^(1/3) 4032522352076500 h001 (-9*exp(3)-2)/(-3*exp(5)-8) 4032522352315536 a001 2584/1149851*24476^(2/7) 4032522352625037 a001 2584/710647*24476^(5/21) 4032522352971136 m001 1/Zeta(1/2)*exp(Riemann3rdZero)*cos(Pi/5) 4032522352974462 a001 34/5779*24476^(4/21) 4032522353219364 a001 2584/271443*24476^(1/7) 4032522353253624 a004 Fibonacci(18)*Lucas(23)/(1/2+sqrt(5)/2)^46 4032522353296323 a001 34/33391061*64079^(22/23) 4032522353339022 a001 2584/1568397607*64079^(21/23) 4032522353381721 a001 2584/969323029*64079^(20/23) 4032522353424420 a001 1292/299537289*64079^(19/23) 4032522353467119 a001 2584/370248451*64079^(18/23) 4032522353509818 a001 2584/228826127*64079^(17/23) 4032522353540045 a001 1292/51841*24476^(1/21) 4032522353552518 a001 646/35355581*64079^(16/23) 4032522353595216 a001 2584/87403803*64079^(15/23) 4032522353637917 a001 2584/54018521*64079^(14/23) 4032522353680611 a001 1292/16692641*64079^(13/23) 4032522353723323 a001 2584/20633239*64079^(12/23) 4032522353737912 a001 2584/167761*24476^(2/21) 4032522353746332 a001 4181/7881196*3571^(9/17) 4032522353765987 a001 2584/12752043*64079^(11/23) 4032522353808776 a001 646/1970299*64079^(10/23) 4032522353817882 a001 1292/51841*64079^(1/23) 4032522353851240 a001 2584/4870847*64079^(9/23) 4032522353860581 a001 119814912/2971215073 4032522353860581 a001 646/51841+646/51841*5^(1/2) 4032522353860585 a004 Fibonacci(24)/Lucas(18)/(1/2+sqrt(5)/2)^11 4032522353876211 a001 1292/51841*103682^(1/24) 4032522353894554 a001 2584/3010349*64079^(8/23) 4032522353935643 a001 1292/930249*64079^(7/23) 4032522353977450 a001 1292/51841*39603^(1/22) 4032522353982557 a001 2584/1149851*64079^(6/23) 4032522354014221 a001 2584/710647*64079^(5/23) 4032522354052875 a001 2584/271443*64079^(3/23) 4032522354085810 a001 34/5779*64079^(4/23) 4032522354092418 a004 Fibonacci(18)*Lucas(25)/(1/2+sqrt(5)/2)^48 4032522354121075 a001 2584/969323029*167761^(4/5) 4032522354149731 a001 2584/87403803*167761^(3/5) 4032522354178453 a001 646/1970299*167761^(2/5) 4032522354178649 a001 2584/271443*439204^(1/9) 4032522354180966 a001 2584/271443*7881196^(1/11) 4032522354180972 a001 2584/271443*141422324^(1/13) 4032522354180972 a001 2584/271443*2537720636^(1/15) 4032522354180972 a001 313679512/7778742049 4032522354180972 a001 2584/271443*45537549124^(1/17) 4032522354180972 a001 2584/271443*14662949395604^(1/21) 4032522354180972 a001 2584/271443*(1/2+1/2*5^(1/2))^3 4032522354180972 a001 2584/271443*192900153618^(1/18) 4032522354180972 a001 2584/271443*10749957122^(1/16) 4032522354180972 a001 2584/271443*599074578^(1/14) 4032522354180972 a001 2584/271443*33385282^(1/12) 4032522354180975 a004 Fibonacci(26)/Lucas(18)/(1/2+sqrt(5)/2)^13 4032522354181088 a001 2584/271443*1860498^(1/10) 4032522354199060 a001 2584/710647*167761^(1/5) 4032522354214796 a004 Fibonacci(18)*Lucas(27)/(1/2+sqrt(5)/2)^50 4032522354217119 a001 2584/6643838879*439204^(8/9) 4032522354219442 a001 2584/1568397607*439204^(7/9) 4032522354221765 a001 2584/370248451*439204^(2/3) 4032522354224087 a001 2584/87403803*439204^(5/9) 4032522354226420 a001 2584/20633239*439204^(4/9) 4032522354227715 a001 2584/710647*20633239^(1/7) 4032522354227716 a001 2584/710647*2537720636^(1/9) 4032522354227716 a001 410611812/10182505537 4032522354227716 a001 2584/710647*312119004989^(1/11) 4032522354227716 a001 2584/710647*(1/2+1/2*5^(1/2))^5 4032522354227716 a001 2584/710647*28143753123^(1/10) 4032522354227716 a001 2584/710647*228826127^(1/8) 4032522354227720 a004 Fibonacci(28)/Lucas(18)/(1/2+sqrt(5)/2)^15 4032522354227862 a001 2584/271443*103682^(1/8) 4032522354227910 a001 2584/710647*1860498^(1/6) 4032522354228563 a001 2584/4870847*439204^(1/3) 4032522354232651 a004 Fibonacci(18)*Lucas(29)/(1/2+sqrt(5)/2)^52 4032522354234105 a001 2584/1149851*439204^(2/9) 4032522354234534 a001 1292/930249*20633239^(1/5) 4032522354234536 a001 1292/930249*17393796001^(1/7) 4032522354234536 a001 2149991360/53316291173 4032522354234536 a001 1292/930249*14662949395604^(1/9) 4032522354234536 a001 1292/930249*(1/2+1/2*5^(1/2))^7 4032522354234536 a001 1292/930249*599074578^(1/6) 4032522354234540 a004 Fibonacci(30)/Lucas(18)/(1/2+sqrt(5)/2)^17 4032522354235256 a004 Fibonacci(18)*Lucas(31)/(1/2+sqrt(5)/2)^54 4032522354235513 a001 2584/4870847*7881196^(3/11) 4032522354235531 a001 2584/4870847*141422324^(3/13) 4032522354235531 a001 2584/4870847*2537720636^(1/5) 4032522354235531 a001 2584/4870847*45537549124^(3/17) 4032522354235531 a001 5628750456/139583862445 4032522354235531 a001 2584/4870847*817138163596^(3/19) 4032522354235531 a001 2584/4870847*14662949395604^(1/7) 4032522354235531 a001 2584/4870847*(1/2+1/2*5^(1/2))^9 4032522354235531 a001 2584/4870847*192900153618^(1/6) 4032522354235531 a001 2584/4870847*10749957122^(3/16) 4032522354235531 a001 2584/4870847*599074578^(3/14) 4032522354235532 a001 2584/4870847*33385282^(1/4) 4032522354235535 a004 Fibonacci(32)/Lucas(18)/(1/2+sqrt(5)/2)^19 4032522354235636 a004 Fibonacci(18)*Lucas(33)/(1/2+sqrt(5)/2)^56 4032522354235642 a001 2584/119218851371*7881196^(10/11) 4032522354235648 a001 2584/28143753123*7881196^(9/11) 4032522354235654 a001 2584/6643838879*7881196^(8/11) 4032522354235655 a001 2584/12752043*7881196^(1/3) 4032522354235658 a001 34/33391061*7881196^(2/3) 4032522354235660 a001 2584/1568397607*7881196^(7/11) 4032522354235666 a001 2584/370248451*7881196^(6/11) 4032522354235671 a001 2584/87403803*7881196^(5/11) 4032522354235676 a001 2584/12752043*312119004989^(1/5) 4032522354235676 a001 2584/12752043*(1/2+1/2*5^(1/2))^11 4032522354235676 a001 2584/12752043*1568397607^(1/4) 4032522354235680 a004 Fibonacci(34)/Lucas(18)/(1/2+sqrt(5)/2)^21 4032522354235687 a001 2584/20633239*7881196^(4/11) 4032522354235692 a004 Fibonacci(18)*Lucas(35)/(1/2+sqrt(5)/2)^58 4032522354235693 a001 2584/119218851371*20633239^(6/7) 4032522354235693 a001 646/11384387281*20633239^(4/5) 4032522354235694 a001 1292/5374978561*20633239^(5/7) 4032522354235695 a001 2584/1568397607*20633239^(3/5) 4032522354235696 a001 2584/969323029*20633239^(4/7) 4032522354235696 a001 2584/87403803*20633239^(3/7) 4032522354235697 a001 1292/16692641*141422324^(1/3) 4032522354235697 a001 38580029568/956722026041 4032522354235697 a001 1292/16692641*(1/2+1/2*5^(1/2))^13 4032522354235697 a001 1292/16692641*73681302247^(1/4) 4032522354235699 a001 2584/54018521*20633239^(2/5) 4032522354235700 a004 Fibonacci(18)*Lucas(37)/(1/2+sqrt(5)/2)^60 4032522354235700 a001 2584/87403803*141422324^(5/13) 4032522354235700 a001 2584/87403803*2537720636^(1/3) 4032522354235700 a001 2584/87403803*45537549124^(5/17) 4032522354235700 a001 2584/87403803*312119004989^(3/11) 4032522354235700 a001 101003828696/2504730781961 4032522354235700 a001 2584/87403803*14662949395604^(5/21) 4032522354235700 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^15/Lucas(38) 4032522354235700 a001 2584/87403803*192900153618^(5/18) 4032522354235700 a001 2584/87403803*28143753123^(3/10) 4032522354235700 a001 2584/87403803*10749957122^(5/16) 4032522354235701 a001 2584/87403803*599074578^(5/14) 4032522354235701 a001 2584/87403803*228826127^(3/8) 4032522354235701 a004 Fibonacci(18)*Lucas(39)/(1/2+sqrt(5)/2)^62 4032522354235701 a001 2584/2139295485799*141422324^(12/13) 4032522354235701 a001 2584/505019158607*141422324^(11/13) 4032522354235701 a001 2584/119218851371*141422324^(10/13) 4032522354235701 a001 2584/28143753123*141422324^(9/13) 4032522354235701 a001 2584/17393796001*141422324^(2/3) 4032522354235701 a001 2584/6643838879*141422324^(8/13) 4032522354235701 a001 2584/1568397607*141422324^(7/13) 4032522354235701 a001 2584/228826127*45537549124^(1/3) 4032522354235701 a001 7777395780/192866774113 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^17/Lucas(40) 4032522354235701 a001 2584/370248451*141422324^(6/13) 4032522354235701 a004 Fibonacci(18)*Lucas(41)/(1/2+sqrt(5)/2)^64 4032522354235701 a001 1292/299537289*817138163596^(1/3) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^19/Lucas(42) 4032522354235701 a004 Fibonacci(18)*Lucas(43)/(1/2+sqrt(5)/2)^66 4032522354235701 a001 2584/1568397607*2537720636^(7/15) 4032522354235701 a001 2584/1568397607*17393796001^(3/7) 4032522354235701 a001 2584/1568397607*45537549124^(7/17) 4032522354235701 a001 2584/1568397607*14662949395604^(1/3) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^21/Lucas(44) 4032522354235701 a001 2584/1568397607*192900153618^(7/18) 4032522354235701 a001 2584/1568397607*10749957122^(7/16) 4032522354235701 a004 Fibonacci(18)*Lucas(45)/(1/2+sqrt(5)/2)^68 4032522354235701 a001 34/192933544679*2537720636^(8/9) 4032522354235701 a001 2584/9062201101803*2537720636^(13/15) 4032522354235701 a001 2584/2139295485799*2537720636^(4/5) 4032522354235701 a001 2584/1322157322203*2537720636^(7/9) 4032522354235701 a001 2584/505019158607*2537720636^(11/15) 4032522354235701 a001 2584/119218851371*2537720636^(2/3) 4032522354235701 a001 1292/5374978561*2537720636^(5/9) 4032522354235701 a001 2584/28143753123*2537720636^(3/5) 4032522354235701 a001 2584/6643838879*2537720636^(8/15) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^23/Lucas(46) 4032522354235701 a001 2584/4106118243*4106118243^(1/2) 4032522354235701 a004 Fibonacci(18)*Lucas(47)/(1/2+sqrt(5)/2)^70 4032522354235701 a001 1292/5374978561*312119004989^(5/11) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^25/Lucas(48) 4032522354235701 a001 1292/5374978561*3461452808002^(5/12) 4032522354235701 a001 1292/5374978561*28143753123^(1/2) 4032522354235701 a004 Fibonacci(18)*Lucas(49)/(1/2+sqrt(5)/2)^72 4032522354235701 a001 2584/1322157322203*17393796001^(5/7) 4032522354235701 a001 2584/28143753123*45537549124^(9/17) 4032522354235701 a001 646/11384387281*17393796001^(4/7) 4032522354235701 a001 2584/28143753123*817138163596^(9/19) 4032522354235701 a001 2584/28143753123*14662949395604^(3/7) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^27/Lucas(50) 4032522354235701 a001 2584/28143753123*192900153618^(1/2) 4032522354235701 a004 Fibonacci(18)*Lucas(51)/(1/2+sqrt(5)/2)^74 4032522354235701 a001 2584/9062201101803*45537549124^(13/17) 4032522354235701 a001 2584/2139295485799*45537549124^(12/17) 4032522354235701 a001 646/204284540899*45537549124^(2/3) 4032522354235701 a001 2584/505019158607*45537549124^(11/17) 4032522354235701 a001 2584/119218851371*45537549124^(10/17) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^29/Lucas(52) 4032522354235701 a001 2584/73681302247*1322157322203^(1/2) 4032522354235701 a004 Fibonacci(18)*Lucas(53)/(1/2+sqrt(5)/2)^76 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^31/Lucas(54) 4032522354235701 a001 1292/96450076809*9062201101803^(1/2) 4032522354235701 a004 Fibonacci(18)*Lucas(55)/(1/2+sqrt(5)/2)^78 4032522354235701 a001 2584/505019158607*312119004989^(3/5) 4032522354235701 a001 2584/1322157322203*312119004989^(7/11) 4032522354235701 a001 2584/505019158607*14662949395604^(11/21) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^33/Lucas(56) 4032522354235701 a004 Fibonacci(18)*Lucas(57)/(1/2+sqrt(5)/2)^80 4032522354235701 a001 2584/1322157322203*14662949395604^(5/9) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^35/Lucas(58) 4032522354235701 a004 Fibonacci(18)*Lucas(59)/(1/2+sqrt(5)/2)^82 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^37/Lucas(60) 4032522354235701 a004 Fibonacci(18)*Lucas(61)/(1/2+sqrt(5)/2)^84 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^39/Lucas(62) 4032522354235701 a004 Fibonacci(18)*Lucas(63)/(1/2+sqrt(5)/2)^86 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^41/Lucas(64) 4032522354235701 a004 Fibonacci(18)*Lucas(65)/(1/2+sqrt(5)/2)^88 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^43/Lucas(66) 4032522354235701 a004 Fibonacci(18)*Lucas(67)/(1/2+sqrt(5)/2)^90 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^45/Lucas(68) 4032522354235701 a004 Fibonacci(18)*Lucas(69)/(1/2+sqrt(5)/2)^92 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^47/Lucas(70) 4032522354235701 a004 Fibonacci(18)*Lucas(71)/(1/2+sqrt(5)/2)^94 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^49/Lucas(72) 4032522354235701 a004 Fibonacci(18)*Lucas(73)/(1/2+sqrt(5)/2)^96 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^51/Lucas(74) 4032522354235701 a004 Fibonacci(18)*Lucas(75)/(1/2+sqrt(5)/2)^98 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^53/Lucas(76) 4032522354235701 a004 Fibonacci(18)*Lucas(77)/(1/2+sqrt(5)/2)^100 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^55/Lucas(78) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^57/Lucas(80) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^59/Lucas(82) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^61/Lucas(84) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^63/Lucas(86) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^65/Lucas(88) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^67/Lucas(90) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^69/Lucas(92) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^71/Lucas(94) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^73/Lucas(96) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^75/Lucas(98) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^76/Lucas(99) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^77/Lucas(100) 4032522354235701 a004 Fibonacci(9)*Lucas(9)/(1/2+sqrt(5)/2)^23 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^74/Lucas(97) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^72/Lucas(95) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^70/Lucas(93) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^68/Lucas(91) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^66/Lucas(89) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^64/Lucas(87) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^62/Lucas(85) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^60/Lucas(83) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^58/Lucas(81) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^56/Lucas(79) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^54/Lucas(77) 4032522354235701 a004 Fibonacci(18)*Lucas(76)/(1/2+sqrt(5)/2)^99 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^52/Lucas(75) 4032522354235701 a004 Fibonacci(18)*Lucas(74)/(1/2+sqrt(5)/2)^97 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^50/Lucas(73) 4032522354235701 a004 Fibonacci(18)*Lucas(72)/(1/2+sqrt(5)/2)^95 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^48/Lucas(71) 4032522354235701 a004 Fibonacci(18)*Lucas(70)/(1/2+sqrt(5)/2)^93 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^46/Lucas(69) 4032522354235701 a004 Fibonacci(18)*Lucas(68)/(1/2+sqrt(5)/2)^91 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^44/Lucas(67) 4032522354235701 a004 Fibonacci(18)*Lucas(66)/(1/2+sqrt(5)/2)^89 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^42/Lucas(65) 4032522354235701 a004 Fibonacci(18)*Lucas(64)/(1/2+sqrt(5)/2)^87 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^40/Lucas(63) 4032522354235701 a004 Fibonacci(18)*Lucas(62)/(1/2+sqrt(5)/2)^85 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^38/Lucas(61) 4032522354235701 a004 Fibonacci(18)*Lucas(60)/(1/2+sqrt(5)/2)^83 4032522354235701 a001 2584/2139295485799*14662949395604^(4/7) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^36/Lucas(59) 4032522354235701 a004 Fibonacci(18)*Lucas(58)/(1/2+sqrt(5)/2)^81 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^34/Lucas(57) 4032522354235701 a001 2584/1322157322203*505019158607^(5/8) 4032522354235701 a001 2584/2139295485799*505019158607^(9/14) 4032522354235701 a004 Fibonacci(18)*Lucas(56)/(1/2+sqrt(5)/2)^79 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^32/Lucas(55) 4032522354235701 a001 2584/312119004989*23725150497407^(1/2) 4032522354235701 a001 2584/312119004989*505019158607^(4/7) 4032522354235701 a001 2584/2139295485799*192900153618^(2/3) 4032522354235701 a004 Fibonacci(18)*Lucas(54)/(1/2+sqrt(5)/2)^77 4032522354235701 a001 2584/119218851371*312119004989^(6/11) 4032522354235701 a001 2584/119218851371*14662949395604^(10/21) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^30/Lucas(53) 4032522354235701 a001 2584/119218851371*192900153618^(5/9) 4032522354235701 a001 2584/312119004989*73681302247^(8/13) 4032522354235701 a001 2584/2139295485799*73681302247^(9/13) 4032522354235701 a001 2584/9062201101803*73681302247^(3/4) 4032522354235701 a001 34/192933544679*73681302247^(10/13) 4032522354235701 a004 Fibonacci(18)*Lucas(52)/(1/2+sqrt(5)/2)^75 4032522354235701 a001 646/11384387281*14662949395604^(4/9) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^28/Lucas(51) 4032522354235701 a001 646/11384387281*505019158607^(1/2) 4032522354235701 a001 646/11384387281*73681302247^(7/13) 4032522354235701 a001 2584/119218851371*28143753123^(3/5) 4032522354235701 a001 2584/1322157322203*28143753123^(7/10) 4032522354235701 a001 34/192933544679*28143753123^(4/5) 4032522354235701 a004 Fibonacci(18)*Lucas(50)/(1/2+sqrt(5)/2)^73 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^26/Lucas(49) 4032522354235701 a001 2584/17393796001*73681302247^(1/2) 4032522354235701 a001 2584/28143753123*10749957122^(9/16) 4032522354235701 a001 2584/119218851371*10749957122^(5/8) 4032522354235701 a001 646/11384387281*10749957122^(7/12) 4032522354235701 a001 2584/312119004989*10749957122^(2/3) 4032522354235701 a001 2584/505019158607*10749957122^(11/16) 4032522354235701 a001 646/204284540899*10749957122^(17/24) 4032522354235701 a001 2584/2139295485799*10749957122^(3/4) 4032522354235701 a001 2584/5600748293801*10749957122^(19/24) 4032522354235701 a001 2584/9062201101803*10749957122^(13/16) 4032522354235701 a001 34/192933544679*10749957122^(5/6) 4032522354235701 a001 2584/17393796001*10749957122^(13/24) 4032522354235701 a004 Fibonacci(18)*Lucas(48)/(1/2+sqrt(5)/2)^71 4032522354235701 a001 2584/6643838879*45537549124^(8/17) 4032522354235701 a001 2584/6643838879*14662949395604^(8/21) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^24/Lucas(47) 4032522354235701 a001 2584/6643838879*192900153618^(4/9) 4032522354235701 a001 2584/6643838879*73681302247^(6/13) 4032522354235701 a001 2584/6643838879*10749957122^(1/2) 4032522354235701 a001 646/11384387281*4106118243^(14/23) 4032522354235701 a001 2584/17393796001*4106118243^(13/23) 4032522354235701 a001 2584/119218851371*4106118243^(15/23) 4032522354235701 a001 2584/312119004989*4106118243^(16/23) 4032522354235701 a001 646/204284540899*4106118243^(17/23) 4032522354235701 a001 2584/2139295485799*4106118243^(18/23) 4032522354235701 a001 2584/5600748293801*4106118243^(19/23) 4032522354235701 a001 34/192933544679*4106118243^(20/23) 4032522354235701 a001 2584/6643838879*4106118243^(12/23) 4032522354235701 a004 Fibonacci(18)*Lucas(46)/(1/2+sqrt(5)/2)^69 4032522354235701 a001 34/33391061*312119004989^(2/5) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^22/Lucas(45) 4032522354235701 a001 34/33391061*10749957122^(11/24) 4032522354235701 a001 34/33391061*4106118243^(11/23) 4032522354235701 a001 2584/17393796001*1568397607^(13/22) 4032522354235701 a001 2584/6643838879*1568397607^(6/11) 4032522354235701 a001 646/11384387281*1568397607^(7/11) 4032522354235701 a001 2584/119218851371*1568397607^(15/22) 4032522354235701 a001 2584/312119004989*1568397607^(8/11) 4032522354235701 a001 2584/505019158607*1568397607^(3/4) 4032522354235701 a001 646/204284540899*1568397607^(17/22) 4032522354235701 a001 2584/2139295485799*1568397607^(9/11) 4032522354235701 a001 2584/5600748293801*1568397607^(19/22) 4032522354235701 a001 34/33391061*1568397607^(1/2) 4032522354235701 a001 34/192933544679*1568397607^(10/11) 4032522354235701 a004 Fibonacci(18)*Lucas(44)/(1/2+sqrt(5)/2)^67 4032522354235701 a001 2584/1568397607*599074578^(1/2) 4032522354235701 a001 2584/969323029*2537720636^(4/9) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^20/Lucas(43) 4032522354235701 a001 2584/969323029*23725150497407^(5/16) 4032522354235701 a001 2584/969323029*505019158607^(5/14) 4032522354235701 a001 2584/969323029*73681302247^(5/13) 4032522354235701 a001 2584/969323029*28143753123^(2/5) 4032522354235701 a001 2584/969323029*10749957122^(5/12) 4032522354235701 a001 2584/969323029*4106118243^(10/23) 4032522354235701 a001 2584/969323029*1568397607^(5/11) 4032522354235701 a001 34/33391061*599074578^(11/21) 4032522354235701 a001 2584/6643838879*599074578^(4/7) 4032522354235701 a001 2584/17393796001*599074578^(13/21) 4032522354235701 a001 2584/28143753123*599074578^(9/14) 4032522354235701 a001 646/11384387281*599074578^(2/3) 4032522354235701 a001 2584/119218851371*599074578^(5/7) 4032522354235701 a001 2584/312119004989*599074578^(16/21) 4032522354235701 a001 2584/505019158607*599074578^(11/14) 4032522354235701 a001 646/204284540899*599074578^(17/21) 4032522354235701 a001 2584/1322157322203*599074578^(5/6) 4032522354235701 a001 2584/2139295485799*599074578^(6/7) 4032522354235701 a001 2584/969323029*599074578^(10/21) 4032522354235701 a001 2584/5600748293801*599074578^(19/21) 4032522354235701 a001 2584/9062201101803*599074578^(13/14) 4032522354235701 a001 34/192933544679*599074578^(20/21) 4032522354235701 a004 Fibonacci(18)*Lucas(42)/(1/2+sqrt(5)/2)^65 4032522354235701 a001 2584/370248451*2537720636^(2/5) 4032522354235701 a001 2584/370248451*45537549124^(6/17) 4032522354235701 a001 2584/370248451*14662949395604^(2/7) 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^18/Lucas(41) 4032522354235701 a001 2584/370248451*192900153618^(1/3) 4032522354235701 a001 2584/370248451*10749957122^(3/8) 4032522354235701 a001 2584/370248451*4106118243^(9/23) 4032522354235701 a001 2584/370248451*1568397607^(9/22) 4032522354235701 a001 2584/370248451*599074578^(3/7) 4032522354235701 a001 2584/969323029*228826127^(1/2) 4032522354235701 a001 34/33391061*228826127^(11/20) 4032522354235701 a001 2584/6643838879*228826127^(3/5) 4032522354235701 a001 1292/5374978561*228826127^(5/8) 4032522354235701 a001 2584/17393796001*228826127^(13/20) 4032522354235701 a001 646/11384387281*228826127^(7/10) 4032522354235701 a001 2584/119218851371*228826127^(3/4) 4032522354235701 a001 2584/312119004989*228826127^(4/5) 4032522354235701 a001 2584/370248451*228826127^(9/20) 4032522354235701 a001 646/204284540899*228826127^(17/20) 4032522354235701 a001 2584/1322157322203*228826127^(7/8) 4032522354235701 a001 2584/2139295485799*228826127^(9/10) 4032522354235701 a001 2584/5600748293801*228826127^(19/20) 4032522354235701 a004 Fibonacci(18)*Lucas(40)/(1/2+sqrt(5)/2)^63 4032522354235701 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^16/Lucas(39) 4032522354235701 a001 646/35355581*23725150497407^(1/4) 4032522354235701 a001 163427627824/4052739537881 4032522354235701 a001 646/35355581*73681302247^(4/13) 4032522354235701 a001 646/35355581*10749957122^(1/3) 4032522354235701 a001 646/35355581*4106118243^(8/23) 4032522354235701 a001 646/35355581*1568397607^(4/11) 4032522354235701 a001 646/35355581*599074578^(8/21) 4032522354235701 a001 646/35355581*228826127^(2/5) 4032522354235701 a001 1292/299537289*87403803^(1/2) 4032522354235701 a001 2584/370248451*87403803^(9/19) 4032522354235701 a001 2584/969323029*87403803^(10/19) 4032522354235701 a001 34/33391061*87403803^(11/19) 4032522354235701 a001 2584/6643838879*87403803^(12/19) 4032522354235701 a001 2584/17393796001*87403803^(13/19) 4032522354235701 a001 646/11384387281*87403803^(14/19) 4032522354235701 a001 2584/119218851371*87403803^(15/19) 4032522354235701 a001 646/35355581*87403803^(8/19) 4032522354235701 a001 2584/312119004989*87403803^(16/19) 4032522354235701 a001 646/204284540899*87403803^(17/19) 4032522354235702 a001 2584/2139295485799*87403803^(18/19) 4032522354235702 a004 Fibonacci(18)*Lucas(38)/(1/2+sqrt(5)/2)^61 4032522354235702 a001 2584/87403803*33385282^(5/12) 4032522354235702 a001 2584/54018521*17393796001^(2/7) 4032522354235702 a001 2584/54018521*14662949395604^(2/9) 4032522354235702 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^14/Lucas(37) 4032522354235702 a001 2584/54018521*505019158607^(1/4) 4032522354235702 a001 2584/54018521*10749957122^(7/24) 4032522354235702 a001 2584/54018521*4106118243^(7/23) 4032522354235702 a001 2584/54018521*1568397607^(7/22) 4032522354235702 a001 2584/54018521*599074578^(1/3) 4032522354235702 a001 2584/54018521*228826127^(7/20) 4032522354235703 a001 2584/54018521*87403803^(7/19) 4032522354235703 a001 646/35355581*33385282^(4/9) 4032522354235703 a001 2584/370248451*33385282^(1/2) 4032522354235703 a001 2584/969323029*33385282^(5/9) 4032522354235703 a001 2584/1568397607*33385282^(7/12) 4032522354235703 a001 34/33391061*33385282^(11/18) 4032522354235703 a001 2584/6643838879*33385282^(2/3) 4032522354235704 a001 2584/17393796001*33385282^(13/18) 4032522354235704 a001 2584/28143753123*33385282^(3/4) 4032522354235704 a001 2584/54018521*33385282^(7/18) 4032522354235704 a001 646/11384387281*33385282^(7/9) 4032522354235704 a001 2584/119218851371*33385282^(5/6) 4032522354235704 a004 Fibonacci(38)/Lucas(18)/(1/2+sqrt(5)/2)^25 4032522354235704 a001 2584/312119004989*33385282^(8/9) 4032522354235704 a001 2584/505019158607*33385282^(11/12) 4032522354235704 a001 646/204284540899*33385282^(17/18) 4032522354235705 a004 Fibonacci(40)/Lucas(18)/(1/2+sqrt(5)/2)^27 4032522354235705 a004 Fibonacci(42)/Lucas(18)/(1/2+sqrt(5)/2)^29 4032522354235705 a004 Fibonacci(44)/Lucas(18)/(1/2+sqrt(5)/2)^31 4032522354235705 a004 Fibonacci(46)/Lucas(18)/(1/2+sqrt(5)/2)^33 4032522354235705 a004 Fibonacci(48)/Lucas(18)/(1/2+sqrt(5)/2)^35 4032522354235705 a004 Fibonacci(50)/Lucas(18)/(1/2+sqrt(5)/2)^37 4032522354235705 a004 Fibonacci(52)/Lucas(18)/(1/2+sqrt(5)/2)^39 4032522354235705 a004 Fibonacci(54)/Lucas(18)/(1/2+sqrt(5)/2)^41 4032522354235705 a004 Fibonacci(56)/Lucas(18)/(1/2+sqrt(5)/2)^43 4032522354235705 a004 Fibonacci(58)/Lucas(18)/(1/2+sqrt(5)/2)^45 4032522354235705 a004 Fibonacci(60)/Lucas(18)/(1/2+sqrt(5)/2)^47 4032522354235705 a004 Fibonacci(62)/Lucas(18)/(1/2+sqrt(5)/2)^49 4032522354235705 a004 Fibonacci(64)/Lucas(18)/(1/2+sqrt(5)/2)^51 4032522354235705 a004 Fibonacci(66)/Lucas(18)/(1/2+sqrt(5)/2)^53 4032522354235705 a004 Fibonacci(68)/Lucas(18)/(1/2+sqrt(5)/2)^55 4032522354235705 a004 Fibonacci(70)/Lucas(18)/(1/2+sqrt(5)/2)^57 4032522354235705 a004 Fibonacci(18)*Lucas(36)/(1/2+sqrt(5)/2)^59 4032522354235705 a004 Fibonacci(74)/Lucas(18)/(1/2+sqrt(5)/2)^61 4032522354235705 a004 Fibonacci(76)/Lucas(18)/(1/2+sqrt(5)/2)^63 4032522354235705 a004 Fibonacci(78)/Lucas(18)/(1/2+sqrt(5)/2)^65 4032522354235705 a004 Fibonacci(80)/Lucas(18)/(1/2+sqrt(5)/2)^67 4032522354235705 a004 Fibonacci(82)/Lucas(18)/(1/2+sqrt(5)/2)^69 4032522354235705 a004 Fibonacci(84)/Lucas(18)/(1/2+sqrt(5)/2)^71 4032522354235705 a004 Fibonacci(86)/Lucas(18)/(1/2+sqrt(5)/2)^73 4032522354235705 a004 Fibonacci(88)/Lucas(18)/(1/2+sqrt(5)/2)^75 4032522354235705 a004 Fibonacci(90)/Lucas(18)/(1/2+sqrt(5)/2)^77 4032522354235705 a004 Fibonacci(92)/Lucas(18)/(1/2+sqrt(5)/2)^79 4032522354235705 a004 Fibonacci(94)/Lucas(18)/(1/2+sqrt(5)/2)^81 4032522354235705 a004 Fibonacci(96)/Lucas(18)/(1/2+sqrt(5)/2)^83 4032522354235705 a004 Fibonacci(98)/Lucas(18)/(1/2+sqrt(5)/2)^85 4032522354235705 a004 Fibonacci(100)/Lucas(18)/(1/2+sqrt(5)/2)^87 4032522354235705 a004 Fibonacci(99)/Lucas(18)/(1/2+sqrt(5)/2)^86 4032522354235705 a004 Fibonacci(97)/Lucas(18)/(1/2+sqrt(5)/2)^84 4032522354235705 a004 Fibonacci(95)/Lucas(18)/(1/2+sqrt(5)/2)^82 4032522354235705 a004 Fibonacci(93)/Lucas(18)/(1/2+sqrt(5)/2)^80 4032522354235705 a004 Fibonacci(91)/Lucas(18)/(1/2+sqrt(5)/2)^78 4032522354235705 a004 Fibonacci(89)/Lucas(18)/(1/2+sqrt(5)/2)^76 4032522354235705 a004 Fibonacci(87)/Lucas(18)/(1/2+sqrt(5)/2)^74 4032522354235705 a004 Fibonacci(85)/Lucas(18)/(1/2+sqrt(5)/2)^72 4032522354235705 a004 Fibonacci(83)/Lucas(18)/(1/2+sqrt(5)/2)^70 4032522354235705 a004 Fibonacci(81)/Lucas(18)/(1/2+sqrt(5)/2)^68 4032522354235705 a004 Fibonacci(79)/Lucas(18)/(1/2+sqrt(5)/2)^66 4032522354235705 a004 Fibonacci(77)/Lucas(18)/(1/2+sqrt(5)/2)^64 4032522354235705 a004 Fibonacci(75)/Lucas(18)/(1/2+sqrt(5)/2)^62 4032522354235705 a004 Fibonacci(73)/Lucas(18)/(1/2+sqrt(5)/2)^60 4032522354235705 a004 Fibonacci(71)/Lucas(18)/(1/2+sqrt(5)/2)^58 4032522354235705 a004 Fibonacci(69)/Lucas(18)/(1/2+sqrt(5)/2)^56 4032522354235705 a004 Fibonacci(67)/Lucas(18)/(1/2+sqrt(5)/2)^54 4032522354235705 a004 Fibonacci(65)/Lucas(18)/(1/2+sqrt(5)/2)^52 4032522354235705 a004 Fibonacci(63)/Lucas(18)/(1/2+sqrt(5)/2)^50 4032522354235705 a004 Fibonacci(61)/Lucas(18)/(1/2+sqrt(5)/2)^48 4032522354235705 a004 Fibonacci(59)/Lucas(18)/(1/2+sqrt(5)/2)^46 4032522354235705 a004 Fibonacci(57)/Lucas(18)/(1/2+sqrt(5)/2)^44 4032522354235705 a004 Fibonacci(55)/Lucas(18)/(1/2+sqrt(5)/2)^42 4032522354235705 a004 Fibonacci(53)/Lucas(18)/(1/2+sqrt(5)/2)^40 4032522354235705 a004 Fibonacci(51)/Lucas(18)/(1/2+sqrt(5)/2)^38 4032522354235705 a004 Fibonacci(49)/Lucas(18)/(1/2+sqrt(5)/2)^36 4032522354235705 a004 Fibonacci(47)/Lucas(18)/(1/2+sqrt(5)/2)^34 4032522354235705 a004 Fibonacci(45)/Lucas(18)/(1/2+sqrt(5)/2)^32 4032522354235705 a004 Fibonacci(43)/Lucas(18)/(1/2+sqrt(5)/2)^30 4032522354235705 a004 Fibonacci(41)/Lucas(18)/(1/2+sqrt(5)/2)^28 4032522354235705 a004 Fibonacci(39)/Lucas(18)/(1/2+sqrt(5)/2)^26 4032522354235706 a004 Fibonacci(37)/Lucas(18)/(1/2+sqrt(5)/2)^24 4032522354235710 a001 2584/20633239*141422324^(4/13) 4032522354235710 a001 2584/20633239*2537720636^(4/15) 4032522354235710 a001 2584/20633239*45537549124^(4/17) 4032522354235710 a001 2584/20633239*14662949395604^(4/21) 4032522354235710 a001 2584/20633239*(1/2+1/2*5^(1/2))^12 4032522354235710 a001 23843769560/591286729879 4032522354235710 a001 2584/20633239*192900153618^(2/9) 4032522354235710 a001 2584/20633239*73681302247^(3/13) 4032522354235710 a001 2584/20633239*10749957122^(1/4) 4032522354235710 a001 2584/20633239*4106118243^(6/23) 4032522354235710 a001 2584/20633239*1568397607^(3/11) 4032522354235711 a001 2584/20633239*599074578^(2/7) 4032522354235711 a001 2584/20633239*228826127^(3/10) 4032522354235711 a001 2584/20633239*87403803^(6/19) 4032522354235712 a001 2584/20633239*33385282^(1/3) 4032522354235713 a001 2584/54018521*12752043^(7/17) 4032522354235713 a001 646/35355581*12752043^(8/17) 4032522354235713 a001 2584/228826127*12752043^(1/2) 4032522354235714 a004 Fibonacci(35)/Lucas(18)/(1/2+sqrt(5)/2)^22 4032522354235714 a001 2584/370248451*12752043^(9/17) 4032522354235716 a001 2584/969323029*12752043^(10/17) 4032522354235717 a001 34/33391061*12752043^(11/17) 4032522354235719 a001 2584/6643838879*12752043^(12/17) 4032522354235719 a001 2584/20633239*12752043^(6/17) 4032522354235720 a001 2584/17393796001*12752043^(13/17) 4032522354235721 a001 646/11384387281*12752043^(14/17) 4032522354235723 a001 2584/119218851371*12752043^(15/17) 4032522354235724 a001 2584/312119004989*12752043^(16/17) 4032522354235726 a004 Fibonacci(18)*Lucas(34)/(1/2+sqrt(5)/2)^57 4032522354235763 a001 646/1970299*20633239^(2/7) 4032522354235766 a001 646/1970299*2537720636^(2/9) 4032522354235766 a001 646/1970299*312119004989^(2/11) 4032522354235766 a001 646/1970299*(1/2+1/2*5^(1/2))^10 4032522354235766 a001 9107509552/225851433717 4032522354235766 a001 646/1970299*28143753123^(1/5) 4032522354235766 a001 646/1970299*10749957122^(5/24) 4032522354235766 a001 646/1970299*4106118243^(5/23) 4032522354235766 a001 646/1970299*1568397607^(5/22) 4032522354235766 a001 646/1970299*599074578^(5/21) 4032522354235766 a001 646/1970299*228826127^(1/4) 4032522354235766 a001 646/1970299*87403803^(5/19) 4032522354235767 a001 646/1970299*33385282^(5/18) 4032522354235770 a004 Fibonacci(33)/Lucas(18)/(1/2+sqrt(5)/2)^20 4032522354235773 a001 646/1970299*12752043^(5/17) 4032522354235774 a001 2584/20633239*4870847^(3/8) 4032522354235777 a001 2584/54018521*4870847^(7/16) 4032522354235786 a001 646/35355581*4870847^(1/2) 4032522354235797 a001 2584/370248451*4870847^(9/16) 4032522354235807 a001 2584/969323029*4870847^(5/8) 4032522354235818 a001 34/33391061*4870847^(11/16) 4032522354235819 a001 646/1970299*4870847^(5/16) 4032522354235829 a001 2584/6643838879*4870847^(3/4) 4032522354235839 a001 2584/17393796001*4870847^(13/16) 4032522354235850 a001 646/11384387281*4870847^(7/8) 4032522354235860 a001 2584/119218851371*4870847^(15/16) 4032522354235871 a004 Fibonacci(18)*Lucas(32)/(1/2+sqrt(5)/2)^55 4032522354235881 a001 2584/4870847*1860498^(3/10) 4032522354236146 a001 2584/3010349*(1/2+1/2*5^(1/2))^8 4032522354236146 a001 2584/3010349*23725150497407^(1/8) 4032522354236146 a001 2584/3010349*505019158607^(1/7) 4032522354236146 a001 1346269/33385283 4032522354236146 a001 2584/3010349*73681302247^(2/13) 4032522354236146 a001 2584/3010349*10749957122^(1/6) 4032522354236146 a001 2584/3010349*4106118243^(4/23) 4032522354236146 a001 2584/3010349*1568397607^(2/11) 4032522354236146 a001 2584/3010349*599074578^(4/21) 4032522354236146 a001 2584/3010349*228826127^(1/5) 4032522354236146 a001 2584/3010349*87403803^(4/19) 4032522354236147 a001 2584/3010349*33385282^(2/9) 4032522354236150 a004 Fibonacci(31)/Lucas(18)/(1/2+sqrt(5)/2)^18 4032522354236152 a001 2584/3010349*12752043^(4/17) 4032522354236154 a001 646/1970299*1860498^(1/3) 4032522354236176 a001 2584/20633239*1860498^(2/5) 4032522354236189 a001 2584/3010349*4870847^(1/4) 4032522354236246 a001 2584/54018521*1860498^(7/15) 4032522354236283 a001 2584/87403803*1860498^(1/2) 4032522354236323 a001 646/35355581*1860498^(8/15) 4032522354236400 a001 2584/370248451*1860498^(3/5) 4032522354236457 a001 2584/3010349*1860498^(4/15) 4032522354236478 a001 2584/969323029*1860498^(2/3) 4032522354236517 a001 2584/1568397607*1860498^(7/10) 4032522354236532 a001 1292/930249*710647^(1/4) 4032522354236555 a001 34/33391061*1860498^(11/15) 4032522354236633 a001 2584/6643838879*1860498^(4/5) 4032522354236672 a001 1292/5374978561*1860498^(5/6) 4032522354236711 a001 2584/17393796001*1860498^(13/15) 4032522354236750 a001 2584/28143753123*1860498^(9/10) 4032522354236788 a001 646/11384387281*1860498^(14/15) 4032522354236866 a004 Fibonacci(18)*Lucas(30)/(1/2+sqrt(5)/2)^53 4032522354238427 a001 2584/3010349*710647^(2/7) 4032522354238618 a001 646/1970299*710647^(5/14) 4032522354238739 a001 2584/1149851*7881196^(2/11) 4032522354238751 a001 2584/1149851*141422324^(2/13) 4032522354238751 a001 2584/1149851*2537720636^(2/15) 4032522354238751 a001 2584/1149851*45537549124^(2/17) 4032522354238751 a001 2584/1149851*14662949395604^(2/21) 4032522354238751 a001 2584/1149851*(1/2+1/2*5^(1/2))^6 4032522354238751 a001 1328767736/32951280099 4032522354238751 a001 2584/1149851*10749957122^(1/8) 4032522354238751 a001 2584/1149851*4106118243^(3/23) 4032522354238751 a001 2584/1149851*1568397607^(3/22) 4032522354238751 a001 2584/1149851*599074578^(1/7) 4032522354238751 a001 2584/1149851*228826127^(3/20) 4032522354238751 a001 2584/1149851*87403803^(3/19) 4032522354238752 a001 2584/1149851*33385282^(1/6) 4032522354238755 a004 Fibonacci(29)/Lucas(18)/(1/2+sqrt(5)/2)^16 4032522354238755 a001 2584/1149851*12752043^(3/17) 4032522354238783 a001 2584/1149851*4870847^(3/16) 4032522354238984 a001 2584/1149851*1860498^(1/5) 4032522354239133 a001 2584/20633239*710647^(3/7) 4032522354239695 a001 2584/54018521*710647^(1/2) 4032522354240264 a001 646/35355581*710647^(4/7) 4032522354240462 a001 2584/1149851*710647^(3/14) 4032522354240834 a001 2584/370248451*710647^(9/14) 4032522354241405 a001 2584/969323029*710647^(5/7) 4032522354241690 a001 2584/1568397607*710647^(3/4) 4032522354241975 a001 34/33391061*710647^(11/14) 4032522354242545 a001 2584/6643838879*710647^(6/7) 4032522354243116 a001 2584/17393796001*710647^(13/14) 4032522354243686 a004 Fibonacci(18)*Lucas(28)/(1/2+sqrt(5)/2)^51 4032522354251381 a001 2584/1149851*271443^(3/13) 4032522354252986 a001 2584/3010349*271443^(4/13) 4032522354256606 a001 34/5779*(1/2+1/2*5^(1/2))^4 4032522354256606 a001 34/5779*23725150497407^(1/16) 4032522354256606 a001 34/5779*73681302247^(1/13) 4032522354256606 a001 34/5779*10749957122^(1/12) 4032522354256606 a001 507544112/12586269025 4032522354256606 a001 34/5779*4106118243^(2/23) 4032522354256606 a001 34/5779*1568397607^(1/11) 4032522354256606 a001 34/5779*599074578^(2/21) 4032522354256606 a001 34/5779*228826127^(1/10) 4032522354256606 a001 34/5779*87403803^(2/19) 4032522354256606 a001 34/5779*33385282^(1/9) 4032522354256609 a001 34/5779*12752043^(2/17) 4032522354256609 a004 Fibonacci(27)/Lucas(18)/(1/2+sqrt(5)/2)^14 4032522354256627 a001 34/5779*4870847^(1/8) 4032522354256761 a001 34/5779*1860498^(2/15) 4032522354256816 a001 646/1970299*271443^(5/13) 4032522354257746 a001 34/5779*710647^(1/7) 4032522354260970 a001 2584/20633239*271443^(6/13) 4032522354263062 a001 1292/16692641*271443^(1/2) 4032522354265026 a001 34/5779*271443^(2/13) 4032522354265172 a001 2584/54018521*271443^(7/13) 4032522354269381 a001 646/35355581*271443^(8/13) 4032522354273591 a001 2584/370248451*271443^(9/13) 4032522354277800 a001 2584/969323029*271443^(10/13) 4032522354282010 a001 34/33391061*271443^(11/13) 4032522354286220 a001 2584/6643838879*271443^(12/13) 4032522354290430 a004 Fibonacci(18)*Lucas(26)/(1/2+sqrt(5)/2)^49 4032522354293586 a001 2584/167761*64079^(2/23) 4032522354305866 a001 2584/710647*103682^(5/24) 4032522354319126 a001 34/5779*103682^(1/6) 4032522354332531 a001 2584/1149851*103682^(1/4) 4032522354343946 a001 1292/930249*103682^(7/24) 4032522354361186 a001 2584/3010349*103682^(1/3) 4032522354370977 a001 610/39603*521^(2/13) 4032522354376201 a001 2584/4870847*103682^(3/8) 4032522354378984 a001 2584/167761*(1/2+1/2*5^(1/2))^2 4032522354378984 a001 2584/167761*10749957122^(1/24) 4032522354378984 a001 2584/167761*4106118243^(1/23) 4032522354378984 a001 24233075/600940872 4032522354378984 a001 2584/167761*1568397607^(1/22) 4032522354378984 a001 2584/167761*599074578^(1/21) 4032522354378984 a001 2584/167761*228826127^(1/20) 4032522354378984 a001 2584/167761*87403803^(1/19) 4032522354378984 a001 2584/167761*33385282^(1/18) 4032522354378986 a001 2584/167761*12752043^(1/17) 4032522354378988 a004 Fibonacci(25)/Lucas(18)/(1/2+sqrt(5)/2)^12 4032522354378995 a001 2584/167761*4870847^(1/16) 4032522354379062 a001 2584/167761*1860498^(1/15) 4032522354379554 a001 2584/167761*710647^(1/14) 4032522354383194 a001 2584/167761*271443^(1/13) 4032522354392066 a001 646/1970299*103682^(5/12) 4032522354407606 a001 2584/12752043*103682^(11/24) 4032522354410244 a001 2584/167761*103682^(1/12) 4032522354423270 a001 2584/20633239*103682^(1/2) 4032522354438887 a001 1292/16692641*103682^(13/24) 4032522354454522 a001 2584/54018521*103682^(7/12) 4032522354470150 a001 2584/87403803*103682^(5/8) 4032522354485781 a001 646/35355581*103682^(2/3) 4032522354501411 a001 2584/228826127*103682^(17/24) 4032522354517041 a001 2584/370248451*103682^(3/4) 4032522354531578 a001 2584/271443*39603^(3/22) 4032522354532671 a001 1292/299537289*103682^(19/24) 4032522354548301 a001 2584/969323029*103682^(5/6) 4032522354563931 a001 2584/1568397607*103682^(7/8) 4032522354579561 a001 34/33391061*103682^(11/12) 4032522354595191 a001 2584/4106118243*103682^(23/24) 4032522354610821 a004 Fibonacci(18)*Lucas(24)/(1/2+sqrt(5)/2)^47 4032522354612721 a001 2584/167761*39603^(1/11) 4032522354724080 a001 34/5779*39603^(2/11) 4032522354741714 a001 1292/51841*15127^(1/20) 4032522354812059 a001 2584/710647*39603^(5/22) 4032522354939963 a001 2584/1149851*39603^(3/11) 4032522355052616 a001 1292/930249*39603^(7/22) 4032522355171095 a001 2584/3010349*39603^(4/11) 4032522355217778 a001 2584/64079 4032522355217781 a004 Fibonacci(23)/Lucas(18)/(1/2+sqrt(5)/2)^10 4032522355287349 a001 2584/4870847*39603^(9/22) 4032522355404452 a001 646/1970299*39603^(5/11) 4032522355521231 a001 2584/12752043*39603^(1/2) 4032522355638134 a001 2584/20633239*39603^(6/11) 4032522355754990 a001 1292/16692641*39603^(13/22) 4032522355871863 a001 2584/54018521*39603^(7/11) 4032522355988730 a001 2584/87403803*39603^(15/22) 4032522356105599 a001 646/35355581*39603^(8/11) 4032522356141249 a001 2584/167761*15127^(1/10) 4032522356222468 a001 2584/228826127*39603^(17/22) 4032522356339336 a001 2584/370248451*39603^(9/11) 4032522356456205 a001 1292/299537289*39603^(19/22) 4032522356573074 a001 2584/969323029*39603^(10/11) 4032522356689942 a001 2584/1568397607*39603^(21/22) 4032522356806811 a004 Fibonacci(18)*Lucas(22)/(1/2+sqrt(5)/2)^45 4032522356824369 a001 2584/271443*15127^(3/20) 4032522357781135 a001 34/5779*15127^(1/5) 4032522357903387 a001 1597/167761*1364^(1/5) 4032522358360692 r008 a(0)=4,K{-n^6,31-21*n^3-18*n^2-23*n} 4032522358633378 a001 2584/710647*15127^(1/4) 4032522359525545 a001 2584/1149851*15127^(3/10) 4032522360402463 a001 1292/930249*15127^(7/20) 4032522360570994 a001 1292/51841*5778^(1/18) 4032522360843049 a001 89/39604*3571^(6/17) 4032522360966954 a001 28284464/701408733 4032522360966954 a004 Fibonacci(18)/Lucas(21)/(1/2+sqrt(5)/2)^2 4032522360966957 a004 Fibonacci(21)/Lucas(18)/(1/2+sqrt(5)/2)^8 4032522361285205 a001 2584/3010349*15127^(2/5) 4032522362165723 a001 2584/4870847*15127^(9/20) 4032522363038984 a001 46368/20633239*3571^(6/17) 4032522363047090 a001 646/1970299*15127^(1/2) 4032522363359366 a001 121393/54018521*3571^(6/17) 4032522363406109 a001 317811/141422324*3571^(6/17) 4032522363412929 a001 832040/370248451*3571^(6/17) 4032522363413924 a001 2178309/969323029*3571^(6/17) 4032522363414069 a001 5702887/2537720636*3571^(6/17) 4032522363414090 a001 14930352/6643838879*3571^(6/17) 4032522363414094 a001 39088169/17393796001*3571^(6/17) 4032522363414094 a001 102334155/45537549124*3571^(6/17) 4032522363414094 a001 267914296/119218851371*3571^(6/17) 4032522363414094 a001 3524667/1568437211*3571^(6/17) 4032522363414094 a001 1836311903/817138163596*3571^(6/17) 4032522363414094 a001 4807526976/2139295485799*3571^(6/17) 4032522363414094 a001 12586269025/5600748293801*3571^(6/17) 4032522363414094 a001 32951280099/14662949395604*3571^(6/17) 4032522363414094 a001 53316291173/23725150497407*3571^(6/17) 4032522363414094 a001 20365011074/9062201101803*3571^(6/17) 4032522363414094 a001 7778742049/3461452808002*3571^(6/17) 4032522363414094 a001 2971215073/1322157322203*3571^(6/17) 4032522363414094 a001 1134903170/505019158607*3571^(6/17) 4032522363414094 a001 433494437/192900153618*3571^(6/17) 4032522363414094 a001 165580141/73681302247*3571^(6/17) 4032522363414094 a001 63245986/28143753123*3571^(6/17) 4032522363414095 a001 24157817/10749957122*3571^(6/17) 4032522363414104 a001 9227465/4106118243*3571^(6/17) 4032522363414159 a001 3524578/1568397607*3571^(6/17) 4032522363414539 a001 1346269/599074578*3571^(6/17) 4032522363417144 a001 514229/228826127*3571^(6/17) 4032522363434998 a001 196418/87403803*3571^(6/17) 4032522363557373 a001 75025/33385282*3571^(6/17) 4032522363928133 a001 2584/12752043*15127^(11/20) 4032522364391787 a001 55/15126*3571^(5/17) 4032522364396146 a001 28657/12752043*3571^(6/17) 4032522364809299 a001 2584/20633239*15127^(3/5) 4032522365690419 a001 1292/16692641*15127^(13/20) 4032522366571556 a001 2584/54018521*15127^(7/10) 4032522367452687 a001 2584/87403803*15127^(3/4) 4032522367799809 a001 2584/167761*5778^(1/9) 4032522368333820 a001 646/35355581*15127^(4/5) 4032522369214952 a001 2584/228826127*15127^(17/20) 4032522370096085 a001 2584/370248451*15127^(9/10) 4032522370145177 a001 10946/4870847*3571^(6/17) 4032522370977217 a001 1292/299537289*15127^(19/20) 4032522371536813 a001 987/20633239*2207^(7/8) 4032522371858349 a004 Fibonacci(18)*Lucas(20)/(1/2+sqrt(5)/2)^43 4032522372347604 a001 4181/4870847*3571^(8/17) 4032522374312210 a001 2584/271443*5778^(1/6) 4032522376806904 a001 4181/167761*1364^(1/15) 4032522379444321 a001 17711/4870847*3571^(5/17) 4032522381098256 a001 34/5779*5778^(2/9) 4032522381472308 m001 1/cosh(1)/FransenRobinson/ln(sqrt(Pi)) 4032522381640456 a001 15456/4250681*3571^(5/17) 4032522381960867 a001 121393/33385282*3571^(5/17) 4032522382007615 a001 105937/29134601*3571^(5/17) 4032522382014435 a001 832040/228826127*3571^(5/17) 4032522382015430 a001 726103/199691526*3571^(5/17) 4032522382015576 a001 5702887/1568397607*3571^(5/17) 4032522382015597 a001 4976784/1368706081*3571^(5/17) 4032522382015600 a001 39088169/10749957122*3571^(5/17) 4032522382015600 a001 831985/228811001*3571^(5/17) 4032522382015600 a001 267914296/73681302247*3571^(5/17) 4032522382015600 a001 233802911/64300051206*3571^(5/17) 4032522382015600 a001 1836311903/505019158607*3571^(5/17) 4032522382015600 a001 1602508992/440719107401*3571^(5/17) 4032522382015600 a001 12586269025/3461452808002*3571^(5/17) 4032522382015600 a001 10983760033/3020733700601*3571^(5/17) 4032522382015600 a001 86267571272/23725150497407*3571^(5/17) 4032522382015600 a001 53316291173/14662949395604*3571^(5/17) 4032522382015600 a001 20365011074/5600748293801*3571^(5/17) 4032522382015600 a001 7778742049/2139295485799*3571^(5/17) 4032522382015600 a001 2971215073/817138163596*3571^(5/17) 4032522382015600 a001 1134903170/312119004989*3571^(5/17) 4032522382015600 a001 433494437/119218851371*3571^(5/17) 4032522382015600 a001 165580141/45537549124*3571^(5/17) 4032522382015601 a001 63245986/17393796001*3571^(5/17) 4032522382015602 a001 24157817/6643838879*3571^(5/17) 4032522382015610 a001 9227465/2537720636*3571^(5/17) 4032522382015665 a001 3524578/969323029*3571^(5/17) 4032522382016045 a001 1346269/370248451*3571^(5/17) 4032522382018650 a001 514229/141422324*3571^(5/17) 4032522382036506 a001 196418/54018521*3571^(5/17) 4032522382158893 a001 75025/20633239*3571^(5/17) 4032522382997508 a001 6765/1149851*3571^(4/17) 4032522382997742 a001 28657/7881196*3571^(5/17) 4032522387779779 a001 2584/710647*5778^(5/18) 4032522388747298 a001 10946/3010349*3571^(5/17) 4032522390949725 a001 4181/3010349*3571^(7/17) 4032522394501227 a001 2584/1149851*5778^(1/3) 4032522398046442 a001 17711/3010349*3571^(4/17) 4032522399743598 m005 (1/2*Zeta(3)-2/5)/(9/10*Zeta(3)-7/12) 4032522400242052 a001 11592/1970299*3571^(4/17) 4032522400372393 a001 1350463/33489287 4032522400372394 a004 Fibonacci(18)/Lucas(19)/(1/2+sqrt(5)/2)^4 4032522400372397 a004 Fibonacci(19)/Lucas(18)/(1/2+sqrt(5)/2)^6 4032522400562387 a001 121393/20633239*3571^(4/17) 4032522400609123 a001 317811/54018521*3571^(4/17) 4032522400615942 a001 208010/35355581*3571^(4/17) 4032522400616937 a001 2178309/370248451*3571^(4/17) 4032522400617082 a001 5702887/969323029*3571^(4/17) 4032522400617103 a001 196452/33391061*3571^(4/17) 4032522400617106 a001 39088169/6643838879*3571^(4/17) 4032522400617107 a001 102334155/17393796001*3571^(4/17) 4032522400617107 a001 66978574/11384387281*3571^(4/17) 4032522400617107 a001 701408733/119218851371*3571^(4/17) 4032522400617107 a001 1836311903/312119004989*3571^(4/17) 4032522400617107 a001 1201881744/204284540899*3571^(4/17) 4032522400617107 a001 12586269025/2139295485799*3571^(4/17) 4032522400617107 a001 32951280099/5600748293801*3571^(4/17) 4032522400617107 a001 1135099622/192933544679*3571^(4/17) 4032522400617107 a001 139583862445/23725150497407*3571^(4/17) 4032522400617107 a001 53316291173/9062201101803*3571^(4/17) 4032522400617107 a001 10182505537/1730726404001*3571^(4/17) 4032522400617107 a001 7778742049/1322157322203*3571^(4/17) 4032522400617107 a001 2971215073/505019158607*3571^(4/17) 4032522400617107 a001 567451585/96450076809*3571^(4/17) 4032522400617107 a001 433494437/73681302247*3571^(4/17) 4032522400617107 a001 165580141/28143753123*3571^(4/17) 4032522400617107 a001 31622993/5374978561*3571^(4/17) 4032522400617108 a001 24157817/4106118243*3571^(4/17) 4032522400617116 a001 9227465/1568397607*3571^(4/17) 4032522400617172 a001 1762289/299537289*3571^(4/17) 4032522400617552 a001 1346269/228826127*3571^(4/17) 4032522400620156 a001 514229/87403803*3571^(4/17) 4032522400638008 a001 98209/16692641*3571^(4/17) 4032522400760365 a001 75025/12752043*3571^(4/17) 4032522401207424 a001 1292/930249*5778^(7/18) 4032522401587980 a001 6765/710647*3571^(3/17) 4032522401599013 a001 28657/4870847*3571^(4/17) 4032522404502273 m001 (gamma+ln(2))/(DuboisRaymond+Otter) 4032522405603661 a001 1292/51841*2207^(1/16) 4032522407347194 a001 5473/930249*3571^(4/17) 4032522407919447 a001 2584/3010349*5778^(4/9) 4032522409549621 a001 4181/1860498*3571^(6/17) 4032522410974059 r008 a(0)=4,K{-n^6,51-47*n-17*n^2-18*n^3} 4032522411227867 m005 (1/2*gamma+5)/(-1/9+1/18*5^(1/2)) 4032522411263791 a004 Fibonacci(20)*Lucas(19)/(1/2+sqrt(5)/2)^44 4032522413692038 a001 6765/969323029*9349^(18/19) 4032522414053249 r008 a(0)=4,K{-n^6,-7-8*n^3-76*n^2+60*n} 4032522414629245 a001 2584/4870847*5778^(1/2) 4032522416120285 a001 2255/199691526*9349^(17/19) 4032522416646338 a001 17711/1860498*3571^(3/17) 4032522416881885 r008 a(0)=4,K{-n^6,37-15*n^3-33*n^2-20*n} 4032522417913545 m001 (Psi(1,1/3)-ln(gamma))/(-exp(-1/2*Pi)+Bloch) 4032522418548532 a001 6765/370248451*9349^(16/19) 4032522418843323 a001 46368/4870847*3571^(3/17) 4032522419163859 a001 121393/12752043*3571^(3/17) 4032522419210625 a001 317811/33385282*3571^(3/17) 4032522419217448 a001 832040/87403803*3571^(3/17) 4032522419218443 a001 46347/4868641*3571^(3/17) 4032522419218588 a001 5702887/599074578*3571^(3/17) 4032522419218609 a001 14930352/1568397607*3571^(3/17) 4032522419218613 a001 39088169/4106118243*3571^(3/17) 4032522419218613 a001 102334155/10749957122*3571^(3/17) 4032522419218613 a001 267914296/28143753123*3571^(3/17) 4032522419218613 a001 701408733/73681302247*3571^(3/17) 4032522419218613 a001 1836311903/192900153618*3571^(3/17) 4032522419218613 a001 102287808/10745088481*3571^(3/17) 4032522419218613 a001 12586269025/1322157322203*3571^(3/17) 4032522419218613 a001 32951280099/3461452808002*3571^(3/17) 4032522419218613 a001 86267571272/9062201101803*3571^(3/17) 4032522419218613 a001 225851433717/23725150497407*3571^(3/17) 4032522419218613 a001 139583862445/14662949395604*3571^(3/17) 4032522419218613 a001 53316291173/5600748293801*3571^(3/17) 4032522419218613 a001 20365011074/2139295485799*3571^(3/17) 4032522419218613 a001 7778742049/817138163596*3571^(3/17) 4032522419218613 a001 2971215073/312119004989*3571^(3/17) 4032522419218613 a001 1134903170/119218851371*3571^(3/17) 4032522419218613 a001 433494437/45537549124*3571^(3/17) 4032522419218613 a001 165580141/17393796001*3571^(3/17) 4032522419218613 a001 63245986/6643838879*3571^(3/17) 4032522419218614 a001 24157817/2537720636*3571^(3/17) 4032522419218623 a001 9227465/969323029*3571^(3/17) 4032522419218678 a001 3524578/370248451*3571^(3/17) 4032522419219058 a001 1346269/141422324*3571^(3/17) 4032522419221664 a001 514229/54018521*3571^(3/17) 4032522419239527 a001 196418/20633239*3571^(3/17) 4032522419361961 a001 75025/7881196*3571^(3/17) 4032522420201135 a001 28657/3010349*3571^(3/17) 4032522420218376 a001 6765/439204*3571^(2/17) 4032522420976779 a001 6765/228826127*9349^(15/19) 4032522421339892 a001 646/1970299*5778^(5/9) 4032522423279879 a001 141/4769326*2207^(15/16) 4032522423405026 a001 6765/141422324*9349^(14/19) 4032522425833272 a001 2255/29134601*9349^(13/19) 4032522425952916 a001 10946/1149851*3571^(3/17) 4032522426204059 a005 (1/cos(62/225*Pi))^51 4032522426315330 a004 Fibonacci(22)*Lucas(19)/(1/2+sqrt(5)/2)^46 4032522428050215 a001 2584/12752043*5778^(11/18) 4032522428155343 a001 4181/1149851*3571^(5/17) 4032522428261521 a001 6765/54018521*9349^(12/19) 4032522428511319 a004 Fibonacci(24)*Lucas(19)/(1/2+sqrt(5)/2)^48 4032522428537665 r005 Re(z^2+c),c=-121/98+8/49*I,n=24 4032522428743577 a001 17711/2537720636*9349^(18/19) 4032522428831710 a004 Fibonacci(26)*Lucas(19)/(1/2+sqrt(5)/2)^50 4032522428878454 a004 Fibonacci(28)*Lucas(19)/(1/2+sqrt(5)/2)^52 4032522428885274 a004 Fibonacci(30)*Lucas(19)/(1/2+sqrt(5)/2)^54 4032522428886269 a004 Fibonacci(32)*Lucas(19)/(1/2+sqrt(5)/2)^56 4032522428886415 a004 Fibonacci(34)*Lucas(19)/(1/2+sqrt(5)/2)^58 4032522428886436 a004 Fibonacci(36)*Lucas(19)/(1/2+sqrt(5)/2)^60 4032522428886439 a004 Fibonacci(38)*Lucas(19)/(1/2+sqrt(5)/2)^62 4032522428886439 a004 Fibonacci(40)*Lucas(19)/(1/2+sqrt(5)/2)^64 4032522428886439 a004 Fibonacci(42)*Lucas(19)/(1/2+sqrt(5)/2)^66 4032522428886439 a004 Fibonacci(44)*Lucas(19)/(1/2+sqrt(5)/2)^68 4032522428886439 a004 Fibonacci(46)*Lucas(19)/(1/2+sqrt(5)/2)^70 4032522428886439 a004 Fibonacci(48)*Lucas(19)/(1/2+sqrt(5)/2)^72 4032522428886439 a004 Fibonacci(50)*Lucas(19)/(1/2+sqrt(5)/2)^74 4032522428886439 a004 Fibonacci(52)*Lucas(19)/(1/2+sqrt(5)/2)^76 4032522428886439 a004 Fibonacci(54)*Lucas(19)/(1/2+sqrt(5)/2)^78 4032522428886439 a004 Fibonacci(56)*Lucas(19)/(1/2+sqrt(5)/2)^80 4032522428886439 a004 Fibonacci(58)*Lucas(19)/(1/2+sqrt(5)/2)^82 4032522428886439 a004 Fibonacci(60)*Lucas(19)/(1/2+sqrt(5)/2)^84 4032522428886439 a004 Fibonacci(62)*Lucas(19)/(1/2+sqrt(5)/2)^86 4032522428886439 a004 Fibonacci(64)*Lucas(19)/(1/2+sqrt(5)/2)^88 4032522428886439 a004 Fibonacci(66)*Lucas(19)/(1/2+sqrt(5)/2)^90 4032522428886439 a004 Fibonacci(68)*Lucas(19)/(1/2+sqrt(5)/2)^92 4032522428886439 a004 Fibonacci(70)*Lucas(19)/(1/2+sqrt(5)/2)^94 4032522428886439 a004 Fibonacci(72)*Lucas(19)/(1/2+sqrt(5)/2)^96 4032522428886439 a004 Fibonacci(74)*Lucas(19)/(1/2+sqrt(5)/2)^98 4032522428886439 a004 Fibonacci(76)*Lucas(19)/(1/2+sqrt(5)/2)^100 4032522428886439 a004 Fibonacci(75)*Lucas(19)/(1/2+sqrt(5)/2)^99 4032522428886439 a004 Fibonacci(73)*Lucas(19)/(1/2+sqrt(5)/2)^97 4032522428886439 a004 Fibonacci(71)*Lucas(19)/(1/2+sqrt(5)/2)^95 4032522428886439 a004 Fibonacci(69)*Lucas(19)/(1/2+sqrt(5)/2)^93 4032522428886439 a004 Fibonacci(67)*Lucas(19)/(1/2+sqrt(5)/2)^91 4032522428886439 a004 Fibonacci(65)*Lucas(19)/(1/2+sqrt(5)/2)^89 4032522428886439 a004 Fibonacci(63)*Lucas(19)/(1/2+sqrt(5)/2)^87 4032522428886439 a004 Fibonacci(61)*Lucas(19)/(1/2+sqrt(5)/2)^85 4032522428886439 a004 Fibonacci(59)*Lucas(19)/(1/2+sqrt(5)/2)^83 4032522428886439 a004 Fibonacci(57)*Lucas(19)/(1/2+sqrt(5)/2)^81 4032522428886439 a004 Fibonacci(55)*Lucas(19)/(1/2+sqrt(5)/2)^79 4032522428886439 a004 Fibonacci(53)*Lucas(19)/(1/2+sqrt(5)/2)^77 4032522428886439 a004 Fibonacci(51)*Lucas(19)/(1/2+sqrt(5)/2)^75 4032522428886439 a004 Fibonacci(49)*Lucas(19)/(1/2+sqrt(5)/2)^73 4032522428886439 a004 Fibonacci(47)*Lucas(19)/(1/2+sqrt(5)/2)^71 4032522428886439 a004 Fibonacci(45)*Lucas(19)/(1/2+sqrt(5)/2)^69 4032522428886439 a004 Fibonacci(43)*Lucas(19)/(1/2+sqrt(5)/2)^67 4032522428886439 a004 Fibonacci(41)*Lucas(19)/(1/2+sqrt(5)/2)^65 4032522428886440 a004 Fibonacci(39)*Lucas(19)/(1/2+sqrt(5)/2)^63 4032522428886440 a001 2/4181*(1/2+1/2*5^(1/2))^14 4032522428886441 a004 Fibonacci(37)*Lucas(19)/(1/2+sqrt(5)/2)^61 4032522428886449 a004 Fibonacci(35)*Lucas(19)/(1/2+sqrt(5)/2)^59 4032522428886504 a004 Fibonacci(33)*Lucas(19)/(1/2+sqrt(5)/2)^57 4032522428886884 a004 Fibonacci(31)*Lucas(19)/(1/2+sqrt(5)/2)^55 4032522428889489 a004 Fibonacci(29)*Lucas(19)/(1/2+sqrt(5)/2)^53 4032522428907344 a004 Fibonacci(27)*Lucas(19)/(1/2+sqrt(5)/2)^51 4032522429029722 a004 Fibonacci(25)*Lucas(19)/(1/2+sqrt(5)/2)^49 4032522429261559 a001 9349/46368*8^(1/3) 4032522429868516 a004 Fibonacci(23)*Lucas(19)/(1/2+sqrt(5)/2)^47 4032522430689763 a001 6765/33385282*9349^(11/19) 4032522430939566 a001 46368/6643838879*9349^(18/19) 4032522431171824 a001 17711/1568397607*9349^(17/19) 4032522431259957 a001 121393/17393796001*9349^(18/19) 4032522431306701 a001 317811/45537549124*9349^(18/19) 4032522431313521 a001 832040/119218851371*9349^(18/19) 4032522431314516 a001 2178309/312119004989*9349^(18/19) 4032522431314662 a001 5702887/817138163596*9349^(18/19) 4032522431314683 a001 14930352/2139295485799*9349^(18/19) 4032522431314686 a001 39088169/5600748293801*9349^(18/19) 4032522431314686 a001 102334155/14662949395604*9349^(18/19) 4032522431314686 a001 165580141/23725150497407*9349^(18/19) 4032522431314687 a001 63245986/9062201101803*9349^(18/19) 4032522431314688 a001 24157817/3461452808002*9349^(18/19) 4032522431314696 a001 9227465/1322157322203*9349^(18/19) 4032522431314751 a001 3524578/505019158607*9349^(18/19) 4032522431315131 a001 1346269/192900153618*9349^(18/19) 4032522431317736 a001 514229/73681302247*9349^(18/19) 4032522431335591 a001 196418/28143753123*9349^(18/19) 4032522431457969 a001 75025/10749957122*9349^(18/19) 4032522432296763 a001 28657/4106118243*9349^(18/19) 4032522433118023 a001 615/1875749*9349^(10/19) 4032522433367814 a001 15456/1368706081*9349^(17/19) 4032522433600071 a001 17711/969323029*9349^(16/19) 4032522433688204 a001 121393/10749957122*9349^(17/19) 4032522433734948 a001 105937/9381251041*9349^(17/19) 4032522433741768 a001 832040/73681302247*9349^(17/19) 4032522433742763 a001 726103/64300051206*9349^(17/19) 4032522433742909 a001 5702887/505019158607*9349^(17/19) 4032522433742930 a001 4976784/440719107401*9349^(17/19) 4032522433742933 a001 39088169/3461452808002*9349^(17/19) 4032522433742933 a001 34111385/3020733700601*9349^(17/19) 4032522433742933 a001 267914296/23725150497407*9349^(17/19) 4032522433742933 a001 165580141/14662949395604*9349^(17/19) 4032522433742934 a001 63245986/5600748293801*9349^(17/19) 4032522433742935 a001 24157817/2139295485799*9349^(17/19) 4032522433742943 a001 9227465/817138163596*9349^(17/19) 4032522433742998 a001 3524578/312119004989*9349^(17/19) 4032522433743378 a001 1346269/119218851371*9349^(17/19) 4032522433745983 a001 514229/45537549124*9349^(17/19) 4032522433763838 a001 196418/17393796001*9349^(17/19) 4032522433886216 a001 75025/6643838879*9349^(17/19) 4032522434725010 a001 28657/2537720636*9349^(17/19) 4032522434760662 a001 2584/20633239*5778^(2/3) 4032522435252060 a001 17711/1149851*3571^(2/17) 4032522435546236 a001 2255/4250681*9349^(9/19) 4032522435617692 a004 Fibonacci(21)*Lucas(19)/(1/2+sqrt(5)/2)^45 4032522435796061 a001 11592/634430159*9349^(16/19) 4032522436028318 a001 17711/599074578*9349^(15/19) 4032522436116451 a001 121393/6643838879*9349^(16/19) 4032522436163195 a001 10959/599786069*9349^(16/19) 4032522436170015 a001 208010/11384387281*9349^(16/19) 4032522436171010 a001 2178309/119218851371*9349^(16/19) 4032522436171156 a001 5702887/312119004989*9349^(16/19) 4032522436171177 a001 3732588/204284540899*9349^(16/19) 4032522436171180 a001 39088169/2139295485799*9349^(16/19) 4032522436171180 a001 102334155/5600748293801*9349^(16/19) 4032522436171180 a001 10946/599074579*9349^(16/19) 4032522436171180 a001 433494437/23725150497407*9349^(16/19) 4032522436171180 a001 165580141/9062201101803*9349^(16/19) 4032522436171181 a001 31622993/1730726404001*9349^(16/19) 4032522436171182 a001 24157817/1322157322203*9349^(16/19) 4032522436171190 a001 9227465/505019158607*9349^(16/19) 4032522436171245 a001 1762289/96450076809*9349^(16/19) 4032522436171625 a001 1346269/73681302247*9349^(16/19) 4032522436174230 a001 514229/28143753123*9349^(16/19) 4032522436192085 a001 98209/5374978561*9349^(16/19) 4032522436314463 a001 75025/4106118243*9349^(16/19) 4032522437153257 a001 28657/1568397607*9349^(16/19) 4032522437445445 a001 46368/3010349*3571^(2/17) 4032522437765455 a001 121393/7881196*3571^(2/17) 4032522437812144 a001 10959/711491*3571^(2/17) 4032522437818956 a001 832040/54018521*3571^(2/17) 4032522437819950 a001 2178309/141422324*3571^(2/17) 4032522437820095 a001 5702887/370248451*3571^(2/17) 4032522437820116 a001 14930352/969323029*3571^(2/17) 4032522437820119 a001 39088169/2537720636*3571^(2/17) 4032522437820120 a001 102334155/6643838879*3571^(2/17) 4032522437820120 a001 9238424/599786069*3571^(2/17) 4032522437820120 a001 701408733/45537549124*3571^(2/17) 4032522437820120 a001 1836311903/119218851371*3571^(2/17) 4032522437820120 a001 4807526976/312119004989*3571^(2/17) 4032522437820120 a001 12586269025/817138163596*3571^(2/17) 4032522437820120 a001 32951280099/2139295485799*3571^(2/17) 4032522437820120 a001 86267571272/5600748293801*3571^(2/17) 4032522437820120 a001 7787980473/505618944676*3571^(2/17) 4032522437820120 a001 365435296162/23725150497407*3571^(2/17) 4032522437820120 a001 139583862445/9062201101803*3571^(2/17) 4032522437820120 a001 53316291173/3461452808002*3571^(2/17) 4032522437820120 a001 20365011074/1322157322203*3571^(2/17) 4032522437820120 a001 7778742049/505019158607*3571^(2/17) 4032522437820120 a001 2971215073/192900153618*3571^(2/17) 4032522437820120 a001 1134903170/73681302247*3571^(2/17) 4032522437820120 a001 433494437/28143753123*3571^(2/17) 4032522437820120 a001 165580141/10749957122*3571^(2/17) 4032522437820120 a001 63245986/4106118243*3571^(2/17) 4032522437820121 a001 24157817/1568397607*3571^(2/17) 4032522437820129 a001 9227465/599074578*3571^(2/17) 4032522437820184 a001 3524578/228826127*3571^(2/17) 4032522437820564 a001 1346269/87403803*3571^(2/17) 4032522437823166 a001 514229/33385282*3571^(2/17) 4032522437841000 a001 196418/12752043*3571^(2/17) 4032522437963233 a001 75025/4870847*3571^(2/17) 4032522437974573 a001 6765/7881196*9349^(8/19) 4032522438045939 a001 10946/1568397607*9349^(18/19) 4032522438224308 a001 6624/224056801*9349^(15/19) 4032522438456565 a001 17711/370248451*9349^(14/19) 4032522438544698 a001 121393/4106118243*9349^(15/19) 4032522438591443 a001 317811/10749957122*9349^(15/19) 4032522438598262 a001 832040/28143753123*9349^(15/19) 4032522438599257 a001 311187/10525900321*9349^(15/19) 4032522438599403 a001 5702887/192900153618*9349^(15/19) 4032522438599424 a001 14930352/505019158607*9349^(15/19) 4032522438599427 a001 39088169/1322157322203*9349^(15/19) 4032522438599427 a001 6765/228826126*9349^(15/19) 4032522438599427 a001 267914296/9062201101803*9349^(15/19) 4032522438599427 a001 701408733/23725150497407*9349^(15/19) 4032522438599427 a001 433494437/14662949395604*9349^(15/19) 4032522438599427 a001 165580141/5600748293801*9349^(15/19) 4032522438599428 a001 63245986/2139295485799*9349^(15/19) 4032522438599429 a001 24157817/817138163596*9349^(15/19) 4032522438599437 a001 9227465/312119004989*9349^(15/19) 4032522438599492 a001 3524578/119218851371*9349^(15/19) 4032522438599872 a001 1346269/45537549124*9349^(15/19) 4032522438602477 a001 514229/17393796001*9349^(15/19) 4032522438620332 a001 196418/6643838879*9349^(15/19) 4032522438742710 a001 75025/2537720636*9349^(15/19) 4032522438744248 a001 2255/90481*3571^(1/17) 4032522438801031 a001 28657/1860498*3571^(2/17) 4032522439581504 a001 28657/969323029*9349^(15/19) 4032522439777835 a001 9153045/226980634 4032522439777835 a004 Fibonacci(20)/Lucas(20)/(1/2+sqrt(5)/2)^5 4032522440038014 r005 Re(z^2+c),c=41/126+20/47*I,n=8 4032522440402585 a001 6765/4870847*9349^(7/19) 4032522440474186 a001 10946/969323029*9349^(17/19) 4032522440652555 a001 46368/969323029*9349^(14/19) 4032522440884812 a001 17711/228826127*9349^(13/19) 4032522440972945 a001 121393/2537720636*9349^(14/19) 4032522441019690 a001 317811/6643838879*9349^(14/19) 4032522441026509 a001 832040/17393796001*9349^(14/19) 4032522441027504 a001 2178309/45537549124*9349^(14/19) 4032522441027650 a001 5702887/119218851371*9349^(14/19) 4032522441027671 a001 14930352/312119004989*9349^(14/19) 4032522441027674 a001 4181/87403804*9349^(14/19) 4032522441027674 a001 102334155/2139295485799*9349^(14/19) 4032522441027674 a001 267914296/5600748293801*9349^(14/19) 4032522441027674 a001 701408733/14662949395604*9349^(14/19) 4032522441027674 a001 1134903170/23725150497407*9349^(14/19) 4032522441027674 a001 433494437/9062201101803*9349^(14/19) 4032522441027674 a001 165580141/3461452808002*9349^(14/19) 4032522441027675 a001 63245986/1322157322203*9349^(14/19) 4032522441027676 a001 24157817/505019158607*9349^(14/19) 4032522441027684 a001 9227465/192900153618*9349^(14/19) 4032522441027739 a001 3524578/73681302247*9349^(14/19) 4032522441028119 a001 1346269/28143753123*9349^(14/19) 4032522441030724 a001 514229/10749957122*9349^(14/19) 4032522441048579 a001 196418/4106118243*9349^(14/19) 4032522441170957 a001 75025/1568397607*9349^(14/19) 4032522441471062 a001 1292/16692641*5778^(13/18) 4032522442009751 a001 28657/599074578*9349^(14/19) 4032522442831447 a001 6765/3010349*9349^(6/19) 4032522442902433 a001 5473/299537289*9349^(16/19) 4032522443016154 r005 Re(z^2+c),c=-55/86+22/49*I,n=30 4032522443080802 a001 2576/33281921*9349^(13/19) 4032522443313059 a001 17711/141422324*9349^(12/19) 4032522443401192 a001 121393/1568397607*9349^(13/19) 4032522443447937 a001 105937/1368706081*9349^(13/19) 4032522443454756 a001 416020/5374978561*9349^(13/19) 4032522443455751 a001 726103/9381251041*9349^(13/19) 4032522443455897 a001 5702887/73681302247*9349^(13/19) 4032522443455918 a001 2584/33385281*9349^(13/19) 4032522443455921 a001 39088169/505019158607*9349^(13/19) 4032522443455921 a001 34111385/440719107401*9349^(13/19) 4032522443455921 a001 133957148/1730726404001*9349^(13/19) 4032522443455921 a001 233802911/3020733700601*9349^(13/19) 4032522443455921 a001 1836311903/23725150497407*9349^(13/19) 4032522443455921 a001 567451585/7331474697802*9349^(13/19) 4032522443455921 a001 433494437/5600748293801*9349^(13/19) 4032522443455921 a001 165580141/2139295485799*9349^(13/19) 4032522443455922 a001 31622993/408569081798*9349^(13/19) 4032522443455923 a001 24157817/312119004989*9349^(13/19) 4032522443455931 a001 9227465/119218851371*9349^(13/19) 4032522443455986 a001 1762289/22768774562*9349^(13/19) 4032522443456366 a001 1346269/17393796001*9349^(13/19) 4032522443458971 a001 514229/6643838879*9349^(13/19) 4032522443476826 a001 98209/1268860318*9349^(13/19) 4032522443599204 a001 75025/969323029*9349^(13/19) 4032522444437998 a001 28657/370248451*9349^(13/19) 4032522444543388 a001 10946/710647*3571^(2/17) 4032522445258084 a001 55/15126*9349^(5/19) 4032522445330680 a001 10946/370248451*9349^(15/19) 4032522445346575 h001 (4/7*exp(1)+11/12)/(3/4*exp(2)+7/12) 4032522445509049 a001 46368/370248451*9349^(12/19) 4032522445741305 a001 17711/87403803*9349^(11/19) 4032522445829439 a001 121393/969323029*9349^(12/19) 4032522445876184 a001 317811/2537720636*9349^(12/19) 4032522445883003 a001 832040/6643838879*9349^(12/19) 4032522445883999 a001 2178309/17393796001*9349^(12/19) 4032522445884144 a001 1597/12752044*9349^(12/19) 4032522445884165 a001 14930352/119218851371*9349^(12/19) 4032522445884168 a001 39088169/312119004989*9349^(12/19) 4032522445884168 a001 102334155/817138163596*9349^(12/19) 4032522445884168 a001 267914296/2139295485799*9349^(12/19) 4032522445884168 a001 701408733/5600748293801*9349^(12/19) 4032522445884168 a001 1836311903/14662949395604*9349^(12/19) 4032522445884168 a001 2971215073/23725150497407*9349^(12/19) 4032522445884168 a001 1134903170/9062201101803*9349^(12/19) 4032522445884168 a001 433494437/3461452808002*9349^(12/19) 4032522445884169 a001 165580141/1322157322203*9349^(12/19) 4032522445884169 a001 63245986/505019158607*9349^(12/19) 4032522445884170 a001 24157817/192900153618*9349^(12/19) 4032522445884178 a001 9227465/73681302247*9349^(12/19) 4032522445884233 a001 3524578/28143753123*9349^(12/19) 4032522445884613 a001 1346269/10749957122*9349^(12/19) 4032522445887218 a001 514229/4106118243*9349^(12/19) 4032522445905073 a001 196418/1568397607*9349^(12/19) 4032522446027452 a001 75025/599074578*9349^(12/19) 4032522446745814 a001 4181/710647*3571^(4/17) 4032522446866245 a001 28657/228826127*9349^(12/19) 4032522447690546 a001 6765/1149851*9349^(4/19) 4032522447758927 a001 10946/228826127*9349^(14/19) 4032522447937296 a001 46368/228826127*9349^(11/19) 4032522448169554 a001 17711/54018521*9349^(10/19) 4032522448181480 a001 2584/54018521*5778^(7/9) 4032522448257686 a001 121393/599074578*9349^(11/19) 4032522448304431 a001 317811/1568397607*9349^(11/19) 4032522448311251 a001 832040/4106118243*9349^(11/19) 4032522448312246 a001 987/4870846*9349^(11/19) 4032522448312391 a001 5702887/28143753123*9349^(11/19) 4032522448312412 a001 14930352/73681302247*9349^(11/19) 4032522448312415 a001 39088169/192900153618*9349^(11/19) 4032522448312415 a001 102334155/505019158607*9349^(11/19) 4032522448312415 a001 267914296/1322157322203*9349^(11/19) 4032522448312416 a001 701408733/3461452808002*9349^(11/19) 4032522448312416 a001 1836311903/9062201101803*9349^(11/19) 4032522448312416 a001 4807526976/23725150497407*9349^(11/19) 4032522448312416 a001 2971215073/14662949395604*9349^(11/19) 4032522448312416 a001 1134903170/5600748293801*9349^(11/19) 4032522448312416 a001 433494437/2139295485799*9349^(11/19) 4032522448312416 a001 165580141/817138163596*9349^(11/19) 4032522448312416 a001 63245986/312119004989*9349^(11/19) 4032522448312417 a001 24157817/119218851371*9349^(11/19) 4032522448312425 a001 9227465/45537549124*9349^(11/19) 4032522448312480 a001 3524578/17393796001*9349^(11/19) 4032522448312860 a001 1346269/6643838879*9349^(11/19) 4032522448315465 a001 514229/2537720636*9349^(11/19) 4032522448333320 a001 196418/969323029*9349^(11/19) 4032522448455699 a001 75025/370248451*9349^(11/19) 4032522449294492 a001 28657/141422324*9349^(11/19) 4032522450107758 a001 6765/710647*9349^(3/19) 4032522450187174 a001 5473/70711162*9349^(13/19) 4032522450365543 a001 11592/35355581*9349^(10/19) 4032522450597796 a001 17711/33385282*9349^(9/19) 4032522450669231 a004 Fibonacci(20)*Lucas(21)/(1/2+sqrt(5)/2)^46 4032522450685933 a001 121393/370248451*9349^(10/19) 4032522450732678 a001 317811/969323029*9349^(10/19) 4032522450739498 a001 610/1860499*9349^(10/19) 4032522450740493 a001 2178309/6643838879*9349^(10/19) 4032522450740638 a001 5702887/17393796001*9349^(10/19) 4032522450740659 a001 3732588/11384387281*9349^(10/19) 4032522450740662 a001 39088169/119218851371*9349^(10/19) 4032522450740662 a001 9303105/28374454999*9349^(10/19) 4032522450740663 a001 66978574/204284540899*9349^(10/19) 4032522450740663 a001 701408733/2139295485799*9349^(10/19) 4032522450740663 a001 1836311903/5600748293801*9349^(10/19) 4032522450740663 a001 1201881744/3665737348901*9349^(10/19) 4032522450740663 a001 7778742049/23725150497407*9349^(10/19) 4032522450740663 a001 2971215073/9062201101803*9349^(10/19) 4032522450740663 a001 567451585/1730726404001*9349^(10/19) 4032522450740663 a001 433494437/1322157322203*9349^(10/19) 4032522450740663 a001 165580141/505019158607*9349^(10/19) 4032522450740663 a001 31622993/96450076809*9349^(10/19) 4032522450740664 a001 24157817/73681302247*9349^(10/19) 4032522450740672 a001 9227465/28143753123*9349^(10/19) 4032522450740727 a001 1762289/5374978561*9349^(10/19) 4032522450741108 a001 1346269/4106118243*9349^(10/19) 4032522450743712 a001 514229/1568397607*9349^(10/19) 4032522450761567 a001 98209/299537289*9349^(10/19) 4032522450883945 a001 75025/228826127*9349^(10/19) 4032522450989767 a001 615/230701876*24476^(20/21) 4032522451310303 a001 6765/1568397607*24476^(19/21) 4032522451630839 a001 6765/969323029*24476^(6/7) 4032522451722739 a001 28657/87403803*9349^(10/19) 4032522451951375 a001 2255/199691526*24476^(17/21) 4032522452271911 a001 6765/370248451*24476^(16/21) 4032522452564895 a001 6765/439204*9349^(2/19) 4032522452592446 a001 6765/228826127*24476^(5/7) 4032522452615421 a001 10946/87403803*9349^(12/19) 4032522452793789 a001 15456/29134601*9349^(9/19) 4032522452912982 a001 6765/141422324*24476^(2/3) 4032522453026056 a001 17711/20633239*9349^(8/19) 4032522453114180 a001 121393/228826127*9349^(9/19) 4032522453160925 a001 377/710646*9349^(9/19) 4032522453167745 a001 832040/1568397607*9349^(9/19) 4032522453168740 a001 726103/1368706081*9349^(9/19) 4032522453168885 a001 5702887/10749957122*9349^(9/19) 4032522453168906 a001 4976784/9381251041*9349^(9/19) 4032522453168909 a001 39088169/73681302247*9349^(9/19) 4032522453168909 a001 34111385/64300051206*9349^(9/19) 4032522453168910 a001 267914296/505019158607*9349^(9/19) 4032522453168910 a001 233802911/440719107401*9349^(9/19) 4032522453168910 a001 1836311903/3461452808002*9349^(9/19) 4032522453168910 a001 1602508992/3020733700601*9349^(9/19) 4032522453168910 a001 12586269025/23725150497407*9349^(9/19) 4032522453168910 a001 7778742049/14662949395604*9349^(9/19) 4032522453168910 a001 2971215073/5600748293801*9349^(9/19) 4032522453168910 a001 1134903170/2139295485799*9349^(9/19) 4032522453168910 a001 433494437/817138163596*9349^(9/19) 4032522453168910 a001 165580141/312119004989*9349^(9/19) 4032522453168910 a001 63245986/119218851371*9349^(9/19) 4032522453168911 a001 24157817/45537549124*9349^(9/19) 4032522453168919 a001 9227465/17393796001*9349^(9/19) 4032522453168974 a001 3524578/6643838879*9349^(9/19) 4032522453169355 a001 1346269/2537720636*9349^(9/19) 4032522453171960 a001 514229/969323029*9349^(9/19) 4032522453189814 a001 196418/370248451*9349^(9/19) 4032522453233518 a001 2255/29134601*24476^(13/21) 4032522453312193 a001 75025/141422324*9349^(9/19) 4032522453554055 a001 6765/54018521*24476^(4/7) 4032522453842532 a001 17711/710647*3571^(1/17) 4032522453874586 a001 6765/33385282*24476^(11/21) 4032522454150987 a001 28657/54018521*9349^(9/19) 4032522454195135 a001 615/1875749*24476^(10/21) 4032522454515637 a001 2255/4250681*24476^(3/7) 4032522454829374 a001 119814915/2971215073 4032522454829374 a004 Fibonacci(20)/Lucas(22)/(1/2+sqrt(5)/2)^3 4032522454829374 a004 Fibonacci(22)/Lucas(20)/(1/2+sqrt(5)/2)^7 4032522454836262 a001 6765/7881196*24476^(8/21) 4032522454891890 a001 2584/87403803*5778^(5/6) 4032522454917508 a001 2255/90481*9349^(1/19) 4032522455043670 a001 10946/54018521*9349^(11/19) 4032522455156563 a001 6765/4870847*24476^(1/3) 4032522455222038 a001 46368/54018521*9349^(8/19) 4032522455454269 a001 17711/12752043*9349^(7/19) 4032522455477714 a001 6765/3010349*24476^(2/7) 4032522455526768 r005 Re(z^2+c),c=-55/98+5/41*I,n=41 4032522455542428 a001 233/271444*9349^(8/19) 4032522455589172 a001 317811/370248451*9349^(8/19) 4032522455595992 a001 832040/969323029*9349^(8/19) 4032522455596987 a001 2178309/2537720636*9349^(8/19) 4032522455597132 a001 5702887/6643838879*9349^(8/19) 4032522455597153 a001 14930352/17393796001*9349^(8/19) 4032522455597156 a001 39088169/45537549124*9349^(8/19) 4032522455597157 a001 102334155/119218851371*9349^(8/19) 4032522455597157 a001 267914296/312119004989*9349^(8/19) 4032522455597157 a001 701408733/817138163596*9349^(8/19) 4032522455597157 a001 1836311903/2139295485799*9349^(8/19) 4032522455597157 a001 4807526976/5600748293801*9349^(8/19) 4032522455597157 a001 12586269025/14662949395604*9349^(8/19) 4032522455597157 a001 20365011074/23725150497407*9349^(8/19) 4032522455597157 a001 7778742049/9062201101803*9349^(8/19) 4032522455597157 a001 2971215073/3461452808002*9349^(8/19) 4032522455597157 a001 1134903170/1322157322203*9349^(8/19) 4032522455597157 a001 433494437/505019158607*9349^(8/19) 4032522455597157 a001 165580141/192900153618*9349^(8/19) 4032522455597157 a001 63245986/73681302247*9349^(8/19) 4032522455597158 a001 24157817/28143753123*9349^(8/19) 4032522455597166 a001 9227465/10749957122*9349^(8/19) 4032522455597222 a001 3524578/4106118243*9349^(8/19) 4032522455597602 a001 1346269/1568397607*9349^(8/19) 4032522455600207 a001 514229/599074578*9349^(8/19) 4032522455618061 a001 196418/228826127*9349^(8/19) 4032522455740439 a001 75025/87403803*9349^(8/19) 4032522455796640 a001 55/15126*24476^(5/21) 4032522456045341 a001 2576/103361*3571^(1/17) 4032522456121391 a001 6765/1149851*24476^(4/21) 4032522456366727 a001 121393/4870847*3571^(1/17) 4032522456413617 a001 105937/4250681*3571^(1/17) 4032522456418408 a004 Fibonacci(20)*Lucas(23)/(1/2+sqrt(5)/2)^48 4032522456420458 a001 416020/16692641*3571^(1/17) 4032522456421456 a001 726103/29134601*3571^(1/17) 4032522456421601 a001 5702887/228826127*3571^(1/17) 4032522456421623 a001 829464/33281921*3571^(1/17) 4032522456421626 a001 39088169/1568397607*3571^(1/17) 4032522456421626 a001 34111385/1368706081*3571^(1/17) 4032522456421626 a001 133957148/5374978561*3571^(1/17) 4032522456421626 a001 233802911/9381251041*3571^(1/17) 4032522456421626 a001 1836311903/73681302247*3571^(1/17) 4032522456421626 a001 267084832/10716675201*3571^(1/17) 4032522456421626 a001 12586269025/505019158607*3571^(1/17) 4032522456421626 a001 10983760033/440719107401*3571^(1/17) 4032522456421626 a001 43133785636/1730726404001*3571^(1/17) 4032522456421626 a001 75283811239/3020733700601*3571^(1/17) 4032522456421626 a001 182717648081/7331474697802*3571^(1/17) 4032522456421626 a001 139583862445/5600748293801*3571^(1/17) 4032522456421626 a001 53316291173/2139295485799*3571^(1/17) 4032522456421626 a001 10182505537/408569081798*3571^(1/17) 4032522456421626 a001 7778742049/312119004989*3571^(1/17) 4032522456421626 a001 2971215073/119218851371*3571^(1/17) 4032522456421626 a001 567451585/22768774562*3571^(1/17) 4032522456421626 a001 433494437/17393796001*3571^(1/17) 4032522456421626 a001 165580141/6643838879*3571^(1/17) 4032522456421626 a001 31622993/1268860318*3571^(1/17) 4032522456421628 a001 24157817/969323029*3571^(1/17) 4032522456421636 a001 9227465/370248451*3571^(1/17) 4032522456421691 a001 1762289/70711162*3571^(1/17) 4032522456422073 a001 1346269/54018521*3571^(1/17) 4032522456424686 a001 514229/20633239*3571^(1/17) 4032522456430892 a001 6765/710647*24476^(1/7) 4032522456442596 a001 98209/3940598*3571^(1/17) 4032522456461107 a001 6765/6643838879*64079^(22/23) 4032522456503805 a001 2255/1368706081*64079^(21/23) 4032522456546504 a001 615/230701876*64079^(20/23) 4032522456565354 a001 75025/3010349*3571^(1/17) 4032522456579230 a001 28657/33385282*9349^(8/19) 4032522456589203 a001 6765/1568397607*64079^(19/23) 4032522456631902 a001 6765/969323029*64079^(18/23) 4032522456674601 a001 2255/199691526*64079^(17/23) 4032522456717300 a001 6765/370248451*64079^(16/23) 4032522456759999 a001 6765/228826127*64079^(15/23) 4032522456780317 a001 6765/439204*24476^(2/21) 4032522456802699 a001 6765/141422324*64079^(14/23) 4032522456845397 a001 2255/29134601*64079^(13/23) 4032522456888098 a001 6765/54018521*64079^(12/23) 4032522456930792 a001 6765/33385282*64079^(11/23) 4032522456973504 a001 615/1875749*64079^(10/23) 4032522457016168 a001 2255/4250681*64079^(9/23) 4032522457025219 a001 2255/90481*24476^(1/21) 4032522457025364 a001 313679520/7778742049 4032522457025364 a004 Fibonacci(20)/Lucas(24)/(1/2+sqrt(5)/2) 4032522457025364 a004 Fibonacci(24)/Lucas(20)/(1/2+sqrt(5)/2)^9 4032522457058957 a001 6765/7881196*64079^(8/23) 4032522457101421 a001 6765/4870847*64079^(7/23) 4032522457144735 a001 6765/3010349*64079^(6/23) 4032522457185824 a001 55/15126*64079^(5/23) 4032522457232738 a001 6765/1149851*64079^(4/23) 4032522457257201 a004 Fibonacci(20)*Lucas(25)/(1/2+sqrt(5)/2)^50 4032522457264402 a001 6765/710647*64079^(3/23) 4032522457285858 a001 615/230701876*167761^(4/5) 4032522457303056 a001 2255/90481*64079^(1/23) 4032522457314514 a001 6765/228826127*167761^(3/5) 4032522457335991 a001 6765/439204*64079^(2/23) 4032522457343180 a001 615/1875749*167761^(2/5) 4032522457345755 a001 821223645/20365011074 4032522457345755 a001 2255/180962+2255/180962*5^(1/2) 4032522457345755 a004 Fibonacci(26)/Lucas(20)/(1/2+sqrt(5)/2)^11 4032522457361385 a001 2255/90481*103682^(1/24) 4032522457370662 a001 55/15126*167761^(1/5) 4032522457379579 a004 Fibonacci(20)*Lucas(27)/(1/2+sqrt(5)/2)^52 4032522457381902 a001 6765/17393796001*439204^(8/9) 4032522457384225 a001 2255/1368706081*439204^(7/9) 4032522457386548 a001 6765/969323029*439204^(2/3) 4032522457388870 a001 6765/228826127*439204^(5/9) 4032522457390176 a001 6765/710647*439204^(1/9) 4032522457391194 a001 6765/54018521*439204^(4/9) 4032522457392493 a001 6765/710647*7881196^(1/11) 4032522457392499 a001 6765/710647*141422324^(1/13) 4032522457392499 a001 6765/710647*2537720636^(1/15) 4032522457392499 a001 2149991415/53316291173 4032522457392499 a001 6765/710647*45537549124^(1/17) 4032522457392499 a001 6765/710647*14662949395604^(1/21) 4032522457392499 a001 6765/710647*(1/2+1/2*5^(1/2))^3 4032522457392499 a001 6765/710647*192900153618^(1/18) 4032522457392499 a001 6765/710647*10749957122^(1/16) 4032522457392499 a001 6765/710647*599074578^(1/14) 4032522457392499 a004 Fibonacci(28)/Lucas(20)/(1/2+sqrt(5)/2)^13 4032522457392499 a001 6765/710647*33385282^(1/12) 4032522457392616 a001 6765/710647*1860498^(1/10) 4032522457393491 a001 2255/4250681*439204^(1/3) 4032522457396284 a001 6765/3010349*439204^(2/9) 4032522457397434 a004 Fibonacci(20)*Lucas(29)/(1/2+sqrt(5)/2)^54 4032522457399318 a001 55/15126*20633239^(1/7) 4032522457399319 a001 55/15126*2537720636^(1/9) 4032522457399319 a001 1125750120/27916772489 4032522457399319 a001 55/15126*312119004989^(1/11) 4032522457399319 a001 55/15126*(1/2+1/2*5^(1/2))^5 4032522457399319 a001 55/15126*28143753123^(1/10) 4032522457399319 a001 55/15126*228826127^(1/8) 4032522457399319 a004 Fibonacci(30)/Lucas(20)/(1/2+sqrt(5)/2)^15 4032522457399513 a001 55/15126*1860498^(1/6) 4032522457400039 a004 Fibonacci(20)*Lucas(31)/(1/2+sqrt(5)/2)^56 4032522457400312 a001 6765/4870847*20633239^(1/5) 4032522457400314 a001 6765/4870847*17393796001^(1/7) 4032522457400314 a001 14736260385/365435296162 4032522457400314 a001 6765/4870847*14662949395604^(1/9) 4032522457400314 a001 6765/4870847*(1/2+1/2*5^(1/2))^7 4032522457400314 a001 6765/4870847*599074578^(1/6) 4032522457400314 a004 Fibonacci(32)/Lucas(20)/(1/2+sqrt(5)/2)^17 4032522457400419 a004 Fibonacci(20)*Lucas(33)/(1/2+sqrt(5)/2)^58 4032522457400425 a001 615/28374454999*7881196^(10/11) 4032522457400431 a001 6765/73681302247*7881196^(9/11) 4032522457400437 a001 6765/17393796001*7881196^(8/11) 4032522457400441 a001 6765/6643838879*7881196^(2/3) 4032522457400442 a001 2255/4250681*7881196^(3/11) 4032522457400443 a001 2255/1368706081*7881196^(7/11) 4032522457400449 a001 6765/969323029*7881196^(6/11) 4032522457400454 a001 6765/228826127*7881196^(5/11) 4032522457400459 a001 6765/33385282*7881196^(1/3) 4032522457400459 a001 2255/4250681*141422324^(3/13) 4032522457400459 a001 2255/4250681*2537720636^(1/5) 4032522457400459 a001 2255/4250681*45537549124^(3/17) 4032522457400459 a001 2255/4250681*817138163596^(3/19) 4032522457400459 a001 2255/4250681*14662949395604^(1/7) 4032522457400459 a001 2255/4250681*(1/2+1/2*5^(1/2))^9 4032522457400459 a001 2255/4250681*192900153618^(1/6) 4032522457400459 a001 2255/4250681*10749957122^(3/16) 4032522457400459 a001 2255/4250681*599074578^(3/14) 4032522457400459 a004 Fibonacci(34)/Lucas(20)/(1/2+sqrt(5)/2)^19 4032522457400460 a001 2255/4250681*33385282^(1/4) 4032522457400462 a001 6765/54018521*7881196^(4/11) 4032522457400475 a004 Fibonacci(20)*Lucas(35)/(1/2+sqrt(5)/2)^60 4032522457400476 a001 615/28374454999*20633239^(6/7) 4032522457400477 a001 6765/119218851371*20633239^(4/5) 4032522457400477 a001 55/228811001*20633239^(5/7) 4032522457400478 a001 2255/1368706081*20633239^(3/5) 4032522457400479 a001 615/230701876*20633239^(4/7) 4032522457400480 a001 6765/228826127*20633239^(3/7) 4032522457400480 a001 6765/33385282*312119004989^(1/5) 4032522457400480 a001 101003831280/2504730781961 4032522457400480 a001 6765/33385282*(1/2+1/2*5^(1/2))^11 4032522457400480 a001 6765/33385282*1568397607^(1/4) 4032522457400480 a001 6765/141422324*20633239^(2/5) 4032522457400481 a004 Fibonacci(36)/Lucas(20)/(1/2+sqrt(5)/2)^21 4032522457400483 a004 Fibonacci(20)*Lucas(37)/(1/2+sqrt(5)/2)^62 4032522457400483 a001 2255/29134601*141422324^(1/3) 4032522457400484 a001 264431463285/6557470319842 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^13/Lucas(38) 4032522457400484 a001 2255/29134601*73681302247^(1/4) 4032522457400484 a004 Fibonacci(38)/Lucas(20)/(1/2+sqrt(5)/2)^23 4032522457400484 a004 Fibonacci(20)*Lucas(39)/(1/2+sqrt(5)/2)^64 4032522457400484 a001 6765/5600748293801*141422324^(12/13) 4032522457400484 a001 2255/440719107401*141422324^(11/13) 4032522457400484 a001 615/28374454999*141422324^(10/13) 4032522457400484 a001 6765/228826127*141422324^(5/13) 4032522457400484 a001 6765/73681302247*141422324^(9/13) 4032522457400484 a001 6765/45537549124*141422324^(2/3) 4032522457400484 a001 6765/17393796001*141422324^(8/13) 4032522457400484 a001 2255/1368706081*141422324^(7/13) 4032522457400484 a001 6765/969323029*141422324^(6/13) 4032522457400484 a001 6765/228826127*2537720636^(1/3) 4032522457400484 a001 6765/228826127*45537549124^(5/17) 4032522457400484 a001 6765/228826127*312119004989^(3/11) 4032522457400484 a001 6765/228826127*14662949395604^(5/21) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^15/Lucas(40) 4032522457400484 a001 6765/228826127*192900153618^(5/18) 4032522457400484 a001 6765/228826127*28143753123^(3/10) 4032522457400484 a001 6765/228826127*10749957122^(5/16) 4032522457400484 a001 6765/228826127*599074578^(5/14) 4032522457400484 a001 6765/228826127*228826127^(3/8) 4032522457400484 a004 Fibonacci(20)*Lucas(41)/(1/2+sqrt(5)/2)^66 4032522457400484 a001 2255/199691526*45537549124^(1/3) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^17/Lucas(42) 4032522457400484 a004 Fibonacci(20)*Lucas(43)/(1/2+sqrt(5)/2)^68 4032522457400484 a001 6765/1568397607*817138163596^(1/3) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^19/Lucas(44) 4032522457400484 a004 Fibonacci(20)*Lucas(45)/(1/2+sqrt(5)/2)^70 4032522457400484 a001 6765/23725150497407*2537720636^(13/15) 4032522457400484 a001 2255/1368706081*2537720636^(7/15) 4032522457400484 a001 6765/5600748293801*2537720636^(4/5) 4032522457400484 a001 6765/3461452808002*2537720636^(7/9) 4032522457400484 a001 2255/440719107401*2537720636^(11/15) 4032522457400484 a001 615/28374454999*2537720636^(2/3) 4032522457400484 a001 6765/73681302247*2537720636^(3/5) 4032522457400484 a001 55/228811001*2537720636^(5/9) 4032522457400484 a001 6765/17393796001*2537720636^(8/15) 4032522457400484 a001 2255/1368706081*17393796001^(3/7) 4032522457400484 a001 2255/1368706081*45537549124^(7/17) 4032522457400484 a001 2255/1368706081*14662949395604^(1/3) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^21/Lucas(46) 4032522457400484 a001 2255/1368706081*192900153618^(7/18) 4032522457400484 a001 2255/1368706081*10749957122^(7/16) 4032522457400484 a004 Fibonacci(20)*Lucas(47)/(1/2+sqrt(5)/2)^72 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^23/Lucas(48) 4032522457400484 a004 Fibonacci(20)*Lucas(49)/(1/2+sqrt(5)/2)^74 4032522457400484 a001 6765/3461452808002*17393796001^(5/7) 4032522457400484 a001 6765/119218851371*17393796001^(4/7) 4032522457400484 a001 55/228811001*312119004989^(5/11) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^25/Lucas(50) 4032522457400484 a001 55/228811001*3461452808002^(5/12) 4032522457400484 a001 55/228811001*28143753123^(1/2) 4032522457400484 a004 Fibonacci(20)*Lucas(51)/(1/2+sqrt(5)/2)^76 4032522457400484 a001 6765/73681302247*45537549124^(9/17) 4032522457400484 a001 6765/23725150497407*45537549124^(13/17) 4032522457400484 a001 6765/5600748293801*45537549124^(12/17) 4032522457400484 a001 6765/2139295485799*45537549124^(2/3) 4032522457400484 a001 2255/440719107401*45537549124^(11/17) 4032522457400484 a001 615/28374454999*45537549124^(10/17) 4032522457400484 a001 6765/73681302247*817138163596^(9/19) 4032522457400484 a001 6765/73681302247*14662949395604^(3/7) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^27/Lucas(52) 4032522457400484 a001 6765/73681302247*192900153618^(1/2) 4032522457400484 a004 Fibonacci(20)*Lucas(53)/(1/2+sqrt(5)/2)^78 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^29/Lucas(54) 4032522457400484 a001 2255/64300051206*1322157322203^(1/2) 4032522457400484 a004 Fibonacci(20)*Lucas(55)/(1/2+sqrt(5)/2)^80 4032522457400484 a001 2255/440719107401*312119004989^(3/5) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^31/Lucas(56) 4032522457400484 a004 Fibonacci(20)*Lucas(57)/(1/2+sqrt(5)/2)^82 4032522457400484 a001 2255/440719107401*14662949395604^(11/21) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^33/Lucas(58) 4032522457400484 a004 Fibonacci(20)*Lucas(59)/(1/2+sqrt(5)/2)^84 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^35/Lucas(60) 4032522457400484 a004 Fibonacci(20)*Lucas(61)/(1/2+sqrt(5)/2)^86 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^37/Lucas(62) 4032522457400484 a004 Fibonacci(20)*Lucas(63)/(1/2+sqrt(5)/2)^88 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^39/Lucas(64) 4032522457400484 a004 Fibonacci(20)*Lucas(65)/(1/2+sqrt(5)/2)^90 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^41/Lucas(66) 4032522457400484 a004 Fibonacci(20)*Lucas(67)/(1/2+sqrt(5)/2)^92 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^43/Lucas(68) 4032522457400484 a004 Fibonacci(20)*Lucas(69)/(1/2+sqrt(5)/2)^94 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^45/Lucas(70) 4032522457400484 a004 Fibonacci(20)*Lucas(71)/(1/2+sqrt(5)/2)^96 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^47/Lucas(72) 4032522457400484 a004 Fibonacci(20)*Lucas(73)/(1/2+sqrt(5)/2)^98 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^49/Lucas(74) 4032522457400484 a004 Fibonacci(20)*Lucas(75)/(1/2+sqrt(5)/2)^100 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^51/Lucas(76) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^53/Lucas(78) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^55/Lucas(80) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^57/Lucas(82) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^59/Lucas(84) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^61/Lucas(86) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^63/Lucas(88) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^65/Lucas(90) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^67/Lucas(92) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^69/Lucas(94) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^71/Lucas(96) 4032522457400484 a004 Fibonacci(10)*Lucas(10)/(1/2+sqrt(5)/2)^25 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^73/Lucas(98) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^74/Lucas(99) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^75/Lucas(100) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^72/Lucas(97) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^70/Lucas(95) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^68/Lucas(93) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^66/Lucas(91) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^64/Lucas(89) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^62/Lucas(87) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^60/Lucas(85) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^58/Lucas(83) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^56/Lucas(81) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^54/Lucas(79) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^52/Lucas(77) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^50/Lucas(75) 4032522457400484 a004 Fibonacci(20)*Lucas(74)/(1/2+sqrt(5)/2)^99 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^48/Lucas(73) 4032522457400484 a004 Fibonacci(20)*Lucas(72)/(1/2+sqrt(5)/2)^97 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^46/Lucas(71) 4032522457400484 a004 Fibonacci(20)*Lucas(70)/(1/2+sqrt(5)/2)^95 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^44/Lucas(69) 4032522457400484 a004 Fibonacci(20)*Lucas(68)/(1/2+sqrt(5)/2)^93 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^42/Lucas(67) 4032522457400484 a004 Fibonacci(20)*Lucas(66)/(1/2+sqrt(5)/2)^91 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^40/Lucas(65) 4032522457400484 a004 Fibonacci(20)*Lucas(64)/(1/2+sqrt(5)/2)^89 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^38/Lucas(63) 4032522457400484 a004 Fibonacci(20)*Lucas(62)/(1/2+sqrt(5)/2)^87 4032522457400484 a001 6765/5600748293801*14662949395604^(4/7) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^36/Lucas(61) 4032522457400484 a004 Fibonacci(20)*Lucas(60)/(1/2+sqrt(5)/2)^85 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^34/Lucas(59) 4032522457400484 a004 Fibonacci(20)*Lucas(58)/(1/2+sqrt(5)/2)^83 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^32/Lucas(57) 4032522457400484 a001 6765/3461452808002*505019158607^(5/8) 4032522457400484 a004 Fibonacci(20)*Lucas(56)/(1/2+sqrt(5)/2)^81 4032522457400484 a001 615/28374454999*312119004989^(6/11) 4032522457400484 a001 615/28374454999*14662949395604^(10/21) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^30/Lucas(55) 4032522457400484 a001 2255/440719107401*192900153618^(11/18) 4032522457400484 a001 6765/5600748293801*192900153618^(2/3) 4032522457400484 a001 6765/23725150497407*192900153618^(13/18) 4032522457400484 a001 615/28374454999*192900153618^(5/9) 4032522457400484 a004 Fibonacci(20)*Lucas(54)/(1/2+sqrt(5)/2)^79 4032522457400484 a001 6765/119218851371*14662949395604^(4/9) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^28/Lucas(53) 4032522457400484 a001 6765/119218851371*505019158607^(1/2) 4032522457400484 a001 6765/817138163596*73681302247^(8/13) 4032522457400484 a001 6765/5600748293801*73681302247^(9/13) 4032522457400484 a001 6765/23725150497407*73681302247^(3/4) 4032522457400484 a001 6765/119218851371*73681302247^(7/13) 4032522457400484 a004 Fibonacci(20)*Lucas(52)/(1/2+sqrt(5)/2)^77 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^26/Lucas(51) 4032522457400484 a001 6765/45537549124*73681302247^(1/2) 4032522457400484 a001 615/28374454999*28143753123^(3/5) 4032522457400484 a001 6765/3461452808002*28143753123^(7/10) 4032522457400484 a004 Fibonacci(20)*Lucas(50)/(1/2+sqrt(5)/2)^75 4032522457400484 a001 6765/17393796001*45537549124^(8/17) 4032522457400484 a001 6765/17393796001*14662949395604^(8/21) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^24/Lucas(49) 4032522457400484 a001 6765/17393796001*192900153618^(4/9) 4032522457400484 a001 6765/17393796001*73681302247^(6/13) 4032522457400484 a001 6765/73681302247*10749957122^(9/16) 4032522457400484 a001 6765/119218851371*10749957122^(7/12) 4032522457400484 a001 6765/45537549124*10749957122^(13/24) 4032522457400484 a001 615/28374454999*10749957122^(5/8) 4032522457400484 a001 6765/817138163596*10749957122^(2/3) 4032522457400484 a001 2255/440719107401*10749957122^(11/16) 4032522457400484 a001 6765/2139295485799*10749957122^(17/24) 4032522457400484 a001 6765/5600748293801*10749957122^(3/4) 4032522457400484 a001 6765/14662949395604*10749957122^(19/24) 4032522457400484 a001 6765/23725150497407*10749957122^(13/16) 4032522457400484 a001 6765/17393796001*10749957122^(1/2) 4032522457400484 a004 Fibonacci(20)*Lucas(48)/(1/2+sqrt(5)/2)^73 4032522457400484 a001 6765/10749957122*4106118243^(1/2) 4032522457400484 a001 6765/6643838879*312119004989^(2/5) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^22/Lucas(47) 4032522457400484 a001 6765/6643838879*10749957122^(11/24) 4032522457400484 a001 6765/45537549124*4106118243^(13/23) 4032522457400484 a001 6765/17393796001*4106118243^(12/23) 4032522457400484 a001 6765/119218851371*4106118243^(14/23) 4032522457400484 a001 615/28374454999*4106118243^(15/23) 4032522457400484 a001 6765/817138163596*4106118243^(16/23) 4032522457400484 a001 6765/2139295485799*4106118243^(17/23) 4032522457400484 a001 6765/5600748293801*4106118243^(18/23) 4032522457400484 a001 6765/14662949395604*4106118243^(19/23) 4032522457400484 a001 6765/6643838879*4106118243^(11/23) 4032522457400484 a004 Fibonacci(20)*Lucas(46)/(1/2+sqrt(5)/2)^71 4032522457400484 a001 615/230701876*2537720636^(4/9) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^20/Lucas(45) 4032522457400484 a001 615/230701876*23725150497407^(5/16) 4032522457400484 a001 615/230701876*505019158607^(5/14) 4032522457400484 a001 615/230701876*73681302247^(5/13) 4032522457400484 a001 615/230701876*28143753123^(2/5) 4032522457400484 a001 615/230701876*10749957122^(5/12) 4032522457400484 a001 615/230701876*4106118243^(10/23) 4032522457400484 a001 6765/17393796001*1568397607^(6/11) 4032522457400484 a001 6765/6643838879*1568397607^(1/2) 4032522457400484 a001 6765/45537549124*1568397607^(13/22) 4032522457400484 a001 6765/119218851371*1568397607^(7/11) 4032522457400484 a001 615/28374454999*1568397607^(15/22) 4032522457400484 a001 6765/817138163596*1568397607^(8/11) 4032522457400484 a001 2255/440719107401*1568397607^(3/4) 4032522457400484 a001 6765/2139295485799*1568397607^(17/22) 4032522457400484 a001 6765/5600748293801*1568397607^(9/11) 4032522457400484 a001 615/230701876*1568397607^(5/11) 4032522457400484 a001 6765/14662949395604*1568397607^(19/22) 4032522457400484 a004 Fibonacci(20)*Lucas(44)/(1/2+sqrt(5)/2)^69 4032522457400484 a001 6765/969323029*2537720636^(2/5) 4032522457400484 a001 6765/969323029*45537549124^(6/17) 4032522457400484 a001 6765/969323029*14662949395604^(2/7) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^18/Lucas(43) 4032522457400484 a001 6765/969323029*192900153618^(1/3) 4032522457400484 a001 6765/969323029*10749957122^(3/8) 4032522457400484 a001 6765/969323029*4106118243^(9/23) 4032522457400484 a001 6765/969323029*1568397607^(9/22) 4032522457400484 a001 2255/1368706081*599074578^(1/2) 4032522457400484 a001 615/230701876*599074578^(10/21) 4032522457400484 a001 6765/6643838879*599074578^(11/21) 4032522457400484 a001 6765/17393796001*599074578^(4/7) 4032522457400484 a001 6765/45537549124*599074578^(13/21) 4032522457400484 a001 6765/73681302247*599074578^(9/14) 4032522457400484 a001 6765/119218851371*599074578^(2/3) 4032522457400484 a001 615/28374454999*599074578^(5/7) 4032522457400484 a001 6765/817138163596*599074578^(16/21) 4032522457400484 a001 2255/440719107401*599074578^(11/14) 4032522457400484 a001 6765/2139295485799*599074578^(17/21) 4032522457400484 a001 6765/969323029*599074578^(3/7) 4032522457400484 a001 6765/3461452808002*599074578^(5/6) 4032522457400484 a001 6765/5600748293801*599074578^(6/7) 4032522457400484 a001 6765/14662949395604*599074578^(19/21) 4032522457400484 a001 6765/23725150497407*599074578^(13/14) 4032522457400484 a004 Fibonacci(20)*Lucas(42)/(1/2+sqrt(5)/2)^67 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^16/Lucas(41) 4032522457400484 a001 6765/370248451*23725150497407^(1/4) 4032522457400484 a001 6765/370248451*73681302247^(4/13) 4032522457400484 a001 6765/370248451*10749957122^(1/3) 4032522457400484 a001 6765/370248451*4106118243^(8/23) 4032522457400484 a001 6765/370248451*1568397607^(4/11) 4032522457400484 a001 6765/370248451*599074578^(8/21) 4032522457400484 a001 6765/969323029*228826127^(9/20) 4032522457400484 a001 615/230701876*228826127^(1/2) 4032522457400484 a001 6765/6643838879*228826127^(11/20) 4032522457400484 a001 6765/17393796001*228826127^(3/5) 4032522457400484 a001 55/228811001*228826127^(5/8) 4032522457400484 a001 6765/45537549124*228826127^(13/20) 4032522457400484 a001 6765/119218851371*228826127^(7/10) 4032522457400484 a001 615/28374454999*228826127^(3/4) 4032522457400484 a001 6765/370248451*228826127^(2/5) 4032522457400484 a001 6765/817138163596*228826127^(4/5) 4032522457400484 a001 6765/2139295485799*228826127^(17/20) 4032522457400484 a004 Fibonacci(42)/Lucas(20)/(1/2+sqrt(5)/2)^27 4032522457400484 a001 6765/3461452808002*228826127^(7/8) 4032522457400484 a001 6765/5600748293801*228826127^(9/10) 4032522457400484 a001 6765/14662949395604*228826127^(19/20) 4032522457400484 a004 Fibonacci(44)/Lucas(20)/(1/2+sqrt(5)/2)^29 4032522457400484 a004 Fibonacci(46)/Lucas(20)/(1/2+sqrt(5)/2)^31 4032522457400484 a004 Fibonacci(48)/Lucas(20)/(1/2+sqrt(5)/2)^33 4032522457400484 a004 Fibonacci(50)/Lucas(20)/(1/2+sqrt(5)/2)^35 4032522457400484 a004 Fibonacci(52)/Lucas(20)/(1/2+sqrt(5)/2)^37 4032522457400484 a004 Fibonacci(54)/Lucas(20)/(1/2+sqrt(5)/2)^39 4032522457400484 a004 Fibonacci(56)/Lucas(20)/(1/2+sqrt(5)/2)^41 4032522457400484 a004 Fibonacci(58)/Lucas(20)/(1/2+sqrt(5)/2)^43 4032522457400484 a004 Fibonacci(60)/Lucas(20)/(1/2+sqrt(5)/2)^45 4032522457400484 a004 Fibonacci(62)/Lucas(20)/(1/2+sqrt(5)/2)^47 4032522457400484 a004 Fibonacci(64)/Lucas(20)/(1/2+sqrt(5)/2)^49 4032522457400484 a004 Fibonacci(66)/Lucas(20)/(1/2+sqrt(5)/2)^51 4032522457400484 a004 Fibonacci(68)/Lucas(20)/(1/2+sqrt(5)/2)^53 4032522457400484 a004 Fibonacci(70)/Lucas(20)/(1/2+sqrt(5)/2)^55 4032522457400484 a004 Fibonacci(72)/Lucas(20)/(1/2+sqrt(5)/2)^57 4032522457400484 a004 Fibonacci(74)/Lucas(20)/(1/2+sqrt(5)/2)^59 4032522457400484 a004 Fibonacci(76)/Lucas(20)/(1/2+sqrt(5)/2)^61 4032522457400484 a004 Fibonacci(78)/Lucas(20)/(1/2+sqrt(5)/2)^63 4032522457400484 a004 Fibonacci(20)*Lucas(40)/(1/2+sqrt(5)/2)^65 4032522457400484 a004 Fibonacci(82)/Lucas(20)/(1/2+sqrt(5)/2)^67 4032522457400484 a004 Fibonacci(84)/Lucas(20)/(1/2+sqrt(5)/2)^69 4032522457400484 a004 Fibonacci(86)/Lucas(20)/(1/2+sqrt(5)/2)^71 4032522457400484 a004 Fibonacci(88)/Lucas(20)/(1/2+sqrt(5)/2)^73 4032522457400484 a004 Fibonacci(90)/Lucas(20)/(1/2+sqrt(5)/2)^75 4032522457400484 a004 Fibonacci(92)/Lucas(20)/(1/2+sqrt(5)/2)^77 4032522457400484 a004 Fibonacci(94)/Lucas(20)/(1/2+sqrt(5)/2)^79 4032522457400484 a004 Fibonacci(96)/Lucas(20)/(1/2+sqrt(5)/2)^81 4032522457400484 a004 Fibonacci(100)/Lucas(20)/(1/2+sqrt(5)/2)^85 4032522457400484 a004 Fibonacci(98)/Lucas(20)/(1/2+sqrt(5)/2)^83 4032522457400484 a004 Fibonacci(99)/Lucas(20)/(1/2+sqrt(5)/2)^84 4032522457400484 a004 Fibonacci(97)/Lucas(20)/(1/2+sqrt(5)/2)^82 4032522457400484 a004 Fibonacci(95)/Lucas(20)/(1/2+sqrt(5)/2)^80 4032522457400484 a004 Fibonacci(93)/Lucas(20)/(1/2+sqrt(5)/2)^78 4032522457400484 a004 Fibonacci(91)/Lucas(20)/(1/2+sqrt(5)/2)^76 4032522457400484 a004 Fibonacci(89)/Lucas(20)/(1/2+sqrt(5)/2)^74 4032522457400484 a004 Fibonacci(87)/Lucas(20)/(1/2+sqrt(5)/2)^72 4032522457400484 a004 Fibonacci(85)/Lucas(20)/(1/2+sqrt(5)/2)^70 4032522457400484 a004 Fibonacci(83)/Lucas(20)/(1/2+sqrt(5)/2)^68 4032522457400484 a004 Fibonacci(81)/Lucas(20)/(1/2+sqrt(5)/2)^66 4032522457400484 a004 Fibonacci(79)/Lucas(20)/(1/2+sqrt(5)/2)^64 4032522457400484 a004 Fibonacci(77)/Lucas(20)/(1/2+sqrt(5)/2)^62 4032522457400484 a004 Fibonacci(75)/Lucas(20)/(1/2+sqrt(5)/2)^60 4032522457400484 a004 Fibonacci(73)/Lucas(20)/(1/2+sqrt(5)/2)^58 4032522457400484 a004 Fibonacci(71)/Lucas(20)/(1/2+sqrt(5)/2)^56 4032522457400484 a004 Fibonacci(69)/Lucas(20)/(1/2+sqrt(5)/2)^54 4032522457400484 a004 Fibonacci(67)/Lucas(20)/(1/2+sqrt(5)/2)^52 4032522457400484 a004 Fibonacci(65)/Lucas(20)/(1/2+sqrt(5)/2)^50 4032522457400484 a004 Fibonacci(63)/Lucas(20)/(1/2+sqrt(5)/2)^48 4032522457400484 a004 Fibonacci(61)/Lucas(20)/(1/2+sqrt(5)/2)^46 4032522457400484 a004 Fibonacci(59)/Lucas(20)/(1/2+sqrt(5)/2)^44 4032522457400484 a004 Fibonacci(57)/Lucas(20)/(1/2+sqrt(5)/2)^42 4032522457400484 a004 Fibonacci(55)/Lucas(20)/(1/2+sqrt(5)/2)^40 4032522457400484 a004 Fibonacci(53)/Lucas(20)/(1/2+sqrt(5)/2)^38 4032522457400484 a004 Fibonacci(51)/Lucas(20)/(1/2+sqrt(5)/2)^36 4032522457400484 a004 Fibonacci(49)/Lucas(20)/(1/2+sqrt(5)/2)^34 4032522457400484 a004 Fibonacci(47)/Lucas(20)/(1/2+sqrt(5)/2)^32 4032522457400484 a004 Fibonacci(45)/Lucas(20)/(1/2+sqrt(5)/2)^30 4032522457400484 a004 Fibonacci(43)/Lucas(20)/(1/2+sqrt(5)/2)^28 4032522457400484 a004 Fibonacci(41)/Lucas(20)/(1/2+sqrt(5)/2)^26 4032522457400484 a001 6765/141422324*17393796001^(2/7) 4032522457400484 a001 6765/141422324*14662949395604^(2/9) 4032522457400484 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^14/Lucas(39) 4032522457400484 a001 142619698430/3536736619241 4032522457400484 a001 6765/141422324*10749957122^(7/24) 4032522457400484 a001 6765/141422324*4106118243^(7/23) 4032522457400484 a001 6765/141422324*1568397607^(7/22) 4032522457400484 a001 6765/141422324*599074578^(1/3) 4032522457400484 a001 6765/141422324*228826127^(7/20) 4032522457400484 a001 6765/370248451*87403803^(8/19) 4032522457400484 a001 6765/969323029*87403803^(9/19) 4032522457400484 a001 6765/1568397607*87403803^(1/2) 4032522457400484 a001 615/230701876*87403803^(10/19) 4032522457400484 a004 Fibonacci(39)/Lucas(20)/(1/2+sqrt(5)/2)^24 4032522457400484 a001 6765/6643838879*87403803^(11/19) 4032522457400484 a001 6765/17393796001*87403803^(12/19) 4032522457400484 a001 6765/45537549124*87403803^(13/19) 4032522457400484 a001 6765/119218851371*87403803^(14/19) 4032522457400484 a001 6765/141422324*87403803^(7/19) 4032522457400485 a001 615/28374454999*87403803^(15/19) 4032522457400485 a001 6765/817138163596*87403803^(16/19) 4032522457400485 a001 6765/2139295485799*87403803^(17/19) 4032522457400485 a001 6765/5600748293801*87403803^(18/19) 4032522457400485 a004 Fibonacci(20)*Lucas(38)/(1/2+sqrt(5)/2)^63 4032522457400485 a001 6765/54018521*141422324^(4/13) 4032522457400485 a001 6765/54018521*2537720636^(4/15) 4032522457400485 a001 6765/54018521*45537549124^(4/17) 4032522457400485 a001 6765/54018521*817138163596^(4/19) 4032522457400485 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^12/Lucas(37) 4032522457400485 a001 163427632005/4052739537881 4032522457400485 a001 6765/54018521*192900153618^(2/9) 4032522457400485 a001 6765/54018521*73681302247^(3/13) 4032522457400485 a001 6765/54018521*10749957122^(1/4) 4032522457400485 a001 6765/54018521*4106118243^(6/23) 4032522457400485 a001 6765/54018521*1568397607^(3/11) 4032522457400485 a001 6765/54018521*599074578^(2/7) 4032522457400485 a001 6765/54018521*228826127^(3/10) 4032522457400486 a001 6765/228826127*33385282^(5/12) 4032522457400486 a004 Fibonacci(37)/Lucas(20)/(1/2+sqrt(5)/2)^22 4032522457400486 a001 6765/54018521*87403803^(6/19) 4032522457400486 a001 6765/141422324*33385282^(7/18) 4032522457400486 a001 6765/370248451*33385282^(4/9) 4032522457400486 a001 6765/969323029*33385282^(1/2) 4032522457400486 a001 615/230701876*33385282^(5/9) 4032522457400486 a001 2255/1368706081*33385282^(7/12) 4032522457400486 a001 6765/6643838879*33385282^(11/18) 4032522457400486 a001 6765/17393796001*33385282^(2/3) 4032522457400487 a001 6765/54018521*33385282^(1/3) 4032522457400487 a001 6765/45537549124*33385282^(13/18) 4032522457400487 a001 6765/73681302247*33385282^(3/4) 4032522457400487 a001 6765/119218851371*33385282^(7/9) 4032522457400487 a001 615/28374454999*33385282^(5/6) 4032522457400487 a001 6765/817138163596*33385282^(8/9) 4032522457400487 a001 2255/440719107401*33385282^(11/12) 4032522457400488 a001 6765/2139295485799*33385282^(17/18) 4032522457400488 a004 Fibonacci(20)*Lucas(36)/(1/2+sqrt(5)/2)^61 4032522457400491 a001 615/1875749*20633239^(2/7) 4032522457400494 a001 615/1875749*2537720636^(2/9) 4032522457400494 a001 615/1875749*312119004989^(2/11) 4032522457400494 a001 615/1875749*(1/2+1/2*5^(1/2))^10 4032522457400494 a001 9227465/228826128 4032522457400494 a001 615/1875749*28143753123^(1/5) 4032522457400494 a001 615/1875749*10749957122^(5/24) 4032522457400494 a001 615/1875749*4106118243^(5/23) 4032522457400494 a001 615/1875749*1568397607^(5/22) 4032522457400494 a001 615/1875749*599074578^(5/21) 4032522457400494 a001 615/1875749*228826127^(1/4) 4032522457400494 a004 Fibonacci(35)/Lucas(20)/(1/2+sqrt(5)/2)^20 4032522457400494 a001 615/1875749*87403803^(5/19) 4032522457400494 a001 6765/54018521*12752043^(6/17) 4032522457400494 a001 6765/141422324*12752043^(7/17) 4032522457400495 a001 615/1875749*33385282^(5/18) 4032522457400496 a001 6765/370248451*12752043^(8/17) 4032522457400496 a001 2255/199691526*12752043^(1/2) 4032522457400497 a001 6765/969323029*12752043^(9/17) 4032522457400499 a001 615/230701876*12752043^(10/17) 4032522457400500 a001 6765/6643838879*12752043^(11/17) 4032522457400501 a001 615/1875749*12752043^(5/17) 4032522457400502 a001 6765/17393796001*12752043^(12/17) 4032522457400503 a001 6765/45537549124*12752043^(13/17) 4032522457400505 a001 6765/119218851371*12752043^(14/17) 4032522457400506 a001 615/28374454999*12752043^(15/17) 4032522457400507 a001 6765/817138163596*12752043^(16/17) 4032522457400509 a004 Fibonacci(20)*Lucas(34)/(1/2+sqrt(5)/2)^59 4032522457400547 a001 615/1875749*4870847^(5/16) 4032522457400549 a001 6765/7881196*(1/2+1/2*5^(1/2))^8 4032522457400549 a001 6765/7881196*505019158607^(1/7) 4032522457400549 a001 23843770170/591286729879 4032522457400549 a001 6765/7881196*73681302247^(2/13) 4032522457400549 a001 6765/7881196*10749957122^(1/6) 4032522457400549 a001 6765/7881196*4106118243^(4/23) 4032522457400549 a001 6765/7881196*1568397607^(2/11) 4032522457400549 a001 6765/7881196*599074578^(4/21) 4032522457400549 a001 6765/7881196*228826127^(1/5) 4032522457400549 a004 Fibonacci(33)/Lucas(20)/(1/2+sqrt(5)/2)^18 4032522457400549 a001 6765/7881196*87403803^(4/19) 4032522457400549 a001 6765/54018521*4870847^(3/8) 4032522457400550 a001 6765/7881196*33385282^(2/9) 4032522457400555 a001 6765/7881196*12752043^(4/17) 4032522457400559 a001 6765/141422324*4870847^(7/16) 4032522457400569 a001 6765/370248451*4870847^(1/2) 4032522457400580 a001 6765/969323029*4870847^(9/16) 4032522457400590 a001 615/230701876*4870847^(5/8) 4032522457400591 a001 6765/7881196*4870847^(1/4) 4032522457400601 a001 6765/6643838879*4870847^(11/16) 4032522457400612 a001 6765/17393796001*4870847^(3/4) 4032522457400622 a001 6765/45537549124*4870847^(13/16) 4032522457400633 a001 6765/119218851371*4870847^(7/8) 4032522457400643 a001 615/28374454999*4870847^(15/16) 4032522457400654 a004 Fibonacci(20)*Lucas(32)/(1/2+sqrt(5)/2)^57 4032522457400809 a001 2255/4250681*1860498^(3/10) 4032522457400860 a001 6765/7881196*1860498^(4/15) 4032522457400882 a001 615/1875749*1860498^(1/3) 4032522457400917 a001 6765/3010349*7881196^(2/11) 4032522457400929 a001 6765/3010349*141422324^(2/13) 4032522457400929 a001 6765/3010349*2537720636^(2/15) 4032522457400929 a001 6765/3010349*45537549124^(2/17) 4032522457400929 a001 6765/3010349*14662949395604^(2/21) 4032522457400929 a001 6765/3010349*(1/2+1/2*5^(1/2))^6 4032522457400929 a001 3035836595/75283811239 4032522457400929 a001 6765/3010349*10749957122^(1/8) 4032522457400929 a001 6765/3010349*4106118243^(3/23) 4032522457400929 a001 6765/3010349*1568397607^(3/22) 4032522457400929 a001 6765/3010349*599074578^(1/7) 4032522457400929 a001 6765/3010349*228826127^(3/20) 4032522457400929 a004 Fibonacci(31)/Lucas(20)/(1/2+sqrt(5)/2)^16 4032522457400929 a001 6765/3010349*87403803^(3/19) 4032522457400930 a001 6765/3010349*33385282^(1/6) 4032522457400933 a001 6765/3010349*12752043^(3/17) 4032522457400951 a001 6765/54018521*1860498^(2/5) 4032522457400961 a001 6765/3010349*4870847^(3/16) 4032522457401028 a001 6765/141422324*1860498^(7/15) 4032522457401066 a001 6765/228826127*1860498^(1/2) 4032522457401105 a001 6765/370248451*1860498^(8/15) 4032522457401162 a001 6765/3010349*1860498^(1/5) 4032522457401183 a001 6765/969323029*1860498^(3/5) 4032522457401261 a001 615/230701876*1860498^(2/3) 4032522457401300 a001 2255/1368706081*1860498^(7/10) 4032522457401338 a001 6765/6643838879*1860498^(11/15) 4032522457401416 a001 6765/17393796001*1860498^(4/5) 4032522457401455 a001 55/228811001*1860498^(5/6) 4032522457401494 a001 6765/45537549124*1860498^(13/15) 4032522457401533 a001 6765/73681302247*1860498^(9/10) 4032522457401571 a001 6765/119218851371*1860498^(14/15) 4032522457401649 a004 Fibonacci(20)*Lucas(30)/(1/2+sqrt(5)/2)^55 4032522457402310 a001 6765/4870847*710647^(1/4) 4032522457402640 a001 6765/3010349*710647^(3/14) 4032522457402830 a001 6765/7881196*710647^(2/7) 4032522457403345 a001 615/1875749*710647^(5/14) 4032522457403534 a001 6765/1149851*(1/2+1/2*5^(1/2))^4 4032522457403534 a001 6765/1149851*23725150497407^(1/16) 4032522457403534 a001 6765/1149851*73681302247^(1/13) 4032522457403534 a001 3478759185/86267571272 4032522457403534 a001 6765/1149851*10749957122^(1/12) 4032522457403534 a001 6765/1149851*4106118243^(2/23) 4032522457403534 a001 6765/1149851*1568397607^(1/11) 4032522457403534 a001 6765/1149851*599074578^(2/21) 4032522457403534 a001 6765/1149851*228826127^(1/10) 4032522457403534 a001 6765/1149851*87403803^(2/19) 4032522457403534 a004 Fibonacci(29)/Lucas(20)/(1/2+sqrt(5)/2)^14 4032522457403534 a001 6765/1149851*33385282^(1/9) 4032522457403537 a001 6765/1149851*12752043^(2/17) 4032522457403555 a001 6765/1149851*4870847^(1/8) 4032522457403689 a001 6765/1149851*1860498^(2/15) 4032522457403908 a001 6765/54018521*710647^(3/7) 4032522457404477 a001 6765/141422324*710647^(1/2) 4032522457404675 a001 6765/1149851*710647^(1/7) 4032522457405047 a001 6765/370248451*710647^(4/7) 4032522457405617 a001 6765/969323029*710647^(9/14) 4032522457406188 a001 615/230701876*710647^(5/7) 4032522457406473 a001 2255/1368706081*710647^(3/4) 4032522457406753 a001 28657/1149851*3571^(1/17) 4032522457406758 a001 6765/6643838879*710647^(11/14) 4032522457407328 a001 6765/17393796001*710647^(6/7) 4032522457407899 a001 6765/45537549124*710647^(13/14) 4032522457408469 a004 Fibonacci(20)*Lucas(28)/(1/2+sqrt(5)/2)^53 4032522457411954 a001 6765/1149851*271443^(2/13) 4032522457413559 a001 6765/3010349*271443^(3/13) 4032522457417389 a001 6765/7881196*271443^(4/13) 4032522457421389 a001 6765/439204*(1/2+1/2*5^(1/2))^2 4032522457421389 a001 442922590/10983760033 4032522457421389 a001 6765/439204*10749957122^(1/24) 4032522457421389 a001 6765/439204*4106118243^(1/23) 4032522457421389 a001 6765/439204*1568397607^(1/22) 4032522457421389 a001 6765/439204*599074578^(1/21) 4032522457421389 a001 6765/439204*228826127^(1/20) 4032522457421389 a001 6765/439204*87403803^(1/19) 4032522457421389 a004 Fibonacci(27)/Lucas(20)/(1/2+sqrt(5)/2)^12 4032522457421389 a001 6765/439204*33385282^(1/18) 4032522457421390 a001 6765/439204*12752043^(1/17) 4032522457421399 a001 6765/439204*4870847^(1/16) 4032522457421466 a001 6765/439204*1860498^(1/15) 4032522457421543 a001 615/1875749*271443^(5/13) 4032522457421959 a001 6765/439204*710647^(1/14) 4032522457425599 a001 6765/439204*271443^(1/13) 4032522457425745 a001 6765/54018521*271443^(6/13) 4032522457427848 a001 2255/29134601*271443^(1/2) 4032522457429954 a001 6765/141422324*271443^(7/13) 4032522457434164 a001 6765/370248451*271443^(8/13) 4032522457438374 a001 6765/969323029*271443^(9/13) 4032522457439389 a001 6765/710647*103682^(1/8) 4032522457442584 a001 615/230701876*271443^(10/13) 4032522457446793 a001 6765/6643838879*271443^(11/13) 4032522457451003 a001 6765/17393796001*271443^(12/13) 4032522457452649 a001 6765/439204*103682^(1/12) 4032522457455213 a004 Fibonacci(20)*Lucas(26)/(1/2+sqrt(5)/2)^51 4032522457462623 a001 2255/90481*39603^(1/22) 4032522457466054 a001 6765/1149851*103682^(1/6) 4032522457471912 a001 5473/16692641*9349^(10/19) 4032522457477469 a001 55/15126*103682^(5/24) 4032522457494709 a001 6765/3010349*103682^(1/4) 4032522457509724 a001 6765/4870847*103682^(7/24) 4032522457525589 a001 6765/7881196*103682^(1/3) 4032522457541129 a001 2255/4250681*103682^(3/8) 4032522457543767 a001 615/15251 4032522457543767 a004 Fibonacci(25)/Lucas(20)/(1/2+sqrt(5)/2)^10 4032522457556793 a001 615/1875749*103682^(5/12) 4032522457572410 a001 6765/33385282*103682^(11/24) 4032522457588045 a001 6765/54018521*103682^(1/2) 4032522457603673 a001 2255/29134601*103682^(13/24) 4032522457619304 a001 6765/141422324*103682^(7/12) 4032522457634934 a001 6765/228826127*103682^(5/8) 4032522457650280 a001 144/103681*9349^(7/19) 4032522457650564 a001 6765/370248451*103682^(2/3) 4032522457655126 a001 6765/439204*39603^(1/11) 4032522457666194 a001 2255/199691526*103682^(17/24) 4032522457681824 a001 6765/969323029*103682^(3/4) 4032522457697454 a001 6765/1568397607*103682^(19/24) 4032522457713084 a001 615/230701876*103682^(5/6) 4032522457728714 a001 2255/1368706081*103682^(7/8) 4032522457743105 a001 6765/710647*39603^(3/22) 4032522457744344 a001 6765/6643838879*103682^(11/12) 4032522457759974 a001 6765/10749957122*103682^(23/24) 4032522457775604 a004 Fibonacci(20)*Lucas(24)/(1/2+sqrt(5)/2)^49 4032522457865143 a001 2584/167761*2207^(1/8) 4032522457871009 a001 6765/1149851*39603^(2/11) 4032522457882606 a001 89/39604*9349^(6/19) 4032522457970674 a001 121393/87403803*9349^(7/19) 4032522457983662 a001 55/15126*39603^(5/22) 4032522458017419 a001 317811/228826127*9349^(7/19) 4032522458024239 a001 416020/299537289*9349^(7/19) 4032522458025234 a001 311187/224056801*9349^(7/19) 4032522458025379 a001 5702887/4106118243*9349^(7/19) 4032522458025400 a001 7465176/5374978561*9349^(7/19) 4032522458025403 a001 39088169/28143753123*9349^(7/19) 4032522458025404 a001 14619165/10525900321*9349^(7/19) 4032522458025404 a001 133957148/96450076809*9349^(7/19) 4032522458025404 a001 701408733/505019158607*9349^(7/19) 4032522458025404 a001 1836311903/1322157322203*9349^(7/19) 4032522458025404 a001 14930208/10749853441*9349^(7/19) 4032522458025404 a001 12586269025/9062201101803*9349^(7/19) 4032522458025404 a001 32951280099/23725150497407*9349^(7/19) 4032522458025404 a001 10182505537/7331474697802*9349^(7/19) 4032522458025404 a001 7778742049/5600748293801*9349^(7/19) 4032522458025404 a001 2971215073/2139295485799*9349^(7/19) 4032522458025404 a001 567451585/408569081798*9349^(7/19) 4032522458025404 a001 433494437/312119004989*9349^(7/19) 4032522458025404 a001 165580141/119218851371*9349^(7/19) 4032522458025404 a001 31622993/22768774562*9349^(7/19) 4032522458025405 a001 24157817/17393796001*9349^(7/19) 4032522458025413 a001 9227465/6643838879*9349^(7/19) 4032522458025469 a001 1762289/1268860318*9349^(7/19) 4032522458025849 a001 1346269/969323029*9349^(7/19) 4032522458028454 a001 514229/370248451*9349^(7/19) 4032522458046309 a001 98209/70711162*9349^(7/19) 4032522458102141 a001 6765/3010349*39603^(3/11) 4032522458168688 a001 75025/54018521*9349^(7/19) 4032522458218395 a001 6765/4870847*39603^(7/22) 4032522458226887 a001 2255/90481*15127^(1/20) 4032522458335498 a001 6765/7881196*39603^(4/11) 4032522458382561 a001 64621535/1602508992 4032522458382561 a004 Fibonacci(20)/Lucas(23)/(1/2+sqrt(5)/2)^2 4032522458382561 a004 Fibonacci(23)/Lucas(20)/(1/2+sqrt(5)/2)^8 4032522458452277 a001 2255/4250681*39603^(9/22) 4032522458569180 a001 615/1875749*39603^(5/11) 4032522458686035 a001 6765/33385282*39603^(1/2) 4032522458749207 a001 987/64079*843^(1/7) 4032522458802909 a001 6765/54018521*39603^(6/11) 4032522458919776 a001 2255/29134601*39603^(13/22) 4032522459007490 a001 28657/20633239*9349^(7/19) 4032522459036645 a001 6765/141422324*39603^(7/11) 4032522459153513 a001 6765/228826127*39603^(15/22) 4032522459183654 a001 6765/439204*15127^(1/10) 4032522459270382 a001 6765/370248451*39603^(8/11) 4032522459387251 a001 2255/199691526*39603^(17/22) 4032522459504119 a001 6765/969323029*39603^(9/11) 4032522459620988 a001 6765/1568397607*39603^(19/22) 4032522459737857 a001 615/230701876*39603^(10/11) 4032522459854725 a001 2255/1368706081*39603^(21/22) 4032522459900172 a001 10946/20633239*9349^(9/19) 4032522459971594 a004 Fibonacci(20)*Lucas(22)/(1/2+sqrt(5)/2)^47 4032522460035896 a001 6765/710647*15127^(3/20) 4032522460078540 a001 46368/20633239*9349^(6/19) 4032522460310618 a001 17711/4870847*9349^(5/19) 4032522460398923 a001 121393/54018521*9349^(6/19) 4032522460445666 a001 317811/141422324*9349^(6/19) 4032522460452486 a001 832040/370248451*9349^(6/19) 4032522460453481 a001 2178309/969323029*9349^(6/19) 4032522460453626 a001 5702887/2537720636*9349^(6/19) 4032522460453647 a001 14930352/6643838879*9349^(6/19) 4032522460453650 a001 39088169/17393796001*9349^(6/19) 4032522460453651 a001 102334155/45537549124*9349^(6/19) 4032522460453651 a001 267914296/119218851371*9349^(6/19) 4032522460453651 a001 3524667/1568437211*9349^(6/19) 4032522460453651 a001 1836311903/817138163596*9349^(6/19) 4032522460453651 a001 4807526976/2139295485799*9349^(6/19) 4032522460453651 a001 12586269025/5600748293801*9349^(6/19) 4032522460453651 a001 32951280099/14662949395604*9349^(6/19) 4032522460453651 a001 53316291173/23725150497407*9349^(6/19) 4032522460453651 a001 20365011074/9062201101803*9349^(6/19) 4032522460453651 a001 7778742049/3461452808002*9349^(6/19) 4032522460453651 a001 2971215073/1322157322203*9349^(6/19) 4032522460453651 a001 1134903170/505019158607*9349^(6/19) 4032522460453651 a001 433494437/192900153618*9349^(6/19) 4032522460453651 a001 165580141/73681302247*9349^(6/19) 4032522460453651 a001 63245986/28143753123*9349^(6/19) 4032522460453652 a001 24157817/10749957122*9349^(6/19) 4032522460453660 a001 9227465/4106118243*9349^(6/19) 4032522460453716 a001 3524578/1568397607*9349^(6/19) 4032522460454096 a001 1346269/599074578*9349^(6/19) 4032522460456701 a001 514229/228826127*9349^(6/19) 4032522460474555 a001 196418/87403803*9349^(6/19) 4032522460524539 h001 (3/4*exp(1)+11/12)/(11/12*exp(2)+5/9) 4032522460596930 a001 75025/33385282*9349^(6/19) 4032522460928064 a001 6765/1149851*15127^(1/5) 4032522461435702 a001 28657/12752043*9349^(6/19) 4032522461602304 a001 646/35355581*5778^(8/9) 4032522461804981 a001 55/15126*15127^(1/4) 4032522462328385 a001 10946/12752043*9349^(8/19) 4032522462506753 a001 15456/4250681*9349^(5/19) 4032522462687724 a001 6765/3010349*15127^(3/10) 4032522462739480 a001 17711/3010349*9349^(4/19) 4032522462827165 a001 121393/33385282*9349^(5/19) 4032522462873912 a001 105937/29134601*9349^(5/19) 4032522462880733 a001 832040/228826127*9349^(5/19) 4032522462881728 a001 726103/199691526*9349^(5/19) 4032522462881873 a001 5702887/1568397607*9349^(5/19) 4032522462881894 a001 4976784/1368706081*9349^(5/19) 4032522462881897 a001 39088169/10749957122*9349^(5/19) 4032522462881898 a001 831985/228811001*9349^(5/19) 4032522462881898 a001 267914296/73681302247*9349^(5/19) 4032522462881898 a001 233802911/64300051206*9349^(5/19) 4032522462881898 a001 1836311903/505019158607*9349^(5/19) 4032522462881898 a001 1602508992/440719107401*9349^(5/19) 4032522462881898 a001 12586269025/3461452808002*9349^(5/19) 4032522462881898 a001 10983760033/3020733700601*9349^(5/19) 4032522462881898 a001 86267571272/23725150497407*9349^(5/19) 4032522462881898 a001 53316291173/14662949395604*9349^(5/19) 4032522462881898 a001 20365011074/5600748293801*9349^(5/19) 4032522462881898 a001 7778742049/2139295485799*9349^(5/19) 4032522462881898 a001 2971215073/817138163596*9349^(5/19) 4032522462881898 a001 1134903170/312119004989*9349^(5/19) 4032522462881898 a001 433494437/119218851371*9349^(5/19) 4032522462881898 a001 165580141/45537549124*9349^(5/19) 4032522462881898 a001 63245986/17393796001*9349^(5/19) 4032522462881899 a001 24157817/6643838879*9349^(5/19) 4032522462881907 a001 9227465/2537720636*9349^(5/19) 4032522462881963 a001 3524578/969323029*9349^(5/19) 4032522462882343 a001 1346269/370248451*9349^(5/19) 4032522462884948 a001 514229/141422324*9349^(5/19) 4032522462902804 a001 196418/54018521*9349^(5/19) 4032522463025190 a001 75025/20633239*9349^(5/19) 4032522463173784 a001 5473/219602*3571^(1/17) 4032522463568241 a001 6765/4870847*15127^(7/20) 4032522463864039 a001 28657/7881196*9349^(5/19) 4032522464056168 a001 2255/90481*5778^(1/18) 4032522464131737 a001 74049690/1836311903 4032522464131737 a004 Fibonacci(20)/Lucas(21)/(1/2+sqrt(5)/2)^4 4032522464131737 a004 Fibonacci(21)/Lucas(20)/(1/2+sqrt(5)/2)^6 4032522464449608 a001 6765/7881196*15127^(2/5) 4032522464756721 a001 5473/3940598*9349^(7/19) 4032522464935090 a001 11592/1970299*9349^(4/19) 4032522465166117 a001 17711/1860498*9349^(3/19) 4032522465255425 a001 121393/20633239*9349^(4/19) 4032522465302161 a001 317811/54018521*9349^(4/19) 4032522465308980 a001 208010/35355581*9349^(4/19) 4032522465309975 a001 2178309/370248451*9349^(4/19) 4032522465310120 a001 5702887/969323029*9349^(4/19) 4032522465310141 a001 196452/33391061*9349^(4/19) 4032522465310144 a001 39088169/6643838879*9349^(4/19) 4032522465310145 a001 102334155/17393796001*9349^(4/19) 4032522465310145 a001 66978574/11384387281*9349^(4/19) 4032522465310145 a001 701408733/119218851371*9349^(4/19) 4032522465310145 a001 1836311903/312119004989*9349^(4/19) 4032522465310145 a001 1201881744/204284540899*9349^(4/19) 4032522465310145 a001 12586269025/2139295485799*9349^(4/19) 4032522465310145 a001 32951280099/5600748293801*9349^(4/19) 4032522465310145 a001 1135099622/192933544679*9349^(4/19) 4032522465310145 a001 139583862445/23725150497407*9349^(4/19) 4032522465310145 a001 53316291173/9062201101803*9349^(4/19) 4032522465310145 a001 10182505537/1730726404001*9349^(4/19) 4032522465310145 a001 7778742049/1322157322203*9349^(4/19) 4032522465310145 a001 2971215073/505019158607*9349^(4/19) 4032522465310145 a001 567451585/96450076809*9349^(4/19) 4032522465310145 a001 433494437/73681302247*9349^(4/19) 4032522465310145 a001 165580141/28143753123*9349^(4/19) 4032522465310145 a001 31622993/5374978561*9349^(4/19) 4032522465310146 a001 24157817/4106118243*9349^(4/19) 4032522465310154 a001 9227465/1568397607*9349^(4/19) 4032522465310210 a001 1762289/299537289*9349^(4/19) 4032522465310590 a001 1346269/228826127*9349^(4/19) 4032522465313194 a001 514229/87403803*9349^(4/19) 4032522465330651 a001 2255/4250681*15127^(9/20) 4032522465331046 a001 98209/16692641*9349^(4/19) 4032522465376211 a001 4181/439204*3571^(3/17) 4032522465453403 a001 75025/12752043*9349^(4/19) 4032522465720770 a004 Fibonacci(22)*Lucas(21)/(1/2+sqrt(5)/2)^48 4032522466041306 a001 17711/6643838879*24476^(20/21) 4032522466211818 a001 615/1875749*15127^(1/2) 4032522466292051 a001 28657/4870847*9349^(4/19) 4032522466361842 a001 17711/4106118243*24476^(19/21) 4032522466682378 a001 17711/2537720636*24476^(6/7) 4032522467002914 a001 17711/1568397607*24476^(17/21) 4032522467092937 a001 6765/33385282*15127^(11/20) 4032522467184734 a001 10946/4870847*9349^(6/19) 4032522467323449 a001 17711/969323029*24476^(16/21) 4032522467363102 a001 46368/4870847*9349^(3/19) 4032522467598579 a001 17711/1149851*9349^(2/19) 4032522467643985 a001 17711/599074578*24476^(5/7) 4032522467683638 a001 121393/12752043*9349^(3/19) 4032522467730403 a001 317811/33385282*9349^(3/19) 4032522467737226 a001 832040/87403803*9349^(3/19) 4032522467738222 a001 46347/4868641*9349^(3/19) 4032522467738367 a001 5702887/599074578*9349^(3/19) 4032522467738388 a001 14930352/1568397607*9349^(3/19) 4032522467738391 a001 39088169/4106118243*9349^(3/19) 4032522467738392 a001 102334155/10749957122*9349^(3/19) 4032522467738392 a001 267914296/28143753123*9349^(3/19) 4032522467738392 a001 701408733/73681302247*9349^(3/19) 4032522467738392 a001 1836311903/192900153618*9349^(3/19) 4032522467738392 a001 102287808/10745088481*9349^(3/19) 4032522467738392 a001 12586269025/1322157322203*9349^(3/19) 4032522467738392 a001 32951280099/3461452808002*9349^(3/19) 4032522467738392 a001 86267571272/9062201101803*9349^(3/19) 4032522467738392 a001 225851433717/23725150497407*9349^(3/19) 4032522467738392 a001 139583862445/14662949395604*9349^(3/19) 4032522467738392 a001 53316291173/5600748293801*9349^(3/19) 4032522467738392 a001 20365011074/2139295485799*9349^(3/19) 4032522467738392 a001 7778742049/817138163596*9349^(3/19) 4032522467738392 a001 2971215073/312119004989*9349^(3/19) 4032522467738392 a001 1134903170/119218851371*9349^(3/19) 4032522467738392 a001 433494437/45537549124*9349^(3/19) 4032522467738392 a001 165580141/17393796001*9349^(3/19) 4032522467738392 a001 63245986/6643838879*9349^(3/19) 4032522467738393 a001 24157817/2537720636*9349^(3/19) 4032522467738401 a001 9227465/969323029*9349^(3/19) 4032522467738457 a001 3524578/370248451*9349^(3/19) 4032522467738837 a001 1346269/141422324*9349^(3/19) 4032522467741443 a001 514229/54018521*9349^(3/19) 4032522467759306 a001 196418/20633239*9349^(3/19) 4032522467780220 a003 cos(Pi*9/113)-cos(Pi*25/81) 4032522467881740 a001 75025/7881196*9349^(3/19) 4032522467916760 a004 Fibonacci(24)*Lucas(21)/(1/2+sqrt(5)/2)^50 4032522467964521 a001 17711/370248451*24476^(2/3) 4032522467974075 a001 6765/54018521*15127^(3/5) 4032522468237151 a004 Fibonacci(26)*Lucas(21)/(1/2+sqrt(5)/2)^52 4032522468237296 a001 46368/17393796001*24476^(20/21) 4032522468283895 a004 Fibonacci(28)*Lucas(21)/(1/2+sqrt(5)/2)^54 4032522468285057 a001 17711/228826127*24476^(13/21) 4032522468290715 a004 Fibonacci(30)*Lucas(21)/(1/2+sqrt(5)/2)^56 4032522468291710 a004 Fibonacci(32)*Lucas(21)/(1/2+sqrt(5)/2)^58 4032522468291855 a004 Fibonacci(34)*Lucas(21)/(1/2+sqrt(5)/2)^60 4032522468291876 a004 Fibonacci(36)*Lucas(21)/(1/2+sqrt(5)/2)^62 4032522468291879 a004 Fibonacci(38)*Lucas(21)/(1/2+sqrt(5)/2)^64 4032522468291880 a004 Fibonacci(40)*Lucas(21)/(1/2+sqrt(5)/2)^66 4032522468291880 a004 Fibonacci(42)*Lucas(21)/(1/2+sqrt(5)/2)^68 4032522468291880 a004 Fibonacci(44)*Lucas(21)/(1/2+sqrt(5)/2)^70 4032522468291880 a004 Fibonacci(46)*Lucas(21)/(1/2+sqrt(5)/2)^72 4032522468291880 a004 Fibonacci(48)*Lucas(21)/(1/2+sqrt(5)/2)^74 4032522468291880 a004 Fibonacci(50)*Lucas(21)/(1/2+sqrt(5)/2)^76 4032522468291880 a004 Fibonacci(52)*Lucas(21)/(1/2+sqrt(5)/2)^78 4032522468291880 a004 Fibonacci(54)*Lucas(21)/(1/2+sqrt(5)/2)^80 4032522468291880 a004 Fibonacci(56)*Lucas(21)/(1/2+sqrt(5)/2)^82 4032522468291880 a004 Fibonacci(58)*Lucas(21)/(1/2+sqrt(5)/2)^84 4032522468291880 a004 Fibonacci(60)*Lucas(21)/(1/2+sqrt(5)/2)^86 4032522468291880 a004 Fibonacci(62)*Lucas(21)/(1/2+sqrt(5)/2)^88 4032522468291880 a004 Fibonacci(64)*Lucas(21)/(1/2+sqrt(5)/2)^90 4032522468291880 a004 Fibonacci(66)*Lucas(21)/(1/2+sqrt(5)/2)^92 4032522468291880 a004 Fibonacci(68)*Lucas(21)/(1/2+sqrt(5)/2)^94 4032522468291880 a004 Fibonacci(70)*Lucas(21)/(1/2+sqrt(5)/2)^96 4032522468291880 a004 Fibonacci(72)*Lucas(21)/(1/2+sqrt(5)/2)^98 4032522468291880 a004 Fibonacci(74)*Lucas(21)/(1/2+sqrt(5)/2)^100 4032522468291880 a004 Fibonacci(73)*Lucas(21)/(1/2+sqrt(5)/2)^99 4032522468291880 a004 Fibonacci(71)*Lucas(21)/(1/2+sqrt(5)/2)^97 4032522468291880 a004 Fibonacci(69)*Lucas(21)/(1/2+sqrt(5)/2)^95 4032522468291880 a004 Fibonacci(67)*Lucas(21)/(1/2+sqrt(5)/2)^93 4032522468291880 a004 Fibonacci(65)*Lucas(21)/(1/2+sqrt(5)/2)^91 4032522468291880 a004 Fibonacci(63)*Lucas(21)/(1/2+sqrt(5)/2)^89 4032522468291880 a004 Fibonacci(61)*Lucas(21)/(1/2+sqrt(5)/2)^87 4032522468291880 a004 Fibonacci(59)*Lucas(21)/(1/2+sqrt(5)/2)^85 4032522468291880 a004 Fibonacci(57)*Lucas(21)/(1/2+sqrt(5)/2)^83 4032522468291880 a004 Fibonacci(55)*Lucas(21)/(1/2+sqrt(5)/2)^81 4032522468291880 a004 Fibonacci(53)*Lucas(21)/(1/2+sqrt(5)/2)^79 4032522468291880 a004 Fibonacci(51)*Lucas(21)/(1/2+sqrt(5)/2)^77 4032522468291880 a004 Fibonacci(49)*Lucas(21)/(1/2+sqrt(5)/2)^75 4032522468291880 a004 Fibonacci(47)*Lucas(21)/(1/2+sqrt(5)/2)^73 4032522468291880 a004 Fibonacci(45)*Lucas(21)/(1/2+sqrt(5)/2)^71 4032522468291880 a004 Fibonacci(43)*Lucas(21)/(1/2+sqrt(5)/2)^69 4032522468291880 a001 1/5473*(1/2+1/2*5^(1/2))^16 4032522468291880 a004 Fibonacci(41)*Lucas(21)/(1/2+sqrt(5)/2)^67 4032522468291880 a004 Fibonacci(39)*Lucas(21)/(1/2+sqrt(5)/2)^65 4032522468291881 a004 Fibonacci(37)*Lucas(21)/(1/2+sqrt(5)/2)^63 4032522468291889 a004 Fibonacci(35)*Lucas(21)/(1/2+sqrt(5)/2)^61 4032522468291945 a004 Fibonacci(33)*Lucas(21)/(1/2+sqrt(5)/2)^59 4032522468292325 a004 Fibonacci(31)*Lucas(21)/(1/2+sqrt(5)/2)^57 4032522468294930 a004 Fibonacci(29)*Lucas(21)/(1/2+sqrt(5)/2)^55 4032522468312716 a001 2584/228826127*5778^(17/18) 4032522468312785 a004 Fibonacci(27)*Lucas(21)/(1/2+sqrt(5)/2)^53 4032522468346609 a001 24476/121393*8^(1/3) 4032522468435163 a004 Fibonacci(25)*Lucas(21)/(1/2+sqrt(5)/2)^51 4032522468557687 a001 121393/45537549124*24476^(20/21) 4032522468557832 a001 23184/5374978561*24476^(19/21) 4032522468604431 a001 317811/119218851371*24476^(20/21) 4032522468605593 a001 17711/141422324*24476^(4/7) 4032522468611251 a001 75640/28374454999*24476^(20/21) 4032522468612246 a001 2178309/817138163596*24476^(20/21) 4032522468612391 a001 5702887/2139295485799*24476^(20/21) 4032522468612412 a001 14930352/5600748293801*24476^(20/21) 4032522468612415 a001 39088169/14662949395604*24476^(20/21) 4032522468612416 a001 63245986/23725150497407*24476^(20/21) 4032522468612417 a001 24157817/9062201101803*24476^(20/21) 4032522468612425 a001 9227465/3461452808002*24476^(20/21) 4032522468612481 a001 3524578/1322157322203*24476^(20/21) 4032522468612861 a001 1346269/505019158607*24476^(20/21) 4032522468615466 a001 514229/192900153618*24476^(20/21) 4032522468633321 a001 196418/73681302247*24476^(20/21) 4032522468720913 a001 28657/3010349*9349^(3/19) 4032522468755699 a001 75025/28143753123*24476^(20/21) 4032522468855205 a001 2255/29134601*15127^(13/20) 4032522468878222 a001 121393/28143753123*24476^(19/21) 4032522468878368 a001 46368/6643838879*24476^(6/7) 4032522468924967 a001 317811/73681302247*24476^(19/21) 4032522468926128 a001 17711/87403803*24476^(11/21) 4032522468931787 a001 416020/96450076809*24476^(19/21) 4032522468932782 a001 46347/10745088481*24476^(19/21) 4032522468932927 a001 5702887/1322157322203*24476^(19/21) 4032522468932948 a001 7465176/1730726404001*24476^(19/21) 4032522468932951 a001 39088169/9062201101803*24476^(19/21) 4032522468932952 a001 102334155/23725150497407*24476^(19/21) 4032522468932952 a001 31622993/7331474697802*24476^(19/21) 4032522468932953 a001 24157817/5600748293801*24476^(19/21) 4032522468932961 a001 9227465/2139295485799*24476^(19/21) 4032522468933017 a001 1762289/408569081798*24476^(19/21) 4032522468933397 a001 1346269/312119004989*24476^(19/21) 4032522468936002 a001 514229/119218851371*24476^(19/21) 4032522468953856 a001 98209/22768774562*24476^(19/21) 4032522469076235 a001 75025/17393796001*24476^(19/21) 4032522469198758 a001 121393/17393796001*24476^(6/7) 4032522469198904 a001 15456/1368706081*24476^(17/21) 4032522469245503 a001 317811/45537549124*24476^(6/7) 4032522469246666 a001 17711/54018521*24476^(10/21) 4032522469252323 a001 832040/119218851371*24476^(6/7) 4032522469253318 a001 2178309/312119004989*24476^(6/7) 4032522469253463 a001 5702887/817138163596*24476^(6/7) 4032522469253484 a001 14930352/2139295485799*24476^(6/7) 4032522469253487 a001 39088169/5600748293801*24476^(6/7) 4032522469253487 a001 102334155/14662949395604*24476^(6/7) 4032522469253488 a001 165580141/23725150497407*24476^(6/7) 4032522469253488 a001 63245986/9062201101803*24476^(6/7) 4032522469253489 a001 24157817/3461452808002*24476^(6/7) 4032522469253497 a001 9227465/1322157322203*24476^(6/7) 4032522469253552 a001 3524578/505019158607*24476^(6/7) 4032522469253933 a001 1346269/192900153618*24476^(6/7) 4032522469256538 a001 514229/73681302247*24476^(6/7) 4032522469273957 a004 Fibonacci(23)*Lucas(21)/(1/2+sqrt(5)/2)^49 4032522469274392 a001 196418/28143753123*24476^(6/7) 4032522469396771 a001 75025/10749957122*24476^(6/7) 4032522469519294 a001 121393/10749957122*24476^(17/21) 4032522469519439 a001 11592/634430159*24476^(16/21) 4032522469566039 a001 105937/9381251041*24476^(17/21) 4032522469567197 a001 17711/33385282*24476^(3/7) 4032522469572858 a001 832040/73681302247*24476^(17/21) 4032522469573853 a001 726103/64300051206*24476^(17/21) 4032522469573999 a001 5702887/505019158607*24476^(17/21) 4032522469574020 a001 4976784/440719107401*24476^(17/21) 4032522469574023 a001 39088169/3461452808002*24476^(17/21) 4032522469574023 a001 34111385/3020733700601*24476^(17/21) 4032522469574023 a001 267914296/23725150497407*24476^(17/21) 4032522469574023 a001 165580141/14662949395604*24476^(17/21) 4032522469574024 a001 63245986/5600748293801*24476^(17/21) 4032522469574025 a001 24157817/2139295485799*24476^(17/21) 4032522469574033 a001 9227465/817138163596*24476^(17/21) 4032522469574088 a001 3524578/312119004989*24476^(17/21) 4032522469574468 a001 1346269/119218851371*24476^(17/21) 4032522469577073 a001 514229/45537549124*24476^(17/21) 4032522469594492 a001 28657/10749957122*24476^(20/21) 4032522469594928 a001 196418/17393796001*24476^(17/21) 4032522469613596 a001 10946/3010349*9349^(5/19) 4032522469717306 a001 75025/6643838879*24476^(17/21) 4032522469736338 a001 6765/141422324*15127^(7/10) 4032522469791964 a001 46368/3010349*9349^(2/19) 4032522469839830 a001 121393/6643838879*24476^(16/21) 4032522469839975 a001 6624/224056801*24476^(5/7) 4032522469880913 a001 313679521/7778742049 4032522469880913 a004 Fibonacci(22)/Lucas(22)/(1/2+sqrt(5)/2)^5 4032522469886574 a001 10959/599786069*24476^(16/21) 4032522469887746 a001 17711/20633239*24476^(8/21) 4032522469893394 a001 208010/11384387281*24476^(16/21) 4032522469894389 a001 2178309/119218851371*24476^(16/21) 4032522469894534 a001 5702887/312119004989*24476^(16/21) 4032522469894556 a001 3732588/204284540899*24476^(16/21) 4032522469894559 a001 39088169/2139295485799*24476^(16/21) 4032522469894559 a001 102334155/5600748293801*24476^(16/21) 4032522469894559 a001 10946/599074579*24476^(16/21) 4032522469894559 a001 433494437/23725150497407*24476^(16/21) 4032522469894559 a001 165580141/9062201101803*24476^(16/21) 4032522469894559 a001 31622993/1730726404001*24476^(16/21) 4032522469894561 a001 24157817/1322157322203*24476^(16/21) 4032522469894569 a001 9227465/505019158607*24476^(16/21) 4032522469894624 a001 1762289/96450076809*24476^(16/21) 4032522469895004 a001 1346269/73681302247*24476^(16/21) 4032522469897609 a001 514229/28143753123*24476^(16/21) 4032522469915028 a001 28657/6643838879*24476^(19/21) 4032522469915464 a001 98209/5374978561*24476^(16/21) 4032522470015791 a001 17711/710647*9349^(1/19) 4032522470037842 a001 75025/4106118243*24476^(16/21) 4032522470111974 a001 121393/7881196*9349^(2/19) 4032522470158663 a001 10959/711491*9349^(2/19) 4032522470160366 a001 121393/4106118243*24476^(5/7) 4032522470160511 a001 46368/969323029*24476^(2/3) 4032522470165475 a001 832040/54018521*9349^(2/19) 4032522470166469 a001 2178309/141422324*9349^(2/19) 4032522470166614 a001 5702887/370248451*9349^(2/19) 4032522470166635 a001 14930352/969323029*9349^(2/19) 4032522470166638 a001 39088169/2537720636*9349^(2/19) 4032522470166639 a001 102334155/6643838879*9349^(2/19) 4032522470166639 a001 9238424/599786069*9349^(2/19) 4032522470166639 a001 701408733/45537549124*9349^(2/19) 4032522470166639 a001 1836311903/119218851371*9349^(2/19) 4032522470166639 a001 4807526976/312119004989*9349^(2/19) 4032522470166639 a001 12586269025/817138163596*9349^(2/19) 4032522470166639 a001 32951280099/2139295485799*9349^(2/19) 4032522470166639 a001 86267571272/5600748293801*9349^(2/19) 4032522470166639 a001 7787980473/505618944676*9349^(2/19) 4032522470166639 a001 365435296162/23725150497407*9349^(2/19) 4032522470166639 a001 139583862445/9062201101803*9349^(2/19) 4032522470166639 a001 53316291173/3461452808002*9349^(2/19) 4032522470166639 a001 20365011074/1322157322203*9349^(2/19) 4032522470166639 a001 7778742049/505019158607*9349^(2/19) 4032522470166639 a001 2971215073/192900153618*9349^(2/19) 4032522470166639 a001 1134903170/73681302247*9349^(2/19) 4032522470166639 a001 433494437/28143753123*9349^(2/19) 4032522470166639 a001 165580141/10749957122*9349^(2/19) 4032522470166639 a001 63245986/4106118243*9349^(2/19) 4032522470166640 a001 24157817/1568397607*9349^(2/19) 4032522470166648 a001 9227465/599074578*9349^(2/19) 4032522470166704 a001 3524578/228826127*9349^(2/19) 4032522470167083 a001 1346269/87403803*9349^(2/19) 4032522470169685 a001 514229/33385282*9349^(2/19) 4032522470187519 a001 196418/12752043*9349^(2/19) 4032522470207110 a001 317811/10749957122*24476^(5/7) 4032522470208247 a001 17711/12752043*24476^(1/3) 4032522470213930 a001 832040/28143753123*24476^(5/7) 4032522470214925 a001 311187/10525900321*24476^(5/7) 4032522470215070 a001 5702887/192900153618*24476^(5/7) 4032522470215092 a001 14930352/505019158607*24476^(5/7) 4032522470215095 a001 39088169/1322157322203*24476^(5/7) 4032522470215095 a001 6765/228826126*24476^(5/7) 4032522470215095 a001 267914296/9062201101803*24476^(5/7) 4032522470215095 a001 701408733/23725150497407*24476^(5/7) 4032522470215095 a001 433494437/14662949395604*24476^(5/7) 4032522470215095 a001 165580141/5600748293801*24476^(5/7) 4032522470215095 a001 63245986/2139295485799*24476^(5/7) 4032522470215097 a001 24157817/817138163596*24476^(5/7) 4032522470215105 a001 9227465/312119004989*24476^(5/7) 4032522470215160 a001 3524578/119218851371*24476^(5/7) 4032522470215540 a001 1346269/45537549124*24476^(5/7) 4032522470218145 a001 514229/17393796001*24476^(5/7) 4032522470235564 a001 28657/4106118243*24476^(6/7) 4032522470236000 a001 196418/6643838879*24476^(5/7) 4032522470309752 a001 75025/4870847*9349^(2/19) 4032522470358378 a001 75025/2537720636*24476^(5/7) 4032522470480902 a001 121393/2537720636*24476^(2/3) 4032522470481047 a001 2576/33281921*24476^(13/21) 4032522470527646 a001 317811/6643838879*24476^(2/3) 4032522470528873 a001 89/39604*24476^(2/7) 4032522470534466 a001 832040/17393796001*24476^(2/3) 4032522470535461 a001 2178309/45537549124*24476^(2/3) 4032522470535606 a001 5702887/119218851371*24476^(2/3) 4032522470535627 a001 14930352/312119004989*24476^(2/3) 4032522470535630 a001 4181/87403804*24476^(2/3) 4032522470535631 a001 102334155/2139295485799*24476^(2/3) 4032522470535631 a001 267914296/5600748293801*24476^(2/3) 4032522470535631 a001 701408733/14662949395604*24476^(2/3) 4032522470535631 a001 1134903170/23725150497407*24476^(2/3) 4032522470535631 a001 433494437/9062201101803*24476^(2/3) 4032522470535631 a001 165580141/3461452808002*24476^(2/3) 4032522470535631 a001 63245986/1322157322203*24476^(2/3) 4032522470535632 a001 24157817/505019158607*24476^(2/3) 4032522470535640 a001 9227465/192900153618*24476^(2/3) 4032522470535696 a001 3524578/73681302247*24476^(2/3) 4032522470536076 a001 1346269/28143753123*24476^(2/3) 4032522470538681 a001 514229/10749957122*24476^(2/3) 4032522470556100 a001 28657/2537720636*24476^(17/21) 4032522470556536 a001 196418/4106118243*24476^(2/3) 4032522470617471 a001 6765/228826127*15127^(3/4) 4032522470678914 a001 75025/1568397607*24476^(2/3) 4032522470801438 a001 121393/1568397607*24476^(13/21) 4032522470801583 a001 46368/370248451*24476^(4/7) 4032522470842214 a001 6765/439204*5778^(1/9) 4032522470848182 a001 105937/1368706081*24476^(13/21) 4032522470849174 a001 17711/4870847*24476^(5/21) 4032522470855002 a001 416020/5374978561*24476^(13/21) 4032522470855997 a001 726103/9381251041*24476^(13/21) 4032522470856142 a001 5702887/73681302247*24476^(13/21) 4032522470856163 a001 2584/33385281*24476^(13/21) 4032522470856166 a001 39088169/505019158607*24476^(13/21) 4032522470856167 a001 34111385/440719107401*24476^(13/21) 4032522470856167 a001 133957148/1730726404001*24476^(13/21) 4032522470856167 a001 233802911/3020733700601*24476^(13/21) 4032522470856167 a001 1836311903/23725150497407*24476^(13/21) 4032522470856167 a001 567451585/7331474697802*24476^(13/21) 4032522470856167 a001 433494437/5600748293801*24476^(13/21) 4032522470856167 a001 165580141/2139295485799*24476^(13/21) 4032522470856167 a001 31622993/408569081798*24476^(13/21) 4032522470856168 a001 24157817/312119004989*24476^(13/21) 4032522470856176 a001 9227465/119218851371*24476^(13/21) 4032522470856232 a001 1762289/22768774562*24476^(13/21) 4032522470856612 a001 1346269/17393796001*24476^(13/21) 4032522470859217 a001 514229/6643838879*24476^(13/21) 4032522470876636 a001 28657/1568397607*24476^(16/21) 4032522470877072 a001 98209/1268860318*24476^(13/21) 4032522470999450 a001 75025/969323029*24476^(13/21) 4032522471121973 a001 121393/969323029*24476^(4/7) 4032522471122119 a001 46368/228826127*24476^(11/21) 4032522471147550 a001 28657/1860498*9349^(2/19) 4032522471168718 a001 317811/2537720636*24476^(4/7) 4032522471170325 a001 17711/3010349*24476^(4/21) 4032522471175538 a001 832040/6643838879*24476^(4/7) 4032522471176533 a001 2178309/17393796001*24476^(4/7) 4032522471176678 a001 1597/12752044*24476^(4/7) 4032522471176699 a001 14930352/119218851371*24476^(4/7) 4032522471176702 a001 39088169/312119004989*24476^(4/7) 4032522471176703 a001 102334155/817138163596*24476^(4/7) 4032522471176703 a001 267914296/2139295485799*24476^(4/7) 4032522471176703 a001 701408733/5600748293801*24476^(4/7) 4032522471176703 a001 1836311903/14662949395604*24476^(4/7) 4032522471176703 a001 2971215073/23725150497407*24476^(4/7) 4032522471176703 a001 1134903170/9062201101803*24476^(4/7) 4032522471176703 a001 433494437/3461452808002*24476^(4/7) 4032522471176703 a001 165580141/1322157322203*24476^(4/7) 4032522471176703 a001 63245986/505019158607*24476^(4/7) 4032522471176704 a001 24157817/192900153618*24476^(4/7) 4032522471176712 a001 9227465/73681302247*24476^(4/7) 4032522471176768 a001 3524578/28143753123*24476^(4/7) 4032522471177148 a001 1346269/10749957122*24476^(4/7) 4032522471179753 a001 514229/4106118243*24476^(4/7) 4032522471197172 a001 28657/969323029*24476^(5/7) 4032522471197607 a001 196418/1568397607*24476^(4/7) 4032522471319986 a001 75025/599074578*24476^(4/7) 4032522471442509 a001 121393/599074578*24476^(11/21) 4032522471442655 a001 11592/35355581*24476^(10/21) 4032522471469947 a004 Fibonacci(22)*Lucas(23)/(1/2+sqrt(5)/2)^50 4032522471489251 a001 17711/1860498*24476^(1/7) 4032522471489254 a001 317811/1568397607*24476^(11/21) 4032522471496074 a001 832040/4106118243*24476^(11/21) 4032522471497069 a001 987/4870846*24476^(11/21) 4032522471497214 a001 5702887/28143753123*24476^(11/21) 4032522471497235 a001 14930352/73681302247*24476^(11/21) 4032522471497238 a001 39088169/192900153618*24476^(11/21) 4032522471497238 a001 102334155/505019158607*24476^(11/21) 4032522471497239 a001 267914296/1322157322203*24476^(11/21) 4032522471497239 a001 701408733/3461452808002*24476^(11/21) 4032522471497239 a001 1836311903/9062201101803*24476^(11/21) 4032522471497239 a001 4807526976/23725150497407*24476^(11/21) 4032522471497239 a001 2971215073/14662949395604*24476^(11/21) 4032522471497239 a001 1134903170/5600748293801*24476^(11/21) 4032522471497239 a001 433494437/2139295485799*24476^(11/21) 4032522471497239 a001 165580141/817138163596*24476^(11/21) 4032522471497239 a001 63245986/312119004989*24476^(11/21) 4032522471497240 a001 24157817/119218851371*24476^(11/21) 4032522471497248 a001 9227465/45537549124*24476^(11/21) 4032522471497303 a001 3524578/17393796001*24476^(11/21) 4032522471497684 a001 1346269/6643838879*24476^(11/21) 4032522471498603 a001 6765/370248451*15127^(4/5) 4032522471500288 a001 514229/2537720636*24476^(11/21) 4032522471512646 a001 17711/17393796001*64079^(22/23) 4032522471517708 a001 28657/599074578*24476^(2/3) 4032522471518143 a001 196418/969323029*24476^(11/21) 4032522471555344 a001 17711/10749957122*64079^(21/23) 4032522471598043 a001 17711/6643838879*64079^(20/23) 4032522471640522 a001 75025/370248451*24476^(11/21) 4032522471640742 a001 17711/4106118243*64079^(19/23) 4032522471683441 a001 17711/2537720636*64079^(18/23) 4032522471726140 a001 17711/1568397607*64079^(17/23) 4032522471763045 a001 121393/370248451*24476^(10/21) 4032522471763190 a001 15456/29134601*24476^(3/7) 4032522471768839 a001 17711/969323029*64079^(16/23) 4032522471809789 a001 317811/969323029*24476^(10/21) 4032522471811538 a001 17711/599074578*64079^(15/23) 4032522471814001 a001 17711/1149851*24476^(2/21) 4032522471816609 a001 610/1860499*24476^(10/21) 4032522471817604 a001 2178309/6643838879*24476^(10/21) 4032522471817750 a001 5702887/17393796001*24476^(10/21) 4032522471817771 a001 3732588/11384387281*24476^(10/21) 4032522471817774 a001 39088169/119218851371*24476^(10/21) 4032522471817774 a001 9303105/28374454999*24476^(10/21) 4032522471817774 a001 66978574/204284540899*24476^(10/21) 4032522471817774 a001 701408733/2139295485799*24476^(10/21) 4032522471817774 a001 1836311903/5600748293801*24476^(10/21) 4032522471817774 a001 1201881744/3665737348901*24476^(10/21) 4032522471817774 a001 7778742049/23725150497407*24476^(10/21) 4032522471817774 a001 2971215073/9062201101803*24476^(10/21) 4032522471817774 a001 567451585/1730726404001*24476^(10/21) 4032522471817774 a001 433494437/1322157322203*24476^(10/21) 4032522471817774 a001 165580141/505019158607*24476^(10/21) 4032522471817775 a001 31622993/96450076809*24476^(10/21) 4032522471817776 a001 24157817/73681302247*24476^(10/21) 4032522471817784 a001 9227465/28143753123*24476^(10/21) 4032522471817839 a001 1762289/5374978561*24476^(10/21) 4032522471818219 a001 1346269/4106118243*24476^(10/21) 4032522471820824 a001 514229/1568397607*24476^(10/21) 4032522471838243 a001 28657/370248451*24476^(13/21) 4032522471838679 a001 98209/299537289*24476^(10/21) 4032522471854237 a001 17711/370248451*64079^(14/23) 4032522471896936 a001 17711/228826127*64079^(13/23) 4032522471939636 a001 17711/141422324*64079^(12/23) 4032522471961057 a001 75025/228826127*24476^(10/21) 4032522471982334 a001 17711/87403803*64079^(11/23) 4032522472025035 a001 17711/54018521*64079^(10/23) 4032522472040233 a001 5473/930249*9349^(4/19) 4032522472067729 a001 17711/33385282*64079^(9/23) 4032522472076903 a001 410611824/10182505537 4032522472076903 a004 Fibonacci(22)/Lucas(24)/(1/2+sqrt(5)/2)^3 4032522472076903 a004 Fibonacci(24)/Lucas(22)/(1/2+sqrt(5)/2)^7 4032522472083581 a001 121393/228826127*24476^(3/7) 4032522472083728 a001 46368/54018521*24476^(8/21) 4032522472110441 a001 17711/20633239*64079^(8/23) 4032522472123502 a001 17711/710647*24476^(1/21) 4032522472130325 a001 377/710646*24476^(3/7) 4032522472137145 a001 832040/1568397607*24476^(3/7) 4032522472138140 a001 726103/1368706081*24476^(3/7) 4032522472138285 a001 5702887/10749957122*24476^(3/7) 4032522472138307 a001 4976784/9381251041*24476^(3/7) 4032522472138310 a001 39088169/73681302247*24476^(3/7) 4032522472138310 a001 34111385/64300051206*24476^(3/7) 4032522472138310 a001 267914296/505019158607*24476^(3/7) 4032522472138310 a001 233802911/440719107401*24476^(3/7) 4032522472138310 a001 1836311903/3461452808002*24476^(3/7) 4032522472138310 a001 1602508992/3020733700601*24476^(3/7) 4032522472138310 a001 12586269025/23725150497407*24476^(3/7) 4032522472138310 a001 7778742049/14662949395604*24476^(3/7) 4032522472138310 a001 2971215073/5600748293801*24476^(3/7) 4032522472138310 a001 1134903170/2139295485799*24476^(3/7) 4032522472138310 a001 433494437/817138163596*24476^(3/7) 4032522472138310 a001 165580141/312119004989*24476^(3/7) 4032522472138310 a001 63245986/119218851371*24476^(3/7) 4032522472138312 a001 24157817/45537549124*24476^(3/7) 4032522472138320 a001 9227465/17393796001*24476^(3/7) 4032522472138375 a001 3524578/6643838879*24476^(3/7) 4032522472138755 a001 1346269/2537720636*24476^(3/7) 4032522472141360 a001 514229/969323029*24476^(3/7) 4032522472153105 a001 17711/12752043*64079^(7/23) 4032522472158779 a001 28657/228826127*24476^(4/7) 4032522472159215 a001 196418/370248451*24476^(3/7) 4032522472195894 a001 89/39604*64079^(6/23) 4032522472218601 a001 2576/103361*9349^(1/19) 4032522472238358 a001 17711/4870847*64079^(5/23) 4032522472281593 a001 75025/141422324*24476^(3/7) 4032522472281672 a001 17711/3010349*64079^(4/23) 4032522472308740 a004 Fibonacci(22)*Lucas(25)/(1/2+sqrt(5)/2)^52 4032522472322761 a001 17711/1860498*64079^(3/23) 4032522472337397 a001 17711/6643838879*167761^(4/5) 4032522472366053 a001 17711/599074578*167761^(3/5) 4032522472369675 a001 17711/1149851*64079^(2/23) 4032522472379735 a001 2255/199691526*15127^(17/20) 4032522472394711 a001 17711/54018521*167761^(2/5) 4032522472397294 a001 2149991423/53316291173 4032522472397294 a004 Fibonacci(22)/Lucas(26)/(1/2+sqrt(5)/2) 4032522472397294 a004 Fibonacci(26)/Lucas(22)/(1/2+sqrt(5)/2)^9 4032522472401339 a001 17711/710647*64079^(1/23) 4032522472404117 a001 233/271444*24476^(8/21) 4032522472404258 a001 144/103681*24476^(1/3) 4032522472423197 a001 17711/4870847*167761^(1/5) 4032522472431118 a004 Fibonacci(22)*Lucas(27)/(1/2+sqrt(5)/2)^54 4032522472433441 a001 17711/45537549124*439204^(8/9) 4032522472435764 a001 17711/10749957122*439204^(7/9) 4032522472438087 a001 17711/2537720636*439204^(2/3) 4032522472440409 a001 17711/599074578*439204^(5/9) 4032522472442732 a001 17711/141422324*439204^(4/9) 4032522472444038 a001 63244389/1568358005 4032522472444038 a001 17711/1421294+17711/1421294*5^(1/2) 4032522472444038 a004 Fibonacci(28)/Lucas(22)/(1/2+sqrt(5)/2)^11 4032522472445051 a001 17711/33385282*439204^(1/3) 4032522472447443 a001 89/39604*439204^(2/9) 4032522472448535 a001 17711/1860498*439204^(1/9) 4032522472448973 a004 Fibonacci(22)*Lucas(29)/(1/2+sqrt(5)/2)^56 4032522472450852 a001 17711/1860498*7881196^(1/11) 4032522472450858 a001 17711/1860498*141422324^(1/13) 4032522472450858 a001 17711/1860498*2537720636^(1/15) 4032522472450858 a001 17711/1860498*45537549124^(1/17) 4032522472450858 a001 7368130220/182717648081 4032522472450858 a001 17711/1860498*14662949395604^(1/21) 4032522472450858 a001 17711/1860498*(1/2+1/2*5^(1/2))^3 4032522472450858 a001 17711/1860498*192900153618^(1/18) 4032522472450858 a001 17711/1860498*10749957122^(1/16) 4032522472450858 a001 17711/1860498*599074578^(1/14) 4032522472450858 a004 Fibonacci(30)/Lucas(22)/(1/2+sqrt(5)/2)^13 4032522472450858 a001 17711/1860498*33385282^(1/12) 4032522472450861 a001 317811/370248451*24476^(8/21) 4032522472450975 a001 17711/1860498*1860498^(1/10) 4032522472451578 a004 Fibonacci(22)*Lucas(31)/(1/2+sqrt(5)/2)^58 4032522472451852 a001 17711/4870847*20633239^(1/7) 4032522472451853 a001 17711/4870847*2537720636^(1/9) 4032522472451853 a001 17711/4870847*312119004989^(1/11) 4032522472451853 a001 17711/4870847*(1/2+1/2*5^(1/2))^5 4032522472451853 a001 17711/4870847*28143753123^(1/10) 4032522472451853 a004 Fibonacci(32)/Lucas(22)/(1/2+sqrt(5)/2)^15 4032522472451853 a001 17711/4870847*228826127^(1/8) 4032522472451958 a004 Fibonacci(22)*Lucas(33)/(1/2+sqrt(5)/2)^60 4032522472451964 a001 17711/817138163596*7881196^(10/11) 4032522472451970 a001 17711/192900153618*7881196^(9/11) 4032522472451976 a001 17711/45537549124*7881196^(8/11) 4032522472451980 a001 17711/17393796001*7881196^(2/3) 4032522472451982 a001 17711/10749957122*7881196^(7/11) 4032522472451988 a001 17711/2537720636*7881196^(6/11) 4032522472451994 a001 17711/599074578*7881196^(5/11) 4032522472451996 a001 17711/12752043*20633239^(1/5) 4032522472451998 a001 17711/12752043*17393796001^(1/7) 4032522472451998 a001 101003831657/2504730781961 4032522472451998 a001 17711/12752043*(1/2+1/2*5^(1/2))^7 4032522472451998 a004 Fibonacci(34)/Lucas(22)/(1/2+sqrt(5)/2)^17 4032522472451998 a001 17711/12752043*599074578^(1/6) 4032522472452000 a001 17711/141422324*7881196^(4/11) 4032522472452001 a001 17711/87403803*7881196^(1/3) 4032522472452002 a001 17711/33385282*7881196^(3/11) 4032522472452014 a004 Fibonacci(22)*Lucas(35)/(1/2+sqrt(5)/2)^62 4032522472452015 a001 17711/817138163596*20633239^(6/7) 4032522472452016 a001 89/1568437211*20633239^(4/5) 4032522472452016 a001 17711/73681302247*20633239^(5/7) 4032522472452017 a001 17711/10749957122*20633239^(3/5) 4032522472452018 a001 17711/6643838879*20633239^(4/7) 4032522472452019 a001 17711/599074578*20633239^(3/7) 4032522472452019 a001 17711/370248451*20633239^(2/5) 4032522472452019 a001 17711/33385282*141422324^(3/13) 4032522472452019 a001 17711/33385282*2537720636^(1/5) 4032522472452019 a001 17711/33385282*45537549124^(3/17) 4032522472452019 a001 17711/33385282*817138163596^(3/19) 4032522472452019 a001 17711/33385282*14662949395604^(1/7) 4032522472452019 a001 17711/33385282*(1/2+1/2*5^(1/2))^9 4032522472452019 a001 17711/33385282*192900153618^(1/6) 4032522472452019 a001 17711/33385282*10749957122^(3/16) 4032522472452019 a004 Fibonacci(36)/Lucas(22)/(1/2+sqrt(5)/2)^19 4032522472452019 a001 17711/33385282*599074578^(3/14) 4032522472452020 a001 17711/33385282*33385282^(1/4) 4032522472452022 a004 Fibonacci(22)*Lucas(37)/(1/2+sqrt(5)/2)^64 4032522472452022 a001 17711/54018521*20633239^(2/7) 4032522472452023 a001 17711/87403803*312119004989^(1/5) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^11/Lucas(38) 4032522472452023 a001 17711/87403803*1568397607^(1/4) 4032522472452023 a004 Fibonacci(38)/Lucas(22)/(1/2+sqrt(5)/2)^21 4032522472452023 a004 Fibonacci(22)*Lucas(39)/(1/2+sqrt(5)/2)^66 4032522472452023 a001 17711/14662949395604*141422324^(12/13) 4032522472452023 a001 17711/3461452808002*141422324^(11/13) 4032522472452023 a001 17711/817138163596*141422324^(10/13) 4032522472452023 a001 17711/228826127*141422324^(1/3) 4032522472452023 a001 17711/192900153618*141422324^(9/13) 4032522472452023 a001 17711/119218851371*141422324^(2/3) 4032522472452023 a001 17711/45537549124*141422324^(8/13) 4032522472452023 a001 17711/10749957122*141422324^(7/13) 4032522472452023 a001 17711/2537720636*141422324^(6/13) 4032522472452023 a001 17711/599074578*141422324^(5/13) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^13/Lucas(40) 4032522472452023 a001 17711/228826127*73681302247^(1/4) 4032522472452023 a004 Fibonacci(40)/Lucas(22)/(1/2+sqrt(5)/2)^23 4032522472452023 a004 Fibonacci(22)*Lucas(41)/(1/2+sqrt(5)/2)^68 4032522472452023 a001 17711/599074578*2537720636^(1/3) 4032522472452023 a001 17711/599074578*45537549124^(5/17) 4032522472452023 a001 17711/599074578*312119004989^(3/11) 4032522472452023 a001 17711/599074578*14662949395604^(5/21) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^15/Lucas(42) 4032522472452023 a001 17711/599074578*192900153618^(5/18) 4032522472452023 a001 17711/599074578*28143753123^(3/10) 4032522472452023 a001 17711/599074578*10749957122^(5/16) 4032522472452023 a004 Fibonacci(42)/Lucas(22)/(1/2+sqrt(5)/2)^25 4032522472452023 a001 17711/599074578*599074578^(5/14) 4032522472452023 a004 Fibonacci(22)*Lucas(43)/(1/2+sqrt(5)/2)^70 4032522472452023 a001 17711/1568397607*45537549124^(1/3) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^17/Lucas(44) 4032522472452023 a004 Fibonacci(22)*Lucas(45)/(1/2+sqrt(5)/2)^72 4032522472452023 a001 17711/14662949395604*2537720636^(4/5) 4032522472452023 a001 17711/9062201101803*2537720636^(7/9) 4032522472452023 a001 17711/3461452808002*2537720636^(11/15) 4032522472452023 a001 17711/817138163596*2537720636^(2/3) 4032522472452023 a001 17711/192900153618*2537720636^(3/5) 4032522472452023 a001 17711/73681302247*2537720636^(5/9) 4032522472452023 a001 17711/45537549124*2537720636^(8/15) 4032522472452023 a001 17711/10749957122*2537720636^(7/15) 4032522472452023 a001 17711/4106118243*817138163596^(1/3) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^19/Lucas(46) 4032522472452023 a001 17711/6643838879*2537720636^(4/9) 4032522472452023 a004 Fibonacci(22)*Lucas(47)/(1/2+sqrt(5)/2)^74 4032522472452023 a001 17711/10749957122*17393796001^(3/7) 4032522472452023 a001 17711/10749957122*45537549124^(7/17) 4032522472452023 a001 17711/10749957122*14662949395604^(1/3) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^21/Lucas(48) 4032522472452023 a001 17711/10749957122*192900153618^(7/18) 4032522472452023 a001 17711/10749957122*10749957122^(7/16) 4032522472452023 a004 Fibonacci(22)*Lucas(49)/(1/2+sqrt(5)/2)^76 4032522472452023 a001 17711/9062201101803*17393796001^(5/7) 4032522472452023 a001 89/1568437211*17393796001^(4/7) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^23/Lucas(50) 4032522472452023 a004 Fibonacci(22)*Lucas(51)/(1/2+sqrt(5)/2)^78 4032522472452023 a001 17711/14662949395604*45537549124^(12/17) 4032522472452023 a001 17711/5600748293801*45537549124^(2/3) 4032522472452023 a001 17711/3461452808002*45537549124^(11/17) 4032522472452023 a001 17711/192900153618*45537549124^(9/17) 4032522472452023 a001 17711/817138163596*45537549124^(10/17) 4032522472452023 a001 17711/73681302247*312119004989^(5/11) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^25/Lucas(52) 4032522472452023 a001 17711/73681302247*3461452808002^(5/12) 4032522472452023 a004 Fibonacci(22)*Lucas(53)/(1/2+sqrt(5)/2)^80 4032522472452023 a001 17711/192900153618*817138163596^(9/19) 4032522472452023 a001 17711/192900153618*14662949395604^(3/7) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^27/Lucas(54) 4032522472452023 a001 17711/192900153618*192900153618^(1/2) 4032522472452023 a004 Fibonacci(22)*Lucas(55)/(1/2+sqrt(5)/2)^82 4032522472452023 a001 17711/9062201101803*312119004989^(7/11) 4032522472452023 a001 17711/3461452808002*312119004989^(3/5) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^29/Lucas(56) 4032522472452023 a004 Fibonacci(22)*Lucas(57)/(1/2+sqrt(5)/2)^84 4032522472452023 a001 17711/3461452808002*817138163596^(11/19) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^31/Lucas(58) 4032522472452023 a001 17711/1322157322203*9062201101803^(1/2) 4032522472452023 a004 Fibonacci(22)*Lucas(59)/(1/2+sqrt(5)/2)^86 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^33/Lucas(60) 4032522472452023 a004 Fibonacci(22)*Lucas(61)/(1/2+sqrt(5)/2)^88 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^35/Lucas(62) 4032522472452023 a004 Fibonacci(22)*Lucas(63)/(1/2+sqrt(5)/2)^90 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^37/Lucas(64) 4032522472452023 a004 Fibonacci(22)*Lucas(65)/(1/2+sqrt(5)/2)^92 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^39/Lucas(66) 4032522472452023 a004 Fibonacci(22)*Lucas(67)/(1/2+sqrt(5)/2)^94 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^41/Lucas(68) 4032522472452023 a004 Fibonacci(22)*Lucas(69)/(1/2+sqrt(5)/2)^96 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^43/Lucas(70) 4032522472452023 a004 Fibonacci(22)*Lucas(71)/(1/2+sqrt(5)/2)^98 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^45/Lucas(72) 4032522472452023 a004 Fibonacci(22)*Lucas(73)/(1/2+sqrt(5)/2)^100 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^47/Lucas(74) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^49/Lucas(76) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^51/Lucas(78) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^53/Lucas(80) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^55/Lucas(82) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^57/Lucas(84) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^59/Lucas(86) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^61/Lucas(88) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^63/Lucas(90) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^65/Lucas(92) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^67/Lucas(94) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^69/Lucas(96) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^71/Lucas(98) 4032522472452023 a004 Fibonacci(11)*Lucas(11)/(1/2+sqrt(5)/2)^27 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^72/Lucas(99) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^73/Lucas(100) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^70/Lucas(97) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^68/Lucas(95) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^66/Lucas(93) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^64/Lucas(91) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^62/Lucas(89) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^60/Lucas(87) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^58/Lucas(85) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^56/Lucas(83) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^54/Lucas(81) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^52/Lucas(79) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^50/Lucas(77) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^48/Lucas(75) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^46/Lucas(73) 4032522472452023 a004 Fibonacci(22)*Lucas(72)/(1/2+sqrt(5)/2)^99 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^44/Lucas(71) 4032522472452023 a004 Fibonacci(22)*Lucas(70)/(1/2+sqrt(5)/2)^97 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^42/Lucas(69) 4032522472452023 a004 Fibonacci(22)*Lucas(68)/(1/2+sqrt(5)/2)^95 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^40/Lucas(67) 4032522472452023 a004 Fibonacci(22)*Lucas(66)/(1/2+sqrt(5)/2)^93 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^38/Lucas(65) 4032522472452023 a004 Fibonacci(22)*Lucas(64)/(1/2+sqrt(5)/2)^91 4032522472452023 a001 17711/14662949395604*14662949395604^(4/7) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^36/Lucas(63) 4032522472452023 a004 Fibonacci(22)*Lucas(62)/(1/2+sqrt(5)/2)^89 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^34/Lucas(61) 4032522472452023 a004 Fibonacci(22)*Lucas(60)/(1/2+sqrt(5)/2)^87 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^32/Lucas(59) 4032522472452023 a004 Fibonacci(22)*Lucas(58)/(1/2+sqrt(5)/2)^85 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^30/Lucas(57) 4032522472452023 a001 17711/14662949395604*505019158607^(9/14) 4032522472452023 a004 Fibonacci(22)*Lucas(56)/(1/2+sqrt(5)/2)^83 4032522472452023 a001 89/1568437211*14662949395604^(4/9) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^28/Lucas(55) 4032522472452023 a001 89/1568437211*505019158607^(1/2) 4032522472452023 a001 17711/3461452808002*192900153618^(11/18) 4032522472452023 a001 17711/14662949395604*192900153618^(2/3) 4032522472452023 a004 Fibonacci(22)*Lucas(54)/(1/2+sqrt(5)/2)^81 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^26/Lucas(53) 4032522472452023 a001 89/1568437211*73681302247^(7/13) 4032522472452023 a001 17711/2139295485799*73681302247^(8/13) 4032522472452023 a001 17711/14662949395604*73681302247^(9/13) 4032522472452023 a001 17711/119218851371*73681302247^(1/2) 4032522472452023 a004 Fibonacci(22)*Lucas(52)/(1/2+sqrt(5)/2)^79 4032522472452023 a001 17711/45537549124*45537549124^(8/17) 4032522472452023 a001 17711/73681302247*28143753123^(1/2) 4032522472452023 a001 17711/45537549124*14662949395604^(8/21) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^24/Lucas(51) 4032522472452023 a001 17711/45537549124*192900153618^(4/9) 4032522472452023 a001 17711/45537549124*73681302247^(6/13) 4032522472452023 a001 17711/817138163596*28143753123^(3/5) 4032522472452023 a001 17711/9062201101803*28143753123^(7/10) 4032522472452023 a004 Fibonacci(22)*Lucas(50)/(1/2+sqrt(5)/2)^77 4032522472452023 a001 17711/17393796001*312119004989^(2/5) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^22/Lucas(49) 4032522472452023 a001 17711/119218851371*10749957122^(13/24) 4032522472452023 a001 17711/45537549124*10749957122^(1/2) 4032522472452023 a001 17711/192900153618*10749957122^(9/16) 4032522472452023 a001 89/1568437211*10749957122^(7/12) 4032522472452023 a001 17711/817138163596*10749957122^(5/8) 4032522472452023 a001 17711/2139295485799*10749957122^(2/3) 4032522472452023 a001 17711/3461452808002*10749957122^(11/16) 4032522472452023 a001 17711/5600748293801*10749957122^(17/24) 4032522472452023 a001 17711/14662949395604*10749957122^(3/4) 4032522472452023 a001 17711/17393796001*10749957122^(11/24) 4032522472452023 a004 Fibonacci(22)*Lucas(48)/(1/2+sqrt(5)/2)^75 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^20/Lucas(47) 4032522472452023 a001 17711/6643838879*23725150497407^(5/16) 4032522472452023 a001 17711/6643838879*505019158607^(5/14) 4032522472452023 a001 17711/6643838879*73681302247^(5/13) 4032522472452023 a001 17711/6643838879*28143753123^(2/5) 4032522472452023 a001 17711/6643838879*10749957122^(5/12) 4032522472452023 a001 17711/28143753123*4106118243^(1/2) 4032522472452023 a001 17711/45537549124*4106118243^(12/23) 4032522472452023 a001 17711/17393796001*4106118243^(11/23) 4032522472452023 a001 17711/119218851371*4106118243^(13/23) 4032522472452023 a001 89/1568437211*4106118243^(14/23) 4032522472452023 a001 17711/817138163596*4106118243^(15/23) 4032522472452023 a001 17711/2139295485799*4106118243^(16/23) 4032522472452023 a001 17711/5600748293801*4106118243^(17/23) 4032522472452023 a001 17711/14662949395604*4106118243^(18/23) 4032522472452023 a001 17711/6643838879*4106118243^(10/23) 4032522472452023 a004 Fibonacci(22)*Lucas(46)/(1/2+sqrt(5)/2)^73 4032522472452023 a001 17711/2537720636*2537720636^(2/5) 4032522472452023 a001 17711/2537720636*45537549124^(6/17) 4032522472452023 a001 17711/2537720636*14662949395604^(2/7) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^18/Lucas(45) 4032522472452023 a001 17711/2537720636*192900153618^(1/3) 4032522472452023 a001 17711/2537720636*10749957122^(3/8) 4032522472452023 a001 17711/2537720636*4106118243^(9/23) 4032522472452023 a001 17711/17393796001*1568397607^(1/2) 4032522472452023 a001 17711/6643838879*1568397607^(5/11) 4032522472452023 a001 17711/45537549124*1568397607^(6/11) 4032522472452023 a001 17711/119218851371*1568397607^(13/22) 4032522472452023 a001 89/1568437211*1568397607^(7/11) 4032522472452023 a001 17711/817138163596*1568397607^(15/22) 4032522472452023 a001 17711/2139295485799*1568397607^(8/11) 4032522472452023 a001 17711/3461452808002*1568397607^(3/4) 4032522472452023 a001 17711/5600748293801*1568397607^(17/22) 4032522472452023 a001 17711/2537720636*1568397607^(9/22) 4032522472452023 a001 17711/14662949395604*1568397607^(9/11) 4032522472452023 a004 Fibonacci(46)/Lucas(22)/(1/2+sqrt(5)/2)^29 4032522472452023 a004 Fibonacci(48)/Lucas(22)/(1/2+sqrt(5)/2)^31 4032522472452023 a004 Fibonacci(50)/Lucas(22)/(1/2+sqrt(5)/2)^33 4032522472452023 a004 Fibonacci(52)/Lucas(22)/(1/2+sqrt(5)/2)^35 4032522472452023 a004 Fibonacci(54)/Lucas(22)/(1/2+sqrt(5)/2)^37 4032522472452023 a004 Fibonacci(56)/Lucas(22)/(1/2+sqrt(5)/2)^39 4032522472452023 a004 Fibonacci(58)/Lucas(22)/(1/2+sqrt(5)/2)^41 4032522472452023 a004 Fibonacci(60)/Lucas(22)/(1/2+sqrt(5)/2)^43 4032522472452023 a004 Fibonacci(62)/Lucas(22)/(1/2+sqrt(5)/2)^45 4032522472452023 a004 Fibonacci(64)/Lucas(22)/(1/2+sqrt(5)/2)^47 4032522472452023 a004 Fibonacci(66)/Lucas(22)/(1/2+sqrt(5)/2)^49 4032522472452023 a004 Fibonacci(68)/Lucas(22)/(1/2+sqrt(5)/2)^51 4032522472452023 a004 Fibonacci(70)/Lucas(22)/(1/2+sqrt(5)/2)^53 4032522472452023 a004 Fibonacci(72)/Lucas(22)/(1/2+sqrt(5)/2)^55 4032522472452023 a004 Fibonacci(74)/Lucas(22)/(1/2+sqrt(5)/2)^57 4032522472452023 a004 Fibonacci(76)/Lucas(22)/(1/2+sqrt(5)/2)^59 4032522472452023 a004 Fibonacci(78)/Lucas(22)/(1/2+sqrt(5)/2)^61 4032522472452023 a004 Fibonacci(80)/Lucas(22)/(1/2+sqrt(5)/2)^63 4032522472452023 a004 Fibonacci(82)/Lucas(22)/(1/2+sqrt(5)/2)^65 4032522472452023 a004 Fibonacci(84)/Lucas(22)/(1/2+sqrt(5)/2)^67 4032522472452023 a004 Fibonacci(86)/Lucas(22)/(1/2+sqrt(5)/2)^69 4032522472452023 a004 Fibonacci(22)*Lucas(44)/(1/2+sqrt(5)/2)^71 4032522472452023 a004 Fibonacci(90)/Lucas(22)/(1/2+sqrt(5)/2)^73 4032522472452023 a004 Fibonacci(92)/Lucas(22)/(1/2+sqrt(5)/2)^75 4032522472452023 a004 Fibonacci(94)/Lucas(22)/(1/2+sqrt(5)/2)^77 4032522472452023 a004 Fibonacci(96)/Lucas(22)/(1/2+sqrt(5)/2)^79 4032522472452023 a004 Fibonacci(98)/Lucas(22)/(1/2+sqrt(5)/2)^81 4032522472452023 a004 Fibonacci(100)/Lucas(22)/(1/2+sqrt(5)/2)^83 4032522472452023 a004 Fibonacci(99)/Lucas(22)/(1/2+sqrt(5)/2)^82 4032522472452023 a004 Fibonacci(97)/Lucas(22)/(1/2+sqrt(5)/2)^80 4032522472452023 a004 Fibonacci(95)/Lucas(22)/(1/2+sqrt(5)/2)^78 4032522472452023 a004 Fibonacci(93)/Lucas(22)/(1/2+sqrt(5)/2)^76 4032522472452023 a004 Fibonacci(91)/Lucas(22)/(1/2+sqrt(5)/2)^74 4032522472452023 a004 Fibonacci(89)/Lucas(22)/(1/2+sqrt(5)/2)^72 4032522472452023 a004 Fibonacci(87)/Lucas(22)/(1/2+sqrt(5)/2)^70 4032522472452023 a004 Fibonacci(85)/Lucas(22)/(1/2+sqrt(5)/2)^68 4032522472452023 a004 Fibonacci(83)/Lucas(22)/(1/2+sqrt(5)/2)^66 4032522472452023 a004 Fibonacci(81)/Lucas(22)/(1/2+sqrt(5)/2)^64 4032522472452023 a004 Fibonacci(79)/Lucas(22)/(1/2+sqrt(5)/2)^62 4032522472452023 a004 Fibonacci(77)/Lucas(22)/(1/2+sqrt(5)/2)^60 4032522472452023 a004 Fibonacci(75)/Lucas(22)/(1/2+sqrt(5)/2)^58 4032522472452023 a004 Fibonacci(73)/Lucas(22)/(1/2+sqrt(5)/2)^56 4032522472452023 a004 Fibonacci(71)/Lucas(22)/(1/2+sqrt(5)/2)^54 4032522472452023 a004 Fibonacci(69)/Lucas(22)/(1/2+sqrt(5)/2)^52 4032522472452023 a004 Fibonacci(67)/Lucas(22)/(1/2+sqrt(5)/2)^50 4032522472452023 a004 Fibonacci(65)/Lucas(22)/(1/2+sqrt(5)/2)^48 4032522472452023 a004 Fibonacci(63)/Lucas(22)/(1/2+sqrt(5)/2)^46 4032522472452023 a004 Fibonacci(61)/Lucas(22)/(1/2+sqrt(5)/2)^44 4032522472452023 a004 Fibonacci(59)/Lucas(22)/(1/2+sqrt(5)/2)^42 4032522472452023 a004 Fibonacci(57)/Lucas(22)/(1/2+sqrt(5)/2)^40 4032522472452023 a004 Fibonacci(55)/Lucas(22)/(1/2+sqrt(5)/2)^38 4032522472452023 a004 Fibonacci(53)/Lucas(22)/(1/2+sqrt(5)/2)^36 4032522472452023 a004 Fibonacci(51)/Lucas(22)/(1/2+sqrt(5)/2)^34 4032522472452023 a004 Fibonacci(49)/Lucas(22)/(1/2+sqrt(5)/2)^32 4032522472452023 a004 Fibonacci(47)/Lucas(22)/(1/2+sqrt(5)/2)^30 4032522472452023 a004 Fibonacci(45)/Lucas(22)/(1/2+sqrt(5)/2)^28 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^16/Lucas(43) 4032522472452023 a001 17711/969323029*23725150497407^(1/4) 4032522472452023 a001 17711/969323029*73681302247^(4/13) 4032522472452023 a001 17711/969323029*10749957122^(1/3) 4032522472452023 a001 17711/969323029*4106118243^(8/23) 4032522472452023 a001 17711/969323029*1568397607^(4/11) 4032522472452023 a001 17711/2537720636*599074578^(3/7) 4032522472452023 a001 17711/6643838879*599074578^(10/21) 4032522472452023 a001 17711/10749957122*599074578^(1/2) 4032522472452023 a001 17711/17393796001*599074578^(11/21) 4032522472452023 a004 Fibonacci(43)/Lucas(22)/(1/2+sqrt(5)/2)^26 4032522472452023 a001 17711/45537549124*599074578^(4/7) 4032522472452023 a001 17711/119218851371*599074578^(13/21) 4032522472452023 a001 17711/192900153618*599074578^(9/14) 4032522472452023 a001 89/1568437211*599074578^(2/3) 4032522472452023 a001 17711/817138163596*599074578^(5/7) 4032522472452023 a001 17711/2139295485799*599074578^(16/21) 4032522472452023 a001 17711/969323029*599074578^(8/21) 4032522472452023 a001 17711/3461452808002*599074578^(11/14) 4032522472452023 a001 17711/5600748293801*599074578^(17/21) 4032522472452023 a001 17711/9062201101803*599074578^(5/6) 4032522472452023 a001 17711/14662949395604*599074578^(6/7) 4032522472452023 a004 Fibonacci(22)*Lucas(42)/(1/2+sqrt(5)/2)^69 4032522472452023 a001 17711/599074578*228826127^(3/8) 4032522472452023 a001 17711/370248451*17393796001^(2/7) 4032522472452023 a001 17711/370248451*14662949395604^(2/9) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^14/Lucas(41) 4032522472452023 a001 17711/370248451*505019158607^(1/4) 4032522472452023 a001 17711/370248451*10749957122^(7/24) 4032522472452023 a001 17711/370248451*4106118243^(7/23) 4032522472452023 a001 17711/370248451*1568397607^(7/22) 4032522472452023 a004 Fibonacci(41)/Lucas(22)/(1/2+sqrt(5)/2)^24 4032522472452023 a001 17711/370248451*599074578^(1/3) 4032522472452023 a001 17711/969323029*228826127^(2/5) 4032522472452023 a001 17711/2537720636*228826127^(9/20) 4032522472452023 a001 17711/6643838879*228826127^(1/2) 4032522472452023 a001 17711/17393796001*228826127^(11/20) 4032522472452023 a001 17711/45537549124*228826127^(3/5) 4032522472452023 a001 17711/73681302247*228826127^(5/8) 4032522472452023 a001 17711/119218851371*228826127^(13/20) 4032522472452023 a001 89/1568437211*228826127^(7/10) 4032522472452023 a001 17711/370248451*228826127^(7/20) 4032522472452023 a001 17711/817138163596*228826127^(3/4) 4032522472452023 a001 17711/2139295485799*228826127^(4/5) 4032522472452023 a001 17711/5600748293801*228826127^(17/20) 4032522472452023 a001 17711/9062201101803*228826127^(7/8) 4032522472452023 a001 17711/14662949395604*228826127^(9/10) 4032522472452023 a004 Fibonacci(22)*Lucas(40)/(1/2+sqrt(5)/2)^67 4032522472452023 a001 17711/141422324*141422324^(4/13) 4032522472452023 a001 17711/141422324*2537720636^(4/15) 4032522472452023 a001 17711/141422324*45537549124^(4/17) 4032522472452023 a001 17711/141422324*817138163596^(4/19) 4032522472452023 a001 17711/141422324*14662949395604^(4/21) 4032522472452023 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^12/Lucas(39) 4032522472452023 a001 17711/141422324*192900153618^(2/9) 4032522472452023 a001 17711/141422324*73681302247^(3/13) 4032522472452023 a001 17711/141422324*10749957122^(1/4) 4032522472452023 a001 17711/141422324*4106118243^(6/23) 4032522472452023 a001 17711/141422324*1568397607^(3/11) 4032522472452023 a004 Fibonacci(39)/Lucas(22)/(1/2+sqrt(5)/2)^22 4032522472452023 a001 17711/141422324*599074578^(2/7) 4032522472452023 a001 17711/370248451*87403803^(7/19) 4032522472452023 a001 17711/141422324*228826127^(3/10) 4032522472452023 a001 17711/969323029*87403803^(8/19) 4032522472452023 a001 17711/2537720636*87403803^(9/19) 4032522472452023 a001 17711/4106118243*87403803^(1/2) 4032522472452023 a001 17711/6643838879*87403803^(10/19) 4032522472452023 a001 17711/17393796001*87403803^(11/19) 4032522472452023 a001 17711/45537549124*87403803^(12/19) 4032522472452023 a001 17711/119218851371*87403803^(13/19) 4032522472452023 a001 17711/141422324*87403803^(6/19) 4032522472452023 a001 89/1568437211*87403803^(14/19) 4032522472452024 a001 17711/817138163596*87403803^(15/19) 4032522472452024 a001 17711/2139295485799*87403803^(16/19) 4032522472452024 a001 17711/5600748293801*87403803^(17/19) 4032522472452024 a001 17711/14662949395604*87403803^(18/19) 4032522472452024 a004 Fibonacci(22)*Lucas(38)/(1/2+sqrt(5)/2)^65 4032522472452024 a001 17711/54018521*2537720636^(2/9) 4032522472452024 a001 17711/54018521*312119004989^(2/11) 4032522472452024 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^10/Lucas(37) 4032522472452024 a001 427859096887/10610209857723 4032522472452024 a001 17711/54018521*28143753123^(1/5) 4032522472452024 a001 17711/54018521*10749957122^(5/24) 4032522472452024 a001 17711/54018521*4106118243^(5/23) 4032522472452024 a001 17711/54018521*1568397607^(5/22) 4032522472452024 a004 Fibonacci(37)/Lucas(22)/(1/2+sqrt(5)/2)^20 4032522472452024 a001 17711/54018521*599074578^(5/21) 4032522472452024 a001 17711/54018521*228826127^(1/4) 4032522472452024 a001 17711/141422324*33385282^(1/3) 4032522472452025 a001 17711/370248451*33385282^(7/18) 4032522472452025 a001 17711/599074578*33385282^(5/12) 4032522472452025 a001 17711/54018521*87403803^(5/19) 4032522472452025 a001 17711/969323029*33385282^(4/9) 4032522472452025 a001 17711/2537720636*33385282^(1/2) 4032522472452025 a001 17711/6643838879*33385282^(5/9) 4032522472452025 a001 17711/10749957122*33385282^(7/12) 4032522472452025 a001 17711/17393796001*33385282^(11/18) 4032522472452025 a001 17711/54018521*33385282^(5/18) 4032522472452025 a001 17711/45537549124*33385282^(2/3) 4032522472452026 a001 17711/119218851371*33385282^(13/18) 4032522472452026 a001 17711/192900153618*33385282^(3/4) 4032522472452026 a001 89/1568437211*33385282^(7/9) 4032522472452026 a001 17711/817138163596*33385282^(5/6) 4032522472452026 a001 17711/2139295485799*33385282^(8/9) 4032522472452026 a001 17711/3461452808002*33385282^(11/12) 4032522472452027 a001 17711/5600748293801*33385282^(17/18) 4032522472452027 a004 Fibonacci(22)*Lucas(36)/(1/2+sqrt(5)/2)^63 4032522472452032 a001 17711/54018521*12752043^(5/17) 4032522472452032 a001 17711/141422324*12752043^(6/17) 4032522472452033 a001 17711/20633239*(1/2+1/2*5^(1/2))^8 4032522472452033 a001 163427632615/4052739537881 4032522472452033 a001 17711/20633239*505019158607^(1/7) 4032522472452033 a001 17711/20633239*73681302247^(2/13) 4032522472452033 a001 17711/20633239*10749957122^(1/6) 4032522472452033 a001 17711/20633239*4106118243^(4/23) 4032522472452033 a001 17711/20633239*1568397607^(2/11) 4032522472452033 a004 Fibonacci(35)/Lucas(22)/(1/2+sqrt(5)/2)^18 4032522472452033 a001 17711/20633239*599074578^(4/21) 4032522472452033 a001 17711/20633239*228826127^(1/5) 4032522472452033 a001 17711/20633239*87403803^(4/19) 4032522472452033 a001 17711/370248451*12752043^(7/17) 4032522472452033 a001 17711/20633239*33385282^(2/9) 4032522472452035 a001 17711/969323029*12752043^(8/17) 4032522472452035 a001 17711/1568397607*12752043^(1/2) 4032522472452036 a001 17711/2537720636*12752043^(9/17) 4032522472452038 a001 17711/6643838879*12752043^(10/17) 4032522472452038 a001 17711/20633239*12752043^(4/17) 4032522472452039 a001 17711/17393796001*12752043^(11/17) 4032522472452041 a001 17711/45537549124*12752043^(12/17) 4032522472452042 a001 17711/119218851371*12752043^(13/17) 4032522472452044 a001 89/1568437211*12752043^(14/17) 4032522472452045 a001 17711/817138163596*12752043^(15/17) 4032522472452046 a001 17711/2139295485799*12752043^(16/17) 4032522472452047 a001 17711/4870847*1860498^(1/6) 4032522472452048 a004 Fibonacci(22)*Lucas(34)/(1/2+sqrt(5)/2)^61 4032522472452075 a001 17711/20633239*4870847^(1/4) 4032522472452076 a001 89/39604*7881196^(2/11) 4032522472452078 a001 17711/54018521*4870847^(5/16) 4032522472452087 a001 17711/141422324*4870847^(3/8) 4032522472452088 a001 89/39604*141422324^(2/13) 4032522472452088 a001 89/39604*2537720636^(2/15) 4032522472452088 a001 89/39604*45537549124^(2/17) 4032522472452088 a001 89/39604*(1/2+1/2*5^(1/2))^6 4032522472452088 a001 31211900479/774004377960 4032522472452088 a001 89/39604*10749957122^(1/8) 4032522472452088 a001 89/39604*4106118243^(3/23) 4032522472452088 a001 89/39604*1568397607^(3/22) 4032522472452088 a001 89/39604*599074578^(1/7) 4032522472452088 a004 Fibonacci(33)/Lucas(22)/(1/2+sqrt(5)/2)^16 4032522472452088 a001 89/39604*228826127^(3/20) 4032522472452088 a001 89/39604*87403803^(3/19) 4032522472452089 a001 89/39604*33385282^(1/6) 4032522472452092 a001 89/39604*12752043^(3/17) 4032522472452097 a001 17711/370248451*4870847^(7/16) 4032522472452108 a001 17711/969323029*4870847^(1/2) 4032522472452119 a001 17711/2537720636*4870847^(9/16) 4032522472452120 a001 89/39604*4870847^(3/16) 4032522472452129 a001 17711/6643838879*4870847^(5/8) 4032522472452140 a001 17711/17393796001*4870847^(11/16) 4032522472452151 a001 17711/45537549124*4870847^(3/4) 4032522472452161 a001 17711/119218851371*4870847^(13/16) 4032522472452172 a001 89/1568437211*4870847^(7/8) 4032522472452182 a001 17711/817138163596*4870847^(15/16) 4032522472452193 a004 Fibonacci(22)*Lucas(32)/(1/2+sqrt(5)/2)^59 4032522472452321 a001 89/39604*1860498^(1/5) 4032522472452343 a001 17711/20633239*1860498^(4/15) 4032522472452369 a001 17711/33385282*1860498^(3/10) 4032522472452413 a001 17711/54018521*1860498^(1/3) 4032522472452468 a001 17711/3010349*(1/2+1/2*5^(1/2))^4 4032522472452468 a001 17711/3010349*23725150497407^(1/16) 4032522472452468 a001 17711/3010349*73681302247^(1/13) 4032522472452468 a001 17711/3010349*10749957122^(1/12) 4032522472452468 a001 17711/3010349*4106118243^(2/23) 4032522472452468 a001 17711/3010349*1568397607^(1/11) 4032522472452468 a001 17711/3010349*599074578^(2/21) 4032522472452468 a004 Fibonacci(31)/Lucas(22)/(1/2+sqrt(5)/2)^14 4032522472452468 a001 17711/3010349*228826127^(1/10) 4032522472452468 a001 17711/3010349*87403803^(2/19) 4032522472452468 a001 17711/3010349*33385282^(1/9) 4032522472452471 a001 17711/3010349*12752043^(2/17) 4032522472452489 a001 17711/141422324*1860498^(2/5) 4032522472452489 a001 17711/3010349*4870847^(1/8) 4032522472452567 a001 17711/370248451*1860498^(7/15) 4032522472452606 a001 17711/599074578*1860498^(1/2) 4032522472452623 a001 17711/3010349*1860498^(2/15) 4032522472452644 a001 17711/969323029*1860498^(8/15) 4032522472452722 a001 17711/2537720636*1860498^(3/5) 4032522472452800 a001 17711/6643838879*1860498^(2/3) 4032522472452839 a001 17711/10749957122*1860498^(7/10) 4032522472452877 a001 17711/17393796001*1860498^(11/15) 4032522472452955 a001 17711/45537549124*1860498^(4/5) 4032522472452994 a001 17711/73681302247*1860498^(5/6) 4032522472453033 a001 17711/119218851371*1860498^(13/15) 4032522472453072 a001 17711/192900153618*1860498^(9/10) 4032522472453110 a001 89/1568437211*1860498^(14/15) 4032522472453188 a004 Fibonacci(22)*Lucas(30)/(1/2+sqrt(5)/2)^57 4032522472453609 a001 17711/3010349*710647^(1/7) 4032522472453799 a001 89/39604*710647^(3/14) 4032522472453995 a001 17711/12752043*710647^(1/4) 4032522472454314 a001 17711/20633239*710647^(2/7) 4032522472454876 a001 17711/54018521*710647^(5/14) 4032522472455073 a001 17711/1149851*(1/2+1/2*5^(1/2))^2 4032522472455073 a001 9107509819/225851433717 4032522472455073 a001 17711/1149851*10749957122^(1/24) 4032522472455073 a001 17711/1149851*4106118243^(1/23) 4032522472455073 a001 17711/1149851*1568397607^(1/22) 4032522472455073 a001 17711/1149851*599074578^(1/21) 4032522472455073 a004 Fibonacci(29)/Lucas(22)/(1/2+sqrt(5)/2)^12 4032522472455073 a001 17711/1149851*228826127^(1/20) 4032522472455073 a001 17711/1149851*87403803^(1/19) 4032522472455073 a001 17711/1149851*33385282^(1/18) 4032522472455074 a001 17711/1149851*12752043^(1/17) 4032522472455084 a001 17711/1149851*4870847^(1/16) 4032522472455151 a001 17711/1149851*1860498^(1/15) 4032522472455445 a001 17711/141422324*710647^(3/7) 4032522472455643 a001 17711/1149851*710647^(1/14) 4032522472456016 a001 17711/370248451*710647^(1/2) 4032522472456586 a001 17711/969323029*710647^(4/7) 4032522472457156 a001 17711/2537720636*710647^(9/14) 4032522472457681 a001 832040/969323029*24476^(8/21) 4032522472457727 a001 17711/6643838879*710647^(5/7) 4032522472458012 a001 17711/10749957122*710647^(3/4) 4032522472458297 a001 17711/17393796001*710647^(11/14) 4032522472458676 a001 2178309/2537720636*24476^(8/21) 4032522472458821 a001 5702887/6643838879*24476^(8/21) 4032522472458842 a001 14930352/17393796001*24476^(8/21) 4032522472458846 a001 39088169/45537549124*24476^(8/21) 4032522472458846 a001 102334155/119218851371*24476^(8/21) 4032522472458846 a001 267914296/312119004989*24476^(8/21) 4032522472458846 a001 701408733/817138163596*24476^(8/21) 4032522472458846 a001 1836311903/2139295485799*24476^(8/21) 4032522472458846 a001 4807526976/5600748293801*24476^(8/21) 4032522472458846 a001 12586269025/14662949395604*24476^(8/21) 4032522472458846 a001 20365011074/23725150497407*24476^(8/21) 4032522472458846 a001 7778742049/9062201101803*24476^(8/21) 4032522472458846 a001 2971215073/3461452808002*24476^(8/21) 4032522472458846 a001 1134903170/1322157322203*24476^(8/21) 4032522472458846 a001 433494437/505019158607*24476^(8/21) 4032522472458846 a001 165580141/192900153618*24476^(8/21) 4032522472458846 a001 63245986/73681302247*24476^(8/21) 4032522472458847 a001 24157817/28143753123*24476^(8/21) 4032522472458856 a001 9227465/10749957122*24476^(8/21) 4032522472458867 a001 17711/45537549124*710647^(6/7) 4032522472458911 a001 3524578/4106118243*24476^(8/21) 4032522472459283 a001 17711/1149851*271443^(1/13) 4032522472459291 a001 1346269/1568397607*24476^(8/21) 4032522472459438 a001 17711/119218851371*710647^(13/14) 4032522472459668 a001 17711/710647*103682^(1/24) 4032522472460008 a004 Fibonacci(22)*Lucas(28)/(1/2+sqrt(5)/2)^55 4032522472460888 a001 17711/3010349*271443^(2/13) 4032522472461896 a001 514229/599074578*24476^(8/21) 4032522472464718 a001 89/39604*271443^(3/13) 4032522472468872 a001 17711/20633239*271443^(4/13) 4032522472472928 a001 17711/439204 4032522472472928 a004 Fibonacci(27)/Lucas(22)/(1/2+sqrt(5)/2)^10 4032522472473074 a001 17711/54018521*271443^(5/13) 4032522472477283 a001 17711/141422324*271443^(6/13) 4032522472479315 a001 28657/141422324*24476^(11/21) 4032522472479388 a001 17711/228826127*271443^(1/2) 4032522472479751 a001 196418/228826127*24476^(8/21) 4032522472481493 a001 17711/370248451*271443^(7/13) 4032522472485703 a001 17711/969323029*271443^(8/13) 4032522472486333 a001 17711/1149851*103682^(1/12) 4032522472489913 a001 17711/2537720636*271443^(9/13) 4032522472494123 a001 17711/6643838879*271443^(10/13) 4032522472497748 a001 17711/1860498*103682^(1/8) 4032522472498332 a001 17711/17393796001*271443^(11/13) 4032522472502542 a001 17711/45537549124*271443^(12/13) 4032522472506752 a004 Fibonacci(22)*Lucas(26)/(1/2+sqrt(5)/2)^53 4032522472514988 a001 17711/3010349*103682^(1/6) 4032522472530003 a001 17711/4870847*103682^(5/24) 4032522472539987 a001 121393/4870847*9349^(1/19) 4032522472545868 a001 89/39604*103682^(1/4) 4032522472560907 a001 17711/710647*39603^(1/22) 4032522472561408 a001 17711/12752043*103682^(7/24) 4032522472577073 a001 17711/20633239*103682^(1/3) 4032522472586876 a001 105937/4250681*9349^(1/19) 4032522472592689 a001 17711/33385282*103682^(3/8) 4032522472593717 a001 416020/16692641*9349^(1/19) 4032522472594715 a001 726103/29134601*9349^(1/19) 4032522472594861 a001 5702887/228826127*9349^(1/19) 4032522472594882 a001 829464/33281921*9349^(1/19) 4032522472594885 a001 39088169/1568397607*9349^(1/19) 4032522472594886 a001 34111385/1368706081*9349^(1/19) 4032522472594886 a001 133957148/5374978561*9349^(1/19) 4032522472594886 a001 233802911/9381251041*9349^(1/19) 4032522472594886 a001 1836311903/73681302247*9349^(1/19) 4032522472594886 a001 267084832/10716675201*9349^(1/19) 4032522472594886 a001 12586269025/505019158607*9349^(1/19) 4032522472594886 a001 10983760033/440719107401*9349^(1/19) 4032522472594886 a001 43133785636/1730726404001*9349^(1/19) 4032522472594886 a001 75283811239/3020733700601*9349^(1/19) 4032522472594886 a001 182717648081/7331474697802*9349^(1/19) 4032522472594886 a001 139583862445/5600748293801*9349^(1/19) 4032522472594886 a001 53316291173/2139295485799*9349^(1/19) 4032522472594886 a001 10182505537/408569081798*9349^(1/19) 4032522472594886 a001 7778742049/312119004989*9349^(1/19) 4032522472594886 a001 2971215073/119218851371*9349^(1/19) 4032522472594886 a001 567451585/22768774562*9349^(1/19) 4032522472594886 a001 433494437/17393796001*9349^(1/19) 4032522472594886 a001 165580141/6643838879*9349^(1/19) 4032522472594886 a001 31622993/1268860318*9349^(1/19) 4032522472594887 a001 24157817/969323029*9349^(1/19) 4032522472594895 a001 9227465/370248451*9349^(1/19) 4032522472594951 a001 1762289/70711162*9349^(1/19) 4032522472595306 a001 1328767775/32951280099 4032522472595306 a004 Fibonacci(22)/Lucas(25)/(1/2+sqrt(5)/2)^2 4032522472595306 a004 Fibonacci(25)/Lucas(22)/(1/2+sqrt(5)/2)^8 4032522472595332 a001 1346269/54018521*9349^(1/19) 4032522472597945 a001 514229/20633239*9349^(1/19) 4032522472602129 a001 75025/87403803*24476^(8/21) 4032522472608324 a001 17711/54018521*103682^(5/12) 4032522472615855 a001 98209/3940598*9349^(1/19) 4032522472623952 a001 17711/87403803*103682^(11/24) 4032522472639583 a001 17711/141422324*103682^(1/2) 4032522472655213 a001 17711/228826127*103682^(13/24) 4032522472670843 a001 17711/370248451*103682^(7/12) 4032522472686473 a001 17711/599074578*103682^(5/8) 4032522472688810 a001 17711/1149851*39603^(1/11) 4032522472702103 a001 17711/969323029*103682^(2/3) 4032522472717733 a001 17711/1568397607*103682^(17/24) 4032522472724652 a001 121393/87403803*24476^(1/3) 4032522472724807 a001 46368/20633239*24476^(2/7) 4032522472733363 a001 17711/2537720636*103682^(3/4) 4032522472738614 a001 75025/3010349*9349^(1/19) 4032522472748993 a001 17711/4106118243*103682^(19/24) 4032522472764623 a001 17711/6643838879*103682^(5/6) 4032522472771397 a001 317811/228826127*24476^(1/3) 4032522472778217 a001 416020/299537289*24476^(1/3) 4032522472779212 a001 311187/224056801*24476^(1/3) 4032522472779357 a001 5702887/4106118243*24476^(1/3) 4032522472779378 a001 7465176/5374978561*24476^(1/3) 4032522472779381 a001 39088169/28143753123*24476^(1/3) 4032522472779382 a001 14619165/10525900321*24476^(1/3) 4032522472779382 a001 133957148/96450076809*24476^(1/3) 4032522472779382 a001 701408733/505019158607*24476^(1/3) 4032522472779382 a001 1836311903/1322157322203*24476^(1/3) 4032522472779382 a001 14930208/10749853441*24476^(1/3) 4032522472779382 a001 12586269025/9062201101803*24476^(1/3) 4032522472779382 a001 32951280099/23725150497407*24476^(1/3) 4032522472779382 a001 10182505537/7331474697802*24476^(1/3) 4032522472779382 a001 7778742049/5600748293801*24476^(1/3) 4032522472779382 a001 2971215073/2139295485799*24476^(1/3) 4032522472779382 a001 567451585/408569081798*24476^(1/3) 4032522472779382 a001 433494437/312119004989*24476^(1/3) 4032522472779382 a001 165580141/119218851371*24476^(1/3) 4032522472779382 a001 31622993/22768774562*24476^(1/3) 4032522472779383 a001 24157817/17393796001*24476^(1/3) 4032522472779391 a001 9227465/6643838879*24476^(1/3) 4032522472779447 a001 1762289/1268860318*24476^(1/3) 4032522472779827 a001 1346269/969323029*24476^(1/3) 4032522472780253 a001 17711/10749957122*103682^(7/8) 4032522472782432 a001 514229/370248451*24476^(1/3) 4032522472795883 a001 17711/17393796001*103682^(11/12) 4032522472799850 a001 28657/87403803*24476^(10/21) 4032522472800287 a001 98209/70711162*24476^(1/3) 4032522472801464 a001 17711/1860498*39603^(3/22) 4032522472811513 a001 17711/28143753123*103682^(23/24) 4032522472827143 a004 Fibonacci(22)*Lucas(24)/(1/2+sqrt(5)/2)^51 4032522472919943 a001 17711/3010349*39603^(2/11) 4032522472922666 a001 75025/54018521*24476^(1/3) 4032522473036196 a001 17711/4870847*39603^(5/22) 4032522473045190 a001 121393/54018521*24476^(2/7) 4032522473045309 a001 15456/4250681*24476^(5/21) 4032522473091933 a001 317811/141422324*24476^(2/7) 4032522473098753 a001 832040/370248451*24476^(2/7) 4032522473099748 a001 2178309/969323029*24476^(2/7) 4032522473099893 a001 5702887/2537720636*24476^(2/7) 4032522473099914 a001 14930352/6643838879*24476^(2/7) 4032522473099917 a001 39088169/17393796001*24476^(2/7) 4032522473099918 a001 102334155/45537549124*24476^(2/7) 4032522473099918 a001 267914296/119218851371*24476^(2/7) 4032522473099918 a001 3524667/1568437211*24476^(2/7) 4032522473099918 a001 1836311903/817138163596*24476^(2/7) 4032522473099918 a001 4807526976/2139295485799*24476^(2/7) 4032522473099918 a001 12586269025/5600748293801*24476^(2/7) 4032522473099918 a001 32951280099/14662949395604*24476^(2/7) 4032522473099918 a001 53316291173/23725150497407*24476^(2/7) 4032522473099918 a001 20365011074/9062201101803*24476^(2/7) 4032522473099918 a001 7778742049/3461452808002*24476^(2/7) 4032522473099918 a001 2971215073/1322157322203*24476^(2/7) 4032522473099918 a001 1134903170/505019158607*24476^(2/7) 4032522473099918 a001 433494437/192900153618*24476^(2/7) 4032522473099918 a001 165580141/73681302247*24476^(2/7) 4032522473099918 a001 63245986/28143753123*24476^(2/7) 4032522473099919 a001 24157817/10749957122*24476^(2/7) 4032522473099927 a001 9227465/4106118243*24476^(2/7) 4032522473099983 a001 3524578/1568397607*24476^(2/7) 4032522473100363 a001 1346269/599074578*24476^(2/7) 4032522473102968 a001 514229/228826127*24476^(2/7) 4032522473120388 a001 28657/54018521*24476^(3/7) 4032522473120822 a001 196418/87403803*24476^(2/7) 4032522473153300 a001 89/39604*39603^(3/11) 4032522473243197 a001 75025/33385282*24476^(2/7) 4032522473260868 a001 6765/969323029*15127^(9/10) 4032522473270079 a001 17711/12752043*39603^(7/22) 4032522473325171 a001 17711/710647*15127^(1/20) 4032522473365721 a001 121393/33385282*24476^(5/21) 4032522473365935 a001 11592/1970299*24476^(4/21) 4032522473386982 a001 17711/20633239*39603^(4/11) 4032522473412468 a001 105937/29134601*24476^(5/21) 4032522473419289 a001 832040/228826127*24476^(5/21) 4032522473420284 a001 726103/199691526*24476^(5/21) 4032522473420429 a001 5702887/1568397607*24476^(5/21) 4032522473420450 a001 4976784/1368706081*24476^(5/21) 4032522473420453 a001 39088169/10749957122*24476^(5/21) 4032522473420454 a001 831985/228811001*24476^(5/21) 4032522473420454 a001 267914296/73681302247*24476^(5/21) 4032522473420454 a001 233802911/64300051206*24476^(5/21) 4032522473420454 a001 1836311903/505019158607*24476^(5/21) 4032522473420454 a001 1602508992/440719107401*24476^(5/21) 4032522473420454 a001 12586269025/3461452808002*24476^(5/21) 4032522473420454 a001 10983760033/3020733700601*24476^(5/21) 4032522473420454 a001 86267571272/23725150497407*24476^(5/21) 4032522473420454 a001 53316291173/14662949395604*24476^(5/21) 4032522473420454 a001 20365011074/5600748293801*24476^(5/21) 4032522473420454 a001 7778742049/2139295485799*24476^(5/21) 4032522473420454 a001 2971215073/817138163596*24476^(5/21) 4032522473420454 a001 1134903170/312119004989*24476^(5/21) 4032522473420454 a001 433494437/119218851371*24476^(5/21) 4032522473420454 a001 165580141/45537549124*24476^(5/21) 4032522473420454 a001 63245986/17393796001*24476^(5/21) 4032522473420455 a001 24157817/6643838879*24476^(5/21) 4032522473420463 a001 9227465/2537720636*24476^(5/21) 4032522473420519 a001 3524578/969323029*24476^(5/21) 4032522473420899 a001 1346269/370248451*24476^(5/21) 4032522473423504 a001 514229/141422324*24476^(5/21) 4032522473434100 a001 507544127/12586269025 4032522473434100 a004 Fibonacci(22)/Lucas(23)/(1/2+sqrt(5)/2)^4 4032522473434100 a004 Fibonacci(23)/Lucas(22)/(1/2+sqrt(5)/2)^6 4032522473440919 a001 28657/33385282*24476^(8/21) 4032522473441360 a001 196418/54018521*24476^(5/21) 4032522473503837 a001 17711/33385282*39603^(9/22) 4032522473563746 a001 75025/20633239*24476^(5/21) 4032522473580012 a001 28657/1149851*9349^(1/19) 4032522473620711 a001 17711/54018521*39603^(5/11) 4032522473665936 a004 Fibonacci(24)*Lucas(23)/(1/2+sqrt(5)/2)^52 4032522473686236 a001 46368/4870847*24476^(1/7) 4032522473686270 a001 121393/20633239*24476^(4/21) 4032522473708635 a001 11592/11384387281*64079^(22/23) 4032522473733006 a001 317811/54018521*24476^(4/21) 4032522473737577 a001 17711/87403803*39603^(1/2) 4032522473739825 a001 208010/35355581*24476^(4/21) 4032522473740820 a001 2178309/370248451*24476^(4/21) 4032522473740965 a001 5702887/969323029*24476^(4/21) 4032522473740986 a001 196452/33391061*24476^(4/21) 4032522473740989 a001 39088169/6643838879*24476^(4/21) 4032522473740989 a001 102334155/17393796001*24476^(4/21) 4032522473740989 a001 66978574/11384387281*24476^(4/21) 4032522473740989 a001 701408733/119218851371*24476^(4/21) 4032522473740989 a001 1836311903/312119004989*24476^(4/21) 4032522473740989 a001 1201881744/204284540899*24476^(4/21) 4032522473740989 a001 12586269025/2139295485799*24476^(4/21) 4032522473740989 a001 32951280099/5600748293801*24476^(4/21) 4032522473740989 a001 1135099622/192933544679*24476^(4/21) 4032522473740989 a001 139583862445/23725150497407*24476^(4/21) 4032522473740989 a001 53316291173/9062201101803*24476^(4/21) 4032522473740989 a001 10182505537/1730726404001*24476^(4/21) 4032522473740989 a001 7778742049/1322157322203*24476^(4/21) 4032522473740989 a001 2971215073/505019158607*24476^(4/21) 4032522473740989 a001 567451585/96450076809*24476^(4/21) 4032522473740989 a001 433494437/73681302247*24476^(4/21) 4032522473740990 a001 165580141/28143753123*24476^(4/21) 4032522473740990 a001 31622993/5374978561*24476^(4/21) 4032522473740991 a001 24157817/4106118243*24476^(4/21) 4032522473740999 a001 9227465/1568397607*24476^(4/21) 4032522473741054 a001 1762289/299537289*24476^(4/21) 4032522473741434 a001 1346269/228826127*24476^(4/21) 4032522473744039 a001 514229/87403803*24476^(4/21) 4032522473751334 a001 15456/9381251041*64079^(21/23) 4032522473761468 a001 28657/20633239*24476^(1/3) 4032522473761891 a001 98209/16692641*24476^(4/21) 4032522473794033 a001 46368/17393796001*64079^(20/23) 4032522473836732 a001 23184/5374978561*64079^(19/23) 4032522473854447 a001 17711/141422324*39603^(6/11) 4032522473879431 a001 46368/6643838879*64079^(18/23) 4032522473884248 a001 75025/12752043*24476^(4/21) 4032522473922130 a001 15456/1368706081*64079^(17/23) 4032522473964829 a001 11592/634430159*64079^(16/23) 4032522473971315 a001 17711/228826127*39603^(13/22) 4032522473986327 a004 Fibonacci(26)*Lucas(23)/(1/2+sqrt(5)/2)^54 4032522474006771 a001 121393/12752043*24476^(1/7) 4032522474007386 a001 46368/3010349*24476^(2/21) 4032522474007528 a001 6624/224056801*64079^(15/23) 4032522474029026 a001 121393/119218851371*64079^(22/23) 4032522474033071 a004 Fibonacci(28)*Lucas(23)/(1/2+sqrt(5)/2)^56 4032522474039891 a004 Fibonacci(30)*Lucas(23)/(1/2+sqrt(5)/2)^58 4032522474040886 a004 Fibonacci(32)*Lucas(23)/(1/2+sqrt(5)/2)^60 4032522474041032 a004 Fibonacci(34)*Lucas(23)/(1/2+sqrt(5)/2)^62 4032522474041053 a004 Fibonacci(36)*Lucas(23)/(1/2+sqrt(5)/2)^64 4032522474041056 a004 Fibonacci(38)*Lucas(23)/(1/2+sqrt(5)/2)^66 4032522474041056 a004 Fibonacci(40)*Lucas(23)/(1/2+sqrt(5)/2)^68 4032522474041056 a004 Fibonacci(42)*Lucas(23)/(1/2+sqrt(5)/2)^70 4032522474041056 a004 Fibonacci(44)*Lucas(23)/(1/2+sqrt(5)/2)^72 4032522474041056 a004 Fibonacci(46)*Lucas(23)/(1/2+sqrt(5)/2)^74 4032522474041056 a004 Fibonacci(48)*Lucas(23)/(1/2+sqrt(5)/2)^76 4032522474041056 a004 Fibonacci(50)*Lucas(23)/(1/2+sqrt(5)/2)^78 4032522474041056 a004 Fibonacci(52)*Lucas(23)/(1/2+sqrt(5)/2)^80 4032522474041056 a004 Fibonacci(54)*Lucas(23)/(1/2+sqrt(5)/2)^82 4032522474041056 a004 Fibonacci(56)*Lucas(23)/(1/2+sqrt(5)/2)^84 4032522474041056 a004 Fibonacci(58)*Lucas(23)/(1/2+sqrt(5)/2)^86 4032522474041056 a004 Fibonacci(60)*Lucas(23)/(1/2+sqrt(5)/2)^88 4032522474041056 a004 Fibonacci(62)*Lucas(23)/(1/2+sqrt(5)/2)^90 4032522474041056 a004 Fibonacci(64)*Lucas(23)/(1/2+sqrt(5)/2)^92 4032522474041056 a004 Fibonacci(66)*Lucas(23)/(1/2+sqrt(5)/2)^94 4032522474041056 a004 Fibonacci(68)*Lucas(23)/(1/2+sqrt(5)/2)^96 4032522474041056 a004 Fibonacci(70)*Lucas(23)/(1/2+sqrt(5)/2)^98 4032522474041056 a004 Fibonacci(72)*Lucas(23)/(1/2+sqrt(5)/2)^100 4032522474041056 a004 Fibonacci(71)*Lucas(23)/(1/2+sqrt(5)/2)^99 4032522474041056 a004 Fibonacci(69)*Lucas(23)/(1/2+sqrt(5)/2)^97 4032522474041056 a004 Fibonacci(67)*Lucas(23)/(1/2+sqrt(5)/2)^95 4032522474041056 a004 Fibonacci(65)*Lucas(23)/(1/2+sqrt(5)/2)^93 4032522474041056 a004 Fibonacci(63)*Lucas(23)/(1/2+sqrt(5)/2)^91 4032522474041056 a004 Fibonacci(61)*Lucas(23)/(1/2+sqrt(5)/2)^89 4032522474041056 a004 Fibonacci(59)*Lucas(23)/(1/2+sqrt(5)/2)^87 4032522474041056 a004 Fibonacci(57)*Lucas(23)/(1/2+sqrt(5)/2)^85 4032522474041056 a004 Fibonacci(55)*Lucas(23)/(1/2+sqrt(5)/2)^83 4032522474041056 a004 Fibonacci(53)*Lucas(23)/(1/2+sqrt(5)/2)^81 4032522474041056 a004 Fibonacci(51)*Lucas(23)/(1/2+sqrt(5)/2)^79 4032522474041056 a004 Fibonacci(49)*Lucas(23)/(1/2+sqrt(5)/2)^77 4032522474041056 a004 Fibonacci(47)*Lucas(23)/(1/2+sqrt(5)/2)^75 4032522474041056 a001 2/28657*(1/2+1/2*5^(1/2))^18 4032522474041056 a004 Fibonacci(45)*Lucas(23)/(1/2+sqrt(5)/2)^73 4032522474041056 a004 Fibonacci(43)*Lucas(23)/(1/2+sqrt(5)/2)^71 4032522474041056 a004 Fibonacci(41)*Lucas(23)/(1/2+sqrt(5)/2)^69 4032522474041057 a004 Fibonacci(39)*Lucas(23)/(1/2+sqrt(5)/2)^67 4032522474041058 a004 Fibonacci(37)*Lucas(23)/(1/2+sqrt(5)/2)^65 4032522474041066 a004 Fibonacci(35)*Lucas(23)/(1/2+sqrt(5)/2)^63 4032522474041121 a004 Fibonacci(33)*Lucas(23)/(1/2+sqrt(5)/2)^61 4032522474041501 a004 Fibonacci(31)*Lucas(23)/(1/2+sqrt(5)/2)^59 4032522474044106 a004 Fibonacci(29)*Lucas(23)/(1/2+sqrt(5)/2)^57 4032522474049041 a001 64079/317811*8^(1/3) 4032522474050227 a001 46368/969323029*64079^(14/23) 4032522474053537 a001 317811/33385282*24476^(1/7) 4032522474060360 a001 832040/87403803*24476^(1/7) 4032522474061355 a001 46347/4868641*24476^(1/7) 4032522474061501 a001 5702887/599074578*24476^(1/7) 4032522474061522 a001 14930352/1568397607*24476^(1/7) 4032522474061525 a001 39088169/4106118243*24476^(1/7) 4032522474061525 a001 102334155/10749957122*24476^(1/7) 4032522474061525 a001 267914296/28143753123*24476^(1/7) 4032522474061525 a001 701408733/73681302247*24476^(1/7) 4032522474061525 a001 1836311903/192900153618*24476^(1/7) 4032522474061525 a001 102287808/10745088481*24476^(1/7) 4032522474061525 a001 12586269025/1322157322203*24476^(1/7) 4032522474061525 a001 32951280099/3461452808002*24476^(1/7) 4032522474061525 a001 86267571272/9062201101803*24476^(1/7) 4032522474061525 a001 225851433717/23725150497407*24476^(1/7) 4032522474061525 a001 139583862445/14662949395604*24476^(1/7) 4032522474061525 a001 53316291173/5600748293801*24476^(1/7) 4032522474061525 a001 20365011074/2139295485799*24476^(1/7) 4032522474061525 a001 7778742049/817138163596*24476^(1/7) 4032522474061525 a001 2971215073/312119004989*24476^(1/7) 4032522474061525 a001 1134903170/119218851371*24476^(1/7) 4032522474061525 a001 433494437/45537549124*24476^(1/7) 4032522474061525 a001 165580141/17393796001*24476^(1/7) 4032522474061526 a001 63245986/6643838879*24476^(1/7) 4032522474061527 a001 24157817/2537720636*24476^(1/7) 4032522474061535 a001 9227465/969323029*24476^(1/7) 4032522474061590 a001 3524578/370248451*24476^(1/7) 4032522474061961 a004 Fibonacci(27)*Lucas(23)/(1/2+sqrt(5)/2)^55 4032522474061971 a001 1346269/141422324*24476^(1/7) 4032522474064577 a001 514229/54018521*24476^(1/7) 4032522474071725 a001 121393/73681302247*64079^(21/23) 4032522474075770 a001 317811/312119004989*64079^(22/23) 4032522474081970 a001 28657/12752043*24476^(2/7) 4032522474082440 a001 196418/20633239*24476^(1/7) 4032522474082590 a001 208010/204284540899*64079^(22/23) 4032522474083585 a001 2178309/2139295485799*64079^(22/23) 4032522474083731 a001 5702887/5600748293801*64079^(22/23) 4032522474083752 a001 196452/192933544679*64079^(22/23) 4032522474083757 a001 24157817/23725150497407*64079^(22/23) 4032522474083765 a001 9227465/9062201101803*64079^(22/23) 4032522474083820 a001 1762289/1730726404001*64079^(22/23) 4032522474084200 a001 1346269/1322157322203*64079^(22/23) 4032522474086805 a001 514229/505019158607*64079^(22/23) 4032522474088184 a001 17711/370248451*39603^(7/11) 4032522474092926 a001 2576/33281921*64079^(13/23) 4032522474104660 a001 98209/96450076809*64079^(22/23) 4032522474114424 a001 121393/45537549124*64079^(20/23) 4032522474118469 a001 105937/64300051206*64079^(21/23) 4032522474125289 a001 832040/505019158607*64079^(21/23) 4032522474126284 a001 726103/440719107401*64079^(21/23) 4032522474126429 a001 5702887/3461452808002*64079^(21/23) 4032522474126451 a001 4976784/3020733700601*64079^(21/23) 4032522474126454 a001 39088169/23725150497407*64079^(21/23) 4032522474126456 a001 24157817/14662949395604*64079^(21/23) 4032522474126464 a001 9227465/5600748293801*64079^(21/23) 4032522474126519 a001 3524578/2139295485799*64079^(21/23) 4032522474126899 a001 1346269/817138163596*64079^(21/23) 4032522474129504 a001 514229/312119004989*64079^(21/23) 4032522474135625 a001 46368/370248451*64079^(12/23) 4032522474142000 a001 6765/1568397607*15127^(19/20) 4032522474147359 a001 196418/119218851371*64079^(21/23) 4032522474157123 a001 121393/28143753123*64079^(19/23) 4032522474161168 a001 317811/119218851371*64079^(20/23) 4032522474167988 a001 75640/28374454999*64079^(20/23) 4032522474168983 a001 2178309/817138163596*64079^(20/23) 4032522474169128 a001 5702887/2139295485799*64079^(20/23) 4032522474169150 a001 14930352/5600748293801*64079^(20/23) 4032522474169153 a001 39088169/14662949395604*64079^(20/23) 4032522474169153 a001 63245986/23725150497407*64079^(20/23) 4032522474169155 a001 24157817/9062201101803*64079^(20/23) 4032522474169163 a001 9227465/3461452808002*64079^(20/23) 4032522474169218 a001 3524578/1322157322203*64079^(20/23) 4032522474169598 a001 1346269/505019158607*64079^(20/23) 4032522474172203 a001 514229/192900153618*64079^(20/23) 4032522474178324 a001 46368/228826127*64079^(11/23) 4032522474184339 a004 Fibonacci(25)*Lucas(23)/(1/2+sqrt(5)/2)^53 4032522474190058 a001 196418/73681302247*64079^(20/23) 4032522474199822 a001 121393/17393796001*64079^(18/23) 4032522474203867 a001 317811/73681302247*64079^(19/23) 4032522474204873 a001 75025/7881196*24476^(1/7) 4032522474205052 a001 17711/599074578*39603^(15/22) 4032522474210687 a001 416020/96450076809*64079^(19/23) 4032522474211682 a001 46347/10745088481*64079^(19/23) 4032522474211827 a001 5702887/1322157322203*64079^(19/23) 4032522474211849 a001 7465176/1730726404001*64079^(19/23) 4032522474211852 a001 39088169/9062201101803*64079^(19/23) 4032522474211852 a001 102334155/23725150497407*64079^(19/23) 4032522474211852 a001 31622993/7331474697802*64079^(19/23) 4032522474211854 a001 24157817/5600748293801*64079^(19/23) 4032522474211862 a001 9227465/2139295485799*64079^(19/23) 4032522474211917 a001 1762289/408569081798*64079^(19/23) 4032522474212297 a001 1346269/312119004989*64079^(19/23) 4032522474214902 a001 514229/119218851371*64079^(19/23) 4032522474217338 a001 17711/1149851*15127^(1/10) 4032522474221023 a001 11592/35355581*64079^(10/23) 4032522474227038 a001 75025/73681302247*64079^(22/23) 4032522474232757 a001 98209/22768774562*64079^(19/23) 4032522474242521 a001 121393/10749957122*64079^(17/23) 4032522474246566 a001 317811/45537549124*64079^(18/23) 4032522474253386 a001 832040/119218851371*64079^(18/23) 4032522474254381 a001 2178309/312119004989*64079^(18/23) 4032522474254526 a001 5702887/817138163596*64079^(18/23) 4032522474254548 a001 14930352/2139295485799*64079^(18/23) 4032522474254551 a001 39088169/5600748293801*64079^(18/23) 4032522474254551 a001 102334155/14662949395604*64079^(18/23) 4032522474254551 a001 165580141/23725150497407*64079^(18/23) 4032522474254551 a001 63245986/9062201101803*64079^(18/23) 4032522474254553 a001 24157817/3461452808002*64079^(18/23) 4032522474254561 a001 9227465/1322157322203*64079^(18/23) 4032522474254616 a001 3524578/505019158607*64079^(18/23) 4032522474254996 a001 1346269/192900153618*64079^(18/23) 4032522474257601 a001 514229/73681302247*64079^(18/23) 4032522474263722 a001 15456/29134601*64079^(9/23) 4032522474269737 a001 75025/45537549124*64079^(21/23) 4032522474272893 a001 2149991424/53316291173 4032522474272893 a004 Fibonacci(24)/Lucas(24)/(1/2+sqrt(5)/2)^5 4032522474275456 a001 196418/28143753123*64079^(18/23) 4032522474285220 a001 121393/6643838879*64079^(16/23) 4032522474289265 a001 105937/9381251041*64079^(17/23) 4032522474296085 a001 832040/73681302247*64079^(17/23) 4032522474297080 a001 726103/64300051206*64079^(17/23) 4032522474297225 a001 5702887/505019158607*64079^(17/23) 4032522474297247 a001 4976784/440719107401*64079^(17/23) 4032522474297250 a001 39088169/3461452808002*64079^(17/23) 4032522474297250 a001 34111385/3020733700601*64079^(17/23) 4032522474297250 a001 267914296/23725150497407*64079^(17/23) 4032522474297250 a001 165580141/14662949395604*64079^(17/23) 4032522474297250 a001 63245986/5600748293801*64079^(17/23) 4032522474297252 a001 24157817/2139295485799*64079^(17/23) 4032522474297260 a001 9227465/817138163596*64079^(17/23) 4032522474297315 a001 3524578/312119004989*64079^(17/23) 4032522474297695 a001 1346269/119218851371*64079^(17/23) 4032522474300300 a001 514229/45537549124*64079^(17/23) 4032522474306423 a001 46368/54018521*64079^(8/23) 4032522474312436 a001 75025/28143753123*64079^(20/23) 4032522474318155 a001 196418/17393796001*64079^(17/23) 4032522474321921 a001 17711/969323029*39603^(8/11) 4032522474326312 a001 2576/103361*24476^(1/21) 4032522474327397 a001 121393/7881196*24476^(2/21) 4032522474327919 a001 121393/4106118243*64079^(15/23) 4032522474331964 a001 10959/599786069*64079^(16/23) 4032522474338784 a001 208010/11384387281*64079^(16/23) 4032522474339779 a001 2178309/119218851371*64079^(16/23) 4032522474339924 a001 5702887/312119004989*64079^(16/23) 4032522474339946 a001 3732588/204284540899*64079^(16/23) 4032522474339949 a001 39088169/2139295485799*64079^(16/23) 4032522474339949 a001 102334155/5600748293801*64079^(16/23) 4032522474339949 a001 10946/599074579*64079^(16/23) 4032522474339949 a001 433494437/23725150497407*64079^(16/23) 4032522474339949 a001 165580141/9062201101803*64079^(16/23) 4032522474339949 a001 31622993/1730726404001*64079^(16/23) 4032522474339951 a001 24157817/1322157322203*64079^(16/23) 4032522474339959 a001 9227465/505019158607*64079^(16/23) 4032522474340014 a001 1762289/96450076809*64079^(16/23) 4032522474340394 a001 1346269/73681302247*64079^(16/23) 4032522474342999 a001 514229/28143753123*64079^(16/23) 4032522474349117 a001 144/103681*64079^(7/23) 4032522474355135 a001 75025/17393796001*64079^(19/23) 4032522474360854 a001 98209/5374978561*64079^(16/23) 4032522474370618 a001 121393/2537720636*64079^(14/23) 4032522474374086 a001 10959/711491*24476^(2/21) 4032522474374663 a001 317811/10749957122*64079^(15/23) 4032522474380898 a001 832040/54018521*24476^(2/21) 4032522474381483 a001 832040/28143753123*64079^(15/23) 4032522474381891 a001 2178309/141422324*24476^(2/21) 4032522474382036 a001 5702887/370248451*24476^(2/21) 4032522474382058 a001 14930352/969323029*24476^(2/21) 4032522474382061 a001 39088169/2537720636*24476^(2/21) 4032522474382061 a001 102334155/6643838879*24476^(2/21) 4032522474382061 a001 9238424/599786069*24476^(2/21) 4032522474382061 a001 701408733/45537549124*24476^(2/21) 4032522474382061 a001 1836311903/119218851371*24476^(2/21) 4032522474382061 a001 4807526976/312119004989*24476^(2/21) 4032522474382061 a001 12586269025/817138163596*24476^(2/21) 4032522474382061 a001 32951280099/2139295485799*24476^(2/21) 4032522474382061 a001 86267571272/5600748293801*24476^(2/21) 4032522474382061 a001 7787980473/505618944676*24476^(2/21) 4032522474382061 a001 365435296162/23725150497407*24476^(2/21) 4032522474382061 a001 139583862445/9062201101803*24476^(2/21) 4032522474382061 a001 53316291173/3461452808002*24476^(2/21) 4032522474382061 a001 20365011074/1322157322203*24476^(2/21) 4032522474382061 a001 7778742049/505019158607*24476^(2/21) 4032522474382061 a001 2971215073/192900153618*24476^(2/21) 4032522474382061 a001 1134903170/73681302247*24476^(2/21) 4032522474382061 a001 433494437/28143753123*24476^(2/21) 4032522474382061 a001 165580141/10749957122*24476^(2/21) 4032522474382061 a001 63245986/4106118243*24476^(2/21) 4032522474382063 a001 24157817/1568397607*24476^(2/21) 4032522474382071 a001 9227465/599074578*24476^(2/21) 4032522474382126 a001 3524578/228826127*24476^(2/21) 4032522474382478 a001 311187/10525900321*64079^(15/23) 4032522474382506 a001 1346269/87403803*24476^(2/21) 4032522474382623 a001 5702887/192900153618*64079^(15/23) 4032522474382645 a001 14930352/505019158607*64079^(15/23) 4032522474382648 a001 39088169/1322157322203*64079^(15/23) 4032522474382648 a001 6765/228826126*64079^(15/23) 4032522474382648 a001 267914296/9062201101803*64079^(15/23) 4032522474382648 a001 701408733/23725150497407*64079^(15/23) 4032522474382648 a001 433494437/14662949395604*64079^(15/23) 4032522474382648 a001 165580141/5600748293801*64079^(15/23) 4032522474382648 a001 63245986/2139295485799*64079^(15/23) 4032522474382650 a001 24157817/817138163596*64079^(15/23) 4032522474382658 a001 9227465/312119004989*64079^(15/23) 4032522474382713 a001 3524578/119218851371*64079^(15/23) 4032522474383093 a001 1346269/45537549124*64079^(15/23) 4032522474385108 a001 514229/33385282*24476^(2/21) 4032522474385698 a001 514229/17393796001*64079^(15/23) 4032522474391829 a001 46368/20633239*64079^(6/23) 4032522474397834 a001 75025/10749957122*64079^(18/23) 4032522474402595 a001 28657/7881196*24476^(5/21) 4032522474402941 a001 196418/12752043*24476^(2/21) 4032522474403553 a001 196418/6643838879*64079^(15/23) 4032522474413317 a001 121393/1568397607*64079^(13/23) 4032522474417362 a001 317811/6643838879*64079^(14/23) 4032522474424182 a001 832040/17393796001*64079^(14/23) 4032522474425177 a001 2178309/45537549124*64079^(14/23) 4032522474425322 a001 5702887/119218851371*64079^(14/23) 4032522474425344 a001 14930352/312119004989*64079^(14/23) 4032522474425347 a001 4181/87403804*64079^(14/23) 4032522474425347 a001 102334155/2139295485799*64079^(14/23) 4032522474425347 a001 267914296/5600748293801*64079^(14/23) 4032522474425347 a001 701408733/14662949395604*64079^(14/23) 4032522474425347 a001 1134903170/23725150497407*64079^(14/23) 4032522474425347 a001 433494437/9062201101803*64079^(14/23) 4032522474425347 a001 165580141/3461452808002*64079^(14/23) 4032522474425347 a001 63245986/1322157322203*64079^(14/23) 4032522474425349 a001 24157817/505019158607*64079^(14/23) 4032522474425357 a001 9227465/192900153618*64079^(14/23) 4032522474425412 a001 3524578/73681302247*64079^(14/23) 4032522474425792 a001 1346269/28143753123*64079^(14/23) 4032522474428397 a001 514229/10749957122*64079^(14/23) 4032522474434493 a001 15456/4250681*64079^(5/23) 4032522474438790 a001 17711/1568397607*39603^(17/22) 4032522474440533 a001 75025/6643838879*64079^(17/23) 4032522474446252 a001 196418/4106118243*64079^(14/23) 4032522474456016 a001 121393/969323029*64079^(12/23) 4032522474460061 a001 105937/1368706081*64079^(13/23) 4032522474466881 a001 416020/5374978561*64079^(13/23) 4032522474467876 a001 726103/9381251041*64079^(13/23) 4032522474468021 a001 5702887/73681302247*64079^(13/23) 4032522474468043 a001 2584/33385281*64079^(13/23) 4032522474468046 a001 39088169/505019158607*64079^(13/23) 4032522474468046 a001 34111385/440719107401*64079^(13/23) 4032522474468046 a001 133957148/1730726404001*64079^(13/23) 4032522474468046 a001 233802911/3020733700601*64079^(13/23) 4032522474468046 a001 1836311903/23725150497407*64079^(13/23) 4032522474468046 a001 567451585/7331474697802*64079^(13/23) 4032522474468046 a001 433494437/5600748293801*64079^(13/23) 4032522474468046 a001 165580141/2139295485799*64079^(13/23) 4032522474468046 a001 31622993/408569081798*64079^(13/23) 4032522474468048 a001 24157817/312119004989*64079^(13/23) 4032522474468056 a001 9227465/119218851371*64079^(13/23) 4032522474468111 a001 1762289/22768774562*64079^(13/23) 4032522474468491 a001 1346269/17393796001*64079^(13/23) 4032522474471096 a001 514229/6643838879*64079^(13/23) 4032522474472695 a001 10946/1149851*9349^(3/19) 4032522474477282 a001 11592/1970299*64079^(4/23) 4032522474483232 a001 75025/4106118243*64079^(16/23) 4032522474488951 a001 98209/1268860318*64079^(13/23) 4032522474498715 a001 121393/599074578*64079^(11/23) 4032522474502760 a001 317811/2537720636*64079^(12/23) 4032522474504730 a004 Fibonacci(24)*Lucas(25)/(1/2+sqrt(5)/2)^54 4032522474509580 a001 832040/6643838879*64079^(12/23) 4032522474510575 a001 2178309/17393796001*64079^(12/23) 4032522474510720 a001 1597/12752044*64079^(12/23) 4032522474510742 a001 14930352/119218851371*64079^(12/23) 4032522474510745 a001 39088169/312119004989*64079^(12/23) 4032522474510745 a001 102334155/817138163596*64079^(12/23) 4032522474510745 a001 267914296/2139295485799*64079^(12/23) 4032522474510745 a001 701408733/5600748293801*64079^(12/23) 4032522474510745 a001 1836311903/14662949395604*64079^(12/23) 4032522474510745 a001 2971215073/23725150497407*64079^(12/23) 4032522474510745 a001 1134903170/9062201101803*64079^(12/23) 4032522474510745 a001 433494437/3461452808002*64079^(12/23) 4032522474510745 a001 165580141/1322157322203*64079^(12/23) 4032522474510745 a001 63245986/505019158607*64079^(12/23) 4032522474510747 a001 24157817/192900153618*64079^(12/23) 4032522474510755 a001 9227465/73681302247*64079^(12/23) 4032522474510810 a001 3524578/28143753123*64079^(12/23) 4032522474511190 a001 1346269/10749957122*64079^(12/23) 4032522474513795 a001 514229/4106118243*64079^(12/23) 4032522474519746 a001 46368/4870847*64079^(3/23) 4032522474525174 a001 75025/4870847*24476^(2/21) 4032522474525931 a001 75025/2537720636*64079^(15/23) 4032522474531650 a001 196418/1568397607*64079^(12/23) 4032522474533387 a001 46368/17393796001*167761^(4/5) 4032522474541414 a001 121393/370248451*64079^(10/23) 4032522474545459 a001 317811/1568397607*64079^(11/23) 4032522474552279 a001 832040/4106118243*64079^(11/23) 4032522474553274 a001 987/4870846*64079^(11/23) 4032522474553419 a001 5702887/28143753123*64079^(11/23) 4032522474553440 a001 14930352/73681302247*64079^(11/23) 4032522474553444 a001 39088169/192900153618*64079^(11/23) 4032522474553444 a001 102334155/505019158607*64079^(11/23) 4032522474553444 a001 267914296/1322157322203*64079^(11/23) 4032522474553444 a001 701408733/3461452808002*64079^(11/23) 4032522474553444 a001 1836311903/9062201101803*64079^(11/23) 4032522474553444 a001 4807526976/23725150497407*64079^(11/23) 4032522474553444 a001 2971215073/14662949395604*64079^(11/23) 4032522474553444 a001 1134903170/5600748293801*64079^(11/23) 4032522474553444 a001 433494437/2139295485799*64079^(11/23) 4032522474553444 a001 165580141/817138163596*64079^(11/23) 4032522474553444 a001 63245986/312119004989*64079^(11/23) 4032522474553445 a001 24157817/119218851371*64079^(11/23) 4032522474553454 a001 9227465/45537549124*64079^(11/23) 4032522474553509 a001 3524578/17393796001*64079^(11/23) 4032522474553889 a001 1346269/6643838879*64079^(11/23) 4032522474555658 a001 17711/2537720636*39603^(9/11) 4032522474556494 a001 514229/2537720636*64079^(11/23) 4032522474562043 a001 6624/224056801*167761^(3/5) 4032522474563060 a001 46368/3010349*64079^(2/23) 4032522474568630 a001 75025/1568397607*64079^(14/23) 4032522474574349 a001 196418/969323029*64079^(11/23) 4032522474584113 a001 121393/228826127*64079^(9/23) 4032522474588158 a001 317811/969323029*64079^(10/23) 4032522474590700 a001 11592/35355581*167761^(2/5) 4032522474593284 a001 5628750624/139583862445 4032522474593284 a004 Fibonacci(24)/Lucas(26)/(1/2+sqrt(5)/2)^3 4032522474593284 a004 Fibonacci(26)/Lucas(24)/(1/2+sqrt(5)/2)^7 4032522474594978 a001 610/1860499*64079^(10/23) 4032522474595973 a001 2178309/6643838879*64079^(10/23) 4032522474596118 a001 5702887/17393796001*64079^(10/23) 4032522474596139 a001 3732588/11384387281*64079^(10/23) 4032522474596143 a001 39088169/119218851371*64079^(10/23) 4032522474596143 a001 9303105/28374454999*64079^(10/23) 4032522474596143 a001 66978574/204284540899*64079^(10/23) 4032522474596143 a001 701408733/2139295485799*64079^(10/23) 4032522474596143 a001 1836311903/5600748293801*64079^(10/23) 4032522474596143 a001 1201881744/3665737348901*64079^(10/23) 4032522474596143 a001 7778742049/23725150497407*64079^(10/23) 4032522474596143 a001 2971215073/9062201101803*64079^(10/23) 4032522474596143 a001 567451585/1730726404001*64079^(10/23) 4032522474596143 a001 433494437/1322157322203*64079^(10/23) 4032522474596143 a001 165580141/505019158607*64079^(10/23) 4032522474596143 a001 31622993/96450076809*64079^(10/23) 4032522474596144 a001 24157817/73681302247*64079^(10/23) 4032522474596153 a001 9227465/28143753123*64079^(10/23) 4032522474596208 a001 1762289/5374978561*64079^(10/23) 4032522474596588 a001 1346269/4106118243*64079^(10/23) 4032522474599193 a001 514229/1568397607*64079^(10/23) 4032522474604149 a001 2576/103361*64079^(1/23) 4032522474611329 a001 75025/969323029*64079^(13/23) 4032522474617048 a001 98209/299537289*64079^(10/23) 4032522474619332 a001 15456/4250681*167761^(1/5) 4032522474626812 a001 233/271444*64079^(8/23) 4032522474627108 a004 Fibonacci(24)*Lucas(27)/(1/2+sqrt(5)/2)^56 4032522474629431 a001 46368/119218851371*439204^(8/9) 4032522474630857 a001 377/710646*64079^(9/23) 4032522474631754 a001 15456/9381251041*439204^(7/9) 4032522474634077 a001 46368/6643838879*439204^(2/3) 4032522474636399 a001 6624/224056801*439204^(5/9) 4032522474637677 a001 832040/1568397607*64079^(9/23) 4032522474638672 a001 726103/1368706081*64079^(9/23) 4032522474638722 a001 46368/370248451*439204^(4/9) 4032522474638817 a001 5702887/10749957122*64079^(9/23) 4032522474638838 a001 4976784/9381251041*64079^(9/23) 4032522474638842 a001 39088169/73681302247*64079^(9/23) 4032522474638842 a001 34111385/64300051206*64079^(9/23) 4032522474638842 a001 267914296/505019158607*64079^(9/23) 4032522474638842 a001 233802911/440719107401*64079^(9/23) 4032522474638842 a001 1836311903/3461452808002*64079^(9/23) 4032522474638842 a001 1602508992/3020733700601*64079^(9/23) 4032522474638842 a001 12586269025/23725150497407*64079^(9/23) 4032522474638842 a001 7778742049/14662949395604*64079^(9/23) 4032522474638842 a001 2971215073/5600748293801*64079^(9/23) 4032522474638842 a001 1134903170/2139295485799*64079^(9/23) 4032522474638842 a001 433494437/817138163596*64079^(9/23) 4032522474638842 a001 165580141/312119004989*64079^(9/23) 4032522474638842 a001 63245986/119218851371*64079^(9/23) 4032522474638843 a001 24157817/45537549124*64079^(9/23) 4032522474638852 a001 9227465/17393796001*64079^(9/23) 4032522474638907 a001 3524578/6643838879*64079^(9/23) 4032522474639287 a001 1346269/2537720636*64079^(9/23) 4032522474640028 a001 7368130224/182717648081 4032522474640028 a004 Fibonacci(24)/Lucas(28)/(1/2+sqrt(5)/2) 4032522474640028 a004 Fibonacci(28)/Lucas(24)/(1/2+sqrt(5)/2)^9 4032522474641044 a001 15456/29134601*439204^(1/3) 4032522474641892 a001 514229/969323029*64079^(9/23) 4032522474643377 a001 46368/20633239*439204^(2/9) 4032522474644963 a004 Fibonacci(24)*Lucas(29)/(1/2+sqrt(5)/2)^58 4032522474645520 a001 46368/4870847*439204^(1/9) 4032522474646848 a001 38580030720/956722026041 4032522474646848 a001 1288/103361+1288/103361*5^(1/2) 4032522474646848 a004 Fibonacci(30)/Lucas(24)/(1/2+sqrt(5)/2)^11 4032522474647568 a004 Fibonacci(24)*Lucas(31)/(1/2+sqrt(5)/2)^60 4032522474647698 a001 121393/4870847*24476^(1/21) 4032522474647837 a001 46368/4870847*7881196^(1/11) 4032522474647843 a001 46368/4870847*141422324^(1/13) 4032522474647843 a001 46368/4870847*2537720636^(1/15) 4032522474647843 a001 46368/4870847*45537549124^(1/17) 4032522474647843 a001 101003831712/2504730781961 4032522474647843 a001 46368/4870847*(1/2+1/2*5^(1/2))^3 4032522474647843 a001 46368/4870847*10749957122^(1/16) 4032522474647843 a004 Fibonacci(32)/Lucas(24)/(1/2+sqrt(5)/2)^13 4032522474647843 a001 46368/4870847*599074578^(1/14) 4032522474647843 a001 46368/4870847*33385282^(1/12) 4032522474647948 a004 Fibonacci(24)*Lucas(33)/(1/2+sqrt(5)/2)^62 4032522474647954 a001 46368/2139295485799*7881196^(10/11) 4032522474647960 a001 46368/4870847*1860498^(1/10) 4032522474647960 a001 46368/505019158607*7881196^(9/11) 4032522474647966 a001 46368/119218851371*7881196^(8/11) 4032522474647970 a001 11592/11384387281*7881196^(2/3) 4032522474647972 a001 15456/9381251041*7881196^(7/11) 4032522474647978 a001 46368/6643838879*7881196^(6/11) 4032522474647984 a001 6624/224056801*7881196^(5/11) 4032522474647987 a001 15456/4250681*20633239^(1/7) 4032522474647988 a001 15456/4250681*2537720636^(1/9) 4032522474647988 a001 15456/4250681*312119004989^(1/11) 4032522474647988 a001 132215732208/3278735159921 4032522474647988 a001 15456/4250681*(1/2+1/2*5^(1/2))^5 4032522474647988 a001 15456/4250681*28143753123^(1/10) 4032522474647988 a004 Fibonacci(34)/Lucas(24)/(1/2+sqrt(5)/2)^15 4032522474647988 a001 15456/4250681*228826127^(1/8) 4032522474647989 a001 46368/370248451*7881196^(4/11) 4032522474647991 a001 46368/228826127*7881196^(1/3) 4032522474647995 a001 15456/29134601*7881196^(3/11) 4032522474648004 a004 Fibonacci(24)*Lucas(35)/(1/2+sqrt(5)/2)^64 4032522474648005 a001 46368/2139295485799*20633239^(6/7) 4032522474648005 a001 11592/204284540899*20633239^(4/5) 4032522474648006 a001 2576/10716675201*20633239^(5/7) 4032522474648007 a001 15456/9381251041*20633239^(3/5) 4032522474648008 a001 144/103681*20633239^(1/5) 4032522474648008 a001 46368/17393796001*20633239^(4/7) 4032522474648009 a001 6624/224056801*20633239^(3/7) 4032522474648009 a001 46368/969323029*20633239^(2/5) 4032522474648009 a001 144/103681*17393796001^(1/7) 4032522474648009 a001 144/103681*14662949395604^(1/9) 4032522474648009 a001 144/103681*(1/2+1/2*5^(1/2))^7 4032522474648009 a004 Fibonacci(36)/Lucas(24)/(1/2+sqrt(5)/2)^17 4032522474648009 a001 144/103681*599074578^(1/6) 4032522474648011 a001 11592/35355581*20633239^(2/7) 4032522474648011 a001 46368/20633239*7881196^(2/11) 4032522474648012 a004 Fibonacci(24)*Lucas(37)/(1/2+sqrt(5)/2)^66 4032522474648012 a001 15456/29134601*141422324^(3/13) 4032522474648013 a001 15456/29134601*2537720636^(1/5) 4032522474648013 a001 15456/29134601*45537549124^(3/17) 4032522474648013 a001 15456/29134601*14662949395604^(1/7) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^9/Lucas(38) 4032522474648013 a001 15456/29134601*192900153618^(1/6) 4032522474648013 a001 15456/29134601*10749957122^(3/16) 4032522474648013 a004 Fibonacci(38)/Lucas(24)/(1/2+sqrt(5)/2)^19 4032522474648013 a001 15456/29134601*599074578^(3/14) 4032522474648013 a004 Fibonacci(24)*Lucas(39)/(1/2+sqrt(5)/2)^68 4032522474648013 a001 15456/3020733700601*141422324^(11/13) 4032522474648013 a001 46368/2139295485799*141422324^(10/13) 4032522474648013 a001 46368/505019158607*141422324^(9/13) 4032522474648013 a001 46368/312119004989*141422324^(2/3) 4032522474648013 a001 46368/119218851371*141422324^(8/13) 4032522474648013 a001 15456/9381251041*141422324^(7/13) 4032522474648013 a001 46368/6643838879*141422324^(6/13) 4032522474648013 a001 6624/224056801*141422324^(5/13) 4032522474648013 a001 2576/33281921*141422324^(1/3) 4032522474648013 a001 46368/228826127*312119004989^(1/5) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^11/Lucas(40) 4032522474648013 a004 Fibonacci(40)/Lucas(24)/(1/2+sqrt(5)/2)^21 4032522474648013 a001 46368/228826127*1568397607^(1/4) 4032522474648013 a001 46368/370248451*141422324^(4/13) 4032522474648013 a004 Fibonacci(24)*Lucas(41)/(1/2+sqrt(5)/2)^70 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^13/Lucas(42) 4032522474648013 a001 2576/33281921*73681302247^(1/4) 4032522474648013 a004 Fibonacci(42)/Lucas(24)/(1/2+sqrt(5)/2)^23 4032522474648013 a004 Fibonacci(24)*Lucas(43)/(1/2+sqrt(5)/2)^72 4032522474648013 a001 6624/224056801*2537720636^(1/3) 4032522474648013 a001 6624/224056801*45537549124^(5/17) 4032522474648013 a001 6624/224056801*312119004989^(3/11) 4032522474648013 a001 6624/224056801*14662949395604^(5/21) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^15/Lucas(44) 4032522474648013 a001 6624/224056801*192900153618^(5/18) 4032522474648013 a001 6624/224056801*28143753123^(3/10) 4032522474648013 a001 6624/224056801*10749957122^(5/16) 4032522474648013 a004 Fibonacci(44)/Lucas(24)/(1/2+sqrt(5)/2)^25 4032522474648013 a004 Fibonacci(24)*Lucas(45)/(1/2+sqrt(5)/2)^74 4032522474648013 a001 46368/23725150497407*2537720636^(7/9) 4032522474648013 a001 15456/3020733700601*2537720636^(11/15) 4032522474648013 a001 46368/2139295485799*2537720636^(2/3) 4032522474648013 a001 46368/505019158607*2537720636^(3/5) 4032522474648013 a001 2576/10716675201*2537720636^(5/9) 4032522474648013 a001 46368/119218851371*2537720636^(8/15) 4032522474648013 a001 15456/9381251041*2537720636^(7/15) 4032522474648013 a001 46368/17393796001*2537720636^(4/9) 4032522474648013 a001 15456/1368706081*45537549124^(1/3) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^17/Lucas(46) 4032522474648013 a004 Fibonacci(46)/Lucas(24)/(1/2+sqrt(5)/2)^27 4032522474648013 a001 46368/6643838879*2537720636^(2/5) 4032522474648013 a004 Fibonacci(24)*Lucas(47)/(1/2+sqrt(5)/2)^76 4032522474648013 a001 23184/5374978561*817138163596^(1/3) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^19/Lucas(48) 4032522474648013 a004 Fibonacci(24)*Lucas(49)/(1/2+sqrt(5)/2)^78 4032522474648013 a001 15456/9381251041*17393796001^(3/7) 4032522474648013 a001 46368/23725150497407*17393796001^(5/7) 4032522474648013 a001 11592/204284540899*17393796001^(4/7) 4032522474648013 a001 15456/9381251041*45537549124^(7/17) 4032522474648013 a001 15456/9381251041*14662949395604^(1/3) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^21/Lucas(50) 4032522474648013 a001 15456/9381251041*192900153618^(7/18) 4032522474648013 a004 Fibonacci(24)*Lucas(51)/(1/2+sqrt(5)/2)^80 4032522474648013 a001 11592/3665737348901*45537549124^(2/3) 4032522474648013 a001 15456/3020733700601*45537549124^(11/17) 4032522474648013 a001 46368/2139295485799*45537549124^(10/17) 4032522474648013 a001 46368/505019158607*45537549124^(9/17) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^23/Lucas(52) 4032522474648013 a001 46368/119218851371*45537549124^(8/17) 4032522474648013 a004 Fibonacci(24)*Lucas(53)/(1/2+sqrt(5)/2)^82 4032522474648013 a001 2576/10716675201*312119004989^(5/11) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^25/Lucas(54) 4032522474648013 a001 2576/10716675201*3461452808002^(5/12) 4032522474648013 a004 Fibonacci(24)*Lucas(55)/(1/2+sqrt(5)/2)^84 4032522474648013 a001 15456/3020733700601*312119004989^(3/5) 4032522474648013 a001 46368/2139295485799*312119004989^(6/11) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^27/Lucas(56) 4032522474648013 a004 Fibonacci(24)*Lucas(57)/(1/2+sqrt(5)/2)^86 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^29/Lucas(58) 4032522474648013 a004 Fibonacci(24)*Lucas(59)/(1/2+sqrt(5)/2)^88 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^31/Lucas(60) 4032522474648013 a001 144/10749853441*9062201101803^(1/2) 4032522474648013 a004 Fibonacci(24)*Lucas(61)/(1/2+sqrt(5)/2)^90 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^33/Lucas(62) 4032522474648013 a004 Fibonacci(24)*Lucas(63)/(1/2+sqrt(5)/2)^92 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^35/Lucas(64) 4032522474648013 a004 Fibonacci(24)*Lucas(65)/(1/2+sqrt(5)/2)^94 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^37/Lucas(66) 4032522474648013 a004 Fibonacci(24)*Lucas(67)/(1/2+sqrt(5)/2)^96 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^39/Lucas(68) 4032522474648013 a004 Fibonacci(24)*Lucas(69)/(1/2+sqrt(5)/2)^98 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^41/Lucas(70) 4032522474648013 a004 Fibonacci(24)*Lucas(71)/(1/2+sqrt(5)/2)^100 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^43/Lucas(72) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^45/Lucas(74) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^47/Lucas(76) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^49/Lucas(78) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^51/Lucas(80) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^53/Lucas(82) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^55/Lucas(84) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^57/Lucas(86) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^59/Lucas(88) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^61/Lucas(90) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^63/Lucas(92) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^65/Lucas(94) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^67/Lucas(96) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^69/Lucas(98) 4032522474648013 a004 Fibonacci(12)*Lucas(12)/(1/2+sqrt(5)/2)^29 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^70/Lucas(99) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^71/Lucas(100) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^68/Lucas(97) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^66/Lucas(95) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^64/Lucas(93) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^62/Lucas(91) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^60/Lucas(89) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^58/Lucas(87) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^56/Lucas(85) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^54/Lucas(83) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^52/Lucas(81) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^50/Lucas(79) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^48/Lucas(77) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^46/Lucas(75) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^44/Lucas(73) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^42/Lucas(71) 4032522474648013 a004 Fibonacci(24)*Lucas(70)/(1/2+sqrt(5)/2)^99 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^40/Lucas(69) 4032522474648013 a004 Fibonacci(24)*Lucas(68)/(1/2+sqrt(5)/2)^97 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^38/Lucas(67) 4032522474648013 a004 Fibonacci(24)*Lucas(66)/(1/2+sqrt(5)/2)^95 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^36/Lucas(65) 4032522474648013 a004 Fibonacci(24)*Lucas(64)/(1/2+sqrt(5)/2)^93 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^34/Lucas(63) 4032522474648013 a004 Fibonacci(24)*Lucas(62)/(1/2+sqrt(5)/2)^91 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^32/Lucas(61) 4032522474648013 a004 Fibonacci(24)*Lucas(60)/(1/2+sqrt(5)/2)^89 4032522474648013 a001 46368/2139295485799*14662949395604^(10/21) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^30/Lucas(59) 4032522474648013 a004 Fibonacci(24)*Lucas(58)/(1/2+sqrt(5)/2)^87 4032522474648013 a001 11592/204284540899*14662949395604^(4/9) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^28/Lucas(57) 4032522474648013 a001 11592/204284540899*505019158607^(1/2) 4032522474648013 a004 Fibonacci(24)*Lucas(56)/(1/2+sqrt(5)/2)^85 4032522474648013 a001 46368/505019158607*192900153618^(1/2) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^26/Lucas(55) 4032522474648013 a001 46368/2139295485799*192900153618^(5/9) 4032522474648013 a001 15456/3020733700601*192900153618^(11/18) 4032522474648013 a004 Fibonacci(24)*Lucas(54)/(1/2+sqrt(5)/2)^83 4032522474648013 a001 46368/119218851371*14662949395604^(8/21) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^24/Lucas(53) 4032522474648013 a001 46368/119218851371*192900153618^(4/9) 4032522474648013 a001 11592/204284540899*73681302247^(7/13) 4032522474648013 a001 46368/312119004989*73681302247^(1/2) 4032522474648013 a001 46368/5600748293801*73681302247^(8/13) 4032522474648013 a001 46368/119218851371*73681302247^(6/13) 4032522474648013 a004 Fibonacci(24)*Lucas(52)/(1/2+sqrt(5)/2)^81 4032522474648013 a001 11592/11384387281*312119004989^(2/5) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^22/Lucas(51) 4032522474648013 a001 2576/10716675201*28143753123^(1/2) 4032522474648013 a001 46368/2139295485799*28143753123^(3/5) 4032522474648013 a001 46368/23725150497407*28143753123^(7/10) 4032522474648013 a004 Fibonacci(24)*Lucas(50)/(1/2+sqrt(5)/2)^79 4032522474648013 a001 15456/9381251041*10749957122^(7/16) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^20/Lucas(49) 4032522474648013 a001 46368/17393796001*23725150497407^(5/16) 4032522474648013 a001 46368/17393796001*505019158607^(5/14) 4032522474648013 a001 46368/17393796001*73681302247^(5/13) 4032522474648013 a001 46368/17393796001*28143753123^(2/5) 4032522474648013 a001 46368/119218851371*10749957122^(1/2) 4032522474648013 a001 11592/11384387281*10749957122^(11/24) 4032522474648013 a001 46368/312119004989*10749957122^(13/24) 4032522474648013 a001 46368/505019158607*10749957122^(9/16) 4032522474648013 a001 11592/204284540899*10749957122^(7/12) 4032522474648013 a001 46368/2139295485799*10749957122^(5/8) 4032522474648013 a001 46368/5600748293801*10749957122^(2/3) 4032522474648013 a001 15456/3020733700601*10749957122^(11/16) 4032522474648013 a001 11592/3665737348901*10749957122^(17/24) 4032522474648013 a001 46368/17393796001*10749957122^(5/12) 4032522474648013 a004 Fibonacci(50)/Lucas(24)/(1/2+sqrt(5)/2)^31 4032522474648013 a004 Fibonacci(52)/Lucas(24)/(1/2+sqrt(5)/2)^33 4032522474648013 a004 Fibonacci(54)/Lucas(24)/(1/2+sqrt(5)/2)^35 4032522474648013 a004 Fibonacci(56)/Lucas(24)/(1/2+sqrt(5)/2)^37 4032522474648013 a004 Fibonacci(58)/Lucas(24)/(1/2+sqrt(5)/2)^39 4032522474648013 a004 Fibonacci(60)/Lucas(24)/(1/2+sqrt(5)/2)^41 4032522474648013 a004 Fibonacci(62)/Lucas(24)/(1/2+sqrt(5)/2)^43 4032522474648013 a004 Fibonacci(64)/Lucas(24)/(1/2+sqrt(5)/2)^45 4032522474648013 a004 Fibonacci(66)/Lucas(24)/(1/2+sqrt(5)/2)^47 4032522474648013 a004 Fibonacci(68)/Lucas(24)/(1/2+sqrt(5)/2)^49 4032522474648013 a004 Fibonacci(70)/Lucas(24)/(1/2+sqrt(5)/2)^51 4032522474648013 a004 Fibonacci(72)/Lucas(24)/(1/2+sqrt(5)/2)^53 4032522474648013 a004 Fibonacci(74)/Lucas(24)/(1/2+sqrt(5)/2)^55 4032522474648013 a004 Fibonacci(76)/Lucas(24)/(1/2+sqrt(5)/2)^57 4032522474648013 a004 Fibonacci(78)/Lucas(24)/(1/2+sqrt(5)/2)^59 4032522474648013 a004 Fibonacci(80)/Lucas(24)/(1/2+sqrt(5)/2)^61 4032522474648013 a004 Fibonacci(82)/Lucas(24)/(1/2+sqrt(5)/2)^63 4032522474648013 a004 Fibonacci(84)/Lucas(24)/(1/2+sqrt(5)/2)^65 4032522474648013 a004 Fibonacci(86)/Lucas(24)/(1/2+sqrt(5)/2)^67 4032522474648013 a004 Fibonacci(88)/Lucas(24)/(1/2+sqrt(5)/2)^69 4032522474648013 a004 Fibonacci(90)/Lucas(24)/(1/2+sqrt(5)/2)^71 4032522474648013 a004 Fibonacci(92)/Lucas(24)/(1/2+sqrt(5)/2)^73 4032522474648013 a004 Fibonacci(94)/Lucas(24)/(1/2+sqrt(5)/2)^75 4032522474648013 a004 Fibonacci(24)*Lucas(48)/(1/2+sqrt(5)/2)^77 4032522474648013 a004 Fibonacci(100)/Lucas(24)/(1/2+sqrt(5)/2)^81 4032522474648013 a004 Fibonacci(98)/Lucas(24)/(1/2+sqrt(5)/2)^79 4032522474648013 a004 Fibonacci(99)/Lucas(24)/(1/2+sqrt(5)/2)^80 4032522474648013 a004 Fibonacci(97)/Lucas(24)/(1/2+sqrt(5)/2)^78 4032522474648013 a004 Fibonacci(95)/Lucas(24)/(1/2+sqrt(5)/2)^76 4032522474648013 a004 Fibonacci(93)/Lucas(24)/(1/2+sqrt(5)/2)^74 4032522474648013 a004 Fibonacci(91)/Lucas(24)/(1/2+sqrt(5)/2)^72 4032522474648013 a004 Fibonacci(89)/Lucas(24)/(1/2+sqrt(5)/2)^70 4032522474648013 a004 Fibonacci(87)/Lucas(24)/(1/2+sqrt(5)/2)^68 4032522474648013 a004 Fibonacci(85)/Lucas(24)/(1/2+sqrt(5)/2)^66 4032522474648013 a004 Fibonacci(83)/Lucas(24)/(1/2+sqrt(5)/2)^64 4032522474648013 a004 Fibonacci(81)/Lucas(24)/(1/2+sqrt(5)/2)^62 4032522474648013 a004 Fibonacci(79)/Lucas(24)/(1/2+sqrt(5)/2)^60 4032522474648013 a004 Fibonacci(77)/Lucas(24)/(1/2+sqrt(5)/2)^58 4032522474648013 a004 Fibonacci(75)/Lucas(24)/(1/2+sqrt(5)/2)^56 4032522474648013 a004 Fibonacci(73)/Lucas(24)/(1/2+sqrt(5)/2)^54 4032522474648013 a004 Fibonacci(71)/Lucas(24)/(1/2+sqrt(5)/2)^52 4032522474648013 a004 Fibonacci(69)/Lucas(24)/(1/2+sqrt(5)/2)^50 4032522474648013 a004 Fibonacci(67)/Lucas(24)/(1/2+sqrt(5)/2)^48 4032522474648013 a004 Fibonacci(65)/Lucas(24)/(1/2+sqrt(5)/2)^46 4032522474648013 a004 Fibonacci(63)/Lucas(24)/(1/2+sqrt(5)/2)^44 4032522474648013 a004 Fibonacci(61)/Lucas(24)/(1/2+sqrt(5)/2)^42 4032522474648013 a004 Fibonacci(59)/Lucas(24)/(1/2+sqrt(5)/2)^40 4032522474648013 a004 Fibonacci(57)/Lucas(24)/(1/2+sqrt(5)/2)^38 4032522474648013 a004 Fibonacci(55)/Lucas(24)/(1/2+sqrt(5)/2)^36 4032522474648013 a004 Fibonacci(53)/Lucas(24)/(1/2+sqrt(5)/2)^34 4032522474648013 a004 Fibonacci(51)/Lucas(24)/(1/2+sqrt(5)/2)^32 4032522474648013 a004 Fibonacci(49)/Lucas(24)/(1/2+sqrt(5)/2)^30 4032522474648013 a001 46368/6643838879*45537549124^(6/17) 4032522474648013 a001 46368/6643838879*14662949395604^(2/7) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^18/Lucas(47) 4032522474648013 a001 46368/6643838879*192900153618^(1/3) 4032522474648013 a001 46368/6643838879*10749957122^(3/8) 4032522474648013 a001 11592/11384387281*4106118243^(11/23) 4032522474648013 a001 46368/17393796001*4106118243^(10/23) 4032522474648013 a001 6624/10525900321*4106118243^(1/2) 4032522474648013 a001 46368/119218851371*4106118243^(12/23) 4032522474648013 a004 Fibonacci(47)/Lucas(24)/(1/2+sqrt(5)/2)^28 4032522474648013 a001 46368/312119004989*4106118243^(13/23) 4032522474648013 a001 11592/204284540899*4106118243^(14/23) 4032522474648013 a001 46368/2139295485799*4106118243^(15/23) 4032522474648013 a001 46368/5600748293801*4106118243^(16/23) 4032522474648013 a001 11592/3665737348901*4106118243^(17/23) 4032522474648013 a001 46368/6643838879*4106118243^(9/23) 4032522474648013 a004 Fibonacci(24)*Lucas(46)/(1/2+sqrt(5)/2)^75 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^16/Lucas(45) 4032522474648013 a001 11592/634430159*23725150497407^(1/4) 4032522474648013 a001 11592/634430159*73681302247^(4/13) 4032522474648013 a001 11592/634430159*10749957122^(1/3) 4032522474648013 a004 Fibonacci(45)/Lucas(24)/(1/2+sqrt(5)/2)^26 4032522474648013 a001 11592/634430159*4106118243^(8/23) 4032522474648013 a001 46368/17393796001*1568397607^(5/11) 4032522474648013 a001 46368/6643838879*1568397607^(9/22) 4032522474648013 a001 11592/11384387281*1568397607^(1/2) 4032522474648013 a001 46368/119218851371*1568397607^(6/11) 4032522474648013 a001 46368/312119004989*1568397607^(13/22) 4032522474648013 a001 11592/204284540899*1568397607^(7/11) 4032522474648013 a001 46368/2139295485799*1568397607^(15/22) 4032522474648013 a001 46368/5600748293801*1568397607^(8/11) 4032522474648013 a001 11592/634430159*1568397607^(4/11) 4032522474648013 a001 15456/3020733700601*1568397607^(3/4) 4032522474648013 a001 11592/3665737348901*1568397607^(17/22) 4032522474648013 a004 Fibonacci(24)*Lucas(44)/(1/2+sqrt(5)/2)^73 4032522474648013 a001 6624/224056801*599074578^(5/14) 4032522474648013 a001 46368/969323029*17393796001^(2/7) 4032522474648013 a001 46368/969323029*14662949395604^(2/9) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^14/Lucas(43) 4032522474648013 a001 46368/969323029*10749957122^(7/24) 4032522474648013 a004 Fibonacci(43)/Lucas(24)/(1/2+sqrt(5)/2)^24 4032522474648013 a001 46368/969323029*4106118243^(7/23) 4032522474648013 a001 46368/969323029*1568397607^(7/22) 4032522474648013 a001 11592/634430159*599074578^(8/21) 4032522474648013 a001 46368/6643838879*599074578^(3/7) 4032522474648013 a001 46368/17393796001*599074578^(10/21) 4032522474648013 a001 15456/9381251041*599074578^(1/2) 4032522474648013 a001 11592/11384387281*599074578^(11/21) 4032522474648013 a001 46368/119218851371*599074578^(4/7) 4032522474648013 a001 46368/312119004989*599074578^(13/21) 4032522474648013 a001 46368/505019158607*599074578^(9/14) 4032522474648013 a001 11592/204284540899*599074578^(2/3) 4032522474648013 a001 46368/2139295485799*599074578^(5/7) 4032522474648013 a001 46368/969323029*599074578^(1/3) 4032522474648013 a001 46368/5600748293801*599074578^(16/21) 4032522474648013 a001 15456/3020733700601*599074578^(11/14) 4032522474648013 a001 11592/3665737348901*599074578^(17/21) 4032522474648013 a001 46368/23725150497407*599074578^(5/6) 4032522474648013 a004 Fibonacci(24)*Lucas(42)/(1/2+sqrt(5)/2)^71 4032522474648013 a001 6624/224056801*228826127^(3/8) 4032522474648013 a001 46368/370248451*2537720636^(4/15) 4032522474648013 a001 46368/370248451*45537549124^(4/17) 4032522474648013 a001 46368/370248451*817138163596^(4/19) 4032522474648013 a001 46368/370248451*14662949395604^(4/21) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^12/Lucas(41) 4032522474648013 a001 46368/370248451*192900153618^(2/9) 4032522474648013 a001 46368/370248451*73681302247^(3/13) 4032522474648013 a001 46368/370248451*10749957122^(1/4) 4032522474648013 a004 Fibonacci(41)/Lucas(24)/(1/2+sqrt(5)/2)^22 4032522474648013 a001 46368/370248451*4106118243^(6/23) 4032522474648013 a001 46368/370248451*1568397607^(3/11) 4032522474648013 a001 46368/969323029*228826127^(7/20) 4032522474648013 a001 11592/634430159*228826127^(2/5) 4032522474648013 a001 46368/370248451*599074578^(2/7) 4032522474648013 a001 46368/6643838879*228826127^(9/20) 4032522474648013 a001 46368/17393796001*228826127^(1/2) 4032522474648013 a001 11592/11384387281*228826127^(11/20) 4032522474648013 a001 46368/119218851371*228826127^(3/5) 4032522474648013 a001 2576/10716675201*228826127^(5/8) 4032522474648013 a001 46368/312119004989*228826127^(13/20) 4032522474648013 a001 46368/370248451*228826127^(3/10) 4032522474648013 a001 11592/204284540899*228826127^(7/10) 4032522474648013 a001 46368/2139295485799*228826127^(3/4) 4032522474648013 a001 46368/5600748293801*228826127^(4/5) 4032522474648013 a001 11592/3665737348901*228826127^(17/20) 4032522474648013 a001 46368/23725150497407*228826127^(7/8) 4032522474648013 a004 Fibonacci(24)*Lucas(40)/(1/2+sqrt(5)/2)^69 4032522474648013 a001 46368/370248451*87403803^(6/19) 4032522474648013 a001 46368/969323029*87403803^(7/19) 4032522474648013 a001 11592/35355581*2537720636^(2/9) 4032522474648013 a001 11592/35355581*312119004989^(2/11) 4032522474648013 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^10/Lucas(39) 4032522474648013 a001 11592/35355581*28143753123^(1/5) 4032522474648013 a001 11592/35355581*10749957122^(5/24) 4032522474648013 a004 Fibonacci(39)/Lucas(24)/(1/2+sqrt(5)/2)^20 4032522474648013 a001 11592/35355581*4106118243^(5/23) 4032522474648013 a001 11592/35355581*1568397607^(5/22) 4032522474648013 a001 11592/35355581*599074578^(5/21) 4032522474648013 a001 11592/35355581*228826127^(1/4) 4032522474648013 a001 11592/634430159*87403803^(8/19) 4032522474648013 a001 46368/6643838879*87403803^(9/19) 4032522474648013 a001 23184/5374978561*87403803^(1/2) 4032522474648013 a001 46368/17393796001*87403803^(10/19) 4032522474648013 a001 11592/11384387281*87403803^(11/19) 4032522474648013 a001 46368/119218851371*87403803^(12/19) 4032522474648013 a001 11592/35355581*87403803^(5/19) 4032522474648013 a001 46368/312119004989*87403803^(13/19) 4032522474648013 a001 15456/29134601*33385282^(1/4) 4032522474648013 a001 11592/204284540899*87403803^(14/19) 4032522474648013 a001 46368/2139295485799*87403803^(15/19) 4032522474648013 a001 46368/5600748293801*87403803^(16/19) 4032522474648014 a001 11592/3665737348901*87403803^(17/19) 4032522474648014 a004 Fibonacci(24)*Lucas(38)/(1/2+sqrt(5)/2)^67 4032522474648014 a001 11592/35355581*33385282^(5/18) 4032522474648014 a001 46368/370248451*33385282^(1/3) 4032522474648014 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^8/Lucas(37) 4032522474648014 a001 46368/54018521*23725150497407^(1/8) 4032522474648014 a001 46368/54018521*505019158607^(1/7) 4032522474648014 a001 46368/54018521*73681302247^(2/13) 4032522474648014 a001 46368/54018521*10749957122^(1/6) 4032522474648014 a004 Fibonacci(37)/Lucas(24)/(1/2+sqrt(5)/2)^18 4032522474648014 a001 46368/54018521*4106118243^(4/23) 4032522474648014 a001 46368/54018521*1568397607^(2/11) 4032522474648014 a001 46368/54018521*599074578^(4/21) 4032522474648014 a001 46368/54018521*228826127^(1/5) 4032522474648014 a001 46368/969323029*33385282^(7/18) 4032522474648015 a001 46368/54018521*87403803^(4/19) 4032522474648015 a001 6624/224056801*33385282^(5/12) 4032522474648015 a001 11592/634430159*33385282^(4/9) 4032522474648015 a001 46368/6643838879*33385282^(1/2) 4032522474648015 a001 46368/17393796001*33385282^(5/9) 4032522474648015 a001 15456/9381251041*33385282^(7/12) 4032522474648015 a001 46368/54018521*33385282^(2/9) 4032522474648015 a001 11592/11384387281*33385282^(11/18) 4032522474648015 a001 46368/119218851371*33385282^(2/3) 4032522474648016 a001 46368/312119004989*33385282^(13/18) 4032522474648016 a001 46368/505019158607*33385282^(3/4) 4032522474648016 a001 11592/204284540899*33385282^(7/9) 4032522474648016 a001 46368/2139295485799*33385282^(5/6) 4032522474648016 a001 46368/5600748293801*33385282^(8/9) 4032522474648016 a001 15456/3020733700601*33385282^(11/12) 4032522474648016 a001 11592/3665737348901*33385282^(17/18) 4032522474648017 a004 Fibonacci(24)*Lucas(36)/(1/2+sqrt(5)/2)^65 4032522474648020 a001 46368/54018521*12752043^(4/17) 4032522474648021 a001 11592/35355581*12752043^(5/17) 4032522474648022 a001 46368/370248451*12752043^(6/17) 4032522474648022 a001 46368/20633239*141422324^(2/13) 4032522474648023 a001 46368/20633239*2537720636^(2/15) 4032522474648023 a001 46368/20633239*45537549124^(2/17) 4032522474648023 a001 46368/20633239*14662949395604^(2/21) 4032522474648023 a001 46368/20633239*(1/2+1/2*5^(1/2))^6 4032522474648023 a001 20374242720/505248088463 4032522474648023 a001 46368/20633239*10749957122^(1/8) 4032522474648023 a001 46368/20633239*4106118243^(3/23) 4032522474648023 a004 Fibonacci(35)/Lucas(24)/(1/2+sqrt(5)/2)^16 4032522474648023 a001 46368/20633239*1568397607^(3/22) 4032522474648023 a001 46368/20633239*599074578^(1/7) 4032522474648023 a001 46368/20633239*228826127^(3/20) 4032522474648023 a001 46368/20633239*87403803^(3/19) 4032522474648023 a001 46368/20633239*33385282^(1/6) 4032522474648023 a001 46368/969323029*12752043^(7/17) 4032522474648025 a001 11592/634430159*12752043^(8/17) 4032522474648025 a001 15456/1368706081*12752043^(1/2) 4032522474648026 a001 46368/6643838879*12752043^(9/17) 4032522474648027 a001 46368/20633239*12752043^(3/17) 4032522474648028 a001 46368/17393796001*12752043^(10/17) 4032522474648029 a001 11592/11384387281*12752043^(11/17) 4032522474648031 a001 46368/119218851371*12752043^(12/17) 4032522474648032 a001 46368/312119004989*12752043^(13/17) 4032522474648033 a001 11592/204284540899*12752043^(14/17) 4032522474648035 a001 46368/2139295485799*12752043^(15/17) 4032522474648036 a001 46368/5600748293801*12752043^(16/17) 4032522474648038 a004 Fibonacci(24)*Lucas(34)/(1/2+sqrt(5)/2)^63 4032522474648054 a001 46368/20633239*4870847^(3/16) 4032522474648057 a001 46368/54018521*4870847^(1/4) 4032522474648066 a001 11592/35355581*4870847^(5/16) 4032522474648077 a001 46368/370248451*4870847^(3/8) 4032522474648078 a001 11592/1970299*(1/2+1/2*5^(1/2))^4 4032522474648078 a001 11592/1970299*23725150497407^(1/16) 4032522474648078 a001 11592/1970299*73681302247^(1/13) 4032522474648078 a001 11592/1970299*10749957122^(1/12) 4032522474648078 a001 11592/1970299*4106118243^(2/23) 4032522474648078 a004 Fibonacci(33)/Lucas(24)/(1/2+sqrt(5)/2)^14 4032522474648078 a001 11592/1970299*1568397607^(1/11) 4032522474648078 a001 11592/1970299*599074578^(2/21) 4032522474648078 a001 11592/1970299*228826127^(1/10) 4032522474648078 a001 11592/1970299*87403803^(2/19) 4032522474648078 a001 11592/1970299*33385282^(1/9) 4032522474648081 a001 11592/1970299*12752043^(2/17) 4032522474648087 a001 46368/969323029*4870847^(7/16) 4032522474648098 a001 11592/634430159*4870847^(1/2) 4032522474648099 a001 11592/1970299*4870847^(1/8) 4032522474648109 a001 46368/6643838879*4870847^(9/16) 4032522474648119 a001 46368/17393796001*4870847^(5/8) 4032522474648130 a001 11592/11384387281*4870847^(11/16) 4032522474648141 a001 46368/119218851371*4870847^(3/4) 4032522474648151 a001 46368/312119004989*4870847^(13/16) 4032522474648162 a001 11592/204284540899*4870847^(7/8) 4032522474648172 a001 46368/2139295485799*4870847^(15/16) 4032522474648182 a001 15456/4250681*1860498^(1/6) 4032522474648183 a004 Fibonacci(24)*Lucas(32)/(1/2+sqrt(5)/2)^61 4032522474648233 a001 11592/1970299*1860498^(2/15) 4032522474648255 a001 46368/20633239*1860498^(1/5) 4032522474648325 a001 46368/54018521*1860498^(4/15) 4032522474648362 a001 15456/29134601*1860498^(3/10) 4032522474648402 a001 11592/35355581*1860498^(1/3) 4032522474648458 a001 46368/3010349*(1/2+1/2*5^(1/2))^2 4032522474648458 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^2/Lucas(31) 4032522474648458 a001 433498618/10750060805 4032522474648458 a001 46368/3010349*10749957122^(1/24) 4032522474648458 a001 46368/3010349*4106118243^(1/23) 4032522474648458 a004 Fibonacci(31)/Lucas(24)/(1/2+sqrt(5)/2)^12 4032522474648458 a001 46368/3010349*1568397607^(1/22) 4032522474648458 a001 46368/3010349*599074578^(1/21) 4032522474648458 a001 46368/3010349*228826127^(1/20) 4032522474648458 a001 46368/3010349*87403803^(1/19) 4032522474648458 a001 46368/3010349*33385282^(1/18) 4032522474648459 a001 46368/3010349*12752043^(1/17) 4032522474648469 a001 46368/3010349*4870847^(1/16) 4032522474648479 a001 46368/370248451*1860498^(2/5) 4032522474648536 a001 46368/3010349*1860498^(1/15) 4032522474648557 a001 46368/969323029*1860498^(7/15) 4032522474648596 a001 6624/224056801*1860498^(1/2) 4032522474648634 a001 11592/634430159*1860498^(8/15) 4032522474648712 a001 46368/6643838879*1860498^(3/5) 4032522474648790 a001 46368/17393796001*1860498^(2/3) 4032522474648829 a001 15456/9381251041*1860498^(7/10) 4032522474648867 a001 11592/11384387281*1860498^(11/15) 4032522474648945 a001 46368/119218851371*1860498^(4/5) 4032522474648984 a001 2576/10716675201*1860498^(5/6) 4032522474649023 a001 46368/312119004989*1860498^(13/15) 4032522474649028 a001 46368/3010349*710647^(1/14) 4032522474649062 a001 46368/505019158607*1860498^(9/10) 4032522474649100 a001 11592/204284540899*1860498^(14/15) 4032522474649178 a004 Fibonacci(24)*Lucas(30)/(1/2+sqrt(5)/2)^59 4032522474649219 a001 11592/1970299*710647^(1/7) 4032522474649734 a001 46368/20633239*710647^(3/14) 4032522474650006 a001 144/103681*710647^(1/4) 4032522474650296 a001 46368/54018521*710647^(2/7) 4032522474650865 a001 11592/35355581*710647^(5/14) 4032522474651063 a001 46368/1149851 4032522474651063 a004 Fibonacci(29)/Lucas(24)/(1/2+sqrt(5)/2)^10 4032522474651435 a001 46368/370248451*710647^(3/7) 4032522474652005 a001 46368/969323029*710647^(1/2) 4032522474652576 a001 11592/634430159*710647^(4/7) 4032522474652668 a001 46368/3010349*271443^(1/13) 4032522474653146 a001 46368/6643838879*710647^(9/14) 4032522474653717 a001 46368/17393796001*710647^(5/7) 4032522474654002 a001 15456/9381251041*710647^(3/4) 4032522474654028 a001 75025/599074578*64079^(12/23) 4032522474654287 a001 11592/11384387281*710647^(11/14) 4032522474654857 a001 46368/119218851371*710647^(6/7) 4032522474655428 a001 46368/312119004989*710647^(13/14) 4032522474655998 a004 Fibonacci(24)*Lucas(28)/(1/2+sqrt(5)/2)^57 4032522474656498 a001 11592/1970299*271443^(2/13) 4032522474659747 a001 196418/370248451*64079^(9/23) 4032522474660652 a001 46368/20633239*271443^(3/13) 4032522474662478 a001 2576/103361*103682^(1/24) 4032522474664854 a001 46368/54018521*271443^(4/13) 4032522474668918 a001 433690944/10754830177 4032522474668918 a004 Fibonacci(24)/Lucas(27)/(1/2+sqrt(5)/2)^2 4032522474668918 a004 Fibonacci(27)/Lucas(24)/(1/2+sqrt(5)/2)^8 4032522474669063 a001 11592/35355581*271443^(5/13) 4032522474669510 a001 121393/87403803*64079^(7/23) 4032522474672527 a001 17711/4106118243*39603^(19/22) 4032522474673273 a001 46368/370248451*271443^(6/13) 4032522474673556 a001 317811/370248451*64079^(8/23) 4032522474675378 a001 2576/33281921*271443^(1/2) 4032522474677483 a001 46368/969323029*271443^(7/13) 4032522474679718 a001 46368/3010349*103682^(1/12) 4032522474680376 a001 832040/969323029*64079^(8/23) 4032522474681371 a001 2178309/2537720636*64079^(8/23) 4032522474681516 a001 5702887/6643838879*64079^(8/23) 4032522474681537 a001 14930352/17393796001*64079^(8/23) 4032522474681541 a001 39088169/45537549124*64079^(8/23) 4032522474681541 a001 102334155/119218851371*64079^(8/23) 4032522474681541 a001 267914296/312119004989*64079^(8/23) 4032522474681541 a001 701408733/817138163596*64079^(8/23) 4032522474681541 a001 1836311903/2139295485799*64079^(8/23) 4032522474681541 a001 4807526976/5600748293801*64079^(8/23) 4032522474681541 a001 12586269025/14662949395604*64079^(8/23) 4032522474681541 a001 20365011074/23725150497407*64079^(8/23) 4032522474681541 a001 7778742049/9062201101803*64079^(8/23) 4032522474681541 a001 2971215073/3461452808002*64079^(8/23) 4032522474681541 a001 1134903170/1322157322203*64079^(8/23) 4032522474681541 a001 433494437/505019158607*64079^(8/23) 4032522474681541 a001 165580141/192900153618*64079^(8/23) 4032522474681541 a001 63245986/73681302247*64079^(8/23) 4032522474681542 a001 24157817/28143753123*64079^(8/23) 4032522474681551 a001 9227465/10749957122*64079^(8/23) 4032522474681606 a001 3524578/4106118243*64079^(8/23) 4032522474681693 a001 11592/634430159*271443^(8/13) 4032522474681986 a001 1346269/1568397607*64079^(8/23) 4032522474684591 a001 514229/599074578*64079^(8/23) 4032522474685903 a001 46368/6643838879*271443^(9/13) 4032522474690112 a001 46368/17393796001*271443^(10/13) 4032522474694322 a001 11592/11384387281*271443^(11/13) 4032522474694587 a001 105937/4250681*24476^(1/21) 4032522474694733 a001 46368/4870847*103682^(1/8) 4032522474696727 a001 75025/370248451*64079^(11/23) 4032522474698532 a001 46368/119218851371*271443^(12/13) 4032522474701428 a001 416020/16692641*24476^(1/21) 4032522474702427 a001 726103/29134601*24476^(1/21) 4032522474702446 a001 196418/228826127*64079^(8/23) 4032522474702572 a001 5702887/228826127*24476^(1/21) 4032522474702593 a001 829464/33281921*24476^(1/21) 4032522474702597 a001 39088169/1568397607*24476^(1/21) 4032522474702597 a001 34111385/1368706081*24476^(1/21) 4032522474702597 a001 133957148/5374978561*24476^(1/21) 4032522474702597 a001 233802911/9381251041*24476^(1/21) 4032522474702597 a001 1836311903/73681302247*24476^(1/21) 4032522474702597 a001 267084832/10716675201*24476^(1/21) 4032522474702597 a001 12586269025/505019158607*24476^(1/21) 4032522474702597 a001 10983760033/440719107401*24476^(1/21) 4032522474702597 a001 43133785636/1730726404001*24476^(1/21) 4032522474702597 a001 75283811239/3020733700601*24476^(1/21) 4032522474702597 a001 182717648081/7331474697802*24476^(1/21) 4032522474702597 a001 139583862445/5600748293801*24476^(1/21) 4032522474702597 a001 53316291173/2139295485799*24476^(1/21) 4032522474702597 a001 10182505537/408569081798*24476^(1/21) 4032522474702597 a001 7778742049/312119004989*24476^(1/21) 4032522474702597 a001 2971215073/119218851371*24476^(1/21) 4032522474702597 a001 567451585/22768774562*24476^(1/21) 4032522474702597 a001 433494437/17393796001*24476^(1/21) 4032522474702597 a001 165580141/6643838879*24476^(1/21) 4032522474702597 a001 31622993/1268860318*24476^(1/21) 4032522474702598 a001 24157817/969323029*24476^(1/21) 4032522474702607 a001 9227465/370248451*24476^(1/21) 4032522474702662 a001 1762289/70711162*24476^(1/21) 4032522474702742 a004 Fibonacci(24)*Lucas(26)/(1/2+sqrt(5)/2)^55 4032522474703043 a001 1346269/54018521*24476^(1/21) 4032522474705656 a001 514229/20633239*24476^(1/21) 4032522474710598 a001 11592/1970299*103682^(1/6) 4032522474712211 a001 121393/54018521*64079^(6/23) 4032522474716255 a001 317811/228826127*64079^(7/23) 4032522474722896 a001 28657/4870847*24476^(4/21) 4032522474723075 a001 416020/299537289*64079^(7/23) 4032522474723567 a001 98209/3940598*24476^(1/21) 4032522474724070 a001 311187/224056801*64079^(7/23) 4032522474724215 a001 5702887/4106118243*64079^(7/23) 4032522474724236 a001 7465176/5374978561*64079^(7/23) 4032522474724240 a001 39088169/28143753123*64079^(7/23) 4032522474724240 a001 14619165/10525900321*64079^(7/23) 4032522474724240 a001 133957148/96450076809*64079^(7/23) 4032522474724240 a001 701408733/505019158607*64079^(7/23) 4032522474724240 a001 1836311903/1322157322203*64079^(7/23) 4032522474724240 a001 14930208/10749853441*64079^(7/23) 4032522474724240 a001 12586269025/9062201101803*64079^(7/23) 4032522474724240 a001 32951280099/23725150497407*64079^(7/23) 4032522474724240 a001 10182505537/7331474697802*64079^(7/23) 4032522474724240 a001 7778742049/5600748293801*64079^(7/23) 4032522474724240 a001 2971215073/2139295485799*64079^(7/23) 4032522474724240 a001 567451585/408569081798*64079^(7/23) 4032522474724240 a001 433494437/312119004989*64079^(7/23) 4032522474724240 a001 165580141/119218851371*64079^(7/23) 4032522474724240 a001 31622993/22768774562*64079^(7/23) 4032522474724241 a001 24157817/17393796001*64079^(7/23) 4032522474724250 a001 9227465/6643838879*64079^(7/23) 4032522474724305 a001 1762289/1268860318*64079^(7/23) 4032522474724685 a001 1346269/969323029*64079^(7/23) 4032522474726138 a001 15456/4250681*103682^(5/24) 4032522474727290 a001 514229/370248451*64079^(7/23) 4032522474739426 a001 75025/228826127*64079^(10/23) 4032522474741802 a001 46368/20633239*103682^(1/4) 4032522474745145 a001 98209/70711162*64079^(7/23) 4032522474754905 a001 121393/33385282*64079^(5/23) 4032522474757419 a001 144/103681*103682^(7/24) 4032522474758954 a001 317811/141422324*64079^(6/23) 4032522474763717 a001 2576/103361*39603^(1/22) 4032522474765774 a001 832040/370248451*64079^(6/23) 4032522474766769 a001 2178309/969323029*64079^(6/23) 4032522474766914 a001 5702887/2537720636*64079^(6/23) 4032522474766935 a001 14930352/6643838879*64079^(6/23) 4032522474766938 a001 39088169/17393796001*64079^(6/23) 4032522474766939 a001 102334155/45537549124*64079^(6/23) 4032522474766939 a001 267914296/119218851371*64079^(6/23) 4032522474766939 a001 3524667/1568437211*64079^(6/23) 4032522474766939 a001 1836311903/817138163596*64079^(6/23) 4032522474766939 a001 4807526976/2139295485799*64079^(6/23) 4032522474766939 a001 12586269025/5600748293801*64079^(6/23) 4032522474766939 a001 32951280099/14662949395604*64079^(6/23) 4032522474766939 a001 53316291173/23725150497407*64079^(6/23) 4032522474766939 a001 20365011074/9062201101803*64079^(6/23) 4032522474766939 a001 7778742049/3461452808002*64079^(6/23) 4032522474766939 a001 2971215073/1322157322203*64079^(6/23) 4032522474766939 a001 1134903170/505019158607*64079^(6/23) 4032522474766939 a001 433494437/192900153618*64079^(6/23) 4032522474766939 a001 165580141/73681302247*64079^(6/23) 4032522474766939 a001 63245986/28143753123*64079^(6/23) 4032522474766940 a001 24157817/10749957122*64079^(6/23) 4032522474766948 a001 9227465/4106118243*64079^(6/23) 4032522474767004 a001 3524578/1568397607*64079^(6/23) 4032522474767384 a001 1346269/599074578*64079^(6/23) 4032522474769989 a001 514229/228826127*64079^(6/23) 4032522474773054 a001 46368/54018521*103682^(1/3) 4032522474782125 a001 75025/141422324*64079^(9/23) 4032522474787843 a001 196418/87403803*64079^(6/23) 4032522474788682 a001 15456/29134601*103682^(3/8) 4032522474789396 a001 17711/6643838879*39603^(10/11) 4032522474791296 a001 434844900/10783446409 4032522474791296 a004 Fibonacci(24)/Lucas(25)/(1/2+sqrt(5)/2)^4 4032522474791296 a004 Fibonacci(25)/Lucas(24)/(1/2+sqrt(5)/2)^6 4032522474797617 a001 121393/20633239*64079^(4/23) 4032522474801653 a001 105937/29134601*64079^(5/23) 4032522474804313 a001 11592/35355581*103682^(5/12) 4032522474808473 a001 832040/228826127*64079^(5/23) 4032522474809468 a001 726103/199691526*64079^(5/23) 4032522474809613 a001 5702887/1568397607*64079^(5/23) 4032522474809634 a001 4976784/1368706081*64079^(5/23) 4032522474809637 a001 39088169/10749957122*64079^(5/23) 4032522474809638 a001 831985/228811001*64079^(5/23) 4032522474809638 a001 267914296/73681302247*64079^(5/23) 4032522474809638 a001 233802911/64300051206*64079^(5/23) 4032522474809638 a001 1836311903/505019158607*64079^(5/23) 4032522474809638 a001 1602508992/440719107401*64079^(5/23) 4032522474809638 a001 12586269025/3461452808002*64079^(5/23) 4032522474809638 a001 10983760033/3020733700601*64079^(5/23) 4032522474809638 a001 86267571272/23725150497407*64079^(5/23) 4032522474809638 a001 53316291173/14662949395604*64079^(5/23) 4032522474809638 a001 20365011074/5600748293801*64079^(5/23) 4032522474809638 a001 7778742049/2139295485799*64079^(5/23) 4032522474809638 a001 2971215073/817138163596*64079^(5/23) 4032522474809638 a001 1134903170/312119004989*64079^(5/23) 4032522474809638 a001 433494437/119218851371*64079^(5/23) 4032522474809638 a001 165580141/45537549124*64079^(5/23) 4032522474809638 a001 63245986/17393796001*64079^(5/23) 4032522474809639 a001 24157817/6643838879*64079^(5/23) 4032522474809647 a001 9227465/2537720636*64079^(5/23) 4032522474809703 a001 3524578/969323029*64079^(5/23) 4032522474810083 a001 1346269/370248451*64079^(5/23) 4032522474812688 a001 514229/141422324*64079^(5/23) 4032522474819943 a001 46368/228826127*103682^(11/24) 4032522474824824 a001 75025/87403803*64079^(8/23) 4032522474825121 a004 Fibonacci(26)*Lucas(25)/(1/2+sqrt(5)/2)^56 4032522474830544 a001 196418/54018521*64079^(5/23) 4032522474835573 a001 46368/370248451*103682^(1/2) 4032522474840282 a001 121393/12752043*64079^(3/23) 4032522474844353 a001 317811/54018521*64079^(4/23) 4032522474846325 a001 75025/3010349*24476^(1/21) 4032522474851172 a001 208010/35355581*64079^(4/23) 4032522474851203 a001 2576/33281921*103682^(13/24) 4032522474852167 a001 2178309/370248451*64079^(4/23) 4032522474852312 a001 5702887/969323029*64079^(4/23) 4032522474852333 a001 196452/33391061*64079^(4/23) 4032522474852336 a001 39088169/6643838879*64079^(4/23) 4032522474852337 a001 102334155/17393796001*64079^(4/23) 4032522474852337 a001 66978574/11384387281*64079^(4/23) 4032522474852337 a001 701408733/119218851371*64079^(4/23) 4032522474852337 a001 1836311903/312119004989*64079^(4/23) 4032522474852337 a001 1201881744/204284540899*64079^(4/23) 4032522474852337 a001 12586269025/2139295485799*64079^(4/23) 4032522474852337 a001 32951280099/5600748293801*64079^(4/23) 4032522474852337 a001 1135099622/192933544679*64079^(4/23) 4032522474852337 a001 139583862445/23725150497407*64079^(4/23) 4032522474852337 a001 53316291173/9062201101803*64079^(4/23) 4032522474852337 a001 10182505537/1730726404001*64079^(4/23) 4032522474852337 a001 7778742049/1322157322203*64079^(4/23) 4032522474852337 a001 2971215073/505019158607*64079^(4/23) 4032522474852337 a001 567451585/96450076809*64079^(4/23) 4032522474852337 a001 433494437/73681302247*64079^(4/23) 4032522474852337 a001 165580141/28143753123*64079^(4/23) 4032522474852337 a001 31622993/5374978561*64079^(4/23) 4032522474852338 a001 24157817/4106118243*64079^(4/23) 4032522474852346 a001 9227465/1568397607*64079^(4/23) 4032522474852402 a001 1762289/299537289*64079^(4/23) 4032522474852782 a001 1346269/228826127*64079^(4/23) 4032522474853777 a001 121393/45537549124*167761^(4/5) 4032522474855386 a001 514229/87403803*64079^(4/23) 4032522474866833 a001 46368/969323029*103682^(7/12) 4032522474867524 a001 75025/54018521*64079^(7/23) 4032522474871865 a004 Fibonacci(28)*Lucas(25)/(1/2+sqrt(5)/2)^58 4032522474873238 a001 98209/16692641*64079^(4/23) 4032522474878685 a004 Fibonacci(30)*Lucas(25)/(1/2+sqrt(5)/2)^60 4032522474879680 a004 Fibonacci(32)*Lucas(25)/(1/2+sqrt(5)/2)^62 4032522474879825 a004 Fibonacci(34)*Lucas(25)/(1/2+sqrt(5)/2)^64 4032522474879846 a004 Fibonacci(36)*Lucas(25)/(1/2+sqrt(5)/2)^66 4032522474879849 a004 Fibonacci(38)*Lucas(25)/(1/2+sqrt(5)/2)^68 4032522474879850 a004 Fibonacci(40)*Lucas(25)/(1/2+sqrt(5)/2)^70 4032522474879850 a004 Fibonacci(42)*Lucas(25)/(1/2+sqrt(5)/2)^72 4032522474879850 a004 Fibonacci(44)*Lucas(25)/(1/2+sqrt(5)/2)^74 4032522474879850 a004 Fibonacci(46)*Lucas(25)/(1/2+sqrt(5)/2)^76 4032522474879850 a004 Fibonacci(48)*Lucas(25)/(1/2+sqrt(5)/2)^78 4032522474879850 a004 Fibonacci(50)*Lucas(25)/(1/2+sqrt(5)/2)^80 4032522474879850 a004 Fibonacci(52)*Lucas(25)/(1/2+sqrt(5)/2)^82 4032522474879850 a004 Fibonacci(54)*Lucas(25)/(1/2+sqrt(5)/2)^84 4032522474879850 a004 Fibonacci(56)*Lucas(25)/(1/2+sqrt(5)/2)^86 4032522474879850 a004 Fibonacci(58)*Lucas(25)/(1/2+sqrt(5)/2)^88 4032522474879850 a004 Fibonacci(60)*Lucas(25)/(1/2+sqrt(5)/2)^90 4032522474879850 a004 Fibonacci(62)*Lucas(25)/(1/2+sqrt(5)/2)^92 4032522474879850 a004 Fibonacci(64)*Lucas(25)/(1/2+sqrt(5)/2)^94 4032522474879850 a004 Fibonacci(66)*Lucas(25)/(1/2+sqrt(5)/2)^96 4032522474879850 a004 Fibonacci(68)*Lucas(25)/(1/2+sqrt(5)/2)^98 4032522474879850 a004 Fibonacci(70)*Lucas(25)/(1/2+sqrt(5)/2)^100 4032522474879850 a004 Fibonacci(69)*Lucas(25)/(1/2+sqrt(5)/2)^99 4032522474879850 a004 Fibonacci(67)*Lucas(25)/(1/2+sqrt(5)/2)^97 4032522474879850 a004 Fibonacci(65)*Lucas(25)/(1/2+sqrt(5)/2)^95 4032522474879850 a004 Fibonacci(63)*Lucas(25)/(1/2+sqrt(5)/2)^93 4032522474879850 a004 Fibonacci(61)*Lucas(25)/(1/2+sqrt(5)/2)^91 4032522474879850 a004 Fibonacci(59)*Lucas(25)/(1/2+sqrt(5)/2)^89 4032522474879850 a004 Fibonacci(57)*Lucas(25)/(1/2+sqrt(5)/2)^87 4032522474879850 a004 Fibonacci(55)*Lucas(25)/(1/2+sqrt(5)/2)^85 4032522474879850 a004 Fibonacci(53)*Lucas(25)/(1/2+sqrt(5)/2)^83 4032522474879850 a004 Fibonacci(51)*Lucas(25)/(1/2+sqrt(5)/2)^81 4032522474879850 a001 2/75025*(1/2+1/2*5^(1/2))^20 4032522474879850 a004 Fibonacci(49)*Lucas(25)/(1/2+sqrt(5)/2)^79 4032522474879850 a004 Fibonacci(47)*Lucas(25)/(1/2+sqrt(5)/2)^77 4032522474879850 a004 Fibonacci(45)*Lucas(25)/(1/2+sqrt(5)/2)^75 4032522474879850 a004 Fibonacci(43)*Lucas(25)/(1/2+sqrt(5)/2)^73 4032522474879850 a004 Fibonacci(41)*Lucas(25)/(1/2+sqrt(5)/2)^71 4032522474879850 a004 Fibonacci(39)*Lucas(25)/(1/2+sqrt(5)/2)^69 4032522474879851 a004 Fibonacci(37)*Lucas(25)/(1/2+sqrt(5)/2)^67 4032522474879859 a004 Fibonacci(35)*Lucas(25)/(1/2+sqrt(5)/2)^65 4032522474879915 a004 Fibonacci(33)*Lucas(25)/(1/2+sqrt(5)/2)^63 4032522474880295 a004 Fibonacci(31)*Lucas(25)/(1/2+sqrt(5)/2)^61 4032522474881015 a001 15251/75640*8^(1/3) 4032522474882195 a001 46368/3010349*39603^(1/11) 4032522474882434 a001 121393/4106118243*167761^(3/5) 4032522474882463 a001 6624/224056801*103682^(5/8) 4032522474882900 a004 Fibonacci(29)*Lucas(25)/(1/2+sqrt(5)/2)^59 4032522474883071 a001 121393/7881196*64079^(2/23) 4032522474887047 a001 317811/33385282*64079^(3/23) 4032522474893870 a001 832040/87403803*64079^(3/23) 4032522474894866 a001 46347/4868641*64079^(3/23) 4032522474895011 a001 5702887/599074578*64079^(3/23) 4032522474895032 a001 14930352/1568397607*64079^(3/23) 4032522474895035 a001 39088169/4106118243*64079^(3/23) 4032522474895036 a001 102334155/10749957122*64079^(3/23) 4032522474895036 a001 267914296/28143753123*64079^(3/23) 4032522474895036 a001 701408733/73681302247*64079^(3/23) 4032522474895036 a001 1836311903/192900153618*64079^(3/23) 4032522474895036 a001 102287808/10745088481*64079^(3/23) 4032522474895036 a001 12586269025/1322157322203*64079^(3/23) 4032522474895036 a001 32951280099/3461452808002*64079^(3/23) 4032522474895036 a001 86267571272/9062201101803*64079^(3/23) 4032522474895036 a001 225851433717/23725150497407*64079^(3/23) 4032522474895036 a001 139583862445/14662949395604*64079^(3/23) 4032522474895036 a001 53316291173/5600748293801*64079^(3/23) 4032522474895036 a001 20365011074/2139295485799*64079^(3/23) 4032522474895036 a001 7778742049/817138163596*64079^(3/23) 4032522474895036 a001 2971215073/312119004989*64079^(3/23) 4032522474895036 a001 1134903170/119218851371*64079^(3/23) 4032522474895036 a001 433494437/45537549124*64079^(3/23) 4032522474895036 a001 165580141/17393796001*64079^(3/23) 4032522474895036 a001 63245986/6643838879*64079^(3/23) 4032522474895037 a001 24157817/2537720636*64079^(3/23) 4032522474895045 a001 9227465/969323029*64079^(3/23) 4032522474895101 a001 3524578/370248451*64079^(3/23) 4032522474895481 a001 1346269/141422324*64079^(3/23) 4032522474898087 a001 514229/54018521*64079^(3/23) 4032522474898093 a001 11592/634430159*103682^(2/3) 4032522474900522 a001 317811/119218851371*167761^(4/5) 4032522474900755 a004 Fibonacci(27)*Lucas(25)/(1/2+sqrt(5)/2)^57 4032522474906264 a001 17711/10749957122*39603^(21/22) 4032522474907341 a001 75640/28374454999*167761^(4/5) 4032522474908336 a001 2178309/817138163596*167761^(4/5) 4032522474908482 a001 5702887/2139295485799*167761^(4/5) 4032522474908503 a001 14930352/5600748293801*167761^(4/5) 4032522474908506 a001 39088169/14662949395604*167761^(4/5) 4032522474908507 a001 63245986/23725150497407*167761^(4/5) 4032522474908508 a001 24157817/9062201101803*167761^(4/5) 4032522474908516 a001 9227465/3461452808002*167761^(4/5) 4032522474908571 a001 3524578/1322157322203*167761^(4/5) 4032522474908951 a001 1346269/505019158607*167761^(4/5) 4032522474910218 a001 75025/33385282*64079^(6/23) 4032522474911090 a001 121393/370248451*167761^(2/5) 4032522474911556 a001 514229/192900153618*167761^(4/5) 4032522474913674 a001 14736260449/365435296162 4032522474913674 a004 Fibonacci(26)/Lucas(26)/(1/2+sqrt(5)/2)^5 4032522474913723 a001 15456/1368706081*103682^(17/24) 4032522474915950 a001 196418/20633239*64079^(3/23) 4032522474925535 a001 121393/4870847*64079^(1/23) 4032522474929178 a001 317811/10749957122*167761^(3/5) 4032522474929353 a001 46368/6643838879*103682^(3/4) 4032522474929411 a001 196418/73681302247*167761^(4/5) 4032522474929760 a001 10959/711491*64079^(2/23) 4032522474935998 a001 832040/28143753123*167761^(3/5) 4032522474936571 a001 832040/54018521*64079^(2/23) 4032522474936993 a001 311187/10525900321*167761^(3/5) 4032522474937138 a001 5702887/192900153618*167761^(3/5) 4032522474937159 a001 14930352/505019158607*167761^(3/5) 4032522474937163 a001 39088169/1322157322203*167761^(3/5) 4032522474937163 a001 6765/228826126*167761^(3/5) 4032522474937163 a001 267914296/9062201101803*167761^(3/5) 4032522474937163 a001 701408733/23725150497407*167761^(3/5) 4032522474937163 a001 433494437/14662949395604*167761^(3/5) 4032522474937163 a001 165580141/5600748293801*167761^(3/5) 4032522474937163 a001 63245986/2139295485799*167761^(3/5) 4032522474937164 a001 24157817/817138163596*167761^(3/5) 4032522474937173 a001 9227465/312119004989*167761^(3/5) 4032522474937228 a001 3524578/119218851371*167761^(3/5) 4032522474937565 a001 2178309/141422324*64079^(2/23) 4032522474937608 a001 1346269/45537549124*167761^(3/5) 4032522474937710 a001 5702887/370248451*64079^(2/23) 4032522474937731 a001 14930352/969323029*64079^(2/23) 4032522474937734 a001 39088169/2537720636*64079^(2/23) 4032522474937735 a001 102334155/6643838879*64079^(2/23) 4032522474937735 a001 9238424/599786069*64079^(2/23) 4032522474937735 a001 701408733/45537549124*64079^(2/23) 4032522474937735 a001 1836311903/119218851371*64079^(2/23) 4032522474937735 a001 4807526976/312119004989*64079^(2/23) 4032522474937735 a001 12586269025/817138163596*64079^(2/23) 4032522474937735 a001 32951280099/2139295485799*64079^(2/23) 4032522474937735 a001 86267571272/5600748293801*64079^(2/23) 4032522474937735 a001 7787980473/505618944676*64079^(2/23) 4032522474937735 a001 365435296162/23725150497407*64079^(2/23) 4032522474937735 a001 139583862445/9062201101803*64079^(2/23) 4032522474937735 a001 53316291173/3461452808002*64079^(2/23) 4032522474937735 a001 20365011074/1322157322203*64079^(2/23) 4032522474937735 a001 7778742049/505019158607*64079^(2/23) 4032522474937735 a001 2971215073/192900153618*64079^(2/23) 4032522474937735 a001 1134903170/73681302247*64079^(2/23) 4032522474937735 a001 433494437/28143753123*64079^(2/23) 4032522474937735 a001 165580141/10749957122*64079^(2/23) 4032522474937735 a001 63245986/4106118243*64079^(2/23) 4032522474937736 a001 24157817/1568397607*64079^(2/23) 4032522474937744 a001 9227465/599074578*64079^(2/23) 4032522474937800 a001 3524578/228826127*64079^(2/23) 4032522474938179 a001 1346269/87403803*64079^(2/23) 4032522474939743 a001 121393/33385282*167761^(1/5) 4032522474940213 a001 514229/17393796001*167761^(3/5) 4032522474940781 a001 514229/33385282*64079^(2/23) 4032522474944983 a001 23184/5374978561*103682^(19/24) 4032522474947499 a004 Fibonacci(26)*Lucas(27)/(1/2+sqrt(5)/2)^58 4032522474949822 a001 121393/312119004989*439204^(8/9) 4032522474952144 a001 121393/73681302247*439204^(7/9) 4032522474952931 a001 75025/20633239*64079^(5/23) 4032522474954467 a001 121393/17393796001*439204^(2/3) 4032522474956790 a001 121393/4106118243*439204^(5/9) 4032522474957835 a001 317811/969323029*167761^(2/5) 4032522474958068 a001 196418/6643838879*167761^(3/5) 4032522474958615 a001 196418/12752043*64079^(2/23) 4032522474959113 a001 121393/969323029*439204^(4/9) 4032522474960419 a001 38580030723/956722026041 4032522474960419 a004 Fibonacci(26)/Lucas(28)/(1/2+sqrt(5)/2)^3 4032522474960419 a004 Fibonacci(28)/Lucas(26)/(1/2+sqrt(5)/2)^7 4032522474960613 a001 46368/17393796001*103682^(5/6) 4032522474961435 a001 121393/228826127*439204^(1/3) 4032522474963760 a001 121393/54018521*439204^(2/9) 4032522474964655 a001 610/1860499*167761^(2/5) 4032522474965354 a004 Fibonacci(26)*Lucas(29)/(1/2+sqrt(5)/2)^60 4032522474965650 a001 2178309/6643838879*167761^(2/5) 4032522474965795 a001 5702887/17393796001*167761^(2/5) 4032522474965816 a001 3732588/11384387281*167761^(2/5) 4032522474965819 a001 39088169/119218851371*167761^(2/5) 4032522474965820 a001 9303105/28374454999*167761^(2/5) 4032522474965820 a001 66978574/204284540899*167761^(2/5) 4032522474965820 a001 701408733/2139295485799*167761^(2/5) 4032522474965820 a001 1836311903/5600748293801*167761^(2/5) 4032522474965820 a001 1201881744/3665737348901*167761^(2/5) 4032522474965820 a001 7778742049/23725150497407*167761^(2/5) 4032522474965820 a001 2971215073/9062201101803*167761^(2/5) 4032522474965820 a001 567451585/1730726404001*167761^(2/5) 4032522474965820 a001 433494437/1322157322203*167761^(2/5) 4032522474965820 a001 165580141/505019158607*167761^(2/5) 4032522474965820 a001 31622993/96450076809*167761^(2/5) 4032522474965821 a001 24157817/73681302247*167761^(2/5) 4032522474965829 a001 9227465/28143753123*167761^(2/5) 4032522474965885 a001 1762289/5374978561*167761^(2/5) 4032522474966056 a001 121393/12752043*439204^(1/9) 4032522474966265 a001 1346269/4106118243*167761^(2/5) 4032522474967239 a001 101003831720/2504730781961 4032522474967239 a004 Fibonacci(26)/Lucas(30)/(1/2+sqrt(5)/2) 4032522474967239 a004 Fibonacci(30)/Lucas(26)/(1/2+sqrt(5)/2)^9 4032522474967959 a004 Fibonacci(26)*Lucas(31)/(1/2+sqrt(5)/2)^62 4032522474968234 a001 264431464437/6557470319842 4032522474968234 a001 121393/9741694+121393/9741694*5^(1/2) 4032522474968234 a004 Fibonacci(32)/Lucas(26)/(1/2+sqrt(5)/2)^11 4032522474968339 a004 Fibonacci(26)*Lucas(33)/(1/2+sqrt(5)/2)^64 4032522474968345 a001 121393/5600748293801*7881196^(10/11) 4032522474968351 a001 121393/1322157322203*7881196^(9/11) 4032522474968356 a001 121393/312119004989*7881196^(8/11) 4032522474968360 a001 121393/119218851371*7881196^(2/3) 4032522474968362 a001 121393/73681302247*7881196^(7/11) 4032522474968368 a001 121393/17393796001*7881196^(6/11) 4032522474968373 a001 121393/12752043*7881196^(1/11) 4032522474968374 a001 121393/4106118243*7881196^(5/11) 4032522474968379 a001 121393/12752043*141422324^(1/13) 4032522474968379 a001 121393/12752043*2537720636^(1/15) 4032522474968379 a001 121393/12752043*45537549124^(1/17) 4032522474968379 a001 121393/12752043*14662949395604^(1/21) 4032522474968379 a001 121393/12752043*(1/2+1/2*5^(1/2))^3 4032522474968379 a001 121393/12752043*192900153618^(1/18) 4032522474968379 a004 Fibonacci(34)/Lucas(26)/(1/2+sqrt(5)/2)^13 4032522474968379 a001 121393/12752043*10749957122^(1/16) 4032522474968379 a001 121393/12752043*599074578^(1/14) 4032522474968379 a001 121393/12752043*33385282^(1/12) 4032522474968380 a001 121393/969323029*7881196^(4/11) 4032522474968382 a001 121393/599074578*7881196^(1/3) 4032522474968386 a001 121393/228826127*7881196^(3/11) 4032522474968393 a001 121393/54018521*7881196^(2/11) 4032522474968394 a004 Fibonacci(26)*Lucas(35)/(1/2+sqrt(5)/2)^66 4032522474968396 a001 121393/5600748293801*20633239^(6/7) 4032522474968396 a001 121393/2139295485799*20633239^(4/5) 4032522474968397 a001 121393/505019158607*20633239^(5/7) 4032522474968398 a001 121393/73681302247*20633239^(3/5) 4032522474968398 a001 121393/45537549124*20633239^(4/7) 4032522474968399 a001 121393/33385282*20633239^(1/7) 4032522474968400 a001 121393/4106118243*20633239^(3/7) 4032522474968400 a001 121393/2537720636*20633239^(2/5) 4032522474968400 a001 121393/33385282*2537720636^(1/9) 4032522474968400 a001 121393/33385282*312119004989^(1/11) 4032522474968400 a001 121393/33385282*(1/2+1/2*5^(1/2))^5 4032522474968400 a001 121393/33385282*28143753123^(1/10) 4032522474968400 a004 Fibonacci(36)/Lucas(26)/(1/2+sqrt(5)/2)^15 4032522474968400 a001 121393/33385282*228826127^(1/8) 4032522474968401 a001 121393/370248451*20633239^(2/7) 4032522474968401 a001 121393/87403803*20633239^(1/5) 4032522474968402 a004 Fibonacci(26)*Lucas(37)/(1/2+sqrt(5)/2)^68 4032522474968403 a001 121393/87403803*17393796001^(1/7) 4032522474968403 a001 121393/87403803*14662949395604^(1/9) 4032522474968403 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^7/Lucas(38) 4032522474968403 a004 Fibonacci(38)/Lucas(26)/(1/2+sqrt(5)/2)^17 4032522474968403 a001 121393/87403803*599074578^(1/6) 4032522474968403 a004 Fibonacci(26)*Lucas(39)/(1/2+sqrt(5)/2)^70 4032522474968403 a001 121393/23725150497407*141422324^(11/13) 4032522474968403 a001 121393/5600748293801*141422324^(10/13) 4032522474968404 a001 121393/1322157322203*141422324^(9/13) 4032522474968404 a001 121393/817138163596*141422324^(2/3) 4032522474968404 a001 121393/312119004989*141422324^(8/13) 4032522474968404 a001 121393/228826127*141422324^(3/13) 4032522474968404 a001 121393/73681302247*141422324^(7/13) 4032522474968404 a001 121393/17393796001*141422324^(6/13) 4032522474968404 a001 121393/4106118243*141422324^(5/13) 4032522474968404 a001 121393/228826127*2537720636^(1/5) 4032522474968404 a001 121393/228826127*45537549124^(3/17) 4032522474968404 a001 121393/228826127*14662949395604^(1/7) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^9/Lucas(40) 4032522474968404 a001 121393/228826127*192900153618^(1/6) 4032522474968404 a004 Fibonacci(40)/Lucas(26)/(1/2+sqrt(5)/2)^19 4032522474968404 a001 121393/228826127*10749957122^(3/16) 4032522474968404 a001 121393/228826127*599074578^(3/14) 4032522474968404 a001 121393/1568397607*141422324^(1/3) 4032522474968404 a001 121393/969323029*141422324^(4/13) 4032522474968404 a004 Fibonacci(26)*Lucas(41)/(1/2+sqrt(5)/2)^72 4032522474968404 a001 121393/599074578*312119004989^(1/5) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^11/Lucas(42) 4032522474968404 a004 Fibonacci(42)/Lucas(26)/(1/2+sqrt(5)/2)^21 4032522474968404 a001 121393/599074578*1568397607^(1/4) 4032522474968404 a004 Fibonacci(26)*Lucas(43)/(1/2+sqrt(5)/2)^74 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^13/Lucas(44) 4032522474968404 a001 121393/1568397607*73681302247^(1/4) 4032522474968404 a004 Fibonacci(44)/Lucas(26)/(1/2+sqrt(5)/2)^23 4032522474968404 a004 Fibonacci(26)*Lucas(45)/(1/2+sqrt(5)/2)^76 4032522474968404 a001 121393/23725150497407*2537720636^(11/15) 4032522474968404 a001 121393/4106118243*2537720636^(1/3) 4032522474968404 a001 121393/5600748293801*2537720636^(2/3) 4032522474968404 a001 121393/1322157322203*2537720636^(3/5) 4032522474968404 a001 121393/505019158607*2537720636^(5/9) 4032522474968404 a001 121393/312119004989*2537720636^(8/15) 4032522474968404 a001 121393/73681302247*2537720636^(7/15) 4032522474968404 a001 121393/45537549124*2537720636^(4/9) 4032522474968404 a001 121393/4106118243*45537549124^(5/17) 4032522474968404 a001 121393/4106118243*312119004989^(3/11) 4032522474968404 a001 121393/4106118243*14662949395604^(5/21) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^15/Lucas(46) 4032522474968404 a001 121393/4106118243*192900153618^(5/18) 4032522474968404 a004 Fibonacci(46)/Lucas(26)/(1/2+sqrt(5)/2)^25 4032522474968404 a001 121393/4106118243*28143753123^(3/10) 4032522474968404 a001 121393/17393796001*2537720636^(2/5) 4032522474968404 a001 121393/4106118243*10749957122^(5/16) 4032522474968404 a004 Fibonacci(26)*Lucas(47)/(1/2+sqrt(5)/2)^78 4032522474968404 a001 121393/10749957122*45537549124^(1/3) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^17/Lucas(48) 4032522474968404 a004 Fibonacci(48)/Lucas(26)/(1/2+sqrt(5)/2)^27 4032522474968404 a004 Fibonacci(26)*Lucas(49)/(1/2+sqrt(5)/2)^80 4032522474968404 a001 121393/2139295485799*17393796001^(4/7) 4032522474968404 a001 121393/73681302247*17393796001^(3/7) 4032522474968404 a001 121393/28143753123*817138163596^(1/3) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^19/Lucas(50) 4032522474968404 a004 Fibonacci(50)/Lucas(26)/(1/2+sqrt(5)/2)^29 4032522474968404 a004 Fibonacci(26)*Lucas(51)/(1/2+sqrt(5)/2)^82 4032522474968404 a001 121393/73681302247*45537549124^(7/17) 4032522474968404 a001 121393/23725150497407*45537549124^(11/17) 4032522474968404 a001 121393/5600748293801*45537549124^(10/17) 4032522474968404 a001 121393/1322157322203*45537549124^(9/17) 4032522474968404 a001 121393/312119004989*45537549124^(8/17) 4032522474968404 a001 121393/73681302247*14662949395604^(1/3) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^21/Lucas(52) 4032522474968404 a001 121393/73681302247*192900153618^(7/18) 4032522474968404 a004 Fibonacci(26)*Lucas(53)/(1/2+sqrt(5)/2)^84 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^23/Lucas(54) 4032522474968404 a004 Fibonacci(26)*Lucas(55)/(1/2+sqrt(5)/2)^86 4032522474968404 a001 121393/505019158607*312119004989^(5/11) 4032522474968404 a001 121393/23725150497407*312119004989^(3/5) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^25/Lucas(56) 4032522474968404 a004 Fibonacci(26)*Lucas(57)/(1/2+sqrt(5)/2)^88 4032522474968404 a001 121393/1322157322203*817138163596^(9/19) 4032522474968404 a001 121393/1322157322203*14662949395604^(3/7) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^27/Lucas(58) 4032522474968404 a004 Fibonacci(26)*Lucas(59)/(1/2+sqrt(5)/2)^90 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^29/Lucas(60) 4032522474968404 a004 Fibonacci(26)*Lucas(61)/(1/2+sqrt(5)/2)^92 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^31/Lucas(62) 4032522474968404 a004 Fibonacci(26)*Lucas(63)/(1/2+sqrt(5)/2)^94 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^33/Lucas(64) 4032522474968404 a004 Fibonacci(26)*Lucas(65)/(1/2+sqrt(5)/2)^96 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^35/Lucas(66) 4032522474968404 a004 Fibonacci(26)*Lucas(67)/(1/2+sqrt(5)/2)^98 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^37/Lucas(68) 4032522474968404 a004 Fibonacci(26)*Lucas(69)/(1/2+sqrt(5)/2)^100 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^39/Lucas(70) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^41/Lucas(72) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^43/Lucas(74) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^45/Lucas(76) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^47/Lucas(78) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^49/Lucas(80) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^51/Lucas(82) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^53/Lucas(84) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^55/Lucas(86) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^57/Lucas(88) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^59/Lucas(90) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^61/Lucas(92) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^63/Lucas(94) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^65/Lucas(96) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^67/Lucas(98) 4032522474968404 a004 Fibonacci(13)*Lucas(13)/(1/2+sqrt(5)/2)^31 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^68/Lucas(99) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^69/Lucas(100) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^66/Lucas(97) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^64/Lucas(95) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^62/Lucas(93) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^60/Lucas(91) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^58/Lucas(89) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^56/Lucas(87) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^54/Lucas(85) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^52/Lucas(83) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^50/Lucas(81) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^48/Lucas(79) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^46/Lucas(77) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^44/Lucas(75) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^42/Lucas(73) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^40/Lucas(71) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^38/Lucas(69) 4032522474968404 a004 Fibonacci(26)*Lucas(68)/(1/2+sqrt(5)/2)^99 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^36/Lucas(67) 4032522474968404 a004 Fibonacci(26)*Lucas(66)/(1/2+sqrt(5)/2)^97 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^34/Lucas(65) 4032522474968404 a004 Fibonacci(26)*Lucas(64)/(1/2+sqrt(5)/2)^95 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^32/Lucas(63) 4032522474968404 a004 Fibonacci(26)*Lucas(62)/(1/2+sqrt(5)/2)^93 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^30/Lucas(61) 4032522474968404 a004 Fibonacci(26)*Lucas(60)/(1/2+sqrt(5)/2)^91 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^28/Lucas(59) 4032522474968404 a004 Fibonacci(26)*Lucas(58)/(1/2+sqrt(5)/2)^89 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^26/Lucas(57) 4032522474968404 a001 121393/14662949395604*505019158607^(4/7) 4032522474968404 a004 Fibonacci(26)*Lucas(56)/(1/2+sqrt(5)/2)^87 4032522474968404 a001 121393/312119004989*14662949395604^(8/21) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^24/Lucas(55) 4032522474968404 a001 121393/1322157322203*192900153618^(1/2) 4032522474968404 a001 121393/23725150497407*192900153618^(11/18) 4032522474968404 a001 121393/312119004989*192900153618^(4/9) 4032522474968404 a004 Fibonacci(26)*Lucas(54)/(1/2+sqrt(5)/2)^85 4032522474968404 a001 121393/119218851371*312119004989^(2/5) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^22/Lucas(53) 4032522474968404 a001 121393/817138163596*73681302247^(1/2) 4032522474968404 a001 121393/312119004989*73681302247^(6/13) 4032522474968404 a001 121393/2139295485799*73681302247^(7/13) 4032522474968404 a001 121393/14662949395604*73681302247^(8/13) 4032522474968404 a004 Fibonacci(54)/Lucas(26)/(1/2+sqrt(5)/2)^33 4032522474968404 a004 Fibonacci(56)/Lucas(26)/(1/2+sqrt(5)/2)^35 4032522474968404 a004 Fibonacci(58)/Lucas(26)/(1/2+sqrt(5)/2)^37 4032522474968404 a004 Fibonacci(60)/Lucas(26)/(1/2+sqrt(5)/2)^39 4032522474968404 a004 Fibonacci(62)/Lucas(26)/(1/2+sqrt(5)/2)^41 4032522474968404 a004 Fibonacci(64)/Lucas(26)/(1/2+sqrt(5)/2)^43 4032522474968404 a004 Fibonacci(66)/Lucas(26)/(1/2+sqrt(5)/2)^45 4032522474968404 a004 Fibonacci(68)/Lucas(26)/(1/2+sqrt(5)/2)^47 4032522474968404 a004 Fibonacci(70)/Lucas(26)/(1/2+sqrt(5)/2)^49 4032522474968404 a004 Fibonacci(72)/Lucas(26)/(1/2+sqrt(5)/2)^51 4032522474968404 a004 Fibonacci(74)/Lucas(26)/(1/2+sqrt(5)/2)^53 4032522474968404 a004 Fibonacci(76)/Lucas(26)/(1/2+sqrt(5)/2)^55 4032522474968404 a004 Fibonacci(78)/Lucas(26)/(1/2+sqrt(5)/2)^57 4032522474968404 a004 Fibonacci(80)/Lucas(26)/(1/2+sqrt(5)/2)^59 4032522474968404 a004 Fibonacci(82)/Lucas(26)/(1/2+sqrt(5)/2)^61 4032522474968404 a004 Fibonacci(84)/Lucas(26)/(1/2+sqrt(5)/2)^63 4032522474968404 a004 Fibonacci(86)/Lucas(26)/(1/2+sqrt(5)/2)^65 4032522474968404 a004 Fibonacci(88)/Lucas(26)/(1/2+sqrt(5)/2)^67 4032522474968404 a004 Fibonacci(90)/Lucas(26)/(1/2+sqrt(5)/2)^69 4032522474968404 a004 Fibonacci(92)/Lucas(26)/(1/2+sqrt(5)/2)^71 4032522474968404 a004 Fibonacci(94)/Lucas(26)/(1/2+sqrt(5)/2)^73 4032522474968404 a004 Fibonacci(96)/Lucas(26)/(1/2+sqrt(5)/2)^75 4032522474968404 a004 Fibonacci(100)/Lucas(26)/(1/2+sqrt(5)/2)^79 4032522474968404 a004 Fibonacci(26)*Lucas(52)/(1/2+sqrt(5)/2)^83 4032522474968404 a004 Fibonacci(98)/Lucas(26)/(1/2+sqrt(5)/2)^77 4032522474968404 a004 Fibonacci(99)/Lucas(26)/(1/2+sqrt(5)/2)^78 4032522474968404 a004 Fibonacci(97)/Lucas(26)/(1/2+sqrt(5)/2)^76 4032522474968404 a004 Fibonacci(95)/Lucas(26)/(1/2+sqrt(5)/2)^74 4032522474968404 a004 Fibonacci(93)/Lucas(26)/(1/2+sqrt(5)/2)^72 4032522474968404 a004 Fibonacci(91)/Lucas(26)/(1/2+sqrt(5)/2)^70 4032522474968404 a004 Fibonacci(89)/Lucas(26)/(1/2+sqrt(5)/2)^68 4032522474968404 a004 Fibonacci(87)/Lucas(26)/(1/2+sqrt(5)/2)^66 4032522474968404 a004 Fibonacci(85)/Lucas(26)/(1/2+sqrt(5)/2)^64 4032522474968404 a004 Fibonacci(83)/Lucas(26)/(1/2+sqrt(5)/2)^62 4032522474968404 a004 Fibonacci(81)/Lucas(26)/(1/2+sqrt(5)/2)^60 4032522474968404 a004 Fibonacci(79)/Lucas(26)/(1/2+sqrt(5)/2)^58 4032522474968404 a004 Fibonacci(77)/Lucas(26)/(1/2+sqrt(5)/2)^56 4032522474968404 a004 Fibonacci(75)/Lucas(26)/(1/2+sqrt(5)/2)^54 4032522474968404 a004 Fibonacci(73)/Lucas(26)/(1/2+sqrt(5)/2)^52 4032522474968404 a004 Fibonacci(71)/Lucas(26)/(1/2+sqrt(5)/2)^50 4032522474968404 a004 Fibonacci(69)/Lucas(26)/(1/2+sqrt(5)/2)^48 4032522474968404 a004 Fibonacci(67)/Lucas(26)/(1/2+sqrt(5)/2)^46 4032522474968404 a004 Fibonacci(65)/Lucas(26)/(1/2+sqrt(5)/2)^44 4032522474968404 a004 Fibonacci(63)/Lucas(26)/(1/2+sqrt(5)/2)^42 4032522474968404 a004 Fibonacci(61)/Lucas(26)/(1/2+sqrt(5)/2)^40 4032522474968404 a004 Fibonacci(59)/Lucas(26)/(1/2+sqrt(5)/2)^38 4032522474968404 a004 Fibonacci(57)/Lucas(26)/(1/2+sqrt(5)/2)^36 4032522474968404 a004 Fibonacci(55)/Lucas(26)/(1/2+sqrt(5)/2)^34 4032522474968404 a004 Fibonacci(53)/Lucas(26)/(1/2+sqrt(5)/2)^32 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^20/Lucas(51) 4032522474968404 a001 121393/45537549124*23725150497407^(5/16) 4032522474968404 a001 121393/45537549124*505019158607^(5/14) 4032522474968404 a001 121393/45537549124*73681302247^(5/13) 4032522474968404 a001 121393/505019158607*28143753123^(1/2) 4032522474968404 a004 Fibonacci(51)/Lucas(26)/(1/2+sqrt(5)/2)^30 4032522474968404 a001 121393/5600748293801*28143753123^(3/5) 4032522474968404 a001 121393/45537549124*28143753123^(2/5) 4032522474968404 a004 Fibonacci(26)*Lucas(50)/(1/2+sqrt(5)/2)^81 4032522474968404 a001 121393/17393796001*45537549124^(6/17) 4032522474968404 a001 121393/17393796001*14662949395604^(2/7) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^18/Lucas(49) 4032522474968404 a001 121393/17393796001*192900153618^(1/3) 4032522474968404 a004 Fibonacci(49)/Lucas(26)/(1/2+sqrt(5)/2)^28 4032522474968404 a001 121393/73681302247*10749957122^(7/16) 4032522474968404 a001 121393/119218851371*10749957122^(11/24) 4032522474968404 a001 121393/45537549124*10749957122^(5/12) 4032522474968404 a001 121393/312119004989*10749957122^(1/2) 4032522474968404 a001 121393/817138163596*10749957122^(13/24) 4032522474968404 a001 121393/1322157322203*10749957122^(9/16) 4032522474968404 a001 121393/2139295485799*10749957122^(7/12) 4032522474968404 a001 121393/5600748293801*10749957122^(5/8) 4032522474968404 a001 121393/14662949395604*10749957122^(2/3) 4032522474968404 a001 121393/23725150497407*10749957122^(11/16) 4032522474968404 a001 121393/17393796001*10749957122^(3/8) 4032522474968404 a004 Fibonacci(26)*Lucas(48)/(1/2+sqrt(5)/2)^79 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^16/Lucas(47) 4032522474968404 a001 121393/6643838879*23725150497407^(1/4) 4032522474968404 a001 121393/6643838879*73681302247^(4/13) 4032522474968404 a004 Fibonacci(47)/Lucas(26)/(1/2+sqrt(5)/2)^26 4032522474968404 a001 121393/6643838879*10749957122^(1/3) 4032522474968404 a001 121393/45537549124*4106118243^(10/23) 4032522474968404 a001 121393/17393796001*4106118243^(9/23) 4032522474968404 a001 121393/119218851371*4106118243^(11/23) 4032522474968404 a001 121393/192900153618*4106118243^(1/2) 4032522474968404 a001 121393/312119004989*4106118243^(12/23) 4032522474968404 a001 121393/817138163596*4106118243^(13/23) 4032522474968404 a001 121393/2139295485799*4106118243^(14/23) 4032522474968404 a001 121393/5600748293801*4106118243^(15/23) 4032522474968404 a001 121393/14662949395604*4106118243^(16/23) 4032522474968404 a001 121393/6643838879*4106118243^(8/23) 4032522474968404 a004 Fibonacci(26)*Lucas(46)/(1/2+sqrt(5)/2)^77 4032522474968404 a001 121393/2537720636*17393796001^(2/7) 4032522474968404 a001 121393/2537720636*14662949395604^(2/9) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^14/Lucas(45) 4032522474968404 a001 121393/2537720636*505019158607^(1/4) 4032522474968404 a004 Fibonacci(45)/Lucas(26)/(1/2+sqrt(5)/2)^24 4032522474968404 a001 121393/2537720636*10749957122^(7/24) 4032522474968404 a001 121393/17393796001*1568397607^(9/22) 4032522474968404 a001 121393/6643838879*1568397607^(4/11) 4032522474968404 a001 121393/2537720636*4106118243^(7/23) 4032522474968404 a001 121393/45537549124*1568397607^(5/11) 4032522474968404 a001 121393/119218851371*1568397607^(1/2) 4032522474968404 a001 121393/312119004989*1568397607^(6/11) 4032522474968404 a001 121393/817138163596*1568397607^(13/22) 4032522474968404 a001 121393/2139295485799*1568397607^(7/11) 4032522474968404 a001 121393/5600748293801*1568397607^(15/22) 4032522474968404 a001 121393/2537720636*1568397607^(7/22) 4032522474968404 a001 121393/14662949395604*1568397607^(8/11) 4032522474968404 a001 121393/23725150497407*1568397607^(3/4) 4032522474968404 a004 Fibonacci(26)*Lucas(44)/(1/2+sqrt(5)/2)^75 4032522474968404 a001 121393/4106118243*599074578^(5/14) 4032522474968404 a001 121393/969323029*2537720636^(4/15) 4032522474968404 a001 121393/969323029*45537549124^(4/17) 4032522474968404 a001 121393/969323029*817138163596^(4/19) 4032522474968404 a001 121393/969323029*14662949395604^(4/21) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^12/Lucas(43) 4032522474968404 a001 121393/969323029*192900153618^(2/9) 4032522474968404 a001 121393/969323029*73681302247^(3/13) 4032522474968404 a004 Fibonacci(43)/Lucas(26)/(1/2+sqrt(5)/2)^22 4032522474968404 a001 121393/969323029*10749957122^(1/4) 4032522474968404 a001 121393/969323029*4106118243^(6/23) 4032522474968404 a001 121393/2537720636*599074578^(1/3) 4032522474968404 a001 121393/6643838879*599074578^(8/21) 4032522474968404 a001 121393/969323029*1568397607^(3/11) 4032522474968404 a001 121393/17393796001*599074578^(3/7) 4032522474968404 a001 121393/45537549124*599074578^(10/21) 4032522474968404 a001 121393/73681302247*599074578^(1/2) 4032522474968404 a001 121393/119218851371*599074578^(11/21) 4032522474968404 a001 121393/312119004989*599074578^(4/7) 4032522474968404 a001 121393/817138163596*599074578^(13/21) 4032522474968404 a001 121393/1322157322203*599074578^(9/14) 4032522474968404 a001 121393/2139295485799*599074578^(2/3) 4032522474968404 a001 121393/969323029*599074578^(2/7) 4032522474968404 a001 121393/5600748293801*599074578^(5/7) 4032522474968404 a001 121393/14662949395604*599074578^(16/21) 4032522474968404 a001 121393/23725150497407*599074578^(11/14) 4032522474968404 a004 Fibonacci(26)*Lucas(42)/(1/2+sqrt(5)/2)^73 4032522474968404 a001 121393/969323029*228826127^(3/10) 4032522474968404 a001 121393/2537720636*228826127^(7/20) 4032522474968404 a001 121393/4106118243*228826127^(3/8) 4032522474968404 a001 121393/370248451*2537720636^(2/9) 4032522474968404 a001 121393/370248451*312119004989^(2/11) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^10/Lucas(41) 4032522474968404 a004 Fibonacci(41)/Lucas(26)/(1/2+sqrt(5)/2)^20 4032522474968404 a001 121393/370248451*28143753123^(1/5) 4032522474968404 a001 121393/370248451*10749957122^(5/24) 4032522474968404 a001 121393/370248451*4106118243^(5/23) 4032522474968404 a001 121393/370248451*1568397607^(5/22) 4032522474968404 a001 121393/6643838879*228826127^(2/5) 4032522474968404 a001 121393/370248451*599074578^(5/21) 4032522474968404 a001 121393/17393796001*228826127^(9/20) 4032522474968404 a001 121393/45537549124*228826127^(1/2) 4032522474968404 a001 121393/119218851371*228826127^(11/20) 4032522474968404 a001 121393/312119004989*228826127^(3/5) 4032522474968404 a001 121393/505019158607*228826127^(5/8) 4032522474968404 a001 121393/370248451*228826127^(1/4) 4032522474968404 a001 121393/817138163596*228826127^(13/20) 4032522474968404 a001 121393/2139295485799*228826127^(7/10) 4032522474968404 a001 121393/5600748293801*228826127^(3/4) 4032522474968404 a001 121393/14662949395604*228826127^(4/5) 4032522474968404 a004 Fibonacci(26)*Lucas(40)/(1/2+sqrt(5)/2)^71 4032522474968404 a001 121393/370248451*87403803^(5/19) 4032522474968404 a001 121393/969323029*87403803^(6/19) 4032522474968404 a001 121393/2537720636*87403803^(7/19) 4032522474968404 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^8/Lucas(39) 4032522474968404 a001 233/271444*23725150497407^(1/8) 4032522474968404 a001 233/271444*505019158607^(1/7) 4032522474968404 a001 233/271444*73681302247^(2/13) 4032522474968404 a004 Fibonacci(39)/Lucas(26)/(1/2+sqrt(5)/2)^18 4032522474968404 a001 233/271444*10749957122^(1/6) 4032522474968404 a001 233/271444*4106118243^(4/23) 4032522474968404 a001 233/271444*1568397607^(2/11) 4032522474968404 a001 233/271444*599074578^(4/21) 4032522474968404 a001 233/271444*228826127^(1/5) 4032522474968404 a001 121393/6643838879*87403803^(8/19) 4032522474968404 a001 121393/17393796001*87403803^(9/19) 4032522474968404 a001 121393/28143753123*87403803^(1/2) 4032522474968404 a001 121393/45537549124*87403803^(10/19) 4032522474968404 a001 121393/119218851371*87403803^(11/19) 4032522474968404 a001 233/271444*87403803^(4/19) 4032522474968404 a001 121393/312119004989*87403803^(12/19) 4032522474968404 a001 121393/817138163596*87403803^(13/19) 4032522474968404 a001 121393/2139295485799*87403803^(14/19) 4032522474968404 a001 121393/5600748293801*87403803^(15/19) 4032522474968404 a001 121393/14662949395604*87403803^(16/19) 4032522474968404 a004 Fibonacci(26)*Lucas(38)/(1/2+sqrt(5)/2)^69 4032522474968404 a001 121393/228826127*33385282^(1/4) 4032522474968405 a001 233/271444*33385282^(2/9) 4032522474968405 a001 121393/370248451*33385282^(5/18) 4032522474968405 a001 121393/969323029*33385282^(1/3) 4032522474968405 a001 121393/54018521*141422324^(2/13) 4032522474968405 a001 121393/54018521*2537720636^(2/15) 4032522474968405 a001 121393/54018521*45537549124^(2/17) 4032522474968405 a001 121393/54018521*14662949395604^(2/21) 4032522474968405 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^6/Lucas(37) 4032522474968405 a004 Fibonacci(37)/Lucas(26)/(1/2+sqrt(5)/2)^16 4032522474968405 a001 121393/54018521*10749957122^(1/8) 4032522474968405 a001 121393/54018521*4106118243^(3/23) 4032522474968405 a001 121393/54018521*1568397607^(3/22) 4032522474968405 a001 121393/54018521*599074578^(1/7) 4032522474968405 a001 121393/54018521*228826127^(3/20) 4032522474968405 a001 121393/2537720636*33385282^(7/18) 4032522474968405 a001 121393/54018521*87403803^(3/19) 4032522474968405 a001 121393/4106118243*33385282^(5/12) 4032522474968405 a001 121393/6643838879*33385282^(4/9) 4032522474968405 a001 121393/17393796001*33385282^(1/2) 4032522474968406 a001 121393/54018521*33385282^(1/6) 4032522474968406 a001 121393/45537549124*33385282^(5/9) 4032522474968406 a001 121393/73681302247*33385282^(7/12) 4032522474968406 a001 121393/119218851371*33385282^(11/18) 4032522474968406 a001 121393/312119004989*33385282^(2/3) 4032522474968406 a001 121393/817138163596*33385282^(13/18) 4032522474968406 a001 121393/1322157322203*33385282^(3/4) 4032522474968406 a001 121393/2139295485799*33385282^(7/9) 4032522474968407 a001 121393/5600748293801*33385282^(5/6) 4032522474968407 a001 121393/14662949395604*33385282^(8/9) 4032522474968407 a001 121393/23725150497407*33385282^(11/12) 4032522474968407 a004 Fibonacci(26)*Lucas(36)/(1/2+sqrt(5)/2)^67 4032522474968409 a001 121393/54018521*12752043^(3/17) 4032522474968410 a001 233/271444*12752043^(4/17) 4032522474968411 a001 121393/370248451*12752043^(5/17) 4032522474968412 a001 121393/969323029*12752043^(6/17) 4032522474968413 a001 121393/20633239*(1/2+1/2*5^(1/2))^4 4032522474968413 a001 121393/20633239*23725150497407^(1/16) 4032522474968413 a001 121393/20633239*73681302247^(1/13) 4032522474968413 a004 Fibonacci(35)/Lucas(26)/(1/2+sqrt(5)/2)^14 4032522474968413 a001 121393/20633239*10749957122^(1/12) 4032522474968413 a001 121393/20633239*4106118243^(2/23) 4032522474968413 a001 121393/20633239*1568397607^(1/11) 4032522474968413 a001 121393/20633239*599074578^(2/21) 4032522474968413 a001 121393/20633239*228826127^(1/10) 4032522474968413 a001 121393/20633239*87403803^(2/19) 4032522474968414 a001 121393/20633239*33385282^(1/9) 4032522474968414 a001 121393/2537720636*12752043^(7/17) 4032522474968415 a001 121393/6643838879*12752043^(8/17) 4032522474968416 a001 121393/20633239*12752043^(2/17) 4032522474968416 a001 121393/10749957122*12752043^(1/2) 4032522474968417 a001 121393/17393796001*12752043^(9/17) 4032522474968418 a001 121393/45537549124*12752043^(10/17) 4032522474968420 a001 121393/119218851371*12752043^(11/17) 4032522474968421 a001 121393/312119004989*12752043^(12/17) 4032522474968423 a001 121393/817138163596*12752043^(13/17) 4032522474968424 a001 121393/2139295485799*12752043^(14/17) 4032522474968426 a001 121393/5600748293801*12752043^(15/17) 4032522474968427 a001 121393/14662949395604*12752043^(16/17) 4032522474968428 a004 Fibonacci(26)*Lucas(34)/(1/2+sqrt(5)/2)^65 4032522474968434 a001 121393/20633239*4870847^(1/8) 4032522474968437 a001 121393/54018521*4870847^(3/16) 4032522474968446 a001 233/271444*4870847^(1/4) 4032522474968457 a001 121393/370248451*4870847^(5/16) 4032522474968467 a001 121393/969323029*4870847^(3/8) 4032522474968469 a001 121393/7881196*(1/2+1/2*5^(1/2))^2 4032522474968469 a001 427859097154/10610209857723 4032522474968469 a004 Fibonacci(33)/Lucas(26)/(1/2+sqrt(5)/2)^12 4032522474968469 a001 121393/7881196*10749957122^(1/24) 4032522474968469 a001 121393/7881196*4106118243^(1/23) 4032522474968469 a001 121393/7881196*1568397607^(1/22) 4032522474968469 a001 121393/7881196*599074578^(1/21) 4032522474968469 a001 121393/7881196*228826127^(1/20) 4032522474968469 a001 121393/7881196*87403803^(1/19) 4032522474968469 a001 121393/7881196*33385282^(1/18) 4032522474968470 a001 121393/7881196*12752043^(1/17) 4032522474968478 a001 121393/2537720636*4870847^(7/16) 4032522474968479 a001 121393/7881196*4870847^(1/16) 4032522474968489 a001 121393/6643838879*4870847^(1/2) 4032522474968495 a001 121393/12752043*1860498^(1/10) 4032522474968499 a001 121393/17393796001*4870847^(9/16) 4032522474968510 a001 121393/45537549124*4870847^(5/8) 4032522474968520 a001 121393/119218851371*4870847^(11/16) 4032522474968531 a001 121393/312119004989*4870847^(3/4) 4032522474968542 a001 121393/817138163596*4870847^(13/16) 4032522474968546 a001 121393/7881196*1860498^(1/15) 4032522474968552 a001 121393/2139295485799*4870847^(7/8) 4032522474968563 a001 121393/5600748293801*4870847^(15/16) 4032522474968568 a001 121393/20633239*1860498^(2/15) 4032522474968574 a004 Fibonacci(26)*Lucas(32)/(1/2+sqrt(5)/2)^63 4032522474968594 a001 121393/33385282*1860498^(1/6) 4032522474968638 a001 121393/54018521*1860498^(1/5) 4032522474968715 a001 233/271444*1860498^(4/15) 4032522474968753 a001 121393/228826127*1860498^(3/10) 4032522474968792 a001 121393/370248451*1860498^(1/3) 4032522474968849 a001 121393/3010349 4032522474968849 a004 Fibonacci(31)/Lucas(26)/(1/2+sqrt(5)/2)^10 4032522474968870 a001 514229/1568397607*167761^(2/5) 4032522474968870 a001 121393/969323029*1860498^(2/5) 4032522474968947 a001 121393/2537720636*1860498^(7/15) 4032522474968986 a001 121393/4106118243*1860498^(1/2) 4032522474969025 a001 121393/6643838879*1860498^(8/15) 4032522474969039 a001 121393/7881196*710647^(1/14) 4032522474969103 a001 121393/17393796001*1860498^(3/5) 4032522474969180 a001 121393/45537549124*1860498^(2/3) 4032522474969219 a001 121393/73681302247*1860498^(7/10) 4032522474969258 a001 121393/119218851371*1860498^(11/15) 4032522474969336 a001 121393/312119004989*1860498^(4/5) 4032522474969374 a001 121393/505019158607*1860498^(5/6) 4032522474969413 a001 121393/817138163596*1860498^(13/15) 4032522474969452 a001 121393/1322157322203*1860498^(9/10) 4032522474969491 a001 121393/2139295485799*1860498^(14/15) 4032522474969554 a001 121393/20633239*710647^(1/7) 4032522474969569 a004 Fibonacci(26)*Lucas(30)/(1/2+sqrt(5)/2)^61 4032522474970116 a001 121393/54018521*710647^(3/14) 4032522474970399 a001 121393/87403803*710647^(1/4) 4032522474970685 a001 233/271444*710647^(2/7) 4032522474971255 a001 121393/370248451*710647^(5/14) 4032522474971454 a001 62423800997/1548008755920 4032522474971454 a004 Fibonacci(26)/Lucas(29)/(1/2+sqrt(5)/2)^2 4032522474971454 a004 Fibonacci(29)/Lucas(26)/(1/2+sqrt(5)/2)^8 4032522474971826 a001 121393/969323029*710647^(3/7) 4032522474972396 a001 121393/2537720636*710647^(1/2) 4032522474972424 a001 105937/4250681*64079^(1/23) 4032522474972679 a001 121393/7881196*271443^(1/13) 4032522474972966 a001 121393/6643838879*710647^(4/7) 4032522474973537 a001 121393/17393796001*710647^(9/14) 4032522474974107 a001 121393/45537549124*710647^(5/7) 4032522474974392 a001 121393/73681302247*710647^(3/4) 4032522474974677 a001 121393/119218851371*710647^(11/14) 4032522474975248 a001 121393/312119004989*710647^(6/7) 4032522474975818 a001 121393/817138163596*710647^(13/14) 4032522474976243 a001 15456/9381251041*103682^(7/8) 4032522474976389 a004 Fibonacci(26)*Lucas(28)/(1/2+sqrt(5)/2)^59 4032522474976833 a001 121393/20633239*271443^(2/13) 4032522474979265 a001 416020/16692641*64079^(1/23) 4032522474980263 a001 726103/29134601*64079^(1/23) 4032522474980409 a001 5702887/228826127*64079^(1/23) 4032522474980430 a001 829464/33281921*64079^(1/23) 4032522474980433 a001 39088169/1568397607*64079^(1/23) 4032522474980434 a001 34111385/1368706081*64079^(1/23) 4032522474980434 a001 133957148/5374978561*64079^(1/23) 4032522474980434 a001 233802911/9381251041*64079^(1/23) 4032522474980434 a001 1836311903/73681302247*64079^(1/23) 4032522474980434 a001 267084832/10716675201*64079^(1/23) 4032522474980434 a001 12586269025/505019158607*64079^(1/23) 4032522474980434 a001 10983760033/440719107401*64079^(1/23) 4032522474980434 a001 43133785636/1730726404001*64079^(1/23) 4032522474980434 a001 75283811239/3020733700601*64079^(1/23) 4032522474980434 a001 182717648081/7331474697802*64079^(1/23) 4032522474980434 a001 139583862445/5600748293801*64079^(1/23) 4032522474980434 a001 53316291173/2139295485799*64079^(1/23) 4032522474980434 a001 10182505537/408569081798*64079^(1/23) 4032522474980434 a001 7778742049/312119004989*64079^(1/23) 4032522474980434 a001 2971215073/119218851371*64079^(1/23) 4032522474980434 a001 567451585/22768774562*64079^(1/23) 4032522474980434 a001 433494437/17393796001*64079^(1/23) 4032522474980434 a001 165580141/6643838879*64079^(1/23) 4032522474980434 a001 31622993/1268860318*64079^(1/23) 4032522474980435 a001 24157817/969323029*64079^(1/23) 4032522474980443 a001 9227465/370248451*64079^(1/23) 4032522474980499 a001 1762289/70711162*64079^(1/23) 4032522474980880 a001 1346269/54018521*64079^(1/23) 4032522474981035 a001 121393/54018521*271443^(3/13) 4032522474983493 a001 514229/20633239*64079^(1/23) 4032522474983864 a001 121393/4870847*103682^(1/24) 4032522474985244 a001 233/271444*271443^(4/13) 4032522474986491 a001 105937/29134601*167761^(1/5) 4032522474986724 a001 98209/299537289*167761^(2/5) 4032522474989308 a001 23843770274/591286729879 4032522474989308 a004 Fibonacci(26)/Lucas(27)/(1/2+sqrt(5)/2)^4 4032522474989308 a004 Fibonacci(27)/Lucas(26)/(1/2+sqrt(5)/2)^6 4032522474989453 a001 121393/370248451*271443^(5/13) 4032522474991873 a001 11592/11384387281*103682^(11/12) 4032522474993311 a001 832040/228826127*167761^(1/5) 4032522474993663 a001 121393/969323029*271443^(6/13) 4032522474994243 a004 Fibonacci(28)*Lucas(27)/(1/2+sqrt(5)/2)^60 4032522474994306 a001 726103/199691526*167761^(1/5) 4032522474994451 a001 5702887/1568397607*167761^(1/5) 4032522474994473 a001 4976784/1368706081*167761^(1/5) 4032522474994476 a001 39088169/10749957122*167761^(1/5) 4032522474994476 a001 831985/228811001*167761^(1/5) 4032522474994476 a001 267914296/73681302247*167761^(1/5) 4032522474994476 a001 233802911/64300051206*167761^(1/5) 4032522474994476 a001 1836311903/505019158607*167761^(1/5) 4032522474994476 a001 1602508992/440719107401*167761^(1/5) 4032522474994476 a001 12586269025/3461452808002*167761^(1/5) 4032522474994476 a001 10983760033/3020733700601*167761^(1/5) 4032522474994476 a001 86267571272/23725150497407*167761^(1/5) 4032522474994476 a001 53316291173/14662949395604*167761^(1/5) 4032522474994476 a001 20365011074/5600748293801*167761^(1/5) 4032522474994476 a001 7778742049/2139295485799*167761^(1/5) 4032522474994476 a001 2971215073/817138163596*167761^(1/5) 4032522474994476 a001 1134903170/312119004989*167761^(1/5) 4032522474994476 a001 433494437/119218851371*167761^(1/5) 4032522474994476 a001 165580141/45537549124*167761^(1/5) 4032522474994476 a001 63245986/17393796001*167761^(1/5) 4032522474994478 a001 24157817/6643838879*167761^(1/5) 4032522474994486 a001 9227465/2537720636*167761^(1/5) 4032522474994541 a001 3524578/969323029*167761^(1/5) 4032522474994921 a001 1346269/370248451*167761^(1/5) 4032522474995595 a001 75025/12752043*64079^(4/23) 4032522474995768 a001 121393/1568397607*271443^(1/2) 4032522474996566 a001 317811/817138163596*439204^(8/9) 4032522474997526 a001 514229/141422324*167761^(1/5) 4032522474997873 a001 121393/2537720636*271443^(7/13) 4032522474998449 a001 46368/4870847*39603^(3/22) 4032522474998889 a001 105937/64300051206*439204^(7/9) 4032522474999729 a001 121393/7881196*103682^(1/12) 4032522475001063 a004 Fibonacci(30)*Lucas(27)/(1/2+sqrt(5)/2)^62 4032522475001212 a001 317811/45537549124*439204^(2/3) 4032522475001404 a001 98209/3940598*64079^(1/23) 4032522475002058 a004 Fibonacci(32)*Lucas(27)/(1/2+sqrt(5)/2)^64 4032522475002083 a001 121393/6643838879*271443^(8/13) 4032522475002203 a004 Fibonacci(34)*Lucas(27)/(1/2+sqrt(5)/2)^66 4032522475002225 a004 Fibonacci(36)*Lucas(27)/(1/2+sqrt(5)/2)^68 4032522475002228 a004 Fibonacci(38)*Lucas(27)/(1/2+sqrt(5)/2)^70 4032522475002228 a004 Fibonacci(40)*Lucas(27)/(1/2+sqrt(5)/2)^72 4032522475002228 a004 Fibonacci(42)*Lucas(27)/(1/2+sqrt(5)/2)^74 4032522475002228 a004 Fibonacci(44)*Lucas(27)/(1/2+sqrt(5)/2)^76 4032522475002228 a004 Fibonacci(46)*Lucas(27)/(1/2+sqrt(5)/2)^78 4032522475002228 a004 Fibonacci(48)*Lucas(27)/(1/2+sqrt(5)/2)^80 4032522475002228 a004 Fibonacci(50)*Lucas(27)/(1/2+sqrt(5)/2)^82 4032522475002228 a004 Fibonacci(52)*Lucas(27)/(1/2+sqrt(5)/2)^84 4032522475002228 a004 Fibonacci(54)*Lucas(27)/(1/2+sqrt(5)/2)^86 4032522475002228 a004 Fibonacci(56)*Lucas(27)/(1/2+sqrt(5)/2)^88 4032522475002228 a004 Fibonacci(58)*Lucas(27)/(1/2+sqrt(5)/2)^90 4032522475002228 a004 Fibonacci(60)*Lucas(27)/(1/2+sqrt(5)/2)^92 4032522475002228 a004 Fibonacci(62)*Lucas(27)/(1/2+sqrt(5)/2)^94 4032522475002228 a004 Fibonacci(64)*Lucas(27)/(1/2+sqrt(5)/2)^96 4032522475002228 a004 Fibonacci(66)*Lucas(27)/(1/2+sqrt(5)/2)^98 4032522475002228 a004 Fibonacci(68)*Lucas(27)/(1/2+sqrt(5)/2)^100 4032522475002228 a004 Fibonacci(67)*Lucas(27)/(1/2+sqrt(5)/2)^99 4032522475002228 a004 Fibonacci(65)*Lucas(27)/(1/2+sqrt(5)/2)^97 4032522475002228 a004 Fibonacci(63)*Lucas(27)/(1/2+sqrt(5)/2)^95 4032522475002228 a004 Fibonacci(61)*Lucas(27)/(1/2+sqrt(5)/2)^93 4032522475002228 a004 Fibonacci(59)*Lucas(27)/(1/2+sqrt(5)/2)^91 4032522475002228 a004 Fibonacci(57)*Lucas(27)/(1/2+sqrt(5)/2)^89 4032522475002228 a004 Fibonacci(55)*Lucas(27)/(1/2+sqrt(5)/2)^87 4032522475002228 a001 1/98209*(1/2+1/2*5^(1/2))^22 4032522475002228 a004 Fibonacci(53)*Lucas(27)/(1/2+sqrt(5)/2)^85 4032522475002228 a004 Fibonacci(51)*Lucas(27)/(1/2+sqrt(5)/2)^83 4032522475002228 a004 Fibonacci(49)*Lucas(27)/(1/2+sqrt(5)/2)^81 4032522475002228 a004 Fibonacci(47)*Lucas(27)/(1/2+sqrt(5)/2)^79 4032522475002228 a004 Fibonacci(45)*Lucas(27)/(1/2+sqrt(5)/2)^77 4032522475002228 a004 Fibonacci(43)*Lucas(27)/(1/2+sqrt(5)/2)^75 4032522475002228 a004 Fibonacci(41)*Lucas(27)/(1/2+sqrt(5)/2)^73 4032522475002228 a004 Fibonacci(39)*Lucas(27)/(1/2+sqrt(5)/2)^71 4032522475002230 a004 Fibonacci(37)*Lucas(27)/(1/2+sqrt(5)/2)^69 4032522475002238 a004 Fibonacci(35)*Lucas(27)/(1/2+sqrt(5)/2)^67 4032522475002293 a004 Fibonacci(33)*Lucas(27)/(1/2+sqrt(5)/2)^65 4032522475002398 a001 439204/2178309*8^(1/3) 4032522475002673 a004 Fibonacci(31)*Lucas(27)/(1/2+sqrt(5)/2)^63 4032522475003386 a001 832040/2139295485799*439204^(8/9) 4032522475003534 a001 317811/10749957122*439204^(5/9) 4032522475004381 a001 2178309/5600748293801*439204^(8/9) 4032522475004526 a001 5702887/14662949395604*439204^(8/9) 4032522475004560 a001 9227465/23725150497407*439204^(8/9) 4032522475004616 a001 3524578/9062201101803*439204^(8/9) 4032522475004996 a001 1346269/3461452808002*439204^(8/9) 4032522475005278 a004 Fibonacci(29)*Lucas(27)/(1/2+sqrt(5)/2)^61 4032522475005709 a001 832040/505019158607*439204^(7/9) 4032522475005857 a001 317811/2537720636*439204^(4/9) 4032522475006293 a001 121393/17393796001*271443^(9/13) 4032522475006704 a001 726103/440719107401*439204^(7/9) 4032522475006849 a001 5702887/3461452808002*439204^(7/9) 4032522475006870 a001 4976784/3020733700601*439204^(7/9) 4032522475006873 a001 39088169/23725150497407*439204^(7/9) 4032522475006875 a001 24157817/14662949395604*439204^(7/9) 4032522475006883 a001 9227465/5600748293801*439204^(7/9) 4032522475006939 a001 3524578/2139295485799*439204^(7/9) 4032522475007163 a001 101003831721/2504730781961 4032522475007163 a004 Fibonacci(28)/Lucas(28)/(1/2+sqrt(5)/2)^5 4032522475007319 a001 1346269/817138163596*439204^(7/9) 4032522475007503 a001 6624/10525900321*103682^(23/24) 4032522475007601 a001 514229/1322157322203*439204^(8/9) 4032522475008031 a001 832040/119218851371*439204^(2/3) 4032522475008180 a001 377/710646*439204^(1/3) 4032522475009026 a001 2178309/312119004989*439204^(2/3) 4032522475009172 a001 5702887/817138163596*439204^(2/3) 4032522475009193 a001 14930352/2139295485799*439204^(2/3) 4032522475009196 a001 39088169/5600748293801*439204^(2/3) 4032522475009196 a001 102334155/14662949395604*439204^(2/3) 4032522475009196 a001 165580141/23725150497407*439204^(2/3) 4032522475009197 a001 63245986/9062201101803*439204^(2/3) 4032522475009198 a001 24157817/3461452808002*439204^(2/3) 4032522475009206 a001 9227465/1322157322203*439204^(2/3) 4032522475009261 a001 3524578/505019158607*439204^(2/3) 4032522475009641 a001 1346269/192900153618*439204^(2/3) 4032522475009924 a001 514229/312119004989*439204^(7/9) 4032522475010354 a001 832040/28143753123*439204^(5/9) 4032522475010503 a001 317811/141422324*439204^(2/9) 4032522475010503 a001 121393/45537549124*271443^(10/13) 4032522475011349 a001 311187/10525900321*439204^(5/9) 4032522475011494 a001 5702887/192900153618*439204^(5/9) 4032522475011516 a001 14930352/505019158607*439204^(5/9) 4032522475011519 a001 39088169/1322157322203*439204^(5/9) 4032522475011519 a001 6765/228826126*439204^(5/9) 4032522475011519 a001 267914296/9062201101803*439204^(5/9) 4032522475011519 a001 701408733/23725150497407*439204^(5/9) 4032522475011519 a001 433494437/14662949395604*439204^(5/9) 4032522475011519 a001 165580141/5600748293801*439204^(5/9) 4032522475011519 a001 63245986/2139295485799*439204^(5/9) 4032522475011521 a001 24157817/817138163596*439204^(5/9) 4032522475011529 a001 9227465/312119004989*439204^(5/9) 4032522475011584 a001 3524578/119218851371*439204^(5/9) 4032522475011964 a001 1346269/45537549124*439204^(5/9) 4032522475012098 a004 Fibonacci(28)*Lucas(29)/(1/2+sqrt(5)/2)^62 4032522475012246 a001 514229/73681302247*439204^(2/3) 4032522475012677 a001 832040/6643838879*439204^(4/9) 4032522475012822 a001 317811/33385282*439204^(1/9) 4032522475013672 a001 2178309/17393796001*439204^(4/9) 4032522475013817 a001 1597/12752044*439204^(4/9) 4032522475013838 a001 14930352/119218851371*439204^(4/9) 4032522475013841 a001 39088169/312119004989*439204^(4/9) 4032522475013842 a001 102334155/817138163596*439204^(4/9) 4032522475013842 a001 267914296/2139295485799*439204^(4/9) 4032522475013842 a001 701408733/5600748293801*439204^(4/9) 4032522475013842 a001 1836311903/14662949395604*439204^(4/9) 4032522475013842 a001 2971215073/23725150497407*439204^(4/9) 4032522475013842 a001 1134903170/9062201101803*439204^(4/9) 4032522475013842 a001 433494437/3461452808002*439204^(4/9) 4032522475013842 a001 165580141/1322157322203*439204^(4/9) 4032522475013842 a001 63245986/505019158607*439204^(4/9) 4032522475013843 a001 24157817/192900153618*439204^(4/9) 4032522475013851 a001 9227465/73681302247*439204^(4/9) 4032522475013907 a001 3524578/28143753123*439204^(4/9) 4032522475013983 a001 10170440940/252210396917 4032522475013983 a004 Fibonacci(28)/Lucas(30)/(1/2+sqrt(5)/2)^3 4032522475013983 a004 Fibonacci(30)/Lucas(28)/(1/2+sqrt(5)/2)^7 4032522475014287 a001 1346269/10749957122*439204^(4/9) 4032522475014569 a001 514229/17393796001*439204^(5/9) 4032522475014703 a004 Fibonacci(28)*Lucas(31)/(1/2+sqrt(5)/2)^64 4032522475014713 a001 121393/119218851371*271443^(11/13) 4032522475014978 a004 Fibonacci(28)/Lucas(32)/(1/2+sqrt(5)/2) 4032522475014978 a004 Fibonacci(32)/Lucas(28)/(1/2+sqrt(5)/2)^9 4032522475015000 a001 832040/1568397607*439204^(1/3) 4032522475015083 a004 Fibonacci(28)*Lucas(33)/(1/2+sqrt(5)/2)^66 4032522475015089 a001 10959/505618944676*7881196^(10/11) 4032522475015095 a001 317811/3461452808002*7881196^(9/11) 4032522475015101 a001 317811/817138163596*7881196^(8/11) 4032522475015105 a001 317811/312119004989*7881196^(2/3) 4032522475015107 a001 105937/64300051206*7881196^(7/11) 4032522475015113 a001 317811/45537549124*7881196^(6/11) 4032522475015118 a001 317811/10749957122*7881196^(5/11) 4032522475015123 a001 105937/8501362+105937/8501362*5^(1/2) 4032522475015123 a004 Fibonacci(34)/Lucas(28)/(1/2+sqrt(5)/2)^11 4032522475015124 a001 317811/2537720636*7881196^(4/11) 4032522475015126 a001 317811/1568397607*7881196^(1/3) 4032522475015130 a001 377/710646*7881196^(3/11) 4032522475015136 a001 317811/141422324*7881196^(2/11) 4032522475015138 a001 317811/33385282*7881196^(1/11) 4032522475015139 a004 Fibonacci(28)*Lucas(35)/(1/2+sqrt(5)/2)^68 4032522475015140 a001 10959/505618944676*20633239^(6/7) 4032522475015140 a001 317811/5600748293801*20633239^(4/5) 4032522475015141 a001 105937/440719107401*20633239^(5/7) 4032522475015142 a001 105937/64300051206*20633239^(3/5) 4032522475015143 a001 317811/119218851371*20633239^(4/7) 4032522475015144 a001 317811/10749957122*20633239^(3/7) 4032522475015144 a001 317811/6643838879*20633239^(2/5) 4032522475015144 a001 317811/33385282*141422324^(1/13) 4032522475015144 a001 317811/33385282*2537720636^(1/15) 4032522475015144 a001 317811/33385282*45537549124^(1/17) 4032522475015144 a001 317811/33385282*14662949395604^(1/21) 4032522475015144 a001 317811/33385282*(1/2+1/2*5^(1/2))^3 4032522475015144 a001 317811/33385282*192900153618^(1/18) 4032522475015144 a004 Fibonacci(36)/Lucas(28)/(1/2+sqrt(5)/2)^13 4032522475015144 a001 317811/33385282*10749957122^(1/16) 4032522475015144 a001 317811/33385282*599074578^(1/14) 4032522475015145 a001 317811/33385282*33385282^(1/12) 4032522475015145 a001 317811/969323029*20633239^(2/7) 4032522475015146 a001 317811/228826127*20633239^(1/5) 4032522475015146 a001 105937/29134601*20633239^(1/7) 4032522475015147 a004 Fibonacci(28)*Lucas(37)/(1/2+sqrt(5)/2)^70 4032522475015147 a001 105937/29134601*2537720636^(1/9) 4032522475015147 a001 105937/29134601*312119004989^(1/11) 4032522475015147 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^5/Lucas(38) 4032522475015147 a004 Fibonacci(38)/Lucas(28)/(1/2+sqrt(5)/2)^15 4032522475015147 a001 105937/29134601*28143753123^(1/10) 4032522475015147 a001 105937/29134601*228826127^(1/8) 4032522475015148 a004 Fibonacci(28)*Lucas(39)/(1/2+sqrt(5)/2)^72 4032522475015148 a001 10959/505618944676*141422324^(10/13) 4032522475015148 a001 317811/3461452808002*141422324^(9/13) 4032522475015148 a001 317811/2139295485799*141422324^(2/3) 4032522475015148 a001 317811/817138163596*141422324^(8/13) 4032522475015148 a001 105937/64300051206*141422324^(7/13) 4032522475015148 a001 317811/45537549124*141422324^(6/13) 4032522475015148 a001 317811/10749957122*141422324^(5/13) 4032522475015148 a001 317811/228826127*17393796001^(1/7) 4032522475015148 a001 317811/228826127*14662949395604^(1/9) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^7/Lucas(40) 4032522475015148 a004 Fibonacci(40)/Lucas(28)/(1/2+sqrt(5)/2)^17 4032522475015148 a001 317811/228826127*599074578^(1/6) 4032522475015148 a001 105937/1368706081*141422324^(1/3) 4032522475015148 a001 317811/2537720636*141422324^(4/13) 4032522475015148 a001 377/710646*141422324^(3/13) 4032522475015148 a004 Fibonacci(28)*Lucas(41)/(1/2+sqrt(5)/2)^74 4032522475015148 a001 377/710646*2537720636^(1/5) 4032522475015148 a001 377/710646*45537549124^(3/17) 4032522475015148 a001 377/710646*817138163596^(3/19) 4032522475015148 a001 377/710646*14662949395604^(1/7) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^9/Lucas(42) 4032522475015148 a004 Fibonacci(42)/Lucas(28)/(1/2+sqrt(5)/2)^19 4032522475015148 a001 377/710646*192900153618^(1/6) 4032522475015148 a001 377/710646*10749957122^(3/16) 4032522475015148 a001 377/710646*599074578^(3/14) 4032522475015148 a004 Fibonacci(28)*Lucas(43)/(1/2+sqrt(5)/2)^76 4032522475015148 a001 317811/1568397607*312119004989^(1/5) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^11/Lucas(44) 4032522475015148 a004 Fibonacci(44)/Lucas(28)/(1/2+sqrt(5)/2)^21 4032522475015148 a001 317811/1568397607*1568397607^(1/4) 4032522475015148 a004 Fibonacci(28)*Lucas(45)/(1/2+sqrt(5)/2)^78 4032522475015148 a001 10959/505618944676*2537720636^(2/3) 4032522475015148 a001 317811/3461452808002*2537720636^(3/5) 4032522475015148 a001 105937/440719107401*2537720636^(5/9) 4032522475015148 a001 317811/817138163596*2537720636^(8/15) 4032522475015148 a001 105937/64300051206*2537720636^(7/15) 4032522475015148 a001 317811/119218851371*2537720636^(4/9) 4032522475015148 a001 317811/45537549124*2537720636^(2/5) 4032522475015148 a001 317811/10749957122*2537720636^(1/3) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^13/Lucas(46) 4032522475015148 a004 Fibonacci(46)/Lucas(28)/(1/2+sqrt(5)/2)^23 4032522475015148 a001 105937/1368706081*73681302247^(1/4) 4032522475015148 a004 Fibonacci(28)*Lucas(47)/(1/2+sqrt(5)/2)^80 4032522475015148 a001 317811/10749957122*45537549124^(5/17) 4032522475015148 a001 317811/10749957122*312119004989^(3/11) 4032522475015148 a001 317811/10749957122*14662949395604^(5/21) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^15/Lucas(48) 4032522475015148 a004 Fibonacci(48)/Lucas(28)/(1/2+sqrt(5)/2)^25 4032522475015148 a001 317811/10749957122*192900153618^(5/18) 4032522475015148 a001 317811/10749957122*28143753123^(3/10) 4032522475015148 a001 317811/10749957122*10749957122^(5/16) 4032522475015148 a004 Fibonacci(28)*Lucas(49)/(1/2+sqrt(5)/2)^82 4032522475015148 a001 317811/5600748293801*17393796001^(4/7) 4032522475015148 a001 105937/64300051206*17393796001^(3/7) 4032522475015148 a001 105937/9381251041*45537549124^(1/3) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^17/Lucas(50) 4032522475015148 a004 Fibonacci(50)/Lucas(28)/(1/2+sqrt(5)/2)^27 4032522475015148 a004 Fibonacci(28)*Lucas(51)/(1/2+sqrt(5)/2)^84 4032522475015148 a001 10959/505618944676*45537549124^(10/17) 4032522475015148 a001 317811/3461452808002*45537549124^(9/17) 4032522475015148 a001 105937/64300051206*45537549124^(7/17) 4032522475015148 a001 317811/817138163596*45537549124^(8/17) 4032522475015148 a001 317811/73681302247*817138163596^(1/3) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^19/Lucas(52) 4032522475015148 a004 Fibonacci(52)/Lucas(28)/(1/2+sqrt(5)/2)^29 4032522475015148 a004 Fibonacci(28)*Lucas(53)/(1/2+sqrt(5)/2)^86 4032522475015148 a001 105937/64300051206*14662949395604^(1/3) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^21/Lucas(54) 4032522475015148 a004 Fibonacci(54)/Lucas(28)/(1/2+sqrt(5)/2)^31 4032522475015148 a001 105937/64300051206*192900153618^(7/18) 4032522475015148 a004 Fibonacci(28)*Lucas(55)/(1/2+sqrt(5)/2)^88 4032522475015148 a001 10959/505618944676*312119004989^(6/11) 4032522475015148 a001 105937/440719107401*312119004989^(5/11) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^23/Lucas(56) 4032522475015148 a004 Fibonacci(28)*Lucas(57)/(1/2+sqrt(5)/2)^90 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^25/Lucas(58) 4032522475015148 a001 105937/440719107401*3461452808002^(5/12) 4032522475015148 a004 Fibonacci(28)*Lucas(59)/(1/2+sqrt(5)/2)^92 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^27/Lucas(60) 4032522475015148 a004 Fibonacci(28)*Lucas(61)/(1/2+sqrt(5)/2)^94 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^29/Lucas(62) 4032522475015148 a004 Fibonacci(28)*Lucas(63)/(1/2+sqrt(5)/2)^96 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^31/Lucas(64) 4032522475015148 a004 Fibonacci(28)*Lucas(65)/(1/2+sqrt(5)/2)^98 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^33/Lucas(66) 4032522475015148 a004 Fibonacci(28)*Lucas(67)/(1/2+sqrt(5)/2)^100 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^35/Lucas(68) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^37/Lucas(70) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^39/Lucas(72) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^41/Lucas(74) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^43/Lucas(76) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^45/Lucas(78) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^47/Lucas(80) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^49/Lucas(82) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^51/Lucas(84) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^53/Lucas(86) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^55/Lucas(88) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^57/Lucas(90) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^59/Lucas(92) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^61/Lucas(94) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^63/Lucas(96) 4032522475015148 a004 Fibonacci(14)*Lucas(14)/(1/2+sqrt(5)/2)^33 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^65/Lucas(98) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^66/Lucas(99) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^67/Lucas(100) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^64/Lucas(97) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^62/Lucas(95) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^60/Lucas(93) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^58/Lucas(91) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^56/Lucas(89) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^54/Lucas(87) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^52/Lucas(85) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^50/Lucas(83) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^48/Lucas(81) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^46/Lucas(79) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^44/Lucas(77) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^42/Lucas(75) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^40/Lucas(73) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^38/Lucas(71) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^36/Lucas(69) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^34/Lucas(67) 4032522475015148 a004 Fibonacci(28)*Lucas(66)/(1/2+sqrt(5)/2)^99 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^32/Lucas(65) 4032522475015148 a004 Fibonacci(28)*Lucas(64)/(1/2+sqrt(5)/2)^97 4032522475015148 a001 10959/505618944676*14662949395604^(10/21) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^30/Lucas(63) 4032522475015148 a004 Fibonacci(28)*Lucas(62)/(1/2+sqrt(5)/2)^95 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^28/Lucas(61) 4032522475015148 a004 Fibonacci(28)*Lucas(60)/(1/2+sqrt(5)/2)^93 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^26/Lucas(59) 4032522475015148 a001 105937/3020733700601*1322157322203^(1/2) 4032522475015148 a004 Fibonacci(28)*Lucas(58)/(1/2+sqrt(5)/2)^91 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^24/Lucas(57) 4032522475015148 a004 Fibonacci(58)/Lucas(28)/(1/2+sqrt(5)/2)^35 4032522475015148 a004 Fibonacci(60)/Lucas(28)/(1/2+sqrt(5)/2)^37 4032522475015148 a004 Fibonacci(62)/Lucas(28)/(1/2+sqrt(5)/2)^39 4032522475015148 a004 Fibonacci(64)/Lucas(28)/(1/2+sqrt(5)/2)^41 4032522475015148 a004 Fibonacci(66)/Lucas(28)/(1/2+sqrt(5)/2)^43 4032522475015148 a004 Fibonacci(68)/Lucas(28)/(1/2+sqrt(5)/2)^45 4032522475015148 a004 Fibonacci(70)/Lucas(28)/(1/2+sqrt(5)/2)^47 4032522475015148 a004 Fibonacci(72)/Lucas(28)/(1/2+sqrt(5)/2)^49 4032522475015148 a004 Fibonacci(74)/Lucas(28)/(1/2+sqrt(5)/2)^51 4032522475015148 a004 Fibonacci(76)/Lucas(28)/(1/2+sqrt(5)/2)^53 4032522475015148 a004 Fibonacci(78)/Lucas(28)/(1/2+sqrt(5)/2)^55 4032522475015148 a004 Fibonacci(80)/Lucas(28)/(1/2+sqrt(5)/2)^57 4032522475015148 a004 Fibonacci(82)/Lucas(28)/(1/2+sqrt(5)/2)^59 4032522475015148 a004 Fibonacci(84)/Lucas(28)/(1/2+sqrt(5)/2)^61 4032522475015148 a004 Fibonacci(86)/Lucas(28)/(1/2+sqrt(5)/2)^63 4032522475015148 a004 Fibonacci(88)/Lucas(28)/(1/2+sqrt(5)/2)^65 4032522475015148 a004 Fibonacci(90)/Lucas(28)/(1/2+sqrt(5)/2)^67 4032522475015148 a004 Fibonacci(92)/Lucas(28)/(1/2+sqrt(5)/2)^69 4032522475015148 a004 Fibonacci(94)/Lucas(28)/(1/2+sqrt(5)/2)^71 4032522475015148 a004 Fibonacci(96)/Lucas(28)/(1/2+sqrt(5)/2)^73 4032522475015148 a004 Fibonacci(100)/Lucas(28)/(1/2+sqrt(5)/2)^77 4032522475015148 a004 Fibonacci(28)*Lucas(56)/(1/2+sqrt(5)/2)^89 4032522475015148 a004 Fibonacci(98)/Lucas(28)/(1/2+sqrt(5)/2)^75 4032522475015148 a004 Fibonacci(99)/Lucas(28)/(1/2+sqrt(5)/2)^76 4032522475015148 a004 Fibonacci(97)/Lucas(28)/(1/2+sqrt(5)/2)^74 4032522475015148 a004 Fibonacci(95)/Lucas(28)/(1/2+sqrt(5)/2)^72 4032522475015148 a004 Fibonacci(93)/Lucas(28)/(1/2+sqrt(5)/2)^70 4032522475015148 a004 Fibonacci(91)/Lucas(28)/(1/2+sqrt(5)/2)^68 4032522475015148 a004 Fibonacci(89)/Lucas(28)/(1/2+sqrt(5)/2)^66 4032522475015148 a004 Fibonacci(87)/Lucas(28)/(1/2+sqrt(5)/2)^64 4032522475015148 a004 Fibonacci(85)/Lucas(28)/(1/2+sqrt(5)/2)^62 4032522475015148 a004 Fibonacci(83)/Lucas(28)/(1/2+sqrt(5)/2)^60 4032522475015148 a004 Fibonacci(81)/Lucas(28)/(1/2+sqrt(5)/2)^58 4032522475015148 a004 Fibonacci(79)/Lucas(28)/(1/2+sqrt(5)/2)^56 4032522475015148 a004 Fibonacci(77)/Lucas(28)/(1/2+sqrt(5)/2)^54 4032522475015148 a004 Fibonacci(75)/Lucas(28)/(1/2+sqrt(5)/2)^52 4032522475015148 a004 Fibonacci(73)/Lucas(28)/(1/2+sqrt(5)/2)^50 4032522475015148 a004 Fibonacci(71)/Lucas(28)/(1/2+sqrt(5)/2)^48 4032522475015148 a004 Fibonacci(69)/Lucas(28)/(1/2+sqrt(5)/2)^46 4032522475015148 a004 Fibonacci(67)/Lucas(28)/(1/2+sqrt(5)/2)^44 4032522475015148 a004 Fibonacci(65)/Lucas(28)/(1/2+sqrt(5)/2)^42 4032522475015148 a004 Fibonacci(63)/Lucas(28)/(1/2+sqrt(5)/2)^40 4032522475015148 a004 Fibonacci(61)/Lucas(28)/(1/2+sqrt(5)/2)^38 4032522475015148 a004 Fibonacci(59)/Lucas(28)/(1/2+sqrt(5)/2)^36 4032522475015148 a004 Fibonacci(57)/Lucas(28)/(1/2+sqrt(5)/2)^34 4032522475015148 a001 317811/312119004989*312119004989^(2/5) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^22/Lucas(55) 4032522475015148 a001 317811/817138163596*192900153618^(4/9) 4032522475015148 a004 Fibonacci(55)/Lucas(28)/(1/2+sqrt(5)/2)^32 4032522475015148 a001 10959/505618944676*192900153618^(5/9) 4032522475015148 a004 Fibonacci(28)*Lucas(54)/(1/2+sqrt(5)/2)^87 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^20/Lucas(53) 4032522475015148 a001 317811/119218851371*23725150497407^(5/16) 4032522475015148 a001 317811/119218851371*505019158607^(5/14) 4032522475015148 a004 Fibonacci(53)/Lucas(28)/(1/2+sqrt(5)/2)^30 4032522475015148 a001 317811/817138163596*73681302247^(6/13) 4032522475015148 a001 317811/2139295485799*73681302247^(1/2) 4032522475015148 a001 317811/5600748293801*73681302247^(7/13) 4032522475015148 a001 317811/119218851371*73681302247^(5/13) 4032522475015148 a004 Fibonacci(28)*Lucas(52)/(1/2+sqrt(5)/2)^85 4032522475015148 a001 317811/45537549124*45537549124^(6/17) 4032522475015148 a001 317811/45537549124*14662949395604^(2/7) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^18/Lucas(51) 4032522475015148 a004 Fibonacci(51)/Lucas(28)/(1/2+sqrt(5)/2)^28 4032522475015148 a001 317811/45537549124*192900153618^(1/3) 4032522475015148 a001 317811/119218851371*28143753123^(2/5) 4032522475015148 a001 105937/440719107401*28143753123^(1/2) 4032522475015148 a001 10959/505618944676*28143753123^(3/5) 4032522475015148 a004 Fibonacci(28)*Lucas(50)/(1/2+sqrt(5)/2)^83 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^16/Lucas(49) 4032522475015148 a001 10959/599786069*23725150497407^(1/4) 4032522475015148 a004 Fibonacci(49)/Lucas(28)/(1/2+sqrt(5)/2)^26 4032522475015148 a001 10959/599786069*73681302247^(4/13) 4032522475015148 a001 317811/119218851371*10749957122^(5/12) 4032522475015148 a001 317811/45537549124*10749957122^(3/8) 4032522475015148 a001 105937/64300051206*10749957122^(7/16) 4032522475015148 a001 317811/312119004989*10749957122^(11/24) 4032522475015148 a001 317811/817138163596*10749957122^(1/2) 4032522475015148 a001 317811/2139295485799*10749957122^(13/24) 4032522475015148 a001 317811/3461452808002*10749957122^(9/16) 4032522475015148 a001 317811/5600748293801*10749957122^(7/12) 4032522475015148 a001 10959/505618944676*10749957122^(5/8) 4032522475015148 a001 10959/599786069*10749957122^(1/3) 4032522475015148 a004 Fibonacci(28)*Lucas(48)/(1/2+sqrt(5)/2)^81 4032522475015148 a001 317811/6643838879*17393796001^(2/7) 4032522475015148 a001 317811/6643838879*14662949395604^(2/9) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^14/Lucas(47) 4032522475015148 a001 317811/6643838879*505019158607^(1/4) 4032522475015148 a004 Fibonacci(47)/Lucas(28)/(1/2+sqrt(5)/2)^24 4032522475015148 a001 317811/45537549124*4106118243^(9/23) 4032522475015148 a001 10959/599786069*4106118243^(8/23) 4032522475015148 a001 317811/6643838879*10749957122^(7/24) 4032522475015148 a001 317811/119218851371*4106118243^(10/23) 4032522475015148 a001 317811/312119004989*4106118243^(11/23) 4032522475015148 a001 317811/505019158607*4106118243^(1/2) 4032522475015148 a001 317811/817138163596*4106118243^(12/23) 4032522475015148 a001 317811/2139295485799*4106118243^(13/23) 4032522475015148 a001 317811/5600748293801*4106118243^(14/23) 4032522475015148 a001 10959/505618944676*4106118243^(15/23) 4032522475015148 a001 317811/6643838879*4106118243^(7/23) 4032522475015148 a004 Fibonacci(28)*Lucas(46)/(1/2+sqrt(5)/2)^79 4032522475015148 a001 317811/2537720636*2537720636^(4/15) 4032522475015148 a001 10959/599786069*1568397607^(4/11) 4032522475015148 a001 317811/6643838879*1568397607^(7/22) 4032522475015148 a001 317811/2537720636*45537549124^(4/17) 4032522475015148 a001 317811/2537720636*817138163596^(4/19) 4032522475015148 a001 317811/2537720636*14662949395604^(4/21) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^12/Lucas(45) 4032522475015148 a004 Fibonacci(45)/Lucas(28)/(1/2+sqrt(5)/2)^22 4032522475015148 a001 317811/2537720636*192900153618^(2/9) 4032522475015148 a001 317811/2537720636*73681302247^(3/13) 4032522475015148 a001 317811/2537720636*10749957122^(1/4) 4032522475015148 a001 317811/45537549124*1568397607^(9/22) 4032522475015148 a001 317811/2537720636*4106118243^(6/23) 4032522475015148 a001 317811/119218851371*1568397607^(5/11) 4032522475015148 a001 317811/312119004989*1568397607^(1/2) 4032522475015148 a001 317811/817138163596*1568397607^(6/11) 4032522475015148 a001 317811/2139295485799*1568397607^(13/22) 4032522475015148 a001 317811/5600748293801*1568397607^(7/11) 4032522475015148 a001 317811/2537720636*1568397607^(3/11) 4032522475015148 a001 10959/505618944676*1568397607^(15/22) 4032522475015148 a004 Fibonacci(28)*Lucas(44)/(1/2+sqrt(5)/2)^77 4032522475015148 a001 317811/2537720636*599074578^(2/7) 4032522475015148 a001 317811/6643838879*599074578^(1/3) 4032522475015148 a001 317811/10749957122*599074578^(5/14) 4032522475015148 a001 317811/969323029*2537720636^(2/9) 4032522475015148 a001 317811/969323029*312119004989^(2/11) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^10/Lucas(43) 4032522475015148 a004 Fibonacci(43)/Lucas(28)/(1/2+sqrt(5)/2)^20 4032522475015148 a001 317811/969323029*28143753123^(1/5) 4032522475015148 a001 10959/599786069*599074578^(8/21) 4032522475015148 a001 317811/969323029*10749957122^(5/24) 4032522475015148 a001 317811/969323029*4106118243^(5/23) 4032522475015148 a001 317811/969323029*1568397607^(5/22) 4032522475015148 a001 317811/45537549124*599074578^(3/7) 4032522475015148 a001 317811/119218851371*599074578^(10/21) 4032522475015148 a001 105937/64300051206*599074578^(1/2) 4032522475015148 a001 317811/312119004989*599074578^(11/21) 4032522475015148 a001 317811/817138163596*599074578^(4/7) 4032522475015148 a001 317811/2139295485799*599074578^(13/21) 4032522475015148 a001 317811/969323029*599074578^(5/21) 4032522475015148 a001 317811/3461452808002*599074578^(9/14) 4032522475015148 a001 317811/5600748293801*599074578^(2/3) 4032522475015148 a001 10959/505618944676*599074578^(5/7) 4032522475015148 a004 Fibonacci(28)*Lucas(42)/(1/2+sqrt(5)/2)^75 4032522475015148 a001 317811/969323029*228826127^(1/4) 4032522475015148 a001 317811/2537720636*228826127^(3/10) 4032522475015148 a001 317811/6643838879*228826127^(7/20) 4032522475015148 a001 317811/10749957122*228826127^(3/8) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^8/Lucas(41) 4032522475015148 a001 317811/370248451*23725150497407^(1/8) 4032522475015148 a001 317811/370248451*505019158607^(1/7) 4032522475015148 a004 Fibonacci(41)/Lucas(28)/(1/2+sqrt(5)/2)^18 4032522475015148 a001 317811/370248451*73681302247^(2/13) 4032522475015148 a001 317811/370248451*10749957122^(1/6) 4032522475015148 a001 317811/370248451*4106118243^(4/23) 4032522475015148 a001 317811/370248451*1568397607^(2/11) 4032522475015148 a001 10959/599786069*228826127^(2/5) 4032522475015148 a001 317811/370248451*599074578^(4/21) 4032522475015148 a001 317811/45537549124*228826127^(9/20) 4032522475015148 a001 317811/119218851371*228826127^(1/2) 4032522475015148 a001 317811/312119004989*228826127^(11/20) 4032522475015148 a001 317811/370248451*228826127^(1/5) 4032522475015148 a001 317811/817138163596*228826127^(3/5) 4032522475015148 a001 105937/440719107401*228826127^(5/8) 4032522475015148 a001 317811/2139295485799*228826127^(13/20) 4032522475015148 a001 317811/5600748293801*228826127^(7/10) 4032522475015148 a001 10959/505618944676*228826127^(3/4) 4032522475015148 a004 Fibonacci(28)*Lucas(40)/(1/2+sqrt(5)/2)^73 4032522475015148 a001 317811/370248451*87403803^(4/19) 4032522475015148 a001 317811/969323029*87403803^(5/19) 4032522475015148 a001 317811/2537720636*87403803^(6/19) 4032522475015148 a001 317811/141422324*141422324^(2/13) 4032522475015148 a001 317811/6643838879*87403803^(7/19) 4032522475015148 a001 317811/141422324*2537720636^(2/15) 4032522475015148 a001 317811/141422324*45537549124^(2/17) 4032522475015148 a001 317811/141422324*14662949395604^(2/21) 4032522475015148 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^6/Lucas(39) 4032522475015148 a004 Fibonacci(39)/Lucas(28)/(1/2+sqrt(5)/2)^16 4032522475015148 a001 317811/141422324*10749957122^(1/8) 4032522475015148 a001 317811/141422324*4106118243^(3/23) 4032522475015148 a001 317811/141422324*1568397607^(3/22) 4032522475015148 a001 317811/141422324*599074578^(1/7) 4032522475015148 a001 317811/141422324*228826127^(3/20) 4032522475015148 a001 10959/599786069*87403803^(8/19) 4032522475015148 a001 317811/45537549124*87403803^(9/19) 4032522475015148 a001 317811/73681302247*87403803^(1/2) 4032522475015148 a001 317811/119218851371*87403803^(10/19) 4032522475015148 a001 317811/141422324*87403803^(3/19) 4032522475015148 a001 317811/312119004989*87403803^(11/19) 4032522475015148 a001 317811/817138163596*87403803^(12/19) 4032522475015148 a001 317811/2139295485799*87403803^(13/19) 4032522475015148 a001 317811/5600748293801*87403803^(14/19) 4032522475015148 a001 10959/505618944676*87403803^(15/19) 4032522475015149 a004 Fibonacci(28)*Lucas(38)/(1/2+sqrt(5)/2)^71 4032522475015149 a001 317811/141422324*33385282^(1/6) 4032522475015149 a001 317811/370248451*33385282^(2/9) 4032522475015149 a001 377/710646*33385282^(1/4) 4032522475015149 a001 317811/969323029*33385282^(5/18) 4032522475015149 a001 317811/2537720636*33385282^(1/3) 4032522475015149 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^4/Lucas(37) 4032522475015149 a001 317811/54018521*23725150497407^(1/16) 4032522475015149 a004 Fibonacci(37)/Lucas(28)/(1/2+sqrt(5)/2)^14 4032522475015149 a001 317811/54018521*73681302247^(1/13) 4032522475015149 a001 317811/54018521*10749957122^(1/12) 4032522475015149 a001 317811/54018521*4106118243^(2/23) 4032522475015149 a001 317811/54018521*1568397607^(1/11) 4032522475015149 a001 317811/54018521*599074578^(2/21) 4032522475015149 a001 317811/54018521*228826127^(1/10) 4032522475015149 a001 317811/6643838879*33385282^(7/18) 4032522475015149 a001 317811/54018521*87403803^(2/19) 4032522475015150 a001 317811/10749957122*33385282^(5/12) 4032522475015150 a001 10959/599786069*33385282^(4/9) 4032522475015150 a001 317811/54018521*33385282^(1/9) 4032522475015150 a001 317811/45537549124*33385282^(1/2) 4032522475015150 a001 317811/119218851371*33385282^(5/9) 4032522475015150 a001 105937/64300051206*33385282^(7/12) 4032522475015150 a001 317811/312119004989*33385282^(11/18) 4032522475015150 a001 317811/817138163596*33385282^(2/3) 4032522475015151 a001 317811/2139295485799*33385282^(13/18) 4032522475015151 a001 317811/3461452808002*33385282^(3/4) 4032522475015151 a001 317811/5600748293801*33385282^(7/9) 4032522475015151 a001 10959/505618944676*33385282^(5/6) 4032522475015152 a004 Fibonacci(28)*Lucas(36)/(1/2+sqrt(5)/2)^69 4032522475015152 a001 317811/54018521*12752043^(2/17) 4032522475015153 a001 317811/141422324*12752043^(3/17) 4032522475015154 a001 317811/370248451*12752043^(4/17) 4032522475015155 a001 317811/969323029*12752043^(5/17) 4032522475015157 a001 317811/2537720636*12752043^(6/17) 4032522475015157 a001 10959/711491*(1/2+1/2*5^(1/2))^2 4032522475015157 a004 Fibonacci(35)/Lucas(28)/(1/2+sqrt(5)/2)^12 4032522475015157 a001 10959/711491*10749957122^(1/24) 4032522475015157 a001 10959/711491*4106118243^(1/23) 4032522475015157 a001 10959/711491*1568397607^(1/22) 4032522475015157 a001 10959/711491*599074578^(1/21) 4032522475015157 a001 10959/711491*228826127^(1/20) 4032522475015158 a001 10959/711491*87403803^(1/19) 4032522475015158 a001 10959/711491*33385282^(1/18) 4032522475015158 a001 317811/6643838879*12752043^(7/17) 4032522475015159 a001 10959/711491*12752043^(1/17) 4032522475015160 a001 10959/599786069*12752043^(8/17) 4032522475015160 a001 105937/9381251041*12752043^(1/2) 4032522475015161 a001 317811/45537549124*12752043^(9/17) 4032522475015163 a001 317811/119218851371*12752043^(10/17) 4032522475015164 a001 317811/312119004989*12752043^(11/17) 4032522475015166 a001 317811/817138163596*12752043^(12/17) 4032522475015167 a001 317811/2139295485799*12752043^(13/17) 4032522475015168 a001 10959/711491*4870847^(1/16) 4032522475015168 a001 317811/5600748293801*12752043^(14/17) 4032522475015170 a001 10959/505618944676*12752043^(15/17) 4032522475015171 a001 317811/54018521*4870847^(1/8) 4032522475015173 a004 Fibonacci(28)*Lucas(34)/(1/2+sqrt(5)/2)^67 4032522475015180 a001 317811/141422324*4870847^(3/16) 4032522475015191 a001 317811/370248451*4870847^(1/4) 4032522475015201 a001 317811/969323029*4870847^(5/16) 4032522475015212 a001 317811/2537720636*4870847^(3/8) 4032522475015213 a004 Fibonacci(33)/Lucas(28)/(1/2+sqrt(5)/2)^10 4032522475015222 a001 317811/6643838879*4870847^(7/16) 4032522475015233 a001 10959/599786069*4870847^(1/2) 4032522475015235 a001 10959/711491*1860498^(1/15) 4032522475015244 a001 317811/45537549124*4870847^(9/16) 4032522475015254 a001 317811/119218851371*4870847^(5/8) 4032522475015261 a001 317811/33385282*1860498^(1/10) 4032522475015265 a001 317811/312119004989*4870847^(11/16) 4032522475015269 a001 121393/12752043*103682^(1/8) 4032522475015275 a001 317811/817138163596*4870847^(3/4) 4032522475015286 a001 317811/2139295485799*4870847^(13/16) 4032522475015297 a001 317811/5600748293801*4870847^(7/8) 4032522475015305 a001 317811/54018521*1860498^(2/15) 4032522475015307 a001 10959/505618944676*4870847^(15/16) 4032522475015318 a004 Fibonacci(28)*Lucas(32)/(1/2+sqrt(5)/2)^65 4032522475015342 a001 105937/29134601*1860498^(1/6) 4032522475015381 a001 317811/141422324*1860498^(1/5) 4032522475015382 a001 196418/54018521*167761^(1/5) 4032522475015459 a001 317811/370248451*1860498^(4/15) 4032522475015497 a001 377/710646*1860498^(3/10) 4032522475015536 a001 317811/969323029*1860498^(1/3) 4032522475015593 a001 142619699053/3536736619241 4032522475015593 a004 Fibonacci(28)/Lucas(31)/(1/2+sqrt(5)/2)^2 4032522475015593 a004 Fibonacci(31)/Lucas(28)/(1/2+sqrt(5)/2)^8 4032522475015614 a001 317811/2537720636*1860498^(2/5) 4032522475015692 a001 317811/6643838879*1860498^(7/15) 4032522475015728 a001 10959/711491*710647^(1/14) 4032522475015730 a001 317811/10749957122*1860498^(1/2) 4032522475015769 a001 10959/599786069*1860498^(8/15) 4032522475015847 a001 317811/45537549124*1860498^(3/5) 4032522475015925 a001 317811/119218851371*1860498^(2/3) 4032522475015963 a001 105937/64300051206*1860498^(7/10) 4032522475015995 a001 726103/1368706081*439204^(1/3) 4032522475016002 a001 317811/312119004989*1860498^(11/15) 4032522475016080 a001 317811/817138163596*1860498^(4/5) 4032522475016119 a001 105937/440719107401*1860498^(5/6) 4032522475016140 a001 5702887/10749957122*439204^(1/3) 4032522475016158 a001 317811/2139295485799*1860498^(13/15) 4032522475016161 a001 4976784/9381251041*439204^(1/3) 4032522475016164 a001 39088169/73681302247*439204^(1/3) 4032522475016165 a001 34111385/64300051206*439204^(1/3) 4032522475016165 a001 267914296/505019158607*439204^(1/3) 4032522475016165 a001 233802911/440719107401*439204^(1/3) 4032522475016165 a001 1836311903/3461452808002*439204^(1/3) 4032522475016165 a001 1602508992/3020733700601*439204^(1/3) 4032522475016165 a001 12586269025/23725150497407*439204^(1/3) 4032522475016165 a001 7778742049/14662949395604*439204^(1/3) 4032522475016165 a001 2971215073/5600748293801*439204^(1/3) 4032522475016165 a001 1134903170/2139295485799*439204^(1/3) 4032522475016165 a001 433494437/817138163596*439204^(1/3) 4032522475016165 a001 165580141/312119004989*439204^(1/3) 4032522475016165 a001 63245986/119218851371*439204^(1/3) 4032522475016166 a001 24157817/45537549124*439204^(1/3) 4032522475016174 a001 9227465/17393796001*439204^(1/3) 4032522475016196 a001 317811/3461452808002*1860498^(9/10) 4032522475016230 a001 3524578/6643838879*439204^(1/3) 4032522475016235 a001 317811/5600748293801*1860498^(14/15) 4032522475016290 a001 317811/54018521*710647^(1/7) 4032522475016313 a004 Fibonacci(28)*Lucas(30)/(1/2+sqrt(5)/2)^63 4032522475016610 a001 1346269/2537720636*439204^(1/3) 4032522475016859 a001 317811/141422324*710647^(3/14) 4032522475016892 a001 514229/4106118243*439204^(4/9) 4032522475017144 a001 317811/228826127*710647^(1/4) 4032522475017322 a001 832040/370248451*439204^(2/9) 4032522475017429 a001 317811/370248451*710647^(2/7) 4032522475018000 a001 317811/969323029*710647^(5/14) 4032522475018198 a001 163427632719/4052739537881 4032522475018198 a004 Fibonacci(28)/Lucas(29)/(1/2+sqrt(5)/2)^4 4032522475018198 a004 Fibonacci(29)/Lucas(28)/(1/2+sqrt(5)/2)^6 4032522475018317 a001 2178309/969323029*439204^(2/9) 4032522475018463 a001 5702887/2537720636*439204^(2/9) 4032522475018484 a001 14930352/6643838879*439204^(2/9) 4032522475018487 a001 39088169/17393796001*439204^(2/9) 4032522475018487 a001 102334155/45537549124*439204^(2/9) 4032522475018487 a001 267914296/119218851371*439204^(2/9) 4032522475018487 a001 3524667/1568437211*439204^(2/9) 4032522475018487 a001 1836311903/817138163596*439204^(2/9) 4032522475018487 a001 4807526976/2139295485799*439204^(2/9) 4032522475018487 a001 12586269025/5600748293801*439204^(2/9) 4032522475018487 a001 32951280099/14662949395604*439204^(2/9) 4032522475018487 a001 53316291173/23725150497407*439204^(2/9) 4032522475018487 a001 20365011074/9062201101803*439204^(2/9) 4032522475018487 a001 7778742049/3461452808002*439204^(2/9) 4032522475018487 a001 2971215073/1322157322203*439204^(2/9) 4032522475018487 a001 1134903170/505019158607*439204^(2/9) 4032522475018487 a001 433494437/192900153618*439204^(2/9) 4032522475018487 a001 165580141/73681302247*439204^(2/9) 4032522475018488 a001 63245986/28143753123*439204^(2/9) 4032522475018489 a001 24157817/10749957122*439204^(2/9) 4032522475018497 a001 9227465/4106118243*439204^(2/9) 4032522475018552 a001 3524578/1568397607*439204^(2/9) 4032522475018570 a001 317811/2537720636*710647^(3/7) 4032522475018918 a004 Fibonacci(30)*Lucas(29)/(1/2+sqrt(5)/2)^64 4032522475018923 a001 121393/312119004989*271443^(12/13) 4032522475018932 a001 1346269/599074578*439204^(2/9) 4032522475019140 a001 317811/6643838879*710647^(1/2) 4032522475019215 a001 514229/969323029*439204^(1/3) 4032522475019367 a001 10959/711491*271443^(1/13) 4032522475019645 a001 832040/87403803*439204^(1/9) 4032522475019711 a001 10959/599786069*710647^(4/7) 4032522475019913 a004 Fibonacci(32)*Lucas(29)/(1/2+sqrt(5)/2)^66 4032522475020058 a004 Fibonacci(34)*Lucas(29)/(1/2+sqrt(5)/2)^68 4032522475020079 a004 Fibonacci(36)*Lucas(29)/(1/2+sqrt(5)/2)^70 4032522475020082 a004 Fibonacci(38)*Lucas(29)/(1/2+sqrt(5)/2)^72 4032522475020083 a004 Fibonacci(40)*Lucas(29)/(1/2+sqrt(5)/2)^74 4032522475020083 a004 Fibonacci(42)*Lucas(29)/(1/2+sqrt(5)/2)^76 4032522475020083 a004 Fibonacci(44)*Lucas(29)/(1/2+sqrt(5)/2)^78 4032522475020083 a004 Fibonacci(46)*Lucas(29)/(1/2+sqrt(5)/2)^80 4032522475020083 a004 Fibonacci(48)*Lucas(29)/(1/2+sqrt(5)/2)^82 4032522475020083 a004 Fibonacci(50)*Lucas(29)/(1/2+sqrt(5)/2)^84 4032522475020083 a004 Fibonacci(52)*Lucas(29)/(1/2+sqrt(5)/2)^86 4032522475020083 a004 Fibonacci(54)*Lucas(29)/(1/2+sqrt(5)/2)^88 4032522475020083 a004 Fibonacci(56)*Lucas(29)/(1/2+sqrt(5)/2)^90 4032522475020083 a004 Fibonacci(58)*Lucas(29)/(1/2+sqrt(5)/2)^92 4032522475020083 a004 Fibonacci(60)*Lucas(29)/(1/2+sqrt(5)/2)^94 4032522475020083 a004 Fibonacci(62)*Lucas(29)/(1/2+sqrt(5)/2)^96 4032522475020083 a004 Fibonacci(64)*Lucas(29)/(1/2+sqrt(5)/2)^98 4032522475020083 a004 Fibonacci(66)*Lucas(29)/(1/2+sqrt(5)/2)^100 4032522475020083 a004 Fibonacci(65)*Lucas(29)/(1/2+sqrt(5)/2)^99 4032522475020083 a004 Fibonacci(63)*Lucas(29)/(1/2+sqrt(5)/2)^97 4032522475020083 a004 Fibonacci(61)*Lucas(29)/(1/2+sqrt(5)/2)^95 4032522475020083 a004 Fibonacci(59)*Lucas(29)/(1/2+sqrt(5)/2)^93 4032522475020083 a001 2/514229*(1/2+1/2*5^(1/2))^24 4032522475020083 a004 Fibonacci(57)*Lucas(29)/(1/2+sqrt(5)/2)^91 4032522475020083 a004 Fibonacci(55)*Lucas(29)/(1/2+sqrt(5)/2)^89 4032522475020083 a004 Fibonacci(53)*Lucas(29)/(1/2+sqrt(5)/2)^87 4032522475020083 a004 Fibonacci(51)*Lucas(29)/(1/2+sqrt(5)/2)^85 4032522475020083 a004 Fibonacci(49)*Lucas(29)/(1/2+sqrt(5)/2)^83 4032522475020083 a004 Fibonacci(47)*Lucas(29)/(1/2+sqrt(5)/2)^81 4032522475020083 a004 Fibonacci(45)*Lucas(29)/(1/2+sqrt(5)/2)^79 4032522475020083 a004 Fibonacci(43)*Lucas(29)/(1/2+sqrt(5)/2)^77 4032522475020083 a004 Fibonacci(41)*Lucas(29)/(1/2+sqrt(5)/2)^75 4032522475020083 a004 Fibonacci(39)*Lucas(29)/(1/2+sqrt(5)/2)^73 4032522475020084 a004 Fibonacci(37)*Lucas(29)/(1/2+sqrt(5)/2)^71 4032522475020092 a004 Fibonacci(35)*Lucas(29)/(1/2+sqrt(5)/2)^69 4032522475020108 a001 1149851/5702887*8^(1/3) 4032522475020148 a004 Fibonacci(33)*Lucas(29)/(1/2+sqrt(5)/2)^67 4032522475020281 a001 317811/45537549124*710647^(9/14) 4032522475020528 a004 Fibonacci(31)*Lucas(29)/(1/2+sqrt(5)/2)^65 4032522475020640 a001 46347/4868641*439204^(1/9) 4032522475020785 a001 5702887/599074578*439204^(1/9) 4032522475020803 a004 Fibonacci(30)/Lucas(30)/(1/2+sqrt(5)/2)^5 4032522475020807 a001 14930352/1568397607*439204^(1/9) 4032522475020810 a001 39088169/4106118243*439204^(1/9) 4032522475020810 a001 102334155/10749957122*439204^(1/9) 4032522475020810 a001 267914296/28143753123*439204^(1/9) 4032522475020810 a001 701408733/73681302247*439204^(1/9) 4032522475020810 a001 1836311903/192900153618*439204^(1/9) 4032522475020810 a001 102287808/10745088481*439204^(1/9) 4032522475020810 a001 12586269025/1322157322203*439204^(1/9) 4032522475020810 a001 32951280099/3461452808002*439204^(1/9) 4032522475020810 a001 86267571272/9062201101803*439204^(1/9) 4032522475020810 a001 225851433717/23725150497407*439204^(1/9) 4032522475020810 a001 139583862445/14662949395604*439204^(1/9) 4032522475020810 a001 53316291173/5600748293801*439204^(1/9) 4032522475020810 a001 20365011074/2139295485799*439204^(1/9) 4032522475020810 a001 7778742049/817138163596*439204^(1/9) 4032522475020810 a001 2971215073/312119004989*439204^(1/9) 4032522475020810 a001 1134903170/119218851371*439204^(1/9) 4032522475020810 a001 433494437/45537549124*439204^(1/9) 4032522475020810 a001 165580141/17393796001*439204^(1/9) 4032522475020810 a001 63245986/6643838879*439204^(1/9) 4032522475020812 a001 24157817/2537720636*439204^(1/9) 4032522475020820 a001 9227465/969323029*439204^(1/9) 4032522475020851 a001 317811/119218851371*710647^(5/7) 4032522475020875 a001 3524578/370248451*439204^(1/9) 4032522475021137 a001 105937/64300051206*710647^(3/4) 4032522475021255 a001 1346269/141422324*439204^(1/9) 4032522475021422 a001 317811/312119004989*710647^(11/14) 4032522475021523 a004 Fibonacci(30)*Lucas(31)/(1/2+sqrt(5)/2)^66 4032522475021537 a001 514229/228826127*439204^(2/9) 4032522475021798 a004 Fibonacci(30)/Lucas(32)/(1/2+sqrt(5)/2)^3 4032522475021798 a004 Fibonacci(32)/Lucas(30)/(1/2+sqrt(5)/2)^7 4032522475021903 a004 Fibonacci(30)*Lucas(33)/(1/2+sqrt(5)/2)^68 4032522475021915 a001 832040/9062201101803*7881196^(9/11) 4032522475021921 a001 832040/2139295485799*7881196^(8/11) 4032522475021925 a001 208010/204284540899*7881196^(2/3) 4032522475021927 a001 832040/505019158607*7881196^(7/11) 4032522475021933 a001 832040/119218851371*7881196^(6/11) 4032522475021938 a001 832040/28143753123*7881196^(5/11) 4032522475021943 a004 Fibonacci(30)/Lucas(34)/(1/2+sqrt(5)/2) 4032522475021943 a004 Fibonacci(34)/Lucas(30)/(1/2+sqrt(5)/2)^9 4032522475021944 a001 832040/6643838879*7881196^(4/11) 4032522475021946 a001 832040/4106118243*7881196^(1/3) 4032522475021950 a001 832040/1568397607*7881196^(3/11) 4032522475021956 a001 832040/370248451*7881196^(2/11) 4032522475021958 a004 Fibonacci(30)*Lucas(35)/(1/2+sqrt(5)/2)^70 4032522475021960 a001 208010/3665737348901*20633239^(4/5) 4032522475021961 a001 416020/1730726404001*20633239^(5/7) 4032522475021961 a001 832040/87403803*7881196^(1/11) 4032522475021962 a001 832040/505019158607*20633239^(3/5) 4032522475021963 a001 75640/28374454999*20633239^(4/7) 4032522475021964 a001 832040/28143753123*20633239^(3/7) 4032522475021964 a001 832040/17393796001*20633239^(2/5) 4032522475021964 a001 208010/16692641+208010/16692641*5^(1/2) 4032522475021964 a004 Fibonacci(36)/Lucas(30)/(1/2+sqrt(5)/2)^11 4032522475021965 a001 610/1860499*20633239^(2/7) 4032522475021966 a001 416020/299537289*20633239^(1/5) 4032522475021966 a001 832040/228826127*20633239^(1/7) 4032522475021967 a004 Fibonacci(30)*Lucas(37)/(1/2+sqrt(5)/2)^72 4032522475021967 a001 832040/87403803*141422324^(1/13) 4032522475021967 a001 832040/87403803*2537720636^(1/15) 4032522475021967 a001 832040/87403803*45537549124^(1/17) 4032522475021967 a001 832040/87403803*14662949395604^(1/21) 4032522475021967 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^3/Lucas(38) 4032522475021967 a004 Fibonacci(38)/Lucas(30)/(1/2+sqrt(5)/2)^13 4032522475021967 a001 832040/87403803*192900153618^(1/18) 4032522475021967 a001 832040/87403803*10749957122^(1/16) 4032522475021967 a001 832040/87403803*599074578^(1/14) 4032522475021968 a001 832040/87403803*33385282^(1/12) 4032522475021968 a004 Fibonacci(30)*Lucas(39)/(1/2+sqrt(5)/2)^74 4032522475021968 a001 832040/9062201101803*141422324^(9/13) 4032522475021968 a001 832040/5600748293801*141422324^(2/3) 4032522475021968 a001 832040/2139295485799*141422324^(8/13) 4032522475021968 a001 832040/505019158607*141422324^(7/13) 4032522475021968 a001 832040/119218851371*141422324^(6/13) 4032522475021968 a001 832040/28143753123*141422324^(5/13) 4032522475021968 a001 832040/228826127*2537720636^(1/9) 4032522475021968 a001 832040/228826127*312119004989^(1/11) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^5/Lucas(40) 4032522475021968 a004 Fibonacci(40)/Lucas(30)/(1/2+sqrt(5)/2)^15 4032522475021968 a001 832040/228826127*28143753123^(1/10) 4032522475021968 a001 832040/228826127*228826127^(1/8) 4032522475021968 a001 416020/5374978561*141422324^(1/3) 4032522475021968 a001 832040/6643838879*141422324^(4/13) 4032522475021968 a001 832040/1568397607*141422324^(3/13) 4032522475021968 a004 Fibonacci(30)*Lucas(41)/(1/2+sqrt(5)/2)^76 4032522475021968 a001 416020/299537289*17393796001^(1/7) 4032522475021968 a001 416020/299537289*14662949395604^(1/9) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^7/Lucas(42) 4032522475021968 a004 Fibonacci(42)/Lucas(30)/(1/2+sqrt(5)/2)^17 4032522475021968 a001 416020/299537289*599074578^(1/6) 4032522475021968 a004 Fibonacci(30)*Lucas(43)/(1/2+sqrt(5)/2)^78 4032522475021968 a001 832040/1568397607*2537720636^(1/5) 4032522475021968 a001 832040/1568397607*45537549124^(3/17) 4032522475021968 a001 832040/1568397607*14662949395604^(1/7) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^9/Lucas(44) 4032522475021968 a004 Fibonacci(44)/Lucas(30)/(1/2+sqrt(5)/2)^19 4032522475021968 a001 832040/1568397607*192900153618^(1/6) 4032522475021968 a001 832040/1568397607*10749957122^(3/16) 4032522475021968 a001 832040/370248451*141422324^(2/13) 4032522475021968 a004 Fibonacci(30)*Lucas(45)/(1/2+sqrt(5)/2)^80 4032522475021968 a001 832040/9062201101803*2537720636^(3/5) 4032522475021968 a001 416020/1730726404001*2537720636^(5/9) 4032522475021968 a001 832040/2139295485799*2537720636^(8/15) 4032522475021968 a001 832040/505019158607*2537720636^(7/15) 4032522475021968 a001 75640/28374454999*2537720636^(4/9) 4032522475021968 a001 832040/119218851371*2537720636^(2/5) 4032522475021968 a001 832040/4106118243*312119004989^(1/5) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^11/Lucas(46) 4032522475021968 a004 Fibonacci(46)/Lucas(30)/(1/2+sqrt(5)/2)^21 4032522475021968 a001 832040/28143753123*2537720636^(1/3) 4032522475021968 a004 Fibonacci(30)*Lucas(47)/(1/2+sqrt(5)/2)^82 4032522475021968 a001 832040/6643838879*2537720636^(4/15) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^13/Lucas(48) 4032522475021968 a004 Fibonacci(48)/Lucas(30)/(1/2+sqrt(5)/2)^23 4032522475021968 a001 416020/5374978561*73681302247^(1/4) 4032522475021968 a004 Fibonacci(30)*Lucas(49)/(1/2+sqrt(5)/2)^84 4032522475021968 a001 208010/3665737348901*17393796001^(4/7) 4032522475021968 a001 832040/505019158607*17393796001^(3/7) 4032522475021968 a001 832040/28143753123*45537549124^(5/17) 4032522475021968 a001 832040/28143753123*312119004989^(3/11) 4032522475021968 a001 832040/28143753123*14662949395604^(5/21) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^15/Lucas(50) 4032522475021968 a004 Fibonacci(50)/Lucas(30)/(1/2+sqrt(5)/2)^25 4032522475021968 a001 832040/28143753123*192900153618^(5/18) 4032522475021968 a001 832040/28143753123*28143753123^(3/10) 4032522475021968 a004 Fibonacci(30)*Lucas(51)/(1/2+sqrt(5)/2)^86 4032522475021968 a001 832040/73681302247*45537549124^(1/3) 4032522475021968 a001 832040/9062201101803*45537549124^(9/17) 4032522475021968 a001 832040/2139295485799*45537549124^(8/17) 4032522475021968 a001 832040/505019158607*45537549124^(7/17) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^17/Lucas(52) 4032522475021968 a004 Fibonacci(52)/Lucas(30)/(1/2+sqrt(5)/2)^27 4032522475021968 a001 832040/119218851371*45537549124^(6/17) 4032522475021968 a004 Fibonacci(30)*Lucas(53)/(1/2+sqrt(5)/2)^88 4032522475021968 a001 416020/96450076809*817138163596^(1/3) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^19/Lucas(54) 4032522475021968 a004 Fibonacci(54)/Lucas(30)/(1/2+sqrt(5)/2)^29 4032522475021968 a004 Fibonacci(30)*Lucas(55)/(1/2+sqrt(5)/2)^90 4032522475021968 a001 832040/505019158607*14662949395604^(1/3) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^21/Lucas(56) 4032522475021968 a004 Fibonacci(56)/Lucas(30)/(1/2+sqrt(5)/2)^31 4032522475021968 a001 208010/204284540899*312119004989^(2/5) 4032522475021968 a004 Fibonacci(30)*Lucas(57)/(1/2+sqrt(5)/2)^92 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^23/Lucas(58) 4032522475021968 a004 Fibonacci(58)/Lucas(30)/(1/2+sqrt(5)/2)^33 4032522475021968 a004 Fibonacci(30)*Lucas(59)/(1/2+sqrt(5)/2)^94 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^25/Lucas(60) 4032522475021968 a004 Fibonacci(30)*Lucas(61)/(1/2+sqrt(5)/2)^96 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^27/Lucas(62) 4032522475021968 a004 Fibonacci(30)*Lucas(63)/(1/2+sqrt(5)/2)^98 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^29/Lucas(64) 4032522475021968 a004 Fibonacci(30)*Lucas(65)/(1/2+sqrt(5)/2)^100 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^31/Lucas(66) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^33/Lucas(68) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^35/Lucas(70) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^37/Lucas(72) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^39/Lucas(74) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^41/Lucas(76) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^43/Lucas(78) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^45/Lucas(80) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^47/Lucas(82) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^49/Lucas(84) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^51/Lucas(86) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^53/Lucas(88) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^55/Lucas(90) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^57/Lucas(92) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^59/Lucas(94) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^61/Lucas(96) 4032522475021968 a004 Fibonacci(15)*Lucas(15)/(1/2+sqrt(5)/2)^35 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^63/Lucas(98) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^64/Lucas(99) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^65/Lucas(100) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^62/Lucas(97) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^60/Lucas(95) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^58/Lucas(93) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^56/Lucas(91) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^54/Lucas(89) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^52/Lucas(87) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^50/Lucas(85) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^48/Lucas(83) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^46/Lucas(81) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^44/Lucas(79) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^42/Lucas(77) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^40/Lucas(75) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^38/Lucas(73) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^36/Lucas(71) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^34/Lucas(69) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^32/Lucas(67) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^30/Lucas(65) 4032522475021968 a004 Fibonacci(30)*Lucas(64)/(1/2+sqrt(5)/2)^99 4032522475021968 a001 208010/3665737348901*14662949395604^(4/9) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^28/Lucas(63) 4032522475021968 a004 Fibonacci(30)*Lucas(62)/(1/2+sqrt(5)/2)^97 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^26/Lucas(61) 4032522475021968 a004 Fibonacci(62)/Lucas(30)/(1/2+sqrt(5)/2)^37 4032522475021968 a004 Fibonacci(64)/Lucas(30)/(1/2+sqrt(5)/2)^39 4032522475021968 a004 Fibonacci(66)/Lucas(30)/(1/2+sqrt(5)/2)^41 4032522475021968 a004 Fibonacci(68)/Lucas(30)/(1/2+sqrt(5)/2)^43 4032522475021968 a004 Fibonacci(70)/Lucas(30)/(1/2+sqrt(5)/2)^45 4032522475021968 a004 Fibonacci(72)/Lucas(30)/(1/2+sqrt(5)/2)^47 4032522475021968 a004 Fibonacci(74)/Lucas(30)/(1/2+sqrt(5)/2)^49 4032522475021968 a004 Fibonacci(76)/Lucas(30)/(1/2+sqrt(5)/2)^51 4032522475021968 a004 Fibonacci(78)/Lucas(30)/(1/2+sqrt(5)/2)^53 4032522475021968 a004 Fibonacci(80)/Lucas(30)/(1/2+sqrt(5)/2)^55 4032522475021968 a004 Fibonacci(82)/Lucas(30)/(1/2+sqrt(5)/2)^57 4032522475021968 a004 Fibonacci(84)/Lucas(30)/(1/2+sqrt(5)/2)^59 4032522475021968 a004 Fibonacci(86)/Lucas(30)/(1/2+sqrt(5)/2)^61 4032522475021968 a004 Fibonacci(88)/Lucas(30)/(1/2+sqrt(5)/2)^63 4032522475021968 a004 Fibonacci(90)/Lucas(30)/(1/2+sqrt(5)/2)^65 4032522475021968 a004 Fibonacci(92)/Lucas(30)/(1/2+sqrt(5)/2)^67 4032522475021968 a004 Fibonacci(94)/Lucas(30)/(1/2+sqrt(5)/2)^69 4032522475021968 a004 Fibonacci(96)/Lucas(30)/(1/2+sqrt(5)/2)^71 4032522475021968 a004 Fibonacci(98)/Lucas(30)/(1/2+sqrt(5)/2)^73 4032522475021968 a004 Fibonacci(100)/Lucas(30)/(1/2+sqrt(5)/2)^75 4032522475021968 a004 Fibonacci(30)*Lucas(60)/(1/2+sqrt(5)/2)^95 4032522475021968 a004 Fibonacci(99)/Lucas(30)/(1/2+sqrt(5)/2)^74 4032522475021968 a004 Fibonacci(97)/Lucas(30)/(1/2+sqrt(5)/2)^72 4032522475021968 a004 Fibonacci(95)/Lucas(30)/(1/2+sqrt(5)/2)^70 4032522475021968 a004 Fibonacci(93)/Lucas(30)/(1/2+sqrt(5)/2)^68 4032522475021968 a004 Fibonacci(91)/Lucas(30)/(1/2+sqrt(5)/2)^66 4032522475021968 a004 Fibonacci(89)/Lucas(30)/(1/2+sqrt(5)/2)^64 4032522475021968 a004 Fibonacci(87)/Lucas(30)/(1/2+sqrt(5)/2)^62 4032522475021968 a004 Fibonacci(85)/Lucas(30)/(1/2+sqrt(5)/2)^60 4032522475021968 a004 Fibonacci(83)/Lucas(30)/(1/2+sqrt(5)/2)^58 4032522475021968 a004 Fibonacci(81)/Lucas(30)/(1/2+sqrt(5)/2)^56 4032522475021968 a004 Fibonacci(79)/Lucas(30)/(1/2+sqrt(5)/2)^54 4032522475021968 a004 Fibonacci(77)/Lucas(30)/(1/2+sqrt(5)/2)^52 4032522475021968 a004 Fibonacci(75)/Lucas(30)/(1/2+sqrt(5)/2)^50 4032522475021968 a004 Fibonacci(73)/Lucas(30)/(1/2+sqrt(5)/2)^48 4032522475021968 a004 Fibonacci(71)/Lucas(30)/(1/2+sqrt(5)/2)^46 4032522475021968 a004 Fibonacci(69)/Lucas(30)/(1/2+sqrt(5)/2)^44 4032522475021968 a004 Fibonacci(67)/Lucas(30)/(1/2+sqrt(5)/2)^42 4032522475021968 a004 Fibonacci(65)/Lucas(30)/(1/2+sqrt(5)/2)^40 4032522475021968 a004 Fibonacci(63)/Lucas(30)/(1/2+sqrt(5)/2)^38 4032522475021968 a004 Fibonacci(61)/Lucas(30)/(1/2+sqrt(5)/2)^36 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^24/Lucas(59) 4032522475021968 a004 Fibonacci(59)/Lucas(30)/(1/2+sqrt(5)/2)^34 4032522475021968 a004 Fibonacci(30)*Lucas(58)/(1/2+sqrt(5)/2)^93 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^22/Lucas(57) 4032522475021968 a004 Fibonacci(57)/Lucas(30)/(1/2+sqrt(5)/2)^32 4032522475021968 a001 208010/3665737348901*505019158607^(1/2) 4032522475021968 a004 Fibonacci(30)*Lucas(56)/(1/2+sqrt(5)/2)^91 4032522475021968 a001 832040/505019158607*192900153618^(7/18) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^20/Lucas(55) 4032522475021968 a001 75640/28374454999*23725150497407^(5/16) 4032522475021968 a004 Fibonacci(55)/Lucas(30)/(1/2+sqrt(5)/2)^30 4032522475021968 a001 75640/28374454999*505019158607^(5/14) 4032522475021968 a001 832040/2139295485799*192900153618^(4/9) 4032522475021968 a004 Fibonacci(30)*Lucas(54)/(1/2+sqrt(5)/2)^89 4032522475021968 a001 832040/119218851371*14662949395604^(2/7) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^18/Lucas(53) 4032522475021968 a004 Fibonacci(53)/Lucas(30)/(1/2+sqrt(5)/2)^28 4032522475021968 a001 832040/119218851371*192900153618^(1/3) 4032522475021968 a001 75640/28374454999*73681302247^(5/13) 4032522475021968 a001 832040/2139295485799*73681302247^(6/13) 4032522475021968 a001 832040/5600748293801*73681302247^(1/2) 4032522475021968 a001 208010/3665737348901*73681302247^(7/13) 4032522475021968 a004 Fibonacci(30)*Lucas(52)/(1/2+sqrt(5)/2)^87 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^16/Lucas(51) 4032522475021968 a001 208010/11384387281*23725150497407^(1/4) 4032522475021968 a004 Fibonacci(51)/Lucas(30)/(1/2+sqrt(5)/2)^26 4032522475021968 a001 75640/28374454999*28143753123^(2/5) 4032522475021968 a001 208010/11384387281*73681302247^(4/13) 4032522475021968 a001 416020/1730726404001*28143753123^(1/2) 4032522475021968 a004 Fibonacci(30)*Lucas(50)/(1/2+sqrt(5)/2)^85 4032522475021968 a001 832040/28143753123*10749957122^(5/16) 4032522475021968 a001 832040/17393796001*17393796001^(2/7) 4032522475021968 a001 832040/17393796001*14662949395604^(2/9) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^14/Lucas(49) 4032522475021968 a004 Fibonacci(49)/Lucas(30)/(1/2+sqrt(5)/2)^24 4032522475021968 a001 832040/119218851371*10749957122^(3/8) 4032522475021968 a001 208010/11384387281*10749957122^(1/3) 4032522475021968 a001 75640/28374454999*10749957122^(5/12) 4032522475021968 a001 832040/505019158607*10749957122^(7/16) 4032522475021968 a001 208010/204284540899*10749957122^(11/24) 4032522475021968 a001 832040/2139295485799*10749957122^(1/2) 4032522475021968 a001 832040/5600748293801*10749957122^(13/24) 4032522475021968 a001 832040/9062201101803*10749957122^(9/16) 4032522475021968 a001 208010/3665737348901*10749957122^(7/12) 4032522475021968 a001 832040/17393796001*10749957122^(7/24) 4032522475021968 a004 Fibonacci(30)*Lucas(48)/(1/2+sqrt(5)/2)^83 4032522475021968 a001 208010/11384387281*4106118243^(8/23) 4032522475021968 a001 832040/17393796001*4106118243^(7/23) 4032522475021968 a001 832040/6643838879*45537549124^(4/17) 4032522475021968 a001 832040/6643838879*817138163596^(4/19) 4032522475021968 a001 832040/6643838879*14662949395604^(4/21) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^12/Lucas(47) 4032522475021968 a004 Fibonacci(47)/Lucas(30)/(1/2+sqrt(5)/2)^22 4032522475021968 a001 832040/6643838879*192900153618^(2/9) 4032522475021968 a001 832040/6643838879*73681302247^(3/13) 4032522475021968 a001 832040/119218851371*4106118243^(9/23) 4032522475021968 a001 832040/6643838879*10749957122^(1/4) 4032522475021968 a001 75640/28374454999*4106118243^(10/23) 4032522475021968 a001 208010/204284540899*4106118243^(11/23) 4032522475021968 a001 832040/1322157322203*4106118243^(1/2) 4032522475021968 a001 832040/2139295485799*4106118243^(12/23) 4032522475021968 a001 832040/5600748293801*4106118243^(13/23) 4032522475021968 a001 208010/3665737348901*4106118243^(14/23) 4032522475021968 a001 832040/6643838879*4106118243^(6/23) 4032522475021968 a001 832040/4106118243*1568397607^(1/4) 4032522475021968 a004 Fibonacci(30)*Lucas(46)/(1/2+sqrt(5)/2)^81 4032522475021968 a001 610/1860499*2537720636^(2/9) 4032522475021968 a001 832040/17393796001*1568397607^(7/22) 4032522475021968 a001 832040/6643838879*1568397607^(3/11) 4032522475021968 a001 208010/11384387281*1568397607^(4/11) 4032522475021968 a001 610/1860499*312119004989^(2/11) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^10/Lucas(45) 4032522475021968 a004 Fibonacci(45)/Lucas(30)/(1/2+sqrt(5)/2)^20 4032522475021968 a001 610/1860499*28143753123^(1/5) 4032522475021968 a001 610/1860499*10749957122^(5/24) 4032522475021968 a001 832040/119218851371*1568397607^(9/22) 4032522475021968 a001 610/1860499*4106118243^(5/23) 4032522475021968 a001 75640/28374454999*1568397607^(5/11) 4032522475021968 a001 832040/1568397607*599074578^(3/14) 4032522475021968 a001 208010/204284540899*1568397607^(1/2) 4032522475021968 a001 832040/2139295485799*1568397607^(6/11) 4032522475021968 a001 832040/5600748293801*1568397607^(13/22) 4032522475021968 a001 610/1860499*1568397607^(5/22) 4032522475021968 a001 208010/3665737348901*1568397607^(7/11) 4032522475021968 a004 Fibonacci(30)*Lucas(44)/(1/2+sqrt(5)/2)^79 4032522475021968 a001 610/1860499*599074578^(5/21) 4032522475021968 a001 832040/6643838879*599074578^(2/7) 4032522475021968 a001 832040/17393796001*599074578^(1/3) 4032522475021968 a001 832040/28143753123*599074578^(5/14) 4032522475021968 a001 208010/11384387281*599074578^(8/21) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^8/Lucas(43) 4032522475021968 a001 832040/969323029*23725150497407^(1/8) 4032522475021968 a004 Fibonacci(43)/Lucas(30)/(1/2+sqrt(5)/2)^18 4032522475021968 a001 832040/969323029*73681302247^(2/13) 4032522475021968 a001 832040/969323029*10749957122^(1/6) 4032522475021968 a001 832040/969323029*4106118243^(4/23) 4032522475021968 a001 832040/969323029*1568397607^(2/11) 4032522475021968 a001 832040/119218851371*599074578^(3/7) 4032522475021968 a001 75640/28374454999*599074578^(10/21) 4032522475021968 a001 832040/505019158607*599074578^(1/2) 4032522475021968 a001 208010/204284540899*599074578^(11/21) 4032522475021968 a001 832040/2139295485799*599074578^(4/7) 4032522475021968 a001 832040/969323029*599074578^(4/21) 4032522475021968 a001 832040/5600748293801*599074578^(13/21) 4032522475021968 a001 832040/9062201101803*599074578^(9/14) 4032522475021968 a001 208010/3665737348901*599074578^(2/3) 4032522475021968 a004 Fibonacci(30)*Lucas(42)/(1/2+sqrt(5)/2)^77 4032522475021968 a001 832040/969323029*228826127^(1/5) 4032522475021968 a001 610/1860499*228826127^(1/4) 4032522475021968 a001 832040/6643838879*228826127^(3/10) 4032522475021968 a001 832040/17393796001*228826127^(7/20) 4032522475021968 a001 832040/28143753123*228826127^(3/8) 4032522475021968 a001 832040/370248451*2537720636^(2/15) 4032522475021968 a001 832040/370248451*45537549124^(2/17) 4032522475021968 a001 832040/370248451*14662949395604^(2/21) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^6/Lucas(41) 4032522475021968 a004 Fibonacci(41)/Lucas(30)/(1/2+sqrt(5)/2)^16 4032522475021968 a001 832040/370248451*10749957122^(1/8) 4032522475021968 a001 832040/370248451*4106118243^(3/23) 4032522475021968 a001 832040/370248451*1568397607^(3/22) 4032522475021968 a001 208010/11384387281*228826127^(2/5) 4032522475021968 a001 832040/370248451*599074578^(1/7) 4032522475021968 a001 832040/119218851371*228826127^(9/20) 4032522475021968 a001 75640/28374454999*228826127^(1/2) 4032522475021968 a001 832040/370248451*228826127^(3/20) 4032522475021968 a001 208010/204284540899*228826127^(11/20) 4032522475021968 a001 832040/2139295485799*228826127^(3/5) 4032522475021968 a001 416020/1730726404001*228826127^(5/8) 4032522475021968 a001 832040/5600748293801*228826127^(13/20) 4032522475021968 a001 208010/3665737348901*228826127^(7/10) 4032522475021968 a004 Fibonacci(30)*Lucas(40)/(1/2+sqrt(5)/2)^75 4032522475021968 a001 832040/370248451*87403803^(3/19) 4032522475021968 a001 832040/969323029*87403803^(4/19) 4032522475021968 a001 610/1860499*87403803^(5/19) 4032522475021968 a001 832040/6643838879*87403803^(6/19) 4032522475021968 a001 832040/17393796001*87403803^(7/19) 4032522475021968 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^4/Lucas(39) 4032522475021968 a001 208010/35355581*23725150497407^(1/16) 4032522475021968 a004 Fibonacci(39)/Lucas(30)/(1/2+sqrt(5)/2)^14 4032522475021968 a001 208010/35355581*73681302247^(1/13) 4032522475021968 a001 208010/35355581*10749957122^(1/12) 4032522475021968 a001 208010/35355581*4106118243^(2/23) 4032522475021968 a001 208010/35355581*1568397607^(1/11) 4032522475021968 a001 208010/35355581*599074578^(2/21) 4032522475021968 a001 208010/35355581*228826127^(1/10) 4032522475021968 a001 208010/11384387281*87403803^(8/19) 4032522475021968 a001 832040/119218851371*87403803^(9/19) 4032522475021968 a001 208010/35355581*87403803^(2/19) 4032522475021968 a001 416020/96450076809*87403803^(1/2) 4032522475021968 a001 75640/28374454999*87403803^(10/19) 4032522475021968 a001 208010/204284540899*87403803^(11/19) 4032522475021968 a001 832040/2139295485799*87403803^(12/19) 4032522475021968 a001 832040/5600748293801*87403803^(13/19) 4032522475021968 a001 208010/3665737348901*87403803^(14/19) 4032522475021968 a004 Fibonacci(30)*Lucas(38)/(1/2+sqrt(5)/2)^73 4032522475021969 a001 208010/35355581*33385282^(1/9) 4032522475021969 a001 832040/370248451*33385282^(1/6) 4032522475021969 a001 832040/969323029*33385282^(2/9) 4032522475021969 a001 832040/1568397607*33385282^(1/4) 4032522475021969 a001 610/1860499*33385282^(5/18) 4032522475021969 a001 832040/6643838879*33385282^(1/3) 4032522475021969 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^2/Lucas(37) 4032522475021969 a004 Fibonacci(37)/Lucas(30)/(1/2+sqrt(5)/2)^12 4032522475021969 a001 832040/54018521*10749957122^(1/24) 4032522475021969 a001 832040/54018521*4106118243^(1/23) 4032522475021969 a001 832040/54018521*1568397607^(1/22) 4032522475021969 a001 832040/54018521*599074578^(1/21) 4032522475021969 a001 832040/54018521*228826127^(1/20) 4032522475021969 a001 832040/17393796001*33385282^(7/18) 4032522475021969 a001 832040/54018521*87403803^(1/19) 4032522475021969 a001 832040/28143753123*33385282^(5/12) 4032522475021969 a001 832040/54018521*33385282^(1/18) 4032522475021970 a001 208010/11384387281*33385282^(4/9) 4032522475021970 a001 832040/119218851371*33385282^(1/2) 4032522475021970 a001 75640/28374454999*33385282^(5/9) 4032522475021970 a001 832040/505019158607*33385282^(7/12) 4032522475021970 a001 208010/204284540899*33385282^(11/18) 4032522475021970 a001 832040/2139295485799*33385282^(2/3) 4032522475021971 a001 832040/5600748293801*33385282^(13/18) 4032522475021971 a001 832040/9062201101803*33385282^(3/4) 4032522475021971 a001 208010/3665737348901*33385282^(7/9) 4032522475021971 a001 832040/54018521*12752043^(1/17) 4032522475021971 a001 208010/35355581*12752043^(2/17) 4032522475021972 a004 Fibonacci(30)*Lucas(36)/(1/2+sqrt(5)/2)^71 4032522475021972 a001 832040/370248451*12752043^(3/17) 4032522475021974 a001 832040/969323029*12752043^(4/17) 4032522475021975 a001 610/1860499*12752043^(5/17) 4032522475021977 a001 832040/6643838879*12752043^(6/17) 4032522475021977 a004 Fibonacci(35)/Lucas(30)/(1/2+sqrt(5)/2)^10 4032522475021978 a001 832040/17393796001*12752043^(7/17) 4032522475021980 a001 208010/11384387281*12752043^(8/17) 4032522475021980 a001 832040/54018521*4870847^(1/16) 4032522475021980 a001 832040/73681302247*12752043^(1/2) 4032522475021981 a001 832040/119218851371*12752043^(9/17) 4032522475021983 a001 75640/28374454999*12752043^(10/17) 4032522475021984 a001 208010/204284540899*12752043^(11/17) 4032522475021985 a001 832040/2139295485799*12752043^(12/17) 4032522475021987 a001 832040/5600748293801*12752043^(13/17) 4032522475021988 a001 208010/3665737348901*12752043^(14/17) 4032522475021989 a001 208010/35355581*4870847^(1/8) 4032522475021992 a001 317811/817138163596*710647^(6/7) 4032522475021993 a004 Fibonacci(30)*Lucas(34)/(1/2+sqrt(5)/2)^69 4032522475022000 a001 832040/370248451*4870847^(3/16) 4032522475022010 a001 832040/969323029*4870847^(1/4) 4032522475022021 a001 610/1860499*4870847^(5/16) 4032522475022032 a001 832040/6643838879*4870847^(3/8) 4032522475022033 a004 Fibonacci(30)/Lucas(33)/(1/2+sqrt(5)/2)^2 4032522475022033 a004 Fibonacci(33)/Lucas(30)/(1/2+sqrt(5)/2)^8 4032522475022042 a001 832040/17393796001*4870847^(7/16) 4032522475022047 a001 832040/54018521*1860498^(1/15) 4032522475022053 a001 208010/11384387281*4870847^(1/2) 4032522475022064 a001 832040/119218851371*4870847^(9/16) 4032522475022074 a001 75640/28374454999*4870847^(5/8) 4032522475022084 a001 832040/87403803*1860498^(1/10) 4032522475022085 a001 208010/204284540899*4870847^(11/16) 4032522475022095 a001 832040/2139295485799*4870847^(3/4) 4032522475022106 a001 832040/5600748293801*4870847^(13/16) 4032522475022117 a001 208010/3665737348901*4870847^(7/8) 4032522475022123 a001 208010/35355581*1860498^(2/15) 4032522475022138 a004 Fibonacci(30)*Lucas(32)/(1/2+sqrt(5)/2)^67 4032522475022162 a001 832040/228826127*1860498^(1/6) 4032522475022201 a001 832040/370248451*1860498^(1/5) 4032522475022279 a001 832040/969323029*1860498^(4/15) 4032522475022317 a001 832040/1568397607*1860498^(3/10) 4032522475022356 a001 610/1860499*1860498^(1/3) 4032522475022413 a004 Fibonacci(30)/Lucas(31)/(1/2+sqrt(5)/2)^4 4032522475022413 a004 Fibonacci(31)/Lucas(30)/(1/2+sqrt(5)/2)^6 4032522475022434 a001 832040/6643838879*1860498^(2/5) 4032522475022512 a001 832040/17393796001*1860498^(7/15) 4032522475022518 a004 Fibonacci(32)*Lucas(31)/(1/2+sqrt(5)/2)^68 4032522475022540 a001 832040/54018521*710647^(1/14) 4032522475022550 a001 832040/28143753123*1860498^(1/2) 4032522475022563 a001 317811/2139295485799*710647^(13/14) 4032522475022589 a001 208010/11384387281*1860498^(8/15) 4032522475022663 a004 Fibonacci(34)*Lucas(31)/(1/2+sqrt(5)/2)^70 4032522475022667 a001 832040/119218851371*1860498^(3/5) 4032522475022684 a004 Fibonacci(36)*Lucas(31)/(1/2+sqrt(5)/2)^72 4032522475022687 a004 Fibonacci(38)*Lucas(31)/(1/2+sqrt(5)/2)^74 4032522475022688 a004 Fibonacci(40)*Lucas(31)/(1/2+sqrt(5)/2)^76 4032522475022688 a004 Fibonacci(42)*Lucas(31)/(1/2+sqrt(5)/2)^78 4032522475022688 a004 Fibonacci(44)*Lucas(31)/(1/2+sqrt(5)/2)^80 4032522475022688 a004 Fibonacci(46)*Lucas(31)/(1/2+sqrt(5)/2)^82 4032522475022688 a004 Fibonacci(48)*Lucas(31)/(1/2+sqrt(5)/2)^84 4032522475022688 a004 Fibonacci(50)*Lucas(31)/(1/2+sqrt(5)/2)^86 4032522475022688 a004 Fibonacci(52)*Lucas(31)/(1/2+sqrt(5)/2)^88 4032522475022688 a004 Fibonacci(54)*Lucas(31)/(1/2+sqrt(5)/2)^90 4032522475022688 a004 Fibonacci(56)*Lucas(31)/(1/2+sqrt(5)/2)^92 4032522475022688 a004 Fibonacci(58)*Lucas(31)/(1/2+sqrt(5)/2)^94 4032522475022688 a004 Fibonacci(60)*Lucas(31)/(1/2+sqrt(5)/2)^96 4032522475022688 a004 Fibonacci(62)*Lucas(31)/(1/2+sqrt(5)/2)^98 4032522475022688 a004 Fibonacci(64)*Lucas(31)/(1/2+sqrt(5)/2)^100 4032522475022688 a004 Fibonacci(63)*Lucas(31)/(1/2+sqrt(5)/2)^99 4032522475022688 a001 2/1346269*(1/2+1/2*5^(1/2))^26 4032522475022688 a004 Fibonacci(61)*Lucas(31)/(1/2+sqrt(5)/2)^97 4032522475022688 a004 Fibonacci(59)*Lucas(31)/(1/2+sqrt(5)/2)^95 4032522475022688 a004 Fibonacci(57)*Lucas(31)/(1/2+sqrt(5)/2)^93 4032522475022688 a004 Fibonacci(55)*Lucas(31)/(1/2+sqrt(5)/2)^91 4032522475022688 a004 Fibonacci(53)*Lucas(31)/(1/2+sqrt(5)/2)^89 4032522475022688 a004 Fibonacci(51)*Lucas(31)/(1/2+sqrt(5)/2)^87 4032522475022688 a004 Fibonacci(49)*Lucas(31)/(1/2+sqrt(5)/2)^85 4032522475022688 a004 Fibonacci(47)*Lucas(31)/(1/2+sqrt(5)/2)^83 4032522475022688 a004 Fibonacci(45)*Lucas(31)/(1/2+sqrt(5)/2)^81 4032522475022688 a004 Fibonacci(43)*Lucas(31)/(1/2+sqrt(5)/2)^79 4032522475022688 a004 Fibonacci(41)*Lucas(31)/(1/2+sqrt(5)/2)^77 4032522475022688 a004 Fibonacci(39)*Lucas(31)/(1/2+sqrt(5)/2)^75 4032522475022689 a004 Fibonacci(37)*Lucas(31)/(1/2+sqrt(5)/2)^73 4032522475022692 a001 3010349/14930352*8^(1/3) 4032522475022697 a004 Fibonacci(35)*Lucas(31)/(1/2+sqrt(5)/2)^71 4032522475022745 a001 75640/28374454999*1860498^(2/3) 4032522475022753 a004 Fibonacci(33)*Lucas(31)/(1/2+sqrt(5)/2)^69 4032522475022783 a001 832040/505019158607*1860498^(7/10) 4032522475022793 a004 Fibonacci(32)/Lucas(32)/(1/2+sqrt(5)/2)^5 4032522475022822 a001 208010/204284540899*1860498^(11/15) 4032522475022898 a004 Fibonacci(32)*Lucas(33)/(1/2+sqrt(5)/2)^70 4032522475022900 a001 832040/2139295485799*1860498^(4/5) 4032522475022910 a001 2178309/23725150497407*7881196^(9/11) 4032522475022916 a001 2178309/5600748293801*7881196^(8/11) 4032522475022920 a001 2178309/2139295485799*7881196^(2/3) 4032522475022922 a001 726103/440719107401*7881196^(7/11) 4032522475022928 a001 2178309/312119004989*7881196^(6/11) 4032522475022933 a001 311187/10525900321*7881196^(5/11) 4032522475022938 a004 Fibonacci(32)/Lucas(34)/(1/2+sqrt(5)/2)^3 4032522475022938 a004 Fibonacci(34)/Lucas(32)/(1/2+sqrt(5)/2)^7 4032522475022939 a001 416020/1730726404001*1860498^(5/6) 4032522475022939 a001 2178309/17393796001*7881196^(4/11) 4032522475022941 a001 987/4870846*7881196^(1/3) 4032522475022945 a001 726103/1368706081*7881196^(3/11) 4032522475022951 a001 2178309/969323029*7881196^(2/11) 4032522475022953 a004 Fibonacci(32)*Lucas(35)/(1/2+sqrt(5)/2)^72 4032522475022956 a001 726103/3020733700601*20633239^(5/7) 4032522475022957 a001 46347/4868641*7881196^(1/11) 4032522475022957 a001 726103/440719107401*20633239^(3/5) 4032522475022958 a001 2178309/817138163596*20633239^(4/7) 4032522475022959 a001 311187/10525900321*20633239^(3/7) 4032522475022959 a001 2178309/45537549124*20633239^(2/5) 4032522475022959 a004 Fibonacci(32)/Lucas(36)/(1/2+sqrt(5)/2) 4032522475022959 a004 Fibonacci(36)/Lucas(32)/(1/2+sqrt(5)/2)^9 4032522475022960 a001 2178309/6643838879*20633239^(2/7) 4032522475022961 a001 311187/224056801*20633239^(1/5) 4032522475022962 a004 Fibonacci(32)*Lucas(37)/(1/2+sqrt(5)/2)^74 4032522475022962 a001 726103/199691526*20633239^(1/7) 4032522475022962 a004 Fibonacci(32)*(1/2+sqrt(5)/2)/Lucas(38) 4032522475022962 a004 Fibonacci(38)/Lucas(32)/(1/2+sqrt(5)/2)^11 4032522475022963 a004 Fibonacci(32)*Lucas(39)/(1/2+sqrt(5)/2)^76 4032522475022963 a001 2178309/23725150497407*141422324^(9/13) 4032522475022963 a001 2178309/14662949395604*141422324^(2/3) 4032522475022963 a001 2178309/5600748293801*141422324^(8/13) 4032522475022963 a001 726103/440719107401*141422324^(7/13) 4032522475022963 a001 2178309/312119004989*141422324^(6/13) 4032522475022963 a001 46347/4868641*141422324^(1/13) 4032522475022963 a001 311187/10525900321*141422324^(5/13) 4032522475022963 a001 46347/4868641*2537720636^(1/15) 4032522475022963 a001 46347/4868641*45537549124^(1/17) 4032522475022963 a001 46347/4868641*14662949395604^(1/21) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^3/Lucas(40) 4032522475022963 a004 Fibonacci(40)/Lucas(32)/(1/2+sqrt(5)/2)^13 4032522475022963 a001 46347/4868641*192900153618^(1/18) 4032522475022963 a001 46347/4868641*10749957122^(1/16) 4032522475022963 a001 46347/4868641*599074578^(1/14) 4032522475022963 a001 726103/9381251041*141422324^(1/3) 4032522475022963 a001 2178309/17393796001*141422324^(4/13) 4032522475022963 a001 726103/1368706081*141422324^(3/13) 4032522475022963 a004 Fibonacci(32)*Lucas(41)/(1/2+sqrt(5)/2)^78 4032522475022963 a001 2178309/969323029*141422324^(2/13) 4032522475022963 a001 726103/199691526*2537720636^(1/9) 4032522475022963 a001 726103/199691526*312119004989^(1/11) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^5/Lucas(42) 4032522475022963 a004 Fibonacci(42)/Lucas(32)/(1/2+sqrt(5)/2)^15 4032522475022963 a001 726103/199691526*28143753123^(1/10) 4032522475022963 a004 Fibonacci(32)*Lucas(43)/(1/2+sqrt(5)/2)^80 4032522475022963 a001 311187/224056801*17393796001^(1/7) 4032522475022963 a001 311187/224056801*14662949395604^(1/9) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^7/Lucas(44) 4032522475022963 a004 Fibonacci(44)/Lucas(32)/(1/2+sqrt(5)/2)^17 4032522475022963 a001 726103/199691526*228826127^(1/8) 4032522475022963 a004 Fibonacci(32)*Lucas(45)/(1/2+sqrt(5)/2)^82 4032522475022963 a001 2178309/23725150497407*2537720636^(3/5) 4032522475022963 a001 726103/1368706081*2537720636^(1/5) 4032522475022963 a001 726103/3020733700601*2537720636^(5/9) 4032522475022963 a001 2178309/5600748293801*2537720636^(8/15) 4032522475022963 a001 726103/440719107401*2537720636^(7/15) 4032522475022963 a001 2178309/817138163596*2537720636^(4/9) 4032522475022963 a001 2178309/312119004989*2537720636^(2/5) 4032522475022963 a001 726103/1368706081*45537549124^(3/17) 4032522475022963 a001 726103/1368706081*817138163596^(3/19) 4032522475022963 a001 726103/1368706081*14662949395604^(1/7) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^9/Lucas(46) 4032522475022963 a004 Fibonacci(46)/Lucas(32)/(1/2+sqrt(5)/2)^19 4032522475022963 a001 726103/1368706081*192900153618^(1/6) 4032522475022963 a001 726103/1368706081*10749957122^(3/16) 4032522475022963 a001 311187/10525900321*2537720636^(1/3) 4032522475022963 a001 2178309/17393796001*2537720636^(4/15) 4032522475022963 a004 Fibonacci(32)*Lucas(47)/(1/2+sqrt(5)/2)^84 4032522475022963 a001 2178309/6643838879*2537720636^(2/9) 4032522475022963 a001 987/4870846*312119004989^(1/5) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^11/Lucas(48) 4032522475022963 a004 Fibonacci(48)/Lucas(32)/(1/2+sqrt(5)/2)^21 4032522475022963 a004 Fibonacci(32)*Lucas(49)/(1/2+sqrt(5)/2)^86 4032522475022963 a001 726103/440719107401*17393796001^(3/7) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^13/Lucas(50) 4032522475022963 a004 Fibonacci(50)/Lucas(32)/(1/2+sqrt(5)/2)^23 4032522475022963 a001 726103/9381251041*73681302247^(1/4) 4032522475022963 a004 Fibonacci(32)*Lucas(51)/(1/2+sqrt(5)/2)^88 4032522475022963 a001 2178309/45537549124*17393796001^(2/7) 4032522475022963 a001 311187/10525900321*45537549124^(5/17) 4032522475022963 a001 2178309/23725150497407*45537549124^(9/17) 4032522475022963 a001 2178309/5600748293801*45537549124^(8/17) 4032522475022963 a001 726103/440719107401*45537549124^(7/17) 4032522475022963 a001 726103/64300051206*45537549124^(1/3) 4032522475022963 a001 311187/10525900321*312119004989^(3/11) 4032522475022963 a001 311187/10525900321*14662949395604^(5/21) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^15/Lucas(52) 4032522475022963 a004 Fibonacci(52)/Lucas(32)/(1/2+sqrt(5)/2)^25 4032522475022963 a001 311187/10525900321*192900153618^(5/18) 4032522475022963 a001 2178309/312119004989*45537549124^(6/17) 4032522475022963 a004 Fibonacci(32)*Lucas(53)/(1/2+sqrt(5)/2)^90 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^17/Lucas(54) 4032522475022963 a004 Fibonacci(54)/Lucas(32)/(1/2+sqrt(5)/2)^27 4032522475022963 a004 Fibonacci(32)*Lucas(55)/(1/2+sqrt(5)/2)^92 4032522475022963 a001 726103/3020733700601*312119004989^(5/11) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^19/Lucas(56) 4032522475022963 a004 Fibonacci(56)/Lucas(32)/(1/2+sqrt(5)/2)^29 4032522475022963 a001 2178309/2139295485799*312119004989^(2/5) 4032522475022963 a004 Fibonacci(32)*Lucas(57)/(1/2+sqrt(5)/2)^94 4032522475022963 a001 2178309/23725150497407*817138163596^(9/19) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^21/Lucas(58) 4032522475022963 a004 Fibonacci(58)/Lucas(32)/(1/2+sqrt(5)/2)^31 4032522475022963 a004 Fibonacci(32)*Lucas(59)/(1/2+sqrt(5)/2)^96 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^23/Lucas(60) 4032522475022963 a004 Fibonacci(60)/Lucas(32)/(1/2+sqrt(5)/2)^33 4032522475022963 a004 Fibonacci(32)*Lucas(61)/(1/2+sqrt(5)/2)^98 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^25/Lucas(62) 4032522475022963 a004 Fibonacci(62)/Lucas(32)/(1/2+sqrt(5)/2)^35 4032522475022963 a004 Fibonacci(32)*Lucas(63)/(1/2+sqrt(5)/2)^100 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^27/Lucas(64) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^29/Lucas(66) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^31/Lucas(68) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^33/Lucas(70) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^35/Lucas(72) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^37/Lucas(74) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^39/Lucas(76) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^41/Lucas(78) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^43/Lucas(80) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^45/Lucas(82) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^47/Lucas(84) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^49/Lucas(86) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^51/Lucas(88) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^53/Lucas(90) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^55/Lucas(92) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^57/Lucas(94) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^59/Lucas(96) 4032522475022963 a004 Fibonacci(16)*Lucas(16)/(1/2+sqrt(5)/2)^37 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^61/Lucas(98) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^62/Lucas(99) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^63/Lucas(100) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^60/Lucas(97) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^58/Lucas(95) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^56/Lucas(93) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^54/Lucas(91) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^52/Lucas(89) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^50/Lucas(87) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^48/Lucas(85) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^46/Lucas(83) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^44/Lucas(81) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^42/Lucas(79) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^40/Lucas(77) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^38/Lucas(75) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^36/Lucas(73) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^34/Lucas(71) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^32/Lucas(69) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^30/Lucas(67) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^28/Lucas(65) 4032522475022963 a004 Fibonacci(66)/Lucas(32)/(1/2+sqrt(5)/2)^39 4032522475022963 a004 Fibonacci(68)/Lucas(32)/(1/2+sqrt(5)/2)^41 4032522475022963 a004 Fibonacci(70)/Lucas(32)/(1/2+sqrt(5)/2)^43 4032522475022963 a004 Fibonacci(72)/Lucas(32)/(1/2+sqrt(5)/2)^45 4032522475022963 a004 Fibonacci(74)/Lucas(32)/(1/2+sqrt(5)/2)^47 4032522475022963 a004 Fibonacci(76)/Lucas(32)/(1/2+sqrt(5)/2)^49 4032522475022963 a004 Fibonacci(78)/Lucas(32)/(1/2+sqrt(5)/2)^51 4032522475022963 a004 Fibonacci(80)/Lucas(32)/(1/2+sqrt(5)/2)^53 4032522475022963 a004 Fibonacci(82)/Lucas(32)/(1/2+sqrt(5)/2)^55 4032522475022963 a004 Fibonacci(84)/Lucas(32)/(1/2+sqrt(5)/2)^57 4032522475022963 a004 Fibonacci(86)/Lucas(32)/(1/2+sqrt(5)/2)^59 4032522475022963 a004 Fibonacci(88)/Lucas(32)/(1/2+sqrt(5)/2)^61 4032522475022963 a004 Fibonacci(90)/Lucas(32)/(1/2+sqrt(5)/2)^63 4032522475022963 a004 Fibonacci(92)/Lucas(32)/(1/2+sqrt(5)/2)^65 4032522475022963 a004 Fibonacci(94)/Lucas(32)/(1/2+sqrt(5)/2)^67 4032522475022963 a004 Fibonacci(96)/Lucas(32)/(1/2+sqrt(5)/2)^69 4032522475022963 a004 Fibonacci(98)/Lucas(32)/(1/2+sqrt(5)/2)^71 4032522475022963 a004 Fibonacci(100)/Lucas(32)/(1/2+sqrt(5)/2)^73 4032522475022963 a004 Fibonacci(99)/Lucas(32)/(1/2+sqrt(5)/2)^72 4032522475022963 a004 Fibonacci(97)/Lucas(32)/(1/2+sqrt(5)/2)^70 4032522475022963 a004 Fibonacci(95)/Lucas(32)/(1/2+sqrt(5)/2)^68 4032522475022963 a004 Fibonacci(93)/Lucas(32)/(1/2+sqrt(5)/2)^66 4032522475022963 a004 Fibonacci(91)/Lucas(32)/(1/2+sqrt(5)/2)^64 4032522475022963 a004 Fibonacci(89)/Lucas(32)/(1/2+sqrt(5)/2)^62 4032522475022963 a004 Fibonacci(87)/Lucas(32)/(1/2+sqrt(5)/2)^60 4032522475022963 a004 Fibonacci(85)/Lucas(32)/(1/2+sqrt(5)/2)^58 4032522475022963 a004 Fibonacci(83)/Lucas(32)/(1/2+sqrt(5)/2)^56 4032522475022963 a004 Fibonacci(81)/Lucas(32)/(1/2+sqrt(5)/2)^54 4032522475022963 a004 Fibonacci(79)/Lucas(32)/(1/2+sqrt(5)/2)^52 4032522475022963 a004 Fibonacci(77)/Lucas(32)/(1/2+sqrt(5)/2)^50 4032522475022963 a004 Fibonacci(75)/Lucas(32)/(1/2+sqrt(5)/2)^48 4032522475022963 a004 Fibonacci(73)/Lucas(32)/(1/2+sqrt(5)/2)^46 4032522475022963 a004 Fibonacci(71)/Lucas(32)/(1/2+sqrt(5)/2)^44 4032522475022963 a004 Fibonacci(69)/Lucas(32)/(1/2+sqrt(5)/2)^42 4032522475022963 a004 Fibonacci(67)/Lucas(32)/(1/2+sqrt(5)/2)^40 4032522475022963 a004 Fibonacci(65)/Lucas(32)/(1/2+sqrt(5)/2)^38 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^26/Lucas(63) 4032522475022963 a004 Fibonacci(63)/Lucas(32)/(1/2+sqrt(5)/2)^36 4032522475022963 a004 Fibonacci(32)*Lucas(62)/(1/2+sqrt(5)/2)^99 4032522475022963 a001 2178309/5600748293801*14662949395604^(8/21) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^24/Lucas(61) 4032522475022963 a004 Fibonacci(61)/Lucas(32)/(1/2+sqrt(5)/2)^34 4032522475022963 a004 Fibonacci(32)*Lucas(60)/(1/2+sqrt(5)/2)^97 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^22/Lucas(59) 4032522475022963 a004 Fibonacci(59)/Lucas(32)/(1/2+sqrt(5)/2)^32 4032522475022963 a004 Fibonacci(32)*Lucas(58)/(1/2+sqrt(5)/2)^95 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^20/Lucas(57) 4032522475022963 a004 Fibonacci(57)/Lucas(32)/(1/2+sqrt(5)/2)^30 4032522475022963 a001 2178309/817138163596*505019158607^(5/14) 4032522475022963 a004 Fibonacci(32)*Lucas(56)/(1/2+sqrt(5)/2)^93 4032522475022963 a001 2178309/312119004989*14662949395604^(2/7) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^18/Lucas(55) 4032522475022963 a004 Fibonacci(55)/Lucas(32)/(1/2+sqrt(5)/2)^28 4032522475022963 a001 2178309/5600748293801*192900153618^(4/9) 4032522475022963 a001 2178309/23725150497407*192900153618^(1/2) 4032522475022963 a001 2178309/312119004989*192900153618^(1/3) 4032522475022963 a004 Fibonacci(32)*Lucas(54)/(1/2+sqrt(5)/2)^91 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^16/Lucas(53) 4032522475022963 a001 2178309/119218851371*23725150497407^(1/4) 4032522475022963 a004 Fibonacci(53)/Lucas(32)/(1/2+sqrt(5)/2)^26 4032522475022963 a001 2178309/5600748293801*73681302247^(6/13) 4032522475022963 a001 2178309/14662949395604*73681302247^(1/2) 4032522475022963 a001 2178309/119218851371*73681302247^(4/13) 4032522475022963 a004 Fibonacci(32)*Lucas(52)/(1/2+sqrt(5)/2)^89 4032522475022963 a001 311187/10525900321*28143753123^(3/10) 4032522475022963 a001 2178309/45537549124*14662949395604^(2/9) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^14/Lucas(51) 4032522475022963 a004 Fibonacci(51)/Lucas(32)/(1/2+sqrt(5)/2)^24 4032522475022963 a001 2178309/817138163596*28143753123^(2/5) 4032522475022963 a001 726103/3020733700601*28143753123^(1/2) 4032522475022963 a004 Fibonacci(32)*Lucas(50)/(1/2+sqrt(5)/2)^87 4032522475022963 a001 311187/10525900321*10749957122^(5/16) 4032522475022963 a001 2178309/119218851371*10749957122^(1/3) 4032522475022963 a001 2178309/45537549124*10749957122^(7/24) 4032522475022963 a001 2178309/17393796001*45537549124^(4/17) 4032522475022963 a001 2178309/312119004989*10749957122^(3/8) 4032522475022963 a001 2178309/17393796001*817138163596^(4/19) 4032522475022963 a001 2178309/17393796001*14662949395604^(4/21) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^12/Lucas(49) 4032522475022963 a004 Fibonacci(49)/Lucas(32)/(1/2+sqrt(5)/2)^22 4032522475022963 a001 2178309/17393796001*192900153618^(2/9) 4032522475022963 a001 2178309/17393796001*73681302247^(3/13) 4032522475022963 a001 2178309/817138163596*10749957122^(5/12) 4032522475022963 a001 726103/440719107401*10749957122^(7/16) 4032522475022963 a001 2178309/2139295485799*10749957122^(11/24) 4032522475022963 a001 2178309/5600748293801*10749957122^(1/2) 4032522475022963 a001 2178309/14662949395604*10749957122^(13/24) 4032522475022963 a001 2178309/23725150497407*10749957122^(9/16) 4032522475022963 a001 2178309/17393796001*10749957122^(1/4) 4032522475022963 a004 Fibonacci(32)*Lucas(48)/(1/2+sqrt(5)/2)^85 4032522475022963 a001 2178309/45537549124*4106118243^(7/23) 4032522475022963 a001 2178309/17393796001*4106118243^(6/23) 4032522475022963 a001 2178309/119218851371*4106118243^(8/23) 4032522475022963 a001 2178309/6643838879*312119004989^(2/11) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^10/Lucas(47) 4032522475022963 a004 Fibonacci(47)/Lucas(32)/(1/2+sqrt(5)/2)^20 4032522475022963 a001 2178309/6643838879*28143753123^(1/5) 4032522475022963 a001 2178309/312119004989*4106118243^(9/23) 4032522475022963 a001 2178309/6643838879*10749957122^(5/24) 4032522475022963 a001 2178309/817138163596*4106118243^(10/23) 4032522475022963 a001 2178309/2139295485799*4106118243^(11/23) 4032522475022963 a001 311187/494493258286*4106118243^(1/2) 4032522475022963 a001 2178309/5600748293801*4106118243^(12/23) 4032522475022963 a001 2178309/14662949395604*4106118243^(13/23) 4032522475022963 a001 2178309/6643838879*4106118243^(5/23) 4032522475022963 a001 311187/224056801*599074578^(1/6) 4032522475022963 a004 Fibonacci(32)*Lucas(46)/(1/2+sqrt(5)/2)^83 4032522475022963 a001 987/4870846*1568397607^(1/4) 4032522475022963 a001 2178309/17393796001*1568397607^(3/11) 4032522475022963 a001 2178309/6643838879*1568397607^(5/22) 4032522475022963 a001 2178309/45537549124*1568397607^(7/22) 4032522475022963 a001 2178309/119218851371*1568397607^(4/11) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^8/Lucas(45) 4032522475022963 a001 2178309/2537720636*23725150497407^(1/8) 4032522475022963 a004 Fibonacci(45)/Lucas(32)/(1/2+sqrt(5)/2)^18 4032522475022963 a001 2178309/2537720636*505019158607^(1/7) 4032522475022963 a001 2178309/2537720636*73681302247^(2/13) 4032522475022963 a001 2178309/2537720636*10749957122^(1/6) 4032522475022963 a001 2178309/2537720636*4106118243^(4/23) 4032522475022963 a001 2178309/312119004989*1568397607^(9/22) 4032522475022963 a001 2178309/817138163596*1568397607^(5/11) 4032522475022963 a001 2178309/2139295485799*1568397607^(1/2) 4032522475022963 a001 2178309/5600748293801*1568397607^(6/11) 4032522475022963 a001 2178309/2537720636*1568397607^(2/11) 4032522475022963 a001 2178309/14662949395604*1568397607^(13/22) 4032522475022963 a004 Fibonacci(32)*Lucas(44)/(1/2+sqrt(5)/2)^81 4032522475022963 a001 726103/1368706081*599074578^(3/14) 4032522475022963 a001 2178309/2537720636*599074578^(4/21) 4032522475022963 a001 2178309/6643838879*599074578^(5/21) 4032522475022963 a001 2178309/17393796001*599074578^(2/7) 4032522475022963 a001 2178309/45537549124*599074578^(1/3) 4032522475022963 a001 311187/10525900321*599074578^(5/14) 4032522475022963 a001 2178309/969323029*2537720636^(2/15) 4032522475022963 a001 2178309/119218851371*599074578^(8/21) 4032522475022963 a001 2178309/969323029*45537549124^(2/17) 4032522475022963 a001 2178309/969323029*14662949395604^(2/21) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^6/Lucas(43) 4032522475022963 a004 Fibonacci(43)/Lucas(32)/(1/2+sqrt(5)/2)^16 4032522475022963 a001 2178309/969323029*10749957122^(1/8) 4032522475022963 a001 2178309/969323029*4106118243^(3/23) 4032522475022963 a001 2178309/969323029*1568397607^(3/22) 4032522475022963 a001 2178309/312119004989*599074578^(3/7) 4032522475022963 a001 2178309/817138163596*599074578^(10/21) 4032522475022963 a001 726103/440719107401*599074578^(1/2) 4032522475022963 a001 2178309/2139295485799*599074578^(11/21) 4032522475022963 a001 2178309/969323029*599074578^(1/7) 4032522475022963 a001 2178309/5600748293801*599074578^(4/7) 4032522475022963 a001 2178309/14662949395604*599074578^(13/21) 4032522475022963 a001 2178309/23725150497407*599074578^(9/14) 4032522475022963 a004 Fibonacci(32)*Lucas(42)/(1/2+sqrt(5)/2)^79 4032522475022963 a001 2178309/969323029*228826127^(3/20) 4032522475022963 a001 2178309/2537720636*228826127^(1/5) 4032522475022963 a001 2178309/6643838879*228826127^(1/4) 4032522475022963 a001 2178309/17393796001*228826127^(3/10) 4032522475022963 a001 2178309/45537549124*228826127^(7/20) 4032522475022963 a001 311187/10525900321*228826127^(3/8) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^4/Lucas(41) 4032522475022963 a001 2178309/370248451*23725150497407^(1/16) 4032522475022963 a004 Fibonacci(41)/Lucas(32)/(1/2+sqrt(5)/2)^14 4032522475022963 a001 2178309/370248451*73681302247^(1/13) 4032522475022963 a001 2178309/370248451*10749957122^(1/12) 4032522475022963 a001 2178309/370248451*4106118243^(2/23) 4032522475022963 a001 2178309/370248451*1568397607^(1/11) 4032522475022963 a001 2178309/370248451*599074578^(2/21) 4032522475022963 a001 2178309/119218851371*228826127^(2/5) 4032522475022963 a001 2178309/312119004989*228826127^(9/20) 4032522475022963 a001 2178309/370248451*228826127^(1/10) 4032522475022963 a001 2178309/817138163596*228826127^(1/2) 4032522475022963 a001 2178309/2139295485799*228826127^(11/20) 4032522475022963 a001 2178309/5600748293801*228826127^(3/5) 4032522475022963 a001 726103/3020733700601*228826127^(5/8) 4032522475022963 a001 2178309/14662949395604*228826127^(13/20) 4032522475022963 a004 Fibonacci(32)*Lucas(40)/(1/2+sqrt(5)/2)^77 4032522475022963 a001 2178309/370248451*87403803^(2/19) 4032522475022963 a001 2178309/969323029*87403803^(3/19) 4032522475022963 a001 2178309/2537720636*87403803^(4/19) 4032522475022963 a001 2178309/6643838879*87403803^(5/19) 4032522475022963 a001 2178309/17393796001*87403803^(6/19) 4032522475022963 a001 2178309/45537549124*87403803^(7/19) 4032522475022963 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^2/Lucas(39) 4032522475022963 a004 Fibonacci(39)/Lucas(32)/(1/2+sqrt(5)/2)^12 4032522475022963 a001 2178309/141422324*10749957122^(1/24) 4032522475022963 a001 2178309/141422324*4106118243^(1/23) 4032522475022963 a001 2178309/141422324*1568397607^(1/22) 4032522475022963 a001 2178309/141422324*599074578^(1/21) 4032522475022963 a001 2178309/141422324*228826127^(1/20) 4032522475022963 a001 2178309/119218851371*87403803^(8/19) 4032522475022963 a001 46347/4868641*33385282^(1/12) 4032522475022963 a001 2178309/141422324*87403803^(1/19) 4032522475022963 a001 2178309/312119004989*87403803^(9/19) 4032522475022963 a001 46347/10745088481*87403803^(1/2) 4032522475022963 a001 2178309/817138163596*87403803^(10/19) 4032522475022963 a001 2178309/2139295485799*87403803^(11/19) 4032522475022963 a001 2178309/5600748293801*87403803^(12/19) 4032522475022963 a001 2178309/14662949395604*87403803^(13/19) 4032522475022963 a001 2178309/141422324*33385282^(1/18) 4032522475022963 a001 2178309/370248451*33385282^(1/9) 4032522475022963 a004 Fibonacci(32)*Lucas(38)/(1/2+sqrt(5)/2)^75 4032522475022964 a001 2178309/969323029*33385282^(1/6) 4032522475022964 a001 2178309/2537720636*33385282^(2/9) 4032522475022964 a001 726103/1368706081*33385282^(1/4) 4032522475022964 a001 2178309/6643838879*33385282^(5/18) 4032522475022964 a001 2178309/17393796001*33385282^(1/3) 4032522475022964 a004 Fibonacci(37)/Lucas(32)/(1/2+sqrt(5)/2)^10 4032522475022964 a001 2178309/45537549124*33385282^(7/18) 4032522475022964 a001 311187/10525900321*33385282^(5/12) 4032522475022965 a001 2178309/119218851371*33385282^(4/9) 4032522475022965 a001 2178309/141422324*12752043^(1/17) 4032522475022965 a001 2178309/312119004989*33385282^(1/2) 4032522475022965 a001 2178309/817138163596*33385282^(5/9) 4032522475022965 a001 726103/440719107401*33385282^(7/12) 4032522475022965 a001 2178309/2139295485799*33385282^(11/18) 4032522475022965 a001 2178309/5600748293801*33385282^(2/3) 4032522475022966 a001 2178309/14662949395604*33385282^(13/18) 4032522475022966 a001 2178309/23725150497407*33385282^(3/4) 4032522475022966 a001 2178309/370248451*12752043^(2/17) 4032522475022967 a004 Fibonacci(32)*Lucas(36)/(1/2+sqrt(5)/2)^73 4032522475022967 a001 2178309/969323029*12752043^(3/17) 4032522475022969 a001 2178309/2537720636*12752043^(4/17) 4032522475022970 a001 2178309/6643838879*12752043^(5/17) 4032522475022972 a001 2178309/17393796001*12752043^(6/17) 4032522475022972 a004 Fibonacci(32)/Lucas(35)/(1/2+sqrt(5)/2)^2 4032522475022972 a004 Fibonacci(35)/Lucas(32)/(1/2+sqrt(5)/2)^8 4032522475022973 a001 2178309/45537549124*12752043^(7/17) 4032522475022974 a001 2178309/141422324*4870847^(1/16) 4032522475022975 a001 2178309/119218851371*12752043^(8/17) 4032522475022975 a001 726103/64300051206*12752043^(1/2) 4032522475022976 a001 2178309/312119004989*12752043^(9/17) 4032522475022978 a001 2178309/817138163596*12752043^(10/17) 4032522475022978 a001 832040/5600748293801*1860498^(13/15) 4032522475022979 a001 2178309/2139295485799*12752043^(11/17) 4032522475022980 a001 2178309/5600748293801*12752043^(12/17) 4032522475022982 a001 2178309/14662949395604*12752043^(13/17) 4032522475022984 a001 2178309/370248451*4870847^(1/8) 4032522475022988 a004 Fibonacci(32)*Lucas(34)/(1/2+sqrt(5)/2)^71 4032522475022995 a001 2178309/969323029*4870847^(3/16) 4032522475023005 a001 2178309/2537720636*4870847^(1/4) 4032522475023016 a001 2178309/6643838879*4870847^(5/16) 4032522475023016 a001 832040/9062201101803*1860498^(9/10) 4032522475023027 a001 2178309/17393796001*4870847^(3/8) 4032522475023028 a004 Fibonacci(32)/Lucas(33)/(1/2+sqrt(5)/2)^4 4032522475023028 a004 Fibonacci(33)/Lucas(32)/(1/2+sqrt(5)/2)^6 4032522475023037 a001 2178309/45537549124*4870847^(7/16) 4032522475023041 a001 2178309/141422324*1860498^(1/15) 4032522475023043 a004 Fibonacci(34)*Lucas(33)/(1/2+sqrt(5)/2)^72 4032522475023048 a001 2178309/119218851371*4870847^(1/2) 4032522475023055 a001 208010/3665737348901*1860498^(14/15) 4032522475023059 a001 2178309/312119004989*4870847^(9/16) 4032522475023061 a001 5702887/14662949395604*7881196^(8/11) 4032522475023064 a004 Fibonacci(36)*Lucas(33)/(1/2+sqrt(5)/2)^74 4032522475023065 a001 5702887/5600748293801*7881196^(2/3) 4032522475023067 a001 5702887/3461452808002*7881196^(7/11) 4032522475023067 a004 Fibonacci(38)*Lucas(33)/(1/2+sqrt(5)/2)^76 4032522475023068 a004 Fibonacci(40)*Lucas(33)/(1/2+sqrt(5)/2)^78 4032522475023068 a004 Fibonacci(42)*Lucas(33)/(1/2+sqrt(5)/2)^80 4032522475023068 a004 Fibonacci(44)*Lucas(33)/(1/2+sqrt(5)/2)^82 4032522475023068 a004 Fibonacci(46)*Lucas(33)/(1/2+sqrt(5)/2)^84 4032522475023068 a004 Fibonacci(48)*Lucas(33)/(1/2+sqrt(5)/2)^86 4032522475023068 a004 Fibonacci(50)*Lucas(33)/(1/2+sqrt(5)/2)^88 4032522475023068 a004 Fibonacci(52)*Lucas(33)/(1/2+sqrt(5)/2)^90 4032522475023068 a004 Fibonacci(54)*Lucas(33)/(1/2+sqrt(5)/2)^92 4032522475023068 a004 Fibonacci(56)*Lucas(33)/(1/2+sqrt(5)/2)^94 4032522475023068 a004 Fibonacci(58)*Lucas(33)/(1/2+sqrt(5)/2)^96 4032522475023068 a004 Fibonacci(60)*Lucas(33)/(1/2+sqrt(5)/2)^98 4032522475023068 a004 Fibonacci(62)*Lucas(33)/(1/2+sqrt(5)/2)^100 4032522475023068 a001 1/1762289*(1/2+1/2*5^(1/2))^28 4032522475023068 a004 Fibonacci(61)*Lucas(33)/(1/2+sqrt(5)/2)^99 4032522475023068 a004 Fibonacci(59)*Lucas(33)/(1/2+sqrt(5)/2)^97 4032522475023068 a004 Fibonacci(57)*Lucas(33)/(1/2+sqrt(5)/2)^95 4032522475023068 a004 Fibonacci(55)*Lucas(33)/(1/2+sqrt(5)/2)^93 4032522475023068 a004 Fibonacci(53)*Lucas(33)/(1/2+sqrt(5)/2)^91 4032522475023068 a004 Fibonacci(51)*Lucas(33)/(1/2+sqrt(5)/2)^89 4032522475023068 a004 Fibonacci(49)*Lucas(33)/(1/2+sqrt(5)/2)^87 4032522475023068 a004 Fibonacci(47)*Lucas(33)/(1/2+sqrt(5)/2)^85 4032522475023068 a004 Fibonacci(45)*Lucas(33)/(1/2+sqrt(5)/2)^83 4032522475023068 a004 Fibonacci(43)*Lucas(33)/(1/2+sqrt(5)/2)^81 4032522475023068 a004 Fibonacci(41)*Lucas(33)/(1/2+sqrt(5)/2)^79 4032522475023068 a004 Fibonacci(39)*Lucas(33)/(1/2+sqrt(5)/2)^77 4032522475023069 a001 7881196/39088169*8^(1/3) 4032522475023069 a001 2178309/817138163596*4870847^(5/8) 4032522475023069 a004 Fibonacci(37)*Lucas(33)/(1/2+sqrt(5)/2)^75 4032522475023073 a001 5702887/817138163596*7881196^(6/11) 4032522475023077 a004 Fibonacci(35)*Lucas(33)/(1/2+sqrt(5)/2)^73 4032522475023079 a001 5702887/192900153618*7881196^(5/11) 4032522475023079 a001 46347/4868641*1860498^(1/10) 4032522475023080 a001 2178309/2139295485799*4870847^(11/16) 4032522475023083 a004 Fibonacci(34)/Lucas(34)/(1/2+sqrt(5)/2)^5 4032522475023084 a001 1597/12752044*7881196^(4/11) 4032522475023086 a001 196452/192933544679*7881196^(2/3) 4032522475023086 a001 5702887/28143753123*7881196^(1/3) 4032522475023088 a001 4976784/3020733700601*7881196^(7/11) 4032522475023090 a001 5702887/10749957122*7881196^(3/11) 4032522475023090 a001 2178309/5600748293801*4870847^(3/4) 4032522475023091 a001 24157817/23725150497407*7881196^(2/3) 4032522475023091 a001 39088169/23725150497407*7881196^(7/11) 4032522475023093 a001 24157817/14662949395604*7881196^(7/11) 4032522475023094 a001 14930352/2139295485799*7881196^(6/11) 4032522475023095 a001 9227465/23725150497407*7881196^(8/11) 4032522475023096 a001 5702887/2537720636*7881196^(2/11) 4032522475023097 a001 39088169/5600748293801*7881196^(6/11) 4032522475023097 a001 102334155/14662949395604*7881196^(6/11) 4032522475023098 a001 165580141/23725150497407*7881196^(6/11) 4032522475023098 a001 63245986/9062201101803*7881196^(6/11) 4032522475023099 a004 Fibonacci(34)*Lucas(35)/(1/2+sqrt(5)/2)^74 4032522475023099 a001 24157817/3461452808002*7881196^(6/11) 4032522475023099 a001 9227465/9062201101803*7881196^(2/3) 4032522475023100 a001 14930352/505019158607*7881196^(5/11) 4032522475023101 a001 2178309/14662949395604*4870847^(13/16) 4032522475023101 a001 9227465/5600748293801*7881196^(7/11) 4032522475023101 a001 5702887/23725150497407*20633239^(5/7) 4032522475023102 a001 5702887/599074578*7881196^(1/11) 4032522475023102 a001 5702887/3461452808002*20633239^(3/5) 4032522475023103 a001 5702887/2139295485799*20633239^(4/7) 4032522475023103 a001 39088169/1322157322203*7881196^(5/11) 4032522475023103 a001 6765/228826126*7881196^(5/11) 4032522475023103 a001 267914296/9062201101803*7881196^(5/11) 4032522475023103 a001 701408733/23725150497407*7881196^(5/11) 4032522475023103 a001 433494437/14662949395604*7881196^(5/11) 4032522475023103 a001 165580141/5600748293801*7881196^(5/11) 4032522475023104 a001 63245986/2139295485799*7881196^(5/11) 4032522475023104 a001 5702887/192900153618*20633239^(3/7) 4032522475023104 a001 5702887/119218851371*20633239^(2/5) 4032522475023104 a004 Fibonacci(34)/Lucas(36)/(1/2+sqrt(5)/2)^3 4032522475023104 a004 Fibonacci(36)/Lucas(34)/(1/2+sqrt(5)/2)^7 4032522475023105 a001 24157817/817138163596*7881196^(5/11) 4032522475023105 a001 5702887/17393796001*20633239^(2/7) 4032522475023106 a001 14930352/119218851371*7881196^(4/11) 4032522475023106 a001 5702887/4106118243*20633239^(1/5) 4032522475023107 a004 Fibonacci(34)*Lucas(37)/(1/2+sqrt(5)/2)^76 4032522475023107 a001 5702887/1568397607*20633239^(1/7) 4032522475023107 a001 9227465/1322157322203*7881196^(6/11) 4032522475023108 a004 Fibonacci(34)/Lucas(38)/(1/2+sqrt(5)/2) 4032522475023108 a004 Fibonacci(38)/Lucas(34)/(1/2+sqrt(5)/2)^9 4032522475023108 a001 14930352/73681302247*7881196^(1/3) 4032522475023108 a004 Fibonacci(34)*Lucas(39)/(1/2+sqrt(5)/2)^78 4032522475023108 a001 5702887/14662949395604*141422324^(8/13) 4032522475023108 a001 5702887/3461452808002*141422324^(7/13) 4032522475023108 a001 5702887/817138163596*141422324^(6/13) 4032522475023108 a001 5702887/192900153618*141422324^(5/13) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)/Lucas(40) 4032522475023108 a004 Fibonacci(40)/Lucas(34)/(1/2+sqrt(5)/2)^11 4032522475023108 a001 5702887/73681302247*141422324^(1/3) 4032522475023108 a001 1597/12752044*141422324^(4/13) 4032522475023108 a001 5702887/10749957122*141422324^(3/13) 4032522475023108 a001 5702887/2537720636*141422324^(2/13) 4032522475023108 a004 Fibonacci(34)*Lucas(41)/(1/2+sqrt(5)/2)^80 4032522475023108 a001 5702887/599074578*141422324^(1/13) 4032522475023108 a001 5702887/599074578*2537720636^(1/15) 4032522475023108 a001 5702887/599074578*45537549124^(1/17) 4032522475023108 a001 5702887/599074578*14662949395604^(1/21) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^3/Lucas(42) 4032522475023108 a004 Fibonacci(42)/Lucas(34)/(1/2+sqrt(5)/2)^13 4032522475023108 a001 5702887/599074578*192900153618^(1/18) 4032522475023108 a001 5702887/599074578*10749957122^(1/16) 4032522475023108 a001 5702887/599074578*599074578^(1/14) 4032522475023108 a004 Fibonacci(34)*Lucas(43)/(1/2+sqrt(5)/2)^82 4032522475023108 a001 5702887/1568397607*2537720636^(1/9) 4032522475023108 a001 5702887/1568397607*312119004989^(1/11) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^5/Lucas(44) 4032522475023108 a004 Fibonacci(44)/Lucas(34)/(1/2+sqrt(5)/2)^15 4032522475023108 a001 5702887/1568397607*28143753123^(1/10) 4032522475023108 a004 Fibonacci(34)*Lucas(45)/(1/2+sqrt(5)/2)^84 4032522475023108 a001 5702887/23725150497407*2537720636^(5/9) 4032522475023108 a001 5702887/14662949395604*2537720636^(8/15) 4032522475023108 a001 5702887/3461452808002*2537720636^(7/15) 4032522475023108 a001 5702887/2139295485799*2537720636^(4/9) 4032522475023108 a001 5702887/817138163596*2537720636^(2/5) 4032522475023108 a001 5702887/4106118243*17393796001^(1/7) 4032522475023108 a001 5702887/4106118243*14662949395604^(1/9) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^7/Lucas(46) 4032522475023108 a004 Fibonacci(46)/Lucas(34)/(1/2+sqrt(5)/2)^17 4032522475023108 a001 5702887/192900153618*2537720636^(1/3) 4032522475023108 a001 1597/12752044*2537720636^(4/15) 4032522475023108 a001 5702887/10749957122*2537720636^(1/5) 4032522475023108 a001 5702887/17393796001*2537720636^(2/9) 4032522475023108 a004 Fibonacci(34)*Lucas(47)/(1/2+sqrt(5)/2)^86 4032522475023108 a001 5702887/10749957122*45537549124^(3/17) 4032522475023108 a001 5702887/10749957122*817138163596^(3/19) 4032522475023108 a001 5702887/10749957122*14662949395604^(1/7) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^9/Lucas(48) 4032522475023108 a004 Fibonacci(48)/Lucas(34)/(1/2+sqrt(5)/2)^19 4032522475023108 a001 5702887/10749957122*192900153618^(1/6) 4032522475023108 a001 5702887/10749957122*10749957122^(3/16) 4032522475023108 a004 Fibonacci(34)*Lucas(49)/(1/2+sqrt(5)/2)^88 4032522475023108 a001 5702887/3461452808002*17393796001^(3/7) 4032522475023108 a001 5702887/28143753123*312119004989^(1/5) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^11/Lucas(50) 4032522475023108 a004 Fibonacci(50)/Lucas(34)/(1/2+sqrt(5)/2)^21 4032522475023108 a001 5702887/119218851371*17393796001^(2/7) 4032522475023108 a004 Fibonacci(34)*Lucas(51)/(1/2+sqrt(5)/2)^90 4032522475023108 a001 5702887/14662949395604*45537549124^(8/17) 4032522475023108 a001 5702887/3461452808002*45537549124^(7/17) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^13/Lucas(52) 4032522475023108 a004 Fibonacci(52)/Lucas(34)/(1/2+sqrt(5)/2)^23 4032522475023108 a001 5702887/192900153618*45537549124^(5/17) 4032522475023108 a001 5702887/817138163596*45537549124^(6/17) 4032522475023108 a001 5702887/505019158607*45537549124^(1/3) 4032522475023108 a001 5702887/73681302247*73681302247^(1/4) 4032522475023108 a004 Fibonacci(34)*Lucas(53)/(1/2+sqrt(5)/2)^92 4032522475023108 a001 5702887/192900153618*312119004989^(3/11) 4032522475023108 a001 5702887/192900153618*14662949395604^(5/21) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^15/Lucas(54) 4032522475023108 a004 Fibonacci(54)/Lucas(34)/(1/2+sqrt(5)/2)^25 4032522475023108 a001 5702887/192900153618*192900153618^(5/18) 4032522475023108 a004 Fibonacci(34)*Lucas(55)/(1/2+sqrt(5)/2)^94 4032522475023108 a001 5702887/23725150497407*312119004989^(5/11) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^17/Lucas(56) 4032522475023108 a004 Fibonacci(56)/Lucas(34)/(1/2+sqrt(5)/2)^27 4032522475023108 a004 Fibonacci(34)*Lucas(57)/(1/2+sqrt(5)/2)^96 4032522475023108 a001 5702887/1322157322203*817138163596^(1/3) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^19/Lucas(58) 4032522475023108 a004 Fibonacci(58)/Lucas(34)/(1/2+sqrt(5)/2)^29 4032522475023108 a004 Fibonacci(34)*Lucas(59)/(1/2+sqrt(5)/2)^98 4032522475023108 a001 5702887/3461452808002*14662949395604^(1/3) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^21/Lucas(60) 4032522475023108 a004 Fibonacci(60)/Lucas(34)/(1/2+sqrt(5)/2)^31 4032522475023108 a004 Fibonacci(34)*Lucas(61)/(1/2+sqrt(5)/2)^100 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^23/Lucas(62) 4032522475023108 a004 Fibonacci(62)/Lucas(34)/(1/2+sqrt(5)/2)^33 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^25/Lucas(64) 4032522475023108 a004 Fibonacci(64)/Lucas(34)/(1/2+sqrt(5)/2)^35 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^27/Lucas(66) 4032522475023108 a004 Fibonacci(66)/Lucas(34)/(1/2+sqrt(5)/2)^37 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^29/Lucas(68) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^31/Lucas(70) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^33/Lucas(72) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^35/Lucas(74) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^37/Lucas(76) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^39/Lucas(78) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^41/Lucas(80) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^43/Lucas(82) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^45/Lucas(84) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^47/Lucas(86) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^49/Lucas(88) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^51/Lucas(90) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^53/Lucas(92) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^55/Lucas(94) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^57/Lucas(96) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^59/Lucas(98) 4032522475023108 a004 Fibonacci(17)*Lucas(17)/(1/2+sqrt(5)/2)^39 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^60/Lucas(99) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^61/Lucas(100) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^58/Lucas(97) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^56/Lucas(95) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^54/Lucas(93) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^52/Lucas(91) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^50/Lucas(89) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^48/Lucas(87) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^46/Lucas(85) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^44/Lucas(83) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^42/Lucas(81) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^40/Lucas(79) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^38/Lucas(77) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^36/Lucas(75) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^34/Lucas(73) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^32/Lucas(71) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^30/Lucas(69) 4032522475023108 a004 Fibonacci(70)/Lucas(34)/(1/2+sqrt(5)/2)^41 4032522475023108 a004 Fibonacci(72)/Lucas(34)/(1/2+sqrt(5)/2)^43 4032522475023108 a004 Fibonacci(74)/Lucas(34)/(1/2+sqrt(5)/2)^45 4032522475023108 a004 Fibonacci(76)/Lucas(34)/(1/2+sqrt(5)/2)^47 4032522475023108 a004 Fibonacci(78)/Lucas(34)/(1/2+sqrt(5)/2)^49 4032522475023108 a004 Fibonacci(80)/Lucas(34)/(1/2+sqrt(5)/2)^51 4032522475023108 a004 Fibonacci(82)/Lucas(34)/(1/2+sqrt(5)/2)^53 4032522475023108 a004 Fibonacci(84)/Lucas(34)/(1/2+sqrt(5)/2)^55 4032522475023108 a004 Fibonacci(86)/Lucas(34)/(1/2+sqrt(5)/2)^57 4032522475023108 a004 Fibonacci(88)/Lucas(34)/(1/2+sqrt(5)/2)^59 4032522475023108 a004 Fibonacci(90)/Lucas(34)/(1/2+sqrt(5)/2)^61 4032522475023108 a004 Fibonacci(92)/Lucas(34)/(1/2+sqrt(5)/2)^63 4032522475023108 a004 Fibonacci(94)/Lucas(34)/(1/2+sqrt(5)/2)^65 4032522475023108 a004 Fibonacci(96)/Lucas(34)/(1/2+sqrt(5)/2)^67 4032522475023108 a004 Fibonacci(98)/Lucas(34)/(1/2+sqrt(5)/2)^69 4032522475023108 a004 Fibonacci(100)/Lucas(34)/(1/2+sqrt(5)/2)^71 4032522475023108 a004 Fibonacci(99)/Lucas(34)/(1/2+sqrt(5)/2)^70 4032522475023108 a004 Fibonacci(97)/Lucas(34)/(1/2+sqrt(5)/2)^68 4032522475023108 a004 Fibonacci(95)/Lucas(34)/(1/2+sqrt(5)/2)^66 4032522475023108 a004 Fibonacci(93)/Lucas(34)/(1/2+sqrt(5)/2)^64 4032522475023108 a004 Fibonacci(91)/Lucas(34)/(1/2+sqrt(5)/2)^62 4032522475023108 a004 Fibonacci(89)/Lucas(34)/(1/2+sqrt(5)/2)^60 4032522475023108 a004 Fibonacci(87)/Lucas(34)/(1/2+sqrt(5)/2)^58 4032522475023108 a004 Fibonacci(85)/Lucas(34)/(1/2+sqrt(5)/2)^56 4032522475023108 a004 Fibonacci(83)/Lucas(34)/(1/2+sqrt(5)/2)^54 4032522475023108 a004 Fibonacci(81)/Lucas(34)/(1/2+sqrt(5)/2)^52 4032522475023108 a004 Fibonacci(79)/Lucas(34)/(1/2+sqrt(5)/2)^50 4032522475023108 a004 Fibonacci(77)/Lucas(34)/(1/2+sqrt(5)/2)^48 4032522475023108 a004 Fibonacci(75)/Lucas(34)/(1/2+sqrt(5)/2)^46 4032522475023108 a004 Fibonacci(73)/Lucas(34)/(1/2+sqrt(5)/2)^44 4032522475023108 a004 Fibonacci(71)/Lucas(34)/(1/2+sqrt(5)/2)^42 4032522475023108 a004 Fibonacci(69)/Lucas(34)/(1/2+sqrt(5)/2)^40 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^28/Lucas(67) 4032522475023108 a004 Fibonacci(67)/Lucas(34)/(1/2+sqrt(5)/2)^38 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^26/Lucas(65) 4032522475023108 a004 Fibonacci(65)/Lucas(34)/(1/2+sqrt(5)/2)^36 4032522475023108 a001 5702887/14662949395604*14662949395604^(8/21) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^24/Lucas(63) 4032522475023108 a004 Fibonacci(63)/Lucas(34)/(1/2+sqrt(5)/2)^34 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^22/Lucas(61) 4032522475023108 a004 Fibonacci(61)/Lucas(34)/(1/2+sqrt(5)/2)^32 4032522475023108 a004 Fibonacci(34)*Lucas(60)/(1/2+sqrt(5)/2)^99 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^20/Lucas(59) 4032522475023108 a004 Fibonacci(59)/Lucas(34)/(1/2+sqrt(5)/2)^30 4032522475023108 a004 Fibonacci(34)*Lucas(58)/(1/2+sqrt(5)/2)^97 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^18/Lucas(57) 4032522475023108 a004 Fibonacci(57)/Lucas(34)/(1/2+sqrt(5)/2)^28 4032522475023108 a001 5702887/2139295485799*505019158607^(5/14) 4032522475023108 a004 Fibonacci(34)*Lucas(56)/(1/2+sqrt(5)/2)^95 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^16/Lucas(55) 4032522475023108 a004 Fibonacci(55)/Lucas(34)/(1/2+sqrt(5)/2)^26 4032522475023108 a001 5702887/312119004989*23725150497407^(1/4) 4032522475023108 a001 5702887/3461452808002*192900153618^(7/18) 4032522475023108 a001 5702887/817138163596*192900153618^(1/3) 4032522475023108 a001 5702887/14662949395604*192900153618^(4/9) 4032522475023108 a004 Fibonacci(34)*Lucas(54)/(1/2+sqrt(5)/2)^93 4032522475023108 a001 5702887/312119004989*73681302247^(4/13) 4032522475023108 a001 5702887/119218851371*14662949395604^(2/9) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^14/Lucas(53) 4032522475023108 a004 Fibonacci(53)/Lucas(34)/(1/2+sqrt(5)/2)^24 4032522475023108 a001 5702887/2139295485799*73681302247^(5/13) 4032522475023108 a001 5702887/119218851371*505019158607^(1/4) 4032522475023108 a001 5702887/14662949395604*73681302247^(6/13) 4032522475023108 a004 Fibonacci(34)*Lucas(52)/(1/2+sqrt(5)/2)^91 4032522475023108 a001 5702887/192900153618*28143753123^(3/10) 4032522475023108 a001 1597/12752044*45537549124^(4/17) 4032522475023108 a001 1597/12752044*817138163596^(4/19) 4032522475023108 a001 1597/12752044*14662949395604^(4/21) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^12/Lucas(51) 4032522475023108 a004 Fibonacci(51)/Lucas(34)/(1/2+sqrt(5)/2)^22 4032522475023108 a001 1597/12752044*192900153618^(2/9) 4032522475023108 a001 5702887/2139295485799*28143753123^(2/5) 4032522475023108 a001 1597/12752044*73681302247^(3/13) 4032522475023108 a001 5702887/23725150497407*28143753123^(1/2) 4032522475023108 a004 Fibonacci(34)*Lucas(50)/(1/2+sqrt(5)/2)^89 4032522475023108 a001 5702887/119218851371*10749957122^(7/24) 4032522475023108 a001 1597/12752044*10749957122^(1/4) 4032522475023108 a001 5702887/192900153618*10749957122^(5/16) 4032522475023108 a001 5702887/312119004989*10749957122^(1/3) 4032522475023108 a001 5702887/817138163596*10749957122^(3/8) 4032522475023108 a001 5702887/17393796001*312119004989^(2/11) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^10/Lucas(49) 4032522475023108 a004 Fibonacci(49)/Lucas(34)/(1/2+sqrt(5)/2)^20 4032522475023108 a001 5702887/17393796001*28143753123^(1/5) 4032522475023108 a001 5702887/2139295485799*10749957122^(5/12) 4032522475023108 a001 5702887/3461452808002*10749957122^(7/16) 4032522475023108 a001 5702887/5600748293801*10749957122^(11/24) 4032522475023108 a001 5702887/14662949395604*10749957122^(1/2) 4032522475023108 a001 5702887/17393796001*10749957122^(5/24) 4032522475023108 a004 Fibonacci(34)*Lucas(48)/(1/2+sqrt(5)/2)^87 4032522475023108 a001 1597/12752044*4106118243^(6/23) 4032522475023108 a001 5702887/17393796001*4106118243^(5/23) 4032522475023108 a001 5702887/119218851371*4106118243^(7/23) 4032522475023108 a001 5702887/312119004989*4106118243^(8/23) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^8/Lucas(47) 4032522475023108 a004 Fibonacci(47)/Lucas(34)/(1/2+sqrt(5)/2)^18 4032522475023108 a001 5702887/6643838879*23725150497407^(1/8) 4032522475023108 a001 5702887/6643838879*73681302247^(2/13) 4032522475023108 a001 5702887/817138163596*4106118243^(9/23) 4032522475023108 a001 5702887/6643838879*10749957122^(1/6) 4032522475023108 a001 5702887/2139295485799*4106118243^(10/23) 4032522475023108 a001 5702887/5600748293801*4106118243^(11/23) 4032522475023108 a001 5702887/9062201101803*4106118243^(1/2) 4032522475023108 a001 5702887/14662949395604*4106118243^(12/23) 4032522475023108 a001 5702887/6643838879*4106118243^(4/23) 4032522475023108 a004 Fibonacci(34)*Lucas(46)/(1/2+sqrt(5)/2)^85 4032522475023108 a001 5702887/17393796001*1568397607^(5/22) 4032522475023108 a001 5702887/6643838879*1568397607^(2/11) 4032522475023108 a001 5702887/28143753123*1568397607^(1/4) 4032522475023108 a001 1597/12752044*1568397607^(3/11) 4032522475023108 a001 5702887/119218851371*1568397607^(7/22) 4032522475023108 a001 5702887/2537720636*2537720636^(2/15) 4032522475023108 a001 5702887/312119004989*1568397607^(4/11) 4032522475023108 a001 5702887/2537720636*45537549124^(2/17) 4032522475023108 a001 5702887/2537720636*14662949395604^(2/21) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^6/Lucas(45) 4032522475023108 a004 Fibonacci(45)/Lucas(34)/(1/2+sqrt(5)/2)^16 4032522475023108 a001 5702887/2537720636*10749957122^(1/8) 4032522475023108 a001 5702887/2537720636*4106118243^(3/23) 4032522475023108 a001 5702887/817138163596*1568397607^(9/22) 4032522475023108 a001 5702887/2139295485799*1568397607^(5/11) 4032522475023108 a001 5702887/5600748293801*1568397607^(1/2) 4032522475023108 a001 5702887/2537720636*1568397607^(3/22) 4032522475023108 a001 5702887/14662949395604*1568397607^(6/11) 4032522475023108 a001 5702887/4106118243*599074578^(1/6) 4032522475023108 a004 Fibonacci(34)*Lucas(44)/(1/2+sqrt(5)/2)^83 4032522475023108 a001 5702887/2537720636*599074578^(1/7) 4032522475023108 a001 5702887/6643838879*599074578^(4/21) 4032522475023108 a001 5702887/10749957122*599074578^(3/14) 4032522475023108 a001 5702887/17393796001*599074578^(5/21) 4032522475023108 a001 1597/12752044*599074578^(2/7) 4032522475023108 a001 5702887/119218851371*599074578^(1/3) 4032522475023108 a001 5702887/192900153618*599074578^(5/14) 4032522475023108 a001 5702887/312119004989*599074578^(8/21) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^4/Lucas(43) 4032522475023108 a004 Fibonacci(43)/Lucas(34)/(1/2+sqrt(5)/2)^14 4032522475023108 a001 5702887/969323029*23725150497407^(1/16) 4032522475023108 a001 5702887/969323029*73681302247^(1/13) 4032522475023108 a001 5702887/969323029*10749957122^(1/12) 4032522475023108 a001 5702887/969323029*4106118243^(2/23) 4032522475023108 a001 5702887/969323029*1568397607^(1/11) 4032522475023108 a001 5702887/817138163596*599074578^(3/7) 4032522475023108 a001 5702887/2139295485799*599074578^(10/21) 4032522475023108 a001 5702887/969323029*599074578^(2/21) 4032522475023108 a001 5702887/3461452808002*599074578^(1/2) 4032522475023108 a001 5702887/5600748293801*599074578^(11/21) 4032522475023108 a001 5702887/14662949395604*599074578^(4/7) 4032522475023108 a001 5702887/1568397607*228826127^(1/8) 4032522475023108 a004 Fibonacci(34)*Lucas(42)/(1/2+sqrt(5)/2)^81 4032522475023108 a001 5702887/969323029*228826127^(1/10) 4032522475023108 a001 5702887/2537720636*228826127^(3/20) 4032522475023108 a001 5702887/6643838879*228826127^(1/5) 4032522475023108 a001 5702887/17393796001*228826127^(1/4) 4032522475023108 a001 1597/12752044*228826127^(3/10) 4032522475023108 a001 5702887/119218851371*228826127^(7/20) 4032522475023108 a001 5702887/192900153618*228826127^(3/8) 4032522475023108 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^2/Lucas(41) 4032522475023108 a004 Fibonacci(41)/Lucas(34)/(1/2+sqrt(5)/2)^12 4032522475023108 a001 5702887/370248451*10749957122^(1/24) 4032522475023108 a001 5702887/370248451*4106118243^(1/23) 4032522475023108 a001 5702887/370248451*1568397607^(1/22) 4032522475023108 a001 5702887/370248451*599074578^(1/21) 4032522475023108 a001 5702887/312119004989*228826127^(2/5) 4032522475023108 a001 5702887/370248451*228826127^(1/20) 4032522475023108 a001 5702887/817138163596*228826127^(9/20) 4032522475023108 a001 5702887/2139295485799*228826127^(1/2) 4032522475023108 a001 5702887/5600748293801*228826127^(11/20) 4032522475023108 a001 5702887/14662949395604*228826127^(3/5) 4032522475023108 a001 5702887/23725150497407*228826127^(5/8) 4032522475023108 a001 5702887/370248451*87403803^(1/19) 4032522475023108 a001 5702887/969323029*87403803^(2/19) 4032522475023108 a004 Fibonacci(34)*Lucas(40)/(1/2+sqrt(5)/2)^79 4032522475023108 a001 5702887/2537720636*87403803^(3/19) 4032522475023108 a001 5702887/6643838879*87403803^(4/19) 4032522475023108 a001 5702887/17393796001*87403803^(5/19) 4032522475023108 a001 1597/12752044*87403803^(6/19) 4032522475023108 a001 5702887/119218851371*87403803^(7/19) 4032522475023108 a004 Fibonacci(39)/Lucas(34)/(1/2+sqrt(5)/2)^10 4032522475023108 a001 5702887/312119004989*87403803^(8/19) 4032522475023108 a001 5702887/370248451*33385282^(1/18) 4032522475023108 a001 5702887/817138163596*87403803^(9/19) 4032522475023108 a001 5702887/1322157322203*87403803^(1/2) 4032522475023108 a001 5702887/2139295485799*87403803^(10/19) 4032522475023108 a001 5702887/599074578*33385282^(1/12) 4032522475023108 a001 5702887/5600748293801*87403803^(11/19) 4032522475023108 a001 5702887/14662949395604*87403803^(12/19) 4032522475023109 a001 5702887/969323029*33385282^(1/9) 4032522475023109 a004 Fibonacci(34)*Lucas(38)/(1/2+sqrt(5)/2)^77 4032522475023109 a001 5702887/2537720636*33385282^(1/6) 4032522475023109 a001 39088169/312119004989*7881196^(4/11) 4032522475023109 a001 208010/35355581*710647^(1/7) 4032522475023109 a001 5702887/6643838879*33385282^(2/9) 4032522475023109 a001 5702887/10749957122*33385282^(1/4) 4032522475023109 a001 5702887/17393796001*33385282^(5/18) 4032522475023109 a001 102334155/817138163596*7881196^(4/11) 4032522475023109 a001 267914296/2139295485799*7881196^(4/11) 4032522475023109 a001 701408733/5600748293801*7881196^(4/11) 4032522475023109 a001 1836311903/14662949395604*7881196^(4/11) 4032522475023109 a001 2971215073/23725150497407*7881196^(4/11) 4032522475023109 a001 1134903170/9062201101803*7881196^(4/11) 4032522475023109 a001 433494437/3461452808002*7881196^(4/11) 4032522475023109 a001 1597/12752044*33385282^(1/3) 4032522475023109 a001 165580141/1322157322203*7881196^(4/11) 4032522475023109 a004 Fibonacci(34)/Lucas(37)/(1/2+sqrt(5)/2)^2 4032522475023109 a004 Fibonacci(37)/Lucas(34)/(1/2+sqrt(5)/2)^8 4032522475023109 a001 63245986/505019158607*7881196^(4/11) 4032522475023110 a001 5702887/119218851371*33385282^(7/18) 4032522475023110 a001 5702887/370248451*12752043^(1/17) 4032522475023110 a001 5702887/192900153618*33385282^(5/12) 4032522475023110 a001 5702887/312119004989*33385282^(4/9) 4032522475023110 a001 5702887/817138163596*33385282^(1/2) 4032522475023110 a001 5702887/2139295485799*33385282^(5/9) 4032522475023110 a001 5702887/3461452808002*33385282^(7/12) 4032522475023110 a001 5702887/5600748293801*33385282^(11/18) 4032522475023111 a001 5702887/14662949395604*33385282^(2/3) 4032522475023111 a001 24157817/192900153618*7881196^(4/11) 4032522475023111 a001 39088169/192900153618*7881196^(1/3) 4032522475023111 a001 5702887/969323029*12752043^(2/17) 4032522475023111 a001 102334155/505019158607*7881196^(1/3) 4032522475023111 a001 267914296/1322157322203*7881196^(1/3) 4032522475023111 a001 701408733/3461452808002*7881196^(1/3) 4032522475023111 a001 1836311903/9062201101803*7881196^(1/3) 4032522475023111 a001 4807526976/23725150497407*7881196^(1/3) 4032522475023111 a001 2971215073/14662949395604*7881196^(1/3) 4032522475023111 a001 1134903170/5600748293801*7881196^(1/3) 4032522475023111 a001 433494437/2139295485799*7881196^(1/3) 4032522475023111 a001 165580141/817138163596*7881196^(1/3) 4032522475023111 a001 63245986/312119004989*7881196^(1/3) 4032522475023112 a001 4976784/9381251041*7881196^(3/11) 4032522475023112 a004 Fibonacci(34)*Lucas(36)/(1/2+sqrt(5)/2)^75 4032522475023112 a001 5702887/2537720636*12752043^(3/17) 4032522475023113 a001 24157817/119218851371*7881196^(1/3) 4032522475023113 a001 9227465/312119004989*7881196^(5/11) 4032522475023114 a001 5702887/6643838879*12752043^(4/17) 4032522475023115 a001 39088169/73681302247*7881196^(3/11) 4032522475023115 a001 34111385/64300051206*7881196^(3/11) 4032522475023115 a001 267914296/505019158607*7881196^(3/11) 4032522475023115 a001 233802911/440719107401*7881196^(3/11) 4032522475023115 a001 1836311903/3461452808002*7881196^(3/11) 4032522475023115 a001 1602508992/3020733700601*7881196^(3/11) 4032522475023115 a001 12586269025/23725150497407*7881196^(3/11) 4032522475023115 a001 7778742049/14662949395604*7881196^(3/11) 4032522475023115 a001 2971215073/5600748293801*7881196^(3/11) 4032522475023115 a001 1134903170/2139295485799*7881196^(3/11) 4032522475023115 a001 433494437/817138163596*7881196^(3/11) 4032522475023115 a001 165580141/312119004989*7881196^(3/11) 4032522475023115 a001 5702887/17393796001*12752043^(5/17) 4032522475023115 a001 63245986/119218851371*7881196^(3/11) 4032522475023117 a001 24157817/45537549124*7881196^(3/11) 4032522475023117 a001 1597/12752044*12752043^(6/17) 4032522475023117 a001 14930352/6643838879*7881196^(2/11) 4032522475023118 a004 Fibonacci(34)/Lucas(35)/(1/2+sqrt(5)/2)^4 4032522475023118 a004 Fibonacci(35)/Lucas(34)/(1/2+sqrt(5)/2)^6 4032522475023118 a001 2178309/370248451*1860498^(2/15) 4032522475023118 a001 5702887/119218851371*12752043^(7/17) 4032522475023119 a001 5702887/370248451*4870847^(1/16) 4032522475023119 a001 9227465/73681302247*7881196^(4/11) 4032522475023120 a001 5702887/312119004989*12752043^(8/17) 4032522475023120 a004 Fibonacci(36)*Lucas(35)/(1/2+sqrt(5)/2)^76 4032522475023120 a001 5702887/505019158607*12752043^(1/2) 4032522475023121 a001 39088169/17393796001*7881196^(2/11) 4032522475023121 a001 9227465/45537549124*7881196^(1/3) 4032522475023121 a001 102334155/45537549124*7881196^(2/11) 4032522475023121 a001 267914296/119218851371*7881196^(2/11) 4032522475023121 a001 3524667/1568437211*7881196^(2/11) 4032522475023121 a001 1836311903/817138163596*7881196^(2/11) 4032522475023121 a001 4807526976/2139295485799*7881196^(2/11) 4032522475023121 a001 12586269025/5600748293801*7881196^(2/11) 4032522475023121 a001 32951280099/14662949395604*7881196^(2/11) 4032522475023121 a001 53316291173/23725150497407*7881196^(2/11) 4032522475023121 a001 20365011074/9062201101803*7881196^(2/11) 4032522475023121 a001 7778742049/3461452808002*7881196^(2/11) 4032522475023121 a001 2971215073/1322157322203*7881196^(2/11) 4032522475023121 a001 1134903170/505019158607*7881196^(2/11) 4032522475023121 a001 433494437/192900153618*7881196^(2/11) 4032522475023121 a001 165580141/73681302247*7881196^(2/11) 4032522475023121 a001 5702887/817138163596*12752043^(9/17) 4032522475023121 a001 63245986/28143753123*7881196^(2/11) 4032522475023122 a001 24157817/10749957122*7881196^(2/11) 4032522475023123 a001 5702887/2139295485799*12752043^(10/17) 4032522475023123 a004 Fibonacci(38)*Lucas(35)/(1/2+sqrt(5)/2)^78 4032522475023123 a004 Fibonacci(40)*Lucas(35)/(1/2+sqrt(5)/2)^80 4032522475023123 a001 14930352/1568397607*7881196^(1/11) 4032522475023123 a004 Fibonacci(42)*Lucas(35)/(1/2+sqrt(5)/2)^82 4032522475023123 a004 Fibonacci(44)*Lucas(35)/(1/2+sqrt(5)/2)^84 4032522475023123 a004 Fibonacci(46)*Lucas(35)/(1/2+sqrt(5)/2)^86 4032522475023123 a004 Fibonacci(48)*Lucas(35)/(1/2+sqrt(5)/2)^88 4032522475023123 a004 Fibonacci(50)*Lucas(35)/(1/2+sqrt(5)/2)^90 4032522475023123 a004 Fibonacci(52)*Lucas(35)/(1/2+sqrt(5)/2)^92 4032522475023123 a004 Fibonacci(54)*Lucas(35)/(1/2+sqrt(5)/2)^94 4032522475023123 a004 Fibonacci(56)*Lucas(35)/(1/2+sqrt(5)/2)^96 4032522475023123 a004 Fibonacci(58)*Lucas(35)/(1/2+sqrt(5)/2)^98 4032522475023123 a004 Fibonacci(60)*Lucas(35)/(1/2+sqrt(5)/2)^100 4032522475023123 a001 2/9227465*(1/2+1/2*5^(1/2))^30 4032522475023123 a004 Fibonacci(59)*Lucas(35)/(1/2+sqrt(5)/2)^99 4032522475023123 a004 Fibonacci(57)*Lucas(35)/(1/2+sqrt(5)/2)^97 4032522475023123 a004 Fibonacci(55)*Lucas(35)/(1/2+sqrt(5)/2)^95 4032522475023123 a004 Fibonacci(53)*Lucas(35)/(1/2+sqrt(5)/2)^93 4032522475023123 a004 Fibonacci(51)*Lucas(35)/(1/2+sqrt(5)/2)^91 4032522475023123 a004 Fibonacci(49)*Lucas(35)/(1/2+sqrt(5)/2)^89 4032522475023123 a004 Fibonacci(47)*Lucas(35)/(1/2+sqrt(5)/2)^87 4032522475023123 a004 Fibonacci(45)*Lucas(35)/(1/2+sqrt(5)/2)^85 4032522475023123 a004 Fibonacci(43)*Lucas(35)/(1/2+sqrt(5)/2)^83 4032522475023123 a004 Fibonacci(41)*Lucas(35)/(1/2+sqrt(5)/2)^81 4032522475023123 a001 1875749/9303105*8^(1/3) 4032522475023124 a001 4976784/3020733700601*20633239^(3/5) 4032522475023124 a004 Fibonacci(39)*Lucas(35)/(1/2+sqrt(5)/2)^79 4032522475023124 a001 14930352/5600748293801*20633239^(4/7) 4032522475023124 a001 5702887/5600748293801*12752043^(11/17) 4032522475023125 a001 9227465/17393796001*7881196^(3/11) 4032522475023125 a004 Fibonacci(37)*Lucas(35)/(1/2+sqrt(5)/2)^77 4032522475023125 a001 14930352/505019158607*20633239^(3/7) 4032522475023125 a001 14930352/312119004989*20633239^(2/5) 4032522475023126 a001 5702887/14662949395604*12752043^(12/17) 4032522475023126 a004 Fibonacci(36)/Lucas(36)/(1/2+sqrt(5)/2)^5 4032522475023126 a001 39088169/4106118243*7881196^(1/11) 4032522475023127 a001 3732588/11384387281*20633239^(2/7) 4032522475023127 a001 39088169/23725150497407*20633239^(3/5) 4032522475023127 a001 102334155/10749957122*7881196^(1/11) 4032522475023127 a001 39088169/14662949395604*20633239^(4/7) 4032522475023127 a001 267914296/28143753123*7881196^(1/11) 4032522475023127 a001 701408733/73681302247*7881196^(1/11) 4032522475023127 a001 1836311903/192900153618*7881196^(1/11) 4032522475023127 a001 102287808/10745088481*7881196^(1/11) 4032522475023127 a001 12586269025/1322157322203*7881196^(1/11) 4032522475023127 a001 32951280099/3461452808002*7881196^(1/11) 4032522475023127 a001 86267571272/9062201101803*7881196^(1/11) 4032522475023127 a001 225851433717/23725150497407*7881196^(1/11) 4032522475023127 a001 139583862445/14662949395604*7881196^(1/11) 4032522475023127 a001 53316291173/5600748293801*7881196^(1/11) 4032522475023127 a001 20365011074/2139295485799*7881196^(1/11) 4032522475023127 a001 7778742049/817138163596*7881196^(1/11) 4032522475023127 a001 2971215073/312119004989*7881196^(1/11) 4032522475023127 a001 1134903170/119218851371*7881196^(1/11) 4032522475023127 a001 433494437/45537549124*7881196^(1/11) 4032522475023127 a001 165580141/17393796001*7881196^(1/11) 4032522475023127 a001 63245986/6643838879*7881196^(1/11) 4032522475023127 a001 7465176/5374978561*20633239^(1/5) 4032522475023128 a001 63245986/23725150497407*20633239^(4/7) 4032522475023128 a004 Fibonacci(36)*Lucas(37)/(1/2+sqrt(5)/2)^78 4032522475023128 a001 4976784/1368706081*20633239^(1/7) 4032522475023128 a001 39088169/1322157322203*20633239^(3/7) 4032522475023128 a001 24157817/2537720636*7881196^(1/11) 4032522475023129 a001 4181/87403804*20633239^(2/5) 4032522475023129 a001 24157817/14662949395604*20633239^(3/5) 4032522475023129 a004 Fibonacci(36)/Lucas(38)/(1/2+sqrt(5)/2)^3 4032522475023129 a004 Fibonacci(38)/Lucas(36)/(1/2+sqrt(5)/2)^7 4032522475023129 a001 6765/228826126*20633239^(3/7) 4032522475023129 a001 267914296/9062201101803*20633239^(3/7) 4032522475023129 a001 701408733/23725150497407*20633239^(3/7) 4032522475023129 a001 433494437/14662949395604*20633239^(3/7) 4032522475023129 a001 24157817/9062201101803*20633239^(4/7) 4032522475023129 a001 165580141/5600748293801*20633239^(3/7) 4032522475023129 a001 102334155/2139295485799*20633239^(2/5) 4032522475023129 a001 63245986/2139295485799*20633239^(3/7) 4032522475023129 a004 Fibonacci(36)*Lucas(39)/(1/2+sqrt(5)/2)^80 4032522475023129 a001 267914296/5600748293801*20633239^(2/5) 4032522475023129 a001 701408733/14662949395604*20633239^(2/5) 4032522475023129 a001 1134903170/23725150497407*20633239^(2/5) 4032522475023129 a001 433494437/9062201101803*20633239^(2/5) 4032522475023129 a001 165580141/3461452808002*20633239^(2/5) 4032522475023129 a001 4976784/3020733700601*141422324^(7/13) 4032522475023129 a001 14930352/2139295485799*141422324^(6/13) 4032522475023129 a001 14930352/505019158607*141422324^(5/13) 4032522475023129 a004 Fibonacci(36)/Lucas(40)/(1/2+sqrt(5)/2) 4032522475023129 a004 Fibonacci(40)/Lucas(36)/(1/2+sqrt(5)/2)^9 4032522475023129 a001 2584/33385281*141422324^(1/3) 4032522475023129 a001 14930352/119218851371*141422324^(4/13) 4032522475023129 a001 4976784/9381251041*141422324^(3/13) 4032522475023129 a001 14930352/6643838879*141422324^(2/13) 4032522475023129 a004 Fibonacci(36)*Lucas(41)/(1/2+sqrt(5)/2)^82 4032522475023129 a001 14930352/1568397607*141422324^(1/13) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)/Lucas(42) 4032522475023129 a004 Fibonacci(42)/Lucas(36)/(1/2+sqrt(5)/2)^11 4032522475023129 a004 Fibonacci(36)*Lucas(43)/(1/2+sqrt(5)/2)^84 4032522475023129 a001 14930352/1568397607*2537720636^(1/15) 4032522475023129 a001 14930352/1568397607*45537549124^(1/17) 4032522475023129 a001 14930352/1568397607*14662949395604^(1/21) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^3/Lucas(44) 4032522475023129 a004 Fibonacci(44)/Lucas(36)/(1/2+sqrt(5)/2)^13 4032522475023129 a001 14930352/1568397607*192900153618^(1/18) 4032522475023129 a001 14930352/1568397607*10749957122^(1/16) 4032522475023129 a001 14930352/1568397607*599074578^(1/14) 4032522475023129 a004 Fibonacci(36)*Lucas(45)/(1/2+sqrt(5)/2)^86 4032522475023129 a001 4976784/1368706081*2537720636^(1/9) 4032522475023129 a001 4976784/3020733700601*2537720636^(7/15) 4032522475023129 a001 14930352/5600748293801*2537720636^(4/9) 4032522475023129 a001 14930352/2139295485799*2537720636^(2/5) 4032522475023129 a001 4976784/1368706081*312119004989^(1/11) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^5/Lucas(46) 4032522475023129 a004 Fibonacci(46)/Lucas(36)/(1/2+sqrt(5)/2)^15 4032522475023129 a001 4976784/1368706081*28143753123^(1/10) 4032522475023129 a001 14930352/505019158607*2537720636^(1/3) 4032522475023129 a001 14930352/119218851371*2537720636^(4/15) 4032522475023129 a001 3732588/11384387281*2537720636^(2/9) 4032522475023129 a001 4976784/9381251041*2537720636^(1/5) 4032522475023129 a004 Fibonacci(36)*Lucas(47)/(1/2+sqrt(5)/2)^88 4032522475023129 a001 7465176/5374978561*17393796001^(1/7) 4032522475023129 a001 7465176/5374978561*14662949395604^(1/9) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^7/Lucas(48) 4032522475023129 a004 Fibonacci(48)/Lucas(36)/(1/2+sqrt(5)/2)^17 4032522475023129 a004 Fibonacci(36)*Lucas(49)/(1/2+sqrt(5)/2)^90 4032522475023129 a001 4976784/3020733700601*17393796001^(3/7) 4032522475023129 a001 4976784/9381251041*45537549124^(3/17) 4032522475023129 a001 4976784/9381251041*817138163596^(3/19) 4032522475023129 a001 4976784/9381251041*14662949395604^(1/7) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^9/Lucas(50) 4032522475023129 a004 Fibonacci(50)/Lucas(36)/(1/2+sqrt(5)/2)^19 4032522475023129 a001 4976784/9381251041*192900153618^(1/6) 4032522475023129 a001 14930352/312119004989*17393796001^(2/7) 4032522475023129 a004 Fibonacci(36)*Lucas(51)/(1/2+sqrt(5)/2)^92 4032522475023129 a001 4976784/3020733700601*45537549124^(7/17) 4032522475023129 a001 14930352/73681302247*312119004989^(1/5) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^11/Lucas(52) 4032522475023129 a004 Fibonacci(52)/Lucas(36)/(1/2+sqrt(5)/2)^21 4032522475023129 a001 14930352/2139295485799*45537549124^(6/17) 4032522475023129 a001 4976784/440719107401*45537549124^(1/3) 4032522475023129 a001 14930352/505019158607*45537549124^(5/17) 4032522475023129 a004 Fibonacci(36)*Lucas(53)/(1/2+sqrt(5)/2)^94 4032522475023129 a001 14930352/119218851371*45537549124^(4/17) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^13/Lucas(54) 4032522475023129 a004 Fibonacci(54)/Lucas(36)/(1/2+sqrt(5)/2)^23 4032522475023129 a004 Fibonacci(36)*Lucas(55)/(1/2+sqrt(5)/2)^96 4032522475023129 a001 14930352/505019158607*312119004989^(3/11) 4032522475023129 a001 196452/192933544679*312119004989^(2/5) 4032522475023129 a001 14930352/505019158607*14662949395604^(5/21) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^15/Lucas(56) 4032522475023129 a004 Fibonacci(56)/Lucas(36)/(1/2+sqrt(5)/2)^25 4032522475023129 a004 Fibonacci(36)*Lucas(57)/(1/2+sqrt(5)/2)^98 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^17/Lucas(58) 4032522475023129 a004 Fibonacci(58)/Lucas(36)/(1/2+sqrt(5)/2)^27 4032522475023129 a004 Fibonacci(36)*Lucas(59)/(1/2+sqrt(5)/2)^100 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^19/Lucas(60) 4032522475023129 a004 Fibonacci(60)/Lucas(36)/(1/2+sqrt(5)/2)^29 4032522475023129 a001 4976784/3020733700601*14662949395604^(1/3) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^21/Lucas(62) 4032522475023129 a004 Fibonacci(62)/Lucas(36)/(1/2+sqrt(5)/2)^31 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^23/Lucas(64) 4032522475023129 a004 Fibonacci(64)/Lucas(36)/(1/2+sqrt(5)/2)^33 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^25/Lucas(66) 4032522475023129 a004 Fibonacci(66)/Lucas(36)/(1/2+sqrt(5)/2)^35 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^27/Lucas(68) 4032522475023129 a004 Fibonacci(68)/Lucas(36)/(1/2+sqrt(5)/2)^37 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^29/Lucas(70) 4032522475023129 a004 Fibonacci(70)/Lucas(36)/(1/2+sqrt(5)/2)^39 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^31/Lucas(72) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^33/Lucas(74) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^35/Lucas(76) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^37/Lucas(78) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^39/Lucas(80) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^41/Lucas(82) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^43/Lucas(84) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^45/Lucas(86) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^47/Lucas(88) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^49/Lucas(90) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^51/Lucas(92) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^53/Lucas(94) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^55/Lucas(96) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^57/Lucas(98) 4032522475023129 a004 Fibonacci(18)*Lucas(18)/(1/2+sqrt(5)/2)^41 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^58/Lucas(99) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^59/Lucas(100) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^56/Lucas(97) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^54/Lucas(95) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^52/Lucas(93) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^50/Lucas(91) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^48/Lucas(89) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^46/Lucas(87) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^44/Lucas(85) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^42/Lucas(83) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^40/Lucas(81) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^38/Lucas(79) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^36/Lucas(77) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^34/Lucas(75) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^32/Lucas(73) 4032522475023129 a004 Fibonacci(74)/Lucas(36)/(1/2+sqrt(5)/2)^43 4032522475023129 a004 Fibonacci(76)/Lucas(36)/(1/2+sqrt(5)/2)^45 4032522475023129 a004 Fibonacci(78)/Lucas(36)/(1/2+sqrt(5)/2)^47 4032522475023129 a004 Fibonacci(80)/Lucas(36)/(1/2+sqrt(5)/2)^49 4032522475023129 a004 Fibonacci(82)/Lucas(36)/(1/2+sqrt(5)/2)^51 4032522475023129 a004 Fibonacci(84)/Lucas(36)/(1/2+sqrt(5)/2)^53 4032522475023129 a004 Fibonacci(86)/Lucas(36)/(1/2+sqrt(5)/2)^55 4032522475023129 a004 Fibonacci(88)/Lucas(36)/(1/2+sqrt(5)/2)^57 4032522475023129 a004 Fibonacci(90)/Lucas(36)/(1/2+sqrt(5)/2)^59 4032522475023129 a004 Fibonacci(92)/Lucas(36)/(1/2+sqrt(5)/2)^61 4032522475023129 a004 Fibonacci(94)/Lucas(36)/(1/2+sqrt(5)/2)^63 4032522475023129 a004 Fibonacci(96)/Lucas(36)/(1/2+sqrt(5)/2)^65 4032522475023129 a004 Fibonacci(98)/Lucas(36)/(1/2+sqrt(5)/2)^67 4032522475023129 a004 Fibonacci(100)/Lucas(36)/(1/2+sqrt(5)/2)^69 4032522475023129 a004 Fibonacci(99)/Lucas(36)/(1/2+sqrt(5)/2)^68 4032522475023129 a004 Fibonacci(97)/Lucas(36)/(1/2+sqrt(5)/2)^66 4032522475023129 a004 Fibonacci(95)/Lucas(36)/(1/2+sqrt(5)/2)^64 4032522475023129 a004 Fibonacci(93)/Lucas(36)/(1/2+sqrt(5)/2)^62 4032522475023129 a004 Fibonacci(91)/Lucas(36)/(1/2+sqrt(5)/2)^60 4032522475023129 a004 Fibonacci(89)/Lucas(36)/(1/2+sqrt(5)/2)^58 4032522475023129 a004 Fibonacci(87)/Lucas(36)/(1/2+sqrt(5)/2)^56 4032522475023129 a004 Fibonacci(85)/Lucas(36)/(1/2+sqrt(5)/2)^54 4032522475023129 a004 Fibonacci(83)/Lucas(36)/(1/2+sqrt(5)/2)^52 4032522475023129 a004 Fibonacci(81)/Lucas(36)/(1/2+sqrt(5)/2)^50 4032522475023129 a004 Fibonacci(79)/Lucas(36)/(1/2+sqrt(5)/2)^48 4032522475023129 a004 Fibonacci(77)/Lucas(36)/(1/2+sqrt(5)/2)^46 4032522475023129 a004 Fibonacci(75)/Lucas(36)/(1/2+sqrt(5)/2)^44 4032522475023129 a004 Fibonacci(73)/Lucas(36)/(1/2+sqrt(5)/2)^42 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^30/Lucas(71) 4032522475023129 a004 Fibonacci(71)/Lucas(36)/(1/2+sqrt(5)/2)^40 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^28/Lucas(69) 4032522475023129 a004 Fibonacci(69)/Lucas(36)/(1/2+sqrt(5)/2)^38 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^26/Lucas(67) 4032522475023129 a004 Fibonacci(67)/Lucas(36)/(1/2+sqrt(5)/2)^36 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^24/Lucas(65) 4032522475023129 a004 Fibonacci(65)/Lucas(36)/(1/2+sqrt(5)/2)^34 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^22/Lucas(63) 4032522475023129 a004 Fibonacci(63)/Lucas(36)/(1/2+sqrt(5)/2)^32 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^20/Lucas(61) 4032522475023129 a004 Fibonacci(61)/Lucas(36)/(1/2+sqrt(5)/2)^30 4032522475023129 a001 14930352/2139295485799*14662949395604^(2/7) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^18/Lucas(59) 4032522475023129 a004 Fibonacci(59)/Lucas(36)/(1/2+sqrt(5)/2)^28 4032522475023129 a004 Fibonacci(36)*Lucas(58)/(1/2+sqrt(5)/2)^99 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^16/Lucas(57) 4032522475023129 a004 Fibonacci(57)/Lucas(36)/(1/2+sqrt(5)/2)^26 4032522475023129 a001 14930352/505019158607*192900153618^(5/18) 4032522475023129 a004 Fibonacci(36)*Lucas(56)/(1/2+sqrt(5)/2)^97 4032522475023129 a001 14930352/2139295485799*192900153618^(1/3) 4032522475023129 a001 14930352/312119004989*14662949395604^(2/9) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^14/Lucas(55) 4032522475023129 a004 Fibonacci(55)/Lucas(36)/(1/2+sqrt(5)/2)^24 4032522475023129 a001 4976784/3020733700601*192900153618^(7/18) 4032522475023129 a001 2584/33385281*73681302247^(1/4) 4032522475023129 a004 Fibonacci(36)*Lucas(54)/(1/2+sqrt(5)/2)^95 4032522475023129 a001 3732588/204284540899*73681302247^(4/13) 4032522475023129 a001 14930352/119218851371*817138163596^(4/19) 4032522475023129 a001 14930352/119218851371*14662949395604^(4/21) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^12/Lucas(53) 4032522475023129 a004 Fibonacci(53)/Lucas(36)/(1/2+sqrt(5)/2)^22 4032522475023129 a001 14930352/5600748293801*73681302247^(5/13) 4032522475023129 a001 14930352/119218851371*192900153618^(2/9) 4032522475023129 a001 14930352/119218851371*73681302247^(3/13) 4032522475023129 a004 Fibonacci(36)*Lucas(52)/(1/2+sqrt(5)/2)^93 4032522475023129 a001 4976784/9381251041*10749957122^(3/16) 4032522475023129 a001 14930352/505019158607*28143753123^(3/10) 4032522475023129 a001 3732588/11384387281*312119004989^(2/11) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^10/Lucas(51) 4032522475023129 a004 Fibonacci(51)/Lucas(36)/(1/2+sqrt(5)/2)^20 4032522475023129 a001 14930352/5600748293801*28143753123^(2/5) 4032522475023129 a001 3732588/11384387281*28143753123^(1/5) 4032522475023129 a004 Fibonacci(36)*Lucas(50)/(1/2+sqrt(5)/2)^91 4032522475023129 a001 14930352/6643838879*2537720636^(2/15) 4032522475023129 a001 14930352/119218851371*10749957122^(1/4) 4032522475023129 a001 3732588/11384387281*10749957122^(5/24) 4032522475023129 a001 14930352/312119004989*10749957122^(7/24) 4032522475023129 a001 14930352/505019158607*10749957122^(5/16) 4032522475023129 a001 3732588/204284540899*10749957122^(1/3) 4032522475023129 a001 14930352/2139295485799*10749957122^(3/8) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^8/Lucas(49) 4032522475023129 a004 Fibonacci(49)/Lucas(36)/(1/2+sqrt(5)/2)^18 4032522475023129 a001 14930352/17393796001*23725150497407^(1/8) 4032522475023129 a001 14930352/17393796001*505019158607^(1/7) 4032522475023129 a001 14930352/17393796001*73681302247^(2/13) 4032522475023129 a001 14930352/5600748293801*10749957122^(5/12) 4032522475023129 a001 4976784/3020733700601*10749957122^(7/16) 4032522475023129 a001 196452/192933544679*10749957122^(11/24) 4032522475023129 a001 14930352/17393796001*10749957122^(1/6) 4032522475023129 a004 Fibonacci(36)*Lucas(48)/(1/2+sqrt(5)/2)^89 4032522475023129 a001 3732588/11384387281*4106118243^(5/23) 4032522475023129 a001 14930352/17393796001*4106118243^(4/23) 4032522475023129 a001 14930352/119218851371*4106118243^(6/23) 4032522475023129 a001 14930352/312119004989*4106118243^(7/23) 4032522475023129 a001 3732588/204284540899*4106118243^(8/23) 4032522475023129 a001 14930352/6643838879*45537549124^(2/17) 4032522475023129 a001 14930352/6643838879*14662949395604^(2/21) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^6/Lucas(47) 4032522475023129 a004 Fibonacci(47)/Lucas(36)/(1/2+sqrt(5)/2)^16 4032522475023129 a001 14930352/2139295485799*4106118243^(9/23) 4032522475023129 a001 14930352/6643838879*10749957122^(1/8) 4032522475023129 a001 14930352/5600748293801*4106118243^(10/23) 4032522475023129 a001 196452/192933544679*4106118243^(11/23) 4032522475023129 a001 14930352/23725150497407*4106118243^(1/2) 4032522475023129 a001 14930352/6643838879*4106118243^(3/23) 4032522475023129 a004 Fibonacci(36)*Lucas(46)/(1/2+sqrt(5)/2)^87 4032522475023129 a001 14930352/17393796001*1568397607^(2/11) 4032522475023129 a001 14930352/6643838879*1568397607^(3/22) 4032522475023129 a001 3732588/11384387281*1568397607^(5/22) 4032522475023129 a001 14930352/73681302247*1568397607^(1/4) 4032522475023129 a001 14930352/119218851371*1568397607^(3/11) 4032522475023129 a001 14930352/312119004989*1568397607^(7/22) 4032522475023129 a001 3732588/204284540899*1568397607^(4/11) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^4/Lucas(45) 4032522475023129 a004 Fibonacci(45)/Lucas(36)/(1/2+sqrt(5)/2)^14 4032522475023129 a001 196452/33391061*23725150497407^(1/16) 4032522475023129 a001 196452/33391061*73681302247^(1/13) 4032522475023129 a001 196452/33391061*10749957122^(1/12) 4032522475023129 a001 196452/33391061*4106118243^(2/23) 4032522475023129 a001 14930352/2139295485799*1568397607^(9/22) 4032522475023129 a001 14930352/5600748293801*1568397607^(5/11) 4032522475023129 a001 196452/33391061*1568397607^(1/11) 4032522475023129 a001 196452/192933544679*1568397607^(1/2) 4032522475023129 a004 Fibonacci(36)*Lucas(44)/(1/2+sqrt(5)/2)^85 4032522475023129 a001 196452/33391061*599074578^(2/21) 4032522475023129 a001 14930352/6643838879*599074578^(1/7) 4032522475023129 a001 7465176/5374978561*599074578^(1/6) 4032522475023129 a001 14930352/17393796001*599074578^(4/21) 4032522475023129 a001 4976784/9381251041*599074578^(3/14) 4032522475023129 a001 3732588/11384387281*599074578^(5/21) 4032522475023129 a001 14930352/119218851371*599074578^(2/7) 4032522475023129 a001 14930352/312119004989*599074578^(1/3) 4032522475023129 a001 14930352/505019158607*599074578^(5/14) 4032522475023129 a001 3732588/204284540899*599074578^(8/21) 4032522475023129 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^2/Lucas(43) 4032522475023129 a004 Fibonacci(43)/Lucas(36)/(1/2+sqrt(5)/2)^12 4032522475023129 a001 14930352/969323029*10749957122^(1/24) 4032522475023129 a001 14930352/969323029*4106118243^(1/23) 4032522475023129 a001 14930352/969323029*1568397607^(1/22) 4032522475023129 a001 14930352/2139295485799*599074578^(3/7) 4032522475023129 a001 14930352/969323029*599074578^(1/21) 4032522475023129 a001 14930352/5600748293801*599074578^(10/21) 4032522475023129 a001 4976784/3020733700601*599074578^(1/2) 4032522475023129 a001 196452/192933544679*599074578^(11/21) 4032522475023129 a001 14930352/969323029*228826127^(1/20) 4032522475023129 a001 196452/33391061*228826127^(1/10) 4032522475023129 a001 4976784/1368706081*228826127^(1/8) 4032522475023129 a004 Fibonacci(36)*Lucas(42)/(1/2+sqrt(5)/2)^83 4032522475023129 a001 14930352/6643838879*228826127^(3/20) 4032522475023129 a001 14930352/17393796001*228826127^(1/5) 4032522475023129 a001 3732588/11384387281*228826127^(1/4) 4032522475023129 a001 14930352/119218851371*228826127^(3/10) 4032522475023129 a001 14930352/312119004989*228826127^(7/20) 4032522475023129 a001 14930352/505019158607*228826127^(3/8) 4032522475023129 a004 Fibonacci(41)/Lucas(36)/(1/2+sqrt(5)/2)^10 4032522475023129 a001 63245986/1322157322203*20633239^(2/5) 4032522475023129 a001 3732588/204284540899*228826127^(2/5) 4032522475023129 a001 14930352/969323029*87403803^(1/19) 4032522475023129 a001 14930352/2139295485799*228826127^(9/20) 4032522475023129 a001 14930352/5600748293801*228826127^(1/2) 4032522475023129 a001 196452/192933544679*228826127^(11/20) 4032522475023129 a001 196452/33391061*87403803^(2/19) 4032522475023129 a001 5702887/969323029*4870847^(1/8) 4032522475023129 a004 Fibonacci(36)*Lucas(40)/(1/2+sqrt(5)/2)^81 4032522475023129 a001 14930352/6643838879*87403803^(3/19) 4032522475023129 a001 14930352/17393796001*87403803^(4/19) 4032522475023129 a001 3732588/11384387281*87403803^(5/19) 4032522475023129 a001 14930352/119218851371*87403803^(6/19) 4032522475023129 a001 14930352/312119004989*87403803^(7/19) 4032522475023129 a004 Fibonacci(36)/Lucas(39)/(1/2+sqrt(5)/2)^2 4032522475023129 a004 Fibonacci(39)/Lucas(36)/(1/2+sqrt(5)/2)^8 4032522475023129 a001 14930352/969323029*33385282^(1/18) 4032522475023129 a001 3732588/204284540899*87403803^(8/19) 4032522475023130 a001 14930352/2139295485799*87403803^(9/19) 4032522475023130 a001 7465176/1730726404001*87403803^(1/2) 4032522475023130 a001 14930352/5600748293801*87403803^(10/19) 4032522475023130 a001 14930352/1568397607*33385282^(1/12) 4032522475023130 a001 196452/192933544679*87403803^(11/19) 4032522475023130 a001 39088169/119218851371*20633239^(2/7) 4032522475023130 a001 196452/33391061*33385282^(1/9) 4032522475023130 a004 Fibonacci(36)*Lucas(38)/(1/2+sqrt(5)/2)^79 4032522475023130 a001 14930352/6643838879*33385282^(1/6) 4032522475023130 a001 14930352/17393796001*33385282^(2/9) 4032522475023130 a001 9303105/28374454999*20633239^(2/7) 4032522475023130 a001 66978574/204284540899*20633239^(2/7) 4032522475023130 a001 4976784/9381251041*33385282^(1/4) 4032522475023130 a001 701408733/2139295485799*20633239^(2/7) 4032522475023130 a001 1836311903/5600748293801*20633239^(2/7) 4032522475023130 a001 1201881744/3665737348901*20633239^(2/7) 4032522475023130 a001 7778742049/23725150497407*20633239^(2/7) 4032522475023130 a001 2971215073/9062201101803*20633239^(2/7) 4032522475023130 a001 567451585/1730726404001*20633239^(2/7) 4032522475023130 a001 433494437/1322157322203*20633239^(2/7) 4032522475023130 a001 24157817/817138163596*20633239^(3/7) 4032522475023130 a001 165580141/505019158607*20633239^(2/7) 4032522475023130 a001 3732588/11384387281*33385282^(5/18) 4032522475023130 a001 31622993/96450076809*20633239^(2/7) 4032522475023130 a001 39088169/28143753123*20633239^(1/5) 4032522475023130 a001 14930352/119218851371*33385282^(1/3) 4032522475023130 a001 24157817/505019158607*20633239^(2/5) 4032522475023131 a001 9227465/4106118243*7881196^(2/11) 4032522475023131 a004 Fibonacci(36)/Lucas(37)/(1/2+sqrt(5)/2)^4 4032522475023131 a004 Fibonacci(37)/Lucas(36)/(1/2+sqrt(5)/2)^6 4032522475023131 a001 14930352/312119004989*33385282^(7/18) 4032522475023131 a001 14930352/969323029*12752043^(1/17) 4032522475023131 a001 14930352/505019158607*33385282^(5/12) 4032522475023131 a001 3732588/204284540899*33385282^(4/9) 4032522475023131 a001 14619165/10525900321*20633239^(1/5) 4032522475023131 a004 Fibonacci(38)*Lucas(37)/(1/2+sqrt(5)/2)^80 4032522475023131 a001 133957148/96450076809*20633239^(1/5) 4032522475023131 a001 701408733/505019158607*20633239^(1/5) 4032522475023131 a001 1836311903/1322157322203*20633239^(1/5) 4032522475023131 a001 14930208/10749853441*20633239^(1/5) 4032522475023131 a001 12586269025/9062201101803*20633239^(1/5) 4032522475023131 a001 32951280099/23725150497407*20633239^(1/5) 4032522475023131 a001 10182505537/7331474697802*20633239^(1/5) 4032522475023131 a001 7778742049/5600748293801*20633239^(1/5) 4032522475023131 a001 2971215073/2139295485799*20633239^(1/5) 4032522475023131 a001 567451585/408569081798*20633239^(1/5) 4032522475023131 a001 433494437/312119004989*20633239^(1/5) 4032522475023131 a001 39088169/10749957122*20633239^(1/7) 4032522475023131 a001 165580141/119218851371*20633239^(1/5) 4032522475023131 a001 14930352/2139295485799*33385282^(1/2) 4032522475023131 a001 31622993/22768774562*20633239^(1/5) 4032522475023131 a001 14930352/5600748293801*33385282^(5/9) 4032522475023131 a001 4976784/3020733700601*33385282^(7/12) 4032522475023131 a004 Fibonacci(40)*Lucas(37)/(1/2+sqrt(5)/2)^82 4032522475023131 a001 831985/228811001*20633239^(1/7) 4032522475023131 a001 196452/192933544679*33385282^(11/18) 4032522475023132 a004 Fibonacci(42)*Lucas(37)/(1/2+sqrt(5)/2)^84 4032522475023132 a004 Fibonacci(44)*Lucas(37)/(1/2+sqrt(5)/2)^86 4032522475023132 a004 Fibonacci(46)*Lucas(37)/(1/2+sqrt(5)/2)^88 4032522475023132 a004 Fibonacci(48)*Lucas(37)/(1/2+sqrt(5)/2)^90 4032522475023132 a004 Fibonacci(50)*Lucas(37)/(1/2+sqrt(5)/2)^92 4032522475023132 a004 Fibonacci(52)*Lucas(37)/(1/2+sqrt(5)/2)^94 4032522475023132 a004 Fibonacci(54)*Lucas(37)/(1/2+sqrt(5)/2)^96 4032522475023132 a004 Fibonacci(56)*Lucas(37)/(1/2+sqrt(5)/2)^98 4032522475023132 a004 Fibonacci(58)*Lucas(37)/(1/2+sqrt(5)/2)^100 4032522475023132 a001 2/24157817*(1/2+1/2*5^(1/2))^32 4032522475023132 a004 Fibonacci(57)*Lucas(37)/(1/2+sqrt(5)/2)^99 4032522475023132 a004 Fibonacci(55)*Lucas(37)/(1/2+sqrt(5)/2)^97 4032522475023132 a004 Fibonacci(53)*Lucas(37)/(1/2+sqrt(5)/2)^95 4032522475023132 a004 Fibonacci(51)*Lucas(37)/(1/2+sqrt(5)/2)^93 4032522475023132 a004 Fibonacci(49)*Lucas(37)/(1/2+sqrt(5)/2)^91 4032522475023132 a004 Fibonacci(47)*Lucas(37)/(1/2+sqrt(5)/2)^89 4032522475023132 a004 Fibonacci(45)*Lucas(37)/(1/2+sqrt(5)/2)^87 4032522475023132 a004 Fibonacci(43)*Lucas(37)/(1/2+sqrt(5)/2)^85 4032522475023132 a001 54018521/267914296*8^(1/3) 4032522475023132 a001 267914296/73681302247*20633239^(1/7) 4032522475023132 a001 233802911/64300051206*20633239^(1/7) 4032522475023132 a001 1836311903/505019158607*20633239^(1/7) 4032522475023132 a001 1602508992/440719107401*20633239^(1/7) 4032522475023132 a001 12586269025/3461452808002*20633239^(1/7) 4032522475023132 a001 10983760033/3020733700601*20633239^(1/7) 4032522475023132 a001 86267571272/23725150497407*20633239^(1/7) 4032522475023132 a001 53316291173/14662949395604*20633239^(1/7) 4032522475023132 a001 20365011074/5600748293801*20633239^(1/7) 4032522475023132 a001 7778742049/2139295485799*20633239^(1/7) 4032522475023132 a001 2971215073/817138163596*20633239^(1/7) 4032522475023132 a004 Fibonacci(41)*Lucas(37)/(1/2+sqrt(5)/2)^83 4032522475023132 a001 1134903170/312119004989*20633239^(1/7) 4032522475023132 a001 433494437/119218851371*20633239^(1/7) 4032522475023132 a001 24157817/73681302247*20633239^(2/7) 4032522475023132 a001 165580141/45537549124*20633239^(1/7) 4032522475023132 a004 Fibonacci(39)*Lucas(37)/(1/2+sqrt(5)/2)^81 4032522475023132 a001 63245986/17393796001*20633239^(1/7) 4032522475023132 a004 Fibonacci(38)/Lucas(38)/(1/2+sqrt(5)/2)^5 4032522475023132 a004 Fibonacci(38)*Lucas(39)/(1/2+sqrt(5)/2)^82 4032522475023132 a001 196452/33391061*12752043^(2/17) 4032522475023132 a001 39088169/23725150497407*141422324^(7/13) 4032522475023132 a001 39088169/5600748293801*141422324^(6/13) 4032522475023132 a001 39088169/1322157322203*141422324^(5/13) 4032522475023132 a004 Fibonacci(38)/Lucas(40)/(1/2+sqrt(5)/2)^3 4032522475023132 a004 Fibonacci(40)/Lucas(38)/(1/2+sqrt(5)/2)^7 4032522475023132 a001 39088169/505019158607*141422324^(1/3) 4032522475023132 a001 39088169/312119004989*141422324^(4/13) 4032522475023132 a001 39088169/73681302247*141422324^(3/13) 4032522475023132 a001 39088169/17393796001*141422324^(2/13) 4032522475023132 a004 Fibonacci(38)*Lucas(41)/(1/2+sqrt(5)/2)^84 4032522475023132 a001 39088169/4106118243*141422324^(1/13) 4032522475023132 a004 Fibonacci(38)/Lucas(42)/(1/2+sqrt(5)/2) 4032522475023132 a004 Fibonacci(42)/Lucas(38)/(1/2+sqrt(5)/2)^9 4032522475023132 a004 Fibonacci(38)*Lucas(43)/(1/2+sqrt(5)/2)^86 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)/Lucas(44) 4032522475023132 a004 Fibonacci(44)/Lucas(38)/(1/2+sqrt(5)/2)^11 4032522475023132 a004 Fibonacci(38)*Lucas(45)/(1/2+sqrt(5)/2)^88 4032522475023132 a001 39088169/23725150497407*2537720636^(7/15) 4032522475023132 a001 39088169/4106118243*2537720636^(1/15) 4032522475023132 a001 39088169/14662949395604*2537720636^(4/9) 4032522475023132 a001 39088169/5600748293801*2537720636^(2/5) 4032522475023132 a001 39088169/4106118243*45537549124^(1/17) 4032522475023132 a001 39088169/4106118243*14662949395604^(1/21) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^3/Lucas(46) 4032522475023132 a004 Fibonacci(46)/Lucas(38)/(1/2+sqrt(5)/2)^13 4032522475023132 a001 39088169/4106118243*192900153618^(1/18) 4032522475023132 a001 39088169/4106118243*10749957122^(1/16) 4032522475023132 a001 39088169/1322157322203*2537720636^(1/3) 4032522475023132 a001 39088169/312119004989*2537720636^(4/15) 4032522475023132 a001 39088169/119218851371*2537720636^(2/9) 4032522475023132 a001 39088169/73681302247*2537720636^(1/5) 4032522475023132 a001 39088169/10749957122*2537720636^(1/9) 4032522475023132 a004 Fibonacci(38)*Lucas(47)/(1/2+sqrt(5)/2)^90 4032522475023132 a001 39088169/17393796001*2537720636^(2/15) 4032522475023132 a001 39088169/10749957122*312119004989^(1/11) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^5/Lucas(48) 4032522475023132 a004 Fibonacci(48)/Lucas(38)/(1/2+sqrt(5)/2)^15 4032522475023132 a001 39088169/10749957122*28143753123^(1/10) 4032522475023132 a004 Fibonacci(38)*Lucas(49)/(1/2+sqrt(5)/2)^92 4032522475023132 a001 39088169/28143753123*17393796001^(1/7) 4032522475023132 a001 39088169/23725150497407*17393796001^(3/7) 4032522475023132 a001 39088169/28143753123*14662949395604^(1/9) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^7/Lucas(50) 4032522475023132 a004 Fibonacci(50)/Lucas(38)/(1/2+sqrt(5)/2)^17 4032522475023132 a001 4181/87403804*17393796001^(2/7) 4032522475023132 a004 Fibonacci(38)*Lucas(51)/(1/2+sqrt(5)/2)^94 4032522475023132 a001 39088169/73681302247*45537549124^(3/17) 4032522475023132 a001 39088169/23725150497407*45537549124^(7/17) 4032522475023132 a001 39088169/73681302247*14662949395604^(1/7) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^9/Lucas(52) 4032522475023132 a004 Fibonacci(52)/Lucas(38)/(1/2+sqrt(5)/2)^19 4032522475023132 a001 39088169/73681302247*192900153618^(1/6) 4032522475023132 a001 39088169/5600748293801*45537549124^(6/17) 4032522475023132 a001 39088169/3461452808002*45537549124^(1/3) 4032522475023132 a001 39088169/1322157322203*45537549124^(5/17) 4032522475023132 a001 39088169/312119004989*45537549124^(4/17) 4032522475023132 a004 Fibonacci(38)*Lucas(53)/(1/2+sqrt(5)/2)^96 4032522475023132 a001 39088169/192900153618*312119004989^(1/5) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^11/Lucas(54) 4032522475023132 a004 Fibonacci(54)/Lucas(38)/(1/2+sqrt(5)/2)^21 4032522475023132 a004 Fibonacci(38)*Lucas(55)/(1/2+sqrt(5)/2)^98 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^13/Lucas(56) 4032522475023132 a004 Fibonacci(56)/Lucas(38)/(1/2+sqrt(5)/2)^23 4032522475023132 a001 39088169/1322157322203*312119004989^(3/11) 4032522475023132 a004 Fibonacci(38)*Lucas(57)/(1/2+sqrt(5)/2)^100 4032522475023132 a001 39088169/1322157322203*14662949395604^(5/21) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^15/Lucas(58) 4032522475023132 a004 Fibonacci(58)/Lucas(38)/(1/2+sqrt(5)/2)^25 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^17/Lucas(60) 4032522475023132 a004 Fibonacci(60)/Lucas(38)/(1/2+sqrt(5)/2)^27 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^19/Lucas(62) 4032522475023132 a004 Fibonacci(62)/Lucas(38)/(1/2+sqrt(5)/2)^29 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^21/Lucas(64) 4032522475023132 a004 Fibonacci(64)/Lucas(38)/(1/2+sqrt(5)/2)^31 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^23/Lucas(66) 4032522475023132 a004 Fibonacci(66)/Lucas(38)/(1/2+sqrt(5)/2)^33 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^25/Lucas(68) 4032522475023132 a004 Fibonacci(68)/Lucas(38)/(1/2+sqrt(5)/2)^35 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^27/Lucas(70) 4032522475023132 a004 Fibonacci(70)/Lucas(38)/(1/2+sqrt(5)/2)^37 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^29/Lucas(72) 4032522475023132 a004 Fibonacci(72)/Lucas(38)/(1/2+sqrt(5)/2)^39 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^31/Lucas(74) 4032522475023132 a004 Fibonacci(74)/Lucas(38)/(1/2+sqrt(5)/2)^41 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^33/Lucas(76) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^35/Lucas(78) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^37/Lucas(80) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^39/Lucas(82) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^41/Lucas(84) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^43/Lucas(86) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^45/Lucas(88) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^47/Lucas(90) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^49/Lucas(92) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^51/Lucas(94) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^53/Lucas(96) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^55/Lucas(98) 4032522475023132 a004 Fibonacci(19)*Lucas(19)/(1/2+sqrt(5)/2)^43 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^56/Lucas(99) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^57/Lucas(100) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^54/Lucas(97) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^52/Lucas(95) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^50/Lucas(93) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^48/Lucas(91) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^46/Lucas(89) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^44/Lucas(87) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^42/Lucas(85) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^40/Lucas(83) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^38/Lucas(81) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^36/Lucas(79) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^34/Lucas(77) 4032522475023132 a004 Fibonacci(78)/Lucas(38)/(1/2+sqrt(5)/2)^45 4032522475023132 a004 Fibonacci(80)/Lucas(38)/(1/2+sqrt(5)/2)^47 4032522475023132 a004 Fibonacci(82)/Lucas(38)/(1/2+sqrt(5)/2)^49 4032522475023132 a004 Fibonacci(84)/Lucas(38)/(1/2+sqrt(5)/2)^51 4032522475023132 a004 Fibonacci(86)/Lucas(38)/(1/2+sqrt(5)/2)^53 4032522475023132 a004 Fibonacci(88)/Lucas(38)/(1/2+sqrt(5)/2)^55 4032522475023132 a004 Fibonacci(90)/Lucas(38)/(1/2+sqrt(5)/2)^57 4032522475023132 a004 Fibonacci(92)/Lucas(38)/(1/2+sqrt(5)/2)^59 4032522475023132 a004 Fibonacci(94)/Lucas(38)/(1/2+sqrt(5)/2)^61 4032522475023132 a004 Fibonacci(96)/Lucas(38)/(1/2+sqrt(5)/2)^63 4032522475023132 a004 Fibonacci(98)/Lucas(38)/(1/2+sqrt(5)/2)^65 4032522475023132 a004 Fibonacci(100)/Lucas(38)/(1/2+sqrt(5)/2)^67 4032522475023132 a004 Fibonacci(99)/Lucas(38)/(1/2+sqrt(5)/2)^66 4032522475023132 a004 Fibonacci(97)/Lucas(38)/(1/2+sqrt(5)/2)^64 4032522475023132 a004 Fibonacci(95)/Lucas(38)/(1/2+sqrt(5)/2)^62 4032522475023132 a004 Fibonacci(93)/Lucas(38)/(1/2+sqrt(5)/2)^60 4032522475023132 a004 Fibonacci(91)/Lucas(38)/(1/2+sqrt(5)/2)^58 4032522475023132 a004 Fibonacci(89)/Lucas(38)/(1/2+sqrt(5)/2)^56 4032522475023132 a004 Fibonacci(87)/Lucas(38)/(1/2+sqrt(5)/2)^54 4032522475023132 a004 Fibonacci(85)/Lucas(38)/(1/2+sqrt(5)/2)^52 4032522475023132 a004 Fibonacci(83)/Lucas(38)/(1/2+sqrt(5)/2)^50 4032522475023132 a004 Fibonacci(81)/Lucas(38)/(1/2+sqrt(5)/2)^48 4032522475023132 a004 Fibonacci(79)/Lucas(38)/(1/2+sqrt(5)/2)^46 4032522475023132 a004 Fibonacci(77)/Lucas(38)/(1/2+sqrt(5)/2)^44 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^32/Lucas(75) 4032522475023132 a004 Fibonacci(75)/Lucas(38)/(1/2+sqrt(5)/2)^42 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^30/Lucas(73) 4032522475023132 a004 Fibonacci(73)/Lucas(38)/(1/2+sqrt(5)/2)^40 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^28/Lucas(71) 4032522475023132 a004 Fibonacci(71)/Lucas(38)/(1/2+sqrt(5)/2)^38 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^26/Lucas(69) 4032522475023132 a004 Fibonacci(69)/Lucas(38)/(1/2+sqrt(5)/2)^36 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^24/Lucas(67) 4032522475023132 a004 Fibonacci(67)/Lucas(38)/(1/2+sqrt(5)/2)^34 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^22/Lucas(65) 4032522475023132 a004 Fibonacci(65)/Lucas(38)/(1/2+sqrt(5)/2)^32 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^20/Lucas(63) 4032522475023132 a004 Fibonacci(63)/Lucas(38)/(1/2+sqrt(5)/2)^30 4032522475023132 a001 39088169/14662949395604*23725150497407^(5/16) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^18/Lucas(61) 4032522475023132 a004 Fibonacci(61)/Lucas(38)/(1/2+sqrt(5)/2)^28 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^16/Lucas(59) 4032522475023132 a004 Fibonacci(59)/Lucas(38)/(1/2+sqrt(5)/2)^26 4032522475023132 a001 39088169/2139295485799*23725150497407^(1/4) 4032522475023132 a001 39088169/14662949395604*505019158607^(5/14) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^14/Lucas(57) 4032522475023132 a004 Fibonacci(57)/Lucas(38)/(1/2+sqrt(5)/2)^24 4032522475023132 a004 Fibonacci(38)*Lucas(56)/(1/2+sqrt(5)/2)^99 4032522475023132 a001 39088169/1322157322203*192900153618^(5/18) 4032522475023132 a001 39088169/312119004989*817138163596^(4/19) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^12/Lucas(55) 4032522475023132 a004 Fibonacci(55)/Lucas(38)/(1/2+sqrt(5)/2)^22 4032522475023132 a001 39088169/23725150497407*192900153618^(7/18) 4032522475023132 a004 Fibonacci(38)*Lucas(54)/(1/2+sqrt(5)/2)^97 4032522475023132 a001 39088169/505019158607*73681302247^(1/4) 4032522475023132 a001 39088169/312119004989*73681302247^(3/13) 4032522475023132 a001 39088169/2139295485799*73681302247^(4/13) 4032522475023132 a001 39088169/119218851371*312119004989^(2/11) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^10/Lucas(53) 4032522475023132 a004 Fibonacci(53)/Lucas(38)/(1/2+sqrt(5)/2)^20 4032522475023132 a001 39088169/14662949395604*73681302247^(5/13) 4032522475023132 a004 Fibonacci(38)*Lucas(52)/(1/2+sqrt(5)/2)^95 4032522475023132 a001 39088169/119218851371*28143753123^(1/5) 4032522475023132 a001 39088169/1322157322203*28143753123^(3/10) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^8/Lucas(51) 4032522475023132 a004 Fibonacci(51)/Lucas(38)/(1/2+sqrt(5)/2)^18 4032522475023132 a001 39088169/45537549124*23725150497407^(1/8) 4032522475023132 a001 39088169/45537549124*505019158607^(1/7) 4032522475023132 a001 39088169/14662949395604*28143753123^(2/5) 4032522475023132 a001 39088169/45537549124*73681302247^(2/13) 4032522475023132 a004 Fibonacci(38)*Lucas(50)/(1/2+sqrt(5)/2)^93 4032522475023132 a001 39088169/73681302247*10749957122^(3/16) 4032522475023132 a001 39088169/119218851371*10749957122^(5/24) 4032522475023132 a001 39088169/45537549124*10749957122^(1/6) 4032522475023132 a001 39088169/312119004989*10749957122^(1/4) 4032522475023132 a001 4181/87403804*10749957122^(7/24) 4032522475023132 a001 39088169/1322157322203*10749957122^(5/16) 4032522475023132 a001 39088169/2139295485799*10749957122^(1/3) 4032522475023132 a001 39088169/5600748293801*10749957122^(3/8) 4032522475023132 a001 39088169/17393796001*45537549124^(2/17) 4032522475023132 a001 39088169/17393796001*14662949395604^(2/21) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^6/Lucas(49) 4032522475023132 a004 Fibonacci(49)/Lucas(38)/(1/2+sqrt(5)/2)^16 4032522475023132 a001 39088169/14662949395604*10749957122^(5/12) 4032522475023132 a001 39088169/23725150497407*10749957122^(7/16) 4032522475023132 a001 39088169/17393796001*10749957122^(1/8) 4032522475023132 a004 Fibonacci(38)*Lucas(48)/(1/2+sqrt(5)/2)^91 4032522475023132 a001 39088169/45537549124*4106118243^(4/23) 4032522475023132 a001 39088169/17393796001*4106118243^(3/23) 4032522475023132 a001 39088169/119218851371*4106118243^(5/23) 4032522475023132 a001 39088169/312119004989*4106118243^(6/23) 4032522475023132 a001 4181/87403804*4106118243^(7/23) 4032522475023132 a001 39088169/2139295485799*4106118243^(8/23) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^4/Lucas(47) 4032522475023132 a004 Fibonacci(47)/Lucas(38)/(1/2+sqrt(5)/2)^14 4032522475023132 a001 39088169/6643838879*23725150497407^(1/16) 4032522475023132 a001 39088169/6643838879*73681302247^(1/13) 4032522475023132 a001 39088169/5600748293801*4106118243^(9/23) 4032522475023132 a001 39088169/6643838879*10749957122^(1/12) 4032522475023132 a001 39088169/14662949395604*4106118243^(10/23) 4032522475023132 a001 39088169/6643838879*4106118243^(2/23) 4032522475023132 a001 39088169/17393796001*1568397607^(3/22) 4032522475023132 a004 Fibonacci(38)*Lucas(46)/(1/2+sqrt(5)/2)^89 4032522475023132 a001 39088169/6643838879*1568397607^(1/11) 4032522475023132 a001 39088169/45537549124*1568397607^(2/11) 4032522475023132 a001 39088169/119218851371*1568397607^(5/22) 4032522475023132 a001 39088169/192900153618*1568397607^(1/4) 4032522475023132 a001 39088169/312119004989*1568397607^(3/11) 4032522475023132 a001 4181/87403804*1568397607^(7/22) 4032522475023132 a001 39088169/4106118243*599074578^(1/14) 4032522475023132 a001 39088169/2139295485799*1568397607^(4/11) 4032522475023132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^2/Lucas(45) 4032522475023132 a004 Fibonacci(45)/Lucas(38)/(1/2+sqrt(5)/2)^12 4032522475023132 a001 39088169/2537720636*10749957122^(1/24) 4032522475023132 a001 39088169/2537720636*4106118243^(1/23) 4032522475023132 a001 39088169/5600748293801*1568397607^(9/22) 4032522475023132 a001 39088169/2537720636*1568397607^(1/22) 4032522475023132 a001 39088169/14662949395604*1568397607^(5/11) 4032522475023132 a001 39088169/2537720636*599074578^(1/21) 4032522475023132 a001 39088169/6643838879*599074578^(2/21) 4032522475023132 a001 39088169/17393796001*599074578^(1/7) 4032522475023132 a004 Fibonacci(38)*Lucas(44)/(1/2+sqrt(5)/2)^87 4032522475023132 a001 39088169/28143753123*599074578^(1/6) 4032522475023132 a001 39088169/45537549124*599074578^(4/21) 4032522475023132 a001 39088169/73681302247*599074578^(3/14) 4032522475023132 a001 39088169/119218851371*599074578^(5/21) 4032522475023132 a001 39088169/312119004989*599074578^(2/7) 4032522475023132 a001 4181/87403804*599074578^(1/3) 4032522475023132 a001 39088169/1322157322203*599074578^(5/14) 4032522475023132 a001 39088169/2139295485799*599074578^(8/21) 4032522475023132 a004 Fibonacci(43)/Lucas(38)/(1/2+sqrt(5)/2)^10 4032522475023132 a001 39088169/2537720636*228826127^(1/20) 4032522475023132 a001 39088169/5600748293801*599074578^(3/7) 4032522475023132 a001 39088169/14662949395604*599074578^(10/21) 4032522475023132 a001 39088169/23725150497407*599074578^(1/2) 4032522475023132 a001 39088169/6643838879*228826127^(1/10) 4032522475023132 a001 39088169/10749957122*228826127^(1/8) 4032522475023132 a004 Fibonacci(38)*Lucas(42)/(1/2+sqrt(5)/2)^85 4032522475023132 a001 39088169/17393796001*228826127^(3/20) 4032522475023132 a001 39088169/45537549124*228826127^(1/5) 4032522475023132 a001 24157817/17393796001*20633239^(1/5) 4032522475023132 a001 39088169/119218851371*228826127^(1/4) 4032522475023132 a001 39088169/312119004989*228826127^(3/10) 4032522475023132 a001 4181/87403804*228826127^(7/20) 4032522475023132 a001 39088169/2537720636*87403803^(1/19) 4032522475023132 a001 39088169/1322157322203*228826127^(3/8) 4032522475023132 a004 Fibonacci(38)/Lucas(41)/(1/2+sqrt(5)/2)^2 4032522475023132 a004 Fibonacci(41)/Lucas(38)/(1/2+sqrt(5)/2)^8 4032522475023132 a001 39088169/2139295485799*228826127^(2/5) 4032522475023132 a001 39088169/5600748293801*228826127^(9/20) 4032522475023132 a001 39088169/14662949395604*228826127^(1/2) 4032522475023132 a001 39088169/6643838879*87403803^(2/19) 4032522475023132 a004 Fibonacci(38)*Lucas(40)/(1/2+sqrt(5)/2)^83 4032522475023132 a001 39088169/17393796001*87403803^(3/19) 4032522475023132 a001 39088169/45537549124*87403803^(4/19) 4032522475023133 a001 39088169/119218851371*87403803^(5/19) 4032522475023133 a001 39088169/312119004989*87403803^(6/19) 4032522475023133 a001 4181/87403804*87403803^(7/19) 4032522475023133 a004 Fibonacci(38)/Lucas(39)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(39)/Lucas(38)/(1/2+sqrt(5)/2)^6 4032522475023133 a001 39088169/2537720636*33385282^(1/18) 4032522475023133 a001 39088169/2139295485799*87403803^(8/19) 4032522475023133 a004 Fibonacci(40)*Lucas(39)/(1/2+sqrt(5)/2)^84 4032522475023133 a001 39088169/5600748293801*87403803^(9/19) 4032522475023133 a001 39088169/9062201101803*87403803^(1/2) 4032522475023133 a001 39088169/14662949395604*87403803^(10/19) 4032522475023133 a001 39088169/4106118243*33385282^(1/12) 4032522475023133 a004 Fibonacci(42)*Lucas(39)/(1/2+sqrt(5)/2)^86 4032522475023133 a004 Fibonacci(44)*Lucas(39)/(1/2+sqrt(5)/2)^88 4032522475023133 a004 Fibonacci(46)*Lucas(39)/(1/2+sqrt(5)/2)^90 4032522475023133 a004 Fibonacci(48)*Lucas(39)/(1/2+sqrt(5)/2)^92 4032522475023133 a004 Fibonacci(50)*Lucas(39)/(1/2+sqrt(5)/2)^94 4032522475023133 a004 Fibonacci(52)*Lucas(39)/(1/2+sqrt(5)/2)^96 4032522475023133 a004 Fibonacci(54)*Lucas(39)/(1/2+sqrt(5)/2)^98 4032522475023133 a004 Fibonacci(56)*Lucas(39)/(1/2+sqrt(5)/2)^100 4032522475023133 a001 1/31622993*(1/2+1/2*5^(1/2))^34 4032522475023133 a004 Fibonacci(55)*Lucas(39)/(1/2+sqrt(5)/2)^99 4032522475023133 a004 Fibonacci(53)*Lucas(39)/(1/2+sqrt(5)/2)^97 4032522475023133 a004 Fibonacci(51)*Lucas(39)/(1/2+sqrt(5)/2)^95 4032522475023133 a004 Fibonacci(49)*Lucas(39)/(1/2+sqrt(5)/2)^93 4032522475023133 a004 Fibonacci(47)*Lucas(39)/(1/2+sqrt(5)/2)^91 4032522475023133 a004 Fibonacci(45)*Lucas(39)/(1/2+sqrt(5)/2)^89 4032522475023133 a001 141422324/701408733*8^(1/3) 4032522475023133 a004 Fibonacci(43)*Lucas(39)/(1/2+sqrt(5)/2)^87 4032522475023133 a004 Fibonacci(41)*Lucas(39)/(1/2+sqrt(5)/2)^85 4032522475023133 a001 102334155/14662949395604*141422324^(6/13) 4032522475023133 a001 6765/228826126*141422324^(5/13) 4032522475023133 a004 Fibonacci(40)/Lucas(40)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 34111385/440719107401*141422324^(1/3) 4032522475023133 a001 102334155/817138163596*141422324^(4/13) 4032522475023133 a001 39088169/6643838879*33385282^(1/9) 4032522475023133 a001 34111385/64300051206*141422324^(3/13) 4032522475023133 a001 102334155/45537549124*141422324^(2/13) 4032522475023133 a004 Fibonacci(40)*Lucas(41)/(1/2+sqrt(5)/2)^86 4032522475023133 a001 102334155/10749957122*141422324^(1/13) 4032522475023133 a001 267914296/9062201101803*141422324^(5/13) 4032522475023133 a004 Fibonacci(40)/Lucas(42)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(42)/Lucas(40)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(40)*Lucas(43)/(1/2+sqrt(5)/2)^88 4032522475023133 a001 701408733/23725150497407*141422324^(5/13) 4032522475023133 a004 Fibonacci(40)/Lucas(44)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(44)/Lucas(40)/(1/2+sqrt(5)/2)^9 4032522475023133 a001 133957148/1730726404001*141422324^(1/3) 4032522475023133 a004 Fibonacci(40)*Lucas(45)/(1/2+sqrt(5)/2)^90 4032522475023133 a001 102334155/14662949395604*2537720636^(2/5) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)/Lucas(46) 4032522475023133 a004 Fibonacci(46)/Lucas(40)/(1/2+sqrt(5)/2)^11 4032522475023133 a001 6765/228826126*2537720636^(1/3) 4032522475023133 a001 102334155/817138163596*2537720636^(4/15) 4032522475023133 a001 9303105/28374454999*2537720636^(2/9) 4032522475023133 a001 34111385/64300051206*2537720636^(1/5) 4032522475023133 a004 Fibonacci(40)*Lucas(47)/(1/2+sqrt(5)/2)^92 4032522475023133 a001 102334155/45537549124*2537720636^(2/15) 4032522475023133 a001 102334155/10749957122*2537720636^(1/15) 4032522475023133 a001 831985/228811001*2537720636^(1/9) 4032522475023133 a001 102334155/10749957122*45537549124^(1/17) 4032522475023133 a001 102334155/10749957122*14662949395604^(1/21) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^3/Lucas(48) 4032522475023133 a004 Fibonacci(48)/Lucas(40)/(1/2+sqrt(5)/2)^13 4032522475023133 a001 102334155/10749957122*192900153618^(1/18) 4032522475023133 a001 102334155/10749957122*10749957122^(1/16) 4032522475023133 a004 Fibonacci(40)*Lucas(49)/(1/2+sqrt(5)/2)^94 4032522475023133 a001 831985/228811001*312119004989^(1/11) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^5/Lucas(50) 4032522475023133 a004 Fibonacci(50)/Lucas(40)/(1/2+sqrt(5)/2)^15 4032522475023133 a001 831985/228811001*28143753123^(1/10) 4032522475023133 a001 102334155/2139295485799*17393796001^(2/7) 4032522475023133 a001 14619165/10525900321*17393796001^(1/7) 4032522475023133 a004 Fibonacci(40)*Lucas(51)/(1/2+sqrt(5)/2)^96 4032522475023133 a001 14619165/10525900321*14662949395604^(1/9) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^7/Lucas(52) 4032522475023133 a004 Fibonacci(52)/Lucas(40)/(1/2+sqrt(5)/2)^17 4032522475023133 a001 102334155/14662949395604*45537549124^(6/17) 4032522475023133 a001 34111385/3020733700601*45537549124^(1/3) 4032522475023133 a001 6765/228826126*45537549124^(5/17) 4032522475023133 a001 34111385/64300051206*45537549124^(3/17) 4032522475023133 a001 102334155/817138163596*45537549124^(4/17) 4032522475023133 a004 Fibonacci(40)*Lucas(53)/(1/2+sqrt(5)/2)^98 4032522475023133 a001 34111385/64300051206*817138163596^(3/19) 4032522475023133 a001 34111385/64300051206*14662949395604^(1/7) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^9/Lucas(54) 4032522475023133 a004 Fibonacci(54)/Lucas(40)/(1/2+sqrt(5)/2)^19 4032522475023133 a001 34111385/64300051206*192900153618^(1/6) 4032522475023133 a004 Fibonacci(40)*Lucas(55)/(1/2+sqrt(5)/2)^100 4032522475023133 a001 102334155/505019158607*312119004989^(1/5) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^11/Lucas(56) 4032522475023133 a004 Fibonacci(56)/Lucas(40)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^13/Lucas(58) 4032522475023133 a004 Fibonacci(58)/Lucas(40)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^15/Lucas(60) 4032522475023133 a004 Fibonacci(60)/Lucas(40)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^17/Lucas(62) 4032522475023133 a004 Fibonacci(62)/Lucas(40)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^19/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(40)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^21/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(40)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^23/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(40)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^25/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(40)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^27/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(40)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^29/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(40)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^31/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(40)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^33/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(40)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^35/Lucas(80) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^37/Lucas(82) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^39/Lucas(84) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^41/Lucas(86) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^43/Lucas(88) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^45/Lucas(90) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^47/Lucas(92) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^49/Lucas(94) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^51/Lucas(96) 4032522475023133 a004 Fibonacci(20)*Lucas(20)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^53/Lucas(98) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^54/Lucas(99) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^55/Lucas(100) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^52/Lucas(97) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^50/Lucas(95) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^48/Lucas(93) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^46/Lucas(91) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^44/Lucas(89) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^42/Lucas(87) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^40/Lucas(85) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^38/Lucas(83) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^36/Lucas(81) 4032522475023133 a004 Fibonacci(82)/Lucas(40)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(84)/Lucas(40)/(1/2+sqrt(5)/2)^49 4032522475023133 a004 Fibonacci(86)/Lucas(40)/(1/2+sqrt(5)/2)^51 4032522475023133 a004 Fibonacci(88)/Lucas(40)/(1/2+sqrt(5)/2)^53 4032522475023133 a004 Fibonacci(90)/Lucas(40)/(1/2+sqrt(5)/2)^55 4032522475023133 a004 Fibonacci(92)/Lucas(40)/(1/2+sqrt(5)/2)^57 4032522475023133 a004 Fibonacci(94)/Lucas(40)/(1/2+sqrt(5)/2)^59 4032522475023133 a004 Fibonacci(96)/Lucas(40)/(1/2+sqrt(5)/2)^61 4032522475023133 a004 Fibonacci(100)/Lucas(40)/(1/2+sqrt(5)/2)^65 4032522475023133 a004 Fibonacci(98)/Lucas(40)/(1/2+sqrt(5)/2)^63 4032522475023133 a004 Fibonacci(99)/Lucas(40)/(1/2+sqrt(5)/2)^64 4032522475023133 a004 Fibonacci(97)/Lucas(40)/(1/2+sqrt(5)/2)^62 4032522475023133 a004 Fibonacci(95)/Lucas(40)/(1/2+sqrt(5)/2)^60 4032522475023133 a004 Fibonacci(93)/Lucas(40)/(1/2+sqrt(5)/2)^58 4032522475023133 a004 Fibonacci(91)/Lucas(40)/(1/2+sqrt(5)/2)^56 4032522475023133 a004 Fibonacci(89)/Lucas(40)/(1/2+sqrt(5)/2)^54 4032522475023133 a004 Fibonacci(87)/Lucas(40)/(1/2+sqrt(5)/2)^52 4032522475023133 a004 Fibonacci(85)/Lucas(40)/(1/2+sqrt(5)/2)^50 4032522475023133 a004 Fibonacci(83)/Lucas(40)/(1/2+sqrt(5)/2)^48 4032522475023133 a004 Fibonacci(81)/Lucas(40)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^34/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(40)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^32/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(40)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^30/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(40)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^28/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(40)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^26/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(40)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^24/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(40)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^22/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(40)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^20/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(40)/(1/2+sqrt(5)/2)^30 4032522475023133 a001 102334155/14662949395604*14662949395604^(2/7) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^18/Lucas(63) 4032522475023133 a004 Fibonacci(63)/Lucas(40)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^16/Lucas(61) 4032522475023133 a004 Fibonacci(61)/Lucas(40)/(1/2+sqrt(5)/2)^26 4032522475023133 a001 102334155/2139295485799*14662949395604^(2/9) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^14/Lucas(59) 4032522475023133 a004 Fibonacci(59)/Lucas(40)/(1/2+sqrt(5)/2)^24 4032522475023133 a001 102334155/817138163596*817138163596^(4/19) 4032522475023133 a001 102334155/817138163596*14662949395604^(4/21) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^12/Lucas(57) 4032522475023133 a004 Fibonacci(57)/Lucas(40)/(1/2+sqrt(5)/2)^22 4032522475023133 a001 102334155/14662949395604*192900153618^(1/3) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^10/Lucas(55) 4032522475023133 a004 Fibonacci(55)/Lucas(40)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(40)*Lucas(54)/(1/2+sqrt(5)/2)^99 4032522475023133 a001 102334155/817138163596*73681302247^(3/13) 4032522475023133 a001 102334155/5600748293801*73681302247^(4/13) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^8/Lucas(53) 4032522475023133 a004 Fibonacci(53)/Lucas(40)/(1/2+sqrt(5)/2)^18 4032522475023133 a001 102334155/119218851371*23725150497407^(1/8) 4032522475023133 a001 102334155/119218851371*505019158607^(1/7) 4032522475023133 a001 102334155/119218851371*73681302247^(2/13) 4032522475023133 a004 Fibonacci(40)*Lucas(52)/(1/2+sqrt(5)/2)^97 4032522475023133 a001 9303105/28374454999*28143753123^(1/5) 4032522475023133 a001 6765/228826126*28143753123^(3/10) 4032522475023133 a001 102334155/45537549124*45537549124^(2/17) 4032522475023133 a001 102334155/45537549124*14662949395604^(2/21) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^6/Lucas(51) 4032522475023133 a004 Fibonacci(51)/Lucas(40)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(40)*Lucas(50)/(1/2+sqrt(5)/2)^95 4032522475023133 a001 102334155/119218851371*10749957122^(1/6) 4032522475023133 a001 102334155/45537549124*10749957122^(1/8) 4032522475023133 a001 34111385/64300051206*10749957122^(3/16) 4032522475023133 a001 9303105/28374454999*10749957122^(5/24) 4032522475023133 a001 102334155/817138163596*10749957122^(1/4) 4032522475023133 a001 102334155/2139295485799*10749957122^(7/24) 4032522475023133 a001 6765/228826126*10749957122^(5/16) 4032522475023133 a001 102334155/5600748293801*10749957122^(1/3) 4032522475023133 a001 102334155/14662949395604*10749957122^(3/8) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^4/Lucas(49) 4032522475023133 a004 Fibonacci(49)/Lucas(40)/(1/2+sqrt(5)/2)^14 4032522475023133 a001 102334155/17393796001*23725150497407^(1/16) 4032522475023133 a001 102334155/17393796001*73681302247^(1/13) 4032522475023133 a001 102334155/17393796001*10749957122^(1/12) 4032522475023133 a001 102334155/45537549124*4106118243^(3/23) 4032522475023133 a001 102334155/17393796001*4106118243^(2/23) 4032522475023133 a004 Fibonacci(40)*Lucas(48)/(1/2+sqrt(5)/2)^93 4032522475023133 a001 102334155/119218851371*4106118243^(4/23) 4032522475023133 a001 9303105/28374454999*4106118243^(5/23) 4032522475023133 a001 102334155/817138163596*4106118243^(6/23) 4032522475023133 a001 102334155/2139295485799*4106118243^(7/23) 4032522475023133 a001 102334155/5600748293801*4106118243^(8/23) 4032522475023133 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^2/Lucas(47) 4032522475023133 a004 Fibonacci(47)/Lucas(40)/(1/2+sqrt(5)/2)^12 4032522475023133 a001 102334155/6643838879*10749957122^(1/24) 4032522475023133 a001 102334155/14662949395604*4106118243^(9/23) 4032522475023133 a001 102334155/6643838879*4106118243^(1/23) 4032522475023133 a001 102334155/17393796001*1568397607^(1/11) 4032522475023133 a001 102334155/6643838879*1568397607^(1/22) 4032522475023133 a001 102334155/45537549124*1568397607^(3/22) 4032522475023133 a004 Fibonacci(40)*Lucas(46)/(1/2+sqrt(5)/2)^91 4032522475023133 a001 102334155/119218851371*1568397607^(2/11) 4032522475023133 a001 9303105/28374454999*1568397607^(5/22) 4032522475023133 a001 102334155/505019158607*1568397607^(1/4) 4032522475023133 a001 102334155/817138163596*1568397607^(3/11) 4032522475023133 a001 102334155/2139295485799*1568397607^(7/22) 4032522475023133 a001 102334155/5600748293801*1568397607^(4/11) 4032522475023133 a004 Fibonacci(45)/Lucas(40)/(1/2+sqrt(5)/2)^10 4032522475023133 a001 102334155/6643838879*599074578^(1/21) 4032522475023133 a001 102334155/14662949395604*1568397607^(9/22) 4032522475023133 a001 102334155/10749957122*599074578^(1/14) 4032522475023133 a001 102334155/17393796001*599074578^(2/21) 4032522475023133 a001 102334155/45537549124*599074578^(1/7) 4032522475023133 a004 Fibonacci(40)*Lucas(44)/(1/2+sqrt(5)/2)^89 4032522475023133 a001 14619165/10525900321*599074578^(1/6) 4032522475023133 a001 102334155/119218851371*599074578^(4/21) 4032522475023133 a001 34111385/64300051206*599074578^(3/14) 4032522475023133 a001 9303105/28374454999*599074578^(5/21) 4032522475023133 a001 102334155/817138163596*599074578^(2/7) 4032522475023133 a001 267914296/2139295485799*141422324^(4/13) 4032522475023133 a001 102334155/2139295485799*599074578^(1/3) 4032522475023133 a001 433494437/14662949395604*141422324^(5/13) 4032522475023133 a001 102334155/6643838879*228826127^(1/20) 4032522475023133 a001 6765/228826126*599074578^(5/14) 4032522475023133 a001 102334155/5600748293801*599074578^(8/21) 4032522475023133 a004 Fibonacci(40)/Lucas(43)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(43)/Lucas(40)/(1/2+sqrt(5)/2)^8 4032522475023133 a001 102334155/14662949395604*599074578^(3/7) 4032522475023133 a001 102334155/17393796001*228826127^(1/10) 4032522475023133 a001 233802911/3020733700601*141422324^(1/3) 4032522475023133 a001 1836311903/23725150497407*141422324^(1/3) 4032522475023133 a001 831985/228811001*228826127^(1/8) 4032522475023133 a001 567451585/7331474697802*141422324^(1/3) 4032522475023133 a004 Fibonacci(40)*Lucas(42)/(1/2+sqrt(5)/2)^87 4032522475023133 a001 102334155/45537549124*228826127^(3/20) 4032522475023133 a001 701408733/5600748293801*141422324^(4/13) 4032522475023133 a001 165580141/23725150497407*141422324^(6/13) 4032522475023133 a001 433494437/5600748293801*141422324^(1/3) 4032522475023133 a001 1836311903/14662949395604*141422324^(4/13) 4032522475023133 a001 2971215073/23725150497407*141422324^(4/13) 4032522475023133 a001 102334155/119218851371*228826127^(1/5) 4032522475023133 a001 1134903170/9062201101803*141422324^(4/13) 4032522475023133 a001 267914296/505019158607*141422324^(3/13) 4032522475023133 a001 9303105/28374454999*228826127^(1/4) 4032522475023133 a001 433494437/3461452808002*141422324^(4/13) 4032522475023133 a001 102334155/817138163596*228826127^(3/10) 4032522475023133 a001 102334155/2139295485799*228826127^(7/20) 4032522475023133 a001 102334155/6643838879*87403803^(1/19) 4032522475023133 a001 233802911/440719107401*141422324^(3/13) 4032522475023133 a001 6765/228826126*228826127^(3/8) 4032522475023133 a001 165580141/5600748293801*141422324^(5/13) 4032522475023133 a004 Fibonacci(40)/Lucas(41)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(41)/Lucas(40)/(1/2+sqrt(5)/2)^6 4032522475023133 a001 1836311903/3461452808002*141422324^(3/13) 4032522475023133 a001 1602508992/3020733700601*141422324^(3/13) 4032522475023133 a001 12586269025/23725150497407*141422324^(3/13) 4032522475023133 a001 7778742049/14662949395604*141422324^(3/13) 4032522475023133 a001 2971215073/5600748293801*141422324^(3/13) 4032522475023133 a001 102334155/5600748293801*228826127^(2/5) 4032522475023133 a001 1134903170/2139295485799*141422324^(3/13) 4032522475023133 a001 102334155/14662949395604*228826127^(9/20) 4032522475023133 a001 267914296/119218851371*141422324^(2/13) 4032522475023133 a001 433494437/817138163596*141422324^(3/13) 4032522475023133 a004 Fibonacci(42)*Lucas(41)/(1/2+sqrt(5)/2)^88 4032522475023133 a001 165580141/2139295485799*141422324^(1/3) 4032522475023133 a001 3524667/1568437211*141422324^(2/13) 4032522475023133 a001 165580141/1322157322203*141422324^(4/13) 4032522475023133 a001 1836311903/817138163596*141422324^(2/13) 4032522475023133 a004 Fibonacci(44)*Lucas(41)/(1/2+sqrt(5)/2)^90 4032522475023133 a001 4807526976/2139295485799*141422324^(2/13) 4032522475023133 a001 12586269025/5600748293801*141422324^(2/13) 4032522475023133 a001 32951280099/14662949395604*141422324^(2/13) 4032522475023133 a001 53316291173/23725150497407*141422324^(2/13) 4032522475023133 a001 20365011074/9062201101803*141422324^(2/13) 4032522475023133 a001 7778742049/3461452808002*141422324^(2/13) 4032522475023133 a001 2971215073/1322157322203*141422324^(2/13) 4032522475023133 a001 1134903170/505019158607*141422324^(2/13) 4032522475023133 a004 Fibonacci(46)*Lucas(41)/(1/2+sqrt(5)/2)^92 4032522475023133 a004 Fibonacci(48)*Lucas(41)/(1/2+sqrt(5)/2)^94 4032522475023133 a004 Fibonacci(50)*Lucas(41)/(1/2+sqrt(5)/2)^96 4032522475023133 a004 Fibonacci(52)*Lucas(41)/(1/2+sqrt(5)/2)^98 4032522475023133 a004 Fibonacci(54)*Lucas(41)/(1/2+sqrt(5)/2)^100 4032522475023133 a001 2/165580141*(1/2+1/2*5^(1/2))^36 4032522475023133 a004 Fibonacci(53)*Lucas(41)/(1/2+sqrt(5)/2)^99 4032522475023133 a004 Fibonacci(51)*Lucas(41)/(1/2+sqrt(5)/2)^97 4032522475023133 a004 Fibonacci(49)*Lucas(41)/(1/2+sqrt(5)/2)^95 4032522475023133 a004 Fibonacci(47)*Lucas(41)/(1/2+sqrt(5)/2)^93 4032522475023133 a001 370248451/1836311903*8^(1/3) 4032522475023133 a004 Fibonacci(45)*Lucas(41)/(1/2+sqrt(5)/2)^91 4032522475023133 a001 267914296/28143753123*141422324^(1/13) 4032522475023133 a001 433494437/192900153618*141422324^(2/13) 4032522475023133 a004 Fibonacci(43)*Lucas(41)/(1/2+sqrt(5)/2)^89 4032522475023133 a004 Fibonacci(42)/Lucas(42)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 102334155/17393796001*87403803^(2/19) 4032522475023133 a001 701408733/73681302247*141422324^(1/13) 4032522475023133 a001 165580141/312119004989*141422324^(3/13) 4032522475023133 a001 1836311903/192900153618*141422324^(1/13) 4032522475023133 a001 102287808/10745088481*141422324^(1/13) 4032522475023133 a004 Fibonacci(42)*Lucas(43)/(1/2+sqrt(5)/2)^90 4032522475023133 a001 12586269025/1322157322203*141422324^(1/13) 4032522475023133 a001 32951280099/3461452808002*141422324^(1/13) 4032522475023133 a001 86267571272/9062201101803*141422324^(1/13) 4032522475023133 a001 225851433717/23725150497407*141422324^(1/13) 4032522475023133 a001 139583862445/14662949395604*141422324^(1/13) 4032522475023133 a001 53316291173/5600748293801*141422324^(1/13) 4032522475023133 a001 20365011074/2139295485799*141422324^(1/13) 4032522475023133 a001 7778742049/817138163596*141422324^(1/13) 4032522475023133 a001 2971215073/312119004989*141422324^(1/13) 4032522475023133 a001 1134903170/119218851371*141422324^(1/13) 4032522475023133 a004 Fibonacci(42)/Lucas(44)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(44)/Lucas(42)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(42)*Lucas(45)/(1/2+sqrt(5)/2)^92 4032522475023133 a004 Fibonacci(42)/Lucas(46)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(46)/Lucas(42)/(1/2+sqrt(5)/2)^9 4032522475023133 a001 267914296/9062201101803*2537720636^(1/3) 4032522475023133 a001 267914296/2139295485799*2537720636^(4/15) 4032522475023133 a001 66978574/204284540899*2537720636^(2/9) 4032522475023133 a001 267914296/505019158607*2537720636^(1/5) 4032522475023133 a004 Fibonacci(42)*Lucas(47)/(1/2+sqrt(5)/2)^94 4032522475023133 a001 267914296/119218851371*2537720636^(2/15) 4032522475023133 a001 267914296/73681302247*2537720636^(1/9) 4032522475023133 a001 267914296/28143753123*2537720636^(1/15) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)/Lucas(48) 4032522475023133 a004 Fibonacci(48)/Lucas(42)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(42)*Lucas(49)/(1/2+sqrt(5)/2)^96 4032522475023133 a001 267914296/28143753123*45537549124^(1/17) 4032522475023133 a001 267914296/28143753123*14662949395604^(1/21) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^3/Lucas(50) 4032522475023133 a004 Fibonacci(50)/Lucas(42)/(1/2+sqrt(5)/2)^13 4032522475023133 a001 267914296/28143753123*192900153618^(1/18) 4032522475023133 a001 267914296/5600748293801*17393796001^(2/7) 4032522475023133 a001 267914296/28143753123*10749957122^(1/16) 4032522475023133 a001 133957148/96450076809*17393796001^(1/7) 4032522475023133 a004 Fibonacci(42)*Lucas(51)/(1/2+sqrt(5)/2)^98 4032522475023133 a001 267914296/73681302247*312119004989^(1/11) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^5/Lucas(52) 4032522475023133 a004 Fibonacci(52)/Lucas(42)/(1/2+sqrt(5)/2)^15 4032522475023133 a001 267914296/23725150497407*45537549124^(1/3) 4032522475023133 a001 267914296/9062201101803*45537549124^(5/17) 4032522475023133 a001 267914296/2139295485799*45537549124^(4/17) 4032522475023133 a001 267914296/505019158607*45537549124^(3/17) 4032522475023133 a004 Fibonacci(42)*Lucas(53)/(1/2+sqrt(5)/2)^100 4032522475023133 a001 267914296/73681302247*28143753123^(1/10) 4032522475023133 a001 133957148/96450076809*14662949395604^(1/9) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^7/Lucas(54) 4032522475023133 a004 Fibonacci(54)/Lucas(42)/(1/2+sqrt(5)/2)^17 4032522475023133 a001 267914296/505019158607*14662949395604^(1/7) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^9/Lucas(56) 4032522475023133 a004 Fibonacci(56)/Lucas(42)/(1/2+sqrt(5)/2)^19 4032522475023133 a001 267914296/9062201101803*312119004989^(3/11) 4032522475023133 a001 267914296/1322157322203*312119004989^(1/5) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^11/Lucas(58) 4032522475023133 a004 Fibonacci(58)/Lucas(42)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^13/Lucas(60) 4032522475023133 a004 Fibonacci(60)/Lucas(42)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^15/Lucas(62) 4032522475023133 a004 Fibonacci(62)/Lucas(42)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^17/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(42)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^19/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(42)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^21/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(42)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^23/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(42)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^25/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(42)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^27/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(42)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^29/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(42)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^31/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(42)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^33/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(42)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^35/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(42)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^37/Lucas(84) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^39/Lucas(86) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^41/Lucas(88) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^43/Lucas(90) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^45/Lucas(92) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^47/Lucas(94) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^49/Lucas(96) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^51/Lucas(98) 4032522475023133 a004 Fibonacci(21)*Lucas(21)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^52/Lucas(99) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^53/Lucas(100) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^50/Lucas(97) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^48/Lucas(95) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^46/Lucas(93) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^44/Lucas(91) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^42/Lucas(89) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^40/Lucas(87) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^38/Lucas(85) 4032522475023133 a004 Fibonacci(86)/Lucas(42)/(1/2+sqrt(5)/2)^49 4032522475023133 a004 Fibonacci(88)/Lucas(42)/(1/2+sqrt(5)/2)^51 4032522475023133 a004 Fibonacci(90)/Lucas(42)/(1/2+sqrt(5)/2)^53 4032522475023133 a004 Fibonacci(92)/Lucas(42)/(1/2+sqrt(5)/2)^55 4032522475023133 a004 Fibonacci(94)/Lucas(42)/(1/2+sqrt(5)/2)^57 4032522475023133 a004 Fibonacci(96)/Lucas(42)/(1/2+sqrt(5)/2)^59 4032522475023133 a004 Fibonacci(100)/Lucas(42)/(1/2+sqrt(5)/2)^63 4032522475023133 a004 Fibonacci(98)/Lucas(42)/(1/2+sqrt(5)/2)^61 4032522475023133 a004 Fibonacci(97)/Lucas(42)/(1/2+sqrt(5)/2)^60 4032522475023133 a004 Fibonacci(99)/Lucas(42)/(1/2+sqrt(5)/2)^62 4032522475023133 a004 Fibonacci(95)/Lucas(42)/(1/2+sqrt(5)/2)^58 4032522475023133 a004 Fibonacci(93)/Lucas(42)/(1/2+sqrt(5)/2)^56 4032522475023133 a004 Fibonacci(91)/Lucas(42)/(1/2+sqrt(5)/2)^54 4032522475023133 a004 Fibonacci(89)/Lucas(42)/(1/2+sqrt(5)/2)^52 4032522475023133 a004 Fibonacci(87)/Lucas(42)/(1/2+sqrt(5)/2)^50 4032522475023133 a004 Fibonacci(85)/Lucas(42)/(1/2+sqrt(5)/2)^48 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^36/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(42)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^34/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(42)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^32/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(42)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^30/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(42)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^28/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(42)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^26/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(42)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^24/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(42)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^22/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(42)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^20/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(42)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^18/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(42)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^16/Lucas(63) 4032522475023133 a004 Fibonacci(63)/Lucas(42)/(1/2+sqrt(5)/2)^26 4032522475023133 a001 10946/599074579*23725150497407^(1/4) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^14/Lucas(61) 4032522475023133 a004 Fibonacci(61)/Lucas(42)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^12/Lucas(59) 4032522475023133 a004 Fibonacci(59)/Lucas(42)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^10/Lucas(57) 4032522475023133 a004 Fibonacci(57)/Lucas(42)/(1/2+sqrt(5)/2)^20 4032522475023133 a001 267914296/2139295485799*192900153618^(2/9) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^8/Lucas(55) 4032522475023133 a004 Fibonacci(55)/Lucas(42)/(1/2+sqrt(5)/2)^18 4032522475023133 a001 267914296/312119004989*23725150497407^(1/8) 4032522475023133 a001 267914296/119218851371*45537549124^(2/17) 4032522475023133 a001 267914296/312119004989*73681302247^(2/13) 4032522475023133 a001 267914296/2139295485799*73681302247^(3/13) 4032522475023133 a001 133957148/1730726404001*73681302247^(1/4) 4032522475023133 a001 10946/599074579*73681302247^(4/13) 4032522475023133 a001 267914296/119218851371*14662949395604^(2/21) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^6/Lucas(53) 4032522475023133 a004 Fibonacci(53)/Lucas(42)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(42)*Lucas(52)/(1/2+sqrt(5)/2)^99 4032522475023133 a001 66978574/204284540899*28143753123^(1/5) 4032522475023133 a001 267914296/9062201101803*28143753123^(3/10) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^4/Lucas(51) 4032522475023133 a004 Fibonacci(51)/Lucas(42)/(1/2+sqrt(5)/2)^14 4032522475023133 a001 66978574/11384387281*23725150497407^(1/16) 4032522475023133 a001 66978574/11384387281*73681302247^(1/13) 4032522475023133 a001 267914296/119218851371*10749957122^(1/8) 4032522475023133 a001 66978574/11384387281*10749957122^(1/12) 4032522475023133 a004 Fibonacci(42)*Lucas(50)/(1/2+sqrt(5)/2)^97 4032522475023133 a001 267914296/312119004989*10749957122^(1/6) 4032522475023133 a001 267914296/505019158607*10749957122^(3/16) 4032522475023133 a001 66978574/204284540899*10749957122^(5/24) 4032522475023133 a001 267914296/2139295485799*10749957122^(1/4) 4032522475023133 a001 267914296/5600748293801*10749957122^(7/24) 4032522475023133 a001 267914296/9062201101803*10749957122^(5/16) 4032522475023133 a001 10946/599074579*10749957122^(1/3) 4032522475023133 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^2/Lucas(49) 4032522475023133 a004 Fibonacci(49)/Lucas(42)/(1/2+sqrt(5)/2)^12 4032522475023133 a001 9238424/599786069*10749957122^(1/24) 4032522475023133 a001 433494437/45537549124*141422324^(1/13) 4032522475023133 a001 66978574/11384387281*4106118243^(2/23) 4032522475023133 a001 9238424/599786069*4106118243^(1/23) 4032522475023133 a001 267914296/119218851371*4106118243^(3/23) 4032522475023133 a004 Fibonacci(42)*Lucas(48)/(1/2+sqrt(5)/2)^95 4032522475023133 a001 267914296/312119004989*4106118243^(4/23) 4032522475023133 a001 66978574/204284540899*4106118243^(5/23) 4032522475023133 a001 267914296/2139295485799*4106118243^(6/23) 4032522475023133 a001 267914296/5600748293801*4106118243^(7/23) 4032522475023133 a001 10946/599074579*4106118243^(8/23) 4032522475023133 a001 9238424/599786069*1568397607^(1/22) 4032522475023133 a004 Fibonacci(47)/Lucas(42)/(1/2+sqrt(5)/2)^10 4032522475023133 a001 66978574/11384387281*1568397607^(1/11) 4032522475023133 a001 267914296/119218851371*1568397607^(3/22) 4032522475023133 a004 Fibonacci(42)*Lucas(46)/(1/2+sqrt(5)/2)^93 4032522475023133 a001 267914296/312119004989*1568397607^(2/11) 4032522475023133 a001 66978574/204284540899*1568397607^(5/22) 4032522475023133 a001 267914296/1322157322203*1568397607^(1/4) 4032522475023133 a001 267914296/2139295485799*1568397607^(3/11) 4032522475023133 a001 267914296/5600748293801*1568397607^(7/22) 4032522475023133 a001 9238424/599786069*599074578^(1/21) 4032522475023133 a001 10946/599074579*1568397607^(4/11) 4032522475023133 a004 Fibonacci(42)/Lucas(45)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(45)/Lucas(42)/(1/2+sqrt(5)/2)^8 4032522475023133 a001 267914296/28143753123*599074578^(1/14) 4032522475023133 a001 66978574/11384387281*599074578^(2/21) 4032522475023133 a001 267914296/119218851371*599074578^(1/7) 4032522475023133 a004 Fibonacci(42)*Lucas(44)/(1/2+sqrt(5)/2)^91 4032522475023133 a001 133957148/96450076809*599074578^(1/6) 4032522475023133 a001 267914296/312119004989*599074578^(4/21) 4032522475023133 a001 267914296/505019158607*599074578^(3/14) 4032522475023133 a001 66978574/204284540899*599074578^(5/21) 4032522475023133 a001 267914296/2139295485799*599074578^(2/7) 4032522475023133 a001 267914296/5600748293801*599074578^(1/3) 4032522475023133 a001 9238424/599786069*228826127^(1/20) 4032522475023133 a001 267914296/9062201101803*599074578^(5/14) 4032522475023133 a001 10946/599074579*599074578^(8/21) 4032522475023133 a004 Fibonacci(42)/Lucas(43)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(43)/Lucas(42)/(1/2+sqrt(5)/2)^6 4032522475023133 a004 Fibonacci(44)*Lucas(43)/(1/2+sqrt(5)/2)^92 4032522475023133 a004 Fibonacci(46)*Lucas(43)/(1/2+sqrt(5)/2)^94 4032522475023133 a004 Fibonacci(48)*Lucas(43)/(1/2+sqrt(5)/2)^96 4032522475023133 a004 Fibonacci(50)*Lucas(43)/(1/2+sqrt(5)/2)^98 4032522475023133 a004 Fibonacci(52)*Lucas(43)/(1/2+sqrt(5)/2)^100 4032522475023133 a001 2/433494437*(1/2+1/2*5^(1/2))^38 4032522475023133 a004 Fibonacci(51)*Lucas(43)/(1/2+sqrt(5)/2)^99 4032522475023133 a004 Fibonacci(49)*Lucas(43)/(1/2+sqrt(5)/2)^97 4032522475023133 a001 969323029/4807526976*8^(1/3) 4032522475023133 a004 Fibonacci(47)*Lucas(43)/(1/2+sqrt(5)/2)^95 4032522475023133 a004 Fibonacci(45)*Lucas(43)/(1/2+sqrt(5)/2)^93 4032522475023133 a001 66978574/11384387281*228826127^(1/10) 4032522475023133 a004 Fibonacci(44)/Lucas(44)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(44)*Lucas(45)/(1/2+sqrt(5)/2)^94 4032522475023133 a004 Fibonacci(44)/Lucas(46)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(46)/Lucas(44)/(1/2+sqrt(5)/2)^7 4032522475023133 a001 701408733/23725150497407*2537720636^(1/3) 4032522475023133 a001 701408733/5600748293801*2537720636^(4/15) 4032522475023133 a001 701408733/2139295485799*2537720636^(2/9) 4032522475023133 a001 233802911/440719107401*2537720636^(1/5) 4032522475023133 a004 Fibonacci(44)*Lucas(47)/(1/2+sqrt(5)/2)^96 4032522475023133 a001 3524667/1568437211*2537720636^(2/15) 4032522475023133 a001 233802911/64300051206*2537720636^(1/9) 4032522475023133 a001 701408733/73681302247*2537720636^(1/15) 4032522475023133 a004 Fibonacci(44)/Lucas(48)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(48)/Lucas(44)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(44)*Lucas(49)/(1/2+sqrt(5)/2)^98 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)/Lucas(50) 4032522475023133 a004 Fibonacci(50)/Lucas(44)/(1/2+sqrt(5)/2)^11 4032522475023133 a001 701408733/14662949395604*17393796001^(2/7) 4032522475023133 a004 Fibonacci(44)*Lucas(51)/(1/2+sqrt(5)/2)^100 4032522475023133 a001 701408733/505019158607*17393796001^(1/7) 4032522475023133 a001 701408733/73681302247*45537549124^(1/17) 4032522475023133 a001 701408733/73681302247*14662949395604^(1/21) 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^3/Lucas(52) 4032522475023133 a004 Fibonacci(52)/Lucas(44)/(1/2+sqrt(5)/2)^13 4032522475023133 a001 701408733/73681302247*192900153618^(1/18) 4032522475023133 a001 701408733/23725150497407*45537549124^(5/17) 4032522475023133 a001 701408733/5600748293801*45537549124^(4/17) 4032522475023133 a001 233802911/440719107401*45537549124^(3/17) 4032522475023133 a001 3524667/1568437211*45537549124^(2/17) 4032522475023133 a001 233802911/64300051206*312119004989^(1/11) 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^5/Lucas(54) 4032522475023133 a004 Fibonacci(54)/Lucas(44)/(1/2+sqrt(5)/2)^15 4032522475023133 a001 701408733/505019158607*14662949395604^(1/9) 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^7/Lucas(56) 4032522475023133 a004 Fibonacci(56)/Lucas(44)/(1/2+sqrt(5)/2)^17 4032522475023133 a001 701408733/23725150497407*312119004989^(3/11) 4032522475023133 a001 233802911/440719107401*817138163596^(3/19) 4032522475023133 a001 233802911/440719107401*14662949395604^(1/7) 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^9/Lucas(58) 4032522475023133 a004 Fibonacci(58)/Lucas(44)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^11/Lucas(60) 4032522475023133 a004 Fibonacci(60)/Lucas(44)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^13/Lucas(62) 4032522475023133 a004 Fibonacci(62)/Lucas(44)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^15/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(44)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^17/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(44)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^19/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(44)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^21/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(44)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^23/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(44)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^25/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(44)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^27/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(44)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^29/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(44)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^31/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(44)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^33/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(44)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^35/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(44)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^37/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(44)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^39/Lucas(88) 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^41/Lucas(90) 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^43/Lucas(92) 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^45/Lucas(94) 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^47/Lucas(96) 4032522475023133 a004 Fibonacci(22)*Lucas(22)/(1/2+sqrt(5)/2)^49 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^49/Lucas(98) 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^50/Lucas(99) 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^51/Lucas(100) 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^48/Lucas(97) 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^46/Lucas(95) 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^44/Lucas(93) 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^42/Lucas(91) 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^40/Lucas(89) 4032522475023133 a004 Fibonacci(90)/Lucas(44)/(1/2+sqrt(5)/2)^51 4032522475023133 a004 Fibonacci(92)/Lucas(44)/(1/2+sqrt(5)/2)^53 4032522475023133 a004 Fibonacci(94)/Lucas(44)/(1/2+sqrt(5)/2)^55 4032522475023133 a004 Fibonacci(96)/Lucas(44)/(1/2+sqrt(5)/2)^57 4032522475023133 a004 Fibonacci(100)/Lucas(44)/(1/2+sqrt(5)/2)^61 4032522475023133 a004 Fibonacci(98)/Lucas(44)/(1/2+sqrt(5)/2)^59 4032522475023133 a004 Fibonacci(99)/Lucas(44)/(1/2+sqrt(5)/2)^60 4032522475023133 a004 Fibonacci(97)/Lucas(44)/(1/2+sqrt(5)/2)^58 4032522475023133 a004 Fibonacci(95)/Lucas(44)/(1/2+sqrt(5)/2)^56 4032522475023133 a004 Fibonacci(93)/Lucas(44)/(1/2+sqrt(5)/2)^54 4032522475023133 a004 Fibonacci(91)/Lucas(44)/(1/2+sqrt(5)/2)^52 4032522475023133 a004 Fibonacci(89)/Lucas(44)/(1/2+sqrt(5)/2)^50 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^38/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(44)/(1/2+sqrt(5)/2)^48 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^36/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(44)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^34/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(44)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^32/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(44)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^30/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(44)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^28/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(44)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^26/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(44)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^24/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(44)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^22/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(44)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^20/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(44)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^18/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(44)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^16/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(44)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^14/Lucas(63) 4032522475023133 a004 Fibonacci(63)/Lucas(44)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^12/Lucas(61) 4032522475023133 a004 Fibonacci(61)/Lucas(44)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^10/Lucas(59) 4032522475023133 a004 Fibonacci(59)/Lucas(44)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^8/Lucas(57) 4032522475023133 a004 Fibonacci(57)/Lucas(44)/(1/2+sqrt(5)/2)^18 4032522475023133 a001 233802911/440719107401*192900153618^(1/6) 4032522475023133 a001 3524667/1568437211*14662949395604^(2/21) 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^6/Lucas(55) 4032522475023133 a004 Fibonacci(55)/Lucas(44)/(1/2+sqrt(5)/2)^16 4032522475023133 a001 701408733/817138163596*73681302247^(2/13) 4032522475023133 a001 701408733/5600748293801*73681302247^(3/13) 4032522475023133 a001 233802911/3020733700601*73681302247^(1/4) 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^4/Lucas(53) 4032522475023133 a004 Fibonacci(53)/Lucas(44)/(1/2+sqrt(5)/2)^14 4032522475023133 a001 701408733/119218851371*23725150497407^(1/16) 4032522475023133 a001 701408733/119218851371*73681302247^(1/13) 4032522475023133 a001 233802911/64300051206*28143753123^(1/10) 4032522475023133 a001 701408733/2139295485799*28143753123^(1/5) 4032522475023133 a001 701408733/73681302247*10749957122^(1/16) 4032522475023133 a001 701408733/23725150497407*28143753123^(3/10) 4032522475023133 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^2/Lucas(51) 4032522475023133 a004 Fibonacci(51)/Lucas(44)/(1/2+sqrt(5)/2)^12 4032522475023133 a001 701408733/119218851371*10749957122^(1/12) 4032522475023133 a001 701408733/45537549124*10749957122^(1/24) 4032522475023133 a001 3524667/1568437211*10749957122^(1/8) 4032522475023133 a004 Fibonacci(44)*Lucas(50)/(1/2+sqrt(5)/2)^99 4032522475023133 a001 701408733/817138163596*10749957122^(1/6) 4032522475023133 a001 233802911/440719107401*10749957122^(3/16) 4032522475023133 a001 701408733/2139295485799*10749957122^(5/24) 4032522475023133 a001 701408733/5600748293801*10749957122^(1/4) 4032522475023133 a001 701408733/14662949395604*10749957122^(7/24) 4032522475023133 a001 701408733/23725150497407*10749957122^(5/16) 4032522475023133 a001 701408733/45537549124*4106118243^(1/23) 4032522475023133 a004 Fibonacci(49)/Lucas(44)/(1/2+sqrt(5)/2)^10 4032522475023133 a001 701408733/119218851371*4106118243^(2/23) 4032522475023133 a001 267914296/73681302247*228826127^(1/8) 4032522475023133 a001 3524667/1568437211*4106118243^(3/23) 4032522475023133 a004 Fibonacci(44)*Lucas(48)/(1/2+sqrt(5)/2)^97 4032522475023133 a001 165580141/73681302247*141422324^(2/13) 4032522475023133 a001 701408733/817138163596*4106118243^(4/23) 4032522475023133 a001 701408733/2139295485799*4106118243^(5/23) 4032522475023133 a001 701408733/5600748293801*4106118243^(6/23) 4032522475023133 a001 701408733/14662949395604*4106118243^(7/23) 4032522475023133 a001 701408733/45537549124*1568397607^(1/22) 4032522475023133 a004 Fibonacci(44)/Lucas(47)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(47)/Lucas(44)/(1/2+sqrt(5)/2)^8 4032522475023133 a001 701408733/119218851371*1568397607^(1/11) 4032522475023133 a001 3524667/1568437211*1568397607^(3/22) 4032522475023133 a004 Fibonacci(44)*Lucas(46)/(1/2+sqrt(5)/2)^95 4032522475023133 a001 701408733/817138163596*1568397607^(2/11) 4032522475023133 a001 701408733/2139295485799*1568397607^(5/22) 4032522475023133 a001 701408733/3461452808002*1568397607^(1/4) 4032522475023133 a001 701408733/5600748293801*1568397607^(3/11) 4032522475023133 a001 701408733/14662949395604*1568397607^(7/22) 4032522475023133 a001 701408733/45537549124*599074578^(1/21) 4032522475023133 a004 Fibonacci(44)/Lucas(45)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(45)/Lucas(44)/(1/2+sqrt(5)/2)^6 4032522475023133 a004 Fibonacci(46)*Lucas(45)/(1/2+sqrt(5)/2)^96 4032522475023133 a001 701408733/73681302247*599074578^(1/14) 4032522475023133 a004 Fibonacci(48)*Lucas(45)/(1/2+sqrt(5)/2)^98 4032522475023133 a004 Fibonacci(50)*Lucas(45)/(1/2+sqrt(5)/2)^100 4032522475023133 a001 1/567451585*(1/2+1/2*5^(1/2))^40 4032522475023133 a001 230701876/1144206275*8^(1/3) 4032522475023133 a004 Fibonacci(49)*Lucas(45)/(1/2+sqrt(5)/2)^99 4032522475023133 a001 701408733/119218851371*599074578^(2/21) 4032522475023133 a004 Fibonacci(47)*Lucas(45)/(1/2+sqrt(5)/2)^97 4032522475023133 a004 Fibonacci(46)/Lucas(46)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 1836311903/14662949395604*2537720636^(4/15) 4032522475023133 a001 1836311903/5600748293801*2537720636^(2/9) 4032522475023133 a001 1836311903/3461452808002*2537720636^(1/5) 4032522475023133 a004 Fibonacci(46)*Lucas(47)/(1/2+sqrt(5)/2)^98 4032522475023133 a001 1836311903/817138163596*2537720636^(2/15) 4032522475023133 a001 1836311903/505019158607*2537720636^(1/9) 4032522475023133 a001 1836311903/192900153618*2537720636^(1/15) 4032522475023133 a004 Fibonacci(46)/Lucas(48)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(48)/Lucas(46)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(46)*Lucas(49)/(1/2+sqrt(5)/2)^100 4032522475023133 a004 Fibonacci(46)/Lucas(50)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(50)/Lucas(46)/(1/2+sqrt(5)/2)^9 4032522475023133 a001 1836311903/1322157322203*17393796001^(1/7) 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)/Lucas(52) 4032522475023133 a004 Fibonacci(52)/Lucas(46)/(1/2+sqrt(5)/2)^11 4032522475023133 a001 1836311903/14662949395604*45537549124^(4/17) 4032522475023133 a001 1836311903/3461452808002*45537549124^(3/17) 4032522475023133 a001 1836311903/192900153618*45537549124^(1/17) 4032522475023133 a001 1836311903/817138163596*45537549124^(2/17) 4032522475023133 a001 1836311903/192900153618*14662949395604^(1/21) 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^3/Lucas(54) 4032522475023133 a004 Fibonacci(54)/Lucas(46)/(1/2+sqrt(5)/2)^13 4032522475023133 a001 1836311903/192900153618*192900153618^(1/18) 4032522475023133 a001 1836311903/505019158607*312119004989^(1/11) 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^5/Lucas(56) 4032522475023133 a004 Fibonacci(56)/Lucas(46)/(1/2+sqrt(5)/2)^15 4032522475023133 a001 1836311903/1322157322203*14662949395604^(1/9) 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^7/Lucas(58) 4032522475023133 a004 Fibonacci(58)/Lucas(46)/(1/2+sqrt(5)/2)^17 4032522475023133 a001 1836311903/14662949395604*817138163596^(4/19) 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^9/Lucas(60) 4032522475023133 a004 Fibonacci(60)/Lucas(46)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^11/Lucas(62) 4032522475023133 a004 Fibonacci(62)/Lucas(46)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^13/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(46)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^15/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(46)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^17/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(46)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^19/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(46)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^21/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(46)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^23/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(46)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^25/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(46)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^27/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(46)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^29/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(46)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^31/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(46)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^33/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(46)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^35/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(46)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^37/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(46)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^39/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(46)/(1/2+sqrt(5)/2)^49 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^41/Lucas(92) 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^43/Lucas(94) 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^45/Lucas(96) 4032522475023133 a004 Fibonacci(23)*Lucas(23)/(1/2+sqrt(5)/2)^51 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^47/Lucas(98) 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^49/Lucas(100) 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^48/Lucas(99) 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^46/Lucas(97) 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^44/Lucas(95) 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^42/Lucas(93) 4032522475023133 a004 Fibonacci(94)/Lucas(46)/(1/2+sqrt(5)/2)^53 4032522475023133 a004 Fibonacci(96)/Lucas(46)/(1/2+sqrt(5)/2)^55 4032522475023133 a004 Fibonacci(100)/Lucas(46)/(1/2+sqrt(5)/2)^59 4032522475023133 a004 Fibonacci(98)/Lucas(46)/(1/2+sqrt(5)/2)^57 4032522475023133 a004 Fibonacci(99)/Lucas(46)/(1/2+sqrt(5)/2)^58 4032522475023133 a004 Fibonacci(97)/Lucas(46)/(1/2+sqrt(5)/2)^56 4032522475023133 a004 Fibonacci(95)/Lucas(46)/(1/2+sqrt(5)/2)^54 4032522475023133 a004 Fibonacci(93)/Lucas(46)/(1/2+sqrt(5)/2)^52 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^40/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(46)/(1/2+sqrt(5)/2)^50 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^38/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(46)/(1/2+sqrt(5)/2)^48 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^36/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(46)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^34/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(46)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^32/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(46)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^30/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(46)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^28/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(46)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^26/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(46)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^24/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(46)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^22/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(46)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^20/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(46)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^18/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(46)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^16/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(46)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^14/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(46)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^12/Lucas(63) 4032522475023133 a004 Fibonacci(63)/Lucas(46)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^10/Lucas(61) 4032522475023133 a004 Fibonacci(61)/Lucas(46)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^8/Lucas(59) 4032522475023133 a004 Fibonacci(59)/Lucas(46)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^6/Lucas(57) 4032522475023133 a004 Fibonacci(57)/Lucas(46)/(1/2+sqrt(5)/2)^16 4032522475023133 a001 1836311903/3461452808002*192900153618^(1/6) 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^4/Lucas(55) 4032522475023133 a004 Fibonacci(55)/Lucas(46)/(1/2+sqrt(5)/2)^14 4032522475023133 a001 1836311903/312119004989*23725150497407^(1/16) 4032522475023133 a001 1836311903/312119004989*73681302247^(1/13) 4032522475023133 a001 1836311903/2139295485799*73681302247^(2/13) 4032522475023133 a001 1836311903/14662949395604*73681302247^(3/13) 4032522475023133 a001 1836311903/23725150497407*73681302247^(1/4) 4032522475023133 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^2/Lucas(53) 4032522475023133 a004 Fibonacci(53)/Lucas(46)/(1/2+sqrt(5)/2)^12 4032522475023133 a001 1836311903/505019158607*28143753123^(1/10) 4032522475023133 a001 1836311903/5600748293801*28143753123^(1/5) 4032522475023133 a001 1836311903/119218851371*10749957122^(1/24) 4032522475023133 a004 Fibonacci(51)/Lucas(46)/(1/2+sqrt(5)/2)^10 4032522475023133 a001 1836311903/192900153618*10749957122^(1/16) 4032522475023133 a001 1836311903/312119004989*10749957122^(1/12) 4032522475023133 a001 1836311903/817138163596*10749957122^(1/8) 4032522475023133 a001 1836311903/2139295485799*10749957122^(1/6) 4032522475023133 a001 1836311903/3461452808002*10749957122^(3/16) 4032522475023133 a001 1836311903/5600748293801*10749957122^(5/24) 4032522475023133 a001 1836311903/14662949395604*10749957122^(1/4) 4032522475023133 a001 1836311903/119218851371*4106118243^(1/23) 4032522475023133 a004 Fibonacci(46)/Lucas(49)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(49)/Lucas(46)/(1/2+sqrt(5)/2)^8 4032522475023133 a001 1836311903/312119004989*4106118243^(2/23) 4032522475023133 a001 1836311903/817138163596*4106118243^(3/23) 4032522475023133 a004 Fibonacci(46)*Lucas(48)/(1/2+sqrt(5)/2)^99 4032522475023133 a001 1836311903/2139295485799*4106118243^(4/23) 4032522475023133 a001 1836311903/5600748293801*4106118243^(5/23) 4032522475023133 a001 1836311903/14662949395604*4106118243^(6/23) 4032522475023133 a001 1201881744/3665737348901*2537720636^(2/9) 4032522475023133 a001 1836311903/119218851371*1568397607^(1/22) 4032522475023133 a001 1602508992/3020733700601*2537720636^(1/5) 4032522475023133 a004 Fibonacci(46)/Lucas(47)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(47)/Lucas(46)/(1/2+sqrt(5)/2)^6 4032522475023133 a001 12586269025/23725150497407*2537720636^(1/5) 4032522475023133 a004 Fibonacci(48)*Lucas(47)/(1/2+sqrt(5)/2)^100 4032522475023133 a001 7778742049/23725150497407*2537720636^(2/9) 4032522475023133 a001 4807526976/2139295485799*2537720636^(2/15) 4032522475023133 a001 7778742049/14662949395604*2537720636^(1/5) 4032522475023133 a001 1602508992/440719107401*2537720636^(1/9) 4032522475023133 a001 2/2971215073*(1/2+1/2*5^(1/2))^42 4032522475023133 a001 6643838879/32951280099*8^(1/3) 4032522475023133 a001 1836311903/312119004989*1568397607^(1/11) 4032522475023133 a001 12586269025/5600748293801*2537720636^(2/15) 4032522475023133 a001 32951280099/14662949395604*2537720636^(2/15) 4032522475023133 a001 53316291173/23725150497407*2537720636^(2/15) 4032522475023133 a001 20365011074/9062201101803*2537720636^(2/15) 4032522475023133 a001 102287808/10745088481*2537720636^(1/15) 4032522475023133 a001 2971215073/23725150497407*2537720636^(4/15) 4032522475023133 a001 12586269025/3461452808002*2537720636^(1/9) 4032522475023133 a001 10983760033/3020733700601*2537720636^(1/9) 4032522475023133 a001 7778742049/3461452808002*2537720636^(2/15) 4032522475023133 a004 Fibonacci(48)/Lucas(48)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 86267571272/23725150497407*2537720636^(1/9) 4032522475023133 a001 53316291173/14662949395604*2537720636^(1/9) 4032522475023133 a001 20365011074/5600748293801*2537720636^(1/9) 4032522475023133 a001 7778742049/2139295485799*2537720636^(1/9) 4032522475023133 a001 2971215073/9062201101803*2537720636^(2/9) 4032522475023133 a001 12586269025/1322157322203*2537720636^(1/15) 4032522475023133 a001 32951280099/3461452808002*2537720636^(1/15) 4032522475023133 a001 86267571272/9062201101803*2537720636^(1/15) 4032522475023133 a001 225851433717/23725150497407*2537720636^(1/15) 4032522475023133 a001 139583862445/14662949395604*2537720636^(1/15) 4032522475023133 a001 53316291173/5600748293801*2537720636^(1/15) 4032522475023133 a004 Fibonacci(48)/Lucas(50)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(50)/Lucas(48)/(1/2+sqrt(5)/2)^7 4032522475023133 a001 20365011074/2139295485799*2537720636^(1/15) 4032522475023133 a001 14930208/10749853441*17393796001^(1/7) 4032522475023133 a004 Fibonacci(48)/Lucas(52)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(52)/Lucas(48)/(1/2+sqrt(5)/2)^9 4032522475023133 a001 1602508992/3020733700601*45537549124^(3/17) 4032522475023133 a001 4807526976/2139295485799*45537549124^(2/17) 4032522475023133 a001 102287808/10745088481*45537549124^(1/17) 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)/Lucas(54) 4032522475023133 a004 Fibonacci(54)/Lucas(48)/(1/2+sqrt(5)/2)^11 4032522475023133 a001 102287808/10745088481*14662949395604^(1/21) 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^3/Lucas(56) 4032522475023133 a004 Fibonacci(56)/Lucas(48)/(1/2+sqrt(5)/2)^13 4032522475023133 a001 102287808/10745088481*192900153618^(1/18) 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^5/Lucas(58) 4032522475023133 a004 Fibonacci(58)/Lucas(48)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^7/Lucas(60) 4032522475023133 a004 Fibonacci(60)/Lucas(48)/(1/2+sqrt(5)/2)^17 4032522475023133 a001 1602508992/3020733700601*14662949395604^(1/7) 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^9/Lucas(62) 4032522475023133 a004 Fibonacci(62)/Lucas(48)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^11/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(48)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^13/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(48)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^15/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(48)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^17/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(48)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^19/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(48)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^21/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(48)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^23/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(48)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^25/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(48)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^27/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(48)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^29/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(48)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^31/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(48)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^33/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(48)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^35/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(48)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^37/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(48)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^39/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(48)/(1/2+sqrt(5)/2)^49 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^41/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(48)/(1/2+sqrt(5)/2)^51 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^43/Lucas(96) 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^45/Lucas(98) 4032522475023133 a004 Fibonacci(24)*Lucas(24)/(1/2+sqrt(5)/2)^53 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^46/Lucas(99) 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^47/Lucas(100) 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^44/Lucas(97) 4032522475023133 a004 Fibonacci(98)/Lucas(48)/(1/2+sqrt(5)/2)^55 4032522475023133 a004 Fibonacci(100)/Lucas(48)/(1/2+sqrt(5)/2)^57 4032522475023133 a004 Fibonacci(99)/Lucas(48)/(1/2+sqrt(5)/2)^56 4032522475023133 a004 Fibonacci(97)/Lucas(48)/(1/2+sqrt(5)/2)^54 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^42/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(48)/(1/2+sqrt(5)/2)^52 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^40/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(48)/(1/2+sqrt(5)/2)^50 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^38/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(48)/(1/2+sqrt(5)/2)^48 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^36/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(48)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^34/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(48)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^32/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(48)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^30/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(48)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^28/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(48)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^26/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(48)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^24/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(48)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^22/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(48)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^20/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(48)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^18/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(48)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^16/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(48)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^14/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(48)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^12/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(48)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^10/Lucas(63) 4032522475023133 a004 Fibonacci(63)/Lucas(48)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^8/Lucas(61) 4032522475023133 a004 Fibonacci(61)/Lucas(48)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^6/Lucas(59) 4032522475023133 a004 Fibonacci(59)/Lucas(48)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^4/Lucas(57) 4032522475023133 a004 Fibonacci(57)/Lucas(48)/(1/2+sqrt(5)/2)^14 4032522475023133 a001 1201881744/204284540899*23725150497407^(1/16) 4032522475023133 a001 1602508992/3020733700601*192900153618^(1/6) 4032522475023133 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^2/Lucas(55) 4032522475023133 a004 Fibonacci(55)/Lucas(48)/(1/2+sqrt(5)/2)^12 4032522475023133 a001 1201881744/204284540899*73681302247^(1/13) 4032522475023133 a001 4807526976/5600748293801*73681302247^(2/13) 4032522475023133 a004 Fibonacci(53)/Lucas(48)/(1/2+sqrt(5)/2)^10 4032522475023133 a001 1602508992/440719107401*28143753123^(1/10) 4032522475023133 a001 3524667/1568437211*599074578^(1/7) 4032522475023133 a001 1201881744/3665737348901*28143753123^(1/5) 4032522475023133 a001 2971215073/5600748293801*2537720636^(1/5) 4032522475023133 a001 4807526976/312119004989*10749957122^(1/24) 4032522475023133 a004 Fibonacci(48)/Lucas(51)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(51)/Lucas(48)/(1/2+sqrt(5)/2)^8 4032522475023133 a001 102287808/10745088481*10749957122^(1/16) 4032522475023133 a001 1201881744/204284540899*10749957122^(1/12) 4032522475023133 a001 4807526976/2139295485799*10749957122^(1/8) 4032522475023133 a001 4807526976/5600748293801*10749957122^(1/6) 4032522475023133 a001 7778742049/817138163596*2537720636^(1/15) 4032522475023133 a001 1602508992/3020733700601*10749957122^(3/16) 4032522475023133 a001 1201881744/3665737348901*10749957122^(5/24) 4032522475023133 a001 4807526976/312119004989*4106118243^(1/23) 4032522475023133 a004 Fibonacci(48)/Lucas(49)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(49)/Lucas(48)/(1/2+sqrt(5)/2)^6 4032522475023133 a001 1836311903/817138163596*1568397607^(3/22) 4032522475023133 a001 1201881744/204284540899*4106118243^(2/23) 4032522475023133 a001 2/7778742049*(1/2+1/2*5^(1/2))^44 4032522475023133 a001 17393796001/86267571272*8^(1/3) 4032522475023133 a004 Fibonacci(50)/Lucas(50)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 12586269025/9062201101803*17393796001^(1/7) 4032522475023133 a004 Fibonacci(50)/Lucas(52)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(52)/Lucas(50)/(1/2+sqrt(5)/2)^7 4032522475023133 a001 12586269025/23725150497407*45537549124^(3/17) 4032522475023133 a001 12586269025/5600748293801*45537549124^(2/17) 4032522475023133 a001 12586269025/1322157322203*45537549124^(1/17) 4032522475023133 a004 Fibonacci(50)/Lucas(54)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(54)/Lucas(50)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)/Lucas(56) 4032522475023133 a004 Fibonacci(56)/Lucas(50)/(1/2+sqrt(5)/2)^11 4032522475023133 a001 12586269025/3461452808002*312119004989^(1/11) 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^3/Lucas(58) 4032522475023133 a004 Fibonacci(58)/Lucas(50)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^5/Lucas(60) 4032522475023133 a004 Fibonacci(60)/Lucas(50)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^7/Lucas(62) 4032522475023133 a004 Fibonacci(62)/Lucas(50)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^9/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(50)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^11/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(50)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^13/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(50)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^15/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(50)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^17/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(50)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^19/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(50)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^21/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(50)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^23/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(50)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^25/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(50)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^27/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(50)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^29/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(50)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^31/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(50)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^33/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(50)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^35/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(50)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^37/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(50)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^39/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(50)/(1/2+sqrt(5)/2)^49 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^41/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(50)/(1/2+sqrt(5)/2)^51 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^43/Lucas(98) 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^45/Lucas(100) 4032522475023133 a004 Fibonacci(98)/Lucas(50)/(1/2+sqrt(5)/2)^53 4032522475023133 a004 Fibonacci(25)*Lucas(25)/(1/2+sqrt(5)/2)^55 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^44/Lucas(99) 4032522475023133 a004 Fibonacci(99)/Lucas(50)/(1/2+sqrt(5)/2)^54 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^42/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(50)/(1/2+sqrt(5)/2)^52 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^40/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(50)/(1/2+sqrt(5)/2)^50 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^38/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(50)/(1/2+sqrt(5)/2)^48 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^36/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(50)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^34/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(50)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^32/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(50)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^30/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(50)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^28/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(50)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^26/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(50)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^24/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(50)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^22/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(50)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^20/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(50)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^18/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(50)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^16/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(50)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^14/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(50)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^12/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(50)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^10/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(50)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^8/Lucas(63) 4032522475023133 a004 Fibonacci(63)/Lucas(50)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^6/Lucas(61) 4032522475023133 a004 Fibonacci(61)/Lucas(50)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^4/Lucas(59) 4032522475023133 a004 Fibonacci(59)/Lucas(50)/(1/2+sqrt(5)/2)^14 4032522475023133 a001 12586269025/1322157322203*192900153618^(1/18) 4032522475023133 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^2/Lucas(57) 4032522475023133 a004 Fibonacci(57)/Lucas(50)/(1/2+sqrt(5)/2)^12 4032522475023133 a001 12586269025/23725150497407*192900153618^(1/6) 4032522475023133 a004 Fibonacci(55)/Lucas(50)/(1/2+sqrt(5)/2)^10 4032522475023133 a001 12586269025/2139295485799*73681302247^(1/13) 4032522475023133 a001 12586269025/14662949395604*73681302247^(2/13) 4032522475023133 a004 Fibonacci(50)/Lucas(53)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(53)/Lucas(50)/(1/2+sqrt(5)/2)^8 4032522475023133 a001 12586269025/3461452808002*28143753123^(1/10) 4032522475023133 a001 4807526976/2139295485799*4106118243^(3/23) 4032522475023133 a001 12586269025/817138163596*10749957122^(1/24) 4032522475023133 a004 Fibonacci(50)/Lucas(51)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(51)/Lucas(50)/(1/2+sqrt(5)/2)^6 4032522475023133 a001 12586269025/1322157322203*10749957122^(1/16) 4032522475023133 a001 32951280099/23725150497407*17393796001^(1/7) 4032522475023133 a001 12586269025/2139295485799*10749957122^(1/12) 4032522475023133 a001 1/10182505537*(1/2+1/2*5^(1/2))^46 4032522475023133 a001 45537549124/225851433717*8^(1/3) 4032522475023133 a004 Fibonacci(52)/Lucas(52)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 32951280099/3461452808002*45537549124^(1/17) 4032522475023133 a004 Fibonacci(52)/Lucas(54)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(54)/Lucas(52)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(52)/Lucas(56)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(56)/Lucas(52)/(1/2+sqrt(5)/2)^9 4032522475023133 a001 10983760033/3020733700601*312119004989^(1/11) 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)/Lucas(58) 4032522475023133 a004 Fibonacci(58)/Lucas(52)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^3/Lucas(60) 4032522475023133 a004 Fibonacci(60)/Lucas(52)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^5/Lucas(62) 4032522475023133 a004 Fibonacci(62)/Lucas(52)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^7/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(52)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^9/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(52)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^11/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(52)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^13/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(52)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^15/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(52)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^17/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(52)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^19/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(52)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^21/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(52)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^23/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(52)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^25/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(52)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^27/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(52)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^29/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(52)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^31/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(52)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^33/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(52)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^35/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(52)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^37/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(52)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^39/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(52)/(1/2+sqrt(5)/2)^49 4032522475023133 a004 Fibonacci(100)/Lucas(52)/(1/2+sqrt(5)/2)^53 4032522475023133 a004 Fibonacci(26)*Lucas(26)/(1/2+sqrt(5)/2)^57 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^41/Lucas(98) 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^43/Lucas(100) 4032522475023133 a004 Fibonacci(98)/Lucas(52)/(1/2+sqrt(5)/2)^51 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^42/Lucas(99) 4032522475023133 a004 Fibonacci(99)/Lucas(52)/(1/2+sqrt(5)/2)^52 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^40/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(52)/(1/2+sqrt(5)/2)^50 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^38/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(52)/(1/2+sqrt(5)/2)^48 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^36/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(52)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^34/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(52)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^32/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(52)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^30/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(52)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^28/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(52)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^26/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(52)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^24/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(52)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^22/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(52)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^20/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(52)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^18/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(52)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^16/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(52)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^14/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(52)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^12/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(52)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^10/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(52)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^8/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(52)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^6/Lucas(63) 4032522475023133 a004 Fibonacci(63)/Lucas(52)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^4/Lucas(61) 4032522475023133 a004 Fibonacci(61)/Lucas(52)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^2/Lucas(59) 4032522475023133 a004 Fibonacci(59)/Lucas(52)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(57)/Lucas(52)/(1/2+sqrt(5)/2)^10 4032522475023133 a001 12586269025/5600748293801*10749957122^(1/8) 4032522475023133 a004 Fibonacci(52)/Lucas(55)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(55)/Lucas(52)/(1/2+sqrt(5)/2)^8 4032522475023133 a001 32951280099/5600748293801*73681302247^(1/13) 4032522475023133 a004 Fibonacci(52)/Lucas(53)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(53)/Lucas(52)/(1/2+sqrt(5)/2)^6 4032522475023133 a001 2/53316291173*(1/2+1/2*5^(1/2))^48 4032522475023133 a001 119218851371/591286729879*8^(1/3) 4032522475023133 a001 10983760033/3020733700601*28143753123^(1/10) 4032522475023133 a001 86267571272/9062201101803*45537549124^(1/17) 4032522475023133 a004 Fibonacci(54)/Lucas(54)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 225851433717/23725150497407*45537549124^(1/17) 4032522475023133 a004 Fibonacci(54)/Lucas(56)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(56)/Lucas(54)/(1/2+sqrt(5)/2)^7 4032522475023133 a001 86267571272/23725150497407*312119004989^(1/11) 4032522475023133 a004 Fibonacci(54)/Lucas(58)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(58)/Lucas(54)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)/Lucas(60) 4032522475023133 a004 Fibonacci(60)/Lucas(54)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^3/Lucas(62) 4032522475023133 a004 Fibonacci(62)/Lucas(54)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^5/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(54)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^7/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(54)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^9/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(54)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^11/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(54)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^13/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(54)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^15/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(54)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^17/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(54)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^19/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(54)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^21/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(54)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^23/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(54)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^25/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(54)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^27/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(54)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^29/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(54)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^31/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(54)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^33/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(54)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^35/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(54)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^37/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(54)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(100)/Lucas(54)/(1/2+sqrt(5)/2)^51 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^39/Lucas(98) 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^41/Lucas(100) 4032522475023133 a004 Fibonacci(98)/Lucas(54)/(1/2+sqrt(5)/2)^49 4032522475023133 a004 Fibonacci(27)*Lucas(27)/(1/2+sqrt(5)/2)^59 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^40/Lucas(99) 4032522475023133 a004 Fibonacci(99)/Lucas(54)/(1/2+sqrt(5)/2)^50 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^38/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(54)/(1/2+sqrt(5)/2)^48 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^36/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(54)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^34/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(54)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^32/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(54)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^30/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(54)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^28/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(54)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^26/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(54)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^24/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(54)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^22/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(54)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^20/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(54)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^18/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(54)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^16/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(54)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^14/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(54)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^12/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(54)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^10/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(54)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^8/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(54)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^6/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(54)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^4/Lucas(63) 4032522475023133 a004 Fibonacci(63)/Lucas(54)/(1/2+sqrt(5)/2)^14 4032522475023133 a001 1135099622/192933544679*23725150497407^(1/16) 4032522475023133 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^2/Lucas(61) 4032522475023133 a004 Fibonacci(61)/Lucas(54)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(59)/Lucas(54)/(1/2+sqrt(5)/2)^10 4032522475023133 a001 86267571272/9062201101803*192900153618^(1/18) 4032522475023133 a004 Fibonacci(54)/Lucas(57)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(57)/Lucas(54)/(1/2+sqrt(5)/2)^8 4032522475023133 a001 139583862445/14662949395604*45537549124^(1/17) 4032522475023133 a004 Fibonacci(54)/Lucas(55)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(55)/Lucas(54)/(1/2+sqrt(5)/2)^6 4032522475023133 a001 1135099622/192933544679*73681302247^(1/13) 4032522475023133 a001 2/139583862445*(1/2+1/2*5^(1/2))^50 4032522475023133 a001 28374454999/140728068720*8^(1/3) 4032522475023133 a004 Fibonacci(56)/Lucas(56)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(56)/Lucas(58)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(58)/Lucas(56)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(56)/Lucas(60)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(60)/Lucas(56)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)/Lucas(62) 4032522475023133 a004 Fibonacci(62)/Lucas(56)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^3/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(56)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^5/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(56)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^7/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(56)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^9/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(56)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^11/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(56)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^13/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(56)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^15/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(56)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^17/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(56)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^19/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(56)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^21/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(56)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^23/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(56)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^25/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(56)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^27/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(56)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^29/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(56)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^31/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(56)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^33/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(56)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^35/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(56)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(100)/Lucas(56)/(1/2+sqrt(5)/2)^49 4032522475023133 a004 Fibonacci(28)*Lucas(28)/(1/2+sqrt(5)/2)^61 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^37/Lucas(98) 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^38/Lucas(99) 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^39/Lucas(100) 4032522475023133 a004 Fibonacci(98)/Lucas(56)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(99)/Lucas(56)/(1/2+sqrt(5)/2)^48 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^36/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(56)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^34/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(56)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^32/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(56)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^30/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(56)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^28/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(56)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^26/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(56)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^24/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(56)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^22/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(56)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^20/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(56)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^18/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(56)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^16/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(56)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^14/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(56)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^12/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(56)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^10/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(56)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^8/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(56)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^6/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(56)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^4/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(56)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^2/Lucas(63) 4032522475023133 a004 Fibonacci(63)/Lucas(56)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(61)/Lucas(56)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(56)/Lucas(59)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(59)/Lucas(56)/(1/2+sqrt(5)/2)^8 4032522475023133 a004 Fibonacci(56)/Lucas(57)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(57)/Lucas(56)/(1/2+sqrt(5)/2)^6 4032522475023133 a001 1/182717648081*(1/2+1/2*5^(1/2))^52 4032522475023133 a004 Fibonacci(58)/Lucas(58)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(58)/Lucas(60)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(60)/Lucas(58)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(58)/Lucas(62)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(62)/Lucas(58)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(58)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^3/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(58)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^5/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(58)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^7/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(58)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^9/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(58)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^11/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(58)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^13/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(58)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^15/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(58)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^17/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(58)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^19/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(58)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^21/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(58)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^23/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(58)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^25/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(58)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^27/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(58)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^29/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(58)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^31/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(58)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^33/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(58)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^35/Lucas(98) 4032522475023133 a004 Fibonacci(98)/Lucas(58)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(100)/Lucas(58)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(29)*Lucas(29)/(1/2+sqrt(5)/2)^63 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^36/Lucas(99) 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^37/Lucas(100) 4032522475023133 a004 Fibonacci(99)/Lucas(58)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^34/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(58)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^32/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(58)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^30/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(58)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^28/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(58)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^26/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(58)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^24/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(58)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^22/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(58)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^20/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(58)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^18/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(58)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^16/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(58)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^14/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(58)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^12/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(58)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^10/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(58)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^8/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(58)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^6/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(58)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^4/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(58)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^2/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(58)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(63)/Lucas(58)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(58)/Lucas(61)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(61)/Lucas(58)/(1/2+sqrt(5)/2)^8 4032522475023133 a004 Fibonacci(58)/Lucas(59)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(59)/Lucas(58)/(1/2+sqrt(5)/2)^6 4032522475023133 a001 2/956722026041*(1/2+1/2*5^(1/2))^54 4032522475023133 a004 Fibonacci(60)/Lucas(60)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(60)/Lucas(62)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(62)/Lucas(60)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(60)/Lucas(64)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(64)/Lucas(60)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(60)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^3/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(60)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^5/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(60)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^7/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(60)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^9/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(60)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^11/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(60)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^13/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(60)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^15/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(60)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^17/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(60)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^19/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(60)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^21/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(60)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^23/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(60)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^25/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(60)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^27/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(60)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^29/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(60)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^31/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(60)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(100)/Lucas(60)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(30)*Lucas(30)/(1/2+sqrt(5)/2)^65 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^33/Lucas(98) 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^35/Lucas(100) 4032522475023133 a004 Fibonacci(98)/Lucas(60)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^34/Lucas(99) 4032522475023133 a004 Fibonacci(99)/Lucas(60)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^32/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(60)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^30/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(60)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^28/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(60)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^26/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(60)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^24/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(60)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^22/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(60)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^20/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(60)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^18/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(60)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^16/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(60)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^14/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(60)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^12/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(60)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^10/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(60)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^8/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(60)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^6/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(60)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^4/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(60)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^2/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(60)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(65)/Lucas(60)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(60)/Lucas(63)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(63)/Lucas(60)/(1/2+sqrt(5)/2)^8 4032522475023133 a004 Fibonacci(60)/Lucas(61)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(61)/Lucas(60)/(1/2+sqrt(5)/2)^6 4032522475023133 a001 2/2504730781961*(1/2+1/2*5^(1/2))^56 4032522475023133 a004 Fibonacci(62)/Lucas(62)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(62)/Lucas(64)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(64)/Lucas(62)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(62)/Lucas(66)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(66)/Lucas(62)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(62)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^3/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(62)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^5/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(62)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^7/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(62)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^9/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(62)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^11/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(62)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^13/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(62)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^15/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(62)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^17/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(62)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^19/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(62)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^21/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(62)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^23/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(62)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^25/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(62)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^27/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(62)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^29/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(62)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^31/Lucas(98) 4032522475023133 a004 Fibonacci(98)/Lucas(62)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(100)/Lucas(62)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(31)*Lucas(31)/(1/2+sqrt(5)/2)^67 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^32/Lucas(99) 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^33/Lucas(100) 4032522475023133 a004 Fibonacci(99)/Lucas(62)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^30/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(62)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^28/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(62)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^26/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(62)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^24/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(62)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^22/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(62)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^20/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(62)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^18/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(62)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^16/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(62)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^14/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(62)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^12/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(62)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^10/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(62)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^8/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(62)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^6/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(62)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^4/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(62)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^2/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(62)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(67)/Lucas(62)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(62)/Lucas(65)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(65)/Lucas(62)/(1/2+sqrt(5)/2)^8 4032522475023133 a004 Fibonacci(62)/Lucas(63)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(63)/Lucas(62)/(1/2+sqrt(5)/2)^6 4032522475023133 a001 1/3278735159921*(1/2+1/2*5^(1/2))^58 4032522475023133 a004 Fibonacci(64)/Lucas(64)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(64)/Lucas(66)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(66)/Lucas(64)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(64)/Lucas(68)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(68)/Lucas(64)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(64)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^3/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(64)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^5/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(64)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^7/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(64)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^9/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(64)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^11/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(64)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^13/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(64)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^15/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(64)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^17/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(64)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^19/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(64)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^21/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(64)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^23/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(64)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^25/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(64)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^27/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(64)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^29/Lucas(98) 4032522475023133 a004 Fibonacci(98)/Lucas(64)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(100)/Lucas(64)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(32)*Lucas(32)/(1/2+sqrt(5)/2)^69 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^30/Lucas(99) 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^31/Lucas(100) 4032522475023133 a004 Fibonacci(99)/Lucas(64)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^28/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(64)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^26/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(64)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^24/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(64)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^22/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(64)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^20/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(64)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^18/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(64)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^16/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(64)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^14/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(64)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^12/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(64)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^10/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(64)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^8/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(64)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^6/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(64)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^4/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(64)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^2/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(64)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(69)/Lucas(64)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(64)/Lucas(67)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(67)/Lucas(64)/(1/2+sqrt(5)/2)^8 4032522475023133 a004 Fibonacci(64)/Lucas(65)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(65)/Lucas(64)/(1/2+sqrt(5)/2)^6 4032522475023133 a004 Fibonacci(66)/Lucas(66)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(66)/Lucas(68)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(68)/Lucas(66)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(66)/Lucas(70)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(70)/Lucas(66)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(66)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^3/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(66)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^5/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(66)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^7/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(66)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^9/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(66)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^11/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(66)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^13/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(66)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^15/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(66)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^17/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(66)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^19/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(66)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^21/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(66)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^23/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(66)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^25/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(66)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^27/Lucas(98) 4032522475023133 a004 Fibonacci(98)/Lucas(66)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(100)/Lucas(66)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(33)*Lucas(33)/(1/2+sqrt(5)/2)^71 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^28/Lucas(99) 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^29/Lucas(100) 4032522475023133 a004 Fibonacci(99)/Lucas(66)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^26/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(66)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^24/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(66)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^22/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(66)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^20/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(66)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^18/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(66)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^16/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(66)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^14/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(66)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^12/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(66)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^10/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(66)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^8/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(66)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^6/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(66)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^4/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(66)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^2/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(66)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(71)/Lucas(66)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(66)/Lucas(69)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(69)/Lucas(66)/(1/2+sqrt(5)/2)^8 4032522475023133 a004 Fibonacci(66)/Lucas(67)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(67)/Lucas(66)/(1/2+sqrt(5)/2)^6 4032522475023133 a004 Fibonacci(68)/Lucas(68)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(68)/Lucas(70)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(70)/Lucas(68)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(68)/Lucas(72)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(72)/Lucas(68)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(68)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^3/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(68)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^5/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(68)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^7/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(68)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^9/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(68)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^11/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(68)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^13/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(68)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^15/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(68)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^17/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(68)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^19/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(68)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^21/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(68)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^23/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(68)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(100)/Lucas(68)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^25/Lucas(98) 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^27/Lucas(100) 4032522475023133 a004 Fibonacci(98)/Lucas(68)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(34)*Lucas(34)/(1/2+sqrt(5)/2)^73 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^26/Lucas(99) 4032522475023133 a004 Fibonacci(99)/Lucas(68)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^24/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(68)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^22/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(68)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^20/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(68)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^18/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(68)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^16/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(68)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^14/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(68)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^12/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(68)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^10/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(68)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^8/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(68)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^6/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(68)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^4/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(68)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^2/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(68)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(73)/Lucas(68)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(68)/Lucas(71)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(71)/Lucas(68)/(1/2+sqrt(5)/2)^8 4032522475023133 a004 Fibonacci(68)/Lucas(69)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(69)/Lucas(68)/(1/2+sqrt(5)/2)^6 4032522475023133 a004 Fibonacci(70)/Lucas(70)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(70)/Lucas(72)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(72)/Lucas(70)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(70)/Lucas(74)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(74)/Lucas(70)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(70)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^3/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(70)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^5/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(70)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^7/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(70)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^9/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(70)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^11/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(70)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^13/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(70)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^15/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(70)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^17/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(70)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^19/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(70)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^21/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(70)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^23/Lucas(98) 4032522475023133 a004 Fibonacci(98)/Lucas(70)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(100)/Lucas(70)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(35)*Lucas(35)/(1/2+sqrt(5)/2)^75 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^24/Lucas(99) 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^25/Lucas(100) 4032522475023133 a004 Fibonacci(99)/Lucas(70)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^22/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(70)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^20/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(70)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^18/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(70)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^16/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(70)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^14/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(70)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^12/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(70)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^10/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(70)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^8/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(70)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^6/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(70)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^4/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(70)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^2/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(70)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(75)/Lucas(70)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(70)/Lucas(73)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(73)/Lucas(70)/(1/2+sqrt(5)/2)^8 4032522475023133 a004 Fibonacci(70)/Lucas(71)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(71)/Lucas(70)/(1/2+sqrt(5)/2)^6 4032522475023133 a004 Fibonacci(72)/Lucas(72)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(72)/Lucas(74)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(74)/Lucas(72)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(72)/Lucas(76)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(76)/Lucas(72)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(72)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^3/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(72)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^5/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(72)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^7/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(72)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^9/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(72)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^11/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(72)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^13/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(72)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^15/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(72)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^17/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(72)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^19/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(72)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(100)/Lucas(72)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(36)*Lucas(36)/(1/2+sqrt(5)/2)^77 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^21/Lucas(98) 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^22/Lucas(99) 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^23/Lucas(100) 4032522475023133 a004 Fibonacci(98)/Lucas(72)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(99)/Lucas(72)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^20/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(72)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^18/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(72)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^16/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(72)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^14/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(72)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^12/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(72)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^10/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(72)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^8/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(72)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^6/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(72)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^4/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(72)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^2/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(72)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(77)/Lucas(72)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(72)/Lucas(75)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(75)/Lucas(72)/(1/2+sqrt(5)/2)^8 4032522475023133 a004 Fibonacci(72)/Lucas(73)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(73)/Lucas(72)/(1/2+sqrt(5)/2)^6 4032522475023133 a004 Fibonacci(74)/Lucas(74)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(74)/Lucas(76)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(74)/Lucas(78)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)/Lucas(80) 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^3/Lucas(82) 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^5/Lucas(84) 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^7/Lucas(86) 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^9/Lucas(88) 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^11/Lucas(90) 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^13/Lucas(92) 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^15/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(74)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^17/Lucas(96) 4032522475023133 a004 Fibonacci(37)*Lucas(37)/(1/2+sqrt(5)/2)^79 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^19/Lucas(98) 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^21/Lucas(100) 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^20/Lucas(99) 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^18/Lucas(97) 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^16/Lucas(95) 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^14/Lucas(93) 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^12/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(74)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^10/Lucas(89) 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^8/Lucas(87) 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^6/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(74)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^4/Lucas(83) 4032522475023133 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^2/Lucas(81) 4032522475023133 a004 Fibonacci(79)/Lucas(74)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(74)/Lucas(77)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(74)/Lucas(75)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(76)/Lucas(76)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(76)/Lucas(78)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(76)/Lucas(80)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(76)*(1/2+sqrt(5)/2)/Lucas(82) 4032522475023133 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^3/Lucas(84) 4032522475023133 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^5/Lucas(86) 4032522475023133 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^7/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(76)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^9/Lucas(90) 4032522475023133 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^11/Lucas(92) 4032522475023133 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^13/Lucas(94) 4032522475023133 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^15/Lucas(96) 4032522475023133 a004 Fibonacci(38)*Lucas(38)/(1/2+sqrt(5)/2)^81 4032522475023133 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^17/Lucas(98) 4032522475023133 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^18/Lucas(99) 4032522475023133 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^19/Lucas(100) 4032522475023133 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^16/Lucas(97) 4032522475023133 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^14/Lucas(95) 4032522475023133 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^12/Lucas(93) 4032522475023133 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^10/Lucas(91) 4032522475023133 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^8/Lucas(89) 4032522475023133 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^6/Lucas(87) 4032522475023133 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^4/Lucas(85) 4032522475023133 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^2/Lucas(83) 4032522475023133 a004 Fibonacci(81)/Lucas(76)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(76)/Lucas(79)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(76)/Lucas(77)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(78)/Lucas(78)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(78)/Lucas(80)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(78)/Lucas(82)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(78)*(1/2+sqrt(5)/2)/Lucas(84) 4032522475023133 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^3/Lucas(86) 4032522475023133 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^5/Lucas(88) 4032522475023133 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^7/Lucas(90) 4032522475023133 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^9/Lucas(92) 4032522475023133 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^11/Lucas(94) 4032522475023133 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^13/Lucas(96) 4032522475023133 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^15/Lucas(98) 4032522475023133 a004 Fibonacci(39)*Lucas(39)/(1/2+sqrt(5)/2)^83 4032522475023133 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^16/Lucas(99) 4032522475023133 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^17/Lucas(100) 4032522475023133 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^14/Lucas(97) 4032522475023133 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^12/Lucas(95) 4032522475023133 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^10/Lucas(93) 4032522475023133 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^8/Lucas(91) 4032522475023133 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^6/Lucas(89) 4032522475023133 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^4/Lucas(87) 4032522475023133 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^2/Lucas(85) 4032522475023133 a004 Fibonacci(83)/Lucas(78)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(78)/Lucas(81)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(78)/Lucas(79)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(80)/Lucas(80)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(82)/Lucas(80)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(80)/Lucas(84)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(80)*(1/2+sqrt(5)/2)/Lucas(86) 4032522475023133 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^3/Lucas(88) 4032522475023133 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^5/Lucas(90) 4032522475023133 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^7/Lucas(92) 4032522475023133 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^9/Lucas(94) 4032522475023133 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^11/Lucas(96) 4032522475023133 a004 Fibonacci(40)*Lucas(40)/(1/2+sqrt(5)/2)^85 4032522475023133 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^13/Lucas(98) 4032522475023133 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^15/Lucas(100) 4032522475023133 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^14/Lucas(99) 4032522475023133 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^12/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(80)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^10/Lucas(95) 4032522475023133 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^8/Lucas(93) 4032522475023133 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^6/Lucas(91) 4032522475023133 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^4/Lucas(89) 4032522475023133 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^2/Lucas(87) 4032522475023133 a004 Fibonacci(85)/Lucas(80)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(80)/Lucas(83)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(80)/Lucas(81)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(82)/Lucas(82)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(82)/Lucas(84)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(84)/Lucas(82)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(82)/Lucas(86)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(82)*(1/2+sqrt(5)/2)/Lucas(88) 4032522475023133 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^3/Lucas(90) 4032522475023133 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^5/Lucas(92) 4032522475023133 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^7/Lucas(94) 4032522475023133 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^9/Lucas(96) 4032522475023133 a004 Fibonacci(41)*Lucas(41)/(1/2+sqrt(5)/2)^87 4032522475023133 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^11/Lucas(98) 4032522475023133 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^13/Lucas(100) 4032522475023133 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^12/Lucas(99) 4032522475023133 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^10/Lucas(97) 4032522475023133 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^8/Lucas(95) 4032522475023133 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^6/Lucas(93) 4032522475023133 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^4/Lucas(91) 4032522475023133 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^2/Lucas(89) 4032522475023133 a004 Fibonacci(87)/Lucas(82)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(82)/Lucas(85)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(82)/Lucas(83)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(84)/Lucas(84)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(84)/Lucas(86)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(84)/Lucas(88)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(84)*(1/2+sqrt(5)/2)/Lucas(90) 4032522475023133 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^3/Lucas(92) 4032522475023133 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^5/Lucas(94) 4032522475023133 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^7/Lucas(96) 4032522475023133 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^9/Lucas(98) 4032522475023133 a004 Fibonacci(42)*Lucas(42)/(1/2+sqrt(5)/2)^89 4032522475023133 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^10/Lucas(99) 4032522475023133 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^11/Lucas(100) 4032522475023133 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^8/Lucas(97) 4032522475023133 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^6/Lucas(95) 4032522475023133 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^4/Lucas(93) 4032522475023133 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^2/Lucas(91) 4032522475023133 a004 Fibonacci(89)/Lucas(84)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(84)/Lucas(87)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(84)/Lucas(85)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(86)/Lucas(86)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(86)/Lucas(88)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(86)/Lucas(90)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(86)*(1/2+sqrt(5)/2)/Lucas(92) 4032522475023133 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^3/Lucas(94) 4032522475023133 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^5/Lucas(96) 4032522475023133 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^7/Lucas(98) 4032522475023133 a004 Fibonacci(43)*Lucas(43)/(1/2+sqrt(5)/2)^91 4032522475023133 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^8/Lucas(99) 4032522475023133 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^9/Lucas(100) 4032522475023133 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^6/Lucas(97) 4032522475023133 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^4/Lucas(95) 4032522475023133 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^2/Lucas(93) 4032522475023133 a004 Fibonacci(91)/Lucas(86)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(86)/Lucas(89)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(86)/Lucas(87)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(88)/Lucas(88)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(90)/Lucas(88)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(88)/Lucas(92)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(88)*(1/2+sqrt(5)/2)/Lucas(94) 4032522475023133 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^3/Lucas(96) 4032522475023133 a004 Fibonacci(44)*Lucas(44)/(1/2+sqrt(5)/2)^93 4032522475023133 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^5/Lucas(98) 4032522475023133 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^6/Lucas(99) 4032522475023133 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^7/Lucas(100) 4032522475023133 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^4/Lucas(97) 4032522475023133 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^2/Lucas(95) 4032522475023133 a004 Fibonacci(93)/Lucas(88)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(88)/Lucas(91)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(88)/Lucas(89)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(90)/Lucas(90)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(90)/Lucas(92)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(90)/Lucas(94)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(90)*(1/2+sqrt(5)/2)/Lucas(96) 4032522475023133 a004 Fibonacci(45)*Lucas(45)/(1/2+sqrt(5)/2)^95 4032522475023133 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^3/Lucas(98) 4032522475023133 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^4/Lucas(99) 4032522475023133 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^5/Lucas(100) 4032522475023133 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^2/Lucas(97) 4032522475023133 a004 Fibonacci(95)/Lucas(90)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(90)/Lucas(93)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(90)/Lucas(91)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(92)/Lucas(92)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(94)/Lucas(92)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(92)/Lucas(96)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(46)*Lucas(46)/(1/2+sqrt(5)/2)^97 4032522475023133 a004 Fibonacci(92)*(1/2+sqrt(5)/2)/Lucas(98) 4032522475023133 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^3/Lucas(100) 4032522475023133 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^2/Lucas(99) 4032522475023133 a004 Fibonacci(97)/Lucas(92)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(92)/Lucas(95)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(93)/Lucas(92)/(1/2+sqrt(5)/2)^6 4032522475023133 a004 Fibonacci(94)/Lucas(94)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(94)/Lucas(96)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(94)/Lucas(98)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(47)*Lucas(47)/(1/2+sqrt(5)/2)^99 4032522475023133 a004 Fibonacci(94)*(1/2+sqrt(5)/2)/Lucas(100) 4032522475023133 a004 Fibonacci(99)/Lucas(94)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(94)/Lucas(97)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(94)/Lucas(95)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(96)/Lucas(96)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(96)/Lucas(100)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(96)/Lucas(99)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(98)/Lucas(96)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(96)/Lucas(97)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(98)/Lucas(98)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(100)/Lucas(100)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(100)/Lucas(99)/(1/2+sqrt(5)/2)^6 4032522475023133 a004 Fibonacci(98)/Lucas(100)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(98)/Lucas(99)/(1/2+sqrt(5)/2)^4 4032522475023133 b008 25-11*Sqrt[5] 4032522475023133 m005 2*(-11/20+1/4*5^(1/2))*5^(1/2) 4032522475023133 a004 Fibonacci(97)/Lucas(100)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(97)/Lucas(98)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(99)/Lucas(99)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(97)/Lucas(99)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(97)/Lucas(97)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(95)/Lucas(96)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(100)/Lucas(95)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(95)*Lucas(1)/(1/2+sqrt(5)/2)^100 4032522475023133 a004 Fibonacci(95)/Lucas(98)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(95)/Lucas(99)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(95)/Lucas(97)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(95)/Lucas(95)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(93)/Lucas(94)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(93)/Lucas(96)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^2/Lucas(100) 4032522475023133 a004 Fibonacci(93)*Lucas(1)/(1/2+sqrt(5)/2)^98 4032522475023133 a004 Fibonacci(98)/Lucas(93)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(93)*(1/2+sqrt(5)/2)/Lucas(99) 4032522475023133 a004 Fibonacci(93)/Lucas(97)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(93)/Lucas(95)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(93)/Lucas(93)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(91)/Lucas(92)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(91)/Lucas(94)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(96)/Lucas(91)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^2/Lucas(98) 4032522475023133 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^3/Lucas(99) 4032522475023133 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^4/Lucas(100) 4032522475023133 a004 Fibonacci(91)*Lucas(1)/(1/2+sqrt(5)/2)^96 4032522475023133 a004 Fibonacci(91)*(1/2+sqrt(5)/2)/Lucas(97) 4032522475023133 a004 Fibonacci(91)/Lucas(95)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(93)/Lucas(91)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(91)/Lucas(91)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(89)/Lucas(90)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(89)/Lucas(92)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(94)/Lucas(89)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^2/Lucas(96) 4032522475023133 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^4/Lucas(98) 4032522475023133 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^5/Lucas(99) 4032522475023133 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^6/Lucas(100) 4032522475023133 a004 Fibonacci(89)*Lucas(1)/(1/2+sqrt(5)/2)^94 4032522475023133 a004 Fibonacci(99)/Lucas(89)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^3/Lucas(97) 4032522475023133 a004 Fibonacci(89)*(1/2+sqrt(5)/2)/Lucas(95) 4032522475023133 a004 Fibonacci(89)/Lucas(93)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(89)/Lucas(91)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(89)/Lucas(89)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(87)/Lucas(88)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(87)/Lucas(90)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(92)/Lucas(87)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^2/Lucas(94) 4032522475023133 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^4/Lucas(96) 4032522475023133 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^6/Lucas(98) 4032522475023133 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^7/Lucas(99) 4032522475023133 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^8/Lucas(100) 4032522475023133 a004 Fibonacci(87)*Lucas(1)/(1/2+sqrt(5)/2)^92 4032522475023133 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^5/Lucas(97) 4032522475023133 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^3/Lucas(95) 4032522475023133 a004 Fibonacci(87)*(1/2+sqrt(5)/2)/Lucas(93) 4032522475023133 a004 Fibonacci(87)/Lucas(91)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(87)/Lucas(89)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(87)/Lucas(87)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(85)/Lucas(86)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(85)/Lucas(88)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(90)/Lucas(85)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^2/Lucas(92) 4032522475023133 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^4/Lucas(94) 4032522475023133 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^6/Lucas(96) 4032522475023133 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^8/Lucas(98) 4032522475023133 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^10/Lucas(100) 4032522475023133 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^9/Lucas(99) 4032522475023133 a004 Fibonacci(85)*Lucas(1)/(1/2+sqrt(5)/2)^90 4032522475023133 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^7/Lucas(97) 4032522475023133 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^5/Lucas(95) 4032522475023133 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^3/Lucas(93) 4032522475023133 a004 Fibonacci(85)*(1/2+sqrt(5)/2)/Lucas(91) 4032522475023133 a004 Fibonacci(85)/Lucas(89)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(85)/Lucas(87)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(85)/Lucas(85)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(83)/Lucas(84)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(83)/Lucas(86)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(88)/Lucas(83)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^2/Lucas(90) 4032522475023133 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^4/Lucas(92) 4032522475023133 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^6/Lucas(94) 4032522475023133 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^8/Lucas(96) 4032522475023133 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^10/Lucas(98) 4032522475023133 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^12/Lucas(100) 4032522475023133 a004 Fibonacci(83)*Lucas(1)/(1/2+sqrt(5)/2)^88 4032522475023133 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^11/Lucas(99) 4032522475023133 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^9/Lucas(97) 4032522475023133 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^7/Lucas(95) 4032522475023133 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^5/Lucas(93) 4032522475023133 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^3/Lucas(91) 4032522475023133 a004 Fibonacci(83)*(1/2+sqrt(5)/2)/Lucas(89) 4032522475023133 a004 Fibonacci(83)/Lucas(87)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(83)/Lucas(85)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(83)/Lucas(83)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(81)/Lucas(82)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(81)/Lucas(84)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(86)/Lucas(81)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^2/Lucas(88) 4032522475023133 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^4/Lucas(90) 4032522475023133 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^6/Lucas(92) 4032522475023133 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^8/Lucas(94) 4032522475023133 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^10/Lucas(96) 4032522475023133 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^12/Lucas(98) 4032522475023133 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^13/Lucas(99) 4032522475023133 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^14/Lucas(100) 4032522475023133 a004 Fibonacci(81)*Lucas(1)/(1/2+sqrt(5)/2)^86 4032522475023133 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^11/Lucas(97) 4032522475023133 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^9/Lucas(95) 4032522475023133 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^7/Lucas(93) 4032522475023133 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^5/Lucas(91) 4032522475023133 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^3/Lucas(89) 4032522475023133 a004 Fibonacci(81)*(1/2+sqrt(5)/2)/Lucas(87) 4032522475023133 a004 Fibonacci(81)/Lucas(85)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(81)/Lucas(83)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(81)/Lucas(81)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(79)/Lucas(80)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(79)/Lucas(82)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(84)/Lucas(79)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^2/Lucas(86) 4032522475023133 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^4/Lucas(88) 4032522475023133 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^6/Lucas(90) 4032522475023133 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^8/Lucas(92) 4032522475023133 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^10/Lucas(94) 4032522475023133 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^12/Lucas(96) 4032522475023133 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^14/Lucas(98) 4032522475023133 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^16/Lucas(100) 4032522475023133 a004 Fibonacci(79)*Lucas(1)/(1/2+sqrt(5)/2)^84 4032522475023133 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^15/Lucas(99) 4032522475023133 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^13/Lucas(97) 4032522475023133 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^11/Lucas(95) 4032522475023133 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^9/Lucas(93) 4032522475023133 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^7/Lucas(91) 4032522475023133 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^5/Lucas(89) 4032522475023133 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^3/Lucas(87) 4032522475023133 a004 Fibonacci(79)*(1/2+sqrt(5)/2)/Lucas(85) 4032522475023133 a004 Fibonacci(79)/Lucas(83)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(79)/Lucas(81)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(79)/Lucas(79)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(77)/Lucas(78)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(77)/Lucas(80)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(82)/Lucas(77)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^2/Lucas(84) 4032522475023133 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^4/Lucas(86) 4032522475023133 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^6/Lucas(88) 4032522475023133 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^8/Lucas(90) 4032522475023133 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^10/Lucas(92) 4032522475023133 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^12/Lucas(94) 4032522475023133 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^14/Lucas(96) 4032522475023133 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^16/Lucas(98) 4032522475023133 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^18/Lucas(100) 4032522475023133 a004 Fibonacci(77)*Lucas(1)/(1/2+sqrt(5)/2)^82 4032522475023133 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^17/Lucas(99) 4032522475023133 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^15/Lucas(97) 4032522475023133 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^13/Lucas(95) 4032522475023133 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^11/Lucas(93) 4032522475023133 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^9/Lucas(91) 4032522475023133 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^7/Lucas(89) 4032522475023133 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^5/Lucas(87) 4032522475023133 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^3/Lucas(85) 4032522475023133 a004 Fibonacci(77)*(1/2+sqrt(5)/2)/Lucas(83) 4032522475023133 a004 Fibonacci(77)/Lucas(81)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(77)/Lucas(79)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(77)/Lucas(77)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(75)/Lucas(76)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(75)/Lucas(78)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(80)/Lucas(75)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^2/Lucas(82) 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^4/Lucas(84) 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^6/Lucas(86) 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^8/Lucas(88) 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^10/Lucas(90) 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^12/Lucas(92) 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^14/Lucas(94) 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^16/Lucas(96) 4032522475023133 a004 Fibonacci(100)/Lucas(75)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^18/Lucas(98) 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^19/Lucas(99) 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^20/Lucas(100) 4032522475023133 a004 Fibonacci(75)*Lucas(1)/(1/2+sqrt(5)/2)^80 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^17/Lucas(97) 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^15/Lucas(95) 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^13/Lucas(93) 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^11/Lucas(91) 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^9/Lucas(89) 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^7/Lucas(87) 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^5/Lucas(85) 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^3/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(75)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(75)*(1/2+sqrt(5)/2)/Lucas(81) 4032522475023133 a004 Fibonacci(75)/Lucas(79)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(75)/Lucas(77)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(75)/Lucas(75)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(73)/Lucas(74)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(73)/Lucas(76)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(78)/Lucas(73)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^2/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(73)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^4/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(73)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^6/Lucas(84) 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^8/Lucas(86) 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^10/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(73)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^12/Lucas(90) 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^14/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(73)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^16/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(73)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^18/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(73)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^20/Lucas(98) 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^21/Lucas(99) 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^22/Lucas(100) 4032522475023133 a004 Fibonacci(73)*Lucas(1)/(1/2+sqrt(5)/2)^78 4032522475023133 a004 Fibonacci(98)/Lucas(73)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^19/Lucas(97) 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^17/Lucas(95) 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^15/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(73)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^13/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(73)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^11/Lucas(89) 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^9/Lucas(87) 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^7/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(73)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^5/Lucas(83) 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^3/Lucas(81) 4032522475023133 a004 Fibonacci(73)*(1/2+sqrt(5)/2)/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(73)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(73)/Lucas(77)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(73)/Lucas(75)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(75)/Lucas(73)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(73)/Lucas(73)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(71)/Lucas(72)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(72)/Lucas(71)/(1/2+sqrt(5)/2)^6 4032522475023133 a004 Fibonacci(71)/Lucas(74)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(74)/Lucas(71)/(1/2+sqrt(5)/2)^8 4032522475023133 a004 Fibonacci(76)/Lucas(71)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^2/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(71)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^4/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(71)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^6/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(71)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^8/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(71)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^10/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(71)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^12/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(71)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^14/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(71)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^16/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(71)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^18/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(71)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^20/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(71)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^22/Lucas(98) 4032522475023133 a004 Fibonacci(98)/Lucas(71)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(100)/Lucas(71)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^23/Lucas(99) 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^24/Lucas(100) 4032522475023133 a004 Fibonacci(71)*Lucas(1)/(1/2+sqrt(5)/2)^76 4032522475023133 a004 Fibonacci(99)/Lucas(71)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^21/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(71)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^19/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(71)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^17/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(71)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^15/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(71)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^13/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(71)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^11/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(71)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^9/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(71)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^7/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(71)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^5/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(71)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^3/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(71)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(71)*(1/2+sqrt(5)/2)/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(71)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(71)/Lucas(75)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(75)/Lucas(71)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(71)/Lucas(73)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(73)/Lucas(71)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(71)/Lucas(71)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(69)/Lucas(70)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(70)/Lucas(69)/(1/2+sqrt(5)/2)^6 4032522475023133 a004 Fibonacci(69)/Lucas(72)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(72)/Lucas(69)/(1/2+sqrt(5)/2)^8 4032522475023133 a004 Fibonacci(74)/Lucas(69)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^2/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(69)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^4/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(69)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^6/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(69)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^8/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(69)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^10/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(69)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^12/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(69)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^14/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(69)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^16/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(69)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^18/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(69)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^20/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(69)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^22/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(69)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^24/Lucas(98) 4032522475023133 a004 Fibonacci(98)/Lucas(69)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(100)/Lucas(69)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^25/Lucas(99) 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^26/Lucas(100) 4032522475023133 a004 Fibonacci(69)*Lucas(1)/(1/2+sqrt(5)/2)^74 4032522475023133 a004 Fibonacci(99)/Lucas(69)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^23/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(69)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^21/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(69)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^19/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(69)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^17/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(69)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^15/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(69)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^13/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(69)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^11/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(69)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^9/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(69)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^7/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(69)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^5/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(69)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^3/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(69)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(69)*(1/2+sqrt(5)/2)/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(69)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(69)/Lucas(73)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(73)/Lucas(69)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(69)/Lucas(71)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(71)/Lucas(69)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(69)/Lucas(69)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(67)/Lucas(68)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(68)/Lucas(67)/(1/2+sqrt(5)/2)^6 4032522475023133 a004 Fibonacci(67)/Lucas(70)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(70)/Lucas(67)/(1/2+sqrt(5)/2)^8 4032522475023133 a004 Fibonacci(72)/Lucas(67)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^2/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(67)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^4/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(67)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^6/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(67)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^8/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(67)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^10/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(67)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^12/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(67)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^14/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(67)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^16/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(67)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^18/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(67)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^20/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(67)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^22/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(67)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^24/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(67)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(100)/Lucas(67)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^26/Lucas(98) 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^27/Lucas(99) 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^28/Lucas(100) 4032522475023133 a004 Fibonacci(67)*Lucas(1)/(1/2+sqrt(5)/2)^72 4032522475023133 a004 Fibonacci(98)/Lucas(67)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(99)/Lucas(67)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^25/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(67)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^23/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(67)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^21/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(67)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^19/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(67)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^17/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(67)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^15/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(67)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^13/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(67)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^11/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(67)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^9/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(67)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^7/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(67)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^5/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(67)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^3/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(67)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(67)*(1/2+sqrt(5)/2)/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(67)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(67)/Lucas(71)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(71)/Lucas(67)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(67)/Lucas(69)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(69)/Lucas(67)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(67)/Lucas(67)/(1/2+sqrt(5)/2)^5 4032522475023133 a004 Fibonacci(65)/Lucas(66)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(66)/Lucas(65)/(1/2+sqrt(5)/2)^6 4032522475023133 a004 Fibonacci(65)/Lucas(68)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(68)/Lucas(65)/(1/2+sqrt(5)/2)^8 4032522475023133 a004 Fibonacci(70)/Lucas(65)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^2/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(65)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^4/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(65)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^6/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(65)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^8/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(65)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^10/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(65)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^12/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(65)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^14/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(65)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^16/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(65)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^18/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(65)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^20/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(65)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^22/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(65)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^24/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(65)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^26/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(65)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(100)/Lucas(65)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^28/Lucas(98) 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^30/Lucas(100) 4032522475023133 a004 Fibonacci(65)*Lucas(1)/(1/2+sqrt(5)/2)^70 4032522475023133 a004 Fibonacci(98)/Lucas(65)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^29/Lucas(99) 4032522475023133 a004 Fibonacci(99)/Lucas(65)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^27/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(65)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^25/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(65)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^23/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(65)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^21/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(65)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^19/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(65)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^17/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(65)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^15/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(65)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^13/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(65)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^11/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(65)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^9/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(65)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^7/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(65)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^5/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(65)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^3/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(65)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(65)*(1/2+sqrt(5)/2)/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(65)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(65)/Lucas(69)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(69)/Lucas(65)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(65)/Lucas(67)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(67)/Lucas(65)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(65)/Lucas(65)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 2/10610209857723*(1/2+1/2*5^(1/2))^59 4032522475023133 a004 Fibonacci(63)/Lucas(64)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(64)/Lucas(63)/(1/2+sqrt(5)/2)^6 4032522475023133 a004 Fibonacci(63)/Lucas(66)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(66)/Lucas(63)/(1/2+sqrt(5)/2)^8 4032522475023133 a004 Fibonacci(68)/Lucas(63)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^2/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(63)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^4/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(63)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^6/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(63)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^8/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(63)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^10/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(63)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^12/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(63)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^14/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(63)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^16/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(63)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^18/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(63)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^20/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(63)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^22/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(63)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^24/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(63)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^26/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(63)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^28/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(63)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(100)/Lucas(63)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^30/Lucas(98) 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^32/Lucas(100) 4032522475023133 a004 Fibonacci(63)*Lucas(1)/(1/2+sqrt(5)/2)^68 4032522475023133 a004 Fibonacci(98)/Lucas(63)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^31/Lucas(99) 4032522475023133 a004 Fibonacci(99)/Lucas(63)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^29/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(63)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^27/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(63)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^25/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(63)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^23/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(63)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^21/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(63)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^19/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(63)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^17/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(63)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^15/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(63)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^13/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(63)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^11/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(63)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^9/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(63)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^7/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(63)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^5/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(63)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^3/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(63)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(63)*(1/2+sqrt(5)/2)/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(63)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(63)/Lucas(67)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(67)/Lucas(63)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(63)/Lucas(65)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(65)/Lucas(63)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(63)/Lucas(63)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 2/4052739537881*(1/2+1/2*5^(1/2))^57 4032522475023133 a004 Fibonacci(61)/Lucas(62)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(62)/Lucas(61)/(1/2+sqrt(5)/2)^6 4032522475023133 a004 Fibonacci(61)/Lucas(64)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(64)/Lucas(61)/(1/2+sqrt(5)/2)^8 4032522475023133 a004 Fibonacci(66)/Lucas(61)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^2/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(61)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^4/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(61)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^6/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(61)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^8/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(61)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^10/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(61)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^12/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(61)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^14/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(61)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^16/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(61)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^18/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(61)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^20/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(61)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^22/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(61)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^24/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(61)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^26/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(61)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^28/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(61)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^30/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(61)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^32/Lucas(98) 4032522475023133 a004 Fibonacci(98)/Lucas(61)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(100)/Lucas(61)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^33/Lucas(99) 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^34/Lucas(100) 4032522475023133 a004 Fibonacci(61)*Lucas(1)/(1/2+sqrt(5)/2)^66 4032522475023133 a004 Fibonacci(99)/Lucas(61)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^31/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(61)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^29/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(61)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^27/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(61)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^25/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(61)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^23/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(61)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^21/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(61)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^19/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(61)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^17/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(61)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^15/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(61)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^13/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(61)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^11/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(61)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^9/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(61)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^7/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(61)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^5/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(61)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^3/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(61)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(61)*(1/2+sqrt(5)/2)/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(61)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(61)/Lucas(65)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(65)/Lucas(61)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(61)/Lucas(63)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(63)/Lucas(61)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(61)/Lucas(61)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 1/774004377960*(1/2+1/2*5^(1/2))^55 4032522475023133 a004 Fibonacci(59)/Lucas(60)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(60)/Lucas(59)/(1/2+sqrt(5)/2)^6 4032522475023133 a004 Fibonacci(59)/Lucas(62)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(62)/Lucas(59)/(1/2+sqrt(5)/2)^8 4032522475023133 a004 Fibonacci(64)/Lucas(59)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^2/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(59)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^4/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(59)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^6/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(59)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^8/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(59)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^10/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(59)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^12/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(59)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^14/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(59)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^16/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(59)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^18/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(59)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^20/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(59)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^22/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(59)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^24/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(59)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^26/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(59)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^28/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(59)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^30/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(59)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^32/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(59)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(100)/Lucas(59)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^34/Lucas(98) 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^36/Lucas(100) 4032522475023133 a004 Fibonacci(59)*Lucas(1)/(1/2+sqrt(5)/2)^64 4032522475023133 a004 Fibonacci(98)/Lucas(59)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^35/Lucas(99) 4032522475023133 a004 Fibonacci(99)/Lucas(59)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^33/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(59)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^31/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(59)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^29/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(59)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^27/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(59)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^25/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(59)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^23/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(59)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^21/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(59)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^19/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(59)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^17/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(59)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^15/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(59)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^13/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(59)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^11/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(59)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^9/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(59)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^7/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(59)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^5/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(59)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^3/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(59)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(59)*(1/2+sqrt(5)/2)/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(59)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(59)/Lucas(63)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(63)/Lucas(59)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(59)/Lucas(61)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(61)/Lucas(59)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(59)/Lucas(59)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 1322157322203/6557470319842*8^(1/3) 4032522475023133 a001 2/591286729879*(1/2+1/2*5^(1/2))^53 4032522475023133 a004 Fibonacci(57)/Lucas(58)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(58)/Lucas(57)/(1/2+sqrt(5)/2)^6 4032522475023133 a004 Fibonacci(57)/Lucas(60)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(60)/Lucas(57)/(1/2+sqrt(5)/2)^8 4032522475023133 a004 Fibonacci(62)/Lucas(57)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^2/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(57)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^4/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(57)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^6/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(57)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^8/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(57)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^10/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(57)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^12/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(57)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^14/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(57)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^16/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(57)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^18/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(57)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^20/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(57)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^22/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(57)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^24/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(57)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^26/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(57)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^28/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(57)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^30/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(57)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^32/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(57)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^34/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(57)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(100)/Lucas(57)/(1/2+sqrt(5)/2)^48 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^36/Lucas(98) 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^38/Lucas(100) 4032522475023133 a004 Fibonacci(98)/Lucas(57)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^37/Lucas(99) 4032522475023133 a004 Fibonacci(57)*Lucas(1)/(1/2+sqrt(5)/2)^62 4032522475023133 a004 Fibonacci(99)/Lucas(57)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^35/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(57)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^33/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(57)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^31/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(57)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^29/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(57)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^27/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(57)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^25/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(57)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^23/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(57)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^21/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(57)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^19/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(57)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^17/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(57)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^15/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(57)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^13/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(57)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^11/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(57)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^9/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(57)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^7/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(57)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^5/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(57)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^3/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(57)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(57)*(1/2+sqrt(5)/2)/Lucas(63) 4032522475023133 a004 Fibonacci(63)/Lucas(57)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(57)/Lucas(61)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(61)/Lucas(57)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(57)/Lucas(59)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(59)/Lucas(57)/(1/2+sqrt(5)/2)^7 4032522475023133 a004 Fibonacci(57)/Lucas(57)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 505019158607/2504730781961*8^(1/3) 4032522475023133 a001 2/225851433717*(1/2+1/2*5^(1/2))^51 4032522475023133 a004 Fibonacci(55)/Lucas(56)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(56)/Lucas(55)/(1/2+sqrt(5)/2)^6 4032522475023133 a004 Fibonacci(55)/Lucas(58)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(58)/Lucas(55)/(1/2+sqrt(5)/2)^8 4032522475023133 a001 10182505537/7331474697802*17393796001^(1/7) 4032522475023133 a004 Fibonacci(60)/Lucas(55)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^2/Lucas(62) 4032522475023133 a004 Fibonacci(62)/Lucas(55)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^4/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(55)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^6/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(55)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^8/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(55)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^10/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(55)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^12/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(55)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^14/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(55)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^16/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(55)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^18/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(55)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^20/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(55)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^22/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(55)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^24/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(55)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^26/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(55)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^28/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(55)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^30/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(55)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^32/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(55)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^34/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(55)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^36/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(55)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(100)/Lucas(55)/(1/2+sqrt(5)/2)^50 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^38/Lucas(98) 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^39/Lucas(99) 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^40/Lucas(100) 4032522475023133 a004 Fibonacci(55)*Lucas(1)/(1/2+sqrt(5)/2)^60 4032522475023133 a004 Fibonacci(98)/Lucas(55)/(1/2+sqrt(5)/2)^48 4032522475023133 a004 Fibonacci(99)/Lucas(55)/(1/2+sqrt(5)/2)^49 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^37/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(55)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^35/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(55)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^33/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(55)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^31/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(55)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^29/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(55)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^27/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(55)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^25/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(55)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^23/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(55)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^21/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(55)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^19/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(55)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^17/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(55)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^15/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(55)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^13/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(55)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^11/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(55)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^9/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(55)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^7/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(55)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^5/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(55)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^3/Lucas(63) 4032522475023133 a004 Fibonacci(63)/Lucas(55)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(55)*(1/2+sqrt(5)/2)/Lucas(61) 4032522475023133 a004 Fibonacci(61)/Lucas(55)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(55)/Lucas(59)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(59)/Lucas(55)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(55)/Lucas(57)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(57)/Lucas(55)/(1/2+sqrt(5)/2)^7 4032522475023133 a001 53316291173/23725150497407*45537549124^(2/17) 4032522475023133 a004 Fibonacci(55)/Lucas(55)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 192900153618/956722026041*8^(1/3) 4032522475023133 a001 1/43133785636*(1/2+1/2*5^(1/2))^49 4032522475023133 a001 53316291173/5600748293801*45537549124^(1/17) 4032522475023133 a004 Fibonacci(53)/Lucas(54)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(54)/Lucas(53)/(1/2+sqrt(5)/2)^6 4032522475023133 a004 Fibonacci(53)/Lucas(56)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(56)/Lucas(53)/(1/2+sqrt(5)/2)^8 4032522475023133 a001 53316291173/14662949395604*312119004989^(1/11) 4032522475023133 a004 Fibonacci(58)/Lucas(53)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^2/Lucas(60) 4032522475023133 a004 Fibonacci(60)/Lucas(53)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^4/Lucas(62) 4032522475023133 a004 Fibonacci(62)/Lucas(53)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^6/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(53)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^8/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(53)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^10/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(53)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^12/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(53)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^14/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(53)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^16/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(53)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^18/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(53)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^20/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(53)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^22/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(53)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^24/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(53)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^26/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(53)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^28/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(53)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^30/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(53)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^32/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(53)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^34/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(53)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^36/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(53)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^38/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(53)/(1/2+sqrt(5)/2)^48 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^40/Lucas(98) 4032522475023133 a004 Fibonacci(98)/Lucas(53)/(1/2+sqrt(5)/2)^50 4032522475023133 a004 Fibonacci(100)/Lucas(53)/(1/2+sqrt(5)/2)^52 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^41/Lucas(99) 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^42/Lucas(100) 4032522475023133 a004 Fibonacci(53)*Lucas(1)/(1/2+sqrt(5)/2)^58 4032522475023133 a004 Fibonacci(99)/Lucas(53)/(1/2+sqrt(5)/2)^51 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^39/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(53)/(1/2+sqrt(5)/2)^49 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^37/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(53)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^35/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(53)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^33/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(53)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^31/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(53)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^29/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(53)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^27/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(53)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^25/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(53)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^23/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(53)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^21/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(53)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^19/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(53)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^17/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(53)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^15/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(53)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^13/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(53)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^11/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(53)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^9/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(53)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^7/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(53)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^5/Lucas(63) 4032522475023133 a004 Fibonacci(63)/Lucas(53)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^3/Lucas(61) 4032522475023133 a004 Fibonacci(61)/Lucas(53)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(53)*(1/2+sqrt(5)/2)/Lucas(59) 4032522475023133 a004 Fibonacci(59)/Lucas(53)/(1/2+sqrt(5)/2)^11 4032522475023133 a004 Fibonacci(53)/Lucas(57)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(57)/Lucas(53)/(1/2+sqrt(5)/2)^9 4032522475023133 a004 Fibonacci(53)/Lucas(55)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(55)/Lucas(53)/(1/2+sqrt(5)/2)^7 4032522475023133 a001 53316291173/9062201101803*73681302247^(1/13) 4032522475023133 a001 86267571272/23725150497407*28143753123^(1/10) 4032522475023133 a004 Fibonacci(53)/Lucas(53)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 32951280099/2139295485799*10749957122^(1/24) 4032522475023133 a001 12586269025/14662949395604*10749957122^(1/6) 4032522475023133 a001 73681302247/365435296162*8^(1/3) 4032522475023133 a001 2/32951280099*(1/2+1/2*5^(1/2))^47 4032522475023133 a001 53316291173/14662949395604*28143753123^(1/10) 4032522475023133 a004 Fibonacci(51)/Lucas(52)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(52)/Lucas(51)/(1/2+sqrt(5)/2)^6 4032522475023133 a001 86267571272/5600748293801*10749957122^(1/24) 4032522475023133 a001 32951280099/3461452808002*10749957122^(1/16) 4032522475023133 a001 12586269025/23725150497407*10749957122^(3/16) 4032522475023133 a001 365435296162/23725150497407*10749957122^(1/24) 4032522475023133 a001 139583862445/9062201101803*10749957122^(1/24) 4032522475023133 a001 20365011074/9062201101803*45537549124^(2/17) 4032522475023133 a001 20365011074/2139295485799*45537549124^(1/17) 4032522475023133 a004 Fibonacci(51)/Lucas(54)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(54)/Lucas(51)/(1/2+sqrt(5)/2)^8 4032522475023133 a004 Fibonacci(56)/Lucas(51)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^2/Lucas(58) 4032522475023133 a004 Fibonacci(58)/Lucas(51)/(1/2+sqrt(5)/2)^12 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^4/Lucas(60) 4032522475023133 a004 Fibonacci(60)/Lucas(51)/(1/2+sqrt(5)/2)^14 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^6/Lucas(62) 4032522475023133 a004 Fibonacci(62)/Lucas(51)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^8/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(51)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^10/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(51)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^12/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(51)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^14/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(51)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^16/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(51)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^18/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(51)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^20/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(51)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^22/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(51)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^24/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(51)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^26/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(51)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^28/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(51)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^30/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(51)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^32/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(51)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^34/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(51)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^36/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(51)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^38/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(51)/(1/2+sqrt(5)/2)^48 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^40/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(51)/(1/2+sqrt(5)/2)^50 4032522475023133 a004 Fibonacci(100)/Lucas(51)/(1/2+sqrt(5)/2)^54 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^42/Lucas(98) 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^44/Lucas(100) 4032522475023133 a004 Fibonacci(98)/Lucas(51)/(1/2+sqrt(5)/2)^52 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^43/Lucas(99) 4032522475023133 a004 Fibonacci(51)*Lucas(1)/(1/2+sqrt(5)/2)^56 4032522475023133 a004 Fibonacci(99)/Lucas(51)/(1/2+sqrt(5)/2)^53 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^41/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(51)/(1/2+sqrt(5)/2)^51 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^39/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(51)/(1/2+sqrt(5)/2)^49 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^37/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(51)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^35/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(51)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^33/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(51)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^31/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(51)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^29/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(51)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^27/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(51)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^25/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(51)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^23/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(51)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^21/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(51)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^19/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(51)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^17/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(51)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^15/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(51)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^13/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(51)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^11/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(51)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^9/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(51)/(1/2+sqrt(5)/2)^19 4032522475023133 a001 10182505537/7331474697802*14662949395604^(1/9) 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^7/Lucas(63) 4032522475023133 a004 Fibonacci(63)/Lucas(51)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^5/Lucas(61) 4032522475023133 a004 Fibonacci(61)/Lucas(51)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^3/Lucas(59) 4032522475023133 a004 Fibonacci(59)/Lucas(51)/(1/2+sqrt(5)/2)^13 4032522475023133 a004 Fibonacci(51)*(1/2+sqrt(5)/2)/Lucas(57) 4032522475023133 a004 Fibonacci(57)/Lucas(51)/(1/2+sqrt(5)/2)^11 4032522475023133 a001 20365011074/2139295485799*192900153618^(1/18) 4032522475023133 a004 Fibonacci(51)/Lucas(55)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(55)/Lucas(51)/(1/2+sqrt(5)/2)^9 4032522475023133 a001 10182505537/1730726404001*73681302247^(1/13) 4032522475023133 a001 20365011074/23725150497407*73681302247^(2/13) 4032522475023133 a001 86267571272/9062201101803*10749957122^(1/16) 4032522475023133 a001 225851433717/23725150497407*10749957122^(1/16) 4032522475023133 a001 139583862445/14662949395604*10749957122^(1/16) 4032522475023133 a004 Fibonacci(51)/Lucas(53)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(53)/Lucas(51)/(1/2+sqrt(5)/2)^7 4032522475023133 a001 20365011074/5600748293801*28143753123^(1/10) 4032522475023133 a001 53316291173/5600748293801*10749957122^(1/16) 4032522475023133 a001 1135099622/192933544679*10749957122^(1/12) 4032522475023133 a001 139583862445/23725150497407*10749957122^(1/12) 4032522475023133 a001 53316291173/9062201101803*10749957122^(1/12) 4032522475023133 a001 20365011074/1322157322203*10749957122^(1/24) 4032522475023133 a001 32951280099/14662949395604*10749957122^(1/8) 4032522475023133 a004 Fibonacci(51)/Lucas(51)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 20365011074/2139295485799*10749957122^(1/16) 4032522475023133 a001 53316291173/23725150497407*10749957122^(1/8) 4032522475023133 a001 10182505537/1730726404001*10749957122^(1/12) 4032522475023133 a001 28143753123/139583862445*8^(1/3) 4032522475023133 a001 2/12586269025*(1/2+1/2*5^(1/2))^45 4032522475023133 a001 12586269025/817138163596*4106118243^(1/23) 4032522475023133 a001 20365011074/9062201101803*10749957122^(1/8) 4032522475023133 a001 4807526976/5600748293801*4106118243^(4/23) 4032522475023133 a001 20365011074/23725150497407*10749957122^(1/6) 4032522475023133 a001 2971215073/1322157322203*2537720636^(2/15) 4032522475023133 a004 Fibonacci(49)/Lucas(50)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(50)/Lucas(49)/(1/2+sqrt(5)/2)^6 4032522475023133 a001 32951280099/2139295485799*4106118243^(1/23) 4032522475023133 a001 86267571272/5600748293801*4106118243^(1/23) 4032522475023133 a001 7787980473/505618944676*4106118243^(1/23) 4032522475023133 a001 365435296162/23725150497407*4106118243^(1/23) 4032522475023133 a001 139583862445/9062201101803*4106118243^(1/23) 4032522475023133 a001 53316291173/3461452808002*4106118243^(1/23) 4032522475023133 a001 7778742049/5600748293801*17393796001^(1/7) 4032522475023133 a001 20365011074/1322157322203*4106118243^(1/23) 4032522475023133 a004 Fibonacci(49)/Lucas(52)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(52)/Lucas(49)/(1/2+sqrt(5)/2)^8 4032522475023133 a001 7778742049/14662949395604*45537549124^(3/17) 4032522475023133 a001 7778742049/3461452808002*45537549124^(2/17) 4032522475023133 a004 Fibonacci(54)/Lucas(49)/(1/2+sqrt(5)/2)^10 4032522475023133 a001 7778742049/817138163596*45537549124^(1/17) 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^2/Lucas(56) 4032522475023133 a004 Fibonacci(56)/Lucas(49)/(1/2+sqrt(5)/2)^12 4032522475023133 a001 7778742049/2139295485799*312119004989^(1/11) 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^4/Lucas(58) 4032522475023133 a004 Fibonacci(58)/Lucas(49)/(1/2+sqrt(5)/2)^14 4032522475023133 a001 7778742049/1322157322203*23725150497407^(1/16) 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^6/Lucas(60) 4032522475023133 a004 Fibonacci(60)/Lucas(49)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^8/Lucas(62) 4032522475023133 a004 Fibonacci(62)/Lucas(49)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^10/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(49)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^12/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(49)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^14/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(49)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^16/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(49)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^18/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(49)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^20/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(49)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^22/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(49)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^24/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(49)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^26/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(49)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^28/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(49)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^30/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(49)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^32/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(49)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^34/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(49)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^36/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(49)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^38/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(49)/(1/2+sqrt(5)/2)^48 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^40/Lucas(94) 4032522475023133 a004 Fibonacci(94)/Lucas(49)/(1/2+sqrt(5)/2)^50 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^42/Lucas(96) 4032522475023133 a004 Fibonacci(96)/Lucas(49)/(1/2+sqrt(5)/2)^52 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^44/Lucas(98) 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^46/Lucas(100) 4032522475023133 a004 Fibonacci(49)*Lucas(1)/(1/2+sqrt(5)/2)^54 4032522475023133 a004 Fibonacci(100)/Lucas(49)/(1/2+sqrt(5)/2)^56 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^45/Lucas(99) 4032522475023133 a004 Fibonacci(99)/Lucas(49)/(1/2+sqrt(5)/2)^55 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^43/Lucas(97) 4032522475023133 a004 Fibonacci(97)/Lucas(49)/(1/2+sqrt(5)/2)^53 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^41/Lucas(95) 4032522475023133 a004 Fibonacci(95)/Lucas(49)/(1/2+sqrt(5)/2)^51 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^39/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(49)/(1/2+sqrt(5)/2)^49 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^37/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(49)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^35/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(49)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^33/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(49)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^31/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(49)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^29/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(49)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^27/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(49)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^25/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(49)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^23/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(49)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^21/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(49)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^19/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(49)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^17/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(49)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^15/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(49)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^13/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(49)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^11/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(49)/(1/2+sqrt(5)/2)^21 4032522475023133 a001 7778742049/14662949395604*14662949395604^(1/7) 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^9/Lucas(63) 4032522475023133 a004 Fibonacci(63)/Lucas(49)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^7/Lucas(61) 4032522475023133 a004 Fibonacci(61)/Lucas(49)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^5/Lucas(59) 4032522475023133 a004 Fibonacci(59)/Lucas(49)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^3/Lucas(57) 4032522475023133 a004 Fibonacci(57)/Lucas(49)/(1/2+sqrt(5)/2)^13 4032522475023133 a001 7778742049/817138163596*192900153618^(1/18) 4032522475023133 a001 7778742049/14662949395604*192900153618^(1/6) 4032522475023133 a004 Fibonacci(49)*(1/2+sqrt(5)/2)/Lucas(55) 4032522475023133 a004 Fibonacci(55)/Lucas(49)/(1/2+sqrt(5)/2)^11 4032522475023133 a001 7778742049/1322157322203*73681302247^(1/13) 4032522475023133 a001 7778742049/9062201101803*73681302247^(2/13) 4032522475023133 a004 Fibonacci(49)/Lucas(53)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(53)/Lucas(49)/(1/2+sqrt(5)/2)^9 4032522475023133 a001 7778742049/2139295485799*28143753123^(1/10) 4032522475023133 a001 7778742049/23725150497407*28143753123^(1/5) 4032522475023133 a001 7778742049/505019158607*10749957122^(1/24) 4032522475023133 a004 Fibonacci(49)/Lucas(51)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(51)/Lucas(49)/(1/2+sqrt(5)/2)^7 4032522475023133 a001 7778742049/817138163596*10749957122^(1/16) 4032522475023133 a001 12586269025/2139295485799*4106118243^(2/23) 4032522475023133 a001 7778742049/1322157322203*10749957122^(1/12) 4032522475023133 a001 1201881744/3665737348901*4106118243^(5/23) 4032522475023133 a001 7778742049/3461452808002*10749957122^(1/8) 4032522475023133 a001 7778742049/9062201101803*10749957122^(1/6) 4032522475023133 a001 7778742049/14662949395604*10749957122^(3/16) 4032522475023133 a001 32951280099/5600748293801*4106118243^(2/23) 4032522475023133 a001 7778742049/23725150497407*10749957122^(5/24) 4032522475023133 a001 1135099622/192933544679*4106118243^(2/23) 4032522475023133 a001 139583862445/23725150497407*4106118243^(2/23) 4032522475023133 a001 53316291173/9062201101803*4106118243^(2/23) 4032522475023133 a001 2971215073/817138163596*2537720636^(1/9) 4032522475023133 a001 10182505537/1730726404001*4106118243^(2/23) 4032522475023133 a001 7778742049/505019158607*4106118243^(1/23) 4032522475023133 a001 12586269025/5600748293801*4106118243^(3/23) 4032522475023133 a004 Fibonacci(49)/Lucas(49)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 32951280099/14662949395604*4106118243^(3/23) 4032522475023133 a001 53316291173/23725150497407*4106118243^(3/23) 4032522475023133 a001 20365011074/9062201101803*4106118243^(3/23) 4032522475023133 a001 7778742049/1322157322203*4106118243^(2/23) 4032522475023133 a001 10749957122/53316291173*8^(1/3) 4032522475023133 a001 1/2403763488*(1/2+1/2*5^(1/2))^43 4032522475023133 a001 12586269025/14662949395604*4106118243^(4/23) 4032522475023133 a001 4807526976/312119004989*1568397607^(1/22) 4032522475023133 a001 20365011074/23725150497407*4106118243^(4/23) 4032522475023133 a001 7778742049/3461452808002*4106118243^(3/23) 4032522475023133 a001 2971215073/312119004989*2537720636^(1/15) 4032522475023133 a001 7778742049/9062201101803*4106118243^(4/23) 4032522475023133 a004 Fibonacci(47)/Lucas(48)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(48)/Lucas(47)/(1/2+sqrt(5)/2)^6 4032522475023133 a001 1836311903/2139295485799*1568397607^(2/11) 4032522475023133 a001 7778742049/23725150497407*4106118243^(5/23) 4032522475023133 a001 12586269025/817138163596*1568397607^(1/22) 4032522475023133 a001 32951280099/2139295485799*1568397607^(1/22) 4032522475023133 a001 86267571272/5600748293801*1568397607^(1/22) 4032522475023133 a001 7787980473/505618944676*1568397607^(1/22) 4032522475023133 a001 365435296162/23725150497407*1568397607^(1/22) 4032522475023133 a001 139583862445/9062201101803*1568397607^(1/22) 4032522475023133 a001 53316291173/3461452808002*1568397607^(1/22) 4032522475023133 a001 20365011074/1322157322203*1568397607^(1/22) 4032522475023133 a004 Fibonacci(47)/Lucas(50)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(50)/Lucas(47)/(1/2+sqrt(5)/2)^8 4032522475023133 a001 7778742049/505019158607*1568397607^(1/22) 4032522475023133 a001 2971215073/2139295485799*17393796001^(1/7) 4032522475023133 a004 Fibonacci(52)/Lucas(47)/(1/2+sqrt(5)/2)^10 4032522475023133 a001 2971215073/23725150497407*45537549124^(4/17) 4032522475023133 a001 2971215073/5600748293801*45537549124^(3/17) 4032522475023133 a001 2971215073/1322157322203*45537549124^(2/17) 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^2/Lucas(54) 4032522475023133 a004 Fibonacci(54)/Lucas(47)/(1/2+sqrt(5)/2)^12 4032522475023133 a001 2971215073/312119004989*45537549124^(1/17) 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^4/Lucas(56) 4032522475023133 a004 Fibonacci(56)/Lucas(47)/(1/2+sqrt(5)/2)^14 4032522475023133 a001 2971215073/14662949395604*312119004989^(1/5) 4032522475023133 a001 2971215073/1322157322203*14662949395604^(2/21) 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^6/Lucas(58) 4032522475023133 a004 Fibonacci(58)/Lucas(47)/(1/2+sqrt(5)/2)^16 4032522475023133 a001 2971215073/23725150497407*817138163596^(4/19) 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^8/Lucas(60) 4032522475023133 a004 Fibonacci(60)/Lucas(47)/(1/2+sqrt(5)/2)^18 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^10/Lucas(62) 4032522475023133 a004 Fibonacci(62)/Lucas(47)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^12/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(47)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^14/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(47)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^16/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(47)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^18/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(47)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^20/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(47)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^22/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(47)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^24/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(47)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^26/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(47)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^28/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(47)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^30/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(47)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^32/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(47)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^34/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(47)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^36/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(47)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^38/Lucas(90) 4032522475023133 a004 Fibonacci(90)/Lucas(47)/(1/2+sqrt(5)/2)^48 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^40/Lucas(92) 4032522475023133 a004 Fibonacci(92)/Lucas(47)/(1/2+sqrt(5)/2)^50 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^42/Lucas(94) 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^44/Lucas(96) 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^46/Lucas(98) 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^47/Lucas(99) 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^48/Lucas(100) 4032522475023133 a004 Fibonacci(47)*Lucas(1)/(1/2+sqrt(5)/2)^52 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^45/Lucas(97) 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^43/Lucas(95) 4032522475023133 a004 Fibonacci(96)/Lucas(47)/(1/2+sqrt(5)/2)^54 4032522475023133 a004 Fibonacci(100)/Lucas(47)/(1/2+sqrt(5)/2)^58 4032522475023133 a004 Fibonacci(98)/Lucas(47)/(1/2+sqrt(5)/2)^56 4032522475023133 a004 Fibonacci(99)/Lucas(47)/(1/2+sqrt(5)/2)^57 4032522475023133 a004 Fibonacci(97)/Lucas(47)/(1/2+sqrt(5)/2)^55 4032522475023133 a004 Fibonacci(95)/Lucas(47)/(1/2+sqrt(5)/2)^53 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^41/Lucas(93) 4032522475023133 a004 Fibonacci(93)/Lucas(47)/(1/2+sqrt(5)/2)^51 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^39/Lucas(91) 4032522475023133 a004 Fibonacci(91)/Lucas(47)/(1/2+sqrt(5)/2)^49 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^37/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(47)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^35/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(47)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^33/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(47)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^31/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(47)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^29/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(47)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^27/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(47)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^25/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(47)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^23/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(47)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^21/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(47)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^19/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(47)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^17/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(47)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^15/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(47)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^13/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(47)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^11/Lucas(63) 4032522475023133 a004 Fibonacci(63)/Lucas(47)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^9/Lucas(61) 4032522475023133 a004 Fibonacci(61)/Lucas(47)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^7/Lucas(59) 4032522475023133 a004 Fibonacci(59)/Lucas(47)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^5/Lucas(57) 4032522475023133 a004 Fibonacci(57)/Lucas(47)/(1/2+sqrt(5)/2)^15 4032522475023133 a001 2971215073/5600748293801*192900153618^(1/6) 4032522475023133 a001 2971215073/312119004989*14662949395604^(1/21) 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^3/Lucas(55) 4032522475023133 a004 Fibonacci(55)/Lucas(47)/(1/2+sqrt(5)/2)^13 4032522475023133 a001 2971215073/312119004989*192900153618^(1/18) 4032522475023133 a001 2971215073/3461452808002*73681302247^(2/13) 4032522475023133 a001 2971215073/23725150497407*73681302247^(3/13) 4032522475023133 a004 Fibonacci(47)*(1/2+sqrt(5)/2)/Lucas(53) 4032522475023133 a004 Fibonacci(53)/Lucas(47)/(1/2+sqrt(5)/2)^11 4032522475023133 a001 2971215073/817138163596*28143753123^(1/10) 4032522475023133 a001 2971215073/9062201101803*28143753123^(1/5) 4032522475023133 a001 2971215073/192900153618*10749957122^(1/24) 4032522475023133 a004 Fibonacci(47)/Lucas(51)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(51)/Lucas(47)/(1/2+sqrt(5)/2)^9 4032522475023133 a001 2971215073/312119004989*10749957122^(1/16) 4032522475023133 a001 2971215073/505019158607*10749957122^(1/12) 4032522475023133 a001 2971215073/1322157322203*10749957122^(1/8) 4032522475023133 a001 2971215073/3461452808002*10749957122^(1/6) 4032522475023133 a001 2971215073/5600748293801*10749957122^(3/16) 4032522475023133 a001 2971215073/9062201101803*10749957122^(5/24) 4032522475023133 a001 2971215073/23725150497407*10749957122^(1/4) 4032522475023133 a001 2971215073/192900153618*4106118243^(1/23) 4032522475023133 a004 Fibonacci(47)/Lucas(49)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(49)/Lucas(47)/(1/2+sqrt(5)/2)^7 4032522475023133 a001 2971215073/505019158607*4106118243^(2/23) 4032522475023133 a001 1201881744/204284540899*1568397607^(1/11) 4032522475023133 a001 2971215073/1322157322203*4106118243^(3/23) 4032522475023133 a004 Fibonacci(47)*Lucas(48)/(1/2+sqrt(5)/2)^100 4032522475023133 a001 2971215073/3461452808002*4106118243^(4/23) 4032522475023133 a001 1836311903/5600748293801*1568397607^(5/22) 4032522475023133 a001 2971215073/9062201101803*4106118243^(5/23) 4032522475023133 a001 12586269025/2139295485799*1568397607^(1/11) 4032522475023133 a001 32951280099/5600748293801*1568397607^(1/11) 4032522475023133 a001 1135099622/192933544679*1568397607^(1/11) 4032522475023133 a001 139583862445/23725150497407*1568397607^(1/11) 4032522475023133 a001 53316291173/9062201101803*1568397607^(1/11) 4032522475023133 a001 10182505537/1730726404001*1568397607^(1/11) 4032522475023133 a001 2971215073/23725150497407*4106118243^(6/23) 4032522475023133 a001 7778742049/1322157322203*1568397607^(1/11) 4032522475023133 a001 2971215073/192900153618*1568397607^(1/22) 4032522475023133 a001 1836311903/9062201101803*1568397607^(1/4) 4032522475023133 a004 Fibonacci(47)/Lucas(47)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 4807526976/2139295485799*1568397607^(3/22) 4032522475023133 a004 Fibonacci(48)*Lucas(46)/(1/2+sqrt(5)/2)^99 4032522475023133 a001 1836311903/14662949395604*1568397607^(3/11) 4032522475023133 a001 12586269025/5600748293801*1568397607^(3/22) 4032522475023133 a001 32951280099/14662949395604*1568397607^(3/22) 4032522475023133 a001 53316291173/23725150497407*1568397607^(3/22) 4032522475023133 a001 20365011074/9062201101803*1568397607^(3/22) 4032522475023133 a001 701408733/505019158607*599074578^(1/6) 4032522475023133 a001 7778742049/3461452808002*1568397607^(3/22) 4032522475023133 a001 4106118243/20365011074*8^(1/3) 4032522475023133 a001 2/1836311903*(1/2+1/2*5^(1/2))^41 4032522475023133 a001 2971215073/505019158607*1568397607^(1/11) 4032522475023133 a004 Fibonacci(49)*Lucas(46)/(1/2+sqrt(5)/2)^100 4032522475023133 a001 4807526976/5600748293801*1568397607^(2/11) 4032522475023133 a001 12586269025/14662949395604*1568397607^(2/11) 4032522475023133 a001 1836311903/119218851371*599074578^(1/21) 4032522475023133 a001 20365011074/23725150497407*1568397607^(2/11) 4032522475023133 a001 7778742049/9062201101803*1568397607^(2/11) 4032522475023133 a001 2971215073/1322157322203*1568397607^(3/22) 4032522475023133 a001 267914296/119218851371*228826127^(3/20) 4032522475023133 a004 Fibonacci(47)*Lucas(46)/(1/2+sqrt(5)/2)^98 4032522475023133 a001 1201881744/3665737348901*1568397607^(5/22) 4032522475023133 a001 4807526976/23725150497407*1568397607^(1/4) 4032522475023133 a001 7778742049/23725150497407*1568397607^(5/22) 4032522475023133 a004 Fibonacci(45)/Lucas(46)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(46)/Lucas(45)/(1/2+sqrt(5)/2)^6 4032522475023133 a001 2971215073/3461452808002*1568397607^(2/11) 4032522475023133 a001 1134903170/9062201101803*2537720636^(4/15) 4032522475023133 a001 2971215073/9062201101803*1568397607^(5/22) 4032522475023133 a001 567451585/1730726404001*2537720636^(2/9) 4032522475023133 a001 4807526976/312119004989*599074578^(1/21) 4032522475023133 a001 701408733/817138163596*599074578^(4/21) 4032522475023133 a001 1134903170/2139295485799*2537720636^(1/5) 4032522475023133 a001 2971215073/14662949395604*1568397607^(1/4) 4032522475023133 a001 12586269025/817138163596*599074578^(1/21) 4032522475023133 a001 32951280099/2139295485799*599074578^(1/21) 4032522475023133 a004 Fibonacci(45)*Lucas(47)/(1/2+sqrt(5)/2)^97 4032522475023133 a001 86267571272/5600748293801*599074578^(1/21) 4032522475023133 a001 7787980473/505618944676*599074578^(1/21) 4032522475023133 a001 365435296162/23725150497407*599074578^(1/21) 4032522475023133 a001 139583862445/9062201101803*599074578^(1/21) 4032522475023133 a001 53316291173/3461452808002*599074578^(1/21) 4032522475023133 a001 20365011074/1322157322203*599074578^(1/21) 4032522475023133 a001 2971215073/23725150497407*1568397607^(3/11) 4032522475023133 a001 1134903170/505019158607*2537720636^(2/15) 4032522475023133 a001 7778742049/505019158607*599074578^(1/21) 4032522475023133 a001 1134903170/312119004989*2537720636^(1/9) 4032522475023133 a001 1836311903/192900153618*599074578^(1/14) 4032522475023133 a001 1134903170/119218851371*2537720636^(1/15) 4032522475023133 a004 Fibonacci(45)/Lucas(48)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(48)/Lucas(45)/(1/2+sqrt(5)/2)^8 4032522475023133 a004 Fibonacci(45)*Lucas(49)/(1/2+sqrt(5)/2)^99 4032522475023133 a004 Fibonacci(50)/Lucas(45)/(1/2+sqrt(5)/2)^10 4032522475023133 a001 1134903170/23725150497407*17393796001^(2/7) 4032522475023133 a001 567451585/408569081798*17393796001^(1/7) 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^2/Lucas(52) 4032522475023133 a004 Fibonacci(52)/Lucas(45)/(1/2+sqrt(5)/2)^12 4032522475023133 a001 1134903170/9062201101803*45537549124^(4/17) 4032522475023133 a001 1134903170/2139295485799*45537549124^(3/17) 4032522475023133 a001 1134903170/505019158607*45537549124^(2/17) 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^4/Lucas(54) 4032522475023133 a004 Fibonacci(54)/Lucas(45)/(1/2+sqrt(5)/2)^14 4032522475023133 a001 567451585/96450076809*23725150497407^(1/16) 4032522475023133 a001 567451585/96450076809*73681302247^(1/13) 4032522475023133 a001 1134903170/505019158607*14662949395604^(2/21) 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^6/Lucas(56) 4032522475023133 a004 Fibonacci(56)/Lucas(45)/(1/2+sqrt(5)/2)^16 4032522475023133 a001 567451585/1730726404001*312119004989^(2/11) 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^8/Lucas(58) 4032522475023133 a004 Fibonacci(58)/Lucas(45)/(1/2+sqrt(5)/2)^18 4032522475023133 a001 1134903170/1322157322203*23725150497407^(1/8) 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^10/Lucas(60) 4032522475023133 a004 Fibonacci(60)/Lucas(45)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^12/Lucas(62) 4032522475023133 a004 Fibonacci(62)/Lucas(45)/(1/2+sqrt(5)/2)^22 4032522475023133 a001 1134903170/1322157322203*505019158607^(1/7) 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^14/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(45)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^16/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(45)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^18/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(45)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^20/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(45)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^22/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(45)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^24/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(45)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^26/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(45)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^28/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(45)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^30/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(45)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^32/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(45)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^34/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(45)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^36/Lucas(86) 4032522475023133 a004 Fibonacci(86)/Lucas(45)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^38/Lucas(88) 4032522475023133 a004 Fibonacci(88)/Lucas(45)/(1/2+sqrt(5)/2)^48 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^40/Lucas(90) 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^42/Lucas(92) 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^44/Lucas(94) 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^46/Lucas(96) 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^48/Lucas(98) 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^49/Lucas(99) 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^50/Lucas(100) 4032522475023133 a004 Fibonacci(45)*Lucas(1)/(1/2+sqrt(5)/2)^50 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^47/Lucas(97) 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^45/Lucas(95) 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^43/Lucas(93) 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^41/Lucas(91) 4032522475023133 a004 Fibonacci(92)/Lucas(45)/(1/2+sqrt(5)/2)^52 4032522475023133 a004 Fibonacci(94)/Lucas(45)/(1/2+sqrt(5)/2)^54 4032522475023133 a004 Fibonacci(96)/Lucas(45)/(1/2+sqrt(5)/2)^56 4032522475023133 a004 Fibonacci(98)/Lucas(45)/(1/2+sqrt(5)/2)^58 4032522475023133 a004 Fibonacci(100)/Lucas(45)/(1/2+sqrt(5)/2)^60 4032522475023133 a004 Fibonacci(99)/Lucas(45)/(1/2+sqrt(5)/2)^59 4032522475023133 a004 Fibonacci(97)/Lucas(45)/(1/2+sqrt(5)/2)^57 4032522475023133 a004 Fibonacci(95)/Lucas(45)/(1/2+sqrt(5)/2)^55 4032522475023133 a004 Fibonacci(93)/Lucas(45)/(1/2+sqrt(5)/2)^53 4032522475023133 a004 Fibonacci(91)/Lucas(45)/(1/2+sqrt(5)/2)^51 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^39/Lucas(89) 4032522475023133 a004 Fibonacci(89)/Lucas(45)/(1/2+sqrt(5)/2)^49 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^37/Lucas(87) 4032522475023133 a004 Fibonacci(87)/Lucas(45)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^35/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(45)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^33/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(45)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^31/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(45)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^29/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(45)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^27/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(45)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^25/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(45)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^23/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(45)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^21/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(45)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^19/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(45)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^17/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(45)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^15/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(45)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^13/Lucas(63) 4032522475023133 a004 Fibonacci(63)/Lucas(45)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^11/Lucas(61) 4032522475023133 a004 Fibonacci(61)/Lucas(45)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^9/Lucas(59) 4032522475023133 a004 Fibonacci(59)/Lucas(45)/(1/2+sqrt(5)/2)^19 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^7/Lucas(57) 4032522475023133 a004 Fibonacci(57)/Lucas(45)/(1/2+sqrt(5)/2)^17 4032522475023133 a001 1134903170/2139295485799*192900153618^(1/6) 4032522475023133 a001 1134903170/312119004989*312119004989^(1/11) 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^5/Lucas(55) 4032522475023133 a004 Fibonacci(55)/Lucas(45)/(1/2+sqrt(5)/2)^15 4032522475023133 a001 1134903170/1322157322203*73681302247^(2/13) 4032522475023133 a001 2971215073/192900153618*599074578^(1/21) 4032522475023133 a001 1134903170/119218851371*45537549124^(1/17) 4032522475023133 a001 1134903170/9062201101803*73681302247^(3/13) 4032522475023133 a001 567451585/7331474697802*73681302247^(1/4) 4032522475023133 a001 1134903170/119218851371*14662949395604^(1/21) 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^3/Lucas(53) 4032522475023133 a004 Fibonacci(53)/Lucas(45)/(1/2+sqrt(5)/2)^13 4032522475023133 a001 1134903170/119218851371*192900153618^(1/18) 4032522475023133 a001 1134903170/312119004989*28143753123^(1/10) 4032522475023133 a001 1134903170/73681302247*10749957122^(1/24) 4032522475023133 a001 567451585/1730726404001*28143753123^(1/5) 4032522475023133 a004 Fibonacci(45)*(1/2+sqrt(5)/2)/Lucas(51) 4032522475023133 a004 Fibonacci(51)/Lucas(45)/(1/2+sqrt(5)/2)^11 4032522475023133 a001 1134903170/119218851371*10749957122^(1/16) 4032522475023133 a001 567451585/96450076809*10749957122^(1/12) 4032522475023133 a001 1134903170/505019158607*10749957122^(1/8) 4032522475023133 a004 Fibonacci(45)*Lucas(50)/(1/2+sqrt(5)/2)^100 4032522475023133 a001 1134903170/1322157322203*10749957122^(1/6) 4032522475023133 a001 1134903170/2139295485799*10749957122^(3/16) 4032522475023133 a001 567451585/1730726404001*10749957122^(5/24) 4032522475023133 a001 1134903170/9062201101803*10749957122^(1/4) 4032522475023133 a001 1134903170/73681302247*4106118243^(1/23) 4032522475023133 a001 1134903170/23725150497407*10749957122^(7/24) 4032522475023133 a004 Fibonacci(45)/Lucas(49)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(49)/Lucas(45)/(1/2+sqrt(5)/2)^9 4032522475023133 a001 567451585/96450076809*4106118243^(2/23) 4032522475023133 a001 1134903170/505019158607*4106118243^(3/23) 4032522475023133 a004 Fibonacci(45)*Lucas(48)/(1/2+sqrt(5)/2)^98 4032522475023133 a001 1134903170/1322157322203*4106118243^(4/23) 4032522475023133 a001 567451585/1730726404001*4106118243^(5/23) 4032522475023133 a001 1134903170/9062201101803*4106118243^(6/23) 4032522475023133 a001 1134903170/23725150497407*4106118243^(7/23) 4032522475023133 a001 1134903170/73681302247*1568397607^(1/22) 4032522475023133 a004 Fibonacci(45)/Lucas(47)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(47)/Lucas(45)/(1/2+sqrt(5)/2)^7 4032522475023133 a001 102287808/10745088481*599074578^(1/14) 4032522475023133 a001 233802911/440719107401*599074578^(3/14) 4032522475023133 a001 567451585/96450076809*1568397607^(1/11) 4032522475023133 a001 12586269025/1322157322203*599074578^(1/14) 4032522475023133 a001 32951280099/3461452808002*599074578^(1/14) 4032522475023133 a001 86267571272/9062201101803*599074578^(1/14) 4032522475023133 a001 225851433717/23725150497407*599074578^(1/14) 4032522475023133 a001 139583862445/14662949395604*599074578^(1/14) 4032522475023133 a001 53316291173/5600748293801*599074578^(1/14) 4032522475023133 a001 20365011074/2139295485799*599074578^(1/14) 4032522475023133 a001 7778742049/817138163596*599074578^(1/14) 4032522475023133 a001 1836311903/312119004989*599074578^(2/21) 4032522475023133 a001 1134903170/505019158607*1568397607^(3/22) 4032522475023133 a004 Fibonacci(45)*Lucas(46)/(1/2+sqrt(5)/2)^96 4032522475023133 a001 2971215073/312119004989*599074578^(1/14) 4032522475023133 a001 1134903170/1322157322203*1568397607^(2/11) 4032522475023133 a001 567451585/1730726404001*1568397607^(5/22) 4032522475023133 a001 1201881744/204284540899*599074578^(2/21) 4032522475023133 a001 701408733/2139295485799*599074578^(5/21) 4032522475023133 a001 1134903170/5600748293801*1568397607^(1/4) 4032522475023133 a001 12586269025/2139295485799*599074578^(2/21) 4032522475023133 a001 32951280099/5600748293801*599074578^(2/21) 4032522475023133 a001 1135099622/192933544679*599074578^(2/21) 4032522475023133 a001 139583862445/23725150497407*599074578^(2/21) 4032522475023133 a001 53316291173/9062201101803*599074578^(2/21) 4032522475023133 a001 10182505537/1730726404001*599074578^(2/21) 4032522475023133 a001 1134903170/9062201101803*1568397607^(3/11) 4032522475023133 a001 7778742049/1322157322203*599074578^(2/21) 4032522475023133 a001 1134903170/23725150497407*1568397607^(7/22) 4032522475023133 a001 1134903170/73681302247*599074578^(1/21) 4032522475023133 a001 2971215073/505019158607*599074578^(2/21) 4032522475023133 a004 Fibonacci(45)/Lucas(45)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 1836311903/817138163596*599074578^(1/7) 4032522475023133 a004 Fibonacci(46)*Lucas(44)/(1/2+sqrt(5)/2)^95 4032522475023133 a001 1134903170/119218851371*599074578^(1/14) 4032522475023133 a001 4807526976/2139295485799*599074578^(1/7) 4032522475023133 a001 701408733/5600748293801*599074578^(2/7) 4032522475023133 a001 12586269025/5600748293801*599074578^(1/7) 4032522475023133 a001 32951280099/14662949395604*599074578^(1/7) 4032522475023133 a004 Fibonacci(48)*Lucas(44)/(1/2+sqrt(5)/2)^97 4032522475023133 a001 53316291173/23725150497407*599074578^(1/7) 4032522475023133 a001 20365011074/9062201101803*599074578^(1/7) 4032522475023133 a001 7778742049/3461452808002*599074578^(1/7) 4032522475023133 a001 1568397607/7778742049*8^(1/3) 4032522475023133 a001 1836311903/1322157322203*599074578^(1/6) 4032522475023133 a004 Fibonacci(50)*Lucas(44)/(1/2+sqrt(5)/2)^99 4032522475023133 a001 2/701408733*(1/2+1/2*5^(1/2))^39 4032522475023133 a004 Fibonacci(51)*Lucas(44)/(1/2+sqrt(5)/2)^100 4032522475023133 a004 Fibonacci(49)*Lucas(44)/(1/2+sqrt(5)/2)^98 4032522475023133 a001 567451585/96450076809*599074578^(2/21) 4032522475023133 a001 2971215073/1322157322203*599074578^(1/7) 4032522475023133 a004 Fibonacci(47)*Lucas(44)/(1/2+sqrt(5)/2)^96 4032522475023133 a001 14930208/10749853441*599074578^(1/6) 4032522475023133 a001 12586269025/9062201101803*599074578^(1/6) 4032522475023133 a001 32951280099/23725150497407*599074578^(1/6) 4032522475023133 a001 10182505537/7331474697802*599074578^(1/6) 4032522475023133 a001 7778742049/5600748293801*599074578^(1/6) 4032522475023133 a001 1836311903/2139295485799*599074578^(4/21) 4032522475023133 a001 2971215073/2139295485799*599074578^(1/6) 4032522475023133 a001 4807526976/5600748293801*599074578^(4/21) 4032522475023133 a001 701408733/14662949395604*599074578^(1/3) 4032522475023133 a001 12586269025/14662949395604*599074578^(4/21) 4032522475023133 a001 20365011074/23725150497407*599074578^(4/21) 4032522475023133 a001 7778742049/9062201101803*599074578^(4/21) 4032522475023133 a001 1836311903/3461452808002*599074578^(3/14) 4032522475023133 a001 701408733/45537549124*228826127^(1/20) 4032522475023133 a001 1134903170/505019158607*599074578^(1/7) 4032522475023133 a001 2971215073/3461452808002*599074578^(4/21) 4032522475023133 a004 Fibonacci(45)*Lucas(44)/(1/2+sqrt(5)/2)^94 4032522475023133 a001 1602508992/3020733700601*599074578^(3/14) 4032522475023133 a001 701408733/23725150497407*599074578^(5/14) 4032522475023133 a001 12586269025/23725150497407*599074578^(3/14) 4032522475023133 a001 7778742049/14662949395604*599074578^(3/14) 4032522475023133 a001 1836311903/5600748293801*599074578^(5/21) 4032522475023133 a001 567451585/408569081798*599074578^(1/6) 4032522475023133 a001 2971215073/5600748293801*599074578^(3/14) 4032522475023133 a001 1201881744/3665737348901*599074578^(5/21) 4032522475023133 a004 Fibonacci(43)/Lucas(44)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(44)/Lucas(43)/(1/2+sqrt(5)/2)^6 4032522475023133 a001 7778742049/23725150497407*599074578^(5/21) 4032522475023133 a001 1134903170/1322157322203*599074578^(4/21) 4032522475023133 a001 2971215073/9062201101803*599074578^(5/21) 4032522475023133 a001 1836311903/14662949395604*599074578^(2/7) 4032522475023133 a001 1134903170/2139295485799*599074578^(3/14) 4032522475023133 a001 567451585/1730726404001*599074578^(5/21) 4032522475023133 a001 2971215073/23725150497407*599074578^(2/7) 4032522475023133 a001 1836311903/119218851371*228826127^(1/20) 4032522475023133 a004 Fibonacci(43)*Lucas(45)/(1/2+sqrt(5)/2)^93 4032522475023133 a001 4807526976/312119004989*228826127^(1/20) 4032522475023133 a001 1134903170/9062201101803*599074578^(2/7) 4032522475023133 a001 12586269025/817138163596*228826127^(1/20) 4032522475023133 a001 32951280099/2139295485799*228826127^(1/20) 4032522475023133 a001 86267571272/5600748293801*228826127^(1/20) 4032522475023133 a001 7787980473/505618944676*228826127^(1/20) 4032522475023133 a001 365435296162/23725150497407*228826127^(1/20) 4032522475023133 a001 139583862445/9062201101803*228826127^(1/20) 4032522475023133 a001 53316291173/3461452808002*228826127^(1/20) 4032522475023133 a001 20365011074/1322157322203*228826127^(1/20) 4032522475023133 a001 7778742049/505019158607*228826127^(1/20) 4032522475023133 a001 2971215073/192900153618*228826127^(1/20) 4032522475023133 a004 Fibonacci(43)/Lucas(46)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(46)/Lucas(43)/(1/2+sqrt(5)/2)^8 4032522475023133 a001 433494437/14662949395604*2537720636^(1/3) 4032522475023133 a001 433494437/3461452808002*2537720636^(4/15) 4032522475023133 a001 433494437/1322157322203*2537720636^(2/9) 4032522475023133 a001 433494437/817138163596*2537720636^(1/5) 4032522475023133 a001 267914296/312119004989*228826127^(1/5) 4032522475023133 a004 Fibonacci(43)*Lucas(47)/(1/2+sqrt(5)/2)^95 4032522475023133 a001 433494437/192900153618*2537720636^(2/15) 4032522475023133 a001 433494437/119218851371*2537720636^(1/9) 4032522475023133 a001 433494437/45537549124*2537720636^(1/15) 4032522475023133 a004 Fibonacci(48)/Lucas(43)/(1/2+sqrt(5)/2)^10 4032522475023133 a004 Fibonacci(43)*Lucas(49)/(1/2+sqrt(5)/2)^97 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^2/Lucas(50) 4032522475023133 a004 Fibonacci(50)/Lucas(43)/(1/2+sqrt(5)/2)^12 4032522475023133 a001 433494437/9062201101803*17393796001^(2/7) 4032522475023133 a001 433494437/28143753123*10749957122^(1/24) 4032522475023133 a004 Fibonacci(43)*Lucas(51)/(1/2+sqrt(5)/2)^99 4032522475023133 a001 433494437/312119004989*17393796001^(1/7) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^4/Lucas(52) 4032522475023133 a004 Fibonacci(52)/Lucas(43)/(1/2+sqrt(5)/2)^14 4032522475023133 a001 433494437/73681302247*23725150497407^(1/16) 4032522475023133 a001 433494437/73681302247*73681302247^(1/13) 4032522475023133 a001 433494437/14662949395604*45537549124^(5/17) 4032522475023133 a001 433494437/3461452808002*45537549124^(4/17) 4032522475023133 a001 433494437/192900153618*45537549124^(2/17) 4032522475023133 a001 433494437/192900153618*14662949395604^(2/21) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^6/Lucas(54) 4032522475023133 a004 Fibonacci(54)/Lucas(43)/(1/2+sqrt(5)/2)^16 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^8/Lucas(56) 4032522475023133 a004 Fibonacci(56)/Lucas(43)/(1/2+sqrt(5)/2)^18 4032522475023133 a001 433494437/505019158607*23725150497407^(1/8) 4032522475023133 a001 433494437/14662949395604*312119004989^(3/11) 4032522475023133 a001 433494437/1322157322203*312119004989^(2/11) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^10/Lucas(58) 4032522475023133 a004 Fibonacci(58)/Lucas(43)/(1/2+sqrt(5)/2)^20 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^12/Lucas(60) 4032522475023133 a004 Fibonacci(60)/Lucas(43)/(1/2+sqrt(5)/2)^22 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^14/Lucas(62) 4032522475023133 a004 Fibonacci(62)/Lucas(43)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^16/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(43)/(1/2+sqrt(5)/2)^26 4032522475023133 a001 433494437/23725150497407*23725150497407^(1/4) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^18/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(43)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^20/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(43)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^22/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(43)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^24/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(43)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^26/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(43)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^28/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(43)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^30/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(43)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^32/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(43)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^34/Lucas(82) 4032522475023133 a004 Fibonacci(82)/Lucas(43)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^36/Lucas(84) 4032522475023133 a004 Fibonacci(84)/Lucas(43)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^38/Lucas(86) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^40/Lucas(88) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^42/Lucas(90) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^44/Lucas(92) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^46/Lucas(94) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^48/Lucas(96) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^50/Lucas(98) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^51/Lucas(99) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^52/Lucas(100) 4032522475023133 a004 Fibonacci(43)*Lucas(1)/(1/2+sqrt(5)/2)^48 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^49/Lucas(97) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^47/Lucas(95) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^45/Lucas(93) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^43/Lucas(91) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^41/Lucas(89) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^39/Lucas(87) 4032522475023133 a004 Fibonacci(88)/Lucas(43)/(1/2+sqrt(5)/2)^50 4032522475023133 a004 Fibonacci(90)/Lucas(43)/(1/2+sqrt(5)/2)^52 4032522475023133 a004 Fibonacci(92)/Lucas(43)/(1/2+sqrt(5)/2)^54 4032522475023133 a004 Fibonacci(94)/Lucas(43)/(1/2+sqrt(5)/2)^56 4032522475023133 a004 Fibonacci(96)/Lucas(43)/(1/2+sqrt(5)/2)^58 4032522475023133 a004 Fibonacci(98)/Lucas(43)/(1/2+sqrt(5)/2)^60 4032522475023133 a004 Fibonacci(100)/Lucas(43)/(1/2+sqrt(5)/2)^62 4032522475023133 a004 Fibonacci(99)/Lucas(43)/(1/2+sqrt(5)/2)^61 4032522475023133 a004 Fibonacci(97)/Lucas(43)/(1/2+sqrt(5)/2)^59 4032522475023133 a004 Fibonacci(95)/Lucas(43)/(1/2+sqrt(5)/2)^57 4032522475023133 a004 Fibonacci(93)/Lucas(43)/(1/2+sqrt(5)/2)^55 4032522475023133 a004 Fibonacci(91)/Lucas(43)/(1/2+sqrt(5)/2)^53 4032522475023133 a004 Fibonacci(89)/Lucas(43)/(1/2+sqrt(5)/2)^51 4032522475023133 a004 Fibonacci(87)/Lucas(43)/(1/2+sqrt(5)/2)^49 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^37/Lucas(85) 4032522475023133 a004 Fibonacci(85)/Lucas(43)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^35/Lucas(83) 4032522475023133 a004 Fibonacci(83)/Lucas(43)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^33/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(43)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^31/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(43)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^29/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(43)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^27/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(43)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^25/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(43)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^23/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(43)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^21/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(43)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^19/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(43)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^17/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(43)/(1/2+sqrt(5)/2)^27 4032522475023133 a001 433494437/14662949395604*14662949395604^(5/21) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^15/Lucas(63) 4032522475023133 a004 Fibonacci(63)/Lucas(43)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^13/Lucas(61) 4032522475023133 a004 Fibonacci(61)/Lucas(43)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^11/Lucas(59) 4032522475023133 a004 Fibonacci(59)/Lucas(43)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^9/Lucas(57) 4032522475023133 a004 Fibonacci(57)/Lucas(43)/(1/2+sqrt(5)/2)^19 4032522475023133 a001 433494437/817138163596*192900153618^(1/6) 4032522475023133 a001 433494437/14662949395604*192900153618^(5/18) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^7/Lucas(55) 4032522475023133 a004 Fibonacci(55)/Lucas(43)/(1/2+sqrt(5)/2)^17 4032522475023133 a001 433494437/505019158607*73681302247^(2/13) 4032522475023133 a001 433494437/3461452808002*73681302247^(3/13) 4032522475023133 a001 433494437/5600748293801*73681302247^(1/4) 4032522475023133 a001 433494437/23725150497407*73681302247^(4/13) 4032522475023133 a001 433494437/119218851371*312119004989^(1/11) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^5/Lucas(53) 4032522475023133 a004 Fibonacci(53)/Lucas(43)/(1/2+sqrt(5)/2)^15 4032522475023133 a004 Fibonacci(43)*Lucas(52)/(1/2+sqrt(5)/2)^100 4032522475023133 a001 433494437/119218851371*28143753123^(1/10) 4032522475023133 a001 433494437/1322157322203*28143753123^(1/5) 4032522475023133 a001 433494437/14662949395604*28143753123^(3/10) 4032522475023133 a001 433494437/45537549124*45537549124^(1/17) 4032522475023133 a001 433494437/45537549124*14662949395604^(1/21) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^3/Lucas(51) 4032522475023133 a004 Fibonacci(51)/Lucas(43)/(1/2+sqrt(5)/2)^13 4032522475023133 a001 433494437/45537549124*192900153618^(1/18) 4032522475023133 a001 433494437/73681302247*10749957122^(1/12) 4032522475023133 a001 433494437/45537549124*10749957122^(1/16) 4032522475023133 a001 433494437/192900153618*10749957122^(1/8) 4032522475023133 a004 Fibonacci(43)*Lucas(50)/(1/2+sqrt(5)/2)^98 4032522475023133 a001 433494437/28143753123*4106118243^(1/23) 4032522475023133 a001 433494437/505019158607*10749957122^(1/6) 4032522475023133 a001 433494437/817138163596*10749957122^(3/16) 4032522475023133 a001 433494437/1322157322203*10749957122^(5/24) 4032522475023133 a001 433494437/3461452808002*10749957122^(1/4) 4032522475023133 a001 433494437/9062201101803*10749957122^(7/24) 4032522475023133 a001 433494437/14662949395604*10749957122^(5/16) 4032522475023133 a001 433494437/23725150497407*10749957122^(1/3) 4032522475023133 a004 Fibonacci(43)*(1/2+sqrt(5)/2)/Lucas(49) 4032522475023133 a004 Fibonacci(49)/Lucas(43)/(1/2+sqrt(5)/2)^11 4032522475023133 a001 433494437/73681302247*4106118243^(2/23) 4032522475023133 a001 433494437/192900153618*4106118243^(3/23) 4032522475023133 a004 Fibonacci(43)*Lucas(48)/(1/2+sqrt(5)/2)^96 4032522475023133 a001 433494437/505019158607*4106118243^(4/23) 4032522475023133 a001 433494437/1322157322203*4106118243^(5/23) 4032522475023133 a001 433494437/3461452808002*4106118243^(6/23) 4032522475023133 a001 433494437/28143753123*1568397607^(1/22) 4032522475023133 a001 433494437/9062201101803*4106118243^(7/23) 4032522475023133 a001 1134903170/23725150497407*599074578^(1/3) 4032522475023133 a001 433494437/23725150497407*4106118243^(8/23) 4032522475023133 a004 Fibonacci(43)/Lucas(47)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(47)/Lucas(43)/(1/2+sqrt(5)/2)^9 4032522475023133 a001 433494437/73681302247*1568397607^(1/11) 4032522475023133 a001 1134903170/73681302247*228826127^(1/20) 4032522475023133 a001 433494437/192900153618*1568397607^(3/22) 4032522475023133 a004 Fibonacci(43)*Lucas(46)/(1/2+sqrt(5)/2)^94 4032522475023133 a001 433494437/505019158607*1568397607^(2/11) 4032522475023133 a001 433494437/1322157322203*1568397607^(5/22) 4032522475023133 a001 433494437/2139295485799*1568397607^(1/4) 4032522475023133 a001 433494437/3461452808002*1568397607^(3/11) 4032522475023133 a001 433494437/9062201101803*1568397607^(7/22) 4032522475023133 a001 433494437/28143753123*599074578^(1/21) 4032522475023133 a001 433494437/23725150497407*1568397607^(4/11) 4032522475023133 a004 Fibonacci(43)/Lucas(45)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(45)/Lucas(43)/(1/2+sqrt(5)/2)^7 4032522475023133 a001 433494437/45537549124*599074578^(1/14) 4032522475023133 a001 433494437/73681302247*599074578^(2/21) 4032522475023133 a001 433494437/192900153618*599074578^(1/7) 4032522475023133 a004 Fibonacci(43)*Lucas(44)/(1/2+sqrt(5)/2)^92 4032522475023133 a001 701408733/119218851371*228826127^(1/10) 4032522475023133 a001 433494437/312119004989*599074578^(1/6) 4032522475023133 a001 102334155/45537549124*87403803^(3/19) 4032522475023133 a001 433494437/505019158607*599074578^(4/21) 4032522475023133 a001 433494437/817138163596*599074578^(3/14) 4032522475023133 a001 433494437/1322157322203*599074578^(5/21) 4032522475023133 a001 1836311903/312119004989*228826127^(1/10) 4032522475023133 a001 433494437/3461452808002*599074578^(2/7) 4032522475023133 a001 1201881744/204284540899*228826127^(1/10) 4032522475023133 a001 12586269025/2139295485799*228826127^(1/10) 4032522475023133 a001 32951280099/5600748293801*228826127^(1/10) 4032522475023133 a001 1135099622/192933544679*228826127^(1/10) 4032522475023133 a001 139583862445/23725150497407*228826127^(1/10) 4032522475023133 a001 53316291173/9062201101803*228826127^(1/10) 4032522475023133 a001 10182505537/1730726404001*228826127^(1/10) 4032522475023133 a001 7778742049/1322157322203*228826127^(1/10) 4032522475023133 a001 2971215073/505019158607*228826127^(1/10) 4032522475023133 a001 233802911/64300051206*228826127^(1/8) 4032522475023133 a001 66978574/204284540899*228826127^(1/4) 4032522475023133 a001 433494437/9062201101803*599074578^(1/3) 4032522475023133 a001 433494437/28143753123*228826127^(1/20) 4032522475023133 a001 433494437/14662949395604*599074578^(5/14) 4032522475023133 a001 567451585/96450076809*228826127^(1/10) 4032522475023133 a001 433494437/23725150497407*599074578^(8/21) 4032522475023133 a004 Fibonacci(43)/Lucas(43)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 1836311903/505019158607*228826127^(1/8) 4032522475023133 a001 1602508992/440719107401*228826127^(1/8) 4032522475023133 a004 Fibonacci(44)*Lucas(42)/(1/2+sqrt(5)/2)^91 4032522475023133 a001 12586269025/3461452808002*228826127^(1/8) 4032522475023133 a001 10983760033/3020733700601*228826127^(1/8) 4032522475023133 a001 86267571272/23725150497407*228826127^(1/8) 4032522475023133 a001 53316291173/14662949395604*228826127^(1/8) 4032522475023133 a001 20365011074/5600748293801*228826127^(1/8) 4032522475023133 a001 7778742049/2139295485799*228826127^(1/8) 4032522475023133 a001 2971215073/817138163596*228826127^(1/8) 4032522475023133 a001 3524667/1568437211*228826127^(3/20) 4032522475023133 a001 1134903170/312119004989*228826127^(1/8) 4032522475023133 a004 Fibonacci(46)*Lucas(42)/(1/2+sqrt(5)/2)^93 4032522475023133 a001 599074578/2971215073*8^(1/3) 4032522475023133 a004 Fibonacci(48)*Lucas(42)/(1/2+sqrt(5)/2)^95 4032522475023133 a004 Fibonacci(50)*Lucas(42)/(1/2+sqrt(5)/2)^97 4032522475023133 a004 Fibonacci(52)*Lucas(42)/(1/2+sqrt(5)/2)^99 4032522475023133 a001 1/133957148*(1/2+1/2*5^(1/2))^37 4032522475023133 a004 Fibonacci(53)*Lucas(42)/(1/2+sqrt(5)/2)^100 4032522475023133 a004 Fibonacci(51)*Lucas(42)/(1/2+sqrt(5)/2)^98 4032522475023133 a004 Fibonacci(49)*Lucas(42)/(1/2+sqrt(5)/2)^96 4032522475023133 a001 1836311903/817138163596*228826127^(3/20) 4032522475023133 a004 Fibonacci(47)*Lucas(42)/(1/2+sqrt(5)/2)^94 4032522475023133 a001 4807526976/2139295485799*228826127^(3/20) 4032522475023133 a001 12586269025/5600748293801*228826127^(3/20) 4032522475023133 a001 32951280099/14662949395604*228826127^(3/20) 4032522475023133 a001 53316291173/23725150497407*228826127^(3/20) 4032522475023133 a001 20365011074/9062201101803*228826127^(3/20) 4032522475023133 a001 7778742049/3461452808002*228826127^(3/20) 4032522475023133 a001 2971215073/1322157322203*228826127^(3/20) 4032522475023133 a004 Fibonacci(45)*Lucas(42)/(1/2+sqrt(5)/2)^92 4032522475023133 a001 267914296/2139295485799*228826127^(3/10) 4032522475023133 a001 433494437/73681302247*228826127^(1/10) 4032522475023133 a001 1134903170/505019158607*228826127^(3/20) 4032522475023133 a001 701408733/817138163596*228826127^(1/5) 4032522475023133 a001 433494437/119218851371*228826127^(1/8) 4032522475023133 a001 165580141/17393796001*141422324^(1/13) 4032522475023133 a001 1836311903/2139295485799*228826127^(1/5) 4032522475023133 a001 4807526976/5600748293801*228826127^(1/5) 4032522475023133 a001 12586269025/14662949395604*228826127^(1/5) 4032522475023133 a001 20365011074/23725150497407*228826127^(1/5) 4032522475023133 a001 7778742049/9062201101803*228826127^(1/5) 4032522475023133 a001 2971215073/3461452808002*228826127^(1/5) 4032522475023133 a004 Fibonacci(43)*Lucas(42)/(1/2+sqrt(5)/2)^90 4032522475023133 a001 267914296/5600748293801*228826127^(7/20) 4032522475023133 a001 433494437/192900153618*228826127^(3/20) 4032522475023133 a001 1134903170/1322157322203*228826127^(1/5) 4032522475023133 a001 9238424/599786069*87403803^(1/19) 4032522475023133 a001 701408733/2139295485799*228826127^(1/4) 4032522475023133 a001 267914296/9062201101803*228826127^(3/8) 4032522475023133 a004 Fibonacci(41)/Lucas(42)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(42)/Lucas(41)/(1/2+sqrt(5)/2)^6 4032522475023133 a001 1836311903/5600748293801*228826127^(1/4) 4032522475023133 a001 1201881744/3665737348901*228826127^(1/4) 4032522475023133 a001 7778742049/23725150497407*228826127^(1/4) 4032522475023133 a001 2971215073/9062201101803*228826127^(1/4) 4032522475023133 a001 10946/599074579*228826127^(2/5) 4032522475023133 a001 433494437/505019158607*228826127^(1/5) 4032522475023133 a001 567451585/1730726404001*228826127^(1/4) 4032522475023133 a001 701408733/5600748293801*228826127^(3/10) 4032522475023133 a001 1836311903/14662949395604*228826127^(3/10) 4032522475023133 a001 2971215073/23725150497407*228826127^(3/10) 4032522475023133 a001 433494437/1322157322203*228826127^(1/4) 4032522475023133 a001 1134903170/9062201101803*228826127^(3/10) 4032522475023133 a004 Fibonacci(41)*Lucas(43)/(1/2+sqrt(5)/2)^89 4032522475023133 a001 701408733/14662949395604*228826127^(7/20) 4032522475023133 a001 701408733/45537549124*87403803^(1/19) 4032522475023133 a001 701408733/23725150497407*228826127^(3/8) 4032522475023133 a001 433494437/3461452808002*228826127^(3/10) 4032522475023133 a001 1836311903/119218851371*87403803^(1/19) 4032522475023133 a001 1134903170/23725150497407*228826127^(7/20) 4032522475023133 a001 4807526976/312119004989*87403803^(1/19) 4032522475023133 a001 12586269025/817138163596*87403803^(1/19) 4032522475023133 a004 Fibonacci(41)/Lucas(44)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(44)/Lucas(41)/(1/2+sqrt(5)/2)^8 4032522475023133 a001 32951280099/2139295485799*87403803^(1/19) 4032522475023133 a001 86267571272/5600748293801*87403803^(1/19) 4032522475023133 a001 7787980473/505618944676*87403803^(1/19) 4032522475023133 a001 365435296162/23725150497407*87403803^(1/19) 4032522475023133 a001 139583862445/9062201101803*87403803^(1/19) 4032522475023133 a001 53316291173/3461452808002*87403803^(1/19) 4032522475023133 a001 20365011074/1322157322203*87403803^(1/19) 4032522475023133 a001 7778742049/505019158607*87403803^(1/19) 4032522475023133 a001 2971215073/192900153618*87403803^(1/19) 4032522475023133 a001 1134903170/73681302247*87403803^(1/19) 4032522475023133 a004 Fibonacci(41)*Lucas(45)/(1/2+sqrt(5)/2)^91 4032522475023133 a001 24157817/6643838879*20633239^(1/7) 4032522475023133 a001 165580141/23725150497407*2537720636^(2/5) 4032522475023133 a004 Fibonacci(46)/Lucas(41)/(1/2+sqrt(5)/2)^10 4032522475023133 a001 165580141/5600748293801*2537720636^(1/3) 4032522475023133 a001 165580141/1322157322203*2537720636^(4/15) 4032522475023133 a001 165580141/505019158607*2537720636^(2/9) 4032522475023133 a001 165580141/312119004989*2537720636^(1/5) 4032522475023133 a004 Fibonacci(41)*Lucas(47)/(1/2+sqrt(5)/2)^93 4032522475023133 a001 165580141/73681302247*2537720636^(2/15) 4032522475023133 a001 165580141/45537549124*2537720636^(1/9) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^2/Lucas(48) 4032522475023133 a004 Fibonacci(48)/Lucas(41)/(1/2+sqrt(5)/2)^12 4032522475023133 a001 165580141/10749957122*10749957122^(1/24) 4032522475023133 a001 165580141/17393796001*2537720636^(1/15) 4032522475023133 a001 165580141/10749957122*4106118243^(1/23) 4032522475023133 a004 Fibonacci(41)*Lucas(49)/(1/2+sqrt(5)/2)^95 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^4/Lucas(50) 4032522475023133 a004 Fibonacci(50)/Lucas(41)/(1/2+sqrt(5)/2)^14 4032522475023133 a001 165580141/28143753123*23725150497407^(1/16) 4032522475023133 a001 165580141/28143753123*73681302247^(1/13) 4032522475023133 a001 165580141/3461452808002*17393796001^(2/7) 4032522475023133 a001 165580141/28143753123*10749957122^(1/12) 4032522475023133 a004 Fibonacci(41)*Lucas(51)/(1/2+sqrt(5)/2)^97 4032522475023133 a001 165580141/119218851371*17393796001^(1/7) 4032522475023133 a001 165580141/73681302247*45537549124^(2/17) 4032522475023133 a001 165580141/73681302247*14662949395604^(2/21) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^6/Lucas(52) 4032522475023133 a004 Fibonacci(52)/Lucas(41)/(1/2+sqrt(5)/2)^16 4032522475023133 a001 165580141/23725150497407*45537549124^(6/17) 4032522475023133 a001 165580141/14662949395604*45537549124^(1/3) 4032522475023133 a001 165580141/5600748293801*45537549124^(5/17) 4032522475023133 a001 165580141/1322157322203*45537549124^(4/17) 4032522475023133 a001 165580141/312119004989*45537549124^(3/17) 4032522475023133 a004 Fibonacci(41)*Lucas(53)/(1/2+sqrt(5)/2)^99 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^8/Lucas(54) 4032522475023133 a004 Fibonacci(54)/Lucas(41)/(1/2+sqrt(5)/2)^18 4032522475023133 a001 165580141/192900153618*23725150497407^(1/8) 4032522475023133 a001 165580141/192900153618*505019158607^(1/7) 4032522475023133 a001 165580141/505019158607*312119004989^(2/11) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^10/Lucas(56) 4032522475023133 a004 Fibonacci(56)/Lucas(41)/(1/2+sqrt(5)/2)^20 4032522475023133 a001 165580141/1322157322203*817138163596^(4/19) 4032522475023133 a001 165580141/1322157322203*14662949395604^(4/21) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^12/Lucas(58) 4032522475023133 a004 Fibonacci(58)/Lucas(41)/(1/2+sqrt(5)/2)^22 4032522475023133 a001 165580141/3461452808002*14662949395604^(2/9) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^14/Lucas(60) 4032522475023133 a004 Fibonacci(60)/Lucas(41)/(1/2+sqrt(5)/2)^24 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^16/Lucas(62) 4032522475023133 a004 Fibonacci(62)/Lucas(41)/(1/2+sqrt(5)/2)^26 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^18/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(41)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^20/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(41)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^22/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(41)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^24/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(41)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^26/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(41)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^28/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(41)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^30/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(41)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^32/Lucas(78) 4032522475023133 a004 Fibonacci(78)/Lucas(41)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^34/Lucas(80) 4032522475023133 a004 Fibonacci(80)/Lucas(41)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^36/Lucas(82) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^38/Lucas(84) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^40/Lucas(86) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^42/Lucas(88) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^44/Lucas(90) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^46/Lucas(92) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^48/Lucas(94) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^50/Lucas(96) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^52/Lucas(98) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^53/Lucas(99) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^54/Lucas(100) 4032522475023133 a004 Fibonacci(41)*Lucas(1)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^51/Lucas(97) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^49/Lucas(95) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^47/Lucas(93) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^45/Lucas(91) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^43/Lucas(89) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^41/Lucas(87) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^39/Lucas(85) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^37/Lucas(83) 4032522475023133 a004 Fibonacci(84)/Lucas(41)/(1/2+sqrt(5)/2)^48 4032522475023133 a004 Fibonacci(86)/Lucas(41)/(1/2+sqrt(5)/2)^50 4032522475023133 a004 Fibonacci(88)/Lucas(41)/(1/2+sqrt(5)/2)^52 4032522475023133 a004 Fibonacci(90)/Lucas(41)/(1/2+sqrt(5)/2)^54 4032522475023133 a004 Fibonacci(92)/Lucas(41)/(1/2+sqrt(5)/2)^56 4032522475023133 a004 Fibonacci(94)/Lucas(41)/(1/2+sqrt(5)/2)^58 4032522475023133 a004 Fibonacci(96)/Lucas(41)/(1/2+sqrt(5)/2)^60 4032522475023133 a004 Fibonacci(98)/Lucas(41)/(1/2+sqrt(5)/2)^62 4032522475023133 a004 Fibonacci(100)/Lucas(41)/(1/2+sqrt(5)/2)^64 4032522475023133 a004 Fibonacci(99)/Lucas(41)/(1/2+sqrt(5)/2)^63 4032522475023133 a004 Fibonacci(97)/Lucas(41)/(1/2+sqrt(5)/2)^61 4032522475023133 a004 Fibonacci(95)/Lucas(41)/(1/2+sqrt(5)/2)^59 4032522475023133 a004 Fibonacci(93)/Lucas(41)/(1/2+sqrt(5)/2)^57 4032522475023133 a004 Fibonacci(91)/Lucas(41)/(1/2+sqrt(5)/2)^55 4032522475023133 a004 Fibonacci(89)/Lucas(41)/(1/2+sqrt(5)/2)^53 4032522475023133 a004 Fibonacci(87)/Lucas(41)/(1/2+sqrt(5)/2)^51 4032522475023133 a004 Fibonacci(85)/Lucas(41)/(1/2+sqrt(5)/2)^49 4032522475023133 a004 Fibonacci(83)/Lucas(41)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^35/Lucas(81) 4032522475023133 a004 Fibonacci(81)/Lucas(41)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^33/Lucas(79) 4032522475023133 a004 Fibonacci(79)/Lucas(41)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^31/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(41)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^29/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(41)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^27/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(41)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^25/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(41)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^23/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(41)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^21/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(41)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^19/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(41)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^17/Lucas(63) 4032522475023133 a004 Fibonacci(63)/Lucas(41)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^15/Lucas(61) 4032522475023133 a004 Fibonacci(61)/Lucas(41)/(1/2+sqrt(5)/2)^25 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^13/Lucas(59) 4032522475023133 a004 Fibonacci(59)/Lucas(41)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^11/Lucas(57) 4032522475023133 a004 Fibonacci(57)/Lucas(41)/(1/2+sqrt(5)/2)^21 4032522475023133 a001 165580141/1322157322203*192900153618^(2/9) 4032522475023133 a001 165580141/23725150497407*192900153618^(1/3) 4032522475023133 a001 165580141/312119004989*14662949395604^(1/7) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^9/Lucas(55) 4032522475023133 a004 Fibonacci(55)/Lucas(41)/(1/2+sqrt(5)/2)^19 4032522475023133 a001 165580141/312119004989*192900153618^(1/6) 4032522475023133 a004 Fibonacci(41)*Lucas(54)/(1/2+sqrt(5)/2)^100 4032522475023133 a001 165580141/1322157322203*73681302247^(3/13) 4032522475023133 a001 165580141/2139295485799*73681302247^(1/4) 4032522475023133 a001 165580141/9062201101803*73681302247^(4/13) 4032522475023133 a001 165580141/119218851371*14662949395604^(1/9) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^7/Lucas(53) 4032522475023133 a004 Fibonacci(53)/Lucas(41)/(1/2+sqrt(5)/2)^17 4032522475023133 a004 Fibonacci(41)*Lucas(52)/(1/2+sqrt(5)/2)^98 4032522475023133 a001 165580141/505019158607*28143753123^(1/5) 4032522475023133 a001 165580141/5600748293801*28143753123^(3/10) 4032522475023133 a001 165580141/45537549124*312119004989^(1/11) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^5/Lucas(51) 4032522475023133 a004 Fibonacci(51)/Lucas(41)/(1/2+sqrt(5)/2)^15 4032522475023133 a001 165580141/45537549124*28143753123^(1/10) 4032522475023133 a001 165580141/73681302247*10749957122^(1/8) 4032522475023133 a004 Fibonacci(41)*Lucas(50)/(1/2+sqrt(5)/2)^96 4032522475023133 a001 165580141/192900153618*10749957122^(1/6) 4032522475023133 a001 165580141/312119004989*10749957122^(3/16) 4032522475023133 a001 165580141/505019158607*10749957122^(5/24) 4032522475023133 a001 165580141/1322157322203*10749957122^(1/4) 4032522475023133 a001 165580141/3461452808002*10749957122^(7/24) 4032522475023133 a001 165580141/5600748293801*10749957122^(5/16) 4032522475023133 a001 165580141/9062201101803*10749957122^(1/3) 4032522475023133 a001 165580141/23725150497407*10749957122^(3/8) 4032522475023133 a001 165580141/17393796001*45537549124^(1/17) 4032522475023133 a001 165580141/17393796001*14662949395604^(1/21) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^3/Lucas(49) 4032522475023133 a004 Fibonacci(49)/Lucas(41)/(1/2+sqrt(5)/2)^13 4032522475023133 a001 165580141/17393796001*192900153618^(1/18) 4032522475023133 a001 165580141/17393796001*10749957122^(1/16) 4032522475023133 a001 165580141/28143753123*4106118243^(2/23) 4032522475023133 a001 165580141/73681302247*4106118243^(3/23) 4032522475023133 a004 Fibonacci(41)*Lucas(48)/(1/2+sqrt(5)/2)^94 4032522475023133 a001 165580141/10749957122*1568397607^(1/22) 4032522475023133 a001 165580141/192900153618*4106118243^(4/23) 4032522475023133 a001 165580141/505019158607*4106118243^(5/23) 4032522475023133 a001 165580141/1322157322203*4106118243^(6/23) 4032522475023133 a001 165580141/3461452808002*4106118243^(7/23) 4032522475023133 a001 165580141/9062201101803*4106118243^(8/23) 4032522475023133 a004 Fibonacci(41)*(1/2+sqrt(5)/2)/Lucas(47) 4032522475023133 a004 Fibonacci(47)/Lucas(41)/(1/2+sqrt(5)/2)^11 4032522475023133 a001 165580141/23725150497407*4106118243^(9/23) 4032522475023133 a001 165580141/28143753123*1568397607^(1/11) 4032522475023133 a001 165580141/73681302247*1568397607^(3/22) 4032522475023133 a004 Fibonacci(41)*Lucas(46)/(1/2+sqrt(5)/2)^92 4032522475023133 a001 165580141/192900153618*1568397607^(2/11) 4032522475023133 a001 165580141/505019158607*1568397607^(5/22) 4032522475023133 a001 165580141/817138163596*1568397607^(1/4) 4032522475023133 a001 165580141/1322157322203*1568397607^(3/11) 4032522475023133 a001 165580141/10749957122*599074578^(1/21) 4032522475023133 a001 165580141/3461452808002*1568397607^(7/22) 4032522475023133 a001 165580141/9062201101803*1568397607^(4/11) 4032522475023133 a004 Fibonacci(41)/Lucas(45)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(45)/Lucas(41)/(1/2+sqrt(5)/2)^9 4032522475023133 a001 165580141/23725150497407*1568397607^(9/22) 4032522475023133 a001 165580141/17393796001*599074578^(1/14) 4032522475023133 a001 165580141/28143753123*599074578^(2/21) 4032522475023133 a001 165580141/73681302247*599074578^(1/7) 4032522475023133 a004 Fibonacci(41)*Lucas(44)/(1/2+sqrt(5)/2)^90 4032522475023133 a001 433494437/9062201101803*228826127^(7/20) 4032522475023133 a001 165580141/119218851371*599074578^(1/6) 4032522475023133 a001 165580141/192900153618*599074578^(4/21) 4032522475023133 a001 165580141/312119004989*599074578^(3/14) 4032522475023133 a001 433494437/28143753123*87403803^(1/19) 4032522475023133 a001 165580141/505019158607*599074578^(5/21) 4032522475023133 a001 165580141/1322157322203*599074578^(2/7) 4032522475023133 a001 165580141/3461452808002*599074578^(1/3) 4032522475023133 a001 433494437/14662949395604*228826127^(3/8) 4032522475023133 a001 165580141/10749957122*228826127^(1/20) 4032522475023133 a001 165580141/5600748293801*599074578^(5/14) 4032522475023133 a001 165580141/9062201101803*599074578^(8/21) 4032522475023133 a004 Fibonacci(41)/Lucas(43)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(43)/Lucas(41)/(1/2+sqrt(5)/2)^7 4032522475023133 a001 102334155/119218851371*87403803^(4/19) 4032522475023133 a001 165580141/23725150497407*599074578^(3/7) 4032522475023133 a001 433494437/23725150497407*228826127^(2/5) 4032522475023133 a001 165580141/28143753123*228826127^(1/10) 4032522475023133 a001 165580141/45537549124*228826127^(1/8) 4032522475023133 a004 Fibonacci(41)*Lucas(42)/(1/2+sqrt(5)/2)^88 4032522475023133 a001 165580141/73681302247*228826127^(3/20) 4032522475023133 a001 66978574/11384387281*87403803^(2/19) 4032522475023133 a001 165580141/192900153618*228826127^(1/5) 4032522475023133 a001 165580141/505019158607*228826127^(1/4) 4032522475023133 a001 165580141/1322157322203*228826127^(3/10) 4032522475023133 a001 701408733/119218851371*87403803^(2/19) 4032522475023133 a001 1836311903/312119004989*87403803^(2/19) 4032522475023133 a001 1201881744/204284540899*87403803^(2/19) 4032522475023133 a001 12586269025/2139295485799*87403803^(2/19) 4032522475023133 a001 32951280099/5600748293801*87403803^(2/19) 4032522475023133 a001 1135099622/192933544679*87403803^(2/19) 4032522475023133 a001 139583862445/23725150497407*87403803^(2/19) 4032522475023133 a001 53316291173/9062201101803*87403803^(2/19) 4032522475023133 a001 10182505537/1730726404001*87403803^(2/19) 4032522475023133 a001 7778742049/1322157322203*87403803^(2/19) 4032522475023133 a001 2971215073/505019158607*87403803^(2/19) 4032522475023133 a001 567451585/96450076809*87403803^(2/19) 4032522475023133 a001 165580141/3461452808002*228826127^(7/20) 4032522475023133 a001 165580141/10749957122*87403803^(1/19) 4032522475023133 a001 165580141/5600748293801*228826127^(3/8) 4032522475023133 a004 Fibonacci(41)/Lucas(41)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 433494437/73681302247*87403803^(2/19) 4032522475023133 a001 165580141/9062201101803*228826127^(2/5) 4032522475023133 a001 9303105/28374454999*87403803^(5/19) 4032522475023133 a001 165580141/23725150497407*228826127^(9/20) 4032522475023133 a004 Fibonacci(42)*Lucas(40)/(1/2+sqrt(5)/2)^87 4032522475023133 a001 267914296/119218851371*87403803^(3/19) 4032522475023133 a001 39088169/17393796001*33385282^(1/6) 4032522475023133 a004 Fibonacci(44)*Lucas(40)/(1/2+sqrt(5)/2)^89 4032522475023133 a001 228826127/1134903170*8^(1/3) 4032522475023133 a004 Fibonacci(46)*Lucas(40)/(1/2+sqrt(5)/2)^91 4032522475023133 a004 Fibonacci(48)*Lucas(40)/(1/2+sqrt(5)/2)^93 4032522475023133 a004 Fibonacci(50)*Lucas(40)/(1/2+sqrt(5)/2)^95 4032522475023133 a004 Fibonacci(52)*Lucas(40)/(1/2+sqrt(5)/2)^97 4032522475023133 a004 Fibonacci(54)*Lucas(40)/(1/2+sqrt(5)/2)^99 4032522475023133 a001 2/102334155*(1/2+1/2*5^(1/2))^35 4032522475023133 a004 Fibonacci(55)*Lucas(40)/(1/2+sqrt(5)/2)^100 4032522475023133 a004 Fibonacci(53)*Lucas(40)/(1/2+sqrt(5)/2)^98 4032522475023133 a004 Fibonacci(51)*Lucas(40)/(1/2+sqrt(5)/2)^96 4032522475023133 a004 Fibonacci(49)*Lucas(40)/(1/2+sqrt(5)/2)^94 4032522475023133 a004 Fibonacci(47)*Lucas(40)/(1/2+sqrt(5)/2)^92 4032522475023133 a004 Fibonacci(45)*Lucas(40)/(1/2+sqrt(5)/2)^90 4032522475023133 a004 Fibonacci(43)*Lucas(40)/(1/2+sqrt(5)/2)^88 4032522475023133 a001 3524667/1568437211*87403803^(3/19) 4032522475023133 a001 1836311903/817138163596*87403803^(3/19) 4032522475023133 a001 4807526976/2139295485799*87403803^(3/19) 4032522475023133 a001 12586269025/5600748293801*87403803^(3/19) 4032522475023133 a001 32951280099/14662949395604*87403803^(3/19) 4032522475023133 a001 53316291173/23725150497407*87403803^(3/19) 4032522475023133 a001 20365011074/9062201101803*87403803^(3/19) 4032522475023133 a001 7778742049/3461452808002*87403803^(3/19) 4032522475023133 a001 2971215073/1322157322203*87403803^(3/19) 4032522475023133 a001 1134903170/505019158607*87403803^(3/19) 4032522475023133 a001 165580141/28143753123*87403803^(2/19) 4032522475023133 a001 433494437/192900153618*87403803^(3/19) 4032522475023133 a001 102334155/817138163596*87403803^(6/19) 4032522475023133 a001 267914296/312119004989*87403803^(4/19) 4032522475023133 a004 Fibonacci(41)*Lucas(40)/(1/2+sqrt(5)/2)^86 4032522475023133 a001 63245986/9062201101803*141422324^(6/13) 4032522475023133 a001 701408733/817138163596*87403803^(4/19) 4032522475023133 a001 1836311903/2139295485799*87403803^(4/19) 4032522475023133 a001 4807526976/5600748293801*87403803^(4/19) 4032522475023133 a001 12586269025/14662949395604*87403803^(4/19) 4032522475023133 a001 20365011074/23725150497407*87403803^(4/19) 4032522475023133 a001 7778742049/9062201101803*87403803^(4/19) 4032522475023133 a001 2971215073/3461452808002*87403803^(4/19) 4032522475023133 a001 1134903170/1322157322203*87403803^(4/19) 4032522475023133 a001 165580141/73681302247*87403803^(3/19) 4032522475023133 a001 433494437/505019158607*87403803^(4/19) 4032522475023133 a001 102334155/2139295485799*87403803^(7/19) 4032522475023133 a001 63245986/2139295485799*141422324^(5/13) 4032522475023133 a001 102334155/6643838879*33385282^(1/18) 4032522475023133 a004 Fibonacci(39)/Lucas(40)/(1/2+sqrt(5)/2)^4 4032522475023133 a004 Fibonacci(40)/Lucas(39)/(1/2+sqrt(5)/2)^6 4032522475023133 a001 66978574/204284540899*87403803^(5/19) 4032522475023133 a001 31622993/408569081798*141422324^(1/3) 4032522475023133 a001 701408733/2139295485799*87403803^(5/19) 4032522475023133 a001 1836311903/5600748293801*87403803^(5/19) 4032522475023133 a001 1201881744/3665737348901*87403803^(5/19) 4032522475023133 a001 7778742049/23725150497407*87403803^(5/19) 4032522475023133 a001 2971215073/9062201101803*87403803^(5/19) 4032522475023133 a001 567451585/1730726404001*87403803^(5/19) 4032522475023133 a001 63245986/505019158607*141422324^(4/13) 4032522475023133 a001 165580141/192900153618*87403803^(4/19) 4032522475023133 a001 433494437/1322157322203*87403803^(5/19) 4032522475023133 a001 102334155/5600748293801*87403803^(8/19) 4032522475023133 a001 63245986/119218851371*141422324^(3/13) 4032522475023133 a001 267914296/2139295485799*87403803^(6/19) 4032522475023133 a001 701408733/5600748293801*87403803^(6/19) 4032522475023133 a001 1836311903/14662949395604*87403803^(6/19) 4032522475023133 a001 2971215073/23725150497407*87403803^(6/19) 4032522475023133 a001 1134903170/9062201101803*87403803^(6/19) 4032522475023133 a001 165580141/505019158607*87403803^(5/19) 4032522475023133 a001 63245986/28143753123*141422324^(2/13) 4032522475023133 a001 433494437/3461452808002*87403803^(6/19) 4032522475023133 a004 Fibonacci(39)*Lucas(41)/(1/2+sqrt(5)/2)^85 4032522475023133 a001 102334155/14662949395604*87403803^(9/19) 4032522475023133 a001 267914296/5600748293801*87403803^(7/19) 4032522475023133 a001 63245986/6643838879*141422324^(1/13) 4032522475023133 a001 102334155/23725150497407*87403803^(1/2) 4032522475023133 a001 9238424/599786069*33385282^(1/18) 4032522475023133 a004 Fibonacci(39)/Lucas(42)/(1/2+sqrt(5)/2)^2 4032522475023133 a004 Fibonacci(42)/Lucas(39)/(1/2+sqrt(5)/2)^8 4032522475023133 a001 701408733/14662949395604*87403803^(7/19) 4032522475023133 a001 1134903170/23725150497407*87403803^(7/19) 4032522475023133 a001 165580141/1322157322203*87403803^(6/19) 4032522475023133 a004 Fibonacci(39)*Lucas(43)/(1/2+sqrt(5)/2)^87 4032522475023133 a001 433494437/9062201101803*87403803^(7/19) 4032522475023133 a001 701408733/45537549124*33385282^(1/18) 4032522475023133 a004 Fibonacci(44)/Lucas(39)/(1/2+sqrt(5)/2)^10 4032522475023133 a001 1836311903/119218851371*33385282^(1/18) 4032522475023133 a001 4807526976/312119004989*33385282^(1/18) 4032522475023133 a001 12586269025/817138163596*33385282^(1/18) 4032522475023133 a004 Fibonacci(39)*Lucas(45)/(1/2+sqrt(5)/2)^89 4032522475023133 a001 32951280099/2139295485799*33385282^(1/18) 4032522475023133 a001 86267571272/5600748293801*33385282^(1/18) 4032522475023133 a001 7787980473/505618944676*33385282^(1/18) 4032522475023133 a001 365435296162/23725150497407*33385282^(1/18) 4032522475023133 a001 139583862445/9062201101803*33385282^(1/18) 4032522475023133 a001 53316291173/3461452808002*33385282^(1/18) 4032522475023133 a001 20365011074/1322157322203*33385282^(1/18) 4032522475023133 a001 7778742049/505019158607*33385282^(1/18) 4032522475023133 a001 2971215073/192900153618*33385282^(1/18) 4032522475023133 a001 63245986/23725150497407*2537720636^(4/9) 4032522475023133 a001 63245986/9062201101803*2537720636^(2/5) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^2/Lucas(46) 4032522475023133 a004 Fibonacci(46)/Lucas(39)/(1/2+sqrt(5)/2)^12 4032522475023133 a001 63245986/4106118243*10749957122^(1/24) 4032522475023133 a001 63245986/4106118243*4106118243^(1/23) 4032522475023133 a001 63245986/2139295485799*2537720636^(1/3) 4032522475023133 a001 63245986/505019158607*2537720636^(4/15) 4032522475023133 a001 63245986/4106118243*1568397607^(1/22) 4032522475023133 a001 31622993/96450076809*2537720636^(2/9) 4032522475023133 a001 63245986/119218851371*2537720636^(1/5) 4032522475023133 a004 Fibonacci(39)*Lucas(47)/(1/2+sqrt(5)/2)^91 4032522475023133 a001 63245986/28143753123*2537720636^(2/15) 4032522475023133 a001 63245986/17393796001*2537720636^(1/9) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^4/Lucas(48) 4032522475023133 a004 Fibonacci(48)/Lucas(39)/(1/2+sqrt(5)/2)^14 4032522475023133 a001 31622993/5374978561*23725150497407^(1/16) 4032522475023133 a001 31622993/5374978561*73681302247^(1/13) 4032522475023133 a001 31622993/5374978561*10749957122^(1/12) 4032522475023133 a001 31622993/5374978561*4106118243^(2/23) 4032522475023133 a004 Fibonacci(39)*Lucas(49)/(1/2+sqrt(5)/2)^93 4032522475023133 a001 63245986/28143753123*45537549124^(2/17) 4032522475023133 a001 63245986/28143753123*14662949395604^(2/21) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^6/Lucas(50) 4032522475023133 a004 Fibonacci(50)/Lucas(39)/(1/2+sqrt(5)/2)^16 4032522475023133 a001 63245986/1322157322203*17393796001^(2/7) 4032522475023133 a004 Fibonacci(39)*Lucas(51)/(1/2+sqrt(5)/2)^95 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^8/Lucas(52) 4032522475023133 a004 Fibonacci(52)/Lucas(39)/(1/2+sqrt(5)/2)^18 4032522475023133 a001 63245986/73681302247*505019158607^(1/7) 4032522475023133 a001 63245986/28143753123*10749957122^(1/8) 4032522475023133 a001 63245986/9062201101803*45537549124^(6/17) 4032522475023133 a001 63245986/5600748293801*45537549124^(1/3) 4032522475023133 a001 63245986/73681302247*73681302247^(2/13) 4032522475023133 a001 63245986/2139295485799*45537549124^(5/17) 4032522475023133 a001 63245986/505019158607*45537549124^(4/17) 4032522475023133 a004 Fibonacci(39)*Lucas(53)/(1/2+sqrt(5)/2)^97 4032522475023133 a001 31622993/96450076809*312119004989^(2/11) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^10/Lucas(54) 4032522475023133 a004 Fibonacci(54)/Lucas(39)/(1/2+sqrt(5)/2)^20 4032522475023133 a001 63245986/119218851371*45537549124^(3/17) 4032522475023133 a004 Fibonacci(39)*Lucas(55)/(1/2+sqrt(5)/2)^99 4032522475023133 a001 63245986/505019158607*817138163596^(4/19) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^12/Lucas(56) 4032522475023133 a004 Fibonacci(56)/Lucas(39)/(1/2+sqrt(5)/2)^22 4032522475023133 a001 63245986/2139295485799*312119004989^(3/11) 4032522475023133 a001 63245986/1322157322203*14662949395604^(2/9) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^14/Lucas(58) 4032522475023133 a004 Fibonacci(58)/Lucas(39)/(1/2+sqrt(5)/2)^24 4032522475023133 a001 31622993/7331474697802*817138163596^(1/3) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^16/Lucas(60) 4032522475023133 a004 Fibonacci(60)/Lucas(39)/(1/2+sqrt(5)/2)^26 4032522475023133 a001 31622993/1730726404001*23725150497407^(1/4) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^18/Lucas(62) 4032522475023133 a004 Fibonacci(62)/Lucas(39)/(1/2+sqrt(5)/2)^28 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^20/Lucas(64) 4032522475023133 a004 Fibonacci(64)/Lucas(39)/(1/2+sqrt(5)/2)^30 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^22/Lucas(66) 4032522475023133 a004 Fibonacci(66)/Lucas(39)/(1/2+sqrt(5)/2)^32 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^24/Lucas(68) 4032522475023133 a004 Fibonacci(68)/Lucas(39)/(1/2+sqrt(5)/2)^34 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^26/Lucas(70) 4032522475023133 a004 Fibonacci(70)/Lucas(39)/(1/2+sqrt(5)/2)^36 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^28/Lucas(72) 4032522475023133 a004 Fibonacci(72)/Lucas(39)/(1/2+sqrt(5)/2)^38 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^30/Lucas(74) 4032522475023133 a004 Fibonacci(74)/Lucas(39)/(1/2+sqrt(5)/2)^40 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^32/Lucas(76) 4032522475023133 a004 Fibonacci(76)/Lucas(39)/(1/2+sqrt(5)/2)^42 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^34/Lucas(78) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^36/Lucas(80) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^38/Lucas(82) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^40/Lucas(84) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^42/Lucas(86) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^44/Lucas(88) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^46/Lucas(90) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^48/Lucas(92) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^50/Lucas(94) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^52/Lucas(96) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^54/Lucas(98) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^55/Lucas(99) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^56/Lucas(100) 4032522475023133 a004 Fibonacci(39)*Lucas(1)/(1/2+sqrt(5)/2)^44 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^53/Lucas(97) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^51/Lucas(95) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^49/Lucas(93) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^47/Lucas(91) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^45/Lucas(89) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^43/Lucas(87) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^41/Lucas(85) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^39/Lucas(83) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^37/Lucas(81) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^35/Lucas(79) 4032522475023133 a004 Fibonacci(80)/Lucas(39)/(1/2+sqrt(5)/2)^46 4032522475023133 a004 Fibonacci(82)/Lucas(39)/(1/2+sqrt(5)/2)^48 4032522475023133 a004 Fibonacci(84)/Lucas(39)/(1/2+sqrt(5)/2)^50 4032522475023133 a004 Fibonacci(86)/Lucas(39)/(1/2+sqrt(5)/2)^52 4032522475023133 a004 Fibonacci(88)/Lucas(39)/(1/2+sqrt(5)/2)^54 4032522475023133 a004 Fibonacci(90)/Lucas(39)/(1/2+sqrt(5)/2)^56 4032522475023133 a004 Fibonacci(92)/Lucas(39)/(1/2+sqrt(5)/2)^58 4032522475023133 a004 Fibonacci(94)/Lucas(39)/(1/2+sqrt(5)/2)^60 4032522475023133 a004 Fibonacci(96)/Lucas(39)/(1/2+sqrt(5)/2)^62 4032522475023133 a004 Fibonacci(98)/Lucas(39)/(1/2+sqrt(5)/2)^64 4032522475023133 a004 Fibonacci(100)/Lucas(39)/(1/2+sqrt(5)/2)^66 4032522475023133 a004 Fibonacci(99)/Lucas(39)/(1/2+sqrt(5)/2)^65 4032522475023133 a004 Fibonacci(97)/Lucas(39)/(1/2+sqrt(5)/2)^63 4032522475023133 a004 Fibonacci(95)/Lucas(39)/(1/2+sqrt(5)/2)^61 4032522475023133 a004 Fibonacci(93)/Lucas(39)/(1/2+sqrt(5)/2)^59 4032522475023133 a004 Fibonacci(91)/Lucas(39)/(1/2+sqrt(5)/2)^57 4032522475023133 a004 Fibonacci(89)/Lucas(39)/(1/2+sqrt(5)/2)^55 4032522475023133 a004 Fibonacci(87)/Lucas(39)/(1/2+sqrt(5)/2)^53 4032522475023133 a004 Fibonacci(85)/Lucas(39)/(1/2+sqrt(5)/2)^51 4032522475023133 a004 Fibonacci(83)/Lucas(39)/(1/2+sqrt(5)/2)^49 4032522475023133 a004 Fibonacci(81)/Lucas(39)/(1/2+sqrt(5)/2)^47 4032522475023133 a004 Fibonacci(79)/Lucas(39)/(1/2+sqrt(5)/2)^45 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^33/Lucas(77) 4032522475023133 a004 Fibonacci(77)/Lucas(39)/(1/2+sqrt(5)/2)^43 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^31/Lucas(75) 4032522475023133 a004 Fibonacci(75)/Lucas(39)/(1/2+sqrt(5)/2)^41 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^29/Lucas(73) 4032522475023133 a004 Fibonacci(73)/Lucas(39)/(1/2+sqrt(5)/2)^39 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^27/Lucas(71) 4032522475023133 a004 Fibonacci(71)/Lucas(39)/(1/2+sqrt(5)/2)^37 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^25/Lucas(69) 4032522475023133 a004 Fibonacci(69)/Lucas(39)/(1/2+sqrt(5)/2)^35 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^23/Lucas(67) 4032522475023133 a004 Fibonacci(67)/Lucas(39)/(1/2+sqrt(5)/2)^33 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^21/Lucas(65) 4032522475023133 a004 Fibonacci(65)/Lucas(39)/(1/2+sqrt(5)/2)^31 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^19/Lucas(63) 4032522475023133 a004 Fibonacci(63)/Lucas(39)/(1/2+sqrt(5)/2)^29 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^17/Lucas(61) 4032522475023133 a004 Fibonacci(61)/Lucas(39)/(1/2+sqrt(5)/2)^27 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^15/Lucas(59) 4032522475023133 a004 Fibonacci(59)/Lucas(39)/(1/2+sqrt(5)/2)^25 4032522475023133 a001 63245986/23725150497407*505019158607^(5/14) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^13/Lucas(57) 4032522475023133 a004 Fibonacci(57)/Lucas(39)/(1/2+sqrt(5)/2)^23 4032522475023133 a004 Fibonacci(39)*Lucas(56)/(1/2+sqrt(5)/2)^100 4032522475023133 a001 63245986/2139295485799*192900153618^(5/18) 4032522475023133 a001 31622993/22768774562*17393796001^(1/7) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^11/Lucas(55) 4032522475023133 a004 Fibonacci(55)/Lucas(39)/(1/2+sqrt(5)/2)^21 4032522475023133 a004 Fibonacci(39)*Lucas(54)/(1/2+sqrt(5)/2)^98 4032522475023133 a001 63245986/505019158607*73681302247^(3/13) 4032522475023133 a001 31622993/408569081798*73681302247^(1/4) 4032522475023133 a001 31622993/1730726404001*73681302247^(4/13) 4032522475023133 a001 63245986/119218851371*817138163596^(3/19) 4032522475023133 a001 63245986/119218851371*14662949395604^(1/7) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^9/Lucas(53) 4032522475023133 a004 Fibonacci(53)/Lucas(39)/(1/2+sqrt(5)/2)^19 4032522475023133 a001 63245986/119218851371*192900153618^(1/6) 4032522475023133 a004 Fibonacci(39)*Lucas(52)/(1/2+sqrt(5)/2)^96 4032522475023133 a001 31622993/96450076809*28143753123^(1/5) 4032522475023133 a001 1134903170/73681302247*33385282^(1/18) 4032522475023133 a001 63245986/2139295485799*28143753123^(3/10) 4032522475023133 a001 31622993/22768774562*14662949395604^(1/9) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^7/Lucas(51) 4032522475023133 a004 Fibonacci(51)/Lucas(39)/(1/2+sqrt(5)/2)^17 4032522475023133 a001 63245986/23725150497407*28143753123^(2/5) 4032522475023133 a001 63245986/73681302247*10749957122^(1/6) 4032522475023133 a004 Fibonacci(39)*Lucas(50)/(1/2+sqrt(5)/2)^94 4032522475023133 a001 63245986/119218851371*10749957122^(3/16) 4032522475023133 a001 31622993/96450076809*10749957122^(5/24) 4032522475023133 a001 63245986/505019158607*10749957122^(1/4) 4032522475023133 a001 63245986/1322157322203*10749957122^(7/24) 4032522475023133 a001 63245986/2139295485799*10749957122^(5/16) 4032522475023133 a001 31622993/1730726404001*10749957122^(1/3) 4032522475023133 a001 63245986/9062201101803*10749957122^(3/8) 4032522475023133 a001 63245986/17393796001*312119004989^(1/11) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^5/Lucas(49) 4032522475023133 a004 Fibonacci(49)/Lucas(39)/(1/2+sqrt(5)/2)^15 4032522475023133 a001 63245986/17393796001*28143753123^(1/10) 4032522475023133 a001 63245986/23725150497407*10749957122^(5/12) 4032522475023133 a001 63245986/28143753123*4106118243^(3/23) 4032522475023133 a004 Fibonacci(39)*Lucas(48)/(1/2+sqrt(5)/2)^92 4032522475023133 a001 63245986/73681302247*4106118243^(4/23) 4032522475023133 a001 63245986/6643838879*2537720636^(1/15) 4032522475023133 a001 31622993/96450076809*4106118243^(5/23) 4032522475023133 a001 63245986/505019158607*4106118243^(6/23) 4032522475023133 a001 63245986/1322157322203*4106118243^(7/23) 4032522475023133 a001 31622993/1730726404001*4106118243^(8/23) 4032522475023133 a001 63245986/6643838879*45537549124^(1/17) 4032522475023133 a001 63245986/6643838879*14662949395604^(1/21) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^3/Lucas(47) 4032522475023133 a004 Fibonacci(47)/Lucas(39)/(1/2+sqrt(5)/2)^13 4032522475023133 a001 63245986/6643838879*192900153618^(1/18) 4032522475023133 a001 63245986/6643838879*10749957122^(1/16) 4032522475023133 a001 63245986/9062201101803*4106118243^(9/23) 4032522475023133 a001 63245986/23725150497407*4106118243^(10/23) 4032522475023133 a001 31622993/5374978561*1568397607^(1/11) 4032522475023133 a001 63245986/28143753123*1568397607^(3/22) 4032522475023133 a004 Fibonacci(39)*Lucas(46)/(1/2+sqrt(5)/2)^90 4032522475023133 a001 63245986/4106118243*599074578^(1/21) 4032522475023133 a001 63245986/73681302247*1568397607^(2/11) 4032522475023133 a001 31622993/96450076809*1568397607^(5/22) 4032522475023133 a001 63245986/312119004989*1568397607^(1/4) 4032522475023133 a001 63245986/505019158607*1568397607^(3/11) 4032522475023133 a001 63245986/1322157322203*1568397607^(7/22) 4032522475023133 a001 31622993/1730726404001*1568397607^(4/11) 4032522475023133 a004 Fibonacci(39)*(1/2+sqrt(5)/2)/Lucas(45) 4032522475023133 a004 Fibonacci(45)/Lucas(39)/(1/2+sqrt(5)/2)^11 4032522475023133 a001 63245986/9062201101803*1568397607^(9/22) 4032522475023133 a001 63245986/23725150497407*1568397607^(5/11) 4032522475023133 a001 63245986/6643838879*599074578^(1/14) 4032522475023133 a001 31622993/5374978561*599074578^(2/21) 4032522475023133 a001 63245986/28143753123*599074578^(1/7) 4032522475023133 a004 Fibonacci(39)*Lucas(44)/(1/2+sqrt(5)/2)^88 4032522475023133 a001 31622993/22768774562*599074578^(1/6) 4032522475023133 a001 63245986/73681302247*599074578^(4/21) 4032522475023133 a001 63245986/119218851371*599074578^(3/14) 4032522475023133 a001 31622993/96450076809*599074578^(5/21) 4032522475023133 a001 63245986/505019158607*599074578^(2/7) 4032522475023133 a001 63245986/4106118243*228826127^(1/20) 4032522475023133 a001 433494437/28143753123*33385282^(1/18) 4032522475023133 a001 63245986/1322157322203*599074578^(1/3) 4032522475023133 a001 63245986/2139295485799*599074578^(5/14) 4032522475023133 a001 31622993/1730726404001*599074578^(8/21) 4032522475023133 a004 Fibonacci(39)/Lucas(43)/(1/2+sqrt(5)/2) 4032522475023133 a004 Fibonacci(43)/Lucas(39)/(1/2+sqrt(5)/2)^9 4032522475023133 a001 63245986/9062201101803*599074578^(3/7) 4032522475023133 a001 63245986/23725150497407*599074578^(10/21) 4032522475023133 a001 31622993/5374978561*228826127^(1/10) 4032522475023133 a001 10946/599074579*87403803^(8/19) 4032522475023133 a001 63245986/17393796001*228826127^(1/8) 4032522475023133 a004 Fibonacci(39)*Lucas(42)/(1/2+sqrt(5)/2)^86 4032522475023133 a001 63245986/28143753123*228826127^(3/20) 4032522475023133 a001 63245986/73681302247*228826127^(1/5) 4032522475023133 a001 31622993/96450076809*228826127^(1/4) 4032522475023133 a001 165580141/3461452808002*87403803^(7/19) 4032522475023133 a001 102334155/10749957122*33385282^(1/12) 4032522475023133 a001 63245986/505019158607*228826127^(3/10) 4032522475023133 a001 433494437/23725150497407*87403803^(8/19) 4032522475023133 a001 63245986/1322157322203*228826127^(7/20) 4032522475023133 a001 63245986/4106118243*87403803^(1/19) 4032522475023133 a001 165580141/10749957122*33385282^(1/18) 4032522475023133 a001 63245986/2139295485799*228826127^(3/8) 4032522475023133 a004 Fibonacci(39)/Lucas(41)/(1/2+sqrt(5)/2)^3 4032522475023133 a004 Fibonacci(41)/Lucas(39)/(1/2+sqrt(5)/2)^7 4032522475023133 a001 31622993/1730726404001*228826127^(2/5) 4032522475023133 a001 63245986/9062201101803*228826127^(9/20) 4032522475023133 a001 63245986/23725150497407*228826127^(1/2) 4032522475023133 a001 165580141/9062201101803*87403803^(8/19) 4032522475023133 a001 31622993/5374978561*87403803^(2/19) 4032522475023133 a001 39088169/45537549124*33385282^(2/9) 4032522475023133 a004 Fibonacci(39)*Lucas(40)/(1/2+sqrt(5)/2)^84 4032522475023133 a001 165580141/23725150497407*87403803^(9/19) 4032522475023133 a001 63245986/28143753123*87403803^(3/19) 4032522475023133 a001 267914296/28143753123*33385282^(1/12) 4032522475023133 a001 701408733/73681302247*33385282^(1/12) 4032522475023133 a001 1836311903/192900153618*33385282^(1/12) 4032522475023133 a001 102287808/10745088481*33385282^(1/12) 4032522475023133 a001 12586269025/1322157322203*33385282^(1/12) 4032522475023133 a001 32951280099/3461452808002*33385282^(1/12) 4032522475023133 a001 86267571272/9062201101803*33385282^(1/12) 4032522475023133 a001 225851433717/23725150497407*33385282^(1/12) 4032522475023133 a001 139583862445/14662949395604*33385282^(1/12) 4032522475023133 a001 53316291173/5600748293801*33385282^(1/12) 4032522475023133 a001 20365011074/2139295485799*33385282^(1/12) 4032522475023133 a001 7778742049/817138163596*33385282^(1/12) 4032522475023133 a001 2971215073/312119004989*33385282^(1/12) 4032522475023133 a001 1134903170/119218851371*33385282^(1/12) 4032522475023133 a001 433494437/45537549124*33385282^(1/12) 4032522475023133 a001 63245986/73681302247*87403803^(4/19) 4032522475023133 a001 102334155/17393796001*33385282^(1/9) 4032522475023133 a001 165580141/17393796001*33385282^(1/12) 4032522475023133 a001 31622993/96450076809*87403803^(5/19) 4032522475023133 a001 63245986/505019158607*87403803^(6/19) 4032522475023133 a001 39088169/73681302247*33385282^(1/4) 4032522475023133 a001 66978574/11384387281*33385282^(1/9) 4032522475023133 a001 63245986/1322157322203*87403803^(7/19) 4032522475023133 a001 701408733/119218851371*33385282^(1/9) 4032522475023133 a001 1836311903/312119004989*33385282^(1/9) 4032522475023133 a001 1201881744/204284540899*33385282^(1/9) 4032522475023133 a001 12586269025/2139295485799*33385282^(1/9) 4032522475023133 a001 32951280099/5600748293801*33385282^(1/9) 4032522475023133 a001 1135099622/192933544679*33385282^(1/9) 4032522475023133 a001 139583862445/23725150497407*33385282^(1/9) 4032522475023133 a001 53316291173/9062201101803*33385282^(1/9) 4032522475023133 a001 10182505537/1730726404001*33385282^(1/9) 4032522475023133 a001 7778742049/1322157322203*33385282^(1/9) 4032522475023133 a001 2971215073/505019158607*33385282^(1/9) 4032522475023133 a001 63245986/4106118243*33385282^(1/18) 4032522475023133 a001 567451585/96450076809*33385282^(1/9) 4032522475023133 a004 Fibonacci(39)/Lucas(39)/(1/2+sqrt(5)/2)^5 4032522475023133 a001 433494437/73681302247*33385282^(1/9) 4032522475023133 a001 31622993/1730726404001*87403803^(8/19) 4032522475023133 a001 165580141/28143753123*33385282^(1/9) 4032522475023133 a004 Fibonacci(40)*Lucas(38)/(1/2+sqrt(5)/2)^83 4032522475023133 a001 63245986/9062201101803*87403803^(9/19) 4032522475023133 a001 31622993/7331474697802*87403803^(1/2) 4032522475023133 a001 39088169/119218851371*33385282^(5/18) 4032522475023133 a001 63245986/23725150497407*87403803^(10/19) 4032522475023133 a001 63245986/6643838879*33385282^(1/12) 4032522475023133 a004 Fibonacci(42)*Lucas(38)/(1/2+sqrt(5)/2)^85 4032522475023133 a001 87403803/433494437*8^(1/3) 4032522475023133 a001 102334155/45537549124*33385282^(1/6) 4032522475023133 a004 Fibonacci(44)*Lucas(38)/(1/2+sqrt(5)/2)^87 4032522475023133 a004 Fibonacci(46)*Lucas(38)/(1/2+sqrt(5)/2)^89 4032522475023133 a004 Fibonacci(48)*Lucas(38)/(1/2+sqrt(5)/2)^91 4032522475023133 a004 Fibonacci(50)*Lucas(38)/(1/2+sqrt(5)/2)^93 4032522475023133 a004 Fibonacci(52)*Lucas(38)/(1/2+sqrt(5)/2)^95 4032522475023133 a004 Fibonacci(54)*Lucas(38)/(1/2+sqrt(5)/2)^97 4032522475023133 a004 Fibonacci(56)*Lucas(38)/(1/2+sqrt(5)/2)^99 4032522475023133 a001 2/39088169*(1/2+1/2*5^(1/2))^33 4032522475023133 a004 Fibonacci(57)*Lucas(38)/(1/2+sqrt(5)/2)^100 4032522475023133 a004 Fibonacci(55)*Lucas(38)/(1/2+sqrt(5)/2)^98 4032522475023133 a004 Fibonacci(53)*Lucas(38)/(1/2+sqrt(5)/2)^96 4032522475023133 a004 Fibonacci(51)*Lucas(38)/(1/2+sqrt(5)/2)^94 4032522475023133 a004 Fibonacci(49)*Lucas(38)/(1/2+sqrt(5)/2)^92 4032522475023133 a004 Fibonacci(47)*Lucas(38)/(1/2+sqrt(5)/2)^90 4032522475023133 a004 Fibonacci(45)*Lucas(38)/(1/2+sqrt(5)/2)^88 4032522475023133 a004 Fibonacci(43)*Lucas(38)/(1/2+sqrt(5)/2)^86 4032522475023133 a004 Fibonacci(41)*Lucas(38)/(1/2+sqrt(5)/2)^84 4032522475023133 a001 267914296/119218851371*33385282^(1/6) 4032522475023133 a001 3524667/1568437211*33385282^(1/6) 4032522475023133 a001 1836311903/817138163596*33385282^(1/6) 4032522475023133 a001 4807526976/2139295485799*33385282^(1/6) 4032522475023133 a001 12586269025/5600748293801*33385282^(1/6) 4032522475023133 a001 32951280099/14662949395604*33385282^(1/6) 4032522475023133 a001 53316291173/23725150497407*33385282^(1/6) 4032522475023133 a001 20365011074/9062201101803*33385282^(1/6) 4032522475023133 a001 7778742049/3461452808002*33385282^(1/6) 4032522475023133 a001 2971215073/1322157322203*33385282^(1/6) 4032522475023133 a001 31622993/5374978561*33385282^(1/9) 4032522475023133 a001 1134903170/505019158607*33385282^(1/6) 4032522475023134 a001 433494437/192900153618*33385282^(1/6) 4032522475023134 a001 165580141/73681302247*33385282^(1/6) 4032522475023134 a001 39088169/312119004989*33385282^(1/3) 4032522475023134 a001 102334155/119218851371*33385282^(2/9) 4032522475023134 a004 Fibonacci(39)*Lucas(38)/(1/2+sqrt(5)/2)^82 4032522475023134 a001 14930352/6643838879*12752043^(3/17) 4032522475023134 a001 267914296/312119004989*33385282^(2/9) 4032522475023134 a001 701408733/817138163596*33385282^(2/9) 4032522475023134 a001 1836311903/2139295485799*33385282^(2/9) 4032522475023134 a001 4807526976/5600748293801*33385282^(2/9) 4032522475023134 a001 12586269025/14662949395604*33385282^(2/9) 4032522475023134 a001 20365011074/23725150497407*33385282^(2/9) 4032522475023134 a001 7778742049/9062201101803*33385282^(2/9) 4032522475023134 a001 2971215073/3461452808002*33385282^(2/9) 4032522475023134 a001 63245986/28143753123*33385282^(1/6) 4032522475023134 a001 1134903170/1322157322203*33385282^(2/9) 4032522475023134 a001 433494437/505019158607*33385282^(2/9) 4032522475023134 a001 34111385/64300051206*33385282^(1/4) 4032522475023134 a001 165580141/192900153618*33385282^(2/9) 4032522475023134 a004 Fibonacci(37)/Lucas(38)/(1/2+sqrt(5)/2)^4 4032522475023134 a004 Fibonacci(38)/Lucas(37)/(1/2+sqrt(5)/2)^6 4032522475023134 a001 4181/87403804*33385282^(7/18) 4032522475023134 a001 267914296/505019158607*33385282^(1/4) 4032522475023134 a001 233802911/440719107401*33385282^(1/4) 4032522475023134 a001 1836311903/3461452808002*33385282^(1/4) 4032522475023134 a001 1602508992/3020733700601*33385282^(1/4) 4032522475023134 a001 12586269025/23725150497407*33385282^(1/4) 4032522475023134 a001 7778742049/14662949395604*33385282^(1/4) 4032522475023134 a001 2971215073/5600748293801*33385282^(1/4) 4032522475023134 a001 1134903170/2139295485799*33385282^(1/4) 4032522475023134 a001 433494437/817138163596*33385282^(1/4) 4032522475023134 a001 9303105/28374454999*33385282^(5/18) 4032522475023134 a001 39088169/2537720636*12752043^(1/17) 4032522475023134 a001 165580141/312119004989*33385282^(1/4) 4032522475023134 a001 39088169/1322157322203*33385282^(5/12) 4032522475023134 a001 66978574/204284540899*33385282^(5/18) 4032522475023134 a001 701408733/2139295485799*33385282^(5/18) 4032522475023134 a001 1836311903/5600748293801*33385282^(5/18) 4032522475023134 a001 1201881744/3665737348901*33385282^(5/18) 4032522475023134 a001 7778742049/23725150497407*33385282^(5/18) 4032522475023134 a001 2971215073/9062201101803*33385282^(5/18) 4032522475023134 a001 63245986/73681302247*33385282^(2/9) 4032522475023134 a001 567451585/1730726404001*33385282^(5/18) 4032522475023134 a001 433494437/1322157322203*33385282^(5/18) 4032522475023134 a001 165580141/505019158607*33385282^(5/18) 4032522475023134 a001 39088169/2139295485799*33385282^(4/9) 4032522475023134 a001 63245986/119218851371*33385282^(1/4) 4032522475023134 a001 102334155/817138163596*33385282^(1/3) 4032522475023134 a004 Fibonacci(37)*Lucas(39)/(1/2+sqrt(5)/2)^81 4032522475023134 a001 267914296/2139295485799*33385282^(1/3) 4032522475023134 a001 701408733/5600748293801*33385282^(1/3) 4032522475023134 a001 1836311903/14662949395604*33385282^(1/3) 4032522475023134 a001 2971215073/23725150497407*33385282^(1/3) 4032522475023134 a001 31622993/96450076809*33385282^(5/18) 4032522475023134 a001 1134903170/9062201101803*33385282^(1/3) 4032522475023134 a001 433494437/3461452808002*33385282^(1/3) 4032522475023134 a001 165580141/1322157322203*33385282^(1/3) 4032522475023134 a001 24157817/14662949395604*141422324^(7/13) 4032522475023134 a001 39088169/5600748293801*33385282^(1/2) 4032522475023134 a001 24157817/3461452808002*141422324^(6/13) 4032522475023134 a001 24157817/817138163596*141422324^(5/13) 4032522475023134 a004 Fibonacci(37)/Lucas(40)/(1/2+sqrt(5)/2)^2 4032522475023134 a004 Fibonacci(40)/Lucas(37)/(1/2+sqrt(5)/2)^8 4032522475023134 a001 24157817/312119004989*141422324^(1/3) 4032522475023134 a001 24157817/192900153618*141422324^(4/13) 4032522475023134 a001 102334155/2139295485799*33385282^(7/18) 4032522475023134 a001 24157817/45537549124*141422324^(3/13) 4032522475023134 a001 24157817/10749957122*141422324^(2/13) 4032522475023134 a004 Fibonacci(37)*Lucas(41)/(1/2+sqrt(5)/2)^83 4032522475023134 a001 24157817/2537720636*141422324^(1/13) 4032522475023134 a004 Fibonacci(42)/Lucas(37)/(1/2+sqrt(5)/2)^10 4032522475023134 a004 Fibonacci(37)*Lucas(43)/(1/2+sqrt(5)/2)^85 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^2/Lucas(44) 4032522475023134 a004 Fibonacci(44)/Lucas(37)/(1/2+sqrt(5)/2)^12 4032522475023134 a001 24157817/1568397607*10749957122^(1/24) 4032522475023134 a001 24157817/1568397607*4106118243^(1/23) 4032522475023134 a001 24157817/1568397607*1568397607^(1/22) 4032522475023134 a001 24157817/1568397607*599074578^(1/21) 4032522475023134 a004 Fibonacci(37)*Lucas(45)/(1/2+sqrt(5)/2)^87 4032522475023134 a001 24157817/14662949395604*2537720636^(7/15) 4032522475023134 a001 24157817/9062201101803*2537720636^(4/9) 4032522475023134 a001 24157817/3461452808002*2537720636^(2/5) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^4/Lucas(46) 4032522475023134 a004 Fibonacci(46)/Lucas(37)/(1/2+sqrt(5)/2)^14 4032522475023134 a001 24157817/4106118243*23725150497407^(1/16) 4032522475023134 a001 24157817/4106118243*73681302247^(1/13) 4032522475023134 a001 24157817/4106118243*10749957122^(1/12) 4032522475023134 a001 24157817/4106118243*4106118243^(2/23) 4032522475023134 a001 24157817/817138163596*2537720636^(1/3) 4032522475023134 a001 24157817/192900153618*2537720636^(4/15) 4032522475023134 a001 102334155/6643838879*12752043^(1/17) 4032522475023134 a001 24157817/73681302247*2537720636^(2/9) 4032522475023134 a001 24157817/45537549124*2537720636^(1/5) 4032522475023134 a001 24157817/10749957122*2537720636^(2/15) 4032522475023134 a004 Fibonacci(37)*Lucas(47)/(1/2+sqrt(5)/2)^89 4032522475023134 a001 24157817/4106118243*1568397607^(1/11) 4032522475023134 a001 24157817/10749957122*45537549124^(2/17) 4032522475023134 a001 24157817/10749957122*14662949395604^(2/21) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^6/Lucas(48) 4032522475023134 a004 Fibonacci(48)/Lucas(37)/(1/2+sqrt(5)/2)^16 4032522475023134 a001 24157817/10749957122*10749957122^(1/8) 4032522475023134 a004 Fibonacci(37)*Lucas(49)/(1/2+sqrt(5)/2)^91 4032522475023134 a001 24157817/14662949395604*17393796001^(3/7) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^8/Lucas(50) 4032522475023134 a004 Fibonacci(50)/Lucas(37)/(1/2+sqrt(5)/2)^18 4032522475023134 a001 24157817/28143753123*23725150497407^(1/8) 4032522475023134 a001 24157817/28143753123*505019158607^(1/7) 4032522475023134 a001 24157817/28143753123*73681302247^(2/13) 4032522475023134 a001 24157817/505019158607*17393796001^(2/7) 4032522475023134 a001 24157817/10749957122*4106118243^(3/23) 4032522475023134 a004 Fibonacci(37)*Lucas(51)/(1/2+sqrt(5)/2)^93 4032522475023134 a001 24157817/14662949395604*45537549124^(7/17) 4032522475023134 a001 24157817/73681302247*312119004989^(2/11) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^10/Lucas(52) 4032522475023134 a004 Fibonacci(52)/Lucas(37)/(1/2+sqrt(5)/2)^20 4032522475023134 a001 24157817/3461452808002*45537549124^(6/17) 4032522475023134 a001 24157817/2139295485799*45537549124^(1/3) 4032522475023134 a001 24157817/192900153618*45537549124^(4/17) 4032522475023134 a004 Fibonacci(37)*Lucas(53)/(1/2+sqrt(5)/2)^95 4032522475023134 a001 24157817/192900153618*817138163596^(4/19) 4032522475023134 a001 24157817/192900153618*14662949395604^(4/21) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^12/Lucas(54) 4032522475023134 a004 Fibonacci(54)/Lucas(37)/(1/2+sqrt(5)/2)^22 4032522475023134 a001 24157817/192900153618*192900153618^(2/9) 4032522475023134 a004 Fibonacci(37)*Lucas(55)/(1/2+sqrt(5)/2)^97 4032522475023134 a001 24157817/23725150497407*312119004989^(2/5) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^14/Lucas(56) 4032522475023134 a004 Fibonacci(56)/Lucas(37)/(1/2+sqrt(5)/2)^24 4032522475023134 a004 Fibonacci(37)*Lucas(57)/(1/2+sqrt(5)/2)^99 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^16/Lucas(58) 4032522475023134 a004 Fibonacci(58)/Lucas(37)/(1/2+sqrt(5)/2)^26 4032522475023134 a001 24157817/1322157322203*23725150497407^(1/4) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^18/Lucas(60) 4032522475023134 a004 Fibonacci(60)/Lucas(37)/(1/2+sqrt(5)/2)^28 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^20/Lucas(62) 4032522475023134 a004 Fibonacci(62)/Lucas(37)/(1/2+sqrt(5)/2)^30 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^22/Lucas(64) 4032522475023134 a004 Fibonacci(64)/Lucas(37)/(1/2+sqrt(5)/2)^32 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^24/Lucas(66) 4032522475023134 a004 Fibonacci(66)/Lucas(37)/(1/2+sqrt(5)/2)^34 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^26/Lucas(68) 4032522475023134 a004 Fibonacci(68)/Lucas(37)/(1/2+sqrt(5)/2)^36 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^28/Lucas(70) 4032522475023134 a004 Fibonacci(70)/Lucas(37)/(1/2+sqrt(5)/2)^38 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^30/Lucas(72) 4032522475023134 a004 Fibonacci(72)/Lucas(37)/(1/2+sqrt(5)/2)^40 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^32/Lucas(74) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^34/Lucas(76) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^36/Lucas(78) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^38/Lucas(80) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^40/Lucas(82) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^42/Lucas(84) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^44/Lucas(86) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^46/Lucas(88) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^48/Lucas(90) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^50/Lucas(92) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^52/Lucas(94) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^54/Lucas(96) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^56/Lucas(98) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^58/Lucas(100) 4032522475023134 a004 Fibonacci(37)*Lucas(1)/(1/2+sqrt(5)/2)^42 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^57/Lucas(99) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^55/Lucas(97) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^53/Lucas(95) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^51/Lucas(93) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^49/Lucas(91) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^47/Lucas(89) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^45/Lucas(87) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^43/Lucas(85) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^41/Lucas(83) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^39/Lucas(81) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^37/Lucas(79) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^35/Lucas(77) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^33/Lucas(75) 4032522475023134 a004 Fibonacci(76)/Lucas(37)/(1/2+sqrt(5)/2)^44 4032522475023134 a004 Fibonacci(78)/Lucas(37)/(1/2+sqrt(5)/2)^46 4032522475023134 a004 Fibonacci(80)/Lucas(37)/(1/2+sqrt(5)/2)^48 4032522475023134 a004 Fibonacci(82)/Lucas(37)/(1/2+sqrt(5)/2)^50 4032522475023134 a004 Fibonacci(84)/Lucas(37)/(1/2+sqrt(5)/2)^52 4032522475023134 a004 Fibonacci(86)/Lucas(37)/(1/2+sqrt(5)/2)^54 4032522475023134 a004 Fibonacci(88)/Lucas(37)/(1/2+sqrt(5)/2)^56 4032522475023134 a004 Fibonacci(90)/Lucas(37)/(1/2+sqrt(5)/2)^58 4032522475023134 a004 Fibonacci(92)/Lucas(37)/(1/2+sqrt(5)/2)^60 4032522475023134 a004 Fibonacci(94)/Lucas(37)/(1/2+sqrt(5)/2)^62 4032522475023134 a004 Fibonacci(96)/Lucas(37)/(1/2+sqrt(5)/2)^64 4032522475023134 a004 Fibonacci(100)/Lucas(37)/(1/2+sqrt(5)/2)^68 4032522475023134 a004 Fibonacci(98)/Lucas(37)/(1/2+sqrt(5)/2)^66 4032522475023134 a004 Fibonacci(99)/Lucas(37)/(1/2+sqrt(5)/2)^67 4032522475023134 a004 Fibonacci(97)/Lucas(37)/(1/2+sqrt(5)/2)^65 4032522475023134 a004 Fibonacci(95)/Lucas(37)/(1/2+sqrt(5)/2)^63 4032522475023134 a004 Fibonacci(93)/Lucas(37)/(1/2+sqrt(5)/2)^61 4032522475023134 a004 Fibonacci(91)/Lucas(37)/(1/2+sqrt(5)/2)^59 4032522475023134 a004 Fibonacci(89)/Lucas(37)/(1/2+sqrt(5)/2)^57 4032522475023134 a004 Fibonacci(87)/Lucas(37)/(1/2+sqrt(5)/2)^55 4032522475023134 a004 Fibonacci(85)/Lucas(37)/(1/2+sqrt(5)/2)^53 4032522475023134 a004 Fibonacci(83)/Lucas(37)/(1/2+sqrt(5)/2)^51 4032522475023134 a004 Fibonacci(81)/Lucas(37)/(1/2+sqrt(5)/2)^49 4032522475023134 a004 Fibonacci(79)/Lucas(37)/(1/2+sqrt(5)/2)^47 4032522475023134 a004 Fibonacci(77)/Lucas(37)/(1/2+sqrt(5)/2)^45 4032522475023134 a004 Fibonacci(75)/Lucas(37)/(1/2+sqrt(5)/2)^43 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^31/Lucas(73) 4032522475023134 a004 Fibonacci(73)/Lucas(37)/(1/2+sqrt(5)/2)^41 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^29/Lucas(71) 4032522475023134 a004 Fibonacci(71)/Lucas(37)/(1/2+sqrt(5)/2)^39 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^27/Lucas(69) 4032522475023134 a004 Fibonacci(69)/Lucas(37)/(1/2+sqrt(5)/2)^37 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^25/Lucas(67) 4032522475023134 a004 Fibonacci(67)/Lucas(37)/(1/2+sqrt(5)/2)^35 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^23/Lucas(65) 4032522475023134 a004 Fibonacci(65)/Lucas(37)/(1/2+sqrt(5)/2)^33 4032522475023134 a001 24157817/14662949395604*14662949395604^(1/3) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^21/Lucas(63) 4032522475023134 a004 Fibonacci(63)/Lucas(37)/(1/2+sqrt(5)/2)^31 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^19/Lucas(61) 4032522475023134 a004 Fibonacci(61)/Lucas(37)/(1/2+sqrt(5)/2)^29 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^17/Lucas(59) 4032522475023134 a004 Fibonacci(59)/Lucas(37)/(1/2+sqrt(5)/2)^27 4032522475023134 a004 Fibonacci(37)*Lucas(58)/(1/2+sqrt(5)/2)^100 4032522475023134 a001 24157817/817138163596*14662949395604^(5/21) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^15/Lucas(57) 4032522475023134 a004 Fibonacci(57)/Lucas(37)/(1/2+sqrt(5)/2)^25 4032522475023134 a004 Fibonacci(37)*Lucas(56)/(1/2+sqrt(5)/2)^98 4032522475023134 a001 24157817/3461452808002*192900153618^(1/3) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^13/Lucas(55) 4032522475023134 a004 Fibonacci(55)/Lucas(37)/(1/2+sqrt(5)/2)^23 4032522475023134 a001 24157817/14662949395604*192900153618^(7/18) 4032522475023134 a004 Fibonacci(37)*Lucas(54)/(1/2+sqrt(5)/2)^96 4032522475023134 a001 24157817/1322157322203*73681302247^(4/13) 4032522475023134 a001 24157817/119218851371*312119004989^(1/5) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^11/Lucas(53) 4032522475023134 a004 Fibonacci(53)/Lucas(37)/(1/2+sqrt(5)/2)^21 4032522475023134 a001 24157817/9062201101803*73681302247^(5/13) 4032522475023134 a001 24157817/28143753123*10749957122^(1/6) 4032522475023134 a004 Fibonacci(37)*Lucas(52)/(1/2+sqrt(5)/2)^94 4032522475023134 a001 24157817/817138163596*28143753123^(3/10) 4032522475023134 a001 24157817/45537549124*45537549124^(3/17) 4032522475023134 a001 24157817/45537549124*14662949395604^(1/7) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^9/Lucas(51) 4032522475023134 a004 Fibonacci(51)/Lucas(37)/(1/2+sqrt(5)/2)^19 4032522475023134 a001 24157817/45537549124*192900153618^(1/6) 4032522475023134 a001 24157817/9062201101803*28143753123^(2/5) 4032522475023134 a004 Fibonacci(37)*Lucas(50)/(1/2+sqrt(5)/2)^92 4032522475023134 a001 24157817/73681302247*10749957122^(5/24) 4032522475023134 a001 24157817/45537549124*10749957122^(3/16) 4032522475023134 a001 24157817/192900153618*10749957122^(1/4) 4032522475023134 a001 24157817/505019158607*10749957122^(7/24) 4032522475023134 a001 24157817/817138163596*10749957122^(5/16) 4032522475023134 a001 24157817/17393796001*17393796001^(1/7) 4032522475023134 a001 24157817/1322157322203*10749957122^(1/3) 4032522475023134 a001 24157817/3461452808002*10749957122^(3/8) 4032522475023134 a001 24157817/17393796001*14662949395604^(1/9) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^7/Lucas(49) 4032522475023134 a004 Fibonacci(49)/Lucas(37)/(1/2+sqrt(5)/2)^17 4032522475023134 a001 24157817/9062201101803*10749957122^(5/12) 4032522475023134 a001 24157817/14662949395604*10749957122^(7/16) 4032522475023134 a001 24157817/23725150497407*10749957122^(11/24) 4032522475023134 a001 24157817/6643838879*2537720636^(1/9) 4032522475023134 a004 Fibonacci(37)*Lucas(48)/(1/2+sqrt(5)/2)^90 4032522475023134 a001 24157817/28143753123*4106118243^(4/23) 4032522475023134 a001 24157817/73681302247*4106118243^(5/23) 4032522475023134 a001 24157817/192900153618*4106118243^(6/23) 4032522475023134 a001 24157817/505019158607*4106118243^(7/23) 4032522475023134 a001 24157817/1322157322203*4106118243^(8/23) 4032522475023134 a001 24157817/6643838879*312119004989^(1/11) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^5/Lucas(47) 4032522475023134 a004 Fibonacci(47)/Lucas(37)/(1/2+sqrt(5)/2)^15 4032522475023134 a001 24157817/6643838879*28143753123^(1/10) 4032522475023134 a001 24157817/3461452808002*4106118243^(9/23) 4032522475023134 a001 24157817/9062201101803*4106118243^(10/23) 4032522475023134 a001 24157817/23725150497407*4106118243^(11/23) 4032522475023134 a001 24157817/10749957122*1568397607^(3/22) 4032522475023134 a004 Fibonacci(37)*Lucas(46)/(1/2+sqrt(5)/2)^88 4032522475023134 a001 24157817/28143753123*1568397607^(2/11) 4032522475023134 a001 24157817/73681302247*1568397607^(5/22) 4032522475023134 a001 24157817/119218851371*1568397607^(1/4) 4032522475023134 a001 24157817/192900153618*1568397607^(3/11) 4032522475023134 a001 24157817/505019158607*1568397607^(7/22) 4032522475023134 a001 24157817/2537720636*2537720636^(1/15) 4032522475023134 a001 24157817/1322157322203*1568397607^(4/11) 4032522475023134 a001 24157817/2537720636*45537549124^(1/17) 4032522475023134 a001 24157817/2537720636*14662949395604^(1/21) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^3/Lucas(45) 4032522475023134 a004 Fibonacci(45)/Lucas(37)/(1/2+sqrt(5)/2)^13 4032522475023134 a001 24157817/2537720636*192900153618^(1/18) 4032522475023134 a001 24157817/2537720636*10749957122^(1/16) 4032522475023134 a001 24157817/3461452808002*1568397607^(9/22) 4032522475023134 a001 24157817/9062201101803*1568397607^(5/11) 4032522475023134 a001 24157817/23725150497407*1568397607^(1/2) 4032522475023134 a001 24157817/4106118243*599074578^(2/21) 4032522475023134 a001 24157817/2537720636*599074578^(1/14) 4032522475023134 a001 24157817/10749957122*599074578^(1/7) 4032522475023134 a004 Fibonacci(37)*Lucas(44)/(1/2+sqrt(5)/2)^86 4032522475023134 a001 24157817/17393796001*599074578^(1/6) 4032522475023134 a001 24157817/28143753123*599074578^(4/21) 4032522475023134 a001 24157817/1568397607*228826127^(1/20) 4032522475023134 a001 24157817/45537549124*599074578^(3/14) 4032522475023134 a001 24157817/73681302247*599074578^(5/21) 4032522475023134 a001 24157817/192900153618*599074578^(2/7) 4032522475023134 a001 24157817/505019158607*599074578^(1/3) 4032522475023134 a001 24157817/817138163596*599074578^(5/14) 4032522475023134 a001 24157817/1322157322203*599074578^(8/21) 4032522475023134 a004 Fibonacci(37)*(1/2+sqrt(5)/2)/Lucas(43) 4032522475023134 a004 Fibonacci(43)/Lucas(37)/(1/2+sqrt(5)/2)^11 4032522475023134 a001 24157817/3461452808002*599074578^(3/7) 4032522475023134 a001 24157817/9062201101803*599074578^(10/21) 4032522475023134 a001 24157817/14662949395604*599074578^(1/2) 4032522475023134 a001 24157817/23725150497407*599074578^(11/21) 4032522475023134 a001 24157817/4106118243*228826127^(1/10) 4032522475023134 a001 24157817/6643838879*228826127^(1/8) 4032522475023134 a004 Fibonacci(37)*Lucas(42)/(1/2+sqrt(5)/2)^84 4032522475023134 a001 24157817/10749957122*228826127^(3/20) 4032522475023134 a001 267914296/5600748293801*33385282^(7/18) 4032522475023134 a001 24157817/28143753123*228826127^(1/5) 4032522475023134 a001 24157817/73681302247*228826127^(1/4) 4032522475023134 a001 24157817/192900153618*228826127^(3/10) 4032522475023134 a001 701408733/14662949395604*33385282^(7/18) 4032522475023134 a001 63245986/505019158607*33385282^(1/3) 4032522475023134 a001 1134903170/23725150497407*33385282^(7/18) 4032522475023134 a001 24157817/1568397607*87403803^(1/19) 4032522475023134 a001 24157817/505019158607*228826127^(7/20) 4032522475023134 a001 24157817/817138163596*228826127^(3/8) 4032522475023134 a001 433494437/9062201101803*33385282^(7/18) 4032522475023134 a004 Fibonacci(37)/Lucas(41)/(1/2+sqrt(5)/2) 4032522475023134 a004 Fibonacci(41)/Lucas(37)/(1/2+sqrt(5)/2)^9 4032522475023134 a001 24157817/1322157322203*228826127^(2/5) 4032522475023134 a001 24157817/3461452808002*228826127^(9/20) 4032522475023134 a001 24157817/9062201101803*228826127^(1/2) 4032522475023134 a001 24157817/23725150497407*228826127^(11/20) 4032522475023134 a001 6765/228826126*33385282^(5/12) 4032522475023134 a001 165580141/3461452808002*33385282^(7/18) 4032522475023134 a001 24157817/4106118243*87403803^(2/19) 4032522475023134 a001 9238424/599786069*12752043^(1/17) 4032522475023134 a001 701408733/45537549124*12752043^(1/17) 4032522475023134 a001 1836311903/119218851371*12752043^(1/17) 4032522475023134 a001 4807526976/312119004989*12752043^(1/17) 4032522475023134 a001 12586269025/817138163596*12752043^(1/17) 4032522475023134 a001 32951280099/2139295485799*12752043^(1/17) 4032522475023134 a001 86267571272/5600748293801*12752043^(1/17) 4032522475023134 a001 7787980473/505618944676*12752043^(1/17) 4032522475023134 a001 365435296162/23725150497407*12752043^(1/17) 4032522475023134 a001 139583862445/9062201101803*12752043^(1/17) 4032522475023134 a001 53316291173/3461452808002*12752043^(1/17) 4032522475023134 a001 20365011074/1322157322203*12752043^(1/17) 4032522475023134 a001 7778742049/505019158607*12752043^(1/17) 4032522475023134 a001 2971215073/192900153618*12752043^(1/17) 4032522475023134 a004 Fibonacci(37)*Lucas(40)/(1/2+sqrt(5)/2)^82 4032522475023134 a001 1134903170/73681302247*12752043^(1/17) 4032522475023134 a001 433494437/28143753123*12752043^(1/17) 4032522475023134 a001 24157817/10749957122*87403803^(3/19) 4032522475023134 a001 39088169/14662949395604*33385282^(5/9) 4032522475023134 a001 165580141/10749957122*12752043^(1/17) 4032522475023134 a001 24157817/28143753123*87403803^(4/19) 4032522475023134 a001 267914296/9062201101803*33385282^(5/12) 4032522475023134 a001 701408733/23725150497407*33385282^(5/12) 4032522475023134 a001 433494437/14662949395604*33385282^(5/12) 4032522475023134 a001 24157817/73681302247*87403803^(5/19) 4032522475023134 a001 102334155/5600748293801*33385282^(4/9) 4032522475023134 a001 165580141/5600748293801*33385282^(5/12) 4032522475023134 a001 24157817/192900153618*87403803^(6/19) 4032522475023134 a001 24157817/505019158607*87403803^(7/19) 4032522475023134 a001 24157817/1568397607*33385282^(1/18) 4032522475023134 a001 39088169/23725150497407*33385282^(7/12) 4032522475023134 a004 Fibonacci(37)/Lucas(39)/(1/2+sqrt(5)/2)^3 4032522475023134 a004 Fibonacci(39)/Lucas(37)/(1/2+sqrt(5)/2)^7 4032522475023134 a001 10946/599074579*33385282^(4/9) 4032522475023134 a001 24157817/1322157322203*87403803^(8/19) 4032522475023135 a001 63245986/1322157322203*33385282^(7/18) 4032522475023135 a001 433494437/23725150497407*33385282^(4/9) 4032522475023135 a001 24157817/3461452808002*87403803^(9/19) 4032522475023135 a001 165580141/9062201101803*33385282^(4/9) 4032522475023135 a001 24157817/5600748293801*87403803^(1/2) 4032522475023135 a001 24157817/9062201101803*87403803^(10/19) 4032522475023135 a001 63245986/4106118243*12752043^(1/17) 4032522475023135 a001 24157817/2537720636*33385282^(1/12) 4032522475023135 a001 24157817/23725150497407*87403803^(11/19) 4032522475023135 a001 63245986/2139295485799*33385282^(5/12) 4032522475023135 a001 102334155/14662949395604*33385282^(1/2) 4032522475023135 a001 24157817/4106118243*33385282^(1/9) 4032522475023135 a001 31622993/1730726404001*33385282^(4/9) 4032522475023135 a001 165580141/23725150497407*33385282^(1/2) 4032522475023135 a004 Fibonacci(37)*Lucas(38)/(1/2+sqrt(5)/2)^80 4032522475023135 a001 24157817/10749957122*33385282^(1/6) 4032522475023135 a001 63245986/9062201101803*33385282^(1/2) 4032522475023135 a001 24157817/28143753123*33385282^(2/9) 4032522475023135 a001 63245986/23725150497407*33385282^(5/9) 4032522475023135 a001 14930352/17393796001*12752043^(4/17) 4032522475023135 a001 24157817/45537549124*33385282^(1/4) 4032522475023135 a001 24157817/73681302247*33385282^(5/18) 4032522475023135 a001 39088169/6643838879*12752043^(2/17) 4032522475023135 a001 24157817/192900153618*33385282^(1/3) 4032522475023136 a004 Fibonacci(37)/Lucas(37)/(1/2+sqrt(5)/2)^5 4032522475023136 a001 24157817/505019158607*33385282^(7/18) 4032522475023136 a001 24157817/1568397607*12752043^(1/17) 4032522475023136 a001 102334155/17393796001*12752043^(2/17) 4032522475023136 a001 24157817/817138163596*33385282^(5/12) 4032522475023136 a001 66978574/11384387281*12752043^(2/17) 4032522475023136 a001 701408733/119218851371*12752043^(2/17) 4032522475023136 a001 1836311903/312119004989*12752043^(2/17) 4032522475023136 a001 1201881744/204284540899*12752043^(2/17) 4032522475023136 a001 12586269025/2139295485799*12752043^(2/17) 4032522475023136 a001 32951280099/5600748293801*12752043^(2/17) 4032522475023136 a001 1135099622/192933544679*12752043^(2/17) 4032522475023136 a001 139583862445/23725150497407*12752043^(2/17) 4032522475023136 a001 53316291173/9062201101803*12752043^(2/17) 4032522475023136 a001 10182505537/1730726404001*12752043^(2/17) 4032522475023136 a001 7778742049/1322157322203*12752043^(2/17) 4032522475023136 a001 2971215073/505019158607*12752043^(2/17) 4032522475023136 a001 567451585/96450076809*12752043^(2/17) 4032522475023136 a001 433494437/73681302247*12752043^(2/17) 4032522475023136 a001 165580141/28143753123*12752043^(2/17) 4032522475023136 a001 24157817/1322157322203*33385282^(4/9) 4032522475023136 a004 Fibonacci(38)*Lucas(36)/(1/2+sqrt(5)/2)^79 4032522475023136 a001 31622993/5374978561*12752043^(2/17) 4032522475023136 a001 24157817/3461452808002*33385282^(1/2) 4032522475023136 a001 24157817/9062201101803*33385282^(5/9) 4032522475023136 a001 24157817/14662949395604*33385282^(7/12) 4032522475023136 a004 Fibonacci(40)*Lucas(36)/(1/2+sqrt(5)/2)^81 4032522475023136 a001 9227465/969323029*7881196^(1/11) 4032522475023136 a001 33385282/165580141*8^(1/3) 4032522475023136 a001 24157817/23725150497407*33385282^(11/18) 4032522475023137 a004 Fibonacci(42)*Lucas(36)/(1/2+sqrt(5)/2)^83 4032522475023137 a004 Fibonacci(44)*Lucas(36)/(1/2+sqrt(5)/2)^85 4032522475023137 a004 Fibonacci(46)*Lucas(36)/(1/2+sqrt(5)/2)^87 4032522475023137 a004 Fibonacci(48)*Lucas(36)/(1/2+sqrt(5)/2)^89 4032522475023137 a004 Fibonacci(50)*Lucas(36)/(1/2+sqrt(5)/2)^91 4032522475023137 a004 Fibonacci(52)*Lucas(36)/(1/2+sqrt(5)/2)^93 4032522475023137 a004 Fibonacci(54)*Lucas(36)/(1/2+sqrt(5)/2)^95 4032522475023137 a004 Fibonacci(56)*Lucas(36)/(1/2+sqrt(5)/2)^97 4032522475023137 a004 Fibonacci(58)*Lucas(36)/(1/2+sqrt(5)/2)^99 4032522475023137 a001 1/7465176*(1/2+1/2*5^(1/2))^31 4032522475023137 a004 Fibonacci(59)*Lucas(36)/(1/2+sqrt(5)/2)^100 4032522475023137 a004 Fibonacci(57)*Lucas(36)/(1/2+sqrt(5)/2)^98 4032522475023137 a004 Fibonacci(55)*Lucas(36)/(1/2+sqrt(5)/2)^96 4032522475023137 a004 Fibonacci(53)*Lucas(36)/(1/2+sqrt(5)/2)^94 4032522475023137 a004 Fibonacci(51)*Lucas(36)/(1/2+sqrt(5)/2)^92 4032522475023137 a004 Fibonacci(49)*Lucas(36)/(1/2+sqrt(5)/2)^90 4032522475023137 a004 Fibonacci(47)*Lucas(36)/(1/2+sqrt(5)/2)^88 4032522475023137 a004 Fibonacci(45)*Lucas(36)/(1/2+sqrt(5)/2)^86 4032522475023137 a004 Fibonacci(43)*Lucas(36)/(1/2+sqrt(5)/2)^84 4032522475023137 a004 Fibonacci(41)*Lucas(36)/(1/2+sqrt(5)/2)^82 4032522475023137 a001 3732588/11384387281*12752043^(5/17) 4032522475023137 a001 9227465/5600748293801*20633239^(3/5) 4032522475023137 a004 Fibonacci(39)*Lucas(36)/(1/2+sqrt(5)/2)^80 4032522475023137 a001 39088169/17393796001*12752043^(3/17) 4032522475023137 a001 9227465/3461452808002*20633239^(4/7) 4032522475023137 a001 102334155/45537549124*12752043^(3/17) 4032522475023137 a001 24157817/4106118243*12752043^(2/17) 4032522475023137 a001 267914296/119218851371*12752043^(3/17) 4032522475023137 a001 3524667/1568437211*12752043^(3/17) 4032522475023137 a001 1836311903/817138163596*12752043^(3/17) 4032522475023137 a001 4807526976/2139295485799*12752043^(3/17) 4032522475023137 a001 12586269025/5600748293801*12752043^(3/17) 4032522475023137 a001 32951280099/14662949395604*12752043^(3/17) 4032522475023137 a001 53316291173/23725150497407*12752043^(3/17) 4032522475023137 a001 20365011074/9062201101803*12752043^(3/17) 4032522475023137 a001 7778742049/3461452808002*12752043^(3/17) 4032522475023137 a001 2971215073/1322157322203*12752043^(3/17) 4032522475023137 a001 1134903170/505019158607*12752043^(3/17) 4032522475023137 a001 433494437/192900153618*12752043^(3/17) 4032522475023137 a001 165580141/73681302247*12752043^(3/17) 4032522475023137 a001 63245986/28143753123*12752043^(3/17) 4032522475023138 a004 Fibonacci(37)*Lucas(36)/(1/2+sqrt(5)/2)^78 4032522475023138 a001 14930352/119218851371*12752043^(6/17) 4032522475023138 a001 39088169/45537549124*12752043^(4/17) 4032522475023138 a001 9227465/312119004989*20633239^(3/7) 4032522475023139 a001 9227465/192900153618*20633239^(2/5) 4032522475023139 a001 102334155/119218851371*12752043^(4/17) 4032522475023139 a001 24157817/10749957122*12752043^(3/17) 4032522475023139 a001 267914296/312119004989*12752043^(4/17) 4032522475023139 a001 701408733/817138163596*12752043^(4/17) 4032522475023139 a001 1836311903/2139295485799*12752043^(4/17) 4032522475023139 a001 4807526976/5600748293801*12752043^(4/17) 4032522475023139 a001 12586269025/14662949395604*12752043^(4/17) 4032522475023139 a001 20365011074/23725150497407*12752043^(4/17) 4032522475023139 a001 7778742049/9062201101803*12752043^(4/17) 4032522475023139 a001 2971215073/3461452808002*12752043^(4/17) 4032522475023139 a001 1134903170/1322157322203*12752043^(4/17) 4032522475023139 a001 433494437/505019158607*12752043^(4/17) 4032522475023139 a004 Fibonacci(35)/Lucas(36)/(1/2+sqrt(5)/2)^4 4032522475023139 a004 Fibonacci(36)/Lucas(35)/(1/2+sqrt(5)/2)^6 4032522475023139 a001 165580141/192900153618*12752043^(4/17) 4032522475023139 a001 63245986/73681302247*12752043^(4/17) 4032522475023139 a001 14930352/312119004989*12752043^(7/17) 4032522475023140 a001 39088169/119218851371*12752043^(5/17) 4032522475023140 a001 9227465/28143753123*20633239^(2/7) 4032522475023140 a001 14930352/969323029*4870847^(1/16) 4032522475023140 a001 5702887/2537720636*4870847^(3/16) 4032522475023140 a001 9303105/28374454999*12752043^(5/17) 4032522475023140 a001 24157817/28143753123*12752043^(4/17) 4032522475023140 a001 66978574/204284540899*12752043^(5/17) 4032522475023140 a001 701408733/2139295485799*12752043^(5/17) 4032522475023140 a001 1836311903/5600748293801*12752043^(5/17) 4032522475023140 a001 1201881744/3665737348901*12752043^(5/17) 4032522475023140 a001 7778742049/23725150497407*12752043^(5/17) 4032522475023140 a001 2971215073/9062201101803*12752043^(5/17) 4032522475023140 a001 567451585/1730726404001*12752043^(5/17) 4032522475023140 a001 433494437/1322157322203*12752043^(5/17) 4032522475023140 a001 165580141/505019158607*12752043^(5/17) 4032522475023140 a001 31622993/96450076809*12752043^(5/17) 4032522475023140 a001 9227465/6643838879*20633239^(1/5) 4032522475023141 a001 3732588/204284540899*12752043^(8/17) 4032522475023141 a004 Fibonacci(35)*Lucas(37)/(1/2+sqrt(5)/2)^77 4032522475023141 a001 9227465/2537720636*20633239^(1/7) 4032522475023141 a001 39088169/312119004989*12752043^(6/17) 4032522475023142 a001 102334155/817138163596*12752043^(6/17) 4032522475023142 a001 24157817/73681302247*12752043^(5/17) 4032522475023142 a001 267914296/2139295485799*12752043^(6/17) 4032522475023142 a001 701408733/5600748293801*12752043^(6/17) 4032522475023142 a001 1836311903/14662949395604*12752043^(6/17) 4032522475023142 a001 2971215073/23725150497407*12752043^(6/17) 4032522475023142 a001 1134903170/9062201101803*12752043^(6/17) 4032522475023142 a001 433494437/3461452808002*12752043^(6/17) 4032522475023142 a001 4976784/440719107401*12752043^(1/2) 4032522475023142 a001 165580141/1322157322203*12752043^(6/17) 4032522475023142 a004 Fibonacci(35)/Lucas(38)/(1/2+sqrt(5)/2)^2 4032522475023142 a004 Fibonacci(38)/Lucas(35)/(1/2+sqrt(5)/2)^8 4032522475023142 a001 63245986/505019158607*12752043^(6/17) 4032522475023142 a004 Fibonacci(35)*Lucas(39)/(1/2+sqrt(5)/2)^79 4032522475023142 a001 9227465/23725150497407*141422324^(8/13) 4032522475023142 a001 9227465/5600748293801*141422324^(7/13) 4032522475023142 a001 9227465/1322157322203*141422324^(6/13) 4032522475023142 a001 9227465/312119004989*141422324^(5/13) 4032522475023142 a004 Fibonacci(40)/Lucas(35)/(1/2+sqrt(5)/2)^10 4032522475023142 a001 9227465/119218851371*141422324^(1/3) 4032522475023142 a001 9227465/73681302247*141422324^(4/13) 4032522475023142 a001 9227465/17393796001*141422324^(3/13) 4032522475023142 a001 9227465/4106118243*141422324^(2/13) 4032522475023142 a004 Fibonacci(35)*Lucas(41)/(1/2+sqrt(5)/2)^81 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^2/Lucas(42) 4032522475023142 a004 Fibonacci(42)/Lucas(35)/(1/2+sqrt(5)/2)^12 4032522475023142 a001 9227465/599074578*10749957122^(1/24) 4032522475023142 a001 9227465/599074578*4106118243^(1/23) 4032522475023142 a001 9227465/969323029*141422324^(1/13) 4032522475023142 a001 9227465/599074578*1568397607^(1/22) 4032522475023142 a001 9227465/599074578*599074578^(1/21) 4032522475023142 a001 9227465/599074578*228826127^(1/20) 4032522475023142 a004 Fibonacci(35)*Lucas(43)/(1/2+sqrt(5)/2)^83 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^4/Lucas(44) 4032522475023142 a004 Fibonacci(44)/Lucas(35)/(1/2+sqrt(5)/2)^14 4032522475023142 a001 9227465/1568397607*23725150497407^(1/16) 4032522475023142 a001 9227465/1568397607*73681302247^(1/13) 4032522475023142 a001 9227465/1568397607*10749957122^(1/12) 4032522475023142 a001 9227465/1568397607*4106118243^(2/23) 4032522475023142 a001 9227465/1568397607*1568397607^(1/11) 4032522475023142 a004 Fibonacci(35)*Lucas(45)/(1/2+sqrt(5)/2)^85 4032522475023142 a001 9227465/1568397607*599074578^(2/21) 4032522475023142 a001 9227465/23725150497407*2537720636^(8/15) 4032522475023142 a001 9227465/4106118243*2537720636^(2/15) 4032522475023142 a001 9227465/5600748293801*2537720636^(7/15) 4032522475023142 a001 9227465/3461452808002*2537720636^(4/9) 4032522475023142 a001 9227465/1322157322203*2537720636^(2/5) 4032522475023142 a001 9227465/4106118243*45537549124^(2/17) 4032522475023142 a001 9227465/4106118243*14662949395604^(2/21) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^6/Lucas(46) 4032522475023142 a004 Fibonacci(46)/Lucas(35)/(1/2+sqrt(5)/2)^16 4032522475023142 a001 9227465/4106118243*10749957122^(1/8) 4032522475023142 a001 9227465/312119004989*2537720636^(1/3) 4032522475023142 a001 9227465/4106118243*4106118243^(3/23) 4032522475023142 a001 9227465/73681302247*2537720636^(4/15) 4032522475023142 a001 9227465/28143753123*2537720636^(2/9) 4032522475023142 a001 9227465/17393796001*2537720636^(1/5) 4032522475023142 a004 Fibonacci(35)*Lucas(47)/(1/2+sqrt(5)/2)^87 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^8/Lucas(48) 4032522475023142 a004 Fibonacci(48)/Lucas(35)/(1/2+sqrt(5)/2)^18 4032522475023142 a001 9227465/10749957122*23725150497407^(1/8) 4032522475023142 a001 9227465/10749957122*505019158607^(1/7) 4032522475023142 a001 9227465/10749957122*73681302247^(2/13) 4032522475023142 a001 9227465/10749957122*10749957122^(1/6) 4032522475023142 a001 9227465/4106118243*1568397607^(3/22) 4032522475023142 a004 Fibonacci(35)*Lucas(49)/(1/2+sqrt(5)/2)^89 4032522475023142 a001 9227465/5600748293801*17393796001^(3/7) 4032522475023142 a001 9227465/28143753123*312119004989^(2/11) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^10/Lucas(50) 4032522475023142 a004 Fibonacci(50)/Lucas(35)/(1/2+sqrt(5)/2)^20 4032522475023142 a001 9227465/28143753123*28143753123^(1/5) 4032522475023142 a001 9227465/192900153618*17393796001^(2/7) 4032522475023142 a004 Fibonacci(35)*Lucas(51)/(1/2+sqrt(5)/2)^91 4032522475023142 a001 9227465/73681302247*45537549124^(4/17) 4032522475023142 a001 9227465/23725150497407*45537549124^(8/17) 4032522475023142 a001 9227465/5600748293801*45537549124^(7/17) 4032522475023142 a001 9227465/73681302247*817138163596^(4/19) 4032522475023142 a001 9227465/73681302247*14662949395604^(4/21) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^12/Lucas(52) 4032522475023142 a004 Fibonacci(52)/Lucas(35)/(1/2+sqrt(5)/2)^22 4032522475023142 a001 9227465/73681302247*192900153618^(2/9) 4032522475023142 a001 9227465/1322157322203*45537549124^(6/17) 4032522475023142 a001 9227465/817138163596*45537549124^(1/3) 4032522475023142 a001 9227465/73681302247*73681302247^(3/13) 4032522475023142 a001 9227465/312119004989*45537549124^(5/17) 4032522475023142 a004 Fibonacci(35)*Lucas(53)/(1/2+sqrt(5)/2)^93 4032522475023142 a001 9227465/192900153618*14662949395604^(2/9) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^14/Lucas(54) 4032522475023142 a004 Fibonacci(54)/Lucas(35)/(1/2+sqrt(5)/2)^24 4032522475023142 a004 Fibonacci(35)*Lucas(55)/(1/2+sqrt(5)/2)^95 4032522475023142 a001 9227465/9062201101803*312119004989^(2/5) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^16/Lucas(56) 4032522475023142 a004 Fibonacci(56)/Lucas(35)/(1/2+sqrt(5)/2)^26 4032522475023142 a004 Fibonacci(35)*Lucas(57)/(1/2+sqrt(5)/2)^97 4032522475023142 a001 9227465/1322157322203*14662949395604^(2/7) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^18/Lucas(58) 4032522475023142 a004 Fibonacci(58)/Lucas(35)/(1/2+sqrt(5)/2)^28 4032522475023142 a001 9227465/2139295485799*817138163596^(1/3) 4032522475023142 a004 Fibonacci(35)*Lucas(59)/(1/2+sqrt(5)/2)^99 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^20/Lucas(60) 4032522475023142 a004 Fibonacci(60)/Lucas(35)/(1/2+sqrt(5)/2)^30 4032522475023142 a001 9227465/3461452808002*23725150497407^(5/16) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^22/Lucas(62) 4032522475023142 a004 Fibonacci(62)/Lucas(35)/(1/2+sqrt(5)/2)^32 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^24/Lucas(64) 4032522475023142 a004 Fibonacci(64)/Lucas(35)/(1/2+sqrt(5)/2)^34 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^26/Lucas(66) 4032522475023142 a004 Fibonacci(66)/Lucas(35)/(1/2+sqrt(5)/2)^36 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^28/Lucas(68) 4032522475023142 a004 Fibonacci(68)/Lucas(35)/(1/2+sqrt(5)/2)^38 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^30/Lucas(70) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^32/Lucas(72) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^34/Lucas(74) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^36/Lucas(76) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^38/Lucas(78) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^40/Lucas(80) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^42/Lucas(82) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^44/Lucas(84) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^46/Lucas(86) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^48/Lucas(88) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^50/Lucas(90) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^52/Lucas(92) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^54/Lucas(94) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^56/Lucas(96) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^58/Lucas(98) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^59/Lucas(99) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^60/Lucas(100) 4032522475023142 a004 Fibonacci(35)*Lucas(1)/(1/2+sqrt(5)/2)^40 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^57/Lucas(97) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^55/Lucas(95) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^53/Lucas(93) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^51/Lucas(91) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^49/Lucas(89) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^47/Lucas(87) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^45/Lucas(85) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^43/Lucas(83) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^41/Lucas(81) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^39/Lucas(79) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^37/Lucas(77) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^35/Lucas(75) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^33/Lucas(73) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^31/Lucas(71) 4032522475023142 a004 Fibonacci(72)/Lucas(35)/(1/2+sqrt(5)/2)^42 4032522475023142 a004 Fibonacci(74)/Lucas(35)/(1/2+sqrt(5)/2)^44 4032522475023142 a004 Fibonacci(76)/Lucas(35)/(1/2+sqrt(5)/2)^46 4032522475023142 a004 Fibonacci(78)/Lucas(35)/(1/2+sqrt(5)/2)^48 4032522475023142 a004 Fibonacci(80)/Lucas(35)/(1/2+sqrt(5)/2)^50 4032522475023142 a004 Fibonacci(82)/Lucas(35)/(1/2+sqrt(5)/2)^52 4032522475023142 a004 Fibonacci(84)/Lucas(35)/(1/2+sqrt(5)/2)^54 4032522475023142 a004 Fibonacci(86)/Lucas(35)/(1/2+sqrt(5)/2)^56 4032522475023142 a004 Fibonacci(88)/Lucas(35)/(1/2+sqrt(5)/2)^58 4032522475023142 a004 Fibonacci(90)/Lucas(35)/(1/2+sqrt(5)/2)^60 4032522475023142 a004 Fibonacci(92)/Lucas(35)/(1/2+sqrt(5)/2)^62 4032522475023142 a004 Fibonacci(94)/Lucas(35)/(1/2+sqrt(5)/2)^64 4032522475023142 a004 Fibonacci(96)/Lucas(35)/(1/2+sqrt(5)/2)^66 4032522475023142 a004 Fibonacci(98)/Lucas(35)/(1/2+sqrt(5)/2)^68 4032522475023142 a004 Fibonacci(100)/Lucas(35)/(1/2+sqrt(5)/2)^70 4032522475023142 a004 Fibonacci(99)/Lucas(35)/(1/2+sqrt(5)/2)^69 4032522475023142 a004 Fibonacci(97)/Lucas(35)/(1/2+sqrt(5)/2)^67 4032522475023142 a004 Fibonacci(95)/Lucas(35)/(1/2+sqrt(5)/2)^65 4032522475023142 a004 Fibonacci(93)/Lucas(35)/(1/2+sqrt(5)/2)^63 4032522475023142 a004 Fibonacci(91)/Lucas(35)/(1/2+sqrt(5)/2)^61 4032522475023142 a004 Fibonacci(89)/Lucas(35)/(1/2+sqrt(5)/2)^59 4032522475023142 a004 Fibonacci(87)/Lucas(35)/(1/2+sqrt(5)/2)^57 4032522475023142 a004 Fibonacci(85)/Lucas(35)/(1/2+sqrt(5)/2)^55 4032522475023142 a004 Fibonacci(83)/Lucas(35)/(1/2+sqrt(5)/2)^53 4032522475023142 a004 Fibonacci(81)/Lucas(35)/(1/2+sqrt(5)/2)^51 4032522475023142 a004 Fibonacci(79)/Lucas(35)/(1/2+sqrt(5)/2)^49 4032522475023142 a004 Fibonacci(77)/Lucas(35)/(1/2+sqrt(5)/2)^47 4032522475023142 a004 Fibonacci(75)/Lucas(35)/(1/2+sqrt(5)/2)^45 4032522475023142 a004 Fibonacci(73)/Lucas(35)/(1/2+sqrt(5)/2)^43 4032522475023142 a004 Fibonacci(71)/Lucas(35)/(1/2+sqrt(5)/2)^41 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^29/Lucas(69) 4032522475023142 a004 Fibonacci(69)/Lucas(35)/(1/2+sqrt(5)/2)^39 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^27/Lucas(67) 4032522475023142 a004 Fibonacci(67)/Lucas(35)/(1/2+sqrt(5)/2)^37 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^25/Lucas(65) 4032522475023142 a004 Fibonacci(65)/Lucas(35)/(1/2+sqrt(5)/2)^35 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^23/Lucas(63) 4032522475023142 a004 Fibonacci(63)/Lucas(35)/(1/2+sqrt(5)/2)^33 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^21/Lucas(61) 4032522475023142 a004 Fibonacci(61)/Lucas(35)/(1/2+sqrt(5)/2)^31 4032522475023142 a004 Fibonacci(35)*Lucas(60)/(1/2+sqrt(5)/2)^100 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^19/Lucas(59) 4032522475023142 a004 Fibonacci(59)/Lucas(35)/(1/2+sqrt(5)/2)^29 4032522475023142 a004 Fibonacci(35)*Lucas(58)/(1/2+sqrt(5)/2)^98 4032522475023142 a001 9227465/3461452808002*505019158607^(5/14) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^17/Lucas(57) 4032522475023142 a004 Fibonacci(57)/Lucas(35)/(1/2+sqrt(5)/2)^27 4032522475023142 a004 Fibonacci(35)*Lucas(56)/(1/2+sqrt(5)/2)^96 4032522475023142 a001 9227465/1322157322203*192900153618^(1/3) 4032522475023142 a001 9227465/312119004989*14662949395604^(5/21) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^15/Lucas(55) 4032522475023142 a004 Fibonacci(55)/Lucas(35)/(1/2+sqrt(5)/2)^25 4032522475023142 a001 9227465/5600748293801*192900153618^(7/18) 4032522475023142 a001 9227465/23725150497407*192900153618^(4/9) 4032522475023142 a001 9227465/312119004989*192900153618^(5/18) 4032522475023142 a004 Fibonacci(35)*Lucas(54)/(1/2+sqrt(5)/2)^94 4032522475023142 a001 9227465/505019158607*73681302247^(4/13) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^13/Lucas(53) 4032522475023142 a004 Fibonacci(53)/Lucas(35)/(1/2+sqrt(5)/2)^23 4032522475023142 a001 9227465/3461452808002*73681302247^(5/13) 4032522475023142 a001 9227465/23725150497407*73681302247^(6/13) 4032522475023142 a001 9227465/119218851371*73681302247^(1/4) 4032522475023142 a004 Fibonacci(35)*Lucas(52)/(1/2+sqrt(5)/2)^92 4032522475023142 a001 9227465/312119004989*28143753123^(3/10) 4032522475023142 a001 9227465/45537549124*312119004989^(1/5) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^11/Lucas(51) 4032522475023142 a004 Fibonacci(51)/Lucas(35)/(1/2+sqrt(5)/2)^21 4032522475023142 a001 9227465/3461452808002*28143753123^(2/5) 4032522475023142 a001 9227465/28143753123*10749957122^(5/24) 4032522475023142 a004 Fibonacci(35)*Lucas(50)/(1/2+sqrt(5)/2)^90 4032522475023142 a001 9227465/10749957122*4106118243^(4/23) 4032522475023142 a001 9227465/73681302247*10749957122^(1/4) 4032522475023142 a001 9227465/192900153618*10749957122^(7/24) 4032522475023142 a001 9227465/312119004989*10749957122^(5/16) 4032522475023142 a001 9227465/505019158607*10749957122^(1/3) 4032522475023142 a001 9227465/17393796001*45537549124^(3/17) 4032522475023142 a001 9227465/1322157322203*10749957122^(3/8) 4032522475023142 a001 9227465/17393796001*817138163596^(3/19) 4032522475023142 a001 9227465/17393796001*14662949395604^(1/7) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^9/Lucas(49) 4032522475023142 a004 Fibonacci(49)/Lucas(35)/(1/2+sqrt(5)/2)^19 4032522475023142 a001 9227465/17393796001*192900153618^(1/6) 4032522475023142 a001 9227465/3461452808002*10749957122^(5/12) 4032522475023142 a001 9227465/5600748293801*10749957122^(7/16) 4032522475023142 a001 9227465/9062201101803*10749957122^(11/24) 4032522475023142 a001 9227465/23725150497407*10749957122^(1/2) 4032522475023142 a001 9227465/17393796001*10749957122^(3/16) 4032522475023142 a004 Fibonacci(35)*Lucas(48)/(1/2+sqrt(5)/2)^88 4032522475023142 a001 9227465/28143753123*4106118243^(5/23) 4032522475023142 a001 9227465/73681302247*4106118243^(6/23) 4032522475023142 a001 9227465/192900153618*4106118243^(7/23) 4032522475023142 a001 9227465/505019158607*4106118243^(8/23) 4032522475023142 a001 9227465/6643838879*17393796001^(1/7) 4032522475023142 a001 9227465/6643838879*14662949395604^(1/9) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^7/Lucas(47) 4032522475023142 a004 Fibonacci(47)/Lucas(35)/(1/2+sqrt(5)/2)^17 4032522475023142 a001 9227465/1322157322203*4106118243^(9/23) 4032522475023142 a001 9227465/3461452808002*4106118243^(10/23) 4032522475023142 a001 9227465/9062201101803*4106118243^(11/23) 4032522475023142 a001 9227465/14662949395604*4106118243^(1/2) 4032522475023142 a001 9227465/23725150497407*4106118243^(12/23) 4032522475023142 a004 Fibonacci(35)*Lucas(46)/(1/2+sqrt(5)/2)^86 4032522475023142 a001 9227465/10749957122*1568397607^(2/11) 4032522475023142 a001 9227465/28143753123*1568397607^(5/22) 4032522475023142 a001 9227465/45537549124*1568397607^(1/4) 4032522475023142 a001 9227465/73681302247*1568397607^(3/11) 4032522475023142 a001 9227465/192900153618*1568397607^(7/22) 4032522475023142 a001 9227465/2537720636*2537720636^(1/9) 4032522475023142 a001 9227465/505019158607*1568397607^(4/11) 4032522475023142 a001 9227465/2537720636*312119004989^(1/11) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^5/Lucas(45) 4032522475023142 a004 Fibonacci(45)/Lucas(35)/(1/2+sqrt(5)/2)^15 4032522475023142 a001 9227465/2537720636*28143753123^(1/10) 4032522475023142 a001 9227465/1322157322203*1568397607^(9/22) 4032522475023142 a001 9227465/3461452808002*1568397607^(5/11) 4032522475023142 a001 9227465/9062201101803*1568397607^(1/2) 4032522475023142 a001 9227465/23725150497407*1568397607^(6/11) 4032522475023142 a001 9227465/4106118243*599074578^(1/7) 4032522475023142 a004 Fibonacci(35)*Lucas(44)/(1/2+sqrt(5)/2)^84 4032522475023142 a001 9227465/6643838879*599074578^(1/6) 4032522475023142 a001 9227465/10749957122*599074578^(4/21) 4032522475023142 a001 9227465/17393796001*599074578^(3/14) 4032522475023142 a001 9227465/28143753123*599074578^(5/21) 4032522475023142 a001 9227465/73681302247*599074578^(2/7) 4032522475023142 a001 9227465/192900153618*599074578^(1/3) 4032522475023142 a001 9227465/312119004989*599074578^(5/14) 4032522475023142 a001 9227465/969323029*2537720636^(1/15) 4032522475023142 a001 9227465/505019158607*599074578^(8/21) 4032522475023142 a001 9227465/969323029*45537549124^(1/17) 4032522475023142 a001 9227465/969323029*14662949395604^(1/21) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^3/Lucas(43) 4032522475023142 a004 Fibonacci(43)/Lucas(35)/(1/2+sqrt(5)/2)^13 4032522475023142 a001 9227465/969323029*192900153618^(1/18) 4032522475023142 a001 9227465/969323029*10749957122^(1/16) 4032522475023142 a001 9227465/1322157322203*599074578^(3/7) 4032522475023142 a001 9227465/969323029*599074578^(1/14) 4032522475023142 a001 9227465/3461452808002*599074578^(10/21) 4032522475023142 a001 9227465/5600748293801*599074578^(1/2) 4032522475023142 a001 9227465/9062201101803*599074578^(11/21) 4032522475023142 a001 9227465/1568397607*228826127^(1/10) 4032522475023142 a001 9227465/23725150497407*599074578^(4/7) 4032522475023142 a001 9227465/2537720636*228826127^(1/8) 4032522475023142 a004 Fibonacci(35)*Lucas(42)/(1/2+sqrt(5)/2)^82 4032522475023142 a001 9227465/4106118243*228826127^(3/20) 4032522475023142 a001 9227465/10749957122*228826127^(1/5) 4032522475023142 a001 9227465/599074578*87403803^(1/19) 4032522475023142 a001 9227465/28143753123*228826127^(1/4) 4032522475023142 a001 9227465/73681302247*228826127^(3/10) 4032522475023142 a001 9227465/192900153618*228826127^(7/20) 4032522475023142 a001 9227465/312119004989*228826127^(3/8) 4032522475023142 a004 Fibonacci(35)*(1/2+sqrt(5)/2)/Lucas(41) 4032522475023142 a004 Fibonacci(41)/Lucas(35)/(1/2+sqrt(5)/2)^11 4032522475023142 a001 9227465/505019158607*228826127^(2/5) 4032522475023142 a001 9227465/1322157322203*228826127^(9/20) 4032522475023142 a001 14930352/2139295485799*12752043^(9/17) 4032522475023142 a001 9227465/3461452808002*228826127^(1/2) 4032522475023142 a001 9227465/9062201101803*228826127^(11/20) 4032522475023142 a001 9227465/23725150497407*228826127^(3/5) 4032522475023142 a001 9227465/1568397607*87403803^(2/19) 4032522475023142 a004 Fibonacci(35)*Lucas(40)/(1/2+sqrt(5)/2)^80 4032522475023142 a001 9227465/4106118243*87403803^(3/19) 4032522475023142 a001 9227465/10749957122*87403803^(4/19) 4032522475023143 a001 9227465/28143753123*87403803^(5/19) 4032522475023143 a001 9227465/73681302247*87403803^(6/19) 4032522475023143 a001 9227465/599074578*33385282^(1/18) 4032522475023143 a001 9227465/192900153618*87403803^(7/19) 4032522475023143 a004 Fibonacci(35)/Lucas(39)/(1/2+sqrt(5)/2) 4032522475023143 a004 Fibonacci(39)/Lucas(35)/(1/2+sqrt(5)/2)^9 4032522475023143 a001 4181/87403804*12752043^(7/17) 4032522475023143 a001 9227465/505019158607*87403803^(8/19) 4032522475023143 a001 9227465/1322157322203*87403803^(9/19) 4032522475023143 a001 9227465/2139295485799*87403803^(1/2) 4032522475023143 a001 9227465/3461452808002*87403803^(10/19) 4032522475023143 a001 9227465/9062201101803*87403803^(11/19) 4032522475023143 a001 9227465/969323029*33385282^(1/12) 4032522475023143 a001 9227465/23725150497407*87403803^(12/19) 4032522475023143 a001 9227465/1568397607*33385282^(1/9) 4032522475023143 a004 Fibonacci(35)*Lucas(38)/(1/2+sqrt(5)/2)^78 4032522475023143 a001 9227465/4106118243*33385282^(1/6) 4032522475023143 a001 39088169/2537720636*4870847^(1/16) 4032522475023143 a001 102334155/2139295485799*12752043^(7/17) 4032522475023143 a001 24157817/192900153618*12752043^(6/17) 4032522475023143 a001 267914296/5600748293801*12752043^(7/17) 4032522475023143 a001 701408733/14662949395604*12752043^(7/17) 4032522475023143 a001 1134903170/23725150497407*12752043^(7/17) 4032522475023143 a001 433494437/9062201101803*12752043^(7/17) 4032522475023143 a001 165580141/3461452808002*12752043^(7/17) 4032522475023143 a001 9227465/10749957122*33385282^(2/9) 4032522475023143 a001 9227465/17393796001*33385282^(1/4) 4032522475023143 a001 63245986/1322157322203*12752043^(7/17) 4032522475023143 a001 9227465/28143753123*33385282^(5/18) 4032522475023143 a001 102334155/6643838879*4870847^(1/16) 4032522475023144 a001 9238424/599786069*4870847^(1/16) 4032522475023144 a001 701408733/45537549124*4870847^(1/16) 4032522475023144 a001 1836311903/119218851371*4870847^(1/16) 4032522475023144 a001 4807526976/312119004989*4870847^(1/16) 4032522475023144 a001 12586269025/817138163596*4870847^(1/16) 4032522475023144 a001 32951280099/2139295485799*4870847^(1/16) 4032522475023144 a001 86267571272/5600748293801*4870847^(1/16) 4032522475023144 a001 7787980473/505618944676*4870847^(1/16) 4032522475023144 a001 365435296162/23725150497407*4870847^(1/16) 4032522475023144 a001 139583862445/9062201101803*4870847^(1/16) 4032522475023144 a001 53316291173/3461452808002*4870847^(1/16) 4032522475023144 a001 20365011074/1322157322203*4870847^(1/16) 4032522475023144 a001 7778742049/505019158607*4870847^(1/16) 4032522475023144 a001 2971215073/192900153618*4870847^(1/16) 4032522475023144 a001 1134903170/73681302247*4870847^(1/16) 4032522475023144 a001 433494437/28143753123*4870847^(1/16) 4032522475023144 a001 165580141/10749957122*4870847^(1/16) 4032522475023144 a001 9227465/73681302247*33385282^(1/3) 4032522475023144 a001 63245986/4106118243*4870847^(1/16) 4032522475023144 a004 Fibonacci(35)/Lucas(37)/(1/2+sqrt(5)/2)^3 4032522475023144 a004 Fibonacci(37)/Lucas(35)/(1/2+sqrt(5)/2)^7 4032522475023144 a001 9227465/192900153618*33385282^(7/18) 4032522475023144 a001 9227465/599074578*12752043^(1/17) 4032522475023144 a001 14930352/5600748293801*12752043^(10/17) 4032522475023144 a001 9227465/312119004989*33385282^(5/12) 4032522475023144 a001 9227465/505019158607*33385282^(4/9) 4032522475023144 a001 39088169/2139295485799*12752043^(8/17) 4032522475023144 a001 9227465/1322157322203*33385282^(1/2) 4032522475023144 a001 9227465/3461452808002*33385282^(5/9) 4032522475023144 a001 9227465/5600748293801*33385282^(7/12) 4032522475023144 a001 102334155/5600748293801*12752043^(8/17) 4032522475023144 a001 24157817/505019158607*12752043^(7/17) 4032522475023145 a001 10946/599074579*12752043^(8/17) 4032522475023145 a001 433494437/23725150497407*12752043^(8/17) 4032522475023145 a001 9227465/9062201101803*33385282^(11/18) 4032522475023145 a001 165580141/9062201101803*12752043^(8/17) 4032522475023145 a001 39088169/3461452808002*12752043^(1/2) 4032522475023145 a001 31622993/1730726404001*12752043^(8/17) 4032522475023145 a001 9227465/23725150497407*33385282^(2/3) 4032522475023145 a001 24157817/1568397607*4870847^(1/16) 4032522475023145 a001 34111385/3020733700601*12752043^(1/2) 4032522475023145 a001 267914296/23725150497407*12752043^(1/2) 4032522475023145 a001 9227465/1568397607*12752043^(2/17) 4032522475023145 a001 196452/192933544679*12752043^(11/17) 4032522475023145 a001 165580141/14662949395604*12752043^(1/2) 4032522475023145 a001 39088169/5600748293801*12752043^(9/17) 4032522475023145 a001 63245986/5600748293801*12752043^(1/2) 4032522475023146 a001 102334155/14662949395604*12752043^(9/17) 4032522475023146 a001 24157817/1322157322203*12752043^(8/17) 4032522475023146 a004 Fibonacci(35)*Lucas(36)/(1/2+sqrt(5)/2)^76 4032522475023146 a001 165580141/23725150497407*12752043^(9/17) 4032522475023146 a001 63245986/9062201101803*12752043^(9/17) 4032522475023147 a001 24157817/2139295485799*12752043^(1/2) 4032522475023147 a001 9227465/4106118243*12752043^(3/17) 4032522475023147 a001 39088169/14662949395604*12752043^(10/17) 4032522475023147 a001 24157817/3461452808002*12752043^(9/17) 4032522475023148 a001 63245986/23725150497407*12752043^(10/17) 4032522475023148 a001 9227465/10749957122*12752043^(4/17) 4032522475023149 a001 24157817/9062201101803*12752043^(10/17) 4032522475023150 a001 9227465/28143753123*12752043^(5/17) 4032522475023150 a001 24157817/23725150497407*12752043^(11/17) 4032522475023151 a001 196452/33391061*4870847^(1/8) 4032522475023151 a001 5702887/6643838879*4870847^(1/4) 4032522475023151 a001 3524578/9062201101803*7881196^(8/11) 4032522475023151 a001 9227465/73681302247*12752043^(6/17) 4032522475023152 a004 Fibonacci(35)/Lucas(35)/(1/2+sqrt(5)/2)^5 4032522475023153 a001 9227465/192900153618*12752043^(7/17) 4032522475023153 a001 9227465/599074578*4870847^(1/16) 4032522475023154 a001 39088169/6643838879*4870847^(1/8) 4032522475023154 a001 9227465/505019158607*12752043^(8/17) 4032522475023154 a001 102334155/17393796001*4870847^(1/8) 4032522475023154 a004 Fibonacci(36)*Lucas(34)/(1/2+sqrt(5)/2)^75 4032522475023154 a001 66978574/11384387281*4870847^(1/8) 4032522475023154 a001 701408733/119218851371*4870847^(1/8) 4032522475023154 a001 1836311903/312119004989*4870847^(1/8) 4032522475023154 a001 1201881744/204284540899*4870847^(1/8) 4032522475023154 a001 12586269025/2139295485799*4870847^(1/8) 4032522475023154 a001 32951280099/5600748293801*4870847^(1/8) 4032522475023154 a001 1135099622/192933544679*4870847^(1/8) 4032522475023154 a001 139583862445/23725150497407*4870847^(1/8) 4032522475023154 a001 53316291173/9062201101803*4870847^(1/8) 4032522475023154 a001 10182505537/1730726404001*4870847^(1/8) 4032522475023154 a001 7778742049/1322157322203*4870847^(1/8) 4032522475023154 a001 2971215073/505019158607*4870847^(1/8) 4032522475023154 a001 567451585/96450076809*4870847^(1/8) 4032522475023154 a001 433494437/73681302247*4870847^(1/8) 4032522475023154 a001 165580141/28143753123*4870847^(1/8) 4032522475023154 a001 31622993/5374978561*4870847^(1/8) 4032522475023155 a001 1762289/1730726404001*7881196^(2/3) 4032522475023155 a001 9227465/817138163596*12752043^(1/2) 4032522475023155 a001 9227465/1322157322203*12752043^(9/17) 4032522475023156 a001 24157817/4106118243*4870847^(1/8) 4032522475023157 a001 3524578/2139295485799*7881196^(7/11) 4032522475023157 a001 9227465/3461452808002*12752043^(10/17) 4032522475023157 a001 726103/199691526*1860498^(1/6) 4032522475023157 a004 Fibonacci(38)*Lucas(34)/(1/2+sqrt(5)/2)^77 4032522475023157 a001 12752043/63245986*8^(1/3) 4032522475023158 a004 Fibonacci(40)*Lucas(34)/(1/2+sqrt(5)/2)^79 4032522475023158 a004 Fibonacci(42)*Lucas(34)/(1/2+sqrt(5)/2)^81 4032522475023158 a004 Fibonacci(44)*Lucas(34)/(1/2+sqrt(5)/2)^83 4032522475023158 a004 Fibonacci(46)*Lucas(34)/(1/2+sqrt(5)/2)^85 4032522475023158 a004 Fibonacci(48)*Lucas(34)/(1/2+sqrt(5)/2)^87 4032522475023158 a004 Fibonacci(50)*Lucas(34)/(1/2+sqrt(5)/2)^89 4032522475023158 a004 Fibonacci(52)*Lucas(34)/(1/2+sqrt(5)/2)^91 4032522475023158 a004 Fibonacci(54)*Lucas(34)/(1/2+sqrt(5)/2)^93 4032522475023158 a004 Fibonacci(56)*Lucas(34)/(1/2+sqrt(5)/2)^95 4032522475023158 a004 Fibonacci(58)*Lucas(34)/(1/2+sqrt(5)/2)^97 4032522475023158 a004 Fibonacci(60)*Lucas(34)/(1/2+sqrt(5)/2)^99 4032522475023158 a001 2/5702887*(1/2+1/2*5^(1/2))^29 4032522475023158 a004 Fibonacci(61)*Lucas(34)/(1/2+sqrt(5)/2)^100 4032522475023158 a004 Fibonacci(59)*Lucas(34)/(1/2+sqrt(5)/2)^98 4032522475023158 a004 Fibonacci(57)*Lucas(34)/(1/2+sqrt(5)/2)^96 4032522475023158 a004 Fibonacci(55)*Lucas(34)/(1/2+sqrt(5)/2)^94 4032522475023158 a004 Fibonacci(53)*Lucas(34)/(1/2+sqrt(5)/2)^92 4032522475023158 a004 Fibonacci(51)*Lucas(34)/(1/2+sqrt(5)/2)^90 4032522475023158 a004 Fibonacci(49)*Lucas(34)/(1/2+sqrt(5)/2)^88 4032522475023158 a004 Fibonacci(47)*Lucas(34)/(1/2+sqrt(5)/2)^86 4032522475023158 a004 Fibonacci(45)*Lucas(34)/(1/2+sqrt(5)/2)^84 4032522475023158 a004 Fibonacci(43)*Lucas(34)/(1/2+sqrt(5)/2)^82 4032522475023158 a004 Fibonacci(41)*Lucas(34)/(1/2+sqrt(5)/2)^80 4032522475023158 a004 Fibonacci(39)*Lucas(34)/(1/2+sqrt(5)/2)^78 4032522475023158 a001 9227465/9062201101803*12752043^(11/17) 4032522475023159 a004 Fibonacci(37)*Lucas(34)/(1/2+sqrt(5)/2)^76 4032522475023160 a001 9227465/23725150497407*12752043^(12/17) 4032522475023161 a001 14930352/6643838879*4870847^(3/16) 4032522475023161 a001 5702887/17393796001*4870847^(5/16) 4032522475023162 a001 3524578/505019158607*7881196^(6/11) 4032522475023164 a001 9227465/1568397607*4870847^(1/8) 4032522475023164 a001 39088169/17393796001*4870847^(3/16) 4032522475023165 a001 102334155/45537549124*4870847^(3/16) 4032522475023165 a001 267914296/119218851371*4870847^(3/16) 4032522475023165 a001 3524667/1568437211*4870847^(3/16) 4032522475023165 a001 1836311903/817138163596*4870847^(3/16) 4032522475023165 a001 4807526976/2139295485799*4870847^(3/16) 4032522475023165 a001 12586269025/5600748293801*4870847^(3/16) 4032522475023165 a001 32951280099/14662949395604*4870847^(3/16) 4032522475023165 a001 53316291173/23725150497407*4870847^(3/16) 4032522475023165 a001 20365011074/9062201101803*4870847^(3/16) 4032522475023165 a001 7778742049/3461452808002*4870847^(3/16) 4032522475023165 a001 2971215073/1322157322203*4870847^(3/16) 4032522475023165 a001 1134903170/505019158607*4870847^(3/16) 4032522475023165 a001 433494437/192900153618*4870847^(3/16) 4032522475023165 a001 165580141/73681302247*4870847^(3/16) 4032522475023165 a001 63245986/28143753123*4870847^(3/16) 4032522475023166 a001 24157817/10749957122*4870847^(3/16) 4032522475023167 a004 Fibonacci(35)*Lucas(34)/(1/2+sqrt(5)/2)^74 4032522475023168 a001 3524578/119218851371*7881196^(5/11) 4032522475023172 a001 14930352/17393796001*4870847^(1/4) 4032522475023172 a001 1597/12752044*4870847^(3/8) 4032522475023173 a004 Fibonacci(33)/Lucas(34)/(1/2+sqrt(5)/2)^4 4032522475023173 a004 Fibonacci(34)/Lucas(33)/(1/2+sqrt(5)/2)^6 4032522475023174 a001 3524578/28143753123*7881196^(4/11) 4032522475023174 a001 9227465/4106118243*4870847^(3/16) 4032522475023175 a001 39088169/45537549124*4870847^(1/4) 4032522475023175 a001 102334155/119218851371*4870847^(1/4) 4032522475023175 a001 267914296/312119004989*4870847^(1/4) 4032522475023175 a001 701408733/817138163596*4870847^(1/4) 4032522475023175 a001 1836311903/2139295485799*4870847^(1/4) 4032522475023175 a001 4807526976/5600748293801*4870847^(1/4) 4032522475023175 a001 12586269025/14662949395604*4870847^(1/4) 4032522475023175 a001 20365011074/23725150497407*4870847^(1/4) 4032522475023175 a001 7778742049/9062201101803*4870847^(1/4) 4032522475023175 a001 2971215073/3461452808002*4870847^(1/4) 4032522475023175 a001 1134903170/1322157322203*4870847^(1/4) 4032522475023175 a001 433494437/505019158607*4870847^(1/4) 4032522475023175 a001 165580141/192900153618*4870847^(1/4) 4032522475023176 a001 63245986/73681302247*4870847^(1/4) 4032522475023176 a001 3524578/17393796001*7881196^(1/3) 4032522475023177 a001 24157817/28143753123*4870847^(1/4) 4032522475023180 a001 3524578/6643838879*7881196^(3/11) 4032522475023182 a001 3732588/11384387281*4870847^(5/16) 4032522475023182 a001 5702887/119218851371*4870847^(7/16) 4032522475023185 a001 9227465/10749957122*4870847^(1/4) 4032522475023185 a001 39088169/119218851371*4870847^(5/16) 4032522475023186 a001 5702887/370248451*1860498^(1/15) 4032522475023186 a001 9303105/28374454999*4870847^(5/16) 4032522475023186 a001 66978574/204284540899*4870847^(5/16) 4032522475023186 a001 701408733/2139295485799*4870847^(5/16) 4032522475023186 a001 1836311903/5600748293801*4870847^(5/16) 4032522475023186 a001 1201881744/3665737348901*4870847^(5/16) 4032522475023186 a001 7778742049/23725150497407*4870847^(5/16) 4032522475023186 a001 2971215073/9062201101803*4870847^(5/16) 4032522475023186 a001 567451585/1730726404001*4870847^(5/16) 4032522475023186 a001 3524578/1568397607*7881196^(2/11) 4032522475023186 a001 433494437/1322157322203*4870847^(5/16) 4032522475023186 a001 165580141/505019158607*4870847^(5/16) 4032522475023186 a001 31622993/96450076809*4870847^(5/16) 4032522475023187 a001 24157817/73681302247*4870847^(5/16) 4032522475023188 a004 Fibonacci(33)*Lucas(35)/(1/2+sqrt(5)/2)^73 4032522475023191 a001 1762289/7331474697802*20633239^(5/7) 4032522475023192 a001 3524578/370248451*7881196^(1/11) 4032522475023192 a001 3524578/2139295485799*20633239^(3/5) 4032522475023192 a001 3524578/1322157322203*20633239^(4/7) 4032522475023193 a001 14930352/119218851371*4870847^(3/8) 4032522475023193 a001 5702887/312119004989*4870847^(1/2) 4032522475023194 a001 3524578/119218851371*20633239^(3/7) 4032522475023194 a001 3524578/73681302247*20633239^(2/5) 4032522475023194 a004 Fibonacci(33)/Lucas(36)/(1/2+sqrt(5)/2)^2 4032522475023194 a004 Fibonacci(36)/Lucas(33)/(1/2+sqrt(5)/2)^8 4032522475023195 a001 1762289/5374978561*20633239^(2/7) 4032522475023195 a001 9227465/28143753123*4870847^(5/16) 4032522475023196 a001 1762289/1268860318*20633239^(1/5) 4032522475023196 a001 2178309/969323029*1860498^(1/5) 4032522475023196 a001 39088169/312119004989*4870847^(3/8) 4032522475023196 a004 Fibonacci(33)*Lucas(37)/(1/2+sqrt(5)/2)^75 4032522475023196 a001 3524578/969323029*20633239^(1/7) 4032522475023197 a001 102334155/817138163596*4870847^(3/8) 4032522475023197 a001 267914296/2139295485799*4870847^(3/8) 4032522475023197 a001 701408733/5600748293801*4870847^(3/8) 4032522475023197 a001 1836311903/14662949395604*4870847^(3/8) 4032522475023197 a001 2971215073/23725150497407*4870847^(3/8) 4032522475023197 a001 1134903170/9062201101803*4870847^(3/8) 4032522475023197 a001 433494437/3461452808002*4870847^(3/8) 4032522475023197 a001 165580141/1322157322203*4870847^(3/8) 4032522475023197 a001 63245986/505019158607*4870847^(3/8) 4032522475023197 a004 Fibonacci(38)/Lucas(33)/(1/2+sqrt(5)/2)^10 4032522475023198 a004 Fibonacci(33)*Lucas(39)/(1/2+sqrt(5)/2)^77 4032522475023198 a001 3524578/23725150497407*141422324^(2/3) 4032522475023198 a001 3524578/9062201101803*141422324^(8/13) 4032522475023198 a001 3524578/2139295485799*141422324^(7/13) 4032522475023198 a001 3524578/505019158607*141422324^(6/13) 4032522475023198 a001 3524578/119218851371*141422324^(5/13) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^2/Lucas(40) 4032522475023198 a004 Fibonacci(40)/Lucas(33)/(1/2+sqrt(5)/2)^12 4032522475023198 a001 3524578/228826127*10749957122^(1/24) 4032522475023198 a001 3524578/228826127*4106118243^(1/23) 4032522475023198 a001 3524578/228826127*1568397607^(1/22) 4032522475023198 a001 3524578/228826127*599074578^(1/21) 4032522475023198 a001 3524578/228826127*228826127^(1/20) 4032522475023198 a001 1762289/22768774562*141422324^(1/3) 4032522475023198 a001 3524578/28143753123*141422324^(4/13) 4032522475023198 a001 3524578/228826127*87403803^(1/19) 4032522475023198 a001 3524578/6643838879*141422324^(3/13) 4032522475023198 a001 3524578/1568397607*141422324^(2/13) 4032522475023198 a004 Fibonacci(33)*Lucas(41)/(1/2+sqrt(5)/2)^79 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^4/Lucas(42) 4032522475023198 a001 1762289/299537289*23725150497407^(1/16) 4032522475023198 a004 Fibonacci(42)/Lucas(33)/(1/2+sqrt(5)/2)^14 4032522475023198 a001 1762289/299537289*73681302247^(1/13) 4032522475023198 a001 1762289/299537289*10749957122^(1/12) 4032522475023198 a001 1762289/299537289*4106118243^(2/23) 4032522475023198 a001 1762289/299537289*1568397607^(1/11) 4032522475023198 a001 1762289/299537289*599074578^(2/21) 4032522475023198 a004 Fibonacci(33)*Lucas(43)/(1/2+sqrt(5)/2)^81 4032522475023198 a001 1762289/299537289*228826127^(1/10) 4032522475023198 a001 3524578/1568397607*2537720636^(2/15) 4032522475023198 a001 3524578/1568397607*45537549124^(2/17) 4032522475023198 a001 3524578/1568397607*14662949395604^(2/21) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^6/Lucas(44) 4032522475023198 a004 Fibonacci(44)/Lucas(33)/(1/2+sqrt(5)/2)^16 4032522475023198 a001 3524578/1568397607*10749957122^(1/8) 4032522475023198 a001 3524578/1568397607*4106118243^(3/23) 4032522475023198 a001 3524578/1568397607*1568397607^(3/22) 4032522475023198 a004 Fibonacci(33)*Lucas(45)/(1/2+sqrt(5)/2)^83 4032522475023198 a001 1762289/7331474697802*2537720636^(5/9) 4032522475023198 a001 3524578/9062201101803*2537720636^(8/15) 4032522475023198 a001 3524578/2139295485799*2537720636^(7/15) 4032522475023198 a001 3524578/1322157322203*2537720636^(4/9) 4032522475023198 a001 3524578/505019158607*2537720636^(2/5) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^8/Lucas(46) 4032522475023198 a001 3524578/4106118243*23725150497407^(1/8) 4032522475023198 a004 Fibonacci(46)/Lucas(33)/(1/2+sqrt(5)/2)^18 4032522475023198 a001 3524578/4106118243*505019158607^(1/7) 4032522475023198 a001 3524578/4106118243*73681302247^(2/13) 4032522475023198 a001 3524578/4106118243*10749957122^(1/6) 4032522475023198 a001 3524578/119218851371*2537720636^(1/3) 4032522475023198 a001 3524578/4106118243*4106118243^(4/23) 4032522475023198 a001 1762289/5374978561*2537720636^(2/9) 4032522475023198 a001 3524578/28143753123*2537720636^(4/15) 4032522475023198 a004 Fibonacci(33)*Lucas(47)/(1/2+sqrt(5)/2)^85 4032522475023198 a001 1762289/5374978561*312119004989^(2/11) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^10/Lucas(48) 4032522475023198 a004 Fibonacci(48)/Lucas(33)/(1/2+sqrt(5)/2)^20 4032522475023198 a001 3524578/1568397607*599074578^(1/7) 4032522475023198 a001 3524578/6643838879*2537720636^(1/5) 4032522475023198 a001 1762289/5374978561*28143753123^(1/5) 4032522475023198 a001 1762289/5374978561*10749957122^(5/24) 4032522475023198 a004 Fibonacci(33)*Lucas(49)/(1/2+sqrt(5)/2)^87 4032522475023198 a001 3524578/2139295485799*17393796001^(3/7) 4032522475023198 a001 3524578/28143753123*45537549124^(4/17) 4032522475023198 a001 3524578/28143753123*817138163596^(4/19) 4032522475023198 a001 3524578/28143753123*14662949395604^(4/21) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^12/Lucas(50) 4032522475023198 a004 Fibonacci(50)/Lucas(33)/(1/2+sqrt(5)/2)^22 4032522475023198 a001 3524578/28143753123*192900153618^(2/9) 4032522475023198 a001 3524578/28143753123*73681302247^(3/13) 4032522475023198 a001 3524578/73681302247*17393796001^(2/7) 4032522475023198 a004 Fibonacci(33)*Lucas(51)/(1/2+sqrt(5)/2)^89 4032522475023198 a001 3524578/9062201101803*45537549124^(8/17) 4032522475023198 a001 3524578/2139295485799*45537549124^(7/17) 4032522475023198 a001 3524578/73681302247*14662949395604^(2/9) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^14/Lucas(52) 4032522475023198 a004 Fibonacci(52)/Lucas(33)/(1/2+sqrt(5)/2)^24 4032522475023198 a001 3524578/73681302247*505019158607^(1/4) 4032522475023198 a001 3524578/505019158607*45537549124^(6/17) 4032522475023198 a001 3524578/312119004989*45537549124^(1/3) 4032522475023198 a001 3524578/119218851371*45537549124^(5/17) 4032522475023198 a004 Fibonacci(33)*Lucas(53)/(1/2+sqrt(5)/2)^91 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^16/Lucas(54) 4032522475023198 a004 Fibonacci(54)/Lucas(33)/(1/2+sqrt(5)/2)^26 4032522475023198 a001 1762289/96450076809*23725150497407^(1/4) 4032522475023198 a004 Fibonacci(33)*Lucas(55)/(1/2+sqrt(5)/2)^93 4032522475023198 a001 1762289/7331474697802*312119004989^(5/11) 4032522475023198 a001 1762289/1730726404001*312119004989^(2/5) 4032522475023198 a001 3524578/505019158607*14662949395604^(2/7) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^18/Lucas(56) 4032522475023198 a004 Fibonacci(56)/Lucas(33)/(1/2+sqrt(5)/2)^28 4032522475023198 a004 Fibonacci(33)*Lucas(57)/(1/2+sqrt(5)/2)^95 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^20/Lucas(58) 4032522475023198 a004 Fibonacci(58)/Lucas(33)/(1/2+sqrt(5)/2)^30 4032522475023198 a004 Fibonacci(33)*Lucas(59)/(1/2+sqrt(5)/2)^97 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^22/Lucas(60) 4032522475023198 a004 Fibonacci(60)/Lucas(33)/(1/2+sqrt(5)/2)^32 4032522475023198 a004 Fibonacci(33)*Lucas(61)/(1/2+sqrt(5)/2)^99 4032522475023198 a001 3524578/9062201101803*14662949395604^(8/21) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^24/Lucas(62) 4032522475023198 a004 Fibonacci(62)/Lucas(33)/(1/2+sqrt(5)/2)^34 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^26/Lucas(64) 4032522475023198 a004 Fibonacci(64)/Lucas(33)/(1/2+sqrt(5)/2)^36 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^28/Lucas(66) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^30/Lucas(68) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^32/Lucas(70) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^34/Lucas(72) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^36/Lucas(74) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^38/Lucas(76) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^40/Lucas(78) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^42/Lucas(80) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^44/Lucas(82) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^46/Lucas(84) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^48/Lucas(86) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^50/Lucas(88) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^52/Lucas(90) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^54/Lucas(92) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^56/Lucas(94) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^58/Lucas(96) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^60/Lucas(98) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^61/Lucas(99) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^62/Lucas(100) 4032522475023198 a004 Fibonacci(33)*Lucas(1)/(1/2+sqrt(5)/2)^38 4032522475023198 a004 Fibonacci(66)/Lucas(33)/(1/2+sqrt(5)/2)^38 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^59/Lucas(97) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^57/Lucas(95) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^55/Lucas(93) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^53/Lucas(91) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^51/Lucas(89) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^49/Lucas(87) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^47/Lucas(85) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^45/Lucas(83) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^43/Lucas(81) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^41/Lucas(79) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^39/Lucas(77) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^37/Lucas(75) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^35/Lucas(73) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^33/Lucas(71) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^31/Lucas(69) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^29/Lucas(67) 4032522475023198 a004 Fibonacci(68)/Lucas(33)/(1/2+sqrt(5)/2)^40 4032522475023198 a004 Fibonacci(70)/Lucas(33)/(1/2+sqrt(5)/2)^42 4032522475023198 a004 Fibonacci(72)/Lucas(33)/(1/2+sqrt(5)/2)^44 4032522475023198 a004 Fibonacci(74)/Lucas(33)/(1/2+sqrt(5)/2)^46 4032522475023198 a004 Fibonacci(76)/Lucas(33)/(1/2+sqrt(5)/2)^48 4032522475023198 a004 Fibonacci(78)/Lucas(33)/(1/2+sqrt(5)/2)^50 4032522475023198 a004 Fibonacci(80)/Lucas(33)/(1/2+sqrt(5)/2)^52 4032522475023198 a004 Fibonacci(82)/Lucas(33)/(1/2+sqrt(5)/2)^54 4032522475023198 a004 Fibonacci(84)/Lucas(33)/(1/2+sqrt(5)/2)^56 4032522475023198 a004 Fibonacci(86)/Lucas(33)/(1/2+sqrt(5)/2)^58 4032522475023198 a004 Fibonacci(88)/Lucas(33)/(1/2+sqrt(5)/2)^60 4032522475023198 a004 Fibonacci(90)/Lucas(33)/(1/2+sqrt(5)/2)^62 4032522475023198 a004 Fibonacci(92)/Lucas(33)/(1/2+sqrt(5)/2)^64 4032522475023198 a004 Fibonacci(94)/Lucas(33)/(1/2+sqrt(5)/2)^66 4032522475023198 a004 Fibonacci(96)/Lucas(33)/(1/2+sqrt(5)/2)^68 4032522475023198 a004 Fibonacci(98)/Lucas(33)/(1/2+sqrt(5)/2)^70 4032522475023198 a004 Fibonacci(100)/Lucas(33)/(1/2+sqrt(5)/2)^72 4032522475023198 a004 Fibonacci(99)/Lucas(33)/(1/2+sqrt(5)/2)^71 4032522475023198 a004 Fibonacci(97)/Lucas(33)/(1/2+sqrt(5)/2)^69 4032522475023198 a004 Fibonacci(95)/Lucas(33)/(1/2+sqrt(5)/2)^67 4032522475023198 a004 Fibonacci(93)/Lucas(33)/(1/2+sqrt(5)/2)^65 4032522475023198 a004 Fibonacci(91)/Lucas(33)/(1/2+sqrt(5)/2)^63 4032522475023198 a004 Fibonacci(89)/Lucas(33)/(1/2+sqrt(5)/2)^61 4032522475023198 a004 Fibonacci(87)/Lucas(33)/(1/2+sqrt(5)/2)^59 4032522475023198 a004 Fibonacci(85)/Lucas(33)/(1/2+sqrt(5)/2)^57 4032522475023198 a004 Fibonacci(83)/Lucas(33)/(1/2+sqrt(5)/2)^55 4032522475023198 a004 Fibonacci(81)/Lucas(33)/(1/2+sqrt(5)/2)^53 4032522475023198 a004 Fibonacci(79)/Lucas(33)/(1/2+sqrt(5)/2)^51 4032522475023198 a004 Fibonacci(77)/Lucas(33)/(1/2+sqrt(5)/2)^49 4032522475023198 a004 Fibonacci(75)/Lucas(33)/(1/2+sqrt(5)/2)^47 4032522475023198 a004 Fibonacci(73)/Lucas(33)/(1/2+sqrt(5)/2)^45 4032522475023198 a004 Fibonacci(71)/Lucas(33)/(1/2+sqrt(5)/2)^43 4032522475023198 a004 Fibonacci(69)/Lucas(33)/(1/2+sqrt(5)/2)^41 4032522475023198 a004 Fibonacci(67)/Lucas(33)/(1/2+sqrt(5)/2)^39 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^27/Lucas(65) 4032522475023198 a004 Fibonacci(65)/Lucas(33)/(1/2+sqrt(5)/2)^37 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^25/Lucas(63) 4032522475023198 a004 Fibonacci(63)/Lucas(33)/(1/2+sqrt(5)/2)^35 4032522475023198 a004 Fibonacci(33)*Lucas(62)/(1/2+sqrt(5)/2)^100 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^23/Lucas(61) 4032522475023198 a004 Fibonacci(61)/Lucas(33)/(1/2+sqrt(5)/2)^33 4032522475023198 a004 Fibonacci(33)*Lucas(60)/(1/2+sqrt(5)/2)^98 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^21/Lucas(59) 4032522475023198 a004 Fibonacci(59)/Lucas(33)/(1/2+sqrt(5)/2)^31 4032522475023198 a004 Fibonacci(33)*Lucas(58)/(1/2+sqrt(5)/2)^96 4032522475023198 a001 3524578/1322157322203*505019158607^(5/14) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^19/Lucas(57) 4032522475023198 a004 Fibonacci(57)/Lucas(33)/(1/2+sqrt(5)/2)^29 4032522475023198 a004 Fibonacci(33)*Lucas(56)/(1/2+sqrt(5)/2)^94 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^17/Lucas(55) 4032522475023198 a004 Fibonacci(55)/Lucas(33)/(1/2+sqrt(5)/2)^27 4032522475023198 a001 3524578/2139295485799*192900153618^(7/18) 4032522475023198 a001 3524578/9062201101803*192900153618^(4/9) 4032522475023198 a004 Fibonacci(33)*Lucas(54)/(1/2+sqrt(5)/2)^92 4032522475023198 a001 1762289/96450076809*73681302247^(4/13) 4032522475023198 a001 3524578/119218851371*312119004989^(3/11) 4032522475023198 a001 3524578/119218851371*14662949395604^(5/21) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^15/Lucas(53) 4032522475023198 a004 Fibonacci(53)/Lucas(33)/(1/2+sqrt(5)/2)^25 4032522475023198 a001 3524578/119218851371*192900153618^(5/18) 4032522475023198 a001 3524578/9062201101803*73681302247^(6/13) 4032522475023198 a001 3524578/23725150497407*73681302247^(1/2) 4032522475023198 a004 Fibonacci(33)*Lucas(52)/(1/2+sqrt(5)/2)^90 4032522475023198 a001 3524578/119218851371*28143753123^(3/10) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^13/Lucas(51) 4032522475023198 a004 Fibonacci(51)/Lucas(33)/(1/2+sqrt(5)/2)^23 4032522475023198 a001 3524578/1322157322203*28143753123^(2/5) 4032522475023198 a001 1762289/22768774562*73681302247^(1/4) 4032522475023198 a001 1762289/7331474697802*28143753123^(1/2) 4032522475023198 a001 3524578/28143753123*10749957122^(1/4) 4032522475023198 a004 Fibonacci(33)*Lucas(50)/(1/2+sqrt(5)/2)^88 4032522475023198 a001 3524578/73681302247*10749957122^(7/24) 4032522475023198 a001 3524578/119218851371*10749957122^(5/16) 4032522475023198 a001 1762289/96450076809*10749957122^(1/3) 4032522475023198 a001 3524578/505019158607*10749957122^(3/8) 4032522475023198 a001 3524578/17393796001*312119004989^(1/5) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^11/Lucas(49) 4032522475023198 a004 Fibonacci(49)/Lucas(33)/(1/2+sqrt(5)/2)^21 4032522475023198 a001 3524578/1322157322203*10749957122^(5/12) 4032522475023198 a001 3524578/2139295485799*10749957122^(7/16) 4032522475023198 a001 1762289/1730726404001*10749957122^(11/24) 4032522475023198 a001 1762289/5374978561*4106118243^(5/23) 4032522475023198 a001 3524578/9062201101803*10749957122^(1/2) 4032522475023198 a001 3524578/23725150497407*10749957122^(13/24) 4032522475023198 a004 Fibonacci(33)*Lucas(48)/(1/2+sqrt(5)/2)^86 4032522475023198 a001 3524578/28143753123*4106118243^(6/23) 4032522475023198 a001 3524578/4106118243*1568397607^(2/11) 4032522475023198 a001 3524578/73681302247*4106118243^(7/23) 4032522475023198 a001 1762289/96450076809*4106118243^(8/23) 4032522475023198 a001 3524578/6643838879*45537549124^(3/17) 4032522475023198 a001 3524578/6643838879*817138163596^(3/19) 4032522475023198 a001 3524578/6643838879*14662949395604^(1/7) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^9/Lucas(47) 4032522475023198 a004 Fibonacci(47)/Lucas(33)/(1/2+sqrt(5)/2)^19 4032522475023198 a001 3524578/6643838879*192900153618^(1/6) 4032522475023198 a001 3524578/505019158607*4106118243^(9/23) 4032522475023198 a001 3524578/6643838879*10749957122^(3/16) 4032522475023198 a001 3524578/1322157322203*4106118243^(10/23) 4032522475023198 a001 1762289/1730726404001*4106118243^(11/23) 4032522475023198 a001 3524578/5600748293801*4106118243^(1/2) 4032522475023198 a001 3524578/9062201101803*4106118243^(12/23) 4032522475023198 a001 3524578/23725150497407*4106118243^(13/23) 4032522475023198 a004 Fibonacci(33)*Lucas(46)/(1/2+sqrt(5)/2)^84 4032522475023198 a001 1762289/5374978561*1568397607^(5/22) 4032522475023198 a001 3524578/17393796001*1568397607^(1/4) 4032522475023198 a001 3524578/28143753123*1568397607^(3/11) 4032522475023198 a001 3524578/73681302247*1568397607^(7/22) 4032522475023198 a001 1762289/96450076809*1568397607^(4/11) 4032522475023198 a001 1762289/1268860318*17393796001^(1/7) 4032522475023198 a001 1762289/1268860318*14662949395604^(1/9) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^7/Lucas(45) 4032522475023198 a004 Fibonacci(45)/Lucas(33)/(1/2+sqrt(5)/2)^17 4032522475023198 a001 3524578/505019158607*1568397607^(9/22) 4032522475023198 a001 3524578/1322157322203*1568397607^(5/11) 4032522475023198 a001 1762289/1730726404001*1568397607^(1/2) 4032522475023198 a001 3524578/9062201101803*1568397607^(6/11) 4032522475023198 a001 3524578/23725150497407*1568397607^(13/22) 4032522475023198 a004 Fibonacci(33)*Lucas(44)/(1/2+sqrt(5)/2)^82 4032522475023198 a001 3524578/4106118243*599074578^(4/21) 4032522475023198 a001 1762289/1268860318*599074578^(1/6) 4032522475023198 a001 3524578/6643838879*599074578^(3/14) 4032522475023198 a001 1762289/5374978561*599074578^(5/21) 4032522475023198 a001 3524578/28143753123*599074578^(2/7) 4032522475023198 a001 3524578/73681302247*599074578^(1/3) 4032522475023198 a001 3524578/119218851371*599074578^(5/14) 4032522475023198 a001 3524578/969323029*2537720636^(1/9) 4032522475023198 a001 1762289/96450076809*599074578^(8/21) 4032522475023198 a001 3524578/969323029*312119004989^(1/11) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^5/Lucas(43) 4032522475023198 a004 Fibonacci(43)/Lucas(33)/(1/2+sqrt(5)/2)^15 4032522475023198 a001 3524578/969323029*28143753123^(1/10) 4032522475023198 a001 3524578/505019158607*599074578^(3/7) 4032522475023198 a001 3524578/1322157322203*599074578^(10/21) 4032522475023198 a001 3524578/2139295485799*599074578^(1/2) 4032522475023198 a001 1762289/1730726404001*599074578^(11/21) 4032522475023198 a001 3524578/9062201101803*599074578^(4/7) 4032522475023198 a001 3524578/23725150497407*599074578^(13/21) 4032522475023198 a001 3524578/1568397607*228826127^(3/20) 4032522475023198 a004 Fibonacci(33)*Lucas(42)/(1/2+sqrt(5)/2)^80 4032522475023198 a001 3524578/370248451*141422324^(1/13) 4032522475023198 a001 3524578/969323029*228826127^(1/8) 4032522475023198 a001 3524578/4106118243*228826127^(1/5) 4032522475023198 a001 1762289/5374978561*228826127^(1/4) 4032522475023198 a001 3524578/28143753123*228826127^(3/10) 4032522475023198 a001 3524578/73681302247*228826127^(7/20) 4032522475023198 a001 3524578/119218851371*228826127^(3/8) 4032522475023198 a001 3524578/370248451*2537720636^(1/15) 4032522475023198 a001 3524578/370248451*45537549124^(1/17) 4032522475023198 a001 3524578/370248451*14662949395604^(1/21) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^3/Lucas(41) 4032522475023198 a004 Fibonacci(41)/Lucas(33)/(1/2+sqrt(5)/2)^13 4032522475023198 a001 3524578/370248451*192900153618^(1/18) 4032522475023198 a001 3524578/370248451*10749957122^(1/16) 4032522475023198 a001 3524578/370248451*599074578^(1/14) 4032522475023198 a001 1762289/96450076809*228826127^(2/5) 4032522475023198 a001 3524578/505019158607*228826127^(9/20) 4032522475023198 a001 3524578/1322157322203*228826127^(1/2) 4032522475023198 a001 1762289/1730726404001*228826127^(11/20) 4032522475023198 a001 1762289/299537289*87403803^(2/19) 4032522475023198 a001 3524578/9062201101803*228826127^(3/5) 4032522475023198 a001 1762289/7331474697802*228826127^(5/8) 4032522475023198 a001 3524578/23725150497407*228826127^(13/20) 4032522475023198 a004 Fibonacci(33)*Lucas(40)/(1/2+sqrt(5)/2)^78 4032522475023198 a001 3524578/1568397607*87403803^(3/19) 4032522475023198 a001 3524578/4106118243*87403803^(4/19) 4032522475023198 a001 3524578/228826127*33385282^(1/18) 4032522475023198 a001 1762289/5374978561*87403803^(5/19) 4032522475023198 a001 3524578/28143753123*87403803^(6/19) 4032522475023198 a001 3524578/73681302247*87403803^(7/19) 4032522475023198 a001 24157817/192900153618*4870847^(3/8) 4032522475023198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)/Lucas(39) 4032522475023198 a004 Fibonacci(39)/Lucas(33)/(1/2+sqrt(5)/2)^11 4032522475023198 a001 1762289/96450076809*87403803^(8/19) 4032522475023198 a001 3524578/505019158607*87403803^(9/19) 4032522475023198 a001 1762289/408569081798*87403803^(1/2) 4032522475023198 a001 3524578/1322157322203*87403803^(10/19) 4032522475023198 a001 1762289/1730726404001*87403803^(11/19) 4032522475023198 a001 3524578/370248451*33385282^(1/12) 4032522475023198 a001 3524578/9062201101803*87403803^(12/19) 4032522475023198 a001 3524578/23725150497407*87403803^(13/19) 4032522475023198 a001 1762289/299537289*33385282^(1/9) 4032522475023198 a004 Fibonacci(33)*Lucas(38)/(1/2+sqrt(5)/2)^76 4032522475023198 a001 3524578/1568397607*33385282^(1/6) 4032522475023199 a001 3524578/4106118243*33385282^(2/9) 4032522475023199 a001 3524578/6643838879*33385282^(1/4) 4032522475023199 a001 1762289/5374978561*33385282^(5/18) 4032522475023199 a001 3524578/28143753123*33385282^(1/3) 4032522475023199 a001 3524578/228826127*12752043^(1/17) 4032522475023199 a004 Fibonacci(33)/Lucas(37)/(1/2+sqrt(5)/2) 4032522475023199 a004 Fibonacci(37)/Lucas(33)/(1/2+sqrt(5)/2)^9 4032522475023199 a001 3524578/73681302247*33385282^(7/18) 4032522475023199 a001 3524578/119218851371*33385282^(5/12) 4032522475023199 a001 1762289/96450076809*33385282^(4/9) 4032522475023200 a001 3524578/505019158607*33385282^(1/2) 4032522475023200 a001 3524578/1322157322203*33385282^(5/9) 4032522475023200 a001 3524578/2139295485799*33385282^(7/12) 4032522475023200 a001 1762289/1730726404001*33385282^(11/18) 4032522475023200 a001 3524578/9062201101803*33385282^(2/3) 4032522475023200 a001 3524578/23725150497407*33385282^(13/18) 4032522475023201 a001 1762289/299537289*12752043^(2/17) 4032522475023201 a004 Fibonacci(33)*Lucas(36)/(1/2+sqrt(5)/2)^74 4032522475023202 a001 3524578/1568397607*12752043^(3/17) 4032522475023204 a001 14930352/312119004989*4870847^(7/16) 4032522475023204 a001 3524578/4106118243*12752043^(4/17) 4032522475023204 a001 5702887/817138163596*4870847^(9/16) 4032522475023205 a001 1762289/5374978561*12752043^(5/17) 4032522475023206 a001 9227465/73681302247*4870847^(3/8) 4032522475023207 a001 3524578/28143753123*12752043^(6/17) 4032522475023207 a001 4181/87403804*4870847^(7/16) 4032522475023207 a001 14930352/969323029*1860498^(1/15) 4032522475023207 a001 102334155/2139295485799*4870847^(7/16) 4032522475023207 a001 267914296/5600748293801*4870847^(7/16) 4032522475023207 a001 701408733/14662949395604*4870847^(7/16) 4032522475023207 a001 1134903170/23725150497407*4870847^(7/16) 4032522475023207 a001 433494437/9062201101803*4870847^(7/16) 4032522475023207 a001 165580141/3461452808002*4870847^(7/16) 4032522475023207 a004 Fibonacci(33)/Lucas(35)/(1/2+sqrt(5)/2)^3 4032522475023207 a004 Fibonacci(35)/Lucas(33)/(1/2+sqrt(5)/2)^7 4032522475023207 a001 63245986/1322157322203*4870847^(7/16) 4032522475023208 a001 3524578/73681302247*12752043^(7/17) 4032522475023208 a001 3524578/228826127*4870847^(1/16) 4032522475023209 a001 24157817/505019158607*4870847^(7/16) 4032522475023209 a001 1762289/96450076809*12752043^(8/17) 4032522475023210 a001 39088169/2537720636*1860498^(1/15) 4032522475023210 a001 3524578/312119004989*12752043^(1/2) 4032522475023210 a001 102334155/6643838879*1860498^(1/15) 4032522475023211 a001 9238424/599786069*1860498^(1/15) 4032522475023211 a001 701408733/45537549124*1860498^(1/15) 4032522475023211 a001 1836311903/119218851371*1860498^(1/15) 4032522475023211 a001 4807526976/312119004989*1860498^(1/15) 4032522475023211 a001 12586269025/817138163596*1860498^(1/15) 4032522475023211 a001 32951280099/2139295485799*1860498^(1/15) 4032522475023211 a001 86267571272/5600748293801*1860498^(1/15) 4032522475023211 a001 7787980473/505618944676*1860498^(1/15) 4032522475023211 a001 365435296162/23725150497407*1860498^(1/15) 4032522475023211 a001 139583862445/9062201101803*1860498^(1/15) 4032522475023211 a001 53316291173/3461452808002*1860498^(1/15) 4032522475023211 a001 20365011074/1322157322203*1860498^(1/15) 4032522475023211 a001 7778742049/505019158607*1860498^(1/15) 4032522475023211 a001 2971215073/192900153618*1860498^(1/15) 4032522475023211 a001 1134903170/73681302247*1860498^(1/15) 4032522475023211 a001 433494437/28143753123*1860498^(1/15) 4032522475023211 a001 165580141/10749957122*1860498^(1/15) 4032522475023211 a001 63245986/4106118243*1860498^(1/15) 4032522475023211 a001 3524578/505019158607*12752043^(9/17) 4032522475023212 a001 24157817/1568397607*1860498^(1/15) 4032522475023212 a001 3524578/1322157322203*12752043^(10/17) 4032522475023214 a001 1762289/1730726404001*12752043^(11/17) 4032522475023214 a001 3732588/204284540899*4870847^(1/2) 4032522475023214 a001 5702887/2139295485799*4870847^(5/8) 4032522475023215 a001 3524578/9062201101803*12752043^(12/17) 4032522475023217 a001 9227465/192900153618*4870847^(7/16) 4032522475023217 a001 3524578/23725150497407*12752043^(13/17) 4032522475023217 a001 39088169/2139295485799*4870847^(1/2) 4032522475023218 a001 102334155/5600748293801*4870847^(1/2) 4032522475023218 a001 10946/599074579*4870847^(1/2) 4032522475023218 a001 433494437/23725150497407*4870847^(1/2) 4032522475023218 a001 165580141/9062201101803*4870847^(1/2) 4032522475023218 a001 31622993/1730726404001*4870847^(1/2) 4032522475023219 a001 1762289/299537289*4870847^(1/8) 4032522475023219 a001 24157817/1322157322203*4870847^(1/2) 4032522475023220 a001 9227465/599074578*1860498^(1/15) 4032522475023223 a004 Fibonacci(33)*Lucas(34)/(1/2+sqrt(5)/2)^72 4032522475023225 a001 5702887/599074578*1860498^(1/10) 4032522475023225 a001 14930352/2139295485799*4870847^(9/16) 4032522475023225 a001 5702887/5600748293801*4870847^(11/16) 4032522475023227 a001 9227465/505019158607*4870847^(1/2) 4032522475023228 a001 39088169/5600748293801*4870847^(9/16) 4032522475023228 a001 102334155/14662949395604*4870847^(9/16) 4032522475023229 a001 165580141/23725150497407*4870847^(9/16) 4032522475023229 a001 63245986/9062201101803*4870847^(9/16) 4032522475023230 a001 3524578/1568397607*4870847^(3/16) 4032522475023230 a001 24157817/3461452808002*4870847^(9/16) 4032522475023236 a001 14930352/5600748293801*4870847^(5/8) 4032522475023236 a001 5702887/14662949395604*4870847^(3/4) 4032522475023238 a001 9227465/1322157322203*4870847^(9/16) 4032522475023239 a001 39088169/14662949395604*4870847^(5/8) 4032522475023239 a001 63245986/23725150497407*4870847^(5/8) 4032522475023240 a001 3524578/4106118243*4870847^(1/4) 4032522475023241 a001 24157817/9062201101803*4870847^(5/8) 4032522475023246 a001 14930352/1568397607*1860498^(1/10) 4032522475023246 a001 196452/192933544679*4870847^(11/16) 4032522475023249 a001 9227465/3461452808002*4870847^(5/8) 4032522475023249 a001 39088169/4106118243*1860498^(1/10) 4032522475023249 a001 102334155/10749957122*1860498^(1/10) 4032522475023249 a001 267914296/28143753123*1860498^(1/10) 4032522475023249 a001 701408733/73681302247*1860498^(1/10) 4032522475023249 a001 1836311903/192900153618*1860498^(1/10) 4032522475023249 a001 102287808/10745088481*1860498^(1/10) 4032522475023249 a001 12586269025/1322157322203*1860498^(1/10) 4032522475023249 a001 32951280099/3461452808002*1860498^(1/10) 4032522475023249 a001 86267571272/9062201101803*1860498^(1/10) 4032522475023249 a001 225851433717/23725150497407*1860498^(1/10) 4032522475023249 a001 139583862445/14662949395604*1860498^(1/10) 4032522475023249 a001 53316291173/5600748293801*1860498^(1/10) 4032522475023249 a001 20365011074/2139295485799*1860498^(1/10) 4032522475023249 a001 7778742049/817138163596*1860498^(1/10) 4032522475023249 a001 2971215073/312119004989*1860498^(1/10) 4032522475023249 a001 1134903170/119218851371*1860498^(1/10) 4032522475023249 a001 433494437/45537549124*1860498^(1/10) 4032522475023249 a001 165580141/17393796001*1860498^(1/10) 4032522475023250 a001 63245986/6643838879*1860498^(1/10) 4032522475023251 a001 24157817/2537720636*1860498^(1/10) 4032522475023251 a001 1762289/5374978561*4870847^(5/16) 4032522475023251 a001 24157817/23725150497407*4870847^(11/16) 4032522475023259 a001 9227465/969323029*1860498^(1/10) 4032522475023259 a001 9227465/9062201101803*4870847^(11/16) 4032522475023262 a001 3524578/28143753123*4870847^(3/8) 4032522475023263 a004 Fibonacci(33)/Lucas(33)/(1/2+sqrt(5)/2)^5 4032522475023263 a001 5702887/969323029*1860498^(2/15) 4032522475023270 a001 9227465/23725150497407*4870847^(3/4) 4032522475023272 a001 3524578/73681302247*4870847^(7/16) 4032522475023274 a001 2178309/2537720636*1860498^(4/15) 4032522475023275 a001 3524578/228826127*1860498^(1/15) 4032522475023278 a004 Fibonacci(34)*Lucas(32)/(1/2+sqrt(5)/2)^71 4032522475023283 a001 1762289/96450076809*4870847^(1/2) 4032522475023285 a001 196452/33391061*1860498^(2/15) 4032522475023288 a001 39088169/6643838879*1860498^(2/15) 4032522475023288 a001 102334155/17393796001*1860498^(2/15) 4032522475023288 a001 66978574/11384387281*1860498^(2/15) 4032522475023288 a001 701408733/119218851371*1860498^(2/15) 4032522475023288 a001 1836311903/312119004989*1860498^(2/15) 4032522475023288 a001 1201881744/204284540899*1860498^(2/15) 4032522475023288 a001 12586269025/2139295485799*1860498^(2/15) 4032522475023288 a001 32951280099/5600748293801*1860498^(2/15) 4032522475023288 a001 1135099622/192933544679*1860498^(2/15) 4032522475023288 a001 139583862445/23725150497407*1860498^(2/15) 4032522475023288 a001 53316291173/9062201101803*1860498^(2/15) 4032522475023288 a001 10182505537/1730726404001*1860498^(2/15) 4032522475023288 a001 7778742049/1322157322203*1860498^(2/15) 4032522475023288 a001 2971215073/505019158607*1860498^(2/15) 4032522475023288 a001 567451585/96450076809*1860498^(2/15) 4032522475023288 a001 433494437/73681302247*1860498^(2/15) 4032522475023288 a001 165580141/28143753123*1860498^(2/15) 4032522475023288 a001 31622993/5374978561*1860498^(2/15) 4032522475023290 a001 24157817/4106118243*1860498^(2/15) 4032522475023293 a001 3524578/505019158607*4870847^(9/16) 4032522475023298 a001 9227465/1568397607*1860498^(2/15) 4032522475023299 a004 Fibonacci(36)*Lucas(32)/(1/2+sqrt(5)/2)^73 4032522475023301 a001 4870847/24157817*8^(1/3) 4032522475023302 a001 5702887/1568397607*1860498^(1/6) 4032522475023302 a004 Fibonacci(38)*Lucas(32)/(1/2+sqrt(5)/2)^75 4032522475023303 a004 Fibonacci(40)*Lucas(32)/(1/2+sqrt(5)/2)^77 4032522475023303 a004 Fibonacci(42)*Lucas(32)/(1/2+sqrt(5)/2)^79 4032522475023303 a004 Fibonacci(44)*Lucas(32)/(1/2+sqrt(5)/2)^81 4032522475023303 a004 Fibonacci(46)*Lucas(32)/(1/2+sqrt(5)/2)^83 4032522475023303 a004 Fibonacci(48)*Lucas(32)/(1/2+sqrt(5)/2)^85 4032522475023303 a004 Fibonacci(50)*Lucas(32)/(1/2+sqrt(5)/2)^87 4032522475023303 a004 Fibonacci(52)*Lucas(32)/(1/2+sqrt(5)/2)^89 4032522475023303 a004 Fibonacci(54)*Lucas(32)/(1/2+sqrt(5)/2)^91 4032522475023303 a004 Fibonacci(56)*Lucas(32)/(1/2+sqrt(5)/2)^93 4032522475023303 a004 Fibonacci(58)*Lucas(32)/(1/2+sqrt(5)/2)^95 4032522475023303 a004 Fibonacci(60)*Lucas(32)/(1/2+sqrt(5)/2)^97 4032522475023303 a004 Fibonacci(62)*Lucas(32)/(1/2+sqrt(5)/2)^99 4032522475023303 a001 2/2178309*(1/2+1/2*5^(1/2))^27 4032522475023303 a004 Fibonacci(63)*Lucas(32)/(1/2+sqrt(5)/2)^100 4032522475023303 a004 Fibonacci(61)*Lucas(32)/(1/2+sqrt(5)/2)^98 4032522475023303 a004 Fibonacci(59)*Lucas(32)/(1/2+sqrt(5)/2)^96 4032522475023303 a004 Fibonacci(57)*Lucas(32)/(1/2+sqrt(5)/2)^94 4032522475023303 a004 Fibonacci(55)*Lucas(32)/(1/2+sqrt(5)/2)^92 4032522475023303 a004 Fibonacci(53)*Lucas(32)/(1/2+sqrt(5)/2)^90 4032522475023303 a004 Fibonacci(51)*Lucas(32)/(1/2+sqrt(5)/2)^88 4032522475023303 a004 Fibonacci(49)*Lucas(32)/(1/2+sqrt(5)/2)^86 4032522475023303 a004 Fibonacci(47)*Lucas(32)/(1/2+sqrt(5)/2)^84 4032522475023303 a004 Fibonacci(45)*Lucas(32)/(1/2+sqrt(5)/2)^82 4032522475023303 a004 Fibonacci(43)*Lucas(32)/(1/2+sqrt(5)/2)^80 4032522475023303 a004 Fibonacci(41)*Lucas(32)/(1/2+sqrt(5)/2)^78 4032522475023303 a004 Fibonacci(39)*Lucas(32)/(1/2+sqrt(5)/2)^76 4032522475023304 a001 3524578/1322157322203*4870847^(5/8) 4032522475023304 a004 Fibonacci(37)*Lucas(32)/(1/2+sqrt(5)/2)^74 4032522475023312 a004 Fibonacci(35)*Lucas(32)/(1/2+sqrt(5)/2)^72 4032522475023312 a001 726103/1368706081*1860498^(3/10) 4032522475023314 a001 3524578/370248451*1860498^(1/10) 4032522475023315 a001 1762289/1730726404001*4870847^(11/16) 4032522475023323 a001 4976784/1368706081*1860498^(1/6) 4032522475023325 a001 3524578/9062201101803*4870847^(3/4) 4032522475023327 a001 39088169/10749957122*1860498^(1/6) 4032522475023327 a001 831985/228811001*1860498^(1/6) 4032522475023327 a001 267914296/73681302247*1860498^(1/6) 4032522475023327 a001 233802911/64300051206*1860498^(1/6) 4032522475023327 a001 1836311903/505019158607*1860498^(1/6) 4032522475023327 a001 1602508992/440719107401*1860498^(1/6) 4032522475023327 a001 12586269025/3461452808002*1860498^(1/6) 4032522475023327 a001 10983760033/3020733700601*1860498^(1/6) 4032522475023327 a001 86267571272/23725150497407*1860498^(1/6) 4032522475023327 a001 53316291173/14662949395604*1860498^(1/6) 4032522475023327 a001 20365011074/5600748293801*1860498^(1/6) 4032522475023327 a001 7778742049/2139295485799*1860498^(1/6) 4032522475023327 a001 2971215073/817138163596*1860498^(1/6) 4032522475023327 a001 1134903170/312119004989*1860498^(1/6) 4032522475023327 a001 433494437/119218851371*1860498^(1/6) 4032522475023327 a001 165580141/45537549124*1860498^(1/6) 4032522475023327 a001 63245986/17393796001*1860498^(1/6) 4032522475023328 a001 24157817/6643838879*1860498^(1/6) 4032522475023336 a001 3524578/23725150497407*4870847^(13/16) 4032522475023337 a001 9227465/2537720636*1860498^(1/6) 4032522475023341 a001 5702887/2537720636*1860498^(1/5) 4032522475023351 a001 2178309/6643838879*1860498^(1/3) 4032522475023353 a001 1762289/299537289*1860498^(2/15) 4032522475023362 a001 14930352/6643838879*1860498^(1/5) 4032522475023365 a001 39088169/17393796001*1860498^(1/5) 4032522475023366 a001 102334155/45537549124*1860498^(1/5) 4032522475023366 a001 267914296/119218851371*1860498^(1/5) 4032522475023366 a001 3524667/1568437211*1860498^(1/5) 4032522475023366 a001 1836311903/817138163596*1860498^(1/5) 4032522475023366 a001 4807526976/2139295485799*1860498^(1/5) 4032522475023366 a001 12586269025/5600748293801*1860498^(1/5) 4032522475023366 a001 32951280099/14662949395604*1860498^(1/5) 4032522475023366 a001 53316291173/23725150497407*1860498^(1/5) 4032522475023366 a001 20365011074/9062201101803*1860498^(1/5) 4032522475023366 a001 7778742049/3461452808002*1860498^(1/5) 4032522475023366 a001 2971215073/1322157322203*1860498^(1/5) 4032522475023366 a001 1134903170/505019158607*1860498^(1/5) 4032522475023366 a001 433494437/192900153618*1860498^(1/5) 4032522475023366 a001 165580141/73681302247*1860498^(1/5) 4032522475023366 a001 63245986/28143753123*1860498^(1/5) 4032522475023367 a001 24157817/10749957122*1860498^(1/5) 4032522475023368 a004 Fibonacci(33)*Lucas(32)/(1/2+sqrt(5)/2)^70 4032522475023375 a001 9227465/4106118243*1860498^(1/5) 4032522475023392 a001 3524578/969323029*1860498^(1/6) 4032522475023408 a004 Fibonacci(31)/Lucas(32)/(1/2+sqrt(5)/2)^4 4032522475023408 a004 Fibonacci(32)/Lucas(31)/(1/2+sqrt(5)/2)^6 4032522475023419 a001 5702887/6643838879*1860498^(4/15) 4032522475023429 a001 2178309/17393796001*1860498^(2/5) 4032522475023431 a001 3524578/1568397607*1860498^(1/5) 4032522475023440 a001 14930352/17393796001*1860498^(4/15) 4032522475023443 a001 39088169/45537549124*1860498^(4/15) 4032522475023443 a001 102334155/119218851371*1860498^(4/15) 4032522475023444 a001 267914296/312119004989*1860498^(4/15) 4032522475023444 a001 701408733/817138163596*1860498^(4/15) 4032522475023444 a001 1836311903/2139295485799*1860498^(4/15) 4032522475023444 a001 4807526976/5600748293801*1860498^(4/15) 4032522475023444 a001 12586269025/14662949395604*1860498^(4/15) 4032522475023444 a001 20365011074/23725150497407*1860498^(4/15) 4032522475023444 a001 7778742049/9062201101803*1860498^(4/15) 4032522475023444 a001 2971215073/3461452808002*1860498^(4/15) 4032522475023444 a001 1134903170/1322157322203*1860498^(4/15) 4032522475023444 a001 433494437/505019158607*1860498^(4/15) 4032522475023444 a001 165580141/192900153618*1860498^(4/15) 4032522475023444 a001 63245986/73681302247*1860498^(4/15) 4032522475023445 a001 24157817/28143753123*1860498^(4/15) 4032522475023453 a001 9227465/10749957122*1860498^(4/15) 4032522475023458 a001 5702887/10749957122*1860498^(3/10) 4032522475023479 a001 4976784/9381251041*1860498^(3/10) 4032522475023482 a001 39088169/73681302247*1860498^(3/10) 4032522475023482 a001 34111385/64300051206*1860498^(3/10) 4032522475023482 a001 267914296/505019158607*1860498^(3/10) 4032522475023482 a001 233802911/440719107401*1860498^(3/10) 4032522475023482 a001 1836311903/3461452808002*1860498^(3/10) 4032522475023482 a001 1602508992/3020733700601*1860498^(3/10) 4032522475023482 a001 12586269025/23725150497407*1860498^(3/10) 4032522475023482 a001 7778742049/14662949395604*1860498^(3/10) 4032522475023482 a001 2971215073/5600748293801*1860498^(3/10) 4032522475023482 a001 1134903170/2139295485799*1860498^(3/10) 4032522475023482 a001 433494437/817138163596*1860498^(3/10) 4032522475023482 a001 165580141/312119004989*1860498^(3/10) 4032522475023483 a001 63245986/119218851371*1860498^(3/10) 4032522475023484 a001 24157817/45537549124*1860498^(3/10) 4032522475023492 a001 9227465/17393796001*1860498^(3/10) 4032522475023496 a001 5702887/17393796001*1860498^(1/3) 4032522475023507 a001 2178309/45537549124*1860498^(7/15) 4032522475023508 a001 3524578/4106118243*1860498^(4/15) 4032522475023513 a004 Fibonacci(31)*Lucas(33)/(1/2+sqrt(5)/2)^69 4032522475023518 a001 3732588/11384387281*1860498^(1/3) 4032522475023521 a001 39088169/119218851371*1860498^(1/3) 4032522475023521 a001 9303105/28374454999*1860498^(1/3) 4032522475023521 a001 66978574/204284540899*1860498^(1/3) 4032522475023521 a001 701408733/2139295485799*1860498^(1/3) 4032522475023521 a001 1836311903/5600748293801*1860498^(1/3) 4032522475023521 a001 1201881744/3665737348901*1860498^(1/3) 4032522475023521 a001 7778742049/23725150497407*1860498^(1/3) 4032522475023521 a001 2971215073/9062201101803*1860498^(1/3) 4032522475023521 a001 567451585/1730726404001*1860498^(1/3) 4032522475023521 a001 433494437/1322157322203*1860498^(1/3) 4032522475023521 a001 165580141/505019158607*1860498^(1/3) 4032522475023521 a001 31622993/96450076809*1860498^(1/3) 4032522475023523 a001 24157817/73681302247*1860498^(1/3) 4032522475023525 a001 1346269/14662949395604*7881196^(9/11) 4032522475023531 a001 1346269/3461452808002*7881196^(8/11) 4032522475023531 a001 9227465/28143753123*1860498^(1/3) 4032522475023533 a001 2178309/141422324*710647^(1/14) 4032522475023535 a001 1346269/1322157322203*7881196^(2/3) 4032522475023537 a001 1346269/817138163596*7881196^(7/11) 4032522475023542 a001 1346269/192900153618*7881196^(6/11) 4032522475023545 a001 311187/10525900321*1860498^(1/2) 4032522475023547 a001 3524578/6643838879*1860498^(3/10) 4032522475023548 a001 1346269/45537549124*7881196^(5/11) 4032522475023553 a004 Fibonacci(31)/Lucas(34)/(1/2+sqrt(5)/2)^2 4032522475023553 a004 Fibonacci(34)/Lucas(31)/(1/2+sqrt(5)/2)^8 4032522475023554 a001 1346269/10749957122*7881196^(4/11) 4032522475023556 a001 1346269/6643838879*7881196^(1/3) 4032522475023560 a001 1346269/2537720636*7881196^(3/11) 4032522475023566 a001 1346269/599074578*7881196^(2/11) 4032522475023568 a004 Fibonacci(31)*Lucas(35)/(1/2+sqrt(5)/2)^71 4032522475023569 a001 317811/54018521*271443^(2/13) 4032522475023570 a001 1346269/23725150497407*20633239^(4/5) 4032522475023571 a001 1346269/5600748293801*20633239^(5/7) 4032522475023572 a001 1346269/141422324*7881196^(1/11) 4032522475023572 a001 1346269/817138163596*20633239^(3/5) 4032522475023572 a001 1346269/505019158607*20633239^(4/7) 4032522475023574 a001 1346269/45537549124*20633239^(3/7) 4032522475023574 a001 1346269/28143753123*20633239^(2/5) 4032522475023574 a001 1597/12752044*1860498^(2/5) 4032522475023574 a004 Fibonacci(36)/Lucas(31)/(1/2+sqrt(5)/2)^10 4032522475023575 a001 1346269/4106118243*20633239^(2/7) 4032522475023576 a001 1346269/969323029*20633239^(1/5) 4032522475023576 a004 Fibonacci(31)*Lucas(37)/(1/2+sqrt(5)/2)^73 4032522475023577 a001 1346269/370248451*20633239^(1/7) 4032522475023577 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^2/Lucas(38) 4032522475023577 a004 Fibonacci(38)/Lucas(31)/(1/2+sqrt(5)/2)^12 4032522475023577 a001 1346269/87403803*10749957122^(1/24) 4032522475023577 a001 1346269/87403803*4106118243^(1/23) 4032522475023577 a001 1346269/87403803*1568397607^(1/22) 4032522475023577 a001 1346269/87403803*599074578^(1/21) 4032522475023577 a001 1346269/87403803*228826127^(1/20) 4032522475023577 a001 1346269/87403803*87403803^(1/19) 4032522475023578 a001 1346269/87403803*33385282^(1/18) 4032522475023578 a004 Fibonacci(31)*Lucas(39)/(1/2+sqrt(5)/2)^75 4032522475023578 a001 1346269/14662949395604*141422324^(9/13) 4032522475023578 a001 1346269/9062201101803*141422324^(2/3) 4032522475023578 a001 1346269/3461452808002*141422324^(8/13) 4032522475023578 a001 1346269/817138163596*141422324^(7/13) 4032522475023578 a001 1346269/192900153618*141422324^(6/13) 4032522475023578 a001 1346269/45537549124*141422324^(5/13) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^4/Lucas(40) 4032522475023578 a001 1346269/228826127*23725150497407^(1/16) 4032522475023578 a004 Fibonacci(40)/Lucas(31)/(1/2+sqrt(5)/2)^14 4032522475023578 a001 1346269/228826127*73681302247^(1/13) 4032522475023578 a001 1346269/228826127*10749957122^(1/12) 4032522475023578 a001 1346269/228826127*4106118243^(2/23) 4032522475023578 a001 1346269/228826127*1568397607^(1/11) 4032522475023578 a001 1346269/228826127*599074578^(2/21) 4032522475023578 a001 1346269/228826127*228826127^(1/10) 4032522475023578 a001 1346269/17393796001*141422324^(1/3) 4032522475023578 a001 1346269/10749957122*141422324^(4/13) 4032522475023578 a001 1346269/2537720636*141422324^(3/13) 4032522475023578 a001 1346269/599074578*141422324^(2/13) 4032522475023578 a004 Fibonacci(31)*Lucas(41)/(1/2+sqrt(5)/2)^77 4032522475023578 a001 1346269/228826127*87403803^(2/19) 4032522475023578 a001 1346269/599074578*2537720636^(2/15) 4032522475023578 a001 1346269/599074578*45537549124^(2/17) 4032522475023578 a001 1346269/599074578*14662949395604^(2/21) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^6/Lucas(42) 4032522475023578 a004 Fibonacci(42)/Lucas(31)/(1/2+sqrt(5)/2)^16 4032522475023578 a001 1346269/599074578*10749957122^(1/8) 4032522475023578 a001 1346269/599074578*4106118243^(3/23) 4032522475023578 a001 1346269/599074578*1568397607^(3/22) 4032522475023578 a001 1346269/599074578*599074578^(1/7) 4032522475023578 a004 Fibonacci(31)*Lucas(43)/(1/2+sqrt(5)/2)^79 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^8/Lucas(44) 4032522475023578 a001 1346269/1568397607*23725150497407^(1/8) 4032522475023578 a004 Fibonacci(44)/Lucas(31)/(1/2+sqrt(5)/2)^18 4032522475023578 a001 1346269/1568397607*505019158607^(1/7) 4032522475023578 a001 1346269/1568397607*73681302247^(2/13) 4032522475023578 a001 1346269/1568397607*10749957122^(1/6) 4032522475023578 a001 1346269/1568397607*4106118243^(4/23) 4032522475023578 a001 1346269/1568397607*1568397607^(2/11) 4032522475023578 a004 Fibonacci(31)*Lucas(45)/(1/2+sqrt(5)/2)^81 4032522475023578 a001 1346269/4106118243*2537720636^(2/9) 4032522475023578 a001 1346269/14662949395604*2537720636^(3/5) 4032522475023578 a001 1346269/5600748293801*2537720636^(5/9) 4032522475023578 a001 1346269/3461452808002*2537720636^(8/15) 4032522475023578 a001 1346269/817138163596*2537720636^(7/15) 4032522475023578 a001 1346269/505019158607*2537720636^(4/9) 4032522475023578 a001 1346269/192900153618*2537720636^(2/5) 4032522475023578 a001 1346269/4106118243*312119004989^(2/11) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^10/Lucas(46) 4032522475023578 a004 Fibonacci(46)/Lucas(31)/(1/2+sqrt(5)/2)^20 4032522475023578 a001 1346269/4106118243*28143753123^(1/5) 4032522475023578 a001 1346269/4106118243*10749957122^(5/24) 4032522475023578 a001 1346269/45537549124*2537720636^(1/3) 4032522475023578 a001 1346269/10749957122*2537720636^(4/15) 4032522475023578 a001 1346269/4106118243*4106118243^(5/23) 4032522475023578 a004 Fibonacci(31)*Lucas(47)/(1/2+sqrt(5)/2)^83 4032522475023578 a001 1346269/10749957122*45537549124^(4/17) 4032522475023578 a001 1346269/10749957122*817138163596^(4/19) 4032522475023578 a001 1346269/10749957122*14662949395604^(4/21) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^12/Lucas(48) 4032522475023578 a004 Fibonacci(48)/Lucas(31)/(1/2+sqrt(5)/2)^22 4032522475023578 a001 1346269/10749957122*192900153618^(2/9) 4032522475023578 a001 1346269/10749957122*73681302247^(3/13) 4032522475023578 a001 1346269/10749957122*10749957122^(1/4) 4032522475023578 a004 Fibonacci(31)*Lucas(49)/(1/2+sqrt(5)/2)^85 4032522475023578 a001 1346269/28143753123*17393796001^(2/7) 4032522475023578 a001 1346269/23725150497407*17393796001^(4/7) 4032522475023578 a001 1346269/817138163596*17393796001^(3/7) 4032522475023578 a001 1346269/28143753123*14662949395604^(2/9) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^14/Lucas(50) 4032522475023578 a004 Fibonacci(50)/Lucas(31)/(1/2+sqrt(5)/2)^24 4032522475023578 a004 Fibonacci(31)*Lucas(51)/(1/2+sqrt(5)/2)^87 4032522475023578 a001 1346269/14662949395604*45537549124^(9/17) 4032522475023578 a001 1346269/3461452808002*45537549124^(8/17) 4032522475023578 a001 1346269/192900153618*45537549124^(6/17) 4032522475023578 a001 1346269/817138163596*45537549124^(7/17) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^16/Lucas(52) 4032522475023578 a001 1346269/73681302247*23725150497407^(1/4) 4032522475023578 a004 Fibonacci(52)/Lucas(31)/(1/2+sqrt(5)/2)^26 4032522475023578 a001 1346269/73681302247*73681302247^(4/13) 4032522475023578 a001 1346269/119218851371*45537549124^(1/3) 4032522475023578 a004 Fibonacci(31)*Lucas(53)/(1/2+sqrt(5)/2)^89 4032522475023578 a001 1346269/192900153618*14662949395604^(2/7) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^18/Lucas(54) 4032522475023578 a004 Fibonacci(54)/Lucas(31)/(1/2+sqrt(5)/2)^28 4032522475023578 a001 1346269/192900153618*192900153618^(1/3) 4032522475023578 a004 Fibonacci(31)*Lucas(55)/(1/2+sqrt(5)/2)^91 4032522475023578 a001 1346269/1322157322203*312119004989^(2/5) 4032522475023578 a001 1346269/5600748293801*312119004989^(5/11) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^20/Lucas(56) 4032522475023578 a004 Fibonacci(56)/Lucas(31)/(1/2+sqrt(5)/2)^30 4032522475023578 a004 Fibonacci(31)*Lucas(57)/(1/2+sqrt(5)/2)^93 4032522475023578 a001 1346269/14662949395604*817138163596^(9/19) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^22/Lucas(58) 4032522475023578 a004 Fibonacci(58)/Lucas(31)/(1/2+sqrt(5)/2)^32 4032522475023578 a004 Fibonacci(31)*Lucas(59)/(1/2+sqrt(5)/2)^95 4032522475023578 a001 1346269/3461452808002*14662949395604^(8/21) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^24/Lucas(60) 4032522475023578 a004 Fibonacci(60)/Lucas(31)/(1/2+sqrt(5)/2)^34 4032522475023578 a004 Fibonacci(31)*Lucas(61)/(1/2+sqrt(5)/2)^97 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^26/Lucas(62) 4032522475023578 a004 Fibonacci(31)*Lucas(63)/(1/2+sqrt(5)/2)^99 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^28/Lucas(64) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^30/Lucas(66) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^32/Lucas(68) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^34/Lucas(70) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^36/Lucas(72) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^38/Lucas(74) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^40/Lucas(76) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^42/Lucas(78) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^44/Lucas(80) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^46/Lucas(82) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^48/Lucas(84) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^50/Lucas(86) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^52/Lucas(88) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^54/Lucas(90) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^56/Lucas(92) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^58/Lucas(94) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^60/Lucas(96) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^62/Lucas(98) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^63/Lucas(99) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^64/Lucas(100) 4032522475023578 a004 Fibonacci(31)*Lucas(1)/(1/2+sqrt(5)/2)^36 4032522475023578 a004 Fibonacci(62)/Lucas(31)/(1/2+sqrt(5)/2)^36 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^61/Lucas(97) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^59/Lucas(95) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^57/Lucas(93) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^55/Lucas(91) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^53/Lucas(89) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^51/Lucas(87) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^49/Lucas(85) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^47/Lucas(83) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^45/Lucas(81) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^43/Lucas(79) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^41/Lucas(77) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^39/Lucas(75) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^37/Lucas(73) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^35/Lucas(71) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^33/Lucas(69) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^31/Lucas(67) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^29/Lucas(65) 4032522475023578 a004 Fibonacci(31)*Lucas(64)/(1/2+sqrt(5)/2)^100 4032522475023578 a001 1346269/14662949395604*14662949395604^(3/7) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^27/Lucas(63) 4032522475023578 a004 Fibonacci(64)/Lucas(31)/(1/2+sqrt(5)/2)^38 4032522475023578 a004 Fibonacci(66)/Lucas(31)/(1/2+sqrt(5)/2)^40 4032522475023578 a004 Fibonacci(68)/Lucas(31)/(1/2+sqrt(5)/2)^42 4032522475023578 a004 Fibonacci(70)/Lucas(31)/(1/2+sqrt(5)/2)^44 4032522475023578 a004 Fibonacci(72)/Lucas(31)/(1/2+sqrt(5)/2)^46 4032522475023578 a004 Fibonacci(74)/Lucas(31)/(1/2+sqrt(5)/2)^48 4032522475023578 a004 Fibonacci(76)/Lucas(31)/(1/2+sqrt(5)/2)^50 4032522475023578 a004 Fibonacci(78)/Lucas(31)/(1/2+sqrt(5)/2)^52 4032522475023578 a004 Fibonacci(80)/Lucas(31)/(1/2+sqrt(5)/2)^54 4032522475023578 a004 Fibonacci(82)/Lucas(31)/(1/2+sqrt(5)/2)^56 4032522475023578 a004 Fibonacci(84)/Lucas(31)/(1/2+sqrt(5)/2)^58 4032522475023578 a004 Fibonacci(86)/Lucas(31)/(1/2+sqrt(5)/2)^60 4032522475023578 a004 Fibonacci(88)/Lucas(31)/(1/2+sqrt(5)/2)^62 4032522475023578 a004 Fibonacci(90)/Lucas(31)/(1/2+sqrt(5)/2)^64 4032522475023578 a004 Fibonacci(92)/Lucas(31)/(1/2+sqrt(5)/2)^66 4032522475023578 a004 Fibonacci(94)/Lucas(31)/(1/2+sqrt(5)/2)^68 4032522475023578 a004 Fibonacci(96)/Lucas(31)/(1/2+sqrt(5)/2)^70 4032522475023578 a004 Fibonacci(100)/Lucas(31)/(1/2+sqrt(5)/2)^74 4032522475023578 a004 Fibonacci(31)*Lucas(62)/(1/2+sqrt(5)/2)^98 4032522475023578 a004 Fibonacci(98)/Lucas(31)/(1/2+sqrt(5)/2)^72 4032522475023578 a004 Fibonacci(99)/Lucas(31)/(1/2+sqrt(5)/2)^73 4032522475023578 a004 Fibonacci(97)/Lucas(31)/(1/2+sqrt(5)/2)^71 4032522475023578 a004 Fibonacci(95)/Lucas(31)/(1/2+sqrt(5)/2)^69 4032522475023578 a004 Fibonacci(93)/Lucas(31)/(1/2+sqrt(5)/2)^67 4032522475023578 a004 Fibonacci(91)/Lucas(31)/(1/2+sqrt(5)/2)^65 4032522475023578 a004 Fibonacci(89)/Lucas(31)/(1/2+sqrt(5)/2)^63 4032522475023578 a004 Fibonacci(87)/Lucas(31)/(1/2+sqrt(5)/2)^61 4032522475023578 a004 Fibonacci(85)/Lucas(31)/(1/2+sqrt(5)/2)^59 4032522475023578 a004 Fibonacci(83)/Lucas(31)/(1/2+sqrt(5)/2)^57 4032522475023578 a004 Fibonacci(81)/Lucas(31)/(1/2+sqrt(5)/2)^55 4032522475023578 a004 Fibonacci(79)/Lucas(31)/(1/2+sqrt(5)/2)^53 4032522475023578 a004 Fibonacci(77)/Lucas(31)/(1/2+sqrt(5)/2)^51 4032522475023578 a004 Fibonacci(75)/Lucas(31)/(1/2+sqrt(5)/2)^49 4032522475023578 a004 Fibonacci(73)/Lucas(31)/(1/2+sqrt(5)/2)^47 4032522475023578 a004 Fibonacci(71)/Lucas(31)/(1/2+sqrt(5)/2)^45 4032522475023578 a004 Fibonacci(69)/Lucas(31)/(1/2+sqrt(5)/2)^43 4032522475023578 a004 Fibonacci(67)/Lucas(31)/(1/2+sqrt(5)/2)^41 4032522475023578 a004 Fibonacci(65)/Lucas(31)/(1/2+sqrt(5)/2)^39 4032522475023578 a004 Fibonacci(63)/Lucas(31)/(1/2+sqrt(5)/2)^37 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^25/Lucas(61) 4032522475023578 a004 Fibonacci(61)/Lucas(31)/(1/2+sqrt(5)/2)^35 4032522475023578 a004 Fibonacci(31)*Lucas(60)/(1/2+sqrt(5)/2)^96 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^23/Lucas(59) 4032522475023578 a004 Fibonacci(59)/Lucas(31)/(1/2+sqrt(5)/2)^33 4032522475023578 a004 Fibonacci(31)*Lucas(58)/(1/2+sqrt(5)/2)^94 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^21/Lucas(57) 4032522475023578 a004 Fibonacci(57)/Lucas(31)/(1/2+sqrt(5)/2)^31 4032522475023578 a004 Fibonacci(31)*Lucas(56)/(1/2+sqrt(5)/2)^92 4032522475023578 a001 1346269/312119004989*817138163596^(1/3) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^19/Lucas(55) 4032522475023578 a004 Fibonacci(55)/Lucas(31)/(1/2+sqrt(5)/2)^29 4032522475023578 a001 1346269/3461452808002*192900153618^(4/9) 4032522475023578 a001 1346269/817138163596*192900153618^(7/18) 4032522475023578 a001 1346269/14662949395604*192900153618^(1/2) 4032522475023578 a004 Fibonacci(31)*Lucas(54)/(1/2+sqrt(5)/2)^90 4032522475023578 a001 1346269/505019158607*73681302247^(5/13) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^17/Lucas(53) 4032522475023578 a004 Fibonacci(53)/Lucas(31)/(1/2+sqrt(5)/2)^27 4032522475023578 a001 1346269/3461452808002*73681302247^(6/13) 4032522475023578 a001 1346269/9062201101803*73681302247^(1/2) 4032522475023578 a001 1346269/23725150497407*73681302247^(7/13) 4032522475023578 a004 Fibonacci(31)*Lucas(52)/(1/2+sqrt(5)/2)^88 4032522475023578 a001 1346269/45537549124*45537549124^(5/17) 4032522475023578 a001 1346269/45537549124*312119004989^(3/11) 4032522475023578 a001 1346269/45537549124*14662949395604^(5/21) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^15/Lucas(51) 4032522475023578 a004 Fibonacci(51)/Lucas(31)/(1/2+sqrt(5)/2)^25 4032522475023578 a001 1346269/45537549124*192900153618^(5/18) 4032522475023578 a001 1346269/505019158607*28143753123^(2/5) 4032522475023578 a001 1346269/5600748293801*28143753123^(1/2) 4032522475023578 a001 1346269/45537549124*28143753123^(3/10) 4032522475023578 a001 1346269/28143753123*10749957122^(7/24) 4032522475023578 a004 Fibonacci(31)*Lucas(50)/(1/2+sqrt(5)/2)^86 4032522475023578 a001 1346269/73681302247*10749957122^(1/3) 4032522475023578 a001 1346269/45537549124*10749957122^(5/16) 4032522475023578 a001 1346269/192900153618*10749957122^(3/8) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^13/Lucas(49) 4032522475023578 a004 Fibonacci(49)/Lucas(31)/(1/2+sqrt(5)/2)^23 4032522475023578 a001 1346269/17393796001*73681302247^(1/4) 4032522475023578 a001 1346269/505019158607*10749957122^(5/12) 4032522475023578 a001 1346269/817138163596*10749957122^(7/16) 4032522475023578 a001 1346269/1322157322203*10749957122^(11/24) 4032522475023578 a001 1346269/3461452808002*10749957122^(1/2) 4032522475023578 a001 1346269/9062201101803*10749957122^(13/24) 4032522475023578 a001 1346269/14662949395604*10749957122^(9/16) 4032522475023578 a001 1346269/23725150497407*10749957122^(7/12) 4032522475023578 a001 1346269/10749957122*4106118243^(6/23) 4032522475023578 a004 Fibonacci(31)*Lucas(48)/(1/2+sqrt(5)/2)^84 4032522475023578 a001 1346269/28143753123*4106118243^(7/23) 4032522475023578 a001 1346269/73681302247*4106118243^(8/23) 4032522475023578 a001 1346269/6643838879*312119004989^(1/5) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^11/Lucas(47) 4032522475023578 a004 Fibonacci(47)/Lucas(31)/(1/2+sqrt(5)/2)^21 4032522475023578 a001 1346269/192900153618*4106118243^(9/23) 4032522475023578 a001 1346269/505019158607*4106118243^(10/23) 4032522475023578 a001 1346269/1322157322203*4106118243^(11/23) 4032522475023578 a001 1346269/2139295485799*4106118243^(1/2) 4032522475023578 a001 1346269/3461452808002*4106118243^(12/23) 4032522475023578 a001 1346269/4106118243*1568397607^(5/22) 4032522475023578 a001 1346269/9062201101803*4106118243^(13/23) 4032522475023578 a001 1346269/23725150497407*4106118243^(14/23) 4032522475023578 a004 Fibonacci(31)*Lucas(46)/(1/2+sqrt(5)/2)^82 4032522475023578 a001 1346269/599074578*228826127^(3/20) 4032522475023578 a001 1346269/10749957122*1568397607^(3/11) 4032522475023578 a001 1346269/1568397607*599074578^(4/21) 4032522475023578 a001 1346269/2537720636*2537720636^(1/5) 4032522475023578 a001 1346269/6643838879*1568397607^(1/4) 4032522475023578 a001 1346269/28143753123*1568397607^(7/22) 4032522475023578 a001 1346269/73681302247*1568397607^(4/11) 4032522475023578 a001 1346269/2537720636*45537549124^(3/17) 4032522475023578 a001 1346269/2537720636*14662949395604^(1/7) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^9/Lucas(45) 4032522475023578 a004 Fibonacci(45)/Lucas(31)/(1/2+sqrt(5)/2)^19 4032522475023578 a001 1346269/2537720636*192900153618^(1/6) 4032522475023578 a001 1346269/2537720636*10749957122^(3/16) 4032522475023578 a001 1346269/192900153618*1568397607^(9/22) 4032522475023578 a001 1346269/505019158607*1568397607^(5/11) 4032522475023578 a001 1346269/1322157322203*1568397607^(1/2) 4032522475023578 a001 1346269/3461452808002*1568397607^(6/11) 4032522475023578 a001 1346269/9062201101803*1568397607^(13/22) 4032522475023578 a001 1346269/23725150497407*1568397607^(7/11) 4032522475023578 a004 Fibonacci(31)*Lucas(44)/(1/2+sqrt(5)/2)^80 4032522475023578 a001 1346269/4106118243*599074578^(5/21) 4032522475023578 a001 1346269/2537720636*599074578^(3/14) 4032522475023578 a001 1346269/10749957122*599074578^(2/7) 4032522475023578 a001 1346269/28143753123*599074578^(1/3) 4032522475023578 a001 1346269/45537549124*599074578^(5/14) 4032522475023578 a001 1346269/73681302247*599074578^(8/21) 4032522475023578 a001 1346269/969323029*17393796001^(1/7) 4032522475023578 a001 1346269/969323029*14662949395604^(1/9) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^7/Lucas(43) 4032522475023578 a004 Fibonacci(43)/Lucas(31)/(1/2+sqrt(5)/2)^17 4032522475023578 a001 1346269/192900153618*599074578^(3/7) 4032522475023578 a001 1346269/505019158607*599074578^(10/21) 4032522475023578 a001 1346269/817138163596*599074578^(1/2) 4032522475023578 a001 1346269/1322157322203*599074578^(11/21) 4032522475023578 a001 1346269/969323029*599074578^(1/6) 4032522475023578 a001 1346269/3461452808002*599074578^(4/7) 4032522475023578 a001 1346269/9062201101803*599074578^(13/21) 4032522475023578 a001 1346269/14662949395604*599074578^(9/14) 4032522475023578 a001 1346269/23725150497407*599074578^(2/3) 4032522475023578 a004 Fibonacci(31)*Lucas(42)/(1/2+sqrt(5)/2)^78 4032522475023578 a001 1346269/1568397607*228826127^(1/5) 4032522475023578 a001 1346269/4106118243*228826127^(1/4) 4032522475023578 a001 1346269/10749957122*228826127^(3/10) 4032522475023578 a001 1346269/28143753123*228826127^(7/20) 4032522475023578 a001 1346269/45537549124*228826127^(3/8) 4032522475023578 a001 1346269/370248451*2537720636^(1/9) 4032522475023578 a001 1346269/370248451*312119004989^(1/11) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^5/Lucas(41) 4032522475023578 a004 Fibonacci(41)/Lucas(31)/(1/2+sqrt(5)/2)^15 4032522475023578 a001 1346269/370248451*28143753123^(1/10) 4032522475023578 a001 1346269/73681302247*228826127^(2/5) 4032522475023578 a001 1346269/192900153618*228826127^(9/20) 4032522475023578 a001 1346269/505019158607*228826127^(1/2) 4032522475023578 a001 1346269/370248451*228826127^(1/8) 4032522475023578 a001 1346269/1322157322203*228826127^(11/20) 4032522475023578 a001 1346269/3461452808002*228826127^(3/5) 4032522475023578 a001 1346269/5600748293801*228826127^(5/8) 4032522475023578 a001 1346269/9062201101803*228826127^(13/20) 4032522475023578 a001 1346269/23725150497407*228826127^(7/10) 4032522475023578 a001 1346269/599074578*87403803^(3/19) 4032522475023578 a004 Fibonacci(31)*Lucas(40)/(1/2+sqrt(5)/2)^76 4032522475023578 a001 1346269/1568397607*87403803^(4/19) 4032522475023578 a001 1346269/4106118243*87403803^(5/19) 4032522475023578 a001 1346269/10749957122*87403803^(6/19) 4032522475023578 a001 1346269/141422324*141422324^(1/13) 4032522475023578 a001 1346269/28143753123*87403803^(7/19) 4032522475023578 a001 1346269/141422324*2537720636^(1/15) 4032522475023578 a001 1346269/141422324*45537549124^(1/17) 4032522475023578 a001 1346269/141422324*14662949395604^(1/21) 4032522475023578 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^3/Lucas(39) 4032522475023578 a004 Fibonacci(39)/Lucas(31)/(1/2+sqrt(5)/2)^13 4032522475023578 a001 1346269/141422324*192900153618^(1/18) 4032522475023578 a001 1346269/141422324*10749957122^(1/16) 4032522475023578 a001 1346269/141422324*599074578^(1/14) 4032522475023578 a001 1346269/73681302247*87403803^(8/19) 4032522475023578 a001 1346269/192900153618*87403803^(9/19) 4032522475023578 a001 1346269/312119004989*87403803^(1/2) 4032522475023578 a001 1346269/505019158607*87403803^(10/19) 4032522475023578 a001 1346269/1322157322203*87403803^(11/19) 4032522475023578 a001 1346269/228826127*33385282^(1/9) 4032522475023578 a001 1346269/3461452808002*87403803^(12/19) 4032522475023578 a001 1346269/9062201101803*87403803^(13/19) 4032522475023578 a001 1346269/23725150497407*87403803^(14/19) 4032522475023578 a001 1346269/141422324*33385282^(1/12) 4032522475023578 a004 Fibonacci(31)*Lucas(38)/(1/2+sqrt(5)/2)^74 4032522475023578 a001 1346269/599074578*33385282^(1/6) 4032522475023579 a001 1346269/1568397607*33385282^(2/9) 4032522475023579 a001 1346269/2537720636*33385282^(1/4) 4032522475023579 a001 1346269/87403803*12752043^(1/17) 4032522475023579 a001 1346269/4106118243*33385282^(5/18) 4032522475023579 a001 1346269/10749957122*33385282^(1/3) 4032522475023579 a004 Fibonacci(31)*(1/2+sqrt(5)/2)/Lucas(37) 4032522475023579 a004 Fibonacci(37)/Lucas(31)/(1/2+sqrt(5)/2)^11 4032522475023579 a001 1346269/28143753123*33385282^(7/18) 4032522475023579 a001 1346269/45537549124*33385282^(5/12) 4032522475023579 a001 1346269/73681302247*33385282^(4/9) 4032522475023580 a001 1346269/192900153618*33385282^(1/2) 4032522475023580 a001 1346269/505019158607*33385282^(5/9) 4032522475023580 a001 1346269/817138163596*33385282^(7/12) 4032522475023580 a001 1346269/1322157322203*33385282^(11/18) 4032522475023580 a001 1346269/3461452808002*33385282^(2/3) 4032522475023580 a001 1346269/9062201101803*33385282^(13/18) 4032522475023581 a001 1346269/14662949395604*33385282^(3/4) 4032522475023581 a001 1346269/23725150497407*33385282^(7/9) 4032522475023581 a001 1346269/228826127*12752043^(2/17) 4032522475023581 a004 Fibonacci(31)*Lucas(36)/(1/2+sqrt(5)/2)^72 4032522475023582 a001 1346269/599074578*12752043^(3/17) 4032522475023584 a001 1346269/1568397607*12752043^(4/17) 4032522475023584 a001 2178309/119218851371*1860498^(8/15) 4032522475023585 a001 1346269/4106118243*12752043^(5/17) 4032522475023586 a001 1762289/5374978561*1860498^(1/3) 4032522475023587 a001 1346269/10749957122*12752043^(6/17) 4032522475023587 a004 Fibonacci(31)/Lucas(35)/(1/2+sqrt(5)/2) 4032522475023587 a004 Fibonacci(35)/Lucas(31)/(1/2+sqrt(5)/2)^9 4032522475023588 a001 1346269/87403803*4870847^(1/16) 4032522475023588 a001 1346269/28143753123*12752043^(7/17) 4032522475023590 a001 1346269/73681302247*12752043^(8/17) 4032522475023590 a001 1346269/119218851371*12752043^(1/2) 4032522475023591 a001 1346269/192900153618*12752043^(9/17) 4032522475023592 a001 1346269/505019158607*12752043^(10/17) 4032522475023594 a001 1346269/1322157322203*12752043^(11/17) 4032522475023595 a001 14930352/119218851371*1860498^(2/5) 4032522475023595 a001 1346269/3461452808002*12752043^(12/17) 4032522475023597 a001 1346269/9062201101803*12752043^(13/17) 4032522475023598 a001 1346269/23725150497407*12752043^(14/17) 4032522475023598 a001 39088169/312119004989*1860498^(2/5) 4032522475023599 a001 102334155/817138163596*1860498^(2/5) 4032522475023599 a001 267914296/2139295485799*1860498^(2/5) 4032522475023599 a001 701408733/5600748293801*1860498^(2/5) 4032522475023599 a001 1836311903/14662949395604*1860498^(2/5) 4032522475023599 a001 2971215073/23725150497407*1860498^(2/5) 4032522475023599 a001 1134903170/9062201101803*1860498^(2/5) 4032522475023599 a001 433494437/3461452808002*1860498^(2/5) 4032522475023599 a001 165580141/1322157322203*1860498^(2/5) 4032522475023599 a001 1346269/228826127*4870847^(1/8) 4032522475023599 a001 63245986/505019158607*1860498^(2/5) 4032522475023600 a001 24157817/192900153618*1860498^(2/5) 4032522475023603 a004 Fibonacci(31)*Lucas(34)/(1/2+sqrt(5)/2)^70 4032522475023608 a001 9227465/73681302247*1860498^(2/5) 4032522475023610 a001 1346269/599074578*4870847^(3/16) 4032522475023620 a001 1346269/1568397607*4870847^(1/4) 4032522475023631 a001 1346269/4106118243*4870847^(5/16) 4032522475023642 a001 1346269/10749957122*4870847^(3/8) 4032522475023643 a004 Fibonacci(31)/Lucas(33)/(1/2+sqrt(5)/2)^3 4032522475023643 a004 Fibonacci(33)/Lucas(31)/(1/2+sqrt(5)/2)^7 4032522475023652 a001 5702887/119218851371*1860498^(7/15) 4032522475023652 a001 1346269/28143753123*4870847^(7/16) 4032522475023655 a001 1346269/87403803*1860498^(1/15) 4032522475023662 a001 2178309/312119004989*1860498^(3/5) 4032522475023663 a001 1346269/73681302247*4870847^(1/2) 4032522475023664 a001 3524578/28143753123*1860498^(2/5) 4032522475023673 a001 14930352/312119004989*1860498^(7/15) 4032522475023673 a001 1346269/192900153618*4870847^(9/16) 4032522475023676 a001 4181/87403804*1860498^(7/15) 4032522475023676 a001 102334155/2139295485799*1860498^(7/15) 4032522475023677 a001 267914296/5600748293801*1860498^(7/15) 4032522475023677 a001 701408733/14662949395604*1860498^(7/15) 4032522475023677 a001 1134903170/23725150497407*1860498^(7/15) 4032522475023677 a001 433494437/9062201101803*1860498^(7/15) 4032522475023677 a001 165580141/3461452808002*1860498^(7/15) 4032522475023677 a001 63245986/1322157322203*1860498^(7/15) 4032522475023678 a001 24157817/505019158607*1860498^(7/15) 4032522475023678 a001 5702887/370248451*710647^(1/14) 4032522475023679 a001 832040/370248451*710647^(3/14) 4032522475023684 a001 1346269/505019158607*4870847^(5/8) 4032522475023686 a001 9227465/192900153618*1860498^(7/15) 4032522475023691 a001 5702887/192900153618*1860498^(1/2) 4032522475023695 a001 1346269/141422324*1860498^(1/10) 4032522475023695 a001 1346269/1322157322203*4870847^(11/16) 4032522475023700 a001 14930352/969323029*710647^(1/14) 4032522475023703 a001 39088169/2537720636*710647^(1/14) 4032522475023703 a001 102334155/6643838879*710647^(1/14) 4032522475023703 a001 9238424/599786069*710647^(1/14) 4032522475023703 a001 701408733/45537549124*710647^(1/14) 4032522475023703 a001 1836311903/119218851371*710647^(1/14) 4032522475023703 a001 4807526976/312119004989*710647^(1/14) 4032522475023703 a001 12586269025/817138163596*710647^(1/14) 4032522475023703 a001 32951280099/2139295485799*710647^(1/14) 4032522475023703 a001 86267571272/5600748293801*710647^(1/14) 4032522475023703 a001 7787980473/505618944676*710647^(1/14) 4032522475023703 a001 365435296162/23725150497407*710647^(1/14) 4032522475023703 a001 139583862445/9062201101803*710647^(1/14) 4032522475023703 a001 53316291173/3461452808002*710647^(1/14) 4032522475023703 a001 20365011074/1322157322203*710647^(1/14) 4032522475023703 a001 7778742049/505019158607*710647^(1/14) 4032522475023703 a001 2971215073/192900153618*710647^(1/14) 4032522475023703 a001 1134903170/73681302247*710647^(1/14) 4032522475023703 a001 433494437/28143753123*710647^(1/14) 4032522475023703 a001 165580141/10749957122*710647^(1/14) 4032522475023703 a001 63245986/4106118243*710647^(1/14) 4032522475023705 a001 24157817/1568397607*710647^(1/14) 4032522475023705 a001 1346269/3461452808002*4870847^(3/4) 4032522475023712 a001 14930352/505019158607*1860498^(1/2) 4032522475023713 a001 9227465/599074578*710647^(1/14) 4032522475023715 a001 39088169/1322157322203*1860498^(1/2) 4032522475023715 a001 6765/228826126*1860498^(1/2) 4032522475023715 a001 267914296/9062201101803*1860498^(1/2) 4032522475023715 a001 701408733/23725150497407*1860498^(1/2) 4032522475023715 a001 433494437/14662949395604*1860498^(1/2) 4032522475023715 a001 165580141/5600748293801*1860498^(1/2) 4032522475023716 a001 63245986/2139295485799*1860498^(1/2) 4032522475023716 a001 1346269/9062201101803*4870847^(13/16) 4032522475023717 a001 24157817/817138163596*1860498^(1/2) 4032522475023725 a001 9227465/312119004989*1860498^(1/2) 4032522475023727 a001 1346269/23725150497407*4870847^(7/8) 4032522475023729 a001 5702887/312119004989*1860498^(8/15) 4032522475023733 a001 1346269/228826127*1860498^(2/15) 4032522475023740 a001 2178309/817138163596*1860498^(2/3) 4032522475023741 a001 3524578/73681302247*1860498^(7/15) 4032522475023748 a004 Fibonacci(31)*Lucas(32)/(1/2+sqrt(5)/2)^68 4032522475023751 a001 3732588/204284540899*1860498^(8/15) 4032522475023754 a001 39088169/2139295485799*1860498^(8/15) 4032522475023754 a001 102334155/5600748293801*1860498^(8/15) 4032522475023754 a001 10946/599074579*1860498^(8/15) 4032522475023754 a001 433494437/23725150497407*1860498^(8/15) 4032522475023754 a001 165580141/9062201101803*1860498^(8/15) 4032522475023754 a001 31622993/1730726404001*1860498^(8/15) 4032522475023756 a001 24157817/1322157322203*1860498^(8/15) 4032522475023764 a001 9227465/505019158607*1860498^(8/15) 4032522475023768 a001 3524578/228826127*710647^(1/14) 4032522475023772 a001 1346269/370248451*1860498^(1/6) 4032522475023778 a001 726103/440719107401*1860498^(7/10) 4032522475023780 a001 3524578/119218851371*1860498^(1/2) 4032522475023807 a001 5702887/817138163596*1860498^(3/5) 4032522475023811 a001 1346269/599074578*1860498^(1/5) 4032522475023817 a001 2178309/2139295485799*1860498^(11/15) 4032522475023819 a001 1762289/96450076809*1860498^(8/15) 4032522475023828 a001 14930352/2139295485799*1860498^(3/5) 4032522475023831 a001 39088169/5600748293801*1860498^(3/5) 4032522475023832 a001 102334155/14662949395604*1860498^(3/5) 4032522475023832 a001 165580141/23725150497407*1860498^(3/5) 4032522475023832 a001 63245986/9062201101803*1860498^(3/5) 4032522475023833 a001 24157817/3461452808002*1860498^(3/5) 4032522475023841 a001 9227465/1322157322203*1860498^(3/5) 4032522475023861 a001 514229/54018521*439204^(1/9) 4032522475023885 a001 5702887/2139295485799*1860498^(2/3) 4032522475023889 a001 1346269/1568397607*1860498^(4/15) 4032522475023895 a001 2178309/5600748293801*1860498^(4/5) 4032522475023897 a001 3524578/505019158607*1860498^(3/5) 4032522475023906 a001 14930352/5600748293801*1860498^(2/3) 4032522475023909 a001 39088169/14662949395604*1860498^(2/3) 4032522475023910 a001 63245986/23725150497407*1860498^(2/3) 4032522475023911 a001 24157817/9062201101803*1860498^(2/3) 4032522475023919 a001 9227465/3461452808002*1860498^(2/3) 4032522475023924 a001 5702887/3461452808002*1860498^(7/10) 4032522475023927 a001 1346269/2537720636*1860498^(3/10) 4032522475023934 a001 726103/3020733700601*1860498^(5/6) 4032522475023945 a001 4976784/3020733700601*1860498^(7/10) 4032522475023948 a001 39088169/23725150497407*1860498^(7/10) 4032522475023950 a001 24157817/14662949395604*1860498^(7/10) 4032522475023958 a001 9227465/5600748293801*1860498^(7/10) 4032522475023962 a001 5702887/5600748293801*1860498^(11/15) 4032522475023964 a001 416020/299537289*710647^(1/4) 4032522475023966 a001 1346269/4106118243*1860498^(1/3) 4032522475023973 a001 2178309/14662949395604*1860498^(13/15) 4032522475023974 a001 3524578/1322157322203*1860498^(2/3) 4032522475023984 a001 196452/192933544679*1860498^(11/15) 4032522475023989 a001 24157817/23725150497407*1860498^(11/15) 4032522475023997 a001 9227465/9062201101803*1860498^(11/15) 4032522475024011 a001 2178309/23725150497407*1860498^(9/10) 4032522475024013 a001 3524578/2139295485799*1860498^(7/10) 4032522475024023 a004 Fibonacci(31)/Lucas(31)/(1/2+sqrt(5)/2)^5 4032522475024040 a001 5702887/14662949395604*1860498^(4/5) 4032522475024044 a001 1346269/10749957122*1860498^(2/5) 4032522475024052 a001 1762289/1730726404001*1860498^(11/15) 4032522475024074 a001 9227465/23725150497407*1860498^(4/5) 4032522475024079 a001 5702887/23725150497407*1860498^(5/6) 4032522475024104 a001 2178309/370248451*710647^(1/7) 4032522475024122 a001 1346269/28143753123*1860498^(7/15) 4032522475024128 a004 Fibonacci(32)*Lucas(30)/(1/2+sqrt(5)/2)^67 4032522475024130 a001 3524578/9062201101803*1860498^(4/5) 4032522475024148 a001 1346269/87403803*710647^(1/14) 4032522475024160 a001 1346269/45537549124*1860498^(1/2) 4032522475024169 a001 1762289/7331474697802*1860498^(5/6) 4032522475024199 a001 1346269/73681302247*1860498^(8/15) 4032522475024207 a001 3524578/23725150497407*1860498^(13/15) 4032522475024249 a001 5702887/969323029*710647^(1/7) 4032522475024249 a001 832040/969323029*710647^(2/7) 4032522475024270 a001 196452/33391061*710647^(1/7) 4032522475024273 a001 39088169/6643838879*710647^(1/7) 4032522475024273 a004 Fibonacci(34)*Lucas(30)/(1/2+sqrt(5)/2)^69 4032522475024274 a001 102334155/17393796001*710647^(1/7) 4032522475024274 a001 66978574/11384387281*710647^(1/7) 4032522475024274 a001 701408733/119218851371*710647^(1/7) 4032522475024274 a001 1836311903/312119004989*710647^(1/7) 4032522475024274 a001 1201881744/204284540899*710647^(1/7) 4032522475024274 a001 12586269025/2139295485799*710647^(1/7) 4032522475024274 a001 32951280099/5600748293801*710647^(1/7) 4032522475024274 a001 1135099622/192933544679*710647^(1/7) 4032522475024274 a001 139583862445/23725150497407*710647^(1/7) 4032522475024274 a001 53316291173/9062201101803*710647^(1/7) 4032522475024274 a001 10182505537/1730726404001*710647^(1/7) 4032522475024274 a001 7778742049/1322157322203*710647^(1/7) 4032522475024274 a001 2971215073/505019158607*710647^(1/7) 4032522475024274 a001 567451585/96450076809*710647^(1/7) 4032522475024274 a001 433494437/73681302247*710647^(1/7) 4032522475024274 a001 165580141/28143753123*710647^(1/7) 4032522475024274 a001 31622993/5374978561*710647^(1/7) 4032522475024275 a001 24157817/4106118243*710647^(1/7) 4032522475024277 a001 1346269/192900153618*1860498^(3/5) 4032522475024283 a001 9227465/1568397607*710647^(1/7) 4032522475024288 a001 1860498/9227465*8^(1/3) 4032522475024294 a004 Fibonacci(36)*Lucas(30)/(1/2+sqrt(5)/2)^71 4032522475024297 a004 Fibonacci(38)*Lucas(30)/(1/2+sqrt(5)/2)^73 4032522475024298 a004 Fibonacci(40)*Lucas(30)/(1/2+sqrt(5)/2)^75 4032522475024298 a004 Fibonacci(42)*Lucas(30)/(1/2+sqrt(5)/2)^77 4032522475024298 a004 Fibonacci(44)*Lucas(30)/(1/2+sqrt(5)/2)^79 4032522475024298 a004 Fibonacci(46)*Lucas(30)/(1/2+sqrt(5)/2)^81 4032522475024298 a004 Fibonacci(48)*Lucas(30)/(1/2+sqrt(5)/2)^83 4032522475024298 a004 Fibonacci(50)*Lucas(30)/(1/2+sqrt(5)/2)^85 4032522475024298 a004 Fibonacci(52)*Lucas(30)/(1/2+sqrt(5)/2)^87 4032522475024298 a004 Fibonacci(54)*Lucas(30)/(1/2+sqrt(5)/2)^89 4032522475024298 a004 Fibonacci(56)*Lucas(30)/(1/2+sqrt(5)/2)^91 4032522475024298 a004 Fibonacci(58)*Lucas(30)/(1/2+sqrt(5)/2)^93 4032522475024298 a004 Fibonacci(60)*Lucas(30)/(1/2+sqrt(5)/2)^95 4032522475024298 a004 Fibonacci(62)*Lucas(30)/(1/2+sqrt(5)/2)^97 4032522475024298 a004 Fibonacci(64)*Lucas(30)/(1/2+sqrt(5)/2)^99 4032522475024298 a004 Fibonacci(65)*Lucas(30)/(1/2+sqrt(5)/2)^100 4032522475024298 a004 Fibonacci(63)*Lucas(30)/(1/2+sqrt(5)/2)^98 4032522475024298 a004 Fibonacci(61)*Lucas(30)/(1/2+sqrt(5)/2)^96 4032522475024298 a001 1/416020*(1/2+1/2*5^(1/2))^25 4032522475024298 a004 Fibonacci(59)*Lucas(30)/(1/2+sqrt(5)/2)^94 4032522475024298 a004 Fibonacci(57)*Lucas(30)/(1/2+sqrt(5)/2)^92 4032522475024298 a004 Fibonacci(55)*Lucas(30)/(1/2+sqrt(5)/2)^90 4032522475024298 a004 Fibonacci(53)*Lucas(30)/(1/2+sqrt(5)/2)^88 4032522475024298 a004 Fibonacci(51)*Lucas(30)/(1/2+sqrt(5)/2)^86 4032522475024298 a004 Fibonacci(49)*Lucas(30)/(1/2+sqrt(5)/2)^84 4032522475024298 a004 Fibonacci(47)*Lucas(30)/(1/2+sqrt(5)/2)^82 4032522475024298 a004 Fibonacci(45)*Lucas(30)/(1/2+sqrt(5)/2)^80 4032522475024298 a004 Fibonacci(43)*Lucas(30)/(1/2+sqrt(5)/2)^78 4032522475024298 a004 Fibonacci(41)*Lucas(30)/(1/2+sqrt(5)/2)^76 4032522475024298 a004 Fibonacci(39)*Lucas(30)/(1/2+sqrt(5)/2)^74 4032522475024299 a004 Fibonacci(37)*Lucas(30)/(1/2+sqrt(5)/2)^72 4032522475024307 a004 Fibonacci(35)*Lucas(30)/(1/2+sqrt(5)/2)^70 4032522475024339 a001 1762289/299537289*710647^(1/7) 4032522475024355 a001 1346269/505019158607*1860498^(2/3) 4032522475024363 a004 Fibonacci(33)*Lucas(30)/(1/2+sqrt(5)/2)^68 4032522475024393 a001 1346269/817138163596*1860498^(7/10) 4032522475024432 a001 1346269/1322157322203*1860498^(11/15) 4032522475024510 a001 1346269/3461452808002*1860498^(4/5) 4032522475024549 a001 1346269/5600748293801*1860498^(5/6) 4032522475024588 a001 1346269/9062201101803*1860498^(13/15) 4032522475024626 a001 1346269/14662949395604*1860498^(9/10) 4032522475024665 a001 1346269/23725150497407*1860498^(14/15) 4032522475024674 a001 2178309/969323029*710647^(3/14) 4032522475024718 a001 1346269/228826127*710647^(1/7) 4032522475024743 a004 Fibonacci(31)*Lucas(30)/(1/2+sqrt(5)/2)^66 4032522475024819 a001 5702887/2537720636*710647^(3/14) 4032522475024820 a001 610/1860499*710647^(5/14) 4032522475024840 a001 14930352/6643838879*710647^(3/14) 4032522475024843 a001 39088169/17393796001*710647^(3/14) 4032522475024844 a001 102334155/45537549124*710647^(3/14) 4032522475024844 a001 267914296/119218851371*710647^(3/14) 4032522475024844 a001 3524667/1568437211*710647^(3/14) 4032522475024844 a001 1836311903/817138163596*710647^(3/14) 4032522475024844 a001 4807526976/2139295485799*710647^(3/14) 4032522475024844 a001 12586269025/5600748293801*710647^(3/14) 4032522475024844 a001 32951280099/14662949395604*710647^(3/14) 4032522475024844 a001 53316291173/23725150497407*710647^(3/14) 4032522475024844 a001 20365011074/9062201101803*710647^(3/14) 4032522475024844 a001 7778742049/3461452808002*710647^(3/14) 4032522475024844 a001 2971215073/1322157322203*710647^(3/14) 4032522475024844 a001 1134903170/505019158607*710647^(3/14) 4032522475024844 a001 433494437/192900153618*710647^(3/14) 4032522475024844 a001 165580141/73681302247*710647^(3/14) 4032522475024844 a001 63245986/28143753123*710647^(3/14) 4032522475024845 a001 24157817/10749957122*710647^(3/14) 4032522475024853 a001 9227465/4106118243*710647^(3/14) 4032522475024909 a001 3524578/1568397607*710647^(3/14) 4032522475024959 a001 311187/224056801*710647^(1/4) 4032522475025018 a001 427859097160/10610209857723 4032522475025018 a004 Fibonacci(29)/Lucas(30)/(1/2+sqrt(5)/2)^4 4032522475025018 a004 Fibonacci(30)/Lucas(29)/(1/2+sqrt(5)/2)^6 4032522475025104 a001 5702887/4106118243*710647^(1/4) 4032522475025125 a001 7465176/5374978561*710647^(1/4) 4032522475025129 a001 39088169/28143753123*710647^(1/4) 4032522475025129 a001 14619165/10525900321*710647^(1/4) 4032522475025129 a001 133957148/96450076809*710647^(1/4) 4032522475025129 a001 701408733/505019158607*710647^(1/4) 4032522475025129 a001 1836311903/1322157322203*710647^(1/4) 4032522475025129 a001 14930208/10749853441*710647^(1/4) 4032522475025129 a001 12586269025/9062201101803*710647^(1/4) 4032522475025129 a001 32951280099/23725150497407*710647^(1/4) 4032522475025129 a001 10182505537/7331474697802*710647^(1/4) 4032522475025129 a001 7778742049/5600748293801*710647^(1/4) 4032522475025129 a001 2971215073/2139295485799*710647^(1/4) 4032522475025129 a001 567451585/408569081798*710647^(1/4) 4032522475025129 a001 433494437/312119004989*710647^(1/4) 4032522475025129 a001 165580141/119218851371*710647^(1/4) 4032522475025129 a001 31622993/22768774562*710647^(1/4) 4032522475025130 a001 24157817/17393796001*710647^(1/4) 4032522475025139 a001 9227465/6643838879*710647^(1/4) 4032522475025194 a001 1762289/1268860318*710647^(1/4) 4032522475025244 a001 2178309/2537720636*710647^(2/7) 4032522475025289 a001 1346269/599074578*710647^(3/14) 4032522475025389 a001 5702887/6643838879*710647^(2/7) 4032522475025390 a001 832040/6643838879*710647^(3/7) 4032522475025411 a001 14930352/17393796001*710647^(2/7) 4032522475025414 a001 39088169/45537549124*710647^(2/7) 4032522475025414 a001 102334155/119218851371*710647^(2/7) 4032522475025414 a001 267914296/312119004989*710647^(2/7) 4032522475025414 a001 701408733/817138163596*710647^(2/7) 4032522475025414 a001 1836311903/2139295485799*710647^(2/7) 4032522475025414 a001 4807526976/5600748293801*710647^(2/7) 4032522475025414 a001 12586269025/14662949395604*710647^(2/7) 4032522475025414 a001 20365011074/23725150497407*710647^(2/7) 4032522475025414 a001 7778742049/9062201101803*710647^(2/7) 4032522475025414 a001 2971215073/3461452808002*710647^(2/7) 4032522475025414 a001 1134903170/1322157322203*710647^(2/7) 4032522475025414 a001 433494437/505019158607*710647^(2/7) 4032522475025414 a001 165580141/192900153618*710647^(2/7) 4032522475025414 a001 63245986/73681302247*710647^(2/7) 4032522475025416 a001 24157817/28143753123*710647^(2/7) 4032522475025424 a001 9227465/10749957122*710647^(2/7) 4032522475025456 a001 196418/505019158607*439204^(8/9) 4032522475025479 a001 3524578/4106118243*710647^(2/7) 4032522475025574 a001 1346269/969323029*710647^(1/4) 4032522475025738 a004 Fibonacci(29)*Lucas(31)/(1/2+sqrt(5)/2)^65 4032522475025815 a001 2178309/6643838879*710647^(5/14) 4032522475025859 a001 1346269/1568397607*710647^(2/7) 4032522475025960 a001 5702887/17393796001*710647^(5/14) 4032522475025960 a001 832040/17393796001*710647^(1/2) 4032522475025981 a001 3732588/11384387281*710647^(5/14) 4032522475025984 a001 39088169/119218851371*710647^(5/14) 4032522475025985 a001 9303105/28374454999*710647^(5/14) 4032522475025985 a001 66978574/204284540899*710647^(5/14) 4032522475025985 a001 701408733/2139295485799*710647^(5/14) 4032522475025985 a001 1836311903/5600748293801*710647^(5/14) 4032522475025985 a001 1201881744/3665737348901*710647^(5/14) 4032522475025985 a001 7778742049/23725150497407*710647^(5/14) 4032522475025985 a001 2971215073/9062201101803*710647^(5/14) 4032522475025985 a001 567451585/1730726404001*710647^(5/14) 4032522475025985 a001 433494437/1322157322203*710647^(5/14) 4032522475025985 a001 165580141/505019158607*710647^(5/14) 4032522475025985 a001 31622993/96450076809*710647^(5/14) 4032522475025986 a001 24157817/73681302247*710647^(5/14) 4032522475025994 a001 9227465/28143753123*710647^(5/14) 4032522475026013 a004 Fibonacci(29)/Lucas(32)/(1/2+sqrt(5)/2)^2 4032522475026013 a004 Fibonacci(32)/Lucas(29)/(1/2+sqrt(5)/2)^8 4032522475026050 a001 1762289/5374978561*710647^(5/14) 4032522475026118 a004 Fibonacci(29)*Lucas(33)/(1/2+sqrt(5)/2)^67 4032522475026124 a001 514229/23725150497407*7881196^(10/11) 4032522475026130 a001 514229/5600748293801*7881196^(9/11) 4032522475026136 a001 514229/1322157322203*7881196^(8/11) 4032522475026140 a001 514229/505019158607*7881196^(2/3) 4032522475026142 a001 514229/312119004989*7881196^(7/11) 4032522475026147 a001 514229/73681302247*7881196^(6/11) 4032522475026153 a001 514229/17393796001*7881196^(5/11) 4032522475026158 a004 Fibonacci(34)/Lucas(29)/(1/2+sqrt(5)/2)^10 4032522475026159 a001 514229/4106118243*7881196^(4/11) 4032522475026161 a001 514229/2537720636*7881196^(1/3) 4032522475026165 a001 514229/969323029*7881196^(3/11) 4032522475026171 a001 514229/228826127*7881196^(2/11) 4032522475026173 a004 Fibonacci(29)*Lucas(35)/(1/2+sqrt(5)/2)^69 4032522475026175 a001 514229/23725150497407*20633239^(6/7) 4032522475026175 a001 514229/9062201101803*20633239^(4/5) 4032522475026176 a001 514229/2139295485799*20633239^(5/7) 4032522475026177 a001 514229/312119004989*20633239^(3/5) 4032522475026177 a001 514229/192900153618*20633239^(4/7) 4032522475026178 a001 514229/54018521*7881196^(1/11) 4032522475026179 a001 514229/17393796001*20633239^(3/7) 4032522475026179 a001 514229/10749957122*20633239^(2/5) 4032522475026179 a001 514229/33385282*(1/2+1/2*5^(1/2))^2 4032522475026179 a004 Fibonacci(36)/Lucas(29)/(1/2+sqrt(5)/2)^12 4032522475026179 a001 514229/33385282*10749957122^(1/24) 4032522475026179 a001 514229/33385282*4106118243^(1/23) 4032522475026179 a001 514229/33385282*1568397607^(1/22) 4032522475026179 a001 514229/33385282*599074578^(1/21) 4032522475026179 a001 514229/33385282*228826127^(1/20) 4032522475026179 a001 832040/54018521*271443^(1/13) 4032522475026179 a001 514229/33385282*87403803^(1/19) 4032522475026179 a001 514229/33385282*33385282^(1/18) 4032522475026180 a001 514229/1568397607*20633239^(2/7) 4032522475026181 a001 514229/33385282*12752043^(1/17) 4032522475026181 a001 514229/370248451*20633239^(1/5) 4032522475026181 a004 Fibonacci(29)*Lucas(37)/(1/2+sqrt(5)/2)^71 4032522475026182 a001 514229/141422324*20633239^(1/7) 4032522475026182 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^4/Lucas(38) 4032522475026182 a001 514229/87403803*23725150497407^(1/16) 4032522475026182 a004 Fibonacci(38)/Lucas(29)/(1/2+sqrt(5)/2)^14 4032522475026182 a001 514229/87403803*73681302247^(1/13) 4032522475026182 a001 514229/87403803*10749957122^(1/12) 4032522475026182 a001 514229/87403803*4106118243^(2/23) 4032522475026182 a001 514229/87403803*1568397607^(1/11) 4032522475026182 a001 514229/87403803*599074578^(2/21) 4032522475026182 a001 514229/87403803*228826127^(1/10) 4032522475026182 a001 514229/87403803*87403803^(2/19) 4032522475026183 a004 Fibonacci(29)*Lucas(39)/(1/2+sqrt(5)/2)^73 4032522475026183 a001 514229/23725150497407*141422324^(10/13) 4032522475026183 a001 514229/5600748293801*141422324^(9/13) 4032522475026183 a001 514229/3461452808002*141422324^(2/3) 4032522475026183 a001 514229/87403803*33385282^(1/9) 4032522475026183 a001 514229/1322157322203*141422324^(8/13) 4032522475026183 a001 514229/312119004989*141422324^(7/13) 4032522475026183 a001 514229/228826127*141422324^(2/13) 4032522475026183 a001 514229/73681302247*141422324^(6/13) 4032522475026183 a001 514229/17393796001*141422324^(5/13) 4032522475026183 a001 514229/228826127*2537720636^(2/15) 4032522475026183 a001 514229/228826127*45537549124^(2/17) 4032522475026183 a001 514229/228826127*14662949395604^(2/21) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^6/Lucas(40) 4032522475026183 a004 Fibonacci(40)/Lucas(29)/(1/2+sqrt(5)/2)^16 4032522475026183 a001 514229/228826127*10749957122^(1/8) 4032522475026183 a001 514229/228826127*4106118243^(3/23) 4032522475026183 a001 514229/228826127*1568397607^(3/22) 4032522475026183 a001 514229/228826127*599074578^(1/7) 4032522475026183 a001 514229/6643838879*141422324^(1/3) 4032522475026183 a001 514229/228826127*228826127^(3/20) 4032522475026183 a001 514229/4106118243*141422324^(4/13) 4032522475026183 a001 514229/969323029*141422324^(3/13) 4032522475026183 a004 Fibonacci(29)*Lucas(41)/(1/2+sqrt(5)/2)^75 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^8/Lucas(42) 4032522475026183 a001 514229/599074578*23725150497407^(1/8) 4032522475026183 a001 514229/599074578*505019158607^(1/7) 4032522475026183 a004 Fibonacci(42)/Lucas(29)/(1/2+sqrt(5)/2)^18 4032522475026183 a001 514229/599074578*73681302247^(2/13) 4032522475026183 a001 514229/599074578*10749957122^(1/6) 4032522475026183 a001 514229/599074578*4106118243^(4/23) 4032522475026183 a001 514229/599074578*1568397607^(2/11) 4032522475026183 a001 514229/599074578*599074578^(4/21) 4032522475026183 a004 Fibonacci(29)*Lucas(43)/(1/2+sqrt(5)/2)^77 4032522475026183 a001 514229/1568397607*2537720636^(2/9) 4032522475026183 a001 514229/1568397607*312119004989^(2/11) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^10/Lucas(44) 4032522475026183 a004 Fibonacci(44)/Lucas(29)/(1/2+sqrt(5)/2)^20 4032522475026183 a001 514229/1568397607*28143753123^(1/5) 4032522475026183 a001 514229/1568397607*10749957122^(5/24) 4032522475026183 a001 514229/1568397607*4106118243^(5/23) 4032522475026183 a001 514229/1568397607*1568397607^(5/22) 4032522475026183 a004 Fibonacci(29)*Lucas(45)/(1/2+sqrt(5)/2)^79 4032522475026183 a001 514229/23725150497407*2537720636^(2/3) 4032522475026183 a001 514229/4106118243*2537720636^(4/15) 4032522475026183 a001 514229/5600748293801*2537720636^(3/5) 4032522475026183 a001 514229/2139295485799*2537720636^(5/9) 4032522475026183 a001 514229/1322157322203*2537720636^(8/15) 4032522475026183 a001 514229/312119004989*2537720636^(7/15) 4032522475026183 a001 514229/192900153618*2537720636^(4/9) 4032522475026183 a001 514229/73681302247*2537720636^(2/5) 4032522475026183 a001 514229/4106118243*45537549124^(4/17) 4032522475026183 a001 514229/4106118243*817138163596^(4/19) 4032522475026183 a001 514229/4106118243*14662949395604^(4/21) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^12/Lucas(46) 4032522475026183 a004 Fibonacci(46)/Lucas(29)/(1/2+sqrt(5)/2)^22 4032522475026183 a001 514229/4106118243*192900153618^(2/9) 4032522475026183 a001 514229/4106118243*73681302247^(3/13) 4032522475026183 a001 514229/4106118243*10749957122^(1/4) 4032522475026183 a001 514229/17393796001*2537720636^(1/3) 4032522475026183 a001 514229/4106118243*4106118243^(6/23) 4032522475026183 a004 Fibonacci(29)*Lucas(47)/(1/2+sqrt(5)/2)^81 4032522475026183 a001 514229/10749957122*17393796001^(2/7) 4032522475026183 a001 514229/10749957122*14662949395604^(2/9) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^14/Lucas(48) 4032522475026183 a004 Fibonacci(48)/Lucas(29)/(1/2+sqrt(5)/2)^24 4032522475026183 a001 514229/10749957122*505019158607^(1/4) 4032522475026183 a001 514229/10749957122*10749957122^(7/24) 4032522475026183 a004 Fibonacci(29)*Lucas(49)/(1/2+sqrt(5)/2)^83 4032522475026183 a001 514229/9062201101803*17393796001^(4/7) 4032522475026183 a001 514229/312119004989*17393796001^(3/7) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^16/Lucas(50) 4032522475026183 a001 514229/28143753123*23725150497407^(1/4) 4032522475026183 a004 Fibonacci(50)/Lucas(29)/(1/2+sqrt(5)/2)^26 4032522475026183 a001 514229/28143753123*73681302247^(4/13) 4032522475026183 a004 Fibonacci(29)*Lucas(51)/(1/2+sqrt(5)/2)^85 4032522475026183 a001 514229/73681302247*45537549124^(6/17) 4032522475026183 a001 514229/23725150497407*45537549124^(10/17) 4032522475026183 a001 514229/5600748293801*45537549124^(9/17) 4032522475026183 a001 514229/1322157322203*45537549124^(8/17) 4032522475026183 a001 514229/312119004989*45537549124^(7/17) 4032522475026183 a001 514229/73681302247*14662949395604^(2/7) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^18/Lucas(52) 4032522475026183 a004 Fibonacci(52)/Lucas(29)/(1/2+sqrt(5)/2)^28 4032522475026183 a001 514229/73681302247*192900153618^(1/3) 4032522475026183 a004 Fibonacci(29)*Lucas(53)/(1/2+sqrt(5)/2)^87 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^20/Lucas(54) 4032522475026183 a001 514229/192900153618*23725150497407^(5/16) 4032522475026183 a004 Fibonacci(54)/Lucas(29)/(1/2+sqrt(5)/2)^30 4032522475026183 a001 514229/192900153618*505019158607^(5/14) 4032522475026183 a004 Fibonacci(29)*Lucas(55)/(1/2+sqrt(5)/2)^89 4032522475026183 a001 514229/2139295485799*312119004989^(5/11) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^22/Lucas(56) 4032522475026183 a004 Fibonacci(56)/Lucas(29)/(1/2+sqrt(5)/2)^32 4032522475026183 a004 Fibonacci(29)*Lucas(57)/(1/2+sqrt(5)/2)^91 4032522475026183 a001 514229/1322157322203*14662949395604^(8/21) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^24/Lucas(58) 4032522475026183 a004 Fibonacci(29)*Lucas(59)/(1/2+sqrt(5)/2)^93 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^26/Lucas(60) 4032522475026183 a004 Fibonacci(29)*Lucas(61)/(1/2+sqrt(5)/2)^95 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^28/Lucas(62) 4032522475026183 a004 Fibonacci(29)*Lucas(63)/(1/2+sqrt(5)/2)^97 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^30/Lucas(64) 4032522475026183 a004 Fibonacci(29)*Lucas(65)/(1/2+sqrt(5)/2)^99 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^32/Lucas(66) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^34/Lucas(68) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^36/Lucas(70) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^38/Lucas(72) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^40/Lucas(74) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^42/Lucas(76) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^44/Lucas(78) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^46/Lucas(80) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^48/Lucas(82) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^50/Lucas(84) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^52/Lucas(86) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^54/Lucas(88) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^56/Lucas(90) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^58/Lucas(92) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^60/Lucas(94) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^62/Lucas(96) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^64/Lucas(98) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^65/Lucas(99) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^66/Lucas(100) 4032522475026183 a004 Fibonacci(29)*Lucas(1)/(1/2+sqrt(5)/2)^34 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^63/Lucas(97) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^61/Lucas(95) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^59/Lucas(93) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^57/Lucas(91) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^55/Lucas(89) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^53/Lucas(87) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^51/Lucas(85) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^49/Lucas(83) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^47/Lucas(81) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^45/Lucas(79) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^43/Lucas(77) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^41/Lucas(75) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^39/Lucas(73) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^37/Lucas(71) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^35/Lucas(69) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^33/Lucas(67) 4032522475026183 a004 Fibonacci(29)*Lucas(66)/(1/2+sqrt(5)/2)^100 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^31/Lucas(65) 4032522475026183 a004 Fibonacci(29)*Lucas(64)/(1/2+sqrt(5)/2)^98 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^29/Lucas(63) 4032522475026183 a004 Fibonacci(29)*Lucas(62)/(1/2+sqrt(5)/2)^96 4032522475026183 a001 514229/5600748293801*14662949395604^(3/7) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^27/Lucas(61) 4032522475026183 a004 Fibonacci(29)*Lucas(60)/(1/2+sqrt(5)/2)^94 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^25/Lucas(59) 4032522475026183 a001 514229/2139295485799*3461452808002^(5/12) 4032522475026183 a001 514229/14662949395604*1322157322203^(1/2) 4032522475026183 a004 Fibonacci(60)/Lucas(29)/(1/2+sqrt(5)/2)^36 4032522475026183 a004 Fibonacci(62)/Lucas(29)/(1/2+sqrt(5)/2)^38 4032522475026183 a004 Fibonacci(64)/Lucas(29)/(1/2+sqrt(5)/2)^40 4032522475026183 a004 Fibonacci(66)/Lucas(29)/(1/2+sqrt(5)/2)^42 4032522475026183 a004 Fibonacci(68)/Lucas(29)/(1/2+sqrt(5)/2)^44 4032522475026183 a004 Fibonacci(70)/Lucas(29)/(1/2+sqrt(5)/2)^46 4032522475026183 a004 Fibonacci(72)/Lucas(29)/(1/2+sqrt(5)/2)^48 4032522475026183 a004 Fibonacci(74)/Lucas(29)/(1/2+sqrt(5)/2)^50 4032522475026183 a004 Fibonacci(76)/Lucas(29)/(1/2+sqrt(5)/2)^52 4032522475026183 a004 Fibonacci(78)/Lucas(29)/(1/2+sqrt(5)/2)^54 4032522475026183 a004 Fibonacci(80)/Lucas(29)/(1/2+sqrt(5)/2)^56 4032522475026183 a004 Fibonacci(82)/Lucas(29)/(1/2+sqrt(5)/2)^58 4032522475026183 a004 Fibonacci(84)/Lucas(29)/(1/2+sqrt(5)/2)^60 4032522475026183 a004 Fibonacci(86)/Lucas(29)/(1/2+sqrt(5)/2)^62 4032522475026183 a004 Fibonacci(88)/Lucas(29)/(1/2+sqrt(5)/2)^64 4032522475026183 a004 Fibonacci(90)/Lucas(29)/(1/2+sqrt(5)/2)^66 4032522475026183 a004 Fibonacci(92)/Lucas(29)/(1/2+sqrt(5)/2)^68 4032522475026183 a004 Fibonacci(94)/Lucas(29)/(1/2+sqrt(5)/2)^70 4032522475026183 a004 Fibonacci(96)/Lucas(29)/(1/2+sqrt(5)/2)^72 4032522475026183 a004 Fibonacci(98)/Lucas(29)/(1/2+sqrt(5)/2)^74 4032522475026183 a004 Fibonacci(100)/Lucas(29)/(1/2+sqrt(5)/2)^76 4032522475026183 a004 Fibonacci(29)*Lucas(58)/(1/2+sqrt(5)/2)^92 4032522475026183 a004 Fibonacci(99)/Lucas(29)/(1/2+sqrt(5)/2)^75 4032522475026183 a004 Fibonacci(97)/Lucas(29)/(1/2+sqrt(5)/2)^73 4032522475026183 a004 Fibonacci(95)/Lucas(29)/(1/2+sqrt(5)/2)^71 4032522475026183 a004 Fibonacci(93)/Lucas(29)/(1/2+sqrt(5)/2)^69 4032522475026183 a004 Fibonacci(91)/Lucas(29)/(1/2+sqrt(5)/2)^67 4032522475026183 a004 Fibonacci(89)/Lucas(29)/(1/2+sqrt(5)/2)^65 4032522475026183 a004 Fibonacci(87)/Lucas(29)/(1/2+sqrt(5)/2)^63 4032522475026183 a004 Fibonacci(85)/Lucas(29)/(1/2+sqrt(5)/2)^61 4032522475026183 a004 Fibonacci(83)/Lucas(29)/(1/2+sqrt(5)/2)^59 4032522475026183 a004 Fibonacci(81)/Lucas(29)/(1/2+sqrt(5)/2)^57 4032522475026183 a004 Fibonacci(79)/Lucas(29)/(1/2+sqrt(5)/2)^55 4032522475026183 a004 Fibonacci(77)/Lucas(29)/(1/2+sqrt(5)/2)^53 4032522475026183 a004 Fibonacci(75)/Lucas(29)/(1/2+sqrt(5)/2)^51 4032522475026183 a004 Fibonacci(73)/Lucas(29)/(1/2+sqrt(5)/2)^49 4032522475026183 a004 Fibonacci(71)/Lucas(29)/(1/2+sqrt(5)/2)^47 4032522475026183 a004 Fibonacci(69)/Lucas(29)/(1/2+sqrt(5)/2)^45 4032522475026183 a004 Fibonacci(67)/Lucas(29)/(1/2+sqrt(5)/2)^43 4032522475026183 a004 Fibonacci(65)/Lucas(29)/(1/2+sqrt(5)/2)^41 4032522475026183 a004 Fibonacci(63)/Lucas(29)/(1/2+sqrt(5)/2)^39 4032522475026183 a004 Fibonacci(61)/Lucas(29)/(1/2+sqrt(5)/2)^37 4032522475026183 a004 Fibonacci(59)/Lucas(29)/(1/2+sqrt(5)/2)^35 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^23/Lucas(57) 4032522475026183 a004 Fibonacci(57)/Lucas(29)/(1/2+sqrt(5)/2)^33 4032522475026183 a004 Fibonacci(29)*Lucas(56)/(1/2+sqrt(5)/2)^90 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^21/Lucas(55) 4032522475026183 a004 Fibonacci(55)/Lucas(29)/(1/2+sqrt(5)/2)^31 4032522475026183 a001 514229/1322157322203*192900153618^(4/9) 4032522475026183 a001 514229/23725150497407*192900153618^(5/9) 4032522475026183 a001 514229/312119004989*192900153618^(7/18) 4032522475026183 a004 Fibonacci(29)*Lucas(54)/(1/2+sqrt(5)/2)^88 4032522475026183 a001 514229/192900153618*73681302247^(5/13) 4032522475026183 a001 514229/119218851371*817138163596^(1/3) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^19/Lucas(53) 4032522475026183 a004 Fibonacci(53)/Lucas(29)/(1/2+sqrt(5)/2)^29 4032522475026183 a001 514229/1322157322203*73681302247^(6/13) 4032522475026183 a001 514229/3461452808002*73681302247^(1/2) 4032522475026183 a001 514229/9062201101803*73681302247^(7/13) 4032522475026183 a004 Fibonacci(29)*Lucas(52)/(1/2+sqrt(5)/2)^86 4032522475026183 a001 514229/45537549124*45537549124^(1/3) 4032522475026183 a001 514229/192900153618*28143753123^(2/5) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^17/Lucas(51) 4032522475026183 a004 Fibonacci(51)/Lucas(29)/(1/2+sqrt(5)/2)^27 4032522475026183 a001 514229/2139295485799*28143753123^(1/2) 4032522475026183 a001 514229/23725150497407*28143753123^(3/5) 4032522475026183 a004 Fibonacci(29)*Lucas(50)/(1/2+sqrt(5)/2)^84 4032522475026183 a001 514229/28143753123*10749957122^(1/3) 4032522475026183 a001 514229/73681302247*10749957122^(3/8) 4032522475026183 a001 514229/17393796001*45537549124^(5/17) 4032522475026183 a001 514229/17393796001*312119004989^(3/11) 4032522475026183 a001 514229/17393796001*14662949395604^(5/21) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^15/Lucas(49) 4032522475026183 a004 Fibonacci(49)/Lucas(29)/(1/2+sqrt(5)/2)^25 4032522475026183 a001 514229/17393796001*192900153618^(5/18) 4032522475026183 a001 514229/192900153618*10749957122^(5/12) 4032522475026183 a001 514229/17393796001*28143753123^(3/10) 4032522475026183 a001 514229/312119004989*10749957122^(7/16) 4032522475026183 a001 514229/505019158607*10749957122^(11/24) 4032522475026183 a001 514229/1322157322203*10749957122^(1/2) 4032522475026183 a001 514229/3461452808002*10749957122^(13/24) 4032522475026183 a001 514229/5600748293801*10749957122^(9/16) 4032522475026183 a001 514229/9062201101803*10749957122^(7/12) 4032522475026183 a001 514229/23725150497407*10749957122^(5/8) 4032522475026183 a001 514229/17393796001*10749957122^(5/16) 4032522475026183 a004 Fibonacci(29)*Lucas(48)/(1/2+sqrt(5)/2)^82 4032522475026183 a001 514229/10749957122*4106118243^(7/23) 4032522475026183 a001 514229/28143753123*4106118243^(8/23) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^13/Lucas(47) 4032522475026183 a004 Fibonacci(47)/Lucas(29)/(1/2+sqrt(5)/2)^23 4032522475026183 a001 514229/6643838879*73681302247^(1/4) 4032522475026183 a001 514229/73681302247*4106118243^(9/23) 4032522475026183 a001 514229/192900153618*4106118243^(10/23) 4032522475026183 a001 514229/505019158607*4106118243^(11/23) 4032522475026183 a001 514229/817138163596*4106118243^(1/2) 4032522475026183 a001 514229/1322157322203*4106118243^(12/23) 4032522475026183 a001 514229/3461452808002*4106118243^(13/23) 4032522475026183 a001 514229/9062201101803*4106118243^(14/23) 4032522475026183 a001 514229/23725150497407*4106118243^(15/23) 4032522475026183 a001 514229/4106118243*1568397607^(3/11) 4032522475026183 a004 Fibonacci(29)*Lucas(46)/(1/2+sqrt(5)/2)^80 4032522475026183 a001 514229/10749957122*1568397607^(7/22) 4032522475026183 a001 514229/28143753123*1568397607^(4/11) 4032522475026183 a001 514229/2537720636*312119004989^(1/5) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^11/Lucas(45) 4032522475026183 a004 Fibonacci(45)/Lucas(29)/(1/2+sqrt(5)/2)^21 4032522475026183 a001 514229/73681302247*1568397607^(9/22) 4032522475026183 a001 514229/192900153618*1568397607^(5/11) 4032522475026183 a001 514229/505019158607*1568397607^(1/2) 4032522475026183 a001 514229/1322157322203*1568397607^(6/11) 4032522475026183 a001 514229/3461452808002*1568397607^(13/22) 4032522475026183 a001 514229/1568397607*599074578^(5/21) 4032522475026183 a001 514229/2537720636*1568397607^(1/4) 4032522475026183 a001 514229/9062201101803*1568397607^(7/11) 4032522475026183 a001 514229/23725150497407*1568397607^(15/22) 4032522475026183 a004 Fibonacci(29)*Lucas(44)/(1/2+sqrt(5)/2)^78 4032522475026183 a001 514229/4106118243*599074578^(2/7) 4032522475026183 a001 514229/10749957122*599074578^(1/3) 4032522475026183 a001 514229/17393796001*599074578^(5/14) 4032522475026183 a001 514229/599074578*228826127^(1/5) 4032522475026183 a001 514229/969323029*2537720636^(1/5) 4032522475026183 a001 514229/28143753123*599074578^(8/21) 4032522475026183 a001 514229/969323029*45537549124^(3/17) 4032522475026183 a001 514229/969323029*817138163596^(3/19) 4032522475026183 a001 514229/969323029*14662949395604^(1/7) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^9/Lucas(43) 4032522475026183 a004 Fibonacci(43)/Lucas(29)/(1/2+sqrt(5)/2)^19 4032522475026183 a001 514229/969323029*192900153618^(1/6) 4032522475026183 a001 514229/969323029*10749957122^(3/16) 4032522475026183 a001 514229/73681302247*599074578^(3/7) 4032522475026183 a001 514229/192900153618*599074578^(10/21) 4032522475026183 a001 514229/312119004989*599074578^(1/2) 4032522475026183 a001 514229/505019158607*599074578^(11/21) 4032522475026183 a001 514229/228826127*87403803^(3/19) 4032522475026183 a001 514229/1322157322203*599074578^(4/7) 4032522475026183 a001 514229/969323029*599074578^(3/14) 4032522475026183 a001 514229/3461452808002*599074578^(13/21) 4032522475026183 a001 514229/5600748293801*599074578^(9/14) 4032522475026183 a001 514229/9062201101803*599074578^(2/3) 4032522475026183 a001 514229/23725150497407*599074578^(5/7) 4032522475026183 a004 Fibonacci(29)*Lucas(42)/(1/2+sqrt(5)/2)^76 4032522475026183 a001 514229/1568397607*228826127^(1/4) 4032522475026183 a001 514229/4106118243*228826127^(3/10) 4032522475026183 a001 514229/10749957122*228826127^(7/20) 4032522475026183 a001 514229/17393796001*228826127^(3/8) 4032522475026183 a001 514229/370248451*17393796001^(1/7) 4032522475026183 a001 514229/370248451*14662949395604^(1/9) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^7/Lucas(41) 4032522475026183 a004 Fibonacci(41)/Lucas(29)/(1/2+sqrt(5)/2)^17 4032522475026183 a001 514229/28143753123*228826127^(2/5) 4032522475026183 a001 514229/370248451*599074578^(1/6) 4032522475026183 a001 514229/73681302247*228826127^(9/20) 4032522475026183 a001 514229/192900153618*228826127^(1/2) 4032522475026183 a001 514229/505019158607*228826127^(11/20) 4032522475026183 a001 514229/1322157322203*228826127^(3/5) 4032522475026183 a001 514229/2139295485799*228826127^(5/8) 4032522475026183 a001 514229/3461452808002*228826127^(13/20) 4032522475026183 a001 514229/9062201101803*228826127^(7/10) 4032522475026183 a001 514229/23725150497407*228826127^(3/4) 4032522475026183 a004 Fibonacci(29)*Lucas(40)/(1/2+sqrt(5)/2)^74 4032522475026183 a001 514229/599074578*87403803^(4/19) 4032522475026183 a001 514229/1568397607*87403803^(5/19) 4032522475026183 a001 514229/4106118243*87403803^(6/19) 4032522475026183 a001 514229/10749957122*87403803^(7/19) 4032522475026183 a001 514229/141422324*2537720636^(1/9) 4032522475026183 a001 514229/141422324*312119004989^(1/11) 4032522475026183 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^5/Lucas(39) 4032522475026183 a004 Fibonacci(39)/Lucas(29)/(1/2+sqrt(5)/2)^15 4032522475026183 a001 514229/141422324*28143753123^(1/10) 4032522475026183 a001 514229/141422324*228826127^(1/8) 4032522475026183 a001 514229/28143753123*87403803^(8/19) 4032522475026183 a001 514229/73681302247*87403803^(9/19) 4032522475026183 a001 514229/119218851371*87403803^(1/2) 4032522475026183 a001 514229/192900153618*87403803^(10/19) 4032522475026183 a001 514229/505019158607*87403803^(11/19) 4032522475026183 a001 514229/1322157322203*87403803^(12/19) 4032522475026183 a001 514229/3461452808002*87403803^(13/19) 4032522475026183 a001 514229/9062201101803*87403803^(14/19) 4032522475026183 a001 514229/23725150497407*87403803^(15/19) 4032522475026183 a001 514229/228826127*33385282^(1/6) 4032522475026183 a004 Fibonacci(29)*Lucas(38)/(1/2+sqrt(5)/2)^72 4032522475026184 a001 514229/599074578*33385282^(2/9) 4032522475026184 a001 514229/969323029*33385282^(1/4) 4032522475026184 a001 514229/1568397607*33385282^(5/18) 4032522475026184 a001 514229/4106118243*33385282^(1/3) 4032522475026184 a001 514229/54018521*141422324^(1/13) 4032522475026184 a001 514229/54018521*2537720636^(1/15) 4032522475026184 a001 514229/54018521*45537549124^(1/17) 4032522475026184 a001 514229/54018521*14662949395604^(1/21) 4032522475026184 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^3/Lucas(37) 4032522475026184 a004 Fibonacci(37)/Lucas(29)/(1/2+sqrt(5)/2)^13 4032522475026184 a001 514229/54018521*192900153618^(1/18) 4032522475026184 a001 514229/54018521*10749957122^(1/16) 4032522475026184 a001 514229/54018521*599074578^(1/14) 4032522475026184 a001 514229/10749957122*33385282^(7/18) 4032522475026184 a001 514229/17393796001*33385282^(5/12) 4032522475026184 a001 514229/28143753123*33385282^(4/9) 4032522475026185 a001 514229/54018521*33385282^(1/12) 4032522475026185 a001 514229/73681302247*33385282^(1/2) 4032522475026185 a001 514229/192900153618*33385282^(5/9) 4032522475026185 a001 514229/312119004989*33385282^(7/12) 4032522475026185 a001 514229/505019158607*33385282^(11/18) 4032522475026185 a001 514229/87403803*12752043^(2/17) 4032522475026185 a001 514229/1322157322203*33385282^(2/3) 4032522475026185 a001 514229/3461452808002*33385282^(13/18) 4032522475026186 a001 514229/5600748293801*33385282^(3/4) 4032522475026186 a001 514229/9062201101803*33385282^(7/9) 4032522475026186 a001 514229/23725150497407*33385282^(5/6) 4032522475026186 a004 Fibonacci(29)*Lucas(36)/(1/2+sqrt(5)/2)^70 4032522475026187 a001 514229/228826127*12752043^(3/17) 4032522475026189 a001 514229/599074578*12752043^(4/17) 4032522475026190 a001 514229/33385282*4870847^(1/16) 4032522475026190 a001 514229/1568397607*12752043^(5/17) 4032522475026192 a001 514229/4106118243*12752043^(6/17) 4032522475026192 a001 514229/41266478+514229/41266478*5^(1/2) 4032522475026192 a004 Fibonacci(35)/Lucas(29)/(1/2+sqrt(5)/2)^11 4032522475026193 a001 514229/10749957122*12752043^(7/17) 4032522475026195 a001 514229/28143753123*12752043^(8/17) 4032522475026195 a001 514229/45537549124*12752043^(1/2) 4032522475026196 a001 514229/73681302247*12752043^(9/17) 4032522475026197 a001 514229/192900153618*12752043^(10/17) 4032522475026199 a001 514229/505019158607*12752043^(11/17) 4032522475026200 a001 514229/1322157322203*12752043^(12/17) 4032522475026202 a001 514229/3461452808002*12752043^(13/17) 4032522475026203 a001 514229/9062201101803*12752043^(14/17) 4032522475026204 a001 514229/87403803*4870847^(1/8) 4032522475026205 a001 514229/23725150497407*12752043^(15/17) 4032522475026208 a004 Fibonacci(29)*Lucas(34)/(1/2+sqrt(5)/2)^68 4032522475026215 a001 514229/228826127*4870847^(3/16) 4032522475026225 a001 514229/599074578*4870847^(1/4) 4032522475026236 a001 514229/1568397607*4870847^(5/16) 4032522475026247 a001 514229/4106118243*4870847^(3/8) 4032522475026248 a004 Fibonacci(29)/Lucas(33)/(1/2+sqrt(5)/2) 4032522475026248 a004 Fibonacci(33)/Lucas(29)/(1/2+sqrt(5)/2)^9 4032522475026257 a001 514229/33385282*1860498^(1/15) 4032522475026257 a001 514229/10749957122*4870847^(7/16) 4032522475026268 a001 514229/28143753123*4870847^(1/2) 4032522475026278 a001 514229/73681302247*4870847^(9/16) 4032522475026289 a001 514229/192900153618*4870847^(5/8) 4032522475026300 a001 514229/505019158607*4870847^(11/16) 4032522475026301 a001 514229/54018521*1860498^(1/10) 4032522475026310 a001 514229/1322157322203*4870847^(3/4) 4032522475026321 a001 514229/3461452808002*4870847^(13/16) 4032522475026332 a001 514229/9062201101803*4870847^(7/8) 4032522475026338 a001 514229/87403803*1860498^(2/15) 4032522475026342 a001 514229/23725150497407*4870847^(15/16) 4032522475026353 a004 Fibonacci(29)*Lucas(32)/(1/2+sqrt(5)/2)^66 4032522475026377 a001 514229/141422324*1860498^(1/6) 4032522475026385 a001 2178309/17393796001*710647^(3/7) 4032522475026416 a001 514229/228826127*1860498^(1/5) 4032522475026430 a001 1346269/4106118243*710647^(5/14) 4032522475026494 a001 514229/599074578*1860498^(4/15) 4032522475026530 a001 1597/12752044*710647^(3/7) 4032522475026531 a001 208010/11384387281*710647^(4/7) 4032522475026532 a001 514229/969323029*1860498^(3/10) 4032522475026551 a001 14930352/119218851371*710647^(3/7) 4032522475026554 a001 39088169/312119004989*710647^(3/7) 4032522475026555 a001 102334155/817138163596*710647^(3/7) 4032522475026555 a001 267914296/2139295485799*710647^(3/7) 4032522475026555 a001 701408733/5600748293801*710647^(3/7) 4032522475026555 a001 1836311903/14662949395604*710647^(3/7) 4032522475026555 a001 2971215073/23725150497407*710647^(3/7) 4032522475026555 a001 1134903170/9062201101803*710647^(3/7) 4032522475026555 a001 433494437/3461452808002*710647^(3/7) 4032522475026555 a001 165580141/1322157322203*710647^(3/7) 4032522475026555 a001 63245986/505019158607*710647^(3/7) 4032522475026556 a001 24157817/192900153618*710647^(3/7) 4032522475026564 a001 9227465/73681302247*710647^(3/7) 4032522475026571 a001 514229/1568397607*1860498^(1/3) 4032522475026620 a001 3524578/28143753123*710647^(3/7) 4032522475026628 a004 Fibonacci(29)/Lucas(31)/(1/2+sqrt(5)/2)^3 4032522475026628 a004 Fibonacci(31)/Lucas(29)/(1/2+sqrt(5)/2)^7 4032522475026649 a001 514229/4106118243*1860498^(2/5) 4032522475026727 a001 514229/10749957122*1860498^(7/15) 4032522475026750 a001 514229/33385282*710647^(1/14) 4032522475026765 a001 514229/17393796001*1860498^(1/2) 4032522475026804 a001 514229/28143753123*1860498^(8/15) 4032522475026882 a001 514229/73681302247*1860498^(3/5) 4032522475026955 a001 2178309/45537549124*710647^(1/2) 4032522475026960 a001 514229/192900153618*1860498^(2/3) 4032522475026998 a001 514229/312119004989*1860498^(7/10) 4032522475027000 a001 1346269/10749957122*710647^(3/7) 4032522475027037 a001 514229/505019158607*1860498^(11/15) 4032522475027101 a001 5702887/119218851371*710647^(1/2) 4032522475027101 a001 832040/119218851371*710647^(9/14) 4032522475027115 a001 514229/1322157322203*1860498^(4/5) 4032522475027122 a001 14930352/312119004989*710647^(1/2) 4032522475027125 a001 4181/87403804*710647^(1/2) 4032522475027125 a001 102334155/2139295485799*710647^(1/2) 4032522475027125 a001 267914296/5600748293801*710647^(1/2) 4032522475027125 a001 701408733/14662949395604*710647^(1/2) 4032522475027125 a001 1134903170/23725150497407*710647^(1/2) 4032522475027125 a001 433494437/9062201101803*710647^(1/2) 4032522475027125 a001 165580141/3461452808002*710647^(1/2) 4032522475027126 a001 63245986/1322157322203*710647^(1/2) 4032522475027127 a001 24157817/505019158607*710647^(1/2) 4032522475027135 a001 9227465/192900153618*710647^(1/2) 4032522475027154 a001 514229/2139295485799*1860498^(5/6) 4032522475027173 a001 2178309/141422324*271443^(1/13) 4032522475027190 a001 3524578/73681302247*710647^(1/2) 4032522475027193 a001 514229/3461452808002*1860498^(13/15) 4032522475027231 a001 514229/5600748293801*1860498^(9/10) 4032522475027270 a001 514229/9062201101803*1860498^(14/15) 4032522475027318 a001 5702887/370248451*271443^(1/13) 4032522475027323 a001 514229/87403803*710647^(1/7) 4032522475027339 a001 14930352/969323029*271443^(1/13) 4032522475027342 a001 39088169/2537720636*271443^(1/13) 4032522475027343 a001 102334155/6643838879*271443^(1/13) 4032522475027343 a001 9238424/599786069*271443^(1/13) 4032522475027343 a001 701408733/45537549124*271443^(1/13) 4032522475027343 a001 1836311903/119218851371*271443^(1/13) 4032522475027343 a001 4807526976/312119004989*271443^(1/13) 4032522475027343 a001 12586269025/817138163596*271443^(1/13) 4032522475027343 a001 32951280099/2139295485799*271443^(1/13) 4032522475027343 a001 86267571272/5600748293801*271443^(1/13) 4032522475027343 a001 7787980473/505618944676*271443^(1/13) 4032522475027343 a001 365435296162/23725150497407*271443^(1/13) 4032522475027343 a001 139583862445/9062201101803*271443^(1/13) 4032522475027343 a001 53316291173/3461452808002*271443^(1/13) 4032522475027343 a001 20365011074/1322157322203*271443^(1/13) 4032522475027343 a001 7778742049/505019158607*271443^(1/13) 4032522475027343 a001 2971215073/192900153618*271443^(1/13) 4032522475027343 a001 1134903170/73681302247*271443^(1/13) 4032522475027343 a001 433494437/28143753123*271443^(1/13) 4032522475027343 a001 165580141/10749957122*271443^(1/13) 4032522475027343 a001 63245986/4106118243*271443^(1/13) 4032522475027344 a001 24157817/1568397607*271443^(1/13) 4032522475027348 a004 Fibonacci(29)*Lucas(30)/(1/2+sqrt(5)/2)^64 4032522475027352 a001 9227465/599074578*271443^(1/13) 4032522475027408 a001 3524578/228826127*271443^(1/13) 4032522475027526 a001 2178309/119218851371*710647^(4/7) 4032522475027570 a001 1346269/28143753123*710647^(1/2) 4032522475027671 a001 5702887/312119004989*710647^(4/7) 4032522475027671 a001 75640/28374454999*710647^(5/7) 4032522475027692 a001 3732588/204284540899*710647^(4/7) 4032522475027695 a001 39088169/2139295485799*710647^(4/7) 4032522475027696 a001 102334155/5600748293801*710647^(4/7) 4032522475027696 a001 10946/599074579*710647^(4/7) 4032522475027696 a001 433494437/23725150497407*710647^(4/7) 4032522475027696 a001 165580141/9062201101803*710647^(4/7) 4032522475027696 a001 31622993/1730726404001*710647^(4/7) 4032522475027697 a001 24157817/1322157322203*710647^(4/7) 4032522475027705 a001 9227465/505019158607*710647^(4/7) 4032522475027761 a001 1762289/96450076809*710647^(4/7) 4032522475027778 a001 317811/141422324*271443^(3/13) 4032522475027778 a001 196418/119218851371*439204^(7/9) 4032522475027787 a001 1346269/87403803*271443^(1/13) 4032522475027894 a001 514229/228826127*710647^(3/14) 4032522475027957 a001 832040/505019158607*710647^(3/4) 4032522475028096 a001 2178309/312119004989*710647^(9/14) 4032522475028141 a001 1346269/73681302247*710647^(4/7) 4032522475028179 a001 514229/370248451*710647^(1/4) 4032522475028241 a001 5702887/817138163596*710647^(9/14) 4032522475028242 a001 208010/204284540899*710647^(11/14) 4032522475028262 a001 14930352/2139295485799*710647^(9/14) 4032522475028266 a001 39088169/5600748293801*710647^(9/14) 4032522475028266 a001 102334155/14662949395604*710647^(9/14) 4032522475028266 a001 165580141/23725150497407*710647^(9/14) 4032522475028266 a001 63245986/9062201101803*710647^(9/14) 4032522475028267 a001 24157817/3461452808002*710647^(9/14) 4032522475028276 a001 9227465/1322157322203*710647^(9/14) 4032522475028331 a001 3524578/505019158607*710647^(9/14) 4032522475028464 a001 514229/599074578*710647^(2/7) 4032522475028666 a001 2178309/817138163596*710647^(5/7) 4032522475028711 a001 1346269/192900153618*710647^(9/14) 4032522475028812 a001 5702887/2139295485799*710647^(5/7) 4032522475028812 a001 832040/2139295485799*710647^(6/7) 4032522475028833 a001 14930352/5600748293801*710647^(5/7) 4032522475028836 a001 39088169/14662949395604*710647^(5/7) 4032522475028837 a001 63245986/23725150497407*710647^(5/7) 4032522475028838 a001 24157817/9062201101803*710647^(5/7) 4032522475028846 a001 9227465/3461452808002*710647^(5/7) 4032522475028901 a001 3524578/1322157322203*710647^(5/7) 4032522475028952 a001 726103/440719107401*710647^(3/4) 4032522475029035 a001 514229/1568397607*710647^(5/14) 4032522475029097 a001 5702887/3461452808002*710647^(3/4) 4032522475029118 a001 4976784/3020733700601*710647^(3/4) 4032522475029121 a001 39088169/23725150497407*710647^(3/4) 4032522475029123 a001 24157817/14662949395604*710647^(3/4) 4032522475029131 a001 9227465/5600748293801*710647^(3/4) 4032522475029186 a001 3524578/2139295485799*710647^(3/4) 4032522475029233 a001 264431464441/6557470319842 4032522475029233 a004 Fibonacci(29)/Lucas(29)/(1/2+sqrt(5)/2)^5 4032522475029237 a001 2178309/2139295485799*710647^(11/14) 4032522475029281 a001 1346269/505019158607*710647^(5/7) 4032522475029382 a001 5702887/5600748293801*710647^(11/14) 4032522475029382 a001 832040/5600748293801*710647^(13/14) 4032522475029403 a001 196452/192933544679*710647^(11/14) 4032522475029408 a001 24157817/23725150497407*710647^(11/14) 4032522475029416 a001 9227465/9062201101803*710647^(11/14) 4032522475029472 a001 1762289/1730726404001*710647^(11/14) 4032522475029567 a001 1346269/817138163596*710647^(3/4) 4032522475029605 a001 514229/4106118243*710647^(3/7) 4032522475029807 a001 2178309/5600748293801*710647^(6/7) 4032522475029852 a001 1346269/1322157322203*710647^(11/14) 4032522475029952 a001 5702887/14662949395604*710647^(6/7) 4032522475029953 a004 Fibonacci(30)*Lucas(28)/(1/2+sqrt(5)/2)^63 4032522475029987 a001 9227465/23725150497407*710647^(6/7) 4032522475030042 a001 3524578/9062201101803*710647^(6/7) 4032522475030101 a001 196418/28143753123*439204^(2/3) 4032522475030175 a001 514229/10749957122*710647^(1/2) 4032522475030377 a001 2178309/14662949395604*710647^(13/14) 4032522475030388 a001 208010/35355581*271443^(2/13) 4032522475030389 a001 514229/33385282*271443^(1/13) 4032522475030422 a001 1346269/3461452808002*710647^(6/7) 4032522475030612 a001 3524578/23725150497407*710647^(13/14) 4032522475030746 a001 514229/28143753123*710647^(4/7) 4032522475030753 a001 105937/4250681*103682^(1/24) 4032522475030933 a001 121393/20633239*103682^(1/6) 4032522475030948 a004 Fibonacci(32)*Lucas(28)/(1/2+sqrt(5)/2)^65 4032522475030992 a001 1346269/9062201101803*710647^(13/14) 4032522475031053 a001 710647/3524578*8^(1/3) 4032522475031093 a004 Fibonacci(34)*Lucas(28)/(1/2+sqrt(5)/2)^67 4032522475031114 a004 Fibonacci(36)*Lucas(28)/(1/2+sqrt(5)/2)^69 4032522475031117 a004 Fibonacci(38)*Lucas(28)/(1/2+sqrt(5)/2)^71 4032522475031118 a004 Fibonacci(40)*Lucas(28)/(1/2+sqrt(5)/2)^73 4032522475031118 a004 Fibonacci(42)*Lucas(28)/(1/2+sqrt(5)/2)^75 4032522475031118 a004 Fibonacci(44)*Lucas(28)/(1/2+sqrt(5)/2)^77 4032522475031118 a004 Fibonacci(46)*Lucas(28)/(1/2+sqrt(5)/2)^79 4032522475031118 a004 Fibonacci(48)*Lucas(28)/(1/2+sqrt(5)/2)^81 4032522475031118 a004 Fibonacci(50)*Lucas(28)/(1/2+sqrt(5)/2)^83 4032522475031118 a004 Fibonacci(52)*Lucas(28)/(1/2+sqrt(5)/2)^85 4032522475031118 a004 Fibonacci(54)*Lucas(28)/(1/2+sqrt(5)/2)^87 4032522475031118 a004 Fibonacci(56)*Lucas(28)/(1/2+sqrt(5)/2)^89 4032522475031118 a004 Fibonacci(58)*Lucas(28)/(1/2+sqrt(5)/2)^91 4032522475031118 a004 Fibonacci(60)*Lucas(28)/(1/2+sqrt(5)/2)^93 4032522475031118 a004 Fibonacci(62)*Lucas(28)/(1/2+sqrt(5)/2)^95 4032522475031118 a004 Fibonacci(64)*Lucas(28)/(1/2+sqrt(5)/2)^97 4032522475031118 a004 Fibonacci(66)*Lucas(28)/(1/2+sqrt(5)/2)^99 4032522475031118 a004 Fibonacci(67)*Lucas(28)/(1/2+sqrt(5)/2)^100 4032522475031118 a004 Fibonacci(65)*Lucas(28)/(1/2+sqrt(5)/2)^98 4032522475031118 a004 Fibonacci(63)*Lucas(28)/(1/2+sqrt(5)/2)^96 4032522475031118 a004 Fibonacci(61)*Lucas(28)/(1/2+sqrt(5)/2)^94 4032522475031118 a004 Fibonacci(59)*Lucas(28)/(1/2+sqrt(5)/2)^92 4032522475031118 a004 Fibonacci(57)*Lucas(28)/(1/2+sqrt(5)/2)^90 4032522475031118 a001 2/317811*(1/2+1/2*5^(1/2))^23 4032522475031118 a004 Fibonacci(55)*Lucas(28)/(1/2+sqrt(5)/2)^88 4032522475031118 a004 Fibonacci(53)*Lucas(28)/(1/2+sqrt(5)/2)^86 4032522475031118 a004 Fibonacci(51)*Lucas(28)/(1/2+sqrt(5)/2)^84 4032522475031118 a004 Fibonacci(49)*Lucas(28)/(1/2+sqrt(5)/2)^82 4032522475031118 a004 Fibonacci(47)*Lucas(28)/(1/2+sqrt(5)/2)^80 4032522475031118 a004 Fibonacci(45)*Lucas(28)/(1/2+sqrt(5)/2)^78 4032522475031118 a004 Fibonacci(43)*Lucas(28)/(1/2+sqrt(5)/2)^76 4032522475031118 a004 Fibonacci(41)*Lucas(28)/(1/2+sqrt(5)/2)^74 4032522475031118 a004 Fibonacci(39)*Lucas(28)/(1/2+sqrt(5)/2)^72 4032522475031119 a004 Fibonacci(37)*Lucas(28)/(1/2+sqrt(5)/2)^70 4032522475031127 a004 Fibonacci(35)*Lucas(28)/(1/2+sqrt(5)/2)^68 4032522475031183 a004 Fibonacci(33)*Lucas(28)/(1/2+sqrt(5)/2)^66 4032522475031316 a001 514229/73681302247*710647^(9/14) 4032522475031383 a001 2178309/370248451*271443^(2/13) 4032522475031528 a001 5702887/969323029*271443^(2/13) 4032522475031549 a001 196452/33391061*271443^(2/13) 4032522475031552 a001 39088169/6643838879*271443^(2/13) 4032522475031553 a001 102334155/17393796001*271443^(2/13) 4032522475031553 a001 66978574/11384387281*271443^(2/13) 4032522475031553 a001 701408733/119218851371*271443^(2/13) 4032522475031553 a001 1836311903/312119004989*271443^(2/13) 4032522475031553 a001 1201881744/204284540899*271443^(2/13) 4032522475031553 a001 12586269025/2139295485799*271443^(2/13) 4032522475031553 a001 32951280099/5600748293801*271443^(2/13) 4032522475031553 a001 1135099622/192933544679*271443^(2/13) 4032522475031553 a001 139583862445/23725150497407*271443^(2/13) 4032522475031553 a001 53316291173/9062201101803*271443^(2/13) 4032522475031553 a001 10182505537/1730726404001*271443^(2/13) 4032522475031553 a001 7778742049/1322157322203*271443^(2/13) 4032522475031553 a001 2971215073/505019158607*271443^(2/13) 4032522475031553 a001 567451585/96450076809*271443^(2/13) 4032522475031553 a001 433494437/73681302247*271443^(2/13) 4032522475031553 a001 165580141/28143753123*271443^(2/13) 4032522475031553 a001 31622993/5374978561*271443^(2/13) 4032522475031554 a001 24157817/4106118243*271443^(2/13) 4032522475031562 a001 9227465/1568397607*271443^(2/13) 4032522475031563 a004 Fibonacci(31)*Lucas(28)/(1/2+sqrt(5)/2)^64 4032522475031618 a001 1762289/299537289*271443^(2/13) 4032522475031886 a001 514229/192900153618*710647^(5/7) 4032522475031988 a001 317811/370248451*271443^(4/13) 4032522475031998 a001 1346269/228826127*271443^(2/13) 4032522475032172 a001 514229/312119004989*710647^(3/4) 4032522475032424 a001 196418/6643838879*439204^(5/9) 4032522475032457 a001 514229/505019158607*710647^(11/14) 4032522475033027 a001 514229/1322157322203*710647^(6/7) 4032522475033597 a001 514229/3461452808002*710647^(13/14) 4032522475034168 a004 Fibonacci(29)*Lucas(28)/(1/2+sqrt(5)/2)^62 4032522475034598 a001 832040/370248451*271443^(3/13) 4032522475034602 a001 514229/87403803*271443^(2/13) 4032522475034747 a001 196418/1568397607*439204^(4/9) 4032522475035593 a001 2178309/969323029*271443^(3/13) 4032522475035738 a001 5702887/2537720636*271443^(3/13) 4032522475035759 a001 14930352/6643838879*271443^(3/13) 4032522475035762 a001 39088169/17393796001*271443^(3/13) 4032522475035763 a001 102334155/45537549124*271443^(3/13) 4032522475035763 a001 267914296/119218851371*271443^(3/13) 4032522475035763 a001 3524667/1568437211*271443^(3/13) 4032522475035763 a001 1836311903/817138163596*271443^(3/13) 4032522475035763 a001 4807526976/2139295485799*271443^(3/13) 4032522475035763 a001 12586269025/5600748293801*271443^(3/13) 4032522475035763 a001 32951280099/14662949395604*271443^(3/13) 4032522475035763 a001 53316291173/23725150497407*271443^(3/13) 4032522475035763 a001 20365011074/9062201101803*271443^(3/13) 4032522475035763 a001 7778742049/3461452808002*271443^(3/13) 4032522475035763 a001 2971215073/1322157322203*271443^(3/13) 4032522475035763 a001 1134903170/505019158607*271443^(3/13) 4032522475035763 a001 433494437/192900153618*271443^(3/13) 4032522475035763 a001 165580141/73681302247*271443^(3/13) 4032522475035763 a001 63245986/28143753123*271443^(3/13) 4032522475035764 a001 24157817/10749957122*271443^(3/13) 4032522475035772 a001 9227465/4106118243*271443^(3/13) 4032522475035828 a001 3524578/1568397607*271443^(3/13) 4032522475036053 a001 10403966833/258001459320 4032522475036053 a004 Fibonacci(27)/Lucas(28)/(1/2+sqrt(5)/2)^4 4032522475036053 a004 Fibonacci(28)/Lucas(27)/(1/2+sqrt(5)/2)^6 4032522475036198 a001 317811/969323029*271443^(5/13) 4032522475036208 a001 1346269/599074578*271443^(3/13) 4032522475037069 a001 196418/370248451*439204^(1/3) 4032522475037594 a001 416020/16692641*103682^(1/24) 4032522475038384 a001 75025/7881196*64079^(3/23) 4032522475038592 a001 726103/29134601*103682^(1/24) 4032522475038738 a001 5702887/228826127*103682^(1/24) 4032522475038759 a001 829464/33281921*103682^(1/24) 4032522475038762 a001 39088169/1568397607*103682^(1/24) 4032522475038763 a001 34111385/1368706081*103682^(1/24) 4032522475038763 a001 133957148/5374978561*103682^(1/24) 4032522475038763 a001 233802911/9381251041*103682^(1/24) 4032522475038763 a001 1836311903/73681302247*103682^(1/24) 4032522475038763 a001 267084832/10716675201*103682^(1/24) 4032522475038763 a001 12586269025/505019158607*103682^(1/24) 4032522475038763 a001 10983760033/440719107401*103682^(1/24) 4032522475038763 a001 43133785636/1730726404001*103682^(1/24) 4032522475038763 a001 75283811239/3020733700601*103682^(1/24) 4032522475038763 a001 182717648081/7331474697802*103682^(1/24) 4032522475038763 a001 139583862445/5600748293801*103682^(1/24) 4032522475038763 a001 53316291173/2139295485799*103682^(1/24) 4032522475038763 a001 10182505537/408569081798*103682^(1/24) 4032522475038763 a001 7778742049/312119004989*103682^(1/24) 4032522475038763 a001 2971215073/119218851371*103682^(1/24) 4032522475038763 a001 567451585/22768774562*103682^(1/24) 4032522475038763 a001 433494437/17393796001*103682^(1/24) 4032522475038763 a001 165580141/6643838879*103682^(1/24) 4032522475038763 a001 31622993/1268860318*103682^(1/24) 4032522475038764 a001 24157817/969323029*103682^(1/24) 4032522475038772 a001 9227465/370248451*103682^(1/24) 4032522475038808 a001 832040/969323029*271443^(4/13) 4032522475038813 a001 514229/228826127*271443^(3/13) 4032522475038828 a001 1762289/70711162*103682^(1/24) 4032522475039209 a001 1346269/54018521*103682^(1/24) 4032522475039392 a001 196418/87403803*439204^(2/9) 4032522475039803 a001 2178309/2537720636*271443^(4/13) 4032522475039948 a001 5702887/6643838879*271443^(4/13) 4032522475039969 a001 14930352/17393796001*271443^(4/13) 4032522475039972 a001 39088169/45537549124*271443^(4/13) 4032522475039973 a001 102334155/119218851371*271443^(4/13) 4032522475039973 a001 267914296/312119004989*271443^(4/13) 4032522475039973 a001 701408733/817138163596*271443^(4/13) 4032522475039973 a001 1836311903/2139295485799*271443^(4/13) 4032522475039973 a001 4807526976/5600748293801*271443^(4/13) 4032522475039973 a001 12586269025/14662949395604*271443^(4/13) 4032522475039973 a001 20365011074/23725150497407*271443^(4/13) 4032522475039973 a001 7778742049/9062201101803*271443^(4/13) 4032522475039973 a001 2971215073/3461452808002*271443^(4/13) 4032522475039973 a001 1134903170/1322157322203*271443^(4/13) 4032522475039973 a001 433494437/505019158607*271443^(4/13) 4032522475039973 a001 165580141/192900153618*271443^(4/13) 4032522475039973 a001 63245986/73681302247*271443^(4/13) 4032522475039974 a001 24157817/28143753123*271443^(4/13) 4032522475039982 a001 9227465/10749957122*271443^(4/13) 4032522475040038 a001 3524578/4106118243*271443^(4/13) 4032522475040408 a001 317811/2537720636*271443^(6/13) 4032522475040418 a001 1346269/1568397607*271443^(4/13) 4032522475040988 a004 Fibonacci(27)*Lucas(29)/(1/2+sqrt(5)/2)^61 4032522475041724 a001 196418/20633239*439204^(1/9) 4032522475041822 a001 514229/20633239*103682^(1/24) 4032522475042513 a001 105937/1368706081*271443^(1/2) 4032522475042873 a001 163427632720/4052739537881 4032522475042873 a004 Fibonacci(27)/Lucas(30)/(1/2+sqrt(5)/2)^2 4032522475042873 a004 Fibonacci(30)/Lucas(27)/(1/2+sqrt(5)/2)^8 4032522475043018 a001 610/1860499*271443^(5/13) 4032522475043023 a001 514229/599074578*271443^(4/13) 4032522475043593 a004 Fibonacci(27)*Lucas(31)/(1/2+sqrt(5)/2)^63 4032522475043868 a001 196418/4870847 4032522475043868 a004 Fibonacci(32)/Lucas(27)/(1/2+sqrt(5)/2)^10 4032522475043973 a004 Fibonacci(27)*Lucas(33)/(1/2+sqrt(5)/2)^65 4032522475043979 a001 196418/9062201101803*7881196^(10/11) 4032522475043984 a001 196418/2139295485799*7881196^(9/11) 4032522475043990 a001 196418/505019158607*7881196^(8/11) 4032522475043994 a001 98209/96450076809*7881196^(2/3) 4032522475043996 a001 196418/119218851371*7881196^(7/11) 4032522475044002 a001 196418/28143753123*7881196^(6/11) 4032522475044008 a001 196418/6643838879*7881196^(5/11) 4032522475044013 a001 2178309/6643838879*271443^(5/13) 4032522475044013 a001 196418/12752043*(1/2+1/2*5^(1/2))^2 4032522475044013 a004 Fibonacci(34)/Lucas(27)/(1/2+sqrt(5)/2)^12 4032522475044013 a001 196418/12752043*10749957122^(1/24) 4032522475044013 a001 196418/12752043*4106118243^(1/23) 4032522475044013 a001 196418/12752043*1568397607^(1/22) 4032522475044013 a001 196418/12752043*599074578^(1/21) 4032522475044013 a001 196418/12752043*228826127^(1/20) 4032522475044013 a001 196418/12752043*87403803^(1/19) 4032522475044013 a001 196418/12752043*33385282^(1/18) 4032522475044014 a001 196418/1568397607*7881196^(4/11) 4032522475044014 a001 196418/12752043*12752043^(1/17) 4032522475044016 a001 196418/969323029*7881196^(1/3) 4032522475044020 a001 196418/370248451*7881196^(3/11) 4032522475044023 a001 196418/12752043*4870847^(1/16) 4032522475044025 a001 196418/87403803*7881196^(2/11) 4032522475044028 a004 Fibonacci(27)*Lucas(35)/(1/2+sqrt(5)/2)^67 4032522475044029 a001 196418/9062201101803*20633239^(6/7) 4032522475044030 a001 98209/1730726404001*20633239^(4/5) 4032522475044031 a001 98209/408569081798*20633239^(5/7) 4032522475044032 a001 196418/119218851371*20633239^(3/5) 4032522475044032 a001 196418/73681302247*20633239^(4/7) 4032522475044034 a001 196418/6643838879*20633239^(3/7) 4032522475044034 a001 196418/4106118243*20633239^(2/5) 4032522475044034 a001 98209/16692641*(1/2+1/2*5^(1/2))^4 4032522475044034 a001 98209/16692641*23725150497407^(1/16) 4032522475044034 a001 98209/16692641*73681302247^(1/13) 4032522475044034 a004 Fibonacci(36)/Lucas(27)/(1/2+sqrt(5)/2)^14 4032522475044034 a001 98209/16692641*10749957122^(1/12) 4032522475044034 a001 98209/16692641*4106118243^(2/23) 4032522475044034 a001 98209/16692641*1568397607^(1/11) 4032522475044034 a001 98209/16692641*599074578^(2/21) 4032522475044034 a001 98209/16692641*228826127^(1/10) 4032522475044034 a001 98209/16692641*87403803^(2/19) 4032522475044034 a001 98209/16692641*33385282^(1/9) 4032522475044035 a001 98209/299537289*20633239^(2/7) 4032522475044036 a001 98209/70711162*20633239^(1/5) 4032522475044036 a004 Fibonacci(27)*Lucas(37)/(1/2+sqrt(5)/2)^69 4032522475044037 a001 98209/16692641*12752043^(2/17) 4032522475044037 a001 196418/87403803*141422324^(2/13) 4032522475044037 a001 196418/87403803*2537720636^(2/15) 4032522475044037 a001 196418/87403803*45537549124^(2/17) 4032522475044037 a001 196418/87403803*14662949395604^(2/21) 4032522475044037 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^6/Lucas(38) 4032522475044037 a004 Fibonacci(38)/Lucas(27)/(1/2+sqrt(5)/2)^16 4032522475044037 a001 196418/87403803*10749957122^(1/8) 4032522475044037 a001 196418/87403803*4106118243^(3/23) 4032522475044037 a001 196418/87403803*1568397607^(3/22) 4032522475044037 a001 196418/87403803*599074578^(1/7) 4032522475044037 a001 196418/87403803*228826127^(3/20) 4032522475044037 a001 196418/87403803*87403803^(3/19) 4032522475044037 a004 Fibonacci(27)*Lucas(39)/(1/2+sqrt(5)/2)^71 4032522475044037 a001 196418/9062201101803*141422324^(10/13) 4032522475044037 a001 196418/2139295485799*141422324^(9/13) 4032522475044037 a001 196418/1322157322203*141422324^(2/3) 4032522475044037 a001 196418/505019158607*141422324^(8/13) 4032522475044038 a001 196418/119218851371*141422324^(7/13) 4032522475044038 a001 196418/28143753123*141422324^(6/13) 4032522475044038 a001 196418/6643838879*141422324^(5/13) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^8/Lucas(40) 4032522475044038 a001 196418/228826127*23725150497407^(1/8) 4032522475044038 a001 196418/228826127*505019158607^(1/7) 4032522475044038 a004 Fibonacci(40)/Lucas(27)/(1/2+sqrt(5)/2)^18 4032522475044038 a001 196418/228826127*73681302247^(2/13) 4032522475044038 a001 196418/228826127*10749957122^(1/6) 4032522475044038 a001 196418/228826127*4106118243^(4/23) 4032522475044038 a001 196418/228826127*1568397607^(2/11) 4032522475044038 a001 196418/228826127*599074578^(4/21) 4032522475044038 a001 98209/1268860318*141422324^(1/3) 4032522475044038 a001 196418/1568397607*141422324^(4/13) 4032522475044038 a001 196418/228826127*228826127^(1/5) 4032522475044038 a004 Fibonacci(27)*Lucas(41)/(1/2+sqrt(5)/2)^73 4032522475044038 a001 196418/370248451*141422324^(3/13) 4032522475044038 a001 98209/299537289*2537720636^(2/9) 4032522475044038 a001 98209/299537289*312119004989^(2/11) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^10/Lucas(42) 4032522475044038 a004 Fibonacci(42)/Lucas(27)/(1/2+sqrt(5)/2)^20 4032522475044038 a001 98209/299537289*28143753123^(1/5) 4032522475044038 a001 98209/299537289*10749957122^(5/24) 4032522475044038 a001 98209/299537289*4106118243^(5/23) 4032522475044038 a001 98209/299537289*1568397607^(5/22) 4032522475044038 a001 98209/299537289*599074578^(5/21) 4032522475044038 a004 Fibonacci(27)*Lucas(43)/(1/2+sqrt(5)/2)^75 4032522475044038 a001 196418/1568397607*2537720636^(4/15) 4032522475044038 a001 196418/1568397607*45537549124^(4/17) 4032522475044038 a001 196418/1568397607*817138163596^(4/19) 4032522475044038 a001 196418/1568397607*14662949395604^(4/21) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^12/Lucas(44) 4032522475044038 a001 196418/1568397607*192900153618^(2/9) 4032522475044038 a004 Fibonacci(44)/Lucas(27)/(1/2+sqrt(5)/2)^22 4032522475044038 a001 196418/1568397607*73681302247^(3/13) 4032522475044038 a001 196418/1568397607*10749957122^(1/4) 4032522475044038 a001 196418/1568397607*4106118243^(6/23) 4032522475044038 a001 196418/1568397607*1568397607^(3/11) 4032522475044038 a004 Fibonacci(27)*Lucas(45)/(1/2+sqrt(5)/2)^77 4032522475044038 a001 196418/9062201101803*2537720636^(2/3) 4032522475044038 a001 196418/2139295485799*2537720636^(3/5) 4032522475044038 a001 98209/408569081798*2537720636^(5/9) 4032522475044038 a001 196418/505019158607*2537720636^(8/15) 4032522475044038 a001 196418/119218851371*2537720636^(7/15) 4032522475044038 a001 196418/73681302247*2537720636^(4/9) 4032522475044038 a001 196418/28143753123*2537720636^(2/5) 4032522475044038 a001 196418/4106118243*17393796001^(2/7) 4032522475044038 a001 196418/4106118243*14662949395604^(2/9) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^14/Lucas(46) 4032522475044038 a001 196418/4106118243*505019158607^(1/4) 4032522475044038 a004 Fibonacci(46)/Lucas(27)/(1/2+sqrt(5)/2)^24 4032522475044038 a001 196418/4106118243*10749957122^(7/24) 4032522475044038 a001 196418/4106118243*4106118243^(7/23) 4032522475044038 a001 196418/6643838879*2537720636^(1/3) 4032522475044038 a004 Fibonacci(27)*Lucas(47)/(1/2+sqrt(5)/2)^79 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^16/Lucas(48) 4032522475044038 a001 98209/5374978561*23725150497407^(1/4) 4032522475044038 a004 Fibonacci(48)/Lucas(27)/(1/2+sqrt(5)/2)^26 4032522475044038 a001 98209/5374978561*73681302247^(4/13) 4032522475044038 a001 98209/5374978561*10749957122^(1/3) 4032522475044038 a004 Fibonacci(27)*Lucas(49)/(1/2+sqrt(5)/2)^81 4032522475044038 a001 98209/1730726404001*17393796001^(4/7) 4032522475044038 a001 196418/28143753123*45537549124^(6/17) 4032522475044038 a001 196418/119218851371*17393796001^(3/7) 4032522475044038 a001 196418/28143753123*14662949395604^(2/7) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^18/Lucas(50) 4032522475044038 a001 196418/28143753123*192900153618^(1/3) 4032522475044038 a004 Fibonacci(50)/Lucas(27)/(1/2+sqrt(5)/2)^28 4032522475044038 a004 Fibonacci(27)*Lucas(51)/(1/2+sqrt(5)/2)^83 4032522475044038 a001 196418/9062201101803*45537549124^(10/17) 4032522475044038 a001 196418/2139295485799*45537549124^(9/17) 4032522475044038 a001 196418/505019158607*45537549124^(8/17) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^20/Lucas(52) 4032522475044038 a001 196418/73681302247*23725150497407^(5/16) 4032522475044038 a001 196418/73681302247*505019158607^(5/14) 4032522475044038 a004 Fibonacci(52)/Lucas(27)/(1/2+sqrt(5)/2)^30 4032522475044038 a001 196418/119218851371*45537549124^(7/17) 4032522475044038 a001 196418/73681302247*73681302247^(5/13) 4032522475044038 a004 Fibonacci(27)*Lucas(53)/(1/2+sqrt(5)/2)^85 4032522475044038 a001 98209/96450076809*312119004989^(2/5) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^22/Lucas(54) 4032522475044038 a004 Fibonacci(27)*Lucas(55)/(1/2+sqrt(5)/2)^87 4032522475044038 a001 196418/9062201101803*312119004989^(6/11) 4032522475044038 a001 196418/505019158607*14662949395604^(8/21) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^24/Lucas(56) 4032522475044038 a004 Fibonacci(27)*Lucas(57)/(1/2+sqrt(5)/2)^89 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^26/Lucas(58) 4032522475044038 a001 196418/2139295485799*817138163596^(9/19) 4032522475044038 a004 Fibonacci(27)*Lucas(59)/(1/2+sqrt(5)/2)^91 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^28/Lucas(60) 4032522475044038 a004 Fibonacci(27)*Lucas(61)/(1/2+sqrt(5)/2)^93 4032522475044038 a001 196418/9062201101803*14662949395604^(10/21) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^30/Lucas(62) 4032522475044038 a004 Fibonacci(27)*Lucas(63)/(1/2+sqrt(5)/2)^95 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^32/Lucas(64) 4032522475044038 a004 Fibonacci(27)*Lucas(65)/(1/2+sqrt(5)/2)^97 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^34/Lucas(66) 4032522475044038 a004 Fibonacci(27)*Lucas(67)/(1/2+sqrt(5)/2)^99 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^36/Lucas(68) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^38/Lucas(70) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^40/Lucas(72) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^42/Lucas(74) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^44/Lucas(76) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^46/Lucas(78) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^48/Lucas(80) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^50/Lucas(82) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^52/Lucas(84) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^54/Lucas(86) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^56/Lucas(88) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^58/Lucas(90) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^60/Lucas(92) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^62/Lucas(94) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^64/Lucas(96) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^66/Lucas(98) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^67/Lucas(99) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^68/Lucas(100) 4032522475044038 a004 Fibonacci(27)*Lucas(1)/(1/2+sqrt(5)/2)^32 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^65/Lucas(97) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^63/Lucas(95) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^61/Lucas(93) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^59/Lucas(91) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^57/Lucas(89) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^55/Lucas(87) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^53/Lucas(85) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^51/Lucas(83) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^49/Lucas(81) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^47/Lucas(79) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^45/Lucas(77) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^43/Lucas(75) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^41/Lucas(73) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^39/Lucas(71) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^37/Lucas(69) 4032522475044038 a004 Fibonacci(27)*Lucas(68)/(1/2+sqrt(5)/2)^100 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^35/Lucas(67) 4032522475044038 a004 Fibonacci(27)*Lucas(66)/(1/2+sqrt(5)/2)^98 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^33/Lucas(65) 4032522475044038 a004 Fibonacci(27)*Lucas(64)/(1/2+sqrt(5)/2)^96 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^31/Lucas(63) 4032522475044038 a004 Fibonacci(27)*Lucas(62)/(1/2+sqrt(5)/2)^94 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^29/Lucas(61) 4032522475044038 a004 Fibonacci(27)*Lucas(60)/(1/2+sqrt(5)/2)^92 4032522475044038 a001 196418/2139295485799*14662949395604^(3/7) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^27/Lucas(59) 4032522475044038 a004 Fibonacci(27)*Lucas(58)/(1/2+sqrt(5)/2)^90 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^25/Lucas(57) 4032522475044038 a001 196418/23725150497407*505019158607^(4/7) 4032522475044038 a004 Fibonacci(27)*Lucas(56)/(1/2+sqrt(5)/2)^88 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^23/Lucas(55) 4032522475044038 a001 196418/2139295485799*192900153618^(1/2) 4032522475044038 a004 Fibonacci(56)/Lucas(27)/(1/2+sqrt(5)/2)^34 4032522475044038 a004 Fibonacci(58)/Lucas(27)/(1/2+sqrt(5)/2)^36 4032522475044038 a004 Fibonacci(60)/Lucas(27)/(1/2+sqrt(5)/2)^38 4032522475044038 a004 Fibonacci(62)/Lucas(27)/(1/2+sqrt(5)/2)^40 4032522475044038 a004 Fibonacci(64)/Lucas(27)/(1/2+sqrt(5)/2)^42 4032522475044038 a004 Fibonacci(66)/Lucas(27)/(1/2+sqrt(5)/2)^44 4032522475044038 a004 Fibonacci(68)/Lucas(27)/(1/2+sqrt(5)/2)^46 4032522475044038 a004 Fibonacci(70)/Lucas(27)/(1/2+sqrt(5)/2)^48 4032522475044038 a004 Fibonacci(72)/Lucas(27)/(1/2+sqrt(5)/2)^50 4032522475044038 a004 Fibonacci(74)/Lucas(27)/(1/2+sqrt(5)/2)^52 4032522475044038 a004 Fibonacci(76)/Lucas(27)/(1/2+sqrt(5)/2)^54 4032522475044038 a004 Fibonacci(78)/Lucas(27)/(1/2+sqrt(5)/2)^56 4032522475044038 a004 Fibonacci(80)/Lucas(27)/(1/2+sqrt(5)/2)^58 4032522475044038 a004 Fibonacci(82)/Lucas(27)/(1/2+sqrt(5)/2)^60 4032522475044038 a004 Fibonacci(84)/Lucas(27)/(1/2+sqrt(5)/2)^62 4032522475044038 a004 Fibonacci(86)/Lucas(27)/(1/2+sqrt(5)/2)^64 4032522475044038 a004 Fibonacci(88)/Lucas(27)/(1/2+sqrt(5)/2)^66 4032522475044038 a004 Fibonacci(90)/Lucas(27)/(1/2+sqrt(5)/2)^68 4032522475044038 a004 Fibonacci(92)/Lucas(27)/(1/2+sqrt(5)/2)^70 4032522475044038 a004 Fibonacci(94)/Lucas(27)/(1/2+sqrt(5)/2)^72 4032522475044038 a004 Fibonacci(96)/Lucas(27)/(1/2+sqrt(5)/2)^74 4032522475044038 a004 Fibonacci(100)/Lucas(27)/(1/2+sqrt(5)/2)^78 4032522475044038 a004 Fibonacci(27)*Lucas(54)/(1/2+sqrt(5)/2)^86 4032522475044038 a004 Fibonacci(98)/Lucas(27)/(1/2+sqrt(5)/2)^76 4032522475044038 a004 Fibonacci(99)/Lucas(27)/(1/2+sqrt(5)/2)^77 4032522475044038 a004 Fibonacci(97)/Lucas(27)/(1/2+sqrt(5)/2)^75 4032522475044038 a004 Fibonacci(95)/Lucas(27)/(1/2+sqrt(5)/2)^73 4032522475044038 a004 Fibonacci(93)/Lucas(27)/(1/2+sqrt(5)/2)^71 4032522475044038 a004 Fibonacci(91)/Lucas(27)/(1/2+sqrt(5)/2)^69 4032522475044038 a004 Fibonacci(89)/Lucas(27)/(1/2+sqrt(5)/2)^67 4032522475044038 a004 Fibonacci(87)/Lucas(27)/(1/2+sqrt(5)/2)^65 4032522475044038 a004 Fibonacci(85)/Lucas(27)/(1/2+sqrt(5)/2)^63 4032522475044038 a004 Fibonacci(83)/Lucas(27)/(1/2+sqrt(5)/2)^61 4032522475044038 a004 Fibonacci(81)/Lucas(27)/(1/2+sqrt(5)/2)^59 4032522475044038 a004 Fibonacci(79)/Lucas(27)/(1/2+sqrt(5)/2)^57 4032522475044038 a004 Fibonacci(77)/Lucas(27)/(1/2+sqrt(5)/2)^55 4032522475044038 a004 Fibonacci(75)/Lucas(27)/(1/2+sqrt(5)/2)^53 4032522475044038 a004 Fibonacci(73)/Lucas(27)/(1/2+sqrt(5)/2)^51 4032522475044038 a004 Fibonacci(71)/Lucas(27)/(1/2+sqrt(5)/2)^49 4032522475044038 a004 Fibonacci(69)/Lucas(27)/(1/2+sqrt(5)/2)^47 4032522475044038 a004 Fibonacci(67)/Lucas(27)/(1/2+sqrt(5)/2)^45 4032522475044038 a004 Fibonacci(65)/Lucas(27)/(1/2+sqrt(5)/2)^43 4032522475044038 a004 Fibonacci(63)/Lucas(27)/(1/2+sqrt(5)/2)^41 4032522475044038 a004 Fibonacci(61)/Lucas(27)/(1/2+sqrt(5)/2)^39 4032522475044038 a004 Fibonacci(59)/Lucas(27)/(1/2+sqrt(5)/2)^37 4032522475044038 a004 Fibonacci(57)/Lucas(27)/(1/2+sqrt(5)/2)^35 4032522475044038 a004 Fibonacci(55)/Lucas(27)/(1/2+sqrt(5)/2)^33 4032522475044038 a001 196418/119218851371*14662949395604^(1/3) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^21/Lucas(53) 4032522475044038 a001 196418/119218851371*192900153618^(7/18) 4032522475044038 a001 196418/1322157322203*73681302247^(1/2) 4032522475044038 a004 Fibonacci(53)/Lucas(27)/(1/2+sqrt(5)/2)^31 4032522475044038 a001 98209/1730726404001*73681302247^(7/13) 4032522475044038 a001 196418/23725150497407*73681302247^(8/13) 4032522475044038 a004 Fibonacci(27)*Lucas(52)/(1/2+sqrt(5)/2)^84 4032522475044038 a001 196418/73681302247*28143753123^(2/5) 4032522475044038 a001 98209/22768774562*817138163596^(1/3) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^19/Lucas(51) 4032522475044038 a004 Fibonacci(51)/Lucas(27)/(1/2+sqrt(5)/2)^29 4032522475044038 a001 98209/408569081798*28143753123^(1/2) 4032522475044038 a001 196418/9062201101803*28143753123^(3/5) 4032522475044038 a004 Fibonacci(27)*Lucas(50)/(1/2+sqrt(5)/2)^82 4032522475044038 a001 196418/28143753123*10749957122^(3/8) 4032522475044038 a001 196418/17393796001*45537549124^(1/3) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^17/Lucas(49) 4032522475044038 a004 Fibonacci(49)/Lucas(27)/(1/2+sqrt(5)/2)^27 4032522475044038 a001 196418/73681302247*10749957122^(5/12) 4032522475044038 a001 196418/119218851371*10749957122^(7/16) 4032522475044038 a001 98209/96450076809*10749957122^(11/24) 4032522475044038 a001 196418/505019158607*10749957122^(1/2) 4032522475044038 a001 196418/1322157322203*10749957122^(13/24) 4032522475044038 a001 196418/2139295485799*10749957122^(9/16) 4032522475044038 a001 98209/1730726404001*10749957122^(7/12) 4032522475044038 a001 196418/9062201101803*10749957122^(5/8) 4032522475044038 a001 196418/23725150497407*10749957122^(2/3) 4032522475044038 a004 Fibonacci(27)*Lucas(48)/(1/2+sqrt(5)/2)^80 4032522475044038 a001 98209/5374978561*4106118243^(8/23) 4032522475044038 a001 196418/28143753123*4106118243^(9/23) 4032522475044038 a001 196418/6643838879*45537549124^(5/17) 4032522475044038 a001 196418/6643838879*312119004989^(3/11) 4032522475044038 a001 196418/6643838879*14662949395604^(5/21) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^15/Lucas(47) 4032522475044038 a001 196418/6643838879*192900153618^(5/18) 4032522475044038 a004 Fibonacci(47)/Lucas(27)/(1/2+sqrt(5)/2)^25 4032522475044038 a001 196418/6643838879*28143753123^(3/10) 4032522475044038 a001 196418/6643838879*10749957122^(5/16) 4032522475044038 a001 196418/73681302247*4106118243^(10/23) 4032522475044038 a001 98209/96450076809*4106118243^(11/23) 4032522475044038 a001 196418/312119004989*4106118243^(1/2) 4032522475044038 a001 196418/505019158607*4106118243^(12/23) 4032522475044038 a001 196418/1322157322203*4106118243^(13/23) 4032522475044038 a001 98209/1730726404001*4106118243^(14/23) 4032522475044038 a001 196418/9062201101803*4106118243^(15/23) 4032522475044038 a001 196418/23725150497407*4106118243^(16/23) 4032522475044038 a004 Fibonacci(27)*Lucas(46)/(1/2+sqrt(5)/2)^78 4032522475044038 a001 196418/4106118243*1568397607^(7/22) 4032522475044038 a001 98209/5374978561*1568397607^(4/11) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^13/Lucas(45) 4032522475044038 a004 Fibonacci(45)/Lucas(27)/(1/2+sqrt(5)/2)^23 4032522475044038 a001 98209/1268860318*73681302247^(1/4) 4032522475044038 a001 196418/28143753123*1568397607^(9/22) 4032522475044038 a001 196418/73681302247*1568397607^(5/11) 4032522475044038 a001 98209/96450076809*1568397607^(1/2) 4032522475044038 a001 196418/505019158607*1568397607^(6/11) 4032522475044038 a001 196418/1322157322203*1568397607^(13/22) 4032522475044038 a001 98209/1730726404001*1568397607^(7/11) 4032522475044038 a001 196418/9062201101803*1568397607^(15/22) 4032522475044038 a001 196418/23725150497407*1568397607^(8/11) 4032522475044038 a001 196418/1568397607*599074578^(2/7) 4032522475044038 a004 Fibonacci(27)*Lucas(44)/(1/2+sqrt(5)/2)^76 4032522475044038 a001 196418/4106118243*599074578^(1/3) 4032522475044038 a001 196418/6643838879*599074578^(5/14) 4032522475044038 a001 98209/5374978561*599074578^(8/21) 4032522475044038 a001 196418/969323029*312119004989^(1/5) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^11/Lucas(43) 4032522475044038 a004 Fibonacci(43)/Lucas(27)/(1/2+sqrt(5)/2)^21 4032522475044038 a001 196418/969323029*1568397607^(1/4) 4032522475044038 a001 196418/28143753123*599074578^(3/7) 4032522475044038 a001 196418/73681302247*599074578^(10/21) 4032522475044038 a001 196418/119218851371*599074578^(1/2) 4032522475044038 a001 98209/96450076809*599074578^(11/21) 4032522475044038 a001 196418/505019158607*599074578^(4/7) 4032522475044038 a001 196418/1322157322203*599074578^(13/21) 4032522475044038 a001 196418/2139295485799*599074578^(9/14) 4032522475044038 a001 98209/1730726404001*599074578^(2/3) 4032522475044038 a001 98209/299537289*228826127^(1/4) 4032522475044038 a001 196418/9062201101803*599074578^(5/7) 4032522475044038 a001 196418/23725150497407*599074578^(16/21) 4032522475044038 a004 Fibonacci(27)*Lucas(42)/(1/2+sqrt(5)/2)^74 4032522475044038 a001 196418/1568397607*228826127^(3/10) 4032522475044038 a001 196418/4106118243*228826127^(7/20) 4032522475044038 a001 196418/54018521*20633239^(1/7) 4032522475044038 a001 196418/6643838879*228826127^(3/8) 4032522475044038 a001 196418/370248451*2537720636^(1/5) 4032522475044038 a001 196418/370248451*45537549124^(3/17) 4032522475044038 a001 196418/370248451*14662949395604^(1/7) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^9/Lucas(41) 4032522475044038 a001 196418/370248451*192900153618^(1/6) 4032522475044038 a004 Fibonacci(41)/Lucas(27)/(1/2+sqrt(5)/2)^19 4032522475044038 a001 196418/370248451*10749957122^(3/16) 4032522475044038 a001 98209/5374978561*228826127^(2/5) 4032522475044038 a001 196418/370248451*599074578^(3/14) 4032522475044038 a001 196418/228826127*87403803^(4/19) 4032522475044038 a001 196418/28143753123*228826127^(9/20) 4032522475044038 a001 196418/73681302247*228826127^(1/2) 4032522475044038 a001 98209/96450076809*228826127^(11/20) 4032522475044038 a001 196418/505019158607*228826127^(3/5) 4032522475044038 a001 98209/408569081798*228826127^(5/8) 4032522475044038 a001 196418/1322157322203*228826127^(13/20) 4032522475044038 a001 98209/1730726404001*228826127^(7/10) 4032522475044038 a001 196418/9062201101803*228826127^(3/4) 4032522475044038 a001 196418/23725150497407*228826127^(4/5) 4032522475044038 a001 196418/87403803*33385282^(1/6) 4032522475044038 a004 Fibonacci(27)*Lucas(40)/(1/2+sqrt(5)/2)^72 4032522475044038 a001 98209/299537289*87403803^(5/19) 4032522475044038 a001 196418/1568397607*87403803^(6/19) 4032522475044038 a001 196418/4106118243*87403803^(7/19) 4032522475044038 a001 98209/70711162*17393796001^(1/7) 4032522475044038 a001 98209/70711162*14662949395604^(1/9) 4032522475044038 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^7/Lucas(39) 4032522475044038 a004 Fibonacci(39)/Lucas(27)/(1/2+sqrt(5)/2)^17 4032522475044038 a001 98209/70711162*599074578^(1/6) 4032522475044038 a001 98209/5374978561*87403803^(8/19) 4032522475044038 a001 196418/28143753123*87403803^(9/19) 4032522475044038 a001 98209/22768774562*87403803^(1/2) 4032522475044038 a001 196418/73681302247*87403803^(10/19) 4032522475044038 a001 98209/96450076809*87403803^(11/19) 4032522475044038 a001 196418/505019158607*87403803^(12/19) 4032522475044038 a001 196418/1322157322203*87403803^(13/19) 4032522475044038 a001 98209/1730726404001*87403803^(14/19) 4032522475044038 a001 196418/9062201101803*87403803^(15/19) 4032522475044038 a001 196418/23725150497407*87403803^(16/19) 4032522475044038 a004 Fibonacci(27)*Lucas(38)/(1/2+sqrt(5)/2)^70 4032522475044038 a001 196418/228826127*33385282^(2/9) 4032522475044039 a001 196418/370248451*33385282^(1/4) 4032522475044039 a001 98209/299537289*33385282^(5/18) 4032522475044039 a001 196418/1568397607*33385282^(1/3) 4032522475044039 a001 196418/54018521*2537720636^(1/9) 4032522475044039 a001 196418/54018521*312119004989^(1/11) 4032522475044039 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^5/Lucas(37) 4032522475044039 a004 Fibonacci(37)/Lucas(27)/(1/2+sqrt(5)/2)^15 4032522475044039 a001 196418/54018521*28143753123^(1/10) 4032522475044039 a001 196418/54018521*228826127^(1/8) 4032522475044039 a001 196418/4106118243*33385282^(7/18) 4032522475044039 a001 196418/6643838879*33385282^(5/12) 4032522475044039 a001 98209/5374978561*33385282^(4/9) 4032522475044039 a001 196418/28143753123*33385282^(1/2) 4032522475044040 a001 196418/73681302247*33385282^(5/9) 4032522475044040 a001 196418/119218851371*33385282^(7/12) 4032522475044040 a001 98209/96450076809*33385282^(11/18) 4032522475044040 a001 196418/505019158607*33385282^(2/3) 4032522475044040 a001 196418/1322157322203*33385282^(13/18) 4032522475044040 a001 196418/2139295485799*33385282^(3/4) 4032522475044040 a001 98209/1730726404001*33385282^(7/9) 4032522475044041 a001 196418/9062201101803*33385282^(5/6) 4032522475044041 a001 196418/23725150497407*33385282^(8/9) 4032522475044041 a001 196418/20633239*7881196^(1/11) 4032522475044041 a004 Fibonacci(27)*Lucas(36)/(1/2+sqrt(5)/2)^68 4032522475044041 a001 196418/87403803*12752043^(3/17) 4032522475044043 a001 196418/228826127*12752043^(4/17) 4032522475044045 a001 98209/299537289*12752043^(5/17) 4032522475044046 a001 196418/1568397607*12752043^(6/17) 4032522475044047 a001 28657/3010349*24476^(1/7) 4032522475044047 a001 196418/20633239*141422324^(1/13) 4032522475044047 a001 196418/20633239*2537720636^(1/15) 4032522475044047 a001 196418/20633239*45537549124^(1/17) 4032522475044047 a001 196418/20633239*14662949395604^(1/21) 4032522475044047 a001 196418/20633239*(1/2+1/2*5^(1/2))^3 4032522475044047 a001 196418/20633239*192900153618^(1/18) 4032522475044047 a004 Fibonacci(35)/Lucas(27)/(1/2+sqrt(5)/2)^13 4032522475044047 a001 196418/20633239*10749957122^(1/16) 4032522475044047 a001 196418/20633239*599074578^(1/14) 4032522475044047 a001 196418/20633239*33385282^(1/12) 4032522475044048 a001 196418/4106118243*12752043^(7/17) 4032522475044049 a001 98209/5374978561*12752043^(8/17) 4032522475044050 a001 196418/17393796001*12752043^(1/2) 4032522475044051 a001 196418/28143753123*12752043^(9/17) 4032522475044052 a001 196418/73681302247*12752043^(10/17) 4032522475044054 a001 98209/96450076809*12752043^(11/17) 4032522475044055 a001 196418/505019158607*12752043^(12/17) 4032522475044055 a001 98209/16692641*4870847^(1/8) 4032522475044057 a001 196418/1322157322203*12752043^(13/17) 4032522475044058 a001 98209/1730726404001*12752043^(14/17) 4032522475044059 a001 196418/9062201101803*12752043^(15/17) 4032522475044061 a001 196418/23725150497407*12752043^(16/17) 4032522475044062 a004 Fibonacci(27)*Lucas(34)/(1/2+sqrt(5)/2)^66 4032522475044069 a001 196418/87403803*4870847^(3/16) 4032522475044080 a001 196418/228826127*4870847^(1/4) 4032522475044090 a001 196418/12752043*1860498^(1/15) 4032522475044091 a001 98209/299537289*4870847^(5/16) 4032522475044101 a001 196418/1568397607*4870847^(3/8) 4032522475044103 a001 98209/7881196+98209/7881196*5^(1/2) 4032522475044103 a004 Fibonacci(33)/Lucas(27)/(1/2+sqrt(5)/2)^11 4032522475044112 a001 196418/4106118243*4870847^(7/16) 4032522475044123 a001 98209/5374978561*4870847^(1/2) 4032522475044133 a001 196418/28143753123*4870847^(9/16) 4032522475044144 a001 196418/73681302247*4870847^(5/8) 4032522475044154 a001 98209/96450076809*4870847^(11/16) 4032522475044158 a001 5702887/17393796001*271443^(5/13) 4032522475044164 a001 196418/20633239*1860498^(1/10) 4032522475044165 a001 196418/505019158607*4870847^(3/4) 4032522475044176 a001 196418/1322157322203*4870847^(13/16) 4032522475044179 a001 3732588/11384387281*271443^(5/13) 4032522475044182 a001 39088169/119218851371*271443^(5/13) 4032522475044183 a001 9303105/28374454999*271443^(5/13) 4032522475044183 a001 66978574/204284540899*271443^(5/13) 4032522475044183 a001 701408733/2139295485799*271443^(5/13) 4032522475044183 a001 1836311903/5600748293801*271443^(5/13) 4032522475044183 a001 1201881744/3665737348901*271443^(5/13) 4032522475044183 a001 7778742049/23725150497407*271443^(5/13) 4032522475044183 a001 2971215073/9062201101803*271443^(5/13) 4032522475044183 a001 567451585/1730726404001*271443^(5/13) 4032522475044183 a001 433494437/1322157322203*271443^(5/13) 4032522475044183 a001 165580141/505019158607*271443^(5/13) 4032522475044183 a001 31622993/96450076809*271443^(5/13) 4032522475044184 a001 24157817/73681302247*271443^(5/13) 4032522475044186 a001 98209/1730726404001*4870847^(7/8) 4032522475044189 a001 98209/16692641*1860498^(2/15) 4032522475044192 a001 9227465/28143753123*271443^(5/13) 4032522475044197 a001 196418/9062201101803*4870847^(15/16) 4032522475044208 a004 Fibonacci(27)*Lucas(32)/(1/2+sqrt(5)/2)^64 4032522475044233 a001 196418/54018521*1860498^(1/6) 4032522475044248 a001 1762289/5374978561*271443^(5/13) 4032522475044270 a001 196418/87403803*1860498^(1/5) 4032522475044348 a001 196418/228826127*1860498^(4/15) 4032522475044387 a001 196418/370248451*1860498^(3/10) 4032522475044426 a001 98209/299537289*1860498^(1/3) 4032522475044483 a001 7777396013/192866774113 4032522475044483 a004 Fibonacci(27)/Lucas(31)/(1/2+sqrt(5)/2) 4032522475044483 a004 Fibonacci(31)/Lucas(27)/(1/2+sqrt(5)/2)^9 4032522475044504 a001 196418/1568397607*1860498^(2/5) 4032522475044581 a001 196418/4106118243*1860498^(7/15) 4032522475044583 a001 196418/12752043*710647^(1/14) 4032522475044618 a001 317811/6643838879*271443^(7/13) 4032522475044620 a001 196418/6643838879*1860498^(1/2) 4032522475044628 a001 1346269/4106118243*271443^(5/13) 4032522475044659 a001 98209/5374978561*1860498^(8/15) 4032522475044737 a001 196418/28143753123*1860498^(3/5) 4032522475044814 a001 196418/73681302247*1860498^(2/3) 4032522475044853 a001 196418/119218851371*1860498^(7/10) 4032522475044892 a001 98209/96450076809*1860498^(11/15) 4032522475044970 a001 196418/505019158607*1860498^(4/5) 4032522475045008 a001 98209/408569081798*1860498^(5/6) 4032522475045047 a001 196418/1322157322203*1860498^(13/15) 4032522475045086 a001 196418/2139295485799*1860498^(9/10) 4032522475045125 a001 98209/1730726404001*1860498^(14/15) 4032522475045175 a001 98209/16692641*710647^(1/7) 4032522475045203 a004 Fibonacci(27)*Lucas(30)/(1/2+sqrt(5)/2)^62 4032522475045748 a001 196418/87403803*710647^(3/14) 4032522475046034 a001 98209/70711162*710647^(1/4) 4032522475046319 a001 196418/228826127*710647^(2/7) 4032522475046417 a001 10959/711491*103682^(1/12) 4032522475046550 a001 121393/33385282*103682^(5/24) 4032522475046889 a001 98209/299537289*710647^(5/14) 4032522475047088 a001 101003831722/2504730781961 4032522475047088 a004 Fibonacci(27)/Lucas(29)/(1/2+sqrt(5)/2)^3 4032522475047088 a004 Fibonacci(29)/Lucas(27)/(1/2+sqrt(5)/2)^7 4032522475047228 a001 832040/6643838879*271443^(6/13) 4032522475047233 a001 514229/1568397607*271443^(5/13) 4032522475047460 a001 196418/1568397607*710647^(3/7) 4032522475048030 a001 196418/4106118243*710647^(1/2) 4032522475048223 a001 2178309/17393796001*271443^(6/13) 4032522475048223 a001 196418/12752043*271443^(1/13) 4032522475048368 a001 1597/12752044*271443^(6/13) 4032522475048389 a001 14930352/119218851371*271443^(6/13) 4032522475048392 a001 39088169/312119004989*271443^(6/13) 4032522475048392 a001 102334155/817138163596*271443^(6/13) 4032522475048393 a001 267914296/2139295485799*271443^(6/13) 4032522475048393 a001 701408733/5600748293801*271443^(6/13) 4032522475048393 a001 1836311903/14662949395604*271443^(6/13) 4032522475048393 a001 2971215073/23725150497407*271443^(6/13) 4032522475048393 a001 1134903170/9062201101803*271443^(6/13) 4032522475048393 a001 433494437/3461452808002*271443^(6/13) 4032522475048393 a001 165580141/1322157322203*271443^(6/13) 4032522475048393 a001 63245986/505019158607*271443^(6/13) 4032522475048394 a001 24157817/192900153618*271443^(6/13) 4032522475048402 a001 9227465/73681302247*271443^(6/13) 4032522475048457 a001 3524578/28143753123*271443^(6/13) 4032522475048600 a001 98209/5374978561*710647^(4/7) 4032522475048828 a001 10959/599786069*271443^(8/13) 4032522475048838 a001 1346269/10749957122*271443^(6/13) 4032522475049171 a001 196418/28143753123*710647^(9/14) 4032522475049333 a001 416020/5374978561*271443^(1/2) 4032522475049741 a001 196418/73681302247*710647^(5/7) 4032522475050026 a001 196418/119218851371*710647^(3/4) 4032522475050311 a001 98209/96450076809*710647^(11/14) 4032522475050328 a001 726103/9381251041*271443^(1/2) 4032522475050473 a001 5702887/73681302247*271443^(1/2) 4032522475050494 a001 2584/33385281*271443^(1/2) 4032522475050497 a001 39088169/505019158607*271443^(1/2) 4032522475050497 a001 34111385/440719107401*271443^(1/2) 4032522475050498 a001 133957148/1730726404001*271443^(1/2) 4032522475050498 a001 233802911/3020733700601*271443^(1/2) 4032522475050498 a001 1836311903/23725150497407*271443^(1/2) 4032522475050498 a001 567451585/7331474697802*271443^(1/2) 4032522475050498 a001 433494437/5600748293801*271443^(1/2) 4032522475050498 a001 165580141/2139295485799*271443^(1/2) 4032522475050498 a001 31622993/408569081798*271443^(1/2) 4032522475050499 a001 24157817/312119004989*271443^(1/2) 4032522475050507 a001 9227465/119218851371*271443^(1/2) 4032522475050562 a001 1762289/22768774562*271443^(1/2) 4032522475050882 a001 196418/505019158607*710647^(6/7) 4032522475050943 a001 1346269/17393796001*271443^(1/2) 4032522475051438 a001 832040/17393796001*271443^(7/13) 4032522475051443 a001 514229/4106118243*271443^(6/13) 4032522475051452 a001 196418/1322157322203*710647^(13/14) 4032522475051790 a001 75025/28143753123*167761^(4/5) 4032522475052022 a004 Fibonacci(27)*Lucas(28)/(1/2+sqrt(5)/2)^60 4032522475052433 a001 2178309/45537549124*271443^(7/13) 4032522475052454 a001 98209/16692641*271443^(2/13) 4032522475052578 a001 5702887/119218851371*271443^(7/13) 4032522475052599 a001 14930352/312119004989*271443^(7/13) 4032522475052602 a001 4181/87403804*271443^(7/13) 4032522475052602 a001 102334155/2139295485799*271443^(7/13) 4032522475052602 a001 267914296/5600748293801*271443^(7/13) 4032522475052602 a001 701408733/14662949395604*271443^(7/13) 4032522475052602 a001 1134903170/23725150497407*271443^(7/13) 4032522475052602 a001 433494437/9062201101803*271443^(7/13) 4032522475052603 a001 165580141/3461452808002*271443^(7/13) 4032522475052603 a001 63245986/1322157322203*271443^(7/13) 4032522475052604 a001 24157817/505019158607*271443^(7/13) 4032522475052612 a001 9227465/192900153618*271443^(7/13) 4032522475052667 a001 3524578/73681302247*271443^(7/13) 4032522475053037 a001 317811/45537549124*271443^(9/13) 4032522475053047 a001 1346269/28143753123*271443^(7/13) 4032522475053229 a001 832040/54018521*103682^(1/12) 4032522475053547 a001 514229/6643838879*271443^(1/2) 4032522475054223 a001 2178309/141422324*103682^(1/12) 4032522475054368 a001 5702887/370248451*103682^(1/12) 4032522475054389 a001 14930352/969323029*103682^(1/12) 4032522475054392 a001 39088169/2537720636*103682^(1/12) 4032522475054393 a001 102334155/6643838879*103682^(1/12) 4032522475054393 a001 9238424/599786069*103682^(1/12) 4032522475054393 a001 701408733/45537549124*103682^(1/12) 4032522475054393 a001 1836311903/119218851371*103682^(1/12) 4032522475054393 a001 4807526976/312119004989*103682^(1/12) 4032522475054393 a001 12586269025/817138163596*103682^(1/12) 4032522475054393 a001 32951280099/2139295485799*103682^(1/12) 4032522475054393 a001 86267571272/5600748293801*103682^(1/12) 4032522475054393 a001 7787980473/505618944676*103682^(1/12) 4032522475054393 a001 365435296162/23725150497407*103682^(1/12) 4032522475054393 a001 139583862445/9062201101803*103682^(1/12) 4032522475054393 a001 53316291173/3461452808002*103682^(1/12) 4032522475054393 a001 20365011074/1322157322203*103682^(1/12) 4032522475054393 a001 7778742049/505019158607*103682^(1/12) 4032522475054393 a001 2971215073/192900153618*103682^(1/12) 4032522475054393 a001 1134903170/73681302247*103682^(1/12) 4032522475054393 a001 433494437/28143753123*103682^(1/12) 4032522475054393 a001 165580141/10749957122*103682^(1/12) 4032522475054393 a001 63245986/4106118243*103682^(1/12) 4032522475054394 a001 24157817/1568397607*103682^(1/12) 4032522475054402 a001 9227465/599074578*103682^(1/12) 4032522475054458 a001 3524578/228826127*103682^(1/12) 4032522475054837 a001 1346269/87403803*103682^(1/12) 4032522475055647 a001 208010/11384387281*271443^(8/13) 4032522475055652 a001 514229/10749957122*271443^(7/13) 4032522475056642 a001 2178309/119218851371*271443^(8/13) 4032522475056667 a001 196418/87403803*271443^(3/13) 4032522475056788 a001 5702887/312119004989*271443^(8/13) 4032522475056809 a001 3732588/204284540899*271443^(8/13) 4032522475056812 a001 39088169/2139295485799*271443^(8/13) 4032522475056812 a001 102334155/5600748293801*271443^(8/13) 4032522475056812 a001 10946/599074579*271443^(8/13) 4032522475056812 a001 433494437/23725150497407*271443^(8/13) 4032522475056812 a001 165580141/9062201101803*271443^(8/13) 4032522475056813 a001 31622993/1730726404001*271443^(8/13) 4032522475056814 a001 24157817/1322157322203*271443^(8/13) 4032522475056822 a001 9227465/505019158607*271443^(8/13) 4032522475056877 a001 1762289/96450076809*271443^(8/13) 4032522475057247 a001 317811/119218851371*271443^(10/13) 4032522475057257 a001 1346269/73681302247*271443^(8/13) 4032522475057439 a001 514229/33385282*103682^(1/12) 4032522475059733 a001 98209/3940598*103682^(1/24) 4032522475059857 a001 832040/119218851371*271443^(9/13) 4032522475059862 a001 514229/28143753123*271443^(8/13) 4032522475060852 a001 2178309/312119004989*271443^(9/13) 4032522475060877 a001 196418/228826127*271443^(4/13) 4032522475060998 a001 5702887/817138163596*271443^(9/13) 4032522475061019 a001 14930352/2139295485799*271443^(9/13) 4032522475061022 a001 39088169/5600748293801*271443^(9/13) 4032522475061022 a001 102334155/14662949395604*271443^(9/13) 4032522475061022 a001 165580141/23725150497407*271443^(9/13) 4032522475061023 a001 63245986/9062201101803*271443^(9/13) 4032522475061024 a001 24157817/3461452808002*271443^(9/13) 4032522475061032 a001 9227465/1322157322203*271443^(9/13) 4032522475061087 a001 3524578/505019158607*271443^(9/13) 4032522475061457 a001 317811/312119004989*271443^(11/13) 4032522475061467 a001 1346269/192900153618*271443^(9/13) 4032522475062034 a001 317811/33385282*103682^(1/8) 4032522475062185 a001 121393/54018521*103682^(1/4) 4032522475064067 a001 75640/28374454999*271443^(10/13) 4032522475064072 a001 514229/73681302247*271443^(9/13) 4032522475064942 a001 38580030724/956722026041 4032522475064942 a004 Fibonacci(27)/Lucas(27)/(1/2+sqrt(5)/2)^5 4032522475065062 a001 2178309/817138163596*271443^(10/13) 4032522475065087 a001 98209/299537289*271443^(5/13) 4032522475065208 a001 5702887/2139295485799*271443^(10/13) 4032522475065229 a001 14930352/5600748293801*271443^(10/13) 4032522475065232 a001 39088169/14662949395604*271443^(10/13) 4032522475065233 a001 63245986/23725150497407*271443^(10/13) 4032522475065234 a001 24157817/9062201101803*271443^(10/13) 4032522475065242 a001 9227465/3461452808002*271443^(10/13) 4032522475065297 a001 3524578/1322157322203*271443^(10/13) 4032522475065667 a001 317811/817138163596*271443^(12/13) 4032522475065677 a001 1346269/505019158607*271443^(10/13) 4032522475065832 a001 28657/28143753123*64079^(22/23) 4032522475068277 a001 208010/204284540899*271443^(11/13) 4032522475068282 a001 514229/192900153618*271443^(10/13) 4032522475068857 a001 832040/87403803*103682^(1/8) 4032522475069272 a001 2178309/2139295485799*271443^(11/13) 4032522475069297 a001 196418/1568397607*271443^(6/13) 4032522475069417 a001 5702887/5600748293801*271443^(11/13) 4032522475069439 a001 196452/192933544679*271443^(11/13) 4032522475069444 a001 24157817/23725150497407*271443^(11/13) 4032522475069452 a001 9227465/9062201101803*271443^(11/13) 4032522475069507 a001 1762289/1730726404001*271443^(11/13) 4032522475069853 a001 46347/4868641*103682^(1/8) 4032522475069877 a004 Fibonacci(28)*Lucas(26)/(1/2+sqrt(5)/2)^59 4032522475069887 a001 1346269/1322157322203*271443^(11/13) 4032522475069998 a001 5702887/599074578*103682^(1/8) 4032522475070019 a001 14930352/1568397607*103682^(1/8) 4032522475070022 a001 39088169/4106118243*103682^(1/8) 4032522475070023 a001 102334155/10749957122*103682^(1/8) 4032522475070023 a001 267914296/28143753123*103682^(1/8) 4032522475070023 a001 701408733/73681302247*103682^(1/8) 4032522475070023 a001 1836311903/192900153618*103682^(1/8) 4032522475070023 a001 102287808/10745088481*103682^(1/8) 4032522475070023 a001 12586269025/1322157322203*103682^(1/8) 4032522475070023 a001 32951280099/3461452808002*103682^(1/8) 4032522475070023 a001 86267571272/9062201101803*103682^(1/8) 4032522475070023 a001 225851433717/23725150497407*103682^(1/8) 4032522475070023 a001 139583862445/14662949395604*103682^(1/8) 4032522475070023 a001 53316291173/5600748293801*103682^(1/8) 4032522475070023 a001 20365011074/2139295485799*103682^(1/8) 4032522475070023 a001 7778742049/817138163596*103682^(1/8) 4032522475070023 a001 2971215073/312119004989*103682^(1/8) 4032522475070023 a001 1134903170/119218851371*103682^(1/8) 4032522475070023 a001 433494437/45537549124*103682^(1/8) 4032522475070023 a001 165580141/17393796001*103682^(1/8) 4032522475070023 a001 63245986/6643838879*103682^(1/8) 4032522475070024 a001 24157817/2537720636*103682^(1/8) 4032522475070032 a001 9227465/969323029*103682^(1/8) 4032522475070088 a001 3524578/370248451*103682^(1/8) 4032522475070468 a001 1346269/141422324*103682^(1/8) 4032522475071402 a001 98209/1268860318*271443^(1/2) 4032522475072487 a001 832040/2139295485799*271443^(12/13) 4032522475072492 a001 514229/505019158607*271443^(11/13) 4032522475073074 a001 514229/54018521*103682^(1/8) 4032522475073482 a001 2178309/5600748293801*271443^(12/13) 4032522475073507 a001 196418/4106118243*271443^(7/13) 4032522475073627 a001 5702887/14662949395604*271443^(12/13) 4032522475073662 a001 9227465/23725150497407*271443^(12/13) 4032522475073717 a001 3524578/9062201101803*271443^(12/13) 4032522475074097 a001 1346269/3461452808002*271443^(12/13) 4032522475075273 a001 196418/12752043*103682^(1/12) 4032522475076697 a004 Fibonacci(30)*Lucas(26)/(1/2+sqrt(5)/2)^61 4032522475076702 a001 514229/1322157322203*271443^(12/13) 4032522475077417 a001 271443/1346269*8^(1/3) 4032522475077669 a001 317811/54018521*103682^(1/6) 4032522475077692 a004 Fibonacci(32)*Lucas(26)/(1/2+sqrt(5)/2)^63 4032522475077717 a001 98209/5374978561*271443^(8/13) 4032522475077813 a001 121393/87403803*103682^(7/24) 4032522475077837 a004 Fibonacci(34)*Lucas(26)/(1/2+sqrt(5)/2)^65 4032522475077859 a004 Fibonacci(36)*Lucas(26)/(1/2+sqrt(5)/2)^67 4032522475077862 a004 Fibonacci(38)*Lucas(26)/(1/2+sqrt(5)/2)^69 4032522475077862 a004 Fibonacci(40)*Lucas(26)/(1/2+sqrt(5)/2)^71 4032522475077862 a004 Fibonacci(42)*Lucas(26)/(1/2+sqrt(5)/2)^73 4032522475077862 a004 Fibonacci(44)*Lucas(26)/(1/2+sqrt(5)/2)^75 4032522475077862 a004 Fibonacci(46)*Lucas(26)/(1/2+sqrt(5)/2)^77 4032522475077862 a004 Fibonacci(48)*Lucas(26)/(1/2+sqrt(5)/2)^79 4032522475077862 a004 Fibonacci(50)*Lucas(26)/(1/2+sqrt(5)/2)^81 4032522475077862 a004 Fibonacci(52)*Lucas(26)/(1/2+sqrt(5)/2)^83 4032522475077862 a004 Fibonacci(54)*Lucas(26)/(1/2+sqrt(5)/2)^85 4032522475077862 a004 Fibonacci(56)*Lucas(26)/(1/2+sqrt(5)/2)^87 4032522475077862 a004 Fibonacci(58)*Lucas(26)/(1/2+sqrt(5)/2)^89 4032522475077862 a004 Fibonacci(60)*Lucas(26)/(1/2+sqrt(5)/2)^91 4032522475077862 a004 Fibonacci(62)*Lucas(26)/(1/2+sqrt(5)/2)^93 4032522475077862 a004 Fibonacci(64)*Lucas(26)/(1/2+sqrt(5)/2)^95 4032522475077862 a004 Fibonacci(66)*Lucas(26)/(1/2+sqrt(5)/2)^97 4032522475077862 a004 Fibonacci(68)*Lucas(26)/(1/2+sqrt(5)/2)^99 4032522475077862 a004 Fibonacci(69)*Lucas(26)/(1/2+sqrt(5)/2)^100 4032522475077862 a004 Fibonacci(67)*Lucas(26)/(1/2+sqrt(5)/2)^98 4032522475077862 a004 Fibonacci(65)*Lucas(26)/(1/2+sqrt(5)/2)^96 4032522475077862 a004 Fibonacci(63)*Lucas(26)/(1/2+sqrt(5)/2)^94 4032522475077862 a004 Fibonacci(61)*Lucas(26)/(1/2+sqrt(5)/2)^92 4032522475077862 a004 Fibonacci(59)*Lucas(26)/(1/2+sqrt(5)/2)^90 4032522475077862 a004 Fibonacci(57)*Lucas(26)/(1/2+sqrt(5)/2)^88 4032522475077862 a004 Fibonacci(55)*Lucas(26)/(1/2+sqrt(5)/2)^86 4032522475077862 a004 Fibonacci(53)*Lucas(26)/(1/2+sqrt(5)/2)^84 4032522475077862 a001 2/121393*(1/2+1/2*5^(1/2))^21 4032522475077862 a004 Fibonacci(51)*Lucas(26)/(1/2+sqrt(5)/2)^82 4032522475077862 a004 Fibonacci(49)*Lucas(26)/(1/2+sqrt(5)/2)^80 4032522475077862 a004 Fibonacci(47)*Lucas(26)/(1/2+sqrt(5)/2)^78 4032522475077862 a004 Fibonacci(45)*Lucas(26)/(1/2+sqrt(5)/2)^76 4032522475077862 a004 Fibonacci(43)*Lucas(26)/(1/2+sqrt(5)/2)^74 4032522475077862 a004 Fibonacci(41)*Lucas(26)/(1/2+sqrt(5)/2)^72 4032522475077862 a004 Fibonacci(39)*Lucas(26)/(1/2+sqrt(5)/2)^70 4032522475077864 a004 Fibonacci(37)*Lucas(26)/(1/2+sqrt(5)/2)^68 4032522475077872 a004 Fibonacci(35)*Lucas(26)/(1/2+sqrt(5)/2)^66 4032522475077927 a004 Fibonacci(33)*Lucas(26)/(1/2+sqrt(5)/2)^64 4032522475078307 a004 Fibonacci(31)*Lucas(26)/(1/2+sqrt(5)/2)^62 4032522475080446 a001 75025/2537720636*167761^(3/5) 4032522475080848 a001 75025/4870847*64079^(2/23) 4032522475080912 a004 Fibonacci(29)*Lucas(26)/(1/2+sqrt(5)/2)^60 4032522475081927 a001 196418/28143753123*271443^(9/13) 4032522475084488 a001 208010/35355581*103682^(1/6) 4032522475085102 a001 121393/4870847*39603^(1/22) 4032522475085483 a001 2178309/370248451*103682^(1/6) 4032522475085628 a001 5702887/969323029*103682^(1/6) 4032522475085649 a001 196452/33391061*103682^(1/6) 4032522475085652 a001 39088169/6643838879*103682^(1/6) 4032522475085653 a001 102334155/17393796001*103682^(1/6) 4032522475085653 a001 66978574/11384387281*103682^(1/6) 4032522475085653 a001 701408733/119218851371*103682^(1/6) 4032522475085653 a001 1836311903/312119004989*103682^(1/6) 4032522475085653 a001 1201881744/204284540899*103682^(1/6) 4032522475085653 a001 12586269025/2139295485799*103682^(1/6) 4032522475085653 a001 32951280099/5600748293801*103682^(1/6) 4032522475085653 a001 1135099622/192933544679*103682^(1/6) 4032522475085653 a001 139583862445/23725150497407*103682^(1/6) 4032522475085653 a001 53316291173/9062201101803*103682^(1/6) 4032522475085653 a001 10182505537/1730726404001*103682^(1/6) 4032522475085653 a001 7778742049/1322157322203*103682^(1/6) 4032522475085653 a001 2971215073/505019158607*103682^(1/6) 4032522475085653 a001 567451585/96450076809*103682^(1/6) 4032522475085653 a001 433494437/73681302247*103682^(1/6) 4032522475085653 a001 165580141/28143753123*103682^(1/6) 4032522475085653 a001 31622993/5374978561*103682^(1/6) 4032522475085654 a001 24157817/4106118243*103682^(1/6) 4032522475085662 a001 9227465/1568397607*103682^(1/6) 4032522475085718 a001 1762289/299537289*103682^(1/6) 4032522475086098 a001 1346269/228826127*103682^(1/6) 4032522475086137 a001 196418/73681302247*271443^(10/13) 4032522475088702 a001 514229/87403803*103682^(1/6) 4032522475090347 a001 98209/96450076809*271443^(11/13) 4032522475090937 a001 196418/20633239*103682^(1/8) 4032522475093297 a001 105937/29134601*103682^(5/24) 4032522475093444 a001 233/271444*103682^(1/3) 4032522475094255 a001 17711/1860498*15127^(3/20) 4032522475094557 a001 196418/505019158607*271443^(12/13) 4032522475098767 a004 Fibonacci(27)*Lucas(26)/(1/2+sqrt(5)/2)^58 4032522475100118 a001 832040/228826127*103682^(5/24) 4032522475101113 a001 726103/199691526*103682^(5/24) 4032522475101258 a001 5702887/1568397607*103682^(5/24) 4032522475101279 a001 4976784/1368706081*103682^(5/24) 4032522475101282 a001 39088169/10749957122*103682^(5/24) 4032522475101283 a001 831985/228811001*103682^(5/24) 4032522475101283 a001 267914296/73681302247*103682^(5/24) 4032522475101283 a001 233802911/64300051206*103682^(5/24) 4032522475101283 a001 1836311903/505019158607*103682^(5/24) 4032522475101283 a001 1602508992/440719107401*103682^(5/24) 4032522475101283 a001 12586269025/3461452808002*103682^(5/24) 4032522475101283 a001 10983760033/3020733700601*103682^(5/24) 4032522475101283 a001 86267571272/23725150497407*103682^(5/24) 4032522475101283 a001 53316291173/14662949395604*103682^(5/24) 4032522475101283 a001 20365011074/5600748293801*103682^(5/24) 4032522475101283 a001 7778742049/2139295485799*103682^(5/24) 4032522475101283 a001 2971215073/817138163596*103682^(5/24) 4032522475101283 a001 1134903170/312119004989*103682^(5/24) 4032522475101283 a001 433494437/119218851371*103682^(5/24) 4032522475101283 a001 165580141/45537549124*103682^(5/24) 4032522475101283 a001 63245986/17393796001*103682^(5/24) 4032522475101284 a001 24157817/6643838879*103682^(5/24) 4032522475101292 a001 9227465/2537720636*103682^(5/24) 4032522475101348 a001 3524578/969323029*103682^(5/24) 4032522475101728 a001 1346269/370248451*103682^(5/24) 4032522475104333 a001 514229/141422324*103682^(5/24) 4032522475106554 a001 98209/16692641*103682^(1/6) 4032522475108531 a001 28657/17393796001*64079^(21/23) 4032522475108928 a001 317811/141422324*103682^(1/4) 4032522475109074 a001 121393/228826127*103682^(3/8) 4032522475109103 a001 75025/228826127*167761^(2/5) 4032522475111687 a001 9107509825/225851433717 4032522475111687 a004 Fibonacci(25)/Lucas(26)/(1/2+sqrt(5)/2)^4 4032522475111687 a004 Fibonacci(26)/Lucas(25)/(1/2+sqrt(5)/2)^6 4032522475115552 a001 11592/1970299*39603^(2/11) 4032522475115748 a001 832040/370248451*103682^(1/4) 4032522475116743 a001 2178309/969323029*103682^(1/4) 4032522475116888 a001 5702887/2537720636*103682^(1/4) 4032522475116909 a001 14930352/6643838879*103682^(1/4) 4032522475116912 a001 39088169/17393796001*103682^(1/4) 4032522475116913 a001 102334155/45537549124*103682^(1/4) 4032522475116913 a001 267914296/119218851371*103682^(1/4) 4032522475116913 a001 3524667/1568437211*103682^(1/4) 4032522475116913 a001 1836311903/817138163596*103682^(1/4) 4032522475116913 a001 4807526976/2139295485799*103682^(1/4) 4032522475116913 a001 12586269025/5600748293801*103682^(1/4) 4032522475116913 a001 32951280099/14662949395604*103682^(1/4) 4032522475116913 a001 53316291173/23725150497407*103682^(1/4) 4032522475116913 a001 20365011074/9062201101803*103682^(1/4) 4032522475116913 a001 7778742049/3461452808002*103682^(1/4) 4032522475116913 a001 2971215073/1322157322203*103682^(1/4) 4032522475116913 a001 1134903170/505019158607*103682^(1/4) 4032522475116913 a001 433494437/192900153618*103682^(1/4) 4032522475116913 a001 165580141/73681302247*103682^(1/4) 4032522475116913 a001 63245986/28143753123*103682^(1/4) 4032522475116914 a001 24157817/10749957122*103682^(1/4) 4032522475116922 a001 9227465/4106118243*103682^(1/4) 4032522475116978 a001 3524578/1568397607*103682^(1/4) 4032522475117358 a001 1346269/599074578*103682^(1/4) 4032522475119963 a001 514229/228826127*103682^(1/4) 4032522475122189 a001 196418/54018521*103682^(5/24) 4032522475124162 a001 75025/3010349*64079^(1/23) 4032522475124558 a001 317811/228826127*103682^(7/24) 4032522475124704 a001 121393/370248451*103682^(5/12) 4032522475131378 a001 416020/299537289*103682^(7/24) 4032522475131992 a001 105937/4250681*39603^(1/22) 4032522475132373 a001 311187/224056801*103682^(7/24) 4032522475132518 a001 5702887/4106118243*103682^(7/24) 4032522475132539 a001 7465176/5374978561*103682^(7/24) 4032522475132542 a001 39088169/28143753123*103682^(7/24) 4032522475132543 a001 14619165/10525900321*103682^(7/24) 4032522475132543 a001 133957148/96450076809*103682^(7/24) 4032522475132543 a001 701408733/505019158607*103682^(7/24) 4032522475132543 a001 1836311903/1322157322203*103682^(7/24) 4032522475132543 a001 14930208/10749853441*103682^(7/24) 4032522475132543 a001 12586269025/9062201101803*103682^(7/24) 4032522475132543 a001 32951280099/23725150497407*103682^(7/24) 4032522475132543 a001 10182505537/7331474697802*103682^(7/24) 4032522475132543 a001 7778742049/5600748293801*103682^(7/24) 4032522475132543 a001 2971215073/2139295485799*103682^(7/24) 4032522475132543 a001 567451585/408569081798*103682^(7/24) 4032522475132543 a001 433494437/312119004989*103682^(7/24) 4032522475132543 a001 165580141/119218851371*103682^(7/24) 4032522475132543 a001 31622993/22768774562*103682^(7/24) 4032522475132544 a001 24157817/17393796001*103682^(7/24) 4032522475132552 a001 9227465/6643838879*103682^(7/24) 4032522475132608 a001 1762289/1268860318*103682^(7/24) 4032522475132988 a001 1346269/969323029*103682^(7/24) 4032522475135593 a001 514229/370248451*103682^(7/24) 4032522475137769 a001 75025/20633239*167761^(1/5) 4032522475137817 a001 196418/87403803*103682^(1/4) 4032522475138833 a001 416020/16692641*39603^(1/22) 4032522475139831 a001 726103/29134601*39603^(1/22) 4032522475139977 a001 5702887/228826127*39603^(1/22) 4032522475139998 a001 829464/33281921*39603^(1/22) 4032522475140001 a001 39088169/1568397607*39603^(1/22) 4032522475140001 a001 34111385/1368706081*39603^(1/22) 4032522475140002 a001 133957148/5374978561*39603^(1/22) 4032522475140002 a001 233802911/9381251041*39603^(1/22) 4032522475140002 a001 1836311903/73681302247*39603^(1/22) 4032522475140002 a001 267084832/10716675201*39603^(1/22) 4032522475140002 a001 12586269025/505019158607*39603^(1/22) 4032522475140002 a001 10983760033/440719107401*39603^(1/22) 4032522475140002 a001 43133785636/1730726404001*39603^(1/22) 4032522475140002 a001 75283811239/3020733700601*39603^(1/22) 4032522475140002 a001 182717648081/7331474697802*39603^(1/22) 4032522475140002 a001 139583862445/5600748293801*39603^(1/22) 4032522475140002 a001 53316291173/2139295485799*39603^(1/22) 4032522475140002 a001 10182505537/408569081798*39603^(1/22) 4032522475140002 a001 7778742049/312119004989*39603^(1/22) 4032522475140002 a001 2971215073/119218851371*39603^(1/22) 4032522475140002 a001 567451585/22768774562*39603^(1/22) 4032522475140002 a001 433494437/17393796001*39603^(1/22) 4032522475140002 a001 165580141/6643838879*39603^(1/22) 4032522475140002 a001 31622993/1268860318*39603^(1/22) 4032522475140003 a001 24157817/969323029*39603^(1/22) 4032522475140011 a001 9227465/370248451*39603^(1/22) 4032522475140067 a001 1762289/70711162*39603^(1/22) 4032522475140188 a001 317811/370248451*103682^(1/3) 4032522475140334 a001 121393/599074578*103682^(11/24) 4032522475140448 a001 1346269/54018521*39603^(1/22) 4032522475143061 a001 514229/20633239*39603^(1/22) 4032522475145511 a004 Fibonacci(25)*Lucas(27)/(1/2+sqrt(5)/2)^57 4032522475147008 a001 832040/969323029*103682^(1/3) 4032522475147834 a001 75025/192900153618*439204^(8/9) 4032522475148003 a001 2178309/2537720636*103682^(1/3) 4032522475148148 a001 5702887/6643838879*103682^(1/3) 4032522475148169 a001 14930352/17393796001*103682^(1/3) 4032522475148172 a001 39088169/45537549124*103682^(1/3) 4032522475148173 a001 102334155/119218851371*103682^(1/3) 4032522475148173 a001 267914296/312119004989*103682^(1/3) 4032522475148173 a001 701408733/817138163596*103682^(1/3) 4032522475148173 a001 1836311903/2139295485799*103682^(1/3) 4032522475148173 a001 4807526976/5600748293801*103682^(1/3) 4032522475148173 a001 12586269025/14662949395604*103682^(1/3) 4032522475148173 a001 20365011074/23725150497407*103682^(1/3) 4032522475148173 a001 7778742049/9062201101803*103682^(1/3) 4032522475148173 a001 2971215073/3461452808002*103682^(1/3) 4032522475148173 a001 1134903170/1322157322203*103682^(1/3) 4032522475148173 a001 433494437/505019158607*103682^(1/3) 4032522475148173 a001 165580141/192900153618*103682^(1/3) 4032522475148173 a001 63245986/73681302247*103682^(1/3) 4032522475148174 a001 24157817/28143753123*103682^(1/3) 4032522475148182 a001 9227465/10749957122*103682^(1/3) 4032522475148238 a001 3524578/4106118243*103682^(1/3) 4032522475148618 a001 1346269/1568397607*103682^(1/3) 4032522475150157 a001 75025/45537549124*439204^(7/9) 4032522475151223 a001 514229/599074578*103682^(1/3) 4032522475151230 a001 28657/10749957122*64079^(20/23) 4032522475152479 a001 75025/10749957122*439204^(2/3) 4032522475153448 a001 98209/70711162*103682^(7/24) 4032522475154802 a001 75025/2537720636*439204^(5/9) 4032522475155818 a001 377/710646*103682^(3/8) 4032522475155964 a001 121393/969323029*103682^(1/2) 4032522475157125 a001 75025/599074578*439204^(4/9) 4032522475158431 a001 23843770275/591286729879 4032522475158431 a004 Fibonacci(25)/Lucas(28)/(1/2+sqrt(5)/2)^2 4032522475158431 a004 Fibonacci(28)/Lucas(25)/(1/2+sqrt(5)/2)^8 4032522475159448 a001 75025/141422324*439204^(1/3) 4032522475160971 a001 98209/3940598*39603^(1/22) 4032522475161767 a001 75025/33385282*439204^(2/9) 4032522475162638 a001 832040/1568397607*103682^(3/8) 4032522475163366 a004 Fibonacci(25)*Lucas(29)/(1/2+sqrt(5)/2)^59 4032522475163633 a001 726103/1368706081*103682^(3/8) 4032522475163778 a001 5702887/10749957122*103682^(3/8) 4032522475163799 a001 4976784/9381251041*103682^(3/8) 4032522475163802 a001 39088169/73681302247*103682^(3/8) 4032522475163803 a001 34111385/64300051206*103682^(3/8) 4032522475163803 a001 267914296/505019158607*103682^(3/8) 4032522475163803 a001 233802911/440719107401*103682^(3/8) 4032522475163803 a001 1836311903/3461452808002*103682^(3/8) 4032522475163803 a001 1602508992/3020733700601*103682^(3/8) 4032522475163803 a001 12586269025/23725150497407*103682^(3/8) 4032522475163803 a001 7778742049/14662949395604*103682^(3/8) 4032522475163803 a001 2971215073/5600748293801*103682^(3/8) 4032522475163803 a001 1134903170/2139295485799*103682^(3/8) 4032522475163803 a001 433494437/817138163596*103682^(3/8) 4032522475163803 a001 165580141/312119004989*103682^(3/8) 4032522475163803 a001 63245986/119218851371*103682^(3/8) 4032522475163804 a001 24157817/45537549124*103682^(3/8) 4032522475163812 a001 9227465/17393796001*103682^(3/8) 4032522475163868 a001 3524578/6643838879*103682^(3/8) 4032522475164158 a001 75025/7881196*439204^(1/9) 4032522475164248 a001 1346269/2537720636*103682^(3/8) 4032522475165251 a001 75025/1860498 4032522475165251 a004 Fibonacci(30)/Lucas(25)/(1/2+sqrt(5)/2)^10 4032522475165971 a004 Fibonacci(25)*Lucas(31)/(1/2+sqrt(5)/2)^61 4032522475166246 a001 75025/4870847*(1/2+1/2*5^(1/2))^2 4032522475166246 a001 163427632725/4052739537881 4032522475166246 a001 75025/4870847*10749957122^(1/24) 4032522475166246 a004 Fibonacci(32)/Lucas(25)/(1/2+sqrt(5)/2)^12 4032522475166246 a001 75025/4870847*4106118243^(1/23) 4032522475166246 a001 75025/4870847*1568397607^(1/22) 4032522475166246 a001 75025/4870847*599074578^(1/21) 4032522475166246 a001 75025/4870847*228826127^(1/20) 4032522475166246 a001 75025/4870847*87403803^(1/19) 4032522475166246 a001 75025/4870847*33385282^(1/18) 4032522475166247 a001 75025/4870847*12752043^(1/17) 4032522475166257 a001 75025/4870847*4870847^(1/16) 4032522475166324 a001 75025/4870847*1860498^(1/15) 4032522475166351 a004 Fibonacci(25)*Lucas(33)/(1/2+sqrt(5)/2)^63 4032522475166357 a001 75025/3461452808002*7881196^(10/11) 4032522475166363 a001 75025/817138163596*7881196^(9/11) 4032522475166369 a001 75025/192900153618*7881196^(8/11) 4032522475166373 a001 75025/73681302247*7881196^(2/3) 4032522475166375 a001 75025/45537549124*7881196^(7/11) 4032522475166381 a001 75025/10749957122*7881196^(6/11) 4032522475166386 a001 75025/2537720636*7881196^(5/11) 4032522475166391 a001 75025/12752043*(1/2+1/2*5^(1/2))^4 4032522475166391 a001 427859097175/10610209857723 4032522475166391 a001 75025/12752043*73681302247^(1/13) 4032522475166391 a001 75025/12752043*10749957122^(1/12) 4032522475166391 a004 Fibonacci(34)/Lucas(25)/(1/2+sqrt(5)/2)^14 4032522475166391 a001 75025/12752043*4106118243^(2/23) 4032522475166391 a001 75025/12752043*1568397607^(1/11) 4032522475166391 a001 75025/12752043*599074578^(2/21) 4032522475166391 a001 75025/12752043*228826127^(1/10) 4032522475166391 a001 75025/12752043*87403803^(2/19) 4032522475166392 a001 75025/12752043*33385282^(1/9) 4032522475166392 a001 75025/599074578*7881196^(4/11) 4032522475166394 a001 75025/12752043*12752043^(2/17) 4032522475166394 a001 75025/370248451*7881196^(1/3) 4032522475166398 a001 75025/141422324*7881196^(3/11) 4032522475166401 a001 75025/33385282*7881196^(2/11) 4032522475166406 a004 Fibonacci(25)*Lucas(35)/(1/2+sqrt(5)/2)^65 4032522475166408 a001 75025/3461452808002*20633239^(6/7) 4032522475166408 a001 75025/1322157322203*20633239^(4/5) 4032522475166409 a001 75025/312119004989*20633239^(5/7) 4032522475166410 a001 75025/45537549124*20633239^(3/5) 4032522475166411 a001 75025/28143753123*20633239^(4/7) 4032522475166412 a001 75025/2537720636*20633239^(3/7) 4032522475166412 a001 75025/1568397607*20633239^(2/5) 4032522475166412 a001 75025/33385282*141422324^(2/13) 4032522475166412 a001 75025/33385282*2537720636^(2/15) 4032522475166412 a001 75025/33385282*45537549124^(2/17) 4032522475166412 a001 75025/33385282*14662949395604^(2/21) 4032522475166412 a001 75025/33385282*(1/2+1/2*5^(1/2))^6 4032522475166412 a001 75025/33385282*10749957122^(1/8) 4032522475166412 a004 Fibonacci(36)/Lucas(25)/(1/2+sqrt(5)/2)^16 4032522475166412 a001 75025/33385282*4106118243^(3/23) 4032522475166412 a001 75025/33385282*1568397607^(3/22) 4032522475166412 a001 75025/33385282*599074578^(1/7) 4032522475166412 a001 75025/33385282*228826127^(3/20) 4032522475166412 a001 75025/12752043*4870847^(1/8) 4032522475166412 a001 75025/33385282*87403803^(3/19) 4032522475166413 a001 75025/33385282*33385282^(1/6) 4032522475166413 a001 75025/228826127*20633239^(2/7) 4032522475166415 a004 Fibonacci(25)*Lucas(37)/(1/2+sqrt(5)/2)^67 4032522475166415 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^8/Lucas(38) 4032522475166415 a001 75025/87403803*23725150497407^(1/8) 4032522475166415 a001 75025/87403803*505019158607^(1/7) 4032522475166415 a001 75025/87403803*73681302247^(2/13) 4032522475166415 a004 Fibonacci(38)/Lucas(25)/(1/2+sqrt(5)/2)^18 4032522475166415 a001 75025/87403803*10749957122^(1/6) 4032522475166415 a001 75025/87403803*4106118243^(4/23) 4032522475166415 a001 75025/87403803*1568397607^(2/11) 4032522475166415 a001 75025/87403803*599074578^(4/21) 4032522475166415 a001 75025/54018521*20633239^(1/5) 4032522475166415 a001 75025/87403803*228826127^(1/5) 4032522475166416 a001 75025/87403803*87403803^(4/19) 4032522475166416 a004 Fibonacci(25)*Lucas(39)/(1/2+sqrt(5)/2)^69 4032522475166416 a001 75025/14662949395604*141422324^(11/13) 4032522475166416 a001 75025/3461452808002*141422324^(10/13) 4032522475166416 a001 75025/817138163596*141422324^(9/13) 4032522475166416 a001 75025/505019158607*141422324^(2/3) 4032522475166416 a001 75025/192900153618*141422324^(8/13) 4032522475166416 a001 75025/45537549124*141422324^(7/13) 4032522475166416 a001 75025/10749957122*141422324^(6/13) 4032522475166416 a001 75025/228826127*2537720636^(2/9) 4032522475166416 a001 75025/228826127*312119004989^(2/11) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^10/Lucas(40) 4032522475166416 a001 75025/228826127*28143753123^(1/5) 4032522475166416 a004 Fibonacci(40)/Lucas(25)/(1/2+sqrt(5)/2)^20 4032522475166416 a001 75025/228826127*10749957122^(5/24) 4032522475166416 a001 75025/228826127*4106118243^(5/23) 4032522475166416 a001 75025/2537720636*141422324^(5/13) 4032522475166416 a001 75025/228826127*1568397607^(5/22) 4032522475166416 a001 75025/228826127*599074578^(5/21) 4032522475166416 a001 75025/599074578*141422324^(4/13) 4032522475166416 a001 75025/969323029*141422324^(1/3) 4032522475166416 a001 75025/228826127*228826127^(1/4) 4032522475166416 a004 Fibonacci(25)*Lucas(41)/(1/2+sqrt(5)/2)^71 4032522475166416 a001 75025/599074578*2537720636^(4/15) 4032522475166416 a001 75025/599074578*45537549124^(4/17) 4032522475166416 a001 75025/599074578*817138163596^(4/19) 4032522475166416 a001 75025/599074578*14662949395604^(4/21) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^12/Lucas(42) 4032522475166416 a001 75025/599074578*192900153618^(2/9) 4032522475166416 a001 75025/599074578*73681302247^(3/13) 4032522475166416 a004 Fibonacci(42)/Lucas(25)/(1/2+sqrt(5)/2)^22 4032522475166416 a001 75025/599074578*10749957122^(1/4) 4032522475166416 a001 75025/599074578*4106118243^(6/23) 4032522475166416 a001 75025/599074578*1568397607^(3/11) 4032522475166416 a001 75025/599074578*599074578^(2/7) 4032522475166416 a004 Fibonacci(25)*Lucas(43)/(1/2+sqrt(5)/2)^73 4032522475166416 a001 75025/1568397607*17393796001^(2/7) 4032522475166416 a001 75025/1568397607*14662949395604^(2/9) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^14/Lucas(44) 4032522475166416 a004 Fibonacci(44)/Lucas(25)/(1/2+sqrt(5)/2)^24 4032522475166416 a001 75025/1568397607*10749957122^(7/24) 4032522475166416 a001 75025/1568397607*4106118243^(7/23) 4032522475166416 a001 75025/1568397607*1568397607^(7/22) 4032522475166416 a004 Fibonacci(25)*Lucas(45)/(1/2+sqrt(5)/2)^75 4032522475166416 a001 75025/14662949395604*2537720636^(11/15) 4032522475166416 a001 75025/3461452808002*2537720636^(2/3) 4032522475166416 a001 75025/817138163596*2537720636^(3/5) 4032522475166416 a001 75025/312119004989*2537720636^(5/9) 4032522475166416 a001 75025/192900153618*2537720636^(8/15) 4032522475166416 a001 75025/45537549124*2537720636^(7/15) 4032522475166416 a001 75025/10749957122*2537720636^(2/5) 4032522475166416 a001 75025/28143753123*2537720636^(4/9) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^16/Lucas(46) 4032522475166416 a001 75025/4106118243*23725150497407^(1/4) 4032522475166416 a001 75025/4106118243*73681302247^(4/13) 4032522475166416 a004 Fibonacci(46)/Lucas(25)/(1/2+sqrt(5)/2)^26 4032522475166416 a001 75025/4106118243*10749957122^(1/3) 4032522475166416 a001 75025/4106118243*4106118243^(8/23) 4032522475166416 a004 Fibonacci(25)*Lucas(47)/(1/2+sqrt(5)/2)^77 4032522475166416 a001 75025/10749957122*45537549124^(6/17) 4032522475166416 a001 75025/10749957122*14662949395604^(2/7) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^18/Lucas(48) 4032522475166416 a001 75025/10749957122*192900153618^(1/3) 4032522475166416 a004 Fibonacci(48)/Lucas(25)/(1/2+sqrt(5)/2)^28 4032522475166416 a001 75025/10749957122*10749957122^(3/8) 4032522475166416 a004 Fibonacci(25)*Lucas(49)/(1/2+sqrt(5)/2)^79 4032522475166416 a001 75025/1322157322203*17393796001^(4/7) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^20/Lucas(50) 4032522475166416 a001 75025/28143753123*23725150497407^(5/16) 4032522475166416 a001 75025/28143753123*505019158607^(5/14) 4032522475166416 a001 75025/28143753123*73681302247^(5/13) 4032522475166416 a001 75025/45537549124*17393796001^(3/7) 4032522475166416 a001 75025/28143753123*28143753123^(2/5) 4032522475166416 a004 Fibonacci(25)*Lucas(51)/(1/2+sqrt(5)/2)^81 4032522475166416 a001 75025/23725150497407*45537549124^(2/3) 4032522475166416 a001 75025/14662949395604*45537549124^(11/17) 4032522475166416 a001 75025/3461452808002*45537549124^(10/17) 4032522475166416 a001 75025/192900153618*45537549124^(8/17) 4032522475166416 a001 75025/817138163596*45537549124^(9/17) 4032522475166416 a001 75025/73681302247*312119004989^(2/5) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^22/Lucas(52) 4032522475166416 a004 Fibonacci(25)*Lucas(53)/(1/2+sqrt(5)/2)^83 4032522475166416 a001 75025/192900153618*14662949395604^(8/21) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^24/Lucas(54) 4032522475166416 a001 75025/192900153618*192900153618^(4/9) 4032522475166416 a004 Fibonacci(25)*Lucas(55)/(1/2+sqrt(5)/2)^85 4032522475166416 a001 75025/14662949395604*312119004989^(3/5) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^26/Lucas(56) 4032522475166416 a004 Fibonacci(25)*Lucas(57)/(1/2+sqrt(5)/2)^87 4032522475166416 a001 75025/1322157322203*14662949395604^(4/9) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^28/Lucas(58) 4032522475166416 a004 Fibonacci(25)*Lucas(59)/(1/2+sqrt(5)/2)^89 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^30/Lucas(60) 4032522475166416 a004 Fibonacci(25)*Lucas(61)/(1/2+sqrt(5)/2)^91 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^32/Lucas(62) 4032522475166416 a004 Fibonacci(25)*Lucas(63)/(1/2+sqrt(5)/2)^93 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^34/Lucas(64) 4032522475166416 a004 Fibonacci(25)*Lucas(65)/(1/2+sqrt(5)/2)^95 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^36/Lucas(66) 4032522475166416 a004 Fibonacci(25)*Lucas(67)/(1/2+sqrt(5)/2)^97 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^38/Lucas(68) 4032522475166416 a004 Fibonacci(25)*Lucas(69)/(1/2+sqrt(5)/2)^99 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^40/Lucas(70) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^42/Lucas(72) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^44/Lucas(74) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^46/Lucas(76) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^48/Lucas(78) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^50/Lucas(80) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^52/Lucas(82) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^54/Lucas(84) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^56/Lucas(86) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^58/Lucas(88) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^60/Lucas(90) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^62/Lucas(92) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^64/Lucas(94) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^66/Lucas(96) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^68/Lucas(98) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^69/Lucas(99) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^70/Lucas(100) 4032522475166416 a004 Fibonacci(25)*Lucas(1)/(1/2+sqrt(5)/2)^30 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^67/Lucas(97) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^65/Lucas(95) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^63/Lucas(93) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^61/Lucas(91) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^59/Lucas(89) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^57/Lucas(87) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^55/Lucas(85) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^53/Lucas(83) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^51/Lucas(81) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^49/Lucas(79) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^47/Lucas(77) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^45/Lucas(75) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^43/Lucas(73) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^41/Lucas(71) 4032522475166416 a004 Fibonacci(25)*Lucas(70)/(1/2+sqrt(5)/2)^100 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^39/Lucas(69) 4032522475166416 a004 Fibonacci(25)*Lucas(68)/(1/2+sqrt(5)/2)^98 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^37/Lucas(67) 4032522475166416 a004 Fibonacci(25)*Lucas(66)/(1/2+sqrt(5)/2)^96 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^35/Lucas(65) 4032522475166416 a004 Fibonacci(25)*Lucas(64)/(1/2+sqrt(5)/2)^94 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^33/Lucas(63) 4032522475166416 a004 Fibonacci(25)*Lucas(62)/(1/2+sqrt(5)/2)^92 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^31/Lucas(61) 4032522475166416 a004 Fibonacci(25)*Lucas(60)/(1/2+sqrt(5)/2)^90 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^29/Lucas(59) 4032522475166416 a001 75025/2139295485799*1322157322203^(1/2) 4032522475166416 a004 Fibonacci(25)*Lucas(58)/(1/2+sqrt(5)/2)^88 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^27/Lucas(57) 4032522475166416 a004 Fibonacci(25)*Lucas(56)/(1/2+sqrt(5)/2)^86 4032522475166416 a001 75025/312119004989*312119004989^(5/11) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^25/Lucas(55) 4032522475166416 a001 75025/312119004989*3461452808002^(5/12) 4032522475166416 a001 75025/817138163596*192900153618^(1/2) 4032522475166416 a001 75025/14662949395604*192900153618^(11/18) 4032522475166416 a004 Fibonacci(25)*Lucas(54)/(1/2+sqrt(5)/2)^84 4032522475166416 a001 75025/192900153618*73681302247^(6/13) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^23/Lucas(53) 4032522475166416 a001 75025/505019158607*73681302247^(1/2) 4032522475166416 a001 75025/1322157322203*73681302247^(7/13) 4032522475166416 a001 75025/9062201101803*73681302247^(8/13) 4032522475166416 a004 Fibonacci(25)*Lucas(52)/(1/2+sqrt(5)/2)^82 4032522475166416 a001 75025/45537549124*45537549124^(7/17) 4032522475166416 a001 75025/45537549124*14662949395604^(1/3) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^21/Lucas(51) 4032522475166416 a001 75025/45537549124*192900153618^(7/18) 4032522475166416 a001 75025/312119004989*28143753123^(1/2) 4032522475166416 a001 75025/3461452808002*28143753123^(3/5) 4032522475166416 a004 Fibonacci(52)/Lucas(25)/(1/2+sqrt(5)/2)^32 4032522475166416 a004 Fibonacci(54)/Lucas(25)/(1/2+sqrt(5)/2)^34 4032522475166416 a004 Fibonacci(56)/Lucas(25)/(1/2+sqrt(5)/2)^36 4032522475166416 a004 Fibonacci(58)/Lucas(25)/(1/2+sqrt(5)/2)^38 4032522475166416 a004 Fibonacci(60)/Lucas(25)/(1/2+sqrt(5)/2)^40 4032522475166416 a004 Fibonacci(62)/Lucas(25)/(1/2+sqrt(5)/2)^42 4032522475166416 a004 Fibonacci(64)/Lucas(25)/(1/2+sqrt(5)/2)^44 4032522475166416 a004 Fibonacci(66)/Lucas(25)/(1/2+sqrt(5)/2)^46 4032522475166416 a004 Fibonacci(68)/Lucas(25)/(1/2+sqrt(5)/2)^48 4032522475166416 a004 Fibonacci(70)/Lucas(25)/(1/2+sqrt(5)/2)^50 4032522475166416 a004 Fibonacci(72)/Lucas(25)/(1/2+sqrt(5)/2)^52 4032522475166416 a004 Fibonacci(74)/Lucas(25)/(1/2+sqrt(5)/2)^54 4032522475166416 a004 Fibonacci(76)/Lucas(25)/(1/2+sqrt(5)/2)^56 4032522475166416 a004 Fibonacci(78)/Lucas(25)/(1/2+sqrt(5)/2)^58 4032522475166416 a004 Fibonacci(80)/Lucas(25)/(1/2+sqrt(5)/2)^60 4032522475166416 a004 Fibonacci(82)/Lucas(25)/(1/2+sqrt(5)/2)^62 4032522475166416 a004 Fibonacci(84)/Lucas(25)/(1/2+sqrt(5)/2)^64 4032522475166416 a004 Fibonacci(86)/Lucas(25)/(1/2+sqrt(5)/2)^66 4032522475166416 a004 Fibonacci(88)/Lucas(25)/(1/2+sqrt(5)/2)^68 4032522475166416 a004 Fibonacci(90)/Lucas(25)/(1/2+sqrt(5)/2)^70 4032522475166416 a004 Fibonacci(92)/Lucas(25)/(1/2+sqrt(5)/2)^72 4032522475166416 a004 Fibonacci(94)/Lucas(25)/(1/2+sqrt(5)/2)^74 4032522475166416 a004 Fibonacci(96)/Lucas(25)/(1/2+sqrt(5)/2)^76 4032522475166416 a004 Fibonacci(98)/Lucas(25)/(1/2+sqrt(5)/2)^78 4032522475166416 a004 Fibonacci(25)*Lucas(50)/(1/2+sqrt(5)/2)^80 4032522475166416 a004 Fibonacci(99)/Lucas(25)/(1/2+sqrt(5)/2)^79 4032522475166416 a004 Fibonacci(97)/Lucas(25)/(1/2+sqrt(5)/2)^77 4032522475166416 a004 Fibonacci(95)/Lucas(25)/(1/2+sqrt(5)/2)^75 4032522475166416 a004 Fibonacci(93)/Lucas(25)/(1/2+sqrt(5)/2)^73 4032522475166416 a004 Fibonacci(91)/Lucas(25)/(1/2+sqrt(5)/2)^71 4032522475166416 a004 Fibonacci(89)/Lucas(25)/(1/2+sqrt(5)/2)^69 4032522475166416 a004 Fibonacci(87)/Lucas(25)/(1/2+sqrt(5)/2)^67 4032522475166416 a004 Fibonacci(85)/Lucas(25)/(1/2+sqrt(5)/2)^65 4032522475166416 a004 Fibonacci(83)/Lucas(25)/(1/2+sqrt(5)/2)^63 4032522475166416 a004 Fibonacci(81)/Lucas(25)/(1/2+sqrt(5)/2)^61 4032522475166416 a004 Fibonacci(79)/Lucas(25)/(1/2+sqrt(5)/2)^59 4032522475166416 a004 Fibonacci(77)/Lucas(25)/(1/2+sqrt(5)/2)^57 4032522475166416 a004 Fibonacci(75)/Lucas(25)/(1/2+sqrt(5)/2)^55 4032522475166416 a004 Fibonacci(73)/Lucas(25)/(1/2+sqrt(5)/2)^53 4032522475166416 a004 Fibonacci(71)/Lucas(25)/(1/2+sqrt(5)/2)^51 4032522475166416 a004 Fibonacci(69)/Lucas(25)/(1/2+sqrt(5)/2)^49 4032522475166416 a004 Fibonacci(67)/Lucas(25)/(1/2+sqrt(5)/2)^47 4032522475166416 a004 Fibonacci(65)/Lucas(25)/(1/2+sqrt(5)/2)^45 4032522475166416 a004 Fibonacci(63)/Lucas(25)/(1/2+sqrt(5)/2)^43 4032522475166416 a004 Fibonacci(61)/Lucas(25)/(1/2+sqrt(5)/2)^41 4032522475166416 a004 Fibonacci(59)/Lucas(25)/(1/2+sqrt(5)/2)^39 4032522475166416 a004 Fibonacci(57)/Lucas(25)/(1/2+sqrt(5)/2)^37 4032522475166416 a004 Fibonacci(55)/Lucas(25)/(1/2+sqrt(5)/2)^35 4032522475166416 a004 Fibonacci(53)/Lucas(25)/(1/2+sqrt(5)/2)^33 4032522475166416 a004 Fibonacci(51)/Lucas(25)/(1/2+sqrt(5)/2)^31 4032522475166416 a001 75025/28143753123*10749957122^(5/12) 4032522475166416 a001 75025/17393796001*817138163596^(1/3) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^19/Lucas(49) 4032522475166416 a001 75025/73681302247*10749957122^(11/24) 4032522475166416 a001 75025/45537549124*10749957122^(7/16) 4032522475166416 a001 75025/192900153618*10749957122^(1/2) 4032522475166416 a004 Fibonacci(49)/Lucas(25)/(1/2+sqrt(5)/2)^29 4032522475166416 a001 75025/505019158607*10749957122^(13/24) 4032522475166416 a001 75025/817138163596*10749957122^(9/16) 4032522475166416 a001 75025/1322157322203*10749957122^(7/12) 4032522475166416 a001 75025/3461452808002*10749957122^(5/8) 4032522475166416 a001 75025/9062201101803*10749957122^(2/3) 4032522475166416 a001 75025/14662949395604*10749957122^(11/16) 4032522475166416 a001 75025/23725150497407*10749957122^(17/24) 4032522475166416 a004 Fibonacci(25)*Lucas(48)/(1/2+sqrt(5)/2)^78 4032522475166416 a001 75025/10749957122*4106118243^(9/23) 4032522475166416 a001 75025/6643838879*45537549124^(1/3) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^17/Lucas(47) 4032522475166416 a004 Fibonacci(47)/Lucas(25)/(1/2+sqrt(5)/2)^27 4032522475166416 a001 75025/28143753123*4106118243^(10/23) 4032522475166416 a001 75025/73681302247*4106118243^(11/23) 4032522475166416 a001 75025/119218851371*4106118243^(1/2) 4032522475166416 a001 75025/192900153618*4106118243^(12/23) 4032522475166416 a001 75025/505019158607*4106118243^(13/23) 4032522475166416 a001 75025/1322157322203*4106118243^(14/23) 4032522475166416 a001 75025/3461452808002*4106118243^(15/23) 4032522475166416 a001 75025/9062201101803*4106118243^(16/23) 4032522475166416 a001 75025/23725150497407*4106118243^(17/23) 4032522475166416 a004 Fibonacci(25)*Lucas(46)/(1/2+sqrt(5)/2)^76 4032522475166416 a001 75025/4106118243*1568397607^(4/11) 4032522475166416 a001 75025/2537720636*2537720636^(1/3) 4032522475166416 a001 75025/2537720636*45537549124^(5/17) 4032522475166416 a001 75025/2537720636*312119004989^(3/11) 4032522475166416 a001 75025/2537720636*14662949395604^(5/21) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^15/Lucas(45) 4032522475166416 a001 75025/2537720636*192900153618^(5/18) 4032522475166416 a001 75025/2537720636*28143753123^(3/10) 4032522475166416 a004 Fibonacci(45)/Lucas(25)/(1/2+sqrt(5)/2)^25 4032522475166416 a001 75025/10749957122*1568397607^(9/22) 4032522475166416 a001 75025/2537720636*10749957122^(5/16) 4032522475166416 a001 75025/28143753123*1568397607^(5/11) 4032522475166416 a001 75025/73681302247*1568397607^(1/2) 4032522475166416 a001 75025/192900153618*1568397607^(6/11) 4032522475166416 a001 75025/505019158607*1568397607^(13/22) 4032522475166416 a001 75025/1322157322203*1568397607^(7/11) 4032522475166416 a001 75025/3461452808002*1568397607^(15/22) 4032522475166416 a001 75025/9062201101803*1568397607^(8/11) 4032522475166416 a001 75025/14662949395604*1568397607^(3/4) 4032522475166416 a001 75025/23725150497407*1568397607^(17/22) 4032522475166416 a004 Fibonacci(25)*Lucas(44)/(1/2+sqrt(5)/2)^74 4032522475166416 a001 75025/1568397607*599074578^(1/3) 4032522475166416 a001 75025/4106118243*599074578^(8/21) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^13/Lucas(43) 4032522475166416 a001 75025/969323029*73681302247^(1/4) 4032522475166416 a004 Fibonacci(43)/Lucas(25)/(1/2+sqrt(5)/2)^23 4032522475166416 a001 75025/2537720636*599074578^(5/14) 4032522475166416 a001 75025/10749957122*599074578^(3/7) 4032522475166416 a001 75025/28143753123*599074578^(10/21) 4032522475166416 a001 75025/45537549124*599074578^(1/2) 4032522475166416 a001 75025/73681302247*599074578^(11/21) 4032522475166416 a001 75025/192900153618*599074578^(4/7) 4032522475166416 a001 75025/505019158607*599074578^(13/21) 4032522475166416 a001 75025/817138163596*599074578^(9/14) 4032522475166416 a001 75025/1322157322203*599074578^(2/3) 4032522475166416 a001 75025/3461452808002*599074578^(5/7) 4032522475166416 a001 75025/9062201101803*599074578^(16/21) 4032522475166416 a001 75025/14662949395604*599074578^(11/14) 4032522475166416 a001 75025/23725150497407*599074578^(17/21) 4032522475166416 a004 Fibonacci(25)*Lucas(42)/(1/2+sqrt(5)/2)^72 4032522475166416 a001 75025/599074578*228826127^(3/10) 4032522475166416 a001 75025/1568397607*228826127^(7/20) 4032522475166416 a001 75025/370248451*312119004989^(1/5) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^11/Lucas(41) 4032522475166416 a004 Fibonacci(41)/Lucas(25)/(1/2+sqrt(5)/2)^21 4032522475166416 a001 75025/2537720636*228826127^(3/8) 4032522475166416 a001 75025/370248451*1568397607^(1/4) 4032522475166416 a001 75025/4106118243*228826127^(2/5) 4032522475166416 a001 75025/10749957122*228826127^(9/20) 4032522475166416 a001 75025/28143753123*228826127^(1/2) 4032522475166416 a001 75025/73681302247*228826127^(11/20) 4032522475166416 a001 75025/192900153618*228826127^(3/5) 4032522475166416 a001 75025/312119004989*228826127^(5/8) 4032522475166416 a001 75025/505019158607*228826127^(13/20) 4032522475166416 a001 75025/1322157322203*228826127^(7/10) 4032522475166416 a001 75025/3461452808002*228826127^(3/4) 4032522475166416 a001 75025/9062201101803*228826127^(4/5) 4032522475166416 a001 75025/228826127*87403803^(5/19) 4032522475166416 a001 75025/23725150497407*228826127^(17/20) 4032522475166416 a004 Fibonacci(25)*Lucas(40)/(1/2+sqrt(5)/2)^70 4032522475166416 a001 75025/141422324*141422324^(3/13) 4032522475166416 a001 75025/599074578*87403803^(6/19) 4032522475166416 a001 75025/1568397607*87403803^(7/19) 4032522475166416 a001 75025/141422324*2537720636^(1/5) 4032522475166416 a001 75025/141422324*45537549124^(3/17) 4032522475166416 a001 75025/141422324*817138163596^(3/19) 4032522475166416 a001 75025/141422324*14662949395604^(1/7) 4032522475166416 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^9/Lucas(39) 4032522475166416 a001 75025/141422324*192900153618^(1/6) 4032522475166416 a004 Fibonacci(39)/Lucas(25)/(1/2+sqrt(5)/2)^19 4032522475166416 a001 75025/141422324*10749957122^(3/16) 4032522475166416 a001 75025/141422324*599074578^(3/14) 4032522475166416 a001 75025/4106118243*87403803^(8/19) 4032522475166416 a001 75025/10749957122*87403803^(9/19) 4032522475166416 a001 75025/17393796001*87403803^(1/2) 4032522475166416 a001 75025/87403803*33385282^(2/9) 4032522475166416 a001 75025/28143753123*87403803^(10/19) 4032522475166416 a001 75025/73681302247*87403803^(11/19) 4032522475166416 a001 75025/192900153618*87403803^(12/19) 4032522475166416 a001 75025/505019158607*87403803^(13/19) 4032522475166416 a001 75025/1322157322203*87403803^(14/19) 4032522475166416 a001 75025/3461452808002*87403803^(15/19) 4032522475166416 a001 75025/9062201101803*87403803^(16/19) 4032522475166416 a001 75025/23725150497407*87403803^(17/19) 4032522475166416 a004 Fibonacci(25)*Lucas(38)/(1/2+sqrt(5)/2)^68 4032522475166417 a001 75025/33385282*12752043^(3/17) 4032522475166417 a001 75025/228826127*33385282^(5/18) 4032522475166417 a001 75025/141422324*33385282^(1/4) 4032522475166417 a001 75025/599074578*33385282^(1/3) 4032522475166417 a001 75025/54018521*17393796001^(1/7) 4032522475166417 a001 75025/54018521*14662949395604^(1/9) 4032522475166417 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^7/Lucas(37) 4032522475166417 a004 Fibonacci(37)/Lucas(25)/(1/2+sqrt(5)/2)^17 4032522475166417 a001 75025/54018521*599074578^(1/6) 4032522475166417 a001 75025/1568397607*33385282^(7/18) 4032522475166417 a001 75025/2537720636*33385282^(5/12) 4032522475166418 a001 75025/4106118243*33385282^(4/9) 4032522475166418 a001 75025/10749957122*33385282^(1/2) 4032522475166418 a001 75025/28143753123*33385282^(5/9) 4032522475166418 a001 75025/45537549124*33385282^(7/12) 4032522475166418 a001 75025/73681302247*33385282^(11/18) 4032522475166418 a001 75025/192900153618*33385282^(2/3) 4032522475166419 a001 75025/505019158607*33385282^(13/18) 4032522475166419 a001 75025/817138163596*33385282^(3/4) 4032522475166419 a001 75025/1322157322203*33385282^(7/9) 4032522475166419 a001 75025/3461452808002*33385282^(5/6) 4032522475166419 a001 75025/9062201101803*33385282^(8/9) 4032522475166419 a001 75025/14662949395604*33385282^(11/12) 4032522475166419 a001 75025/23725150497407*33385282^(17/18) 4032522475166420 a004 Fibonacci(25)*Lucas(36)/(1/2+sqrt(5)/2)^66 4032522475166421 a001 75025/87403803*12752043^(4/17) 4032522475166423 a001 75025/228826127*12752043^(5/17) 4032522475166424 a001 75025/20633239*20633239^(1/7) 4032522475166425 a001 75025/599074578*12752043^(6/17) 4032522475166425 a001 75025/20633239*2537720636^(1/9) 4032522475166425 a001 75025/20633239*312119004989^(1/11) 4032522475166425 a001 75025/20633239*(1/2+1/2*5^(1/2))^5 4032522475166425 a001 75025/20633239*28143753123^(1/10) 4032522475166425 a004 Fibonacci(35)/Lucas(25)/(1/2+sqrt(5)/2)^15 4032522475166425 a001 75025/20633239*228826127^(1/8) 4032522475166426 a001 75025/1568397607*12752043^(7/17) 4032522475166428 a001 75025/4106118243*12752043^(8/17) 4032522475166428 a001 75025/6643838879*12752043^(1/2) 4032522475166429 a001 75025/10749957122*12752043^(9/17) 4032522475166431 a001 75025/28143753123*12752043^(10/17) 4032522475166432 a001 75025/73681302247*12752043^(11/17) 4032522475166433 a001 75025/192900153618*12752043^(12/17) 4032522475166435 a001 75025/505019158607*12752043^(13/17) 4032522475166436 a001 75025/1322157322203*12752043^(14/17) 4032522475166438 a001 75025/3461452808002*12752043^(15/17) 4032522475166439 a001 75025/9062201101803*12752043^(16/17) 4032522475166441 a004 Fibonacci(25)*Lucas(34)/(1/2+sqrt(5)/2)^64 4032522475166444 a001 75025/33385282*4870847^(3/16) 4032522475166458 a001 75025/87403803*4870847^(1/4) 4032522475166469 a001 75025/228826127*4870847^(5/16) 4032522475166475 a001 75025/7881196*7881196^(1/11) 4032522475166480 a001 75025/599074578*4870847^(3/8) 4032522475166481 a001 75025/7881196*141422324^(1/13) 4032522475166481 a001 75025/7881196*2537720636^(1/15) 4032522475166481 a001 75025/7881196*45537549124^(1/17) 4032522475166481 a001 132215732225/3278735159921 4032522475166481 a001 75025/7881196*(1/2+1/2*5^(1/2))^3 4032522475166481 a001 75025/7881196*192900153618^(1/18) 4032522475166481 a001 75025/7881196*10749957122^(1/16) 4032522475166481 a004 Fibonacci(33)/Lucas(25)/(1/2+sqrt(5)/2)^13 4032522475166481 a001 75025/7881196*599074578^(1/14) 4032522475166481 a001 75025/7881196*33385282^(1/12) 4032522475166490 a001 75025/1568397607*4870847^(7/16) 4032522475166501 a001 75025/4106118243*4870847^(1/2) 4032522475166512 a001 75025/10749957122*4870847^(9/16) 4032522475166522 a001 75025/28143753123*4870847^(5/8) 4032522475166533 a001 75025/73681302247*4870847^(11/16) 4032522475166543 a001 75025/192900153618*4870847^(3/4) 4032522475166546 a001 75025/12752043*1860498^(2/15) 4032522475166554 a001 75025/505019158607*4870847^(13/16) 4032522475166565 a001 75025/1322157322203*4870847^(7/8) 4032522475166575 a001 75025/3461452808002*4870847^(15/16) 4032522475166586 a004 Fibonacci(25)*Lucas(32)/(1/2+sqrt(5)/2)^62 4032522475166597 a001 75025/7881196*1860498^(1/10) 4032522475166620 a001 75025/20633239*1860498^(1/6) 4032522475166645 a001 75025/33385282*1860498^(1/5) 4032522475166726 a001 75025/87403803*1860498^(4/15) 4032522475166766 a001 75025/141422324*1860498^(3/10) 4032522475166804 a001 75025/228826127*1860498^(1/3) 4032522475166816 a001 75025/4870847*710647^(1/14) 4032522475166853 a001 514229/969323029*103682^(3/8) 4032522475166861 a001 101003831725/2504730781961 4032522475166861 a004 Fibonacci(25)*(1/2+sqrt(5)/2)/Lucas(31) 4032522475166861 a004 Fibonacci(31)/Lucas(25)/(1/2+sqrt(5)/2)^11 4032522475166882 a001 75025/599074578*1860498^(2/5) 4032522475166960 a001 75025/1568397607*1860498^(7/15) 4032522475166998 a001 75025/2537720636*1860498^(1/2) 4032522475167037 a001 75025/4106118243*1860498^(8/15) 4032522475167115 a001 75025/10749957122*1860498^(3/5) 4032522475167193 a001 75025/28143753123*1860498^(2/3) 4032522475167231 a001 75025/45537549124*1860498^(7/10) 4032522475167270 a001 75025/73681302247*1860498^(11/15) 4032522475167348 a001 75025/192900153618*1860498^(4/5) 4032522475167387 a001 75025/312119004989*1860498^(5/6) 4032522475167426 a001 75025/505019158607*1860498^(13/15) 4032522475167464 a001 75025/817138163596*1860498^(9/10) 4032522475167503 a001 75025/1322157322203*1860498^(14/15) 4032522475167532 a001 75025/12752043*710647^(1/7) 4032522475167581 a004 Fibonacci(25)*Lucas(30)/(1/2+sqrt(5)/2)^60 4032522475168123 a001 75025/33385282*710647^(3/14) 4032522475168414 a001 75025/54018521*710647^(1/4) 4032522475168697 a001 75025/87403803*710647^(2/7) 4032522475169077 a001 196418/228826127*103682^(1/3) 4032522475169268 a001 75025/228826127*710647^(5/14) 4032522475169466 a001 38580030725/956722026041 4032522475169466 a004 Fibonacci(25)/Lucas(29)/(1/2+sqrt(5)/2) 4032522475169466 a004 Fibonacci(29)/Lucas(25)/(1/2+sqrt(5)/2)^9 4032522475169838 a001 75025/599074578*710647^(3/7) 4032522475170408 a001 75025/1568397607*710647^(1/2) 4032522475170456 a001 75025/4870847*271443^(1/13) 4032522475170979 a001 75025/4106118243*710647^(4/7) 4032522475171448 a001 317811/969323029*103682^(5/12) 4032522475171549 a001 75025/10749957122*710647^(9/14) 4032522475171594 a001 121393/1568397607*103682^(13/24) 4032522475172119 a001 75025/28143753123*710647^(5/7) 4032522475172405 a001 75025/45537549124*710647^(3/4) 4032522475172690 a001 75025/73681302247*710647^(11/14) 4032522475173260 a001 75025/192900153618*710647^(6/7) 4032522475173830 a001 75025/505019158607*710647^(13/14) 4032522475174401 a004 Fibonacci(25)*Lucas(28)/(1/2+sqrt(5)/2)^58 4032522475174811 a001 75025/12752043*271443^(2/13) 4032522475178268 a001 610/1860499*103682^(5/12) 4032522475179042 a001 75025/33385282*271443^(3/13) 4032522475179263 a001 2178309/6643838879*103682^(5/12) 4032522475179408 a001 5702887/17393796001*103682^(5/12) 4032522475179429 a001 3732588/11384387281*103682^(5/12) 4032522475179432 a001 39088169/119218851371*103682^(5/12) 4032522475179433 a001 9303105/28374454999*103682^(5/12) 4032522475179433 a001 66978574/204284540899*103682^(5/12) 4032522475179433 a001 701408733/2139295485799*103682^(5/12) 4032522475179433 a001 1836311903/5600748293801*103682^(5/12) 4032522475179433 a001 1201881744/3665737348901*103682^(5/12) 4032522475179433 a001 7778742049/23725150497407*103682^(5/12) 4032522475179433 a001 2971215073/9062201101803*103682^(5/12) 4032522475179433 a001 567451585/1730726404001*103682^(5/12) 4032522475179433 a001 433494437/1322157322203*103682^(5/12) 4032522475179433 a001 165580141/505019158607*103682^(5/12) 4032522475179433 a001 31622993/96450076809*103682^(5/12) 4032522475179434 a001 24157817/73681302247*103682^(5/12) 4032522475179442 a001 9227465/28143753123*103682^(5/12) 4032522475179498 a001 1762289/5374978561*103682^(5/12) 4032522475179878 a001 1346269/4106118243*103682^(5/12) 4032522475182483 a001 514229/1568397607*103682^(5/12) 4032522475182491 a001 75025/3010349*103682^(1/24) 4032522475183255 a001 75025/87403803*271443^(4/13) 4032522475184708 a001 196418/370248451*103682^(3/8) 4032522475187078 a001 317811/1568397607*103682^(11/24) 4032522475187224 a001 121393/2537720636*103682^(7/12) 4032522475187321 a001 7368130225/182717648081 4032522475187321 a004 Fibonacci(25)/Lucas(27)/(1/2+sqrt(5)/2)^3 4032522475187321 a004 Fibonacci(27)/Lucas(25)/(1/2+sqrt(5)/2)^7 4032522475187466 a001 75025/228826127*271443^(5/13) 4032522475191676 a001 75025/599074578*271443^(6/13) 4032522475193781 a001 75025/969323029*271443^(1/2) 4032522475193898 a001 832040/4106118243*103682^(11/24) 4032522475193929 a001 28657/6643838879*64079^(19/23) 4032522475194893 a001 987/4870846*103682^(11/24) 4032522475195038 a001 5702887/28143753123*103682^(11/24) 4032522475195059 a001 14930352/73681302247*103682^(11/24) 4032522475195062 a001 39088169/192900153618*103682^(11/24) 4032522475195063 a001 102334155/505019158607*103682^(11/24) 4032522475195063 a001 267914296/1322157322203*103682^(11/24) 4032522475195063 a001 701408733/3461452808002*103682^(11/24) 4032522475195063 a001 1836311903/9062201101803*103682^(11/24) 4032522475195063 a001 4807526976/23725150497407*103682^(11/24) 4032522475195063 a001 2971215073/14662949395604*103682^(11/24) 4032522475195063 a001 1134903170/5600748293801*103682^(11/24) 4032522475195063 a001 433494437/2139295485799*103682^(11/24) 4032522475195063 a001 165580141/817138163596*103682^(11/24) 4032522475195063 a001 63245986/312119004989*103682^(11/24) 4032522475195064 a001 24157817/119218851371*103682^(11/24) 4032522475195072 a001 9227465/45537549124*103682^(11/24) 4032522475195128 a001 3524578/17393796001*103682^(11/24) 4032522475195508 a001 1346269/6643838879*103682^(11/24) 4032522475195886 a001 75025/1568397607*271443^(7/13) 4032522475197506 a001 75025/4870847*103682^(1/12) 4032522475198113 a001 514229/2537720636*103682^(11/24) 4032522475200095 a001 75025/4106118243*271443^(8/13) 4032522475200338 a001 98209/299537289*103682^(5/12) 4032522475202206 a001 121393/7881196*39603^(1/11) 4032522475202708 a001 317811/2537720636*103682^(1/2) 4032522475202854 a001 121393/4106118243*103682^(5/8) 4032522475204305 a001 75025/10749957122*271443^(9/13) 4032522475208515 a001 75025/28143753123*271443^(10/13) 4032522475209528 a001 832040/6643838879*103682^(1/2) 4032522475210523 a001 2178309/17393796001*103682^(1/2) 4032522475210668 a001 1597/12752044*103682^(1/2) 4032522475210689 a001 14930352/119218851371*103682^(1/2) 4032522475210692 a001 39088169/312119004989*103682^(1/2) 4032522475210693 a001 102334155/817138163596*103682^(1/2) 4032522475210693 a001 267914296/2139295485799*103682^(1/2) 4032522475210693 a001 701408733/5600748293801*103682^(1/2) 4032522475210693 a001 1836311903/14662949395604*103682^(1/2) 4032522475210693 a001 2971215073/23725150497407*103682^(1/2) 4032522475210693 a001 1134903170/9062201101803*103682^(1/2) 4032522475210693 a001 433494437/3461452808002*103682^(1/2) 4032522475210693 a001 165580141/1322157322203*103682^(1/2) 4032522475210693 a001 63245986/505019158607*103682^(1/2) 4032522475210694 a001 24157817/192900153618*103682^(1/2) 4032522475210702 a001 9227465/73681302247*103682^(1/2) 4032522475210758 a001 3524578/28143753123*103682^(1/2) 4032522475211138 a001 1346269/10749957122*103682^(1/2) 4032522475212725 a001 75025/73681302247*271443^(11/13) 4032522475213371 a001 75025/7881196*103682^(1/8) 4032522475213743 a001 514229/4106118243*103682^(1/2) 4032522475215968 a001 196418/969323029*103682^(11/24) 4032522475216935 a001 75025/192900153618*271443^(12/13) 4032522475218338 a001 105937/1368706081*103682^(13/24) 4032522475218484 a001 121393/6643838879*103682^(2/3) 4032522475221145 a004 Fibonacci(25)*Lucas(26)/(1/2+sqrt(5)/2)^56 4032522475225158 a001 416020/5374978561*103682^(13/24) 4032522475226153 a001 726103/9381251041*103682^(13/24) 4032522475226298 a001 5702887/73681302247*103682^(13/24) 4032522475226319 a001 2584/33385281*103682^(13/24) 4032522475226322 a001 39088169/505019158607*103682^(13/24) 4032522475226323 a001 34111385/440719107401*103682^(13/24) 4032522475226323 a001 133957148/1730726404001*103682^(13/24) 4032522475226323 a001 233802911/3020733700601*103682^(13/24) 4032522475226323 a001 1836311903/23725150497407*103682^(13/24) 4032522475226323 a001 567451585/7331474697802*103682^(13/24) 4032522475226323 a001 433494437/5600748293801*103682^(13/24) 4032522475226323 a001 165580141/2139295485799*103682^(13/24) 4032522475226323 a001 31622993/408569081798*103682^(13/24) 4032522475226324 a001 24157817/312119004989*103682^(13/24) 4032522475226332 a001 9227465/119218851371*103682^(13/24) 4032522475226388 a001 1762289/22768774562*103682^(13/24) 4032522475226768 a001 1346269/17393796001*103682^(13/24) 4032522475228911 a001 75025/12752043*103682^(1/6) 4032522475229373 a001 514229/6643838879*103682^(13/24) 4032522475231598 a001 196418/1568397607*103682^(1/2) 4032522475232331 a001 15456/4250681*39603^(5/22) 4032522475233968 a001 317811/6643838879*103682^(7/12) 4032522475234114 a001 121393/10749957122*103682^(17/24) 4032522475236628 a001 28657/4106118243*64079^(18/23) 4032522475240788 a001 832040/17393796001*103682^(7/12) 4032522475241783 a001 2178309/45537549124*103682^(7/12) 4032522475241928 a001 5702887/119218851371*103682^(7/12) 4032522475241949 a001 14930352/312119004989*103682^(7/12) 4032522475241952 a001 4181/87403804*103682^(7/12) 4032522475241953 a001 102334155/2139295485799*103682^(7/12) 4032522475241953 a001 267914296/5600748293801*103682^(7/12) 4032522475241953 a001 701408733/14662949395604*103682^(7/12) 4032522475241953 a001 1134903170/23725150497407*103682^(7/12) 4032522475241953 a001 433494437/9062201101803*103682^(7/12) 4032522475241953 a001 165580141/3461452808002*103682^(7/12) 4032522475241953 a001 63245986/1322157322203*103682^(7/12) 4032522475241954 a001 24157817/505019158607*103682^(7/12) 4032522475241962 a001 9227465/192900153618*103682^(7/12) 4032522475242018 a001 3524578/73681302247*103682^(7/12) 4032522475242398 a001 1346269/28143753123*103682^(7/12) 4032522475244575 a001 75025/20633239*103682^(5/24) 4032522475245003 a001 514229/10749957122*103682^(7/12) 4032522475247228 a001 98209/1268860318*103682^(13/24) 4032522475248895 a001 10959/711491*39603^(1/11) 4032522475249598 a001 317811/10749957122*103682^(5/8) 4032522475249744 a001 121393/17393796001*103682^(3/4) 4032522475255707 a001 832040/54018521*39603^(1/11) 4032522475256418 a001 832040/28143753123*103682^(5/8) 4032522475256700 a001 2178309/141422324*39603^(1/11) 4032522475256845 a001 5702887/370248451*39603^(1/11) 4032522475256867 a001 14930352/969323029*39603^(1/11) 4032522475256870 a001 39088169/2537720636*39603^(1/11) 4032522475256870 a001 102334155/6643838879*39603^(1/11) 4032522475256870 a001 9238424/599786069*39603^(1/11) 4032522475256870 a001 701408733/45537549124*39603^(1/11) 4032522475256870 a001 1836311903/119218851371*39603^(1/11) 4032522475256870 a001 4807526976/312119004989*39603^(1/11) 4032522475256870 a001 12586269025/817138163596*39603^(1/11) 4032522475256870 a001 32951280099/2139295485799*39603^(1/11) 4032522475256870 a001 86267571272/5600748293801*39603^(1/11) 4032522475256870 a001 7787980473/505618944676*39603^(1/11) 4032522475256870 a001 365435296162/23725150497407*39603^(1/11) 4032522475256870 a001 139583862445/9062201101803*39603^(1/11) 4032522475256870 a001 53316291173/3461452808002*39603^(1/11) 4032522475256870 a001 20365011074/1322157322203*39603^(1/11) 4032522475256870 a001 7778742049/505019158607*39603^(1/11) 4032522475256870 a001 2971215073/192900153618*39603^(1/11) 4032522475256870 a001 1134903170/73681302247*39603^(1/11) 4032522475256870 a001 433494437/28143753123*39603^(1/11) 4032522475256870 a001 165580141/10749957122*39603^(1/11) 4032522475256870 a001 63245986/4106118243*39603^(1/11) 4032522475256872 a001 24157817/1568397607*39603^(1/11) 4032522475256880 a001 9227465/599074578*39603^(1/11) 4032522475256935 a001 3524578/228826127*39603^(1/11) 4032522475257315 a001 1346269/87403803*39603^(1/11) 4032522475257413 a001 311187/10525900321*103682^(5/8) 4032522475257558 a001 5702887/192900153618*103682^(5/8) 4032522475257579 a001 14930352/505019158607*103682^(5/8) 4032522475257582 a001 39088169/1322157322203*103682^(5/8) 4032522475257583 a001 6765/228826126*103682^(5/8) 4032522475257583 a001 267914296/9062201101803*103682^(5/8) 4032522475257583 a001 701408733/23725150497407*103682^(5/8) 4032522475257583 a001 433494437/14662949395604*103682^(5/8) 4032522475257583 a001 165580141/5600748293801*103682^(5/8) 4032522475257583 a001 63245986/2139295485799*103682^(5/8) 4032522475257584 a001 24157817/817138163596*103682^(5/8) 4032522475257592 a001 9227465/312119004989*103682^(5/8) 4032522475257648 a001 3524578/119218851371*103682^(5/8) 4032522475258028 a001 1346269/45537549124*103682^(5/8) 4032522475259916 a001 514229/33385282*39603^(1/11) 4032522475260192 a001 75025/33385282*103682^(1/4) 4032522475260633 a001 514229/17393796001*103682^(5/8) 4032522475262858 a001 196418/4106118243*103682^(7/12) 4032522475265228 a001 10959/599786069*103682^(2/3) 4032522475265374 a001 121393/28143753123*103682^(19/24) 4032522475272048 a001 208010/11384387281*103682^(2/3) 4032522475273043 a001 2178309/119218851371*103682^(2/3) 4032522475273188 a001 5702887/312119004989*103682^(2/3) 4032522475273209 a001 3732588/204284540899*103682^(2/3) 4032522475273212 a001 39088169/2139295485799*103682^(2/3) 4032522475273213 a001 102334155/5600748293801*103682^(2/3) 4032522475273213 a001 10946/599074579*103682^(2/3) 4032522475273213 a001 433494437/23725150497407*103682^(2/3) 4032522475273213 a001 165580141/9062201101803*103682^(2/3) 4032522475273213 a001 31622993/1730726404001*103682^(2/3) 4032522475273214 a001 24157817/1322157322203*103682^(2/3) 4032522475273222 a001 9227465/505019158607*103682^(2/3) 4032522475273278 a001 1762289/96450076809*103682^(2/3) 4032522475273658 a001 1346269/73681302247*103682^(2/3) 4032522475275827 a001 75025/54018521*103682^(7/24) 4032522475276263 a001 514229/28143753123*103682^(2/3) 4032522475277750 a001 196418/12752043*39603^(1/11) 4032522475278488 a001 196418/6643838879*103682^(5/8) 4032522475279327 a001 28657/2537720636*64079^(17/23) 4032522475280858 a001 105937/9381251041*103682^(17/24) 4032522475281004 a001 121393/45537549124*103682^(5/6) 4032522475283730 a001 75025/3010349*39603^(1/22) 4032522475287678 a001 832040/73681302247*103682^(17/24) 4032522475288673 a001 726103/64300051206*103682^(17/24) 4032522475288818 a001 5702887/505019158607*103682^(17/24) 4032522475288839 a001 4976784/440719107401*103682^(17/24) 4032522475288842 a001 39088169/3461452808002*103682^(17/24) 4032522475288843 a001 34111385/3020733700601*103682^(17/24) 4032522475288843 a001 267914296/23725150497407*103682^(17/24) 4032522475288843 a001 165580141/14662949395604*103682^(17/24) 4032522475288843 a001 63245986/5600748293801*103682^(17/24) 4032522475288844 a001 24157817/2139295485799*103682^(17/24) 4032522475288852 a001 9227465/817138163596*103682^(17/24) 4032522475288908 a001 3524578/312119004989*103682^(17/24) 4032522475289288 a001 1346269/119218851371*103682^(17/24) 4032522475291455 a001 75025/87403803*103682^(1/3) 4032522475291893 a001 514229/45537549124*103682^(17/24) 4032522475294118 a001 98209/5374978561*103682^(2/3) 4032522475296488 a001 317811/45537549124*103682^(3/4) 4032522475296634 a001 121393/73681302247*103682^(7/8) 4032522475303308 a001 832040/119218851371*103682^(3/4) 4032522475304303 a001 2178309/312119004989*103682^(3/4) 4032522475304448 a001 5702887/817138163596*103682^(3/4) 4032522475304469 a001 14930352/2139295485799*103682^(3/4) 4032522475304472 a001 39088169/5600748293801*103682^(3/4) 4032522475304473 a001 102334155/14662949395604*103682^(3/4) 4032522475304473 a001 165580141/23725150497407*103682^(3/4) 4032522475304473 a001 63245986/9062201101803*103682^(3/4) 4032522475304474 a001 24157817/3461452808002*103682^(3/4) 4032522475304482 a001 9227465/1322157322203*103682^(3/4) 4032522475304538 a001 3524578/505019158607*103682^(3/4) 4032522475304918 a001 1346269/192900153618*103682^(3/4) 4032522475307086 a001 75025/141422324*103682^(3/8) 4032522475307523 a001 514229/73681302247*103682^(3/4) 4032522475309699 a001 1125750125/27916772489 4032522475309699 a004 Fibonacci(25)/Lucas(25)/(1/2+sqrt(5)/2)^5 4032522475309748 a001 196418/17393796001*103682^(17/24) 4032522475312118 a001 317811/73681302247*103682^(19/24) 4032522475312264 a001 121393/119218851371*103682^(11/12) 4032522475318938 a001 416020/96450076809*103682^(19/24) 4032522475318985 a001 121393/12752043*39603^(3/22) 4032522475319933 a001 46347/10745088481*103682^(19/24) 4032522475320078 a001 5702887/1322157322203*103682^(19/24) 4032522475320099 a001 7465176/1730726404001*103682^(19/24) 4032522475320102 a001 39088169/9062201101803*103682^(19/24) 4032522475320103 a001 102334155/23725150497407*103682^(19/24) 4032522475320103 a001 31622993/7331474697802*103682^(19/24) 4032522475320104 a001 24157817/5600748293801*103682^(19/24) 4032522475320112 a001 9227465/2139295485799*103682^(19/24) 4032522475320168 a001 1762289/408569081798*103682^(19/24) 4032522475320548 a001 1346269/312119004989*103682^(19/24) 4032522475322026 a001 28657/1568397607*64079^(16/23) 4032522475322716 a001 75025/228826127*103682^(5/12) 4032522475323153 a001 514229/119218851371*103682^(19/24) 4032522475325378 a001 196418/28143753123*103682^(3/4) 4032522475327748 a001 317811/119218851371*103682^(5/6) 4032522475327894 a001 121393/192900153618*103682^(23/24) 4032522475334568 a001 75640/28374454999*103682^(5/6) 4032522475335563 a001 2178309/817138163596*103682^(5/6) 4032522475335708 a001 5702887/2139295485799*103682^(5/6) 4032522475335729 a001 14930352/5600748293801*103682^(5/6) 4032522475335732 a001 39088169/14662949395604*103682^(5/6) 4032522475335733 a001 63245986/23725150497407*103682^(5/6) 4032522475335734 a001 24157817/9062201101803*103682^(5/6) 4032522475335742 a001 9227465/3461452808002*103682^(5/6) 4032522475335798 a001 3524578/1322157322203*103682^(5/6) 4032522475336178 a001 1346269/505019158607*103682^(5/6) 4032522475338346 a001 75025/370248451*103682^(11/24) 4032522475338783 a001 514229/192900153618*103682^(5/6) 4032522475341008 a001 98209/22768774562*103682^(19/24) 4032522475343378 a001 105937/64300051206*103682^(7/8) 4032522475343524 a004 Fibonacci(26)*Lucas(24)/(1/2+sqrt(5)/2)^55 4032522475343669 a001 10946/4106118243*24476^(20/21) 4032522475349234 a001 46368/20633239*39603^(3/11) 4032522475350198 a001 832040/505019158607*103682^(7/8) 4032522475351193 a001 726103/440719107401*103682^(7/8) 4032522475351338 a001 5702887/3461452808002*103682^(7/8) 4032522475351359 a001 4976784/3020733700601*103682^(7/8) 4032522475351362 a001 39088169/23725150497407*103682^(7/8) 4032522475351364 a001 24157817/14662949395604*103682^(7/8) 4032522475351372 a001 9227465/5600748293801*103682^(7/8) 4032522475351428 a001 3524578/2139295485799*103682^(7/8) 4032522475351808 a001 1346269/817138163596*103682^(7/8) 4032522475353976 a001 75025/599074578*103682^(1/2) 4032522475354413 a001 514229/312119004989*103682^(7/8) 4032522475356637 a001 196418/73681302247*103682^(5/6) 4032522475359008 a001 317811/312119004989*103682^(11/12) 4032522475362973 a001 28657/1860498*24476^(2/21) 4032522475364725 a001 28657/969323029*64079^(15/23) 4032522475365750 a001 317811/33385282*39603^(3/22) 4032522475365828 a001 208010/204284540899*103682^(11/12) 4032522475366823 a001 2178309/2139295485799*103682^(11/12) 4032522475366968 a001 5702887/5600748293801*103682^(11/12) 4032522475366989 a001 196452/192933544679*103682^(11/12) 4032522475366994 a001 24157817/23725150497407*103682^(11/12) 4032522475367002 a001 9227465/9062201101803*103682^(11/12) 4032522475367058 a001 1762289/1730726404001*103682^(11/12) 4032522475367438 a001 1346269/1322157322203*103682^(11/12) 4032522475369606 a001 75025/969323029*103682^(13/24) 4032522475370043 a001 514229/505019158607*103682^(11/12) 4032522475372267 a001 196418/119218851371*103682^(7/8) 4032522475372573 a001 832040/87403803*39603^(3/22) 4032522475373569 a001 46347/4868641*39603^(3/22) 4032522475373714 a001 5702887/599074578*39603^(3/22) 4032522475373735 a001 14930352/1568397607*39603^(3/22) 4032522475373738 a001 39088169/4106118243*39603^(3/22) 4032522475373739 a001 102334155/10749957122*39603^(3/22) 4032522475373739 a001 267914296/28143753123*39603^(3/22) 4032522475373739 a001 701408733/73681302247*39603^(3/22) 4032522475373739 a001 1836311903/192900153618*39603^(3/22) 4032522475373739 a001 102287808/10745088481*39603^(3/22) 4032522475373739 a001 12586269025/1322157322203*39603^(3/22) 4032522475373739 a001 32951280099/3461452808002*39603^(3/22) 4032522475373739 a001 86267571272/9062201101803*39603^(3/22) 4032522475373739 a001 225851433717/23725150497407*39603^(3/22) 4032522475373739 a001 139583862445/14662949395604*39603^(3/22) 4032522475373739 a001 53316291173/5600748293801*39603^(3/22) 4032522475373739 a001 20365011074/2139295485799*39603^(3/22) 4032522475373739 a001 7778742049/817138163596*39603^(3/22) 4032522475373739 a001 2971215073/312119004989*39603^(3/22) 4032522475373739 a001 1134903170/119218851371*39603^(3/22) 4032522475373739 a001 433494437/45537549124*39603^(3/22) 4032522475373739 a001 165580141/17393796001*39603^(3/22) 4032522475373739 a001 63245986/6643838879*39603^(3/22) 4032522475373740 a001 24157817/2537720636*39603^(3/22) 4032522475373748 a001 9227465/969323029*39603^(3/22) 4032522475373804 a001 3524578/370248451*39603^(3/22) 4032522475374184 a001 1346269/141422324*39603^(3/22) 4032522475374638 a001 317811/505019158607*103682^(23/24) 4032522475376790 a001 514229/54018521*39603^(3/22) 4032522475381458 a001 832040/1322157322203*103682^(23/24) 4032522475382453 a001 311187/494493258286*103682^(23/24) 4032522475382598 a001 5702887/9062201101803*103682^(23/24) 4032522475382619 a001 14930352/23725150497407*103682^(23/24) 4032522475382632 a001 9227465/14662949395604*103682^(23/24) 4032522475382688 a001 3524578/5600748293801*103682^(23/24) 4032522475383068 a001 1346269/2139295485799*103682^(23/24) 4032522475385236 a001 75025/1568397607*103682^(7/12) 4032522475385673 a001 514229/817138163596*103682^(23/24) 4032522475387897 a001 98209/96450076809*103682^(11/12) 4032522475390268 a004 Fibonacci(28)*Lucas(24)/(1/2+sqrt(5)/2)^57 4032522475394653 a001 196418/20633239*39603^(3/22) 4032522475395203 a001 103682/514229*8^(1/3) 4032522475397088 a004 Fibonacci(30)*Lucas(24)/(1/2+sqrt(5)/2)^59 4032522475398083 a004 Fibonacci(32)*Lucas(24)/(1/2+sqrt(5)/2)^61 4032522475398228 a004 Fibonacci(34)*Lucas(24)/(1/2+sqrt(5)/2)^63 4032522475398249 a004 Fibonacci(36)*Lucas(24)/(1/2+sqrt(5)/2)^65 4032522475398252 a004 Fibonacci(38)*Lucas(24)/(1/2+sqrt(5)/2)^67 4032522475398253 a004 Fibonacci(40)*Lucas(24)/(1/2+sqrt(5)/2)^69 4032522475398253 a004 Fibonacci(42)*Lucas(24)/(1/2+sqrt(5)/2)^71 4032522475398253 a004 Fibonacci(44)*Lucas(24)/(1/2+sqrt(5)/2)^73 4032522475398253 a004 Fibonacci(46)*Lucas(24)/(1/2+sqrt(5)/2)^75 4032522475398253 a004 Fibonacci(48)*Lucas(24)/(1/2+sqrt(5)/2)^77 4032522475398253 a004 Fibonacci(50)*Lucas(24)/(1/2+sqrt(5)/2)^79 4032522475398253 a004 Fibonacci(52)*Lucas(24)/(1/2+sqrt(5)/2)^81 4032522475398253 a004 Fibonacci(54)*Lucas(24)/(1/2+sqrt(5)/2)^83 4032522475398253 a004 Fibonacci(56)*Lucas(24)/(1/2+sqrt(5)/2)^85 4032522475398253 a004 Fibonacci(58)*Lucas(24)/(1/2+sqrt(5)/2)^87 4032522475398253 a004 Fibonacci(60)*Lucas(24)/(1/2+sqrt(5)/2)^89 4032522475398253 a004 Fibonacci(62)*Lucas(24)/(1/2+sqrt(5)/2)^91 4032522475398253 a004 Fibonacci(64)*Lucas(24)/(1/2+sqrt(5)/2)^93 4032522475398253 a004 Fibonacci(66)*Lucas(24)/(1/2+sqrt(5)/2)^95 4032522475398253 a004 Fibonacci(68)*Lucas(24)/(1/2+sqrt(5)/2)^97 4032522475398253 a004 Fibonacci(70)*Lucas(24)/(1/2+sqrt(5)/2)^99 4032522475398253 a004 Fibonacci(71)*Lucas(24)/(1/2+sqrt(5)/2)^100 4032522475398253 a004 Fibonacci(69)*Lucas(24)/(1/2+sqrt(5)/2)^98 4032522475398253 a004 Fibonacci(67)*Lucas(24)/(1/2+sqrt(5)/2)^96 4032522475398253 a004 Fibonacci(65)*Lucas(24)/(1/2+sqrt(5)/2)^94 4032522475398253 a004 Fibonacci(63)*Lucas(24)/(1/2+sqrt(5)/2)^92 4032522475398253 a004 Fibonacci(61)*Lucas(24)/(1/2+sqrt(5)/2)^90 4032522475398253 a004 Fibonacci(59)*Lucas(24)/(1/2+sqrt(5)/2)^88 4032522475398253 a004 Fibonacci(57)*Lucas(24)/(1/2+sqrt(5)/2)^86 4032522475398253 a004 Fibonacci(55)*Lucas(24)/(1/2+sqrt(5)/2)^84 4032522475398253 a004 Fibonacci(53)*Lucas(24)/(1/2+sqrt(5)/2)^82 4032522475398253 a004 Fibonacci(51)*Lucas(24)/(1/2+sqrt(5)/2)^80 4032522475398253 a004 Fibonacci(49)*Lucas(24)/(1/2+sqrt(5)/2)^78 4032522475398253 a001 1/23184*(1/2+1/2*5^(1/2))^19 4032522475398253 a004 Fibonacci(47)*Lucas(24)/(1/2+sqrt(5)/2)^76 4032522475398253 a004 Fibonacci(45)*Lucas(24)/(1/2+sqrt(5)/2)^74 4032522475398253 a004 Fibonacci(43)*Lucas(24)/(1/2+sqrt(5)/2)^72 4032522475398253 a004 Fibonacci(41)*Lucas(24)/(1/2+sqrt(5)/2)^70 4032522475398253 a004 Fibonacci(39)*Lucas(24)/(1/2+sqrt(5)/2)^68 4032522475398254 a004 Fibonacci(37)*Lucas(24)/(1/2+sqrt(5)/2)^66 4032522475398262 a004 Fibonacci(35)*Lucas(24)/(1/2+sqrt(5)/2)^64 4032522475398318 a004 Fibonacci(33)*Lucas(24)/(1/2+sqrt(5)/2)^62 4032522475398698 a004 Fibonacci(31)*Lucas(24)/(1/2+sqrt(5)/2)^60 4032522475399983 a001 75025/4870847*39603^(1/11) 4032522475400866 a001 75025/2537720636*103682^(5/8) 4032522475401303 a004 Fibonacci(29)*Lucas(24)/(1/2+sqrt(5)/2)^58 4032522475403527 a001 196418/312119004989*103682^(23/24) 4032522475407424 a001 28657/599074578*64079^(14/23) 4032522475416496 a001 75025/4106118243*103682^(2/3) 4032522475419157 a004 Fibonacci(27)*Lucas(24)/(1/2+sqrt(5)/2)^56 4032522475432126 a001 75025/6643838879*103682^(17/24) 4032522475435888 a001 121393/20633239*39603^(2/11) 4032522475447756 a001 75025/10749957122*103682^(3/4) 4032522475450123 a001 28657/370248451*64079^(13/23) 4032522475463386 a001 75025/17393796001*103682^(19/24) 4032522475466090 a001 144/103681*39603^(7/22) 4032522475479016 a001 75025/28143753123*103682^(5/6) 4032522475482624 a001 317811/54018521*39603^(2/11) 4032522475489443 a001 208010/35355581*39603^(2/11) 4032522475490437 a001 2178309/370248451*39603^(2/11) 4032522475490583 a001 5702887/969323029*39603^(2/11) 4032522475490604 a001 196452/33391061*39603^(2/11) 4032522475490607 a001 39088169/6643838879*39603^(2/11) 4032522475490607 a001 102334155/17393796001*39603^(2/11) 4032522475490607 a001 66978574/11384387281*39603^(2/11) 4032522475490607 a001 701408733/119218851371*39603^(2/11) 4032522475490607 a001 1836311903/312119004989*39603^(2/11) 4032522475490607 a001 1201881744/204284540899*39603^(2/11) 4032522475490607 a001 12586269025/2139295485799*39603^(2/11) 4032522475490607 a001 32951280099/5600748293801*39603^(2/11) 4032522475490607 a001 1135099622/192933544679*39603^(2/11) 4032522475490607 a001 139583862445/23725150497407*39603^(2/11) 4032522475490607 a001 53316291173/9062201101803*39603^(2/11) 4032522475490607 a001 10182505537/1730726404001*39603^(2/11) 4032522475490607 a001 7778742049/1322157322203*39603^(2/11) 4032522475490607 a001 2971215073/505019158607*39603^(2/11) 4032522475490607 a001 567451585/96450076809*39603^(2/11) 4032522475490607 a001 433494437/73681302247*39603^(2/11) 4032522475490607 a001 165580141/28143753123*39603^(2/11) 4032522475490608 a001 31622993/5374978561*39603^(2/11) 4032522475490609 a001 24157817/4106118243*39603^(2/11) 4032522475490617 a001 9227465/1568397607*39603^(2/11) 4032522475490672 a001 1762289/299537289*39603^(2/11) 4032522475491052 a001 1346269/228826127*39603^(2/11) 4032522475492822 a001 28657/228826127*64079^(12/23) 4032522475493657 a001 514229/87403803*39603^(2/11) 4032522475494646 a001 75025/45537549124*103682^(7/8) 4032522475510276 a001 75025/73681302247*103682^(11/12) 4032522475511509 a001 98209/16692641*39603^(2/11) 4032522475517087 a001 75025/7881196*39603^(3/22) 4032522475525906 a001 75025/119218851371*103682^(23/24) 4032522475527980 a001 2576/103361*15127^(1/20) 4032522475535521 a001 28657/141422324*64079^(11/23) 4032522475541536 a004 Fibonacci(25)*Lucas(24)/(1/2+sqrt(5)/2)^54 4032522475552743 a001 121393/33385282*39603^(5/22) 4032522475578219 a001 28657/87403803*64079^(10/23) 4032522475582963 a001 46368/54018521*39603^(4/11) 4032522475599491 a001 105937/29134601*39603^(5/22) 4032522475606311 a001 832040/228826127*39603^(5/22) 4032522475607306 a001 726103/199691526*39603^(5/22) 4032522475607451 a001 5702887/1568397607*39603^(5/22) 4032522475607472 a001 4976784/1368706081*39603^(5/22) 4032522475607476 a001 39088169/10749957122*39603^(5/22) 4032522475607476 a001 831985/228811001*39603^(5/22) 4032522475607476 a001 267914296/73681302247*39603^(5/22) 4032522475607476 a001 233802911/64300051206*39603^(5/22) 4032522475607476 a001 1836311903/505019158607*39603^(5/22) 4032522475607476 a001 1602508992/440719107401*39603^(5/22) 4032522475607476 a001 12586269025/3461452808002*39603^(5/22) 4032522475607476 a001 10983760033/3020733700601*39603^(5/22) 4032522475607476 a001 86267571272/23725150497407*39603^(5/22) 4032522475607476 a001 53316291173/14662949395604*39603^(5/22) 4032522475607476 a001 20365011074/5600748293801*39603^(5/22) 4032522475607476 a001 7778742049/2139295485799*39603^(5/22) 4032522475607476 a001 2971215073/817138163596*39603^(5/22) 4032522475607476 a001 1134903170/312119004989*39603^(5/22) 4032522475607476 a001 433494437/119218851371*39603^(5/22) 4032522475607476 a001 165580141/45537549124*39603^(5/22) 4032522475607476 a001 63245986/17393796001*39603^(5/22) 4032522475607477 a001 24157817/6643838879*39603^(5/22) 4032522475607486 a001 9227465/2537720636*39603^(5/22) 4032522475607541 a001 3524578/969323029*39603^(5/22) 4032522475607921 a001 1346269/370248451*39603^(5/22) 4032522475610526 a001 514229/141422324*39603^(5/22) 4032522475620920 a001 28657/54018521*64079^(9/23) 4032522475628382 a001 196418/54018521*39603^(5/22) 4032522475630090 a001 442922592/10983760033 4032522475630090 a004 Fibonacci(23)/Lucas(24)/(1/2+sqrt(5)/2)^4 4032522475630090 a004 Fibonacci(24)/Lucas(23)/(1/2+sqrt(5)/2)^6 4032522475633866 a001 75025/12752043*39603^(2/11) 4032522475663614 a001 28657/33385282*64079^(8/23) 4032522475664205 a001 5473/1268860318*24476^(19/21) 4032522475669617 a001 121393/54018521*39603^(3/11) 4032522475687724 a001 28657/1149851*24476^(1/21) 4032522475699830 a001 15456/29134601*39603^(9/22) 4032522475706326 a001 28657/20633239*64079^(7/23) 4032522475716360 a001 317811/141422324*39603^(3/11) 4032522475723180 a001 832040/370248451*39603^(3/11) 4032522475724175 a001 2178309/969323029*39603^(3/11) 4032522475724320 a001 5702887/2537720636*39603^(3/11) 4032522475724341 a001 14930352/6643838879*39603^(3/11) 4032522475724344 a001 39088169/17393796001*39603^(3/11) 4032522475724345 a001 102334155/45537549124*39603^(3/11) 4032522475724345 a001 267914296/119218851371*39603^(3/11) 4032522475724345 a001 3524667/1568437211*39603^(3/11) 4032522475724345 a001 1836311903/817138163596*39603^(3/11) 4032522475724345 a001 4807526976/2139295485799*39603^(3/11) 4032522475724345 a001 12586269025/5600748293801*39603^(3/11) 4032522475724345 a001 32951280099/14662949395604*39603^(3/11) 4032522475724345 a001 53316291173/23725150497407*39603^(3/11) 4032522475724345 a001 20365011074/9062201101803*39603^(3/11) 4032522475724345 a001 7778742049/3461452808002*39603^(3/11) 4032522475724345 a001 2971215073/1322157322203*39603^(3/11) 4032522475724345 a001 1134903170/505019158607*39603^(3/11) 4032522475724345 a001 433494437/192900153618*39603^(3/11) 4032522475724345 a001 165580141/73681302247*39603^(3/11) 4032522475724345 a001 63245986/28143753123*39603^(3/11) 4032522475724346 a001 24157817/10749957122*39603^(3/11) 4032522475724354 a001 9227465/4106118243*39603^(3/11) 4032522475724410 a001 3524578/1568397607*39603^(3/11) 4032522475724790 a001 1346269/599074578*39603^(3/11) 4032522475727395 a001 514229/228826127*39603^(3/11) 4032522475745249 a001 196418/87403803*39603^(3/11) 4032522475748991 a001 28657/12752043*64079^(6/23) 4032522475750769 a001 75025/20633239*39603^(5/22) 4032522475786484 a001 121393/87403803*39603^(7/22) 4032522475791779 a001 28657/7881196*64079^(5/23) 4032522475816700 a001 11592/35355581*39603^(5/11) 4032522475833228 a001 317811/228826127*39603^(7/22) 4032522475834244 a001 28657/4870847*64079^(4/23) 4032522475840048 a001 416020/299537289*39603^(7/22) 4032522475841043 a001 311187/224056801*39603^(7/22) 4032522475841188 a001 5702887/4106118243*39603^(7/22) 4032522475841210 a001 7465176/5374978561*39603^(7/22) 4032522475841213 a001 39088169/28143753123*39603^(7/22) 4032522475841213 a001 14619165/10525900321*39603^(7/22) 4032522475841213 a001 133957148/96450076809*39603^(7/22) 4032522475841213 a001 701408733/505019158607*39603^(7/22) 4032522475841213 a001 1836311903/1322157322203*39603^(7/22) 4032522475841213 a001 14930208/10749853441*39603^(7/22) 4032522475841213 a001 12586269025/9062201101803*39603^(7/22) 4032522475841213 a001 32951280099/23725150497407*39603^(7/22) 4032522475841213 a001 10182505537/7331474697802*39603^(7/22) 4032522475841213 a001 7778742049/5600748293801*39603^(7/22) 4032522475841213 a001 2971215073/2139295485799*39603^(7/22) 4032522475841213 a001 567451585/408569081798*39603^(7/22) 4032522475841213 a001 433494437/312119004989*39603^(7/22) 4032522475841213 a001 165580141/119218851371*39603^(7/22) 4032522475841213 a001 31622993/22768774562*39603^(7/22) 4032522475841215 a001 24157817/17393796001*39603^(7/22) 4032522475841223 a001 9227465/6643838879*39603^(7/22) 4032522475841278 a001 1762289/1268860318*39603^(7/22) 4032522475841658 a001 1346269/969323029*39603^(7/22) 4032522475844263 a001 514229/370248451*39603^(7/22) 4032522475849366 a001 121393/4870847*15127^(1/20) 4032522475861926 a004 Fibonacci(23)*Lucas(25)/(1/2+sqrt(5)/2)^53 4032522475862118 a001 98209/70711162*39603^(7/22) 4032522475867624 a001 75025/33385282*39603^(3/11) 4032522475877557 a001 28657/3010349*64079^(3/23) 4032522475890583 a001 28657/10749957122*167761^(4/5) 4032522475896256 a001 105937/4250681*15127^(1/20) 4032522475903097 a001 416020/16692641*15127^(1/20) 4032522475903353 a001 233/271444*39603^(4/11) 4032522475904095 a001 726103/29134601*15127^(1/20) 4032522475904240 a001 5702887/228826127*15127^(1/20) 4032522475904262 a001 829464/33281921*15127^(1/20) 4032522475904265 a001 39088169/1568397607*15127^(1/20) 4032522475904265 a001 34111385/1368706081*15127^(1/20) 4032522475904265 a001 133957148/5374978561*15127^(1/20) 4032522475904265 a001 233802911/9381251041*15127^(1/20) 4032522475904265 a001 1836311903/73681302247*15127^(1/20) 4032522475904265 a001 267084832/10716675201*15127^(1/20) 4032522475904265 a001 12586269025/505019158607*15127^(1/20) 4032522475904265 a001 10983760033/440719107401*15127^(1/20) 4032522475904265 a001 43133785636/1730726404001*15127^(1/20) 4032522475904265 a001 75283811239/3020733700601*15127^(1/20) 4032522475904265 a001 182717648081/7331474697802*15127^(1/20) 4032522475904265 a001 139583862445/5600748293801*15127^(1/20) 4032522475904265 a001 53316291173/2139295485799*15127^(1/20) 4032522475904265 a001 10182505537/408569081798*15127^(1/20) 4032522475904265 a001 7778742049/312119004989*15127^(1/20) 4032522475904265 a001 2971215073/119218851371*15127^(1/20) 4032522475904265 a001 567451585/22768774562*15127^(1/20) 4032522475904265 a001 433494437/17393796001*15127^(1/20) 4032522475904265 a001 165580141/6643838879*15127^(1/20) 4032522475904266 a001 31622993/1268860318*15127^(1/20) 4032522475904267 a001 24157817/969323029*15127^(1/20) 4032522475904275 a001 9227465/370248451*15127^(1/20) 4032522475904330 a001 1762289/70711162*15127^(1/20) 4032522475904712 a001 1346269/54018521*15127^(1/20) 4032522475907325 a001 514229/20633239*15127^(1/20) 4032522475918647 a001 28657/1860498*64079^(2/23) 4032522475919240 a001 28657/969323029*167761^(3/5) 4032522475925235 a001 98209/3940598*15127^(1/20) 4032522475933568 a001 46368/228826127*39603^(1/2) 4032522475947896 a001 28657/87403803*167761^(2/5) 4032522475950097 a001 317811/370248451*39603^(4/11) 4032522475950480 a001 3478759201/86267571272 4032522475950480 a004 Fibonacci(23)/Lucas(26)/(1/2+sqrt(5)/2)^2 4032522475950480 a004 Fibonacci(26)/Lucas(23)/(1/2+sqrt(5)/2)^8 4032522475956917 a001 832040/969323029*39603^(4/11) 4032522475957912 a001 2178309/2537720636*39603^(4/11) 4032522475958057 a001 5702887/6643838879*39603^(4/11) 4032522475958078 a001 14930352/17393796001*39603^(4/11) 4032522475958081 a001 39088169/45537549124*39603^(4/11) 4032522475958082 a001 102334155/119218851371*39603^(4/11) 4032522475958082 a001 267914296/312119004989*39603^(4/11) 4032522475958082 a001 701408733/817138163596*39603^(4/11) 4032522475958082 a001 1836311903/2139295485799*39603^(4/11) 4032522475958082 a001 4807526976/5600748293801*39603^(4/11) 4032522475958082 a001 12586269025/14662949395604*39603^(4/11) 4032522475958082 a001 20365011074/23725150497407*39603^(4/11) 4032522475958082 a001 7778742049/9062201101803*39603^(4/11) 4032522475958082 a001 2971215073/3461452808002*39603^(4/11) 4032522475958082 a001 1134903170/1322157322203*39603^(4/11) 4032522475958082 a001 433494437/505019158607*39603^(4/11) 4032522475958082 a001 165580141/192900153618*39603^(4/11) 4032522475958082 a001 63245986/73681302247*39603^(4/11) 4032522475958083 a001 24157817/28143753123*39603^(4/11) 4032522475958091 a001 9227465/10749957122*39603^(4/11) 4032522475958147 a001 3524578/4106118243*39603^(4/11) 4032522475958527 a001 1346269/1568397607*39603^(4/11) 4032522475961132 a001 514229/599074578*39603^(4/11) 4032522475965560 a001 28657/1149851*64079^(1/23) 4032522475976618 a001 28657/7881196*167761^(1/5) 4032522475976998 a001 17711/3010349*15127^(1/5) 4032522475978987 a001 196418/228826127*39603^(4/11) 4032522475984305 a004 Fibonacci(23)*Lucas(27)/(1/2+sqrt(5)/2)^55 4032522475984498 a001 75025/54018521*39603^(7/22) 4032522475984740 a001 10946/1568397607*24476^(6/7) 4032522475986627 a001 28657/73681302247*439204^(8/9) 4032522475988950 a001 28657/17393796001*439204^(7/9) 4032522475991273 a001 28657/4106118243*439204^(2/3) 4032522475993596 a001 28657/969323029*439204^(5/9) 4032522475995918 a001 28657/228826127*439204^(4/9) 4032522475997225 a001 28657/710647 4032522475997225 a004 Fibonacci(28)/Lucas(23)/(1/2+sqrt(5)/2)^10 4032522475998243 a001 28657/54018521*439204^(1/3) 4032522476000539 a001 28657/12752043*439204^(2/9) 4032522476002159 a004 Fibonacci(23)*Lucas(29)/(1/2+sqrt(5)/2)^57 4032522476003332 a001 28657/3010349*439204^(1/9) 4032522476004044 a001 28657/1860498*(1/2+1/2*5^(1/2))^2 4032522476004044 a001 23843770280/591286729879 4032522476004044 a001 28657/1860498*10749957122^(1/24) 4032522476004044 a001 28657/1860498*4106118243^(1/23) 4032522476004044 a001 28657/1860498*1568397607^(1/22) 4032522476004044 a004 Fibonacci(30)/Lucas(23)/(1/2+sqrt(5)/2)^12 4032522476004044 a001 28657/1860498*599074578^(1/21) 4032522476004044 a001 28657/1860498*228826127^(1/20) 4032522476004045 a001 28657/1860498*87403803^(1/19) 4032522476004045 a001 28657/1860498*33385282^(1/18) 4032522476004046 a001 28657/1860498*12752043^(1/17) 4032522476004055 a001 28657/1860498*4870847^(1/16) 4032522476004122 a001 28657/1860498*1860498^(1/15) 4032522476004615 a001 28657/1860498*710647^(1/14) 4032522476004764 a004 Fibonacci(23)*Lucas(31)/(1/2+sqrt(5)/2)^59 4032522476005039 a001 28657/4870847*(1/2+1/2*5^(1/2))^4 4032522476005039 a001 20807933671/516002918640 4032522476005039 a001 28657/4870847*73681302247^(1/13) 4032522476005039 a001 28657/4870847*10749957122^(1/12) 4032522476005039 a001 28657/4870847*4106118243^(2/23) 4032522476005039 a001 28657/4870847*1568397607^(1/11) 4032522476005039 a004 Fibonacci(32)/Lucas(23)/(1/2+sqrt(5)/2)^14 4032522476005039 a001 28657/4870847*599074578^(2/21) 4032522476005039 a001 28657/4870847*228826127^(1/10) 4032522476005040 a001 28657/4870847*87403803^(2/19) 4032522476005040 a001 28657/4870847*33385282^(1/9) 4032522476005042 a001 28657/4870847*12752043^(2/17) 4032522476005061 a001 28657/4870847*4870847^(1/8) 4032522476005145 a004 Fibonacci(23)*Lucas(33)/(1/2+sqrt(5)/2)^61 4032522476005150 a001 28657/1322157322203*7881196^(10/11) 4032522476005156 a001 28657/312119004989*7881196^(9/11) 4032522476005162 a001 28657/73681302247*7881196^(8/11) 4032522476005166 a001 28657/28143753123*7881196^(2/3) 4032522476005168 a001 28657/17393796001*7881196^(7/11) 4032522476005173 a001 28657/12752043*7881196^(2/11) 4032522476005174 a001 28657/4106118243*7881196^(6/11) 4032522476005180 a001 28657/969323029*7881196^(5/11) 4032522476005185 a001 28657/12752043*141422324^(2/13) 4032522476005185 a001 28657/12752043*2537720636^(2/15) 4032522476005185 a001 28657/12752043*45537549124^(2/17) 4032522476005185 a001 28657/12752043*14662949395604^(2/21) 4032522476005185 a001 28657/12752043*(1/2+1/2*5^(1/2))^6 4032522476005185 a001 163427632759/4052739537881 4032522476005185 a001 28657/12752043*10749957122^(1/8) 4032522476005185 a001 28657/12752043*4106118243^(3/23) 4032522476005185 a001 28657/12752043*1568397607^(3/22) 4032522476005185 a004 Fibonacci(34)/Lucas(23)/(1/2+sqrt(5)/2)^16 4032522476005185 a001 28657/12752043*599074578^(1/7) 4032522476005185 a001 28657/12752043*228826127^(3/20) 4032522476005185 a001 28657/12752043*87403803^(3/19) 4032522476005185 a001 28657/12752043*33385282^(1/6) 4032522476005186 a001 28657/228826127*7881196^(4/11) 4032522476005188 a001 28657/141422324*7881196^(1/3) 4032522476005189 a001 28657/12752043*12752043^(3/17) 4032522476005193 a001 28657/54018521*7881196^(3/11) 4032522476005195 a001 28657/4870847*1860498^(2/15) 4032522476005200 a004 Fibonacci(23)*Lucas(35)/(1/2+sqrt(5)/2)^63 4032522476005201 a001 28657/1322157322203*20633239^(6/7) 4032522476005202 a001 28657/505019158607*20633239^(4/5) 4032522476005203 a001 28657/119218851371*20633239^(5/7) 4032522476005204 a001 28657/17393796001*20633239^(3/5) 4032522476005204 a001 28657/10749957122*20633239^(4/7) 4032522476005205 a001 28657/969323029*20633239^(3/7) 4032522476005206 a001 28657/599074578*20633239^(2/5) 4032522476005206 a001 28657/33385282*(1/2+1/2*5^(1/2))^8 4032522476005206 a001 142619699088/3536736619241 4032522476005206 a001 28657/33385282*73681302247^(2/13) 4032522476005206 a001 28657/33385282*10749957122^(1/6) 4032522476005206 a001 28657/33385282*4106118243^(4/23) 4032522476005206 a004 Fibonacci(36)/Lucas(23)/(1/2+sqrt(5)/2)^18 4032522476005206 a001 28657/33385282*1568397607^(2/11) 4032522476005206 a001 28657/33385282*599074578^(4/21) 4032522476005206 a001 28657/33385282*228826127^(1/5) 4032522476005206 a001 28657/33385282*87403803^(4/19) 4032522476005206 a001 28657/87403803*20633239^(2/7) 4032522476005207 a001 28657/33385282*33385282^(2/9) 4032522476005208 a004 Fibonacci(23)*Lucas(37)/(1/2+sqrt(5)/2)^65 4032522476005209 a001 28657/87403803*2537720636^(2/9) 4032522476005209 a001 28657/87403803*312119004989^(2/11) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^10/Lucas(38) 4032522476005209 a001 28657/87403803*28143753123^(1/5) 4032522476005209 a001 28657/87403803*10749957122^(5/24) 4032522476005209 a001 28657/87403803*4106118243^(5/23) 4032522476005209 a004 Fibonacci(38)/Lucas(23)/(1/2+sqrt(5)/2)^20 4032522476005209 a001 28657/87403803*1568397607^(5/22) 4032522476005209 a001 28657/87403803*599074578^(5/21) 4032522476005209 a001 28657/87403803*228826127^(1/4) 4032522476005209 a001 28657/87403803*87403803^(5/19) 4032522476005209 a004 Fibonacci(23)*Lucas(39)/(1/2+sqrt(5)/2)^67 4032522476005209 a001 28657/23725150497407*141422324^(12/13) 4032522476005209 a001 28657/5600748293801*141422324^(11/13) 4032522476005209 a001 28657/1322157322203*141422324^(10/13) 4032522476005209 a001 28657/312119004989*141422324^(9/13) 4032522476005209 a001 28657/228826127*141422324^(4/13) 4032522476005209 a001 28657/192900153618*141422324^(2/3) 4032522476005209 a001 28657/73681302247*141422324^(8/13) 4032522476005209 a001 28657/17393796001*141422324^(7/13) 4032522476005209 a001 28657/4106118243*141422324^(6/13) 4032522476005209 a001 28657/228826127*2537720636^(4/15) 4032522476005209 a001 28657/228826127*45537549124^(4/17) 4032522476005209 a001 28657/228826127*817138163596^(4/19) 4032522476005209 a001 28657/228826127*14662949395604^(4/21) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^12/Lucas(40) 4032522476005209 a001 28657/228826127*192900153618^(2/9) 4032522476005209 a001 28657/228826127*73681302247^(3/13) 4032522476005209 a001 28657/228826127*10749957122^(1/4) 4032522476005209 a001 28657/228826127*4106118243^(6/23) 4032522476005209 a004 Fibonacci(40)/Lucas(23)/(1/2+sqrt(5)/2)^22 4032522476005209 a001 28657/228826127*1568397607^(3/11) 4032522476005209 a001 28657/228826127*599074578^(2/7) 4032522476005209 a001 28657/969323029*141422324^(5/13) 4032522476005209 a001 28657/228826127*228826127^(3/10) 4032522476005209 a001 28657/370248451*141422324^(1/3) 4032522476005209 a004 Fibonacci(23)*Lucas(41)/(1/2+sqrt(5)/2)^69 4032522476005209 a001 28657/599074578*17393796001^(2/7) 4032522476005209 a001 28657/599074578*14662949395604^(2/9) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^14/Lucas(42) 4032522476005209 a001 28657/599074578*10749957122^(7/24) 4032522476005209 a001 28657/599074578*4106118243^(7/23) 4032522476005209 a004 Fibonacci(42)/Lucas(23)/(1/2+sqrt(5)/2)^24 4032522476005209 a001 28657/599074578*1568397607^(7/22) 4032522476005209 a001 28657/599074578*599074578^(1/3) 4032522476005209 a004 Fibonacci(23)*Lucas(43)/(1/2+sqrt(5)/2)^71 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^16/Lucas(44) 4032522476005209 a001 28657/1568397607*23725150497407^(1/4) 4032522476005209 a001 28657/1568397607*73681302247^(4/13) 4032522476005209 a001 28657/1568397607*10749957122^(1/3) 4032522476005209 a001 28657/1568397607*4106118243^(8/23) 4032522476005209 a004 Fibonacci(44)/Lucas(23)/(1/2+sqrt(5)/2)^26 4032522476005209 a001 28657/1568397607*1568397607^(4/11) 4032522476005209 a004 Fibonacci(23)*Lucas(45)/(1/2+sqrt(5)/2)^73 4032522476005209 a001 28657/23725150497407*2537720636^(4/5) 4032522476005209 a001 28657/4106118243*2537720636^(2/5) 4032522476005209 a001 28657/14662949395604*2537720636^(7/9) 4032522476005209 a001 28657/5600748293801*2537720636^(11/15) 4032522476005209 a001 28657/1322157322203*2537720636^(2/3) 4032522476005209 a001 28657/312119004989*2537720636^(3/5) 4032522476005209 a001 28657/119218851371*2537720636^(5/9) 4032522476005209 a001 28657/73681302247*2537720636^(8/15) 4032522476005209 a001 28657/10749957122*2537720636^(4/9) 4032522476005209 a001 28657/17393796001*2537720636^(7/15) 4032522476005209 a001 28657/4106118243*45537549124^(6/17) 4032522476005209 a001 28657/4106118243*14662949395604^(2/7) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^18/Lucas(46) 4032522476005209 a001 28657/4106118243*192900153618^(1/3) 4032522476005209 a001 28657/4106118243*10749957122^(3/8) 4032522476005209 a001 28657/4106118243*4106118243^(9/23) 4032522476005209 a004 Fibonacci(23)*Lucas(47)/(1/2+sqrt(5)/2)^75 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^20/Lucas(48) 4032522476005209 a001 28657/10749957122*23725150497407^(5/16) 4032522476005209 a001 28657/10749957122*505019158607^(5/14) 4032522476005209 a001 28657/10749957122*73681302247^(5/13) 4032522476005209 a001 28657/10749957122*28143753123^(2/5) 4032522476005209 a001 28657/10749957122*10749957122^(5/12) 4032522476005209 a004 Fibonacci(23)*Lucas(49)/(1/2+sqrt(5)/2)^77 4032522476005209 a001 28657/14662949395604*17393796001^(5/7) 4032522476005209 a001 28657/505019158607*17393796001^(4/7) 4032522476005209 a001 28657/28143753123*312119004989^(2/5) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^22/Lucas(50) 4032522476005209 a004 Fibonacci(23)*Lucas(51)/(1/2+sqrt(5)/2)^79 4032522476005209 a001 28657/73681302247*45537549124^(8/17) 4032522476005209 a001 28657/23725150497407*45537549124^(12/17) 4032522476005209 a001 28657/9062201101803*45537549124^(2/3) 4032522476005209 a001 28657/5600748293801*45537549124^(11/17) 4032522476005209 a001 28657/1322157322203*45537549124^(10/17) 4032522476005209 a001 28657/312119004989*45537549124^(9/17) 4032522476005209 a001 28657/73681302247*14662949395604^(8/21) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^24/Lucas(52) 4032522476005209 a001 28657/73681302247*192900153618^(4/9) 4032522476005209 a001 28657/73681302247*73681302247^(6/13) 4032522476005209 a004 Fibonacci(23)*Lucas(53)/(1/2+sqrt(5)/2)^81 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^26/Lucas(54) 4032522476005209 a004 Fibonacci(23)*Lucas(55)/(1/2+sqrt(5)/2)^83 4032522476005209 a001 28657/1322157322203*312119004989^(6/11) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^28/Lucas(56) 4032522476005209 a004 Fibonacci(23)*Lucas(57)/(1/2+sqrt(5)/2)^85 4032522476005209 a001 28657/1322157322203*14662949395604^(10/21) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^30/Lucas(58) 4032522476005209 a004 Fibonacci(23)*Lucas(59)/(1/2+sqrt(5)/2)^87 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^32/Lucas(60) 4032522476005209 a004 Fibonacci(23)*Lucas(61)/(1/2+sqrt(5)/2)^89 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^34/Lucas(62) 4032522476005209 a004 Fibonacci(23)*Lucas(63)/(1/2+sqrt(5)/2)^91 4032522476005209 a001 28657/23725150497407*14662949395604^(4/7) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^36/Lucas(64) 4032522476005209 a004 Fibonacci(23)*Lucas(65)/(1/2+sqrt(5)/2)^93 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^38/Lucas(66) 4032522476005209 a004 Fibonacci(23)*Lucas(67)/(1/2+sqrt(5)/2)^95 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^40/Lucas(68) 4032522476005209 a004 Fibonacci(23)*Lucas(69)/(1/2+sqrt(5)/2)^97 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^42/Lucas(70) 4032522476005209 a004 Fibonacci(23)*Lucas(71)/(1/2+sqrt(5)/2)^99 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^44/Lucas(72) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^46/Lucas(74) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^48/Lucas(76) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^50/Lucas(78) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^52/Lucas(80) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^54/Lucas(82) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^56/Lucas(84) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^58/Lucas(86) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^60/Lucas(88) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^62/Lucas(90) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^64/Lucas(92) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^66/Lucas(94) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^68/Lucas(96) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^70/Lucas(98) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^71/Lucas(99) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^72/Lucas(100) 4032522476005209 a004 Fibonacci(23)*Lucas(1)/(1/2+sqrt(5)/2)^28 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^69/Lucas(97) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^67/Lucas(95) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^65/Lucas(93) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^63/Lucas(91) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^61/Lucas(89) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^59/Lucas(87) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^57/Lucas(85) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^55/Lucas(83) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^53/Lucas(81) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^51/Lucas(79) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^49/Lucas(77) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^47/Lucas(75) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^45/Lucas(73) 4032522476005209 a004 Fibonacci(23)*Lucas(72)/(1/2+sqrt(5)/2)^100 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^43/Lucas(71) 4032522476005209 a004 Fibonacci(23)*Lucas(70)/(1/2+sqrt(5)/2)^98 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^41/Lucas(69) 4032522476005209 a004 Fibonacci(23)*Lucas(68)/(1/2+sqrt(5)/2)^96 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^39/Lucas(67) 4032522476005209 a004 Fibonacci(23)*Lucas(66)/(1/2+sqrt(5)/2)^94 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^37/Lucas(65) 4032522476005209 a004 Fibonacci(23)*Lucas(64)/(1/2+sqrt(5)/2)^92 4032522476005209 a001 28657/14662949395604*14662949395604^(5/9) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^35/Lucas(63) 4032522476005209 a004 Fibonacci(23)*Lucas(62)/(1/2+sqrt(5)/2)^90 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^33/Lucas(61) 4032522476005209 a004 Fibonacci(23)*Lucas(60)/(1/2+sqrt(5)/2)^88 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^31/Lucas(59) 4032522476005209 a001 28657/2139295485799*9062201101803^(1/2) 4032522476005209 a004 Fibonacci(23)*Lucas(58)/(1/2+sqrt(5)/2)^86 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^29/Lucas(57) 4032522476005209 a001 28657/14662949395604*505019158607^(5/8) 4032522476005209 a004 Fibonacci(23)*Lucas(56)/(1/2+sqrt(5)/2)^84 4032522476005209 a001 28657/312119004989*817138163596^(9/19) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^27/Lucas(55) 4032522476005209 a001 28657/1322157322203*192900153618^(5/9) 4032522476005209 a001 28657/5600748293801*192900153618^(11/18) 4032522476005209 a001 28657/23725150497407*192900153618^(2/3) 4032522476005209 a001 28657/312119004989*192900153618^(1/2) 4032522476005209 a004 Fibonacci(23)*Lucas(54)/(1/2+sqrt(5)/2)^82 4032522476005209 a001 28657/119218851371*312119004989^(5/11) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^25/Lucas(53) 4032522476005209 a001 28657/119218851371*3461452808002^(5/12) 4032522476005209 a001 28657/505019158607*73681302247^(7/13) 4032522476005209 a001 28657/3461452808002*73681302247^(8/13) 4032522476005209 a001 28657/23725150497407*73681302247^(9/13) 4032522476005209 a004 Fibonacci(23)*Lucas(52)/(1/2+sqrt(5)/2)^80 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^23/Lucas(51) 4032522476005209 a001 28657/119218851371*28143753123^(1/2) 4032522476005209 a001 28657/1322157322203*28143753123^(3/5) 4032522476005209 a001 28657/14662949395604*28143753123^(7/10) 4032522476005209 a004 Fibonacci(23)*Lucas(50)/(1/2+sqrt(5)/2)^78 4032522476005209 a001 28657/17393796001*17393796001^(3/7) 4032522476005209 a001 28657/28143753123*10749957122^(11/24) 4032522476005209 a001 28657/17393796001*45537549124^(7/17) 4032522476005209 a001 28657/17393796001*14662949395604^(1/3) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^21/Lucas(49) 4032522476005209 a001 28657/17393796001*192900153618^(7/18) 4032522476005209 a001 28657/73681302247*10749957122^(1/2) 4032522476005209 a001 28657/192900153618*10749957122^(13/24) 4032522476005209 a001 28657/312119004989*10749957122^(9/16) 4032522476005209 a001 28657/505019158607*10749957122^(7/12) 4032522476005209 a001 28657/1322157322203*10749957122^(5/8) 4032522476005209 a001 28657/3461452808002*10749957122^(2/3) 4032522476005209 a001 28657/5600748293801*10749957122^(11/16) 4032522476005209 a001 28657/9062201101803*10749957122^(17/24) 4032522476005209 a001 28657/23725150497407*10749957122^(3/4) 4032522476005209 a001 28657/17393796001*10749957122^(7/16) 4032522476005209 a004 Fibonacci(23)*Lucas(48)/(1/2+sqrt(5)/2)^76 4032522476005209 a001 28657/10749957122*4106118243^(10/23) 4032522476005209 a001 28657/6643838879*817138163596^(1/3) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^19/Lucas(47) 4032522476005209 a001 28657/28143753123*4106118243^(11/23) 4032522476005209 a001 28657/45537549124*4106118243^(1/2) 4032522476005209 a001 28657/73681302247*4106118243^(12/23) 4032522476005209 a001 28657/192900153618*4106118243^(13/23) 4032522476005209 a001 28657/505019158607*4106118243^(14/23) 4032522476005209 a001 28657/1322157322203*4106118243^(15/23) 4032522476005209 a001 28657/3461452808002*4106118243^(16/23) 4032522476005209 a001 28657/9062201101803*4106118243^(17/23) 4032522476005209 a001 28657/23725150497407*4106118243^(18/23) 4032522476005209 a004 Fibonacci(48)/Lucas(23)/(1/2+sqrt(5)/2)^30 4032522476005209 a004 Fibonacci(50)/Lucas(23)/(1/2+sqrt(5)/2)^32 4032522476005209 a004 Fibonacci(52)/Lucas(23)/(1/2+sqrt(5)/2)^34 4032522476005209 a004 Fibonacci(54)/Lucas(23)/(1/2+sqrt(5)/2)^36 4032522476005209 a004 Fibonacci(56)/Lucas(23)/(1/2+sqrt(5)/2)^38 4032522476005209 a004 Fibonacci(58)/Lucas(23)/(1/2+sqrt(5)/2)^40 4032522476005209 a004 Fibonacci(60)/Lucas(23)/(1/2+sqrt(5)/2)^42 4032522476005209 a004 Fibonacci(62)/Lucas(23)/(1/2+sqrt(5)/2)^44 4032522476005209 a004 Fibonacci(64)/Lucas(23)/(1/2+sqrt(5)/2)^46 4032522476005209 a004 Fibonacci(66)/Lucas(23)/(1/2+sqrt(5)/2)^48 4032522476005209 a004 Fibonacci(68)/Lucas(23)/(1/2+sqrt(5)/2)^50 4032522476005209 a004 Fibonacci(70)/Lucas(23)/(1/2+sqrt(5)/2)^52 4032522476005209 a004 Fibonacci(72)/Lucas(23)/(1/2+sqrt(5)/2)^54 4032522476005209 a004 Fibonacci(74)/Lucas(23)/(1/2+sqrt(5)/2)^56 4032522476005209 a004 Fibonacci(76)/Lucas(23)/(1/2+sqrt(5)/2)^58 4032522476005209 a004 Fibonacci(78)/Lucas(23)/(1/2+sqrt(5)/2)^60 4032522476005209 a004 Fibonacci(80)/Lucas(23)/(1/2+sqrt(5)/2)^62 4032522476005209 a004 Fibonacci(82)/Lucas(23)/(1/2+sqrt(5)/2)^64 4032522476005209 a004 Fibonacci(84)/Lucas(23)/(1/2+sqrt(5)/2)^66 4032522476005209 a004 Fibonacci(86)/Lucas(23)/(1/2+sqrt(5)/2)^68 4032522476005209 a004 Fibonacci(88)/Lucas(23)/(1/2+sqrt(5)/2)^70 4032522476005209 a004 Fibonacci(90)/Lucas(23)/(1/2+sqrt(5)/2)^72 4032522476005209 a004 Fibonacci(23)*Lucas(46)/(1/2+sqrt(5)/2)^74 4032522476005209 a004 Fibonacci(94)/Lucas(23)/(1/2+sqrt(5)/2)^76 4032522476005209 a004 Fibonacci(96)/Lucas(23)/(1/2+sqrt(5)/2)^78 4032522476005209 a004 Fibonacci(98)/Lucas(23)/(1/2+sqrt(5)/2)^80 4032522476005209 a004 Fibonacci(100)/Lucas(23)/(1/2+sqrt(5)/2)^82 4032522476005209 a004 Fibonacci(99)/Lucas(23)/(1/2+sqrt(5)/2)^81 4032522476005209 a004 Fibonacci(97)/Lucas(23)/(1/2+sqrt(5)/2)^79 4032522476005209 a004 Fibonacci(95)/Lucas(23)/(1/2+sqrt(5)/2)^77 4032522476005209 a004 Fibonacci(93)/Lucas(23)/(1/2+sqrt(5)/2)^75 4032522476005209 a004 Fibonacci(91)/Lucas(23)/(1/2+sqrt(5)/2)^73 4032522476005209 a004 Fibonacci(89)/Lucas(23)/(1/2+sqrt(5)/2)^71 4032522476005209 a004 Fibonacci(87)/Lucas(23)/(1/2+sqrt(5)/2)^69 4032522476005209 a004 Fibonacci(85)/Lucas(23)/(1/2+sqrt(5)/2)^67 4032522476005209 a004 Fibonacci(83)/Lucas(23)/(1/2+sqrt(5)/2)^65 4032522476005209 a004 Fibonacci(81)/Lucas(23)/(1/2+sqrt(5)/2)^63 4032522476005209 a004 Fibonacci(79)/Lucas(23)/(1/2+sqrt(5)/2)^61 4032522476005209 a004 Fibonacci(77)/Lucas(23)/(1/2+sqrt(5)/2)^59 4032522476005209 a004 Fibonacci(75)/Lucas(23)/(1/2+sqrt(5)/2)^57 4032522476005209 a004 Fibonacci(73)/Lucas(23)/(1/2+sqrt(5)/2)^55 4032522476005209 a004 Fibonacci(71)/Lucas(23)/(1/2+sqrt(5)/2)^53 4032522476005209 a004 Fibonacci(69)/Lucas(23)/(1/2+sqrt(5)/2)^51 4032522476005209 a004 Fibonacci(67)/Lucas(23)/(1/2+sqrt(5)/2)^49 4032522476005209 a004 Fibonacci(65)/Lucas(23)/(1/2+sqrt(5)/2)^47 4032522476005209 a004 Fibonacci(63)/Lucas(23)/(1/2+sqrt(5)/2)^45 4032522476005209 a004 Fibonacci(61)/Lucas(23)/(1/2+sqrt(5)/2)^43 4032522476005209 a004 Fibonacci(59)/Lucas(23)/(1/2+sqrt(5)/2)^41 4032522476005209 a004 Fibonacci(57)/Lucas(23)/(1/2+sqrt(5)/2)^39 4032522476005209 a004 Fibonacci(55)/Lucas(23)/(1/2+sqrt(5)/2)^37 4032522476005209 a004 Fibonacci(53)/Lucas(23)/(1/2+sqrt(5)/2)^35 4032522476005209 a004 Fibonacci(51)/Lucas(23)/(1/2+sqrt(5)/2)^33 4032522476005209 a004 Fibonacci(49)/Lucas(23)/(1/2+sqrt(5)/2)^31 4032522476005209 a004 Fibonacci(47)/Lucas(23)/(1/2+sqrt(5)/2)^29 4032522476005209 a001 28657/4106118243*1568397607^(9/22) 4032522476005209 a001 28657/2537720636*45537549124^(1/3) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^17/Lucas(45) 4032522476005209 a001 28657/10749957122*1568397607^(5/11) 4032522476005209 a001 28657/28143753123*1568397607^(1/2) 4032522476005209 a004 Fibonacci(45)/Lucas(23)/(1/2+sqrt(5)/2)^27 4032522476005209 a001 28657/73681302247*1568397607^(6/11) 4032522476005209 a001 28657/192900153618*1568397607^(13/22) 4032522476005209 a001 28657/505019158607*1568397607^(7/11) 4032522476005209 a001 28657/1322157322203*1568397607^(15/22) 4032522476005209 a001 28657/3461452808002*1568397607^(8/11) 4032522476005209 a001 28657/5600748293801*1568397607^(3/4) 4032522476005209 a001 28657/9062201101803*1568397607^(17/22) 4032522476005209 a001 28657/23725150497407*1568397607^(9/11) 4032522476005209 a004 Fibonacci(23)*Lucas(44)/(1/2+sqrt(5)/2)^72 4032522476005209 a001 28657/1568397607*599074578^(8/21) 4032522476005209 a001 28657/969323029*2537720636^(1/3) 4032522476005209 a001 28657/969323029*45537549124^(5/17) 4032522476005209 a001 28657/969323029*312119004989^(3/11) 4032522476005209 a001 28657/969323029*14662949395604^(5/21) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^15/Lucas(43) 4032522476005209 a001 28657/969323029*192900153618^(5/18) 4032522476005209 a001 28657/969323029*28143753123^(3/10) 4032522476005209 a001 28657/969323029*10749957122^(5/16) 4032522476005209 a004 Fibonacci(43)/Lucas(23)/(1/2+sqrt(5)/2)^25 4032522476005209 a001 28657/4106118243*599074578^(3/7) 4032522476005209 a001 28657/10749957122*599074578^(10/21) 4032522476005209 a001 28657/17393796001*599074578^(1/2) 4032522476005209 a001 28657/28143753123*599074578^(11/21) 4032522476005209 a001 28657/73681302247*599074578^(4/7) 4032522476005209 a001 28657/192900153618*599074578^(13/21) 4032522476005209 a001 28657/312119004989*599074578^(9/14) 4032522476005209 a001 28657/505019158607*599074578^(2/3) 4032522476005209 a001 28657/1322157322203*599074578^(5/7) 4032522476005209 a001 28657/969323029*599074578^(5/14) 4032522476005209 a001 28657/3461452808002*599074578^(16/21) 4032522476005209 a001 28657/5600748293801*599074578^(11/14) 4032522476005209 a001 28657/9062201101803*599074578^(17/21) 4032522476005209 a001 28657/14662949395604*599074578^(5/6) 4032522476005209 a001 28657/23725150497407*599074578^(6/7) 4032522476005209 a004 Fibonacci(23)*Lucas(42)/(1/2+sqrt(5)/2)^70 4032522476005209 a001 28657/599074578*228826127^(7/20) 4032522476005209 a001 28657/1568397607*228826127^(2/5) 4032522476005209 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^13/Lucas(41) 4032522476005209 a001 28657/370248451*73681302247^(1/4) 4032522476005209 a004 Fibonacci(41)/Lucas(23)/(1/2+sqrt(5)/2)^23 4032522476005209 a001 28657/969323029*228826127^(3/8) 4032522476005209 a001 28657/4106118243*228826127^(9/20) 4032522476005209 a001 28657/10749957122*228826127^(1/2) 4032522476005209 a001 28657/28143753123*228826127^(11/20) 4032522476005210 a001 28657/73681302247*228826127^(3/5) 4032522476005210 a001 28657/119218851371*228826127^(5/8) 4032522476005210 a001 28657/192900153618*228826127^(13/20) 4032522476005210 a001 28657/505019158607*228826127^(7/10) 4032522476005210 a001 28657/1322157322203*228826127^(3/4) 4032522476005210 a001 28657/3461452808002*228826127^(4/5) 4032522476005210 a001 28657/9062201101803*228826127^(17/20) 4032522476005210 a001 28657/14662949395604*228826127^(7/8) 4032522476005210 a001 28657/23725150497407*228826127^(9/10) 4032522476005210 a004 Fibonacci(23)*Lucas(40)/(1/2+sqrt(5)/2)^68 4032522476005210 a001 28657/228826127*87403803^(6/19) 4032522476005210 a001 28657/599074578*87403803^(7/19) 4032522476005210 a001 28657/141422324*312119004989^(1/5) 4032522476005210 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^11/Lucas(39) 4032522476005210 a004 Fibonacci(39)/Lucas(23)/(1/2+sqrt(5)/2)^21 4032522476005210 a001 28657/141422324*1568397607^(1/4) 4032522476005210 a001 28657/1568397607*87403803^(8/19) 4032522476005210 a001 28657/4106118243*87403803^(9/19) 4032522476005210 a001 28657/6643838879*87403803^(1/2) 4032522476005210 a001 28657/10749957122*87403803^(10/19) 4032522476005210 a001 28657/28143753123*87403803^(11/19) 4032522476005210 a001 28657/73681302247*87403803^(12/19) 4032522476005210 a001 28657/192900153618*87403803^(13/19) 4032522476005210 a001 28657/505019158607*87403803^(14/19) 4032522476005210 a001 28657/1322157322203*87403803^(15/19) 4032522476005210 a001 28657/3461452808002*87403803^(16/19) 4032522476005210 a001 28657/9062201101803*87403803^(17/19) 4032522476005210 a001 28657/87403803*33385282^(5/18) 4032522476005210 a001 28657/23725150497407*87403803^(18/19) 4032522476005210 a004 Fibonacci(23)*Lucas(38)/(1/2+sqrt(5)/2)^66 4032522476005211 a001 28657/228826127*33385282^(1/3) 4032522476005211 a001 28657/54018521*141422324^(3/13) 4032522476005211 a001 28657/54018521*2537720636^(1/5) 4032522476005211 a001 28657/54018521*45537549124^(3/17) 4032522476005211 a001 28657/54018521*14662949395604^(1/7) 4032522476005211 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^9/Lucas(37) 4032522476005211 a001 28657/54018521*192900153618^(1/6) 4032522476005211 a001 28657/54018521*10749957122^(3/16) 4032522476005211 a004 Fibonacci(37)/Lucas(23)/(1/2+sqrt(5)/2)^19 4032522476005211 a001 28657/54018521*599074578^(3/14) 4032522476005211 a001 28657/599074578*33385282^(7/18) 4032522476005211 a001 28657/969323029*33385282^(5/12) 4032522476005211 a001 28657/1568397607*33385282^(4/9) 4032522476005211 a001 28657/4106118243*33385282^(1/2) 4032522476005211 a001 28657/10749957122*33385282^(5/9) 4032522476005212 a001 28657/17393796001*33385282^(7/12) 4032522476005212 a001 28657/28143753123*33385282^(11/18) 4032522476005212 a001 28657/33385282*12752043^(4/17) 4032522476005212 a001 28657/54018521*33385282^(1/4) 4032522476005212 a001 28657/73681302247*33385282^(2/3) 4032522476005212 a001 28657/192900153618*33385282^(13/18) 4032522476005212 a001 28657/312119004989*33385282^(3/4) 4032522476005212 a001 28657/505019158607*33385282^(7/9) 4032522476005212 a001 28657/1322157322203*33385282^(5/6) 4032522476005213 a001 28657/3461452808002*33385282^(8/9) 4032522476005213 a001 28657/5600748293801*33385282^(11/12) 4032522476005213 a001 28657/9062201101803*33385282^(17/18) 4032522476005213 a004 Fibonacci(23)*Lucas(36)/(1/2+sqrt(5)/2)^64 4032522476005216 a001 28657/87403803*12752043^(5/17) 4032522476005217 a001 28657/12752043*4870847^(3/16) 4032522476005217 a001 28657/20633239*20633239^(1/5) 4032522476005218 a001 28657/228826127*12752043^(6/17) 4032522476005219 a001 28657/20633239*17393796001^(1/7) 4032522476005219 a001 20340881885/504420793834 4032522476005219 a001 28657/20633239*(1/2+1/2*5^(1/2))^7 4032522476005219 a004 Fibonacci(35)/Lucas(23)/(1/2+sqrt(5)/2)^17 4032522476005219 a001 28657/20633239*599074578^(1/6) 4032522476005220 a001 28657/599074578*12752043^(7/17) 4032522476005221 a001 28657/1568397607*12752043^(8/17) 4032522476005222 a001 28657/2537720636*12752043^(1/2) 4032522476005223 a001 28657/4106118243*12752043^(9/17) 4032522476005224 a001 28657/10749957122*12752043^(10/17) 4032522476005225 a001 28657/28143753123*12752043^(11/17) 4032522476005227 a001 28657/73681302247*12752043^(12/17) 4032522476005228 a001 28657/192900153618*12752043^(13/17) 4032522476005230 a001 28657/505019158607*12752043^(14/17) 4032522476005231 a001 28657/1322157322203*12752043^(15/17) 4032522476005233 a001 28657/3461452808002*12752043^(16/17) 4032522476005234 a004 Fibonacci(23)*Lucas(34)/(1/2+sqrt(5)/2)^62 4032522476005248 a001 28657/33385282*4870847^(1/4) 4032522476005262 a001 28657/87403803*4870847^(5/16) 4032522476005273 a001 28657/7881196*20633239^(1/7) 4032522476005273 a001 28657/228826127*4870847^(3/8) 4032522476005274 a001 28657/7881196*2537720636^(1/9) 4032522476005274 a001 28657/7881196*312119004989^(1/11) 4032522476005274 a001 101003831746/2504730781961 4032522476005274 a001 28657/7881196*(1/2+1/2*5^(1/2))^5 4032522476005274 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^5/Lucas(33) 4032522476005274 a001 28657/7881196*28143753123^(1/10) 4032522476005274 a004 Fibonacci(33)/Lucas(23)/(1/2+sqrt(5)/2)^15 4032522476005274 a001 28657/7881196*228826127^(1/8) 4032522476005284 a001 28657/599074578*4870847^(7/16) 4032522476005294 a001 28657/1568397607*4870847^(1/2) 4032522476005305 a001 28657/4106118243*4870847^(9/16) 4032522476005316 a001 28657/10749957122*4870847^(5/8) 4032522476005326 a001 28657/28143753123*4870847^(11/16) 4032522476005337 a001 28657/73681302247*4870847^(3/4) 4032522476005348 a001 28657/192900153618*4870847^(13/16) 4032522476005358 a001 28657/505019158607*4870847^(7/8) 4032522476005369 a001 28657/1322157322203*4870847^(15/16) 4032522476005379 a004 Fibonacci(23)*Lucas(32)/(1/2+sqrt(5)/2)^60 4032522476005418 a001 28657/12752043*1860498^(1/5) 4032522476005469 a001 28657/7881196*1860498^(1/6) 4032522476005516 a001 28657/33385282*1860498^(4/15) 4032522476005560 a001 28657/54018521*1860498^(3/10) 4032522476005597 a001 28657/87403803*1860498^(1/3) 4032522476005649 a001 28657/3010349*7881196^(1/11) 4032522476005654 a001 28657/3010349*141422324^(1/13) 4032522476005654 a001 28657/3010349*2537720636^(1/15) 4032522476005654 a001 28657/3010349*45537549124^(1/17) 4032522476005654 a001 28657/3010349*14662949395604^(1/21) 4032522476005654 a001 28657/3010349*(1/2+1/2*5^(1/2))^3 4032522476005654 a001 28657/3010349*192900153618^(1/18) 4032522476005654 a001 28657/3010349*10749957122^(1/16) 4032522476005654 a004 Fibonacci(31)/Lucas(23)/(1/2+sqrt(5)/2)^13 4032522476005654 a001 28657/3010349*599074578^(1/14) 4032522476005655 a001 28657/3010349*33385282^(1/12) 4032522476005675 a001 28657/228826127*1860498^(2/5) 4032522476005753 a001 28657/599074578*1860498^(7/15) 4032522476005771 a001 28657/3010349*1860498^(1/10) 4032522476005792 a001 28657/969323029*1860498^(1/2) 4032522476005831 a001 28657/1568397607*1860498^(8/15) 4032522476005908 a001 28657/4106118243*1860498^(3/5) 4032522476005986 a001 28657/10749957122*1860498^(2/3) 4032522476006025 a001 28657/17393796001*1860498^(7/10) 4032522476006064 a001 28657/28143753123*1860498^(11/15) 4032522476006141 a001 28657/73681302247*1860498^(4/5) 4032522476006180 a001 28657/4870847*710647^(1/7) 4032522476006180 a001 28657/119218851371*1860498^(5/6) 4032522476006219 a001 28657/192900153618*1860498^(13/15) 4032522476006258 a001 28657/312119004989*1860498^(9/10) 4032522476006297 a001 28657/505019158607*1860498^(14/15) 4032522476006374 a004 Fibonacci(23)*Lucas(30)/(1/2+sqrt(5)/2)^58 4032522476006896 a001 28657/12752043*710647^(3/14) 4032522476007215 a001 28657/20633239*710647^(1/4) 4032522476007487 a001 28657/33385282*710647^(2/7) 4032522476008061 a001 28657/87403803*710647^(5/14) 4032522476008254 a001 28657/1860498*271443^(1/13) 4032522476008259 a001 14736260453/365435296162 4032522476008259 a001 28657/2299702+28657/2299702*5^(1/2) 4032522476008259 a004 Fibonacci(29)/Lucas(23)/(1/2+sqrt(5)/2)^11 4032522476008631 a001 28657/228826127*710647^(3/7) 4032522476009202 a001 28657/599074578*710647^(1/2) 4032522476009772 a001 28657/1568397607*710647^(4/7) 4032522476010343 a001 28657/4106118243*710647^(9/14) 4032522476010913 a001 28657/10749957122*710647^(5/7) 4032522476011198 a001 28657/17393796001*710647^(3/4) 4032522476011483 a001 28657/28143753123*710647^(11/14) 4032522476012054 a001 28657/73681302247*710647^(6/7) 4032522476012624 a001 28657/192900153618*710647^(13/14) 4032522476013194 a004 Fibonacci(23)*Lucas(28)/(1/2+sqrt(5)/2)^56 4032522476013459 a001 28657/4870847*271443^(2/13) 4032522476017814 a001 28657/12752043*271443^(3/13) 4032522476020221 a001 121393/228826127*39603^(9/22) 4032522476022046 a001 28657/33385282*271443^(4/13) 4032522476023889 a001 28657/1149851*103682^(1/24) 4032522476026114 a001 5628750626/139583862445 4032522476026114 a004 Fibonacci(23)/Lucas(27)/(1/2+sqrt(5)/2) 4032522476026114 a004 Fibonacci(27)/Lucas(23)/(1/2+sqrt(5)/2)^9 4032522476026259 a001 28657/87403803*271443^(5/13) 4032522476030469 a001 28657/228826127*271443^(6/13) 4032522476032574 a001 28657/370248451*271443^(1/2) 4032522476034679 a001 28657/599074578*271443^(7/13) 4032522476035304 a001 28657/1860498*103682^(1/12) 4032522476038889 a001 28657/1568397607*271443^(8/13) 4032522476043099 a001 28657/4106118243*271443^(9/13) 4032522476047309 a001 28657/10749957122*271443^(10/13) 4032522476047993 a001 75025/3010349*15127^(1/20) 4032522476050437 a001 46368/370248451*39603^(6/11) 4032522476051519 a001 28657/28143753123*271443^(11/13) 4032522476052544 a001 28657/3010349*103682^(1/8) 4032522476055729 a001 28657/73681302247*271443^(12/13) 4032522476059939 a004 Fibonacci(23)*Lucas(26)/(1/2+sqrt(5)/2)^54 4032522476066966 a001 377/710646*39603^(9/22) 4032522476067559 a001 28657/4870847*103682^(1/6) 4032522476073786 a001 832040/1568397607*39603^(9/22) 4032522476074781 a001 726103/1368706081*39603^(9/22) 4032522476074926 a001 5702887/10749957122*39603^(9/22) 4032522476074947 a001 4976784/9381251041*39603^(9/22) 4032522476074950 a001 39088169/73681302247*39603^(9/22) 4032522476074950 a001 34111385/64300051206*39603^(9/22) 4032522476074951 a001 267914296/505019158607*39603^(9/22) 4032522476074951 a001 233802911/440719107401*39603^(9/22) 4032522476074951 a001 1836311903/3461452808002*39603^(9/22) 4032522476074951 a001 1602508992/3020733700601*39603^(9/22) 4032522476074951 a001 12586269025/23725150497407*39603^(9/22) 4032522476074951 a001 7778742049/14662949395604*39603^(9/22) 4032522476074951 a001 2971215073/5600748293801*39603^(9/22) 4032522476074951 a001 1134903170/2139295485799*39603^(9/22) 4032522476074951 a001 433494437/817138163596*39603^(9/22) 4032522476074951 a001 165580141/312119004989*39603^(9/22) 4032522476074951 a001 63245986/119218851371*39603^(9/22) 4032522476074952 a001 24157817/45537549124*39603^(9/22) 4032522476074960 a001 9227465/17393796001*39603^(9/22) 4032522476075015 a001 3524578/6643838879*39603^(9/22) 4032522476075396 a001 1346269/2537720636*39603^(9/22) 4032522476078001 a001 514229/969323029*39603^(9/22) 4032522476083424 a001 28657/7881196*103682^(5/24) 4032522476095855 a001 196418/370248451*39603^(9/22) 4032522476098965 a001 28657/12752043*103682^(1/4) 4032522476101364 a001 75025/87403803*39603^(4/11) 4032522476114629 a001 28657/20633239*103682^(7/24) 4032522476125128 a001 28657/1149851*39603^(1/22) 4032522476130246 a001 28657/33385282*103682^(1/3) 4032522476137090 a001 121393/370248451*39603^(5/11) 4032522476145881 a001 28657/54018521*103682^(3/8) 4032522476148492 a001 2149991425/53316291173 4032522476148492 a004 Fibonacci(23)/Lucas(25)/(1/2+sqrt(5)/2)^3 4032522476148492 a004 Fibonacci(25)/Lucas(23)/(1/2+sqrt(5)/2)^7 4032522476161509 a001 28657/87403803*103682^(5/12) 4032522476167305 a001 2576/33281921*39603^(13/22) 4032522476177140 a001 28657/141422324*103682^(11/24) 4032522476183834 a001 317811/969323029*39603^(5/11) 4032522476190654 a001 610/1860499*39603^(5/11) 4032522476191649 a001 2178309/6643838879*39603^(5/11) 4032522476191794 a001 5702887/17393796001*39603^(5/11) 4032522476191816 a001 3732588/11384387281*39603^(5/11) 4032522476191819 a001 39088169/119218851371*39603^(5/11) 4032522476191819 a001 9303105/28374454999*39603^(5/11) 4032522476191819 a001 66978574/204284540899*39603^(5/11) 4032522476191819 a001 701408733/2139295485799*39603^(5/11) 4032522476191819 a001 1836311903/5600748293801*39603^(5/11) 4032522476191819 a001 1201881744/3665737348901*39603^(5/11) 4032522476191819 a001 7778742049/23725150497407*39603^(5/11) 4032522476191819 a001 2971215073/9062201101803*39603^(5/11) 4032522476191819 a001 567451585/1730726404001*39603^(5/11) 4032522476191819 a001 433494437/1322157322203*39603^(5/11) 4032522476191819 a001 165580141/505019158607*39603^(5/11) 4032522476191819 a001 31622993/96450076809*39603^(5/11) 4032522476191821 a001 24157817/73681302247*39603^(5/11) 4032522476191829 a001 9227465/28143753123*39603^(5/11) 4032522476191884 a001 1762289/5374978561*39603^(5/11) 4032522476192264 a001 1346269/4106118243*39603^(5/11) 4032522476192769 a001 28657/228826127*103682^(1/2) 4032522476194869 a001 514229/1568397607*39603^(5/11) 4032522476208399 a001 28657/370248451*103682^(13/24) 4032522476212724 a001 98209/299537289*39603^(5/11) 4032522476218234 a001 75025/141422324*39603^(9/22) 4032522476224029 a001 28657/599074578*103682^(7/12) 4032522476237782 a001 28657/1860498*39603^(1/11) 4032522476239659 a001 28657/969323029*103682^(5/8) 4032522476253959 a001 121393/599074578*39603^(1/2) 4032522476255289 a001 28657/1568397607*103682^(2/3) 4032522476270919 a001 28657/2537720636*103682^(17/24) 4032522476284174 a001 46368/969323029*39603^(7/11) 4032522476286549 a001 28657/4106118243*103682^(3/4) 4032522476300703 a001 317811/1568397607*39603^(1/2) 4032522476302179 a001 28657/6643838879*103682^(19/24) 4032522476305276 a001 10946/969323029*24476^(17/21) 4032522476307523 a001 832040/4106118243*39603^(1/2) 4032522476308518 a001 987/4870846*39603^(1/2) 4032522476308663 a001 5702887/28143753123*39603^(1/2) 4032522476308684 a001 14930352/73681302247*39603^(1/2) 4032522476308687 a001 39088169/192900153618*39603^(1/2) 4032522476308688 a001 102334155/505019158607*39603^(1/2) 4032522476308688 a001 267914296/1322157322203*39603^(1/2) 4032522476308688 a001 701408733/3461452808002*39603^(1/2) 4032522476308688 a001 1836311903/9062201101803*39603^(1/2) 4032522476308688 a001 4807526976/23725150497407*39603^(1/2) 4032522476308688 a001 2971215073/14662949395604*39603^(1/2) 4032522476308688 a001 1134903170/5600748293801*39603^(1/2) 4032522476308688 a001 433494437/2139295485799*39603^(1/2) 4032522476308688 a001 165580141/817138163596*39603^(1/2) 4032522476308688 a001 63245986/312119004989*39603^(1/2) 4032522476308689 a001 24157817/119218851371*39603^(1/2) 4032522476308697 a001 9227465/45537549124*39603^(1/2) 4032522476308753 a001 3524578/17393796001*39603^(1/2) 4032522476309133 a001 1346269/6643838879*39603^(1/2) 4032522476311738 a001 514229/2537720636*39603^(1/2) 4032522476317809 a001 28657/10749957122*103682^(5/6) 4032522476329593 a001 196418/969323029*39603^(1/2) 4032522476333439 a001 28657/17393796001*103682^(7/8) 4032522476335102 a001 75025/228826127*39603^(5/11) 4032522476349069 a001 28657/28143753123*103682^(11/12) 4032522476356260 a001 28657/3010349*39603^(3/22) 4032522476364699 a001 28657/45537549124*103682^(23/24) 4032522476370827 a001 121393/969323029*39603^(6/11) 4032522476380329 a004 Fibonacci(23)*Lucas(24)/(1/2+sqrt(5)/2)^52 4032522476401042 a001 6624/224056801*39603^(15/22) 4032522476410723 a001 46368/3010349*15127^(1/10) 4032522476417572 a001 317811/2537720636*39603^(6/11) 4032522476424391 a001 832040/6643838879*39603^(6/11) 4032522476425386 a001 2178309/17393796001*39603^(6/11) 4032522476425532 a001 1597/12752044*39603^(6/11) 4032522476425553 a001 14930352/119218851371*39603^(6/11) 4032522476425556 a001 39088169/312119004989*39603^(6/11) 4032522476425556 a001 102334155/817138163596*39603^(6/11) 4032522476425556 a001 267914296/2139295485799*39603^(6/11) 4032522476425556 a001 701408733/5600748293801*39603^(6/11) 4032522476425556 a001 1836311903/14662949395604*39603^(6/11) 4032522476425556 a001 2971215073/23725150497407*39603^(6/11) 4032522476425556 a001 1134903170/9062201101803*39603^(6/11) 4032522476425556 a001 433494437/3461452808002*39603^(6/11) 4032522476425556 a001 165580141/1322157322203*39603^(6/11) 4032522476425557 a001 63245986/505019158607*39603^(6/11) 4032522476425558 a001 24157817/192900153618*39603^(6/11) 4032522476425566 a001 9227465/73681302247*39603^(6/11) 4032522476425621 a001 3524578/28143753123*39603^(6/11) 4032522476426001 a001 1346269/10749957122*39603^(6/11) 4032522476428606 a001 514229/4106118243*39603^(6/11) 4032522476446461 a001 196418/1568397607*39603^(6/11) 4032522476451971 a001 75025/370248451*39603^(1/2) 4032522476472514 a001 28657/4870847*39603^(2/11) 4032522476487696 a001 121393/1568397607*39603^(13/22) 4032522476517911 a001 11592/634430159*39603^(8/11) 4032522476534440 a001 105937/1368706081*39603^(13/22) 4032522476541260 a001 416020/5374978561*39603^(13/22) 4032522476542255 a001 726103/9381251041*39603^(13/22) 4032522476542400 a001 5702887/73681302247*39603^(13/22) 4032522476542421 a001 2584/33385281*39603^(13/22) 4032522476542425 a001 39088169/505019158607*39603^(13/22) 4032522476542425 a001 34111385/440719107401*39603^(13/22) 4032522476542425 a001 133957148/1730726404001*39603^(13/22) 4032522476542425 a001 233802911/3020733700601*39603^(13/22) 4032522476542425 a001 1836311903/23725150497407*39603^(13/22) 4032522476542425 a001 567451585/7331474697802*39603^(13/22) 4032522476542425 a001 433494437/5600748293801*39603^(13/22) 4032522476542425 a001 165580141/2139295485799*39603^(13/22) 4032522476542425 a001 31622993/408569081798*39603^(13/22) 4032522476542426 a001 24157817/312119004989*39603^(13/22) 4032522476542435 a001 9227465/119218851371*39603^(13/22) 4032522476542490 a001 1762289/22768774562*39603^(13/22) 4032522476542870 a001 1346269/17393796001*39603^(13/22) 4032522476545475 a001 514229/6643838879*39603^(13/22) 4032522476563330 a001 98209/1268860318*39603^(13/22) 4032522476568839 a001 75025/599074578*39603^(6/11) 4032522476589618 a001 28657/7881196*39603^(5/22) 4032522476604564 a001 121393/2537720636*39603^(7/11) 4032522476625812 a001 5473/299537289*24476^(16/21) 4032522476634780 a001 15456/1368706081*39603^(17/22) 4032522476651309 a001 317811/6643838879*39603^(7/11) 4032522476658129 a001 832040/17393796001*39603^(7/11) 4032522476659124 a001 2178309/45537549124*39603^(7/11) 4032522476659269 a001 5702887/119218851371*39603^(7/11) 4032522476659290 a001 14930352/312119004989*39603^(7/11) 4032522476659293 a001 4181/87403804*39603^(7/11) 4032522476659294 a001 102334155/2139295485799*39603^(7/11) 4032522476659294 a001 267914296/5600748293801*39603^(7/11) 4032522476659294 a001 701408733/14662949395604*39603^(7/11) 4032522476659294 a001 1134903170/23725150497407*39603^(7/11) 4032522476659294 a001 433494437/9062201101803*39603^(7/11) 4032522476659294 a001 165580141/3461452808002*39603^(7/11) 4032522476659294 a001 63245986/1322157322203*39603^(7/11) 4032522476659295 a001 24157817/505019158607*39603^(7/11) 4032522476659303 a001 9227465/192900153618*39603^(7/11) 4032522476659359 a001 3524578/73681302247*39603^(7/11) 4032522476659739 a001 1346269/28143753123*39603^(7/11) 4032522476662344 a001 514229/10749957122*39603^(7/11) 4032522476680198 a001 196418/4106118243*39603^(7/11) 4032522476685708 a001 75025/969323029*39603^(13/22) 4032522476706396 a001 28657/12752043*39603^(3/11) 4032522476721433 a001 121393/4106118243*39603^(15/22) 4032522476730733 a001 121393/7881196*15127^(1/10) 4032522476751648 a001 46368/6643838879*39603^(9/11) 4032522476768177 a001 317811/10749957122*39603^(15/22) 4032522476774997 a001 832040/28143753123*39603^(15/22) 4032522476775992 a001 311187/10525900321*39603^(15/22) 4032522476776138 a001 5702887/192900153618*39603^(15/22) 4032522476776159 a001 14930352/505019158607*39603^(15/22) 4032522476776162 a001 39088169/1322157322203*39603^(15/22) 4032522476776162 a001 6765/228826126*39603^(15/22) 4032522476776162 a001 267914296/9062201101803*39603^(15/22) 4032522476776162 a001 701408733/23725150497407*39603^(15/22) 4032522476776162 a001 433494437/14662949395604*39603^(15/22) 4032522476776162 a001 165580141/5600748293801*39603^(15/22) 4032522476776163 a001 63245986/2139295485799*39603^(15/22) 4032522476776164 a001 24157817/817138163596*39603^(15/22) 4032522476776172 a001 9227465/312119004989*39603^(15/22) 4032522476776227 a001 3524578/119218851371*39603^(15/22) 4032522476776607 a001 1346269/45537549124*39603^(15/22) 4032522476777422 a001 10959/711491*15127^(1/10) 4032522476779212 a001 514229/17393796001*39603^(15/22) 4032522476784234 a001 832040/54018521*15127^(1/10) 4032522476785228 a001 2178309/141422324*15127^(1/10) 4032522476785373 a001 5702887/370248451*15127^(1/10) 4032522476785394 a001 14930352/969323029*15127^(1/10) 4032522476785397 a001 39088169/2537720636*15127^(1/10) 4032522476785398 a001 102334155/6643838879*15127^(1/10) 4032522476785398 a001 9238424/599786069*15127^(1/10) 4032522476785398 a001 701408733/45537549124*15127^(1/10) 4032522476785398 a001 1836311903/119218851371*15127^(1/10) 4032522476785398 a001 4807526976/312119004989*15127^(1/10) 4032522476785398 a001 12586269025/817138163596*15127^(1/10) 4032522476785398 a001 32951280099/2139295485799*15127^(1/10) 4032522476785398 a001 86267571272/5600748293801*15127^(1/10) 4032522476785398 a001 7787980473/505618944676*15127^(1/10) 4032522476785398 a001 365435296162/23725150497407*15127^(1/10) 4032522476785398 a001 139583862445/9062201101803*15127^(1/10) 4032522476785398 a001 53316291173/3461452808002*15127^(1/10) 4032522476785398 a001 20365011074/1322157322203*15127^(1/10) 4032522476785398 a001 7778742049/505019158607*15127^(1/10) 4032522476785398 a001 2971215073/192900153618*15127^(1/10) 4032522476785398 a001 1134903170/73681302247*15127^(1/10) 4032522476785398 a001 433494437/28143753123*15127^(1/10) 4032522476785398 a001 165580141/10749957122*15127^(1/10) 4032522476785398 a001 63245986/4106118243*15127^(1/10) 4032522476785399 a001 24157817/1568397607*15127^(1/10) 4032522476785407 a001 9227465/599074578*15127^(1/10) 4032522476785463 a001 3524578/228826127*15127^(1/10) 4032522476785842 a001 1346269/87403803*15127^(1/10) 4032522476788444 a001 514229/33385282*15127^(1/10) 4032522476797067 a001 196418/6643838879*39603^(15/22) 4032522476802577 a001 75025/1568397607*39603^(7/11) 4032522476806278 a001 196418/12752043*15127^(1/10) 4032522476823299 a001 28657/20633239*39603^(7/22) 4032522476838302 a001 121393/6643838879*39603^(8/11) 4032522476857515 a001 17711/4870847*15127^(1/4) 4032522476868517 a001 23184/5374978561*39603^(19/22) 4032522476885046 a001 10959/599786069*39603^(8/11) 4032522476889392 a001 28657/1149851*15127^(1/20) 4032522476889907 a001 10946/710647*9349^(2/19) 4032522476891866 a001 208010/11384387281*39603^(8/11) 4032522476892861 a001 2178309/119218851371*39603^(8/11) 4032522476893006 a001 5702887/312119004989*39603^(8/11) 4032522476893027 a001 3732588/204284540899*39603^(8/11) 4032522476893030 a001 39088169/2139295485799*39603^(8/11) 4032522476893031 a001 102334155/5600748293801*39603^(8/11) 4032522476893031 a001 10946/599074579*39603^(8/11) 4032522476893031 a001 433494437/23725150497407*39603^(8/11) 4032522476893031 a001 165580141/9062201101803*39603^(8/11) 4032522476893031 a001 31622993/1730726404001*39603^(8/11) 4032522476893032 a001 24157817/1322157322203*39603^(8/11) 4032522476893040 a001 9227465/505019158607*39603^(8/11) 4032522476893096 a001 1762289/96450076809*39603^(8/11) 4032522476893476 a001 1346269/73681302247*39603^(8/11) 4032522476896081 a001 514229/28143753123*39603^(8/11) 4032522476913936 a001 98209/5374978561*39603^(8/11) 4032522476919445 a001 75025/2537720636*39603^(15/22) 4032522476928511 a001 75025/4870847*15127^(1/10) 4032522476940155 a001 28657/33385282*39603^(4/11) 4032522476946348 a001 10946/370248451*24476^(5/7) 4032522476955170 a001 121393/10749957122*39603^(17/22) 4032522476985386 a001 46368/17393796001*39603^(10/11) 4032522476987286 a001 821223649/20365011074 4032522476987286 a004 Fibonacci(23)/Lucas(23)/(1/2+sqrt(5)/2)^5 4032522477001915 a001 105937/9381251041*39603^(17/22) 4032522477008735 a001 832040/73681302247*39603^(17/22) 4032522477009730 a001 726103/64300051206*39603^(17/22) 4032522477009875 a001 5702887/505019158607*39603^(17/22) 4032522477009896 a001 4976784/440719107401*39603^(17/22) 4032522477009899 a001 39088169/3461452808002*39603^(17/22) 4032522477009899 a001 34111385/3020733700601*39603^(17/22) 4032522477009900 a001 267914296/23725150497407*39603^(17/22) 4032522477009900 a001 165580141/14662949395604*39603^(17/22) 4032522477009900 a001 63245986/5600748293801*39603^(17/22) 4032522477009901 a001 24157817/2139295485799*39603^(17/22) 4032522477009909 a001 9227465/817138163596*39603^(17/22) 4032522477009964 a001 3524578/312119004989*39603^(17/22) 4032522477010345 a001 1346269/119218851371*39603^(17/22) 4032522477012950 a001 514229/45537549124*39603^(17/22) 4032522477030804 a001 196418/17393796001*39603^(17/22) 4032522477036314 a001 75025/4106118243*39603^(8/11) 4032522477057028 a001 28657/54018521*39603^(9/22) 4032522477072039 a001 121393/17393796001*39603^(9/11) 4032522477102254 a001 15456/9381251041*39603^(21/22) 4032522477118783 a001 317811/45537549124*39603^(9/11) 4032522477125603 a001 832040/119218851371*39603^(9/11) 4032522477126598 a001 2178309/312119004989*39603^(9/11) 4032522477126743 a001 5702887/817138163596*39603^(9/11) 4032522477126765 a001 14930352/2139295485799*39603^(9/11) 4032522477126768 a001 39088169/5600748293801*39603^(9/11) 4032522477126768 a001 102334155/14662949395604*39603^(9/11) 4032522477126768 a001 165580141/23725150497407*39603^(9/11) 4032522477126768 a001 63245986/9062201101803*39603^(9/11) 4032522477126770 a001 24157817/3461452808002*39603^(9/11) 4032522477126778 a001 9227465/1322157322203*39603^(9/11) 4032522477126833 a001 3524578/505019158607*39603^(9/11) 4032522477127213 a001 1346269/192900153618*39603^(9/11) 4032522477129818 a001 514229/73681302247*39603^(9/11) 4032522477147673 a001 196418/28143753123*39603^(9/11) 4032522477153183 a001 75025/6643838879*39603^(17/22) 4032522477173895 a001 28657/87403803*39603^(5/11) 4032522477188908 a001 121393/28143753123*39603^(19/22) 4032522477219123 a004 Fibonacci(24)*Lucas(22)/(1/2+sqrt(5)/2)^51 4032522477235652 a001 317811/73681302247*39603^(19/22) 4032522477242472 a001 416020/96450076809*39603^(19/22) 4032522477243467 a001 46347/10745088481*39603^(19/22) 4032522477243612 a001 5702887/1322157322203*39603^(19/22) 4032522477243633 a001 7465176/1730726404001*39603^(19/22) 4032522477243636 a001 39088169/9062201101803*39603^(19/22) 4032522477243637 a001 102334155/23725150497407*39603^(19/22) 4032522477243637 a001 31622993/7331474697802*39603^(19/22) 4032522477243638 a001 24157817/5600748293801*39603^(19/22) 4032522477243646 a001 9227465/2139295485799*39603^(19/22) 4032522477243702 a001 1762289/408569081798*39603^(19/22) 4032522477244082 a001 1346269/312119004989*39603^(19/22) 4032522477246687 a001 514229/119218851371*39603^(19/22) 4032522477264542 a001 98209/22768774562*39603^(19/22) 4032522477266884 a001 10946/228826127*24476^(2/3) 4032522477270051 a001 75025/10749957122*39603^(9/11) 4032522477290765 a001 28657/141422324*39603^(1/2) 4032522477291240 a001 46368/4870847*15127^(3/20) 4032522477305776 a001 121393/45537549124*39603^(10/11) 4032522477352521 a001 317811/119218851371*39603^(10/11) 4032522477359340 a001 75640/28374454999*39603^(10/11) 4032522477360335 a001 2178309/817138163596*39603^(10/11) 4032522477360481 a001 5702887/2139295485799*39603^(10/11) 4032522477360502 a001 14930352/5600748293801*39603^(10/11) 4032522477360505 a001 39088169/14662949395604*39603^(10/11) 4032522477360506 a001 63245986/23725150497407*39603^(10/11) 4032522477360507 a001 24157817/9062201101803*39603^(10/11) 4032522477360515 a001 9227465/3461452808002*39603^(10/11) 4032522477360570 a001 3524578/1322157322203*39603^(10/11) 4032522477360950 a001 1346269/505019158607*39603^(10/11) 4032522477363555 a001 514229/192900153618*39603^(10/11) 4032522477381410 a001 196418/73681302247*39603^(10/11) 4032522477386920 a001 75025/17393796001*39603^(19/22) 4032522477407633 a001 28657/228826127*39603^(6/11) 4032522477422645 a001 121393/73681302247*39603^(21/22) 4032522477451379 a001 4181/599074578*9349^(18/19) 4032522477469389 a001 105937/64300051206*39603^(21/22) 4032522477476209 a001 832040/505019158607*39603^(21/22) 4032522477477204 a001 726103/440719107401*39603^(21/22) 4032522477477349 a001 5702887/3461452808002*39603^(21/22) 4032522477477370 a001 4976784/3020733700601*39603^(21/22) 4032522477477374 a001 39088169/23725150497407*39603^(21/22) 4032522477477375 a001 24157817/14662949395604*39603^(21/22) 4032522477477384 a001 9227465/5600748293801*39603^(21/22) 4032522477477439 a001 3524578/2139295485799*39603^(21/22) 4032522477477819 a001 1346269/817138163596*39603^(21/22) 4032522477480424 a001 514229/312119004989*39603^(21/22) 4032522477498279 a001 196418/119218851371*39603^(21/22) 4032522477503788 a001 75025/28143753123*39603^(10/11) 4032522477523737 a001 6765/710647*5778^(1/6) 4032522477524502 a001 28657/370248451*39603^(13/22) 4032522477539513 a004 Fibonacci(26)*Lucas(22)/(1/2+sqrt(5)/2)^53 4032522477573338 a001 39603/196418*8^(1/3) 4032522477586258 a004 Fibonacci(28)*Lucas(22)/(1/2+sqrt(5)/2)^55 4032522477587420 a001 5473/70711162*24476^(13/21) 4032522477593078 a004 Fibonacci(30)*Lucas(22)/(1/2+sqrt(5)/2)^57 4032522477594073 a004 Fibonacci(32)*Lucas(22)/(1/2+sqrt(5)/2)^59 4032522477594218 a004 Fibonacci(34)*Lucas(22)/(1/2+sqrt(5)/2)^61 4032522477594239 a004 Fibonacci(36)*Lucas(22)/(1/2+sqrt(5)/2)^63 4032522477594242 a004 Fibonacci(38)*Lucas(22)/(1/2+sqrt(5)/2)^65 4032522477594243 a004 Fibonacci(40)*Lucas(22)/(1/2+sqrt(5)/2)^67 4032522477594243 a004 Fibonacci(42)*Lucas(22)/(1/2+sqrt(5)/2)^69 4032522477594243 a004 Fibonacci(44)*Lucas(22)/(1/2+sqrt(5)/2)^71 4032522477594243 a004 Fibonacci(46)*Lucas(22)/(1/2+sqrt(5)/2)^73 4032522477594243 a004 Fibonacci(48)*Lucas(22)/(1/2+sqrt(5)/2)^75 4032522477594243 a004 Fibonacci(50)*Lucas(22)/(1/2+sqrt(5)/2)^77 4032522477594243 a004 Fibonacci(52)*Lucas(22)/(1/2+sqrt(5)/2)^79 4032522477594243 a004 Fibonacci(54)*Lucas(22)/(1/2+sqrt(5)/2)^81 4032522477594243 a004 Fibonacci(56)*Lucas(22)/(1/2+sqrt(5)/2)^83 4032522477594243 a004 Fibonacci(58)*Lucas(22)/(1/2+sqrt(5)/2)^85 4032522477594243 a004 Fibonacci(60)*Lucas(22)/(1/2+sqrt(5)/2)^87 4032522477594243 a004 Fibonacci(62)*Lucas(22)/(1/2+sqrt(5)/2)^89 4032522477594243 a004 Fibonacci(64)*Lucas(22)/(1/2+sqrt(5)/2)^91 4032522477594243 a004 Fibonacci(66)*Lucas(22)/(1/2+sqrt(5)/2)^93 4032522477594243 a004 Fibonacci(68)*Lucas(22)/(1/2+sqrt(5)/2)^95 4032522477594243 a004 Fibonacci(70)*Lucas(22)/(1/2+sqrt(5)/2)^97 4032522477594243 a004 Fibonacci(72)*Lucas(22)/(1/2+sqrt(5)/2)^99 4032522477594243 a004 Fibonacci(73)*Lucas(22)/(1/2+sqrt(5)/2)^100 4032522477594243 a004 Fibonacci(71)*Lucas(22)/(1/2+sqrt(5)/2)^98 4032522477594243 a004 Fibonacci(69)*Lucas(22)/(1/2+sqrt(5)/2)^96 4032522477594243 a004 Fibonacci(67)*Lucas(22)/(1/2+sqrt(5)/2)^94 4032522477594243 a004 Fibonacci(65)*Lucas(22)/(1/2+sqrt(5)/2)^92 4032522477594243 a004 Fibonacci(63)*Lucas(22)/(1/2+sqrt(5)/2)^90 4032522477594243 a004 Fibonacci(61)*Lucas(22)/(1/2+sqrt(5)/2)^88 4032522477594243 a004 Fibonacci(59)*Lucas(22)/(1/2+sqrt(5)/2)^86 4032522477594243 a004 Fibonacci(57)*Lucas(22)/(1/2+sqrt(5)/2)^84 4032522477594243 a004 Fibonacci(55)*Lucas(22)/(1/2+sqrt(5)/2)^82 4032522477594243 a004 Fibonacci(53)*Lucas(22)/(1/2+sqrt(5)/2)^80 4032522477594243 a004 Fibonacci(51)*Lucas(22)/(1/2+sqrt(5)/2)^78 4032522477594243 a004 Fibonacci(49)*Lucas(22)/(1/2+sqrt(5)/2)^76 4032522477594243 a004 Fibonacci(47)*Lucas(22)/(1/2+sqrt(5)/2)^74 4032522477594243 a004 Fibonacci(45)*Lucas(22)/(1/2+sqrt(5)/2)^72 4032522477594243 a001 2/17711*(1/2+1/2*5^(1/2))^17 4032522477594243 a004 Fibonacci(43)*Lucas(22)/(1/2+sqrt(5)/2)^70 4032522477594243 a004 Fibonacci(41)*Lucas(22)/(1/2+sqrt(5)/2)^68 4032522477594243 a004 Fibonacci(39)*Lucas(22)/(1/2+sqrt(5)/2)^66 4032522477594244 a004 Fibonacci(37)*Lucas(22)/(1/2+sqrt(5)/2)^64 4032522477594252 a004 Fibonacci(35)*Lucas(22)/(1/2+sqrt(5)/2)^62 4032522477594308 a004 Fibonacci(33)*Lucas(22)/(1/2+sqrt(5)/2)^60 4032522477594688 a004 Fibonacci(31)*Lucas(22)/(1/2+sqrt(5)/2)^58 4032522477597293 a004 Fibonacci(29)*Lucas(22)/(1/2+sqrt(5)/2)^56 4032522477611776 a001 121393/12752043*15127^(3/20) 4032522477615147 a004 Fibonacci(27)*Lucas(22)/(1/2+sqrt(5)/2)^54 4032522477620657 a001 75025/45537549124*39603^(21/22) 4032522477641370 a001 28657/599074578*39603^(7/11) 4032522477658542 a001 317811/33385282*15127^(3/20) 4032522477665365 a001 832040/87403803*15127^(3/20) 4032522477666360 a001 46347/4868641*15127^(3/20) 4032522477666505 a001 5702887/599074578*15127^(3/20) 4032522477666527 a001 14930352/1568397607*15127^(3/20) 4032522477666530 a001 39088169/4106118243*15127^(3/20) 4032522477666530 a001 102334155/10749957122*15127^(3/20) 4032522477666530 a001 267914296/28143753123*15127^(3/20) 4032522477666530 a001 701408733/73681302247*15127^(3/20) 4032522477666530 a001 1836311903/192900153618*15127^(3/20) 4032522477666530 a001 102287808/10745088481*15127^(3/20) 4032522477666530 a001 12586269025/1322157322203*15127^(3/20) 4032522477666530 a001 32951280099/3461452808002*15127^(3/20) 4032522477666530 a001 86267571272/9062201101803*15127^(3/20) 4032522477666530 a001 225851433717/23725150497407*15127^(3/20) 4032522477666530 a001 139583862445/14662949395604*15127^(3/20) 4032522477666530 a001 53316291173/5600748293801*15127^(3/20) 4032522477666530 a001 20365011074/2139295485799*15127^(3/20) 4032522477666530 a001 7778742049/817138163596*15127^(3/20) 4032522477666530 a001 2971215073/312119004989*15127^(3/20) 4032522477666530 a001 1134903170/119218851371*15127^(3/20) 4032522477666530 a001 433494437/45537549124*15127^(3/20) 4032522477666530 a001 165580141/17393796001*15127^(3/20) 4032522477666530 a001 63245986/6643838879*15127^(3/20) 4032522477666532 a001 24157817/2537720636*15127^(3/20) 4032522477666540 a001 9227465/969323029*15127^(3/20) 4032522477666595 a001 3524578/370248451*15127^(3/20) 4032522477666975 a001 1346269/141422324*15127^(3/20) 4032522477669582 a001 514229/54018521*15127^(3/20) 4032522477687444 a001 196418/20633239*15127^(3/20) 4032522477737526 a004 Fibonacci(25)*Lucas(22)/(1/2+sqrt(5)/2)^52 4032522477738883 a001 89/39604*15127^(3/10) 4032522477758239 a001 28657/969323029*39603^(15/22) 4032522477766309 a001 28657/1860498*15127^(1/10) 4032522477809878 a001 75025/7881196*15127^(3/20) 4032522477875107 a001 28657/1568397607*39603^(8/11) 4032522477907955 a001 10946/87403803*24476^(4/7) 4032522477991976 a001 28657/2537720636*39603^(17/22) 4032522478108845 a001 28657/4106118243*39603^(9/11) 4032522478172608 a001 11592/1970299*15127^(1/5) 4032522478225713 a001 28657/6643838879*39603^(19/22) 4032522478228493 a001 10946/54018521*24476^(11/21) 4032522478342582 a001 28657/10749957122*39603^(10/11) 4032522478459451 a001 28657/17393796001*39603^(21/22) 4032522478492943 a001 121393/20633239*15127^(1/5) 4032522478539679 a001 317811/54018521*15127^(1/5) 4032522478546498 a001 208010/35355581*15127^(1/5) 4032522478547493 a001 2178309/370248451*15127^(1/5) 4032522478547638 a001 5702887/969323029*15127^(1/5) 4032522478547659 a001 196452/33391061*15127^(1/5) 4032522478547662 a001 39088169/6643838879*15127^(1/5) 4032522478547663 a001 102334155/17393796001*15127^(1/5) 4032522478547663 a001 66978574/11384387281*15127^(1/5) 4032522478547663 a001 701408733/119218851371*15127^(1/5) 4032522478547663 a001 1836311903/312119004989*15127^(1/5) 4032522478547663 a001 1201881744/204284540899*15127^(1/5) 4032522478547663 a001 12586269025/2139295485799*15127^(1/5) 4032522478547663 a001 32951280099/5600748293801*15127^(1/5) 4032522478547663 a001 1135099622/192933544679*15127^(1/5) 4032522478547663 a001 139583862445/23725150497407*15127^(1/5) 4032522478547663 a001 53316291173/9062201101803*15127^(1/5) 4032522478547663 a001 10182505537/1730726404001*15127^(1/5) 4032522478547663 a001 7778742049/1322157322203*15127^(1/5) 4032522478547663 a001 2971215073/505019158607*15127^(1/5) 4032522478547663 a001 567451585/96450076809*15127^(1/5) 4032522478547663 a001 433494437/73681302247*15127^(1/5) 4032522478547663 a001 165580141/28143753123*15127^(1/5) 4032522478547663 a001 31622993/5374978561*15127^(1/5) 4032522478547664 a001 24157817/4106118243*15127^(1/5) 4032522478547672 a001 9227465/1568397607*15127^(1/5) 4032522478547728 a001 1762289/299537289*15127^(1/5) 4032522478548108 a001 1346269/228826127*15127^(1/5) 4032522478549024 a001 5473/16692641*24476^(10/21) 4032522478550712 a001 514229/87403803*15127^(1/5) 4032522478568564 a001 98209/16692641*15127^(1/5) 4032522478576319 a004 Fibonacci(23)*Lucas(22)/(1/2+sqrt(5)/2)^50 4032522478619925 a001 17711/12752043*15127^(7/20) 4032522478649052 a001 28657/3010349*15127^(3/20) 4032522478690921 a001 75025/12752043*15127^(1/5) 4032522478869573 a001 10946/20633239*24476^(3/7) 4032522479053650 a001 15456/4250681*15127^(1/4) 4032522479154451 a001 17711/710647*5778^(1/18) 4032522479183276 a001 96932303/2403763488 4032522479183276 a004 Fibonacci(21)/Lucas(22)/(1/2+sqrt(5)/2)^4 4032522479183276 a004 Fibonacci(22)/Lucas(21)/(1/2+sqrt(5)/2)^6 4032522479190074 a001 10946/12752043*24476^(8/21) 4032522479347043 a001 5473/219602*9349^(1/19) 4032522479374062 a001 121393/33385282*15127^(1/4) 4032522479420810 a001 105937/29134601*15127^(1/4) 4032522479427630 a001 832040/228826127*15127^(1/4) 4032522479428625 a001 726103/199691526*15127^(1/4) 4032522479428770 a001 5702887/1568397607*15127^(1/4) 4032522479428791 a001 4976784/1368706081*15127^(1/4) 4032522479428795 a001 39088169/10749957122*15127^(1/4) 4032522479428795 a001 831985/228811001*15127^(1/4) 4032522479428795 a001 267914296/73681302247*15127^(1/4) 4032522479428795 a001 233802911/64300051206*15127^(1/4) 4032522479428795 a001 1836311903/505019158607*15127^(1/4) 4032522479428795 a001 1602508992/440719107401*15127^(1/4) 4032522479428795 a001 12586269025/3461452808002*15127^(1/4) 4032522479428795 a001 10983760033/3020733700601*15127^(1/4) 4032522479428795 a001 86267571272/23725150497407*15127^(1/4) 4032522479428795 a001 53316291173/14662949395604*15127^(1/4) 4032522479428795 a001 20365011074/5600748293801*15127^(1/4) 4032522479428795 a001 7778742049/2139295485799*15127^(1/4) 4032522479428795 a001 2971215073/817138163596*15127^(1/4) 4032522479428795 a001 1134903170/312119004989*15127^(1/4) 4032522479428795 a001 433494437/119218851371*15127^(1/4) 4032522479428795 a001 165580141/45537549124*15127^(1/4) 4032522479428795 a001 63245986/17393796001*15127^(1/4) 4032522479428796 a001 24157817/6643838879*15127^(1/4) 4032522479428805 a001 9227465/2537720636*15127^(1/4) 4032522479428860 a001 3524578/969323029*15127^(1/4) 4032522479429240 a001 1346269/370248451*15127^(1/4) 4032522479431845 a001 514229/141422324*15127^(1/4) 4032522479449701 a001 196418/54018521*15127^(1/4) 4032522479501092 a001 17711/20633239*15127^(2/5) 4032522479510700 a001 5473/3940598*24476^(1/3) 4032522479529569 a001 28657/4870847*15127^(1/5) 4032522479572088 a001 75025/20633239*15127^(1/4) 4032522479831001 a001 10946/4870847*24476^(2/7) 4032522479879626 a001 4181/370248451*9349^(17/19) 4032522479934817 a001 46368/20633239*15127^(3/10) 4032522480152151 a001 10946/3010349*24476^(5/21) 4032522480255200 a001 121393/54018521*15127^(3/10) 4032522480301943 a001 317811/141422324*15127^(3/10) 4032522480308763 a001 832040/370248451*15127^(3/10) 4032522480309758 a001 2178309/969323029*15127^(3/10) 4032522480309903 a001 5702887/2537720636*15127^(3/10) 4032522480309924 a001 14930352/6643838879*15127^(3/10) 4032522480309927 a001 39088169/17393796001*15127^(3/10) 4032522480309927 a001 102334155/45537549124*15127^(3/10) 4032522480309928 a001 267914296/119218851371*15127^(3/10) 4032522480309928 a001 3524667/1568437211*15127^(3/10) 4032522480309928 a001 1836311903/817138163596*15127^(3/10) 4032522480309928 a001 4807526976/2139295485799*15127^(3/10) 4032522480309928 a001 12586269025/5600748293801*15127^(3/10) 4032522480309928 a001 32951280099/14662949395604*15127^(3/10) 4032522480309928 a001 53316291173/23725150497407*15127^(3/10) 4032522480309928 a001 20365011074/9062201101803*15127^(3/10) 4032522480309928 a001 7778742049/3461452808002*15127^(3/10) 4032522480309928 a001 2971215073/1322157322203*15127^(3/10) 4032522480309928 a001 1134903170/505019158607*15127^(3/10) 4032522480309928 a001 433494437/192900153618*15127^(3/10) 4032522480309928 a001 165580141/73681302247*15127^(3/10) 4032522480309928 a001 63245986/28143753123*15127^(3/10) 4032522480309929 a001 24157817/10749957122*15127^(3/10) 4032522480309937 a001 9227465/4106118243*15127^(3/10) 4032522480309992 a001 3524578/1568397607*15127^(3/10) 4032522480310373 a001 1346269/599074578*15127^(3/10) 4032522480312977 a001 514229/228826127*15127^(3/10) 4032522480330832 a001 196418/87403803*15127^(3/10) 4032522480382211 a001 17711/33385282*15127^(9/20) 4032522480410937 a001 28657/7881196*15127^(1/4) 4032522480453207 a001 75025/33385282*15127^(3/10) 4032522480471077 a001 5473/930249*24476^(4/21) 4032522480772309 a004 Fibonacci(21)*Lucas(23)/(1/2+sqrt(5)/2)^49 4032522480795828 a001 10946/1149851*24476^(1/7) 4032522480815008 a001 5473/5374978561*64079^(22/23) 4032522480815936 a001 144/103681*15127^(7/20) 4032522480857707 a001 10946/6643838879*64079^(21/23) 4032522480900406 a001 10946/4106118243*64079^(20/23) 4032522480943105 a001 5473/1268860318*64079^(19/23) 4032522480985804 a001 10946/1568397607*64079^(18/23) 4032522481028503 a001 10946/969323029*64079^(17/23) 4032522481071202 a001 5473/299537289*64079^(16/23) 4032522481105329 a001 10946/710647*24476^(2/21) 4032522481113901 a001 10946/370248451*64079^(15/23) 4032522481136330 a001 121393/87403803*15127^(7/20) 4032522481156600 a001 10946/228826127*64079^(14/23) 4032522481183075 a001 317811/228826127*15127^(7/20) 4032522481189895 a001 416020/299537289*15127^(7/20) 4032522481190890 a001 311187/224056801*15127^(7/20) 4032522481191035 a001 5702887/4106118243*15127^(7/20) 4032522481191056 a001 7465176/5374978561*15127^(7/20) 4032522481191059 a001 39088169/28143753123*15127^(7/20) 4032522481191060 a001 14619165/10525900321*15127^(7/20) 4032522481191060 a001 133957148/96450076809*15127^(7/20) 4032522481191060 a001 701408733/505019158607*15127^(7/20) 4032522481191060 a001 1836311903/1322157322203*15127^(7/20) 4032522481191060 a001 14930208/10749853441*15127^(7/20) 4032522481191060 a001 12586269025/9062201101803*15127^(7/20) 4032522481191060 a001 32951280099/23725150497407*15127^(7/20) 4032522481191060 a001 10182505537/7331474697802*15127^(7/20) 4032522481191060 a001 7778742049/5600748293801*15127^(7/20) 4032522481191060 a001 2971215073/2139295485799*15127^(7/20) 4032522481191060 a001 567451585/408569081798*15127^(7/20) 4032522481191060 a001 433494437/312119004989*15127^(7/20) 4032522481191060 a001 165580141/119218851371*15127^(7/20) 4032522481191060 a001 31622993/22768774562*15127^(7/20) 4032522481191061 a001 24157817/17393796001*15127^(7/20) 4032522481191069 a001 9227465/6643838879*15127^(7/20) 4032522481191125 a001 1762289/1268860318*15127^(7/20) 4032522481191505 a001 1346269/969323029*15127^(7/20) 4032522481194110 a001 514229/370248451*15127^(7/20) 4032522481199299 a001 5473/70711162*64079^(13/23) 4032522481211965 a001 98209/70711162*15127^(7/20) 4032522481241997 a001 10946/87403803*64079^(12/23) 4032522481263349 a001 17711/54018521*15127^(1/2) 4032522481284698 a001 10946/54018521*64079^(11/23) 4032522481291979 a001 28657/12752043*15127^(3/10) 4032522481327392 a001 5473/16692641*64079^(10/23) 4032522481334344 a001 75025/54018521*15127^(7/20) 4032522481357261 a001 2576/103361*5778^(1/18) 4032522481370104 a001 10946/20633239*64079^(9/23) 4032522481379266 a001 507544128/12586269025 4032522481379266 a004 Fibonacci(21)/Lucas(24)/(1/2+sqrt(5)/2)^2 4032522481379266 a004 Fibonacci(24)/Lucas(21)/(1/2+sqrt(5)/2)^8 4032522481412769 a001 10946/12752043*64079^(8/23) 4032522481454755 a001 5473/219602*24476^(1/21) 4032522481455558 a001 5473/3940598*64079^(7/23) 4032522481498022 a001 10946/4870847*64079^(6/23) 4032522481541336 a001 10946/3010349*64079^(5/23) 4032522481582425 a001 5473/930249*64079^(4/23) 4032522481611103 a004 Fibonacci(21)*Lucas(25)/(1/2+sqrt(5)/2)^51 4032522481629339 a001 10946/1149851*64079^(3/23) 4032522481639759 a001 10946/4106118243*167761^(4/5) 4032522481661003 a001 10946/710647*64079^(2/23) 4032522481668416 a001 10946/370248451*167761^(3/5) 4032522481678646 a001 121393/4870847*5778^(1/18) 4032522481697069 a001 5473/16692641*167761^(2/5) 4032522481697074 a001 46368/54018521*15127^(2/5) 4032522481699657 a001 10946/271443 4032522481699657 a004 Fibonacci(26)/Lucas(21)/(1/2+sqrt(5)/2)^10 4032522481725536 a001 105937/4250681*5778^(1/18) 4032522481726174 a001 10946/3010349*167761^(1/5) 4032522481732377 a001 416020/16692641*5778^(1/18) 4032522481732592 a001 5473/219602*64079^(1/23) 4032522481733375 a001 726103/29134601*5778^(1/18) 4032522481733481 a004 Fibonacci(21)*Lucas(27)/(1/2+sqrt(5)/2)^53 4032522481733521 a001 5702887/228826127*5778^(1/18) 4032522481733542 a001 829464/33281921*5778^(1/18) 4032522481733545 a001 39088169/1568397607*5778^(1/18) 4032522481733546 a001 34111385/1368706081*5778^(1/18) 4032522481733546 a001 133957148/5374978561*5778^(1/18) 4032522481733546 a001 233802911/9381251041*5778^(1/18) 4032522481733546 a001 1836311903/73681302247*5778^(1/18) 4032522481733546 a001 267084832/10716675201*5778^(1/18) 4032522481733546 a001 12586269025/505019158607*5778^(1/18) 4032522481733546 a001 10983760033/440719107401*5778^(1/18) 4032522481733546 a001 43133785636/1730726404001*5778^(1/18) 4032522481733546 a001 75283811239/3020733700601*5778^(1/18) 4032522481733546 a001 182717648081/7331474697802*5778^(1/18) 4032522481733546 a001 139583862445/5600748293801*5778^(1/18) 4032522481733546 a001 53316291173/2139295485799*5778^(1/18) 4032522481733546 a001 10182505537/408569081798*5778^(1/18) 4032522481733546 a001 7778742049/312119004989*5778^(1/18) 4032522481733546 a001 2971215073/119218851371*5778^(1/18) 4032522481733546 a001 567451585/22768774562*5778^(1/18) 4032522481733546 a001 433494437/17393796001*5778^(1/18) 4032522481733546 a001 165580141/6643838879*5778^(1/18) 4032522481733546 a001 31622993/1268860318*5778^(1/18) 4032522481733547 a001 24157817/969323029*5778^(1/18) 4032522481733555 a001 9227465/370248451*5778^(1/18) 4032522481733611 a001 1762289/70711162*5778^(1/18) 4032522481733992 a001 1346269/54018521*5778^(1/18) 4032522481735804 a001 10946/28143753123*439204^(8/9) 4032522481736605 a001 514229/20633239*5778^(1/18) 4032522481738127 a001 10946/6643838879*439204^(7/9) 4032522481740449 a001 10946/1568397607*439204^(2/3) 4032522481742772 a001 10946/370248451*439204^(5/9) 4032522481745094 a001 10946/87403803*439204^(4/9) 4032522481746401 a001 10946/710647*(1/2+1/2*5^(1/2))^2 4032522481746401 a001 1739379603/43133785636 4032522481746401 a001 10946/710647*10749957122^(1/24) 4032522481746401 a001 10946/710647*4106118243^(1/23) 4032522481746401 a001 10946/710647*1568397607^(1/22) 4032522481746401 a001 10946/710647*599074578^(1/21) 4032522481746401 a001 10946/710647*228826127^(1/20) 4032522481746401 a004 Fibonacci(28)/Lucas(21)/(1/2+sqrt(5)/2)^12 4032522481746401 a001 10946/710647*87403803^(1/19) 4032522481746401 a001 10946/710647*33385282^(1/18) 4032522481746402 a001 10946/710647*12752043^(1/17) 4032522481746412 a001 10946/710647*4870847^(1/16) 4032522481746479 a001 10946/710647*1860498^(1/15) 4032522481746971 a001 10946/710647*710647^(1/14) 4032522481747427 a001 10946/20633239*439204^(1/3) 4032522481749570 a001 10946/4870847*439204^(2/9) 4032522481750611 a001 10946/710647*271443^(1/13) 4032522481751336 a004 Fibonacci(21)*Lucas(29)/(1/2+sqrt(5)/2)^55 4032522481753221 a001 5473/930249*(1/2+1/2*5^(1/2))^4 4032522481753221 a001 5473/930249*23725150497407^(1/16) 4032522481753221 a001 700577680/17373187209 4032522481753221 a001 5473/930249*73681302247^(1/13) 4032522481753221 a001 5473/930249*10749957122^(1/12) 4032522481753221 a001 5473/930249*4106118243^(2/23) 4032522481753221 a001 5473/930249*1568397607^(1/11) 4032522481753221 a001 5473/930249*599074578^(2/21) 4032522481753221 a001 5473/930249*228826127^(1/10) 4032522481753221 a004 Fibonacci(30)/Lucas(21)/(1/2+sqrt(5)/2)^14 4032522481753221 a001 5473/930249*87403803^(2/19) 4032522481753221 a001 5473/930249*33385282^(1/9) 4032522481753224 a001 5473/930249*12752043^(2/17) 4032522481753242 a001 5473/930249*4870847^(1/8) 4032522481753376 a001 5473/930249*1860498^(2/15) 4032522481753941 a004 Fibonacci(21)*Lucas(31)/(1/2+sqrt(5)/2)^57 4032522481754204 a001 10946/4870847*7881196^(2/11) 4032522481754216 a001 10946/4870847*141422324^(2/13) 4032522481754216 a001 10946/4870847*2537720636^(2/15) 4032522481754216 a001 10946/4870847*45537549124^(2/17) 4032522481754216 a001 10946/4870847*14662949395604^(2/21) 4032522481754216 a001 10946/4870847*(1/2+1/2*5^(1/2))^6 4032522481754216 a001 23843770314/591286729879 4032522481754216 a001 10946/4870847*10749957122^(1/8) 4032522481754216 a001 10946/4870847*4106118243^(3/23) 4032522481754216 a001 10946/4870847*1568397607^(3/22) 4032522481754216 a001 10946/4870847*599074578^(1/7) 4032522481754216 a004 Fibonacci(32)/Lucas(21)/(1/2+sqrt(5)/2)^16 4032522481754216 a001 10946/4870847*228826127^(3/20) 4032522481754216 a001 10946/4870847*87403803^(3/19) 4032522481754216 a001 10946/4870847*33385282^(1/6) 4032522481754220 a001 10946/4870847*12752043^(3/17) 4032522481754248 a001 10946/4870847*4870847^(3/16) 4032522481754321 a004 Fibonacci(21)*Lucas(33)/(1/2+sqrt(5)/2)^59 4032522481754327 a001 10946/505019158607*7881196^(10/11) 4032522481754333 a001 10946/119218851371*7881196^(9/11) 4032522481754339 a001 10946/28143753123*7881196^(8/11) 4032522481754342 a001 5473/5374978561*7881196^(2/3) 4032522481754344 a001 10946/6643838879*7881196^(7/11) 4032522481754350 a001 10946/1568397607*7881196^(6/11) 4032522481754356 a001 10946/370248451*7881196^(5/11) 4032522481754361 a001 10946/12752043*(1/2+1/2*5^(1/2))^8 4032522481754361 a001 10946/12752043*23725150497407^(1/8) 4032522481754361 a001 10946/12752043*505019158607^(1/7) 4032522481754361 a001 10946/12752043*73681302247^(2/13) 4032522481754361 a001 10946/12752043*10749957122^(1/6) 4032522481754361 a001 10946/12752043*4106118243^(4/23) 4032522481754361 a001 10946/12752043*1568397607^(2/11) 4032522481754361 a001 10946/12752043*599074578^(4/21) 4032522481754361 a004 Fibonacci(34)/Lucas(21)/(1/2+sqrt(5)/2)^18 4032522481754361 a001 10946/12752043*228826127^(1/5) 4032522481754361 a001 10946/12752043*87403803^(4/19) 4032522481754361 a001 5473/930249*710647^(1/7) 4032522481754362 a001 10946/87403803*7881196^(4/11) 4032522481754362 a001 10946/12752043*33385282^(2/9) 4032522481754366 a001 10946/54018521*7881196^(1/3) 4032522481754367 a001 10946/12752043*12752043^(4/17) 4032522481754376 a004 Fibonacci(21)*Lucas(35)/(1/2+sqrt(5)/2)^61 4032522481754378 a001 10946/20633239*7881196^(3/11) 4032522481754378 a001 10946/505019158607*20633239^(6/7) 4032522481754378 a001 5473/96450076809*20633239^(4/5) 4032522481754379 a001 5473/22768774562*20633239^(5/7) 4032522481754379 a001 5473/16692641*20633239^(2/7) 4032522481754380 a001 10946/6643838879*20633239^(3/5) 4032522481754380 a001 10946/4106118243*20633239^(4/7) 4032522481754382 a001 10946/370248451*20633239^(3/7) 4032522481754382 a001 10946/228826127*20633239^(2/5) 4032522481754382 a001 5473/16692641*2537720636^(2/9) 4032522481754382 a001 5473/16692641*(1/2+1/2*5^(1/2))^10 4032522481754382 a001 163427632992/4052739537881 4032522481754382 a001 5473/16692641*28143753123^(1/5) 4032522481754382 a001 5473/16692641*10749957122^(5/24) 4032522481754382 a001 5473/16692641*4106118243^(5/23) 4032522481754382 a001 5473/16692641*1568397607^(5/22) 4032522481754382 a001 5473/16692641*599074578^(5/21) 4032522481754382 a004 Fibonacci(36)/Lucas(21)/(1/2+sqrt(5)/2)^20 4032522481754382 a001 5473/16692641*228826127^(1/4) 4032522481754382 a001 5473/16692641*87403803^(5/19) 4032522481754383 a001 5473/16692641*33385282^(5/18) 4032522481754384 a004 Fibonacci(21)*Lucas(37)/(1/2+sqrt(5)/2)^63 4032522481754385 a001 10946/87403803*141422324^(4/13) 4032522481754385 a001 10946/87403803*2537720636^(4/15) 4032522481754385 a001 10946/87403803*45537549124^(4/17) 4032522481754385 a001 10946/87403803*817138163596^(4/19) 4032522481754385 a001 10946/87403803*14662949395604^(4/21) 4032522481754385 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^12/Lucas(38) 4032522481754385 a001 10946/87403803*192900153618^(2/9) 4032522481754385 a001 10946/87403803*73681302247^(3/13) 4032522481754385 a001 10946/87403803*10749957122^(1/4) 4032522481754385 a001 10946/87403803*4106118243^(6/23) 4032522481754385 a001 10946/87403803*1568397607^(3/11) 4032522481754385 a001 10946/87403803*599074578^(2/7) 4032522481754385 a004 Fibonacci(38)/Lucas(21)/(1/2+sqrt(5)/2)^22 4032522481754385 a001 10946/87403803*228826127^(3/10) 4032522481754385 a001 10946/87403803*87403803^(6/19) 4032522481754386 a004 Fibonacci(21)*Lucas(39)/(1/2+sqrt(5)/2)^65 4032522481754386 a001 10946/9062201101803*141422324^(12/13) 4032522481754386 a001 10946/2139295485799*141422324^(11/13) 4032522481754386 a001 10946/505019158607*141422324^(10/13) 4032522481754386 a001 10946/119218851371*141422324^(9/13) 4032522481754386 a001 10946/73681302247*141422324^(2/3) 4032522481754386 a001 10946/28143753123*141422324^(8/13) 4032522481754386 a001 10946/6643838879*141422324^(7/13) 4032522481754386 a001 10946/1568397607*141422324^(6/13) 4032522481754386 a001 10946/228826127*17393796001^(2/7) 4032522481754386 a001 10946/228826127*14662949395604^(2/9) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^14/Lucas(40) 4032522481754386 a001 10946/228826127*10749957122^(7/24) 4032522481754386 a001 10946/228826127*4106118243^(7/23) 4032522481754386 a001 10946/228826127*1568397607^(7/22) 4032522481754386 a001 10946/228826127*599074578^(1/3) 4032522481754386 a004 Fibonacci(40)/Lucas(21)/(1/2+sqrt(5)/2)^24 4032522481754386 a001 10946/228826127*228826127^(7/20) 4032522481754386 a001 10946/370248451*141422324^(5/13) 4032522481754386 a004 Fibonacci(21)*Lucas(41)/(1/2+sqrt(5)/2)^67 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^16/Lucas(42) 4032522481754386 a001 5473/299537289*23725150497407^(1/4) 4032522481754386 a001 5473/299537289*73681302247^(4/13) 4032522481754386 a001 5473/299537289*10749957122^(1/3) 4032522481754386 a001 5473/299537289*4106118243^(8/23) 4032522481754386 a001 5473/299537289*1568397607^(4/11) 4032522481754386 a001 5473/299537289*599074578^(8/21) 4032522481754386 a004 Fibonacci(21)*Lucas(43)/(1/2+sqrt(5)/2)^69 4032522481754386 a001 10946/1568397607*2537720636^(2/5) 4032522481754386 a001 10946/1568397607*45537549124^(6/17) 4032522481754386 a001 10946/1568397607*14662949395604^(2/7) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^18/Lucas(44) 4032522481754386 a001 10946/1568397607*192900153618^(1/3) 4032522481754386 a001 10946/1568397607*10749957122^(3/8) 4032522481754386 a001 10946/1568397607*4106118243^(9/23) 4032522481754386 a001 10946/1568397607*1568397607^(9/22) 4032522481754386 a004 Fibonacci(21)*Lucas(45)/(1/2+sqrt(5)/2)^71 4032522481754386 a001 10946/4106118243*2537720636^(4/9) 4032522481754386 a001 10946/9062201101803*2537720636^(4/5) 4032522481754386 a001 10946/5600748293801*2537720636^(7/9) 4032522481754386 a001 10946/2139295485799*2537720636^(11/15) 4032522481754386 a001 10946/505019158607*2537720636^(2/3) 4032522481754386 a001 10946/119218851371*2537720636^(3/5) 4032522481754386 a001 5473/22768774562*2537720636^(5/9) 4032522481754386 a001 10946/28143753123*2537720636^(8/15) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^20/Lucas(46) 4032522481754386 a001 10946/4106118243*23725150497407^(5/16) 4032522481754386 a001 10946/4106118243*505019158607^(5/14) 4032522481754386 a001 10946/4106118243*73681302247^(5/13) 4032522481754386 a001 10946/4106118243*28143753123^(2/5) 4032522481754386 a001 10946/4106118243*10749957122^(5/12) 4032522481754386 a001 10946/6643838879*2537720636^(7/15) 4032522481754386 a001 10946/4106118243*4106118243^(10/23) 4032522481754386 a004 Fibonacci(21)*Lucas(47)/(1/2+sqrt(5)/2)^73 4032522481754386 a001 5473/5374978561*312119004989^(2/5) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^22/Lucas(48) 4032522481754386 a001 5473/5374978561*10749957122^(11/24) 4032522481754386 a004 Fibonacci(21)*Lucas(49)/(1/2+sqrt(5)/2)^75 4032522481754386 a001 10946/5600748293801*17393796001^(5/7) 4032522481754386 a001 5473/96450076809*17393796001^(4/7) 4032522481754386 a001 10946/28143753123*45537549124^(8/17) 4032522481754386 a001 10946/28143753123*14662949395604^(8/21) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^24/Lucas(50) 4032522481754386 a001 10946/28143753123*192900153618^(4/9) 4032522481754386 a001 10946/28143753123*73681302247^(6/13) 4032522481754386 a004 Fibonacci(21)*Lucas(51)/(1/2+sqrt(5)/2)^77 4032522481754386 a001 10946/9062201101803*45537549124^(12/17) 4032522481754386 a001 5473/1730726404001*45537549124^(2/3) 4032522481754386 a001 10946/2139295485799*45537549124^(11/17) 4032522481754386 a001 10946/505019158607*45537549124^(10/17) 4032522481754386 a001 10946/119218851371*45537549124^(9/17) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^26/Lucas(52) 4032522481754386 a001 10946/73681302247*73681302247^(1/2) 4032522481754386 a004 Fibonacci(21)*Lucas(53)/(1/2+sqrt(5)/2)^79 4032522481754386 a001 5473/96450076809*14662949395604^(4/9) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^28/Lucas(54) 4032522481754386 a004 Fibonacci(21)*Lucas(55)/(1/2+sqrt(5)/2)^81 4032522481754386 a001 10946/505019158607*312119004989^(6/11) 4032522481754386 a001 10946/5600748293801*312119004989^(7/11) 4032522481754386 a001 10946/2139295485799*312119004989^(3/5) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^30/Lucas(56) 4032522481754386 a004 Fibonacci(21)*Lucas(57)/(1/2+sqrt(5)/2)^83 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^32/Lucas(58) 4032522481754386 a001 10946/1322157322203*23725150497407^(1/2) 4032522481754386 a004 Fibonacci(21)*Lucas(59)/(1/2+sqrt(5)/2)^85 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^34/Lucas(60) 4032522481754386 a004 Fibonacci(21)*Lucas(61)/(1/2+sqrt(5)/2)^87 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^36/Lucas(62) 4032522481754386 a004 Fibonacci(21)*Lucas(63)/(1/2+sqrt(5)/2)^89 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^38/Lucas(64) 4032522481754386 a004 Fibonacci(21)*Lucas(65)/(1/2+sqrt(5)/2)^91 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^40/Lucas(66) 4032522481754386 a004 Fibonacci(21)*Lucas(67)/(1/2+sqrt(5)/2)^93 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^42/Lucas(68) 4032522481754386 a004 Fibonacci(21)*Lucas(69)/(1/2+sqrt(5)/2)^95 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^44/Lucas(70) 4032522481754386 a004 Fibonacci(21)*Lucas(71)/(1/2+sqrt(5)/2)^97 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^46/Lucas(72) 4032522481754386 a004 Fibonacci(21)*Lucas(73)/(1/2+sqrt(5)/2)^99 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^48/Lucas(74) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^50/Lucas(76) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^52/Lucas(78) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^54/Lucas(80) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^56/Lucas(82) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^58/Lucas(84) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^60/Lucas(86) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^62/Lucas(88) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^64/Lucas(90) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^66/Lucas(92) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^68/Lucas(94) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^70/Lucas(96) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^72/Lucas(98) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^74/Lucas(100) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^73/Lucas(99) 4032522481754386 a004 Fibonacci(21)*Lucas(1)/(1/2+sqrt(5)/2)^26 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^71/Lucas(97) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^69/Lucas(95) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^67/Lucas(93) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^65/Lucas(91) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^63/Lucas(89) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^61/Lucas(87) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^59/Lucas(85) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^57/Lucas(83) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^55/Lucas(81) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^53/Lucas(79) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^51/Lucas(77) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^49/Lucas(75) 4032522481754386 a004 Fibonacci(21)*Lucas(74)/(1/2+sqrt(5)/2)^100 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^47/Lucas(73) 4032522481754386 a004 Fibonacci(21)*Lucas(72)/(1/2+sqrt(5)/2)^98 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^45/Lucas(71) 4032522481754386 a004 Fibonacci(21)*Lucas(70)/(1/2+sqrt(5)/2)^96 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^43/Lucas(69) 4032522481754386 a004 Fibonacci(21)*Lucas(68)/(1/2+sqrt(5)/2)^94 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^41/Lucas(67) 4032522481754386 a004 Fibonacci(21)*Lucas(66)/(1/2+sqrt(5)/2)^92 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^39/Lucas(65) 4032522481754386 a004 Fibonacci(21)*Lucas(64)/(1/2+sqrt(5)/2)^90 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^37/Lucas(63) 4032522481754386 a004 Fibonacci(21)*Lucas(62)/(1/2+sqrt(5)/2)^88 4032522481754386 a001 10946/5600748293801*14662949395604^(5/9) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^35/Lucas(61) 4032522481754386 a004 Fibonacci(21)*Lucas(60)/(1/2+sqrt(5)/2)^86 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^33/Lucas(59) 4032522481754386 a004 Fibonacci(21)*Lucas(58)/(1/2+sqrt(5)/2)^84 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^31/Lucas(57) 4032522481754386 a001 10946/1322157322203*505019158607^(4/7) 4032522481754386 a004 Fibonacci(21)*Lucas(56)/(1/2+sqrt(5)/2)^82 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^29/Lucas(55) 4032522481754386 a001 10946/312119004989*1322157322203^(1/2) 4032522481754386 a001 10946/505019158607*192900153618^(5/9) 4032522481754386 a001 10946/2139295485799*192900153618^(11/18) 4032522481754386 a004 Fibonacci(21)*Lucas(54)/(1/2+sqrt(5)/2)^80 4032522481754386 a001 10946/119218851371*817138163596^(9/19) 4032522481754386 a001 10946/119218851371*14662949395604^(3/7) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^27/Lucas(53) 4032522481754386 a001 10946/119218851371*192900153618^(1/2) 4032522481754386 a001 10946/1322157322203*73681302247^(8/13) 4032522481754386 a001 10946/9062201101803*73681302247^(9/13) 4032522481754386 a004 Fibonacci(21)*Lucas(52)/(1/2+sqrt(5)/2)^78 4032522481754386 a001 5473/22768774562*312119004989^(5/11) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^25/Lucas(51) 4032522481754386 a001 5473/22768774562*3461452808002^(5/12) 4032522481754386 a001 10946/505019158607*28143753123^(3/5) 4032522481754386 a001 10946/5600748293801*28143753123^(7/10) 4032522481754386 a001 5473/22768774562*28143753123^(1/2) 4032522481754386 a004 Fibonacci(21)*Lucas(50)/(1/2+sqrt(5)/2)^76 4032522481754386 a001 10946/28143753123*10749957122^(1/2) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^23/Lucas(49) 4032522481754386 a001 10946/73681302247*10749957122^(13/24) 4032522481754386 a001 10946/119218851371*10749957122^(9/16) 4032522481754386 a001 5473/96450076809*10749957122^(7/12) 4032522481754386 a001 10946/505019158607*10749957122^(5/8) 4032522481754386 a001 10946/1322157322203*10749957122^(2/3) 4032522481754386 a001 10946/2139295485799*10749957122^(11/16) 4032522481754386 a001 5473/1730726404001*10749957122^(17/24) 4032522481754386 a001 10946/9062201101803*10749957122^(3/4) 4032522481754386 a001 10946/23725150497407*10749957122^(19/24) 4032522481754386 a004 Fibonacci(21)*Lucas(48)/(1/2+sqrt(5)/2)^74 4032522481754386 a001 5473/5374978561*4106118243^(11/23) 4032522481754386 a001 10946/6643838879*17393796001^(3/7) 4032522481754386 a001 10946/6643838879*45537549124^(7/17) 4032522481754386 a001 10946/6643838879*14662949395604^(1/3) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^21/Lucas(47) 4032522481754386 a001 10946/6643838879*192900153618^(7/18) 4032522481754386 a001 10946/6643838879*10749957122^(7/16) 4032522481754386 a001 10946/28143753123*4106118243^(12/23) 4032522481754386 a001 10946/17393796001*4106118243^(1/2) 4032522481754386 a001 10946/73681302247*4106118243^(13/23) 4032522481754386 a001 5473/96450076809*4106118243^(14/23) 4032522481754386 a001 10946/505019158607*4106118243^(15/23) 4032522481754386 a001 10946/1322157322203*4106118243^(16/23) 4032522481754386 a001 5473/1730726404001*4106118243^(17/23) 4032522481754386 a001 10946/9062201101803*4106118243^(18/23) 4032522481754386 a001 10946/23725150497407*4106118243^(19/23) 4032522481754386 a004 Fibonacci(21)*Lucas(46)/(1/2+sqrt(5)/2)^72 4032522481754386 a001 10946/4106118243*1568397607^(5/11) 4032522481754386 a001 5473/1268860318*817138163596^(1/3) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^19/Lucas(45) 4032522481754386 a001 5473/5374978561*1568397607^(1/2) 4032522481754386 a001 10946/28143753123*1568397607^(6/11) 4032522481754386 a001 10946/73681302247*1568397607^(13/22) 4032522481754386 a001 5473/96450076809*1568397607^(7/11) 4032522481754386 a001 10946/505019158607*1568397607^(15/22) 4032522481754386 a001 10946/1322157322203*1568397607^(8/11) 4032522481754386 a001 10946/2139295485799*1568397607^(3/4) 4032522481754386 a001 5473/1730726404001*1568397607^(17/22) 4032522481754386 a001 10946/9062201101803*1568397607^(9/11) 4032522481754386 a001 10946/23725150497407*1568397607^(19/22) 4032522481754386 a004 Fibonacci(21)*Lucas(44)/(1/2+sqrt(5)/2)^70 4032522481754386 a001 10946/1568397607*599074578^(3/7) 4032522481754386 a001 10946/969323029*45537549124^(1/3) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^17/Lucas(43) 4032522481754386 a001 10946/4106118243*599074578^(10/21) 4032522481754386 a001 10946/6643838879*599074578^(1/2) 4032522481754386 a001 5473/5374978561*599074578^(11/21) 4032522481754386 a001 10946/28143753123*599074578^(4/7) 4032522481754386 a001 10946/73681302247*599074578^(13/21) 4032522481754386 a001 10946/119218851371*599074578^(9/14) 4032522481754386 a001 5473/96450076809*599074578^(2/3) 4032522481754386 a001 10946/505019158607*599074578^(5/7) 4032522481754386 a001 10946/1322157322203*599074578^(16/21) 4032522481754386 a001 10946/2139295485799*599074578^(11/14) 4032522481754386 a001 5473/1730726404001*599074578^(17/21) 4032522481754386 a001 10946/5600748293801*599074578^(5/6) 4032522481754386 a004 Fibonacci(44)/Lucas(21)/(1/2+sqrt(5)/2)^28 4032522481754386 a001 10946/9062201101803*599074578^(6/7) 4032522481754386 a001 10946/23725150497407*599074578^(19/21) 4032522481754386 a004 Fibonacci(46)/Lucas(21)/(1/2+sqrt(5)/2)^30 4032522481754386 a004 Fibonacci(48)/Lucas(21)/(1/2+sqrt(5)/2)^32 4032522481754386 a004 Fibonacci(50)/Lucas(21)/(1/2+sqrt(5)/2)^34 4032522481754386 a004 Fibonacci(52)/Lucas(21)/(1/2+sqrt(5)/2)^36 4032522481754386 a004 Fibonacci(54)/Lucas(21)/(1/2+sqrt(5)/2)^38 4032522481754386 a004 Fibonacci(56)/Lucas(21)/(1/2+sqrt(5)/2)^40 4032522481754386 a004 Fibonacci(58)/Lucas(21)/(1/2+sqrt(5)/2)^42 4032522481754386 a004 Fibonacci(60)/Lucas(21)/(1/2+sqrt(5)/2)^44 4032522481754386 a004 Fibonacci(62)/Lucas(21)/(1/2+sqrt(5)/2)^46 4032522481754386 a004 Fibonacci(64)/Lucas(21)/(1/2+sqrt(5)/2)^48 4032522481754386 a004 Fibonacci(66)/Lucas(21)/(1/2+sqrt(5)/2)^50 4032522481754386 a004 Fibonacci(68)/Lucas(21)/(1/2+sqrt(5)/2)^52 4032522481754386 a004 Fibonacci(70)/Lucas(21)/(1/2+sqrt(5)/2)^54 4032522481754386 a004 Fibonacci(72)/Lucas(21)/(1/2+sqrt(5)/2)^56 4032522481754386 a004 Fibonacci(74)/Lucas(21)/(1/2+sqrt(5)/2)^58 4032522481754386 a004 Fibonacci(76)/Lucas(21)/(1/2+sqrt(5)/2)^60 4032522481754386 a004 Fibonacci(78)/Lucas(21)/(1/2+sqrt(5)/2)^62 4032522481754386 a004 Fibonacci(80)/Lucas(21)/(1/2+sqrt(5)/2)^64 4032522481754386 a004 Fibonacci(82)/Lucas(21)/(1/2+sqrt(5)/2)^66 4032522481754386 a004 Fibonacci(21)*Lucas(42)/(1/2+sqrt(5)/2)^68 4032522481754386 a004 Fibonacci(86)/Lucas(21)/(1/2+sqrt(5)/2)^70 4032522481754386 a004 Fibonacci(88)/Lucas(21)/(1/2+sqrt(5)/2)^72 4032522481754386 a004 Fibonacci(90)/Lucas(21)/(1/2+sqrt(5)/2)^74 4032522481754386 a004 Fibonacci(92)/Lucas(21)/(1/2+sqrt(5)/2)^76 4032522481754386 a004 Fibonacci(94)/Lucas(21)/(1/2+sqrt(5)/2)^78 4032522481754386 a004 Fibonacci(96)/Lucas(21)/(1/2+sqrt(5)/2)^80 4032522481754386 a004 Fibonacci(100)/Lucas(21)/(1/2+sqrt(5)/2)^84 4032522481754386 a004 Fibonacci(98)/Lucas(21)/(1/2+sqrt(5)/2)^82 4032522481754386 a004 Fibonacci(99)/Lucas(21)/(1/2+sqrt(5)/2)^83 4032522481754386 a004 Fibonacci(97)/Lucas(21)/(1/2+sqrt(5)/2)^81 4032522481754386 a004 Fibonacci(95)/Lucas(21)/(1/2+sqrt(5)/2)^79 4032522481754386 a004 Fibonacci(93)/Lucas(21)/(1/2+sqrt(5)/2)^77 4032522481754386 a004 Fibonacci(91)/Lucas(21)/(1/2+sqrt(5)/2)^75 4032522481754386 a004 Fibonacci(89)/Lucas(21)/(1/2+sqrt(5)/2)^73 4032522481754386 a004 Fibonacci(87)/Lucas(21)/(1/2+sqrt(5)/2)^71 4032522481754386 a004 Fibonacci(85)/Lucas(21)/(1/2+sqrt(5)/2)^69 4032522481754386 a004 Fibonacci(83)/Lucas(21)/(1/2+sqrt(5)/2)^67 4032522481754386 a004 Fibonacci(81)/Lucas(21)/(1/2+sqrt(5)/2)^65 4032522481754386 a004 Fibonacci(79)/Lucas(21)/(1/2+sqrt(5)/2)^63 4032522481754386 a004 Fibonacci(77)/Lucas(21)/(1/2+sqrt(5)/2)^61 4032522481754386 a004 Fibonacci(75)/Lucas(21)/(1/2+sqrt(5)/2)^59 4032522481754386 a004 Fibonacci(73)/Lucas(21)/(1/2+sqrt(5)/2)^57 4032522481754386 a004 Fibonacci(71)/Lucas(21)/(1/2+sqrt(5)/2)^55 4032522481754386 a004 Fibonacci(69)/Lucas(21)/(1/2+sqrt(5)/2)^53 4032522481754386 a004 Fibonacci(67)/Lucas(21)/(1/2+sqrt(5)/2)^51 4032522481754386 a004 Fibonacci(65)/Lucas(21)/(1/2+sqrt(5)/2)^49 4032522481754386 a004 Fibonacci(63)/Lucas(21)/(1/2+sqrt(5)/2)^47 4032522481754386 a004 Fibonacci(61)/Lucas(21)/(1/2+sqrt(5)/2)^45 4032522481754386 a004 Fibonacci(59)/Lucas(21)/(1/2+sqrt(5)/2)^43 4032522481754386 a004 Fibonacci(57)/Lucas(21)/(1/2+sqrt(5)/2)^41 4032522481754386 a004 Fibonacci(55)/Lucas(21)/(1/2+sqrt(5)/2)^39 4032522481754386 a004 Fibonacci(53)/Lucas(21)/(1/2+sqrt(5)/2)^37 4032522481754386 a004 Fibonacci(51)/Lucas(21)/(1/2+sqrt(5)/2)^35 4032522481754386 a004 Fibonacci(49)/Lucas(21)/(1/2+sqrt(5)/2)^33 4032522481754386 a004 Fibonacci(47)/Lucas(21)/(1/2+sqrt(5)/2)^31 4032522481754386 a004 Fibonacci(45)/Lucas(21)/(1/2+sqrt(5)/2)^29 4032522481754386 a004 Fibonacci(43)/Lucas(21)/(1/2+sqrt(5)/2)^27 4032522481754386 a001 5473/299537289*228826127^(2/5) 4032522481754386 a001 10946/370248451*2537720636^(1/3) 4032522481754386 a001 10946/370248451*45537549124^(5/17) 4032522481754386 a001 10946/370248451*312119004989^(3/11) 4032522481754386 a001 10946/370248451*14662949395604^(5/21) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^15/Lucas(41) 4032522481754386 a001 10946/370248451*192900153618^(5/18) 4032522481754386 a001 10946/370248451*28143753123^(3/10) 4032522481754386 a001 10946/370248451*10749957122^(5/16) 4032522481754386 a001 10946/1568397607*228826127^(9/20) 4032522481754386 a001 10946/370248451*599074578^(5/14) 4032522481754386 a001 10946/4106118243*228826127^(1/2) 4032522481754386 a004 Fibonacci(41)/Lucas(21)/(1/2+sqrt(5)/2)^25 4032522481754386 a001 5473/5374978561*228826127^(11/20) 4032522481754386 a001 10946/28143753123*228826127^(3/5) 4032522481754386 a001 5473/22768774562*228826127^(5/8) 4032522481754386 a001 10946/73681302247*228826127^(13/20) 4032522481754386 a001 5473/96450076809*228826127^(7/10) 4032522481754386 a001 10946/505019158607*228826127^(3/4) 4032522481754386 a001 10946/370248451*228826127^(3/8) 4032522481754386 a001 10946/1322157322203*228826127^(4/5) 4032522481754386 a001 5473/1730726404001*228826127^(17/20) 4032522481754386 a001 10946/5600748293801*228826127^(7/8) 4032522481754386 a001 10946/9062201101803*228826127^(9/10) 4032522481754386 a001 10946/23725150497407*228826127^(19/20) 4032522481754386 a004 Fibonacci(21)*Lucas(40)/(1/2+sqrt(5)/2)^66 4032522481754386 a001 10946/228826127*87403803^(7/19) 4032522481754386 a001 5473/70711162*141422324^(1/3) 4032522481754386 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^13/Lucas(39) 4032522481754386 a001 5473/70711162*73681302247^(1/4) 4032522481754386 a001 5473/299537289*87403803^(8/19) 4032522481754386 a004 Fibonacci(39)/Lucas(21)/(1/2+sqrt(5)/2)^23 4032522481754386 a001 10946/1568397607*87403803^(9/19) 4032522481754386 a001 5473/1268860318*87403803^(1/2) 4032522481754386 a001 10946/4106118243*87403803^(10/19) 4032522481754386 a001 5473/5374978561*87403803^(11/19) 4032522481754386 a001 10946/28143753123*87403803^(12/19) 4032522481754386 a001 10946/73681302247*87403803^(13/19) 4032522481754386 a001 5473/96450076809*87403803^(14/19) 4032522481754386 a001 10946/505019158607*87403803^(15/19) 4032522481754386 a001 10946/1322157322203*87403803^(16/19) 4032522481754386 a001 5473/1730726404001*87403803^(17/19) 4032522481754386 a001 10946/9062201101803*87403803^(18/19) 4032522481754386 a004 Fibonacci(21)*Lucas(38)/(1/2+sqrt(5)/2)^64 4032522481754386 a001 10946/87403803*33385282^(1/3) 4032522481754387 a001 10946/228826127*33385282^(7/18) 4032522481754387 a001 10946/54018521*312119004989^(1/5) 4032522481754387 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^11/Lucas(37) 4032522481754387 a001 10946/54018521*1568397607^(1/4) 4032522481754387 a004 Fibonacci(37)/Lucas(21)/(1/2+sqrt(5)/2)^21 4032522481754387 a001 10946/370248451*33385282^(5/12) 4032522481754387 a001 5473/299537289*33385282^(4/9) 4032522481754388 a001 10946/1568397607*33385282^(1/2) 4032522481754388 a001 10946/4106118243*33385282^(5/9) 4032522481754388 a001 10946/6643838879*33385282^(7/12) 4032522481754388 a001 5473/5374978561*33385282^(11/18) 4032522481754388 a001 10946/28143753123*33385282^(2/3) 4032522481754388 a001 10946/73681302247*33385282^(13/18) 4032522481754388 a001 10946/119218851371*33385282^(3/4) 4032522481754389 a001 5473/96450076809*33385282^(7/9) 4032522481754389 a001 10946/505019158607*33385282^(5/6) 4032522481754389 a001 10946/1322157322203*33385282^(8/9) 4032522481754389 a001 10946/2139295485799*33385282^(11/12) 4032522481754389 a001 5473/1730726404001*33385282^(17/18) 4032522481754389 a004 Fibonacci(21)*Lucas(36)/(1/2+sqrt(5)/2)^62 4032522481754389 a001 5473/16692641*12752043^(5/17) 4032522481754394 a001 10946/87403803*12752043^(6/17) 4032522481754395 a001 10946/20633239*141422324^(3/13) 4032522481754395 a001 10946/20633239*2537720636^(1/5) 4032522481754395 a001 10946/20633239*45537549124^(3/17) 4032522481754395 a001 101003831890/2504730781961 4032522481754395 a001 10946/20633239*(1/2+1/2*5^(1/2))^9 4032522481754395 a001 10946/20633239*192900153618^(1/6) 4032522481754395 a001 10946/20633239*10749957122^(3/16) 4032522481754395 a001 10946/20633239*599074578^(3/14) 4032522481754395 a004 Fibonacci(35)/Lucas(21)/(1/2+sqrt(5)/2)^19 4032522481754396 a001 10946/228826127*12752043^(7/17) 4032522481754396 a001 10946/20633239*33385282^(1/4) 4032522481754397 a001 5473/299537289*12752043^(8/17) 4032522481754398 a001 10946/969323029*12752043^(1/2) 4032522481754399 a001 10946/1568397607*12752043^(9/17) 4032522481754400 a001 10946/4106118243*12752043^(10/17) 4032522481754402 a001 5473/5374978561*12752043^(11/17) 4032522481754403 a001 10946/28143753123*12752043^(12/17) 4032522481754403 a001 10946/12752043*4870847^(1/4) 4032522481754405 a001 10946/73681302247*12752043^(13/17) 4032522481754406 a001 5473/96450076809*12752043^(14/17) 4032522481754408 a001 10946/505019158607*12752043^(15/17) 4032522481754409 a001 10946/1322157322203*12752043^(16/17) 4032522481754411 a004 Fibonacci(21)*Lucas(34)/(1/2+sqrt(5)/2)^60 4032522481754435 a001 5473/16692641*4870847^(5/16) 4032522481754449 a001 10946/4870847*1860498^(1/5) 4032522481754449 a001 10946/87403803*4870847^(3/8) 4032522481754451 a001 5473/3940598*17393796001^(1/7) 4032522481754451 a001 38580030788/956722026041 4032522481754451 a001 5473/3940598*14662949395604^(1/9) 4032522481754451 a001 5473/3940598*(1/2+1/2*5^(1/2))^7 4032522481754451 a001 5473/3940598*599074578^(1/6) 4032522481754451 a004 Fibonacci(33)/Lucas(21)/(1/2+sqrt(5)/2)^17 4032522481754460 a001 10946/228826127*4870847^(7/16) 4032522481754471 a001 5473/299537289*4870847^(1/2) 4032522481754481 a001 10946/1568397607*4870847^(9/16) 4032522481754492 a001 10946/4106118243*4870847^(5/8) 4032522481754503 a001 5473/5374978561*4870847^(11/16) 4032522481754513 a001 10946/28143753123*4870847^(3/4) 4032522481754515 a001 98209/3940598*5778^(1/18) 4032522481754524 a001 10946/73681302247*4870847^(13/16) 4032522481754534 a001 5473/96450076809*4870847^(7/8) 4032522481754545 a001 10946/505019158607*4870847^(15/16) 4032522481754556 a004 Fibonacci(21)*Lucas(32)/(1/2+sqrt(5)/2)^58 4032522481754672 a001 10946/12752043*1860498^(4/15) 4032522481754745 a001 10946/20633239*1860498^(3/10) 4032522481754770 a001 5473/16692641*1860498^(1/3) 4032522481754829 a001 10946/3010349*20633239^(1/7) 4032522481754831 a001 10946/3010349*2537720636^(1/9) 4032522481754831 a001 7368130237/182717648081 4032522481754831 a001 10946/3010349*312119004989^(1/11) 4032522481754831 a001 10946/3010349*(1/2+1/2*5^(1/2))^5 4032522481754831 a001 10946/3010349*28143753123^(1/10) 4032522481754831 a001 10946/3010349*228826127^(1/8) 4032522481754831 a004 Fibonacci(31)/Lucas(21)/(1/2+sqrt(5)/2)^15 4032522481754851 a001 10946/87403803*1860498^(2/5) 4032522481754929 a001 10946/228826127*1860498^(7/15) 4032522481754968 a001 10946/370248451*1860498^(1/2) 4032522481755007 a001 5473/299537289*1860498^(8/15) 4032522481755025 a001 10946/3010349*1860498^(1/6) 4032522481755085 a001 10946/1568397607*1860498^(3/5) 4032522481755113 a001 10946/1149851*439204^(1/9) 4032522481755162 a001 10946/4106118243*1860498^(2/3) 4032522481755201 a001 10946/6643838879*1860498^(7/10) 4032522481755240 a001 5473/5374978561*1860498^(11/15) 4032522481755318 a001 10946/28143753123*1860498^(4/5) 4032522481755357 a001 5473/22768774562*1860498^(5/6) 4032522481755395 a001 10946/73681302247*1860498^(13/15) 4032522481755434 a001 10946/119218851371*1860498^(9/10) 4032522481755473 a001 5473/96450076809*1860498^(14/15) 4032522481755551 a004 Fibonacci(21)*Lucas(30)/(1/2+sqrt(5)/2)^56 4032522481755927 a001 10946/4870847*710647^(3/14) 4032522481756447 a001 5473/3940598*710647^(1/4) 4032522481756642 a001 10946/12752043*710647^(2/7) 4032522481757234 a001 5473/16692641*710647^(5/14) 4032522481757430 a001 10946/1149851*7881196^(1/11) 4032522481757436 a001 10946/1149851*141422324^(1/13) 4032522481757436 a001 10946/1149851*2537720636^(1/15) 4032522481757436 a001 10946/1149851*45537549124^(1/17) 4032522481757436 a001 5628750634/139583862445 4032522481757436 a001 10946/1149851*14662949395604^(1/21) 4032522481757436 a001 10946/1149851*(1/2+1/2*5^(1/2))^3 4032522481757436 a001 10946/1149851*192900153618^(1/18) 4032522481757436 a001 10946/1149851*10749957122^(1/16) 4032522481757436 a001 10946/1149851*599074578^(1/14) 4032522481757436 a004 Fibonacci(29)/Lucas(21)/(1/2+sqrt(5)/2)^13 4032522481757436 a001 10946/1149851*33385282^(1/12) 4032522481757552 a001 10946/1149851*1860498^(1/10) 4032522481757807 a001 10946/87403803*710647^(3/7) 4032522481758378 a001 10946/228826127*710647^(1/2) 4032522481758949 a001 5473/299537289*710647^(4/7) 4032522481759519 a001 10946/1568397607*710647^(9/14) 4032522481760089 a001 10946/4106118243*710647^(5/7) 4032522481760374 a001 10946/6643838879*710647^(3/4) 4032522481760660 a001 5473/5374978561*710647^(11/14) 4032522481761230 a001 10946/28143753123*710647^(6/7) 4032522481761641 a001 5473/930249*271443^(2/13) 4032522481761800 a001 10946/73681302247*710647^(13/14) 4032522481762371 a004 Fibonacci(21)*Lucas(28)/(1/2+sqrt(5)/2)^54 4032522481766846 a001 10946/4870847*271443^(3/13) 4032522481771201 a001 10946/12752043*271443^(4/13) 4032522481775290 a001 2149991428/53316291173 4032522481775290 a001 5473/439204+5473/439204*5^(1/2) 4032522481775290 a004 Fibonacci(27)/Lucas(21)/(1/2+sqrt(5)/2)^11 4032522481775432 a001 5473/16692641*271443^(5/13) 4032522481777661 a001 10946/710647*103682^(1/12) 4032522481779645 a001 10946/87403803*271443^(6/13) 4032522481781751 a001 5473/70711162*271443^(1/2) 4032522481783855 a001 10946/228826127*271443^(7/13) 4032522481788065 a001 5473/299537289*271443^(8/13) 4032522481790920 a001 5473/219602*103682^(1/24) 4032522481792275 a001 10946/1568397607*271443^(9/13) 4032522481796485 a001 10946/4106118243*271443^(10/13) 4032522481800695 a001 5473/5374978561*271443^(11/13) 4032522481804326 a001 10946/1149851*103682^(1/8) 4032522481804905 a001 10946/28143753123*271443^(12/13) 4032522481809115 a004 Fibonacci(21)*Lucas(26)/(1/2+sqrt(5)/2)^52 4032522481815741 a001 5473/930249*103682^(1/6) 4032522481832981 a001 10946/3010349*103682^(5/24) 4032522481847996 a001 10946/4870847*103682^(1/4) 4032522481863861 a001 5473/3940598*103682^(7/24) 4032522481877274 a001 75025/3010349*5778^(1/18) 4032522481879401 a001 10946/12752043*103682^(1/3) 4032522481892159 a001 5473/219602*39603^(1/22) 4032522481895065 a001 10946/20633239*103682^(3/8) 4032522481897669 a001 410611825/10182505537 4032522481897669 a004 Fibonacci(21)/Lucas(25)/(1/2+sqrt(5)/2) 4032522481897669 a004 Fibonacci(25)/Lucas(21)/(1/2+sqrt(5)/2)^9 4032522481910682 a001 5473/16692641*103682^(5/12) 4032522481926317 a001 10946/54018521*103682^(11/24) 4032522481941945 a001 10946/87403803*103682^(1/2) 4032522481957576 a001 5473/70711162*103682^(13/24) 4032522481973206 a001 10946/228826127*103682^(7/12) 4032522481980138 a001 10946/710647*39603^(1/11) 4032522481988836 a001 10946/370248451*103682^(5/8) 4032522482004466 a001 5473/299537289*103682^(2/3) 4032522482017463 a001 233/271444*15127^(2/5) 4032522482020096 a001 10946/969323029*103682^(17/24) 4032522482035726 a001 10946/1568397607*103682^(3/4) 4032522482051356 a001 5473/1268860318*103682^(19/24) 4032522482064208 a001 317811/370248451*15127^(2/5) 4032522482066986 a001 10946/4106118243*103682^(5/6) 4032522482071027 a001 832040/969323029*15127^(2/5) 4032522482072022 a001 2178309/2537720636*15127^(2/5) 4032522482072168 a001 5702887/6643838879*15127^(2/5) 4032522482072189 a001 14930352/17393796001*15127^(2/5) 4032522482072192 a001 39088169/45537549124*15127^(2/5) 4032522482072192 a001 102334155/119218851371*15127^(2/5) 4032522482072192 a001 267914296/312119004989*15127^(2/5) 4032522482072192 a001 701408733/817138163596*15127^(2/5) 4032522482072192 a001 1836311903/2139295485799*15127^(2/5) 4032522482072192 a001 4807526976/5600748293801*15127^(2/5) 4032522482072192 a001 12586269025/14662949395604*15127^(2/5) 4032522482072192 a001 20365011074/23725150497407*15127^(2/5) 4032522482072192 a001 7778742049/9062201101803*15127^(2/5) 4032522482072192 a001 2971215073/3461452808002*15127^(2/5) 4032522482072192 a001 1134903170/1322157322203*15127^(2/5) 4032522482072192 a001 433494437/505019158607*15127^(2/5) 4032522482072192 a001 165580141/192900153618*15127^(2/5) 4032522482072193 a001 63245986/73681302247*15127^(2/5) 4032522482072194 a001 24157817/28143753123*15127^(2/5) 4032522482072202 a001 9227465/10749957122*15127^(2/5) 4032522482072257 a001 3524578/4106118243*15127^(2/5) 4032522482072637 a001 1346269/1568397607*15127^(2/5) 4032522482075242 a001 514229/599074578*15127^(2/5) 4032522482082616 a001 10946/6643838879*103682^(7/8) 4032522482093097 a001 196418/228826127*15127^(2/5) 4032522482098246 a001 5473/5374978561*103682^(11/12) 4032522482108042 a001 10946/1149851*39603^(3/22) 4032522482113876 a001 10946/17393796001*103682^(23/24) 4032522482129506 a004 Fibonacci(21)*Lucas(24)/(1/2+sqrt(5)/2)^50 4032522482144479 a001 17711/87403803*15127^(11/20) 4032522482173146 a001 28657/20633239*15127^(7/20) 4032522482215475 a001 75025/87403803*15127^(2/5) 4032522482220695 a001 5473/930249*39603^(2/11) 4032522482307873 a001 4181/228826127*9349^(16/19) 4032522482339174 a001 10946/3010349*39603^(5/22) 4032522482455428 a001 10946/4870847*39603^(3/11) 4032522482572531 a001 5473/3940598*39603^(7/22) 4032522482578204 a001 15456/29134601*15127^(9/20) 4032522482656423 a001 5473/219602*15127^(1/20) 4032522482689310 a001 10946/12752043*39603^(4/11) 4032522482718672 a001 28657/1149851*5778^(1/18) 4032522482736462 a001 24129194/598364773 4032522482736462 a004 Fibonacci(21)/Lucas(23)/(1/2+sqrt(5)/2)^3 4032522482736462 a004 Fibonacci(23)/Lucas(21)/(1/2+sqrt(5)/2)^7 4032522482806213 a001 10946/20633239*39603^(9/22) 4032522482898596 a001 121393/228826127*15127^(9/20) 4032522482923068 a001 5473/16692641*39603^(5/11) 4032522482945340 a001 377/710646*15127^(9/20) 4032522482952160 a001 832040/1568397607*15127^(9/20) 4032522482953155 a001 726103/1368706081*15127^(9/20) 4032522482953300 a001 5702887/10749957122*15127^(9/20) 4032522482953321 a001 4976784/9381251041*15127^(9/20) 4032522482953324 a001 39088169/73681302247*15127^(9/20) 4032522482953325 a001 34111385/64300051206*15127^(9/20) 4032522482953325 a001 267914296/505019158607*15127^(9/20) 4032522482953325 a001 233802911/440719107401*15127^(9/20) 4032522482953325 a001 1836311903/3461452808002*15127^(9/20) 4032522482953325 a001 1602508992/3020733700601*15127^(9/20) 4032522482953325 a001 12586269025/23725150497407*15127^(9/20) 4032522482953325 a001 7778742049/14662949395604*15127^(9/20) 4032522482953325 a001 2971215073/5600748293801*15127^(9/20) 4032522482953325 a001 1134903170/2139295485799*15127^(9/20) 4032522482953325 a001 433494437/817138163596*15127^(9/20) 4032522482953325 a001 165580141/312119004989*15127^(9/20) 4032522482953325 a001 63245986/119218851371*15127^(9/20) 4032522482953326 a001 24157817/45537549124*15127^(9/20) 4032522482953334 a001 9227465/17393796001*15127^(9/20) 4032522482953390 a001 3524578/6643838879*15127^(9/20) 4032522482953770 a001 1346269/2537720636*15127^(9/20) 4032522482956375 a001 514229/969323029*15127^(9/20) 4032522482974230 a001 196418/370248451*15127^(9/20) 4032522483025613 a001 17711/141422324*15127^(3/5) 4032522483039942 a001 10946/54018521*39603^(1/2) 4032522483054265 a001 28657/33385282*15127^(2/5) 4032522483096608 a001 75025/141422324*15127^(9/20) 4032522483156809 a001 10946/87403803*39603^(6/11) 4032522483273678 a001 5473/70711162*39603^(13/22) 4032522483361168 r005 Im(z^2+c),c=-4/29+3/5*I,n=60 4032522483390546 a001 10946/228826127*39603^(7/11) 4032522483459338 a001 11592/35355581*15127^(1/2) 4032522483507415 a001 10946/370248451*39603^(15/22) 4032522483508666 a001 10946/710647*15127^(1/10) 4032522483624284 a001 5473/299537289*39603^(8/11) 4032522483741152 a001 10946/969323029*39603^(17/22) 4032522483779728 a001 121393/370248451*15127^(1/2) 4032522483800971 r009 Re(z^3+c),c=-15/31+13/59*I,n=38 4032522483826472 a001 317811/969323029*15127^(1/2) 4032522483833292 a001 610/1860499*15127^(1/2) 4032522483834287 a001 2178309/6643838879*15127^(1/2) 4032522483834432 a001 5702887/17393796001*15127^(1/2) 4032522483834454 a001 3732588/11384387281*15127^(1/2) 4032522483834457 a001 39088169/119218851371*15127^(1/2) 4032522483834457 a001 9303105/28374454999*15127^(1/2) 4032522483834457 a001 66978574/204284540899*15127^(1/2) 4032522483834457 a001 701408733/2139295485799*15127^(1/2) 4032522483834457 a001 1836311903/5600748293801*15127^(1/2) 4032522483834457 a001 1201881744/3665737348901*15127^(1/2) 4032522483834457 a001 7778742049/23725150497407*15127^(1/2) 4032522483834457 a001 2971215073/9062201101803*15127^(1/2) 4032522483834457 a001 567451585/1730726404001*15127^(1/2) 4032522483834457 a001 433494437/1322157322203*15127^(1/2) 4032522483834457 a001 165580141/505019158607*15127^(1/2) 4032522483834457 a001 31622993/96450076809*15127^(1/2) 4032522483834459 a001 24157817/73681302247*15127^(1/2) 4032522483834467 a001 9227465/28143753123*15127^(1/2) 4032522483834522 a001 1762289/5374978561*15127^(1/2) 4032522483834902 a001 1346269/4106118243*15127^(1/2) 4032522483837507 a001 514229/1568397607*15127^(1/2) 4032522483855362 a001 98209/299537289*15127^(1/2) 4032522483858021 a001 10946/1568397607*39603^(9/11) 4032522483902083 a001 4181/271443*3571^(2/17) 4032522483906745 a001 17711/228826127*15127^(13/20) 4032522483935403 a001 28657/54018521*15127^(9/20) 4032522483974890 a001 5473/1268860318*39603^(19/22) 4032522483977740 a001 75025/228826127*15127^(1/2) 4032522484091758 a001 10946/4106118243*39603^(10/11) 4032522484208627 a001 10946/6643838879*39603^(21/22) 4032522484245185 a001 6765/1149851*5778^(2/9) 4032522484325496 a004 Fibonacci(21)*Lucas(22)/(1/2+sqrt(5)/2)^48 4032522484340470 a001 46368/228826127*15127^(11/20) 4032522484400833 a001 10946/1149851*15127^(3/20) 4032522484660860 a001 121393/599074578*15127^(11/20) 4032522484707605 a001 317811/1568397607*15127^(11/20) 4032522484714425 a001 832040/4106118243*15127^(11/20) 4032522484715420 a001 987/4870846*15127^(11/20) 4032522484715565 a001 5702887/28143753123*15127^(11/20) 4032522484715586 a001 14930352/73681302247*15127^(11/20) 4032522484715589 a001 39088169/192900153618*15127^(11/20) 4032522484715590 a001 102334155/505019158607*15127^(11/20) 4032522484715590 a001 267914296/1322157322203*15127^(11/20) 4032522484715590 a001 701408733/3461452808002*15127^(11/20) 4032522484715590 a001 1836311903/9062201101803*15127^(11/20) 4032522484715590 a001 4807526976/23725150497407*15127^(11/20) 4032522484715590 a001 2971215073/14662949395604*15127^(11/20) 4032522484715590 a001 1134903170/5600748293801*15127^(11/20) 4032522484715590 a001 433494437/2139295485799*15127^(11/20) 4032522484715590 a001 165580141/817138163596*15127^(11/20) 4032522484715590 a001 63245986/312119004989*15127^(11/20) 4032522484715591 a001 24157817/119218851371*15127^(11/20) 4032522484715599 a001 9227465/45537549124*15127^(11/20) 4032522484715655 a001 3524578/17393796001*15127^(11/20) 4032522484716035 a001 1346269/6643838879*15127^(11/20) 4032522484718640 a001 514229/2537720636*15127^(11/20) 4032522484736121 a001 4181/141422324*9349^(15/19) 4032522484736494 a001 196418/969323029*15127^(11/20) 4032522484787877 a001 17711/370248451*15127^(7/10) 4032522484816533 a001 28657/87403803*15127^(1/2) 4032522484858873 a001 75025/370248451*15127^(11/20) 4032522485221602 a001 46368/370248451*15127^(3/5) 4032522485277751 a001 5473/930249*15127^(1/5) 4032522485541993 a001 121393/969323029*15127^(3/5) 4032522485588737 a001 317811/2537720636*15127^(3/5) 4032522485595557 a001 832040/6643838879*15127^(3/5) 4032522485596552 a001 2178309/17393796001*15127^(3/5) 4032522485596697 a001 1597/12752044*15127^(3/5) 4032522485596719 a001 14930352/119218851371*15127^(3/5) 4032522485596722 a001 39088169/312119004989*15127^(3/5) 4032522485596722 a001 102334155/817138163596*15127^(3/5) 4032522485596722 a001 267914296/2139295485799*15127^(3/5) 4032522485596722 a001 701408733/5600748293801*15127^(3/5) 4032522485596722 a001 1836311903/14662949395604*15127^(3/5) 4032522485596722 a001 2971215073/23725150497407*15127^(3/5) 4032522485596722 a001 1134903170/9062201101803*15127^(3/5) 4032522485596722 a001 433494437/3461452808002*15127^(3/5) 4032522485596722 a001 165580141/1322157322203*15127^(3/5) 4032522485596722 a001 63245986/505019158607*15127^(3/5) 4032522485596724 a001 24157817/192900153618*15127^(3/5) 4032522485596732 a001 9227465/73681302247*15127^(3/5) 4032522485596787 a001 3524578/28143753123*15127^(3/5) 4032522485597167 a001 1346269/10749957122*15127^(3/5) 4032522485599772 a001 514229/4106118243*15127^(3/5) 4032522485617627 a001 196418/1568397607*15127^(3/5) 4032522485669010 a001 17711/599074578*15127^(3/4) 4032522485697666 a001 28657/141422324*15127^(11/20) 4032522485740005 a001 75025/599074578*15127^(3/5) 4032522485875899 a001 17711/1149851*5778^(1/9) 4032522486102735 a001 2576/33281921*15127^(13/20) 4032522486160493 a001 10946/3010349*15127^(1/4) 4032522486423125 a001 121393/1568397607*15127^(13/20) 4032522486469870 a001 105937/1368706081*15127^(13/20) 4032522486476690 a001 416020/5374978561*15127^(13/20) 4032522486477685 a001 726103/9381251041*15127^(13/20) 4032522486477830 a001 5702887/73681302247*15127^(13/20) 4032522486477851 a001 2584/33385281*15127^(13/20) 4032522486477854 a001 39088169/505019158607*15127^(13/20) 4032522486477855 a001 34111385/440719107401*15127^(13/20) 4032522486477855 a001 133957148/1730726404001*15127^(13/20) 4032522486477855 a001 233802911/3020733700601*15127^(13/20) 4032522486477855 a001 1836311903/23725150497407*15127^(13/20) 4032522486477855 a001 567451585/7331474697802*15127^(13/20) 4032522486477855 a001 433494437/5600748293801*15127^(13/20) 4032522486477855 a001 165580141/2139295485799*15127^(13/20) 4032522486477855 a001 31622993/408569081798*15127^(13/20) 4032522486477856 a001 24157817/312119004989*15127^(13/20) 4032522486477864 a001 9227465/119218851371*15127^(13/20) 4032522486477920 a001 1762289/22768774562*15127^(13/20) 4032522486478300 a001 1346269/17393796001*15127^(13/20) 4032522486480905 a001 514229/6643838879*15127^(13/20) 4032522486498759 a001 98209/1268860318*15127^(13/20) 4032522486550142 a001 17711/969323029*15127^(4/5) 4032522486578799 a001 28657/228826127*15127^(3/5) 4032522486621138 a001 75025/969323029*15127^(13/20) 4032522486983867 a001 46368/969323029*15127^(7/10) 4032522487041010 a001 10946/4870847*15127^(3/10) 4032522487164367 a001 4181/87403803*9349^(14/19) 4032522487304258 a001 121393/2537720636*15127^(7/10) 4032522487351002 a001 317811/6643838879*15127^(7/10) 4032522487357822 a001 832040/17393796001*15127^(7/10) 4032522487358817 a001 2178309/45537549124*15127^(7/10) 4032522487358962 a001 5702887/119218851371*15127^(7/10) 4032522487358983 a001 14930352/312119004989*15127^(7/10) 4032522487358987 a001 4181/87403804*15127^(7/10) 4032522487358987 a001 102334155/2139295485799*15127^(7/10) 4032522487358987 a001 267914296/5600748293801*15127^(7/10) 4032522487358987 a001 701408733/14662949395604*15127^(7/10) 4032522487358987 a001 1134903170/23725150497407*15127^(7/10) 4032522487358987 a001 433494437/9062201101803*15127^(7/10) 4032522487358987 a001 165580141/3461452808002*15127^(7/10) 4032522487358987 a001 63245986/1322157322203*15127^(7/10) 4032522487358988 a001 24157817/505019158607*15127^(7/10) 4032522487358997 a001 9227465/192900153618*15127^(7/10) 4032522487359052 a001 3524578/73681302247*15127^(7/10) 4032522487359432 a001 1346269/28143753123*15127^(7/10) 4032522487362037 a001 514229/10749957122*15127^(7/10) 4032522487379892 a001 196418/4106118243*15127^(7/10) 4032522487431275 a001 17711/1568397607*15127^(17/20) 4032522487459931 a001 28657/370248451*15127^(13/20) 4032522487502270 a001 75025/1568397607*15127^(7/10) 4032522487558437 m001 (Pi^(1/2)*Thue-Salem)/Thue 4032522487865000 a001 6624/224056801*15127^(3/4) 4032522487922378 a001 5473/3940598*15127^(7/20) 4032522488069284 a001 46368/3010349*5778^(1/9) 4032522488185390 a001 121393/4106118243*15127^(3/4) 4032522488232135 a001 317811/10749957122*15127^(3/4) 4032522488238955 a001 832040/28143753123*15127^(3/4) 4032522488239950 a001 311187/10525900321*15127^(3/4) 4032522488240095 a001 5702887/192900153618*15127^(3/4) 4032522488240116 a001 14930352/505019158607*15127^(3/4) 4032522488240119 a001 39088169/1322157322203*15127^(3/4) 4032522488240119 a001 6765/228826126*15127^(3/4) 4032522488240119 a001 267914296/9062201101803*15127^(3/4) 4032522488240119 a001 701408733/23725150497407*15127^(3/4) 4032522488240120 a001 433494437/14662949395604*15127^(3/4) 4032522488240120 a001 165580141/5600748293801*15127^(3/4) 4032522488240120 a001 63245986/2139295485799*15127^(3/4) 4032522488240121 a001 24157817/817138163596*15127^(3/4) 4032522488240129 a001 9227465/312119004989*15127^(3/4) 4032522488240184 a001 3524578/119218851371*15127^(3/4) 4032522488240564 a001 1346269/45537549124*15127^(3/4) 4032522488243169 a001 514229/17393796001*15127^(3/4) 4032522488261024 a001 196418/6643838879*15127^(3/4) 4032522488312407 a001 17711/2537720636*15127^(9/10) 4032522488341064 a001 28657/599074578*15127^(7/10) 4032522488383403 a001 75025/2537720636*15127^(3/4) 4032522488389294 a001 121393/7881196*5778^(1/9) 4032522488435983 a001 10959/711491*5778^(1/9) 4032522488442795 a001 832040/54018521*5778^(1/9) 4032522488443789 a001 2178309/141422324*5778^(1/9) 4032522488443934 a001 5702887/370248451*5778^(1/9) 4032522488443955 a001 14930352/969323029*5778^(1/9) 4032522488443958 a001 39088169/2537720636*5778^(1/9) 4032522488443958 a001 102334155/6643838879*5778^(1/9) 4032522488443958 a001 9238424/599786069*5778^(1/9) 4032522488443958 a001 701408733/45537549124*5778^(1/9) 4032522488443958 a001 1836311903/119218851371*5778^(1/9) 4032522488443958 a001 4807526976/312119004989*5778^(1/9) 4032522488443958 a001 12586269025/817138163596*5778^(1/9) 4032522488443958 a001 32951280099/2139295485799*5778^(1/9) 4032522488443958 a001 86267571272/5600748293801*5778^(1/9) 4032522488443958 a001 7787980473/505618944676*5778^(1/9) 4032522488443958 a001 365435296162/23725150497407*5778^(1/9) 4032522488443958 a001 139583862445/9062201101803*5778^(1/9) 4032522488443958 a001 53316291173/3461452808002*5778^(1/9) 4032522488443958 a001 20365011074/1322157322203*5778^(1/9) 4032522488443958 a001 7778742049/505019158607*5778^(1/9) 4032522488443958 a001 2971215073/192900153618*5778^(1/9) 4032522488443958 a001 1134903170/73681302247*5778^(1/9) 4032522488443958 a001 433494437/28143753123*5778^(1/9) 4032522488443959 a001 165580141/10749957122*5778^(1/9) 4032522488443959 a001 63245986/4106118243*5778^(1/9) 4032522488443960 a001 24157817/1568397607*5778^(1/9) 4032522488443968 a001 9227465/599074578*5778^(1/9) 4032522488444023 a001 3524578/228826127*5778^(1/9) 4032522488444403 a001 1346269/87403803*5778^(1/9) 4032522488447005 a001 514229/33385282*5778^(1/9) 4032522488464838 a001 196418/12752043*5778^(1/9) 4032522488485639 a001 119814916/2971215073 4032522488485639 a004 Fibonacci(21)/Lucas(21)/(1/2+sqrt(5)/2)^5 4032522488485703 a001 5473/219602*5778^(1/18) 4032522488587072 a001 75025/4870847*5778^(1/9) 4032522488716065 h001 (1/2*exp(1)+1/3)/(6/11*exp(2)+1/6) 4032522488746132 a001 11592/634430159*15127^(4/5) 4032522488803420 a001 10946/12752043*15127^(2/5) 4032522489066523 a001 121393/6643838879*15127^(4/5) 4032522489113267 a001 10959/599786069*15127^(4/5) 4032522489120087 a001 208010/11384387281*15127^(4/5) 4032522489121082 a001 2178309/119218851371*15127^(4/5) 4032522489121227 a001 5702887/312119004989*15127^(4/5) 4032522489121248 a001 3732588/204284540899*15127^(4/5) 4032522489121251 a001 39088169/2139295485799*15127^(4/5) 4032522489121252 a001 102334155/5600748293801*15127^(4/5) 4032522489121252 a001 10946/599074579*15127^(4/5) 4032522489121252 a001 433494437/23725150497407*15127^(4/5) 4032522489121252 a001 165580141/9062201101803*15127^(4/5) 4032522489121252 a001 31622993/1730726404001*15127^(4/5) 4032522489121253 a001 24157817/1322157322203*15127^(4/5) 4032522489121261 a001 9227465/505019158607*15127^(4/5) 4032522489121317 a001 1762289/96450076809*15127^(4/5) 4032522489121697 a001 1346269/73681302247*15127^(4/5) 4032522489124302 a001 514229/28143753123*15127^(4/5) 4032522489142157 a001 98209/5374978561*15127^(4/5) 4032522489193539 a001 17711/4106118243*15127^(19/20) 4032522489222196 a001 28657/969323029*15127^(3/4) 4032522489264535 a001 75025/4106118243*15127^(4/5) 4032522489424870 a001 28657/1860498*5778^(1/9) 4032522489592616 a001 4181/54018521*9349^(13/19) 4032522489627265 a001 15456/1368706081*15127^(17/20) 4032522489684587 a001 10946/20633239*15127^(9/20) 4032522489947655 a001 121393/10749957122*15127^(17/20) 4032522489994399 a001 105937/9381251041*15127^(17/20) 4032522490001219 a001 832040/73681302247*15127^(17/20) 4032522490002214 a001 726103/64300051206*15127^(17/20) 4032522490002360 a001 5702887/505019158607*15127^(17/20) 4032522490002381 a001 4976784/440719107401*15127^(17/20) 4032522490002384 a001 39088169/3461452808002*15127^(17/20) 4032522490002384 a001 34111385/3020733700601*15127^(17/20) 4032522490002384 a001 267914296/23725150497407*15127^(17/20) 4032522490002384 a001 165580141/14662949395604*15127^(17/20) 4032522490002385 a001 63245986/5600748293801*15127^(17/20) 4032522490002386 a001 24157817/2139295485799*15127^(17/20) 4032522490002394 a001 9227465/817138163596*15127^(17/20) 4032522490002449 a001 3524578/312119004989*15127^(17/20) 4032522490002829 a001 1346269/119218851371*15127^(17/20) 4032522490005434 a001 514229/45537549124*15127^(17/20) 4032522490023289 a001 196418/17393796001*15127^(17/20) 4032522490074672 a004 Fibonacci(22)*Lucas(20)/(1/2+sqrt(5)/2)^47 4032522490103328 a001 28657/1568397607*15127^(4/5) 4032522490145667 a001 75025/6643838879*15127^(17/20) 4032522490508397 a001 46368/6643838879*15127^(9/10) 4032522490565707 a001 5473/16692641*15127^(1/2) 4032522490828788 a001 121393/17393796001*15127^(9/10) 4032522490875532 a001 317811/45537549124*15127^(9/10) 4032522490882352 a001 832040/119218851371*15127^(9/10) 4032522490883347 a001 2178309/312119004989*15127^(9/10) 4032522490883492 a001 5702887/817138163596*15127^(9/10) 4032522490883513 a001 14930352/2139295485799*15127^(9/10) 4032522490883516 a001 39088169/5600748293801*15127^(9/10) 4032522490883517 a001 102334155/14662949395604*15127^(9/10) 4032522490883517 a001 165580141/23725150497407*15127^(9/10) 4032522490883517 a001 63245986/9062201101803*15127^(9/10) 4032522490883518 a001 24157817/3461452808002*15127^(9/10) 4032522490883526 a001 9227465/1322157322203*15127^(9/10) 4032522490883582 a001 3524578/505019158607*15127^(9/10) 4032522490883962 a001 1346269/192900153618*15127^(9/10) 4032522490886567 a001 514229/73681302247*15127^(9/10) 4032522490904422 a001 196418/28143753123*15127^(9/10) 4032522490951383 a001 55/15126*5778^(5/18) 4032522490984461 a001 28657/2537720636*15127^(17/20) 4032522491026800 a001 75025/10749957122*15127^(9/10) 4032522491123364 m001 (Lehmer+ReciprocalLucas)/(gamma(2)+Cahen) 4032522491389529 a001 23184/5374978561*15127^(19/20) 4032522491446844 a001 10946/54018521*15127^(11/20) 4032522491709920 a001 121393/28143753123*15127^(19/20) 4032522491756664 a001 317811/73681302247*15127^(19/20) 4032522491763484 a001 416020/96450076809*15127^(19/20) 4032522491764479 a001 46347/10745088481*15127^(19/20) 4032522491764624 a001 5702887/1322157322203*15127^(19/20) 4032522491764646 a001 7465176/1730726404001*15127^(19/20) 4032522491764649 a001 39088169/9062201101803*15127^(19/20) 4032522491764649 a001 102334155/23725150497407*15127^(19/20) 4032522491764649 a001 31622993/7331474697802*15127^(19/20) 4032522491764651 a001 24157817/5600748293801*15127^(19/20) 4032522491764659 a001 9227465/2139295485799*15127^(19/20) 4032522491764714 a001 1762289/408569081798*15127^(19/20) 4032522491765094 a001 1346269/312119004989*15127^(19/20) 4032522491767699 a001 514229/119218851371*15127^(19/20) 4032522491785554 a001 98209/22768774562*15127^(19/20) 4032522491865593 a001 28657/4106118243*15127^(9/10) 4032522491907932 a001 75025/17393796001*15127^(19/20) 4032522492020858 a001 4181/33385282*9349^(12/19) 4032522492270662 a004 Fibonacci(24)*Lucas(20)/(1/2+sqrt(5)/2)^49 4032522492327975 a001 10946/87403803*15127^(3/5) 4032522492502499 a001 15127/75025*8^(1/3) 4032522492582096 a001 17711/1860498*5778^(1/6) 4032522492591052 a004 Fibonacci(26)*Lucas(20)/(1/2+sqrt(5)/2)^51 4032522492637797 a004 Fibonacci(28)*Lucas(20)/(1/2+sqrt(5)/2)^53 4032522492644617 a004 Fibonacci(30)*Lucas(20)/(1/2+sqrt(5)/2)^55 4032522492645612 a004 Fibonacci(32)*Lucas(20)/(1/2+sqrt(5)/2)^57 4032522492645757 a004 Fibonacci(34)*Lucas(20)/(1/2+sqrt(5)/2)^59 4032522492645778 a004 Fibonacci(36)*Lucas(20)/(1/2+sqrt(5)/2)^61 4032522492645781 a004 Fibonacci(38)*Lucas(20)/(1/2+sqrt(5)/2)^63 4032522492645782 a004 Fibonacci(40)*Lucas(20)/(1/2+sqrt(5)/2)^65 4032522492645782 a004 Fibonacci(42)*Lucas(20)/(1/2+sqrt(5)/2)^67 4032522492645782 a004 Fibonacci(44)*Lucas(20)/(1/2+sqrt(5)/2)^69 4032522492645782 a004 Fibonacci(46)*Lucas(20)/(1/2+sqrt(5)/2)^71 4032522492645782 a004 Fibonacci(48)*Lucas(20)/(1/2+sqrt(5)/2)^73 4032522492645782 a004 Fibonacci(50)*Lucas(20)/(1/2+sqrt(5)/2)^75 4032522492645782 a004 Fibonacci(52)*Lucas(20)/(1/2+sqrt(5)/2)^77 4032522492645782 a004 Fibonacci(54)*Lucas(20)/(1/2+sqrt(5)/2)^79 4032522492645782 a004 Fibonacci(56)*Lucas(20)/(1/2+sqrt(5)/2)^81 4032522492645782 a004 Fibonacci(58)*Lucas(20)/(1/2+sqrt(5)/2)^83 4032522492645782 a004 Fibonacci(60)*Lucas(20)/(1/2+sqrt(5)/2)^85 4032522492645782 a004 Fibonacci(62)*Lucas(20)/(1/2+sqrt(5)/2)^87 4032522492645782 a004 Fibonacci(64)*Lucas(20)/(1/2+sqrt(5)/2)^89 4032522492645782 a004 Fibonacci(66)*Lucas(20)/(1/2+sqrt(5)/2)^91 4032522492645782 a004 Fibonacci(68)*Lucas(20)/(1/2+sqrt(5)/2)^93 4032522492645782 a004 Fibonacci(70)*Lucas(20)/(1/2+sqrt(5)/2)^95 4032522492645782 a004 Fibonacci(72)*Lucas(20)/(1/2+sqrt(5)/2)^97 4032522492645782 a004 Fibonacci(74)*Lucas(20)/(1/2+sqrt(5)/2)^99 4032522492645782 a004 Fibonacci(75)*Lucas(20)/(1/2+sqrt(5)/2)^100 4032522492645782 a004 Fibonacci(73)*Lucas(20)/(1/2+sqrt(5)/2)^98 4032522492645782 a004 Fibonacci(71)*Lucas(20)/(1/2+sqrt(5)/2)^96 4032522492645782 a004 Fibonacci(69)*Lucas(20)/(1/2+sqrt(5)/2)^94 4032522492645782 a004 Fibonacci(67)*Lucas(20)/(1/2+sqrt(5)/2)^92 4032522492645782 a004 Fibonacci(65)*Lucas(20)/(1/2+sqrt(5)/2)^90 4032522492645782 a004 Fibonacci(63)*Lucas(20)/(1/2+sqrt(5)/2)^88 4032522492645782 a004 Fibonacci(61)*Lucas(20)/(1/2+sqrt(5)/2)^86 4032522492645782 a004 Fibonacci(59)*Lucas(20)/(1/2+sqrt(5)/2)^84 4032522492645782 a004 Fibonacci(57)*Lucas(20)/(1/2+sqrt(5)/2)^82 4032522492645782 a004 Fibonacci(55)*Lucas(20)/(1/2+sqrt(5)/2)^80 4032522492645782 a004 Fibonacci(53)*Lucas(20)/(1/2+sqrt(5)/2)^78 4032522492645782 a004 Fibonacci(51)*Lucas(20)/(1/2+sqrt(5)/2)^76 4032522492645782 a004 Fibonacci(49)*Lucas(20)/(1/2+sqrt(5)/2)^74 4032522492645782 a004 Fibonacci(47)*Lucas(20)/(1/2+sqrt(5)/2)^72 4032522492645782 a004 Fibonacci(45)*Lucas(20)/(1/2+sqrt(5)/2)^70 4032522492645782 a004 Fibonacci(43)*Lucas(20)/(1/2+sqrt(5)/2)^68 4032522492645782 a004 Fibonacci(41)*Lucas(20)/(1/2+sqrt(5)/2)^66 4032522492645782 a001 2/6765*(1/2+1/2*5^(1/2))^15 4032522492645782 a004 Fibonacci(39)*Lucas(20)/(1/2+sqrt(5)/2)^64 4032522492645783 a004 Fibonacci(37)*Lucas(20)/(1/2+sqrt(5)/2)^62 4032522492645791 a004 Fibonacci(35)*Lucas(20)/(1/2+sqrt(5)/2)^60 4032522492645847 a004 Fibonacci(33)*Lucas(20)/(1/2+sqrt(5)/2)^58 4032522492646227 a004 Fibonacci(31)*Lucas(20)/(1/2+sqrt(5)/2)^56 4032522492648832 a004 Fibonacci(29)*Lucas(20)/(1/2+sqrt(5)/2)^54 4032522492666686 a004 Fibonacci(27)*Lucas(20)/(1/2+sqrt(5)/2)^52 4032522492746726 a001 28657/6643838879*15127^(19/20) 4032522492789065 a004 Fibonacci(25)*Lucas(20)/(1/2+sqrt(5)/2)^50 4032522493209108 a001 5473/70711162*15127^(13/20) 4032522493624614 a001 1597/87403803*3571^(16/17) 4032522493627858 a004 Fibonacci(23)*Lucas(20)/(1/2+sqrt(5)/2)^48 4032522494090240 a001 10946/228826127*15127^(7/10) 4032522494449118 a001 4181/20633239*9349^(11/19) 4032522494779081 a001 46368/4870847*5778^(1/6) 4032522494971372 a001 10946/370248451*15127^(3/4) 4032522495099617 a001 121393/12752043*5778^(1/6) 4032522495146383 a001 317811/33385282*5778^(1/6) 4032522495153206 a001 832040/87403803*5778^(1/6) 4032522495154201 a001 46347/4868641*5778^(1/6) 4032522495154346 a001 5702887/599074578*5778^(1/6) 4032522495154368 a001 14930352/1568397607*5778^(1/6) 4032522495154371 a001 39088169/4106118243*5778^(1/6) 4032522495154371 a001 102334155/10749957122*5778^(1/6) 4032522495154371 a001 267914296/28143753123*5778^(1/6) 4032522495154371 a001 701408733/73681302247*5778^(1/6) 4032522495154371 a001 1836311903/192900153618*5778^(1/6) 4032522495154371 a001 102287808/10745088481*5778^(1/6) 4032522495154371 a001 12586269025/1322157322203*5778^(1/6) 4032522495154371 a001 32951280099/3461452808002*5778^(1/6) 4032522495154371 a001 86267571272/9062201101803*5778^(1/6) 4032522495154371 a001 225851433717/23725150497407*5778^(1/6) 4032522495154371 a001 139583862445/14662949395604*5778^(1/6) 4032522495154371 a001 53316291173/5600748293801*5778^(1/6) 4032522495154371 a001 20365011074/2139295485799*5778^(1/6) 4032522495154371 a001 7778742049/817138163596*5778^(1/6) 4032522495154371 a001 2971215073/312119004989*5778^(1/6) 4032522495154371 a001 1134903170/119218851371*5778^(1/6) 4032522495154371 a001 433494437/45537549124*5778^(1/6) 4032522495154371 a001 165580141/17393796001*5778^(1/6) 4032522495154371 a001 63245986/6643838879*5778^(1/6) 4032522495154373 a001 24157817/2537720636*5778^(1/6) 4032522495154381 a001 9227465/969323029*5778^(1/6) 4032522495154436 a001 3524578/370248451*5778^(1/6) 4032522495154816 a001 1346269/141422324*5778^(1/6) 4032522495157423 a001 514229/54018521*5778^(1/6) 4032522495167226 a001 10946/710647*5778^(1/9) 4032522495175285 a001 196418/20633239*5778^(1/6) 4032522495297719 a001 75025/7881196*5778^(1/6) 4032522495852505 a001 5473/299537289*15127^(4/5) 4032522496136893 a001 28657/3010349*5778^(1/6) 4032522496733637 a001 10946/969323029*15127^(17/20) 4032522496877331 a001 4181/12752043*9349^(10/19) 4032522497614770 a001 10946/1568397607*15127^(9/10) 4032522497663406 a001 6765/3010349*5778^(1/3) 4032522497679470 r005 Re(z^2+c),c=-21/38+11/37*I,n=21 4032522498495902 a001 5473/1268860318*15127^(19/20) 4032522499294119 a001 17711/3010349*5778^(2/9) 4032522499305668 a001 4181/7881196*9349^(9/19) 4032522499377035 a004 Fibonacci(21)*Lucas(20)/(1/2+sqrt(5)/2)^46 4032522501320102 m001 (GaussAGM+PrimesInBinary)/(Bloch-FeigenbaumMu) 4032522501489729 a001 11592/1970299*5778^(2/9) 4032522501733680 a001 4181/4870847*9349^(8/19) 4032522501765759 a007 Real Root Of 422*x^4-415*x^3+815*x^2-305*x+11 4032522501810064 a001 121393/20633239*5778^(2/9) 4032522501856801 a001 317811/54018521*5778^(2/9) 4032522501863619 a001 208010/35355581*5778^(2/9) 4032522501864614 a001 2178309/370248451*5778^(2/9) 4032522501864759 a001 5702887/969323029*5778^(2/9) 4032522501864780 a001 196452/33391061*5778^(2/9) 4032522501864784 a001 39088169/6643838879*5778^(2/9) 4032522501864784 a001 102334155/17393796001*5778^(2/9) 4032522501864784 a001 66978574/11384387281*5778^(2/9) 4032522501864784 a001 701408733/119218851371*5778^(2/9) 4032522501864784 a001 1836311903/312119004989*5778^(2/9) 4032522501864784 a001 1201881744/204284540899*5778^(2/9) 4032522501864784 a001 12586269025/2139295485799*5778^(2/9) 4032522501864784 a001 32951280099/5600748293801*5778^(2/9) 4032522501864784 a001 1135099622/192933544679*5778^(2/9) 4032522501864784 a001 139583862445/23725150497407*5778^(2/9) 4032522501864784 a001 53316291173/9062201101803*5778^(2/9) 4032522501864784 a001 10182505537/1730726404001*5778^(2/9) 4032522501864784 a001 7778742049/1322157322203*5778^(2/9) 4032522501864784 a001 2971215073/505019158607*5778^(2/9) 4032522501864784 a001 567451585/96450076809*5778^(2/9) 4032522501864784 a001 433494437/73681302247*5778^(2/9) 4032522501864784 a001 165580141/28143753123*5778^(2/9) 4032522501864784 a001 31622993/5374978561*5778^(2/9) 4032522501864785 a001 24157817/4106118243*5778^(2/9) 4032522501864794 a001 9227465/1568397607*5778^(2/9) 4032522501864849 a001 1762289/299537289*5778^(2/9) 4032522501865229 a001 1346269/228826127*5778^(2/9) 4032522501867834 a001 514229/87403803*5778^(2/9) 4032522501881189 a001 1597/103682*1364^(2/15) 4032522501885685 a001 98209/16692641*5778^(2/9) 4032522501888674 a001 10946/1149851*5778^(1/6) 4032522502008042 a001 75025/12752043*5778^(2/9) 4032522502701603 a001 4181/167761*3571^(1/17) 4032522502846691 a001 28657/4870847*5778^(2/9) 4032522503537177 a001 9428155/233802911 4032522503537178 a004 Fibonacci(19)/Lucas(20)/(1/2+sqrt(5)/2)^4 4032522503537178 a004 Fibonacci(20)/Lucas(19)/(1/2+sqrt(5)/2)^6 4032522504162542 a001 4181/3010349*9349^(7/19) 4032522504373204 a001 6765/4870847*5778^(7/18) 4032522506003917 a001 17711/4870847*5778^(5/18) 4032522506589179 a001 4181/1860498*9349^(6/19) 4032522508200052 a001 15456/4250681*5778^(5/18) 4032522508520464 a001 121393/33385282*5778^(5/18) 4032522508567212 a001 105937/29134601*5778^(5/18) 4032522508574032 a001 832040/228826127*5778^(5/18) 4032522508575027 a001 726103/199691526*5778^(5/18) 4032522508575172 a001 5702887/1568397607*5778^(5/18) 4032522508575193 a001 4976784/1368706081*5778^(5/18) 4032522508575196 a001 39088169/10749957122*5778^(5/18) 4032522508575197 a001 831985/228811001*5778^(5/18) 4032522508575197 a001 267914296/73681302247*5778^(5/18) 4032522508575197 a001 233802911/64300051206*5778^(5/18) 4032522508575197 a001 1836311903/505019158607*5778^(5/18) 4032522508575197 a001 1602508992/440719107401*5778^(5/18) 4032522508575197 a001 12586269025/3461452808002*5778^(5/18) 4032522508575197 a001 10983760033/3020733700601*5778^(5/18) 4032522508575197 a001 86267571272/23725150497407*5778^(5/18) 4032522508575197 a001 53316291173/14662949395604*5778^(5/18) 4032522508575197 a001 20365011074/5600748293801*5778^(5/18) 4032522508575197 a001 7778742049/2139295485799*5778^(5/18) 4032522508575197 a001 2971215073/817138163596*5778^(5/18) 4032522508575197 a001 1134903170/312119004989*5778^(5/18) 4032522508575197 a001 433494437/119218851371*5778^(5/18) 4032522508575197 a001 165580141/45537549124*5778^(5/18) 4032522508575197 a001 63245986/17393796001*5778^(5/18) 4032522508575198 a001 24157817/6643838879*5778^(5/18) 4032522508575206 a001 9227465/2537720636*5778^(5/18) 4032522508575262 a001 3524578/969323029*5778^(5/18) 4032522508575642 a001 1346269/370248451*5778^(5/18) 4032522508578247 a001 514229/141422324*5778^(5/18) 4032522508594872 a001 5473/930249*5778^(2/9) 4032522508596103 a001 196418/54018521*5778^(5/18) 4032522508718489 a001 75025/20633239*5778^(5/18) 4032522509021641 a001 4181/1149851*9349^(5/19) 4032522509088836 a001 2255/90481*2207^(1/16) 4032522509410212 a001 2584/271443*2207^(3/16) 4032522509557338 a001 28657/7881196*5778^(5/18) 4032522511083851 a001 6765/7881196*5778^(4/9) 4032522511438853 a001 4181/710647*9349^(4/19) 4032522512226123 a001 1597/54018521*3571^(15/17) 4032522512714565 a001 89/39604*5778^(1/3) 4032522513895990 a001 4181/439204*9349^(3/19) 4032522514428574 a004 Fibonacci(19)*Lucas(21)/(1/2+sqrt(5)/2)^45 4032522514581518 m001 2^(1/2)*PlouffeB+ReciprocalFibonacci 4032522514749109 a001 4181/1568397607*24476^(20/21) 4032522514910499 a001 46368/20633239*5778^(1/3) 4032522515069645 a001 4181/969323029*24476^(19/21) 4032522515230882 a001 121393/54018521*5778^(1/3) 4032522515277625 a001 317811/141422324*5778^(1/3) 4032522515284445 a001 832040/370248451*5778^(1/3) 4032522515285440 a001 2178309/969323029*5778^(1/3) 4032522515285585 a001 5702887/2537720636*5778^(1/3) 4032522515285606 a001 14930352/6643838879*5778^(1/3) 4032522515285609 a001 39088169/17393796001*5778^(1/3) 4032522515285610 a001 102334155/45537549124*5778^(1/3) 4032522515285610 a001 267914296/119218851371*5778^(1/3) 4032522515285610 a001 3524667/1568437211*5778^(1/3) 4032522515285610 a001 1836311903/817138163596*5778^(1/3) 4032522515285610 a001 4807526976/2139295485799*5778^(1/3) 4032522515285610 a001 12586269025/5600748293801*5778^(1/3) 4032522515285610 a001 32951280099/14662949395604*5778^(1/3) 4032522515285610 a001 53316291173/23725150497407*5778^(1/3) 4032522515285610 a001 20365011074/9062201101803*5778^(1/3) 4032522515285610 a001 7778742049/3461452808002*5778^(1/3) 4032522515285610 a001 2971215073/1322157322203*5778^(1/3) 4032522515285610 a001 1134903170/505019158607*5778^(1/3) 4032522515285610 a001 433494437/192900153618*5778^(1/3) 4032522515285610 a001 165580141/73681302247*5778^(1/3) 4032522515285610 a001 63245986/28143753123*5778^(1/3) 4032522515285611 a001 24157817/10749957122*5778^(1/3) 4032522515285619 a001 9227465/4106118243*5778^(1/3) 4032522515285675 a001 3524578/1568397607*5778^(1/3) 4032522515286055 a001 1346269/599074578*5778^(1/3) 4032522515288660 a001 514229/228826127*5778^(1/3) 4032522515306514 a001 196418/87403803*5778^(1/3) 4032522515306895 a001 10946/3010349*5778^(5/18) 4032522515390181 a001 4181/599074578*24476^(6/7) 4032522515428889 a001 75025/33385282*5778^(1/3) 4032522515710717 a001 4181/370248451*24476^(17/21) 4032522516031253 a001 4181/228826127*24476^(16/21) 4032522516248603 a001 4181/271443*9349^(2/19) 4032522516267662 a001 28657/12752043*5778^(1/3) 4032522516351789 a001 4181/141422324*24476^(5/7) 4032522516672324 a001 4181/87403803*24476^(2/3) 4032522516992862 a001 4181/54018521*24476^(13/21) 4032522517313393 a001 4181/33385282*24476^(4/7) 4032522517633942 a001 4181/20633239*24476^(11/21) 4032522517794175 a001 2255/4250681*5778^(1/2) 4032522517954443 a001 4181/12752043*24476^(10/21) 4032522518275069 a001 4181/7881196*24476^(3/7) 4032522518588717 a001 74049691/1836311903 4032522518588717 a004 Fibonacci(19)/Lucas(22)/(1/2+sqrt(5)/2)^2 4032522518588717 a004 Fibonacci(22)/Lucas(19)/(1/2+sqrt(5)/2)^8 4032522518595370 a001 4181/4870847*24476^(8/21) 4032522518874862 a001 4181/167761*9349^(1/19) 4032522518916520 a001 4181/3010349*24476^(1/3) 4032522519235446 a001 4181/1860498*24476^(2/7) 4032522519424888 a001 17711/12752043*5778^(7/18) 4032522519560197 a001 4181/1149851*24476^(5/21) 4032522519869698 a001 4181/710647*24476^(4/21) 4032522520177750 a004 Fibonacci(19)*Lucas(23)/(1/2+sqrt(5)/2)^47 4032522520219124 a001 4181/439204*24476^(1/7) 4032522520220449 a001 4181/4106118243*64079^(22/23) 4032522520263148 a001 4181/2537720636*64079^(21/23) 4032522520305847 a001 4181/1568397607*64079^(20/23) 4032522520348546 a001 4181/969323029*64079^(19/23) 4032522520391245 a001 4181/599074578*64079^(18/23) 4032522520433944 a001 4181/370248451*64079^(17/23) 4032522520464025 a001 4181/271443*24476^(2/21) 4032522520476643 a001 4181/228826127*64079^(16/23) 4032522520519342 a001 4181/141422324*64079^(15/23) 4032522520562040 a001 4181/87403803*64079^(14/23) 4032522520604741 a001 4181/54018521*64079^(13/23) 4032522520647435 a001 4181/33385282*64079^(12/23) 4032522520690147 a001 4181/20633239*64079^(11/23) 4032522520732812 a001 4181/12752043*64079^(10/23) 4032522520775601 a001 4181/7881196*64079^(9/23) 4032522520784707 a001 4181/103682 4032522520784707 a004 Fibonacci(24)/Lucas(19)/(1/2+sqrt(5)/2)^10 4032522520818065 a001 4181/4870847*64079^(8/23) 4032522520861379 a001 4181/3010349*64079^(7/23) 4032522520902468 a001 4181/1860498*64079^(6/23) 4032522520949382 a001 4181/1149851*64079^(5/23) 4032522520981046 a001 4181/710647*64079^(4/23) 4032522520982574 a001 4181/167761*24476^(1/21) 4032522521016543 a004 Fibonacci(19)*Lucas(25)/(1/2+sqrt(5)/2)^49 4032522521019699 a001 4181/271443*64079^(2/23) 4032522521045200 a001 4181/1568397607*167761^(4/5) 4032522521052634 a001 4181/439204*64079^(3/23) 4032522521073857 a001 4181/141422324*167761^(3/5) 4032522521102488 a001 4181/12752043*167761^(2/5) 4032522521105097 a001 4181/271443*(1/2+1/2*5^(1/2))^2 4032522521105097 a001 4181/271443*10749957122^(1/24) 4032522521105097 a001 507544133/12586269025 4032522521105097 a001 4181/271443*4106118243^(1/23) 4032522521105097 a001 4181/271443*1568397607^(1/22) 4032522521105097 a001 4181/271443*599074578^(1/21) 4032522521105097 a001 4181/271443*228826127^(1/20) 4032522521105097 a001 4181/271443*87403803^(1/19) 4032522521105097 a001 4181/271443*33385282^(1/18) 4032522521105098 a004 Fibonacci(26)/Lucas(19)/(1/2+sqrt(5)/2)^12 4032522521105099 a001 4181/271443*12752043^(1/17) 4032522521105108 a001 4181/271443*4870847^(1/16) 4032522521105175 a001 4181/271443*1860498^(1/15) 4032522521105668 a001 4181/271443*710647^(1/14) 4032522521109307 a001 4181/271443*271443^(1/13) 4032522521134220 a001 4181/1149851*167761^(1/5) 4032522521136357 a001 4181/271443*103682^(1/12) 4032522521138922 a004 Fibonacci(19)*Lucas(27)/(1/2+sqrt(5)/2)^51 4032522521141244 a001 4181/10749957122*439204^(8/9) 4032522521143567 a001 4181/2537720636*439204^(7/9) 4032522521145890 a001 4181/599074578*439204^(2/3) 4032522521148213 a001 4181/141422324*439204^(5/9) 4032522521150532 a001 4181/33385282*439204^(4/9) 4032522521151842 a001 4181/710647*(1/2+1/2*5^(1/2))^4 4032522521151842 a001 4181/710647*23725150497407^(1/16) 4032522521151842 a001 4181/710647*73681302247^(1/13) 4032522521151842 a001 442922597/10983760033 4032522521151842 a001 4181/710647*10749957122^(1/12) 4032522521151842 a001 4181/710647*4106118243^(2/23) 4032522521151842 a001 4181/710647*1568397607^(1/11) 4032522521151842 a001 4181/710647*599074578^(2/21) 4032522521151842 a001 4181/710647*228826127^(1/10) 4032522521151842 a001 4181/710647*87403803^(2/19) 4032522521151842 a001 4181/710647*33385282^(1/9) 4032522521151842 a004 Fibonacci(28)/Lucas(19)/(1/2+sqrt(5)/2)^14 4032522521151844 a001 4181/710647*12752043^(2/17) 4032522521151863 a001 4181/710647*4870847^(1/8) 4032522521151997 a001 4181/710647*1860498^(2/15) 4032522521152923 a001 4181/7881196*439204^(1/3) 4032522521152982 a001 4181/710647*710647^(1/7) 4032522521154016 a001 4181/1860498*439204^(2/9) 4032522521156776 a004 Fibonacci(19)*Lucas(29)/(1/2+sqrt(5)/2)^53 4032522521158650 a001 4181/1860498*7881196^(2/11) 4032522521158661 a001 4181/1860498*141422324^(2/13) 4032522521158661 a001 4181/1860498*2537720636^(2/15) 4032522521158661 a001 4181/1860498*45537549124^(2/17) 4032522521158661 a001 4181/1860498*14662949395604^(2/21) 4032522521158661 a001 4181/1860498*(1/2+1/2*5^(1/2))^6 4032522521158661 a001 434844905/10783446409 4032522521158661 a001 4181/1860498*10749957122^(1/8) 4032522521158661 a001 4181/1860498*4106118243^(3/23) 4032522521158661 a001 4181/1860498*1568397607^(3/22) 4032522521158661 a001 4181/1860498*599074578^(1/7) 4032522521158661 a001 4181/1860498*228826127^(3/20) 4032522521158662 a001 4181/1860498*87403803^(3/19) 4032522521158662 a004 Fibonacci(30)/Lucas(19)/(1/2+sqrt(5)/2)^16 4032522521158662 a001 4181/1860498*33385282^(1/6) 4032522521158666 a001 4181/1860498*12752043^(3/17) 4032522521158693 a001 4181/1860498*4870847^(3/16) 4032522521158894 a001 4181/1860498*1860498^(1/5) 4032522521159381 a004 Fibonacci(19)*Lucas(31)/(1/2+sqrt(5)/2)^55 4032522521159656 a001 4181/4870847*(1/2+1/2*5^(1/2))^8 4032522521159656 a001 4181/4870847*23725150497407^(1/8) 4032522521159656 a001 4181/4870847*505019158607^(1/7) 4032522521159656 a001 433690949/10754830177 4032522521159656 a001 4181/4870847*73681302247^(2/13) 4032522521159656 a001 4181/4870847*10749957122^(1/6) 4032522521159656 a001 4181/4870847*4106118243^(4/23) 4032522521159656 a001 4181/4870847*1568397607^(2/11) 4032522521159656 a001 4181/4870847*599074578^(4/21) 4032522521159657 a001 4181/4870847*228826127^(1/5) 4032522521159657 a001 4181/4870847*87403803^(4/19) 4032522521159657 a004 Fibonacci(32)/Lucas(19)/(1/2+sqrt(5)/2)^18 4032522521159657 a001 4181/4870847*33385282^(2/9) 4032522521159662 a001 4181/4870847*12752043^(4/17) 4032522521159699 a001 4181/4870847*4870847^(1/4) 4032522521159762 a004 Fibonacci(19)*Lucas(33)/(1/2+sqrt(5)/2)^57 4032522521159767 a001 4181/192900153618*7881196^(10/11) 4032522521159773 a001 4181/45537549124*7881196^(9/11) 4032522521159779 a001 4181/10749957122*7881196^(8/11) 4032522521159783 a001 4181/4106118243*7881196^(2/3) 4032522521159785 a001 4181/2537720636*7881196^(7/11) 4032522521159791 a001 4181/599074578*7881196^(6/11) 4032522521159797 a001 4181/141422324*7881196^(5/11) 4032522521159799 a001 4181/12752043*20633239^(2/7) 4032522521159799 a001 4181/33385282*7881196^(4/11) 4032522521159802 a001 4181/12752043*2537720636^(2/9) 4032522521159802 a001 4181/12752043*312119004989^(2/11) 4032522521159802 a001 4181/12752043*(1/2+1/2*5^(1/2))^10 4032522521159802 a001 23843770547/591286729879 4032522521159802 a001 4181/12752043*28143753123^(1/5) 4032522521159802 a001 4181/12752043*10749957122^(5/24) 4032522521159802 a001 4181/12752043*4106118243^(5/23) 4032522521159802 a001 4181/12752043*1568397607^(5/22) 4032522521159802 a001 4181/12752043*599074578^(5/21) 4032522521159802 a001 4181/12752043*228826127^(1/4) 4032522521159802 a001 4181/12752043*87403803^(5/19) 4032522521159802 a004 Fibonacci(34)/Lucas(19)/(1/2+sqrt(5)/2)^20 4032522521159803 a001 4181/12752043*33385282^(5/18) 4032522521159809 a001 4181/12752043*12752043^(5/17) 4032522521159814 a001 4181/20633239*7881196^(1/3) 4032522521159817 a004 Fibonacci(19)*Lucas(35)/(1/2+sqrt(5)/2)^59 4032522521159818 a001 4181/192900153618*20633239^(6/7) 4032522521159819 a001 4181/73681302247*20633239^(4/5) 4032522521159820 a001 4181/17393796001*20633239^(5/7) 4032522521159821 a001 4181/2537720636*20633239^(3/5) 4032522521159821 a001 4181/1568397607*20633239^(4/7) 4032522521159822 a001 4181/87403803*20633239^(2/5) 4032522521159823 a001 4181/141422324*20633239^(3/7) 4032522521159823 a001 4181/33385282*141422324^(4/13) 4032522521159823 a001 4181/33385282*2537720636^(4/15) 4032522521159823 a001 4181/33385282*45537549124^(4/17) 4032522521159823 a001 4181/33385282*817138163596^(4/19) 4032522521159823 a001 4181/33385282*14662949395604^(4/21) 4032522521159823 a001 4181/33385282*(1/2+1/2*5^(1/2))^12 4032522521159823 a001 4181/33385282*192900153618^(2/9) 4032522521159823 a001 4181/33385282*73681302247^(3/13) 4032522521159823 a001 4181/33385282*10749957122^(1/4) 4032522521159823 a001 4181/33385282*4106118243^(6/23) 4032522521159823 a001 4181/33385282*1568397607^(3/11) 4032522521159823 a001 4181/33385282*599074578^(2/7) 4032522521159823 a001 4181/33385282*228826127^(3/10) 4032522521159823 a001 4181/33385282*87403803^(6/19) 4032522521159823 a004 Fibonacci(36)/Lucas(19)/(1/2+sqrt(5)/2)^22 4032522521159824 a001 4181/33385282*33385282^(1/3) 4032522521159825 a004 Fibonacci(19)*Lucas(37)/(1/2+sqrt(5)/2)^61 4032522521159826 a001 4181/87403803*17393796001^(2/7) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^14/Lucas(38) 4032522521159826 a001 163427634589/4052739537881 4032522521159826 a001 4181/87403803*10749957122^(7/24) 4032522521159826 a001 4181/87403803*4106118243^(7/23) 4032522521159826 a001 4181/87403803*1568397607^(7/22) 4032522521159826 a001 4181/87403803*599074578^(1/3) 4032522521159826 a001 4181/87403803*228826127^(7/20) 4032522521159826 a001 4181/87403803*87403803^(7/19) 4032522521159826 a004 Fibonacci(19)*Lucas(39)/(1/2+sqrt(5)/2)^63 4032522521159826 a001 4181/3461452808002*141422324^(12/13) 4032522521159826 a001 4181/817138163596*141422324^(11/13) 4032522521159826 a001 4181/192900153618*141422324^(10/13) 4032522521159826 a001 4181/45537549124*141422324^(9/13) 4032522521159826 a001 4181/28143753123*141422324^(2/3) 4032522521159826 a001 4181/10749957122*141422324^(8/13) 4032522521159826 a001 4181/2537720636*141422324^(7/13) 4032522521159826 a001 4181/599074578*141422324^(6/13) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^16/Lucas(40) 4032522521159826 a001 4181/228826127*23725150497407^(1/4) 4032522521159826 a001 20374242955/505248088463 4032522521159826 a001 4181/228826127*73681302247^(4/13) 4032522521159826 a001 4181/228826127*10749957122^(1/3) 4032522521159826 a001 4181/228826127*4106118243^(8/23) 4032522521159826 a001 4181/228826127*1568397607^(4/11) 4032522521159826 a001 4181/228826127*599074578^(8/21) 4032522521159826 a001 4181/228826127*228826127^(2/5) 4032522521159826 a004 Fibonacci(19)*Lucas(41)/(1/2+sqrt(5)/2)^65 4032522521159826 a001 4181/599074578*2537720636^(2/5) 4032522521159826 a001 4181/599074578*45537549124^(6/17) 4032522521159826 a001 4181/599074578*14662949395604^(2/7) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^18/Lucas(42) 4032522521159826 a001 4181/599074578*192900153618^(1/3) 4032522521159826 a001 4181/599074578*10749957122^(3/8) 4032522521159826 a001 4181/599074578*4106118243^(9/23) 4032522521159826 a001 4181/599074578*1568397607^(9/22) 4032522521159826 a001 4181/599074578*599074578^(3/7) 4032522521159826 a004 Fibonacci(19)*Lucas(43)/(1/2+sqrt(5)/2)^67 4032522521159826 a001 4181/1568397607*2537720636^(4/9) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^20/Lucas(44) 4032522521159826 a001 4181/1568397607*23725150497407^(5/16) 4032522521159826 a001 4181/1568397607*505019158607^(5/14) 4032522521159826 a001 4181/1568397607*73681302247^(5/13) 4032522521159826 a001 4181/1568397607*28143753123^(2/5) 4032522521159826 a001 4181/1568397607*10749957122^(5/12) 4032522521159826 a001 4181/1568397607*4106118243^(10/23) 4032522521159826 a001 4181/1568397607*1568397607^(5/11) 4032522521159826 a004 Fibonacci(19)*Lucas(45)/(1/2+sqrt(5)/2)^69 4032522521159826 a001 4181/23725150497407*2537720636^(8/9) 4032522521159826 a001 4181/14662949395604*2537720636^(13/15) 4032522521159826 a001 4181/3461452808002*2537720636^(4/5) 4032522521159826 a001 4181/2139295485799*2537720636^(7/9) 4032522521159826 a001 4181/817138163596*2537720636^(11/15) 4032522521159826 a001 4181/192900153618*2537720636^(2/3) 4032522521159826 a001 4181/45537549124*2537720636^(3/5) 4032522521159826 a001 4181/10749957122*2537720636^(8/15) 4032522521159826 a001 4181/17393796001*2537720636^(5/9) 4032522521159826 a001 4181/4106118243*312119004989^(2/5) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^22/Lucas(46) 4032522521159826 a001 4181/4106118243*10749957122^(11/24) 4032522521159826 a001 4181/4106118243*4106118243^(11/23) 4032522521159826 a004 Fibonacci(19)*Lucas(47)/(1/2+sqrt(5)/2)^71 4032522521159826 a001 4181/10749957122*45537549124^(8/17) 4032522521159826 a001 4181/10749957122*14662949395604^(8/21) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^24/Lucas(48) 4032522521159826 a001 4181/10749957122*192900153618^(4/9) 4032522521159826 a001 4181/10749957122*73681302247^(6/13) 4032522521159826 a001 4181/10749957122*10749957122^(1/2) 4032522521159826 a004 Fibonacci(19)*Lucas(49)/(1/2+sqrt(5)/2)^73 4032522521159826 a001 4181/2139295485799*17393796001^(5/7) 4032522521159826 a001 4181/73681302247*17393796001^(4/7) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^26/Lucas(50) 4032522521159826 a001 4181/28143753123*73681302247^(1/2) 4032522521159826 a004 Fibonacci(19)*Lucas(51)/(1/2+sqrt(5)/2)^75 4032522521159826 a001 4181/14662949395604*45537549124^(13/17) 4032522521159826 a001 4181/3461452808002*45537549124^(12/17) 4032522521159826 a001 4181/1322157322203*45537549124^(2/3) 4032522521159826 a001 4181/192900153618*45537549124^(10/17) 4032522521159826 a001 4181/817138163596*45537549124^(11/17) 4032522521159826 a001 4181/73681302247*14662949395604^(4/9) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^28/Lucas(52) 4032522521159826 a001 4181/73681302247*73681302247^(7/13) 4032522521159826 a004 Fibonacci(19)*Lucas(53)/(1/2+sqrt(5)/2)^77 4032522521159826 a001 4181/192900153618*312119004989^(6/11) 4032522521159826 a001 4181/192900153618*14662949395604^(10/21) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^30/Lucas(54) 4032522521159826 a001 4181/192900153618*192900153618^(5/9) 4032522521159826 a004 Fibonacci(19)*Lucas(55)/(1/2+sqrt(5)/2)^79 4032522521159826 a001 4181/23725150497407*312119004989^(8/11) 4032522521159826 a001 4181/2139295485799*312119004989^(7/11) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^32/Lucas(56) 4032522521159826 a004 Fibonacci(19)*Lucas(57)/(1/2+sqrt(5)/2)^81 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^34/Lucas(58) 4032522521159826 a004 Fibonacci(19)*Lucas(59)/(1/2+sqrt(5)/2)^83 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^36/Lucas(60) 4032522521159826 a004 Fibonacci(19)*Lucas(61)/(1/2+sqrt(5)/2)^85 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^38/Lucas(62) 4032522521159826 a004 Fibonacci(19)*Lucas(63)/(1/2+sqrt(5)/2)^87 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^40/Lucas(64) 4032522521159826 a004 Fibonacci(19)*Lucas(65)/(1/2+sqrt(5)/2)^89 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^42/Lucas(66) 4032522521159826 a004 Fibonacci(19)*Lucas(67)/(1/2+sqrt(5)/2)^91 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^44/Lucas(68) 4032522521159826 a004 Fibonacci(19)*Lucas(69)/(1/2+sqrt(5)/2)^93 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^46/Lucas(70) 4032522521159826 a004 Fibonacci(19)*Lucas(71)/(1/2+sqrt(5)/2)^95 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^48/Lucas(72) 4032522521159826 a004 Fibonacci(19)*Lucas(73)/(1/2+sqrt(5)/2)^97 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^50/Lucas(74) 4032522521159826 a004 Fibonacci(19)*Lucas(75)/(1/2+sqrt(5)/2)^99 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^52/Lucas(76) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^54/Lucas(78) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^56/Lucas(80) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^58/Lucas(82) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^60/Lucas(84) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^62/Lucas(86) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^64/Lucas(88) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^66/Lucas(90) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^68/Lucas(92) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^70/Lucas(94) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^72/Lucas(96) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^74/Lucas(98) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^75/Lucas(99) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^76/Lucas(100) 4032522521159826 a004 Fibonacci(19)*Lucas(1)/(1/2+sqrt(5)/2)^24 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^73/Lucas(97) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^71/Lucas(95) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^69/Lucas(93) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^67/Lucas(91) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^65/Lucas(89) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^63/Lucas(87) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^61/Lucas(85) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^59/Lucas(83) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^57/Lucas(81) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^55/Lucas(79) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^53/Lucas(77) 4032522521159826 a004 Fibonacci(19)*Lucas(76)/(1/2+sqrt(5)/2)^100 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^51/Lucas(75) 4032522521159826 a004 Fibonacci(19)*Lucas(74)/(1/2+sqrt(5)/2)^98 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^49/Lucas(73) 4032522521159826 a004 Fibonacci(19)*Lucas(72)/(1/2+sqrt(5)/2)^96 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^47/Lucas(71) 4032522521159826 a004 Fibonacci(19)*Lucas(70)/(1/2+sqrt(5)/2)^94 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^45/Lucas(69) 4032522521159826 a004 Fibonacci(19)*Lucas(68)/(1/2+sqrt(5)/2)^92 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^43/Lucas(67) 4032522521159826 a004 Fibonacci(19)*Lucas(66)/(1/2+sqrt(5)/2)^90 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^41/Lucas(65) 4032522521159826 a001 4181/14662949395604*14662949395604^(13/21) 4032522521159826 a004 Fibonacci(19)*Lucas(64)/(1/2+sqrt(5)/2)^88 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^39/Lucas(63) 4032522521159826 a004 Fibonacci(19)*Lucas(62)/(1/2+sqrt(5)/2)^86 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^37/Lucas(61) 4032522521159826 a004 Fibonacci(19)*Lucas(60)/(1/2+sqrt(5)/2)^84 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^35/Lucas(59) 4032522521159826 a004 Fibonacci(19)*Lucas(58)/(1/2+sqrt(5)/2)^82 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^33/Lucas(57) 4032522521159826 a001 4181/3461452808002*505019158607^(9/14) 4032522521159826 a001 4181/2139295485799*505019158607^(5/8) 4032522521159826 a004 Fibonacci(19)*Lucas(56)/(1/2+sqrt(5)/2)^80 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^31/Lucas(55) 4032522521159826 a001 4181/312119004989*9062201101803^(1/2) 4032522521159826 a001 4181/3461452808002*192900153618^(2/3) 4032522521159826 a001 4181/817138163596*192900153618^(11/18) 4032522521159826 a001 4181/14662949395604*192900153618^(13/18) 4032522521159826 a004 Fibonacci(19)*Lucas(54)/(1/2+sqrt(5)/2)^78 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^29/Lucas(53) 4032522521159826 a001 4181/119218851371*1322157322203^(1/2) 4032522521159826 a001 4181/505019158607*73681302247^(8/13) 4032522521159826 a001 4181/3461452808002*73681302247^(9/13) 4032522521159826 a001 4181/14662949395604*73681302247^(3/4) 4032522521159826 a001 4181/23725150497407*73681302247^(10/13) 4032522521159826 a004 Fibonacci(19)*Lucas(52)/(1/2+sqrt(5)/2)^76 4032522521159826 a001 4181/45537549124*45537549124^(9/17) 4032522521159826 a001 4181/45537549124*817138163596^(9/19) 4032522521159826 a001 4181/45537549124*14662949395604^(3/7) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^27/Lucas(51) 4032522521159826 a001 4181/45537549124*192900153618^(1/2) 4032522521159826 a001 4181/192900153618*28143753123^(3/5) 4032522521159826 a001 4181/2139295485799*28143753123^(7/10) 4032522521159826 a001 4181/23725150497407*28143753123^(4/5) 4032522521159826 a004 Fibonacci(19)*Lucas(50)/(1/2+sqrt(5)/2)^74 4032522521159826 a001 4181/17393796001*312119004989^(5/11) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^25/Lucas(49) 4032522521159826 a001 4181/17393796001*3461452808002^(5/12) 4032522521159826 a001 4181/28143753123*10749957122^(13/24) 4032522521159826 a001 4181/17393796001*28143753123^(1/2) 4032522521159826 a001 4181/73681302247*10749957122^(7/12) 4032522521159826 a001 4181/45537549124*10749957122^(9/16) 4032522521159826 a001 4181/192900153618*10749957122^(5/8) 4032522521159826 a001 4181/505019158607*10749957122^(2/3) 4032522521159826 a001 4181/817138163596*10749957122^(11/16) 4032522521159826 a001 4181/1322157322203*10749957122^(17/24) 4032522521159826 a001 4181/3461452808002*10749957122^(3/4) 4032522521159826 a001 4181/9062201101803*10749957122^(19/24) 4032522521159826 a001 4181/14662949395604*10749957122^(13/16) 4032522521159826 a001 4181/23725150497407*10749957122^(5/6) 4032522521159826 a004 Fibonacci(19)*Lucas(48)/(1/2+sqrt(5)/2)^72 4032522521159826 a001 4181/10749957122*4106118243^(12/23) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^23/Lucas(47) 4032522521159826 a001 4181/28143753123*4106118243^(13/23) 4032522521159826 a001 4181/73681302247*4106118243^(14/23) 4032522521159826 a001 4181/192900153618*4106118243^(15/23) 4032522521159826 a001 4181/505019158607*4106118243^(16/23) 4032522521159826 a001 4181/1322157322203*4106118243^(17/23) 4032522521159826 a001 4181/3461452808002*4106118243^(18/23) 4032522521159826 a001 4181/9062201101803*4106118243^(19/23) 4032522521159826 a001 4181/23725150497407*4106118243^(20/23) 4032522521159826 a001 4181/6643838879*4106118243^(1/2) 4032522521159826 a004 Fibonacci(19)*Lucas(46)/(1/2+sqrt(5)/2)^70 4032522521159826 a001 4181/2537720636*2537720636^(7/15) 4032522521159826 a001 4181/4106118243*1568397607^(1/2) 4032522521159826 a001 4181/2537720636*17393796001^(3/7) 4032522521159826 a001 4181/2537720636*45537549124^(7/17) 4032522521159826 a001 4181/2537720636*14662949395604^(1/3) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^21/Lucas(45) 4032522521159826 a001 4181/2537720636*192900153618^(7/18) 4032522521159826 a001 4181/2537720636*10749957122^(7/16) 4032522521159826 a001 4181/10749957122*1568397607^(6/11) 4032522521159826 a001 4181/28143753123*1568397607^(13/22) 4032522521159826 a001 4181/73681302247*1568397607^(7/11) 4032522521159826 a001 4181/192900153618*1568397607^(15/22) 4032522521159826 a001 4181/505019158607*1568397607^(8/11) 4032522521159826 a001 4181/817138163596*1568397607^(3/4) 4032522521159826 a001 4181/1322157322203*1568397607^(17/22) 4032522521159826 a001 4181/3461452808002*1568397607^(9/11) 4032522521159826 a001 4181/9062201101803*1568397607^(19/22) 4032522521159826 a001 4181/23725150497407*1568397607^(10/11) 4032522521159826 a004 Fibonacci(19)*Lucas(44)/(1/2+sqrt(5)/2)^68 4032522521159826 a001 4181/1568397607*599074578^(10/21) 4032522521159826 a001 4181/969323029*817138163596^(1/3) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^19/Lucas(43) 4032522521159826 a001 4181/4106118243*599074578^(11/21) 4032522521159826 a001 4181/2537720636*599074578^(1/2) 4032522521159826 a001 4181/10749957122*599074578^(4/7) 4032522521159826 a001 4181/28143753123*599074578^(13/21) 4032522521159826 a001 4181/45537549124*599074578^(9/14) 4032522521159826 a001 4181/73681302247*599074578^(2/3) 4032522521159826 a001 4181/192900153618*599074578^(5/7) 4032522521159826 a001 4181/505019158607*599074578^(16/21) 4032522521159826 a001 4181/817138163596*599074578^(11/14) 4032522521159826 a001 4181/1322157322203*599074578^(17/21) 4032522521159826 a001 4181/2139295485799*599074578^(5/6) 4032522521159826 a001 4181/3461452808002*599074578^(6/7) 4032522521159826 a001 4181/9062201101803*599074578^(19/21) 4032522521159826 a001 4181/14662949395604*599074578^(13/14) 4032522521159826 a001 4181/23725150497407*599074578^(20/21) 4032522521159826 a004 Fibonacci(19)*Lucas(42)/(1/2+sqrt(5)/2)^66 4032522521159826 a001 4181/599074578*228826127^(9/20) 4032522521159826 a001 4181/370248451*45537549124^(1/3) 4032522521159826 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^17/Lucas(41) 4032522521159826 a001 4181/1568397607*228826127^(1/2) 4032522521159826 a001 4181/4106118243*228826127^(11/20) 4032522521159827 a001 4181/10749957122*228826127^(3/5) 4032522521159827 a001 4181/17393796001*228826127^(5/8) 4032522521159827 a001 4181/28143753123*228826127^(13/20) 4032522521159827 a001 4181/73681302247*228826127^(7/10) 4032522521159827 a001 4181/192900153618*228826127^(3/4) 4032522521159827 a001 4181/505019158607*228826127^(4/5) 4032522521159827 a001 4181/1322157322203*228826127^(17/20) 4032522521159827 a001 4181/2139295485799*228826127^(7/8) 4032522521159827 a001 4181/3461452808002*228826127^(9/10) 4032522521159827 a001 4181/9062201101803*228826127^(19/20) 4032522521159827 a004 Fibonacci(19)*Lucas(40)/(1/2+sqrt(5)/2)^64 4032522521159827 a001 4181/141422324*141422324^(5/13) 4032522521159827 a001 4181/228826127*87403803^(8/19) 4032522521159827 a001 4181/141422324*2537720636^(1/3) 4032522521159827 a001 4181/141422324*45537549124^(5/17) 4032522521159827 a001 4181/141422324*312119004989^(3/11) 4032522521159827 a001 132215733733/3278735159921 4032522521159827 a001 4181/141422324*14662949395604^(5/21) 4032522521159827 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^15/Lucas(39) 4032522521159827 a001 4181/141422324*192900153618^(5/18) 4032522521159827 a001 4181/141422324*28143753123^(3/10) 4032522521159827 a001 4181/141422324*10749957122^(5/16) 4032522521159827 a001 4181/141422324*599074578^(5/14) 4032522521159827 a001 4181/141422324*228826127^(3/8) 4032522521159827 a001 4181/599074578*87403803^(9/19) 4032522521159827 a001 4181/969323029*87403803^(1/2) 4032522521159827 a001 4181/1568397607*87403803^(10/19) 4032522521159827 a001 4181/4106118243*87403803^(11/19) 4032522521159827 a001 4181/10749957122*87403803^(12/19) 4032522521159827 a001 4181/28143753123*87403803^(13/19) 4032522521159827 a001 4181/73681302247*87403803^(14/19) 4032522521159827 a001 4181/192900153618*87403803^(15/19) 4032522521159827 a001 4181/505019158607*87403803^(16/19) 4032522521159827 a004 Fibonacci(40)/Lucas(19)/(1/2+sqrt(5)/2)^26 4032522521159827 a001 4181/1322157322203*87403803^(17/19) 4032522521159827 a001 4181/3461452808002*87403803^(18/19) 4032522521159827 a004 Fibonacci(42)/Lucas(19)/(1/2+sqrt(5)/2)^28 4032522521159827 a004 Fibonacci(44)/Lucas(19)/(1/2+sqrt(5)/2)^30 4032522521159827 a004 Fibonacci(46)/Lucas(19)/(1/2+sqrt(5)/2)^32 4032522521159827 a004 Fibonacci(48)/Lucas(19)/(1/2+sqrt(5)/2)^34 4032522521159827 a004 Fibonacci(50)/Lucas(19)/(1/2+sqrt(5)/2)^36 4032522521159827 a004 Fibonacci(52)/Lucas(19)/(1/2+sqrt(5)/2)^38 4032522521159827 a004 Fibonacci(54)/Lucas(19)/(1/2+sqrt(5)/2)^40 4032522521159827 a004 Fibonacci(56)/Lucas(19)/(1/2+sqrt(5)/2)^42 4032522521159827 a004 Fibonacci(58)/Lucas(19)/(1/2+sqrt(5)/2)^44 4032522521159827 a004 Fibonacci(60)/Lucas(19)/(1/2+sqrt(5)/2)^46 4032522521159827 a004 Fibonacci(62)/Lucas(19)/(1/2+sqrt(5)/2)^48 4032522521159827 a004 Fibonacci(64)/Lucas(19)/(1/2+sqrt(5)/2)^50 4032522521159827 a004 Fibonacci(66)/Lucas(19)/(1/2+sqrt(5)/2)^52 4032522521159827 a004 Fibonacci(68)/Lucas(19)/(1/2+sqrt(5)/2)^54 4032522521159827 a004 Fibonacci(70)/Lucas(19)/(1/2+sqrt(5)/2)^56 4032522521159827 a004 Fibonacci(72)/Lucas(19)/(1/2+sqrt(5)/2)^58 4032522521159827 a004 Fibonacci(74)/Lucas(19)/(1/2+sqrt(5)/2)^60 4032522521159827 a004 Fibonacci(19)*Lucas(38)/(1/2+sqrt(5)/2)^62 4032522521159827 a004 Fibonacci(78)/Lucas(19)/(1/2+sqrt(5)/2)^64 4032522521159827 a004 Fibonacci(80)/Lucas(19)/(1/2+sqrt(5)/2)^66 4032522521159827 a004 Fibonacci(82)/Lucas(19)/(1/2+sqrt(5)/2)^68 4032522521159827 a004 Fibonacci(84)/Lucas(19)/(1/2+sqrt(5)/2)^70 4032522521159827 a004 Fibonacci(86)/Lucas(19)/(1/2+sqrt(5)/2)^72 4032522521159827 a004 Fibonacci(88)/Lucas(19)/(1/2+sqrt(5)/2)^74 4032522521159827 a004 Fibonacci(90)/Lucas(19)/(1/2+sqrt(5)/2)^76 4032522521159827 a004 Fibonacci(92)/Lucas(19)/(1/2+sqrt(5)/2)^78 4032522521159827 a004 Fibonacci(94)/Lucas(19)/(1/2+sqrt(5)/2)^80 4032522521159827 a004 Fibonacci(96)/Lucas(19)/(1/2+sqrt(5)/2)^82 4032522521159827 a004 Fibonacci(98)/Lucas(19)/(1/2+sqrt(5)/2)^84 4032522521159827 a004 Fibonacci(100)/Lucas(19)/(1/2+sqrt(5)/2)^86 4032522521159827 a004 Fibonacci(99)/Lucas(19)/(1/2+sqrt(5)/2)^85 4032522521159827 a004 Fibonacci(97)/Lucas(19)/(1/2+sqrt(5)/2)^83 4032522521159827 a004 Fibonacci(95)/Lucas(19)/(1/2+sqrt(5)/2)^81 4032522521159827 a004 Fibonacci(93)/Lucas(19)/(1/2+sqrt(5)/2)^79 4032522521159827 a004 Fibonacci(91)/Lucas(19)/(1/2+sqrt(5)/2)^77 4032522521159827 a004 Fibonacci(89)/Lucas(19)/(1/2+sqrt(5)/2)^75 4032522521159827 a004 Fibonacci(87)/Lucas(19)/(1/2+sqrt(5)/2)^73 4032522521159827 a004 Fibonacci(85)/Lucas(19)/(1/2+sqrt(5)/2)^71 4032522521159827 a004 Fibonacci(83)/Lucas(19)/(1/2+sqrt(5)/2)^69 4032522521159827 a004 Fibonacci(81)/Lucas(19)/(1/2+sqrt(5)/2)^67 4032522521159827 a004 Fibonacci(79)/Lucas(19)/(1/2+sqrt(5)/2)^65 4032522521159827 a004 Fibonacci(77)/Lucas(19)/(1/2+sqrt(5)/2)^63 4032522521159827 a004 Fibonacci(75)/Lucas(19)/(1/2+sqrt(5)/2)^61 4032522521159827 a004 Fibonacci(73)/Lucas(19)/(1/2+sqrt(5)/2)^59 4032522521159827 a004 Fibonacci(71)/Lucas(19)/(1/2+sqrt(5)/2)^57 4032522521159827 a004 Fibonacci(69)/Lucas(19)/(1/2+sqrt(5)/2)^55 4032522521159827 a004 Fibonacci(67)/Lucas(19)/(1/2+sqrt(5)/2)^53 4032522521159827 a004 Fibonacci(65)/Lucas(19)/(1/2+sqrt(5)/2)^51 4032522521159827 a004 Fibonacci(63)/Lucas(19)/(1/2+sqrt(5)/2)^49 4032522521159827 a004 Fibonacci(61)/Lucas(19)/(1/2+sqrt(5)/2)^47 4032522521159827 a004 Fibonacci(59)/Lucas(19)/(1/2+sqrt(5)/2)^45 4032522521159827 a004 Fibonacci(57)/Lucas(19)/(1/2+sqrt(5)/2)^43 4032522521159827 a004 Fibonacci(55)/Lucas(19)/(1/2+sqrt(5)/2)^41 4032522521159827 a004 Fibonacci(53)/Lucas(19)/(1/2+sqrt(5)/2)^39 4032522521159827 a004 Fibonacci(51)/Lucas(19)/(1/2+sqrt(5)/2)^37 4032522521159827 a004 Fibonacci(49)/Lucas(19)/(1/2+sqrt(5)/2)^35 4032522521159827 a004 Fibonacci(47)/Lucas(19)/(1/2+sqrt(5)/2)^33 4032522521159827 a004 Fibonacci(45)/Lucas(19)/(1/2+sqrt(5)/2)^31 4032522521159827 a004 Fibonacci(43)/Lucas(19)/(1/2+sqrt(5)/2)^29 4032522521159827 a004 Fibonacci(41)/Lucas(19)/(1/2+sqrt(5)/2)^27 4032522521159827 a004 Fibonacci(39)/Lucas(19)/(1/2+sqrt(5)/2)^25 4032522521159827 a001 4181/87403803*33385282^(7/18) 4032522521159828 a001 4181/54018521*141422324^(1/3) 4032522521159828 a001 101003832877/2504730781961 4032522521159828 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^13/Lucas(37) 4032522521159828 a001 4181/54018521*73681302247^(1/4) 4032522521159828 a001 4181/228826127*33385282^(4/9) 4032522521159828 a001 4181/141422324*33385282^(5/12) 4032522521159828 a001 4181/599074578*33385282^(1/2) 4032522521159828 a004 Fibonacci(37)/Lucas(19)/(1/2+sqrt(5)/2)^23 4032522521159828 a001 4181/1568397607*33385282^(5/9) 4032522521159829 a001 4181/2537720636*33385282^(7/12) 4032522521159829 a001 4181/4106118243*33385282^(11/18) 4032522521159829 a001 4181/10749957122*33385282^(2/3) 4032522521159829 a001 4181/28143753123*33385282^(13/18) 4032522521159829 a001 4181/45537549124*33385282^(3/4) 4032522521159829 a001 4181/73681302247*33385282^(7/9) 4032522521159829 a001 4181/192900153618*33385282^(5/6) 4032522521159830 a001 4181/505019158607*33385282^(8/9) 4032522521159830 a001 4181/817138163596*33385282^(11/12) 4032522521159830 a001 4181/1322157322203*33385282^(17/18) 4032522521159830 a004 Fibonacci(19)*Lucas(36)/(1/2+sqrt(5)/2)^60 4032522521159832 a001 4181/33385282*12752043^(6/17) 4032522521159836 a001 4181/20633239*312119004989^(1/5) 4032522521159836 a001 38580031165/956722026041 4032522521159836 a001 4181/20633239*(1/2+1/2*5^(1/2))^11 4032522521159836 a001 4181/20633239*1568397607^(1/4) 4032522521159836 a001 4181/87403803*12752043^(7/17) 4032522521159836 a004 Fibonacci(35)/Lucas(19)/(1/2+sqrt(5)/2)^21 4032522521159838 a001 4181/228826127*12752043^(8/17) 4032522521159839 a001 4181/370248451*12752043^(1/2) 4032522521159840 a001 4181/599074578*12752043^(9/17) 4032522521159841 a001 4181/1568397607*12752043^(10/17) 4032522521159843 a001 4181/4106118243*12752043^(11/17) 4032522521159844 a001 4181/10749957122*12752043^(12/17) 4032522521159845 a001 4181/28143753123*12752043^(13/17) 4032522521159847 a001 4181/73681302247*12752043^(14/17) 4032522521159848 a001 4181/192900153618*12752043^(15/17) 4032522521159850 a001 4181/505019158607*12752043^(16/17) 4032522521159851 a004 Fibonacci(19)*Lucas(34)/(1/2+sqrt(5)/2)^58 4032522521159855 a001 4181/12752043*4870847^(5/16) 4032522521159874 a001 4181/7881196*7881196^(3/11) 4032522521159887 a001 4181/33385282*4870847^(3/8) 4032522521159891 a001 4181/7881196*141422324^(3/13) 4032522521159891 a001 4181/7881196*2537720636^(1/5) 4032522521159891 a001 4181/7881196*45537549124^(3/17) 4032522521159891 a001 1762289/43701901 4032522521159891 a001 4181/7881196*14662949395604^(1/7) 4032522521159891 a001 4181/7881196*(1/2+1/2*5^(1/2))^9 4032522521159891 a001 4181/7881196*192900153618^(1/6) 4032522521159891 a001 4181/7881196*10749957122^(3/16) 4032522521159891 a001 4181/7881196*599074578^(3/14) 4032522521159892 a004 Fibonacci(33)/Lucas(19)/(1/2+sqrt(5)/2)^19 4032522521159892 a001 4181/7881196*33385282^(1/4) 4032522521159900 a001 4181/87403803*4870847^(7/16) 4032522521159911 a001 4181/228826127*4870847^(1/2) 4032522521159922 a001 4181/599074578*4870847^(9/16) 4032522521159933 a001 4181/1568397607*4870847^(5/8) 4032522521159943 a001 4181/4106118243*4870847^(11/16) 4032522521159954 a001 4181/10749957122*4870847^(3/4) 4032522521159965 a001 4181/28143753123*4870847^(13/16) 4032522521159967 a001 4181/4870847*1860498^(4/15) 4032522521159975 a001 4181/73681302247*4870847^(7/8) 4032522521159986 a001 4181/192900153618*4870847^(15/16) 4032522521159996 a004 Fibonacci(19)*Lucas(32)/(1/2+sqrt(5)/2)^56 4032522521160190 a001 4181/12752043*1860498^(1/3) 4032522521160241 a001 4181/7881196*1860498^(3/10) 4032522521160261 a001 4181/710647*271443^(2/13) 4032522521160270 a001 4181/3010349*20633239^(1/5) 4032522521160271 a001 4181/3010349*17393796001^(1/7) 4032522521160271 a001 5628750689/139583862445 4032522521160271 a001 4181/3010349*14662949395604^(1/9) 4032522521160271 a001 4181/3010349*(1/2+1/2*5^(1/2))^7 4032522521160271 a001 4181/3010349*599074578^(1/6) 4032522521160272 a004 Fibonacci(31)/Lucas(19)/(1/2+sqrt(5)/2)^17 4032522521160289 a001 4181/33385282*1860498^(2/5) 4032522521160370 a001 4181/87403803*1860498^(7/15) 4032522521160373 a001 4181/1860498*710647^(3/14) 4032522521160409 a001 4181/141422324*1860498^(1/2) 4032522521160448 a001 4181/228826127*1860498^(8/15) 4032522521160525 a001 4181/599074578*1860498^(3/5) 4032522521160603 a001 4181/1568397607*1860498^(2/3) 4032522521160642 a001 4181/2537720636*1860498^(7/10) 4032522521160681 a001 4181/4106118243*1860498^(11/15) 4032522521160758 a001 4181/10749957122*1860498^(4/5) 4032522521160797 a001 4181/17393796001*1860498^(5/6) 4032522521160836 a001 4181/28143753123*1860498^(13/15) 4032522521160875 a001 4181/45537549124*1860498^(9/10) 4032522521160914 a001 4181/73681302247*1860498^(14/15) 4032522521160991 a004 Fibonacci(19)*Lucas(30)/(1/2+sqrt(5)/2)^54 4032522521161938 a001 4181/4870847*710647^(2/7) 4032522521162268 a001 4181/3010349*710647^(1/4) 4032522521162653 a001 4181/12752043*710647^(5/14) 4032522521162875 a001 4181/1149851*20633239^(1/7) 4032522521162876 a001 4181/1149851*2537720636^(1/9) 4032522521162876 a001 2149991449/53316291173 4032522521162876 a001 4181/1149851*312119004989^(1/11) 4032522521162876 a001 4181/1149851*(1/2+1/2*5^(1/2))^5 4032522521162876 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^5/Lucas(29) 4032522521162876 a001 4181/1149851*28143753123^(1/10) 4032522521162876 a001 4181/1149851*228826127^(1/8) 4032522521162877 a004 Fibonacci(29)/Lucas(19)/(1/2+sqrt(5)/2)^15 4032522521163071 a001 4181/1149851*1860498^(1/6) 4032522521163245 a001 4181/33385282*710647^(3/7) 4032522521163818 a001 4181/87403803*710647^(1/2) 4032522521164389 a001 4181/228826127*710647^(4/7) 4032522521164960 a001 4181/599074578*710647^(9/14) 4032522521165530 a001 4181/1568397607*710647^(5/7) 4032522521165815 a001 4181/2537720636*710647^(3/4) 4032522521166100 a001 4181/4106118243*710647^(11/14) 4032522521166671 a001 4181/10749957122*710647^(6/7) 4032522521167241 a001 4181/28143753123*710647^(13/14) 4032522521167811 a004 Fibonacci(19)*Lucas(28)/(1/2+sqrt(5)/2)^52 4032522521171291 a001 4181/1860498*271443^(3/13) 4032522521176496 a001 4181/4870847*271443^(4/13) 4032522521178408 a001 4181/439204*439204^(1/9) 4032522521180725 a001 4181/439204*7881196^(1/11) 4032522521180731 a001 4181/439204*141422324^(1/13) 4032522521180731 a001 4181/439204*2537720636^(1/15) 4032522521180731 a001 410611829/10182505537 4032522521180731 a001 4181/439204*45537549124^(1/17) 4032522521180731 a001 4181/439204*14662949395604^(1/21) 4032522521180731 a001 4181/439204*(1/2+1/2*5^(1/2))^3 4032522521180731 a001 4181/439204*192900153618^(1/18) 4032522521180731 a001 4181/439204*10749957122^(1/16) 4032522521180731 a001 4181/439204*599074578^(1/14) 4032522521180731 a001 4181/439204*33385282^(1/12) 4032522521180732 a004 Fibonacci(27)/Lucas(19)/(1/2+sqrt(5)/2)^13 4032522521180848 a001 4181/439204*1860498^(1/10) 4032522521180851 a001 4181/12752043*271443^(5/13) 4032522521185082 a001 4181/33385282*271443^(6/13) 4032522521187192 a001 4181/54018521*271443^(1/2) 4032522521189296 a001 4181/87403803*271443^(7/13) 4032522521193506 a001 4181/228826127*271443^(8/13) 4032522521197716 a001 4181/599074578*271443^(9/13) 4032522521201926 a001 4181/1568397607*271443^(10/13) 4032522521206136 a001 4181/4106118243*271443^(11/13) 4032522521210346 a001 4181/10749957122*271443^(12/13) 4032522521214362 a001 4181/710647*103682^(1/6) 4032522521214556 a004 Fibonacci(19)*Lucas(26)/(1/2+sqrt(5)/2)^50 4032522521227621 a001 4181/439204*103682^(1/8) 4032522521241026 a001 4181/1149851*103682^(5/24) 4032522521252441 a001 4181/1860498*103682^(1/4) 4032522521260411 a001 4181/167761*64079^(1/23) 4032522521269681 a001 4181/3010349*103682^(7/24) 4032522521284696 a001 4181/4870847*103682^(1/3) 4032522521300561 a001 4181/7881196*103682^(3/8) 4032522521303109 a001 313679525/7778742049 4032522521303109 a001 4181/335522+4181/335522*5^(1/2) 4032522521303110 a004 Fibonacci(25)/Lucas(19)/(1/2+sqrt(5)/2)^11 4032522521316102 a001 4181/12752043*103682^(5/12) 4032522521318739 a001 4181/167761*103682^(1/24) 4032522521331766 a001 4181/20633239*103682^(11/24) 4032522521338834 a001 4181/271443*39603^(1/11) 4032522521347383 a001 4181/33385282*103682^(1/2) 4032522521363018 a001 4181/54018521*103682^(13/24) 4032522521378646 a001 4181/87403803*103682^(7/12) 4032522521394277 a001 4181/141422324*103682^(5/8) 4032522521409906 a001 4181/228826127*103682^(2/3) 4032522521419978 a001 4181/167761*39603^(1/22) 4032522521425536 a001 4181/370248451*103682^(17/24) 4032522521441166 a001 4181/599074578*103682^(3/4) 4032522521456796 a001 4181/969323029*103682^(19/24) 4032522521472426 a001 4181/1568397607*103682^(5/6) 4032522521488056 a001 4181/2537720636*103682^(7/8) 4032522521503686 a001 4181/4106118243*103682^(11/12) 4032522521519316 a001 4181/6643838879*103682^(23/24) 4032522521531337 a001 4181/439204*39603^(3/22) 4032522521534946 a004 Fibonacci(19)*Lucas(24)/(1/2+sqrt(5)/2)^48 4032522521619316 a001 4181/710647*39603^(2/11) 4032522521620899 a001 144/103681*5778^(7/18) 4032522521747220 a001 4181/1149851*39603^(5/22) 4032522521859873 a001 4181/1860498*39603^(3/11) 4032522521941293 a001 121393/87403803*5778^(7/18) 4032522521978352 a001 4181/3010349*39603^(7/22) 4032522521988038 a001 317811/228826127*5778^(7/18) 4032522521994858 a001 416020/299537289*5778^(7/18) 4032522521995853 a001 311187/224056801*5778^(7/18) 4032522521995998 a001 5702887/4106118243*5778^(7/18) 4032522521996019 a001 7465176/5374978561*5778^(7/18) 4032522521996022 a001 39088169/28143753123*5778^(7/18) 4032522521996023 a001 14619165/10525900321*5778^(7/18) 4032522521996023 a001 133957148/96450076809*5778^(7/18) 4032522521996023 a001 701408733/505019158607*5778^(7/18) 4032522521996023 a001 1836311903/1322157322203*5778^(7/18) 4032522521996023 a001 14930208/10749853441*5778^(7/18) 4032522521996023 a001 12586269025/9062201101803*5778^(7/18) 4032522521996023 a001 32951280099/23725150497407*5778^(7/18) 4032522521996023 a001 10182505537/7331474697802*5778^(7/18) 4032522521996023 a001 7778742049/5600748293801*5778^(7/18) 4032522521996023 a001 2971215073/2139295485799*5778^(7/18) 4032522521996023 a001 567451585/408569081798*5778^(7/18) 4032522521996023 a001 433494437/312119004989*5778^(7/18) 4032522521996023 a001 165580141/119218851371*5778^(7/18) 4032522521996023 a001 31622993/22768774562*5778^(7/18) 4032522521996024 a001 24157817/17393796001*5778^(7/18) 4032522521996032 a001 9227465/6643838879*5778^(7/18) 4032522521996088 a001 1762289/1268860318*5778^(7/18) 4032522521996468 a001 1346269/969323029*5778^(7/18) 4032522521999073 a001 514229/370248451*5778^(7/18) 4032522522016693 a001 10946/4870847*5778^(1/3) 4032522522016928 a001 98209/70711162*5778^(7/18) 4032522522094606 a001 4181/4870847*39603^(4/11) 4032522522139307 a001 75025/54018521*5778^(7/18) 4032522522141903 a001 119814917/2971215073 4032522522141903 a004 Fibonacci(19)/Lucas(23)/(1/2+sqrt(5)/2) 4032522522141904 a004 Fibonacci(23)/Lucas(19)/(1/2+sqrt(5)/2)^9 4032522522184242 a001 4181/167761*15127^(1/20) 4032522522211709 a001 4181/7881196*39603^(9/22) 4032522522328488 a001 4181/12752043*39603^(5/11) 4032522522445391 a001 4181/20633239*39603^(1/2) 4032522522562246 a001 4181/33385282*39603^(6/11) 4032522522679120 a001 4181/54018521*39603^(13/22) 4032522522795987 a001 4181/87403803*39603^(7/11) 4032522522867362 a001 4181/271443*15127^(1/10) 4032522522912856 a001 4181/141422324*39603^(15/22) 4032522522978109 a001 28657/20633239*5778^(7/18) 4032522523029724 a001 4181/228826127*39603^(8/11) 4032522523146593 a001 4181/370248451*39603^(17/22) 4032522523263462 a001 4181/599074578*39603^(9/11) 4032522523380330 a001 4181/969323029*39603^(19/22) 4032522523476140 m001 (GaussAGM+Riemann2ndZero)/(Artin-Catalan) 4032522523497199 a001 4181/1568397607*39603^(10/11) 4032522523614068 a001 4181/2537720636*39603^(21/22) 4032522523730936 a004 Fibonacci(19)*Lucas(22)/(1/2+sqrt(5)/2)^46 4032522523824129 a001 4181/439204*15127^(3/20) 4032522524187119 a001 17711/710647*2207^(1/16) 4032522524504622 a001 615/1875749*5778^(5/9) 4032522524676371 a001 4181/710647*15127^(1/5) 4032522525568539 a001 4181/1149851*15127^(1/4) 4032522526135335 a001 17711/20633239*5778^(4/9) 4032522526389929 a001 2576/103361*2207^(1/16) 4032522526445456 a001 4181/1860498*15127^(3/10) 4032522526711315 a001 121393/4870847*2207^(1/16) 4032522526758204 a001 105937/4250681*2207^(1/16) 4032522526765045 a001 416020/16692641*2207^(1/16) 4032522526766043 a001 726103/29134601*2207^(1/16) 4032522526766189 a001 5702887/228826127*2207^(1/16) 4032522526766210 a001 829464/33281921*2207^(1/16) 4032522526766213 a001 39088169/1568397607*2207^(1/16) 4032522526766214 a001 34111385/1368706081*2207^(1/16) 4032522526766214 a001 133957148/5374978561*2207^(1/16) 4032522526766214 a001 233802911/9381251041*2207^(1/16) 4032522526766214 a001 1836311903/73681302247*2207^(1/16) 4032522526766214 a001 267084832/10716675201*2207^(1/16) 4032522526766214 a001 12586269025/505019158607*2207^(1/16) 4032522526766214 a001 10983760033/440719107401*2207^(1/16) 4032522526766214 a001 43133785636/1730726404001*2207^(1/16) 4032522526766214 a001 75283811239/3020733700601*2207^(1/16) 4032522526766214 a001 182717648081/7331474697802*2207^(1/16) 4032522526766214 a001 139583862445/5600748293801*2207^(1/16) 4032522526766214 a001 53316291173/2139295485799*2207^(1/16) 4032522526766214 a001 10182505537/408569081798*2207^(1/16) 4032522526766214 a001 7778742049/312119004989*2207^(1/16) 4032522526766214 a001 2971215073/119218851371*2207^(1/16) 4032522526766214 a001 567451585/22768774562*2207^(1/16) 4032522526766214 a001 433494437/17393796001*2207^(1/16) 4032522526766214 a001 165580141/6643838879*2207^(1/16) 4032522526766214 a001 31622993/1268860318*2207^(1/16) 4032522526766215 a001 24157817/969323029*2207^(1/16) 4032522526766223 a001 9227465/370248451*2207^(1/16) 4032522526766279 a001 1762289/70711162*2207^(1/16) 4032522526766660 a001 1346269/54018521*2207^(1/16) 4032522526769273 a001 514229/20633239*2207^(1/16) 4032522526787183 a001 98209/3940598*2207^(1/16) 4032522526909942 a001 75025/3010349*2207^(1/16) 4032522527328199 a001 4181/3010349*15127^(7/20) 4032522527751340 a001 28657/1149851*2207^(1/16) 4032522527891079 a001 22882613/567451585 4032522527891079 a004 Fibonacci(19)/Lucas(21)/(1/2+sqrt(5)/2)^3 4032522527891080 a004 Fibonacci(21)/Lucas(19)/(1/2+sqrt(5)/2)^7 4032522528013522 a001 4181/167761*5778^(1/18) 4032522528208716 a001 4181/4870847*15127^(2/5) 4032522528331317 a001 46368/54018521*5778^(4/9) 4032522528651706 a001 233/271444*5778^(4/9) 4032522528698451 a001 317811/370248451*5778^(4/9) 4032522528705271 a001 832040/969323029*5778^(4/9) 4032522528706266 a001 2178309/2537720636*5778^(4/9) 4032522528706411 a001 5702887/6643838879*5778^(4/9) 4032522528706432 a001 14930352/17393796001*5778^(4/9) 4032522528706435 a001 39088169/45537549124*5778^(4/9) 4032522528706435 a001 102334155/119218851371*5778^(4/9) 4032522528706435 a001 267914296/312119004989*5778^(4/9) 4032522528706435 a001 701408733/817138163596*5778^(4/9) 4032522528706436 a001 1836311903/2139295485799*5778^(4/9) 4032522528706436 a001 4807526976/5600748293801*5778^(4/9) 4032522528706436 a001 12586269025/14662949395604*5778^(4/9) 4032522528706436 a001 20365011074/23725150497407*5778^(4/9) 4032522528706436 a001 7778742049/9062201101803*5778^(4/9) 4032522528706436 a001 2971215073/3461452808002*5778^(4/9) 4032522528706436 a001 1134903170/1322157322203*5778^(4/9) 4032522528706436 a001 433494437/505019158607*5778^(4/9) 4032522528706436 a001 165580141/192900153618*5778^(4/9) 4032522528706436 a001 63245986/73681302247*5778^(4/9) 4032522528706437 a001 24157817/28143753123*5778^(4/9) 4032522528706445 a001 9227465/10749957122*5778^(4/9) 4032522528706500 a001 3524578/4106118243*5778^(4/9) 4032522528706880 a001 1346269/1568397607*5778^(4/9) 4032522528709485 a001 514229/599074578*5778^(4/9) 4032522528727340 a001 196418/228826127*5778^(4/9) 4032522528727341 a001 5473/3940598*5778^(7/18) 4032522528849718 a001 75025/87403803*5778^(4/9) 4032522529090083 a001 4181/7881196*15127^(9/20) 4032522529688508 a001 28657/33385282*5778^(4/9) 4032522529971126 a001 4181/12752043*15127^(1/2) 4032522530827625 a001 1597/33385282*3571^(14/17) 4032522530852293 a001 4181/20633239*15127^(11/20) 4032522531215021 a001 6765/33385282*5778^(11/18) 4032522531733412 a001 4181/33385282*15127^(3/5) 4032522532614550 a001 4181/54018521*15127^(13/20) 4032522532845735 a001 17711/33385282*5778^(1/2) 4032522533495680 a001 4181/87403803*15127^(7/10) 4032522533518371 a001 5473/219602*2207^(1/16) 4032522534376813 a001 4181/141422324*15127^(3/4) 4032522534525923 a001 4181/271443*5778^(1/9) 4032522535041728 a001 15456/29134601*5778^(1/2) 4032522535257946 a001 4181/228826127*15127^(4/5) 4032522535362119 a001 121393/228826127*5778^(1/2) 4032522535408863 a001 377/710646*5778^(1/2) 4032522535415683 a001 832040/1568397607*5778^(1/2) 4032522535416678 a001 726103/1368706081*5778^(1/2) 4032522535416824 a001 5702887/10749957122*5778^(1/2) 4032522535416845 a001 4976784/9381251041*5778^(1/2) 4032522535416848 a001 39088169/73681302247*5778^(1/2) 4032522535416848 a001 34111385/64300051206*5778^(1/2) 4032522535416848 a001 267914296/505019158607*5778^(1/2) 4032522535416848 a001 233802911/440719107401*5778^(1/2) 4032522535416848 a001 1836311903/3461452808002*5778^(1/2) 4032522535416848 a001 1602508992/3020733700601*5778^(1/2) 4032522535416848 a001 12586269025/23725150497407*5778^(1/2) 4032522535416848 a001 7778742049/14662949395604*5778^(1/2) 4032522535416848 a001 2971215073/5600748293801*5778^(1/2) 4032522535416848 a001 1134903170/2139295485799*5778^(1/2) 4032522535416848 a001 433494437/817138163596*5778^(1/2) 4032522535416848 a001 165580141/312119004989*5778^(1/2) 4032522535416849 a001 63245986/119218851371*5778^(1/2) 4032522535416850 a001 24157817/45537549124*5778^(1/2) 4032522535416858 a001 9227465/17393796001*5778^(1/2) 4032522535416913 a001 3524578/6643838879*5778^(1/2) 4032522535417293 a001 1346269/2537720636*5778^(1/2) 4032522535419898 a001 514229/969323029*5778^(1/2) 4032522535437664 a001 10946/12752043*5778^(4/9) 4032522535437753 a001 196418/370248451*5778^(1/2) 4032522535560132 a001 75025/141422324*5778^(1/2) 4032522535910103 a007 Real Root Of 732*x^4-959*x^3+221*x^2-560*x-344 4032522536139078 a001 4181/370248451*15127^(17/20) 4032522536398926 a001 28657/54018521*5778^(1/2) 4032522537020211 a001 4181/599074578*15127^(9/10) 4032522537901343 a001 4181/969323029*15127^(19/20) 4032522537925439 a001 6765/54018521*5778^(2/3) 4032522538782475 a004 Fibonacci(19)*Lucas(20)/(1/2+sqrt(5)/2)^44 4032522539556153 a001 17711/54018521*5778^(5/9) 4032522541311970 a001 4181/439204*5778^(1/6) 4032522541752142 a001 11592/35355581*5778^(5/9) 4032522541836702 a007 Real Root Of 968*x^4+141*x^3-926*x^2-204*x+198 4032522542072532 a001 121393/370248451*5778^(5/9) 4032522542119276 a001 317811/969323029*5778^(5/9) 4032522542126096 a001 610/1860499*5778^(5/9) 4032522542127091 a001 2178309/6643838879*5778^(5/9) 4032522542127236 a001 5702887/17393796001*5778^(5/9) 4032522542127258 a001 3732588/11384387281*5778^(5/9) 4032522542127261 a001 39088169/119218851371*5778^(5/9) 4032522542127261 a001 9303105/28374454999*5778^(5/9) 4032522542127261 a001 66978574/204284540899*5778^(5/9) 4032522542127261 a001 701408733/2139295485799*5778^(5/9) 4032522542127261 a001 1836311903/5600748293801*5778^(5/9) 4032522542127261 a001 1201881744/3665737348901*5778^(5/9) 4032522542127261 a001 7778742049/23725150497407*5778^(5/9) 4032522542127261 a001 2971215073/9062201101803*5778^(5/9) 4032522542127261 a001 567451585/1730726404001*5778^(5/9) 4032522542127261 a001 433494437/1322157322203*5778^(5/9) 4032522542127261 a001 165580141/505019158607*5778^(5/9) 4032522542127261 a001 31622993/96450076809*5778^(5/9) 4032522542127263 a001 24157817/73681302247*5778^(5/9) 4032522542127271 a001 9227465/28143753123*5778^(5/9) 4032522542127326 a001 1762289/5374978561*5778^(5/9) 4032522542127706 a001 1346269/4106118243*5778^(5/9) 4032522542130311 a001 514229/1568397607*5778^(5/9) 4032522542148111 a001 10946/20633239*5778^(1/2) 4032522542148166 a001 98209/299537289*5778^(5/9) 4032522542270544 a001 75025/228826127*5778^(5/9) 4032522543109337 a001 28657/87403803*5778^(5/9) 4032522544635850 a001 2255/29134601*5778^(13/18) 4032522545331511 r005 Re(z^2+c),c=-51/86+11/47*I,n=4 4032522546266564 a001 17711/87403803*5778^(11/18) 4032522547993493 a001 4181/710647*5778^(2/9) 4032522548462554 a001 46368/228826127*5778^(11/18) 4032522548782945 a001 121393/599074578*5778^(11/18) 4032522548829689 a001 317811/1568397607*5778^(11/18) 4032522548836509 a001 832040/4106118243*5778^(11/18) 4032522548837504 a001 987/4870846*5778^(11/18) 4032522548837649 a001 5702887/28143753123*5778^(11/18) 4032522548837671 a001 14930352/73681302247*5778^(11/18) 4032522548837674 a001 39088169/192900153618*5778^(11/18) 4032522548837674 a001 102334155/505019158607*5778^(11/18) 4032522548837674 a001 267914296/1322157322203*5778^(11/18) 4032522548837674 a001 701408733/3461452808002*5778^(11/18) 4032522548837674 a001 1836311903/9062201101803*5778^(11/18) 4032522548837674 a001 4807526976/23725150497407*5778^(11/18) 4032522548837674 a001 2971215073/14662949395604*5778^(11/18) 4032522548837674 a001 1134903170/5600748293801*5778^(11/18) 4032522548837674 a001 433494437/2139295485799*5778^(11/18) 4032522548837674 a001 165580141/817138163596*5778^(11/18) 4032522548837674 a001 63245986/312119004989*5778^(11/18) 4032522548837676 a001 24157817/119218851371*5778^(11/18) 4032522548837684 a001 9227465/45537549124*5778^(11/18) 4032522548837739 a001 3524578/17393796001*5778^(11/18) 4032522548838119 a001 1346269/6643838879*5778^(11/18) 4032522548840724 a001 514229/2537720636*5778^(11/18) 4032522548858511 a001 5473/16692641*5778^(5/9) 4032522548858579 a001 196418/969323029*5778^(11/18) 4032522548980957 a001 75025/370248451*5778^(11/18) 4032522549098067 a007 Real Root Of -4*x^4-151*x^3+415*x^2+628 4032522549429145 a001 1597/20633239*3571^(13/17) 4032522549819751 a001 28657/141422324*5778^(11/18) 4032522551346264 a001 6765/141422324*5778^(7/9) 4032522552976977 a001 17711/141422324*5778^(2/3) 4032522554714941 a001 4181/1149851*5778^(5/18) 4032522555172967 a001 46368/370248451*5778^(2/3) 4032522555493358 a001 121393/969323029*5778^(2/3) 4032522555540102 a001 317811/2537720636*5778^(2/3) 4032522555546922 a001 832040/6643838879*5778^(2/3) 4032522555547917 a001 2178309/17393796001*5778^(2/3) 4032522555548062 a001 1597/12752044*5778^(2/3) 4032522555548083 a001 14930352/119218851371*5778^(2/3) 4032522555548087 a001 39088169/312119004989*5778^(2/3) 4032522555548087 a001 102334155/817138163596*5778^(2/3) 4032522555548087 a001 267914296/2139295485799*5778^(2/3) 4032522555548087 a001 701408733/5600748293801*5778^(2/3) 4032522555548087 a001 1836311903/14662949395604*5778^(2/3) 4032522555548087 a001 2971215073/23725150497407*5778^(2/3) 4032522555548087 a001 1134903170/9062201101803*5778^(2/3) 4032522555548087 a001 433494437/3461452808002*5778^(2/3) 4032522555548087 a001 165580141/1322157322203*5778^(2/3) 4032522555548087 a001 63245986/505019158607*5778^(2/3) 4032522555548088 a001 24157817/192900153618*5778^(2/3) 4032522555548097 a001 9227465/73681302247*5778^(2/3) 4032522555548152 a001 3524578/28143753123*5778^(2/3) 4032522555548532 a001 1346269/10749957122*5778^(2/3) 4032522555551137 a001 514229/4106118243*5778^(2/3) 4032522555568929 a001 10946/54018521*5778^(11/18) 4032522555568992 a001 196418/1568397607*5778^(2/3) 4032522555691370 a001 75025/599074578*5778^(2/3) 4032522556530164 a001 28657/228826127*5778^(2/3) 4032522557749313 r002 23th iterates of z^2 + 4032522558056677 a001 6765/228826127*5778^(5/6) 4032522559687390 a001 17711/228826127*5778^(13/18) 4032522559858990 a007 Real Root Of 147*x^4-149*x^3-691*x^2-969*x+509 4032522560907551 a001 6765/439204*2207^(1/8) 4032522561228927 a001 34/5779*2207^(1/4) 4032522561421139 a001 4181/1860498*5778^(1/3) 4032522561883380 a001 2576/33281921*5778^(13/18) 4032522562203771 a001 121393/1568397607*5778^(13/18) 4032522562250515 a001 105937/1368706081*5778^(13/18) 4032522562257335 a001 416020/5374978561*5778^(13/18) 4032522562258330 a001 726103/9381251041*5778^(13/18) 4032522562258475 a001 5702887/73681302247*5778^(13/18) 4032522562258496 a001 2584/33385281*5778^(13/18) 4032522562258499 a001 39088169/505019158607*5778^(13/18) 4032522562258500 a001 34111385/440719107401*5778^(13/18) 4032522562258500 a001 133957148/1730726404001*5778^(13/18) 4032522562258500 a001 233802911/3020733700601*5778^(13/18) 4032522562258500 a001 1836311903/23725150497407*5778^(13/18) 4032522562258500 a001 567451585/7331474697802*5778^(13/18) 4032522562258500 a001 433494437/5600748293801*5778^(13/18) 4032522562258500 a001 165580141/2139295485799*5778^(13/18) 4032522562258500 a001 31622993/408569081798*5778^(13/18) 4032522562258501 a001 24157817/312119004989*5778^(13/18) 4032522562258509 a001 9227465/119218851371*5778^(13/18) 4032522562258565 a001 1762289/22768774562*5778^(13/18) 4032522562258945 a001 1346269/17393796001*5778^(13/18) 4032522562261550 a001 514229/6643838879*5778^(13/18) 4032522562279340 a001 10946/87403803*5778^(2/3) 4032522562279405 a001 98209/1268860318*5778^(13/18) 4032522562401783 a001 75025/969323029*5778^(13/18) 4032522563240577 a001 28657/370248451*5778^(13/18) 4032522564767090 a001 6765/370248451*5778^(8/9) 4032522566397803 a001 17711/370248451*5778^(7/9) 4032522567296521 a001 17480761/433494437 4032522567296521 a004 Fibonacci(19)/Lucas(19)/(1/2+sqrt(5)/2)^5 4032522568030618 a001 1597/12752043*3571^(12/17) 4032522568133162 a001 4181/3010349*5778^(7/18) 4032522568593793 a001 46368/969323029*5778^(7/9) 4032522568914184 a001 121393/2537720636*5778^(7/9) 4032522568960928 a001 317811/6643838879*5778^(7/9) 4032522568967748 a001 832040/17393796001*5778^(7/9) 4032522568968743 a001 2178309/45537549124*5778^(7/9) 4032522568968888 a001 5702887/119218851371*5778^(7/9) 4032522568968909 a001 14930352/312119004989*5778^(7/9) 4032522568968912 a001 4181/87403804*5778^(7/9) 4032522568968913 a001 102334155/2139295485799*5778^(7/9) 4032522568968913 a001 267914296/5600748293801*5778^(7/9) 4032522568968913 a001 701408733/14662949395604*5778^(7/9) 4032522568968913 a001 1134903170/23725150497407*5778^(7/9) 4032522568968913 a001 433494437/9062201101803*5778^(7/9) 4032522568968913 a001 165580141/3461452808002*5778^(7/9) 4032522568968913 a001 63245986/1322157322203*5778^(7/9) 4032522568968914 a001 24157817/505019158607*5778^(7/9) 4032522568968922 a001 9227465/192900153618*5778^(7/9) 4032522568968978 a001 3524578/73681302247*5778^(7/9) 4032522568969358 a001 1346269/28143753123*5778^(7/9) 4032522568971963 a001 514229/10749957122*5778^(7/9) 4032522568989753 a001 5473/70711162*5778^(13/18) 4032522568989818 a001 196418/4106118243*5778^(7/9) 4032522569112196 a001 75025/1568397607*5778^(7/9) 4032522569950989 a001 28657/599074578*5778^(7/9) 4032522571477502 a001 2255/199691526*5778^(17/18) 4032522573046191 a001 4181/167761*2207^(1/16) 4032522573108216 a001 17711/599074578*5778^(5/6) 4032522574842960 a001 4181/4870847*5778^(4/9) 4032522575304206 a001 6624/224056801*5778^(5/6) 4032522575624597 a001 121393/4106118243*5778^(5/6) 4032522575671341 a001 317811/10749957122*5778^(5/6) 4032522575678161 a001 832040/28143753123*5778^(5/6) 4032522575679156 a001 311187/10525900321*5778^(5/6) 4032522575679301 a001 5702887/192900153618*5778^(5/6) 4032522575679322 a001 14930352/505019158607*5778^(5/6) 4032522575679325 a001 39088169/1322157322203*5778^(5/6) 4032522575679326 a001 6765/228826126*5778^(5/6) 4032522575679326 a001 267914296/9062201101803*5778^(5/6) 4032522575679326 a001 701408733/23725150497407*5778^(5/6) 4032522575679326 a001 433494437/14662949395604*5778^(5/6) 4032522575679326 a001 165580141/5600748293801*5778^(5/6) 4032522575679326 a001 63245986/2139295485799*5778^(5/6) 4032522575679327 a001 24157817/817138163596*5778^(5/6) 4032522575679335 a001 9227465/312119004989*5778^(5/6) 4032522575679391 a001 3524578/119218851371*5778^(5/6) 4032522575679771 a001 1346269/45537549124*5778^(5/6) 4032522575682376 a001 514229/17393796001*5778^(5/6) 4032522575700166 a001 10946/228826127*5778^(7/9) 4032522575700231 a001 196418/6643838879*5778^(5/6) 4032522575822609 a001 75025/2537720636*5778^(5/6) 4032522575941235 a001 17711/1149851*2207^(1/8) 4032522576661402 a001 28657/969323029*5778^(5/6) 4032522578134620 a001 46368/3010349*2207^(1/8) 4032522578187915 a004 Fibonacci(20)*Lucas(18)/(1/2+sqrt(5)/2)^43 4032522578454631 a001 121393/7881196*2207^(1/8) 4032522578501320 a001 10959/711491*2207^(1/8) 4032522578508132 a001 832040/54018521*2207^(1/8) 4032522578509126 a001 2178309/141422324*2207^(1/8) 4032522578509271 a001 5702887/370248451*2207^(1/8) 4032522578509292 a001 14930352/969323029*2207^(1/8) 4032522578509295 a001 39088169/2537720636*2207^(1/8) 4032522578509295 a001 102334155/6643838879*2207^(1/8) 4032522578509295 a001 9238424/599786069*2207^(1/8) 4032522578509295 a001 701408733/45537549124*2207^(1/8) 4032522578509295 a001 1836311903/119218851371*2207^(1/8) 4032522578509295 a001 4807526976/312119004989*2207^(1/8) 4032522578509295 a001 12586269025/817138163596*2207^(1/8) 4032522578509295 a001 32951280099/2139295485799*2207^(1/8) 4032522578509295 a001 86267571272/5600748293801*2207^(1/8) 4032522578509295 a001 7787980473/505618944676*2207^(1/8) 4032522578509295 a001 365435296162/23725150497407*2207^(1/8) 4032522578509295 a001 139583862445/9062201101803*2207^(1/8) 4032522578509295 a001 53316291173/3461452808002*2207^(1/8) 4032522578509295 a001 20365011074/1322157322203*2207^(1/8) 4032522578509295 a001 7778742049/505019158607*2207^(1/8) 4032522578509295 a001 2971215073/192900153618*2207^(1/8) 4032522578509295 a001 1134903170/73681302247*2207^(1/8) 4032522578509295 a001 433494437/28143753123*2207^(1/8) 4032522578509295 a001 165580141/10749957122*2207^(1/8) 4032522578509296 a001 63245986/4106118243*2207^(1/8) 4032522578509297 a001 24157817/1568397607*2207^(1/8) 4032522578509305 a001 9227465/599074578*2207^(1/8) 4032522578509360 a001 3524578/228826127*2207^(1/8) 4032522578509740 a001 1346269/87403803*2207^(1/8) 4032522578512342 a001 514229/33385282*2207^(1/8) 4032522578530175 a001 196418/12752043*2207^(1/8) 4032522578652408 a001 75025/4870847*2207^(1/8) 4032522579490207 a001 28657/1860498*2207^(1/8) 4032522579818629 a001 17711/969323029*5778^(8/9) 4032522581553608 a001 4181/7881196*5778^(1/2) 4032522582014619 a001 11592/634430159*5778^(8/9) 4032522582335010 a001 121393/6643838879*5778^(8/9) 4032522582381754 a001 10959/599786069*5778^(8/9) 4032522582388574 a001 208010/11384387281*5778^(8/9) 4032522582389569 a001 2178309/119218851371*5778^(8/9) 4032522582389714 a001 5702887/312119004989*5778^(8/9) 4032522582389735 a001 3732588/204284540899*5778^(8/9) 4032522582389738 a001 39088169/2139295485799*5778^(8/9) 4032522582389739 a001 102334155/5600748293801*5778^(8/9) 4032522582389739 a001 10946/599074579*5778^(8/9) 4032522582389739 a001 433494437/23725150497407*5778^(8/9) 4032522582389739 a001 165580141/9062201101803*5778^(8/9) 4032522582389739 a001 31622993/1730726404001*5778^(8/9) 4032522582389740 a001 24157817/1322157322203*5778^(8/9) 4032522582389748 a001 9227465/505019158607*5778^(8/9) 4032522582389804 a001 1762289/96450076809*5778^(8/9) 4032522582390184 a001 1346269/73681302247*5778^(8/9) 4032522582392789 a001 514229/28143753123*5778^(8/9) 4032522582410579 a001 10946/370248451*5778^(5/6) 4032522582410644 a001 98209/5374978561*5778^(8/9) 4032522582533022 a001 75025/4106118243*5778^(8/9) 4032522583371815 a001 28657/1568397607*5778^(8/9) 4032522585232564 a001 10946/710647*2207^(1/8) 4032522586529042 a001 17711/1568397607*5778^(17/18) 4032522586632215 a001 1597/7881196*3571^(11/17) 4032522588263931 a001 4181/12752043*5778^(5/9) 4032522588725032 a001 15456/1368706081*5778^(17/18) 4032522589045423 a001 121393/10749957122*5778^(17/18) 4032522589092167 a001 105937/9381251041*5778^(17/18) 4032522589098987 a001 832040/73681302247*5778^(17/18) 4032522589099982 a001 726103/64300051206*5778^(17/18) 4032522589100127 a001 5702887/505019158607*5778^(17/18) 4032522589100148 a001 4976784/440719107401*5778^(17/18) 4032522589100151 a001 39088169/3461452808002*5778^(17/18) 4032522589100152 a001 34111385/3020733700601*5778^(17/18) 4032522589100152 a001 267914296/23725150497407*5778^(17/18) 4032522589100152 a001 165580141/14662949395604*5778^(17/18) 4032522589100152 a001 63245986/5600748293801*5778^(17/18) 4032522589100153 a001 24157817/2139295485799*5778^(17/18) 4032522589100161 a001 9227465/817138163596*5778^(17/18) 4032522589100217 a001 3524578/312119004989*5778^(17/18) 4032522589100597 a001 1346269/119218851371*5778^(17/18) 4032522589103202 a001 514229/45537549124*5778^(17/18) 4032522589120992 a001 5473/299537289*5778^(8/9) 4032522589121057 a001 196418/17393796001*5778^(17/18) 4032522589243435 a001 75025/6643838879*5778^(17/18) 4032522590082228 a001 28657/2537720636*5778^(17/18) 4032522593239455 a004 Fibonacci(22)*Lucas(18)/(1/2+sqrt(5)/2)^45 4032522593582519 a001 10749957122/1597*144^(14/17) 4032522594828488 a001 5778/28657*8^(1/3) 4032522594974378 a001 4181/20633239*5778^(11/18) 4032522595435445 a004 Fibonacci(24)*Lucas(18)/(1/2+sqrt(5)/2)^47 4032522595755836 a004 Fibonacci(26)*Lucas(18)/(1/2+sqrt(5)/2)^49 4032522595802580 a004 Fibonacci(28)*Lucas(18)/(1/2+sqrt(5)/2)^51 4032522595809400 a004 Fibonacci(30)*Lucas(18)/(1/2+sqrt(5)/2)^53 4032522595810395 a004 Fibonacci(32)*Lucas(18)/(1/2+sqrt(5)/2)^55 4032522595810540 a004 Fibonacci(34)*Lucas(18)/(1/2+sqrt(5)/2)^57 4032522595810561 a004 Fibonacci(36)*Lucas(18)/(1/2+sqrt(5)/2)^59 4032522595810564 a004 Fibonacci(38)*Lucas(18)/(1/2+sqrt(5)/2)^61 4032522595810565 a004 Fibonacci(40)*Lucas(18)/(1/2+sqrt(5)/2)^63 4032522595810565 a004 Fibonacci(42)*Lucas(18)/(1/2+sqrt(5)/2)^65 4032522595810565 a004 Fibonacci(44)*Lucas(18)/(1/2+sqrt(5)/2)^67 4032522595810565 a004 Fibonacci(46)*Lucas(18)/(1/2+sqrt(5)/2)^69 4032522595810565 a004 Fibonacci(48)*Lucas(18)/(1/2+sqrt(5)/2)^71 4032522595810565 a004 Fibonacci(50)*Lucas(18)/(1/2+sqrt(5)/2)^73 4032522595810565 a004 Fibonacci(52)*Lucas(18)/(1/2+sqrt(5)/2)^75 4032522595810565 a004 Fibonacci(54)*Lucas(18)/(1/2+sqrt(5)/2)^77 4032522595810565 a004 Fibonacci(56)*Lucas(18)/(1/2+sqrt(5)/2)^79 4032522595810565 a004 Fibonacci(58)*Lucas(18)/(1/2+sqrt(5)/2)^81 4032522595810565 a004 Fibonacci(60)*Lucas(18)/(1/2+sqrt(5)/2)^83 4032522595810565 a004 Fibonacci(62)*Lucas(18)/(1/2+sqrt(5)/2)^85 4032522595810565 a004 Fibonacci(64)*Lucas(18)/(1/2+sqrt(5)/2)^87 4032522595810565 a004 Fibonacci(66)*Lucas(18)/(1/2+sqrt(5)/2)^89 4032522595810565 a004 Fibonacci(68)*Lucas(18)/(1/2+sqrt(5)/2)^91 4032522595810565 a004 Fibonacci(70)*Lucas(18)/(1/2+sqrt(5)/2)^93 4032522595810565 a004 Fibonacci(72)*Lucas(18)/(1/2+sqrt(5)/2)^95 4032522595810565 a004 Fibonacci(74)*Lucas(18)/(1/2+sqrt(5)/2)^97 4032522595810565 a004 Fibonacci(76)*Lucas(18)/(1/2+sqrt(5)/2)^99 4032522595810565 a004 Fibonacci(77)*Lucas(18)/(1/2+sqrt(5)/2)^100 4032522595810565 a004 Fibonacci(75)*Lucas(18)/(1/2+sqrt(5)/2)^98 4032522595810565 a004 Fibonacci(73)*Lucas(18)/(1/2+sqrt(5)/2)^96 4032522595810565 a004 Fibonacci(71)*Lucas(18)/(1/2+sqrt(5)/2)^94 4032522595810565 a004 Fibonacci(69)*Lucas(18)/(1/2+sqrt(5)/2)^92 4032522595810565 a004 Fibonacci(67)*Lucas(18)/(1/2+sqrt(5)/2)^90 4032522595810565 a004 Fibonacci(65)*Lucas(18)/(1/2+sqrt(5)/2)^88 4032522595810565 a004 Fibonacci(63)*Lucas(18)/(1/2+sqrt(5)/2)^86 4032522595810565 a004 Fibonacci(61)*Lucas(18)/(1/2+sqrt(5)/2)^84 4032522595810565 a004 Fibonacci(59)*Lucas(18)/(1/2+sqrt(5)/2)^82 4032522595810565 a004 Fibonacci(57)*Lucas(18)/(1/2+sqrt(5)/2)^80 4032522595810565 a004 Fibonacci(55)*Lucas(18)/(1/2+sqrt(5)/2)^78 4032522595810565 a004 Fibonacci(53)*Lucas(18)/(1/2+sqrt(5)/2)^76 4032522595810565 a004 Fibonacci(51)*Lucas(18)/(1/2+sqrt(5)/2)^74 4032522595810565 a004 Fibonacci(49)*Lucas(18)/(1/2+sqrt(5)/2)^72 4032522595810565 a004 Fibonacci(47)*Lucas(18)/(1/2+sqrt(5)/2)^70 4032522595810565 a004 Fibonacci(45)*Lucas(18)/(1/2+sqrt(5)/2)^68 4032522595810565 a004 Fibonacci(43)*Lucas(18)/(1/2+sqrt(5)/2)^66 4032522595810565 a004 Fibonacci(41)*Lucas(18)/(1/2+sqrt(5)/2)^64 4032522595810565 a004 Fibonacci(39)*Lucas(18)/(1/2+sqrt(5)/2)^62 4032522595810566 a004 Fibonacci(37)*Lucas(18)/(1/2+sqrt(5)/2)^60 4032522595810568 a001 1/1292*(1/2+1/2*5^(1/2))^13 4032522595810574 a004 Fibonacci(35)*Lucas(18)/(1/2+sqrt(5)/2)^58 4032522595810630 a004 Fibonacci(33)*Lucas(18)/(1/2+sqrt(5)/2)^56 4032522595811010 a004 Fibonacci(31)*Lucas(18)/(1/2+sqrt(5)/2)^54 4032522595813615 a004 Fibonacci(29)*Lucas(18)/(1/2+sqrt(5)/2)^52 4032522595831405 a001 10946/969323029*5778^(17/18) 4032522595831469 a004 Fibonacci(27)*Lucas(18)/(1/2+sqrt(5)/2)^50 4032522595953848 a004 Fibonacci(25)*Lucas(18)/(1/2+sqrt(5)/2)^48 4032522596792641 a004 Fibonacci(23)*Lucas(18)/(1/2+sqrt(5)/2)^46 4032522599634426 r005 Re(z^2+c),c=-29/52+8/49*I,n=59 4032522601684778 a001 4181/33385282*5778^(2/3) 4032522602541818 a004 Fibonacci(21)*Lucas(18)/(1/2+sqrt(5)/2)^44 4032522605233487 a001 1597/4870847*3571^(10/17) 4032522608395196 a001 4181/54018521*5778^(13/18) 4032522612621743 a001 6765/710647*2207^(3/16) 4032522612943120 a001 2584/710647*2207^(5/16) 4032522615105607 a001 4181/87403803*5778^(7/9) 4032522619518153 a001 610/12752043*1364^(14/15) 4032522621816021 a001 4181/141422324*5778^(5/6) 4032522623835610 a001 1597/3010349*3571^(9/17) 4032522624591261 a001 4181/271443*2207^(1/8) 4032522627680103 a001 17711/1860498*2207^(3/16) 4032522628526434 a001 4181/228826127*5778^(8/9) 4032522629877088 a001 46368/4870847*2207^(3/16) 4032522630197624 a001 121393/12752043*2207^(3/16) 4032522630244389 a001 317811/33385282*2207^(3/16) 4032522630251212 a001 832040/87403803*2207^(3/16) 4032522630252208 a001 46347/4868641*2207^(3/16) 4032522630252353 a001 5702887/599074578*2207^(3/16) 4032522630252374 a001 14930352/1568397607*2207^(3/16) 4032522630252377 a001 39088169/4106118243*2207^(3/16) 4032522630252378 a001 102334155/10749957122*2207^(3/16) 4032522630252378 a001 267914296/28143753123*2207^(3/16) 4032522630252378 a001 701408733/73681302247*2207^(3/16) 4032522630252378 a001 1836311903/192900153618*2207^(3/16) 4032522630252378 a001 102287808/10745088481*2207^(3/16) 4032522630252378 a001 12586269025/1322157322203*2207^(3/16) 4032522630252378 a001 32951280099/3461452808002*2207^(3/16) 4032522630252378 a001 86267571272/9062201101803*2207^(3/16) 4032522630252378 a001 225851433717/23725150497407*2207^(3/16) 4032522630252378 a001 139583862445/14662949395604*2207^(3/16) 4032522630252378 a001 53316291173/5600748293801*2207^(3/16) 4032522630252378 a001 20365011074/2139295485799*2207^(3/16) 4032522630252378 a001 7778742049/817138163596*2207^(3/16) 4032522630252378 a001 2971215073/312119004989*2207^(3/16) 4032522630252378 a001 1134903170/119218851371*2207^(3/16) 4032522630252378 a001 433494437/45537549124*2207^(3/16) 4032522630252378 a001 165580141/17393796001*2207^(3/16) 4032522630252378 a001 63245986/6643838879*2207^(3/16) 4032522630252379 a001 24157817/2537720636*2207^(3/16) 4032522630252387 a001 9227465/969323029*2207^(3/16) 4032522630252443 a001 3524578/370248451*2207^(3/16) 4032522630252823 a001 1346269/141422324*2207^(3/16) 4032522630255429 a001 514229/54018521*2207^(3/16) 4032522630273292 a001 196418/20633239*2207^(3/16) 4032522630395726 a001 75025/7881196*2207^(3/16) 4032522630836419 r005 Im(z^2+c),c=25/74+13/62*I,n=46 4032522631234899 a001 28657/3010349*2207^(3/16) 4032522635236847 a001 4181/370248451*5778^(17/18) 4032522636986681 a001 10946/1149851*2207^(3/16) 4032522641947260 a004 Fibonacci(19)*Lucas(18)/(1/2+sqrt(5)/2)^42 4032522642435507 a001 1597/1860498*3571^(8/17) 4032522647734596 a001 1597/64079*1364^(1/15) 4032522649087212 m001 (-Landau+MadelungNaCl)/(ln(2)/ln(10)+Khinchin) 4032522655216358 r002 16th iterates of z^2 + 4032522660738874 m001 (Zeta(1,-1)+Gompertz)/(OneNinth-Salem) 4032522661041230 a001 1597/1149851*3571^(7/17) 4032522661704696 m001 (sin(1/12*Pi)-KhinchinLevy)/(Zeta(3)+ln(3)) 4032522664375861 a001 6765/1149851*2207^(1/4) 4032522664697237 a001 2584/1149851*2207^(3/8) 4032522670461294 a001 4126648/102334155 4032522670461297 a004 Fibonacci(17)/Lucas(18)/(1/2+sqrt(5)/2)^4 4032522670461318 a004 Fibonacci(18)/Lucas(17)/(1/2+sqrt(5)/2)^6 4032522676409978 a001 4181/439204*2207^(3/16) 4032522679424796 a001 17711/3010349*2207^(1/4) 4032522679631702 a001 1597/710647*3571^(6/17) 4032522681620406 a001 11592/1970299*2207^(1/4) 4032522681940741 a001 121393/20633239*2207^(1/4) 4032522681987477 a001 317811/54018521*2207^(1/4) 4032522681994296 a001 208010/35355581*2207^(1/4) 4032522681995291 a001 2178309/370248451*2207^(1/4) 4032522681995436 a001 5702887/969323029*2207^(1/4) 4032522681995457 a001 196452/33391061*2207^(1/4) 4032522681995460 a001 39088169/6643838879*2207^(1/4) 4032522681995460 a001 102334155/17393796001*2207^(1/4) 4032522681995461 a001 66978574/11384387281*2207^(1/4) 4032522681995461 a001 701408733/119218851371*2207^(1/4) 4032522681995461 a001 1836311903/312119004989*2207^(1/4) 4032522681995461 a001 1201881744/204284540899*2207^(1/4) 4032522681995461 a001 12586269025/2139295485799*2207^(1/4) 4032522681995461 a001 32951280099/5600748293801*2207^(1/4) 4032522681995461 a001 1135099622/192933544679*2207^(1/4) 4032522681995461 a001 139583862445/23725150497407*2207^(1/4) 4032522681995461 a001 53316291173/9062201101803*2207^(1/4) 4032522681995461 a001 10182505537/1730726404001*2207^(1/4) 4032522681995461 a001 7778742049/1322157322203*2207^(1/4) 4032522681995461 a001 2971215073/505019158607*2207^(1/4) 4032522681995461 a001 567451585/96450076809*2207^(1/4) 4032522681995461 a001 433494437/73681302247*2207^(1/4) 4032522681995461 a001 165580141/28143753123*2207^(1/4) 4032522681995461 a001 31622993/5374978561*2207^(1/4) 4032522681995462 a001 24157817/4106118243*2207^(1/4) 4032522681995470 a001 9227465/1568397607*2207^(1/4) 4032522681995525 a001 1762289/299537289*2207^(1/4) 4032522681995905 a001 1346269/228826127*2207^(1/4) 4032522681998510 a001 514229/87403803*2207^(1/4) 4032522682016362 a001 98209/16692641*2207^(1/4) 4032522682138719 a001 75025/12752043*2207^(1/4) 4032522682977367 a001 28657/4870847*2207^(1/4) 4032522688725549 a001 5473/930249*2207^(1/4) 4032522693767254 r002 34th iterates of z^2 + 4032522695164237 m001 (Ei(1)+2)/cos(Pi/12) 4032522698262100 a001 1597/439204*3571^(5/17) 4032522698524729 m001 GAMMA(5/24)/MertensB1^2/ln(log(1+sqrt(2)))^2 4032522705190294 h001 (4/7*exp(1)+11/12)/(1/8*exp(1)+3/11) 4032522711606365 m005 (1/2*2^(1/2)-4/7)/(8/11*gamma-1/12) 4032522716114729 a001 55/15126*2207^(5/16) 4032522716436106 a001 1292/930249*2207^(7/16) 4032522716787974 a001 1597/271443*3571^(4/17) 4032522719061371 a007 Real Root Of 157*x^4-926*x^3+313*x^2-747*x-417 4032522719571456 a001 843/832040*4181^(28/39) 4032522723374677 r005 Re(z^2+c),c=-25/78+33/58*I,n=23 4032522726775959 r002 23th iterates of z^2 + 4032522728124172 a001 4181/710647*2207^(1/4) 4032522731167264 a001 17711/4870847*2207^(5/16) 4032522733363399 a001 15456/4250681*2207^(5/16) 4032522733683811 a001 121393/33385282*2207^(5/16) 4032522733730559 a001 105937/29134601*2207^(5/16) 4032522733737379 a001 832040/228826127*2207^(5/16) 4032522733738374 a001 726103/199691526*2207^(5/16) 4032522733738519 a001 5702887/1568397607*2207^(5/16) 4032522733738540 a001 4976784/1368706081*2207^(5/16) 4032522733738544 a001 39088169/10749957122*2207^(5/16) 4032522733738544 a001 831985/228811001*2207^(5/16) 4032522733738544 a001 267914296/73681302247*2207^(5/16) 4032522733738544 a001 233802911/64300051206*2207^(5/16) 4032522733738544 a001 1836311903/505019158607*2207^(5/16) 4032522733738544 a001 1602508992/440719107401*2207^(5/16) 4032522733738544 a001 12586269025/3461452808002*2207^(5/16) 4032522733738544 a001 10983760033/3020733700601*2207^(5/16) 4032522733738544 a001 86267571272/23725150497407*2207^(5/16) 4032522733738544 a001 53316291173/14662949395604*2207^(5/16) 4032522733738544 a001 20365011074/5600748293801*2207^(5/16) 4032522733738544 a001 7778742049/2139295485799*2207^(5/16) 4032522733738544 a001 2971215073/817138163596*2207^(5/16) 4032522733738544 a001 1134903170/312119004989*2207^(5/16) 4032522733738544 a001 433494437/119218851371*2207^(5/16) 4032522733738544 a001 165580141/45537549124*2207^(5/16) 4032522733738544 a001 63245986/17393796001*2207^(5/16) 4032522733738545 a001 24157817/6643838879*2207^(5/16) 4032522733738554 a001 9227465/2537720636*2207^(5/16) 4032522733738609 a001 3524578/969323029*2207^(5/16) 4032522733738989 a001 1346269/370248451*2207^(5/16) 4032522733741594 a001 514229/141422324*2207^(5/16) 4032522733759450 a001 196418/54018521*2207^(5/16) 4032522733881837 a001 75025/20633239*2207^(5/16) 4032522734720686 a001 28657/7881196*2207^(5/16) 4032522734964963 a007 Real Root Of -844*x^4+840*x^3-477*x^2+72*x+184 4032522735587494 a001 1597/167761*3571^(3/17) 4032522739062084 a007 Real Root Of 950*x^4-644*x^3+695*x^2-195*x-259 4032522739673792 r002 18th iterates of z^2 + 4032522740470242 a001 10946/3010349*2207^(5/16) 4032522740802449 a005 (1/cos(15/182*Pi))^992 4032522745100939 r002 17th iterates of z^2 + 4032522745112038 a004 Fibonacci(17)*Lucas(19)/(1/2+sqrt(5)/2)^41 4032522747540285 a001 1597/228826127*9349^(18/19) 4032522749968532 a001 1597/141422324*9349^(17/19) 4032522752396779 a001 1597/87403803*9349^(16/19) 4032522753670599 a001 1597/103682*3571^(2/17) 4032522754825028 a001 1597/54018521*9349^(15/19) 4032522757253270 a001 1597/33385282*9349^(14/19) 4032522759177318 a001 1292/51841*843^(1/14) 4032522759681530 a001 1597/20633239*9349^(13/19) 4032522762109743 a001 1597/12752043*9349^(12/19) 4032522764014457 a001 305/3940598*1364^(13/15) 4032522764538080 a001 1597/7881196*9349^(11/19) 4032522766966093 a001 1597/4870847*9349^(10/19) 4032522767859423 a001 6765/3010349*2207^(3/8) 4032522768180800 a001 2584/3010349*2207^(1/2) 4032522769394955 a001 1597/3010349*9349^(9/19) 4032522771753333 a007 Real Root Of 108*x^4+356*x^3-143*x^2+479*x-957 4032522771821592 a001 1597/1860498*9349^(8/19) 4032522773626085 a001 10803705/267914296 4032522773626085 a004 Fibonacci(17)/Lucas(20)/(1/2+sqrt(5)/2)^2 4032522773626110 a004 Fibonacci(20)/Lucas(17)/(1/2+sqrt(5)/2)^8 4032522773629303 a001 1597/64079*3571^(1/17) 4032522774254054 a001 1597/1149851*9349^(7/19) 4032522776332292 r005 Im(z^2+c),c=11/126+23/50*I,n=61 4032522776671267 a001 1597/710647*9349^(6/19) 4032522779128404 a001 1597/439204*9349^(5/19) 4032522779878291 a001 4181/1149851*2207^(5/16) 4032522781481017 a001 1597/271443*9349^(4/19) 4032522782910583 a001 89/39604*2207^(3/8) 4032522784107276 a001 1597/167761*9349^(3/19) 4032522784517482 a004 Fibonacci(17)*Lucas(21)/(1/2+sqrt(5)/2)^43 4032522784838017 a001 1597/599074578*24476^(20/21) 4032522785106518 a001 46368/20633239*2207^(3/8) 4032522785158553 a001 1597/370248451*24476^(19/21) 4032522785426900 a001 121393/54018521*2207^(3/8) 4032522785473644 a001 317811/141422324*2207^(3/8) 4032522785479089 a001 1597/228826127*24476^(6/7) 4032522785480463 a001 832040/370248451*2207^(3/8) 4032522785481458 a001 2178309/969323029*2207^(3/8) 4032522785481604 a001 5702887/2537720636*2207^(3/8) 4032522785481625 a001 14930352/6643838879*2207^(3/8) 4032522785481628 a001 39088169/17393796001*2207^(3/8) 4032522785481628 a001 102334155/45537549124*2207^(3/8) 4032522785481628 a001 267914296/119218851371*2207^(3/8) 4032522785481628 a001 3524667/1568437211*2207^(3/8) 4032522785481628 a001 1836311903/817138163596*2207^(3/8) 4032522785481628 a001 4807526976/2139295485799*2207^(3/8) 4032522785481628 a001 12586269025/5600748293801*2207^(3/8) 4032522785481628 a001 32951280099/14662949395604*2207^(3/8) 4032522785481628 a001 53316291173/23725150497407*2207^(3/8) 4032522785481628 a001 20365011074/9062201101803*2207^(3/8) 4032522785481628 a001 7778742049/3461452808002*2207^(3/8) 4032522785481628 a001 2971215073/1322157322203*2207^(3/8) 4032522785481628 a001 1134903170/505019158607*2207^(3/8) 4032522785481628 a001 433494437/192900153618*2207^(3/8) 4032522785481628 a001 165580141/73681302247*2207^(3/8) 4032522785481629 a001 63245986/28143753123*2207^(3/8) 4032522785481630 a001 24157817/10749957122*2207^(3/8) 4032522785481638 a001 9227465/4106118243*2207^(3/8) 4032522785481693 a001 3524578/1568397607*2207^(3/8) 4032522785482073 a001 1346269/599074578*2207^(3/8) 4032522785484678 a001 514229/228826127*2207^(3/8) 4032522785502533 a001 196418/87403803*2207^(3/8) 4032522785624908 a001 75025/33385282*2207^(3/8) 4032522785799625 a001 1597/141422324*24476^(17/21) 4032522786017121 a001 1597/103682*9349^(2/19) 4032522786120160 a001 1597/87403803*24476^(16/21) 4032522786440698 a001 1597/54018521*24476^(5/7) 4032522786463680 a001 28657/12752043*2207^(3/8) 4032522786761229 a001 1597/33385282*24476^(2/3) 4032522787081778 a001 1597/20633239*24476^(13/21) 4032522787402280 a001 1597/12752043*24476^(4/7) 4032522787722905 a001 1597/7881196*24476^(11/21) 4032522788043206 a001 1597/4870847*24476^(10/21) 4032522788364357 a001 1597/3010349*24476^(3/7) 4032522788677625 a001 1597/39603 4032522788677650 a004 Fibonacci(22)/Lucas(17)/(1/2+sqrt(5)/2)^10 4032522788683283 a001 1597/1860498*24476^(8/21) 4032522789008034 a001 1597/1149851*24476^(1/3) 4032522789317535 a001 1597/710647*24476^(2/7) 4032522789666960 a001 1597/439204*24476^(5/21) 4032522789802564 a001 1597/64079*9349^(1/19) 4032522789911862 a001 1597/271443*24476^(4/21) 4032522790232543 a001 1597/103682*24476^(2/21) 4032522790266658 a004 Fibonacci(17)*Lucas(23)/(1/2+sqrt(5)/2)^45 4032522790309357 a001 1597/1568397607*64079^(22/23) 4032522790352056 a001 1597/969323029*64079^(21/23) 4032522790394755 a001 1597/599074578*64079^(20/23) 4032522790430410 a001 1597/167761*24476^(1/7) 4032522790437454 a001 1597/370248451*64079^(19/23) 4032522790480153 a001 1597/228826127*64079^(18/23) 4032522790522852 a001 1597/141422324*64079^(17/23) 4032522790565551 a001 1597/87403803*64079^(16/23) 4032522790608252 a001 1597/54018521*64079^(15/23) 4032522790650946 a001 1597/33385282*64079^(14/23) 4032522790693658 a001 1597/20633239*64079^(13/23) 4032522790736322 a001 1597/12752043*64079^(12/23) 4032522790779111 a001 1597/7881196*64079^(11/23) 4032522790788217 a001 1597/103682*64079^(2/23) 4032522790821575 a001 1597/4870847*64079^(10/23) 4032522790864889 a001 1597/3010349*64079^(9/23) 4032522790873615 a001 1597/103682*(1/2+1/2*5^(1/2))^2 4032522790873615 a001 1597/103682*10749957122^(1/24) 4032522790873615 a001 1597/103682*4106118243^(1/23) 4032522790873615 a001 1597/103682*1568397607^(1/22) 4032522790873615 a001 74049696/1836311903 4032522790873615 a001 1597/103682*599074578^(1/21) 4032522790873615 a001 1597/103682*228826127^(1/20) 4032522790873615 a001 1597/103682*87403803^(1/19) 4032522790873615 a001 1597/103682*33385282^(1/18) 4032522790873617 a001 1597/103682*12752043^(1/17) 4032522790873626 a001 1597/103682*4870847^(1/16) 4032522790873640 a004 Fibonacci(24)/Lucas(17)/(1/2+sqrt(5)/2)^12 4032522790873693 a001 1597/103682*1860498^(1/15) 4032522790874185 a001 1597/103682*710647^(1/14) 4032522790877825 a001 1597/103682*271443^(1/13) 4032522790904875 a001 1597/103682*103682^(1/12) 4032522790905978 a001 1597/1860498*64079^(8/23) 4032522790952892 a001 1597/1149851*64079^(7/23) 4032522790984556 a001 1597/710647*64079^(6/23) 4032522791023210 a001 1597/271443*64079^(4/23) 4032522791056145 a001 1597/439204*64079^(5/23) 4032522791105452 a004 Fibonacci(17)*Lucas(25)/(1/2+sqrt(5)/2)^47 4032522791107352 a001 1597/103682*39603^(1/11) 4032522791134108 a001 1597/599074578*167761^(4/5) 4032522791162766 a001 1597/54018521*167761^(3/5) 4032522791191252 a001 1597/4870847*167761^(2/5) 4032522791194006 a001 1597/271443*(1/2+1/2*5^(1/2))^4 4032522791194006 a001 1597/271443*23725150497407^(1/16) 4032522791194006 a001 1597/271443*73681302247^(1/13) 4032522791194006 a001 1597/271443*10749957122^(1/12) 4032522791194006 a001 1597/271443*4106118243^(2/23) 4032522791194006 a001 193864621/4807526976 4032522791194006 a001 1597/271443*1568397607^(1/11) 4032522791194006 a001 1597/271443*599074578^(2/21) 4032522791194006 a001 1597/271443*228826127^(1/10) 4032522791194006 a001 1597/271443*87403803^(2/19) 4032522791194006 a001 1597/271443*33385282^(1/9) 4032522791194009 a001 1597/271443*12752043^(2/17) 4032522791194027 a001 1597/271443*4870847^(1/8) 4032522791194030 a004 Fibonacci(26)/Lucas(17)/(1/2+sqrt(5)/2)^14 4032522791194161 a001 1597/271443*1860498^(2/15) 4032522791195146 a001 1597/271443*710647^(1/7) 4032522791202426 a001 1597/271443*271443^(2/13) 4032522791227830 a004 Fibonacci(17)*Lucas(27)/(1/2+sqrt(5)/2)^49 4032522791230153 a001 1597/4106118243*439204^(8/9) 4032522791232476 a001 1597/969323029*439204^(7/9) 4032522791234798 a001 1597/228826127*439204^(2/3) 4032522791236105 a001 1597/710647*439204^(2/9) 4032522791237123 a001 1597/54018521*439204^(5/9) 4032522791239419 a001 1597/12752043*439204^(4/9) 4032522791240738 a001 1597/710647*7881196^(2/11) 4032522791240750 a001 1597/710647*141422324^(2/13) 4032522791240750 a001 1597/710647*2537720636^(2/15) 4032522791240750 a001 1597/710647*45537549124^(2/17) 4032522791240750 a001 1597/710647*14662949395604^(2/21) 4032522791240750 a001 1597/710647*(1/2+1/2*5^(1/2))^6 4032522791240750 a001 1597/710647*10749957122^(1/8) 4032522791240750 a001 507544167/12586269025 4032522791240750 a001 1597/710647*4106118243^(3/23) 4032522791240750 a001 1597/710647*1568397607^(3/22) 4032522791240750 a001 1597/710647*599074578^(1/7) 4032522791240750 a001 1597/710647*228826127^(3/20) 4032522791240750 a001 1597/710647*87403803^(3/19) 4032522791240751 a001 1597/710647*33385282^(1/6) 4032522791240754 a001 1597/710647*12752043^(3/17) 4032522791240775 a004 Fibonacci(28)/Lucas(17)/(1/2+sqrt(5)/2)^16 4032522791240782 a001 1597/710647*4870847^(3/16) 4032522791240983 a001 1597/439204*167761^(1/5) 4032522791240983 a001 1597/710647*1860498^(1/5) 4032522791242212 a001 1597/3010349*439204^(1/3) 4032522791242461 a001 1597/710647*710647^(3/14) 4032522791245685 a004 Fibonacci(17)*Lucas(29)/(1/2+sqrt(5)/2)^51 4032522791247570 a001 1597/1860498*(1/2+1/2*5^(1/2))^8 4032522791247570 a001 1597/1860498*23725150497407^(1/8) 4032522791247570 a001 1597/1860498*73681302247^(2/13) 4032522791247570 a001 1328767880/32951280099 4032522791247570 a001 1597/1860498*10749957122^(1/6) 4032522791247570 a001 1597/1860498*4106118243^(4/23) 4032522791247570 a001 1597/1860498*1568397607^(2/11) 4032522791247570 a001 1597/1860498*599074578^(4/21) 4032522791247570 a001 1597/1860498*228826127^(1/5) 4032522791247570 a001 1597/1860498*87403803^(4/19) 4032522791247571 a001 1597/1860498*33385282^(2/9) 4032522791247576 a001 1597/1860498*12752043^(4/17) 4032522791247595 a004 Fibonacci(30)/Lucas(17)/(1/2+sqrt(5)/2)^18 4032522791247612 a001 1597/1860498*4870847^(1/4) 4032522791247881 a001 1597/1860498*1860498^(4/15) 4032522791248290 a004 Fibonacci(17)*Lucas(31)/(1/2+sqrt(5)/2)^53 4032522791248562 a001 1597/4870847*20633239^(2/7) 4032522791248565 a001 1597/4870847*2537720636^(2/9) 4032522791248565 a001 1597/4870847*312119004989^(2/11) 4032522791248565 a001 1597/4870847*(1/2+1/2*5^(1/2))^10 4032522791248565 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^10/Lucas(32) 4032522791248565 a001 3478759473/86267571272 4032522791248565 a001 1597/4870847*28143753123^(1/5) 4032522791248565 a001 1597/4870847*10749957122^(5/24) 4032522791248565 a001 1597/4870847*4106118243^(5/23) 4032522791248565 a001 1597/4870847*1568397607^(5/22) 4032522791248565 a001 1597/4870847*599074578^(5/21) 4032522791248565 a001 1597/4870847*228826127^(1/4) 4032522791248565 a001 1597/4870847*87403803^(5/19) 4032522791248566 a001 1597/4870847*33385282^(5/18) 4032522791248572 a001 1597/4870847*12752043^(5/17) 4032522791248590 a004 Fibonacci(32)/Lucas(17)/(1/2+sqrt(5)/2)^20 4032522791248618 a001 1597/4870847*4870847^(5/16) 4032522791248670 a004 Fibonacci(17)*Lucas(33)/(1/2+sqrt(5)/2)^55 4032522791248676 a001 1597/73681302247*7881196^(10/11) 4032522791248682 a001 1597/17393796001*7881196^(9/11) 4032522791248687 a001 1597/12752043*7881196^(4/11) 4032522791248688 a001 1597/4106118243*7881196^(8/11) 4032522791248692 a001 1597/1568397607*7881196^(2/3) 4032522791248694 a001 1597/969323029*7881196^(7/11) 4032522791248699 a001 1597/228826127*7881196^(6/11) 4032522791248707 a001 1597/54018521*7881196^(5/11) 4032522791248710 a001 1597/12752043*141422324^(4/13) 4032522791248710 a001 1597/12752043*2537720636^(4/15) 4032522791248710 a001 1597/12752043*45537549124^(4/17) 4032522791248710 a001 1597/12752043*817138163596^(4/19) 4032522791248710 a001 1597/12752043*14662949395604^(4/21) 4032522791248710 a001 1597/12752043*(1/2+1/2*5^(1/2))^12 4032522791248710 a001 1597/12752043*192900153618^(2/9) 4032522791248710 a001 1597/12752043*73681302247^(3/13) 4032522791248710 a001 1597/12752043*10749957122^(1/4) 4032522791248710 a001 1597/12752043*4106118243^(6/23) 4032522791248710 a001 1597/12752043*1568397607^(3/11) 4032522791248710 a001 1597/12752043*599074578^(2/7) 4032522791248710 a001 1597/12752043*228826127^(3/10) 4032522791248710 a001 1597/12752043*87403803^(6/19) 4032522791248711 a001 1597/12752043*33385282^(1/3) 4032522791248719 a001 1597/12752043*12752043^(6/17) 4032522791248725 a004 Fibonacci(17)*Lucas(35)/(1/2+sqrt(5)/2)^57 4032522791248727 a001 1597/73681302247*20633239^(6/7) 4032522791248727 a001 1597/28143753123*20633239^(4/5) 4032522791248728 a001 1597/33385282*20633239^(2/5) 4032522791248728 a001 1597/6643838879*20633239^(5/7) 4032522791248729 a001 1597/969323029*20633239^(3/5) 4032522791248730 a001 1597/599074578*20633239^(4/7) 4032522791248731 a001 1597/33385282*17393796001^(2/7) 4032522791248731 a001 1597/33385282*14662949395604^(2/9) 4032522791248731 a001 1597/33385282*(1/2+1/2*5^(1/2))^14 4032522791248731 a001 1597/33385282*10749957122^(7/24) 4032522791248731 a001 1597/33385282*4106118243^(7/23) 4032522791248731 a001 1597/33385282*1568397607^(7/22) 4032522791248731 a001 1597/33385282*599074578^(1/3) 4032522791248731 a001 1597/33385282*228826127^(7/20) 4032522791248732 a001 1597/33385282*87403803^(7/19) 4032522791248732 a001 1597/54018521*20633239^(3/7) 4032522791248733 a001 1597/33385282*33385282^(7/18) 4032522791248734 a004 Fibonacci(17)*Lucas(37)/(1/2+sqrt(5)/2)^59 4032522791248734 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^16/Lucas(38) 4032522791248734 a001 1597/87403803*23725150497407^(1/4) 4032522791248734 a001 62423805893/1548008755920 4032522791248734 a001 1597/87403803*73681302247^(4/13) 4032522791248734 a001 1597/87403803*10749957122^(1/3) 4032522791248734 a001 1597/87403803*4106118243^(8/23) 4032522791248734 a001 1597/87403803*1568397607^(4/11) 4032522791248734 a001 1597/87403803*599074578^(8/21) 4032522791248734 a001 1597/87403803*228826127^(2/5) 4032522791248735 a001 1597/87403803*87403803^(8/19) 4032522791248735 a004 Fibonacci(17)*Lucas(39)/(1/2+sqrt(5)/2)^61 4032522791248735 a001 1597/1322157322203*141422324^(12/13) 4032522791248735 a001 1597/312119004989*141422324^(11/13) 4032522791248735 a001 1597/228826127*141422324^(6/13) 4032522791248735 a001 1597/73681302247*141422324^(10/13) 4032522791248735 a001 1597/17393796001*141422324^(9/13) 4032522791248735 a001 1597/10749957122*141422324^(2/3) 4032522791248735 a001 1597/4106118243*141422324^(8/13) 4032522791248735 a001 1597/969323029*141422324^(7/13) 4032522791248735 a001 1597/228826127*2537720636^(2/5) 4032522791248735 a001 1597/228826127*45537549124^(6/17) 4032522791248735 a001 1597/228826127*14662949395604^(2/7) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^18/Lucas(40) 4032522791248735 a001 163427645535/4052739537881 4032522791248735 a001 1597/228826127*192900153618^(1/3) 4032522791248735 a001 1597/228826127*10749957122^(3/8) 4032522791248735 a001 1597/228826127*4106118243^(9/23) 4032522791248735 a001 1597/228826127*1568397607^(9/22) 4032522791248735 a001 1597/228826127*599074578^(3/7) 4032522791248735 a001 1597/228826127*228826127^(9/20) 4032522791248735 a004 Fibonacci(17)*Lucas(41)/(1/2+sqrt(5)/2)^63 4032522791248735 a001 1597/599074578*2537720636^(4/9) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^20/Lucas(42) 4032522791248735 a001 1597/599074578*23725150497407^(5/16) 4032522791248735 a001 427859130712/10610209857723 4032522791248735 a001 1597/599074578*505019158607^(5/14) 4032522791248735 a001 1597/599074578*73681302247^(5/13) 4032522791248735 a001 1597/599074578*28143753123^(2/5) 4032522791248735 a001 1597/599074578*10749957122^(5/12) 4032522791248735 a001 1597/599074578*4106118243^(10/23) 4032522791248735 a001 1597/599074578*1568397607^(5/11) 4032522791248735 a001 1597/599074578*599074578^(10/21) 4032522791248735 a004 Fibonacci(17)*Lucas(43)/(1/2+sqrt(5)/2)^65 4032522791248735 a001 1597/1568397607*312119004989^(2/5) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^22/Lucas(44) 4032522791248735 a001 1597/1568397607*10749957122^(11/24) 4032522791248735 a001 1597/1568397607*4106118243^(11/23) 4032522791248735 a001 1597/1568397607*1568397607^(1/2) 4032522791248735 a004 Fibonacci(17)*Lucas(45)/(1/2+sqrt(5)/2)^67 4032522791248735 a001 1597/23725150497407*2537720636^(14/15) 4032522791248735 a001 1597/4106118243*2537720636^(8/15) 4032522791248735 a001 1597/9062201101803*2537720636^(8/9) 4032522791248735 a001 1597/5600748293801*2537720636^(13/15) 4032522791248735 a001 1597/1322157322203*2537720636^(4/5) 4032522791248735 a001 1597/817138163596*2537720636^(7/9) 4032522791248735 a001 1597/312119004989*2537720636^(11/15) 4032522791248735 a001 1597/73681302247*2537720636^(2/3) 4032522791248735 a001 1597/17393796001*2537720636^(3/5) 4032522791248735 a001 1597/6643838879*2537720636^(5/9) 4032522791248735 a001 1597/4106118243*45537549124^(8/17) 4032522791248735 a001 1597/4106118243*14662949395604^(8/21) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^24/Lucas(46) 4032522791248735 a001 1597/4106118243*192900153618^(4/9) 4032522791248735 a001 1597/4106118243*73681302247^(6/13) 4032522791248735 a001 1597/4106118243*10749957122^(1/2) 4032522791248735 a001 1597/4106118243*4106118243^(12/23) 4032522791248735 a004 Fibonacci(17)*Lucas(47)/(1/2+sqrt(5)/2)^69 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^26/Lucas(48) 4032522791248735 a001 1597/10749957122*73681302247^(1/2) 4032522791248735 a001 1597/10749957122*10749957122^(13/24) 4032522791248735 a004 Fibonacci(17)*Lucas(49)/(1/2+sqrt(5)/2)^71 4032522791248735 a001 1597/28143753123*17393796001^(4/7) 4032522791248735 a001 1597/23725150497407*17393796001^(6/7) 4032522791248735 a001 1597/817138163596*17393796001^(5/7) 4032522791248735 a001 1597/28143753123*14662949395604^(4/9) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^28/Lucas(50) 4032522791248735 a001 1597/28143753123*505019158607^(1/2) 4032522791248735 a001 1597/28143753123*73681302247^(7/13) 4032522791248735 a004 Fibonacci(17)*Lucas(51)/(1/2+sqrt(5)/2)^73 4032522791248735 a001 1597/73681302247*45537549124^(10/17) 4032522791248735 a001 1597/23725150497407*45537549124^(14/17) 4032522791248735 a001 1597/5600748293801*45537549124^(13/17) 4032522791248735 a001 1597/1322157322203*45537549124^(12/17) 4032522791248735 a001 1597/505019158607*45537549124^(2/3) 4032522791248735 a001 1597/312119004989*45537549124^(11/17) 4032522791248735 a001 1597/73681302247*312119004989^(6/11) 4032522791248735 a001 1597/73681302247*14662949395604^(10/21) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^30/Lucas(52) 4032522791248735 a001 1597/73681302247*192900153618^(5/9) 4032522791248735 a004 Fibonacci(17)*Lucas(53)/(1/2+sqrt(5)/2)^75 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^32/Lucas(54) 4032522791248735 a001 1597/192900153618*23725150497407^(1/2) 4032522791248735 a001 1597/192900153618*505019158607^(4/7) 4032522791248735 a004 Fibonacci(17)*Lucas(55)/(1/2+sqrt(5)/2)^77 4032522791248735 a001 1597/817138163596*312119004989^(7/11) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^34/Lucas(56) 4032522791248735 a004 Fibonacci(17)*Lucas(57)/(1/2+sqrt(5)/2)^79 4032522791248735 a001 1597/23725150497407*817138163596^(14/19) 4032522791248735 a001 1597/1322157322203*14662949395604^(4/7) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^36/Lucas(58) 4032522791248735 a004 Fibonacci(17)*Lucas(59)/(1/2+sqrt(5)/2)^81 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^38/Lucas(60) 4032522791248735 a004 Fibonacci(17)*Lucas(61)/(1/2+sqrt(5)/2)^83 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^40/Lucas(62) 4032522791248735 a004 Fibonacci(17)*Lucas(63)/(1/2+sqrt(5)/2)^85 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^42/Lucas(64) 4032522791248735 a004 Fibonacci(17)*Lucas(65)/(1/2+sqrt(5)/2)^87 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^44/Lucas(66) 4032522791248735 a004 Fibonacci(17)*Lucas(67)/(1/2+sqrt(5)/2)^89 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^46/Lucas(68) 4032522791248735 a004 Fibonacci(17)*Lucas(69)/(1/2+sqrt(5)/2)^91 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^48/Lucas(70) 4032522791248735 a004 Fibonacci(17)*Lucas(71)/(1/2+sqrt(5)/2)^93 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^50/Lucas(72) 4032522791248735 a004 Fibonacci(17)*Lucas(73)/(1/2+sqrt(5)/2)^95 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^52/Lucas(74) 4032522791248735 a004 Fibonacci(17)*Lucas(75)/(1/2+sqrt(5)/2)^97 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^54/Lucas(76) 4032522791248735 a004 Fibonacci(17)*Lucas(77)/(1/2+sqrt(5)/2)^99 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^56/Lucas(78) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^58/Lucas(80) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^60/Lucas(82) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^62/Lucas(84) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^64/Lucas(86) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^66/Lucas(88) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^68/Lucas(90) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^70/Lucas(92) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^72/Lucas(94) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^74/Lucas(96) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^76/Lucas(98) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^78/Lucas(100) 4032522791248735 a004 Fibonacci(17)*Lucas(1)/(1/2+sqrt(5)/2)^22 4032522791248735 a004 Fibonacci(34)/Lucas(17)/(1/2+sqrt(5)/2)^22 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^75/Lucas(97) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^77/Lucas(99) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^73/Lucas(95) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^71/Lucas(93) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^69/Lucas(91) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^67/Lucas(89) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^65/Lucas(87) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^63/Lucas(85) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^61/Lucas(83) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^59/Lucas(81) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^57/Lucas(79) 4032522791248735 a004 Fibonacci(17)*Lucas(78)/(1/2+sqrt(5)/2)^100 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^55/Lucas(77) 4032522791248735 a004 Fibonacci(17)*Lucas(76)/(1/2+sqrt(5)/2)^98 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^53/Lucas(75) 4032522791248735 a004 Fibonacci(17)*Lucas(74)/(1/2+sqrt(5)/2)^96 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^51/Lucas(73) 4032522791248735 a004 Fibonacci(17)*Lucas(72)/(1/2+sqrt(5)/2)^94 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^49/Lucas(71) 4032522791248735 a004 Fibonacci(17)*Lucas(70)/(1/2+sqrt(5)/2)^92 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^47/Lucas(69) 4032522791248735 a004 Fibonacci(17)*Lucas(68)/(1/2+sqrt(5)/2)^90 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^45/Lucas(67) 4032522791248735 a004 Fibonacci(17)*Lucas(66)/(1/2+sqrt(5)/2)^88 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^43/Lucas(65) 4032522791248735 a004 Fibonacci(17)*Lucas(64)/(1/2+sqrt(5)/2)^86 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^41/Lucas(63) 4032522791248735 a004 Fibonacci(17)*Lucas(62)/(1/2+sqrt(5)/2)^84 4032522791248735 a001 1597/5600748293801*14662949395604^(13/21) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^39/Lucas(61) 4032522791248735 a004 Fibonacci(17)*Lucas(60)/(1/2+sqrt(5)/2)^82 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^37/Lucas(59) 4032522791248735 a004 Fibonacci(17)*Lucas(58)/(1/2+sqrt(5)/2)^80 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^35/Lucas(57) 4032522791248735 a001 1597/1322157322203*505019158607^(9/14) 4032522791248735 a004 Fibonacci(17)*Lucas(56)/(1/2+sqrt(5)/2)^78 4032522791248735 a001 1597/312119004989*817138163596^(11/19) 4032522791248735 a001 1597/312119004989*14662949395604^(11/21) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^33/Lucas(55) 4032522791248735 a001 1597/1322157322203*192900153618^(2/3) 4032522791248735 a001 1597/23725150497407*192900153618^(7/9) 4032522791248735 a001 1597/312119004989*192900153618^(11/18) 4032522791248735 a004 Fibonacci(17)*Lucas(54)/(1/2+sqrt(5)/2)^76 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^31/Lucas(53) 4032522791248735 a001 1597/119218851371*9062201101803^(1/2) 4032522791248735 a001 1597/192900153618*73681302247^(8/13) 4032522791248735 a001 1597/1322157322203*73681302247^(9/13) 4032522791248735 a001 1597/5600748293801*73681302247^(3/4) 4032522791248735 a001 1597/9062201101803*73681302247^(10/13) 4032522791248735 a004 Fibonacci(17)*Lucas(52)/(1/2+sqrt(5)/2)^74 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^29/Lucas(51) 4032522791248735 a001 1597/45537549124*1322157322203^(1/2) 4032522791248735 a001 1597/73681302247*28143753123^(3/5) 4032522791248735 a001 1597/817138163596*28143753123^(7/10) 4032522791248735 a001 1597/9062201101803*28143753123^(4/5) 4032522791248735 a004 Fibonacci(17)*Lucas(50)/(1/2+sqrt(5)/2)^72 4032522791248735 a001 1597/17393796001*45537549124^(9/17) 4032522791248735 a001 1597/17393796001*817138163596^(9/19) 4032522791248735 a001 1597/17393796001*14662949395604^(3/7) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^27/Lucas(49) 4032522791248735 a001 1597/17393796001*192900153618^(1/2) 4032522791248735 a001 1597/28143753123*10749957122^(7/12) 4032522791248735 a001 1597/73681302247*10749957122^(5/8) 4032522791248735 a001 1597/192900153618*10749957122^(2/3) 4032522791248735 a001 1597/312119004989*10749957122^(11/16) 4032522791248735 a001 1597/505019158607*10749957122^(17/24) 4032522791248735 a001 1597/1322157322203*10749957122^(3/4) 4032522791248735 a001 1597/3461452808002*10749957122^(19/24) 4032522791248735 a001 1597/5600748293801*10749957122^(13/16) 4032522791248735 a001 1597/9062201101803*10749957122^(5/6) 4032522791248735 a001 1597/23725150497407*10749957122^(7/8) 4032522791248735 a001 1597/17393796001*10749957122^(9/16) 4032522791248735 a004 Fibonacci(17)*Lucas(48)/(1/2+sqrt(5)/2)^70 4032522791248735 a001 1597/6643838879*312119004989^(5/11) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^25/Lucas(47) 4032522791248735 a001 1597/6643838879*3461452808002^(5/12) 4032522791248735 a001 1597/6643838879*28143753123^(1/2) 4032522791248735 a001 1597/10749957122*4106118243^(13/23) 4032522791248735 a001 1597/28143753123*4106118243^(14/23) 4032522791248735 a001 1597/73681302247*4106118243^(15/23) 4032522791248735 a001 1597/192900153618*4106118243^(16/23) 4032522791248735 a001 1597/505019158607*4106118243^(17/23) 4032522791248735 a001 1597/1322157322203*4106118243^(18/23) 4032522791248735 a001 1597/3461452808002*4106118243^(19/23) 4032522791248735 a001 1597/9062201101803*4106118243^(20/23) 4032522791248735 a001 1597/23725150497407*4106118243^(21/23) 4032522791248735 a004 Fibonacci(17)*Lucas(46)/(1/2+sqrt(5)/2)^68 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^23/Lucas(45) 4032522791248735 a001 1597/4106118243*1568397607^(6/11) 4032522791248735 a001 1597/2537720636*4106118243^(1/2) 4032522791248735 a001 1597/10749957122*1568397607^(13/22) 4032522791248735 a001 1597/28143753123*1568397607^(7/11) 4032522791248735 a001 1597/73681302247*1568397607^(15/22) 4032522791248735 a001 1597/192900153618*1568397607^(8/11) 4032522791248735 a001 1597/312119004989*1568397607^(3/4) 4032522791248735 a001 1597/505019158607*1568397607^(17/22) 4032522791248735 a001 1597/1322157322203*1568397607^(9/11) 4032522791248735 a001 1597/3461452808002*1568397607^(19/22) 4032522791248735 a001 1597/9062201101803*1568397607^(10/11) 4032522791248735 a001 1597/23725150497407*1568397607^(21/22) 4032522791248735 a004 Fibonacci(17)*Lucas(44)/(1/2+sqrt(5)/2)^66 4032522791248735 a001 1597/969323029*2537720636^(7/15) 4032522791248735 a001 1597/1568397607*599074578^(11/21) 4032522791248735 a001 1597/969323029*17393796001^(3/7) 4032522791248735 a001 1597/969323029*45537549124^(7/17) 4032522791248735 a001 1597/969323029*14662949395604^(1/3) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^21/Lucas(43) 4032522791248735 a001 1597/969323029*192900153618^(7/18) 4032522791248735 a001 1597/969323029*10749957122^(7/16) 4032522791248735 a001 1597/4106118243*599074578^(4/7) 4032522791248735 a001 1597/10749957122*599074578^(13/21) 4032522791248735 a001 1597/17393796001*599074578^(9/14) 4032522791248735 a001 1597/28143753123*599074578^(2/3) 4032522791248735 a001 1597/73681302247*599074578^(5/7) 4032522791248735 a001 1597/192900153618*599074578^(16/21) 4032522791248735 a001 1597/312119004989*599074578^(11/14) 4032522791248735 a001 1597/505019158607*599074578^(17/21) 4032522791248735 a001 1597/817138163596*599074578^(5/6) 4032522791248735 a001 1597/1322157322203*599074578^(6/7) 4032522791248735 a001 1597/969323029*599074578^(1/2) 4032522791248735 a001 1597/3461452808002*599074578^(19/21) 4032522791248735 a001 1597/5600748293801*599074578^(13/14) 4032522791248735 a001 1597/9062201101803*599074578^(20/21) 4032522791248735 a004 Fibonacci(17)*Lucas(42)/(1/2+sqrt(5)/2)^64 4032522791248735 a001 1597/599074578*228826127^(1/2) 4032522791248735 a001 1597/370248451*817138163596^(1/3) 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^19/Lucas(41) 4032522791248735 a001 1597/1568397607*228826127^(11/20) 4032522791248735 a001 1597/4106118243*228826127^(3/5) 4032522791248735 a001 1597/6643838879*228826127^(5/8) 4032522791248735 a001 1597/10749957122*228826127^(13/20) 4032522791248735 a001 1597/28143753123*228826127^(7/10) 4032522791248735 a001 1597/73681302247*228826127^(3/4) 4032522791248735 a001 1597/192900153618*228826127^(4/5) 4032522791248735 a001 1597/505019158607*228826127^(17/20) 4032522791248735 a001 1597/817138163596*228826127^(7/8) 4032522791248735 a001 1597/1322157322203*228826127^(9/10) 4032522791248735 a001 1597/3461452808002*228826127^(19/20) 4032522791248735 a004 Fibonacci(17)*Lucas(40)/(1/2+sqrt(5)/2)^62 4032522791248735 a001 1597/228826127*87403803^(9/19) 4032522791248735 a001 1597/141422324*45537549124^(1/3) 4032522791248735 a001 101003839642/2504730781961 4032522791248735 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^17/Lucas(39) 4032522791248735 a001 1597/599074578*87403803^(10/19) 4032522791248735 a001 1597/370248451*87403803^(1/2) 4032522791248735 a001 1597/1568397607*87403803^(11/19) 4032522791248735 a001 1597/4106118243*87403803^(12/19) 4032522791248735 a001 1597/10749957122*87403803^(13/19) 4032522791248735 a001 1597/28143753123*87403803^(14/19) 4032522791248735 a001 1597/73681302247*87403803^(15/19) 4032522791248735 a001 1597/192900153618*87403803^(16/19) 4032522791248735 a001 1597/505019158607*87403803^(17/19) 4032522791248735 a001 1597/1322157322203*87403803^(18/19) 4032522791248735 a004 Fibonacci(17)*Lucas(38)/(1/2+sqrt(5)/2)^60 4032522791248736 a001 1597/87403803*33385282^(4/9) 4032522791248736 a001 1597/54018521*141422324^(5/13) 4032522791248736 a001 1597/54018521*2537720636^(1/3) 4032522791248736 a001 1597/54018521*45537549124^(5/17) 4032522791248736 a001 1597/54018521*312119004989^(3/11) 4032522791248736 a001 38580033749/956722026041 4032522791248736 a001 1597/54018521*14662949395604^(5/21) 4032522791248736 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^15/Lucas(37) 4032522791248736 a001 1597/54018521*192900153618^(5/18) 4032522791248736 a001 1597/54018521*28143753123^(3/10) 4032522791248736 a001 1597/54018521*10749957122^(5/16) 4032522791248736 a001 1597/54018521*599074578^(5/14) 4032522791248736 a001 1597/54018521*228826127^(3/8) 4032522791248737 a001 1597/228826127*33385282^(1/2) 4032522791248737 a001 1597/599074578*33385282^(5/9) 4032522791248737 a001 1597/969323029*33385282^(7/12) 4032522791248737 a001 1597/1568397607*33385282^(11/18) 4032522791248737 a001 1597/4106118243*33385282^(2/3) 4032522791248738 a001 1597/10749957122*33385282^(13/18) 4032522791248738 a001 1597/17393796001*33385282^(3/4) 4032522791248738 a001 1597/28143753123*33385282^(7/9) 4032522791248738 a001 1597/54018521*33385282^(5/12) 4032522791248738 a001 1597/73681302247*33385282^(5/6) 4032522791248738 a001 1597/192900153618*33385282^(8/9) 4032522791248738 a001 1597/312119004989*33385282^(11/12) 4032522791248738 a001 1597/505019158607*33385282^(17/18) 4032522791248739 a004 Fibonacci(17)*Lucas(36)/(1/2+sqrt(5)/2)^58 4032522791248742 a001 1597/33385282*12752043^(7/17) 4032522791248744 a001 1597/20633239*141422324^(1/3) 4032522791248744 a001 14736261605/365435296162 4032522791248744 a001 1597/20633239*(1/2+1/2*5^(1/2))^13 4032522791248744 a001 1597/20633239*73681302247^(1/4) 4032522791248746 a001 1597/87403803*12752043^(8/17) 4032522791248748 a001 1597/141422324*12752043^(1/2) 4032522791248748 a001 1597/228826127*12752043^(9/17) 4032522791248750 a001 1597/599074578*12752043^(10/17) 4032522791248751 a001 1597/1568397607*12752043^(11/17) 4032522791248752 a001 1597/4106118243*12752043^(12/17) 4032522791248754 a001 1597/10749957122*12752043^(13/17) 4032522791248755 a001 1597/28143753123*12752043^(14/17) 4032522791248756 a004 Fibonacci(36)/Lucas(17)/(1/2+sqrt(5)/2)^24 4032522791248757 a001 1597/73681302247*12752043^(15/17) 4032522791248758 a001 1597/192900153618*12752043^(16/17) 4032522791248759 a004 Fibonacci(38)/Lucas(17)/(1/2+sqrt(5)/2)^26 4032522791248760 a004 Fibonacci(40)/Lucas(17)/(1/2+sqrt(5)/2)^28 4032522791248760 a004 Fibonacci(42)/Lucas(17)/(1/2+sqrt(5)/2)^30 4032522791248760 a004 Fibonacci(44)/Lucas(17)/(1/2+sqrt(5)/2)^32 4032522791248760 a004 Fibonacci(46)/Lucas(17)/(1/2+sqrt(5)/2)^34 4032522791248760 a004 Fibonacci(48)/Lucas(17)/(1/2+sqrt(5)/2)^36 4032522791248760 a004 Fibonacci(50)/Lucas(17)/(1/2+sqrt(5)/2)^38 4032522791248760 a004 Fibonacci(52)/Lucas(17)/(1/2+sqrt(5)/2)^40 4032522791248760 a004 Fibonacci(54)/Lucas(17)/(1/2+sqrt(5)/2)^42 4032522791248760 a004 Fibonacci(56)/Lucas(17)/(1/2+sqrt(5)/2)^44 4032522791248760 a004 Fibonacci(58)/Lucas(17)/(1/2+sqrt(5)/2)^46 4032522791248760 a004 Fibonacci(60)/Lucas(17)/(1/2+sqrt(5)/2)^48 4032522791248760 a004 Fibonacci(62)/Lucas(17)/(1/2+sqrt(5)/2)^50 4032522791248760 a004 Fibonacci(64)/Lucas(17)/(1/2+sqrt(5)/2)^52 4032522791248760 a004 Fibonacci(66)/Lucas(17)/(1/2+sqrt(5)/2)^54 4032522791248760 a004 Fibonacci(17)*Lucas(34)/(1/2+sqrt(5)/2)^56 4032522791248760 a004 Fibonacci(70)/Lucas(17)/(1/2+sqrt(5)/2)^58 4032522791248760 a004 Fibonacci(72)/Lucas(17)/(1/2+sqrt(5)/2)^60 4032522791248760 a004 Fibonacci(74)/Lucas(17)/(1/2+sqrt(5)/2)^62 4032522791248760 a004 Fibonacci(76)/Lucas(17)/(1/2+sqrt(5)/2)^64 4032522791248760 a004 Fibonacci(78)/Lucas(17)/(1/2+sqrt(5)/2)^66 4032522791248760 a004 Fibonacci(80)/Lucas(17)/(1/2+sqrt(5)/2)^68 4032522791248760 a004 Fibonacci(82)/Lucas(17)/(1/2+sqrt(5)/2)^70 4032522791248760 a004 Fibonacci(84)/Lucas(17)/(1/2+sqrt(5)/2)^72 4032522791248760 a004 Fibonacci(86)/Lucas(17)/(1/2+sqrt(5)/2)^74 4032522791248760 a004 Fibonacci(88)/Lucas(17)/(1/2+sqrt(5)/2)^76 4032522791248760 a004 Fibonacci(90)/Lucas(17)/(1/2+sqrt(5)/2)^78 4032522791248760 a004 Fibonacci(92)/Lucas(17)/(1/2+sqrt(5)/2)^80 4032522791248760 a004 Fibonacci(94)/Lucas(17)/(1/2+sqrt(5)/2)^82 4032522791248760 a004 Fibonacci(96)/Lucas(17)/(1/2+sqrt(5)/2)^84 4032522791248760 a004 Fibonacci(100)/Lucas(17)/(1/2+sqrt(5)/2)^88 4032522791248760 a004 Fibonacci(98)/Lucas(17)/(1/2+sqrt(5)/2)^86 4032522791248760 a004 Fibonacci(99)/Lucas(17)/(1/2+sqrt(5)/2)^87 4032522791248760 a004 Fibonacci(97)/Lucas(17)/(1/2+sqrt(5)/2)^85 4032522791248760 a004 Fibonacci(95)/Lucas(17)/(1/2+sqrt(5)/2)^83 4032522791248760 a004 Fibonacci(93)/Lucas(17)/(1/2+sqrt(5)/2)^81 4032522791248760 a004 Fibonacci(91)/Lucas(17)/(1/2+sqrt(5)/2)^79 4032522791248760 a004 Fibonacci(89)/Lucas(17)/(1/2+sqrt(5)/2)^77 4032522791248760 a004 Fibonacci(87)/Lucas(17)/(1/2+sqrt(5)/2)^75 4032522791248760 a004 Fibonacci(85)/Lucas(17)/(1/2+sqrt(5)/2)^73 4032522791248760 a004 Fibonacci(83)/Lucas(17)/(1/2+sqrt(5)/2)^71 4032522791248760 a004 Fibonacci(81)/Lucas(17)/(1/2+sqrt(5)/2)^69 4032522791248760 a004 Fibonacci(79)/Lucas(17)/(1/2+sqrt(5)/2)^67 4032522791248760 a004 Fibonacci(77)/Lucas(17)/(1/2+sqrt(5)/2)^65 4032522791248760 a004 Fibonacci(75)/Lucas(17)/(1/2+sqrt(5)/2)^63 4032522791248760 a004 Fibonacci(73)/Lucas(17)/(1/2+sqrt(5)/2)^61 4032522791248760 a004 Fibonacci(71)/Lucas(17)/(1/2+sqrt(5)/2)^59 4032522791248760 a004 Fibonacci(69)/Lucas(17)/(1/2+sqrt(5)/2)^57 4032522791248760 a004 Fibonacci(67)/Lucas(17)/(1/2+sqrt(5)/2)^55 4032522791248760 a004 Fibonacci(65)/Lucas(17)/(1/2+sqrt(5)/2)^53 4032522791248760 a004 Fibonacci(63)/Lucas(17)/(1/2+sqrt(5)/2)^51 4032522791248760 a004 Fibonacci(61)/Lucas(17)/(1/2+sqrt(5)/2)^49 4032522791248760 a004 Fibonacci(59)/Lucas(17)/(1/2+sqrt(5)/2)^47 4032522791248760 a004 Fibonacci(57)/Lucas(17)/(1/2+sqrt(5)/2)^45 4032522791248760 a004 Fibonacci(55)/Lucas(17)/(1/2+sqrt(5)/2)^43 4032522791248760 a004 Fibonacci(53)/Lucas(17)/(1/2+sqrt(5)/2)^41 4032522791248760 a004 Fibonacci(51)/Lucas(17)/(1/2+sqrt(5)/2)^39 4032522791248760 a004 Fibonacci(49)/Lucas(17)/(1/2+sqrt(5)/2)^37 4032522791248760 a004 Fibonacci(47)/Lucas(17)/(1/2+sqrt(5)/2)^35 4032522791248760 a004 Fibonacci(45)/Lucas(17)/(1/2+sqrt(5)/2)^33 4032522791248760 a004 Fibonacci(43)/Lucas(17)/(1/2+sqrt(5)/2)^31 4032522791248760 a004 Fibonacci(41)/Lucas(17)/(1/2+sqrt(5)/2)^29 4032522791248760 a004 Fibonacci(39)/Lucas(17)/(1/2+sqrt(5)/2)^27 4032522791248761 a004 Fibonacci(37)/Lucas(17)/(1/2+sqrt(5)/2)^25 4032522791248769 a004 Fibonacci(35)/Lucas(17)/(1/2+sqrt(5)/2)^23 4032522791248774 a001 1597/12752043*4870847^(3/8) 4032522791248778 a001 1597/7881196*7881196^(1/3) 4032522791248800 a001 63244394/1568358005 4032522791248800 a001 1597/7881196*312119004989^(1/5) 4032522791248800 a001 1597/7881196*(1/2+1/2*5^(1/2))^11 4032522791248800 a001 1597/7881196*1568397607^(1/4) 4032522791248806 a001 1597/33385282*4870847^(7/16) 4032522791248819 a001 1597/87403803*4870847^(1/2) 4032522791248825 a004 Fibonacci(33)/Lucas(17)/(1/2+sqrt(5)/2)^21 4032522791248830 a001 1597/228826127*4870847^(9/16) 4032522791248841 a001 1597/599074578*4870847^(5/8) 4032522791248852 a001 1597/1568397607*4870847^(11/16) 4032522791248862 a001 1597/4106118243*4870847^(3/4) 4032522791248873 a001 1597/10749957122*4870847^(13/16) 4032522791248884 a001 1597/28143753123*4870847^(7/8) 4032522791248894 a001 1597/73681302247*4870847^(15/16) 4032522791248905 a004 Fibonacci(17)*Lucas(32)/(1/2+sqrt(5)/2)^54 4032522791248953 a001 1597/4870847*1860498^(1/3) 4032522791249162 a001 1597/3010349*7881196^(3/11) 4032522791249176 a001 1597/12752043*1860498^(2/5) 4032522791249180 a001 1597/3010349*141422324^(3/13) 4032522791249180 a001 1597/3010349*2537720636^(1/5) 4032522791249180 a001 1597/3010349*45537549124^(3/17) 4032522791249180 a001 2149991593/53316291173 4032522791249180 a001 1597/3010349*817138163596^(3/19) 4032522791249180 a001 1597/3010349*14662949395604^(1/7) 4032522791249180 a001 1597/3010349*(1/2+1/2*5^(1/2))^9 4032522791249180 a001 1597/3010349*192900153618^(1/6) 4032522791249180 a001 1597/3010349*10749957122^(3/16) 4032522791249180 a001 1597/3010349*599074578^(3/14) 4032522791249181 a001 1597/3010349*33385282^(1/4) 4032522791249205 a004 Fibonacci(31)/Lucas(17)/(1/2+sqrt(5)/2)^19 4032522791249275 a001 1597/33385282*1860498^(7/15) 4032522791249319 a001 1597/54018521*1860498^(1/2) 4032522791249356 a001 1597/87403803*1860498^(8/15) 4032522791249434 a001 1597/228826127*1860498^(3/5) 4032522791249512 a001 1597/599074578*1860498^(2/3) 4032522791249529 a001 1597/3010349*1860498^(3/10) 4032522791249550 a001 1597/969323029*1860498^(7/10) 4032522791249589 a001 1597/1568397607*1860498^(11/15) 4032522791249667 a001 1597/4106118243*1860498^(4/5) 4032522791249706 a001 1597/6643838879*1860498^(5/6) 4032522791249745 a001 1597/10749957122*1860498^(13/15) 4032522791249783 a001 1597/17393796001*1860498^(9/10) 4032522791249822 a001 1597/28143753123*1860498^(14/15) 4032522791249851 a001 1597/1860498*710647^(2/7) 4032522791249900 a004 Fibonacci(17)*Lucas(30)/(1/2+sqrt(5)/2)^52 4032522791251417 a001 1597/4870847*710647^(5/14) 4032522791251783 a001 1597/1149851*20633239^(1/5) 4032522791251785 a001 514229/12752042 4032522791251785 a001 1597/1149851*17393796001^(1/7) 4032522791251785 a001 1597/1149851*14662949395604^(1/9) 4032522791251785 a001 1597/1149851*(1/2+1/2*5^(1/2))^7 4032522791251785 a001 1597/1149851*599074578^(1/6) 4032522791251810 a004 Fibonacci(29)/Lucas(17)/(1/2+sqrt(5)/2)^17 4032522791252132 a001 1597/12752043*710647^(3/7) 4032522791252724 a001 1597/33385282*710647^(1/2) 4032522791253297 a001 1597/87403803*710647^(4/7) 4032522791253380 a001 1597/710647*271443^(3/13) 4032522791253781 a001 1597/1149851*710647^(1/4) 4032522791253868 a001 1597/228826127*710647^(9/14) 4032522791254438 a001 1597/599074578*710647^(5/7) 4032522791254724 a001 1597/969323029*710647^(3/4) 4032522791255009 a001 1597/1568397607*710647^(11/14) 4032522791255579 a001 1597/4106118243*710647^(6/7) 4032522791256149 a001 1597/10749957122*710647^(13/14) 4032522791256526 a001 1597/271443*103682^(1/6) 4032522791256720 a004 Fibonacci(17)*Lucas(28)/(1/2+sqrt(5)/2)^50 4032522791263921 a001 1597/167761*64079^(3/23) 4032522791264410 a001 1597/1860498*271443^(4/13) 4032522791269615 a001 1597/4870847*271443^(5/13) 4032522791269638 a001 1597/439204*20633239^(1/7) 4032522791269640 a001 1597/439204*2537720636^(1/9) 4032522791269640 a001 313679546/7778742049 4032522791269640 a001 1597/439204*312119004989^(1/11) 4032522791269640 a001 1597/439204*(1/2+1/2*5^(1/2))^5 4032522791269640 a001 1597/439204*28143753123^(1/10) 4032522791269640 a001 1597/439204*228826127^(1/8) 4032522791269664 a004 Fibonacci(27)/Lucas(17)/(1/2+sqrt(5)/2)^15 4032522791269834 a001 1597/439204*1860498^(1/6) 4032522791273970 a001 1597/12752043*271443^(6/13) 4032522791276109 a001 1597/20633239*271443^(1/2) 4032522791278201 a001 1597/33385282*271443^(7/13) 4032522791282414 a001 1597/87403803*271443^(8/13) 4032522791286624 a001 1597/228826127*271443^(9/13) 4032522791290834 a001 1597/599074578*271443^(10/13) 4032522791295044 a001 1597/1568397607*271443^(11/13) 4032522791299254 a001 1597/4106118243*271443^(12/13) 4032522791303464 a004 Fibonacci(17)*Lucas(26)/(1/2+sqrt(5)/2)^48 4032522791334530 a001 1597/710647*103682^(1/4) 4032522791347790 a001 1597/439204*103682^(5/24) 4032522791361195 a001 1597/1149851*103682^(7/24) 4032522791372610 a001 1597/1860498*103682^(1/3) 4032522791389695 a001 1597/167761*439204^(1/9) 4032522791389850 a001 1597/3010349*103682^(3/8) 4032522791392012 a001 1597/167761*7881196^(1/11) 4032522791392018 a001 1597/167761*141422324^(1/13) 4032522791392018 a001 119814925/2971215073 4032522791392018 a001 1597/167761*2537720636^(1/15) 4032522791392018 a001 1597/167761*45537549124^(1/17) 4032522791392018 a001 1597/167761*14662949395604^(1/21) 4032522791392018 a001 1597/167761*(1/2+1/2*5^(1/2))^3 4032522791392018 a001 1597/167761*192900153618^(1/18) 4032522791392018 a001 1597/167761*10749957122^(1/16) 4032522791392018 a001 1597/167761*599074578^(1/14) 4032522791392018 a001 1597/167761*33385282^(1/12) 4032522791392043 a004 Fibonacci(25)/Lucas(17)/(1/2+sqrt(5)/2)^13 4032522791392134 a001 1597/167761*1860498^(1/10) 4032522791404865 a001 1597/4870847*103682^(5/12) 4032522791420730 a001 1597/7881196*103682^(11/24) 4032522791436270 a001 1597/12752043*103682^(1/2) 4032522791438908 a001 1597/167761*103682^(1/8) 4032522791451934 a001 1597/20633239*103682^(13/24) 4032522791467551 a001 1597/33385282*103682^(7/12) 4032522791483186 a001 1597/54018521*103682^(5/8) 4032522791498814 a001 1597/87403803*103682^(2/3) 4032522791514445 a001 1597/141422324*103682^(17/24) 4032522791530075 a001 1597/228826127*103682^(3/4) 4032522791545705 a001 1597/370248451*103682^(19/24) 4032522791561335 a001 1597/599074578*103682^(5/6) 4032522791576965 a001 1597/969323029*103682^(7/8) 4032522791592595 a001 1597/1568397607*103682^(11/12) 4032522791608225 a001 1597/2537720636*103682^(23/24) 4032522791623855 a004 Fibonacci(17)*Lucas(24)/(1/2+sqrt(5)/2)^46 4032522791661480 a001 1597/271443*39603^(2/11) 4032522791742624 a001 1597/167761*39603^(3/22) 4032522791853983 a001 1597/439204*39603^(5/22) 4032522791910276 a001 1597/64079*24476^(1/21) 4032522791941962 a001 1597/710647*39603^(3/11) 4032522792069865 a001 1597/1149851*39603^(7/22) 4032522792182519 a001 1597/1860498*39603^(4/11) 4032522792188113 a001 1597/64079*64079^(1/23) 4032522792212712 a001 10946/4870847*2207^(3/8) 4032522792230812 a001 45765229/1134903170 4032522792230812 a001 1597/128158+1597/128158*5^(1/2) 4032522792230836 a004 Fibonacci(23)/Lucas(17)/(1/2+sqrt(5)/2)^11 4032522792246442 a001 1597/64079*103682^(1/24) 4032522792300998 a001 1597/3010349*39603^(9/22) 4032522792347680 a001 1597/64079*39603^(1/22) 4032522792417251 a001 1597/4870847*39603^(5/11) 4032522792534355 a001 1597/7881196*39603^(1/2) 4032522792635880 a001 1597/103682*15127^(1/10) 4032522792651134 a001 1597/12752043*39603^(6/11) 4032522792768037 a001 1597/20633239*39603^(13/22) 4032522792884892 a001 1597/33385282*39603^(7/11) 4032522793001766 a001 1597/54018521*39603^(15/22) 4032522793111944 a001 1597/64079*15127^(1/20) 4032522793118633 a001 1597/87403803*39603^(8/11) 4032522793235502 a001 1597/141422324*39603^(17/22) 4032522793352370 a001 1597/228826127*39603^(9/11) 4032522793469239 a001 1597/370248451*39603^(19/22) 4032522793586108 a001 1597/599074578*39603^(10/11) 4032522793702976 a001 1597/969323029*39603^(21/22) 4032522793819845 a004 Fibonacci(17)*Lucas(22)/(1/2+sqrt(5)/2)^44 4032522794035416 a001 1597/167761*15127^(3/20) 4032522794718536 a001 1597/271443*15127^(1/5) 4032522795675302 a001 1597/439204*15127^(1/4) 4032522796527545 a001 1597/710647*15127^(3/10) 4032522797419712 a001 1597/1149851*15127^(7/20) 4032522797979988 a001 17480762/433494437 4032522797979988 a004 Fibonacci(17)/Lucas(21)/(1/2+sqrt(5)/2) 4032522797980013 a004 Fibonacci(21)/Lucas(17)/(1/2+sqrt(5)/2)^9 4032522798296630 a001 1597/1860498*15127^(2/5) 4032522798545254 s002 sum(A256899[n]/(pi^n),n=1..infinity) 4032522798941225 a001 1597/64079*5778^(1/18) 4032522799179373 a001 1597/3010349*15127^(9/20) 4032522800059890 a001 1597/4870847*15127^(1/2) 4032522800425931 a001 48/90481*18^(40/57) 4032522800941257 a001 1597/7881196*15127^(11/20) 4032522801822300 a001 1597/12752043*15127^(3/5) 4032522802703467 a001 1597/20633239*15127^(13/20) 4032522803584586 a001 1597/33385282*15127^(7/10) 4032522804294442 a001 1597/103682*5778^(1/9) 4032522804465724 a001 1597/54018521*15127^(3/4) 4032522805346855 a001 1597/87403803*15127^(4/5) 4032522806227988 a001 1597/141422324*15127^(17/20) 4032522807109120 a001 1597/228826127*15127^(9/10) 4032522807990253 a001 1597/370248451*15127^(19/20) 4032522808871385 a004 Fibonacci(17)*Lucas(20)/(1/2+sqrt(5)/2)^42 4032522811523258 a001 1597/167761*5778^(1/6) 4032522818035659 a001 1597/271443*5778^(2/9) 4032522819601893 a001 6765/4870847*2207^(7/16) 4032522819923269 a001 2584/4870847*2207^(9/16) 4032522821879379 a007 Real Root Of -251*x^4-735*x^3+966*x^2-624*x-50 4032522824821706 a001 1597/439204*5778^(5/18) 4032522830296295 a007 Real Root Of 186*x^4+894*x^3+545*x^2-339*x-790 4032522831503230 a001 1597/710647*5778^(1/3) 4032522831617160 a001 4181/1860498*2207^(3/8) 4032522834653578 a001 17711/12752043*2207^(7/16) 4032522836849590 a001 144/103681*2207^(7/16) 4032522837008978 m001 1/Zeta(9)/Robbin^2/exp(sqrt(3)) 4032522837169983 a001 121393/87403803*2207^(7/16) 4032522837216728 a001 317811/228826127*2207^(7/16) 4032522837223548 a001 416020/299537289*2207^(7/16) 4032522837224543 a001 311187/224056801*2207^(7/16) 4032522837224688 a001 5702887/4106118243*2207^(7/16) 4032522837224710 a001 7465176/5374978561*2207^(7/16) 4032522837224713 a001 39088169/28143753123*2207^(7/16) 4032522837224713 a001 14619165/10525900321*2207^(7/16) 4032522837224713 a001 133957148/96450076809*2207^(7/16) 4032522837224713 a001 701408733/505019158607*2207^(7/16) 4032522837224713 a001 1836311903/1322157322203*2207^(7/16) 4032522837224713 a001 14930208/10749853441*2207^(7/16) 4032522837224713 a001 12586269025/9062201101803*2207^(7/16) 4032522837224713 a001 32951280099/23725150497407*2207^(7/16) 4032522837224713 a001 10182505537/7331474697802*2207^(7/16) 4032522837224713 a001 7778742049/5600748293801*2207^(7/16) 4032522837224713 a001 2971215073/2139295485799*2207^(7/16) 4032522837224713 a001 567451585/408569081798*2207^(7/16) 4032522837224713 a001 433494437/312119004989*2207^(7/16) 4032522837224713 a001 165580141/119218851371*2207^(7/16) 4032522837224713 a001 31622993/22768774562*2207^(7/16) 4032522837224715 a001 24157817/17393796001*2207^(7/16) 4032522837224723 a001 9227465/6643838879*2207^(7/16) 4032522837224778 a001 1762289/1268860318*2207^(7/16) 4032522837225158 a001 1346269/969323029*2207^(7/16) 4032522837227763 a001 514229/370248451*2207^(7/16) 4032522837245618 a001 98209/70711162*2207^(7/16) 4032522837367998 a001 75025/54018521*2207^(7/16) 4032522837385432 a001 6677057/165580141 4032522837385433 a004 Fibonacci(17)/Lucas(19)/(1/2+sqrt(5)/2)^3 4032522837385457 a004 Fibonacci(19)/Lucas(17)/(1/2+sqrt(5)/2)^7 4032522837837174 m001 GAMMA(17/24)-GAMMA(7/24)-sqrt(5) 4032522838206799 a001 28657/20633239*2207^(7/16) 4032522838224678 a001 1597/1149851*5778^(7/18) 4032522838466908 r002 9th iterates of z^2 + 4032522838565343 r009 Im(z^3+c),c=-37/106+23/58*I,n=24 4032522843956032 a001 5473/3940598*2207^(7/16) 4032522843973897 a001 1597/64079*2207^(1/16) 4032522844930877 a001 1597/1860498*5778^(4/9) 4032522846638542 r005 Im(z^2+c),c=-3/34+31/52*I,n=43 4032522851642900 a001 1597/3010349*5778^(1/2) 4032522858352699 a001 1597/4870847*5778^(5/9) 4032522862662502 a001 2255/90481*843^(1/14) 4032522862708757 a001 21/2206*843^(3/14) 4032522863671432 a001 28143753123/4181*144^(14/17) 4032522865063347 a001 1597/7881196*5778^(11/18) 4032522865324853 a007 Real Root Of 439*x^4-656*x^3-456*x^2-197*x+185 4032522866559456 m001 Si(Pi)/(FeigenbaumDelta-ZetaP(4)) 4032522871345213 a001 6765/7881196*2207^(1/2) 4032522871666589 a001 646/1970299*2207^(5/8) 4032522871773671 a001 1597/12752043*5778^(2/3) 4032522877760787 a001 17711/710647*843^(1/14) 4032522878484118 a001 1597/20633239*5778^(13/18) 4032522879963597 a001 2576/103361*843^(1/14) 4032522880284982 a001 121393/4870847*843^(1/14) 4032522880331872 a001 105937/4250681*843^(1/14) 4032522880338713 a001 416020/16692641*843^(1/14) 4032522880339711 a001 726103/29134601*843^(1/14) 4032522880339857 a001 5702887/228826127*843^(1/14) 4032522880339878 a001 829464/33281921*843^(1/14) 4032522880339881 a001 39088169/1568397607*843^(1/14) 4032522880339881 a001 34111385/1368706081*843^(1/14) 4032522880339882 a001 133957148/5374978561*843^(1/14) 4032522880339882 a001 233802911/9381251041*843^(1/14) 4032522880339882 a001 1836311903/73681302247*843^(1/14) 4032522880339882 a001 267084832/10716675201*843^(1/14) 4032522880339882 a001 12586269025/505019158607*843^(1/14) 4032522880339882 a001 10983760033/440719107401*843^(1/14) 4032522880339882 a001 43133785636/1730726404001*843^(1/14) 4032522880339882 a001 75283811239/3020733700601*843^(1/14) 4032522880339882 a001 182717648081/7331474697802*843^(1/14) 4032522880339882 a001 139583862445/5600748293801*843^(1/14) 4032522880339882 a001 53316291173/2139295485799*843^(1/14) 4032522880339882 a001 10182505537/408569081798*843^(1/14) 4032522880339882 a001 7778742049/312119004989*843^(1/14) 4032522880339882 a001 2971215073/119218851371*843^(1/14) 4032522880339882 a001 567451585/22768774562*843^(1/14) 4032522880339882 a001 433494437/17393796001*843^(1/14) 4032522880339882 a001 165580141/6643838879*843^(1/14) 4032522880339882 a001 31622993/1268860318*843^(1/14) 4032522880339883 a001 24157817/969323029*843^(1/14) 4032522880339891 a001 9227465/370248451*843^(1/14) 4032522880339947 a001 1762289/70711162*843^(1/14) 4032522880340328 a001 1346269/54018521*843^(1/14) 4032522880342941 a001 514229/20633239*843^(1/14) 4032522880360851 a001 98209/3940598*843^(1/14) 4032522880483610 a001 75025/3010349*843^(1/14) 4032522881325008 a001 28657/1149851*843^(1/14) 4032522883361856 a001 4181/3010349*2207^(7/16) 4032522885194519 a001 1597/33385282*5778^(7/9) 4032522886396698 a001 17711/20633239*2207^(1/2) 4032522887092040 a001 5473/219602*843^(1/14) 4032522888592680 a001 46368/54018521*2207^(1/2) 4032522888913070 a001 233/271444*2207^(1/2) 4032522888959814 a001 317811/370248451*2207^(1/2) 4032522888966634 a001 832040/969323029*2207^(1/2) 4032522888967629 a001 2178309/2537720636*2207^(1/2) 4032522888967774 a001 5702887/6643838879*2207^(1/2) 4032522888967795 a001 14930352/17393796001*2207^(1/2) 4032522888967798 a001 39088169/45537549124*2207^(1/2) 4032522888967799 a001 102334155/119218851371*2207^(1/2) 4032522888967799 a001 267914296/312119004989*2207^(1/2) 4032522888967799 a001 701408733/817138163596*2207^(1/2) 4032522888967799 a001 1836311903/2139295485799*2207^(1/2) 4032522888967799 a001 4807526976/5600748293801*2207^(1/2) 4032522888967799 a001 12586269025/14662949395604*2207^(1/2) 4032522888967799 a001 20365011074/23725150497407*2207^(1/2) 4032522888967799 a001 7778742049/9062201101803*2207^(1/2) 4032522888967799 a001 2971215073/3461452808002*2207^(1/2) 4032522888967799 a001 1134903170/1322157322203*2207^(1/2) 4032522888967799 a001 433494437/505019158607*2207^(1/2) 4032522888967799 a001 165580141/192900153618*2207^(1/2) 4032522888967799 a001 63245986/73681302247*2207^(1/2) 4032522888967800 a001 24157817/28143753123*2207^(1/2) 4032522888967808 a001 9227465/10749957122*2207^(1/2) 4032522888967864 a001 3524578/4106118243*2207^(1/2) 4032522888968244 a001 1346269/1568397607*2207^(1/2) 4032522888970849 a001 514229/599074578*2207^(1/2) 4032522888988703 a001 196418/228826127*2207^(1/2) 4032522889111081 a001 75025/87403803*2207^(1/2) 4032522889949872 a001 28657/33385282*2207^(1/2) 4032522891904937 a001 1597/54018521*5778^(5/6) 4032522894359786 a001 1597/103682*2207^(1/8) 4032522895699028 a001 10946/12752043*2207^(1/2) 4032522898615349 a001 1597/87403803*5778^(8/9) 4032522903076877 a001 73681302247/10946*144^(14/17) 4032522905325763 a001 1597/141422324*5778^(17/18) 4032522908510442 a001 610/4870847*1364^(4/5) 4032522908826054 a001 192900153618/28657*144^(14/17) 4032522909664847 a001 505019158607/75025*144^(14/17) 4032522909787226 a001 1322157322203/196418*144^(14/17) 4032522909805081 a001 3461452808002/514229*144^(14/17) 4032522909807686 a001 9062201101803/1346269*144^(14/17) 4032522909808066 a001 23725150497407/3524578*144^(14/17) 4032522909808300 a001 14662949395604/2178309*144^(14/17) 4032522909809295 a001 5600748293801/832040*144^(14/17) 4032522909816115 a001 2139295485799/317811*144^(14/17) 4032522909862860 a001 817138163596/121393*144^(14/17) 4032522910183250 a001 312119004989/46368*144^(14/17) 4032522912036176 a004 Fibonacci(17)*Lucas(18)/(1/2+sqrt(5)/2)^40 4032522912379241 a001 119218851371/17711*144^(14/17) 4032522923088209 a001 2255/4250681*2207^(9/16) 4032522923409586 a001 2584/12752043*2207^(11/16) 4032522923515508 h001 (1/6*exp(2)+11/12)/(7/11*exp(2)+5/8) 4032522926619863 a001 4181/167761*843^(1/14) 4032522927430781 a001 45537549124/6765*144^(14/17) 4032522932750320 r005 Im(z^2+c),c=-45/34+7/127*I,n=25 4032522935104327 a001 4181/4870847*2207^(1/2) 4032522937026209 r009 Im(z^3+c),c=-37/106+23/58*I,n=29 4032522938139771 a001 17711/33385282*2207^(9/16) 4032522940335765 a001 15456/29134601*2207^(9/16) 4032522940656156 a001 121393/228826127*2207^(9/16) 4032522940702900 a001 377/710646*2207^(9/16) 4032522940709720 a001 832040/1568397607*2207^(9/16) 4032522940710715 a001 726103/1368706081*2207^(9/16) 4032522940710860 a001 5702887/10749957122*2207^(9/16) 4032522940710881 a001 4976784/9381251041*2207^(9/16) 4032522940710884 a001 39088169/73681302247*2207^(9/16) 4032522940710885 a001 34111385/64300051206*2207^(9/16) 4032522940710885 a001 267914296/505019158607*2207^(9/16) 4032522940710885 a001 233802911/440719107401*2207^(9/16) 4032522940710885 a001 1836311903/3461452808002*2207^(9/16) 4032522940710885 a001 1602508992/3020733700601*2207^(9/16) 4032522940710885 a001 12586269025/23725150497407*2207^(9/16) 4032522940710885 a001 7778742049/14662949395604*2207^(9/16) 4032522940710885 a001 2971215073/5600748293801*2207^(9/16) 4032522940710885 a001 1134903170/2139295485799*2207^(9/16) 4032522940710885 a001 433494437/817138163596*2207^(9/16) 4032522940710885 a001 165580141/312119004989*2207^(9/16) 4032522940710885 a001 63245986/119218851371*2207^(9/16) 4032522940710886 a001 24157817/45537549124*2207^(9/16) 4032522940710894 a001 9227465/17393796001*2207^(9/16) 4032522940710950 a001 3524578/6643838879*2207^(9/16) 4032522940711330 a001 1346269/2537720636*2207^(9/16) 4032522940713935 a001 514229/969323029*2207^(9/16) 4032522940731790 a001 196418/370248451*2207^(9/16) 4032522940854168 a001 75025/141422324*2207^(9/16) 4032522941692963 a001 28657/54018521*2207^(9/16) 4032522946621275 a001 1597/167761*2207^(3/16) 4032522947442148 a001 10946/20633239*2207^(9/16) 4032522947784719 a001 843/86267571272*89^(6/19) 4032522950997301 a007 Real Root Of 123*x^4-650*x^3-81*x^2-829*x-367 4032522951149887 r009 Re(z^3+c),c=-61/114+12/47*I,n=58 4032522952217657 r005 Im(z^2+c),c=-27/44+2/51*I,n=11 4032522962238327 m001 (5^(1/2)-FibonacciFactorial*ZetaQ(2))/ZetaQ(2) 4032522974831330 a001 615/1875749*2207^(5/8) 4032522974995014 r005 Re(z^2+c),c=-45/94+11/24*I,n=48 4032522975152707 a001 2584/20633239*2207^(3/4) 4032522986847649 a001 4181/7881196*2207^(9/16) 4032522989882863 a001 17711/54018521*2207^(5/8) 4032522992078852 a001 11592/35355581*2207^(5/8) 4032522992399243 a001 121393/370248451*2207^(5/8) 4032522992445987 a001 317811/969323029*2207^(5/8) 4032522992452807 a001 610/1860499*2207^(5/8) 4032522992453802 a001 2178309/6643838879*2207^(5/8) 4032522992453947 a001 5702887/17393796001*2207^(5/8) 4032522992453968 a001 3732588/11384387281*2207^(5/8) 4032522992453971 a001 39088169/119218851371*2207^(5/8) 4032522992453972 a001 9303105/28374454999*2207^(5/8) 4032522992453972 a001 66978574/204284540899*2207^(5/8) 4032522992453972 a001 701408733/2139295485799*2207^(5/8) 4032522992453972 a001 1836311903/5600748293801*2207^(5/8) 4032522992453972 a001 1201881744/3665737348901*2207^(5/8) 4032522992453972 a001 7778742049/23725150497407*2207^(5/8) 4032522992453972 a001 2971215073/9062201101803*2207^(5/8) 4032522992453972 a001 567451585/1730726404001*2207^(5/8) 4032522992453972 a001 433494437/1322157322203*2207^(5/8) 4032522992453972 a001 165580141/505019158607*2207^(5/8) 4032522992453972 a001 31622993/96450076809*2207^(5/8) 4032522992453973 a001 24157817/73681302247*2207^(5/8) 4032522992453981 a001 9227465/28143753123*2207^(5/8) 4032522992454037 a001 1762289/5374978561*2207^(5/8) 4032522992454417 a001 1346269/4106118243*2207^(5/8) 4032522992457022 a001 514229/1568397607*2207^(5/8) 4032522992474877 a001 98209/299537289*2207^(5/8) 4032522992597255 a001 75025/228826127*2207^(5/8) 4032522993436048 a001 28657/87403803*2207^(5/8) 4032522998166350 a001 1597/271443*2207^(1/4) 4032522999083761 l006 ln(6183/9254) 4032522999185222 a001 5473/16692641*2207^(5/8) 4032523004121853 m006 (4/5*Pi-4)/(3/5*ln(Pi)+3) 4032523004444157 a007 Real Root Of -786*x^4+722*x^3+91*x^2+672*x+27 4032523021228617 r002 42th iterates of z^2 + 4032523026574405 a001 6765/33385282*2207^(11/16) 4032523026895781 a001 1292/16692641*2207^(13/16) 4032523029169969 r005 Im(z^2+c),c=-59/114+25/48*I,n=32 4032523030595579 a001 17393796001/2584*144^(14/17) 4032523038590647 a001 4181/12752043*2207^(5/8) 4032523041625949 a001 17711/87403803*2207^(11/16) 4032523042149373 r002 28th iterates of z^2 + 4032523043821939 a001 46368/228826127*2207^(11/16) 4032523044142330 a001 121393/599074578*2207^(11/16) 4032523044189075 a001 317811/1568397607*2207^(11/16) 4032523044195894 a001 832040/4106118243*2207^(11/16) 4032523044196889 a001 987/4870846*2207^(11/16) 4032523044197035 a001 5702887/28143753123*2207^(11/16) 4032523044197056 a001 14930352/73681302247*2207^(11/16) 4032523044197059 a001 39088169/192900153618*2207^(11/16) 4032523044197059 a001 102334155/505019158607*2207^(11/16) 4032523044197059 a001 267914296/1322157322203*2207^(11/16) 4032523044197059 a001 701408733/3461452808002*2207^(11/16) 4032523044197059 a001 1836311903/9062201101803*2207^(11/16) 4032523044197059 a001 4807526976/23725150497407*2207^(11/16) 4032523044197059 a001 2971215073/14662949395604*2207^(11/16) 4032523044197059 a001 1134903170/5600748293801*2207^(11/16) 4032523044197059 a001 433494437/2139295485799*2207^(11/16) 4032523044197059 a001 165580141/817138163596*2207^(11/16) 4032523044197060 a001 63245986/312119004989*2207^(11/16) 4032523044197061 a001 24157817/119218851371*2207^(11/16) 4032523044197069 a001 9227465/45537549124*2207^(11/16) 4032523044197124 a001 3524578/17393796001*2207^(11/16) 4032523044197504 a001 1346269/6643838879*2207^(11/16) 4032523044200109 a001 514229/2537720636*2207^(11/16) 4032523044217964 a001 196418/969323029*2207^(11/16) 4032523044340343 a001 75025/370248451*2207^(11/16) 4032523045179136 a001 28657/141422324*2207^(11/16) 4032523045514064 h001 (-3*exp(7)+8)/(-2*exp(6)-7) 4032523045938810 r005 Re(z^2+c),c=3/34+9/44*I,n=9 4032523049985071 a001 1597/439204*2207^(5/16) 4032523050928315 a001 10946/54018521*2207^(11/16) 4032523053007282 a001 610/3010349*1364^(11/15) 4032523053607452 h001 (-6*exp(1)+11)/(-3*exp(2)+9) 4032523061897132 a007 Real Root Of 729*x^4+348*x^3+121*x^2-451*x-198 4032523078317498 a001 6765/54018521*2207^(3/4) 4032523078638874 a001 2584/54018521*2207^(7/8) 4032523088357569 a003 cos(Pi*2/85)/cos(Pi*37/88) 4032523090333769 a001 4181/20633239*2207^(11/16) 4032523093369038 a001 17711/141422324*2207^(3/4) 4032523095565028 a001 46368/370248451*2207^(3/4) 4032523095885418 a001 121393/969323029*2207^(3/4) 4032523095932163 a001 317811/2537720636*2207^(3/4) 4032523095938983 a001 832040/6643838879*2207^(3/4) 4032523095939978 a001 2178309/17393796001*2207^(3/4) 4032523095940123 a001 1597/12752044*2207^(3/4) 4032523095940144 a001 14930352/119218851371*2207^(3/4) 4032523095940147 a001 39088169/312119004989*2207^(3/4) 4032523095940148 a001 102334155/817138163596*2207^(3/4) 4032523095940148 a001 267914296/2139295485799*2207^(3/4) 4032523095940148 a001 701408733/5600748293801*2207^(3/4) 4032523095940148 a001 1836311903/14662949395604*2207^(3/4) 4032523095940148 a001 2971215073/23725150497407*2207^(3/4) 4032523095940148 a001 1134903170/9062201101803*2207^(3/4) 4032523095940148 a001 433494437/3461452808002*2207^(3/4) 4032523095940148 a001 165580141/1322157322203*2207^(3/4) 4032523095940148 a001 63245986/505019158607*2207^(3/4) 4032523095940149 a001 24157817/192900153618*2207^(3/4) 4032523095940157 a001 9227465/73681302247*2207^(3/4) 4032523095940213 a001 3524578/28143753123*2207^(3/4) 4032523095940593 a001 1346269/10749957122*2207^(3/4) 4032523095943198 a001 514229/4106118243*2207^(3/4) 4032523095961052 a001 196418/1568397607*2207^(3/4) 4032523096083431 a001 75025/599074578*2207^(3/4) 4032523096922224 a001 28657/228826127*2207^(3/4) 4032523099512948 a007 Real Root Of 851*x^4-554*x^3-523*x^2-593*x+338 4032523101699270 a001 1597/710647*2207^(3/8) 4032523102671401 a001 10946/87403803*2207^(3/4) 4032523106118340 r002 43th iterates of z^2 + 4032523106390314 p003 LerchPhi(1/16,6,263/226) 4032523107474362 a001 2550409/63245986 4032523107474387 a004 Fibonacci(17)/Lucas(17)/(1/2+sqrt(5)/2)^5 4032523111417131 k008 concat of cont frac of 4032523115726943 r009 Re(z^3+c),c=-27/74+26/37*I,n=31 4032523128006560 b008 3+E^(2+E)/3 4032523130060584 a001 2255/29134601*2207^(13/16) 4032523130381961 a001 2584/87403803*2207^(15/16) 4032523130909424 r005 Re(z^2+c),c=31/122+12/29*I,n=37 4032523135674741 a001 105937*123^(5/18) 4032523141881306 m001 GAMMA(13/24)*(BesselK(0,1)-Riemann3rdZero) 4032523142076845 a001 4181/33385282*2207^(3/4) 4032523145112126 a001 17711/228826127*2207^(13/16) 4032523147308117 a001 2576/33281921*2207^(13/16) 4032523147628507 a001 121393/1568397607*2207^(13/16) 4032523147675252 a001 105937/1368706081*2207^(13/16) 4032523147682072 a001 416020/5374978561*2207^(13/16) 4032523147683067 a001 726103/9381251041*2207^(13/16) 4032523147683212 a001 5702887/73681302247*2207^(13/16) 4032523147683233 a001 2584/33385281*2207^(13/16) 4032523147683236 a001 39088169/505019158607*2207^(13/16) 4032523147683236 a001 34111385/440719107401*2207^(13/16) 4032523147683237 a001 133957148/1730726404001*2207^(13/16) 4032523147683237 a001 233802911/3020733700601*2207^(13/16) 4032523147683237 a001 1836311903/23725150497407*2207^(13/16) 4032523147683237 a001 567451585/7331474697802*2207^(13/16) 4032523147683237 a001 433494437/5600748293801*2207^(13/16) 4032523147683237 a001 165580141/2139295485799*2207^(13/16) 4032523147683237 a001 31622993/408569081798*2207^(13/16) 4032523147683238 a001 24157817/312119004989*2207^(13/16) 4032523147683246 a001 9227465/119218851371*2207^(13/16) 4032523147683301 a001 1762289/22768774562*2207^(13/16) 4032523147683682 a001 1346269/17393796001*2207^(13/16) 4032523147686287 a001 514229/6643838879*2207^(13/16) 4032523147704141 a001 98209/1268860318*2207^(13/16) 4032523147826520 a001 75025/969323029*2207^(13/16) 4032523148665313 a001 28657/370248451*2207^(13/16) 4032523152638713 m001 (gamma(1)+Robbin)/Zeta(1/2) 4032523153453394 a001 1597/1149851*2207^(7/16) 4032523154414491 a001 5473/70711162*2207^(13/16) 4032523160519100 r009 Re(z^3+c),c=-41/86+10/47*I,n=42 4032523164142334 a007 Real Root Of -47*x^4+96*x^3-628*x^2+105*x+152 4032523165012498 a001 2584/167761*843^(1/7) 4032523167108915 r008 a(0)=4,K{-n^6,-42+28*n+33*n^2-50*n^3} 4032523181803674 a001 6765/141422324*2207^(7/8) 4032523182125051 a004 Fibonacci(18)*Lucas(16)/(1/2+sqrt(5)/2)^39 4032523183885139 a003 cos(Pi*19/56)-cos(Pi*37/78) 4032523186374243 r002 14th iterates of z^2 + 4032523191339527 r002 50th iterates of z^2 + 4032523193819939 a001 4181/54018521*2207^(13/16) 4032523194432738 r005 Im(z^2+c),c=13/114+26/59*I,n=46 4032523196855216 a001 17711/370248451*2207^(7/8) 4032523197501902 a001 305/930249*1364^(2/3) 4032523197547592 a001 1597/64079*843^(1/14) 4032523198593342 h001 (-6*exp(2)-8)/(-5*exp(1/3)-6) 4032523199051206 a001 46368/969323029*2207^(7/8) 4032523199371597 a001 121393/2537720636*2207^(7/8) 4032523199418341 a001 317811/6643838879*2207^(7/8) 4032523199425161 a001 832040/17393796001*2207^(7/8) 4032523199426156 a001 2178309/45537549124*2207^(7/8) 4032523199426301 a001 5702887/119218851371*2207^(7/8) 4032523199426322 a001 14930352/312119004989*2207^(7/8) 4032523199426326 a001 4181/87403804*2207^(7/8) 4032523199426326 a001 102334155/2139295485799*2207^(7/8) 4032523199426326 a001 267914296/5600748293801*2207^(7/8) 4032523199426326 a001 701408733/14662949395604*2207^(7/8) 4032523199426326 a001 1134903170/23725150497407*2207^(7/8) 4032523199426326 a001 433494437/9062201101803*2207^(7/8) 4032523199426326 a001 165580141/3461452808002*2207^(7/8) 4032523199426326 a001 63245986/1322157322203*2207^(7/8) 4032523199426327 a001 24157817/505019158607*2207^(7/8) 4032523199426336 a001 9227465/192900153618*2207^(7/8) 4032523199426391 a001 3524578/73681302247*2207^(7/8) 4032523199426771 a001 1346269/28143753123*2207^(7/8) 4032523199429376 a001 514229/10749957122*2207^(7/8) 4032523199447231 a001 196418/4106118243*2207^(7/8) 4032523199569609 a001 75025/1568397607*2207^(7/8) 4032523200408403 a001 28657/599074578*2207^(7/8) 4032523205192268 a001 1597/1860498*2207^(1/2) 4032523206157580 a001 10946/228826127*2207^(7/8) 4032523206318632 r005 Im(z^2+c),c=-111/82+4/57*I,n=39 4032523223035635 r009 Im(z^3+c),c=-63/118+15/56*I,n=54 4032523230231093 l006 ln(4675/6997) 4032523233546764 a001 6765/228826127*2207^(15/16) 4032523233893746 a007 Real Root Of 275*x^4+804*x^3-999*x^2+872*x-235 4032523236156244 m005 (1/2*5^(1/2)+1/3)/(3/8*Pi-9/11) 4032523238251982 a007 Real Root Of -659*x^4+855*x^3+667*x^2+399*x-308 4032523245563027 a001 4181/87403803*2207^(7/8) 4032523247155824 b008 Sech[ArcTan[4^Pi]] 4032523248598306 a001 17711/599074578*2207^(15/16) 4032523250794296 a001 6624/224056801*2207^(15/16) 4032523251114687 a001 121393/4106118243*2207^(15/16) 4032523251161431 a001 317811/10749957122*2207^(15/16) 4032523251168251 a001 832040/28143753123*2207^(15/16) 4032523251169246 a001 311187/10525900321*2207^(15/16) 4032523251169392 a001 5702887/192900153618*2207^(15/16) 4032523251169413 a001 14930352/505019158607*2207^(15/16) 4032523251169416 a001 39088169/1322157322203*2207^(15/16) 4032523251169416 a001 6765/228826126*2207^(15/16) 4032523251169416 a001 267914296/9062201101803*2207^(15/16) 4032523251169416 a001 701408733/23725150497407*2207^(15/16) 4032523251169416 a001 433494437/14662949395604*2207^(15/16) 4032523251169416 a001 165580141/5600748293801*2207^(15/16) 4032523251169417 a001 63245986/2139295485799*2207^(15/16) 4032523251169418 a001 24157817/817138163596*2207^(15/16) 4032523251169426 a001 9227465/312119004989*2207^(15/16) 4032523251169481 a001 3524578/119218851371*2207^(15/16) 4032523251169861 a001 1346269/45537549124*2207^(15/16) 4032523251172466 a001 514229/17393796001*2207^(15/16) 4032523251190321 a001 196418/6643838879*2207^(15/16) 4032523251312699 a001 75025/2537720636*2207^(15/16) 4032523252151493 a001 28657/969323029*2207^(15/16) 4032523255165416 r002 16th iterates of z^2 + 4032523256936969 a001 1597/3010349*2207^(9/16) 4032523257535084 r005 Im(z^2+c),c=-1/10+19/35*I,n=14 4032523257900670 a001 10946/370248451*2207^(15/16) 4032523266587793 a007 Real Root Of 793*x^4-96*x^3-673*x^2-380*x+248 4032523268054923 a001 6765/439204*843^(1/7) 4032523268543948 a001 987/167761*843^(2/7) 4032523274867199 r005 Im(z^2+c),c=17/58+26/59*I,n=48 4032523283088611 a001 17711/1149851*843^(1/7) 4032523285281996 a001 46368/3010349*843^(1/7) 4032523285289855 a004 Fibonacci(20)*Lucas(16)/(1/2+sqrt(5)/2)^41 4032523285602007 a001 121393/7881196*843^(1/7) 4032523285648695 a001 10959/711491*843^(1/7) 4032523285655507 a001 832040/54018521*843^(1/7) 4032523285656501 a001 2178309/141422324*843^(1/7) 4032523285656646 a001 5702887/370248451*843^(1/7) 4032523285656667 a001 14930352/969323029*843^(1/7) 4032523285656670 a001 39088169/2537720636*843^(1/7) 4032523285656671 a001 102334155/6643838879*843^(1/7) 4032523285656671 a001 9238424/599786069*843^(1/7) 4032523285656671 a001 701408733/45537549124*843^(1/7) 4032523285656671 a001 1836311903/119218851371*843^(1/7) 4032523285656671 a001 4807526976/312119004989*843^(1/7) 4032523285656671 a001 12586269025/817138163596*843^(1/7) 4032523285656671 a001 32951280099/2139295485799*843^(1/7) 4032523285656671 a001 86267571272/5600748293801*843^(1/7) 4032523285656671 a001 7787980473/505618944676*843^(1/7) 4032523285656671 a001 365435296162/23725150497407*843^(1/7) 4032523285656671 a001 139583862445/9062201101803*843^(1/7) 4032523285656671 a001 53316291173/3461452808002*843^(1/7) 4032523285656671 a001 20365011074/1322157322203*843^(1/7) 4032523285656671 a001 7778742049/505019158607*843^(1/7) 4032523285656671 a001 2971215073/192900153618*843^(1/7) 4032523285656671 a001 1134903170/73681302247*843^(1/7) 4032523285656671 a001 433494437/28143753123*843^(1/7) 4032523285656671 a001 165580141/10749957122*843^(1/7) 4032523285656671 a001 63245986/4106118243*843^(1/7) 4032523285656672 a001 24157817/1568397607*843^(1/7) 4032523285656680 a001 9227465/599074578*843^(1/7) 4032523285656736 a001 3524578/228826127*843^(1/7) 4032523285657115 a001 1346269/87403803*843^(1/7) 4032523285659717 a001 514229/33385282*843^(1/7) 4032523285677551 a001 196418/12752043*843^(1/7) 4032523285799784 a001 75025/4870847*843^(1/7) 4032523286356803 m001 (GAMMA(2/3)-Artin)/(Cahen+KomornikLoreti) 4032523286637583 a001 28657/1860498*843^(1/7) 4032523287334927 m005 (1/2*Catalan-11/12)/(9/10*5^(1/2)-7/8) 4032523289477351 a001 13/844*322^(1/6) 4032523291228312 m002 -Pi-Log[Pi]*ProductLog[Pi]+Pi^4*Sech[Pi] 4032523292379940 a001 10946/710647*843^(1/7) 4032523296181253 a001 2207/10946*8^(1/3) 4032523297306119 a001 4181/141422324*2207^(15/16) 4032523297756222 m001 BesselK(0,1)*GAMMA(1/12)-cos(Pi/5) 4032523300341397 a004 Fibonacci(22)*Lucas(16)/(1/2+sqrt(5)/2)^43 4032523302537387 a004 Fibonacci(24)*Lucas(16)/(1/2+sqrt(5)/2)^45 4032523302857778 a004 Fibonacci(26)*Lucas(16)/(1/2+sqrt(5)/2)^47 4032523302904522 a004 Fibonacci(28)*Lucas(16)/(1/2+sqrt(5)/2)^49 4032523302911342 a004 Fibonacci(30)*Lucas(16)/(1/2+sqrt(5)/2)^51 4032523302912337 a004 Fibonacci(32)*Lucas(16)/(1/2+sqrt(5)/2)^53 4032523302912482 a004 Fibonacci(34)*Lucas(16)/(1/2+sqrt(5)/2)^55 4032523302912504 a004 Fibonacci(36)*Lucas(16)/(1/2+sqrt(5)/2)^57 4032523302912507 a004 Fibonacci(38)*Lucas(16)/(1/2+sqrt(5)/2)^59 4032523302912507 a004 Fibonacci(40)*Lucas(16)/(1/2+sqrt(5)/2)^61 4032523302912507 a004 Fibonacci(42)*Lucas(16)/(1/2+sqrt(5)/2)^63 4032523302912507 a004 Fibonacci(44)*Lucas(16)/(1/2+sqrt(5)/2)^65 4032523302912507 a004 Fibonacci(46)*Lucas(16)/(1/2+sqrt(5)/2)^67 4032523302912507 a004 Fibonacci(48)*Lucas(16)/(1/2+sqrt(5)/2)^69 4032523302912507 a004 Fibonacci(50)*Lucas(16)/(1/2+sqrt(5)/2)^71 4032523302912507 a004 Fibonacci(52)*Lucas(16)/(1/2+sqrt(5)/2)^73 4032523302912507 a004 Fibonacci(54)*Lucas(16)/(1/2+sqrt(5)/2)^75 4032523302912507 a004 Fibonacci(56)*Lucas(16)/(1/2+sqrt(5)/2)^77 4032523302912507 a004 Fibonacci(58)*Lucas(16)/(1/2+sqrt(5)/2)^79 4032523302912507 a004 Fibonacci(60)*Lucas(16)/(1/2+sqrt(5)/2)^81 4032523302912507 a004 Fibonacci(62)*Lucas(16)/(1/2+sqrt(5)/2)^83 4032523302912507 a004 Fibonacci(64)*Lucas(16)/(1/2+sqrt(5)/2)^85 4032523302912507 a004 Fibonacci(66)*Lucas(16)/(1/2+sqrt(5)/2)^87 4032523302912507 a004 Fibonacci(68)*Lucas(16)/(1/2+sqrt(5)/2)^89 4032523302912507 a004 Fibonacci(70)*Lucas(16)/(1/2+sqrt(5)/2)^91 4032523302912507 a004 Fibonacci(72)*Lucas(16)/(1/2+sqrt(5)/2)^93 4032523302912507 a004 Fibonacci(74)*Lucas(16)/(1/2+sqrt(5)/2)^95 4032523302912507 a004 Fibonacci(76)*Lucas(16)/(1/2+sqrt(5)/2)^97 4032523302912507 a004 Fibonacci(78)*Lucas(16)/(1/2+sqrt(5)/2)^99 4032523302912507 a004 Fibonacci(79)*Lucas(16)/(1/2+sqrt(5)/2)^100 4032523302912507 a004 Fibonacci(77)*Lucas(16)/(1/2+sqrt(5)/2)^98 4032523302912507 a004 Fibonacci(75)*Lucas(16)/(1/2+sqrt(5)/2)^96 4032523302912507 a004 Fibonacci(73)*Lucas(16)/(1/2+sqrt(5)/2)^94 4032523302912507 a004 Fibonacci(71)*Lucas(16)/(1/2+sqrt(5)/2)^92 4032523302912507 a004 Fibonacci(69)*Lucas(16)/(1/2+sqrt(5)/2)^90 4032523302912507 a004 Fibonacci(67)*Lucas(16)/(1/2+sqrt(5)/2)^88 4032523302912507 a004 Fibonacci(65)*Lucas(16)/(1/2+sqrt(5)/2)^86 4032523302912507 a004 Fibonacci(63)*Lucas(16)/(1/2+sqrt(5)/2)^84 4032523302912507 a004 Fibonacci(61)*Lucas(16)/(1/2+sqrt(5)/2)^82 4032523302912507 a004 Fibonacci(59)*Lucas(16)/(1/2+sqrt(5)/2)^80 4032523302912507 a004 Fibonacci(57)*Lucas(16)/(1/2+sqrt(5)/2)^78 4032523302912507 a004 Fibonacci(55)*Lucas(16)/(1/2+sqrt(5)/2)^76 4032523302912507 a004 Fibonacci(53)*Lucas(16)/(1/2+sqrt(5)/2)^74 4032523302912507 a004 Fibonacci(51)*Lucas(16)/(1/2+sqrt(5)/2)^72 4032523302912507 a004 Fibonacci(49)*Lucas(16)/(1/2+sqrt(5)/2)^70 4032523302912507 a004 Fibonacci(47)*Lucas(16)/(1/2+sqrt(5)/2)^68 4032523302912507 a004 Fibonacci(45)*Lucas(16)/(1/2+sqrt(5)/2)^66 4032523302912507 a004 Fibonacci(43)*Lucas(16)/(1/2+sqrt(5)/2)^64 4032523302912507 a004 Fibonacci(41)*Lucas(16)/(1/2+sqrt(5)/2)^62 4032523302912507 a004 Fibonacci(39)*Lucas(16)/(1/2+sqrt(5)/2)^60 4032523302912509 a004 Fibonacci(37)*Lucas(16)/(1/2+sqrt(5)/2)^58 4032523302912517 a004 Fibonacci(35)*Lucas(16)/(1/2+sqrt(5)/2)^56 4032523302912572 a004 Fibonacci(33)*Lucas(16)/(1/2+sqrt(5)/2)^54 4032523302912677 a001 2/987*(1/2+1/2*5^(1/2))^11 4032523302912952 a004 Fibonacci(31)*Lucas(16)/(1/2+sqrt(5)/2)^52 4032523302915557 a004 Fibonacci(29)*Lucas(16)/(1/2+sqrt(5)/2)^50 4032523302933412 a004 Fibonacci(27)*Lucas(16)/(1/2+sqrt(5)/2)^48 4032523303055790 a004 Fibonacci(25)*Lucas(16)/(1/2+sqrt(5)/2)^46 4032523303894584 a004 Fibonacci(23)*Lucas(16)/(1/2+sqrt(5)/2)^44 4032523308679445 a001 1597/4870847*2207^(5/8) 4032523309643761 a004 Fibonacci(21)*Lucas(16)/(1/2+sqrt(5)/2)^42 4032523312654638 m001 (Catalan-Zeta(5))/(PrimesInBinary+Sierpinski) 4032523321112928 a003 sin(Pi*9/104)/cos(Pi*26/97) 4032523328682438 r008 a(0)=4,K{-n^6,56-37*n^3+43*n^2-93*n} 4032523330184477 r005 Im(z^2+c),c=-21/50+19/33*I,n=34 4032523331056957 r002 60th iterates of z^2 + 4032523331738644 a001 4181/271443*843^(1/7) 4032523333704888 a003 cos(Pi*20/107)-cos(Pi*14/67) 4032523342002352 a001 610/1149851*1364^(3/5) 4032523349049210 a004 Fibonacci(19)*Lucas(16)/(1/2+sqrt(5)/2)^40 4032523358047902 m001 (GAMMA(11/12)-Grothendieck)/(Kac+Salem) 4032523360422771 a001 1597/7881196*2207^(11/16) 4032523385695872 r005 Re(z^2+c),c=-9/16+16/41*I,n=38 4032523385778488 r002 26th iterates of z^2 + 4032523385894402 r005 Re(z^2+c),c=-19/28+13/57*I,n=35 4032523402625741 r005 Re(z^2+c),c=-43/78+9/22*I,n=57 4032523412165774 a001 1597/12752043*2207^(3/4) 4032523413080323 r005 Im(z^2+c),c=1/17+12/25*I,n=38 4032523415150570 r005 Im(z^2+c),c=-145/126+2/39*I,n=25 4032523419959686 r005 Im(z^2+c),c=-1/48+9/17*I,n=28 4032523426303521 r009 Re(z^3+c),c=-11/21+13/55*I,n=20 4032523438108809 r004 Re(z^2+c),c=-19/34-2/9*I,z(0)=-1,n=24 4032523438328988 m001 (cos(1)*LaplaceLimit-Stephens)/cos(1) 4032523447064137 r008 a(0)=4,K{-n^6,48-20*n^3-12*n^2-47*n} 4032523455776228 r005 Re(z^2+c),c=37/110+32/61*I,n=3 4032523463908901 a001 1597/20633239*2207^(13/16) 4032523466174654 a007 Real Root Of -207*x^4-736*x^3+323*x^2-273*x+121 4032523472218116 a007 Real Root Of 75*x^4-856*x^3+871*x^2+907*x+166 4032523486487558 a001 610/710647*1364^(8/15) 4032523488514738 r008 a(0)=4,K{-n^6,46-34*n-28*n^2-15*n^3} 4032523497565034 r005 Re(z^2+c),c=-59/110+13/42*I,n=61 4032523506434963 a001 305/12238*521^(1/13) 4032523506765780 r005 Re(z^2+c),c=-17/90+26/41*I,n=60 4032523508584818 a007 Real Root Of 576*x^4-622*x^3-154*x^2-554*x+274 4032523513356765 m001 (Si(Pi)-exp(-1/2*Pi))/(-Cahen+CopelandErdos) 4032523515651981 a001 1597/33385282*2207^(7/8) 4032523515961136 a001 3/4181*46368^(33/56) 4032523544383128 a007 Real Root Of 150*x^4+446*x^3-450*x^2+637*x-532 4032523545209874 a001 4/514229*233^(16/53) 4032523552180608 r005 Re(z^2+c),c=-25/34+1/125*I,n=30 4032523556314722 m001 ZetaQ(4)*(Si(Pi)+Lehmer) 4032523562525363 m005 (1/2*exp(1)-1/9)/(5/11*2^(1/2)-1/3) 4032523567395081 a001 1597/54018521*2207^(15/16) 4032523568872881 a007 Real Root Of 286*x^4-59*x^3+670*x^2-805*x-445 4032523570131303 a001 2584/271443*843^(3/14) 4032523572381060 m001 (CopelandErdos+PlouffeB)/(3^(1/3)+arctan(1/3)) 4032523584643206 r002 5th iterates of z^2 + 4032523592401278 p004 log(35437/23677) 4032523592930710 r005 Re(z^2+c),c=-4/7+3/29*I,n=19 4032523597038125 m002 -2/3+Pi^2+Pi^3*Coth[Pi] 4032523600222287 a007 Real Root Of 734*x^4-521*x^3+965*x^2-832*x-546 4032523601507217 a001 1597/103682*843^(1/7) 4032523607248337 h001 (1/12*exp(1)+5/6)/(9/10*exp(1)+2/11) 4032523611208227 h001 (1/3*exp(2)+2/9)/(8/9*exp(2)+1/11) 4032523617728894 a001 233/1860498*521^(12/13) 4032523619138174 a004 Fibonacci(17)*Lucas(16)/(1/2+sqrt(5)/2)^38 4032523623531089 r002 37th iterates of z^2 + 4032523631012693 a001 305/219602*1364^(7/15) 4032523635943767 r002 11th iterates of z^2 + 4032523643838534 r008 a(0)=4,K{-n^6,50-68*n^2-12*n-n^3} 4032523654260748 r004 Re(z^2+c),c=1/10-6/7*I,z(0)=I,n=6 4032523656543836 r005 Re(z^2+c),c=-9/16+13/124*I,n=52 4032523660111187 r008 a(0)=4,K{-n^6,-29+23*n^3-35*n^2+12*n} 4032523664759229 m009 (8/5*Catalan+1/5*Pi^2-1/6)/(1/6*Pi^2-5/6) 4032523669150788 m001 OneNinth^2/FeigenbaumKappa^2*ln(Ei(1)) 4032523671064138 a007 Real Root Of 107*x^4-757*x^3+993*x^2-325*x-345 4032523673342862 a001 6765/710647*843^(3/14) 4032523673662764 a001 329/90481*843^(5/14) 4032523681504823 l006 ln(3167/4740) 4032523684044032 m001 ZetaQ(4)*(BesselI(1,1)-Riemann3rdZero) 4032523688401225 a001 17711/1860498*843^(3/14) 4032523690598211 a001 46368/4870847*843^(3/14) 4032523690918747 a001 121393/12752043*843^(3/14) 4032523690965512 a001 317811/33385282*843^(3/14) 4032523690972335 a001 832040/87403803*843^(3/14) 4032523690973331 a001 46347/4868641*843^(3/14) 4032523690973476 a001 5702887/599074578*843^(3/14) 4032523690973497 a001 14930352/1568397607*843^(3/14) 4032523690973500 a001 39088169/4106118243*843^(3/14) 4032523690973501 a001 102334155/10749957122*843^(3/14) 4032523690973501 a001 267914296/28143753123*843^(3/14) 4032523690973501 a001 701408733/73681302247*843^(3/14) 4032523690973501 a001 1836311903/192900153618*843^(3/14) 4032523690973501 a001 102287808/10745088481*843^(3/14) 4032523690973501 a001 12586269025/1322157322203*843^(3/14) 4032523690973501 a001 32951280099/3461452808002*843^(3/14) 4032523690973501 a001 86267571272/9062201101803*843^(3/14) 4032523690973501 a001 225851433717/23725150497407*843^(3/14) 4032523690973501 a001 139583862445/14662949395604*843^(3/14) 4032523690973501 a001 53316291173/5600748293801*843^(3/14) 4032523690973501 a001 20365011074/2139295485799*843^(3/14) 4032523690973501 a001 7778742049/817138163596*843^(3/14) 4032523690973501 a001 2971215073/312119004989*843^(3/14) 4032523690973501 a001 1134903170/119218851371*843^(3/14) 4032523690973501 a001 433494437/45537549124*843^(3/14) 4032523690973501 a001 165580141/17393796001*843^(3/14) 4032523690973501 a001 63245986/6643838879*843^(3/14) 4032523690973502 a001 24157817/2537720636*843^(3/14) 4032523690973510 a001 9227465/969323029*843^(3/14) 4032523690973566 a001 3524578/370248451*843^(3/14) 4032523690973946 a001 1346269/141422324*843^(3/14) 4032523690976552 a001 514229/54018521*843^(3/14) 4032523690994415 a001 196418/20633239*843^(3/14) 4032523691116849 a001 75025/7881196*843^(3/14) 4032523691956023 a001 28657/3010349*843^(3/14) 4032523696294677 m001 ReciprocalFibonacci/(sin(1)^Shi(1)) 4032523697707806 a001 10946/1149851*843^(3/14) 4032523698266810 a001 505019158607/233*144^(10/17) 4032523716737873 m003 -1-Cosh[1/2+Sqrt[5]/2]/8+Tanh[1/2+Sqrt[5]/2] 4032523729423632 a001 1/36*377^(23/51) 4032523732968929 a007 Real Root Of -247*x^4-938*x^3+111*x^2-568*x-290 4032523735031193 g005 GAMMA(11/12)/GAMMA(7/10)/GAMMA(3/5)/GAMMA(2/3) 4032523737131113 a001 4181/439204*843^(3/14) 4032523737697764 a001 6643838879/987*144^(14/17) 4032523740879764 h001 (10/11*exp(1)+2/9)/(8/9*exp(2)+1/9) 4032523749997720 r005 Im(z^2+c),c=-1/40+25/41*I,n=51 4032523775433310 a001 610/271443*1364^(2/5) 4032523779629277 h001 (7/9*exp(1)+8/11)/(5/6*exp(2)+8/9) 4032523786072501 a001 7/121393*75025^(14/37) 4032523786906911 r009 Im(z^3+c),c=-29/106+43/62*I,n=62 4032523801279802 r005 Re(z^2+c),c=-87/86+3/16*I,n=44 4032523814016394 r005 Im(z^2+c),c=17/126+17/40*I,n=62 4032523814575838 a001 100345/2488392 4032523814576004 a004 Fibonacci(15)/Lucas(16)/(1/2+sqrt(5)/2)^4 4032523814576999 a004 Fibonacci(16)/Lucas(15)/(1/2+sqrt(5)/2)^6 4032523817699348 a003 cos(Pi*20/109)/cos(Pi*13/30) 4032523817788600 r005 Im(z^2+c),c=-7/82+31/54*I,n=49 4032523827930922 r005 Im(z^2+c),c=-15/118+37/63*I,n=58 4032523829353126 m009 (4/5*Psi(1,1/3)-3)/(4*Psi(1,2/3)+1/3) 4032523832827282 g007 2*Psi(2,2/7)+Psi(2,1/5)-Psi(2,5/11) 4032523833711983 r002 58th iterates of z^2 + 4032523841645892 r002 22th iterates of z^2 + 4032523844263231 h001 (1/8*exp(2)+1/2)/(3/7*exp(2)+4/11) 4032523854791820 m001 (RenyiParking+Thue)/(exp(1)+BesselI(0,1)) 4032523856906026 r009 Re(z^3+c),c=-31/70+3/17*I,n=25 4032523882441491 r005 Re(z^2+c),c=33/122+13/33*I,n=26 4032523916648340 r008 a(0)=0,K{-n^6,12-29*n+52*n^2-60*n^3} 4032523916904550 r008 a(0)=0,K{-n^6,-58*n^3+40*n^2-7*n} 4032523920127579 a001 610/167761*1364^(1/3) 4032523945380102 r009 Re(z^3+c),c=-8/29+7/8*I,n=3 4032523946736169 p001 sum((-1)^n/(555*n+242)/(12^n),n=0..infinity) 4032523951897881 r005 Im(z^2+c),c=-121/122+16/55*I,n=28 4032523955723273 s002 sum(A009567[n]/((2*n)!),n=1..infinity) 4032523974401746 b008 Pi+Cos[Sqrt[2]/3] 4032523975523796 a001 34/5779*843^(2/7) 4032523987547684 r005 Re(z^2+c),c=25/118+13/34*I,n=42 4032523989569984 r002 57th iterates of z^2 + 4032523990550151 r002 13th iterates of z^2 + 4032524005377136 r005 Re(z^2+c),c=-57/98+5/39*I,n=17 4032524007342481 a001 1597/167761*843^(3/14) 4032524007890378 r008 a(0)=4,K{-n^6,3*n^3+40*n^2-72*n} 4032524011906199 a001 322/591286729879*832040^(6/19) 4032524011906567 a001 46/1515744265389*7778742049^(6/19) 4032524012858011 r005 Re(z^2+c),c=-9/16+9/85*I,n=42 4032524026148544 m005 (1/2*Zeta(3)-8/9)/(7/12*2^(1/2)-1/9) 4032524043555443 m001 (-FeigenbaumC+Thue)/(BesselI(0,1)+ln(Pi)) 4032524061264868 m001 (LambertW(1)+PlouffeB)/(exp(Pi)+exp(1)) 4032524061708081 a007 Real Root Of 147*x^4+590*x^3-43*x^2-119*x+37 4032524064105437 a001 305/51841*1364^(4/15) 4032524066885769 a007 Real Root Of 124*x^4+545*x^3+190*x^2+30*x-20 4032524072692253 m001 PisotVijayaraghavan*ln(Khintchine)*GAMMA(7/24) 4032524078670766 a001 6765/1149851*843^(2/7) 4032524079055267 a001 987/439204*843^(3/7) 4032524088451542 m001 Psi(1,1/3)*(FransenRobinson+KhinchinLevy) 4032524093719706 a001 17711/3010349*843^(2/7) 4032524095915317 a001 11592/1970299*843^(2/7) 4032524096235652 a001 121393/20633239*843^(2/7) 4032524096282388 a001 317811/54018521*843^(2/7) 4032524096289207 a001 208010/35355581*843^(2/7) 4032524096290202 a001 2178309/370248451*843^(2/7) 4032524096290347 a001 5702887/969323029*843^(2/7) 4032524096290368 a001 196452/33391061*843^(2/7) 4032524096290371 a001 39088169/6643838879*843^(2/7) 4032524096290372 a001 102334155/17393796001*843^(2/7) 4032524096290372 a001 66978574/11384387281*843^(2/7) 4032524096290372 a001 701408733/119218851371*843^(2/7) 4032524096290372 a001 1836311903/312119004989*843^(2/7) 4032524096290372 a001 1201881744/204284540899*843^(2/7) 4032524096290372 a001 12586269025/2139295485799*843^(2/7) 4032524096290372 a001 32951280099/5600748293801*843^(2/7) 4032524096290372 a001 1135099622/192933544679*843^(2/7) 4032524096290372 a001 139583862445/23725150497407*843^(2/7) 4032524096290372 a001 53316291173/9062201101803*843^(2/7) 4032524096290372 a001 10182505537/1730726404001*843^(2/7) 4032524096290372 a001 7778742049/1322157322203*843^(2/7) 4032524096290372 a001 2971215073/505019158607*843^(2/7) 4032524096290372 a001 567451585/96450076809*843^(2/7) 4032524096290372 a001 433494437/73681302247*843^(2/7) 4032524096290372 a001 165580141/28143753123*843^(2/7) 4032524096290372 a001 31622993/5374978561*843^(2/7) 4032524096290373 a001 24157817/4106118243*843^(2/7) 4032524096290381 a001 9227465/1568397607*843^(2/7) 4032524096290437 a001 1762289/299537289*843^(2/7) 4032524096290817 a001 1346269/228826127*843^(2/7) 4032524096293421 a001 514229/87403803*843^(2/7) 4032524096311273 a001 98209/16692641*843^(2/7) 4032524096433630 a001 75025/12752043*843^(2/7) 4032524097272279 a001 28657/4870847*843^(2/7) 4032524103020462 a001 5473/930249*843^(2/7) 4032524111106140 m001 Pi-Psi(2,1/3)/Si(Pi)*Zeta(1/2) 4032524114808427 l006 ln(2819/2935) 4032524115520747 p003 LerchPhi(1/100,3,695/238) 4032524117230761 m001 (Shi(1)-gamma)/(PlouffeB+TravellingSalesman) 4032524118324106 m005 (1/2*2^(1/2)-3/7)/(1/11*Zeta(3)-4/5) 4032524118658697 l006 ln(4826/7223) 4032524129416075 r008 a(0)=4,K{-n^6,-77-69*n^3+73*n^2+42*n} 4032524133423910 r009 Im(z^3+c),c=-1/3+23/57*I,n=13 4032524135276340 l006 ln(129/7276) 4032524135617196 r002 58th iterates of z^2 + 4032524142419099 a001 4181/710647*843^(2/7) 4032524148632400 r008 a(0)=4,K{-n^6,-52+15*n} 4032524151583319 a001 3*3^(7/26) 4032524167509679 h001 (1/5*exp(2)+2/9)/(5/11*exp(2)+6/7) 4032524200564287 r009 Re(z^3+c),c=-33/98+33/34*I,n=3 4032524209958900 a001 610/64079*1364^(1/5) 4032524213129621 r008 a(0)=4,K{-n^6,-57-51*n^3+29*n^2+48*n} 4032524233643968 m001 (BesselJ(0,1)+Magata)/MertensB2 4032524253434102 r005 Re(z^2+c),c=-9/17+8/19*I,n=60 4032524257575825 r005 Im(z^2+c),c=11/86+18/31*I,n=49 4032524270047407 a003 cos(Pi*16/55)-cos(Pi*27/88) 4032524283995016 r008 a(0)=4,K{-n^6,19-62*n+61*n^2-49*n^3} 4032524287071012 m001 (GAMMA(19/24)+CopelandErdos)/(2^(1/3)-ln(5)) 4032524289714207 p004 log(36341/24281) 4032524291823476 a007 Real Root Of -814*x^4-33*x^3+774*x^2+746*x-403 4032524326239882 a004 Fibonacci(15)*Lucas(17)/(1/2+sqrt(5)/2)^37 4032524332146172 l006 ln(6485/9706) 4032524337230756 r002 16th iterates of z^2 + 4032524337230756 r002 16th iterates of z^2 + 4032524340140800 m002 -5/4+Pi^4+Pi^5+ProductLog[Pi] 4032524344841393 a001 305/16692641*3571^(16/17) 4032524350901984 a001 610/39603*1364^(2/15) 4032524351562813 r005 Re(z^2+c),c=-11/90+47/60*I,n=9 4032524362011542 r005 Re(z^2+c),c=-35/58+4/17*I,n=20 4032524363442922 a001 610/20633239*3571^(15/17) 4032524375331617 p003 LerchPhi(1/6,1,405/143) 4032524378926395 m001 (GAMMA(2/3)-Artin)/(CareFree-Riemann3rdZero) 4032524380811806 a001 2584/710647*843^(5/14) 4032524381904969 r008 a(0)=4,K{-n^6,11+39*n^3-38*n^2-42*n} 4032524382044403 a001 610/12752043*3571^(14/17) 4032524385038605 r002 57th iterates of z^2 + 4032524391766026 r008 a(0)=4,K{-n^6,25-32*n^3+13*n^2-37*n} 4032524391795323 r008 a(0)=4,K{-n^6,-28*n^3-11*n^2+7*n+1} 4032524400646008 a001 305/3940598*3571^(13/17) 4032524404116691 a005 (1/cos(24/205*Pi))^253 4032524412461372 a001 1597/271443*843^(2/7) 4032524417293882 r008 a(0)=4,K{-n^6,29-29*n^3+6*n^2-37*n} 4032524419247289 a001 610/4870847*3571^(12/17) 4032524422100062 r008 a(0)=4,K{-n^6,21-27*n^3-4*n^2-21*n} 4032524429398141 r005 Im(z^2+c),c=-5/42+14/23*I,n=63 4032524433919950 a007 Real Root Of -190*x^4-11*x^3+33*x^2+916*x-369 4032524435268131 m001 GAMMA(3/4)+Pi^(1/2)+MertensB2 4032524435511279 m001 (Kolakoski+Sarnak)/(5^(1/2)+GAMMA(7/12)) 4032524437849420 a001 610/3010349*3571^(11/17) 4032524456449326 a001 305/930249*3571^(10/17) 4032524462686912 r009 Im(z^3+c),c=-25/48+5/19*I,n=47 4032524475055057 a001 610/1149851*3571^(9/17) 4032524475074526 m001 (3^(1/3)+Champernowne)/(Magata+PlouffeB) 4032524483730640 r008 a(0)=4,K{-n^6,-9+50*n-58*n^2-14*n^3} 4032524483983461 a001 55/15126*843^(5/14) 4032524484343287 a001 141/101521*843^(1/2) 4032524486114019 r005 Im(z^2+c),c=-1/30+29/53*I,n=29 4032524493645538 a001 610/710647*3571^(8/17) 4032524497279197 m001 (GAMMA(5/12)+1)/(-3^(1/3)+2/3) 4032524499036002 a001 17711/4870847*843^(5/14) 4032524501232139 a001 15456/4250681*843^(5/14) 4032524501552551 a001 121393/33385282*843^(5/14) 4032524501599298 a001 105937/29134601*843^(5/14) 4032524501606118 a001 832040/228826127*843^(5/14) 4032524501607113 a001 726103/199691526*843^(5/14) 4032524501607259 a001 5702887/1568397607*843^(5/14) 4032524501607280 a001 4976784/1368706081*843^(5/14) 4032524501607283 a001 39088169/10749957122*843^(5/14) 4032524501607283 a001 831985/228811001*843^(5/14) 4032524501607283 a001 267914296/73681302247*843^(5/14) 4032524501607283 a001 233802911/64300051206*843^(5/14) 4032524501607283 a001 1836311903/505019158607*843^(5/14) 4032524501607283 a001 1602508992/440719107401*843^(5/14) 4032524501607283 a001 12586269025/3461452808002*843^(5/14) 4032524501607283 a001 10983760033/3020733700601*843^(5/14) 4032524501607283 a001 86267571272/23725150497407*843^(5/14) 4032524501607283 a001 53316291173/14662949395604*843^(5/14) 4032524501607283 a001 20365011074/5600748293801*843^(5/14) 4032524501607283 a001 7778742049/2139295485799*843^(5/14) 4032524501607283 a001 2971215073/817138163596*843^(5/14) 4032524501607283 a001 1134903170/312119004989*843^(5/14) 4032524501607283 a001 433494437/119218851371*843^(5/14) 4032524501607283 a001 165580141/45537549124*843^(5/14) 4032524501607284 a001 63245986/17393796001*843^(5/14) 4032524501607285 a001 24157817/6643838879*843^(5/14) 4032524501607293 a001 9227465/2537720636*843^(5/14) 4032524501607348 a001 3524578/969323029*843^(5/14) 4032524501607728 a001 1346269/370248451*843^(5/14) 4032524501610334 a001 514229/141422324*843^(5/14) 4032524501628190 a001 196418/54018521*843^(5/14) 4032524501750576 a001 75025/20633239*843^(5/14) 4032524502589425 a001 28657/7881196*843^(5/14) 4032524504700628 a001 305/12238*1364^(1/15) 4032524505082510 m001 FeigenbaumD/ln(Bloch)*GAMMA(5/6) 4032524508338985 a001 10946/3010349*843^(5/14) 4032524511720614 r008 a(0)=4,K{-n^6,29-13*n-30*n^2-17*n^3} 4032524512275943 a001 305/219602*3571^(7/17) 4032524512820233 a007 Real Root Of -367*x^4+670*x^3+369*x^2+297*x-214 4032524515870057 r005 Re(z^2+c),c=-37/50+4/19*I,n=6 4032524521678157 a001 1576240/39088169 4032524521678161 a004 Fibonacci(15)/Lucas(18)/(1/2+sqrt(5)/2)^2 4032524521679322 a004 Fibonacci(18)/Lucas(15)/(1/2+sqrt(5)/2)^8 4032524524378061 m001 (Niven-Tribonacci)/(Zeta(5)-CareFree) 4032524526588718 r005 Im(z^2+c),c=1/16+23/48*I,n=25 4032524530801826 a001 610/271443*3571^(6/17) 4032524541370976 r008 a(0)=4,K{-n^6,37-15*n^3-32*n^2-21*n} 4032524543953702 m001 1/TwinPrimes/ln(ArtinRank2)^2*sin(Pi/5)^2 4032524545629323 m001 FeigenbaumB^2*exp(LaplaceLimit)*sqrt(3)^2 4032524547747050 a001 4181/1149851*843^(5/14) 4032524547935229 r005 Im(z^2+c),c=-19/56+1/16*I,n=10 4032524549601354 a001 610/167761*3571^(5/17) 4032524555345545 a001 121393/123*521^(9/40) 4032524558798345 m001 (-exp(-1/2*Pi)+Salem)/(Si(Pi)-ln(gamma)) 4032524565193559 a007 Real Root Of 335*x^4-590*x^3+967*x^2-494*x-404 4032524567684467 a001 305/51841*3571^(4/17) 4032524568866135 r009 Re(z^3+c),c=-23/122+49/55*I,n=36 4032524572724677 r008 a(0)=4,K{-n^6,57-15*n^3-22*n^2-51*n} 4032524579377319 r009 Im(z^3+c),c=-47/114+17/47*I,n=15 4032524587643181 a001 610/64079*3571^(3/17) 4032524589682777 r005 Re(z^2+c),c=-15/16+27/119*I,n=28 4032524593325142 r008 a(0)=4,K{-n^6,-54+12*n^3-14*n^2+27*n} 4032524596328935 a004 Fibonacci(15)*Lucas(19)/(1/2+sqrt(5)/2)^39 4032524598757183 a001 610/87403803*9349^(18/19) 4032524601185433 a001 610/54018521*9349^(17/19) 4032524601826998 r002 60th iterates of z^2 + 4032524602691509 a001 610/39603*3571^(2/17) 4032524603613677 a001 305/16692641*9349^(16/19) 4032524605124020 r005 Re(z^2+c),c=-43/90+8/25*I,n=8 4032524606041938 a001 610/20633239*9349^(15/19) 4032524608470152 a001 610/12752043*9349^(14/19) 4032524610898490 a001 305/3940598*9349^(13/19) 4032524613326504 a001 610/4870847*9349^(12/19) 4032524615755367 a001 610/3010349*9349^(11/19) 4032524618182005 a001 305/930249*9349^(10/19) 4032524620614469 a001 610/1149851*9349^(9/19) 4032524623031682 a001 610/710647*9349^(8/19) 4032524624842995 a001 610/15127 4032524624844160 a004 Fibonacci(20)/Lucas(15)/(1/2+sqrt(5)/2)^10 4032524625488820 a001 305/219602*9349^(7/19) 4032524627841434 a001 610/271443*9349^(6/19) 4032524630467695 a001 610/167761*9349^(5/19) 4032524630595393 a001 305/12238*3571^(1/17) 4032524632377540 a001 305/51841*9349^(4/19) 4032524634703683 m001 (Psi(2,1/3)+gamma(2))/(Totient+Trott2nd) 4032524635038046 a001 610/39603*9349^(2/19) 4032524635734397 a004 Fibonacci(15)*Lucas(21)/(1/2+sqrt(5)/2)^41 4032524636054933 a001 610/228826127*24476^(20/21) 4032524636162986 a001 610/64079*9349^(3/19) 4032524636375469 a001 305/70711162*24476^(19/21) 4032524636696005 a001 610/87403803*24476^(6/7) 4032524637016543 a001 610/54018521*24476^(17/21) 4032524637337074 a001 305/16692641*24476^(16/21) 4032524637657623 a001 610/20633239*24476^(5/7) 4032524637978125 a001 610/12752043*24476^(2/3) 4032524638298750 a001 305/3940598*24476^(13/21) 4032524638619051 a001 610/4870847*24476^(4/7) 4032524638940202 a001 610/3010349*24476^(11/21) 4032524639253470 a001 610/39603*24476^(2/21) 4032524639259128 a001 305/930249*24476^(10/21) 4032524639583879 a001 610/1149851*24476^(3/7) 4032524639809144 a001 610/39603*64079^(2/23) 4032524639893381 a001 610/710647*24476^(8/21) 4032524639894542 a001 610/39603*(1/2+1/2*5^(1/2))^2 4032524639894542 a001 610/39603*10749957122^(1/24) 4032524639894542 a001 610/39603*4106118243^(1/23) 4032524639894542 a001 610/39603*1568397607^(1/22) 4032524639894542 a001 610/39603*599074578^(1/21) 4032524639894542 a001 610/39603*228826127^(1/20) 4032524639894542 a001 5401855/133957148 4032524639894543 a001 610/39603*87403803^(1/19) 4032524639894543 a001 610/39603*33385282^(1/18) 4032524639894544 a001 610/39603*12752043^(1/17) 4032524639894553 a001 610/39603*4870847^(1/16) 4032524639894620 a001 610/39603*1860498^(1/15) 4032524639895113 a001 610/39603*710647^(1/14) 4032524639895707 a004 Fibonacci(22)/Lucas(15)/(1/2+sqrt(5)/2)^12 4032524639898752 a001 610/39603*271443^(1/13) 4032524639925802 a001 610/39603*103682^(1/12) 4032524640128280 a001 610/39603*39603^(1/11) 4032524640242806 a001 305/219602*24476^(1/3) 4032524640487708 a001 610/271443*24476^(2/7) 4032524640808390 a001 305/51841*24476^(4/21) 4032524641006257 a001 610/167761*24476^(5/21) 4032524641483577 a004 Fibonacci(15)*Lucas(23)/(1/2+sqrt(5)/2)^43 4032524641526276 a001 305/299537289*64079^(22/23) 4032524641568975 a001 610/370248451*64079^(21/23) 4032524641611674 a001 610/228826127*64079^(20/23) 4032524641654373 a001 305/70711162*64079^(19/23) 4032524641656808 a001 610/39603*15127^(1/10) 4032524641697071 a001 610/87403803*64079^(18/23) 4032524641739772 a001 610/54018521*64079^(17/23) 4032524641782466 a001 305/16692641*64079^(16/23) 4032524641825178 a001 610/20633239*64079^(15/23) 4032524641867843 a001 610/12752043*64079^(14/23) 4032524641910632 a001 305/3940598*64079^(13/23) 4032524641919738 a001 305/51841*64079^(4/23) 4032524641953096 a001 610/4870847*64079^(12/23) 4032524641996410 a001 610/3010349*64079^(11/23) 4032524642037499 a001 305/930249*64079^(10/23) 4032524642084413 a001 610/1149851*64079^(9/23) 4032524642090534 a001 305/51841*(1/2+1/2*5^(1/2))^4 4032524642090534 a001 305/51841*23725150497407^(1/16) 4032524642090534 a001 305/51841*73681302247^(1/13) 4032524642090534 a001 305/51841*10749957122^(1/12) 4032524642090534 a001 305/51841*4106118243^(2/23) 4032524642090534 a001 305/51841*1568397607^(1/11) 4032524642090534 a001 305/51841*599074578^(2/21) 4032524642090534 a001 9428160/233802911 4032524642090534 a001 305/51841*228826127^(1/10) 4032524642090534 a001 305/51841*87403803^(2/19) 4032524642090534 a001 305/51841*33385282^(1/9) 4032524642090537 a001 305/51841*12752043^(2/17) 4032524642090555 a001 305/51841*4870847^(1/8) 4032524642090689 a001 305/51841*1860498^(2/15) 4032524642091674 a001 305/51841*710647^(1/7) 4032524642091699 a004 Fibonacci(24)/Lucas(15)/(1/2+sqrt(5)/2)^14 4032524642098953 a001 305/51841*271443^(2/13) 4032524642116077 a001 610/710647*64079^(8/23) 4032524642153054 a001 305/51841*103682^(1/6) 4032524642154730 a001 610/271443*64079^(6/23) 4032524642187665 a001 305/219602*64079^(7/23) 4032524642322371 a004 Fibonacci(15)*Lucas(25)/(1/2+sqrt(5)/2)^45 4032524642351027 a001 610/228826127*167761^(4/5) 4032524642379693 a001 610/20633239*167761^(3/5) 4032524642395442 a001 610/167761*64079^(5/23) 4032524642406279 a001 610/271443*439204^(2/9) 4032524642407175 a001 305/930249*167761^(2/5) 4032524642410913 a001 610/271443*7881196^(2/11) 4032524642410924 a001 610/271443*141422324^(2/13) 4032524642410924 a001 610/271443*2537720636^(2/15) 4032524642410924 a001 610/271443*45537549124^(2/17) 4032524642410924 a001 610/271443*14662949395604^(2/21) 4032524642410924 a001 610/271443*(1/2+1/2*5^(1/2))^6 4032524642410924 a001 610/271443*10749957122^(1/8) 4032524642410924 a001 610/271443*4106118243^(3/23) 4032524642410924 a001 610/271443*1568397607^(3/22) 4032524642410924 a001 74049730/1836311903 4032524642410924 a001 610/271443*599074578^(1/7) 4032524642410924 a001 610/271443*228826127^(3/20) 4032524642410924 a001 610/271443*87403803^(3/19) 4032524642410925 a001 610/271443*33385282^(1/6) 4032524642410929 a001 610/271443*12752043^(3/17) 4032524642410956 a001 610/271443*4870847^(3/16) 4032524642411157 a001 610/271443*1860498^(1/5) 4032524642412089 a004 Fibonacci(26)/Lucas(15)/(1/2+sqrt(5)/2)^16 4032524642412635 a001 610/271443*710647^(3/14) 4032524642423554 a001 610/271443*271443^(3/13) 4032524642444749 a004 Fibonacci(15)*Lucas(27)/(1/2+sqrt(5)/2)^47 4032524642447072 a001 610/1568397607*439204^(8/9) 4032524642449394 a001 610/370248451*439204^(7/9) 4032524642451717 a001 610/87403803*439204^(2/3) 4032524642454049 a001 610/20633239*439204^(5/9) 4032524642456193 a001 610/4870847*439204^(4/9) 4032524642457669 a001 610/710647*(1/2+1/2*5^(1/2))^8 4032524642457669 a001 610/710647*23725150497407^(1/8) 4032524642457669 a001 610/710647*73681302247^(2/13) 4032524642457669 a001 610/710647*10749957122^(1/6) 4032524642457669 a001 32310785/801254496 4032524642457669 a001 610/710647*4106118243^(4/23) 4032524642457669 a001 610/710647*1568397607^(2/11) 4032524642457669 a001 610/710647*599074578^(4/21) 4032524642457669 a001 610/710647*228826127^(1/5) 4032524642457669 a001 610/710647*87403803^(4/19) 4032524642457670 a001 610/710647*33385282^(2/9) 4032524642457675 a001 610/710647*12752043^(4/17) 4032524642457711 a001 610/710647*4870847^(1/4) 4032524642457979 a001 610/710647*1860498^(4/15) 4032524642458834 a004 Fibonacci(28)/Lucas(15)/(1/2+sqrt(5)/2)^18 4032524642459950 a001 610/710647*710647^(2/7) 4032524642461735 a001 610/1149851*439204^(1/3) 4032524642462604 a004 Fibonacci(15)*Lucas(29)/(1/2+sqrt(5)/2)^49 4032524642464486 a001 305/930249*20633239^(2/7) 4032524642464489 a001 305/930249*2537720636^(2/9) 4032524642464489 a001 305/930249*312119004989^(2/11) 4032524642464489 a001 305/930249*(1/2+1/2*5^(1/2))^10 4032524642464489 a001 305/930249*28143753123^(1/5) 4032524642464489 a001 1845616/45768251 4032524642464489 a001 305/930249*10749957122^(5/24) 4032524642464489 a001 305/930249*4106118243^(5/23) 4032524642464489 a001 305/930249*1568397607^(5/22) 4032524642464489 a001 305/930249*599074578^(5/21) 4032524642464489 a001 305/930249*228826127^(1/4) 4032524642464489 a001 305/930249*87403803^(5/19) 4032524642464490 a001 305/930249*33385282^(5/18) 4032524642464496 a001 305/930249*12752043^(5/17) 4032524642464542 a001 305/930249*4870847^(5/16) 4032524642464877 a001 305/930249*1860498^(1/3) 4032524642465209 a004 Fibonacci(15)*Lucas(31)/(1/2+sqrt(5)/2)^51 4032524642465460 a001 610/4870847*7881196^(4/11) 4032524642465484 a001 610/4870847*141422324^(4/13) 4032524642465484 a001 610/4870847*2537720636^(4/15) 4032524642465484 a001 610/4870847*45537549124^(4/17) 4032524642465484 a001 610/4870847*817138163596^(4/19) 4032524642465484 a001 610/4870847*14662949395604^(4/21) 4032524642465484 a001 610/4870847*(1/2+1/2*5^(1/2))^12 4032524642465484 a001 610/4870847*192900153618^(2/9) 4032524642465484 a001 610/4870847*73681302247^(3/13) 4032524642465484 a001 442922830/10983760033 4032524642465484 a001 610/4870847*10749957122^(1/4) 4032524642465484 a001 610/4870847*4106118243^(6/23) 4032524642465484 a001 610/4870847*1568397607^(3/11) 4032524642465484 a001 610/4870847*599074578^(2/7) 4032524642465484 a001 610/4870847*228826127^(3/10) 4032524642465484 a001 610/4870847*87403803^(6/19) 4032524642465485 a001 610/4870847*33385282^(1/3) 4032524642465492 a001 610/4870847*12752043^(6/17) 4032524642465547 a001 610/4870847*4870847^(3/8) 4032524642465589 a004 Fibonacci(15)*Lucas(33)/(1/2+sqrt(5)/2)^53 4032524642465595 a001 610/28143753123*7881196^(10/11) 4032524642465601 a001 610/6643838879*7881196^(9/11) 4032524642465606 a001 610/1568397607*7881196^(8/11) 4032524642465610 a001 305/299537289*7881196^(2/3) 4032524642465612 a001 610/370248451*7881196^(7/11) 4032524642465618 a001 610/87403803*7881196^(6/11) 4032524642465625 a001 610/12752043*20633239^(2/5) 4032524642465629 a001 610/12752043*17393796001^(2/7) 4032524642465629 a001 610/12752043*14662949395604^(2/9) 4032524642465629 a001 610/12752043*(1/2+1/2*5^(1/2))^14 4032524642465629 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^14/Lucas(34) 4032524642465629 a001 610/12752043*505019158607^(1/4) 4032524642465629 a001 1739380535/43133785636 4032524642465629 a001 610/12752043*10749957122^(7/24) 4032524642465629 a001 610/12752043*4106118243^(7/23) 4032524642465629 a001 610/12752043*1568397607^(7/22) 4032524642465629 a001 610/12752043*599074578^(1/3) 4032524642465629 a001 610/12752043*228826127^(7/20) 4032524642465629 a001 610/12752043*87403803^(7/19) 4032524642465630 a001 610/12752043*33385282^(7/18) 4032524642465634 a001 610/20633239*7881196^(5/11) 4032524642465639 a001 610/12752043*12752043^(7/17) 4032524642465644 a004 Fibonacci(15)*Lucas(35)/(1/2+sqrt(5)/2)^55 4032524642465646 a001 610/28143753123*20633239^(6/7) 4032524642465646 a001 305/5374978561*20633239^(4/5) 4032524642465647 a001 305/1268860318*20633239^(5/7) 4032524642465648 a001 610/370248451*20633239^(3/5) 4032524642465648 a001 610/228826127*20633239^(4/7) 4032524642465650 a001 305/16692641*(1/2+1/2*5^(1/2))^16 4032524642465650 a001 3035838240/75283811239 4032524642465650 a001 305/16692641*73681302247^(4/13) 4032524642465650 a001 305/16692641*10749957122^(1/3) 4032524642465650 a001 305/16692641*4106118243^(8/23) 4032524642465650 a001 305/16692641*1568397607^(4/11) 4032524642465650 a001 305/16692641*599074578^(8/21) 4032524642465650 a001 305/16692641*228826127^(2/5) 4032524642465650 a001 305/16692641*87403803^(8/19) 4032524642465652 a001 305/16692641*33385282^(4/9) 4032524642465652 a004 Fibonacci(15)*Lucas(37)/(1/2+sqrt(5)/2)^57 4032524642465653 a001 610/87403803*141422324^(6/13) 4032524642465653 a001 610/87403803*2537720636^(2/5) 4032524642465653 a001 610/87403803*45537549124^(6/17) 4032524642465653 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^18/Lucas(38) 4032524642465653 a001 23843783090/591286729879 4032524642465653 a001 610/87403803*192900153618^(1/3) 4032524642465653 a001 610/87403803*10749957122^(3/8) 4032524642465653 a001 610/87403803*4106118243^(9/23) 4032524642465653 a001 610/87403803*1568397607^(9/22) 4032524642465653 a001 610/87403803*599074578^(3/7) 4032524642465653 a001 610/87403803*228826127^(9/20) 4032524642465653 a001 610/87403803*87403803^(9/19) 4032524642465653 a004 Fibonacci(15)*Lucas(39)/(1/2+sqrt(5)/2)^59 4032524642465653 a001 610/505019158607*141422324^(12/13) 4032524642465654 a001 610/119218851371*141422324^(11/13) 4032524642465654 a001 610/28143753123*141422324^(10/13) 4032524642465654 a001 610/6643838879*141422324^(9/13) 4032524642465654 a001 610/4106118243*141422324^(2/3) 4032524642465654 a001 610/1568397607*141422324^(8/13) 4032524642465654 a001 610/370248451*141422324^(7/13) 4032524642465654 a001 610/228826127*2537720636^(4/9) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^20/Lucas(40) 4032524642465654 a001 610/228826127*23725150497407^(5/16) 4032524642465654 a001 75635/1875624 4032524642465654 a001 610/228826127*505019158607^(5/14) 4032524642465654 a001 610/228826127*73681302247^(5/13) 4032524642465654 a001 610/228826127*28143753123^(2/5) 4032524642465654 a001 610/228826127*10749957122^(5/12) 4032524642465654 a001 610/228826127*4106118243^(10/23) 4032524642465654 a001 610/228826127*1568397607^(5/11) 4032524642465654 a001 610/228826127*599074578^(10/21) 4032524642465654 a001 610/228826127*228826127^(1/2) 4032524642465654 a004 Fibonacci(15)*Lucas(41)/(1/2+sqrt(5)/2)^61 4032524642465654 a001 305/299537289*312119004989^(2/5) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^22/Lucas(42) 4032524642465654 a001 163427720560/4052739537881 4032524642465654 a001 305/299537289*10749957122^(11/24) 4032524642465654 a001 305/299537289*4106118243^(11/23) 4032524642465654 a001 305/299537289*1568397607^(1/2) 4032524642465654 a001 305/299537289*599074578^(11/21) 4032524642465654 a004 Fibonacci(15)*Lucas(43)/(1/2+sqrt(5)/2)^63 4032524642465654 a001 610/1568397607*2537720636^(8/15) 4032524642465654 a001 610/1568397607*45537549124^(8/17) 4032524642465654 a001 610/1568397607*14662949395604^(8/21) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^24/Lucas(44) 4032524642465654 a001 142619775710/3536736619241 4032524642465654 a001 610/1568397607*192900153618^(4/9) 4032524642465654 a001 610/1568397607*73681302247^(6/13) 4032524642465654 a001 610/1568397607*10749957122^(1/2) 4032524642465654 a001 610/1568397607*4106118243^(12/23) 4032524642465654 a001 610/1568397607*1568397607^(6/11) 4032524642465654 a004 Fibonacci(15)*Lucas(45)/(1/2+sqrt(5)/2)^65 4032524642465654 a001 610/9062201101803*2537720636^(14/15) 4032524642465654 a001 305/1730726404001*2537720636^(8/9) 4032524642465654 a001 610/2139295485799*2537720636^(13/15) 4032524642465654 a001 610/505019158607*2537720636^(4/5) 4032524642465654 a001 610/312119004989*2537720636^(7/9) 4032524642465654 a001 610/119218851371*2537720636^(11/15) 4032524642465654 a001 610/28143753123*2537720636^(2/3) 4032524642465654 a001 610/6643838879*2537720636^(3/5) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^26/Lucas(46) 4032524642465654 a001 610/4106118243*73681302247^(1/2) 4032524642465654 a001 610/4106118243*10749957122^(13/24) 4032524642465654 a001 610/4106118243*4106118243^(13/23) 4032524642465654 a004 Fibonacci(15)*Lucas(47)/(1/2+sqrt(5)/2)^67 4032524642465654 a001 305/5374978561*17393796001^(4/7) 4032524642465654 a001 305/5374978561*14662949395604^(4/9) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^28/Lucas(48) 4032524642465654 a001 305/5374978561*505019158607^(1/2) 4032524642465654 a001 305/5374978561*73681302247^(7/13) 4032524642465654 a001 305/5374978561*10749957122^(7/12) 4032524642465654 a004 Fibonacci(15)*Lucas(49)/(1/2+sqrt(5)/2)^69 4032524642465654 a001 610/9062201101803*17393796001^(6/7) 4032524642465654 a001 610/312119004989*17393796001^(5/7) 4032524642465654 a001 610/28143753123*45537549124^(10/17) 4032524642465654 a001 610/28143753123*312119004989^(6/11) 4032524642465654 a001 610/28143753123*14662949395604^(10/21) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^30/Lucas(50) 4032524642465654 a001 610/28143753123*192900153618^(5/9) 4032524642465654 a001 610/28143753123*28143753123^(3/5) 4032524642465654 a004 Fibonacci(15)*Lucas(51)/(1/2+sqrt(5)/2)^71 4032524642465654 a001 610/9062201101803*45537549124^(14/17) 4032524642465654 a001 610/2139295485799*45537549124^(13/17) 4032524642465654 a001 305/96450076809*45537549124^(2/3) 4032524642465654 a001 610/505019158607*45537549124^(12/17) 4032524642465654 a001 610/119218851371*45537549124^(11/17) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^32/Lucas(52) 4032524642465654 a001 610/73681302247*23725150497407^(1/2) 4032524642465654 a001 610/73681302247*73681302247^(8/13) 4032524642465654 a004 Fibonacci(15)*Lucas(53)/(1/2+sqrt(5)/2)^73 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^34/Lucas(54) 4032524642465654 a004 Fibonacci(15)*Lucas(55)/(1/2+sqrt(5)/2)^75 4032524642465654 a001 305/1730726404001*312119004989^(8/11) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^36/Lucas(56) 4032524642465654 a001 610/1322157322203*817138163596^(2/3) 4032524642465654 a004 Fibonacci(15)*Lucas(57)/(1/2+sqrt(5)/2)^77 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^38/Lucas(58) 4032524642465654 a004 Fibonacci(15)*Lucas(59)/(1/2+sqrt(5)/2)^79 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^40/Lucas(60) 4032524642465654 a001 305/1730726404001*23725150497407^(5/8) 4032524642465654 a004 Fibonacci(15)*Lucas(61)/(1/2+sqrt(5)/2)^81 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^42/Lucas(62) 4032524642465654 a004 Fibonacci(15)*Lucas(63)/(1/2+sqrt(5)/2)^83 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^44/Lucas(64) 4032524642465654 a004 Fibonacci(15)*Lucas(65)/(1/2+sqrt(5)/2)^85 4032524642465654 a001 610/23725150497407*23725150497407^(11/16) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^46/Lucas(66) 4032524642465654 a004 Fibonacci(15)*Lucas(67)/(1/2+sqrt(5)/2)^87 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^48/Lucas(68) 4032524642465654 a004 Fibonacci(15)*Lucas(69)/(1/2+sqrt(5)/2)^89 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^50/Lucas(70) 4032524642465654 a004 Fibonacci(15)*Lucas(71)/(1/2+sqrt(5)/2)^91 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^52/Lucas(72) 4032524642465654 a004 Fibonacci(15)*Lucas(73)/(1/2+sqrt(5)/2)^93 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^54/Lucas(74) 4032524642465654 a004 Fibonacci(15)*Lucas(75)/(1/2+sqrt(5)/2)^95 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^56/Lucas(76) 4032524642465654 a004 Fibonacci(15)*Lucas(77)/(1/2+sqrt(5)/2)^97 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^58/Lucas(78) 4032524642465654 a004 Fibonacci(15)*Lucas(79)/(1/2+sqrt(5)/2)^99 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^60/Lucas(80) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^62/Lucas(82) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^64/Lucas(84) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^66/Lucas(86) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^68/Lucas(88) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^70/Lucas(90) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^72/Lucas(92) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^74/Lucas(94) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^76/Lucas(96) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^78/Lucas(98) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^79/Lucas(99) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^80/Lucas(100) 4032524642465654 a004 Fibonacci(15)*Lucas(1)/(1/2+sqrt(5)/2)^20 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^77/Lucas(97) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^75/Lucas(95) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^73/Lucas(93) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^71/Lucas(91) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^69/Lucas(89) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^67/Lucas(87) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^65/Lucas(85) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^63/Lucas(83) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^61/Lucas(81) 4032524642465654 a004 Fibonacci(15)*Lucas(80)/(1/2+sqrt(5)/2)^100 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^59/Lucas(79) 4032524642465654 a004 Fibonacci(15)*Lucas(78)/(1/2+sqrt(5)/2)^98 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^57/Lucas(77) 4032524642465654 a004 Fibonacci(15)*Lucas(76)/(1/2+sqrt(5)/2)^96 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^55/Lucas(75) 4032524642465654 a004 Fibonacci(15)*Lucas(74)/(1/2+sqrt(5)/2)^94 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^53/Lucas(73) 4032524642465654 a004 Fibonacci(15)*Lucas(72)/(1/2+sqrt(5)/2)^92 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^51/Lucas(71) 4032524642465654 a004 Fibonacci(15)*Lucas(70)/(1/2+sqrt(5)/2)^90 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^49/Lucas(69) 4032524642465654 a004 Fibonacci(15)*Lucas(68)/(1/2+sqrt(5)/2)^88 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^47/Lucas(67) 4032524642465654 a004 Fibonacci(15)*Lucas(66)/(1/2+sqrt(5)/2)^86 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^45/Lucas(65) 4032524642465654 a004 Fibonacci(15)*Lucas(64)/(1/2+sqrt(5)/2)^84 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^43/Lucas(63) 4032524642465654 a004 Fibonacci(15)*Lucas(62)/(1/2+sqrt(5)/2)^82 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^41/Lucas(61) 4032524642465654 a004 Fibonacci(15)*Lucas(60)/(1/2+sqrt(5)/2)^80 4032524642465654 a001 610/2139295485799*14662949395604^(13/21) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^39/Lucas(59) 4032524642465654 a004 Fibonacci(15)*Lucas(58)/(1/2+sqrt(5)/2)^78 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^37/Lucas(57) 4032524642465654 a004 Fibonacci(15)*Lucas(56)/(1/2+sqrt(5)/2)^76 4032524642465654 a001 610/312119004989*14662949395604^(5/9) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^35/Lucas(55) 4032524642465654 a001 610/312119004989*505019158607^(5/8) 4032524642465654 a001 610/505019158607*192900153618^(2/3) 4032524642465654 a001 610/2139295485799*192900153618^(13/18) 4032524642465654 a001 610/9062201101803*192900153618^(7/9) 4032524642465654 a004 Fibonacci(15)*Lucas(54)/(1/2+sqrt(5)/2)^74 4032524642465654 a001 610/119218851371*312119004989^(3/5) 4032524642465654 a001 610/119218851371*14662949395604^(11/21) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^33/Lucas(53) 4032524642465654 a001 610/119218851371*192900153618^(11/18) 4032524642465654 a001 610/505019158607*73681302247^(9/13) 4032524642465654 a001 305/1730726404001*73681302247^(10/13) 4032524642465654 a001 610/23725150497407*73681302247^(11/13) 4032524642465654 a004 Fibonacci(15)*Lucas(52)/(1/2+sqrt(5)/2)^72 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^31/Lucas(51) 4032524642465654 a001 305/22768774562*9062201101803^(1/2) 4032524642465654 a001 610/312119004989*28143753123^(7/10) 4032524642465654 a001 305/1730726404001*28143753123^(4/5) 4032524642465654 a004 Fibonacci(15)*Lucas(50)/(1/2+sqrt(5)/2)^70 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^29/Lucas(49) 4032524642465654 a001 610/17393796001*1322157322203^(1/2) 4032524642465654 a001 610/28143753123*10749957122^(5/8) 4032524642465654 a001 610/73681302247*10749957122^(2/3) 4032524642465654 a001 610/119218851371*10749957122^(11/16) 4032524642465654 a001 305/96450076809*10749957122^(17/24) 4032524642465654 a001 610/505019158607*10749957122^(3/4) 4032524642465654 a001 610/1322157322203*10749957122^(19/24) 4032524642465654 a001 610/2139295485799*10749957122^(13/16) 4032524642465654 a001 305/1730726404001*10749957122^(5/6) 4032524642465654 a001 610/9062201101803*10749957122^(7/8) 4032524642465654 a001 610/23725150497407*10749957122^(11/12) 4032524642465654 a004 Fibonacci(15)*Lucas(48)/(1/2+sqrt(5)/2)^68 4032524642465654 a001 610/6643838879*45537549124^(9/17) 4032524642465654 a001 610/6643838879*817138163596^(9/19) 4032524642465654 a001 610/6643838879*14662949395604^(3/7) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^27/Lucas(47) 4032524642465654 a001 610/6643838879*192900153618^(1/2) 4032524642465654 a001 305/5374978561*4106118243^(14/23) 4032524642465654 a001 610/6643838879*10749957122^(9/16) 4032524642465654 a001 610/28143753123*4106118243^(15/23) 4032524642465654 a001 610/73681302247*4106118243^(16/23) 4032524642465654 a001 305/96450076809*4106118243^(17/23) 4032524642465654 a001 610/505019158607*4106118243^(18/23) 4032524642465654 a001 610/1322157322203*4106118243^(19/23) 4032524642465654 a001 305/1730726404001*4106118243^(20/23) 4032524642465654 a001 610/9062201101803*4106118243^(21/23) 4032524642465654 a001 610/23725150497407*4106118243^(22/23) 4032524642465654 a004 Fibonacci(15)*Lucas(46)/(1/2+sqrt(5)/2)^66 4032524642465654 a001 305/1268860318*2537720636^(5/9) 4032524642465654 a001 305/1268860318*312119004989^(5/11) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^25/Lucas(45) 4032524642465654 a001 305/1268860318*3461452808002^(5/12) 4032524642465654 a001 305/1268860318*28143753123^(1/2) 4032524642465654 a001 610/4106118243*1568397607^(13/22) 4032524642465654 a001 305/5374978561*1568397607^(7/11) 4032524642465654 a001 610/28143753123*1568397607^(15/22) 4032524642465654 a001 610/73681302247*1568397607^(8/11) 4032524642465654 a001 610/119218851371*1568397607^(3/4) 4032524642465654 a001 305/96450076809*1568397607^(17/22) 4032524642465654 a001 610/505019158607*1568397607^(9/11) 4032524642465654 a001 610/1322157322203*1568397607^(19/22) 4032524642465654 a001 305/1730726404001*1568397607^(10/11) 4032524642465654 a001 610/9062201101803*1568397607^(21/22) 4032524642465654 a004 Fibonacci(15)*Lucas(44)/(1/2+sqrt(5)/2)^64 4032524642465654 a001 132215803285/3278735159921 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^23/Lucas(43) 4032524642465654 a001 610/969323029*4106118243^(1/2) 4032524642465654 a001 610/1568397607*599074578^(4/7) 4032524642465654 a001 610/4106118243*599074578^(13/21) 4032524642465654 a001 610/6643838879*599074578^(9/14) 4032524642465654 a001 305/5374978561*599074578^(2/3) 4032524642465654 a001 610/28143753123*599074578^(5/7) 4032524642465654 a001 610/73681302247*599074578^(16/21) 4032524642465654 a001 610/119218851371*599074578^(11/14) 4032524642465654 a001 305/96450076809*599074578^(17/21) 4032524642465654 a001 610/312119004989*599074578^(5/6) 4032524642465654 a001 610/505019158607*599074578^(6/7) 4032524642465654 a001 610/1322157322203*599074578^(19/21) 4032524642465654 a001 610/2139295485799*599074578^(13/14) 4032524642465654 a001 305/1730726404001*599074578^(20/21) 4032524642465654 a004 Fibonacci(15)*Lucas(42)/(1/2+sqrt(5)/2)^62 4032524642465654 a001 610/370248451*2537720636^(7/15) 4032524642465654 a001 610/370248451*17393796001^(3/7) 4032524642465654 a001 610/370248451*45537549124^(7/17) 4032524642465654 a001 101003886010/2504730781961 4032524642465654 a001 610/370248451*14662949395604^(1/3) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^21/Lucas(41) 4032524642465654 a001 610/370248451*192900153618^(7/18) 4032524642465654 a001 610/370248451*10749957122^(7/16) 4032524642465654 a001 305/299537289*228826127^(11/20) 4032524642465654 a001 610/370248451*599074578^(1/2) 4032524642465654 a001 610/1568397607*228826127^(3/5) 4032524642465654 a001 305/1268860318*228826127^(5/8) 4032524642465654 a001 610/4106118243*228826127^(13/20) 4032524642465654 a001 305/5374978561*228826127^(7/10) 4032524642465654 a001 610/28143753123*228826127^(3/4) 4032524642465654 a001 610/73681302247*228826127^(4/5) 4032524642465654 a001 305/96450076809*228826127^(17/20) 4032524642465654 a001 610/312119004989*228826127^(7/8) 4032524642465654 a001 610/505019158607*228826127^(9/10) 4032524642465654 a001 610/1322157322203*228826127^(19/20) 4032524642465654 a004 Fibonacci(15)*Lucas(40)/(1/2+sqrt(5)/2)^60 4032524642465654 a001 610/228826127*87403803^(10/19) 4032524642465654 a001 305/70711162*817138163596^(1/3) 4032524642465654 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^19/Lucas(39) 4032524642465654 a001 305/299537289*87403803^(11/19) 4032524642465654 a001 610/1568397607*87403803^(12/19) 4032524642465654 a001 610/4106118243*87403803^(13/19) 4032524642465654 a001 305/5374978561*87403803^(14/19) 4032524642465654 a001 610/28143753123*87403803^(15/19) 4032524642465654 a001 610/73681302247*87403803^(16/19) 4032524642465654 a001 305/70711162*87403803^(1/2) 4032524642465654 a001 305/96450076809*87403803^(17/19) 4032524642465654 a001 610/505019158607*87403803^(18/19) 4032524642465654 a004 Fibonacci(15)*Lucas(38)/(1/2+sqrt(5)/2)^58 4032524642465655 a001 610/87403803*33385282^(1/2) 4032524642465655 a001 610/54018521*45537549124^(1/3) 4032524642465655 a001 7368134185/182717648081 4032524642465655 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^17/Lucas(37) 4032524642465656 a001 610/228826127*33385282^(5/9) 4032524642465656 a001 610/370248451*33385282^(7/12) 4032524642465656 a001 305/299537289*33385282^(11/18) 4032524642465656 a001 610/1568397607*33385282^(2/3) 4032524642465656 a001 610/4106118243*33385282^(13/18) 4032524642465656 a001 610/6643838879*33385282^(3/4) 4032524642465656 a001 305/5374978561*33385282^(7/9) 4032524642465657 a001 610/28143753123*33385282^(5/6) 4032524642465657 a001 610/73681302247*33385282^(8/9) 4032524642465657 a001 610/119218851371*33385282^(11/12) 4032524642465657 a001 305/96450076809*33385282^(17/18) 4032524642465657 a004 Fibonacci(15)*Lucas(36)/(1/2+sqrt(5)/2)^56 4032524642465659 a001 610/20633239*20633239^(3/7) 4032524642465662 a001 305/16692641*12752043^(8/17) 4032524642465663 a001 610/20633239*141422324^(5/13) 4032524642465663 a001 610/20633239*2537720636^(1/3) 4032524642465663 a001 610/20633239*45537549124^(5/17) 4032524642465663 a001 1125750730/27916772489 4032524642465663 a001 610/20633239*312119004989^(3/11) 4032524642465663 a001 610/20633239*14662949395604^(5/21) 4032524642465663 a001 610/20633239*(1/2+1/2*5^(1/2))^15 4032524642465663 a001 610/20633239*192900153618^(5/18) 4032524642465663 a001 610/20633239*28143753123^(3/10) 4032524642465663 a001 610/20633239*10749957122^(5/16) 4032524642465663 a001 610/20633239*599074578^(5/14) 4032524642465663 a001 610/20633239*228826127^(3/8) 4032524642465665 a001 610/20633239*33385282^(5/12) 4032524642465666 a001 610/87403803*12752043^(9/17) 4032524642465667 a001 610/54018521*12752043^(1/2) 4032524642465668 a001 610/228826127*12752043^(10/17) 4032524642465670 a001 305/299537289*12752043^(11/17) 4032524642465671 a001 610/1568397607*12752043^(12/17) 4032524642465673 a001 610/4106118243*12752043^(13/17) 4032524642465674 a001 305/5374978561*12752043^(14/17) 4032524642465676 a001 610/28143753123*12752043^(15/17) 4032524642465677 a001 610/73681302247*12752043^(16/17) 4032524642465678 a004 Fibonacci(15)*Lucas(34)/(1/2+sqrt(5)/2)^54 4032524642465703 a001 610/12752043*4870847^(7/16) 4032524642465719 a001 305/3940598*141422324^(1/3) 4032524642465719 a001 2149992580/53316291173 4032524642465719 a001 305/3940598*(1/2+1/2*5^(1/2))^13 4032524642465719 a001 305/3940598*73681302247^(1/4) 4032524642465735 a001 305/16692641*4870847^(1/2) 4032524642465749 a001 610/87403803*4870847^(9/16) 4032524642465760 a001 610/228826127*4870847^(5/8) 4032524642465771 a001 305/299537289*4870847^(11/16) 4032524642465781 a001 610/1568397607*4870847^(3/4) 4032524642465792 a001 610/4106118243*4870847^(13/16) 4032524642465802 a001 305/5374978561*4870847^(7/8) 4032524642465813 a001 610/28143753123*4870847^(15/16) 4032524642465824 a004 Fibonacci(15)*Lucas(32)/(1/2+sqrt(5)/2)^52 4032524642465950 a001 610/4870847*1860498^(2/5) 4032524642466077 a001 610/3010349*7881196^(1/3) 4032524642466099 a001 410612045/10182505537 4032524642466099 a001 610/3010349*312119004989^(1/5) 4032524642466099 a001 610/3010349*(1/2+1/2*5^(1/2))^11 4032524642466099 a001 610/3010349*1568397607^(1/4) 4032524642466173 a001 610/12752043*1860498^(7/15) 4032524642466246 a001 610/20633239*1860498^(1/2) 4032524642466271 a001 305/16692641*1860498^(8/15) 4032524642466352 a001 610/87403803*1860498^(3/5) 4032524642466430 a001 610/228826127*1860498^(2/3) 4032524642466469 a001 610/370248451*1860498^(7/10) 4032524642466508 a001 305/299537289*1860498^(11/15) 4032524642466586 a001 610/1568397607*1860498^(4/5) 4032524642466624 a001 305/1268860318*1860498^(5/6) 4032524642466649 a004 Fibonacci(32)/Lucas(15)/(1/2+sqrt(5)/2)^22 4032524642466663 a001 610/4106118243*1860498^(13/15) 4032524642466702 a001 610/6643838879*1860498^(9/10) 4032524642466741 a001 305/5374978561*1860498^(14/15) 4032524642466794 a004 Fibonacci(34)/Lucas(15)/(1/2+sqrt(5)/2)^24 4032524642466815 a004 Fibonacci(36)/Lucas(15)/(1/2+sqrt(5)/2)^26 4032524642466818 a004 Fibonacci(38)/Lucas(15)/(1/2+sqrt(5)/2)^28 4032524642466819 a004 Fibonacci(40)/Lucas(15)/(1/2+sqrt(5)/2)^30 4032524642466819 a004 Fibonacci(42)/Lucas(15)/(1/2+sqrt(5)/2)^32 4032524642466819 a004 Fibonacci(44)/Lucas(15)/(1/2+sqrt(5)/2)^34 4032524642466819 a004 Fibonacci(46)/Lucas(15)/(1/2+sqrt(5)/2)^36 4032524642466819 a004 Fibonacci(48)/Lucas(15)/(1/2+sqrt(5)/2)^38 4032524642466819 a004 Fibonacci(50)/Lucas(15)/(1/2+sqrt(5)/2)^40 4032524642466819 a004 Fibonacci(52)/Lucas(15)/(1/2+sqrt(5)/2)^42 4032524642466819 a004 Fibonacci(54)/Lucas(15)/(1/2+sqrt(5)/2)^44 4032524642466819 a004 Fibonacci(56)/Lucas(15)/(1/2+sqrt(5)/2)^46 4032524642466819 a004 Fibonacci(58)/Lucas(15)/(1/2+sqrt(5)/2)^48 4032524642466819 a004 Fibonacci(15)*Lucas(30)/(1/2+sqrt(5)/2)^50 4032524642466819 a004 Fibonacci(62)/Lucas(15)/(1/2+sqrt(5)/2)^52 4032524642466819 a004 Fibonacci(64)/Lucas(15)/(1/2+sqrt(5)/2)^54 4032524642466819 a004 Fibonacci(66)/Lucas(15)/(1/2+sqrt(5)/2)^56 4032524642466819 a004 Fibonacci(68)/Lucas(15)/(1/2+sqrt(5)/2)^58 4032524642466819 a004 Fibonacci(70)/Lucas(15)/(1/2+sqrt(5)/2)^60 4032524642466819 a004 Fibonacci(72)/Lucas(15)/(1/2+sqrt(5)/2)^62 4032524642466819 a004 Fibonacci(74)/Lucas(15)/(1/2+sqrt(5)/2)^64 4032524642466819 a004 Fibonacci(76)/Lucas(15)/(1/2+sqrt(5)/2)^66 4032524642466819 a004 Fibonacci(78)/Lucas(15)/(1/2+sqrt(5)/2)^68 4032524642466819 a004 Fibonacci(80)/Lucas(15)/(1/2+sqrt(5)/2)^70 4032524642466819 a004 Fibonacci(82)/Lucas(15)/(1/2+sqrt(5)/2)^72 4032524642466819 a004 Fibonacci(84)/Lucas(15)/(1/2+sqrt(5)/2)^74 4032524642466819 a004 Fibonacci(86)/Lucas(15)/(1/2+sqrt(5)/2)^76 4032524642466819 a004 Fibonacci(88)/Lucas(15)/(1/2+sqrt(5)/2)^78 4032524642466819 a004 Fibonacci(90)/Lucas(15)/(1/2+sqrt(5)/2)^80 4032524642466819 a004 Fibonacci(92)/Lucas(15)/(1/2+sqrt(5)/2)^82 4032524642466819 a004 Fibonacci(94)/Lucas(15)/(1/2+sqrt(5)/2)^84 4032524642466819 a004 Fibonacci(96)/Lucas(15)/(1/2+sqrt(5)/2)^86 4032524642466819 a004 Fibonacci(98)/Lucas(15)/(1/2+sqrt(5)/2)^88 4032524642466819 a004 Fibonacci(100)/Lucas(15)/(1/2+sqrt(5)/2)^90 4032524642466819 a004 Fibonacci(99)/Lucas(15)/(1/2+sqrt(5)/2)^89 4032524642466819 a004 Fibonacci(97)/Lucas(15)/(1/2+sqrt(5)/2)^87 4032524642466819 a004 Fibonacci(95)/Lucas(15)/(1/2+sqrt(5)/2)^85 4032524642466819 a004 Fibonacci(93)/Lucas(15)/(1/2+sqrt(5)/2)^83 4032524642466819 a004 Fibonacci(91)/Lucas(15)/(1/2+sqrt(5)/2)^81 4032524642466819 a004 Fibonacci(89)/Lucas(15)/(1/2+sqrt(5)/2)^79 4032524642466819 a004 Fibonacci(87)/Lucas(15)/(1/2+sqrt(5)/2)^77 4032524642466819 a004 Fibonacci(85)/Lucas(15)/(1/2+sqrt(5)/2)^75 4032524642466819 a004 Fibonacci(83)/Lucas(15)/(1/2+sqrt(5)/2)^73 4032524642466819 a004 Fibonacci(81)/Lucas(15)/(1/2+sqrt(5)/2)^71 4032524642466819 a004 Fibonacci(79)/Lucas(15)/(1/2+sqrt(5)/2)^69 4032524642466819 a004 Fibonacci(77)/Lucas(15)/(1/2+sqrt(5)/2)^67 4032524642466819 a004 Fibonacci(75)/Lucas(15)/(1/2+sqrt(5)/2)^65 4032524642466819 a004 Fibonacci(73)/Lucas(15)/(1/2+sqrt(5)/2)^63 4032524642466819 a004 Fibonacci(71)/Lucas(15)/(1/2+sqrt(5)/2)^61 4032524642466819 a004 Fibonacci(69)/Lucas(15)/(1/2+sqrt(5)/2)^59 4032524642466819 a004 Fibonacci(67)/Lucas(15)/(1/2+sqrt(5)/2)^57 4032524642466819 a004 Fibonacci(65)/Lucas(15)/(1/2+sqrt(5)/2)^55 4032524642466819 a004 Fibonacci(63)/Lucas(15)/(1/2+sqrt(5)/2)^53 4032524642466819 a004 Fibonacci(61)/Lucas(15)/(1/2+sqrt(5)/2)^51 4032524642466819 a004 Fibonacci(59)/Lucas(15)/(1/2+sqrt(5)/2)^49 4032524642466819 a004 Fibonacci(57)/Lucas(15)/(1/2+sqrt(5)/2)^47 4032524642466819 a004 Fibonacci(55)/Lucas(15)/(1/2+sqrt(5)/2)^45 4032524642466819 a004 Fibonacci(53)/Lucas(15)/(1/2+sqrt(5)/2)^43 4032524642466819 a004 Fibonacci(51)/Lucas(15)/(1/2+sqrt(5)/2)^41 4032524642466819 a004 Fibonacci(49)/Lucas(15)/(1/2+sqrt(5)/2)^39 4032524642466819 a004 Fibonacci(47)/Lucas(15)/(1/2+sqrt(5)/2)^37 4032524642466819 a004 Fibonacci(45)/Lucas(15)/(1/2+sqrt(5)/2)^35 4032524642466819 a004 Fibonacci(43)/Lucas(15)/(1/2+sqrt(5)/2)^33 4032524642466819 a004 Fibonacci(41)/Lucas(15)/(1/2+sqrt(5)/2)^31 4032524642466819 a004 Fibonacci(39)/Lucas(15)/(1/2+sqrt(5)/2)^29 4032524642466820 a004 Fibonacci(37)/Lucas(15)/(1/2+sqrt(5)/2)^27 4032524642466828 a004 Fibonacci(35)/Lucas(15)/(1/2+sqrt(5)/2)^25 4032524642466884 a004 Fibonacci(33)/Lucas(15)/(1/2+sqrt(5)/2)^23 4032524642467264 a004 Fibonacci(31)/Lucas(15)/(1/2+sqrt(5)/2)^21 4032524642467340 a001 305/930249*710647^(5/14) 4032524642468686 a001 610/1149851*7881196^(3/11) 4032524642468704 a001 610/1149851*141422324^(3/13) 4032524642468704 a001 610/1149851*2537720636^(1/5) 4032524642468704 a001 313679690/7778742049 4032524642468704 a001 610/1149851*45537549124^(3/17) 4032524642468704 a001 610/1149851*14662949395604^(1/7) 4032524642468704 a001 610/1149851*(1/2+1/2*5^(1/2))^9 4032524642468704 a001 610/1149851*192900153618^(1/6) 4032524642468704 a001 610/1149851*10749957122^(3/16) 4032524642468704 a001 610/1149851*599074578^(3/14) 4032524642468705 a001 610/1149851*33385282^(1/4) 4032524642468906 a001 610/4870847*710647^(3/7) 4032524642469053 a001 610/1149851*1860498^(3/10) 4032524642469621 a001 610/12752043*710647^(1/2) 4032524642469869 a004 Fibonacci(29)/Lucas(15)/(1/2+sqrt(5)/2)^19 4032524642470213 a001 305/16692641*710647^(4/7) 4032524642470786 a001 610/87403803*710647^(9/14) 4032524642471357 a001 610/228826127*710647^(5/7) 4032524642471642 a001 610/370248451*710647^(3/4) 4032524642471928 a001 305/299537289*710647^(11/14) 4032524642472498 a001 610/1568397607*710647^(6/7) 4032524642473068 a001 610/4106118243*710647^(13/14) 4032524642473639 a004 Fibonacci(15)*Lucas(28)/(1/2+sqrt(5)/2)^48 4032524642474509 a001 610/710647*271443^(4/13) 4032524642485538 a001 305/930249*271443^(5/13) 4032524642486123 a001 610/64079*24476^(1/7) 4032524642486557 a001 305/219602*20633239^(1/5) 4032524642486558 a001 119814980/2971215073 4032524642486558 a001 305/219602*17393796001^(1/7) 4032524642486558 a001 305/219602*14662949395604^(1/9) 4032524642486558 a001 305/219602*(1/2+1/2*5^(1/2))^7 4032524642486558 a001 305/219602*599074578^(1/6) 4032524642487723 a004 Fibonacci(27)/Lucas(15)/(1/2+sqrt(5)/2)^17 4032524642488555 a001 305/219602*710647^(1/4) 4032524642490743 a001 610/4870847*271443^(6/13) 4032524642493083 a001 305/3940598*271443^(1/2) 4032524642495098 a001 610/12752043*271443^(7/13) 4032524642499330 a001 305/16692641*271443^(8/13) 4032524642503543 a001 610/87403803*271443^(9/13) 4032524642504704 a001 610/271443*103682^(1/4) 4032524642507753 a001 610/228826127*271443^(10/13) 4032524642511963 a001 305/299537289*271443^(11/13) 4032524642516173 a001 610/1568397607*271443^(12/13) 4032524642520383 a004 Fibonacci(15)*Lucas(26)/(1/2+sqrt(5)/2)^46 4032524642558008 a001 305/51841*39603^(2/11) 4032524642580280 a001 610/167761*167761^(1/5) 4032524642582709 a001 610/710647*103682^(1/3) 4032524642595968 a001 305/219602*103682^(7/24) 4032524642608935 a001 610/167761*20633239^(1/7) 4032524642608937 a001 75025/1860497 4032524642608937 a001 610/167761*2537720636^(1/9) 4032524642608937 a001 610/167761*312119004989^(1/11) 4032524642608937 a001 610/167761*(1/2+1/2*5^(1/2))^5 4032524642608937 a001 610/167761*28143753123^(1/10) 4032524642608937 a001 610/167761*228826127^(1/8) 4032524642609131 a001 610/167761*1860498^(1/6) 4032524642609374 a001 610/1149851*103682^(3/8) 4032524642610102 a004 Fibonacci(25)/Lucas(15)/(1/2+sqrt(5)/2)^15 4032524642620789 a001 305/930249*103682^(5/12) 4032524642638029 a001 610/3010349*103682^(11/24) 4032524642653044 a001 610/4870847*103682^(1/2) 4032524642668909 a001 305/3940598*103682^(13/24) 4032524642684449 a001 610/12752043*103682^(7/12) 4032524642687087 a001 610/167761*103682^(5/24) 4032524642700113 a001 610/20633239*103682^(5/8) 4032524642715730 a001 305/16692641*103682^(2/3) 4032524642731365 a001 610/54018521*103682^(17/24) 4032524642746993 a001 610/87403803*103682^(3/4) 4032524642762624 a001 305/70711162*103682^(19/24) 4032524642778254 a001 610/228826127*103682^(5/6) 4032524642793884 a001 610/370248451*103682^(7/8) 4032524642809514 a001 305/299537289*103682^(11/12) 4032524642825144 a001 610/969323029*103682^(23/24) 4032524642840774 a004 Fibonacci(15)*Lucas(24)/(1/2+sqrt(5)/2)^44 4032524643112137 a001 610/271443*39603^(3/11) 4032524643193280 a001 610/167761*39603^(5/22) 4032524643304639 a001 305/219602*39603^(7/22) 4032524643319634 a001 610/64079*64079^(3/23) 4032524643392618 a001 610/710647*39603^(4/11) 4032524643445408 a001 610/64079*439204^(1/9) 4032524643447725 a001 610/64079*7881196^(1/11) 4032524643447731 a001 610/64079*141422324^(1/13) 4032524643447731 a001 17480770/433494437 4032524643447731 a001 610/64079*2537720636^(1/15) 4032524643447731 a001 610/64079*45537549124^(1/17) 4032524643447731 a001 610/64079*14662949395604^(1/21) 4032524643447731 a001 610/64079*(1/2+1/2*5^(1/2))^3 4032524643447731 a001 610/64079*192900153618^(1/18) 4032524643447731 a001 610/64079*10749957122^(1/16) 4032524643447731 a001 610/64079*599074578^(1/14) 4032524643447731 a001 610/64079*33385282^(1/12) 4032524643447847 a001 610/64079*1860498^(1/10) 4032524643448896 a004 Fibonacci(23)/Lucas(15)/(1/2+sqrt(5)/2)^13 4032524643494621 a001 610/64079*103682^(1/8) 4032524643520522 a001 610/1149851*39603^(9/22) 4032524643633176 a001 305/930249*39603^(5/11) 4032524643751654 a001 610/3010349*39603^(1/2) 4032524643798337 a001 610/64079*39603^(3/22) 4032524643867908 a001 610/4870847*39603^(6/11) 4032524643985012 a001 305/3940598*39603^(13/22) 4032524644101791 a001 610/12752043*39603^(7/11) 4032524644218694 a001 610/20633239*39603^(15/22) 4032524644335549 a001 305/16692641*39603^(8/11) 4032524644452423 a001 610/54018521*39603^(17/22) 4032524644569290 a001 610/87403803*39603^(9/11) 4032524644686159 a001 305/70711162*39603^(19/22) 4032524644803027 a001 610/228826127*39603^(10/11) 4032524644919896 a001 610/370248451*39603^(21/22) 4032524645036765 a004 Fibonacci(15)*Lucas(22)/(1/2+sqrt(5)/2)^42 4032524645615065 a001 305/51841*15127^(1/5) 4032524646091129 a001 610/64079*15127^(3/20) 4032524646768662 a001 305/12238*9349^(1/19) 4032524647014601 a001 610/167761*15127^(1/4) 4032524647697722 a001 610/271443*15127^(3/10) 4032524648654489 a001 305/219602*15127^(7/20) 4032524648876374 a001 305/12238*24476^(1/21) 4032524649154211 a001 305/12238*64079^(1/23) 4032524649196910 a001 6677060/165580141 4032524649196910 a001 305/24476+305/24476*5^(1/2) 4032524649198075 a004 Fibonacci(21)/Lucas(15)/(1/2+sqrt(5)/2)^11 4032524649212540 a001 305/12238*103682^(1/24) 4032524649313779 a001 305/12238*39603^(1/22) 4032524649506732 a001 610/710647*15127^(2/5) 4032524650078043 a001 305/12238*15127^(1/20) 4032524650398900 a001 610/1149851*15127^(9/20) 4032524651275818 a001 305/930249*15127^(1/2) 4032524652158561 a001 610/3010349*15127^(11/20) 4032524653039079 a001 610/4870847*15127^(3/5) 4032524653315375 a001 610/39603*5778^(1/9) 4032524653920446 a001 305/3940598*15127^(13/20) 4032524654801490 a001 610/12752043*15127^(7/10) 4032524655682657 a001 610/20633239*15127^(3/4) 4032524655907327 a001 305/12238*5778^(1/18) 4032524656563777 a001 305/16692641*15127^(4/5) 4032524657444915 a001 610/54018521*15127^(17/20) 4032524658326046 a001 610/87403803*15127^(9/10) 4032524659207179 a001 305/70711162*15127^(19/20) 4032524660088312 a004 Fibonacci(15)*Lucas(20)/(1/2+sqrt(5)/2)^40 4032524663153532 r005 Re(z^2+c),c=-49/110+13/25*I,n=49 4032524663578980 a001 610/64079*5778^(1/6) 4032524668932199 a001 305/51841*5778^(2/9) 4032524676131351 m005 (1/2*gamma+9/10)/(7/9*exp(1)+5/6) 4032524676161019 a001 610/167761*5778^(5/18) 4032524678767343 r005 Im(z^2+c),c=-5/6+5/172*I,n=10 4032524679328314 m001 arctan(1/3)*Otter+Pi*csc(7/24*Pi)/GAMMA(17/24) 4032524682673423 a001 610/271443*5778^(1/3) 4032524685121398 a007 Real Root Of -194*x^4+869*x^3-751*x^2+235*x+279 4032524688602372 a001 1275205/31622993 4032524688602373 a004 Fibonacci(15)/Lucas(19)/(1/2+sqrt(5)/2) 4032524688603537 a004 Fibonacci(19)/Lucas(15)/(1/2+sqrt(5)/2)^9 4032524689459473 a001 305/219602*5778^(7/18) 4032524696141000 a001 610/710647*5778^(4/9) 4032524700940019 a001 305/12238*2207^(1/16) 4032524702862452 a001 610/1149851*5778^(1/2) 4032524709568653 a001 305/930249*5778^(5/9) 4032524715930175 a007 Real Root Of -121*x^4-579*x^3-622*x^2-893*x+542 4032524716280680 a001 610/3010349*5778^(11/18) 4032524722990481 a001 610/4870847*5778^(2/3) 4032524729179534 a007 Real Root Of -207*x^4-994*x^3-517*x^2+268*x-956 4032524729701133 a001 305/3940598*5778^(13/18) 4032524736411459 a001 610/12752043*5778^(7/9) 4032524743121910 a001 610/20633239*5778^(5/6) 4032524743380761 a001 610/39603*2207^(1/8) 4032524743655241 m005 (1/2*exp(1)+1/11)/(2*Zeta(3)-6) 4032524749832314 a001 305/16692641*5778^(8/9) 4032524754287437 r009 Re(z^3+c),c=-9/38+43/58*I,n=6 4032524756542735 a001 610/54018521*5778^(17/18) 4032524758466098 r004 Im(z^2+c),c=-21/26-2/9*I,z(0)=-1,n=15 4032524759897400 r005 Im(z^2+c),c=-75/106+17/53*I,n=3 4032524760495087 a001 233/1149851*521^(11/13) 4032524763253150 a004 Fibonacci(15)*Lucas(18)/(1/2+sqrt(5)/2)^38 4032524770139000 m001 (1+ln(2)/ln(10))/FellerTornier 4032524786139781 a001 2584/1149851*843^(3/7) 4032524791643559 a007 Real Root Of -87*x^4-137*x^3+597*x^2-851*x+882 4032524798677059 a001 610/64079*2207^(3/16) 4032524800943903 m001 1/exp(Zeta(1,2))^2*LaplaceLimit*cos(Pi/12)^2 4032524804618556 r009 Im(z^3+c),c=-27/56+6/23*I,n=11 4032524805208927 r005 Im(z^2+c),c=-7/10+41/150*I,n=38 4032524807056229 q001 1463/3628 4032524813937055 a003 sin(Pi*7/38)*sin(Pi*19/72) 4032524817853949 a001 1597/439204*843^(5/14) 4032524820576871 r005 Im(z^2+c),c=-1/34+29/54*I,n=45 4032524831039117 m001 1/ln(GAMMA(23/24))/BesselJ(1,1)*GAMMA(5/12)^2 4032524842374519 r005 Re(z^2+c),c=-59/102+7/18*I,n=54 4032524847034828 m001 (GAMMA(5/12)+1/2)/(-BesselI(1,1)+1/2) 4032524849062972 a001 305/51841*2207^(1/4) 4032524849511485 m005 (1/2*5^(1/2)+6/7)/(11/12*Zeta(3)-6) 4032524856621223 r005 Im(z^2+c),c=-35/29+2/31*I,n=15 4032524868314659 r002 43th iterates of z^2 + 4032524885645816 a001 329/13201*322^(1/12) 4032524889302021 a001 6765/3010349*843^(3/7) 4032524889671273 a001 987/1149851*843^(4/7) 4032524897369267 a007 Real Root Of -491*x^4+902*x^3-41*x^2+308*x+203 4032524901324487 a001 610/167761*2207^(5/16) 4032524904353189 a001 89/39604*843^(3/7) 4032524906549125 a001 46368/20633239*843^(3/7) 4032524906869508 a001 121393/54018521*843^(3/7) 4032524906916251 a001 317811/141422324*843^(3/7) 4032524906923071 a001 832040/370248451*843^(3/7) 4032524906924066 a001 2178309/969323029*843^(3/7) 4032524906924211 a001 5702887/2537720636*843^(3/7) 4032524906924232 a001 14930352/6643838879*843^(3/7) 4032524906924235 a001 39088169/17393796001*843^(3/7) 4032524906924236 a001 102334155/45537549124*843^(3/7) 4032524906924236 a001 267914296/119218851371*843^(3/7) 4032524906924236 a001 3524667/1568437211*843^(3/7) 4032524906924236 a001 1836311903/817138163596*843^(3/7) 4032524906924236 a001 4807526976/2139295485799*843^(3/7) 4032524906924236 a001 12586269025/5600748293801*843^(3/7) 4032524906924236 a001 32951280099/14662949395604*843^(3/7) 4032524906924236 a001 53316291173/23725150497407*843^(3/7) 4032524906924236 a001 20365011074/9062201101803*843^(3/7) 4032524906924236 a001 7778742049/3461452808002*843^(3/7) 4032524906924236 a001 2971215073/1322157322203*843^(3/7) 4032524906924236 a001 1134903170/505019158607*843^(3/7) 4032524906924236 a001 433494437/192900153618*843^(3/7) 4032524906924236 a001 165580141/73681302247*843^(3/7) 4032524906924236 a001 63245986/28143753123*843^(3/7) 4032524906924237 a001 24157817/10749957122*843^(3/7) 4032524906924245 a001 9227465/4106118243*843^(3/7) 4032524906924301 a001 3524578/1568397607*843^(3/7) 4032524906924681 a001 1346269/599074578*843^(3/7) 4032524906927286 a001 514229/228826127*843^(3/7) 4032524906945140 a001 196418/87403803*843^(3/7) 4032524907067515 a001 75025/33385282*843^(3/7) 4032524907786208 m001 BesselI(0,2)^Si(Pi)-LambertW(1) 4032524907786208 m001 LambertW(1)-BesselI(0,2)^Si(Pi) 4032524907906288 a001 28657/12752043*843^(3/7) 4032524907912930 h001 (9/11*exp(2)+4/9)/(3/7*exp(1)+4/9) 4032524913655323 a001 10946/4870847*843^(3/7) 4032524952533439 r002 58th iterates of z^2 + 4032524952869587 a001 610/271443*2207^(3/8) 4032524953059792 a001 4181/1860498*843^(3/7) 4032524953177221 l006 ln(1659/2483) 4032524958691424 a001 974170/24157817 4032524958691450 a004 Fibonacci(15)/Lucas(17)/(1/2+sqrt(5)/2)^3 4032524958692591 a004 Fibonacci(17)/Lucas(15)/(1/2+sqrt(5)/2)^7 4032524970410392 r009 Im(z^3+c),c=-9/20+12/35*I,n=21 4032524992368958 m001 (ln(2)-BesselI(1,2))/(Pi-Catalan) 4032524998445333 a007 Real Root Of 693*x^4-132*x^3+839*x^2-857*x-509 4032525004688333 a001 305/219602*2207^(7/16) 4032525018569177 r002 7th iterates of z^2 + 4032525022021410 a007 Real Root Of 841*x^4+132*x^3+529*x^2-306*x-223 4032525033282438 m001 (ln(Pi)-3^(1/3))/(Pi^(1/2)-MertensB2) 4032525054513877 a001 305/12238*843^(1/14) 4032525056402557 a001 610/710647*2207^(1/2) 4032525069259505 r009 Im(z^3+c),c=-55/106+11/35*I,n=49 4032525075680413 a001 1/532*(1/2*5^(1/2)+1/2)^32*7^(16/21) 4032525108156706 a001 610/1149851*2207^(9/16) 4032525110163165 h001 (1/8*exp(1)+7/10)/(7/8*exp(1)+1/5) 4032525121429871 r005 Re(z^2+c),c=-17/30+9/70*I,n=21 4032525145956780 m001 1/Riemann1stZero*ln(GAMMA(5/12))^2 4032525148106363 a007 Real Root Of 43*x^4-958*x^3+163*x^2-622*x+286 4032525158333494 r005 Im(z^2+c),c=-8/27+11/19*I,n=26 4032525158961758 r005 Im(z^2+c),c=11/34+13/32*I,n=28 4032525159895606 a001 305/930249*2207^(5/8) 4032525160126547 m005 (1/2*Pi+1/7)/(7/12*2^(1/2)-2/5) 4032525160983339 a007 Real Root Of 496*x^4-796*x^3+176*x^2-842*x+350 4032525170903561 r002 42th iterates of z^2 + 4032525172797966 m001 1/BesselK(1,1)^2/Backhouse*exp(GAMMA(7/12))^2 4032525176741463 r009 Re(z^3+c),c=-7/19+3/35*I,n=14 4032525185818559 r005 Re(z^2+c),c=-49/90+9/34*I,n=56 4032525191452547 a001 1292/930249*843^(1/2) 4032525197816280 r008 a(0)=4,K{-n^6,-78-69*n^3+73*n^2+43*n} 4032525201913856 a001 9/17*1346269^(19/30) 4032525208170576 r005 Re(z^2+c),c=-63/118+19/59*I,n=57 4032525211640331 a001 610/3010349*2207^(11/16) 4032525217289228 m001 1/Trott/Bloch^2*exp(GAMMA(1/12))^2 4032525217652337 m001 HardyLittlewoodC4*MadelungNaCl/MertensB3 4032525220183798 r005 Re(z^2+c),c=-53/98+29/55*I,n=43 4032525220546680 m001 GAMMA(17/24)^2/GAMMA(11/24)/ln(cos(Pi/5)) 4032525221487371 m001 (Ei(1,1)-cos(1))/(HeathBrownMoroz+Kolakoski) 4032525222195950 r008 a(0)=4,K{-n^6,15-41*n-19*n^2+13*n^3} 4032525223142044 a001 1597/710647*843^(3/7) 4032525231911317 a007 Real Root Of -19*x^4-784*x^3-727*x^2-355*x-663 4032525233205722 a007 Real Root Of -286*x^4-291*x^3+777*x^2+767*x-409 4032525234230163 m001 (LambertW(1)+GAMMA(23/24))/(Landau+Magata) 4032525239444975 r002 32th iterates of z^2 + 4032525250022948 m001 (ThueMorse+ZetaQ(2))/(Psi(1,1/3)+Porter) 4032525256422574 r005 Im(z^2+c),c=-75/122+3/40*I,n=58 4032525262522482 r005 Im(z^2+c),c=-3/4+36/223*I,n=16 4032525263382832 a001 610/4870847*2207^(3/4) 4032525282515420 r008 a(0)=4,K{-n^6,-58-51*n^3+29*n^2+49*n} 4032525285368128 r002 31th iterates of z^2 + 4032525290823686 m001 (Paris+TwinPrimes)/(ln(2+3^(1/2))-GAMMA(5/6)) 4032525294318655 r005 Im(z^2+c),c=-11/16+17/60*I,n=58 4032525294618398 a001 6765/4870847*843^(1/2) 4032525294984049 a001 329/620166*843^(9/14) 4032525299260945 r008 a(0)=4,K{-n^6,-42+27*n+34*n^2-50*n^3} 4032525301389938 r009 Re(z^3+c),c=-39/94+7/47*I,n=9 4032525308178591 a007 Real Root Of -840*x^4+230*x^3+5*x^2+713*x+324 4032525309670092 a001 17711/12752043*843^(1/2) 4032525311866105 a001 144/103681*843^(1/2) 4032525312186499 a001 121393/87403803*843^(1/2) 4032525312233244 a001 317811/228826127*843^(1/2) 4032525312240064 a001 416020/299537289*843^(1/2) 4032525312241059 a001 311187/224056801*843^(1/2) 4032525312241204 a001 5702887/4106118243*843^(1/2) 4032525312241225 a001 7465176/5374978561*843^(1/2) 4032525312241228 a001 39088169/28143753123*843^(1/2) 4032525312241229 a001 14619165/10525900321*843^(1/2) 4032525312241229 a001 133957148/96450076809*843^(1/2) 4032525312241229 a001 701408733/505019158607*843^(1/2) 4032525312241229 a001 1836311903/1322157322203*843^(1/2) 4032525312241229 a001 14930208/10749853441*843^(1/2) 4032525312241229 a001 12586269025/9062201101803*843^(1/2) 4032525312241229 a001 32951280099/23725150497407*843^(1/2) 4032525312241229 a001 10182505537/7331474697802*843^(1/2) 4032525312241229 a001 7778742049/5600748293801*843^(1/2) 4032525312241229 a001 2971215073/2139295485799*843^(1/2) 4032525312241229 a001 567451585/408569081798*843^(1/2) 4032525312241229 a001 433494437/312119004989*843^(1/2) 4032525312241229 a001 165580141/119218851371*843^(1/2) 4032525312241229 a001 31622993/22768774562*843^(1/2) 4032525312241230 a001 24157817/17393796001*843^(1/2) 4032525312241238 a001 9227465/6643838879*843^(1/2) 4032525312241294 a001 1762289/1268860318*843^(1/2) 4032525312241674 a001 1346269/969323029*843^(1/2) 4032525312244279 a001 514229/370248451*843^(1/2) 4032525312262134 a001 98209/70711162*843^(1/2) 4032525312384513 a001 75025/54018521*843^(1/2) 4032525313223316 a001 28657/20633239*843^(1/2) 4032525315126184 a001 305/3940598*2207^(13/16) 4032525316264413 b008 Pi+Sech[Sqrt[6]/5] 4032525318972551 a001 5473/3940598*843^(1/2) 4032525319027322 a003 sin(Pi*1/80)/sin(Pi*32/75) 4032525358378400 a001 4181/3010349*843^(1/2) 4032525361797484 m008 (Pi^5-1/5)/(1/4*Pi^5-2/3) 4032525366869211 a001 610/12752043*2207^(7/8) 4032525368058592 m001 (ReciprocalLucas+Salem)/(exp(1/Pi)-Gompertz) 4032525399203677 r009 Re(z^3+c),c=-29/62+13/64*I,n=41 4032525399830952 a007 Real Root Of 2*x^4+808*x^3+605*x^2+873*x-781 4032525418612364 a001 610/20633239*2207^(15/16) 4032525420124558 m001 Ei(1,1)^Zeta(1/2)*BesselJ(1,1) 4032525430598642 r005 Im(z^2+c),c=-5/78+19/34*I,n=43 4032525431730722 m001 GAMMA(3/4)-cos(1/12*Pi)-LaplaceLimit 4032525435265921 m001 (Otter+RenyiParking)/(Landau-MinimumGamma) 4032525440963152 m001 1/exp(LandauRamanujan)/Conway*GAMMA(5/6) 4032525450528516 a001 610/39603*843^(1/7) 4032525460494106 r008 a(0)=0,K{-n^6,36-63*n+61*n^2-59*n^3} 4032525463409927 r008 a(0)=4,K{-n^6,-28*n^3-11*n^2+8*n} 4032525463534357 m001 ln(3)^Chi(1)/FeigenbaumD 4032525465185286 r009 Re(z^3+c),c=-53/94+19/41*I,n=44 4032525470355473 a004 Fibonacci(15)*Lucas(16)/(1/2+sqrt(5)/2)^36 4032525488237119 r005 Im(z^2+c),c=-3/23+35/58*I,n=44 4032525489240476 r008 a(0)=4,K{-n^6,28-29*n^3+6*n^2-36*n} 4032525490383304 r009 Re(z^3+c),c=-59/126+11/54*I,n=46 4032525497032770 r005 Im(z^2+c),c=11/56+3/8*I,n=46 4032525507276443 a003 cos(Pi*31/85)*sin(Pi*42/97) 4032525515444261 m001 (Sierpinski+Tetranacci)/(Cahen+PlouffeB) 4032525520400852 a007 Real Root Of 214*x^4+823*x^3-208*x^2-276*x-351 4032525522217412 m001 ln(3)*(Pi+1)-polylog(4,1/2) 4032525546904819 m005 (1/2*exp(1)-2/3)/(7/10*2^(1/2)+8/11) 4032525549047159 r009 Re(z^3+c),c=-75/122+26/53*I,n=2 4032525549300816 r005 Re(z^2+c),c=-67/122+17/48*I,n=30 4032525555691396 r002 6th iterates of z^2 + 4032525556559396 r008 a(0)=4,K{-n^6,-10+51*n-58*n^2-14*n^3} 4032525557137046 r005 Re(z^2+c),c=-49/90+28/57*I,n=7 4032525565033831 r002 14th iterates of z^2 + 4032525567238815 m001 (arctan(1/3)+MinimumGamma)/(1-3^(1/3)) 4032525567910047 m005 (1/2*gamma-5/7)/(5/9*exp(1)-5/11) 4032525584927832 r008 a(0)=4,K{-n^6,28-12*n-30*n^2-17*n^3} 4032525592545398 r009 Im(z^3+c),c=-5/24+4/9*I,n=17 4032525594944318 a001 1292/51841*322^(1/12) 4032525596771179 a001 2584/3010349*843^(4/7) 4032525602818249 r008 a(0)=4,K{-n^6,10-12*n^3-54*n^2+25*n} 4032525605813920 r008 a(0)=4,K{-n^6,24-14*n^3-41*n^2} 4032525614375357 a007 Real Root Of 952*x^4+55*x^3+903*x^2-490*x-366 4032525618081072 r008 a(0)=4,K{-n^6,38-23*n-31*n^2-15*n^3} 4032525618993536 m005 (1/12+1/4*5^(1/2))/(7/8*5^(1/2)-4/11) 4032525622210049 m009 (8*Catalan+Pi^2-2/3)/(2*Catalan+1/4*Pi^2-1/5) 4032525626201310 r002 13th iterates of z^2 + 4032525628470103 a001 1597/1149851*843^(1/2) 4032525635624508 r009 Re(z^3+c),c=-5/11+7/37*I,n=38 4032525636465466 m001 1/BesselJ(0,1)^2/ln(Magata)/sin(Pi/5)^2 4032525646771963 r008 a(0)=4,K{-n^6,56-15*n^3-22*n^2-50*n} 4032525647407817 r009 Re(z^3+c),c=-2/27+31/46*I,n=64 4032525648540314 m001 (-HeathBrownMoroz+ZetaQ(4))/(Ei(1)-exp(1)) 4032525660835908 r005 Im(z^2+c),c=31/110+7/24*I,n=63 4032525698429575 a001 2255/90481*322^(1/12) 4032525699935665 a001 6765/7881196*843^(4/7) 4032525699957122 r005 Re(z^2+c),c=-53/94+4/49*I,n=52 4032525700302691 a001 987/3010349*843^(5/7) 4032525701804601 p001 sum((-1)^n/(551*n+217)/n/(32^n),n=1..infinity) 4032525709293586 r002 12th iterates of z^2 + 4032525713527871 a001 17711/710647*322^(1/12) 4032525714987160 a001 17711/20633239*843^(4/7) 4032525715730682 a001 2576/103361*322^(1/12) 4032525716052068 a001 121393/4870847*322^(1/12) 4032525716098958 a001 105937/4250681*322^(1/12) 4032525716105799 a001 416020/16692641*322^(1/12) 4032525716106797 a001 726103/29134601*322^(1/12) 4032525716106942 a001 5702887/228826127*322^(1/12) 4032525716106964 a001 829464/33281921*322^(1/12) 4032525716106967 a001 39088169/1568397607*322^(1/12) 4032525716106967 a001 34111385/1368706081*322^(1/12) 4032525716106967 a001 133957148/5374978561*322^(1/12) 4032525716106967 a001 233802911/9381251041*322^(1/12) 4032525716106967 a001 1836311903/73681302247*322^(1/12) 4032525716106967 a001 267084832/10716675201*322^(1/12) 4032525716106967 a001 12586269025/505019158607*322^(1/12) 4032525716106967 a001 10983760033/440719107401*322^(1/12) 4032525716106967 a001 43133785636/1730726404001*322^(1/12) 4032525716106967 a001 75283811239/3020733700601*322^(1/12) 4032525716106967 a001 182717648081/7331474697802*322^(1/12) 4032525716106967 a001 139583862445/5600748293801*322^(1/12) 4032525716106967 a001 53316291173/2139295485799*322^(1/12) 4032525716106967 a001 10182505537/408569081798*322^(1/12) 4032525716106967 a001 7778742049/312119004989*322^(1/12) 4032525716106967 a001 2971215073/119218851371*322^(1/12) 4032525716106967 a001 567451585/22768774562*322^(1/12) 4032525716106967 a001 433494437/17393796001*322^(1/12) 4032525716106967 a001 165580141/6643838879*322^(1/12) 4032525716106968 a001 31622993/1268860318*322^(1/12) 4032525716106969 a001 24157817/969323029*322^(1/12) 4032525716106977 a001 9227465/370248451*322^(1/12) 4032525716107032 a001 1762289/70711162*322^(1/12) 4032525716107414 a001 1346269/54018521*322^(1/12) 4032525716110027 a001 514229/20633239*322^(1/12) 4032525716127937 a001 98209/3940598*322^(1/12) 4032525716250695 a001 75025/3010349*322^(1/12) 4032525716370641 m001 Thue/(Bloch-sin(1/12*Pi)) 4032525716995716 r002 28th iterates of z^2 + 4032525717092095 a001 28657/1149851*322^(1/12) 4032525717183144 a001 46368/54018521*843^(4/7) 4032525717503534 a001 233/271444*843^(4/7) 4032525717550278 a001 317811/370248451*843^(4/7) 4032525717557098 a001 832040/969323029*843^(4/7) 4032525717558093 a001 2178309/2537720636*843^(4/7) 4032525717558238 a001 5702887/6643838879*843^(4/7) 4032525717558259 a001 14930352/17393796001*843^(4/7) 4032525717558262 a001 39088169/45537549124*843^(4/7) 4032525717558263 a001 102334155/119218851371*843^(4/7) 4032525717558263 a001 267914296/312119004989*843^(4/7) 4032525717558263 a001 701408733/817138163596*843^(4/7) 4032525717558263 a001 1836311903/2139295485799*843^(4/7) 4032525717558263 a001 4807526976/5600748293801*843^(4/7) 4032525717558263 a001 12586269025/14662949395604*843^(4/7) 4032525717558263 a001 20365011074/23725150497407*843^(4/7) 4032525717558263 a001 7778742049/9062201101803*843^(4/7) 4032525717558263 a001 2971215073/3461452808002*843^(4/7) 4032525717558263 a001 1134903170/1322157322203*843^(4/7) 4032525717558263 a001 433494437/505019158607*843^(4/7) 4032525717558263 a001 165580141/192900153618*843^(4/7) 4032525717558263 a001 63245986/73681302247*843^(4/7) 4032525717558264 a001 24157817/28143753123*843^(4/7) 4032525717558272 a001 9227465/10749957122*843^(4/7) 4032525717558328 a001 3524578/4106118243*843^(4/7) 4032525717558708 a001 1346269/1568397607*843^(4/7) 4032525717561313 a001 514229/599074578*843^(4/7) 4032525717579167 a001 196418/228826127*843^(4/7) 4032525717701545 a001 75025/87403803*843^(4/7) 4032525718540336 a001 28657/33385282*843^(4/7) 4032525719222829 r009 Re(z^3+c),c=-3/70+7/47*I,n=4 4032525721871888 q001 1215/3013 4032525722859130 a001 5473/219602*322^(1/12) 4032525724289496 a001 10946/12752043*843^(4/7) 4032525734076246 r005 Im(z^2+c),c=-1/48+28/53*I,n=34 4032525738548919 l006 ln(5128/7675) 4032525748107415 r005 Im(z^2+c),c=-5/94+28/43*I,n=52 4032525753074492 r009 Im(z^3+c),c=-7/18+23/61*I,n=31 4032525758922292 h001 (-5*exp(3)+2)/(-5*exp(3/2)-2) 4032525762386981 a001 4181/167761*322^(1/12) 4032525763694823 a001 4181/4870847*843^(4/7) 4032525770903860 m002 (Coth[Pi]*Csch[Pi]*ProductLog[Pi])/E^Pi 4032525783597333 m001 (Paris+Weierstrass)/(sin(1/5*Pi)+GaussAGM) 4032525789691652 l006 ln(7672/7703) 4032525791319802 m001 1/(3^(1/3))^2/exp(Backhouse)^2*cosh(1) 4032525799940491 r008 a(0)=4,K{-n^6,44+36*n^3-55*n^2-61*n} 4032525803547079 h001 (5/7*exp(2)+5/6)/(3/10*exp(1)+7/10) 4032525807620616 m001 (Si(Pi)-gamma)/(BesselI(0,2)+QuadraticClass) 4032525820222309 r009 Re(z^3+c),c=-57/118+7/32*I,n=39 4032525827922825 a001 47/521*(1/2*5^(1/2)+1/2)^14*521^(4/15) 4032525828593710 m001 (2*Pi/GAMMA(5/6)+FellerTornier)/(GaussAGM+Kac) 4032525853326017 r009 Im(z^3+c),c=-41/66+34/59*I,n=3 4032525859398753 a001 610/64079*843^(3/14) 4032525876935818 a007 Real Root Of -584*x^4+407*x^3-467*x^2+347*x+258 4032525880878005 r005 Im(z^2+c),c=11/60+25/64*I,n=21 4032525890521501 r005 Re(z^2+c),c=-55/86+4/51*I,n=10 4032525897622307 a007 Real Root Of -335*x^4-75*x^3-110*x^2+696*x-249 4032525903246355 a001 233/710647*521^(10/13) 4032525910756573 m001 Zeta(5)*exp(GAMMA(2/3))*Zeta(9)^2 4032525928536980 p001 sum((-1)^n/(411*n+232)/(5^n),n=0..infinity) 4032525949381777 m001 (2^(1/2)-arctan(1/3))/(-FransenRobinson+Paris) 4032525951557093 r002 2th iterates of z^2 + 4032525951557093 r005 Re(z^2+c),c=-41/30+97/102*I,n=2 4032525956072471 r002 16th iterates of z^2 + 4032525960554379 m006 (1/4*Pi+5/6)/(3/4*exp(2*Pi)-1/5) 4032525965666212 m001 (ReciprocalFibonacci-Robbin)/(ln(Pi)-PlouffeB) 4032525972574532 r005 Im(z^2+c),c=-11/86+35/58*I,n=63 4032525982298041 r005 Im(z^2+c),c=19/86+4/13*I,n=7 4032526002087626 a001 2584/4870847*843^(9/14) 4032526002651927 a003 sin(Pi*37/93)-sin(Pi*34/75) 4032526003337023 r005 Re(z^2+c),c=2/25+34/57*I,n=62 4032526019399877 m003 -7/2+(17*Sqrt[5])/64+(5*Csc[1/2+Sqrt[5]/2])/2 4032526021290422 m001 (3^(1/2)-Si(Pi))/(GAMMA(3/4)+MadelungNaCl) 4032526026818267 m005 (5^(1/2)+11/6)/(3*Pi+2/3) 4032526033314901 a001 1597/64079*322^(1/12) 4032526033782954 a001 1597/1860498*843^(4/7) 4032526043543318 m005 (1/3*2^(1/2)+2/9)/(4/5*exp(1)-5/11) 4032526049251398 r005 Im(z^2+c),c=-25/36+10/37*I,n=60 4032526057097639 a007 Real Root Of 729*x^4-249*x^3-352*x^2-587*x+291 4032526062334269 a005 (1/sin(58/123*Pi))^924 4032526063392953 r005 Re(z^2+c),c=-15/29+27/59*I,n=36 4032526065913010 r009 Im(z^3+c),c=-41/78+11/58*I,n=59 4032526079360313 r002 62th iterates of z^2 + 4032526082061670 m005 (1/3*Pi+3/4)/(5/9*gamma+1/8) 4032526105252648 a001 2255/4250681*843^(9/14) 4032526105619149 a001 987/4870847*843^(11/14) 4032526114141762 l006 ln(3469/5192) 4032526120304221 a001 17711/33385282*843^(9/14) 4032526122500216 a001 15456/29134601*843^(9/14) 4032526122820608 a001 121393/228826127*843^(9/14) 4032526122867352 a001 377/710646*843^(9/14) 4032526122874172 a001 832040/1568397607*843^(9/14) 4032526122875167 a001 726103/1368706081*843^(9/14) 4032526122875312 a001 5702887/10749957122*843^(9/14) 4032526122875334 a001 4976784/9381251041*843^(9/14) 4032526122875337 a001 39088169/73681302247*843^(9/14) 4032526122875337 a001 34111385/64300051206*843^(9/14) 4032526122875337 a001 267914296/505019158607*843^(9/14) 4032526122875337 a001 233802911/440719107401*843^(9/14) 4032526122875337 a001 1836311903/3461452808002*843^(9/14) 4032526122875337 a001 1602508992/3020733700601*843^(9/14) 4032526122875337 a001 12586269025/23725150497407*843^(9/14) 4032526122875337 a001 7778742049/14662949395604*843^(9/14) 4032526122875337 a001 2971215073/5600748293801*843^(9/14) 4032526122875337 a001 1134903170/2139295485799*843^(9/14) 4032526122875337 a001 433494437/817138163596*843^(9/14) 4032526122875337 a001 165580141/312119004989*843^(9/14) 4032526122875337 a001 63245986/119218851371*843^(9/14) 4032526122875339 a001 24157817/45537549124*843^(9/14) 4032526122875347 a001 9227465/17393796001*843^(9/14) 4032526122875402 a001 3524578/6643838879*843^(9/14) 4032526122875782 a001 1346269/2537720636*843^(9/14) 4032526122878387 a001 514229/969323029*843^(9/14) 4032526122896242 a001 196418/370248451*843^(9/14) 4032526123018621 a001 75025/141422324*843^(9/14) 4032526123857416 a001 28657/54018521*843^(9/14) 4032526128326789 r005 Re(z^2+c),c=-69/122+6/53*I,n=23 4032526129606606 a001 10946/20633239*843^(9/14) 4032526135559887 r009 Re(z^3+c),c=-47/70+43/52*I,n=2 4032526137984160 r005 Im(z^2+c),c=-25/46+17/36*I,n=9 4032526146692897 r005 Im(z^2+c),c=-4/31+7/12*I,n=11 4032526152952119 a007 Real Root Of 95*x^4+581*x^3+720*x^2-327*x-49 4032526159470497 a001 29/5*365435296162^(13/17) 4032526161662330 a007 Real Root Of 593*x^4-972*x^3+337*x^2-855*x-479 4032526165845023 r005 Re(z^2+c),c=-13/14+46/149*I,n=19 4032526169012137 a001 4181/7881196*843^(9/14) 4032526173795490 m005 (1/3*Pi+1/9)/(10/11*Catalan-6/11) 4032526176385131 r009 Im(z^3+c),c=-5/122+54/55*I,n=2 4032526192800319 p003 LerchPhi(1/2,6,571/225) 4032526197218933 m001 ln(BesselK(1,1))*KhintchineLevy^2/sqrt(Pi) 4032526197914938 a007 Real Root Of 50*x^4+34*x^3-661*x^2+7*x-215 4032526201029648 m008 (3/4*Pi^3-3/5)/(5/6*Pi+3) 4032526202096008 r002 33th iterates of z^2 + 4032526207408344 r002 18th iterates of z^2 + 4032526224142237 r005 Re(z^2+c),c=-8/15+8/23*I,n=37 4032526226583269 h001 (5/7*exp(1)+1/3)/(5/7*exp(2)+4/11) 4032526235536381 r004 Im(z^2+c),c=2/9+5/14*I,z(0)=exp(5/8*I*Pi),n=31 4032526250369687 m004 (15*Sqrt[5])/Pi+125*Pi-Cos[Sqrt[5]*Pi]/6 4032526261803605 r005 Re(z^2+c),c=-49/38+1/41*I,n=8 4032526263358644 a001 305/51841*843^(2/7) 4032526276075272 m001 (Porter-Stephens)/(Khinchin-PlouffeB) 4032526276793075 a001 6765/2*3^(4/25) 4032526293361688 p001 sum((-1)^n/(273*n+241)/(16^n),n=0..infinity) 4032526295797751 r002 20th iterates of z^2 + 4032526297181628 r009 Re(z^3+c),c=-11/25+4/23*I,n=22 4032526311121112 k007 concat of cont frac of 4032526317463701 r008 a(0)=0,K{-n^6,-2+12*n+15*n^2-50*n^3} 4032526352018284 l006 ln(62/3497) 4032526369026720 a007 Real Root Of -742*x^4+928*x^3+882*x^2+782*x-500 4032526387433292 m001 Zeta(1/2)*HardyLittlewoodC5/ZetaR(2) 4032526394868993 a007 Real Root Of -5*x^4+709*x^3+668*x^2+558*x-380 4032526398782898 m001 exp(TreeGrowth2nd)/Cahen^2*Zeta(5)^2 4032526400914457 r005 Im(z^2+c),c=1/4+17/53*I,n=21 4032526403582157 r005 Im(z^2+c),c=-19/34+9/124*I,n=44 4032526406705165 r005 Re(z^2+c),c=-43/82+13/50*I,n=17 4032526407404964 a001 646/1970299*843^(5/7) 4032526430043570 r005 Re(z^2+c),c=-19/34+19/126*I,n=44 4032526435579242 r002 28th iterates of z^2 + 4032526439101670 a001 1597/3010349*843^(9/14) 4032526447564982 r002 9th iterates of z^2 + 4032526455434556 r008 a(0)=4,K{-n^6,-13-40*n^3+19*n^2+3*n} 4032526456409479 r002 52th iterates of z^2 + 4032526460454651 m001 1/Robbin*MinimumGamma*exp(BesselK(1,1)) 4032526473229859 a007 Real Root Of -370*x^4+744*x^3+704*x^2+651*x-416 4032526473449451 m005 (1/3*Pi-1/10)/(7/8*Pi-2/5) 4032526477268826 r005 Im(z^2+c),c=-151/114+1/61*I,n=35 4032526478991170 l006 ln(5279/7901) 4032526478991170 p004 log(7901/5279) 4032526486237142 r005 Re(z^2+c),c=-29/46+19/64*I,n=38 4032526494933796 r002 61th iterates of z^2 + 4032526500091875 a001 64079/21*13^(5/46) 4032526510569795 a001 615/1875749*843^(5/7) 4032526510936497 a001 987/7881196*843^(6/7) 4032526512462924 r005 Im(z^2+c),c=9/56+17/42*I,n=46 4032526521259468 a001 377/39603*322^(1/4) 4032526525383106 a001 5/9349*123^(53/59) 4032526525621341 a001 17711/54018521*843^(5/7) 4032526527817332 a001 11592/35355581*843^(5/7) 4032526528137723 a001 121393/370248451*843^(5/7) 4032526528184468 a001 317811/969323029*843^(5/7) 4032526528191287 a001 610/1860499*843^(5/7) 4032526528192282 a001 2178309/6643838879*843^(5/7) 4032526528192428 a001 5702887/17393796001*843^(5/7) 4032526528192449 a001 3732588/11384387281*843^(5/7) 4032526528192452 a001 39088169/119218851371*843^(5/7) 4032526528192452 a001 9303105/28374454999*843^(5/7) 4032526528192452 a001 66978574/204284540899*843^(5/7) 4032526528192452 a001 701408733/2139295485799*843^(5/7) 4032526528192452 a001 1836311903/5600748293801*843^(5/7) 4032526528192452 a001 1201881744/3665737348901*843^(5/7) 4032526528192452 a001 7778742049/23725150497407*843^(5/7) 4032526528192452 a001 2971215073/9062201101803*843^(5/7) 4032526528192452 a001 567451585/1730726404001*843^(5/7) 4032526528192452 a001 433494437/1322157322203*843^(5/7) 4032526528192452 a001 165580141/505019158607*843^(5/7) 4032526528192453 a001 31622993/96450076809*843^(5/7) 4032526528192454 a001 24157817/73681302247*843^(5/7) 4032526528192462 a001 9227465/28143753123*843^(5/7) 4032526528192517 a001 1762289/5374978561*843^(5/7) 4032526528192897 a001 1346269/4106118243*843^(5/7) 4032526528195502 a001 514229/1568397607*843^(5/7) 4032526528213357 a001 98209/299537289*843^(5/7) 4032526528335736 a001 75025/228826127*843^(5/7) 4032526529174529 a001 28657/87403803*843^(5/7) 4032526534923708 a001 5473/16692641*843^(5/7) 4032526537045658 m001 (3^(1/3)+GAMMA(11/12))/(Robbin-Sarnak) 4032526538891075 a001 24476/55*55^(11/20) 4032526574329168 a001 4181/12752043*843^(5/7) 4032526578480006 r009 Im(z^3+c),c=-59/114+22/47*I,n=12 4032526585383361 r002 12th iterates of z^2 + 4032526597496027 m001 sin(1/5*Pi)*LaplaceLimit^Catalan 4032526601033934 a007 Real Root Of -140*x^4-636*x^3-274*x^2-79*x-548 4032526605183918 m001 1/ln(Rabbit)^2/Niven^2*GAMMA(19/24)^2 4032526617655148 a007 Real Root Of -174*x^4+839*x^3+767*x^2+955*x+320 4032526617697013 r002 64th iterates of z^2 + 4032526629169614 r002 59th iterates of z^2 + 4032526632111037 a007 Real Root Of 354*x^4-207*x^3-125*x^2-182*x-76 4032526642667954 a007 Real Root Of 474*x^4-630*x^3-636*x^2-984*x+529 4032526652018255 a005 (1/sin(111/235*Pi))^978 4032526660208498 r005 Im(z^2+c),c=-7/6+31/140*I,n=18 4032526666675950 r005 Re(z^2+c),c=-15/28+19/53*I,n=40 4032526667623511 r005 Im(z^2+c),c=23/114+13/35*I,n=14 4032526669194177 a001 610/167761*843^(5/14) 4032526687637350 a007 Real Root Of 955*x^4-546*x^3+733*x^2-845*x-521 4032526688037191 r008 a(0)=4,K{-n^6,11+23*n-53*n^2-12*n^3} 4032526700440386 r008 a(0)=4,K{-n^6,37-22*n-31*n^2-15*n^3} 4032526706289371 a007 Real Root Of -238*x^4-991*x^3-79*x^2+65*x-503 4032526708125298 p003 LerchPhi(1/10,1,487/182) 4032526719334633 a007 Real Root Of -63*x^4-16*x^3-89*x^2+980*x-378 4032526726336566 a007 Real Root Of -166*x^4-422*x^3+898*x^2-349*x+213 4032526735587353 m001 (Pi^(1/2)+LandauRamanujan2nd)^exp(Pi) 4032526755210533 a007 Real Root Of 184*x^4+779*x^3+445*x^2+985*x-837 4032526762825959 a007 Real Root Of 200*x^4+823*x^3+37*x^2-306*x-754 4032526763406942 m001 (Kac-Trott)/(ln(2+3^(1/2))+exp(-1/2*Pi)) 4032526774737186 m001 Kolakoski^2/exp(Backhouse)^2*sinh(1) 4032526787773486 m001 (3^(1/3))*exp(FeigenbaumC)^2*GAMMA(1/3)^2 4032526803091737 r002 35th iterates of z^2 + 4032526809909330 a001 74420/1845493 4032526809910504 a004 Fibonacci(15)/Lucas(15)/(1/2+sqrt(5)/2)^5 4032526812722018 a001 2584/12752043*843^(11/14) 4032526815378413 r002 43th iterates of z^2 + 4032526818559561 r005 Im(z^2+c),c=-35/29+9/43*I,n=8 4032526834738754 m001 (BesselI(1,1)+LaplaceLimit)/(Niven+Totient) 4032526844418202 a001 1597/4870847*843^(5/7) 4032526850116130 r009 Re(z^3+c),c=-7/102+25/42*I,n=29 4032526855431109 r005 Re(z^2+c),c=-3/4+13/188*I,n=22 4032526863715050 r008 a(0)=0,K{-n^6,26-53*n^3+38*n^2-36*n} 4032526864433648 r002 30th iterates of z^2 + 4032526888424153 r005 Im(z^2+c),c=-2/27+15/28*I,n=10 4032526898510371 m001 (exp(1/Pi)+gamma(1))/(Khinchin+Landau) 4032526898604044 m001 (Sarnak+ZetaP(2))/(Lehmer-ln(2)/ln(10)) 4032526902275306 r008 a(0)=4,K{-n^6,61-30*n-61*n^2-n^3} 4032526915886937 a001 6765/33385282*843^(11/14) 4032526916253562 a001 329/4250681*843^(13/14) 4032526927368991 r009 Re(z^3+c),c=-7/106+29/52*I,n=27 4032526930938495 a001 17711/87403803*843^(11/14) 4032526933134488 a001 46368/228826127*843^(11/14) 4032526933454879 a001 121393/599074578*843^(11/14) 4032526933501624 a001 317811/1568397607*843^(11/14) 4032526933508443 a001 832040/4106118243*843^(11/14) 4032526933509438 a001 987/4870846*843^(11/14) 4032526933509584 a001 5702887/28143753123*843^(11/14) 4032526933509605 a001 14930352/73681302247*843^(11/14) 4032526933509608 a001 39088169/192900153618*843^(11/14) 4032526933509608 a001 102334155/505019158607*843^(11/14) 4032526933509608 a001 267914296/1322157322203*843^(11/14) 4032526933509608 a001 701408733/3461452808002*843^(11/14) 4032526933509608 a001 1836311903/9062201101803*843^(11/14) 4032526933509608 a001 4807526976/23725150497407*843^(11/14) 4032526933509608 a001 2971215073/14662949395604*843^(11/14) 4032526933509608 a001 1134903170/5600748293801*843^(11/14) 4032526933509608 a001 433494437/2139295485799*843^(11/14) 4032526933509608 a001 165580141/817138163596*843^(11/14) 4032526933509609 a001 63245986/312119004989*843^(11/14) 4032526933509610 a001 24157817/119218851371*843^(11/14) 4032526933509618 a001 9227465/45537549124*843^(11/14) 4032526933509673 a001 3524578/17393796001*843^(11/14) 4032526933510053 a001 1346269/6643838879*843^(11/14) 4032526933512658 a001 514229/2537720636*843^(11/14) 4032526933530513 a001 196418/969323029*843^(11/14) 4032526933652892 a001 75025/370248451*843^(11/14) 4032526934491686 a001 28657/141422324*843^(11/14) 4032526940240870 a001 10946/54018521*843^(11/14) 4032526970229302 m001 Trott^2/ln(ArtinRank2)/cos(Pi/5) 4032526975065886 m005 (17/4+1/4*5^(1/2))/(3/7*Catalan+4/5) 4032526979646363 a001 4181/20633239*843^(11/14) 4032526990756573 m001 gamma(3)*(GAMMA(5/6)+GaussAGM) 4032526991431088 p004 log(29573/19759) 4032526993601420 m001 (cos(1)-ln(gamma))/(-CareFree+Magata) 4032527010778332 m001 (MasserGramain+Thue)/(Zeta(1,-1)-exp(-1/2*Pi)) 4032527016022861 m001 FransenRobinson+GAMMA(13/24)^HardyLittlewoodC5 4032527017083499 a007 Real Root Of -215*x^4+121*x^3-860*x^2+41*x+170 4032527020024561 r009 Im(z^3+c),c=-35/94+25/57*I,n=6 4032527027437351 r005 Re(z^2+c),c=-35/62+13/57*I,n=22 4032527046037871 a001 233/439204*521^(9/13) 4032527052744775 a007 Real Root Of -294*x^4-915*x^3+954*x^2-727*x-703 4032527072393165 r005 Im(z^2+c),c=33/94+25/59*I,n=24 4032527074313334 a001 610/271443*843^(3/7) 4032527080383925 r005 Re(z^2+c),c=-19/34+8/77*I,n=22 4032527083662430 r005 Im(z^2+c),c=-1/90+19/28*I,n=6 4032527091884868 r005 Im(z^2+c),c=7/38+14/27*I,n=30 4032527094226807 a007 Real Root Of -117*x^4-607*x^3-415*x^2+486*x-157 4032527105921601 q001 967/2398 4032527120197948 m001 HardyLittlewoodC5^(cos(1/5*Pi)/Kolakoski) 4032527123824261 a007 Real Root Of 717*x^4+801*x^3-548*x^2-748*x+31 4032527131466980 r009 Im(z^3+c),c=-1/26+9/20*I,n=3 4032527151676742 r005 Im(z^2+c),c=1/98+22/43*I,n=63 4032527152961865 b008 Sech[ArcSec[4^Pi]] 4032527176891952 r009 Im(z^3+c),c=-21/94+26/59*I,n=24 4032527177950950 r009 Im(z^3+c),c=-21/46+19/60*I,n=9 4032527178252236 l006 ln(1810/2709) 4032527181451458 a007 Real Root Of -811*x^4+483*x^3-232*x^2+417*x+259 4032527181750808 a008 Real Root of x^4+2*x^2-60*x-55 4032527182229076 r005 Re(z^2+c),c=-31/56+9/35*I,n=25 4032527197518440 a007 Real Root Of 185*x^4-513*x^3-30*x^2-906*x-399 4032527201999937 m005 (1/2*5^(1/2)+5/11)/(1/11*exp(1)+1/7) 4032527204475780 r009 Im(z^3+c),c=-39/82+11/34*I,n=29 4032527206657408 r005 Re(z^2+c),c=-4/7+21/71*I,n=23 4032527211994582 r009 Im(z^3+c),c=-21/106+29/63*I,n=5 4032527218039237 a001 2584/20633239*843^(6/7) 4032527232396346 r009 Im(z^3+c),c=-21/94+26/59*I,n=23 4032527233825233 r005 Im(z^2+c),c=-151/114+4/13*I,n=4 4032527235680136 m005 (1/3*2^(1/2)-1/4)/(47/22+3/2*5^(1/2)) 4032527239861818 r009 Im(z^3+c),c=-53/110+11/57*I,n=4 4032527243310728 m005 (1/2*Pi-3/7)/(7/11*Pi+5/6) 4032527244462094 m001 Rabbit*ln(GlaisherKinkelin)/Robbin^2 4032527249735625 a001 1597/7881196*843^(11/14) 4032527252026940 a001 1/7*(1/2*5^(1/2)+1/2)^11*3^(7/22) 4032527254437699 r005 Im(z^2+c),c=3/10+3/11*I,n=37 4032527265661392 m001 (exp(Pi)+5^(1/2))/(BesselK(1,1)+Trott2nd) 4032527280400555 a005 (1/cos(5/114*Pi))^630 4032527285209168 m001 (-ln(Pi)+gamma(1))/(ln(2)/ln(10)+exp(1)) 4032527285375974 r005 Im(z^2+c),c=-21/58+35/62*I,n=38 4032527294111475 r009 Re(z^3+c),c=-53/102+11/43*I,n=17 4032527295256233 m001 ln(FeigenbaumD)^2*ArtinRank2^2/Trott^2 4032527295708928 m001 (Khinchin-MadelungNaCl)/(Bloch-CareFree) 4032527301038538 a007 Real Root Of 641*x^4+226*x^3+95*x^2-683*x-293 4032527302713705 a007 Real Root Of -196*x^4-845*x^3-69*x^2+582*x-113 4032527313720891 r005 Re(z^2+c),c=-6/11+16/63*I,n=39 4032527321204137 a001 6765/54018521*843^(6/7) 4032527321570782 a004 Fibonacci(16)*Lucas(14)/(1/2+sqrt(5)/2)^35 4032527326355442 r009 Re(z^3+c),c=-27/56+11/50*I,n=23 4032527336255693 a001 17711/141422324*843^(6/7) 4032527336690157 m001 1/GaussAGM(1,1/sqrt(2))^2/sin(Pi/5)^2 4032527337493196 r002 42th iterates of z^2 + 4032527338451685 a001 46368/370248451*843^(6/7) 4032527338772076 a001 121393/969323029*843^(6/7) 4032527338818820 a001 317811/2537720636*843^(6/7) 4032527338825640 a001 832040/6643838879*843^(6/7) 4032527338826635 a001 2178309/17393796001*843^(6/7) 4032527338826780 a001 1597/12752044*843^(6/7) 4032527338826802 a001 14930352/119218851371*843^(6/7) 4032527338826805 a001 39088169/312119004989*843^(6/7) 4032527338826805 a001 102334155/817138163596*843^(6/7) 4032527338826805 a001 267914296/2139295485799*843^(6/7) 4032527338826805 a001 701408733/5600748293801*843^(6/7) 4032527338826805 a001 1836311903/14662949395604*843^(6/7) 4032527338826805 a001 2971215073/23725150497407*843^(6/7) 4032527338826805 a001 1134903170/9062201101803*843^(6/7) 4032527338826805 a001 433494437/3461452808002*843^(6/7) 4032527338826805 a001 165580141/1322157322203*843^(6/7) 4032527338826805 a001 63245986/505019158607*843^(6/7) 4032527338826807 a001 24157817/192900153618*843^(6/7) 4032527338826815 a001 9227465/73681302247*843^(6/7) 4032527338826870 a001 3524578/28143753123*843^(6/7) 4032527338827250 a001 1346269/10749957122*843^(6/7) 4032527338829855 a001 514229/4106118243*843^(6/7) 4032527338847710 a001 196418/1568397607*843^(6/7) 4032527338970088 a001 75025/599074578*843^(6/7) 4032527339078355 r005 Re(z^2+c),c=37/122+1/19*I,n=48 4032527339717702 m005 (1/3*Pi-1/7)/(1/3*gamma-5/12) 4032527339808883 a001 28657/228826127*843^(6/7) 4032527345558066 a001 10946/87403803*843^(6/7) 4032527347871962 m008 (2/3*Pi-5)/(3/4*Pi^6-1/2) 4032527348955678 a007 Real Root Of -722*x^4+34*x^3+281*x^2+851*x-372 4032527361783650 r008 a(0)=4,K{-n^6,-78-69*n^3+74*n^2+42*n} 4032527365446975 r009 Im(z^3+c),c=-35/102+35/53*I,n=63 4032527375063870 s002 sum(A100166[n]/(n^2*pi^n-1),n=1..infinity) 4032527379040920 a007 Real Root Of 144*x^4+268*x^3-218*x^2-471*x+204 4032527384963551 a001 4181/33385282*843^(6/7) 4032527391219652 m001 exp(-1/2*Pi)/(ArtinRank2^Tribonacci) 4032527398575314 r005 Re(z^2+c),c=-5/94+18/25*I,n=58 4032527409459880 r009 Im(z^3+c),c=-21/94+26/59*I,n=26 4032527412059282 m001 (ArtinRank2+Weierstrass)/(Si(Pi)+GAMMA(11/12)) 4032527414487577 h001 (6/7*exp(1)+1/9)/(2/11*exp(1)+1/9) 4032527421515187 m001 1/exp(gamma)/GAMMA(2/3)^2*log(2+sqrt(3)) 4032527448822720 r008 a(0)=4,K{-n^6,-58-51*n^3+30*n^2+48*n} 4032527459686733 r008 a(0)=4,K{-n^6,-32-53*n^3+49*n^2+5*n} 4032527479706179 a001 305/219602*843^(1/2) 4032527488753585 r009 Im(z^3+c),c=-43/126+2/5*I,n=23 4032527492344574 r005 Re(z^2+c),c=29/118+19/45*I,n=56 4032527497663870 r008 a(0)=4,K{-n^6,-10-49*n^3+48*n^2-20*n} 4032527510613844 r002 24th iterates of z^2 + 4032527515877887 r005 Re(z^2+c),c=-53/94+4/49*I,n=41 4032527519313241 m001 (ln(1+sqrt(2))+1/3)/(GAMMA(1/3)+1/3) 4032527527064196 r005 Im(z^2+c),c=-17/98+33/41*I,n=33 4032527527065896 a007 Real Root Of 84*x^4+291*x^3-114*x^2+560*x+982 4032527539254978 m001 (Zeta(1,-1)-Riemann3rdZero)/GolombDickman 4032527543060396 h001 (9/11*exp(2)+3/5)/(1/10*exp(2)+10/11) 4032527555893272 r009 Im(z^3+c),c=-21/94+26/59*I,n=19 4032527565510119 r005 Re(z^2+c),c=-41/78+2/5*I,n=48 4032527567142815 r008 a(0)=4,K{-n^6,-2-38*n^3+19*n^2-10*n} 4032527579374498 a007 Real Root Of -756*x^4-803*x^3-241*x^2+884*x+363 4032527588887287 r005 Im(z^2+c),c=-45/82+12/59*I,n=6 4032527598252556 r005 Re(z^2+c),c=-33/31+4/13*I,n=10 4032527605354448 r008 a(0)=4,K{-n^6,22-42*n+25*n^2-36*n^3} 4032527609906491 h001 (11/12*exp(2)+1/8)/(7/12*exp(1)+1/8) 4032527613374207 a007 Real Root Of -177*x^4-673*x^3+95*x^2-117*x+656 4032527621151798 r008 a(0)=4,K{-n^6,-30*n^3-4*n^2+3*n} 4032527623356449 a001 1292/16692641*843^(13/14) 4032527628899988 m002 Pi^6/(9*E^Pi*Log[Pi]) 4032527632312480 a007 Real Root Of -78*x^4+189*x^3-582*x^2+249*x+11 4032527633760311 r002 56th iterates of z^2 + 4032527633760311 r002 56th iterates of z^2 + 4032527635105381 r008 a(0)=4,K{-n^6,-28*n^3-10*n^2+7*n} 4032527643097258 m001 (Mills-Riemann2ndZero)/(Pi+MadelungNaCl) 4032527644304051 r005 Im(z^2+c),c=17/126+17/40*I,n=64 4032527655052764 a001 1597/12752043*843^(6/7) 4032527661748753 r008 a(0)=4,K{-n^6,28-29*n^3+7*n^2-37*n} 4032527671868006 r008 a(0)=4,K{-n^6,-23*n^3-25*n^2+17*n} 4032527714339412 a001 55*3571^(21/40) 4032527716138295 m001 1/exp(GAMMA(5/6))/Lehmer*exp(1)^2 4032527721229312 m005 (1/2*Pi+7/11)/(1/6*Catalan-7/10) 4032527726521370 a001 2255/29134601*843^(13/14) 4032527731240645 r008 a(0)=4,K{-n^6,-10+50*n-57*n^2-14*n^3} 4032527731923324 m001 (GAMMA(2/3)+GAMMA(7/12))/(Sarnak-ZetaQ(3)) 4032527737910014 r009 Im(z^3+c),c=-21/94+26/59*I,n=29 4032527739691831 r005 Re(z^2+c),c=-27/44+14/59*I,n=22 4032527741572929 a001 17711/228826127*843^(13/14) 4032527743768922 a001 2576/33281921*843^(13/14) 4032527744089313 a001 121393/1568397607*843^(13/14) 4032527744136058 a001 105937/1368706081*843^(13/14) 4032527744142878 a001 416020/5374978561*843^(13/14) 4032527744143873 a001 726103/9381251041*843^(13/14) 4032527744144018 a001 5702887/73681302247*843^(13/14) 4032527744144039 a001 2584/33385281*843^(13/14) 4032527744144042 a001 39088169/505019158607*843^(13/14) 4032527744144043 a001 34111385/440719107401*843^(13/14) 4032527744144043 a001 133957148/1730726404001*843^(13/14) 4032527744144043 a001 233802911/3020733700601*843^(13/14) 4032527744144043 a001 1836311903/23725150497407*843^(13/14) 4032527744144043 a001 567451585/7331474697802*843^(13/14) 4032527744144043 a001 433494437/5600748293801*843^(13/14) 4032527744144043 a001 165580141/2139295485799*843^(13/14) 4032527744144043 a001 31622993/408569081798*843^(13/14) 4032527744144044 a001 24157817/312119004989*843^(13/14) 4032527744144052 a001 9227465/119218851371*843^(13/14) 4032527744144108 a001 1762289/22768774562*843^(13/14) 4032527744144488 a001 1346269/17393796001*843^(13/14) 4032527744147093 a001 514229/6643838879*843^(13/14) 4032527744164947 a001 98209/1268860318*843^(13/14) 4032527744287326 a001 75025/969323029*843^(13/14) 4032527745126121 a001 28657/370248451*843^(13/14) 4032527746284368 a007 Real Root Of -94*x^4-439*x^3-522*x^2-883*x+997 4032527746649395 r008 a(0)=4,K{-n^6,-36-24*n+17*n^2+13*n^3} 4032527750664523 a001 2584/123*9349^(23/40) 4032527750875305 a001 5473/70711162*843^(13/14) 4032527759329233 r008 a(0)=0,K{-n^6,6-47*n^3+10*n^2+6*n} 4032527760545835 r008 a(0)=4,K{-n^6,28-13*n-29*n^2-17*n^3} 4032527781683099 r009 Im(z^3+c),c=-21/94+26/59*I,n=31 4032527782296108 a007 Real Root Of -50*x^4+803*x^3-781*x^2+191*x+258 4032527790280798 a001 4181/54018521*843^(13/14) 4032527792824565 r009 Im(z^3+c),c=-21/94+26/59*I,n=34 4032527795342471 r005 Im(z^2+c),c=27/74+5/51*I,n=52 4032527796347009 r009 Im(z^3+c),c=-21/94+26/59*I,n=36 4032527796358234 r009 Im(z^3+c),c=-21/94+26/59*I,n=37 4032527796460633 r009 Im(z^3+c),c=-21/94+26/59*I,n=39 4032527796628305 r009 Im(z^3+c),c=-21/94+26/59*I,n=42 4032527796649724 r009 Im(z^3+c),c=-21/94+26/59*I,n=44 4032527796655532 r009 Im(z^3+c),c=-21/94+26/59*I,n=47 4032527796657289 r009 Im(z^3+c),c=-21/94+26/59*I,n=49 4032527796657314 r009 Im(z^3+c),c=-21/94+26/59*I,n=50 4032527796657358 r009 Im(z^3+c),c=-21/94+26/59*I,n=52 4032527796657444 r009 Im(z^3+c),c=-21/94+26/59*I,n=55 4032527796657454 r009 Im(z^3+c),c=-21/94+26/59*I,n=57 4032527796657458 r009 Im(z^3+c),c=-21/94+26/59*I,n=60 4032527796657458 r009 Im(z^3+c),c=-21/94+26/59*I,n=62 4032527796657458 r009 Im(z^3+c),c=-21/94+26/59*I,n=63 4032527796657459 r009 Im(z^3+c),c=-21/94+26/59*I,n=64 4032527796657459 r009 Im(z^3+c),c=-21/94+26/59*I,n=58 4032527796657459 r009 Im(z^3+c),c=-21/94+26/59*I,n=61 4032527796657460 r009 Im(z^3+c),c=-21/94+26/59*I,n=59 4032527796657465 r009 Im(z^3+c),c=-21/94+26/59*I,n=54 4032527796657469 r009 Im(z^3+c),c=-21/94+26/59*I,n=56 4032527796657488 r009 Im(z^3+c),c=-21/94+26/59*I,n=53 4032527796657632 r009 Im(z^3+c),c=-21/94+26/59*I,n=51 4032527796657676 r009 Im(z^3+c),c=-21/94+26/59*I,n=45 4032527796658378 r009 Im(z^3+c),c=-21/94+26/59*I,n=48 4032527796659681 r009 Im(z^3+c),c=-21/94+26/59*I,n=46 4032527796671222 r009 Im(z^3+c),c=-21/94+26/59*I,n=41 4032527796677552 r009 Im(z^3+c),c=-21/94+26/59*I,n=43 4032527796714203 r009 Im(z^3+c),c=-21/94+26/59*I,n=40 4032527796812765 r009 Im(z^3+c),c=-21/94+26/59*I,n=32 4032527797004169 r009 Im(z^3+c),c=-21/94+26/59*I,n=38 4032527798454380 r009 Im(z^3+c),c=-21/94+26/59*I,n=35 4032527801184124 r009 Im(z^3+c),c=-21/94+26/59*I,n=33 4032527803628940 m001 (Tetranacci-Trott2nd)/(Conway-FeigenbaumB) 4032527811956292 a007 Real Root Of -916*x^4+617*x^3+284*x^2-6*x-60 4032527812516295 r005 Im(z^2+c),c=-15/86+33/56*I,n=21 4032527816864913 m001 ln(2+3^(1/2))-LaplaceLimit^Ei(1,1) 4032527817771489 r008 a(0)=4,K{-n^6,46-34*n-29*n^2-14*n^3} 4032527824480610 r008 a(0)=4,K{-n^6,56-15*n^3-21*n^2-51*n} 4032527826744223 r009 Im(z^3+c),c=-21/94+26/59*I,n=28 4032527829030213 m001 Artin^LandauRamanujan2nd*TravellingSalesman 4032527835277495 r005 Re(z^2+c),c=21/52+3/14*I,n=49 4032527836418350 r009 Im(z^3+c),c=-21/94+26/59*I,n=30 4032527837197572 r005 Im(z^2+c),c=3/26+26/51*I,n=18 4032527839674727 l006 ln(5581/8353) 4032527839674727 p004 log(8353/5581) 4032527840764394 m001 (MertensB3-RenyiParking)/(Zeta(1/2)-gamma(2)) 4032527845446347 m001 1/cosh(1)/GAMMA(1/6)*exp(sqrt(Pi))^2 4032527857659700 r009 Re(z^3+c),c=-11/21+17/62*I,n=58 4032527868317799 m006 (3/4*Pi+1/6)/(2/5*exp(Pi)-3) 4032527871275009 m001 1/Ei(1)^2*exp(Champernowne)^3 4032527872107293 r005 Im(z^2+c),c=-3/25+35/62*I,n=25 4032527877497292 a001 55*24476^(17/40) 4032527880513000 m005 (1/2*Pi+1/9)/(4/5*2^(1/2)-5/7) 4032527881497917 m001 Stephens^TwinPrimes/(BesselI(0,2)^TwinPrimes) 4032527884994541 a001 610/710647*843^(4/7) 4032527887370135 a003 cos(Pi*11/75)*cos(Pi*13/37) 4032527888703048 m001 1/exp(GAMMA(7/12))^2*ArtinRank2^2/LambertW(1) 4032527889672855 r005 Re(z^2+c),c=-55/102+13/45*I,n=20 4032527890282492 a001 305/12238*322^(1/12) 4032527904685053 r009 Im(z^3+c),c=-21/94+26/59*I,n=27 4032527910229388 m001 1/exp(FeigenbaumD)^2/ArtinRank2^2/cosh(1)^2 4032527927564783 r005 Im(z^2+c),c=1/10+23/51*I,n=44 4032527934429591 a003 cos(Pi*10/21)-cos(Pi*53/111) 4032527938824055 a007 Real Root Of 76*x^4-895*x^3+753*x^2-570*x-413 4032527943475876 r002 45th iterates of z^2 + 4032527958026321 a007 Real Root Of -471*x^4-420*x^3+7*x^2+694*x-241 4032527964126100 a007 Real Root Of 674*x^4-511*x^3-547*x^2-973*x+497 4032527979262141 a003 sin(Pi*18/79)-sin(Pi*13/53) 4032527987488935 r008 a(0)=4,K{-n^6,50-69*n^2-12*n} 4032528002869014 m001 (ln(2^(1/2)+1)-Niven)/(Pi-ln(3)) 4032528012289185 v002 sum(1/(3^n+(12*n^2-11*n+57)),n=1..infinity) 4032528014363137 m001 (StolarskyHarborth+ZetaQ(3))/(Otter-Sarnak) 4032528025736102 h001 (1/6*exp(2)+1/12)/(5/12*exp(2)+2/11) 4032528025888969 m001 (2^(1/2))^Zeta(1/2)*ln(2+3^(1/2))^Zeta(1/2) 4032528025888969 m001 sqrt(2)^Zeta(1/2)*ln(2+sqrt(3))^Zeta(1/2) 4032528028673719 a004 Fibonacci(18)*Lucas(14)/(1/2+sqrt(5)/2)^37 4032528035409282 a007 Real Root Of -626*x^4+780*x^3-882*x^2-469*x+22 4032528043200533 r005 Re(z^2+c),c=-29/44+3/56*I,n=12 4032528050459110 a008 Real Root of x^4-2*x^3-x^2-186*x-75 4032528052436785 m001 (Pi+3^(1/2))/(Artin+GaussAGM) 4032528060370067 a001 1597/20633239*843^(13/14) 4032528087312902 p001 sum((-1)^n/(372*n+247)/(100^n),n=0..infinity) 4032528092887743 r002 31th iterates of z^2 + 4032528097629300 r009 Im(z^3+c),c=-17/106+5/11*I,n=19 4032528103324563 a001 843/4181*8^(1/3) 4032528105345177 r002 38th iterates of z^2 + 4032528107134569 r002 12th iterates of z^2 + 4032528120195061 a001 233/9349*199^(1/11) 4032528120936122 r005 Im(z^2+c),c=2/9+18/49*I,n=14 4032528125816625 m001 (OneNinth-Riemann2ndZero)/(KhinchinLevy-Niven) 4032528130284780 a001 987/64079*322^(1/6) 4032528131838647 a004 Fibonacci(20)*Lucas(14)/(1/2+sqrt(5)/2)^39 4032528132232145 a007 Real Root Of 273*x^4+946*x^3-584*x^2-45*x-841 4032528146890208 a004 Fibonacci(22)*Lucas(14)/(1/2+sqrt(5)/2)^41 4032528147449688 r005 Re(z^2+c),c=-37/66+7/52*I,n=36 4032528149086201 a004 Fibonacci(24)*Lucas(14)/(1/2+sqrt(5)/2)^43 4032528149406592 a004 Fibonacci(26)*Lucas(14)/(1/2+sqrt(5)/2)^45 4032528149453336 a004 Fibonacci(28)*Lucas(14)/(1/2+sqrt(5)/2)^47 4032528149460156 a004 Fibonacci(30)*Lucas(14)/(1/2+sqrt(5)/2)^49 4032528149461151 a004 Fibonacci(32)*Lucas(14)/(1/2+sqrt(5)/2)^51 4032528149461296 a004 Fibonacci(34)*Lucas(14)/(1/2+sqrt(5)/2)^53 4032528149461317 a004 Fibonacci(36)*Lucas(14)/(1/2+sqrt(5)/2)^55 4032528149461320 a004 Fibonacci(38)*Lucas(14)/(1/2+sqrt(5)/2)^57 4032528149461321 a004 Fibonacci(40)*Lucas(14)/(1/2+sqrt(5)/2)^59 4032528149461321 a004 Fibonacci(42)*Lucas(14)/(1/2+sqrt(5)/2)^61 4032528149461321 a004 Fibonacci(44)*Lucas(14)/(1/2+sqrt(5)/2)^63 4032528149461321 a004 Fibonacci(46)*Lucas(14)/(1/2+sqrt(5)/2)^65 4032528149461321 a004 Fibonacci(48)*Lucas(14)/(1/2+sqrt(5)/2)^67 4032528149461321 a004 Fibonacci(50)*Lucas(14)/(1/2+sqrt(5)/2)^69 4032528149461321 a004 Fibonacci(52)*Lucas(14)/(1/2+sqrt(5)/2)^71 4032528149461321 a004 Fibonacci(54)*Lucas(14)/(1/2+sqrt(5)/2)^73 4032528149461321 a004 Fibonacci(56)*Lucas(14)/(1/2+sqrt(5)/2)^75 4032528149461321 a004 Fibonacci(58)*Lucas(14)/(1/2+sqrt(5)/2)^77 4032528149461321 a004 Fibonacci(60)*Lucas(14)/(1/2+sqrt(5)/2)^79 4032528149461321 a004 Fibonacci(62)*Lucas(14)/(1/2+sqrt(5)/2)^81 4032528149461321 a004 Fibonacci(64)*Lucas(14)/(1/2+sqrt(5)/2)^83 4032528149461321 a004 Fibonacci(66)*Lucas(14)/(1/2+sqrt(5)/2)^85 4032528149461321 a004 Fibonacci(68)*Lucas(14)/(1/2+sqrt(5)/2)^87 4032528149461321 a004 Fibonacci(70)*Lucas(14)/(1/2+sqrt(5)/2)^89 4032528149461321 a004 Fibonacci(72)*Lucas(14)/(1/2+sqrt(5)/2)^91 4032528149461321 a004 Fibonacci(74)*Lucas(14)/(1/2+sqrt(5)/2)^93 4032528149461321 a004 Fibonacci(76)*Lucas(14)/(1/2+sqrt(5)/2)^95 4032528149461321 a004 Fibonacci(78)*Lucas(14)/(1/2+sqrt(5)/2)^97 4032528149461321 a004 Fibonacci(80)*Lucas(14)/(1/2+sqrt(5)/2)^99 4032528149461321 a004 Fibonacci(81)*Lucas(14)/(1/2+sqrt(5)/2)^100 4032528149461321 a004 Fibonacci(79)*Lucas(14)/(1/2+sqrt(5)/2)^98 4032528149461321 a004 Fibonacci(77)*Lucas(14)/(1/2+sqrt(5)/2)^96 4032528149461321 a004 Fibonacci(75)*Lucas(14)/(1/2+sqrt(5)/2)^94 4032528149461321 a004 Fibonacci(73)*Lucas(14)/(1/2+sqrt(5)/2)^92 4032528149461321 a004 Fibonacci(71)*Lucas(14)/(1/2+sqrt(5)/2)^90 4032528149461321 a004 Fibonacci(69)*Lucas(14)/(1/2+sqrt(5)/2)^88 4032528149461321 a004 Fibonacci(67)*Lucas(14)/(1/2+sqrt(5)/2)^86 4032528149461321 a004 Fibonacci(65)*Lucas(14)/(1/2+sqrt(5)/2)^84 4032528149461321 a004 Fibonacci(63)*Lucas(14)/(1/2+sqrt(5)/2)^82 4032528149461321 a004 Fibonacci(61)*Lucas(14)/(1/2+sqrt(5)/2)^80 4032528149461321 a004 Fibonacci(59)*Lucas(14)/(1/2+sqrt(5)/2)^78 4032528149461321 a004 Fibonacci(57)*Lucas(14)/(1/2+sqrt(5)/2)^76 4032528149461321 a004 Fibonacci(55)*Lucas(14)/(1/2+sqrt(5)/2)^74 4032528149461321 a004 Fibonacci(53)*Lucas(14)/(1/2+sqrt(5)/2)^72 4032528149461321 a004 Fibonacci(51)*Lucas(14)/(1/2+sqrt(5)/2)^70 4032528149461321 a004 Fibonacci(49)*Lucas(14)/(1/2+sqrt(5)/2)^68 4032528149461321 a004 Fibonacci(47)*Lucas(14)/(1/2+sqrt(5)/2)^66 4032528149461321 a004 Fibonacci(45)*Lucas(14)/(1/2+sqrt(5)/2)^64 4032528149461321 a004 Fibonacci(43)*Lucas(14)/(1/2+sqrt(5)/2)^62 4032528149461321 a004 Fibonacci(41)*Lucas(14)/(1/2+sqrt(5)/2)^60 4032528149461321 a004 Fibonacci(39)*Lucas(14)/(1/2+sqrt(5)/2)^58 4032528149461322 a004 Fibonacci(37)*Lucas(14)/(1/2+sqrt(5)/2)^56 4032528149461330 a004 Fibonacci(35)*Lucas(14)/(1/2+sqrt(5)/2)^54 4032528149461386 a004 Fibonacci(33)*Lucas(14)/(1/2+sqrt(5)/2)^52 4032528149461766 a004 Fibonacci(31)*Lucas(14)/(1/2+sqrt(5)/2)^50 4032528149464371 a004 Fibonacci(29)*Lucas(14)/(1/2+sqrt(5)/2)^48 4032528149469306 a001 2/377*(1/2+1/2*5^(1/2))^9 4032528149482226 a004 Fibonacci(27)*Lucas(14)/(1/2+sqrt(5)/2)^46 4032528149604604 a004 Fibonacci(25)*Lucas(14)/(1/2+sqrt(5)/2)^44 4032528150443399 a004 Fibonacci(23)*Lucas(14)/(1/2+sqrt(5)/2)^42 4032528156192583 a004 Fibonacci(21)*Lucas(14)/(1/2+sqrt(5)/2)^40 4032528157143475 l006 ln(3771/5644) 4032528161466231 h001 (2/3*exp(1)+5/7)/(1/12*exp(1)+2/5) 4032528174216765 r009 Im(z^3+c),c=-51/106+7/22*I,n=60 4032528174996670 m001 (-gamma(3)+GolombDickman)/(gamma+cos(1/12*Pi)) 4032528177847688 m001 (Pi-gamma(3))/(FeigenbaumB-ZetaQ(2)) 4032528188725187 a001 233/271443*521^(8/13) 4032528195598079 a004 Fibonacci(19)*Lucas(14)/(1/2+sqrt(5)/2)^38 4032528201672151 a001 199/377*4181^(13/25) 4032528220469378 r005 Re(z^2+c),c=13/118+14/57*I,n=12 4032528221306491 m001 TwinPrimes/ln(Rabbit)^2*GAMMA(1/3)^2 4032528230826525 r005 Re(z^2+c),c=-31/52+1/51*I,n=14 4032528245473849 a007 Real Root Of 127*x^4+227*x^3-921*x^2+909*x-55 4032528258544614 r002 2th iterates of z^2 + 4032528258937368 r002 25th iterates of z^2 + 4032528285806693 r002 18th iterates of z^2 + 4032528290322869 a001 610/1149851*843^(9/14) 4032528302006478 r005 Re(z^2+c),c=-13/25+25/36*I,n=12 4032528336840500 a007 Real Root Of -605*x^4-390*x^3+934*x^2+520*x-320 4032528343151454 r002 20th iterates of z^2 + 4032528345087754 r009 Re(z^3+c),c=-43/90+11/37*I,n=9 4032528346985472 m001 exp(BesselK(1,1))/RenyiParking*GAMMA(17/24)^2 4032528351665836 a008 Real Root of x^4-2*x^3+3*x^2-2*x-174 4032528358687372 m001 (Otter+ZetaQ(4))/(Kac+OneNinth) 4032528371408130 r008 a(0)=4,K{-n^6,-57-5*n^3+61*n^2-29*n} 4032528374620140 a007 Real Root Of 128*x^4+726*x^3+782*x^2-77*x+733 4032528380955575 r005 Re(z^2+c),c=-8/15+12/37*I,n=54 4032528383665269 r008 a(0)=4,K{-n^6,-63-18*n+55*n^2-4*n^3} 4032528397612693 m005 (1/2*Zeta(3)-5/7)/(1/11*gamma-1/3) 4032528399458148 p004 log(23633/419) 4032528404005552 r004 Im(z^2+c),c=-1/26+6/11*I,z(0)=I,n=28 4032528419207242 a007 Real Root Of -82*x^4-153*x^3+464*x^2-988*x+121 4032528421816086 r002 42th iterates of z^2 + 4032528423399182 a007 Real Root Of -59*x^4-52*x^3+660*x^2-124*x+959 4032528439187634 r005 Im(z^2+c),c=1/94+20/39*I,n=19 4032528441166341 s001 sum(exp(-Pi/2)^n*A149509[n],n=1..infinity) 4032528463676154 h001 (10/11*exp(2)+2/5)/(3/7*exp(1)+3/5) 4032528465687368 a004 Fibonacci(17)*Lucas(14)/(1/2+sqrt(5)/2)^36 4032528466249027 l006 ln(5732/8579) 4032528480841816 m001 (CareFree+Conway)/(GaussAGM-MertensB3) 4032528486592583 m001 GAMMA(5/12)^sqrt(1+sqrt(3))-log(gamma) 4032528490289562 r009 Im(z^3+c),c=-21/94+26/59*I,n=25 4032528498983884 a007 Real Root Of 75*x^4+484*x^3+484*x^2-959*x+168 4032528505845266 r005 Re(z^2+c),c=-47/86+19/63*I,n=30 4032528508014552 m005 (1/2*exp(1)+9/10)/(2/3*Catalan-2/3) 4032528521235996 m001 (Zeta(1,2)-ArtinRank2)/(ln(2)-ln(3)) 4032528536585587 m001 (-Trott2nd+ZetaP(2))/(Psi(1,1/3)+BesselJ(1,1)) 4032528537208381 a001 4/75025*10946^(20/43) 4032528549239340 m001 BesselK(1,1)/(Grothendieck^ln(2)) 4032528564522365 a001 73681302247/610*144^(12/17) 4032528569172374 a007 Real Root Of 676*x^4+437*x^3-222*x^2-440*x+167 4032528571160940 m001 Khintchine^2/ln(Bloch)/cosh(1)^2 4032528571708890 r008 a(0)=4,K{-n^6,-19-13*n+53*n^2-52*n^3} 4032528578625871 r002 33th iterates of z^2 + 4032528582080731 m005 (5/6*Catalan+5)/(1/2*Pi-3) 4032528584254915 a001 2537720636/377*144^(14/17) 4032528588628637 r002 39th iterates of z^2 + 4032528601115134 m005 (1/2*exp(1)-6/7)/(2/7*3^(1/2)+3/4) 4032528617513835 m001 1/GAMMA(7/24)*FeigenbaumD^2*ln(sin(1)) 4032528618393118 m001 FeigenbaumD*(1-FeigenbaumAlpha) 4032528620120775 m001 1/Lehmer*FransenRobinson/ln(Rabbit)^2 4032528628689733 r005 Im(z^2+c),c=7/50+1/37*I,n=6 4032528629243924 a007 Real Root Of -16*x^4-624*x^3+875*x^2+803*x-10 4032528642113326 r008 a(0)=4,K{-n^6,-13-40*n^3+20*n^2+2*n} 4032528644054828 r008 a(0)=4,K{-n^6,19-56*n+51*n^2-45*n^3} 4032528644180629 r005 Im(z^2+c),c=19/70+10/33*I,n=62 4032528645387535 m001 1/FeigenbaumDelta/ln(Backhouse)/Riemann1stZero 4032528645513911 a007 Real Root Of -633*x^4+541*x^3+513*x^2+136*x-157 4032528660063591 r009 Re(z^3+c),c=-21/52+35/57*I,n=17 4032528692227602 p001 sum(1/(328*n+263)/(8^n),n=0..infinity) 4032528694142417 m001 ErdosBorwein/(ZetaP(2)-ZetaQ(2)) 4032528694728346 r005 Re(z^2+c),c=-19/34+18/119*I,n=48 4032528695635987 a001 305/930249*843^(5/7) 4032528718942640 r008 a(0)=4,K{-n^6,-1-30*n^3-4*n^2+4*n} 4032528728149617 m005 (1/2*5^(1/2)-5/12)/(1/3*5^(1/2)-4/7) 4032528731839721 m001 (exp(1/Pi)+GAMMA(23/24))/(Bloch+Champernowne) 4032528733677699 a001 317811/322*76^(13/40) 4032528755035512 l006 ln(119/6712) 4032528756992532 p001 sum(1/(497*n+27)/n/(5^n),n=1..infinity) 4032528757160647 m001 (BesselI(0,2)*Trott+ThueMorse)/Trott 4032528763066097 s002 sum(A137882[n]/((2*n+1)!),n=1..infinity) 4032528769027267 r005 Re(z^2+c),c=-13/23+1/20*I,n=37 4032528790145504 b008 3+Sqrt[129]/11 4032528799338506 m001 FeigenbaumDelta*ln(GaussAGM(1,1/sqrt(2)))^2*Pi 4032528800257403 m005 (1/2*gamma-4/11)/(5/11*exp(1)+5/8) 4032528808478716 m001 Ei(1,1)^FeigenbaumDelta/(Ei(1,1)^MertensB2) 4032528826972574 m001 FeigenbaumD*ln(HardHexagonsEntropy)^2/exp(1)^2 4032528836549064 a001 2584/167761*322^(1/6) 4032528836705581 m005 (5/12+1/4*5^(1/2))/(2/3*gamma-1/7) 4032528861692158 m001 (BesselK(0,1)+arctan(1/2))/(Chi(1)-Shi(1)) 4032528861692158 m001 (BesselK(0,1)+arctan(1/2))/Ei(1,1) 4032528867357213 r008 a(0)=4,K{-n^6,-3+21*n^3-16*n^2-31*n} 4032528867430752 l006 ln(7169/7464) 4032528868080858 m001 exp(1/Pi)/(2^(1/3)-FeigenbaumDelta) 4032528868080858 m001 exp(1/Pi)/(FeigenbaumDelta-(2^(1/3))) 4032528880211457 a007 Real Root Of -119*x^4-483*x^3+137*x^2+768*x+664 4032528893716036 m001 GAMMA(19/24)/ln(GAMMA(11/12))^2*Zeta(9)^2 4032528894945428 r008 a(0)=4,K{-n^6,37-23*n-30*n^2-15*n^3} 4032528903455054 m001 (Bloch+Sierpinski)/(cos(1/12*Pi)-exp(-1/2*Pi)) 4032528904817107 r008 a(0)=4,K{-n^6,37-14*n^3-33*n^2-21*n} 4032528921628533 r008 a(0)=4,K{-n^6,47-36*n-28*n^2-14*n^3} 4032528925619834 r005 Re(z^2+c),c=-32/25+48/55*I,n=2 4032528939591634 a001 6765/439204*322^(1/6) 4032528947219494 m001 Khintchine*ln(GaussKuzminWirsing)*(2^(1/3)) 4032528954625343 a001 17711/1149851*322^(1/6) 4032528956818731 a001 46368/3010349*322^(1/6) 4032528957138742 a001 121393/7881196*322^(1/6) 4032528957185431 a001 10959/711491*322^(1/6) 4032528957192243 a001 832040/54018521*322^(1/6) 4032528957193237 a001 2178309/141422324*322^(1/6) 4032528957193382 a001 5702887/370248451*322^(1/6) 4032528957193403 a001 14930352/969323029*322^(1/6) 4032528957193406 a001 39088169/2537720636*322^(1/6) 4032528957193407 a001 102334155/6643838879*322^(1/6) 4032528957193407 a001 9238424/599786069*322^(1/6) 4032528957193407 a001 701408733/45537549124*322^(1/6) 4032528957193407 a001 1836311903/119218851371*322^(1/6) 4032528957193407 a001 4807526976/312119004989*322^(1/6) 4032528957193407 a001 12586269025/817138163596*322^(1/6) 4032528957193407 a001 32951280099/2139295485799*322^(1/6) 4032528957193407 a001 86267571272/5600748293801*322^(1/6) 4032528957193407 a001 7787980473/505618944676*322^(1/6) 4032528957193407 a001 365435296162/23725150497407*322^(1/6) 4032528957193407 a001 139583862445/9062201101803*322^(1/6) 4032528957193407 a001 53316291173/3461452808002*322^(1/6) 4032528957193407 a001 20365011074/1322157322203*322^(1/6) 4032528957193407 a001 7778742049/505019158607*322^(1/6) 4032528957193407 a001 2971215073/192900153618*322^(1/6) 4032528957193407 a001 1134903170/73681302247*322^(1/6) 4032528957193407 a001 433494437/28143753123*322^(1/6) 4032528957193407 a001 165580141/10749957122*322^(1/6) 4032528957193407 a001 63245986/4106118243*322^(1/6) 4032528957193408 a001 24157817/1568397607*322^(1/6) 4032528957193416 a001 9227465/599074578*322^(1/6) 4032528957193472 a001 3524578/228826127*322^(1/6) 4032528957193851 a001 1346269/87403803*322^(1/6) 4032528957196453 a001 514229/33385282*322^(1/6) 4032528957214287 a001 196418/12752043*322^(1/6) 4032528957336520 a001 75025/4870847*322^(1/6) 4032528958174320 a001 28657/1860498*322^(1/6) 4032528962997671 r002 59th iterates of z^2 + 4032528963916686 a001 10946/710647*322^(1/6) 4032528964120688 r002 4th iterates of z^2 + 4032528984903241 a007 Real Root Of 933*x^4-872*x^3-770*x^2-762*x+465 4032528988862878 m005 (1/2*exp(1)+5/6)/(5*Catalan+6/7) 4032528991106444 a007 Real Root Of -529*x^4-446*x^3-889*x^2+644*x+389 4032528993668761 m001 Porter^LandauRamanujan2nd*FellerTornier 4032528996594987 r005 Im(z^2+c),c=-5/23+14/25*I,n=18 4032529003275445 a001 4181/271443*322^(1/6) 4032529005318674 r005 Im(z^2+c),c=-5/24+20/33*I,n=39 4032529006817514 p001 sum((-1)^n/(87*n+65)/n/(16^n),n=0..infinity) 4032529008156658 s002 sum(A163534[n]/(n^3*10^n+1),n=1..infinity) 4032529019352581 a007 Real Root Of -219*x^4-881*x^3-79*x^2-151*x+815 4032529030421434 r008 a(0)=0,K{-n^6,46-50*n^3+39*n^2-60*n} 4032529036385398 m001 (Salem-ThueMorse)/(sin(1/5*Pi)+Mills) 4032529048110876 a007 Real Root Of -192*x^4-706*x^3+449*x^2+528*x-697 4032529049763749 m001 1/GAMMA(1/12)*OneNinth/exp(Zeta(1/2)) 4032529060658505 l006 ln(1961/2935) 4032529061074647 m001 log(2+sqrt(3))/Zeta(7)/exp(sinh(1)) 4032529067813697 q001 3/74395 4032529081702186 a007 Real Root Of -779*x^4+38*x^3-703*x^2+428*x+310 4032529100954971 a001 610/3010349*843^(11/14) 4032529103773112 m001 GAMMA(23/24)*exp(MadelungNaCl)/Zeta(1/2) 4032529108603664 r005 Im(z^2+c),c=-39/62+22/59*I,n=44 4032529111472308 m001 (Zeta(1,2)+GAMMA(11/12))/(exp(1)+exp(-1/2*Pi)) 4032529114325311 a007 Real Root Of -199*x^4-740*x^3+103*x^2-391*x+845 4032529122458804 l006 ln(7438/7441) 4032529132096887 m005 (1/3*Zeta(3)-2/3)/(1/5*Zeta(3)-9/10) 4032529136463630 r002 31th iterates of z^2 + 4032529139753971 r009 Im(z^3+c),c=-41/126+24/59*I,n=21 4032529149525761 m001 TwinPrimes*Riemann3rdZero*ln(GAMMA(1/12)) 4032529156644042 m001 Tribonacci*ln(Si(Pi))^2/sqrt(3) 4032529166707872 s002 sum(A021823[n]/(n^3*10^n+1),n=1..infinity) 4032529170261705 r005 Im(z^2+c),c=-4/3+2/67*I,n=42 4032529170715777 a007 Real Root Of -514*x^4-992*x^3-762*x^2+537*x+289 4032529178858616 r002 11th iterates of z^2 + 4032529186740543 r005 Re(z^2+c),c=-19/36+31/64*I,n=7 4032529188414293 r005 Im(z^2+c),c=-47/98+2/29*I,n=43 4032529191037179 r009 Im(z^3+c),c=-17/114+21/46*I,n=14 4032529196981732 r002 47th iterates of z^2 + 4032529199169591 r002 16th iterates of z^2 + 4032529203875484 r005 Re(z^2+c),c=-19/28+7/55*I,n=23 4032529204090855 r005 Im(z^2+c),c=7/114+21/44*I,n=20 4032529204559913 r005 Re(z^2+c),c=-31/58+11/46*I,n=19 4032529219294828 r005 Re(z^2+c),c=35/82+18/55*I,n=6 4032529234982000 m001 (BesselJ(1,1)*Sarnak+Backhouse)/BesselJ(1,1) 4032529239482045 r002 23th iterates of z^2 + 4032529239804402 r005 Im(z^2+c),c=17/126+17/40*I,n=63 4032529252519178 m004 6/(5*Log[Sqrt[5]*Pi]*ProductLog[Sqrt[5]*Pi]) 4032529256853181 r005 Re(z^2+c),c=-133/102+1/32*I,n=34 4032529268671630 r002 57th iterates of z^2 + 4032529273044397 a001 1597/103682*322^(1/6) 4032529297432612 m009 (1/2*Pi^2+1/3)/(3/4*Psi(1,3/4)-3/5) 4032529328772440 m001 Pi+2^(1/2)*(Chi(1)-exp(-1/2*Pi)) 4032529331686474 a001 233/167761*521^(7/13) 4032529345673526 r005 Re(z^2+c),c=-55/102+18/55*I,n=35 4032529355954814 m001 FeigenbaumMu/Catalan*MertensB2 4032529356022367 a007 Real Root Of 137*x^4+459*x^3-573*x^2-842*x-206 4032529357541806 p003 LerchPhi(1/64,6,509/203) 4032529360887952 r002 28th iterates of z^2 + 4032529362280141 r002 60th iterates of z^2 + 4032529377930786 r005 Re(z^2+c),c=-13/23+2/45*I,n=25 4032529391952937 a007 Real Root Of 168*x^4-196*x^3-478*x^2-818*x+416 4032529394653915 m001 (Psi(2,1/3)+Artin)/(ArtinRank2+TwinPrimes) 4032529395083917 m001 (Psi(2,1/3)-ln(gamma))/(ln(2)+TwinPrimes) 4032529419529978 a007 Real Root Of -2*x^4-807*x^3-200*x^2-300*x+371 4032529432875892 r002 49th iterates of z^2 + 4032529434477220 m001 1/Si(Pi)/exp(ErdosBorwein)/Khintchine 4032529441930998 r005 Re(z^2+c),c=-63/118+7/20*I,n=40 4032529444756029 q001 719/1783 4032529445855471 p004 log(36493/647) 4032529464896684 r002 31th iterates of z^2 + 4032529465494916 a001 14662949395604/3*53316291173^(11/24) 4032529466067853 r005 Im(z^2+c),c=5/27+5/13*I,n=56 4032529481945677 m001 (ArtinRank2-sin(1))/(-PlouffeB+TreeGrowth2nd) 4032529484864499 a003 cos(Pi*1/114)-cos(Pi*35/118) 4032529486632707 a001 341/3732588*34^(8/19) 4032529487724066 a001 34*521^(17/43) 4032529505439877 r008 a(0)=0,K{-n^6,48-49*n^3+37*n^2-61*n} 4032529506271770 a001 610/4870847*843^(6/7) 4032529518499479 a007 Real Root Of 173*x^4+599*x^3-318*x^2+502*x+728 4032529546882914 a007 Real Root Of 870*x^4+73*x^3+974*x^2+247*x-77 4032529547530315 r005 Re(z^2+c),c=-7/122+7/11*I,n=25 4032529548904192 a007 Real Root Of -249*x^4-859*x^3+792*x^2+773*x-247 4032529554652967 r009 Re(z^3+c),c=-43/110+7/60*I,n=22 4032529577365437 a007 Real Root Of -158*x^4-677*x^3-169*x^2-226*x-777 4032529578041998 r002 40th iterates of z^2 + 4032529578801383 m002 1+Pi^4*Csch[Pi]+Pi^3*Tanh[Pi] 4032529595653882 m001 Riemann3rdZero/exp(FeigenbaumB)^2/GAMMA(19/24) 4032529601551570 l006 ln(176/9927) 4032529601722820 m001 1/ErdosBorwein/exp(Backhouse)^2/Catalan^2 4032529605140863 a007 Real Root Of 239*x^4-741*x^3-809*x^2+69*x+146 4032529625317923 l006 ln(6034/9031) 4032529641744299 m005 (1/2*Catalan-1/5)/(5/8*5^(1/2)+5) 4032529671014918 r005 Re(z^2+c),c=-53/98+8/35*I,n=21 4032529671934614 r004 Im(z^2+c),c=-45/46+1/3*I,z(0)=-1,n=14 4032529673283584 r008 a(0)=4,K{-n^6,-42+27*n+33*n^2-49*n^3} 4032529676620615 r008 a(0)=4,K{-n^6,-20-12*n+53*n^2-52*n^3} 4032529686627379 r005 Re(z^2+c),c=-4/3+209/227*I,n=2 4032529694184771 r002 47th iterates of z^2 + 4032529695029029 m001 1/OneNinth*MadelungNaCl/ln(Zeta(9))^2 4032529696356122 r005 Im(z^2+c),c=19/90+21/58*I,n=44 4032529697323824 r008 a(0)=4,K{-n^6,-50+51*n+11*n^2-43*n^3} 4032529708521335 r005 Re(z^2+c),c=-41/74+9/46*I,n=43 4032529721210676 a001 13201/7*55^(11/58) 4032529727372060 m001 FeigenbaumDelta/(GolombDickman-Grothendieck) 4032529747904519 r008 a(0)=4,K{-n^6,-14-40*n^3+20*n^2+3*n} 4032529749870570 r008 a(0)=4,K{-n^6,18-55*n+51*n^2-45*n^3} 4032529751612720 r005 Re(z^2+c),c=-37/66+7/50*I,n=32 4032529751909138 r008 a(0)=4,K{-n^6,-28+30*n+4*n^2-37*n^3} 4032529765899748 a001 377/64079*322^(1/3) 4032529768087017 r005 Im(z^2+c),c=-19/106+20/29*I,n=41 4032529772828981 r002 42th iterates of z^2 + 4032529776632912 r008 a(0)=4,K{-n^6,-16-35*n^3+4*n^2+16*n} 4032529785927342 m001 Zeta(5)*exp(GAMMA(11/12))/exp(1)^2 4032529791703991 r008 a(0)=4,K{-n^6,-14-33*n^3-n^2+17*n} 4032529799348384 a007 Real Root Of 315*x^4-667*x^3-659*x^2-378*x+295 4032529828085689 r008 a(0)=4,K{-n^6,-6-29*n^3-9*n^2+13*n} 4032529841143805 m001 StolarskyHarborth^ln(2+3^(1/2))-TreeGrowth2nd 4032529842421531 r008 a(0)=4,K{-n^6,36-60*n+27*n^2-34*n^3} 4032529846266160 r005 Im(z^2+c),c=-3/17+24/35*I,n=56 4032529847400244 r008 a(0)=4,K{-n^6,-26+55*n-37*n^2-23*n^3} 4032529854619592 m005 (1/2*Pi-1/11)/(1/4*3^(1/2)-4/5) 4032529857744887 m006 (1/5*ln(Pi)-2/3)/(3/4*ln(Pi)-3/4) 4032529862591019 m001 (Ei(1)+StolarskyHarborth)/(LambertW(1)-Shi(1)) 4032529866452318 r008 a(0)=0,K{-n^6,42-47*n^3+28*n^2-48*n} 4032529866548650 r001 34i'th iterates of 2*x^2-1 of 4032529869350449 r009 Im(z^3+c),c=-55/102+4/9*I,n=4 4032529897180696 l006 ln(4073/6096) 4032529899055082 m001 Zeta(1,2)*exp(Khintchine)^2*sqrt(2)^2 4032529911589461 a001 305/3940598*843^(13/14) 4032529917333807 r005 Im(z^2+c),c=27/82+20/53*I,n=29 4032529919889219 r005 Re(z^2+c),c=-27/50+9/31*I,n=63 4032529922818098 r002 41th iterates of z^2 + 4032529924114322 a003 cos(Pi*11/51)-cos(Pi*20/53) 4032529926713131 r002 28th iterates of z^2 + 4032529946208723 m005 (1/2*2^(1/2)-4/5)/(9/10*exp(1)-1/7) 4032529952225426 m006 (1/5*exp(2*Pi)+3/4)/(5*exp(2*Pi)-3) 4032529961209511 r005 Re(z^2+c),c=-29/52+8/47*I,n=6 4032529976265935 m001 FeigenbaumKappa^2/Salem/exp(GAMMA(2/3)) 4032529985132545 a007 Real Root Of -644*x^4-175*x^3-549*x^2+975*x+488 4032529987601942 p003 LerchPhi(1/25,4,378/169) 4032529988160650 m005 (1/3*exp(1)+3/4)/(1/3*3^(1/2)-1/6) 4032529990669357 r005 Im(z^2+c),c=-7/122+25/43*I,n=34 4032529991269104 r002 27i'th iterates of 2*x/(1-x^2) of 4032529996295900 r009 Im(z^3+c),c=-29/62+21/64*I,n=61 4032530001732254 a003 cos(Pi*28/81)-cos(Pi*12/25) 4032530004145473 r008 a(0)=4,K{-n^6,24-13*n^3-42*n^2} 4032530004202394 r008 a(0)=4,K{-n^6,6-10*n^3-60*n^2+33*n} 4032530011113487 m005 (5*Pi-1/6)/(1/4*Pi-2/5) 4032530011113487 m006 (1/6/Pi-5)/(2/5/Pi-1/4) 4032530011113487 m008 (5*Pi-1/6)/(1/4*Pi-2/5) 4032530011396885 a007 Real Root Of -159*x^4-476*x^3+529*x^2-363*x+765 4032530012340488 r005 Im(z^2+c),c=-9/106+3/5*I,n=46 4032530016136430 r005 Re(z^2+c),c=-9/16+8/77*I,n=32 4032530018771171 m005 (1/2*exp(1)+3/7)/(4*Zeta(3)-3/8) 4032530021822233 b008 3*(1+LogGamma[2/Pi]) 4032530022996364 r005 Im(z^2+c),c=-19/78+11/18*I,n=54 4032530039158274 r002 31th iterates of z^2 + 4032530043467322 m001 GAMMA(5/6)*GolombDickman/ZetaP(3) 4032530046677433 m005 (1/4*exp(1)-1/2)/(1/6*exp(1)+4) 4032530047014557 a005 (1/cos(25/154*Pi))^467 4032530047198368 m001 (arctan(1/3)-GAMMA(11/12))/(Cahen+Salem) 4032530049876067 r005 Im(z^2+c),c=-5/78+30/59*I,n=11 4032530062649719 r005 Re(z^2+c),c=2/21+7/18*I,n=5 4032530092982252 p001 sum(1/(388*n+1)/n/(64^n),n=1..infinity) 4032530104404203 r002 42th iterates of z^2 + 4032530104986002 m005 (1/2*Catalan-1/9)/(-59/140+3/20*5^(1/2)) 4032530117910048 r005 Im(z^2+c),c=4/21+11/29*I,n=24 4032530133313511 a001 29/2*46368^(11/21) 4032530147996727 r005 Im(z^2+c),c=-34/31+1/21*I,n=17 4032530162406229 l006 ln(6185/9257) 4032530171719579 a007 Real Root Of 201*x^4-351*x^3+561*x^2-259*x-224 4032530174311882 a007 Real Root Of -57*x^4-378*x^3-645*x^2+774 4032530186275550 r005 Re(z^2+c),c=-55/98+5/28*I,n=24 4032530186767841 m001 (3^(1/2)+Zeta(5))/(-ArtinRank2+Trott) 4032530190807797 r005 Im(z^2+c),c=11/94+19/43*I,n=22 4032530195437147 m001 1/ln(GAMMA(1/12))*Catalan*Zeta(5)^2 4032530202147116 r005 Im(z^2+c),c=7/60+25/57*I,n=36 4032530206995002 r008 a(0)=4,K{-n^6,50-68*n^2-13*n} 4032530207191726 r005 Im(z^2+c),c=11/90+8/21*I,n=6 4032530209042071 m005 (1/2*2^(1/2)-11/12)/(6/11*5^(1/2)-7/10) 4032530250018459 r002 3th iterates of z^2 + 4032530257521978 h001 (8/11*exp(2)+3/7)/(1/10*exp(2)+7/10) 4032530258374209 r002 33th iterates of z^2 + 4032530258612586 r005 Im(z^2+c),c=-11/114+15/26*I,n=64 4032530284628864 a007 Real Root Of -22*x^4+554*x^3-201*x^2+63*x+95 4032530290313755 r002 38th iterates of z^2 + 4032530296644446 a001 1/75640*377^(27/28) 4032530316906892 a004 Fibonacci(15)*Lucas(14)/(1/2+sqrt(5)/2)^34 4032530317812250 m005 (1/2*exp(1)+2/9)/(2/3*Catalan-4/7) 4032530319019534 h001 (-4*exp(4)-3)/(-5*exp(7)-7) 4032530326877605 r005 Re(z^2+c),c=-14/25+11/46*I,n=22 4032530327289540 m001 HeathBrownMoroz/Zeta(3)/exp(1) 4032530333276653 r005 Re(z^2+c),c=-9/16+41/109*I,n=40 4032530374323764 m001 Zeta(1/2)^2/Backhouse*ln(log(2+sqrt(3))) 4032530379520611 m002 -Pi-4*Pi^4+ProductLog[Pi]-Sinh[Pi] 4032530391376739 r005 Im(z^2+c),c=-61/114+29/63*I,n=6 4032530402482916 a007 Real Root Of -267*x^4-982*x^3+348*x^2+550 4032530415741934 a001 192900153618/1597*144^(12/17) 4032530440711496 a007 Real Root Of -870*x^4+240*x^3-70*x^2+699*x+332 4032530446108429 a001 76/2178309*89^(1/31) 4032530463595568 m001 (Pi^(1/2)-gamma)/(-FeigenbaumDelta+Niven) 4032530468438447 a001 9349*144^(5/17) 4032530473931668 a001 233/103682*521^(6/13) 4032530485206555 p001 sum(1/(413*n+370)/n/(32^n),n=1..infinity) 4032530485511197 m001 Psi(2,1/3)^gamma(1)/Si(Pi) 4032530497187668 m005 (1/2*5^(1/2)-4/7)/(85/99+2/9*5^(1/2)) 4032530514084988 b008 Cos[Pi/E] 4032530524718351 m001 (ln(5)+HardyLittlewoodC3)/(Psi(2,1/3)-cos(1)) 4032530527578321 r009 Re(z^3+c),c=-6/13+11/50*I,n=11 4032530529948076 m001 (Psi(2,1/3)-sin(1/5*Pi))/(GAMMA(2/3)+Trott2nd) 4032530532582988 r005 Im(z^2+c),c=-11/17+5/63*I,n=32 4032530546648415 s002 sum(A230213[n]/((10^n-1)/n),n=1..infinity) 4032530550537878 m001 (-OneNinth+Sarnak)/(BesselI(0,1)+MertensB1) 4032530562959190 r005 Re(z^2+c),c=11/90+29/60*I,n=4 4032530567315827 r009 Re(z^3+c),c=-2/27+31/46*I,n=61 4032530572172833 r002 5th iterates of z^2 + 4032530573776268 r009 Re(z^3+c),c=-49/102+8/37*I,n=39 4032530582547023 m001 ln(BesselJ(1,1))*BesselJ(0,1)^2*Catalan^2 4032530605447930 r002 60th iterates of z^2 + 4032530608338913 m001 1/LaplaceLimit^2*Artin^2*ln(GAMMA(7/24))^2 4032530617631209 r005 Im(z^2+c),c=17/62+2/5*I,n=22 4032530619087686 r008 a(0)=4,K{-n^6,-39-4*n^3+67*n^2-54*n} 4032530628982799 r005 Im(z^2+c),c=33/118+5/17*I,n=56 4032530654991295 m009 (3/10*Pi^2+4/5)/(1/4*Psi(1,2/3)+1/6) 4032530673894656 l006 ln(2112/3161) 4032530676453901 r002 53th iterates of z^2 + 4032530685831371 a001 505019158607/4181*144^(12/17) 4032530687941786 r002 16th iterates of z^2 + 4032530715436621 h003 exp(Pi*(1/3*(10^(1/2)*3^(1/3)-20)*3^(2/3))) 4032530725236892 a001 1322157322203/10946*144^(12/17) 4032530730670864 a007 Real Root Of 198*x^4+572*x^3-769*x^2+392*x-763 4032530730986080 a001 3461452808002/28657*144^(12/17) 4032530731824875 a001 9062201101803/75025*144^(12/17) 4032530731947254 a001 23725150497407/196418*144^(12/17) 4032530732022888 a001 14662949395604/121393*144^(12/17) 4032530732343279 a001 5600748293801/46368*144^(12/17) 4032530734539274 a001 2139295485799/17711*144^(12/17) 4032530738299577 r005 Re(z^2+c),c=-17/30+1/96*I,n=28 4032530739179262 m001 (Kolakoski+MertensB1)/(Riemann3rdZero+Salem) 4032530746691065 a007 Real Root Of -429*x^4+434*x^3+712*x^2+278*x-245 4032530749590843 a001 817138163596/6765*144^(12/17) 4032530762067505 r005 Im(z^2+c),c=-1/18+32/57*I,n=34 4032530764040684 r008 a(0)=4,K{-n^6,-6+22*n^3+5*n^2-51*n} 4032530776610688 r005 Im(z^2+c),c=-29/54+17/27*I,n=17 4032530793152591 r005 Im(z^2+c),c=-43/56+1/42*I,n=11 4032530793360956 m005 (1/2*5^(1/2)+7/12)/(2/11*3^(1/2)-3/11) 4032530798557603 a007 Real Root Of 257*x^4+916*x^3-515*x^2-x+478 4032530809167190 r005 Im(z^2+c),c=-9/58+31/52*I,n=57 4032530811562569 r008 a(0)=4,K{-n^6,-51+52*n+11*n^2-43*n^3} 4032530827455973 r005 Im(z^2+c),c=17/126+17/40*I,n=60 4032530833555323 r008 a(0)=4,K{-n^6,9-50*n+59*n^2-49*n^3} 4032530835137161 r002 7th iterates of z^2 + 4032530842591085 m005 (1/2*exp(1)-3/5)/(5/11*Pi+5/11) 4032530852755841 a001 312119004989/2584*144^(12/17) 4032530856039453 m001 (Artin-HardyLittlewoodC5)/(ln(3)-exp(-1/2*Pi)) 4032530866835552 r008 a(0)=4,K{-n^6,-29+31*n+4*n^2-37*n^3} 4032530875695744 a007 Real Root Of -334*x^4+980*x^3-30*x^2+445*x-230 4032530889239657 m001 (gamma(3)+OneNinth)/(Pi-BesselK(0,1)) 4032530892406855 m001 (BesselI(1,1)-Cahen)/(LandauRamanujan+Salem) 4032530896524464 r005 Re(z^2+c),c=-13/23+3/64*I,n=45 4032530903822537 r005 Re(z^2+c),c=-17/31+15/64*I,n=37 4032530904335550 a007 Real Root Of 58*x^4+226*x^3-183*x^2-604*x+23 4032530907141424 r008 a(0)=4,K{-n^6,-15-33*n^3-n^2+18*n} 4032530907679001 a007 Real Root Of 647*x^4+423*x^3-852*x^2-953*x+478 4032530920732563 r005 Re(z^2+c),c=27/70+17/47*I,n=51 4032530922297079 r005 Im(z^2+c),c=1/64+30/59*I,n=43 4032530926684988 m001 1/GAMMA(3/4)/ln(DuboisRaymond)*cos(Pi/5) 4032530931689336 r002 18th iterates of z^2 + 4032530935590693 r005 Re(z^2+c),c=-55/98+7/55*I,n=28 4032530943989749 r008 a(0)=4,K{-n^6,-1-30*n^3-3*n^2+3*n} 4032530945776019 r005 Re(z^2+c),c=-69/122+1/32*I,n=47 4032530951015913 a007 Real Root Of 809*x^4+497*x^3+2*x^2-648*x+207 4032530957552854 m001 (-Sarnak+TwinPrimes)/(5^(1/2)-Robbin) 4032530963566778 r008 a(0)=4,K{-n^6,-27+56*n-37*n^2-23*n^3} 4032530968258164 m004 -4*E^(Sqrt[5]*Pi)+150*Pi-Sqrt[5]*Pi 4032530978569423 a007 Real Root Of 111*x^4+475*x^3+233*x^2+580*x+346 4032530981247283 r008 a(0)=4,K{-n^6,10-9*n-48*n^2+17*n^3} 4032531005011610 a003 sin(Pi*12/107)/cos(Pi*26/55) 4032531006795459 m006 (3*exp(2*Pi)+5)/(3/4*exp(2*Pi)-2) 4032531008734324 m001 LandauRamanujan^2/ln(Backhouse)^2/GAMMA(23/24) 4032531019362218 r002 25th iterates of z^2 + 4032531024110088 r005 Re(z^2+c),c=-9/14+81/224*I,n=37 4032531029957559 a003 cos(Pi*7/97)/cos(Pi*32/65) 4032531044373182 r008 a(0)=4,K{-n^6,-9+43*n-49*n^2-16*n^3} 4032531051964798 r005 Re(z^2+c),c=-15/28+16/51*I,n=57 4032531070263209 a001 7/5702887*2584^(4/9) 4032531072009808 a007 Real Root Of -213*x^4-746*x^3+251*x^2-850*x-104 4032531073149406 r005 Im(z^2+c),c=-3/22+38/63*I,n=57 4032531076058760 a007 Real Root Of 60*x^4-319*x^3+625*x^2-265*x-231 4032531076203874 a001 39603/233*34^(44/49) 4032531095667999 r009 Re(z^3+c),c=-21/58+40/63*I,n=11 4032531097825259 r008 a(0)=0,K{-n^6,-44+44*n^3-20*n^2+45*n} 4032531099774996 s002 sum(A084440[n]/(n^3*10^n+1),n=1..infinity) 4032531105931323 r008 a(0)=4,K{-n^6,19+5*n-41*n^2-14*n^3} 4032531106187271 m004 130*Pi-Log[Sqrt[5]*Pi]^2*Sec[Sqrt[5]*Pi] 4032531122068296 a001 610/39603*322^(1/6) 4032531123946601 a001 7/267914296*14930352^(4/9) 4032531123946603 a001 7/86267571272*6557470319842^(4/9) 4032531123946603 a001 7/12586269025*86267571272^(4/9) 4032531123946603 a001 7/1836311903*1134903170^(4/9) 4032531123955894 a001 7/39088169*196418^(4/9) 4032531125314141 r009 Im(z^3+c),c=-39/82+6/13*I,n=16 4032531133735144 m001 1/exp(Zeta(1/2))/MinimumGamma^2*sqrt(2)^2 4032531136604178 r002 48th iterates of z^2 + 4032531140310065 a005 (1/cos(7/90*Pi))^1268 4032531141195712 h001 (2/9*exp(2)+1/2)/(1/7*exp(1)+1/7) 4032531144257950 r002 14th iterates of z^2 + 4032531151235966 a007 Real Root Of -477*x^4-174*x^3-475*x^2+847*x+420 4032531156936042 r008 a(0)=4,K{-n^6,43-29*n-32*n^2-13*n^3} 4032531161570894 l006 ln(6487/9709) 4032531163434903 r005 Re(z^2+c),c=-7/8+103/190*I,n=2 4032531183674002 a007 Real Root Of -278*x^4-875*x^3+814*x^2-474*x+986 4032531188559934 r002 46th iterates of z^2 + 4032531193264918 r005 Re(z^2+c),c=-9/23+34/63*I,n=35 4032531206011403 r002 13th iterates of z^2 + 4032531206051402 r009 Im(z^3+c),c=-5/38+46/63*I,n=13 4032531227468162 r005 Im(z^2+c),c=-29/78+23/41*I,n=3 4032531231475487 a001 514229/29*7^(19/45) 4032531234877641 a007 Real Root Of -590*x^4+641*x^3-895*x^2+746*x+504 4032531250368146 a005 (1/sin(81/179*Pi))^331 4032531252030452 r005 Im(z^2+c),c=21/74+15/46*I,n=14 4032531255427836 a005 (1/sin(89/191*Pi))^1852 4032531263417982 r002 38th iterates of z^2 + 4032531288964930 r005 Im(z^2+c),c=-7/62+31/34*I,n=3 4032531290440913 p003 LerchPhi(1/512,5,287/151) 4032531306417671 r009 Im(z^3+c),c=-9/26+39/59*I,n=33 4032531306774385 r009 Im(z^3+c),c=-21/94+26/59*I,n=22 4032531307750869 r002 16th iterates of z^2 + 4032531308385461 m005 (1/3*5^(1/2)+1/8)/(6/11*2^(1/2)-5/9) 4032531317680230 a005 (1/sin(45/187*Pi))^187 4032531318468682 m001 exp(Zeta(3))*Riemann2ndZero/log(2+sqrt(3))^2 4032531328261667 r008 a(0)=4,K{-n^6,49-68*n^2-12*n} 4032531336115622 r002 40th iterates of z^2 + 4032531337853837 a001 3571/39088169*34^(8/19) 4032531345306675 q001 119/2951 4032531363143170 r005 Re(z^2+c),c=-51/86+8/61*I,n=15 4032531368837169 l006 ln(57/3215) 4032531370015960 a001 21/2206*322^(1/4) 4032531387153776 r005 Re(z^2+c),c=-5/9-13/85*I,n=20 4032531396993107 l006 ln(4375/6548) 4032531397666338 s002 sum(A172691[n]/(n!^2),n=1..infinity) 4032531399340704 m001 (GolombDickman+ZetaP(2))/(Pi-Bloch) 4032531402688318 r005 Re(z^2+c),c=-37/66+8/61*I,n=53 4032531404833757 r005 Im(z^2+c),c=-3/110+37/63*I,n=32 4032531408752482 h001 (2/11*exp(1)+5/11)/(1/5*exp(2)+7/8) 4032531423005558 m001 RenyiParking^GaussAGM/DuboisRaymond 4032531427470293 a001 123/514229*377^(10/21) 4032531437873254 a007 Real Root Of 568*x^4+878*x^3+975*x^2-248*x-216 4032531446730920 r008 a(0)=4,K{-n^6,10-46*n+2*n^2+2*n^3} 4032531447347494 r005 Re(z^2+c),c=29/102+2/39*I,n=18 4032531453563445 r002 5th iterates of z^2 + 4032531460802059 b008 ArcCsc[3]^Sin[1] 4032531463048548 m001 ln(5)/ArtinRank2*ZetaP(3) 4032531480973820 r008 a(0)=4,K{-n^6,-14-58*n+65*n^2-17*n^3} 4032531488722934 m001 (cos(1/12*Pi)-Artin)/(FransenRobinson-Totient) 4032531490824518 s002 sum(A025998[n]/(n^2*10^n-1),n=1..infinity) 4032531499341772 r005 Re(z^2+c),c=-53/70+3/46*I,n=30 4032531506202344 a007 Real Root Of -230*x^4-950*x^3+77*x^2+575*x-410 4032531520307028 m001 (3^(1/3)+Ei(1,1))/(LandauRamanujan-Salem) 4032531520428367 a001 9062201101803/233*144^(8/17) 4032531541721939 r005 Re(z^2+c),c=-2/3+76/251*I,n=45 4032531559859398 a001 119218851371/987*144^(12/17) 4032531563708113 r002 43th iterates of z^2 + 4032531586670761 r005 Re(z^2+c),c=-37/66+4/25*I,n=26 4032531587113258 r009 Im(z^3+c),c=-23/94+10/23*I,n=15 4032531594613944 a001 1364/89*46368^(7/23) 4032531595713144 r009 Re(z^3+c),c=-1/15+22/31*I,n=32 4032531596951689 r005 Im(z^2+c),c=11/126+23/50*I,n=62 4032531597753727 m001 LandauRamanujan/exp(Kolakoski)^2*Sierpinski 4032531606019173 a003 cos(Pi*38/117)-sin(Pi*23/61) 4032531607943360 a001 9349/102334155*34^(8/19) 4032531617156112 a001 17/161*11^(19/34) 4032531617353193 r005 Im(z^2+c),c=19/70+10/33*I,n=58 4032531618052789 a001 233/64079*521^(5/13) 4032531627059973 l006 ln(6638/9935) 4032531647348890 a001 1/10946*34^(8/19) 4032531653098079 a001 64079/701408733*34^(8/19) 4032531653936875 a001 167761/1836311903*34^(8/19) 4032531654059253 a001 109801/1201881744*34^(8/19) 4032531654077108 a001 1149851/12586269025*34^(8/19) 4032531654079713 a001 3010349/32951280099*34^(8/19) 4032531654080093 a001 1970299/21566892818*34^(8/19) 4032531654080149 a001 711491/7787980473*34^(8/19) 4032531654080157 a001 54018521/591286729879*34^(8/19) 4032531654080158 a001 35355581/387002188980*34^(8/19) 4032531654080158 a001 370248451/4052739537881*34^(8/19) 4032531654080158 a001 969323029/10610209857723*34^(8/19) 4032531654080158 a001 299537289/3278735159921*34^(8/19) 4032531654080158 a001 228826127/2504730781961*34^(8/19) 4032531654080159 a001 87403803/956722026041*34^(8/19) 4032531654080162 a001 16692641/182717648081*34^(8/19) 4032531654080183 a001 12752043/139583862445*34^(8/19) 4032531654080328 a001 4870847/53316291173*34^(8/19) 4032531654081323 a001 930249/10182505537*34^(8/19) 4032531654088143 a001 710647/7778742049*34^(8/19) 4032531654134887 a001 271443/2971215073*34^(8/19) 4032531654455279 a001 51841/567451585*34^(8/19) 4032531654543193 r009 Re(z^3+c),c=-8/19+9/59*I,n=28 4032531656436253 a001 87841/2178309 4032531656444068 a004 Fibonacci(13)/Lucas(14)/(1/2+sqrt(5)/2)^4 4032531656490813 a004 Fibonacci(14)/Lucas(13)/(1/2+sqrt(5)/2)^6 4032531656651274 a001 39603/433494437*34^(8/19) 4032531659892446 r009 Im(z^3+c),c=-3/10+5/12*I,n=23 4032531671702847 a001 15127/165580141*34^(8/19) 4032531673219642 a001 18/956722026041*5^(9/19) 4032531673329199 m001 FeigenbaumMu/Zeta(1/2)*ZetaQ(4) 4032531701969589 m001 (3^(1/3))^2/ln(Kolakoski)^2*GAMMA(23/24) 4032531709001046 a003 sin(Pi*12/67)-sin(Pi*39/101) 4032531714449706 m002 4+(3*Coth[Pi])/(4*E^Pi) 4032531718059955 m005 (1/2*exp(1)-4)/(-89/112+1/16*5^(1/2)) 4032531723238953 r002 59th iterates of z^2 + 4032531729221309 a001 89/271443*199^(10/11) 4032531735234028 k006 concat of cont frac of 4032531743531082 r005 Im(z^2+c),c=-51/74+11/63*I,n=38 4032531744380464 m001 Pi+Magata*MertensB1 4032531749520887 r005 Im(z^2+c),c=5/94+28/47*I,n=34 4032531751799728 a007 Real Root Of 763*x^4-232*x^3+852*x^2+595*x+66 4032531768710568 r005 Im(z^2+c),c=1/98+24/47*I,n=24 4032531774867865 a001 2889/31622993*34^(8/19) 4032531778345091 r002 5th iterates of z^2 + 4032531781034088 r005 Im(z^2+c),c=17/126+17/40*I,n=59 4032531788478414 r004 Re(z^2+c),c=1/24+15/22*I,z(0)=I,n=5 4032531800588942 r008 a(0)=4,K{-n^6,-78-68*n^3+73*n^2+42*n} 4032531802374963 r005 Re(z^2+c),c=39/110+25/59*I,n=47 4032531803601300 r005 Im(z^2+c),c=1/6+2/5*I,n=41 4032531813214778 r005 Re(z^2+c),c=-35/86+14/43*I,n=4 4032531822906081 a005 (1/cos(26/205*Pi))^751 4032531823644391 m001 1/exp((2^(1/3)))*Riemann3rdZero^2/BesselJ(1,1) 4032531833035407 r005 Im(z^2+c),c=-3/23+31/53*I,n=49 4032531844493221 p003 LerchPhi(1/8,3,487/164) 4032531844825099 m005 (2/5*exp(1)-1/3)/(3/4*Catalan-1/2) 4032531844904951 r005 Im(z^2+c),c=1/11+11/25*I,n=13 4032531845137251 p001 sum((-1)^n/(373*n+244)/(24^n),n=0..infinity) 4032531845338539 r008 a(0)=4,K{-n^6,-44+35*n^3-53*n^2+32*n} 4032531852654556 r005 Im(z^2+c),c=13/94+20/47*I,n=23 4032531857690508 r004 Im(z^2+c),c=1/6+2/5*I,z(0)=exp(5/12*I*Pi),n=41 4032531858186502 r008 a(0)=0,K{-n^6,-56+44*n^3-26*n^2+63*n} 4032531876083639 r005 Re(z^2+c),c=-63/106+3/53*I,n=12 4032531880248816 r005 Im(z^2+c),c=-37/28+4/35*I,n=11 4032531886078033 a001 199/7*(1/2*5^(1/2)+1/2)^18*7^(6/13) 4032531893608008 r008 a(0)=4,K{-n^6,-58-50*n^3+29*n^2+48*n} 4032531898557533 r008 a(0)=4,K{-n^6,-52+39*n+32*n^2-50*n^3} 4032531904302323 r005 Re(z^2+c),c=-5/8+39/223*I,n=17 4032531911808585 s002 sum(A082213[n]/(exp(n)-1),n=1..infinity) 4032531915492223 r008 a(0)=4,K{-n^6,-20-13*n+54*n^2-52*n^3} 4032531917041148 r009 Im(z^3+c),c=-17/106+5/11*I,n=22 4032531923971339 r005 Re(z^2+c),c=-55/82+7/53*I,n=17 4032531929789293 a007 Real Root Of -836*x^4+314*x^3-685*x^2+957*x+540 4032531930879038 r009 Re(z^3+c),c=-3/110+10/11*I,n=2 4032531945971589 r008 a(0)=4,K{-n^6,-10-48*n^3+47*n^2-20*n} 4032531947348409 l006 ln(4350/4529) 4032531960798019 r005 Re(z^2+c),c=-57/106+3/17*I,n=14 4032531963086452 r005 Im(z^2+c),c=-13/18+10/47*I,n=39 4032531969167994 m001 FeigenbaumMu/(BesselJ(1,1)^ZetaR(2)) 4032531974764457 r005 Re(z^2+c),c=-71/126+3/34*I,n=50 4032531976409582 r005 Im(z^2+c),c=-23/36+19/53*I,n=53 4032531979986828 r005 Im(z^2+c),c=-59/46+17/41*I,n=6 4032531982494640 r002 46th iterates of z^2 + 4032531987680965 r002 5th iterates of z^2 + 4032531990908996 a007 Real Root Of -220*x^4-809*x^3+215*x^2-489*x-343 4032531990918690 r008 a(0)=4,K{-n^6,18-56*n+52*n^2-45*n^3} 4032531992218611 m005 (1/5*gamma-4)/(5/6*Catalan+1/5) 4032531993818715 r005 Re(z^2+c),c=12/29+5/34*I,n=19 4032532004880717 r005 Re(z^2+c),c=-33/62+17/49*I,n=17 4032532017643102 b008 CosIntegral[E^(2/3)/5] 4032532034746070 m001 1/Lehmer*Khintchine^2/exp(Magata) 4032532050974907 r002 22th iterates of z^2 + 4032532060570080 r005 Re(z^2+c),c=-35/94+7/17*I,n=2 4032532064088071 a007 Real Root Of -185*x^4-778*x^3-248*x^2-327*x+617 4032532064092672 m001 (2+3^(1/2))/(sin(Pi/12)+2/3) 4032532070912569 a007 Real Root Of 847*x^4+187*x^3+934*x^2-610*x-408 4032532071842343 l006 ln(2263/3387) 4032532077439999 a001 2584/271443*322^(1/4) 4032532085547737 a007 Real Root Of 518*x^4-161*x^3+922*x^2-927*x-548 4032532088091240 r008 a(0)=4,K{-n^6,-34+17*n-48*n^2+35*n^3} 4032532093984437 r008 a(0)=4,K{-n^6,-27*n^3-11*n^2+7*n} 4032532096652281 r005 Re(z^2+c),c=-41/74+11/56*I,n=55 4032532104467103 r009 Re(z^3+c),c=-39/86+25/46*I,n=13 4032532118765901 a001 1/48*75025^(51/58) 4032532122788539 r008 a(0)=4,K{-n^6,28-28*n^3+6*n^2-37*n} 4032532138105672 v002 sum(1/(2^n+(13*n^2+13*n+34)),n=1..infinity) 4032532144928015 r002 29th iterates of z^2 + 4032532146422054 a007 Real Root Of -595*x^4-596*x^3-490*x^2+494*x+2 4032532147728192 r008 a(0)=4,K{-n^6,-14+46*n-45*n^2-18*n^3} 4032532157622733 a005 (1/cos(26/201*Pi))^423 4032532171078323 r002 52th iterates of z^2 + 4032532180651775 a001 6765/710647*322^(1/4) 4032532182084293 m001 (Zeta(3)+MertensB3)/(Rabbit-StolarskyHarborth) 4032532182103484 r001 36i'th iterates of 2*x^2-1 of 4032532183728444 r005 Im(z^2+c),c=-1/3+23/39*I,n=57 4032532187570682 m001 Champernowne-GAMMA(17/24)*HardyLittlewoodC5 4032532188494848 r008 a(0)=4,K{-n^6,-50-21*n+52*n^2-17*n^3} 4032532188770727 r009 Im(z^3+c),c=-55/114+7/22*I,n=33 4032532193582172 r002 50th iterates of z^2 + 4032532195710170 a001 17711/1860498*322^(1/4) 4032532197907160 a001 46368/4870847*322^(1/4) 4032532198104075 r008 a(0)=4,K{-n^6,-10+50*n-58*n^2-13*n^3} 4032532198227697 a001 121393/12752043*322^(1/4) 4032532198274463 a001 317811/33385282*322^(1/4) 4032532198281286 a001 832040/87403803*322^(1/4) 4032532198282281 a001 46347/4868641*322^(1/4) 4032532198282426 a001 5702887/599074578*322^(1/4) 4032532198282448 a001 14930352/1568397607*322^(1/4) 4032532198282451 a001 39088169/4106118243*322^(1/4) 4032532198282451 a001 102334155/10749957122*322^(1/4) 4032532198282451 a001 267914296/28143753123*322^(1/4) 4032532198282451 a001 701408733/73681302247*322^(1/4) 4032532198282451 a001 1836311903/192900153618*322^(1/4) 4032532198282451 a001 102287808/10745088481*322^(1/4) 4032532198282451 a001 12586269025/1322157322203*322^(1/4) 4032532198282451 a001 32951280099/3461452808002*322^(1/4) 4032532198282451 a001 86267571272/9062201101803*322^(1/4) 4032532198282451 a001 225851433717/23725150497407*322^(1/4) 4032532198282451 a001 139583862445/14662949395604*322^(1/4) 4032532198282451 a001 53316291173/5600748293801*322^(1/4) 4032532198282451 a001 20365011074/2139295485799*322^(1/4) 4032532198282451 a001 7778742049/817138163596*322^(1/4) 4032532198282451 a001 2971215073/312119004989*322^(1/4) 4032532198282451 a001 1134903170/119218851371*322^(1/4) 4032532198282451 a001 433494437/45537549124*322^(1/4) 4032532198282451 a001 165580141/17393796001*322^(1/4) 4032532198282451 a001 63245986/6643838879*322^(1/4) 4032532198282453 a001 24157817/2537720636*322^(1/4) 4032532198282461 a001 9227465/969323029*322^(1/4) 4032532198282516 a001 3524578/370248451*322^(1/4) 4032532198282896 a001 1346269/141422324*322^(1/4) 4032532198285502 a001 514229/54018521*322^(1/4) 4032532198303365 a001 196418/20633239*322^(1/4) 4032532198425799 a001 75025/7881196*322^(1/4) 4032532199264975 a001 28657/3010349*322^(1/4) 4032532201387502 r005 Im(z^2+c),c=-3/20+38/59*I,n=11 4032532205016770 a001 10946/1149851*322^(1/4) 4032532210471431 r005 Im(z^2+c),c=-11/118+23/40*I,n=25 4032532223781789 m001 (Paris-ThueMorse)/(Kac-OrthogonalArrays) 4032532227471477 r008 a(0)=4,K{-n^6,14+28*n^3-3*n^2-69*n} 4032532229934870 r008 a(0)=4,K{-n^6,28-13*n-30*n^2-16*n^3} 4032532244440161 a001 4181/439204*322^(1/4) 4032532253415608 r008 a(0)=4,K{-n^6,24-13*n^3-41*n^2-n} 4032532267133778 m001 (exp(-1/2*Pi)+GAMMA(23/24))/(Artin+Khinchin) 4032532284008439 r002 38th iterates of z^2 + 4032532284985269 r008 a(0)=4,K{-n^6,42-28*n-32*n^2-13*n^3} 4032532294090902 r009 Im(z^3+c),c=-29/62+21/64*I,n=63 4032532297125746 m001 1/Zeta(3)^2/LandauRamanujan/exp(cos(Pi/5)) 4032532299547738 r008 a(0)=4,K{-n^6,56-14*n^3-22*n^2-51*n} 4032532308354772 r005 Im(z^2+c),c=-7/27+26/45*I,n=29 4032532313083133 r002 2th iterates of z^2 + 4032532329695678 r009 Im(z^3+c),c=-25/48+9/37*I,n=36 4032532345002448 r009 Im(z^3+c),c=-5/14+11/28*I,n=25 4032532367715713 r005 Re(z^2+c),c=-11/36+22/41*I,n=4 4032532370059404 r008 a(0)=4,K{-n^6,50-7*n^3-46*n^2-28*n} 4032532373659696 r009 Im(z^3+c),c=-17/66+23/27*I,n=2 4032532375863595 r005 Re(z^2+c),c=-10/19+14/39*I,n=64 4032532376342853 m001 GAMMA(1/3)*exp(FeigenbaumC)^2/sin(Pi/12) 4032532380219005 r005 Im(z^2+c),c=3/20+22/53*I,n=23 4032532386151784 r005 Im(z^2+c),c=3/23+26/47*I,n=22 4032532400090600 r005 Re(z^2+c),c=-43/78+19/54*I,n=35 4032532418379001 a007 Real Root Of 144*x^4+616*x^3+345*x^2+903*x+347 4032532418869652 m001 (Kac-Robbin)/(ArtinRank2+DuboisRaymond) 4032532429602217 r009 Im(z^3+c),c=-17/106+5/11*I,n=24 4032532433581883 r005 Re(z^2+c),c=1/74+14/55*I,n=11 4032532437860147 r002 42th iterates of z^2 + 4032532443061800 m001 1/FeigenbaumB*ln(ErdosBorwein)^2/sin(Pi/12)^2 4032532478269085 r009 Im(z^3+c),c=-13/126+23/40*I,n=2 4032532480909777 a007 Real Root Of 251*x^4+962*x^3-389*x^2-863*x-444 4032532481971415 a001 2207/24157817*34^(8/19) 4032532482707851 m005 (1/2*5^(1/2)+7/12)/(6/7*gamma-11/12) 4032532482964361 s002 sum(A273532[n]/(exp(n)+1),n=1..infinity) 4032532487837306 m001 5^(1/2)*MinimumGamma+LandauRamanujan 4032532488715935 r005 Im(z^2+c),c=-1/11+34/57*I,n=37 4032532502868996 a007 Real Root Of -976*x^4+740*x^3-949*x^2+291*x+346 4032532505745232 r005 Re(z^2+c),c=-9/16+2/19*I,n=46 4032532505932856 s001 sum(exp(-2*Pi/3)^n*A220312[n],n=1..infinity) 4032532514652099 a001 1597/167761*322^(1/4) 4032532527233873 r002 45th iterates of z^2 + 4032532530959561 m005 (1/2*3^(1/2)-5)/(3/7*gamma+7/9) 4032532531547078 h001 (5/7*exp(2)+4/11)/(1/11*exp(2)+8/11) 4032532539561899 r008 a(0)=4,K{-n^6,-63-18*n^3+44*n^2+3*n} 4032532544809217 a007 Real Root Of 322*x^4+95*x^3+751*x^2-428*x-297 4032532549026078 r005 Im(z^2+c),c=17/110+23/53*I,n=7 4032532554285538 h005 exp(cos(Pi*7/53)+cos(Pi*15/44)) 4032532580143149 p004 log(17387/11617) 4032532585757972 a007 Real Root Of 8*x^4+318*x^3-191*x^2-232*x-577 4032532587601475 r005 Im(z^2+c),c=-3/106+15/28*I,n=54 4032532589534629 a007 Real Root Of 926*x^4-960*x^3+252*x^2-118*x-176 4032532595110402 a007 Real Root Of 220*x^4-445*x^3-29*x^2-652*x+291 4032532597109387 r005 Re(z^2+c),c=-53/90+17/59*I,n=20 4032532623676654 r005 Im(z^2+c),c=-15/118+19/32*I,n=32 4032532626279250 m001 1/ln(cos(Pi/12))/BesselK(1,1)*sin(1) 4032532630825310 h001 (1/3*exp(2)+1/9)/(7/9*exp(2)+7/11) 4032532634271228 r009 Im(z^3+c),c=-27/56+20/63*I,n=44 4032532639517813 m001 (-ReciprocalLucas+Salem)/(Si(Pi)+Paris) 4032532649131931 r009 Re(z^3+c),c=-39/82+5/23*I,n=19 4032532664770138 m001 Pi+Pi^(1/2)-QuadraticClass 4032532665660368 m001 (Psi(2,1/3)+BesselI(0,1))/(Kac+Rabbit) 4032532672032969 a007 Real Root Of 107*x^4-507*x^3-835*x^2-984*x+563 4032532675266797 r009 Im(z^3+c),c=-17/106+5/11*I,n=27 4032532676671866 a007 Real Root Of -258*x^4+280*x^3+735*x^2+781*x-446 4032532676729062 r009 Im(z^3+c),c=-17/106+5/11*I,n=26 4032532678526206 r009 Im(z^3+c),c=-17/106+5/11*I,n=29 4032532678958299 a007 Real Root Of -72*x^4+284*x^3-876*x^2+868*x+513 4032532680498700 r009 Re(z^3+c),c=-55/126+1/6*I,n=11 4032532687383894 r009 Im(z^3+c),c=-17/106+5/11*I,n=31 4032532688907447 r009 Im(z^3+c),c=-17/106+5/11*I,n=34 4032532689133788 r009 Im(z^3+c),c=-17/106+5/11*I,n=36 4032532689235359 r009 Im(z^3+c),c=-17/106+5/11*I,n=39 4032532689237230 r009 Im(z^3+c),c=-17/106+5/11*I,n=41 4032532689237550 r009 Im(z^3+c),c=-17/106+5/11*I,n=38 4032532689241016 r009 Im(z^3+c),c=-17/106+5/11*I,n=43 4032532689241621 r009 Im(z^3+c),c=-17/106+5/11*I,n=46 4032532689241721 r009 Im(z^3+c),c=-17/106+5/11*I,n=48 4032532689241763 r009 Im(z^3+c),c=-17/106+5/11*I,n=51 4032532689241764 r009 Im(z^3+c),c=-17/106+5/11*I,n=53 4032532689241764 r009 Im(z^3+c),c=-17/106+5/11*I,n=50 4032532689241765 r009 Im(z^3+c),c=-17/106+5/11*I,n=55 4032532689241765 r009 Im(z^3+c),c=-17/106+5/11*I,n=58 4032532689241765 r009 Im(z^3+c),c=-17/106+5/11*I,n=60 4032532689241765 r009 Im(z^3+c),c=-17/106+5/11*I,n=63 4032532689241765 r009 Im(z^3+c),c=-17/106+5/11*I,n=62 4032532689241765 r009 Im(z^3+c),c=-17/106+5/11*I,n=64 4032532689241765 r009 Im(z^3+c),c=-17/106+5/11*I,n=61 4032532689241765 r009 Im(z^3+c),c=-17/106+5/11*I,n=56 4032532689241765 r009 Im(z^3+c),c=-17/106+5/11*I,n=59 4032532689241765 r009 Im(z^3+c),c=-17/106+5/11*I,n=57 4032532689241766 r009 Im(z^3+c),c=-17/106+5/11*I,n=54 4032532689241768 r009 Im(z^3+c),c=-17/106+5/11*I,n=52 4032532689241780 r009 Im(z^3+c),c=-17/106+5/11*I,n=49 4032532689241841 r009 Im(z^3+c),c=-17/106+5/11*I,n=44 4032532689241859 r009 Im(z^3+c),c=-17/106+5/11*I,n=47 4032532689241902 r009 Im(z^3+c),c=-17/106+5/11*I,n=45 4032532689243966 r009 Im(z^3+c),c=-17/106+5/11*I,n=42 4032532689248717 r009 Im(z^3+c),c=-17/106+5/11*I,n=40 4032532689279097 r009 Im(z^3+c),c=-17/106+5/11*I,n=37 4032532689462260 r009 Im(z^3+c),c=-17/106+5/11*I,n=35 4032532689472906 r009 Im(z^3+c),c=-17/106+5/11*I,n=32 4032532689541300 r009 Im(z^3+c),c=-17/106+5/11*I,n=33 4032532689933386 a003 sin(Pi*9/79)/cos(Pi*16/97) 4032532693688235 b008 CosIntegral[6^(1/13)] 4032532694537445 r009 Im(z^3+c),c=-17/106+5/11*I,n=30 4032532703115641 l006 ln(4677/7000) 4032532705312892 r009 Im(z^3+c),c=-17/106+5/11*I,n=28 4032532724553284 m008 (5*Pi^3-1/5)/(2/5*Pi^6-3/5) 4032532725601016 r002 7th iterates of z^2 + 4032532729551284 r005 Im(z^2+c),c=7/78+11/24*I,n=28 4032532730647251 m005 (1/2*exp(1)-7/8)/(2/7*Zeta(3)+6/7) 4032532737047253 m001 Zeta(7)^2/exp(LaplaceLimit)^2/sin(Pi/12)^2 4032532750705407 r009 Re(z^3+c),c=-23/44+3/14*I,n=21 4032532756772996 r002 19th iterates of z^2 + 4032532757263839 a001 233/39603*521^(4/13) 4032532763749575 m001 (5^(1/2))^(Psi(1,1/3)/GAMMA(2/3)) 4032532766425414 a007 Real Root Of -247*x^4-884*x^3+410*x^2-231*x-252 4032532778956318 r005 Re(z^2+c),c=15/44+13/32*I,n=6 4032532781634875 r009 Im(z^3+c),c=-17/106+5/11*I,n=25 4032532785668084 r005 Re(z^2+c),c=33/118+2/53*I,n=3 4032532788988508 r002 25th iterates of z^2 + 4032532805046945 b008 11/5+Csc[EulerGamma] 4032532814504782 m001 (Backhouse-Zeta(3))^LaplaceLimit 4032532826233975 r005 Im(z^2+c),c=11/126+23/50*I,n=64 4032532830768271 m002 6/Pi^3+E^Pi/Pi-Cosh[Pi] 4032532838907051 m001 1/exp(PrimesInBinary)^2*Porter/(2^(1/3))^2 4032532848325127 a007 Real Root Of 117*x^4+383*x^3-409*x^2-168*x+150 4032532849993512 m001 (BesselI(1,1)-Catalan)/(Trott+Thue) 4032532868538190 a003 sin(Pi*4/53)/cos(Pi*29/96) 4032532871078486 a007 Real Root Of 113*x^4+315*x^3-692*x^2-556*x-214 4032532872727178 r005 Im(z^2+c),c=-10/13+1/41*I,n=18 4032532885472959 a007 Real Root Of 592*x^4-607*x^3-919*x^2-802*x+497 4032532887297195 a007 Real Root Of 369*x^4+103*x^3+306*x^2-995*x-454 4032532905591527 r005 Im(z^2+c),c=13/66+22/59*I,n=24 4032532907361087 m001 (sin(1/5*Pi)-ln(3))/(Porter-Riemann1stZero) 4032532907708671 a001 18/433494437*225851433717^(2/23) 4032532907708676 a001 18/165580141*3524578^(2/23) 4032532911972362 r009 Re(z^3+c),c=-49/110+7/39*I,n=31 4032532931814069 r005 Re(z^2+c),c=-19/34+11/73*I,n=42 4032532934106094 r005 Re(z^2+c),c=-4/13+39/61*I,n=64 4032532949418659 r002 44th iterates of z^2 + 4032532951730574 m001 (Rabbit-Shi(1))^Thue 4032532952105898 a001 5/18*3^(19/56) 4032532982474727 a007 Real Root Of -15*x^4+761*x^3-498*x^2+959*x+518 4032532987569358 h001 (1/3*exp(2)+1/3)/(9/11*exp(2)+8/9) 4032533000596341 m001 FeigenbaumD/Champernowne/exp(Zeta(1/2))^2 4032533002608851 a007 Real Root Of -850*x^4-752*x^3-432*x^2+795*x+364 4032533005632242 a001 377/103682*322^(5/12) 4032533012590556 r009 Im(z^3+c),c=-11/60+25/54*I,n=5 4032533023136166 a008 Real Root of (-3+4*x+9*x^2-3*x^4+4*x^8) 4032533024557450 r005 Im(z^2+c),c=8/25+13/46*I,n=27 4032533030829613 r008 a(0)=4,K{-n^6,-53+40*n+32*n^2-50*n^3} 4032533036388756 m006 (1/6*Pi-2/3)/(2/5*Pi^2-2/5) 4032533036388756 m008 (1/6*Pi-2/3)/(2/5*Pi^2-2/5) 4032533048296479 m009 (3/5*Psi(1,2/3)+2)/(24/5*Catalan+3/5*Pi^2-4/5) 4032533056015896 m005 (1/3*5^(1/2)+1/9)/(7/8*Pi-5/8) 4032533069550778 r008 a(0)=4,K{-n^6,-51+51*n+12*n^2-43*n^3} 4032533070777988 r005 Re(z^2+c),c=-33/58+5/37*I,n=9 4032533072026288 m005 (1/2*3^(1/2)+1/5)/(2/3*Catalan-7/8) 4032533072733086 p001 sum(1/(327*n+203)/n/(5^n),n=1..infinity) 4032533073997704 r005 Im(z^2+c),c=1/23+21/43*I,n=25 4032533084867208 h001 (10/11*exp(1)+1/3)/(9/11*exp(2)+10/11) 4032533094350132 g002 Psi(4/7)+Psi(2/7)+Psi(4/5)-Psi(4/9) 4032533096338166 r002 35th iterates of z^2 + 4032533098989501 m001 ZetaQ(2)^(arctan(1/3)*cos(1/12*Pi)) 4032533102316557 h002 exp(14^(6/5)-11^(1/5)) 4032533102316557 h007 exp(14^(6/5)-11^(1/5)) 4032533105555389 r009 Im(z^3+c),c=-59/110+21/62*I,n=7 4032533112999390 a001 4106118243/13*13^(2/21) 4032533113757412 a007 Real Root Of -190*x^4-679*x^3+260*x^2-612*x-979 4032533121592449 r005 Im(z^2+c),c=17/110+9/22*I,n=25 4032533126481681 r008 a(0)=4,K{-n^6,-29+30*n+5*n^2-37*n^3} 4032533129510897 r009 Im(z^3+c),c=-27/94+7/17*I,n=5 4032533133736742 r009 Im(z^3+c),c=-33/74+12/35*I,n=30 4032533136213069 m001 FibonacciFactorial^Thue/Otter 4032533137536788 a001 1568397607/34*39088169^(18/23) 4032533137591518 a001 271443/34*2504730781961^(18/23) 4032533141339438 m001 (LandauRamanujan+ZetaP(4))/(Zeta(1,-1)+Artin) 4032533145273224 r005 Re(z^2+c),c=-43/82+19/58*I,n=10 4032533150781847 m005 (1/2*gamma-1/3)/(1/9*3^(1/2)+11/12) 4032533165199413 r005 Im(z^2+c),c=-5/8+19/253*I,n=52 4032533166360214 r005 Re(z^2+c),c=-29/52+10/61*I,n=45 4032533168026800 r008 a(0)=4,K{-n^6,-15-33*n^3+17*n} 4032533176664018 h001 (5/8*exp(1)+4/9)/(7/10*exp(2)+1/7) 4032533178038084 s002 sum(A180573[n]/(n*exp(n)-1),n=1..infinity) 4032533178611138 r005 Im(z^2+c),c=-2/23+22/37*I,n=43 4032533182419103 a007 Real Root Of 637*x^4-873*x^3-63*x^2-908*x-430 4032533199814328 a007 Real Root Of 527*x^4-957*x^3-88*x^2-252*x-164 4032533199952197 r005 Re(z^2+c),c=-53/94+4/61*I,n=18 4032533209846331 r009 Im(z^3+c),c=-17/106+5/11*I,n=23 4032533226230685 r008 a(0)=4,K{-n^6,-27+55*n-36*n^2-23*n^3} 4032533229432600 m005 (1/2*3^(1/2)+1)/(-1/22+5/22*5^(1/2)) 4032533236605238 r009 Re(z^3+c),c=-61/126+13/59*I,n=54 4032533242582345 l006 ln(166/9363) 4032533253838594 r005 Im(z^2+c),c=13/82+24/47*I,n=19 4032533275377263 a001 13201/7*5^(17/36) 4032533283237722 r008 a(0)=4,K{-n^6,-15+47*n-45*n^2-18*n^3} 4032533283633858 r002 10th iterates of z^2 + 4032533294901634 l006 ln(2414/3613) 4032533301262784 a007 Real Root Of 14*x^4-11*x^3-306*x^2-19*x+476 4032533334139352 r008 a(0)=4,K{-n^6,55-24*n^3+8*n^2-70*n} 4032533339784979 r009 Im(z^3+c),c=-17/106+5/11*I,n=21 4032533340993230 a007 Real Root Of 110*x^4-539*x^3+957*x^2-469*x-383 4032533347669899 a008 Real Root of (2+3*x-4*x^2+x^3-2*x^4+2*x^5) 4032533359667458 r009 Im(z^3+c),c=-17/106+5/11*I,n=20 4032533362122486 b008 -1+(-2+E^E)*Pi 4032533363921586 a007 Real Root Of 169*x^4-595*x^3+135*x^2-480*x-259 4032533366672545 r008 a(0)=4,K{-n^6,-3-11*n^3-60*n^2+43*n} 4032533368400597 a001 76/21*365435296162^(7/20) 4032533377897857 m006 (1/2*exp(Pi)-1/4)/(1/5*Pi^2+5/6) 4032533387499829 m001 ln(FeigenbaumD)/Artin/cos(Pi/5)^2 4032533388945762 r004 Re(z^2+c),c=-11/20+5/22*I,z(0)=-1,n=54 4032533390394206 r008 a(0)=4,K{-n^6,23-13*n^3-41*n^2} 4032533393181663 a001 3/1134903170*34^(17/22) 4032533401106823 r005 Im(z^2+c),c=29/126+11/32*I,n=29 4032533402709276 r005 Re(z^2+c),c=17/94+18/31*I,n=21 4032533404392615 r008 a(0)=4,K{-n^6,37-23*n-31*n^2-14*n^3} 4032533413303580 m003 -57/2+(Sqrt[5]*Tan[1/2+Sqrt[5]/2])/4 4032533420354210 a001 2/5473*4181^(22/39) 4032533425389715 m001 1/Champernowne/exp(Cahen)/GAMMA(11/12) 4032533475949274 a001 39603/13*4181^(25/29) 4032533481829551 a001 2/123*4^(19/29) 4032533484397770 m005 (1/2*3^(1/2)-7/12)/(1/2*Zeta(3)+1/10) 4032533496909887 r002 22th iterates of z^2 + 4032533503692097 r002 33th iterates of z^2 + 4032533515928763 m002 3+ProductLog[Pi]/(3*Pi^2)+Tanh[Pi] 4032533525563200 r001 40i'th iterates of 2*x^2-1 of 4032533526494062 r005 Im(z^2+c),c=-9/8+6/119*I,n=12 4032533535800129 m001 FeigenbaumC*ln(KhintchineHarmonic)^2*Rabbit 4032533540848016 m005 (1/2*3^(1/2)+5/11)/(-37/126+5/18*5^(1/2)) 4032533545844952 r004 Re(z^2+c),c=-5/9+2/13*I,z(0)=-1,n=16 4032533553769205 r002 46th iterates of z^2 + 4032533563719729 r002 56th iterates of z^2 + 4032533579435017 b008 4+ArcCsch[29+Sqrt[3]] 4032533584471905 r005 Re(z^2+c),c=-9/16+13/124*I,n=59 4032533585522120 a007 Real Root Of -231*x^4-681*x^3-219*x^2+885*x+36 4032533585878913 r009 Im(z^3+c),c=-37/82+13/30*I,n=7 4032533625572681 m001 1/ln(PrimesInBinary)/Cahen/Robbin^2 4032533634752803 r008 a(0)=4,K{-n^6,5+22*n^3-15*n^2-41*n} 4032533635492688 m001 (Psi(1,1/3)+Ei(1))/(-Rabbit+ThueMorse) 4032533644033485 a007 Real Root Of 277*x^4-757*x^3+319*x^2+565*x+119 4032533644536487 r002 37th iterates of z^2 + 4032533645071451 r002 35th iterates of z^2 + 4032533666396408 s002 sum(A050025[n]/(pi^n+1),n=1..infinity) 4032533703733901 r008 a(0)=0,K{-n^6,30*n^3+44*n^2-49*n} 4032533726076865 r009 Im(z^3+c),c=-1/86+15/32*I,n=15 4032533731316538 a007 Real Root Of 272*x^4+913*x^3-640*x^2+324*x-342 4032533753300326 m006 (2*exp(Pi)-5/6)/(5*exp(Pi)-3) 4032533761457437 r002 12th iterates of z^2 + 4032533773106263 a001 46/32264490531*8^(1/2) 4032533773453234 p004 log(25969/17351) 4032533777517905 r005 Re(z^2+c),c=-13/10+11/245*I,n=38 4032533782273201 r005 Im(z^2+c),c=-19/16+3/41*I,n=12 4032533785366147 a007 Real Root Of 588*x^4-663*x^3-467*x^2-466*x-171 4032533788268989 r005 Re(z^2+c),c=-5/8+45/164*I,n=16 4032533791999403 m005 (1/2*exp(1)-4)/(1/6*Zeta(3)+5/11) 4032533798160265 a001 76/3*86267571272^(3/4) 4032533804361747 r005 Re(z^2+c),c=-51/110+31/61*I,n=56 4032533835344680 r009 Re(z^3+c),c=-53/102+9/38*I,n=26 4032533837156728 m001 (MadelungNaCl+MertensB3)/(Stephens-Totient) 4032533837510764 r005 Im(z^2+c),c=5/16+9/35*I,n=44 4032533845421883 r005 Re(z^2+c),c=-19/82+52/61*I,n=18 4032533850792963 l006 ln(4979/7452) 4032533854447192 m001 1/ln(GAMMA(2/3))*Magata^2/GAMMA(7/24)^2 4032533858638670 r002 18th iterates of z^2 + 4032533877071124 m001 1/LaplaceLimit*FeigenbaumDelta^2*ln(Magata) 4032533883094959 r005 Im(z^2+c),c=-1/25+19/35*I,n=57 4032533888362843 m001 (Niven-ThueMorse)/(Grothendieck-MinimumGamma) 4032533895039056 a007 Real Root Of -491*x^4+766*x^3+721*x^2+341*x-292 4032533903781447 m001 (3^(1/3)+FeigenbaumMu)/(Gompertz-Tribonacci) 4032533909330797 a001 233/24476*521^(3/13) 4032533909976772 r005 Re(z^2+c),c=-31/42+7/52*I,n=56 4032533910484330 p004 log(33647/22481) 4032533930470226 r009 Re(z^3+c),c=-11/16+25/46*I,n=2 4032533933632055 r002 9th iterates of z^2 + 4032533936329474 r005 Im(z^2+c),c=1/56+7/13*I,n=17 4032533951479906 r005 Im(z^2+c),c=-25/114+28/39*I,n=62 4032533951554481 m003 7/4+Sqrt[5]/8+2*Sec[1/2+Sqrt[5]/2] 4032533953959532 a007 Real Root Of -216*x^4-819*x^3+219*x^2+202*x+665 4032533984518801 a007 Real Root Of 951*x^4-78*x^3+875*x^2-569*x-402 4032533988910551 m002 -1-5/Pi^2+6/Pi 4032533993771331 a007 Real Root Of 203*x^4+987*x^3+480*x^2-922*x-481 4032534002075872 r002 64th iterates of z^2 + 4032534008497165 r002 41th iterates of z^2 + 4032534013688970 r005 Im(z^2+c),c=5/82+11/23*I,n=56 4032534018935074 m001 1/Sierpinski/ln(Lehmer)/GAMMA(2/3)^2 4032534025931950 m001 Rabbit^2/KhintchineLevy*ln(Sierpinski) 4032534026522914 r005 Im(z^2+c),c=-55/48+3/59*I,n=39 4032534051564302 r005 Re(z^2+c),c=-33/94+23/40*I,n=52 4032534079010831 m005 (1/3*3^(1/2)-1/11)/(5/11*3^(1/2)-2/3) 4032534108906539 m001 (3^(1/3)+KhinchinLevy)/(LaplaceLimit-Trott) 4032534119368670 r002 44th iterates of z^2 + 4032534129595571 a001 123/7778742049*225851433717^(10/21) 4032534129595575 a001 123/63245986*9227465^(10/21) 4032534139393826 m001 (MinimumGamma*Trott2nd-ln(Pi))/Trott2nd 4032534144539717 r008 a(0)=4,K{-n^6,-52+26*n+51*n^2-56*n^3} 4032534147363216 r005 Im(z^2+c),c=-25/38+2/63*I,n=11 4032534151228199 r005 Re(z^2+c),c=27/94+11/23*I,n=17 4032534152362915 s002 sum(A110554[n]/(n^3*exp(n)-1),n=1..infinity) 4032534157391094 m001 (Zeta(1,2)-FeigenbaumDelta)/(Porter-ZetaP(4)) 4032534185115579 r009 Im(z^3+c),c=-25/64+19/50*I,n=13 4032534194683958 b008 2+51/E^(2/7) 4032534207299134 h001 (6/7*exp(2)+4/5)/(5/12*exp(1)+7/11) 4032534222234588 r009 Re(z^3+c),c=-9/40+7/10*I,n=20 4032534222429342 l006 ln(109/6148) 4032534223026523 r008 a(0)=4,K{-n^6,-10-48*n^3+48*n^2-21*n} 4032534226424683 r005 Im(z^2+c),c=2/21+25/56*I,n=12 4032534237375901 r005 Re(z^2+c),c=-71/126+1/16*I,n=22 4032534246575342 q001 471/1168 4032534257473020 m004 -7+(5*Sqrt[5]*Pi)/3-Sin[Sqrt[5]*Pi] 4032534259633201 h001 (4/7*exp(1)+1/6)/(1/12*exp(1)+1/5) 4032534269361623 r008 a(0)=4,K{-n^6,-18-39*n^3+17*n^2+9*n} 4032534271893509 m001 5^(1/2)-KhinchinLevy-MasserGramain 4032534302672605 r009 Re(z^3+c),c=-11/48+20/37*I,n=2 4032534304558676 r008 a(0)=4,K{-n^6,-16-34*n^3+3*n^2+16*n} 4032534327550220 r005 Im(z^2+c),c=-47/56+2/47*I,n=4 4032534334922645 r005 Re(z^2+c),c=-13/23+2/41*I,n=39 4032534346563601 m002 -6/Pi+5*Csch[Pi]+ProductLog[Pi] 4032534347843414 a007 Real Root Of 42*x^4+128*x^3+16*x^2+884*x+592 4032534354771738 m001 BesselI(1,1)^(PisotVijayaraghavan/FeigenbaumB) 4032534355029946 r008 a(0)=4,K{-n^6,-28+52*n-30*n^2-25*n^3} 4032534362486672 r005 Im(z^2+c),c=-83/94+17/55*I,n=3 4032534365198198 r008 a(0)=4,K{-n^6,4-4*n-2*n^2-29*n^3} 4032534366712278 a001 610/64079*322^(1/4) 4032534372846919 r005 Im(z^2+c),c=-47/98+2/29*I,n=45 4032534373959277 l006 ln(2565/3839) 4032534392281980 m001 (FeigenbaumMu+Tribonacci)/(2^(1/2)+gamma(1)) 4032534395739529 r008 a(0)=4,K{-n^6,-69+10*n^3+10*n^2+19*n} 4032534399067730 p001 sum(1/(362*n+249)/(100^n),n=0..infinity) 4032534401271504 r005 Re(z^2+c),c=-9/16+13/124*I,n=57 4032534405252579 r005 Re(z^2+c),c=-49/74+1/50*I,n=14 4032534409037444 a007 Real Root Of -395*x^4-364*x^3+86*x^2+500*x+20 4032534418923221 r009 Im(z^3+c),c=-47/126+29/63*I,n=6 4032534419637018 r009 Re(z^3+c),c=-59/126+11/54*I,n=45 4032534425994602 r009 Im(z^3+c),c=-57/122+18/55*I,n=31 4032534428431295 r005 Re(z^2+c),c=-9/16+13/124*I,n=61 4032534431874127 m005 (1/3*2^(1/2)-3/7)/(2/3*exp(1)-3/4) 4032534443419232 m001 1/GAMMA(2/3)/GAMMA(1/6)^2*exp(sqrt(2))^2 4032534446005116 a007 Real Root Of 435*x^4+170*x^3+736*x^2-357*x-264 4032534451470512 a007 Real Root Of 239*x^4-377*x^3-423*x^2-438*x-17 4032534468158606 r005 Re(z^2+c),c=1/26+19/62*I,n=19 4032534475215856 g001 Psi(1,31/55) 4032534475215856 l003 Psi(1,31/55) 4032534485682436 r005 Re(z^2+c),c=-23/30+26/75*I,n=7 4032534496477171 m001 ZetaP(3)^Magata/(QuadraticClass^Magata) 4032534499740305 m005 (1/2*Pi-6)/(3/11*5^(1/2)-1/2) 4032534508142583 r005 Re(z^2+c),c=-41/74+11/56*I,n=59 4032534512804206 r008 a(0)=4,K{-n^6,-4-11*n^3-60*n^2+44*n} 4032534519513517 r008 a(0)=4,K{-n^6,24-6*n-34*n^2-15*n^3} 4032534523060549 r008 a(0)=0,K{-n^6,-24-9*n+26*n^2+32*n^3} 4032534525761224 a007 Real Root Of 113*x^4+762*x^3+989*x^2-846*x+593 4032534540065399 m005 (1/2*gamma-4)/(39/176+5/16*5^(1/2)) 4032534540711863 r005 Im(z^2+c),c=-1/17+31/56*I,n=54 4032534551169166 r008 a(0)=4,K{-n^6,6-9*n^3-61*n^2+33*n} 4032534559622742 r005 Re(z^2+c),c=-39/82+29/61*I,n=38 4032534570277142 r005 Im(z^2+c),c=19/66+21/55*I,n=23 4032534573057355 r008 a(0)=4,K{-n^6,42-29*n-31*n^2-13*n^3} 4032534581404729 m001 Backhouse/(GAMMA(23/24)+Sierpinski) 4032534582460435 r005 Re(z^2+c),c=-7/6+92/119*I,n=2 4032534602105361 r005 Re(z^2+c),c=-8/13+5/23*I,n=7 4032534611625348 a001 987/167761*322^(1/3) 4032534621870885 m005 (1/2*Catalan+6)/(7/8*Catalan+4/5) 4032534649573922 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)-gamma(2)-Artin 4032534651596854 p004 log(21377/379) 4032534661247039 a001 1/47*(1/2*5^(1/2)+1/2)^10*7^(2/9) 4032534663459896 m001 ln(Rabbit)*DuboisRaymond^2/LambertW(1)^2 4032534676864770 m001 (-Zeta(5)+MertensB2)/(BesselI(0,1)-Psi(2,1/3)) 4032534678014361 m005 (1/2*gamma+4/5)/(1/11*Pi-5/9) 4032534689751396 r009 Re(z^3+c),c=-23/44+13/55*I,n=47 4032534698895204 r002 15th iterates of z^2 + 4032534700976769 r008 a(0)=4,K{-n^6,62-45*n-42*n^2-6*n^3} 4032534701269042 m001 1/(3^(1/3))*Champernowne/exp(GAMMA(1/3))^2 4032534706156643 r005 Re(z^2+c),c=-13/24+9/32*I,n=54 4032534713813026 m001 Tribonacci*exp(CopelandErdos)*sqrt(3) 4032534716216580 r009 Re(z^3+c),c=-13/25+6/23*I,n=62 4032534737950896 a001 29/17711*5^(14/25) 4032534747323622 r005 Re(z^2+c),c=-31/56+7/33*I,n=29 4032534764386300 r009 Re(z^3+c),c=-15/31+11/50*I,n=52 4032534765512075 a007 Real Root Of -156*x^4-349*x^3+965*x^2-848*x-746 4032534765598948 r009 Im(z^3+c),c=-3/94+22/47*I,n=9 4032534784370073 r002 5th iterates of z^2 + 4032534793749890 r008 a(0)=4,K{-n^6,64-59*n^2-36*n} 4032534794497750 a007 Real Root Of -226*x^4+906*x^3+19*x^2+884*x-413 4032534797990798 m001 (Cahen-Trott)/(Zeta(1/2)+exp(1/exp(1))) 4032534815274183 r005 Re(z^2+c),c=-69/118+9/64*I,n=17 4032534818224694 m001 1/exp(GAMMA(7/24))^2*CareFree*exp(1) 4032534818785969 m001 FeigenbaumC^2*ln(Kolakoski)^2/BesselJ(1,1) 4032534830771046 r005 Re(z^2+c),c=-59/58+5/26*I,n=18 4032534833800539 a001 9062201101803/34*610^(18/23) 4032534842513143 r008 a(0)=4,K{-n^6,-16-38*n+29*n^2-8*n^3} 4032534846187239 r005 Im(z^2+c),c=5/23+23/63*I,n=17 4032534853709372 m001 (MertensB2+ZetaP(4))/(gamma(1)-FeigenbaumD) 4032534853779794 a003 cos(Pi*41/110)/sin(Pi*47/113) 4032534859141329 m001 exp(Salem)*MinimumGamma/sinh(1) 4032534864300384 r008 a(0)=4,K{-n^6,-30+18*n-24*n^2+4*n^3} 4032534867207705 l006 ln(5281/7904) 4032534868411688 r005 Re(z^2+c),c=-101/122+24/47*I,n=2 4032534882273312 a001 7/5*3^(26/27) 4032534885793664 a007 Real Root Of -117*x^4-255*x^3+824*x^2-265*x-251 4032534903643551 m001 MertensB3^(2*Pi/GAMMA(5/6))/(MertensB3^Rabbit) 4032534926556813 r005 Re(z^2+c),c=-35/62+3/43*I,n=37 4032534927506583 a007 Real Root Of -851*x^4-85*x^3+196*x^2+985*x-401 4032534927981963 a007 Real Root Of 921*x^4-38*x^3-931*x^2-636*x+386 4032534932605305 m001 1/Zeta(9)*exp(GAMMA(7/24))^2/sinh(1) 4032534936540865 r005 Im(z^2+c),c=-27/52+3/40*I,n=16 4032534958718960 r009 Re(z^3+c),c=-23/60+37/60*I,n=21 4032534960040531 r005 Im(z^2+c),c=7/38+46/53*I,n=3 4032534975054068 m005 (27/28+1/4*5^(1/2))/(4/7*5^(1/2)-9/10) 4032534977376501 r005 Re(z^2+c),c=1/26+40/49*I,n=12 4032534977889366 r005 Im(z^2+c),c=17/126+17/40*I,n=55 4032535002281958 m001 Lehmer*(LandauRamanujan-exp(1/exp(1))) 4032535010513912 a001 6765/76*1364^(9/43) 4032535021201672 p003 LerchPhi(1/16,1,52/207) 4032535027741715 a001 233/15127*521^(2/13) 4032535061283876 r005 Im(z^2+c),c=-17/16+43/121*I,n=3 4032535062010319 r005 Re(z^2+c),c=-27/50+13/51*I,n=26 4032535098944023 r005 Im(z^2+c),c=-2/29+23/41*I,n=50 4032535117297425 r009 Re(z^3+c),c=-15/28+16/57*I,n=48 4032535123061504 a007 Real Root Of 203*x^4+507*x^3+596*x^2-910*x-436 4032535125233271 g005 GAMMA(8/11)*GAMMA(5/11)*GAMMA(6/7)*GAMMA(3/5) 4032535130119034 r005 Re(z^2+c),c=-133/102+3/53*I,n=22 4032535131080616 m001 (RenyiParking+Thue)/(ZetaP(2)-ZetaQ(2)) 4032535131085851 r002 11th iterates of z^2 + 4032535134683152 m001 3^(1/2)*ErdosBorwein^Grothendieck 4032535136220204 m001 (ln(Pi)+GAMMA(7/12))/(Cahen-Mills) 4032535142104180 r005 Re(z^2+c),c=-39/74+19/52*I,n=54 4032535162315724 a001 1/329*(1/2*5^(1/2)+1/2)^19*47^(1/11) 4032535163444671 a004 Fibonacci(13)*Lucas(15)/(1/2+sqrt(5)/2)^33 4032535167328080 a007 Real Root Of -60*x^4-362*x^3-533*x^2-222*x-100 4032535191844760 a001 29/28657*987^(31/58) 4032535198009169 m008 (2/5*Pi^5-3/5)/(Pi^3-4/5) 4032535208131068 r009 Re(z^3+c),c=-11/56+37/42*I,n=20 4032535211473300 a007 Real Root Of -544*x^4+454*x^3-386*x^2+392*x+265 4032535214121656 a001 6643838879/233*2^(1/2) 4032535232705365 l006 ln(161/9081) 4032535243609015 r005 Im(z^2+c),c=-5/106+29/54*I,n=24 4032535248893836 r002 30th iterates of z^2 + 4032535254141240 r009 Im(z^3+c),c=-6/19+7/17*I,n=12 4032535254403902 a007 Real Root Of 760*x^4-320*x^3-845*x^2-759*x+32 4032535258718909 r005 Im(z^2+c),c=-1/12+29/57*I,n=7 4032535260779294 h001 (8/11*exp(2)+2/11)/(3/11*exp(1)+7/11) 4032535264394943 m009 (1/6*Psi(1,3/4)+4/5)/(3/8*Pi^2-2/3) 4032535265397717 a001 34*3571^(13/43) 4032535270877287 r005 Im(z^2+c),c=-5/54+27/47*I,n=64 4032535276011813 a007 Real Root Of 280*x^4+946*x^3-642*x^2+570*x+731 4032535276590310 r005 Im(z^2+c),c=17/46+10/43*I,n=46 4032535292523842 a001 39603/55*121393^(20/37) 4032535302794163 m002 -4+Pi^2-4*Sinh[Pi] 4032535307941165 a001 233/4870847*1364^(14/15) 4032535309223450 r005 Im(z^2+c),c=-17/122+3/59*I,n=4 4032535318607185 a001 34/5779*322^(1/3) 4032535325445484 r008 a(0)=4,K{-n^6,-53+39*n+33*n^2-50*n^3} 4032535326788568 m001 exp(Zeta(3))^2/ArtinRank2^2*sqrt(Pi) 4032535333033242 l006 ln(2716/4065) 4032535336966581 r005 Re(z^2+c),c=-15/26+6/53*I,n=13 4032535352194612 r008 a(0)=4,K{-n^6,-5-53*n^3+66*n^2-39*n} 4032535352418530 a007 Real Root Of -210*x^4-377*x^3-404*x^2+760*x+353 4032535355901819 r008 a(0)=4,K{-n^6,-19-12*n+50*n^2-50*n^3} 4032535364027231 r008 a(0)=0,K{-n^6,26*n^3+56*n^2-57*n} 4032535365264967 r008 a(0)=4,K{-n^6,15-54*n^3+79*n^2-71*n} 4032535366214057 m001 MadelungNaCl/gamma(2)*5^(1/2) 4032535366493750 m001 1/Kolakoski/exp(CareFree)/cosh(1) 4032535374870106 r008 a(0)=4,K{-n^6,-11-48*n^3+48*n^2-20*n} 4032535392695492 r008 a(0)=4,K{-n^6,-53+63*n-3*n^2-38*n^3} 4032535395423303 r002 18th iterates of z^2 + 4032535403177791 r002 47th iterates of z^2 + 4032535412671095 m005 (1/2*5^(1/2)+2/9)/(31/10+1/10*5^(1/2)) 4032535414982058 h001 (6/7*exp(1)+1/5)/(8/11*exp(2)+9/10) 4032535421754445 a001 6765/1149851*322^(1/3) 4032535432010329 r009 Re(z^3+c),c=-61/126+13/59*I,n=47 4032535436138904 m001 exp(GAMMA(1/24))*KhintchineLevy^2/cos(1) 4032535436803427 a001 17711/3010349*322^(1/3) 4032535438999044 a001 11592/1970299*322^(1/3) 4032535439319381 a001 121393/20633239*322^(1/3) 4032535439366117 a001 317811/54018521*322^(1/3) 4032535439372936 a001 208010/35355581*322^(1/3) 4032535439373931 a001 2178309/370248451*322^(1/3) 4032535439374076 a001 5702887/969323029*322^(1/3) 4032535439374097 a001 196452/33391061*322^(1/3) 4032535439374100 a001 39088169/6643838879*322^(1/3) 4032535439374100 a001 102334155/17393796001*322^(1/3) 4032535439374101 a001 66978574/11384387281*322^(1/3) 4032535439374101 a001 701408733/119218851371*322^(1/3) 4032535439374101 a001 1836311903/312119004989*322^(1/3) 4032535439374101 a001 1201881744/204284540899*322^(1/3) 4032535439374101 a001 12586269025/2139295485799*322^(1/3) 4032535439374101 a001 32951280099/5600748293801*322^(1/3) 4032535439374101 a001 1135099622/192933544679*322^(1/3) 4032535439374101 a001 139583862445/23725150497407*322^(1/3) 4032535439374101 a001 53316291173/9062201101803*322^(1/3) 4032535439374101 a001 10182505537/1730726404001*322^(1/3) 4032535439374101 a001 7778742049/1322157322203*322^(1/3) 4032535439374101 a001 2971215073/505019158607*322^(1/3) 4032535439374101 a001 567451585/96450076809*322^(1/3) 4032535439374101 a001 433494437/73681302247*322^(1/3) 4032535439374101 a001 165580141/28143753123*322^(1/3) 4032535439374101 a001 31622993/5374978561*322^(1/3) 4032535439374102 a001 24157817/4106118243*322^(1/3) 4032535439374110 a001 9227465/1568397607*322^(1/3) 4032535439374165 a001 1762289/299537289*322^(1/3) 4032535439374545 a001 1346269/228826127*322^(1/3) 4032535439377150 a001 514229/87403803*322^(1/3) 4032535439395002 a001 98209/16692641*322^(1/3) 4032535439517359 a001 75025/12752043*322^(1/3) 4032535440356010 a001 28657/4870847*322^(1/3) 4032535443758089 r008 a(0)=4,K{-n^6,-5-38*n^3+21*n^2-9*n} 4032535446104210 a001 5473/930249*322^(1/3) 4032535448824616 r009 Re(z^3+c),c=-1/18+9/23*I,n=6 4032535452438449 a001 233/3010349*1364^(13/15) 4032535453915397 a001 161/133957148*102334155^(4/21) 4032535453915397 a001 322/1836311903*2504730781961^(4/21) 4032535454416811 h001 (-2*exp(3/2)+8)/(-6*exp(3/2)+3) 4032535455066328 p001 sum(1/(243*n+25)/(12^n),n=0..infinity) 4032535458733100 r009 Im(z^3+c),c=-15/23+11/46*I,n=4 4032535461052139 a003 cos(Pi*21/68)-sin(Pi*34/81) 4032535461822530 a007 Real Root Of -450*x^4+287*x^3+343*x^2+462*x-249 4032535462703368 a001 322/39088169*4181^(4/21) 4032535479214174 r005 Im(z^2+c),c=17/126+17/40*I,n=51 4032535480592211 b008 -1/2+Pi+3*ArcCot[2] 4032535485144232 a007 Real Root Of -968*x^4+936*x^3-688*x^2+660*x+465 4032535485502957 a001 4181/710647*322^(1/3) 4032535486835352 a003 sin(Pi*4/111)+sin(Pi*3/32) 4032535488874999 m001 (Zeta(1,-1)-GAMMA(23/24))/(Otter-ZetaQ(4)) 4032535499803911 r005 Im(z^2+c),c=-5/94+15/26*I,n=18 4032535503759533 r005 Re(z^2+c),c=-101/118+13/37*I,n=6 4032535513702183 r008 a(0)=4,K{-n^6,-1-29*n^3-4*n^2+3*n} 4032535517639061 a007 Real Root Of -132*x^4-380*x^3+535*x^2-517*x-798 4032535524100188 r008 a(0)=4,K{-n^6,37-34*n^3+30*n^2-64*n} 4032535528472897 r009 Im(z^3+c),c=-13/90+17/37*I,n=7 4032535529127665 r005 Re(z^2+c),c=-43/74+25/57*I,n=47 4032535575002762 r005 Re(z^2+c),c=13/54+7/25*I,n=4 4032535585715402 r008 a(0)=4,K{-n^6,-15+46*n-44*n^2-18*n^3} 4032535596933514 a001 233/1860498*1364^(4/5) 4032535620740644 a007 Real Root Of -13*x^4+206*x^3-833*x^2-95*x+111 4032535623202970 m001 (Pi+2^(1/3)*Zeta(1,-1))*exp(1/Pi) 4032535638238172 a007 Real Root Of 271*x^4-764*x^3+970*x^2-215 4032535641060590 m001 (ln(Pi)+3^(1/3))/(OrthogonalArrays-Totient) 4032535656320854 p001 sum((-1)^n/(575*n+221)/(2^n),n=0..infinity) 4032535659547114 m001 (Zeta(1,2)+Salem)/(2^(1/3)-Si(Pi)) 4032535670036566 a001 29/121393*610^(4/49) 4032535670295441 r005 Im(z^2+c),c=37/110+17/50*I,n=19 4032535675342236 r008 a(0)=4,K{-n^6,23-5*n-34*n^2-15*n^3} 4032535676562103 r005 Re(z^2+c),c=-75/122+5/19*I,n=22 4032535695105255 r005 Im(z^2+c),c=-29/122+33/59*I,n=9 4032535701799851 l006 ln(5881/6123) 4032535723754481 m004 (18750*Sin[Sqrt[5]*Pi])/Pi+Tanh[Sqrt[5]*Pi] 4032535725337016 m004 1+(18750*Sin[Sqrt[5]*Pi])/Pi 4032535725352478 r005 Re(z^2+c),c=-9/16+7/67*I,n=47 4032535741434408 a001 233/1149851*1364^(11/15) 4032535748102266 p003 LerchPhi(1/125,2,317/201) 4032535751965659 a007 Real Root Of -129*x^4+269*x^3-568*x^2+733*x+409 4032535755545990 a001 1597/271443*322^(1/3) 4032535773660959 l006 ln(5583/8356) 4032535775761115 r005 Re(z^2+c),c=-5/9+9/49*I,n=52 4032535784256411 r009 Re(z^3+c),c=-49/122+13/21*I,n=41 4032535794551063 r009 Re(z^3+c),c=-35/74+8/39*I,n=22 4032535798733079 a001 1597/76*39603^(12/43) 4032535803785441 a007 Real Root Of 309*x^4+87*x^3-149*x^2-629*x+264 4032535805780804 m001 AlladiGrinstead+GaussKuzminWirsing-Rabbit 4032535815300235 r005 Im(z^2+c),c=17/82+19/52*I,n=25 4032535833002390 m001 ln(2)^ln(5)/exp(1/Pi) 4032535859465413 r008 a(0)=4,K{-n^6,61-44*n-42*n^2-6*n^3} 4032535863651657 r005 Re(z^2+c),c=-9/16+13/124*I,n=63 4032535870010544 r002 27th iterates of z^2 + 4032535875529724 m005 (1/3*gamma+5/6)/(1/5*exp(1)+2) 4032535883766335 b008 -1+27*Sqrt[2]+Pi 4032535885920058 a001 233/710647*1364^(2/3) 4032535899056206 a008 Real Root of (-3-6*x+x^2-5*x^3+3*x^4-x^5) 4032535901057728 r009 Im(z^3+c),c=-21/64+21/52*I,n=11 4032535902498688 m005 (-13/44+1/4*5^(1/2))/(1/5*3^(1/2)-1) 4032535909388778 r005 Re(z^2+c),c=-27/50+13/45*I,n=44 4032535910004833 a001 377/18*24476^(12/41) 4032535911896098 r005 Re(z^2+c),c=-21/38+13/63*I,n=43 4032535919347361 m001 (Chi(1)-polylog(4,1/2))/Kolakoski 4032535934232600 m001 (CopelandErdos+Stephens)/(Pi-GAMMA(5/6)) 4032535935226188 r005 Im(z^2+c),c=-3/94+15/28*I,n=37 4032535936807500 h001 (8/9*exp(1)+5/12)/(9/10*exp(2)+3/8) 4032535937024551 m001 (Zeta(5)+Zeta(1,-1))/(Artin+KomornikLoreti) 4032535937417347 a005 (1/cos(1/46*Pi))^1584 4032535945594997 r009 Im(z^3+c),c=-5/102+42/53*I,n=24 4032535953219589 a001 377/18*5778^(14/41) 4032535965284435 a008 Real Root of x^4-x^3+33*x^2-107*x-304 4032535970981119 s002 sum(A233703[n]/(exp(n)),n=1..infinity) 4032535975581398 a007 Real Root Of 100*x^4+464*x^3+378*x^2+657*x+486 4032535997503472 m005 (1/3*exp(1)-1/7)/(2/9*2^(1/2)-1/8) 4032536013125566 m001 3^(1/2)*ZetaP(2)-KhinchinLevy 4032536020496062 m001 (KomornikLoreti+Sarnak)/(BesselI(0,1)-Cahen) 4032536023319646 r005 Im(z^2+c),c=-125/106+17/61*I,n=15 4032536030445638 a001 233/439204*1364^(3/5) 4032536039164160 m005 (1/3*exp(1)+1/12)/(5/11*Zeta(3)-3) 4032536048282060 r005 Re(z^2+c),c=31/114+3/52*I,n=4 4032536050613278 r005 Im(z^2+c),c=-1/44+33/62*I,n=41 4032536082141545 a007 Real Root Of 39*x^4-407*x^3+997*x^2-908*x-556 4032536090860845 r005 Re(z^2+c),c=-19/32+6/37*I,n=9 4032536100746204 r005 Re(z^2+c),c=-75/118+7/47*I,n=13 4032536114477733 b008 Sqrt[3*Pi*ArcSinh[E]] 4032536163506442 r005 Re(z^2+c),c=-31/58+8/25*I,n=56 4032536174866699 a001 233/271443*1364^(8/15) 4032536182182624 r005 Re(z^2+c),c=15/58+29/62*I,n=53 4032536185453869 m001 TwinPrimes^Gompertz*TwinPrimes^BesselI(1,2) 4032536191081548 l006 ln(2867/4291) 4032536196809650 r005 Im(z^2+c),c=-23/122+15/26*I,n=18 4032536207715936 r005 Im(z^2+c),c=-5/62+18/29*I,n=61 4032536209034512 m001 (cos(1/5*Pi)-GAMMA(3/4))/(gamma(3)-MertensB2) 4032536221310591 r005 Re(z^2+c),c=-53/94+4/49*I,n=54 4032536221466681 r005 Re(z^2+c),c=5/62+14/37*I,n=35 4032536223750262 r008 a(0)=0,K{-n^6,61*n-62*n^2-24*n^3} 4032536234266486 a001 233/9349*521^(1/13) 4032536235562861 r005 Im(z^2+c),c=5/118+22/45*I,n=25 4032536236351844 r005 Re(z^2+c),c=-85/126+7/26*I,n=40 4032536240858950 a007 Real Root Of -192*x^4+822*x^3+103*x^2+807*x-391 4032536247242945 a001 377/167761*322^(1/2) 4032536260336141 k006 concat of cont frac of 4032536260554696 r005 Re(z^2+c),c=-13/114+37/40*I,n=15 4032536264014047 m005 (1/2*2^(1/2)+5)/(67/90+3/10*5^(1/2)) 4032536273505657 r002 56th iterates of z^2 + 4032536274096924 m001 Psi(1,1/3)*CopelandErdos+(1+3^(1/2))^(1/2) 4032536278497547 m001 FeigenbaumAlpha/(ZetaP(4)^FeigenbaumDelta) 4032536286717822 m005 (-5/12+1/4*5^(1/2))/(1/9*3^(1/2)-6/11) 4032536299989016 r005 Im(z^2+c),c=-9/7+13/82*I,n=8 4032536301926320 r005 Re(z^2+c),c=-61/110+11/57*I,n=46 4032536313347171 r005 Re(z^2+c),c=-63/118+15/46*I,n=49 4032536315347988 m001 1/GAMMA(5/12)^2/BesselJ(0,1)^2/exp(sqrt(5)) 4032536319561412 a001 233/167761*1364^(7/15) 4032536327924352 r002 29th iterates of z^2 + 4032536328067632 r005 Im(z^2+c),c=3/64+19/39*I,n=36 4032536328390824 r009 Re(z^3+c),c=-31/64+12/55*I,n=27 4032536331542733 r002 9th iterates of z^2 + 4032536332455440 r005 Im(z^2+c),c=21/74+11/38*I,n=63 4032536338867044 a001 47*(1/2*5^(1/2)+1/2)^23*7^(3/20) 4032536342278083 r005 Im(z^2+c),c=7/66+25/56*I,n=39 4032536348227882 a007 Real Root Of 124*x^4+90*x^3+323*x^2-645*x-310 4032536349138983 m001 (Artin+Grothendieck)/(Ei(1,1)-2*Pi/GAMMA(5/6)) 4032536351198757 a007 Real Root Of 425*x^4-95*x^3+853*x^2-7*x-159 4032536356913975 q001 1636/4057 4032536363928404 m001 (Gompertz-Trott2nd)/(exp(1/exp(1))-Conway) 4032536375202878 m001 ZetaQ(3)^FeigenbaumKappa*ZetaQ(3)^BesselI(0,1) 4032536379524195 m001 cos(1/12*Pi)/(GAMMA(11/12)+Totient) 4032536382459263 m001 (Weierstrass-ZetaQ(2))/(gamma(2)-MertensB2) 4032536386693362 a001 1322157322203/610*144^(10/17) 4032536396916437 r005 Re(z^2+c),c=-51/94+7/25*I,n=39 4032536401037853 m005 (1/2*3^(1/2)+5/11)/(3/10*Catalan+3) 4032536405689135 r005 Re(z^2+c),c=-9/16+7/89*I,n=26 4032536406425950 a001 45537549124/377*144^(12/17) 4032536415662625 b008 -1/4+E^(16/11) 4032536428326003 m001 (-ln(2)+GAMMA(19/24))/(3^(1/2)-cos(1)) 4032536434434527 m008 (Pi^6-5)/(1/5*Pi-3) 4032536435063055 m001 (Zeta(5)-GAMMA(2/3))/(ReciprocalLucas-Salem) 4032536450630360 a007 Real Root Of 762*x^4-584*x^3-458*x^2-563*x-211 4032536450702345 r005 Im(z^2+c),c=-79/62+2/37*I,n=21 4032536463539713 a001 233/103682*1364^(2/5) 4032536482688099 a007 Real Root Of -125*x^4-275*x^3+756*x^2-534*x+574 4032536489253841 m001 FeigenbaumC*(1+Zeta(3)) 4032536502402452 r008 a(0)=4,K{-n^6,-78-43*n^3+90*n} 4032536503002777 a001 229971/5702887 4032536503002922 a004 Fibonacci(13)/Lucas(16)/(1/2+sqrt(5)/2)^2 4032536503057482 a004 Fibonacci(16)/Lucas(13)/(1/2+sqrt(5)/2)^8 4032536511555514 r008 a(0)=4,K{-n^6,-20-13*n+53*n^2-51*n^3} 4032536513407707 r008 a(0)=4,K{-n^6,-6-53*n^3+66*n^2-38*n} 4032536514176892 p001 sum((-1)^n/(551*n+245)/(25^n),n=0..infinity) 4032536517161792 r008 a(0)=4,K{-n^6,-20-11*n+50*n^2-50*n^3} 4032536517751388 r005 Im(z^2+c),c=-1/34+23/44*I,n=21 4032536519594302 r005 Re(z^2+c),c=-9/16+21/128*I,n=19 4032536555625056 a003 cos(Pi*3/89)*cos(Pi*29/79) 4032536569456630 m005 (1/5*Pi+3/4)/(5/6*Pi+4/5) 4032536569456630 m006 (1/5*Pi+3/4)/(5/6*Pi+4/5) 4032536569456630 m008 (1/5*Pi+3/4)/(5/6*Pi+4/5) 4032536587081387 l006 ln(5885/8808) 4032536590945109 r004 Re(z^2+c),c=3/22+5/21*I,z(0)=exp(5/8*I*Pi),n=3 4032536592485775 r005 Re(z^2+c),c=-67/126+26/63*I,n=33 4032536592647510 r008 a(0)=4,K{-n^6,18-56*n+51*n^2-44*n^3} 4032536596256315 r009 Im(z^3+c),c=-17/48+13/33*I,n=17 4032536600460439 r002 59th iterates of z^2 + 4032536608145404 m001 GolombDickman^2/ln(ArtinRank2)/FeigenbaumD 4032536609393625 a001 233/64079*1364^(1/3) 4032536611908000 m001 (MasserGramain+ZetaQ(4))/(sin(1)+BesselJ(0,1)) 4032536612720464 m001 (-GAMMA(2/3)+3)/(GAMMA(7/24)+1) 4032536622370947 r008 a(0)=4,K{-n^6,-16-34*n^3+4*n^2+15*n} 4032536625910508 a007 Real Root Of 71*x^4-638*x^3-433*x^2-9*x+114 4032536633604065 m001 (BesselJ(1,1)+Stephens)/(ln(Pi)+exp(1/Pi)) 4032536635667731 r002 50th iterates of z^2 + 4032536645963139 r005 Im(z^2+c),c=-33/82+7/12*I,n=57 4032536657613512 m001 (5^(1/2))^gamma(2)-HardHexagonsEntropy 4032536664676672 m005 (1/2*Zeta(3)+1/9)/(3/4*exp(1)-3/11) 4032536669004958 a007 Real Root Of -167*x^4-794*x^3-226*x^2+861*x-759 4032536676814605 a003 cos(Pi*2/59)-cos(Pi*23/77) 4032536701672042 r005 Im(z^2+c),c=-11/118+7/12*I,n=31 4032536720747432 r008 a(0)=4,K{-n^6,-6+22*n-24*n^2-23*n^3} 4032536722494955 r005 Im(z^2+c),c=35/114+11/42*I,n=58 4032536728664847 r005 Im(z^2+c),c=-1/20+21/38*I,n=35 4032536731866025 m009 (40*Catalan+5*Pi^2+1/3)/(1/5*Pi^2+1/6) 4032536739794382 r002 29th iterates of z^2 + 4032536745824953 r005 Im(z^2+c),c=5/23+23/45*I,n=51 4032536750337142 a001 233/39603*1364^(4/15) 4032536758153311 r005 Im(z^2+c),c=-1/86+31/59*I,n=55 4032536758991897 r008 a(0)=4,K{-n^6,32-39*n+n^2-25*n^3} 4032536768684522 m005 (1/2*gamma+1/3)/(3/7*3^(1/2)+4/5) 4032536771459379 r005 Im(z^2+c),c=19/94+13/34*I,n=12 4032536789385773 m001 1/KhintchineLevy^2*ln(Artin)*gamma 4032536808203235 r005 Re(z^2+c),c=-4/7+1/119*I,n=20 4032536815089343 m001 (Psi(2,1/3)-gamma(1))/(-BesselI(1,2)+Otter) 4032536817938168 m001 Cahen/(CopelandErdos-FeigenbaumC) 4032536819731163 r005 Im(z^2+c),c=13/44+8/29*I,n=41 4032536837303155 a001 521/14930352*6557470319842^(16/17) 4032536837475380 r008 a(0)=4,K{-n^6,-4-11*n^3-59*n^2+43*n} 4032536839931870 a001 39603/233*514229^(16/17) 4032536854925863 a001 521/6765*1836311903^(16/17) 4032536861719600 r009 Im(z^3+c),c=-61/126+16/51*I,n=36 4032536863035225 r002 50th iterates of z^2 + 4032536866602550 m001 ZetaQ(2)/(ZetaP(3)^Zeta(1,-1)) 4032536876699194 r009 Im(z^3+c),c=-41/74+13/54*I,n=26 4032536877178279 r008 a(0)=4,K{-n^6,6-9*n^3-60*n^2+32*n} 4032536884223260 m001 Chi(1)/(GAMMA(2/3)+Sarnak) 4032536892379586 m004 -3/4+5*Cot[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi] 4032536901073816 r005 Im(z^2+c),c=17/64+19/64*I,n=18 4032536904136259 a001 233/24476*1364^(1/5) 4032536908944597 r005 Re(z^2+c),c=3/40+17/46*I,n=30 4032536912795176 a003 sin(Pi*11/68)*sin(Pi*37/119) 4032536915359202 b008 Sqrt[Pi*Log[177]] 4032536915943430 r002 56th iterates of z^2 + 4032536924958201 r002 60th iterates of z^2 + 4032536926660971 r002 54th iterates of z^2 + 4032536941619567 a001 144/9349*123^(1/5) 4032536945449672 r005 Im(z^2+c),c=-47/98+2/29*I,n=47 4032536953226682 r008 a(0)=0,K{-n^6,46-20*n-21*n^2-30*n^3} 4032536961260276 r005 Re(z^2+c),c=-17/31+22/59*I,n=24 4032536963268099 l006 ln(3018/4517) 4032536972122688 a007 Real Root Of -655*x^4+618*x^3+838*x^2+899*x-522 4032536974206330 r005 Im(z^2+c),c=-71/126+4/55*I,n=36 4032536980155702 m006 (3/4*exp(2*Pi)-2)/(3/5/Pi+4/5) 4032536984346117 a007 Real Root Of 261*x^4+995*x^3-217*x^2-175*x-947 4032536986828835 b008 4+CosIntegral[2]/13 4032537000467183 g007 Psi(2,4/11)-Psi(2,1/12)-Psi(2,2/9)-Psi(2,1/6) 4032537001962284 a007 Real Root Of -611*x^4-855*x^3-214*x^2+878*x-35 4032537002750605 m001 (ReciprocalLucas+TreeGrowth2nd)^BesselI(1,2) 4032537003725710 r009 Im(z^3+c),c=-21/94+26/59*I,n=20 4032537014668409 a004 Fibonacci(13)*Lucas(17)/(1/2+sqrt(5)/2)^35 4032537022407137 m001 (2^(1/2)+gamma)/(-BesselK(0,1)+gamma(1)) 4032537023715961 m001 1/GAMMA(13/24)/ln(CopelandErdos)^2*sinh(1)^2 4032537024278996 a001 233/15127*1364^(2/15) 4032537033269958 a001 233/12752043*3571^(16/17) 4032537051871622 a001 233/7881196*3571^(15/17) 4032537053102648 r005 Re(z^2+c),c=-31/60+17/63*I,n=15 4032537067478164 m005 (3*2^(1/2)-5)/(2/3*exp(1)-2) 4032537070472961 a001 233/4870847*3571^(14/17) 4032537089075150 a001 233/3010349*3571^(13/17) 4032537101631713 r008 a(0)=0,K{-n^6,-42+29*n^3+26*n^2+12*n} 4032537107675114 a001 233/1860498*3571^(12/17) 4032537107770030 r002 22th iterates of z^2 + 4032537108524889 p004 log(22811/15241) 4032537123510487 r005 Re(z^2+c),c=1/21+11/34*I,n=16 4032537126280904 a001 233/1149851*3571^(11/17) 4032537129849679 r008 a(0)=4,K{-n^6,11-33*n-24*n^2+14*n^3} 4032537136261481 r002 4th iterates of z^2 + 4032537143062910 r002 44th iterates of z^2 + 4032537144871443 a001 233/710647*3571^(10/17) 4032537145757420 m001 (-gamma(3)+MadelungNaCl)/(1-LambertW(1)) 4032537162945375 a007 Real Root Of 146*x^4+750*x^3+619*x^2-187*x-246 4032537163501907 a001 233/439204*3571^(9/17) 4032537164416830 m005 (1/2*2^(1/2)+5)/(2*Catalan-5/12) 4032537182027848 a001 233/271443*3571^(8/17) 4032537187391721 r005 Re(z^2+c),c=-10/17+6/31*I,n=7 4032537200827435 a001 233/167761*3571^(7/17) 4032537202621764 m002 -5-2/(3*E^Pi)+Tanh[Pi] 4032537208828275 p003 LerchPhi(1/6,4,218/173) 4032537210107303 a001 233/5778 4032537210107303 q001 1165/2889 4032537210162029 a004 Fibonacci(18)/Lucas(13)/(1/2+sqrt(5)/2)^10 4032537218910605 a001 233/103682*3571^(6/17) 4032537219963775 m001 (2^(1/2)+sin(1))/(2*Pi/GAMMA(5/6)+Trott2nd) 4032537232535302 a001 233/9349*1364^(1/15) 4032537235949585 r005 Im(z^2+c),c=3/64+16/33*I,n=26 4032537238016322 r005 Im(z^2+c),c=-47/98+2/29*I,n=27 4032537238869381 a001 233/64079*3571^(5/17) 4032537245093977 m001 1/exp(Porter)/Niven/FeigenbaumC^2 4032537247104051 r002 50th iterates of z^2 + 4032537250637800 r008 a(0)=0,K{-n^6,-38+4*n+31*n^2+28*n^3} 4032537253917757 a001 233/39603*3571^(4/17) 4032537258107125 a007 Real Root Of 309*x^4-352*x^3+88*x^2-626*x-298 4032537260250090 r005 Im(z^2+c),c=11/98+23/52*I,n=33 4032537264949083 m001 (exp(Pi)+Niven)/(-Sarnak+Totient) 4032537268128482 r009 Im(z^3+c),c=-2/21+13/28*I,n=9 4032537276069312 a001 233/15127*3571^(2/17) 4032537281821728 a001 233/24476*3571^(3/17) 4032537284758313 a004 Fibonacci(13)*Lucas(19)/(1/2+sqrt(5)/2)^37 4032537287186565 a001 233/33385282*9349^(18/19) 4032537287935546 a001 843/2*317811^(9/25) 4032537289614834 a001 233/20633239*9349^(17/19) 4032537292043056 a001 233/12752043*9349^(16/19) 4032537294471402 a001 233/7881196*9349^(15/19) 4032537294912880 a001 1548008755920/47*18^(13/15) 4032537296899423 a001 233/4870847*9349^(14/19) 4032537299328294 a001 233/3010349*9349^(13/19) 4032537301754940 a001 233/1860498*9349^(12/19) 4032537304187410 a001 233/1149851*9349^(11/19) 4032537306604632 a001 233/710647*9349^(10/19) 4032537308415951 a001 233/15127*9349^(2/19) 4032537309061777 a001 233/439204*9349^(9/19) 4032537309742457 r005 Im(z^2+c),c=29/114+9/28*I,n=34 4032537310611235 m001 1/KhintchineLevy*ln(Kolakoski)*(3^(1/3))^2 4032537311414399 a001 233/271443*9349^(8/19) 4032537312142134 m001 (Artin-exp(1))/(-HardyLittlewoodC3+ZetaQ(2)) 4032537312576702 m005 (1/2*5^(1/2)-6)/(2/3*Catalan+3/5) 4032537312631389 a001 233/15127*24476^(2/21) 4032537313187064 a001 233/15127*64079^(2/23) 4032537313272463 a001 233/15127*(1/2+1/2*5^(1/2))^2 4032537313272463 a001 233/15127*10749957122^(1/24) 4032537313272463 a001 233/15127*4106118243^(1/23) 4032537313272463 a001 233/15127*1568397607^(1/22) 4032537313272463 a001 233/15127*599074578^(1/21) 4032537313272463 a001 233/15127*228826127^(1/20) 4032537313272463 a001 233/15127*87403803^(1/19) 4032537313272463 a001 233/15127*33385282^(1/18) 4032537313272463 a001 1576245/39088169 4032537313272464 a001 233/15127*12752043^(1/17) 4032537313272473 a001 233/15127*4870847^(1/16) 4032537313272540 a001 233/15127*1860498^(1/15) 4032537313273033 a001 233/15127*710647^(1/14) 4032537313276673 a001 233/15127*271443^(1/13) 4032537313303723 a001 233/15127*103682^(1/12) 4032537313327192 a004 Fibonacci(20)/Lucas(13)/(1/2+sqrt(5)/2)^12 4032537313506201 a001 233/15127*39603^(1/11) 4032537314040668 a001 233/167761*9349^(7/19) 4032537315034734 a001 233/15127*15127^(1/10) 4032537315950519 a001 233/103682*9349^(6/19) 4032537318611033 a001 233/39603*9349^(4/19) 4032537319735977 a001 233/64079*9349^(5/19) 4032537320569247 m001 1/exp(GAMMA(7/12))/GAMMA(1/6)/cos(Pi/12) 4032537321092362 l006 ln(6187/9260) 4032537324163899 a004 Fibonacci(13)*Lucas(21)/(1/2+sqrt(5)/2)^39 4032537324484435 a001 233/87403803*24476^(20/21) 4032537324804974 a001 233/54018521*24476^(19/21) 4032537324852892 r008 a(0)=4,K{-n^6,-60+43*n-18*n^2+3*n^3} 4032537325125506 a001 233/33385282*24476^(6/7) 4032537325446056 a001 233/20633239*24476^(17/21) 4032537325766559 a001 233/12752043*24476^(16/21) 4032537326087186 a001 233/7881196*24476^(5/7) 4032537326407488 a001 233/4870847*24476^(2/3) 4032537326693338 a001 233/15127*5778^(1/9) 4032537326728640 a001 233/3010349*24476^(13/21) 4032537327041909 a001 233/39603*24476^(4/21) 4032537327047567 a001 233/1860498*24476^(4/7) 4032537327372319 a001 233/1149851*24476^(11/21) 4032537327681821 a001 233/710647*24476^(10/21) 4032537328031248 a001 233/439204*24476^(3/7) 4032537328153260 a001 233/39603*64079^(4/23) 4032537328276151 a001 233/271443*24476^(8/21) 4032537328324057 a001 233/39603*(1/2+1/2*5^(1/2))^4 4032537328324057 a001 233/39603*23725150497407^(1/16) 4032537328324057 a001 233/39603*73681302247^(1/13) 4032537328324057 a001 233/39603*10749957122^(1/12) 4032537328324057 a001 233/39603*4106118243^(2/23) 4032537328324057 a001 233/39603*1568397607^(1/11) 4032537328324057 a001 233/39603*599074578^(2/21) 4032537328324057 a001 233/39603*228826127^(1/10) 4032537328324057 a001 233/39603*87403803^(2/19) 4032537328324057 a001 4126663/102334155 4032537328324057 a001 233/39603*33385282^(1/9) 4032537328324060 a001 233/39603*12752043^(2/17) 4032537328324078 a001 233/39603*4870847^(1/8) 4032537328324212 a001 233/39603*1860498^(2/15) 4032537328325198 a001 233/39603*710647^(1/7) 4032537328332477 a001 233/39603*271443^(2/13) 4032537328378786 a004 Fibonacci(22)/Lucas(13)/(1/2+sqrt(5)/2)^14 4032537328386577 a001 233/39603*103682^(1/6) 4032537328531253 a001 843/9227465*34^(8/19) 4032537328596833 a001 233/103682*24476^(2/7) 4032537328791533 a001 233/39603*39603^(2/11) 4032537328794701 a001 233/167761*24476^(1/3) 4032537329913096 a004 Fibonacci(13)*Lucas(23)/(1/2+sqrt(5)/2)^41 4032537329955795 a001 233/228826127*64079^(22/23) 4032537329998495 a001 233/141422324*64079^(21/23) 4032537330041193 a001 233/87403803*64079^(20/23) 4032537330083894 a001 233/54018521*64079^(19/23) 4032537330126588 a001 233/33385282*64079^(18/23) 4032537330169300 a001 233/20633239*64079^(17/23) 4032537330211965 a001 233/12752043*64079^(16/23) 4032537330254754 a001 233/7881196*64079^(15/23) 4032537330263860 a001 233/103682*64079^(6/23) 4032537330274571 a001 233/64079*24476^(5/21) 4032537330297218 a001 233/4870847*64079^(14/23) 4032537330340532 a001 233/3010349*64079^(13/23) 4032537330341686 a001 233/24476*9349^(3/19) 4032537330381622 a001 233/1860498*64079^(12/23) 4032537330428536 a001 233/1149851*64079^(11/23) 4032537330460200 a001 233/710647*64079^(10/23) 4032537330498854 a001 233/271443*64079^(8/23) 4032537330515410 a001 233/103682*439204^(2/9) 4032537330520043 a001 233/103682*7881196^(2/11) 4032537330520055 a001 233/103682*141422324^(2/13) 4032537330520055 a001 233/103682*2537720636^(2/15) 4032537330520055 a001 233/103682*45537549124^(2/17) 4032537330520055 a001 233/103682*14662949395604^(2/21) 4032537330520055 a001 233/103682*(1/2+1/2*5^(1/2))^6 4032537330520055 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^6/Lucas(24) 4032537330520055 a001 233/103682*10749957122^(1/8) 4032537330520055 a001 233/103682*4106118243^(3/23) 4032537330520055 a001 233/103682*1568397607^(3/22) 4032537330520055 a001 233/103682*599074578^(1/7) 4032537330520055 a001 1350468/33489287 4032537330520055 a001 233/103682*228826127^(3/20) 4032537330520055 a001 233/103682*87403803^(3/19) 4032537330520056 a001 233/103682*33385282^(1/6) 4032537330520059 a001 233/103682*12752043^(3/17) 4032537330520087 a001 233/103682*4870847^(3/16) 4032537330520288 a001 233/103682*1860498^(1/5) 4032537330521766 a001 233/103682*710647^(3/14) 4032537330531789 a001 233/439204*64079^(9/23) 4032537330532685 a001 233/103682*271443^(3/13) 4032537330574785 a004 Fibonacci(24)/Lucas(13)/(1/2+sqrt(5)/2)^16 4032537330613835 a001 233/103682*103682^(1/4) 4032537330739566 a001 233/167761*64079^(7/23) 4032537330751893 a004 Fibonacci(13)*Lucas(25)/(1/2+sqrt(5)/2)^43 4032537330780549 a001 233/87403803*167761^(4/5) 4032537330809271 a001 233/7881196*167761^(3/5) 4032537330829878 a001 233/710647*167761^(2/5) 4032537330840447 a001 233/271443*(1/2+1/2*5^(1/2))^8 4032537330840447 a001 233/271443*23725150497407^(1/8) 4032537330840447 a001 233/271443*505019158607^(1/7) 4032537330840447 a001 233/271443*73681302247^(2/13) 4032537330840447 a001 233/271443*10749957122^(1/6) 4032537330840447 a001 233/271443*4106118243^(4/23) 4032537330840447 a001 233/271443*1568397607^(2/11) 4032537330840447 a001 28284569/701408733 4032537330840447 a001 233/271443*599074578^(4/21) 4032537330840447 a001 233/271443*228826127^(1/5) 4032537330840447 a001 233/271443*87403803^(4/19) 4032537330840448 a001 233/271443*33385282^(2/9) 4032537330840453 a001 233/271443*12752043^(4/17) 4032537330840489 a001 233/271443*4870847^(1/4) 4032537330840758 a001 233/271443*1860498^(4/15) 4032537330842728 a001 233/271443*710647^(2/7) 4032537330857287 a001 233/271443*271443^(4/13) 4032537330874272 a004 Fibonacci(13)*Lucas(27)/(1/2+sqrt(5)/2)^45 4032537330876594 a001 233/599074578*439204^(8/9) 4032537330878917 a001 233/141422324*439204^(7/9) 4032537330881236 a001 233/33385282*439204^(2/3) 4032537330883627 a001 233/7881196*439204^(5/9) 4032537330884720 a001 233/1860498*439204^(4/9) 4032537330887189 a001 233/710647*20633239^(2/7) 4032537330887191 a001 233/710647*2537720636^(2/9) 4032537330887191 a001 233/710647*312119004989^(2/11) 4032537330887191 a001 233/710647*(1/2+1/2*5^(1/2))^10 4032537330887191 a001 233/710647*28143753123^(1/5) 4032537330887191 a001 233/710647*10749957122^(5/24) 4032537330887191 a001 233/710647*4106118243^(5/23) 4032537330887191 a001 74049963/1836311903 4032537330887191 a001 233/710647*1568397607^(5/22) 4032537330887191 a001 233/710647*599074578^(5/21) 4032537330887191 a001 233/710647*228826127^(1/4) 4032537330887192 a001 233/710647*87403803^(5/19) 4032537330887192 a001 233/710647*33385282^(5/18) 4032537330887199 a001 233/710647*12752043^(5/17) 4032537330887244 a001 233/710647*4870847^(5/16) 4032537330887580 a001 233/710647*1860498^(1/3) 4032537330890043 a001 233/710647*710647^(5/14) 4032537330892126 a004 Fibonacci(13)*Lucas(29)/(1/2+sqrt(5)/2)^47 4032537330893988 a001 233/1860498*7881196^(4/11) 4032537330894011 a001 233/1860498*141422324^(4/13) 4032537330894011 a001 233/1860498*2537720636^(4/15) 4032537330894011 a001 233/1860498*45537549124^(4/17) 4032537330894011 a001 233/1860498*817138163596^(4/19) 4032537330894011 a001 233/1860498*14662949395604^(4/21) 4032537330894011 a001 233/1860498*(1/2+1/2*5^(1/2))^12 4032537330894011 a001 233/1860498*192900153618^(2/9) 4032537330894011 a001 233/1860498*73681302247^(3/13) 4032537330894011 a001 233/1860498*10749957122^(1/4) 4032537330894011 a001 24233165/600940872 4032537330894011 a001 233/1860498*4106118243^(6/23) 4032537330894011 a001 233/1860498*1568397607^(3/11) 4032537330894011 a001 233/1860498*599074578^(2/7) 4032537330894011 a001 233/1860498*228826127^(3/10) 4032537330894011 a001 233/1860498*87403803^(6/19) 4032537330894013 a001 233/1860498*33385282^(1/3) 4032537330894020 a001 233/1860498*12752043^(6/17) 4032537330894075 a001 233/1860498*4870847^(3/8) 4032537330894477 a001 233/1860498*1860498^(2/5) 4032537330894731 a004 Fibonacci(13)*Lucas(31)/(1/2+sqrt(5)/2)^49 4032537330895003 a001 233/4870847*20633239^(2/5) 4032537330895006 a001 233/4870847*17393796001^(2/7) 4032537330895006 a001 233/4870847*14662949395604^(2/9) 4032537330895006 a001 233/4870847*(1/2+1/2*5^(1/2))^14 4032537330895006 a001 233/4870847*505019158607^(1/4) 4032537330895006 a001 507545997/12586269025 4032537330895006 a001 233/4870847*10749957122^(7/24) 4032537330895006 a001 233/4870847*4106118243^(7/23) 4032537330895006 a001 233/4870847*1568397607^(7/22) 4032537330895006 a001 233/4870847*599074578^(1/3) 4032537330895006 a001 233/4870847*228826127^(7/20) 4032537330895007 a001 233/4870847*87403803^(7/19) 4032537330895008 a001 233/4870847*33385282^(7/18) 4032537330895017 a001 233/4870847*12752043^(7/17) 4032537330895081 a001 233/4870847*4870847^(7/16) 4032537330895111 a004 Fibonacci(13)*Lucas(33)/(1/2+sqrt(5)/2)^51 4032537330895117 a001 233/10749957122*7881196^(10/11) 4032537330895123 a001 233/2537720636*7881196^(9/11) 4032537330895129 a001 233/599074578*7881196^(8/11) 4032537330895133 a001 233/228826127*7881196^(2/3) 4032537330895135 a001 233/141422324*7881196^(7/11) 4032537330895137 a001 233/33385282*7881196^(6/11) 4032537330895152 a001 233/12752043*(1/2+1/2*5^(1/2))^16 4032537330895152 a001 233/12752043*23725150497407^(1/4) 4032537330895152 a001 233/12752043*73681302247^(4/13) 4032537330895152 a001 5702887/141421803 4032537330895152 a001 233/12752043*10749957122^(1/3) 4032537330895152 a001 233/12752043*4106118243^(8/23) 4032537330895152 a001 233/12752043*1568397607^(4/11) 4032537330895152 a001 233/12752043*599074578^(8/21) 4032537330895152 a001 233/12752043*228826127^(2/5) 4032537330895152 a001 233/12752043*87403803^(8/19) 4032537330895153 a001 233/12752043*33385282^(4/9) 4032537330895163 a001 233/12752043*12752043^(8/17) 4032537330895167 a004 Fibonacci(13)*Lucas(35)/(1/2+sqrt(5)/2)^53 4032537330895168 a001 233/10749957122*20633239^(6/7) 4032537330895169 a001 233/4106118243*20633239^(4/5) 4032537330895170 a001 233/969323029*20633239^(5/7) 4032537330895170 a001 233/87403803*20633239^(4/7) 4032537330895171 a001 233/141422324*20633239^(3/5) 4032537330895173 a001 233/33385282*141422324^(6/13) 4032537330895173 a001 233/33385282*2537720636^(2/5) 4032537330895173 a001 233/33385282*45537549124^(6/17) 4032537330895173 a001 233/33385282*14662949395604^(2/7) 4032537330895173 a001 233/33385282*(1/2+1/2*5^(1/2))^18 4032537330895173 a001 233/33385282*192900153618^(1/3) 4032537330895173 a001 1346274/33385283 4032537330895173 a001 233/33385282*10749957122^(3/8) 4032537330895173 a001 233/33385282*4106118243^(9/23) 4032537330895173 a001 233/33385282*1568397607^(9/22) 4032537330895173 a001 233/33385282*599074578^(3/7) 4032537330895173 a001 233/33385282*228826127^(9/20) 4032537330895173 a001 233/33385282*87403803^(9/19) 4032537330895174 a001 233/33385282*33385282^(1/2) 4032537330895175 a004 Fibonacci(13)*Lucas(37)/(1/2+sqrt(5)/2)^55 4032537330895176 a001 233/87403803*2537720636^(4/9) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^20/Lucas(38) 4032537330895176 a001 233/87403803*23725150497407^(5/16) 4032537330895176 a001 233/87403803*505019158607^(5/14) 4032537330895176 a001 9107543377/225851433717 4032537330895176 a001 233/87403803*73681302247^(5/13) 4032537330895176 a001 233/87403803*28143753123^(2/5) 4032537330895176 a001 233/87403803*10749957122^(5/12) 4032537330895176 a001 233/87403803*4106118243^(10/23) 4032537330895176 a001 233/87403803*1568397607^(5/11) 4032537330895176 a001 233/87403803*599074578^(10/21) 4032537330895176 a001 233/87403803*228826127^(1/2) 4032537330895176 a001 233/87403803*87403803^(10/19) 4032537330895176 a004 Fibonacci(13)*Lucas(39)/(1/2+sqrt(5)/2)^57 4032537330895176 a001 233/192900153618*141422324^(12/13) 4032537330895176 a001 233/45537549124*141422324^(11/13) 4032537330895176 a001 233/10749957122*141422324^(10/13) 4032537330895176 a001 233/2537720636*141422324^(9/13) 4032537330895176 a001 233/1568397607*141422324^(2/3) 4032537330895176 a001 233/599074578*141422324^(8/13) 4032537330895176 a001 233/228826127*312119004989^(2/5) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^22/Lucas(40) 4032537330895176 a001 23843858115/591286729879 4032537330895176 a001 233/228826127*10749957122^(11/24) 4032537330895176 a001 233/228826127*4106118243^(11/23) 4032537330895176 a001 233/228826127*1568397607^(1/2) 4032537330895176 a001 233/228826127*599074578^(11/21) 4032537330895176 a001 233/228826127*228826127^(11/20) 4032537330895176 a004 Fibonacci(13)*Lucas(41)/(1/2+sqrt(5)/2)^59 4032537330895176 a001 233/599074578*2537720636^(8/15) 4032537330895176 a001 233/599074578*45537549124^(8/17) 4032537330895176 a001 233/599074578*14662949395604^(8/21) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^24/Lucas(42) 4032537330895176 a001 7803003871/193501094490 4032537330895176 a001 233/599074578*192900153618^(4/9) 4032537330895176 a001 233/599074578*73681302247^(6/13) 4032537330895176 a001 233/599074578*10749957122^(1/2) 4032537330895176 a001 233/599074578*4106118243^(12/23) 4032537330895176 a001 233/599074578*1568397607^(6/11) 4032537330895176 a001 233/599074578*599074578^(4/7) 4032537330895176 a004 Fibonacci(13)*Lucas(43)/(1/2+sqrt(5)/2)^61 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^26/Lucas(44) 4032537330895176 a001 163428234789/4052739537881 4032537330895176 a001 233/1568397607*73681302247^(1/2) 4032537330895176 a001 233/1568397607*10749957122^(13/24) 4032537330895176 a001 233/1568397607*4106118243^(13/23) 4032537330895176 a001 233/1568397607*1568397607^(13/22) 4032537330895176 a004 Fibonacci(13)*Lucas(45)/(1/2+sqrt(5)/2)^63 4032537330895176 a001 233/3461452808002*2537720636^(14/15) 4032537330895176 a001 233/1322157322203*2537720636^(8/9) 4032537330895176 a001 233/817138163596*2537720636^(13/15) 4032537330895176 a001 233/192900153618*2537720636^(4/5) 4032537330895176 a001 233/119218851371*2537720636^(7/9) 4032537330895176 a001 233/45537549124*2537720636^(11/15) 4032537330895176 a001 233/10749957122*2537720636^(2/3) 4032537330895176 a001 233/4106118243*17393796001^(4/7) 4032537330895176 a001 233/4106118243*14662949395604^(4/9) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^28/Lucas(46) 4032537330895176 a001 233/4106118243*73681302247^(7/13) 4032537330895176 a001 233/4106118243*10749957122^(7/12) 4032537330895176 a001 233/4106118243*4106118243^(14/23) 4032537330895176 a004 Fibonacci(13)*Lucas(47)/(1/2+sqrt(5)/2)^65 4032537330895176 a001 233/10749957122*45537549124^(10/17) 4032537330895176 a001 233/10749957122*312119004989^(6/11) 4032537330895176 a001 233/10749957122*14662949395604^(10/21) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^30/Lucas(48) 4032537330895176 a001 233/10749957122*192900153618^(5/9) 4032537330895176 a001 233/10749957122*28143753123^(3/5) 4032537330895176 a004 Fibonacci(13)*Lucas(49)/(1/2+sqrt(5)/2)^67 4032537330895176 a001 233/10749957122*10749957122^(5/8) 4032537330895176 a001 233/3461452808002*17393796001^(6/7) 4032537330895176 a001 233/119218851371*17393796001^(5/7) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^32/Lucas(50) 4032537330895176 a001 233/28143753123*23725150497407^(1/2) 4032537330895176 a001 233/28143753123*505019158607^(4/7) 4032537330895176 a001 233/28143753123*73681302247^(8/13) 4032537330895176 a001 233/73681302247*45537549124^(2/3) 4032537330895176 a004 Fibonacci(13)*Lucas(51)/(1/2+sqrt(5)/2)^69 4032537330895176 a001 233/14662949395604*45537549124^(15/17) 4032537330895176 a001 233/3461452808002*45537549124^(14/17) 4032537330895176 a001 233/192900153618*45537549124^(12/17) 4032537330895176 a001 233/817138163596*45537549124^(13/17) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^34/Lucas(52) 4032537330895176 a004 Fibonacci(13)*Lucas(53)/(1/2+sqrt(5)/2)^71 4032537330895176 a001 233/192900153618*14662949395604^(4/7) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^36/Lucas(54) 4032537330895176 a001 233/192900153618*505019158607^(9/14) 4032537330895176 a004 Fibonacci(13)*Lucas(55)/(1/2+sqrt(5)/2)^73 4032537330895176 a001 233/192900153618*192900153618^(2/3) 4032537330895176 a001 233/1322157322203*312119004989^(8/11) 4032537330895176 a001 233/505019158607*817138163596^(2/3) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^38/Lucas(56) 4032537330895176 a004 Fibonacci(13)*Lucas(57)/(1/2+sqrt(5)/2)^75 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^40/Lucas(58) 4032537330895176 a001 233/1322157322203*23725150497407^(5/8) 4032537330895176 a004 Fibonacci(13)*Lucas(59)/(1/2+sqrt(5)/2)^77 4032537330895176 a001 233/3461452808002*14662949395604^(2/3) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^42/Lucas(60) 4032537330895176 a004 Fibonacci(13)*Lucas(61)/(1/2+sqrt(5)/2)^79 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^44/Lucas(62) 4032537330895176 a004 Fibonacci(13)*Lucas(63)/(1/2+sqrt(5)/2)^81 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^46/Lucas(64) 4032537330895176 a004 Fibonacci(13)*Lucas(65)/(1/2+sqrt(5)/2)^83 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^48/Lucas(66) 4032537330895176 a004 Fibonacci(13)*Lucas(67)/(1/2+sqrt(5)/2)^85 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^50/Lucas(68) 4032537330895176 a004 Fibonacci(13)*Lucas(69)/(1/2+sqrt(5)/2)^87 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^52/Lucas(70) 4032537330895176 a004 Fibonacci(13)*Lucas(71)/(1/2+sqrt(5)/2)^89 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^54/Lucas(72) 4032537330895176 a004 Fibonacci(13)*Lucas(73)/(1/2+sqrt(5)/2)^91 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^56/Lucas(74) 4032537330895176 a004 Fibonacci(13)*Lucas(75)/(1/2+sqrt(5)/2)^93 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^58/Lucas(76) 4032537330895176 a004 Fibonacci(13)*Lucas(77)/(1/2+sqrt(5)/2)^95 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^60/Lucas(78) 4032537330895176 a004 Fibonacci(13)*Lucas(79)/(1/2+sqrt(5)/2)^97 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^62/Lucas(80) 4032537330895176 a004 Fibonacci(13)*Lucas(81)/(1/2+sqrt(5)/2)^99 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^64/Lucas(82) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^66/Lucas(84) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^68/Lucas(86) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^70/Lucas(88) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^72/Lucas(90) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^74/Lucas(92) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^76/Lucas(94) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^78/Lucas(96) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^80/Lucas(98) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^82/Lucas(100) 4032537330895176 a004 Fibonacci(13)*Lucas(1)/(1/2+sqrt(5)/2)^18 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^81/Lucas(99) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^79/Lucas(97) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^77/Lucas(95) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^75/Lucas(93) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^73/Lucas(91) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^71/Lucas(89) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^69/Lucas(87) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^67/Lucas(85) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^65/Lucas(83) 4032537330895176 a004 Fibonacci(13)*Lucas(82)/(1/2+sqrt(5)/2)^100 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^63/Lucas(81) 4032537330895176 a004 Fibonacci(13)*Lucas(80)/(1/2+sqrt(5)/2)^98 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^61/Lucas(79) 4032537330895176 a004 Fibonacci(13)*Lucas(78)/(1/2+sqrt(5)/2)^96 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^59/Lucas(77) 4032537330895176 a004 Fibonacci(13)*Lucas(76)/(1/2+sqrt(5)/2)^94 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^57/Lucas(75) 4032537330895176 a004 Fibonacci(13)*Lucas(74)/(1/2+sqrt(5)/2)^92 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^55/Lucas(73) 4032537330895176 a004 Fibonacci(13)*Lucas(72)/(1/2+sqrt(5)/2)^90 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^53/Lucas(71) 4032537330895176 a004 Fibonacci(13)*Lucas(70)/(1/2+sqrt(5)/2)^88 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^51/Lucas(69) 4032537330895176 a004 Fibonacci(13)*Lucas(68)/(1/2+sqrt(5)/2)^86 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^49/Lucas(67) 4032537330895176 a004 Fibonacci(13)*Lucas(66)/(1/2+sqrt(5)/2)^84 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^47/Lucas(65) 4032537330895176 a004 Fibonacci(13)*Lucas(64)/(1/2+sqrt(5)/2)^82 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^45/Lucas(63) 4032537330895176 a004 Fibonacci(13)*Lucas(62)/(1/2+sqrt(5)/2)^80 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^43/Lucas(61) 4032537330895176 a004 Fibonacci(13)*Lucas(60)/(1/2+sqrt(5)/2)^78 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^41/Lucas(59) 4032537330895176 a004 Fibonacci(13)*Lucas(58)/(1/2+sqrt(5)/2)^76 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^39/Lucas(57) 4032537330895176 a001 233/3461452808002*505019158607^(3/4) 4032537330895176 a004 Fibonacci(13)*Lucas(56)/(1/2+sqrt(5)/2)^74 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^37/Lucas(55) 4032537330895176 a001 233/3461452808002*192900153618^(7/9) 4032537330895176 a001 233/14662949395604*192900153618^(5/6) 4032537330895176 a004 Fibonacci(13)*Lucas(54)/(1/2+sqrt(5)/2)^72 4032537330895176 a001 233/119218851371*312119004989^(7/11) 4032537330895176 a001 233/119218851371*14662949395604^(5/9) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^35/Lucas(53) 4032537330895176 a001 233/119218851371*505019158607^(5/8) 4032537330895176 a001 233/192900153618*73681302247^(9/13) 4032537330895176 a001 233/817138163596*73681302247^(3/4) 4032537330895176 a001 233/1322157322203*73681302247^(10/13) 4032537330895176 a001 233/9062201101803*73681302247^(11/13) 4032537330895176 a001 233/45537549124*45537549124^(11/17) 4032537330895176 a004 Fibonacci(13)*Lucas(52)/(1/2+sqrt(5)/2)^70 4032537330895176 a001 233/45537549124*312119004989^(3/5) 4032537330895176 a001 233/45537549124*817138163596^(11/19) 4032537330895176 a001 233/45537549124*14662949395604^(11/21) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^33/Lucas(51) 4032537330895176 a001 233/45537549124*192900153618^(11/18) 4032537330895176 a001 233/119218851371*28143753123^(7/10) 4032537330895176 a001 233/1322157322203*28143753123^(4/5) 4032537330895176 a001 233/14662949395604*28143753123^(9/10) 4032537330895176 a004 Fibonacci(13)*Lucas(50)/(1/2+sqrt(5)/2)^68 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^31/Lucas(49) 4032537330895176 a001 233/17393796001*9062201101803^(1/2) 4032537330895176 a001 233/28143753123*10749957122^(2/3) 4032537330895176 a001 233/73681302247*10749957122^(17/24) 4032537330895176 a001 233/45537549124*10749957122^(11/16) 4032537330895176 a001 233/192900153618*10749957122^(3/4) 4032537330895176 a001 233/505019158607*10749957122^(19/24) 4032537330895176 a001 233/817138163596*10749957122^(13/16) 4032537330895176 a001 233/1322157322203*10749957122^(5/6) 4032537330895176 a001 233/3461452808002*10749957122^(7/8) 4032537330895176 a001 233/9062201101803*10749957122^(11/12) 4032537330895176 a001 233/14662949395604*10749957122^(15/16) 4032537330895176 a001 233/23725150497407*10749957122^(23/24) 4032537330895176 a004 Fibonacci(13)*Lucas(48)/(1/2+sqrt(5)/2)^66 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^29/Lucas(47) 4032537330895176 a001 233/6643838879*1322157322203^(1/2) 4032537330895176 a001 233/10749957122*4106118243^(15/23) 4032537330895176 a001 233/28143753123*4106118243^(16/23) 4032537330895176 a001 233/73681302247*4106118243^(17/23) 4032537330895176 a001 233/192900153618*4106118243^(18/23) 4032537330895176 a001 233/505019158607*4106118243^(19/23) 4032537330895176 a001 233/1322157322203*4106118243^(20/23) 4032537330895176 a001 233/3461452808002*4106118243^(21/23) 4032537330895176 a001 233/9062201101803*4106118243^(22/23) 4032537330895176 a004 Fibonacci(13)*Lucas(46)/(1/2+sqrt(5)/2)^64 4032537330895176 a001 233/2537720636*2537720636^(3/5) 4032537330895176 a001 233/2537720636*45537549124^(9/17) 4032537330895176 a001 233/2537720636*817138163596^(9/19) 4032537330895176 a001 233/2537720636*14662949395604^(3/7) 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^27/Lucas(45) 4032537330895176 a001 233/2537720636*192900153618^(1/2) 4032537330895176 a001 233/2537720636*10749957122^(9/16) 4032537330895176 a001 233/4106118243*1568397607^(7/11) 4032537330895176 a001 233/10749957122*1568397607^(15/22) 4032537330895176 a001 233/28143753123*1568397607^(8/11) 4032537330895176 a001 233/45537549124*1568397607^(3/4) 4032537330895176 a001 233/73681302247*1568397607^(17/22) 4032537330895176 a001 233/192900153618*1568397607^(9/11) 4032537330895176 a001 233/505019158607*1568397607^(19/22) 4032537330895176 a001 233/1322157322203*1568397607^(10/11) 4032537330895176 a001 233/3461452808002*1568397607^(21/22) 4032537330895176 a004 Fibonacci(13)*Lucas(44)/(1/2+sqrt(5)/2)^62 4032537330895176 a001 233/969323029*2537720636^(5/9) 4032537330895176 a001 233/969323029*312119004989^(5/11) 4032537330895176 a001 101004203821/2504730781961 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^25/Lucas(43) 4032537330895176 a001 233/969323029*3461452808002^(5/12) 4032537330895176 a001 233/969323029*28143753123^(1/2) 4032537330895176 a001 233/1568397607*599074578^(13/21) 4032537330895176 a001 233/4106118243*599074578^(2/3) 4032537330895176 a001 233/2537720636*599074578^(9/14) 4032537330895176 a001 233/10749957122*599074578^(5/7) 4032537330895176 a001 233/28143753123*599074578^(16/21) 4032537330895176 a001 233/45537549124*599074578^(11/14) 4032537330895176 a001 233/73681302247*599074578^(17/21) 4032537330895176 a001 233/119218851371*599074578^(5/6) 4032537330895176 a001 233/192900153618*599074578^(6/7) 4032537330895176 a001 233/505019158607*599074578^(19/21) 4032537330895176 a001 233/817138163596*599074578^(13/14) 4032537330895176 a001 233/1322157322203*599074578^(20/21) 4032537330895176 a004 Fibonacci(13)*Lucas(42)/(1/2+sqrt(5)/2)^60 4032537330895176 a001 38580172853/956722026041 4032537330895176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^23/Lucas(41) 4032537330895176 a001 233/370248451*4106118243^(1/2) 4032537330895176 a001 233/599074578*228826127^(3/5) 4032537330895176 a001 233/1568397607*228826127^(13/20) 4032537330895176 a001 233/969323029*228826127^(5/8) 4032537330895176 a001 233/4106118243*228826127^(7/10) 4032537330895176 a001 233/10749957122*228826127^(3/4) 4032537330895176 a001 233/28143753123*228826127^(4/5) 4032537330895176 a001 233/73681302247*228826127^(17/20) 4032537330895176 a001 233/119218851371*228826127^(7/8) 4032537330895176 a001 233/192900153618*228826127^(9/10) 4032537330895176 a001 233/505019158607*228826127^(19/20) 4032537330895176 a004 Fibonacci(13)*Lucas(40)/(1/2+sqrt(5)/2)^58 4032537330895176 a001 233/141422324*141422324^(7/13) 4032537330895177 a001 233/141422324*2537720636^(7/15) 4032537330895177 a001 233/141422324*17393796001^(3/7) 4032537330895177 a001 233/141422324*45537549124^(7/17) 4032537330895177 a001 7368157369/182717648081 4032537330895177 a001 233/141422324*14662949395604^(1/3) 4032537330895177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^21/Lucas(39) 4032537330895177 a001 233/141422324*192900153618^(7/18) 4032537330895177 a001 233/141422324*10749957122^(7/16) 4032537330895177 a001 233/141422324*599074578^(1/2) 4032537330895177 a001 233/228826127*87403803^(11/19) 4032537330895177 a001 233/599074578*87403803^(12/19) 4032537330895177 a001 233/1568397607*87403803^(13/19) 4032537330895177 a001 233/4106118243*87403803^(14/19) 4032537330895177 a001 233/10749957122*87403803^(15/19) 4032537330895177 a001 233/28143753123*87403803^(16/19) 4032537330895177 a001 233/73681302247*87403803^(17/19) 4032537330895177 a001 233/192900153618*87403803^(18/19) 4032537330895177 a004 Fibonacci(13)*Lucas(38)/(1/2+sqrt(5)/2)^56 4032537330895178 a001 5628771361/139583862445 4032537330895178 a001 233/54018521*817138163596^(1/3) 4032537330895178 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^19/Lucas(37) 4032537330895178 a001 233/87403803*33385282^(5/9) 4032537330895178 a001 233/54018521*87403803^(1/2) 4032537330895178 a001 233/228826127*33385282^(11/18) 4032537330895179 a001 233/141422324*33385282^(7/12) 4032537330895179 a001 233/599074578*33385282^(2/3) 4032537330895179 a001 233/1568397607*33385282^(13/18) 4032537330895179 a001 233/2537720636*33385282^(3/4) 4032537330895179 a001 233/4106118243*33385282^(7/9) 4032537330895179 a001 233/10749957122*33385282^(5/6) 4032537330895180 a001 233/28143753123*33385282^(8/9) 4032537330895180 a001 233/45537549124*33385282^(11/12) 4032537330895180 a001 233/73681302247*33385282^(17/18) 4032537330895180 a004 Fibonacci(13)*Lucas(36)/(1/2+sqrt(5)/2)^54 4032537330895186 a001 233/20633239*45537549124^(1/3) 4032537330895186 a001 2149999345/53316291173 4032537330895186 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^17/Lucas(35) 4032537330895186 a001 233/33385282*12752043^(9/17) 4032537330895190 a001 233/87403803*12752043^(10/17) 4032537330895192 a001 233/228826127*12752043^(11/17) 4032537330895194 a001 233/599074578*12752043^(12/17) 4032537330895195 a001 233/1568397607*12752043^(13/17) 4032537330895197 a001 233/4106118243*12752043^(14/17) 4032537330895198 a001 233/20633239*12752043^(1/2) 4032537330895198 a001 233/10749957122*12752043^(15/17) 4032537330895200 a001 233/28143753123*12752043^(16/17) 4032537330895201 a004 Fibonacci(13)*Lucas(34)/(1/2+sqrt(5)/2)^52 4032537330895212 a001 233/7881196*7881196^(5/11) 4032537330895236 a001 233/12752043*4870847^(1/2) 4032537330895237 a001 233/7881196*20633239^(3/7) 4032537330895241 a001 233/7881196*141422324^(5/13) 4032537330895241 a001 233/7881196*2537720636^(1/3) 4032537330895241 a001 410613337/10182505537 4032537330895241 a001 233/7881196*45537549124^(5/17) 4032537330895241 a001 233/7881196*312119004989^(3/11) 4032537330895241 a001 233/7881196*14662949395604^(5/21) 4032537330895241 a001 233/7881196*(1/2+1/2*5^(1/2))^15 4032537330895241 a001 233/7881196*192900153618^(5/18) 4032537330895241 a001 233/7881196*28143753123^(3/10) 4032537330895241 a001 233/7881196*10749957122^(5/16) 4032537330895241 a001 233/7881196*599074578^(5/14) 4032537330895241 a001 233/7881196*228826127^(3/8) 4032537330895243 a001 233/7881196*33385282^(5/12) 4032537330895268 a001 233/33385282*4870847^(9/16) 4032537330895282 a001 233/87403803*4870847^(5/8) 4032537330895293 a001 233/228826127*4870847^(11/16) 4032537330895304 a001 233/599074578*4870847^(3/4) 4032537330895314 a001 233/1568397607*4870847^(13/16) 4032537330895325 a001 233/4106118243*4870847^(7/8) 4032537330895336 a001 233/10749957122*4870847^(15/16) 4032537330895346 a004 Fibonacci(13)*Lucas(32)/(1/2+sqrt(5)/2)^50 4032537330895550 a001 233/4870847*1860498^(7/15) 4032537330895621 a001 233/3010349*141422324^(1/3) 4032537330895621 a001 313680677/7778742049 4032537330895621 a001 233/3010349*(1/2+1/2*5^(1/2))^13 4032537330895621 a001 233/3010349*73681302247^(1/4) 4032537330895773 a001 233/12752043*1860498^(8/15) 4032537330895824 a001 233/7881196*1860498^(1/2) 4032537330895872 a001 233/33385282*1860498^(3/5) 4032537330895952 a001 233/87403803*1860498^(2/3) 4032537330895992 a001 233/141422324*1860498^(7/10) 4032537330896031 a001 233/228826127*1860498^(11/15) 4032537330896108 a001 233/599074578*1860498^(4/5) 4032537330896147 a001 233/969323029*1860498^(5/6) 4032537330896186 a001 233/1568397607*1860498^(13/15) 4032537330896225 a001 233/2537720636*1860498^(9/10) 4032537330896264 a001 233/4106118243*1860498^(14/15) 4032537330896341 a004 Fibonacci(13)*Lucas(30)/(1/2+sqrt(5)/2)^48 4032537330897433 a001 233/1860498*710647^(3/7) 4032537330898205 a001 233/1149851*7881196^(1/3) 4032537330898226 a001 119815357/2971215073 4032537330898226 a001 233/1149851*312119004989^(1/5) 4032537330898226 a001 233/1149851*(1/2+1/2*5^(1/2))^11 4032537330898226 a001 233/1149851*1568397607^(1/4) 4032537330898999 a001 233/4870847*710647^(1/2) 4032537330899714 a001 233/12752043*710647^(4/7) 4032537330900306 a001 233/33385282*710647^(9/14) 4032537330900879 a001 233/87403803*710647^(5/7) 4032537330901165 a001 233/141422324*710647^(3/4) 4032537330901450 a001 233/228826127*710647^(11/14) 4032537330902021 a001 233/599074578*710647^(6/7) 4032537330902591 a001 233/1568397607*710647^(13/14) 4032537330903161 a004 Fibonacci(13)*Lucas(28)/(1/2+sqrt(5)/2)^46 4032537330908241 a001 233/710647*271443^(5/13) 4032537330909113 a001 233/439204*439204^(1/3) 4032537330916063 a001 233/439204*7881196^(3/11) 4032537330916081 a001 233/439204*141422324^(3/13) 4032537330916081 a001 1346041/33379505 4032537330916081 a001 233/439204*2537720636^(1/5) 4032537330916081 a001 233/439204*45537549124^(3/17) 4032537330916081 a001 233/439204*14662949395604^(1/7) 4032537330916081 a001 233/439204*(1/2+1/2*5^(1/2))^9 4032537330916081 a001 233/439204*192900153618^(1/6) 4032537330916081 a001 233/439204*10749957122^(3/16) 4032537330916081 a001 233/439204*599074578^(3/14) 4032537330916082 a001 233/439204*33385282^(1/4) 4032537330916431 a001 233/439204*1860498^(3/10) 4032537330919271 a001 233/1860498*271443^(6/13) 4032537330922986 a001 233/3010349*271443^(1/2) 4032537330924476 a001 233/4870847*271443^(7/13) 4032537330928831 a001 233/12752043*271443^(8/13) 4032537330933062 a001 233/33385282*271443^(9/13) 4032537330937275 a001 233/87403803*271443^(10/13) 4032537330941486 a001 233/228826127*271443^(11/13) 4032537330941921 a004 Fibonacci(28)/Lucas(13)/(1/2+sqrt(5)/2)^20 4032537330945696 a001 233/599074578*271443^(12/13) 4032537330948741 a004 Fibonacci(30)/Lucas(13)/(1/2+sqrt(5)/2)^22 4032537330949736 a004 Fibonacci(32)/Lucas(13)/(1/2+sqrt(5)/2)^24 4032537330949881 a004 Fibonacci(34)/Lucas(13)/(1/2+sqrt(5)/2)^26 4032537330949902 a004 Fibonacci(36)/Lucas(13)/(1/2+sqrt(5)/2)^28 4032537330949905 a004 Fibonacci(38)/Lucas(13)/(1/2+sqrt(5)/2)^30 4032537330949906 a004 Fibonacci(40)/Lucas(13)/(1/2+sqrt(5)/2)^32 4032537330949906 a004 Fibonacci(42)/Lucas(13)/(1/2+sqrt(5)/2)^34 4032537330949906 a004 Fibonacci(44)/Lucas(13)/(1/2+sqrt(5)/2)^36 4032537330949906 a004 Fibonacci(46)/Lucas(13)/(1/2+sqrt(5)/2)^38 4032537330949906 a004 Fibonacci(48)/Lucas(13)/(1/2+sqrt(5)/2)^40 4032537330949906 a004 Fibonacci(50)/Lucas(13)/(1/2+sqrt(5)/2)^42 4032537330949906 a004 Fibonacci(13)*Lucas(26)/(1/2+sqrt(5)/2)^44 4032537330949906 a004 Fibonacci(54)/Lucas(13)/(1/2+sqrt(5)/2)^46 4032537330949906 a004 Fibonacci(56)/Lucas(13)/(1/2+sqrt(5)/2)^48 4032537330949906 a004 Fibonacci(58)/Lucas(13)/(1/2+sqrt(5)/2)^50 4032537330949906 a004 Fibonacci(60)/Lucas(13)/(1/2+sqrt(5)/2)^52 4032537330949906 a004 Fibonacci(62)/Lucas(13)/(1/2+sqrt(5)/2)^54 4032537330949906 a004 Fibonacci(64)/Lucas(13)/(1/2+sqrt(5)/2)^56 4032537330949906 a004 Fibonacci(66)/Lucas(13)/(1/2+sqrt(5)/2)^58 4032537330949906 a004 Fibonacci(68)/Lucas(13)/(1/2+sqrt(5)/2)^60 4032537330949906 a004 Fibonacci(70)/Lucas(13)/(1/2+sqrt(5)/2)^62 4032537330949906 a004 Fibonacci(72)/Lucas(13)/(1/2+sqrt(5)/2)^64 4032537330949906 a004 Fibonacci(74)/Lucas(13)/(1/2+sqrt(5)/2)^66 4032537330949906 a004 Fibonacci(76)/Lucas(13)/(1/2+sqrt(5)/2)^68 4032537330949906 a004 Fibonacci(78)/Lucas(13)/(1/2+sqrt(5)/2)^70 4032537330949906 a004 Fibonacci(80)/Lucas(13)/(1/2+sqrt(5)/2)^72 4032537330949906 a004 Fibonacci(82)/Lucas(13)/(1/2+sqrt(5)/2)^74 4032537330949906 a004 Fibonacci(84)/Lucas(13)/(1/2+sqrt(5)/2)^76 4032537330949906 a004 Fibonacci(86)/Lucas(13)/(1/2+sqrt(5)/2)^78 4032537330949906 a004 Fibonacci(88)/Lucas(13)/(1/2+sqrt(5)/2)^80 4032537330949906 a004 Fibonacci(90)/Lucas(13)/(1/2+sqrt(5)/2)^82 4032537330949906 a004 Fibonacci(92)/Lucas(13)/(1/2+sqrt(5)/2)^84 4032537330949906 a004 Fibonacci(94)/Lucas(13)/(1/2+sqrt(5)/2)^86 4032537330949906 a004 Fibonacci(96)/Lucas(13)/(1/2+sqrt(5)/2)^88 4032537330949906 a004 Fibonacci(98)/Lucas(13)/(1/2+sqrt(5)/2)^90 4032537330949906 a004 Fibonacci(100)/Lucas(13)/(1/2+sqrt(5)/2)^92 4032537330949906 a004 Fibonacci(99)/Lucas(13)/(1/2+sqrt(5)/2)^91 4032537330949906 a004 Fibonacci(97)/Lucas(13)/(1/2+sqrt(5)/2)^89 4032537330949906 a004 Fibonacci(95)/Lucas(13)/(1/2+sqrt(5)/2)^87 4032537330949906 a004 Fibonacci(93)/Lucas(13)/(1/2+sqrt(5)/2)^85 4032537330949906 a004 Fibonacci(91)/Lucas(13)/(1/2+sqrt(5)/2)^83 4032537330949906 a004 Fibonacci(89)/Lucas(13)/(1/2+sqrt(5)/2)^81 4032537330949906 a004 Fibonacci(87)/Lucas(13)/(1/2+sqrt(5)/2)^79 4032537330949906 a004 Fibonacci(85)/Lucas(13)/(1/2+sqrt(5)/2)^77 4032537330949906 a004 Fibonacci(83)/Lucas(13)/(1/2+sqrt(5)/2)^75 4032537330949906 a004 Fibonacci(81)/Lucas(13)/(1/2+sqrt(5)/2)^73 4032537330949906 a004 Fibonacci(79)/Lucas(13)/(1/2+sqrt(5)/2)^71 4032537330949906 a004 Fibonacci(77)/Lucas(13)/(1/2+sqrt(5)/2)^69 4032537330949906 a004 Fibonacci(75)/Lucas(13)/(1/2+sqrt(5)/2)^67 4032537330949906 a004 Fibonacci(73)/Lucas(13)/(1/2+sqrt(5)/2)^65 4032537330949906 a004 Fibonacci(71)/Lucas(13)/(1/2+sqrt(5)/2)^63 4032537330949906 a004 Fibonacci(69)/Lucas(13)/(1/2+sqrt(5)/2)^61 4032537330949906 a004 Fibonacci(67)/Lucas(13)/(1/2+sqrt(5)/2)^59 4032537330949906 a004 Fibonacci(65)/Lucas(13)/(1/2+sqrt(5)/2)^57 4032537330949906 a004 Fibonacci(63)/Lucas(13)/(1/2+sqrt(5)/2)^55 4032537330949906 a004 Fibonacci(61)/Lucas(13)/(1/2+sqrt(5)/2)^53 4032537330949906 a004 Fibonacci(59)/Lucas(13)/(1/2+sqrt(5)/2)^51 4032537330949906 a004 Fibonacci(57)/Lucas(13)/(1/2+sqrt(5)/2)^49 4032537330949906 a004 Fibonacci(55)/Lucas(13)/(1/2+sqrt(5)/2)^47 4032537330949906 a004 Fibonacci(53)/Lucas(13)/(1/2+sqrt(5)/2)^45 4032537330949906 a004 Fibonacci(51)/Lucas(13)/(1/2+sqrt(5)/2)^43 4032537330949906 a004 Fibonacci(49)/Lucas(13)/(1/2+sqrt(5)/2)^41 4032537330949906 a004 Fibonacci(47)/Lucas(13)/(1/2+sqrt(5)/2)^39 4032537330949906 a004 Fibonacci(45)/Lucas(13)/(1/2+sqrt(5)/2)^37 4032537330949906 a004 Fibonacci(43)/Lucas(13)/(1/2+sqrt(5)/2)^35 4032537330949906 a004 Fibonacci(41)/Lucas(13)/(1/2+sqrt(5)/2)^33 4032537330949906 a004 Fibonacci(39)/Lucas(13)/(1/2+sqrt(5)/2)^31 4032537330949907 a004 Fibonacci(37)/Lucas(13)/(1/2+sqrt(5)/2)^29 4032537330949915 a004 Fibonacci(35)/Lucas(13)/(1/2+sqrt(5)/2)^27 4032537330949971 a004 Fibonacci(33)/Lucas(13)/(1/2+sqrt(5)/2)^25 4032537330950351 a004 Fibonacci(31)/Lucas(13)/(1/2+sqrt(5)/2)^23 4032537330952956 a004 Fibonacci(29)/Lucas(13)/(1/2+sqrt(5)/2)^21 4032537330965487 a001 233/271443*103682^(1/3) 4032537330970811 a004 Fibonacci(27)/Lucas(13)/(1/2+sqrt(5)/2)^19 4032537331038458 a001 233/167761*20633239^(1/5) 4032537331038460 a001 17480825/433494437 4032537331038460 a001 233/167761*17393796001^(1/7) 4032537331038460 a001 233/167761*14662949395604^(1/9) 4032537331038460 a001 233/167761*(1/2+1/2*5^(1/2))^7 4032537331038460 a001 233/167761*599074578^(1/6) 4032537331040456 a001 233/167761*710647^(1/4) 4032537331043492 a001 233/710647*103682^(5/12) 4032537331056752 a001 233/439204*103682^(3/8) 4032537331070157 a001 233/1149851*103682^(11/24) 4032537331081572 a001 233/1860498*103682^(1/2) 4032537331093189 a004 Fibonacci(25)/Lucas(13)/(1/2+sqrt(5)/2)^17 4032537331098812 a001 233/3010349*103682^(13/24) 4032537331113827 a001 233/4870847*103682^(7/12) 4032537331129692 a001 233/7881196*103682^(5/8) 4032537331145232 a001 233/12752043*103682^(2/3) 4032537331147870 a001 233/167761*103682^(7/24) 4032537331160897 a001 233/20633239*103682^(17/24) 4032537331176514 a001 233/33385282*103682^(3/4) 4032537331192149 a001 233/54018521*103682^(19/24) 4032537331207777 a001 233/87403803*103682^(5/6) 4032537331221269 a001 233/103682*39603^(3/11) 4032537331223408 a001 233/141422324*103682^(7/8) 4032537331239037 a001 233/228826127*103682^(11/12) 4032537331254668 a001 233/370248451*103682^(23/24) 4032537331270298 a004 Fibonacci(13)*Lucas(24)/(1/2+sqrt(5)/2)^42 4032537331548171 a003 sin(Pi*4/19)/cos(Pi*51/113) 4032537331663761 a001 233/64079*64079^(5/23) 4032537331775399 a001 233/271443*39603^(4/11) 4032537331848600 a001 233/39603*15127^(1/5) 4032537331848600 a001 233/64079*167761^(1/5) 4032537331856543 a001 233/167761*39603^(7/22) 4032537331877255 a001 233/64079*20633239^(1/7) 4032537331877256 a001 6677081/165580141 4032537331877256 a001 233/64079*2537720636^(1/9) 4032537331877256 a001 233/64079*312119004989^(1/11) 4032537331877256 a001 233/64079*(1/2+1/2*5^(1/2))^5 4032537331877256 a001 233/64079*28143753123^(1/10) 4032537331877256 a001 233/64079*228826127^(1/8) 4032537331877451 a001 233/64079*1860498^(1/6) 4032537331931986 a004 Fibonacci(23)/Lucas(13)/(1/2+sqrt(5)/2)^15 4032537331955407 a001 233/64079*103682^(5/24) 4032537331967903 a001 233/439204*39603^(9/22) 4032537332055882 a001 233/710647*39603^(5/11) 4032537332183786 a001 233/1149851*39603^(1/2) 4032537332296440 a001 233/1860498*39603^(6/11) 4032537332414919 a001 233/3010349*39603^(13/22) 4032537332461602 a001 233/64079*39603^(5/22) 4032537332531173 a001 233/4870847*39603^(7/11) 4032537332648277 a001 233/7881196*39603^(15/22) 4032537332765056 a001 233/12752043*39603^(8/11) 4032537332881960 a001 233/20633239*39603^(17/22) 4032537332998816 a001 233/33385282*39603^(9/11) 4032537333115690 a001 233/54018521*39603^(19/22) 4032537333232557 a001 233/87403803*39603^(10/11) 4032537333349427 a001 233/141422324*39603^(21/22) 4032537333466296 a004 Fibonacci(13)*Lucas(22)/(1/2+sqrt(5)/2)^40 4032537335806869 a001 233/103682*15127^(3/10) 4032537336282935 a001 233/64079*15127^(1/4) 4032537336664843 a001 233/24476*24476^(1/7) 4032537337206410 a001 233/167761*15127^(7/20) 4032537337498357 a001 233/24476*64079^(3/23) 4032537337624131 a001 233/24476*439204^(1/9) 4032537337626448 a001 233/24476*7881196^(1/11) 4032537337626454 a001 5473/135721 4032537337626454 a001 233/24476*141422324^(1/13) 4032537337626454 a001 233/24476*2537720636^(1/15) 4032537337626454 a001 233/24476*45537549124^(1/17) 4032537337626454 a001 233/24476*14662949395604^(1/21) 4032537337626454 a001 233/24476*(1/2+1/2*5^(1/2))^3 4032537337626454 a001 233/24476*192900153618^(1/18) 4032537337626454 a001 233/24476*10749957122^(1/16) 4032537337626454 a001 233/24476*599074578^(1/14) 4032537337626454 a001 233/24476*33385282^(1/12) 4032537337626570 a001 233/24476*1860498^(1/10) 4032537337673344 a001 233/24476*103682^(1/8) 4032537337681183 a004 Fibonacci(21)/Lucas(13)/(1/2+sqrt(5)/2)^13 4032537337889532 a001 233/271443*15127^(2/5) 4032537337977061 a001 233/24476*39603^(3/22) 4032537338846302 a001 233/439204*15127^(9/20) 4032537339698548 a001 233/710647*15127^(1/2) 4032537340269861 a001 233/24476*15127^(3/20) 4032537340590719 a001 233/1149851*15127^(11/20) 4032537340955701 m001 1/RenyiParking^2/Paris^2*ln(GAMMA(5/24))^2 4032537341467640 a001 233/1860498*15127^(3/5) 4032537342350385 a001 233/3010349*15127^(13/20) 4032537343230906 a001 233/4870847*15127^(7/10) 4032537343596011 r002 36th iterates of z^2 + 4032537344112277 a001 233/7881196*15127^(3/4) 4032537344715014 r005 Im(z^2+c),c=-43/60+9/38*I,n=59 4032537344993322 a001 233/12752043*15127^(4/5) 4032537345874492 a001 233/20633239*15127^(17/20) 4032537346755615 a001 233/33385282*15127^(9/10) 4032537347636756 a001 233/54018521*15127^(19/20) 4032537348517890 a004 Fibonacci(13)*Lucas(20)/(1/2+sqrt(5)/2)^38 4032537350396023 l006 ln(52/2933) 4032537351457948 r005 Re(z^2+c),c=-53/102+17/43*I,n=64 4032537351482423 a007 Real Root Of -975*x^4+326*x^3+351*x^2+528*x+203 4032537355165807 a001 233/39603*5778^(2/9) 4032537357757767 a001 233/24476*5778^(1/6) 4032537358430465 a001 233/9349*3571^(1/17) 4032537358756061 a007 Real Root Of 615*x^4-270*x^3+944*x^2-899*x-550 4032537365429444 a001 233/64079*5778^(5/18) 4032537370782680 a001 233/103682*5778^(1/3) 4032537374603784 a001 233/9349*9349^(1/19) 4032537376711503 a001 233/9349*24476^(1/21) 4032537376989341 a001 233/9349*64079^(1/23) 4032537377032038 a001 974173/24157817 4032537377032040 a001 233/18698+233/18698*5^(1/2) 4032537377047670 a001 233/9349*103682^(1/24) 4032537377086769 a004 Fibonacci(19)/Lucas(13)/(1/2+sqrt(5)/2)^11 4032537377148909 a001 233/9349*39603^(1/22) 4032537377913176 a001 233/9349*15127^(1/20) 4032537378011523 a001 233/167761*5778^(7/18) 4032537382692084 r009 Im(z^3+c),c=-11/106+19/25*I,n=38 4032537383742478 a001 233/9349*5778^(1/18) 4032537384523947 a001 233/271443*5778^(4/9) 4032537391310019 a001 233/439204*5778^(1/2) 4032537393248571 m001 Pi*2^(1/2)/GAMMA(3/4)-Pi*GlaisherKinkelin 4032537397457135 r005 Im(z^2+c),c=-1/20+4/7*I,n=31 4032537397458015 r004 Im(z^2+c),c=-7/11+1/13*I,z(0)=-1,n=48 4032537397991567 a001 233/710647*5778^(5/9) 4032537404713039 a001 233/1149851*5778^(11/18) 4032537405634507 r002 8th iterates of z^2 + 4032537407412669 a001 843/233*13^(47/50) 4032537411076614 r002 28th iterates of z^2 + 4032537411419262 a001 233/1860498*5778^(2/3) 4032537412529461 r005 Re(z^2+c),c=-67/122+10/53*I,n=21 4032537416759006 a001 233/15127*2207^(1/8) 4032537418131310 a001 233/3010349*5778^(13/18) 4032537424841132 a001 233/4870847*5778^(7/9) 4032537428775312 a001 233/9349*2207^(1/16) 4032537431551805 a001 233/7881196*5778^(5/6) 4032537438262153 a001 233/12752043*5778^(8/9) 4032537444972625 a001 233/20633239*5778^(17/18) 4032537451683053 a004 Fibonacci(13)*Lucas(18)/(1/2+sqrt(5)/2)^36 4032537465847788 r005 Re(z^2+c),c=-49/94+13/36*I,n=41 4032537469154187 p004 log(32749/21881) 4032537488483493 r002 32th iterates of z^2 + 4032537489115711 s001 sum(exp(-Pi/3)^n*A156788[n],n=1..infinity) 4032537492856271 a001 233/24476*2207^(3/16) 4032537508044268 m001 (Psi(2,1/3)+LambertW(1))/(-Khinchin+MertensB3) 4032537512997010 a001 817138163596/55*10610209857723^(21/22) 4032537526086844 a007 Real Root Of 155*x^4+626*x^3+122*x^2+312*x-663 4032537533680273 m001 (KhinchinLevy+Mills)/(Backhouse-Chi(1)) 4032537535297147 a001 233/39603*2207^(1/4) 4032537537735515 a001 4/233*75025^(26/29) 4032537537877502 r005 Re(z^2+c),c=-5/9-16/87*I,n=48 4032537547812494 m001 1/ln(Trott)^2*FeigenbaumB/Zeta(7) 4032537550447588 a001 2584/7*76^(1/49) 4032537552474877 r008 a(0)=4,K{-n^6,-75-69*n^3+80*n^2+33*n} 4032537576369840 a003 sin(Pi*3/55)+sin(Pi*8/107) 4032537578648637 a007 Real Root Of 923*x^4-956*x^3+928*x^2+62*x-213 4032537581602844 m003 4+(Coth[1/2+Sqrt[5]/2]*Log[1/2+Sqrt[5]/2])/16 4032537585628601 a001 1/199*(1/2*5^(1/2)+1/2)^27*4^(10/23) 4032537590593621 a001 233/64079*2207^(5/16) 4032537598152610 r002 9th iterates of z^2 + 4032537606448468 a001 305/51841*322^(1/3) 4032537615544057 m001 1/FeigenbaumD*PrimesInBinary^2*exp(Tribonacci) 4032537616067982 m005 (1/2*Pi+4/9)/(4/11*Catalan+1/6) 4032537620013425 m001 (Otter+PrimesInBinary)/(Chi(1)-gamma(3)) 4032537622051764 r005 Im(z^2+c),c=-1/14+9/16*I,n=27 4032537625201539 r005 Im(z^2+c),c=31/122+9/28*I,n=38 4032537628267327 m005 (1/2*gamma-9/11)/(23/72+4/9*5^(1/2)) 4032537640942513 a007 Real Root Of 304*x^4-153*x^3-393*x^2-645*x+326 4032537640979694 a001 233/103682*2207^(3/8) 4032537647121934 a001 372101/9227465 4032537647121968 a004 Fibonacci(13)/Lucas(17)/(1/2+sqrt(5)/2) 4032537647176673 a004 Fibonacci(17)/Lucas(13)/(1/2+sqrt(5)/2)^9 4032537647587212 m002 4+E^Pi+Pi^5*Log[Pi]*ProductLog[Pi] 4032537649915423 r008 a(0)=4,K{-n^6,-27-56*n^3+65*n^2-13*n} 4032537651085734 a007 Real Root Of -459*x^4-3*x^3-326*x^2+844*x-275 4032537656745668 m002 Pi+3*Pi^3+Pi^5+ProductLog[Pi] 4032537661866609 l006 ln(3169/4743) 4032537671985750 s001 sum(1/10^(n-1)*A097204[n]/n^n,n=1..infinity) 4032537679354379 m009 (5/6*Psi(1,3/4)+5/6)/(1/2*Psi(1,2/3)-4/5) 4032537681594852 r005 Re(z^2+c),c=23/86+1/32*I,n=30 4032537687349492 r005 Im(z^2+c),c=-31/50+13/32*I,n=64 4032537687390798 m001 (gamma(3)+MasserGramain)/(3^(1/3)-Zeta(1,-1)) 4032537692011923 r008 a(0)=4,K{-n^6,-5-38*n+64*n^2-52*n^3} 4032537693241375 a001 233/167761*2207^(7/16) 4032537699470737 r005 Re(z^2+c),c=-23/40+3/28*I,n=17 4032537705694266 r008 a(0)=4,K{-n^6,-51+51*n+11*n^2-42*n^3} 4032537716242679 r002 3th iterates of z^2 + 4032537719587485 m001 (FeigenbaumC+GaussAGM)/(LaplaceLimit-ZetaQ(4)) 4032537724903590 m001 (ln(2^(1/2)+1)+Zeta(1,-1))/(Bloch+Conway) 4032537726157833 m001 (GAMMA(7/12)+FeigenbaumB)/(Gompertz-Trott) 4032537740623468 r008 a(0)=4,K{-n^6,-29+22*n+16*n^2-40*n^3} 4032537743228267 m002 -4+5/Pi^6-Sinh[Pi]/Pi^5 4032537744786638 a001 233/271443*2207^(1/2) 4032537752858481 m001 (Paris-Tribonacci)/(ln(2)-MertensB1) 4032537756363479 r009 Im(z^3+c),c=-1/70+15/32*I,n=12 4032537764654804 r008 a(0)=4,K{-n^6,17-44*n^3+51*n^2-55*n} 4032537765156789 h001 (2/3*exp(2)+5/8)/(1/9*exp(2)+5/9) 4032537765299575 m001 (Pi+Magata)/(Niven-StolarskyHarborth) 4032537766949081 r008 a(0)=4,K{-n^6,-29+30*n+4*n^2-36*n^3} 4032537771667080 r005 Im(z^2+c),c=-17/62+33/59*I,n=6 4032537781613193 r005 Re(z^2+c),c=-137/106+3/62*I,n=18 4032537782350287 a001 233/9349*843^(1/14) 4032537783279498 r002 9th iterates of z^2 + 4032537787283128 r009 Im(z^3+c),c=-39/82+10/31*I,n=44 4032537790660572 b008 -11/2+EllipticE[1/4] 4032537794768807 r008 a(0)=4,K{-n^6,-17-34*n^3+4*n^2+16*n} 4032537796605549 a001 233/439204*2207^(9/16) 4032537811750622 r008 a(0)=4,K{-n^6,-15-32*n^3-n^2+17*n} 4032537816912225 a007 Real Root Of -108*x^4-311*x^3+358*x^2-350*x+932 4032537821572470 a001 11*(1/2*5^(1/2)+1/2)^28*11^(13/19) 4032537823766085 r005 Re(z^2+c),c=-67/118+7/58*I,n=21 4032537825287017 m005 (1/2*Pi+1/4)/(3*Zeta(3)+10/11) 4032537826371843 m005 (1/3*exp(1)-1/9)/(5/8*3^(1/2)+8/9) 4032537835185338 r009 Im(z^3+c),c=-31/64+7/24*I,n=18 4032537848319937 a001 233/710647*2207^(5/8) 4032537852520924 a001 329/90481*322^(5/12) 4032537854335767 m005 (1/2*Catalan-3/5)/(5^(1/2)+9/7) 4032537870432133 m005 (2/5*gamma-3/4)/(2/5*exp(1)+1/5) 4032537874663993 r008 a(0)=4,K{-n^6,-27+55*n-37*n^2-22*n^3} 4032537890455803 m001 (Chi(1)+ln(3))/(3^(1/3)+ReciprocalFibonacci) 4032537900074250 a001 233/1149851*2207^(11/16) 4032537905235264 l006 ln(7412/7717) 4032537918434699 r005 Re(z^2+c),c=-35/62+1/49*I,n=25 4032537920661706 r005 Re(z^2+c),c=-63/122+17/53*I,n=22 4032537924137735 r008 a(0)=4,K{-n^6,-17+48*n-44*n^2-18*n^3} 4032537927607503 a007 Real Root Of 971*x^4-951*x^3+111*x^2-895*x-467 4032537951813314 a001 233/1860498*2207^(3/4) 4032537954009212 r009 Im(z^3+c),c=-8/29+25/59*I,n=10 4032537958319598 r005 Im(z^2+c),c=-1/110+22/43*I,n=21 4032537960841405 r005 Re(z^2+c),c=-9/16+9/97*I,n=12 4032537964919964 m001 1/(3^(1/3))*exp(FeigenbaumC)^2/sin(Pi/12)^2 4032537965670041 m001 KhinchinHarmonic^(GAMMA(7/12)/Zeta(1,2)) 4032537966292043 m001 (Paris+Sarnak)/(exp(-1/2*Pi)+FeigenbaumC) 4032537970155470 m005 (1/2*5^(1/2)-1/9)/(3/7*Catalan-1/7) 4032537981617236 r008 a(0)=4,K{-n^6,37-21*n^3-8*n^2-39*n} 4032537986781110 l006 ln(6489/9712) 4032537994113511 a007 Real Root Of 59*x^4+147*x^3-357*x^2+22*x-68 4032538003558203 a001 233/3010349*2207^(13/16) 4032538012050343 r002 17th iterates of z^2 + 4032538013605430 m001 (exp(1/Pi)+GAMMA(13/24))/RenyiParking 4032538016668133 m001 (3^(1/3)-gamma)/(Niven+TreeGrowth2nd) 4032538019275680 r005 Re(z^2+c),c=-27/50+4/61*I,n=9 4032538019868718 r008 a(0)=4,K{-n^6,23-6*n-33*n^2-15*n^3} 4032538032417354 m001 Psi(2,1/3)*FibonacciFactorial*Gompertz 4032538048825798 a005 (1/cos(11/128*Pi))^1910 4032538053103502 r008 a(0)=4,K{-n^6,5-9*n^3-60*n^2+33*n} 4032538055300868 a001 233/4870847*2207^(7/8) 4032538056116233 a007 Real Root Of 517*x^4-677*x^3-824*x^2-333*x+299 4032538056922452 m001 (GAMMA(11/12)-Bloch)/(OneNinth+Totient) 4032538061431868 r005 Im(z^2+c),c=41/122+11/50*I,n=38 4032538066462397 r002 36th iterates of z^2 + 4032538079304064 r005 Im(z^2+c),c=17/122+1/37*I,n=9 4032538085427447 h001 (-11*exp(1)-11)/(-5*exp(3)-1) 4032538087625595 r002 50i'th iterates of 2*x/(1-x^2) of 4032538087639936 r002 51i'th iterates of 2*x/(1-x^2) of 4032538094153942 r002 64th iterates of z^2 + 4032538105579664 a003 sin(Pi*14/109)/sin(Pi*35/82) 4032538107044384 a001 233/7881196*2207^(15/16) 4032538120431455 s001 sum(exp(-Pi)^n*A127263[n],n=1..infinity) 4032538120431455 s002 sum(A127263[n]/(exp(pi*n)),n=1..infinity) 4032538123908983 a001 233/15127*843^(1/7) 4032538124732795 a007 Real Root Of -641*x^4+100*x^3-250*x^2+12*x+69 4032538144323079 m001 (BesselI(0,2)-Shi(1))/(-Conway+ErdosBorwein) 4032538153962465 r005 Im(z^2+c),c=-47/98+2/29*I,n=49 4032538158787601 a004 Fibonacci(13)*Lucas(16)/(1/2+sqrt(5)/2)^34 4032538161521688 r005 Im(z^2+c),c=-3/86+29/48*I,n=31 4032538168546930 r009 Im(z^3+c),c=-57/106+8/19*I,n=39 4032538173739125 r002 32th iterates of z^2 + 4032538174226559 m001 (Porter+Trott2nd)/(exp(1/Pi)-KhinchinHarmonic) 4032538179001268 r002 28th iterates of z^2 + 4032538190985685 b008 20*E^3+Cosh[1] 4032538197934627 r004 Im(z^2+c),c=3/8+3/16*I,z(0)=I,n=4 4032538197934627 r004 Im(z^2+c),c=3/8-3/16*I,z(0)=I,n=4 4032538207791638 r005 Re(z^2+c),c=-37/62+28/41*I,n=8 4032538210668880 r008 a(0)=4,K{-n^6,61-45*n-41*n^2-6*n^3} 4032538222905857 r005 Im(z^2+c),c=6/17+15/59*I,n=46 4032538237916522 a001 3461452808002/1597*144^(10/17) 4032538246260068 a001 29*(1/2*5^(1/2)+1/2)^26*18^(13/23) 4032538250486749 r002 46th iterates of z^2 + 4032538253785472 m005 (1/2*exp(1)-2/3)/(5/8*2^(1/2)+5/6) 4032538257477280 r005 Re(z^2+c),c=-43/62+4/33*I,n=27 4032538260710200 m003 1/2+(3*Sqrt[5])/16-(5*Csch[1/2+Sqrt[5]/2])/4 4032538263829186 m005 (1/2*3^(1/2)+1/5)/(7/10*Pi+4/9) 4032538264941201 m001 FransenRobinson+Totient^ln(2) 4032538266461913 m008 (4*Pi^4+3/4)/(Pi^4-3/5) 4032538268690678 m001 (sin(1/5*Pi)+ln(5))/(polylog(4,1/2)+Trott2nd) 4032538296917863 l006 ln(3320/4969) 4032538299803185 r005 Im(z^2+c),c=13/118+29/61*I,n=8 4032538300110990 p004 log(20249/359) 4032538305846213 r008 a(0)=0,K{-n^6,-88+34*n^3-12*n^2+91*n} 4032538311928191 k006 concat of cont frac of 4032538312186147 h001 (1/11*exp(2)+5/11)/(3/11*exp(2)+7/9) 4032538323865814 a007 Real Root Of 532*x^4+161*x^3-668*x^2-553*x+307 4032538336606728 a001 167761*144^(3/17) 4032538344212296 r005 Im(z^2+c),c=-1/11+37/62*I,n=37 4032538369153761 a007 Real Root Of 279*x^4+903*x^3-694*x^2+716*x-390 4032538376012080 m001 (GAMMA(19/24)-Niven)/(ln(3)+Ei(1,1)) 4032538377865381 b008 -2/3+Sqrt[Log[Pi]] 4032538377865381 m001 2/3-ln(Pi)^(1/2) 4032538384266490 m005 (1/2*3^(1/2)-3/7)/(2/3*gamma+7/10) 4032538390658451 r005 Im(z^2+c),c=4/17+18/53*I,n=55 4032538403199046 a001 377/18*843^(18/41) 4032538410312098 r005 Re(z^2+c),c=-23/86+35/51*I,n=7 4032538414865393 a001 3*1346269^(41/49) 4032538437051039 a008 Real Root of x^4-82*x^2+1069 4032538445164046 a007 Real Root Of -230*x^4+654*x^3+757*x^2+30*x-172 4032538457488749 r005 Re(z^2+c),c=-23/48+19/37*I,n=42 4032538472825087 r005 Im(z^2+c),c=-5/122+26/49*I,n=20 4032538489054075 r005 Re(z^2+c),c=-19/30+76/119*I,n=6 4032538492025285 r005 Im(z^2+c),c=33/106+34/55*I,n=5 4032538501138185 a007 Real Root Of 720*x^4-134*x^3+195*x^2-450*x-241 4032538504821068 m001 (Si(Pi)+GAMMA(5/6))/(-GlaisherKinkelin+Landau) 4032538508006483 a001 9062201101803/4181*144^(10/17) 4032538514102109 a007 Real Root Of -5*x^4+518*x^3-887*x^2+19*x+186 4032538514168321 g001 Re(Psi(-17/24+I*11/12)) 4032538520821596 r002 63th iterates of z^2 + 4032538520821596 r002 63th iterates of z^2 + 4032538532488439 a007 Real Root Of -39*x^4+148*x^3-170*x^2+805*x+363 4032538536722016 r005 Re(z^2+c),c=-19/106+12/19*I,n=40 4032538545799071 m001 (GAMMA(2/3)-CopelandErdos)/(Mills+Porter) 4032538547412080 a001 23725150497407/10946*144^(10/17) 4032538551504565 r009 Re(z^3+c),c=-39/106+5/8*I,n=11 4032538553581304 a001 233/24476*843^(3/14) 4032538559672453 a001 2584/710647*322^(5/12) 4032538571766079 a001 14662949395604/6765*144^(10/17) 4032538587504570 a007 Real Root Of 232*x^4+832*x^3-357*x^2+119*x-505 4032538587802858 a007 Real Root Of -130*x^4-554*x^3+57*x^2+647*x-270 4032538611463835 a005 (1/cos(26/213*Pi))^446 4032538615779180 r008 a(0)=0,K{-n^6,-56+28*n^3+22*n^2+31*n} 4032538625126340 r005 Re(z^2+c),c=-69/122+1/34*I,n=35 4032538650957151 p004 log(25523/17053) 4032538656871374 m001 1/Zeta(7)^2*exp(GAMMA(13/24))^2*cosh(1) 4032538662844470 a001 55/15126*322^(5/12) 4032538668106467 r005 Im(z^2+c),c=37/110+14/61*I,n=53 4032538670189776 r005 Re(z^2+c),c=-9/16+13/124*I,n=54 4032538673841503 a007 Real Root Of 49*x^4+161*x^3-209*x^2-214*x+136 4032538674931277 a001 5600748293801/2584*144^(10/17) 4032538676540124 r005 Re(z^2+c),c=-9/16+13/124*I,n=55 4032538677391718 r005 Im(z^2+c),c=4/25+7/13*I,n=37 4032538677897065 a001 17711/4870847*322^(5/12) 4032538680093209 a001 15456/4250681*322^(5/12) 4032538680413622 a001 121393/33385282*322^(5/12) 4032538680460369 a001 105937/29134601*322^(5/12) 4032538680467190 a001 832040/228826127*322^(5/12) 4032538680468185 a001 726103/199691526*322^(5/12) 4032538680468330 a001 5702887/1568397607*322^(5/12) 4032538680468351 a001 4976784/1368706081*322^(5/12) 4032538680468354 a001 39088169/10749957122*322^(5/12) 4032538680468355 a001 831985/228811001*322^(5/12) 4032538680468355 a001 267914296/73681302247*322^(5/12) 4032538680468355 a001 233802911/64300051206*322^(5/12) 4032538680468355 a001 1836311903/505019158607*322^(5/12) 4032538680468355 a001 1602508992/440719107401*322^(5/12) 4032538680468355 a001 12586269025/3461452808002*322^(5/12) 4032538680468355 a001 10983760033/3020733700601*322^(5/12) 4032538680468355 a001 86267571272/23725150497407*322^(5/12) 4032538680468355 a001 53316291173/14662949395604*322^(5/12) 4032538680468355 a001 20365011074/5600748293801*322^(5/12) 4032538680468355 a001 7778742049/2139295485799*322^(5/12) 4032538680468355 a001 2971215073/817138163596*322^(5/12) 4032538680468355 a001 1134903170/312119004989*322^(5/12) 4032538680468355 a001 433494437/119218851371*322^(5/12) 4032538680468355 a001 165580141/45537549124*322^(5/12) 4032538680468355 a001 63245986/17393796001*322^(5/12) 4032538680468356 a001 24157817/6643838879*322^(5/12) 4032538680468364 a001 9227465/2537720636*322^(5/12) 4032538680468420 a001 3524578/969323029*322^(5/12) 4032538680468800 a001 1346269/370248451*322^(5/12) 4032538680471405 a001 514229/141422324*322^(5/12) 4032538680489261 a001 196418/54018521*322^(5/12) 4032538680611648 a001 75025/20633239*322^(5/12) 4032538681450500 a001 28657/7881196*322^(5/12) 4032538682815280 m008 (5*Pi^2+4/5)/(4*Pi^3+1/3) 4032538683107275 m001 (MertensB3+Otter)/(ErdosBorwein-Landau) 4032538684083436 a003 sin(Pi*10/51)*sin(Pi*15/61) 4032538685874501 r005 Im(z^2+c),c=-47/98+2/29*I,n=51 4032538687200080 a001 10946/3010349*322^(5/12) 4032538694958538 r002 39th iterates of z^2 + 4032538701710866 a003 sin(Pi*10/77)/sin(Pi*31/70) 4032538705114000 m001 (CareFree+MasserGramain)/(Pi+exp(-1/2*Pi)) 4032538713821569 m001 (Zeta(1,2)-BesselJ(1,1))/(polylog(4,1/2)-Thue) 4032538713898399 a007 Real Root Of -331*x^4+228*x^3+740*x^2+624*x+155 4032538715775758 m001 (Sarnak+ZetaP(2))/(GAMMA(5/6)+KomornikLoreti) 4032538722711783 a001 17/682*29^(1/7) 4032538726608284 a001 4181/1149851*322^(5/12) 4032538735776648 r002 29th iterates of z^2 + 4032538746815978 m006 (3/5/Pi+5)/(5/6*ln(Pi)+1/3) 4032538747677417 m001 (Zeta(3)+exp(1/Pi))/(Cahen-GlaisherKinkelin) 4032538747815781 r002 29th iterates of z^2 + 4032538752363753 m001 (Totient-ZetaQ(4))/(ln(gamma)+ln(2^(1/2)+1)) 4032538755321127 r005 Im(z^2+c),c=29/90+11/29*I,n=60 4032538758673274 a007 Real Root Of 871*x^4+841*x^3+888*x^2-773*x-424 4032538772151204 r008 a(0)=0,K{-n^6,34-24*n^3-45*n^2+10*n} 4032538817574020 a001 47/832040*987^(13/21) 4032538826686579 a007 Real Root Of 741*x^4+946*x^3+960*x^2-839*x-452 4032538828415619 m001 (-Gompertz+Kac)/(FransenRobinson-Psi(1,1/3)) 4032538828689371 m005 (1/2*2^(1/2)-11/12)/(1/12*5^(1/2)+1/3) 4032538837408661 a007 Real Root Of 101*x^4+488*x^3+558*x^2+986*x+195 4032538837854790 r005 Re(z^2+c),c=-15/46+27/56*I,n=7 4032538845743294 r005 Im(z^2+c),c=-3/52+28/51*I,n=29 4032538852123439 m001 (OneNinth+Tetranacci)/(GAMMA(13/24)+Magata) 4032538865716499 a007 Real Root Of -201*x^4-957*x^3-412*x^2+564*x-630 4032538867196606 r008 a(0)=4,K{-n^6,-6-53*n^3+67*n^2-39*n} 4032538871063197 r008 a(0)=4,K{-n^6,-20-12*n+51*n^2-50*n^3} 4032538874473278 m001 (gamma+ArtinRank2)/(Khinchin+PlouffeB) 4032538876715415 l006 ln(3471/5195) 4032538878566991 m001 2*FeigenbaumDelta^GAMMA(17/24)*Pi/GAMMA(5/6) 4032538878566991 m001 GAMMA(1/6)*FeigenbaumDelta^GAMMA(17/24) 4032538891718998 m001 (2^(1/3))/TreeGrowth2nd^2/ln(sinh(1)) 4032538898009201 r005 Re(z^2+c),c=-13/24+16/63*I,n=28 4032538900093969 r005 Im(z^2+c),c=-47/98+2/29*I,n=53 4032538902123625 m001 Khinchin*(QuadraticClass+Riemann1stZero) 4032538915400918 b008 Pi+(5*InverseGudermannian[Pi/9])/2 4032538944521068 r005 Im(z^2+c),c=19/86+6/17*I,n=38 4032538946606133 m008 (5*Pi^5+4/5)/(2/5*Pi^4-1) 4032538946736091 r005 Im(z^2+c),c=-47/98+2/29*I,n=58 4032538949597268 a001 233/39603*843^(2/7) 4032538951440416 r005 Im(z^2+c),c=-47/98+2/29*I,n=60 4032538951868881 a007 Real Root Of -255*x^4-828*x^3+804*x^2+22*x+149 4032538952400716 r005 Im(z^2+c),c=-47/98+2/29*I,n=56 4032538957603852 r005 Im(z^2+c),c=-47/98+2/29*I,n=62 4032538962513561 r005 Im(z^2+c),c=-47/98+2/29*I,n=64 4032538974567885 r005 Im(z^2+c),c=-47/98+2/29*I,n=55 4032538975878191 a005 (1/cos(29/230*Pi))^303 4032538979831701 r005 Im(z^2+c),c=-47/98+2/29*I,n=63 4032538983113537 a007 Real Root Of -672*x^4+772*x^3-459*x^2+543*x+362 4032538985505082 r005 Im(z^2+c),c=-47/98+2/29*I,n=61 4032538991536259 r005 Im(z^2+c),c=-47/98+2/29*I,n=59 4032538991918505 p003 LerchPhi(1/100,1,537/215) 4032538992031286 r005 Im(z^2+c),c=-47/98+2/29*I,n=54 4032538992810591 r005 Im(z^2+c),c=-47/98+2/29*I,n=57 4032538994658952 r005 Im(z^2+c),c=-55/98+20/43*I,n=54 4032538996716133 a001 1597/439204*322^(5/12) 4032539000228509 m001 (FeigenbaumB-Totient)/(ln(2)+BesselI(1,1)) 4032539007975966 r002 54th iterates of z^2 + 4032539022053815 r005 Re(z^2+c),c=29/70+11/19*I,n=4 4032539031711042 r002 43th iterates of z^2 + 4032539038743910 m001 (ErdosBorwein+Tribonacci)/(ZetaP(4)+ZetaQ(3)) 4032539045546539 r005 Re(z^2+c),c=-11/20+9/28*I,n=25 4032539063906330 p003 LerchPhi(1/125,3,181/62) 4032539081112106 r008 a(0)=4,K{-n^6,-30-19*n^3-47*n^2+65*n} 4032539081722391 m001 1/BesselK(0,1)^2*exp(Trott)/sqrt(2) 4032539083648616 r008 a(0)=0,K{-n^6,-38-4*n+43*n^2+24*n^3} 4032539087990538 m005 (2+3/2*5^(1/2))/(4/5*Catalan-3/5) 4032539091767231 r002 62th iterates of z^2 + 4032539108213688 r008 a(0)=4,K{-n^6,-18+49*n-44*n^2-18*n^3} 4032539108591661 a007 Real Root Of 253*x^4+880*x^3-530*x^2+220*x+310 4032539112524498 m001 (Pi*cosh(1)+exp(1/Pi))/cosh(1) 4032539121514083 r005 Im(z^2+c),c=-47/98+2/29*I,n=52 4032539122437542 g006 Psi(1,3/7)-Psi(1,7/11)-Psi(1,1/5)-Psi(1,1/4) 4032539123318287 m001 1/ln(Porter)/HardHexagonsEntropy/arctan(1/2) 4032539123459524 r005 Re(z^2+c),c=1/9+42/55*I,n=4 4032539128959041 r005 Re(z^2+c),c=-59/110+10/37*I,n=26 4032539129420783 r005 Im(z^2+c),c=15/62+1/3*I,n=38 4032539170708864 m001 ln(GAMMA(17/24))^2*KhintchineLevy*cos(1) 4032539175631977 m001 1/GAMMA(1/12)/Riemann3rdZero*exp(GAMMA(3/4))^2 4032539178411309 r005 Re(z^2+c),c=-27/52+17/43*I,n=60 4032539185535451 r008 a(0)=4,K{-n^6,-39+2*n-17*n^2+24*n^3} 4032539190321462 r005 Im(z^2+c),c=-2/29+31/50*I,n=59 4032539195357940 r008 a(0)=4,K{-n^6,-13-2*n-42*n^2+28*n^3} 4032539200734030 r005 Re(z^2+c),c=-3/5+21/86*I,n=18 4032539218511007 m005 (1/2*5^(1/2)-1/2)/(5/12*exp(1)+2/5) 4032539221284659 a001 47/233*28657^(55/57) 4032539221382916 q001 694/1721 4032539230673506 m001 (Zeta(3)-cos(1/12*Pi))/(Porter-QuadraticClass) 4032539245251317 r005 Im(z^2+c),c=-3/74+19/35*I,n=53 4032539260755865 b008 -4+BesselY[1,21] 4032539266928884 m001 (Gompertz+StolarskyHarborth)/(Zeta(5)+Cahen) 4032539273615060 m005 (1/2*2^(1/2)+3/10)/(4/11*Catalan-1/12) 4032539276192705 m004 (1025*Pi)/8+Cos[Sqrt[5]*Pi] 4032539276823272 r005 Im(z^2+c),c=-9/8+75/239*I,n=4 4032539277526626 a007 Real Root Of 7*x^4+305*x^3+894*x^2-883*x+629 4032539278464210 r008 a(0)=4,K{-n^6,42-29*n-32*n^2-12*n^3} 4032539279140742 r002 34th iterates of z^2 + 4032539282931103 r002 63th iterates of z^2 + 4032539292137970 a003 cos(Pi*29/120)-cos(Pi*36/91) 4032539303447836 m001 (Zeta(1,-1)+PlouffeB)^StronglyCareFree 4032539305453713 p004 log(26879/17959) 4032539309804587 b008 Sqrt[19/11]+E 4032539313384938 m001 Zeta(1,2)/FeigenbaumAlpha*OneNinth 4032539328857576 r005 Im(z^2+c),c=11/126+23/50*I,n=55 4032539330077963 a001 47/225851433717*591286729879^(13/21) 4032539330077964 a001 47/433494437*24157817^(13/21) 4032539354234865 l006 ln(8943/9311) 4032539357916518 p001 sum((-1)^n/(249*n+247)/(125^n),n=0..infinity) 4032539358468873 a001 233/64079*843^(5/14) 4032539359560095 a007 Real Root Of -371*x^4+916*x^3-663*x^2+710*x+464 4032539361150039 r008 a(0)=4,K{-n^6,26-3*n^3-67*n^2+13*n} 4032539372844864 r008 a(0)=4,K{-n^6,18-60*n-4*n^2+18*n^3} 4032539380591575 a007 Real Root Of 180*x^4+669*x^3-305*x^2-164*x+570 4032539382036205 a001 2139295485799/987*144^(10/17) 4032539383757542 a007 Real Root Of -708*x^4+83*x^3+366*x^2+477*x+157 4032539384029586 r005 Im(z^2+c),c=9/26+13/61*I,n=60 4032539394356863 a007 Real Root Of 260*x^4+910*x^3-327*x^2+953*x+81 4032539408169794 l006 ln(3622/5421) 4032539424249075 r005 Im(z^2+c),c=17/126+17/40*I,n=56 4032539432515792 r002 51th iterates of z^2 + 4032539434067634 a001 199/377*2971215073^(7/23) 4032539441605742 r005 Re(z^2+c),c=-71/126+5/57*I,n=47 4032539442977139 r002 16th iterates of z^2 + 4032539444497840 s002 sum(A049254[n]/(16^n),n=1..infinity) 4032539451982981 m005 (1/3*Catalan+1/8)/(2/9*Zeta(3)+4/5) 4032539463649471 r005 Im(z^2+c),c=-47/98+2/29*I,n=50 4032539464508032 a007 Real Root Of -979*x^4+128*x^3-72*x^2+344*x+14 4032539472970878 m001 BesselJ(1,1)^2*ln(Rabbit)^2*sqrt(Pi) 4032539484556381 m001 1/exp(GAMMA(1/4))/CareFree/Zeta(1,2) 4032539488139836 a001 377/271443*322^(7/12) 4032539490189102 m001 (GAMMA(11/12)+MadelungNaCl)/(3^(1/2)-Zeta(5)) 4032539492224902 r002 21th iterates of z^2 + 4032539498345617 a001 71065/1762289 4032539498346847 a004 Fibonacci(13)/Lucas(15)/(1/2+sqrt(5)/2)^3 4032539498400411 a004 Fibonacci(15)/Lucas(13)/(1/2+sqrt(5)/2)^7 4032539533768889 r005 Re(z^2+c),c=-43/78+7/32*I,n=46 4032539540000268 m005 (1/3*gamma+2/7)/(1/12*gamma-1/6) 4032539543543537 r002 9th iterates of z^2 + 4032539544143400 b008 EulerGamma-2*ExpIntegralEi[1/11] 4032539546641053 r008 a(0)=4,K{-n^6,-15+22*n^3+n^2-38*n} 4032539548896341 r008 a(0)=4,K{-n^6,-45+27*n^3-29*n^2+17*n} 4032539556092330 r002 52th iterates of z^2 + 4032539556669128 m001 (Catalan-gamma(1))/(CareFree+MadelungNaCl) 4032539561447214 a007 Real Root Of -147*x^4-458*x^3+639*x^2+481*x+387 4032539568239111 a003 cos(Pi*15/104)-sin(Pi*18/109) 4032539581834506 a007 Real Root Of 198*x^4+595*x^3-764*x^2-917 4032539592723422 r009 Re(z^3+c),c=-5/11+11/58*I,n=26 4032539601825290 r005 Re(z^2+c),c=-11/34+19/36*I,n=10 4032539608326156 l006 ln(151/8517) 4032539609980885 m005 (1/2*gamma-1/8)/(2/3*2^(1/2)-5) 4032539612232285 a007 Real Root Of 92*x^4+377*x^3+266*x^2-802*x+253 4032539617243956 r005 Im(z^2+c),c=13/114+26/59*I,n=47 4032539623291024 r005 Re(z^2+c),c=3/62+41/62*I,n=62 4032539633634079 m005 (1/2*Pi-11/12)/(3/8*exp(1)-6/7) 4032539641373054 r009 Re(z^3+c),c=-21/40+18/47*I,n=9 4032539641894782 r002 9th iterates of z^2 + 4032539666069209 r005 Re(z^2+c),c=-19/34+11/72*I,n=36 4032539674821985 r001 34i'th iterates of 2*x^2-1 of 4032539675373949 r005 Im(z^2+c),c=29/90+11/43*I,n=34 4032539676540377 r002 15th iterates of z^2 + 4032539678004956 r005 Im(z^2+c),c=7/27+29/60*I,n=25 4032539678537977 r002 26th iterates of z^2 + 4032539683795698 a007 Real Root Of 617*x^4+564*x^3-160*x^2-334*x-88 4032539684927694 r002 29th iterates of z^2 + 4032539697771149 m001 1/GAMMA(23/24)/exp(Lehmer)^2/exp(1)^2 4032539718777442 a008 Real Root of x^4-2*x^3-5*x^2-30*x+69 4032539729644147 m005 (1/2*Zeta(3)+5/9)/(8/11*Pi+7/12) 4032539756696876 m001 (Tribonacci+ZetaQ(4))/(ln(5)+Otter) 4032539762430117 a001 233/103682*843^(3/7) 4032539808671390 h001 (1/11*exp(2)+1/4)/(4/5*exp(1)+1/9) 4032539826020465 r002 38th iterates of z^2 + 4032539834663312 r005 Re(z^2+c),c=-13/30+23/47*I,n=27 4032539836590696 r009 Im(z^3+c),c=-43/90+17/53*I,n=40 4032539838897854 r009 Im(z^3+c),c=-23/70+15/37*I,n=16 4032539848494138 r002 41th iterates of z^2 + 4032539853588539 r005 Re(z^2+c),c=-55/122+22/45*I,n=44 4032539873292483 r005 Re(z^2+c),c=-61/110+15/37*I,n=43 4032539873545950 a007 Real Root Of -110*x^4-556*x^3-354*x^2+443*x+171 4032539875407262 m005 (1/3*exp(1)+1/5)/(8/9*2^(1/2)-4) 4032539897085262 l006 ln(3773/5647) 4032539904873979 r005 Im(z^2+c),c=9/118+29/62*I,n=49 4032539908714783 a007 Real Root Of -927*x^4+210*x^3-770*x^2+708*x+449 4032539913967740 m001 Zeta(1,2)^GAMMA(2/3)*BesselJ(1,1) 4032539918007261 r002 41th iterates of z^2 + 4032539922221308 r005 Im(z^2+c),c=11/64+24/61*I,n=22 4032539927281513 m001 3^(1/3)*(ln(5)+KhinchinLevy) 4032539932364162 m001 gamma(2)/(BesselI(0,2)+Champernowne) 4032539939440648 m001 1/Salem/Paris*exp(cosh(1)) 4032539940173695 m001 (ln(Pi)-ArtinRank2)/(Conway-DuboisRaymond) 4032539943779043 m001 (Catalan-Champernowne)/(Conway+Robbin) 4032539953355296 r005 Re(z^2+c),c=31/126+7/17*I,n=34 4032539954207968 m001 (Si(Pi)+ln(3))/(-GAMMA(11/12)+KomornikLoreti) 4032539963732237 a003 cos(Pi*40/109)*sin(Pi*45/97) 4032539966074129 a007 Real Root Of 205*x^4+580*x^3-889*x^2+276*x-606 4032539966599522 r005 Re(z^2+c),c=-9/16+9/86*I,n=49 4032539967016789 m001 (-Gompertz+KhinchinLevy)/(1+arctan(1/2)) 4032539975460679 m001 arctan(1/2)/(Niven^MertensB1) 4032539980373270 r005 Re(z^2+c),c=-33/62+17/52*I,n=50 4032539981666613 r005 Re(z^2+c),c=-69/122+1/32*I,n=49 4032539983635275 r005 Re(z^2+c),c=-57/106+17/55*I,n=46 4032539987141282 r009 Re(z^3+c),c=-25/66+6/37*I,n=2 4032539991647443 m001 (5^(1/2)-ln(3))/(CopelandErdos+Sierpinski) 4032540017701261 a007 Real Root Of -678*x^4+934*x^3-746*x^2+527*x+413 4032540026405795 r005 Re(z^2+c),c=-47/86+2/7*I,n=21 4032540033671698 r008 a(0)=0,K{-n^6,-50+24*n^3+37*n^2+14*n} 4032540037253983 r008 a(0)=4,K{-n^6,-53+39*n+32*n^2-49*n^3} 4032540042638944 a007 Real Root Of -687*x^4+903*x^3-133*x^2+858*x+445 4032540048522974 r008 a(0)=4,K{-n^6,-29-n+50*n^2-51*n^3} 4032540055150809 a001 123/89*121393^(16/33) 4032540068687023 a001 4/17711*4181^(44/49) 4032540072202551 m001 PlouffeB^Salem/MertensB2 4032540083835965 a001 1860498/233*514229^(14/17) 4032540084152681 a001 521/46368*6557470319842^(14/17) 4032540085882598 a007 Real Root Of 180*x^4+964*x^3+961*x^2+186*x+739 4032540090336697 m001 TwinPrimes^ln(3)-Zeta(5) 4032540096052677 a003 sin(Pi*3/38)/cos(Pi*7/24) 4032540096812655 a007 Real Root Of 837*x^4-534*x^3-169*x^2-901*x-393 4032540096831667 s002 sum(A020258[n]/(exp(n)-1),n=1..infinity) 4032540101797852 a007 Real Root Of -181*x^4-850*x^3-437*x^2+337*x+589 4032540106893239 a001 161/133957148*4807526976^(6/23) 4032540106930621 a001 161/7465176*75025^(6/23) 4032540109526026 r008 a(0)=4,K{-n^6,-41+41*n+8*n^2-39*n^3} 4032540119843377 r002 46th iterates of z^2 + 4032540128570044 r002 28th iterates of z^2 + 4032540129596622 r005 Re(z^2+c),c=-39/74+10/53*I,n=12 4032540137314761 m001 Rabbit^2/Magata*exp(sqrt(1+sqrt(3)))^2 4032540149812383 a007 Real Root Of 184*x^4+678*x^3-129*x^2+714*x+781 4032540162255775 m001 GlaisherKinkelin^FeigenbaumDelta+Chi(1) 4032540163244966 r008 a(0)=4,K{-n^6,7+22*n^3+12*n^2-71*n} 4032540166296183 a003 sin(Pi*13/118)/cos(Pi*2/11) 4032540168267008 a001 233/167761*843^(1/2) 4032540170158663 r002 21th iterates of z^2 + 4032540170202409 m001 1/Magata*Si(Pi)*exp(Zeta(9))^2 4032540172863157 s002 sum(A017174[n]/(pi^n-1),n=1..infinity) 4032540179347354 r008 a(0)=4,K{-n^6,-17+17*n+2*n^2-33*n^3} 4032540194316441 r008 a(0)=0,K{-n^6,52-24*n^3-36*n^2-17*n} 4032540201852795 p004 log(17393/11621) 4032540206381860 r005 Im(z^2+c),c=4/27+12/29*I,n=26 4032540235127626 r005 Im(z^2+c),c=19/86+6/17*I,n=30 4032540236261515 m001 GAMMA(5/12)^2*Ei(1)/exp(GAMMA(7/12))^2 4032540251435276 r008 a(0)=4,K{-n^6,19-30*n^3+11*n^2-31*n} 4032540255329261 r005 Re(z^2+c),c=-41/74+11/56*I,n=52 4032540258876389 r005 Im(z^2+c),c=8/29+17/57*I,n=64 4032540269643645 m005 (4*2^(1/2)-3/4)/(1/5*Pi-3/4) 4032540269681667 r002 37th iterates of z^2 + 4032540270109799 g001 GAMMA(1/4,61/89) 4032540272808875 r005 Im(z^2+c),c=-47/98+2/29*I,n=48 4032540274890729 r008 a(0)=4,K{-n^6,-31-19*n^3-47*n^2+66*n} 4032540289944461 a007 Real Root Of 320*x^4+183*x^3-551*x^2-818*x+399 4032540311183571 a003 cos(Pi*2/115)/sin(Pi*9/113) 4032540318228626 r008 a(0)=4,K{-n^6,-15+46*n-45*n^2-17*n^3} 4032540328786567 a007 Real Root Of -16*x^4-622*x^3+923*x^2-532*x-623 4032540335031283 a007 Real Root Of 152*x^4-690*x^3-954*x^2-934*x+573 4032540338300957 r002 8th iterates of z^2 + 4032540338667261 r005 Re(z^2+c),c=-13/22+24/67*I,n=39 4032540344029698 a007 Real Root Of 749*x^4+476*x^3-293*x^2-668*x+266 4032540347303021 m005 (1/2*Catalan-2)/(1/8*gamma-5/11) 4032540348372657 l006 ln(3924/5873) 4032540370175464 r005 Im(z^2+c),c=5/21+20/61*I,n=17 4032540374407641 m001 (Pi^(1/2))^(2^(1/3))*(Pi^(1/2))^Salem 4032540388321240 r005 Im(z^2+c),c=-13/29+33/61*I,n=10 4032540391768954 r009 Im(z^3+c),c=-23/114+17/37*I,n=5 4032540392979470 r002 35th iterates of z^2 + 4032540394083438 r009 Re(z^3+c),c=-37/82+5/31*I,n=10 4032540401711518 r009 Im(z^3+c),c=-29/38*I,n=6 4032540437693245 m001 (gamma(2)+exp(-1/2*Pi))/(FeigenbaumC-Totient) 4032540444443334 r005 Re(z^2+c),c=-31/56+23/53*I,n=33 4032540450390015 m001 BesselK(1,1)/ln(Riemann3rdZero)/arctan(1/2) 4032540455195563 m001 (GAMMA(13/24)+Khinchin)/(ThueMorse+TwinPrimes) 4032540460124656 r009 Im(z^3+c),c=-23/48+8/25*I,n=38 4032540463814267 a007 Real Root Of 113*x^4+389*x^3-115*x^2+838*x+877 4032540466916167 p004 log(30853/547) 4032540467472663 r005 Re(z^2+c),c=-35/64+6/23*I,n=36 4032540467634342 a007 Real Root Of -972*x^4-550*x^3-989*x^2+780*x+465 4032540469033895 a007 Real Root Of -82*x^4+314*x^3-219*x^2+562*x+285 4032540491203819 r005 Re(z^2+c),c=-3/4+1/188*I,n=50 4032540494571617 a001 11/4181*317811^(11/19) 4032540502791940 r005 Re(z^2+c),c=-29/52+8/49*I,n=57 4032540509592271 b008 9*CosIntegral[ArcSinh[Pi]] 4032540515745345 r009 Im(z^3+c),c=-23/54+21/59*I,n=33 4032540518002593 r008 a(0)=4,K{-n^6,19-5*n^3-64*n^2+19*n} 4032540533724361 a007 Real Root Of -614*x^4+923*x^3+530*x^2+899*x-493 4032540540714305 a001 1/75640*2971215073^(11/19) 4032540573092843 r009 Im(z^3+c),c=-31/66+5/33*I,n=4 4032540573387522 a001 233/271443*843^(4/7) 4032540579484837 r009 Im(z^3+c),c=-45/94+8/25*I,n=60 4032540583746059 r002 43th iterates of z^2 + 4032540596340264 r005 Re(z^2+c),c=25/58+11/54*I,n=10 4032540610098119 r009 Re(z^3+c),c=-8/19+9/59*I,n=32 4032540614246839 r005 Im(z^2+c),c=-2/21+21/38*I,n=16 4032540614635322 l005 sech(468/55) 4032540616855634 r009 Re(z^3+c),c=-63/118+4/17*I,n=60 4032540618127852 a001 233/9349*322^(1/12) 4032540619006221 r005 Im(z^2+c),c=5/27+5/13*I,n=47 4032540621139178 m002 -Pi^4-Pi^5+1/(5*Log[Pi]) 4032540621384567 m001 (-OneNinth+Robbin)/(1+Artin) 4032540625504424 m001 (-LandauRamanujan+ZetaQ(2))/(Shi(1)+CareFree) 4032540630685315 a007 Real Root Of -651*x^4+162*x^3-598*x^2+994*x-297 4032540631598358 r009 Re(z^3+c),c=-3/13+32/43*I,n=10 4032540660821023 m001 FeigenbaumKappa^2/ln(FeigenbaumB)^2*exp(1)^2 4032540675816515 r009 Im(z^3+c),c=-29/62+16/51*I,n=17 4032540675844806 q001 1611/3995 4032540680056830 r002 9th iterates of z^2 + 4032540681418198 a001 329/6*3571^(10/41) 4032540711460489 a007 Real Root Of -903*x^4-110*x^3-159*x^2-160*x-22 4032540711834403 g005 Pi*csc(3/8*Pi)*GAMMA(1/11)*GAMMA(5/6) 4032540718312680 m002 Pi^(-2)+3*Log[Pi]^2 4032540725277720 r005 Im(z^2+c),c=7/106+28/59*I,n=34 4032540746953232 h001 (1/12*exp(2)+3/5)/(7/8*exp(1)+7/11) 4032540750381812 r002 45th iterates of z^2 + 4032540766214932 l006 ln(4075/6099) 4032540770823535 m005 (1/2*3^(1/2)-2/7)/(5/8*Catalan-3/7) 4032540771392433 m008 (5/6*Pi^4-1)/(2*Pi^4+4) 4032540773666950 r009 Im(z^3+c),c=-37/82+18/53*I,n=37 4032540794307618 l006 ln(99/5584) 4032540807025350 m005 (1/4*Catalan+3/4)/(2/3*Pi+1/3) 4032540809409322 m009 (4/5*Psi(1,1/3)-1/5)/(5/6*Psi(1,2/3)-3/5) 4032540826258879 r008 a(0)=4,K{-n^6,-45+35*n^3-53*n^2+33*n} 4032540848062870 a001 610/167761*322^(5/12) 4032540857311129 a007 Real Root Of -10*x^4+399*x^3+445*x^2+533*x+169 4032540869147122 m001 ln(CareFree)*GlaisherKinkelin/GAMMA(11/12)^2 4032540873945598 r009 Im(z^3+c),c=-5/74+7/15*I,n=6 4032540883334230 r005 Re(z^2+c),c=-27/38+2/59*I,n=18 4032540886509182 r002 48th iterates of z^2 + 4032540899058407 r009 Re(z^3+c),c=-45/106+7/45*I,n=16 4032540908479723 r002 27th iterates of z^2 + 4032540911682670 r002 16th iterates of z^2 + 4032540911725278 a001 2207/233*1836311903^(14/17) 4032540942881886 r002 33th iterates of z^2 + 4032540948341860 a001 305/38*843^(25/43) 4032540949301320 m001 Gompertz^ln(2+3^(1/2))*Gompertz^TreeGrowth2nd 4032540957666087 m001 (Pi-ln(2)/ln(10))/(2^(1/2)-Rabbit) 4032540965735413 r005 Im(z^2+c),c=-5/94+11/20*I,n=43 4032540969959317 r009 Im(z^3+c),c=-31/66+2/13*I,n=4 4032540972236475 m001 (BesselK(1,1)-HardyLittlewoodC3)/(Kac-Landau) 4032540975234154 m001 Pi*ln(2)/ln(10)+GAMMA(2/3)*BesselI(0,2) 4032540978322765 a007 Real Root Of -676*x^4+978*x^3+90*x^2-53*x+46 4032540978781724 a001 233/439204*843^(9/14) 4032540985518522 r009 Im(z^3+c),c=-15/31+19/60*I,n=33 4032540986264586 a001 89/167761*199^(9/11) 4032540991166600 a007 Real Root Of 22*x^4+882*x^3-198*x^2+423*x+732 4032541000908743 a003 sin(Pi*26/89)/cos(Pi*45/103) 4032541008554057 r005 Re(z^2+c),c=-4/7+27/124*I,n=20 4032541020472446 r005 Re(z^2+c),c=-21/44+16/41*I,n=18 4032541027536764 a003 sin(Pi*14/101)*sin(Pi*47/116) 4032541027987588 p004 log(18749/12527) 4032541029411737 r005 Im(z^2+c),c=-79/114+5/58*I,n=63 4032541040246308 m009 (3/8*Pi^2+2)/(3/2*Pi^2-2/3) 4032541043776274 r001 11i'th iterates of 2*x^2-1 of 4032541049665696 r005 Re(z^2+c),c=1/46+49/60*I,n=22 4032541054626038 r005 Re(z^2+c),c=-11/21+20/59*I,n=34 4032541060241272 r008 a(0)=4,K{-n^6,-48*n-12*n^2+29*n^3+1} 4032541062234460 m001 2^(1/3)*(polylog(4,1/2)+FeigenbaumD) 4032541070442250 m001 1/ln(GAMMA(1/12))/Tribonacci^2*gamma^2 4032541083225121 r005 Re(z^2+c),c=-51/86+5/38*I,n=13 4032541093692752 a001 987/439204*322^(1/2) 4032541095508241 m005 (-1/44+1/4*5^(1/2))/(1/6*Zeta(3)-1/3) 4032541097051710 m001 (Catalan-GAMMA(17/24))/(FellerTornier+Lehmer) 4032541118295091 r005 Re(z^2+c),c=-39/106+21/41*I,n=9 4032541125855797 m001 1/ln(Paris)^2/LaplaceLimit^2/GAMMA(23/24)^2 4032541143300464 h001 (-2*exp(-3)-3)/(-6*exp(2/3)+4) 4032541152609118 a007 Real Root Of -430*x^4+357*x^3-622*x^2+883*x+492 4032541154197189 l006 ln(4226/6325) 4032541154269824 m005 (1/2*Catalan-6/7)/(5/7*2^(1/2)-2) 4032541158447243 b008 3+CoshIntegral[Cosh[1/2]] 4032541159310157 m001 Ei(1)/ln(Riemann2ndZero)/cosh(1) 4032541171743379 a005 (1/cos(21/130*Pi))^130 4032541180593899 r009 Im(z^3+c),c=-57/118+17/54*I,n=36 4032541183153628 h001 (3/4*exp(2)+2/11)/(3/8*exp(1)+2/5) 4032541184527933 m001 ln(3)^(MadelungNaCl/Trott2nd) 4032541200434482 a007 Real Root Of 429*x^4-713*x^3-804*x^2-322*x+296 4032541205932715 r005 Re(z^2+c),c=1/13+29/45*I,n=13 4032541213135720 r005 Re(z^2+c),c=-9/16+11/103*I,n=38 4032541213998744 a007 Real Root Of -188*x^4-726*x^3+135*x^2-179*x-811 4032541217756024 r005 Im(z^2+c),c=-43/122+29/46*I,n=27 4032541238703654 r005 Im(z^2+c),c=-5/8+33/83*I,n=22 4032541249488497 r008 a(0)=4,K{-n^6,-30+50*n^2-51*n^3} 4032541252567472 r005 Im(z^2+c),c=-3/98+29/54*I,n=57 4032541258528271 r005 Im(z^2+c),c=3/44+32/63*I,n=17 4032541276421973 r009 Im(z^3+c),c=-19/98+13/29*I,n=10 4032541283835509 m001 (ln(5)+Riemann2ndZero)/(1-Psi(2,1/3)) 4032541299774717 m001 gamma-ln(2)^ZetaQ(2) 4032541301193064 r005 Re(z^2+c),c=-55/102+13/44*I,n=53 4032541301559629 a007 Real Root Of -221*x^4-641*x^3+847*x^2-610*x+173 4032541308050408 r005 Im(z^2+c),c=11/126+23/50*I,n=60 4032541317890704 m005 (1/2*Zeta(3)-5/9)/(1/6*Pi-7/11) 4032541321757501 r005 Re(z^2+c),c=-8/29+37/62*I,n=18 4032541324238110 a007 Real Root Of -401*x^4+877*x^3-919*x^2-232*x+124 4032541326488729 a002 15^(3/2)-11^(6/5) 4032541347371166 r009 Re(z^3+c),c=-39/122+41/43*I,n=3 4032541353411891 a003 cos(Pi*26/71)*sin(Pi*23/51) 4032541355723207 r004 Re(z^2+c),c=-9/14-2/15*I,z(0)=-1,n=8 4032541360051512 m005 (1/2*Catalan+1/11)/(9/11*gamma+8/9) 4032541382024939 r008 a(0)=4,K{-n^6,-18+18*n+2*n^2-33*n^3} 4032541384071443 a001 233/710647*843^(5/7) 4032541406974929 r002 32th iterates of z^2 + 4032541411111112 k007 concat of cont frac of 4032541423968002 a007 Real Root Of -286*x^4-922*x^3+764*x^2-528*x+615 4032541431141231 r005 Re(z^2+c),c=-6/11+19/62*I,n=32 4032541432438436 r009 Re(z^3+c),c=-61/126+13/59*I,n=59 4032541441158024 r005 Im(z^2+c),c=11/48+19/55*I,n=46 4032541447378459 r002 58th iterates of z^2 + 4032541459944369 m001 (cos(1)+ErdosBorwein)/(-Landau+Trott) 4032541465902881 a001 1292/9*39603^(4/41) 4032541468504828 r002 63th iterates of z^2 + 4032541478392251 m001 (1+3^(1/2))^(1/2)-FeigenbaumMu*Stephens 4032541501630284 m007 (-2*gamma-1/6)/(-2/3*gamma-2*ln(2)+1/3*Pi+4) 4032541507236522 r005 Im(z^2+c),c=-71/74+1/27*I,n=7 4032541509909684 r008 a(0)=4,K{-n^6,-18+48*n-43*n^2-18*n^3} 4032541511227255 r005 Im(z^2+c),c=-71/102+9/32*I,n=53 4032541515409810 l006 ln(4377/6551) 4032541524242565 r005 Re(z^2+c),c=-7/10+38/239*I,n=40 4032541526096378 r008 a(0)=4,K{-n^6,-20-16*n^3-50*n^2+55*n} 4032541532584628 m001 MadelungNaCl^((1+3^(1/2))^(1/2)/Robbin) 4032541535407464 r005 Im(z^2+c),c=11/126+23/50*I,n=63 4032541542509272 m001 (Catalan+Gompertz)/(Kolakoski+Otter) 4032541544316126 m001 (Lehmer+OneNinth)/(exp(-1/2*Pi)+GAMMA(7/12)) 4032541556549610 m005 (1/2*exp(1)-6/11)/(6/7*Catalan-7/12) 4032541557277067 r002 42th iterates of z^2 + 4032541558270569 r005 Im(z^2+c),c=-17/31+25/46*I,n=25 4032541568055275 a003 sin(Pi*24/119)-sin(Pi*38/81) 4032541583679174 a003 sin(Pi*26/89)-sin(Pi*11/35) 4032541593618427 m005 (1/2*gamma-7/9)/(5/11*Zeta(3)+2/3) 4032541598536021 m008 (1/4*Pi^6+3)/(1/5*Pi^3-1/6) 4032541599586715 r002 59th iterates of z^2 + 4032541604615022 r005 Re(z^2+c),c=-29/52+2/13*I,n=31 4032541610428224 r008 a(0)=4,K{-n^6,-2-11*n^3-56*n^2+38*n} 4032541618017357 r008 a(0)=4,K{-n^6,-4-10*n^3-60*n^2+43*n} 4032541620268545 r005 Im(z^2+c),c=9/62+1/38*I,n=11 4032541622570134 r005 Re(z^2+c),c=-85/64+13/58*I,n=4 4032541627761441 m001 TwinPrimes^2/exp(ArtinRank2)^2*GAMMA(11/24)^2 4032541630500036 m005 (1/2*2^(1/2)-5/8)/(5/11*Zeta(3)-3/4) 4032541633452171 r008 a(0)=4,K{-n^6,-9-21*n-35*n^2+35*n^3} 4032541641118428 r002 44th iterates of z^2 + 4032541658294557 r002 26th iterates of z^2 + 4032541663314392 r005 Re(z^2+c),c=-45/82+11/49*I,n=32 4032541665296296 a007 Real Root Of -843*x^4-429*x^3-950*x^2-505*x-55 4032541670800238 r008 a(0)=0,K{-n^6,70-24*n^3-27*n^2-44*n} 4032541693206888 m009 (1/2*Psi(1,3/4)+6)/(8*Catalan+Pi^2+5/6) 4032541718639722 a003 cos(Pi*18/95)-cos(Pi*40/111) 4032541721955625 a007 Real Root Of 124*x^4+350*x^3-458*x^2+547*x-185 4032541724500525 r005 Im(z^2+c),c=-39/118+37/62*I,n=50 4032541724508849 r002 55th iterates of z^2 + 4032541725497366 r008 a(0)=4,K{-n^6,18-5*n^3-64*n^2+20*n} 4032541730310328 a007 Real Root Of -376*x^4+121*x^3+44*x^2+508*x-210 4032541734331245 r008 a(0)=4,K{-n^6,52-41*n-32*n^2-10*n^3} 4032541765880980 m001 1/Niven/GaussAGM(1,1/sqrt(2))/exp(cos(1)) 4032541766592208 m001 OneNinth^2/ln(TwinPrimes)*Zeta(3)^2 4032541769895860 r005 Im(z^2+c),c=-4/7+3/41*I,n=57 4032541776605101 q001 917/2274 4032541789401127 a001 233/1149851*843^(11/14) 4032541800780250 a001 2584/1149851*322^(1/2) 4032541806060888 m001 (FransenRobinson+Otter)/(sin(1)+sin(1/5*Pi)) 4032541808266544 m001 (Pi-Chi(1))/(MadelungNaCl-Salem) 4032541808421781 a007 Real Root Of x^4-290*x^3+519*x^2-418*x-272 4032541811197588 r009 Re(z^3+c),c=-49/110+8/17*I,n=4 4032541824539683 a007 Real Root Of 218*x^4+600*x^3-905*x^2+675*x-863 4032541828486646 r002 30th iterates of z^2 + 4032541830806333 m005 (1/2*Catalan-3/11)/(5/7*3^(1/2)-7/9) 4032541834876827 a007 Real Root Of 780*x^4-491*x^3+669*x^2-611*x-408 4032541840376601 r005 Im(z^2+c),c=35/78+19/55*I,n=20 4032541844014895 r009 Im(z^3+c),c=-15/32+22/43*I,n=45 4032541849737157 r002 3th iterates of z^2 + 4032541852530940 l006 ln(4528/6777) 4032541864543205 m001 1/GAMMA(7/24)^2/Tribonacci^2*exp(sin(Pi/12)) 4032541876602378 a003 sin(Pi*19/101)*sin(Pi*17/66) 4032541876961806 a001 2178309/29*7^(19/22) 4032541886781438 a007 Real Root Of 361*x^4+2*x^3-19*x^2-242*x+91 4032541891678833 p003 LerchPhi(1/256,2,20/127) 4032541897727027 r005 Re(z^2+c),c=-87/122+2/53*I,n=18 4032541902652546 a007 Real Root Of 140*x^4-653*x^3+208*x^2-877*x-434 4032541903942925 a001 6765/3010349*322^(1/2) 4032541908726810 a001 3571/13*317811^(1/33) 4032541910410813 r005 Re(z^2+c),c=5/62+31/56*I,n=15 4032541918994157 a001 89/39604*322^(1/2) 4032541921190102 a001 46368/20633239*322^(1/2) 4032541921510486 a001 121393/54018521*322^(1/2) 4032541921557229 a001 317811/141422324*322^(1/2) 4032541921564049 a001 832040/370248451*322^(1/2) 4032541921565044 a001 2178309/969323029*322^(1/2) 4032541921565189 a001 5702887/2537720636*322^(1/2) 4032541921565211 a001 14930352/6643838879*322^(1/2) 4032541921565214 a001 39088169/17393796001*322^(1/2) 4032541921565214 a001 102334155/45537549124*322^(1/2) 4032541921565214 a001 267914296/119218851371*322^(1/2) 4032541921565214 a001 3524667/1568437211*322^(1/2) 4032541921565214 a001 1836311903/817138163596*322^(1/2) 4032541921565214 a001 4807526976/2139295485799*322^(1/2) 4032541921565214 a001 12586269025/5600748293801*322^(1/2) 4032541921565214 a001 32951280099/14662949395604*322^(1/2) 4032541921565214 a001 53316291173/23725150497407*322^(1/2) 4032541921565214 a001 20365011074/9062201101803*322^(1/2) 4032541921565214 a001 7778742049/3461452808002*322^(1/2) 4032541921565214 a001 2971215073/1322157322203*322^(1/2) 4032541921565214 a001 1134903170/505019158607*322^(1/2) 4032541921565214 a001 433494437/192900153618*322^(1/2) 4032541921565214 a001 165580141/73681302247*322^(1/2) 4032541921565214 a001 63245986/28143753123*322^(1/2) 4032541921565216 a001 24157817/10749957122*322^(1/2) 4032541921565224 a001 9227465/4106118243*322^(1/2) 4032541921565279 a001 3524578/1568397607*322^(1/2) 4032541921565659 a001 1346269/599074578*322^(1/2) 4032541921568264 a001 514229/228826127*322^(1/2) 4032541921586119 a001 196418/87403803*322^(1/2) 4032541921708494 a001 75025/33385282*322^(1/2) 4032541922547271 a001 28657/12752043*322^(1/2) 4032541927840362 g006 Psi(1,7/8)+Psi(1,1/3)-Psi(1,6/7)-Psi(1,1/7) 4032541928296330 a001 10946/4870847*322^(1/2) 4032541950844479 r009 Im(z^3+c),c=-27/98+8/9*I,n=4 4032541963763587 r005 Im(z^2+c),c=23/98+10/29*I,n=23 4032541967700965 a001 4181/1860498*322^(1/2) 4032541981297340 r009 Im(z^3+c),c=-21/52+17/46*I,n=20 4032541989009043 a007 Real Root Of 469*x^4-269*x^3-994*x^2-960*x+554 4032542020903404 l006 ln(146/8235) 4032542046552231 r005 Im(z^2+c),c=-2/19+17/31*I,n=14 4032542048948679 r005 Im(z^2+c),c=-47/98+2/29*I,n=46 4032542049125788 a007 Real Root Of 185*x^4+149*x^3-339*x^2-718*x+330 4032542052951714 m001 (BesselJ(0,1)-Zeta(3))/(Cahen+TreeGrowth2nd) 4032542057296736 a003 sin(Pi*1/41)-sin(Pi*18/113) 4032542064332867 a008 Real Root of x^4-x^3+x^2+39*x-189 4032542120925280 r009 Re(z^3+c),c=-23/44+7/29*I,n=41 4032542123982101 m005 (1/2*Catalan+4/5)/(3/5*3^(1/2)-8/11) 4032542149077926 m005 (1/5*exp(1)+3/5)/(5^(1/2)+3/5) 4032542150296483 r005 Re(z^2+c),c=19/56+6/49*I,n=18 4032542167893014 l006 ln(4679/7003) 4032542175908561 r005 Re(z^2+c),c=-15/26+9/55*I,n=6 4032542178088624 r008 a(0)=0,K{-n^6,-46-2*n+54*n^2+19*n^3} 4032542192503125 a007 Real Root Of -177*x^4-556*x^3+636*x^2-179*x-719 4032542194715602 a001 233/1860498*843^(6/7) 4032542195387069 m001 FeigenbaumMu/(Gompertz^CopelandErdos) 4032542199633271 m001 (TwinPrimes-ZetaP(4))/(sin(1/5*Pi)+Thue) 4032542203622417 a007 Real Root Of -803*x^4+530*x^3-853*x^2+400*x+356 4032542206894332 m005 (1/2*Zeta(3)-1/6)/(4/9*5^(1/2)+1/12) 4032542209633501 a007 Real Root Of -259*x^4-932*x^3+309*x^2-636*x-217 4032542213348565 p004 log(35591/631) 4032542219803229 a007 Real Root Of -205*x^4-230*x^3-339*x^2+103*x+87 4032542220999319 m001 (ThueMorse+ZetaP(3))/(GAMMA(5/6)-Sierpinski) 4032542221549904 m001 (Si(Pi)+Zeta(1/2))/(Zeta(1,2)+MertensB2) 4032542227630517 a007 Real Root Of 415*x^4-347*x^3-651*x^2-717*x-217 4032542237784356 a001 1597/710647*322^(1/2) 4032542252956685 m001 OneNinth^Bloch*FeigenbaumKappa^Bloch 4032542268030321 a007 Real Root Of 243*x^4+774*x^3-866*x^2+61*x+826 4032542280581199 r005 Re(z^2+c),c=23/64+8/57*I,n=47 4032542296899832 r005 Re(z^2+c),c=-59/106+1/29*I,n=15 4032542302780824 r002 18th iterates of z^2 + 4032542305007422 r002 46th iterates of z^2 + 4032542307665523 r005 Im(z^2+c),c=-7/90+15/29*I,n=11 4032542308802486 m001 (StronglyCareFree-Trott)/(Ei(1)+gamma(3)) 4032542328907133 r009 Re(z^3+c),c=-9/32+36/49*I,n=9 4032542335223015 r002 18th iterates of z^2 + 4032542344954102 r005 Re(z^2+c),c=-13/25+15/34*I,n=60 4032542348956028 m001 ErdosBorwein^FeigenbaumAlpha/StolarskyHarborth 4032542358195370 r002 62th iterates of z^2 + 4032542363029742 r002 60i'th iterates of 2*x/(1-x^2) of 4032542374994012 r009 Re(z^3+c),c=-27/58+12/47*I,n=5 4032542375214951 a007 Real Root Of 266*x^4+973*x^3-422*x^2-288*x-834 4032542381497329 m001 1/Si(Pi)*exp(ArtinRank2)^2/cos(1) 4032542385191238 a007 Real Root Of 215*x^4+686*x^3-812*x^2-536*x-826 4032542392178894 r005 Im(z^2+c),c=17/126+35/58*I,n=25 4032542405574118 r008 a(0)=4,K{-n^6,-17-22*n^3+67*n^2-39*n} 4032542414254108 r005 Re(z^2+c),c=-37/86+7/15*I,n=12 4032542439722362 m001 GAMMA(1/4)*cos(Pi/5)*exp(1/Pi) 4032542439722362 m001 Pi*2^(1/2)/GAMMA(3/4)*cos(1/5*Pi)*exp(1/Pi) 4032542442490291 a003 -1+3^(1/2)-cos(7/15*Pi)-cos(2/7*Pi) 4032542463536787 l006 ln(4830/7229) 4032542464399586 r005 Re(z^2+c),c=-9/16+7/72*I,n=30 4032542472590631 r008 a(0)=4,K{-n^6,-7-53*n^3+68*n^2-39*n} 4032542479241656 r005 Im(z^2+c),c=2/13+16/39*I,n=49 4032542486194530 r002 7th iterates of z^2 + 4032542489443829 r002 60th iterates of z^2 + 4032542489969515 a003 sin(Pi*23/77)/cos(Pi*17/39) 4032542492754319 a007 Real Root Of 366*x^4-922*x^3+646*x^2-803*x-499 4032542511221005 m005 (1/3*3^(1/2)+3/8)/(1/3*gamma-3/7) 4032542511452123 a007 Real Root Of 549*x^4-189*x^3-330*x^2-907*x-339 4032542536238943 m001 (Bloch-LambertW(1))/(-FellerTornier+Khinchin) 4032542548690967 m001 (BesselK(1,1)-sin(1))/(-Bloch+ThueMorse) 4032542554392453 p003 LerchPhi(1/6,3,269/90) 4032542557032219 m001 1/exp(Robbin)^2/KhintchineLevy^2*Zeta(1/2)^2 4032542560789216 r005 Im(z^2+c),c=-7/122+35/64*I,n=33 4032542569837279 a007 Real Root Of -813*x^4+876*x^3+492*x^2+15*x-122 4032542570120542 r005 Re(z^2+c),c=-9/16+13/98*I,n=23 4032542581158922 r005 Im(z^2+c),c=11/82+17/30*I,n=61 4032542585737815 m001 1/ln(Sierpinski)^2*CopelandErdos*cosh(1) 4032542590758617 r005 Re(z^2+c),c=-9/14+56/201*I,n=27 4032542600035943 a001 233/3010349*843^(13/14) 4032542601017102 m001 Trott2nd^TreeGrowth2nd*ReciprocalLucas 4032542615021828 r008 a(0)=4,K{-n^6,-22-34*n+32*n^2-2*n^3} 4032542618934803 q001 4/99193 4032542624266037 a001 7/196418*46368^(7/31) 4032542627178018 r005 Re(z^2+c),c=-17/30+1/95*I,n=28 4032542644206507 a001 76*(1/2*5^(1/2)+1/2)^27*4^(3/22) 4032542653004286 s002 sum(A187770[n]/(10^n+1),n=1..infinity) 4032542653926813 m002 1+Pi^4+Pi^5-Cosh[Pi]/Pi^2 4032542657386995 a001 17/7331474697802*11^(3/13) 4032542658442460 m001 1/GAMMA(19/24)/exp(FeigenbaumD)^2/Pi^2 4032542667982493 a007 Real Root Of -118*x^4-712*x^3-969*x^2-97*x-120 4032542669436970 r005 Re(z^2+c),c=-59/110+14/45*I,n=60 4032542674890673 m001 Si(Pi)^2*Conway*ln(Sierpinski)^2 4032542675405207 a007 Real Root Of 273*x^4+974*x^3+951*x^2-739*x-396 4032542696166555 r008 a(0)=4,K{-n^6,11-26*n^3-4*n^2-12*n} 4032542696254235 r008 a(0)=4,K{-n^6,-31-19*n^3-46*n^2+65*n} 4032542701977284 a007 Real Root Of 438*x^4+404*x^3+652*x^2-518*x-300 4032542708847516 r005 Re(z^2+c),c=-29/54+11/36*I,n=43 4032542712728010 a007 Real Root Of 797*x^4-877*x^3+696*x^2-933*x-568 4032542729312979 a001 377/439204*322^(2/3) 4032542734966976 m001 1/Riemann1stZero*exp(Backhouse)^2*GAMMA(1/6)^2 4032542741255554 l006 ln(4981/7455) 4032542754848770 r005 Re(z^2+c),c=-11/106+54/61*I,n=12 4032542767068675 h001 (5/8*exp(1)+7/9)/(3/4*exp(2)+3/5) 4032542779396147 a007 Real Root Of 23*x^4+943*x^3+642*x^2+659*x-4 4032542794421831 a001 311187/46*18^(21/34) 4032542796010216 m001 GlaisherKinkelin*ErdosBorwein^2*exp(Paris)^2 4032542826613422 r008 a(0)=4,K{-n^6,-3-11*n^3-56*n^2+39*n} 4032542829713297 m001 1/Zeta(7)*BesselJ(0,1)*ln(sin(Pi/5)) 4032542837160330 m005 (1/3*2^(1/2)+2/11)/(7/9*3^(1/2)+3/11) 4032542841941192 r008 a(0)=4,K{-n^6,35-28*n-22*n^2-16*n^3} 4032542841987574 r008 a(0)=4,K{-n^6,23-6*n-34*n^2-14*n^3} 4032542850718189 a003 cos(Pi*19/64)-sin(Pi*50/103) 4032542853695568 r008 a(0)=4,K{-n^6,59-19*n^3-n^2-70*n} 4032542859258708 r002 61th iterates of z^2 + 4032542876612849 m001 (Shi(1)-exp(Pi))/(-GolombDickman+ZetaP(4)) 4032542876696884 m001 1/Niven^2*DuboisRaymond/ln(GAMMA(1/4))^2 4032542884578414 r005 Re(z^2+c),c=15/52+1/41*I,n=59 4032542891950146 r005 Re(z^2+c),c=-9/16+11/105*I,n=51 4032542924919429 r005 Im(z^2+c),c=-125/98+14/31*I,n=4 4032542929535119 m001 (LandauRamanujan-Trott)/(ln(5)+sin(1/12*Pi)) 4032542930714204 m001 1/exp(GAMMA(1/24))^2*Magata^2/Zeta(3) 4032542944189476 b008 Erfi[6/7]/Pi 4032542950131674 b008 3*Cos[1]^7 4032542950749553 r009 Re(z^3+c),c=-67/126+17/52*I,n=56 4032542953132603 r005 Re(z^2+c),c=-21/40+18/61*I,n=22 4032542960574127 r002 27th iterates of z^2 + 4032542961256630 r005 Re(z^2+c),c=-18/31+7/17*I,n=49 4032542972882638 r008 a(0)=4,K{-n^6,-36-33*n+49*n^2-10*n^3} 4032542986892544 r002 3th iterates of z^2 + 4032542989950498 h001 (5/8*exp(2)+5/11)/(1/5*exp(1)+5/7) 4032542996010503 a007 Real Root Of 21*x^4+862*x^3+629*x^2+678*x-996 4032543001267351 a007 Real Root Of -610*x^4+188*x^3+789*x^2+751*x+203 4032543002631548 l006 ln(5132/7681) 4032543005354269 a004 Fibonacci(13)*Lucas(14)/(1/2+sqrt(5)/2)^32 4032543021328295 a007 Real Root Of -157*x^4-69*x^3+683*x^2+495*x-302 4032543027106655 m001 (MadelungNaCl+Paris)/(Ei(1)+FeigenbaumD) 4032543029624881 m001 GolombDickman/DuboisRaymond^2/exp(CareFree)^2 4032543030289666 r009 Im(z^3+c),c=-19/66+8/19*I,n=15 4032543050793335 r005 Re(z^2+c),c=-61/110+5/26*I,n=57 4032543051164598 r008 a(0)=4,K{-n^6,61-45*n-42*n^2-5*n^3} 4032543055581945 r002 5th iterates of z^2 + 4032543067491159 m005 (1/2*Catalan-5/9)/(1/7*Catalan+1/9) 4032543070692542 r005 Im(z^2+c),c=-7/10+31/185*I,n=25 4032543070892125 r002 50th iterates of z^2 + 4032543071023541 r008 a(0)=4,K{-n^6,19+25*n^3-17*n^2-56*n} 4032543076144016 r005 Im(z^2+c),c=31/106+4/23*I,n=5 4032543076249304 m001 (cos(Pi/12)+1/2)/(-arctan(1/2)+1/2) 4032543087192728 r008 a(0)=4,K{-n^6,-28-8*n+11*n^2-7*n^3} 4032543090389759 a008 Real Root of (1+3*x+3*x^2+4*x^3-x^4-x^5) 4032543098137571 r002 49th iterates of z^2 + 4032543105429034 r009 Im(z^3+c),c=-25/48+11/32*I,n=51 4032543106377694 r005 Im(z^2+c),c=-1/30+27/50*I,n=41 4032543107464786 m001 (BesselI(1,1)+Mills)/(Trott-Weierstrass) 4032543117384316 a007 Real Root Of 176*x^4+628*x^3+380*x^2-840*x-364 4032543142118317 r002 9th iterates of z^2 + 4032543142587825 r008 a(0)=4,K{-n^6,-32-51*n+50*n^2+3*n^3} 4032543143976775 m002 -41/6+Pi^2+Tanh[Pi] 4032543147510986 a007 Real Root Of -973*x^4-712*x^3-980*x^2+614*x+386 4032543149677739 r005 Re(z^2+c),c=-13/24+2/9*I,n=14 4032543151083012 r002 13th iterates of z^2 + 4032543154249146 r005 Im(z^2+c),c=11/56+3/8*I,n=51 4032543160570374 b008 FresnelS[Sqrt[2+ArcSinh[2]]] 4032543169252517 m001 BesselJ(1,1)^(3^(1/3)/Conway) 4032543175871005 r005 Re(z^2+c),c=-25/46+7/26*I,n=51 4032543190568671 r005 Im(z^2+c),c=-73/110+3/44*I,n=35 4032543190978078 r009 Im(z^3+c),c=-1/94+15/32*I,n=13 4032543199246529 a007 Real Root Of -227*x^4-767*x^3+704*x^2+601*x+706 4032543213564584 b008 -4+(5+Sqrt[Pi])^Pi 4032543216064883 h001 (5/6*exp(1)+5/11)/(4/5*exp(2)+5/6) 4032543238059490 r008 a(0)=4,K{-n^6,28-61*n-6*n^2+7*n^3} 4032543249066112 l006 ln(5283/7907) 4032543265748434 r005 Re(z^2+c),c=-31/50+19/63*I,n=29 4032543266481460 a001 3571/13*233^(54/59) 4032543282548758 m005 (1/2*2^(1/2)+5/9)/(7/8*gamma-9/11) 4032543295594539 a007 Real Root Of 145*x^4+453*x^3-482*x^2-48*x-993 4032543309643805 r009 Im(z^3+c),c=-13/29+1/22*I,n=7 4032543313922514 m001 (MertensB2+OneNinth)/(ln(2)-HardyLittlewoodC5) 4032543315175822 b008 E*ArcTan[2+3*Pi] 4032543323932463 a005 (1/cos(4/137*Pi))^331 4032543325995968 r005 Re(z^2+c),c=19/66+26/49*I,n=3 4032543328628059 p001 sum((-1)^n/(577*n+237)/(6^n),n=0..infinity) 4032543330294673 m001 (ln(5)+Champernowne)/(Trott-ZetaQ(2)) 4032543330311464 a001 87403803/233*514229^(12/17) 4032543330364040 a001 271443/233*1836311903^(12/17) 4032543332154227 q001 114/2827 4032543343108844 r009 Re(z^3+c),c=-29/66+24/47*I,n=4 4032543346963979 r009 Im(z^3+c),c=-11/56+21/47*I,n=7 4032543351808406 a001 11/377*377^(3/55) 4032543357714729 m001 Porter^2/ln(Khintchine)/cos(1) 4032543366788344 a001 98209*47^(55/57) 4032543371690601 a003 sin(Pi*16/99)*sin(Pi*33/106) 4032543404824496 r005 Im(z^2+c),c=11/70+11/27*I,n=34 4032543406560107 a001 817138163596/5*34^(10/11) 4032543408780567 p004 log(22063/21191) 4032543423569435 r005 Im(z^2+c),c=-41/56+1/26*I,n=12 4032543423888591 r005 Im(z^2+c),c=-1/82+31/59*I,n=38 4032543432268044 r005 Im(z^2+c),c=-35/31+19/63*I,n=12 4032543439912448 a001 377/15127*123^(1/10) 4032543442109155 r002 34th iterates of z^2 + 4032543463694721 m006 (1/4*exp(Pi)+3/4)/(5/6*ln(Pi)+2/3) 4032543481804821 l006 ln(5434/8133) 4032543483853878 r008 a(0)=4,K{-n^6,12-26*n-49*n^2+28*n^3} 4032543492616039 r005 Im(z^2+c),c=-65/102+5/14*I,n=37 4032543518234841 a007 Real Root Of -750*x^4+581*x^3-432*x^2-117*x+81 4032543520283294 r002 51th iterates of z^2 + 4032543550122785 m001 GAMMA(13/24)^Magata*RenyiParking 4032543560640519 m001 (Psi(2,1/3)+GAMMA(11/12))/(-Niven+Tribonacci) 4032543561109171 m001 MinimumGamma*Khintchine/exp(GAMMA(1/12))^2 4032543584361226 r005 Re(z^2+c),c=41/114+9/59*I,n=37 4032543587230468 m001 FeigenbaumDelta-Kolakoski^ReciprocalLucas 4032543616997276 m001 ln(cos(Pi/12))/CareFree^2*gamma 4032543618678006 m005 (1/3*exp(1)+1/10)/(7/8*gamma-3) 4032543620647413 m001 Landau^sin(1/5*Pi)*gamma 4032543633666481 r008 a(0)=4,K{-n^6,-72-53*n^3+36*n^2+58*n} 4032543643583033 m001 (OrthogonalArrays-Weierstrass)/(Pi-Chi(1)) 4032543646474227 m004 -5+130*Pi-Tan[Sqrt[5]*Pi]/6 4032543662866827 r002 47th iterates of z^2 + 4032543684378668 r008 a(0)=4,K{-n^6,-30-n+51*n^2-51*n^3} 4032543685016869 r009 Im(z^3+c),c=-21/50+9/25*I,n=24 4032543694404991 r008 a(0)=4,K{-n^6,-8-53*n^3+68*n^2-38*n} 4032543697981461 m001 (RenyiParking-ZetaP(3))/(Ei(1,1)-GAMMA(13/24)) 4032543698798098 m001 FeigenbaumC/ln(Backhouse)^2/LambertW(1)^2 4032543699206034 p001 sum((-1)^n/(384*n+383)/n/(32^n),n=1..infinity) 4032543701958550 l006 ln(5585/8359) 4032543702593005 r008 a(0)=4,K{-n^6,-6-52*n^3+66*n^2-39*n} 4032543706751536 r008 a(0)=4,K{-n^6,-20-12*n+50*n^2-49*n^3} 4032543708855972 r008 a(0)=4,K{-n^6,-42-45*n^3+27*n^2+29*n} 4032543725447274 a007 Real Root Of -279*x^4-931*x^3+915*x^2+536*x+9 4032543747537188 m001 1/ArtinRank2/exp(Bloch)^2/Salem^2 4032543757132994 s002 sum(A034203[n]/(exp(pi*n)+1),n=1..infinity) 4032543770511342 r002 48th iterates of z^2 + 4032543780463547 r004 Re(z^2+c),c=3/34+10/17*I,z(0)=I,n=16 4032543795466589 a001 233/15127*322^(1/6) 4032543803290747 r005 Re(z^2+c),c=-41/74+17/44*I,n=38 4032543818851703 a001 199691526*4807526976^(5/21) 4032543818856680 a001 6643838879/3*196418^(5/21) 4032543819357746 m001 (5^(1/2)-BesselI(1,1))/(-BesselI(1,2)+Salem) 4032543819951501 m005 (23/30+1/6*5^(1/2))/(4/5*exp(1)-5) 4032543821047469 r008 a(0)=4,K{-n^6,-18+17*n+3*n^2-33*n^3} 4032543824674119 r009 Im(z^3+c),c=-43/114+23/60*I,n=19 4032543829461569 m001 5^(1/2)+Ei(1)-Paris 4032543833377068 r005 Im(z^2+c),c=31/98+12/59*I,n=16 4032543848405784 r005 Re(z^2+c),c=-53/102+21/52*I,n=53 4032543850727692 a003 sin(Pi*19/111)/cos(Pi*17/37) 4032543853322787 r008 a(0)=4,K{-n^6,-6-31*n^3+3*n^2+3*n} 4032543859534642 r002 49th iterates of z^2 + 4032543862316661 a007 Real Root Of 205*x^4+926*x^3+420*x^2-51*x-522 4032543868415486 r005 Re(z^2+c),c=-5/8+27/175*I,n=17 4032543868449824 m005 (2/5*2^(1/2)+5)/(13/24+3/8*5^(1/2)) 4032543877966649 l006 ln(7177/7206) 4032543902344683 h005 exp(cos(Pi*5/38)/sin(Pi*13/57)) 4032543910521196 l006 ln(5736/8585) 4032543910714115 a007 Real Root Of 753*x^4-566*x^3+628*x^2-999*x-562 4032543916285915 a003 cos(Pi*9/115)/cos(Pi*41/97) 4032543918933191 a008 Real Root of x^4-x^3-9*x^2+93*x-36 4032543920895802 m001 Kolakoski/Khintchine^2*ln(FeigenbaumC)^2 4032543921523357 a007 Real Root Of 208*x^4+828*x^3-155*x^2-379*x+286 4032543925770268 a007 Real Root Of 349*x^4-478*x^3-80*x^2-699*x+317 4032543943548049 m005 (1/2*Catalan+1/7)/(2/11*5^(1/2)-5/9) 4032543953512358 m001 (Catalan+gamma(2))/(Pi^(1/2)+Weierstrass) 4032543955981763 r005 Re(z^2+c),c=-59/110+18/59*I,n=27 4032543963440769 r002 2th iterates of z^2 + 4032543970921304 r005 Im(z^2+c),c=19/70+16/53*I,n=33 4032543971996898 r005 Im(z^2+c),c=-9/16+39/82*I,n=60 4032543977623123 p004 log(25981/17359) 4032543981762467 r002 14th iterates of z^2 + 4032543997526346 r005 Re(z^2+c),c=-11/10+52/197*I,n=2 4032544016588431 m001 (Zeta(3)-cos(1))/(Zeta(1,-1)+HeathBrownMoroz) 4032544025397671 r002 55th iterates of z^2 + 4032544032233841 a001 18/55*89^(2/43) 4032544045208774 m001 GAMMA(5/6)^2*exp(GAMMA(23/24))/log(1+sqrt(2)) 4032544046682954 r005 Im(z^2+c),c=23/78+13/50*I,n=15 4032544051862491 p001 sum((-1)^n/(457*n+233)/(5^n),n=0..infinity) 4032544061068980 b008 Sqrt[2]+47^(1/4) 4032544068850649 r008 a(0)=4,K{-n^6,34-27*n-22*n^2-16*n^3} 4032544076484768 r002 33th iterates of z^2 + 4032544078744948 m001 (-Backhouse+Bloch)/(exp(Pi)+BesselI(0,1)) 4032544088963458 a001 610/271443*322^(1/2) 4032544093961517 r005 Re(z^2+c),c=-63/118+20/61*I,n=51 4032544108384684 l006 ln(5887/8811) 4032544115351219 m001 (Totient-Thue)/(ErdosBorwein-PrimesInBinary) 4032544123825006 a001 1/192900153618*76^(9/19) 4032544137276308 r005 Re(z^2+c),c=-9/16+19/97*I,n=20 4032544153159378 a007 Real Root Of 137*x^4+383*x^3-710*x^2-319*x-853 4032544153984549 r005 Re(z^2+c),c=-9/38+13/16*I,n=51 4032544171688567 r005 Re(z^2+c),c=-27/50+11/36*I,n=37 4032544176444085 r008 a(0)=4,K{-n^6,18-5*n^3-63*n^2+19*n} 4032544188617907 m001 (1-TwinPrimes)^sin(1) 4032544207522678 a001 281/48*317811^(51/58) 4032544208879532 a001 23725150497407/610*144^(8/17) 4032544228612159 a001 817138163596/377*144^(10/17) 4032544237012215 r002 7th iterates of z^2 + 4032544239682309 r008 a(0)=4,K{-n^6,26-2*n^3-68*n^2+13*n} 4032544244916813 g006 Psi(1,3/5)-Psi(1,7/12)-Psi(1,7/10)-Psi(1,1/6) 4032544266262930 r002 10th iterates of z^2 + 4032544268968369 r002 38th iterates of z^2 + 4032544271425407 a001 72/161*123^(29/31) 4032544271547918 a003 sin(Pi*7/61)/sin(Pi*20/59) 4032544279795137 a007 Real Root Of -341*x^4+612*x^3-158*x^2+485*x-201 4032544295333647 r005 Re(z^2+c),c=4/27+25/52*I,n=4 4032544296351716 l006 ln(6038/9037) 4032544310002117 m001 (QuadraticClass+Robbin)/(arctan(1/3)-CareFree) 4032544311037303 a001 832040/3*2^(27/50) 4032544311204819 g002 Psi(1/5)-Psi(10/11)-Psi(7/10)-Psi(1/7) 4032544312487115 r005 Im(z^2+c),c=-39/40+8/29*I,n=4 4032544318720315 a007 Real Root Of 251*x^4+970*x^3-325*x^2-730*x-424 4032544334762661 a001 141/101521*322^(7/12) 4032544356037178 m001 ln(Bloch)^2/FeigenbaumAlpha/RenyiParking^2 4032544365837761 m001 (Champernowne+Magata)/ZetaQ(3) 4032544367693234 r005 Im(z^2+c),c=3/32+29/63*I,n=22 4032544374878643 m001 (HeathBrownMoroz+Sierpinski)/(gamma(3)-Cahen) 4032544378698224 q001 1363/3380 4032544379991726 r005 Re(z^2+c),c=-8/15+12/37*I,n=59 4032544389373247 a007 Real Root Of -512*x^4-869*x^3-302*x^2+472*x+196 4032544391977991 m001 Paris*Champernowne/ln(gamma)^2 4032544397613505 r002 17th iterates of z^2 + 4032544399042986 r002 38th iterates of z^2 + 4032544406695977 m001 (-Porter+Thue)/(BesselJ(0,1)-Catalan) 4032544422872737 r009 Re(z^3+c),c=-13/31+29/49*I,n=20 4032544432879847 a007 Real Root Of -281*x^4-984*x^3+529*x^2-242*x+202 4032544434702099 m009 (1/4*Psi(1,1/3)-1)/(5/12*Pi^2-1/3) 4032544442917937 a003 sin(Pi*3/14)*sin(Pi*15/67) 4032544450282195 r005 Im(z^2+c),c=-11/10+67/249*I,n=13 4032544465423430 r009 Re(z^3+c),c=-27/74+17/26*I,n=58 4032544467971765 r004 Im(z^2+c),c=-1/24+13/23*I,z(0)=I,n=18 4032544468202174 r005 Im(z^2+c),c=-7/66+24/41*I,n=54 4032544470471574 r005 Re(z^2+c),c=-61/110+5/26*I,n=59 4032544475146659 l006 ln(6189/9263) 4032544481984097 m001 KhinchinLevy*Otter^GAMMA(5/6) 4032544492018203 r005 Im(z^2+c),c=23/64+25/63*I,n=4 4032544500965133 r005 Re(z^2+c),c=-1/10+17/22*I,n=9 4032544503299424 m001 sqrt(5)*GAMMA(1/24)^2*ln(sqrt(Pi))^2 4032544507932778 r005 Im(z^2+c),c=39/110+14/55*I,n=62 4032544509423043 m005 (1/2*gamma-3)/(3/11*3^(1/2)+1/5) 4032544518253923 m002 4+2/Pi^4+Sinh[Pi]/Pi^6 4032544533333810 r002 11th iterates of z^2 + 4032544535546575 m001 (Kolakoski+Porter)/(Kac-KhinchinLevy) 4032544535905696 r009 Re(z^3+c),c=-15/31+9/41*I,n=39 4032544546198868 m001 FeigenbaumMu-Zeta(1,2)-Weierstrass 4032544546864966 s002 sum(A020325[n]/(64^n),n=1..infinity) 4032544549034882 r009 Im(z^3+c),c=-5/56+27/58*I,n=7 4032544559413989 m001 AlladiGrinstead^(Sierpinski/BesselK(1,1)) 4032544562756550 r002 4th iterates of z^2 + 4032544563189048 a001 55/10749957122*18^(5/7) 4032544575515224 a001 123/1597*377^(12/43) 4032544589304935 m001 (ThueMorse-TwinPrimes)/(Zeta(3)-sin(1/5*Pi)) 4032544594944799 r009 Im(z^3+c),c=-47/90+13/46*I,n=37 4032544596429650 r005 Im(z^2+c),c=4/17+19/45*I,n=17 4032544604578966 l006 ln(47/2651) 4032544604911313 m001 FeigenbaumKappa/exp(Rabbit)/sqrt(1+sqrt(3)) 4032544611796665 m001 (Salem+TravellingSalesman)/(Conway-GaussAGM) 4032544613815295 r005 Re(z^2+c),c=-53/94+4/49*I,n=56 4032544616510352 a007 Real Root Of 812*x^4-972*x^3+990*x^2+184*x-172 4032544618993052 a007 Real Root Of -881*x^4-135*x^3-999*x^2+831*x+512 4032544621499661 m001 (GAMMA(11/12)+ZetaP(4))/FransenRobinson 4032544629690061 h001 (-3*exp(5)+8)/(-5*exp(3)-8) 4032544645424869 l006 ln(6340/9489) 4032544666291600 r009 Im(z^3+c),c=-9/34+19/46*I,n=4 4032544700942391 m008 (4/5*Pi^5+3)/(1/5*Pi^5+1/4) 4032544730746404 r005 Im(z^2+c),c=-19/32+17/44*I,n=10 4032544732823604 m005 (1/2*2^(1/2)+3/11)/(7/11*exp(1)+7/10) 4032544736023034 r005 Re(z^2+c),c=-19/34+1/47*I,n=17 4032544738623304 r005 Im(z^2+c),c=7/18+8/57*I,n=10 4032544760629714 r002 42th iterates of z^2 + 4032544779969927 r009 Re(z^3+c),c=-1/46+40/41*I,n=2 4032544781854762 m004 -50/Pi-5*Pi+25*Pi*Tan[Sqrt[5]*Pi] 4032544804483667 r008 a(0)=0,K{-n^6,-58+16*n^3+57*n^2+10*n} 4032544807780718 l006 ln(6491/9715) 4032544827686773 m001 Pi-ln(2)/ln(10)/(Zeta(5)-exp(1/Pi)) 4032544834462980 m001 (ln(3)-Zeta(1/2))/(BesselJ(1,1)+DuboisRaymond) 4032544838294266 r005 Im(z^2+c),c=-7/10+33/124*I,n=27 4032544839479155 m001 Otter/(TwinPrimes-gamma(1)) 4032544846087149 a007 Real Root Of 928*x^4-995*x^3+509*x^2-259*x-277 4032544847507532 r005 Im(z^2+c),c=-39/98+2/31*I,n=13 4032544895812278 m001 (ln(3)+CopelandErdos)/(FeigenbaumD+Kac) 4032544909552393 a007 Real Root Of -46*x^4+225*x^3-627*x^2+759*x+424 4032544922387900 r005 Re(z^2+c),c=-59/110+13/38*I,n=37 4032544962754532 l006 ln(6642/9941) 4032544971068330 r002 53th iterates of z^2 + 4032544977796691 b008 11-2*E^(16/3) 4032544985603466 r002 56th iterates of z^2 + 4032544991938459 r005 Re(z^2+c),c=-9/16+13/124*I,n=64 4032544992519949 r002 32th iterates of z^2 + 4032545017414640 a007 Real Root Of 10*x^4+428*x^3+994*x^2-174*x-718 4032545036771815 m001 (3^(1/2)-Champernowne)/(Conway+Khinchin) 4032545039611094 r005 Im(z^2+c),c=3/23+3/8*I,n=6 4032545041329854 r005 Re(z^2+c),c=-13/27+15/56*I,n=8 4032545041875402 a001 1292/930249*322^(7/12) 4032545054054544 a001 199/21*610^(7/31) 4032545072556090 h001 (10/11*exp(2)+1/8)/(7/12*exp(1)+1/9) 4032545087808770 r008 a(0)=4,K{-n^6,-7-31*n^3+3*n^2+4*n} 4032545102023471 m005 (1/3*2^(1/2)-1/6)/(1/4*gamma-9/10) 4032545104927262 r005 Re(z^2+c),c=-35/62+4/63*I,n=38 4032545107493595 l002 polylog(7,41/102) 4032545109840120 a007 Real Root Of 803*x^4-365*x^3-11*x^2-805*x-368 4032545119088854 r005 Im(z^2+c),c=-69/70+17/63*I,n=44 4032545125074657 r005 Im(z^2+c),c=-41/44+17/54*I,n=3 4032545126358444 m001 GAMMA(1/3)^2/exp(Niven)^2/sin(Pi/5) 4032545130943300 q001 1586/3933 4032545139643127 r005 Im(z^2+c),c=-11/28+21/31*I,n=14 4032545141926721 r005 Im(z^2+c),c=-5/62+22/39*I,n=45 4032545143198512 m001 gamma(2)/(GAMMA(13/24)^(Pi^(1/2))) 4032545145041761 a001 6765/4870847*322^(7/12) 4032545154180985 a001 9349*1836311903^(3/17) 4032545155401740 m001 LaplaceLimit/ln(Cahen)*FeigenbaumD 4032545157038655 m001 gamma(2)+HardyLittlewoodC3+Magata 4032545159242451 r009 Im(z^3+c),c=-31/66+16/59*I,n=6 4032545160093529 a001 17711/12752043*322^(7/12) 4032545161215581 r002 45th iterates of z^2 + 4032545162289553 a001 144/103681*322^(7/12) 4032545162609948 a001 121393/87403803*322^(7/12) 4032545162656694 a001 317811/228826127*322^(7/12) 4032545162663514 a001 416020/299537289*322^(7/12) 4032545162664509 a001 311187/224056801*322^(7/12) 4032545162664654 a001 5702887/4106118243*322^(7/12) 4032545162664675 a001 7465176/5374978561*322^(7/12) 4032545162664678 a001 39088169/28143753123*322^(7/12) 4032545162664678 a001 14619165/10525900321*322^(7/12) 4032545162664679 a001 133957148/96450076809*322^(7/12) 4032545162664679 a001 701408733/505019158607*322^(7/12) 4032545162664679 a001 1836311903/1322157322203*322^(7/12) 4032545162664679 a001 14930208/10749853441*322^(7/12) 4032545162664679 a001 12586269025/9062201101803*322^(7/12) 4032545162664679 a001 32951280099/23725150497407*322^(7/12) 4032545162664679 a001 10182505537/7331474697802*322^(7/12) 4032545162664679 a001 7778742049/5600748293801*322^(7/12) 4032545162664679 a001 2971215073/2139295485799*322^(7/12) 4032545162664679 a001 567451585/408569081798*322^(7/12) 4032545162664679 a001 433494437/312119004989*322^(7/12) 4032545162664679 a001 165580141/119218851371*322^(7/12) 4032545162664679 a001 31622993/22768774562*322^(7/12) 4032545162664680 a001 24157817/17393796001*322^(7/12) 4032545162664688 a001 9227465/6643838879*322^(7/12) 4032545162664743 a001 1762289/1268860318*322^(7/12) 4032545162665124 a001 1346269/969323029*322^(7/12) 4032545162667729 a001 514229/370248451*322^(7/12) 4032545162685584 a001 98209/70711162*322^(7/12) 4032545162807964 a001 75025/54018521*322^(7/12) 4032545163646770 a001 28657/20633239*322^(7/12) 4032545164175111 r008 a(0)=4,K{-n^6,-64+15*n^3-2*n^2+21*n} 4032545169396034 a001 5473/3940598*322^(7/12) 4032545171170815 m001 Sierpinski/(Sarnak^exp(1/Pi)) 4032545176917960 r002 16th iterates of z^2 + 4032545177926132 m001 1/exp(GlaisherKinkelin)/Artin/Tribonacci 4032545185144115 b008 5*Sqrt[2*Pi]*ArcCot[3] 4032545185144115 m001 1/2*2^(1/2)*arctan(1/3)*Pi^(1/2) 4032545187721452 r002 44th iterates of z^2 + 4032545199548914 m001 (Psi(2,1/3)+cos(1/12*Pi))/(Champernowne+Trott) 4032545202889601 a001 39603*514229^(3/17) 4032545203265148 a007 Real Root Of -392*x^4+49*x^3+718*x^2+859*x-456 4032545204054116 r009 Re(z^3+c),c=-41/106+7/62*I,n=9 4032545205296182 r009 Im(z^3+c),c=-1/11+13/28*I,n=14 4032545208190377 r005 Re(z^2+c),c=-59/106+4/23*I,n=58 4032545208802077 a001 4181/3010349*322^(7/12) 4032545211101987 m001 (Cahen-Salem)/(ln(2^(1/2)+1)+BesselJ(1,1)) 4032545218723950 r005 Re(z^2+c),c=-19/34+14/89*I,n=22 4032545228407475 r005 Im(z^2+c),c=11/126+23/50*I,n=53 4032545245732859 r009 Im(z^3+c),c=-9/19+16/51*I,n=21 4032545249307167 a001 2207/610*13^(47/50) 4032545253114952 a005 (1/sin(73/197*Pi))^260 4032545270995063 m001 exp(1/exp(1))^TwinPrimes/(ZetaP(3)^TwinPrimes) 4032545273500200 r009 Im(z^3+c),c=-23/52+26/47*I,n=12 4032545275010863 a007 Real Root Of 916*x^4+246*x^3-179*x^2-690*x+267 4032545280988841 r005 Re(z^2+c),c=-3/19+57/62*I,n=3 4032545292979314 m001 (Grothendieck+HeathBrownMoroz)/(Otter+Porter) 4032545294561373 r008 a(0)=4,K{-n^6,-3-11*n^3-55*n^2+38*n} 4032545296388579 h001 (9/11*exp(1)+8/11)/(11/12*exp(2)+6/11) 4032545313600010 m005 (1/2*Zeta(3)+1/6)/(11/14+1/2*5^(1/2)) 4032545327722500 m001 (Psi(2,1/3)+Zeta(3))/(-Kac+ReciprocalLucas) 4032545329330225 m001 (Gompertz+Trott)/(Zeta(3)+GaussKuzminWirsing) 4032545334156616 r005 Im(z^2+c),c=19/60+1/4*I,n=55 4032545347306231 a003 -1/2+cos(1/12*Pi)+2*cos(8/21*Pi)-cos(5/24*Pi) 4032545363260422 r002 54th iterates of z^2 + 4032545381643223 r005 Re(z^2+c),c=-13/20+21/59*I,n=11 4032545393539981 a005 (1/sin(68/157*Pi))^684 4032545394348440 p001 sum(1/(594*n+251)/(25^n),n=0..infinity) 4032545396118978 r009 Im(z^3+c),c=-21/106+21/47*I,n=12 4032545398978876 m001 (Landau+TwinPrimes)/(Zeta(3)+Grothendieck) 4032545414921732 r009 Im(z^3+c),c=-17/106+5/11*I,n=18 4032545420606142 r005 Re(z^2+c),c=-37/86+29/52*I,n=56 4032545447548965 m001 (CopelandErdos-QuadraticClass)^exp(Pi) 4032545455399835 r005 Re(z^2+c),c=-55/106+25/61*I,n=62 4032545470251052 p003 LerchPhi(1/32,1,586/231) 4032545471867310 r005 Im(z^2+c),c=-29/82+23/38*I,n=63 4032545475344744 p004 log(32309/21587) 4032545478895110 a001 1597/1149851*322^(7/12) 4032545480469436 r009 Im(z^3+c),c=-45/122+12/31*I,n=17 4032545506743987 m001 Shi(1)*gamma(2)^exp(-1/2*Pi) 4032545519931227 h001 (5/7*exp(1)+4/5)/(7/8*exp(2)+1/3) 4032545526770299 r005 Re(z^2+c),c=-9/16+1/76*I,n=21 4032545534531667 a001 7/28657*10946^(47/59) 4032545536367727 a005 (1/cos(16/173*Pi))^409 4032545540044922 a007 Real Root Of -11*x^4-446*x^3-80*x^2+720*x+435 4032545567097074 r008 a(0)=4,K{-n^6,57-2*n^3-52*n^2-34*n} 4032545570614883 a007 Real Root Of 943*x^4-957*x^3-175*x^2-551*x-22 4032545574954767 r005 Re(z^2+c),c=-3/4+19/222*I,n=18 4032545608835378 m001 (Landau+ThueMorse)/(sin(1/5*Pi)+Grothendieck) 4032545609965695 a007 Real Root Of -501*x^4-813*x^3-407*x^2+885*x+383 4032545613776442 m005 (1/2*gamma-1/7)/(4/5*3^(1/2)-5) 4032545624467827 m001 (-ThueMorse+ZetaQ(3))/(2^(1/3)-sin(1/12*Pi)) 4032545642496531 a007 Real Root Of -48*x^4+369*x^3-795*x^2-659*x-111 4032545643723666 r005 Re(z^2+c),c=-9/16+13/124*I,n=56 4032545655728791 r009 Im(z^3+c),c=-59/122+17/47*I,n=18 4032545659865427 m005 (1/2*Catalan+3/10)/(11/12*Zeta(3)+7/9) 4032545664525011 m005 (1/2*2^(1/2)-2/7)/(4/5*Zeta(3)+1/12) 4032545671544068 r005 Re(z^2+c),c=-15/29+13/32*I,n=27 4032545679582601 r009 Im(z^3+c),c=-1/82+15/32*I,n=16 4032545683629945 a007 Real Root Of 885*x^4+829*x^3+195*x^2-261*x-106 4032545688558807 r005 Re(z^2+c),c=-10/19+22/61*I,n=63 4032545690232639 r005 Re(z^2+c),c=-41/78+13/38*I,n=32 4032545690820941 r002 23th iterates of z^2 + 4032545691689153 r002 40th iterates of z^2 + 4032545700623448 m001 Porter*Kolakoski^2/exp(exp(1))^2 4032545708654233 r005 Re(z^2+c),c=29/106+2/57*I,n=57 4032545714387917 r005 Re(z^2+c),c=-25/46+17/61*I,n=30 4032545720320342 a007 Real Root Of 160*x^4+859*x^3+878*x^2-28*x-371 4032545720837750 r009 Im(z^3+c),c=-47/86+20/63*I,n=9 4032545724864523 r005 Im(z^2+c),c=-47/98+2/29*I,n=44 4032545729392149 r009 Im(z^3+c),c=-37/78+17/53*I,n=25 4032545734054497 r005 Re(z^2+c),c=-16/27+4/47*I,n=10 4032545736764460 r005 Re(z^2+c),c=-5/106+37/58*I,n=44 4032545749388377 a007 Real Root Of -157*x^4-428*x^3+826*x^2+150*x+623 4032545769103419 m005 (-7/2+1/2*5^(1/2))/(4*2^(1/2)+1/4) 4032545773405336 a007 Real Root Of -792*x^4-19*x^3+220*x^2+373*x-164 4032545774729311 m002 Pi^3*Cosh[Pi]^2-Cosh[Pi]*Sinh[Pi] 4032545778401218 r005 Re(z^2+c),c=-17/40+18/47*I,n=6 4032545784719808 s002 sum(A112419[n]/(n^3*pi^n+1),n=1..infinity) 4032545789840255 a003 cos(Pi*17/89)*cos(Pi*27/80) 4032545823149013 r005 Im(z^2+c),c=7/23+13/49*I,n=63 4032545843264783 r005 Re(z^2+c),c=-19/34+11/74*I,n=35 4032545848877625 a001 7/8*196418^(11/35) 4032545850096735 m005 (1/2*3^(1/2)-10/11)/(6/7*3^(1/2)-5/12) 4032545856579987 m001 (BesselI(1,2)+Totient)/(BesselJ(0,1)-Chi(1)) 4032545860275230 r005 Re(z^2+c),c=-69/122+3/50*I,n=21 4032545860581247 a007 Real Root Of 506*x^4-457*x^3+774*x^2+65*x-143 4032545875159562 a007 Real Root Of 719*x^4+186*x^3+41*x^2-589*x-251 4032545887722843 m001 (1+Si(Pi))/(-Conway+Gompertz) 4032545898503284 m005 (1/3*2^(1/2)+1/8)/(7/12*Zeta(3)+7/9) 4032545913416388 m004 150/Pi+125*Pi-(25*Sinh[Sqrt[5]*Pi])/Pi 4032545920465753 r005 Re(z^2+c),c=-13/23+1/23*I,n=38 4032545923627314 r005 Re(z^2+c),c=-77/82+12/41*I,n=13 4032545946681102 r005 Re(z^2+c),c=-19/31+7/27*I,n=22 4032545947926134 m001 (BesselI(0,1)+RenyiParking)/(Pi+Si(Pi)) 4032545950002807 r002 8th iterates of z^2 + 4032545955150064 r002 6th iterates of z^2 + 4032545963083161 r002 46th iterates of z^2 + 4032545967892284 m001 1/Rabbit/FibonacciFactorial^2/exp(Zeta(1/2)) 4032545970384202 a001 377/710647*322^(3/4) 4032545971227976 m001 (Robbin+Tetranacci)/(Cahen-HeathBrownMoroz) 4032545973250506 r005 Re(z^2+c),c=-71/126+5/57*I,n=41 4032545974356022 a003 cos(Pi*1/105)*cos(Pi*32/87) 4032545977651683 a003 sin(Pi*7/57)/sin(Pi*18/47) 4032545978631243 m007 (-4/5*gamma-1/3)/(-2*gamma-6*ln(2)+Pi+1/5) 4032545981028924 s002 sum(A121002[n]/(exp(n)+1),n=1..infinity) 4032545984688344 r009 Re(z^3+c),c=-17/66+53/61*I,n=5 4032545993347713 a001 1/46347*2504730781961^(10/11) 4032545994532346 r005 Re(z^2+c),c=7/114+3/22*I,n=4 4032545995918668 a001 47/17711*12586269025^(10/11) 4032546002478326 r005 Im(z^2+c),c=3/25+24/55*I,n=37 4032546004456049 r002 28th iterates of z^2 + 4032546016681594 a007 Real Root Of -659*x^4+905*x^3-787*x^2+876*x+558 4032546019601737 m001 (Pi+GAMMA(3/4))/(GAMMA(11/12)+Trott2nd) 4032546022492571 r005 Im(z^2+c),c=-5/22+47/55*I,n=30 4032546028211979 a001 2207*6557470319842^(3/17) 4032546034631884 h001 (5/11*exp(1)+6/7)/(5/8*exp(2)+4/7) 4032546037928523 m001 exp(Robbin)*Riemann3rdZero/Zeta(3) 4032546040919863 a007 Real Root Of 287*x^4+945*x^3-688*x^2+503*x-708 4032546046345355 r005 Im(z^2+c),c=-19/52+21/34*I,n=23 4032546056662234 m001 OrthogonalArrays^polylog(4,1/2)/Otter 4032546061629445 r005 Re(z^2+c),c=-83/90+6/13*I,n=4 4032546069996328 r009 Re(z^3+c),c=-8/19+9/59*I,n=33 4032546071671374 r009 Im(z^3+c),c=-27/106+19/44*I,n=9 4032546075793275 r005 Re(z^2+c),c=-11/38+13/25*I,n=7 4032546102436704 m005 (17/12+5/12*5^(1/2))/(4*2^(1/2)+1/6) 4032546105008543 r009 Im(z^3+c),c=-31/122+19/44*I,n=12 4032546110406149 r002 22th iterates of z^2 + 4032546120515047 a007 Real Root Of 68*x^4+138*x^3-395*x^2+796*x+701 4032546126056267 r005 Re(z^2+c),c=5/18+2/63*I,n=30 4032546134694235 r005 Im(z^2+c),c=7/64+17/39*I,n=17 4032546158939519 a001 3010349*144^(1/17) 4032546164364912 r005 Im(z^2+c),c=33/122+5/18*I,n=13 4032546166456083 b008 11*Sqrt[BesselK[1,6]] 4032546171427952 m001 MertensB1^2*FeigenbaumAlpha/ln(GAMMA(7/12)) 4032546171912406 r008 a(0)=4,K{-n^6,-8-53*n^3+69*n^2-39*n} 4032546174590841 r009 Im(z^3+c),c=-5/12+17/47*I,n=18 4032546190711826 r005 Re(z^2+c),c=-69/122+1/32*I,n=37 4032546193682231 r001 7i'th iterates of 2*x^2-1 of 4032546206612513 r008 a(0)=4,K{-n^6,-42+34*n+19*n^2-42*n^3} 4032546214136542 r004 Im(z^2+c),c=1/6+2/5*I,z(0)=I,n=51 4032546220619950 r009 Im(z^3+c),c=-67/118+13/62*I,n=2 4032546224103363 r005 Re(z^2+c),c=-11/10+48/67*I,n=2 4032546243568319 r002 19th iterates of z^2 + 4032546247788464 m001 Chi(1)^Thue*PrimesInBinary^Thue 4032546248711962 m001 (Chi(1)-cos(1))/(gamma(2)+RenyiParking) 4032546251122122 r008 a(0)=4,K{-n^6,2-43*n^3+44*n^2-34*n} 4032546269760919 s002 sum(A282771[n]/(pi^n),n=1..infinity) 4032546275251851 m009 (32/5*Catalan+4/5*Pi^2+1)/(1/4*Psi(1,2/3)-2/5) 4032546278423497 m001 (ln(2)/ln(10)+Ei(1))^(Pi^(1/2)) 4032546303869143 a001 969323029/5*3^(2/3) 4032546309380051 r002 20th iterates of z^2 + 4032546313303461 r005 Re(z^2+c),c=-63/118+11/34*I,n=55 4032546316051050 a007 Real Root Of 293*x^4-759*x^3+525*x^2-955*x-528 4032546321714341 r008 a(0)=4,K{-n^6,8-27*n+23*n^2-35*n^3} 4032546324501283 r008 a(0)=4,K{-n^6,16-41*n+30*n^2-36*n^3} 4032546324949686 r005 Re(z^2+c),c=-3/40+13/19*I,n=40 4032546326112186 a003 cos(Pi*11/111)*sin(Pi*11/79) 4032546339534368 s002 sum(A106471[n]/(n^3*2^n+1),n=1..infinity) 4032546359658228 r002 9th iterates of z^2 + 4032546369247659 l006 ln(1531/1594) 4032546370616621 a003 cos(Pi*18/61)-cos(Pi*45/103) 4032546393428280 a001 5778/1597*13^(47/50) 4032546398259924 a007 Real Root Of -126*x^4-450*x^3+117*x^2-626*x-617 4032546414943409 m001 MinimumGamma/exp(CareFree)^2*GAMMA(5/6) 4032546440092241 b008 ArcCot[(1+Pi)^(11/2)] 4032546449399929 r008 a(0)=4,K{-n^6,-18+48*n-44*n^2-17*n^3} 4032546456317486 m001 MertensB3-Niven+StronglyCareFree 4032546476898482 h001 (-4*exp(6)+3)/(-exp(6)+4) 4032546485592449 r005 Re(z^2+c),c=-9/16+13/124*I,n=62 4032546501069329 r005 Im(z^2+c),c=17/60+19/55*I,n=19 4032546513958338 r005 Im(z^2+c),c=-17/18+65/232*I,n=4 4032546515684446 r005 Im(z^2+c),c=-97/126+5/47*I,n=51 4032546516291879 r009 Im(z^3+c),c=-13/25+13/38*I,n=47 4032546523808105 a007 Real Root Of -798*x^4+853*x^3+806*x^2+645*x-426 4032546542039361 r005 Im(z^2+c),c=11/27+22/63*I,n=58 4032546549383870 b008 ArcCsch[(1+Pi)^(11/2)] 4032546553313265 a007 Real Root Of -149*x^4+819*x^3-674*x^2+907*x+533 4032546554908389 r008 a(0)=4,K{-n^6,-10+52*n-64*n^2-9*n^3} 4032546558826580 r008 a(0)=4,K{-n^6,34-28*n-21*n^2-16*n^3} 4032546560353388 a001 15127/4181*13^(47/50) 4032546563862857 m002 -Pi^3+Log[Pi]+3*Pi^2*Log[Pi] 4032546575898614 a007 Real Root Of -190*x^4-826*x^3-72*x^2+695*x+51 4032546576788950 a001 33385282/233*1836311903^(10/17) 4032546576790740 a001 4106118243/233*514229^(10/17) 4032546576843676 a001 271443/233*6557470319842^(10/17) 4032546580064884 r005 Im(z^2+c),c=-13/60+37/59*I,n=59 4032546584707435 a001 39603/10946*13^(47/50) 4032546590456646 a001 64079/17711*13^(47/50) 4032546599759064 a001 24476/6765*13^(47/50) 4032546602046365 m001 (3^(1/2)+GAMMA(11/12))/(Lehmer+Paris) 4032546615220625 m005 (1/3*Pi-1/8)/(93/70+3/7*5^(1/2)) 4032546619004789 r008 a(0)=4,K{-n^6,38-12*n^3-31*n^2-26*n} 4032546628464063 r005 Re(z^2+c),c=-9/16+5/47*I,n=40 4032546632854451 r009 Im(z^3+c),c=-31/64+17/52*I,n=18 4032546633057857 a001 514229/322*3^(43/51) 4032546634552388 a007 Real Root Of -680*x^4+720*x^3+956*x^2+757*x+215 4032546639008439 a001 123/5*6557470319842^(7/8) 4032546658281335 m001 FeigenbaumKappa/Niven^2*ln(BesselK(0,1)) 4032546658675505 b008 (1+Pi)^(-11/2) 4032546662131896 a001 34/11*24476^(1/38) 4032546663518790 a001 9349/2584*13^(47/50) 4032546677771233 m001 (-3^(1/3)+PolyaRandomWalk3D)/(1+3^(1/2)) 4032546686513572 r005 Im(z^2+c),c=11/126+23/50*I,n=59 4032546686667658 a001 3*34^(14/19) 4032546692957624 m001 (gamma(3)-Pi^(1/2))/(KhinchinHarmonic-Mills) 4032546710353892 m001 (ln(2^(1/2)+1)-Zeta(1,-1))/(GAMMA(5/6)+Porter) 4032546717686353 r005 Im(z^2+c),c=11/58+14/37*I,n=23 4032546724965706 r005 Re(z^2+c),c=-73/54+15/16*I,n=2 4032546726680263 r009 Im(z^3+c),c=-23/102+27/61*I,n=8 4032546728441391 m001 (sin(1)+Zeta(1,2))/(Landau+Tribonacci) 4032546736042587 r008 a(0)=4,K{-n^6,26-2*n^3-67*n^2+12*n} 4032546739978978 m001 Chi(1)*MertensB2-arctan(1/2) 4032546755903128 m001 (Psi(1,1/3)+exp(1))/(Lehmer+Sierpinski) 4032546756867473 a007 Real Root Of -166*x^4-446*x^3+826*x^2-267*x+141 4032546760779934 r009 Im(z^3+c),c=-43/114+24/55*I,n=6 4032546767967155 b008 ArcCsc[(1+Pi)^(11/2)] 4032546796159983 r005 Re(z^2+c),c=-8/11+17/60*I,n=18 4032546801292363 m002 -4+2/Pi^6-ProductLog[Pi]/Pi^3 4032546820690495 r002 14th iterates of z^2 + 4032546837274372 r005 Re(z^2+c),c=11/58+10/17*I,n=8 4032546853690794 r005 Re(z^2+c),c=1/38+47/58*I,n=6 4032546859451769 r002 13th iterates of z^2 + 4032546873427053 m001 exp(Si(Pi))^2*GaussAGM(1,1/sqrt(2))^2*Salem^2 4032546875425242 r002 3th iterates of z^2 + 4032546877258811 b008 ArcCoth[(1+Pi)^(11/2)] 4032546891330415 m001 GAMMA(11/12)^2*RenyiParking^2*ln(sqrt(5))^2 4032546897715298 r009 Im(z^3+c),c=-41/86+13/41*I,n=25 4032546904875450 r005 Re(z^2+c),c=-1+31/143*I,n=62 4032546919114075 r005 Re(z^2+c),c=-4/7+4/117*I,n=18 4032546921140872 r008 a(0)=4,K{-n^6,-12-16*n^3+64*n^2-71*n} 4032546925033144 r002 25th iterates of z^2 + 4032546928744578 r005 Im(z^2+c),c=-65/114+5/57*I,n=16 4032546934477822 r005 Re(z^2+c),c=-17/30+5/51*I,n=23 4032546942275322 v002 sum(1/(3^n+(14*n^2-15*n+57)),n=1..infinity) 4032546943048212 r005 Im(z^2+c),c=-13/22+7/94*I,n=30 4032546954959407 r005 Re(z^2+c),c=-79/122+18/49*I,n=34 4032546972532529 r002 9th iterates of z^2 + 4032546985207544 r002 43th iterates of z^2 + 4032547004059406 m001 (Cahen-PrimesInBinary)/(Stephens-ZetaQ(3)) 4032547016613332 a007 Real Root Of -450*x^4-44*x^3-375*x^2+186*x+145 4032547017755003 r005 Im(z^2+c),c=3/50+28/61*I,n=8 4032547040272722 a007 Real Root Of 907*x^4+367*x^3+870*x^2-924*x-514 4032547058819966 a001 3/233*8^(28/51) 4032547060921609 a001 233/24476*322^(1/4) 4032547061459824 a001 89/3571*76^(1/9) 4032547076648591 m001 (-LambertW(1)+FeigenbaumAlpha)/(Shi(1)-gamma) 4032547092787935 a007 Real Root Of 689*x^4+553*x^3+215*x^2-25*x-27 4032547096143474 r002 51th iterates of z^2 + 4032547100534540 a001 3571/987*13^(47/50) 4032547101965713 r002 53th iterates of z^2 + 4032547102680447 r005 Im(z^2+c),c=-11/122+31/61*I,n=5 4032547109096592 a001 103682/21*1597^(10/11) 4032547117395820 r002 6th iterates of z^2 + 4032547124702800 r005 Im(z^2+c),c=-17/30+7/96*I,n=44 4032547134332946 m002 -Pi^4-Pi^5+Tanh[Pi]/(5*Log[Pi]) 4032547138493504 r005 Im(z^2+c),c=35/102+1/11*I,n=47 4032547141035920 b008 9*ArcCoth[67/3] 4032547141754085 m005 (1/3*gamma+2/5)/(10/11*Catalan+7/11) 4032547143018975 m001 (Backhouse-MertensB2)/(Niven-TwinPrimes) 4032547152166435 r002 22th iterates of z^2 + 4032547206570140 r005 Re(z^2+c),c=-32/31+5/47*I,n=24 4032547209808593 r002 34th iterates of z^2 + 4032547223223460 r005 Re(z^2+c),c=-49/90+8/39*I,n=19 4032547226387370 r005 Im(z^2+c),c=-1/70+38/63*I,n=38 4032547240166095 s002 sum(A104694[n]/(2^n-1),n=1..infinity) 4032547263826647 m001 (BesselI(0,2)+ZetaQ(2))/(2^(1/3)-Zeta(3)) 4032547264042101 a007 Real Root Of 695*x^4-891*x^3+934*x^2-772*x-540 4032547275959370 m001 ln(2+3^(1/2))+(Pi^(1/2))^KhinchinHarmonic 4032547294854652 m001 Pi+2^(1/3)-cos(1/5*Pi)+BesselJ(1,1) 4032547301737407 r009 Im(z^3+c),c=-3/14+20/47*I,n=4 4032547305640672 a007 Real Root Of -705*x^4+191*x^3+909*x^2+691*x+162 4032547323071427 r002 32th iterates of z^2 + 4032547330140299 a001 305/219602*322^(7/12) 4032547330177824 m005 (1/2*exp(1)-2/3)/(4/7*2^(1/2)+10/11) 4032547342432024 r005 Re(z^2+c),c=25/78+20/39*I,n=43 4032547354694909 r005 Im(z^2+c),c=-17/26+7/16*I,n=29 4032547370895132 r002 62th iterates of z^2 + 4032547376340838 r005 Im(z^2+c),c=-11/62+11/17*I,n=35 4032547378223244 l006 ln(136/7671) 4032547381116757 m001 (Champernowne+Stephens)/(Zeta(5)+ArtinRank2) 4032547382620817 r005 Im(z^2+c),c=8/29+17/57*I,n=59 4032547400923802 r005 Im(z^2+c),c=-19/14+13/251*I,n=33 4032547401938501 r005 Re(z^2+c),c=-23/44+18/49*I,n=51 4032547428641510 r002 15i'th iterates of 2*x/(1-x^2) of 4032547446054501 m001 (Bloch-Otter)/(Zeta(5)-(1+3^(1/2))^(1/2)) 4032547451819560 r004 Im(z^2+c),c=-1/10+13/22*I,z(0)=I,n=57 4032547453185527 r002 34th iterates of z^2 + 4032547455858438 r009 Im(z^3+c),c=-35/106+17/42*I,n=19 4032547456287985 m008 (2*Pi^4-1)/(5*Pi^6-3/5) 4032547462300107 r005 Im(z^2+c),c=-11/122+34/57*I,n=34 4032547466070663 r005 Re(z^2+c),c=-69/122+1/32*I,n=51 4032547468721668 a007 Real Root Of -378*x^4-156*x^3+759*x^2+369*x-252 4032547476576955 r002 48th iterates of z^2 + 4032547478912096 m001 AlladiGrinstead-Landau*RenyiParking 4032547483224753 r005 Im(z^2+c),c=7/106+7/15*I,n=13 4032547487594188 r005 Im(z^2+c),c=7/50+8/19*I,n=32 4032547490633644 a003 cos(Pi*10/91)-sin(Pi*15/83) 4032547508415992 r005 Re(z^2+c),c=29/102+17/32*I,n=3 4032547542175743 a007 Real Root Of 213*x^4+575*x^3-957*x^2+943*x+746 4032547543650426 m001 (Kac-Rabbit)/(Riemann2ndZero-ZetaP(3)) 4032547553239898 r005 Re(z^2+c),c=-5/8+10/227*I,n=12 4032547561984890 r005 Im(z^2+c),c=-9/14+15/206*I,n=33 4032547575875100 a001 987/1149851*322^(2/3) 4032547577635463 r008 a(0)=4,K{-n^6,7-26*n+23*n^2-35*n^3} 4032547580460736 r008 a(0)=4,K{-n^6,15-40*n+30*n^2-36*n^3} 4032547591989676 r008 a(0)=4,K{-n^6,-7-31*n^3+4*n^2+3*n} 4032547594910941 r009 Im(z^3+c),c=-29/62+21/64*I,n=64 4032547602981707 m001 (Shi(1)-Zeta(3))/(HardyLittlewoodC3+Otter) 4032547606216191 h001 (4/9*exp(1)+2/5)/(5/12*exp(2)+10/11) 4032547609792769 m001 1/ln(OneNinth)*DuboisRaymond^2/BesselK(0,1) 4032547611619629 b008 Pi+37*Coth[3] 4032547614387106 r002 10th iterates of z^2 + 4032547620281549 p001 sum((-1)^n/(367*n+222)/(3^n),n=0..infinity) 4032547622113086 m001 exp(Zeta(1,2))^2*GAMMA(5/12)/cos(Pi/5) 4032547628305907 a001 843*514229^(5/17) 4032547628567263 p001 sum((-1)^n/(350*n+233)/(6^n),n=0..infinity) 4032547631126514 a001 11/233*701408733^(4/9) 4032547632764595 r009 Im(z^3+c),c=-19/42+19/56*I,n=32 4032547652362006 r009 Im(z^3+c),c=-3/28+5/11*I,n=3 4032547670349348 a007 Real Root Of 179*x^4-481*x^3+55*x^2-226*x+109 4032547676234964 r008 a(0)=4,K{-n^6,-31-18*n^3-47*n^2+65*n} 4032547681683076 a007 Real Root Of -949*x^4+694*x^3-282*x^2+227*x+208 4032547681845868 a007 Real Root Of 163*x^4+721*x^3+203*x^2-452*x-947 4032547682052027 m001 exp(TwinPrimes)^2*CareFree*GAMMA(7/12) 4032547684829851 r002 43th iterates of z^2 + 4032547695960578 r002 8th iterates of z^2 + 4032547700598813 b008 E^(3/11)*Sqrt[3*Pi] 4032547711828395 r005 Re(z^2+c),c=-10/19+8/41*I,n=12 4032547719964543 a007 Real Root Of 76*x^4+108*x^3-774*x^2+263*x+632 4032547722750122 r005 Re(z^2+c),c=-9/16+13/124*I,n=60 4032547724140290 m005 (1/2*gamma-5/12)/(9/10*Catalan-4) 4032547726655774 r009 Re(z^3+c),c=-39/86+1/23*I,n=25 4032547728233099 r009 Re(z^3+c),c=-59/114+11/46*I,n=37 4032547762026690 r009 Im(z^3+c),c=-19/46+4/11*I,n=32 4032547762279808 r002 6th iterates of z^2 + 4032547767829358 r002 58th iterates of z^2 + 4032547770668907 m001 1/BesselK(0,1)*exp(Trott)^2/BesselK(1,1) 4032547772777045 a007 Real Root Of 209*x^4-218*x^3-258*x^2-758*x+31 4032547786306837 r005 Im(z^2+c),c=-21/118+19/31*I,n=34 4032547786883000 r005 Re(z^2+c),c=-51/98+7/19*I,n=9 4032547797372236 m006 (3/4*ln(Pi)-1/2)/(5/6*Pi^2+2/3) 4032547802545808 r009 Im(z^3+c),c=-41/74+15/44*I,n=5 4032547814165418 r008 a(0)=4,K{-n^6,-11+53*n-64*n^2-9*n^3} 4032547814302958 r005 Im(z^2+c),c=-9/34+31/50*I,n=38 4032547816375501 r009 Im(z^3+c),c=-49/118+18/35*I,n=9 4032547824415645 r008 a(0)=4,K{-n^6,26+19*n-51*n^2+14*n^3} 4032547840199256 m001 1/ln(GAMMA(5/12))^2*Conway/LambertW(1) 4032547847815630 r009 Im(z^3+c),c=-23/66+25/63*I,n=25 4032547847895503 r008 a(0)=4,K{-n^6,59-18*n^3-2*n^2-70*n} 4032547891230341 r005 Re(z^2+c),c=11/98+46/61*I,n=4 4032547902584443 a001 17393796001/610*2^(1/2) 4032547907352536 s002 sum(A046011[n]/(exp(2*pi*n)-1),n=1..infinity) 4032547909786442 r005 Re(z^2+c),c=-9/16+13/124*I,n=58 4032547914075151 r005 Re(z^2+c),c=-35/62+13/55*I,n=16 4032547914688831 p004 log(17851/11927) 4032547915172038 m008 (1/2*Pi^6-5/6)/(4*Pi-2/3) 4032547923228462 m005 (1/2*5^(1/2)-9/10)/(4*2^(1/2)-1/4) 4032547928896418 m005 (1/3*3^(1/2)-1/2)/(9/10*Zeta(3)-3) 4032547952966637 r002 45th iterates of z^2 + 4032547958909120 r005 Re(z^2+c),c=25/114+25/64*I,n=54 4032547966017034 h001 (7/9*exp(2)+2/11)/(1/2*exp(1)+1/9) 4032547971439197 r008 a(0)=4,K{-n^6,57-49*n-30*n^2-9*n^3} 4032547974985007 r005 Re(z^2+c),c=-15/26+43/111*I,n=23 4032547981932726 r008 a(0)=4,K{-n^6,49-33*n-40*n^2-7*n^3} 4032547987020714 r005 Im(z^2+c),c=-21/40+19/49*I,n=3 4032547987638782 r009 Im(z^3+c),c=-25/54+20/61*I,n=24 4032547992187032 a007 Real Root Of -286*x^4+34*x^3+120*x^2+959*x+377 4032547994833192 r009 Re(z^3+c),c=-9/19+13/50*I,n=10 4032547997808086 r008 a(0)=4,K{-n^6,55-7*n^3-37*n^2-42*n} 4032547998067792 r008 a(0)=4,K{-n^6,25-2*n^3-67*n^2+13*n} 4032548001845182 r005 Im(z^2+c),c=-17/94+25/41*I,n=50 4032548016486331 r008 a(0)=4,K{-n^6,-40+3*n-17*n^2+24*n^3} 4032548037607097 r005 Im(z^2+c),c=1/90+25/49*I,n=38 4032548045576785 m001 Artin*Zeta(3)^HardyLittlewoodC5 4032548051558689 m005 (1/2*5^(1/2)+9/11)/(7/8*Catalan+4) 4032548078968178 r009 Im(z^3+c),c=-59/114+19/51*I,n=38 4032548105224841 m005 (1/2*Zeta(3)-5/9)/(2/11*Zeta(3)+10/11) 4032548112180090 r005 Im(z^2+c),c=-111/98+1/20*I,n=29 4032548118732870 r002 33th iterates of z^2 + 4032548121348931 m001 Rabbit/exp(GlaisherKinkelin)^2/GAMMA(2/3) 4032548131654828 a003 cos(Pi*22/97)*cos(Pi*35/109) 4032548139013149 p003 LerchPhi(1/256,1,34/137) 4032548150483396 m005 (1/3*Zeta(3)-3/5)/(3*2^(1/2)+7/10) 4032548158777041 a003 cos(Pi*38/107)*sin(Pi*44/119) 4032548159329930 m001 (GAMMA(17/24)-Kac)/(StronglyCareFree+Thue) 4032548163964434 a007 Real Root Of 855*x^4-767*x^3-604*x^2-459*x+311 4032548168613934 r005 Re(z^2+c),c=-14/25+7/53*I,n=33 4032548186517618 m001 GAMMA(13/24)*KhinchinHarmonic/Rabbit 4032548196551773 a007 Real Root Of -176*x^4-800*x^3-342*x^2+281*x+775 4032548202290372 r009 Im(z^3+c),c=-6/25+18/43*I,n=4 4032548212286046 a007 Real Root Of 129*x^4+683*x^3+459*x^2-636*x+647 4032548232090214 r005 Re(z^2+c),c=-37/70+10/29*I,n=46 4032548239994873 r005 Re(z^2+c),c=-57/106+17/56*I,n=62 4032548251648199 h001 (1/11*exp(2)+4/7)/(9/10*exp(1)+7/11) 4032548254771976 a007 Real Root Of -287*x^4+855*x^3-198*x^2+598*x+337 4032548282978984 a001 2584/3010349*322^(2/3) 4032548287172011 r009 Im(z^3+c),c=-1/8+29/56*I,n=2 4032548287270717 r005 Im(z^2+c),c=31/110+7/24*I,n=64 4032548294104464 s002 sum(A245223[n]/(10^n-1),n=1..infinity) 4032548301544914 a001 329/13201*123^(1/10) 4032548304659511 a007 Real Root Of -148*x^4-310*x^3-939*x^2+344*x+275 4032548306041030 m001 (2*Pi/GAMMA(5/6)+FellerTornier)/Zeta(1/2) 4032548306912441 a007 Real Root Of 970*x^4-884*x^3+620*x^2-418*x-353 4032548329523474 r005 Im(z^2+c),c=-8/15+1/14*I,n=32 4032548339636244 m001 ln(Trott)*MinimumGamma/GAMMA(13/24) 4032548345726743 a001 89/29*2^(13/33) 4032548365949689 r008 a(0)=4,K{-n^6,-32+35*n-57*n^2+21*n^3} 4032548381325241 r002 26th iterates of z^2 + 4032548385033904 m005 (2/3*gamma-3/4)/(2/3*Pi-3) 4032548386144051 a001 6765/7881196*322^(2/3) 4032548386145756 a007 Real Root Of -583*x^4+75*x^3-187*x^2+801*x-32 4032548392939779 a007 Real Root Of -375*x^4+660*x^3+901*x^2+283*x-294 4032548394665204 a001 1/2189*(1/2*5^(1/2)+1/2)^29*11^(17/20) 4032548396127899 m001 GAMMA(2/3)/GAMMA(1/3)^2/exp(cosh(1)) 4032548398768853 a007 Real Root Of -404*x^4+255*x^3+192*x^2+473*x-228 4032548401195631 a001 17711/20633239*322^(2/3) 4032548403391627 a001 46368/54018521*322^(2/3) 4032548403712018 a001 233/271444*322^(2/3) 4032548403758763 a001 317811/370248451*322^(2/3) 4032548403765583 a001 832040/969323029*322^(2/3) 4032548403766578 a001 2178309/2537720636*322^(2/3) 4032548403766723 a001 5702887/6643838879*322^(2/3) 4032548403766744 a001 14930352/17393796001*322^(2/3) 4032548403766747 a001 39088169/45537549124*322^(2/3) 4032548403766748 a001 102334155/119218851371*322^(2/3) 4032548403766748 a001 267914296/312119004989*322^(2/3) 4032548403766748 a001 701408733/817138163596*322^(2/3) 4032548403766748 a001 1836311903/2139295485799*322^(2/3) 4032548403766748 a001 4807526976/5600748293801*322^(2/3) 4032548403766748 a001 12586269025/14662949395604*322^(2/3) 4032548403766748 a001 20365011074/23725150497407*322^(2/3) 4032548403766748 a001 7778742049/9062201101803*322^(2/3) 4032548403766748 a001 2971215073/3461452808002*322^(2/3) 4032548403766748 a001 1134903170/1322157322203*322^(2/3) 4032548403766748 a001 433494437/505019158607*322^(2/3) 4032548403766748 a001 165580141/192900153618*322^(2/3) 4032548403766748 a001 63245986/73681302247*322^(2/3) 4032548403766749 a001 24157817/28143753123*322^(2/3) 4032548403766757 a001 9227465/10749957122*322^(2/3) 4032548403766813 a001 3524578/4106118243*322^(2/3) 4032548403767193 a001 1346269/1568397607*322^(2/3) 4032548403769798 a001 514229/599074578*322^(2/3) 4032548403787653 a001 196418/228826127*322^(2/3) 4032548403910031 a001 75025/87403803*322^(2/3) 4032548404748827 a001 28657/33385282*322^(2/3) 4032548407113466 b008 4+ProductLog[EulerGamma]/12 4032548410072288 r009 Re(z^3+c),c=-37/78+11/49*I,n=3 4032548410498019 a001 10946/12752043*322^(2/3) 4032548421702065 a001 3/2207*7^(19/34) 4032548446796030 a001 1149851*1836311903^(1/17) 4032548446800424 a001 1860498*514229^(1/17) 4032548446807065 a001 710647*6557470319842^(1/17) 4032548449903568 a001 4181/4870847*322^(2/3) 4032548457178287 r005 Im(z^2+c),c=5/36+27/64*I,n=32 4032548466454927 r009 Im(z^3+c),c=-3/10+5/12*I,n=21 4032548479638185 m001 (Mills-Niven)/(DuboisRaymond+Kolakoski) 4032548496185823 m003 12+Sqrt[5]/4+(5*Tan[1/2+Sqrt[5]/2])/2 4032548511231519 s002 sum(A066309[n]/(pi^n+1),n=1..infinity) 4032548522166268 h001 (9/10*exp(2)+2/7)/(4/7*exp(1)+1/6) 4032548523348617 r009 Im(z^3+c),c=-43/98+25/47*I,n=23 4032548537010792 a005 (1/cos(9/133*Pi))^668 4032548538425736 s002 sum(A139968[n]/(n*exp(n)-1),n=1..infinity) 4032548541745041 a007 Real Root Of 850*x^4-888*x^3+947*x^2-767*x-544 4032548551266460 a007 Real Root Of -266*x^4-851*x^3+726*x^2-904*x-916 4032548553055416 h001 (-8*exp(-3)-2)/(-7*exp(-2)-5) 4032548554314005 r005 Im(z^2+c),c=5/56+26/57*I,n=23 4032548566019270 a003 cos(Pi*19/101)*cos(Pi*47/97) 4032548579176156 a007 Real Root Of 667*x^4-564*x^3+472*x^2-376*x-283 4032548584780002 r002 58th iterates of z^2 + 4032548596580427 r002 10th iterates of z^2 + 4032548597270243 r005 Re(z^2+c),c=27/74+13/41*I,n=41 4032548605174516 r009 Im(z^3+c),c=-19/58+15/37*I,n=14 4032548614789575 a005 (1/cos(3/49*Pi))^1312 4032548628853963 r005 Im(z^2+c),c=-135/106+2/43*I,n=15 4032548628895343 a007 Real Root Of -367*x^4+837*x^3+474*x^2+703*x+271 4032548630207576 m001 (2*Pi/GAMMA(5/6)+Landau)/(3^(1/3)-gamma(1)) 4032548645347932 r008 a(0)=4,K{-n^6,-6+22*n^3+6*n^2-52*n} 4032548650979473 r002 18th iterates of z^2 + 4032548652733209 r004 Im(z^2+c),c=-1/24+13/24*I,z(0)=I,n=33 4032548676244285 r002 14th iterates of z^2 + 4032548686481249 r001 59i'th iterates of 2*x^2-1 of 4032548688512928 r005 Re(z^2+c),c=-23/42+10/41*I,n=52 4032548688579252 r008 a(0)=4,K{-n^6,-30-n+50*n^2-50*n^3} 4032548694978267 r005 Re(z^2+c),c=-2/3+5/194*I,n=14 4032548697571696 r005 Re(z^2+c),c=5/36+29/50*I,n=10 4032548700326348 r002 37th iterates of z^2 + 4032548712854399 m001 (ln(3)+Backhouse)/(HardyLittlewoodC3-ZetaQ(4)) 4032548713193028 m005 (1/2*Zeta(3)+5/6)/(1/4*gamma-1/2) 4032548716083711 r002 51th iterates of z^2 + 4032548719993218 a001 1597/1860498*322^(2/3) 4032548729879823 r005 Re(z^2+c),c=-35/114+19/34*I,n=18 4032548730187690 a007 Real Root Of -226*x^4-959*x^3-100*x^2+280*x-369 4032548740400683 a007 Real Root Of 253*x^4+893*x^3-481*x^2+113*x-66 4032548740555758 m001 (Cahen+Kac)/(exp(1/Pi)+Pi^(1/2)) 4032548740801768 r005 Im(z^2+c),c=7/60+18/41*I,n=34 4032548749295246 m001 (2^(1/3)-BesselI(0,1))/(Zeta(3)+arctan(1/3)) 4032548769657020 m001 HardHexagonsEntropy/(exp(1/exp(1))-ln(3)) 4032548770966303 a007 Real Root Of -963*x^4+121*x^3-935*x^2+458*x+20 4032548787169162 m005 (1/3*Zeta(3)-2/11)/(5/8*Catalan-6) 4032548791161597 a007 Real Root Of 239*x^4+944*x^3-290*x^2-977*x-521 4032548791639362 m005 (1/3*exp(1)-1/11)/(223/180+7/20*5^(1/2)) 4032548809289517 h001 (9/10*exp(2)+2/5)/(3/7*exp(1)+7/12) 4032548834541717 m001 (RenyiParking+Trott)/(gamma+Conway) 4032548836054866 r008 a(0)=4,K{-n^6,-18+17*n+2*n^2-32*n^3} 4032548840786671 m001 Pi-1+3^(1/2)/Catalan 4032548842674453 a007 Real Root Of 630*x^4+298*x^3-563*x^2-502*x-108 4032548842953635 l006 ln(89/5020) 4032548858070219 p001 sum(1/(56*n+37)/n/(3^n),n=0..infinity) 4032548881269347 r005 Re(z^2+c),c=-29/52+8/49*I,n=51 4032548882789291 r002 27th iterates of z^2 + 4032548888093328 m001 CopelandErdos*Niven+HeathBrownMoroz 4032548929447063 m003 -Cos[1/2+Sqrt[5]/2]/2+4*Csc[1/2+Sqrt[5]/2]^2 4032548933865044 r005 Im(z^2+c),c=5/82+11/23*I,n=53 4032548936951522 m001 (DuboisRaymond+Lehmer)/(gamma+exp(1/Pi)) 4032548948012565 a007 Real Root Of 421*x^4+377*x^3+717*x^2-920*x-474 4032548953516576 m004 -5/Pi+125*Pi+(25*ProductLog[Sqrt[5]*Pi])/Pi 4032548957024395 m005 (1/2*Pi+3/10)/(5/8*gamma-5) 4032548959523494 r008 a(0)=4,K{-n^6,-19+12*n-57*n^2+27*n^3} 4032548966643188 m001 (1+DuboisRaymond)/(MertensB2+Tetranacci) 4032548972215230 r008 a(0)=4,K{-n^6,14-13*n-9*n^2-23*n^3} 4032548978109129 m001 1/FeigenbaumDelta*ln(Conway)^2*GAMMA(1/3) 4032548996193403 a007 Real Root Of -143*x^4-519*x^3-387*x^2+382*x+16 4032549004776846 a001 843/233*6557470319842^(12/17) 4032549010847535 a001 1292/51841*123^(1/10) 4032549014044784 a001 322/5*28657^(32/51) 4032549027119244 m001 (BesselJ(0,1)+gamma(1))/(GAMMA(19/24)+Landau) 4032549027505679 r009 Re(z^3+c),c=-1/17+25/63*I,n=4 4032549028085807 g006 Psi(1,5/7)-Psi(1,5/8)-Psi(1,2/7)-Psi(1,1/5) 4032549044470480 m001 (sin(1/5*Pi)-Otter)/(ThueMorse+ZetaP(3)) 4032549054655322 r005 Re(z^2+c),c=-7/23+25/46*I,n=4 4032549055264517 m001 Stephens/(FeigenbaumKappa-gamma(1)) 4032549059539668 r008 a(0)=4,K{-n^6,18-16*n^3-28*n^2-5*n} 4032549073801486 r005 Im(z^2+c),c=11/50+17/48*I,n=36 4032549081554027 r005 Im(z^2+c),c=-1/66+27/49*I,n=22 4032549087252535 h001 (7/10*exp(2)+2/5)/(2/9*exp(1)+7/9) 4032549094522349 r005 Re(z^2+c),c=-65/118+14/55*I,n=29 4032549099171874 r005 Im(z^2+c),c=4/19+17/47*I,n=28 4032549099770763 m005 (1/3*Zeta(3)-3/5)/(9/11*Catalan-7/10) 4032549102618217 r009 Re(z^3+c),c=-2/27+13/20*I,n=18 4032549114333393 a001 2255/90481*123^(1/10) 4032549114380704 m005 (1/2*3^(1/2)+2/7)/(9/11*Pi+2/7) 4032549117574509 a001 17/12238*11^(4/9) 4032549119063413 m001 (2^(1/3)-cos(1))/(Zeta(5)+RenyiParking) 4032549120931836 m001 GolombDickman*(ReciprocalLucas-ln(2+3^(1/2))) 4032549126325358 m001 BesselJ(0,1)^2*(2^(1/3))^2*ln(GAMMA(11/24))^2 4032549129431776 a001 17711/710647*123^(1/10) 4032549131634600 a001 2576/103361*123^(1/10) 4032549131955988 a001 121393/4870847*123^(1/10) 4032549132002878 a001 105937/4250681*123^(1/10) 4032549132009719 a001 416020/16692641*123^(1/10) 4032549132010717 a001 726103/29134601*123^(1/10) 4032549132010863 a001 5702887/228826127*123^(1/10) 4032549132010884 a001 829464/33281921*123^(1/10) 4032549132010887 a001 39088169/1568397607*123^(1/10) 4032549132010888 a001 34111385/1368706081*123^(1/10) 4032549132010888 a001 133957148/5374978561*123^(1/10) 4032549132010888 a001 233802911/9381251041*123^(1/10) 4032549132010888 a001 1836311903/73681302247*123^(1/10) 4032549132010888 a001 267084832/10716675201*123^(1/10) 4032549132010888 a001 12586269025/505019158607*123^(1/10) 4032549132010888 a001 10983760033/440719107401*123^(1/10) 4032549132010888 a001 43133785636/1730726404001*123^(1/10) 4032549132010888 a001 75283811239/3020733700601*123^(1/10) 4032549132010888 a001 182717648081/7331474697802*123^(1/10) 4032549132010888 a001 139583862445/5600748293801*123^(1/10) 4032549132010888 a001 53316291173/2139295485799*123^(1/10) 4032549132010888 a001 10182505537/408569081798*123^(1/10) 4032549132010888 a001 7778742049/312119004989*123^(1/10) 4032549132010888 a001 2971215073/119218851371*123^(1/10) 4032549132010888 a001 567451585/22768774562*123^(1/10) 4032549132010888 a001 433494437/17393796001*123^(1/10) 4032549132010888 a001 165580141/6643838879*123^(1/10) 4032549132010888 a001 31622993/1268860318*123^(1/10) 4032549132010889 a001 24157817/969323029*123^(1/10) 4032549132010897 a001 9227465/370248451*123^(1/10) 4032549132010953 a001 1762289/70711162*123^(1/10) 4032549132011334 a001 1346269/54018521*123^(1/10) 4032549132013947 a001 514229/20633239*123^(1/10) 4032549132031857 a001 98209/3940598*123^(1/10) 4032549132154617 a001 75025/3010349*123^(1/10) 4032549132309938 r008 a(0)=4,K{-n^6,22-11*n^3-41*n^2-n} 4032549132996021 a001 28657/1149851*123^(1/10) 4032549138763090 a001 5473/219602*123^(1/10) 4032549153047551 m006 (1/6*Pi-1/5)/(5/6*Pi^2-1/5) 4032549153047551 m008 (1/6*Pi-1/5)/(5/6*Pi^2-1/5) 4032549159542504 m002 Pi^4+Pi^5-Sinh[Pi]/Pi^2+Tanh[Pi] 4032549161299890 m001 (Pi-3^(1/2))/(LandauRamanujan-PrimesInBinary) 4032549178291170 a001 4181/167761*123^(1/10) 4032549179613975 r005 Re(z^2+c),c=-9/16+13/124*I,n=53 4032549183134194 m002 -Pi^4+Log[Pi]+4*Pi^6*ProductLog[Pi] 4032549196108399 r002 10th iterates of z^2 + 4032549206667282 b008 E^Sqrt[6]/13+Pi 4032549208825515 a005 (1/sin(74/163*Pi))^133 4032549209643136 r005 Im(z^2+c),c=11/64+17/43*I,n=31 4032549211497956 a001 377/1149851*322^(5/6) 4032549214647163 m001 exp(1)^2/ln(CareFree)^2*sin(Pi/12)^2 4032549214664335 m001 1/5*5^(1/2)*BesselK(0,1)/FeigenbaumDelta 4032549214664335 m001 BesselK(0,1)/sqrt(5)/FeigenbaumDelta 4032549223692744 r008 a(0)=4,K{-n^6,18-4*n^3-64*n^2+19*n} 4032549226699578 r005 Re(z^2+c),c=-29/54+15/49*I,n=61 4032549228431321 r005 Re(z^2+c),c=-1/4+41/54*I,n=42 4032549229887744 a007 Real Root Of 143*x^4+779*x^3+940*x^2+459*x-166 4032549229989509 m001 MasserGramainDelta+Otter*RenyiParking 4032549236110604 r005 Im(z^2+c),c=-21/29+5/53*I,n=51 4032549247901745 m005 (1/2*Zeta(3)+4/11)/(4*gamma+1/12) 4032549266022215 m001 (ln(Pi)-Kac)/(GAMMA(2/3)-GAMMA(3/4)) 4032549269811717 r009 Im(z^3+c),c=-8/13+11/49*I,n=16 4032549270947758 r008 a(0)=4,K{-n^6,54-7*n^3-37*n^2-41*n} 4032549280704164 m001 (PlouffeB-RenyiParking)^ArtinRank2 4032549281029072 r005 Im(z^2+c),c=-39/62+7/19*I,n=35 4032549300426608 h001 (2/9*exp(1)+1/6)/(6/11*exp(1)+3/7) 4032549304576238 r005 Im(z^2+c),c=-10/27+35/62*I,n=43 4032549306168971 r005 Re(z^2+c),c=-11/16+1/53*I,n=16 4032549310544340 r009 Im(z^3+c),c=-3/10+5/12*I,n=26 4032549322310408 r009 Im(z^3+c),c=-5/24+4/9*I,n=11 4032549341847895 r005 Im(z^2+c),c=9/118+29/62*I,n=57 4032549349646108 m005 (3/4*gamma+2)/(2*Pi-1/4) 4032549366698529 a001 29/5*987^(9/32) 4032549375587526 a005 (1/sin(64/215*Pi))^70 4032549380144203 a007 Real Root Of 238*x^4+181*x^3+967*x^2-715*x-440 4032549392082700 m005 (1/3*3^(1/2)-2/3)/(6/7*Catalan-3) 4032549395701231 a007 Real Root Of 60*x^4-573*x^3+279*x^2-916*x+360 4032549429802992 r005 Re(z^2+c),c=-11/18+31/122*I,n=22 4032549439399228 a003 cos(Pi*14/99)*sin(Pi*14/95) 4032549449220663 a001 1597/64079*123^(1/10) 4032549460030368 a001 11/987*832040^(5/53) 4032549487300844 m002 -Pi^4-Pi^5+2*Coth[Pi]*Csch[Pi] 4032549487755390 a003 sin(Pi*11/83)*sin(Pi*49/103) 4032549501759652 m005 (1/3*exp(1)+1/6)/(5*3^(1/2)-6) 4032549506696498 a001 199/46368*514229^(19/55) 4032549522893289 r002 20th iterates of z^2 + 4032549525824610 a001 1364/39088169*6557470319842^(16/17) 4032549526203767 a001 51841/305*514229^(16/17) 4032549528395737 a001 1364/17711*1836311903^(16/17) 4032549560302847 r002 37th iterates of z^2 + 4032549567194090 r002 29th iterates of z^2 + 4032549585854119 r005 Im(z^2+c),c=-14/25+23/51*I,n=58 4032549590344727 a007 Real Root Of -928*x^4-701*x^3-755*x^2+324*x+232 4032549604072278 r002 19th iterates of z^2 + 4032549604893717 m004 -4-(50*Sqrt[5])/Pi-Cos[Sqrt[5]*Pi] 4032549606492312 r005 Re(z^2+c),c=-16/29+8/49*I,n=18 4032549612470723 h001 (3/11*exp(1)+9/11)/(4/9*exp(2)+7/12) 4032549626797316 m001 (2^(1/2)-MinimumGamma)/(Sarnak+ZetaP(2)) 4032549630044137 r002 17th iterates of z^2 + 4032549635142039 s002 sum(A182163[n]/(n^3*2^n+1),n=1..infinity) 4032549642301192 r005 Re(z^2+c),c=3/52+52/61*I,n=3 4032549654406020 m001 1/Zeta(1/2)^2*exp(FeigenbaumD)*sin(Pi/5) 4032549668860102 m001 (ln(5)-ln(2+3^(1/2)))/(Sarnak+ZetaQ(4)) 4032549681603545 r005 Re(z^2+c),c=-109/122+1/6*I,n=10 4032549684000694 r005 Re(z^2+c),c=-55/106+22/57*I,n=53 4032549686743105 a007 Real Root Of 467*x^4-176*x^3+841*x^2-968*x-551 4032549703157652 m001 (MinimumGamma-Salem)/(gamma(1)+gamma(3)) 4032549707048511 r002 9th iterates of z^2 + 4032549708070234 s002 sum(A182163[n]/(n^3*2^n-1),n=1..infinity) 4032549717189547 m001 Psi(1,1/3)/(ln(2+3^(1/2))+KhinchinLevy) 4032549724728520 h001 (2/11*exp(1)+1/6)/(1/7*exp(2)+7/12) 4032549728752260 q001 223/553 4032549741395799 r005 Re(z^2+c),c=-41/118+17/30*I,n=26 4032549746010256 r002 37th iterates of z^2 + 4032549752844799 a007 Real Root Of 287*x^4-907*x^3-857*x^2-705*x-212 4032549753812890 a001 45537549124/1597*2^(1/2) 4032549759787848 m001 1/GAMMA(11/24)^2*ln(FeigenbaumB)^2/sqrt(5) 4032549760484344 r005 Im(z^2+c),c=5/27+5/13*I,n=52 4032549764878836 a007 Real Root Of 126*x^4+580*x^3+195*x^2-147*x+951 4032549771280846 r005 Im(z^2+c),c=-65/122+1/14*I,n=48 4032549774255003 r005 Re(z^2+c),c=-45/64+7/43*I,n=13 4032549786365876 r005 Re(z^2+c),c=-59/106+4/23*I,n=63 4032549788892591 r005 Re(z^2+c),c=-35/38+7/39*I,n=22 4032549792695753 a001 196418/3*123^(17/45) 4032549800395056 a007 Real Root Of 606*x^4+560*x^3+275*x^2-915*x-393 4032549811436925 r005 Im(z^2+c),c=-9/74+37/61*I,n=63 4032549815413665 r002 23th iterates of z^2 + 4032549820649710 m001 ln(abs(-Psi(2,1/3)+GlaisherKinkelin)) 4032549823271196 a001 4106118243/233*1836311903^(8/17) 4032549823271196 a001 87403803/233*6557470319842^(8/17) 4032549823272631 a001 192900153618/233*514229^(8/17) 4032549827384854 r005 Im(z^2+c),c=9/52+15/38*I,n=49 4032549833565553 b008 -1+Zeta[EulerGamma,-1/2] 4032549834865997 r008 a(0)=4,K{-n^6,-47*n-12*n^2+29*n^3} 4032549843467913 m001 (Pi/Psi(2,1/3)+Ei(1))*Ei(1,1) 4032549844753222 a001 5/24476*2^(52/53) 4032549851714451 r005 Re(z^2+c),c=-13/23+2/43*I,n=49 4032549868647757 r008 a(0)=4,K{-n^6,-63-61*n^3+67*n^2+26*n} 4032549880067575 r005 Re(z^2+c),c=11/58+5/14*I,n=30 4032549880643515 m005 (1/2*Pi+3/5)/(2*Pi-9/10) 4032549882851858 r002 39th iterates of z^2 + 4032549887404296 r005 Re(z^2+c),c=-85/126+15/19*I,n=3 4032549911265475 m001 (TwinPrimes-Zeta(5)*FeigenbaumDelta)/Zeta(5) 4032549911265475 m001 (Zeta(5)*FeigenbaumDelta-TwinPrimes)/Zeta(5) 4032549919447642 r002 27th iterates of z^2 + 4032549919945063 m001 (Bloch+ZetaQ(2))/(ArtinRank2-LambertW(1)) 4032549922382362 m008 (3/5*Pi^6-1/2)/(1/2*Pi-3) 4032549922876849 r002 49th iterates of z^2 + 4032549925925925 r005 Im(z^2+c),c=9/50+13/15*I,n=3 4032549934808048 r002 39th iterates of z^2 + 4032549962504715 a007 Real Root Of 81*x^4+265*x^3-219*x^2+171*x+209 4032549971983984 m001 GAMMA(3/4)^2*MinimumGamma^2/exp(Zeta(5))^2 4032549981168904 r009 Re(z^3+c),c=-47/102+21/40*I,n=13 4032549982642170 m001 (3^(1/2)-Catalan)/(-Khinchin+Robbin) 4032549983666282 r002 16th iterates of z^2 + 4032550005015810 r005 Re(z^2+c),c=-63/118+12/37*I,n=60 4032550010242040 a003 cos(Pi*4/75)-sin(Pi*20/101) 4032550013513907 r005 Re(z^2+c),c=-29/50+2/17*I,n=13 4032550019765975 s001 sum(exp(-3*Pi/4)^n*A217785[n],n=1..infinity) 4032550023903622 a001 119218851371/4181*2^(1/2) 4032550029136024 r008 a(0)=4,K{-n^6,-35+26*n+18*n^2-40*n^3} 4032550029802666 r005 Im(z^2+c),c=-5/6+39/194*I,n=22 4032550042814355 r005 Re(z^2+c),c=-41/70+5/42*I,n=8 4032550042887955 a001 76/89*17711^(32/37) 4032550056449436 m005 (1/3*Catalan+2/3)/(9/10*Catalan-7/12) 4032550058223920 r002 64th iterates of z^2 + 4032550062035616 r008 a(0)=4,K{-n^6,-15-39*n^3+25*n^2-2*n} 4032550062500000 r005 Re(z^2+c),c=4/25+11/40*I,n=3 4032550063309332 a001 312119004989/10946*2^(1/2) 4032550067749310 a007 Real Root Of 4*x^4+167*x^3+241*x^2+449*x-148 4032550069058547 a001 817138163596/28657*2^(1/2) 4032550069897347 a001 2139295485799/75025*2^(1/2) 4032550070019726 a001 5600748293801/196418*2^(1/2) 4032550070037581 a001 14662949395604/514229*2^(1/2) 4032550070040606 a001 5702887/2*2^(1/2) 4032550070041796 a001 23725150497407/832040*2^(1/2) 4032550070048616 a001 3020733700601/105937*2^(1/2) 4032550070095360 a001 3461452808002/121393*2^(1/2) 4032550070415753 a001 440719107401/15456*2^(1/2) 4032550072611758 a001 505019158607/17711*2^(1/2) 4032550083303097 r008 a(0)=4,K{-n^6,7-40*n^3+39*n^2-37*n} 4032550087659827 r005 Re(z^2+c),c=-4/7+43/98*I,n=40 4032550087663400 a001 64300051206/2255*2^(1/2) 4032550095889177 a001 1364/377*13^(47/50) 4032550102675024 a001 13/29*3571^(11/20) 4032550109485234 m005 (1/2*gamma+3/10)/(1/3*5^(1/2)+5/7) 4032550111178248 r008 a(0)=4,K{-n^6,-33+43*n-11*n^2-30*n^3} 4032550125554491 r008 a(0)=4,K{-n^6,7-27*n+24*n^2-35*n^3} 4032550127425612 r005 Re(z^2+c),c=-51/82+7/43*I,n=17 4032550128473100 r008 a(0)=4,K{-n^6,15-41*n+31*n^2-36*n^3} 4032550130714140 a007 Real Root Of -557*x^4+895*x^3+4*x^2+611*x-291 4032550132217829 r005 Re(z^2+c),c=-5/8+49/178*I,n=13 4032550136673992 r005 Re(z^2+c),c=-51/118+7/13*I,n=29 4032550137406599 r008 a(0)=4,K{-n^6,-15-30*n^3-2*n^2+16*n} 4032550138631199 p001 sum((-1)^n/(494*n+485)/n/(25^n),n=1..infinity) 4032550145127293 s002 sum(A108604[n]/(64^n),n=1..infinity) 4032550153735107 r005 Im(z^2+c),c=-3/4+53/169*I,n=3 4032550156718529 r002 53th iterates of z^2 + 4032550164151445 a007 Real Root Of 361*x^4-111*x^3+394*x^2-278*x-193 4032550172119073 r002 20th iterates of z^2 + 4032550172982280 m001 1/ln(GAMMA(5/24))^2/GAMMA(17/24)^2*Zeta(1/2) 4032550180409587 a007 Real Root Of 380*x^4-299*x^3+425*x^2-256*x-202 4032550186497845 r005 Re(z^2+c),c=-9/16+11/126*I,n=28 4032550186729607 r005 Re(z^2+c),c=-4/7+14/39*I,n=37 4032550190828893 a001 73681302247/2584*2^(1/2) 4032550220107472 a007 Real Root Of -415*x^4+559*x^3+923*x^2+499*x-377 4032550227194872 m001 ln(BesselK(0,1))^2*TreeGrowth2nd^2/Ei(1)^2 4032550230933878 m001 1/Robbin*ln(Champernowne)^2/GAMMA(13/24) 4032550232958802 a001 34/521*15127^(39/43) 4032550233338336 r005 Im(z^2+c),c=-1/42+27/50*I,n=25 4032550242612694 a001 89/103682*199^(8/11) 4032550245097447 m004 (255*Pi)/2+4*Sin[Sqrt[5]*Pi] 4032550246328260 r002 47th iterates of z^2 + 4032550252100562 r008 a(0)=4,K{-n^6,13-12*n-9*n^2-23*n^3} 4032550273812727 s001 sum(exp(-Pi/2)^(n-1)*A086853[n],n=1..infinity) 4032550275117449 r009 Im(z^3+c),c=-37/106+23/58*I,n=26 4032550277693036 a001 13/29*39603^(17/40) 4032550283080802 r002 51th iterates of z^2 + 4032550287722875 r005 Im(z^2+c),c=1/20+17/35*I,n=48 4032550291275237 r002 32th iterates of z^2 + 4032550292722777 a001 233/39603*322^(1/3) 4032550300202966 a007 Real Root Of 75*x^4+441*x^3+723*x^2+861*x+801 4032550315989915 r009 Re(z^3+c),c=-2/15+47/64*I,n=60 4032550316458363 r002 18th iterates of z^2 + 4032550320468920 a007 Real Root Of 397*x^4-737*x^3-64*x^2-641*x+26 4032550321228153 a001 281*21^(7/59) 4032550335278364 r005 Im(z^2+c),c=-31/118+17/29*I,n=20 4032550337642843 m002 4*Pi^4+ProductLog[Pi]+Sinh[Pi]+Tanh[Pi] 4032550338536827 p003 LerchPhi(1/5,3,68/233) 4032550338557655 r002 54i'th iterates of 2*x/(1-x^2) of 4032550340603637 m001 1/log(2+sqrt(3))/exp(CopelandErdos)^2/sinh(1) 4032550340964137 h001 (1/5*exp(1)+1/11)/(6/11*exp(1)+1/11) 4032550349745499 a007 Real Root Of 141*x^4+317*x^3-991*x^2+59*x-145 4032550361325759 r005 Re(z^2+c),c=-35/64+1/4*I,n=43 4032550363587496 l006 ln(131/7389) 4032550367273669 r005 Im(z^2+c),c=7/114+15/34*I,n=9 4032550367999166 a008 Real Root of x^3-x^2-1961*x-11877 4032550368980413 m001 MertensB1^GAMMA(11/12)/BesselK(1,1) 4032550370308317 r008 a(0)=4,K{-n^6,-11+52*n-63*n^2-9*n^3} 4032550371655007 r005 Im(z^2+c),c=2/23+29/63*I,n=43 4032550373417149 a007 Real Root Of 219*x^4+751*x^3-521*x^2+219*x+691 4032550374589086 r008 a(0)=4,K{-n^6,-3-10*n^3-56*n^2+38*n} 4032550375714698 r005 Im(z^2+c),c=-29/30+33/98*I,n=5 4032550385679058 g004 Re(GAMMA(11/12+I*67/15)) 4032550388634178 a001 1/123*(1/2*5^(1/2)+1/2)^27*7^(1/16) 4032550397951386 r008 a(0)=4,K{-n^6,-12+14*n-48*n^2+14*n^3} 4032550400535174 a007 Real Root Of 665*x^4-637*x^3-311*x^2-904*x+37 4032550405271258 r008 a(0)=4,K{-n^6,59-18*n^3-n^2-71*n} 4032550414864925 m001 1/GAMMA(19/24)/ln(FeigenbaumC)^2/gamma 4032550421173525 r005 Re(z^2+c),c=-22/17+3/58*I,n=18 4032550440778511 r005 Im(z^2+c),c=-5/36+17/28*I,n=51 4032550444855336 a001 610/7*521^(12/49) 4032550453799562 m001 (DuboisRaymond+Lehmer)/(ReciprocalLucas-Trott) 4032550476500570 r008 a(0)=4,K{-n^6,59-61*n-16*n^2-13*n^3} 4032550479058116 a007 Real Root Of -849*x^4-687*x^3-87*x^2+569*x+221 4032550479286537 r005 Re(z^2+c),c=-53/98+15/53*I,n=29 4032550491824228 r009 Re(z^3+c),c=-23/44+11/43*I,n=58 4032550501339826 m005 (1/2*Pi-5/6)/(1/6*5^(1/2)-5/9) 4032550506964870 r005 Im(z^2+c),c=35/102+8/43*I,n=37 4032550507030429 m001 1/Riemann3rdZero^2/ln(Paris)^2/exp(1)^2 4032550528003431 p001 sum(1/(387*n+2)/n/(64^n),n=1..infinity) 4032550532291500 r009 Re(z^3+c),c=-27/98+30/47*I,n=2 4032550555252591 r005 Re(z^2+c),c=53/118+21/40*I,n=3 4032550567185279 a007 Real Root Of 2*x^4+805*x^3-607*x^2+791*x+107 4032550571215220 a001 610/710647*322^(2/3) 4032550576720265 a008 Real Root of x^4-x^3-18*x^2+26*x-11 4032550602051185 r005 Im(z^2+c),c=-1/13+9/16*I,n=51 4032550617433837 p001 sum(1/(551*n+454)/n/(25^n),n=1..infinity) 4032550618939524 m006 (4/5*Pi^2-1/5)/(5/6*exp(Pi)-1/5) 4032550628704686 r005 Re(z^2+c),c=-55/102+5/17*I,n=54 4032550639643141 r009 Im(z^3+c),c=-9/62+29/64*I,n=6 4032550648943240 a007 Real Root Of -447*x^4-317*x^3-354*x^2+492*x+247 4032550649275269 r008 a(0)=4,K{-n^6,55-33*n-51*n^2-2*n^3} 4032550653192517 v002 sum(1/(2^n+(n^3-n^2+20*n-19)),n=1..infinity) 4032550659841164 r005 Re(z^2+c),c=-5/8+36/253*I,n=15 4032550660982626 a007 Real Root Of -150*x^4-365*x^3+860*x^2-445*x-49 4032550669073154 r008 a(0)=4,K{-n^6,-8+37*n^3-40*n^2-19*n} 4032550674552783 r008 a(0)=4,K{-n^6,57-n^3-53*n^2-34*n} 4032550678458697 m002 Pi^2-(E^Pi*Coth[Pi])/Pi^2-Sinh[Pi] 4032550683342961 b008 4+Cos[5]^E 4032550685410764 m001 (Paris-Sarnak)/(3^(1/3)+OneNinth) 4032550691981620 r008 a(0)=4,K{-n^6,26-51*n-36*n^2+26*n^3} 4032550693847267 r005 Im(z^2+c),c=15/106+32/63*I,n=8 4032550704040610 a007 Real Root Of 243*x^4+874*x^3-510*x^2-224*x+445 4032550708727615 r005 Re(z^2+c),c=-24/25+13/49*I,n=20 4032550713749060 r009 Re(z^3+c),c=-27/110+23/36*I,n=2 4032550720470576 b008 4+3*AiryAi[E] 4032550730708912 r005 Im(z^2+c),c=29/102+9/31*I,n=30 4032550744725919 r005 Re(z^2+c),c=-19/18+18/133*I,n=2 4032550747633227 p001 sum(1/(427*n+330)/(2^n),n=0..infinity) 4032550763386794 p002 log(6^(7/3)-13^(6/7)) 4032550770009176 r005 Im(z^2+c),c=29/122+9/38*I,n=3 4032550774227884 r009 Re(z^3+c),c=-49/90+16/45*I,n=52 4032550778234826 a007 Real Root Of -987*x^4+751*x^3-914*x^2-300*x+103 4032550790664509 r005 Re(z^2+c),c=7/32+26/55*I,n=46 4032550800965693 a007 Real Root Of -48*x^4-168*x^3-101*x^2-635*x+758 4032550810435822 b008 4+ArcCoth[29+Sqrt[3]] 4032550813057770 m005 (1/2*Catalan-8/9)/(1/6*3^(1/2)-2/11) 4032550814541662 r005 Re(z^2+c),c=-11/18+23/95*I,n=22 4032550816974894 a001 329/620166*322^(3/4) 4032550829301345 m001 (exp(1/Pi)+exp(-1/2*Pi))/(Sierpinski+Totient) 4032550830632469 r005 Re(z^2+c),c=-53/94+4/49*I,n=58 4032550838759287 r009 Re(z^3+c),c=-25/64+5/43*I,n=19 4032550852447469 r002 8th iterates of z^2 + 4032550867377905 r002 16th iterates of z^2 + 4032550869413536 a001 29/1346269*28657^(26/51) 4032550885763533 r005 Im(z^2+c),c=3/28+16/35*I,n=14 4032550894446666 h001 (5/7*exp(2)+2/5)/(3/11*exp(1)+2/3) 4032550897935840 a001 9381251041/329*2^(1/2) 4032550913243933 a007 Real Root Of -84*x^4+99*x^3-843*x^2+861*x+493 4032550913631744 b008 -5+LogGamma[Pi^(-1)]^(-1) 4032550921630041 m008 (4/5*Pi^4+1)/(2*Pi^2-1/6) 4032550932572449 r005 Im(z^2+c),c=-51/94+25/38*I,n=17 4032550942293191 a008 Real Root of x^4-2*x^3-6*x^2-22*x+53 4032550951902196 r005 Im(z^2+c),c=-19/60+19/37*I,n=9 4032550953004423 m001 (Champernowne+Rabbit)/(Zeta(1,2)-GAMMA(5/6)) 4032550972899360 a007 Real Root Of 944*x^4-497*x^3+340*x^2-970*x-504 4032550973434049 m001 FeigenbaumB/ln(Cahen)*MinimumGamma^2 4032550973815057 a003 sin(Pi*17/84)*sin(Pi*24/101) 4032550977527946 m003 5/4+(Sin[1/2+Sqrt[5]/2]*Tan[1/2+Sqrt[5]/2])/4 4032550980636119 r005 Im(z^2+c),c=25/78+16/51*I,n=25 4032550982254698 r005 Im(z^2+c),c=11/94+24/55*I,n=14 4032550989911770 r009 Re(z^3+c),c=-15/44+1/37*I,n=7 4032550994174910 a007 Real Root Of 215*x^4+733*x^3-737*x^2-606*x+754 4032550994565251 m005 (1/2*Catalan+7/12)/(10/11*exp(1)+1/9) 4032550996594973 a007 Real Root Of 359*x^4-974*x^3-67*x^2-532*x-277 4032551016461701 r005 Re(z^2+c),c=-13/22+6/101*I,n=12 4032551025760062 a007 Real Root Of -273*x^4+344*x^3+613*x^2+915*x-484 4032551030742173 r002 51th iterates of z^2 + 4032551032785941 r005 Im(z^2+c),c=-1+24/59*I,n=5 4032551047748934 r005 Im(z^2+c),c=3/64+34/63*I,n=20 4032551051429224 m001 (LaplaceLimit+Trott)/(cos(1/12*Pi)+CareFree) 4032551055110907 m001 (3^(1/3)-Bloch*Riemann2ndZero)/Riemann2ndZero 4032551064291224 r005 Re(z^2+c),c=-69/122+2/63*I,n=41 4032551065989925 a007 Real Root Of 197*x^4+750*x^3-170*x^2-187*x-902 4032551094056605 a005 (1/cos(3/116*Pi))^422 4032551099442004 r002 50th iterates of z^2 + 4032551111007407 r002 29th iterates of z^2 + 4032551116726421 r002 18th iterates of z^2 + 4032551117136335 r008 a(0)=4,K{-n^6,-11-3*n^3+79*n^2-95*n} 4032551118604701 r005 Re(z^2+c),c=-63/122+9/23*I,n=46 4032551137731073 r002 5th iterates of z^2 + 4032551142775779 m001 (2^(1/3)-Chi(1))/(-Zeta(5)+gamma(2)) 4032551145878003 l006 ln(173/9758) 4032551169378031 m001 1/Niven/FeigenbaumB*ln(sqrt(Pi)) 4032551181882052 r008 a(0)=4,K{-n^6,38+29*n^3-88*n^2-11*n} 4032551187028204 s001 sum(exp(-Pi/4)^(n-1)*A026144[n],n=1..infinity) 4032551193132218 a007 Real Root Of 791*x^4-677*x^3+866*x^2-327*x-338 4032551196473435 m001 (Chi(1)-exp(Pi))/(-DuboisRaymond+RenyiParking) 4032551202689032 r005 Im(z^2+c),c=13/110+27/53*I,n=18 4032551214556139 h001 (5/7*exp(2)+7/8)/(1/2*exp(1)+1/6) 4032551217498549 r005 Im(z^2+c),c=17/122+19/45*I,n=24 4032551220673356 r005 Im(z^2+c),c=-12/17+2/29*I,n=48 4032551228762747 r005 Re(z^2+c),c=-65/118+11/50*I,n=36 4032551230999864 s002 sum(A115876[n]/(n*10^n+1),n=1..infinity) 4032551245426909 r005 Re(z^2+c),c=-9/16+5/47*I,n=31 4032551246155883 r005 Re(z^2+c),c=-2/3+33/145*I,n=28 4032551253671899 p003 LerchPhi(1/8,5,265/139) 4032551260149185 s001 sum(exp(-Pi)^n*A034203[n],n=1..infinity) 4032551260149185 s002 sum(A034203[n]/(exp(pi*n)),n=1..infinity) 4032551262856203 r008 a(0)=4,K{-n^6,-4-53*n^3+73*n^2-47*n} 4032551263347411 m005 (1/2*exp(1)-6)/(1/5*exp(1)-3/7) 4032551265107310 r008 a(0)=4,K{-n^6,-8-52*n^3+68*n^2-39*n} 4032551266832337 p003 LerchPhi(1/25,1,263/103) 4032551267406082 m001 ReciprocalLucas*(2^(1/3)+Kolakoski) 4032551267571128 r005 Re(z^2+c),c=1/4+35/61*I,n=22 4032551268110398 m001 Salem/Kolakoski*exp(Zeta(9)) 4032551288146410 r002 18th iterates of z^2 + 4032551289203078 r002 21th iterates of z^2 + 4032551302158222 r005 Im(z^2+c),c=13/90+16/39*I,n=13 4032551303942572 m001 1/exp(Si(Pi))^2*Artin*Robbin^2 4032551306199037 a001 305/12238*123^(1/10) 4032551306229878 m008 (Pi^5+5)/(4/5*Pi^4-4/5) 4032551315850299 r005 Re(z^2+c),c=-59/110+8/25*I,n=44 4032551326800884 m001 (BesselJ(0,1)-Zeta(5))/(-ln(3)+Pi^(1/2)) 4032551345026441 m001 (-KomornikLoreti+Robbin)/(exp(1)-gamma(1)) 4032551345301008 r008 a(0)=4,K{-n^6,-8-17*n+35*n^2-41*n^3} 4032551345311542 r009 Re(z^3+c),c=-29/54+9/64*I,n=35 4032551348752259 r002 36th iterates of z^2 + 4032551350556887 r008 a(0)=4,K{-n^6,2-42*n^3+43*n^2-34*n} 4032551350578561 r008 a(0)=4,K{-n^6,-16-39*n^3+25*n^2-n} 4032551359281646 r008 a(0)=4,K{-n^6,-22+14*n^3-52*n^2+28*n} 4032551363371233 r002 52th iterates of z^2 + 4032551370315694 a007 Real Root Of 600*x^4-289*x^3-190*x^2-67*x+61 4032551377054942 a001 3571/102334155*6557470319842^(16/17) 4032551377112567 a001 271443/1597*514229^(16/17) 4032551377430064 a001 3571/46368*1836311903^(16/17) 4032551383378574 b008 -17*E+E^Sqrt[Pi] 4032551395318645 r005 Im(z^2+c),c=-137/110+1/47*I,n=41 4032551398910203 a007 Real Root Of -873*x^4-629*x^3+897*x^2+512*x-288 4032551412613512 m002 -4+Pi^2-E^(2*Pi)*Sech[Pi] 4032551420515606 a007 Real Root Of -594*x^4-806*x^3+105*x^2+641*x-207 4032551425733616 a007 Real Root Of 975*x^4-414*x^3+981*x^2-413*x-379 4032551426990624 r008 a(0)=4,K{-n^6,-16-30*n^3-2*n^2+17*n} 4032551433171463 a001 2207/8*10946^(2/49) 4032551436718253 a008 Real Root of x^4-3*x^2-20*x-135 4032551451664224 a007 Real Root Of -799*x^4+65*x^3-637*x^2+806*x+454 4032551454935181 r005 Re(z^2+c),c=-17/31+5/21*I,n=50 4032551462167306 r005 Im(z^2+c),c=-35/74+30/49*I,n=10 4032551474835598 r002 59th iterates of z^2 + 4032551474835598 r002 59th iterates of z^2 + 4032551476873240 m002 -Log[Pi]^2/5+4*ProductLog[Pi] 4032551483322902 r005 Im(z^2+c),c=9/118+29/62*I,n=47 4032551484262919 m001 GAMMA(7/12)*exp(BesselK(1,1))*Zeta(3)^2 4032551485266372 r005 Im(z^2+c),c=-67/54+8/39*I,n=9 4032551512154026 r005 Re(z^2+c),c=-6/11+6/23*I,n=45 4032551524082947 a001 2584/4870847*322^(3/4) 4032551534759476 h001 (5/9*exp(1)+9/11)/(8/11*exp(2)+2/5) 4032551535660593 r005 Im(z^2+c),c=-9/40+10/17*I,n=9 4032551554947050 a007 Real Root Of -960*x^4-640*x^3-837*x^2+207*x+203 4032551556537044 r002 23th iterates of z^2 + 4032551558320198 m006 (2*Pi^2-2/5)/(1/4/Pi+2/5) 4032551570250126 r005 Im(z^2+c),c=-11/70+34/59*I,n=28 4032551575630033 m001 (1+polylog(4,1/2))/(-Paris+Weierstrass) 4032551584586310 h001 (7/10*exp(1)+8/9)/(9/10*exp(2)+3/11) 4032551589542942 m001 (BesselI(1,1)-ZetaQ(2))/(GAMMA(3/4)-ln(3)) 4032551603033573 a001 64079/377*34^(44/49) 4032551617190695 r005 Re(z^2+c),c=-61/114+19/60*I,n=57 4032551622229731 r005 Re(z^2+c),c=-15/29+13/36*I,n=34 4032551624573615 l006 ln(151/226) 4032551627248621 a001 2255/4250681*322^(3/4) 4032551642300290 a001 17711/33385282*322^(3/4) 4032551644496299 a001 15456/29134601*322^(3/4) 4032551644816692 a001 121393/228826127*322^(3/4) 4032551644863437 a001 377/710646*322^(3/4) 4032551644870257 a001 832040/1568397607*322^(3/4) 4032551644871252 a001 726103/1368706081*322^(3/4) 4032551644871397 a001 5702887/10749957122*322^(3/4) 4032551644871419 a001 4976784/9381251041*322^(3/4) 4032551644871422 a001 39088169/73681302247*322^(3/4) 4032551644871422 a001 34111385/64300051206*322^(3/4) 4032551644871422 a001 267914296/505019158607*322^(3/4) 4032551644871422 a001 233802911/440719107401*322^(3/4) 4032551644871422 a001 1836311903/3461452808002*322^(3/4) 4032551644871422 a001 1602508992/3020733700601*322^(3/4) 4032551644871422 a001 12586269025/23725150497407*322^(3/4) 4032551644871422 a001 7778742049/14662949395604*322^(3/4) 4032551644871422 a001 2971215073/5600748293801*322^(3/4) 4032551644871422 a001 1134903170/2139295485799*322^(3/4) 4032551644871422 a001 433494437/817138163596*322^(3/4) 4032551644871422 a001 165580141/312119004989*322^(3/4) 4032551644871422 a001 63245986/119218851371*322^(3/4) 4032551644871424 a001 24157817/45537549124*322^(3/4) 4032551644871432 a001 9227465/17393796001*322^(3/4) 4032551644871487 a001 3524578/6643838879*322^(3/4) 4032551644871867 a001 1346269/2537720636*322^(3/4) 4032551644874472 a001 514229/969323029*322^(3/4) 4032551644892327 a001 196418/370248451*322^(3/4) 4032551645014706 a001 75025/141422324*322^(3/4) 4032551645262508 r009 Re(z^3+c),c=-57/118+13/62*I,n=22 4032551645853507 a001 28657/54018521*322^(3/4) 4032551647145807 a001 9349/267914296*6557470319842^(16/17) 4032551647156663 a001 710647/4181*514229^(16/17) 4032551647200537 a001 9349/121393*1836311903^(16/17) 4032551651602733 a001 10946/20633239*322^(3/4) 4032551653447869 a003 cos(Pi*22/89)/cos(Pi*47/106) 4032551661519164 m001 DuboisRaymond*exp(Conway)^2*GAMMA(7/12) 4032551669299946 m001 (LandauRamanujan+Paris)/(3^(1/3)+ArtinRank2) 4032551672559229 r002 25th iterates of z^2 + 4032551677106718 m001 Rabbit^2/Khintchine*exp(BesselJ(0,1)) 4032551680755710 r008 a(0)=4,K{-n^6,32-25*n-23*n^2-15*n^3} 4032551685237220 r008 a(0)=4,K{-n^6,34-28*n-22*n^2-15*n^3} 4032551686551533 a001 24476/701408733*6557470319842^(16/17) 4032551686555569 a001 930249/5473*514229^(16/17) 4032551686559518 a001 844/10959*1836311903^(16/17) 4032551691008514 a001 4181/7881196*322^(3/4) 4032551692207766 r005 Im(z^2+c),c=9/28+9/37*I,n=53 4032551692300751 a001 1/28657*6557470319842^(16/17) 4032551692301916 a001 64079/832040*1836311903^(16/17) 4032551692303792 a001 4870847/28657*514229^(16/17) 4032551693139551 a001 167761/4807526976*6557470319842^(16/17) 4032551693139721 a001 167761/2178309*1836311903^(16/17) 4032551693142446 a001 12752043/75025*514229^(16/17) 4032551693261930 a001 439204/12586269025*6557470319842^(16/17) 4032551693261955 a001 439204/5702887*1836311903^(16/17) 4032551693264804 a001 16692641/98209*514229^(16/17) 4032551693279785 a001 1149851/32951280099*6557470319842^(16/17) 4032551693279788 a001 1149851/14930352*1836311903^(16/17) 4032551693282390 a001 3010349/86267571272*6557470319842^(16/17) 4032551693282390 a001 3010349/39088169*1836311903^(16/17) 4032551693282656 a001 87403803/514229*514229^(16/17) 4032551693282770 a001 7881196/225851433717*6557470319842^(16/17) 4032551693282770 a001 7881196/102334155*1836311903^(16/17) 4032551693282825 a001 20633239/591286729879*6557470319842^(16/17) 4032551693282825 a001 711491/9238424*1836311903^(16/17) 4032551693282833 a001 54018521/1548008755920*6557470319842^(16/17) 4032551693282833 a001 54018521/701408733*1836311903^(16/17) 4032551693282835 a001 141422324/4052739537881*6557470319842^(16/17) 4032551693282835 a001 141422324/1836311903*1836311903^(16/17) 4032551693282835 a001 370248451/4807526976*1836311903^(16/17) 4032551693282835 a001 370248451/10610209857723*6557470319842^(16/17) 4032551693282835 a001 969323029/12586269025*1836311903^(16/17) 4032551693282835 a001 2537720636/32951280099*1836311903^(16/17) 4032551693282835 a001 6643838879/86267571272*1836311903^(16/17) 4032551693282835 a001 599786069/7787980473*1836311903^(16/17) 4032551693282835 a001 45537549124/591286729879*1836311903^(16/17) 4032551693282835 a001 119218851371/1548008755920*1836311903^(16/17) 4032551693282835 a001 312119004989/4052739537881*1836311903^(16/17) 4032551693282835 a001 817138163596/10610209857723*1836311903^(16/17) 4032551693282835 a001 505019158607/6557470319842*1836311903^(16/17) 4032551693282835 a001 192900153618/2504730781961*1836311903^(16/17) 4032551693282835 a001 73681302247/956722026041*1836311903^(16/17) 4032551693282835 a001 28143753123/365435296162*1836311903^(16/17) 4032551693282835 a001 10749957122/139583862445*1836311903^(16/17) 4032551693282835 a001 4106118243/53316291173*1836311903^(16/17) 4032551693282835 a001 1568397607/20365011074*1836311903^(16/17) 4032551693282835 a001 599074578/7778742049*1836311903^(16/17) 4032551693282835 a001 228826127/2971215073*1836311903^(16/17) 4032551693282835 a001 228826127/6557470319842*6557470319842^(16/17) 4032551693282835 a001 87403803/1134903170*1836311903^(16/17) 4032551693282835 a001 87403803/2504730781961*6557470319842^(16/17) 4032551693282838 a001 33385282/433494437*1836311903^(16/17) 4032551693282838 a001 33385282/956722026041*6557470319842^(16/17) 4032551693282860 a001 12752043/165580141*1836311903^(16/17) 4032551693282860 a001 12752043/365435296162*6557470319842^(16/17) 4032551693283005 a001 4870847/63245986*1836311903^(16/17) 4032551693283005 a001 4870847/139583862445*6557470319842^(16/17) 4032551693283998 a001 1860498/24157817*1836311903^(16/17) 4032551693284000 a001 1860498/53316291173*6557470319842^(16/17) 4032551693285261 a001 228826127/1346269*514229^(16/17) 4032551693285641 a001 299537289/1762289*514229^(16/17) 4032551693285696 a001 1568397607/9227465*514229^(16/17) 4032551693285704 a001 4106118243/24157817*514229^(16/17) 4032551693285705 a001 5374978561/31622993*514229^(16/17) 4032551693285705 a001 28143753123/165580141*514229^(16/17) 4032551693285705 a001 73681302247/433494437*514229^(16/17) 4032551693285705 a001 96450076809/567451585*514229^(16/17) 4032551693285705 a001 505019158607/2971215073*514229^(16/17) 4032551693285705 a001 1322157322203/7778742049*514229^(16/17) 4032551693285705 a001 1730726404001/10182505537*514229^(16/17) 4032551693285705 a001 9062201101803/53316291173*514229^(16/17) 4032551693285705 a001 23725150497407/139583862445*514229^(16/17) 4032551693285705 a001 192933544679/1135099622*514229^(16/17) 4032551693285705 a001 5600748293801/32951280099*514229^(16/17) 4032551693285705 a001 2139295485799/12586269025*514229^(16/17) 4032551693285705 a001 204284540899/1201881744*514229^(16/17) 4032551693285705 a001 312119004989/1836311903*514229^(16/17) 4032551693285705 a001 119218851371/701408733*514229^(16/17) 4032551693285705 a001 11384387281/66978574*514229^(16/17) 4032551693285705 a001 17393796001/102334155*514229^(16/17) 4032551693285706 a001 6643838879/39088169*514229^(16/17) 4032551693285709 a001 33391061/196452*514229^(16/17) 4032551693285730 a001 969323029/5702887*514229^(16/17) 4032551693285875 a001 370248451/2178309*514229^(16/17) 4032551693286870 a001 35355581/208010*514229^(16/17) 4032551693290810 a001 710647/9227465*1836311903^(16/17) 4032551693290820 a001 710647/20365011074*6557470319842^(16/17) 4032551693293689 a001 54018521/317811*514229^(16/17) 4032551693337500 a001 271443/3524578*1836311903^(16/17) 4032551693337564 a001 271443/7778742049*6557470319842^(16/17) 4032551693340426 a001 20633239/121393*514229^(16/17) 4032551693657512 a001 103682/1346269*1836311903^(16/17) 4032551693657957 a001 103682/2971215073*6557470319842^(16/17) 4032551693660763 a001 1970299/11592*514229^(16/17) 4032551695850913 a001 39603/514229*1836311903^(16/17) 4032551695853963 a001 39603/1134903170*6557470319842^(16/17) 4032551695856389 a001 3010349/17711*514229^(16/17) 4032551698762581 r008 a(0)=4,K{-n^6,58-18*n^3-n^2-70*n} 4032551698844102 a007 Real Root Of -634*x^4-518*x^3-972*x^2+965*x+530 4032551705373554 m001 (GAMMA(2/3)-GAMMA(5/6))/(Mills-RenyiParking) 4032551709575654 r002 34th iterates of z^2 + 4032551710884706 a001 15127/196418*1836311903^(16/17) 4032551710905432 a001 1149851/6765*514229^(16/17) 4032551710905611 a001 15127/433494437*6557470319842^(16/17) 4032551710967539 a007 Real Root Of 553*x^4-803*x^3-185*x^2-947*x+450 4032551711015762 r005 Im(z^2+c),c=-49/90+3/5*I,n=9 4032551712143105 a003 sin(Pi*19/102)*sin(Pi*31/119) 4032551723573208 r005 Im(z^2+c),c=5/66+22/47*I,n=55 4032551725088249 r002 48th iterates of z^2 + 4032551741297561 r008 a(0)=4,K{-n^6,58-15*n^3-10*n^2-64*n} 4032551743063168 a003 cos(Pi*47/120)+cos(Pi*54/113) 4032551750067825 r005 Im(z^2+c),c=-109/78+7/55*I,n=4 4032551754064385 m001 (2^(1/3)+3^(1/3))/(gamma(2)+ZetaP(4)) 4032551762902018 r002 7th iterates of z^2 + 4032551775302391 m001 (Zeta(1,-1)-ArtinRank2)/(FeigenbaumD-Landau) 4032551787280093 m005 (1/2*3^(1/2)-4/7)/(17/60+1/5*5^(1/2)) 4032551793868478 a007 Real Root Of -140*x^4-494*x^3+379*x^2+439*x+234 4032551809172872 a007 Real Root Of 142*x^4-481*x^3-646*x^2-907*x-296 4032551813927858 a001 5778/75025*1836311903^(16/17) 4032551814053111 a001 5779/34*514229^(16/17) 4032551814071142 a001 5778/165580141*6557470319842^(16/17) 4032551825248761 r005 Im(z^2+c),c=31/114+17/56*I,n=35 4032551826806646 r005 Im(z^2+c),c=-1/7+29/49*I,n=5 4032551844525339 m001 BesselJ(1,1)^2/ln(MinimumGamma)^2*sqrt(3)^2 4032551847588245 m001 (exp(1/Pi)+GAMMA(13/24))/(ErdosBorwein-Thue) 4032551856806381 r008 a(0)=4,K{-n^6,54-7*n^3-36*n^2-42*n} 4032551861989716 a007 Real Root Of -257*x^4+462*x^3-754*x^2+767*x+469 4032551864019914 r009 Im(z^3+c),c=-55/106+12/41*I,n=63 4032551885418591 m008 (4/5*Pi^3-5/6)/(3/5*Pi^4+1) 4032551888916635 m005 (1/4*Catalan+1/4)/(2/3*exp(1)-3) 4032551892875519 r002 42th iterates of z^2 + 4032551899501451 r005 Im(z^2+c),c=-5/27+29/48*I,n=51 4032551903859481 r005 Im(z^2+c),c=1/98+22/43*I,n=59 4032551908119334 r005 Im(z^2+c),c=-29/122+27/52*I,n=7 4032551918167227 m001 ln(5)/(gamma(3)^ZetaR(2)) 4032551938191979 m001 (GAMMA(3/4)+Zeta(1/2))/(OneNinth+Weierstrass) 4032551948183093 m001 (Salem-Stephens)/(Otter-Porter) 4032551961099757 a001 1597/3010349*322^(3/4) 4032551966230263 r002 17th iterates of z^2 + 4032551969540973 r009 Re(z^3+c),c=-4/7+19/50*I,n=3 4032551998068640 m001 (BesselI(0,1)-gamma(2))/(exp(-1/2*Pi)+Otter) 4032552032955579 a007 Real Root Of 696*x^4+363*x^3+977*x^2-284*x-268 4032552034647175 r005 Re(z^2+c),c=-4/7+1/118*I,n=20 4032552047728145 m001 FeigenbaumB/Khintchine/ln(arctan(1/2)) 4032552049262196 m001 Zeta(3)*Kolakoski^2/ln(cosh(1))^2 4032552050813540 a001 505618944676/13*144^(8/17) 4032552054241615 h001 (5/6*exp(2)+4/5)/(2/9*exp(2)+1/12) 4032552062466063 m005 (1/2*exp(1)-2/3)/(1/11*5^(1/2)-3/8) 4032552067427631 m001 (-GAMMA(13/24)+Lehmer)/(Shi(1)-ln(2+3^(1/2))) 4032552071680236 r005 Re(z^2+c),c=-59/106+11/62*I,n=35 4032552079458492 r008 a(0)=4,K{-n^6,-38+10*n-3*n^2-2*n^3} 4032552095291787 r002 23i'th iterates of 2*x/(1-x^2) of 4032552118444256 r005 Im(z^2+c),c=-11/90+20/33*I,n=63 4032552142487277 r005 Im(z^2+c),c=-7/110+34/61*I,n=56 4032552154133025 r005 Re(z^2+c),c=-41/78+5/13*I,n=52 4032552186821504 a001 54289/1346269 4032552186876679 a004 Fibonacci(13)/Lucas(13)/(1/2+sqrt(5)/2)^5 4032552189427618 r004 Re(z^2+c),c=1/24+5/16*I,z(0)=I,n=27 4032552200816548 r005 Re(z^2+c),c=-67/118+5/63*I,n=19 4032552203421554 a007 Real Root Of -141*x^4-338*x^3+940*x^2+86*x+182 4032552207190786 a007 Real Root Of -19*x^4-772*x^3-258*x^2-933*x+597 4032552218434961 r002 29th iterates of z^2 + 4032552222217871 m001 1/Khintchine^2/exp(Cahen)^2/GAMMA(7/24)^2 4032552261467834 m004 ProductLog[Sqrt[5]*Pi]^(-1)+5*Sin[Sqrt[5]*Pi] 4032552261731081 r002 11th iterates of z^2 + 4032552276392564 r002 14th iterates of z^2 + 4032552277910349 r005 Re(z^2+c),c=-61/110+3/16*I,n=36 4032552279467581 r005 Im(z^2+c),c=-1/12+25/44*I,n=59 4032552286172496 r002 35th iterates of z^2 + 4032552286172496 r002 35th iterates of z^2 + 4032552293845249 a007 Real Root Of -125*x^4-390*x^3+325*x^2-649*x-422 4032552305221979 r009 Re(z^3+c),c=-8/19+9/59*I,n=38 4032552308344668 m001 (-GAMMA(19/24)+Khinchin)/(cos(1)+Zeta(1,-1)) 4032552320789296 r005 Re(z^2+c),c=-77/114+6/29*I,n=24 4032552323568779 a007 Real Root Of -636*x^4-810*x^3-882*x^2+22*x+116 4032552336620564 a007 Real Root Of 196*x^4+591*x^3-942*x^2-427*x+522 4032552356171812 r002 61th iterates of z^2 + 4032552360342353 a007 Real Root Of 729*x^4-981*x^3+494*x^2-449*x-345 4032552367084809 a007 Real Root Of 136*x^4+226*x^3+965*x^2-891*x-505 4032552374475522 m001 Zeta(3)*GAMMA(2/3)+BesselJZeros(0,1) 4032552387230261 r005 Re(z^2+c),c=-13/23+1/22*I,n=46 4032552387839633 m005 (4/5*2^(1/2)-1/2)/(2/5*2^(1/2)+1) 4032552408095700 m008 (5/6*Pi^2-2/5)/(3/5*Pi^3+4/5) 4032552411344039 a007 Real Root Of 617*x^4-316*x^3+361*x^2-18*x-103 4032552415215471 r008 a(0)=4,K{-n^6,-62+17*n^3-47*n^2+66*n} 4032552418997557 m001 (ln(3)-Ei(1,1))/(FibonacciFactorial-Magata) 4032552422437740 m005 (5/36+1/4*5^(1/2))/(5/11*5^(1/2)+5/7) 4032552423285459 m005 (1/2*2^(1/2)+2/11)/(7/12*5^(1/2)+9/10) 4032552426438637 m001 2/3*exp(gamma)-BesselI(1,2) 4032552432266272 a007 Real Root Of -58*x^4-75*x^3+789*x^2+835*x+956 4032552452599064 a001 377/1860498*322^(11/12) 4032552494298937 r005 Re(z^2+c),c=-71/126+3/34*I,n=52 4032552494304928 r002 22th iterates of z^2 + 4032552495707104 a001 281/7*317811^(10/11) 4032552520196124 a001 2207/28657*1836311903^(16/17) 4032552521037964 a001 167761/987*514229^(16/17) 4032552521178208 a001 2207/63245986*6557470319842^(16/17) 4032552530836640 r002 55th iterates of z^2 + 4032552542331706 m001 (Stephens-ThueMorse)/(ln(2)-ln(3)) 4032552543907167 m001 (exp(sqrt(2))+5)/(2^(1/3)+1) 4032552559137987 m001 (GolombDickman+ThueMorse)/(3^(1/3)+GAMMA(5/6)) 4032552561966101 a003 cos(Pi*26/85)-sin(Pi*40/93) 4032552572743956 a007 Real Root Of -2*x^4-807*x^3-198*x^2-248*x-419 4032552574091133 m005 (1/2*3^(1/2)-6/11)/(2/5*Catalan+3/7) 4032552576019958 m001 (gamma+cos(1))/(GAMMA(23/24)+KhinchinHarmonic) 4032552577000536 r009 Re(z^3+c),c=-8/19+9/59*I,n=37 4032552591705977 a007 Real Root Of -856*x^4+447*x^3+638*x^2+914*x-479 4032552609437718 r002 35th iterates of z^2 + 4032552619151120 a007 Real Root Of -5*x^4+193*x^3+337*x^2+987*x+356 4032552628418756 r005 Im(z^2+c),c=-39/110+38/61*I,n=51 4032552629523231 r008 a(0)=4,K{-n^6,-39-38*n^3+11*n^2+35*n} 4032552632152265 r008 a(0)=4,K{-n^6,-73-32*n^3-24*n^2+98*n} 4032552645207070 r008 a(0)=4,K{-n^6,-9-16*n+35*n^2-41*n^3} 4032552653169110 a001 7/3*10946^(1/17) 4032552656129361 r008 a(0)=4,K{-n^6,28+52*n^3-67*n^2-43*n} 4032552656147999 m001 exp(GAMMA(1/12))^2/FeigenbaumAlpha*Zeta(5) 4032552670193074 r002 50th iterates of z^2 + 4032552676576086 r005 Im(z^2+c),c=11/38+15/53*I,n=56 4032552678887238 m001 (Si(Pi)-gamma)/(Khinchin+PlouffeB) 4032552686868577 r005 Im(z^2+c),c=-43/122+34/49*I,n=3 4032552700671313 a007 Real Root Of -265*x^4-867*x^3+726*x^2-457*x-427 4032552702221487 m001 GAMMA(7/24)^2/FeigenbaumDelta/exp(cos(Pi/5))^2 4032552715742246 r005 Re(z^2+c),c=-9/17+21/61*I,n=59 4032552727371541 m002 Pi^4+Pi^5-E^Pi*Csch[Pi]^2 4032552728678965 m001 FeigenbaumC*exp(MadelungNaCl)^2*Sierpinski^2 4032552731582818 a007 Real Root Of 112*x^4+560*x^3+678*x^2+981*x+36 4032552733422187 m002 -Pi^4-Pi^5+(4*Coth[Pi])/E^Pi 4032552743553923 r008 a(0)=4,K{-n^6,-7-30*n^3+3*n^2+3*n} 4032552748021948 r005 Im(z^2+c),c=-11/16+33/118*I,n=62 4032552756446568 r005 Im(z^2+c),c=-125/98+1/63*I,n=52 4032552759481745 a007 Real Root Of -652*x^4+431*x^3-698*x^2-863*x-189 4032552759950066 m005 (1/2*exp(1)-8/9)/(5/12*Pi-1/7) 4032552769676538 r005 Re(z^2+c),c=-55/98+9/56*I,n=7 4032552772313080 a001 4870847/610*514229^(14/17) 4032552772363963 a001 1364/121393*6557470319842^(14/17) 4032552772390348 m001 (-Trott2nd+ZetaP(4))/(Shi(1)-Zeta(1,-1)) 4032552824576874 m005 (1/2*3^(1/2)+5/6)/(2*3^(1/2)+3/4) 4032552849730772 r008 a(0)=4,K{-n^6,13-13*n-8*n^2-23*n^3} 4032552853110368 a001 15127/13*28657^(19/55) 4032552859999024 a003 sin(Pi*21/100)*sin(Pi*8/35) 4032552870770381 a007 Real Root Of 64*x^4+342*x^3+289*x^2-101*x+396 4032552884114577 r008 a(0)=4,K{-n^6,31-23*n^3+n^2-40*n} 4032552893098737 a001 2889/305*1836311903^(14/17) 4032552912437357 r005 Im(z^2+c),c=-51/86+2/27*I,n=52 4032552919445919 s001 sum(exp(-2*Pi/3)^n*A053898[n],n=1..infinity) 4032552926883223 m001 Bloch^Kolakoski*Bloch^PrimesInBinary 4032552932421152 r005 Im(z^2+c),c=11/56+12/35*I,n=6 4032552936972921 r005 Re(z^2+c),c=13/34+31/54*I,n=38 4032552937227394 r002 55th iterates of z^2 + 4032552943768097 r005 Im(z^2+c),c=-47/98+2/29*I,n=42 4032552949784666 m005 (1/2*5^(1/2)+9/11)/(-10/63+2/7*5^(1/2)) 4032552970737567 r009 Re(z^3+c),c=-25/44+6/53*I,n=6 4032552985499484 r008 a(0)=4,K{-n^6,31-24*n-23*n^2-15*n^3} 4032552992089574 m004 150/Pi+125*Pi-(25*Cosh[Sqrt[5]*Pi])/Pi 4032553008360375 r005 Re(z^2+c),c=-9/32+18/29*I,n=40 4032553012499547 m001 GAMMA(1/3)/KhintchineLevy^2*ln(cos(Pi/5)) 4032553017308125 r009 Im(z^3+c),c=-27/50+9/58*I,n=10 4032553022684410 l006 ln(9429/9817) 4032553023983687 p001 sum((-1)^n/(568*n+241)/(10^n),n=0..infinity) 4032553026291519 a001 47/610*2178309^(16/59) 4032553029978998 r009 Re(z^3+c),c=-65/118+10/39*I,n=56 4032553035676045 m005 (1/2*exp(1)-3/5)/(5/8*3^(1/2)+4/5) 4032553046968241 r008 a(0)=4,K{-n^6,57-15*n^3-10*n^2-63*n} 4032553069756059 a001 505019158607/233*1836311903^(6/17) 4032553069756059 a001 28143753123/233*6557470319842^(6/17) 4032553069757135 a001 9062201101803/233*514229^(6/17) 4032553082190875 a003 cos(Pi*14/75)*cos(Pi*39/115) 4032553086504351 m001 (Ei(1,1)+Pi*csc(5/24*Pi)/GAMMA(19/24))/ln(Pi) 4032553089080179 r002 38th iterates of z^2 + 4032553091378442 r005 Im(z^2+c),c=2/9+19/54*I,n=42 4032553093991150 r005 Re(z^2+c),c=-35/64+11/43*I,n=38 4032553098241327 r008 a(0)=4,K{-n^6,35-16*n-42*n^2-8*n^3} 4032553100524751 r005 Re(z^2+c),c=-55/102+18/61*I,n=52 4032553102631590 a007 Real Root Of -243*x^4-780*x^3+928*x^2+291*x-808 4032553105587307 r005 Re(z^2+c),c=-17/31+11/56*I,n=23 4032553105875519 a007 Real Root Of -591*x^4+139*x^3-447*x^2+666*x+366 4032553108721656 r009 Im(z^3+c),c=-51/106+7/22*I,n=63 4032553124789437 r008 a(0)=4,K{-n^6,-39-8*n^3+9*n^2+6*n} 4032553140683274 r008 a(0)=4,K{-n^6,-44+11*n^2+n^3} 4032553148666325 a007 Real Root Of -307*x^4+81*x^3-820*x^2+8*x+150 4032553154205753 m005 (1/2*5^(1/2)-3/4)/(4/9*3^(1/2)+1/7) 4032553161013868 a007 Real Root Of -691*x^4+724*x^3-546*x^2+941*x+534 4032553165663053 a008 Real Root of (-5+9*x+7*x^2+9*x^4-8*x^8) 4032553171542820 m001 (-gamma(2)+FeigenbaumB)/(BesselI(0,1)-Shi(1)) 4032553195948920 m001 1/Rabbit*exp(Champernowne)^2*sqrt(5) 4032553199447731 r005 Im(z^2+c),c=3/106+1/2*I,n=43 4032553203658088 r002 41th iterates of z^2 + 4032553222523362 m001 Riemann2ndZero/exp(CareFree)^2/GAMMA(5/6)^2 4032553223333353 r009 Im(z^3+c),c=-53/118+15/44*I,n=31 4032553227210241 m001 Catalan^Porter-GlaisherKinkelin 4032553255647822 m005 (1/2*2^(1/2)+1/10)/(-29/220+1/20*5^(1/2)) 4032553278632930 a001 1730726404001/4*46368^(7/11) 4032553278871644 a001 35355581/2*365435296162^(7/11) 4032553278871645 a001 4106118243/8*1836311903^(7/11) 4032553278871651 a001 119218851371/8*9227465^(7/11) 4032553286396588 a007 Real Root Of -763*x^4+790*x^3-669*x^2+132*x+234 4032553288312877 r008 a(0)=4,K{-n^6,57-n^3-52*n^2-35*n} 4032553295376968 r005 Re(z^2+c),c=-25/48+11/29*I,n=63 4032553298935432 r005 Im(z^2+c),c=37/126+11/38*I,n=26 4032553300230591 a007 Real Root Of -17*x^4-670*x^3+638*x^2+476*x+363 4032553314248970 r005 Re(z^2+c),c=7/44+27/55*I,n=38 4032553326856781 r005 Re(z^2+c),c=-5/7+11/76*I,n=63 4032553327648298 p001 sum((-1)^n/(397*n+352)/n/(3^n),n=1..infinity) 4032553328849773 r002 3th iterates of z^2 + 4032553329709693 r009 Re(z^3+c),c=-23/114+9/17*I,n=2 4032553336605110 m001 GAMMA(5/6)^2*BesselK(1,1)^2/ln(Pi) 4032553347608902 r005 Re(z^2+c),c=-69/122+1/32*I,n=53 4032553347923244 r009 Im(z^3+c),c=-19/102+41/55*I,n=18 4032553364632327 r009 Re(z^3+c),c=-53/114+5/24*I,n=16 4032553368194955 a007 Real Root Of 168*x^4+630*x^3-189*x^2+165*x+626 4032553398690898 r005 Im(z^2+c),c=-31/54+5/12*I,n=14 4032553411637180 a001 2207/5*4181^(13/49) 4032553413871118 r004 Re(z^2+c),c=7/18-5/21*I,z(0)=exp(5/8*I*Pi),n=2 4032553424011253 r002 9th iterates of z^2 + 4032553425513385 r005 Re(z^2+c),c=-19/34+17/117*I,n=33 4032553429467403 m001 (ln(5)-Champernowne)/(Landau-ZetaP(3)) 4032553436220341 r005 Re(z^2+c),c=-65/118+13/58*I,n=38 4032553456912854 m001 (Landau-Trott2nd)/(CareFree-FeigenbaumB) 4032553478104202 r005 Re(z^2+c),c=-9/16+13/125*I,n=32 4032553489731891 r009 Im(z^3+c),c=-23/82+25/59*I,n=12 4032553494206035 r005 Im(z^2+c),c=-11/21+37/62*I,n=44 4032553535690557 a008 Real Root of x^4+10*x^2-63*x-173 4032553537382184 a001 233/64079*322^(5/12) 4032553543793870 a001 521/46368*317811^(13/46) 4032553559556726 a007 Real Root Of -212*x^4-852*x^3-97*x^2-357*x+328 4032553567694555 m005 (1/3*Pi-1/10)/(7/8*3^(1/2)+5/6) 4032553585875417 l006 ln(42/2369) 4032553612202729 m001 (Shi(1)-cos(1/5*Pi))/(-GolombDickman+ZetaQ(3)) 4032553612869299 h001 (-3*exp(5)+1)/(-exp(7)-5) 4032553620869815 m001 (Niven-ThueMorse)/(gamma(3)-FellerTornier) 4032553625240846 r005 Im(z^2+c),c=2/29+31/55*I,n=13 4032553628401601 a007 Real Root Of 461*x^4+223*x^3+901*x^2+87*x-109 4032553639149863 a003 sin(Pi*15/113)*sin(Pi*55/117) 4032553639985138 a007 Real Root Of 107*x^4+461*x^3+149*x^2+12*x-439 4032553648212992 a007 Real Root Of -216*x^4-649*x^3+809*x^2-407*x-237 4032553651542418 r005 Re(z^2+c),c=-1/31+5/47*I,n=6 4032553659827040 r005 Im(z^2+c),c=1/16+21/44*I,n=45 4032553660057875 m005 (1/2*3^(1/2)+5/8)/(8/9*Catalan-4/9) 4032553663773176 m005 (1/2*2^(1/2)-1/3)/(7/10*Catalan+2/7) 4032553672621774 r005 Re(z^2+c),c=-5/9-28/87*I,n=30 4032553677926309 r002 58th iterates of z^2 + 4032553679332189 r009 Re(z^3+c),c=-8/19+9/59*I,n=39 4032553679791053 r002 64th iterates of z^2 + 4032553685641813 r009 Re(z^3+c),c=-8/19+9/59*I,n=43 4032553689650261 r008 a(0)=4,K{-n^6,-90-71*n^3+85*n^2+45*n} 4032553707768584 r005 Re(z^2+c),c=-37/66+8/61*I,n=55 4032553715836021 r008 a(0)=4,K{-n^6,-56+25*n+10*n^2-11*n^3} 4032553728321305 a007 Real Root Of -971*x^4-637*x^3+327*x^2+943*x+311 4032553743994276 r005 Re(z^2+c),c=-14/27+13/32*I,n=57 4032553749510234 r005 Re(z^2+c),c=-5/8+74/165*I,n=9 4032553756062511 r005 Im(z^2+c),c=21/62+11/46*I,n=40 4032553781465345 r009 Im(z^3+c),c=-1/78+4/5*I,n=42 4032553782431400 r009 Im(z^3+c),c=-27/56+9/25*I,n=18 4032553785425922 r005 Re(z^2+c),c=-61/106+17/43*I,n=17 4032553809098960 m006 (3/5/Pi-1/4)/(3/5*exp(Pi)+3/4) 4032553812332671 a001 610/1149851*322^(3/4) 4032553814705674 r009 Re(z^3+c),c=-8/19+9/59*I,n=44 4032553822364023 m001 (Conway+FeigenbaumDelta)/(Mills+ZetaP(3)) 4032553825845878 r008 a(0)=4,K{-n^6,-84-47*n^3+16*n^2+84*n} 4032553853085955 r005 Im(z^2+c),c=13/38+11/51*I,n=62 4032553856050735 r005 Re(z^2+c),c=-69/122+2/63*I,n=39 4032553865269157 r002 33th iterates of z^2 + 4032553868827815 r005 Im(z^2+c),c=11/70+8/17*I,n=15 4032553874309375 a007 Real Root Of 8*x^4-897*x^3+842*x^2-997*x-598 4032553893703465 a001 41/233802911*377^(11/12) 4032553902866477 a007 Real Root Of -261*x^4+871*x^3+80*x^2+796*x+372 4032553903092013 r009 Im(z^3+c),c=-4/29+11/24*I,n=10 4032553904075245 b008 4+(28+E)^(-1) 4032553904957899 r009 Re(z^3+c),c=-8/19+9/59*I,n=42 4032553911692930 r009 Re(z^3+c),c=-8/19+9/59*I,n=48 4032553912147336 r009 Re(z^3+c),c=-8/19+9/59*I,n=49 4032553914449813 r002 63th iterates of z^2 + 4032553927372381 m009 (6*Psi(1,3/4)-1/5)/(8/3*Catalan+1/3*Pi^2-2) 4032553931867824 m001 1/GAMMA(17/24)/GAMMA(1/6)/ln(cos(Pi/12)) 4032553934139701 p003 LerchPhi(1/3,4,100/79) 4032553936070427 r009 Re(z^3+c),c=-8/19+9/59*I,n=54 4032553938795820 r009 Re(z^3+c),c=-8/19+9/59*I,n=50 4032553938918102 r009 Re(z^3+c),c=-8/19+9/59*I,n=55 4032553939316107 r009 Re(z^3+c),c=-8/19+9/59*I,n=53 4032553940265484 r009 Re(z^3+c),c=-8/19+9/59*I,n=59 4032553940371444 r009 Re(z^3+c),c=-8/19+9/59*I,n=60 4032553940822416 r009 Re(z^3+c),c=-8/19+9/59*I,n=64 4032553940878062 r009 Re(z^3+c),c=-8/19+9/59*I,n=61 4032553940998715 r009 Re(z^3+c),c=-8/19+9/59*I,n=63 4032553941111757 r009 Re(z^3+c),c=-8/19+9/59*I,n=62 4032553941192085 r009 Re(z^3+c),c=-8/19+9/59*I,n=58 4032553942084953 r009 Re(z^3+c),c=-8/19+9/59*I,n=56 4032553942266954 p001 sum((-1)^n/(373*n+247)/(100^n),n=0..infinity) 4032553942491441 r009 Re(z^3+c),c=-8/19+9/59*I,n=57 4032553943466862 r008 a(0)=4,K{-n^6,-74-32*n^3-24*n^2+99*n} 4032553949000573 r009 Re(z^3+c),c=-8/19+9/59*I,n=52 4032553953558146 r009 Re(z^3+c),c=-8/19+9/59*I,n=51 4032553954406918 r009 Im(z^3+c),c=-19/50+25/44*I,n=11 4032553959086143 r005 Im(z^2+c),c=13/56+12/35*I,n=36 4032553962685983 r009 Im(z^3+c),c=-3/10+5/12*I,n=29 4032553964824716 r008 a(0)=4,K{-n^6,2-42*n^3+44*n^2-35*n} 4032553964847352 r008 a(0)=4,K{-n^6,-16-39*n^3+26*n^2-2*n} 4032553966398000 r009 Re(z^3+c),c=-8/19+9/59*I,n=47 4032553969721330 m001 cos(1/5*Pi)/(ln(gamma)^FeigenbaumD) 4032553977422339 r005 Re(z^2+c),c=-53/94+4/49*I,n=42 4032553981145089 a001 54018521/144*144^(16/17) 4032553987127873 r008 a(0)=4,K{-n^6,-6-38*n^3+28*n^2-15*n} 4032553987391408 r005 Im(z^2+c),c=-3/4+11/211*I,n=53 4032553993075578 r009 Re(z^3+c),c=-8/19+9/59*I,n=45 4032553999752097 r002 16th iterates of z^2 + 4032554009469197 r002 39th iterates of z^2 + 4032554019231055 r008 a(0)=4,K{-n^6,10-37*n+33*n^2-37*n^3} 4032554031085507 r009 Re(z^3+c),c=-8/19+9/59*I,n=46 4032554038258275 r005 Im(z^2+c),c=11/98+23/52*I,n=29 4032554043789633 r008 a(0)=4,K{-n^6,-16-30*n^3-n^2+16*n} 4032554045181451 m008 (2/3*Pi^3+4)/(2*Pi^3-5/6) 4032554054167028 a007 Real Root Of -149*x^4-608*x^3-187*x^2-678*x-162 4032554058083118 a001 987/3010349*322^(5/6) 4032554066123071 r008 a(0)=4,K{-n^6,-32-25*n^3-24*n^2+50*n} 4032554072633751 m005 (1/2*3^(1/2)+3)/(4/11*2^(1/2)+4/9) 4032554074062734 r009 Re(z^3+c),c=-1/13+38/53*I,n=44 4032554103614952 m001 (Zeta(1,2)+GAMMA(13/24))/(3^(1/2)-gamma(2)) 4032554114377858 a007 Real Root Of 235*x^4+936*x^3-255*x^2-667*x+693 4032554119253527 r002 3th iterates of z^2 + 4032554124286184 r005 Im(z^2+c),c=-3/74+27/56*I,n=4 4032554127714081 r008 a(0)=4,K{-n^6,-20-38*n+31*n^2-5*n^3} 4032554134324145 r005 Re(z^2+c),c=-59/106+4/23*I,n=61 4032554136316321 r005 Im(z^2+c),c=-1/50+29/59*I,n=11 4032554147880064 m001 BesselK(1,1)^2*ln(Rabbit)^2/GAMMA(11/12) 4032554190987427 g001 GAMMA(4/7,73/98) 4032554201897305 m006 (1/4*Pi+2/3)/(3*ln(Pi)+1/6) 4032554202583182 r005 Im(z^2+c),c=-11/52+5/8*I,n=62 4032554204024463 s001 sum(exp(-2*Pi/5)^n*A023432[n],n=1..infinity) 4032554204024463 s002 sum(A023432[n]/(exp(2/5*pi*n)),n=1..infinity) 4032554235537190 r002 2th iterates of z^2 + 4032554244630551 r005 Re(z^2+c),c=-123/94+1/48*I,n=2 4032554257230236 r008 a(0)=4,K{-n^6,22-17*n^3-21*n^2-15*n} 4032554264752889 r005 Re(z^2+c),c=13/36+9/31*I,n=9 4032554276740493 r005 Re(z^2+c),c=-25/27+12/53*I,n=40 4032554295062868 a007 Real Root Of -172*x^4+13*x^3-536*x^2+632*x-164 4032554302768761 r002 23th iterates of z^2 + 4032554311371254 a001 2584/11*47^(8/57) 4032554312430075 l006 ln(7898/8223) 4032554321305947 a007 Real Root Of 89*x^4+183*x^3-555*x^2+811*x+761 4032554336715204 a007 Real Root Of 209*x^4+935*x^3+495*x^2+542*x+182 4032554347281612 r005 Im(z^2+c),c=-49/82+25/61*I,n=38 4032554349572813 r005 Re(z^2+c),c=-1/60+11/64*I,n=8 4032554357016030 r002 57th iterates of z^2 + 4032554359861421 m001 QuadraticClass^Backhouse*Otter^Backhouse 4032554360508293 r005 Re(z^2+c),c=-55/98+8/63*I,n=36 4032554368058603 r005 Re(z^2+c),c=-11/20+9/37*I,n=31 4032554368780532 r005 Im(z^2+c),c=8/25+15/61*I,n=62 4032554374109573 m005 (1/2*Catalan+1/4)/(3/7*Catalan-3/8) 4032554393226146 r005 Re(z^2+c),c=-17/30+8/105*I,n=17 4032554405828336 r005 Im(z^2+c),c=37/122+4/15*I,n=34 4032554410864331 m001 FeigenbaumAlpha*exp(Champernowne)^2/Kolakoski 4032554415443548 a007 Real Root Of 15*x^4-150*x^3-881*x^2-262*x-533 4032554416408375 r008 a(0)=4,K{-n^6,34-15*n-42*n^2-8*n^3} 4032554422129983 r005 Re(z^2+c),c=31/90+10/49*I,n=3 4032554424098828 s002 sum(A211292[n]/(pi^n-1),n=1..infinity) 4032554428030053 r009 Re(z^3+c),c=-8/19+9/59*I,n=41 4032554434199972 m001 Trott/(FibonacciFactorial+MinimumGamma) 4032554444798172 a007 Real Root Of 143*x^4+639*x^3+492*x^2+841*x-521 4032554455293886 a007 Real Root Of -222*x^4-792*x^3+500*x^2+479*x+570 4032554456375594 r005 Re(z^2+c),c=-14/27+9/23*I,n=53 4032554458483233 a007 Real Root Of -738*x^4+407*x^3-2*x^2+83*x+80 4032554464009244 m001 1/Rabbit^2/Backhouse^2/exp(Zeta(1/2)) 4032554464145351 r005 Re(z^2+c),c=-53/94+3/29*I,n=11 4032554468477309 m001 (ln(gamma)+CareFree)/(5^(1/2)-Si(Pi)) 4032554476240483 q001 1536/3809 4032554478621739 m001 sin(1/5*Pi)^gamma(2)-BesselK(1,1) 4032554486077996 m001 (Psi(2,1/3)-Si(Pi))/(-Shi(1)+Catalan) 4032554490463982 r005 Im(z^2+c),c=-1/90+21/40*I,n=61 4032554501485947 r005 Re(z^2+c),c=-15/28+9/29*I,n=43 4032554504047227 r009 Im(z^3+c),c=-11/64+25/34*I,n=22 4032554508553866 m001 1/sin(1)*Niven/ln(sqrt(1+sqrt(3))) 4032554514678157 r009 Im(z^3+c),c=-1/48+15/31*I,n=4 4032554547773416 r002 43th iterates of z^2 + 4032554552773541 r005 Re(z^2+c),c=8/29+1/28*I,n=43 4032554576241885 m001 (Pi^(1/2))^MasserGramain+Sierpinski 4032554582966904 r009 Re(z^3+c),c=-8/19+9/59*I,n=40 4032554592822828 a001 102334155/29*76^(9/16) 4032554608970711 m001 (Shi(1)+arctan(1/2))/(KhinchinLevy+Sierpinski) 4032554609559674 r008 a(0)=4,K{-n^6,56-n^3-52*n^2-34*n} 4032554612589199 m001 Paris*ln(Si(Pi))^2*OneNinth 4032554616098028 r005 Re(z^2+c),c=-69/122+7/33*I,n=22 4032554617235226 r002 24th iterates of z^2 + 4032554623543617 a001 12752043/1597*514229^(14/17) 4032554623549040 a001 3571/317811*6557470319842^(14/17) 4032554638306577 m001 (exp(Pi)+gamma(1))/(-ErdosBorwein+MertensB2) 4032554641163869 a001 15127/1597*1836311903^(14/17) 4032554642998231 r005 Im(z^2+c),c=1/98+22/43*I,n=57 4032554644592535 a007 Real Root Of 223*x^4+919*x^3+59*x^2-278*x-786 4032554647797103 r009 Im(z^3+c),c=-23/66+27/62*I,n=6 4032554654486639 m004 6+125*Pi+(6*Csc[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 4032554661615736 m009 (20/3*Catalan+5/6*Pi^2+3)/(1/2*Psi(1,1/3)-3/4) 4032554663171746 r005 Im(z^2+c),c=31/122+14/37*I,n=14 4032554665139589 a005 (1/cos(6/229*Pi))^1769 4032554685541394 m001 (5^(1/2)+Sarnak)^GAMMA(17/24) 4032554690848779 r005 Im(z^2+c),c=-17/62+14/29*I,n=4 4032554721215626 r009 Re(z^3+c),c=-8/19+9/59*I,n=31 4032554733658863 r005 Im(z^2+c),c=29/90+1/6*I,n=12 4032554735852246 a003 cos(Pi*11/50)*cos(Pi*29/60) 4032554735940503 r005 Re(z^2+c),c=-93/118+17/53*I,n=4 4032554742011832 r005 Im(z^2+c),c=3/74+30/61*I,n=43 4032554754043334 m006 (1/2*ln(Pi)-4/5)/(1/6*Pi^2+4) 4032554759123664 m005 (1/2*exp(1)+2/11)/(2/11*2^(1/2)+1/8) 4032554759715201 r009 Im(z^3+c),c=-13/82+5/11*I,n=8 4032554765190364 a001 646/1970299*322^(5/6) 4032554777290699 m001 exp(-1/2*Pi)-gamma(1)*FeigenbaumD 4032554786998467 a007 Real Root Of -460*x^4-365*x^3-933*x^2+683*x-26 4032554788172737 r009 Im(z^3+c),c=-25/56+21/61*I,n=25 4032554803496362 a007 Real Root Of -123*x^4-725*x^3-937*x^2-78*x-94 4032554811465874 a007 Real Root Of 908*x^4+681*x^3+798*x^2-823*x-441 4032554817591900 a007 Real Root Of 209*x^4+867*x^3+228*x^2+398*x-516 4032554820252348 a007 Real Root Of 177*x^4+730*x^3+165*x^2+410*x+35 4032554822592202 r005 Im(z^2+c),c=5/56+27/59*I,n=19 4032554848143758 r005 Im(z^2+c),c=-5/106+29/53*I,n=51 4032554856567730 r002 42th iterates of z^2 + 4032554868355920 a001 615/1875749*322^(5/6) 4032554883407572 a001 17711/54018521*322^(5/6) 4032554885603579 a001 11592/35355581*322^(5/6) 4032554885923972 a001 121393/370248451*322^(5/6) 4032554885970717 a001 317811/969323029*322^(5/6) 4032554885977536 a001 610/1860499*322^(5/6) 4032554885978531 a001 2178309/6643838879*322^(5/6) 4032554885978677 a001 5702887/17393796001*322^(5/6) 4032554885978698 a001 3732588/11384387281*322^(5/6) 4032554885978701 a001 39088169/119218851371*322^(5/6) 4032554885978701 a001 9303105/28374454999*322^(5/6) 4032554885978701 a001 66978574/204284540899*322^(5/6) 4032554885978701 a001 701408733/2139295485799*322^(5/6) 4032554885978701 a001 1836311903/5600748293801*322^(5/6) 4032554885978701 a001 1201881744/3665737348901*322^(5/6) 4032554885978701 a001 7778742049/23725150497407*322^(5/6) 4032554885978701 a001 2971215073/9062201101803*322^(5/6) 4032554885978701 a001 567451585/1730726404001*322^(5/6) 4032554885978701 a001 433494437/1322157322203*322^(5/6) 4032554885978701 a001 165580141/505019158607*322^(5/6) 4032554885978702 a001 31622993/96450076809*322^(5/6) 4032554885978703 a001 24157817/73681302247*322^(5/6) 4032554885978711 a001 9227465/28143753123*322^(5/6) 4032554885978766 a001 1762289/5374978561*322^(5/6) 4032554885979146 a001 1346269/4106118243*322^(5/6) 4032554885981751 a001 514229/1568397607*322^(5/6) 4032554885999606 a001 98209/299537289*322^(5/6) 4032554886121986 a001 75025/228826127*322^(5/6) 4032554886960785 a001 28657/87403803*322^(5/6) 4032554891006446 m005 (1/2*Pi-6)/(1/6+5/12*5^(1/2)) 4032554891848783 m001 TreeGrowth2nd^2/exp(RenyiParking)*BesselJ(1,1) 4032554892060509 r005 Im(z^2+c),c=-3/58+13/21*I,n=59 4032554892710005 a001 5473/16692641*322^(5/6) 4032554893633303 a001 9349/832040*6557470319842^(14/17) 4032554893634654 a001 33385282/4181*514229^(14/17) 4032554893991626 r005 Re(z^2+c),c=-17/30+1/94*I,n=28 4032554896203269 a001 39603/4181*1836311903^(14/17) 4032554899661155 h001 (-8*exp(2)-1)/(-5*exp(8)-2) 4032554904345799 r009 Im(z^3+c),c=-23/60+25/64*I,n=10 4032554904755785 m005 (29/36+1/4*5^(1/2))/(1/7*Zeta(3)+1/6) 4032554912730106 r005 Re(z^2+c),c=-43/78+12/55*I,n=59 4032554916574235 p004 log(20117/13441) 4032554932115741 a001 4181/12752043*322^(5/6) 4032554933038066 a001 24476/2178309*6557470319842^(14/17) 4032554933040408 a001 87403803/10946*514229^(14/17) 4032554933413019 a001 51841/5473*1836311903^(14/17) 4032554938787144 a001 64079/5702887*6557470319842^(14/17) 4032554938789631 a001 228826127/28657*514229^(14/17) 4032554938841848 a001 271443/28657*1836311903^(14/17) 4032554939625923 a001 167761/14930352*6557470319842^(14/17) 4032554939628431 a001 599074578/75025*514229^(14/17) 4032554939633904 a001 710647/75025*1836311903^(14/17) 4032554939748299 a001 439204/39088169*6557470319842^(14/17) 4032554939749463 a001 930249/98209*1836311903^(14/17) 4032554939750810 a001 1568397607/196418*514229^(14/17) 4032554939766153 a001 1149851/102334155*6557470319842^(14/17) 4032554939766323 a001 4870847/514229*1836311903^(14/17) 4032554939768665 a001 4106118243/514229*514229^(14/17) 4032554939768758 a001 3010349/267914296*6557470319842^(14/17) 4032554939768783 a001 12752043/1346269*1836311903^(14/17) 4032554939769138 a001 39604/3524667*6557470319842^(14/17) 4032554939769142 a001 16692641/1762289*1836311903^(14/17) 4032554939769194 a001 20633239/1836311903*6557470319842^(14/17) 4032554939769194 a001 87403803/9227465*1836311903^(14/17) 4032554939769202 a001 54018521/4807526976*6557470319842^(14/17) 4032554939769202 a001 228826127/24157817*1836311903^(14/17) 4032554939769203 a001 141422324/12586269025*6557470319842^(14/17) 4032554939769203 a001 299537289/31622993*1836311903^(14/17) 4032554939769203 a001 370248451/32951280099*6557470319842^(14/17) 4032554939769203 a001 1568397607/165580141*1836311903^(14/17) 4032554939769203 a001 969323029/86267571272*6557470319842^(14/17) 4032554939769203 a001 4106118243/433494437*1836311903^(14/17) 4032554939769203 a001 5374978561/567451585*1836311903^(14/17) 4032554939769203 a001 2537720636/225851433717*6557470319842^(14/17) 4032554939769203 a001 28143753123/2971215073*1836311903^(14/17) 4032554939769203 a001 73681302247/7778742049*1836311903^(14/17) 4032554939769203 a001 96450076809/10182505537*1836311903^(14/17) 4032554939769203 a001 505019158607/53316291173*1836311903^(14/17) 4032554939769203 a001 1322157322203/139583862445*1836311903^(14/17) 4032554939769203 a001 1730726404001/182717648081*1836311903^(14/17) 4032554939769203 a001 2139295485799/225851433717*1836311903^(14/17) 4032554939769203 a001 204284540899/21566892818*1836311903^(14/17) 4032554939769203 a001 312119004989/32951280099*1836311903^(14/17) 4032554939769203 a001 119218851371/12586269025*1836311903^(14/17) 4032554939769203 a001 11384387281/1201881744*1836311903^(14/17) 4032554939769203 a001 6643838879/591286729879*6557470319842^(14/17) 4032554939769203 a001 17393796001/1836311903*1836311903^(14/17) 4032554939769203 a001 10749957122/956722026041*6557470319842^(14/17) 4032554939769203 a001 4106118243/365435296162*6557470319842^(14/17) 4032554939769203 a001 6643838879/701408733*1836311903^(14/17) 4032554939769203 a001 1568397607/139583862445*6557470319842^(14/17) 4032554939769203 a001 634430159/66978574*1836311903^(14/17) 4032554939769203 a001 599074578/53316291173*6557470319842^(14/17) 4032554939769203 a001 969323029/102334155*1836311903^(14/17) 4032554939769203 a001 228826127/20365011074*6557470319842^(14/17) 4032554939769204 a001 370248451/39088169*1836311903^(14/17) 4032554939769204 a001 87403803/7778742049*6557470319842^(14/17) 4032554939769207 a001 35355581/3732588*1836311903^(14/17) 4032554939769207 a001 33385282/2971215073*6557470319842^(14/17) 4032554939769227 a001 54018521/5702887*1836311903^(14/17) 4032554939769228 a001 12752043/1134903170*6557470319842^(14/17) 4032554939769364 a001 20633239/2178309*1836311903^(14/17) 4032554939769373 a001 4870847/433494437*6557470319842^(14/17) 4032554939770303 a001 1970299/208010*1836311903^(14/17) 4032554939770368 a001 1860498/165580141*6557470319842^(14/17) 4032554939771270 a001 10749957122/1346269*514229^(14/17) 4032554939771650 a001 28143753123/3524578*514229^(14/17) 4032554939771706 a001 73681302247/9227465*514229^(14/17) 4032554939771714 a001 192900153618/24157817*514229^(14/17) 4032554939771715 a001 505019158607/63245986*514229^(14/17) 4032554939771715 a001 1322157322203/165580141*514229^(14/17) 4032554939771715 a001 3461452808002/433494437*514229^(14/17) 4032554939771715 a001 9062201101803/1134903170*514229^(14/17) 4032554939771715 a001 23725150497407/2971215073*514229^(14/17) 4032554939771715 a001 14662949395604/1836311903*514229^(14/17) 4032554939771715 a001 5600748293801/701408733*514229^(14/17) 4032554939771715 a001 2139295485799/267914296*514229^(14/17) 4032554939771715 a001 817138163596/102334155*514229^(14/17) 4032554939771716 a001 312119004989/39088169*514229^(14/17) 4032554939771719 a001 119218851371/14930352*514229^(14/17) 4032554939771740 a001 12752044/1597*514229^(14/17) 4032554939771885 a001 17393796001/2178309*514229^(14/17) 4032554939772880 a001 6643838879/832040*514229^(14/17) 4032554939776743 a001 3010349/317811*1836311903^(14/17) 4032554939777188 a001 710647/63245986*6557470319842^(14/17) 4032554939779700 a001 2537720636/317811*514229^(14/17) 4032554939820883 a001 1149851/121393*1836311903^(14/17) 4032554939823932 a001 271443/24157817*6557470319842^(14/17) 4032554939826445 a001 969323029/121393*514229^(14/17) 4032554940123421 a001 109801/11592*1836311903^(14/17) 4032554940144317 a001 103682/9227465*6557470319842^(14/17) 4032554940146838 a001 370248451/46368*514229^(14/17) 4032554942197050 a001 167761/17711*1836311903^(14/17) 4032554942340269 a001 39603/3524578*6557470319842^(14/17) 4032554942342845 a001 141422324/17711*514229^(14/17) 4032554942383670 r009 Im(z^3+c),c=-11/102+45/58*I,n=4 4032554944613738 r005 Im(z^2+c),c=-1/40+31/58*I,n=39 4032554955088681 m001 1/Porter^2*ln(CareFree)^2/sqrt(2) 4032554955661371 r002 57th iterates of z^2 + 4032554956409910 a001 64079/6765*1836311903^(14/17) 4032554957391549 a001 15127/1346269*6557470319842^(14/17) 4032554957394504 a001 54018521/6765*514229^(14/17) 4032554967036604 a001 38/98209*55^(31/53) 4032554970561154 r009 Im(z^3+c),c=-1/82+15/32*I,n=18 4032554992704296 r002 5th iterates of z^2 + 4032554995492213 a007 Real Root Of 618*x^4+328*x^3+378*x^2-153*x-118 4032555007929221 m001 (Pi-BesselI(0,2))/(ReciprocalLucas+ZetaP(3)) 4032555024706855 m003 73/2+Sqrt[5]/64+5*ProductLog[1/2+Sqrt[5]/2] 4032555030106584 m001 (sqrt(3)+exp(1/2))^ln(Pi) 4032555034091409 a007 Real Root Of -289*x^4-919*x^3+876*x^2-530*x-224 4032555053826304 a001 6119/646*1836311903^(14/17) 4032555055924460 r001 7i'th iterates of 2*x^2-1 of 4032555060554558 a001 5778/514229*6557470319842^(14/17) 4032555060560113 a001 20633239/2584*514229^(14/17) 4032555066223584 a007 Real Root Of 949*x^4-488*x^3-200*x^2-807*x-350 4032555084190053 r009 Im(z^3+c),c=-3/10+5/12*I,n=32 4032555092896367 m001 (Landau+Thue)/(Ei(1,1)-LambertW(1)) 4032555110213399 m001 (-Grothendieck+PlouffeB)/(Chi(1)-GaussAGM) 4032555117134953 r002 3th iterates of z^2 + 4032555120241803 m001 (MertensB3+ZetaP(3))/(Pi+Gompertz) 4032555128409550 h001 (9/11*exp(2)+2/3)/(6/11*exp(1)+2/11) 4032555129825589 m001 1/Riemann1stZero*ln(ErdosBorwein)*Zeta(3) 4032555131054341 m001 (-GAMMA(17/24)+1/3)/(-GAMMA(13/24)+4) 4032555135977476 m001 (-exp(1/Pi)+BesselJ(1,1))/(cos(1/5*Pi)-gamma) 4032555141461059 r005 Re(z^2+c),c=-39/70+11/56*I,n=18 4032555147316942 r008 a(0)=4,K{-n^6,-85-47*n^3+16*n^2+85*n} 4032555153063706 s001 sum(exp(-4*Pi/5)^n*A211840[n],n=1..infinity) 4032555155799223 r005 Re(z^2+c),c=-9/16+13/125*I,n=43 4032555159530147 a003 -1+cos(5/18*Pi)+2*cos(5/24*Pi)-cos(4/21*Pi) 4032555160219726 m001 1/ln((2^(1/3)))/Riemann1stZero*log(2+sqrt(3)) 4032555164367479 a007 Real Root Of -230*x^4+320*x^3-252*x^2+109*x+112 4032555165202193 m003 -Cosh[1/2+Sqrt[5]/2]+Sec[1/2+Sqrt[5]/2]/15 4032555171890779 r005 Im(z^2+c),c=23/102+15/43*I,n=42 4032555176070825 r005 Re(z^2+c),c=-53/94+4/49*I,n=60 4032555176116893 m001 (GAMMA(3/4)+GAMMA(13/24))/(ZetaQ(3)-ZetaQ(4)) 4032555182606456 a007 Real Root Of 543*x^4-684*x^3-496*x^2-322*x+241 4032555202206675 a001 1597/4870847*322^(5/6) 4032555203273710 a007 Real Root Of -601*x^4-3*x^3-974*x^2+466*x+362 4032555204133474 r005 Im(z^2+c),c=-3/62+14/25*I,n=31 4032555210481960 r002 35th iterates of z^2 + 4032555223924675 m005 (2/3*2^(1/2)+5/6)/(33/8+1/8*5^(1/2)) 4032555235465930 m009 (2/3*Psi(1,1/3)+4/5)/(5/2*Pi^2-6) 4032555238947775 a003 cos(Pi*7/30)-cos(Pi*30/77) 4032555239626882 m001 (Zeta(5)-exp(1/Pi))/Chi(1) 4032555258904843 a001 29/987*196418^(33/34) 4032555267954182 r005 Re(z^2+c),c=-17/32+13/38*I,n=47 4032555271932900 m001 (FeigenbaumB-TwinPrimes)/(Pi+GAMMA(5/6)) 4032555276219432 r005 Re(z^2+c),c=-22/17+1/21*I,n=34 4032555282555282 q001 1313/3256 4032555282671008 r008 a(0)=4,K{-n^6,-9-17*n+36*n^2-41*n^3} 4032555288172666 r008 a(0)=4,K{-n^6,1-42*n^3+44*n^2-34*n} 4032555296938843 r009 Im(z^3+c),c=-7/122+40/51*I,n=54 4032555297059870 a007 Real Root Of -226*x^4-706*x^3+982*x^2+565*x-224 4032555311746040 r009 Re(z^3+c),c=-65/122+6/43*I,n=55 4032555312613862 r002 24th iterates of z^2 + 4032555322403664 r008 a(0)=4,K{-n^6,7-39*n^3+38*n^2-37*n} 4032555332604310 r009 Im(z^3+c),c=-3/10+5/12*I,n=35 4032555340609978 r005 Re(z^2+c),c=-47/66+1/59*I,n=20 4032555343618294 m001 CareFree/Artin*exp(FeigenbaumD)^2 4032555345733604 m005 (1/2*2^(1/2)-5/11)/(3/5*2^(1/2)-2/9) 4032555346208446 m001 (Salem-TwinPrimes)/(ln(2)-BesselI(1,1)) 4032555346365952 r008 a(0)=4,K{-n^6,23-61*n+46*n^2-39*n^3} 4032555357465425 r002 47th iterates of z^2 + 4032555359639698 a001 199/3*987^(28/47) 4032555368198250 r008 a(0)=4,K{-n^6,7-27*n+23*n^2-34*n^3} 4032555368531079 r005 Im(z^2+c),c=1/66+21/41*I,n=27 4032555369280699 r005 Im(z^2+c),c=-24/29+1/40*I,n=16 4032555371363857 r008 a(0)=4,K{-n^6,15-41*n+30*n^2-35*n^3} 4032555374612161 r008 a(0)=4,K{-n^6,-13+11*n+n^2-30*n^3} 4032555379468447 r009 Im(z^3+c),c=-3/10+5/12*I,n=34 4032555381020132 r009 Im(z^3+c),c=-3/10+5/12*I,n=37 4032555382595026 r009 Im(z^3+c),c=-3/10+5/12*I,n=38 4032555388098338 r009 Im(z^3+c),c=-3/10+5/12*I,n=40 4032555388100336 r005 Im(z^2+c),c=19/64+11/51*I,n=10 4032555388426661 r005 Im(z^2+c),c=-75/94+11/62*I,n=11 4032555391203482 r009 Im(z^3+c),c=-3/10+5/12*I,n=43 4032555391398965 r009 Im(z^3+c),c=-3/10+5/12*I,n=41 4032555392212027 r009 Im(z^3+c),c=-3/10+5/12*I,n=46 4032555392495036 r009 Im(z^3+c),c=-3/10+5/12*I,n=49 4032555392566866 r009 Im(z^3+c),c=-3/10+5/12*I,n=52 4032555392583604 r009 Im(z^3+c),c=-3/10+5/12*I,n=55 4032555392587178 r009 Im(z^3+c),c=-3/10+5/12*I,n=58 4032555392587562 r009 Im(z^3+c),c=-3/10+5/12*I,n=57 4032555392587763 r009 Im(z^3+c),c=-3/10+5/12*I,n=60 4032555392587864 r009 Im(z^3+c),c=-3/10+5/12*I,n=61 4032555392587909 r009 Im(z^3+c),c=-3/10+5/12*I,n=63 4032555392587976 r009 Im(z^3+c),c=-3/10+5/12*I,n=64 4032555392588159 r009 Im(z^3+c),c=-3/10+5/12*I,n=62 4032555392588569 r009 Im(z^3+c),c=-3/10+5/12*I,n=54 4032555392588728 r009 Im(z^3+c),c=-3/10+5/12*I,n=59 4032555392590907 r009 Im(z^3+c),c=-3/10+5/12*I,n=56 4032555392598396 r009 Im(z^3+c),c=-3/10+5/12*I,n=53 4032555392600412 r009 Im(z^3+c),c=-3/10+5/12*I,n=51 4032555392604375 r009 Im(z^3+c),c=-3/10+5/12*I,n=44 4032555392620042 r009 Im(z^3+c),c=-3/10+5/12*I,n=50 4032555392661104 r009 Im(z^3+c),c=-3/10+5/12*I,n=47 4032555392678781 r009 Im(z^3+c),c=-3/10+5/12*I,n=48 4032555393103648 r009 Im(z^3+c),c=-3/10+5/12*I,n=45 4032555395150769 r009 Im(z^3+c),c=-3/10+5/12*I,n=42 4032555402935240 m001 ((1+3^(1/2))^(1/2)+Landau)^(Pi^(1/2)) 4032555404159336 r009 Im(z^3+c),c=-3/10+5/12*I,n=39 4032555407575261 r008 a(0)=4,K{-n^6,-35+58*n-31*n^2-23*n^3} 4032555408229283 m001 (Backhouse+Kac)/(Chi(1)-GAMMA(2/3)) 4032555409805706 b008 -5+Sqrt[Sech[E^(-1)]] 4032555410635986 r005 Im(z^2+c),c=-11/16+31/85*I,n=12 4032555415965305 a007 Real Root Of 54*x^4-839*x^3+916*x^2-614*x-453 4032555416932424 a007 Real Root Of 192*x^4-247*x^3+27*x^2-963*x-414 4032555420675477 m005 (1/2*Catalan-4/11)/(7/11*5^(1/2)+11/12) 4032555440592498 r009 Im(z^3+c),c=-3/10+5/12*I,n=36 4032555452827687 r009 Im(z^3+c),c=-17/64+23/61*I,n=2 4032555454788728 r005 Im(z^2+c),c=27/98+11/37*I,n=24 4032555463464278 a001 1/47*(1/2*5^(1/2)+1/2)^28*11^(9/22) 4032555494857255 r009 Im(z^3+c),c=-3/10+5/12*I,n=31 4032555498265819 p003 LerchPhi(1/6,2,347/213) 4032555520212049 m001 1/ln(Zeta(3))^2*Bloch/sin(Pi/5)^2 4032555523158132 r009 Re(z^3+c),c=-12/23+11/45*I,n=58 4032555534658107 r005 Im(z^2+c),c=-19/50+23/41*I,n=32 4032555558546462 r009 Im(z^3+c),c=-2/5+10/27*I,n=18 4032555561985710 m001 exp(BesselJ(0,1))^2*Rabbit^2/gamma 4032555571908698 r002 64th iterates of z^2 + 4032555574743017 r009 Im(z^3+c),c=-3/10+5/12*I,n=33 4032555581551475 r005 Im(z^2+c),c=-13/102+6/11*I,n=16 4032555590893157 r002 5th iterates of z^2 + 4032555601204431 a001 18*4181^(22/59) 4032555603258190 r002 43th iterates of z^2 + 4032555603434749 m001 PisotVijayaraghavan/(BesselK(1,1)+FeigenbaumD) 4032555607305102 r008 a(0)=4,K{-n^6,-11+48*n-58*n^2-10*n^3} 4032555611171859 r005 Re(z^2+c),c=-9/16+7/96*I,n=24 4032555616959979 m005 (1/2*gamma-7/11)/(5/11*gamma+3/5) 4032555634861624 r008 a(0)=4,K{-n^6,31-25*n-22*n^2-15*n^3} 4032555635083508 r008 a(0)=4,K{-n^6,-11+52*n-64*n^2-8*n^3} 4032555656720248 m002 2+Pi^5*Log[Pi]*Sinh[Pi]*Tanh[Pi] 4032555659655669 m005 (1/2*Pi+1/11)/(9/11*Zeta(3)-4/7) 4032555668906265 r004 Re(z^2+c),c=-19/34+1/23*I,z(0)=-1,n=15 4032555677810149 r002 39th iterates of z^2 + 4032555682310764 r002 9th iterates of z^2 + 4032555693708158 a004 Fibonacci(14)*Lucas(12)/(1/2+sqrt(5)/2)^31 4032555696869663 a001 1597/76*322^(22/43) 4032555698649865 r008 a(0)=4,K{-n^6,57-15*n^3-9*n^2-64*n} 4032555698675092 m001 (3^(1/2)+Niven)/(TreeGrowth2nd+ThueMorse) 4032555699529065 r005 Im(z^2+c),c=7/78+11/24*I,n=43 4032555707963622 r005 Im(z^2+c),c=-25/38+5/61*I,n=47 4032555716107377 a007 Real Root Of -533*x^4+505*x^3+310*x^2+666*x-338 4032555719136660 m005 (1/3*exp(1)-1/10)/(9/11*Pi-4/7) 4032555721528338 a001 9349/987*1836311903^(14/17) 4032555741823667 r009 Re(z^3+c),c=-8/19+9/59*I,n=36 4032555744525635 a001 10749957122/377*2^(1/2) 4032555745130771 a001 19/11592*28657^(5/57) 4032555745403201 s001 sum(exp(-3*Pi/4)^n*A051928[n],n=1..infinity) 4032555755078480 m001 Tribonacci*ln(GlaisherKinkelin)*log(1+sqrt(2)) 4032555755800505 m001 1/Salem^2/ln(Riemann2ndZero)^2/GAMMA(11/24) 4032555758293850 m001 (-cos(1/5*Pi)+TwinPrimes)/(cos(1)-gamma) 4032555763506151 r005 Re(z^2+c),c=-25/42+26/63*I,n=24 4032555764306919 r005 Re(z^2+c),c=-5/9+8/43*I,n=39 4032555767644338 a001 2207/196418*6557470319842^(14/17) 4032555767667859 a001 7881196/987*514229^(14/17) 4032555785718885 r005 Re(z^2+c),c=-63/118+17/59*I,n=26 4032555787253170 a007 Real Root Of -845*x^4+95*x^3+262*x^2+745*x+3 4032555798018719 r005 Re(z^2+c),c=-35/64+14/41*I,n=26 4032555815553206 m001 (Khinchin+MinimumGamma)/(cos(1/5*Pi)+Ei(1,1)) 4032555816692634 m002 -2/5-Tanh[Pi]/Pi^5 4032555826574858 a001 1/3*(1/2*5^(1/2)+1/2)^2*29^(5/11) 4032555826730488 r008 a(0)=4,K{-n^6,37-4*n^3-52*n^2-12*n} 4032555832890499 a001 377/18*322^(21/41) 4032555839849417 r002 64th iterates of z^2 + 4032555841289290 r005 Re(z^2+c),c=-29/50+7/47*I,n=9 4032555853061794 r002 54th iterates of z^2 + 4032555861435218 r002 18th iterates of z^2 + 4032555862134829 r005 Re(z^2+c),c=-23/42+25/64*I,n=45 4032555864076601 r005 Im(z^2+c),c=-27/110+3/52*I,n=6 4032555871526224 r002 5th iterates of z^2 + 4032555877828743 a007 Real Root Of 622*x^4+968*x^3+869*x^2-773*x-406 4032555893208310 a007 Real Root Of 856*x^4-19*x^3-304*x^2-109*x+72 4032555904061779 m009 (1/8*Pi^2+5/6)/(24*Catalan+3*Pi^2-1/3) 4032555907050190 m001 (ln(2)+MertensB3)/(Trott2nd+Weierstrass) 4032555908354261 m001 (ln(5)+GaussAGM(1,1/sqrt(2)))^exp(sqrt(2)) 4032555924111565 m002 1+(Pi^2*Log[Pi]*ProductLog[Pi])/4 4032555932518325 r009 Im(z^3+c),c=-65/126+6/23*I,n=35 4032555938273300 a001 322/317811*4181^(28/39) 4032555946101594 v002 sum(1/(5^n+(2*n^2+15*n+23)),n=1..infinity) 4032555947484901 r009 Re(z^3+c),c=-8/19+9/59*I,n=34 4032555950951320 r009 Im(z^3+c),c=-1/64+25/53*I,n=6 4032555967442237 m002 -Pi^4-Pi^5+2*Csch[Pi] 4032555969334904 r005 Re(z^2+c),c=-7/17+33/59*I,n=63 4032555984581220 r009 Im(z^3+c),c=-17/58+11/27*I,n=5 4032556001547421 r005 Im(z^2+c),c=-71/122+26/45*I,n=11 4032556007868753 r005 Im(z^2+c),c=7/44+13/32*I,n=36 4032556009676725 r009 Im(z^3+c),c=-3/10+5/12*I,n=30 4032556012081471 r002 26th iterates of z^2 + 4032556018799788 a001 228826127/610*514229^(12/17) 4032556018805620 a001 710647/610*1836311903^(12/17) 4032556019535504 a001 377/710647*18^(40/57) 4032556022762243 a007 Real Root Of -21*x^4-844*x^3+103*x^2-441*x+745 4032556026248135 a007 Real Root Of -987*x^4+374*x^3+750*x^2+557*x-345 4032556032254571 r002 40th iterates of z^2 + 4032556044084850 r005 Re(z^2+c),c=41/106+15/58*I,n=28 4032556054914967 m005 (1/3*gamma+1/8)/(5*2^(1/2)+4/5) 4032556056030061 a007 Real Root Of 9*x^4-166*x^3+489*x^2+22*x+465 4032556073630727 a007 Real Root Of -608*x^4-306*x^3-444*x^2+979*x+463 4032556085197411 r009 Im(z^3+c),c=-7/25+25/59*I,n=15 4032556128136585 a007 Real Root Of 774*x^4-727*x^3-285*x^2-445*x+253 4032556137769612 r005 Re(z^2+c),c=-15/16+29/127*I,n=30 4032556144176750 b008 E^6-2*Csch[Pi] 4032556157371380 a001 9349/34*196418^(13/59) 4032556166481623 a001 322/32951280099*89^(6/19) 4032556172864816 r009 Im(z^3+c),c=-23/40+6/29*I,n=2 4032556175559410 l006 ln(163/9194) 4032556177395178 m005 (7/6+1/4*5^(1/2))/(-13/48+5/16*5^(1/2)) 4032556195123433 m001 1/exp(cos(1))^2/Niven^2*sin(Pi/5)^2 4032556209930472 r009 Re(z^3+c),c=-41/78+2/9*I,n=31 4032556212438196 m001 ZetaP(2)^CareFree*ZetaP(2)^BesselJ(1,1) 4032556213794204 a007 Real Root Of 214*x^4+591*x^3-797*x^2+981*x-918 4032556222436621 l006 ln(6367/6629) 4032556227228293 m001 GlaisherKinkelin^ln(3)+exp(1) 4032556229677016 m005 (1/2*3^(1/2)+7/9)/(1/12*Catalan+4) 4032556236056325 r005 Im(z^2+c),c=-7/122+34/61*I,n=37 4032556238310218 r002 41th iterates of z^2 + 4032556239486615 a007 Real Root Of x^4+403*x^3-105*x^2-775*x-594 4032556271873568 a001 196418/199*11^(27/46) 4032556271888317 m005 (1/3*gamma+2/7)/(10/11*2^(1/2)-1/10) 4032556272334026 p003 LerchPhi(1/6,3,193/141) 4032556272545605 r005 Re(z^2+c),c=-59/110+11/36*I,n=45 4032556274173329 r002 24th iterates of z^2 + 4032556286706236 r002 55th iterates of z^2 + 4032556287519174 m002 5-Log[Pi]/ProductLog[Pi]+Log[Pi]*Sech[Pi] 4032556290836291 s001 sum(exp(-Pi/4)^(n-1)*A275936[n],n=1..infinity) 4032556301960417 m005 (1/2*Pi-2)/(5/6*gamma+7/12) 4032556304034288 m001 (GaussAGM+KhinchinLevy)/(3^(1/3)+FeigenbaumMu) 4032556316243535 a001 9062201101803/233*6557470319842^(4/17) 4032556323810381 a001 3/17711*4807526976^(16/21) 4032556328760968 r005 Im(z^2+c),c=-59/106+23/62*I,n=3 4032556328886178 r005 Re(z^2+c),c=-29/52+1/15*I,n=13 4032556330984546 m001 (cos(1/12*Pi)-Salem)/(ZetaQ(2)-ZetaQ(4)) 4032556336589618 m001 exp(Pi)^(Zeta(1,-1)*MadelungNaCl) 4032556340759395 m005 (1/2*Zeta(3)+6/7)/(47/198+1/18*5^(1/2)) 4032556340870688 r005 Im(z^2+c),c=-5/17+31/53*I,n=42 4032556341058439 m005 (1/2*Catalan-4/9)/(1/6*2^(1/2)-4/7) 4032556343236109 r005 Re(z^2+c),c=-13/10+12/245*I,n=38 4032556346534077 r002 23th iterates of z^2 + 4032556357601206 m006 (3*exp(Pi)-1/3)/(4/5*Pi-4/5) 4032556363695282 a007 Real Root Of -758*x^4+911*x^3+60*x^2+729*x+364 4032556392627037 r005 Im(z^2+c),c=1/24+28/57*I,n=55 4032556397684512 a007 Real Root Of 842*x^4-914*x^3+53*x^2-967*x+419 4032556401980891 m002 -Pi^4-Pi^5+(5*ProductLog[Pi])/Pi^3 4032556402754505 r005 Im(z^2+c),c=17/74+10/21*I,n=28 4032556405130563 a007 Real Root Of 305*x^4+209*x^3-286*x^2-695*x+305 4032556407628504 r009 Im(z^3+c),c=-9/74+27/58*I,n=5 4032556418547314 m001 (-GaussAGM+Thue)/(2*Pi/GAMMA(5/6)-Psi(2,1/3)) 4032556418793932 q001 109/2703 4032556418793932 r002 2th iterates of z^2 + 4032556427528068 m001 (3^(1/2)+ln(5))/(-Conway+Weierstrass) 4032556428040680 r002 49th iterates of z^2 + 4032556451850714 r009 Re(z^3+c),c=-45/86+19/52*I,n=18 4032556456500906 a007 Real Root Of 456*x^4-672*x^3-890*x^2-204*x+259 4032556456561611 r002 5th iterates of z^2 + 4032556457887511 a007 Real Root Of -803*x^4+774*x^3-49*x^2+873*x+432 4032556463924821 r009 Im(z^3+c),c=-3/10+5/12*I,n=28 4032556473695908 r002 57th iterates of z^2 + 4032556490677633 m005 (1/2*Catalan+4/7)/(2/5*Catalan-1/9) 4032556495065779 m001 (-Bloch+FeigenbaumDelta)/(gamma+arctan(1/2)) 4032556499482238 r009 Im(z^3+c),c=-41/110+11/25*I,n=6 4032556505278640 p001 sum(1/(386*n+25)/(8^n),n=0..infinity) 4032556509008833 b008 4+E^(-3*(-2+Pi)) 4032556513415651 r002 61th iterates of z^2 + 4032556522004953 a001 1/4*75025^(24/53) 4032556535166465 r005 Re(z^2+c),c=-67/126+8/19*I,n=53 4032556550679746 a007 Real Root Of -103*x^4-546*x^3-730*x^2-789*x+122 4032556551591658 r002 52th iterates of z^2 + 4032556563917038 r005 Re(z^2+c),c=19/78+11/25*I,n=21 4032556577773145 r009 Im(z^3+c),c=-35/106+19/47*I,n=14 4032556582920195 a001 521/610*21^(26/51) 4032556600588709 m005 (1/2*3^(1/2)-6)/(9/10*3^(1/2)-2/7) 4032556604181409 r008 a(0)=4,K{-n^6,-74-32*n^3-23*n^2+98*n} 4032556625903425 r002 42th iterates of z^2 + 4032556628365640 m005 (1/3*exp(1)-1/6)/(6/11*3^(1/2)+8/9) 4032556637053367 m001 (3^(1/3)-Zeta(1,-1))/(Conway+FeigenbaumD) 4032556637693552 r008 a(0)=4,K{-n^6,-38-34*n^3+n^2+40*n} 4032556646447155 r008 a(0)=4,K{-n^6,-18+10*n-44*n^2+19*n^3} 4032556647103951 m001 (sin(1/12*Pi)+FransenRobinson)/(Paris-Thue) 4032556660897966 r005 Re(z^2+c),c=-31/42+2/25*I,n=53 4032556667148270 r008 a(0)=4,K{-n^6,-37*n^3+29*n^2-23*n} 4032556670605215 a007 Real Root Of 648*x^4-948*x^3+620*x^2-761*x-487 4032556673901216 r005 Re(z^2+c),c=-39/74+9/25*I,n=23 4032556683413164 r002 34th iterates of z^2 + 4032556688029427 r005 Im(z^2+c),c=1/98+18/35*I,n=27 4032556698211628 r008 a(0)=4,K{-n^6,-16-31*n^3+3*n^2+13*n} 4032556711077867 r008 a(0)=4,K{-n^6,-14+12*n+n^2-30*n^3} 4032556729437487 m004 -1/6+125*Pi+Sqrt[5]*Pi*ProductLog[Sqrt[5]*Pi] 4032556731045124 r005 Im(z^2+c),c=17/126+17/40*I,n=45 4032556734374870 r005 Re(z^2+c),c=-67/122+7/30*I,n=63 4032556739220897 r009 Re(z^3+c),c=-12/25+5/23*I,n=25 4032556741044542 r008 a(0)=4,K{-n^6,-14+18*n-8*n^2-27*n^3} 4032556743561494 a007 Real Root Of 292*x^4+980*x^3-901*x^2-554*x-534 4032556744512818 r008 a(0)=4,K{-n^6,-36+59*n-31*n^2-23*n^3} 4032556775042551 m001 1/BesselK(0,1)*Niven*ln(GAMMA(1/24))^2 4032556777133776 a001 233/103682*322^(1/2) 4032556790905667 r005 Im(z^2+c),c=3/74+27/53*I,n=20 4032556791723655 r002 58th iterates of z^2 + 4032556805348028 m001 Gompertz/(MertensB1^Pi) 4032556813080671 r005 Re(z^2+c),c=7/66+27/46*I,n=6 4032556817564766 r002 47th iterates of z^2 + 4032556828977286 r009 Re(z^3+c),c=-7/94+41/60*I,n=40 4032556846693896 a001 2207/610*6557470319842^(12/17) 4032556850770802 r009 Re(z^3+c),c=-5/74+18/31*I,n=20 4032556858645034 r002 13th iterates of z^2 + 4032556861746181 r009 Re(z^3+c),c=-1/22+11/50*I,n=3 4032556863270348 r009 Re(z^3+c),c=-11/26+29/48*I,n=4 4032556896464711 a001 121393/199*123^(27/31) 4032556901202057 r005 Im(z^2+c),c=-41/60+2/9*I,n=17 4032556905483325 m001 (ln(2+3^(1/2))-FeigenbaumB)/(Kac+Stephens) 4032556941371392 m001 gamma^BesselI(1,2)/MertensB2 4032556946655012 r005 Re(z^2+c),c=-57/94+4/17*I,n=20 4032556948844226 m001 exp(GAMMA(7/12))^2/GolombDickman^2*exp(1)^2 4032556951375783 r004 Im(z^2+c),c=-1/26+13/24*I,z(0)=I,n=58 4032556960374223 r002 28th iterates of z^2 + 4032556967743470 m001 exp(BesselJ(0,1))^2/Trott^2*GAMMA(23/24) 4032556985424781 r005 Im(z^2+c),c=17/56+16/59*I,n=28 4032557011535002 m001 (2^(1/2)+GAMMA(19/24))/(-Cahen+ZetaQ(4)) 4032557018648786 a007 Real Root Of 182*x^4+587*x^3-775*x^2-767*x-125 4032557036222086 a007 Real Root Of -261*x^4-993*x^3+211*x^2-227*x-445 4032557040380698 a007 Real Root Of 408*x^4-173*x^3+827*x^2-425*x-328 4032557040685660 r002 59th iterates of z^2 + 4032557040829649 r009 Im(z^3+c),c=-1/82+15/32*I,n=20 4032557043165115 a007 Real Root Of 997*x^4+480*x^3-754*x^2-516*x+22 4032557052784730 v002 sum(1/(2^n*(35/2*n^2+9/2*n-8)),n=1..infinity) 4032557053437478 a001 305/930249*322^(5/6) 4032557074456419 l006 ln(121/6825) 4032557076626286 m002 -3+5*Pi^2-6*Coth[Pi] 4032557082942016 r005 Re(z^2+c),c=-19/28+7/33*I,n=41 4032557086562241 m001 (-FeigenbaumC+GaussAGM)/(2^(1/2)+Shi(1)) 4032557093442161 a007 Real Root Of 50*x^4-204*x^3-473*x^2-930*x+464 4032557094055172 r008 a(0)=4,K{-n^6,34-16*n-41*n^2-8*n^3} 4032557101058596 r005 Re(z^2+c),c=-49/86+4/45*I,n=17 4032557101557241 r005 Re(z^2+c),c=-29/54+16/47*I,n=37 4032557129822294 r009 Im(z^3+c),c=-3/10+5/12*I,n=27 4032557137641084 r005 Re(z^2+c),c=13/44+19/48*I,n=44 4032557139505020 m004 -125*Pi-5*Pi*Cos[Sqrt[5]*Pi]+2/Log[Sqrt[5]*Pi] 4032557147981983 r002 13th iterates of z^2 + 4032557148305598 m008 (1/6*Pi^6+3)/(4*Pi^2+1) 4032557148506393 m001 (3^(1/2))^ZetaP(3)-ArtinRank2 4032557158202435 r005 Re(z^2+c),c=-41/74+11/56*I,n=61 4032557162138303 m003 3/2+(17*Sqrt[5])/64-(5*Sin[1/2+Sqrt[5]/2])/2 4032557172810768 r009 Re(z^3+c),c=-23/86+41/51*I,n=4 4032557175497687 a003 sin(Pi*9/65)*sin(Pi*13/32) 4032557188476806 r008 a(0)=4,K{-n^6,54-6*n^3-37*n^2-42*n} 4032557190792559 r002 33th iterates of z^2 + 4032557192154762 r005 Re(z^2+c),c=-67/122+10/43*I,n=48 4032557193225869 r002 16th iterates of z^2 + 4032557196293098 r005 Im(z^2+c),c=8/25+12/49*I,n=60 4032557202612444 a001 47/18*(1/2*5^(1/2)+1/2)^23*18^(7/23) 4032557218681344 m001 (sin(1/12*Pi)+Cahen)/(FeigenbaumMu-MertensB3) 4032557231868033 a007 Real Root Of -662*x^4-984*x^3-407*x^2+994*x+420 4032557232949076 a007 Real Root Of 88*x^4-49*x^3+351*x^2-363*x-209 4032557238375093 m001 (Psi(1,1/3)+1)/(ln(3)+(1+3^(1/2))^(1/2)) 4032557238908276 m001 1/FeigenbaumDelta/exp(Conway)/(3^(1/3)) 4032557241752741 m001 Riemann1stZero/(PrimesInBinary-BesselJ(0,1)) 4032557249445181 m001 (ln(Pi)-exp(-1/2*Pi))/(GAMMA(7/12)+Kolakoski) 4032557251044168 r005 Im(z^2+c),c=-19/14+19/199*I,n=10 4032557267957971 r005 Re(z^2+c),c=-17/31+5/21*I,n=43 4032557271533241 r009 Re(z^3+c),c=-25/38+29/50*I,n=3 4032557275029497 a001 10749957122/55*5^(9/20) 4032557277136722 m001 (3^(1/3))/Niven*exp(GAMMA(11/24))^2 4032557279555632 r002 46th iterates of z^2 + 4032557283466899 b008 13+Pi^2*ArcCosh[8] 4032557299191722 a001 987/4870847*322^(11/12) 4032557301278052 a007 Real Root Of -859*x^4+59*x^3-871*x^2+669*x+438 4032557306222988 a007 Real Root Of -307*x^4+740*x^3-736*x^2+329*x+309 4032557313123616 s002 sum(A010472[n]/(n!^3),n=1..infinity) 4032557319353226 r002 7th iterates of z^2 + 4032557321861871 r005 Im(z^2+c),c=5/66+22/47*I,n=52 4032557322621864 m001 LandauRamanujan^2/GolombDickman/exp(sin(1)) 4032557342932870 r002 3th iterates of z^2 + 4032557356197201 a007 Real Root Of -444*x^4+562*x^3-456*x^2-168*x+55 4032557359061246 m001 CareFree+Sierpinski^BesselI(0,1) 4032557361030827 a001 843/10946*1836311903^(16/17) 4032557362397576 b008 Sinh[5*FresnelS[4]] 4032557363589609 m001 (Paris+Robbin)/(Conway+LandauRamanujan2nd) 4032557364991883 r005 Im(z^2+c),c=1/122+19/31*I,n=62 4032557366790908 a001 64079/377*514229^(16/17) 4032557367762137 a001 843/24157817*6557470319842^(16/17) 4032557370339608 r009 Im(z^3+c),c=-37/106+35/46*I,n=8 4032557392816989 r005 Im(z^2+c),c=7/60+25/57*I,n=35 4032557437103157 r005 Im(z^2+c),c=5/98+16/33*I,n=25 4032557448882940 r002 43th iterates of z^2 + 4032557469216594 r005 Re(z^2+c),c=19/56+19/59*I,n=5 4032557477492055 m001 (ln(gamma)+gamma(3))/(ArtinRank2+TwinPrimes) 4032557481117573 p001 sum((-1)^n/(349*n+244)/(25^n),n=0..infinity) 4032557489543089 r005 Im(z^2+c),c=1/66+30/59*I,n=63 4032557489675575 a007 Real Root Of 366*x^4+170*x^3-328*x^2-979*x+40 4032557489974664 m001 (GaussAGM+ZetaP(4))/(1+2^(1/3)) 4032557496688566 r009 Im(z^3+c),c=-1/82+15/32*I,n=22 4032557500220328 a007 Real Root Of -53*x^4+34*x^3+913*x^2-521*x-703 4032557502241893 m001 ln(2+3^(1/2))*Weierstrass+Magata 4032557557926356 r005 Re(z^2+c),c=-37/98+33/52*I,n=55 4032557567934125 m005 (1/3*gamma-3/7)/(10/11*2^(1/2)-7/10) 4032557589003868 a001 47/144*144^(2/47) 4032557594186678 r005 Im(z^2+c),c=-11/58+13/22*I,n=39 4032557594876015 m001 (Totient+ZetaQ(2))/(BesselI(0,2)+Salem) 4032557595677832 r009 Im(z^3+c),c=-1/82+15/32*I,n=24 4032557595836679 m001 1/Kolakoski^2/Bloch*ln(sqrt(2))^2 4032557598693596 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)*Salem+ln(2^(1/2)+1) 4032557608583982 r001 50i'th iterates of 2*x^2-1 of 4032557616815678 r009 Im(z^3+c),c=-1/82+15/32*I,n=26 4032557616939780 r009 Im(z^3+c),c=-15/32*I,n=11 4032557621235964 r009 Im(z^3+c),c=-1/82+15/32*I,n=28 4032557622135501 r009 Im(z^3+c),c=-1/82+15/32*I,n=30 4032557622311824 r009 Im(z^3+c),c=-1/82+15/32*I,n=32 4032557622344509 r009 Im(z^3+c),c=-1/82+15/32*I,n=34 4032557622350024 r009 Im(z^3+c),c=-1/82+15/32*I,n=36 4032557622350763 r009 Im(z^3+c),c=-1/82+15/32*I,n=39 4032557622350771 r009 Im(z^3+c),c=-1/82+15/32*I,n=41 4032557622350788 r009 Im(z^3+c),c=-1/82+15/32*I,n=43 4032557622350789 r009 Im(z^3+c),c=-1/82+15/32*I,n=38 4032557622350796 r009 Im(z^3+c),c=-1/82+15/32*I,n=45 4032557622350799 r009 Im(z^3+c),c=-1/82+15/32*I,n=47 4032557622350800 r009 Im(z^3+c),c=-1/82+15/32*I,n=49 4032557622350800 r009 Im(z^3+c),c=-1/82+15/32*I,n=51 4032557622350800 r009 Im(z^3+c),c=-1/82+15/32*I,n=53 4032557622350800 r009 Im(z^3+c),c=-1/82+15/32*I,n=55 4032557622350800 r009 Im(z^3+c),c=-1/82+15/32*I,n=57 4032557622350800 r009 Im(z^3+c),c=-1/82+15/32*I,n=59 4032557622350800 r009 Im(z^3+c),c=-1/82+15/32*I,n=61 4032557622350800 r009 Im(z^3+c),c=-1/82+15/32*I,n=63 4032557622350800 r009 Im(z^3+c),c=-1/82+15/32*I,n=64 4032557622350800 r009 Im(z^3+c),c=-1/82+15/32*I,n=62 4032557622350800 r009 Im(z^3+c),c=-1/82+15/32*I,n=60 4032557622350800 r009 Im(z^3+c),c=-1/82+15/32*I,n=58 4032557622350800 r009 Im(z^3+c),c=-1/82+15/32*I,n=56 4032557622350800 r009 Im(z^3+c),c=-1/82+15/32*I,n=54 4032557622350800 r009 Im(z^3+c),c=-1/82+15/32*I,n=52 4032557622350800 r009 Im(z^3+c),c=-1/82+15/32*I,n=50 4032557622350801 r009 Im(z^3+c),c=-1/82+15/32*I,n=48 4032557622350802 r009 Im(z^3+c),c=-1/82+15/32*I,n=46 4032557622350807 r009 Im(z^3+c),c=-1/82+15/32*I,n=44 4032557622350819 r009 Im(z^3+c),c=-1/82+15/32*I,n=42 4032557622350839 r009 Im(z^3+c),c=-1/82+15/32*I,n=40 4032557622351001 r009 Im(z^3+c),c=-1/82+15/32*I,n=37 4032557622353132 r009 Im(z^3+c),c=-1/82+15/32*I,n=35 4032557622366769 r009 Im(z^3+c),c=-1/82+15/32*I,n=33 4032557622443345 r009 Im(z^3+c),c=-1/82+15/32*I,n=31 4032557622843826 r009 Im(z^3+c),c=-1/82+15/32*I,n=29 4032557624845700 r009 Im(z^3+c),c=-1/82+15/32*I,n=27 4032557634540385 r009 Im(z^3+c),c=-1/82+15/32*I,n=25 4032557636789514 m001 (ln(gamma)+FibonacciFactorial)/(Chi(1)+sin(1)) 4032557636913637 p004 log(29387/521) 4032557637314387 a007 Real Root Of -868*x^4-468*x^3+354*x^2+945*x-385 4032557652254817 r005 Re(z^2+c),c=-65/118+9/41*I,n=43 4032557662810209 a008 Real Root of (1+x-5*x^2-9*x^3) 4032557668241300 r002 11th iterates of z^2 + 4032557673591550 a003 sin(Pi*6/29)*sin(Pi*13/56) 4032557680389510 r009 Im(z^3+c),c=-1/82+15/32*I,n=23 4032557686344820 m001 (Pi^(1/2)+Artin)/(Psi(2,1/3)+Ei(1)) 4032557687358866 r005 Im(z^2+c),c=-5/8+8/107*I,n=33 4032557699119567 a007 Real Root Of 286*x^4+160*x^3+467*x^2-672*x-344 4032557700005779 r005 Im(z^2+c),c=23/122+11/29*I,n=23 4032557711991601 r002 52th iterates of z^2 + 4032557719510836 v002 sum(1/(3^n+(30*n^2-61*n+81)),n=1..infinity) 4032557720009981 m005 (1/2*2^(1/2)-3/8)/(1/11*Zeta(3)+5/7) 4032557730253855 r005 Re(z^2+c),c=-11/15+19/28*I,n=3 4032557739066514 r002 29th iterates of z^2 + 4032557761487222 m001 (2^(1/3)+cos(1/5*Pi))/(-Champernowne+ZetaP(3)) 4032557768307797 r005 Im(z^2+c),c=-101/102+21/55*I,n=5 4032557770382312 p004 log(32327/21599) 4032557772554165 a007 Real Root Of -454*x^4+87*x^3-148*x^2+420*x-139 4032557775914388 r009 Im(z^3+c),c=-9/26+18/31*I,n=8 4032557780018604 r008 a(0)=4,K{-n^6,-53-60*n^3+72*n^2+10*n} 4032557786098861 r002 58th iterates of z^2 + 4032557790079040 s002 sum(A085666[n]/(exp(n)),n=1..infinity) 4032557806638570 r005 Re(z^2+c),c=-69/122+1/32*I,n=55 4032557814328698 m005 (1/2*Pi+7/10)/(4/11*5^(1/2)-1/4) 4032557814472330 r002 48th iterates of z^2 + 4032557818358601 r005 Im(z^2+c),c=5/46+23/27*I,n=3 4032557820267374 m005 (1/2*5^(1/2)-5/11)/(5/9*Pi-1/10) 4032557821810413 a007 Real Root Of 49*x^4+33*x^3-623*x^2+46*x-477 4032557828223821 r008 a(0)=4,K{-n^6,-85-47*n^3+17*n^2+84*n} 4032557866948077 a007 Real Root Of -454*x^4+741*x^3+76*x^2+664*x+316 4032557870030973 a001 1860498/1597*1836311903^(12/17) 4032557870031961 a001 599074578/1597*514229^(12/17) 4032557872510732 r005 Re(z^2+c),c=-31/48+51/56*I,n=3 4032557872602403 a001 1/281*29^(31/43) 4032557886367674 r002 20th iterates of z^2 + 4032557890447155 a007 Real Root Of -273*x^4-998*x^3+336*x^2-279*x+158 4032557893219269 r009 Im(z^3+c),c=-1/82+15/32*I,n=21 4032557894181733 r005 Re(z^2+c),c=-47/82+19/44*I,n=47 4032557906441146 r009 Im(z^3+c),c=-25/48+7/27*I,n=40 4032557906705267 r005 Im(z^2+c),c=8/27+11/40*I,n=61 4032557906708916 r009 Im(z^3+c),c=-17/38+14/41*I,n=27 4032557921624982 m005 (1/3*Catalan-1/12)/(1/5*2^(1/2)-5/6) 4032557921759579 r005 Re(z^2+c),c=-29/52+8/49*I,n=55 4032557928502443 h001 (6/11*exp(2)+2/9)/(1/4*exp(1)+3/8) 4032557930055521 r002 55th iterates of z^2 + 4032557934861314 r008 a(0)=4,K{-n^6,-9-26*n+49*n^2-45*n^3} 4032557947695858 r005 Im(z^2+c),c=15/86+23/58*I,n=21 4032557952489775 r002 44th iterates of z^2 + 4032557953993487 r005 Im(z^2+c),c=-47/42+9/29*I,n=4 4032557957575213 r005 Re(z^2+c),c=-31/60+12/31*I,n=28 4032557959490973 r008 a(0)=4,K{-n^6,-27+13*n+22*n^2-39*n^3} 4032557964054689 a007 Real Root Of 131*x^4+743*x^3+715*x^2-472*x+551 4032557971464483 m005 (4/5*gamma+4)/(2/3*Catalan-1/2) 4032557977168848 m001 exp(BesselJ(0,1))^2/Magata^2/Pi^2 4032557983854245 a007 Real Root Of 553*x^4+122*x^3-279*x^2-938*x+401 4032557984218070 r002 61th iterates of z^2 + 4032557985208644 r008 a(0)=4,K{-n^6,-39-34*n^3+n^2+41*n} 4032557990818300 a001 5778/1597*6557470319842^(12/17) 4032558003663936 m001 Cahen*(GaussAGM-exp(-1/2*Pi)) 4032558006300061 a001 2584/12752043*322^(11/12) 4032558008959578 r008 a(0)=4,K{-n^6,7-39*n^3+39*n^2-38*n} 4032558019363804 p001 sum(1/(229*n+209)/n/(6^n),n=1..infinity) 4032558031227084 m001 (Mills+ReciprocalLucas)/(GolombDickman-Landau) 4032558039463687 p004 log(30971/20693) 4032558046504483 r008 a(0)=4,K{-n^6,25-63*n+45*n^2-38*n^3} 4032558046561554 r005 Im(z^2+c),c=9/98+27/59*I,n=26 4032558053499911 m005 (19/44+1/4*5^(1/2))/(7/11*exp(1)+8/11) 4032558061357346 r005 Re(z^2+c),c=-53/94+4/49*I,n=62 4032558066730680 r002 62th iterates of z^2 + 4032558090026965 r008 a(0)=4,K{-n^6,-15+19*n-8*n^2-27*n^3} 4032558094788328 a007 Real Root Of -19*x^4-745*x^3+841*x^2-552*x-568 4032558096278189 r005 Im(z^2+c),c=-9/56+31/52*I,n=40 4032558098325234 r009 Im(z^3+c),c=-6/17+25/38*I,n=43 4032558109465778 a001 6765/33385282*322^(11/12) 4032558124517453 a001 17711/87403803*322^(11/12) 4032558126713462 a001 46368/228826127*322^(11/12) 4032558127033856 a001 121393/599074578*322^(11/12) 4032558127080601 a001 317811/1568397607*322^(11/12) 4032558127087421 a001 832040/4106118243*322^(11/12) 4032558127088416 a001 987/4870846*322^(11/12) 4032558127088561 a001 5702887/28143753123*322^(11/12) 4032558127088582 a001 14930352/73681302247*322^(11/12) 4032558127088585 a001 39088169/192900153618*322^(11/12) 4032558127088586 a001 102334155/505019158607*322^(11/12) 4032558127088586 a001 267914296/1322157322203*322^(11/12) 4032558127088586 a001 701408733/3461452808002*322^(11/12) 4032558127088586 a001 1836311903/9062201101803*322^(11/12) 4032558127088586 a001 4807526976/23725150497407*322^(11/12) 4032558127088586 a001 2971215073/14662949395604*322^(11/12) 4032558127088586 a001 1134903170/5600748293801*322^(11/12) 4032558127088586 a001 433494437/2139295485799*322^(11/12) 4032558127088586 a001 165580141/817138163596*322^(11/12) 4032558127088586 a001 63245986/312119004989*322^(11/12) 4032558127088587 a001 24157817/119218851371*322^(11/12) 4032558127088595 a001 9227465/45537549124*322^(11/12) 4032558127088651 a001 3524578/17393796001*322^(11/12) 4032558127089031 a001 1346269/6643838879*322^(11/12) 4032558127091636 a001 514229/2537720636*322^(11/12) 4032558127109491 a001 196418/969323029*322^(11/12) 4032558127231870 a001 75025/370248451*322^(11/12) 4032558128070671 a001 28657/141422324*322^(11/12) 4032558133819900 a001 10946/54018521*322^(11/12) 4032558136695985 r008 a(0)=4,K{-n^6,49-61*n-53*n^2+38*n^3} 4032558136792856 r005 Re(z^2+c),c=-5/9-5/87*I,n=13 4032558139534883 q001 867/2150 4032558140121254 a001 4870847/4181*1836311903^(12/17) 4032558140123237 a001 1568397607/4181*514229^(12/17) 4032558140364609 r005 Im(z^2+c),c=-5/29+13/21*I,n=40 4032558141034378 r005 Re(z^2+c),c=-23/42+11/45*I,n=51 4032558157743888 a001 15127/4181*6557470319842^(12/17) 4032558172826163 r005 Im(z^2+c),c=-1/15+24/43*I,n=60 4032558173225697 a001 4181/20633239*322^(11/12) 4032558179526898 a001 12752043/10946*1836311903^(12/17) 4032558179529026 a001 4106118243/10946*514229^(12/17) 4032558181185045 s002 sum(A031689[n]/((pi^n+1)/n),n=1..infinity) 4032558182098005 a001 39603/10946*6557470319842^(12/17) 4032558185276104 a001 33385282/28657*1836311903^(12/17) 4032558185278253 a001 10749957122/28657*514229^(12/17) 4032558185651223 a001 103682/28657*6557470319842^(12/17) 4032558186114902 a001 87403803/75025*1836311903^(12/17) 4032558186117054 a001 28143753123/75025*514229^(12/17) 4032558186169631 a001 271443/75025*6557470319842^(12/17) 4032558186237281 a001 228826127/196418*1836311903^(12/17) 4032558186239433 a001 73681302247/196418*514229^(12/17) 4032558186245265 a001 710647/196418*6557470319842^(12/17) 4032558186255135 a001 599074578/514229*1836311903^(12/17) 4032558186256300 a001 1860498/514229*6557470319842^(12/17) 4032558186257288 a001 192900153618/514229*514229^(12/17) 4032558186257740 a001 1568397607/1346269*1836311903^(12/17) 4032558186257910 a001 4870847/1346269*6557470319842^(12/17) 4032558186258120 a001 4106118243/3524578*1836311903^(12/17) 4032558186258145 a001 12752043/3524578*6557470319842^(12/17) 4032558186258176 a001 10749957122/9227465*1836311903^(12/17) 4032558186258179 a001 33385282/9227465*6557470319842^(12/17) 4032558186258184 a001 28143753123/24157817*1836311903^(12/17) 4032558186258184 a001 87403803/24157817*6557470319842^(12/17) 4032558186258185 a001 73681302247/63245986*1836311903^(12/17) 4032558186258185 a001 228826127/63245986*6557470319842^(12/17) 4032558186258185 a001 192900153618/165580141*1836311903^(12/17) 4032558186258185 a001 599074578/165580141*6557470319842^(12/17) 4032558186258185 a001 505019158607/433494437*1836311903^(12/17) 4032558186258185 a001 1568397607/433494437*6557470319842^(12/17) 4032558186258185 a001 1322157322203/1134903170*1836311903^(12/17) 4032558186258185 a001 4106118243/1134903170*6557470319842^(12/17) 4032558186258185 a001 3461452808002/2971215073*1836311903^(12/17) 4032558186258185 a001 9062201101803/7778742049*1836311903^(12/17) 4032558186258185 a001 23725150497407/20365011074*1836311903^(12/17) 4032558186258185 a001 14662949395604/12586269025*1836311903^(12/17) 4032558186258185 a001 5600748293801/4807526976*1836311903^(12/17) 4032558186258185 a001 10749957122/2971215073*6557470319842^(12/17) 4032558186258185 a001 28143753123/7778742049*6557470319842^(12/17) 4032558186258185 a001 73681302247/20365011074*6557470319842^(12/17) 4032558186258185 a001 192900153618/53316291173*6557470319842^(12/17) 4032558186258185 a001 312119004989/86267571272*6557470319842^(12/17) 4032558186258185 a001 119218851371/32951280099*6557470319842^(12/17) 4032558186258185 a001 45537549124/12586269025*6557470319842^(12/17) 4032558186258185 a001 17393796001/4807526976*6557470319842^(12/17) 4032558186258185 a001 2139295485799/1836311903*1836311903^(12/17) 4032558186258185 a001 6643838879/1836311903*6557470319842^(12/17) 4032558186258185 a001 2537720636/701408733*6557470319842^(12/17) 4032558186258185 a001 817138163596/701408733*1836311903^(12/17) 4032558186258185 a001 969323029/267914296*6557470319842^(12/17) 4032558186258185 a001 312119004989/267914296*1836311903^(12/17) 4032558186258185 a001 370248451/102334155*6557470319842^(12/17) 4032558186258185 a001 119218851371/102334155*1836311903^(12/17) 4032558186258186 a001 141422324/39088169*6557470319842^(12/17) 4032558186258186 a001 45537549124/39088169*1836311903^(12/17) 4032558186258188 a001 54018521/14930352*6557470319842^(12/17) 4032558186258189 a001 17393796001/14930352*1836311903^(12/17) 4032558186258201 a001 20633239/5702887*6557470319842^(12/17) 4032558186258210 a001 6643838879/5702887*1836311903^(12/17) 4032558186258290 a001 7881196/2178309*6557470319842^(12/17) 4032558186258355 a001 2537720636/2178309*1836311903^(12/17) 4032558186258905 a001 3010349/832040*6557470319842^(12/17) 4032558186259350 a001 969323029/832040*1836311903^(12/17) 4032558186259893 a001 505019158607/1346269*514229^(12/17) 4032558186260273 a001 1322157322203/3524578*514229^(12/17) 4032558186260329 a001 3461452808002/9227465*514229^(12/17) 4032558186260337 a001 9062201101803/24157817*514229^(12/17) 4032558186260338 a001 23725150497407/63245986*514229^(12/17) 4032558186260339 a001 14662949395604/39088169*514229^(12/17) 4032558186260342 a001 5600748293801/14930352*514229^(12/17) 4032558186260363 a001 2139295485799/5702887*514229^(12/17) 4032558186260508 a001 817138163596/2178309*514229^(12/17) 4032558186261503 a001 28374454999/75640*514229^(12/17) 4032558186263120 a001 1149851/317811*6557470319842^(12/17) 4032558186266170 a001 370248451/317811*1836311903^(12/17) 4032558186268323 a001 119218851371/317811*514229^(12/17) 4032558186292010 a001 439204/121393*6557470319842^(12/17) 4032558186312915 a001 271444/233*1836311903^(12/17) 4032558186315068 a001 45537549124/121393*514229^(12/17) 4032558186490024 a001 167761/46368*6557470319842^(12/17) 4032558186633307 a001 54018521/46368*1836311903^(12/17) 4032558186635461 a001 17393796001/46368*514229^(12/17) 4032558186902717 r009 Im(z^3+c),c=-4/29+41/60*I,n=2 4032558187847233 a001 64079/17711*6557470319842^(12/17) 4032558188829308 a001 20633239/17711*1836311903^(12/17) 4032558188831471 a001 6643838879/17711*514229^(12/17) 4032558188865195 m001 (Rabbit+Robbin)/(FellerTornier-LaplaceLimit) 4032558190503194 m001 (1-FeigenbaumC)/(FibonacciFactorial+GaussAGM) 4032558191085306 r005 Im(z^2+c),c=25/78+14/55*I,n=33 4032558192923399 m005 (1/2*gamma+5)/(5/7*5^(1/2)-2/7) 4032558197149678 a001 24476/6765*6557470319842^(12/17) 4032558197649683 r005 Re(z^2+c),c=-11/20+7/31*I,n=43 4032558198752701 r008 a(0)=4,K{-n^6,13-13*n-9*n^2-22*n^3} 4032558203880925 a001 7881196/6765*1836311903^(12/17) 4032558203883143 a001 230701876/615*514229^(12/17) 4032558207257920 r005 Im(z^2+c),c=-9/82+34/59*I,n=44 4032558209066000 a001 521/75025*21^(26/45) 4032558234286335 r009 Im(z^3+c),c=-33/106+33/50*I,n=20 4032558241544740 r008 a(0)=4,K{-n^6,-45+35*n^3-52*n^2+32*n} 4032558244237072 r005 Im(z^2+c),c=-2/3+89/201*I,n=8 4032558260909587 a001 9349/2584*6557470319842^(12/17) 4032558268479910 m001 exp(BesselJ(1,1))/Bloch*GAMMA(3/4) 4032558271965594 m001 (StolarskyHarborth+ZetaQ(2))/(Pi+exp(-1/2*Pi)) 4032558275407997 r005 Im(z^2+c),c=21/118+20/49*I,n=16 4032558277127713 m001 1/Kolakoski^2*exp(FeigenbaumAlpha)^2*Niven 4032558282378743 l006 ln(6646/9947) 4032558288002542 r005 Im(z^2+c),c=3/94+13/25*I,n=14 4032558299074344 r009 Re(z^3+c),c=-12/29+9/62*I,n=13 4032558307046246 a001 3010349/2584*1836311903^(12/17) 4032558307048843 a001 969323029/2584*514229^(12/17) 4032558318581359 r008 a(0)=4,K{-n^6,-30-17*n^2+17*n^3+n} 4032558346852930 r005 Re(z^2+c),c=-35/62+1/15*I,n=47 4032558354012253 a001 1/322*(1/2*5^(1/2)+1/2)^23*3^(9/14) 4032558359038505 r002 55th iterates of z^2 + 4032558363489313 r005 Im(z^2+c),c=19/74+15/47*I,n=34 4032558376868554 r005 Re(z^2+c),c=-3/5+30/83*I,n=35 4032558379120459 r002 46th iterates of z^2 + 4032558391319392 r005 Im(z^2+c),c=-55/42+1/43*I,n=12 4032558396812658 r009 Im(z^3+c),c=-3/10+5/12*I,n=24 4032558400736267 m001 GAMMA(13/24)*ln((3^(1/3)))^2*GAMMA(2/3)^2 4032558416268670 m001 GolombDickman*Champernowne*ln(Lehmer) 4032558437163690 l006 ln(6495/9721) 4032558440730706 m006 (1/3*Pi^2+5/6)/(3*Pi+4/5) 4032558440730706 m008 (1/3*Pi^2+5/6)/(3*Pi+4/5) 4032558443317049 a001 1597/7881196*322^(11/12) 4032558449567470 a007 Real Root Of -158*x^4-675*x^3-424*x^2-936*x+638 4032558454589749 r002 18th iterates of z^2 + 4032558459240469 r002 48th iterates of z^2 + 4032558464860486 r005 Re(z^2+c),c=31/98+20/39*I,n=35 4032558465711966 m001 (exp(-1/2*Pi)+BesselI(0,2))/(Zeta(5)-ln(3)) 4032558470605001 r005 Re(z^2+c),c=-45/46+10/59*I,n=10 4032558474321464 r005 Re(z^2+c),c=-71/98+7/57*I,n=19 4032558477137795 m001 (Sarnak+ZetaP(3))/(Zeta(3)+GAMMA(23/24)) 4032558480363478 a007 Real Root Of -796*x^4-432*x^3+625*x^2+895*x+252 4032558495254609 r009 Im(z^3+c),c=-3/82+22/47*I,n=11 4032558498213378 r005 Im(z^2+c),c=21/118+17/32*I,n=41 4032558498485591 r005 Re(z^2+c),c=-69/122+1/32*I,n=36 4032558500557548 a007 Real Root Of 667*x^4-574*x^3-157*x^2-512*x+252 4032558515575057 m001 (GAMMA(3/4)-cos(1))/(GAMMA(11/12)+Cahen) 4032558517159544 r002 3th iterates of z^2 + 4032558523745444 m001 (Otter+Weierstrass)/(HardyLittlewoodC4+Landau) 4032558525731534 r002 15th iterates of z^2 + 4032558536096787 r005 Re(z^2+c),c=-15/26+20/119*I,n=17 4032558537266489 r005 Re(z^2+c),c=-11/20+35/61*I,n=31 4032558539092573 m001 TwinPrimes/(5^(1/2)+Riemann1stZero) 4032558539785048 m002 -4+Pi^3+Cosh[Pi]*Coth[Pi]*Log[Pi] 4032558544414980 p004 log(28711/19183) 4032558572052045 b005 Number DB table 4032558575738227 a007 Real Root Of -172*x^4-513*x^3+830*x^2+495*x+342 4032558583302561 m003 -1/4+3*Cos[1/2+Sqrt[5]/2]*Coth[1/2+Sqrt[5]/2] 4032558597361453 m001 Khinchin/(exp(-1/2*Pi)^sin(1/12*Pi)) 4032558597361453 m001 Khinchin/(exp(-1/2*Pi)^sin(Pi/12)) 4032558599317023 l006 ln(6344/9495) 4032558600407176 a007 Real Root Of 159*x^4-966*x^3-287*x^2-774*x-333 4032558615293863 m001 (ZetaP(3)-ZetaP(4))/(Pi-Rabbit) 4032558624659703 m006 (3/4*Pi^2+2/5)/(1/2*Pi^2-3) 4032558624659703 m008 (3/4*Pi^2+2/5)/(1/2*Pi^2-3) 4032558624659703 m009 (3/2*Pi^2+4/5)/(Pi^2-6) 4032558628620909 r002 44th iterates of z^2 + 4032558632334989 a007 Real Root Of 181*x^4-448*x^3-803*x^2-193*x+233 4032558632564295 r005 Im(z^2+c),c=-5/8+9/118*I,n=47 4032558632578097 p001 sum(1/(457*n+269)/(5^n),n=0..infinity) 4032558645452767 m001 (DuboisRaymond+ZetaP(3))/(Backhouse-cos(1)) 4032558647504688 m001 (ln(Pi)-Ei(1,1))/(Bloch+MasserGramainDelta) 4032558657560336 r005 Re(z^2+c),c=-61/110+5/26*I,n=61 4032558663076810 r002 52th iterates of z^2 + 4032558667210717 r002 61th iterates of z^2 + 4032558671315082 m001 RenyiParking/FibonacciFactorial*Robbin 4032558673131294 r002 6th iterates of z^2 + 4032558691110345 m001 (Psi(1,1/3)-ln(3))/(-arctan(1/3)+Paris) 4032558697926594 a001 3571/987*6557470319842^(12/17) 4032558712284685 r008 a(0)=4,K{-n^6,73+40*n^3-75*n^2-70*n} 4032558714685158 b008 Gamma[1+E^Pi] 4032558719205411 m005 (1/2*gamma-5/8)/(5/12*Zeta(3)+1/3) 4032558726666303 m005 (1/2*3^(1/2)+8/11)/(4*Zeta(3)-6/7) 4032558730631448 r005 Re(z^2+c),c=-9/16+7/67*I,n=33 4032558744632926 m001 1/RenyiParking^2*Conway^2*exp(Sierpinski) 4032558744951490 m001 (-LambertW(1)+Kolakoski)/(2^(1/3)-Psi(2,1/3)) 4032558752760167 a003 cos(Pi*5/83)/cos(Pi*35/83) 4032558756635301 r005 Im(z^2+c),c=-9/110+37/64*I,n=43 4032558760301355 r002 11th iterates of z^2 + 4032558762604012 a003 cos(Pi*1/35)/cos(Pi*45/107) 4032558764222776 s002 sum(A034203[n]/(exp(pi*n)-1),n=1..infinity) 4032558765974349 a007 Real Root Of -539*x^4+261*x^3+827*x^2+588*x+134 4032558769377717 l006 ln(6193/9269) 4032558775373115 r002 41th iterates of z^2 + 4032558781680647 m001 (-arctan(1/2)+GAMMA(17/24))/(1+Zeta(5)) 4032558819445831 r005 Re(z^2+c),c=-69/122+2/63*I,n=43 4032558819949264 m001 (BesselI(0,1)+Landau)/(TreeGrowth2nd+ZetaQ(3)) 4032558820690600 r005 Im(z^2+c),c=11/36+16/41*I,n=13 4032558826744541 a007 Real Root Of 77*x^4+373*x^3+497*x^2+859*x-520 4032558829818707 m001 1/GAMMA(1/12)/exp(FeigenbaumC)/sin(Pi/5)^2 4032558836222596 r005 Re(z^2+c),c=-23/24+1/20*I,n=12 4032558836683158 r008 a(0)=4,K{-n^6,7+31*n^3-14*n^2-54*n} 4032558848827145 r009 Re(z^3+c),c=-1/6+13/22*I,n=4 4032558848982313 m005 (1/2*Zeta(3)-2/11)/(1/30+9/20*5^(1/2)) 4032558860338973 m005 (1/2*gamma+4)/(5/8*Pi-9/10) 4032558863944716 r009 Im(z^3+c),c=-19/44+29/52*I,n=48 4032558866240694 r009 Im(z^3+c),c=-1/82+15/32*I,n=19 4032558866342345 r009 Re(z^3+c),c=-8/19+9/59*I,n=35 4032558869598810 r005 Re(z^2+c),c=-47/90+18/55*I,n=27 4032558893452138 m001 (2^(1/3)-GAMMA(2/3))/(-Bloch+FransenRobinson) 4032558905647191 r009 Im(z^3+c),c=-35/106+17/42*I,n=23 4032558907504912 m001 FransenRobinson/ln(FibonacciFactorial)/Magata 4032558915046873 m001 1/exp(ArtinRank2)/FransenRobinson/GAMMA(5/24) 4032558929140098 l006 ln(79/4456) 4032558947938628 l006 ln(6042/9043) 4032558978035476 r009 Im(z^3+c),c=-1/6+20/43*I,n=2 4032558988047793 r009 Im(z^3+c),c=-15/32+20/61*I,n=37 4032558996763706 r002 7th iterates of z^2 + 4032558998796211 h001 (-2*exp(2)+1)/(-3*exp(2)-12) 4032559004850555 m001 (BesselI(0,2)-Bloch)/(Paris-ZetaQ(2)) 4032559007017336 m001 1/TreeGrowth2nd/MinimumGamma^2*ln(cos(1))^2 4032559011079305 r009 Re(z^3+c),c=-12/25+19/53*I,n=8 4032559014152011 a001 1149851/987*1836311903^(12/17) 4032559014157214 a001 370248451/987*514229^(12/17) 4032559020827090 r005 Re(z^2+c),c=-55/114+21/44*I,n=39 4032559020915881 p003 LerchPhi(1/1024,3,120/191) 4032559023420589 r005 Re(z^2+c),c=-9/16+13/122*I,n=34 4032559027537726 m002 Pi/E^Pi+3*Cosh[Pi]^2 4032559064804509 r005 Re(z^2+c),c=-17/26+12/85*I,n=15 4032559075337539 m005 (1/3*gamma-1/3)/(6/7*gamma+3) 4032559075390193 r009 Im(z^3+c),c=-29/60+20/63*I,n=38 4032559090104649 r005 Im(z^2+c),c=-23/18+5/254*I,n=12 4032559090163930 m005 (1/3*5^(1/2)-2/3)/(11/12*3^(1/2)+4/11) 4032559094227781 a007 Real Root Of 319*x^4-430*x^3+125*x^2-258*x-161 4032559095269177 a001 123/139583862445*121393^(11/12) 4032559112975195 m005 (1/2*exp(1)-1)/(5/6*Zeta(3)-1/9) 4032559113662014 r002 35th iterates of z^2 + 4032559121849970 r002 61th iterates of z^2 + 4032559135653397 l006 ln(5891/8817) 4032559136977064 r008 a(0)=4,K{-n^6,-54-60*n^3+72*n^2+11*n} 4032559139027852 r008 a(0)=4,K{-n^6,-94-53*n^3+31*n^2+85*n} 4032559141376827 r005 Re(z^2+c),c=-39/82+17/37*I,n=28 4032559151949805 r009 Im(z^3+c),c=-55/106+7/45*I,n=23 4032559153366614 r002 25th iterates of z^2 + 4032559156649937 r002 22th iterates of z^2 + 4032559161931532 r005 Im(z^2+c),c=3/106+1/2*I,n=57 4032559167210519 m001 (Landau+OneNinth)/(gamma+Zeta(5)) 4032559181078514 r009 Im(z^3+c),c=-7/90+27/58*I,n=15 4032559188115265 r005 Re(z^2+c),c=-59/106+16/57*I,n=23 4032559189545597 r005 Re(z^2+c),c=-17/26+16/29*I,n=5 4032559191296410 r002 33i'th iterates of 2*x/(1-x^2) of 4032559194221748 r002 49th iterates of z^2 + 4032559195434197 m002 Pi^4+Pi^5-E^Pi*Csch[Pi]*Sech[Pi] 4032559197110046 m001 Zeta(1/2)^arctan(1/2)/Otter 4032559201462288 m002 -4/E^Pi+Pi^4+Pi^5 4032559205635639 a001 1/167761*7^(56/57) 4032559207589620 m001 (exp(1/Pi)+KhinchinHarmonic)^GAMMA(3/4) 4032559209641605 a007 Real Root Of 998*x^4-888*x^3-105*x^2-569*x-297 4032559218711996 r008 a(0)=4,K{-n^6,-10-35*n+2*n^2+14*n^3} 4032559221315606 a007 Real Root Of -97*x^4-426*x^3+56*x^2+842*x+200 4032559224969872 m001 FeigenbaumD^Champernowne*FeigenbaumMu 4032559226295533 m001 1/exp(Ei(1))^2*FeigenbaumKappa*log(2+sqrt(3)) 4032559228581609 m001 FibonacciFactorial/exp(Cahen)*Riemann3rdZero^2 4032559232358258 r005 Re(z^2+c),c=-51/98+7/20*I,n=32 4032559235586152 r005 Re(z^2+c),c=-45/94+23/49*I,n=34 4032559239975679 r002 9th iterates of z^2 + 4032559244840246 r005 Im(z^2+c),c=-11/46+25/42*I,n=46 4032559260105301 r005 Im(z^2+c),c=-1/94+23/36*I,n=58 4032559261385709 a005 (1/cos(4/199*Pi))^1853 4032559263538821 r005 Re(z^2+c),c=-17/30+23/105*I,n=18 4032559265287486 a001 87403803/610*1836311903^(10/17) 4032559265289280 a001 5374978561/305*514229^(10/17) 4032559265295471 a001 710647/610*6557470319842^(10/17) 4032559269656873 r009 Re(z^3+c),c=-55/114+11/50*I,n=33 4032559272796927 a007 Real Root Of 765*x^4-21*x^3+664*x^2-988*x-528 4032559298714695 m001 MinimumGamma/(Khinchin^Conway) 4032559321256664 r002 3th iterates of z^2 + 4032559323901398 r005 Im(z^2+c),c=17/48+11/63*I,n=49 4032559326352894 a003 cos(Pi*11/107)-sin(Pi*20/109) 4032559329114117 m004 -5+Csc[Sqrt[5]*Pi]-Log[Sqrt[5]*Pi]^(-1) 4032559333244444 l006 ln(5740/8591) 4032559337839957 r005 Re(z^2+c),c=-33/94+19/34*I,n=31 4032559338382405 m001 (gamma(3)+FeigenbaumAlpha)/(Mills-Tetranacci) 4032559341797937 l006 ln(4836/5035) 4032559344921411 r008 a(0)=4,K{-n^6,-16-38*n^3+25*n^2-2*n} 4032559345008584 r005 Re(z^2+c),c=-9/25+37/61*I,n=53 4032559345257017 s001 sum(exp(-Pi/2)^(n-1)*A149495[n],n=1..infinity) 4032559354505469 a007 Real Root Of 248*x^4-896*x^3+620*x^2-327*x-298 4032559360561553 m001 (GAMMA(13/24)-ErdosBorwein)/(GaussAGM-Trott) 4032559369041494 r008 a(0)=4,K{-n^6,6-39*n^3+39*n^2-37*n} 4032559380838003 q001 1511/3747 4032559403583453 r005 Im(z^2+c),c=-17/14+5/94*I,n=54 4032559420642887 a001 11/514229*121393^(37/44) 4032559423783313 r008 a(0)=4,K{-n^6,-14+11*n+2*n^2-30*n^3} 4032559430548233 r008 a(0)=4,K{-n^6,-16-29*n^3-2*n^2+16*n} 4032559432348447 a007 Real Root Of 338*x^4-455*x^3+799*x^2-705*x-453 4032559456156203 m008 (1/4*Pi^5+1)/(2*Pi^6-4/5) 4032559458372082 r008 a(0)=4,K{-n^6,-36+58*n-30*n^2-23*n^3} 4032559472034020 a007 Real Root Of 975*x^4-730*x^3+606*x^2+675*x+100 4032559474674144 r009 Im(z^3+c),c=-29/48+10/51*I,n=2 4032559488052801 m001 KomornikLoreti*(exp(1/Pi)+QuadraticClass) 4032559488519990 r005 Im(z^2+c),c=-8/7+40/123*I,n=4 4032559498951133 m005 (1/2*3^(1/2)-1/12)/(5/8*gamma-1/6) 4032559500857666 a001 89/64079*199^(7/11) 4032559501652418 m001 gamma^GAMMA(2/3)/(GAMMA(5/6)^GAMMA(2/3)) 4032559512445120 r009 Re(z^3+c),c=-11/42+60/61*I,n=11 4032559516118987 m001 (BesselK(0,1)-Si(Pi))/(Lehmer+Otter) 4032559516568575 r009 Im(z^3+c),c=-3/34+19/41*I,n=6 4032559534096896 m001 (Psi(1,1/3)+ErdosBorwein)/(-Otter+ZetaQ(2)) 4032559541512261 l006 ln(5589/8365) 4032559544070482 a007 Real Root Of 422*x^4-940*x^3+235*x^2+496*x+89 4032559576348896 r005 Re(z^2+c),c=-45/82+13/55*I,n=44 4032559588453409 r005 Re(z^2+c),c=-45/82+13/55*I,n=58 4032559591023242 a007 Real Root Of -566*x^4+43*x^3-170*x^2+666*x+314 4032559593762510 m001 cos(1)^Salem/Zeta(3) 4032559601891535 r002 14th iterates of z^2 + 4032559610013617 r002 14th iterates of z^2 + 4032559610507421 r002 3th iterates of z^2 + 4032559640715837 r005 Im(z^2+c),c=13/110+7/16*I,n=35 4032559649232523 r008 a(0)=4,K{-n^6,40-20*n^3-n^2-50*n} 4032559658557643 r005 Re(z^2+c),c=-19/122+33/52*I,n=23 4032559666157255 a007 Real Root Of -248*x^4+69*x^3+383*x^2+778*x-32 4032559666639788 a003 sin(Pi*17/99)*sin(Pi*25/87) 4032559683758040 r002 30th iterates of z^2 + 4032559693670775 m005 (5*Pi-3/5)/(5*Catalan-5/6) 4032559716872085 m001 (Gompertz+Grothendieck)/(sin(1/5*Pi)+gamma(3)) 4032559718008638 r008 a(0)=4,K{-n^6,35+35*n^3-39*n^2-60*n} 4032559723278407 r002 63th iterates of z^2 + 4032559727279190 a001 18/55*32951280099^(10/13) 4032559740698691 r002 10th iterates of z^2 + 4032559753453962 m001 ((1+3^(1/2))^(1/2))^cos(1/5*Pi)*Khinchin 4032559753453962 m001 Khinchin*sqrt(1+sqrt(3))^cos(Pi/5) 4032559761346254 l006 ln(5438/8139) 4032559775674045 r005 Re(z^2+c),c=-13/23+4/51*I,n=15 4032559787832302 a007 Real Root Of 207*x^4+906*x^3+423*x^2+728*x+730 4032559810243180 a007 Real Root Of 165*x^4-775*x^3+778*x^2-816*x+249 4032559812339965 m001 (gamma(2)-GAMMA(17/24))/(Kac+Sierpinski) 4032559813017604 m001 1/ln(Riemann1stZero)^2*Cahen*GAMMA(5/24) 4032559820674091 r008 a(0)=4,K{-n^6,58-61*n-16*n^2-12*n^3} 4032559826867067 r005 Im(z^2+c),c=-25/66+18/35*I,n=9 4032559830548768 a008 Real Root of x^4-x^3-21*x^2+16*x+76 4032559845190878 r005 Re(z^2+c),c=-4/7+15/109*I,n=19 4032559849220855 a008 Real Root of x^4-19*x^2-42*x+20 4032559851819606 a007 Real Root Of -134*x^4-334*x^3+730*x^2-567*x-625 4032559852156397 r002 63th iterates of z^2 + 4032559855359843 r005 Im(z^2+c),c=7/18+13/50*I,n=38 4032559857400661 a007 Real Root Of -962*x^4+787*x^3-135*x^2+99 4032559858992261 r005 Im(z^2+c),c=-5/6+7/206*I,n=3 4032559864456957 p003 LerchPhi(1/125,4,96/43) 4032559876995015 m001 (exp(1/exp(1))+Cahen*KomornikLoreti)/Cahen 4032559882741388 r005 Re(z^2+c),c=-53/94+4/49*I,n=64 4032559884668496 g003 Re(GAMMA(-227/60+I*(-49/12))) 4032559885285495 r005 Re(z^2+c),c=-51/94+14/51*I,n=51 4032559885572508 r002 46th iterates of z^2 + 4032559893983334 r002 42th iterates of z^2 + 4032559907505234 a007 Real Root Of -90*x^4-367*x^3-54*x^2-100*x+208 4032559908876475 a007 Real Root Of -15*x^4+190*x^3+778*x^2-874*x+250 4032559910025493 m001 (ln(gamma)+BesselI(0,2))/(Niven+Sierpinski) 4032559925035216 p003 LerchPhi(1/64,4,373/167) 4032559926066603 m001 (exp(Pi)+CareFree)/(-HeathBrownMoroz+Lehmer) 4032559930736694 r009 Im(z^3+c),c=-39/110+30/41*I,n=22 4032559948771004 r002 38th iterates of z^2 + 4032559958612508 m001 QuadraticClass/(Chi(1)+Riemann2ndZero) 4032559960441328 r005 Im(z^2+c),c=9/38+18/53*I,n=28 4032559990148054 m001 log(gamma)/(GAMMA(19/24)^GAMMA(11/24)) 4032559993659556 a007 Real Root Of -776*x^4+840*x^3-285*x^2+77*x+153 4032559993737431 l006 ln(5287/7913) 4032559994126894 a007 Real Root Of -398*x^4-534*x^3-798*x^2+530*x+319 4032559995732934 a001 29/55*34^(15/26) 4032560002620500 r005 Re(z^2+c),c=-19/36+23/61*I,n=35 4032560017237739 r005 Re(z^2+c),c=-51/94+14/53*I,n=33 4032560018763588 a001 233/167761*322^(7/12) 4032560037463972 r002 27th iterates of z^2 + 4032560045981351 a007 Real Root Of 492*x^4-550*x^3+705*x^2-700*x-446 4032560056990270 r008 a(0)=4,K{-n^6,21-57*n-34*n^2+40*n^3} 4032560065276916 a007 Real Root Of -119*x^4-553*x^3-403*x^2-527*x-367 4032560070158293 m001 (Chi(1)-HeathBrownMoroz)/(-Magata+MertensB3) 4032560097772841 r005 Re(z^2+c),c=-37/66+3/23*I,n=41 4032560105815366 r005 Re(z^2+c),c=-15/62+26/47*I,n=5 4032560108818754 r005 Re(z^2+c),c=-11/24+21/44*I,n=39 4032560119780984 r005 Re(z^2+c),c=-83/82+12/53*I,n=48 4032560121476011 a007 Real Root Of -240*x^4-713*x^3+895*x^2-508*x+107 4032560147332342 a007 Real Root Of -851*x^4+712*x^3-409*x^2+214*x+222 4032560151967823 r005 Im(z^2+c),c=21/110+20/53*I,n=23 4032560179631059 r002 17th iterates of z^2 + 4032560185750893 a007 Real Root Of -226*x^4+788*x^3+744*x^2+343*x-305 4032560201654625 r005 Re(z^2+c),c=-41/74+9/46*I,n=47 4032560209718338 r002 36th iterates of z^2 + 4032560210776597 m001 (1/2*Pi*2^(2/3)+2^(1/2))/gamma(2) 4032560214489333 r005 Re(z^2+c),c=-13/23+5/43*I,n=23 4032560227763194 m001 Si(Pi)^FransenRobinson-ln(5) 4032560229573134 m001 GAMMA(17/24)^2/FeigenbaumB^2*exp(sqrt(2))^2 4032560232214334 m001 Bloch/(Conway^Lehmer) 4032560233711885 r005 Im(z^2+c),c=9/122+20/43*I,n=20 4032560238182819 r008 a(0)=4,K{-n^6,-32+6*n-21*n^2+18*n^3} 4032560239793348 l006 ln(5136/7687) 4032560256172109 r008 a(0)=4,K{-n^6,-49+21*n^3-65*n^2+60*n} 4032560256567915 m001 GAMMA(5/6)^2*exp(PisotVijayaraghavan)*sin(1) 4032560257697907 m005 (1/3*gamma-1/4)/(5/11*2^(1/2)-1/2) 4032560276858173 r002 50th iterates of z^2 + 4032560285744468 r005 Im(z^2+c),c=1/13+25/42*I,n=55 4032560292837971 a003 cos(Pi*5/16)-cos(Pi*51/113) 4032560294550714 a001 610/3010349*322^(11/12) 4032560298032467 a001 3571/377*1836311903^(14/17) 4032560319815811 r005 Re(z^2+c),c=-63/122+21/53*I,n=58 4032560322847628 m001 (ln(gamma)-ln(2^(1/2)+1))/(Lehmer+Otter) 4032560336251434 r005 Im(z^2+c),c=-41/94+4/59*I,n=14 4032560337462479 a007 Real Root Of 235*x^4+743*x^3-750*x^2+461*x+635 4032560347768428 r005 Re(z^2+c),c=-63/118+15/49*I,n=26 4032560371461587 a001 10610209857723/29*7^(1/20) 4032560379704049 a008 Real Root of x^3-x^2+5*x+102 4032560385106332 h001 (-12*exp(3)-6)/(-11*exp(4)-12) 4032560393796132 m001 GAMMA(1/3)/ln(TreeGrowth2nd)/cos(Pi/5) 4032560408456714 a007 Real Root Of 256*x^4+811*x^3-758*x^2+429*x-458 4032560422824829 m001 (Catalan-ln(5))/(-exp(-1/2*Pi)+Tetranacci) 4032560425611616 a001 123/20365011074*8^(21/23) 4032560428453866 m001 GAMMA(1/6)^2/exp(Riemann3rdZero)/GAMMA(11/12) 4032560429807379 m005 (-29/44+1/4*5^(1/2))/(3*gamma+3/4) 4032560452391258 r005 Im(z^2+c),c=-11/94+26/43*I,n=60 4032560455125040 a007 Real Root Of -80*x^4+762*x^3+859*x^2+817*x-517 4032560465374655 m001 BesselI(0,2)+FransenRobinson*GolombDickman 4032560467215559 m001 Bloch*(PrimesInBinary+TreeGrowth2nd) 4032560474272194 m001 (Bloch+ZetaQ(2))/Conway 4032560474978122 b008 -13*Pi+Sech[Glaisher] 4032560479526040 m001 (ErdosBorwein+Niven)/(Ei(1,1)+BesselK(1,1)) 4032560482309138 a007 Real Root Of -70*x^4+76*x^3+867*x^2+823*x-476 4032560500755756 l006 ln(4985/7461) 4032560510930215 r002 28th iterates of z^2 + 4032560522385553 m001 BesselK(0,1)*(5^(1/2))^FransenRobinson 4032560522701714 m005 (17/20+1/4*5^(1/2))/(9/10*Pi+2/3) 4032560523096156 r005 Im(z^2+c),c=-55/102+2/41*I,n=9 4032560540303716 a004 Fibonacci(16)*Lucas(12)/(1/2+sqrt(5)/2)^33 4032560543984237 r002 19th iterates of z^2 + 4032560547102828 r005 Im(z^2+c),c=17/50+10/49*I,n=47 4032560551776279 r005 Im(z^2+c),c=-87/118+8/55*I,n=36 4032560556480535 r002 22th iterates of z^2 + 4032560558179475 r009 Im(z^3+c),c=-8/19+20/57*I,n=12 4032560577022623 r005 Re(z^2+c),c=-51/94+11/40*I,n=53 4032560582255256 r002 52th iterates of z^2 + 4032560588634248 r002 41i'th iterates of 2*x/(1-x^2) of 4032560599014505 a007 Real Root Of 717*x^4-x^3+17*x^2-3*x-23 4032560602055952 r005 Re(z^2+c),c=2/23+8/15*I,n=15 4032560613015789 h001 (1/9*exp(2)+3/10)/(8/9*exp(1)+4/11) 4032560614109790 a001 843/75025*6557470319842^(14/17) 4032560614263126 a001 3010349/377*514229^(14/17) 4032560624471523 a007 Real Root Of 853*x^4+693*x^3-776*x^2-945*x-232 4032560631843634 p004 log(37171/659) 4032560645965542 a001 11/10946*233^(13/51) 4032560656439987 m001 (-Lehmer+Porter)/(Backhouse-exp(Pi)) 4032560659844257 r008 a(0)=4,K{-n^6,9-49*n^3+71*n^2-62*n} 4032560671427320 a001 20633239/89*21^(2/11) 4032560673660558 r008 a(0)=4,K{-n^6,-17-43*n^3+40*n^2-11*n} 4032560676424227 r005 Re(z^2+c),c=-9/19+18/47*I,n=16 4032560685990734 r005 Re(z^2+c),c=-11/16+31/114*I,n=59 4032560711084117 r008 a(0)=4,K{-n^6,-9-17*n+35*n^2-40*n^3} 4032560715010315 a007 Real Root Of -897*x^4+866*x^3+354*x^2+358*x-235 4032560720110347 r008 a(0)=4,K{-n^6,-39-34*n^3+2*n^2+40*n} 4032560730879584 a007 Real Root Of 145*x^4+750*x^3+729*x^2+381*x+520 4032560741354990 a007 Real Root Of 181*x^4+676*x^3-89*x^2+486*x-127 4032560747119593 a007 Real Root Of 168*x^4+213*x^3+912*x^2-866*x-488 4032560762692612 r009 Im(z^3+c),c=-3/70+22/47*I,n=8 4032560778021559 l006 ln(4834/7235) 4032560791544130 h003 exp(Pi*(10^(1/7)+15^(1/12))) 4032560791544130 h008 exp(Pi*(10^(1/7)+15^(1/12))) 4032560795199733 r005 Im(z^2+c),c=-15/122+15/26*I,n=37 4032560805475550 r005 Im(z^2+c),c=17/126+17/40*I,n=52 4032560807238686 m001 cos(1/12*Pi)/(FransenRobinson-ThueMorse) 4032560808974330 r005 Re(z^2+c),c=23/114+16/33*I,n=10 4032560819000831 m001 1/GAMMA(17/24)^2/DuboisRaymond*exp(sin(Pi/12)) 4032560828502700 r008 a(0)=4,K{-n^6,-15+18*n-7*n^2-27*n^3} 4032560829801404 r002 11th iterates of z^2 + 4032560845611076 r002 43th iterates of z^2 + 4032560863763374 l006 ln(116/6543) 4032560865971811 m001 1/Lehmer*ln(FibonacciFactorial)^2/MadelungNaCl 4032560866138274 a001 329/620166*18^(40/57) 4032560870292824 r002 9th iterates of z^2 + 4032560875478362 m001 GAMMA(5/24)/GAMMA(5/6)/cos(Pi/12) 4032560876066006 m001 Landau/(KomornikLoreti-BesselJ(1,1)) 4032560881368174 r002 35th iterates of z^2 + 4032560886038630 b008 Sqrt[3]+(4*ArcSinh[E])/3 4032560892011964 a007 Real Root Of 981*x^4+739*x^3+495*x^2-806*x-383 4032560892288344 r008 a(0)=4,K{-n^6,-11-22*n^3-20*n^2+22*n} 4032560930551544 h001 (2/11*exp(1)+1/8)/(5/11*exp(1)+3/10) 4032560936632103 p001 sum(1/(106*n+25)/(24^n),n=0..infinity) 4032560945136444 a003 cos(Pi*39/107)*sin(Pi*28/65) 4032560958288266 r008 a(0)=4,K{-n^6,-21-15*n^3-46*n^2+51*n} 4032560963506112 r002 28th iterates of z^2 + 4032560973889413 a007 Real Root Of 660*x^4-516*x^3+538*x^2-437*x-315 4032560975089682 m001 1/ln(Salem)^2/Cahen^2*BesselJ(1,1) 4032560983677829 a001 9/4*610^(9/20) 4032560990819435 m001 ln(GlaisherKinkelin)^2*Bloch*sinh(1)^2 4032560994197604 h001 (1/4*exp(1)+4/11)/(7/11*exp(1)+6/7) 4032561002401365 r002 52th iterates of z^2 + 4032561008975654 m001 (2^(1/3))*exp(ErdosBorwein)^2/log(1+sqrt(2))^2 4032561024570426 r005 Re(z^2+c),c=-45/82+13/55*I,n=53 4032561029301310 r005 Re(z^2+c),c=-49/102+19/55*I,n=8 4032561035962719 r004 Re(z^2+c),c=-11/20+3/13*I,z(0)=-1,n=46 4032561036786741 a007 Real Root Of -220*x^4-700*x^3+715*x^2-134*x+106 4032561050506517 r002 48th iterates of z^2 + 4032561051972448 a001 322/1597*8^(1/3) 4032561051972448 q001 644/1597 4032561073167830 l006 ln(4683/7009) 4032561075568305 a007 Real Root Of -59*x^4+271*x^3-67*x^2+763*x-313 4032561077601459 a007 Real Root Of 46*x^4-35*x^3-782*x^2+607*x+705 4032561078957341 a007 Real Root Of 628*x^4-785*x^3-18*x^2-689*x-343 4032561095216313 r008 a(0)=4,K{-n^6,31-25*n-23*n^2-14*n^3} 4032561099172576 r005 Re(z^2+c),c=-69/122+1/32*I,n=57 4032561110872462 r008 a(0)=4,K{-n^6,37-14*n^3-20*n^2-34*n} 4032561115610491 m001 BesselK(0,1)-Si(Pi)*BesselJZeros(0,1) 4032561116521149 a001 228826127/1597*1836311903^(10/17) 4032561116522314 a001 1860498/1597*6557470319842^(10/17) 4032561116522943 a001 28143753123/1597*514229^(10/17) 4032561123638815 r009 Im(z^3+c),c=-49/110+10/29*I,n=25 4032561133463085 r009 Re(z^3+c),c=-14/31+8/43*I,n=25 4032561136979572 a005 (1/cos(7/128*Pi))^715 4032561150435038 r002 38th iterates of z^2 + 4032561165375997 r008 a(0)=4,K{-n^6,57-14*n^3-10*n^2-64*n} 4032561183465282 m005 (1/2*gamma+9/10)/(1/11*gamma-3) 4032561187025954 r002 54th iterates of z^2 + 4032561189074643 r002 64th iterates of z^2 + 4032561189811861 k002 Champernowne real with 1/2*n^2+567/2*n-244 4032561202744787 m001 (Tetranacci+ZetaQ(4))/(Zeta(3)-Sarnak) 4032561211658790 r005 Re(z^2+c),c=-17/32+29/61*I,n=25 4032561216032499 m005 (1/2*Zeta(3)-3)/(1/6*5^(1/2)+2/9) 4032561219003557 a007 Real Root Of 565*x^4+446*x^3+463*x^2-496*x-261 4032561228111223 r005 Im(z^2+c),c=11/114+29/62*I,n=8 4032561229274141 r005 Re(z^2+c),c=-13/23+3/50*I,n=31 4032561233682250 m001 exp(GAMMA(5/6))/BesselJ(0,1)/Zeta(9) 4032561245494845 m001 AlladiGrinstead/(PlouffeB^Zeta(1,2)) 4032561247412478 a004 Fibonacci(18)*Lucas(12)/(1/2+sqrt(5)/2)^35 4032561256265496 m008 (1/2*Pi^2-1)/(Pi^4+1/6) 4032561264083116 a007 Real Root Of -5*x^4+242*x^3-447*x^2+95*x+127 4032561266926001 r005 Re(z^2+c),c=-3/110+27/29*I,n=3 4032561273301706 a003 cos(Pi*7/80)*sin(Pi*15/109) 4032561277629230 r005 Re(z^2+c),c=-9/16+3/55*I,n=17 4032561290111921 k002 Champernowne real with n^2+282*n-243 4032561306880440 r008 a(0)=4,K{-n^6,37-3*n^3-53*n^2-12*n} 4032561317863570 m001 (GAMMA(3/4)-LambertW(1))/(gamma(1)+Niven) 4032561321159888 m001 (sin(1/5*Pi)+DuboisRaymond)/(Magata-Porter) 4032561323351870 p004 log(34141/22811) 4032561350578256 a004 Fibonacci(20)*Lucas(12)/(1/2+sqrt(5)/2)^37 4032561354705185 m001 GAMMA(1/3)^2*HardHexagonsEntropy^2/ln(sqrt(2)) 4032561359130145 a007 Real Root Of -217*x^4-136*x^3-553*x^2+385*x+242 4032561359146503 m004 -4*Csch[Sqrt[5]*Pi]+4/(5*Log[Sqrt[5]*Pi]) 4032561365629940 a004 Fibonacci(22)*Lucas(12)/(1/2+sqrt(5)/2)^39 4032561367825952 a004 Fibonacci(24)*Lucas(12)/(1/2+sqrt(5)/2)^41 4032561368146345 a004 Fibonacci(26)*Lucas(12)/(1/2+sqrt(5)/2)^43 4032561368193090 a004 Fibonacci(28)*Lucas(12)/(1/2+sqrt(5)/2)^45 4032561368199910 a004 Fibonacci(30)*Lucas(12)/(1/2+sqrt(5)/2)^47 4032561368200905 a004 Fibonacci(32)*Lucas(12)/(1/2+sqrt(5)/2)^49 4032561368201050 a004 Fibonacci(34)*Lucas(12)/(1/2+sqrt(5)/2)^51 4032561368201071 a004 Fibonacci(36)*Lucas(12)/(1/2+sqrt(5)/2)^53 4032561368201075 a004 Fibonacci(38)*Lucas(12)/(1/2+sqrt(5)/2)^55 4032561368201075 a004 Fibonacci(40)*Lucas(12)/(1/2+sqrt(5)/2)^57 4032561368201075 a004 Fibonacci(42)*Lucas(12)/(1/2+sqrt(5)/2)^59 4032561368201075 a004 Fibonacci(44)*Lucas(12)/(1/2+sqrt(5)/2)^61 4032561368201075 a004 Fibonacci(46)*Lucas(12)/(1/2+sqrt(5)/2)^63 4032561368201075 a004 Fibonacci(48)*Lucas(12)/(1/2+sqrt(5)/2)^65 4032561368201075 a004 Fibonacci(50)*Lucas(12)/(1/2+sqrt(5)/2)^67 4032561368201075 a004 Fibonacci(52)*Lucas(12)/(1/2+sqrt(5)/2)^69 4032561368201075 a004 Fibonacci(54)*Lucas(12)/(1/2+sqrt(5)/2)^71 4032561368201075 a004 Fibonacci(56)*Lucas(12)/(1/2+sqrt(5)/2)^73 4032561368201075 a004 Fibonacci(58)*Lucas(12)/(1/2+sqrt(5)/2)^75 4032561368201075 a004 Fibonacci(60)*Lucas(12)/(1/2+sqrt(5)/2)^77 4032561368201075 a004 Fibonacci(62)*Lucas(12)/(1/2+sqrt(5)/2)^79 4032561368201075 a004 Fibonacci(64)*Lucas(12)/(1/2+sqrt(5)/2)^81 4032561368201075 a004 Fibonacci(66)*Lucas(12)/(1/2+sqrt(5)/2)^83 4032561368201075 a004 Fibonacci(68)*Lucas(12)/(1/2+sqrt(5)/2)^85 4032561368201075 a004 Fibonacci(70)*Lucas(12)/(1/2+sqrt(5)/2)^87 4032561368201075 a004 Fibonacci(72)*Lucas(12)/(1/2+sqrt(5)/2)^89 4032561368201075 a004 Fibonacci(74)*Lucas(12)/(1/2+sqrt(5)/2)^91 4032561368201075 a004 Fibonacci(76)*Lucas(12)/(1/2+sqrt(5)/2)^93 4032561368201075 a004 Fibonacci(78)*Lucas(12)/(1/2+sqrt(5)/2)^95 4032561368201075 a004 Fibonacci(80)*Lucas(12)/(1/2+sqrt(5)/2)^97 4032561368201075 a004 Fibonacci(82)*Lucas(12)/(1/2+sqrt(5)/2)^99 4032561368201075 a004 Fibonacci(83)*Lucas(12)/(1/2+sqrt(5)/2)^100 4032561368201075 a004 Fibonacci(81)*Lucas(12)/(1/2+sqrt(5)/2)^98 4032561368201075 a004 Fibonacci(79)*Lucas(12)/(1/2+sqrt(5)/2)^96 4032561368201075 a004 Fibonacci(77)*Lucas(12)/(1/2+sqrt(5)/2)^94 4032561368201075 a004 Fibonacci(75)*Lucas(12)/(1/2+sqrt(5)/2)^92 4032561368201075 a004 Fibonacci(73)*Lucas(12)/(1/2+sqrt(5)/2)^90 4032561368201075 a004 Fibonacci(71)*Lucas(12)/(1/2+sqrt(5)/2)^88 4032561368201075 a004 Fibonacci(69)*Lucas(12)/(1/2+sqrt(5)/2)^86 4032561368201075 a004 Fibonacci(67)*Lucas(12)/(1/2+sqrt(5)/2)^84 4032561368201075 a004 Fibonacci(65)*Lucas(12)/(1/2+sqrt(5)/2)^82 4032561368201075 a004 Fibonacci(63)*Lucas(12)/(1/2+sqrt(5)/2)^80 4032561368201075 a004 Fibonacci(61)*Lucas(12)/(1/2+sqrt(5)/2)^78 4032561368201075 a004 Fibonacci(59)*Lucas(12)/(1/2+sqrt(5)/2)^76 4032561368201075 a004 Fibonacci(57)*Lucas(12)/(1/2+sqrt(5)/2)^74 4032561368201075 a004 Fibonacci(55)*Lucas(12)/(1/2+sqrt(5)/2)^72 4032561368201075 a004 Fibonacci(53)*Lucas(12)/(1/2+sqrt(5)/2)^70 4032561368201075 a004 Fibonacci(51)*Lucas(12)/(1/2+sqrt(5)/2)^68 4032561368201075 a004 Fibonacci(49)*Lucas(12)/(1/2+sqrt(5)/2)^66 4032561368201075 a004 Fibonacci(47)*Lucas(12)/(1/2+sqrt(5)/2)^64 4032561368201075 a004 Fibonacci(45)*Lucas(12)/(1/2+sqrt(5)/2)^62 4032561368201075 a004 Fibonacci(43)*Lucas(12)/(1/2+sqrt(5)/2)^60 4032561368201075 a004 Fibonacci(41)*Lucas(12)/(1/2+sqrt(5)/2)^58 4032561368201075 a004 Fibonacci(39)*Lucas(12)/(1/2+sqrt(5)/2)^56 4032561368201076 a004 Fibonacci(37)*Lucas(12)/(1/2+sqrt(5)/2)^54 4032561368201085 a004 Fibonacci(35)*Lucas(12)/(1/2+sqrt(5)/2)^52 4032561368201140 a004 Fibonacci(33)*Lucas(12)/(1/2+sqrt(5)/2)^50 4032561368201520 a004 Fibonacci(31)*Lucas(12)/(1/2+sqrt(5)/2)^48 4032561368204125 a004 Fibonacci(29)*Lucas(12)/(1/2+sqrt(5)/2)^46 4032561368221980 a004 Fibonacci(27)*Lucas(12)/(1/2+sqrt(5)/2)^44 4032561368344359 a004 Fibonacci(25)*Lucas(12)/(1/2+sqrt(5)/2)^42 4032561368576199 a001 1/72*(1/2+1/2*5^(1/2))^7 4032561368576199 m005 (1/3*5^(1/2)+3/4)/(-3+3*5^(1/2)) 4032561369183161 a004 Fibonacci(23)*Lucas(12)/(1/2+sqrt(5)/2)^40 4032561373866169 g007 Psi(2,4/9)+2*Psi(2,2/9)-Psi(13/10) 4032561374901215 r005 Re(z^2+c),c=-25/38+9/32*I,n=27 4032561374932393 a004 Fibonacci(21)*Lucas(12)/(1/2+sqrt(5)/2)^38 4032561379580596 m001 ArtinRank2^(Porter/LandauRamanujan2nd) 4032561386612642 a001 599074578/4181*1836311903^(10/17) 4032561386612812 a001 4870847/4181*6557470319842^(10/17) 4032561386614436 a001 73681302247/4181*514229^(10/17) 4032561387981826 l006 ln(4532/6783) 4032561390411981 k002 Champernowne real with 3/2*n^2+561/2*n-242 4032561392322876 m008 (2/5*Pi^2-3)/(3/4*Pi^3+1/4) 4032561397495794 r002 55th iterates of z^2 + 4032561399103577 r002 4th iterates of z^2 + 4032561414338214 a004 Fibonacci(19)*Lucas(12)/(1/2+sqrt(5)/2)^36 4032561414733525 r009 Im(z^3+c),c=-51/122+15/26*I,n=58 4032561426018463 a001 1568397607/10946*1836311903^(10/17) 4032561426018488 a001 12752043/10946*6557470319842^(10/17) 4032561426020257 a001 96450076809/5473*514229^(10/17) 4032561430902644 m001 1/ln(FibonacciFactorial)*Zeta(1,2)^3 4032561431767695 a001 4106118243/28657*1836311903^(10/17) 4032561431767699 a001 33385282/28657*6557470319842^(10/17) 4032561431769489 a001 505019158607/28657*514229^(10/17) 4032561431923402 p004 log(15173/269) 4032561432606497 a001 10749957122/75025*1836311903^(10/17) 4032561432606497 a001 87403803/75025*6557470319842^(10/17) 4032561432608291 a001 1322157322203/75025*514229^(10/17) 4032561432728876 a001 28143753123/196418*1836311903^(10/17) 4032561432728876 a001 228826127/196418*6557470319842^(10/17) 4032561432730670 a001 1730726404001/98209*514229^(10/17) 4032561432746731 a001 73681302247/514229*1836311903^(10/17) 4032561432746731 a001 599074578/514229*6557470319842^(10/17) 4032561432748525 a001 9062201101803/514229*514229^(10/17) 4032561432749336 a001 192900153618/1346269*1836311903^(10/17) 4032561432749336 a001 1568397607/1346269*6557470319842^(10/17) 4032561432749716 a001 505019158607/3524578*1836311903^(10/17) 4032561432749716 a001 4106118243/3524578*6557470319842^(10/17) 4032561432749772 a001 1322157322203/9227465*1836311903^(10/17) 4032561432749772 a001 10749957122/9227465*6557470319842^(10/17) 4032561432749780 a001 3461452808002/24157817*1836311903^(10/17) 4032561432749780 a001 28143753123/24157817*6557470319842^(10/17) 4032561432749781 a001 9062201101803/63245986*1836311903^(10/17) 4032561432749781 a001 73681302247/63245986*6557470319842^(10/17) 4032561432749781 a001 23725150497407/165580141*1836311903^(10/17) 4032561432749781 a001 192900153618/165580141*6557470319842^(10/17) 4032561432749781 a001 505019158607/433494437*6557470319842^(10/17) 4032561432749781 a001 1322157322203/1134903170*6557470319842^(10/17) 4032561432749781 a001 3461452808002/2971215073*6557470319842^(10/17) 4032561432749781 a001 9062201101803/7778742049*6557470319842^(10/17) 4032561432749781 a001 5600748293801/4807526976*6557470319842^(10/17) 4032561432749781 a001 2139295485799/1836311903*6557470319842^(10/17) 4032561432749781 a001 817138163596/701408733*6557470319842^(10/17) 4032561432749781 a001 312119004989/267914296*6557470319842^(10/17) 4032561432749781 a001 14662949395604/102334155*1836311903^(10/17) 4032561432749781 a001 119218851371/102334155*6557470319842^(10/17) 4032561432749782 a001 5600748293801/39088169*1836311903^(10/17) 4032561432749782 a001 45537549124/39088169*6557470319842^(10/17) 4032561432749785 a001 2139295485799/14930352*1836311903^(10/17) 4032561432749785 a001 17393796001/14930352*6557470319842^(10/17) 4032561432749806 a001 817138163596/5702887*1836311903^(10/17) 4032561432749806 a001 6643838879/5702887*6557470319842^(10/17) 4032561432749951 a001 2537720636/2178309*6557470319842^(10/17) 4032561432749951 a001 312119004989/2178309*1836311903^(10/17) 4032561432750946 a001 969323029/832040*6557470319842^(10/17) 4032561432750946 a001 119218851371/832040*1836311903^(10/17) 4032561432751130 a001 23725150497407/1346269*514229^(10/17) 4032561432752740 a001 3665737348901/208010*514229^(10/17) 4032561432757766 a001 370248451/317811*6557470319842^(10/17) 4032561432757766 a001 45537549124/317811*1836311903^(10/17) 4032561432759560 a001 5600748293801/317811*514229^(10/17) 4032561432804511 a001 271444/233*6557470319842^(10/17) 4032561432804511 a001 17393796001/121393*1836311903^(10/17) 4032561432806305 a001 2139295485799/121393*514229^(10/17) 4032561433124903 a001 54018521/46368*6557470319842^(10/17) 4032561433124905 a001 6643838879/46368*1836311903^(10/17) 4032561433126699 a001 204284540899/11592*514229^(10/17) 4032561435320906 a001 20633239/17711*6557470319842^(10/17) 4032561435320916 a001 2537720636/17711*1836311903^(10/17) 4032561435322710 a001 1568437211/89*514229^(10/17) 4032561436997989 r008 a(0)=4,K{-n^6,59*n+8*n^2-19*n^3} 4032561442969332 p001 sum(1/(361*n+249)/(100^n),n=0..infinity) 4032561443471036 g001 GAMMA(4/5,89/109) 4032561450372535 a001 7881196/6765*6557470319842^(10/17) 4032561450372600 a001 969323029/6765*1836311903^(10/17) 4032561450374394 a001 119218851371/6765*514229^(10/17) 4032561451092623 a007 Real Root Of -846*x^4+660*x^3+445*x^2+477*x-20 4032561467496231 a008 Real Root of x^4-x^3-6*x^2-9*x-65 4032561471052094 h001 (5/7*exp(1)+7/8)/(8/9*exp(2)+5/12) 4032561471702931 r005 Re(z^2+c),c=-9/46+21/31*I,n=30 4032561471763815 m004 -4/(5*Log[Sqrt[5]*Pi])+4*Sech[Sqrt[5]*Pi] 4032561485900358 m005 (1/3*exp(1)-1/11)/(5/12*exp(1)+8/9) 4032561487625924 m001 (Backhouse-FellerTornier)/(Gompertz-Magata) 4032561487648477 a007 Real Root Of 214*x^4+790*x^3-177*x^2+634*x+650 4032561490712041 k002 Champernowne real with 2*n^2+279*n-241 4032561501781229 r005 Re(z^2+c),c=-71/126+2/25*I,n=32 4032561516618618 r005 Im(z^2+c),c=-2/29+23/41*I,n=47 4032561525864879 m001 (FellerTornier+TwinPrimes)/(Pi-CareFree) 4032561529225261 r008 a(0)=4,K{-n^6,-26+5*n^3+48*n^2-57*n} 4032561529381321 m001 (sin(1)+ln(Pi))/(FeigenbaumKappa+FeigenbaumMu) 4032561544574827 h001 (-8*exp(1)+3)/(-exp(1/2)-3) 4032561551297467 r009 Im(z^3+c),c=-12/29+19/49*I,n=10 4032561553537938 a001 3010349/2584*6557470319842^(10/17) 4032561553538383 a001 370248451/2584*1836311903^(10/17) 4032561553540178 a001 11384387281/646*514229^(10/17) 4032561555090644 a007 Real Root Of -775*x^4+293*x^3+523*x^2+747*x-385 4032561556388561 r005 Re(z^2+c),c=-13/24+16/57*I,n=56 4032561567671834 m001 1/sqrt(1+sqrt(3))^2/sin(Pi/5)*ln(sqrt(5))^2 4032561573248089 a001 2584/4870847*18^(40/57) 4032561591012101 k002 Champernowne real with 5/2*n^2+555/2*n-240 4032561596319225 a003 cos(Pi*6/61)*sin(Pi*16/115) 4032561602334660 r005 Im(z^2+c),c=1/126+31/61*I,n=22 4032561603516900 l005 sech(445/114) 4032561608150593 h001 (10/11*exp(2)+1/6)/(2/11*exp(2)+4/11) 4032561612097320 a003 sin(Pi*4/95)/cos(Pi*13/33) 4032561623807174 r005 Re(z^2+c),c=-7/10+73/249*I,n=37 4032561627817867 m001 FeigenbaumC*(ln(5)+Lehmer) 4032561629186973 m001 ArtinRank2-Ei(1,1)-ln(2^(1/2)+1) 4032561642137950 r005 Im(z^2+c),c=-35/114+43/60*I,n=8 4032561648035536 r002 62th iterates of z^2 + 4032561655684795 m001 (Pi^(1/2)+Artin)/(GAMMA(3/4)-ln(2)) 4032561667057328 r005 Re(z^2+c),c=-17/31+15/64*I,n=39 4032561672177522 a007 Real Root Of 47*x^4-305*x^3+6*x^2-804*x+342 4032561684429727 a004 Fibonacci(17)*Lucas(12)/(1/2+sqrt(5)/2)^34 4032561691312161 k002 Champernowne real with 3*n^2+276*n-239 4032561691814376 a007 Real Root Of 49*x^4+125*x^3-248*x^2+296*x+466 4032561692838868 m005 (1/2*3^(1/2)-7/9)/(1/8*Catalan-1/3) 4032561693289845 a001 1364/377*6557470319842^(12/17) 4032561695581908 r002 40th iterates of z^2 + 4032561697388414 a001 1/3010349*3^(3/17) 4032561712650625 m005 (1/5*exp(1)-1)/(3*gamma-3/5) 4032561724497209 l006 ln(4381/6557) 4032561776072588 r005 Re(z^2+c),c=-23/34+23/117*I,n=19 4032561777291299 h005 exp(cos(Pi*5/14)+sin(Pi*16/39)) 4032561781421195 l006 ln(8141/8476) 4032561784011154 a007 Real Root Of -400*x^4+304*x^3+548*x^2+961*x-486 4032561791612221 k002 Champernowne real with 7/2*n^2+549/2*n-238 4032561801982320 r005 Re(z^2+c),c=-37/70+13/53*I,n=12 4032561802087675 m001 (exp(1)+sin(1))/(-Tetranacci+Tribonacci) 4032561803365390 a001 969323029/144*144^(14/17) 4032561809041171 a001 6765/7*29^(14/33) 4032561818670136 m005 (1/2*Pi-8/9)/(5/12*Pi-3) 4032561826418214 r005 Im(z^2+c),c=25/122+16/31*I,n=50 4032561855423206 m003 -47/12+Sqrt[5]/64+6/ProductLog[1/2+Sqrt[5]/2] 4032561858236485 m001 (Chi(1)-ln(2)/ln(10))/(-Artin+Niven) 4032561858914260 m002 -5+Pi^3/E^Pi-Sinh[Pi]/Pi^3 4032561860093824 r005 Im(z^2+c),c=29/114+17/53*I,n=46 4032561862685038 l006 ln(153/8630) 4032561867679814 r009 Im(z^3+c),c=-7/29+25/57*I,n=8 4032561885045223 m008 (3*Pi^3-3/5)/(3/4*Pi^5-1/3) 4032561889762000 m001 MertensB1*(Kolakoski+RenyiParking) 4032561890197728 r008 a(0)=4,K{-n^6,-54-60*n^3+73*n^2+10*n} 4032561891912281 k002 Champernowne real with 4*n^2+273*n-237 4032561900102106 r005 Re(z^2+c),c=-71/126+5/57*I,n=45 4032561913077969 r009 Re(z^3+c),c=-11/24+4/25*I,n=10 4032561915482139 m005 (3/4*Catalan+1/4)/(2/5*2^(1/2)-1/3) 4032561923663766 r009 Re(z^3+c),c=-10/21+7/33*I,n=43 4032561938841192 a007 Real Root Of -680*x^4+713*x^3+622*x^2+740*x+262 4032561939856971 r005 Im(z^2+c),c=1/6+2/5*I,n=44 4032561952429086 a001 832040/843*76^(13/40) 4032561962031307 p004 log(19219/12841) 4032561974645598 m001 FeigenbaumD/exp(FeigenbaumC)^2*BesselJ(0,1)^2 4032561992212341 k002 Champernowne real with 9/2*n^2+543/2*n-236 4032562002311955 r005 Im(z^2+c),c=-49/106+32/63*I,n=13 4032562010265988 a001 1597/3010349*18^(40/57) 4032562013971784 m001 (HeathBrownMoroz-Rabbit)/(GAMMA(17/24)+Bloch) 4032562017299485 r005 Im(z^2+c),c=-27/70+10/21*I,n=6 4032562022504836 r005 Im(z^2+c),c=-17/14+7/115*I,n=56 4032562030451375 m001 1/Catalan^2*Si(Pi)*ln(sin(Pi/12))^2 4032562043694243 r009 Im(z^3+c),c=-4/17+7/16*I,n=14 4032562043759755 r008 a(0)=4,K{-n^6,8-49*n^3+71*n^2-61*n} 4032562053657425 r005 Re(z^2+c),c=-3/5+1/105*I,n=14 4032562059477801 r005 Re(z^2+c),c=-49/90+11/42*I,n=39 4032562063906382 r002 19th iterates of z^2 + 4032562066320438 m001 GAMMA(7/12)*FeigenbaumAlpha^Shi(1) 4032562079927918 m005 (1/2*5^(1/2)-3/11)/(1/6*gamma+2) 4032562080922227 r008 a(0)=4,K{-n^6,-74-31*n^3-24*n^2+98*n} 4032562085038028 l006 ln(4230/6331) 4032562092512401 k002 Champernowne real with 5*n^2+270*n-235 4032562093967371 a007 Real Root Of 58*x^4-287*x^3+328*x^2-630*x+218 4032562094237389 m001 exp(GAMMA(23/24))/ArtinRank2*Zeta(7) 4032562095607737 r008 a(0)=4,K{-n^6,-34+11*n-25*n^2+19*n^3} 4032562103771119 a007 Real Root Of -540*x^4+311*x^3+122*x^2+665*x+283 4032562104067116 a007 Real Root Of -76*x^4-332*x^3-216*x^2-358*x+395 4032562107898139 r008 a(0)=4,K{-n^6,-14-6*n+27*n^2-38*n^3} 4032562118520690 s001 sum(exp(-3*Pi)^(n-1)*A206413[n],n=1..infinity) 4032562118830467 r005 Re(z^2+c),c=-9/14+43/143*I,n=45 4032562126707821 r005 Im(z^2+c),c=43/118+7/57*I,n=11 4032562135856036 m001 (ln(Pi)+BesselI(1,1))/(Pi+ln(3)) 4032562136123827 r002 52th iterates of z^2 + 4032562170862517 a001 11/1597*53316291173^(4/9) 4032562172621368 r005 Im(z^2+c),c=-85/106+11/41*I,n=6 4032562177027678 b008 Sech[EllipticK[-1/30]] 4032562180774825 r008 a(0)=4,K{-n^6,-51+46*n-48*n^2+13*n^3} 4032562181789499 b008 1+39*Zeta[7] 4032562188790752 r009 Re(z^3+c),c=-29/60+15/37*I,n=11 4032562192812461 k002 Champernowne real with 11/2*n^2+537/2*n-234 4032562218647305 m001 (Kac+PlouffeB)/(2^(1/2)+ln(2+3^(1/2))) 4032562235815367 r005 Re(z^2+c),c=-5/66+21/22*I,n=8 4032562256110135 r002 56th iterates of z^2 + 4032562260644273 a001 1149851/987*6557470319842^(10/17) 4032562260647323 a001 141422324/987*1836311903^(10/17) 4032562260649118 a001 17393796001/987*514229^(10/17) 4032562270266269 m001 (3^(1/3)-ArtinRank2)/(Conway+Landau) 4032562279339429 r009 Im(z^3+c),c=-3/10+5/12*I,n=25 4032562293112521 k002 Champernowne real with 6*n^2+267*n-233 4032562300704913 r005 Im(z^2+c),c=-29/118+23/37*I,n=44 4032562302856756 r005 Re(z^2+c),c=-4/3+7/236*I,n=32 4032562303482482 a007 Real Root Of 505*x^4+673*x^3-214*x^2-976*x-328 4032562312469321 m006 (5/6*exp(2*Pi)-1/5)/(1/3/Pi+1) 4032562316247227 h001 (9/11*exp(2)+1/4)/(5/12*exp(1)+3/7) 4032562335328196 r005 Im(z^2+c),c=9/118+29/62*I,n=54 4032562336011035 r005 Re(z^2+c),c=-29/52+8/49*I,n=48 4032562337650657 a007 Real Root Of 989*x^4+698*x^3+425*x^2-770*x-360 4032562346538896 r008 a(0)=4,K{-n^6,-22-15*n^3-46*n^2+52*n} 4032562353537951 r005 Im(z^2+c),c=-1/36+35/48*I,n=3 4032562358688554 a001 41*14930352^(5/18) 4032562366948713 m001 FeigenbaumAlpha+Tribonacci^ArtinRank2 4032562367277420 m001 (2^(1/2)-BesselJ(0,1))/ln(5) 4032562367277420 m001 (BesselJ(0,1)-sqrt(2))/ln(5) 4032562373300432 a007 Real Root Of 647*x^4+56*x^3-483*x^2-933*x+434 4032562388384971 m001 (Porter+TwinPrimes)/(FeigenbaumMu+Niven) 4032562392653532 r009 Im(z^3+c),c=-51/110+7/22*I,n=17 4032562393412581 k002 Champernowne real with 13/2*n^2+531/2*n-232 4032562404007161 s002 sum(A188749[n]/(10^n+1),n=1..infinity) 4032562408599956 r002 49th iterates of z^2 + 4032562410420062 r008 a(0)=4,K{-n^6,24-23*n-14*n^2-18*n^3} 4032562415996309 r005 Im(z^2+c),c=5/46+30/61*I,n=14 4032562423426157 m002 -Pi^4-Pi^5+2*Sech[Pi] 4032562431002041 r002 9th iterates of z^2 + 4032562439140656 m001 Trott/(Paris^LambertW(1)) 4032562439982060 m005 (1/2*3^(1/2)+7/9)/(13/18+3/2*5^(1/2)) 4032562444830517 m001 (Gompertz-Tetranacci)/(Pi^(1/2)+GAMMA(7/12)) 4032562445205196 a001 1/5778*4^(36/59) 4032562450295673 r005 Im(z^2+c),c=-1/114+31/59*I,n=36 4032562468507682 a001 76/21*196418^(41/43) 4032562472272466 l006 ln(4079/6105) 4032562480359913 a001 11/10946*4052739537881^(4/9) 4032562482836506 r005 Im(z^2+c),c=-65/114+3/41*I,n=43 4032562487917405 r005 Re(z^2+c),c=-17/26+21/85*I,n=15 4032562488018992 m001 Ei(1)^FibonacciFactorial/Landau 4032562491765704 a007 Real Root Of -431*x^4+436*x^3-573*x^2+870*x+484 4032562493712641 k002 Champernowne real with 7*n^2+264*n-231 4032562499169832 r008 a(0)=4,K{-n^6,-45-8*n+40*n^2-19*n^3} 4032562511779950 a001 5374978561/305*1836311903^(8/17) 4032562511779950 a001 228826127/610*6557470319842^(8/17) 4032562511781386 a001 505019158607/610*514229^(8/17) 4032562524214056 m005 (-11/4+1/4*5^(1/2))/(4*Zeta(3)+5/8) 4032562532708935 a007 Real Root Of -179*x^4-641*x^3+182*x^2-823*x-978 4032562546521176 m001 FransenRobinson-Zeta(1,2)*Mills 4032562549069617 m001 (exp(1)+ln(Pi))/(-MertensB2+ZetaP(4)) 4032562583184654 m001 Sarnak^(ErdosBorwein*MadelungNaCl) 4032562594012701 k002 Champernowne real with 15/2*n^2+525/2*n-230 4032562594670795 b008 -15/2+Sqrt[133] 4032562600160670 b008 E^6-2*Sech[Pi] 4032562616553433 r008 a(0)=4,K{-n^6,34-16*n-42*n^2-7*n^3} 4032562620515706 m008 (4*Pi^3+1/3)/(5/6*Pi^3+5) 4032562643549124 a007 Real Root Of 954*x^4-554*x^3+521*x^2-897*x-508 4032562659381962 a003 cos(Pi*27/88)-sin(Pi*32/75) 4032562659686737 m006 (1/3*Pi^2+1/3)/(1/6*exp(2*Pi)+3/5) 4032562665150079 r005 Im(z^2+c),c=8/23+11/59*I,n=48 4032562676941989 r005 Re(z^2+c),c=-13/24+15/53*I,n=50 4032562686841857 h001 (-2*exp(2)-9)/(-4*exp(5)+4) 4032562694312761 k002 Champernowne real with 8*n^2+261*n-229 4032562722664599 r009 Re(z^3+c),c=-7/102+37/50*I,n=55 4032562728128861 r005 Re(z^2+c),c=-49/94+16/43*I,n=53 4032562732407850 r005 Im(z^2+c),c=-51/110+3/44*I,n=23 4032562735043794 r002 17th iterates of z^2 + 4032562735142440 m001 1/exp(Trott)/ErdosBorwein^2*GAMMA(23/24)^2 4032562735878862 r009 Re(z^3+c),c=-31/64+19/39*I,n=28 4032562741289489 r008 a(0)=4,K{-n^6,14-40*n-19*n^2+13*n^3} 4032562745534357 r008 a(0)=4,K{-n^6,-40-22*n+20*n^2+12*n^3} 4032562755531999 b008 18/5+ProductLog[2/3] 4032562756924633 r005 Re(z^2+c),c=-55/98+9/38*I,n=22 4032562770171553 r005 Re(z^2+c),c=23/74+35/62*I,n=58 4032562771428113 m001 (gamma(1)+KhinchinLevy)/(ln(3)-exp(1/Pi)) 4032562788195889 r002 42th iterates of z^2 + 4032562793472074 m005 (1/2*Pi-4)/(2/9*2^(1/2)-11/12) 4032562794612821 k002 Champernowne real with 17/2*n^2+519/2*n-228 4032562795104278 r002 16th iterates of z^2 + 4032562809383641 m001 Khinchin*(sin(1)+TwinPrimes) 4032562810272475 r002 50th iterates of z^2 + 4032562815475917 a007 Real Root Of -224*x^4-891*x^3-123*x^2-564*x+532 4032562815704851 r009 Im(z^3+c),c=-6/25+17/39*I,n=10 4032562816014939 r008 a(0)=4,K{-n^6,62-48*n-43*n^2-2*n^3} 4032562825443473 r009 Re(z^3+c),c=-13/30+10/59*I,n=13 4032562844047250 a003 sin(Pi*11/95)-sin(Pi*31/113) 4032562853836158 a001 6/3536736619241*10946^(10/17) 4032562860968932 r005 Im(z^2+c),c=-13/14+73/235*I,n=15 4032562869153997 a007 Real Root Of 767*x^4+433*x^3-533*x^2-917*x-275 4032562885309887 a007 Real Root Of -659*x^4+997*x^3+939*x^2+642*x+189 4032562889278984 l006 ln(3928/5879) 4032562894912881 k002 Champernowne real with 9*n^2+258*n-227 4032562913491077 m001 ln(Kolakoski)^2*Champernowne^2*sqrt(5)^2 4032562919175793 r008 a(0)=4,K{-n^6,-13-16*n^3+57*n^2-61*n} 4032562931309462 r009 Im(z^3+c),c=-1/78+15/32*I,n=14 4032562931580525 a007 Real Root Of -179*x^4-934*x^3-804*x^2+307*x+399 4032562938226657 g001 Psi(1/11,32/111) 4032562962158074 m001 1/ln(GAMMA(1/24))*Trott*GAMMA(19/24) 4032562964356391 r009 Re(z^3+c),c=-1/82+42/53*I,n=60 4032562976609856 r005 Im(z^2+c),c=-21/17+4/59*I,n=41 4032562982331904 r005 Im(z^2+c),c=-15/22+22/69*I,n=12 4032562983821488 m005 (1/3*Zeta(3)-1/12)/(3/4*Catalan+1/10) 4032562984408474 m001 GAMMA(2/3)*BesselI(0,2)*Mills 4032562986164906 r005 Re(z^2+c),c=-37/28+3/50*I,n=14 4032562989684629 r009 Re(z^3+c),c=-3/44+10/17*I,n=23 4032562992926512 m001 log(1+sqrt(2))^2*exp(Zeta(1/2))*sqrt(5) 4032562995212941 k002 Champernowne real with 19/2*n^2+513/2*n-226 4032563011623057 a007 Real Root Of -194*x^4-759*x^3-98*x^2-850*x-305 4032563014720914 m001 (GAMMA(23/24)-cos(1/12*Pi))^FellerTornier 4032563033838690 a001 13201/48*377^(2/31) 4032563054023642 a007 Real Root Of -182*x^4+736*x^3+609*x^2+527*x-355 4032563062527076 r005 Re(z^2+c),c=-11/20+8/35*I,n=44 4032563093611363 a001 29/6765*1548008755920^(9/11) 4032563095513001 k002 Champernowne real with 10*n^2+255*n-225 4032563098701256 b008 (5*ProductLog[3/2])/9 4032563099909837 m001 (-Cahen+Khinchin)/(BesselI(0,1)-Pi^(1/2)) 4032563111149481 r002 11th iterates of z^2 + 4032563113539337 m001 OrthogonalArrays-Otter*Tribonacci 4032563119899740 r005 Im(z^2+c),c=-47/66+4/51*I,n=34 4032563127583781 r005 Im(z^2+c),c=-51/82+11/27*I,n=15 4032563128458127 m001 1/Zeta(7)/ln(Backhouse)/cos(Pi/5)^2 4032563134979431 r009 Re(z^3+c),c=-11/23+13/33*I,n=5 4032563135269848 r005 Re(z^2+c),c=-19/34+12/79*I,n=49 4032563137919452 r009 Im(z^3+c),c=-59/114+13/60*I,n=4 4032563140430283 a007 Real Root Of -891*x^4+812*x^3-813*x^2+548*x+430 4032563149692053 m001 (Zeta(1,-1)+GaussAGM)/(MadelungNaCl-Magata) 4032563153053342 a003 sin(Pi*19/119)*sin(Pi*19/60) 4032563169676319 b008 (-44+Pi)*Pi^2 4032563185863066 p003 LerchPhi(1/512,4,337/151) 4032563195813061 k002 Champernowne real with 21/2*n^2+507/2*n-224 4032563207034707 m001 ln(FeigenbaumD*Riemann2ndZero) 4032563207097282 m001 GAMMA(5/24)*Ei(1)^2/exp(Zeta(1,2)) 4032563215384656 a007 Real Root Of -5*x^4-208*x^3-237*x^2+784*x-824 4032563223512043 a007 Real Root Of -838*x^4+939*x^3+585*x^2+244*x+87 4032563239942030 m005 (gamma+5/6)/(3*Catalan+3/4) 4032563242551088 a003 sin(Pi*9/67)-sin(Pi*29/96) 4032563254984836 a007 Real Root Of 287*x^4+678*x^3+67*x^2-791*x-293 4032563255545298 m001 (-MertensB3+Salem)/(5^(1/2)+GAMMA(13/24)) 4032563255664243 m001 (GAMMA(17/24)-cos(1))/(Conway+Landau) 4032563257735264 r005 Im(z^2+c),c=13/38+6/29*I,n=59 4032563258053723 r009 Im(z^3+c),c=-1/82+15/32*I,n=17 4032563259679583 a001 233/271443*322^(2/3) 4032563267332048 r002 27th iterates of z^2 + 4032563273820867 r005 Re(z^2+c),c=-21/122+21/37*I,n=5 4032563276615651 m005 1/4*5^(1/2)/(11/12*gamma+6/7) 4032563280940364 r005 Im(z^2+c),c=-15/14+11/239*I,n=8 4032563295307691 a007 Real Root Of -120*x^4-379*x^3+528*x^2+206*x-876 4032563295710840 r005 Im(z^2+c),c=1/90+22/43*I,n=40 4032563296113121 k002 Champernowne real with 11*n^2+252*n-223 4032563309000906 r005 Im(z^2+c),c=7/44+17/42*I,n=26 4032563309034642 r005 Im(z^2+c),c=35/106+13/56*I,n=54 4032563318092580 a007 Real Root Of 508*x^4-853*x^3-338*x^2-981*x-410 4032563326147987 a007 Real Root Of -958*x^4+712*x^3-429*x^2-364*x-5 4032563327456367 r005 Re(z^2+c),c=-55/98+4/33*I,n=39 4032563339628339 l006 ln(3777/5653) 4032563345185149 r008 a(0)=4,K{-n^6,-85-46*n^3+16*n^2+84*n} 4032563347556985 h001 (9/10*exp(1)+3/10)/(1/12*exp(1)+5/11) 4032563375377451 r002 8th iterates of z^2 + 4032563396413181 k002 Champernowne real with 23/2*n^2+501/2*n-222 4032563402773447 r005 Im(z^2+c),c=-11/25+21/40*I,n=8 4032563410110037 r002 44th iterates of z^2 + 4032563415766809 r008 a(0)=4,K{-n^6,-35-45*n^3+38*n^2+11*n} 4032563422945853 q001 1065/2641 4032563424288723 m004 -6+5*Pi-5*Sqrt[5]*Pi+125*Pi*Cot[Sqrt[5]*Pi] 4032563429332926 r008 a(0)=4,K{-n^6,-22-49*n+29*n^2+12*n^3} 4032563436343891 a007 Real Root Of 457*x^4-567*x^3-632*x^2-40*x+144 4032563441856473 m001 (FellerTornier-Zeta(1,-1))^BesselI(0,1) 4032563459014105 r002 64th iterates of z^2 + 4032563467306408 m005 (-1/12+1/4*5^(1/2))/(8/9*Zeta(3)+1/9) 4032563476394355 m005 (1/2*Catalan+3/8)/(124/99+4/11*5^(1/2)) 4032563481059071 r005 Re(z^2+c),c=-69/122+1/32*I,n=59 4032563487051124 r008 a(0)=4,K{-n^6,-39+35*n+9*n^2-36*n^3} 4032563493719694 r005 Im(z^2+c),c=4/27+17/41*I,n=37 4032563496713241 k002 Champernowne real with 12*n^2+249*n-221 4032563505958932 m005 (1/3*Catalan-1/10)/(1/10*Catalan+5) 4032563511891596 m001 (Pi-gamma(2))/(Landau-PisotVijayaraghavan) 4032563530593319 m001 Gompertz^ZetaP(2)/ReciprocalLucas 4032563534010777 a003 cos(Pi*14/47)-sin(Pi*44/93) 4032563534942961 a001 144/15127*123^(3/10) 4032563535664501 a004 Fibonacci(15)*Lucas(12)/(1/2+sqrt(5)/2)^32 4032563538531427 a007 Real Root Of -6*x^4+225*x^3-573*x^2+156*x+171 4032563540691836 m001 exp(exp(1))/cos(1)^2*log(1+sqrt(2))^2 4032563545939608 m008 (1/3*Pi^2-2)/(1/3*Pi^6-3/5) 4032563551451913 r009 Re(z^3+c),c=-7/20+1/19*I,n=11 4032563557065072 a007 Real Root Of -984*x^4+600*x^3+554*x^2+959*x+362 4032563562131292 m005 (1/2*Catalan+7/9)/(2/3*2^(1/2)-7/11) 4032563562167150 m001 GAMMA(3/4)-ln(Pi)-exp(sqrt(2)) 4032563563769381 r002 21th iterates of z^2 + 4032563568570491 m005 (1/2*2^(1/2)+3/4)/(5*gamma+8/11) 4032563574482484 r008 a(0)=4,K{-n^6,21-37*n^3+42*n^2-57*n} 4032563580258499 m001 (Artin+GlaisherKinkelin)/(Pi+cos(1/12*Pi)) 4032563597013301 k002 Champernowne real with 25/2*n^2+495/2*n-220 4032563604361476 r005 Re(z^2+c),c=25/102+17/46*I,n=13 4032563625046148 r008 a(0)=4,K{-n^6,-11+11*n-4*n^2-27*n^3} 4032563639790421 r005 Re(z^2+c),c=-6/11+2/51*I,n=11 4032563648878008 m005 (29/30+3/10*5^(1/2))/(3/4*2^(1/2)+3) 4032563652701207 r005 Im(z^2+c),c=-5/6+23/90*I,n=5 4032563659183808 r002 29th iterates of z^2 + 4032563664301554 r009 Re(z^3+c),c=-9/38+23/24*I,n=38 4032563667366985 h005 exp(cos(Pi*17/49)+sin(Pi*21/55)) 4032563669627473 m001 1/BesselK(0,1)*ln(Lehmer)/GAMMA(7/24) 4032563675253650 r005 Im(z^2+c),c=23/118+24/53*I,n=16 4032563675827876 m005 (1/3*Catalan+1/7)/(2/5*2^(1/2)-5/11) 4032563681778549 r005 Im(z^2+c),c=-11/56+3/5*I,n=42 4032563693905876 m001 (Zeta(1/2)+1)/(-Pi+2) 4032563697313361 k002 Champernowne real with 13*n^2+246*n-219 4032563712717806 m001 (GAMMA(11/12)-CareFree)/(QuadraticClass-Trott) 4032563713371154 r005 Re(z^2+c),c=-31/54+7/19*I,n=42 4032563717151112 a007 Real Root Of -93*x^4+616*x^3+892*x^2+372*x-333 4032563728884651 p003 LerchPhi(1/10,1,586/219) 4032563731047579 r002 54th iterates of z^2 + 4032563748064252 r005 Im(z^2+c),c=-65/122+14/23*I,n=62 4032563754453950 m003 3+Sqrt[5]/4096+(5*Csch[1/2+Sqrt[5]/2])/2 4032563778568228 r002 54th iterates of z^2 + 4032563790457456 a003 cos(Pi*1/84)/cos(Pi*29/69) 4032563792409282 r005 Im(z^2+c),c=13/36+4/23*I,n=29 4032563797613421 k002 Champernowne real with 27/2*n^2+489/2*n-218 4032563809073927 r005 Re(z^2+c),c=-2/27+37/58*I,n=8 4032563812460678 r008 a(0)=4,K{-n^6,23-22*n-14*n^2-18*n^3} 4032563815198656 m001 GAMMA(1/4)*ln(Riemann3rdZero)*sin(Pi/5)^2 4032563827486084 l006 ln(3626/5427) 4032563832702855 r005 Re(z^2+c),c=-1/40+29/38*I,n=33 4032563834309860 m002 -4/Pi^4+Pi^2-Cosh[Pi]/2 4032563852708048 a007 Real Root Of 491*x^4-640*x^3+738*x^2-687*x-452 4032563860733705 a001 439204/377*1836311903^(12/17) 4032563860756763 a001 141422324/377*514229^(12/17) 4032563861503516 a001 610/1149851*18^(40/57) 4032563868241427 r005 Im(z^2+c),c=6/19+9/35*I,n=29 4032563881111653 m001 (Porter+Sarnak)/Landau 4032563891265180 b008 E^(-1/5*EulerGamma)+Pi 4032563897913481 k002 Champernowne real with 14*n^2+243*n-217 4032563897966198 r002 52i'th iterates of 2*x/(1-x^2) of 4032563902307062 a007 Real Root Of 213*x^4+653*x^3-969*x^2-738*x-723 4032563902707540 r005 Re(z^2+c),c=-59/106+4/23*I,n=60 4032563915929069 m001 exp(1)^exp(1/exp(1))-exp(-1/2*Pi) 4032563916100026 a003 cos(Pi*25/94)-cos(Pi*12/29) 4032563918781804 m001 (exp(1/exp(1))-gamma(1))/(Paris-Weierstrass) 4032563930200564 r002 5th iterates of z^2 + 4032563930331021 a007 Real Root Of -654*x^4-389*x^3-675*x^2+445*x+281 4032563937407685 a005 (1/sin(95/219*Pi))^1332 4032563945503112 a007 Real Root Of 222*x^4+763*x^3-720*x^2-746*x+29 4032563948467421 m001 (Salem-Stephens)/(AlladiGrinstead-Kolakoski) 4032563951944684 a001 2504730781961/2*521^(12/13) 4032563975754628 a007 Real Root Of 700*x^4-811*x^3-249*x^2-798*x-353 4032563987605495 m002 4+(4*Sech[Pi])/(Pi^2*ProductLog[Pi]) 4032563998213541 k002 Champernowne real with 29/2*n^2+483/2*n-216 4032564002343681 a003 cos(Pi*24/103)-cos(Pi*44/113) 4032564004077701 m001 (ln(2)/ln(10)+Ei(1,1))/(-Niven+PrimesInBinary) 4032564006293260 m005 (1/2*3^(1/2)+5/8)/(-49/66+1/6*5^(1/2)) 4032564011625578 m008 (1/5*Pi^4+1/6)/(5*Pi^4+1/5) 4032564014780664 m005 (1/2*5^(1/2)-3)/(4/11*Catalan-5) 4032564029773077 r005 Im(z^2+c),c=11/126+23/50*I,n=56 4032564034118305 a001 233/9349*123^(1/10) 4032564048050608 r002 58th iterates of z^2 + 4032564050055836 r005 Im(z^2+c),c=-113/106+1/22*I,n=15 4032564056089568 m001 1/exp(Cahen)^2/ErdosBorwein*GAMMA(1/24) 4032564058573749 a007 Real Root Of 525*x^4-295*x^3-859*x^2-937*x+523 4032564068696278 r005 Re(z^2+c),c=-21/34+27/85*I,n=32 4032564073554558 r008 a(0)=4,K{-n^6,31-6*n-52*n^2-4*n^3} 4032564077376381 a007 Real Root Of 969*x^4+126*x^3+530*x^2-16*x-110 4032564078915151 p001 sum(1/(562*n+283)/(3^n),n=0..infinity) 4032564079190472 b008 -5+(-2+Pi)^(-1/4) 4032564079344075 m001 (MinimumGamma-Tetranacci)/(Ei(1,1)-exp(1/Pi)) 4032564084854349 m005 (5/6+1/12*5^(1/2))/(1/3*2^(1/2)-3) 4032564087686879 r005 Re(z^2+c),c=-6/11+8/31*I,n=60 4032564090989824 r005 Re(z^2+c),c=-13/23+5/61*I,n=27 4032564091631676 h001 (-9*exp(1/3)-7)/(-3*exp(-3)+5) 4032564098513601 k002 Champernowne real with 15*n^2+240*n-215 4032564106690909 r002 7th iterates of z^2 + 4032564113974398 a007 Real Root Of 78*x^4-963*x^3+294*x^2-362*x-259 4032564114301196 r008 a(0)=4,K{-n^6,37-3*n^3-52*n^2-13*n} 4032564115060411 a007 Real Root Of 713*x^4+735*x^3+401*x^2-717*x-325 4032564124333148 m005 (1/2*gamma-3/11)/(4/9*5^(1/2)-3/5) 4032564137879758 m003 -9/2+(5*Sqrt[5])/32-(5*Cos[1/2+Sqrt[5]/2])/2 4032564142835118 r005 Im(z^2+c),c=-45/82+22/51*I,n=10 4032564143166355 r002 40th iterates of z^2 + 4032564153345151 a007 Real Root Of 87*x^4+187*x^3-816*x^2-582*x+179 4032564164115182 m001 (ln(3)-Cahen)/(Conway-ZetaP(3)) 4032564176523049 a007 Real Root Of -116*x^4+209*x^3+383*x^2+516*x-281 4032564178985552 a007 Real Root Of 974*x^4-53*x^3-125*x^2-600*x+240 4032564179280650 r002 39th iterates of z^2 + 4032564190037391 r009 Im(z^3+c),c=-21/38+7/57*I,n=9 4032564198813661 k002 Champernowne real with 31/2*n^2+477/2*n-214 4032564229812359 a001 3571/8*6765^(24/47) 4032564246108264 m001 GAMMA(5/24)*ln(GAMMA(2/3))^2/Zeta(9) 4032564261542180 r005 Im(z^2+c),c=-1/90+21/40*I,n=56 4032564264672499 r002 41th iterates of z^2 + 4032564266326608 r005 Re(z^2+c),c=-45/82+15/64*I,n=34 4032564299113721 k002 Champernowne real with 16*n^2+237*n-213 4032564304668113 m002 Pi^5+Log[Pi]/6+Pi^4*Tanh[Pi] 4032564318057910 r005 Re(z^2+c),c=-27/50+9/31*I,n=60 4032564345454062 r002 60th iterates of z^2 + 4032564351944905 m001 ((1+3^(1/2))^(1/2))^BesselK(0,1)-FeigenbaumB 4032564356046726 r002 15th iterates of z^2 + 4032564356708696 r005 Im(z^2+c),c=-1/4+17/27*I,n=58 4032564357741799 l006 ln(3475/5201) 4032564359794908 a007 Real Root Of 562*x^4+309*x^3-441*x^2-249*x+137 4032564363015104 a001 28143753123/1597*1836311903^(8/17) 4032564363015104 a001 599074578/1597*6557470319842^(8/17) 4032564363016539 a001 1322157322203/1597*514229^(8/17) 4032564379306038 r005 Im(z^2+c),c=5/82+11/23*I,n=59 4032564383347162 m001 ln(GAMMA(17/24))/RenyiParking*Zeta(3) 4032564391888013 m002 -Pi^5-Pi^4*Coth[Pi]+ProductLog[Pi]/2 4032564399413781 k002 Champernowne real with 33/2*n^2+471/2*n-212 4032564401627530 m001 GAMMA(1/12)^BesselJZeros(0,1)/ln(1+sqrt(2)) 4032564401704210 a001 610/7*322^(13/49) 4032564403406195 r005 Im(z^2+c),c=5/106+27/50*I,n=20 4032564405894224 a007 Real Root Of -760*x^4+111*x^3+132*x^2+273*x+116 4032564407403830 m004 -1-(25*Sqrt[5]*Pi)/4+3*ProductLog[Sqrt[5]*Pi] 4032564421365336 m006 (4/5*Pi^2+3/4)/(2/5*exp(2*Pi)+1/5) 4032564431107604 a001 1364/13*75025^(25/34) 4032564434978134 r002 43th iterates of z^2 + 4032564437739059 r005 Re(z^2+c),c=-7/20+29/50*I,n=63 4032564442260723 m001 Psi(1,1/3)/(Otter-ZetaP(2)) 4032564446843679 m001 (-Conway+Sarnak)/(BesselI(0,2)-sin(1)) 4032564449099188 r002 62th iterates of z^2 + 4032564450474898 q001 1486/3685 4032564455886458 m005 (-7/20+1/4*5^(1/2))/(4*Zeta(3)+3/8) 4032564459410924 m001 1/Zeta(1/2)^2/MinimumGamma/exp(Zeta(5))^2 4032564462483765 m005 (1/2*5^(1/2)-1/5)/(6/11*Catalan-8/11) 4032564472881896 a007 Real Root Of -699*x^4+607*x^3-28*x^2+417*x+231 4032564473842308 m001 (cos(1)+ln(Pi))/(-exp(-1/2*Pi)+Kac) 4032564474197234 m001 GAMMA(13/24)^2/ArtinRank2*exp(GAMMA(19/24))^2 4032564475844140 m001 1/GAMMA(11/24)*exp(FeigenbaumC)^2*sqrt(2)^2 4032564488159623 a001 41/15456*317811^(23/58) 4032564488964796 b008 25*EllipticK[Pi^(-2)] 4032564490660727 a007 Real Root Of 182*x^4+848*x^3+747*x^2+981*x-711 4032564491376426 m001 (2^(1/3)+ln(gamma))/(-Pi^(1/2)+Trott) 4032564498519593 m001 (RenyiParking+ZetaP(3))/(Cahen-PrimesInBinary) 4032564499145223 r005 Re(z^2+c),c=23/82+2/45*I,n=3 4032564499713841 k002 Champernowne real with 17*n^2+234*n-211 4032564504683374 h001 (1/12*exp(1)+8/11)/(5/6*exp(1)+1/10) 4032564510001390 k002 Champernowne real with 35/2*n^2+465/2*n-210 4032564522464341 r005 Im(z^2+c),c=17/48+5/43*I,n=50 4032564526827563 m001 (Catalan-ln(2)/ln(10))/(Cahen+QuadraticClass) 4032564533760683 m001 (GAMMA(19/24)-Rabbit)/(Ei(1,1)-exp(-1/2*Pi)) 4032564544189247 m001 StolarskyHarborth^(1/5*5^(1/2)*cos(1/5*Pi)) 4032564566162449 m001 (GAMMA(23/24)+MinimumGamma)/(Zeta(5)-ln(3)) 4032564575312199 m001 1/GAMMA(23/24)/ArtinRank2/ln(sqrt(2)) 4032564576747769 m001 1/FeigenbaumC^2/CopelandErdos^2*exp(Zeta(7))^2 4032564579562006 a007 Real Root Of 51*x^4+110*x^3-475*x^2-160*x+806 4032564580880343 a007 Real Root Of 711*x^4+247*x^3-494*x^2-592*x-161 4032564587008223 a007 Real Root Of -619*x^4+816*x^3+857*x^2-93*x-139 4032564589117940 r005 Im(z^2+c),c=-31/82+27/47*I,n=61 4032564591974795 h001 (5/8*exp(1)+7/12)/(8/11*exp(2)+2/7) 4032564596570164 m001 (-BesselI(0,2)+ZetaQ(2))/(Psi(2,1/3)+gamma(1)) 4032564605829621 m001 Trott/Ei(1,1)/GAMMA(3/4) 4032564610031396 k002 Champernowne real with 18*n^2+231*n-209 4032564614544526 r009 Im(z^3+c),c=-29/56+17/59*I,n=62 4032564617152055 r009 Re(z^3+c),c=-57/118+9/41*I,n=42 4032564625029123 m005 (1/3*Pi-3/5)/(5/9*Pi-7/11) 4032564629049421 r002 57th iterates of z^2 + 4032564633106815 a001 73681302247/4181*1836311903^(8/17) 4032564633106815 a001 1568397607/4181*6557470319842^(8/17) 4032564633108250 a001 3461452808002/4181*514229^(8/17) 4032564638777220 r005 Re(z^2+c),c=-39/34+19/70*I,n=52 4032564639742840 r002 38th iterates of z^2 + 4032564644748098 r005 Re(z^2+c),c=1/48+13/48*I,n=9 4032564646186205 l006 ln(6682/6709) 4032564655717531 a007 Real Root Of 230*x^4+761*x^3-422*x^2+870*x-547 4032564656927078 r002 21th iterates of z^2 + 4032564661846608 m008 (4/5*Pi^4+1/2)/(2*Pi^4-1/3) 4032564662874152 r005 Re(z^2+c),c=-31/58+12/37*I,n=51 4032564666420377 r005 Re(z^2+c),c=-17/18+41/129*I,n=9 4032564672512667 a001 96450076809/5473*1836311903^(8/17) 4032564672512667 a001 4106118243/10946*6557470319842^(8/17) 4032564672514102 a001 9062201101803/10946*514229^(8/17) 4032564677520446 r005 Re(z^2+c),c=-53/94+4/49*I,n=63 4032564678261904 a001 505019158607/28657*1836311903^(8/17) 4032564678261904 a001 10749957122/28657*6557470319842^(8/17) 4032564678263339 a001 23725150497407/28657*514229^(8/17) 4032564679100706 a001 1322157322203/75025*1836311903^(8/17) 4032564679100706 a001 28143753123/75025*6557470319842^(8/17) 4032564679223085 a001 1730726404001/98209*1836311903^(8/17) 4032564679223085 a001 73681302247/196418*6557470319842^(8/17) 4032564679240940 a001 9062201101803/514229*1836311903^(8/17) 4032564679240940 a001 192900153618/514229*6557470319842^(8/17) 4032564679243545 a001 23725150497407/1346269*1836311903^(8/17) 4032564679243545 a001 505019158607/1346269*6557470319842^(8/17) 4032564679243926 a001 1322157322203/3524578*6557470319842^(8/17) 4032564679243981 a001 3461452808002/9227465*6557470319842^(8/17) 4032564679243989 a001 9062201101803/24157817*6557470319842^(8/17) 4032564679243990 a001 23725150497407/63245986*6557470319842^(8/17) 4032564679243991 a001 14662949395604/39088169*6557470319842^(8/17) 4032564679243994 a001 5600748293801/14930352*6557470319842^(8/17) 4032564679244015 a001 2139295485799/5702887*6557470319842^(8/17) 4032564679244160 a001 817138163596/2178309*6557470319842^(8/17) 4032564679245155 a001 3665737348901/208010*1836311903^(8/17) 4032564679245155 a001 28374454999/75640*6557470319842^(8/17) 4032564679251975 a001 5600748293801/317811*1836311903^(8/17) 4032564679251975 a001 119218851371/317811*6557470319842^(8/17) 4032564679298720 a001 2139295485799/121393*1836311903^(8/17) 4032564679298720 a001 45537549124/121393*6557470319842^(8/17) 4032564679619114 a001 204284540899/11592*1836311903^(8/17) 4032564679619114 a001 17393796001/46368*6557470319842^(8/17) 4032564681687754 m005 (15/44+1/4*5^(1/2))/(3*gamma+1/2) 4032564681815127 a001 1568437211/89*1836311903^(8/17) 4032564681815127 a001 6643838879/17711*6557470319842^(8/17) 4032564681816562 a001 14662949395604/17711*514229^(8/17) 4032564684991516 a007 Real Root Of 235*x^4-958*x^3-685*x^2-553*x+391 4032564688118730 a005 (1/cos(24/103*Pi))^207 4032564694774455 r009 Re(z^3+c),c=-19/52+3/37*I,n=12 4032564696866824 a001 230701876/615*6557470319842^(8/17) 4032564696866824 a001 119218851371/6765*1836311903^(8/17) 4032564696868259 a001 5600748293801/6765*514229^(8/17) 4032564702553156 m001 1/TreeGrowth2nd*exp(FeigenbaumAlpha)^2/sin(1) 4032564710061402 k002 Champernowne real with 37/2*n^2+459/2*n-208 4032564717634690 m001 (Pi+BesselI(0,1))/(BesselI(0,2)-KhinchinLevy) 4032564720942505 s002 sum(A091627[n]/((10^n+1)/n),n=1..infinity) 4032564735340139 r005 Im(z^2+c),c=1/98+21/41*I,n=40 4032564775982054 r002 61th iterates of z^2 + 4032564785139248 s002 sum(A054453[n]/(n^3*2^n+1),n=1..infinity) 4032564797264729 r005 Im(z^2+c),c=-2/9+37/51*I,n=59 4032564797385508 m005 (1/2*2^(1/2)-2/5)/(7/18+1/6*5^(1/2)) 4032564800032690 a001 969323029/2584*6557470319842^(8/17) 4032564800032690 a001 11384387281/646*1836311903^(8/17) 4032564800034125 a001 2139295485799/2584*514229^(8/17) 4032564806035680 m001 (1-5^(1/2))/(exp(-1/2*Pi)+Paris) 4032564809610530 r008 a(0)=4,K{-n^6,-57-4*n^3+60*n^2-29*n} 4032564810091408 k002 Champernowne real with 19*n^2+228*n-207 4032564813065930 r005 Im(z^2+c),c=-21/34+30/73*I,n=22 4032564826090468 a007 Real Root Of 121*x^4+465*x^3-210*x^2-479*x-21 4032564832418200 b008 3+Log[-1/3+Pi] 4032564837931085 r002 62th iterates of z^2 + 4032564842913034 b008 4+1/(5*(3+Pi)) 4032564851855909 a007 Real Root Of -740*x^4+544*x^3-970*x^2+682*x+488 4032564852801266 r008 a(0)=4,K{-n^6,8-49*n^3+72*n^2-62*n} 4032564870425000 p001 sum((-1)^n/(584*n+245)/(24^n),n=0..infinity) 4032564887136568 r005 Im(z^2+c),c=-1/44+33/62*I,n=58 4032564892424378 r009 Re(z^3+c),c=-11/52+48/49*I,n=4 4032564893111769 m001 GolombDickman/BesselI(1,1)/Trott2nd 4032564897260719 r008 a(0)=4,K{-n^6,-40+36*n+9*n^2-36*n^3} 4032564910121414 k002 Champernowne real with 39/2*n^2+453/2*n-206 4032564922268376 r008 a(0)=4,K{-n^6,-12-38*n^3+29*n^2-10*n} 4032564925467440 r008 a(0)=4,K{-n^6,-10-38*n^3+30*n^2-13*n} 4032564927875959 b008 -55*E^2+Pi 4032564928135018 r009 Re(z^3+c),c=-5/12+9/61*I,n=27 4032564929078585 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3)+Rabbit)/(1-Catalan) 4032564932652269 r002 3th iterates of z^2 + 4032564934933721 a007 Real Root Of 182*x^4-678*x^3-323*x^2-684*x+368 4032564936173543 l006 ln(3324/4975) 4032564936762829 m001 (Landau-Trott2nd)/(Zeta(1,-1)+exp(1/exp(1))) 4032564975964662 a007 Real Root Of -268*x^4+44*x^3+543*x^2+461*x-270 4032564981968621 r002 36th iterates of z^2 + 4032564984426772 r005 Re(z^2+c),c=-17/30+9/113*I,n=23 4032564985064345 m002 Pi^4/3+(Pi^4*Csch[Pi])/ProductLog[Pi] 4032564985071617 r008 a(0)=4,K{-n^6,-28-22*n-n^2+21*n^3} 4032564985948761 r008 a(0)=4,K{-n^6,20-37*n^3+42*n^2-56*n} 4032564986009947 r008 a(0)=4,K{-n^6,-10-n+12*n^2-32*n^3} 4032564989489395 r008 a(0)=4,K{-n^6,16-48*n+37*n^2-36*n^3} 4032564990335623 r009 Re(z^3+c),c=-3/40+34/49*I,n=49 4032564994432976 l006 ln(37/2087) 4032564994432976 p004 log(2087/37) 4032564994550396 r002 49th iterates of z^2 + 4032564997938223 r005 Re(z^2+c),c=-19/34+5/33*I,n=50 4032565000433817 r002 23th iterates of z^2 + 4032565008313979 a007 Real Root Of -235*x^4-795*x^3+776*x^2+634*x-52 4032565010151420 k002 Champernowne real with 20*n^2+225*n-205 4032565011153601 r008 a(0)=4,K{-n^6,-14+11*n+n^2-29*n^3} 4032565014590284 r002 18th iterates of z^2 + 4032565019142424 m005 (19/28+1/4*5^(1/2))/(-31/154+5/22*5^(1/2)) 4032565023551200 r009 Im(z^3+c),c=-9/62+24/49*I,n=2 4032565031111759 r005 Im(z^2+c),c=9/52+15/38*I,n=44 4032565041671709 b008 2+Pi*AiryBi[1/14] 4032565045274446 m001 (2^(1/2)-ErdosBorwein)/(-Paris+Stephens) 4032565048817658 r008 a(0)=4,K{-n^6,-36+58*n-31*n^2-22*n^3} 4032565056148740 r009 Re(z^3+c),c=-47/110+7/12*I,n=15 4032565057999177 r002 42th iterates of z^2 + 4032565069195614 r002 50th iterates of z^2 + 4032565074005122 m001 GAMMA(7/12)*(FeigenbaumKappa+GlaisherKinkelin) 4032565084078321 r009 Im(z^3+c),c=-43/102+35/58*I,n=14 4032565091085088 a007 Real Root Of 37*x^4+18*x^3-314*x^2+944*x+309 4032565094718093 a001 4052739537881/2*521^(11/13) 4032565100100303 r005 Im(z^2+c),c=21/74+11/38*I,n=60 4032565110181426 k002 Champernowne real with 41/2*n^2+447/2*n-204 4032565113557257 r005 Im(z^2+c),c=27/110+14/41*I,n=19 4032565121777966 r002 56th iterates of z^2 + 4032565128451591 m001 FeigenbaumD^2/exp(Si(Pi))^2/GAMMA(5/24) 4032565150054559 r002 18th iterates of z^2 + 4032565156750908 r008 a(0)=4,K{-n^6,-40+2*n-16*n^2+24*n^3} 4032565159490082 a001 199/34*46368^(13/33) 4032565161365515 r008 a(0)=4,K{-n^6,48-27*n^3+26*n^2-78*n} 4032565166174949 r008 a(0)=4,K{-n^6,-22-15*n^3-45*n^2+51*n} 4032565172153955 m001 1/Tribonacci/Porter/ln(GAMMA(2/3))^2 4032565175805649 r005 Re(z^2+c),c=-69/122+1/32*I,n=61 4032565188946308 r005 Re(z^2+c),c=-19/34+11/61*I,n=20 4032565189086484 r002 11th iterates of z^2 + 4032565189637809 a003 cos(Pi*1/61)-cos(Pi*3/91) 4032565194826116 m001 ln(gamma)*(HardyLittlewoodC3+Paris) 4032565210211432 k002 Champernowne real with 21*n^2+222*n-203 4032565222075528 r009 Im(z^3+c),c=-14/27+14/41*I,n=37 4032565224009258 r005 Re(z^2+c),c=-27/50+24/61*I,n=28 4032565228089483 m001 GAMMA(3/4)*PisotVijayaraghavan/ln(Zeta(9))^2 4032565234000842 r002 33th iterates of z^2 + 4032565236261857 m005 (1/5*gamma+5/6)/(-14/5+1/5*5^(1/2)) 4032565242397485 r008 a(0)=4,K{-n^6,28-30*n-11*n^2-18*n^3} 4032565244109070 h001 (-3*exp(1/3)+5)/(-8*exp(1/3)-9) 4032565245173328 m005 (1/3*5^(1/2)+1/4)/(2*Catalan+7/11) 4032565245554830 l006 ln(6497/9724) 4032565262802290 m004 -6+10*Pi-125*Pi*Cot[Sqrt[5]*Pi] 4032565266896258 a007 Real Root Of 986*x^4+252*x^3+566*x^2-249*x-202 4032565275230887 r005 Re(z^2+c),c=-19/34+16/105*I,n=45 4032565297546120 r005 Re(z^2+c),c=-43/78+12/55*I,n=58 4032565304816461 r005 Im(z^2+c),c=8/29+17/57*I,n=54 4032565310241438 k002 Champernowne real with 43/2*n^2+441/2*n-202 4032565311448546 a007 Real Root Of -577*x^4+482*x^3-977*x^2+18*x+213 4032565318466236 r005 Re(z^2+c),c=-67/102+5/19*I,n=42 4032565320788784 m001 (-MadelungNaCl+2)/(2^(1/3)+5) 4032565332916825 m001 ZetaR(2)/GAMMA(2/3)/exp(1) 4032565339423461 m009 (5/2*Pi^2-1/6)/(6*Psi(1,1/3)+1/5) 4032565351169372 l006 ln(3305/3441) 4032565351215050 r005 Im(z^2+c),c=5/26+14/37*I,n=36 4032565353572282 r005 Im(z^2+c),c=-11/82+6/11*I,n=16 4032565359104121 r005 Re(z^2+c),c=-33/62+19/56*I,n=49 4032565366807567 a007 Real Root Of 413*x^4-246*x^3-312*x^2-692*x+335 4032565369166451 b008 41*ExpIntegralEi[-20] 4032565378550057 m005 (1/2*gamma-5/7)/(9/11*gamma+7/12) 4032565385023294 q001 1/2479811 4032565393114909 m001 (Shi(1)*Bloch+OrthogonalArrays)/Bloch 4032565397337399 m005 (1/2*5^(1/2)-2/9)/(2/7*3^(1/2)-3/11) 4032565408149929 a007 Real Root Of -19*x^4-790*x^3-945*x^2+624*x+352 4032565410271444 k002 Champernowne real with 22*n^2+219*n-201 4032565411191236 h001 (9/11*exp(1)+5/7)/(9/10*exp(2)+7/11) 4032565419014319 r008 a(0)=4,K{-n^6,-49+13*n-2*n^2+9*n^3} 4032565422724485 p003 LerchPhi(1/64,1,479/191) 4032565423551301 r005 Im(z^2+c),c=-1/48+23/39*I,n=35 4032565431510613 m001 (-arctan(1/2)+Bloch)/(1+Zeta(5)) 4032565439857060 a007 Real Root Of -150*x^4+633*x^3-730*x^2-794*x-156 4032565444407421 r005 Im(z^2+c),c=-5/8+61/151*I,n=57 4032565454157334 p001 sum(1/(412*n+371)/n/(32^n),n=1..infinity) 4032565459410562 r008 a(0)=4,K{-n^6,50-45*n-27*n^2-9*n^3} 4032565461830005 m001 KhinchinHarmonic+LandauRamanujan2nd+Niven 4032565462683499 r005 Im(z^2+c),c=1/7+5/11*I,n=15 4032565462734505 h001 (5/12*exp(1)+7/10)/(3/5*exp(2)+1/9) 4032565463733384 r009 Re(z^3+c),c=-10/19+32/51*I,n=3 4032565467708350 a007 Real Root Of 759*x^4-969*x^3+327*x^2-556*x-361 4032565478296539 p001 sum((-1)^n/(504*n+251)/n/(3^n),n=1..infinity) 4032565484427205 a007 Real Root Of 193*x^4+770*x^3-139*x^2-493*x-271 4032565489344048 a001 18*(1/2*5^(1/2)+1/2)^32*11^(7/11) 4032565492808289 r008 a(0)=4,K{-n^6,30-5*n-52*n^2-4*n^3} 4032565493990187 m002 -4-E^Pi/Pi^5+Tanh[Pi]/E^Pi 4032565504516533 a007 Real Root Of -479*x^4+321*x^3+332*x^2+452*x+162 4032565507142199 a001 370248451/987*6557470319842^(8/17) 4032565507142199 a001 17393796001/987*1836311903^(8/17) 4032565507143635 a001 817138163596/987*514229^(8/17) 4032565510301450 k002 Champernowne real with 45/2*n^2+435/2*n-200 4032565519333206 m005 (1/2*3^(1/2)-1/9)/(3/4*exp(1)-1/6) 4032565534237732 r008 a(0)=4,K{-n^6,36-3*n^3-52*n^2-12*n} 4032565545902234 r005 Re(z^2+c),c=5/62+14/37*I,n=38 4032565546324738 r002 16th iterates of z^2 + 4032565566502811 r005 Re(z^2+c),c=-53/102+13/43*I,n=17 4032565569659262 l006 ln(3173/4749) 4032565591663128 m001 GAMMA(7/12)-exp(1)*gamma 4032565591663128 m001 exp(1)*gamma-GAMMA(7/12) 4032565593584761 r002 47th iterates of z^2 + 4032565606018136 m001 (Khinchin*Stephens+StronglyCareFree)/Stephens 4032565607686385 a007 Real Root Of 37*x^4+159*x^3-66*x^2-540*x-462 4032565610331456 k002 Champernowne real with 23*n^2+216*n-199 4032565616748782 p001 sum(1/(536*n+25)/(6^n),n=0..infinity) 4032565618066920 a007 Real Root Of -564*x^4-999*x^3-702*x^2+135*x+118 4032565620355451 r008 a(0)=4,K{-n^6,-25-39*n+45*n^2-14*n^3} 4032565621851150 r008 a(0)=4,K{-n^6,-45-18*n+37*n^2-3*n^3} 4032565621935419 m003 1/6+E^(-1/2-Sqrt[5]/2)*Sec[1/2+Sqrt[5]/2] 4032565639384409 m002 Pi^4+Pi^5-E^Pi*Sech[Pi]^2 4032565645390027 m002 -Pi^4-Pi^5+(4*Tanh[Pi])/E^Pi 4032565651984669 m001 Conway/(HeathBrownMoroz^polylog(4,1/2)) 4032565653351320 m001 (MertensB1-Sarnak)/(ln(Pi)+HeathBrownMoroz) 4032565659092998 a007 Real Root Of 423*x^4-827*x^3+639*x^2-329*x-302 4032565662064951 a003 -1+cos(5/27*Pi)-2*cos(8/27*Pi)+cos(2/21*Pi) 4032565663101471 r005 Im(z^2+c),c=21/110+34/63*I,n=42 4032565676636933 r005 Re(z^2+c),c=-29/52+8/49*I,n=53 4032565677374272 a003 sin(Pi*9/116)/cos(Pi*21/71) 4032565680988260 m009 (5/6*Psi(1,1/3)-1/6)/(1/6*Pi^2+2/5) 4032565694245325 b008 Pi+6*ExpIntegralE[2,1] 4032565710361462 k002 Champernowne real with 47/2*n^2+429/2*n-198 4032565718812554 a007 Real Root Of 657*x^4+407*x^3+189*x^2-547*x-242 4032565736474422 r002 60th iterates of z^2 + 4032565745685165 a007 Real Root Of -118*x^4+622*x^3-422*x^2-532*x-102 4032565758275028 a001 1322157322203/610*1836311903^(6/17) 4032565758275028 a001 73681302247/610*6557470319842^(6/17) 4032565758276105 a001 23725150497407/610*514229^(6/17) 4032565762429160 m001 exp(BesselJ(1,1))/KhintchineLevy*GAMMA(7/24) 4032565768184950 r002 36th iterates of z^2 + 4032565773370304 s001 sum(exp(-Pi/2)^n*A257623[n],n=1..infinity) 4032565778447000 r002 52th iterates of z^2 + 4032565782795508 r009 Re(z^3+c),c=-15/34+7/40*I,n=23 4032565785191252 r005 Re(z^2+c),c=-17/31+8/61*I,n=16 4032565804336763 r005 Im(z^2+c),c=13/66+16/43*I,n=20 4032565809988975 a008 Real Root of x^4-x^3+5*x^2+8*x-4 4032565810391468 k002 Champernowne real with 24*n^2+213*n-197 4032565811441906 r005 Im(z^2+c),c=-1/20+23/42*I,n=46 4032565829708245 m001 (-Cahen+RenyiParking)/(1-GAMMA(23/24)) 4032565830096789 r005 Re(z^2+c),c=-41/74+7/36*I,n=29 4032565835404550 m001 exp(GAMMA(5/24))*GAMMA(1/3)^2/Zeta(3)^2 4032565847851465 r002 60th iterates of z^2 + 4032565871324915 r005 Im(z^2+c),c=-29/40+7/58*I,n=62 4032565885013535 r005 Re(z^2+c),c=-29/48+4/17*I,n=20 4032565901361607 a007 Real Root Of 500*x^4-728*x^3+469*x^2-974*x-530 4032565909563448 l006 ln(6195/9272) 4032565910421474 k002 Champernowne real with 49/2*n^2+423/2*n-196 4032565915956615 m001 1/GAMMA(2/3)*GAMMA(1/12)*exp(GAMMA(7/24))^2 4032565919735547 r005 Re(z^2+c),c=-5/9+9/50*I,n=34 4032565928385752 a007 Real Root Of -921*x^4+946*x^3-370*x^2+750*x+449 4032565943537351 a003 cos(Pi*24/79)*cos(Pi*43/90) 4032565971263265 m001 Kolakoski*ln(CopelandErdos)*Lehmer^2 4032565972108563 m001 (Psi(1,1/3)+1)/(-GAMMA(5/6)+OrthogonalArrays) 4032565980211228 r009 Im(z^3+c),c=-19/44+19/63*I,n=6 4032565983806819 r008 a(0)=4,K{-n^6,-64+12*n^3-26*n^2+50*n} 4032566005324167 m001 cos(Pi/12)^2/BesselK(0,1)/ln(gamma) 4032566010451480 k002 Champernowne real with 25*n^2+210*n-195 4032566016014447 r002 7th iterates of z^2 + 4032566025257548 m001 (-Niven+TravellingSalesman)/(1+Backhouse) 4032566028590516 a001 2207/13*610^(29/34) 4032566037459332 m005 (1/2*exp(1)+4/9)/(1/2*gamma-1/3) 4032566049383758 m005 (1/3*exp(1)-2/11)/(6*Pi-8/9) 4032566051701598 r002 45th iterates of z^2 + 4032566053514073 m002 -3*E^Pi-6/Pi+Pi^3 4032566072287066 a001 2/21*1346269^(3/7) 4032566084449467 r002 25th iterates of z^2 + 4032566086673069 a007 Real Root Of -96*x^4-587*x^3-762*x^2+386*x+841 4032566086927033 r002 28th iterates of z^2 + 4032566092281306 h001 (1/12*exp(2)+4/7)/(3/10*exp(2)+8/11) 4032566096371906 a001 6/3536736619241*14930352^(8/17) 4032566104273469 m008 (Pi^5-4/5)/(3/4*Pi^2+1/6) 4032566105707343 m001 (polylog(4,1/2)-Artin)/(FeigenbaumMu-Trott) 4032566106450943 m001 1/Riemann3rdZero^2*ln(Khintchine)^2*Sierpinski 4032566110481486 k002 Champernowne real with 51/2*n^2+417/2*n-194 4032566116943106 r005 Re(z^2+c),c=29/102+27/46*I,n=11 4032566118083528 a001 6/75283811239*4181^(8/17) 4032566120068246 r005 Re(z^2+c),c=-19/34+45/127*I,n=35 4032566123619528 m008 (4*Pi^2-1/2)/(Pi^4-3/4) 4032566126866580 a005 (1/cos(4/101*Pi))^1960 4032566157166652 a008 Real Root of x^4-2*x^3+17*x^2+124*x-172 4032566157359402 m008 (2*Pi^6-1/6)/(1/6*Pi^3-2/5) 4032566168497618 r002 58th iterates of z^2 + 4032566169740885 s002 sum(A080474[n]/((2*n)!),n=1..infinity) 4032566170102853 m001 (ln(5)+GAMMA(7/12))/(Kac-OrthogonalArrays) 4032566170764923 m005 (1/2*Pi+3)/(19/72+7/18*5^(1/2)) 4032566173156289 r005 Im(z^2+c),c=29/90+12/59*I,n=17 4032566187764553 m002 -15+ProductLog[Pi]-Pi^5*Sech[Pi] 4032566194925041 r005 Im(z^2+c),c=-95/118+1/52*I,n=54 4032566210511492 k002 Champernowne real with 26*n^2+207*n-193 4032566211081108 r009 Im(z^3+c),c=-55/126+13/37*I,n=17 4032566217319302 r005 Im(z^2+c),c=-5/66+32/57*I,n=48 4032566230662795 m001 LaplaceLimit^2*MertensB1/ln(Niven)^2 4032566232047502 a001 1364/121393*317811^(13/46) 4032566237491826 a001 3278735159921*521^(10/13) 4032566255316313 m001 Trott2nd^((1+3^(1/2))^(1/2)/Si(Pi)) 4032566256391066 m001 1/TreeGrowth2nd^2/exp(Rabbit)^2/GAMMA(1/6)^2 4032566266451582 l006 ln(3022/4523) 4032566267391934 r005 Re(z^2+c),c=-147/118+4/59*I,n=38 4032566269766829 r008 a(0)=4,K{-n^6,-33+11*n+34*n^2-43*n^3} 4032566273728118 r005 Im(z^2+c),c=-147/106+3/25*I,n=9 4032566278836201 a007 Real Root Of 255*x^4+957*x^3-429*x^2-779*x-841 4032566284454024 r009 Re(z^3+c),c=-51/98+14/53*I,n=59 4032566286856460 s001 sum(exp(-Pi/2)^(n-1)*A266270[n],n=1..infinity) 4032566299277669 m005 (1/2*Catalan-5/7)/(5/11*exp(1)-3/5) 4032566302127459 r008 a(0)=4,K{-n^6,-17-42*n^3+39*n^2-11*n} 4032566304155388 h001 (1/6*exp(1)+1/9)/(1/11*exp(2)+8/11) 4032566310541498 k002 Champernowne real with 53/2*n^2+411/2*n-192 4032566310755093 r005 Im(z^2+c),c=17/58+12/43*I,n=48 4032566314307311 a007 Real Root Of 100*x^4+471*x^3+307*x^2+122*x-58 4032566315368340 m001 exp(Riemann2ndZero)/Si(Pi)^2*GAMMA(23/24) 4032566337419443 r005 Re(z^2+c),c=-13/10+19/245*I,n=27 4032566345933604 r008 a(0)=4,K{-n^6,-13-38*n^3+29*n^2-9*n} 4032566352490996 r008 a(0)=4,K{-n^6,-39-33*n^3+n^2+40*n} 4032566364995184 r005 Re(z^2+c),c=-69/122+1/32*I,n=63 4032566367509779 v003 sum((n^3-2*n^2+12*n-7)*n!/n^n,n=1..infinity) 4032566368000078 a007 Real Root Of 148*x^4+527*x^3-438*x^2-770*x-561 4032566381899067 a007 Real Root Of 314*x^4-414*x^3+383*x^2-266*x-205 4032566396335619 r002 14th iterates of z^2 + 4032566400858844 r005 Im(z^2+c),c=-47/98+2/29*I,n=40 4032566402296132 a007 Real Root Of 168*x^4+927*x^3+885*x^2-632*x-577 4032566402348023 m005 (1/2*Catalan+4/7)/(5*gamma-1/3) 4032566410571504 k002 Champernowne real with 27*n^2+204*n-191 4032566410598441 r008 a(0)=4,K{-n^6,-11+12*n^2-32*n^3} 4032566442085057 a003 -1+2*cos(2/7*Pi)+cos(11/27*Pi)-cos(11/24*Pi) 4032566447399469 r008 a(0)=4,K{-n^6,-39+58*n-26*n^2-24*n^3} 4032566470360402 r008 a(0)=4,K{-n^6,-15+18*n-8*n^2-26*n^3} 4032566471116557 r002 35th iterates of z^2 + 4032566474046129 m005 (-17/44+1/4*5^(1/2))/(6*gamma+9/11) 4032566474495400 r009 Re(z^3+c),c=-14/27+15/56*I,n=54 4032566480477079 m001 (Zeta(1,-1)+exp(1/exp(1)))/(Niven+Porter) 4032566500871833 a001 233/439204*322^(3/4) 4032566505092732 a007 Real Root Of -536*x^4+493*x^3+366*x^2+162*x-143 4032566510601510 k002 Champernowne real with 55/2*n^2+405/2*n-190 4032566511394702 m009 (4*Catalan+1/2*Pi^2-4/5)/(2*Pi^2-2/5) 4032566515643370 a007 Real Root Of -654*x^4+534*x^3-352*x^2+383*x+264 4032566518915067 r009 Im(z^3+c),c=-5/106+45/61*I,n=4 4032566530782307 g001 Re(GAMMA(9/10+I*133/30)) 4032566533145197 r002 6th iterates of z^2 + 4032566546128566 a007 Real Root Of 664*x^4-485*x^3+223*x^2-606*x-330 4032566551187867 r005 Re(z^2+c),c=-19/36+21/61*I,n=48 4032566557896098 a007 Real Root Of -22*x^4-911*x^3-968*x^2-279*x-155 4032566564508639 m001 (Lehmer+ZetaQ(2))/(Chi(1)+BesselJ(0,1)) 4032566572171793 r005 Im(z^2+c),c=-17/78+19/25*I,n=18 4032566589147062 a007 Real Root Of 556*x^4-893*x^3-765*x^2-535*x+384 4032566601932867 r005 Im(z^2+c),c=-3/32+35/61*I,n=51 4032566606132906 m005 (25/4+1/4*5^(1/2))/(125/176+7/16*5^(1/2)) 4032566606940069 r005 Re(z^2+c),c=-1/15+5/8*I,n=5 4032566610631516 k002 Champernowne real with 28*n^2+201*n-189 4032566621427051 a007 Real Root Of 75*x^4+335*x^3-102*x^2-819*x+491 4032566623033112 r002 59th iterates of z^2 + 4032566623357444 r005 Im(z^2+c),c=-29/122+35/54*I,n=31 4032566625523138 r005 Im(z^2+c),c=2/13+16/39*I,n=46 4032566633332792 m001 (Khinchin+PolyaRandomWalk3D)/(ln(Pi)-Ei(1)) 4032566641629236 l006 ln(5893/8820) 4032566649324311 m001 (-BesselJ(1,1)+Conway)/(Catalan+GAMMA(3/4)) 4032566655260650 m005 (1/3*Pi-1/2)/(3/11*2^(1/2)-1/4) 4032566659890216 m001 (gamma(2)-BesselJ(1,1))/(Bloch+Cahen) 4032566660700051 r005 Im(z^2+c),c=5/22+12/35*I,n=20 4032566660755142 r008 a(0)=4,K{-n^6,23-23*n-13*n^2-18*n^3} 4032566676638689 r005 Re(z^2+c),c=-83/82+11/59*I,n=64 4032566679866902 a007 Real Root Of -157*x^4-368*x^3+940*x^2-557*x-147 4032566682868258 r005 Im(z^2+c),c=-33/25+1/38*I,n=6 4032566694837235 m002 -4+6/Pi^2+3*Tanh[Pi] 4032566707685658 r005 Re(z^2+c),c=-61/118+20/51*I,n=63 4032566710661522 k002 Champernowne real with 57/2*n^2+399/2*n-188 4032566710666670 m001 (3^(1/3))^arctan(1/2)-ln(Pi) 4032566718983868 p004 log(21937/14657) 4032566727981477 m005 (1/2*5^(1/2)-1/10)/(1/10*2^(1/2)-1/6) 4032566736159741 r002 22th iterates of z^2 + 4032566742939894 m005 (1/2*exp(1)+10/11)/(1/2*5^(1/2)-5/9) 4032566746442829 m001 (FellerTornier+ZetaP(3))/(cos(1)+ln(2)) 4032566777182377 m001 TreeGrowth2nd^2/ln(Salem)*Tribonacci^2 4032566779994433 r002 62th iterates of z^2 + 4032566784244739 a007 Real Root Of -117*x^4-404*x^3+153*x^2-605*x-481 4032566799025346 a001 987*76^(13/40) 4032566810691528 k002 Champernowne real with 29*n^2+198*n-187 4032566811178612 r005 Re(z^2+c),c=-53/94+1/48*I,n=23 4032566817739055 m001 (GAMMA(7/12)+KomornikLoreti)/(Paris+Sarnak) 4032566825776218 m001 (sin(1)+PlouffeB)/(2^(1/2)+Si(Pi)) 4032566828676846 m001 (MadelungNaCl-Rabbit)/(Riemann3rdZero+Sarnak) 4032566831619420 a003 cos(Pi*31/108)-cos(Pi*34/79) 4032566833895559 b008 (5*Pi*Log[2])/27 4032566833895559 b008 (Pi*ArcCoth[3])/27 4032566843171190 a007 Real Root Of -642*x^4+777*x^3-186*x^2+943*x-384 4032566843968740 r005 Re(z^2+c),c=-19/26+5/86*I,n=53 4032566854825010 r008 a(0)=4,K{-n^6,-48*n-11*n^2+29*n^3} 4032566860973359 r009 Im(z^3+c),c=-9/22+15/26*I,n=33 4032566883638234 r002 19th iterates of z^2 + 4032566886644119 m001 (1-sin(1/12*Pi))/(Robbin+Salem) 4032566890386523 a007 Real Root Of -233*x^4-899*x^3+430*x^2+979*x-383 4032566891381397 r008 a(0)=4,K{-n^6,49-44*n-27*n^2-9*n^3} 4032566891416178 m001 1/GAMMA(5/24)*Robbin/exp(log(2+sqrt(3))) 4032566907102647 m001 GAMMA(2/3)/RenyiParking/ln(cos(Pi/5))^2 4032566910721534 k002 Champernowne real with 59/2*n^2+393/2*n-186 4032566927021148 r008 a(0)=4,K{-n^6,26-57*n-6*n^2+5*n^3} 4032566928112858 r005 Re(z^2+c),c=33/106+11/29*I,n=32 4032566944389296 m005 (29/60+1/12*5^(1/2))/(3/4*2^(1/2)+3/5) 4032566953332761 a007 Real Root Of -356*x^4+889*x^3+423*x^2+777*x-431 4032566957288592 r002 60th iterates of z^2 + 4032566959997016 r008 a(0)=4,K{-n^6,57-52*n-29*n^2-7*n^3} 4032566960033118 r005 Re(z^2+c),c=-71/118+7/51*I,n=15 4032566984810711 r005 Re(z^2+c),c=-53/94+4/49*I,n=61 4032566985830548 r005 Im(z^2+c),c=7/30+14/41*I,n=48 4032567004199695 s002 sum(A119200[n]/(n^2*exp(n)+1),n=1..infinity) 4032567008988312 s002 sum(A119200[n]/(n^2*exp(n)-1),n=1..infinity) 4032567010705464 r005 Re(z^2+c),c=-7/9+9/37*I,n=6 4032567010751540 k002 Champernowne real with 30*n^2+195*n-185 4032567011524081 m001 (Grothendieck-Mills)/(Zeta(1,2)+GAMMA(11/12)) 4032567016885072 a007 Real Root Of 270*x^4-665*x^3-560*x^2-343*x-98 4032567024991281 h001 (-exp(3/2)-5)/(-exp(1/2)+4) 4032567029724315 a001 39603*13^(19/21) 4032567036539311 l006 ln(2871/4297) 4032567043540848 m005 (1/2*3^(1/2)-7/8)/(4*gamma-1/12) 4032567049808429 q001 421/1044 4032567057401929 m001 Pi*FeigenbaumD-Pi*csc(5/24*Pi)/GAMMA(19/24) 4032567076202729 a007 Real Root Of -123*x^4+35*x^3-113*x^2+392*x+182 4032567089002636 r002 49th iterates of z^2 + 4032567098618223 a007 Real Root Of -146*x^4-45*x^3-299*x^2+993*x-345 4032567107229869 a001 439204/377*6557470319842^(10/17) 4032567107250773 a001 54018521/377*1836311903^(10/17) 4032567107252568 a001 6643838879/377*514229^(10/17) 4032567110781546 k002 Champernowne real with 61/2*n^2+387/2*n-184 4032567113092729 m003 1/32+Sqrt[5]/(512*Log[1/2+Sqrt[5]/2]) 4032567116014914 m001 Backhouse^FeigenbaumDelta-MadelungNaCl 4032567116014914 m001 MadelungNaCl-Backhouse^FeigenbaumDelta 4032567120427574 m005 (1/3*Pi+1/6)/(5/7*2^(1/2)+2) 4032567124052258 r005 Im(z^2+c),c=7/50+8/19*I,n=41 4032567132662522 a007 Real Root Of 300*x^4+492*x^3-366*x^2-577*x+252 4032567140946609 r008 a(0)=4,K{-n^6,14+29*n^3-4*n^2-69*n} 4032567147150039 a007 Real Root Of 191*x^4+595*x^3-668*x^2+46*x-442 4032567155542744 r005 Im(z^2+c),c=-45/86+22/41*I,n=52 4032567160989268 a007 Real Root Of -102*x^4-383*x^3+23*x^2-283*x+342 4032567167181572 a007 Real Root Of 411*x^4-771*x^3-243*x^2-764*x-330 4032567170576692 m001 (PrimesInBinary+Sarnak)/(BesselI(0,2)+Landau) 4032567177311478 r002 34th iterates of z^2 + 4032567181437846 m005 (-7/2+3/2*5^(1/2))/(5/6*Pi+1) 4032567210811552 k002 Champernowne real with 31*n^2+192*n-183 4032567223138654 m001 (ArtinRank2+Porter)/(Psi(2,1/3)+exp(1/exp(1))) 4032567228745636 a007 Real Root Of -417*x^4+502*x^3+625*x^2+887*x+300 4032567235808800 r005 Re(z^2+c),c=-59/106+4/23*I,n=59 4032567242469311 m003 -5-3*Cot[1/2+Sqrt[5]/2]+2*Csch[1/2+Sqrt[5]/2] 4032567248896748 r009 Im(z^3+c),c=-11/64+19/42*I,n=16 4032567249304892 m004 5/2+125*Pi+(5*Pi)/Log[Sqrt[5]*Pi] 4032567250787970 r005 Im(z^2+c),c=-37/62+25/51*I,n=5 4032567251887593 r005 Im(z^2+c),c=-11/106+22/39*I,n=29 4032567254558494 r005 Re(z^2+c),c=-63/118+19/61*I,n=33 4032567259832431 m005 (1/3*5^(1/2)+1/6)/(7/9*Pi-2/11) 4032567261482110 h001 (-4*exp(5)-1)/(-8*exp(1)+7) 4032567264875106 m001 (sin(1/5*Pi)+Zeta(1,2))/(MertensB1-ZetaP(3)) 4032567266362634 a007 Real Root Of -659*x^4+901*x^3-948*x^2+224*x+321 4032567268106106 r005 Im(z^2+c),c=-43/114+11/18*I,n=23 4032567278440910 r005 Im(z^2+c),c=-5/9-5/69*I,n=51 4032567281352230 r002 48th iterates of z^2 + 4032567290393317 m005 (1/2*Zeta(3)-5/6)/(7/10*3^(1/2)-7/11) 4032567290511281 m005 (1/2*Catalan-1/12)/(6/7*3^(1/2)-5/9) 4032567299011543 r009 Im(z^3+c),c=-43/90+24/53*I,n=22 4032567302769604 m001 gamma(1)^ArtinRank2+Weierstrass 4032567310841558 k002 Champernowne real with 63/2*n^2+381/2*n-182 4032567312871239 a007 Real Root Of -827*x^4-506*x^3-594*x^2+282*x+199 4032567314985585 r002 29th iterates of z^2 + 4032567323218297 m001 GaussKuzminWirsing*(Ei(1)-LambertW(1)) 4032567338574428 s002 sum(A113021[n]/(n^3*10^n+1),n=1..infinity) 4032567338866551 r005 Im(z^2+c),c=-9/16+67/123*I,n=15 4032567346997512 m005 (1/2*Zeta(3)-7/11)/(4*5^(1/2)-2/11) 4032567350604979 r005 Im(z^2+c),c=-3/82+27/50*I,n=39 4032567357125681 h001 (2/11*exp(1)+1/6)/(1/10*exp(2)+9/10) 4032567362025686 r009 Im(z^3+c),c=-7/58+27/59*I,n=6 4032567371478513 a007 Real Root Of -270*x^4+908*x^3+52*x^2+903*x-425 4032567380265883 a001 10610209857723/2*521^(9/13) 4032567382022147 r009 Im(z^3+c),c=-25/52+9/47*I,n=4 4032567385637990 m005 (1/2*3^(1/2)-5/7)/(5/8*Zeta(3)-3/8) 4032567410871564 k002 Champernowne real with 32*n^2+189*n-181 4032567416603422 r005 Im(z^2+c),c=3/46+29/61*I,n=46 4032567436929700 r002 15th iterates of z^2 + 4032567452780588 l006 ln(5591/8368) 4032567459504949 r005 Im(z^2+c),c=-7/8+8/251*I,n=5 4032567459735247 m006 (1/3*exp(2*Pi)-2/3)/(3/5/Pi+1/4) 4032567463203777 r005 Re(z^2+c),c=-57/106+14/45*I,n=35 4032567484079315 r005 Im(z^2+c),c=23/82+12/41*I,n=39 4032567490350421 a007 Real Root Of 242*x^4-387*x^3-649*x^2-517*x+333 4032567507377576 r005 Im(z^2+c),c=-5/74+34/63*I,n=10 4032567509736352 a003 cos(Pi*13/63)-cos(Pi*36/97) 4032567510901570 k002 Champernowne real with 65/2*n^2+375/2*n-180 4032567537058522 r002 62th iterates of z^2 + 4032567537957578 r005 Re(z^2+c),c=-37/66+5/39*I,n=37 4032567539455694 m001 GAMMA(11/24)^2*ln(Tribonacci)*sqrt(Pi) 4032567542744759 b008 46/35+E 4032567544833828 a007 Real Root Of 876*x^4-67*x^3+979*x^2+49*x-167 4032567546345413 r008 a(0)=4,K{-n^6,-64-59*n^3+67*n^2+25*n} 4032567554890479 r005 Re(z^2+c),c=-17/30+1/93*I,n=28 4032567557452235 r008 a(0)=4,K{-n^6,-54-59*n^3+72*n^2+10*n} 4032567568510450 m002 -2-4*Pi^2+ProductLog[Pi]^2 4032567588465582 r002 16th iterates of z^2 + 4032567602828932 a007 Real Root Of -87*x^4+375*x^3+263*x^2+719*x-355 4032567608391949 m001 exp(FeigenbaumKappa)/FransenRobinson*cos(1)^2 4032567609511672 a001 3461452808002/1597*1836311903^(6/17) 4032567609511672 a001 192900153618/1597*6557470319842^(6/17) 4032567610931576 k002 Champernowne real with 33*n^2+186*n-179 4032567611503959 m001 1/GAMMA(11/12)^2/ln(FeigenbaumC)*exp(1) 4032567626217584 r005 Re(z^2+c),c=-55/102+5/11*I,n=55 4032567635957011 r008 a(0)=4,K{-n^6,-8+37*n^3-39*n^2-20*n} 4032567642827793 m001 GAMMA(1/12)/Si(Pi)^2/ln(Zeta(7)) 4032567651960432 r005 Re(z^2+c),c=-4/7+1/117*I,n=20 4032567664910598 m005 (1/2*Zeta(3)-1/10)/(3/7*2^(1/2)+7/11) 4032567696019114 r002 13th iterates of z^2 + 4032567705634242 r008 a(0)=4,K{-n^6,-34+12*n+34*n^2-43*n^3} 4032567707576129 r002 58th iterates of z^2 + 4032567710008351 m005 (1/2*exp(1)+3/7)/(2/7*exp(1)-1/3) 4032567710961582 k002 Champernowne real with 67/2*n^2+369/2*n-178 4032567716039877 a007 Real Root Of -159*x^4-836*x^3-955*x^2-743*x-242 4032567716474393 r005 Re(z^2+c),c=35/102+3/28*I,n=29 4032567727041485 a003 cos(Pi*11/116)-sin(Pi*43/91) 4032567733114217 h001 (-2*exp(4)+1)/(-9*exp(8)-2) 4032567735950768 m001 (-Otter+ZetaQ(4))/(LambertW(1)-Zeta(1,-1)) 4032567738714114 m001 (5^(1/2)+Sarnak)^Magata 4032567743162957 a007 Real Root Of 235*x^4+796*x^3-376*x^2+874*x-306 4032567750255716 r005 Im(z^2+c),c=-45/82+28/43*I,n=36 4032567755987568 m001 (BesselI(0,1)-ln(3))/(Khinchin+Porter) 4032567760320324 r008 a(0)=4,K{-n^6,-40+35*n+10*n^2-36*n^3} 4032567760881790 a007 Real Root Of 554*x^4+561*x^3+663*x^2-38*x-101 4032567771044501 r005 Re(z^2+c),c=3/26+22/47*I,n=9 4032567789618193 r002 47th iterates of z^2 + 4032567793655616 m001 (-2*Pi/GAMMA(5/6)+ZetaQ(3))/(Chi(1)+cos(1)) 4032567796113413 r008 a(0)=4,K{-n^6,18-42*n^3+57*n^2-64*n} 4032567810991588 k002 Champernowne real with 34*n^2+183*n-177 4032567835968111 r002 34th iterates of z^2 + 4032567841208979 r008 a(0)=4,K{-n^6,20-59*n+46*n^2-38*n^3} 4032567845152790 m006 (3/5/Pi-1/3)/(2/3*exp(2*Pi)-4) 4032567849771587 r009 Re(z^3+c),c=-59/126+11/54*I,n=42 4032567851073180 r005 Re(z^2+c),c=2/19+17/41*I,n=46 4032567852061178 r008 a(0)=4,K{-n^6,20-37*n^3+43*n^2-57*n} 4032567868910301 r005 Im(z^2+c),c=9/34+9/29*I,n=44 4032567869100358 r005 Im(z^2+c),c=9/118+29/62*I,n=60 4032567879603600 a001 9062201101803/4181*1836311903^(6/17) 4032567879603600 a001 505019158607/4181*6557470319842^(6/17) 4032567885836047 r008 a(0)=4,K{-n^6,-40+59*n-26*n^2-24*n^3} 4032567892129358 l006 ln(2720/4071) 4032567896401023 a007 Real Root Of -288*x^4+370*x^3-263*x^2+774*x-286 4032567898149542 r009 Re(z^3+c),c=-59/126+11/54*I,n=40 4032567911021594 k002 Champernowne real with 69/2*n^2+363/2*n-176 4032567919009485 a001 23725150497407/10946*1836311903^(6/17) 4032567919009485 a001 1322157322203/10946*6557470319842^(6/17) 4032567920907424 a007 Real Root Of 76*x^4+387*x^3+462*x^2+441*x-454 4032567921534240 m001 (FeigenbaumD-QuadraticClass)/(gamma(1)-Artin) 4032567922801736 r002 43th iterates of z^2 + 4032567924758726 a001 3461452808002/28657*6557470319842^(6/17) 4032567925597529 a001 9062201101803/75025*6557470319842^(6/17) 4032567925719909 a001 23725150497407/196418*6557470319842^(6/17) 4032567925795543 a001 14662949395604/121393*6557470319842^(6/17) 4032567926115938 a001 5600748293801/46368*6557470319842^(6/17) 4032567926277338 r005 Re(z^2+c),c=-71/126+3/34*I,n=54 4032567928311952 a001 2139295485799/17711*6557470319842^(6/17) 4032567933815351 m005 (5*gamma+2/3)/(5/6*gamma+2/5) 4032567933815351 m007 (-5*gamma-2/3)/(-5/6*gamma-2/5) 4032567943363661 a001 14662949395604/6765*1836311903^(6/17) 4032567943363661 a001 817138163596/6765*6557470319842^(6/17) 4032567948000170 r009 Re(z^3+c),c=-23/44+13/59*I,n=34 4032567951122184 m001 (Otter+TwinPrimes)/(GAMMA(5/6)-Psi(1,1/3)) 4032567953250378 r005 Im(z^2+c),c=-9/10+7/218*I,n=7 4032567954853933 m008 (2*Pi^4-5/6)/(1/2*Pi^4-3/5) 4032567954940021 r002 64th iterates of z^2 + 4032567966668281 r008 a(0)=4,K{-n^6,30-29*n^3+24*n^2-56*n} 4032567988617548 a007 Real Root Of 784*x^4+564*x^3-611*x^2-986*x-282 4032567989970484 m005 (1/3*exp(1)+1/11)/(3/11*3^(1/2)+2) 4032567992554336 a008 Real Root of x^4-2*x^3-34*x^2-40*x-4 4032568005380450 m001 (Pi*2^(1/2)/GAMMA(3/4))^ln(2)+BesselI(1,2) 4032568005380450 m001 GAMMA(1/4)^ln(2)+BesselI(1,2) 4032568011051600 k002 Champernowne real with 35*n^2+180*n-175 4032568025552820 a007 Real Root Of -793*x^4+758*x^3+708*x^2+593*x-383 4032568029778289 m001 (HeathBrownMoroz-Otter)/(ln(3)-FeigenbaumC) 4032568046529610 a001 5600748293801/2584*1836311903^(6/17) 4032568046529610 a001 312119004989/2584*6557470319842^(6/17) 4032568068508099 r005 Re(z^2+c),c=-5/8+165/184*I,n=3 4032568073121188 a001 1860498/13*987^(9/11) 4032568083238759 a001 3571/317811*317811^(13/46) 4032568086450174 r005 Re(z^2+c),c=-55/106+18/47*I,n=56 4032568099801138 r008 a(0)=4,K{-n^6,13+10*n^3-9*n^2-46*n} 4032568103742527 a001 1/710524*(1/2*5^(1/2)+1/2)*9349^(1/16) 4032568111081606 k002 Champernowne real with 71/2*n^2+357/2*n-174 4032568114302259 r005 Re(z^2+c),c=5/62+17/27*I,n=45 4032568121962232 p001 sum(1/(351*n+178)/n/(5^n),n=1..infinity) 4032568128601982 r009 Re(z^3+c),c=-1/21+5/18*I,n=3 4032568155785268 m001 (Niven+ZetaQ(4))/(FeigenbaumMu+LaplaceLimit) 4032568169351529 h001 (8/9*exp(2)+9/11)/(3/7*exp(1)+2/3) 4032568173085271 a007 Real Root Of -43*x^4-98*x^3+171*x^2-575*x-155 4032568186083883 m001 3^(1/2)-OrthogonalArrays^Chi(1) 4032568186165109 r005 Re(z^2+c),c=13/66+15/41*I,n=32 4032568189616265 a007 Real Root Of 837*x^4+789*x^3+850*x^2-363*x-255 4032568190359495 m001 (Paris+Thue)/(sin(1/5*Pi)+KomornikLoreti) 4032568191348791 m005 (1/2*Catalan-2)/(3/10*gamma-5/9) 4032568196837727 a001 76/514229*196418^(37/57) 4032568198834175 p004 log(11987/8009) 4032568198858716 r009 Re(z^3+c),c=-55/122+5/27*I,n=33 4032568206693660 m001 1/ln(Catalan)*FeigenbaumAlpha*sqrt(2) 4032568211111612 k002 Champernowne real with 36*n^2+177*n-173 4032568213725209 r002 4th iterates of z^2 + 4032568219117910 r005 Im(z^2+c),c=29/94+13/50*I,n=57 4032568224061151 m001 1/exp(GAMMA(11/12))^2*Artin^2*cosh(1)^2 4032568235632442 r001 42i'th iterates of 2*x^2-1 of 4032568243264000 h005 exp(sin(Pi*12/43)/cos(Pi*13/30)) 4032568251735986 m001 LaplaceLimit^GAMMA(17/24)/MinimumGamma 4032568254070965 r004 Re(z^2+c),c=3/20-7/23*I,z(0)=I,n=24 4032568260168538 r009 Im(z^3+c),c=-37/102+24/55*I,n=6 4032568260985564 m001 (3^(1/3)-BesselI(1,2))/(OneNinth-PlouffeB) 4032568270160250 m001 (GAMMA(19/24)+GAMMA(23/24))/(Psi(2,1/3)+gamma) 4032568270532144 r005 Im(z^2+c),c=25/98+9/28*I,n=25 4032568275308676 m001 ArtinRank2/ErdosBorwein/OneNinth 4032568281222353 m001 Totient^LaplaceLimit/ln(2)*ln(10) 4032568289003875 r005 Im(z^2+c),c=23/102+21/61*I,n=20 4032568295865805 m005 (1/2*3^(1/2)+7/11)/(3/5*3^(1/2)-2/3) 4032568296047900 r009 Im(z^3+c),c=-15/32+21/64*I,n=25 4032568296176594 r008 a(0)=4,K{-n^6,-2+28*n^3-64*n^2+5*n} 4032568302194664 m004 -6-125*Pi+Sqrt[5]*Pi-5*Pi*Cos[Sqrt[5]*Pi] 4032568302440782 r005 Im(z^2+c),c=-15/22+2/7*I,n=5 4032568307326676 m001 (arctan(1/3)-sin(1))/(BesselI(1,1)+Sarnak) 4032568311096244 r005 Re(z^2+c),c=-37/70+8/33*I,n=4 4032568311141618 k002 Champernowne real with 73/2*n^2+351/2*n-172 4032568329468021 a003 sin(Pi*18/109)*sin(Pi*13/43) 4032568330479720 r002 41th iterates of z^2 + 4032568342599198 a007 Real Root Of -41*x^4+249*x^3+800*x^2+572*x-376 4032568345173406 l006 ln(143/8066) 4032568345340572 r002 44th iterates of z^2 + 4032568345691976 r005 Re(z^2+c),c=-61/110+5/26*I,n=42 4032568351695386 r002 5th iterates of z^2 + 4032568353323923 a001 9349/832040*317811^(13/46) 4032568356564764 l006 ln(5289/7916) 4032568360761335 r002 34th iterates of z^2 + 4032568374228911 r005 Re(z^2+c),c=-63/122+11/28*I,n=46 4032568378320615 r008 a(0)=4,K{-n^6,30-6*n-51*n^2-4*n^3} 4032568392728817 a001 24476/2178309*317811^(13/46) 4032568398666528 a007 Real Root Of -80*x^4+639*x^3+557*x^2+847*x+295 4032568402972454 r005 Re(z^2+c),c=-9/16+2/51*I,n=19 4032568406291012 r008 a(0)=4,K{-n^6,20-56*n-34*n^2+40*n^3} 4032568406572278 r008 a(0)=4,K{-n^6,56-51*n-29*n^2-7*n^3} 4032568411171624 k002 Champernowne real with 37*n^2+174*n-171 4032568414757631 p001 sum(1/(406*n+251)/(32^n),n=0..infinity) 4032568417082382 a001 15127/1346269*317811^(13/46) 4032568419616199 m001 (Niven+Riemann2ndZero)/(Zeta(1,2)+Artin) 4032568431517705 m008 (4/5*Pi^4-2/5)/(2*Pi^6-1/4) 4032568431794380 r005 Im(z^2+c),c=-23/19+2/37*I,n=61 4032568434000037 m001 Paris^(Ei(1,1)*KomornikLoreti) 4032568451645781 a007 Real Root Of -157*x^4-815*x^3-527*x^2+723*x-442 4032568472310728 r005 Re(z^2+c),c=-39/70+1/6*I,n=33 4032568473936688 m001 Pi/Gompertz/Mills 4032568481746491 r009 Im(z^3+c),c=-61/118+17/57*I,n=58 4032568499168085 m005 (1/3*5^(1/2)-2/9)/(9/10*gamma+7/9) 4032568503172957 m004 50*Pi+(Sqrt[5]*Pi)/4-Sinh[Sqrt[5]*Pi] 4032568511201630 k002 Champernowne real with 75/2*n^2+345/2*n-170 4032568513741537 a007 Real Root Of 15*x^4-940*x^3-912*x^2-445*x+389 4032568519445762 r005 Im(z^2+c),c=11/48+19/55*I,n=50 4032568520245735 a001 5778/514229*317811^(13/46) 4032568530596056 r009 Re(z^3+c),c=-19/46+25/39*I,n=36 4032568547393078 m001 (FeigenbaumC+Robbin)/(Backhouse-Chi(1)) 4032568549197473 a005 (1/cos(3/233*Pi))^1704 4032568550814104 r005 Im(z^2+c),c=-83/98+15/46*I,n=4 4032568558217034 m001 (Magata+MasserGramain)/(ln(2)-Lehmer) 4032568558855048 a007 Real Root Of 760*x^4-665*x^3-368*x^2-567*x+312 4032568564564499 h001 (1/9*exp(2)+1/7)/(3/11*exp(2)+3/8) 4032568564862383 p003 LerchPhi(1/16,1,413/159) 4032568565369134 r002 28th iterates of z^2 + 4032568566224616 r005 Re(z^2+c),c=-41/110+21/46*I,n=7 4032568566272267 r002 6th iterates of z^2 + 4032568571799231 a001 1/7*(1/2*5^(1/2)+1/2)^20*4^(9/20) 4032568586628721 m001 Ei(1)^2/ln(Robbin)*arctan(1/2) 4032568592782570 m001 GAMMA(2/3)^GAMMA(1/4)/(sin(Pi/12)^GAMMA(1/4)) 4032568605052323 m001 (BesselI(1,1)-Salem)/(ln(gamma)-cos(1/12*Pi)) 4032568607375606 a007 Real Root Of 182*x^4+515*x^3-644*x^2+796*x-674 4032568608916921 a001 73681302247/55*34^(5/16) 4032568611231636 k002 Champernowne real with 38*n^2+171*n-169 4032568618238661 m005 (1/2*2^(1/2)-5/11)/(4/7*2^(1/2)-2/11) 4032568643337891 a007 Real Root Of 106*x^4+205*x^3-874*x^2-126*x-883 4032568646331224 r005 Re(z^2+c),c=-57/106+10/33*I,n=35 4032568667451803 r002 25th iterates of z^2 + 4032568672912215 m001 (Tetranacci-TwinPrimes)/(Pi+HeathBrownMoroz) 4032568675064299 m001 (-MertensB1+Tetranacci)/(Si(Pi)+BesselI(0,2)) 4032568676622216 m001 (Kolakoski-MertensB3)/(ln(3)+CopelandErdos) 4032568676853833 r005 Re(z^2+c),c=23/98+35/64*I,n=31 4032568686267355 m001 (Zeta(1/2)+BesselK(1,1))/(Porter+Robbin) 4032568711261642 k002 Champernowne real with 77/2*n^2+339/2*n-168 4032568730790932 r002 16th iterates of z^2 + 4032568735291793 r005 Im(z^2+c),c=-79/58+1/49*I,n=10 4032568738190509 a007 Real Root Of 962*x^4-975*x^3-387*x^2-785*x-343 4032568741429573 h001 (-6*exp(8)-5)/(-2*exp(1)+1) 4032568743777616 a001 24476/13*196418^(9/11) 4032568747143081 a007 Real Root Of -329*x^4+867*x^3+144*x^2+756*x+347 4032568747673698 m001 ln(2)/ln(10)*Conway+Trott 4032568749313592 m001 1/exp(arctan(1/2))^2*(2^(1/3))*cos(Pi/5) 4032568753639689 a001 2139295485799/987*1836311903^(6/17) 4032568753639689 a001 119218851371/987*6557470319842^(6/17) 4032568753669892 m004 -5+(5*E^(Sqrt[5]*Pi))/Pi+4*Sinh[Sqrt[5]*Pi] 4032568754213454 a001 89/39603*199^(6/11) 4032568768650858 m001 (Psi(2,1/3)+gamma)/(ln(Pi)+exp(-1/2*Pi)) 4032568771000289 m005 (1/2*Catalan+4)/(4*exp(1)+2/11) 4032568771489309 r005 Re(z^2+c),c=3/58+13/21*I,n=39 4032568780946236 m001 1/(3^(1/3))/Salem^2*ln(sqrt(5)) 4032568781603414 r002 48th iterates of z^2 + 4032568784876267 r005 Im(z^2+c),c=-117/122+8/25*I,n=3 4032568784935367 m001 (Magata-ZetaQ(2))/(exp(1/Pi)-Landau) 4032568795627962 r009 Re(z^3+c),c=-16/31+15/47*I,n=27 4032568798271706 h001 (-11*exp(4)+1)/(-8*exp(3)+12) 4032568805474973 r005 Re(z^2+c),c=-61/110+5/26*I,n=55 4032568808373793 m001 (Zeta(1,2)+Niven)/(GAMMA(2/3)-ln(gamma)) 4032568811291648 k002 Champernowne real with 39*n^2+168*n-167 4032568817452635 l006 ln(8384/8729) 4032568823735372 a007 Real Root Of -163*x^4+371*x^3+447*x^2+581*x-327 4032568826291729 r004 Re(z^2+c),c=3/26+3/7*I,z(0)=I,n=43 4032568832641055 a001 2/1346269*832040^(29/50) 4032568847332115 m001 ErdosBorwein+FeigenbaumAlpha^cos(1/12*Pi) 4032568848298607 l006 ln(2569/3845) 4032568855342661 m002 -Pi^4-Pi^5+2*Sech[Pi]*Tanh[Pi] 4032568867072144 m006 (1/5/Pi+4/5)/(4*exp(2*Pi)-1/4) 4032568869710349 m001 GAMMA(5/6)*GlaisherKinkelin+Sierpinski 4032568890480315 m005 (1/3*2^(1/2)-1/8)/(1/4*5^(1/2)+3/10) 4032568892564699 a001 2/21*6765^(9/55) 4032568897627297 a007 Real Root Of 100*x^4+515*x^3+291*x^2-508*x+547 4032568905881051 a007 Real Root Of 416*x^4-826*x^3-448*x^2-486*x+312 4032568905894980 m005 (1/2*Catalan+1/3)/(2/5*exp(1)+7/8) 4032568911321654 k002 Champernowne real with 79/2*n^2+333/2*n-166 4032568916878385 r002 37th iterates of z^2 + 4032568917667779 m001 exp(1/Pi)-sin(1/5*Pi)*(1+3^(1/2))^(1/2) 4032568917667779 m001 exp(1/Pi)-sin(Pi/5)*sqrt(1+sqrt(3)) 4032568926197530 m001 1/exp(FeigenbaumC)^2*Niven^2*cos(1) 4032568929850628 m005 (1/2*3^(1/2)+4/9)/(5*gamma+4/11) 4032568930801986 b008 3*AiryBi[-14/3] 4032568931512308 r009 Re(z^3+c),c=-71/126+23/50*I,n=38 4032568936905045 r005 Re(z^2+c),c=-9/16+11/113*I,n=30 4032568942141718 m001 (Tribonacci-ZetaP(3))/(3^(1/3)+Khinchin) 4032568952522565 m001 PlouffeB/(ZetaP(3)^GAMMA(3/4)) 4032568958252899 r002 48th iterates of z^2 + 4032568962824624 r005 Re(z^2+c),c=-19/78+19/30*I,n=56 4032568975461403 r002 30th iterates of z^2 + 4032568978040516 r004 Re(z^2+c),c=7/18-5/14*I,z(0)=exp(3/8*I*Pi),n=7 4032569004772720 a001 23725150497407/610*6557470319842^(4/17) 4032569005185971 r005 Im(z^2+c),c=19/62+13/51*I,n=13 4032569007539973 m001 Psi(2,1/3)+Riemann1stZero+Robbin 4032569011351660 k002 Champernowne real with 40*n^2+165*n-165 4032569017515818 m001 HardyLittlewoodC4-KhinchinHarmonic+MertensB2 4032569022345689 r005 Im(z^2+c),c=-69/56+3/52*I,n=51 4032569029585120 a001 9/43133785636*14930352^(14/19) 4032569041686855 r002 60th iterates of z^2 + 4032569048957116 m001 Tribonacci/Porter*ln(LambertW(1))^2 4032569054229783 m001 (TwinPrimes-Riemann2ndZero)^FibonacciFactorial 4032569091678055 m001 (Pi-5^(1/2))/(Khinchin-TreeGrowth2nd) 4032569110032179 r005 Im(z^2+c),c=35/118+11/26*I,n=53 4032569111381666 k002 Champernowne real with 81/2*n^2+327/2*n-164 4032569123746035 a007 Real Root Of 137*x^4-959*x^3+419*x^2-477*x-327 4032569131964801 a007 Real Root Of 669*x^4-421*x^3+829*x^2+340*x-43 4032569146173966 r008 a(0)=4,K{-n^6,-35-44*n^3+37*n^2+11*n} 4032569146632617 r005 Im(z^2+c),c=-67/114+3/41*I,n=29 4032569149172550 r002 36th iterates of z^2 + 4032569151966062 p004 log(26003/461) 4032569161190762 m005 (1/2*3^(1/2)+4/5)/(1/9*exp(1)+1/9) 4032569169896789 r008 a(0)=4,K{-n^6,-49+42*n+15*n^2-39*n^3} 4032569180322740 m001 (FeigenbaumB+TreeGrowth2nd)/(2^(1/3)+Ei(1)) 4032569191356971 r008 a(0)=4,K{-n^6,-17-42*n^3+40*n^2-12*n} 4032569211411672 k002 Champernowne real with 41*n^2+162*n-163 4032569212748706 a005 (1/cos(21/100*Pi))^221 4032569216897676 r008 a(0)=4,K{-n^6,-43+41*n+6*n^2-35*n^3} 4032569220189974 s002 sum(A259894[n]/(exp(n)-1),n=1..infinity) 4032569227337875 a001 2207/196418*317811^(13/46) 4032569236654626 r008 a(0)=4,K{-n^6,-13-38*n^3+30*n^2-10*n} 4032569240362086 r005 Re(z^2+c),c=45/122+1/6*I,n=64 4032569244155435 r002 33th iterates of z^2 + 4032569246733301 r008 a(0)=4,K{-n^6,17-42*n^3+57*n^2-63*n} 4032569262596148 a001 6/34111385*1597^(14/19) 4032569273246336 r009 Re(z^3+c),c=-61/118+23/57*I,n=44 4032569284645897 m001 BesselK(1,1)+BesselJZeros(0,1)+GAMMA(23/24) 4032569301979185 r005 Im(z^2+c),c=-3/82+23/42*I,n=29 4032569303564996 r008 a(0)=4,K{-n^6,-11-n+13*n^2-32*n^3} 4032569308936387 r005 Re(z^2+c),c=-19/36+11/60*I,n=12 4032569311441678 k002 Champernowne real with 83/2*n^2+321/2*n-162 4032569315164949 b008 ArcCoth[23+ArcCosh[Pi]] 4032569332996021 r005 Re(z^2+c),c=-13/24+9/31*I,n=39 4032569334921485 m001 1/ln(TwinPrimes)^2/CopelandErdos^2/sin(Pi/12) 4032569338297637 m001 GAMMA(5/12)/ln(GAMMA(13/24))*Zeta(1,2) 4032569340215575 r005 Re(z^2+c),c=-6/11+13/53*I,n=24 4032569341522869 m001 1/ln(Catalan)/PisotVijayaraghavan/Zeta(1/2)^2 4032569342869872 a001 18/591286729879*701408733^(6/17) 4032569342869872 a001 6/3536736619241*2504730781961^(6/17) 4032569342877250 a001 6/10983760033*196418^(6/17) 4032569345875705 a007 Real Root Of 119*x^4+253*x^3-668*x^2+917*x-317 4032569347488343 r002 60th iterates of z^2 + 4032569362294970 r005 Re(z^2+c),c=-37/64+1/34*I,n=16 4032569365292624 a007 Real Root Of -40*x^4-11*x^3+466*x^2-625*x-242 4032569367326703 a007 Real Root Of -259*x^4-899*x^3+478*x^2-431*x+26 4032569369810572 l006 ln(4987/7464) 4032569372414790 g007 Psi(2,9/11)+Psi(2,2/7)-Psi(2,1/11)-Psi(2,1/9) 4032569379296252 m005 (1/3*3^(1/2)+2/7)/(5/6*exp(1)-1/8) 4032569407097009 r008 a(0)=4,K{-n^6,-37-19*n^3-39*n^2+64*n} 4032569407788272 m005 (1/3+1/6*5^(1/2))/(11/12*Catalan-6/7) 4032569410792212 r009 Im(z^3+c),c=-39/122+9/22*I,n=24 4032569411471684 k002 Champernowne real with 42*n^2+159*n-161 4032569422376972 r009 Re(z^3+c),c=-29/66+9/52*I,n=23 4032569423094068 r005 Re(z^2+c),c=-19/34+8/57*I,n=29 4032569432052573 h001 (1/5*exp(1)+4/7)/(3/11*exp(2)+3/4) 4032569435416314 m001 Paris/(ln(gamma)+Riemann3rdZero) 4032569439237052 r005 Im(z^2+c),c=29/86+9/40*I,n=60 4032569446480161 r008 a(0)=4,K{-n^6,-55-8*n+25*n^2+8*n^3} 4032569448950314 m001 Riemann3rdZero/FeigenbaumC/ln(Zeta(3))^2 4032569461130082 r002 7th iterates of z^2 + 4032569467433977 r005 Re(z^2+c),c=-25/54+31/63*I,n=56 4032569480466931 b008 1/2-31*ArcCosh[2] 4032569485652531 r002 8th iterates of z^2 + 4032569486743477 r005 Re(z^2+c),c=-37/56+11/39*I,n=27 4032569492421233 a007 Real Root Of -229*x^4-835*x^3+599*x^2+981*x+16 4032569493066859 r008 a(0)=4,K{-n^6,-23+51*n-44*n^2-15*n^3} 4032569511501690 k002 Champernowne real with 85/2*n^2+315/2*n-160 4032569512683600 s002 sum(A249440[n]/(exp(n)-1),n=1..infinity) 4032569514768837 l006 ln(106/5979) 4032569515398706 s001 sum(exp(-4*Pi)^(n-1)*A254081[n],n=1..infinity) 4032569518079251 m005 (-49/10+1/10*5^(1/2))/(Catalan-4/5) 4032569520543014 r005 Re(z^2+c),c=-49/90+13/51*I,n=35 4032569520666339 s002 sum(A109433[n]/(n^3*2^n+1),n=1..infinity) 4032569524731291 r005 Im(z^2+c),c=-75/64+12/41*I,n=16 4032569525075334 r005 Im(z^2+c),c=-29/102+1/18*I,n=5 4032569527961593 r009 Im(z^3+c),c=-8/17+15/46*I,n=55 4032569537312044 a007 Real Root Of -132*x^4-546*x^3-66*x^2-148*x-422 4032569538359978 a007 Real Root Of 349*x^4-611*x^3-302*x^2-630*x+334 4032569541561245 m005 (1/2*Pi+6/11)/(3/10*Catalan+1/4) 4032569547099357 a003 cos(Pi*1/24)*cos(Pi*11/30) 4032569553689309 r005 Re(z^2+c),c=-59/114+3/22*I,n=5 4032569573083777 h001 (1/7*exp(1)+9/11)/(9/10*exp(1)+6/11) 4032569591188305 r002 11th iterates of z^2 + 4032569602241311 a007 Real Root Of -421*x^4+898*x^3+794*x^2-22*x-168 4032569603212504 r005 Im(z^2+c),c=19/58+19/50*I,n=52 4032569603373077 r002 9th iterates of z^2 + 4032569605439663 a007 Real Root Of -586*x^4-70*x^3-234*x^2+743*x+3 4032569608599183 a007 Real Root Of -297*x^4-991*x^3+922*x^2+319*x-154 4032569611531696 k002 Champernowne real with 43*n^2+156*n-159 4032569620480086 r002 7th iterates of z^2 + 4032569625600862 a001 17393796001/144*144^(12/17) 4032569631128545 m001 ln(KhintchineHarmonic)*Champernowne/Niven 4032569646708570 m005 (39/40+3/8*5^(1/2))/(4*Catalan+5/6) 4032569654384796 r002 37th iterates of z^2 + 4032569657747444 a007 Real Root Of -279*x^4+833*x^3+840*x^2+846*x-525 4032569658819379 r002 42th iterates of z^2 + 4032569669915630 m001 (-Artin+Porter)/(BesselI(0,1)+exp(1/exp(1))) 4032569681190088 m001 1/exp(HardHexagonsEntropy)*ErdosBorwein/Pi^2 4032569693624068 q001 1461/3623 4032569698388220 p003 LerchPhi(1/12,1,499/189) 4032569709085382 r005 Re(z^2+c),c=-19/34+22/109*I,n=18 4032569710041478 r005 Re(z^2+c),c=-43/98+29/52*I,n=29 4032569711561702 k002 Champernowne real with 87/2*n^2+309/2*n-158 4032569718196126 r002 56th iterates of z^2 + 4032569726557965 m001 (Niven+Sierpinski)/(Psi(1,1/3)+Landau) 4032569734483151 r002 6th iterates of z^2 + 4032569741962162 a001 233/710647*322^(5/6) 4032569752908571 a007 Real Root Of 244*x^4+817*x^3-900*x^2-759*x+627 4032569760978267 r005 Im(z^2+c),c=-41/60+2/35*I,n=39 4032569763605611 m005 (1/2*gamma+1/8)/(4/7*3^(1/2)-1) 4032569768555605 r005 Re(z^2+c),c=-49/86+20/53*I,n=40 4032569768880371 s002 sum(A147512[n]/(n*exp(n)+1),n=1..infinity) 4032569775010054 r009 Im(z^3+c),c=-17/106+5/11*I,n=16 4032569778619331 r005 Im(z^2+c),c=21/58+11/35*I,n=40 4032569782708050 m001 (3^(1/3))*Paris^2*exp(GAMMA(11/12)) 4032569783753361 r005 Im(z^2+c),c=5/94+13/23*I,n=27 4032569790741903 r009 Im(z^3+c),c=-37/118+7/17*I,n=15 4032569794392390 a001 1346269/1364*76^(13/40) 4032569795934893 r008 a(0)=4,K{-n^6,41-31*n-33*n^2-8*n^3} 4032569796609219 a007 Real Root Of 727*x^4-268*x^3-722*x^2-504*x+319 4032569799356709 b008 (4+ArcCsch[2])^4 4032569802710598 r008 a(0)=4,K{-n^6,49-45*n-26*n^2-9*n^3} 4032569811591708 k002 Champernowne real with 44*n^2+153*n-157 4032569824174325 r002 41th iterates of z^2 + 4032569828088897 r008 a(0)=4,K{-n^6,-24-2*n^3+44*n^2-47*n} 4032569835730790 r005 Re(z^2+c),c=-69/122+18/55*I,n=30 4032569835916950 r005 Re(z^2+c),c=-9/16+13/124*I,n=51 4032569842145117 a007 Real Root Of 171*x^4+431*x^3-919*x^2+631*x+533 4032569845775808 m006 (2/Pi-5)/(1/2*exp(Pi)-3/4) 4032569858906729 b008 Log[4*Tan[3/2]] 4032569875360199 r005 Im(z^2+c),c=-1/16+5/9*I,n=52 4032569877354989 r002 9th iterates of z^2 + 4032569877905923 r005 Re(z^2+c),c=-7/90+21/34*I,n=5 4032569906068790 r008 a(0)=4,K{-n^6,-27+5*n^3+48*n^2-56*n} 4032569908436902 m005 (3/4*gamma-2)/(5*gamma+1) 4032569908436902 m007 (-3/4*gamma+2)/(-5*gamma-1) 4032569910735396 r009 Re(z^3+c),c=-17/62+43/61*I,n=10 4032569911621714 k002 Champernowne real with 89/2*n^2+303/2*n-156 4032569923890044 l006 ln(2418/3619) 4032569928713662 a007 Real Root Of -632*x^4+91*x^3-884*x^2+604*x+410 4032569929522016 a007 Real Root Of -266*x^4+474*x^3+313*x^2+240*x+84 4032569931932467 m001 (Shi(1)-Si(Pi))/(-Khinchin+TravellingSalesman) 4032569937618421 r002 55th iterates of z^2 + 4032569957250991 m005 (-11/42+1/6*5^(1/2))/(1/11*gamma+2/9) 4032569959311979 s002 sum(A136147[n]/((exp(n)+1)*n),n=1..infinity) 4032569959610839 r008 a(0)=4,K{-n^6,61-53*n-35*n^2-4*n^3} 4032569965068270 r005 Re(z^2+c),c=-15/28+20/63*I,n=42 4032569966219949 m005 (1/2*Zeta(3)+7/11)/(8/9*Zeta(3)+2) 4032569983146579 s001 sum(exp(-Pi/4)^n*A229657[n],n=1..infinity) 4032569990296973 r002 56th iterates of z^2 + 4032569992948763 r005 Re(z^2+c),c=-47/86+7/30*I,n=30 4032569998967596 a001 123/13*13^(13/23) 4032570001056640 r005 Re(z^2+c),c=-27/52+23/58*I,n=64 4032570003549020 r008 a(0)=4,K{-n^6,-55-4*n+19*n^2+10*n^3} 4032570003595788 r005 Re(z^2+c),c=3/44+13/21*I,n=13 4032570005525436 a007 Real Root Of 147*x^4+709*x^3+382*x^2-209*x+566 4032570009707676 r008 a(0)=4,K{-n^6,55-38*n-47*n^2-n^3} 4032570010754733 m001 (1+ln(2+3^(1/2)))/(-Backhouse+QuadraticClass) 4032570011651720 k002 Champernowne real with 45*n^2+150*n-155 4032570027127560 r008 a(0)=4,K{-n^6,47-22*n-57*n^2+n^3} 4032570028099202 m001 Catalan-exp(Pi)*Grothendieck 4032570032833907 r002 63th iterates of z^2 + 4032570032883507 r008 a(0)=4,K{-n^6,24+22*n^3-13*n^2-61*n} 4032570034480475 r002 38th iterates of z^2 + 4032570054324029 r005 Re(z^2+c),c=-15/74+31/50*I,n=28 4032570063844131 a007 Real Root Of -175*x^4+659*x^3+19*x^2+690*x+323 4032570067258818 r005 Im(z^2+c),c=-19/28+2/3*I,n=5 4032570067946044 r005 Re(z^2+c),c=-7/12+11/82*I,n=17 4032570074722868 r005 Re(z^2+c),c=-69/122+2/63*I,n=45 4032570084553116 a005 (1/sin(72/235*Pi))^42 4032570090183162 m004 1+125*Pi+6*Csc[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi] 4032570092332433 h001 (2/3*exp(1)+7/8)/(7/9*exp(2)+11/12) 4032570102372385 r008 a(0)=4,K{-n^6,6+25*n^3-31*n^2-28*n} 4032570111147920 a007 Real Root Of 128*x^4+350*x^3-544*x^2+442*x-268 4032570111469399 m001 Zeta(3)*exp(GAMMA(2/3))^2*sqrt(5) 4032570111681726 k002 Champernowne real with 91/2*n^2+297/2*n-154 4032570118445769 r005 Im(z^2+c),c=-1/50+26/49*I,n=51 4032570119385740 r002 62th iterates of z^2 + 4032570121392981 a001 13/844*123^(1/5) 4032570123570815 a003 sin(Pi*13/119)-sin(Pi*22/83) 4032570127508579 r005 Im(z^2+c),c=-27/58+13/24*I,n=19 4032570129535986 a007 Real Root Of 301*x^4-305*x^3+104*x^2-469*x-234 4032570129904892 a001 1597/3*11^(38/45) 4032570140553387 a007 Real Root Of 479*x^4+882*x^3+505*x^2-477*x-20 4032570164352560 r005 Re(z^2+c),c=3/106+13/38*I,n=4 4032570166215824 m001 (-sin(1)+Zeta(3))/(3^(1/2)-Chi(1)) 4032570167558591 m005 (1/2*gamma-3/4)/(2/5*Catalan+7/9) 4032570170194014 r005 Im(z^2+c),c=-5/44+25/42*I,n=57 4032570176678001 m001 Zeta(5)*(5^(1/2)+(1+3^(1/2))^(1/2)) 4032570176678001 m001 Zeta(5)*(sqrt(5)+sqrt(1+sqrt(3))) 4032570199503528 m004 6+Log[Sqrt[5]*Pi]+(75*Sec[Sqrt[5]*Pi])/Pi 4032570211711732 k002 Champernowne real with 46*n^2+147*n-153 4032570212944931 a007 Real Root Of -7*x^4-268*x^3+588*x^2+509*x+764 4032570224538620 a007 Real Root Of 103*x^4+470*x^3+213*x^2-175*x-586 4032570243308475 r005 Re(z^2+c),c=-21/38+7/29*I,n=29 4032570250562476 a007 Real Root Of 876*x^4-491*x^3+842*x^2+886*x+165 4032570252610947 r005 Re(z^2+c),c=-5/8+65/157*I,n=37 4032570260274237 a007 Real Root Of -63*x^4-276*x^3-243*x^2-562*x+246 4032570260529963 r005 Re(z^2+c),c=-37/66+8/61*I,n=57 4032570279323156 m001 (Sarnak+Stephens)/(2^(1/3)+ReciprocalLucas) 4032570281982190 r002 3th iterates of z^2 + 4032570293766599 r005 Im(z^2+c),c=-5/18+31/58*I,n=12 4032570311741738 k002 Champernowne real with 93/2*n^2+291/2*n-152 4032570312907952 p004 log(10631/7103) 4032570315133156 r005 Im(z^2+c),c=4/17+18/53*I,n=59 4032570316711407 m001 TwinPrimes^GAMMA(3/4)*TwinPrimes^exp(Pi) 4032570335624131 m001 (3^(1/3)-ln(2+3^(1/2)))/(GAMMA(13/24)+Porter) 4032570343568146 r005 Im(z^2+c),c=31/102+11/42*I,n=31 4032570351643826 r005 Im(z^2+c),c=17/94+25/46*I,n=23 4032570353749552 a001 141422324/377*6557470319842^(8/17) 4032570353749552 a001 6643838879/377*1836311903^(8/17) 4032570353750987 a001 312119004989/377*514229^(8/17) 4032570356091824 r002 39th iterates of z^2 + 4032570360085241 g007 Psi(2,8/9)+Psi(2,1/6)-Psi(2,5/11)-Psi(2,4/7) 4032570360951193 r009 Re(z^3+c),c=-15/31+13/59*I,n=25 4032570380606835 r005 Re(z^2+c),c=-17/30+2/87*I,n=26 4032570383844970 m001 (MadelungNaCl-ZetaP(3))/(CopelandErdos-Kac) 4032570384067751 r005 Im(z^2+c),c=-11/74+34/57*I,n=51 4032570389230243 m001 (Shi(1)+MertensB3)/Lehmer 4032570397990151 r005 Re(z^2+c),c=-29/54+13/57*I,n=19 4032570398002896 r009 Re(z^3+c),c=-14/29+13/59*I,n=33 4032570411771744 k002 Champernowne real with 47*n^2+144*n-151 4032570414067326 a003 cos(Pi*21/115)-cos(Pi*26/73) 4032570414330243 b008 9+19*Sqrt[E] 4032570439578816 a007 Real Root Of -985*x^4-50*x^3+716*x^2+704*x-371 4032570441055239 r005 Im(z^2+c),c=-1/9+37/62*I,n=54 4032570450360617 r005 Re(z^2+c),c=-29/52+9/55*I,n=47 4032570451137877 m001 1/GAMMA(7/12)/exp(Salem)^2/cosh(1) 4032570453373079 m001 (Si(Pi)*FeigenbaumKappa+Otter)/FeigenbaumKappa 4032570459392074 r002 39th iterates of z^2 + 4032570460897638 r002 21th iterates of z^2 + 4032570463235278 m001 FransenRobinson/exp(DuboisRaymond)^2/Bloch 4032570470494373 l006 ln(175/9871) 4032570490870584 r005 Re(z^2+c),c=-41/90+23/47*I,n=49 4032570495860490 r002 18th iterates of z^2 + 4032570497789142 r002 16th iterates of z^2 + 4032570507720822 s002 sum(A080839[n]/(n^2*2^n-1),n=1..infinity) 4032570511801750 k002 Champernowne real with 95/2*n^2+285/2*n-150 4032570513686025 l006 ln(4685/7012) 4032570514207579 m001 (2*Pi/GAMMA(5/6)-Bloch)/(Stephens-Tribonacci) 4032570522734087 m001 ln(sin(1))*Riemann1stZero*sqrt(1+sqrt(3)) 4032570526126920 r002 61th iterates of z^2 + 4032570528797564 r008 a(0)=4,K{-n^6,-32+14*n-33*n^2+22*n^3} 4032570532080260 r005 Re(z^2+c),c=-5/9+11/60*I,n=53 4032570532717435 r002 33th iterates of z^2 + 4032570532734506 m004 -5+2*E^(Sqrt[5]*Pi)+(5*E^(Sqrt[5]*Pi))/Pi 4032570534591645 m005 (1/3*gamma+1/11)/(1/5*3^(1/2)-5/12) 4032570540632031 r008 a(0)=4,K{-n^6,-38+25*n-39*n^2+23*n^3} 4032570547346566 a001 161/1762289*34^(8/19) 4032570547875098 r005 Re(z^2+c),c=-53/94+4/49*I,n=59 4032570550606935 m001 (-Magata+Totient)/(GAMMA(2/3)-sin(1)) 4032570563783198 m006 (3*exp(Pi)-1/6)/(1/4*Pi^2-3/4) 4032570568388417 r005 Re(z^2+c),c=15/38+17/63*I,n=28 4032570574276450 a007 Real Root Of -443*x^4+920*x^3-980*x^2+857*x+577 4032570574979051 a007 Real Root Of -399*x^4+15*x^3+624*x^2+459*x-277 4032570577506701 r005 Re(z^2+c),c=-61/118+5/13*I,n=49 4032570577573097 r002 30th iterates of z^2 + 4032570595636791 m005 (1/2*gamma-4)/(2/9*Pi+2/9) 4032570603329621 r005 Re(z^2+c),c=-103/110+9/62*I,n=42 4032570607450130 r002 19th iterates of z^2 + 4032570609635555 a003 cos(Pi*39/109)*sin(Pi*41/107) 4032570610382440 r005 Re(z^2+c),c=-17/18+50/221*I,n=6 4032570610689476 r002 3th iterates of z^2 + 4032570611831756 k002 Champernowne real with 48*n^2+141*n-149 4032570620373965 m001 (1+Zeta(3))/(-AlladiGrinstead+FeigenbaumKappa) 4032570620920047 r008 a(0)=4,K{-n^6,-34+11*n+35*n^2-43*n^3} 4032570626549082 a001 521/144*13^(47/50) 4032570639154720 r008 a(0)=4,K{-n^6,8-48*n^3+71*n^2-62*n} 4032570651516047 r009 Im(z^3+c),c=-19/42+13/35*I,n=10 4032570654845000 r008 a(0)=4,K{-n^6,-18-42*n^3+40*n^2-11*n} 4032570667892048 m001 (2^(1/2)-Landau)/(Riemann2ndZero+Stephens) 4032570674691626 a001 1/1602508992*53316291173^(13/24) 4032570674693268 a001 3/9227465*514229^(13/24) 4032570687298498 r008 a(0)=4,K{-n^6,8-43*n^3+56*n^2-52*n} 4032570687318044 r008 a(0)=4,K{-n^6,-4-30*n+44*n^2-41*n^3} 4032570689790076 m001 1/ln(Paris)^2*Khintchine^2*sqrt(3)^2 4032570698934620 r002 20th iterates of z^2 + 4032570704641248 r004 Re(z^2+c),c=-6/11+6/23*I,z(0)=-1,n=49 4032570711861762 k002 Champernowne real with 97/2*n^2+279/2*n-148 4032570713400449 r005 Re(z^2+c),c=-25/48+7/19*I,n=44 4032570724763085 m001 (Robbin+ZetaQ(2))/(sin(1/5*Pi)+KhinchinLevy) 4032570756518910 a007 Real Root Of 792*x^4-57*x^3-658*x^2-861*x+437 4032570758332792 r005 Re(z^2+c),c=-13/23+2/43*I,n=51 4032570758845097 a007 Real Root Of -278*x^4+422*x^3-665*x^2+932*x+519 4032570763861962 q001 104/2579 4032570770147609 m001 1/exp(FeigenbaumC)^2/Kolakoski^2/Zeta(7) 4032570780822943 r005 Re(z^2+c),c=-8/13+4/11*I,n=41 4032570781186022 m001 (MertensB1+Paris)/(GAMMA(5/6)-CopelandErdos) 4032570782954814 r005 Im(z^2+c),c=-17/30+10/123*I,n=18 4032570784073912 r005 Re(z^2+c),c=-39/70+9/53*I,n=20 4032570791550201 r008 a(0)=4,K{-n^6,6-29*n+25*n^2-33*n^3} 4032570807359835 r008 a(0)=4,K{-n^6,-40+58*n-25*n^2-24*n^3} 4032570810588988 m001 (gamma+BesselJ(1,1))/(GAMMA(11/12)+Porter) 4032570811891768 k002 Champernowne real with 49*n^2+138*n-147 4032570820174378 m001 TravellingSalesman/(gamma(2)+Grothendieck) 4032570831191506 m002 -1/3-Log[Pi]/ProductLog[Pi]+Tanh[Pi] 4032570831836998 r005 Im(z^2+c),c=-29/56+5/11*I,n=13 4032570841748617 a007 Real Root Of -123*x^4-481*x^3-128*x^2-999*x-963 4032570851660348 m001 TwinPrimes^KomornikLoreti+gamma(1) 4032570852160077 r008 a(0)=4,K{-n^6,30-63*n+34*n^2-32*n^3} 4032570858266852 r005 Re(z^2+c),c=17/56+2/39*I,n=52 4032570859098018 r005 Im(z^2+c),c=-1/28+25/43*I,n=28 4032570862770767 a007 Real Root Of -298*x^4-585*x^3-605*x^2+583*x+303 4032570869752096 a007 Real Root Of -96*x^4-237*x^3+462*x^2-610*x-128 4032570869941498 r004 Im(z^2+c),c=-3/20+5/9*I,z(0)=I,n=24 4032570873775715 r008 a(0)=4,K{-n^6,-38-19*n^3-39*n^2+65*n} 4032570875562131 a001 3/196418*3^(38/43) 4032570875826158 m001 PisotVijayaraghavan*exp(Paris)/GAMMA(1/4) 4032570882396843 r008 a(0)=4,K{-n^6,-4+4*n-7*n^2-24*n^3} 4032570897777085 a001 682/98209*21^(26/45) 4032570904890900 a007 Real Root Of 920*x^4-434*x^3+855*x^2-422*x-362 4032570911921774 k002 Champernowne real with 99/2*n^2+273/2*n-146 4032570919658834 r009 Re(z^3+c),c=-17/50+19/29*I,n=3 4032570936356086 m001 (3^(1/2)*Trott2nd+Shi(1))/Trott2nd 4032570939056872 r005 Re(z^2+c),c=-71/126+5/57*I,n=43 4032570951523443 a007 Real Root Of 405*x^4+147*x^3+723*x^2-110*x-163 4032570956360362 a007 Real Root Of -211*x^4-808*x^3+78*x^2-430*x-191 4032570958829025 a007 Real Root Of 607*x^4-728*x^3-494*x-263 4032570963943555 b008 Pi*ArcCosh[18]^2 4032570964067056 r009 Im(z^3+c),c=-1/11+25/54*I,n=6 4032570980764671 r008 a(0)=4,K{-n^6,-22-14*n^3-46*n^2+51*n} 4032570980879669 r005 Re(z^2+c),c=-69/122+1/32*I,n=64 4032570984322072 r005 Re(z^2+c),c=2/11+10/23*I,n=53 4032570985651443 m006 (1/3*Pi+3)/(Pi^2+1/6) 4032570985651443 m008 (1/3*Pi+3)/(Pi^2+1/6) 4032571001759033 m001 GAMMA(7/12)^2*MertensB1/exp(exp(1)) 4032571011951780 k002 Champernowne real with 50*n^2+135*n-145 4032571015924888 p001 sum(1/(386*n+3)/n/(64^n),n=1..infinity) 4032571016658532 m001 (LandauRamanujan2nd-TwinPrimes)/(Pi-Zeta(3)) 4032571017791624 r005 Re(z^2+c),c=-37/66+11/63*I,n=22 4032571026562014 r002 39i'th iterates of 2*x/(1-x^2) of 4032571032540422 m001 (2^(1/2)+Salem)/(-Sarnak+StolarskyHarborth) 4032571073027720 l006 ln(5079/5288) 4032571081309266 r005 Im(z^2+c),c=25/106+20/59*I,n=31 4032571083403133 r008 a(0)=4,K{-n^6,-41-21*n+20*n^2+12*n^3} 4032571088521511 r008 a(0)=4,K{-n^6,91+21*n^3-95*n^2-48*n} 4032571095680076 m001 (Porter+Stephens)/(3^(1/2)-GAMMA(3/4)) 4032571111981786 k002 Champernowne real with 101/2*n^2+267/2*n-144 4032571113794124 r009 Im(z^3+c),c=-49/106+15/29*I,n=30 4032571122742041 a001 1364/1597*21^(26/51) 4032571125222447 m001 (cos(1)+Khinchin)/(-MinimumGamma+Robbin) 4032571134952742 r005 Im(z^2+c),c=11/56+3/8*I,n=55 4032571139570261 r002 32th iterates of z^2 + 4032571142767011 l006 ln(2267/3393) 4032571149876817 r002 24th iterates of z^2 + 4032571174785343 m001 FeigenbaumDelta*(Conway-TreeGrowth2nd) 4032571193593086 r002 39th iterates of z^2 + 4032571194468380 r009 Im(z^3+c),c=-37/86+17/43*I,n=10 4032571201848485 r008 a(0)=4,K{-n^6,32-22*n-31*n^2-10*n^3} 4032571204227473 r002 59th iterates of z^2 + 4032571212011792 k002 Champernowne real with 51*n^2+132*n-143 4032571221240409 a003 cos(Pi*39/106)/sin(Pi*30/61) 4032571221644828 r008 a(0)=4,K{-n^6,14+13*n-52*n^2-6*n^3} 4032571230367017 h001 (-7*exp(-2)+6)/(-9*exp(2/3)+5) 4032571265252111 r009 Im(z^3+c),c=-47/118+7/17*I,n=4 4032571266506512 m001 sin(1)/BesselJ(0,1)/exp(sqrt(1+sqrt(3)))^2 4032571268837066 r008 a(0)=4,K{-n^6,40-30*n-33*n^2-8*n^3} 4032571283528563 r002 54th iterates of z^2 + 4032571283583919 m001 (Landau-Weierstrass)/(BesselI(1,1)+GAMMA(5/6)) 4032571287386007 m008 (1/6*Pi^5-2/3)/(4*Pi^3+4/5) 4032571289454222 h001 (5/11*exp(2)+11/12)/(1/12*exp(2)+4/9) 4032571289719650 m005 (1/5*exp(1)-3/5)/(19/20+1/5*5^(1/2)) 4032571299832692 r005 Re(z^2+c),c=-43/78+11/51*I,n=36 4032571310937540 a001 7/281*2^(41/59) 4032571312041798 k002 Champernowne real with 103/2*n^2+261/2*n-142 4032571314031945 r002 42th iterates of z^2 + 4032571343983841 m001 (Catalan-Landau)/(LaplaceLimit+MertensB1) 4032571348423853 r008 a(0)=4,K{-n^6,56-52*n-28*n^2-7*n^3} 4032571353842400 r002 37th iterates of z^2 + 4032571360352707 r002 48th iterates of z^2 + 4032571360507001 h001 (5/12*exp(1)+9/10)/(4/7*exp(2)+9/11) 4032571374294270 a007 Real Root Of 149*x^4+727*x^3+359*x^2-562*x+168 4032571376183150 m001 (Lehmer-Sierpinski)/(cos(1/12*Pi)-Bloch) 4032571388908951 r009 Re(z^3+c),c=-8/17+8/53*I,n=10 4032571412071804 k002 Champernowne real with 52*n^2+129*n-141 4032571412773408 r005 Im(z^2+c),c=4/17+18/53*I,n=60 4032571413762128 m001 (-GAMMA(5/6)+Porter)/(2^(1/3)-BesselK(0,1)) 4032571416152153 r002 42th iterates of z^2 + 4032571418289240 r009 Im(z^3+c),c=-4/13+12/29*I,n=17 4032571442633071 p003 LerchPhi(1/32,2,339/214) 4032571445117980 m001 (Pi+3^(1/2))/(BesselI(1,1)+Cahen) 4032571446133302 r005 Im(z^2+c),c=1/74+27/53*I,n=29 4032571451067423 m001 (arctan(1/3)+Zeta(1,2))/(GAMMA(7/12)-ZetaQ(4)) 4032571461999254 r002 63th iterates of z^2 + 4032571466946768 m001 (exp(-1/2*Pi)+LaplaceLimit)/(ln(gamma)-ln(5)) 4032571468255968 a007 Real Root Of 573*x^4-25*x^3-204*x^2-534*x+235 4032571472903311 a007 Real Root Of 409*x^4-110*x^3+759*x^2-413*x-308 4032571486301222 r008 a(0)=4,K{-n^6,54-37*n-47*n^2-n^3} 4032571488027999 r009 Re(z^3+c),c=-10/23+35/59*I,n=29 4032571496529012 s002 sum(A200914[n]/((2^n-1)/n),n=1..infinity) 4032571499283708 m001 (Stephens+ZetaP(4))/(GAMMA(23/24)+Lehmer) 4032571504032230 r008 a(0)=4,K{-n^6,46-21*n-57*n^2+n^3} 4032571512101810 k002 Champernowne real with 105/2*n^2+255/2*n-140 4032571515635352 r002 36th iterates of z^2 + 4032571521335636 m001 (exp(-1/2*Pi)-GlaisherKinkelin)/(Lehmer-Thue) 4032571527420850 a001 377/76*5778^(41/53) 4032571552598038 m005 (2/5*Pi+3/5)/(5/4+3/2*5^(1/2)) 4032571582234360 p001 sum((-1)^n/(250*n+247)/(125^n),n=0..infinity) 4032571582625016 s002 sum(A149535[n]/(2^n+1),n=1..infinity) 4032571585961637 l006 ln(6650/9953) 4032571597931110 a007 Real Root Of 405*x^4+36*x^3+778*x^2-717*x-424 4032571603549465 r005 Re(z^2+c),c=-2/15+20/33*I,n=8 4032571612131816 k002 Champernowne real with 53*n^2+126*n-139 4032571649023053 h005 exp(cos(Pi*1/26)+cos(Pi*7/19)) 4032571650721947 m001 FeigenbaumDelta*exp(ErdosBorwein)*sqrt(3) 4032571676290086 m001 1/GAMMA(3/4)*exp(Lehmer)*sqrt(1+sqrt(3))^2 4032571680846545 a007 Real Root Of -828*x^4+548*x^3+164*x^2+994*x+432 4032571686794413 r005 Im(z^2+c),c=-37/94+31/57*I,n=27 4032571699297668 r005 Re(z^2+c),c=31/114+1/31*I,n=31 4032571712161822 k002 Champernowne real with 107/2*n^2+249/2*n-138 4032571719360824 r002 37th iterates of z^2 + 4032571720104619 m001 (arctan(1/3)-exp(1))/(-gamma(3)+Gompertz) 4032571723060097 r005 Re(z^2+c),c=-9/16+9/103*I,n=28 4032571723206086 m005 (1/2*exp(1)+4)/(5/7*gamma+11/12) 4032571730367365 r005 Re(z^2+c),c=8/29+1/35*I,n=13 4032571731703788 a007 Real Root Of 229*x^4-136*x^3+284*x^2-958*x+343 4032571736940834 r005 Re(z^2+c),c=-53/102+19/47*I,n=60 4032571738818038 r009 Im(z^3+c),c=-4/29+11/24*I,n=14 4032571743877218 r005 Re(z^2+c),c=-23/42+18/47*I,n=38 4032571744075030 a001 1/7*2584^(7/53) 4032571749659756 m001 (Kac+TravellingSalesman)/(cos(1)-exp(-1/2*Pi)) 4032571760339957 m006 (exp(2*Pi)+1)/(1/4*exp(2*Pi)-5/6) 4032571773368277 s002 sum(A204669[n]/(n^3*10^n-1),n=1..infinity) 4032571773881555 m001 AlladiGrinstead-HardyLittlewoodC4-Paris 4032571777817357 s002 sum(A201725[n]/(pi^n+1),n=1..infinity) 4032571786661785 r005 Re(z^2+c),c=-9/16+12/115*I,n=45 4032571802051122 r005 Re(z^2+c),c=-9/20+22/49*I,n=21 4032571806778496 r005 Im(z^2+c),c=-87/74+7/20*I,n=4 4032571812191828 k002 Champernowne real with 54*n^2+123*n-137 4032571812250308 r005 Re(z^2+c),c=-69/122+3/34*I,n=12 4032571815193255 l006 ln(4383/6560) 4032571829473493 m001 (Chi(1)-gamma)/(-ln(3)+ZetaP(2)) 4032571844937383 m001 MertensB1*FeigenbaumDelta/exp(Niven)^2 4032571849081310 r005 Im(z^2+c),c=-35/58+17/64*I,n=4 4032571849703289 r009 Im(z^3+c),c=-4/31+1/26*I,n=2 4032571856124529 r005 Re(z^2+c),c=-17/30+21/101*I,n=20 4032571867466088 r005 Re(z^2+c),c=29/74+8/39*I,n=7 4032571879060860 a007 Real Root Of 729*x^4-357*x^3-71*x^2-79*x-63 4032571912221834 k002 Champernowne real with 109/2*n^2+243/2*n-136 4032571912397424 r005 Im(z^2+c),c=-125/102+3/53*I,n=49 4032571915192656 m001 (arctan(1/3)-ln(2))^(2*Pi/GAMMA(5/6)) 4032571922184094 m009 (2*Psi(1,3/4)+2/5)/(4*Catalan+1/2*Pi^2+5) 4032571925805128 s002 sum(A149535[n]/(2^n-1),n=1..infinity) 4032571930442464 m001 (gamma+Zeta(1/2))/(-BesselI(1,1)+Landau) 4032571938708636 l006 ln(69/3892) 4032571945488823 r005 Im(z^2+c),c=-17/33*I,n=31 4032571946006321 s001 sum(exp(-2*Pi)^(n-1)*A207315[n],n=1..infinity) 4032571948570731 r009 Im(z^3+c),c=-1/27+22/47*I,n=13 4032571966115889 r005 Re(z^2+c),c=-11/25+16/29*I,n=6 4032571972466580 r005 Re(z^2+c),c=-69/122+1/32*I,n=62 4032571984420530 r005 Re(z^2+c),c=-69/122+1/64*I,n=33 4032571989645424 r002 51th iterates of z^2 + 4032571989681576 a007 Real Root Of 731*x^4-224*x^3-565*x^2-632*x-197 4032571992826447 r002 47th iterates of z^2 + 4032571995137426 r005 Im(z^2+c),c=-63/106+17/43*I,n=5 4032572001200727 r002 60i'th iterates of 2*x/(1-x^2) of 4032572006431345 r002 55th iterates of z^2 + 4032572010098858 r009 Im(z^3+c),c=-5/52+25/54*I,n=8 4032572012251840 k002 Champernowne real with 55*n^2+120*n-135 4032572015361966 a003 cos(Pi*11/118)-sin(Pi*56/117) 4032572032986361 m001 GAMMA(11/24)^2*FeigenbaumD^2*exp(GAMMA(2/3))^2 4032572044534445 m002 Pi+ProductLog[Pi]-(E^Pi*Sinh[Pi])/6 4032572049750914 l006 ln(6499/9727) 4032572060950481 a007 Real Root Of 714*x^4-573*x^3-570*x^2-809*x-290 4032572063709388 a007 Real Root Of 106*x^4+465*x^3-37*x^2-795*x-142 4032572065573777 r005 Re(z^2+c),c=-41/74+11/56*I,n=41 4032572080636766 v003 sum((7+13/2*n^2-17/2*n)/n^(n-2),n=1..infinity) 4032572088692113 r008 a(0)=4,K{-n^6,-35-44*n^3+38*n^2+10*n} 4032572089126410 a001 47/1134903170*225851433717^(19/24) 4032572089181006 a001 47/121393*2178309^(19/24) 4032572094851352 r002 5th iterates of z^2 + 4032572100630337 m001 1/ln(BesselJ(1,1))^2/Bloch^2/sqrt(1+sqrt(3)) 4032572112281846 k002 Champernowne real with 111/2*n^2+237/2*n-134 4032572116114585 r002 57th iterates of z^2 + 4032572129113248 r002 4th iterates of z^2 + 4032572135103853 r009 Im(z^3+c),c=-25/52+7/22*I,n=40 4032572139552156 r005 Re(z^2+c),c=-35/86+13/27*I,n=17 4032572157917720 r002 8th iterates of z^2 + 4032572161827525 r008 a(0)=4,K{-n^6,-49+51*n+n^2-34*n^3} 4032572175944684 r002 39th iterates of z^2 + 4032572182286107 r002 12th iterates of z^2 + 4032572182532073 r005 Re(z^2+c),c=-59/106+4/23*I,n=62 4032572183952224 r005 Re(z^2+c),c=-9/16+10/127*I,n=26 4032572192682876 r008 a(0)=4,K{-n^6,17-42*n^3+58*n^2-64*n} 4032572203350147 r008 a(0)=4,K{-n^6,5-39*n^3+43*n^2-40*n} 4032572206257876 r009 Im(z^3+c),c=-29/62+21/64*I,n=60 4032572211017153 r009 Im(z^3+c),c=-13/110+11/17*I,n=2 4032572212311852 k002 Champernowne real with 56*n^2+117*n-133 4032572219313540 a008 Real Root of x^3-294*x-1120 4032572250674446 a007 Real Root Of 346*x^4+290*x^3+660*x^2-780*x-412 4032572251495925 r008 a(0)=4,K{-n^6,-5-33*n^3+20*n^2-13*n} 4032572254216659 p003 LerchPhi(1/25,3,695/237) 4032572256912120 m001 gamma(2)/(FibonacciFactorial+Salem) 4032572259169087 r005 Im(z^2+c),c=21/44+5/46*I,n=3 4032572259266330 m005 (7/44+1/4*5^(1/2))/(9/11*3^(1/2)+4/11) 4032572262061985 s002 sum(A075528[n]/((2*n)!),n=1..infinity) 4032572270894180 r008 a(0)=4,K{-n^6,5-28*n+25*n^2-33*n^3} 4032572273433577 m001 (exp(Pi)+LambertW(1))^Ei(1) 4032572289608333 r002 52th iterates of z^2 + 4032572311799120 m004 -5+(5*E^(Sqrt[5]*Pi))/Pi+4*Cosh[Sqrt[5]*Pi] 4032572312341858 k002 Champernowne real with 113/2*n^2+231/2*n-132 4032572319304707 r005 Im(z^2+c),c=13/90+31/55*I,n=33 4032572328317485 r008 a(0)=4,K{-n^6,-27+40*n-21*n^2-23*n^3} 4032572329080644 m001 (-OneNinth+ZetaQ(4))/(sin(1)+KomornikLoreti) 4032572332180698 p004 log(36833/653) 4032572332417440 r008 a(0)=4,K{-n^6,29-62*n+34*n^2-32*n^3} 4032572339858057 r004 Im(z^2+c),c=-13/11-1/14*I,z(0)=-1,n=7 4032572342230357 a007 Real Root Of -163*x^4-524*x^3+270*x^2-991*x+355 4032572348275688 r005 Re(z^2+c),c=-47/36+1/40*I,n=22 4032572353950959 r008 a(0)=4,K{-n^6,-35-20*n+8*n^2+17*n^3} 4032572362232869 m001 (Pi+CopelandErdos)/(LaplaceLimit+ZetaP(3)) 4032572366112385 a007 Real Root Of -192*x^4-606*x^3+765*x^2+267*x-330 4032572369059509 r005 Im(z^2+c),c=29/86+19/51*I,n=37 4032572377343443 m005 (1/2*5^(1/2)+8/11)/(-85/132+1/12*5^(1/2)) 4032572392791768 a007 Real Root Of -268*x^4-924*x^3+651*x^2-135*x-853 4032572400671476 r009 Im(z^3+c),c=-13/31+18/49*I,n=11 4032572412371864 k002 Champernowne real with 57*n^2+114*n-131 4032572415266419 h001 (-3*exp(6)+9)/(-exp(8)+2) 4032572428652944 r005 Im(z^2+c),c=5/46+23/52*I,n=21 4032572430100523 r005 Im(z^2+c),c=-13/114+31/53*I,n=64 4032572433947452 r005 Re(z^2+c),c=-43/78+12/49*I,n=25 4032572435028000 b008 7/2+FresnelC[7/2] 4032572443002721 r002 45th iterates of z^2 + 4032572443761176 r005 Im(z^2+c),c=19/126+19/46*I,n=31 4032572444306743 a008 Real Root of x^4-2*x^3-50*x^2-15*x+357 4032572447930016 r002 62th iterates of z^2 + 4032572450336693 h001 (4/11*exp(2)+1/7)/(10/11*exp(2)+3/10) 4032572460737279 r005 Re(z^2+c),c=-29/52+11/63*I,n=19 4032572462979920 r002 54th iterates of z^2 + 4032572471277789 m008 (1/3*Pi^5+3/4)/(5/6*Pi^5-1/5) 4032572474156582 r002 20th iterates of z^2 + 4032572475474777 r005 Re(z^2+c),c=-21/31+11/50*I,n=37 4032572479767806 r009 Im(z^3+c),c=-41/86+9/28*I,n=54 4032572497433931 m001 TwinPrimes*KhintchineLevy^2*ln(GAMMA(11/24))^2 4032572502769051 r002 43th iterates of z^2 + 4032572504435211 r005 Re(z^2+c),c=-17/30+4/127*I,n=24 4032572508434097 r002 58th iterates of z^2 + 4032572512401870 k002 Champernowne real with 115/2*n^2+225/2*n-130 4032572527551750 r009 Im(z^3+c),c=-17/60+8/19*I,n=10 4032572529735475 r005 Re(z^2+c),c=-19/34+16/105*I,n=39 4032572535604497 l006 ln(2116/3167) 4032572536907084 r008 a(0)=4,K{-n^6,23-23*n-14*n^2-17*n^3} 4032572545664011 a007 Real Root Of 133*x^4-543*x^3-236*x^2-331*x-13 4032572562279977 r005 Im(z^2+c),c=-43/114+56/57*I,n=3 4032572566691326 r005 Im(z^2+c),c=-45/74+3/40*I,n=49 4032572569419268 r002 13th iterates of z^2 + 4032572570271375 m001 (arctan(1/3)-Niven)/(Otter+Weierstrass) 4032572578503273 r009 Re(z^3+c),c=-49/110+7/39*I,n=32 4032572587652491 a007 Real Root Of -106*x^4-260*x^3+828*x^2+544*x-290 4032572589357571 a001 6/233802911*121393^(4/17) 4032572589370449 a001 6/10983760033*1548008755920^(4/17) 4032572589370449 a001 1/267084832*433494437^(4/17) 4032572596068041 r005 Im(z^2+c),c=-109/114+21/61*I,n=7 4032572602878821 r005 Im(z^2+c),c=-91/106+1/32*I,n=5 4032572604226949 r005 Re(z^2+c),c=-57/106+31/61*I,n=12 4032572612431876 k002 Champernowne real with 58*n^2+111*n-129 4032572616074259 r008 a(0)=4,K{-n^6,3*n-58*n^2+23*n^3} 4032572622820189 m001 (Conway-ZetaQ(4))/(Pi^(1/2)+Backhouse) 4032572623262236 a001 11592/19*521^(16/53) 4032572630001358 r005 Re(z^2+c),c=-3/4+7/229*I,n=38 4032572647821914 r002 28th iterates of z^2 + 4032572651972403 r005 Re(z^2+c),c=-9/16+1/77*I,n=21 4032572661977934 r008 a(0)=4,K{-n^6,5+24*n-53*n^2-7*n^3} 4032572665398729 a007 Real Root Of -988*x^4+37*x^3-831*x^2+710*x+450 4032572683173526 r002 24th iterates of z^2 + 4032572696751284 r009 Re(z^3+c),c=-35/82+7/44*I,n=24 4032572703497159 m008 (2/3*Pi^3+4)/(2*Pi^5-1/4) 4032572706017221 r005 Im(z^2+c),c=-9/86+32/55*I,n=58 4032572712461882 k002 Champernowne real with 117/2*n^2+219/2*n-128 4032572719596194 r005 Re(z^2+c),c=-89/126+7/54*I,n=29 4032572730755943 s001 sum(exp(-Pi)^(n-1)*A203420[n],n=1..infinity) 4032572738850856 r005 Re(z^2+c),c=-71/126+4/61*I,n=26 4032572741285934 m005 (1/2*Catalan+7/10)/(1/5*2^(1/2)-2/7) 4032572749035083 a001 3571/514229*21^(26/45) 4032572770377411 m005 (1/3*Zeta(3)+1/11)/(181/198+3/22*5^(1/2)) 4032572808999617 r009 Im(z^3+c),c=-35/78+14/41*I,n=35 4032572812491888 k002 Champernowne real with 59*n^2+108*n-127 4032572832980244 a001 29/1346269*17711^(23/43) 4032572843291622 r005 Im(z^2+c),c=2/15+26/61*I,n=50 4032572845903978 m005 (1/3*2^(1/2)-1/12)/(3/5*Zeta(3)-5/8) 4032572859054441 a007 Real Root Of 780*x^4+976*x^3+398*x^2-815*x-350 4032572867559020 r002 7th iterates of z^2 + 4032572868810832 a001 7331474697802/17*86267571272^(5/11) 4032572879214159 r009 Re(z^3+c),c=-11/98+7/15*I,n=2 4032572884950692 r009 Im(z^3+c),c=-33/74+7/19*I,n=11 4032572906541792 m001 ln(GAMMA(11/12))^2/CareFree^2/Zeta(1/2) 4032572908275728 r005 Re(z^2+c),c=-23/52+29/57*I,n=44 4032572909707606 r005 Re(z^2+c),c=23/70+13/25*I,n=36 4032572912521894 k002 Champernowne real with 119/2*n^2+213/2*n-126 4032572912723517 r005 Im(z^2+c),c=-17/114+34/53*I,n=11 4032572921320906 r009 Re(z^3+c),c=-21/44+13/61*I,n=41 4032572934364495 r008 a(0)=4,K{-n^6,7+n^3+30*n^2-72*n} 4032572935217184 a005 (1/sin(83/201*Pi))^1374 4032572948136297 h001 (-6*exp(3)+8)/(-11*exp(1)+2) 4032572949162058 m001 1/Niven*exp(Khintchine)/Zeta(1/2)^2 4032572970164610 m001 (Niven-Sarnak)/(arctan(1/3)-BesselI(1,1)) 4032572983095022 a001 233/1149851*322^(11/12) 4032572989774033 r005 Im(z^2+c),c=-13/74+16/27*I,n=45 4032572999900929 a007 Real Root Of -863*x^4+722*x^3-552*x^2+635*x+416 4032573008721841 r005 Re(z^2+c),c=-29/52+1/10*I,n=20 4032573010949623 r008 a(0)=4,K{-n^6,-28-39*n+39*n^2-n^3} 4032573011860936 a007 Real Root Of 169*x^4-333*x^3-833*x^2-529*x-20 4032573012551900 k002 Champernowne real with 60*n^2+105*n-125 4032573019129985 a001 9349/1346269*21^(26/45) 4032573029056476 r005 Im(z^2+c),c=-1/22+35/64*I,n=47 4032573031209960 m005 (1/2+1/4*5^(1/2))/(7/10*gamma-2/3) 4032573045135284 l006 ln(6197/9275) 4032573054788586 m005 (1/2*5^(1/2)+8/9)/(1/6*5^(1/2)+1/8) 4032573055587331 m001 Sierpinski/(RenyiParking^GAMMA(7/12)) 4032573078338398 a001 9/416020*21^(9/44) 4032573080341082 r005 Re(z^2+c),c=-14/25+5/36*I,n=45 4032573082890742 a001 2161/311187*21^(26/45) 4032573102590353 a007 Real Root Of -323*x^4+44*x^3-532*x^2-104*x+56 4032573112581906 k002 Champernowne real with 121/2*n^2+207/2*n-124 4032573120369920 r002 37th iterates of z^2 + 4032573125971109 m001 (arctan(1/2)-CopelandErdos)/(Lehmer-Trott2nd) 4032573132275761 a001 47/2*13^(4/19) 4032573135546024 r005 Re(z^2+c),c=-17/32+13/46*I,n=22 4032573141703173 a007 Real Root Of 720*x^4-274*x^3+690*x^2+618*x+100 4032573143835413 r009 Re(z^3+c),c=-1/74+35/46*I,n=61 4032573144059872 r005 Im(z^2+c),c=1/66+19/36*I,n=23 4032573177650141 r002 12th iterates of z^2 + 4032573183688935 a007 Real Root Of 357*x^4-540*x^3+220*x^2-53*x-102 4032573184931994 r009 Im(z^3+c),c=-31/90+19/59*I,n=2 4032573186057815 a001 2889/416020*21^(26/45) 4032573193073682 a003 cos(Pi*20/89)*cos(Pi*29/90) 4032573197511730 r005 Im(z^2+c),c=-27/40+1/12*I,n=37 4032573203044761 m001 1/ln(Kolakoski)*ErdosBorwein/sqrt(3) 4032573207330048 r005 Im(z^2+c),c=-1/90+31/57*I,n=23 4032573212611912 k002 Champernowne real with 61*n^2+102*n-123 4032573219042501 r005 Im(z^2+c),c=5/66+22/47*I,n=51 4032573225078847 r005 Im(z^2+c),c=1/19+15/31*I,n=46 4032573243490342 r002 40th iterates of z^2 + 4032573244074575 a001 3571/4181*21^(26/51) 4032573254082336 r008 a(0)=4,K{-n^6,-29-21*n-n^2+21*n^3} 4032573263274771 m001 (3^(1/3))^GAMMA(1/3)*(3^(1/3))^GAMMA(5/6) 4032573287836646 r005 Re(z^2+c),c=-43/78+12/55*I,n=48 4032573289902280 q001 619/1535 4032573295326728 a001 199/987*46368^(2/31) 4032573299015881 m005 (1/2*Catalan+6/7)/(2*Zeta(3)+6/7) 4032573307688620 r002 55th iterates of z^2 + 4032573309327173 l006 ln(4081/6108) 4032573312641918 k002 Champernowne real with 123/2*n^2+201/2*n-122 4032573334275366 r005 Im(z^2+c),c=9/118+29/62*I,n=64 4032573337381729 r009 Re(z^3+c),c=-12/23+10/39*I,n=11 4032573341792071 a007 Real Root Of -737*x^4+864*x^3-946*x^2-977*x-164 4032573343165500 r004 Re(z^2+c),c=-15/26-1/13*I,z(0)=-1,n=16 4032573347536471 r005 Im(z^2+c),c=31/90+11/53*I,n=60 4032573356962801 r005 Re(z^2+c),c=-69/122+1/63*I,n=33 4032573394382486 r005 Re(z^2+c),c=-69/122+1/32*I,n=60 4032573401369594 m001 (LaplaceLimit-Trott)/(ln(Pi)+Bloch) 4032573406818405 m001 Zeta(1,2)+ReciprocalLucas*Riemann2ndZero 4032573408099758 a007 Real Root Of -228*x^4-881*x^3-92*x^2-981*x+60 4032573412671924 k002 Champernowne real with 62*n^2+99*n-121 4032573429115309 r002 31th iterates of z^2 + 4032573435324883 a008 Real Root of x^4-2*x^3-8*x^2-6*x+21 4032573450103419 l006 ln(170/9589) 4032573464280266 m001 FeigenbaumD/LandauRamanujan^2*ln(Catalan) 4032573474636214 r002 16th iterates of z^2 + 4032573484722998 r005 Re(z^2+c),c=-71/126+3/26*I,n=25 4032573487000136 r004 Im(z^2+c),c=-1/26-13/24*I,z(0)=I,n=50 4032573488847624 a007 Real Root Of -91*x^4-413*x^3-225*x^2+61*x+886 4032573497556866 a001 3571/3*75025^(5/46) 4032573498468547 r005 Re(z^2+c),c=-19/34+5/33*I,n=38 4032573503138168 r005 Re(z^2+c),c=-59/106+4/23*I,n=64 4032573504385645 m005 (7/6+2*5^(1/2))/(3*gamma-1/3) 4032573512701930 k002 Champernowne real with 125/2*n^2+195/2*n-120 4032573518563154 r002 37th iterates of z^2 + 4032573522804433 r005 Re(z^2+c),c=-13/23+2/57*I,n=27 4032573528489643 r002 36th iterates of z^2 + 4032573532781537 m001 (Pi-sin(1))/(FeigenbaumDelta+MertensB2) 4032573544530160 m006 (2/5*Pi^2+1/4)/(1/5*exp(2*Pi)-3) 4032573550922963 r002 18th iterates of z^2 + 4032573552905639 m001 (-Artin+GaussAGM)/(gamma+BesselI(1,1)) 4032573552974930 m001 GAMMA(1/4)^2/ErdosBorwein^2/ln(log(1+sqrt(2))) 4032573553112249 r002 17th iterates of z^2 + 4032573553572844 a001 9349/10946*21^(26/51) 4032573557317285 m005 (1/2*5^(1/2)+1/6)/(8/9*Catalan-4) 4032573558508117 r008 a(0)=4,K{-n^6,-68-41*n^3+13*n^2+65*n} 4032573559864846 a007 Real Root Of -568*x^4+113*x^3-580*x^2+776*x-211 4032573571602421 r005 Im(z^2+c),c=-5/8+19/251*I,n=57 4032573579449275 r008 a(0)=4,K{-n^6,-36-44*n^3+38*n^2+11*n} 4032573580117298 l006 ln(6046/9049) 4032573584530518 b008 -6+Sqrt[ArcCosh[24]] 4032573588047681 m002 2+16*E^Pi+Pi^3 4032573588842859 r009 Im(z^3+c),c=-31/86+9/23*I,n=25 4032573589684067 r005 Re(z^2+c),c=19/56+27/50*I,n=13 4032573594596161 a001 6643838879*55^(9/20) 4032573598728034 a001 24476/28657*21^(26/51) 4032573600250943 a001 817138163596/377*1836311903^(6/17) 4032573600250943 a001 45537549124/377*6557470319842^(6/17) 4032573600252020 a001 505618944676/13*514229^(6/17) 4032573605316087 a001 64079/75025*21^(26/51) 4032573609387728 a001 13201/15456*21^(26/51) 4032573612731936 k002 Champernowne real with 63*n^2+96*n-119 4032573616166314 a007 Real Root Of 834*x^4+353*x^3+13*x^2-744*x+3 4032573617798438 a003 cos(Pi*46/109)-cos(Pi*47/108) 4032573619432379 m005 (1/2*Pi-7/12)/(2/7*3^(1/2)-1/4) 4032573620048722 m005 (1/2*2^(1/2)+2/7)/(-4/11+3/11*5^(1/2)) 4032573625705164 r005 Re(z^2+c),c=-3/4+31/142*I,n=6 4032573626635476 a001 15127/17711*21^(26/51) 4032573652166361 r009 Re(z^3+c),c=-55/106+13/62*I,n=40 4032573655873883 m001 (cos(1/5*Pi)+cos(1/12*Pi))/(Pi+2^(1/3)) 4032573660483952 r008 a(0)=4,K{-n^6,-40+35*n+9*n^2-35*n^3} 4032573665318672 r005 Re(z^2+c),c=-5/4+5/43*I,n=48 4032573669089625 r005 Re(z^2+c),c=-19/34+13/86*I,n=37 4032573677493013 a007 Real Root Of -564*x^4+292*x^3-710*x^2+884*x+506 4032573680153058 r009 Im(z^3+c),c=-4/31+22/43*I,n=2 4032573685408476 r005 Re(z^2+c),c=-7/12+14/89*I,n=17 4032573696367414 b008 2+ArcSech[17/66] 4032573699762438 r008 a(0)=4,K{-n^6,7-3*n-61*n^2+25*n^3} 4032573707472802 a007 Real Root Of 226*x^4-523*x^3+479*x^2-870*x-469 4032573712761942 k002 Champernowne real with 127/2*n^2+189/2*n-118 4032573715242751 r009 Re(z^3+c),c=-37/60+2/9*I,n=33 4032573722877387 a007 Real Root Of 178*x^4+949*x^3+955*x^2+292*x+809 4032573736588127 a007 Real Root Of 193*x^4+803*x^3+54*x^2-383*x-802 4032573738016472 a007 Real Root Of 494*x^4+55*x^3+777*x^2-918*x-506 4032573739751232 s002 sum(A222881[n]/(exp(2*pi*n)+1),n=1..infinity) 4032573744633356 r008 a(0)=4,K{-n^6,-6-33*n^3+20*n^2-12*n} 4032573744853297 a001 1926/2255*21^(26/51) 4032573747146265 r005 Im(z^2+c),c=9/28+10/41*I,n=58 4032573747490170 a007 Real Root Of 894*x^4-733*x^3+851*x^2+459*x-25 4032573748768343 a001 1346269/322*29^(35/52) 4032573756338939 r008 a(0)=4,K{-n^6,18-36*n^3+41*n^2-54*n} 4032573760297457 r008 a(0)=4,K{-n^6,20-36*n^3+42*n^2-57*n} 4032573761016862 r005 Im(z^2+c),c=1/86+41/54*I,n=6 4032573764432828 p004 log(26921/17987) 4032573776734874 a001 9/10182505537*956722026041^(7/18) 4032573776734874 a001 6/233802911*165580141^(7/18) 4032573777116796 a001 18/24157817*28657^(7/18) 4032573801313291 m005 (-11/20+1/4*5^(1/2))/(7/9*3^(1/2)+8/9) 4032573801645785 m001 Catalan^2/ln(GolombDickman)^2/Zeta(1,2) 4032573806957843 s002 sum(A120985[n]/(pi^n-1),n=1..infinity) 4032573812791948 k002 Champernowne real with 64*n^2+93*n-117 4032573822557621 r008 a(0)=4,K{-n^6,-10+8*n-3*n^2-26*n^3} 4032573822614364 r008 a(0)=4,K{-n^6,-28+41*n-21*n^2-23*n^3} 4032573832511310 l006 ln(6853/7135) 4032573839010112 a007 Real Root Of -202*x^4+288*x^3-601*x^2+749*x+424 4032573845054571 s002 sum(A201725[n]/(pi^n),n=1..infinity) 4032573849764348 a007 Real Root Of 169*x^4-73*x^3-269*x^2-595*x+284 4032573853542520 r008 a(0)=4,K{-n^6,-38-19*n^3-38*n^2+64*n} 4032573868309622 a007 Real Root Of 385*x^4-814*x^3-514*x^2-742*x+426 4032573869492070 a007 Real Root Of -88*x^4-284*x^3+325*x^2+211*x+213 4032573875894823 m001 (Paris+QuadraticClass)/(5^(1/2)+DuboisRaymond) 4032573885656619 a001 7778742049/322*76^(13/20) 4032573893175448 a001 2207/317811*21^(26/45) 4032573912698691 r005 Im(z^2+c),c=-35/52+17/52*I,n=57 4032573912821954 k002 Champernowne real with 129/2*n^2+183/2*n-116 4032573936663928 p004 log(36269/643) 4032573938422644 m001 (Pi+cos(1))/(FeigenbaumB-KhinchinHarmonic) 4032573938904463 b008 E*Pi^6*Cosh[1] 4032573940988379 s001 sum(exp(-Pi/3)^(n-1)*A193390[n],n=1..infinity) 4032573961507296 a007 Real Root Of -115*x^4-435*x^3+381*x^2+879*x-766 4032573965399054 a007 Real Root Of 817*x^4-946*x^3+322*x^2-429*x-309 4032573978998544 m001 BesselK(0,1)*(FellerTornier+HardyLittlewoodC3) 4032573999095146 m001 Zeta(9)^2*Ei(1)*ln(cos(Pi/5)) 4032574004010776 m008 (2/5*Pi^5-2)/(3*Pi^2+1/4) 4032574010829009 a003 cos(Pi*17/56)-sin(Pi*29/66) 4032574012851960 k002 Champernowne real with 65*n^2+90*n-115 4032574013127887 a007 Real Root Of 282*x^4+920*x^3-848*x^2+349*x+955 4032574018282852 r002 49th iterates of z^2 + 4032574019140657 r002 15th iterates of z^2 + 4032574040546779 m001 exp(GAMMA(17/24))^2/GAMMA(1/24)/sinh(1)^2 4032574050292429 r009 Im(z^3+c),c=-33/64+5/17*I,n=59 4032574054277175 r005 Im(z^2+c),c=-1/34+19/31*I,n=57 4032574069367223 r009 Im(z^3+c),c=-1/27+22/47*I,n=15 4032574073819504 a001 843/75025*317811^(13/46) 4032574080383434 r002 48th iterates of z^2 + 4032574098826422 r005 Im(z^2+c),c=-143/114+1/53*I,n=45 4032574103116416 r002 9th iterates of z^2 + 4032574103415199 r005 Im(z^2+c),c=9/118+29/62*I,n=61 4032574112192717 a007 Real Root Of x^4+402*x^3-507*x^2+23*x-546 4032574112881966 k002 Champernowne real with 131/2*n^2+177/2*n-114 4032574129736036 m001 (Shi(1)-ln(Pi))/(exp(1/Pi)+Kolakoski) 4032574137160013 r008 a(0)=4,K{-n^6,48+29*n^3-24*n^2-94*n} 4032574138306271 a007 Real Root Of 254*x^4+849*x^3-698*x^2+159*x+498 4032574142506334 l006 ln(1965/2941) 4032574146026130 r002 17th iterates of z^2 + 4032574161581205 r008 a(0)=4,K{-n^6,4+25*n-53*n^2-7*n^3} 4032574167723866 r002 16th iterates of z^2 + 4032574175210570 p003 LerchPhi(1/100,1,532/213) 4032574176172904 r005 Re(z^2+c),c=-19/34+13/125*I,n=22 4032574180877771 m009 (1/6*Psi(1,2/3)-6)/(2/3*Psi(1,3/4)-1/3) 4032574183975506 r002 35th iterates of z^2 + 4032574185835055 b008 77/2+Sqrt[10/3] 4032574187185593 a007 Real Root Of -762*x^4+431*x^3-19*x^2+398*x+212 4032574207440940 a007 Real Root Of -216*x^4-719*x^3+439*x^2-617*x+343 4032574212911972 k002 Champernowne real with 66*n^2+87*n-113 4032574225025128 r005 Re(z^2+c),c=-149/118+7/57*I,n=13 4032574255148075 m001 1/ln(sin(1))^2/MertensB1*sqrt(Pi)^2 4032574262993810 r005 Re(z^2+c),c=-61/90+3/23*I,n=23 4032574264145467 r008 a(0)=4,K{-n^6,40-31*n-32*n^2-8*n^3} 4032574264752259 m001 sin(1/12*Pi)/(exp(Pi)^PisotVijayaraghavan) 4032574293399592 r008 a(0)=4,K{-n^6,54-9*n^3-22*n^2-54*n} 4032574294025870 m005 (-23/4+1/4*5^(1/2))/(-89/264+5/24*5^(1/2)) 4032574294228511 r005 Im(z^2+c),c=1/86+24/47*I,n=51 4032574300862199 r005 Im(z^2+c),c=-1/32+11/21*I,n=18 4032574312941978 k002 Champernowne real with 133/2*n^2+171/2*n-112 4032574317892593 r005 Im(z^2+c),c=-39/70+17/38*I,n=34 4032574320515584 r005 Re(z^2+c),c=33/122+1/30*I,n=35 4032574321928107 a001 521/6765*610^(41/42) 4032574333112604 a007 Real Root Of 95*x^4+51*x^3+510*x^2-337*x-218 4032574339647962 r008 a(0)=4,K{-n^6,30-6*n-52*n^2-3*n^3} 4032574339739538 m004 (25*Pi)/Log[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi]/18 4032574344960668 m001 (CopelandErdos+HeathBrownMoroz)/sin(1/5*Pi) 4032574345417003 a007 Real Root Of -157*x^4+526*x^3+960*x^2+966*x-576 4032574347291132 r008 a(0)=4,K{-n^6,44-31*n-39*n^2-5*n^3} 4032574349643512 a007 Real Root Of -886*x^4-154*x^3-289*x^2+882*x+416 4032574354058264 r005 Im(z^2+c),c=4/17+18/53*I,n=54 4032574366006150 r002 53th iterates of z^2 + 4032574379062159 p001 sum(1/(325*n+269)/(6^n),n=0..infinity) 4032574387720569 a007 Real Root Of 598*x^4-372*x^3+186*x^2-413*x-237 4032574388874598 m008 (1/5*Pi^3+2)/(2/3*Pi^3-1/3) 4032574393986745 a003 sin(Pi*2/59)/sin(Pi*9/106) 4032574411152031 r009 Re(z^3+c),c=-14/29+2/9*I,n=28 4032574412971984 k002 Champernowne real with 67*n^2+84*n-111 4032574414791203 r002 54th iterates of z^2 + 4032574420695277 r002 41th iterates of z^2 + 4032574432291730 m005 (1/2*2^(1/2)+3/10)/(1/8*Zeta(3)-2/5) 4032574432325448 r002 34th iterates of z^2 + 4032574434654409 r005 Im(z^2+c),c=2/13+24/59*I,n=9 4032574443535611 r005 Re(z^2+c),c=-79/110+11/58*I,n=60 4032574444775088 m006 (3/5*Pi^2+2/3)/(2/Pi-4/5) 4032574452766347 r002 45th iterates of z^2 + 4032574461453681 a003 -cos(1/9*Pi)-3^(1/2)-cos(1/15*Pi)-cos(3/8*Pi) 4032574476507311 m001 (-cos(1/12*Pi)+BesselJ(1,1))/(2^(1/2)-exp(1)) 4032574482639136 l006 ln(101/5697) 4032574491038388 r008 a(0)=4,K{-n^6,54-38*n-46*n^2-n^3} 4032574497056827 r005 Re(z^2+c),c=-10/19+11/29*I,n=52 4032574503414242 a007 Real Root Of -205*x^4-711*x^3+287*x^2-971*x-997 4032574509573799 r008 a(0)=4,K{-n^6,46-22*n-56*n^2+n^3} 4032574513001990 k002 Champernowne real with 135/2*n^2+165/2*n-110 4032574516502739 m001 (gamma(1)-Bloch)/(StolarskyHarborth+ZetaQ(2)) 4032574517917995 l003 KelvinKer(1,16/89) 4032574521140574 m001 1/ln(Salem)^2/Lehmer/(2^(1/3))^2 4032574523088957 r002 52th iterates of z^2 + 4032574533716590 p004 log(26017/17383) 4032574534762699 r009 Re(z^3+c),c=-7/106+43/60*I,n=8 4032574538308056 r005 Im(z^2+c),c=-49/86+3/41*I,n=41 4032574543083074 m001 Sarnak/(1+Kolakoski) 4032574543461521 p003 LerchPhi(1/256,2,353/224) 4032574548200513 r008 a(0)=4,K{-n^6,2+32*n^3-65*n^2+7*n} 4032574555130325 a001 2207/2584*21^(26/51) 4032574561233292 r005 Im(z^2+c),c=-7/74+23/33*I,n=21 4032574562547777 m001 (LaplaceLimit-OrthogonalArrays)/(Pi-Conway) 4032574574303352 r005 Im(z^2+c),c=1/16+23/49*I,n=19 4032574579133153 b008 1/12+E+ArcSec[3] 4032574597076746 a003 cos(Pi*19/106)-cos(Pi*20/99) 4032574597454662 a007 Real Root Of -214*x^4-992*x^3-525*x^2-65*x-186 4032574613031996 k002 Champernowne real with 68*n^2+81*n-109 4032574619860092 r005 Re(z^2+c),c=-5/7+67/121*I,n=5 4032574639479586 m001 (ln(5)+ZetaQ(2))/ThueMorse 4032574639623795 m008 (3*Pi^2-1/2)/(3/4*Pi^6+4/5) 4032574642572428 a001 521/377*514229^(43/55) 4032574643774948 b008 ArcCot[4+12*Sqrt[3]] 4032574657632682 r008 a(0)=4,K{-n^6,-1+3*n^3+40*n^2-71*n} 4032574658209504 m005 (1/2*Pi+7/10)/(1/4*2^(1/2)-11/12) 4032574659856805 s002 sum(A123490[n]/(n^3*2^n+1),n=1..infinity) 4032574664912289 r005 Im(z^2+c),c=-13/102+17/28*I,n=63 4032574668864531 r005 Re(z^2+c),c=8/21+8/47*I,n=25 4032574691243614 m001 (BesselI(1,2)-GAMMA(19/24))/(Thue+ZetaP(3)) 4032574699947360 m001 Trott/Tribonacci/MinimumGamma 4032574713062002 k002 Champernowne real with 137/2*n^2+159/2*n-108 4032574715865405 a007 Real Root Of 246*x^4+853*x^3-538*x^2-24*x-464 4032574723269809 r005 Im(z^2+c),c=-127/126+16/57*I,n=44 4032574731734378 r002 54th iterates of z^2 + 4032574734463839 l006 ln(5744/8597) 4032574760213012 r002 7th iterates of z^2 + 4032574765378498 m001 FeigenbaumMu/(Zeta(1,2)+MasserGramainDelta) 4032574771548422 a007 Real Root Of -439*x^4-372*x^3-270*x^2+761*x+338 4032574776492442 a003 sin(Pi*11/116)/cos(Pi*19/79) 4032574794567936 a007 Real Root Of -131*x^4-523*x^3-52*x^2-154*x+570 4032574795555722 r008 a(0)=4,K{-n^6,-18+6*n^3+11*n^2-26*n} 4032574799243974 a001 13/4*54018521^(9/17) 4032574802050603 a007 Real Root Of 41*x^4+170*x^3+162*x^2+599*x+87 4032574803967863 r002 53th iterates of z^2 + 4032574813092008 k002 Champernowne real with 69*n^2+78*n-107 4032574815366951 h001 (4/9*exp(1)+5/11)/(1/2*exp(2)+3/7) 4032574815485348 r005 Re(z^2+c),c=-5/9-16/87*I,n=46 4032574816642686 r005 Im(z^2+c),c=9/62+1/38*I,n=12 4032574818010728 m001 (Pi-ln(2+3^(1/2)))/(Khinchin+Tribonacci) 4032574820320846 a001 11/2504730781961*433494437^(5/22) 4032574821850696 a001 11/225851433717*10946^(5/22) 4032574823863190 r005 Re(z^2+c),c=-69/122+1/62*I,n=33 4032574844399476 s002 sum(A022559[n]/((10^n+1)/n),n=1..infinity) 4032574864264062 r005 Re(z^2+c),c=-17/29+9/47*I,n=7 4032574865819683 b008 Pi+25*ArcSec[12] 4032574883037483 m005 (1/2*5^(1/2)+3/8)/(9/10*Pi+7/8) 4032574888818649 a007 Real Root Of -178*x^4-605*x^3+661*x^2+677*x-622 4032574892778685 a007 Real Root Of -211*x^4-951*x^3-120*x^2+907*x-957 4032574913122014 k002 Champernowne real with 139/2*n^2+153/2*n-106 4032574913470145 m001 (-arctan(1/2)+Totient)/(2^(1/2)-exp(Pi)) 4032574919679102 m001 (-arctan(1/3)+ZetaP(2))/(5^(1/2)+1) 4032574920571663 b008 7/2+ArcCsch[Log[6]] 4032574923541277 r002 50th iterates of z^2 + 4032574941409944 a007 Real Root Of -627*x^4+947*x^3+555*x^2+561*x-362 4032574950096089 m002 -4+2/E^Pi-Cosh[Pi]/Pi^4 4032574962256628 a001 987/64079*123^(1/5) 4032574996620470 m005 (1/2*2^(1/2)-4/11)/(5*3^(1/2)-1/7) 4032575013152020 k002 Champernowne real with 70*n^2+75*n-105 4032575036091919 a007 Real Root Of -729*x^4+659*x^3-486*x^2+760*x+448 4032575042269197 l006 ln(3779/5656) 4032575043583794 r005 Im(z^2+c),c=1/118+29/57*I,n=28 4032575057869781 r005 Im(z^2+c),c=1/15+28/45*I,n=47 4032575085969548 r009 Im(z^3+c),c=-61/118+25/62*I,n=41 4032575109648471 r008 a(0)=4,K{-n^6,-33+10*n+34*n^2-42*n^3} 4032575113182026 k002 Champernowne real with 141/2*n^2+147/2*n-104 4032575116124665 r005 Re(z^2+c),c=-5/8+85/247*I,n=21 4032575116278734 a007 Real Root Of 257*x^4+929*x^3-678*x^2-809*x+722 4032575116412114 r005 Im(z^2+c),c=-9/70+25/42*I,n=62 4032575119348497 q001 1436/3561 4032575140639005 r005 Re(z^2+c),c=-61/110+5/26*I,n=63 4032575155664093 m001 1/GAMMA(7/24)^2/exp(GAMMA(5/24))/LambertW(1)^2 4032575158286848 r009 Im(z^3+c),c=-13/28+18/55*I,n=21 4032575167567534 a001 439204/13*701408733^(8/23) 4032575169929765 a001 20633239/13*10946^(8/23) 4032575187025425 m001 2^(1/3)-QuadraticClass^FibonacciFactorial 4032575187933870 r008 a(0)=4,K{-n^6,-23-36*n^3+21*n^2+7*n} 4032575195166557 r008 a(0)=4,K{-n^6,-13-37*n^3+29*n^2-10*n} 4032575195656846 r005 Re(z^2+c),c=-41/86+25/57*I,n=31 4032575196046344 m001 (Psi(1,1/3)+ln(gamma))/(MertensB2+MertensB3) 4032575213212032 k002 Champernowne real with 71*n^2+72*n-103 4032575231441698 a007 Real Root Of -186*x^4-714*x^3+245*x^2+322*x-321 4032575248004101 h001 (1/5*exp(1)+5/11)/(2/9*exp(2)+5/6) 4032575263248169 m005 (1/2*2^(1/2)+5/9)/(4/11*5^(1/2)-1/2) 4032575267633103 r009 Re(z^3+c),c=-39/82+11/52*I,n=42 4032575268025726 r008 a(0)=4,K{-n^6,-11-n+12*n^2-31*n^3} 4032575269400824 m005 (1/3*gamma-2/7)/(5/11*Zeta(3)-7/9) 4032575276098973 r008 a(0)=4,K{-n^6,5-29*n+26*n^2-33*n^3} 4032575302850110 h001 (10/11*exp(2)+1/9)/(2/7*exp(1)+11/12) 4032575309459160 r008 a(0)=4,K{-n^6,9-31*n+22*n^2-31*n^3} 4032575313242038 k002 Champernowne real with 143/2*n^2+141/2*n-102 4032575320863470 m008 (4*Pi^2-3/4)/(Pi^6-1) 4032575339859026 r008 a(0)=4,K{-n^6,29-63*n+35*n^2-32*n^3} 4032575339884691 r005 Im(z^2+c),c=-113/102+3/62*I,n=17 4032575341506838 r005 Im(z^2+c),c=1/13+22/47*I,n=32 4032575358384684 l006 ln(5593/8371) 4032575360238679 m001 (PlouffeB*ThueMorse+Porter)/ThueMorse 4032575407323483 r005 Re(z^2+c),c=-69/122+1/32*I,n=58 4032575409532368 m001 (BesselI(0,1)+polylog(4,1/2))/(Otter+Porter) 4032575413272044 k002 Champernowne real with 72*n^2+69*n-101 4032575422599769 r005 Im(z^2+c),c=-69/52+1/57*I,n=19 4032575424274432 m001 (MertensB3-Paris)/(Sierpinski+Weierstrass) 4032575435994352 a007 Real Root Of 372*x^4-963*x^3-11*x^2-860*x-418 4032575441865096 r002 37th iterates of z^2 + 4032575443538930 a007 Real Root Of -880*x^4+897*x^3+24*x^2+617*x+327 4032575457110457 l006 ln(8627/8982) 4032575472647237 r002 26th iterates of z^2 + 4032575478292910 r005 Re(z^2+c),c=-69/98+16/29*I,n=5 4032575486570575 a007 Real Root Of 858*x^4+39*x^3+157*x^2-472*x-236 4032575513097835 r009 Im(z^3+c),c=-15/29+13/45*I,n=56 4032575513302050 k002 Champernowne real with 145/2*n^2+135/2*n-100 4032575527896723 r002 19th iterates of z^2 + 4032575535099066 r008 a(0)=4,K{-n^6,11-16*n^3-22*n^2-4*n} 4032575561121728 r005 Re(z^2+c),c=-55/98+6/47*I,n=28 4032575569891778 r004 Re(z^2+c),c=1/9-3/5*I,z(0)=exp(5/24*I*Pi),n=39 4032575570801316 r009 Im(z^3+c),c=-7/114+7/15*I,n=10 4032575580855652 m001 BesselI(0,1)*(ReciprocalFibonacci-ZetaP(3)) 4032575584322990 h001 (-3*exp(3)-3)/(-6*exp(2/3)-4) 4032575592585815 m001 (Pi-5^(1/2))/((1+3^(1/2))^(1/2)+Lehmer) 4032575602782331 m005 (1/3*2^(1/2)+2/11)/(9/11*Zeta(3)+7/11) 4032575610972565 m001 1/Rabbit^2/GolombDickman^2/ln(log(1+sqrt(2))) 4032575613332056 k002 Champernowne real with 73*n^2+66*n-99 4032575616610270 a003 sin(Pi*3/23)/sin(Pi*41/91) 4032575637032945 m001 GAMMA(5/6)*(3^(1/2)-exp(1/Pi)) 4032575637032945 m001 GAMMA(5/6)*(exp(1/Pi)-sqrt(3)) 4032575642272889 a001 956722026041/2*1364^(14/15) 4032575645713660 g007 Psi(2,3/11)+Psi(2,1/5)+Psi(2,1/3)-Psi(2,9/10) 4032575666534666 r009 Re(z^3+c),c=-45/118+5/48*I,n=21 4032575668529114 a001 2584/167761*123^(1/5) 4032575684390206 r009 Re(z^3+c),c=-41/86+10/47*I,n=37 4032575692994017 r002 31th iterates of z^2 + 4032575694955840 b008 -11/20+Sqrt[21] 4032575701489860 r005 Re(z^2+c),c=-15/32+1/12*I,n=3 4032575702570585 a001 199*9227465^(16/21) 4032575713362062 k002 Champernowne real with 147/2*n^2+129/2*n-98 4032575720409558 r005 Re(z^2+c),c=-31/52+13/44*I,n=27 4032575757804955 r002 27th iterates of z^2 + 4032575771572881 a001 6765/439204*123^(1/5) 4032575772755472 a001 17711/123*4^(26/35) 4032575780277139 r005 Re(z^2+c),c=-53/94+4/49*I,n=57 4032575786606765 a001 17711/1149851*123^(1/5) 4032575786771004 a001 774004377960*1364^(13/15) 4032575788800178 a001 46368/3010349*123^(1/5) 4032575789120193 a001 121393/7881196*123^(1/5) 4032575789166883 a001 10959/711491*123^(1/5) 4032575789173695 a001 832040/54018521*123^(1/5) 4032575789174689 a001 2178309/141422324*123^(1/5) 4032575789174834 a001 5702887/370248451*123^(1/5) 4032575789174855 a001 14930352/969323029*123^(1/5) 4032575789174858 a001 39088169/2537720636*123^(1/5) 4032575789174858 a001 102334155/6643838879*123^(1/5) 4032575789174858 a001 9238424/599786069*123^(1/5) 4032575789174858 a001 701408733/45537549124*123^(1/5) 4032575789174858 a001 1836311903/119218851371*123^(1/5) 4032575789174858 a001 4807526976/312119004989*123^(1/5) 4032575789174858 a001 12586269025/817138163596*123^(1/5) 4032575789174858 a001 32951280099/2139295485799*123^(1/5) 4032575789174858 a001 86267571272/5600748293801*123^(1/5) 4032575789174858 a001 7787980473/505618944676*123^(1/5) 4032575789174858 a001 365435296162/23725150497407*123^(1/5) 4032575789174858 a001 139583862445/9062201101803*123^(1/5) 4032575789174858 a001 53316291173/3461452808002*123^(1/5) 4032575789174858 a001 20365011074/1322157322203*123^(1/5) 4032575789174858 a001 7778742049/505019158607*123^(1/5) 4032575789174858 a001 2971215073/192900153618*123^(1/5) 4032575789174858 a001 1134903170/73681302247*123^(1/5) 4032575789174858 a001 433494437/28143753123*123^(1/5) 4032575789174858 a001 165580141/10749957122*123^(1/5) 4032575789174859 a001 63245986/4106118243*123^(1/5) 4032575789174860 a001 24157817/1568397607*123^(1/5) 4032575789174868 a001 9227465/599074578*123^(1/5) 4032575789174923 a001 3524578/228826127*123^(1/5) 4032575789175303 a001 1346269/87403803*123^(1/5) 4032575789177905 a001 514229/33385282*123^(1/5) 4032575789195738 a001 196418/12752043*123^(1/5) 4032575789317973 a001 75025/4870847*123^(1/5) 4032575790155783 a001 28657/1860498*123^(1/5) 4032575793290987 r009 Im(z^3+c),c=-57/118+19/60*I,n=57 4032575795898215 a001 10946/710647*123^(1/5) 4032575801739597 m005 (1/3*exp(1)+3/5)/(5/11*gamma+1/9) 4032575802420078 l006 ln(133/7502) 4032575807524935 m001 (Thue+ZetaP(4))/(HardyLittlewoodC3-Otter) 4032575813392068 k002 Champernowne real with 74*n^2+63*n-97 4032575817321647 r008 a(0)=4,K{-n^6,49-45*n-27*n^2-8*n^3} 4032575828097436 r008 a(0)=4,K{-n^6,-9+37*n^3-39*n^2-19*n} 4032575834630138 r002 58th iterates of z^2 + 4032575835257432 a001 4181/271443*123^(1/5) 4032575835873640 a001 6/34111385*365435296162^(2/17) 4032575835873641 a001 18/39088169*102334155^(2/17) 4032575835989184 a001 1/829464*28657^(2/17) 4032575846291790 a007 Real Root Of -194*x^4-518*x^3+948*x^2-647*x-692 4032575850299118 a007 Real Root Of -621*x^4+930*x^3-849*x^2+961*x+603 4032575859387325 m006 (2/3/Pi-3/5)/(1/5*Pi+1/3) 4032575864463838 r008 a(0)=4,K{-n^6,43-30*n-39*n^2-5*n^3} 4032575869618324 r005 Re(z^2+c),c=-25/28+4/19*I,n=32 4032575877299822 m005 (1/2*exp(1)-5/7)/(7/10*Pi-3/5) 4032575880285364 m005 (1/2*5^(1/2)+4/7)/(7/10*Catalan-2/9) 4032575885119738 r002 34th iterates of z^2 + 4032575885264248 m001 (-Chi(1)+Cahen)/(5^(1/2)-exp(1)) 4032575892369924 h001 (-5*exp(5)+1)/(-9*exp(3)-3) 4032575912302489 s002 sum(A201725[n]/(pi^n-1),n=1..infinity) 4032575913422074 k002 Champernowne real with 149/2*n^2+123/2*n-96 4032575925116309 p001 sum((-1)^n/(247*n+230)/(6^n),n=0..infinity) 4032575930450125 m009 (24/5*Catalan+3/5*Pi^2-1/3)/(1/4*Psi(1,1/3)-5) 4032575931269123 a001 2504730781961/2*1364^(4/5) 4032575932100164 r002 60th iterates of z^2 + 4032575945792934 a001 6765/76*1364^(28/53) 4032575958884634 a007 Real Root Of -292*x^4-988*x^3+617*x^2-555*x+156 4032575959514839 a007 Real Root Of 214*x^4+924*x^3+323*x^2+168*x-573 4032575971367182 m001 (gamma(3)-Zeta(1,2))/(Kac-Otter) 4032575984477353 r002 41th iterates of z^2 + 4032575989119213 m001 BesselI(0,1)+Pi*2^(1/2)/GAMMA(3/4)-Thue 4032575990347410 r002 40th iterates of z^2 + 4032575996821944 m001 (CopelandErdos+ZetaP(2))/(gamma+GAMMA(5/6)) 4032576010292099 s002 sum(A009386[n]/((2*n)!),n=1..infinity) 4032576010552922 s002 sum(A009328[n]/((2*n)!),n=1..infinity) 4032576011074553 s002 sum(A009346[n]/((2*n)!),n=1..infinity) 4032576011335361 s002 sum(A009367[n]/((2*n)!),n=1..infinity) 4032576013452080 k002 Champernowne real with 75*n^2+60*n-95 4032576016929539 l006 ln(1814/2715) 4032576018030599 m001 GlaisherKinkelin/(Ei(1)+GAMMA(17/24)) 4032576063338879 r005 Im(z^2+c),c=-31/26+47/106*I,n=3 4032576075767248 a001 4052739537881/2*1364^(11/15) 4032576080203864 m005 (1/2*gamma+1/5)/(1/5*Pi+7/12) 4032576088025697 s002 sum(A009806[n]/((2*n)!),n=1..infinity) 4032576088270075 s002 sum(A009487[n]/((2*n)!),n=1..infinity) 4032576088758817 s002 sum(A009586[n]/((2*n)!),n=1..infinity) 4032576089003181 s002 sum(A009711[n]/((2*n)!),n=1..infinity) 4032576093906490 r005 Im(z^2+c),c=-71/56+1/19*I,n=25 4032576096905029 r005 Re(z^2+c),c=-13/23+3/64*I,n=47 4032576100449355 r005 Re(z^2+c),c=-19/40+20/41*I,n=63 4032576105029516 a001 1597/103682*123^(1/5) 4032576109279939 r005 Re(z^2+c),c=-97/94+7/32*I,n=8 4032576113482086 k002 Champernowne real with 151/2*n^2+117/2*n-94 4032576117142033 m005 (1/2*3^(1/2)-1/4)/(3/11*3^(1/2)-2) 4032576129991831 m001 (Kac+ThueMorse)/(BesselJ(1,1)-ArtinRank2) 4032576137945667 r005 Re(z^2+c),c=-63/122+9/22*I,n=57 4032576156006060 a008 Real Root of x^4-x^3-8*x^2-33*x-333 4032576171612440 r005 Im(z^2+c),c=-2/9+3/4*I,n=17 4032576173114353 r009 Re(z^3+c),c=-43/90+5/37*I,n=11 4032576174124760 p004 log(35069/23431) 4032576175518705 m001 1/RenyiParking^2*ln(Conway)/Salem 4032576183297508 r009 Im(z^3+c),c=-5/13+11/29*I,n=32 4032576199477300 r009 Im(z^3+c),c=-1/13+25/53*I,n=4 4032576202356204 r005 Re(z^2+c),c=19/62+2/33*I,n=24 4032576211763608 p001 sum(1/(293*n+264)/(8^n),n=0..infinity) 4032576213512092 k002 Champernowne real with 76*n^2+57*n-93 4032576216701751 r009 Im(z^3+c),c=-7/48+27/58*I,n=5 4032576220265378 a001 3278735159921*1364^(2/3) 4032576224216401 a004 Fibonacci(13)*Lucas(12)/(1/2+sqrt(5)/2)^30 4032576228464320 a001 19/2*13^(31/55) 4032576239476850 m005 (1/3*Zeta(3)-1/10)/(1/11*Zeta(3)+7/11) 4032576242769311 m001 (Ei(1)+Khinchin)/(Landau+Lehmer) 4032576259843123 a007 Real Root Of -666*x^4+116*x^3-444*x^2+923*x-290 4032576267022679 r005 Re(z^2+c),c=-5/24+37/43*I,n=10 4032576294443293 m005 (1/2*exp(1)-3/4)/(4/5*Catalan+7/9) 4032576308735480 r005 Re(z^2+c),c=-8/15+14/45*I,n=38 4032576313542098 k002 Champernowne real with 153/2*n^2+111/2*n-92 4032576314361011 r005 Re(z^2+c),c=-13/21+41/61*I,n=15 4032576333811844 m001 (BesselK(0,1)-sin(1))/(cos(1/12*Pi)+ZetaP(4)) 4032576342991472 r005 Re(z^2+c),c=-8/15+14/57*I,n=19 4032576364763514 a001 10610209857723/2*1364^(3/5) 4032576371114864 r009 Im(z^3+c),c=-9/16+6/59*I,n=3 4032576376995266 r002 36th iterates of z^2 + 4032576378317230 r002 26th iterates of z^2 + 4032576378894782 m005 (1/2*2^(1/2)+2/3)/(6/7*Catalan-4/9) 4032576383382530 m001 Pi+1/gamma-sin(1) 4032576393651583 r005 Re(z^2+c),c=-69/122+1/61*I,n=33 4032576395637620 r002 3th iterates of z^2 + 4032576413572104 k002 Champernowne real with 77*n^2+54*n-91 4032576439880134 r009 Re(z^3+c),c=-21/50+1/6*I,n=7 4032576454158973 r002 64th iterates of z^2 + 4032576457218022 r005 Re(z^2+c),c=27/106+17/32*I,n=55 4032576463650900 r005 Re(z^2+c),c=-35/62+4/59*I,n=41 4032576472930096 r005 Re(z^2+c),c=17/42+11/49*I,n=56 4032576478115306 a007 Real Root Of 451*x^4-398*x^3+732*x^2-104*x-199 4032576482063095 m001 CareFree^CopelandErdos-polylog(4,1/2) 4032576488740458 m001 1/exp(log(1+sqrt(2)))/GAMMA(7/24)*sqrt(3)^2 4032576488793702 r005 Im(z^2+c),c=5/82+11/23*I,n=63 4032576505429417 q001 817/2026 4032576509252103 h001 (3/11*exp(1)+1/4)/(7/10*exp(1)+5/9) 4032576513602110 k002 Champernowne real with 155/2*n^2+105/2*n-90 4032576526934437 a007 Real Root Of 674*x^4+395*x^3+710*x^2+239*x-11 4032576527791843 m001 1/3*3^(1/2)*GAMMA(11/12)*Robbin 4032576530718660 r005 Re(z^2+c),c=-73/56+1/31*I,n=30 4032576537274290 r002 33th iterates of z^2 + 4032576546461783 a007 Real Root Of -877*x^4-601*x^3+164*x^2+962*x-352 4032576550074297 a001 233/439204*18^(40/57) 4032576558477222 a003 sin(Pi*23/103)-sin(Pi*19/79) 4032576562290270 m001 (Cahen+Trott2nd)/(Artin-cos(1)) 4032576571074179 a007 Real Root Of -38*x^4-37*x^3+237*x^2-812*x+494 4032576573367326 r002 51th iterates of z^2 + 4032576587697616 m001 (Khinchin-Sierpinski)/(Ei(1)+Gompertz) 4032576587804172 r005 Re(z^2+c),c=-79/114+3/14*I,n=32 4032576598015327 m005 (35/44+1/4*5^(1/2))/(7/10*Catalan-4) 4032576601941691 r005 Re(z^2+c),c=-39/70+9/53*I,n=43 4032576602679915 a007 Real Root Of -66*x^4-277*x^3-17*x^2+63*x-181 4032576602955804 r005 Re(z^2+c),c=-67/118+8/53*I,n=19 4032576610285129 l006 ln(165/9307) 4032576612911923 g006 Psi(1,1/5)-Psi(1,7/10)-Psi(1,2/7)-Psi(1,1/7) 4032576613632116 k002 Champernowne real with 78*n^2+51*n-89 4032576629447475 r008 a(0)=4,K{-n^6,-34+11*n+34*n^2-42*n^3} 4032576633104837 h005 exp(sin(Pi*8/51)+sin(Pi*22/59)) 4032576656057719 m001 ZetaQ(3)^StolarskyHarborth*Lehmer 4032576659633571 a007 Real Root Of 934*x^4+94*x^3+840*x^2-389*x-312 4032576666280588 r008 a(0)=4,K{-n^6,-24+33*n^2-40*n^3} 4032576668937954 m005 (1/5*gamma-4)/(3/5*gamma-1/4) 4032576668937954 m007 (-1/5*gamma+4)/(-3/5*gamma+1/4) 4032576673945105 r005 Im(z^2+c),c=-19/16+4/75*I,n=46 4032576685713830 r005 Re(z^2+c),c=15/62+16/31*I,n=55 4032576708880902 r008 a(0)=4,K{-n^6,-24-36*n^3+21*n^2+8*n} 4032576713062807 l006 ln(5291/7919) 4032576713662122 k002 Champernowne real with 157/2*n^2+99/2*n-88 4032576725537014 a007 Real Root Of 163*x^4-683*x^3+763*x^2-560*x-399 4032576729143105 a007 Real Root Of -149*x^4+185*x^3+726*x^2+721*x-417 4032576730036431 m001 GAMMA(13/24)/Psi(2,1/3)*FeigenbaumKappa 4032576737262429 m001 (Zeta(1,2)+Gompertz)/(Niven-Thue) 4032576741518959 r009 Im(z^3+c),c=-23/64+1/61*I,n=13 4032576744699149 r005 Re(z^2+c),c=-37/102+17/31*I,n=25 4032576758082135 m001 (GAMMA(13/24)+Bloch)/(ln(gamma)+BesselK(1,1)) 4032576758199477 a007 Real Root Of -131*x^4-531*x^3+8*x^2+162*x+344 4032576765807811 a007 Real Root Of 198*x^4+962*x^3+585*x^2-305*x-18 4032576777969209 r008 a(0)=4,K{-n^6,-6-33*n^3+21*n^2-13*n} 4032576779672561 m001 (Ei(1,1)*Cahen-GAMMA(23/24))/Ei(1,1) 4032576782982746 r005 Re(z^2+c),c=39/98+13/63*I,n=25 4032576802585080 r005 Im(z^2+c),c=-3/40+23/41*I,n=48 4032576813107605 m001 (Trott-ZetaQ(4))/(exp(1/exp(1))+GaussAGM) 4032576813692128 k002 Champernowne real with 79*n^2+48*n-87 4032576814097354 r009 Re(z^3+c),c=-39/122+17/25*I,n=8 4032576822913629 r009 Im(z^3+c),c=-39/94+42/59*I,n=11 4032576828481925 r009 Im(z^3+c),c=-4/17+7/16*I,n=19 4032576832234611 r008 a(0)=4,K{-n^6,8-30*n+22*n^2-31*n^3} 4032576832379361 r008 a(0)=4,K{-n^6,-40+58*n-26*n^2-23*n^3} 4032576837346260 a001 987/2*14662949395604^(19/21) 4032576846754948 a001 505618944676/13*6557470319842^(4/17) 4032576858787854 r008 a(0)=4,K{-n^6,-28+40*n-20*n^2-23*n^3} 4032576866606626 r002 25th iterates of z^2 + 4032576878943352 r002 13th iterates of z^2 + 4032576893498732 r002 19th iterates of z^2 + 4032576912368015 r005 Re(z^2+c),c=3/13+2/5*I,n=37 4032576913722134 k002 Champernowne real with 159/2*n^2+93/2*n-86 4032576923979676 r008 a(0)=4,K{-n^6,30-57*n+24*n^2-28*n^3} 4032576924082452 m001 (Niven-Rabbit)/(sin(1/5*Pi)-GaussAGM) 4032576938001150 m001 Lehmer/(ln(5)^cos(1/5*Pi)) 4032576938001150 m001 Lehmer/(ln(5)^cos(Pi/5)) 4032576941346919 r002 36th iterates of z^2 + 4032576944503240 a007 Real Root Of 704*x^4+709*x^3+645*x^2-672*x-348 4032576950779829 s002 sum(A231109[n]/(n*2^n+1),n=1..infinity) 4032576984041132 m001 Artin*GAMMA(11/12)^HardHexagonsEntropy 4032576988307938 a008 Real Root of x^4-11*x^2-48*x+108 4032577002388535 r005 Im(z^2+c),c=5/32+9/22*I,n=23 4032577011350799 m005 (1/2*Zeta(3)-4/7)/(1/3*Zeta(3)+1/3) 4032577013752140 k002 Champernowne real with 80*n^2+45*n-85 4032577024189358 m001 1/ln(Rabbit)/GlaisherKinkelin*BesselK(0,1)^2 4032577030510931 m001 ln(GAMMA(1/12))^2*Kolakoski/sinh(1) 4032577036825697 m005 (1/2*gamma-5/6)/(2/7*gamma-3/10) 4032577043996341 h001 (5/9*exp(2)+4/11)/(1/4*exp(1)+3/7) 4032577045270732 r005 Im(z^2+c),c=1/34+31/35*I,n=6 4032577066958145 m001 exp(FeigenbaumC)^2*ArtinRank2^2*GAMMA(5/12) 4032577072641108 a001 121393/76*3571^(6/53) 4032577076245344 l006 ln(3477/5204) 4032577082747933 r009 Re(z^3+c),c=-19/50+4/39*I,n=9 4032577084428079 a007 Real Root Of -14*x^4-580*x^3-647*x^2-997*x-523 4032577088191658 r005 Re(z^2+c),c=-17/30+11/112*I,n=23 4032577088332431 a001 6765/76*24476^(20/53) 4032577097855215 a001 6765/76*15127^(21/53) 4032577113782146 k002 Champernowne real with 161/2*n^2+87/2*n-84 4032577114631597 r005 Im(z^2+c),c=-3/16+8/17*I,n=4 4032577115497847 r005 Im(z^2+c),c=-129/122+17/62*I,n=43 4032577116477073 r005 Im(z^2+c),c=-49/52+12/47*I,n=6 4032577131398294 s002 sum(A270442[n]/(10^n+1),n=1..infinity) 4032577149206403 r009 Re(z^3+c),c=-55/114+12/55*I,n=39 4032577150125335 r008 a(0)=4,K{-n^6,15-44*n-15*n^2+12*n^3} 4032577154715430 r005 Re(z^2+c),c=-67/102+7/22*I,n=61 4032577165582893 h001 (4/5*exp(1)+5/9)/(1/9*exp(1)+3/8) 4032577169861995 a008 Real Root of x^4-x^3-11*x^2+35*x-10 4032577173105819 r002 14th iterates of z^2 + 4032577186536443 a007 Real Root Of 662*x^4-802*x^3-250*x^2-232*x-123 4032577189204374 m001 (Khinchin*TreeGrowth2nd+Lehmer)/TreeGrowth2nd 4032577195668813 m009 (2/3*Psi(1,1/3)+3/4)/(6*Psi(1,2/3)+1/6) 4032577202636366 m001 (FellerTornier-Kac)/(Backhouse-CareFree) 4032577210948924 r008 a(0)=4,K{-n^6,4+24*n-52*n^2-7*n^3} 4032577211425331 m005 (1/2*Zeta(3)-4/9)/(-19/72+7/24*5^(1/2)) 4032577213812152 k002 Champernowne real with 81*n^2+42*n-83 4032577214318391 b008 -1+Pi*Sinh[5/4] 4032577216305221 m005 (1/2*gamma+1/6)/(1/4*Catalan+9/10) 4032577220436171 a007 Real Root Of -17*x^4+576*x^3-563*x^2+990*x+529 4032577220453003 a007 Real Root Of 912*x^4-171*x^3+390*x^2+292*x+19 4032577224232283 r008 a(0)=4,K{-n^6,38-37*n-20*n^2-12*n^3} 4032577225046210 m005 (1/2*5^(1/2)-5)/(4/9*Catalan+5/9) 4032577240861441 m001 (Tribonacci+Thue)/(Zeta(1,2)+ErdosBorwein) 4032577243356582 r009 Re(z^3+c),c=-9/118+33/47*I,n=60 4032577250465511 m001 (Backhouse+PrimesInBinary)/(Artin-Chi(1)) 4032577251853645 p003 LerchPhi(1/12,6,447/178) 4032577261093513 m001 (-GAMMA(5/6)+Magata)/(Psi(2,1/3)-exp(1/Pi)) 4032577263954471 a003 sin(Pi*41/105)/cos(Pi*17/40) 4032577311190264 a001 11592/19*2207^(13/53) 4032577311960015 a007 Real Root Of 97*x^4-905*x^3+428*x^2-641*x-390 4032577313842158 k002 Champernowne real with 163/2*n^2+81/2*n-82 4032577325959549 r002 35th iterates of z^2 + 4032577336515696 a007 Real Root Of 77*x^4+194*x^3-391*x^2+488*x+686 4032577348341380 m001 (Zeta(5)+gamma(3))/(Niven-ReciprocalLucas) 4032577348535462 r005 Im(z^2+c),c=-159/122+1/42*I,n=26 4032577354521424 a007 Real Root Of 768*x^4+815*x^3+671*x^2-620*x-326 4032577367618794 a001 182717648081*3571^(16/17) 4032577368492306 a007 Real Root Of 622*x^4+873*x^3+94*x^2-650*x+26 4032577368895143 r008 a(0)=4,K{-n^6,-44-31*n+40*n^2+5*n^3} 4032577370882903 m001 1/ln(GAMMA(7/12))*MertensB1*cos(Pi/5)^2 4032577376010039 r009 Re(z^3+c),c=-9/20+9/49*I,n=20 4032577382617087 a007 Real Root Of 460*x^4+408*x^3+158*x^2-828*x-345 4032577386220554 a001 591286729879/2*3571^(15/17) 4032577395363209 m001 Chi(1)*(Shi(1)-Stephens) 4032577398496027 m004 50*Pi+(Sqrt[5]*Pi)/4-Cosh[Sqrt[5]*Pi] 4032577400359029 r008 a(0)=4,K{-n^6,19+50*n^3-64*n^2-35*n} 4032577402225767 s002 sum(A231109[n]/(n*2^n-1),n=1..infinity) 4032577404822314 a001 956722026041/2*3571^(14/17) 4032577413661081 r002 26th iterates of z^2 + 4032577413669824 a007 Real Root Of 985*x^4-62*x^3-990*x^2-734*x+435 4032577413872164 k002 Champernowne real with 82*n^2+39*n-81 4032577418188644 m001 (Zeta(1,2)+Rabbit)/(GAMMA(2/3)-Psi(2,1/3)) 4032577423424075 a001 774004377960*3571^(13/17) 4032577429291416 r008 a(0)=4,K{-n^6,56-52*n-29*n^2-6*n^3} 4032577442025835 a001 2504730781961/2*3571^(12/17) 4032577447391676 r002 17th iterates of z^2 + 4032577447851508 a001 312119004989/144*144^(10/17) 4032577449115866 r002 62th iterates of z^2 + 4032577449859426 r008 a(0)=4,K{-n^6,35+48*n^3-50*n^2-63*n} 4032577450097238 l006 ln(5140/7693) 4032577452304010 m001 (ln(2^(1/2)+1)+gamma(3))/(Porter+Sarnak) 4032577453631755 m001 ln(TwinPrimes)/LandauRamanujan^2*LambertW(1) 4032577460627595 a001 4052739537881/2*3571^(11/17) 4032577464318542 r002 44th iterates of z^2 + 4032577469221991 r005 Re(z^2+c),c=-17/30+5/128*I,n=22 4032577479229356 a001 3278735159921*3571^(10/17) 4032577486104005 r009 Im(z^3+c),c=-31/78+19/51*I,n=11 4032577488165066 m001 FransenRobinson^Backhouse-arctan(1/2) 4032577491691778 a001 505019158607/2*34^(11/14) 4032577497831116 a001 10610209857723/2*3571^(9/17) 4032577513902170 k002 Champernowne real with 165/2*n^2+75/2*n-80 4032577515246020 a007 Real Root Of 505*x^4-866*x^3+657*x^2+977*x+217 4032577520415387 m001 Sarnak/exp(1)/TwinPrimes 4032577538479486 m001 (Trott2nd+Thue)/(ln(2^(1/2)+1)+ln(2+3^(1/2))) 4032577538903197 a008 Real Root of x^3+13*x-118 4032577542076759 r005 Re(z^2+c),c=-97/94+3/28*I,n=10 4032577544457880 a001 1292*3461452808002^(11/12) 4032577544775612 r008 a(0)=4,K{-n^6,70-4*n^3-28*n^2-69*n} 4032577545826368 r009 Im(z^3+c),c=-11/64+19/42*I,n=14 4032577548677775 p004 log(12917/229) 4032577555862295 r009 Im(z^3+c),c=-1/27+22/47*I,n=12 4032577557335716 m003 4+Sqrt[5]/64+Cos[1/2+Sqrt[5]/2]/20 4032577564299454 r002 32th iterates of z^2 + 4032577582851228 r008 a(0)=4,K{-n^6,78-4*n^3-24*n^2-81*n} 4032577595215014 r009 Im(z^3+c),c=-13/86+17/21*I,n=4 4032577613932176 k002 Champernowne real with 83*n^2+36*n-79 4032577613982246 a007 Real Root Of 334*x^4-643*x^3-189*x^2-840*x-359 4032577620136786 r002 53th iterates of z^2 + 4032577621537920 a001 139583862445/2*9349^(18/19) 4032577623966200 a001 225851433717/2*9349^(17/19) 4032577626394480 a001 182717648081*9349^(16/19) 4032577628822761 a001 591286729879/2*9349^(15/19) 4032577631251041 a001 956722026041/2*9349^(14/19) 4032577631764931 r005 Re(z^2+c),c=-41/74+11/56*I,n=63 4032577632285188 r002 4th iterates of z^2 + 4032577633213007 r005 Im(z^2+c),c=-5/66+25/43*I,n=40 4032577633679321 a001 774004377960*9349^(13/19) 4032577636107601 a001 2504730781961/2*9349^(12/19) 4032577638535882 a001 4052739537881/2*9349^(11/19) 4032577640964162 a001 3278735159921*9349^(10/19) 4032577643213059 m001 GAMMA(3/4)^2/exp(RenyiParking)*LambertW(1) 4032577643392442 a001 10610209857723/2*9349^(9/19) 4032577644328194 a001 47/196418*21^(6/35) 4032577655272695 r009 Im(z^3+c),c=-7/17+35/61*I,n=33 4032577655448524 r009 Im(z^3+c),c=-27/98+23/54*I,n=11 4032577657288380 r008 a(0)=4,K{-n^6,-56-7*n+25*n^2+8*n^3} 4032577658836160 a001 53316291173/2*24476^(20/21) 4032577659156700 a001 43133785636*24476^(19/21) 4032577659477240 a001 139583862445/2*24476^(6/7) 4032577659797780 a001 225851433717/2*24476^(17/21) 4032577660118321 a001 182717648081*24476^(16/21) 4032577660438861 a001 591286729879/2*24476^(5/7) 4032577660759401 a001 956722026041/2*24476^(2/3) 4032577661079941 a001 774004377960*24476^(13/21) 4032577661400482 a001 2504730781961/2*24476^(4/7) 4032577661721022 a001 4052739537881/2*24476^(11/21) 4032577662041562 a001 3278735159921*24476^(10/21) 4032577662362102 a001 10610209857723/2*24476^(3/7) 4032577662675820 a001 17711/2*817138163596^(17/19) 4032577662675820 a001 17711/2*14662949395604^(17/21) 4032577662675820 a001 17711/2*192900153618^(17/18) 4032577664307574 a001 10182505537*64079^(22/23) 4032577664350274 a001 32951280099/2*64079^(21/23) 4032577664392973 a001 53316291173/2*64079^(20/23) 4032577664435673 a001 43133785636*64079^(19/23) 4032577664478372 a001 139583862445/2*64079^(18/23) 4032577664521072 a001 225851433717/2*64079^(17/23) 4032577664563771 a001 182717648081*64079^(16/23) 4032577664606471 a001 591286729879/2*64079^(15/23) 4032577664649171 a001 956722026041/2*64079^(14/23) 4032577664691870 a001 774004377960*64079^(13/23) 4032577664734570 a001 2504730781961/2*64079^(12/23) 4032577664777269 a001 4052739537881/2*64079^(11/23) 4032577664819969 a001 3278735159921*64079^(10/23) 4032577664862668 a001 10610209857723/2*64079^(9/23) 4032577664871840 a001 23184*14662949395604^(7/9) 4032577664871840 a001 23184*505019158607^(7/8) 4032577665132337 a001 53316291173/2*167761^(4/5) 4032577665160994 a001 591286729879/2*167761^(3/5) 4032577665189651 a001 3278735159921*167761^(2/5) 4032577665228382 a001 7778742049/2*439204^(8/9) 4032577665230705 a001 32951280099/2*439204^(7/9) 4032577665233028 a001 139583862445/2*439204^(2/3) 4032577665235351 a001 591286729879/2*439204^(5/9) 4032577665237673 a001 2504730781961/2*439204^(4/9) 4032577665238980 a001 317811/2*45537549124^(15/17) 4032577665238980 a001 317811/2*312119004989^(9/11) 4032577665238980 a001 317811/2*14662949395604^(5/7) 4032577665238980 a001 317811/2*192900153618^(5/6) 4032577665238980 a001 317811/2*28143753123^(9/10) 4032577665238980 a001 317811/2*10749957122^(15/16) 4032577665239996 a001 10610209857723/2*439204^(1/3) 4032577665246905 a001 433494437/2*7881196^(10/11) 4032577665246911 a001 1836311903/2*7881196^(9/11) 4032577665246917 a001 7778742049/2*7881196^(8/11) 4032577665246921 a001 10182505537*7881196^(2/3) 4032577665246923 a001 32951280099/2*7881196^(7/11) 4032577665246929 a001 139583862445/2*7881196^(6/11) 4032577665246935 a001 591286729879/2*7881196^(5/11) 4032577665246940 a001 5702887/2*2537720636^(13/15) 4032577665246940 a001 5702887/2*45537549124^(13/17) 4032577665246940 a001 5702887/2*14662949395604^(13/21) 4032577665246940 a001 5702887/2*192900153618^(13/18) 4032577665246940 a001 5702887/2*73681302247^(3/4) 4032577665246940 a001 5702887/2*10749957122^(13/16) 4032577665246940 a001 5702887/2*599074578^(13/14) 4032577665246941 a001 2504730781961/2*7881196^(4/11) 4032577665246943 a001 4052739537881/2*7881196^(1/3) 4032577665246947 a001 10610209857723/2*7881196^(3/11) 4032577665246956 a001 433494437/2*20633239^(6/7) 4032577665246957 a001 567451585*20633239^(4/5) 4032577665246958 a001 2403763488*20633239^(5/7) 4032577665246959 a001 32951280099/2*20633239^(3/5) 4032577665246959 a001 53316291173/2*20633239^(4/7) 4032577665246960 a001 591286729879/2*20633239^(3/7) 4032577665246961 a001 956722026041/2*20633239^(2/5) 4032577665246962 a001 3278735159921*20633239^(2/7) 4032577665246964 a001 39088169/2*2537720636^(7/9) 4032577665246964 a001 39088169/2*17393796001^(5/7) 4032577665246964 a001 39088169/2*312119004989^(7/11) 4032577665246964 a001 39088169/2*14662949395604^(5/9) 4032577665246964 a001 39088169/2*505019158607^(5/8) 4032577665246964 a001 39088169/2*28143753123^(7/10) 4032577665246964 a001 39088169/2*599074578^(5/6) 4032577665246964 a001 39088169/2*228826127^(7/8) 4032577665246964 a001 102334155/2*141422324^(11/13) 4032577665246964 a001 433494437/2*141422324^(10/13) 4032577665246964 a001 1836311903/2*141422324^(9/13) 4032577665246964 a001 2971215073/2*141422324^(2/3) 4032577665246964 a001 7778742049/2*141422324^(8/13) 4032577665246964 a001 32951280099/2*141422324^(7/13) 4032577665246964 a001 139583862445/2*141422324^(6/13) 4032577665246964 a001 591286729879/2*141422324^(5/13) 4032577665246964 a001 102334155/2*2537720636^(11/15) 4032577665246964 a001 102334155/2*45537549124^(11/17) 4032577665246964 a001 102334155/2*312119004989^(3/5) 4032577665246964 a001 102334155/2*817138163596^(11/19) 4032577665246964 a001 102334155/2*14662949395604^(11/21) 4032577665246964 a001 102334155/2*192900153618^(11/18) 4032577665246964 a001 102334155/2*10749957122^(11/16) 4032577665246964 a001 102334155/2*1568397607^(3/4) 4032577665246964 a001 102334155/2*599074578^(11/14) 4032577665246964 a001 774004377960*141422324^(1/3) 4032577665246964 a001 2504730781961/2*141422324^(4/13) 4032577665246964 a001 10610209857723/2*141422324^(3/13) 4032577665246964 a001 133957148*9062201101803^(1/2) 4032577665246964 a001 701408733/2*1322157322203^(1/2) 4032577665246964 a001 1836311903/2*2537720636^(3/5) 4032577665246964 a001 2403763488*2537720636^(5/9) 4032577665246964 a001 7778742049/2*2537720636^(8/15) 4032577665246964 a001 32951280099/2*2537720636^(7/15) 4032577665246964 a001 53316291173/2*2537720636^(4/9) 4032577665246964 a001 139583862445/2*2537720636^(2/5) 4032577665246964 a001 1836311903/2*45537549124^(9/17) 4032577665246964 a001 1836311903/2*817138163596^(9/19) 4032577665246964 a001 1836311903/2*14662949395604^(3/7) 4032577665246964 a001 1836311903/2*192900153618^(1/2) 4032577665246964 a001 1836311903/2*10749957122^(9/16) 4032577665246964 a001 591286729879/2*2537720636^(1/3) 4032577665246964 a001 2504730781961/2*2537720636^(4/15) 4032577665246964 a001 3278735159921*2537720636^(2/9) 4032577665246964 a001 10610209857723/2*2537720636^(1/5) 4032577665246964 a001 2403763488*312119004989^(5/11) 4032577665246964 a001 2403763488*3461452808002^(5/12) 4032577665246964 a001 2403763488*28143753123^(1/2) 4032577665246964 a001 32951280099/2*17393796001^(3/7) 4032577665246964 a001 956722026041/2*17393796001^(2/7) 4032577665246964 a001 32951280099/2*45537549124^(7/17) 4032577665246964 a001 32951280099/2*14662949395604^(1/3) 4032577665246964 a001 32951280099/2*192900153618^(7/18) 4032577665246964 a001 225851433717/2*45537549124^(1/3) 4032577665246964 a001 139583862445/2*45537549124^(6/17) 4032577665246964 a001 591286729879/2*45537549124^(5/17) 4032577665246964 a001 2504730781961/2*45537549124^(4/17) 4032577665246964 a001 10610209857723/2*45537549124^(3/17) 4032577665246964 a001 43133785636*817138163596^(1/3) 4032577665246964 a001 591286729879/2*312119004989^(3/11) 4032577665246964 a001 2504730781961/2*817138163596^(4/19) 4032577665246964 a001 10610209857723/2*14662949395604^(1/7) 4032577665246965 a001 182717648081*23725150497407^(1/4) 4032577665246965 a001 10610209857723/2*192900153618^(1/6) 4032577665246965 a001 591286729879/2*192900153618^(5/18) 4032577665246965 a001 139583862445/2*14662949395604^(2/7) 4032577665246965 a001 139583862445/2*192900153618^(1/3) 4032577665246965 a001 2504730781961/2*73681302247^(3/13) 4032577665246965 a001 774004377960*73681302247^(1/4) 4032577665246965 a001 182717648081*73681302247^(4/13) 4032577665246965 a001 53316291173/2*23725150497407^(5/16) 4032577665246965 a001 53316291173/2*505019158607^(5/14) 4032577665246965 a001 53316291173/2*73681302247^(5/13) 4032577665246965 a001 3278735159921*28143753123^(1/5) 4032577665246965 a001 591286729879/2*28143753123^(3/10) 4032577665246965 a001 10182505537*312119004989^(2/5) 4032577665246965 a001 53316291173/2*28143753123^(2/5) 4032577665246965 a001 10610209857723/2*10749957122^(3/16) 4032577665246965 a001 3278735159921*10749957122^(5/24) 4032577665246965 a001 2504730781961/2*10749957122^(1/4) 4032577665246965 a001 956722026041/2*10749957122^(7/24) 4032577665246965 a001 591286729879/2*10749957122^(5/16) 4032577665246965 a001 182717648081*10749957122^(1/3) 4032577665246965 a001 7778742049/2*45537549124^(8/17) 4032577665246965 a001 139583862445/2*10749957122^(3/8) 4032577665246965 a001 7778742049/2*14662949395604^(8/21) 4032577665246965 a001 7778742049/2*192900153618^(4/9) 4032577665246965 a001 7778742049/2*73681302247^(6/13) 4032577665246965 a001 32951280099/2*10749957122^(7/16) 4032577665246965 a001 53316291173/2*10749957122^(5/12) 4032577665246965 a001 10182505537*10749957122^(11/24) 4032577665246965 a001 7778742049/2*10749957122^(1/2) 4032577665246965 a001 3278735159921*4106118243^(5/23) 4032577665246965 a001 2504730781961/2*4106118243^(6/23) 4032577665246965 a001 956722026041/2*4106118243^(7/23) 4032577665246965 a001 182717648081*4106118243^(8/23) 4032577665246965 a001 2971215073/2*73681302247^(1/2) 4032577665246965 a001 139583862445/2*4106118243^(9/23) 4032577665246965 a001 53316291173/2*4106118243^(10/23) 4032577665246965 a001 2971215073/2*10749957122^(13/24) 4032577665246965 a001 12586269025/2*4106118243^(1/2) 4032577665246965 a001 10182505537*4106118243^(11/23) 4032577665246965 a001 7778742049/2*4106118243^(12/23) 4032577665246965 a001 2971215073/2*4106118243^(13/23) 4032577665246965 a001 3278735159921*1568397607^(5/22) 4032577665246965 a001 4052739537881/2*1568397607^(1/4) 4032577665246965 a001 2504730781961/2*1568397607^(3/11) 4032577665246965 a001 956722026041/2*1568397607^(7/22) 4032577665246965 a001 182717648081*1568397607^(4/11) 4032577665246965 a001 567451585*17393796001^(4/7) 4032577665246965 a001 567451585*14662949395604^(4/9) 4032577665246965 a001 567451585*505019158607^(1/2) 4032577665246965 a001 567451585*73681302247^(7/13) 4032577665246965 a001 567451585*10749957122^(7/12) 4032577665246965 a001 139583862445/2*1568397607^(9/22) 4032577665246965 a001 53316291173/2*1568397607^(5/11) 4032577665246965 a001 567451585*4106118243^(14/23) 4032577665246965 a001 10182505537*1568397607^(1/2) 4032577665246965 a001 7778742049/2*1568397607^(6/11) 4032577665246965 a001 2971215073/2*1568397607^(13/22) 4032577665246965 a001 567451585*1568397607^(7/11) 4032577665246965 a001 10610209857723/2*599074578^(3/14) 4032577665246965 a001 3278735159921*599074578^(5/21) 4032577665246965 a001 2504730781961/2*599074578^(2/7) 4032577665246965 a001 956722026041/2*599074578^(1/3) 4032577665246965 a001 433494437/2*2537720636^(2/3) 4032577665246965 a001 591286729879/2*599074578^(5/14) 4032577665246965 a001 182717648081*599074578^(8/21) 4032577665246965 a001 433494437/2*45537549124^(10/17) 4032577665246965 a001 433494437/2*312119004989^(6/11) 4032577665246965 a001 433494437/2*14662949395604^(10/21) 4032577665246965 a001 433494437/2*192900153618^(5/9) 4032577665246965 a001 433494437/2*28143753123^(3/5) 4032577665246965 a001 433494437/2*10749957122^(5/8) 4032577665246965 a001 433494437/2*4106118243^(15/23) 4032577665246965 a001 139583862445/2*599074578^(3/7) 4032577665246965 a001 53316291173/2*599074578^(10/21) 4032577665246965 a001 433494437/2*1568397607^(15/22) 4032577665246965 a001 32951280099/2*599074578^(1/2) 4032577665246965 a001 10182505537*599074578^(11/21) 4032577665246965 a001 7778742049/2*599074578^(4/7) 4032577665246965 a001 1836311903/2*599074578^(9/14) 4032577665246965 a001 2971215073/2*599074578^(13/21) 4032577665246965 a001 567451585*599074578^(2/3) 4032577665246965 a001 433494437/2*599074578^(5/7) 4032577665246965 a001 3278735159921*228826127^(1/4) 4032577665246965 a001 2504730781961/2*228826127^(3/10) 4032577665246965 a001 956722026041/2*228826127^(7/20) 4032577665246965 a001 591286729879/2*228826127^(3/8) 4032577665246965 a001 165580141/2*23725150497407^(1/2) 4032577665246965 a001 165580141/2*505019158607^(4/7) 4032577665246965 a001 165580141/2*73681302247^(8/13) 4032577665246965 a001 165580141/2*10749957122^(2/3) 4032577665246965 a001 165580141/2*4106118243^(16/23) 4032577665246965 a001 165580141/2*1568397607^(8/11) 4032577665246965 a001 182717648081*228826127^(2/5) 4032577665246965 a001 139583862445/2*228826127^(9/20) 4032577665246965 a001 165580141/2*599074578^(16/21) 4032577665246965 a001 53316291173/2*228826127^(1/2) 4032577665246965 a001 10182505537*228826127^(11/20) 4032577665246965 a001 7778742049/2*228826127^(3/5) 4032577665246965 a001 2403763488*228826127^(5/8) 4032577665246965 a001 2971215073/2*228826127^(13/20) 4032577665246965 a001 567451585*228826127^(7/10) 4032577665246965 a001 433494437/2*228826127^(3/4) 4032577665246965 a001 165580141/2*228826127^(4/5) 4032577665246965 a001 3278735159921*87403803^(5/19) 4032577665246965 a001 2504730781961/2*87403803^(6/19) 4032577665246965 a001 956722026041/2*87403803^(7/19) 4032577665246965 a001 31622993*45537549124^(2/3) 4032577665246965 a001 31622993*10749957122^(17/24) 4032577665246965 a001 31622993*4106118243^(17/23) 4032577665246965 a001 31622993*1568397607^(17/22) 4032577665246965 a001 31622993*599074578^(17/21) 4032577665246965 a001 182717648081*87403803^(8/19) 4032577665246965 a001 139583862445/2*87403803^(9/19) 4032577665246965 a001 43133785636*87403803^(1/2) 4032577665246965 a001 31622993*228826127^(17/20) 4032577665246965 a001 53316291173/2*87403803^(10/19) 4032577665246965 a001 10182505537*87403803^(11/19) 4032577665246965 a001 7778742049/2*87403803^(12/19) 4032577665246965 a001 2971215073/2*87403803^(13/19) 4032577665246965 a001 567451585*87403803^(14/19) 4032577665246965 a001 433494437/2*87403803^(15/19) 4032577665246965 a001 165580141/2*87403803^(16/19) 4032577665246965 a001 31622993*87403803^(17/19) 4032577665246965 a001 10610209857723/2*33385282^(1/4) 4032577665246966 a001 3278735159921*33385282^(5/18) 4032577665246966 a001 24157817/2*141422324^(12/13) 4032577665246966 a001 2504730781961/2*33385282^(1/3) 4032577665246966 a001 24157817/2*2537720636^(4/5) 4032577665246966 a001 24157817/2*45537549124^(12/17) 4032577665246966 a001 24157817/2*14662949395604^(4/7) 4032577665246966 a001 24157817/2*505019158607^(9/14) 4032577665246966 a001 24157817/2*192900153618^(2/3) 4032577665246966 a001 24157817/2*73681302247^(9/13) 4032577665246966 a001 24157817/2*10749957122^(3/4) 4032577665246966 a001 24157817/2*4106118243^(18/23) 4032577665246966 a001 24157817/2*1568397607^(9/11) 4032577665246966 a001 24157817/2*599074578^(6/7) 4032577665246966 a001 956722026041/2*33385282^(7/18) 4032577665246966 a001 24157817/2*228826127^(9/10) 4032577665246966 a001 591286729879/2*33385282^(5/12) 4032577665246966 a001 182717648081*33385282^(4/9) 4032577665246966 a001 139583862445/2*33385282^(1/2) 4032577665246966 a001 24157817/2*87403803^(18/19) 4032577665246967 a001 53316291173/2*33385282^(5/9) 4032577665246967 a001 32951280099/2*33385282^(7/12) 4032577665246967 a001 10182505537*33385282^(11/18) 4032577665246967 a001 7778742049/2*33385282^(2/3) 4032577665246967 a001 2971215073/2*33385282^(13/18) 4032577665246967 a001 1836311903/2*33385282^(3/4) 4032577665246967 a001 567451585*33385282^(7/9) 4032577665246968 a001 433494437/2*33385282^(5/6) 4032577665246968 a001 102334155/2*33385282^(11/12) 4032577665246968 a001 165580141/2*33385282^(8/9) 4032577665246968 a001 31622993*33385282^(17/18) 4032577665246972 a001 3278735159921*12752043^(5/17) 4032577665246973 a001 2504730781961/2*12752043^(6/17) 4032577665246974 a001 9227465/2*817138163596^(2/3) 4032577665246974 a001 9227465/2*10749957122^(19/24) 4032577665246974 a001 9227465/2*4106118243^(19/23) 4032577665246974 a001 9227465/2*1568397607^(19/22) 4032577665246974 a001 9227465/2*599074578^(19/21) 4032577665246974 a001 9227465/2*228826127^(19/20) 4032577665246975 a001 956722026041/2*12752043^(7/17) 4032577665246976 a001 182717648081*12752043^(8/17) 4032577665246977 a001 225851433717/2*12752043^(1/2) 4032577665246978 a001 139583862445/2*12752043^(9/17) 4032577665246979 a001 53316291173/2*12752043^(10/17) 4032577665246981 a001 10182505537*12752043^(11/17) 4032577665246982 a001 7778742049/2*12752043^(12/17) 4032577665246983 a001 2971215073/2*12752043^(13/17) 4032577665246985 a001 567451585*12752043^(14/17) 4032577665246986 a001 433494437/2*12752043^(15/17) 4032577665246988 a001 165580141/2*12752043^(16/17) 4032577665247018 a001 3278735159921*4870847^(5/16) 4032577665247028 a001 2504730781961/2*4870847^(3/8) 4032577665247029 a001 1762289*2537720636^(8/9) 4032577665247029 a001 1762289*312119004989^(8/11) 4032577665247029 a001 1762289*23725150497407^(5/8) 4032577665247029 a001 1762289*73681302247^(10/13) 4032577665247029 a001 1762289*28143753123^(4/5) 4032577665247029 a001 1762289*10749957122^(5/6) 4032577665247029 a001 1762289*4106118243^(20/23) 4032577665247029 a001 1762289*1568397607^(10/11) 4032577665247029 a001 1762289*599074578^(20/21) 4032577665247039 a001 956722026041/2*4870847^(7/16) 4032577665247049 a001 182717648081*4870847^(1/2) 4032577665247060 a001 139583862445/2*4870847^(9/16) 4032577665247071 a001 53316291173/2*4870847^(5/8) 4032577665247081 a001 10182505537*4870847^(11/16) 4032577665247092 a001 7778742049/2*4870847^(3/4) 4032577665247103 a001 2971215073/2*4870847^(13/16) 4032577665247113 a001 567451585*4870847^(7/8) 4032577665247124 a001 433494437/2*4870847^(15/16) 4032577665247314 a001 10610209857723/2*1860498^(3/10) 4032577665247353 a001 3278735159921*1860498^(1/3) 4032577665247409 a001 1346269/2*2537720636^(14/15) 4032577665247409 a001 1346269/2*17393796001^(6/7) 4032577665247409 a001 1346269/2*45537549124^(14/17) 4032577665247409 a001 1346269/2*14662949395604^(2/3) 4032577665247409 a001 1346269/2*505019158607^(3/4) 4032577665247409 a001 1346269/2*192900153618^(7/9) 4032577665247409 a001 1346269/2*10749957122^(7/8) 4032577665247409 a001 1346269/2*4106118243^(21/23) 4032577665247409 a001 1346269/2*1568397607^(21/22) 4032577665247430 a001 2504730781961/2*1860498^(2/5) 4032577665247508 a001 956722026041/2*1860498^(7/15) 4032577665247547 a001 591286729879/2*1860498^(1/2) 4032577665247586 a001 182717648081*1860498^(8/15) 4032577665247663 a001 139583862445/2*1860498^(3/5) 4032577665247741 a001 53316291173/2*1860498^(2/3) 4032577665247780 a001 32951280099/2*1860498^(7/10) 4032577665247819 a001 10182505537*1860498^(11/15) 4032577665247896 a001 7778742049/2*1860498^(4/5) 4032577665247935 a001 2403763488*1860498^(5/6) 4032577665247974 a001 2971215073/2*1860498^(13/15) 4032577665248013 a001 1836311903/2*1860498^(9/10) 4032577665248052 a001 567451585*1860498^(14/15) 4032577665249816 a001 3278735159921*710647^(5/14) 4032577665250014 a001 514229/2*312119004989^(4/5) 4032577665250014 a001 514229/2*23725150497407^(11/16) 4032577665250014 a001 514229/2*73681302247^(11/13) 4032577665250014 a001 514229/2*10749957122^(11/12) 4032577665250014 a001 514229/2*4106118243^(22/23) 4032577665250387 a001 2504730781961/2*710647^(3/7) 4032577665250957 a001 956722026041/2*710647^(1/2) 4032577665251527 a001 182717648081*710647^(4/7) 4032577665252098 a001 139583862445/2*710647^(9/14) 4032577665252668 a001 53316291173/2*710647^(5/7) 4032577665252953 a001 32951280099/2*710647^(3/4) 4032577665253238 a001 10182505537*710647^(11/14) 4032577665253809 a001 7778742049/2*710647^(6/7) 4032577665254379 a001 2971215073/2*710647^(13/14) 4032577665267869 a001 98209*10749957122^(23/24) 4032577665268014 a001 3278735159921*271443^(5/13) 4032577665272224 a001 2504730781961/2*271443^(6/13) 4032577665274329 a001 774004377960*271443^(1/2) 4032577665276434 a001 956722026041/2*271443^(7/13) 4032577665280644 a001 182717648081*271443^(8/13) 4032577665284854 a001 139583862445/2*271443^(9/13) 4032577665289064 a001 53316291173/2*271443^(10/13) 4032577665293274 a001 10182505537*271443^(11/13) 4032577665297484 a001 7778742049/2*271443^(12/13) 4032577665387636 a001 10610209857723/2*103682^(3/8) 4032577665390249 a001 75025/2*45537549124^(16/17) 4032577665390249 a001 75025/2*14662949395604^(16/21) 4032577665390249 a001 75025/2*192900153618^(8/9) 4032577665390249 a001 75025/2*73681302247^(12/13) 4032577665403267 a001 3278735159921*103682^(5/12) 4032577665418897 a001 4052739537881/2*103682^(11/24) 4032577665434527 a001 2504730781961/2*103682^(1/2) 4032577665450157 a001 774004377960*103682^(13/24) 4032577665465787 a001 956722026041/2*103682^(7/12) 4032577665481418 a001 591286729879/2*103682^(5/8) 4032577665497048 a001 182717648081*103682^(2/3) 4032577665512678 a001 225851433717/2*103682^(17/24) 4032577665528308 a001 139583862445/2*103682^(3/4) 4032577665543938 a001 43133785636*103682^(19/24) 4032577665559569 a001 53316291173/2*103682^(5/6) 4032577665575199 a001 32951280099/2*103682^(7/8) 4032577665590829 a001 10182505537*103682^(11/12) 4032577665606459 a001 12586269025/2*103682^(23/24) 4032577666229054 a001 28657/2*312119004989^(10/11) 4032577666229054 a001 28657/2*3461452808002^(5/6) 4032577666298797 a001 10610209857723/2*39603^(9/22) 4032577666415667 a001 3278735159921*39603^(5/11) 4032577666532537 a001 4052739537881/2*39603^(1/2) 4032577666649407 a001 2504730781961/2*39603^(6/11) 4032577666766277 a001 774004377960*39603^(13/22) 4032577666883148 a001 956722026041/2*39603^(7/11) 4032577667000018 a001 591286729879/2*39603^(15/22) 4032577667116888 a001 182717648081*39603^(8/11) 4032577667232196 r005 Im(z^2+c),c=23/70+9/38*I,n=5 4032577667233758 a001 225851433717/2*39603^(17/22) 4032577667350629 a001 139583862445/2*39603^(9/11) 4032577667467499 a001 43133785636*39603^(19/22) 4032577667584369 a001 53316291173/2*39603^(10/11) 4032577667701239 a001 32951280099/2*39603^(21/22) 4032577671978309 a001 5473*23725150497407^(13/16) 4032577671978309 a001 5473*505019158607^(13/14) 4032577673177265 a001 10610209857723/2*15127^(9/20) 4032577674058409 a001 3278735159921*15127^(1/2) 4032577674939554 a001 4052739537881/2*15127^(11/20) 4032577675820698 a001 2504730781961/2*15127^(3/5) 4032577676701843 a001 774004377960*15127^(13/20) 4032577677582987 a001 956722026041/2*15127^(7/10) 4032577678464132 a001 591286729879/2*15127^(3/4) 4032577679345276 a001 182717648081*15127^(4/5) 4032577680226421 a001 225851433717/2*15127^(17/20) 4032577681107565 a001 139583862445/2*15127^(9/10) 4032577681988710 a001 43133785636*15127^(19/20) 4032577690922673 m001 1/ln(Riemann2ndZero)*Conway^2/Salem^2 4032577695815285 r005 Im(z^2+c),c=-7/48+3/59*I,n=8 4032577705493727 p004 log(22853/15269) 4032577711384289 a001 4181/2*14662949395604^(6/7) 4032577713962182 k002 Champernowne real with 167/2*n^2+69/2*n-78 4032577717171400 r009 Re(z^3+c),c=-5/12+9/61*I,n=28 4032577725641507 a001 10610209857723/2*5778^(1/2) 4032577729335922 r005 Re(z^2+c),c=-3/13+40/61*I,n=10 4032577731946430 m005 (1/3*Zeta(3)+2/11)/(7/10*2^(1/2)+5/11) 4032577732352011 a001 3278735159921*5778^(5/9) 4032577733519899 a003 cos(Pi*20/83)/cos(Pi*23/52) 4032577737054779 r009 Im(z^3+c),c=-13/25+1/3*I,n=7 4032577737135572 a005 (1/cos(22/155*Pi))^573 4032577739062516 a001 4052739537881/2*5778^(11/18) 4032577745773021 a001 2504730781961/2*5778^(2/3) 4032577752483526 a001 774004377960*5778^(13/18) 4032577759194030 a001 956722026041/2*5778^(7/9) 4032577762917867 m005 (21/20+1/4*5^(1/2))/(4*Zeta(3)-9/11) 4032577765904535 a001 591286729879/2*5778^(5/6) 4032577770052352 r005 Im(z^2+c),c=-11/9+1/20*I,n=47 4032577772615040 a001 182717648081*5778^(8/9) 4032577778892567 m005 (1/3*exp(1)+1/9)/(4/7*Pi+8/11) 4032577779325545 a001 225851433717/2*5778^(17/18) 4032577781834858 m001 (ln(gamma)+Mills)/(exp(1)-sin(1)) 4032577787707214 m005 (1/3*2^(1/2)+1/11)/(1/2+2/5*5^(1/2)) 4032577791888029 m005 (1/2*Zeta(3)+4/11)/(9/10*3^(1/2)+5/6) 4032577813992188 k002 Champernowne real with 84*n^2+33*n-77 4032577814507784 m001 1/GAMMA(1/12)^2*BesselK(0,1)*ln(GAMMA(7/24))^2 4032577815194704 m001 GAMMA(2/3)/Sierpinski^2/ln(sqrt(1+sqrt(3))) 4032577836043306 r002 3th iterates of z^2 + 4032577840187887 a007 Real Root Of 43*x^4+208*x^3+34*x^2-184*x+974 4032577883385119 m001 1/GAMMA(1/4)*exp(Artin)^2/Zeta(3)^2 4032577889439114 m001 Artin*(2^(1/2)-Mills) 4032577904820719 m002 -10/3+E^Pi/Pi 4032577908512945 r005 Re(z^2+c),c=-37/66+4/47*I,n=22 4032577914022194 k002 Champernowne real with 169/2*n^2+63/2*n-76 4032577916288825 a007 Real Root Of -502*x^4+891*x^3-185*x^2+347*x-155 4032577934192090 a007 Real Root Of 671*x^4-326*x^3-573*x^2-794*x+417 4032577952907898 r009 Re(z^3+c),c=-9/20+7/38*I,n=29 4032577954074890 a001 610/39603*123^(1/5) 4032577960364130 m001 (CareFree-FeigenbaumB)/(Niven+Porter) 4032577963490577 r005 Im(z^2+c),c=4/17+18/53*I,n=64 4032577963972441 m001 1/Zeta(1,2)/exp(OneNinth)^2/Zeta(1/2)^2 4032577964478641 h001 (7/11*exp(2)+2/11)/(1/9*exp(1)+10/11) 4032577975774005 r002 58th iterates of z^2 + 4032577980264215 m001 (2*Pi/GAMMA(5/6)-exp(1))/(ArtinRank2+ZetaQ(3)) 4032577981476894 a001 1597/2*14662949395604^(8/9) 4032577989234394 r009 Im(z^3+c),c=-13/90+17/37*I,n=3 4032577990412725 m009 (1/5*Psi(1,3/4)+5)/(1/4*Psi(1,2/3)+3/5) 4032577991313597 a007 Real Root Of -968*x^4-416*x^3-180*x^2+740*x+326 4032577992709738 m001 1/Si(Pi)^2/ln(LandauRamanujan)^2 4032578014052200 k002 Champernowne real with 85*n^2+30*n-75 4032578014276614 a007 Real Root Of 525*x^4+555*x^3-262*x^2-433*x-17 4032578020446202 a001 89/24476*199^(5/11) 4032578025259468 a007 Real Root Of 36*x^4-371*x^3+852*x^2+215*x+87 4032578028691313 a007 Real Root Of -153*x^4-644*x^3-80*x^2+20*x-390 4032578043043206 m005 (1/3*exp(1)-2/11)/(8/9*Zeta(3)-8/9) 4032578043620173 r005 Im(z^2+c),c=11/64+19/48*I,n=37 4032578062728210 a001 121393/199*7^(33/34) 4032578074642174 m001 ln(GAMMA(19/24))*Magata*exp(1)^2 4032578075807876 r005 Re(z^2+c),c=-69/122+1/60*I,n=33 4032578077865410 r005 Im(z^2+c),c=1/66+30/59*I,n=54 4032578112784526 m001 FeigenbaumD+((1+3^(1/2))^(1/2))^Gompertz 4032578114082206 k002 Champernowne real with 171/2*n^2+57/2*n-74 4032578123628335 r005 Im(z^2+c),c=-1/14+30/49*I,n=49 4032578130941090 a001 10610209857723/2*2207^(9/16) 4032578141862627 r009 Re(z^3+c),c=-71/118+39/62*I,n=4 4032578151786645 r002 2th iterates of z^2 + 4032578153816481 r002 43th iterates of z^2 + 4032578154703649 b008 E+(2+Sqrt[2]+E)^2 4032578164029835 a005 (1/sin(88/195*Pi))^1881 4032578181095225 r002 56th iterates of z^2 + 4032578182684885 a001 3278735159921*2207^(5/8) 4032578201275759 r008 a(0)=4,K{-n^6,-25+33*n^2-40*n^3+n} 4032578214112212 k002 Champernowne real with 86*n^2+27*n-73 4032578214160475 r005 Re(z^2+c),c=-69/122+1/32*I,n=56 4032578220244065 m005 (1/2*gamma-4/5)/(-5/84+1/12*5^(1/2)) 4032578220870362 a007 Real Root Of -46*x^4+6*x^3+308*x^2+349*x-190 4032578231746643 l006 ln(1663/2489) 4032578234428681 a001 4052739537881/2*2207^(11/16) 4032578252037425 r002 64th iterates of z^2 + 4032578267063417 r008 a(0)=4,K{-n^6,17-41*n^3+57*n^2-64*n} 4032578267773327 r009 Im(z^3+c),c=-19/106+23/51*I,n=12 4032578274107814 m001 (Si(Pi)+cos(1/5*Pi))/(-GaussAGM+ZetaP(3)) 4032578286172477 a001 2504730781961/2*2207^(3/4) 4032578300872022 r005 Re(z^2+c),c=-53/98+11/38*I,n=36 4032578303261220 r009 Re(z^3+c),c=-11/50+30/31*I,n=14 4032578308535258 r005 Im(z^2+c),c=-9/8+2/43*I,n=10 4032578309880919 r009 Re(z^3+c),c=-39/74+8/29*I,n=62 4032578312182585 a001 199/956722026041*17711^(7/13) 4032578314142218 k002 Champernowne real with 173/2*n^2+51/2*n-72 4032578325308847 a007 Real Root Of 892*x^4-868*x^3+765*x^2-273*x-315 4032578337916274 a001 774004377960*2207^(13/16) 4032578348111338 m005 (1/2*3^(1/2)-2/11)/(3/8*2^(1/2)-7/10) 4032578389309272 p003 LerchPhi(1/512,3,310/229) 4032578389660072 a001 956722026041/2*2207^(7/8) 4032578403366642 r005 Re(z^2+c),c=-37/66+3/20*I,n=28 4032578405708088 r008 a(0)=4,K{-n^6,11-31*n+18*n^2-29*n^3} 4032578413513402 r005 Im(z^2+c),c=-71/122+23/64*I,n=3 4032578414172224 k002 Champernowne real with 87*n^2+24*n-71 4032578436877270 r005 Re(z^2+c),c=-69/122+3/53*I,n=23 4032578441403870 a001 591286729879/2*2207^(15/16) 4032578442816102 r005 Im(z^2+c),c=-1/38+11/21*I,n=24 4032578455350923 a001 5/199*47^(31/43) 4032578460394453 r002 49th iterates of z^2 + 4032578462892111 r008 a(0)=4,K{-n^6,29-56*n+24*n^2-28*n^3} 4032578466428287 q001 1015/2517 4032578468463233 r009 Re(z^3+c),c=-31/78+23/37*I,n=19 4032578480724139 a007 Real Root Of 5*x^4-121*x^3-387*x^2+574*x-649 4032578509041342 r002 10th iterates of z^2 + 4032578514202230 k002 Champernowne real with 175/2*n^2+45/2*n-70 4032578518896154 a001 121393/123*47^(53/55) 4032578549231449 m002 -Pi^4-Pi^5+(Pi^2*Csch[Pi])/5 4032578553478259 r002 9th iterates of z^2 + 4032578553823526 r008 a(0)=4,K{-n^6,-61+64*n-52*n^2+21*n^3} 4032578558074639 m005 (5*Catalan-1/3)/(1/6*exp(1)+3/5) 4032578578554482 r005 Im(z^2+c),c=-11/58+3/56*I,n=9 4032578579069539 r005 Im(z^2+c),c=-19/50+25/46*I,n=22 4032578587204084 r005 Im(z^2+c),c=19/90+6/17*I,n=15 4032578587743919 r002 33th iterates of z^2 + 4032578591754728 m001 GAMMA(5/24)/exp(DuboisRaymond)^2/exp(1)^2 4032578592476936 m005 (1/2*exp(1)+1/10)/(1/5*exp(1)-2/11) 4032578602357025 r002 43th iterates of z^2 + 4032578605109267 r005 Re(z^2+c),c=-61/114+1/28*I,n=9 4032578614232236 k002 Champernowne real with 88*n^2+21*n-69 4032578628234948 a003 cos(Pi*19/52)*sin(Pi*37/84) 4032578631860588 m004 -15-125*Pi+3*Csc[Sqrt[5]*Pi] 4032578632516640 r005 Re(z^2+c),c=-18/19+6/55*I,n=16 4032578638620913 p004 log(18217/17497) 4032578639992537 r005 Re(z^2+c),c=-35/62+4/61*I,n=42 4032578648031057 m001 (Psi(1,1/3)-ln(2)/ln(10))/(Niven+Sarnak) 4032578652012420 p004 log(23747/421) 4032578667054250 r009 Im(z^3+c),c=-19/48+23/33*I,n=3 4032578671186010 r005 Im(z^2+c),c=17/70+21/61*I,n=18 4032578676096600 r009 Im(z^3+c),c=-13/56+7/16*I,n=9 4032578679369110 p003 LerchPhi(1/3,5,148/123) 4032578681722079 r008 a(0)=4,K{-n^6,5+14*n-39*n^2-11*n^3} 4032578698564624 r002 39th iterates of z^2 + 4032578704172435 r009 Re(z^3+c),c=-3/7+11/56*I,n=3 4032578711131113 k006 concat of cont frac of 4032578714262242 k002 Champernowne real with 177/2*n^2+39/2*n-68 4032578727950839 m001 (Niven-Sierpinski)/(Zeta(5)+ln(Pi)) 4032578739831810 a001 843/121393*21^(26/45) 4032578747970242 m005 (1/2*exp(1)-8/9)/(5/12*3^(1/2)+4/9) 4032578754526371 r008 a(0)=4,K{-n^6,3-7*n^3-52*n^2+25*n} 4032578762808900 m001 (MertensB1-ZetaQ(3))/(ln(3)-Bloch) 4032578767764663 r005 Im(z^2+c),c=29/82+5/34*I,n=53 4032578769193125 r005 Re(z^2+c),c=-71/126+3/34*I,n=56 4032578772814210 r005 Re(z^2+c),c=-9/16+11/105*I,n=49 4032578781143209 r005 Im(z^2+c),c=19/126+26/63*I,n=47 4032578809343570 a007 Real Root Of 21*x^4+844*x^3-139*x^2-999*x-587 4032578814292248 k002 Champernowne real with 89*n^2+18*n-67 4032578830900568 a007 Real Root Of 50*x^4+41*x^3-750*x^2-208*x+824 4032578839573961 h001 (1/10*exp(1)+6/7)/(4/5*exp(1)+5/8) 4032578841901286 r005 Im(z^2+c),c=4/17+18/53*I,n=56 4032578845266890 m001 1/exp(Zeta(1,2))^2*MinimumGamma^2/sin(Pi/5)^2 4032578849755820 l006 ln(6501/9730) 4032578849874641 r005 Re(z^2+c),c=-19/36+7/19*I,n=42 4032578852665698 m001 ln(gamma)*GlaisherKinkelin/ZetaP(3) 4032578857407445 r005 Re(z^2+c),c=-8/15+21/62*I,n=44 4032578859922744 a001 1/1515744265389*139583862445^(1/4) 4032578859922744 a001 7/6557470319842*20365011074^(1/4) 4032578859922744 a001 7/4052739537881*2971215073^(1/4) 4032578859922744 a001 7/2504730781961*433494437^(1/4) 4032578859922744 a001 7/1548008755920*63245986^(1/4) 4032578859922747 a001 7/956722026041*9227465^(1/4) 4032578859922856 a001 7/591286729879*1346269^(1/4) 4032578859927971 a001 7/365435296162*196418^(1/4) 4032578860168267 a001 1/32264490531*28657^(1/4) 4032578871457079 a001 7/139583862445*4181^(1/4) 4032578874889111 r005 Im(z^2+c),c=-105/106+7/25*I,n=46 4032578883286496 r002 35th iterates of z^2 + 4032578885838505 m001 Weierstrass*(2^(1/2)-BesselI(1,1)) 4032578887838672 m004 7+125*Pi+(5*Sqrt[5]*Tanh[Sqrt[5]*Pi])/Pi 4032578890478344 a007 Real Root Of -198*x^4-679*x^3+641*x^2+816*x+700 4032578891566347 m005 (1/3*Pi-1/4)/(7/10*Pi-2/9) 4032578904373674 r005 Re(z^2+c),c=-49/90+11/42*I,n=42 4032578914322254 k002 Champernowne real with 179/2*n^2+33/2*n-66 4032578916862337 m001 Psi(1,1/3)^FellerTornier-Niven 4032578921809854 r005 Re(z^2+c),c=-61/118+21/59*I,n=32 4032578926447585 r005 Re(z^2+c),c=-7/10+27/62*I,n=11 4032578928332758 m004 6+(5*Sqrt[5])/Pi+125*Pi+Tanh[Sqrt[5]*Pi] 4032578951399038 r008 a(0)=4,K{-n^6,43-31*n-38*n^2-5*n^3} 4032578978103909 m002 -Pi^4-Pi^5+ProductLog[Pi]/(2*Pi) 4032578979992449 r009 Im(z^3+c),c=-27/122+29/64*I,n=5 4032578995033920 r002 12th iterates of z^2 + 4032578997922254 m001 (Si(Pi)-cos(1))/(LambertW(1)+Khinchin) 4032579001218459 r002 21th iterates of z^2 + 4032579010160976 r009 Re(z^3+c),c=-67/118+14/39*I,n=8 4032579012792327 m001 1/exp(Niven)^2/DuboisRaymond/BesselK(0,1) 4032579014352260 k002 Champernowne real with 90*n^2+15*n-65 4032579022852633 r002 45th iterates of z^2 + 4032579026167488 r005 Im(z^2+c),c=-31/54+11/25*I,n=55 4032579033077318 r002 7th iterates of z^2 + 4032579051343730 a007 Real Root Of 159*x^4+837*x^3+963*x^2+823*x+500 4032579057850966 a007 Real Root Of 98*x^4-401*x^3-392*x^2-537*x+304 4032579062188481 l006 ln(4838/7241) 4032579064434899 m001 ln(MinimumGamma)^2*CopelandErdos^2*Rabbit^2 4032579066548839 a007 Real Root Of -780*x^4-355*x^3-479*x^2+49*x+95 4032579087924242 r005 Im(z^2+c),c=-19/102+34/49*I,n=53 4032579092913423 a007 Real Root Of 609*x^4-938*x^3-376*x^2-445*x+286 4032579097644822 m007 (1-gamma)/(-5*gamma-10*ln(2)-2/3) 4032579102117487 r005 Im(z^2+c),c=-1/19+17/29*I,n=18 4032579104236548 a007 Real Root Of 506*x^4+161*x^3-497*x^2-159*x+121 4032579111842563 r005 Re(z^2+c),c=-5/9-13/71*I,n=49 4032579114382266 k002 Champernowne real with 181/2*n^2+27/2*n-64 4032579122804469 m001 1/exp(TwinPrimes)*Porter^2*GAMMA(1/4) 4032579126216296 m001 Zeta(5)^2/exp(FeigenbaumKappa)^2/sqrt(Pi) 4032579141524416 m001 (Trott+TwinPrimes)/(exp(-1/2*Pi)+Backhouse) 4032579142789917 a007 Real Root Of 713*x^4+102*x^3+783*x^2-155*x-202 4032579147479805 r005 Re(z^2+c),c=25/66+21/55*I,n=4 4032579162027366 r005 Re(z^2+c),c=5/106+10/31*I,n=18 4032579184660715 r002 48th iterates of z^2 + 4032579189238574 r009 Re(z^3+c),c=-41/64+25/49*I,n=2 4032579200743854 m005 (1/2*5^(1/2)-3/8)/(3/11*gamma-2) 4032579200829930 r009 Im(z^3+c),c=-55/118+21/64*I,n=31 4032579203109615 a007 Real Root Of 949*x^4+42*x^3+719*x^2-349*x-280 4032579207111749 m001 ln(Zeta(3))^2*FeigenbaumKappa^2/cosh(1) 4032579211565829 m001 (Gompertz+QuadraticClass)^FeigenbaumMu 4032579214412272 k002 Champernowne real with 91*n^2+12*n-63 4032579218008860 r002 42th iterates of z^2 + 4032579231588794 r005 Re(z^2+c),c=-27/44+5/64*I,n=10 4032579254532964 a007 Real Root Of 923*x^4+895*x^3+753*x^2-808*x-414 4032579259891519 l004 Ci(236/113) 4032579260469451 r005 Re(z^2+c),c=-19/36+5/14*I,n=52 4032579261806249 a007 Real Root Of -581*x^4-9*x^3-811*x^2+658*x+412 4032579290135280 r005 Im(z^2+c),c=8/29+17/57*I,n=62 4032579295521859 r005 Im(z^2+c),c=9/118+29/62*I,n=56 4032579302254024 a007 Real Root Of 245*x^4-113*x^3-97*x^2-643*x+276 4032579307090052 a007 Real Root Of -892*x^4+172*x^3-323*x^2+870*x-286 4032579311384920 a001 199/121393*610^(8/57) 4032579314442278 k002 Champernowne real with 183/2*n^2+21/2*n-62 4032579325367160 r009 Re(z^3+c),c=-55/114+12/55*I,n=40 4032579372741077 r005 Re(z^2+c),c=-53/94+3/44*I,n=30 4032579382517096 r002 58th iterates of z^2 + 4032579389017745 r005 Re(z^2+c),c=-7/13+7/24*I,n=38 4032579396214581 a007 Real Root Of -109*x^4-376*x^3+198*x^2-20*x+867 4032579396262145 r005 Im(z^2+c),c=-22/23+9/29*I,n=8 4032579397250155 a007 Real Root Of -93*x^4+826*x^3+992*x^2+791*x-532 4032579401790842 a001 7/86267571272*610^(1/4) 4032579408577528 a001 1/10749957122*47^(8/21) 4032579410647748 r005 Im(z^2+c),c=5/24+29/57*I,n=39 4032579414472284 k002 Champernowne real with 92*n^2+9*n-61 4032579418740469 m001 GAMMA(1/24)^2/exp(FeigenbaumD)/cos(Pi/12)^2 4032579429476327 r009 Re(z^3+c),c=-55/118+13/62*I,n=16 4032579438627833 a007 Real Root Of 570*x^4-765*x^3+482*x^2-948*x+339 4032579439186026 l003 BesselJ(1,83/93) 4032579441037696 m005 (1/3*3^(1/2)-1/9)/(3/4*3^(1/2)-1/7) 4032579442412744 r002 38th iterates of z^2 + 4032579444013237 r005 Re(z^2+c),c=13/94+21/53*I,n=13 4032579453337360 r001 22i'th iterates of 2*x^2-1 of 4032579466810624 m001 (ArtinRank2-FeigenbaumC)/(Zeta(3)+ln(5)) 4032579477589067 m001 ln(TwinPrimes)*Paris^2/Zeta(9) 4032579485564402 r005 Re(z^2+c),c=-9/14+87/157*I,n=5 4032579490550559 m001 1/Zeta(9)*FeigenbaumAlpha*ln(sinh(1)) 4032579490779095 r005 Im(z^2+c),c=-17/56+17/30*I,n=23 4032579495918109 r005 Im(z^2+c),c=-5/27+34/59*I,n=21 4032579497156888 l006 ln(3175/4752) 4032579514502290 k002 Champernowne real with 185/2*n^2+15/2*n-60 4032579514926242 m001 1/Paris^2/Cahen^2/ln(cos(1)) 4032579533365326 r005 Re(z^2+c),c=25/98+1/43*I,n=47 4032579534193973 r005 Im(z^2+c),c=1/70+29/57*I,n=45 4032579541877666 r009 Im(z^3+c),c=-17/86+25/56*I,n=7 4032579544970347 a007 Real Root Of 287*x^4-958*x^3-941*x^2-433*x-92 4032579552797617 r005 Im(z^2+c),c=-17/14+5/93*I,n=61 4032579556117721 a007 Real Root Of -255*x^4+287*x^3-857*x^2-223*x+75 4032579559050175 m001 (Riemann2ndZero-exp(1))/(ZetaP(2)+ZetaQ(4)) 4032579568826441 r009 Im(z^3+c),c=-1/32+30/41*I,n=4 4032579572487795 a007 Real Root Of -712*x^4-241*x^3-334*x^2+510*x+263 4032579576040538 r009 Im(z^3+c),c=-47/122+19/50*I,n=6 4032579576158496 a007 Real Root Of 144*x^4+472*x^3-437*x^2-115*x-485 4032579584221845 a007 Real Root Of 214*x^4+933*x^3+478*x^2+580*x-842 4032579588299574 h001 (1/8*exp(2)+2/9)/(7/9*exp(1)+8/11) 4032579590465753 m005 (1/6*exp(1)-2)/(2/5*Catalan-3/4) 4032579606091498 a007 Real Root Of 295*x^4-484*x^3-247*x^2-766*x+373 4032579611271975 r005 Im(z^2+c),c=-73/102+13/37*I,n=22 4032579614532296 k002 Champernowne real with 93*n^2+6*n-59 4032579614758207 a007 Real Root Of 133*x^4-311*x^3+201*x^2-983*x-453 4032579623555721 r005 Re(z^2+c),c=-69/110+20/57*I,n=43 4032579648427194 r009 Im(z^3+c),c=-13/106+12/23*I,n=2 4032579667959768 r002 16th iterates of z^2 + 4032579670549684 r002 31th iterates of z^2 + 4032579677652667 r005 Re(z^2+c),c=-45/82+5/24*I,n=5 4032579679721094 m001 (Gompertz-Trott)/(3^(1/3)-gamma(2)) 4032579680780854 p001 sum((-1)^n/(385*n+382)/n/(32^n),n=1..infinity) 4032579685905213 m001 Cahen*(Bloch-ln(3)) 4032579686192949 s001 sum(1/10^(n-1)*A259157[n]/n!^2,n=1..infinity) 4032579690113197 m001 (Otter+ZetaP(2))/(Ei(1,1)+Kac) 4032579691055150 p003 LerchPhi(1/25,4,12/17) 4032579695420200 s002 sum(A073560[n]/(n^3*pi^n+1),n=1..infinity) 4032579714112865 p001 sum((-1)^n/(374*n+247)/(100^n),n=0..infinity) 4032579714562302 k002 Champernowne real with 187/2*n^2+9/2*n-58 4032579714751470 b008 5*EulerGamma+ArcSech[EulerGamma] 4032579722232583 m004 (755*Pi)/6+Sqrt[5]*Pi+Tan[Sqrt[5]*Pi] 4032579727284685 m001 1/exp(Magata)/FibonacciFactorial/sin(Pi/12)^2 4032579731808820 r009 Im(z^3+c),c=-1/90+15/32*I,n=13 4032579737460522 m001 (2^(1/3)-CopelandErdos)/(GaussAGM+Niven) 4032579737649652 r005 Re(z^2+c),c=-21/40+13/36*I,n=43 4032579740441813 m001 1/GAMMA(13/24)^2/ln(Rabbit)^2*GAMMA(5/6)^2 4032579741163141 r005 Re(z^2+c),c=-27/50+17/58*I,n=46 4032579742517644 m008 (1/4*Pi-4)/(5/6*Pi^6-4) 4032579755830959 a007 Real Root Of 203*x^4+705*x^3-265*x^2+554*x-907 4032579776761437 r005 Re(z^2+c),c=-51/94+8/29*I,n=64 4032579787234042 q001 1213/3008 4032579789527015 m001 Ei(1,1)^CareFree/(Ei(1,1)^Pi) 4032579795231075 m001 (FeigenbaumMu-Psi(2,1/3))/(Gompertz+Thue) 4032579798800309 r008 a(0)=4,K{-n^6,-24-36*n^3+22*n^2+7*n} 4032579800194947 r005 Re(z^2+c),c=-73/122+8/55*I,n=11 4032579806965377 a001 144/710647*18^(5/21) 4032579814592308 k002 Champernowne real with 94*n^2+3*n-57 4032579831608575 r005 Re(z^2+c),c=-49/118+23/43*I,n=37 4032579833264757 h001 (5/11*exp(2)+2/3)/(1/5*exp(1)+5/11) 4032579833435711 r005 Re(z^2+c),c=-45/64+9/19*I,n=27 4032579844480548 r002 52th iterates of z^2 + 4032579850148410 r005 Im(z^2+c),c=-59/106+31/48*I,n=8 4032579851947269 a001 1346269/843*3^(43/51) 4032579854197414 b008 ProductLog[(1+Sqrt[2])/4] 4032579870729498 r002 60th iterates of z^2 + 4032579879955939 a003 cos(Pi*1/106)*cos(Pi*32/87) 4032579880571646 r002 22th iterates of z^2 + 4032579880887513 r005 Re(z^2+c),c=-69/122+1/59*I,n=33 4032579888764359 m001 (Zeta(5)-Zeta(1/2))/(BesselI(1,2)-GAMMA(7/12)) 4032579891745961 r005 Im(z^2+c),c=-1/70+26/45*I,n=26 4032579908477507 m001 1/Ei(1)/CopelandErdos*ln(GAMMA(7/12))^2 4032579911863489 r005 Re(z^2+c),c=-67/126+1/3*I,n=62 4032579914622314 k002 Champernowne real with 189/2*n^2+3/2*n-56 4032579926612122 r008 a(0)=4,K{-n^6,8-31*n+23*n^2-31*n^3} 4032579940550307 r009 Re(z^3+c),c=-1/86+7/15*I,n=2 4032579946138551 l006 ln(4687/7015) 4032579951089961 r002 11th iterates of z^2 + 4032579954485381 r005 Re(z^2+c),c=-17/30+7/88*I,n=23 4032579965638631 m001 1/ln(GAMMA(1/3))^2*Backhouse*GAMMA(13/24)^2 4032579967967254 l006 ln(32/1805) 4032579977452583 r005 Im(z^2+c),c=17/52+4/59*I,n=45 4032579991175967 m001 GAMMA(11/12)-GAMMA(5/24)^ln(3) 4032580002098128 r008 a(0)=4,K{-n^6,-38-18*n^3-39*n^2+64*n} 4032580002318545 r009 Re(z^3+c),c=-35/78+23/42*I,n=29 4032580011444942 m005 (1/2*gamma-7/8)/(7/10*5^(1/2)-1/9) 4032580013753675 b008 -41+Sqrt[5/11] 4032580014652320 k002 Champernowne real with 95*n^2-55 4032580021035465 r005 Im(z^2+c),c=-73/110+16/47*I,n=61 4032580029021982 a003 cos(Pi*14/115)-sin(Pi*13/31) 4032580063963394 r002 47th iterates of z^2 + 4032580067877189 r009 Re(z^3+c),c=-25/78+37/55*I,n=41 4032580071049625 r002 57th iterates of z^2 + 4032580087041183 m001 (3^(1/3)-Ei(1,1))/(Otter+ZetaP(4)) 4032580106613249 r005 Im(z^2+c),c=-5/74+22/39*I,n=24 4032580108852806 a001 281/329*21^(26/51) 4032580114682326 k002 Champernowne real with 191/2*n^2-3/2*n-54 4032580121191655 m001 BesselI(1,1)^(Khinchin*Lehmer) 4032580147895258 m005 (1/3*3^(1/2)-2/7)/(47/99+1/9*5^(1/2)) 4032580150473664 a007 Real Root Of -218*x^4-881*x^3+259*x^2+866*x-844 4032580176097695 l006 ln(6199/9278) 4032580183734750 r005 Im(z^2+c),c=-17/94+29/45*I,n=18 4032580184958865 r002 26th iterates of z^2 + 4032580214712332 k002 Champernowne real with 96*n^2-3*n-53 4032580227490515 r002 12th iterates of z^2 + 4032580227981068 m001 (ln(gamma)+ln(2))/(FeigenbaumMu-ZetaQ(3)) 4032580239132082 r008 a(0)=4,K{-n^6,4+15*n-39*n^2-11*n^3} 4032580247406699 a007 Real Root Of -220*x^4-679*x^3+860*x^2-88*x-689 4032580258372062 a007 Real Root Of -15*x^4-592*x^3+506*x^2-535*x+672 4032580282606784 m001 (arctan(1/2)+GAMMA(13/24))/(ZetaQ(2)-ZetaQ(4)) 4032580289918678 r002 52th iterates of z^2 + 4032580292981944 s002 sum(A186381[n]/(2^n+1),n=1..infinity) 4032580302075092 r002 64th iterates of z^2 + 4032580302861227 a001 6765/76*843^(30/53) 4032580313155962 r008 a(0)=4,K{-n^6,2-7*n^3-52*n^2+26*n} 4032580314742338 k002 Champernowne real with 193/2*n^2-9/2*n-52 4032580320736623 m001 (5^(1/2)+Si(Pi))/(-ln(2^(1/2)+1)+Ei(1)) 4032580333278890 r005 Re(z^2+c),c=-9/16+3/28*I,n=36 4032580347296383 r009 Im(z^3+c),c=-19/36+14/61*I,n=59 4032580358619593 m002 -2+Pi^2*Csch[Pi]-Sinh[Pi]/4 4032580361661234 r005 Im(z^2+c),c=-145/106+1/25*I,n=8 4032580363824887 r005 Im(z^2+c),c=31/94+17/45*I,n=29 4032580376901078 m005 (1/2*exp(1)-8/11)/(11/12*Catalan+8/11) 4032580385507947 r008 a(0)=4,K{-n^6,22-7*n^3-42*n^2-4*n} 4032580401717150 v002 sum(1/(3^n*(19/2*n^2+5/2*n-3)),n=1..infinity) 4032580414772344 k002 Champernowne real with 97*n^2-6*n-51 4032580419244614 r005 Re(z^2+c),c=-57/94+1/3*I,n=41 4032580422808502 m001 (gamma-Salem)^(Pi^(1/2)) 4032580428535037 r005 Im(z^2+c),c=-13/50+31/48*I,n=34 4032580440621405 m001 (Pi+Zeta(5))/(Zeta(1,2)-Paris) 4032580441930983 m001 (Riemann3rdZero-Thue)/(CopelandErdos-GaussAGM) 4032580455399920 r008 a(0)=4,K{-n^6,40-31*n-33*n^2-7*n^3} 4032580457392274 a007 Real Root Of -151*x^4-638*x^3-118*x^2-58*x-222 4032580473408591 r008 a(0)=4,K{-n^6,-36-19*n+8*n^2+17*n^3} 4032580480083117 r008 a(0)=4,K{-n^6,28-7*n-48*n^2-4*n^3} 4032580490805956 a003 cos(Pi*5/32)-sin(Pi*17/107) 4032580496628574 r008 a(0)=4,K{-n^6,7-53*n+22*n^2+3*n^3} 4032580503211104 r009 Re(z^3+c),c=-45/118+5/48*I,n=20 4032580504065135 r005 Im(z^2+c),c=-69/86+8/51*I,n=63 4032580509898760 r005 Im(z^2+c),c=10/29+18/53*I,n=16 4032580513501234 r005 Re(z^2+c),c=9/34+1/41*I,n=20 4032580514802350 k002 Champernowne real with 195/2*n^2-15/2*n-50 4032580523794560 r002 45th iterates of z^2 + 4032580535425485 r005 Im(z^2+c),c=-1/24+25/46*I,n=56 4032580536462936 r005 Re(z^2+c),c=17/110+29/61*I,n=41 4032580551722079 m001 1/GAMMA(13/24)^2/GAMMA(11/12)*ln(Pi) 4032580566509732 r005 Re(z^2+c),c=-57/118+17/28*I,n=50 4032580567775315 p004 log(20593/13759) 4032580570415503 r009 Im(z^3+c),c=-29/60+19/60*I,n=42 4032580591940971 r002 23th iterates of z^2 + 4032580610098797 r009 Im(z^3+c),c=-49/94+17/62*I,n=55 4032580611510591 p001 sum((-1)^n/(553*n+215)/n/(32^n),n=1..infinity) 4032580614832356 k002 Champernowne real with 98*n^2-9*n-49 4032580622778212 r005 Re(z^2+c),c=-55/98+6/59*I,n=26 4032580626185745 m001 sin(1)^exp(1)+Magata 4032580626894354 r005 Re(z^2+c),c=-17/30+1/92*I,n=28 4032580635711046 m001 RenyiParking^GAMMA(3/4)*Stephens 4032580642598925 r005 Re(z^2+c),c=-73/102+5/52*I,n=37 4032580651912744 r008 a(0)=4,K{-n^6,1-60*n+38*n^2-11*n^3} 4032580652223149 r005 Re(z^2+c),c=-69/122+2/63*I,n=37 4032580671731907 r005 Im(z^2+c),c=11/82+20/47*I,n=40 4032580700466873 r005 Im(z^2+c),c=-7/86+33/59*I,n=35 4032580700801745 r009 Im(z^3+c),c=-31/64+6/19*I,n=56 4032580709046961 r008 a(0)=4,K{-n^6,54-38*n-47*n^2} 4032580710396338 r008 a(0)=4,K{-n^6,12+7*n^3-89*n^2+39*n} 4032580714862362 k002 Champernowne real with 197/2*n^2-21/2*n-48 4032580724159545 r005 Im(z^2+c),c=7/58+24/55*I,n=27 4032580725641584 m001 GAMMA(5/6)*(Magata-Zeta(1,-1)) 4032580728220346 r005 Im(z^2+c),c=41/126+15/52*I,n=26 4032580729910964 r008 a(0)=4,K{-n^6,46-22*n-57*n^2+2*n^3} 4032580737353529 q001 1411/3499 4032580738220807 a007 Real Root Of -122*x^4-422*x^3+379*x^2+260*x-526 4032580748920610 a007 Real Root Of 83*x^4-915*x^3+734*x^2-688*x-459 4032580757002125 a007 Real Root Of 477*x^4-730*x^3-827*x^2-982*x-322 4032580762969407 r009 Im(z^3+c),c=-1/27+22/47*I,n=17 4032580765085740 r005 Im(z^2+c),c=-1/106+23/43*I,n=20 4032580777784403 r005 Re(z^2+c),c=-27/29+4/25*I,n=46 4032580781133560 r005 Re(z^2+c),c=-25/42+20/49*I,n=59 4032580785013086 a001 9349/5*433494437^(11/15) 4032580785992184 r002 60th iterates of z^2 + 4032580790190682 r005 Re(z^2+c),c=-14/25+7/58*I,n=9 4032580793953343 r002 17th iterates of z^2 + 4032580796971355 r005 Im(z^2+c),c=5/82+11/23*I,n=60 4032580813329399 a007 Real Root Of -76*x^4-62*x^3+745*x^2-858*x+457 4032580814892368 k002 Champernowne real with 99*n^2-12*n-47 4032580831145757 a001 1860498/5*317811^(11/15) 4032580831836531 r005 Re(z^2+c),c=-9/14+47/154*I,n=56 4032580833765390 r002 60th iterates of z^2 + 4032580848567479 r005 Re(z^2+c),c=-29/54+1/20*I,n=9 4032580860321639 r005 Im(z^2+c),c=19/62+23/63*I,n=23 4032580868819010 r005 Im(z^2+c),c=11/28+17/64*I,n=27 4032580868944227 m001 (ln(5)-LandauRamanujan2nd)/(Magata-Thue) 4032580877918607 r005 Re(z^2+c),c=-71/114+4/25*I,n=6 4032580888940590 l006 ln(1512/2263) 4032580889996257 a007 Real Root Of 332*x^4-530*x^3-538*x^2-538*x-173 4032580896991324 m001 (ln(Pi)-Salem)/(Thue-ZetaP(4)) 4032580898865803 r002 45th iterates of z^2 + 4032580908538561 b008 3/17+4*Tanh[2] 4032580911754241 a001 54018521/2*1836311903^(15/17) 4032580911756933 a001 73681302247/2*514229^(15/17) 4032580912348578 r008 a(0)=4,K{-n^6,19-36*n-33*n^2+18*n^3} 4032580914325389 a001 39603/2*6557470319842^(15/17) 4032580914922374 k002 Champernowne real with 199/2*n^2-27/2*n-46 4032580917445443 r009 Re(z^3+c),c=-59/90+28/55*I,n=7 4032580920458812 a007 Real Root Of 855*x^4-450*x^3+280*x^2-782*x-413 4032580931818015 r009 Re(z^3+c),c=-27/52+9/31*I,n=32 4032580932917883 r002 33th iterates of z^2 + 4032580946926976 r005 Im(z^2+c),c=25/64+12/37*I,n=40 4032580956812037 a001 76/89*3524578^(13/15) 4032580959897361 a001 521/233*1346269^(17/32) 4032580975079137 a007 Real Root Of 32*x^4-863*x^3+766*x^2-865*x+280 4032580980531554 a007 Real Root Of -514*x^4+560*x^3+670*x^2+895*x-493 4032580981750248 m001 GAMMA(19/24)^2*GAMMA(11/12)^2*exp(cos(Pi/12)) 4032580995622034 g007 -Psi(2,2/11)-Psi(2,3/8)-Psi(2,6/7)-Psi(2,3/7) 4032581003202181 a007 Real Root Of 48*x^4-25*x^3-901*x^2+58*x+553 4032581014319975 a003 cos(Pi*13/87)*cos(Pi*27/77) 4032581014952380 k002 Champernowne real with 100*n^2-15*n-45 4032581036755920 m005 (1/3*gamma+1/2)/(1/5*2^(1/2)-5/11) 4032581037602763 r005 Re(z^2+c),c=-37/66+8/61*I,n=59 4032581048952616 m001 (Zeta(5)+GaussAGM)/(Trott-Weierstrass) 4032581051159670 r002 6th iterates of z^2 + 4032581054708514 m001 ErdosBorwein/(gamma+Magata) 4032581087052077 m005 (1/3*Zeta(3)+2/3)/(1/5*Pi-4/11) 4032581091520068 m001 (Robbin-ZetaP(4))/(arctan(1/3)-Pi^(1/2)) 4032581093026173 r005 Re(z^2+c),c=-19/34+17/112*I,n=51 4032581112864087 a003 sin(Pi*9/22)/cos(Pi*36/85) 4032581114982386 k002 Champernowne real with 201/2*n^2-33/2*n-44 4032581134171726 m001 (Si(Pi)+gamma(1))/(-MadelungNaCl+Mills) 4032581150806941 r009 Im(z^3+c),c=-3/26+6/13*I,n=11 4032581154121113 k008 concat of cont frac of 4032581155965580 r005 Re(z^2+c),c=-29/56+12/25*I,n=7 4032581156525944 r008 a(0)=4,K{-n^6,-55+21*n+55*n^2-52*n^3} 4032581156646863 a007 Real Root Of -829*x^4-45*x^3+174*x^2+914*x-372 4032581156975451 m008 (Pi^2-1/4)/(3/4*Pi^3+3/5) 4032581159464252 r005 Im(z^2+c),c=17/60+5/14*I,n=19 4032581162810115 r005 Im(z^2+c),c=-59/122+14/23*I,n=37 4032581170242880 m001 GolombDickman^HardHexagonsEntropy/GAMMA(17/24) 4032581182356893 r005 Im(z^2+c),c=-2/5+31/57*I,n=16 4032581196269549 r009 Im(z^3+c),c=-1/20+26/33*I,n=58 4032581209932301 m005 (1/3*Pi+1/10)/(8/9*exp(1)+3/7) 4032581215012392 k002 Champernowne real with 101*n^2-18*n-43 4032581215633758 a005 (1/cos(15/211*Pi))^147 4032581233754016 r009 Im(z^3+c),c=-35/94+18/41*I,n=6 4032581237199237 a007 Real Root Of 54*x^4+28*x^3-747*x^2+101*x+111 4032581255883682 m001 1/log(2+sqrt(3))*ln(FeigenbaumB)/sin(Pi/5)^2 4032581264382755 r002 30th iterates of z^2 + 4032581266334935 r005 Im(z^2+c),c=5/94+19/39*I,n=20 4032581274345438 a007 Real Root Of 389*x^4-973*x^3-354*x^2-342*x+249 4032581275211047 r005 Re(z^2+c),c=-29/56+16/41*I,n=61 4032581275853750 m001 1/Tribonacci^2*exp(Paris)/cos(Pi/5) 4032581295309377 m001 (-Salem+Sarnak)/(Psi(1,1/3)+GAMMA(5/6)) 4032581305881476 a001 11/121393*317811^(49/58) 4032581313149094 a001 10610209857723/2*843^(9/14) 4032581314701888 r005 Im(z^2+c),c=-3/13+24/43*I,n=18 4032581315042398 k002 Champernowne real with 203/2*n^2-39/2*n-42 4032581316761683 a005 (1/cos(11/226*Pi))^315 4032581319727080 r008 a(0)=4,K{-n^6,-25+34*n^2-40*n^3} 4032581336758358 a007 Real Root Of 194*x^4-920*x^3-446*x^2-943*x+508 4032581344535781 m001 Zeta(1,-1)^MertensB3*Landau^MertensB3 4032581375291133 r009 Im(z^3+c),c=-5/13+11/29*I,n=33 4032581393719610 s002 sum(A010000[n]/(2^n+1),n=1..infinity) 4032581395508497 r005 Re(z^2+c),c=-69/122+2/63*I,n=47 4032581399130665 m002 5+4*Pi^4+Pi^2/Log[Pi] 4032581401786288 r009 Im(z^3+c),c=-11/21+7/39*I,n=56 4032581415072404 k002 Champernowne real with 102*n^2-21*n-41 4032581416183215 r005 Im(z^2+c),c=39/122+10/27*I,n=47 4032581437084270 r008 a(0)=4,K{-n^6,11-36*n^3+40*n^2-46*n} 4032581440733768 r002 36th iterates of z^2 + 4032581441125287 r005 Re(z^2+c),c=-37/66+7/53*I,n=40 4032581443744705 m001 1/Riemann1stZero/FeigenbaumDelta^2/ln(sqrt(5)) 4032581453634085 q001 1609/3990 4032581476217393 r008 a(0)=4,K{-n^6,5-29*n+25*n^2-32*n^3} 4032581486202285 r002 44th iterates of z^2 + 4032581506823891 m001 Riemann2ndZero^2/Magata*exp(LambertW(1))^2 4032581515102410 k002 Champernowne real with 205/2*n^2-45/2*n-40 4032581517748746 r008 a(0)=4,K{-n^6,-57-4*n^3+61*n^2-30*n} 4032581526833886 r005 Im(z^2+c),c=19/94+33/59*I,n=53 4032581545961151 r008 a(0)=4,K{-n^6,29-63*n+34*n^2-31*n^3} 4032581547505184 m001 1/GAMMA(5/6)^2/(3^(1/3))^2/exp(sqrt(5)) 4032581555592711 r005 Re(z^2+c),c=-4/7+21/64*I,n=30 4032581557077342 h001 (7/10*exp(2)+3/4)/(3/11*exp(1)+8/11) 4032581570065576 r005 Re(z^2+c),c=-16/31+16/47*I,n=27 4032581577076450 a007 Real Root Of -453*x^4-310*x^3-911*x^2+861*x+487 4032581590912399 r008 a(0)=4,K{-n^6,29-57*n+25*n^2-28*n^3} 4032581611933103 r008 a(0)=4,K{-n^6,-23+41*n-31*n^2-18*n^3} 4032581612787828 r005 Re(z^2+c),c=-19/34+13/79*I,n=30 4032581615132416 k002 Champernowne real with 103*n^2-24*n-39 4032581629290793 a007 Real Root Of -230*x^4-815*x^3+601*x^2+593*x-5 4032581629326875 m005 (1/2*Catalan+2/7)/(9/10*2^(1/2)+4/7) 4032581632044950 r005 Re(z^2+c),c=-69/122+1/33*I,n=35 4032581637119995 r009 Im(z^3+c),c=-25/106+51/62*I,n=2 4032581638289883 l006 ln(5897/8826) 4032581646148649 r009 Im(z^3+c),c=-1/24+7/9*I,n=38 4032581646672454 q001 1/2479801 4032581648566224 r002 42th iterates of z^2 + 4032581650525834 s002 sum(A016919[n]/((10^n+1)/n),n=1..infinity) 4032581656413900 a003 sin(Pi*28/101)/cos(Pi*47/107) 4032581660769150 a008 Real Root of x^4-x^3+62*x-80 4032581672794835 m001 1/GAMMA(5/12)*GAMMA(2/3)^2*exp(cosh(1)) 4032581715162422 k002 Champernowne real with 207/2*n^2-51/2*n-38 4032581718471757 a001 3278735159921*843^(5/7) 4032581721938645 r002 40th iterates of z^2 + 4032581722324421 m001 exp(Trott)*LaplaceLimit*BesselK(1,1) 4032581723508076 r004 Re(z^2+c),c=-13/24+5/18*I,z(0)=-1,n=50 4032581732971516 l006 ln(1774/1847) 4032581750441759 r005 Re(z^2+c),c=-5/9+11/61*I,n=38 4032581750792378 m005 (1/3*3^(1/2)-1/4)/(7/11*gamma+4/9) 4032581756223217 r002 12th iterates of z^2 + 4032581757284429 m008 (Pi^4+2/5)/(3/4*Pi^3+1) 4032581759113731 a007 Real Root Of 220*x^4+655*x^3-886*x^2+182*x-83 4032581786782595 a003 cos(Pi*8/89)*sin(Pi*4/29) 4032581792818067 r002 9th iterates of z^2 + 4032581814052995 a001 18/5*832040^(9/26) 4032581815192428 k002 Champernowne real with 104*n^2-27*n-37 4032581820666223 r005 Re(z^2+c),c=-69/122+1/58*I,n=33 4032581821387559 r005 Re(z^2+c),c=-13/23+1/21*I,n=43 4032581824255700 a007 Real Root Of -94*x^4-155*x^3+738*x^2-649*x+75 4032581827523161 m001 (MertensB2+Trott)/(Ei(1)+ArtinRank2) 4032581841217415 h001 (1/9*exp(2)+9/10)/(5/11*exp(2)+10/11) 4032581842876921 m001 Pi*(2^(1/3)-5^(1/2))-cos(1/12*Pi) 4032581856101928 m003 -39/8+Sqrt[5]/64+Sinh[1/2+Sqrt[5]/2]/3 4032581880446509 r002 20th iterates of z^2 + 4032581887240783 m001 GAMMA(1/6)^2/ln(Sierpinski)/cos(Pi/5) 4032581888068344 h001 (7/10*exp(1)+1/2)/(3/4*exp(2)+5/12) 4032581895236138 r005 Im(z^2+c),c=-3/14+33/52*I,n=62 4032581896674393 l006 ln(4385/6563) 4032581900622996 m001 1/exp(TreeGrowth2nd)^2/CareFree/Zeta(1/2) 4032581903370749 m001 FellerTornier^GAMMA(7/12)/TreeGrowth2nd 4032581908056638 m001 gamma(2)^(GlaisherKinkelin/Si(Pi)) 4032581915222434 k002 Champernowne real with 209/2*n^2-57/2*n-36 4032581916097427 a007 Real Root Of 64*x^4-397*x^3-93*x^2-306*x-136 4032581922220582 m001 Pi+1/2*exp(Pi)*2^(1/2)/BesselJ(1,1) 4032581926402483 m005 (13/42+1/6*5^(1/2))/(5/7*3^(1/2)+5/11) 4032581927057880 m001 exp(BesselJ(0,1))^2/Lehmer/GAMMA(5/24)^2 4032581935739545 m001 exp(PrimesInBinary)/Conway^2*GAMMA(5/12)^2 4032581985700772 r005 Im(z^2+c),c=-5/44+35/58*I,n=57 4032581989941892 r002 21th iterates of z^2 + 4032582015252440 k002 Champernowne real with 105*n^2-30*n-35 4032582032618343 r005 Re(z^2+c),c=-41/70+5/24*I,n=15 4032582040152732 r008 a(0)=4,K{-n^6,29-11*n-44*n^2-5*n^3} 4032582055489314 r005 Im(z^2+c),c=27/110+22/61*I,n=13 4032582056824691 r005 Re(z^2+c),c=-69/122+1/32*I,n=54 4032582056872018 r008 a(0)=4,K{-n^6,27-6*n-48*n^2-4*n^3} 4032582068490383 a007 Real Root Of 89*x^4+233*x^3-762*x^2-931*x+381 4032582071452850 r005 Im(z^2+c),c=11/56+3/8*I,n=50 4032582074111500 r005 Im(z^2+c),c=11/106+9/20*I,n=26 4032582074383028 r005 Im(z^2+c),c=-6/23+11/18*I,n=6 4032582089081492 r005 Im(z^2+c),c=-5/62+17/30*I,n=64 4032582113103440 r005 Re(z^2+c),c=33/122+1/30*I,n=44 4032582115282446 k002 Champernowne real with 211/2*n^2-63/2*n-34 4032582117384372 m001 1/sin(1)^2*Si(Pi)^2/ln(sqrt(2))^2 4032582118732414 a001 219602/17*956722026041^(7/24) 4032582118753346 a001 12752043/34*9227465^(7/24) 4032582119572344 r005 Im(z^2+c),c=9/62+1/38*I,n=28 4032582119572587 r005 Im(z^2+c),c=9/62+1/38*I,n=29 4032582119572615 r005 Im(z^2+c),c=9/62+1/38*I,n=27 4032582119572791 r005 Im(z^2+c),c=9/62+1/38*I,n=30 4032582119572902 r005 Im(z^2+c),c=9/62+1/38*I,n=31 4032582119572953 r005 Im(z^2+c),c=9/62+1/38*I,n=32 4032582119572974 r005 Im(z^2+c),c=9/62+1/38*I,n=33 4032582119572983 r005 Im(z^2+c),c=9/62+1/38*I,n=34 4032582119572986 r005 Im(z^2+c),c=9/62+1/38*I,n=35 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=36 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=37 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=38 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=39 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=40 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=55 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=56 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=57 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=58 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=59 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=60 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=61 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=62 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=63 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=64 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=54 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=53 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=52 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=51 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=50 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=49 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=48 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=47 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=46 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=45 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=44 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=43 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=41 4032582119572987 r005 Im(z^2+c),c=9/62+1/38*I,n=42 4032582119576012 r005 Im(z^2+c),c=9/62+1/38*I,n=26 4032582119592441 r005 Im(z^2+c),c=9/62+1/38*I,n=25 4032582119655471 r005 Im(z^2+c),c=9/62+1/38*I,n=24 4032582119870608 r005 Im(z^2+c),c=9/62+1/38*I,n=23 4032582120550265 r005 Im(z^2+c),c=9/62+1/38*I,n=22 4032582122571534 r005 Im(z^2+c),c=9/62+1/38*I,n=21 4032582123794460 a001 4052739537881/2*843^(11/14) 4032582128269416 r005 Im(z^2+c),c=9/62+1/38*I,n=20 4032582131203489 a007 Real Root Of -194*x^4-167*x^3-908*x^2+603*x+385 4032582142234120 p003 LerchPhi(1/5,3,59/43) 4032582143503433 r005 Im(z^2+c),c=9/62+1/38*I,n=19 4032582158102925 r008 a(0)=4,K{-n^6,-46+20*n-33*n^2+29*n^3} 4032582166219132 m002 -Pi/6-Pi^2-Pi^3+ProductLog[Pi] 4032582171876203 r005 Re(z^2+c),c=-127/106+16/55*I,n=6 4032582174241304 m001 FeigenbaumD/(KhinchinLevy-Si(Pi)) 4032582181924191 r005 Im(z^2+c),c=9/62+1/38*I,n=18 4032582182378570 b008 Sqrt[3]+Sqrt[2]*Sinh[4] 4032582182473005 r005 Im(z^2+c),c=31/90+11/49*I,n=43 4032582188058886 r005 Im(z^2+c),c=-53/62+1/38*I,n=63 4032582190476467 r009 Re(z^3+c),c=-14/27+11/53*I,n=14 4032582196967797 r005 Im(z^2+c),c=9/62+1/38*I,n=13 4032582199368022 g007 Psi(2,4/11)+Psi(2,7/10)-Psi(2,7/8)-Psi(2,3/4) 4032582201934519 m001 1/GAMMA(1/4)^2/ln(Khintchine)^2/GAMMA(5/24)^2 4032582211492177 a007 Real Root Of 23*x^4+945*x^3+726*x^2+785*x-953 4032582214905257 m001 GAMMA(5/12)/ln(Catalan)^2*Zeta(1/2) 4032582215312452 k002 Champernowne real with 106*n^2-33*n-33 4032582215423346 m001 exp(KhintchineLevy)^2*Backhouse^2*sqrt(Pi) 4032582221419864 r008 a(0)=4,K{-n^6,-22-36*n+28*n^2-4*n^3} 4032582224008795 a001 521/144*6557470319842^(12/17) 4032582228061013 a001 9/4*2584^(35/53) 4032582235919296 r008 a(0)=4,K{-n^6,-53-3*n^3+60*n^2-34*n} 4032582247182430 r005 Im(z^2+c),c=-53/62+1/38*I,n=64 4032582249758743 r008 a(0)=4,K{-n^6,-6+23*n^3+5*n^2-52*n} 4032582272032629 r005 Im(z^2+c),c=9/62+1/38*I,n=17 4032582275803155 r005 Im(z^2+c),c=-7/74+24/41*I,n=39 4032582287855415 r005 Im(z^2+c),c=-53/62+1/38*I,n=61 4032582291360794 r008 a(0)=4,K{-n^6,11+7*n^3-89*n^2+40*n} 4032582298041294 r005 Re(z^2+c),c=19/66+2/23*I,n=5 4032582301132810 r002 36th iterates of z^2 + 4032582301586209 r005 Re(z^2+c),c=-3/82+16/23*I,n=55 4032582307517062 r005 Re(z^2+c),c=-5/9+1/43*I,n=15 4032582315342458 k002 Champernowne real with 213/2*n^2-69/2*n-32 4032582323884767 m001 GAMMA(11/24)/CopelandErdos/ln(GAMMA(3/4)) 4032582348549373 r002 49th iterates of z^2 + 4032582363551911 m001 Trott^cos(1/12*Pi)/(Trott^BesselJ(0,1)) 4032582381941484 r005 Im(z^2+c),c=4/17+18/53*I,n=47 4032582387409075 s002 sum(A175588[n]/(pi^n-1),n=1..infinity) 4032582391979032 r004 Re(z^2+c),c=-6/11+6/23*I,z(0)=-1,n=51 4032582401869168 m001 1/exp(GAMMA(5/6))/FeigenbaumDelta^2*exp(1) 4032582415372464 k002 Champernowne real with 107*n^2-36*n-31 4032582420066069 r005 Im(z^2+c),c=-53/62+1/38*I,n=62 4032582421438334 a003 cos(Pi*42/103)+cos(Pi*37/80) 4032582425054342 h001 (-10*exp(2)+3)/(-3*exp(4)-12) 4032582427023642 l006 ln(2873/4300) 4032582448551321 r005 Im(z^2+c),c=1/74+32/59*I,n=23 4032582449189181 r005 Im(z^2+c),c=-61/58+2/45*I,n=9 4032582462199401 r005 Im(z^2+c),c=9/62+1/38*I,n=16 4032582463042810 r009 Im(z^3+c),c=-13/27+15/47*I,n=33 4032582478268969 r005 Im(z^2+c),c=37/106+11/46*I,n=52 4032582479069709 r002 50th iterates of z^2 + 4032582480677668 r009 Re(z^3+c),c=-8/19+9/59*I,n=30 4032582483020154 a001 514229/521*76^(13/40) 4032582484099803 r005 Im(z^2+c),c=-53/62+1/38*I,n=59 4032582484585085 a001 1364/987*514229^(43/55) 4032582486775110 m001 (Conway+MadelungNaCl)/(MertensB3-Stephens) 4032582488559713 r005 Re(z^2+c),c=-69/122+1/27*I,n=28 4032582503397936 r002 37th iterates of z^2 + 4032582509002592 r005 Im(z^2+c),c=1/86+23/45*I,n=43 4032582515402470 k002 Champernowne real with 215/2*n^2-75/2*n-30 4032582525923150 r005 Re(z^2+c),c=-10/17+20/51*I,n=61 4032582529117204 a001 2504730781961/2*843^(6/7) 4032582543985736 r009 Re(z^3+c),c=-47/102+21/41*I,n=10 4032582554968844 a007 Real Root Of 99*x^4+617*x^3+949*x^2-589*x-354 4032582558691822 p003 LerchPhi(1/64,5,443/233) 4032582564774888 r002 37th iterates of z^2 + 4032582568250232 r005 Im(z^2+c),c=-3/25+31/53*I,n=55 4032582570308488 a003 cos(Pi*29/77)/sin(Pi*29/75) 4032582583785440 a003 sin(Pi*2/57)+sin(Pi*9/95) 4032582584210514 r005 Im(z^2+c),c=29/126+10/29*I,n=31 4032582588670575 r005 Re(z^2+c),c=-125/106+3/11*I,n=8 4032582593474955 a007 Real Root Of 914*x^4+292*x^3+424*x^2+114*x-28 4032582596300444 a007 Real Root Of -134*x^4-363*x^3+477*x^2-959*x+7 4032582601569103 r005 Im(z^2+c),c=29/110+24/53*I,n=33 4032582607960495 p004 log(19237/12853) 4032582614387401 r005 Re(z^2+c),c=-37/66+9/56*I,n=26 4032582615432476 k002 Champernowne real with 108*n^2-39*n-29 4032582624921420 r004 Re(z^2+c),c=-23/42+5/24*I,z(0)=-1,n=25 4032582627195378 r002 44th iterates of z^2 + 4032582630775101 r005 Re(z^2+c),c=-59/114+17/46*I,n=37 4032582654113875 a008 Real Root of (-4+9*x+x^2+8*x^4-5*x^8) 4032582667392119 r005 Im(z^2+c),c=-12/25+16/27*I,n=14 4032582685566224 r002 2th iterates of z^2 + 4032582696842853 m001 (-2^(1/2)+ln(3))/(Psi(2,1/3)-exp(Pi)) 4032582702815112 r002 55th iterates of z^2 + 4032582713417433 m001 1/gamma^2*PrimesInBinary*exp(sin(Pi/5))^2 4032582715462482 k002 Champernowne real with 217/2*n^2-81/2*n-28 4032582719145704 a007 Real Root Of -721*x^4+236*x^3-673*x^2+496*x+344 4032582720301950 r005 Im(z^2+c),c=-5/32+37/55*I,n=59 4032582734488013 r008 a(0)=4,K{-n^6,-56+22*n+55*n^2-52*n^3} 4032582735974809 r005 Im(z^2+c),c=-95/126+2/59*I,n=3 4032582739894319 r002 57th iterates of z^2 + 4032582744608275 s002 sum(A118250[n]/(exp(n)+1),n=1..infinity) 4032582755218442 r005 Im(z^2+c),c=-53/62+1/38*I,n=60 4032582757491429 r005 Re(z^2+c),c=1/17+3/13*I,n=7 4032582761796015 a007 Real Root Of 192*x^4+990*x^3+999*x^2+757*x+955 4032582766141419 r005 Re(z^2+c),c=-14/25+8/39*I,n=18 4032582767631321 r009 Re(z^3+c),c=-9/23+7/59*I,n=10 4032582768287520 r002 28th iterates of z^2 + 4032582775337511 m001 ln(2^(1/2)+1)*FeigenbaumD*Niven 4032582776013263 r008 a(0)=4,K{-n^6,-34-51*n^3+63*n^2-9*n} 4032582780485929 a007 Real Root Of -304*x^4+397*x^3-431*x^2+503*x+307 4032582791290843 m001 (ln(gamma)-Tetranacci)/(Zeta(3)-sin(1/5*Pi)) 4032582792587814 r005 Im(z^2+c),c=9/62+1/38*I,n=15 4032582805814177 m005 (2/5*Pi+1/3)/(2/3*2^(1/2)+3) 4032582806969183 r005 Re(z^2+c),c=-31/58+9/26*I,n=42 4032582809899690 a003 cos(Pi*17/90)-cos(Pi*9/25) 4032582815492488 k002 Champernowne real with 109*n^2-42*n-27 4032582817147593 g007 Psi(2,5/9)+Psi(2,4/9)-Psi(2,8/11)-Psi(2,1/6) 4032582823821924 r008 a(0)=4,K{-n^6,-57+26*n+10*n^2-11*n^3} 4032582828276041 m001 FeigenbaumC^2*Niven^2*exp(Rabbit)^2 4032582832287327 r005 Re(z^2+c),c=-23/42+10/41*I,n=59 4032582835731808 a008 Real Root of x^4-x^3-12*x^2+27*x-26 4032582847961215 r005 Re(z^2+c),c=-21/58+37/61*I,n=45 4032582848926418 r005 Re(z^2+c),c=-1+49/221*I,n=64 4032582851961556 r005 Im(z^2+c),c=-53/62+1/38*I,n=57 4032582861063622 m005 (1/4+1/6*5^(1/2))/(3/4*Catalan+6/7) 4032582862331350 r009 Im(z^3+c),c=-1/82+15/32*I,n=15 4032582871713018 a003 sin(Pi*1/22)+sin(Pi*10/119) 4032582896438143 r008 a(0)=4,K{-n^6,-40+26*n+21*n^2-38*n^3} 4032582897319923 b008 7*CosIntegral[ArcCsc[Pi]] 4032582915522494 k002 Champernowne real with 219/2*n^2-87/2*n-26 4032582916003819 r005 Im(z^2+c),c=13/62+23/63*I,n=26 4032582928036878 a001 1/11*(1/2*5^(1/2)+1/2)^28*76^(21/22) 4032582934439989 a001 774004377960*843^(13/14) 4032582953649838 r005 Re(z^2+c),c=-14/27+15/38*I,n=53 4032582959593680 r002 5th iterates of z^2 + 4032582962018132 m005 (11/6+3/2*5^(1/2))/(1/6*exp(1)+5/6) 4032582976287065 l006 ln(4234/6337) 4032582977807154 r008 a(0)=4,K{-n^6,-40-8*n^3+9*n^2+7*n} 4032583006574865 r008 a(0)=4,K{-n^6,-56-26*n^3-23*n^2+74*n} 4032583014152870 r009 Im(z^3+c),c=-29/62+21/64*I,n=57 4032583015552500 k002 Champernowne real with 110*n^2-45*n-25 4032583025969946 r009 Im(z^3+c),c=-5/13+11/29*I,n=30 4032583031091957 r005 Re(z^2+c),c=-19/44+29/59*I,n=29 4032583031587152 r005 Re(z^2+c),c=-21/25+18/49*I,n=4 4032583033234671 r009 Im(z^3+c),c=-13/36+33/50*I,n=53 4032583036655308 r008 a(0)=4,K{-n^6,-6-32*n^3+20*n^2-13*n} 4032583037346557 r005 Im(z^2+c),c=-29/98+34/61*I,n=20 4032583047844780 r009 Im(z^3+c),c=-57/122+18/55*I,n=27 4032583061208935 r005 Re(z^2+c),c=-53/94+4/49*I,n=55 4032583073234671 a007 Real Root Of 835*x^4+686*x^3-924*x^2-555*x+307 4032583075611395 m001 1/log(2+sqrt(3))/Niven^2/ln(sqrt(5))^2 4032583078993245 r005 Re(z^2+c),c=-35/62+1/15*I,n=49 4032583093388588 r002 61th iterates of z^2 + 4032583095257157 m005 (1/2*3^(1/2)+1/4)/(-59/110+4/11*5^(1/2)) 4032583102328753 r005 Im(z^2+c),c=9/62+1/38*I,n=14 4032583115582506 k002 Champernowne real with 221/2*n^2-93/2*n-24 4032583121082123 a007 Real Root Of -775*x^4+189*x^3+83*x^2+371*x+169 4032583125061506 r008 a(0)=4,K{-n^6,-28+40*n-21*n^2-22*n^3} 4032583134143452 r002 25th iterates of z^2 + 4032583139856697 r008 a(0)=4,K{-n^6,-10+9*n-6*n^2-24*n^3} 4032583146097013 m001 (ln(2)-GolombDickman)/(HeathBrownMoroz+Niven) 4032583154819499 r008 a(0)=4,K{-n^6,32-30*n^3+33*n^2-66*n} 4032583161620645 a007 Real Root Of 17*x^4+130*x^3+632*x^2-338*x-231 4032583170178746 m005 (1/2*2^(1/2)-3/7)/(2/3*5^(1/2)-4/5) 4032583204697706 r009 Re(z^3+c),c=-61/118+12/47*I,n=52 4032583215612512 k002 Champernowne real with 111*n^2-48*n-23 4032583227923672 r005 Im(z^2+c),c=-35/26+4/125*I,n=62 4032583240390218 m001 (Bloch+Conway)/(FeigenbaumC-KomornikLoreti) 4032583258330630 l006 ln(5595/8374) 4032583259515896 r005 Im(z^2+c),c=-7/122+26/47*I,n=59 4032583259794856 m005 (1/2*exp(1)+1/12)/(7/11*5^(1/2)-5) 4032583272844584 q001 1/24798 4032583281828507 r005 Re(z^2+c),c=-17/28+20/57*I,n=41 4032583286784626 r008 a(0)=4,K{-n^6,-16-14*n^3-39*n^2+38*n} 4032583294664951 r005 Im(z^2+c),c=9/118+29/62*I,n=63 4032583308630636 p004 log(35533/23741) 4032583310611740 r008 a(0)=4,K{-n^6,10-7*n-17*n^2-17*n^3} 4032583315642518 k002 Champernowne real with 223/2*n^2-99/2*n-22 4032583319271280 a007 Real Root Of -563*x^4+717*x^3-543*x^2+550*x+372 4032583329009957 m001 (cos(1/5*Pi)-gamma(1))/(Artin-Lehmer) 4032583350225220 m005 (1/6+1/4*5^(1/2))/(5/7*Pi-4/9) 4032583366575004 r002 52th iterates of z^2 + 4032583373372925 m001 exp(1)*ZetaQ(2)+ln(gamma) 4032583375748745 m001 exp(MertensB1)^2*Conway*GAMMA(2/3)^2 4032583376434617 r005 Im(z^2+c),c=-53/62+1/38*I,n=58 4032583406615226 r008 a(0)=4,K{-n^6,4+14*n-38*n^2-11*n^3} 4032583408705559 m001 (Catalan-LambertW(1))/(arctan(1/3)+Landau) 4032583415498703 a003 cos(Pi*1/90)-cos(Pi*27/91) 4032583415672524 k002 Champernowne real with 112*n^2-51*n-21 4032583416449971 r008 a(0)=4,K{-n^6,14+29*n^3-3*n^2-70*n} 4032583420730141 r009 Im(z^3+c),c=-3/8+23/53*I,n=6 4032583421496676 a007 Real Root Of -243*x^4-862*x^3+525*x^2+391*x+772 4032583424010180 r005 Im(z^2+c),c=-49/40+16/41*I,n=5 4032583428820350 m001 1/(2^(1/3))*FeigenbaumDelta/ln(GAMMA(2/3))^2 4032583449186568 m001 FeigenbaumAlpha^(Totient/QuadraticClass) 4032583449515766 r005 Re(z^2+c),c=-51/70+1/28*I,n=22 4032583475502766 m005 (1/2*Catalan+4/11)/(8/11*3^(1/2)+7/9) 4032583479398038 a007 Real Root Of 745*x^4-906*x^3-195*x^2+x-47 4032583483703641 r008 a(0)=4,K{-n^6,2-7*n^3-51*n^2+25*n} 4032583486110911 m001 FeigenbaumMu^(cos(1/12*Pi)/QuadraticClass) 4032583496806604 r002 11th iterates of z^2 + 4032583511860467 m001 1/GAMMA(2/3)/ln(FeigenbaumDelta)*sin(1) 4032583513272297 r008 a(0)=4,K{-n^6,4+24*n-53*n^2-6*n^3} 4032583515174026 r005 Im(z^2+c),c=-53/62+1/38*I,n=55 4032583515702530 k002 Champernowne real with 225/2*n^2-105/2*n-20 4032583517901165 s002 sum(A043349[n]/(n*exp(n)-1),n=1..infinity) 4032583519938744 r005 Im(z^2+c),c=1/52+28/51*I,n=23 4032583526943012 r005 Re(z^2+c),c=-37/66+10/53*I,n=20 4032583529754069 r005 Im(z^2+c),c=-7/106+5/9*I,n=45 4032583534007191 r009 Im(z^3+c),c=-7/90+27/58*I,n=17 4032583542261644 l006 ln(155/8743) 4032583544256895 m001 (Backhouse-ln(3)*GAMMA(17/24))/ln(3) 4032583544256895 m001 (ln(3)*GAMMA(17/24)-Backhouse)/ln(3) 4032583553187181 m005 (1/3*Pi-2/11)/(8/9*2^(1/2)+8/9) 4032583566405251 m001 1/OneNinth/exp(FeigenbaumAlpha)^2/cosh(1) 4032583571598017 r005 Re(z^2+c),c=-21/38+3/11*I,n=23 4032583578957396 r005 Re(z^2+c),c=-49/86+4/35*I,n=11 4032583595766828 r005 Im(z^2+c),c=11/54+7/19*I,n=33 4032583601969052 a007 Real Root Of -168*x^4-717*x^3-259*x^2-485*x-336 4032583615732536 k002 Champernowne real with 113*n^2-54*n-19 4032583616530967 r005 Re(z^2+c),c=15/52+4/47*I,n=3 4032583628717737 a001 3571/2584*514229^(43/55) 4032583641079978 m005 (1/3*gamma+2/7)/(4/5*3^(1/2)-1/5) 4032583644262297 a007 Real Root Of -41*x^4+241*x^3-136*x^2+367*x+187 4032583648178936 a007 Real Root Of 284*x^4+988*x^3-345*x^2+979*x-754 4032583673625771 r005 Re(z^2+c),c=-4/7+1/116*I,n=20 4032583694198076 a007 Real Root Of -229*x^4+123*x^3-211*x^2+542*x+267 4032583695319560 m005 (1/3*5^(1/2)-1/11)/(37/60+9/20*5^(1/2)) 4032583699379517 r005 Re(z^2+c),c=-19/36+17/50*I,n=43 4032583704486520 a007 Real Root Of 995*x^4-864*x^3+481*x^2-126*x-212 4032583710492589 a003 sin(Pi*1/38)*sin(Pi*19/117) 4032583712391461 r005 Im(z^2+c),c=11/56+3/8*I,n=59 4032583715762542 k002 Champernowne real with 227/2*n^2-111/2*n-18 4032583750886999 r001 9i'th iterates of 2*x^2-1 of 4032583751240494 a008 Real Root of x^4-x^3-10*x^2-49*x-365 4032583754180127 r009 Im(z^3+c),c=-1/27+22/47*I,n=19 4032583761407868 r002 31th iterates of z^2 + 4032583789532788 r005 Im(z^2+c),c=19/90+21/58*I,n=43 4032583795644408 a001 9349/6765*514229^(43/55) 4032583803705290 r005 Re(z^2+c),c=-7/12+3/25*I,n=8 4032583805353669 r005 Im(z^2+c),c=15/64+29/62*I,n=24 4032583815056825 m005 (37/36+1/4*5^(1/2))/(7/9*Zeta(3)+3) 4032583815792548 k002 Champernowne real with 114*n^2-57*n-17 4032583819998680 a001 24476/17711*514229^(43/55) 4032583825747944 a001 39603/28657*514229^(43/55) 4032583826963417 r005 Re(z^2+c),c=-13/23+6/61*I,n=25 4032583828265581 r005 Im(z^2+c),c=13/64+19/48*I,n=12 4032583829269667 a007 Real Root Of 708*x^4+182*x^3+547*x^2-80*x-128 4032583835050448 a001 15127/10946*514229^(43/55) 4032583841486195 r009 Im(z^3+c),c=-11/21+15/47*I,n=60 4032583846308965 r002 13th iterates of z^2 + 4032583850911571 r002 44th iterates of z^2 + 4032583876001994 m001 (FeigenbaumC+Landau*Robbin)/Landau 4032583877016819 a007 Real Root Of -193*x^4+705*x^3-320*x^2+929*x+478 4032583878474261 h001 (7/10*exp(2)+1/9)/(1/6*exp(1)+6/7) 4032583882853102 r002 45th iterates of z^2 + 4032583886063739 r005 Re(z^2+c),c=-6/7+62/117*I,n=2 4032583887352752 r008 a(0)=4,K{-n^6,28+4*n^3-71*n^2+8*n} 4032583898810759 a001 5778/4181*514229^(43/55) 4032583900607698 a007 Real Root Of -375*x^4+657*x^3-699*x^2+224*x+257 4032583903503990 m001 exp(1/exp(1))^GaussAGM*exp(1/exp(1))^Otter 4032583908307309 r005 Re(z^2+c),c=-69/122+1/57*I,n=33 4032583915588130 r002 33th iterates of z^2 + 4032583915822554 k002 Champernowne real with 229/2*n^2-117/2*n-16 4032583917254104 s002 sum(A042778[n]/(exp(n)+1),n=1..infinity) 4032583920482047 r002 13th iterates of z^2 + 4032583926740592 a007 Real Root Of 577*x^4-3*x^3-908*x^2-554*x+356 4032583933871401 r005 Im(z^2+c),c=-67/62+13/43*I,n=7 4032583939078579 a007 Real Root Of -790*x^4+739*x^3+522*x^2+842*x-452 4032583939512385 a007 Real Root Of 415*x^4-168*x^3+372*x^2-956*x-468 4032583943049176 r009 Im(z^3+c),c=-15/31+19/60*I,n=45 4032583947353445 r009 Im(z^3+c),c=-29/62+21/64*I,n=56 4032583950513874 s002 sum(A042778[n]/(exp(n)),n=1..infinity) 4032583953870214 a007 Real Root Of 279*x^4-689*x^3+478*x^2-954*x-515 4032583956882943 a007 Real Root Of -114*x^4-324*x^3+312*x^2-800*x+600 4032583976309891 r005 Im(z^2+c),c=2/19+34/59*I,n=18 4032583976573790 r002 6th iterates of z^2 + 4032583983774319 s002 sum(A042778[n]/(exp(n)-1),n=1..infinity) 4032583984057134 h001 (-8*exp(3)+11)/(-7*exp(4)+11) 4032583987252601 r004 Im(z^2+c),c=3/34-13/15*I,z(0)=I,n=10 4032583996905295 a007 Real Root Of -909*x^4+146*x^3-397*x^2+684*x+374 4032584015852560 k002 Champernowne real with 115*n^2-60*n-15 4032584039532847 m009 (5/6*Psi(1,2/3)+3/5)/(1/2*Psi(1,2/3)-3/4) 4032584050222010 m001 (cos(1)*ZetaP(3)+Champernowne)/cos(1) 4032584051622346 r002 3th iterates of z^2 + 4032584052536642 m001 (BesselJ(0,1)-Zeta(3))/(-gamma(2)+Paris) 4032584057490542 r002 21th iterates of z^2 + 4032584077419583 a007 Real Root Of 452*x^4-146*x^3-163*x^2-362*x-141 4032584094095000 r008 a(0)=0,K{-n^6,-66-54*n^3+70*n^2+47*n} 4032584095275855 a007 Real Root Of 578*x^4-857*x^3-497*x^2-204*x+204 4032584108116089 r005 Im(z^2+c),c=-17/22+13/43*I,n=6 4032584111968949 b008 -1+Log[3*Pi]^2 4032584112721412 p004 log(22619/401) 4032584115882566 k002 Champernowne real with 231/2*n^2-123/2*n-14 4032584131115643 r005 Im(z^2+c),c=-17/60+37/60*I,n=28 4032584135753397 l006 ln(1361/2037) 4032584144595667 m001 (Psi(2,1/3)+LaplaceLimit)/(OneNinth+Trott2nd) 4032584148992193 m001 1/Tribonacci*MadelungNaCl*ln(GAMMA(7/12)) 4032584150053850 r009 Im(z^3+c),c=-13/106+37/47*I,n=4 4032584152291260 r005 Im(z^2+c),c=-27/94+23/39*I,n=29 4032584156862828 h001 (1/7*exp(2)+1/8)/(3/4*exp(1)+8/9) 4032584158264134 a001 6643838879/2*1836311903^(13/17) 4032584158264158 a001 12752043/2*6557470319842^(13/17) 4032584158266466 a001 1730726404001*514229^(13/17) 4032584165881449 r005 Im(z^2+c),c=-9/86+32/59*I,n=11 4032584167757042 r005 Re(z^2+c),c=-49/90+17/64*I,n=47 4032584181353606 r005 Im(z^2+c),c=-7/8+58/217*I,n=18 4032584188450049 a007 Real Root Of -925*x^4-27*x^3-413*x^2+598*x+331 4032584191127241 a007 Real Root Of -122*x^4-421*x^3+111*x^2-561*x+587 4032584194056055 m001 (Landau+Stephens)/(FeigenbaumMu-Kolakoski) 4032584209549757 r005 Re(z^2+c),c=-37/60+23/47*I,n=3 4032584209775515 a007 Real Root Of -283*x^4-399*x^3-351*x^2+676*x+311 4032584215912572 k002 Champernowne real with 116*n^2-63*n-13 4032584224648458 r005 Re(z^2+c),c=-23/42+1/19*I,n=11 4032584232524150 a007 Real Root Of 53*x^4+197*x^3-290*x^2-798*x+401 4032584235881553 r008 a(0)=4,K{-n^6,-47-65*n^3+99*n^2-18*n} 4032584250218153 r002 49th iterates of z^2 + 4032584256339805 a007 Real Root Of -879*x^4+83*x^3-184*x^2+611*x+305 4032584268748656 a007 Real Root Of -423*x^4+711*x^3+746*x^2+690*x-435 4032584275669460 r005 Re(z^2+c),c=-7/25+19/35*I,n=10 4032584276654096 r009 Re(z^3+c),c=-35/102+2/57*I,n=9 4032584286804224 r009 Im(z^3+c),c=-41/74+12/49*I,n=49 4032584287943922 m001 (Si(Pi)+Paris)/(Weierstrass+ZetaQ(3)) 4032584297336754 m005 (1/2*Catalan-1/4)/(7/8*Catalan-2/7) 4032584298183593 m005 (1/3*Catalan+3/7)/(3/4*5^(1/2)+1/7) 4032584301346542 r005 Re(z^2+c),c=-17/18+138/233*I,n=2 4032584312377561 r005 Re(z^2+c),c=-69/106+7/60*I,n=8 4032584315942578 k002 Champernowne real with 233/2*n^2-129/2*n-12 4032584317606268 m001 Backhouse-KhinchinHarmonic^Sarnak 4032584335830403 a001 2207/1597*514229^(43/55) 4032584367840614 a007 Real Root Of -96*x^4-191*x^3+687*x^2-296*x+496 4032584368167963 r002 62th iterates of z^2 + 4032584370076981 r008 a(0)=4,K{-n^6,-35-51*n^3+63*n^2-8*n} 4032584375468284 r005 Re(z^2+c),c=-9/19+19/40*I,n=56 4032584387591051 m005 (1/2*5^(1/2)-2)/(6/7*exp(1)-1/7) 4032584392213400 a007 Real Root Of 80*x^4-615*x^3+624*x^2-25*x-154 4032584412501928 r005 Re(z^2+c),c=-13/20+16/49*I,n=32 4032584415972584 k002 Champernowne real with 117*n^2-66*n-11 4032584434374900 m001 FeigenbaumB/(Champernowne^Otter) 4032584439358037 r005 Re(z^2+c),c=33/106+11/21*I,n=35 4032584443535105 r005 Re(z^2+c),c=-37/66+8/61*I,n=64 4032584454319703 r005 Re(z^2+c),c=-13/10+8/187*I,n=54 4032584463821198 r005 Im(z^2+c),c=-5/82+15/29*I,n=14 4032584470875569 r002 45th iterates of z^2 + 4032584472157277 l006 ln(123/6938) 4032584477134398 a007 Real Root Of -220*x^4-676*x^3+910*x^2+381*x+586 4032584485646673 r005 Im(z^2+c),c=-53/62+1/38*I,n=56 4032584487268020 b008 2/3+11*E^Glaisher 4032584492276672 r008 a(0)=4,K{-n^6,-41+27*n+21*n^2-38*n^3} 4032584506418821 r005 Re(z^2+c),c=-41/74+12/61*I,n=50 4032584513406495 r005 Re(z^2+c),c=-21/38+13/62*I,n=42 4032584516002590 k002 Champernowne real with 235/2*n^2-135/2*n-10 4032584521600428 b008 EulerGamma*(6+Sech[1/6]) 4032584526017926 r005 Re(z^2+c),c=-14/25+10/59*I,n=22 4032584527740208 r002 12th iterates of z^2 + 4032584529724415 r005 Im(z^2+c),c=-3/40+26/45*I,n=40 4032584548267715 r002 51th iterates of z^2 + 4032584561535768 m005 (1/2*3^(1/2)+1/3)/(1/7*exp(1)-1/11) 4032584569571607 a007 Real Root Of 269*x^4+933*x^3-468*x^2+546*x-140 4032584575165366 r002 48th iterates of z^2 + 4032584592122349 r002 36th iterates of z^2 + 4032584594929278 m001 (GaussAGM-MertensB1)/(ln(3)+FellerTornier) 4032584595508826 r008 a(0)=4,K{-n^6,-49+59*n-13*n^2-28*n^3} 4032584600467062 r005 Im(z^2+c),c=1/98+27/53*I,n=14 4032584601221197 b008 -7+E+SinIntegral[1/4] 4032584604041745 r008 a(0)=4,K{-n^6,20-57*n-33*n^2+40*n^3} 4032584616032596 k002 Champernowne real with 118*n^2-69*n-9 4032584620980885 m009 (1/6*Psi(1,1/3)+3/4)/(6*Psi(1,1/3)-1/4) 4032584623913298 p004 log(30103/20113) 4032584631006146 m001 (Zeta(5)+GAMMA(7/12))/(BesselK(0,1)-Shi(1)) 4032584633398141 r005 Im(z^2+c),c=1/62+23/45*I,n=26 4032584636535252 m001 exp((2^(1/3)))/Champernowne/sin(1)^2 4032584639129388 b008 Cos[E-ArcTan[2]] 4032584670506571 r005 Im(z^2+c),c=-53/62+1/38*I,n=53 4032584676645015 r005 Re(z^2+c),c=-51/110+12/23*I,n=31 4032584695303428 r002 18th iterates of z^2 + 4032584698278819 r005 Re(z^2+c),c=-13/23+2/43*I,n=53 4032584709375551 r005 Re(z^2+c),c=-25/86+33/56*I,n=29 4032584711336791 r009 Im(z^3+c),c=-7/90+27/58*I,n=20 4032584716062602 k002 Champernowne real with 237/2*n^2-141/2*n-8 4032584721583632 s002 sum(A259546[n]/(n*2^n+1),n=1..infinity) 4032584723133224 m005 (1/2*Zeta(3)+7/8)/(5*3^(1/2)-5) 4032584726268422 a001 29*10946^(15/53) 4032584739444133 r008 a(0)=4,K{-n^6,-11+10*n-6*n^2-24*n^3} 4032584744147370 r005 Im(z^2+c),c=-5/102+32/51*I,n=62 4032584745208149 a007 Real Root Of 66*x^4-974*x^3-123*x^2-916*x-415 4032584749920087 b008 1+ArcCosh[1/2+7*Sqrt[2]] 4032584760461006 r009 Im(z^3+c),c=-1/27+22/47*I,n=21 4032584763774441 r009 Im(z^3+c),c=-5/13+7/16*I,n=6 4032584765636064 r005 Im(z^2+c),c=9/52+15/38*I,n=53 4032584771266943 r005 Re(z^2+c),c=-115/122+13/22*I,n=2 4032584772526863 m005 (1/3*exp(1)-2/5)/(10/11*5^(1/2)-7/9) 4032584775424905 r002 6th iterates of z^2 + 4032584789044568 r002 28th iterates of z^2 + 4032584798823321 m001 (MinimumGamma-Rabbit)/(ln(3)-GAMMA(17/24)) 4032584800625517 m005 (3/4*2^(1/2)+5/6)/(17/60+1/12*5^(1/2)) 4032584804764331 r005 Im(z^2+c),c=11/56+3/8*I,n=56 4032584807154046 r002 7th iterates of z^2 + 4032584808002867 r002 16th iterates of z^2 + 4032584816092608 k002 Champernowne real with 119*n^2-72*n-7 4032584816584406 a001 6119/36*34^(44/49) 4032584836226512 r002 25th iterates of z^2 + 4032584836949283 r005 Re(z^2+c),c=-7/10+67/240*I,n=62 4032584838133329 s002 sum(A192025[n]/(n^3*10^n+1),n=1..infinity) 4032584842433479 m001 Zeta(5)^CopelandErdos/Riemann3rdZero 4032584869297754 r001 45i'th iterates of 2*x^2-1 of 4032584873532175 l006 ln(6654/9959) 4032584874526895 m001 1/Magata^2*Si(Pi)*exp(arctan(1/2))^2 4032584880261125 a007 Real Root Of 192*x^4+886*x^3+246*x^2-964*x-560 4032584885148147 m001 1/exp(MertensB1)^2/Si(Pi)*(2^(1/3)) 4032584887127442 a001 47/144*63245986^(10/11) 4032584890838301 r005 Re(z^2+c),c=3/11+5/12*I,n=51 4032584893161282 r002 14th iterates of z^2 + 4032584899853791 p004 log(19009/337) 4032584912959253 r008 a(0)=4,K{-n^6,9-6*n-17*n^2-17*n^3} 4032584916122614 k002 Champernowne real with 239/2*n^2-147/2*n-6 4032584916381179 a001 86267571272/29*18^(2/19) 4032584921032180 m002 -Pi^4-Pi^5+(Pi^2*Sech[Pi])/5 4032584926417592 m005 (1/2*gamma+4)/(5*5^(1/2)-6/11) 4032584932808920 m001 GAMMA(17/24)/(2^(1/2)+Pi^(1/2)) 4032584932808920 m001 GAMMA(17/24)/(sqrt(2)+sqrt(Pi)) 4032584938042214 a005 (1/cos(22/203*Pi))^491 4032584949426392 m001 GAMMA(11/12)^2*GAMMA(1/3)^2*exp(cos(Pi/5))^2 4032584970970281 r005 Re(z^2+c),c=-7/23+27/40*I,n=4 4032584971536880 a007 Real Root Of -150*x^4-483*x^3+453*x^2+17*x+695 4032584980684321 s002 sum(A121002[n]/(exp(n)),n=1..infinity) 4032584983302274 m001 FibonacciFactorial*KomornikLoreti*Tribonacci 4032584989794748 r005 Im(z^2+c),c=-49/44+15/49*I,n=7 4032585003934780 m001 BesselI(1,1)-CopelandErdos^(2^(1/3)) 4032585011802254 r002 3th iterates of z^2 + 4032585013152511 r005 Re(z^2+c),c=-59/106+11/64*I,n=40 4032585016152620 k002 Champernowne real with 120*n^2-75*n-5 4032585016478163 p003 LerchPhi(1/8,6,460/183) 4032585018825101 r005 Im(z^2+c),c=-1/114+25/48*I,n=27 4032585023989502 r008 a(0)=4,K{-n^6,43-17*n^3-57*n} 4032585024941466 m001 Kolakoski*(Artin-QuadraticClass) 4032585033653714 r009 Im(z^3+c),c=-7/90+27/58*I,n=18 4032585056463310 r009 Im(z^3+c),c=-1/27+22/47*I,n=23 4032585063238744 l006 ln(5293/7922) 4032585091417241 a007 Real Root Of -32*x^4+715*x^3-324*x^2+914*x+469 4032585095587171 m005 (1/3*Catalan-1/8)/(2/9*Zeta(3)-5/7) 4032585096336779 m001 Riemann1stZero/ArtinRank2/ln(sqrt(1+sqrt(3))) 4032585118889183 r009 Im(z^3+c),c=-7/90+27/58*I,n=22 4032585125361931 m001 GaussAGM^Porter/(FellerTornier^Porter) 4032585132396865 r009 Re(z^3+c),c=-35/106+39/58*I,n=8 4032585136264107 r009 Im(z^3+c),c=-1/27+22/47*I,n=25 4032585147688127 s002 sum(A241078[n]/(pi^n+1),n=1..infinity) 4032585151361462 m001 (QuadraticClass-ZetaP(2))/(Bloch+Lehmer) 4032585156356655 r009 Im(z^3+c),c=-1/27+22/47*I,n=27 4032585161112412 r009 Im(z^3+c),c=-1/27+22/47*I,n=29 4032585161247509 a007 Real Root Of 463*x^4+187*x^3-216*x^2-965*x-354 4032585162168802 r009 Im(z^3+c),c=-1/27+22/47*I,n=31 4032585162386627 r009 Im(z^3+c),c=-1/27+22/47*I,n=33 4032585162427184 r009 Im(z^3+c),c=-1/27+22/47*I,n=35 4032585162433520 r009 Im(z^3+c),c=-1/27+22/47*I,n=37 4032585162433778 r009 Im(z^3+c),c=-1/27+22/47*I,n=40 4032585162433848 r009 Im(z^3+c),c=-1/27+22/47*I,n=38 4032585162433871 r009 Im(z^3+c),c=-1/27+22/47*I,n=42 4032585162433918 r009 Im(z^3+c),c=-1/27+22/47*I,n=44 4032585162433935 r009 Im(z^3+c),c=-1/27+22/47*I,n=46 4032585162433940 r009 Im(z^3+c),c=-1/27+22/47*I,n=48 4032585162433942 r009 Im(z^3+c),c=-1/27+22/47*I,n=50 4032585162433942 r009 Im(z^3+c),c=-1/27+22/47*I,n=52 4032585162433942 r009 Im(z^3+c),c=-1/27+22/47*I,n=54 4032585162433942 r009 Im(z^3+c),c=-1/27+22/47*I,n=56 4032585162433942 r009 Im(z^3+c),c=-1/27+22/47*I,n=58 4032585162433942 r009 Im(z^3+c),c=-1/27+22/47*I,n=60 4032585162433942 r009 Im(z^3+c),c=-1/27+22/47*I,n=62 4032585162433942 r009 Im(z^3+c),c=-1/27+22/47*I,n=63 4032585162433942 r009 Im(z^3+c),c=-1/27+22/47*I,n=64 4032585162433942 r009 Im(z^3+c),c=-1/27+22/47*I,n=61 4032585162433942 r009 Im(z^3+c),c=-1/27+22/47*I,n=59 4032585162433942 r009 Im(z^3+c),c=-1/27+22/47*I,n=57 4032585162433942 r009 Im(z^3+c),c=-1/27+22/47*I,n=55 4032585162433942 r009 Im(z^3+c),c=-1/27+22/47*I,n=53 4032585162433942 r009 Im(z^3+c),c=-1/27+22/47*I,n=51 4032585162433943 r009 Im(z^3+c),c=-1/27+22/47*I,n=49 4032585162433946 r009 Im(z^3+c),c=-1/27+22/47*I,n=47 4032585162433955 r009 Im(z^3+c),c=-1/27+22/47*I,n=45 4032585162433984 r009 Im(z^3+c),c=-1/27+22/47*I,n=43 4032585162434056 r009 Im(z^3+c),c=-1/27+22/47*I,n=41 4032585162434134 r009 Im(z^3+c),c=-1/27+22/47*I,n=39 4032585162436044 r009 Im(z^3+c),c=-1/27+22/47*I,n=36 4032585162452569 r009 Im(z^3+c),c=-1/27+22/47*I,n=34 4032585162548040 r009 Im(z^3+c),c=-1/27+22/47*I,n=32 4032585163032787 r009 Im(z^3+c),c=-1/27+22/47*I,n=30 4032585165293021 r009 Im(z^3+c),c=-1/27+22/47*I,n=28 4032585175143316 r009 Im(z^3+c),c=-1/27+22/47*I,n=26 4032585176685733 r008 a(0)=4,K{-n^6,14-32*n-60*n^2+48*n^3} 4032585177063212 r005 Re(z^2+c),c=-15/28+11/35*I,n=58 4032585192246731 r005 Im(z^2+c),c=-17/94+33/56*I,n=18 4032585197505815 m001 BesselJ(1,1)^GaussAGM/(Mills^GaussAGM) 4032585209516652 r005 Im(z^2+c),c=-15/13+2/39*I,n=32 4032585215504355 r009 Im(z^3+c),c=-1/27+22/47*I,n=24 4032585224138424 r005 Re(z^2+c),c=25/102+22/53*I,n=54 4032585230470912 r002 13th iterates of z^2 + 4032585240114513 m005 (1/2*Catalan+9/11)/(1/4*Catalan-6/11) 4032585246635596 m005 (1/2*gamma-9/11)/(7/10*gamma-3/11) 4032585248384219 a007 Real Root Of 225*x^4+128*x^3-892*x^2-948*x+513 4032585251231845 r005 Re(z^2+c),c=-15/26+36/95*I,n=40 4032585257681842 r005 Re(z^2+c),c=-71/122+13/46*I,n=20 4032585261780824 m001 (5^(1/2)-GAMMA(13/24))/(Conway+ZetaP(3)) 4032585266082048 r008 a(0)=4,K{-n^6,27-7*n-47*n^2-4*n^3} 4032585270117327 a001 5600748293801/144*144^(8/17) 4032585275977335 m001 polylog(4,1/2)^BesselI(1,2)*GAMMA(1/12) 4032585278616790 r005 Im(z^2+c),c=25/98+11/29*I,n=14 4032585292214640 r002 8th iterates of z^2 + 4032585296361134 r005 Re(z^2+c),c=-47/86+7/17*I,n=22 4032585298095579 a007 Real Root Of 85*x^4-170*x^3+673*x^2-870*x+34 4032585298569013 m001 (ln(Pi)-Ei(1))/(PlouffeB-Robbin) 4032585311094190 m001 1/cos(Pi/12)/exp(MadelungNaCl)*sqrt(5) 4032585312827469 r009 Im(z^3+c),c=-7/90+27/58*I,n=24 4032585323386445 a007 Real Root Of -975*x^4-495*x^3-875*x^2-4*x+134 4032585329215374 a001 121393/2*18^(19/29) 4032585338355482 r008 a(0)=4,K{-n^6,43-31*n-39*n^2-4*n^3} 4032585347596688 r008 a(0)=4,K{-n^6,51-45*n-32*n^2-5*n^3} 4032585352347225 r005 Re(z^2+c),c=-9/14+40/167*I,n=15 4032585353512426 r002 57th iterates of z^2 + 4032585364915827 r002 50th iterates of z^2 + 4032585370638321 r009 Im(z^3+c),c=-1/27+22/47*I,n=22 4032585371143409 r009 Im(z^3+c),c=-7/90+27/58*I,n=26 4032585372203483 r002 15th iterates of z^2 + 4032585372838378 m001 (-sin(1/12*Pi)+Trott)/(Catalan-ln(2)/ln(10)) 4032585384273199 l006 ln(3932/5885) 4032585384355009 r009 Im(z^3+c),c=-7/90+27/58*I,n=28 4032585386290413 r009 Im(z^3+c),c=-7/90+27/58*I,n=31 4032585386348426 r009 Im(z^3+c),c=-7/90+27/58*I,n=33 4032585386413056 r009 Im(z^3+c),c=-7/90+27/58*I,n=35 4032585386437202 r009 Im(z^3+c),c=-7/90+27/58*I,n=37 4032585386443621 r009 Im(z^3+c),c=-7/90+27/58*I,n=39 4032585386444906 r009 Im(z^3+c),c=-7/90+27/58*I,n=41 4032585386445009 r009 Im(z^3+c),c=-7/90+27/58*I,n=44 4032585386445025 r009 Im(z^3+c),c=-7/90+27/58*I,n=46 4032585386445034 r009 Im(z^3+c),c=-7/90+27/58*I,n=48 4032585386445037 r009 Im(z^3+c),c=-7/90+27/58*I,n=50 4032585386445038 r009 Im(z^3+c),c=-7/90+27/58*I,n=52 4032585386445038 r009 Im(z^3+c),c=-7/90+27/58*I,n=55 4032585386445038 r009 Im(z^3+c),c=-7/90+27/58*I,n=57 4032585386445038 r009 Im(z^3+c),c=-7/90+27/58*I,n=54 4032585386445038 r009 Im(z^3+c),c=-7/90+27/58*I,n=59 4032585386445038 r009 Im(z^3+c),c=-7/90+27/58*I,n=61 4032585386445038 r009 Im(z^3+c),c=-7/90+27/58*I,n=63 4032585386445038 r009 Im(z^3+c),c=-7/90+27/58*I,n=64 4032585386445038 r009 Im(z^3+c),c=-7/90+27/58*I,n=62 4032585386445038 r009 Im(z^3+c),c=-7/90+27/58*I,n=60 4032585386445038 r009 Im(z^3+c),c=-7/90+27/58*I,n=58 4032585386445038 r009 Im(z^3+c),c=-7/90+27/58*I,n=56 4032585386445038 r009 Im(z^3+c),c=-7/90+27/58*I,n=53 4032585386445038 r009 Im(z^3+c),c=-7/90+27/58*I,n=51 4032585386445039 r009 Im(z^3+c),c=-7/90+27/58*I,n=49 4032585386445041 r009 Im(z^3+c),c=-7/90+27/58*I,n=42 4032585386445045 r009 Im(z^3+c),c=-7/90+27/58*I,n=47 4032585386445058 r009 Im(z^3+c),c=-7/90+27/58*I,n=45 4032585386445067 r009 Im(z^3+c),c=-7/90+27/58*I,n=43 4032585386445538 r009 Im(z^3+c),c=-7/90+27/58*I,n=40 4032585386448525 r009 Im(z^3+c),c=-7/90+27/58*I,n=38 4032585386461411 r009 Im(z^3+c),c=-7/90+27/58*I,n=36 4032585386477297 r009 Im(z^3+c),c=-7/90+27/58*I,n=30 4032585386503164 r009 Im(z^3+c),c=-7/90+27/58*I,n=34 4032585386585423 r009 Im(z^3+c),c=-7/90+27/58*I,n=32 4032585386947607 r009 Im(z^3+c),c=-7/90+27/58*I,n=29 4032585388843673 r002 11th iterates of z^2 + 4032585392549507 r009 Im(z^3+c),c=-7/90+27/58*I,n=27 4032585398828396 a001 1/47*(1/2*5^(1/2)+1/2)^29*199^(9/17) 4032585404532882 a001 4272/105937 4032585404900023 a004 Fibonacci(11)/Lucas(12)/(1/2+sqrt(5)/2)^4 4032585407096047 a004 Fibonacci(12)/Lucas(11)/(1/2+sqrt(5)/2)^6 4032585409793301 m001 (Pi^(1/2)-Champernowne)/(Kac-MertensB2) 4032585421283399 r009 Im(z^3+c),c=-7/90+27/58*I,n=25 4032585440284871 m001 Bloch^Gompertz-CopelandErdos 4032585460046768 r005 Re(z^2+c),c=19/70+1/31*I,n=30 4032585493516108 m005 (1/2*5^(1/2)+2/7)/(5/6*gamma+3) 4032585494378476 s001 sum(1/10^(n-1)*A204093[n]/n!,n=1..infinity) 4032585499852400 r008 a(0)=4,K{-n^6,27+4*n^3-71*n^2+9*n} 4032585502137648 r009 Im(z^3+c),c=-23/66+25/63*I,n=21 4032585506311268 m001 (CopelandErdos+Robbin)/(1+GAMMA(3/4)) 4032585506398268 r005 Re(z^2+c),c=-14/25+3/28*I,n=24 4032585511311132 r008 a(0)=4,K{-n^6,11+7*n^3-88*n^2+39*n} 4032585512271873 r005 Re(z^2+c),c=-9/16+3/29*I,n=39 4032585519247847 r008 a(0)=4,K{-n^6,30-52*n-58*n^2+50*n^3} 4032585522942233 m001 Pi-exp(Pi)*(sin(1)+Zeta(5)) 4032585526680102 m005 (1/2*2^(1/2)+4/5)/(1/7*Zeta(3)-6/11) 4032585527370083 r005 Im(z^2+c),c=-41/38+4/11*I,n=3 4032585531831874 r009 Im(z^3+c),c=-7/90+27/58*I,n=23 4032585535048397 r005 Im(z^2+c),c=-1/98+25/44*I,n=26 4032585554799950 r002 18th iterates of z^2 + 4032585556227035 a001 322/13*2584^(35/54) 4032585580023141 r009 Re(z^3+c),c=-8/19+9/59*I,n=29 4032585582123768 m008 (3*Pi^3-2/3)/(3/4*Pi^5-1/2) 4032585589806512 a007 Real Root Of 222*x^4+732*x^3-819*x^2-767*x-479 4032585628439918 a007 Real Root Of 438*x^4-241*x^3-182*x^2-985*x-395 4032585631512492 a007 Real Root Of 189*x^4+324*x^3+310*x^2-509*x+20 4032585637352656 a001 1/2204*(1/2*5^(1/2)+1/2)^28*76^(7/12) 4032585645573417 l006 ln(6503/9733) 4032585645703530 m005 (1/3*2^(1/2)+3/5)/(7/12*Catalan-4/5) 4032585661336412 r005 Im(z^2+c),c=-97/110+17/63*I,n=7 4032585662611625 r005 Im(z^2+c),c=4/17+18/53*I,n=63 4032585666400119 p001 sum((-1)^n/(283*n+239)/(12^n),n=0..infinity) 4032585666655016 a007 Real Root Of -763*x^4-598*x^3-616*x^2+818*x+411 4032585674317779 r005 Re(z^2+c),c=-13/10+54/247*I,n=4 4032585687641168 m001 (sin(1/5*Pi)+Zeta(1,-1))/(BesselI(1,2)-Landau) 4032585696621428 m001 GAMMA(2/3)-GlaisherKinkelin-Weierstrass 4032585696743163 m001 (gamma(2)+CareFree)/(sin(1)+ln(2^(1/2)+1)) 4032585699398170 a003 cos(Pi*4/71)*cos(Pi*56/115) 4032585707094091 a007 Real Root Of -17*x^4-668*x^3+730*x^2+924*x+344 4032585714077072 r005 Re(z^2+c),c=-35/48+2/27*I,n=35 4032585714653600 r002 7th iterates of z^2 + 4032585725258574 r009 Im(z^3+c),c=-19/66+8/19*I,n=20 4032585733874972 r005 Re(z^2+c),c=-4/3+17/195*I,n=12 4032585738549146 a001 1/13*17711^(17/42) 4032585745006133 m001 (GAMMA(3/4)+Ei(1))/(gamma(3)-StronglyCareFree) 4032585751657131 r005 Re(z^2+c),c=17/66+29/54*I,n=3 4032585804573682 a007 Real Root Of 260*x^4+861*x^3-730*x^2+300*x+787 4032585804643337 r005 Im(z^2+c),c=-31/110+16/27*I,n=42 4032585820408388 m001 (MertensB1+Tetranacci)/(Psi(2,1/3)+Chi(1)) 4032585829366539 a007 Real Root Of -302*x^4-228*x^3-252*x^2+548*x+255 4032585829561579 r002 60th iterates of z^2 + 4032585833403470 r005 Im(z^2+c),c=-13/86+25/38*I,n=14 4032585837725057 a007 Real Root Of -178*x^4-495*x^3+638*x^2-907*x+578 4032585838567373 r009 Im(z^3+c),c=-7/90+27/58*I,n=21 4032585838732831 a007 Real Root Of 91*x^4-457*x^3-562*x^2-935*x+496 4032585845129631 r005 Im(z^2+c),c=-27/22+3/74*I,n=56 4032585856098050 h001 (9/11*exp(1)+1/3)/(3/4*exp(2)+4/5) 4032585857396011 r005 Im(z^2+c),c=2/15+26/61*I,n=43 4032585857920365 r005 Re(z^2+c),c=-9/16+13/123*I,n=44 4032585863013131 m001 (BesselI(1,2)+TwinPrimes)/(Psi(2,1/3)-ln(2)) 4032585868202564 r005 Im(z^2+c),c=15/46+11/48*I,n=28 4032585880488064 m005 (-1/30+1/6*5^(1/2))/(1/8*3^(1/2)+5/8) 4032585890373146 r005 Im(z^2+c),c=9/74+11/23*I,n=15 4032585892227980 r005 Re(z^2+c),c=-25/46+10/37*I,n=64 4032585923070583 r002 11th iterates of z^2 + 4032585923240270 m001 1/ln(CareFree)*DuboisRaymond^2*GAMMA(11/24)^2 4032585923453432 r009 Im(z^3+c),c=-1/27+22/47*I,n=20 4032585926875265 r005 Im(z^2+c),c=-11/106+31/54*I,n=47 4032585936524294 m001 log(2+sqrt(3))/exp(GAMMA(7/12))/sin(1)^2 4032585940109842 r008 a(0)=4,K{-n^6,-56+21*n+56*n^2-52*n^3} 4032585944297348 r005 Im(z^2+c),c=17/122+34/61*I,n=21 4032585945820856 r005 Re(z^2+c),c=-71/126+3/34*I,n=58 4032585957266123 m001 Lehmer^2/LaplaceLimit^2*exp(cos(Pi/5))^2 4032585970016232 p003 LerchPhi(1/125,1,419/168) 4032585983049891 r008 a(0)=4,K{-n^6,-40+n+58*n^2-50*n^3} 4032585989210786 r009 Re(z^3+c),c=-7/94+43/60*I,n=57 4032585991789225 r008 a(0)=4,K{-n^6,-46-33*n+29*n^2} 4032585996339279 r005 Re(z^2+c),c=-69/122+8/39*I,n=20 4032586005244653 r009 Im(z^3+c),c=-65/122+14/41*I,n=54 4032586032913699 r009 Im(z^3+c),c=-39/82+28/61*I,n=13 4032586034314755 a005 (1/sin(89/231*Pi))^21 4032586042563572 r005 Im(z^2+c),c=-29/94+27/44*I,n=44 4032586045197076 l006 ln(2571/3848) 4032586049830400 m001 (GaussKuzminWirsing+MertensB3)/(Pi+Catalan) 4032586056043453 l006 ln(91/5133) 4032586059031681 r009 Re(z^3+c),c=-23/50+8/41*I,n=31 4032586065143907 m005 (1/2*exp(1)-1/3)/(9/11*5^(1/2)+5/7) 4032586066939608 a001 76/47*(1/2*5^(1/2)+1/2)^23*47^(6/17) 4032586079825478 m005 (1/2*Catalan-9/11)/(1/5*gamma+7/9) 4032586079922717 b008 E*Coth[9/11] 4032586085701629 r002 27th iterates of z^2 + 4032586098670872 b008 E^6-Csch[1]/5 4032586102161119 a007 Real Root Of -882*x^4+880*x^3+952*x^2+431*x-363 4032586103824960 r008 a(0)=4,K{-n^6,-6-38*n+57*n^2-44*n^3} 4032586110548416 r005 Im(z^2+c),c=-9/98+38/63*I,n=40 4032586111919688 r005 Re(z^2+c),c=-37/66+8/61*I,n=62 4032586113053742 r002 38th iterates of z^2 + 4032586135407442 r005 Im(z^2+c),c=11/56+3/8*I,n=60 4032586158555495 r005 Re(z^2+c),c=-69/122+1/56*I,n=33 4032586174829862 r008 a(0)=4,K{-n^6,-24-35*n^3+21*n^2+7*n} 4032586180064146 m001 exp(TwinPrimes)/LaplaceLimit*sinh(1)^2 4032586180745258 r009 Im(z^3+c),c=-7/90+27/58*I,n=19 4032586187528314 m001 (-3^(1/3)+CopelandErdos)/(2^(1/3)+3^(1/2)) 4032586200307426 r002 37th iterates of z^2 + 4032586205026555 r008 a(0)=4,K{-n^6,-21-12*n^3+65*n^2-64*n} 4032586207146903 r008 a(0)=4,K{-n^6,-27+5*n^3+49*n^2-57*n} 4032586208693511 r008 a(0)=4,K{-n^6,-50+60*n-13*n^2-28*n^3} 4032586212953009 r008 a(0)=4,K{-n^6,-24-32*n^3+12*n^2+13*n} 4032586212986569 m001 Backhouse+Conway^FeigenbaumMu 4032586223807926 a007 Real Root Of -990*x^4+445*x^3+500*x^2+843*x+314 4032586244130541 a007 Real Root Of 704*x^4-413*x^3-536*x^2-973*x+488 4032586250587644 r005 Re(z^2+c),c=-53/98+17/60*I,n=44 4032586250680839 a008 Real Root of x^4-x^3+18*x^2-27*x+8 4032586250753643 a007 Real Root Of 213*x^4-845*x^3-393*x^2-756*x-302 4032586268046222 m001 (Conway+Tetranacci)/(exp(1/exp(1))-Cahen) 4032586275215354 r009 Im(z^3+c),c=-19/106+38/51*I,n=2 4032586278814921 r005 Im(z^2+c),c=3/29+23/55*I,n=9 4032586287448312 r002 35th iterates of z^2 + 4032586296596438 r002 52th iterates of z^2 + 4032586302783495 m002 -6-(6*E^Pi)/Pi+Pi^2 4032586309348332 r005 Im(z^2+c),c=11/34+23/61*I,n=15 4032586311593254 a007 Real Root Of 262*x^4+914*x^3-287*x^2+953*x-837 4032586314505480 r008 a(0)=4,K{-n^6,8-31*n+22*n^2-30*n^3} 4032586326619677 r002 39th iterates of z^2 + 4032586326834498 r005 Re(z^2+c),c=-27/50+13/51*I,n=21 4032586329016366 a007 Real Root Of 686*x^4+548*x^3-815*x^2-842*x+418 4032586337844178 r005 Im(z^2+c),c=-67/66+13/49*I,n=20 4032586346999523 h001 (7/10*exp(2)+3/7)/(1/7*exp(2)+1/3) 4032586349602876 m001 (Sarnak+Trott)/(5^(1/2)-PrimesInBinary) 4032586355278357 r005 Im(z^2+c),c=29/102+16/49*I,n=9 4032586360298990 r005 Re(z^2+c),c=-9/16+7/66*I,n=42 4032586382157022 r002 21th iterates of z^2 + 4032586384271519 r005 Re(z^2+c),c=-43/78+12/55*I,n=61 4032586384859667 r005 Im(z^2+c),c=-85/62+4/59*I,n=18 4032586400767926 r005 Im(z^2+c),c=-53/62+1/38*I,n=54 4032586406181596 r009 Im(z^3+c),c=-9/62+49/60*I,n=18 4032586438780296 m002 1+Pi^4+Pi^5-Sinh[Pi]/Pi^2 4032586454320587 l006 ln(6352/9507) 4032586457341908 a007 Real Root Of 650*x^4-494*x^3-938*x^2-509*x+373 4032586457705405 r005 Im(z^2+c),c=21/74+11/38*I,n=50 4032586462175795 a003 cos(1/9*Pi)+cos(1/18*Pi)-2^(1/2)-cos(2/15*Pi) 4032586477863158 m005 (1/3*5^(1/2)+1/4)/(exp(1)-1/4) 4032586488991089 r005 Im(z^2+c),c=-7/74+19/33*I,n=64 4032586491022191 r009 Re(z^3+c),c=-59/122+13/58*I,n=23 4032586493208861 r004 Re(z^2+c),c=-7/12-1/19*I,z(0)=-1,n=8 4032586493623362 m005 (1/3*exp(1)-1/9)/(3/7*Pi+5/8) 4032586501729923 a007 Real Root Of -306*x^4+543*x^3+352*x^2+504*x-288 4032586509923268 m008 (4*Pi^5+1/6)/(3*Pi^2+3/4) 4032586519382066 r005 Im(z^2+c),c=17/52+13/55*I,n=25 4032586540735758 r005 Im(z^2+c),c=-13/10+5/216*I,n=18 4032586543780035 r002 6th iterates of z^2 + 4032586543985697 r005 Re(z^2+c),c=-19/30+13/56*I,n=24 4032586546171824 r002 41th iterates of z^2 + 4032586549966401 a005 (1/cos(27/181*Pi))^537 4032586558044806 q001 198/491 4032586562679540 r002 64th iterates of z^2 + 4032586571888130 r005 Im(z^2+c),c=-3/122+51/59*I,n=3 4032586573529769 m001 Riemann3rdZero/ln(KhintchineLevy)/GAMMA(1/4) 4032586583097949 r008 a(0)=4,K{-n^6,-24+59*n-57*n^2-9*n^3} 4032586584842508 a007 Real Root Of -259*x^4-622*x^3-792*x^2+45*x+113 4032586599758458 h001 (4/7*exp(2)+1/8)/(1/6*exp(1)+5/8) 4032586602479739 m001 (Khinchin-MertensB3)/(ln(5)+KhinchinHarmonic) 4032586605725980 r005 Im(z^2+c),c=5/82+11/23*I,n=48 4032586613013180 r002 13th iterates of z^2 + 4032586614633160 r005 Re(z^2+c),c=-7/13+19/52*I,n=40 4032586617683348 a007 Real Root Of -559*x^4+230*x^3-845*x^2+897*x+529 4032586618797442 m001 Ei(1)/ErdosBorwein^2*ln(sqrt(3)) 4032586618832776 r005 Im(z^2+c),c=-53/62+1/38*I,n=51 4032586627242799 m001 (cos(1)-ln(3))/(-Rabbit+Sarnak) 4032586630104687 r002 22th iterates of z^2 + 4032586633346750 r005 Im(z^2+c),c=37/122+4/15*I,n=58 4032586644382329 r008 a(0)=4,K{-n^6,12-n-30*n^2-12*n^3} 4032586653348271 m001 1/Riemann3rdZero/ln(Lehmer)/Ei(1) 4032586664835636 m001 1/Sierpinski*Niven^2/exp(GAMMA(23/24)) 4032586685118706 h001 (-8*exp(3)-6)/(-6*exp(2)+3) 4032586701891136 p001 sum(1/(299*n+25)/(10^n),n=0..infinity) 4032586709247241 m001 1/ArtinRank2^2/exp(Backhouse)*sin(1) 4032586710167277 r005 Re(z^2+c),c=-10/19+8/23*I,n=43 4032586717503517 m001 1/ln(FeigenbaumDelta)^2*Artin^2/Zeta(1/2) 4032586722792247 m001 (BesselI(0,1)-cos(1/5*Pi)*MertensB1)/MertensB1 4032586725406906 r005 Re(z^2+c),c=-23/38+4/17*I,n=20 4032586726889369 m001 1/exp(GAMMA(2/3))^2/sqrt(1+sqrt(3)) 4032586727877578 m005 (1/2*exp(1)-7/12)/(111/110+9/22*5^(1/2)) 4032586732515909 l006 ln(3781/5659) 4032586734595686 r005 Im(z^2+c),c=29/82+19/60*I,n=62 4032586751257405 r005 Re(z^2+c),c=-23/62+16/35*I,n=7 4032586752967398 r005 Im(z^2+c),c=-21/31+13/54*I,n=19 4032586756233197 m005 (1/2*Pi-3/5)/(2/3*5^(1/2)+11/12) 4032586765341730 r002 57th iterates of z^2 + 4032586788138679 m001 (QuadraticClass+Robbin)/(DuboisRaymond-gamma) 4032586798006630 r009 Im(z^3+c),c=-8/17+19/62*I,n=7 4032586805828971 a007 Real Root Of -424*x^4-542*x^3-12*x^2+730*x+272 4032586807687120 a007 Real Root Of 696*x^4+388*x^3+32*x^2-630*x+205 4032586815716206 m001 (exp(1)-sin(1/5*Pi))/(polylog(4,1/2)+Trott) 4032586819604471 m001 1/ln(log(2+sqrt(3)))^2*Paris^2*sqrt(Pi)^2 4032586821090071 h001 (7/11*exp(2)+3/10)/(2/9*exp(1)+7/11) 4032586821223965 r008 a(0)=4,K{-n^6,22-6*n^3-43*n^2-4*n} 4032586829322627 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)*ln(Pi)+cos(1/12*Pi) 4032586829322627 m001 GAMMA(1/3)*ln(Pi)+cos(Pi/12) 4032586843766835 r005 Re(z^2+c),c=9/58+16/51*I,n=25 4032586844993259 m005 (1/2*5^(1/2)+2/5)/(5/11*exp(1)-5) 4032586845041401 r009 Im(z^3+c),c=-14/25+13/62*I,n=33 4032586850786137 r009 Im(z^3+c),c=-19/74+25/58*I,n=12 4032586859562314 r004 Re(z^2+c),c=-5/9+4/15*I,z(0)=-1,n=33 4032586898646602 r005 Im(z^2+c),c=8/29+14/47*I,n=37 4032586906796304 r002 5th iterates of z^2 + 4032586913414837 r005 Im(z^2+c),c=-29/102+39/64*I,n=54 4032586916688151 a007 Real Root Of -787*x^4-600*x^3-521*x^2+617*x+315 4032586916833727 m005 (1/3*3^(1/2)+1/8)/(7/12*Pi-1/11) 4032586918820276 r005 Im(z^2+c),c=-41/48+4/13*I,n=3 4032586926366576 r008 a(0)=4,K{-n^6,46-40*n-31*n^2-6*n^3} 4032586927721157 m001 (Champernowne-Rabbit)/(gamma(3)-Backhouse) 4032586929255754 r002 43th iterates of z^2 + 4032586930137321 a001 13/24476*76^(22/47) 4032586935837138 r008 a(0)=4,K{-n^6,36-4*n^3-42*n^2-21*n} 4032586939336842 m001 (Landau+TwinPrimes)/(ln(5)+exp(1/Pi)) 4032586939985752 m001 (Rabbit-Riemann2ndZero)/(FeigenbaumMu+Porter) 4032586955051040 r009 Im(z^3+c),c=-10/27+7/16*I,n=6 4032586957029586 r002 50th iterates of z^2 + 4032586957555913 m001 sin(Pi/5)^2/ln(GAMMA(13/24))/sqrt(3) 4032586959512903 m005 (1/2*Catalan-4/11)/(8/9*3^(1/2)+4/5) 4032586966551367 r005 Im(z^2+c),c=7/102+26/55*I,n=22 4032586973401168 r008 a(0)=4,K{-n^6,50-44*n-32*n^2-5*n^3} 4032586980341918 m001 (DuboisRaymond-cos(1))/(-Thue+ZetaQ(4)) 4032586989305365 p004 log(20599/13763) 4032586995515733 a001 1364/17711*610^(41/42) 4032586996402783 m005 (-13/30+1/6*5^(1/2))/(5*Pi-2/3) 4032586997141767 r005 Re(z^2+c),c=4/27+13/24*I,n=48 4032587011962483 r005 Re(z^2+c),c=-71/126+1/29*I,n=21 4032587025843118 r009 Re(z^3+c),c=-55/114+14/55*I,n=14 4032587027325135 m001 (-Zeta(1,-1)+Lehmer)/(BesselJ(0,1)-gamma) 4032587032595352 r005 Im(z^2+c),c=11/32+1/5*I,n=40 4032587047563958 m005 (1/2*Zeta(3)+9/10)/(4/7*5^(1/2)-5) 4032587074136689 r005 Im(z^2+c),c=-27/44+3/40*I,n=62 4032587079794287 s002 sum(A217496[n]/(n!^3),n=1..infinity) 4032587086572537 l006 ln(4991/7470) 4032587088205011 r002 5th iterates of z^2 + 4032587092066733 a007 Real Root Of -69*x^4-115*x^3+780*x^2+271*x-886 4032587093949252 r002 30th iterates of z^2 + 4032587098457075 r005 Re(z^2+c),c=-59/106+4/23*I,n=46 4032587111765606 r005 Re(z^2+c),c=-25/34+9/64*I,n=17 4032587111913018 s002 sum(A270609[n]/(n^2*2^n+1),n=1..infinity) 4032587116188180 r005 Im(z^2+c),c=-81/122+15/47*I,n=16 4032587123793257 s002 sum(A034265[n]/(exp(n)+1),n=1..infinity) 4032587124938282 r002 37th iterates of z^2 + 4032587128334691 r005 Im(z^2+c),c=-79/126+3/40*I,n=50 4032587138564366 r005 Re(z^2+c),c=-37/66+8/61*I,n=61 4032587150256557 r005 Re(z^2+c),c=-37/64+26/57*I,n=14 4032587155117606 r005 Re(z^2+c),c=-25/46+8/29*I,n=41 4032587156048531 m001 ZetaP(4)^Sierpinski*ZetaP(4)^FeigenbaumKappa 4032587174177909 r002 28th iterates of z^2 + 4032587174456388 a007 Real Root Of -802*x^4+895*x^3-981*x^2-254*x+137 4032587182961354 r008 a(0)=0,K{-n^6,-60+50*n-18*n^2+7*n^3} 4032587197373484 r005 Re(z^2+c),c=-69/122+1/32*I,n=52 4032587204298275 g006 Psi(1,1/6)-Psi(1,5/11)-Psi(1,1/8)-Psi(1,3/7) 4032587206144003 m001 Trott^(Riemann3rdZero/Zeta(5)) 4032587207368924 r005 Re(z^2+c),c=-35/64+10/33*I,n=30 4032587208700326 r005 Im(z^2+c),c=-29/62+33/61*I,n=33 4032587210936813 m001 1/ln(Paris)^2*GaussKuzminWirsing^2*GAMMA(1/24) 4032587212291278 s002 sum(A161643[n]/((exp(n)-1)/n),n=1..infinity) 4032587218143502 a007 Real Root Of -971*x^4+354*x^3+572*x^2+812*x-418 4032587234660660 a007 Real Root Of 394*x^4-717*x^3+717*x^2+72*x-145 4032587239493770 m005 (1/3*Zeta(3)+1/3)/(-35/18+1/18*5^(1/2)) 4032587239919556 m008 (1/5*Pi^6-2/3)/(1/4*Pi^3-3) 4032587240467375 a001 89/7*199^(32/49) 4032587253043437 a001 89/15127*199^(4/11) 4032587255678526 r002 11th iterates of z^2 + 4032587269825740 a007 Real Root Of -270*x^4-948*x^3+733*x^2+544*x-493 4032587271329828 a007 Real Root Of -585*x^4+76*x^3-193*x^2+479*x+245 4032587275437492 r002 18th iterates of z^2 + 4032587281763764 r009 Im(z^3+c),c=-5/13+11/29*I,n=36 4032587286836581 m001 (BesselK(1,1)-Landau)/(exp(1/exp(1))-gamma(2)) 4032587288674374 a007 Real Root Of 698*x^4+276*x^3-6*x^2-645*x+26 4032587299077470 r008 a(0)=4,K{-n^6,-41-22*n+21*n^2+12*n^3} 4032587300465787 r005 Im(z^2+c),c=-1/25+21/37*I,n=28 4032587302455148 l006 ln(6201/9281) 4032587303814086 a003 -3/2-cos(1/7*Pi)-cos(1/21*Pi)-cos(5/18*Pi) 4032587313320239 a007 Real Root Of 213*x^4+718*x^3-537*x^2-33*x-643 4032587318983431 r009 Re(z^3+c),c=-5/74+29/50*I,n=31 4032587331206022 a001 843/610*514229^(43/55) 4032587345378500 r008 a(0)=4,K{-n^6,-31+18*n-34*n^2+14*n^3} 4032587347050931 a007 Real Root Of -241*x^4-718*x^3-503*x^2+342*x+179 4032587351149915 a007 Real Root Of 6*x^4-176*x^3-778*x^2-44*x-654 4032587354828245 l006 ln(150/8461) 4032587373008774 r009 Im(z^3+c),c=-13/66+4/9*I,n=6 4032587393082735 m001 (Magata+StolarskyHarborth)/(3^(1/3)-gamma) 4032587394837663 r005 Im(z^2+c),c=-3/13+3/5*I,n=26 4032587401640900 g006 Psi(1,8/9)-Psi(1,9/11)-Psi(1,5/7)-Psi(1,1/6) 4032587404619377 m005 (1/3*gamma+2/9)/(3*Pi+6/7) 4032587404776639 a001 408569081798*1836311903^(11/17) 4032587404776639 a001 4106118243/2*6557470319842^(11/17) 4032587409214958 r005 Im(z^2+c),c=7/94+17/36*I,n=25 4032587411778856 a007 Real Root Of 82*x^4-734*x^3-671*x^2+25*x+145 4032587424183447 m001 (-ln(2)/ln(10)+arctan(1/2))^(1/2) 4032587428599116 r002 8th iterates of z^2 + 4032587428599116 r002 8th iterates of z^2 + 4032587431305773 r005 Re(z^2+c),c=-13/23+2/45*I,n=26 4032587432857265 r005 Im(z^2+c),c=-91/122+1/29*I,n=12 4032587491730293 m001 (RenyiParking+Thue)/(gamma+Magata) 4032587492096501 r005 Im(z^2+c),c=11/126+25/54*I,n=25 4032587497430733 r002 21th iterates of z^2 + 4032587516351388 r002 46th iterates of z^2 + 4032587517895142 p003 LerchPhi(1/16,4,486/217) 4032587521864949 a005 (1/cos(4/129*Pi))^1747 4032587526539836 m001 (FeigenbaumB+Tetranacci)/(Bloch-cos(1)) 4032587534745208 b008 9+E^(31/9) 4032587543332501 m001 OneNinth/(Zeta(1,2)-3^(1/2)) 4032587543332501 m001 OneNinth/(Zeta(1,2)-sqrt(3)) 4032587554327064 m001 (BesselJ(1,1)+GaussAGM)/(Sierpinski+Stephens) 4032587574871863 m001 (ln(Pi)+sin(Pi/12))^exp(sqrt(2)) 4032587587027313 p004 log(28711/509) 4032587592322429 a007 Real Root Of -232*x^4-795*x^3+302*x^2-935*x+536 4032587594072541 r009 Re(z^3+c),c=-18/29+32/59*I,n=5 4032587595794265 a001 123/34*10946^(43/57) 4032587608872526 r008 a(0)=4,K{-n^6,-35-51*n^3+64*n^2-9*n} 4032587608879961 r008 a(0)=4,K{-n^6,-41+2*n+58*n^2-50*n^3} 4032587611672440 m002 (-5*Coth[Pi])/4+Pi^2*Sech[Pi] 4032587613740342 m001 1/GAMMA(5/6)*GAMMA(1/3)/exp(sqrt(Pi)) 4032587616880636 m002 1+4*Pi^4+ProductLog[Pi]+Sinh[Pi] 4032587619104655 m005 (1/2*gamma+4/9)/(1/2*2^(1/2)-8/9) 4032587633777041 r005 Im(z^2+c),c=27/94+2/7*I,n=52 4032587646303835 r005 Im(z^2+c),c=-6/5+13/35*I,n=4 4032587651766735 a007 Real Root Of 36*x^4-688*x^3+413*x^2-850*x-456 4032587664683233 m001 (Zeta(5)+ln(5))/(polylog(4,1/2)-GAMMA(19/24)) 4032587664830238 m006 (4/Pi-2)/(3/4*exp(Pi)+2/3) 4032587669845473 r005 Im(z^2+c),c=19/122+21/37*I,n=32 4032587674137986 l006 ln(9113/9488) 4032587685916270 p003 LerchPhi(1/10,5,181/95) 4032587693943156 a001 2178309/1364*3^(43/51) 4032587696766212 r009 Im(z^3+c),c=-1/27+22/47*I,n=18 4032587697679812 r009 Im(z^3+c),c=-65/126+13/51*I,n=28 4032587714457635 a003 sin(Pi*4/31)/sin(Pi*42/97) 4032587720863573 m001 ReciprocalLucas^cos(1/12*Pi)*Riemann2ndZero 4032587721516141 r005 Im(z^2+c),c=13/106+23/53*I,n=29 4032587734667109 r005 Im(z^2+c),c=-13/102+22/37*I,n=50 4032587735342345 r008 a(0)=4,K{-n^6,-41+26*n+22*n^2-38*n^3} 4032587746259182 m001 1/cos(Pi/12)^2*exp(GAMMA(1/3))^2*sqrt(Pi) 4032587748577483 m002 -23/6-Tanh[Pi]/5 4032587751531387 m001 GAMMA(23/24)*Porter/exp(log(2+sqrt(3))) 4032587754749478 r008 a(0)=4,K{-n^6,-25+33*n^2-39*n^3} 4032587787883362 a007 Real Root Of -700*x^4-648*x^3-236*x^2+738*x+312 4032587798158565 r005 Re(z^2+c),c=17/86+9/16*I,n=30 4032587811771937 a001 3/89*2^(15/58) 4032587817449721 r005 Re(z^2+c),c=-35/62+1/50*I,n=25 4032587834670174 p001 sum(1/(394*n+335)/(2^n),n=0..infinity) 4032587837309455 a001 47/28657*514229^(18/43) 4032587840793118 r009 Im(z^3+c),c=-3/25+10/19*I,n=2 4032587846140856 m001 Ei(1)*Tribonacci^2*ln(GAMMA(17/24))^2 4032587848381239 a007 Real Root Of 185*x^4+788*x^3-98*x^2-982*x+386 4032587849486276 r009 Re(z^3+c),c=-59/126+11/54*I,n=50 4032587849577176 h002 exp(19^(10/9)-3^(3/5)) 4032587849577176 h007 exp(19^(10/9)-3^(3/5)) 4032587852605716 m005 (1/2*Zeta(3)-4/7)/(7/4+5/2*5^(1/2)) 4032587855183153 a003 sin(Pi*7/79)/cos(Pi*23/88) 4032587856528119 r002 58th iterates of z^2 + 4032587876487100 r005 Im(z^2+c),c=-21/25+5/22*I,n=9 4032587876848518 m005 (1/2*gamma+7/8)/(6/7*exp(1)+5/9) 4032587900304360 r005 Im(z^2+c),c=15/82+21/61*I,n=7 4032587918754955 m001 1/ln((2^(1/3)))/PrimesInBinary/sin(Pi/12) 4032587920993570 r008 a(0)=4,K{-n^6,-57-21*n^3-37*n^2+84*n} 4032587924606925 r005 Re(z^2+c),c=-9/16+8/75*I,n=34 4032587953474310 r005 Re(z^2+c),c=-16/25+4/35*I,n=8 4032587967400450 r009 Re(z^3+c),c=-15/29+20/49*I,n=55 4032587972106403 m005 (1/3*Zeta(3)-2/9)/(15/14+3/2*5^(1/2)) 4032587982706964 h001 (7/9*exp(2)+3/4)/(1/7*exp(2)+5/9) 4032587982725759 a001 4*11^(53/55) 4032587985218015 m001 Zeta(1/2)/(MertensB1+ReciprocalFibonacci) 4032587991655471 r008 a(0)=4,K{-n^6,-11+9*n-5*n^2-24*n^3} 4032588001088664 m001 1/GAMMA(23/24)/DuboisRaymond*ln(sqrt(5)) 4032588001847073 m001 GAMMA(1/12)^2/Si(Pi)^2*exp(GAMMA(19/24))^2 4032588011922451 r002 13th iterates of z^2 + 4032588012366159 a007 Real Root Of -842*x^4+615*x^3-257*x^2+924*x+477 4032588020196898 a007 Real Root Of -207*x^4-747*x^3+293*x^2-442*x-793 4032588026614053 m005 (1/2*5^(1/2)+6)/(6/11*5^(1/2)+6/11) 4032588035788761 a005 (1/cos(9/185*Pi))^1690 4032588046109175 r002 15th iterates of z^2 + 4032588051469057 r008 a(0)=4,K{-n^6,29-57*n+24*n^2-27*n^3} 4032588065294279 r005 Im(z^2+c),c=-1/32+33/61*I,n=28 4032588076570730 h001 (-2*exp(-2)+8)/(-3*exp(2)+3) 4032588092186771 m005 (1/2*Catalan-1/6)/(9/11*exp(1)+5) 4032588097951612 m005 (3/4*exp(1)-1/3)/(1/4*Catalan+4) 4032588111523330 m001 (BesselK(0,1)+MadelungNaCl)/(Pi+5^(1/2)) 4032588114073118 m001 (ln(2)/ln(10))^(Pi^(1/2)/LaplaceLimit) 4032588122203690 m001 1/Zeta(9)/GAMMA(7/24)^2/ln(sinh(1))^2 4032588129617408 a003 sin(Pi*3/107)/sin(Pi*7/100) 4032588132347191 r002 6th iterates of z^2 + 4032588134261845 r002 14th iterates of z^2 + 4032588140272900 r008 a(0)=4,K{-n^6,29-47*n+9*n^2-22*n^3} 4032588147696302 r005 Im(z^2+c),c=11/56+3/8*I,n=64 4032588148988523 a007 Real Root Of -971*x^4+625*x^3-256*x^2-581*x-126 4032588159644808 m006 (3*Pi^2+3/5)/(4/5*ln(Pi)-1/6) 4032588170081402 a007 Real Root Of -618*x^4+525*x^3+749*x^2+526*x-352 4032588171083676 a005 (1/cos(25/226*Pi))^695 4032588172004151 r008 a(0)=4,K{-n^6,9-7*n-16*n^2-17*n^3} 4032588175618055 r005 Im(z^2+c),c=-1/90+21/40*I,n=43 4032588179633665 r009 Re(z^3+c),c=-21/44+13/61*I,n=49 4032588184309765 m001 LambertW(1)^ZetaR(2)/BesselI(0,2) 4032588186312954 a001 123/233*121393^(10/27) 4032588192926266 l006 ln(1210/1811) 4032588204002440 m001 1/FeigenbaumD^2*CopelandErdos/exp(GAMMA(5/24)) 4032588231475541 r005 Re(z^2+c),c=-15/26+17/45*I,n=49 4032588232123191 a007 Real Root Of -606*x^4-868*x^3-286*x^2+461*x+19 4032588241136791 m005 (1/2*gamma-2/7)/(1/11*3^(1/2)-7/8) 4032588242523311 r005 Im(z^2+c),c=-5/38+26/47*I,n=19 4032588248143765 m005 (1/3*gamma-1/4)/(19/18+1/6*5^(1/2)) 4032588280560820 r005 Im(z^2+c),c=-5/13+2/31*I,n=14 4032588285336534 r005 Im(z^2+c),c=-2/3+52/171*I,n=16 4032588288390853 m001 GAMMA(13/24)^2*ln(GolombDickman)/Pi 4032588298682317 m001 (Niven-Sierpinski)/(GAMMA(3/4)-Magata) 4032588302593057 r008 a(0)=4,K{-n^6,-1+24*n-45*n^2-9*n^3} 4032588319609688 r002 25th iterates of z^2 + 4032588320867201 m001 (Magata+TwinPrimes)/(Psi(1,1/3)+gamma(2)) 4032588325301464 r002 36th iterates of z^2 + 4032588346682741 r005 Im(z^2+c),c=5/64+7/15*I,n=35 4032588350466774 a001 3/5*233^(44/57) 4032588354738375 r008 a(0)=4,K{-n^6,49-15*n^3-2*n^2-63*n} 4032588356243598 r005 Im(z^2+c),c=-19/118+23/49*I,n=4 4032588356574929 r005 Im(z^2+c),c=-55/58+22/63*I,n=7 4032588368492846 m001 1/Zeta(5)*ln(GAMMA(1/24))^2/cosh(1)^2 4032588374400660 m005 (1/2*gamma+1/9)/(8/11*gamma+4/7) 4032588380257717 r005 Re(z^2+c),c=31/90+4/41*I,n=63 4032588382545706 r005 Im(z^2+c),c=5/82+11/23*I,n=41 4032588394254517 r001 2i'th iterates of 2*x^2-1 of 4032588399363686 m001 (ln(2^(1/2)+1)+FeigenbaumKappa)^(3^(1/2)) 4032588408176698 m001 GAMMA(7/24)*ln(ArtinRank2)^2*Zeta(7) 4032588412464301 r005 Im(z^2+c),c=7/118+23/48*I,n=40 4032588417683132 m001 (Si(Pi)+Totient)/(TravellingSalesman+ZetaP(4)) 4032588418577154 r009 Im(z^3+c),c=-29/98+23/55*I,n=20 4032588418654745 m001 (Shi(1)-sin(1))/(-BesselI(1,2)+GAMMA(11/12)) 4032588420211136 r009 Re(z^3+c),c=-55/122+5/27*I,n=34 4032588421894858 r005 Re(z^2+c),c=-11/48+13/22*I,n=13 4032588422728061 m004 -3+(20*Sqrt[5])/Pi+125*Pi-Sin[Sqrt[5]*Pi] 4032588427918931 m001 gamma(1)*OrthogonalArrays-ln(2)/ln(10) 4032588432860092 r005 Re(z^2+c),c=-53/94+5/61*I,n=46 4032588434349127 r005 Re(z^2+c),c=-27/50+15/49*I,n=37 4032588442458912 r005 Re(z^2+c),c=-19/34+9/58*I,n=34 4032588443476810 r009 Re(z^3+c),c=-5/28+17/20*I,n=15 4032588445215822 r009 Im(z^3+c),c=-3/23+17/37*I,n=14 4032588450676132 r009 Im(z^3+c),c=-12/23+9/32*I,n=39 4032588458065376 r009 Re(z^3+c),c=-57/118+23/54*I,n=11 4032588464230581 m001 (cos(1/5*Pi)+sin(1/12*Pi))/(3^(1/2)+Catalan) 4032588472632731 r002 16th iterates of z^2 + 4032588473882578 m001 (Sierpinski-Tribonacci)/(ln(Pi)+CareFree) 4032588486946550 h001 (-9*exp(3)+4)/(-4*exp(7)+3) 4032588492272389 m001 (gamma(3)+Zeta(1,2))/(3^(1/2)+sin(1/5*Pi)) 4032588497314750 m001 (polylog(4,1/2)+GAMMA(23/24))/(Artin+ZetaQ(3)) 4032588507607256 r002 8th iterates of z^2 + 4032588509734117 m004 4+12*ProductLog[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 4032588535520353 m004 4+(24*ProductLog[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 4032588535671257 a007 Real Root Of -828*x^4+314*x^3-558*x^2+912*x+501 4032588542435572 r005 Re(z^2+c),c=-5/9-13/71*I,n=47 4032588545153534 r005 Im(z^2+c),c=23/114+10/27*I,n=47 4032588545794698 r005 Im(z^2+c),c=-9/16+4/55*I,n=42 4032588561306630 m004 4+12*Csch[Sqrt[5]*Pi]*ProductLog[Sqrt[5]*Pi] 4032588574836660 a007 Real Root Of -82*x^4-422*x^3-423*x^2-53*x+676 4032588580022627 r009 Im(z^3+c),c=-25/58+6/17*I,n=31 4032588587962116 r005 Re(z^2+c),c=-69/122+1/55*I,n=33 4032588595251120 m001 (-Zeta(5)+Khinchin)/(5^(1/2)+Si(Pi)) 4032588607987611 r005 Re(z^2+c),c=-6/11+9/35*I,n=48 4032588614879176 v002 sum(1/(5^n*(31*n^2-36*n+60)),n=1..infinity) 4032588615665931 r002 21th iterates of z^2 + 4032588620208309 a005 (1/cos(5/219*Pi))^1436 4032588626347500 s002 sum(A242688[n]/(pi^n),n=1..infinity) 4032588638800356 r005 Re(z^2+c),c=5/62+14/37*I,n=42 4032588653351364 h001 (-9*exp(-3)+1)/(-6*exp(2/3)-2) 4032588655414415 r009 Im(z^3+c),c=-2/15+28/61*I,n=16 4032588658131761 r005 Im(z^2+c),c=23/66+7/33*I,n=54 4032588665856228 a007 Real Root Of -74*x^4+159*x^3+742*x^2+880*x-484 4032588671722202 m004 Sqrt[5]*Pi+(24*Sqrt[5]*Log[Sqrt[5]*Pi])/Pi 4032588672614188 m005 (1/2*gamma+8/11)/(2/5*Zeta(3)-3) 4032588677552118 r008 a(0)=4,K{-n^6,-6-15*n-35*n^2+27*n^3} 4032588685276264 m001 sin(1/12*Pi)/(StronglyCareFree^MadelungNaCl) 4032588688382827 r005 Im(z^2+c),c=11/94+39/62*I,n=11 4032588699806129 r005 Im(z^2+c),c=33/94+8/35*I,n=59 4032588707109245 p004 log(16073/10739) 4032588709380190 m005 (1/2*3^(1/2)+9/11)/(-73/126+5/18*5^(1/2)) 4032588712011206 r005 Im(z^2+c),c=11/56+3/8*I,n=63 4032588724347083 m001 (exp(Pi)+exp(1/exp(1)))/(Artin+CopelandErdos) 4032588725837868 m001 (Stephens-Tribonacci)/(Zeta(5)-Sarnak) 4032588727651833 r005 Im(z^2+c),c=-125/94+1/21*I,n=33 4032588737588891 l006 ln(6187/6212) 4032588737949098 r009 Re(z^3+c),c=-25/82+28/41*I,n=32 4032588747528195 m001 (ZetaP(3)-ZetaP(4))/(ln(2)-Riemann3rdZero) 4032588754123589 r009 Im(z^3+c),c=-7/48+16/35*I,n=9 4032588754599174 r009 Re(z^3+c),c=-7/16+4/23*I,n=13 4032588764347308 m005 (1/2*exp(1)-1/11)/(1/8*Catalan+1/5) 4032588769233271 r005 Im(z^2+c),c=-5/19+37/63*I,n=32 4032588769252904 r005 Re(z^2+c),c=-21/40+19/53*I,n=53 4032588784700028 r008 a(0)=4,K{-n^6,27+4*n^3-70*n^2+8*n} 4032588789665353 m001 (Artin+PlouffeB)/(GAMMA(3/4)+ln(2^(1/2)+1)) 4032588791187155 r009 Im(z^3+c),c=-14/27+16/55*I,n=48 4032588795461161 m001 BesselK(0,1)/ln(Bloch)^2*cos(1) 4032588796339446 a007 Real Root Of -208*x^4-888*x^3-109*x^2+131*x-927 4032588806471772 a007 Real Root Of -622*x^4+843*x^3+789*x^2+694*x-447 4032588806506256 r005 Re(z^2+c),c=27/98+1/29*I,n=27 4032588811620800 m001 Niven^2/ln(GaussKuzminWirsing)*sqrt(1+sqrt(3)) 4032588833657588 r005 Im(z^2+c),c=7/94+23/51*I,n=12 4032588843902934 r005 Re(z^2+c),c=-23/42+5/54*I,n=9 4032588844567240 a001 3571/46368*610^(41/42) 4032588848110317 a007 Real Root Of -266*x^4-868*x^3+620*x^2-898*x-282 4032588867888600 m001 1/Riemann2ndZero/ln(Rabbit)^2/Zeta(9)^2 4032588877819931 r002 48th iterates of z^2 + 4032588878935768 m005 (1/2*gamma+6/11)/(5/12*5^(1/2)-3) 4032588887529905 a001 11/28657*13^(1/52) 4032588905652588 r005 Re(z^2+c),c=-33/82+31/54*I,n=53 4032588913552973 a001 123/5*46368^(28/31) 4032588920316035 a007 Real Root Of 124*x^4+309*x^3-700*x^2+450*x+670 4032588920410665 r005 Re(z^2+c),c=-31/56+1/5*I,n=49 4032588930601564 r002 15th iterates of z^2 + 4032588961874828 r009 Im(z^3+c),c=-45/86+17/62*I,n=63 4032588963859849 a001 1368706081/48*2^(1/2) 4032588969703083 m001 1/ln(FeigenbaumDelta)/Cahen/Riemann3rdZero 4032588973019636 r008 a(0)=4,K{-n^6,32+30*n^3-51*n^2-30*n} 4032588975505649 a007 Real Root Of 133*x^4+319*x^3-38*x^2-447*x+162 4032588983377440 a001 19/208010*13^(11/19) 4032588994702597 a005 (1/cos(4/115*Pi))^618 4032589001181616 r002 53th iterates of z^2 + 4032589008679480 r005 Im(z^2+c),c=-7/12+39/101*I,n=9 4032589009037544 r002 8th iterates of z^2 + 4032589016380696 p004 log(30109/20117) 4032589026417874 r005 Im(z^2+c),c=-2/21+19/31*I,n=49 4032589031562906 r002 21th iterates of z^2 + 4032589041143990 r005 Im(z^2+c),c=-17/30+47/106*I,n=53 4032589041766215 m001 (Si(Pi)+Grothendieck)/(-OneNinth+Paris) 4032589046122898 a007 Real Root Of 234*x^4-484*x^3+584*x^2-216*x-220 4032589051539411 r005 Im(z^2+c),c=23/78+13/47*I,n=51 4032589059962292 r002 49th iterates of z^2 + 4032589060662683 r005 Im(z^2+c),c=1/20+16/33*I,n=33 4032589065337329 m001 (Gompertz+Trott)/(ln(2^(1/2)+1)+GolombDickman) 4032589066399747 a007 Real Root Of -176*x^4-562*x^3+740*x^2+480*x-410 4032589067086576 m001 GAMMA(23/24)^BesselI(1,2)-exp(1/exp(1)) 4032589094120787 m001 ln(FibonacciFactorial)*Artin/Ei(1) 4032589095144160 m009 (16/3*Catalan+2/3*Pi^2-3)/(2*Psi(1,1/3)+4/5) 4032589103548708 m005 (1/2*2^(1/2)+7/8)/(5/12*Pi-11/12) 4032589110250389 l006 ln(7339/7641) 4032589114340219 a001 9349/121393*610^(41/42) 4032589119441219 r005 Re(z^2+c),c=-43/78+12/55*I,n=63 4032589120278999 r005 Re(z^2+c),c=11/94+11/43*I,n=7 4032589128985071 l006 ln(5899/8829) 4032589135672451 m001 (BesselK(1,1)+Lehmer)/(MertensB2+Tetranacci) 4032589144306656 a007 Real Root Of 881*x^4-147*x^3+674*x^2+289*x-26 4032589153699566 a001 844/10959*610^(41/42) 4032589159442018 a001 64079/832040*610^(41/42) 4032589162991048 a001 39603/514229*610^(41/42) 4032589168083104 r002 33th iterates of z^2 + 4032589168087039 m001 AlladiGrinstead*ZetaQ(2)^ln(gamma) 4032589170975845 r002 31th iterates of z^2 + 4032589176904413 r005 Im(z^2+c),c=35/102+17/64*I,n=34 4032589178024981 a001 15127/196418*610^(41/42) 4032589209511305 m001 AlladiGrinstead^ln(2)*FeigenbaumDelta 4032589214875926 m001 1/ln(cos(Pi/5))^2*Champernowne^2/sin(1) 4032589218540581 r005 Re(z^2+c),c=-43/82+17/42*I,n=34 4032589231362283 r005 Im(z^2+c),c=-43/62+19/55*I,n=30 4032589232964323 m005 (1/2*5^(1/2)+3/4)/(3/7*2^(1/2)-1/7) 4032589258995487 a007 Real Root Of 798*x^4-901*x^3-144*x^2-123*x+111 4032589264298059 s002 sum(A006703[n]/(2^n+1),n=1..infinity) 4032589280703406 r005 Im(z^2+c),c=5/82+11/23*I,n=55 4032589281069089 a001 5778/75025*610^(41/42) 4032589281643226 s002 sum(A084348[n]/(n^3*10^n+1),n=1..infinity) 4032589284971531 r005 Re(z^2+c),c=-79/110+1/33*I,n=20 4032589285460179 r004 Im(z^2+c),c=3/20+7/17*I,z(0)=I,n=32 4032589297759124 r005 Im(z^2+c),c=1/60+29/57*I,n=24 4032589300551381 a007 Real Root Of -493*x^4-604*x^3+78*x^2+786*x-277 4032589304986658 v002 sum(1/(3^n+(10*n^2-5*n+54)),n=1..infinity) 4032589308984618 a007 Real Root Of 152*x^4+434*x^3-577*x^2+620*x+148 4032589311559724 m001 ln(OneNinth)*KhintchineLevy^2*GAMMA(17/24) 4032589320355920 r008 a(0)=4,K{-n^6,-29-22*n+21*n^3} 4032589321917539 m001 Riemann3rdZero^Conway/(Porter^Conway) 4032589332176922 m005 (1/3*2^(1/2)-1/4)/(3/4*3^(1/2)-3/4) 4032589340886341 m008 (1/3*Pi-4)/(3/4*Pi^4+1/6) 4032589358035379 l006 ln(59/3328) 4032589359208431 m001 1/sin(1)/log(2+sqrt(3))^2*exp(sqrt(Pi)) 4032589369999718 a007 Real Root Of -951*x^4-899*x^3+393*x^2+980*x-375 4032589370270548 r002 63th iterates of z^2 + 4032589370535741 l006 ln(4689/7018) 4032589371454313 r008 a(0)=4,K{-n^6,-4-44*n+62*n^2-45*n^3} 4032589393909806 a005 (1/cos(1/43*Pi))^522 4032589395889174 a007 Real Root Of -163*x^4-808*x^3-457*x^2+707*x+401 4032589399268240 m001 (cos(1/5*Pi)+Trott)/(ln(2)/ln(10)+3^(1/2)) 4032589412809143 r005 Re(z^2+c),c=-5/9-11/72*I,n=20 4032589415190780 r008 a(0)=4,K{-n^6,-48+44*n+7*n^2-34*n^3} 4032589420022731 r005 Im(z^2+c),c=1/24+28/57*I,n=58 4032589432049363 r005 Re(z^2+c),c=-13/86+29/45*I,n=41 4032589437293140 h001 (3/5*exp(2)+7/12)/(3/10*exp(1)+3/7) 4032589442505062 r002 21th iterates of z^2 + 4032589444857331 m005 (1/2*2^(1/2)+3/7)/(8/9*exp(1)+2/5) 4032589445112292 a003 sin(Pi*17/89)*sin(Pi*20/79) 4032589457171653 m005 (1/2*gamma-2/7)/(1/7*gamma-4/5) 4032589459503524 m001 (sin(1/5*Pi)+Magata)/(PrimesInBinary+Stephens) 4032589467706811 m002 4+2/Pi^4+Cosh[Pi]/Pi^6 4032589471424669 h001 (-7*exp(-3)+3)/(-7*exp(-1)-4) 4032589480739194 r009 Im(z^3+c),c=-11/28+3/8*I,n=26 4032589482761775 r005 Im(z^2+c),c=21/74+11/38*I,n=55 4032589486109306 r009 Im(z^3+c),c=-61/106+5/7*I,n=4 4032589487889573 r008 a(0)=4,K{-n^6,-50+59*n-12*n^2-28*n^3} 4032589494884113 r009 Im(z^3+c),c=-13/38+11/34*I,n=2 4032589508596790 r002 36th iterates of z^2 + 4032589513857561 r005 Re(z^2+c),c=-45/86+8/47*I,n=8 4032589514763830 m001 (ZetaP(3)-ZetaQ(2))/(HardyLittlewoodC5-Rabbit) 4032589515011647 r008 a(0)=4,K{-n^6,16-58*n+48*n^2-37*n^3} 4032589518026520 r005 Re(z^2+c),c=15/44+2/19*I,n=35 4032589519592330 r002 11th iterates of z^2 + 4032589520670043 r005 Im(z^2+c),c=-81/64+1/38*I,n=8 4032589521038046 m001 (GolombDickman+ZetaQ(2))/(GAMMA(3/4)-Shi(1)) 4032589523848166 r008 a(0)=4,K{-n^6,-58-4*n^3+61*n^2-29*n} 4032589531445164 r005 Re(z^2+c),c=-14/25+8/43*I,n=20 4032589546604795 b008 ArcCot[19/14]^2 4032589548112944 m001 (Porter-Weierstrass)/(Ei(1)+BesselI(1,1)) 4032589550523489 m002 -5*Pi^2+Pi^4*ProductLog[Pi]*Sech[Pi] 4032589555454380 a001 5/47*76^(4/13) 4032589557520268 r009 Im(z^3+c),c=-5/102+23/48*I,n=4 4032589567805222 r008 a(0)=4,K{-n^6,-58-21*n^3-37*n^2+85*n} 4032589586695831 r008 a(0)=4,K{-n^6,-7-26*n^3+96*n^2-97*n} 4032589599064173 r002 45th iterates of z^2 + 4032589602107092 r005 Im(z^2+c),c=-53/62+1/38*I,n=52 4032589605969426 r005 Re(z^2+c),c=-51/50+4/19*I,n=18 4032589620994318 r009 Im(z^3+c),c=-37/98+24/55*I,n=6 4032589624961974 a007 Real Root Of -365*x^4+378*x^3-836*x^2+433*x+345 4032589628599995 m005 (1/3*gamma-2/3)/(1/7*Pi+8/11) 4032589634259710 r008 a(0)=4,K{-n^6,-14+13*n-6*n^2-24*n^3} 4032589635217314 p003 LerchPhi(1/256,1,281/113) 4032589639619610 r008 a(0)=4,K{-n^6,-18+21*n-11*n^2-23*n^3} 4032589659875355 h001 (2/9*exp(1)+3/11)/(7/11*exp(1)+4/9) 4032589661642094 r002 34th iterates of z^2 + 4032589663404226 m001 1/exp((2^(1/3)))^2/Salem^2/(3^(1/3)) 4032589671132313 m001 GAMMA(5/6)^Psi(1,1/3)+HardyLittlewoodC3 4032589694390853 r005 Im(z^2+c),c=47/126+9/43*I,n=54 4032589694538029 m005 (1/3*Zeta(3)+1/9)/(6/11*Pi-4/9) 4032589709860525 a001 1/4*10946^(27/34) 4032589709967439 a001 34/7*9349^(29/60) 4032589722243543 r002 31th iterates of z^2 + 4032589725955398 a007 Real Root Of -803*x^4+989*x^3+601*x^2+996*x-543 4032589753866203 a007 Real Root Of 248*x^4+979*x^3-238*x^2-730*x-456 4032589758816837 r002 59th iterates of z^2 + 4032589760933656 a007 Real Root Of -172*x^4-879*x^3-755*x^2-123*x-376 4032589773337504 a007 Real Root Of 206*x^4+777*x^3-337*x^2-701*x-869 4032589775214722 a007 Real Root Of 23*x^4+945*x^3+726*x^2+831*x+790 4032589776690113 b008 39+ArcCsch[4/7] 4032589780109570 l006 ln(3479/5207) 4032589780513685 m005 (3/5*Catalan+1)/(3*2^(1/2)-2/5) 4032589790637996 r008 a(0)=4,K{-n^6,28-46*n+9*n^2-22*n^3} 4032589798461951 r005 Im(z^2+c),c=-53/62+1/38*I,n=49 4032589804838537 r009 Re(z^3+c),c=-53/102+17/54*I,n=39 4032589824969802 r005 Re(z^2+c),c=33/118+17/36*I,n=20 4032589824986996 r005 Im(z^2+c),c=-37/82+27/49*I,n=4 4032589840668536 m001 (BesselK(1,1)+Artin)/(GaussAGM-Lehmer) 4032589873734766 p001 sum((-1)^n/(543*n+220)/(2^n),n=0..infinity) 4032589874547257 s002 sum(A204604[n]/(2^n+1),n=1..infinity) 4032589875470819 r002 7th iterates of z^2 + 4032589877646327 a007 Real Root Of -120*x^4+374*x^3-128*x^2+817*x-330 4032589878153768 r005 Im(z^2+c),c=-69/106+23/64*I,n=44 4032589878643604 r005 Im(z^2+c),c=2/9+17/49*I,n=20 4032589883025128 r005 Re(z^2+c),c=-41/74+11/56*I,n=53 4032589883468411 a007 Real Root Of -771*x^4-774*x^3+257*x^2+906*x-336 4032589884671179 r005 Im(z^2+c),c=11/56+3/8*I,n=52 4032589885165129 m001 GaussKuzminWirsing^2*ln(Cahen)/Zeta(7) 4032589885940630 m005 (-13/20+1/4*5^(1/2))/(5/12*2^(1/2)-4/11) 4032589887497027 h001 (10/11*exp(2)+3/7)/(2/11*exp(2)+3/7) 4032589898499018 m005 (1/2*Zeta(3)-6)/(5/8*2^(1/2)-3/4) 4032589905427053 m001 (Pi+Zeta(1/2))/(BesselI(1,2)-GAMMA(19/24)) 4032589907209775 r005 Im(z^2+c),c=3/46+19/33*I,n=34 4032589920008341 r009 Im(z^3+c),c=-19/29+24/47*I,n=3 4032589922109557 m005 (1/2*Zeta(3)-10/11)/(5^(1/2)-3) 4032589924445683 m001 (Zeta(1/2)+Ei(1,1))/(Si(Pi)+GAMMA(3/4)) 4032589955638881 r008 a(0)=4,K{-n^6,4+14*n-39*n^2-10*n^3} 4032589955703434 r008 a(0)=4,K{-n^6,-2+25*n-45*n^2-9*n^3} 4032589958066395 r005 Re(z^2+c),c=-37/66+8/61*I,n=63 4032589960062429 m001 (GAMMA(3/4)-polylog(4,1/2))/(MertensB2-Thue) 4032589974463799 a007 Real Root Of -93*x^4-96*x^3+970*x^2-709*x-335 4032589978393972 r005 Re(z^2+c),c=-17/30+11/101*I,n=11 4032589987343917 a001 2207/28657*610^(41/42) 4032589995221130 r002 16th iterates of z^2 + 4032590004977966 m001 (Zeta(1,-1)+ZetaQ(2))/(gamma+ln(gamma)) 4032590008748059 r008 a(0)=4,K{-n^6,48-15*n^3-2*n^2-62*n} 4032590011209172 m005 (1/2*exp(1)+4/11)/(2*5^(1/2)-1/5) 4032590013670266 m005 (1/2*Catalan+5/12)/(1/9*Zeta(3)+1/12) 4032590016489951 r009 Re(z^3+c),c=-45/118+5/48*I,n=22 4032590021224158 r009 Re(z^3+c),c=-10/27+8/63*I,n=2 4032590028358658 r005 Re(z^2+c),c=-35/62+1/15*I,n=56 4032590030837305 r005 Im(z^2+c),c=-31/26+20/113*I,n=14 4032590034972008 a007 Real Root Of 712*x^4-237*x^3-610*x^2-764*x+404 4032590036680417 a007 Real Root Of -212*x^4-690*x^3+710*x^2+172*x-38 4032590041230947 r008 a(0)=4,K{-n^6,2-6*n^3-52*n^2+25*n} 4032590042469076 r009 Im(z^3+c),c=-23/78+33/61*I,n=3 4032590045037017 m005 (1/2*5^(1/2)-3/5)/(7/9*5^(1/2)-5/11) 4032590063807069 r005 Re(z^2+c),c=-13/18+19/69*I,n=4 4032590071158588 m001 (FeigenbaumB+OneNinth)/(Zeta(1,2)+CareFree) 4032590076414553 m001 exp(Zeta(7))*FeigenbaumAlpha*sin(Pi/5) 4032590083017866 r005 Im(z^2+c),c=-47/98+2/29*I,n=38 4032590089300336 r005 Re(z^2+c),c=-13/25+23/60*I,n=41 4032590094056556 m001 (GAMMA(7/12)-FransenRobinson)/(Salem-Thue) 4032590099041262 a001 144/167761*29^(17/37) 4032590111875087 p001 sum((-1)^n/(168*n+73)/n/(10^n),n=0..infinity) 4032590114224325 l006 ln(5748/8603) 4032590125163829 r008 a(0)=4,K{-n^6,22-6*n^3-42*n^2-5*n} 4032590126347863 r002 31th iterates of z^2 + 4032590128853986 r009 Im(z^3+c),c=-4/17+7/16*I,n=21 4032590130491028 m003 1/30+Sqrt[5]/4+4*Cot[1/2+Sqrt[5]/2] 4032590143658178 m001 (Rabbit+Sarnak)/(Pi^(1/2)+Grothendieck) 4032590161531680 r005 Re(z^2+c),c=-43/78+3/26*I,n=16 4032590167998275 r002 29th iterates of z^2 + 4032590168644758 a007 Real Root Of -131*x^4-159*x^3-540*x^2+598*x+322 4032590177408674 r005 Im(z^2+c),c=-55/48+3/59*I,n=43 4032590179145104 r005 Im(z^2+c),c=-103/70+1/11*I,n=4 4032590180780451 b008 12-37*Sqrt[2] 4032590189792478 p003 LerchPhi(1/2,6,253/217) 4032590199022082 a007 Real Root Of 284*x^4-137*x^3-962*x^2-702*x+441 4032590211833511 m001 (Psi(2,1/3)+BesselJ(0,1))/(-ln(5)+MertensB1) 4032590215935104 m005 (1/2*Pi+2)/(3*exp(1)+7/10) 4032590216556453 a001 36/6119*123^(2/5) 4032590217220067 r005 Im(z^2+c),c=37/118+7/30*I,n=20 4032590219089359 r005 Re(z^2+c),c=1/9+39/49*I,n=4 4032590235379793 r002 5th iterates of z^2 + 4032590236040516 r005 Im(z^2+c),c=3/22+16/37*I,n=19 4032590249523889 a007 Real Root Of 50*x^4+88*x^3-556*x^2-462*x-273 4032590251193186 r009 Im(z^3+c),c=-7/16+15/43*I,n=31 4032590268721647 m001 ln(Zeta(5))/Catalan^2*cos(Pi/12)^2 4032590284165418 r008 a(0)=4,K{-n^6,50-45*n-31*n^2-5*n^3} 4032590292313415 m005 (-9/44+1/4*5^(1/2))/(16/5+5/2*5^(1/2)) 4032590305679454 r005 Im(z^2+c),c=37/110+10/13*I,n=3 4032590306676894 a007 Real Root Of 260*x^4+925*x^3-758*x^2-810*x+963 4032590317433451 a007 Real Root Of 941*x^4-211*x^3+337*x^2-269*x-202 4032590317927765 r009 Im(z^3+c),c=-29/102+19/45*I,n=16 4032590319968744 a003 sin(Pi*12/71)-sin(Pi*4/11) 4032590327148130 r005 Re(z^2+c),c=-27/62+19/37*I,n=52 4032590332267665 r002 52th iterates of z^2 + 4032590370530641 r005 Re(z^2+c),c=-11/21+16/61*I,n=17 4032590374805776 r005 Re(z^2+c),c=35/94+10/47*I,n=63 4032590376990456 v002 sum(1/(3^n+(19/2*n^2+59/2*n+6)),n=1..infinity) 4032590399877532 r005 Re(z^2+c),c=-37/66+8/61*I,n=60 4032590402026935 a001 521*121393^(25/44) 4032590403462715 m001 ln(3)^Paris/FeigenbaumAlpha 4032590413401538 a007 Real Root Of -82*x^4-109*x^3+654*x^2-811*x+631 4032590421867606 r005 Re(z^2+c),c=-71/126+3/34*I,n=60 4032590422343188 r005 Re(z^2+c),c=8/21+13/36*I,n=26 4032590444449717 r002 28th iterates of z^2 + 4032590444527273 r005 Re(z^2+c),c=-17/31+11/46*I,n=58 4032590450953267 r005 Im(z^2+c),c=1/98+26/51*I,n=31 4032590454242226 p004 log(25583/17093) 4032590455171692 m001 Bloch^2/exp(Backhouse)*log(1+sqrt(2))^2 4032590455468338 r005 Re(z^2+c),c=-17/30+5/92*I,n=18 4032590461563147 a007 Real Root Of 818*x^4-686*x^3+396*x^2-57*x-154 4032590469254230 r005 Re(z^2+c),c=-12/23+19/50*I,n=61 4032590505637784 m001 Zeta(1,2)*ln(Riemann2ndZero)/sin(1)^2 4032590506788989 r002 14th iterates of z^2 + 4032590510912194 r002 2th iterates of z^2 + 4032590520068553 r005 Re(z^2+c),c=-4/7+11/106*I,n=13 4032590529272179 a007 Real Root Of -162*x^4-470*x^3+911*x^2+538*x-626 4032590540605111 a001 322/4181*1836311903^(16/17) 4032590563549005 a005 (1/sin(70/183*Pi))^20 4032590580389214 a001 6119/36*514229^(16/17) 4032590586742574 a001 322/9227465*6557470319842^(16/17) 4032590596870909 s001 sum(exp(-3*Pi/4)^n*A010648[n],n=1..infinity) 4032590603424898 m001 (-FeigenbaumC+PlouffeB)/(exp(1)+Cahen) 4032590610845465 r002 33th iterates of z^2 + 4032590626513962 l006 ln(2269/3396) 4032590627620365 a001 233/15127*123^(1/5) 4032590628750625 s002 sum(A256767[n]/(n^3*pi^n+1),n=1..infinity) 4032590633046062 r005 Re(z^2+c),c=-35/62+1/15*I,n=54 4032590643560603 a007 Real Root Of 202*x^4-721*x^3+808*x^2-424*x-355 4032590651291757 a001 1322157322203/2*6557470319842^(9/17) 4032590659993557 p003 LerchPhi(1/512,1,519/209) 4032590662707336 r002 60th iterates of z^2 + 4032590667219869 h001 (1/7*exp(2)+6/7)/(5/8*exp(2)+1/8) 4032590670061608 r005 Re(z^2+c),c=-35/62+1/15*I,n=58 4032590679779152 m003 7/2+Sqrt[5]/4+(Sqrt[5]*Cot[1/2+Sqrt[5]/2])/4 4032590697811157 r005 Re(z^2+c),c=-9/16+37/94*I,n=45 4032590706459237 m002 6*Pi^3+4*Pi^6+Tanh[Pi] 4032590711304888 a007 Real Root Of 872*x^4+420*x^3+776*x^2-28*x-133 4032590718013543 r005 Re(z^2+c),c=-169/122+13/36*I,n=2 4032590723803010 r009 Im(z^3+c),c=-5/28+32/43*I,n=22 4032590728822014 m001 BesselK(1,1)*ThueMorse^ZetaP(2) 4032590737937342 a007 Real Root Of 69*x^4+6*x^3-945*x^2+488*x-518 4032590775983892 m005 (1/2*exp(1)-3/4)/(7/9*gamma-3/5) 4032590778464564 a007 Real Root Of -104*x^4-311*x^3+543*x^2+653*x+911 4032590779792850 p004 log(28753/19211) 4032590780746489 m005 (5^(1/2)-3)/(2/3*Pi-1/5) 4032590782351016 r005 Re(z^2+c),c=-27/52+19/48*I,n=60 4032590799723177 r009 Re(z^3+c),c=-29/62+11/56*I,n=18 4032590804773177 r002 3th iterates of z^2 + 4032590818155024 a007 Real Root Of -730*x^4-879*x^3+60*x^2+856*x-278 4032590823410537 m001 (3^(1/2)-FibonacciFactorial)/(Landau+Rabbit) 4032590827097063 r005 Im(z^2+c),c=5/82+11/23*I,n=62 4032590835427570 m001 (Cahen+Trott)/(Shi(1)+BesselI(1,1)) 4032590841269826 r002 57th iterates of z^2 + 4032590843821140 r002 4th iterates of z^2 + 4032590848047320 r002 34th iterates of z^2 + 4032590856428538 m008 (3*Pi^6-2/3)/(1/4*Pi^5-5) 4032590878863129 p004 log(30817/29599) 4032590880732797 r005 Re(z^2+c),c=9/70+37/58*I,n=64 4032590890581096 m005 (1/2*gamma-2/5)/(1/36+1/9*5^(1/2)) 4032590896213722 m001 (Salem-Sarnak)/(polylog(4,1/2)-GAMMA(13/24)) 4032590912714431 a007 Real Root Of -316*x^4+335*x^3-851*x^2+395*x+328 4032590912752000 r008 a(0)=4,K{-n^6,-41+n+59*n^2-50*n^3} 4032590939118147 r005 Im(z^2+c),c=21/94+21/64*I,n=8 4032590943821591 r001 30i'th iterates of 2*x^2-1 of 4032590957594511 r005 Re(z^2+c),c=-23/38+5/36*I,n=15 4032590962247281 r005 Re(z^2+c),c=-13/10+11/254*I,n=46 4032590965198277 m001 ln(1+sqrt(2))^(2/3)/BesselI(0,2) 4032590972535369 r005 Re(z^2+c),c=-61/110+5/26*I,n=54 4032590981131439 r008 a(0)=4,K{-n^6,-45+36*n^3-53*n^2+32*n} 4032591015962317 r002 51th iterates of z^2 + 4032591019959836 r005 Re(z^2+c),c=-5/9+6/61*I,n=14 4032591021412111 k007 concat of cont frac of 4032591024682832 r002 22th iterates of z^2 + 4032591030794769 r009 Re(z^3+c),c=-45/94+11/51*I,n=33 4032591031768561 r008 a(0)=4,K{-n^6,-5-43*n+62*n^2-45*n^3} 4032591050549206 a003 cos(Pi*5/24)*cos(Pi*36/109) 4032591054639139 r005 Im(z^2+c),c=11/126+11/24*I,n=27 4032591064770016 r005 Re(z^2+c),c=-27/98+5/9*I,n=5 4032591067820322 a007 Real Root Of 127*x^4-849*x^3+597*x^2+588*x+81 4032591072709066 m004 -2+125*Pi+Log[Sqrt[5]*Pi]+5*Pi*Sin[Sqrt[5]*Pi] 4032591074088096 a003 -1/2-1/2*2^(1/2)-2*cos(1/12*Pi)-cos(4/27*Pi) 4032591095557692 m001 (GAMMA(2/3)-gamma(2))/(MertensB1+ZetaP(4)) 4032591102955932 m002 -5-Csch[Pi]/3+Tanh[Pi] 4032591121484102 a007 Real Root Of 758*x^4-840*x^3-20*x^2-774*x-384 4032591122826167 r005 Re(z^2+c),c=-9/16+5/48*I,n=32 4032591127144710 r005 Im(z^2+c),c=25/78+17/42*I,n=37 4032591127502420 r008 a(0)=4,K{-n^6,-25+9*n+19*n^2-34*n^3} 4032591134924471 m001 (BesselK(1,1)+MertensB1)/(exp(1)-gamma) 4032591152624499 l006 ln(5597/8377) 4032591171950651 a007 Real Root Of -614*x^4-807*x^3-449*x^2+696*x+317 4032591180399665 r008 a(0)=4,K{-n^6,-49-8*n+29*n^2-n^3} 4032591181543837 r005 Re(z^2+c),c=-19/86+25/52*I,n=2 4032591206394119 a007 Real Root Of 144*x^4+450*x^3-331*x^2+946*x+627 4032591215147433 r005 Re(z^2+c),c=-69/122+1/54*I,n=33 4032591216040061 a001 843/2*832040^(39/58) 4032591220559290 a007 Real Root Of -36*x^4+918*x^3-645*x^2+724*x+458 4032591228166908 a007 Real Root Of 357*x^4-393*x^3-268*x^2-911*x-359 4032591228525506 r005 Re(z^2+c),c=-57/110+15/61*I,n=4 4032591229427688 r009 Re(z^3+c),c=-31/66+8/39*I,n=37 4032591236516864 m001 gamma/MertensB1*ln(sin(Pi/12))^2 4032591236932449 r002 27th iterates of z^2 + 4032591256092732 r005 Re(z^2+c),c=-35/64+20/53*I,n=9 4032591261439186 r009 Im(z^3+c),c=-19/60+16/39*I,n=17 4032591265573088 m001 (1-gamma(2))/(Riemann3rdZero+Trott2nd) 4032591278256921 r005 Im(z^2+c),c=-25/114+28/39*I,n=47 4032591278635554 r008 a(0)=4,K{-n^6,13+29*n^3-3*n^2-69*n} 4032591282728905 r005 Re(z^2+c),c=-23/42+14/57*I,n=47 4032591284886362 m001 -BesselI(1,2)/(-GAMMA(11/12)+5) 4032591289871689 r005 Im(z^2+c),c=11/50+17/48*I,n=35 4032591292332731 m005 (-7/20+1/4*5^(1/2))/(1/5*Catalan+5) 4032591293328051 r008 a(0)=4,K{-n^6,-23+28*n-13*n^2-23*n^3} 4032591302865922 a007 Real Root Of 2*x^4+808*x^3+596*x^2-616*x-423 4032591304135145 r008 a(0)=4,K{-n^6,-19+22*n-11*n^2-23*n^3} 4032591314858223 r005 Re(z^2+c),c=-69/122+2/63*I,n=49 4032591318250182 m001 (exp(Pi)+gamma*CopelandErdos)/gamma 4032591321360095 a007 Real Root Of -994*x^4-891*x^3+304*x^2+638*x-222 4032591326179488 m001 HardyLittlewoodC4*(sin(1/5*Pi)+Sarnak) 4032591331677807 m009 (32*Catalan+4*Pi^2+1/2)/(5/6*Psi(1,3/4)-2/5) 4032591348014515 b008 26+17*Erf[1] 4032591348014515 b008 9+17*Erfc[-1] 4032591352596676 r009 Im(z^3+c),c=-5/13+11/29*I,n=39 4032591362656086 m001 ln(BesselJ(0,1))/Salem*sqrt(Pi) 4032591371823088 m001 (-BesselK(1,1)+5)/(-BesselI(1,2)+1/2) 4032591374938521 r005 Re(z^2+c),c=5/62+14/37*I,n=39 4032591376912303 m006 (4*ln(Pi)-1/4)/(1/5*exp(2*Pi)+1/4) 4032591381528747 m005 (1/2*gamma-5/6)/(5*exp(1)-1/12) 4032591385902359 r005 Re(z^2+c),c=-37/66+1/5*I,n=24 4032591392740278 r002 14th iterates of z^2 + 4032591399909285 a007 Real Root Of -938*x^4+999*x^3+210*x^2+317*x+184 4032591400170166 m001 Catalan*Robbin*exp(Ei(1)) 4032591408347698 m001 (-Riemann3rdZero+ZetaQ(2))/(sin(1)+Zeta(1/2)) 4032591430314399 l006 ln(145/8179) 4032591434889356 a001 521/196418*28657^(2/49) 4032591437216306 r005 Im(z^2+c),c=7/36+25/64*I,n=17 4032591438223560 m001 (BesselJ(1,1)-Backhouse)/(ln(Pi)+exp(1/Pi)) 4032591438931585 r002 33th iterates of z^2 + 4032591451395457 r005 Re(z^2+c),c=-75/122+10/37*I,n=16 4032591453708029 r005 Im(z^2+c),c=27/110+18/55*I,n=26 4032591458148211 r005 Re(z^2+c),c=-9/16+3/44*I,n=15 4032591461965050 l006 ln(5565/5794) 4032591464060812 r008 a(0)=4,K{-n^6,29-48*n+10*n^2-22*n^3} 4032591469537139 g006 Psi(1,2/11)+Psi(1,3/8)+Psi(1,3/4)-Psi(1,9/10) 4032591474483352 r005 Re(z^2+c),c=-19/34+19/126*I,n=42 4032591479009918 m005 (1/2*2^(1/2)+1/5)/(7/9*2^(1/2)-7/8) 4032591484665258 r005 Im(z^2+c),c=-21/23+2/61*I,n=12 4032591511321841 l006 ln(3328/4981) 4032591513591022 m002 6/Pi^3+Pi^5+Pi^4*Tanh[Pi] 4032591518887598 m001 (Backhouse+Conway)/(Thue-ZetaP(3)) 4032591539154156 m001 1/Khintchine*ArtinRank2*exp(TreeGrowth2nd) 4032591539735019 r002 18th iterates of z^2 + 4032591545378689 r005 Im(z^2+c),c=11/52+19/46*I,n=13 4032591548933849 r005 Im(z^2+c),c=7/40+5/9*I,n=40 4032591551599467 r009 Re(z^3+c),c=-35/74+4/29*I,n=6 4032591552049837 r005 Im(z^2+c),c=-27/32+9/35*I,n=5 4032591555068678 r005 Re(z^2+c),c=-31/58+1/3*I,n=44 4032591556952516 p001 sum(1/(385*n+4)/n/(64^n),n=1..infinity) 4032591560767494 a001 34/123*3^(11/32) 4032591566148490 a001 11*(1/2*5^(1/2)+1/2)^12*7^(1/15) 4032591573000823 a001 1/843*(1/2*5^(1/2)+1/2)^25*3^(9/14) 4032591576779520 r005 Re(z^2+c),c=-69/110+5/33*I,n=17 4032591588455877 r009 Im(z^3+c),c=-13/42+19/46*I,n=19 4032591604736997 r005 Re(z^2+c),c=-21/29+17/57*I,n=11 4032591634493613 r002 9th iterates of z^2 + 4032591647615241 m001 1/Riemann3rdZero^2*Conway*exp(TwinPrimes) 4032591654646263 r005 Im(z^2+c),c=-1/102+21/37*I,n=26 4032591666154515 a001 341/36*1836311903^(14/17) 4032591666337731 m001 (Psi(2,1/3)-sin(1/12*Pi))/(Kac+RenyiParking) 4032591673394426 r005 Re(z^2+c),c=-59/114+23/63*I,n=30 4032591678620159 b008 1/11+4*LogGamma[1/3] 4032591685085660 r009 Im(z^3+c),c=-23/44+21/62*I,n=48 4032591701960378 m001 (FeigenbaumMu+MertensB3)/(GAMMA(3/4)+gamma(2)) 4032591704385021 r004 Re(z^2+c),c=5/34+10/19*I,z(0)=I,n=20 4032591709076375 m001 sin(1/5*Pi)*3^(1/3)/Riemann2ndZero 4032591723127706 m002 2+E^Pi*Pi+Pi^5*ProductLog[Pi] 4032591725608917 a001 370248451/5*233^(11/15) 4032591731014930 a005 (1/cos(11/155*Pi))^1250 4032591751773245 m005 (1/2*gamma-9/10)/(4/5*5^(1/2)-3/11) 4032591757263533 h001 (7/11*exp(2)+5/12)/(3/8*exp(1)+1/4) 4032591758046299 r005 Re(z^2+c),c=-35/62+1/15*I,n=60 4032591758224034 r008 a(0)=1,K{-n^6,54+15*n^3-69*n^2+n} 4032591776754940 r005 Re(z^2+c),c=-7/10+61/209*I,n=26 4032591783970046 m001 -LandauRamanujan/Ei(1) 4032591783970046 m001 1/Ei(1)*LandauRamanujan 4032591783970046 m001 LandauRamanujan/(Shi(1)+Chi(1)) 4032591783970046 m001 LandauRamanujan/Ei(1) 4032591787052701 r002 36th iterates of z^2 + 4032591796633901 r005 Im(z^2+c),c=-19/14+25/234*I,n=8 4032591797940998 r008 a(0)=4,K{-n^6,21-6*n^3-42*n^2-4*n} 4032591802906245 a007 Real Root Of -251*x^4-933*x^3+158*x^2-800*x-603 4032591803907136 a007 Real Root Of -288*x^4+447*x^3-30*x^2+608*x-262 4032591820493489 m001 (Zeta(1,2)+Grothendieck)/(Robbin-ZetaP(2)) 4032591826176927 q001 1559/3866 4032591826316402 r002 61th iterates of z^2 + 4032591830399712 s001 sum(exp(-4*Pi/5)^n*A032275[n],n=1..infinity) 4032591860153518 m001 1/Robbin/exp(CareFree)^2/Catalan 4032591860284569 r008 a(0)=4,K{-n^6,-1-32*n-34*n^2+37*n^3} 4032591868150121 r009 Im(z^3+c),c=-43/98+8/23*I,n=33 4032591878318684 m001 1/ln(Sierpinski)/GolombDickman^2/sin(Pi/12)^2 4032591880157733 m001 (-Mills+MinimumGamma)/(3^(1/3)-Shi(1)) 4032591903038530 m001 (LambertW(1)-Zeta(5))/(-GAMMA(19/24)+ZetaQ(3)) 4032591910149441 r008 a(0)=4,K{-n^6,27-7*n-48*n^2-3*n^3} 4032591913511412 r005 Im(z^2+c),c=21/110+19/50*I,n=34 4032591921052131 a007 Real Root Of -390*x^4+379*x^3-584*x^2+756*x+435 4032591938148982 m001 (-Ei(1,1)+Grothendieck)/(Chi(1)-GAMMA(3/4)) 4032591942600895 m005 (1/2*Pi-11/12)/(149/198+7/18*5^(1/2)) 4032591942712413 a001 96450076809/17*987^(20/21) 4032591944749311 r002 39th iterates of z^2 + 4032591947911751 r009 Im(z^3+c),c=-23/48+19/58*I,n=26 4032591954760234 m001 (Psi(2,1/3)+Magata)/GlaisherKinkelin 4032591965489420 r009 Im(z^3+c),c=-33/82+17/46*I,n=16 4032591968953240 l006 ln(4387/6566) 4032591973885687 m001 (Magata+Niven)/(Cahen+GolombDickman) 4032591974224281 r002 30th iterates of z^2 + 4032591975388167 a007 Real Root Of -154*x^4-397*x^3+984*x^2+278*x-190 4032591987820517 h001 (7/8*exp(1)+7/12)/(11/12*exp(2)+4/7) 4032591991482497 r005 Im(z^2+c),c=4/17+18/53*I,n=61 4032591996203796 a007 Real Root Of -900*x^4-562*x^3+510*x^2+773*x-334 4032592004401235 m001 1/BesselK(0,1)*Robbin*ln(GAMMA(19/24))^2 4032592007540954 r009 Im(z^3+c),c=-3/38+27/58*I,n=11 4032592013822209 a007 Real Root Of 100*x^4-425*x^3+452*x^2-424*x-275 4032592016391655 r002 12th iterates of z^2 + 4032592026849567 m001 (Pi-Pi^(1/2))/(FeigenbaumMu-ZetaP(3)) 4032592030287863 r005 Im(z^2+c),c=-11/42+10/17*I,n=20 4032592031835808 r002 44th iterates of z^2 + 4032592037019460 m006 (3/5*Pi-5)/(5/6*Pi^2-1/2) 4032592037019460 m008 (3/5*Pi-5)/(5/6*Pi^2-1/2) 4032592038671444 m008 (1/5*Pi+2/3)/(1/3*Pi^6+2/3) 4032592039251236 r005 Re(z^2+c),c=-59/106+4/23*I,n=57 4032592040951450 r002 4th iterates of z^2 + 4032592052893208 r002 36th iterates of z^2 + 4032592061614385 m005 (1/3*2^(1/2)+1/5)/(7/11*Zeta(3)+9/10) 4032592063453785 m001 GAMMA(1/12)*FeigenbaumC/exp(sqrt(1+sqrt(3))) 4032592064227237 r005 Re(z^2+c),c=-53/82+21/58*I,n=32 4032592064514774 m001 (cos(1/12*Pi)+FransenRobinson)/(Thue+ZetaP(4)) 4032592065119555 m005 (1/2*3^(1/2)-1/9)/(7/9*Pi-4/7) 4032592068920019 a007 Real Root Of -240*x^4-999*x^3-120*x^2-149*x-694 4032592086804923 a007 Real Root Of -622*x^4-8*x^3+131*x^2+267*x-112 4032592089917564 r002 48th iterates of z^2 + 4032592096531486 r005 Im(z^2+c),c=13/60+1/2*I,n=35 4032592103287854 a007 Real Root Of 831*x^4-934*x^3+700*x^2+263*x-91 4032592113605122 r005 Im(z^2+c),c=-53/48+10/41*I,n=53 4032592118755877 m005 (1/3*Pi+1/5)/(6/7*Pi+2/5) 4032592123839566 p004 log(14717/9833) 4032592125474156 m001 ln(gamma)/(cos(1/5*Pi)^Zeta(1/2)) 4032592125474156 m001 log(gamma)/(cos(Pi/5)^Zeta(1/2)) 4032592126386731 r002 53th iterates of z^2 + 4032592128000663 r005 Re(z^2+c),c=25/82+3/64*I,n=59 4032592130206197 a007 Real Root Of -527*x^4+18*x^3+592*x^2+722*x+210 4032592132405777 m001 MinimumGamma*Conway^2*ln(Salem) 4032592132720719 a007 Real Root Of 313*x^4+985*x^3-928*x^2+802*x+147 4032592145065800 p001 sum(1/(189*n+134)/n/(8^n),n=1..infinity) 4032592148141021 r009 Im(z^3+c),c=-23/66+25/63*I,n=28 4032592151531119 m005 (1/2*Pi+3/11)/(2/11*2^(1/2)-5/7) 4032592173967101 r009 Im(z^3+c),c=-3/10+5/12*I,n=22 4032592186265491 r008 a(0)=4,K{-n^6,11+8*n^3-89*n^2+39*n} 4032592196692046 m001 (HardyLittlewoodC5+Stephens)/(1+exp(1/exp(1))) 4032592201697922 p004 log(17881/317) 4032592202224693 r002 61th iterates of z^2 + 4032592215626194 m001 (FeigenbaumB-FellerTornier)/(ln(3)-Zeta(1,-1)) 4032592229972203 r005 Im(z^2+c),c=-14/17+4/13*I,n=3 4032592239219322 a007 Real Root Of -53*x^4-150*x^3+378*x^2+365*x-496 4032592248607525 l006 ln(5446/8151) 4032592249566447 m001 (BesselK(0,1)-GAMMA(2/3))/(ln(5)+CareFree) 4032592256693913 r005 Re(z^2+c),c=-1/36+16/25*I,n=40 4032592269516394 r005 Im(z^2+c),c=-43/94+30/53*I,n=17 4032592275015710 r009 Im(z^3+c),c=-5/13+11/29*I,n=35 4032592275044400 r005 Re(z^2+c),c=-47/102+24/61*I,n=2 4032592284625488 m003 7/2+(129*Sqrt[5])/4096+Tanh[1/2+Sqrt[5]/2]/2 4032592339895594 r002 52th iterates of z^2 + 4032592340001996 m001 KhintchineHarmonic^2*ln(CopelandErdos)*Catalan 4032592361499694 m001 Lehmer^BesselI(1,1)/(Otter^BesselI(1,1)) 4032592365774055 m001 Bloch-Pi*csc(5/24*Pi)/GAMMA(19/24)-OneNinth 4032592369880454 a007 Real Root Of -363*x^4+92*x^3+325*x^2+742*x+262 4032592370457969 a007 Real Root Of 199*x^4-660*x^3-824*x^2-977*x+566 4032592374430891 r005 Im(z^2+c),c=-13/38+33/58*I,n=30 4032592377021285 m001 (ln(Pi)-Zeta(1/2))/(HardyLittlewoodC3+Trott) 4032592382633225 r002 46th iterates of z^2 + 4032592397866826 r005 Im(z^2+c),c=-13/34+35/54*I,n=7 4032592400128561 a003 sin(Pi*9/83)/cos(Pi*7/37) 4032592402492349 r005 Re(z^2+c),c=-17/46+13/24*I,n=28 4032592413700059 r009 Im(z^3+c),c=-35/102+17/42*I,n=9 4032592414083412 m005 (1/3*2^(1/2)+2/11)/(6*exp(1)-1/9) 4032592425785881 r009 Im(z^3+c),c=-1/27+22/47*I,n=16 4032592437207574 l006 ln(6505/9736) 4032592438824461 s001 sum(1/10^(n-1)*A136927[n]/n!,n=1..infinity) 4032592440196179 a001 1/2889*29^(35/48) 4032592443564511 g007 Psi(2,2/11)+Psi(2,3/10)+Psi(2,6/7)-Psi(2,3/5) 4032592462515685 r005 Re(z^2+c),c=-11/16+15/83*I,n=21 4032592470003117 r005 Re(z^2+c),c=-49/86+1/24*I,n=18 4032592489463434 r005 Re(z^2+c),c=3/40+17/46*I,n=34 4032592497806410 a007 Real Root Of 395*x^4-792*x^3+182*x^2-620*x-342 4032592521322329 a001 233/2*14662949395604^(20/21) 4032592540860555 r002 10th iterates of z^2 + 4032592544306246 a001 29/2*3^(27/29) 4032592555058537 r008 a(0)=4,K{-n^6,-56+21*n+55*n^2-51*n^3} 4032592556320124 r005 Re(z^2+c),c=-16/29+2/59*I,n=13 4032592560207858 r005 Re(z^2+c),c=-53/94+4/49*I,n=53 4032592592592592 q001 1361/3375 4032592592592592 s002 sum(A160749[n]/(16^n),n=1..infinity) 4032592614077756 b008 6+3^(1/13+Pi) 4032592618655009 m001 (FeigenbaumD-Psi(2,1/3))/(Rabbit+Sarnak) 4032592623182656 m001 (Mills+Trott2nd)/(FeigenbaumD+GolombDickman) 4032592634742739 r002 7th iterates of z^2 + 4032592643768719 r009 Im(z^3+c),c=-9/19+11/34*I,n=42 4032592662773302 r005 Re(z^2+c),c=-13/25+23/58*I,n=34 4032592704477084 r009 Im(z^3+c),c=-9/29+26/63*I,n=14 4032592722132443 r005 Re(z^2+c),c=-5/8+67/216*I,n=29 4032592731192251 a001 12752043/34*24157817^(20/21) 4032592739255473 p001 sum((-1)^n/(485*n+269)/n/(3^n),n=1..infinity) 4032592739262713 a007 Real Root Of -609*x^4+700*x^3+269*x^2+287*x+134 4032592739746259 a001 3/101521*1364^(21/58) 4032592742621896 a007 Real Root Of -221*x^4-971*x^3-432*x^2-406*x+155 4032592754125286 m001 ln(TwinPrimes)^2/ArtinRank2^2/Zeta(1,2)^2 4032592757951215 a003 cos(Pi*40/117)-sin(Pi*38/111) 4032592761620339 r005 Re(z^2+c),c=-17/30+1/14*I,n=21 4032592764896341 m001 (Si(Pi)-sin(1/5*Pi))/(Conway+FeigenbaumC) 4032592765120788 m001 (MertensB2-Trott2nd)/(3^(1/3)+GAMMA(11/12)) 4032592770960897 r008 a(0)=4,K{-n^6,-60-31*n^3-7*n^2+67*n} 4032592780550172 m005 (1/2*Catalan-5/6)/(1/8*3^(1/2)+5/7) 4032592782536086 a007 Real Root Of -167*x^4+961*x^3+541*x^2+988*x-545 4032592789608334 r005 Re(z^2+c),c=-45/94+10/21*I,n=61 4032592792874148 m001 (sin(1/5*Pi)+GAMMA(2/3))/(gamma(2)-Bloch) 4032592811917506 r002 34th iterates of z^2 + 4032592825241245 r002 34th iterates of z^2 + 4032592829063608 m001 (gamma+Ei(1,1))/(-FeigenbaumB+FransenRobinson) 4032592832875015 r005 Re(z^2+c),c=-14/25+5/36*I,n=47 4032592834695274 a007 Real Root Of 385*x^4-275*x^3+807*x^2-599*x-401 4032592851991708 l006 ln(86/4851) 4032592861479862 r009 Im(z^3+c),c=-3/62+37/47*I,n=62 4032592864667905 m001 (Catalan-Ei(1,1))/(Pi-2^(1/2)) 4032592877784743 m001 ln(Tribonacci)/DuboisRaymond/log(1+sqrt(2))^2 4032592883181573 m001 (-ThueMorse+ZetaQ(2))/(Psi(1,1/3)-Zeta(3)) 4032592885520993 r005 Re(z^2+c),c=-35/62+1/15*I,n=62 4032592889870635 a007 Real Root Of 19*x^4-91*x^3+404*x^2-685*x+216 4032592899274626 a007 Real Root Of -844*x^4-576*x^3-307*x^2-83*x+1 4032592900706639 m001 (Zeta(1/2)+exp(1/Pi))/(Artin+MadelungNaCl) 4032592904783277 r009 Im(z^3+c),c=-31/64+17/54*I,n=40 4032592916440721 r008 a(0)=4,K{-n^6,-58-21*n^3-36*n^2+84*n} 4032592925807407 r005 Im(z^2+c),c=-7/10+41/165*I,n=7 4032592938026406 a007 Real Root Of -206*x^4-640*x^3+950*x^2+620*x-442 4032592960478799 m001 exp(Pi)^(BesselI(1,2)/BesselK(1,1)) 4032592962000754 r002 58th iterates of z^2 + 4032592968607977 m001 (Ei(1,1)-arctan(1/3))/(Artin+Riemann3rdZero) 4032592971521874 b008 -6+InverseHaversine[Log[2]] 4032592974491165 m001 exp(1)^2/KhintchineLevy*ln(sqrt(5))^2 4032592974497618 r008 a(0)=4,K{-n^6,-24+29*n-13*n^2-23*n^3} 4032592975317088 m005 (1/3*Pi-2/9)/(7/10*3^(1/2)+5/6) 4032592977217436 r005 Re(z^2+c),c=-31/58+15/47*I,n=61 4032592978690173 r009 Im(z^3+c),c=-21/94+26/59*I,n=15 4032592987863570 v002 sum(1/(5^n+(15/2*n^2+63/2*n-6)),n=1..infinity) 4032592996682146 r008 a(0)=4,K{-n^6,-34+50*n-27*n^2-20*n^3} 4032593013460564 r005 Im(z^2+c),c=-29/82+38/51*I,n=3 4032593017576081 r005 Re(z^2+c),c=-29/56+13/32*I,n=33 4032593033254052 r005 Re(z^2+c),c=-71/126+3/34*I,n=62 4032593050951357 a001 18/75025*17711^(41/54) 4032593051994110 m001 Pi*2^(1/2)/GAMMA(3/4)+Ei(1,1)^Lehmer 4032593056927399 r005 Im(z^2+c),c=1/106+21/41*I,n=53 4032593059132812 r009 Re(z^3+c),c=-35/86+23/37*I,n=3 4032593065112404 m001 ln(GAMMA(13/24))/LaplaceLimit*cos(1) 4032593065637837 m005 (1/2*exp(1)+5/8)/(1/12*3^(1/2)-7/11) 4032593065785146 a007 Real Root Of -973*x^4-248*x^3-645*x^2+443*x+293 4032593076426820 r005 Im(z^2+c),c=39/110+11/62*I,n=42 4032593079180194 b008 CosIntegral[4*Cosh[1]] 4032593098897158 r002 19th iterates of z^2 + 4032593098898061 r005 Re(z^2+c),c=-31/56+10/47*I,n=29 4032593123065904 r005 Re(z^2+c),c=-49/94+7/18*I,n=64 4032593125584435 r005 Re(z^2+c),c=-51/110+13/37*I,n=11 4032593127421433 m005 (4*gamma+1/6)/(5/3+2*5^(1/2)) 4032593138128335 a007 Real Root Of 636*x^4+445*x^3+925*x^2-657*x-403 4032593143003601 m001 (Kac+Riemann1stZero)/(Zeta(1,2)+Conway) 4032593148041810 r008 a(0)=4,K{-n^6,28-47*n+10*n^2-22*n^3} 4032593148283121 r009 Re(z^3+c),c=-13/31+6/41*I,n=11 4032593149455680 m001 (CareFree+Magata)/(GAMMA(2/3)-Backhouse) 4032593172544928 r002 63th iterates of z^2 + 4032593183570083 r009 Im(z^3+c),c=-39/122+9/22*I,n=27 4032593208135662 a001 47/591286729879*514229^(9/19) 4032593236717722 b008 -1/4+ArcSec[25]^(-1) 4032593237880845 m005 (1/3*Zeta(3)+1/8)/(213/220+3/20*5^(1/2)) 4032593241499072 m001 Mills^GaussAGM*FellerTornier 4032593256977428 r009 Im(z^3+c),c=-5/13+11/29*I,n=42 4032593259366308 m001 Rabbit^MertensB3*Rabbit^ln(2+3^(1/2)) 4032593265825746 m001 TwinPrimes*Si(Pi)^2*exp(gamma) 4032593272207913 m005 (-5/3+1/3*5^(1/2))/(5/6*Pi-1/3) 4032593275164110 m005 (1/2*Zeta(3)-3/8)/(3/10*Catalan+2/7) 4032593276347100 r002 23th iterates of z^2 + 4032593276480639 m001 (3^(1/3)-MasserGramain)/(Robbin-Thue) 4032593276835618 m001 KhintchineLevy^2/ln(Conway)/log(2+sqrt(3)) 4032593277797273 a007 Real Root Of 504*x^4-744*x^3+323*x^2-539*x-332 4032593279155445 a007 Real Root Of 81*x^4+158*x^3-591*x^2+283*x-307 4032593283956524 m001 exp(Rabbit)/Conway*Sierpinski 4032593287931974 r002 52th iterates of z^2 + 4032593306688600 l006 ln(9356/9741) 4032593310007613 r002 59th iterates of z^2 + 4032593310538600 r009 Re(z^3+c),c=-29/64+29/47*I,n=3 4032593319117950 r005 Im(z^2+c),c=-13/10+26/231*I,n=8 4032593319972255 r008 a(0)=4,K{-n^6,-2+24*n-44*n^2-9*n^3} 4032593324401322 r008 a(0)=4,K{-n^6,29-51*n-58*n^2+50*n^3} 4032593327778984 r002 8th iterates of z^2 + 4032593328346596 r005 Im(z^2+c),c=19/62+5/48*I,n=6 4032593338064408 a007 Real Root Of -240*x^4-750*x^3+932*x^2+393*x+713 4032593349439319 m001 (FellerTornier+Kac)/(2^(1/2)-Zeta(1,2)) 4032593357179878 m001 1/ln(GAMMA(1/24))^2/Tribonacci/GAMMA(2/3) 4032593363142433 a007 Real Root Of 177*x^4+921*x^3+874*x^2+251*x+389 4032593375275610 r008 a(0)=4,K{-n^6,48-15*n^3-n^2-63*n} 4032593378055342 m001 GAMMA(11/12)^2*ln(Riemann2ndZero)/sin(1) 4032593386667989 a001 29/13*2^(41/48) 4032593393542113 r005 Im(z^2+c),c=41/126+3/59*I,n=31 4032593399668147 r005 Re(z^2+c),c=-10/27+31/54*I,n=60 4032593401896685 a007 Real Root Of -213*x^4-820*x^3+234*x^2+323*x+51 4032593407099745 l006 ln(1059/1585) 4032593439785369 r005 Re(z^2+c),c=-37/82+27/50*I,n=49 4032593447271936 r002 3th iterates of z^2 + 4032593457684495 m005 (1/3*Pi-1/4)/(11/12*Zeta(3)+7/8) 4032593458046357 b008 LerchPhi[1/14,2,1/2] 4032593463109431 s002 sum(A236566[n]/(n^3*10^n+1),n=1..infinity) 4032593468961950 r002 26th iterates of z^2 + 4032593473919010 s002 sum(A237284[n]/(n^3*10^n+1),n=1..infinity) 4032593481401470 m001 (Pi+BesselK(1,1))/(OrthogonalArrays-PlouffeB) 4032593483021951 r005 Re(z^2+c),c=-33/106+35/61*I,n=21 4032593506137612 r002 44th iterates of z^2 + 4032593511307963 a007 Real Root Of -555*x^4+319*x^3-174*x^2+831*x+399 4032593520027442 m005 (3/5*Catalan+1/6)/(2/3*2^(1/2)+5/6) 4032593522783019 a001 3/101521*24476^(15/58) 4032593523711207 a007 Real Root Of 962*x^4-536*x^3+978*x^2+500*x-18 4032593529966270 b008 Zeta[6,2^(-1/3)] 4032593530371703 m005 (1/3*3^(1/2)+1/3)/(3/5*5^(1/2)+11/12) 4032593532471840 a007 Real Root Of -434*x^4-658*x^3-367*x^2+243*x+126 4032593535879268 a007 Real Root Of 920*x^4-985*x^3+2*x^2-783*x-405 4032593538921274 r002 64th iterates of z^2 + 4032593541668933 m001 ln(MertensB1)/DuboisRaymond^2/Zeta(1,2)^2 4032593542746496 a003 sin(Pi*17/114)-sin(Pi*31/95) 4032593547688828 r005 Re(z^2+c),c=-41/74+6/31*I,n=38 4032593550844020 m001 (1+GAMMA(11/12))/(-FeigenbaumB+FellerTornier) 4032593554076681 r005 Re(z^2+c),c=-39/32+3/22*I,n=28 4032593557502630 m005 (-11/36+1/4*5^(1/2))/(6/11*2^(1/2)-1/7) 4032593575725814 a003 sin(Pi*39/115)/cos(Pi*34/79) 4032593578056349 m001 (ReciprocalFibonacci+Totient)/(1-Zeta(1,-1)) 4032593590234537 s002 sum(A241424[n]/(n^3*10^n+1),n=1..infinity) 4032593597744924 r005 Re(z^2+c),c=-9/16+9/82*I,n=29 4032593604770459 m001 1/PrimesInBinary/exp(Cahen)^2/GAMMA(17/24)^2 4032593611059079 r002 58th iterates of z^2 + 4032593613181957 m006 (1/2*Pi+3/4)/(3/5*Pi^2-1/6) 4032593613181957 m008 (1/2*Pi+3/4)/(3/5*Pi^2-1/6) 4032593619972260 q001 1163/2884 4032593630187679 a008 Real Root of x^4-x^3-25*x^2-16*x+12 4032593635514342 r002 28th iterates of z^2 + 4032593639104430 a007 Real Root Of 285*x^4-603*x^3+173*x^2-407*x+168 4032593640848196 a003 sin(Pi*14/103)*sin(Pi*35/82) 4032593643747694 r008 a(0)=4,K{-n^6,-56-8*n+26*n^2+8*n^3} 4032593643907692 m001 (Salem+Sarnak)/(GolombDickman-gamma) 4032593648384025 m008 (5/6*Pi^5+5/6)/(3/5*Pi^4+5) 4032593664294441 r005 Re(z^2+c),c=-13/23+17/44*I,n=10 4032593669314646 a007 Real Root Of 294*x^4+22*x^3+595*x^2+273*x+7 4032593687338967 a007 Real Root Of 309*x^4-213*x^3-223*x^2-345*x-125 4032593710321282 a001 5600748293801/3*956722026041^(16/23) 4032593716479970 m001 (exp(1/2)+3)/(-GaussAGM(1,1/sqrt(2))+2) 4032593721806773 r005 Re(z^2+c),c=-27/62+19/42*I,n=11 4032593728545270 m001 -cos(1)/(-TwinPrimes+2) 4032593729325462 m006 (3*Pi^2-1)/(2/3*Pi+5) 4032593729325462 m008 (3*Pi^2-1)/(2/3*Pi+5) 4032593747528513 g002 Psi(2/11)-Psi(8/9)-Psi(4/9)-Psi(3/7) 4032593752949000 m001 1/ln(Bloch)*Backhouse*(3^(1/3))^2 4032593754876140 m005 (5/6*Pi-1/4)/(7/5+2*5^(1/2)) 4032593757092357 m001 (sin(1)+ln(3))/(Magata+OrthogonalArrays) 4032593771550597 v003 sum((16+17/2*n^2-37/2*n)*n!/n^n,n=1..infinity) 4032593773613408 m001 (Bloch-gamma)/(-Kolakoski+Magata) 4032593775339086 r005 Im(z^2+c),c=1/78+30/59*I,n=31 4032593784823209 m001 1/GAMMA(7/12)/Artin/ln(cosh(1)) 4032593789854462 m005 (-3/20+1/4*5^(1/2))/(1/9*2^(1/2)+6/7) 4032593797096079 r008 a(0)=4,K{-n^6,32-5*n-60*n^2+2*n^3} 4032593802264226 m001 (Chi(1)+gamma(3)*exp(-1/2*Pi))/exp(-1/2*Pi) 4032593812507712 r005 Im(z^2+c),c=9/118+29/62*I,n=62 4032593818949429 r005 Re(z^2+c),c=-19/34+11/72*I,n=41 4032593822640363 r009 Re(z^3+c),c=-33/62+20/63*I,n=53 4032593824231255 m003 3+Sqrt[5]/2-Tanh[1/2+Sqrt[5]/2]^2/10 4032593829417435 r002 28th iterates of z^2 + 4032593832278170 a001 322/28657*6557470319842^(14/17) 4032593833634852 a001 1149851/144*514229^(14/17) 4032593841308421 r005 Re(z^2+c),c=-13/23+2/43*I,n=55 4032593867428628 r005 Re(z^2+c),c=-69/122+1/32*I,n=50 4032593871935506 r005 Re(z^2+c),c=-35/62+1/15*I,n=64 4032593877465771 r005 Re(z^2+c),c=-37/70+17/49*I,n=62 4032593881801003 m005 (1/2*3^(1/2)-5/8)/(8/11*exp(1)+4) 4032593885060993 a007 Real Root Of -276*x^4+985*x^3+580*x^2+683*x+253 4032593886350938 r005 Re(z^2+c),c=-5/22+14/23*I,n=22 4032593898579473 r002 44th iterates of z^2 + 4032593898668906 r005 Re(z^2+c),c=-5/9-16/87*I,n=50 4032593902493730 a007 Real Root Of -128*x^4-756*x^3-891*x^2+460*x+617 4032593903631587 r005 Im(z^2+c),c=29/102+13/45*I,n=63 4032593912576538 r005 Im(z^2+c),c=11/74+20/37*I,n=33 4032593917396832 m007 (-3/4*gamma+3/5)/(-4*gamma-12*ln(2)+2*Pi+1/5) 4032593918449766 r005 Re(z^2+c),c=27/98+1/28*I,n=45 4032593927699783 a001 11/2*46368^(35/57) 4032593937733591 r005 Re(z^2+c),c=-35/62+1/15*I,n=52 4032593960471516 m005 (25/12+1/12*5^(1/2))/(1/5*Pi+5) 4032593972843979 r005 Im(z^2+c),c=-3/122+8/15*I,n=64 4032593980546271 r009 Im(z^3+c),c=-5/13+11/29*I,n=45 4032593982305843 p004 log(32833/21937) 4032593986081637 m001 (Chi(1)-polylog(4,1/2))/(Bloch+FellerTornier) 4032594000116136 a001 29/4181*89^(20/51) 4032594006236211 m001 Tribonacci^BesselI(1,2)*Mills^BesselI(1,2) 4032594006991282 r005 Im(z^2+c),c=9/118+29/62*I,n=58 4032594012632572 r005 Im(z^2+c),c=-1/90+18/35*I,n=12 4032594020301450 r005 Re(z^2+c),c=-53/94+5/61*I,n=48 4032594032541125 m001 Zeta(1,2)/BesselI(1,2)/MinimumGamma 4032594040637200 r009 Im(z^3+c),c=-7/90+27/58*I,n=16 4032594041267997 m001 (Pi-LambertW(1))/(arctan(1/2)+ZetaP(3)) 4032594043776476 p004 log(29663/19819) 4032594054516143 a001 439204/5*1134903170^(11/13) 4032594054536904 a001 87403803/5*2178309^(11/13) 4032594057569627 r002 38th iterates of z^2 + 4032594061107036 r005 Re(z^2+c),c=-69/122+1/53*I,n=33 4032594066528225 a007 Real Root Of 840*x^4+742*x^3+989*x^2-557*x-359 4032594078588846 m001 (ln(Pi)+FeigenbaumC)/(MinimumGamma-Sarnak) 4032594079451902 a001 199/591286729879*2^(6/23) 4032594081618861 r005 Im(z^2+c),c=21/94+20/57*I,n=41 4032594083528099 m001 (gamma(1)-Bloch)/(CareFree+MasserGramain) 4032594086409260 m001 (ln(2)-GAMMA(17/24))/(Landau+Riemann1stZero) 4032594093576481 a001 17393796001/5*4181^(11/13) 4032594093741401 m001 (-Trott+ZetaP(3))/(BesselI(0,1)-GAMMA(3/4)) 4032594099692210 a007 Real Root Of -931*x^4+581*x^3-38*x^2+644*x-267 4032594110750707 m001 Riemann1stZero*exp(Paris)*Sierpinski 4032594123701174 m001 1/Khintchine*ln(MertensB1)^2*BesselK(1,1) 4032594127949386 r005 Re(z^2+c),c=-17/30+1/91*I,n=28 4032594128921854 m001 1/ln(Zeta(3))^2*MadelungNaCl^2/sqrt(5) 4032594161957777 r005 Re(z^2+c),c=-43/64+53/57*I,n=3 4032594170255237 m001 FeigenbaumMu/(HardyLittlewoodC5^exp(1)) 4032594179090025 r005 Im(z^2+c),c=31/94+21/62*I,n=39 4032594181011807 a007 Real Root Of 249*x^4+324*x^3+x^2-951*x-369 4032594185024118 r009 Im(z^3+c),c=-5/13+11/29*I,n=46 4032594188367634 r005 Re(z^2+c),c=-22/29+13/56*I,n=11 4032594193656483 r009 Im(z^3+c),c=-19/46+1/51*I,n=3 4032594204160404 r009 Im(z^3+c),c=-5/13+11/29*I,n=49 4032594208647095 r008 a(0)=4,K{-n^6,-69-53*n^3+55*n^2+36*n} 4032594209702359 r009 Im(z^3+c),c=-5/13+11/29*I,n=48 4032594217358891 m001 (arctan(1/2)-Kac)/(KhinchinHarmonic-Niven) 4032594217709621 r005 Re(z^2+c),c=-19/34+7/46*I,n=47 4032594223986680 a007 Real Root Of 359*x^4-528*x^3+389*x^2+177*x-36 4032594229847418 r005 Im(z^2+c),c=-22/31+6/59*I,n=64 4032594232318043 m001 (MadelungNaCl+ZetaQ(3))/(exp(-1/2*Pi)-Cahen) 4032594237081054 r009 Im(z^3+c),c=-5/13+11/29*I,n=52 4032594239838125 m005 (2/3*Pi+3)/(5/6*Catalan+1/2) 4032594239901091 m006 (3/4*Pi-1/5)/(exp(2*Pi)-4/5) 4032594253408466 r005 Im(z^2+c),c=9/25+9/50*I,n=61 4032594256144842 r009 Im(z^3+c),c=-5/13+11/29*I,n=55 4032594259230536 m005 (1/2*gamma-7/12)/(8/9*Catalan-1/12) 4032594264390030 r009 Im(z^3+c),c=-5/13+11/29*I,n=58 4032594265777411 m002 -3+4/Pi^4-ProductLog[Pi] 4032594266865503 r009 Im(z^3+c),c=-5/13+11/29*I,n=51 4032594267338702 r009 Im(z^3+c),c=-5/13+11/29*I,n=61 4032594267889200 r009 Im(z^3+c),c=-5/13+11/29*I,n=62 4032594268210562 r009 Im(z^3+c),c=-5/13+11/29*I,n=64 4032594268259191 r009 Im(z^3+c),c=-5/13+11/29*I,n=59 4032594269167768 r009 Im(z^3+c),c=-5/13+11/29*I,n=63 4032594270456890 r009 Im(z^3+c),c=-5/13+11/29*I,n=60 4032594271602702 r009 Im(z^3+c),c=-5/13+11/29*I,n=56 4032594272730796 m001 FeigenbaumB/(OrthogonalArrays+TwinPrimes) 4032594272833939 r009 Im(z^3+c),c=-5/13+11/29*I,n=57 4032594272846076 m001 (Robbin-Sarnak)/(GAMMA(3/4)+Riemann1stZero) 4032594274898652 r009 Im(z^3+c),c=-5/13+11/29*I,n=54 4032594277758324 m001 (2^(1/2)-ln(2))/(-ReciprocalLucas+ZetaP(3)) 4032594277775730 r002 16th iterates of z^2 + 4032594285786756 r009 Im(z^3+c),c=-5/13+11/29*I,n=53 4032594287383852 r002 23th iterates of z^2 + 4032594289300754 m005 (1/3*gamma+2/11)/(5/11*Pi-1/2) 4032594294078420 r008 a(0)=4,K{-n^6,-35-50*n^3+63*n^2-9*n} 4032594294244520 m001 1/CareFree^2*ArtinRank2^2*exp(sqrt(2)) 4032594300849870 r005 Im(z^2+c),c=7/48+5/12*I,n=39 4032594314299399 a007 Real Root Of -657*x^4-404*x^3+144*x^2+594*x+207 4032594322156462 m001 (Lehmer+Riemann3rdZero)/(LambertW(1)-Zeta(3)) 4032594332095198 r009 Im(z^3+c),c=-5/13+11/29*I,n=50 4032594338876696 m001 (PrimesInBinary+Sarnak)/(1+MasserGramainDelta) 4032594344585033 r009 Im(z^3+c),c=-5/13+11/29*I,n=43 4032594353563078 a007 Real Root Of 641*x^4+68*x^3-750*x^2-812*x+428 4032594357835884 m009 (5*Psi(1,1/3)-1/4)/(4*Psi(1,2/3)+1/5) 4032594358436142 r005 Im(z^2+c),c=-19/44+21/38*I,n=8 4032594373908597 r009 Re(z^3+c),c=-25/56+11/61*I,n=25 4032594378093337 r005 Re(z^2+c),c=-12/23+4/11*I,n=37 4032594396697852 m009 (4/5*Psi(1,2/3)-1/2)/(3/5*Psi(1,2/3)+3) 4032594406927462 r008 a(0)=4,K{-n^6,-5-44*n+63*n^2-45*n^3} 4032594414581876 r004 Re(z^2+c),c=-19/34+3/19*I,z(0)=-1,n=29 4032594424212101 l006 ln(6203/9284) 4032594428679723 r009 Im(z^3+c),c=-17/44+14/37*I,n=28 4032594430832438 r005 Re(z^2+c),c=-71/126+3/34*I,n=64 4032594431722687 r008 a(0)=4,K{-n^6,-41+26*n+21*n^2-37*n^3} 4032594434383016 m002 1+6*Pi^3+4*Pi^6 4032594443269962 h001 (9/11*exp(1)+3/11)/(7/9*exp(2)+4/9) 4032594457742360 r009 Im(z^3+c),c=-5/13+11/29*I,n=47 4032594463948286 r005 Im(z^2+c),c=11/56+3/8*I,n=62 4032594465978778 r008 a(0)=4,K{-n^6,-61-31*n^3-7*n^2+68*n} 4032594486594172 h001 (9/10*exp(1)+3/8)/(8/9*exp(2)+3/7) 4032594486921265 r005 Re(z^2+c),c=-51/94+17/60*I,n=41 4032594492311026 p003 LerchPhi(1/6,1,388/137) 4032594492492410 r008 a(0)=4,K{-n^6,-13-16*n+35*n^2-37*n^3} 4032594499639898 r005 Re(z^2+c),c=-13/23+3/61*I,n=39 4032594516030009 a008 Real Root of x^4-2*x^3+4*x^2+78*x-32 4032594521283723 r005 Re(z^2+c),c=-5/8+89/253*I,n=37 4032594524384891 m001 Niven^2/ln(MinimumGamma)^2*Riemann1stZero^2 4032594540490171 a007 Real Root Of -932*x^4+414*x^3-664*x^2+8*x+163 4032594548412830 r005 Re(z^2+c),c=-13/23+23/61*I,n=23 4032594555300179 r005 Im(z^2+c),c=-5/102+27/49*I,n=18 4032594570194199 r002 6th iterates of z^2 + 4032594570217013 r002 54th iterates of z^2 + 4032594595867384 b008 Log[3+17*Pi] 4032594615659943 m002 -5/4+Pi+Log[Pi]+Tanh[Pi] 4032594624931633 m001 GAMMA(3/4)^2/exp(BesselJ(0,1))*gamma 4032594633605942 l006 ln(5144/7699) 4032594635909584 a007 Real Root Of -958*x^4+292*x^3-112*x^2+891*x+422 4032594639153368 m001 (cos(1)+GAMMA(13/24))/(Psi(2,1/3)+Shi(1)) 4032594643333160 r005 Re(z^2+c),c=-33/64+7/18*I,n=51 4032594648414829 b008 -5+(5+EulerGamma^(-1))^2 4032594658119714 r005 Re(z^2+c),c=-19/34+17/107*I,n=32 4032594671030816 r005 Re(z^2+c),c=-19/34+18/121*I,n=35 4032594675005400 r005 Re(z^2+c),c=-27/56+23/51*I,n=24 4032594676264941 l006 ln(113/6374) 4032594679321131 r002 55th iterates of z^2 + 4032594689541424 r008 a(0)=4,K{-n^6,-19+21*n-10*n^2-23*n^3} 4032594693273561 a007 Real Root Of -423*x^4-468*x^3-213*x^2+894*x-284 4032594712416674 r008 a(0)=4,K{-n^6,-11+9*n-6*n^2-23*n^3} 4032594720859936 m001 (-GAMMA(1/24)+2/3)/(sqrt(1+sqrt(3))+4) 4032594724226613 r008 a(0)=4,K{-n^6,-37+58*n-34*n^2-18*n^3} 4032594724414287 r005 Im(z^2+c),c=5/27+5/13*I,n=48 4032594734215179 a008 Real Root of x^3-x^2+21*x-134 4032594737513262 r009 Im(z^3+c),c=-5/13+11/29*I,n=44 4032594748445714 m001 (3^(1/2)+3^(1/3))/(DuboisRaymond+Lehmer) 4032594749926557 m001 (QuadraticClass+Trott)/(ln(2)-Bloch) 4032594754800477 r005 Re(z^2+c),c=-8/17+5/49*I,n=3 4032594760499453 m004 4+125*Pi+(25*Sqrt[5]*Cos[Sqrt[5]*Pi])/(2*Pi) 4032594764320574 a007 Real Root Of 648*x^4+440*x^3+543*x^2-864*x-425 4032594766060004 m006 (1/2*exp(Pi)+3/5)/(5/6*Pi+2/5) 4032594778440847 a003 cos(Pi*8/99)-sin(Pi*45/119) 4032594778475785 r005 Im(z^2+c),c=-53/62+1/38*I,n=50 4032594784677621 a007 Real Root Of 855*x^4-835*x^3+998*x^2+448*x-59 4032594801059072 a007 Real Root Of -749*x^4-121*x^3-611*x^2+297*x+231 4032594807076260 r005 Im(z^2+c),c=-53/62+1/38*I,n=47 4032594814546957 m001 1/FeigenbaumB/ln(sin(1))^2 4032594828223597 a001 843/10946*610^(41/42) 4032594830764110 r002 9th iterates of z^2 + 4032594831950248 r005 Re(z^2+c),c=-45/82+13/55*I,n=56 4032594832947787 r005 Im(z^2+c),c=11/56+3/8*I,n=61 4032594835455656 r009 Im(z^3+c),c=-51/98+13/55*I,n=29 4032594838083092 r005 Im(z^2+c),c=-95/78+7/58*I,n=28 4032594840139464 r005 Im(z^2+c),c=-109/102+10/39*I,n=24 4032594841400708 a007 Real Root Of x^4-204*x^3-817*x^2-21*x-441 4032594849047526 r002 47th iterates of z^2 + 4032594852687116 r005 Re(z^2+c),c=-7/13+3/10*I,n=57 4032594859502493 m001 (Zeta(5)-ln(2))/(BesselJ(1,1)+ThueMorse) 4032594882441117 a001 2207/5*591286729879^(11/13) 4032594894146196 m001 (-GAMMA(19/24)+Totient)/(gamma+Zeta(1,-1)) 4032594898099605 m005 (1/3*2^(1/2)+2/7)/(7/11*5^(1/2)+5/11) 4032594901467383 m001 (Pi+GAMMA(5/6))/(MasserGramain-Niven) 4032594904410051 b008 1/3+E+9*(1+Pi) 4032594911350393 r008 a(0)=4,K{-n^6,9-7*n-17*n^2-16*n^3} 4032594912046142 r002 51th iterates of z^2 + 4032594914248324 m001 (PolyaRandomWalk3D+Sarnak)/(MertensB3+Mills) 4032594933473941 r009 Im(z^3+c),c=-9/110+27/58*I,n=9 4032594946617825 r009 Re(z^3+c),c=-13/40+47/49*I,n=3 4032594947358163 r005 Im(z^2+c),c=17/126+23/55*I,n=17 4032594949334756 a007 Real Root Of 53*x^4-486*x^3-424*x^2-485*x+295 4032594951566765 l006 ln(4085/6114) 4032594974016814 a007 Real Root Of 195*x^4+984*x^3+655*x^2-352*x+890 4032594984440118 m001 (3^(1/3)-CareFree)/(FeigenbaumC-ZetaQ(4)) 4032594986798482 r009 Re(z^3+c),c=-49/102+26/53*I,n=22 4032594997466378 r005 Re(z^2+c),c=-61/110+6/35*I,n=27 4032594998158002 b008 QPochhammer[5/14,ArcCoth[2]] 4032595004903634 r005 Im(z^2+c),c=9/86+11/23*I,n=14 4032595014624526 r002 14th iterates of z^2 + 4032595017171132 r005 Im(z^2+c),c=-5/48+5/9*I,n=20 4032595020603534 r002 58th iterates of z^2 + 4032595021076220 a001 121393/3*18^(35/44) 4032595028827400 a007 Real Root Of -937*x^4+605*x^3+144*x^2+848*x+383 4032595042305022 a007 Real Root Of -168*x^4-709*x^3-884*x^2-277*x-10 4032595043855027 m001 BesselJ(1,1)*GAMMA(7/12)+ReciprocalFibonacci 4032595053590615 m001 (-ZetaP(4)+ZetaQ(2))/(gamma-ln(Pi)) 4032595065933587 a007 Real Root Of 237*x^4+815*x^3-458*x^2+597*x+627 4032595067023673 r009 Im(z^3+c),c=-11/70+23/51*I,n=6 4032595068951107 q001 965/2393 4032595088706622 m001 (Cahen*Totient-arctan(1/3))/Totient 4032595090094406 r005 Re(z^2+c),c=5/62+14/37*I,n=46 4032595099404300 r009 Im(z^3+c),c=-19/122+32/45*I,n=2 4032595109903261 r005 Re(z^2+c),c=-61/110+11/57*I,n=44 4032595111549455 r005 Im(z^2+c),c=-41/60+15/46*I,n=3 4032595136951022 a007 Real Root Of -612*x^4+224*x^3+592*x^2+928*x-469 4032595149860601 m001 Niven^2/Kolakoski^2*exp(sqrt(5))^2 4032595156120870 r005 Re(z^2+c),c=-5/8+29/188*I,n=17 4032595168102889 a007 Real Root Of -59*x^4+317*x^3-843*x^2+480*x+353 4032595184339512 r009 Im(z^3+c),c=-5/13+11/29*I,n=41 4032595187096515 r002 61th iterates of z^2 + 4032595197756868 r005 Im(z^2+c),c=-61/48+7/45*I,n=6 4032595207629350 m001 (Pi-5^(1/2))/(cos(1)+Niven) 4032595226278745 r002 59th iterates of z^2 + 4032595227234092 a003 cos(Pi*1/115)-cos(Pi*35/118) 4032595228645391 r009 Re(z^3+c),c=-53/114+11/50*I,n=3 4032595234873287 r002 23th iterates of z^2 + 4032595279779925 r009 Im(z^3+c),c=-5/13+11/29*I,n=38 4032595280266066 r009 Im(z^3+c),c=-1/31+22/47*I,n=9 4032595285087368 r005 Im(z^2+c),c=-6/29+17/36*I,n=4 4032595309042715 r009 Im(z^3+c),c=-5/13+11/29*I,n=40 4032595314473972 a001 1/3461452808002*76^(14/23) 4032595322047861 m001 1/exp(Catalan)*OneNinth^2/GAMMA(1/12) 4032595338281110 r005 Im(z^2+c),c=13/90+9/16*I,n=21 4032595341900560 r005 Re(z^2+c),c=-45/82+13/55*I,n=60 4032595348942213 r002 63th iterates of z^2 + 4032595349771849 r002 16th iterates of z^2 + 4032595352598610 m004 2/5+2*Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 4032595374247704 r002 12th iterates of z^2 + 4032595378155890 r009 Im(z^3+c),c=-45/94+7/23*I,n=17 4032595378390261 m004 2/5+(4*Tan[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 4032595381572455 r002 42th iterates of z^2 + 4032595383353040 m001 (gamma(3)+BesselK(1,1))/(GAMMA(23/24)+Bloch) 4032595393896185 m001 Salem^2*ln(ArtinRank2)*cos(Pi/5) 4032595399642992 r002 3th iterates of z^2 + 4032595400172451 m005 2/5*5^(1/2)/(5/6*Pi-2/5) 4032595404181952 m004 2/5+2*Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 4032595406240496 m005 (4*2^(1/2)-2/3)/(1/2*Pi-1/3) 4032595412895943 a007 Real Root Of 211*x^4+989*x^3+334*x^2-744*x+626 4032595439532408 r004 Im(z^2+c),c=-1/10-4/7*I,z(0)=I,n=46 4032595446714171 r009 Im(z^3+c),c=-35/74+12/37*I,n=59 4032595447206830 a007 Real Root Of 405*x^4-297*x^3+168*x^2-765*x-366 4032595450054317 r005 Im(z^2+c),c=-2/3+43/256*I,n=10 4032595462523188 r008 a(0)=4,K{-n^6,41-25*n-46*n^2-n^3} 4032595464894921 m001 GAMMA(1/3)^2*exp(LaplaceLimit)^2/sin(Pi/12)^2 4032595471753915 a007 Real Root Of 484*x^4-326*x^3-333*x^2-328*x+195 4032595473395873 m001 (Mills-ZetaQ(4))/(Artin-ArtinRank2) 4032595484483156 r002 8th iterates of z^2 + 4032595492079126 l006 ln(3026/4529) 4032595503747188 r005 Im(z^2+c),c=-15/118+24/41*I,n=52 4032595512669500 r005 Re(z^2+c),c=-5/9+7/20*I,n=26 4032595514379040 a001 7/6*73681302247^(11/14) 4032595514379040 a001 7/6*1568397607^(13/14) 4032595533253914 r008 a(0)=4,K{-n^6,53-43*n-40*n^2-n^3} 4032595534216985 m001 (AlladiGrinstead+Paris)/(Tribonacci+ThueMorse) 4032595535051088 r005 Re(z^2+c),c=5/62+14/37*I,n=45 4032595547781226 a007 Real Root Of -949*x^4+199*x^3-562*x^2+326*x+261 4032595549333926 m001 GaussKuzminWirsing*Cahen+exp(-1/2*Pi) 4032595549333926 m001 exp(-1/2*Pi)+Cahen*GaussKuzminWirsing 4032595555074688 m003 -5+(2*Cos[1/2+Sqrt[5]/2])/3+Sin[1/2+Sqrt[5]/2] 4032595555261848 r009 Re(z^3+c),c=-11/40+34/39*I,n=3 4032595561809246 m001 GAMMA(11/12)^ArtinRank2-HardyLittlewoodC3 4032595577674147 r005 Im(z^2+c),c=-131/106+17/42*I,n=6 4032595589793837 a003 sin(Pi*12/97)/sin(Pi*7/18) 4032595590152663 r005 Re(z^2+c),c=-61/106+7/57*I,n=11 4032595595554390 r005 Re(z^2+c),c=-35/62+1/15*I,n=51 4032595596938764 r008 a(0)=4,K{-n^6,27+5*n^3-71*n^2+8*n} 4032595598065864 r005 Re(z^2+c),c=-71/126+3/34*I,n=63 4032595600469504 b008 26/7+Pi^(-1) 4032595601433470 b008 Sqrt[23]-2*(3+Sqrt[2]) 4032595601534092 r009 Im(z^3+c),c=-43/90+17/53*I,n=56 4032595612690451 r002 13th iterates of z^2 + 4032595621072445 m006 (4*Pi^2-4/5)/(3*Pi+1/6) 4032595621072445 m008 (4*Pi^2-4/5)/(3*Pi+1/6) 4032595633530341 m005 (1/2*exp(1)+1/9)/(2*3^(1/2)+2/11) 4032595634750190 r005 Im(z^2+c),c=9/106+5/12*I,n=6 4032595645085505 a007 Real Root Of 638*x^4-211*x^3-788*x^2-931*x-278 4032595653240592 m001 (1+Ei(1,1))/(Zeta(1,2)+HardyLittlewoodC3) 4032595674256914 m002 Pi^5*Cosh[Pi]+5*Pi^4*Tanh[Pi] 4032595675284006 m001 Artin/(Artin^ZetaP(4)) 4032595678885743 r005 Re(z^2+c),c=-3/4+1/187*I,n=50 4032595679015556 r002 37th iterates of z^2 + 4032595688502391 m001 Champernowne/Ei(1,1)/HardHexagonsEntropy 4032595690582956 r005 Im(z^2+c),c=-1/86+27/47*I,n=29 4032595696313939 m009 (1/3*Psi(1,3/4)-3/5)/(6*Psi(1,1/3)+3/4) 4032595698809688 h001 (2/5*exp(1)+1/7)/(4/11*exp(2)+4/11) 4032595701133202 r009 Re(z^3+c),c=-41/78+17/57*I,n=59 4032595711910574 m004 -5+130*Pi-Cos[Sqrt[5]*Pi]/5 4032595712378334 r005 Re(z^2+c),c=-9/16+11/106*I,n=41 4032595719949184 r002 57th iterates of z^2 + 4032595721112572 a007 Real Root Of -124*x^4-360*x^3+387*x^2-744*x-110 4032595730935927 m005 (5*exp(1)+1/3)/(1/6*exp(1)+3) 4032595734750054 r005 Re(z^2+c),c=-41/106+34/63*I,n=38 4032595744212745 p003 LerchPhi(1/32,1,345/136) 4032595760630027 a001 7/55*34^(49/50) 4032595766639337 r005 Re(z^2+c),c=-55/94+8/53*I,n=17 4032595769010615 r005 Im(z^2+c),c=29/114+15/46*I,n=24 4032595791604456 m004 6+(380*Pi)/3-Sin[Sqrt[5]*Pi] 4032595796888276 l006 ln(140/7897) 4032595805939188 r005 Im(z^2+c),c=11/56+3/8*I,n=54 4032595807041738 p004 log(31477/21031) 4032595809150568 a005 (1/cos(10/149*Pi))^782 4032595809664769 r002 64th iterates of z^2 + 4032595837096866 m001 (ln(Pi)-3^(1/3))/(DuboisRaymond+Landau) 4032595854242992 r005 Re(z^2+c),c=-19/34+8/53*I,n=40 4032595854374725 r005 Re(z^2+c),c=2/7+2/49*I,n=36 4032595866644028 r005 Im(z^2+c),c=7/66+14/31*I,n=22 4032595898288084 a003 cos(Pi*17/86)*cos(Pi*46/95) 4032595912198151 h001 (8/11*exp(1)+6/11)/(1/8*exp(1)+2/7) 4032595912899602 r005 Im(z^2+c),c=-5/38+34/53*I,n=62 4032595914499117 a007 Real Root Of -835*x^4+210*x^3+996*x^2+105*x-196 4032595921063729 r005 Re(z^2+c),c=-31/56+1/5*I,n=41 4032595931028003 m005 (1/2*5^(1/2)+3/11)/(1/7*Pi+3) 4032595934296808 l006 ln(4993/7473) 4032595963070133 r005 Re(z^2+c),c=-17/30+2/43*I,n=20 4032595965810810 m001 (ln(gamma)+Lehmer)/(OneNinth-Salem) 4032595986358974 r005 Re(z^2+c),c=-19/26+1/34*I,n=24 4032595986397791 r005 Im(z^2+c),c=17/114+17/41*I,n=28 4032595989574066 r002 58th iterates of z^2 + 4032595989951404 a008 Real Root of x^4-2*x^3-10*x^2+10*x-11 4032596005605509 r009 Im(z^3+c),c=-21/62+13/20*I,n=28 4032596013900304 m001 5^(1/2)*(arctan(1/2)+Totient) 4032596014651227 l006 ln(3791/3947) 4032596031009473 r002 43th iterates of z^2 + 4032596032685573 m002 -5+Log[Pi]/Pi^2+Pi^2*Sech[Pi] 4032596049120658 r009 Im(z^3+c),c=-4/17+7/16*I,n=18 4032596055084318 r008 a(0)=4,K{-n^6,-26-17*n+59*n^2-47*n^3} 4032596059753468 r009 Im(z^3+c),c=-39/106+13/33*I,n=10 4032596063398542 a007 Real Root Of -139*x^4-539*x^3+125*x^2+147*x-28 4032596069742013 r009 Im(z^3+c),c=-3/20+21/46*I,n=10 4032596075802721 p004 log(28307/18913) 4032596091211741 r005 Re(z^2+c),c=-13/18+1/27*I,n=20 4032596114290186 r008 a(0)=4,K{-n^6,-50+37*n+20*n^2-38*n^3} 4032596134044355 m001 (cos(1)+ln(5))/(FeigenbaumDelta+Robbin) 4032596136347300 b008 PolyGamma[1,FresnelC[5]] 4032596140210578 r008 a(0)=4,K{-n^6,-6+33*n^3-68*n^2+15*n} 4032596146500301 a001 76/9227465*21^(12/23) 4032596157152826 r009 Im(z^3+c),c=-17/122+29/63*I,n=7 4032596160331066 r002 38th iterates of z^2 + 4032596160737561 r008 a(0)=4,K{-n^6,-70-31*n^3-11*n^2+81*n} 4032596166988672 m001 Gompertz-Psi(1,1/3)^LaplaceLimit 4032596191690656 m004 10/Pi+(Sqrt[5]*Sinh[Sqrt[5]*Pi])/Pi 4032596194330366 r005 Re(z^2+c),c=-13/24+16/57*I,n=60 4032596201329765 r005 Re(z^2+c),c=-27/56+18/49*I,n=9 4032596209364953 p004 log(17317/307) 4032596212338914 r005 Im(z^2+c),c=-1/32+7/13*I,n=41 4032596235463737 r005 Re(z^2+c),c=5/62+14/37*I,n=49 4032596236191043 r002 29th iterates of z^2 + 4032596247974269 r002 11th iterates of z^2 + 4032596249585458 r005 Re(z^2+c),c=-41/74+11/56*I,n=64 4032596257161768 m001 (5^(1/2)+Catalan)/(-cos(1/12*Pi)+MadelungNaCl) 4032596260050996 r008 a(0)=4,K{-n^6,-36-20*n+9*n^2+17*n^3} 4032596261944201 r005 Re(z^2+c),c=-57/106+19/63*I,n=54 4032596262182257 r008 a(0)=4,K{-n^6,-50+59*n-13*n^2-27*n^3} 4032596273642191 m001 (ln(5)+Bloch)/(Salem-TwinPrimes) 4032596278318603 r005 Im(z^2+c),c=-13/98+26/43*I,n=60 4032596285902269 r005 Im(z^2+c),c=-35/122+3/49*I,n=6 4032596286714994 m001 Salem*ln(FransenRobinson)^2*LambertW(1)^2 4032596301147605 m005 (1/3*5^(1/2)-1/5)/(10/11*3^(1/2)-2/9) 4032596305292027 m002 Pi-Log[Pi]/Pi^3+Tanh[Pi]/ProductLog[Pi] 4032596306536933 a007 Real Root Of -243*x^4+403*x^3-294*x^2+410*x+246 4032596311691094 r005 Im(z^2+c),c=-35/26+17/125*I,n=6 4032596317550634 r005 Re(z^2+c),c=-69/122+1/31*I,n=39 4032596318658680 h001 (5/7*exp(1)+5/7)/(5/6*exp(2)+3/7) 4032596333024573 m001 ln(-Psi(2,1/3)+GAMMA(17/24)) 4032596338146842 m001 1/GAMMA(3/4)*exp(FeigenbaumB)*arctan(1/2)^2 4032596351827851 m005 (1/2*5^(1/2)-1/2)/(7/12*Pi-3/10) 4032596352881991 a007 Real Root Of -262*x^4-946*x^3+609*x^2+660*x+7 4032596358080297 m001 (-Gompertz+Salem)/(BesselI(0,2)-sin(1)) 4032596362603009 m001 Riemann2ndZero^FibonacciFactorial-ln(5) 4032596392090579 m001 (ln(gamma)+Bloch)/(HeathBrownMoroz-Tetranacci) 4032596393184576 r005 Im(z^2+c),c=-93/118+1/59*I,n=39 4032596393636290 m001 (cos(1)-ln(3))/(-exp(1/Pi)+gamma(2)) 4032596393999317 r008 a(0)=4,K{-n^6,-24+28*n-12*n^2-23*n^3} 4032596411014653 a007 Real Root Of -731*x^4+733*x^3+135*x^2+170*x+114 4032596412588057 m005 (1/2*Catalan-5)/(7/8*2^(1/2)-1/9) 4032596414864061 r005 Re(z^2+c),c=-25/34+6/37*I,n=8 4032596419631688 a001 1/2207*(1/2*5^(1/2)+1/2)^27*3^(9/14) 4032596434822359 m001 (cos(1)+HardHexagonsEntropy)/(Shi(1)-gamma) 4032596440667181 r008 a(0)=4,K{-n^6,-38+59*n-34*n^2-18*n^3} 4032596441273025 r005 Im(z^2+c),c=3/22+25/58*I,n=16 4032596443648084 r009 Im(z^3+c),c=-11/48+48/59*I,n=2 4032596450494912 r009 Im(z^3+c),c=-4/17+7/16*I,n=24 4032596465201886 r005 Im(z^2+c),c=11/56+3/8*I,n=58 4032596465837167 m005 (1/3*3^(1/2)-1/2)/(7/9*2^(1/2)+9/11) 4032596467497920 a007 Real Root Of 138*x^4+534*x^3-229*x^2-662*x-421 4032596470150314 m005 (1/2*Catalan+1/12)/(4*Pi+6/7) 4032596473554312 a007 Real Root Of 49*x^4-150*x^3+734*x^2-646*x-391 4032596474646265 r002 59th iterates of z^2 + 4032596481176836 r005 Re(z^2+c),c=-67/110+29/51*I,n=5 4032596489127854 m001 1/Robbin^2/Conway^2/exp(BesselK(1,1))^2 4032596489643712 m005 (1/2*2^(1/2)+1/7)/(6/7*exp(1)-2/9) 4032596490795271 m001 (Shi(1)+gamma(1))/(BesselK(1,1)+Tribonacci) 4032596503665938 r005 Im(z^2+c),c=11/102+35/61*I,n=49 4032596503934931 r005 Re(z^2+c),c=-43/74+22/45*I,n=64 4032596519962452 a007 Real Root Of -128*x^4-471*x^3+249*x^2+212*x-232 4032596522769083 r005 Re(z^2+c),c=-43/82+7/19*I,n=36 4032596531532381 m001 1/BesselJ(1,1)^2*(2^(1/3))^2/ln(GAMMA(3/4)) 4032596538756365 r005 Re(z^2+c),c=5/62+14/37*I,n=50 4032596539606218 a001 3/13*21^(11/60) 4032596542933449 a007 Real Root Of -175*x^4+863*x^3+469*x^2+726*x-421 4032596551672571 r005 Re(z^2+c),c=-37/70+10/31*I,n=31 4032596555153653 l006 ln(167/9420) 4032596559274427 m005 (1/3*Pi+2/9)/(3*Catalan+2/5) 4032596573776672 a001 89/9349*199^(3/11) 4032596585311217 m005 (1/3*gamma+3/7)/(7/8*5^(1/2)-5/12) 4032596585359295 r005 Im(z^2+c),c=11/106+13/29*I,n=36 4032596596294011 r005 Re(z^2+c),c=-17/58+20/31*I,n=52 4032596598324918 r005 Im(z^2+c),c=3/64+20/41*I,n=44 4032596614597077 l006 ln(1967/2944) 4032596618288093 m001 1/GAMMA(1/6)*Niven^2/exp(sin(Pi/12)) 4032596621360172 r005 Re(z^2+c),c=-9/16+9/86*I,n=47 4032596621488857 a007 Real Root Of 204*x^4+694*x^3-568*x^2-37*x+651 4032596624103762 a007 Real Root Of -595*x^4+517*x^3-587*x^2+886*x-280 4032596625485982 r005 Re(z^2+c),c=5/62+14/37*I,n=53 4032596625740537 m001 (1+3^(1/2))^(1/2)*(Si(Pi)+sin(1/5*Pi)) 4032596625740537 m001 sqrt(1+sqrt(3))*(sin(Pi/5)+Si(Pi)) 4032596632963253 m001 exp(Catalan)^2/BesselK(0,1)*exp(1) 4032596645956167 r005 Re(z^2+c),c=-81/110+3/62*I,n=61 4032596658695792 r002 56th iterates of z^2 + 4032596662092389 a007 Real Root Of 282*x^4+981*x^3-481*x^2+575*x-102 4032596664446393 r009 Re(z^3+c),c=-23/64+37/57*I,n=8 4032596670133528 m009 (-1+1/6*Pi^2)/(1/4*Psi(1,2/3)+5/6) 4032596673078564 a007 Real Root Of 876*x^4+862*x^3-26*x^2-879*x+279 4032596686153402 r002 32th iterates of z^2 + 4032596687088165 m001 (Pi+BesselK(0,1))/(HardyLittlewoodC4+Stephens) 4032596698370883 r009 Re(z^3+c),c=-27/56+11/50*I,n=29 4032596703159466 a001 89/312119004989*2^(1/2) 4032596704475758 m001 (Pi-ln(2)/ln(10)/exp(1/exp(1)))*exp(1/Pi) 4032596719618449 r005 Im(z^2+c),c=23/126+2/5*I,n=16 4032596737314908 m001 (Bloch+MertensB3*ZetaP(3))/ZetaP(3) 4032596741478729 m002 -1+Pi^3-Log[Pi]*ProductLog[Pi]+Sinh[Pi] 4032596744330701 m001 (Mills-TreeGrowth2nd)/(GAMMA(2/3)+Kolakoski) 4032596755477854 r005 Re(z^2+c),c=5/62+14/37*I,n=57 4032596759445458 m001 Zeta(5)^Psi(2,1/3)/ReciprocalFibonacci 4032596769393168 a001 377/39603*123^(3/10) 4032596775926032 m008 (5*Pi^4+1)/(4*Pi^3-3) 4032596779088678 r005 Re(z^2+c),c=-45/86+18/59*I,n=20 4032596781484077 m001 exp(Riemann2ndZero)/Lehmer*BesselK(0,1)^2 4032596786899938 r005 Re(z^2+c),c=5/62+14/37*I,n=54 4032596788429580 r005 Re(z^2+c),c=5/62+14/37*I,n=56 4032596788697438 r005 Re(z^2+c),c=5/62+14/37*I,n=60 4032596789258004 r005 Re(z^2+c),c=5/62+14/37*I,n=61 4032596790398548 m001 1/exp(Salem)*MertensB1*sqrt(5)^2 4032596794033357 r005 Re(z^2+c),c=5/62+14/37*I,n=64 4032596800400774 r005 Re(z^2+c),c=5/62+14/37*I,n=63 4032596802875942 r005 Re(z^2+c),c=5/62+14/37*I,n=62 4032596808457909 r005 Re(z^2+c),c=5/62+14/37*I,n=58 4032596814127295 m001 ErdosBorwein+FeigenbaumC*PisotVijayaraghavan 4032596816285535 r005 Re(z^2+c),c=5/62+14/37*I,n=59 4032596818768775 r009 Im(z^3+c),c=-1/78+4/5*I,n=40 4032596820299266 m005 (1/6*exp(1)-4)/(1/4*exp(1)+1/5) 4032596828206593 r009 Im(z^3+c),c=-2/9+15/34*I,n=10 4032596845729410 r005 Re(z^2+c),c=5/62+14/37*I,n=41 4032596849069391 r002 42th iterates of z^2 + 4032596856462074 a007 Real Root Of -213*x^4-810*x^3+168*x^2+13*x+530 4032596864833770 m001 (Khinchin-KomornikLoreti)/(ln(3)+GAMMA(5/6)) 4032596871985620 r002 62th iterates of z^2 + 4032596874013555 r005 Re(z^2+c),c=5/62+14/37*I,n=52 4032596884355098 r005 Re(z^2+c),c=5/62+14/37*I,n=55 4032596891042249 m001 1/exp(GAMMA(5/12))^2/Lehmer^2/Zeta(9) 4032596894879013 r005 Re(z^2+c),c=-67/118+4/47*I,n=12 4032596898994749 r009 Im(z^3+c),c=-19/41*I,n=5 4032596901637842 a007 Real Root Of -864*x^4+320*x^3+666*x^2+915*x-38 4032596906083989 r005 Im(z^2+c),c=-1/9+8/17*I,n=4 4032596927101926 m001 1/exp(exp(1))/(3^(1/3))*log(1+sqrt(2)) 4032596927551039 a005 (1/cos(6/235*Pi))^433 4032596931652173 p003 LerchPhi(1/256,6,559/223) 4032596934175394 a007 Real Root Of 288*x^4+957*x^3-591*x^2+874*x-268 4032596946231378 m001 1/GAMMA(3/4)^2*exp(Riemann3rdZero)/Zeta(3) 4032596961675083 r002 58th iterates of z^2 + 4032596967347291 r005 Im(z^2+c),c=-77/58+1/38*I,n=28 4032596969196584 m001 1/PrimesInBinary/Backhouse^2/exp(Zeta(5)) 4032596976824026 r008 a(0)=4,K{-n^6,36-7*n^3-30*n^2-30*n} 4032596983627571 h001 (9/10*exp(2)+1/9)/(2/7*exp(1)+9/10) 4032596994888621 a007 Real Root Of 786*x^4-36*x^3-846*x^2-322*x+249 4032596995338342 b008 LogIntegral[3/E^7] 4032597036540610 r002 49th iterates of z^2 + 4032597038822818 a007 Real Root Of -180*x^4-880*x^3-703*x^2-106*x+897 4032597042588105 r005 Re(z^2+c),c=-17/30+8/111*I,n=19 4032597044315420 m001 (Pi*(3^(1/3))+GAMMA(17/24))/(3^(1/3)) 4032597044315420 m001 1/3*(Pi*3^(1/3)+GAMMA(17/24))*3^(2/3) 4032597044315420 m001 Pi+1/3*3^(2/3)*GAMMA(17/24) 4032597045920659 h001 (-2*exp(-3)+8)/(-5*exp(1)-6) 4032597046078489 s002 sum(A020955[n]/(n^2*10^n+1),n=1..infinity) 4032597047338675 s002 sum(A020955[n]/(n^2*10^n-1),n=1..infinity) 4032597073877307 r004 Re(z^2+c),c=-23/24+3/14*I,z(0)=-1,n=53 4032597080012399 a001 167761/144*1836311903^(12/17) 4032597080157836 a001 54018521/144*514229^(12/17) 4032597100452940 r005 Re(z^2+c),c=-67/122+11/47*I,n=51 4032597109148778 r002 55th iterates of z^2 + 4032597109616959 m005 (2/5*exp(1)-2)/(4/5*Pi-1/4) 4032597118181324 r005 Re(z^2+c),c=5/62+14/37*I,n=51 4032597123134848 a007 Real Root Of 81*x^4+224*x^3-374*x^2+183*x+89 4032597124063463 r005 Im(z^2+c),c=-9/70+12/23*I,n=10 4032597126746576 a001 1/5778*(1/2*5^(1/2)+1/2)^29*3^(9/14) 4032597135852665 m001 sin(1/5*Pi)^TreeGrowth2nd/ReciprocalLucas 4032597139562475 m001 (1+LambertW(1))/(-CopelandErdos+GolombDickman) 4032597145625343 r008 a(0)=4,K{-n^6,50-45*n-32*n^2-4*n^3} 4032597149570775 r005 Re(z^2+c),c=-69/122+1/52*I,n=33 4032597152070228 a001 7/75025*1548008755920^(21/22) 4032597171311808 m001 Catalan/(gamma(1)^exp(1/exp(1))) 4032597185064456 r005 Re(z^2+c),c=-31/60+17/44*I,n=46 4032597185944753 m005 (1/2*gamma+1/5)/(4/5*Zeta(3)+1/4) 4032597192854584 m005 (1/2*gamma+5/11)/(1/9*2^(1/2)-2) 4032597194220889 r005 Re(z^2+c),c=-5/6+127/247*I,n=2 4032597219593281 a007 Real Root Of 326*x^4-473*x^3+341*x^2-692*x+246 4032597221157213 m001 (1-gamma(1))/(ArtinRank2+ReciprocalLucas) 4032597222899491 r005 Re(z^2+c),c=-51/98+5/14*I,n=29 4032597223093324 r005 Im(z^2+c),c=1/66+14/23*I,n=62 4032597229913268 a001 1/15127*(1/2*5^(1/2)+1/2)^31*3^(9/14) 4032597237145146 r005 Re(z^2+c),c=-4/11+23/50*I,n=7 4032597247536244 a001 (1/2*5^(1/2)+1/2)^11*3^(9/14) 4032597248233084 r009 Im(z^3+c),c=-25/114+19/43*I,n=13 4032597251843809 r005 Im(z^2+c),c=-5/106+25/43*I,n=31 4032597254267621 a001 1/24476*(1/2*5^(1/2)+1/2)^32*3^(9/14) 4032597266035751 q001 767/1902 4032597269770660 r002 35th iterates of z^2 + 4032597281904612 r009 Im(z^3+c),c=-7/48+16/35*I,n=12 4032597282936285 r005 Re(z^2+c),c=-53/94+4/49*I,n=43 4032597293673793 a001 1/9349*(1/2*5^(1/2)+1/2)^30*3^(9/14) 4032597316112776 l006 ln(4842/7247) 4032597322667469 m002 -Pi^4-Pi^5+6/(Pi^3*Log[Pi]) 4032597325249032 m001 Bloch/(FeigenbaumMu^Champernowne) 4032597343696332 r009 Im(z^3+c),c=-1/31+50/63*I,n=52 4032597361278888 a005 (1/cos(9/109*Pi))^1259 4032597383053090 r002 30th iterates of z^2 + 4032597395486981 a007 Real Root Of 79*x^4+296*x^3-188*x^2-178*x+859 4032597401802023 m001 (Paris-Trott2nd)/(Pi-exp(1/Pi)) 4032597402045261 b008 1/12+3*(12+Sqrt[2]) 4032597404057571 r009 Im(z^3+c),c=-23/64+24/61*I,n=13 4032597410385280 a007 Real Root Of 665*x^4-199*x^3+969*x^2-855*x-533 4032597419713452 r008 a(0)=4,K{-n^6,-40+2*n-17*n^2+25*n^3} 4032597421836200 b008 EllipticPi[3,Pi/9,1/11] 4032597424059758 m001 (GAMMA(2/3)-ln(2^(1/2)+1))/(Gompertz+Stephens) 4032597426075827 r005 Re(z^2+c),c=-63/118+7/45*I,n=12 4032597431276377 s002 sum(A068322[n]/((pi^n+1)/n),n=1..infinity) 4032597449471184 m008 (2*Pi^3+2/3)/(5*Pi^3+2/5) 4032597463220016 r005 Im(z^2+c),c=6/29+13/35*I,n=18 4032597464567817 r002 64th iterates of z^2 + 4032597469757048 m001 BesselI(1,2)*BesselI(1,1)^BesselJZeros(0,1) 4032597475544516 a007 Real Root Of 909*x^4-505*x^3+644*x^2-650*x-424 4032597478962106 r009 Im(z^3+c),c=-21/106+21/47*I,n=14 4032597482456557 r005 Re(z^2+c),c=-33/56+14/43*I,n=21 4032597490151216 r005 Re(z^2+c),c=31/126+1/61*I,n=14 4032597490700543 r002 63th iterates of z^2 + 4032597492198671 r009 Im(z^3+c),c=-35/86+11/25*I,n=6 4032597500013639 r005 Re(z^2+c),c=5/62+14/37*I,n=48 4032597502476430 r005 Im(z^2+c),c=-5/8+23/216*I,n=18 4032597511816336 r005 Im(z^2+c),c=-11/21+25/37*I,n=23 4032597518967480 m001 arctan(1/3)+(2*Pi/GAMMA(5/6))^Zeta(1/2) 4032597520406838 h001 (2/7*exp(1)+5/9)/(9/10*exp(1)+6/7) 4032597527619021 r005 Im(z^2+c),c=29/82+10/53*I,n=28 4032597529640452 r002 58th iterates of z^2 + 4032597533007543 r005 Re(z^2+c),c=-71/126+3/34*I,n=61 4032597542815083 r002 40th iterates of z^2 + 4032597563767734 a001 1/3571*(1/2*5^(1/2)+1/2)^28*3^(9/14) 4032597566165541 b008 11+14*ArcSinh[4] 4032597567659874 r009 Im(z^3+c),c=-14/27+16/63*I,n=31 4032597570949646 m001 Backhouse-KhinchinLevy^(Pi*2^(1/2)/GAMMA(3/4)) 4032597589102624 a007 Real Root Of 861*x^4-252*x^3+153*x^2-69*x-92 4032597591628389 r005 Im(z^2+c),c=-19/70+29/47*I,n=60 4032597614369840 m005 (4/15+1/6*5^(1/2))/(3/8*gamma-3/8) 4032597630454737 m001 (Ei(1,1)-BesselI(1,1))/(Thue-ZetaQ(4)) 4032597630530161 m005 (1/2*Zeta(3)+5/7)/(2/7*Catalan+3) 4032597630757139 r005 Im(z^2+c),c=-11/94+22/39*I,n=14 4032597645864320 m001 1/exp(Porter)^2/GolombDickman^2/Tribonacci^2 4032597648648648 r009 Im(z^3+c),c=-23/122+22/49*I,n=18 4032597659576605 a007 Real Root Of -521*x^4+559*x^3+100*x^2+570*x-269 4032597662287853 r005 Re(z^2+c),c=-7/12+36/109*I,n=32 4032597670269784 r002 62th iterates of z^2 + 4032597699886883 r005 Re(z^2+c),c=5/62+14/37*I,n=47 4032597704415899 l003 Fresnelf(49/101) 4032597725296569 m005 (1/2*3^(1/2)-7/8)/(9/10*3^(1/2)+2/3) 4032597734512189 r008 a(0)=4,K{-n^6,-41+n+58*n^2-49*n^3} 4032597738422875 r002 23th iterates of z^2 + 4032597743553120 m001 (gamma(1)-FellerTornier)/(ZetaP(3)-ZetaP(4)) 4032597745037354 r005 Im(z^2+c),c=4/17+18/53*I,n=62 4032597754524464 m001 Champernowne/(ln(3)+ReciprocalLucas) 4032597754673672 r002 60th iterates of z^2 + 4032597760117538 r005 Re(z^2+c),c=-69/122+1/31*I,n=41 4032597760497970 m001 1/RenyiParking^2*Kolakoski/exp((2^(1/3))) 4032597772386080 m005 (1/2*Zeta(3)-1/10)/(3/10*2^(1/2)+9/11) 4032597783432128 a007 Real Root Of 426*x^4-573*x^3-984*x^2-820*x+517 4032597784035213 r005 Re(z^2+c),c=-5/44+8/13*I,n=8 4032597785315223 m001 (3^(1/3)*ZetaP(2)-GaussAGM)/ZetaP(2) 4032597796071488 l006 ln(2875/4303) 4032597800165898 a007 Real Root Of -262*x^4+870*x^3+459*x^2+939*x+368 4032597807924605 m009 (3/10*Pi^2+1/5)/(3/5*Psi(1,2/3)+6) 4032597810224211 m005 (1/2*gamma+7/8)/(1/8*Catalan-3) 4032597812165509 m002 -E^Pi+5/Log[Pi]-E^Pi/ProductLog[Pi] 4032597814602820 r005 Re(z^2+c),c=-27/22+27/97*I,n=8 4032597815981428 a001 8/3010349*11^(4/23) 4032597820643463 r009 Im(z^3+c),c=-1/70+23/49*I,n=8 4032597840202171 m001 BesselI(0,2)^(Pi*csc(7/24*Pi)/GAMMA(17/24))/Pi 4032597840202171 m001 BesselI(0,2)^GAMMA(7/24)/Pi 4032597843134978 r008 a(0)=4,K{-n^6,-51+38*n+20*n^2-38*n^3} 4032597855205721 p001 sum((-1)^n/(552*n+245)/(25^n),n=0..infinity) 4032597868579678 a003 cos(Pi*11/87)*sin(Pi*17/118) 4032597873304655 m001 (5^(1/2)-FeigenbaumAlpha)/Robbin 4032597873776156 m001 (Psi(1,1/3)+ln(5))/(-3^(1/3)+Zeta(1/2)) 4032597876565145 a007 Real Root Of -520*x^4+595*x^3+504*x^2+365*x+118 4032597876630210 r005 Re(z^2+c),c=-141/122+11/58*I,n=12 4032597877951567 a007 Real Root Of 803*x^4-773*x^3+905*x^2+459*x-34 4032597881071432 h005 exp(cos(Pi*4/37)+cos(Pi*20/57)) 4032597881818117 s002 sum(A226047[n]/((exp(n)-1)/n),n=1..infinity) 4032597882328175 r005 Re(z^2+c),c=-16/29+13/61*I,n=43 4032597887801228 r005 Re(z^2+c),c=-19/34+13/86*I,n=46 4032597890304032 r008 a(0)=4,K{-n^6,-71-31*n^3-11*n^2+82*n} 4032597890609237 r005 Re(z^2+c),c=-39/70+1/6*I,n=38 4032597892087855 r002 42th iterates of z^2 + 4032597911831108 r002 53th iterates of z^2 + 4032597912629169 r008 a(0)=4,K{-n^6,-61-31*n^3-6*n^2+67*n} 4032597919256230 r002 13th iterates of z^2 + 4032597923130158 m001 (Lehmer+ZetaQ(2))/(gamma+GAMMA(23/24)) 4032597928127168 r009 Re(z^3+c),c=-2/27+33/43*I,n=21 4032597932436803 m001 1/ln(sinh(1))^2/GAMMA(5/12)*sqrt(5) 4032597943844332 r002 6th iterates of z^2 + 4032597950604392 a007 Real Root Of 118*x^4+643*x^3+555*x^2-619*x-560 4032597975993538 p004 log(29501/523) 4032597977118382 r009 Re(z^3+c),c=-69/118+14/41*I,n=3 4032597988612910 a007 Real Root Of 959*x^4-228*x^3+543*x^2-916*x-498 4032597989473698 m005 (1/3*Pi-3/7)/(7/11*5^(1/2)+1/9) 4032597997601533 r002 38th iterates of z^2 + 4032598009052719 a007 Real Root Of 201*x^4+862*x^3+224*x^2+87*x+82 4032598010423180 r005 Im(z^2+c),c=-9/56+7/12*I,n=31 4032598021235409 r005 Re(z^2+c),c=-8/15+17/52*I,n=56 4032598023285560 a007 Real Root Of 6*x^4+229*x^3-513*x^2+391*x+386 4032598046300067 m001 1/exp(Salem)/PisotVijayaraghavan*sqrt(3) 4032598047255428 a007 Real Root Of 638*x^4+671*x^3+721*x^2-823*x-422 4032598048162243 r005 Im(z^2+c),c=37/114+4/17*I,n=31 4032598048215260 r005 Re(z^2+c),c=-19/34+17/98*I,n=28 4032598052616026 r004 Re(z^2+c),c=-21/38+5/24*I,z(0)=-1,n=54 4032598065835016 r008 a(0)=4,K{-n^6,-17-28*n^3+7*n^2+7*n} 4032598070479673 a007 Real Root Of 155*x^4+541*x^3+955*x^2-392*x-282 4032598077909199 m008 (1/6*Pi^3-4)/(4/5*Pi^2-5) 4032598080466474 r005 Re(z^2+c),c=-63/122+20/51*I,n=46 4032598082210223 r008 a(0)=4,K{-n^6,-23-26*n^3-2*n^2+20*n} 4032598082234093 r009 Im(z^3+c),c=-57/122+9/29*I,n=14 4032598083176336 a007 Real Root Of 150*x^4+392*x^3-743*x^2+651*x+747 4032598083968045 m009 (2/3*Psi(1,1/3)-2)/(2/3*Psi(1,1/3)+5) 4032598089236935 r005 Re(z^2+c),c=5/62+14/37*I,n=43 4032598131017143 r009 Im(z^3+c),c=-4/17+7/16*I,n=27 4032598135308685 r002 39i'th iterates of 2*x/(1-x^2) of 4032598143536687 m005 (1/2*Catalan-5/6)/(2/55+2/5*5^(1/2)) 4032598144585227 r005 Re(z^2+c),c=-53/94+3/50*I,n=24 4032598145119248 l006 ln(6658/9965) 4032598149508484 s002 sum(A027330[n]/(n^3*pi^n+1),n=1..infinity) 4032598151266462 r009 Im(z^3+c),c=-4/17+7/16*I,n=26 4032598160788913 r005 Im(z^2+c),c=5/82+11/23*I,n=64 4032598160942265 m001 Pi*Psi(1,1/3)*GAMMA(3/4)-Zeta(1/2) 4032598183480495 r005 Re(z^2+c),c=-11/18+13/115*I,n=8 4032598192011730 m001 1/exp(MertensB1)^2/Champernowne^2*Zeta(5) 4032598200642748 r009 Im(z^3+c),c=-4/17+7/16*I,n=29 4032598216762653 r002 37th iterates of z^2 + 4032598228962699 r002 38th iterates of z^2 + 4032598229407164 m006 (2*ln(Pi)-2/3)/(3/4*exp(2*Pi)+4/5) 4032598243171661 r002 37th iterates of z^2 + 4032598256062917 r005 Re(z^2+c),c=51/118+14/61*I,n=50 4032598259054225 m001 1/LambertW(1)*Riemann1stZero^2*ln(Pi) 4032598275119299 r005 Im(z^2+c),c=-23/38+20/61*I,n=4 4032598276076544 a007 Real Root Of -720*x^4+517*x^3-403*x^2+702*x+29 4032598280091300 r009 Im(z^3+c),c=-4/17+7/16*I,n=32 4032598284129062 a005 (1/sin(83/202*Pi))^673 4032598295469645 r009 Im(z^3+c),c=-4/17+7/16*I,n=34 4032598296836008 s002 sum(A140755[n]/(n^2*10^n+1),n=1..infinity) 4032598296951266 m001 (CopelandErdos+Landau)/(Niven-Riemann2ndZero) 4032598297129934 r009 Im(z^3+c),c=-4/17+7/16*I,n=37 4032598297160933 r009 Im(z^3+c),c=-4/17+7/16*I,n=35 4032598298064919 r009 Im(z^3+c),c=-4/17+7/16*I,n=40 4032598298193614 r009 Im(z^3+c),c=-4/17+7/16*I,n=42 4032598298222219 r009 Im(z^3+c),c=-4/17+7/16*I,n=45 4032598298230483 r009 Im(z^3+c),c=-4/17+7/16*I,n=43 4032598298232668 r009 Im(z^3+c),c=-4/17+7/16*I,n=48 4032598298233620 r009 Im(z^3+c),c=-4/17+7/16*I,n=50 4032598298234024 r009 Im(z^3+c),c=-4/17+7/16*I,n=53 4032598298234127 r009 Im(z^3+c),c=-4/17+7/16*I,n=47 4032598298234135 r009 Im(z^3+c),c=-4/17+7/16*I,n=56 4032598298234139 r009 Im(z^3+c),c=-4/17+7/16*I,n=55 4032598298234141 r009 Im(z^3+c),c=-4/17+7/16*I,n=58 4032598298234146 r009 Im(z^3+c),c=-4/17+7/16*I,n=61 4032598298234147 r009 Im(z^3+c),c=-4/17+7/16*I,n=63 4032598298234147 r009 Im(z^3+c),c=-4/17+7/16*I,n=64 4032598298234148 r009 Im(z^3+c),c=-4/17+7/16*I,n=62 4032598298234148 r009 Im(z^3+c),c=-4/17+7/16*I,n=60 4032598298234148 r009 Im(z^3+c),c=-4/17+7/16*I,n=59 4032598298234159 r009 Im(z^3+c),c=-4/17+7/16*I,n=57 4032598298234190 r009 Im(z^3+c),c=-4/17+7/16*I,n=51 4032598298234206 r009 Im(z^3+c),c=-4/17+7/16*I,n=54 4032598298234281 r009 Im(z^3+c),c=-4/17+7/16*I,n=52 4032598298235367 r009 Im(z^3+c),c=-4/17+7/16*I,n=49 4032598298238824 r009 Im(z^3+c),c=-4/17+7/16*I,n=46 4032598298250118 r009 Im(z^3+c),c=-4/17+7/16*I,n=44 4032598298307348 r009 Im(z^3+c),c=-4/17+7/16*I,n=39 4032598298349549 r009 Im(z^3+c),c=-4/17+7/16*I,n=41 4032598298575486 r009 Im(z^3+c),c=-4/17+7/16*I,n=38 4032598298853650 m001 (Gompertz-Kolakoski)/(Landau-MertensB2) 4032598299727070 a007 Real Root Of -200*x^4-883*x^3-190*x^2+265*x-857 4032598299900001 r005 Re(z^2+c),c=-53/94+5/61*I,n=44 4032598299998761 r009 Im(z^3+c),c=-4/17+7/16*I,n=36 4032598306514589 r005 Im(z^2+c),c=-2/21+30/53*I,n=38 4032598308678920 r009 Im(z^3+c),c=-4/17+7/16*I,n=33 4032598312107652 r009 Im(z^3+c),c=-4/17+7/16*I,n=31 4032598316307671 m001 (MertensB3-ZetaQ(3))/(GAMMA(2/3)-GAMMA(23/24)) 4032598317384468 r005 Im(z^2+c),c=3/106+23/50*I,n=8 4032598319376042 r009 Im(z^3+c),c=-4/17+7/16*I,n=30 4032598321058011 a001 4/121393*832040^(29/42) 4032598324056823 r005 Im(z^2+c),c=25/126+23/41*I,n=45 4032598326938172 b008 1-6*LogBarnesG[1/2] 4032598328438488 r009 Re(z^3+c),c=-35/102+1/34*I,n=4 4032598341901302 m001 MinimumGamma^2/MadelungNaCl/ln(GAMMA(2/3)) 4032598346940563 m001 BesselJ(0,1)+Khinchin+LandauRamanujan2nd 4032598350547226 m001 (Pi*csc(1/12*Pi)/GAMMA(11/12))^Lehmer-Ei(1,1) 4032598350947486 m005 (1/2*5^(1/2)+5/7)/(-111/20+9/20*5^(1/2)) 4032598363309100 r002 31th iterates of z^2 + 4032598371639202 m001 1/exp(BesselJ(1,1))*OneNinth^2*cos(1) 4032598371659232 g005 GAMMA(9/11)*GAMMA(9/10)*GAMMA(2/3)/GAMMA(2/9) 4032598381118136 a001 2/710647*11^(3/20) 4032598383541986 m005 (1/2*2^(1/2)-3/4)/(7/10*Zeta(3)+2/9) 4032598394397806 r005 Im(z^2+c),c=1/21+18/37*I,n=33 4032598405729275 a001 843/34*591286729879^(20/21) 4032598405751367 p004 log(35593/631) 4032598406375956 r009 Im(z^3+c),c=-1/82+27/34*I,n=14 4032598410388156 l006 ln(3783/5662) 4032598413308469 r002 46th iterates of z^2 + 4032598419743977 r009 Re(z^3+c),c=-7/16+8/47*I,n=20 4032598420370705 m001 GAMMA(19/24)^BesselI(0,1)+FransenRobinson 4032598420762652 a001 29/10946*2^(20/33) 4032598424721781 a005 (1/cos(7/220*Pi))^1659 4032598435319449 r005 Re(z^2+c),c=15/44+5/53*I,n=6 4032598446322880 m001 (gamma(2)+GAMMA(7/12))/(Tetranacci+Tribonacci) 4032598446829716 a007 Real Root Of -264*x^4-912*x^3+716*x^2+367*x-156 4032598453845965 r009 Re(z^3+c),c=-43/94+5/26*I,n=40 4032598456807502 r008 a(0)=4,K{-n^6,-10-37*n-11*n^2+28*n^3} 4032598457594658 m001 (Pi-Psi(1,1/3)*2^(1/3))*BesselK(0,1) 4032598463280587 m005 (1/2*gamma-9/11)/(4/11*exp(1)-6/7) 4032598466854093 r005 Re(z^2+c),c=-53/94+2/23*I,n=33 4032598469302904 r005 Im(z^2+c),c=-11/31+27/41*I,n=16 4032598474656213 r009 Im(z^3+c),c=-17/74+18/41*I,n=10 4032598482410471 r009 Im(z^3+c),c=-4/17+7/16*I,n=28 4032598501658521 r008 a(0)=4,K{-n^6,-25-5*n^3-66*n^2+65*n} 4032598509851999 m001 GAMMA(3/4)^2*Khintchine 4032598509851999 m001 Khinchin*GaussAGM(1,1/sqrt(2))*sqrt(Pi) 4032598511124166 r009 Im(z^3+c),c=-23/122+22/49*I,n=17 4032598530869073 r005 Im(z^2+c),c=-37/82+31/57*I,n=52 4032598540972845 m005 (1/2*2^(1/2)+8/11)/(1/4*gamma-1/2) 4032598552545888 r002 60th iterates of z^2 + 4032598563858933 r009 Re(z^3+c),c=-2/5+4/31*I,n=10 4032598565447316 m001 ZetaR(2)/BesselI(1,2)/exp(Pi) 4032598569404265 a007 Real Root Of 469*x^4-940*x^3-16*x^2-846*x+393 4032598573451580 r009 Im(z^3+c),c=-47/90+19/52*I,n=36 4032598577097141 m005 (1/2*2^(1/2)-7/10)/(5/12*3^(1/2)-6/11) 4032598580454031 r002 7th iterates of z^2 + 4032598583005058 r002 34th iterates of z^2 + 4032598597815670 r005 Im(z^2+c),c=-151/122+4/37*I,n=39 4032598605678091 r008 a(0)=4,K{-n^6,17-8*n^3-36*n^2-4*n} 4032598607004383 r005 Re(z^2+c),c=-59/106+7/36*I,n=18 4032598608791852 r002 58th iterates of z^2 + 4032598622936696 a007 Real Root Of 831*x^4-179*x^3-803*x^2-880*x-258 4032598639363364 a007 Real Root Of 728*x^4-81*x^3-885*x^2-191*x+207 4032598654061339 l006 ln(9599/9994) 4032598654844700 r009 Im(z^3+c),c=-21/118+23/51*I,n=11 4032598661010781 m001 (MertensB2+Weierstrass)/(Pi+BesselK(1,1)) 4032598668951038 r005 Re(z^2+c),c=-37/66+8/61*I,n=58 4032598676671811 a007 Real Root Of -150*x^4-414*x^3+695*x^2-463*x-651 4032598678941863 m001 FeigenbaumAlpha/(FeigenbaumDelta^GAMMA(1/3)) 4032598679408352 r005 Im(z^2+c),c=-17/22+3/100*I,n=5 4032598689931662 r008 a(0)=4,K{-n^6,65-13*n^3+3*n^2-86*n} 4032598710637032 a007 Real Root Of -409*x^4+99*x^3+741*x^2+498*x-317 4032598720272745 r008 a(0)=4,K{-n^6,35-7*n^3-30*n^2-29*n} 4032598725456447 a008 Real Root of x^4-x^3-4*x^2+30*x-144 4032598739096687 h001 (1/5*exp(2)+7/12)/(4/7*exp(2)+8/9) 4032598739674451 r002 54th iterates of z^2 + 4032598744610888 r002 30th iterates of z^2 + 4032598746078512 r002 5th iterates of z^2 + 4032598753307236 r005 Re(z^2+c),c=-9/16+1/78*I,n=21 4032598756217035 m001 (CareFree-MadelungNaCl)/(Niven+QuadraticClass) 4032598759903141 m005 (1/2*5^(1/2)+8/11)/(3*2^(1/2)+1/3) 4032598761208798 a007 Real Root Of 83*x^4-835*x^3-570*x^2-902*x-328 4032598770363709 r002 53th iterates of z^2 + 4032598786887908 l006 ln(4691/7021) 4032598801052265 m001 Sarnak^GAMMA(17/24)/(Porter^GAMMA(17/24)) 4032598813709210 s002 sum(A157028[n]/(n^3*2^n+1),n=1..infinity) 4032598824813075 r005 Re(z^2+c),c=-95/126+4/57*I,n=24 4032598825487692 r002 59th iterates of z^2 + 4032598829915634 a007 Real Root Of 868*x^4+11*x^3+527*x^2-82*x-141 4032598836598600 a007 Real Root Of 550*x^4-368*x^3-566*x^2-296*x-66 4032598843296158 m005 (-5/2+3/2*5^(1/2))/(5/6*Pi-1/2) 4032598846186701 r009 Im(z^3+c),c=-29/60+10/33*I,n=21 4032598853003320 q001 1336/3313 4032598861618969 m004 4+(5*Cos[Sqrt[5]*Pi])/(36*Pi) 4032598866077025 r005 Re(z^2+c),c=-11/25+23/57*I,n=11 4032598870627950 r008 a(0)=4,K{-n^6,-48*n-12*n^2+30*n^3} 4032598894952601 m001 1/Paris^2*ln(Niven)^2*GAMMA(19/24)^2 4032598899727660 m002 -13/2+Pi^2/4 4032598903356037 r005 Im(z^2+c),c=-19/50+29/53*I,n=27 4032598906734051 r008 a(0)=4,K{-n^6,-4+31*n^3-17*n^2-40*n} 4032598909017349 m001 (Niven-ZetaQ(2))/(ln(2^(1/2)+1)-Bloch) 4032598926752825 a001 28143753123*4807526976^(17/23) 4032598940147199 m001 Zeta(5)^2/exp(Conway)*sinh(1)^2 4032598948999739 r002 7th iterates of z^2 + 4032598957640101 r005 Im(z^2+c),c=1/118+20/39*I,n=50 4032598961198891 a001 1/123*(1/2*5^(1/2)+1/2)^31*3^(5/11) 4032598961363402 a007 Real Root Of 157*x^4-586*x^3+174*x^2-558*x+231 4032598971003434 r002 7th iterates of z^2 + 4032598982291878 r005 Im(z^2+c),c=-39/34+7/100*I,n=3 4032598985087245 m001 Trott2nd^ln(2^(1/2)+1)-ZetaQ(4) 4032598985234805 m009 (1/2*Psi(1,1/3)+2/5)/(5*Psi(1,3/4)+4/5) 4032598987594239 r009 Im(z^3+c),c=-5/13+11/29*I,n=37 4032598988789382 a007 Real Root Of -544*x^4+612*x^3-482*x^2+936*x-37 4032599001477415 r005 Im(z^2+c),c=-31/106+23/39*I,n=39 4032599005129965 m001 1/ln(GAMMA(1/24))*FeigenbaumB*GAMMA(7/12) 4032599006274770 r009 Im(z^3+c),c=-39/122+9/22*I,n=30 4032599006550047 r005 Im(z^2+c),c=5/44+8/19*I,n=10 4032599010376107 r009 Im(z^3+c),c=-51/82+13/44*I,n=5 4032599013782542 r005 Im(z^2+c),c=-5/52+29/47*I,n=46 4032599016782751 m001 LandauRamanujan-Paris^TreeGrowth2nd 4032599017123557 m005 (1/2*gamma-5/9)/(1/11*exp(1)-10/11) 4032599030419769 b008 E^(-3)-E/6 4032599035422779 r002 43th iterates of z^2 + 4032599039170198 a007 Real Root Of -224*x^4+804*x^3-714*x^2+13*x+180 4032599041272354 l006 ln(5599/8380) 4032599042935887 a007 Real Root Of 71*x^4-306*x^3-60*x^2-630*x+282 4032599047437274 m009 (3/2*Pi^2-4/5)/(16*Catalan+2*Pi^2+1/3) 4032599051680110 r008 a(0)=4,K{-n^6,51-43*n^2-39*n} 4032599055781974 r005 Im(z^2+c),c=3/16+18/47*I,n=30 4032599061614080 r005 Im(z^2+c),c=-1/114+25/49*I,n=12 4032599075643029 r005 Re(z^2+c),c=-113/102+7/20*I,n=6 4032599080073207 a007 Real Root Of 362*x^4-915*x^3+20*x^2-927*x+421 4032599087060233 m001 (2*Chi(1)*Pi/GAMMA(5/6)-GAMMA(17/24))/Chi(1) 4032599105072886 m006 (5*exp(Pi)+5/6)/(1/3*Pi^2-2/5) 4032599108431478 m001 (-MertensB2+ThueMorse)/(2^(1/2)-2^(1/3)) 4032599110264615 m005 (1/3*Zeta(3)-1/3)/(4/7*Pi-1/8) 4032599136037797 r009 Im(z^3+c),c=-4/17+7/16*I,n=22 4032599148742571 m005 (1/2*Catalan-5/8)/(5/7*Zeta(3)-4/9) 4032599149225106 r009 Im(z^3+c),c=-7/78+43/54*I,n=30 4032599159717488 r005 Re(z^2+c),c=-19/34+17/112*I,n=56 4032599161046519 r008 a(0)=0,K{-n^6,-62+50*n+43*n^2-27*n^3} 4032599163972470 m001 (5^(1/2)-Shi(1))/(BesselI(1,2)+MertensB3) 4032599177778161 b008 Pi+Cos[(3*Pi)/20] 4032599197906932 r009 Im(z^3+c),c=-4/17+7/16*I,n=25 4032599200142766 m001 exp(Zeta(3))/FeigenbaumAlpha^2/log(2+sqrt(3)) 4032599200463612 m001 1/Sierpinski/exp(GaussKuzminWirsing)/sin(1)^2 4032599202460539 r005 Re(z^2+c),c=-51/98+16/57*I,n=17 4032599206944454 m001 (exp(1/Pi)+KhinchinLevy)/HardyLittlewoodC3 4032599213070733 r002 13th iterates of z^2 + 4032599223262810 r005 Im(z^2+c),c=9/52+15/38*I,n=48 4032599224662151 l006 ln(6507/9739) 4032599233298765 m001 (2^(1/3))/exp(Porter)^2*BesselK(1,1) 4032599252746997 r002 19th iterates of z^2 + 4032599255853470 r002 45th iterates of z^2 + 4032599264615825 r009 Im(z^3+c),c=-11/64+19/42*I,n=13 4032599274344099 m001 arctan(1/2)/(ArtinRank2+ZetaP(2)) 4032599278282839 m001 (5^(1/2)+Zeta(3))/(StronglyCareFree+ZetaP(4)) 4032599285258454 a007 Real Root Of 120*x^4+533*x^3+274*x^2+174*x-535 4032599288861566 a007 Real Root Of -50*x^4+246*x^3+397*x^2+991*x-479 4032599305625848 m005 (1/3*5^(1/2)-1/3)/(2/9*Catalan+9/11) 4032599319246377 m005 (7/12+1/4*5^(1/2))/(10/11*5^(1/2)+4/5) 4032599322538311 r009 Im(z^3+c),c=-45/94+20/63*I,n=32 4032599323641381 m001 GAMMA(1/4)^sqrt(2)*GAMMA(1/4)^Backhouse 4032599340180454 m001 (-FellerTornier+TwinPrimes)/(2^(1/2)-gamma) 4032599349231201 r005 Re(z^2+c),c=-19/34+17/112*I,n=58 4032599357369543 m004 10/Pi+(Sqrt[5]*E^(Sqrt[5]*Pi))/(2*Pi) 4032599367661712 r002 45th iterates of z^2 + 4032599386686775 r005 Re(z^2+c),c=-69/122+2/63*I,n=51 4032599391143088 m001 (ln(Pi)+Conway)/(OneNinth-TravellingSalesman) 4032599397792451 r005 Re(z^2+c),c=-5/8+99/239*I,n=58 4032599415020119 a001 1/1364*(1/2*5^(1/2)+1/2)^26*3^(9/14) 4032599427279986 m005 (1/2*Catalan+5/8)/(2*2^(1/2)-1/7) 4032599430838886 h001 (8/11*exp(1)+8/9)/(11/12*exp(2)+1/3) 4032599442188303 r002 56th iterates of z^2 + 4032599449152225 a008 Real Root of x^3-x^2-70*x-28 4032599449597088 r005 Re(z^2+c),c=17/106+28/59*I,n=29 4032599453408045 r002 33th iterates of z^2 + 4032599455903174 m001 (FeigenbaumB+Rabbit)/(GAMMA(23/24)-Cahen) 4032599474292166 a001 47/2*3^(29/59) 4032599477199237 a007 Real Root Of 558*x^4-423*x^3-765*x^2-495*x+337 4032599487589771 r002 44th iterates of z^2 + 4032599493153255 b008 -1/2+Log[93] 4032599512818681 m001 FeigenbaumAlpha/(BesselJ(0,1)^Grothendieck) 4032599519968407 r005 Im(z^2+c),c=-1/26+27/47*I,n=28 4032599521841280 r005 Re(z^2+c),c=-35/62+1/15*I,n=63 4032599530509530 r009 Re(z^3+c),c=-5/66+45/64*I,n=59 4032599543112198 r008 a(0)=4,K{-n^6,-2-31*n-34*n^2+37*n^3} 4032599543770155 r008 a(0)=4,K{-n^6,-32+42*n^3-64*n^2+24*n} 4032599544771679 a007 Real Root Of -984*x^4-634*x^3-72*x^2+742*x+30 4032599547585899 r005 Im(z^2+c),c=1/22+22/45*I,n=35 4032599557367167 a007 Real Root Of -654*x^4+763*x^3-439*x^2+638*x+396 4032599568951562 r008 a(0)=4,K{-n^6,-68-37*n^3+9*n^2+65*n} 4032599578006522 r005 Im(z^2+c),c=-67/94+6/37*I,n=46 4032599581018922 r005 Im(z^2+c),c=-3/56+11/20*I,n=52 4032599585694494 r005 Re(z^2+c),c=-59/106+6/35*I,n=36 4032599597320917 m001 (BesselJZeros(0,1)+5)/(-FeigenbaumAlpha+2/3) 4032599598909795 a001 4870847/3*8^(7/16) 4032599603685886 a007 Real Root Of -269*x^4-883*x^3+786*x^2+70*x+732 4032599604109540 r005 Re(z^2+c),c=29/82+13/60*I,n=3 4032599607300078 m001 KhinchinLevy-CopelandErdos-GAMMA(2/3) 4032599617894088 r005 Im(z^2+c),c=19/94+7/18*I,n=12 4032599618188674 r005 Im(z^2+c),c=21/74+11/38*I,n=58 4032599625105592 m001 LaplaceLimit*(Catalan-HardyLittlewoodC4) 4032599625585431 a007 Real Root Of -661*x^4+828*x^3-264*x^2+948*x+497 4032599637546609 r008 a(0)=4,K{-n^6,-18-16*n+43*n^2-40*n^3} 4032599648389708 r009 Re(z^3+c),c=-7/106+29/52*I,n=29 4032599651899509 r005 Im(z^2+c),c=-35/34+27/106*I,n=33 4032599674975989 m001 GAMMA(2/3)^2/exp(DuboisRaymond)^2/GAMMA(7/24) 4032599694733706 r009 Im(z^3+c),c=-63/118+11/52*I,n=60 4032599700016185 r002 39th iterates of z^2 + 4032599707298003 m001 Psi(1,1/3)^(exp(1/Pi)/BesselI(0,2)) 4032599714968156 h001 (7/11*exp(1)+8/11)/(4/5*exp(2)+2/11) 4032599716874006 m009 (4*Psi(1,2/3)+1/4)/(3/8*Pi^2-3/5) 4032599717972843 r005 Re(z^2+c),c=-61/114+19/62*I,n=36 4032599728729654 r005 Re(z^2+c),c=-61/98+17/47*I,n=60 4032599729494033 m009 (2/5*Psi(1,2/3)+1/2)/(5/12*Pi^2+1/6) 4032599729808217 m005 (1/2*exp(1)-4/5)/(1/3*Catalan-1/6) 4032599732993403 r009 Im(z^3+c),c=-33/86+19/50*I,n=20 4032599741027778 r005 Re(z^2+c),c=-13/23+2/43*I,n=57 4032599742987541 m001 arctan(1/2)*FeigenbaumC*Weierstrass 4032599747577739 r005 Re(z^2+c),c=-17/31+9/47*I,n=21 4032599767429479 m005 (1/2*2^(1/2)+5/8)/(6/7*Zeta(3)-7/10) 4032599772687141 l004 Chi(209/24) 4032599785068333 r009 Re(z^3+c),c=-10/21+12/31*I,n=8 4032599786748912 r005 Im(z^2+c),c=5/23+11/31*I,n=25 4032599790752990 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)-Pi-FeigenbaumMu 4032599800785154 s002 sum(A035206[n]/(n^3*2^n+1),n=1..infinity) 4032599800785452 s002 sum(A210238[n]/(n^3*2^n+1),n=1..infinity) 4032599806349052 r005 Im(z^2+c),c=9/52+15/38*I,n=57 4032599806877086 s002 sum(A209936[n]/(n^3*2^n+1),n=1..infinity) 4032599808859519 a007 Real Root Of -28*x^4+785*x^3+413*x^2+583*x-353 4032599823109910 m001 (ln(2^(1/2)+1)-3^(1/3))/(Gompertz+Kolakoski) 4032599832502288 m001 exp(1/Pi)-gamma(1)+Sierpinski 4032599832657116 r008 a(0)=4,K{-n^6,-24-26*n^3-2*n^2+21*n} 4032599837161767 r009 Im(z^3+c),c=-1/27+22/47*I,n=14 4032599837322750 r005 Re(z^2+c),c=-21/94+31/52*I,n=16 4032599838415143 r008 a(0)=4,K{-n^6,-58-20*n^3-37*n^2+84*n} 4032599850185886 a007 Real Root Of 887*x^4-754*x^3+717*x^2+460*x-4 4032599859298906 a007 Real Root Of -662*x^4+996*x^3-476*x^2-70*x+132 4032599873190441 m001 1/exp((3^(1/3)))/Robbin*GAMMA(5/6) 4032599877517993 m001 (LandauRamanujan-MertensB3)/(Zeta(1,2)-Bloch) 4032599885356938 a007 Real Root Of 549*x^4-78*x^3+485*x^2-813*x+32 4032599904648079 a001 34/39603*76^(8/9) 4032599912930654 m005 (1/2*Pi+4/5)/(4*2^(1/2)+2/9) 4032599915806388 r005 Im(z^2+c),c=1/26+28/61*I,n=8 4032599928781680 a007 Real Root Of -125*x^4-630*x^3-737*x^2-771*x+618 4032599929717328 r005 Im(z^2+c),c=7/26+14/45*I,n=25 4032599931640324 r005 Re(z^2+c),c=-37/58+7/17*I,n=9 4032599932889281 r008 a(0)=4,K{-n^6,-38+58*n-33*n^2-18*n^3} 4032599933397920 r008 a(0)=4,K{-n^6,-48+49*n^3-93*n^2+62*n} 4032599944404847 l004 Shi(209/24) 4032599951626550 a001 13/103682*11^(19/39) 4032599954758217 m005 (1/2*Zeta(3)-1/10)/(4/7*Zeta(3)+5/9) 4032599955724622 r005 Im(z^2+c),c=11/126+23/50*I,n=52 4032599963480475 m005 (19/42+1/6*5^(1/2))/(9/11*2^(1/2)+8/9) 4032599972204361 r005 Im(z^2+c),c=9/118+29/62*I,n=59 4032599981779071 a001 11/13*2178309^(31/42) 4032599985043882 m001 (Rabbit-ZetaP(2))/(Pi-FeigenbaumAlpha) 4032599985686020 r005 Im(z^2+c),c=11/122+27/59*I,n=34 4032599989452509 r005 Re(z^2+c),c=-13/25+4/9*I,n=31