4180900009294497 m008 (3/5*Pi-2/3)/(3*Pi^4-5/6) 4180900014515389 r005 Im(z^2+c),c=7/44+25/58*I,n=59 4180900018395534 a007 Real Root Of 408*x^4-728*x^3+659*x^2-682*x-466 4180900029655981 a007 Real Root Of 98*x^4-273*x^3-721*x^2-653*x+416 4180900049799523 r005 Re(z^2+c),c=-5/8+58/135*I,n=51 4180900056866975 a001 199/5*4181^(11/39) 4180900070012499 r005 Re(z^2+c),c=-25/44+11/29*I,n=63 4180900072831733 r009 Im(z^3+c),c=-23/86+19/42*I,n=11 4180900087635076 r002 6th iterates of z^2 + 4180900092078090 m001 Paris^LandauRamanujan2nd*ln(5) 4180900092941729 p003 LerchPhi(1/16,4,526/237) 4180900093498555 r005 Re(z^2+c),c=29/102+2/61*I,n=59 4180900117739489 m001 arctan(1/3)/(CareFree^RenyiParking) 4180900122724622 r005 Im(z^2+c),c=-10/21+17/36*I,n=6 4180900136623292 m001 Lehmer^2/GaussKuzminWirsing*exp(GAMMA(17/24)) 4180900139366588 r005 Im(z^2+c),c=29/90+11/23*I,n=8 4180900144226946 m001 (Backhouse-Kac)/(MasserGramain+Totient) 4180900146618430 m005 (1/3*exp(1)+1/11)/(4/11*exp(1)-3/4) 4180900163757049 r005 Re(z^2+c),c=-63/106+1/19*I,n=20 4180900171440438 l006 ln(6323/9605) 4180900171441500 r002 62th iterates of z^2 + 4180900183314817 a001 3/1568397607*521^(1/8) 4180900185444387 a001 416020/9*18^(16/21) 4180900187630481 m001 Pi+1/gamma-ln(2) 4180900198762707 a007 Real Root Of -998*x^4-226*x^3-855*x^2+927*x+551 4180900198958231 r005 Re(z^2+c),c=-23/42+16/43*I,n=62 4180900202943104 m001 1/exp(Riemann3rdZero)^2*MinimumGamma^2*Zeta(5) 4180900217127987 r008 a(0)=4,K{-n^6,31-25*n^3+28*n^2-40*n} 4180900217408680 h001 (1/12*exp(2)+1/4)/(2/11*exp(2)+8/11) 4180900218279961 h001 (8/9*exp(1)+1/6)/(5/7*exp(2)+9/10) 4180900231311571 r005 Im(z^2+c),c=4/21+17/42*I,n=59 4180900246976033 m001 (-GAMMA(19/24)+Paris)/(ln(3)-sin(1)) 4180900252099472 m001 1/exp(Ei(1))^2*KhintchineLevy^2*GAMMA(1/4)^2 4180900256482039 m003 -2+(15*E^(-1/2-Sqrt[5]/2))/Log[1/2+Sqrt[5]/2] 4180900260690906 a001 281/726103*514229^(52/59) 4180900278143545 r005 Re(z^2+c),c=-17/30+31/82*I,n=17 4180900294247216 a007 Real Root Of -783*x^4+195*x^3-407*x^2+808*x-257 4180900300545264 a007 Real Root Of -728*x^4-149*x^3-11*x^2+976*x-373 4180900330809111 r002 44th iterates of z^2 + 4180900332260415 r009 Im(z^3+c),c=-16/31+4/29*I,n=10 4180900348928137 a007 Real Root Of -253*x^4+40*x^3+170*x^2+591*x-272 4180900356014897 r005 Re(z^2+c),c=-8/15+18/47*I,n=9 4180900362179639 r009 Re(z^3+c),c=-55/122+1/7*I,n=11 4180900375156557 h001 (8/9*exp(1)+1/3)/(7/8*exp(2)+1/9) 4180900375704290 p001 sum((-1)^n/(507*n+238)/(64^n),n=0..infinity) 4180900391649417 r005 Re(z^2+c),c=-49/114+17/35*I,n=17 4180900392598305 a007 Real Root Of 821*x^4-572*x^3+328*x^2-839*x-475 4180900429200969 r005 Im(z^2+c),c=5/32+13/30*I,n=58 4180900445105359 r005 Im(z^2+c),c=7/23+20/63*I,n=21 4180900450066130 r009 Re(z^3+c),c=-67/118+6/25*I,n=43 4180900464566662 r005 Re(z^2+c),c=11/122+21/53*I,n=26 4180900467935053 a007 Real Root Of -92*x^4+272*x^3-947*x^2+661*x-26 4180900470936619 r002 10th iterates of z^2 + 4180900490407282 r009 Im(z^3+c),c=-7/17+16/41*I,n=14 4180900512347376 a007 Real Root Of -97*x^4-344*x^3+390*x^2+598*x+181 4180900516867654 a001 3/119218851371*1364^(17/24) 4180900527389952 a007 Real Root Of -778*x^4+94*x^3+740*x^2+738*x-421 4180900531022553 r005 Re(z^2+c),c=-17/30+26/109*I,n=23 4180900540084545 r005 Re(z^2+c),c=-7/12+22/119*I,n=32 4180900540609933 a007 Real Root Of -x^4-420*x^3-798*x^2+221*x-141 4180900549927692 a007 Real Root Of 224*x^4-44*x^3+414*x^2-955*x-4 4180900550924991 a007 Real Root Of -205*x^4-713*x^3+589*x^2-79*x-96 4180900552078333 r002 32th iterates of z^2 + 4180900557297485 r005 Re(z^2+c),c=-3/5+11/92*I,n=23 4180900565884066 r005 Re(z^2+c),c=-45/82+15/37*I,n=22 4180900567521721 m001 ln(DuboisRaymond)/Backhouse/GAMMA(13/24)^2 4180900595197195 r005 Im(z^2+c),c=23/110+19/45*I,n=17 4180900613990050 h001 (2/7*exp(2)+1/5)/(5/7*exp(2)+1/4) 4180900621118012 q001 1077/2576 4180900623798384 m001 (Zeta(3)+gamma(2))/(1+Si(Pi)) 4180900626190748 m001 Riemann2ndZero^2/ArtinRank2/exp(exp(1)) 4180900630953739 r005 Re(z^2+c),c=-27/46+3/23*I,n=37 4180900631468217 a001 13/9349*29^(17/52) 4180900631804471 r005 Im(z^2+c),c=19/78+21/59*I,n=61 4180900653306177 r009 Im(z^3+c),c=-31/58+14/47*I,n=17 4180900659892536 m001 CopelandErdos^(Zeta(5)*LandauRamanujan2nd) 4180900668504963 m005 (1/2*3^(1/2)-1/7)/(1/7*2^(1/2)-3/8) 4180900674215299 r002 55th iterates of z^2 + 4180900680209002 r005 Re(z^2+c),c=-15/26+28/121*I,n=48 4180900689815337 m005 (1/2*3^(1/2)+2)/(1/8*Catalan-4/5) 4180900709646770 m001 Chi(1)*LaplaceLimit+Pi*2^(1/2)/GAMMA(3/4) 4180900710083553 r005 Im(z^2+c),c=17/48+13/44*I,n=64 4180900775537518 r005 Im(z^2+c),c=1/10+15/32*I,n=17 4180900779208957 r009 Im(z^3+c),c=-31/78+25/63*I,n=17 4180900780082307 r002 2th iterates of z^2 + 4180900784113375 r009 Im(z^3+c),c=-53/118+19/40*I,n=12 4180900789019887 a007 Real Root Of -975*x^4+904*x^3-447*x^2+708*x+470 4180900790036770 r005 Re(z^2+c),c=-55/118+22/45*I,n=44 4180900791372566 r002 18th iterates of z^2 + 4180900797804566 a001 521/46368*832040^(13/49) 4180900809926919 r002 14th iterates of z^2 + 4180900814311943 a001 521/1597*3^(7/31) 4180900829513413 a007 Real Root Of 582*x^4+229*x^3+440*x^2-146*x-139 4180900833466284 a007 Real Root Of 233*x^4-219*x^3-765*x^2-276*x+258 4180900846142430 r002 9th iterates of z^2 + 4180900849202725 r009 Im(z^3+c),c=-13/66+35/47*I,n=47 4180900857006993 r001 49i'th iterates of 2*x^2-1 of 4180900877533638 a007 Real Root Of 276*x^4+898*x^3-895*x^2+869*x+574 4180900885014934 a007 Real Root Of -796*x^4-220*x^3-147*x^2+945*x-329 4180900888206388 m001 ln(BesselK(1,1))^2*FeigenbaumC/GAMMA(5/6) 4180900892940352 l006 ln(1443/2192) 4180900924717649 r002 40th iterates of z^2 + 4180900925388941 m005 (1/3*Pi-1/10)/(4/5*exp(1)+1/11) 4180900953021442 a007 Real Root Of -19*x^4-793*x^3+67*x^2+408*x+151 4180900969401515 r009 Im(z^3+c),c=-13/42+24/55*I,n=33 4180900972897983 s001 sum(exp(-Pi/3)^(n-1)*A055928[n],n=1..infinity) 4180900976208977 r009 Im(z^3+c),c=-3/7+11/29*I,n=31 4180900978463807 m001 GAMMA(1/3)^2/OneNinth/ln(log(1+sqrt(2)))^2 4180900980070629 r002 47th iterates of z^2 + 4180900990782582 m001 FeigenbaumDelta-ThueMorse^AlladiGrinstead 4180901005936277 r002 37th iterates of z^2 + 4180901006359554 m001 5^(1/2)/(GlaisherKinkelin-RenyiParking) 4180901028030046 r005 Im(z^2+c),c=7/30+15/41*I,n=55 4180901031945577 a007 Real Root Of 918*x^4-331*x^3+534*x^2-996*x-562 4180901032395870 r002 2th iterates of z^2 + 4180901038157542 s002 sum(A003507[n]/((pi^n+1)/n),n=1..infinity) 4180901054612504 b008 Log[56+3*Pi] 4180901059852358 m001 (Pi+ln(2)/ln(10))/Zeta(3)+ln(2+3^(1/2)) 4180901066620487 m005 (1/2*Catalan+1/8)/(2/3*Pi-7/10) 4180901066844759 l006 ln(113/7393) 4180901066844759 p004 log(7393/113) 4180901071332837 b008 ArcCsch[E^Sqrt[30]] 4180901076361770 m001 (PrimesInBinary-ReciprocalFibonacci)/CareFree 4180901079128648 r005 Re(z^2+c),c=-7/10+47/213*I,n=50 4180901095264295 m001 GAMMA(5/24)^2*TwinPrimes*ln(sqrt(Pi))^2 4180901104889959 h001 (5/12*exp(1)+5/12)/(2/5*exp(2)+3/4) 4180901106603619 r009 Im(z^3+c),c=-13/66+35/47*I,n=56 4180901133391143 r002 57th iterates of z^2 + 4180901141671034 a007 Real Root Of 129*x^4-891*x^3-458*x^2-949*x+538 4180901144782034 p003 LerchPhi(1/16,1,303/121) 4180901152052033 r009 Im(z^3+c),c=-12/25+19/55*I,n=58 4180901154683559 m001 HeathBrownMoroz/Artin*KhinchinLevy 4180901163539465 s002 sum(A280989[n]/((10^n+1)/n),n=1..infinity) 4180901168154357 r005 Im(z^2+c),c=31/122+13/28*I,n=9 4180901174331271 s002 sum(A183261[n]/(exp(pi*n)+1),n=1..infinity) 4180901179023777 m001 (-GaussAGM+ThueMorse)/(Psi(1,1/3)+gamma(3)) 4180901185607644 m005 (1/2*3^(1/2)-3)/(7/4+3/2*5^(1/2)) 4180901189762745 m008 (1/5*Pi^5+5)/(1/6*Pi^4-2/5) 4180901194881677 r002 32th iterates of z^2 + 4180901218012061 a007 Real Root Of 163*x^4+779*x^3+488*x^2+452*x+486 4180901219599307 r005 Re(z^2+c),c=-15/38+5/11*I,n=9 4180901252350762 m001 Zeta(1,-1)/sin(1/12*Pi)/GAMMA(7/12) 4180901265932692 a001 3/10749957122*1364^(3/8) 4180901274538068 r002 19th iterates of z^2 + 4180901281013539 h001 (-exp(2)+3)/(-exp(-3)-1) 4180901287047624 r004 Im(z^2+c),c=-47/38-1/15*I,z(0)=-1,n=46 4180901298306658 r002 7th iterates of z^2 + 4180901306822031 r005 Im(z^2+c),c=2/17+19/41*I,n=58 4180901307935686 p004 log(16699/10993) 4180901315105582 m001 Gompertz^ArtinRank2/(ZetaP(4)^ArtinRank2) 4180901326586725 m001 1/Zeta(1/2)^2*exp(TwinPrimes)^2*cosh(1)^2 4180901337816880 m001 FeigenbaumMu+FeigenbaumB^Khinchin 4180901342171536 m005 (1/2*Zeta(3)-3/7)/(1/6*Pi-1/9) 4180901348054662 r005 Re(z^2+c),c=-13/22+9/110*I,n=64 4180901357424074 r005 Re(z^2+c),c=-15/26+23/98*I,n=49 4180901367192534 r009 Re(z^3+c),c=-55/126+32/55*I,n=34 4180901368562525 m001 (Zeta(5)+HardHexagonsEntropy)/(Lehmer-Trott) 4180901382217429 r005 Re(z^2+c),c=-3/4+97/202*I,n=2 4180901386668208 a007 Real Root Of -549*x^4+652*x^3+29*x^2+102*x+102 4180901398634639 m009 (5/6*Psi(1,2/3)-2/3)/(5/12*Pi^2+2/5) 4180901399098739 r005 Re(z^2+c),c=-1+48/247*I,n=10 4180901403952444 r005 Re(z^2+c),c=-23/42+7/22*I,n=29 4180901413194529 a007 Real Root Of -870*x^4-309*x^3-6*x^2+359*x+15 4180901417522060 r005 Re(z^2+c),c=-25/58+31/57*I,n=47 4180901418016387 m001 PrimesInBinary^2/Backhouse^2*exp(GAMMA(13/24)) 4180901427058560 a007 Real Root Of 156*x^4+592*x^3-406*x^2-596*x+204 4180901437831324 r002 21th iterates of z^2 + 4180901442529888 a007 Real Root Of 492*x^4-176*x^3+105*x^2-427*x+158 4180901460056458 r005 Im(z^2+c),c=1/114+5/9*I,n=33 4180901460695200 r005 Im(z^2+c),c=-29/38+2/57*I,n=3 4180901463189791 m001 (FeigenbaumDelta+Mills)/(sin(1)+sin(1/5*Pi)) 4180901470161925 r005 Re(z^2+c),c=-21/38+16/57*I,n=24 4180901485482458 m001 GAMMA(3/4)^2*exp(FeigenbaumKappa)^2/cos(1) 4180901494257617 m001 MasserGramainDelta/(1+ReciprocalFibonacci) 4180901494944384 r008 a(0)=4,K{-n^6,36-26*n-22*n^2+7*n^3} 4180901500475436 r002 7th iterates of z^2 + 4180901501259258 r009 Im(z^3+c),c=-13/66+35/47*I,n=38 4180901506328796 m001 ln(3)/(BesselI(0,1)+Riemann3rdZero) 4180901517919394 m004 3+750/Pi+25*Sqrt[5]*Pi+Cos[Sqrt[5]*Pi] 4180901526985925 m001 (2^(1/3)-Chi(1))/((1+3^(1/2))^(1/2)-Cahen) 4180901530646265 a007 Real Root Of 73*x^4-961*x^3-66*x^2-910*x+460 4180901531433281 m001 (Psi(1,1/3)+3^(1/3))/(-BesselJ(1,1)+ThueMorse) 4180901550014422 r009 Re(z^3+c),c=-33/74+28/51*I,n=29 4180901551240581 m001 (ln(3)-GAMMA(5/6))/(GAMMA(23/24)-MadelungNaCl) 4180901572668324 m001 (BesselI(0,2)-ErdosBorwein)/ln(5) 4180901575048680 r009 Re(z^3+c),c=-15/31+5/33*I,n=15 4180901627856439 a007 Real Root Of 244*x^4+969*x^3-235*x^2+114*x+847 4180901631147182 m001 1/GAMMA(5/12)^2/exp(BesselK(1,1))*sin(Pi/5)^2 4180901633138908 r009 Re(z^3+c),c=-69/122+8/33*I,n=43 4180901657781309 s002 sum(A101940[n]/(n^3*10^n-1),n=1..infinity) 4180901659327096 r009 Im(z^3+c),c=-33/94+13/31*I,n=28 4180901664208497 m001 FeigenbaumC^2*ln(LandauRamanujan)*arctan(1/2) 4180901682665166 r009 Im(z^3+c),c=-25/94+16/35*I,n=8 4180901689757259 a005 (1/cos(13/110*Pi))^836 4180901699437494 b008 41+(1+Sqrt[5])/4 4180901700284610 a007 Real Root Of -672*x^4+412*x^3-83*x^2+655*x+339 4180901700777503 a008 Real Root of (-3-5*x+3*x^2-6*x^3-3*x^4-3*x^5) 4180901708204984 q001 1493/3571 4180901712006961 a007 Real Root Of 12*x^4+496*x^3-244*x^2-241*x-732 4180901724132307 a001 1/54*(1/2*5^(1/2)+1/2)^5*3^(11/17) 4180901725997734 b008 ArcSinh[(2+EulerGamma+Pi)^2] 4180901729065799 a007 Real Root Of 154*x^4+678*x^3+312*x^2+490*x-910 4180901732622883 a007 Real Root Of -229*x^4+491*x^3-990*x^2+48*x+236 4180901748079701 r002 5th iterates of z^2 + 4180901749043484 m005 (1/2*3^(1/2)-1/5)/(5*Pi+2/9) 4180901757402038 m005 (1/2*gamma-10/11)/(4/7*Catalan-3/8) 4180901764380082 m001 (StronglyCareFree-ZetaP(3))/(MertensB1+Salem) 4180901766727672 l006 ln(5221/7931) 4180901780540693 a007 Real Root Of 806*x^4-781*x^3+183*x^2-671*x+281 4180901786559220 h001 (1/10*exp(2)+5/12)/(1/4*exp(2)+11/12) 4180901789009852 m001 (-exp(-1/2*Pi)+Pi^(1/2))/(Chi(1)-arctan(1/2)) 4180901806936071 m001 ln(Pi)*Mills+Khinchin 4180901814380079 l006 ln(3443/3590) 4180901821072333 m001 1/GAMMA(1/6)^2*exp(Paris)*GAMMA(19/24) 4180901821666135 a005 (1/sin(71/161*Pi))^749 4180901824783158 m001 OneNinth*Riemann3rdZero*exp(BesselJ(1,1)) 4180901833052991 r002 6th iterates of z^2 + 4180901835100173 r005 Re(z^2+c),c=-69/122+19/62*I,n=64 4180901836305321 r009 Im(z^3+c),c=-23/82+32/47*I,n=7 4180901836561708 g001 GAMMA(1/4,75/113) 4180901854268502 r005 Re(z^2+c),c=-29/30+23/88*I,n=24 4180901854929058 r005 Re(z^2+c),c=-13/22+31/114*I,n=22 4180901879372766 r005 Re(z^2+c),c=-7/12+23/128*I,n=47 4180901883281784 m001 (-RenyiParking+ZetaQ(3))/(Catalan-FeigenbaumD) 4180901884608677 r005 Im(z^2+c),c=21/62+20/57*I,n=35 4180901903717669 a001 3/119218851371*3571^(5/8) 4180901910407332 m003 -11/2+Sqrt[5]/256+Cosh[1/2+Sqrt[5]/2]/2 4180901911527135 m001 (Otter-Thue)^(Pi*csc(11/24*Pi)/GAMMA(13/24)) 4180901915065052 r009 Re(z^3+c),c=-19/48+3/29*I,n=13 4180901919210471 m004 -135*Pi+Sqrt[5]*Pi-Tanh[Sqrt[5]*Pi] 4180901950916830 l006 ln(153/10010) 4180901951393931 m005 (3/8+1/4*5^(1/2))/(221/180+9/20*5^(1/2)) 4180901956459716 r002 2th iterates of z^2 + 4180901967379446 r005 Re(z^2+c),c=-47/66+1/54*I,n=24 4180901971973966 r005 Re(z^2+c),c=-93/98+8/33*I,n=32 4180901976357775 r002 5th iterates of z^2 + 4180901980113840 r005 Im(z^2+c),c=17/110+22/59*I,n=6 4180901987592903 r009 Re(z^3+c),c=-51/106+27/55*I,n=16 4180901989961249 a007 Real Root Of 255*x^4-908*x^3+967*x^2+10*x-239 4180901997018371 m001 ln(Rabbit)^2*Lehmer^2/Pi^2 4180902002608961 r009 Im(z^3+c),c=-43/126+25/59*I,n=21 4180902008047538 m001 FeigenbaumD*ln(Magata)^2*Zeta(5) 4180902014997864 a001 3/969323029*1364^(1/24) 4180902015069437 m001 GAMMA(1/4)^BesselJ(0,1)/(GAMMA(1/4)^(3^(1/3))) 4180902015210626 b008 -20/9+Sqrt[41] 4180902029876000 a007 Real Root Of 128*x^4-74*x^3-340*x^2-811*x+400 4180902042173353 m001 (polylog(4,1/2)+Riemann1stZero)/(ln(5)+Ei(1)) 4180902042533668 a001 75025/322*199^(6/11) 4180902057499461 m001 sin(1/5*Pi)+Zeta(1,-1)*GAMMA(23/24) 4180902065638448 m003 13/2+Sqrt[5]/16-20*Sinh[1/2+Sqrt[5]/2] 4180902066775983 a001 3/2139295485799*9349^(7/8) 4180902071907517 r005 Im(z^2+c),c=-67/94+7/32*I,n=52 4180902072588681 m001 ln(gamma)*(ReciprocalLucas-Zeta(3)) 4180902081766837 s002 sum(A073744[n]/(n^3*exp(n)-1),n=1..infinity) 4180902090181139 a003 sin(Pi*44/119)-sin(Pi*25/67) 4180902093071432 m005 (1/2*3^(1/2)+7/9)/(5/12*5^(1/2)+3) 4180902094655354 m005 (1/3*3^(1/2)+1/11)/(2/3+5/12*5^(1/2)) 4180902100469077 l006 ln(3778/5739) 4180902103106030 a001 3/2139295485799*24476^(19/24) 4180902105432341 a001 3/73681302247*24476^(11/24) 4180902106425149 r009 Im(z^3+c),c=-29/122+23/50*I,n=6 4180902107758653 a001 3/2537720636*24476^(1/8) 4180902108249190 a001 3/45537549124*64079^(3/8) 4180902108538173 a001 1/440719107401*167761^(5/8) 4180902108619280 a001 3/817138163596*439204^(13/24) 4180902108626504 a001 3/10749957122*439204^(5/24) 4180902108630624 a001 1/1368706081*1149851^(1/8) 4180902108630847 a001 1/64300051206*3010349^(3/8) 4180902108630978 a001 3/14662949395604*7881196^(5/8) 4180902108631000 a001 3/73681302247*7881196^(7/24) 4180902108631019 a001 3/6643838879*54018521^(1/8) 4180902108631020 a001 3/817138163596*141422324^(3/8) 4180902108631020 a001 3/1568397607*141422324^(1/24) 4180902108631020 a001 3/14662949395604*2537720636^(11/24) 4180902108631020 a001 1/1368706081*1322157322203^(1/16) 4180902108631020 a001 3/10749957122*2537720636^(1/8) 4180902108631020 a001 3/3461452808002*6643838879^(3/8) 4180902108631020 a001 1/9381251041*5600748293801^(1/8) 4180902108631020 a001 1/64300051206*9062201101803^(3/16) 4180902108631020 a001 3/14662949395604*312119004989^(3/8) 4180902108631020 a001 3/2139295485799*817138163596^(7/24) 4180902108631020 a001 1/440719107401*28143753123^(5/16) 4180902108631020 a001 3/17393796001*119218851371^(1/8) 4180902108631020 a001 3/45537549124*4106118243^(3/16) 4180902108631020 a001 3/2537720636*14662949395604^(1/24) 4180902108631020 a001 3/2537720636*599074578^(1/16) 4180902108631020 a001 3/2139295485799*87403803^(7/16) 4180902108631028 a001 3/119218851371*12752043^(5/16) 4180902108631246 a001 3/10749957122*1860498^(3/16) 4180902108631850 a001 3/14662949395604*1860498^(11/16) 4180902108634566 a001 3/1568397607*271443^(1/16) 4180902108662938 a001 3/817138163596*271443^(9/16) 4180902109797270 a001 3/73681302247*39603^(7/16) 4180902111130128 a001 3/14662949395604*39603^(15/16) 4180902117055357 m001 Zeta(1,2)+PlouffeB^ln(2^(1/2)+1) 4180902123415617 a007 Real Root Of -924*x^4+293*x^3-394*x^2+281*x+236 4180902147765986 a001 3/10749957122*5778^(5/16) 4180902151117411 p004 log(32647/499) 4180902155204606 r005 Im(z^2+c),c=1/25+14/27*I,n=56 4180902177031422 r005 Re(z^2+c),c=-57/106+13/37*I,n=25 4180902181328406 r002 11th iterates of z^2 + 4180902207019843 r002 49th iterates of z^2 + 4180902210381934 a001 3/817138163596*5778^(13/16) 4180902219390516 r005 Im(z^2+c),c=9/20+17/50*I,n=7 4180902236257365 r005 Im(z^2+c),c=5/66+29/59*I,n=27 4180902239573752 r002 5th iterates of z^2 + 4180902246019795 r009 Re(z^3+c),c=-9/19+5/27*I,n=57 4180902266182540 m008 (1/3*Pi^5-3/5)/(3/4*Pi^3+1) 4180902266375419 r002 59th iterates of z^2 + 4180902267180796 s002 sum(A162306[n]/(pi^n+1),n=1..infinity) 4180902279247462 m001 (1-3^(1/2))/(gamma+GAMMA(19/24)) 4180902297453026 a001 312119004989/377*225851433717^(5/21) 4180902297453028 a001 3461452808002/377*9227465^(5/21) 4180902306115729 r005 Im(z^2+c),c=3/98+5/9*I,n=27 4180902313922427 m001 BesselI(0,1)^ln(3)*FellerTornier 4180902314999953 r002 46th iterates of z^2 + 4180902315739083 m001 FeigenbaumD-Psi(2,1/3)*Rabbit 4180902322408825 r002 3th iterates of z^2 + 4180902351075718 m001 (Conway-exp(1))/(FransenRobinson+Stephens) 4180902371230379 r002 13th iterates of z^2 + 4180902378849080 a007 Real Root Of -179*x^4-586*x^3+747*x^2+201*x-350 4180902385511416 l006 ln(6113/9286) 4180902395441729 m002 3+(3*Cosh[Pi])/Pi^6+Log[Pi] 4180902398057128 r005 Re(z^2+c),c=-16/27+1/33*I,n=44 4180902407480599 a001 521/17711*28657^(29/41) 4180902417016510 m001 (Porter-StolarskyHarborth)/(ln(5)+Niven) 4180902419850751 m001 (GAMMA(17/24)+Rabbit)/(Si(Pi)-exp(1/Pi)) 4180902443276686 r005 Re(z^2+c),c=-13/22+3/37*I,n=53 4180902450237706 r005 Im(z^2+c),c=-13/54+35/59*I,n=35 4180902454946515 m001 Tribonacci^2/ln(Sierpinski)*GAMMA(19/24) 4180902457225685 p001 sum((-1)^n/(371*n+239)/(512^n),n=0..infinity) 4180902463977093 r002 49th iterates of z^2 + 4180902471470396 m001 exp(DuboisRaymond)^2*CopelandErdos*Zeta(3) 4180902478258495 m001 1/5*(TreeGrowth2nd-exp(1/Pi))*5^(1/2) 4180902484262201 r005 Im(z^2+c),c=5/34+18/43*I,n=5 4180902507837793 m001 (Mills+ZetaQ(3))/(Magata-MertensB1) 4180902512777322 m005 (1/2*gamma+6/11)/(13/11+4/11*5^(1/2)) 4180902515867422 m006 (1/4*exp(Pi)+1/3)/(3/5*exp(Pi)+3/4) 4180902526085695 a007 Real Root Of 255*x^4+740*x^3+769*x^2+151*x-25 4180902546083920 r005 Re(z^2+c),c=-85/118+8/61*I,n=17 4180902551003056 r005 Re(z^2+c),c=-53/90+1/15*I,n=22 4180902551770170 a008 Real Root of (2+5*x+5*x^2-4*x^3+3*x^4+x^5) 4180902571908480 r002 15th iterates of z^2 + 4180902584668417 m006 (2/3*Pi^2+1/5)/(3/Pi+2/3) 4180902588791660 m006 (1/5*Pi^2-3/5)/(1/4*ln(Pi)+3) 4180902589580228 m005 (1/2*exp(1)+2/9)/(2/9*Zeta(3)+1/9) 4180902595929163 r005 Re(z^2+c),c=-15/58+37/59*I,n=7 4180902599458909 r005 Re(z^2+c),c=-79/126+13/54*I,n=18 4180902622624849 r005 Re(z^2+c),c=-33/56+2/19*I,n=39 4180902631999444 m005 (-13/30+1/6*5^(1/2))/(3/8*Zeta(3)+1) 4180902656075704 r002 62th iterates of z^2 + 4180902656114590 r008 a(0)=0,K{-n^6,-27-34*n^3+67*n^2+22*n} 4180902660195862 r005 Re(z^2+c),c=-29/50+9/44*I,n=47 4180902664791022 r005 Re(z^2+c),c=-67/126+13/31*I,n=63 4180902669136743 m001 FibonacciFactorial/(ln(5)+PisotVijayaraghavan) 4180902688227253 r005 Im(z^2+c),c=-19/32+23/52*I,n=50 4180902710583569 a007 Real Root Of 251*x^4+918*x^3-764*x^2-941*x-183 4180902714793285 r009 Im(z^3+c),c=-29/62+17/48*I,n=50 4180902732169316 a007 Real Root Of -313*x^4+979*x^3+63*x^2+282*x+188 4180902754316296 r005 Re(z^2+c),c=-16/27+1/30*I,n=49 4180902755468699 r005 Im(z^2+c),c=11/78+25/61*I,n=10 4180902769492507 a007 Real Root Of -239*x^4-880*x^3+398*x^2-337*x+348 4180902783859234 r002 30th iterates of z^2 + 4180902785523382 a007 Real Root Of -780*x^4+253*x^3+946*x^2+983*x-571 4180902789846662 m005 (1/2*2^(1/2)-9/10)/(5/8*Catalan-1/9) 4180902809259714 m001 (Bloch+MertensB2)/(gamma+Zeta(1,2)) 4180902836097223 a007 Real Root Of -181*x^4+885*x^3-508*x^2+464*x+353 4180902839755590 r005 Im(z^2+c),c=8/25+4/15*I,n=46 4180902846706241 l006 ln(2335/3547) 4180902849033853 b008 FresnelC[1/3+2*Sqrt[Pi]] 4180902849884547 r005 Im(z^2+c),c=-23/26+4/127*I,n=9 4180902852664062 r002 23th iterates of z^2 + 4180902866815342 m001 1/ln(GAMMA(19/24))^2/Backhouse^2/GAMMA(5/24) 4180902879089142 a005 (1/cos(7/188*Pi))^1216 4180902884425501 m001 Riemann3rdZero^2*MadelungNaCl/exp(GAMMA(1/6)) 4180902886020629 r005 Re(z^2+c),c=-53/86+6/53*I,n=15 4180902887048463 r002 21th iterates of z^2 + 4180902894104959 r002 11th iterates of z^2 + 4180902894654659 r009 Im(z^3+c),c=-27/58+11/31*I,n=37 4180902899177029 r005 Re(z^2+c),c=19/64+1/27*I,n=53 4180902909879541 r002 25th iterates of z^2 + 4180902911969675 r005 Re(z^2+c),c=-13/22+8/97*I,n=52 4180902917240480 v002 sum(1/(2^n+(24*n^2-38*n+72)),n=1..infinity) 4180902925504083 a007 Real Root Of -116*x^4-375*x^3+534*x^2+367*x+238 4180902930916645 m001 Bloch-ReciprocalLucas*Trott2nd 4180902947101430 m001 (Otter+Trott)/(BesselK(1,1)+OneNinth) 4180902948757148 a003 sin(Pi*7/51)/sin(Pi*31/63) 4180902953924789 r005 Im(z^2+c),c=25/74+12/49*I,n=50 4180902955396737 r005 Re(z^2+c),c=-25/38+3/8*I,n=23 4180902958183824 m001 1/GAMMA(19/24)^2/BesselK(1,1)*ln(cos(Pi/12)) 4180902963581764 m001 2*Pi/GAMMA(5/6)/(LambertW(1)+LandauRamanujan) 4180902963581764 m001 GAMMA(1/6)/(LambertW(1)+LandauRamanujan) 4180902965841603 a001 4/55*21^(27/47) 4180902968528240 r009 Im(z^3+c),c=-37/70+2/11*I,n=42 4180902975896760 p001 sum(1/(263*n+24)/(25^n),n=0..infinity) 4180902994590096 r005 Re(z^2+c),c=1/82+11/43*I,n=9 4180903006774007 m001 1/sin(Pi/12)/cos(Pi/5)*exp(sqrt(5))^2 4180903016680805 m001 ln(GAMMA(19/24))^2*BesselJ(1,1)^2*sin(1) 4180903021352103 r002 16th iterates of z^2 + 4180903055289497 m001 (PlouffeB-ThueMorse)/(Cahen-Kolakoski) 4180903068852126 r005 Re(z^2+c),c=-49/82+1/30*I,n=22 4180903071695164 r005 Im(z^2+c),c=-1/82+26/47*I,n=51 4180903086345237 r009 Re(z^3+c),c=-14/23+53/64*I,n=2 4180903088149293 m005 (1/2*3^(1/2)-3/10)/(1/2*Catalan-4/9) 4180903093549391 r009 Im(z^3+c),c=-17/46+26/61*I,n=9 4180903099278034 r005 Re(z^2+c),c=-16/27+1/47*I,n=39 4180903102618308 r005 Re(z^2+c),c=-53/90+5/43*I,n=53 4180903105181375 a003 cos(Pi*37/100)+cos(Pi*37/75) 4180903107482944 r005 Re(z^2+c),c=-51/86+11/64*I,n=26 4180903118569661 a001 75025/2207*199^(10/11) 4180903125175543 s002 sum(A262764[n]/((3*n+1)!),n=1..infinity) 4180903181421073 a007 Real Root Of -489*x^4+444*x^3-910*x^2+30*x+219 4180903190039715 s002 sum(A027750[n]/(pi^n+1),n=1..infinity) 4180903190039716 s002 sum(A275055[n]/(pi^n+1),n=1..infinity) 4180903190064114 s002 sum(A254679[n]/(pi^n+1),n=1..infinity) 4180903194924826 m005 (1/2*Catalan-1/6)/(11/12*Catalan-1/7) 4180903197267402 r005 Im(z^2+c),c=-1/38+13/23*I,n=51 4180903198645444 r002 20th iterates of z^2 + 4180903206851631 m001 (Chi(1)-Psi(2,1/3))/(-HeathBrownMoroz+Totient) 4180903209349984 r005 Im(z^2+c),c=-97/82+9/50*I,n=26 4180903211736636 a001 3/2537720636*843^(3/16) 4180903237954676 m001 exp(Magata)*CopelandErdos*sin(Pi/5) 4180903267085318 r005 Im(z^2+c),c=-1/20+34/59*I,n=62 4180903270746254 a007 Real Root Of 887*x^4-356*x^3-837*x^2-839*x+496 4180903273540903 m001 1/PrimesInBinary^2/exp(Si(Pi))^2*cos(1)^2 4180903281679892 r005 Im(z^2+c),c=3/17+5/12*I,n=54 4180903290166718 a007 Real Root Of 657*x^4-929*x^3+803*x^2-645*x-498 4180903293082510 r005 Re(z^2+c),c=-4/23+16/25*I,n=23 4180903293979912 r002 54th iterates of z^2 + 4180903312046841 r005 Re(z^2+c),c=-4/7+17/63*I,n=61 4180903316546178 m002 E^Pi+2*Pi^2*Coth[Pi]-Log[Pi] 4180903342100174 a007 Real Root Of -973*x^4+909*x^3+914*x^2+549*x-426 4180903350058173 r005 Im(z^2+c),c=35/106+14/43*I,n=26 4180903353589346 l006 ln(5562/8449) 4180903365252752 r005 Im(z^2+c),c=3/58+30/59*I,n=33 4180903368613013 a007 Real Root Of -343*x^4+721*x^3+100*x^2+216*x+136 4180903376099892 r005 Im(z^2+c),c=-4/21+32/47*I,n=26 4180903378159934 r005 Im(z^2+c),c=13/46+6/19*I,n=49 4180903382822314 r005 Im(z^2+c),c=7/23+17/60*I,n=7 4180903415542821 b008 ArcCosh[SinIntegral[Sinh[1]]] 4180903443965475 r005 Re(z^2+c),c=-18/31+10/49*I,n=52 4180903452612566 r005 Im(z^2+c),c=3/46+21/38*I,n=21 4180903457469685 r005 Im(z^2+c),c=23/86+11/37*I,n=13 4180903479238614 r005 Re(z^2+c),c=-7/12+13/75*I,n=42 4180903504407284 r009 Im(z^3+c),c=-1/66+29/60*I,n=5 4180903538727538 m005 (1/2*Zeta(3)+7/12)/(10/11*5^(1/2)+4/5) 4180903548539092 m005 (1/2*2^(1/2)+5/6)/(6/7*Catalan-5/12) 4180903557488406 r005 Re(z^2+c),c=-13/22+6/73*I,n=56 4180903558858851 a003 cos(Pi*20/97)-cos(Pi*41/109) 4180903568812441 r009 Im(z^3+c),c=-2/31+22/45*I,n=14 4180903584587871 r005 Re(z^2+c),c=-43/78+16/39*I,n=48 4180903588181297 h001 (3/5*exp(2)+1/8)/(1/8*exp(2)+1/6) 4180903590416011 r005 Re(z^2+c),c=-13/23+2/7*I,n=37 4180903591366214 s002 sum(A207471[n]/((exp(n)+1)*n),n=1..infinity) 4180903594279091 r005 Re(z^2+c),c=-67/122+16/45*I,n=50 4180903607329850 r002 34th iterates of z^2 + 4180903610906510 m001 OneNinth^2/Niven^2*exp(sinh(1))^2 4180903622223822 m001 (Gompertz-Robbin)/(arctan(1/3)+Zeta(1,-1)) 4180903625770247 r005 Re(z^2+c),c=3/110+19/30*I,n=29 4180903627048826 a001 843/13*144^(3/8) 4180903631415392 r002 37th iterates of z^2 + 4180903641798358 r005 Im(z^2+c),c=7/40+30/53*I,n=19 4180903643160264 a007 Real Root Of 803*x^4+331*x^3+989*x^2-839*x-524 4180903658881634 m001 (1-FeigenbaumMu)/(TreeGrowth2nd+ZetaP(3)) 4180903714335266 m001 (Gompertz+Niven)/(Psi(2,1/3)-gamma(1)) 4180903720360960 l006 ln(3227/4902) 4180903767080022 r002 40th iterates of z^2 + 4180903778402059 p001 sum((-1)^n/(261*n+239)/(625^n),n=0..infinity) 4180903778742117 a007 Real Root Of -47*x^4+32*x^3+796*x^2-682*x-66 4180903783370321 r005 Re(z^2+c),c=-15/26+19/121*I,n=7 4180903786675820 m001 Magata^sin(1)*ErdosBorwein^sin(1) 4180903796007059 a007 Real Root Of 551*x^4-818*x^3-179*x^2-999*x-463 4180903797118031 a007 Real Root Of -999*x^4-326*x^3-730*x^2+79*x-2 4180903817644436 r005 Re(z^2+c),c=-18/31+11/54*I,n=61 4180903827916146 r005 Re(z^2+c),c=-17/29+11/47*I,n=15 4180903828301343 r009 Im(z^3+c),c=-47/114+15/37*I,n=6 4180903831436587 a007 Real Root Of -849*x^4+577*x^3+780*x^2+477*x-352 4180903838492786 m001 KomornikLoreti/((1+3^(1/2))^(1/2)-GAMMA(3/4)) 4180903839550788 m001 GAMMA(1/24)*exp(FransenRobinson)*Zeta(5)^2 4180903843683962 r005 Im(z^2+c),c=-85/122+3/50*I,n=43 4180903851066964 p001 sum((-1)^n/(560*n+237)/(32^n),n=0..infinity) 4180903851563214 a001 98209/2889*199^(10/11) 4180903860868042 r005 Re(z^2+c),c=-31/44+1/6*I,n=57 4180903862090351 b008 -7+ProductLog[9]^2 4180903864320081 r005 Im(z^2+c),c=5/16+9/32*I,n=28 4180903889866979 a007 Real Root Of 461*x^4-846*x^3+384*x^2-794*x-475 4180903893348988 r005 Im(z^2+c),c=23/70+10/43*I,n=26 4180903894430541 m001 Catalan^2*exp(Magata)*GAMMA(17/24)^2 4180903906848375 r005 Re(z^2+c),c=-25/42+10/53*I,n=22 4180903916726893 a007 Real Root Of -804*x^4+893*x^3+642*x^2+276*x+93 4180903924199145 m001 (-Zeta(1/2)+Mills)/(Zeta(3)-cos(1)) 4180903926114755 m001 (gamma(1)-Kolakoski)/(Magata-MertensB3) 4180903928619862 r005 Im(z^2+c),c=-39/98+33/62*I,n=4 4180903932470497 r009 Im(z^3+c),c=-15/34+21/52*I,n=13 4180903940950217 m001 (MertensB3+Rabbit)/(5^(1/2)-MadelungNaCl) 4180903953892463 r002 22th iterates of z^2 + 4180903958505554 a001 514229/15127*199^(10/11) 4180903960149209 r005 Im(z^2+c),c=11/126+11/23*I,n=19 4180903974108231 a001 1346269/39603*199^(10/11) 4180903976384631 a001 1762289/51841*199^(10/11) 4180903976716753 a001 9227465/271443*199^(10/11) 4180903976765209 a001 24157817/710647*199^(10/11) 4180903976772279 a001 31622993/930249*199^(10/11) 4180903976773310 a001 165580141/4870847*199^(10/11) 4180903976773461 a001 433494437/12752043*199^(10/11) 4180903976773483 a001 567451585/16692641*199^(10/11) 4180903976773486 a001 2971215073/87403803*199^(10/11) 4180903976773487 a001 7778742049/228826127*199^(10/11) 4180903976773487 a001 10182505537/299537289*199^(10/11) 4180903976773487 a001 53316291173/1568397607*199^(10/11) 4180903976773487 a001 139583862445/4106118243*199^(10/11) 4180903976773487 a001 182717648081/5374978561*199^(10/11) 4180903976773487 a001 956722026041/28143753123*199^(10/11) 4180903976773487 a001 2504730781961/73681302247*199^(10/11) 4180903976773487 a001 3278735159921/96450076809*199^(10/11) 4180903976773487 a001 10610209857723/312119004989*199^(10/11) 4180903976773487 a001 4052739537881/119218851371*199^(10/11) 4180903976773487 a001 387002188980/11384387281*199^(10/11) 4180903976773487 a001 591286729879/17393796001*199^(10/11) 4180903976773487 a001 225851433717/6643838879*199^(10/11) 4180903976773487 a001 1135099622/33391061*199^(10/11) 4180903976773487 a001 32951280099/969323029*199^(10/11) 4180903976773487 a001 12586269025/370248451*199^(10/11) 4180903976773487 a001 1201881744/35355581*199^(10/11) 4180903976773488 a001 1836311903/54018521*199^(10/11) 4180903976773496 a001 701408733/20633239*199^(10/11) 4180903976773554 a001 66978574/1970299*199^(10/11) 4180903976773948 a001 102334155/3010349*199^(10/11) 4180903976776648 a001 39088169/1149851*199^(10/11) 4180903976795157 a001 196452/5779*199^(10/11) 4180903976922016 a001 5702887/167761*199^(10/11) 4180903977791524 a001 2178309/64079*199^(10/11) 4180903978489040 r008 a(0)=4,K{-n^6,3+4*n^3-4*n^2+n} 4180903983751216 a001 208010/6119*199^(10/11) 4180903992243676 r009 Re(z^3+c),c=-3/82+51/56*I,n=15 4180903999622822 r009 Re(z^3+c),c=-7/86+17/24*I,n=39 4180904000953666 r004 Im(z^2+c),c=3/46+1/2*I,z(0)=I,n=37 4180904002272273 h001 (7/9*exp(1)+5/12)/(2/11*exp(1)+1/9) 4180904010902013 a001 13/103682*18^(5/12) 4180904024599557 a001 317811/9349*199^(10/11) 4180904035896200 a007 Real Root Of 35*x^4-248*x^3+978*x^2-423*x-367 4180904040579673 m001 1/ln(BesselK(1,1))^2*Si(Pi)^2*Pi 4180904056073308 a001 1/36*317811^(41/54) 4180904057489244 r005 Re(z^2+c),c=2/11+11/23*I,n=30 4180904062062620 m001 (5^(1/2)+FeigenbaumAlpha*MertensB3)/MertensB3 4180904074585233 r005 Re(z^2+c),c=-13/22+7/85*I,n=46 4180904083633360 a007 Real Root Of -897*x^4+467*x^3-395*x^2-585*x-114 4180904085718138 m001 (2^(1/2)-BesselJ(1,1))/(-Kac+Otter) 4180904094304510 r002 46th iterates of z^2 + 4180904120939983 m001 (Trott2nd+ThueMorse)/(2^(1/3)-exp(-1/2*Pi)) 4180904125661352 r005 Im(z^2+c),c=-9/74+38/63*I,n=55 4180904137163516 a003 sin(Pi*8/59)/sin(Pi*51/113) 4180904138127246 r005 Re(z^2+c),c=-15/26+23/106*I,n=36 4180904140039156 a007 Real Root Of 187*x^4+537*x^3-867*x^2+865*x+879 4180904163746875 m001 (Kac-Tribonacci)/(3^(1/3)-Zeta(1/2)) 4180904178636565 r005 Im(z^2+c),c=25/106+17/48*I,n=20 4180904180939327 r002 29th iterates of z^2 + 4180904202308920 r002 9th iterates of z^2 + 4180904203452877 a007 Real Root Of 776*x^4-582*x^3-941*x^2-602*x+435 4180904215622827 l006 ln(4119/6257) 4180904222996354 r005 Re(z^2+c),c=-39/82+8/17*I,n=41 4180904227750616 m001 (GAMMA(17/24)-Trott)/(ln(5)-GAMMA(13/24)) 4180904230776787 m001 HardyLittlewoodC4*(BesselI(1,1)+Kolakoski) 4180904246788095 r005 Re(z^2+c),c=-16/29+9/25*I,n=62 4180904258911385 m001 (Paris+Robbin)/(exp(1/exp(1))+Artin) 4180904281033830 r005 Re(z^2+c),c=10/27+8/41*I,n=59 4180904283162655 r002 24th iterates of z^2 + 4180904285800137 a007 Real Root Of 271*x^4+18*x^3-808*x^2-661*x+408 4180904304578272 a001 121393/3571*199^(10/11) 4180904309040865 r005 Re(z^2+c),c=-13/22+5/61*I,n=60 4180904350134587 r009 Re(z^3+c),c=-15/32+11/61*I,n=44 4180904360193091 r005 Im(z^2+c),c=7/44+25/58*I,n=54 4180904363803969 m001 Niven*Tribonacci-exp(1) 4180904378328006 r009 Re(z^3+c),c=-12/25+9/47*I,n=45 4180904378994666 a007 Real Root Of -658*x^4+588*x^3-309*x^2-5*x+115 4180904388151818 q001 1/2391827 4180904435651726 m001 MinimumGamma^exp(-1/2*Pi)/sin(1/12*Pi) 4180904441771871 p002 log(1/5*(5*5^(1/2)+16)^(1/2)) 4180904448416209 l006 ln(40/2617) 4180904486251957 r005 Im(z^2+c),c=31/106+29/54*I,n=32 4180904492503140 a007 Real Root Of 167*x^4+758*x^3+307*x^2+165*x-307 4180904500663948 s002 sum(A066618[n]/((exp(n)+1)/n),n=1..infinity) 4180904522613065 q001 416/995 4180904522613065 r005 Im(z^2+c),c=-13/10+52/199*I,n=2 4180904524143730 r005 Re(z^2+c),c=-31/74+11/20*I,n=19 4180904527163873 r005 Re(z^2+c),c=-27/50+15/49*I,n=22 4180904534563154 l006 ln(5011/7612) 4180904539714338 a007 Real Root Of 441*x^4-329*x^3+526*x^2-494*x-336 4180904550357942 r002 32th iterates of z^2 + 4180904553309597 r005 Re(z^2+c),c=8/27+3/61*I,n=28 4180904554618265 a007 Real Root Of 180*x^4+835*x^3+361*x^2+252*x+768 4180904574850098 r005 Re(z^2+c),c=-65/122+20/53*I,n=16 4180904576683105 m001 ln(PrimesInBinary)/Niven^2*sinh(1)^2 4180904582083446 r005 Re(z^2+c),c=-17/30+27/92*I,n=58 4180904589985306 a001 123/34*832040^(35/51) 4180904596947026 m001 (ln(2)+GAMMA(23/24))/(CareFree+Magata) 4180904614858627 s002 sum(A275280[n]/(pi^n+1),n=1..infinity) 4180904637232740 r005 Re(z^2+c),c=-9/16+25/87*I,n=31 4180904639127811 r005 Im(z^2+c),c=8/29+10/31*I,n=16 4180904646528450 a007 Real Root Of -530*x^4+990*x^3-896*x^2+820*x+588 4180904666202703 r009 Im(z^3+c),c=-49/114+16/55*I,n=3 4180904710384061 a001 12586269025/7*4^(14/23) 4180904733128324 r005 Re(z^2+c),c=-4/7+17/64*I,n=55 4180904735066498 a001 29/610*32951280099^(3/8) 4180904739585716 m005 (13/42+1/6*5^(1/2))/(4/7*gamma-1/6) 4180904744657332 p003 LerchPhi(1/256,3,418/145) 4180904757113581 l006 ln(5903/8967) 4180904762157214 r005 Re(z^2+c),c=-13/22+6/73*I,n=43 4180904764516773 a007 Real Root Of -804*x^4-391*x^3+800*x^2+680*x-371 4180904814323782 a007 Real Root Of -222*x^4-880*x^3-42*x^2-856*x+675 4180904818088523 r005 Im(z^2+c),c=-5/106+19/31*I,n=63 4180904819788989 r002 4th iterates of z^2 + 4180904821208626 a007 Real Root Of 67*x^4-305*x^3-208*x^2-366*x-141 4180904821311894 m005 (1/3*exp(1)-1/5)/(4/5*5^(1/2)-1/10) 4180904829735759 r009 Re(z^3+c),c=-97/126+27/32*I,n=2 4180904862856025 r005 Im(z^2+c),c=7/48+23/52*I,n=34 4180904867500194 r005 Im(z^2+c),c=-11/27+29/53*I,n=32 4180904871456940 m008 (5*Pi^2+5/6)/(4*Pi^3-4) 4180904872816365 a008 Real Root of x^4-22*x^2-11*x+125 4180904876477514 m001 BesselI(1,2)-exp(1)^ArtinRank2 4180904881115937 r002 64th iterates of z^2 + 4180904884076223 m001 (1+KhinchinLevy)/(Magata+MasserGramainDelta) 4180904887190877 h002 exp(18^(11/12)-14^(2/3)) 4180904887190877 h007 exp(18^(11/12)-14^(2/3)) 4180904896035670 r005 Im(z^2+c),c=1/50+25/47*I,n=62 4180904899379043 s002 sum(A109316[n]/(n^2*2^n+1),n=1..infinity) 4180904908061548 a007 Real Root Of -235*x^4+209*x^3+206*x^2+923*x-430 4180904911042636 a007 Real Root Of -897*x^4+678*x^3+5*x^2+117*x+125 4180904913538509 a007 Real Root Of 116*x^4+610*x^3+314*x^2-783*x+374 4180904949217882 r005 Im(z^2+c),c=-28/23+5/59*I,n=11 4180904954821016 r005 Re(z^2+c),c=-57/98+7/36*I,n=55 4180904962502403 a007 Real Root Of 134*x^4+352*x^3-647*x^2+714*x-924 4180904966767229 p004 log(32321/21277) 4180904968984016 l006 ln(8830/9207) 4180904981448968 m001 1/ln(PrimesInBinary)^2/Conway^2*GAMMA(1/24)^2 4180904984115481 r002 46th iterates of z^2 + 4180904994967858 r005 Im(z^2+c),c=5/36+22/49*I,n=30 4180905000614470 m001 1/OneNinth^2*ln(ArtinRank2)^2*GAMMA(11/24)^2 4180905000925239 a007 Real Root Of -214*x^4+103*x^3+387*x^2+197*x-151 4180905004859444 r002 64th iterates of z^2 + 4180905005923537 a007 Real Root Of -783*x^4-409*x^3-441*x^2+325*x+207 4180905017429022 r005 Im(z^2+c),c=9/52+22/47*I,n=16 4180905019046798 m001 Conway/(FellerTornier-Trott) 4180905033209648 m001 OneNinth^2/exp(TreeGrowth2nd)^2/GAMMA(1/12) 4180905038331981 m001 gamma(1)*ReciprocalFibonacci+LaplaceLimit 4180905047265829 p004 log(11677/7687) 4180905061887585 r009 Im(z^3+c),c=-13/42+24/55*I,n=30 4180905077696711 a007 Real Root Of -251*x^4-930*x^3+675*x^2+898*x+682 4180905082264285 r005 Re(z^2+c),c=-15/16+9/29*I,n=11 4180905096643367 m001 Artin/(ReciprocalLucas^Zeta(1,-1)) 4180905096842181 r005 Im(z^2+c),c=13/102+26/57*I,n=45 4180905104077587 r005 Im(z^2+c),c=-45/86+20/41*I,n=28 4180905120473566 r005 Re(z^2+c),c=-14/25+20/53*I,n=63 4180905124350327 r005 Im(z^2+c),c=-5/8+15/107*I,n=10 4180905152359676 a007 Real Root Of 506*x^4-934*x^3-109*x^2-527*x-285 4180905154179614 r005 Re(z^2+c),c=-16/27+1/33*I,n=46 4180905154225679 m001 (CopelandErdos+Magata)/(ln(gamma)-arctan(1/3)) 4180905163114928 a007 Real Root Of 183*x^4-893*x^3+748*x^2-44*x-220 4180905182411844 r002 20th iterates of z^2 + 4180905190832967 r009 Im(z^3+c),c=-1/10+47/59*I,n=12 4180905213318643 m001 1/(2^(1/3))/Artin/ln(BesselK(1,1)) 4180905223488787 r002 33th iterates of z^2 + 4180905226720029 a007 Real Root Of -568*x^4+635*x^3+615*x^2+489*x-341 4180905243778692 r005 Re(z^2+c),c=-27/52+28/55*I,n=61 4180905247186732 r002 16th iterates of z^2 + 4180905251409014 a005 (1/cos(28/227*Pi))^706 4180905272214077 r009 Re(z^3+c),c=-55/114+6/31*I,n=47 4180905284455364 r002 61th iterates of z^2 + 4180905295122684 m001 (3^(1/3))/ErdosBorwein^2*ln(BesselK(0,1))^2 4180905323385258 m005 (1/3*Zeta(3)-3/4)/(1/10*gamma+7/9) 4180905328024326 r005 Re(z^2+c),c=-4/7+31/116*I,n=50 4180905337352596 r009 Im(z^3+c),c=-39/98+23/58*I,n=37 4180905349419102 m009 (3/8*Pi^2-4/5)/(32*Catalan+4*Pi^2+3/5) 4180905361203590 a005 (1/sin(58/141*Pi))^95 4180905367877463 r009 Im(z^3+c),c=-39/98+25/63*I,n=22 4180905386276586 m001 (Psi(1,1/3)+sin(1/5*Pi))/(Ei(1)+TwinPrimes) 4180905389778130 m005 (1/2*Catalan+3/11)/(7/10*Zeta(3)-2/3) 4180905395344931 m001 1/(3^(1/3))*Champernowne^2/exp(arctan(1/2))^2 4180905401712426 r005 Im(z^2+c),c=3/10+7/24*I,n=12 4180905411476284 r009 Im(z^3+c),c=-53/114+21/59*I,n=41 4180905412686197 a007 Real Root Of 173*x^4+743*x^3+161*x^2+455*x+528 4180905418915239 r002 27th iterates of z^2 + 4180905435998801 r002 64th iterates of z^2 + 4180905438672367 r002 29th iterates of z^2 + 4180905442942235 r002 13th iterates of z^2 + 4180905451323558 r002 18th iterates of z^2 + 4180905459953910 r002 50th iterates of z^2 + 4180905470514280 r005 Re(z^2+c),c=-65/114+10/37*I,n=42 4180905477255758 r005 Im(z^2+c),c=-25/34+15/74*I,n=59 4180905483330063 r002 3th iterates of z^2 + 4180905490836704 m005 (-35/12+1/12*5^(1/2))/(1/6*exp(1)+1/5) 4180905511765019 m005 (1/2*5^(1/2)+7/8)/(9/11*Catalan-3/11) 4180905532621342 r009 Re(z^3+c),c=-47/106+9/58*I,n=43 4180905540096404 h001 (3/4*exp(1)+1/5)/(2/3*exp(2)+3/7) 4180905540356233 r005 Im(z^2+c),c=1/50+25/47*I,n=39 4180905543733075 r009 Re(z^3+c),c=-5/74+28/55*I,n=8 4180905543925783 r005 Re(z^2+c),c=-79/110+3/50*I,n=18 4180905549862112 m001 (-ln(Pi)+BesselI(1,1))/(gamma+cos(1/5*Pi)) 4180905566350602 a007 Real Root Of 789*x^4+702*x^3-243*x^2-613*x+26 4180905566979600 m001 (HeathBrownMoroz-Kolakoski)/(Ei(1)+gamma(3)) 4180905569585960 a007 Real Root Of 120*x^4-697*x^3-675*x^2-563*x-172 4180905574751708 r002 35th iterates of z^2 + 4180905578663222 m001 (1-Ei(1))/(-arctan(1/3)+OneNinth) 4180905598856683 r008 a(0)=4,K{-n^6,11+2*n-19*n^3} 4180905604854597 a007 Real Root Of 737*x^4-748*x^3+398*x^2-699*x-439 4180905605792963 r009 Im(z^3+c),c=-11/34+25/58*I,n=17 4180905611986438 r009 Im(z^3+c),c=-39/122+16/37*I,n=22 4180905615094449 r002 22th iterates of z^2 + 4180905626221743 r002 40th iterates of z^2 + 4180905633428302 a001 10946/3*18^(27/32) 4180905636826090 a001 29/2*21^(8/23) 4180905638341355 r005 Re(z^2+c),c=-7/12+21/122*I,n=40 4180905642109019 r005 Re(z^2+c),c=-41/70+5/32*I,n=39 4180905649109145 m001 CopelandErdos-Zeta(1,2)*DuboisRaymond 4180905663724854 g007 Psi(2,4/5)-Psi(2,7/12)-Psi(2,9/10)-Psi(2,2/5) 4180905666394013 r009 Im(z^3+c),c=-29/64+4/11*I,n=36 4180905674170191 a007 Real Root Of 519*x^4-726*x^3-456*x^2-674*x-271 4180905696506351 p004 log(36067/23743) 4180905697729700 r009 Im(z^3+c),c=-33/94+13/31*I,n=32 4180905698241672 m001 cos(1/5*Pi)/GlaisherKinkelin*LaplaceLimit 4180905719304999 r009 Im(z^3+c),c=-7/25+21/47*I,n=21 4180905723069728 r009 Re(z^3+c),c=-41/98+19/31*I,n=17 4180905732653563 r002 9th iterates of z^2 + 4180905753627164 r002 43th iterates of z^2 + 4180905754348001 m008 (1/6*Pi+1/4)/(1/2*Pi^3+3) 4180905761280460 m001 BesselJ(0,1)^Totient/(Porter^Totient) 4180905773102077 h001 (-exp(-2)+4)/(-5*exp(1/2)-1) 4180905779156015 r002 39th iterates of z^2 + 4180905782205435 r005 Re(z^2+c),c=11/42+1/54*I,n=19 4180905786984209 m001 (Chi(1)+Ei(1,1))/(ArtinRank2+FeigenbaumC) 4180905786984209 m001 Shi(1)/(ArtinRank2+FeigenbaumC) 4180905818936064 a001 3/439204*7^(27/29) 4180905829729191 a007 Real Root Of 243*x^4+972*x^3-62*x^2+464*x-189 4180905844890253 r009 Im(z^3+c),c=-15/44+25/59*I,n=22 4180905850104937 a001 521/11*(1/2*5^(1/2)+1/2)^29*11^(17/20) 4180905870194087 m001 1/GAMMA(1/12)^2/exp(Lehmer) 4180905889679665 r005 Re(z^2+c),c=-47/78+8/55*I,n=21 4180905892303730 a007 Real Root Of -515*x^4+390*x^3+868*x^2+415*x-338 4180905894238641 r005 Re(z^2+c),c=-25/46+20/59*I,n=24 4180905917650312 r002 18th iterates of z^2 + 4180905921170287 m001 GlaisherKinkelin/exp(FransenRobinson)*cos(1) 4180905931086008 m001 (BesselI(1,2)-MertensB1)/(Totient+Tribonacci) 4180905937160257 r005 Re(z^2+c),c=21/86+5/12*I,n=15 4180905938287090 s002 sum(A250512[n]/((exp(n)+1)/n),n=1..infinity) 4180905939606665 m001 (Psi(2,1/3)+GAMMA(2/3))/(GolombDickman+Robbin) 4180905958405134 m001 FeigenbaumD^Zeta(5)*FeigenbaumD^ThueMorse 4180905964629871 r005 Im(z^2+c),c=-137/114+28/61*I,n=3 4180905979288715 a007 Real Root Of 163*x^4-456*x^3+225*x^2-165*x+58 4180905985856723 m005 (1/2*5^(1/2)+5/12)/(5*Catalan-10/11) 4180905998503944 r005 Im(z^2+c),c=9/26+17/61*I,n=23 4180906004489254 m001 1/FeigenbaumB^2/exp(Artin)*BesselK(0,1) 4180906007337918 l006 ln(892/1355) 4180906025085316 r005 Re(z^2+c),c=-7/12+17/95*I,n=57 4180906026601654 m005 (1/3*2^(1/2)-1/8)/(4/9*2^(1/2)+1/5) 4180906030640053 a007 Real Root Of -601*x^4-774*x^3+373*x^2+980*x-400 4180906031890098 m001 (Rabbit+ThueMorse)/(cos(1/12*Pi)-ArtinRank2) 4180906035155532 r009 Re(z^3+c),c=-9/25+2/37*I,n=8 4180906041538321 r005 Re(z^2+c),c=-5/8+124/255*I,n=3 4180906045303531 r002 52th iterates of z^2 + 4180906047714463 m005 (13/20+1/4*5^(1/2))/(11/12*exp(1)+2/5) 4180906052869919 m001 (Psi(2,1/3)+ln(2))/(-CareFree+GaussAGM) 4180906053724216 a003 cos(Pi*16/63)*cos(Pi*34/115) 4180906055352600 a005 (1/sin(66/151*Pi))^1361 4180906057165764 r005 Re(z^2+c),c=-21/38+22/63*I,n=48 4180906063870767 r005 Re(z^2+c),c=-79/114+6/31*I,n=6 4180906065655497 m001 (Psi(1,1/3)+3^(1/3))/(Backhouse+Conway) 4180906076680242 r005 Re(z^2+c),c=9/23+15/64*I,n=13 4180906078950365 m001 exp(TwinPrimes)*Si(Pi)^2/(2^(1/3))^2 4180906079187021 m004 6+125*Pi+(125*Log[Sqrt[5]*Pi])/(4*Pi) 4180906082065916 m001 1/gamma*ln(MertensB1)^3 4180906085779541 a001 2207/13*4181^(35/53) 4180906112538056 r009 Im(z^3+c),c=-55/114+13/37*I,n=29 4180906119222828 r005 Re(z^2+c),c=-13/22+4/69*I,n=32 4180906138039956 m001 ln(Riemann3rdZero)^2/Artin^2/BesselK(0,1)^2 4180906139655327 a001 8/123*1149851^(2/15) 4180906139655749 a001 8/123*1322157322203^(1/15) 4180906141012944 r002 36th iterates of z^2 + 4180906143860071 a007 Real Root Of -876*x^4-469*x^3-972*x^2-44*x+144 4180906150491918 r005 Im(z^2+c),c=17/122+21/47*I,n=41 4180906153353037 a001 3/73681302247*843^(11/16) 4180906154734984 m001 (gamma(2)+ZetaP(4))^FellerTornier 4180906158172751 m001 1/RenyiParking^2*Magata^2/ln(OneNinth)^2 4180906165380539 a001 55/18*2^(19/42) 4180906166705336 r005 Re(z^2+c),c=-69/122+9/43*I,n=21 4180906167183486 r002 50th iterates of z^2 + 4180906170365453 r002 23th iterates of z^2 + 4180906171062138 r002 42th iterates of z^2 + 4180906173570674 r009 Re(z^3+c),c=-53/118+5/31*I,n=14 4180906185462382 r002 16th iterates of z^2 + 4180906192600533 a001 322*(1/2*5^(1/2)+1/2)^17*47^(14/15) 4180906199717357 a001 34/370248451*76^(7/20) 4180906200672105 a007 Real Root Of -312*x^4+773*x^3-344*x^2+124*x+178 4180906205145896 r009 Re(z^3+c),c=-55/118+8/45*I,n=56 4180906207986391 m001 (BesselK(0,1)+ln(5))/(-2*Pi/GAMMA(5/6)+Rabbit) 4180906208999028 a003 sin(Pi*11/90)/sin(Pi*35/99) 4180906209378780 r005 Re(z^2+c),c=-5/8+9/89*I,n=10 4180906217173104 m001 Stephens/(FeigenbaumDelta^exp(-1/2*Pi)) 4180906218633905 r009 Im(z^3+c),c=-35/78+15/41*I,n=29 4180906223581940 a001 11592/341*199^(10/11) 4180906225249985 m001 LandauRamanujan/Bloch^2*exp(Paris)^2 4180906247636847 r005 Im(z^2+c),c=19/66+19/61*I,n=31 4180906266666186 m005 (2^(1/2)+1/3)/(5*Catalan-2/5) 4180906270047533 r002 64th iterates of z^2 + 4180906282708446 r002 21th iterates of z^2 + 4180906286347513 r002 3i'th iterates of 2*x/(1-x^2) of 4180906327777585 m005 (1/2*3^(1/2)+4/11)/(1/2*Catalan-3/7) 4180906333141223 m001 (Weierstrass+ZetaP(4))/(Cahen-ReciprocalLucas) 4180906335571541 a007 Real Root Of 665*x^4-598*x^3-324*x^2-730*x-30 4180906340993495 a003 sin(Pi*10/107)/cos(Pi*29/113) 4180906343624064 r005 Re(z^2+c),c=3/52+17/60*I,n=3 4180906344210167 r005 Re(z^2+c),c=-13/22+4/49*I,n=44 4180906366249689 a001 1/5*34^(25/29) 4180906370310089 r005 Re(z^2+c),c=-15/122+11/14*I,n=42 4180906387134756 m005 (1/3*3^(1/2)-2/7)/(5/8*5^(1/2)-7/10) 4180906392210750 a007 Real Root Of -117*x^4+576*x^3-580*x^2+899*x-313 4180906398791082 h001 (5/7*exp(1)+7/10)/(9/11*exp(2)+3/11) 4180906416669529 m001 1/ln(GAMMA(5/6))^2*Catalan*sin(Pi/12)^2 4180906423694392 a005 (1/cos(7/118*Pi))^741 4180906423948939 r005 Im(z^2+c),c=-1/40+22/39*I,n=51 4180906425536431 b008 3*(-1/20+ArcSinh[2]) 4180906446679134 r005 Re(z^2+c),c=-67/114+5/38*I,n=45 4180906451046778 m001 DuboisRaymond*Tribonacci-StronglyCareFree 4180906457569223 m001 1/Porter*ln(FibonacciFactorial)/gamma^2 4180906460209538 m001 Sierpinski/(RenyiParking^((1+3^(1/2))^(1/2))) 4180906469369482 m001 (ln(3)-arctan(1/3))/(Kac-TreeGrowth2nd) 4180906471520474 a007 Real Root Of -167*x^4-712*x^3-184*x^2-523*x+22 4180906471793055 m005 (1/2*2^(1/2)+6/11)/(-19/56+2/7*5^(1/2)) 4180906480905732 r002 60th iterates of z^2 + 4180906485608168 a007 Real Root Of -754*x^4-116*x^3-164*x^2+308*x+172 4180906488395818 a007 Real Root Of -158*x^4+559*x^3+664*x^2+813*x-492 4180906489522898 r002 15th iterates of z^2 + 4180906498760088 m001 (gamma(3)+Bloch)/(HardyLittlewoodC5+Sarnak) 4180906511205081 r002 16th iterates of z^2 + 4180906513357988 l006 ln(9786/9827) 4180906523031324 g002 Psi(10/11)+Psi(4/7)-Psi(2/11)-Psi(9/10) 4180906529071904 a003 sin(Pi*21/97)*sin(Pi*25/108) 4180906531510171 m001 (Champernowne-KomornikLoreti)/(Pi+Chi(1)) 4180906534299826 a007 Real Root Of 260*x^4+930*x^3-735*x^2-195*x+556 4180906542258689 m008 (5/6*Pi^4-2)/(3/5*Pi^3+1/3) 4180906544551993 m005 (1/2*gamma-6/7)/(3/11*5^(1/2)+3/4) 4180906552950278 a005 (1/sin(69/175*Pi))^804 4180906554947491 r005 Re(z^2+c),c=-2/3+1/170*I,n=18 4180906558381606 m004 -30-5*Pi+2*Log[Sqrt[5]*Pi] 4180906572534946 r002 47th iterates of z^2 + 4180906576165029 r005 Im(z^2+c),c=-55/114+15/26*I,n=4 4180906583463911 m001 1/Zeta(1,2)^2/ln(BesselJ(0,1))/Zeta(7)^2 4180906585697367 a007 Real Root Of -83*x^4-376*x^3-943*x^2+426*x+318 4180906585954547 m001 ln(3)^Weierstrass/Riemann3rdZero 4180906590044823 s002 sum(A253466[n]/((pi^n+1)/n),n=1..infinity) 4180906596123364 r009 Re(z^3+c),c=-1/126+37/59*I,n=18 4180906602394786 r005 Re(z^2+c),c=-69/98+4/45*I,n=29 4180906602948891 h001 (-2*exp(3)+4)/(-7*exp(-3)+9) 4180906603649188 r002 53th iterates of z^2 + 4180906611472654 r005 Re(z^2+c),c=11/78+27/58*I,n=60 4180906622057246 a008 Real Root of (10+17*x-13*x^2+2*x^3) 4180906631261298 a007 Real Root Of -848*x^4+548*x^3+833*x^2+412*x-332 4180906635941790 m001 (FeigenbaumD+FransenRobinson)/(sin(1)+Bloch) 4180906640477112 r002 21th iterates of z^2 + 4180906662879650 r005 Im(z^2+c),c=27/86+17/63*I,n=35 4180906678452560 r005 Im(z^2+c),c=-3/29+21/34*I,n=46 4180906680504410 m001 (-MertensB3+Salem)/(gamma(1)-ln(2)/ln(10)) 4180906683488525 a001 5/1860498*199^(41/43) 4180906684621456 r005 Re(z^2+c),c=-16/27+1/31*I,n=57 4180906690394597 m005 (1/3*gamma+1/7)/(2/11*Zeta(3)+7/12) 4180906699702042 m006 (1/2/Pi+3/5)/(1/3*ln(Pi)-1/5) 4180906709441488 r009 Im(z^3+c),c=-13/42+24/55*I,n=25 4180906713108234 m001 (Zeta(1/2)+Artin)/(MertensB1-ZetaQ(4)) 4180906715159154 a007 Real Root Of 768*x^4-428*x^3-163*x^2-956*x+436 4180906752102984 r005 Re(z^2+c),c=-43/66+5/13*I,n=12 4180906758199909 r009 Re(z^3+c),c=-23/48+4/21*I,n=52 4180906767227297 r009 Im(z^3+c),c=-1/18+30/61*I,n=6 4180906779820572 s002 sum(A248495[n]/(exp(2*pi*n)-1),n=1..infinity) 4180906779835105 r009 Im(z^3+c),c=-13/40+37/56*I,n=50 4180906785648459 m006 (4/5*Pi-1/6)/(3/4/Pi-4/5) 4180906810031974 a007 Real Root Of 709*x^4-964*x^3+338*x^2-558*x+223 4180906818861207 a003 cos(Pi*10/49)*cos(Pi*27/83) 4180906824892782 m009 (1/2*Psi(1,2/3)-5/6)/(1/2*Psi(1,3/4)+2/5) 4180906826903071 r005 Re(z^2+c),c=21/74+1/27*I,n=35 4180906835213426 a007 Real Root Of -223*x^4-792*x^3+646*x^2+191*x-237 4180906846513723 m001 (FeigenbaumC+Magata)/(3^(1/3)-ln(2+3^(1/2))) 4180906848601898 r002 21th iterates of z^2 + 4180906857670425 a007 Real Root Of 82*x^4+374*x^3+244*x^2+290*x-775 4180906867063914 p003 LerchPhi(1/125,3,149/240) 4180906872088902 m001 (exp(Pi)+cos(1/5*Pi))/(-RenyiParking+ZetaP(3)) 4180906873672177 a007 Real Root Of -872*x^4-613*x^3+330*x^2+765*x+244 4180906878722760 m001 1/GAMMA(2/3)*exp(Ei(1))/sinh(1) 4180906881733423 a001 1/54*(1/2*5^(1/2)+1/2)^24*3^(17/24) 4180906889172484 p004 log(12713/8369) 4180906897109897 r005 Re(z^2+c),c=-75/122+17/50*I,n=55 4180906901885381 r002 36th iterates of z^2 + 4180906902496744 r009 Re(z^3+c),c=-25/52+5/26*I,n=36 4180906908024214 r005 Re(z^2+c),c=6/23+1/54*I,n=24 4180906919778868 r005 Re(z^2+c),c=-16/27+1/29*I,n=45 4180906928737601 a007 Real Root Of 280*x^4-158*x^3+446*x^2-892*x-471 4180906935074253 p004 log(30161/461) 4180906945491853 a007 Real Root Of 379*x^4-300*x^3+344*x^2-197*x-176 4180906946672441 m001 TwinPrimes^2/MadelungNaCl/ln(GAMMA(1/12))^2 4180906950980856 a007 Real Root Of -549*x^4+645*x^3-100*x^2+316*x-145 4180906952601251 m005 (1/2*Pi-5)/(1/10*Zeta(3)+7/10) 4180906956627281 m001 1/Paris^2/LandauRamanujan*exp(LambertW(1))^2 4180906960907427 a007 Real Root Of -15*x^4+816*x^3+96*x^2-161*x-24 4180906985189896 l006 ln(5387/5617) 4180906992741056 a007 Real Root Of -680*x^4+352*x^3+44*x^2-277*x-77 4180906994780948 a003 cos(Pi*15/98)-sin(Pi*32/93) 4180907013684228 a007 Real Root Of -80*x^4-362*x^3-107*x^2+52*x+76 4180907025902560 r005 Re(z^2+c),c=-15/26+20/87*I,n=50 4180907026246912 m005 (1/2*Pi+10/11)/(2/5*2^(1/2)-5/8) 4180907044858594 m001 ArtinRank2-Totient^Artin 4180907048007882 s002 sum(A100540[n]/(n^3*10^n+1),n=1..infinity) 4180907073457429 r005 Re(z^2+c),c=-25/19+1/46*I,n=18 4180907096547875 r002 39th iterates of z^2 + 4180907107495118 a001 29/2584*1548008755920^(3/8) 4180907109098500 a001 119218851371/610*121393^(11/24) 4180907109124507 a001 299537289/305*12586269025^(11/24) 4180907124681079 r009 Im(z^3+c),c=-29/90+25/58*I,n=16 4180907128077992 l006 ln(6585/10003) 4180907132274539 r005 Im(z^2+c),c=-3/94+31/55*I,n=56 4180907140498096 h001 (-5*exp(1)+8)/(-6*exp(1/3)-5) 4180907147423104 r002 15th iterates of z^2 + 4180907154265238 m001 (Kac+Thue)/(Pi+HardyLittlewoodC5) 4180907165165840 r005 Re(z^2+c),c=-157/126+3/25*I,n=22 4180907189002535 a001 199/2178309*28657^(19/51) 4180907193331532 m001 (Chi(1)-Zeta(5))/(GAMMA(2/3)+Magata) 4180907204871423 r002 8th iterates of z^2 + 4180907205334745 s001 sum(exp(-2*Pi/5)^n*A210636[n],n=1..infinity) 4180907205334745 s002 sum(A210636[n]/(exp(2/5*pi*n)),n=1..infinity) 4180907206185825 r009 Im(z^3+c),c=-41/94+17/32*I,n=20 4180907226196169 m001 FeigenbaumB/ln(CopelandErdos)/GAMMA(19/24)^2 4180907239335027 p004 log(27299/17971) 4180907251010480 r005 Re(z^2+c),c=1/20+1/11*I,n=4 4180907252574216 m005 (-3/4+1/4*5^(1/2))/(3/11*Pi-2/5) 4180907256957197 r002 26th iterates of z^2 + 4180907280298345 r005 Im(z^2+c),c=-11/82+14/29*I,n=4 4180907286499716 r002 4th iterates of z^2 + 4180907298282997 r009 Im(z^3+c),c=-35/78+10/27*I,n=24 4180907298801291 r005 Re(z^2+c),c=37/118+3/43*I,n=25 4180907299609046 r002 18th iterates of z^2 + 4180907301750708 r002 25th iterates of z^2 + 4180907303679623 l006 ln(5693/8648) 4180907317166343 r005 Im(z^2+c),c=1/66+32/59*I,n=27 4180907326323029 s002 sum(A250512[n]/((exp(n)-1)/n),n=1..infinity) 4180907329105402 r009 Im(z^3+c),c=-6/25+28/61*I,n=21 4180907333389131 r009 Re(z^3+c),c=-23/54+35/57*I,n=38 4180907338953936 r005 Im(z^2+c),c=27/110+23/63*I,n=22 4180907346624681 m001 (2^(1/3)-cos(1/5*Pi))/(Ei(1,1)+Thue) 4180907346694739 m005 (17/36+1/4*5^(1/2))/(7/12*Zeta(3)-5/11) 4180907351627983 s002 sum(A276453[n]/((3*n+1)!),n=1..infinity) 4180907353451946 m005 (3/4*Pi-5)/(4*2^(1/2)+2/3) 4180907353459599 h001 (5/9*exp(1)+7/9)/(7/10*exp(2)+3/10) 4180907371445919 m001 LandauRamanujan2nd^(FeigenbaumKappa/sin(1)) 4180907374621340 h001 (5/6*exp(1)+7/10)/(10/11*exp(2)+3/8) 4180907406437175 r005 Im(z^2+c),c=-3/23+27/29*I,n=3 4180907420816490 r005 Re(z^2+c),c=-75/118+20/47*I,n=30 4180907422287187 r009 Im(z^3+c),c=-1/48+28/57*I,n=10 4180907426532110 m001 (Robbin-Trott2nd)/(Zeta(5)+Riemann1stZero) 4180907427559942 m001 (TreeGrowth2nd+ThueMorse)/(Gompertz-Stephens) 4180907428016899 a007 Real Root Of -691*x^4+815*x^3+874*x^2+304*x+55 4180907428476778 m001 1/MinimumGamma^2/CareFree*exp(Tribonacci) 4180907432012249 r005 Re(z^2+c),c=-71/98+5/34*I,n=57 4180907439329028 m005 (1/3*Zeta(3)+1/2)/(8/9*5^(1/2)+1/6) 4180907444258392 r009 Im(z^3+c),c=-7/17+19/47*I,n=6 4180907444640439 m001 Niven^2*GaussKuzminWirsing/exp(RenyiParking) 4180907451148735 r002 23th iterates of z^2 + 4180907457206390 l006 ln(127/8309) 4180907479936939 m005 (1/3*Zeta(3)+1/10)/(7/9*exp(1)-11/12) 4180907479992399 r009 Im(z^3+c),c=-47/90+8/55*I,n=8 4180907483127703 r005 Im(z^2+c),c=25/62+3/20*I,n=30 4180907483794932 q001 1419/3394 4180907485557287 m001 polylog(4,1/2)^(Si(Pi)*TravellingSalesman) 4180907488045869 m001 exp(Ei(1))^2/OneNinth*Zeta(7)^2 4180907489644553 m005 (1/3*5^(1/2)-2/5)/(4/7*exp(1)-8/11) 4180907502403736 r005 Re(z^2+c),c=11/42+17/32*I,n=58 4180907503284808 r005 Re(z^2+c),c=-18/31+2/41*I,n=15 4180907505117568 r009 Im(z^3+c),c=-1/7+12/25*I,n=10 4180907518126241 m005 (1/2*3^(1/2)+5/7)/(5*Catalan-4/5) 4180907518253047 r005 Re(z^2+c),c=-9/16+37/100*I,n=54 4180907520945195 m006 (2/Pi+1)/(4*Pi^2-1/3) 4180907524002687 r009 Im(z^3+c),c=-3/46+22/45*I,n=15 4180907535471506 a007 Real Root Of 258*x^4+834*x^3-937*x^2+462*x+429 4180907540826335 m001 (polylog(4,1/2)-HeathBrownMoroz)/Champernowne 4180907542917678 r005 Re(z^2+c),c=11/42+17/32*I,n=62 4180907544532926 l006 ln(4801/7293) 4180907548638988 r005 Re(z^2+c),c=-7/10+47/172*I,n=51 4180907559842380 b008 Pi^2/E^(2*(1+Sqrt[3])) 4180907559842380 m001 1/exp(1)^2*Pi^2/exp(sqrt(3))^2 4180907567070959 r005 Im(z^2+c),c=19/98+21/53*I,n=18 4180907581142254 r005 Im(z^2+c),c=-15/82+29/48*I,n=45 4180907594552011 a007 Real Root Of -242*x^4-834*x^3+663*x^2-372*x-152 4180907594973016 r005 Re(z^2+c),c=-69/118+8/49*I,n=38 4180907614104455 r005 Re(z^2+c),c=-21/46+28/53*I,n=64 4180907623896817 r005 Re(z^2+c),c=-67/114+7/53*I,n=63 4180907639592427 a007 Real Root Of -50*x^4+431*x^3-4*x^2+778*x+359 4180907644087021 a007 Real Root Of -177*x^4-986*x^3-920*x^2+360*x-390 4180907647176425 a007 Real Root Of 367*x^4-537*x^3-274*x^2+7*x+73 4180907653238945 a007 Real Root Of -571*x^4+454*x^3+201*x^2+6*x+18 4180907657932649 m001 sin(1/12*Pi)*MadelungNaCl^Thue 4180907662965664 r008 a(0)=4,K{-n^6,-8*n^3+7*n^2-6*n} 4180907664286128 m001 1/ln(LambertW(1))^2/Porter^2/sin(Pi/5)^2 4180907674679338 a007 Real Root Of -388*x^4+504*x^3-791*x^2+909*x+567 4180907679327470 r005 Re(z^2+c),c=-101/98+7/59*I,n=12 4180907682911570 m001 2*FeigenbaumAlpha-2*ThueMorse 4180907683970237 m005 (1/2*2^(1/2)+2)/(1/10*Pi+1/3) 4180907689660516 p001 sum((-1)^n/(372*n+239)/(512^n),n=0..infinity) 4180907690583354 a001 15456/281*199^(9/11) 4180907710854180 r002 30th iterates of z^2 + 4180907714171335 m001 1/LambertW(1)/ln(Tribonacci)*Zeta(3)^2 4180907730989686 r009 Re(z^3+c),c=-11/29+32/51*I,n=60 4180907737332736 s002 sum(A100540[n]/(n^3*10^n-1),n=1..infinity) 4180907762223985 m005 (5/66+1/6*5^(1/2))/(-1/22+1/2*5^(1/2)) 4180907773215204 m005 (1/2*5^(1/2)+10/11)/(3/5*2^(1/2)+4) 4180907792258839 a007 Real Root Of 505*x^4+255*x^3-59*x^2-891*x-359 4180907795864844 m001 ln(gamma)+MertensB3*Paris 4180907798738481 a001 1364*(1/2*5^(1/2)+1/2)^25*4^(10/23) 4180907802552865 m005 (1/3*Catalan+1/7)/(86/99+1/11*5^(1/2)) 4180907823312215 h001 (5/8*exp(2)+7/10)/(2/11*exp(1)+7/9) 4180907823980323 m001 GAMMA(1/3)/ln(TreeGrowth2nd)^2*GAMMA(23/24)^2 4180907831370121 a007 Real Root Of -417*x^4+916*x^3-705*x^2-294*x+80 4180907836019640 a007 Real Root Of 276*x^4-889*x^3+239*x^2-993*x-42 4180907845445789 r009 Re(z^3+c),c=-5/82+28/57*I,n=7 4180907850345825 r005 Re(z^2+c),c=-13/22+3/121*I,n=27 4180907852944267 r002 59th iterates of z^2 + 4180907866083892 g007 Psi(2,5/11)+Psi(2,7/9)+Psi(2,4/9)-Psi(2,5/8) 4180907866499061 r005 Re(z^2+c),c=-11/18+8/47*I,n=19 4180907879692875 s002 sum(A113598[n]/(n!^3),n=1..infinity) 4180907883205023 r005 Im(z^2+c),c=21/118+17/41*I,n=34 4180907884147042 q001 4/95673 4180907886260018 a007 Real Root Of -157*x^4-494*x^3+699*x^2-51*x-563 4180907893472196 r002 60th iterates of z^2 + 4180907895307503 l006 ln(3909/5938) 4180907905059316 a001 6119/2*2584^(34/37) 4180907912233822 a003 cos(Pi*43/119)*sin(Pi*53/116) 4180907925884025 a007 Real Root Of 18*x^4+775*x^3+949*x^2+470*x+514 4180907939016063 r002 58th iterates of z^2 + 4180907941143860 m002 4+(6*Coth[Pi])/(Pi^3*ProductLog[Pi]) 4180907946810961 s002 sum(A072832[n]/(n^2*2^n+1),n=1..infinity) 4180907980040138 r005 Im(z^2+c),c=-5/6+1/41*I,n=63 4180907995672921 b008 17*BesselJ[0,10] 4180908006390998 a001 5600748293801/13*225851433717^(8/13) 4180908018120877 a007 Real Root Of 90*x^4+350*x^3+36*x^2+492*x-493 4180908024627122 a007 Real Root Of 156*x^4+636*x^3+79*x^2+522*x-384 4180908025090989 m001 (-Conway+FellerTornier)/(exp(Pi)+arctan(1/3)) 4180908029123248 r009 Im(z^3+c),c=-10/19+11/49*I,n=42 4180908037951369 a001 29/987*1597^(9/25) 4180908047845417 m001 1/Riemann2ndZero^2*exp(Khintchine)*(2^(1/3)) 4180908047859726 r002 9th iterates of z^2 + 4180908065337146 m001 (-Kac+Landau)/(gamma+HardHexagonsEntropy) 4180908079750723 h001 (1/7*exp(2)+6/11)/(1/10*exp(1)+1/9) 4180908080615235 r002 16th iterates of z^2 + 4180908096911783 m001 (-CopelandErdos+Stephens)/(GAMMA(2/3)-cos(1)) 4180908104427565 m001 (Tribonacci+ZetaP(4))/(QuadraticClass-Totient) 4180908104825968 r005 Re(z^2+c),c=-23/48+25/57*I,n=26 4180908148419164 a007 Real Root Of 45*x^4-670*x^3-111*x^2-122*x+118 4180908164704407 r002 40th iterates of z^2 + 4180908178675873 a007 Real Root Of 976*x^4-183*x^3+784*x^2-827*x-526 4180908180511890 m008 (Pi^2+1/5)/(1/4*Pi^6+1/2) 4180908185792637 m001 (GAMMA(11/12)-Zeta(3))^sqrt(1+sqrt(3)) 4180908185792637 m001 (Zeta(3)-GAMMA(11/12))^((1+3^(1/2))^(1/2)) 4180908185828951 m001 Shi(1)-cos(1/12*Pi)*Robbin 4180908188640409 r005 Im(z^2+c),c=3/86+37/64*I,n=26 4180908205459225 b008 6+Zeta[Pi,-4/3] 4180908209887240 m001 1/exp(FeigenbaumD)/Robbin^2/GAMMA(11/24)^2 4180908222329382 r005 Re(z^2+c),c=-101/110+5/24*I,n=46 4180908222912342 m005 (4/5*Catalan-5)/(4*exp(1)-2/3) 4180908223165513 m005 (1/3*Zeta(3)+1/11)/(4/9*Zeta(3)-5/12) 4180908229192411 r005 Re(z^2+c),c=3/38+11/29*I,n=27 4180908231831536 r002 6th iterates of z^2 + 4180908252426125 r004 Re(z^2+c),c=-27/46+3/20*I,z(0)=-1,n=33 4180908257518583 m001 ln(BesselK(1,1))^2*Backhouse*GAMMA(11/12)^2 4180908263913800 r005 Re(z^2+c),c=9/70+37/43*I,n=4 4180908265416575 r005 Im(z^2+c),c=-1/114+25/43*I,n=35 4180908283493058 m001 FransenRobinson^2/Conway*ln(Zeta(7))^2 4180908289362089 r004 Re(z^2+c),c=-7/10-5/8*I,z(0)=exp(1/8*I*Pi),n=4 4180908300568255 m001 1/BesselJ(0,1)^3/ln((2^(1/3)))^2 4180908303753130 m001 (Grothendieck+Salem)/(gamma(1)+gamma(3)) 4180908308050442 a007 Real Root Of 162*x^4+751*x^3+59*x^2-947*x+395 4180908320012417 r009 Re(z^3+c),c=-13/31+27/41*I,n=4 4180908326136557 a007 Real Root Of -193*x^4+23*x^3-502*x^2+595*x-24 4180908332406329 b008 4+Erfc[SinIntegral[1]] 4180908336181290 m001 ln(5)/(exp(1/exp(1))+BesselJZeros(0,1)) 4180908343969215 r005 Re(z^2+c),c=-16/27+5/18*I,n=14 4180908355260351 r005 Re(z^2+c),c=-73/126+3/14*I,n=59 4180908355343033 r005 Im(z^2+c),c=-13/90+30/53*I,n=19 4180908360656536 r009 Im(z^3+c),c=-59/114+11/45*I,n=19 4180908377631119 r002 54th iterates of z^2 + 4180908384195571 r005 Im(z^2+c),c=-15/29+18/31*I,n=25 4180908387427411 m005 (1/2*2^(1/2)-6/11)/(1/9*Zeta(3)-4) 4180908392073229 m001 (-ErdosBorwein+Otter)/(Si(Pi)+exp(1/Pi)) 4180908408864865 m001 (FeigenbaumMu+Gompertz)/(GAMMA(13/24)-Cahen) 4180908426434753 r002 45th iterates of z^2 + 4180908434183241 a001 2504730781961/18*76^(11/14) 4180908434610819 m001 GAMMA(19/24)/exp(Porter)^2*sin(Pi/12)^2 4180908439512767 r005 Re(z^2+c),c=-31/66+30/61*I,n=49 4180908441337786 m005 (1/3*gamma+1/7)/(-19/99+4/9*5^(1/2)) 4180908453500629 l006 ln(3017/4583) 4180908456815357 r009 Im(z^3+c),c=-12/23+5/34*I,n=49 4180908457820675 r005 Re(z^2+c),c=-13/22+7/85*I,n=54 4180908459935441 r005 Re(z^2+c),c=-67/118+3/22*I,n=16 4180908471229612 m001 1/GAMMA(19/24)^2/exp(TwinPrimes)^2/arctan(1/2) 4180908478796691 m001 Salem/(LambertW(1)^(5^(1/2))) 4180908509280638 r002 14th iterates of z^2 + 4180908513706630 m001 1/exp(GAMMA(3/4))*TwinPrimes/arctan(1/2) 4180908515885110 a001 817138163596/55*5^(9/14) 4180908526168289 a003 cos(Pi*1/108)*cos(Pi*33/91) 4180908538456014 m001 1/ln(GAMMA(19/24))^2*GAMMA(13/24)/GAMMA(7/12) 4180908551065586 r005 Re(z^2+c),c=-4/7+26/67*I,n=3 4180908580807469 m005 (1/2*Catalan-1/2)/(3*Pi+5/8) 4180908593790347 m001 1/exp(GAMMA(13/24))/GAMMA(1/3)/sqrt(3) 4180908596607437 a001 13/7*4^(24/41) 4180908611669463 r002 48th iterates of z^2 + 4180908616099640 m001 1/KhintchineLevy/FeigenbaumB*ln(Robbin) 4180908618198005 r009 Im(z^3+c),c=-23/74+17/39*I,n=23 4180908621241558 r005 Im(z^2+c),c=3/10+11/38*I,n=34 4180908645769437 a007 Real Root Of 142*x^4-691*x^3-990*x^2-143*x+279 4180908654937248 r005 Im(z^2+c),c=-7/40+28/45*I,n=59 4180908656193825 r005 Re(z^2+c),c=17/46+23/57*I,n=7 4180908658172722 r005 Re(z^2+c),c=-25/48+4/49*I,n=5 4180908667606805 m001 (Pi-Zeta(3))/(FeigenbaumC+FransenRobinson) 4180908674005724 a001 41/329*1597^(41/52) 4180908674562113 a007 Real Root Of 206*x^4+635*x^3-912*x^2+201*x+246 4180908676994982 h001 (2/7*exp(1)+7/11)/(1/3*exp(2)+11/12) 4180908694435957 m001 ln(Magata)*Kolakoski^2*cos(1) 4180908708418704 a007 Real Root Of -199*x^4-243*x^3-712*x^2+676*x-27 4180908710860310 r005 Re(z^2+c),c=-73/122+7/58*I,n=11 4180908711963318 q001 1003/2399 4180908713628323 m001 Riemann1stZero/ln(GolombDickman)/GAMMA(1/3)^2 4180908730022310 m008 (4*Pi^5-3)/(3*Pi^4-1/6) 4180908742550993 m001 (Gompertz+ZetaQ(3))/(1-ln(Pi)) 4180908742924086 r005 Re(z^2+c),c=-25/44+11/40*I,n=44 4180908745242959 m001 gamma(3)^(Pi^(1/2))/ThueMorse 4180908760325007 r004 Re(z^2+c),c=-13/22+2/19*I,z(0)=-1,n=33 4180908777829586 r002 19th iterates of z^2 + 4180908786200740 r005 Im(z^2+c),c=-1/30+17/30*I,n=64 4180908786922355 m001 (-ln(Pi)+Gompertz)/(Si(Pi)-cos(1)) 4180908802723298 m001 ZetaR(2)^FellerTornier/(ZetaR(2)^BesselI(0,2)) 4180908807348872 r009 Re(z^3+c),c=-51/106+11/58*I,n=15 4180908811547344 r005 Im(z^2+c),c=11/90+17/37*I,n=39 4180908825453961 r009 Re(z^3+c),c=-43/90+3/17*I,n=19 4180908825828117 m005 (1/2*exp(1)+1/3)/(1/12*gamma+4) 4180908827979547 h001 (-12*exp(2)+11)/(-9*exp(3)-5) 4180908829768366 m001 1/BesselK(0,1)/ln(BesselJ(1,1))*Zeta(3)^2 4180908833577718 a001 2/5*21^(37/48) 4180908837477938 a007 Real Root Of -186*x^4-748*x^3+344*x^2+770*x-627 4180908840555159 l006 ln(87/5692) 4180908840889870 r002 25th iterates of z^2 + 4180908849439516 a007 Real Root Of 230*x^4+873*x^3-376*x^2-98*x-313 4180908877844625 l006 ln(5142/7811) 4180908884907486 m008 (2/5*Pi^6+1/6)/(3*Pi^3-1) 4180908890282527 m001 BesselK(0,1)*exp(BesselJ(0,1))^3 4180908901825827 r009 Im(z^3+c),c=-51/98+21/59*I,n=33 4180908927483200 m001 BesselI(1,1)+(1+3^(1/2))^(1/2)+ReciprocalLucas 4180908933332987 r002 6th iterates of z^2 + 4180908937238053 a008 Real Root of x^4-x^3-25*x^2-70*x-25 4180908941073091 r005 Im(z^2+c),c=3/56+24/47*I,n=41 4180908949722357 m001 BesselI(0,1)-Cahen^Artin 4180908953708989 m001 (Zeta(1/2)+FellerTornier)/(BesselK(0,1)-ln(2)) 4180908965929264 m001 (GAMMA(7/12)+Cahen)/(gamma(3)+polylog(4,1/2)) 4180908974985848 r009 Re(z^3+c),c=-39/86+11/61*I,n=8 4180908980520717 a007 Real Root Of -221*x^4-975*x^3-402*x^2-997*x-870 4180908990204545 r002 27i'th iterates of 2*x/(1-x^2) of 4180908992073374 l003 sqrt(1748) 4180909012510521 p003 LerchPhi(1/6,3,311/230) 4180909015034679 h001 (5/9*exp(1)+3/8)/(1/8*exp(1)+1/9) 4180909015467915 r005 Re(z^2+c),c=-13/22+4/39*I,n=31 4180909026669700 a007 Real Root Of -129*x^4+875*x^3-183*x^2+847*x+454 4180909026897687 m005 (1/2*Catalan-5/11)/(1/8*gamma+3/4) 4180909028434454 a001 312119004989/1597*121393^(11/24) 4180909028460461 a001 1568397607/1597*12586269025^(11/24) 4180909030618189 r005 Re(z^2+c),c=-16/27+1/32*I,n=58 4180909032221697 a003 cos(Pi*20/61)-sin(Pi*31/81) 4180909041162915 m001 Lehmer*exp(HardHexagonsEntropy)*MadelungNaCl 4180909043558068 m005 (-1/6+1/6*5^(1/2))/(5/11*Catalan-10/11) 4180909051884970 r005 Im(z^2+c),c=13/64+13/33*I,n=42 4180909073649000 m001 1/Ei(1)^2/exp(BesselJ(0,1))/GAMMA(1/6)^2 4180909078878003 m005 (1/2*Zeta(3)+2/11)/(5^(1/2)-4/11) 4180909084137956 b008 1/5+E+ArcTan[Pi] 4180909086747899 r002 10th iterates of z^2 + 4180909092496002 a007 Real Root Of -574*x^4-488*x^3-154*x^2+730*x+314 4180909107990129 a007 Real Root Of 89*x^4+40*x^3+61*x^2-848*x-365 4180909118635724 a007 Real Root Of -226*x^4-339*x^3-205*x^2+610*x+273 4180909130546512 a007 Real Root Of 324*x^4-573*x^3-373*x^2-344*x+241 4180909136801826 r005 Re(z^2+c),c=-11/94+46/55*I,n=18 4180909148383878 r005 Im(z^2+c),c=19/110+11/24*I,n=15 4180909166624550 r005 Re(z^2+c),c=-12/23+17/64*I,n=10 4180909167884098 r002 32th iterates of z^2 + 4180909177990092 r005 Re(z^2+c),c=-123/122+19/60*I,n=16 4180909180382954 a005 (1/sin(73/203*Pi))^60 4180909184857283 r002 23th iterates of z^2 + 4180909203824547 r005 Im(z^2+c),c=-1/58+34/61*I,n=51 4180909212602844 m005 (3*Pi+5/6)/(-1/2+1/3*5^(1/2)) 4180909230944027 r005 Re(z^2+c),c=-9/14+15/103*I,n=21 4180909235651241 b008 (-7+5^E)*EulerGamma 4180909235879156 r002 30th iterates of z^2 + 4180909236569213 m001 (BesselJ(0,1)+ln(3))/(Pi^(1/2)+Khinchin) 4180909259847718 r005 Re(z^2+c),c=-16/27+2/55*I,n=41 4180909262394330 s002 sum(A146119[n]/(n*exp(n)+1),n=1..infinity) 4180909266390829 m001 1/Riemann3rdZero^2/Porter/ln(sinh(1))^2 4180909275262619 r002 17th iterates of z^2 + 4180909277640867 a007 Real Root Of 255*x^4+933*x^3-782*x^2-944*x-7 4180909278311875 r005 Re(z^2+c),c=-4/3+25/154*I,n=2 4180909281053415 a007 Real Root Of 239*x^4+769*x^3-749*x^2+673*x-920 4180909283105851 r005 Re(z^2+c),c=27/70+14/45*I,n=17 4180909289668334 r005 Im(z^2+c),c=-29/106+2/33*I,n=15 4180909308461943 a001 817138163596/4181*121393^(11/24) 4180909308487950 a001 4106118243/4181*12586269025^(11/24) 4180909322319410 r009 Im(z^3+c),c=-5/17+41/42*I,n=29 4180909323089597 r002 32th iterates of z^2 + 4180909325073178 m005 (1/2*Pi+5/11)/(-79/14+5/14*5^(1/2)) 4180909335717508 r009 Im(z^3+c),c=-19/46+7/12*I,n=55 4180909349317406 a001 2139295485799/10946*121393^(11/24) 4180909349343413 a001 5374978561/5473*12586269025^(11/24) 4180909353281292 r005 Re(z^2+c),c=-7/10+29/106*I,n=37 4180909355278138 a001 5600748293801/28657*121393^(11/24) 4180909355304145 a001 28143753123/28657*12586269025^(11/24) 4180909356147797 a001 14662949395604/75025*121393^(11/24) 4180909356173804 a001 73681302247/75025*12586269025^(11/24) 4180909356300685 a001 96450076809/98209*12586269025^(11/24) 4180909356319197 a001 505019158607/514229*12586269025^(11/24) 4180909356321898 a001 1322157322203/1346269*12586269025^(11/24) 4180909356322292 a001 1730726404001/1762289*12586269025^(11/24) 4180909356322350 a001 9062201101803/9227465*12586269025^(11/24) 4180909356322358 a001 23725150497407/24157817*12586269025^(11/24) 4180909356322363 a001 192933544679/196452*12586269025^(11/24) 4180909356322385 a001 5600748293801/5702887*12586269025^(11/24) 4180909356322536 a001 2139295485799/2178309*12586269025^(11/24) 4180909356323567 a001 204284540899/208010*12586269025^(11/24) 4180909356330638 a001 312119004989/317811*12586269025^(11/24) 4180909356353095 a001 23725150497407/121393*121393^(11/24) 4180909356379103 a001 119218851371/121393*12586269025^(11/24) 4180909356685275 a001 3020733700601/15456*121393^(11/24) 4180909356711283 a001 11384387281/11592*12586269025^(11/24) 4180909358962072 a001 3461452808002/17711*121393^(11/24) 4180909358988080 a001 17393796001/17711*12586269025^(11/24) 4180909374567471 a001 440719107401/2255*121393^(11/24) 4180909374593478 a001 6643838879/6765*12586269025^(11/24) 4180909395116120 r005 Re(z^2+c),c=-43/78+19/52*I,n=60 4180909400204548 r002 3th iterates of z^2 + 4180909401132425 m001 FeigenbaumKappa^2/DuboisRaymond*exp(Ei(1))^2 4180909404172708 b008 -55+Sqrt[174] 4180909411413979 r005 Re(z^2+c),c=-77/122+5/23*I,n=7 4180909411948399 a007 Real Root Of -248*x^4-13*x^3-389*x^2+673*x+356 4180909413657707 l006 ln(7331/7644) 4180909413825276 r005 Re(z^2+c),c=-16/27+2/59*I,n=47 4180909419587951 a008 Real Root of x^4-x^3-8*x^2-9*x-55 4180909423520240 h001 (-11*exp(4)-3)/(-2*exp(1)-9) 4180909442635588 r005 Re(z^2+c),c=-59/106+8/21*I,n=63 4180909447983759 r005 Re(z^2+c),c=-16/27+1/28*I,n=37 4180909458380526 r002 4th iterates of z^2 + 4180909465371345 l005 ln(tanh(235/96*Pi)) 4180909465506062 r005 Re(z^2+c),c=-29/50+1/10*I,n=14 4180909467020632 m001 1/exp(MinimumGamma)^2*Champernowne/(2^(1/3))^2 4180909476671752 r002 32th iterates of z^2 + 4180909480313222 l006 ln(2125/3228) 4180909481528467 a001 505019158607/2584*121393^(11/24) 4180909481554475 a001 33391061/34*12586269025^(11/24) 4180909481996510 m001 GAMMA(1/4)^2/ln(FeigenbaumD)^2*GAMMA(1/6)^2 4180909486452132 r005 Im(z^2+c),c=5/14+12/55*I,n=62 4180909488075511 r005 Re(z^2+c),c=-7/12+7/74*I,n=22 4180909491944109 m005 (-23/36+1/4*5^(1/2))/(5/12*exp(1)+7/9) 4180909501076396 r002 31th iterates of z^2 + 4180909509094314 b008 LogIntegral[Csc[E]^2] 4180909510031518 m001 (sqrt(3)-exp(1/Pi))^GaussAGM(1,1/sqrt(2)) 4180909510068949 m001 (Cahen+Paris)/(ln(5)-Zeta(1,-1)) 4180909510618651 r002 2th iterates of z^2 + 4180909521837409 r005 Im(z^2+c),c=7/34+22/59*I,n=15 4180909532951776 m001 (exp(1/exp(1))-MinimumGamma)/(Pi+Catalan) 4180909534434794 r005 Re(z^2+c),c=-16/27+1/48*I,n=39 4180909543546634 m001 (sin(1/5*Pi)+ErdosBorwein)/(FeigenbaumC-Mills) 4180909559484728 a007 Real Root Of -903*x^4-223*x^3-359*x^2+318*x+207 4180909560825585 r002 48th iterates of z^2 + 4180909566100126 r002 60th iterates of z^2 + 4180909572781001 m001 1/FeigenbaumC/exp(DuboisRaymond)/Zeta(5)^2 4180909581713698 r002 29th iterates of z^2 + 4180909592580916 m001 OneNinth*exp(GolombDickman)^2*GAMMA(11/12)^2 4180909614920101 m001 (-ln(3)+FransenRobinson)/(5^(1/2)+Si(Pi)) 4180909619243456 m001 (ln(2)+2/3)/(-MadelungNaCl+5) 4180909648234119 r009 Im(z^3+c),c=-5/34+23/48*I,n=11 4180909650219074 p004 log(27697/18233) 4180909658793192 a007 Real Root Of 689*x^4-297*x^3+538*x^2-917*x+290 4180909666587760 m001 KhinchinHarmonic/(Ei(1)+BesselI(0,2)) 4180909672081900 m005 (2/3*2^(1/2)+1/6)/(3/5*gamma-3) 4180909689176494 m006 (1/4*exp(2*Pi)+2/3)/(3/5*exp(2*Pi)+1/2) 4180909718075933 a001 3571*(1/2*5^(1/2)+1/2)^23*4^(10/23) 4180909722661870 a007 Real Root Of -576*x^4-164*x^3+888*x^2+731*x+29 4180909723013245 r005 Im(z^2+c),c=25/82+12/35*I,n=29 4180909728649295 r005 Im(z^2+c),c=-137/110+2/39*I,n=64 4180909760215602 m001 ln(CareFree)/ArtinRank2*FeigenbaumB 4180909762888348 m001 (ln(Pi)+BesselI(1,2))/(Cahen+Trott) 4180909772219454 r009 Im(z^3+c),c=-49/122+23/60*I,n=9 4180909777124542 m005 (1/2*2^(1/2)-3/7)/(7/11*2^(1/2)-5/6) 4180909781831872 a004 Fibonacci(13)*Lucas(11)/(1/2+sqrt(5)/2)^5 4180909782046701 a001 843/89*34^(8/19) 4180909791654329 m002 -Pi^3-Cosh[Pi]+2/ProductLog[Pi]-ProductLog[Pi] 4180909793508094 a007 Real Root Of 738*x^4+421*x^3+556*x^2-79*x-122 4180909799071602 h001 (7/9*exp(1)+9/11)/(9/10*exp(2)+4/11) 4180909805024103 r002 28th iterates of z^2 + 4180909808046279 q001 159/3803 4180909824808275 r005 Im(z^2+c),c=23/94+11/32*I,n=17 4180909832667748 m005 (1/2*2^(1/2)+4)/(5/12*Zeta(3)+5/8) 4180909836781592 r005 Im(z^2+c),c=-81/82+11/38*I,n=35 4180909836884166 r005 Im(z^2+c),c=-7/62+35/59*I,n=38 4180909839426445 a003 cos(Pi*1/77)-cos(Pi*23/76) 4180909869670699 r009 Re(z^3+c),c=-5/102+15/56*I,n=3 4180909871804874 m009 (2*Psi(1,2/3)-1/6)/(32/5*Catalan+4/5*Pi^2+1/2) 4180909872171804 r005 Re(z^2+c),c=-57/110+4/63*I,n=5 4180909880233024 r002 21th iterates of z^2 + 4180909902505181 a007 Real Root Of 464*x^4-92*x^3+935*x^2-932*x-574 4180909913078123 p003 LerchPhi(1/100,3,603/209) 4180909918708767 r002 43th iterates of z^2 + 4180909923821917 r005 Im(z^2+c),c=15/122+17/37*I,n=52 4180909933640441 m001 MertensB2^MertensB3/FeigenbaumAlpha 4180909938048665 m005 (1/2*Zeta(3)-1/10)/(4/9*3^(1/2)+3/7) 4180909945075752 r005 Im(z^2+c),c=-13/82+32/47*I,n=47 4180909947947456 a007 Real Root Of -932*x^4+997*x^3+214*x^2+866*x+426 4180909951393745 a005 (1/cos(89/231*Pi))^8 4180909970640011 m001 GAMMA(5/24)^2*ln(MertensB1)^2*Zeta(3) 4180909979624759 m001 (CareFree+Niven)/(2^(1/2)-Chi(1)) 4180909997558054 r005 Re(z^2+c),c=31/106+15/28*I,n=15 4180909998103494 a001 9349*(1/2*5^(1/2)+1/2)^21*4^(10/23) 4180909999996577 m005 (1/3*Zeta(3)-1/9)/(1/11*Zeta(3)+7/12) 4180910005005744 m003 3/4+Sqrt[5]/64-(5*Log[1/2+Sqrt[5]/2])/2 4180910038958964 a001 24476*(1/2*5^(1/2)+1/2)^19*4^(10/23) 4180910044919697 a001 64079*(1/2*5^(1/2)+1/2)^17*4^(10/23) 4180910045312920 l006 ln(5483/8329) 4180910045312920 p004 log(8329/5483) 4180910045937912 a001 228826127*2^(20/23) 4180910048603633 a001 39603*(1/2*5^(1/2)+1/2)^18*4^(10/23) 4180910055352001 m001 (2^(1/3)-3^(1/2))/(-Niven+Stephens) 4180910060929968 r005 Re(z^2+c),c=-11/17+11/51*I,n=17 4180910064209034 a001 15127*(1/2*5^(1/2)+1/2)^20*4^(10/23) 4180910071708792 m001 (Khinchin+Weierstrass)/(Zeta(1/2)+CareFree) 4180910087343288 a007 Real Root Of -19*x^4-772*x^3+949*x^2+552*x-709 4180910095799052 r002 15th iterates of z^2 + 4180910095896254 a007 Real Root Of -29*x^4-83*x^3-15*x^2-831*x-417 4180910111213141 r005 Re(z^2+c),c=-121/90+7/33*I,n=2 4180910112359550 a001 372101/89 4180910131059469 r002 47th iterates of z^2 + 4180910132189693 m001 1/Conway/ln(FeigenbaumB) 4180910137750849 r005 Re(z^2+c),c=9/58+18/37*I,n=43 4180910139340511 a007 Real Root Of -656*x^4-852*x^3+417*x^2+996*x-407 4180910143402561 a007 Real Root Of -529*x^4+404*x^3-157*x^2+258*x+181 4180910151453158 m005 (1/2*exp(1)-11/12)/(31/8+3*5^(1/2)) 4180910151637674 l006 ln(134/8767) 4180910156821511 p001 sum((-1)^n/(262*n+239)/(625^n),n=0..infinity) 4180910162526894 p003 LerchPhi(1/256,1,307/128) 4180910171170044 a001 5778*(1/2*5^(1/2)+1/2)^22*4^(10/23) 4180910181732890 a007 Real Root Of 25*x^4+61*x^3+36*x^2+973*x+258 4180910194693617 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)/(Bloch^Lehmer) 4180910214650190 a001 64300051206/329*121393^(11/24) 4180910214676197 a001 969323029/987*12586269025^(11/24) 4180910219113447 r005 Im(z^2+c),c=29/90+18/53*I,n=39 4180910220772497 a007 Real Root Of 253*x^4-697*x^3-140*x^2-770*x-32 4180910224641903 r005 Im(z^2+c),c=-7/10+61/173*I,n=25 4180910234197376 s002 sum(A224284[n]/(n^3*2^n-1),n=1..infinity) 4180910234490513 a007 Real Root Of -800*x^4-61*x^3-672*x^2+970*x+543 4180910238147554 h001 (4/9*exp(1)+5/6)/(5/9*exp(2)+7/9) 4180910238632129 r005 Re(z^2+c),c=-12/19+9/35*I,n=29 4180910246861435 r009 Re(z^3+c),c=-43/90+7/37*I,n=59 4180910247311361 m001 1/GAMMA(11/24)^2/ErdosBorwein*ln(GAMMA(17/24)) 4180910261075407 r009 Im(z^3+c),c=-23/60+25/62*I,n=17 4180910270614619 a007 Real Root Of 118*x^4-476*x^3-835*x^2-982*x-303 4180910273040991 a007 Real Root Of 4*x^4+155*x^3-504*x^2+308*x-396 4180910281142288 r005 Re(z^2+c),c=41/110+13/56*I,n=3 4180910307169532 a007 Real Root Of 608*x^4+781*x^3+541*x^2-538*x-281 4180910311354589 m005 (1/2*gamma-10/11)/(4/9*3^(1/2)+5/7) 4180910338924911 m001 (Pi-1)*(2^(1/2)-ln(5)) 4180910341678922 m001 2*ln(2)*Pi/GAMMA(5/6)+FellerTornier 4180910350568379 r002 22th iterates of z^2 + 4180910356842037 r002 40th iterates of z^2 + 4180910367671298 r009 Im(z^3+c),c=-16/25+35/64*I,n=4 4180910367932292 r005 Re(z^2+c),c=7/18+34/59*I,n=8 4180910400490208 r005 Im(z^2+c),c=1/30+21/40*I,n=40 4180910402732442 r005 Im(z^2+c),c=41/122+5/53*I,n=24 4180910402854404 l006 ln(3358/5101) 4180910405566486 a007 Real Root Of -733*x^4+290*x^3-33*x^2+916*x-376 4180910408060760 a001 29/75025*2^(6/53) 4180910417479585 m001 (ErdosBorwein+Stephens)/(arctan(1/3)-Artin) 4180910420433162 m001 (-BesselK(1,1)+GaussAGM)/(Psi(2,1/3)-cos(1)) 4180910433487288 r005 Im(z^2+c),c=-49/40+2/41*I,n=25 4180910437143307 m008 (4/5*Pi^6-3/4)/(3/5*Pi^5+1/6) 4180910442924311 a003 cos(Pi*29/105)*cos(Pi*29/105) 4180910442989887 a001 21/64079*2^(13/37) 4180910457929781 r005 Re(z^2+c),c=-13/14+21/88*I,n=36 4180910470840114 a007 Real Root Of -702*x^4+775*x^3-603*x^2+824*x+528 4180910487757470 r005 Re(z^2+c),c=4/21+13/47*I,n=4 4180910490490478 a007 Real Root Of -904*x^4+346*x^3-746*x^2+602*x+435 4180910506412147 m001 FeigenbaumAlpha^log(gamma)/exp(1/exp(1)) 4180910509097404 a007 Real Root Of -806*x^4-607*x^3-954*x^2+684*x+433 4180910509452049 r002 2th iterates of z^2 + 4180910512319663 s002 sum(A234226[n]/(n^2*exp(n)-1),n=1..infinity) 4180910514419066 r009 Re(z^3+c),c=-19/56+31/46*I,n=23 4180910518402059 m005 (1/3*2^(1/2)+1/6)/(2/5*3^(1/2)+5/6) 4180910525610635 r005 Im(z^2+c),c=-21/38+3/40*I,n=49 4180910534112585 r002 40th iterates of z^2 + 4180910539099550 m001 1/Sierpinski^2*ln(CopelandErdos)*GAMMA(5/24)^2 4180910548188796 r005 Re(z^2+c),c=-59/98+14/47*I,n=29 4180910549535358 r002 27th iterates of z^2 + 4180910550563523 r005 Im(z^2+c),c=15/106+14/29*I,n=19 4180910554524232 a001 199/196418*2178309^(13/51) 4180910560776816 a001 11/196418*196418^(30/41) 4180910570029560 m005 (1/3*exp(1)-1/11)/(3/4*5^(1/2)+3/11) 4180910586261870 m001 (Gompertz-ZetaQ(4))/(sin(1/5*Pi)+GaussAGM) 4180910587951473 m005 (1/2*Catalan+2/5)/(189/176+7/16*5^(1/2)) 4180910593934183 a007 Real Root Of 672*x^4-503*x^3-748*x^2+43*x+129 4180910599634232 r002 16th iterates of z^2 + 4180910603476355 m001 1/sin(Pi/5)^2*exp(GAMMA(19/24))^2*sinh(1)^2 4180910606216526 m001 1/Niven^2*ln(Magata)/Zeta(7) 4180910614357541 r005 Re(z^2+c),c=-3/4+103/238*I,n=5 4180910619244214 m001 (Bloch-FeigenbaumAlpha)/(Trott+Weierstrass) 4180910621273554 a003 sin(Pi*1/6)*sin(Pi*29/92) 4180910626653279 p003 LerchPhi(1/10,3,377/129) 4180910631186043 a007 Real Root Of -206*x^4-870*x^3-175*x^2-502*x+322 4180910632040554 r005 Im(z^2+c),c=-9/46+29/48*I,n=22 4180910654462978 r009 Im(z^3+c),c=-23/122+25/51*I,n=3 4180910656312829 r009 Im(z^3+c),c=-11/78+49/60*I,n=24 4180910659641472 r002 53th iterates of z^2 + 4180910671157022 b008 41+(3/7)^(1/4) 4180910673105230 r009 Im(z^3+c),c=-15/82+26/55*I,n=14 4180910683385715 r009 Re(z^3+c),c=-21/44+10/53*I,n=61 4180910708973511 m001 Riemann1stZero^2*ln(CopelandErdos)^2*Zeta(9) 4180910712947716 m005 (1/2*2^(1/2)-2/7)/(5/9*2^(1/2)+2/9) 4180910719133175 r009 Re(z^3+c),c=-1/13+17/26*I,n=23 4180910719755877 m005 (1/3*gamma-2/9)/(4/11*3^(1/2)+1/12) 4180910720643578 s002 sum(A113495[n]/((pi^n+1)/n),n=1..infinity) 4180910749867878 r002 33th iterates of z^2 + 4180910760470129 r005 Re(z^2+c),c=-67/114+7/52*I,n=42 4180910766510138 r002 52th iterates of z^2 + 4180910775267070 m001 1/ln(GAMMA(7/24))/FibonacciFactorial*gamma 4180910781676009 m001 (polylog(4,1/2)+Landau)/(ln(2)/ln(10)+5^(1/2)) 4180910790655676 m002 (9*E^Pi*Coth[Pi])/5 4180910818767140 m001 Mills^(Kolakoski/ZetaR(2)) 4180910824132731 l006 ln(9275/9671) 4180910826778510 m001 KhintchineLevy*Cahen^2/ln(Rabbit)^2 4180910829863744 l006 ln(4591/6974) 4180910833730670 r005 Re(z^2+c),c=-51/86+1/19*I,n=29 4180910857553788 m001 (-Ei(1)+PolyaRandomWalk3D)/(1+exp(1)) 4180910865740073 m001 ZetaQ(4)^LandauRamanujan/KomornikLoreti 4180910904291715 a001 2207*(1/2*5^(1/2)+1/2)^24*4^(10/23) 4180910907021829 r005 Im(z^2+c),c=1/90+23/38*I,n=55 4180910911389071 a007 Real Root Of -387*x^4-121*x^3+156*x^2+845*x+329 4180910912748127 r005 Re(z^2+c),c=-69/122+2/11*I,n=16 4180910953771544 a007 Real Root Of -466*x^4+861*x^3-667*x^2+699*x+486 4180910964046161 m001 (Gompertz+Totient)/(Trott+ZetaP(2)) 4180910967352647 r005 Re(z^2+c),c=-17/30+11/37*I,n=63 4180910981760415 r005 Im(z^2+c),c=-65/94+11/54*I,n=53 4180910984940835 r005 Im(z^2+c),c=19/118+22/51*I,n=28 4180910988293343 p004 log(26759/409) 4180911002841396 m005 (1/3*3^(1/2)-1/8)/(3/7*2^(1/2)-5/7) 4180911014968253 r009 Im(z^3+c),c=-4/21+36/49*I,n=2 4180911024968025 a005 (1/cos(3/238*Pi))^1824 4180911051833338 s002 sum(A110116[n]/(exp(n)-1),n=1..infinity) 4180911058013239 r002 43i'th iterates of 2*x/(1-x^2) of 4180911076068640 l006 ln(5824/8847) 4180911092984254 r002 44th iterates of z^2 + 4180911101793417 m001 (FeigenbaumB+Porter)/(Psi(2,1/3)+Champernowne) 4180911110168291 m001 2^(1/2)/(Landau-QuadraticClass) 4180911118942616 m001 Ei(1,1)*(Si(Pi)+ZetaQ(2)) 4180911129579587 r005 Im(z^2+c),c=-147/106+3/59*I,n=6 4180911136631217 r005 Re(z^2+c),c=-61/98+9/25*I,n=50 4180911147712273 k008 concat of cont frac of 4180911147801270 m005 (3/5*Catalan-5/6)/(-1/15+1/3*5^(1/2)) 4180911156112229 r005 Re(z^2+c),c=-69/118+6/35*I,n=43 4180911172625064 m001 1/BesselJ(1,1)^2*TreeGrowth2nd*ln(Zeta(3)) 4180911184124786 r009 Im(z^3+c),c=-1/44+27/55*I,n=14 4180911188900005 m001 (exp(1/exp(1))+1)/(GaussAGM(1,1/sqrt(2))+5) 4180911200557638 r005 Im(z^2+c),c=11/38+4/13*I,n=54 4180911204916255 r005 Re(z^2+c),c=-55/98+14/61*I,n=14 4180911206075208 a008 Real Root of x^4+5*x^2-50*x+20 4180911210338644 a007 Real Root Of -159*x^4-520*x^3-322*x^2+954*x+422 4180911212006427 a007 Real Root Of 180*x^4+962*x^3+740*x^2-342*x+941 4180911218871686 r005 Re(z^2+c),c=-53/94+4/13*I,n=58 4180911253237515 m001 1/Rabbit*GlaisherKinkelin*exp(Pi) 4180911253237515 m001 exp(Pi)*GlaisherKinkelin/Rabbit 4180911258592656 m001 BesselK(0,1)^exp(1/Pi)/gamma(1) 4180911260716688 b008 Sinh[24/59] 4180911260716688 l003 sinh(24/59) 4180911260716688 l004 sinh(24/59) 4180911262114204 r009 Re(z^3+c),c=-5/126+50/53*I,n=9 4180911265891295 m001 (FeigenbaumC+Otter)/(Psi(1,1/3)+GAMMA(2/3)) 4180911283891049 m001 (Kolakoski+ZetaQ(3))/(LambertW(1)+GAMMA(2/3)) 4180911285475043 p004 log(32909/503) 4180911294312159 r005 Im(z^2+c),c=8/29+2/7*I,n=13 4180911316442488 a007 Real Root Of -154*x^4+31*x^3+631*x^2+450*x-296 4180911322798712 r009 Im(z^3+c),c=-11/25+16/43*I,n=23 4180911332843245 m005 (1/2*Catalan+5/6)/(5/11*3^(1/2)-9/11) 4180911335038996 a007 Real Root Of 215*x^4+756*x^3-641*x^2-36*x+611 4180911342985321 s002 sum(A078519[n]/(n^2*10^n+1),n=1..infinity) 4180911347484996 r005 Re(z^2+c),c=-57/98+10/49*I,n=39 4180911350909192 r002 18th iterates of z^2 + 4180911369942046 m001 1/2*GAMMA(2/3)^Artin/Pi*3^(1/2)*GAMMA(2/3) 4180911369942046 m001 GAMMA(2/3)^Artin/GAMMA(1/3) 4180911372240277 m001 (-KhinchinHarmonic+ZetaP(3))/(1-GolombDickman) 4180911373340435 a007 Real Root Of 82*x^4+277*x^3-286*x^2+17*x+259 4180911386540094 r005 Re(z^2+c),c=-73/74+13/46*I,n=31 4180911386677873 r009 Im(z^3+c),c=-47/90+17/55*I,n=62 4180911392259502 m001 (GAMMA(11/12)+Niven)/(Zeta(5)+2*Pi/GAMMA(5/6)) 4180911411707371 m001 BesselK(1,1)/(GAMMA(2/3)^Zeta(3)) 4180911432699349 p003 LerchPhi(1/512,3,464/161) 4180911437978851 a007 Real Root Of 857*x^4-507*x^3+673*x^2-894*x+267 4180911452423669 r002 32th iterates of z^2 + 4180911454415774 r002 45i'th iterates of 2*x/(1-x^2) of 4180911457615893 m001 (Zeta(1,-1)-GAMMA(7/12))/(Porter+Sierpinski) 4180911468832763 r002 4th iterates of z^2 + 4180911476159596 a007 Real Root Of 177*x^4+852*x^3+361*x^2-378*x+293 4180911483691745 r005 Im(z^2+c),c=11/102+10/21*I,n=25 4180911485667149 a007 Real Root Of 956*x^4-915*x^3-250*x^2+209*x+35 4180911488393913 m001 (Magata-Trott2nd)/(ln(gamma)-sin(1/12*Pi)) 4180911500519063 a007 Real Root Of -228*x^4-763*x^3+691*x^2-216*x+922 4180911501964999 r002 14th iterates of z^2 + 4180911508765890 a007 Real Root Of 819*x^4-526*x^3+105*x^2-892*x+368 4180911516238622 a007 Real Root Of -274*x^4-922*x^3+855*x^2-440*x-446 4180911524507638 a007 Real Root Of 59*x^4+179*x^3-192*x^2+241*x-582 4180911571221133 r009 Re(z^3+c),c=-35/74+9/41*I,n=11 4180911575513147 m008 (4*Pi^5+5/6)/(3*Pi^4+3/4) 4180911581178397 m001 (Ei(1)-GAMMA(23/24))/(Artin+Niven) 4180911610223899 a003 cos(Pi*6/61)/cos(Pi*35/82) 4180911613186713 r005 Im(z^2+c),c=15/52+8/27*I,n=19 4180911628897606 a001 76/317811*46368^(41/59) 4180911628969701 a007 Real Root Of 409*x^4+13*x^3-295*x^2-911*x+419 4180911639763894 a001 121393/322*199^(5/11) 4180911650828036 r009 Re(z^3+c),c=-47/106+9/58*I,n=47 4180911664029018 m005 (-25/44+1/4*5^(1/2))/(2*2^(1/2)-7/11) 4180911680911680 q001 587/1404 4180911681366061 r002 16th iterates of z^2 + 4180911689477013 r005 Re(z^2+c),c=-33/58+18/61*I,n=45 4180911707778259 m006 (1/6*exp(Pi)+3/5)/(1/5*exp(2*Pi)-1/2) 4180911708238505 r005 Im(z^2+c),c=-4/9+3/43*I,n=28 4180911714893124 r005 Im(z^2+c),c=-33/118+32/53*I,n=42 4180911723779834 a007 Real Root Of 709*x^4-954*x^3+223*x^2-212*x-219 4180911734815323 a007 Real Root Of -276*x^4+766*x^3-637*x^2+986*x+588 4180911749150248 r005 Im(z^2+c),c=31/106+17/56*I,n=42 4180911770591941 r002 26th iterates of z^2 + 4180911791857924 m001 1/exp(GAMMA(7/24))/TreeGrowth2nd^2/LambertW(1) 4180911800507122 r005 Im(z^2+c),c=19/56+8/59*I,n=19 4180911811965211 r005 Im(z^2+c),c=15/44+17/62*I,n=39 4180911825907843 r009 Re(z^3+c),c=-47/106+9/58*I,n=48 4180911844233797 m001 1/sin(Pi/5)/FeigenbaumD^2/exp(sqrt(3)) 4180911853244145 r009 Im(z^3+c),c=-11/78+49/60*I,n=60 4180911853245192 r009 Im(z^3+c),c=-11/78+49/60*I,n=48 4180911853454573 r009 Im(z^3+c),c=-11/78+49/60*I,n=36 4180911861171144 r005 Im(z^2+c),c=17/56+11/40*I,n=18 4180911862936844 m001 (FeigenbaumD-gamma)/(FeigenbaumMu+Porter) 4180911864409092 m001 1/ln(GAMMA(11/24))/FeigenbaumD*exp(1)^2 4180911876025489 s002 sum(A243072[n]/(n^3*2^n+1),n=1..infinity) 4180911899944630 r005 Re(z^2+c),c=-23/40+18/47*I,n=61 4180911900746411 r009 Re(z^3+c),c=-31/78+4/39*I,n=8 4180911912360900 a007 Real Root Of -272*x^4-934*x^3+713*x^2-551*x+84 4180911922825141 h001 (1/7*exp(1)+2/9)/(1/5*exp(1)+11/12) 4180911924846110 a007 Real Root Of 247*x^4-434*x^3+627*x^2-914*x-531 4180911938246102 r005 Re(z^2+c),c=-29/48+5/53*I,n=19 4180911950667198 m001 AlladiGrinstead^FeigenbaumAlpha*Rabbit 4180911954440998 a008 Real Root of x^4-2*x^3-34*x^2-28*x+552 4180911957258628 r004 Re(z^2+c),c=-13/22+1/18*I,z(0)=-1,n=29 4180911977957079 r008 a(0)=4,K{-n^6,-57-6*n^3-8*n^2+70*n} 4180911992797442 l006 ln(1233/1873) 4180912020503561 m001 (ln(3)+gamma(1))/(PlouffeB-Riemann3rdZero) 4180912027953624 r002 5th iterates of z^2 + 4180912046280854 a007 Real Root Of -864*x^4-385*x^3+176*x^2+956*x-4 4180912052844358 r005 Im(z^2+c),c=11/38+5/16*I,n=35 4180912057485018 m005 (1/3*3^(1/2)+2/9)/(7/10*3^(1/2)+7/10) 4180912067783834 r005 Re(z^2+c),c=-53/90+4/33*I,n=42 4180912069415830 s002 sum(A020412[n]/(2^n+1),n=1..infinity) 4180912073536818 a005 (1/cos(9/173*Pi))^1823 4180912079854033 a007 Real Root Of 611*x^4-280*x^3-611*x^2-166*x+178 4180912080137938 m001 GAMMA(17/24)/GAMMA(5/12)/exp(1/exp(1)) 4180912082440675 r005 Im(z^2+c),c=1/52+11/19*I,n=19 4180912085452375 r005 Re(z^2+c),c=-10/17+9/64*I,n=36 4180912089653090 r005 Re(z^2+c),c=-18/31+8/25*I,n=27 4180912095376516 r002 52th iterates of z^2 + 4180912105151313 a001 1/620166*76^(11/50) 4180912110209102 a007 Real Root Of 38*x^4-35*x^3-756*x^2+171*x-239 4180912110600071 r002 32th iterates of z^2 + 4180912110956322 m006 (3/5/Pi-3/4)/(1/4*exp(2*Pi)-1/6) 4180912111116708 m001 LambertW(1)^2*ln(FeigenbaumD)*log(2+sqrt(3)) 4180912122780718 m001 Lehmer+BesselJZeros(0,1)^Backhouse 4180912128286627 a007 Real Root Of 843*x^4+137*x^3-957*x^2-973*x-39 4180912131276856 r002 37th iterates of z^2 + 4180912145245084 r005 Re(z^2+c),c=-67/114+7/54*I,n=43 4180912150186095 r008 a(0)=0,K{-n^6,-11-45*n^3+71*n^2+8*n} 4180912152716480 m001 (ln(5)+ZetaQ(2))/(2^(1/3)+exp(1)) 4180912155298292 r005 Im(z^2+c),c=1/42+28/53*I,n=45 4180912166997553 r005 Im(z^2+c),c=7/30+23/63*I,n=34 4180912187417333 r005 Re(z^2+c),c=-1/98+31/45*I,n=4 4180912188075888 r005 Re(z^2+c),c=-73/126+1/6*I,n=25 4180912189509662 a007 Real Root Of -661*x^4+923*x^3-25*x^2+371*x-198 4180912243911402 m001 (exp(1)+KomornikLoreti)/(-Paris+Salem) 4180912297561298 m001 1/GAMMA(7/12)^2*ln(Bloch)^2*sqrt(3) 4180912316417521 r005 Re(z^2+c),c=-83/110+1/21*I,n=44 4180912322870886 a007 Real Root Of 161*x^4+516*x^3-712*x^2-285*x-229 4180912328537842 r002 38th iterates of z^2 + 4180912334796025 v002 sum(1/(3^n+(9/2*n^2+47/2*n+24)),n=1..infinity) 4180912347262327 a001 76/4052739537881*6765^(1/11) 4180912348923339 a001 76/10610209857723*267914296^(1/11) 4180912348923381 a001 38/3278735159921*1346269^(1/11) 4180912359754087 m001 (1-LambertW(1))/(-Pi^(1/2)+FransenRobinson) 4180912364607569 r005 Im(z^2+c),c=1/34+26/49*I,n=33 4180912364717131 a007 Real Root Of -432*x^4+288*x^3+340*x^2+773*x+298 4180912375142356 r005 Im(z^2+c),c=19/74+21/61*I,n=27 4180912384113318 h001 (5/12*exp(1)+4/11)/(5/12*exp(2)+1/2) 4180912390399236 r002 3th iterates of z^2 + 4180912418243323 r009 Re(z^3+c),c=-11/24+9/53*I,n=30 4180912423170054 a002 13^(7/5)-18^(6/5) 4180912432150635 r005 Re(z^2+c),c=-57/98+6/55*I,n=22 4180912437684463 a007 Real Root Of 959*x^4-747*x^3+878*x^2-267*x-349 4180912441151845 r005 Im(z^2+c),c=-89/90+2/7*I,n=34 4180912477151968 r002 24th iterates of z^2 + 4180912501250171 a007 Real Root Of 804*x^4-511*x^3-616*x^2-616*x+378 4180912502051732 a003 sin(Pi*4/103)/sin(Pi*11/117) 4180912520059749 m001 FibonacciFactorial*Magata+HeathBrownMoroz 4180912523654151 a007 Real Root Of -885*x^4-744*x^3-913*x^2+870*x+496 4180912525482527 r002 48th iterates of z^2 + 4180912541270606 r002 30th iterates of z^2 + 4180912542115126 r005 Im(z^2+c),c=5/52+23/48*I,n=37 4180912559273078 a007 Real Root Of -451*x^4+348*x^3+808*x^2+603*x-405 4180912567369753 m001 1/Khintchine^2/Cahen/exp(GAMMA(13/24)) 4180912578530559 l006 ln(47/3075) 4180912578589808 r002 18th iterates of z^2 + 4180912580632901 h001 (3/5*exp(2)+3/4)/(1/8*exp(1)+9/10) 4180912604893452 m001 (-Lehmer+Stephens)/(LambertW(1)-cos(1/12*Pi)) 4180912611780194 m005 (1/2*gamma+7/8)/(1/8*Zeta(3)-3/7) 4180912613124804 r005 Im(z^2+c),c=11/48+22/59*I,n=27 4180912616734059 b008 14+33*Erf[1] 4180912626040746 r005 Re(z^2+c),c=-18/31+11/54*I,n=42 4180912641593308 r009 Im(z^3+c),c=-11/102+16/33*I,n=17 4180912683498367 r005 Im(z^2+c),c=37/114+13/48*I,n=49 4180912686069120 m001 (cos(1/12*Pi)+GlaisherKinkelin)/(Pi+5^(1/2)) 4180912696246014 a003 sin(Pi*17/93)*sin(Pi*26/93) 4180912712117219 r005 Im(z^2+c),c=3/32+24/49*I,n=22 4180912715802357 a001 121393/2207*199^(9/11) 4180912726253429 h001 (10/11*exp(2)+4/5)/(2/11*exp(2)+5/11) 4180912730136013 m005 (1/2*exp(1)+1)/(2/7*Pi-1/3) 4180912747435182 r009 Re(z^3+c),c=-17/36+11/60*I,n=34 4180912777653096 m005 (1/3*Pi+1/10)/(10/11*exp(1)+3/11) 4180912777747538 r005 Re(z^2+c),c=-21/31+23/52*I,n=30 4180912788299020 r009 Re(z^3+c),c=-8/15+24/59*I,n=42 4180912801308887 h001 (7/9*exp(2)+7/9)/(1/11*exp(2)+8/9) 4180912813428871 l006 ln(6506/9883) 4180912830331203 r005 Im(z^2+c),c=-4/9+3/43*I,n=26 4180912832482170 a007 Real Root Of 219*x^4+778*x^3-661*x^2-236*x+510 4180912836329496 a007 Real Root Of 199*x^4-821*x^3+307*x^2-998*x-537 4180912859479221 m001 GAMMA(17/24)*(2^(1/2)+Tribonacci) 4180912864920944 m001 (1-Riemann1stZero)/Pi 4180912865235252 a008 Real Root of (2+6*x+4*x^2+4*x^3+5*x^4+4*x^5) 4180912873553957 r005 Re(z^2+c),c=-43/66+12/55*I,n=17 4180912876487779 r005 Re(z^2+c),c=11/122+25/64*I,n=14 4180912899596476 a005 (1/cos(5/71*Pi))^1551 4180912903529154 r008 a(0)=4,K{-n^6,-6-7*n^3+n^2+5*n} 4180912905002146 p001 sum((-1)^n/(373*n+239)/(512^n),n=0..infinity) 4180912906578795 h001 (1/6*exp(1)+5/8)/(7/8*exp(1)+1/5) 4180912914674804 r002 58th iterates of z^2 + 4180912920380382 r005 Re(z^2+c),c=39/110+5/41*I,n=63 4180912923557515 r005 Im(z^2+c),c=13/126+17/37*I,n=16 4180912924233670 a007 Real Root Of -178*x^4-523*x^3+919*x^2-132*x-450 4180912971258558 b008 Pi*(61/6+Pi) 4180912975263727 m001 (Zeta(3)+GAMMA(3/4))/(GAMMA(17/24)-CareFree) 4180912978526121 m001 (Khinchin+Salem)/(arctan(1/3)+BesselK(1,1)) 4180912979288807 r005 Im(z^2+c),c=-5/7+10/41*I,n=59 4180912982344419 m002 4-Log[Pi]+Pi*ProductLog[Pi]*Sinh[Pi] 4180912999665161 m001 Grothendieck/(Conway-2*Pi/GAMMA(5/6)) 4180913004883003 a007 Real Root Of 121*x^4+598*x^3+257*x^2-554*x-77 4180913005319351 l006 ln(5273/8010) 4180913024898270 a007 Real Root Of 721*x^4-969*x^3-497*x^2-488*x-210 4180913025644139 m001 (FeigenbaumC+FeigenbaumDelta)^LandauRamanujan 4180913046487597 r005 Re(z^2+c),c=-71/118+1/31*I,n=20 4180913047935258 m006 (2/5/Pi+4/5)/(5/6*Pi-2/5) 4180913057608312 m004 -2+(25*ProductLog[Sqrt[5]*Pi]^2)/(3*Pi) 4180913067828279 r005 Im(z^2+c),c=31/102+17/44*I,n=13 4180913069444473 a007 Real Root Of 918*x^4-157*x^3+333*x^2-656*x-372 4180913094731031 r005 Im(z^2+c),c=5/26+25/62*I,n=32 4180913096379600 r009 Re(z^3+c),c=-41/86+19/37*I,n=37 4180913102380223 r002 49th iterates of z^2 + 4180913108127615 m006 (2*Pi^2-1/4)/(2*exp(Pi)+1/3) 4180913115512683 r005 Re(z^2+c),c=-25/42+4/43*I,n=12 4180913116144559 r005 Re(z^2+c),c=-51/86+13/54*I,n=24 4180913119884246 a007 Real Root Of 159*x^4-191*x^3-78*x^2-888*x+394 4180913124735788 m001 FeigenbaumMu^ArtinRank2*FeigenbaumMu^(5^(1/2)) 4180913125619482 r009 Im(z^3+c),c=-1/31+29/59*I,n=8 4180913136425543 r002 52th iterates of z^2 + 4180913142556036 m002 -6/Pi+Pi^5+Pi^2*Sinh[Pi] 4180913146575193 r009 Im(z^3+c),c=-5/12+26/63*I,n=6 4180913154801845 r005 Im(z^2+c),c=-23/36+5/11*I,n=62 4180913161737572 a007 Real Root Of 336*x^4-854*x^3+261*x^2-724*x-421 4180913165519707 a007 Real Root Of 151*x^4+622*x^3-255*x^2-826*x+323 4180913168369768 r005 Re(z^2+c),c=-11/18+48/113*I,n=2 4180913175751625 b008 ArcTan[19/5]/Pi 4180913179718137 r005 Re(z^2+c),c=7/27+1/48*I,n=37 4180913202837343 a007 Real Root Of 19*x^4+786*x^3-349*x^2+43*x-106 4180913212729464 s003 concatenated sequence A087856 4180913219420240 r002 11th iterates of z^2 + 4180913236701701 m001 Paris^2*FeigenbaumAlpha*ln(GAMMA(1/6)) 4180913262901080 p001 sum(1/(275*n+24)/(24^n),n=0..infinity) 4180913275395843 m005 (1/2*Pi+3/5)/(3/8*5^(1/2)-5/6) 4180913275666660 m006 (1/2*exp(2*Pi)+2)/(1/4*exp(Pi)+2/3) 4180913276311185 m009 (1/2*Psi(1,3/4)-1)/(2/3*Psi(1,1/3)-1/4) 4180913278363184 r005 Re(z^2+c),c=5/14+19/46*I,n=8 4180913301518020 m001 Rabbit^2*MadelungNaCl*exp(GAMMA(7/24))^2 4180913306482008 a007 Real Root Of -752*x^4+747*x^3+956*x^2+369*x-353 4180913312712482 r005 Im(z^2+c),c=-17/14+14/183*I,n=25 4180913314339012 l006 ln(4040/6137) 4180913324645996 r005 Re(z^2+c),c=-43/74+8/49*I,n=29 4180913343327632 r005 Im(z^2+c),c=-9/16+43/96*I,n=46 4180913350996181 m005 (1/2*Pi+8/11)/(1/6*Zeta(3)-3/4) 4180913357222926 m001 (polylog(4,1/2)+GAMMA(23/24))/(cos(1)-gamma) 4180913384437823 m005 (5/6*2^(1/2)-1)/(49/12+1/12*5^(1/2)) 4180913394041804 r009 Im(z^3+c),c=-5/21+55/56*I,n=8 4180913404921754 r005 Re(z^2+c),c=-39/82+23/56*I,n=2 4180913427958473 r002 59th iterates of z^2 + 4180913434740778 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3)+Mills)^MertensB2 4180913439646932 r005 Im(z^2+c),c=-11/98+16/27*I,n=38 4180913448972939 a001 105937/1926*199^(9/11) 4180913449199996 m001 Pi*2^(1/2)/GAMMA(3/4)*PlouffeB/ThueMorse 4180913451813082 m001 (sin(1/5*Pi)+ln(2+3^(1/2)))/(Pi+2^(1/2)) 4180913455876667 r002 12th iterates of z^2 + 4180913458670424 m001 (Robbin+ThueMorse)/(Chi(1)-Magata) 4180913469489665 r002 54th iterates of z^2 + 4180913484217902 a007 Real Root Of -586*x^4+471*x^3-954*x^2+758*x+536 4180913488160034 r002 9th iterates of z^2 + 4180913494044398 m002 -Cosh[Pi]/(2*Pi^3)+5/Log[Pi] 4180913496704258 a003 sin(Pi*13/89)*sin(Pi*11/28) 4180913515856050 r009 Im(z^3+c),c=-29/54+17/63*I,n=62 4180913520404581 a007 Real Root Of 941*x^4-327*x^3+810*x^2+577*x+47 4180913529101652 r009 Im(z^3+c),c=-17/110+25/53*I,n=6 4180913555941107 a001 832040/15127*199^(9/11) 4180913560283077 a007 Real Root Of 787*x^4-603*x^3+787*x^2-924*x-592 4180913560536326 a007 Real Root Of 3*x^4-519*x^3+686*x^2-579*x+160 4180913561963668 r005 Im(z^2+c),c=-3/110+5/9*I,n=37 4180913563732765 r008 a(0)=4,K{-n^6,39-42*n+17*n^2-20*n^3} 4180913571547552 a001 726103/13201*199^(9/11) 4180913573824502 a001 5702887/103682*199^(9/11) 4180913574156705 a001 4976784/90481*199^(9/11) 4180913574205172 a001 39088169/710647*199^(9/11) 4180913574212244 a001 831985/15126*199^(9/11) 4180913574213275 a001 267914296/4870847*199^(9/11) 4180913574213426 a001 233802911/4250681*199^(9/11) 4180913574213448 a001 1836311903/33385282*199^(9/11) 4180913574213451 a001 1602508992/29134601*199^(9/11) 4180913574213452 a001 12586269025/228826127*199^(9/11) 4180913574213452 a001 10983760033/199691526*199^(9/11) 4180913574213452 a001 86267571272/1568397607*199^(9/11) 4180913574213452 a001 75283811239/1368706081*199^(9/11) 4180913574213452 a001 591286729879/10749957122*199^(9/11) 4180913574213452 a001 12585437040/228811001*199^(9/11) 4180913574213452 a001 4052739537881/73681302247*199^(9/11) 4180913574213452 a001 3536736619241/64300051206*199^(9/11) 4180913574213452 a001 6557470319842/119218851371*199^(9/11) 4180913574213452 a001 2504730781961/45537549124*199^(9/11) 4180913574213452 a001 956722026041/17393796001*199^(9/11) 4180913574213452 a001 365435296162/6643838879*199^(9/11) 4180913574213452 a001 139583862445/2537720636*199^(9/11) 4180913574213452 a001 53316291173/969323029*199^(9/11) 4180913574213452 a001 20365011074/370248451*199^(9/11) 4180913574213452 a001 7778742049/141422324*199^(9/11) 4180913574213453 a001 2971215073/54018521*199^(9/11) 4180913574213461 a001 1134903170/20633239*199^(9/11) 4180913574213519 a001 433494437/7881196*199^(9/11) 4180913574213913 a001 165580141/3010349*199^(9/11) 4180913574216614 a001 63245986/1149851*199^(9/11) 4180913574235127 a001 24157817/439204*199^(9/11) 4180913574362017 a001 9227465/167761*199^(9/11) 4180913575231735 a001 3524578/64079*199^(9/11) 4180913577001752 r005 Im(z^2+c),c=-11/15+3/56*I,n=6 4180913581192866 a001 1346269/24476*199^(9/11) 4180913581337713 r005 Re(z^2+c),c=-7/12+13/61*I,n=31 4180913584495829 m001 (5^(1/2)-Porter)/Tribonacci 4180913590101527 a001 199/1597*6765^(7/51) 4180913602776494 a007 Real Root Of 233*x^4-605*x^3+470*x^2-335*x+95 4180913607630729 r005 Re(z^2+c),c=-13/22+2/25*I,n=42 4180913617650594 r009 Im(z^3+c),c=-5/86+23/47*I,n=15 4180913622051073 a001 514229/9349*199^(9/11) 4180913624541015 m005 (1/2*exp(1)+5/12)/(10/11*gamma-1/10) 4180913626169410 r005 Re(z^2+c),c=39/106+25/61*I,n=4 4180913628576785 h001 (7/9*exp(1)+2/3)/(8/9*exp(2)+1/12) 4180913661974385 a001 726103/281*76^(1/9) 4180913662223745 m001 ln(GAMMA(11/24))^2/Tribonacci*sqrt(Pi) 4180913695336394 a005 (1/cos(39/193*Pi))^336 4180913695404695 m001 (-ln(5)+Grothendieck)/(exp(1)+2^(1/2)) 4180913710649452 r009 Im(z^3+c),c=-27/86+15/34*I,n=9 4180913714869098 a007 Real Root Of -266*x^4-571*x^3+7*x^2+958*x+40 4180913716938061 m001 (sin(1)+arctan(1/3))/(MadelungNaCl+MertensB2) 4180913718491460 r005 Re(z^2+c),c=-7/6+53/204*I,n=4 4180913723670323 r009 Re(z^3+c),c=-45/98+10/57*I,n=11 4180913725608088 r005 Re(z^2+c),c=-31/56+21/32*I,n=5 4180913756668017 m001 (ln(2+3^(1/2))+OneNinth)/(1-cos(1/12*Pi)) 4180913761963408 a003 sin(Pi*1/39)*sin(Pi*4/23) 4180913768060710 b008 5+LogGamma[16+Pi] 4180913771230932 r005 Im(z^2+c),c=7/60+11/25*I,n=10 4180913774402931 m005 (1/2*Pi-5/11)/(1/4*3^(1/2)-7/10) 4180913774995331 r005 Re(z^2+c),c=-31/54+11/42*I,n=47 4180913783029904 m001 (ln(2)/ln(10))^polylog(4,1/2)/GAMMA(17/24) 4180913792611087 m005 (1/2*gamma-1)/(8/9*2^(1/2)+4/9) 4180913802772407 r005 Im(z^2+c),c=-37/50+7/59*I,n=48 4180913816307185 r005 Re(z^2+c),c=5/16+4/57*I,n=24 4180913825462549 m001 Robbin^2*KhintchineLevy/exp((2^(1/3)))^2 4180913832499036 r004 Re(z^2+c),c=-55/38-10/17*I,z(0)=-1,n=4 4180913833146987 r002 17th iterates of z^2 + 4180913834757884 a007 Real Root Of -814*x^4-825*x^3+294*x^2+894*x-340 4180913843474106 m001 Tribonacci^2/exp(LaplaceLimit)^2/arctan(1/2)^2 4180913850974707 a007 Real Root Of -937*x^4-450*x^3-978*x^2+680*x+451 4180913866409239 r002 14th iterates of z^2 + 4180913868830233 a007 Real Root Of -203*x^4-972*x^3-448*x^2+432*x+628 4180913870807297 r002 20th iterates of z^2 + 4180913879282872 m001 GAMMA(23/24)/(exp(Pi)+HardHexagonsEntropy) 4180913890380935 a007 Real Root Of 301*x^4-955*x^3-339*x^2-70*x-49 4180913894837979 l006 ln(2807/4264) 4180913894933167 q001 1345/3217 4180913897316033 a007 Real Root Of 58*x^4+401*x^3+722*x^2+257*x+38 4180913902097406 a001 196418/3571*199^(9/11) 4180913926670793 r009 Im(z^3+c),c=-31/66+6/17*I,n=49 4180913927700330 a007 Real Root Of -246*x^4-833*x^3+767*x^2-21*x+793 4180913933218242 a007 Real Root Of 217*x^4-729*x^3-180*x^2-683*x-314 4180913933297269 m001 FeigenbaumD+GAMMA(2/3)^MertensB3 4180913952826355 a001 1364/121393*832040^(13/49) 4180913960826034 r009 Im(z^3+c),c=-4/23+28/59*I,n=17 4180913961932899 a007 Real Root Of -482*x^4+914*x^3+995*x^2+763*x-545 4180913974552065 m001 (Landau+Trott)/(GAMMA(3/4)-FibonacciFactorial) 4180913994665341 a007 Real Root Of -550*x^4-580*x^3-10*x^2+432*x-18 4180913997157023 a005 (1/cos(35/199*Pi))^309 4180914000793718 r002 18th iterates of z^2 + 4180914014727144 m005 (1/2*Catalan+1/12)/(4/5*3^(1/2)-1/11) 4180914015271777 a007 Real Root Of 210*x^4-49*x^3+191*x^2-432*x-224 4180914023144079 a001 34/521*123^(22/57) 4180914033778821 r009 Im(z^3+c),c=-19/66+41/59*I,n=34 4180914041195385 s002 sum(A162507[n]/((exp(n)+1)*n),n=1..infinity) 4180914045932346 r002 50th iterates of z^2 + 4180914061721463 m001 ln(Pi)*BesselI(1,1)*MasserGramain 4180914083023765 r009 Im(z^3+c),c=-13/66+35/47*I,n=29 4180914100005000 r009 Re(z^3+c),c=-47/106+9/58*I,n=53 4180914121312631 r005 Im(z^2+c),c=-11/118+32/55*I,n=38 4180914122463708 a001 2/75025*121393^(19/44) 4180914130501892 r005 Im(z^2+c),c=23/74+4/33*I,n=5 4180914131424316 m009 (2*Pi^2-3/4)/(Psi(1,3/4)+2) 4180914136318283 r005 Re(z^2+c),c=-63/118+18/43*I,n=27 4180914160957531 m005 (1/2*Zeta(3)-7/11)/(3/10*exp(1)-9/10) 4180914181577312 p003 LerchPhi(1/512,1,491/205) 4180914183527289 p004 log(37021/24371) 4180914188013034 r005 Im(z^2+c),c=-7/15+21/43*I,n=8 4180914192320333 m002 -(Log[Pi]/Pi)+(Pi*Tanh[Pi])/4 4180914207588188 r005 Re(z^2+c),c=-67/114+5/64*I,n=26 4180914230613991 r009 Im(z^3+c),c=-29/82+18/43*I,n=18 4180914232848219 m001 (Chi(1)+ln(Pi))/(-gamma(1)+FeigenbaumDelta) 4180914249693784 a001 1364/4181*3^(7/31) 4180914265530682 a007 Real Root Of 301*x^4-428*x^3-920*x^2-890*x+555 4180914268548409 r005 Im(z^2+c),c=-27/26+11/39*I,n=19 4180914269932459 p004 log(28493/18757) 4180914286877444 r005 Re(z^2+c),c=-29/48+3/28*I,n=10 4180914298818365 a007 Real Root Of -879*x^4+546*x^3-665*x^2+641*x+451 4180914313910534 m001 (Psi(2,1/3)+Si(Pi))/(-BesselI(1,1)+Tribonacci) 4180914315051626 h001 (3/11*exp(2)+11/12)/(8/9*exp(2)+4/9) 4180914324865869 r009 Re(z^3+c),c=-21/44+10/53*I,n=62 4180914328092492 r005 Im(z^2+c),c=-31/26+39/124*I,n=15 4180914334011744 r002 12th iterates of z^2 + 4180914353577029 r005 Im(z^2+c),c=13/122+25/53*I,n=60 4180914381400139 m005 (1/2*5^(1/2)+1)/(7/11*Zeta(3)-5/7) 4180914389804017 r005 Re(z^2+c),c=31/110+1/35*I,n=46 4180914411457216 r005 Re(z^2+c),c=-5/8+42/205*I,n=17 4180914415132104 r009 Re(z^3+c),c=-57/106+15/59*I,n=48 4180914418609736 a007 Real Root Of -350*x^4-565*x^3-242*x^2+149*x+74 4180914430153135 l006 ln(4381/6655) 4180914432838976 r009 Im(z^3+c),c=-23/90+23/31*I,n=42 4180914434567786 r002 16th iterates of z^2 + 4180914440154919 r005 Re(z^2+c),c=11/62+18/53*I,n=38 4180914482367508 r009 Im(z^3+c),c=-15/122+11/23*I,n=6 4180914486926835 r009 Re(z^3+c),c=-47/106+9/58*I,n=52 4180914502671885 m001 GAMMA(23/24)^2/ln(Backhouse)/sin(Pi/12)^2 4180914505340650 a008 Real Root of x^3-x^2+19*x+170 4180914510740316 r002 25th iterates of z^2 + 4180914510931150 r005 Im(z^2+c),c=29/126+17/46*I,n=30 4180914518458868 r009 Im(z^3+c),c=-23/98+23/45*I,n=3 4180914523105400 r005 Im(z^2+c),c=39/110+3/19*I,n=40 4180914539289210 r009 Re(z^3+c),c=-47/106+9/58*I,n=41 4180914541242156 r005 Re(z^2+c),c=-11/25+23/41*I,n=36 4180914549121272 a003 cos(Pi*2/105)-cos(Pi*5/53) 4180914555358227 r004 Re(z^2+c),c=-47/38-11/19*I,z(0)=-1,n=4 4180914559958560 r005 Re(z^2+c),c=-7/12+17/94*I,n=50 4180914567630356 a007 Real Root Of -227*x^4+559*x^3-862*x^2+140*x+257 4180914576929359 a007 Real Root Of -158*x^4-648*x^3-153*x^2-935*x-315 4180914578549068 m001 (Pi-Psi(2,1/3))/(exp(1)-PisotVijayaraghavan) 4180914582159550 r002 22th iterates of z^2 + 4180914587173628 m001 (Si(Pi)+ln(5))/(CareFree+Champernowne) 4180914598732258 a007 Real Root Of -181*x^4-568*x^3+798*x^2+28*x-38 4180914623302035 m001 LaplaceLimit^Niven*LaplaceLimit^PrimesInBinary 4180914627397507 r005 Re(z^2+c),c=-15/26+29/90*I,n=11 4180914630585343 p003 LerchPhi(1/64,5,231/194) 4180914630718889 r005 Re(z^2+c),c=-67/118+21/59*I,n=49 4180914647165466 r005 Im(z^2+c),c=-13/21+7/53*I,n=14 4180914647421033 r005 Im(z^2+c),c=-37/78+29/52*I,n=59 4180914655608773 r005 Im(z^2+c),c=6/23+15/52*I,n=4 4180914658496576 r005 Re(z^2+c),c=-18/31+6/29*I,n=48 4180914682483879 l006 ln(5955/9046) 4180914695722768 m001 (exp(1/Pi)+GAMMA(13/24))/(2^(1/2)-ln(2)) 4180914702302152 m001 (Zeta(3)+KomornikLoreti)^Mills 4180914710457608 r002 57th iterates of z^2 + 4180914714590501 a001 4/21*46368^(3/41) 4180914728888722 r005 Re(z^2+c),c=-61/106+9/37*I,n=62 4180914746916722 m001 Kolakoski/(FibonacciFactorial^Pi) 4180914750748377 r009 Re(z^3+c),c=-47/106+9/58*I,n=54 4180914763878695 r005 Re(z^2+c),c=-77/114+11/42*I,n=18 4180914765503368 r009 Re(z^3+c),c=-47/106+9/58*I,n=58 4180914772249209 r005 Re(z^2+c),c=-16/27+3/50*I,n=35 4180914774682945 r002 23th iterates of z^2 + 4180914775847416 l006 ln(148/9683) 4180914775909222 r009 Im(z^3+c),c=-27/50+6/19*I,n=39 4180914783162751 a007 Real Root Of 841*x^4-224*x^3-297*x^2-69*x-19 4180914784292824 a007 Real Root Of -259*x^4-865*x^3+780*x^2-581*x-142 4180914785773224 a007 Real Root Of 434*x^4-338*x^3+19*x^2-327*x-178 4180914829204849 r002 41th iterates of z^2 + 4180914829310944 p004 log(11437/7529) 4180914829401447 m001 (Pi-FeigenbaumB)/(PlouffeB+ZetaP(4)) 4180914839041064 m001 GAMMA(1/3)+sqrt(2)^GAMMA(19/24) 4180914842783778 m001 Ei(1)*Otter/Totient 4180914853742255 r005 Re(z^2+c),c=-15/26+27/116*I,n=62 4180914863301076 r009 Re(z^3+c),c=-47/106+9/58*I,n=59 4180914868181317 a003 cos(Pi*13/42)-cos(Pi*44/97) 4180914870735127 r005 Re(z^2+c),c=-29/56+5/23*I,n=6 4180914878344598 r009 Re(z^3+c),c=-47/106+9/58*I,n=33 4180914883578311 m001 1/Paris^2*ln(Si(Pi))*TwinPrimes 4180914888453719 m001 Magata+RenyiParking^ln(2^(1/2)+1) 4180914907006990 a001 1/13*832040^(17/58) 4180914923191384 r005 Im(z^2+c),c=-33/25+1/22*I,n=57 4180914932557695 r009 Re(z^3+c),c=-47/106+9/58*I,n=63 4180914936829169 r009 Re(z^3+c),c=-47/106+9/58*I,n=64 4180914940129740 m005 (1/2*3^(1/2)-3/7)/(5/12*Zeta(3)+6/11) 4180914951130824 m001 (1+BesselJ(0,1))/(-ln(2^(1/2)+1)+Conway) 4180914958539069 r009 Re(z^3+c),c=-47/106+9/58*I,n=57 4180914961055457 a007 Real Root Of -900*x^4+724*x^3-808*x^2-47*x+202 4180914961606593 m001 (Ei(1)-exp(1/Pi))/(GaussAGM+HardyLittlewoodC5) 4180914976073648 r005 Re(z^2+c),c=-57/98+7/36*I,n=62 4180914988458450 a007 Real Root Of -638*x^4+717*x^3-514*x^2+766*x+482 4180914998482805 r009 Re(z^3+c),c=-47/106+9/58*I,n=62 4180914998728175 a001 29/1597*2178309^(2/35) 4180915004416466 r005 Re(z^2+c),c=-17/30+17/57*I,n=54 4180915014325499 m001 1/ln(Salem)*Robbin*GAMMA(23/24) 4180915029415205 h001 (7/8*exp(2)+5/11)/(4/11*exp(1)+2/3) 4180915031260269 r009 Re(z^3+c),c=-47/106+9/58*I,n=60 4180915032654606 r005 Im(z^2+c),c=-8/9+17/58*I,n=7 4180915048571671 r009 Im(z^3+c),c=-33/94+13/31*I,n=25 4180915052968104 r005 Re(z^2+c),c=-67/110+16/41*I,n=40 4180915059615891 a001 1/24447*(1/2*5^(1/2)+1/2)*843^(8/13) 4180915071919134 r009 Re(z^3+c),c=-47/106+9/58*I,n=61 4180915072151611 r005 Im(z^2+c),c=5/94+29/57*I,n=39 4180915072924267 r009 Re(z^3+c),c=-47/106+9/58*I,n=49 4180915080283343 r005 Re(z^2+c),c=-13/22+4/49*I,n=63 4180915081464257 r009 Im(z^3+c),c=-17/42+10/17*I,n=6 4180915105714638 m005 (1/2*5^(1/2)+8/9)/(2*exp(1)-7/11) 4180915126496582 a007 Real Root Of 933*x^4+264*x^3-199*x^2-421*x+163 4180915138556593 m001 Zeta(1,2)*exp(MadelungNaCl)*log(1+sqrt(2))^2 4180915140130180 r005 Im(z^2+c),c=25/118+22/57*I,n=47 4180915147020248 a008 Real Root of (11+8*x+10*x^2-3*x^3) 4180915148774328 a007 Real Root Of -896*x^4+899*x^3-771*x^2-655*x-46 4180915168981468 r009 Re(z^3+c),c=-9/20+20/37*I,n=41 4180915172617358 r005 Im(z^2+c),c=-1/8+21/22*I,n=6 4180915174514900 a007 Real Root Of -61*x^4-297*x^3-280*x^2-484*x-196 4180915176721895 r009 Re(z^3+c),c=-1/29+25/28*I,n=23 4180915183500673 a007 Real Root Of 374*x^4-434*x^3+357*x^2-957*x+358 4180915190114177 r005 Im(z^2+c),c=-33/46+1/36*I,n=9 4180915204419165 r005 Re(z^2+c),c=-59/98+1/32*I,n=20 4180915223781446 r005 Re(z^2+c),c=19/82+31/57*I,n=6 4180915239548149 a001 73681302247/377*121393^(11/24) 4180915239574156 a001 370248451/377*12586269025^(11/24) 4180915240126842 r005 Re(z^2+c),c=-19/34+29/82*I,n=53 4180915245899237 r009 Im(z^3+c),c=-9/110+43/54*I,n=12 4180915247067627 a003 cos(Pi*24/103)*cos(Pi*31/100) 4180915267164133 a001 1149851/13*317811^(7/23) 4180915269835538 a001 39603/13*20365011074^(7/23) 4180915272859409 m001 cos(1)/(Trott^ZetaP(2)) 4180915282935516 r005 Im(z^2+c),c=-5/6+1/41*I,n=61 4180915284600210 a007 Real Root Of -299*x^4+702*x^3-493*x^2+386*x+308 4180915285401955 m005 (1/2*Pi-6/7)/(2*Catalan-1/8) 4180915285783849 m001 (Paris+QuadraticClass)/(GAMMA(13/24)+CareFree) 4180915289968227 m001 (ZetaQ(3)+ZetaQ(4))/(exp(Pi)+KhinchinHarmonic) 4180915305613039 r005 Re(z^2+c),c=19/118+23/56*I,n=20 4180915321338139 r009 Re(z^3+c),c=-47/106+9/58*I,n=56 4180915339181578 m001 BesselK(0,1)*Rabbit/TravellingSalesman 4180915341055497 m001 (FibonacciFactorial-cos(1))/(Porter+ZetaP(3)) 4180915350302548 r009 Re(z^3+c),c=-47/106+9/58*I,n=55 4180915360546652 s002 sum(A227584[n]/(n*2^n+1),n=1..infinity) 4180915380739874 a007 Real Root Of -25*x^4+156*x^3+160*x^2+862*x-399 4180915384809761 l006 ln(1574/2391) 4180915393418532 g007 Psi(2,3/10)+Psi(2,3/4)-Psi(2,5/9)-Psi(2,3/7) 4180915402078947 a007 Real Root Of -197*x^4-609*x^3+880*x^2-166*x-390 4180915414537148 r005 Im(z^2+c),c=15/98+17/39*I,n=62 4180915423873738 p001 sum(1/(572*n+397)/n/(25^n),n=1..infinity) 4180915431291064 r002 12th iterates of z^2 + 4180915433761499 m001 Pi/(Psi(1,1/3)-cos(1/5*Pi)-Pi^(1/2)) 4180915443331442 r005 Im(z^2+c),c=-5/106+23/41*I,n=21 4180915459801510 s002 sum(A138746[n]/(2^n+1),n=1..infinity) 4180915460582981 m001 (Paris-PrimesInBinary)/(Zeta(1/2)+CareFree) 4180915481536228 m001 ZetaQ(4)^Gompertz*Otter^Gompertz 4180915501383282 m008 (5/6*Pi^3-1/3)/(1/5*Pi^5-1/5) 4180915504095952 r009 Re(z^3+c),c=-1/29+25/28*I,n=25 4180915521956489 r005 Im(z^2+c),c=7/60+14/23*I,n=32 4180915532242983 r005 Re(z^2+c),c=-10/17+2/17*I,n=39 4180915556045771 m001 PlouffeB-Riemann2ndZero^Zeta(1,2) 4180915559841356 m005 (1/2*5^(1/2)-4/7)/(9/11*exp(1)-11/12) 4180915560562832 a001 341/11592*28657^(29/41) 4180915566471548 m001 (Zeta(5)+ZetaQ(3))/Riemann3rdZero 4180915582416944 r002 3th iterates of z^2 + 4180915584793521 m001 (Otter+TreeGrowth2nd)/(ErdosBorwein-Kolakoski) 4180915593062298 r005 Re(z^2+c),c=17/54+3/52*I,n=48 4180915601002225 m001 1/exp((2^(1/3)))*Porter^2/Zeta(1/2) 4180915609487038 q001 758/1813 4180915624824175 r002 34th iterates of z^2 + 4180915636487078 a001 7/4181*5^(29/51) 4180915638157015 r002 63i'th iterates of 2*x/(1-x^2) of 4180915654105511 r005 Im(z^2+c),c=21/62+13/61*I,n=23 4180915663998809 r005 Im(z^2+c),c=7/24+17/56*I,n=43 4180915668888420 a007 Real Root Of -782*x^4+571*x^3+381*x^2+684*x+285 4180915692263729 m001 ln(Rabbit)*Bloch*Sierpinski 4180915692424946 r005 Im(z^2+c),c=1/56+25/42*I,n=49 4180915711215992 r002 45th iterates of z^2 + 4180915741945100 a007 Real Root Of 376*x^4-902*x^3-172*x^2-987*x-460 4180915743692774 a007 Real Root Of -132*x^4-407*x^3+775*x^2+662*x-191 4180915745893571 a003 cos(Pi*28/69)/cos(Pi*43/90) 4180915755412745 r002 32th iterates of z^2 + 4180915758768091 r002 50th iterates of z^2 + 4180915764069005 m005 (1/2*Catalan-1/10)/(-3/20+9/20*5^(1/2)) 4180915776526032 m005 (1/3*gamma+1/10)/(4/9*5^(1/2)+6) 4180915781502411 m005 (1/3*3^(1/2)-1/11)/(5/11*Catalan-3/10) 4180915798359554 l006 ln(101/6608) 4180915809318174 r005 Re(z^2+c),c=-16/27+1/49*I,n=39 4180915816111975 r002 32th iterates of z^2 + 4180915821564542 a001 75025/1364*199^(9/11) 4180915824795644 r009 Re(z^3+c),c=-1/29+25/28*I,n=27 4180915845714740 m001 ln(Sierpinski)^2*MertensB1*BesselK(0,1)^2 4180915846625742 a001 47*267914296^(12/17) 4180915846951131 a007 Real Root Of -498*x^4+54*x^3+340*x^2+588*x-294 4180915866919427 r005 Re(z^2+c),c=-19/29+4/31*I,n=15 4180915869952644 r005 Re(z^2+c),c=-18/31+1/52*I,n=17 4180915870138343 m001 GAMMA(13/24)^((1+3^(1/2))^(1/2)/Zeta(1,2)) 4180915870138343 m001 GAMMA(13/24)^(sqrt(1+sqrt(3))/Zeta(1,2)) 4180915872118167 a001 3571/317811*832040^(13/49) 4180915897363261 v002 sum(1/(5^n+(30*n^2-54*n+57)),n=1..infinity) 4180915902615049 r005 Re(z^2+c),c=-17/30+16/49*I,n=44 4180915912141679 m001 Ei(1)^(5^(1/2))*Ei(1)^ZetaQ(4) 4180915920793927 r002 27th iterates of z^2 + 4180915921052803 m005 (1/2*3^(1/2)-3/7)/(3/11*gamma+8/9) 4180915927262077 m005 (1/2*Pi-6/11)/(9/10*Pi-3/8) 4180915929182400 a001 843*(1/2*5^(1/2)+1/2)^26*4^(10/23) 4180915932464974 r005 Im(z^2+c),c=5/29+21/50*I,n=29 4180915932857049 r005 Im(z^2+c),c=3/98+21/40*I,n=63 4180915948520454 r009 Re(z^3+c),c=-53/114+5/28*I,n=21 4180915955056836 r005 Im(z^2+c),c=-11/60+16/27*I,n=33 4180915964417211 r009 Re(z^3+c),c=-1/29+25/28*I,n=29 4180915971534883 r005 Re(z^2+c),c=-17/30+29/100*I,n=49 4180915973787601 r005 Re(z^2+c),c=-29/46+17/57*I,n=47 4180915978038983 m001 (Catalan+Trott2nd)/(exp(Pi)-gamma) 4180915987218527 m001 (FellerTornier+Khinchin)/(Porter-RenyiParking) 4180915987296180 r005 Im(z^2+c),c=-2/9+9/14*I,n=59 4180915996530544 a001 3/10946*317811^(1/30) 4180916001942564 r009 Re(z^3+c),c=-47/106+9/58*I,n=51 4180916008170965 r009 Re(z^3+c),c=-1/29+25/28*I,n=31 4180916014966511 l006 ln(6637/10082) 4180916018142259 r009 Re(z^3+c),c=-1/29+25/28*I,n=33 4180916018458355 r009 Re(z^3+c),c=-1/29+25/28*I,n=47 4180916018458716 r009 Re(z^3+c),c=-1/29+25/28*I,n=49 4180916018458986 r009 Re(z^3+c),c=-1/29+25/28*I,n=51 4180916018459095 r009 Re(z^3+c),c=-1/29+25/28*I,n=53 4180916018459128 r009 Re(z^3+c),c=-1/29+25/28*I,n=55 4180916018459134 r009 Re(z^3+c),c=-1/29+25/28*I,n=63 4180916018459134 r009 Re(z^3+c),c=-1/29+25/28*I,n=57 4180916018459135 r009 Re(z^3+c),c=-1/29+25/28*I,n=61 4180916018459135 r009 Re(z^3+c),c=-1/29+25/28*I,n=59 4180916018459162 r009 Re(z^3+c),c=-1/29+25/28*I,n=45 4180916018467441 r009 Re(z^3+c),c=-1/29+25/28*I,n=43 4180916018505152 r009 Re(z^3+c),c=-1/29+25/28*I,n=41 4180916018628789 r009 Re(z^3+c),c=-1/29+25/28*I,n=39 4180916018923587 r009 Re(z^3+c),c=-1/29+25/28*I,n=37 4180916019273768 r009 Re(z^3+c),c=-1/29+25/28*I,n=35 4180916022979014 r005 Im(z^2+c),c=39/122+16/59*I,n=34 4180916036802053 m001 (Pi^(1/2)-MinimumGamma)/(Porter-Sarnak) 4180916037529935 r005 Re(z^2+c),c=-16/27+1/26*I,n=39 4180916040369628 r005 Im(z^2+c),c=8/25+7/30*I,n=16 4180916047498780 r009 Im(z^3+c),c=-2/15+13/27*I,n=18 4180916057998111 r005 Im(z^2+c),c=-81/86+14/43*I,n=3 4180916094151375 a007 Real Root Of 970*x^4-278*x^3+98*x^2-349*x-213 4180916099412715 r005 Re(z^2+c),c=-16/27+1/26*I,n=35 4180916113427599 r002 23th iterates of z^2 + 4180916126473387 r009 Re(z^3+c),c=-55/118+8/45*I,n=52 4180916138330888 b008 5*JacobiSD[EulerGamma,Pi] 4180916139202758 m005 (1/2*5^(1/2)+4/9)/(2/7*2^(1/2)-7/9) 4180916140076591 r005 Im(z^2+c),c=39/110+7/41*I,n=50 4180916140692279 a008 Real Root of x^4-x^3-2*x^2-24*x-1 4180916143161565 l006 ln(1944/2027) 4180916152139069 a001 9349/832040*832040^(13/49) 4180916154581545 h001 (-9*exp(3/2)+5)/(-3*exp(1)+9) 4180916163114839 m001 1/sin(1)^2/exp(1)*ln(sqrt(5)) 4180916163570933 r009 Im(z^3+c),c=-1/114+28/57*I,n=12 4180916177167786 m005 (19/28+1/4*5^(1/2))/(-79/176+3/16*5^(1/2)) 4180916181611042 m001 1/exp(TwinPrimes)^2*Backhouse*Zeta(5)^2 4180916189512713 s001 sum(exp(-Pi/3)^n*A214030[n],n=1..infinity) 4180916191778095 r002 54th iterates of z^2 + 4180916192673163 a001 29/233*610^(39/43) 4180916192993568 a001 24476/2178309*832040^(13/49) 4180916207361011 r002 37th iterates of z^2 + 4180916209889728 a001 3571/10946*3^(7/31) 4180916210871446 l006 ln(5063/7691) 4180916215557409 m001 1/exp(CareFree)^2*MertensB1/GAMMA(7/12) 4180916218243037 a001 15127/1346269*832040^(13/49) 4180916220750521 r005 Im(z^2+c),c=-2/15+9/10*I,n=9 4180916225651830 m001 exp(-1/2*Pi)^Kolakoski/(exp(-1/2*Pi)^Niven) 4180916271850580 m001 (ln(3)+gamma(2))/(KhinchinHarmonic+Thue) 4180916274515570 a001 2/47*199^(13/15) 4180916278698334 a007 Real Root Of 252*x^4+814*x^3-830*x^2+865*x+615 4180916290853058 r002 38th iterates of z^2 + 4180916292725844 a007 Real Root Of 233*x^4+864*x^3-619*x^2-574*x+370 4180916299318104 a001 55/4870847*47^(17/50) 4180916309182286 s001 sum(exp(-Pi)^n*A183261[n],n=1..infinity) 4180916309182286 s002 sum(A183261[n]/(exp(pi*n)),n=1..infinity) 4180916321803316 r005 Im(z^2+c),c=3/70+31/60*I,n=52 4180916325201504 a001 5778/514229*832040^(13/49) 4180916347492090 m001 (Mills+Trott2nd)/(exp(1)+Bloch) 4180916348847974 r002 48th iterates of z^2 + 4180916351549417 m005 (1/2*Pi-5/12)/(1/8*5^(1/2)-5/9) 4180916353775343 a001 11/4181*121393^(17/27) 4180916361862292 m001 1/ln(cosh(1))/Rabbit/log(1+sqrt(2))^2 4180916367815506 m001 (-3^(1/3)+ZetaP(4))/(2^(1/2)+Si(Pi)) 4180916380918160 a007 Real Root Of 65*x^4+31*x^3-967*x^2+255*x+374 4180916391155024 a007 Real Root Of 998*x^4+469*x^3+983*x^2-727*x-472 4180916415124119 m001 (-Artin+MadelungNaCl)/(exp(1)+LambertW(1)) 4180916429438659 r005 Im(z^2+c),c=-1/34+9/16*I,n=23 4180916455913831 r005 Im(z^2+c),c=1/86+17/32*I,n=31 4180916473769256 m001 sinh(1)*BesselK(1,1)/exp(sqrt(2))^2 4180916482076831 s002 sum(A225794[n]/(n!^2),n=1..infinity) 4180916490144987 r005 Re(z^2+c),c=-55/94+13/63*I,n=17 4180916495878465 a001 9349/28657*3^(7/31) 4180916496869857 a007 Real Root Of -181*x^4-626*x^3+504*x^2-162*x+68 4180916503685466 m001 ReciprocalLucas^ln(2)+Sierpinski 4180916507345997 r005 Im(z^2+c),c=5/58+18/37*I,n=52 4180916509839888 p001 sum((-1)^n/(263*n+239)/(625^n),n=0..infinity) 4180916531214973 m001 PlouffeB^LandauRamanujan/FeigenbaumKappa 4180916537603659 a001 24476/75025*3^(7/31) 4180916542254077 m001 Riemann1stZero^Zeta(3)*3^(1/2) 4180916543691283 a001 64079/196418*3^(7/31) 4180916547453642 a001 39603/121393*3^(7/31) 4180916550668491 r005 Im(z^2+c),c=7/78+15/31*I,n=44 4180916551468633 r002 56th iterates of z^2 + 4180916563391248 a001 2161/6624*3^(7/31) 4180916566064929 p001 sum(1/(199*n+24)/(32^n),n=0..infinity) 4180916571816823 m001 1/3*(Pi-Psi(2,1/3)*Zeta(5))*3^(2/3) 4180916583534390 l006 ln(3489/5300) 4180916591224226 m001 (Magata+Riemann1stZero)/(FeigenbaumMu+Kac) 4180916595645445 r009 Im(z^3+c),c=-3/11+22/49*I,n=15 4180916595828462 r005 Re(z^2+c),c=-16/27+2/61*I,n=53 4180916601570737 a007 Real Root Of -894*x^4-698*x^3+200*x^2+960*x-358 4180916608126719 m005 (1/2*gamma+5/12)/(4/7*Zeta(3)+1) 4180916618828682 a007 Real Root Of -571*x^4+445*x^3+501*x^2+642*x+26 4180916639927850 m009 (1/4*Pi^2-6)/(1/6*Pi^2-4/5) 4180916644200714 r005 Re(z^2+c),c=-3/4+53/233*I,n=6 4180916648030067 p001 sum(1/(311*n+240)/(128^n),n=0..infinity) 4180916661065270 r005 Im(z^2+c),c=-21/31+15/46*I,n=57 4180916672629225 a001 5778/17711*3^(7/31) 4180916679459131 m001 TreeGrowth2nd/ln(Riemann2ndZero)/sin(Pi/5)^2 4180916700277170 r005 Im(z^2+c),c=2/15+9/20*I,n=32 4180916704402369 r005 Re(z^2+c),c=-37/64+9/41*I,n=38 4180916706333595 r009 Re(z^3+c),c=-1/29+25/28*I,n=21 4180916709051177 a007 Real Root Of -972*x^4+735*x^3+790*x^2+801*x-497 4180916711364877 r002 50th iterates of z^2 + 4180916715503004 a007 Real Root Of -39*x^4+720*x^3+716*x^2+642*x-445 4180916718145172 m001 (Kolakoski+MinimumGamma)/(Ei(1,1)+Zeta(1,-1)) 4180916718474841 a007 Real Root Of -160*x^4-596*x^3+295*x^2+174*x+902 4180916726736017 m006 (1/4*Pi+3)/(3/4/Pi+2/3) 4180916728739940 m001 1/GAMMA(11/12)/exp(CopelandErdos)^2/sqrt(2) 4180916741607082 b008 7/2+Sqrt[ArcCot[2]] 4180916759643087 m001 1/Zeta(1,2)^2*ln(FeigenbaumC)^2*Zeta(9)^2 4180916769834847 a003 cos(Pi*25/119)*cos(Pi*43/89) 4180916771768109 a007 Real Root Of 667*x^4+848*x^3+851*x^2-179*x-182 4180916774995930 m001 (5^(1/2)+exp(-1/2*Pi))/(FeigenbaumDelta+Salem) 4180916775360937 r002 35th iterates of z^2 + 4180916776115510 r002 35th iterates of z^2 + 4180916777567136 r005 Im(z^2+c),c=37/110+13/59*I,n=33 4180916805858855 a007 Real Root Of -379*x^4+170*x^3-592*x^2-49*x+107 4180916818076050 r002 22th iterates of z^2 + 4180916825608043 r005 Im(z^2+c),c=1/50+29/52*I,n=30 4180916826245386 a007 Real Root Of -977*x^4+111*x^3+693*x^2+365*x-252 4180916842483740 m007 (-4*gamma+2/5)/(-2/5*gamma-6/5*ln(2)+1/5*Pi+5) 4180916849140471 r009 Re(z^3+c),c=-47/106+9/58*I,n=50 4180916849915045 m001 Bloch^Kolakoski/ln(2+3^(1/2)) 4180916856910130 r005 Re(z^2+c),c=-57/94+11/38*I,n=14 4180916860946939 r005 Re(z^2+c),c=-13/22+10/121*I,n=48 4180916861292243 r009 Im(z^3+c),c=-25/54+3/61*I,n=29 4180916869244277 r005 Im(z^2+c),c=-9/14+79/243*I,n=5 4180916880086904 m001 GAMMA(3/4)-Sarnak^Robbin 4180916884633326 r005 Im(z^2+c),c=2/17+5/8*I,n=32 4180916885621197 r005 Im(z^2+c),c=-5/6+1/41*I,n=64 4180916888029781 r005 Re(z^2+c),c=-55/94+1/7*I,n=27 4180916900466659 a001 47/832040*987^(9/31) 4180916901313465 m001 (Paris+Totient)/(Zeta(1,2)-FeigenbaumAlpha) 4180916904632551 a001 18*(1/2*5^(1/2)+1/2)^22*7^(10/11) 4180916906608313 a007 Real Root Of 121*x^4+189*x^3+461*x^2-549*x-300 4180916914951775 r002 18th iterates of z^2 + 4180916918734805 m001 (-MertensB3+QuadraticClass)/(Psi(1,1/3)+ln(2)) 4180916925680750 m001 1/GAMMA(7/24)^2/exp(Niven)^2*Zeta(3) 4180916926240043 a001 1/64003*(1/2*5^(1/2)+1/2)^3*2207^(7/13) 4180916926926738 r005 Im(z^2+c),c=7/66+17/36*I,n=47 4180916930053868 m001 (GAMMA(7/24)+1/2)/(GAMMA(1/6)+3) 4180916932681766 l006 ln(5404/8209) 4180916933540693 r005 Re(z^2+c),c=-63/110+10/37*I,n=40 4180916941414525 r005 Im(z^2+c),c=11/90+23/50*I,n=49 4180916956251909 a001 11/2*1597^(11/40) 4180916969315721 m001 (RenyiParking-ZetaQ(2))/(Ei(1)-CopelandErdos) 4180916976456009 q001 1687/4035 4180916977960022 r002 58th iterates of z^2 + 4180916994933208 r005 Re(z^2+c),c=-4/13+19/30*I,n=15 4180916995409069 r002 21th iterates of z^2 + 4180917008032267 r005 Re(z^2+c),c=-83/122+6/29*I,n=39 4180917018889694 a001 7778742049/3*521^(4/9) 4180917035100917 a001 17711/123*123^(7/10) 4180917036357378 r009 Im(z^3+c),c=-2/15+13/27*I,n=21 4180917037524903 a007 Real Root Of 525*x^4-15*x^3-37*x^2-173*x-83 4180917047114843 m001 Khintchine^2*ln(Bloch)^2/Paris^2 4180917057020388 m001 log(2+sqrt(3))*Tribonacci*ln(sin(1)) 4180917058305742 a001 2207/196418*832040^(13/49) 4180917058500199 r009 Im(z^3+c),c=-19/44+20/53*I,n=38 4180917067287892 a007 Real Root Of -80*x^4-126*x^3+675*x^2-778*x+184 4180917073077122 a003 sin(Pi*12/73)*sin(Pi*9/28) 4180917076319346 m005 (13/20+1/4*5^(1/2))/(7/8*Pi+1/7) 4180917079045295 a007 Real Root Of 104*x^4+280*x^3-918*x^2-997*x+564 4180917082817281 r005 Im(z^2+c),c=-25/114+32/43*I,n=44 4180917087833971 r002 7th iterates of z^2 + 4180917093787291 a007 Real Root Of 695*x^4-826*x^3+59*x^2-878*x-459 4180917101072747 r009 Re(z^3+c),c=-47/106+9/58*I,n=46 4180917106063985 a007 Real Root Of 731*x^4+496*x^3+101*x^2-766*x-324 4180917106253640 r005 Im(z^2+c),c=-3/26+19/22*I,n=6 4180917109342845 m001 GAMMA(1/6)*Riemann1stZero*ln(sin(Pi/5)) 4180917126339736 h001 (1/8*exp(2)+5/11)/(1/3*exp(2)+5/6) 4180917129388662 a007 Real Root Of -76*x^4-226*x^3-309*x^2+832*x-275 4180917131992255 m001 1/BesselK(0,1)*TreeGrowth2nd/exp(Catalan) 4180917163079692 r002 27th iterates of z^2 + 4180917179157091 r009 Im(z^3+c),c=-15/29+17/50*I,n=58 4180917179904613 m005 (1/2*exp(1)+1/11)/(2/3*Zeta(3)-5/11) 4180917184344931 m001 (GaussAGM+Kac)/(PolyaRandomWalk3D+ZetaQ(3)) 4180917192144077 m004 5/3+125*Pi+5*Sqrt[5]*Pi*Sin[Sqrt[5]*Pi] 4180917214782734 m001 Robbin*(Ei(1,1)+ThueMorse) 4180917236593876 a005 (1/sin(91/209*Pi))^69 4180917237690546 r009 Re(z^3+c),c=-57/118+13/33*I,n=8 4180917249441930 r002 45th iterates of z^2 + 4180917267302407 r005 Re(z^2+c),c=-49/90+21/61*I,n=34 4180917288569324 a001 75025/843*199^(8/11) 4180917292405848 r002 4th iterates of z^2 + 4180917306062275 r005 Im(z^2+c),c=7/122+31/52*I,n=50 4180917308349233 a001 1/438683*(1/2*5^(1/2)+1/2)^11*15127^(3/13) 4180917310923433 r002 39th iterates of z^2 + 4180917322432941 r005 Im(z^2+c),c=25/74+9/38*I,n=50 4180917322499012 m006 (3*Pi^2+4/5)/(2/5/Pi+3/5) 4180917322952237 a001 1/1858291*(1/2*5^(1/2)+1/2)^8*64079^(6/13) 4180917328846083 a001 1/709804*(1/2*5^(1/2)+1/2)^15*24476^(1/13) 4180917337133350 m006 (4*exp(2*Pi)-3/5)/(3/5*Pi^2-4/5) 4180917369374378 m001 1/Kolakoski/Si(Pi)^2/ln(Catalan) 4180917373354011 s001 sum(exp(-Pi/2)^(n-1)*A231676[n],n=1..infinity) 4180917373895123 m001 (Khinchin-Totient)/(Zeta(1/2)+Grothendieck) 4180917379135588 a007 Real Root Of 736*x^4-848*x^3+645*x^2-534*x+150 4180917385858126 m006 (2/5/Pi-1/4)/(3*ln(Pi)-1/2) 4180917421357465 a001 2207/6765*3^(7/31) 4180917448392751 m001 (-ln(3)+Riemann1stZero)/(Si(Pi)+BesselI(0,1)) 4180917448454759 h005 exp(cos(Pi*8/39)+cos(Pi*13/46)) 4180917456660338 h001 (1/5*exp(2)+1/7)/(1/2*exp(2)+2/11) 4180917457557467 r005 Im(z^2+c),c=9/32+19/60*I,n=56 4180917465980375 r005 Im(z^2+c),c=-1/31+33/59*I,n=40 4180917479571667 a001 3571/121393*28657^(29/41) 4180917493734671 r009 Im(z^3+c),c=-2/15+13/27*I,n=19 4180917502078825 m001 BesselJZeros(0,1)*GAMMA(7/24)/sqrt(Pi) 4180917515303540 r008 a(0)=4,K{-n^6,1+31*n-26*n^2-12*n^3} 4180917521194852 b008 Sin[Sqrt[ArcCoth[2*E]]] 4180917524575393 p004 log(17207/263) 4180917533605804 r005 Im(z^2+c),c=-13/122+23/41*I,n=11 4180917548184994 r009 Im(z^3+c),c=-13/42+24/55*I,n=27 4180917549880825 m002 -Pi-Sinh[Pi]-Tanh[Pi]+Sinh[Pi]*Tanh[Pi] 4180917556686918 m001 arctan(1/2)^ln(2)/OrthogonalArrays 4180917558886338 m001 FransenRobinson/FeigenbaumD/FeigenbaumAlpha 4180917568804552 l006 ln(1915/2909) 4180917592427945 r005 Im(z^2+c),c=1/26+13/25*I,n=54 4180917599826143 a001 1/103559*(1/2*5^(1/2)+1/2)^10*3571^(2/13) 4180917617032950 m001 (Psi(1,1/3)+gamma(3))/(-Riemann3rdZero+Thue) 4180917641382445 m001 (BesselI(0,1)+gamma(3))/(-Artin+Magata) 4180917654195669 r002 16th iterates of z^2 + 4180917666986065 r005 Im(z^2+c),c=-61/74+15/58*I,n=6 4180917675929079 a007 Real Root Of -48*x^4-65*x^3+286*x^2-961*x+899 4180917676536031 m005 (1/3*Catalan-2/5)/(-61/22+5/22*5^(1/2)) 4180917681508134 a007 Real Root Of 91*x^4+309*x^3-94*x^2+722*x-561 4180917685232138 r005 Im(z^2+c),c=-8/19+19/35*I,n=4 4180917703516462 a005 (1/sin(107/231*Pi))^1589 4180917715573069 r005 Re(z^2+c),c=-9/16+3/128*I,n=11 4180917716765649 a007 Real Root Of -240*x^4-938*x^3+92*x^2-790*x-130 4180917736918357 a001 22768774562*2584^(22/23) 4180917751661412 r005 Re(z^2+c),c=-29/38+19/39*I,n=2 4180917759551283 a001 9349/317811*28657^(29/41) 4180917763493521 r002 2th iterates of z^2 + 4180917769952656 m001 MinimumGamma/ln(Lehmer)/Sierpinski^2 4180917770480530 m001 1/ln(PrimesInBinary)*Bloch^2*sqrt(1+sqrt(3)) 4180917773493111 r002 46th iterates of z^2 + 4180917796558869 m008 (2/3*Pi^4-4/5)/(1/2*Pi^5+2/5) 4180917800399758 a001 6119/208010*28657^(29/41) 4180917810042775 a001 39603/1346269*28657^(29/41) 4180917812583116 a007 Real Root Of -33*x^4-176*x^3-354*x^2+684*x+336 4180917815229403 a007 Real Root Of 272*x^4+974*x^3-820*x^2-469*x+445 4180917817063987 a007 Real Root Of -261*x^4-956*x^3+668*x^2+384*x-189 4180917825645504 a001 15127/514229*28657^(29/41) 4180917834506699 m001 1/ln(GAMMA(5/12))^2/Lehmer/sin(1)^2 4180917835507811 r005 Re(z^2+c),c=-83/110+3/58*I,n=50 4180917843217954 s002 sum(A224241[n]/(n*exp(pi*n)+1),n=1..infinity) 4180917848819913 r002 9th iterates of z^2 + 4180917854626301 m001 1/FeigenbaumD*exp(FeigenbaumDelta)^2*Pi^2 4180917856702675 a001 1149851/2*165580141^(22/23) 4180917860580308 m001 (Zeta(1/2)-Bloch)/(MertensB1-Sarnak) 4180917877370795 m008 (1/6*Pi^3-3/4)/(4*Pi-2) 4180917914299541 m001 (BesselK(1,1)-ZetaP(3))/(sin(1/5*Pi)-ln(5)) 4180917919557808 m004 (4*Sqrt[5])/Pi+5*Pi+5*Pi*Csc[Sqrt[5]*Pi] 4180917922277741 r002 24th iterates of z^2 + 4180917922615294 m001 Backhouse/KhinchinLevy*Magata 4180917926736457 r002 24th iterates of z^2 + 4180917928982295 m004 (-25*Sqrt[5]*Pi)/4+375*Pi*Csch[Sqrt[5]*Pi] 4180917932588201 a001 2889/98209*28657^(29/41) 4180917935582318 r002 52th iterates of z^2 + 4180917937873471 m001 GAMMA(1/12)*exp(LaplaceLimit)^2*cos(Pi/12) 4180917939552948 r002 49th iterates of z^2 + 4180917941276013 r002 58th iterates of z^2 + 4180917942356926 m001 1/sinh(1)/exp((2^(1/3)))*sqrt(3) 4180917953036251 r009 Im(z^3+c),c=-13/86+27/41*I,n=2 4180917971486462 m004 -144+Sinh[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 4180917973636254 m001 (Cahen-Catalan)/(-LaplaceLimit+Trott) 4180917987420403 r005 Im(z^2+c),c=-33/122+36/53*I,n=6 4180917987485763 m001 (Catalan+FeigenbaumC)/(MasserGramain+Trott) 4180917999734332 r005 Re(z^2+c),c=-31/82+14/27*I,n=17 4180918024227709 a007 Real Root Of -91*x^4+839*x^3-652*x^2+947*x+574 4180918024647481 m001 (Shi(1)-ln(Pi))/(-Paris+Riemann2ndZero) 4180918026951656 r005 Im(z^2+c),c=-13/22+61/96*I,n=6 4180918040371499 m005 (1/2*Catalan-1/6)/(7/12*exp(1)-8/9) 4180918052763551 r002 64th iterates of z^2 + 4180918053030387 r009 Im(z^3+c),c=-1/6+23/49*I,n=6 4180918065991692 m001 Totient^Sierpinski*ReciprocalLucas 4180918068157920 r009 Im(z^3+c),c=-47/102+14/39*I,n=49 4180918083593019 r005 Re(z^2+c),c=7/40+31/61*I,n=31 4180918085137352 r005 Im(z^2+c),c=-3/19+31/48*I,n=5 4180918086177571 r002 56th iterates of z^2 + 4180918091809180 q001 929/2222 4180918094825108 m004 (-25*Sqrt[5]*Pi)/4+(750*Pi)/E^(Sqrt[5]*Pi) 4180918103334191 p001 sum((-1)^n/(374*n+239)/(512^n),n=0..infinity) 4180918133643088 l006 ln(6086/9245) 4180918135584353 r005 Im(z^2+c),c=-5/44+27/46*I,n=26 4180918169352001 r005 Re(z^2+c),c=-67/118+15/61*I,n=30 4180918181276762 m001 (Mills+QuadraticClass)/(Lehmer-cos(1)) 4180918181531617 r005 Re(z^2+c),c=-13/22+10/121*I,n=50 4180918186238598 s002 sum(A113495[n]/((pi^n-1)/n),n=1..infinity) 4180918186959179 m001 (Kac+MinimumGamma)/(Stephens-ZetaP(4)) 4180918191505087 r009 Im(z^3+c),c=-5/46+17/35*I,n=9 4180918198518881 a008 Real Root of x^4-15*x^2-13*x+11 4180918207758353 m006 (4*Pi-4)/(2*Pi^2+3/4) 4180918207758353 m008 (4*Pi-4)/(2*Pi^2+3/4) 4180918208733159 r005 Im(z^2+c),c=-1/106+27/49*I,n=64 4180918213523563 r005 Re(z^2+c),c=-14/25+27/53*I,n=5 4180918228535660 m005 (1/2*Zeta(3)-2/9)/(95/132+1/12*5^(1/2)) 4180918251839410 m001 2^(1/2)+3^(1/2)+MertensB2 4180918253443295 r005 Im(z^2+c),c=1/86+15/28*I,n=32 4180918255745120 r009 Im(z^3+c),c=-7/74+27/34*I,n=26 4180918260667660 m004 (-25*Sqrt[5]*Pi)/4+375*Pi*Sech[Sqrt[5]*Pi] 4180918261920836 a007 Real Root Of -503*x^4-268*x^3+452*x^2+605*x-297 4180918266147253 r005 Re(z^2+c),c=-59/58+11/62*I,n=32 4180918270887631 a007 Real Root Of 79*x^4-303*x^3-443*x^2-643*x+366 4180918282524499 r009 Re(z^3+c),c=-13/54+17/26*I,n=9 4180918287980893 r009 Re(z^3+c),c=-53/110+11/57*I,n=41 4180918295795012 a007 Real Root Of 948*x^4-764*x^3+252*x^2-572*x-368 4180918315072141 m001 (gamma(2)-FeigenbaumB)/(Tribonacci+ZetaP(3)) 4180918328937612 r005 Re(z^2+c),c=21/62+19/49*I,n=20 4180918329244953 a001 233/11*521^(5/46) 4180918333774401 r002 47th iterates of z^2 + 4180918338629822 r005 Im(z^2+c),c=-1/106+29/52*I,n=42 4180918340574782 m001 1/GAMMA(2/3)^2*ln(Riemann1stZero)/sin(Pi/5)^2 4180918358577789 r002 42th iterates of z^2 + 4180918358690112 r005 Im(z^2+c),c=5/62+26/53*I,n=38 4180918367243590 m007 (-gamma-3*ln(2)-1/2*Pi+1/5)/(-3/5*gamma+1/4) 4180918369863744 m001 exp(Salem)/FeigenbaumAlpha/GAMMA(1/6)^2 4180918379241020 r009 Re(z^3+c),c=-25/46+27/43*I,n=9 4180918382876154 m001 Lehmer^FeigenbaumB*MasserGramain 4180918388599308 m001 (3^(1/3)+Zeta(1,-1))/(MadelungNaCl+Mills) 4180918390797476 r005 Re(z^2+c),c=1/32+8/27*I,n=14 4180918392973165 l006 ln(4171/6336) 4180918396416222 m001 gamma*(Lehmer-ln(2+3^(1/2))) 4180918396416222 m001 gamma*(Lehmer-ln(2+sqrt(3))) 4180918406675490 m001 (BesselK(1,1)+Lehmer)/(Otter-Paris) 4180918407365341 m005 (1/3*3^(1/2)+1/6)/(4/9*exp(1)+4/7) 4180918424520059 r002 17th iterates of z^2 + 4180918426225381 m001 1/sqrt(5)^2/sinh(1)^2/exp(sqrt(Pi))^2 4180918432181502 a007 Real Root Of 17*x^4+728*x^3+729*x^2+346*x+398 4180918435120204 r002 45th iterates of z^2 + 4180918435948164 m001 exp(Porter)*KhintchineLevy^2/Zeta(1/2) 4180918438753962 m001 GAMMA(1/24)^polylog(4,1/2)+Zeta(1,2) 4180918442910571 m001 (Mills*Robbin-sin(1/5*Pi))/Robbin 4180918469889920 a003 cos(Pi*2/51)-cos(Pi*29/95) 4180918485588589 r005 Im(z^2+c),c=11/50+14/37*I,n=54 4180918521933922 r005 Re(z^2+c),c=-67/114+7/48*I,n=36 4180918524487482 s002 sum(A265071[n]/(n^2*exp(n)+1),n=1..infinity) 4180918527887561 m003 -35/6+(33*Sqrt[5])/64+Sin[1/2+Sqrt[5]/2]/2 4180918529975853 r005 Re(z^2+c),c=-19/34+27/100*I,n=24 4180918547522980 r005 Im(z^2+c),c=-36/29+1/29*I,n=63 4180918552251455 a001 1597/4*11^(1/52) 4180918554184930 m005 (1/2*5^(1/2)-1/7)/(65/48+7/16*5^(1/2)) 4180918555389306 a007 Real Root Of 943*x^4-654*x^3+395*x^2-826*x-491 4180918560050695 m001 (sin(1)-sin(1/12*Pi))/(Totient+ZetaQ(2)) 4180918560236647 r005 Re(z^2+c),c=-27/46+7/46*I,n=36 4180918571256876 a003 cos(Pi*11/74)-cos(Pi*19/108) 4180918571292962 p003 LerchPhi(1/5,1,239/85) 4180918572278743 m001 FeigenbaumAlpha^ZetaP(3)/FransenRobinson 4180918587028544 r005 Re(z^2+c),c=-83/60+1/64*I,n=22 4180918592769388 a007 Real Root Of 550*x^4-851*x^3-662*x^2-978*x+570 4180918600794870 l006 ln(54/3533) 4180918623149503 m001 (GAMMA(13/24)-Cahen)/(Riemann3rdZero-Salem) 4180918623929642 r005 Re(z^2+c),c=-3/4+1/57*I,n=60 4180918631809966 r009 Re(z^3+c),c=-49/94+7/33*I,n=45 4180918634666770 r005 Im(z^2+c),c=5/114+24/47*I,n=26 4180918638543852 l006 ln(6427/9763) 4180918640882581 a007 Real Root Of 813*x^4-83*x^3+466*x^2-212*x-201 4180918649148143 a003 sin(Pi*12/119)/sin(Pi*19/71) 4180918649528782 r002 39th iterates of z^2 + 4180918657387721 a007 Real Root Of 408*x^4-464*x^3+472*x^2-316*x-261 4180918665044985 b008 -5+Sqrt[Pi]*Tanh[1/2] 4180918665584351 a001 2207/75025*28657^(29/41) 4180918671538000 a008 Real Root of x^4-x^3-18*x^2+12*x+32 4180918682785949 r005 Re(z^2+c),c=-9/16+41/125*I,n=62 4180918686868535 a001 5702887/2207*76^(1/9) 4180918692439465 r005 Re(z^2+c),c=-43/78+13/36*I,n=62 4180918700243638 m005 (7/44+1/4*5^(1/2))/(4/7*2^(1/2)-7/11) 4180918714498242 r005 Im(z^2+c),c=1/19+33/64*I,n=11 4180918716150404 r002 7th iterates of z^2 + 4180918720905083 m001 polylog(4,1/2)/(Catalan+arctan(1/3)) 4180918721625261 m005 (1/2*Zeta(3)+5/11)/(10/11*gamma+2) 4180918728655922 r005 Re(z^2+c),c=-16/27+3/41*I,n=33 4180918763113124 m001 (3^(1/3)+GAMMA(13/24))/(Rabbit+Trott2nd) 4180918777553940 r002 49th iterates of z^2 + 4180918781736474 m005 (7/5+2*5^(1/2))/(9/8+1/8*5^(1/2)) 4180918782914014 r002 10th iterates of z^2 + 4180918788699326 a007 Real Root Of -7*x^4-283*x^3+386*x^2-749*x+249 4180918801078827 m001 CareFree^(StronglyCareFree/gamma(1)) 4180918801089729 v002 sum(1/(2^n+(30*n^2-42*n+61)),n=1..infinity) 4180918812779984 a007 Real Root Of -202*x^4-921*x^3-127*x^2+622*x-767 4180918859701103 r009 Im(z^3+c),c=-27/64+19/49*I,n=17 4180918863018819 a003 sin(Pi*7/120)*sin(Pi*7/95) 4180918872533043 a007 Real Root Of -213*x^4-795*x^3+272*x^2-627*x-394 4180918878160833 a001 1/39556*(1/2*5^(1/2)+1/2)^6*1364^(4/13) 4180918880125905 r005 Im(z^2+c),c=19/74+21/53*I,n=17 4180918887512833 r005 Im(z^2+c),c=1/110+20/33*I,n=62 4180918889907652 a007 Real Root Of -462*x^4-356*x^3-46*x^2+545*x+224 4180918891617948 r005 Re(z^2+c),c=-11/24+27/56*I,n=26 4180918892685671 m001 (MertensB2+TreeGrowth2nd)/(sin(1)+Khinchin) 4180918898343129 a007 Real Root Of -935*x^4-437*x^3-573*x^2+730*x+402 4180918908060894 a001 2889/4*10946^(24/55) 4180918908585190 a003 cos(Pi*37/115)-cos(Pi*45/97) 4180918914013293 m005 (1/2*3^(1/2)+7/11)/(2/11*5^(1/2)-4) 4180918921324314 r009 Re(z^3+c),c=-9/20+16/53*I,n=2 4180918933821480 a007 Real Root Of 121*x^4-748*x^3-401*x^2-306*x+249 4180918937927165 r009 Im(z^3+c),c=-49/106+25/58*I,n=16 4180918954412929 r009 Re(z^3+c),c=-9/22+5/42*I,n=31 4180918957893386 a007 Real Root Of -540*x^4+635*x^3+178*x^2+730*x+337 4180918982241204 m003 -1+Sqrt[5]/4+(Sqrt[5]*Cosh[1/2+Sqrt[5]/2])/256 4180918991115570 a005 (1/cos(7/157*Pi))^1783 4180918993985927 r001 21i'th iterates of 2*x^2-1 of 4180919000636964 r005 Re(z^2+c),c=-25/42+1/39*I,n=26 4180919005474804 a001 124*(1/2*5^(1/2)+1/2)^27*11^(17/20) 4180919038351223 a007 Real Root Of -649*x^4+68*x^3-977*x^2+996*x+612 4180919046183577 a007 Real Root Of -70*x^4-194*x^3+292*x^2-373*x+547 4180919058787633 r008 a(0)=4,K{-n^6,47-52*n+18*n^2-19*n^3} 4180919066531631 m001 gamma(1)*(Psi(2,1/3)-UniversalParabolic) 4180919081194812 r005 Im(z^2+c),c=3/26+20/43*I,n=61 4180919089276652 m008 (4/5*Pi^6-2/5)/(3/5*Pi^5+1/4) 4180919091580653 r002 20th iterates of z^2 + 4180919092566593 l006 ln(2256/3427) 4180919109628302 r002 7th iterates of z^2 + 4180919127091047 r002 6th iterates of z^2 + 4180919141359619 r005 Re(z^2+c),c=-57/98+6/31*I,n=45 4180919145707962 a003 sin(Pi*6/107)/cos(Pi*25/69) 4180919149685517 r005 Im(z^2+c),c=-29/102+3/49*I,n=14 4180919156081332 r005 Im(z^2+c),c=29/90+5/19*I,n=47 4180919160864511 a001 47/514229*28657^(4/27) 4180919163313433 a003 cos(Pi*16/83)*cos(Pi*35/106) 4180919174444146 r005 Re(z^2+c),c=-5/8+72/167*I,n=9 4180919180598469 r005 Im(z^2+c),c=-5/19+3/50*I,n=13 4180919184778578 m001 (gamma-ln(Pi))/(Conway+ZetaQ(2)) 4180919185802423 a007 Real Root Of 946*x^4-866*x^3-615*x^2-625*x-246 4180919187591779 m001 HardyLittlewoodC4/FellerTornier/BesselI(0,2) 4180919193393970 r009 Re(z^3+c),c=-47/106+9/58*I,n=44 4180919210262954 m001 Tribonacci/TreeGrowth2nd 4180919248010817 m003 -71/2+Sqrt[5]/4-Cosh[1/2+Sqrt[5]/2]^2 4180919262595173 r002 60th iterates of z^2 + 4180919268759231 r005 Im(z^2+c),c=6/29+16/41*I,n=45 4180919270076437 r002 56th iterates of z^2 + 4180919275112749 a007 Real Root Of -526*x^4-26*x^3-964*x^2+283*x+301 4180919279393893 a007 Real Root Of -206*x^4-683*x^3-815*x^2+462*x+292 4180919282437487 a008 Real Root of x^4-2*x^3-2*x^2-30*x+1 4180919296145026 r005 Re(z^2+c),c=-41/64+25/61*I,n=52 4180919296178609 a001 72/161*24476^(19/21) 4180919301651773 a001 72/161*64079^(19/23) 4180919302492908 a001 72/161*817138163596^(1/3) 4180919302492908 a001 72/161*(1/2+1/2*5^(1/2))^19 4180919302492909 a001 72/161*87403803^(1/2) 4180919302800807 a001 72/161*103682^(19/24) 4180919304795127 a001 72/161*39603^(19/22) 4180919313262625 m005 (1/2*2^(1/2)+7/11)/(3/4*Pi+6/7) 4180919319850513 a001 72/161*15127^(19/20) 4180919345912556 r005 Im(z^2+c),c=1/5+25/63*I,n=37 4180919358628787 m005 (13/42+1/6*5^(1/2))/(1/9*exp(1)-2/7) 4180919364780728 h001 (1/3*exp(2)+3/7)/(11/12*exp(2)+1/7) 4180919367671820 r005 Im(z^2+c),c=-22/27+2/57*I,n=3 4180919369892308 s002 sum(A234756[n]/((exp(n)-1)/n),n=1..infinity) 4180919376676179 a001 17711/521*199^(10/11) 4180919382266639 a001 3/969323029*123^(1/16) 4180919394363288 a007 Real Root Of 263*x^4+977*x^3-386*x^2+361*x-702 4180919418741449 r005 Re(z^2+c),c=-31/52+1/34*I,n=24 4180919419991721 a001 2584*76^(1/9) 4180919447143936 r002 3th iterates of z^2 + 4180919467727479 h001 (7/10*exp(1)+3/5)/(3/4*exp(2)+4/9) 4180919468131403 m001 FeigenbaumD/(Cahen-ZetaQ(4)) 4180919475967992 m005 (1/2*Pi-3/8)/(7/9*Pi+5/12) 4180919477487613 r009 Im(z^3+c),c=-23/52+23/62*I,n=44 4180919483612976 m001 FeigenbaumDelta-ln(2)*CareFree 4180919486181476 r005 Re(z^2+c),c=-51/118+5/9*I,n=38 4180919498251195 h001 (6/11*exp(2)+4/9)/(1/12*exp(2)+5/11) 4180919503032766 p004 log(10799/7109) 4180919514820802 a007 Real Root Of -633*x^4+401*x^3-892*x^2+477*x+404 4180919516772111 s002 sum(A062788[n]/(pi^n-1),n=1..infinity) 4180919518635122 r002 54th iterates of z^2 + 4180919520448101 m001 (ln(3)-BesselI(1,2))/(Lehmer-Weierstrass) 4180919526952974 a001 39088169/15127*76^(1/9) 4180919531272822 m001 (Gompertz-Sarnak)/(Ei(1)-BesselI(1,2)) 4180919542558411 a001 34111385/13201*76^(1/9) 4180919544835213 a001 133957148/51841*76^(1/9) 4180919545167394 a001 233802911/90481*76^(1/9) 4180919545215859 a001 1836311903/710647*76^(1/9) 4180919545222930 a001 267084832/103361*76^(1/9) 4180919545223961 a001 12586269025/4870847*76^(1/9) 4180919545224112 a001 10983760033/4250681*76^(1/9) 4180919545224134 a001 43133785636/16692641*76^(1/9) 4180919545224137 a001 75283811239/29134601*76^(1/9) 4180919545224137 a001 591286729879/228826127*76^(1/9) 4180919545224138 a001 86000486440/33281921*76^(1/9) 4180919545224138 a001 4052739537881/1568397607*76^(1/9) 4180919545224138 a001 3536736619241/1368706081*76^(1/9) 4180919545224138 a001 3278735159921/1268860318*76^(1/9) 4180919545224138 a001 2504730781961/969323029*76^(1/9) 4180919545224138 a001 956722026041/370248451*76^(1/9) 4180919545224138 a001 182717648081/70711162*76^(1/9) 4180919545224139 a001 139583862445/54018521*76^(1/9) 4180919545224147 a001 53316291173/20633239*76^(1/9) 4180919545224205 a001 10182505537/3940598*76^(1/9) 4180919545224599 a001 7778742049/3010349*76^(1/9) 4180919545227300 a001 2971215073/1149851*76^(1/9) 4180919545245812 a001 567451585/219602*76^(1/9) 4180919545372693 a001 433494437/167761*76^(1/9) 4180919546242355 a001 165580141/64079*76^(1/9) 4180919549836168 r005 Im(z^2+c),c=15/46+5/19*I,n=21 4180919550263685 r005 Re(z^2+c),c=-41/70+9/64*I,n=35 4180919552203101 a001 31622993/12238*76^(1/9) 4180919565218204 r009 Re(z^3+c),c=-7/90+43/59*I,n=44 4180919586088152 r009 Re(z^3+c),c=-25/58+1/7*I,n=20 4180919593058666 a001 24157817/9349*76^(1/9) 4180919626669129 m001 FeigenbaumC*exp(KhintchineLevy)^2*GAMMA(5/12) 4180919632632857 a007 Real Root Of 108*x^4+366*x^3+621*x^2-337*x-226 4180919636085439 r005 Re(z^2+c),c=-19/29+13/47*I,n=44 4180919643630135 m001 1/5*CopelandErdos^GAMMA(13/24)*5^(1/2) 4180919689957134 r005 Im(z^2+c),c=-2/3+50/139*I,n=21 4180919693844977 l006 ln(4853/7372) 4180919703120721 a007 Real Root Of -981*x^4+877*x^3-932*x^2+12*x+262 4180919714482276 r009 Im(z^3+c),c=-37/106+29/48*I,n=13 4180919717721985 r002 28th iterates of z^2 + 4180919720325361 r005 Im(z^2+c),c=31/90+16/61*I,n=40 4180919747254780 r002 4th iterates of z^2 + 4180919753353626 r002 52th iterates of z^2 + 4180919766974361 m005 (3*exp(1)-1/5)/(1/6*Pi-1/3) 4180919773132957 m005 (1/2*gamma-2/9)/(5/11*5^(1/2)+4/7) 4180919774483244 h001 (-7*exp(4)+8)/(-3*exp(8)-7) 4180919779384013 p001 sum(1/(587*n+24)/(12^n),n=0..infinity) 4180919794003382 r002 3th iterates of z^2 + 4180919802356518 q001 11/2631 4180919808034840 r009 Im(z^3+c),c=-33/122+9/20*I,n=16 4180919812595423 r005 Im(z^2+c),c=27/110+17/48*I,n=54 4180919844612503 m005 (3/4*exp(1)+1/2)/(8/5+2*5^(1/2)) 4180919863687062 r005 Im(z^2+c),c=23/98+4/11*I,n=34 4180919873086896 a001 9227465/3571*76^(1/9) 4180919875818257 s002 sum(A195664[n]/(16^n),n=1..infinity) 4180919878500625 r005 Re(z^2+c),c=-69/110+1/13*I,n=12 4180919909496773 a007 Real Root Of 585*x^4-887*x^3+352*x^2-659*x+27 4180919926308189 a007 Real Root Of -61*x^4+591*x^3+559*x^2+263*x-249 4180919934000096 r002 20th iterates of z^2 + 4180919956101895 m005 (13/12+1/4*5^(1/2))/(4*3^(1/2)-3) 4180919957838409 r009 Re(z^3+c),c=-65/122+8/27*I,n=60 4180919960104907 m001 ThueMorse/(QuadraticClass^OneNinth) 4180919977075151 a008 Real Root of x^5-2*x^4-8*x^3+16*x^2+2*x-3 4180919980778247 m001 1/exp(Cahen)*Artin*GAMMA(5/12) 4180919982285124 m007 (-4*gamma-8*ln(2)-1)/(-4/5*gamma+1/4) 4180919986222246 b008 42+PolyLog[2,-1/5] 4180919992748501 p004 log(34469/22691) 4180920003961254 a007 Real Root Of -813*x^4+618*x^3-503*x^2+48*x+178 4180920006192624 m001 (ln(gamma)+ln(2)*GaussAGM)/ln(2) 4180920008486279 a007 Real Root Of 807*x^4-842*x^3-218*x^2-420*x+18 4180920008689197 a007 Real Root Of -915*x^4+647*x^3+286*x^2+351*x+172 4180920020142058 a007 Real Root Of -82*x^4-204*x^3+704*x^2+666*x+625 4180920022752169 r005 Im(z^2+c),c=-59/94+27/56*I,n=7 4180920034067204 r009 Im(z^3+c),c=-1/30+26/53*I,n=13 4180920036286926 r002 42th iterates of z^2 + 4180920067713677 r009 Im(z^3+c),c=-2/15+13/27*I,n=23 4180920096374624 a007 Real Root Of 567*x^4+457*x^3+228*x^2-704*x+29 4180920113086111 a007 Real Root Of 109*x^4+571*x^3+512*x^2+82*x-182 4180920117621675 a001 167761/144*12586269025^(11/20) 4180920117769570 a001 16692641/72*832040^(11/20) 4180920122443450 r005 Im(z^2+c),c=1/66+23/43*I,n=58 4180920129683029 m008 (5/6*Pi^5-4/5)/(2*Pi^5-4) 4180920139500800 r002 4i'th iterates of 2*x/(1-x^2) of 4180920154534066 r009 Im(z^3+c),c=-27/56+20/63*I,n=9 4180920161832771 m001 (5^(1/2)-ErdosBorwein)/(MasserGramain+Thue) 4180920216172261 l006 ln(2597/3945) 4180920221771299 r002 4th iterates of z^2 + 4180920232643667 r005 Im(z^2+c),c=7/44+25/58*I,n=58 4180920242472058 m001 (3^(1/3))^2*Riemann2ndZero/exp(GAMMA(19/24))^2 4180920253403527 a007 Real Root Of -226*x^4-962*x^3-352*x^2-975*x+826 4180920258907476 m001 1/Porter/MadelungNaCl^2/ln((2^(1/3)))^2 4180920265081967 r009 Re(z^3+c),c=-41/86+4/17*I,n=10 4180920274278743 r005 Re(z^2+c),c=-2/3+41/223*I,n=6 4180920275663328 r002 6th iterates of z^2 + 4180920300778991 m001 (2^(1/3)+Kolakoski)/(PrimesInBinary+ZetaP(4)) 4180920314176703 r005 Im(z^2+c),c=5/32+13/30*I,n=59 4180920321929190 m001 (2*Pi/GAMMA(5/6)+FeigenbaumB)/(Niven-ZetaP(3)) 4180920371797989 v002 sum(1/(3^n*(3*n^3-8*n^2+8*n+7)),n=1..infinity) 4180920372095524 m001 (Catalan+Bloch)/(-HeathBrownMoroz+ZetaQ(4)) 4180920382368039 m001 (-ln(Pi)+CareFree)/(GAMMA(2/3)-ln(2)/ln(10)) 4180920387111170 r005 Im(z^2+c),c=-35/52+1/11*I,n=35 4180920396546407 m009 (2/5*Psi(1,1/3)+3)/(2/5*Psi(1,3/4)+2/3) 4180920401085376 m001 (2^(1/2)+Conway)/(FeigenbaumC+FeigenbaumDelta) 4180920407966271 a001 47/196418*10946^(3/50) 4180920432386171 m004 -6+125*Pi*Cot[Sqrt[5]*Pi]-5*Tan[Sqrt[5]*Pi] 4180920449365631 m001 (BesselJ(0,1)-GAMMA(3/4))/(-ln(Pi)+MertensB2) 4180920451750634 g003 Im(GAMMA(-101/30+I*(-41/12))) 4180920471826296 h001 (1/11*exp(2)+8/11)/(10/11*exp(1)+7/8) 4180920473104544 b008 Pi*(1/3+Sin[3/2]) 4180920484002165 r002 39th iterates of z^2 + 4180920485026507 a007 Real Root Of 136*x^4+294*x^3-960*x^2+857*x+295 4180920499996872 a005 (1/sin(38/99*Pi))^21 4180920512308055 r005 Re(z^2+c),c=-53/94+21/64*I,n=55 4180920537068724 r005 Re(z^2+c),c=29/114+1/58*I,n=54 4180920540501678 r005 Im(z^2+c),c=5/27+16/39*I,n=33 4180920544417680 a007 Real Root Of -132*x^4-534*x^3+257*x^2+904*x+594 4180920563508685 b008 ArcSinh[1/16+E^(-1)] 4180920575202739 a007 Real Root Of 110*x^4-607*x^3-981*x^2-891*x+585 4180920594356263 m001 (Zeta(1/2)+Zeta(1,-1))/(Conway+Sierpinski) 4180920598712654 a007 Real Root Of -467*x^4+797*x^3+835*x^2+103*x-233 4180920617924683 a001 123/8*89^(39/53) 4180920620688860 m001 (-FeigenbaumC+FeigenbaumD)/(Zeta(1/2)-gamma) 4180920626169015 r005 Re(z^2+c),c=-69/94+1/54*I,n=34 4180920632688254 m002 6/Pi^6+Pi^3+Cosh[Pi]/ProductLog[Pi] 4180920669985804 r005 Im(z^2+c),c=-9/50+39/46*I,n=18 4180920673851361 h001 (7/10*exp(2)+7/12)/(2/7*exp(1)+3/5) 4180920674140498 l006 ln(5535/8408) 4180920682681855 r009 Im(z^3+c),c=-3/70+25/51*I,n=13 4180920684377320 m001 HardyLittlewoodC5^ln(2)/((3^(1/3))^ln(2)) 4180920689357607 m001 (GlaisherKinkelin-Paris)/(Stephens-Thue) 4180920698304499 m001 exp(GAMMA(7/12))/Si(Pi)^2/LambertW(1)^2 4180920699087721 m001 Zeta(5)^2/ln(Zeta(3))^2*log(2+sqrt(3)) 4180920708300946 r002 63th iterates of z^2 + 4180920709057965 m001 PrimesInBinary/AlladiGrinstead/GAMMA(3/4) 4180920721775746 m005 (1/2*2^(1/2)+6)/(10/11*5^(1/2)-3/7) 4180920726511780 r009 Im(z^3+c),c=-57/118+15/49*I,n=7 4180920729138329 h001 (1/3*exp(1)+1/2)/(9/10*exp(1)+11/12) 4180920729138329 m005 (1/3*exp(1)+1/2)/(9/10*exp(1)+11/12) 4180920747718041 r005 Re(z^2+c),c=-11/18+10/121*I,n=12 4180920757479322 p001 sum((-1)^n/(457*n+236)/(25^n),n=0..infinity) 4180920758815410 b008 -1+E^(3/13+Sqrt[2]) 4180920763071910 m006 (1/3*exp(2*Pi)+3/4)/(4/5*exp(2*Pi)+1/3) 4180920763915910 a007 Real Root Of 382*x^4-491*x^3+869*x^2-848*x-554 4180920775450113 r005 Re(z^2+c),c=-19/26+7/22*I,n=11 4180920782175031 r005 Im(z^2+c),c=7/24+7/23*I,n=42 4180920798054332 a007 Real Root Of -192*x^4-164*x^3+383*x^2+866*x+289 4180920825077653 a007 Real Root Of -272*x^4-990*x^3+601*x^2+33*x+391 4180920837884107 a005 (1/cos(30/127*Pi))^216 4180920856709824 a007 Real Root Of 181*x^4+236*x^3+230*x^2-769*x-350 4180920859624919 r009 Re(z^3+c),c=-33/82+42/61*I,n=8 4180920867500503 a007 Real Root Of 950*x^4-797*x^3-266*x^2-156*x-106 4180920881314627 s002 sum(A255698[n]/(n^3*2^n-1),n=1..infinity) 4180920881474160 m001 Magata^2/ln(ErdosBorwein)/BesselJ(0,1)^2 4180920897814271 r009 Im(z^3+c),c=-5/118+25/51*I,n=11 4180920905269065 r005 Im(z^2+c),c=7/34+9/23*I,n=47 4180920913622502 r005 Im(z^2+c),c=2/19+26/55*I,n=48 4180920924817401 a001 3571/11*(1/2*5^(1/2)+1/2)^25*11^(17/20) 4180920934091517 a007 Real Root Of 25*x^4-26*x^3-525*x^2+55*x-132 4180920954207483 a007 Real Root Of 128*x^4+404*x^3-448*x^2+560*x+587 4180920976931320 r002 36th iterates of z^2 + 4180920984008239 a007 Real Root Of -700*x^4+926*x^3-83*x^2-109*x+58 4180920999747689 r005 Re(z^2+c),c=-21/22+7/104*I,n=18 4180921001101109 h001 (-3*exp(-2)-4)/(-3*exp(1/2)+6) 4180921002296831 r009 Re(z^3+c),c=-8/17+2/11*I,n=33 4180921005102921 m009 (1/2*Psi(1,3/4)-1/3)/(2/3*Psi(1,2/3)+1/5) 4180921012310989 g001 Psi(1/10,81/83) 4180921031443391 r005 Re(z^2+c),c=-37/60+1/54*I,n=18 4180921038204963 r005 Im(z^2+c),c=-5/18+3/44*I,n=4 4180921041467130 a003 cos(Pi*6/19)-sin(Pi*32/77) 4180921052631578 q001 1271/3040 4180921053990175 a007 Real Root Of 73*x^4+76*x^3+684*x^2-650*x-388 4180921062057670 l006 ln(115/7524) 4180921073796121 r009 Re(z^3+c),c=-9/19+5/27*I,n=58 4180921078954472 l006 ln(2938/4463) 4180921086978078 r009 Im(z^3+c),c=-29/62+17/48*I,n=63 4180921089616916 m005 (1/2*3^(1/2)-1/9)/(1/7*5^(1/2)-1/2) 4180921090833542 m001 (Pi-Psi(1,1/3)*Catalan)/Zeta(1/2) 4180921091784259 r002 64th iterates of z^2 + 4180921106660881 r005 Im(z^2+c),c=-35/122+25/41*I,n=10 4180921111420700 r005 Im(z^2+c),c=-1/48+31/57*I,n=27 4180921131179699 r002 25th iterates of z^2 + 4180921134622414 r005 Re(z^2+c),c=-47/110+27/49*I,n=61 4180921145289093 a001 591286729879/11*123^(19/21) 4180921153320787 a007 Real Root Of -746*x^4-425*x^3-411*x^2+355*x+212 4180921160309284 r005 Im(z^2+c),c=3/94+32/61*I,n=43 4180921163218985 r005 Im(z^2+c),c=31/122+19/55*I,n=57 4180921164438674 m001 1/exp(BesselJ(0,1))*RenyiParking*Zeta(3) 4180921167003530 m009 (4/5*Psi(1,3/4)-3/5)/(3*Psi(1,1/3)+4) 4180921168569176 m002 42-Log[Pi]/6 4180921196382860 a007 Real Root Of -285*x^4-778*x^3-923*x^2+509*x+326 4180921197714319 m001 (ln(gamma)-BesselJ(1,1))/(Niven+Robbin) 4180921198332341 a001 322/55*17711^(24/55) 4180921202202139 r005 Re(z^2+c),c=-16/27+1/31*I,n=59 4180921204845712 a001 9349/11*(1/2*5^(1/2)+1/2)^23*11^(17/20) 4180921219340002 m001 2^(1/2)+Khinchin+StolarskyHarborth 4180921231687088 r002 51th iterates of z^2 + 4180921237299867 a001 98209/161*199^(4/11) 4180921245701292 a001 24476/11*(1/2*5^(1/2)+1/2)^21*11^(17/20) 4180921247006282 r005 Im(z^2+c),c=29/90+5/18*I,n=43 4180921251662040 a001 64079/11*(1/2*5^(1/2)+1/2)^19*11^(17/20) 4180921255345986 a001 39603/11*(1/2*5^(1/2)+1/2)^20*11^(17/20) 4180921259392625 r002 45th iterates of z^2 + 4180921263142858 m001 (2^(1/2)-ln(2+3^(1/2)))/(Porter+Thue) 4180921270951429 a001 15127/11*(1/2*5^(1/2)+1/2)^22*11^(17/20) 4180921284613930 m005 (1/2*exp(1)+1/6)/(7/11*Zeta(3)-2/5) 4180921286520500 r002 29th iterates of z^2 + 4180921295371333 r002 8th iterates of z^2 + 4180921308135460 m001 FellerTornier^TravellingSalesman-Trott2nd 4180921309478349 a005 (1/cos(7/180*Pi))^1730 4180921325441024 r005 Im(z^2+c),c=-31/34+31/115*I,n=55 4180921337050246 r009 Im(z^3+c),c=-2/15+13/27*I,n=25 4180921337146130 r005 Re(z^2+c),c=-41/74+14/41*I,n=50 4180921345532862 r005 Im(z^2+c),c=-7/44+11/18*I,n=33 4180921346793372 a007 Real Root Of 569*x^4-254*x^3+551*x^2-516*x-348 4180921377912726 a001 5778/11*(1/2*5^(1/2)+1/2)^24*11^(17/20) 4180921385188080 m005 (11/28+1/4*5^(1/2))/(5/6*3^(1/2)+5/6) 4180921387529888 m008 (1/3*Pi^6+2)/(4/5*Pi^4-4/5) 4180921395083883 m001 (BesselI(0,2)-Paris)/(ZetaQ(2)-ZetaQ(4)) 4180921413234609 h001 (1/3*exp(2)+3/8)/(6/7*exp(2)+5/11) 4180921430987434 r009 Re(z^3+c),c=-9/17+17/59*I,n=22 4180921431190717 r005 Re(z^2+c),c=-7/12+18/101*I,n=46 4180921435786337 r009 Re(z^3+c),c=-23/50+11/64*I,n=33 4180921439360660 l006 ln(6217/9444) 4180921440290416 p001 sum((-1)^n/(309*n+233)/(16^n),n=0..infinity) 4180921447357898 m001 (FeigenbaumKappa+Sarnak)/(Pi+FeigenbaumC) 4180921467757771 r009 Im(z^3+c),c=-2/15+13/27*I,n=28 4180921470855671 m001 (ln(2+3^(1/2))+GAMMA(13/24))/(Conway-Gompertz) 4180921500821035 r009 Im(z^3+c),c=-2/15+13/27*I,n=30 4180921511512904 r009 Im(z^3+c),c=-23/64+25/61*I,n=11 4180921519267585 r009 Im(z^3+c),c=-2/15+13/27*I,n=32 4180921522800648 r009 Im(z^3+c),c=-2/15+13/27*I,n=35 4180921523088193 r009 Im(z^3+c),c=-2/15+13/27*I,n=37 4180921523340574 r009 Im(z^3+c),c=-2/15+13/27*I,n=39 4180921523413412 r009 Im(z^3+c),c=-2/15+13/27*I,n=42 4180921523414453 r009 Im(z^3+c),c=-2/15+13/27*I,n=44 4180921523416978 r009 Im(z^3+c),c=-2/15+13/27*I,n=41 4180921523417670 r009 Im(z^3+c),c=-2/15+13/27*I,n=46 4180921523418881 r009 Im(z^3+c),c=-2/15+13/27*I,n=48 4180921523418957 r009 Im(z^3+c),c=-2/15+13/27*I,n=51 4180921523418989 r009 Im(z^3+c),c=-2/15+13/27*I,n=49 4180921523418994 r009 Im(z^3+c),c=-2/15+13/27*I,n=53 4180921523419012 r009 Im(z^3+c),c=-2/15+13/27*I,n=55 4180921523419015 r009 Im(z^3+c),c=-2/15+13/27*I,n=58 4180921523419015 r009 Im(z^3+c),c=-2/15+13/27*I,n=60 4180921523419015 r009 Im(z^3+c),c=-2/15+13/27*I,n=62 4180921523419015 r009 Im(z^3+c),c=-2/15+13/27*I,n=64 4180921523419015 r009 Im(z^3+c),c=-2/15+13/27*I,n=63 4180921523419015 r009 Im(z^3+c),c=-2/15+13/27*I,n=61 4180921523419016 r009 Im(z^3+c),c=-2/15+13/27*I,n=56 4180921523419016 r009 Im(z^3+c),c=-2/15+13/27*I,n=59 4180921523419016 r009 Im(z^3+c),c=-2/15+13/27*I,n=57 4180921523419025 r009 Im(z^3+c),c=-2/15+13/27*I,n=54 4180921523419054 r009 Im(z^3+c),c=-2/15+13/27*I,n=52 4180921523419082 r009 Im(z^3+c),c=-2/15+13/27*I,n=50 4180921523419552 r009 Im(z^3+c),c=-2/15+13/27*I,n=47 4180921523421722 r009 Im(z^3+c),c=-2/15+13/27*I,n=45 4180921523425243 r009 Im(z^3+c),c=-2/15+13/27*I,n=43 4180921523444511 r009 Im(z^3+c),c=-2/15+13/27*I,n=40 4180921523596223 r009 Im(z^3+c),c=-2/15+13/27*I,n=38 4180921523768805 r009 Im(z^3+c),c=-2/15+13/27*I,n=34 4180921523926997 r009 Im(z^3+c),c=-2/15+13/27*I,n=26 4180921523934003 r009 Im(z^3+c),c=-2/15+13/27*I,n=36 4180921524311870 r009 Im(z^3+c),c=-2/15+13/27*I,n=33 4180921532688242 r002 30th iterates of z^2 + 4180921534319971 r009 Im(z^3+c),c=-2/15+13/27*I,n=31 4180921538352893 a007 Real Root Of -175*x^4-813*x^3-309*x^2+67*x-263 4180921546047486 m001 Backhouse^2/Artin^2/ln(Zeta(5)) 4180921549991805 m006 (1/6*Pi^2+3)/(1/5*exp(2*Pi)+4) 4180921554116418 r005 Im(z^2+c),c=1/27+25/48*I,n=48 4180921560469913 r005 Re(z^2+c),c=-71/122+5/26*I,n=61 4180921562611739 r009 Im(z^3+c),c=-2/15+13/27*I,n=29 4180921572157933 m005 (27/44+1/4*5^(1/2))/(-3/77+1/7*5^(1/2)) 4180921578793079 r009 Im(z^3+c),c=-2/15+13/27*I,n=27 4180921588703015 r005 Re(z^2+c),c=7/18+20/57*I,n=62 4180921593287822 r002 47th iterates of z^2 + 4180921599030850 r005 Im(z^2+c),c=-5/8+25/56*I,n=4 4180921605211526 r008 a(0)=4,K{-n^6,-1+38*n-33*n^2-10*n^3} 4180921612428610 r005 Re(z^2+c),c=-9/14+91/206*I,n=9 4180921616848534 m001 (3^(1/3)-gamma(1))/(FeigenbaumMu+ZetaQ(2)) 4180921631829332 a007 Real Root Of 404*x^4-248*x^3-227*x^2-894*x-37 4180921635043339 r005 Re(z^2+c),c=-4/7+5/19*I,n=41 4180921664668572 r009 Re(z^3+c),c=-9/22+5/42*I,n=32 4180921671408636 r009 Im(z^3+c),c=-31/78+25/63*I,n=34 4180921717777796 m001 Shi(1)*(Thue-arctan(1/2)) 4180921717978563 m005 (1/2*Catalan-7/8)/(1/8*Zeta(3)-1/4) 4180921721053426 r005 Re(z^2+c),c=-16/23+3/20*I,n=36 4180921724827748 a003 sin(Pi*13/97)/sin(Pi*16/37) 4180921736914185 m001 (Catalan-Chi(1))/(Landau+PisotVijayaraghavan) 4180921743609840 r002 30th iterates of z^2 + 4180921762073766 g007 Psi(2,1/12)+Psi(2,3/8)+Psi(2,1/7)-Psi(2,6/7) 4180921762286351 l006 ln(3279/4981) 4180921772210338 m001 (-Artin+MertensB1)/(Si(Pi)+Chi(1)) 4180921781262471 a007 Real Root Of -987*x^4-272*x^3-769*x^2-83*x+110 4180921791309387 m007 (-5*gamma-15*ln(2)-5/2*Pi-1/4)/(-1/5*gamma-5) 4180921792429949 a001 1762289/682*76^(1/9) 4180921811383588 b008 FresnelS[2^(-1/34)] 4180921818165343 m001 LaplaceLimit/GAMMA(7/12)/Zeta(5) 4180921844862932 r009 Im(z^3+c),c=-13/70+25/53*I,n=11 4180921866247966 r005 Im(z^2+c),c=13/94+19/45*I,n=9 4180921893104720 a007 Real Root Of -57*x^4-148*x^3+218*x^2-700*x-137 4180921903616797 a007 Real Root Of -186*x^4+763*x^3+634*x^2+945*x-556 4180921914558117 r005 Re(z^2+c),c=-27/38+4/37*I,n=35 4180921915122469 r005 Re(z^2+c),c=-16/27+1/50*I,n=39 4180921916089101 a007 Real Root Of 153*x^4-449*x^3-264*x^2-968*x+479 4180921917107673 a001 47/10946*2178309^(16/51) 4180921925421670 m001 1/Salem^2/Bloch^2*ln(GAMMA(1/4)) 4180921945268620 r005 Im(z^2+c),c=-41/60+3/40*I,n=8 4180921946462781 m005 (1/3*5^(1/2)-1/7)/(6/7*exp(1)-8/9) 4180921948200049 r009 Im(z^3+c),c=-21/64+8/23*I,n=2 4180921951406276 m001 (5^(1/2)-Khinchin)/(PrimesInBinary+TwinPrimes) 4180921959956232 m001 (Paris+Thue)/(Ei(1,1)-gamma(2)) 4180921969637922 m001 (KhinchinHarmonic+ZetaQ(4))/(Zeta(1/2)-exp(1)) 4180921976892117 r008 a(0)=5,K{-n^6,41-55*n+28*n^2-7*n^3} 4180922001115341 a001 199/196418*13^(21/38) 4180922006378660 q001 1442/3449 4180922008163087 r005 Re(z^2+c),c=-17/36+11/21*I,n=56 4180922012309879 r009 Im(z^3+c),c=-3/13+6/13*I,n=18 4180922029481826 r009 Re(z^3+c),c=-7/90+33/47*I,n=51 4180922031554671 r009 Re(z^3+c),c=-4/9+5/32*I,n=30 4180922032836191 a007 Real Root Of -222*x^4-862*x^3+115*x^2-477*x+831 4180922033880153 p003 LerchPhi(1/3,2,9/58) 4180922040382837 r009 Im(z^3+c),c=-16/31+5/27*I,n=22 4180922040997054 a007 Real Root Of -50*x^4+837*x^3-785*x^2+292*x+322 4180922042179394 r005 Im(z^2+c),c=41/126+13/51*I,n=42 4180922071787797 r005 Im(z^2+c),c=25/62+7/45*I,n=11 4180922083076942 a001 843/75025*832040^(13/49) 4180922088547145 r005 Im(z^2+c),c=1/44+19/36*I,n=38 4180922093782844 r009 Re(z^3+c),c=-3/38+41/59*I,n=50 4180922102616577 m007 (-4/5*gamma-8/5*ln(2)+1/2)/(-gamma+5/6) 4180922105740212 a007 Real Root Of 439*x^4-568*x^3+706*x^2-979*x+314 4180922108843218 s002 sum(A262642[n]/((2*n)!),n=1..infinity) 4180922111036361 a001 2207/11*(1/2*5^(1/2)+1/2)^26*11^(17/20) 4180922119633739 a007 Real Root Of 964*x^4+202*x^3-635*x^2-797*x+400 4180922123403329 m001 (HardyLittlewoodC4+Kac)/(Otter-Sarnak) 4180922137642274 b008 7-3*Cos[Pi/9] 4180922144133422 l006 ln(8221/8572) 4180922144772158 r009 Im(z^3+c),c=-2/15+13/27*I,n=24 4180922161447119 a007 Real Root Of -778*x^4-259*x^3+417*x^2+677*x+215 4180922173972704 a001 29/75025*3^(1/14) 4180922187303582 a003 cos(Pi*45/106)*cos(Pi*35/79) 4180922192874047 g007 Psi(2,3/11)+Psi(2,1/11)+Psi(2,1/9)-Psi(2,4/11) 4180922192883982 r009 Re(z^3+c),c=-29/86+57/59*I,n=3 4180922193901497 r005 Im(z^2+c),c=-21/118+33/47*I,n=8 4180922197858958 r005 Re(z^2+c),c=-67/126+11/26*I,n=51 4180922199610800 m001 (Chi(1)-sin(1))/(GaussAGM+Trott2nd) 4180922203097463 r002 32th iterates of z^2 + 4180922204647104 m006 (3/4*exp(Pi)+1/6)/(3/5/Pi+4) 4180922214791772 a007 Real Root Of -836*x^4+628*x^3-974*x^2-138*x+184 4180922224923991 p001 sum(1/(139*n+13)/n/(16^n),n=0..infinity) 4180922225623130 r009 Re(z^3+c),c=-55/106+13/58*I,n=51 4180922230199675 r002 40th iterates of z^2 + 4180922232339608 b008 E^(1+2*Sqrt[2])/11 4180922239150084 m001 (GaussAGM-Niven)/(ln(Pi)-Zeta(1,2)) 4180922246153002 m001 ArtinRank2/FeigenbaumAlpha*exp(GAMMA(2/3))^2 4180922246619944 r005 Im(z^2+c),c=19/60+13/47*I,n=54 4180922260862885 r002 7th iterates of z^2 + 4180922262603572 r005 Im(z^2+c),c=43/122+14/61*I,n=43 4180922267499941 r002 11th iterates of z^2 + 4180922275825266 m001 (3^(1/2)-LaplaceLimit)/(-Sierpinski+Trott2nd) 4180922301482720 a007 Real Root Of -48*x^4+631*x^3-950*x^2+75*x+245 4180922313340801 a001 196418/2207*199^(8/11) 4180922316879979 l006 ln(3620/5499) 4180922324941140 b008 Pi+Sqrt[2]*ArcCosh[Glaisher] 4180922334731018 r002 51th iterates of z^2 + 4180922342187139 a007 Real Root Of -901*x^4+663*x^3-473*x^2+527*x+379 4180922347570596 a007 Real Root Of -339*x^4+676*x^3-950*x^2-753*x-89 4180922356369355 r005 Re(z^2+c),c=-13/56+35/41*I,n=31 4180922361859568 a003 sin(Pi*3/47)-sin(Pi*18/85) 4180922362457331 r005 Im(z^2+c),c=5/17+25/64*I,n=22 4180922371123222 r005 Re(z^2+c),c=-67/114+7/53*I,n=64 4180922374010325 a007 Real Root Of -466*x^4+475*x^3+121*x^2+905*x-420 4180922388454554 a007 Real Root Of -451*x^4+662*x^3-980*x^2-678*x-50 4180922388469157 h001 (2/9*exp(1)+1/2)/(9/11*exp(1)+5/12) 4180922398093150 m001 Riemann3rdZero/(2^(1/3)-Robbin) 4180922403282292 m001 FeigenbaumB/(3^(1/2)+sin(1/12*Pi)) 4180922419417623 a007 Real Root Of -500*x^4+510*x^3+671*x^2+150*x-202 4180922420111766 m005 (1/2*gamma-5/9)/(2/9*3^(1/2)+6) 4180922435341592 m001 (-BesselJZeros(0,1)+1)/(-GAMMA(13/24)+5) 4180922439159306 r005 Im(z^2+c),c=13/44+15/46*I,n=9 4180922452048679 p001 sum(1/(417*n+247)/(12^n),n=0..infinity) 4180922473774555 r002 49th iterates of z^2 + 4180922475030245 m001 (OneNinth+Paris)/(ln(2)-KhinchinLevy) 4180922486534366 m005 (1/2*5^(1/2)+1/3)/(1/3*2^(1/2)+3) 4180922486831300 m001 (OrthogonalArrays+Robbin)/(cos(1/12*Pi)-Bloch) 4180922491099295 r002 27th iterates of z^2 + 4180922519308848 r002 48th iterates of z^2 + 4180922547811118 m001 BesselJ(0,1)*exp(ArtinRank2)^2*GAMMA(2/3) 4180922550020911 r005 Re(z^2+c),c=-13/22+7/86*I,n=57 4180922553217313 a001 843/2584*3^(7/31) 4180922563348125 m006 (4*ln(Pi)-1/4)/(1/4*Pi+1/4) 4180922569653855 r009 Re(z^3+c),c=-1/13+27/40*I,n=54 4180922573709892 m001 (5^(1/2)+1)/(-Shi(1)+FeigenbaumC) 4180922578449798 m001 GAMMA(11/12)+Khinchin+TreeGrowth2nd 4180922578686517 r005 Re(z^2+c),c=13/64+26/47*I,n=58 4180922580212562 r002 64th iterates of z^2 + 4180922583189360 r002 7th iterates of z^2 + 4180922593922418 a007 Real Root Of -7*x^4+72*x^3+450*x^2+189*x+325 4180922617431385 r009 Im(z^3+c),c=-23/44+13/44*I,n=57 4180922623218983 m001 exp(Riemann3rdZero)^2/Magata^2*Catalan 4180922627518555 m001 (Artin-Bloch)/(ln(2^(1/2)+1)-Zeta(1/2)) 4180922631275755 s001 sum(exp(-Pi)^(n-1)*A010658[n],n=1..infinity) 4180922634612325 m005 (1/2*Zeta(3)-10/11)/(1/5*3^(1/2)-3/11) 4180922636325964 g005 GAMMA(8/11)*GAMMA(5/11)*GAMMA(7/9)*GAMMA(5/8) 4180922636718491 a007 Real Root Of -870*x^4-285*x^3-799*x^2+231*x+242 4180922639331602 a007 Real Root Of 135*x^4-264*x^3-484*x^2-101*x+142 4180922640461624 r002 51th iterates of z^2 + 4180922655779906 r005 Re(z^2+c),c=-16/27+2/63*I,n=38 4180922669924339 r005 Im(z^2+c),c=-1/25+29/50*I,n=29 4180922676856412 m001 (gamma(1)+ArtinRank2)/(MinimumGamma-Otter) 4180922682182703 r005 Re(z^2+c),c=-16/27+2/43*I,n=37 4180922694253481 r005 Re(z^2+c),c=-25/44+5/19*I,n=37 4180922705279673 r002 30th iterates of z^2 + 4180922724158671 m001 BesselK(0,1)-Pi+Zeta(1/2) 4180922724158671 m001 Pi-BesselK(0,1)-Zeta(1/2) 4180922743744209 m001 (Zeta(3)-MertensB2)/(Salem-StronglyCareFree) 4180922744557386 r005 Im(z^2+c),c=-7/10+51/169*I,n=14 4180922757905650 q001 1613/3858 4180922769308580 r005 Re(z^2+c),c=-16/27+2/61*I,n=36 4180922770950783 r009 Re(z^3+c),c=-7/27+23/32*I,n=26 4180922775984351 l006 ln(3961/6017) 4180922810254514 a007 Real Root Of -514*x^4-82*x^3-850*x^2+437*x+341 4180922820531277 b008 (5*(5+E^3))/3 4180922837608601 p001 sum((-1)^n/(264*n+239)/(625^n),n=0..infinity) 4180922863777466 r009 Re(z^3+c),c=-47/106+9/58*I,n=45 4180922871683277 m001 (LaplaceLimit-Mills)/(Zeta(1,2)-BesselK(1,1)) 4180922871921276 a007 Real Root Of -199*x^4-934*x^3-532*x^2-261*x+754 4180922872331747 a007 Real Root Of -295*x^4+509*x^3+233*x^2+537*x+230 4180922877765725 r005 Im(z^2+c),c=2/19+26/55*I,n=30 4180922885072440 r009 Im(z^3+c),c=-65/122+9/28*I,n=46 4180922885313848 m001 ZetaQ(4)-FransenRobinson-exp(1/Pi) 4180922887854041 m001 1/(2^(1/3))^2*exp(LaplaceLimit)^2/LambertW(1) 4180922900491812 m005 (1/2*2^(1/2)-8/11)/(1/4*Zeta(3)+2/11) 4180922911232761 r002 18th iterates of z^2 + 4180922928781384 m006 (2*ln(Pi)+1/3)/(4/Pi+5) 4180922946066123 m001 GAMMA(1/6)^2*exp(GaussKuzminWirsing)/Zeta(9)^2 4180922960795306 a007 Real Root Of 162*x^4+479*x^3-810*x^2-82*x-677 4180922985764903 a007 Real Root Of 547*x^4-478*x^3-759*x^2-236*x+1 4180922997298744 r005 Im(z^2+c),c=-87/118+10/59*I,n=39 4180923007663290 b008 (11*ArcSec[E])/Pi 4180923008925791 m001 FeigenbaumD/ln(Bloch)^2*Zeta(1,2)^2 4180923017524789 r005 Im(z^2+c),c=-9/14+73/175*I,n=43 4180923033660121 r005 Im(z^2+c),c=-101/122+1/41*I,n=22 4180923046446089 a001 514229/5778*199^(8/11) 4180923055331490 m006 (4/5/Pi-4)/(1/6*exp(2*Pi)+1/3) 4180923089941061 m001 (GAMMA(23/24)-exp(Pi))/(ZetaP(2)+ZetaP(4)) 4180923123205253 m001 (BesselK(0,1)-arctan(1/2))/(gamma(1)+ZetaP(3)) 4180923123312308 r009 Im(z^3+c),c=-33/70+13/37*I,n=40 4180923125429730 r005 Im(z^2+c),c=7/44+25/58*I,n=44 4180923130703369 m001 (MertensB2-ZetaP(3))/(Zeta(1/2)-Gompertz) 4180923142077832 a003 sin(Pi*3/77)+sin(Pi*11/115) 4180923146079326 m001 (1-GAMMA(3/4))/(-2*Pi/GAMMA(5/6)+ZetaP(3)) 4180923153404730 a001 1346269/15127*199^(8/11) 4180923156175476 m005 (1/3*3^(1/2)+3/4)/(3/10*Pi-5/8) 4180923162306469 l006 ln(4302/6535) 4180923169009786 a001 3524578/39603*199^(8/11) 4180923170391470 m001 (3^(1/3))^sin(Pi/12)+GAMMA(7/24) 4180923171286533 a001 9227465/103682*199^(8/11) 4180923171618706 a001 24157817/271443*199^(8/11) 4180923171667170 a001 63245986/710647*199^(8/11) 4180923171674240 a001 165580141/1860498*199^(8/11) 4180923171675272 a001 433494437/4870847*199^(8/11) 4180923171675422 a001 1134903170/12752043*199^(8/11) 4180923171675444 a001 2971215073/33385282*199^(8/11) 4180923171675447 a001 7778742049/87403803*199^(8/11) 4180923171675448 a001 20365011074/228826127*199^(8/11) 4180923171675448 a001 53316291173/599074578*199^(8/11) 4180923171675448 a001 139583862445/1568397607*199^(8/11) 4180923171675448 a001 365435296162/4106118243*199^(8/11) 4180923171675448 a001 956722026041/10749957122*199^(8/11) 4180923171675448 a001 2504730781961/28143753123*199^(8/11) 4180923171675448 a001 6557470319842/73681302247*199^(8/11) 4180923171675448 a001 10610209857723/119218851371*199^(8/11) 4180923171675448 a001 4052739537881/45537549124*199^(8/11) 4180923171675448 a001 1548008755920/17393796001*199^(8/11) 4180923171675448 a001 591286729879/6643838879*199^(8/11) 4180923171675448 a001 225851433717/2537720636*199^(8/11) 4180923171675448 a001 86267571272/969323029*199^(8/11) 4180923171675448 a001 32951280099/370248451*199^(8/11) 4180923171675448 a001 12586269025/141422324*199^(8/11) 4180923171675449 a001 4807526976/54018521*199^(8/11) 4180923171675458 a001 1836311903/20633239*199^(8/11) 4180923171675515 a001 3524667/39604*199^(8/11) 4180923171675909 a001 267914296/3010349*199^(8/11) 4180923171678610 a001 102334155/1149851*199^(8/11) 4180923171697122 a001 39088169/439204*199^(8/11) 4180923171824000 a001 14930352/167761*199^(8/11) 4180923172693640 a001 5702887/64079*199^(8/11) 4180923178654241 a001 2178309/24476*199^(8/11) 4180923180220706 a007 Real Root Of -914*x^4+706*x^3+185*x^2+454*x+237 4180923185110992 m001 1/CareFree^2*exp(Cahen)^2/KhintchineHarmonic 4180923198788858 m001 (Weierstrass+ZetaQ(3))/(Ei(1,1)-Zeta(1,2)) 4180923208075154 a007 Real Root Of 108*x^4+224*x^3-895*x^2+158*x-324 4180923217379729 r009 Im(z^3+c),c=-3/25+29/60*I,n=12 4180923219508809 a001 832040/9349*199^(8/11) 4180923222901820 r009 Im(z^3+c),c=-61/126+17/50*I,n=35 4180923224125769 a001 4/3*2584^(8/55) 4180923225178536 r005 Im(z^2+c),c=-1/19+21/37*I,n=39 4180923229738323 a007 Real Root Of -219*x^4-822*x^3+433*x^2+236*x+260 4180923240875422 l006 ln(61/3991) 4180923254937292 r009 Im(z^3+c),c=-35/94+43/64*I,n=8 4180923260680300 r009 Re(z^3+c),c=-53/126+5/38*I,n=29 4180923261619043 m001 (sin(1/12*Pi)+LaplaceLimit)/(exp(Pi)-ln(3)) 4180923267445375 r002 16th iterates of z^2 + 4180923275808904 m001 (GAMMA(23/24)-Cahen*Salem)/Cahen 4180923276664157 r002 50th iterates of z^2 + 4180923277047364 r002 60th iterates of z^2 + 4180923284739722 p001 sum((-1)^n/(375*n+239)/(512^n),n=0..infinity) 4180923286884854 r002 48th iterates of z^2 + 4180923291337204 r002 13th iterates of z^2 + 4180923303168774 r004 Re(z^2+c),c=-23/42+5/18*I,z(0)=-1,n=19 4180923303509200 m001 Ei(1)^2/Bloch*ln(sqrt(3)) 4180923308850798 m002 -Sinh[Pi]/(5*Pi)+Tanh[Pi]/Pi 4180923312310993 m001 (OneNinth+RenyiParking)/(Zeta(5)-FeigenbaumB) 4180923318379433 a005 (1/sin(47/125*Pi))^521 4180923325181441 r005 Re(z^2+c),c=-69/122+7/46*I,n=16 4180923334576046 b008 -2+ArcSec[-90] 4180923339309574 r002 61th iterates of z^2 + 4180923358798385 a007 Real Root Of 46*x^4-91*x^3-983*x^2+791*x-216 4180923368313959 a007 Real Root Of -127*x^4-352*x^3+869*x^2+586*x+340 4180923370935279 r009 Im(z^3+c),c=-17/58+1/35*I,n=7 4180923371162766 b008 ArcCsch[79/34] 4180923397570238 r009 Im(z^3+c),c=-21/32+5/27*I,n=2 4180923413774143 m001 (gamma(3)-Gompertz)/(Zeta(3)+Ei(1,1)) 4180923416143409 r009 Im(z^3+c),c=-25/56+7/19*I,n=41 4180923423271295 a007 Real Root Of 242*x^4+798*x^3-665*x^2+982*x+106 4180923427280491 r005 Re(z^2+c),c=-16/27+2/57*I,n=37 4180923428188644 a007 Real Root Of 683*x^4-924*x^3+209*x^2-48*x-145 4180923439344540 a007 Real Root Of 790*x^4-928*x^3-464*x^2-498*x+333 4180923458452635 s002 sum(A227584[n]/(n*2^n-1),n=1..infinity) 4180923460369271 m001 (-MertensB2+Sierpinski)/(ln(2)/ln(10)+Magata) 4180923465902510 r004 Re(z^2+c),c=-7/12+3/17*I,z(0)=-1,n=50 4180923482326551 a007 Real Root Of -712*x^4+227*x^3-152*x^2+925*x-355 4180923491882574 l006 ln(4643/7053) 4180923499530203 a001 317811/3571*199^(8/11) 4180923534652321 r005 Re(z^2+c),c=-53/46+8/29*I,n=52 4180923534713894 p003 LerchPhi(1/3,5,97/129) 4180923566346843 r005 Im(z^2+c),c=-23/94+25/32*I,n=5 4180923592459670 r005 Im(z^2+c),c=1/32+9/16*I,n=27 4180923605796928 r005 Im(z^2+c),c=2/23+25/54*I,n=13 4180923607522907 r005 Re(z^2+c),c=-16/27+1/32*I,n=56 4180923614761319 b008 2+(11*Tanh[E])/5 4180923619848613 m001 (Ei(1,1)+Thue)/(GAMMA(2/3)+GAMMA(3/4)) 4180923625429332 m001 BesselI(0,2)*Mills*OrthogonalArrays 4180923627066504 r005 Im(z^2+c),c=-57/86+6/37*I,n=12 4180923630319272 a007 Real Root Of -593*x^4+285*x^3-766*x^2-301*x+47 4180923635769492 m001 (Pi+ln(3))/(GAMMA(13/24)-Kac) 4180923653280392 a001 24476*121393^(8/33) 4180923669747134 a008 Real Root of x^4-32*x^2-10*x+212 4180923674503338 m001 Robbin/(exp(1/Pi)+exp(-1/2*Pi)) 4180923682055042 r005 Re(z^2+c),c=-49/90+21/58*I,n=39 4180923689614703 a001 843/28657*28657^(29/41) 4180923701789594 m001 PrimesInBinary^2/ln(FeigenbaumDelta)^2/sqrt(3) 4180923703113777 r005 Re(z^2+c),c=-31/52+3/53*I,n=18 4180923704129124 r005 Re(z^2+c),c=17/70+37/63*I,n=46 4180923706602586 m001 BesselJ(1,1)^HardyLittlewoodC4*ZetaQ(2) 4180923717058941 r005 Im(z^2+c),c=23/70+15/58*I,n=46 4180923718864996 m006 (5/6/Pi+4)/(3/5*ln(Pi)+1/3) 4180923727738810 r002 54th iterates of z^2 + 4180923742315275 r005 Re(z^2+c),c=-71/122+6/31*I,n=52 4180923758866734 m009 (24/5*Catalan+3/5*Pi^2-3)/(1/5*Psi(1,3/4)-1/3) 4180923768076959 r005 Im(z^2+c),c=13/42+2/7*I,n=43 4180923775515332 r005 Re(z^2+c),c=-17/26+29/94*I,n=22 4180923776360175 l006 ln(4984/7571) 4180923790816562 h001 (-9*exp(-1)-1)/(-9*exp(-1)-7) 4180923791631547 a001 20365011074/3*3571^(2/9) 4180923796612669 r002 11th iterates of z^2 + 4180923801441276 m005 (1/2*exp(1)+5/6)/(5/7*Pi+3) 4180923811622954 m005 (1/3*gamma-1/5)/(19/24+11/24*5^(1/2)) 4180923819771547 m001 (BesselK(0,1)-Khinchin)/(-Landau+ZetaQ(4)) 4180923823436258 r009 Im(z^3+c),c=-13/94+19/40*I,n=6 4180923823986873 a007 Real Root Of 841*x^4-522*x^3+180*x^2-425*x-273 4180923825114871 r009 Im(z^3+c),c=-15/56+3/7*I,n=4 4180923825177165 r002 35th iterates of z^2 + 4180923826975739 m001 1/sin(1)^2*RenyiParking/ln(sqrt(1+sqrt(3)))^2 4180923827285337 a001 34111385*9349^(7/9) 4180923827656767 r009 Im(z^3+c),c=-17/74+31/61*I,n=3 4180923829469751 m001 1/TreeGrowth2nd*exp(GolombDickman)^2/Ei(1) 4180923844317534 a007 Real Root Of 867*x^4+334*x^3-984*x^2-746*x+433 4180923861824278 a001 17711/3*2139295485799^(5/9) 4180923863924331 a001 267914296/3*64079^(5/9) 4180923864433263 a001 121393/3*54018521^(7/9) 4180923864473501 a001 10983760033*167761^(1/9) 4180923864489802 a001 165580141/3*3010349^(4/9) 4180923864489831 a001 726103*370248451^(5/9) 4180923864489997 a001 5702887/3*12752043^(11/18) 4180923864490005 a001 2971215073/3*20633239^(2/9) 4180923864490007 a001 267914296/3*4106118243^(5/18) 4180923864490007 a001 12586269025/3*969323029^(1/9) 4180923864490007 a001 1602508992*5600748293801^(1/9) 4180923864490007 a001 10983760033*28143753123^(1/18) 4180923864490007 a001 7778742049/3*73681302247^(1/9) 4180923864490007 a001 1134903170/3*1568397607^(2/9) 4180923864490007 a001 433494437/3*119218851371^(2/9) 4180923864490007 a001 165580141/3*9062201101803^(2/9) 4180923864490007 a001 34111385*87403803^(7/18) 4180923864490009 a001 24157817/3*23725150497407^(5/18) 4180923864490009 a001 24157817/3*228826127^(4/9) 4180923864490010 a001 20365011074/3*12752043^(1/9) 4180923864490017 a001 53316291173/3*4870847^(1/18) 4180923864490075 a001 3524578/3*17393796001^(4/9) 4180923864490075 a001 3524578/3*505019158607^(7/18) 4180923864490107 a001 24157817/3*4870847^(5/9) 4180923864490359 a001 514229/3*1149851^(8/9) 4180923864492307 a001 2971215073/3*710647^(5/18) 4180923864493170 a001 514229/3*1322157322203^(4/9) 4180923864496514 a001 3524578/3*710647^(7/9) 4180923864502617 a001 7778742049/3*271443^(2/9) 4180923864511681 a001 196418/3*28143753123^(5/9) 4180923864530985 a001 4976784*271443^(13/18) 4180923865508225 a001 28657/3*73681302247^(11/18) 4180923865508225 a001 28657/3*1568397607^(13/18) 4180923865674776 a001 1134903170/3*39603^(4/9) 4180923867007615 a001 5702887/3*39603^(17/18) 4180923868169897 a007 Real Root Of -477*x^4+351*x^3-321*x^2+433*x-136 4180923871160761 m001 Pi^(BesselI(1,1)/ZetaP(2)) 4180923871323863 h005 exp(cos(Pi*11/40)/cos(Pi*7/20)) 4180923871468978 a001 10946/3*87403803^(8/9) 4180923871595467 a001 2971215073/3*15127^(7/18) 4180923880731060 a001 24157817/3*15127^(8/9) 4180923897647216 m001 ln(3)+BesselK(1,1)-GlaisherKinkelin 4180923906602052 r009 Im(z^3+c),c=-1/27+26/53*I,n=10 4180923910292628 r005 Re(z^2+c),c=-7/62+61/63*I,n=10 4180923912324583 a001 4181/3*4106118243^(7/9) 4180923918812194 r005 Im(z^2+c),c=1/50+30/53*I,n=30 4180923924466022 m001 1/CareFree*exp(Ei(1))^3 4180923928296149 r009 Im(z^3+c),c=-7/90+20/41*I,n=6 4180923937271518 r002 5th iterates of z^2 + 4180923942170247 m001 ln(FeigenbaumD)^2/Champernowne^2/GAMMA(7/12) 4180923946250437 r005 Re(z^2+c),c=-19/32+4/49*I,n=29 4180923948382287 r005 Im(z^2+c),c=-141/122+3/56*I,n=25 4180923954314931 m001 Robbin/(gamma(3)^(2^(1/2))) 4180923959862959 a001 53316291173/3*2207^(1/9) 4180923964207327 m001 1/OneNinth/Rabbit*exp(sqrt(3))^2 4180923966976177 r005 Re(z^2+c),c=-69/118+15/46*I,n=41 4180923975918888 a007 Real Root Of -172*x^4-668*x^3+368*x^2+474*x-715 4180923990067652 a007 Real Root Of 65*x^4+392*x^3+713*x^2+806*x-306 4180923994252988 r005 Re(z^2+c),c=-29/50+9/41*I,n=37 4180924002646857 l006 ln(6277/6545) 4180924011219289 a007 Real Root Of 155*x^4+510*x^3-563*x^2+57*x-9 4180924012807114 r002 28th iterates of z^2 + 4180924024403267 l006 ln(5325/8089) 4180924028597668 m001 (ln(3)+exp(1/Pi))/(Mills-TravellingSalesman) 4180924030356215 a001 121393/3*199^(15/34) 4180924030546176 r009 Im(z^3+c),c=-47/106+17/39*I,n=4 4180924045595650 a001 521/365435296162*317811^(4/15) 4180924045597857 a001 521/2504730781961*433494437^(4/15) 4180924046348559 s002 sum(A119397[n]/(exp(n)+1),n=1..infinity) 4180924065441559 r002 20th iterates of z^2 + 4180924072129605 r005 Re(z^2+c),c=-33/58+17/57*I,n=50 4180924090532289 m005 (5/6+1/6*5^(1/2))/(1/5*gamma-3) 4180924095037476 r005 Im(z^2+c),c=-45/74+1/13*I,n=38 4180924103190733 r005 Im(z^2+c),c=-3/4+13/132*I,n=25 4180924103960040 a007 Real Root Of -849*x^4+940*x^3+514*x^2+862*x-493 4180924108195395 m001 GAMMA(7/12)^2/GAMMA(5/12)/exp(cos(Pi/12)) 4180924110739228 a001 55/322*3^(22/27) 4180924114604436 h001 (-2*exp(2)+3)/(-2*exp(3)+12) 4180924121663149 r005 Im(z^2+c),c=-43/34+5/124*I,n=40 4180924128112072 m005 (2*gamma+1/4)/(1/2*exp(1)+2) 4180924142506542 m001 (1+Champernowne)/(Khinchin+ZetaQ(4)) 4180924142606751 m001 GAMMA(17/24)^2*FeigenbaumC^2*ln(GAMMA(5/12)) 4180924146377667 r002 24th iterates of z^2 + 4180924172838969 p004 log(25303/16657) 4180924191337786 a001 86267571272/3*843^(1/18) 4180924191918813 r005 Re(z^2+c),c=17/114+29/61*I,n=59 4180924192353069 a001 1597/3*228826127^(17/18) 4180924195027650 r009 Re(z^3+c),c=-39/70+1/4*I,n=63 4180924199282437 r005 Re(z^2+c),c=-77/118+8/31*I,n=42 4180924206131307 b008 JacobiAmplitude[E^(-1),-6] 4180924226121454 a007 Real Root Of 144*x^4+537*x^3-281*x^2-103*x-273 4180924242590126 l006 ln(5666/8607) 4180924245022174 m001 (Pi+ln(gamma))/(MertensB2-PrimesInBinary) 4180924245085535 r005 Im(z^2+c),c=-47/114+3/47*I,n=9 4180924247131773 a007 Real Root Of -891*x^4+117*x^3-496*x^2+659*x+398 4180924276932510 a007 Real Root Of -266*x^4-966*x^3+648*x^2+231*x+318 4180924289113669 r005 Re(z^2+c),c=-35/78+29/53*I,n=25 4180924304797042 a007 Real Root Of -422*x^4-146*x^3+563*x^2+340*x-217 4180924307089819 r005 Im(z^2+c),c=-49/48+14/53*I,n=24 4180924309080690 m001 GAMMA(19/24)/(Otter-ZetaR(2)) 4180924317776513 r009 Im(z^3+c),c=-2/15+13/27*I,n=22 4180924321992272 a001 322/55*75025^(24/41) 4180924340569251 m001 FeigenbaumMu^KomornikLoreti*FeigenbaumMu^Otter 4180924361482748 r005 Re(z^2+c),c=-18/29+5/43*I,n=15 4180924365562681 a007 Real Root Of -15*x^4-635*x^3-322*x^2+292*x+537 4180924366359726 a007 Real Root Of 578*x^4-243*x^3+126*x^2-506*x-269 4180924389041266 a001 1134903170/3*2207^(11/18) 4180924422047032 r002 7th iterates of z^2 + 4180924422201967 r002 9th iterates of z^2 + 4180924427157730 m001 1/exp((2^(1/3)))*MinimumGamma*Zeta(7) 4180924434665030 r005 Re(z^2+c),c=-11/34+17/31*I,n=15 4180924436005308 l006 ln(6007/9125) 4180924443925129 l003 tanh(53/119) 4180924443925129 l004 tanh(53/119) 4180924455264437 m009 (2/5*Psi(1,1/3)+1/6)/(3/5*Psi(1,1/3)+4) 4180924504499487 m001 Artin^gamma(2)/(Artin^exp(1/exp(1))) 4180924528444496 m001 arctan(1/3)^(Shi(1)/exp(1/Pi)) 4180924540095680 a003 sin(Pi*26/83)/cos(Pi*41/94) 4180924546353905 r002 20th iterates of z^2 + 4180924568385334 r004 Re(z^2+c),c=-13/22+1/11*I,z(0)=-1,n=37 4180924572167675 a007 Real Root Of 403*x^4+428*x^3+956*x^2-191*x-228 4180924582800203 h001 (4/5*exp(2)+2/11)/(1/4*exp(1)+7/9) 4180924587942603 m004 144*Coth[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi] 4180924601264712 h001 (-8*exp(4)-4)/(-5*exp(3)-5) 4180924601941806 r005 Im(z^2+c),c=-35/52+18/47*I,n=11 4180924605575540 m001 GAMMA(11/24)*(3^(1/3))*exp(GAMMA(2/3))^2 4180924608640847 l006 ln(6348/9643) 4180924613844494 m002 -6/Pi^6+(4*Sinh[Pi])/Pi^6 4180924619714224 m005 (1/2*Catalan+4/5)/(4*gamma+7/10) 4180924633498140 r005 Im(z^2+c),c=1/62+29/54*I,n=29 4180924637236757 r002 43th iterates of z^2 + 4180924638343613 r005 Im(z^2+c),c=15/74+1/54*I,n=19 4180924647731642 r005 Im(z^2+c),c=-9/32+31/50*I,n=17 4180924648259010 r002 20th iterates of z^2 + 4180924650274479 r002 43th iterates of z^2 + 4180924670460396 r009 Re(z^3+c),c=-35/86+3/26*I,n=12 4180924675269330 p001 sum((-1)^n/(284*n+211)/(3^n),n=0..infinity) 4180924675335336 a001 1568397607/89*514229^(16/17) 4180924675340639 a001 710647/89*1836311903^(16/17) 4180924678035215 m004 2+125*Pi+12*Log[Sqrt[5]*Pi] 4180924695575991 a007 Real Root Of -125*x^4-454*x^3+391*x^2+509*x+308 4180924698321140 m001 ErdosBorwein*MertensB1-gamma(3) 4180924709841781 h001 (6/7*exp(1)+7/12)/(8/9*exp(2)+2/5) 4180924727862638 m006 (2*Pi^2+1/2)/(1/2/Pi-5) 4180924729338692 r005 Im(z^2+c),c=5/38+24/53*I,n=53 4180924730115914 r005 Re(z^2+c),c=11/98+14/19*I,n=2 4180924737837797 r005 Re(z^2+c),c=-51/86+7/62*I,n=10 4180924761993811 r005 Re(z^2+c),c=-15/26+22/119*I,n=27 4180924789836400 a007 Real Root Of 933*x^4-770*x^3-575*x^2-449*x+316 4180924796559754 p001 sum(1/(507*n+254)/(6^n),n=0..infinity) 4180924800386563 r005 Re(z^2+c),c=-13/22+3/31*I,n=12 4180924806562542 r005 Im(z^2+c),c=3/46+29/61*I,n=6 4180924808464599 r005 Re(z^2+c),c=-15/26+28/121*I,n=63 4180924817269777 r005 Re(z^2+c),c=-7/10+72/193*I,n=5 4180924865751486 m001 (Paris-Sierpinski)/(gamma(3)+Lehmer) 4180924867157454 v002 sum(1/(3^n*(5/6*n^3+79/6*n-5)),n=1..infinity) 4180924876318749 b008 AiryAi[-1/7*Sqrt[3]] 4180924891992969 a007 Real Root Of 221*x^4+817*x^3-563*x^2-390*x+392 4180924905927442 r002 45th iterates of z^2 + 4180924915867928 a007 Real Root Of -429*x^4+467*x^3-641*x^2-668*x-120 4180924925184243 a007 Real Root Of -x^4-419*x^3-378*x^2+593*x-650 4180924925990352 a001 322/4181*233^(9/29) 4180924926021532 r005 Im(z^2+c),c=1/34+10/19*I,n=50 4180924931055895 m001 2*exp(Pi)-2*sqrt(5) 4180924947482128 r009 Im(z^3+c),c=-2/23+20/41*I,n=9 4180924958053590 h001 (9/11*exp(1)+8/11)/(11/12*exp(2)+2/7) 4180924959060269 b008 (7*SphericalBesselJ[2,3])/5 4180924987193486 r005 Re(z^2+c),c=-9/16+41/125*I,n=60 4180924990532945 r002 12th iterates of z^2 + 4180924992525145 m005 (1/2*gamma+5/12)/(51/70+3/7*5^(1/2)) 4180924994276082 m001 (LandauRamanujan2nd+Lehmer)/(Zeta(5)+Pi^(1/2)) 4180925009099790 r002 33th iterates of z^2 + 4180925010113418 s002 sum(A182940[n]/(n^3*2^n+1),n=1..infinity) 4180925010390662 a003 sin(Pi*4/63)+sin(Pi*6/85) 4180925026144946 r009 Im(z^3+c),c=-31/82+24/59*I,n=28 4180925029373705 r005 Im(z^2+c),c=25/106+4/11*I,n=41 4180925032964117 r009 Re(z^3+c),c=-55/114+6/31*I,n=41 4180925048252279 r002 44th iterates of z^2 + 4180925053795199 m001 Pi+2^(1/2)-cos(1)-Zeta(1,-1) 4180925056976635 r005 Re(z^2+c),c=-23/90+29/48*I,n=24 4180925098216915 m001 (Otter-ZetaP(4))/(ln(3)-KomornikLoreti) 4180925099732171 m001 BesselI(0,2)/(GAMMA(11/12)+GAMMA(5/24)) 4180925106501277 m001 (Zeta(1/2)+Magata)/(PisotVijayaraghavan-Thue) 4180925107312319 r005 Im(z^2+c),c=11/62+15/37*I,n=18 4180925111006364 r005 Re(z^2+c),c=-11/18+56/127*I,n=44 4180925128066523 r002 4th iterates of z^2 + 4180925176673870 a007 Real Root Of -318*x^4+773*x^3-911*x^2+702*x+31 4180925182564377 m001 cos(Pi/12)^2*exp(Paris)^2/exp(1) 4180925183228330 l006 ln(129/8440) 4180925191112256 r002 63th iterates of z^2 + 4180925193278513 m001 Khintchine/ln(GolombDickman)^2*sin(Pi/5)^2 4180925203586932 m005 (-5/44+1/4*5^(1/2))/(4/9*exp(1)-1/7) 4180925205236066 a007 Real Root Of 163*x^4+800*x^3+484*x^2+2*x+209 4180925217119474 m001 GAMMA(1/6)*exp(Porter)*sqrt(3) 4180925223271566 m001 (GAMMA(19/24)+ZetaP(2))/(ln(5)+BesselI(0,2)) 4180925234857297 a001 38*3^(2/23) 4180925243599863 s002 sum(A275994[n]/(n*10^n-1),n=1..infinity) 4180925252393096 r005 Im(z^2+c),c=-16/17+12/49*I,n=54 4180925252566302 a003 sin(Pi*10/71)*sin(Pi*28/65) 4180925256191111 m005 (1/2*gamma-4/5)/(5/9*Catalan+5/7) 4180925263752083 s002 sum(A275994[n]/(n*10^n+1),n=1..infinity) 4180925276444423 r009 Re(z^3+c),c=-39/110+54/55*I,n=3 4180925278436573 r005 Re(z^2+c),c=-13/22+5/61*I,n=62 4180925278530023 r005 Im(z^2+c),c=13/122+25/53*I,n=50 4180925299362851 r002 17th iterates of z^2 + 4180925304346742 r009 Im(z^3+c),c=-13/46+34/39*I,n=2 4180925319953712 a001 322/121393*34^(4/31) 4180925331490041 r005 Im(z^2+c),c=23/94+17/56*I,n=7 4180925359795778 a007 Real Root Of -188*x^4-657*x^3+313*x^2-804*x+596 4180925374078242 r005 Im(z^2+c),c=-101/90+1/20*I,n=9 4180925379679991 r005 Re(z^2+c),c=33/122+1/36*I,n=41 4180925390332970 a007 Real Root Of -946*x^4-862*x^3+560*x^2+653*x-279 4180925397911662 r009 Re(z^3+c),c=-23/50+9/53*I,n=19 4180925411605796 r005 Im(z^2+c),c=-5/6+1/41*I,n=59 4180925414179426 r009 Im(z^3+c),c=-5/118+25/51*I,n=12 4180925418826398 a001 121393/1364*199^(8/11) 4180925432170357 b008 ArcCsc[E^Sqrt[30]] 4180925433632923 m002 -1+(5*Pi^2)/ProductLog[Pi]^2 4180925436739608 r009 Im(z^3+c),c=-5/31+25/52*I,n=7 4180925441320210 r009 Im(z^3+c),c=-19/86+12/17*I,n=9 4180925465667855 r002 57th iterates of z^2 + 4180925475751335 b008 EulerGamma+Pi+Tanh[1/2] 4180925480348935 r002 45th iterates of z^2 + 4180925493395049 m001 1/Paris^2*GlaisherKinkelin*exp(gamma)^2 4180925507281030 r005 Im(z^2+c),c=11/126+21/43*I,n=29 4180925521761144 r005 Im(z^2+c),c=15/86+26/63*I,n=15 4180925523992283 m001 (Pi^(1/2)+Bloch)/(Psi(2,1/3)+3^(1/3)) 4180925528818747 a001 13/123*505019158607^(11/23) 4180925528818747 a001 13/123*1568397607^(14/23) 4180925528826665 a001 13/123*710647^(22/23) 4180925534486780 r002 3th iterates of z^2 + 4180925537029881 m001 exp(1)*exp(OneNinth)*sinh(1)^2 4180925543007053 a007 Real Root Of -184*x^4-844*x^3-218*x^2+422*x+115 4180925552719662 a008 Real Root of x^4-2*x^3+37*x^2-36*x-1249 4180925556638899 r009 Re(z^3+c),c=-17/48+27/41*I,n=8 4180925558730493 r005 Im(z^2+c),c=17/58+15/46*I,n=24 4180925559320784 m005 (1/2*3^(1/2)-1/7)/(11/12*Catalan-2/3) 4180925589233303 r005 Im(z^2+c),c=13/122+25/53*I,n=57 4180925590599605 r002 62th iterates of z^2 + 4180925604441318 r005 Im(z^2+c),c=-51/74+1/35*I,n=17 4180925610349484 r005 Re(z^2+c),c=-55/94+6/37*I,n=64 4180925616657540 m001 Zeta(5)/(Otter-PlouffeB) 4180925629208711 r005 Re(z^2+c),c=35/114+19/34*I,n=12 4180925665374577 m005 (1/3*gamma+1/7)/(11/12*Zeta(3)-3/10) 4180925673141064 m001 (gamma(3)+BesselI(0,2))/(Psi(2,1/3)-ln(gamma)) 4180925684689871 m003 3/5+6*Cosh[1/2+Sqrt[5]/2]^2 4180925685262438 a005 (1/sin(48/217*Pi))^153 4180925688546663 p003 LerchPhi(1/16,5,218/183) 4180925695415040 m005 (1/24+1/6*5^(1/2))/(9/10*Catalan+1/6) 4180925698586822 r005 Im(z^2+c),c=-25/66+14/25*I,n=5 4180925710102771 r009 Re(z^3+c),c=-73/94+28/47*I,n=2 4180925725395673 a001 1/105937*4181^(19/26) 4180925726281161 r002 46th iterates of z^2 + 4180925727447149 a001 11/4181*34^(40/51) 4180925732864509 r002 61th iterates of z^2 + 4180925737579086 a007 Real Root Of 922*x^4-154*x^3+657*x^2-394*x-319 4180925741565704 r005 Im(z^2+c),c=41/122+15/59*I,n=62 4180925743054768 r005 Re(z^2+c),c=-71/122+7/45*I,n=27 4180925744713475 m001 (Grothendieck-Mills)/(ln(2)-FeigenbaumC) 4180925746023856 b008 Pi*(3+Sech[1])^2 4180925765517598 r005 Im(z^2+c),c=-3/34+17/28*I,n=25 4180925784666791 p004 log(12889/197) 4180925797888362 a007 Real Root Of -668*x^4+409*x^3-799*x^2+665*x+468 4180925800766414 m003 -1/2+Sqrt[5]/32+Log[1/2+Sqrt[5]/2]/40 4180925807051975 r002 51th iterates of z^2 + 4180925815607372 r005 Im(z^2+c),c=-19/94+31/55*I,n=13 4180925826327512 m001 (5^(1/2)+exp(1/Pi))/(-Conway+TreeGrowth2nd) 4180925832331409 a001 6119/36*121393^(19/22) 4180925836654593 a007 Real Root Of -199*x^4+443*x^3-777*x^2+836*x-240 4180925841636195 a001 322/17711*4807526976^(19/22) 4180925842760241 a003 2*cos(2/7*Pi)+cos(1/10*Pi)+2*cos(1/24*Pi) 4180925856549263 r005 Re(z^2+c),c=-51/86+1/64*I,n=40 4180925868049955 a007 Real Root Of 903*x^4+8*x^3+207*x^2-509*x-276 4180925871109942 r005 Re(z^2+c),c=-33/56+6/55*I,n=49 4180925887570340 r005 Im(z^2+c),c=-17/16+3/64*I,n=20 4180925892610493 l006 ln(5251/5273) 4180925913822295 m001 (Backhouse-GolombDickman)/(Thue-TwinPrimes) 4180925927114807 r005 Re(z^2+c),c=-61/110+3/8*I,n=59 4180925934285679 a007 Real Root Of -251*x^4-855*x^3+813*x^2-88*x-371 4180925940236670 r002 30th iterates of z^2 + 4180925941900948 m008 (4*Pi^2+3/4)/(Pi^6+4/5) 4180925953407496 r009 Re(z^3+c),c=-9/22+5/42*I,n=30 4180925976371036 r002 53th iterates of z^2 + 4180925980055137 r005 Im(z^2+c),c=31/110+19/60*I,n=49 4180925980985333 b008 ArcSinh[21*Tan[1]] 4180925988327283 a008 Real Root of (1+3*x+x^2+3*x^3-5*x^4+x^5) 4180925995436597 m005 (1/2*3^(1/2)+7/10)/(1/12*Pi-7/11) 4180926013677477 r002 60th iterates of z^2 + 4180926014850437 m001 1/Salem^2/FeigenbaumC^2/exp(GAMMA(13/24)) 4180926027813656 a007 Real Root Of -250*x^4+875*x^3+99*x^2+504*x+265 4180926050358244 a003 cos(Pi*1/109)-sin(Pi*16/81) 4180926051823808 a007 Real Root Of 388*x^4+277*x^3+484*x^2-784*x-404 4180926053552304 m001 CareFree^GAMMA(13/24)-LambertW(1) 4180926061515407 m005 (1/2*Catalan-3/8)/(8/11*Pi-3/10) 4180926072281443 m001 (GAMMA(11/12)+Totient)/(BesselI(0,1)-ln(2)) 4180926077608345 a007 Real Root Of -59*x^4-104*x^3+513*x^2-220*x+540 4180926089516972 m001 ln(GAMMA(3/4))^2*RenyiParking/exp(1)^2 4180926100858694 r002 15th iterates of z^2 + 4180926101018274 m001 (Ei(1,1)-GAMMA(11/12))/(Totient+TwinPrimes) 4180926102090255 r002 45th iterates of z^2 + 4180926108195296 r002 18th iterates of z^2 + 4180926153547615 m001 Salem^2*exp(KhintchineLevy)/Trott 4180926159608092 r009 Im(z^3+c),c=-15/94+21/44*I,n=14 4180926163380751 a007 Real Root Of 454*x^4-927*x^3+928*x^2+411*x-72 4180926169498941 r005 Im(z^2+c),c=5/21+13/36*I,n=39 4180926170787856 m001 (cos(1/12*Pi)+ReciprocalFibonacci)/MertensB2 4180926172627892 r002 40th iterates of z^2 + 4180926188976449 a007 Real Root Of -500*x^4-290*x^3-510*x^2+363*x+235 4180926190768594 r002 8th iterates of z^2 + 4180926190971342 a001 47/5*196418^(6/49) 4180926205384374 a007 Real Root Of -156*x^4-888*x^3-822*x^2+506*x-747 4180926216934276 m001 (Otter+ZetaQ(4))/(5^(1/2)-GAMMA(7/12)) 4180926221356847 m001 (Magata+TwinPrimes)/(exp(1/exp(1))-Bloch) 4180926237008740 m001 (Conway*Lehmer+Niven)/Lehmer 4180926261566152 r009 Im(z^3+c),c=-15/58+17/37*I,n=8 4180926265161966 r005 Im(z^2+c),c=-7/60+13/17*I,n=3 4180926265310461 r002 25th iterates of z^2 + 4180926268366730 m001 (CareFree-ZetaQ(3))/(exp(-1/2*Pi)+Backhouse) 4180926275872009 r009 Im(z^3+c),c=-5/17+19/43*I,n=15 4180926283517238 m001 (Magata-Sierpinski)/(Zeta(3)+LandauRamanujan) 4180926297675597 r009 Im(z^3+c),c=-25/122+22/47*I,n=13 4180926313532588 r009 Im(z^3+c),c=-31/90+19/45*I,n=22 4180926315254762 r009 Re(z^3+c),c=-19/42+11/62*I,n=6 4180926321003005 r008 a(0)=3,K{-n^6,28+14*n^3-48*n^2+4*n} 4180926323713059 r005 Im(z^2+c),c=-11/58+1/18*I,n=10 4180926328260350 m001 sqrt(1+sqrt(3))^2/ln(GAMMA(11/12))^2/sqrt(5) 4180926331117733 h001 (-6*exp(1/2)+2)/(-9*exp(3)-8) 4180926338263347 r005 Re(z^2+c),c=-29/50+18/55*I,n=34 4180926369919503 m001 (Backhouse+Conway)/(Robbin-ZetaQ(4)) 4180926382755334 r005 Re(z^2+c),c=-103/110+15/62*I,n=6 4180926395674611 m001 ReciprocalFibonacci*TwinPrimes+ReciprocalLucas 4180926396589463 a007 Real Root Of -43*x^4+68*x^3+891*x^2-706*x-418 4180926426363781 m001 (3^(1/2)-gamma)/(Khinchin+ZetaP(4)) 4180926431396250 m001 (2^(1/3)-gamma)/(-BesselJ(0,1)+BesselK(1,1)) 4180926432621176 m001 (ln(2)+HeathBrownMoroz)/(Shi(1)-exp(1)) 4180926457898922 m001 (Thue-ThueMorse)/(3^(1/3)-Artin) 4180926462001208 a007 Real Root Of -13*x^4-540*x^3+130*x^2-728*x-394 4180926466262746 r005 Re(z^2+c),c=-41/70+9/56*I,n=36 4180926473071279 r005 Re(z^2+c),c=-67/118+13/44*I,n=59 4180926474600634 r009 Im(z^3+c),c=-13/25+16/41*I,n=35 4180926491911130 r005 Re(z^2+c),c=-7/12+21/107*I,n=33 4180926495744644 r002 55th iterates of z^2 + 4180926504342371 r005 Re(z^2+c),c=-13/22+3/37*I,n=51 4180926505777091 m001 1/exp(GAMMA(1/24))^2*Porter^2/arctan(1/2)^2 4180926509871709 a007 Real Root Of -441*x^4+254*x^3+314*x^2+952*x-458 4180926512362180 r005 Im(z^2+c),c=3/17+11/26*I,n=5 4180926557728910 a007 Real Root Of 459*x^4-961*x^3-499*x^2-971*x-403 4180926569518762 a007 Real Root Of -643*x^4+386*x^3-21*x^2+214*x+141 4180926575719347 r002 59th iterates of z^2 + 4180926601835734 r009 Re(z^3+c),c=-9/22+5/42*I,n=37 4180926609705328 a003 -2*cos(1/10*Pi)-cos(1/27*Pi)-2*cos(5/18*Pi) 4180926612153058 r009 Re(z^3+c),c=-9/22+5/42*I,n=38 4180926617769776 r009 Im(z^3+c),c=-10/31+22/51*I,n=20 4180926618841798 a007 Real Root Of 174*x^4+300*x^3-61*x^2-833*x-321 4180926628681146 m001 exp(GAMMA(7/24))*Tribonacci^2*LambertW(1) 4180926637144397 m001 gamma/(Porter^sin(1)) 4180926644817484 r005 Re(z^2+c),c=5/64+14/37*I,n=19 4180926645485143 r005 Re(z^2+c),c=-9/16+39/122*I,n=59 4180926648966124 m005 (1/2*Zeta(3)-2)/(2/11*Catalan-1/5) 4180926660673009 m001 arctan(1/3)+GAMMA(19/24)+Khinchin 4180926666730918 m001 1/exp(FeigenbaumD)/MinimumGamma^2/BesselJ(0,1) 4180926668517605 a007 Real Root Of -852*x^4+834*x^3-936*x^2-420*x+75 4180926674722395 a007 Real Root Of -42*x^4-107*x^3+405*x^2+680*x+777 4180926681680155 a001 167761/3*377^(8/11) 4180926685451104 r009 Im(z^3+c),c=-3/106+34/43*I,n=42 4180926687550607 m001 1/Catalan/ln(LaplaceLimit)^2/cosh(1) 4180926703781295 m001 (gamma(2)+Paris)/Pi/csc(5/12*Pi)*GAMMA(7/12) 4180926714005247 m005 (1/2*3^(1/2)+5/11)/(7/10*Zeta(3)-4) 4180926718943485 a008 Real Root of x^4-x^3-11*x^2+10*x-82 4180926725302420 m001 (2^(1/2)-sin(1))/(MasserGramain+Sarnak) 4180926725898825 r005 Re(z^2+c),c=23/70+5/44*I,n=5 4180926733210484 a007 Real Root Of -71*x^4+882*x^3+568*x^2+764*x-481 4180926740528055 m001 (Cahen+Niven)/(ln(2^(1/2)+1)+Zeta(1,2)) 4180926749335065 a007 Real Root Of 594*x^4+351*x^3+854*x^2-802*x-35 4180926750998690 m001 Riemann2ndZero^2/ln(FransenRobinson)^2*Zeta(7) 4180926755748533 r005 Im(z^2+c),c=1/7+24/55*I,n=21 4180926761969454 m005 (1/2*5^(1/2)+1/9)/(-2/3+1/6*5^(1/2)) 4180926762994651 a007 Real Root Of 744*x^4-71*x^3-134*x^2-293*x-127 4180926773611229 r002 64th iterates of z^2 + 4180926800063909 r005 Re(z^2+c),c=-13/22+9/109*I,n=52 4180926805296662 m001 (Gompertz+Kac)/(BesselI(0,2)+Cahen) 4180926814928052 m002 -6+6/Pi^2-Pi*Cosh[Pi] 4180926820268633 p001 sum((-1)^n/(483*n+233)/(12^n),n=0..infinity) 4180926828854950 s002 sum(A234002[n]/(n*exp(n)+1),n=1..infinity) 4180926836734986 r002 45th iterates of z^2 + 4180926841850573 m001 BesselK(1,1)-Chi(1)*Ei(1,1) 4180926848486040 r005 Re(z^2+c),c=1/7+29/62*I,n=55 4180926851153890 r005 Im(z^2+c),c=-57/94+25/62*I,n=12 4180926852614670 m001 (-LaplaceLimit+Trott2nd)/(BesselK(0,1)+ln(3)) 4180926859250671 p004 log(37097/24421) 4180926866795455 m004 -144+Sinh[Sqrt[5]*Pi] 4180926868568331 m009 (1/3*Psi(1,2/3)+2/5)/(16*Catalan+2*Pi^2-2/5) 4180926881139931 m001 (Sarnak-Totient)/(Trott2nd-ZetaP(3)) 4180926885834547 a001 121393/843*199^(7/11) 4180926890620222 r009 Re(z^3+c),c=-9/22+5/42*I,n=33 4180926896254908 a007 Real Root Of -360*x^4+282*x^3+122*x^2+327*x+147 4180926901307570 r005 Im(z^2+c),c=35/106+13/46*I,n=38 4180926915329569 r005 Im(z^2+c),c=-67/106+19/54*I,n=3 4180926924802291 m001 (3^(1/3)*FeigenbaumB+BesselI(0,2))/FeigenbaumB 4180926925629935 l006 ln(68/4449) 4180926952672621 a007 Real Root Of -180*x^4-703*x^3-38*x^2-789*x+988 4180926954046532 r005 Re(z^2+c),c=-61/106+17/48*I,n=51 4180926990126648 m001 (Zeta(1/2)-ArtinRank2)/(Salem-TwinPrimes) 4180926991590259 m001 (-OneNinth+Trott)/(Si(Pi)+arctan(1/2)) 4180926997262787 m005 (1/2*5^(1/2)-5/9)/(1/7*Pi-7/12) 4180927003865679 r005 Re(z^2+c),c=-27/44+1/41*I,n=18 4180927020077112 r005 Re(z^2+c),c=-53/90+9/55*I,n=21 4180927026634800 r002 28th iterates of z^2 + 4180927026864894 m001 (GAMMA(23/24)-Mills)/(Trott+TwinPrimes) 4180927038485174 a007 Real Root Of -249*x^4-905*x^3+494*x^2-281*x+133 4180927049314014 b008 LogBarnesG[(2*Pi)/E] 4180927049793826 m001 (Zeta(1,2)-Backhouse)/(Zeta(5)-ln(5)) 4180927050944282 r009 Re(z^3+c),c=-9/22+5/42*I,n=39 4180927065354682 r005 Re(z^2+c),c=-11/18+2/69*I,n=18 4180927070507299 g007 Psi(2,4/11)-Psi(2,4/9)-Psi(2,7/8)-Psi(2,1/6) 4180927073114214 r005 Im(z^2+c),c=19/94+1/48*I,n=5 4180927073285871 r005 Im(z^2+c),c=19/106+17/41*I,n=37 4180927079029191 r005 Re(z^2+c),c=-13/66+33/52*I,n=57 4180927098160495 r005 Im(z^2+c),c=5/32+13/30*I,n=62 4180927104975120 m001 gamma(3)^Porter/(gamma(3)^LandauRamanujan2nd) 4180927120955579 r005 Im(z^2+c),c=-17/122+19/29*I,n=23 4180927132968948 a001 2971215073/3*843^(5/9) 4180927135940516 a001 843/11*(1/2*5^(1/2)+1/2)^28*11^(17/20) 4180927138363136 r005 Re(z^2+c),c=-19/34+34/101*I,n=63 4180927141942298 r002 42th iterates of z^2 + 4180927148043909 m008 (2/3*Pi^6+3)/(1/6*Pi^4-5/6) 4180927152411049 m001 Totient/(MertensB1-LandauRamanujan2nd) 4180927158915593 r009 Re(z^3+c),c=-9/22+5/42*I,n=44 4180927163064250 a007 Real Root Of 230*x^4-902*x^3+650*x^2-886*x-557 4180927178158497 r005 Im(z^2+c),c=-3/82+27/46*I,n=29 4180927182454068 r009 Re(z^3+c),c=-9/22+5/42*I,n=43 4180927190142736 r009 Re(z^3+c),c=-9/22+5/42*I,n=45 4180927204976871 r009 Im(z^3+c),c=-2/15+13/27*I,n=20 4180927212502570 r009 Re(z^3+c),c=-9/22+5/42*I,n=50 4180927213789363 r005 Re(z^2+c),c=29/94+31/58*I,n=11 4180927214097472 r009 Re(z^3+c),c=-9/22+5/42*I,n=51 4180927216311434 a005 (1/cos(17/134*Pi))^215 4180927216904448 r009 Re(z^3+c),c=-9/22+5/42*I,n=49 4180927217172836 r009 Re(z^3+c),c=-9/22+5/42*I,n=57 4180927217174085 r009 Re(z^3+c),c=-9/22+5/42*I,n=56 4180927217302852 r009 Re(z^3+c),c=-9/22+5/42*I,n=52 4180927217440229 r009 Re(z^3+c),c=-9/22+5/42*I,n=58 4180927217510582 r009 Re(z^3+c),c=-9/22+5/42*I,n=63 4180927217525772 r009 Re(z^3+c),c=-9/22+5/42*I,n=62 4180927217529416 r009 Re(z^3+c),c=-9/22+5/42*I,n=64 4180927217591337 r009 Re(z^3+c),c=-9/22+5/42*I,n=61 4180927217639280 r009 Re(z^3+c),c=-9/22+5/42*I,n=59 4180927217664230 r009 Re(z^3+c),c=-9/22+5/42*I,n=60 4180927217758350 r009 Re(z^3+c),c=-9/22+5/42*I,n=55 4180927218699966 r009 Re(z^3+c),c=-9/22+5/42*I,n=54 4180927218949652 r009 Re(z^3+c),c=-9/22+5/42*I,n=53 4180927222222051 m001 1/GAMMA(23/24)*Trott/exp(arctan(1/2))^2 4180927224131529 r009 Re(z^3+c),c=-9/22+5/42*I,n=46 4180927226226068 a008 Real Root of x^4-x^3+85*x^2+207*x-999 4180927227492006 r009 Re(z^3+c),c=-9/22+5/42*I,n=48 4180927232181985 m001 LambertW(1)^2*Si(Pi)^2*ln(cos(1))^2 4180927235019424 r009 Re(z^3+c),c=-9/22+5/42*I,n=47 4180927248732807 r005 Im(z^2+c),c=1/23+16/29*I,n=23 4180927261188793 m005 (1/2*Zeta(3)-5/7)/(5/6*Pi+1/11) 4180927285208995 r005 Re(z^2+c),c=-51/86+5/53*I,n=29 4180927286575553 s001 sum(exp(-Pi/4)^n*A221280[n],n=1..infinity) 4180927288495705 r009 Re(z^3+c),c=-9/22+5/42*I,n=42 4180927294599389 r005 Im(z^2+c),c=-43/90+25/44*I,n=34 4180927321495950 r002 41th iterates of z^2 + 4180927323825335 r005 Im(z^2+c),c=19/122+27/62*I,n=31 4180927328003264 m001 (-FeigenbaumD+Sierpinski)/(1-BesselJ(0,1)) 4180927328309270 r005 Re(z^2+c),c=15/74+17/46*I,n=63 4180927333173602 a001 75025/18*11^(25/26) 4180927352223965 r005 Im(z^2+c),c=-7/62+11/18*I,n=64 4180927354862739 r005 Re(z^2+c),c=-5/9-29/81*I,n=60 4180927371906404 r009 Re(z^3+c),c=-9/22+5/42*I,n=40 4180927382026395 a007 Real Root Of -902*x^4-912*x^3-384*x^2+416*x+18 4180927383273912 m001 exp(MadelungNaCl)^2/FeigenbaumB^2*Zeta(1,2)^2 4180927387746660 r002 48th iterates of z^2 + 4180927391012943 m001 Cahen-MertensB3^exp(-1/2*Pi) 4180927405703449 r005 Re(z^2+c),c=47/114+10/33*I,n=12 4180927406716674 m001 BesselJ(0,1)*PisotVijayaraghavan*ThueMorse 4180927408633959 r009 Re(z^3+c),c=-9/22+5/42*I,n=41 4180927413458763 r005 Im(z^2+c),c=15/58+9/25*I,n=23 4180927415678531 m006 (1/6*exp(2*Pi)+1/3)/(4*exp(2*Pi)+2/3) 4180927418053604 a007 Real Root Of 252*x^4+858*x^3-656*x^2+910*x+977 4180927426172935 r009 Im(z^3+c),c=-1/9+13/17*I,n=4 4180927428719735 r005 Im(z^2+c),c=1/54+29/48*I,n=9 4180927437826792 m005 (1/2*Zeta(3)+2/7)/(2/5*2^(1/2)-7/9) 4180927440607944 r005 Re(z^2+c),c=-31/52+5/62*I,n=25 4180927458885417 r002 59th iterates of z^2 + 4180927467405995 a007 Real Root Of 553*x^4-666*x^3-752*x^2-734*x-241 4180927469613354 m001 (-Porter+StolarskyHarborth)/(exp(1)+Gompertz) 4180927510137530 m009 (24/5*Catalan+3/5*Pi^2+5)/(Psi(1,2/3)+3/5) 4180927524594966 r002 57th iterates of z^2 + 4180927528004505 r005 Im(z^2+c),c=-21/94+27/44*I,n=64 4180927528803917 l006 ln(4333/4518) 4180927540624439 r009 Re(z^3+c),c=-9/22+5/42*I,n=36 4180927550209684 a007 Real Root Of -252*x^4+848*x^3+528*x^2+886*x-517 4180927554635271 a007 Real Root Of 236*x^4+890*x^3-239*x^2+770*x+330 4180927556378835 r005 Re(z^2+c),c=-61/98+3/7*I,n=30 4180927556881706 m008 (1/6*Pi^6+1/5)/(2/5*Pi^6-5/6) 4180927568732959 r005 Re(z^2+c),c=-9/16+8/27*I,n=40 4180927575852985 m001 ((1+3^(1/2))^(1/2)+Trott)/(ThueMorse-ZetaP(2)) 4180927588298489 a001 199/2178309*832040^(37/47) 4180927599035001 r002 55th iterates of z^2 + 4180927604940012 a007 Real Root Of -937*x^4+564*x^3-68*x^2+957*x-4 4180927605649716 l005 sech(379/98) 4180927607174088 b008 3+47*Sqrt[78] 4180927610328935 r005 Im(z^2+c),c=-19/118+32/49*I,n=5 4180927640720427 m001 1/Riemann3rdZero^2/ln(Conway)/(3^(1/3)) 4180927642234859 a007 Real Root Of 519*x^4+468*x^3+897*x^2-384*x-299 4180927642269422 r005 Im(z^2+c),c=7/25+7/22*I,n=60 4180927649759662 l006 ln(341/518) 4180927680757509 r009 Re(z^3+c),c=-45/94+10/49*I,n=15 4180927682264968 m001 (Trott2nd-Thue)/(GAMMA(2/3)+HardyLittlewoodC3) 4180927706847940 r005 Im(z^2+c),c=13/122+17/36*I,n=37 4180927713926607 h001 (1/7*exp(2)+1/10)/(1/4*exp(2)+11/12) 4180927718349465 m006 (4/5/Pi-3)/(2/5*Pi-3/5) 4180927722723149 r005 Im(z^2+c),c=31/90+5/19*I,n=55 4180927724659790 m001 (Khinchin+Rabbit)/(Trott2nd+ZetaQ(2)) 4180927734832081 r002 37th iterates of z^2 + 4180927736692603 r002 59th iterates of z^2 + 4180927740261248 m001 1/exp(sqrt(5))/(3^(1/3))/sqrt(Pi) 4180927754735190 a007 Real Root Of 907*x^4+55*x^3+644*x^2-339*x-278 4180927755685835 a007 Real Root Of -239*x^4-926*x^3+540*x^2+926*x-215 4180927758348817 r005 Re(z^2+c),c=-7/12+13/74*I,n=44 4180927772487219 m001 Riemann3rdZero/Conway*exp(GAMMA(7/24)) 4180927793281403 a007 Real Root Of -43*x^4-102*x^3+280*x^2-243*x-226 4180927804564482 a007 Real Root Of 262*x^4-700*x^3-313*x^2-737*x+406 4180927819236390 r005 Im(z^2+c),c=7/60+13/28*I,n=48 4180927825885410 m001 (-Sarnak+Tribonacci)/(5^(1/2)-FeigenbaumAlpha) 4180927830196278 m005 (1/2*3^(1/2)-9/10)/(4*5^(1/2)-9/11) 4180927841875239 m001 ln(Ei(1))/MertensB1^2/sqrt(5) 4180927846256156 r005 Re(z^2+c),c=-16/27+1/51*I,n=39 4180927852816449 r002 41th iterates of z^2 + 4180927892462896 a003 sin(Pi*18/95)*sin(Pi*15/56) 4180927893335733 r002 56th iterates of z^2 + 4180927897218685 r009 Im(z^3+c),c=-5/14+5/12*I,n=22 4180927907638716 m001 (-Otter+ZetaP(3))/(BesselI(0,1)-MertensB3) 4180927921928589 m008 (4/5*Pi^3+2)/(2/3*Pi^6+1/5) 4180927924809174 r004 Re(z^2+c),c=-4/7+2/7*I,z(0)=exp(7/8*I*Pi),n=48 4180927928826172 r009 Im(z^3+c),c=-6/25+28/61*I,n=19 4180927954688675 m001 Pi^2*MinimumGamma^2/exp(cos(Pi/5))^2 4180927957921016 a007 Real Root Of -634*x^4+749*x^3-468*x^2+776*x-278 4180927958616537 h001 (3/10*exp(2)+4/5)/(7/8*exp(2)+3/4) 4180927966150961 m001 1/exp(Lehmer)^2/Khintchine^2*Paris 4180927967319407 r005 Re(z^2+c),c=-129/98+1/55*I,n=26 4180927975413251 r009 Re(z^3+c),c=-23/52+4/7*I,n=38 4180927981875305 r009 Im(z^3+c),c=-41/114+25/58*I,n=9 4180927982264954 m001 (-Zeta(5)+GaussKuzminWirsing)/(Chi(1)+Catalan) 4180927987210113 a007 Real Root Of 287*x^4+970*x^3+953*x^2-317*x-237 4180927989645444 m001 BesselJ(1,1)*ln(Artin)*cos(Pi/12) 4180927992636481 m001 Zeta(1,2)^Totient/Ei(1,1) 4180928024174047 r005 Im(z^2+c),c=-13/14+53/176*I,n=5 4180928036495738 r009 Im(z^3+c),c=-19/52+3/7*I,n=9 4180928036665803 r002 61th iterates of z^2 + 4180928041269365 a001 87403803/89*1836311903^(14/17) 4180928041271969 a001 73681302247/89*514229^(14/17) 4180928041658290 a001 103682/89*6557470319842^(14/17) 4180928052380705 m001 (Zeta(1,-1)+GAMMA(17/24))/(Pi-arctan(1/2)) 4180928052790444 m001 GAMMA(11/24)^Zeta(3)/(sin(Pi/5)^Zeta(3)) 4180928055648552 a007 Real Root Of 212*x^4+539*x^3+753*x^2-27*x-110 4180928068169502 r009 Re(z^3+c),c=-59/122+20/57*I,n=2 4180928070133511 m005 (1/2*Zeta(3)-8/9)/(3/11*2^(1/2)-5/11) 4180928074867254 a003 cos(Pi*9/109)-cos(Pi*29/92) 4180928086493949 r005 Im(z^2+c),c=-17/18+1/27*I,n=16 4180928096333778 m005 (1/2*Catalan+5/7)/(3/10*3^(1/2)-4/5) 4180928109873087 m005 (1/2*Pi-4/9)/(7/12*2^(1/2)-5/9) 4180928124074539 a003 cos(Pi*20/81)/cos(Pi*53/119) 4180928125566681 r005 Im(z^2+c),c=17/66+12/35*I,n=27 4180928143309814 a007 Real Root Of 203*x^4+835*x^3-18*x^2+59*x-442 4180928152442797 a007 Real Root Of -751*x^4-269*x^3+952*x^2+663*x-401 4180928152948472 a001 521/53316291173*233^(4/15) 4180928154207160 r005 Im(z^2+c),c=1/56+8/15*I,n=54 4180928156883038 r002 11th iterates of z^2 + 4180928157914423 m005 (1/2*2^(1/2)+2)/(2/5*Zeta(3)+1/6) 4180928180163550 m008 (1/3*Pi^5+3/5)/(4/5*Pi^5+3/5) 4180928187832893 a007 Real Root Of -256*x^4+129*x^3-692*x^2-266*x+27 4180928191419317 a007 Real Root Of 120*x^4-796*x^3+228*x^2-594*x+263 4180928199412204 a007 Real Root Of -633*x^4+990*x^3+421*x^2-72*x-12 4180928204987652 a007 Real Root Of -155*x^4-304*x^3-269*x^2+965*x+433 4180928210088681 g002 Psi(3/5)+Psi(1/5)-Psi(7/12)-Psi(1/9) 4180928216174778 b008 Pi+16*Cot[2] 4180928216949686 r005 Im(z^2+c),c=-5/6+1/41*I,n=62 4180928220286203 m001 (3^(1/3))^ln(3)*(3^(1/3))^FransenRobinson 4180928237922569 m001 1/ln(FeigenbaumC)/KhintchineLevy/gamma^2 4180928251026943 r005 Im(z^2+c),c=15/58+21/53*I,n=14 4180928259323463 a007 Real Root Of 29*x^4-42*x^3-431*x^2+877*x-730 4180928265386220 r005 Im(z^2+c),c=-7/8+69/254*I,n=31 4180928284263112 m001 1/BesselJ(1,1)/exp(Lehmer)^2*BesselK(1,1) 4180928285446171 m003 -6*Sech[1/2+Sqrt[5]/2]+7*Tanh[1/2+Sqrt[5]/2] 4180928294525526 m001 (OneNinth+Trott)/(BesselK(0,1)-CareFree) 4180928302850277 r005 Re(z^2+c),c=-19/36+9/43*I,n=10 4180928304677368 r005 Im(z^2+c),c=27/82+8/29*I,n=43 4180928308516017 p004 log(29599/28387) 4180928318869678 m005 (1/2*exp(1)-6/7)/(1/3*Zeta(3)+4/5) 4180928325243867 r005 Im(z^2+c),c=-13/58+35/57*I,n=64 4180928335665458 s002 sum(A258274[n]/(n^3*2^n+1),n=1..infinity) 4180928338368898 r005 Re(z^2+c),c=-21/34+29/90*I,n=50 4180928370927416 r002 2th iterates of z^2 + 4180928376979873 r005 Im(z^2+c),c=5/38+29/64*I,n=37 4180928377196760 a003 sin(Pi*36/109)/cos(Pi*23/53) 4180928395285311 r002 19th iterates of z^2 + 4180928399389421 r005 Re(z^2+c),c=-55/106+15/43*I,n=18 4180928406420474 r002 21th iterates of z^2 + 4180928443627220 r005 Im(z^2+c),c=-27/56+34/59*I,n=44 4180928447730071 m001 1/ln(GAMMA(1/4))*MadelungNaCl*GAMMA(7/24) 4180928449301269 p001 sum((-1)^n/(376*n+239)/(512^n),n=0..infinity) 4180928469560212 m001 (gamma(3)+Cahen)/(Conway+Riemann1stZero) 4180928474986887 m001 Pi-Pi^(1/2)-KomornikLoreti 4180928476684559 r005 Im(z^2+c),c=-5/82+29/50*I,n=58 4180928480641186 m001 (BesselK(0,1)+CareFree)/(FeigenbaumD+ZetaQ(3)) 4180928490230901 r005 Re(z^2+c),c=-37/64+11/49*I,n=48 4180928497444162 l006 ln(143/9356) 4180928500744180 m001 gamma+Pi^(1/2)+FeigenbaumC 4180928503332149 m001 (Pi+4)/(exp(1/Pi)+1/3) 4180928516204234 r005 Im(z^2+c),c=7/30+21/59*I,n=8 4180928519696970 m005 (1/2*3^(1/2)+4)/(2/5*Catalan-1/4) 4180928525670296 r002 7th iterates of z^2 + 4180928532615236 r009 Re(z^3+c),c=-13/23+15/64*I,n=12 4180928534628545 m001 FellerTornier^gamma/(MinimumGamma^gamma) 4180928536207815 a007 Real Root Of 334*x^4-452*x^3+300*x^2-283*x-214 4180928583851802 m001 (FeigenbaumD+Sierpinski)/(LambertW(1)-ln(2)) 4180928586594520 r002 20th iterates of z^2 + 4180928600770287 r002 3th iterates of z^2 + 4180928602521268 m001 Magata^ZetaQ(2)/(Magata^BesselJ(0,1)) 4180928603914120 r005 Re(z^2+c),c=-3/5+5/82*I,n=16 4180928607655510 r002 21th iterates of z^2 + 4180928613749009 a001 2207/8*196418^(46/47) 4180928619815484 m001 Otter*(BesselI(0,1)+ZetaR(2)) 4180928626894613 a001 5/103682*47^(23/41) 4180928627676367 m005 (1/2*exp(1)+9/11)/(1/12*Catalan+4/9) 4180928637105690 r002 42th iterates of z^2 + 4180928645093681 a007 Real Root Of 84*x^4+192*x^3-638*x^2+295*x+751 4180928658512840 r009 Re(z^3+c),c=-1/29+25/28*I,n=19 4180928663035123 r002 12th iterates of z^2 + 4180928664477724 a007 Real Root Of -888*x^4+462*x^3-688*x^2+997*x+598 4180928687898022 r002 7th iterates of z^2 + 4180928696524880 m001 MasserGramain-sin(1/12*Pi)*QuadraticClass 4180928697759753 m001 (2^(1/3)-Cahen)/(MertensB2+TreeGrowth2nd) 4180928707122680 p003 LerchPhi(1/8,2,9/184) 4180928711611286 m005 (1/3*5^(1/2)-3/4)/(5/8*gamma+3/4) 4180928713603042 a003 cos(Pi*26/107)*cos(Pi*17/56) 4180928716645463 m001 (Sierpinski+Totient)/(RenyiParking-sin(1)) 4180928716739063 m001 ln(MinimumGamma)^2*Conway^2/BesselJ(0,1)^2 4180928719972254 a007 Real Root Of -217*x^4-645*x^3+912*x^2-575*x+821 4180928722739380 m003 -1/12+(9*Sqrt[5])/32+2*Sec[1/2+Sqrt[5]/2] 4180928750481812 r005 Re(z^2+c),c=-35/58+4/43*I,n=19 4180928751415188 r005 Im(z^2+c),c=-15/118+55/63*I,n=6 4180928753118006 m001 (Totient+TreeGrowth2nd)/(3^(1/2)-Mills) 4180928756766507 m001 (Landau-MertensB3)/(GAMMA(11/12)+FeigenbaumB) 4180928765863925 a007 Real Root Of 967*x^4-659*x^3-958*x^2-796*x+35 4180928766107882 m001 (Zeta(1,2)+GaussAGM)/(ln(Pi)+ln(2+3^(1/2))) 4180928776999101 m001 (ln(2)+Ei(1))/(2*Pi/GAMMA(5/6)+GolombDickman) 4180928784618425 a007 Real Root Of 393*x^4-640*x^3+932*x^2-271*x-335 4180928793632314 m001 1/BesselK(0,1)*ln(LaplaceLimit)/GAMMA(7/12)^2 4180928802463695 r002 53th iterates of z^2 + 4180928815637806 a007 Real Root Of 64*x^4+294*x^3+201*x^2+335*x-182 4180928818046365 r005 Im(z^2+c),c=-9/56+28/41*I,n=59 4180928818709296 m005 (1/2*3^(1/2)+6)/(5*Pi+5/7) 4180928822938086 r002 35th iterates of z^2 + 4180928824063992 r009 Re(z^3+c),c=-21/46+1/31*I,n=8 4180928830185458 s002 sum(A086160[n]/(n^2*2^n+1),n=1..infinity) 4180928834590385 s002 sum(A029047[n]/(n^2*2^n+1),n=1..infinity) 4180928839864582 m005 (1/3*Zeta(3)+1/12)/(3/5*Pi-8/11) 4180928839936110 r009 Im(z^3+c),c=-59/126+19/53*I,n=10 4180928841400263 p001 sum(1/(395*n+261)/(5^n),n=0..infinity) 4180928850333377 r005 Re(z^2+c),c=-9/16+49/116*I,n=22 4180928852088688 r009 Re(z^3+c),c=-11/27+3/29*I,n=7 4180928871350642 m001 exp((3^(1/3)))/FeigenbaumB^2/Zeta(1/2) 4180928886451052 m001 MertensB3^ZetaR(2)-MinimumGamma 4180928888793150 r009 Im(z^3+c),c=-3/8+10/17*I,n=16 4180928897830306 h005 exp(sin(Pi*13/47)/cos(Pi*17/53)) 4180928903569115 m001 1/BesselK(0,1)/Backhouse^2*exp(log(2+sqrt(3))) 4180928910706953 r002 17th iterates of z^2 + 4180928913404135 r009 Im(z^3+c),c=-9/122+1/2*I,n=4 4180928936847698 r005 Re(z^2+c),c=-51/86+1/18*I,n=31 4180928938804411 m005 (1/2*2^(1/2)-4/11)/(21/8+5/2*5^(1/2)) 4180928941669522 a001 29/2178309*10946^(34/55) 4180928944085608 r009 Re(z^3+c),c=-45/94+3/17*I,n=19 4180928975371136 r005 Re(z^2+c),c=-19/34+31/87*I,n=47 4180928977835447 a001 28657/521*199^(9/11) 4180928986073132 r005 Im(z^2+c),c=27/86+19/58*I,n=16 4180928998632982 r005 Im(z^2+c),c=-2/3+31/95*I,n=7 4180929003128325 m001 cos(1)*GAMMA(13/24)*Bloch 4180929003628195 m001 Niven^Otter-Robbin 4180929016154695 m001 (GAMMA(2/3)-ln(3))/(BesselI(1,1)-Salem) 4180929024368280 r005 Re(z^2+c),c=23/106+23/53*I,n=18 4180929038928931 m005 (1/2*Zeta(3)+2/5)/(1/3*exp(1)-2/3) 4180929043657012 r009 Im(z^3+c),c=-1/42+49/62*I,n=16 4180929063250572 p003 LerchPhi(1/1024,3,218/163) 4180929074493341 m001 (exp(1/exp(1))-exp(Pi))/(Grothendieck+Magata) 4180929079418822 a007 Real Root Of -778*x^4+600*x^3-902*x^2+28*x+237 4180929080435151 r009 Re(z^3+c),c=-9/22+5/42*I,n=35 4180929086125942 m001 Magata-OneNinth+QuadraticClass 4180929089282181 m001 (LandauRamanujan2nd+ZetaQ(3))/(Catalan-Shi(1)) 4180929094269111 r002 6th iterates of z^2 + 4180929095354523 q001 171/409 4180929105957597 r005 Re(z^2+c),c=-11/19+9/40*I,n=40 4180929108262991 r005 Im(z^2+c),c=5/34+26/59*I,n=49 4180929119842228 a003 cos(Pi*32/103)-sin(Pi*36/83) 4180929140277861 p001 sum((-1)^n/(265*n+239)/(625^n),n=0..infinity) 4180929145644701 m004 -Sinh[Sqrt[5]*Pi]+144*Tanh[Sqrt[5]*Pi] 4180929148327369 r005 Im(z^2+c),c=-3/70+15/26*I,n=50 4180929149254406 m001 1/ln(Porter)^2/MertensB1^2/cosh(1)^2 4180929196718699 r005 Im(z^2+c),c=-103/90+1/19*I,n=46 4180929214473825 r002 5th iterates of z^2 + 4180929222157451 a007 Real Root Of 355*x^4+214*x^3+628*x^2-830*x-452 4180929223827962 p003 LerchPhi(1/3,2,353/212) 4180929226315066 r009 Im(z^3+c),c=-51/98+9/41*I,n=20 4180929236850233 m005 (1/2*3^(1/2)+2/7)/(5/12*exp(1)-6/7) 4180929242069994 r005 Re(z^2+c),c=-13/22+4/73*I,n=26 4180929242170381 h001 (5/7*exp(1)+1/5)/(1/12*exp(1)+2/7) 4180929248247167 h001 (2/7*exp(1)+8/9)/(5/11*exp(2)+5/8) 4180929248833884 r005 Im(z^2+c),c=-13/24+29/62*I,n=49 4180929253515444 b008 9*ArcCsc[1/2+Sqrt[3]] 4180929288711540 r002 50th iterates of z^2 + 4180929294677409 m001 (BesselJ(1,1)-Psi(2,1/3))/(-Totient+Trott) 4180929295178421 a007 Real Root Of 268*x^4-808*x^3-776*x^2+6*x+184 4180929295661074 r005 Im(z^2+c),c=5/26+25/62*I,n=50 4180929331314630 r005 Re(z^2+c),c=-55/106+25/61*I,n=21 4180929334296534 r005 Im(z^2+c),c=3/64+18/35*I,n=45 4180929334844014 r005 Im(z^2+c),c=-5/62+14/23*I,n=64 4180929348412428 m001 (GAMMA(2/3)+GAMMA(11/12))/(2^(1/2)-Chi(1)) 4180929356080543 r005 Im(z^2+c),c=5/34+26/59*I,n=64 4180929363051591 r005 Re(z^2+c),c=-1+52/229*I,n=64 4180929365699844 a007 Real Root Of 24*x^4-672*x^3+616*x^2-977*x-566 4180929366748578 r005 Re(z^2+c),c=-49/82+17/48*I,n=18 4180929376748392 a007 Real Root Of -844*x^4+956*x^3+726*x^2+58*x-7 4180929385191564 a003 cos(Pi*13/67)*cos(Pi*30/91) 4180929392048846 b008 EulerGamma+49*Sin[1] 4180929392526303 a007 Real Root Of -185*x^4+546*x^3+827*x^2+132*x-234 4180929405351892 r002 8th iterates of z^2 + 4180929416482881 a001 76/13*32951280099^(6/13) 4180929422332801 r002 11th iterates of z^2 + 4180929424446417 r002 54th iterates of z^2 + 4180929444803525 h001 (3/10*exp(1)+1/10)/(4/7*exp(1)+7/11) 4180929444964907 a007 Real Root Of -811*x^4+955*x^3-864*x^2+44*x+264 4180929450009653 r005 Re(z^2+c),c=-75/118+8/19*I,n=9 4180929461228202 a007 Real Root Of -670*x^4-329*x^3-656*x^2+691*x+400 4180929477969388 b008 (3*(2/5)!!)/7 4180929481919173 a007 Real Root Of 63*x^4-929*x^3+109*x^2-615*x-346 4180929482972055 r009 Im(z^3+c),c=-5/42+49/64*I,n=13 4180929491516956 m001 HardHexagonsEntropy^2*DuboisRaymond*exp(Paris) 4180929508795006 a007 Real Root Of -631*x^4-467*x^3+591*x^2+890*x-422 4180929524999813 r009 Re(z^3+c),c=-9/22+5/42*I,n=34 4180929530107437 m001 (Pi-Ei(1))/(2*Pi/GAMMA(5/6)-Sierpinski) 4180929534655892 a007 Real Root Of 554*x^4+390*x^3+484*x^2+79*x-40 4180929535232745 m001 GAMMA(13/24)^FeigenbaumAlpha-Magata 4180929539511742 m009 (1/2*Psi(1,2/3)-1/3)/(4/5*Psi(1,3/4)+5/6) 4180929540114694 r005 Im(z^2+c),c=13/70+25/61*I,n=33 4180929564567811 m001 1/exp(Tribonacci)/Artin^2/exp(1) 4180929572149351 a001 521/55*89^(27/32) 4180929573727848 a007 Real Root Of 482*x^4-890*x^3+179*x^2-507*x+231 4180929581934094 r009 Im(z^3+c),c=-25/48+19/64*I,n=56 4180929587709814 a007 Real Root Of 666*x^4+124*x^3+851*x^2-495*x-367 4180929588937531 h001 (1/10*exp(2)+2/5)/(9/11*exp(1)+1/2) 4180929590546216 a007 Real Root Of 220*x^4+717*x^3-636*x^2+847*x-163 4180929591933318 a007 Real Root Of -909*x^4+506*x^3+559*x^2+933*x-497 4180929601822625 r009 Im(z^3+c),c=-19/74+21/47*I,n=7 4180929619037106 r005 Im(z^2+c),c=-19/40+25/44*I,n=29 4180929632051221 a003 cos(Pi*18/107)*cos(Pi*39/115) 4180929640066966 a007 Real Root Of -956*x^4+705*x^3-266*x^2+772*x+450 4180929654188268 m006 (5/6/Pi-5/6)/(1/4*exp(2*Pi)+2) 4180929664437086 r009 Im(z^3+c),c=-15/82+26/55*I,n=13 4180929666753039 a005 (1/sin(101/228*Pi))^1659 4180929670140536 r005 Re(z^2+c),c=-4/7+32/119*I,n=60 4180929677155724 m005 (1/2*2^(1/2)-1/7)/(3/5*Catalan+4/5) 4180929707267407 r005 Re(z^2+c),c=-7/12+19/105*I,n=52 4180929707724883 m005 (1/2*Pi-1/2)/(1/2*Zeta(3)-6/7) 4180929709001531 r002 60th iterates of z^2 + 4180929709001531 r002 60th iterates of z^2 + 4180929721477559 a007 Real Root Of -478*x^4+963*x^3+155*x^2+151*x-146 4180929746017719 r004 Im(z^2+c),c=5/46+10/21*I,z(0)=I,n=32 4180929775876834 m001 polylog(4,1/2)/(BesselI(0,2)^sin(1/12*Pi)) 4180929775876834 m001 polylog(4,1/2)/(BesselI(0,2)^sin(Pi/12)) 4180929789269096 r005 Re(z^2+c),c=-13/22+10/123*I,n=55 4180929804059025 r002 48th iterates of z^2 + 4180929816916305 r005 Re(z^2+c),c=-23/40+15/61*I,n=64 4180929825454123 r009 Re(z^3+c),c=-10/21+3/16*I,n=32 4180929834545006 r002 37th iterates of z^2 + 4180929854969886 m001 (-Lehmer+PrimesInBinary)/(cos(1)-cos(1/12*Pi)) 4180929856451661 a007 Real Root Of -40*x^4-108*x^3+156*x^2-223*x+670 4180929871058693 r009 Im(z^3+c),c=-51/118+23/61*I,n=35 4180929886342781 a007 Real Root Of 637*x^4-870*x^3+251*x^2-347*x-272 4180929900123484 r002 9th iterates of z^2 + 4180929904552090 r005 Re(z^2+c),c=-13/22+3/37*I,n=49 4180929905031076 a007 Real Root Of -322*x^4-595*x^3-399*x^2+514*x+251 4180929907444725 h001 (1/12*exp(2)+1/2)/(9/10*exp(1)+2/9) 4180929912517349 r005 Im(z^2+c),c=-39/86+6/11*I,n=13 4180929922553592 l006 ln(75/4907) 4180929938421852 r005 Re(z^2+c),c=-5/8+58/135*I,n=30 4180929938686143 r002 19th iterates of z^2 + 4180929943509861 r002 11th iterates of z^2 + 4180929962563524 a007 Real Root Of 14*x^4+594*x^3+386*x^2+970*x-561 4180929970931385 r009 Im(z^3+c),c=-5/17+41/42*I,n=24 4180930000593117 r002 23th iterates of z^2 + 4180930006897741 a007 Real Root Of 892*x^4-640*x^3+806*x^2-933*x-605 4180930029991890 r005 Im(z^2+c),c=3/110+19/36*I,n=36 4180930036551702 s002 sum(A007294[n]/(n^2*2^n+1),n=1..infinity) 4180930038367576 r009 Re(z^3+c),c=-43/90+7/37*I,n=55 4180930066212356 r009 Im(z^3+c),c=-9/19+11/32*I,n=27 4180930066277439 m008 (2/5*Pi^6+3)/(Pi^2-3/5) 4180930076984258 m001 Pi+2^(1/3)/(gamma(1)+GAMMA(17/24)) 4180930094537448 a007 Real Root Of -157*x^4-640*x^3+282*x^2+776*x-486 4180930106317937 r005 Im(z^2+c),c=-19/18+55/207*I,n=50 4180930108528652 r009 Re(z^3+c),c=-27/52+12/59*I,n=26 4180930127344521 a007 Real Root Of -884*x^4+649*x^3+869*x^2+767*x-493 4180930164786414 m001 (2^(1/3)-Catalan)/(gamma(2)+FeigenbaumB) 4180930165290924 m003 -5-E^(1/2+Sqrt[5]/2)+(3*Sec[1/2+Sqrt[5]/2])/2 4180930175874605 m001 (Zeta(3)+GAMMA(23/24))/(Cahen-Salem) 4180930176657231 m001 (-MertensB3+Robbin)/(ln(2)/ln(10)+Conway) 4180930179172709 r005 Im(z^2+c),c=13/54+14/39*I,n=37 4180930181603289 m001 1/MadelungNaCl*exp(CopelandErdos)*gamma 4180930181665449 m001 (ZetaP(2)+ZetaP(3))/(Backhouse-Otter) 4180930181731406 m001 (KhinchinHarmonic+Trott2nd)/(Pi+ln(3)) 4180930200956752 a001 123/233*377^(15/43) 4180930214341189 m005 (1/2*2^(1/2)+5/7)/(2/5*Pi-11/12) 4180930227655596 r002 21th iterates of z^2 + 4180930235560381 r009 Im(z^3+c),c=-13/25+14/57*I,n=12 4180930242853988 m001 Zeta(7)/GAMMA(2/3)/exp(gamma) 4180930246752807 m001 (PlouffeB-ThueMorse)/(Pi^(1/2)-MertensB1) 4180930263109961 m005 (3*exp(1)-4/5)/(5*exp(1)+4) 4180930274446188 r005 Re(z^2+c),c=-33/56+3/22*I,n=30 4180930274887709 m001 (Catalan-Chi(1))/(BesselI(0,1)+BesselK(1,1)) 4180930300808081 g007 -2*Psi(2,5/12)-Psi(2,1/11)-Psi(2,1/9) 4180930303435510 a007 Real Root Of -209*x^4-861*x^3+168*x^2+653*x+730 4180930310691822 a007 Real Root Of -162*x^4-771*x^3-208*x^2+941*x+723 4180930324185151 m001 (GAMMA(23/24)-Magata)/(MasserGramain-ZetaP(4)) 4180930331257464 r005 Re(z^2+c),c=-53/54+7/23*I,n=18 4180930352041965 m001 (-Salem+Stephens)/(GlaisherKinkelin-exp(1)) 4180930358230445 a008 Real Root of (6+7*x-18*x^2-x^3) 4180930363912371 r005 Re(z^2+c),c=17/64+1/41*I,n=33 4180930368237799 r005 Re(z^2+c),c=-67/114+5/38*I,n=56 4180930370704802 r009 Im(z^3+c),c=-5/118+25/51*I,n=14 4180930391734033 a007 Real Root Of -568*x^4-583*x^3+116*x^2+642*x-27 4180930392812838 r009 Im(z^3+c),c=-53/90+49/64*I,n=3 4180930397579363 m001 FeigenbaumMu^(Thue/LandauRamanujan) 4180930416239789 r009 Im(z^3+c),c=-1/20+24/49*I,n=10 4180930417544258 r005 Im(z^2+c),c=-7/78+22/37*I,n=57 4180930421020795 m001 (ln(2)/ln(10))^ln(2^(1/2)+1)-BesselJ(0,1) 4180930422493479 r002 57th iterates of z^2 + 4180930425588216 r005 Im(z^2+c),c=3/110+17/31*I,n=27 4180930425631276 r002 7th iterates of z^2 + 4180930431605036 m001 1/ln(BesselK(0,1))^2*Porter*Zeta(1/2)^2 4180930433358553 a001 2/6119*199^(2/43) 4180930446944810 m001 GAMMA(5/6)^MadelungNaCl/Otter 4180930495090242 r002 62th iterates of z^2 + 4180930501205998 m001 cos(1)+Pi^GAMMA(5/6) 4180930505760857 r009 Im(z^3+c),c=-3/8+20/49*I,n=18 4180930506250152 v002 sum(1/(3^n+(4*n^2+6*n+54)),n=1..infinity) 4180930541795517 a007 Real Root Of -128*x^4-634*x^3-283*x^2+601*x+236 4180930561581739 r002 30th iterates of z^2 + 4180930562163618 r002 63th iterates of z^2 + 4180930569134204 m005 (1/2*Catalan+3/11)/(-13/36+1/12*5^(1/2)) 4180930570337043 l006 ln(6610/10041) 4180930572075925 p003 LerchPhi(1/6,5,121/161) 4180930578111292 r005 Re(z^2+c),c=-7/122+41/64*I,n=30 4180930593914780 a007 Real Root Of 120*x^4+688*x^3+945*x^2+819*x+520 4180930612745989 a007 Real Root Of -276*x^4+12*x^3-401*x^2+916*x+39 4180930613489505 r002 7th iterates of z^2 + 4180930621944970 r002 30th iterates of z^2 + 4180930632818623 a001 3571/3*75025^(8/11) 4180930641880560 r005 Re(z^2+c),c=-67/122+17/44*I,n=63 4180930647929553 r002 25th iterates of z^2 + 4180930648852121 a005 (1/cos(23/238*Pi))^670 4180930649279195 a007 Real Root Of 936*x^4-261*x^3+344*x^2-895*x-482 4180930656890444 m005 (1/2*gamma-6/7)/(34/99+5/11*5^(1/2)) 4180930689602775 m005 (1/3*2^(1/2)-3/4)/(5/11*Catalan+1/4) 4180930691884696 m001 (-PrimesInBinary+Totient)/(Chi(1)+exp(1/Pi)) 4180930693152419 r005 Im(z^2+c),c=-39/118+31/53*I,n=41 4180930693440499 r005 Im(z^2+c),c=-9/122+3/5*I,n=56 4180930701995903 a003 sin(Pi*11/95)-sin(Pi*20/71) 4180930704047774 m005 (1/2*2^(1/2)-5/12)/(1/3*Catalan-1) 4180930711999907 r009 Re(z^3+c),c=-61/126+10/51*I,n=39 4180930718078759 r005 Im(z^2+c),c=7/44+25/58*I,n=46 4180930720129421 r005 Im(z^2+c),c=31/114+17/52*I,n=59 4180930726318784 r005 Re(z^2+c),c=-19/27+9/53*I,n=30 4180930729200774 l006 ln(6269/9523) 4180930744070901 r005 Re(z^2+c),c=-4/7+11/41*I,n=59 4180930748215088 b008 -42+Sqrt[2/55] 4180930757395879 p001 sum((-1)^n/(568*n+377)/n/(25^n),n=1..infinity) 4180930763278294 m006 (1/2/Pi-5)/(4/5*ln(Pi)-4/5) 4180930765460709 r005 Im(z^2+c),c=29/82+9/52*I,n=32 4180930768020987 r002 16th iterates of z^2 + 4180930769662790 r002 37th iterates of z^2 + 4180930772128892 r005 Im(z^2+c),c=31/114+17/52*I,n=61 4180930772730197 r005 Im(z^2+c),c=13/62+19/47*I,n=21 4180930774337764 r005 Re(z^2+c),c=-35/62+12/37*I,n=55 4180930790577677 r005 Re(z^2+c),c=-4/7+41/90*I,n=45 4180930794543676 a007 Real Root Of 975*x^4-520*x^3+376*x^2-745*x-445 4180930798557913 a003 cos(Pi*17/50)-sin(Pi*31/87) 4180930813389959 r002 46th iterates of z^2 + 4180930821527378 l006 ln(6722/7009) 4180930823315556 s002 sum(A143288[n]/(exp(n)+1),n=1..infinity) 4180930834749501 a001 317811/322*199^(3/11) 4180930838533970 r005 Im(z^2+c),c=-20/17+9/38*I,n=20 4180930844070049 m005 (1/3*Pi+3/4)/(1/7*exp(1)-9/11) 4180930870770978 r002 37th iterates of z^2 + 4180930881009666 r009 Im(z^3+c),c=-37/86+14/37*I,n=40 4180930896808808 a007 Real Root Of 448*x^4-651*x^3+656*x^2-921*x-561 4180930898779351 m001 ln(Zeta(5))^2/Conway^2*cos(1) 4180930901999734 m001 (GAMMA(13/24)-ArtinRank2)/(Bloch+Grothendieck) 4180930902613579 r005 Re(z^2+c),c=-41/62+3/23*I,n=23 4180930906197021 a007 Real Root Of 67*x^4+165*x^3-663*x^2-712*x+199 4180930906341336 l006 ln(5928/9005) 4180930939865376 r005 Re(z^2+c),c=-13/22+8/97*I,n=46 4180930955270889 r005 Im(z^2+c),c=-59/94+5/63*I,n=47 4180930956222560 r005 Im(z^2+c),c=-65/126+15/32*I,n=6 4180930962340867 m001 (Zeta(1,-1)+sin(1/12*Pi))/(exp(1/Pi)+Thue) 4180930970005509 p004 log(26497/17443) 4180930976286564 r009 Re(z^3+c),c=-9/19+5/27*I,n=62 4180930983413517 r005 Im(z^2+c),c=7/46+26/63*I,n=3 4180930989110679 m002 -5+E^Pi/Pi^3+Pi^4*Csch[Pi] 4180931001249830 r002 63th iterates of z^2 + 4180931016345323 a001 144/4870847*2^(1/2) 4180931034702597 r005 Im(z^2+c),c=-5/86+11/19*I,n=54 4180931058249521 r005 Im(z^2+c),c=3/17+5/12*I,n=47 4180931068367031 a007 Real Root Of 370*x^4+419*x^3+133*x^2-883*x+304 4180931070169901 s002 sum(A090073[n]/(pi^n+1),n=1..infinity) 4180931084694201 r005 Im(z^2+c),c=-25/46+15/32*I,n=61 4180931096749784 m001 exp(BesselK(0,1))^2/Robbin/Catalan^2 4180931102304674 m001 (BesselJ(0,1)-FeigenbaumB)/(-Niven+Paris) 4180931105105281 l006 ln(5587/8487) 4180931118116390 a007 Real Root Of 213*x^4+942*x^3+362*x^2+806*x+803 4180931123186537 a007 Real Root Of -537*x^4+582*x^3+938*x^2+813*x-530 4180931160606160 r005 Re(z^2+c),c=39/122+3/41*I,n=33 4180931164448187 r005 Im(z^2+c),c=23/86+19/55*I,n=6 4180931167568258 r002 4th iterates of z^2 + 4180931169419261 r002 34th iterates of z^2 + 4180931178218285 m001 Si(Pi)^2/exp(CopelandErdos)*cosh(1) 4180931178850684 r005 Im(z^2+c),c=7/44+25/58*I,n=63 4180931187573457 a007 Real Root Of -170*x^4-440*x^3+936*x^2-771*x+203 4180931212123793 r005 Im(z^2+c),c=35/106+10/39*I,n=63 4180931216106017 p003 LerchPhi(1/8,2,33/67) 4180931227788613 m005 (1/3*2^(1/2)-1/10)/(3/11*Zeta(3)-5/12) 4180931259368309 a007 Real Root Of 400*x^4-293*x^3+454*x^2-761*x+248 4180931274688875 r005 Re(z^2+c),c=-23/42+19/40*I,n=49 4180931279897509 r002 37th iterates of z^2 + 4180931286499824 r002 15th iterates of z^2 + 4180931294849454 b008 Pi*Log[Log[44]] 4180931295155355 a007 Real Root Of 416*x^4-641*x^3-223*x^2-764*x-340 4180931310241619 r005 Re(z^2+c),c=-4/7+8/115*I,n=11 4180931314456991 m004 144-E^(Sqrt[5]*Pi)/2 4180931323668765 a007 Real Root Of -210*x^4-900*x^3+107*x^2+622*x-878 4180931329709291 l006 ln(5246/7969) 4180931339134686 r002 39th iterates of z^2 + 4180931341471292 r009 Im(z^3+c),c=-19/44+20/53*I,n=39 4180931351100472 m001 (Artin+TwinPrimes)/(ln(3)+exp(1/Pi)) 4180931354519020 r005 Im(z^2+c),c=2/17+19/41*I,n=61 4180931365966684 a001 2/233*610^(55/57) 4180931368883419 m001 (-ln(2)+1)/(-BesselI(0,1)+2) 4180931381672723 r009 Im(z^3+c),c=-6/13+17/47*I,n=25 4180931393242007 r005 Re(z^2+c),c=-4/7+25/83*I,n=43 4180931393371334 r005 Im(z^2+c),c=-1/18+17/30*I,n=36 4180931393641469 m001 (-Mills+Otter)/(exp(1)+FibonacciFactorial) 4180931400542228 m001 (Otter-ReciprocalLucas)/(Grothendieck+Lehmer) 4180931407209079 a001 10749957122/89*1836311903^(12/17) 4180931407209082 a001 33385282/89*6557470319842^(12/17) 4180931407211311 a001 3461452808002/89*514229^(12/17) 4180931424317998 r002 51th iterates of z^2 + 4180931441421676 r005 Re(z^2+c),c=-17/32+8/21*I,n=34 4180931449866189 m006 (4/5/Pi+1)/(3*Pi^2+2/5) 4180931455599440 r005 Re(z^2+c),c=-61/94+1/32*I,n=16 4180931466503712 r005 Im(z^2+c),c=11/86+26/57*I,n=37 4180931487627647 a007 Real Root Of -145*x^4+838*x^3+956*x^2+988*x-637 4180931495517382 a007 Real Root Of 817*x^4+416*x^3-637*x^2-961*x-285 4180931515508163 b008 Sqrt[ArcCsc[23/4]] 4180931528332011 m001 (Backhouse+Landau)/(Ei(1,1)+sin(1/12*Pi)) 4180931532734218 m005 (1/2*2^(1/2)+11/12)/(-1/55+2/11*5^(1/2)) 4180931532773362 m001 Zeta(7)/Zeta(3)/ln(Zeta(9)) 4180931538562568 r005 Re(z^2+c),c=15/118+8/33*I,n=3 4180931551266714 k007 concat of cont frac of 4180931563106458 m001 (MertensB3*ReciprocalLucas+Otter)/MertensB3 4180931563660353 r002 42th iterates of z^2 + 4180931570060837 r009 Im(z^3+c),c=-45/98+14/39*I,n=33 4180931585542640 l006 ln(4905/7451) 4180931599340408 m001 ln(BesselK(1,1))/Champernowne*Zeta(7)^2 4180931606066225 r005 Re(z^2+c),c=-57/98+7/36*I,n=60 4180931607896026 m001 (3^(1/3)-ReciprocalLucas)/(Sierpinski-Totient) 4180931608136854 r009 Im(z^3+c),c=-9/19+7/20*I,n=63 4180931611197061 r005 Im(z^2+c),c=4/21+17/42*I,n=56 4180931619351535 m001 (GAMMA(2/3)-gamma)/(GAMMA(23/24)+FeigenbaumB) 4180931619463566 r005 Re(z^2+c),c=-15/26+30/89*I,n=46 4180931620793429 a001 843/34*2178309^(56/57) 4180931634235746 r005 Im(z^2+c),c=-9/122+16/29*I,n=10 4180931637055391 m001 (Zeta(3)+arctan(1/2))/(FransenRobinson+Salem) 4180931639597894 a007 Real Root Of -638*x^4+297*x^3+12*x^2-72*x+9 4180931640227733 a007 Real Root Of 119*x^4-550*x^3-423*x^2-934*x+501 4180931640311680 r005 Im(z^2+c),c=1/7+20/49*I,n=10 4180931646648003 m001 GAMMA(19/24)-KhinchinHarmonic^GaussAGM 4180931656855538 m001 exp(LaplaceLimit)^2*Cahen^2*FeigenbaumD 4180931662243964 r002 58th iterates of z^2 + 4180931665121937 r005 Im(z^2+c),c=-6/19+15/26*I,n=25 4180931668727155 m001 (Artin-ArtinRank2)/(OneNinth-QuadraticClass) 4180931691887845 s002 sum(A161823[n]/(exp(pi*n)-1),n=1..infinity) 4180931697225710 r005 Im(z^2+c),c=25/102+17/48*I,n=24 4180931717698068 m005 (1/2*Pi-7/8)/(2^(1/2)+1/4) 4180931737708829 m001 1/ln(FeigenbaumKappa)*Paris^2/BesselJ(0,1) 4180931738412145 s002 sum(A243346[n]/(n^3*2^n+1),n=1..infinity) 4180931748007451 r005 Re(z^2+c),c=-61/98+3/7*I,n=37 4180931770065473 m001 FeigenbaumDelta^2*exp(Conway)^2*sqrt(2) 4180931776820587 p004 log(21317/14033) 4180931789815440 r002 57th iterates of z^2 + 4180931808611183 m001 (3^(1/2)-ln(3))/(-3^(1/3)+gamma(1)) 4180931809683397 m001 (1-BesselI(1,2))/(OrthogonalArrays+ZetaQ(3)) 4180931811730795 m001 Gompertz^Kolakoski/(KomornikLoreti^Kolakoski) 4180931843989413 r005 Re(z^2+c),c=-61/98+3/7*I,n=51 4180931855212391 r005 Im(z^2+c),c=-17/21+1/32*I,n=5 4180931856284548 a007 Real Root Of -188*x^4-764*x^3+254*x^2+796*x+497 4180931861061505 a007 Real Root Of -910*x^4+72*x^3+536*x^2+731*x+245 4180931863040813 m005 (1/2*Zeta(3)+6)/(3/10*Pi+7/11) 4180931872851538 m001 (3^(1/3)-gamma)/(exp(1/exp(1))+GolombDickman) 4180931876229629 r005 Re(z^2+c),c=-61/98+3/7*I,n=58 4180931877935892 a007 Real Root Of 437*x^4+2*x^3+845*x^2-469*x-357 4180931879605241 l006 ln(4564/6933) 4180931880505805 a007 Real Root Of 605*x^4-577*x^3+307*x^2-895*x-38 4180931883419366 r005 Im(z^2+c),c=-13/74+13/23*I,n=16 4180931892234636 r005 Im(z^2+c),c=-12/25+17/28*I,n=24 4180931897984358 r002 31th iterates of z^2 + 4180931910792905 a001 317811/2207*199^(7/11) 4180931913751949 h001 (3/10*exp(1)+3/11)/(7/10*exp(1)+7/10) 4180931916374569 m001 (gamma(1)-Weierstrass)/(ln(Pi)-Zeta(1,-1)) 4180931916533582 r002 28th iterates of z^2 + 4180931920931306 r005 Im(z^2+c),c=1/52+33/62*I,n=58 4180931932377301 a001 4/2178309*1597^(25/59) 4180931936826080 b008 -1/3+32*ArcCosh[2] 4180931942751599 m001 1/exp(sinh(1))*GAMMA(2/3) 4180931953436897 r005 Im(z^2+c),c=19/64+12/43*I,n=18 4180931960066018 a007 Real Root Of -951*x^4+269*x^3-107*x^2+481*x-173 4180931999269259 r002 46th iterates of z^2 + 4180932024570669 r005 Im(z^2+c),c=1/126+32/63*I,n=12 4180932027831278 m001 (GlaisherKinkelin+MertensB1)/(1-Zeta(5)) 4180932036803700 r005 Re(z^2+c),c=-61/98+3/7*I,n=44 4180932039159588 r005 Re(z^2+c),c=-2/3+1/169*I,n=18 4180932060134341 m005 (1/2*exp(1)-11/12)/(3/7*5^(1/2)+1/10) 4180932062987244 m001 (3^(1/3)+Mills)/(Sierpinski-Tetranacci) 4180932064625261 a007 Real Root Of -696*x^4-882*x^3-240*x^2+709*x+30 4180932073629020 p002 log(13^(12/7)-5^(12/7)) 4180932077209571 b008 1/4+4*Tanh[E]^2 4180932081112420 r005 Re(z^2+c),c=-29/50+11/51*I,n=44 4180932082916261 r005 Im(z^2+c),c=-3/31+37/63*I,n=44 4180932084024575 a007 Real Root Of -923*x^4+811*x^3-375*x^2+275*x+268 4180932102256882 m005 (1/2*Zeta(3)+5)/(3/8*Zeta(3)+8/9) 4180932118867865 m001 (BesselI(0,1)+Zeta(1,2))/(-Kolakoski+ZetaQ(3)) 4180932123938915 m001 1/Zeta(5)^2*GAMMA(1/3)*exp(sin(Pi/12))^2 4180932128855418 r005 Re(z^2+c),c=-17/30+39/125*I,n=50 4180932133581761 m005 (1/3*Catalan-3/7)/(3*Catalan+1/5) 4180932156374152 m005 (1/2*5^(1/2)-9/11)/(1/4*2^(1/2)+4/11) 4180932195639332 r005 Re(z^2+c),c=-25/66+35/54*I,n=12 4180932201118801 r005 Im(z^2+c),c=31/90+13/54*I,n=45 4180932206033202 a003 cos(Pi*7/72)-sin(Pi*39/83) 4180932206495746 r002 60th iterates of z^2 + 4180932211619760 r005 Im(z^2+c),c=3/58+24/47*I,n=47 4180932213647052 a007 Real Root Of -811*x^4+148*x^3-619*x^2+199*x+227 4180932221157932 l006 ln(4223/6415) 4180932238494329 r005 Re(z^2+c),c=-11/50+30/49*I,n=22 4180932239380725 r005 Im(z^2+c),c=23/90+21/61*I,n=46 4180932256579792 a001 1/439204*3^(26/47) 4180932256997195 m001 (Landau-ZetaP(3))/ln(2^(1/2)+1) 4180932289991883 m001 (Kolakoski+OneNinth)/(Shi(1)-sin(1)) 4180932292081804 m005 (1/6*2^(1/2)-3/4)/(1/5*exp(1)-2/3) 4180932302170688 r009 Re(z^3+c),c=-3/5+17/53*I,n=4 4180932312538318 m001 1/exp(GaussKuzminWirsing)*Conway^2/sqrt(3)^2 4180932319734691 r002 54th iterates of z^2 + 4180932321089526 r005 Im(z^2+c),c=-1/31+23/40*I,n=26 4180932346833017 h001 (2/3*exp(2)+1/3)/(1/5*exp(1)+5/7) 4180932364528172 m001 (BesselK(0,1)-ln(2))/(-Robbin+Trott) 4180932378111347 m001 exp(Pi)^FeigenbaumMu/(exp(Pi)^exp(1/2)) 4180932381311191 s002 sum(A061635[n]/(n*pi^n-1),n=1..infinity) 4180932387477374 l006 ln(9111/9500) 4180932401803106 r005 Re(z^2+c),c=-16/27+2/63*I,n=64 4180932403524512 m005 (1/3*Pi+1/11)/(-7/40+1/5*5^(1/2)) 4180932407800545 l006 ln(82/5365) 4180932415626000 m001 GAMMA(17/24)*Sierpinski+Thue 4180932415718764 r002 35th iterates of z^2 + 4180932416101038 m001 GAMMA(7/12)*ln(BesselJ(1,1))*gamma^2 4180932419311147 r005 Re(z^2+c),c=-63/94+16/59*I,n=57 4180932421268164 r005 Re(z^2+c),c=-39/94+35/64*I,n=63 4180932421760465 g005 GAMMA(8/11)*GAMMA(4/5)/GAMMA(2/9)/GAMMA(1/9) 4180932436943892 a007 Real Root Of -41*x^4+40*x^3+634*x^2-905*x+585 4180932469064608 a007 Real Root Of 106*x^4+651*x^3+802*x^2-305*x-106 4180932480815907 m005 (1/2*3^(1/2)+11/12)/(4*Catalan+3/5) 4180932481729629 m001 1/BesselK(0,1)^2/ln(Bloch)*GAMMA(1/6) 4180932483556993 m001 ln(2^(1/2)+1)*Zeta(1/2)+Niven 4180932487904373 r005 Re(z^2+c),c=-25/44+11/37*I,n=45 4180932492133199 r005 Re(z^2+c),c=-16/27+1/31*I,n=61 4180932506484974 r009 Re(z^3+c),c=-19/40+29/63*I,n=7 4180932529923488 r005 Im(z^2+c),c=1/27+5/9*I,n=30 4180932541841248 s002 sum(A088369[n]/(n^3*pi^n+1),n=1..infinity) 4180932557400830 a007 Real Root Of 86*x^4+235*x^3-695*x^2-942*x-893 4180932565453654 m004 -750/Pi+25*Sqrt[5]*Pi+5*Pi*Sec[Sqrt[5]*Pi] 4180932569153792 r005 Im(z^2+c),c=7/62+29/62*I,n=37 4180932571691033 h001 (7/8*exp(1)+1/2)/(5/6*exp(2)+8/11) 4180932591216412 r005 Im(z^2+c),c=-2/13+18/31*I,n=25 4180932592835485 m005 (1/2*2^(1/2)-1/7)/(3/4*gamma+11/12) 4180932593079404 a007 Real Root Of 894*x^4+515*x^3-513*x^2-723*x+327 4180932596530211 r005 Im(z^2+c),c=11/114+22/47*I,n=20 4180932603297185 r002 27th iterates of z^2 + 4180932604376834 r009 Im(z^3+c),c=-33/94+13/31*I,n=29 4180932610868902 m001 TreeGrowth2nd^2/Rabbit*exp(Zeta(1,2))^2 4180932622715485 l006 ln(3882/5897) 4180932636960296 p003 LerchPhi(1/6,1,341/125) 4180932643925459 a001 416020/2889*199^(7/11) 4180932648842229 r005 Im(z^2+c),c=-31/34+36/107*I,n=8 4180932649035529 m005 (4/5*2^(1/2)+4)/(3/4*2^(1/2)+1/6) 4180932661920668 r009 Im(z^3+c),c=-85/98+4/31*I,n=2 4180932679378112 m005 (1/2*gamma-9/11)/(6*5^(1/2)-3/4) 4180932680339481 r002 36th iterates of z^2 + 4180932692573988 a007 Real Root Of -448*x^4+853*x^3+330*x+214 4180932703115915 r005 Im(z^2+c),c=9/26+6/25*I,n=59 4180932714411757 r005 Re(z^2+c),c=-35/62+5/24*I,n=5 4180932719693263 r005 Re(z^2+c),c=-81/122+10/43*I,n=20 4180932740287567 r005 Im(z^2+c),c=-11/16+26/79*I,n=39 4180932740514019 s002 sum(A183261[n]/(exp(pi*n)-1),n=1..infinity) 4180932743263706 a005 (1/cos(11/236*Pi))^1631 4180932748068206 a001 7*2971215073^(3/16) 4180932750888079 a001 311187/2161*199^(7/11) 4180932756578864 r009 Im(z^3+c),c=-21/94+13/28*I,n=10 4180932765742103 r005 Im(z^2+c),c=-53/66+1/43*I,n=15 4180932766493715 a001 5702887/39603*199^(7/11) 4180932768770547 a001 7465176/51841*199^(7/11) 4180932769102732 a001 39088169/271443*199^(7/11) 4180932769151197 a001 14619165/101521*199^(7/11) 4180932769158268 a001 133957148/930249*199^(7/11) 4180932769159300 a001 701408733/4870847*199^(7/11) 4180932769159450 a001 1836311903/12752043*199^(7/11) 4180932769159472 a001 14930208/103681*199^(7/11) 4180932769159475 a001 12586269025/87403803*199^(7/11) 4180932769159476 a001 32951280099/228826127*199^(7/11) 4180932769159476 a001 43133785636/299537289*199^(7/11) 4180932769159476 a001 32264490531/224056801*199^(7/11) 4180932769159476 a001 591286729879/4106118243*199^(7/11) 4180932769159476 a001 774004377960/5374978561*199^(7/11) 4180932769159476 a001 4052739537881/28143753123*199^(7/11) 4180932769159476 a001 1515744265389/10525900321*199^(7/11) 4180932769159476 a001 3278735159921/22768774562*199^(7/11) 4180932769159476 a001 2504730781961/17393796001*199^(7/11) 4180932769159476 a001 956722026041/6643838879*199^(7/11) 4180932769159476 a001 182717648081/1268860318*199^(7/11) 4180932769159476 a001 139583862445/969323029*199^(7/11) 4180932769159476 a001 53316291173/370248451*199^(7/11) 4180932769159476 a001 10182505537/70711162*199^(7/11) 4180932769159477 a001 7778742049/54018521*199^(7/11) 4180932769159486 a001 2971215073/20633239*199^(7/11) 4180932769159543 a001 567451585/3940598*199^(7/11) 4180932769159937 a001 433494437/3010349*199^(7/11) 4180932769162638 a001 165580141/1149851*199^(7/11) 4180932769181150 a001 31622993/219602*199^(7/11) 4180932769308034 a001 24157817/167761*199^(7/11) 4180932770177706 a001 9227465/64079*199^(7/11) 4180932776138529 a001 1762289/12238*199^(7/11) 4180932797949326 r002 13th iterates of z^2 + 4180932802974207 m001 Tribonacci*(BesselI(0,2)-Riemann3rdZero) 4180932816994616 a001 1346269/9349*199^(7/11) 4180932818465009 r009 Im(z^3+c),c=-5/74+21/43*I,n=8 4180932849784427 r005 Re(z^2+c),c=-27/46+5/36*I,n=41 4180932861207552 r002 7th iterates of z^2 + 4180932862753860 r005 Im(z^2+c),c=7/78+25/54*I,n=12 4180932870077461 r002 48th iterates of z^2 + 4180932873828696 r005 Re(z^2+c),c=-13/22+9/125*I,n=38 4180932877824624 a007 Real Root Of -999*x^4-499*x^3-524*x^2+185*x+163 4180932879028410 m001 (Kac+QuadraticClass)/(Bloch-FeigenbaumB) 4180932888141920 r005 Im(z^2+c),c=5/114+25/48*I,n=30 4180932898190865 p004 log(21491/20611) 4180932914600528 r005 Re(z^2+c),c=-16/27+2/39*I,n=25 4180932925041358 a005 (1/cos(12/157*Pi))^1552 4180932943530935 r002 31th iterates of z^2 + 4180932959918902 m007 (-3/4*gamma+1/5)/(-4/5*gamma-8/5*ln(2)-4) 4180932960211713 r005 Re(z^2+c),c=-1/78+10/51*I,n=4 4180932968972373 r002 5th iterates of z^2 + 4180932971489873 s001 sum(exp(-2*Pi/5)^n*A116392[n],n=1..infinity) 4180932971489873 s002 sum(A116392[n]/(exp(2/5*pi*n)),n=1..infinity) 4180932983866450 m005 (1/2*3^(1/2)-1/5)/(8/11*3^(1/2)+1/3) 4180932985290462 r002 64th iterates of z^2 + 4180932991361917 m001 Totient*(arctan(1/3)+gamma(2)) 4180933009866823 r005 Re(z^2+c),c=-15/22+24/127*I,n=6 4180933021869898 r002 4th iterates of z^2 + 4180933025681816 r009 Re(z^3+c),c=-3/40+24/37*I,n=42 4180933034534428 r002 44th iterates of z^2 + 4180933046263649 r005 Re(z^2+c),c=-13/22+4/49*I,n=61 4180933050940840 m001 (2^(1/3)-arctan(1/3))/(-Zeta(1,2)+Mills) 4180933080838754 r005 Re(z^2+c),c=-67/114+9/55*I,n=32 4180933085421742 a007 Real Root Of -156*x^4-552*x^3+518*x^2+519*x+440 4180933091870610 a007 Real Root Of -797*x^4+753*x^3-993*x^2+201*x+337 4180933092055966 r009 Im(z^3+c),c=-53/102+18/55*I,n=55 4180933097026424 a001 514229/3571*199^(7/11) 4180933099701737 r005 Im(z^2+c),c=5/24+5/12*I,n=16 4180933100779201 r005 Im(z^2+c),c=-13/90+8/13*I,n=5 4180933101613388 l006 ln(3541/5379) 4180933105008169 m001 HardyLittlewoodC3/(Shi(1)+Riemann1stZero) 4180933120964620 a007 Real Root Of -808*x^4-219*x^3-717*x^2+806*x+471 4180933137661586 r009 Re(z^3+c),c=-31/64+9/46*I,n=45 4180933142398015 m001 BesselJ(0,1)*Backhouse^2*ln(BesselK(1,1))^2 4180933145006251 m001 ln(Trott)*RenyiParking/cos(Pi/5) 4180933151835840 r009 Im(z^3+c),c=-5/24+29/39*I,n=11 4180933155905396 m001 (LambertW(1)-PrimesInBinary)^arctan(1/2) 4180933162982531 a007 Real Root Of 868*x^4+755*x^3+739*x^2-568*x-338 4180933208694802 a007 Real Root Of 118*x^4+332*x^3-751*x^2-462*x-596 4180933211222676 m001 (ln(Pi)-FeigenbaumAlpha)/(MertensB2-Rabbit) 4180933232318123 m001 (exp(Pi)-(1+3^(1/2))^(1/2))^exp(1) 4180933232318123 m001 (exp(Pi)-sqrt(1+sqrt(3)))^exp(1) 4180933238421904 h001 (1/7*exp(2)+1/5)/(7/9*exp(1)+8/9) 4180933240616648 a007 Real Root Of -214*x^4+127*x^3+810*x^2+468*x-340 4180933254720632 r005 Im(z^2+c),c=-11/114+13/21*I,n=54 4180933266526047 r005 Re(z^2+c),c=-59/102+3/19*I,n=20 4180933275084972 m001 ThueMorse-gamma(2)*LandauRamanujan2nd 4180933291170625 a001 14662949395604/3*14930352^(11/16) 4180933291170627 a001 73681302247/3*32951280099^(11/16) 4180933309764165 r009 Im(z^3+c),c=-55/118+19/54*I,n=27 4180933312897705 a007 Real Root Of -95*x^4-403*x^3+49*x^2+239*x-282 4180933313725097 h001 (7/12*exp(2)+5/12)/(2/11*exp(1)+7/11) 4180933323275435 r005 Im(z^2+c),c=-18/29+4/51*I,n=32 4180933327655743 r005 Im(z^2+c),c=-2/27+14/27*I,n=8 4180933342044887 a007 Real Root Of -500*x^4-29*x^3-223*x^2+136*x+109 4180933358987775 r009 Im(z^3+c),c=-3/122+27/55*I,n=12 4180933422310424 a005 (1/cos(15/136*Pi))^1038 4180933422920093 m001 1/3*sin(1)*3^(2/3)/HardHexagonsEntropy 4180933427350450 r005 Im(z^2+c),c=5/56+12/25*I,n=27 4180933455768919 s002 sum(A051209[n]/(n^3*exp(n)+1),n=1..infinity) 4180933456926884 r005 Im(z^2+c),c=3/13+17/50*I,n=12 4180933465756034 r002 9th iterates of z^2 + 4180933468319687 p003 LerchPhi(1/5,2,29/18) 4180933470872869 m001 Riemann2ndZero^GlaisherKinkelin*sin(1) 4180933475636440 p004 log(15101/9941) 4180933477054742 r005 Re(z^2+c),c=-13/14+37/228*I,n=44 4180933483265674 m004 -Cosh[Sqrt[5]*Pi]+144*Coth[Sqrt[5]*Pi] 4180933485644102 m001 HardyLittlewoodC3/(AlladiGrinstead+Rabbit) 4180933491916319 r005 Im(z^2+c),c=-1/10+19/30*I,n=46 4180933498806813 r005 Im(z^2+c),c=25/122+20/51*I,n=47 4180933517268714 r005 Re(z^2+c),c=-57/98+11/52*I,n=37 4180933536192446 r002 33th iterates of z^2 + 4180933543054190 a001 8/39603*521^(5/43) 4180933552685570 a007 Real Root Of -144*x^4-447*x^3+554*x^2-320*x+310 4180933555126182 l004 sinh(497/76*Pi) 4180933555126182 l004 cosh(497/76*Pi) 4180933556128882 m001 (-FeigenbaumDelta+5)/(-ThueMorse+1/3) 4180933572134231 m001 (Salem-Tetranacci)/(gamma(2)-KomornikLoreti) 4180933576637045 r009 Im(z^3+c),c=-1/106+35/44*I,n=44 4180933584650341 r005 Re(z^2+c),c=-31/58+9/22*I,n=58 4180933597100829 p001 sum((-1)^n/(377*n+239)/(512^n),n=0..infinity) 4180933599679375 r005 Re(z^2+c),c=-16/27+1/52*I,n=39 4180933603788576 m001 RenyiParking^GAMMA(3/4)*RenyiParking^sqrt(Pi) 4180933607944419 r005 Im(z^2+c),c=29/86+13/53*I,n=36 4180933612120376 a001 8/4870847*1364^(33/43) 4180933615172254 r005 Re(z^2+c),c=-15/29+29/64*I,n=42 4180933615618112 a007 Real Root Of -556*x^4+699*x^3-86*x^2+392*x+247 4180933616407739 a007 Real Root Of -870*x^4+230*x^3+750*x^2+822*x-465 4180933620351207 m001 (GaussKuzminWirsing+Magata)/(Totient-ZetaP(2)) 4180933623052301 r002 52th iterates of z^2 + 4180933635271539 r002 2th iterates of z^2 + 4180933635316738 s002 sum(A108635[n]/(exp(n)-1),n=1..infinity) 4180933653688621 m005 (-1/28+1/4*5^(1/2))/(6*5^(1/2)-9/10) 4180933659907125 m005 (1+1/6*5^(1/2))/(2*Pi-3) 4180933661007827 r002 54th iterates of z^2 + 4180933661777126 r002 33th iterates of z^2 + 4180933672327162 m001 (-Kac+ReciprocalLucas)/(exp(Pi)+Psi(2,1/3)) 4180933682576375 l006 ln(3200/4861) 4180933710675353 r005 Im(z^2+c),c=-65/118+6/13*I,n=37 4180933712258502 b008 -1+Sqrt[6]*ArcCoth[Khinchin] 4180933720371390 r005 Re(z^2+c),c=-59/102+11/50*I,n=58 4180933726693124 m008 (2/5*Pi^6-1)/(3*Pi^5-2/3) 4180933728603235 r005 Re(z^2+c),c=-15/122+11/14*I,n=48 4180933728690922 r005 Re(z^2+c),c=-16/27+3/64*I,n=37 4180933728776598 r005 Re(z^2+c),c=-57/98+1/7*I,n=22 4180933730107486 r005 Im(z^2+c),c=7/44+25/58*I,n=62 4180933745552160 a007 Real Root Of 179*x^4+754*x^3+266*x^2+843*x-715 4180933746894485 a001 1/11*(1/2*5^(1/2)+1/2)^20*7^(4/7) 4180933811513239 r005 Im(z^2+c),c=9/62+23/52*I,n=46 4180933841025426 r005 Im(z^2+c),c=-1/22+9/11*I,n=21 4180933858289261 a007 Real Root Of -847*x^4-273*x^3-931*x^2+582*x+412 4180933858773594 r009 Re(z^3+c),c=-29/70+5/38*I,n=9 4180933867447708 r005 Re(z^2+c),c=-31/66+24/59*I,n=16 4180933877776000 r002 47th iterates of z^2 + 4180933880691619 r009 Im(z^3+c),c=-5/12+43/63*I,n=15 4180933900406723 s002 sum(A246802[n]/(n*exp(pi*n)+1),n=1..infinity) 4180933903578206 m001 (Catalan-MinimumGamma)/(ZetaP(4)+ZetaQ(2)) 4180933911160323 m008 (3/4*Pi^2-4)/(5/6*Pi^4+1/5) 4180933921629389 p003 LerchPhi(1/3,8,37/59) 4180933940042066 r005 Im(z^2+c),c=5/16+11/35*I,n=30 4180933949066517 m001 (-Backhouse+3)/(-Zeta(5)+1) 4180933954700248 r008 a(0)=4,K{-n^6,-4+2*n^3+8*n^2-8*n} 4180933970895381 m006 (2*exp(Pi)-1/4)/(1/5*exp(2*Pi)+3) 4180933977310898 l004 Pi/cosh(349/114*Pi) 4180933979965336 r005 Re(z^2+c),c=1/4+1/59*I,n=13 4180933990006078 m001 BesselI(1,2)^sin(1/5*Pi)-FeigenbaumKappa 4180934014335482 l004 Pi/sinh(349/114*Pi) 4180934018881173 r005 Im(z^2+c),c=-15/118+17/28*I,n=17 4180934021830373 r002 45th iterates of z^2 + 4180934022102674 l006 ln(6059/9204) 4180934031235147 h001 (3/7*exp(2)+3/8)/(1/11*exp(1)+3/5) 4180934037185995 r002 59th iterates of z^2 + 4180934056762844 r002 9th iterates of z^2 + 4180934058228050 r005 Re(z^2+c),c=-19/32+3/43*I,n=29 4180934067906029 r005 Re(z^2+c),c=-9/16+19/60*I,n=61 4180934080527664 a007 Real Root Of 893*x^4-199*x^3+750*x^2-48*x-193 4180934089890071 r002 48th iterates of z^2 + 4180934099765186 a007 Real Root Of 182*x^4+921*x^3+668*x^2-120*x-480 4180934101027841 r005 Im(z^2+c),c=-13/28+7/64*I,n=6 4180934106320763 m001 (Sarnak-ZetaQ(3))/(ln(Pi)+BesselI(1,1)) 4180934109539461 r002 43th iterates of z^2 + 4180934114186551 r002 23th iterates of z^2 + 4180934123153835 r002 50th iterates of z^2 + 4180934126839542 a001 28657/7*18^(41/51) 4180934137971483 a007 Real Root Of -821*x^4+260*x^3+173*x^2+533*x-247 4180934139158040 m001 Shi(1)*(3^(1/2))^FeigenbaumAlpha 4180934159539994 r005 Re(z^2+c),c=8/23+23/62*I,n=11 4180934177260178 r005 Re(z^2+c),c=-5/9+23/40*I,n=26 4180934191966307 a003 sin(Pi*5/77)/sin(Pi*19/118) 4180934195818039 a007 Real Root Of 5*x^4+209*x^3+21*x^2+938*x-905 4180934197778180 m001 GAMMA(23/24)^ZetaQ(4)-LandauRamanujan2nd 4180934205198966 m001 (exp(1)+3^(1/2))/(BesselK(0,1)+Cahen) 4180934209029536 r009 Im(z^3+c),c=-1/74+27/55*I,n=11 4180934214009677 r005 Re(z^2+c),c=-49/82+1/49*I,n=24 4180934214528709 m001 (FransenRobinson-Gompertz)/(Niven-Salem) 4180934215979088 r002 7th iterates of z^2 + 4180934220849770 r002 45th iterates of z^2 + 4180934222396082 r002 38th iterates of z^2 + 4180934251937735 m001 FibonacciFactorial/(KhinchinLevy+MadelungNaCl) 4180934275207014 m009 (32/5*Catalan+4/5*Pi^2-3)/(3/4*Psi(1,3/4)+2/3) 4180934287622096 a007 Real Root Of -158*x^4-435*x^3+725*x^2-755*x+657 4180934323102451 r005 Re(z^2+c),c=-19/34+37/127*I,n=33 4180934325488149 m001 1/Zeta(9)*exp(Zeta(1,2))^2*sqrt(1+sqrt(3))^2 4180934337874923 m008 (5*Pi+5/6)/(2/5*Pi^4+3/5) 4180934360505406 a007 Real Root Of -152*x^4-714*x^3-386*x^2-113*x+538 4180934369149724 m005 (1/2*2^(1/2)-1/8)/(97/264+11/24*5^(1/2)) 4180934381849663 m001 (KomornikLoreti+LaplaceLimit)/(Pi+exp(1)) 4180934387258353 r005 Im(z^2+c),c=5/36+17/38*I,n=42 4180934397438331 r005 Im(z^2+c),c=-147/118+4/25*I,n=20 4180934402125100 l006 ln(2859/4343) 4180934411316969 r005 Im(z^2+c),c=5/118+23/41*I,n=14 4180934421956712 r005 Re(z^2+c),c=-17/29+3/20*I,n=59 4180934422251977 m001 (1+cos(1/12*Pi))/(-Bloch+ZetaQ(4)) 4180934430658262 a007 Real Root Of 780*x^4+466*x^3+705*x^2-342*x-256 4180934432892042 r002 55th iterates of z^2 + 4180934450039536 m001 Zeta(1,-1)+HardyLittlewoodC4*Riemann1stZero 4180934452342964 r005 Im(z^2+c),c=1/82+33/58*I,n=33 4180934452491331 r009 Re(z^3+c),c=-59/114+23/50*I,n=6 4180934453502603 m005 (1/2*2^(1/2)-8/11)/(2/11*5^(1/2)-8/9) 4180934459624148 m005 (1/2*2^(1/2)+2/11)/(43/36+5/12*5^(1/2)) 4180934466226384 r009 Im(z^3+c),c=-29/62+13/37*I,n=30 4180934482106577 m005 (1/2*Zeta(3)+2)/(1/11*exp(1)+3/8) 4180934482213837 a001 1/4*3^(22/47) 4180934492005463 a001 23725150497407/3*20365011074^(15/23) 4180934493378293 m001 GAMMA(17/24)^(2*Pi/GAMMA(5/6)/Artin) 4180934493378293 m001 GAMMA(17/24)^(GAMMA(1/6)/Artin) 4180934502104980 l006 ln(89/5823) 4180934510769329 r002 54th iterates of z^2 + 4180934513408540 r004 Im(z^2+c),c=-3/5+6/23*I,z(0)=-1,n=12 4180934525687852 r002 39th iterates of z^2 + 4180934526213462 r009 Im(z^3+c),c=-11/24+9/25*I,n=27 4180934536283411 m001 1/ln(FeigenbaumB)/CopelandErdos^2/GAMMA(1/24) 4180934538330645 r005 Im(z^2+c),c=-5/24+35/58*I,n=38 4180934553790409 a007 Real Root Of 206*x^4+917*x^3-16*x^2-931*x+460 4180934559938697 m001 FeigenbaumD^2*ln(Cahen)*log(2+sqrt(3)) 4180934560684916 a007 Real Root Of -568*x^4+436*x^3-771*x^2+122*x+235 4180934564589029 a001 1/208010*832040^(19/58) 4180934569949068 r005 Im(z^2+c),c=7/48+26/59*I,n=33 4180934609222193 r005 Im(z^2+c),c=31/102+16/55*I,n=58 4180934609970290 r009 Re(z^3+c),c=-1/27+11/16*I,n=11 4180934616670734 a007 Real Root Of 234*x^4+979*x^3-127*x^2-361*x+759 4180934631121840 m001 (Trott2nd-TwinPrimes)/(cos(1/5*Pi)+CareFree) 4180934641569541 r005 Im(z^2+c),c=37/118+23/64*I,n=38 4180934672948561 s001 sum(exp(-Pi/3)^(n-1)*A284606[n],n=1..infinity) 4180934695866591 m001 (3^(1/2)+ln(3))/(-LaplaceLimit+Totient) 4180934698917838 r005 Im(z^2+c),c=13/102+21/37*I,n=64 4180934701675993 a001 161/416020*514229^(52/59) 4180934701931321 m001 1/Lehmer^2/GolombDickman^2*ln(sqrt(Pi)) 4180934704381550 r005 Im(z^2+c),c=13/118+29/59*I,n=8 4180934710767298 r005 Re(z^2+c),c=-37/64+9/37*I,n=40 4180934713857754 m001 cos(1/12*Pi)*(ln(2)/ln(10))^ArtinRank2 4180934725555369 a007 Real Root Of 203*x^4+906*x^3+392*x^2+413*x-940 4180934739923095 a007 Real Root Of -501*x^4+790*x^3+207*x^2+273*x+151 4180934745435086 m001 1/ArtinRank2/Bloch*exp(Riemann1stZero) 4180934749553420 r005 Im(z^2+c),c=27/86+19/40*I,n=9 4180934750829571 r005 Im(z^2+c),c=15/122+27/58*I,n=14 4180934764832482 r005 Im(z^2+c),c=7/22+17/60*I,n=31 4180934772118567 r002 55th iterates of z^2 + 4180934772227820 m002 -(Pi^3*Cosh[Pi]^2*Coth[Pi])+ProductLog[Pi] 4180934773151502 a001 1322157322203/89*1836311903^(10/17) 4180934773151502 a001 10749957122/89*6557470319842^(10/17) 4180934775146289 r005 Im(z^2+c),c=13/44+15/49*I,n=35 4180934780255909 r005 Im(z^2+c),c=3/56+27/53*I,n=56 4180934796796672 s002 sum(A088369[n]/(n^3*pi^n-1),n=1..infinity) 4180934804675535 r005 Re(z^2+c),c=-9/16+25/79*I,n=52 4180934825247783 a007 Real Root Of -214*x^4-639*x^3+960*x^2-370*x+361 4180934830348233 l006 ln(5377/8168) 4180934831489095 r002 41th iterates of z^2 + 4180934835015664 r009 Im(z^3+c),c=-3/25+29/60*I,n=17 4180934842499481 m001 Catalan*(HardHexagonsEntropy-Si(Pi)) 4180934848664588 r002 55th iterates of z^2 + 4180934862382030 m001 (arctan(1/3)+Landau)/(2^(1/3)+cos(1/5*Pi)) 4180934867088269 m001 1/BesselJ(1,1)/Porter^2/ln(sqrt(1+sqrt(3)))^2 4180934867779460 a007 Real Root Of -844*x^4+830*x^3+619*x^2+825*x-488 4180934910790447 s002 sum(A101593[n]/(n^3*2^n+1),n=1..infinity) 4180934910947201 r009 Re(z^3+c),c=-1/70+50/63*I,n=32 4180934916201102 r005 Im(z^2+c),c=1/27+17/32*I,n=30 4180934917421216 r005 Re(z^2+c),c=-57/98+9/46*I,n=44 4180934927380270 r005 Re(z^2+c),c=-67/126+18/43*I,n=63 4180934933498962 r002 50th iterates of z^2 + 4180934942417969 m001 (-sin(1)+GAMMA(19/24))/(Shi(1)-Si(Pi)) 4180934947850373 a001 1346269/521*76^(1/9) 4180934952676062 m001 Sierpinski*FeigenbaumAlpha/exp(GAMMA(1/24)) 4180934957151252 r002 7th iterates of z^2 + 4180934958127199 m001 (gamma*GAMMA(13/24)-ReciprocalFibonacci)/gamma 4180934966600560 m001 (Magata-ZetaP(4))/(gamma(3)+Kolakoski) 4180934974020402 r005 Re(z^2+c),c=-9/56+45/64*I,n=15 4180934981124375 r005 Re(z^2+c),c=-9/8+74/99*I,n=2 4180934986757882 m001 exp(-1/2*Pi)/(CopelandErdos+MertensB1) 4180934995869061 a007 Real Root Of 876*x^4-972*x^3+247*x^2-189*x-220 4180934997844583 r005 Re(z^2+c),c=-59/102+7/31*I,n=37 4180934999476622 a007 Real Root Of -955*x^4-468*x^3+407*x^2+993*x+339 4180935016394002 a001 98209/682*199^(7/11) 4180935034822864 a007 Real Root Of 925*x^4-940*x^3+925*x^2-826*x-604 4180935035721443 m001 gamma-polylog(4,1/2)*HardyLittlewoodC4 4180935045858498 a007 Real Root Of 279*x^4-848*x^3+269*x^2-823*x+34 4180935046600354 a007 Real Root Of -867*x^4+283*x^3+542*x^2+689*x-377 4180935048833351 a007 Real Root Of 737*x^4-685*x^3-75*x^2-195*x-141 4180935071359053 a001 2/514229*144^(16/17) 4180935071556053 r009 Re(z^3+c),c=-41/102+7/61*I,n=9 4180935074605069 r005 Re(z^2+c),c=-67/118+5/18*I,n=42 4180935079244113 r005 Im(z^2+c),c=29/102+11/35*I,n=44 4180935088630663 a001 2/55*7778742049^(5/24) 4180935089188981 r005 Im(z^2+c),c=1/118+33/62*I,n=24 4180935092481076 r009 Im(z^3+c),c=-15/38+15/38*I,n=9 4180935125188604 r009 Re(z^3+c),c=-15/38+7/39*I,n=2 4180935128505133 r005 Im(z^2+c),c=-45/106+35/62*I,n=33 4180935143232890 r002 42th iterates of z^2 + 4180935153782354 h001 (5/9*exp(1)+11/12)/(1/11*exp(1)+1/3) 4180935158168279 m001 (Niven-Tribonacci)/(Zeta(3)-ln(2^(1/2)+1)) 4180935176555634 h001 (7/12*exp(1)+7/9)/(3/4*exp(2)+1/9) 4180935190336656 b008 -4+BesselJ[3,9] 4180935191847600 a001 8/710647*3571^(19/43) 4180935222808361 m001 Pi+1-cos(1)*gamma(1) 4180935227009627 m001 (-cos(Pi/12)+1/2)/(-exp(gamma)+2/3) 4180935228956594 r002 23th iterates of z^2 + 4180935229831826 r005 Im(z^2+c),c=11/50+17/45*I,n=37 4180935238556262 m009 (3*Psi(1,2/3)+1/6)/(6*Psi(1,2/3)+4) 4180935242014435 r005 Re(z^2+c),c=-16/27+1/28*I,n=43 4180935242506214 m007 (-1/4*gamma-3/4*ln(2)+1/8*Pi-2)/(-3/4*gamma-5) 4180935243109687 r005 Re(z^2+c),c=-59/102+15/47*I,n=41 4180935250542591 a001 521/17711*3^(8/25) 4180935252129671 a002 13^(10/7)+6^(4/7) 4180935257473409 m005 (1/2*exp(1)-5/8)/(193/264+11/24*5^(1/2)) 4180935273416047 r009 Re(z^3+c),c=-31/58+20/57*I,n=13 4180935276922697 m001 (2*Pi/GAMMA(5/6)+Porter)/(ln(5)-gamma(1)) 4180935294658328 r002 38th iterates of z^2 + 4180935310357646 a007 Real Root Of -157*x^4-583*x^3+373*x^2+300*x+99 4180935316563437 l006 ln(2518/3825) 4180935317806330 a001 8/710647*9349^(17/43) 4180935337427436 r005 Re(z^2+c),c=-53/90+7/50*I,n=28 4180935338052315 a001 3665737348901/36*377^(5/21) 4180935342696452 a001 2/109801*15127^(14/43) 4180935343726041 q001 1636/3913 4180935343766988 a001 2/6119*39603^(1/43) 4180935355006207 b008 1+Sqrt[2*Pi]*Zeta[E] 4180935355218582 a001 8/64079*5778^(6/43) 4180935367826750 m001 (exp(-1/2*Pi)+Stephens)/(Chi(1)+Zeta(5)) 4180935367868828 r005 Re(z^2+c),c=-31/50+16/47*I,n=11 4180935383660710 a001 1568397607/55*591286729879^(11/21) 4180935383660711 a001 28374454999/5*24157817^(11/21) 4180935391213541 r005 Re(z^2+c),c=-16/27+2/47*I,n=31 4180935394421483 a001 55/1860498*199^(29/31) 4180935395997492 a007 Real Root Of 192*x^4+640*x^3-725*x^2+8*x+813 4180935406482109 b008 3*SinhIntegral[4/Pi] 4180935417057442 r002 7th iterates of z^2 + 4180935417996690 p001 sum((-1)^n/(266*n+239)/(625^n),n=0..infinity) 4180935418718018 a007 Real Root Of -468*x^4+161*x^3-396*x^2+382*x+255 4180935438841976 m001 (Psi(2,1/3)-cos(1/5*Pi))/(Kolakoski+Landau) 4180935452874206 r005 Im(z^2+c),c=27/118+20/41*I,n=40 4180935455416939 a003 sin(Pi*13/119)/cos(Pi*18/89) 4180935480545048 m001 Trott*MinimumGamma/ln(cos(1))^2 4180935480751708 r009 Re(z^3+c),c=-31/56+21/46*I,n=29 4180935486674599 r002 34th iterates of z^2 + 4180935494803730 m001 Rabbit*FeigenbaumC*ln(LambertW(1))^2 4180935515938489 a007 Real Root Of 260*x^4+993*x^3-231*x^2+614*x-268 4180935522124676 r004 Re(z^2+c),c=-13/22+1/21*I,z(0)=-1,n=27 4180935542252633 r009 Im(z^3+c),c=-15/74+22/47*I,n=11 4180935542350604 m005 (1/3*gamma-1/10)/(5/9*exp(1)+7/10) 4180935549235624 a007 Real Root Of -229*x^4-892*x^3+148*x^2-708*x-765 4180935555797078 r002 53th iterates of z^2 + 4180935566900908 m001 exp(GAMMA(7/24))^2/DuboisRaymond^2*gamma^2 4180935581830102 m001 GAMMA(13/24)^HardyLittlewoodC3-KomornikLoreti 4180935589171504 r005 Re(z^2+c),c=-75/52+2/37*I,n=6 4180935596569185 m005 (1/2*gamma-1/7)/(5*gamma+3/5) 4180935612905380 r009 Im(z^3+c),c=-13/32+11/28*I,n=19 4180935620555845 m005 (17/4+1/4*5^(1/2))/(7/11*5^(1/2)-3/11) 4180935631797716 r002 25th iterates of z^2 + 4180935638279662 s002 sum(A129828[n]/(n^2*pi^n-1),n=1..infinity) 4180935648386687 m001 exp(1)/(Gompertz+ZetaQ(2)) 4180935650471073 b008 Sin[ArcSinh[E]/4] 4180935652200566 r005 Re(z^2+c),c=-7/12+19/116*I,n=33 4180935658570073 h001 (7/12*exp(2)+3/4)/(1/5*exp(1)+2/3) 4180935679017206 p004 log(10957/7213) 4180935701276599 m001 (exp(1)+2^(1/2))/(Stephens+ThueMorse) 4180935706549438 m001 RenyiParking^QuadraticClass*cos(1) 4180935709232020 r009 Im(z^3+c),c=-25/62+25/51*I,n=9 4180935716457682 r009 Im(z^3+c),c=-37/78+10/27*I,n=8 4180935733235501 r002 3th iterates of z^2 + 4180935739022812 r005 Im(z^2+c),c=11/42+17/50*I,n=20 4180935745652284 m001 MertensB2/FransenRobinson/ln(2^(1/2)+1) 4180935758336767 m005 (1/2*Catalan-10/11)/(4/7*Catalan+5/9) 4180935762118526 m004 -144+Cosh[Sqrt[5]*Pi] 4180935764403303 r005 Re(z^2+c),c=-27/46+3/35*I,n=26 4180935777472940 r005 Im(z^2+c),c=-1/106+27/49*I,n=51 4180935781859534 r005 Re(z^2+c),c=-7/54+41/64*I,n=20 4180935783139113 m001 Pi+Shi(1)^ln(2) 4180935784866964 m001 exp(Pi)/ArtinRank2^2*Zeta(1,2)^2 4180935787029276 m001 Salem/GlaisherKinkelin/Ei(1,1) 4180935787857742 r005 Im(z^2+c),c=-45/74+19/47*I,n=19 4180935788438373 r009 Im(z^3+c),c=-5/102+24/49*I,n=9 4180935798093083 r005 Re(z^2+c),c=-31/54+15/61*I,n=43 4180935798827950 r005 Re(z^2+c),c=-11/18+14/107*I,n=21 4180935812208343 b008 1/4+5*(6+Pi)^2 4180935812315375 m001 Kolakoski/(MertensB3^(5^(1/2))) 4180935830998734 m001 BesselK(0,1)^2*Champernowne^2*exp(GAMMA(1/24)) 4180935837500747 a001 3571/3*13^(24/49) 4180935839364553 m001 Riemann2ndZero^HardHexagonsEntropy*Gompertz 4180935839981069 r002 11th iterates of z^2 + 4180935853549635 r005 Im(z^2+c),c=-61/110+3/40*I,n=34 4180935860366746 r009 Im(z^3+c),c=-35/82+8/21*I,n=24 4180935862308680 m001 (Otter-Riemann3rdZero)/(FeigenbaumMu+Niven) 4180935863843165 r005 Re(z^2+c),c=-47/110+23/51*I,n=14 4180935865136936 r002 49th iterates of z^2 + 4180935873406677 l006 ln(4695/7132) 4180935874390734 r005 Re(z^2+c),c=-25/42+7/61*I,n=25 4180935878541858 m001 1/CareFree/exp(ArtinRank2)^2/sin(1) 4180935879989918 m001 (FeigenbaumMu+MadelungNaCl*Porter)/Porter 4180935893890037 r002 10th iterates of z^2 + 4180935896809452 r005 Im(z^2+c),c=17/110+10/23*I,n=47 4180935903434820 r009 Im(z^3+c),c=-55/122+19/52*I,n=40 4180935904167070 a001 11/5*46368^(21/43) 4180935918290070 a007 Real Root Of -183*x^4-635*x^3+571*x^2+294*x+757 4180935955687181 r005 Re(z^2+c),c=-31/52+6/55*I,n=25 4180935965646541 m001 1/TreeGrowth2nd^2*ln(Sierpinski)/GAMMA(19/24) 4180935996132615 m001 (Pi-2^(1/3))/(FeigenbaumB-GlaisherKinkelin) 4180936003249109 r005 Re(z^2+c),c=-11/24+18/37*I,n=26 4180936008171596 r005 Im(z^2+c),c=13/70+23/56*I,n=29 4180936017942830 m001 1/GAMMA(19/24)*ln(Robbin)/sin(1) 4180936021244289 m001 (MasserGramain+Mills)/(Pi+GAMMA(7/12)) 4180936035579754 m001 1/gamma^2/OneNinth^2*ln(sinh(1)) 4180936047830370 r005 Im(z^2+c),c=6/19+8/29*I,n=55 4180936053891372 r009 Im(z^3+c),c=-37/78+20/57*I,n=36 4180936065354732 r002 36th iterates of z^2 + 4180936068452944 r009 Im(z^3+c),c=-63/118+20/49*I,n=30 4180936072765897 m001 1/BesselK(1,1)^2/ln(Bloch)/Zeta(1,2)^2 4180936073059360 q001 1465/3504 4180936074384845 r002 47th iterates of z^2 + 4180936074519600 s002 sum(A096992[n]/(exp(pi*n)-1),n=1..infinity) 4180936085752321 m001 (-PlouffeB+Salem)/(ln(2)/ln(10)+exp(1/Pi)) 4180936093331390 m001 2/3-ln(Pi)^BesselK(1,1) 4180936100372997 m001 (GolombDickman-Sierpinski)/(Conway-GaussAGM) 4180936108014168 a003 cos(Pi*11/45)-cos(Pi*31/77) 4180936108668532 m001 1/Sierpinski*exp(Salem)/sqrt(3)^2 4180936114218263 b008 41+Pi*ProductLog[1/3] 4180936128632864 m009 (6*Psi(1,2/3)+3)/(5*Psi(1,1/3)+2/3) 4180936140302361 m005 (1/2*3^(1/2)+1/5)/(11/12*5^(1/2)+1/2) 4180936151569054 r002 18th iterates of z^2 + 4180936154487658 m001 (Pi-Psi(2,1/3))/(2^(1/2)-FransenRobinson) 4180936154608209 s002 sum(A205833[n]/(n*2^n+1),n=1..infinity) 4180936154993535 m005 (1/3*3^(1/2)-2/5)/(2*3^(1/2)+7/9) 4180936160362218 r005 Im(z^2+c),c=1/19+25/49*I,n=58 4180936184765574 r005 Re(z^2+c),c=-7/12+21/100*I,n=35 4180936199205655 m005 (1/3*2^(1/2)-1/12)/(3*Pi-1/7) 4180936218932344 b008 E^6+E^Khinchin 4180936236468967 m001 RenyiParking^2*ln(Bloch)/Zeta(9)^2 4180936240051029 m001 1/ln(Riemann3rdZero)^2*Magata^2/GAMMA(1/3) 4180936241025102 a007 Real Root Of -501*x^4-244*x^3+23*x^2+902*x-348 4180936242495113 a007 Real Root Of 396*x^4-567*x^3-504*x^2-552*x+24 4180936243614907 a001 5/521*123^(40/51) 4180936245865769 r005 Re(z^2+c),c=-47/74+13/51*I,n=4 4180936271145458 a007 Real Root Of -58*x^4+706*x^3-313*x^2+935*x+499 4180936290986544 l006 ln(96/6281) 4180936300678372 r009 Re(z^3+c),c=-3/50+44/61*I,n=6 4180936304252225 r005 Re(z^2+c),c=-37/50+4/49*I,n=31 4180936313866172 r005 Im(z^2+c),c=-127/98+5/59*I,n=19 4180936332148814 a003 sin(Pi*23/111)/cos(Pi*49/108) 4180936338815515 r002 48th iterates of z^2 + 4180936356997586 r005 Re(z^2+c),c=-37/64+1/4*I,n=38 4180936375535051 m001 GAMMA(11/24)^2*ln(FeigenbaumD)/log(1+sqrt(2)) 4180936394282590 r005 Re(z^2+c),c=-15/26+32/119*I,n=34 4180936394461178 m001 (-CareFree+ZetaQ(4))/(2^(1/3)+BesselK(0,1)) 4180936399523099 r002 2th iterates of z^2 + 4180936419650747 r005 Im(z^2+c),c=-1/3+32/55*I,n=44 4180936419752641 m001 exp(Riemann1stZero)*Si(Pi)^2/GAMMA(5/6) 4180936420570684 a007 Real Root Of 678*x^4-507*x^3+997*x^2-959*x-633 4180936434168382 p003 LerchPhi(1/256,1,45/188) 4180936441033040 b008 1/4+5*Sqrt[7]*Pi 4180936464529141 m009 (1/2*Psi(1,2/3)-4)/(1/6*Psi(1,3/4)+1/6) 4180936465771763 r005 Re(z^2+c),c=-13/22+6/73*I,n=58 4180936483405519 a001 196418/843*199^(6/11) 4180936517472453 l006 ln(2177/3307) 4180936519271136 m001 (ln(3)-polylog(4,1/2))/(Kac+LandauRamanujan) 4180936557800928 m006 (1/4*Pi+1/3)/(1/2*exp(2*Pi)-1/6) 4180936559103560 m001 exp(Pi)^(Pi*2^(1/2)/GAMMA(3/4)*Otter) 4180936585491726 r002 50th iterates of z^2 + 4180936587061716 m002 -E^Pi/15+5*Log[Pi] 4180936589085214 m001 (exp(1/Pi)-gamma(3))/(GAMMA(23/24)-ArtinRank2) 4180936601203657 a007 Real Root Of -60*x^4-62*x^3+859*x^2+493*x+848 4180936637596955 a007 Real Root Of 238*x^4+487*x^3+525*x^2-793*x-395 4180936678777912 a007 Real Root Of -973*x^4+116*x^3+262*x^2+202*x-109 4180936699012888 m005 (1/3*5^(1/2)-2/5)/(5*3^(1/2)-2/5) 4180936706837649 r009 Im(z^3+c),c=-1/48+27/55*I,n=13 4180936709008629 m006 (1/5*exp(2*Pi)+1/5)/(2/5*Pi-1) 4180936714797601 r002 3th iterates of z^2 + 4180936715091409 m001 (5^(1/2))^(Tribonacci/MertensB2) 4180936716317091 r005 Im(z^2+c),c=-5/12+31/53*I,n=42 4180936717957816 r009 Im(z^3+c),c=-16/31+18/47*I,n=42 4180936720117998 m001 (Ei(1)+(1+3^(1/2))^(1/2))/(Psi(1,1/3)-ln(5)) 4180936722328504 r005 Im(z^2+c),c=-37/78+31/53*I,n=59 4180936730375189 m005 (1/2*gamma+1/5)/(1/5*exp(1)+5/8) 4180936730628796 m001 (gamma-ln(3))/(GaussAGM+ThueMorse) 4180936738834506 a001 119218851371/144*225851433717^(5/21) 4180936738834509 a001 440719107401/48*9227465^(5/21) 4180936774959288 m005 (1/2*Pi-1/3)/(Pi-2/11) 4180936779306800 r002 3th iterates of z^2 + 4180936781661798 r009 Re(z^3+c),c=-55/126+4/27*I,n=23 4180936793637088 l006 ln(2389/2491) 4180936820030683 r002 41th iterates of z^2 + 4180936835549745 r009 Im(z^3+c),c=-57/110+12/47*I,n=6 4180936842342290 r005 Im(z^2+c),c=-19/26+7/107*I,n=4 4180936843254823 a007 Real Root Of -107*x^4-391*x^3+27*x^2-973*x-421 4180936853628073 s002 sum(A096310[n]/(exp(n)+1),n=1..infinity) 4180936872566421 r002 63th iterates of z^2 + 4180936895668608 m005 (1/2*Zeta(3)-8/9)/(-51/176+7/16*5^(1/2)) 4180936904508203 s002 sum(A178361[n]/(exp(n)-1),n=1..infinity) 4180936905452627 a007 Real Root Of -138*x^4+122*x^3+305*x^2+574*x-298 4180936907564287 r002 40th iterates of z^2 + 4180936915522607 r005 Im(z^2+c),c=19/74+17/50*I,n=30 4180936921219821 m005 (1/3*2^(1/2)-2/11)/(3/8*gamma-10/11) 4180936923290152 a007 Real Root Of 666*x^4-295*x^3-423*x^2-887*x+446 4180936934713630 a007 Real Root Of -225*x^4-853*x^3+286*x^2-436*x-412 4180936936486312 m005 (4/5*2^(1/2)-2/5)/(Catalan+5/6) 4180936939271367 r008 a(0)=4,K{-n^6,51-46*n+2*n^2-13*n^3} 4180936969687999 r002 24th iterates of z^2 + 4180936995153473 q001 1294/3095 4180936998992036 a007 Real Root Of 963*x^4-736*x^3-650*x^2-265*x-10 4180937000401794 r009 Re(z^3+c),c=-13/29+4/25*I,n=31 4180937000533246 a007 Real Root Of -319*x^4+393*x^3+399*x^2+778*x+294 4180937005984351 l006 ln(6190/9403) 4180937013570536 r002 50th iterates of z^2 + 4180937041932863 m005 (-11/4+1/4*5^(1/2))/(1/5*Zeta(3)+5) 4180937044807562 a007 Real Root Of -575*x^4+787*x^3-898*x^2+952*x-281 4180937065720977 m001 (gamma(2)-ArtinRank2)/(FeigenbaumB+Thue) 4180937071525494 r005 Re(z^2+c),c=-5/8+43/250*I,n=19 4180937089614454 a007 Real Root Of 322*x^4+131*x^3-157*x^2-971*x+414 4180937090043789 r002 3th iterates of z^2 + 4180937104143335 m001 (PlouffeB+ThueMorse)/(Zeta(1,2)-KhinchinLevy) 4180937104944060 r008 a(0)=4,K{-n^6,7+16*n^3+22*n^2-50*n} 4180937113542986 m001 BesselI(0,2)+KhinchinLevy+TravellingSalesman 4180937116618884 r005 Re(z^2+c),c=-7/12+23/128*I,n=63 4180937123442488 a001 2/47*29^(19/28) 4180937124455018 m001 CareFree/FransenRobinson^2*exp(cosh(1)) 4180937126259660 r009 Im(z^3+c),c=-7/54+10/21*I,n=3 4180937129838989 r005 Re(z^2+c),c=-55/98+15/44*I,n=58 4180937132642183 r005 Im(z^2+c),c=5/34+26/59*I,n=51 4180937151825088 b008 Gamma[2/3,10]^2 4180937164233004 a001 6119/36*10946^(3/31) 4180937166918397 m001 sin(1/12*Pi)+Trott+ZetaR(2) 4180937181006080 p004 log(27691/18229) 4180937185761954 r002 27th iterates of z^2 + 4180937193361799 r005 Im(z^2+c),c=-5/102+41/60*I,n=27 4180937194190053 a007 Real Root Of 52*x^4+25*x^3-964*x^2-525*x+594 4180937201022769 a001 1364/956722026041*317811^(4/15) 4180937201024977 a001 682/3278735159921*433494437^(4/15) 4180937210086715 a003 cos(Pi*37/89)+cos(Pi*9/20) 4180937212346034 r005 Re(z^2+c),c=-16/27+2/51*I,n=39 4180937215593149 m001 (Khinchin+Trott)^(3^(1/3)) 4180937221376744 m009 (5*Psi(1,1/3)-1)/(2/5*Psi(1,3/4)+1/6) 4180937224760354 r005 Re(z^2+c),c=-15/26+27/115*I,n=53 4180937233960088 m001 Weierstrass^Robbin+FeigenbaumMu 4180937260900922 r009 Im(z^3+c),c=-1/42+50/63*I,n=26 4180937264083066 r005 Im(z^2+c),c=-7/106+29/49*I,n=44 4180937270358829 a007 Real Root Of 575*x^4-580*x^3-55*x^2-810*x-389 4180937270995654 l006 ln(4013/6096) 4180937271183199 r005 Re(z^2+c),c=-14/25+15/46*I,n=56 4180937281911886 r005 Im(z^2+c),c=-4/19+37/61*I,n=35 4180937284445000 a007 Real Root Of -680*x^4+952*x^3+744*x^2+163*x-247 4180937299542687 m001 (-Zeta(1,2)+Backhouse)/(1-Shi(1)) 4180937313652953 m001 (Robbin-Salem)/(gamma(1)+Conway) 4180937321902733 a007 Real Root Of -129*x^4-345*x^3+858*x^2+38*x-636 4180937331077629 r005 Im(z^2+c),c=6/19+13/43*I,n=25 4180937332861207 p001 sum(1/(599*n+242)/(25^n),n=0..infinity) 4180937335947083 r009 Im(z^3+c),c=-7/46+11/23*I,n=11 4180937358961017 m001 (exp(1/exp(1))-GAMMA(17/24))/(Kolakoski-Salem) 4180937365939083 a007 Real Root Of -290*x^4+322*x^3-453*x^2-231*x+15 4180937367904113 r002 40th iterates of z^2 + 4180937368109582 m001 gamma(3)*(ReciprocalLucas-gamma(1)) 4180937369873549 r005 Re(z^2+c),c=-7/13+19/60*I,n=20 4180937375801635 r002 60th iterates of z^2 + 4180937381808306 r005 Im(z^2+c),c=-45/98+3/49*I,n=9 4180937384775217 r005 Im(z^2+c),c=-1/42+14/25*I,n=60 4180937399701017 r005 Im(z^2+c),c=7/94+23/47*I,n=20 4180937401036915 a007 Real Root Of -73*x^4-395*x^3-270*x^2+302*x-580 4180937448984290 a007 Real Root Of 451*x^4-366*x^3-682*x^2-222*x+225 4180937454903565 r005 Re(z^2+c),c=-13/22+1/13*I,n=40 4180937457421247 r005 Im(z^2+c),c=4/25+21/46*I,n=16 4180937458617113 a007 Real Root Of 739*x^4+230*x^3-982*x^2-748*x+445 4180937471263953 m001 GAMMA(13/24)*BesselJ(1,1)/ln(sin(1)) 4180937471820836 r009 Im(z^3+c),c=-13/60+20/43*I,n=17 4180937471983245 m001 (GAMMA(2/3)-Ei(1))/(QuadraticClass+ThueMorse) 4180937481923551 r005 Re(z^2+c),c=-9/16+26/41*I,n=10 4180937482712667 r002 2th iterates of z^2 + 4180937488184531 a007 Real Root Of 716*x^4+150*x^3+349*x^2-347*x-217 4180937496181682 r005 Im(z^2+c),c=-3/122+19/34*I,n=53 4180937497998692 r002 37th iterates of z^2 + 4180937513677604 a007 Real Root Of 27*x^4+93*x^3+53*x^2+391*x-745 4180937521526071 r002 50th iterates of z^2 + 4180937535030935 r002 4th iterates of z^2 + 4180937541378263 r009 Im(z^3+c),c=-29/60+13/37*I,n=29 4180937544404112 r005 Re(z^2+c),c=17/46+10/51*I,n=46 4180937551457259 l006 ln(5849/8885) 4180937572176272 r005 Im(z^2+c),c=-37/66+4/53*I,n=35 4180937573848541 m001 (ln(gamma)-Ei(1))/(Stephens+ZetaQ(3)) 4180937583878647 r009 Im(z^3+c),c=-39/94+27/58*I,n=9 4180937584154107 m001 (Conway+KhinchinHarmonic)/(Artin-ln(2)/ln(10)) 4180937598147826 s001 sum(exp(-2*Pi)^(n-1)*A209823[n],n=1..infinity) 4180937612748804 b008 ArcCoth[E^Sqrt[30]] 4180937614605926 r009 Im(z^3+c),c=-43/94+5/13*I,n=11 4180937621473623 r005 Re(z^2+c),c=-1+46/139*I,n=4 4180937629987405 r005 Im(z^2+c),c=-53/38+4/35*I,n=15 4180937642540865 m001 (GAMMA(3/4)-Ei(1))/(GAMMA(23/24)+Stephens) 4180937644131127 r002 38th iterates of z^2 + 4180937651470906 r002 41th iterates of z^2 + 4180937676843202 r009 Re(z^3+c),c=-53/102+3/13*I,n=61 4180937678875868 m001 ln(GAMMA(13/24))^2/LandauRamanujan^2/Zeta(9) 4180937684271772 m001 1/(2^(1/3))^2*Champernowne^2/exp(exp(1))^2 4180937699610313 r005 Im(z^2+c),c=23/74+13/46*I,n=57 4180937700602418 m005 (1/3*Zeta(3)+2/11)/(-29/16+3/16*5^(1/2)) 4180937707758338 b008 ArcCsc[E^(1/30+Pi)] 4180937717921564 m001 1/Kolakoski/DuboisRaymond^2/exp(Zeta(5))^2 4180937723194661 a003 cos(Pi*1/95)-cos(Pi*36/119) 4180937729390503 r005 Re(z^2+c),c=-8/13+37/58*I,n=8 4180937740961057 r005 Im(z^2+c),c=23/74+13/46*I,n=59 4180937744375682 r005 Re(z^2+c),c=-89/118+2/55*I,n=60 4180937749211347 a007 Real Root Of 275*x^4-889*x^3+698*x^2+154*x-131 4180937763108213 r002 13th iterates of z^2 + 4180937766504336 r002 13th iterates of z^2 + 4180937768468531 r009 Im(z^3+c),c=-4/29+16/33*I,n=7 4180937778734222 a005 (1/cos(19/198*Pi))^31 4180937813782410 m001 1/exp(1)/exp((2^(1/3)))^2/sin(1)^2 4180937820352788 a007 Real Root Of -87*x^4-228*x^3+847*x^2+952*x-905 4180937826664878 r009 Im(z^3+c),c=-9/70+27/56*I,n=15 4180937836716581 l006 ln(103/6739) 4180937837366861 a007 Real Root Of 127*x^4-686*x^3-447*x^2-902*x-353 4180937846788240 r009 Im(z^3+c),c=-5/82+27/55*I,n=6 4180937852022020 m001 (Psi(2,1/3)*ZetaQ(2)+Robbin)/Psi(2,1/3) 4180937870896070 r009 Im(z^3+c),c=-13/27+10/29*I,n=46 4180937878672569 m005 (1/2*3^(1/2)-5/6)/(3/10*5^(1/2)+1/9) 4180937878972772 r009 Im(z^3+c),c=-61/114+17/61*I,n=55 4180937880998192 r005 Re(z^2+c),c=-65/126+19/54*I,n=15 4180937903013280 r005 Re(z^2+c),c=-3/5+17/56*I,n=36 4180937908078932 r005 Im(z^2+c),c=-25/34+29/89*I,n=3 4180937927450175 a001 7/18*(1/2*5^(1/2)+1/2)^4*18^(20/21) 4180937932227963 a007 Real Root Of 319*x^4-345*x^3+732*x^2-292*x-285 4180937939006185 m004 1/4+5*Sqrt[5]*Pi+Sqrt[5]*Pi*Tan[Sqrt[5]*Pi] 4180937955230916 r005 Im(z^2+c),c=9/29+9/32*I,n=50 4180937973100256 r005 Im(z^2+c),c=15/74+2/5*I,n=25 4180937985588094 m001 (LambertW(1)*Bloch+Niven)/Bloch 4180937985931778 r005 Im(z^2+c),c=25/122+20/51*I,n=43 4180937986135256 m006 (1/5*ln(Pi)+2/3)/(4*exp(2*Pi)+1/6) 4180937998796512 m001 Champernowne*gamma(2)^FibonacciFactorial 4180938017851905 r005 Re(z^2+c),c=-33/58+2/7*I,n=63 4180938027636615 a007 Real Root Of -198*x^4+541*x^3-962*x^2+198*x+10 4180938028711159 r009 Re(z^3+c),c=-55/118+8/45*I,n=51 4180938034822555 m001 (gamma(2)+Rabbit)/(BesselI(0,1)-ln(3)) 4180938040967772 m004 -Cosh[Sqrt[5]*Pi]+144*Tanh[Sqrt[5]*Pi] 4180938041096279 r005 Re(z^2+c),c=-16/27+1/29*I,n=37 4180938067859275 a007 Real Root Of 830*x^4-891*x^3+815*x^2-799*x-567 4180938068920957 m001 LaplaceLimit/ErdosBorwein/exp(GAMMA(1/12)) 4180938069164927 a005 (1/cos(20/207*Pi))^1310 4180938073155987 a001 2/109801*843^(20/43) 4180938074017006 r005 Re(z^2+c),c=9/26+17/47*I,n=39 4180938082308030 a001 322/5*610^(7/24) 4180938108941738 m001 (2^(1/3))^GAMMA(5/6)-Totient 4180938120530961 r002 20th iterates of z^2 + 4180938134960580 r005 Im(z^2+c),c=1/3+12/49*I,n=49 4180938135086626 m005 (1/2*gamma-2/11)/(3/5*gamma-1/11) 4180938139096636 a001 3461452808002/89*6557470319842^(8/17) 4180938144647839 r009 Re(z^3+c),c=-27/52+10/53*I,n=51 4180938159096572 a003 sin(Pi*21/52)/cos(Pi*32/75) 4180938162037939 r008 a(0)=4,K{-n^6,-3+7*n^3-8*n^2+2*n} 4180938164470531 l006 ln(1836/2789) 4180938166465494 r009 Im(z^3+c),c=-13/29+16/47*I,n=5 4180938167372085 r002 17th iterates of z^2 + 4180938177627736 m001 (Zeta(3)-exp(1))/(KomornikLoreti+Tribonacci) 4180938178444570 r002 34th iterates of z^2 + 4180938181075558 m001 (Salem+StronglyCareFree)/FeigenbaumDelta 4180938185395360 r002 59th iterates of z^2 + 4180938190940097 a001 2504730781961/123*11^(3/10) 4180938197752405 m001 TreeGrowth2nd*Magata*exp(GAMMA(23/24)) 4180938198064035 q001 1123/2686 4180938205481842 r005 Im(z^2+c),c=5/34+26/59*I,n=63 4180938215819311 r005 Re(z^2+c),c=-21/34+11/83*I,n=8 4180938247369226 m001 Mills^KhinchinLevy+FransenRobinson 4180938260529091 r009 Re(z^3+c),c=-53/118+9/62*I,n=10 4180938261391162 r005 Im(z^2+c),c=-29/66+26/49*I,n=26 4180938263058741 r009 Im(z^3+c),c=-7/90+19/39*I,n=8 4180938271604938 r004 Re(z^2+c),c=-1/5+7/15*I,z(0)=I,n=3 4180938276698231 r009 Re(z^3+c),c=-13/31+7/55*I,n=11 4180938277777300 m001 1/exp(Zeta(1/2))*Zeta(1,2)/cos(Pi/12) 4180938278417483 r009 Im(z^3+c),c=-11/94+15/31*I,n=11 4180938284468658 r005 Re(z^2+c),c=-37/110+37/63*I,n=5 4180938304216660 m001 (sin(1/12*Pi)+HardyLittlewoodC4)/(Sarnak-Thue) 4180938325145879 m001 (Catalan+Ei(1))/(Zeta(1/2)+Porter) 4180938328199220 a007 Real Root Of 546*x^4-940*x^3+262*x^2-399*x-298 4180938338584422 m005 (1/2*2^(1/2)+3/4)/(3/8*2^(1/2)-2/11) 4180938360425987 r009 Re(z^3+c),c=-2/25+31/44*I,n=54 4180938364338843 r005 Im(z^2+c),c=15/44+18/47*I,n=4 4180938368924005 a003 cos(Pi*9/73)-cos(Pi*13/84) 4180938373211089 r002 13th iterates of z^2 + 4180938378399255 r002 49th iterates of z^2 + 4180938389483199 m001 GAMMA(2/3)/exp(MadelungNaCl)*sqrt(Pi) 4180938404003500 r002 18th iterates of z^2 + 4180938430588797 r005 Re(z^2+c),c=-49/90+19/52*I,n=48 4180938434976630 m001 1/FeigenbaumC^2*Cahen^2*ln(Zeta(3))^2 4180938440345264 m009 (1/2*Psi(1,2/3)+4)/(6*Catalan+3/4*Pi^2+1/3) 4180938442410029 m005 (1/2*Pi-7/8)/(7/8*exp(1)-5/7) 4180938452778687 r005 Re(z^2+c),c=-7/12+7/39*I,n=62 4180938469780307 r005 Re(z^2+c),c=-5/9+11/31*I,n=39 4180938477779423 a007 Real Root Of 7*x^4-137*x^3-73*x^2-776*x+347 4180938480248558 a007 Real Root Of -17*x^4+344*x^3-933*x^2-731*x-581 4180938488990123 a001 55/521*18^(10/21) 4180938493241971 r005 Im(z^2+c),c=19/118+28/61*I,n=19 4180938555654505 r005 Re(z^2+c),c=7/20+3/19*I,n=9 4180938559098576 r005 Re(z^2+c),c=-17/31+7/18*I,n=56 4180938564439531 m005 (1/3*Catalan-1/11)/(2/7*3^(1/2)-1/2) 4180938568834893 r002 37th iterates of z^2 + 4180938571796707 r002 6th iterates of z^2 + 4180938573925656 a001 46368/521*199^(8/11) 4180938584261361 r009 Im(z^3+c),c=-25/66+20/49*I,n=16 4180938591468639 m001 exp(1)/(Kolakoski-exp(1/exp(1))) 4180938603163844 r009 Re(z^3+c),c=-9/22+5/42*I,n=27 4180938607471588 m002 E^Pi+(3*Cosh[Pi]*ProductLog[Pi])/2 4180938615549688 r009 Re(z^3+c),c=-11/25+21/37*I,n=5 4180938628389278 r005 Re(z^2+c),c=-41/94+17/35*I,n=17 4180938629775311 m001 (gamma(1)-GAMMA(13/24))/(Bloch-QuadraticClass) 4180938635657964 m005 (1/3*2^(1/2)+1/3)/(3/10*Pi-3/4) 4180938636114598 a001 47/17711*75025^(14/57) 4180938646307406 m001 (Ei(1,1)-Pi^(1/2))/(Gompertz-Lehmer) 4180938648137577 r002 21th iterates of z^2 + 4180938669238932 r009 Im(z^3+c),c=-5/13+23/57*I,n=28 4180938679306596 m001 HardyLittlewoodC4*(KhinchinHarmonic-ln(5)) 4180938682256086 m008 (3/5*Pi^2-2/3)/(2/5*Pi^3+1/6) 4180938687763169 r009 Im(z^3+c),c=-23/62+16/39*I,n=25 4180938694298217 m001 (2^(1/3)-Psi(1,1/3))/(MasserGramain+Porter) 4180938704056324 r004 Re(z^2+c),c=-13/22+1/24*I,z(0)=-1,n=25 4180938713264054 b008 24/5+ProductLog[-1/3] 4180938714300088 m005 (1/3*Pi-2/3)/(5/9*exp(1)-3/5) 4180938718343815 g001 GAMMA(1/5,52/79) 4180938722144415 m008 (1/6*Pi^5+3/5)/(4*Pi^3-3/5) 4180938728219866 p001 sum((-1)^n/(378*n+239)/(512^n),n=0..infinity) 4180938729610860 r002 51th iterates of z^2 + 4180938734513780 r002 60th iterates of z^2 + 4180938740929198 r002 54th iterates of z^2 + 4180938741342333 r009 Im(z^3+c),c=-13/94+14/23*I,n=2 4180938743036259 r005 Re(z^2+c),c=-69/118+17/63*I,n=14 4180938746583913 a001 329/41*29^(25/51) 4180938750484891 r005 Im(z^2+c),c=13/102+19/40*I,n=19 4180938758225122 r009 Re(z^3+c),c=-4/15+29/41*I,n=18 4180938789024843 m001 exp(GAMMA(11/12))^2/Artin^2*sin(1)^2 4180938790594823 m001 1/exp(BesselJ(0,1))/Tribonacci*sqrt(1+sqrt(3)) 4180938797864359 m005 (1/3*Catalan+3/8)/(47/44+1/4*5^(1/2)) 4180938801660209 r005 Re(z^2+c),c=-2/3+19/139*I,n=8 4180938805133164 r009 Im(z^3+c),c=-3/11+41/59*I,n=57 4180938806968845 m001 (gamma+GAMMA(2/3))/(-gamma(2)+ZetaP(2)) 4180938807407535 r005 Im(z^2+c),c=3/86+12/23*I,n=21 4180938820842369 r005 Re(z^2+c),c=-33/56+1/9*I,n=50 4180938822408993 r005 Re(z^2+c),c=25/102+9/17*I,n=31 4180938827351431 a007 Real Root Of 393*x^4-390*x^3-149*x^2-556*x+275 4180938833451371 h001 (7/10*exp(1)+1/8)/(3/5*exp(2)+5/12) 4180938839887397 m005 (1/2*gamma+6)/(2*Zeta(3)-9/10) 4180938841786630 a003 cos(Pi*8/67)-cos(Pi*24/73) 4180938848114336 r005 Re(z^2+c),c=-15/122+11/14*I,n=54 4180938855072573 r009 Im(z^3+c),c=-7/44+47/64*I,n=13 4180938858396290 l006 ln(5167/7849) 4180938860177990 m001 (sin(1/12*Pi)-exp(-1/2*Pi))/(Khinchin-Porter) 4180938862931942 m005 (1/2*exp(1)+1/4)/(9/11*gamma-6/7) 4180938868013644 g006 Psi(1,5/7)+Psi(1,1/7)-Psi(1,8/11)-Psi(1,4/11) 4180938873742121 m005 (1/2*3^(1/2)-9/11)/(5/7*Zeta(3)+2/7) 4180938891891280 s001 sum(exp(-3*Pi/5)^n*A220996[n],n=1..infinity) 4180938893570647 m004 6+130*Pi+5*Cos[Sqrt[5]*Pi] 4180938897626566 r009 Re(z^3+c),c=-33/64+13/64*I,n=40 4180938903851154 m005 (1/2*Pi-2/9)/(4*gamma+11/12) 4180938929194529 m001 (Zeta(3)+GaussKuzminWirsing)/(MertensB1+Paris) 4180938934850264 r005 Re(z^2+c),c=-17/30+27/104*I,n=24 4180938940209786 r005 Im(z^2+c),c=-5/6+1/41*I,n=41 4180938949503068 r005 Re(z^2+c),c=-16/27+1/30*I,n=51 4180938958812026 m001 ln(GolombDickman)*GlaisherKinkelin/Zeta(3)^2 4180938976881276 h001 (1/10*exp(1)+7/10)/(3/4*exp(1)+2/7) 4180938977298247 g001 lnGAMMA(37/63) 4180938977298247 l003 lnGAMMA(37/63) 4180938990931312 a003 sin(Pi*23/77)/cos(Pi*39/89) 4180938994434166 r009 Im(z^3+c),c=-1/110+28/57*I,n=12 4180938995042078 r005 Re(z^2+c),c=-75/118+14/33*I,n=30 4180939011648300 r005 Im(z^2+c),c=7/46+24/55*I,n=41 4180939054156605 m001 (GAMMA(17/24)+ZetaQ(4))/(5^(1/2)+sin(1)) 4180939073500553 r005 Im(z^2+c),c=-5/6+1/41*I,n=57 4180939090419465 r009 Re(z^3+c),c=-11/23+11/58*I,n=59 4180939090684189 a003 sin(Pi*4/51)/cos(Pi*35/116) 4180939097571871 m006 (4*exp(2*Pi)+1/5)/(5*ln(Pi)-3/5) 4180939103784529 r009 Im(z^3+c),c=-51/122+5/13*I,n=22 4180939120373719 a001 3571/2504730781961*317811^(4/15) 4180939128691914 m001 1/FeigenbaumC^2/exp(Paris)^2/BesselJ(0,1)^2 4180939134343335 m001 (MinimumGamma+Riemann2ndZero)/(Pi+5^(1/2)) 4180939174369359 r005 Re(z^2+c),c=-16/27+1/53*I,n=39 4180939183421770 r002 24th iterates of z^2 + 4180939185715388 l006 ln(110/7197) 4180939216909132 m001 1/GAMMA(17/24)^2*ln(Kolakoski)/gamma^2 4180939225210147 r005 Im(z^2+c),c=5/122+29/56*I,n=53 4180939228129141 m001 (TravellingSalesman+Thue)/(Bloch-PlouffeB) 4180939231638372 m005 (1/2*Catalan-10/11)/(5/7*gamma+2/3) 4180939233922453 m008 (Pi-2/3)/(3/5*Pi^4+3/4) 4180939238126275 r005 Im(z^2+c),c=-17/16+3/64*I,n=19 4180939240878315 l006 ln(3331/5060) 4180939248978510 r005 Re(z^2+c),c=-71/54+1/37*I,n=30 4180939267074950 a001 233/3*6643838879^(8/9) 4180939269778937 m006 (2/5/Pi+1/4)/(1/6*exp(2*Pi)+1) 4180939270284741 m006 (1/6*Pi^2-5)/(5/6*Pi^2-1/5) 4180939270284741 m008 (1/6*Pi^2-5)/(5/6*Pi^2-1/5) 4180939273701938 r005 Re(z^2+c),c=-57/98+9/46*I,n=43 4180939277079107 m009 (24*Catalan+3*Pi^2+1/2)/(5*Psi(1,3/4)-1/4) 4180939285670146 r009 Im(z^3+c),c=-5/36+25/52*I,n=12 4180939287645783 r005 Im(z^2+c),c=1/4+20/59*I,n=21 4180939301144232 a007 Real Root Of -370*x^4+500*x^3-158*x^2+549*x+305 4180939308522596 r002 53th iterates of z^2 + 4180939310010168 a007 Real Root Of 41*x^4-508*x^3-960*x^2-338*x+345 4180939313090303 h003 exp(Pi*(10^(7/2)-3^(7/6))) 4180939313090303 h008 exp(Pi*(10^(7/2)-3^(7/6))) 4180939332814429 m001 exp(1/exp(1))+Backhouse^GAMMA(1/3) 4180939354972891 a001 123*(1/2*5^(1/2)+1/2)^29*18^(3/8) 4180939361074447 a007 Real Root Of 741*x^4+239*x^3-234*x^2-345*x-14 4180939366664572 a003 cos(Pi*25/61)*cos(Pi*52/105) 4180939374178966 a007 Real Root Of -573*x^4+432*x^3+339*x^2+894*x-38 4180939399139442 a007 Real Root Of 186*x^4+982*x^3+988*x^2+559*x+1 4180939400403249 a001 9349/6557470319842*317811^(4/15) 4180939403401951 r009 Re(z^3+c),c=-7/90+38/55*I,n=53 4180939411767291 a007 Real Root Of 263*x^4+884*x^3-853*x^2+195*x-30 4180939419232385 r009 Im(z^3+c),c=-23/86+23/51*I,n=16 4180939432260117 a007 Real Root Of -680*x^4+894*x^3-791*x^2+23*x+234 4180939442223851 r005 Re(z^2+c),c=-23/40+14/59*I,n=43 4180939460877529 r005 Re(z^2+c),c=-15/26+29/125*I,n=58 4180939466509253 a001 2161/1515744265389*317811^(4/15) 4180939482140198 a007 Real Root Of 984*x^4-24*x^3+965*x^2-580*x-443 4180939489529439 r002 27th iterates of z^2 + 4180939492609512 r005 Im(z^2+c),c=-135/106+9/37*I,n=5 4180939493740547 r005 Im(z^2+c),c=-15/74+22/31*I,n=53 4180939494605416 a007 Real Root Of 69*x^4-640*x^3+626*x^2-650*x+207 4180939511023421 m001 Si(Pi)*(Zeta(3)+GAMMA(11/12)) 4180939511939681 m005 (13/42+1/6*5^(1/2))/(5/12*5^(1/2)+7/10) 4180939521560155 a007 Real Root Of -379*x^4-220*x^3+470*x^2+702*x-348 4180939525034157 m001 GAMMA(2/3)^2*ErdosBorwein/exp(GAMMA(5/12))^2 4180939537031512 r005 Re(z^2+c),c=-23/30+2/13*I,n=12 4180939565973572 m006 (3/5*Pi^2+1)/(3/4*exp(Pi)-4/5) 4180939571653932 r005 Im(z^2+c),c=-2/11+44/63*I,n=5 4180939573471016 a001 5778/4052739537881*317811^(4/15) 4180939593344805 h001 (7/12*exp(1)+7/9)/(5/7*exp(2)+3/8) 4180939595268052 s001 sum(1/10^(n-1)*A215291[n]/n^n,n=1..infinity) 4180939597759201 m003 -89/2+Sqrt[5]/32+Cosh[1/2+Sqrt[5]/2] 4180939615864102 a007 Real Root Of 440*x^4+319*x^3+986*x^2-360*x-313 4180939631404957 r005 Re(z^2+c),c=-16/27+2/63*I,n=62 4180939650386095 l006 ln(4826/7331) 4180939652510812 m001 (KhinchinLevy+MertensB3)/(MinimumGamma-Thue) 4180939657233782 p003 LerchPhi(1/8,4,499/224) 4180939664124181 a007 Real Root Of -179*x^4-614*x^3-902*x^2+980*x+528 4180939674445869 a007 Real Root Of -164*x^4-747*x^3-156*x^2+293*x-530 4180939683626863 a007 Real Root Of 128*x^4+474*x^3-471*x^2-925*x-104 4180939690134008 r009 Re(z^3+c),c=-7/94+34/53*I,n=38 4180939694273060 m001 1/Ei(1)^2*ArtinRank2^2/exp(sin(Pi/5))^2 4180939695041064 a007 Real Root Of -770*x^4-144*x^3-233*x^2+479*x+254 4180939697293261 r005 Re(z^2+c),c=-9/14+10/73*I,n=13 4180939718473721 r005 Re(z^2+c),c=-13/22+8/97*I,n=54 4180939733547079 s001 sum(exp(-2*Pi/5)^n*A055816[n],n=1..infinity) 4180939733547079 s002 sum(A055816[n]/(exp(2/5*pi*n)),n=1..infinity) 4180939759083861 p001 sum((-1)^n/(223*n+66)/n/(8^n),n=1..infinity) 4180939768496758 a007 Real Root Of -458*x^4+222*x^3+679*x^2+756*x-437 4180939781842253 r002 46th iterates of z^2 + 4180939786948850 r005 Re(z^2+c),c=-15/122+11/14*I,n=60 4180939806508676 r002 38th iterates of z^2 + 4180939822407244 p004 log(36137/23789) 4180939822689221 r005 Im(z^2+c),c=1/22+17/33*I,n=54 4180939825738036 m001 (exp(1)-ln(2)/ln(10))/(-Ei(1)+ln(2+3^(1/2))) 4180939828439259 r005 Im(z^2+c),c=-31/26+32/107*I,n=21 4180939828965099 r005 Re(z^2+c),c=1/5+6/13*I,n=40 4180939829552690 a007 Real Root Of -257*x^4+63*x^3-669*x^2+829*x+476 4180939830419739 m005 (1/3*Zeta(3)+3/5)/(-2/15+1/6*5^(1/2)) 4180939833113746 q001 952/2277 4180939833113746 r005 Im(z^2+c),c=-17/18-119/253*I,n=2 4180939834304801 a003 sin(Pi*29/93)/cos(Pi*24/55) 4180939836644267 r002 3th iterates of z^2 + 4180939854193896 g007 Psi(2,1/3)-Psi(2,1/6)-Psi(2,2/5)-Psi(2,2/3) 4180939866185869 l006 ln(6321/9602) 4180939869953004 r002 25th iterates of z^2 + 4180939873711973 m003 10/3+(Sqrt[5]*ProductLog[1/2+Sqrt[5]/2])/2 4180939886598212 a007 Real Root Of -764*x^4+907*x^3-914*x^2-398*x+83 4180939894280002 m001 1/Conway^2/ln(Champernowne)^2/LambertW(1)^2 4180939895497505 r009 Im(z^3+c),c=-4/23+22/47*I,n=6 4180939900055240 a001 23725150497407*46368^(16/23) 4180939900325797 a001 10749957122*2971215073^(16/23) 4180939904462176 a007 Real Root Of 193*x^4+2*x^3+890*x^2+228*x-66 4180939912620448 m001 1/exp(Zeta(1,2))^2*KhintchineLevy*cos(1) 4180939956714965 a007 Real Root Of -51*x^4-211*x^3-689*x^2+355*x+255 4180939963608219 r005 Im(z^2+c),c=31/114+17/52*I,n=64 4180939967178156 r002 49th iterates of z^2 + 4180939981774288 r002 18th iterates of z^2 + 4180939982201295 r002 62th iterates of z^2 + 4180940009201952 m001 (Conway+HeathBrownMoroz)/(sin(1)+BesselI(0,2)) 4180940015567134 r009 Re(z^3+c),c=-23/56+4/39*I,n=6 4180940035476573 a007 Real Root Of 95*x^4+397*x^3+165*x^2+636*x-239 4180940035622740 r002 19th iterates of z^2 + 4180940040832835 a007 Real Root Of 136*x^4+154*x^3+553*x^2-654*x-363 4180940045471293 a007 Real Root Of 903*x^4-670*x^3-594*x^2-601*x-224 4180940053623038 r002 46th iterates of z^2 + 4180940055320925 r005 Re(z^2+c),c=1/27+4/13*I,n=15 4180940068800219 r009 Re(z^3+c),c=-15/29+13/54*I,n=28 4180940076516066 r005 Re(z^2+c),c=-15/122+11/14*I,n=63 4180940076923337 r009 Re(z^3+c),c=-11/40+31/38*I,n=3 4180940085622826 a005 (1/cos(4/69*Pi))^500 4180940086985322 a007 Real Root Of -959*x^4+265*x^3+197*x^2+934*x-415 4180940088630879 r005 Re(z^2+c),c=31/106+15/28*I,n=19 4180940095484562 r005 Re(z^2+c),c=7/23+2/45*I,n=43 4180940113200639 m005 (5*exp(1)+1/3)/(4*Catalan-1/3) 4180940114016069 m001 GAMMA(5/12)/Catalan*exp(sin(Pi/5)) 4180940125034028 p004 log(30559/20117) 4180940129463612 m001 1/Pi^2*Trott/exp(cos(Pi/12)) 4180940129721804 a007 Real Root Of 236*x^4-709*x^3+522*x^2-975*x+361 4180940137054595 s001 sum(exp(-3*Pi/5)^n*A188029[n],n=1..infinity) 4180940137055660 s001 sum(exp(-3*Pi/5)^n*A187951[n],n=1..infinity) 4180940140835408 r005 Re(z^2+c),c=-15/26+26/111*I,n=46 4180940142841938 m009 (3*Pi^2-1/2)/(32*Catalan+4*Pi^2+5/6) 4180940143418496 m001 ((1+3^(1/2))^(1/2)-Rabbit)/(2^(1/2)+sin(1)) 4180940143792057 a007 Real Root Of -801*x^4+169*x^3-119*x^2+319*x+191 4180940157830119 r002 27th iterates of z^2 + 4180940176033179 r005 Re(z^2+c),c=-13/22+2/81*I,n=27 4180940176808022 m001 (Gompertz+Mills)/(Ei(1,1)+CopelandErdos) 4180940179158570 m006 (4*Pi+5/6)/(3/5*exp(2*Pi)-4/5) 4180940181312410 r005 Im(z^2+c),c=1/28+12/23*I,n=57 4180940184529702 r005 Im(z^2+c),c=-7/106+3/5*I,n=49 4180940185244261 m002 5*Pi^6*Csch[Pi]+2/ProductLog[Pi] 4180940191338427 a001 1/10959*75025^(8/59) 4180940194286823 a007 Real Root Of 763*x^4-753*x^3+36*x^2-286*x+145 4180940197273701 r009 Re(z^3+c),c=-53/102+23/61*I,n=26 4180940205427908 a007 Real Root Of -948*x^4-254*x^3-380*x^2+120*x+127 4180940215000747 m005 (1/2*gamma+7/12)/(3/5*exp(1)+5/11) 4180940220957603 m001 (Shi(1)-cos(1))/(GAMMA(5/6)+OneNinth) 4180940225538045 m006 (3/5*exp(2*Pi)+1/2)/(1/5/Pi-5/6) 4180940225964662 a007 Real Root Of 964*x^4+874*x^3+899*x^2-424*x-300 4180940232016684 r009 Im(z^3+c),c=-65/126+19/61*I,n=63 4180940242500477 m005 (51/10+1/10*5^(1/2))/(4*Pi+1/6) 4180940261962933 r005 Im(z^2+c),c=15/98+17/39*I,n=59 4180940266551469 a001 3010349/21*53316291173^(15/17) 4180940266551927 a001 1368706081/7*14930352^(15/17) 4180940272988443 h001 (-2*exp(2)-8)/(-9*exp(-3)-5) 4180940277229771 a007 Real Root Of 96*x^4+226*x^3-754*x^2-201*x-477 4180940287239804 r005 Re(z^2+c),c=-9/16+23/61*I,n=31 4180940288567477 r005 Im(z^2+c),c=-53/40+3/62*I,n=21 4180940298783124 r005 Re(z^2+c),c=-49/118+37/62*I,n=54 4180940306597842 a001 2207/1548008755920*317811^(4/15) 4180940306600050 a001 1/4807525989*433494437^(4/15) 4180940308759075 a001 5600748293801/21*4181^(15/17) 4180940314410000 m001 1/Paris/ln(LandauRamanujan)^2/FeigenbaumC^2 4180940315736525 r005 Re(z^2+c),c=-29/50+5/48*I,n=20 4180940322723942 p003 LerchPhi(1/100,1,436/181) 4180940324018196 r005 Re(z^2+c),c=-10/17+1/8*I,n=58 4180940328006190 r005 Im(z^2+c),c=15/118+14/31*I,n=14 4180940333217242 r009 Im(z^3+c),c=-16/31+19/60*I,n=22 4180940337843955 r009 Re(z^3+c),c=-14/29+5/27*I,n=18 4180940338425002 r005 Re(z^2+c),c=-17/14+40/229*I,n=6 4180940343127029 m001 MinimumGamma^2/Lehmer*exp(GAMMA(3/4))^2 4180940345053065 r005 Re(z^2+c),c=-61/60+31/47*I,n=2 4180940346513425 a007 Real Root Of -211*x^4-884*x^3-156*x^2-651*x-128 4180940359793842 r005 Re(z^2+c),c=11/70+34/59*I,n=39 4180940366309747 a007 Real Root Of -935*x^4+276*x^3-691*x^2+855*x+527 4180940372344367 m005 (1/42+1/6*5^(1/2))/(3/5*3^(1/2)-1/11) 4180940373294028 l006 ln(117/7655) 4180940383241085 m005 (1/2*gamma+3)/(5/12*Zeta(3)+2/7) 4180940418441560 r005 Im(z^2+c),c=-11/14+4/239*I,n=47 4180940432262561 a001 514229/322*199^(2/11) 4180940436450942 m001 Zeta(3)^2/FibonacciFactorial^2/exp(exp(1))^2 4180940436547227 m001 (Ei(1)+ln(2+3^(1/2))*Robbin)/Robbin 4180940443908856 r002 59th iterates of z^2 + 4180940448091529 r005 Im(z^2+c),c=-1/94+19/34*I,n=42 4180940451593812 r005 Re(z^2+c),c=-15/26+19/84*I,n=39 4180940463790371 r005 Re(z^2+c),c=-51/106+13/50*I,n=6 4180940468749853 r005 Im(z^2+c),c=11/50+14/37*I,n=49 4180940475388253 r005 Re(z^2+c),c=-15/122+11/14*I,n=57 4180940476149254 m005 (1/3*Pi-2/9)/(-34/77+2/7*5^(1/2)) 4180940496129910 a007 Real Root Of -123*x^4-315*x^3+714*x^2-279*x+915 4180940499957905 r005 Re(z^2+c),c=-53/82+7/33*I,n=22 4180940508756996 r002 51th iterates of z^2 + 4180940525264971 r005 Re(z^2+c),c=-65/126+9/23*I,n=30 4180940529506559 g002 -2*gamma-4*ln(2)-Psi(9/10)-Psi(3/8) 4180940535877385 a007 Real Root Of -258*x^4+41*x^3-756*x^2+971*x+549 4180940542136192 a007 Real Root Of 190*x^4+722*x^3-530*x^2-828*x+513 4180940542315205 r005 Re(z^2+c),c=-69/118+7/41*I,n=37 4180940551426296 r002 23th iterates of z^2 + 4180940562807716 l006 ln(1495/2271) 4180940567986165 r002 2th iterates of z^2 + 4180940584907150 m005 (1/2*5^(1/2)-4/11)/(7/12*5^(1/2)+1/2) 4180940584962190 m005 (1/2*gamma-1/3)/(7/10*Catalan+3/7) 4180940585143903 r002 20th iterates of z^2 + 4180940602387619 m005 (1/2*2^(1/2)+3/7)/(9/10*Pi-1/9) 4180940612122838 r005 Re(z^2+c),c=-16/27+2/61*I,n=55 4180940615800183 r005 Re(z^2+c),c=-29/50+9/43*I,n=59 4180940620568686 r009 Re(z^3+c),c=-55/118+11/62*I,n=30 4180940632541362 r005 Re(z^2+c),c=-41/34+7/29*I,n=18 4180940639258845 a001 305/2*47^(43/50) 4180940676796349 r002 10th iterates of z^2 + 4180940692210369 r005 Re(z^2+c),c=17/66+19/35*I,n=3 4180940699069798 a007 Real Root Of 489*x^4-239*x^3+729*x^2-871*x-524 4180940703522537 a007 Real Root Of 384*x^4-18*x^3-887*x^2-818*x-200 4180940706406180 s001 sum(exp(-3*Pi/5)^n*A047495[n],n=1..infinity) 4180940707825202 r005 Im(z^2+c),c=-21/32+13/38*I,n=12 4180940708870074 r005 Im(z^2+c),c=1/11+25/48*I,n=17 4180940729197394 s001 sum(exp(-3*Pi/5)^n*A005653[n],n=1..infinity) 4180940729197398 s001 sum(exp(-3*Pi/5)^n*A188468[n],n=1..infinity) 4180940738051265 a007 Real Root Of 555*x^4-954*x^3+863*x^2-92*x-276 4180940741934660 r002 21th iterates of z^2 + 4180940742463476 a007 Real Root Of 771*x^4-820*x^3+577*x^2-865*x-546 4180940751353075 m001 (ln(2)-exp(1/exp(1)))/(Pi^(1/2)-FeigenbaumMu) 4180940777439039 a007 Real Root Of -942*x^4+551*x^3+28*x^2+356*x+213 4180940784547587 r005 Re(z^2+c),c=-11/32+21/47*I,n=4 4180940795194890 r009 Im(z^3+c),c=-1/32+26/53*I,n=11 4180940801058871 r002 43th iterates of z^2 + 4180940823394064 m001 (3^(1/2)-Ei(1))/(-CopelandErdos+Kac) 4180940826879764 r002 56th iterates of z^2 + 4180940831143395 r005 Re(z^2+c),c=-13/22+5/61*I,n=64 4180940840266687 r005 Re(z^2+c),c=-3/5+9/94*I,n=23 4180940842549323 a003 cos(Pi*1/109)*cos(Pi*33/91) 4180940873955354 r005 Im(z^2+c),c=-97/82+3/56*I,n=32 4180940875541320 m001 (Artin+Rabbit)/(GAMMA(17/24)-GAMMA(23/24)) 4180940882327584 r002 53th iterates of z^2 + 4180940886318077 m001 (KhinchinLevy-ZetaQ(4))/(Pi-HardyLittlewoodC4) 4180940887122740 r002 29th iterates of z^2 + 4180940887678999 r005 Im(z^2+c),c=-63/94+1/12*I,n=59 4180940909863554 r005 Re(z^2+c),c=-29/52+23/58*I,n=64 4180940918878267 p004 log(37571/24733) 4180940928731955 r005 Re(z^2+c),c=-4/7+26/97*I,n=62 4180940938519802 a007 Real Root Of -928*x^4+199*x^3-417*x^2+669*x-193 4180940951435108 r009 Re(z^3+c),c=-2/31+22/35*I,n=13 4180940959306148 a007 Real Root Of 166*x^4+756*x^3+109*x^2-692*x-270 4180940967744721 a001 2/89*377^(37/42) 4180940993484174 m001 1/3*sqrt(3)^ThueMorse 4180941009462703 m002 -3/5+Pi^4/E^(2*Pi) 4180941013273519 r005 Re(z^2+c),c=-67/114+2/43*I,n=19 4180941033598865 r002 3th iterates of z^2 + 4180941033891582 l005 ln(tanh(299/94*Pi)) 4180941034962796 r005 Re(z^2+c),c=-37/98+21/37*I,n=44 4180941035586514 m005 (1/2*gamma-2/9)/(5/8*exp(1)-1/9) 4180941040383184 r009 Re(z^3+c),c=-12/31+3/32*I,n=12 4180941068377430 r009 Im(z^3+c),c=-11/26+21/55*I,n=25 4180941068697651 r009 Im(z^3+c),c=-6/25+28/61*I,n=24 4180941074073926 r002 48th iterates of z^2 + 4180941086749191 m001 (Artin-Weierstrass)/(ln(3)+ln(2+3^(1/2))) 4180941090804182 r005 Re(z^2+c),c=-16/27+1/27*I,n=41 4180941124967440 r005 Re(z^2+c),c=-63/118+25/63*I,n=42 4180941129682012 r005 Re(z^2+c),c=-16/27+1/31*I,n=63 4180941129749060 r005 Re(z^2+c),c=15/74+28/55*I,n=64 4180941144105205 m001 (PlouffeB+Thue)/(3^(1/2)-Zeta(1/2)) 4180941148868992 r009 Im(z^3+c),c=-19/40+7/47*I,n=4 4180941177825197 r005 Re(z^2+c),c=-17/29+3/20*I,n=63 4180941178869637 r002 25th iterates of z^2 + 4180941183223886 r009 Re(z^3+c),c=-5/78+37/51*I,n=32 4180941187923540 r005 Im(z^2+c),c=-17/94+27/40*I,n=29 4180941194997260 r002 35th iterates of z^2 + 4180941197048077 m001 arctan(1/3)^(BesselJ(1,1)*MadelungNaCl) 4180941207088802 a007 Real Root Of 822*x^4-705*x^3-616*x^2+60*x+109 4180941211027253 m008 (3/4*Pi^3+1)/(2*Pi^3-4) 4180941232228096 r009 Im(z^3+c),c=-11/21+13/60*I,n=30 4180941236826884 a007 Real Root Of 515*x^4+301*x^3+836*x^2+203*x-55 4180941237460666 m001 (CopelandErdos-TwinPrimes)/(Zeta(3)-Conway) 4180941257412128 r005 Re(z^2+c),c=-25/42+1/29*I,n=24 4180941264778962 m001 (Stephens-ZetaQ(2))/(Ei(1)-MasserGramain) 4180941275056697 r009 Re(z^3+c),c=-9/25+26/41*I,n=46 4180941292498500 a005 (1/cos(15/56*Pi))^151 4180941308388515 a001 1364/139583862445*233^(4/15) 4180941311541886 r005 Re(z^2+c),c=-33/56+7/58*I,n=38 4180941316062847 a007 Real Root Of -141*x^4-819*x^3-986*x^2-236*x-523 4180941321210865 r002 5th iterates of z^2 + 4180941329630393 a007 Real Root Of 606*x^4-770*x^3+633*x^2-683*x-471 4180941330877568 m001 ln(3)*(CopelandErdos+FeigenbaumMu) 4180941343681341 l006 ln(5639/8566) 4180941350122973 m001 (1-MertensB2)/(RenyiParking+StolarskyHarborth) 4180941359419130 s002 sum(A019102[n]/(exp(pi*n)-1),n=1..infinity) 4180941387909934 m001 Catalan*exp(KhintchineLevy)/GAMMA(1/3)^2 4180941391291342 r002 15th iterates of z^2 + 4180941403339760 r005 Im(z^2+c),c=7/24+18/59*I,n=59 4180941405779653 m001 GAMMA(1/12)^2/(3^(1/3))/ln(GAMMA(5/24))^2 4180941424243399 m005 (1/2*2^(1/2)-1/3)/(3/4*2^(1/2)-1/6) 4180941426790028 l006 ln(124/8113) 4180941427286574 r005 Im(z^2+c),c=25/78+18/49*I,n=43 4180941428118527 m001 1/log(1+sqrt(2))/Zeta(1/2)*exp(sin(1))^2 4180941436756784 r005 Re(z^2+c),c=-16/27+1/32*I,n=54 4180941449271739 m001 1/Pi*BesselJ(0,1)*exp(cos(1)) 4180941452811238 r005 Im(z^2+c),c=17/110+10/23*I,n=42 4180941462633671 m008 (1/3*Pi^3-3/4)/(3/4*Pi^5-1/4) 4180941463418390 r002 46th iterates of z^2 + 4180941489916718 a007 Real Root Of -667*x^4+904*x^3+163*x^2+808*x-412 4180941490737924 m001 gamma*GolombDickman^2/exp(sin(1))^2 4180941494607917 r002 36th iterates of z^2 + 4180941507049318 a007 Real Root Of -848*x^4-417*x^3-276*x^2+924*x+430 4180941508308435 a001 514229/2207*199^(6/11) 4180941509384706 m001 (BesselK(0,1)+cos(1/5*Pi))/(ln(5)+MertensB3) 4180941513527303 a007 Real Root Of 611*x^4+400*x^3+919*x^2-703*x-444 4180941521948847 r002 46th iterates of z^2 + 4180941559107300 a007 Real Root Of -93*x^4-451*x^3-314*x^2-420*x-811 4180941562176360 a007 Real Root Of 161*x^4+768*x^3+332*x^2-204*x+277 4180941586403197 r009 Im(z^3+c),c=-59/122+17/50*I,n=38 4180941593913706 r005 Re(z^2+c),c=-65/122+23/56*I,n=63 4180941599743391 m008 (5/6*Pi^6-3/5)/(1/5*Pi^6-4/5) 4180941600995519 r009 Im(z^3+c),c=-15/29+23/39*I,n=21 4180941603605294 m001 (KhinchinLevy+Magata)/(Catalan-GAMMA(23/24)) 4180941613680953 r005 Re(z^2+c),c=-11/18+24/41*I,n=6 4180941625391285 l006 ln(4144/6295) 4180941644844887 r002 58th iterates of z^2 + 4180941645624368 a007 Real Root Of 18*x^4+745*x^3-339*x^2-954*x-514 4180941663991362 p003 LerchPhi(1/125,1,89/37) 4180941668036590 r005 Im(z^2+c),c=-49/74+9/20*I,n=32 4180941670912935 p001 sum((-1)^n/(267*n+239)/(625^n),n=0..infinity) 4180941682750049 m005 (1/3*2^(1/2)+1/2)/(Pi-9/11) 4180941694858691 m001 (Mills+Porter)/(Robbin+ZetaQ(4)) 4180941702103488 p001 sum((-1)^n/(241*n+238)/(100^n),n=0..infinity) 4180941706052830 m001 (LambertW(1)-ln(5))/(FeigenbaumC+Robbin) 4180941716191319 a007 Real Root Of -148*x^4-814*x^3-657*x^2+558*x-450 4180941736388218 m005 (3/4*gamma-1/5)/(1/2*Pi+4) 4180941748234762 r002 25th iterates of z^2 + 4180941758383069 r002 35th iterates of z^2 + 4180941759708633 a007 Real Root Of -83*x^4-309*x^3+275*x^2+611*x+526 4180941776748035 a008 Real Root of x^4-x^3+2*x^2-24*x+1 4180941781412104 m001 Artin^sin(Pi/5)/(exp(1/2)^sin(Pi/5)) 4180941793973627 s001 sum(1/10^(n-1)*A161893[n]/n!,n=1..infinity) 4180941798293638 a007 Real Root Of -968*x^4-764*x^3-948*x^2-202*x+55 4180941812599621 h001 (-6*exp(1/2)+6)/(-6*exp(1)+7) 4180941823781037 r002 8th iterates of z^2 + 4180941841206862 m001 (LaplaceLimit-MinimumGamma)/(GAMMA(17/24)+Kac) 4180941842676014 r005 Re(z^2+c),c=-29/48+5/37*I,n=8 4180941844538282 m001 1/exp(Rabbit)/Magata^2*Pi^2 4180941872987409 m005 (1/3*gamma-1/5)/(5/12*Catalan-1/5) 4180941918458640 m005 (1/2*exp(1)-1/4)/(7/9*3^(1/2)-4) 4180941931498609 m008 (3/4*Pi^2+3/4)/(2*Pi^4+1/6) 4180941932195828 r002 43th iterates of z^2 + 4180941933326814 r009 Im(z^3+c),c=-45/98+9/25*I,n=55 4180941938803623 r002 3th iterates of z^2 + 4180941942782713 m001 1/BesselJ(0,1)*ln(Trott)/sqrt(2) 4180941946032033 r005 Re(z^2+c),c=23/106+25/62*I,n=22 4180941982244675 a007 Real Root Of 866*x^4-641*x^3+348*x^2+273*x-20 4180941982439828 b008 Sech[3/2+E^(-4)] 4180941995145317 r009 Re(z^3+c),c=-5/58+23/34*I,n=16 4180942014822335 a007 Real Root Of 8*x^4-197*x^3+927*x^2-338*x-318 4180942020528826 h001 (1/9*exp(1)+9/10)/(9/10*exp(1)+3/7) 4180942023427623 m001 Bloch-Robbin*StolarskyHarborth 4180942055386409 h001 (3/8*exp(1)+1/7)/(9/10*exp(1)+1/3) 4180942058609854 r005 Im(z^2+c),c=17/118+21/43*I,n=19 4180942067483543 l006 ln(7612/7937) 4180942076467615 s002 sum(A156115[n]/(n^2*10^n-1),n=1..infinity) 4180942091956334 r005 Im(z^2+c),c=33/118+24/59*I,n=26 4180942092192288 a007 Real Root Of 440*x^4+853*x^3+616*x^2-984*x+40 4180942120555315 m001 (Zeta(1,2)+MertensB2)^Artin 4180942126189336 r008 a(0)=4,K{-n^6,7+38*n-47*n^2-4*n^3} 4180942151562799 r005 Re(z^2+c),c=-43/74+11/38*I,n=36 4180942161414717 m001 GAMMA(13/24)^exp(gamma)/gamma 4180942184154175 q001 781/1868 4180942188653557 m001 exp(PrimesInBinary)/Backhouse^2*BesselJ(0,1)^2 4180942193484350 m001 (GAMMA(5/6)-FeigenbaumMu)/(Lehmer-ZetaQ(3)) 4180942220199195 m001 (Zeta(3)+Conway)/(FransenRobinson-Magata) 4180942225075054 l006 ln(2649/4024) 4180942233372283 r005 Re(z^2+c),c=-83/122+13/55*I,n=46 4180942237178410 m008 (1/4*Pi^6+3)/(1/5*Pi^5-3) 4180942240537692 m001 (1/2*BesselI(1,2)+Zeta(1/2))/BesselI(1,2) 4180942241432900 a001 1346269/5778*199^(6/11) 4180942250370980 r002 52th iterates of z^2 + 4180942251914675 m001 (-Khinchin+Weierstrass)/(1-GAMMA(7/12)) 4180942252221819 a007 Real Root Of -112*x^4-403*x^3+402*x^2+598*x+243 4180942262506597 r009 Im(z^3+c),c=-19/110+41/56*I,n=29 4180942278033995 m001 1/Tribonacci*Kolakoski^2/ln(BesselJ(1,1)) 4180942278252288 m001 1/CareFree*ln(Champernowne)*KhintchineLevy^2 4180942284490531 m001 (BesselK(0,1)-arctan(1/3))/(MertensB2+Totient) 4180942288536314 r002 44th iterates of z^2 + 4180942289245885 m001 1/CareFree^2/ln(MertensB1)^2/GAMMA(1/3) 4180942307776590 r002 27th iterates of z^2 + 4180942314998846 a007 Real Root Of 763*x^4-862*x^3+677*x^2-826*x-550 4180942317912095 m001 1/exp(GAMMA(11/24))/KhintchineLevy/cos(1)^2 4180942318446222 m001 (ln(1+sqrt(2))+2/3)/(-Zeta(5)+2/3) 4180942336056582 m005 (1/2*2^(1/2)-5)/(23/42+3/14*5^(1/2)) 4180942337439668 r009 Re(z^3+c),c=-43/122+2/53*I,n=9 4180942339786627 m001 1/DuboisRaymond/Artin*ln(FeigenbaumKappa) 4180942348394339 a001 3524578/15127*199^(6/11) 4180942351240939 p004 log(29921/19697) 4180942361633286 m001 1/exp(Catalan)^2/Niven^2/log(2+sqrt(3)) 4180942361850215 a001 47/75025*55^(9/19) 4180942363999803 a001 9227465/39603*199^(6/11) 4180942365948133 a007 Real Root Of -246*x^4-209*x^3-761*x^2-479*x-75 4180942366276610 a001 24157817/103682*199^(6/11) 4180942366608792 a001 63245986/271443*199^(6/11) 4180942366657256 a001 165580141/710647*199^(6/11) 4180942366664327 a001 433494437/1860498*199^(6/11) 4180942366665359 a001 1134903170/4870847*199^(6/11) 4180942366665509 a001 2971215073/12752043*199^(6/11) 4180942366665531 a001 7778742049/33385282*199^(6/11) 4180942366665534 a001 20365011074/87403803*199^(6/11) 4180942366665535 a001 53316291173/228826127*199^(6/11) 4180942366665535 a001 139583862445/599074578*199^(6/11) 4180942366665535 a001 365435296162/1568397607*199^(6/11) 4180942366665535 a001 956722026041/4106118243*199^(6/11) 4180942366665535 a001 2504730781961/10749957122*199^(6/11) 4180942366665535 a001 6557470319842/28143753123*199^(6/11) 4180942366665535 a001 10610209857723/45537549124*199^(6/11) 4180942366665535 a001 4052739537881/17393796001*199^(6/11) 4180942366665535 a001 1548008755920/6643838879*199^(6/11) 4180942366665535 a001 591286729879/2537720636*199^(6/11) 4180942366665535 a001 225851433717/969323029*199^(6/11) 4180942366665535 a001 86267571272/370248451*199^(6/11) 4180942366665535 a001 63246219/271444*199^(6/11) 4180942366665536 a001 12586269025/54018521*199^(6/11) 4180942366665545 a001 4807526976/20633239*199^(6/11) 4180942366665602 a001 1836311903/7881196*199^(6/11) 4180942366665996 a001 701408733/3010349*199^(6/11) 4180942366668697 a001 267914296/1149851*199^(6/11) 4180942366687209 a001 102334155/439204*199^(6/11) 4180942366814091 a001 39088169/167761*199^(6/11) 4180942367683754 a001 14930352/64079*199^(6/11) 4180942367697731 l006 ln(131/8571) 4180942370636505 m001 (BesselJ(1,1)-exp(1))/(Landau+ZetaQ(4)) 4180942373644511 a001 5702887/24476*199^(6/11) 4180942391395136 m001 1/exp(arctan(1/2))/GAMMA(5/12)*sqrt(2) 4180942414500147 a001 2178309/9349*199^(6/11) 4180942416161556 r005 Re(z^2+c),c=-10/17+1/58*I,n=23 4180942422266583 m001 Si(Pi)^Ei(1)+cos(1/12*Pi) 4180942422266583 m001 Si(Pi)^Ei(1)+cos(Pi/12) 4180942427568718 r009 Re(z^3+c),c=-17/64+31/42*I,n=50 4180942427874593 m005 (1/2*gamma+3/11)/(1/5*Pi+5/7) 4180942456268505 a007 Real Root Of -343*x^4+46*x^3+205*x^2+491*x-234 4180942461465698 r005 Im(z^2+c),c=17/74+10/27*I,n=35 4180942513807585 m001 1/GAMMA(2/3)/exp(TreeGrowth2nd)*Zeta(1,2)^2 4180942528986606 m001 ln(sinh(1))*FeigenbaumC*sqrt(2) 4180942531469344 m005 (1/3*Pi+3/4)/(17/18+3/2*5^(1/2)) 4180942531561739 a007 Real Root Of -221*x^4+942*x^3+603*x^2+293*x-290 4180942532035862 r009 Im(z^3+c),c=-21/52+24/61*I,n=32 4180942538829949 m001 HardyLittlewoodC3/(arctan(1/2)+GAMMA(11/12)) 4180942557496179 m005 (1/3*Zeta(3)+1/10)/(5/8*5^(1/2)-1/5) 4180942559863370 a007 Real Root Of 240*x^4+885*x^3-720*x^2-822*x+494 4180942572157586 r005 Re(z^2+c),c=-15/22+31/115*I,n=15 4180942580902501 r005 Im(z^2+c),c=-95/102+2/51*I,n=4 4180942581045279 r005 Im(z^2+c),c=-45/122+35/57*I,n=21 4180942586230672 r005 Im(z^2+c),c=25/102+16/45*I,n=36 4180942593319713 p001 sum(1/(31*n+24)/(128^n),n=0..infinity) 4180942602061661 r005 Im(z^2+c),c=-33/52+2/23*I,n=26 4180942610240803 l006 ln(6452/9801) 4180942612172797 r002 36th iterates of z^2 + 4180942615806378 r005 Re(z^2+c),c=-5/8+75/202*I,n=35 4180942627185028 h001 (3/7*exp(1)+11/12)/(3/5*exp(2)+6/11) 4180942635532193 a007 Real Root Of 22*x^4+912*x^3-330*x^2-140*x+401 4180942637189348 r005 Re(z^2+c),c=-49/90+23/61*I,n=55 4180942642510921 m001 (Landau+MertensB1)/(Sierpinski-TwinPrimes) 4180942658022900 m001 BesselK(0,1)^2/Porter^2*ln(BesselK(1,1)) 4180942668581173 m001 (ln(5)-ln(2+3^(1/2)))/(gamma(3)+ArtinRank2) 4180942672176480 r005 Im(z^2+c),c=25/74+9/44*I,n=28 4180942673393222 r005 Re(z^2+c),c=-15/122+11/14*I,n=51 4180942694528866 a001 832040/3571*199^(6/11) 4180942715182539 a007 Real Root Of -269*x^4+498*x^3+272*x^2+778*x-401 4180942717682843 r005 Im(z^2+c),c=-1/50+29/52*I,n=57 4180942719694203 r005 Re(z^2+c),c=17/64+1/41*I,n=54 4180942721074818 m001 (Catalan-Psi(1,1/3))/(sin(1)+GAMMA(2/3)) 4180942730004187 m001 Grothendieck/ln(Pi)*Khinchin 4180942730619835 a001 40/956722026041 4180942730619835 a001 4/2504730781961*(1/2+1/2*5^(1/2))^2 4180942730619835 a001 2/3278735159921*(1/2+1/2*5^(1/2))^4 4180942730619835 a001 4/10610209857723*(1/2+1/2*5^(1/2))^5 4180942730619835 a001 4/4052739537881*(1/2+1/2*5^(1/2))^3 4180942730619835 a001 1/774004377960+1/774004377960*5^(1/2) 4180942738784041 h001 (6/7*exp(1)+4/7)/(10/11*exp(2)+2/9) 4180942741801197 m008 (1/2*Pi^3+3/5)/(2/5*Pi^6+3/5) 4180942744907579 m001 (MadelungNaCl-Paris)/(Artin+FeigenbaumMu) 4180942767037109 r005 Im(z^2+c),c=-7/122+37/61*I,n=41 4180942771232304 m005 (1/2*Catalan-1/5)/(2/7*Catalan-1/5) 4180942824679287 r005 Re(z^2+c),c=-55/94+8/49*I,n=49 4180942836762286 a003 cos(Pi*1/20)*sin(Pi*16/115) 4180942859289653 a007 Real Root Of 137*x^4+599*x^3+329*x^2+975*x+241 4180942859372471 b008 Sqrt[3]+ArcSinh[Sqrt[33]] 4180942878530058 l006 ln(3803/5777) 4180942894610221 a001 514229/3*199^(35/58) 4180942900174040 m001 (MinimumGamma+Stephens)/(Conway+FeigenbaumMu) 4180942913297283 r005 Re(z^2+c),c=-67/114+5/41*I,n=37 4180942917041377 a007 Real Root Of -179*x^4-730*x^3+264*x^2+878*x+400 4180942925444397 r009 Re(z^3+c),c=-15/31+8/41*I,n=58 4180942948481525 a008 Real Root of (2+4*x-2*x^2-x^3+4*x^5) 4180942949136999 r005 Re(z^2+c),c=-57/118+26/57*I,n=28 4180942950717939 a007 Real Root Of -246*x^4-990*x^3+16*x^2-707*x-421 4180942962020770 m001 GAMMA(2/3)^2*exp(GolombDickman)^2/GAMMA(7/12) 4180942969562770 r002 37th iterates of z^2 + 4180942969626741 a007 Real Root Of -378*x^4+121*x^3-386*x^2+749*x+32 4180942976802607 r009 Im(z^3+c),c=-13/98+10/21*I,n=6 4180942981577822 a007 Real Root Of -319*x^4+103*x^3-807*x^2+987*x+571 4180942986771741 r005 Re(z^2+c),c=-137/122+44/59*I,n=2 4180943000192244 r005 Re(z^2+c),c=-9/16+19/73*I,n=28 4180943005746984 m001 (sin(1/5*Pi)-ln(2))/(Pi^(1/2)+RenyiParking) 4180943008745844 m004 -1/3+5/Log[Sqrt[5]*Pi]+Log[Sqrt[5]*Pi] 4180943034970046 s002 sum(A247488[n]/(n^2*2^n+1),n=1..infinity) 4180943048242826 m005 (1/3*3^(1/2)-1/11)/(3/11*2^(1/2)+7/9) 4180943052033308 m001 (-gamma(3)+FibonacciFactorial)/(5^(1/2)+ln(2)) 4180943055510236 p003 LerchPhi(1/25,1,389/158) 4180943055815994 r005 Re(z^2+c),c=-27/46+23/55*I,n=3 4180943062754972 r005 Im(z^2+c),c=-3/56+23/40*I,n=49 4180943065395951 a007 Real Root Of 733*x^4+169*x^3-302*x^2-850*x-35 4180943089785418 m001 (gamma*FibonacciFactorial+Niven)/gamma 4180943108390367 m002 -1-Pi+(Pi^3*ProductLog[Pi])/4 4180943139538603 m009 (1/3*Psi(1,2/3)-3/5)/(4/5*Psi(1,1/3)+2) 4180943158582979 m001 ln(OneNinth)^2*Niven^2/sin(Pi/5)^2 4180943167143708 r009 Re(z^3+c),c=-9/22+5/42*I,n=29 4180943170767296 a007 Real Root Of -517*x^4+276*x^3+669*x^2+712*x-419 4180943175458016 r002 3th iterates of z^2 + 4180943180389224 a001 2/28657*144^(14/17) 4180943189679157 r005 Re(z^2+c),c=-5/8+77/174*I,n=51 4180943197076122 r005 Re(z^2+c),c=-3/26+36/55*I,n=44 4180943206117990 m001 (BesselI(1,1)*Lehmer-Paris)/BesselI(1,1) 4180943213150274 l006 ln(138/9029) 4180943224871312 r009 Re(z^3+c),c=-53/102+13/58*I,n=51 4180943227733653 l006 ln(4957/7530) 4180943227741351 a001 3571/365435296162*233^(4/15) 4180943234129361 s001 sum(exp(-Pi)^n*A023284[n],n=1..infinity) 4180943234129361 s002 sum(A023284[n]/(exp(pi*n)),n=1..infinity) 4180943237896061 m006 (4*exp(Pi)-3)/(4*exp(2*Pi)+1/5) 4180943242266193 r009 Re(z^3+c),c=-21/38+6/47*I,n=38 4180943253459097 m001 (arctan(1/2)+GAMMA(1/6))/(3^(1/3)) 4180943253459097 m001 1/3*(arctan(1/2)+2*Pi/GAMMA(5/6))*3^(2/3) 4180943256906992 m005 (1/3*Catalan+1/11)/(3/11*Pi+1/11) 4180943257394558 r002 41th iterates of z^2 + 4180943262755879 r002 32th iterates of z^2 + 4180943286009591 r009 Im(z^3+c),c=-63/118+23/55*I,n=56 4180943303223970 l004 Pi/cosh(455/61*Pi) 4180943303223970 l004 Pi/sinh(455/61*Pi) 4180943324132910 a008 Real Root of (8+13*x-13*x^2+4*x^3) 4180943325021879 m005 (1/3*Pi+1/8)/(1/11*Catalan-4/11) 4180943330499578 m005 (1/3*exp(1)+2/5)/(-19/36+1/4*5^(1/2)) 4180943351410691 r002 51th iterates of z^2 + 4180943354605003 h001 (4/5*exp(2)+5/9)/(1/11*exp(2)+7/8) 4180943354890970 a007 Real Root Of 183*x^4+524*x^3-920*x^2+523*x+647 4180943361161700 m001 MertensB1^(GAMMA(5/6)*Stephens) 4180943365553080 a007 Real Root Of -864*x^4-299*x^3+114*x^2+235*x-10 4180943373827486 a007 Real Root Of -23*x^4-964*x^3-101*x^2-59*x-77 4180943381177837 r005 Re(z^2+c),c=-61/110+16/47*I,n=52 4180943385972135 r005 Re(z^2+c),c=-15/26+14/61*I,n=52 4180943390013463 g004 Re(GAMMA(19/15+I*53/20)) 4180943394488781 r005 Im(z^2+c),c=13/90+19/43*I,n=28 4180943404155098 m001 (MasserGramain+OneNinth)/(2^(1/3)+Landau) 4180943416411644 m001 1/RenyiParking^2*Lehmer^2*exp(Ei(1)) 4180943425838268 m005 (1/3*Pi-2/7)/(6*Pi-7/11) 4180943430131712 r005 Re(z^2+c),c=-4/7+17/61*I,n=41 4180943442277552 r005 Re(z^2+c),c=-31/110+37/61*I,n=43 4180943445050170 l006 ln(6111/9283) 4180943451636417 h002 exp(24/(7-7^(1/3))^(1/2)) 4180943454264676 a007 Real Root Of 665*x^4+849*x^3+863*x^2-612*x-365 4180943460739957 r005 Re(z^2+c),c=-39/62+1/4*I,n=31 4180943473651502 r009 Im(z^3+c),c=-13/66+36/43*I,n=4 4180943479485765 r002 18th iterates of z^2 + 4180943507771155 a001 9349/956722026041*233^(4/15) 4180943509540802 r005 Re(z^2+c),c=-163/114+7/26*I,n=4 4180943513058300 r002 46th iterates of z^2 + 4180943526348595 r005 Re(z^2+c),c=23/70+3/29*I,n=13 4180943536713833 r002 62th iterates of z^2 + 4180943538519681 m001 (GAMMA(3/4)+Ei(1))/(HardyLittlewoodC3-Rabbit) 4180943539502082 r009 Im(z^3+c),c=-47/106+13/54*I,n=3 4180943540909352 s001 sum(exp(-3*Pi/5)^n*A285251[n],n=1..infinity) 4180943548626953 a001 24476/2504730781961*233^(4/15) 4180943554587734 a001 64079/6557470319842*233^(4/15) 4180943555994883 a001 2206/225749145909*233^(4/15) 4180943558271699 a001 39603/4052739537881*233^(4/15) 4180943571003497 m001 Pi*2^(1/2)/GAMMA(3/4)+Ei(1)-Totient 4180943573877225 a001 15127/1548008755920*233^(4/15) 4180943575009724 r009 Re(z^3+c),c=-43/110+6/61*I,n=12 4180943587746010 r009 Re(z^3+c),c=-47/106+9/58*I,n=40 4180943615744069 r005 Im(z^2+c),c=-63/82+1/38*I,n=9 4180943622388541 r009 Re(z^3+c),c=-3/94+53/61*I,n=7 4180943632204072 a001 23725150497407/21*46368^(13/17) 4180943632501487 a001 45537549124/21*165580141^(13/17) 4180943632501487 a001 29134601/7*591286729879^(13/17) 4180943671845350 p003 LerchPhi(1/6,6,124/231) 4180943680839093 a001 5778/591286729879*233^(4/15) 4180943680874247 r002 50th iterates of z^2 + 4180943688381967 r001 27i'th iterates of 2*x^2-1 of 4180943701048538 r005 Re(z^2+c),c=-67/114+16/43*I,n=56 4180943702077770 r002 50th iterates of z^2 + 4180943719537588 a003 cos(Pi*26/95)-cos(Pi*31/73) 4180943726170897 r005 Im(z^2+c),c=3/38+30/61*I,n=56 4180943731220703 m005 (1/2*exp(1)-7/12)/(2/11*Zeta(3)-1/5) 4180943731823336 r005 Re(z^2+c),c=-20/29+8/47*I,n=30 4180943735914736 r009 Im(z^3+c),c=-14/29+13/37*I,n=29 4180943747053840 m001 (2^(1/3)-ArtinRank2)/(-ErdosBorwein+MertensB1) 4180943754153496 a003 cos(Pi*25/108)*cos(Pi*37/119) 4180943758721201 r002 56th iterates of z^2 + 4180943763245755 r005 Im(z^2+c),c=-27/26+5/111*I,n=12 4180943773196934 r009 Im(z^3+c),c=-55/122+27/52*I,n=21 4180943777744926 a001 8/64079*322^(9/43) 4180943782647927 r005 Im(z^2+c),c=-5/6+1/41*I,n=60 4180943785285319 a007 Real Root Of 808*x^4+188*x^3+694*x^2-925*x-519 4180943792831759 r002 47th iterates of z^2 + 4180943793207093 q001 1391/3327 4180943800806575 a007 Real Root Of 587*x^4+431*x^3-396*x^2-675*x+302 4180943812908561 s001 sum(exp(-2*Pi)^(n-1)*A225760[n],n=1..infinity) 4180943818193738 a007 Real Root Of 212*x^4+898*x^3+166*x^2+271*x-918 4180943842076118 m001 Mills*(ArtinRank2+FeigenbaumAlpha) 4180943842739317 p001 sum((-1)^n/(379*n+239)/(512^n),n=0..infinity) 4180943843204465 m001 FransenRobinson^GAMMA(17/24)+ThueMorse 4180943872896015 m002 2+Pi^4+Pi^5+Cosh[Pi]+ProductLog[Pi] 4180943882999508 r005 Re(z^2+c),c=-10/17+7/53*I,n=28 4180943883401162 r005 Im(z^2+c),c=9/40+15/37*I,n=12 4180943885076535 m001 (GAMMA(13/24)+Stephens)/(3^(1/2)-Zeta(3)) 4180943895129125 r009 Re(z^3+c),c=-57/110+11/38*I,n=29 4180943904409530 a007 Real Root Of -368*x^4-13*x^3-787*x^2+737*x+456 4180943904813590 m001 (Conway+StronglyCareFree)/(ln(2)-Cahen) 4180943906088313 r009 Im(z^3+c),c=-6/25+28/61*I,n=26 4180943908299767 m001 (ln(Pi)+FeigenbaumKappa)/(Gompertz+ZetaQ(4)) 4180943911219038 m001 Backhouse^2/Artin/exp(Conway)^2 4180943915027537 r005 Re(z^2+c),c=-47/86+11/56*I,n=6 4180943916460647 r009 Re(z^3+c),c=-21/40+16/61*I,n=21 4180943948613763 r009 Im(z^3+c),c=-27/52+7/23*I,n=59 4180943960632740 a007 Real Root Of 223*x^4+928*x^3-35*x^2+45*x+482 4180943964531915 r002 32th iterates of z^2 + 4180943966704364 m006 (3*ln(Pi)-1/2)/(2/3*ln(Pi)-5/6) 4180943976972302 l006 ln(145/9487) 4180943979015615 a007 Real Root Of -15*x^4-12*x^3+131*x^2-489*x-628 4180943992997342 m005 (1/2*Pi-1/11)/(8/9*3^(1/2)+2) 4180944017969585 r002 11th iterates of z^2 + 4180944061396181 a007 Real Root Of 52*x^4-179*x^3+659*x^2-594*x-26 4180944089768331 h001 (7/11*exp(2)+7/10)/(3/8*exp(1)+3/11) 4180944095302805 r002 35i'th iterates of 2*x/(1-x^2) of 4180944095616347 m001 Magata^2/exp(Bloch)/sqrt(3) 4180944146187630 a007 Real Root Of -7*x^4-301*x^3-338*x^2+427*x-390 4180944151250777 r005 Re(z^2+c),c=41/110+1/5*I,n=11 4180944164305791 r005 Im(z^2+c),c=-15/22+5/66*I,n=64 4180944170347138 l003 BesselJ(1,100/107) 4180944178516700 a007 Real Root Of 209*x^4+677*x^3-687*x^2+532*x-151 4180944184455671 a007 Real Root Of 9*x^4-576*x^3+30*x^2-386*x-209 4180944195034852 r005 Re(z^2+c),c=-13/10+9/235*I,n=12 4180944195684531 r005 Re(z^2+c),c=-5/8+18/155*I,n=19 4180944202258017 a007 Real Root Of -586*x^4-305*x^3+63*x^2+862*x+345 4180944206008583 a001 974160/233 4180944212312015 r002 3th iterates of z^2 + 4180944214295967 r005 Re(z^2+c),c=13/60+13/33*I,n=4 4180944214771241 r002 57th iterates of z^2 + 4180944219845775 m001 (exp(1/Pi)-Conway)/(Niven-ZetaQ(4)) 4180944224223111 a004 Fibonacci(12)*Lucas(13)/(1/2+sqrt(5)/2)^6 4180944246617459 a007 Real Root Of 196*x^4+874*x^3+232*x^2+32*x+64 4180944252165509 a007 Real Root Of -415*x^4+963*x^3+340*x^2-151*x-54 4180944257123649 a007 Real Root Of 604*x^4-513*x^3+372*x^2-543*x-348 4180944260778862 a007 Real Root Of -216*x^4-759*x^3+646*x^2+83*x-415 4180944265755263 m001 FransenRobinson*Conway/exp(sqrt(5))^2 4180944267681627 a007 Real Root Of 334*x^4-721*x^3+744*x^2-500*x-402 4180944285333877 r002 32th iterates of z^2 + 4180944294589024 r005 Im(z^2+c),c=-13/62+25/41*I,n=53 4180944300881771 r005 Im(z^2+c),c=-11/52+31/51*I,n=36 4180944307478115 r002 33th iterates of z^2 + 4180944321183270 r005 Im(z^2+c),c=-5/27+25/42*I,n=36 4180944321758632 a007 Real Root Of -335*x^4+852*x^3+245*x^2+41*x-112 4180944323380770 r002 48th iterates of z^2 + 4180944346523992 r002 42th iterates of z^2 + 4180944355141407 a001 3/89*514229^(13/24) 4180944364640580 r005 Re(z^2+c),c=-47/70+7/33*I,n=41 4180944378531896 l006 ln(1154/1753) 4180944390759291 r009 Re(z^3+c),c=-47/106+9/58*I,n=39 4180944396587043 r005 Re(z^2+c),c=-13/22+9/110*I,n=44 4180944410703768 r009 Im(z^3+c),c=-27/56+12/35*I,n=45 4180944413966639 a001 2207/225851433717*233^(4/15) 4180944420301401 m001 Zeta(1,2)*FeigenbaumD^2/ln(sinh(1)) 4180944431959732 r005 Im(z^2+c),c=-3/58+23/40*I,n=61 4180944434941311 r002 44th iterates of z^2 + 4180944438430678 r009 Im(z^3+c),c=-7/30+29/63*I,n=6 4180944441748916 r009 Re(z^3+c),c=-9/19+5/27*I,n=63 4180944445197424 r005 Im(z^2+c),c=43/126+15/64*I,n=61 4180944456761445 r005 Im(z^2+c),c=19/106+17/41*I,n=40 4180944457587061 r002 15th iterates of z^2 + 4180944461134225 r005 Re(z^2+c),c=-15/58+21/34*I,n=55 4180944467747346 r005 Re(z^2+c),c=-63/110+5/43*I,n=16 4180944479740617 l006 ln(5223/5446) 4180944490661172 r002 3th iterates of z^2 + 4180944499089315 a003 sin(Pi*4/37)/cos(Pi*19/92) 4180944507934265 r005 Re(z^2+c),c=-69/122+25/62*I,n=50 4180944511695016 r002 25th iterates of z^2 + 4180944525904538 a001 47*(1/2*5^(1/2)+1/2)^20*76^(9/22) 4180944527731152 m005 (1/6*exp(1)-4)/(-1/12+5/12*5^(1/2)) 4180944543767679 m005 (1/2*gamma+4/5)/(4/9*Pi-4) 4180944556948529 m001 (sin(1/5*Pi)-3^(1/3))/(Grothendieck+MertensB1) 4180944570888681 r005 Re(z^2+c),c=-16/27+1/54*I,n=39 4180944598424579 r005 Re(z^2+c),c=-43/78+1/54*I,n=9 4180944604748682 m001 1/GAMMA(5/6)/GolombDickman*exp(cos(1))^2 4180944606617591 b008 Pi+Coth[Pi^2/5] 4180944613875267 a001 317811/1364*199^(6/11) 4180944617424117 r005 Im(z^2+c),c=6/19+7/26*I,n=29 4180944633438966 r002 53th iterates of z^2 + 4180944633991845 r005 Im(z^2+c),c=-1/16+3/64*I,n=7 4180944636367899 r002 51th iterates of z^2 + 4180944638639884 m001 Riemann2ndZero*ln(LaplaceLimit)^2*Trott^2 4180944639078520 r002 64th iterates of z^2 + 4180944640976960 r005 Im(z^2+c),c=-87/62+6/47*I,n=4 4180944652248689 m001 1/ln(Robbin)^2*GaussAGM(1,1/sqrt(2))*sin(1) 4180944657455674 m004 144-Cosh[Sqrt[5]*Pi]*Coth[Sqrt[5]*Pi] 4180944662066673 m001 BesselJ(0,1)/FransenRobinson^2/exp(Zeta(1/2)) 4180944670441796 l006 ln(152/9945) 4180944675556331 a005 (1/cos(21/149*Pi))^332 4180944677178045 r009 Im(z^3+c),c=-23/114+15/32*I,n=15 4180944682550413 a007 Real Root Of -888*x^4-632*x^3+481*x^2+737*x+205 4180944682695584 a001 10946/123*123^(4/5) 4180944702043122 r005 Im(z^2+c),c=17/126+17/38*I,n=24 4180944711235923 a001 317811/199*76^(2/9) 4180944713721988 r005 Re(z^2+c),c=-69/118+1/37*I,n=19 4180944739509840 a003 cos(Pi*19/55)-sin(Pi*28/81) 4180944742925338 a007 Real Root Of -192*x^4-711*x^3+331*x^2-364*x-603 4180944751038975 r009 Re(z^3+c),c=-53/110+6/31*I,n=40 4180944754466604 r005 Re(z^2+c),c=-69/118+11/54*I,n=28 4180944780199571 a001 1/199*(1/2*5^(1/2)+1/2)^31*4^(11/15) 4180944785893909 r005 Im(z^2+c),c=1/48+15/34*I,n=5 4180944791432201 r005 Re(z^2+c),c=-43/78+16/45*I,n=45 4180944797512345 r002 23th iterates of z^2 + 4180944821044598 r009 Re(z^3+c),c=-15/29+25/64*I,n=45 4180944826040775 m001 ZetaP(4)^GAMMA(11/12)/BesselI(1,2) 4180944831229598 r009 Re(z^3+c),c=-10/21+3/16*I,n=42 4180944831301951 m005 (1/2*Zeta(3)-3/11)/(1/12*gamma-5/6) 4180944842179004 r005 Re(z^2+c),c=-39/64+11/30*I,n=58 4180944844724433 a007 Real Root Of -20*x^4-823*x^3+565*x^2+582*x+601 4180944849923861 r002 21th iterates of z^2 + 4180944878231311 r005 Im(z^2+c),c=2/29+31/52*I,n=48 4180944887618968 p004 log(30293/463) 4180944922049422 m001 TwinPrimes^2*exp(Sierpinski)^2/GAMMA(2/3)^2 4180944931069628 r002 28th iterates of z^2 + 4180944931368046 r002 61th iterates of z^2 + 4180944942367334 r009 Im(z^3+c),c=-11/102+16/33*I,n=15 4180944942410139 m005 (1/2*gamma+7/8)/(5/12*3^(1/2)-1) 4180944962451673 r009 Re(z^3+c),c=-57/110+15/56*I,n=34 4180944975119412 m005 (1/2*gamma-9/11)/(4*Pi+1/10) 4180944986328772 s002 sum(A248726[n]/(n^2*exp(n)+1),n=1..infinity) 4180945015848179 r005 Im(z^2+c),c=-33/70+32/57*I,n=39 4180945023207484 a007 Real Root Of -250*x^4+781*x^3-103*x^2+778*x+408 4180945033461662 m001 MertensB1^2*FibonacciFactorial/ln(Zeta(9)) 4180945036870143 r002 39th iterates of z^2 + 4180945037438265 a001 29/987*4181^(22/37) 4180945038822603 r002 54th iterates of z^2 + 4180945048544884 a005 (1/cos(7/185*Pi))^202 4180945052022025 r009 Im(z^3+c),c=-29/62+17/48*I,n=59 4180945063446120 r002 36th iterates of z^2 + 4180945076872499 a007 Real Root Of -273*x^4-162*x^3-223*x^2+537*x+260 4180945078996557 a001 4052739537881/3*76^(6/23) 4180945098117906 r005 Re(z^2+c),c=31/86+13/44*I,n=47 4180945099290053 r002 14th iterates of z^2 + 4180945113941086 r002 15th iterates of z^2 + 4180945130472639 s001 sum(exp(-3*Pi/5)^n*A231013[n],n=1..infinity) 4180945130473032 s001 sum(exp(-3*Pi/5)^n*A231008[n],n=1..infinity) 4180945144986115 r009 Im(z^3+c),c=-33/94+13/31*I,n=22 4180945161147004 a007 Real Root Of -18*x^4-731*x^3+896*x^2-256*x-503 4180945161401252 m001 (GAMMA(3/4)+HeathBrownMoroz)/(3^(1/2)+Zeta(3)) 4180945178478176 a007 Real Root Of -123*x^4-566*x^3-62*x^2+773*x+534 4180945195803462 a007 Real Root Of -160*x^4-546*x^3+657*x^2+474*x-517 4180945197077534 r005 Re(z^2+c),c=-35/64+9/25*I,n=39 4180945201436044 a007 Real Root Of 234*x^4+962*x^3+53*x^2+717*x+877 4180945205794246 a007 Real Root Of 148*x^4+485*x^3-635*x^2-336*x-82 4180945215807744 a001 1/1858291*(1/2*5^(1/2)+1/2)^8*64079^(1/22) 4180945217231630 r005 Im(z^2+c),c=4/19+12/31*I,n=55 4180945218172223 r009 Re(z^3+c),c=-49/94+15/64*I,n=22 4180945231012484 m004 -4+5*Sqrt[5]*Pi+7*ProductLog[Sqrt[5]*Pi] 4180945233627515 m001 (MertensB2+Sarnak)/(Artin-Kolakoski) 4180945245083060 l006 ln(6583/10000) 4180945247062963 m001 ln(2^(1/2)+1)*(GAMMA(19/24)+FeigenbaumMu) 4180945256548945 r009 Im(z^3+c),c=-13/30+13/34*I,n=11 4180945262867930 m001 (MasserGramain-Salem)/(Cahen+GolombDickman) 4180945266597632 r009 Im(z^3+c),c=-13/42+24/55*I,n=18 4180945277107626 a007 Real Root Of -224*x^4-747*x^3+974*x^2+890*x+547 4180945280189383 r005 Re(z^2+c),c=5/42+21/44*I,n=16 4180945313535583 m001 exp(Pi)*Grothendieck/Paris 4180945314659746 m001 QuadraticClass-Sarnak-Stephens 4180945331523865 a001 843/591286729879*317811^(4/15) 4180945331526073 a001 843/4052739537881*433494437^(4/15) 4180945335330889 r005 Im(z^2+c),c=5/52+23/48*I,n=35 4180945341073682 p001 sum(1/(398*n+249)/(10^n),n=0..infinity) 4180945342935929 m001 (BesselJ(1,1)-polylog(4,1/2))/Si(Pi) 4180945374494565 r005 Im(z^2+c),c=27/82+4/43*I,n=5 4180945383031922 m005 (2/5*2^(1/2)-2)/(-17/30+1/10*5^(1/2)) 4180945424120691 r005 Im(z^2+c),c=-7/60+22/37*I,n=32 4180945425760000 r005 Im(z^2+c),c=5/32+13/30*I,n=63 4180945429279043 l006 ln(5429/8247) 4180945450818096 r002 51th iterates of z^2 + 4180945457269206 a001 4181/322*521^(12/13) 4180945466494300 r002 38th iterates of z^2 + 4180945471297079 b008 ArcTan[1/9+EulerGamma^2] 4180945471596995 r005 Re(z^2+c),c=-71/122+1/5*I,n=31 4180945472229284 m001 Catalan^2*ln((2^(1/3)))/arctan(1/2) 4180945478640835 a007 Real Root Of 51*x^4-28*x^3-931*x^2+220*x-436 4180945479340824 r009 Re(z^3+c),c=-1/94+29/41*I,n=12 4180945484850772 a007 Real Root Of -63*x^4-166*x^3+244*x^2-841*x-663 4180945490745966 a003 cos(Pi*9/112)-cos(Pi*7/57) 4180945497565741 r002 62th iterates of z^2 + 4180945514802747 r009 Im(z^3+c),c=-17/56+25/57*I,n=23 4180945517953321 m001 (ln(Pi)-Pi^(1/2))/(FransenRobinson-Mills) 4180945526864381 a007 Real Root Of 114*x^4-479*x^3-866*x^2-768*x+504 4180945529442440 h001 (7/9*exp(2)+2/5)/(1/2*exp(1)+1/9) 4180945537356970 m001 1/cos(1)/GAMMA(2/3)^2/exp(log(1+sqrt(2))) 4180945542716105 r005 Re(z^2+c),c=-47/82+13/50*I,n=54 4180945544278512 r005 Im(z^2+c),c=39/118+1/9*I,n=13 4180945545377798 m005 (1/2*2^(1/2)-2/11)/(11/12*gamma+8/11) 4180945546664105 r002 52th iterates of z^2 + 4180945548644179 m001 Psi(1,1/3)/(GAMMA(13/24)^Grothendieck) 4180945570529670 m001 (2^(1/2)-gamma)/(cos(1)+MinimumGamma) 4180945583129355 r005 Im(z^2+c),c=11/126+26/53*I,n=15 4180945585557310 r005 Im(z^2+c),c=-13/62+49/59*I,n=11 4180945596322265 m001 Zeta(1/2)*CareFree^FeigenbaumMu 4180945605485682 m001 Ei(1)/(3^(1/3))^2/exp(GAMMA(7/24)) 4180945606791643 m001 (Magata-Thue)/(Zeta(3)-Lehmer) 4180945609146136 r002 49th iterates of z^2 + 4180945624941552 r005 Im(z^2+c),c=17/66+18/53*I,n=31 4180945628322604 r005 Re(z^2+c),c=-13/22+7/85*I,n=56 4180945629294379 r005 Im(z^2+c),c=-15/14+23/81*I,n=6 4180945632312290 m006 (3/5*Pi^2+2)/(ln(Pi)+3/4) 4180945637725516 s001 sum(exp(-3*Pi/4)^n*A084289[n],n=1..infinity) 4180945641181751 m005 (1/5*Catalan-1/6)/(1/3*Pi-5) 4180945648494258 m001 DuboisRaymond^(Rabbit/MertensB3) 4180945680217652 a001 4870847/55*433494437^(17/22) 4180945681101648 a007 Real Root Of -659*x^4+254*x^3-926*x^2-164*x+132 4180945685610345 a001 17393796001/55*10946^(17/22) 4180945685630055 m004 -5*Pi+6*Sqrt[5]*Pi-5*Pi*Log[Sqrt[5]*Pi] 4180945696477148 a007 Real Root Of 102*x^4+420*x^3+7*x^2+156*x+58 4180945712739786 r005 Re(z^2+c),c=-39/70+21/64*I,n=43 4180945712919306 l006 ln(4275/6494) 4180945722180031 m001 (1-MasserGramain)/(-Niven+Thue) 4180945727003269 r002 18th iterates of z^2 + 4180945733062447 a007 Real Root Of 193*x^4-751*x^3-801*x^2-696*x+480 4180945736618827 r005 Im(z^2+c),c=11/126+29/48*I,n=52 4180945740998210 r005 Re(z^2+c),c=-19/32+1/57*I,n=32 4180945747436588 r005 Im(z^2+c),c=-31/82+29/54*I,n=11 4180945750186046 r002 27th iterates of z^2 + 4180945754508985 r009 Im(z^3+c),c=-23/48+20/57*I,n=28 4180945756982256 m005 (1/2*gamma+9/10)/(9/11*2^(1/2)-4) 4180945767043687 a007 Real Root Of -918*x^4+331*x^3+457*x^2+916*x-459 4180945782220158 a007 Real Root Of -93*x^4-246*x^3+726*x^2+670*x+549 4180945787953517 m001 (Cahen-ZetaP(4))/FeigenbaumKappa 4180945801103573 m001 LambertW(1)-exp(Pi)*FeigenbaumC 4180945804930008 r009 Im(z^3+c),c=-29/82+23/55*I,n=26 4180945806923626 r009 Im(z^3+c),c=-3/17+18/37*I,n=3 4180945807360933 m001 ZetaR(2)^(1/2*Stephens*2^(2/3)) 4180945811003160 r005 Im(z^2+c),c=-35/48+4/49*I,n=53 4180945818061889 a001 521/9227465*832040^(6/19) 4180945818062280 a001 521/165580141*7778742049^(6/19) 4180945823040331 r002 60th iterates of z^2 + 4180945853324194 q001 61/1459 4180945860087633 r009 Im(z^3+c),c=-6/25+28/61*I,n=29 4180945868492828 r009 Im(z^3+c),c=-6/25+28/61*I,n=23 4180945885956267 a007 Real Root Of 463*x^4-869*x^3-154*x^2-736*x+384 4180945894975594 m001 1/cos(1)/HardHexagonsEntropy/exp(gamma)^2 4180945901276616 a007 Real Root Of 680*x^4-251*x^3-961*x^2-489*x+370 4180945906150211 m005 (1/2*3^(1/2)+5/7)/(11/12*Pi+9/10) 4180945907998704 r005 Re(z^2+c),c=-73/126+1/15*I,n=13 4180945949361450 r005 Im(z^2+c),c=-7/8+7/235*I,n=19 4180945955040414 r009 Re(z^3+c),c=-11/23+11/58*I,n=55 4180945955045762 m001 2^(1/2)-Zeta(1/2)+Mills 4180945957863655 r009 Re(z^3+c),c=-15/74+48/55*I,n=4 4180945966246018 m001 Salem*exp(GaussKuzminWirsing)^2*BesselJ(1,1)^2 4180945967332960 m001 FeigenbaumAlpha^exp(sqrt(2))-sqrt(3) 4180945974489409 r005 Re(z^2+c),c=-13/22+10/121*I,n=52 4180945990125178 r005 Re(z^2+c),c=1/102+35/54*I,n=19 4180946000356713 r002 37th iterates of z^2 + 4180946004712107 r005 Re(z^2+c),c=5/54+2/5*I,n=24 4180946013935016 r005 Re(z^2+c),c=29/106+1/23*I,n=9 4180946019605920 m001 (ln(2)-TravellingSalesman)/polylog(4,1/2) 4180946026608667 r002 9th iterates of z^2 + 4180946033805318 m001 Pi+(ln(2)/ln(10)+Shi(1))*BesselJ(0,1) 4180946040828349 m001 ln(FeigenbaumKappa)/Robbin^2*BesselK(1,1) 4180946062238395 r005 Re(z^2+c),c=-39/62+5/43*I,n=17 4180946067311549 r009 Re(z^3+c),c=-27/56+6/31*I,n=45 4180946076223579 r009 Re(z^3+c),c=-15/32+9/50*I,n=34 4180946080398227 a001 47/5*21^(25/51) 4180946080890151 a001 377*199^(5/11) 4180946107222679 a007 Real Root Of 236*x^4+854*x^3-482*x^2+199*x-441 4180946125844264 a001 29*(1/2*5^(1/2)+1/2)^7*7^(14/17) 4180946131099982 r005 Re(z^2+c),c=15/74+17/46*I,n=64 4180946144716717 g002 gamma+2*ln(2)+Psi(2/9)-Psi(7/11)-Psi(4/5) 4180946154686746 a007 Real Root Of -212*x^4+537*x^3-584*x^2+747*x-243 4180946156704875 m001 (Otter-ZetaP(4))/(BesselI(1,1)+Champernowne) 4180946160213314 r009 Im(z^3+c),c=-49/102+10/29*I,n=52 4180946161063429 r002 20th iterates of z^2 + 4180946189643674 r009 Im(z^3+c),c=-4/29+25/52*I,n=15 4180946206313389 l006 ln(3121/4741) 4180946207155241 a001 18/7778742049*3^(7/13) 4180946213083446 r009 Im(z^3+c),c=-51/106+17/56*I,n=7 4180946234714671 r009 Re(z^3+c),c=-17/28+16/33*I,n=50 4180946236757213 r005 Im(z^2+c),c=25/78+12/37*I,n=21 4180946242168167 a007 Real Root Of 961*x^4-646*x^3+620*x^2+727*x+119 4180946248558060 a001 8/521*3^(31/34) 4180946253448758 r005 Im(z^2+c),c=-35/86+4/59*I,n=17 4180946257154389 r005 Im(z^2+c),c=-2/27+36/61*I,n=16 4180946263638599 a007 Real Root Of -342*x^4-28*x^3+139*x^2+801*x+319 4180946270687654 m001 (Porter+Riemann2ndZero)/(Psi(2,1/3)+MertensB3) 4180946276822339 b008 ArcCos[(-2/5+Pi)/3] 4180946292317911 s002 sum(A100829[n]/(2^n+1),n=1..infinity) 4180946294924631 g007 Psi(2,7/10)-2*Psi(2,1/10)-Psi(2,2/9) 4180946295422186 m001 BesselI(0,2)^ThueMorse/ReciprocalFibonacci 4180946296330719 r005 Im(z^2+c),c=3/13+7/19*I,n=48 4180946299851463 m001 (GAMMA(3/4)+DuboisRaymond)/(Magata-Trott) 4180946300474385 r005 Im(z^2+c),c=17/114+18/41*I,n=49 4180946312609166 r009 Im(z^3+c),c=-3/38+20/41*I,n=17 4180946319455262 m008 (1/2*Pi^3-1/3)/(1/5*Pi+3) 4180946325265502 a007 Real Root Of -143*x^4+220*x^3+736*x^2+962*x+294 4180946329352264 r002 47th iterates of z^2 + 4180946332499205 m001 1/exp(Tribonacci)^2/FeigenbaumAlpha^2*Zeta(5) 4180946343005577 a007 Real Root Of -813*x^4+642*x^3-129*x^2+657*x+369 4180946365895041 a007 Real Root Of 127*x^4+319*x^3-741*x^2+572*x-148 4180946375525232 r009 Im(z^3+c),c=-6/25+28/61*I,n=31 4180946379844756 m001 Conway-Psi(1,1/3)*Landau 4180946385367992 r002 50th iterates of z^2 + 4180946400111189 r005 Re(z^2+c),c=-10/17+1/8*I,n=50 4180946427948346 r005 Re(z^2+c),c=-4/7+16/49*I,n=41 4180946434189362 r009 Im(z^3+c),c=-6/25+28/61*I,n=34 4180946439603021 a003 sin(Pi*19/92)*sin(Pi*9/37) 4180946447687400 a007 Real Root Of 142*x^4+362*x^3-792*x^2+955*x+904 4180946448479234 g006 Psi(1,1/5)-Psi(1,9/11)-Psi(1,8/11)-Psi(1,1/4) 4180946449260398 r009 Im(z^3+c),c=-6/25+28/61*I,n=32 4180946478341357 r009 Im(z^3+c),c=-6/25+28/61*I,n=37 4180946483089711 r009 Im(z^3+c),c=-6/25+28/61*I,n=39 4180946485486050 r009 Im(z^3+c),c=-6/25+28/61*I,n=42 4180946486228692 r009 Im(z^3+c),c=-6/25+28/61*I,n=44 4180946486283481 r009 Im(z^3+c),c=-6/25+28/61*I,n=47 4180946486286628 r009 Im(z^3+c),c=-6/25+28/61*I,n=45 4180946486340785 r009 Im(z^3+c),c=-6/25+28/61*I,n=50 4180946486348378 r009 Im(z^3+c),c=-6/25+28/61*I,n=52 4180946486351266 r009 Im(z^3+c),c=-6/25+28/61*I,n=55 4180946486352324 r009 Im(z^3+c),c=-6/25+28/61*I,n=57 4180946486352346 r009 Im(z^3+c),c=-6/25+28/61*I,n=58 4180946486352365 r009 Im(z^3+c),c=-6/25+28/61*I,n=60 4180946486352438 r009 Im(z^3+c),c=-6/25+28/61*I,n=63 4180946486352462 r009 Im(z^3+c),c=-6/25+28/61*I,n=62 4180946486352467 r009 Im(z^3+c),c=-6/25+28/61*I,n=64 4180946486352484 r009 Im(z^3+c),c=-6/25+28/61*I,n=61 4180946486352600 r009 Im(z^3+c),c=-6/25+28/61*I,n=59 4180946486352752 r009 Im(z^3+c),c=-6/25+28/61*I,n=53 4180946486353082 r009 Im(z^3+c),c=-6/25+28/61*I,n=56 4180946486353664 r009 Im(z^3+c),c=-6/25+28/61*I,n=54 4180946486355699 r009 Im(z^3+c),c=-6/25+28/61*I,n=49 4180946486361726 r009 Im(z^3+c),c=-6/25+28/61*I,n=51 4180946486376699 r009 Im(z^3+c),c=-6/25+28/61*I,n=48 4180946486456121 r009 Im(z^3+c),c=-6/25+28/61*I,n=46 4180946486783759 r009 Im(z^3+c),c=-6/25+28/61*I,n=40 4180946486840808 r009 Im(z^3+c),c=-6/25+28/61*I,n=43 4180946487146276 r009 Im(z^3+c),c=-6/25+28/61*I,n=41 4180946487146610 r009 Im(z^3+c),c=-6/25+28/61*I,n=36 4180946490252773 r005 Im(z^2+c),c=-5/78+12/19*I,n=19 4180946493234945 r009 Im(z^3+c),c=-6/25+28/61*I,n=38 4180946495714027 m001 (Champernowne+Kolakoski)/(sin(1)+GAMMA(2/3)) 4180946496046374 r002 49th iterates of z^2 + 4180946505663696 r005 Im(z^2+c),c=-1/118+14/25*I,n=39 4180946506541228 r009 Im(z^3+c),c=-6/25+28/61*I,n=35 4180946514548008 m005 (1/2*gamma-2/7)/(1/8*3^(1/2)-2/7) 4180946518990395 r005 Re(z^2+c),c=-19/34+4/59*I,n=9 4180946542448375 a007 Real Root Of 504*x^4-486*x^3+788*x^2-527*x-409 4180946548088000 a003 sin(Pi*1/62)*sin(Pi*17/55) 4180946559624238 r009 Im(z^3+c),c=-6/25+28/61*I,n=33 4180946561239414 m001 (FeigenbaumMu-Otter)/(Zeta(1,-1)-Conway) 4180946563985925 r005 Im(z^2+c),c=23/62+9/41*I,n=38 4180946571919551 m005 (1/3*gamma-2/5)/(3/10*Zeta(3)-6/7) 4180946575985784 a001 6765/322*521^(11/13) 4180946579247158 a001 15127/3*832040^(9/58) 4180946583901992 a003 sin(Pi*2/111)*sin(Pi*9/34) 4180946596088474 r005 Im(z^2+c),c=-5/102+4/7*I,n=45 4180946606759196 m008 (1/6*Pi^6+4/5)/(2/5*Pi^6+3/5) 4180946615161148 r009 Im(z^3+c),c=-51/110+10/27*I,n=21 4180946620869129 l006 ln(5088/7729) 4180946625456471 r005 Im(z^2+c),c=-12/23+4/57*I,n=17 4180946630536923 r005 Im(z^2+c),c=-5/8+16/209*I,n=31 4180946646236308 a007 Real Root Of 154*x^4+676*x^3+26*x^2-293*x+669 4180946666164806 m005 (1/3*3^(1/2)+1/2)/(7/11*gamma-5/8) 4180946673737175 m001 ln(Riemann1stZero)*Artin^2*GAMMA(5/6) 4180946680509406 r002 8th iterates of z^2 + 4180946682663264 r005 Im(z^2+c),c=-3/50+13/22*I,n=59 4180946686319473 r005 Im(z^2+c),c=17/50+7/29*I,n=56 4180946687968243 a007 Real Root Of -608*x^4-435*x^3-38*x^2+750*x+307 4180946689495569 r005 Re(z^2+c),c=-7/13+8/53*I,n=5 4180946707025592 r005 Re(z^2+c),c=-69/110+3/25*I,n=15 4180946707237819 m001 (arctan(1/2)-gamma(1))/(Conway-Riemann1stZero) 4180946715818347 r005 Im(z^2+c),c=-18/25+17/56*I,n=29 4180946717644937 a007 Real Root Of -212*x^4-710*x^3+829*x^2+326*x-239 4180946724316619 m001 exp(GAMMA(1/24))/GolombDickman^2/GAMMA(7/24)^2 4180946733098944 r005 Re(z^2+c),c=-37/56+9/47*I,n=26 4180946737565264 r005 Im(z^2+c),c=19/64+8/27*I,n=38 4180946737590099 m001 (-PlouffeB+Salem)/(gamma+ln(3)) 4180946738963194 h001 (8/11*exp(2)+7/10)/(1/5*exp(1)+10/11) 4180946750100535 a007 Real Root Of 690*x^4+559*x^3-533*x^2-892*x-260 4180946758765119 l006 ln(8057/8401) 4180946761326778 m005 (1/2*Pi-7/8)/(10/11*Zeta(3)+4/7) 4180946778040380 r009 Im(z^3+c),c=-1/78+7/9*I,n=10 4180946797311420 m001 Pi*ln(2)/ln(10)-GAMMA(2/3)+gamma(2) 4180946832655973 a001 64079/89*21^(26/45) 4180946839958753 m001 (sin(1/12*Pi)+Totient)/(Trott+Trott2nd) 4180946847586923 r005 Re(z^2+c),c=-43/74+12/43*I,n=36 4180946863077229 m001 ln(Pi)+Backhouse^Otter 4180946863224322 r009 Im(z^3+c),c=-6/25+28/61*I,n=30 4180946871646103 m001 (Zeta(1,2)+Gompertz)/(3^(1/2)-Catalan) 4180946889521405 r005 Im(z^2+c),c=13/122+25/53*I,n=56 4180946891512618 m001 Zeta(3)/exp(Si(Pi))^2/sin(1)^2 4180946900595033 r005 Re(z^2+c),c=-5/8+11/193*I,n=14 4180946905377012 r005 Re(z^2+c),c=-41/70+7/45*I,n=55 4180946917543309 a007 Real Root Of 753*x^4+269*x^3-295*x^2-713*x+307 4180946922176713 r005 Re(z^2+c),c=-13/22+8/111*I,n=38 4180946926018493 r005 Im(z^2+c),c=-5/8+9/115*I,n=33 4180946946398250 m001 GAMMA(5/24)-gamma*Artin 4180946946398250 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)-gamma*Artin 4180946946571619 m005 (-1/44+1/4*5^(1/2))/(6/11*exp(1)-1/5) 4180946948129306 r005 Im(z^2+c),c=-2/3+87/253*I,n=16 4180946954721463 r005 Im(z^2+c),c=11/58+19/45*I,n=20 4180946961521855 r009 Im(z^3+c),c=-6/25+28/61*I,n=27 4180946962046392 r008 a(0)=0,K{-n^6,-59+98*n^3+43*n^2-58*n} 4180946977036263 r005 Im(z^2+c),c=3/52+23/42*I,n=27 4180946978601375 r005 Re(z^2+c),c=-71/122+5/26*I,n=63 4180946994127630 r009 Im(z^3+c),c=-6/25+28/61*I,n=28 4180946994841898 m001 1/LandauRamanujan/Backhouse/exp(BesselJ(0,1)) 4180946995990750 a007 Real Root Of -217*x^4-481*x^3-347*x^2+719*x-3 4180946998453753 a001 10525900321/3*86267571272^(11/17) 4180946998453754 a001 14662949395604/21*24157817^(11/17) 4180947011189012 m001 (GAMMA(5/6)+Grothendieck)/(Sarnak-Trott2nd) 4180947015639949 r002 9th iterates of z^2 + 4180947020230725 m001 HardyLittlewoodC5/Zeta(1,-1)/Lehmer 4180947034293328 a007 Real Root Of 170*x^4+830*x^3+476*x^2-154*x-250 4180947035907165 m001 polylog(4,1/2)-GAMMA(7/24)^exp(1/Pi) 4180947037764710 m001 TwinPrimes^2*exp(Bloch)^2*GAMMA(11/24)^2 4180947044208014 a007 Real Root Of 821*x^4-596*x^3+663*x^2-556*x-417 4180947054370573 p004 log(22669/14923) 4180947056980225 s002 sum(A277310[n]/((10^n+1)/n),n=1..infinity) 4180947057186991 s002 sum(A277310[n]/((10^n-1)/n),n=1..infinity) 4180947066652975 r009 Re(z^3+c),c=-53/118+11/64*I,n=12 4180947070230057 m001 FeigenbaumAlpha/GAMMA(11/12)/LambertW(1) 4180947070230057 m001 FeigenbaumAlpha/LambertW(1)/GAMMA(11/12) 4180947070787507 g002 Psi(5/8)+Psi(6/7)-Psi(5/9)-Psi(2/9) 4180947078987892 r005 Im(z^2+c),c=17/48+5/21*I,n=57 4180947091196251 m006 (Pi^2+1/5)/(5/Pi-4) 4180947093134918 a001 2/5*2^(3/47) 4180947099099193 a007 Real Root Of 676*x^4-506*x^3-589*x^2+82*x+85 4180947102351604 m001 1/exp(GAMMA(1/24))/Cahen^2/GAMMA(11/24)^2 4180947102812136 a001 521/233*75025^(6/23) 4180947107450296 r005 Im(z^2+c),c=-25/18+5/166*I,n=16 4180947116790369 r005 Re(z^2+c),c=-27/44+16/49*I,n=36 4180947116930517 r009 Re(z^3+c),c=-13/24+5/36*I,n=9 4180947119849639 r004 Re(z^2+c),c=-9/16+7/23*I,z(0)=-1,n=42 4180947145091901 r005 Re(z^2+c),c=-19/26+5/73*I,n=57 4180947148874796 h001 (8/9*exp(2)+6/11)/(1/8*exp(2)+7/9) 4180947155554654 m001 MertensB2*(FeigenbaumKappa+Khinchin) 4180947160534201 r005 Re(z^2+c),c=-27/44+15/41*I,n=41 4180947201622386 r002 47th iterates of z^2 + 4180947202234165 r002 52th iterates of z^2 + 4180947212041461 m001 (BesselJ(0,1)+sin(1/5*Pi))/(5^(1/2)+1) 4180947216756501 m008 (5*Pi^6+3)/(3/5*Pi-2) 4180947220178379 a007 Real Root Of -904*x^4+541*x^3+336*x^2+362*x-222 4180947225396452 a007 Real Root Of 887*x^4+124*x^3-5*x^2-981*x-41 4180947230040914 r009 Im(z^3+c),c=-4/11+11/27*I,n=11 4180947243224164 r009 Im(z^3+c),c=-23/50+31/59*I,n=56 4180947243226482 m001 (-ErdosBorwein+KomornikLoreti)/(Ei(1)-Si(Pi)) 4180947248499296 r002 17th iterates of z^2 + 4180947250608533 m005 (1/2*Zeta(3)-1)/(5/7*Catalan+3/10) 4180947251641204 m001 (Paris+Totient)/(GAMMA(3/4)-ln(2^(1/2)+1)) 4180947266612762 s002 sum(A002100[n]/(n*exp(n)+1),n=1..infinity) 4180947266621318 r005 Im(z^2+c),c=1/102+24/29*I,n=7 4180947278636488 l006 ln(1967/2988) 4180947289666263 r005 Im(z^2+c),c=-17/16+3/64*I,n=24 4180947295605955 r002 60th iterates of z^2 + 4180947301872946 a007 Real Root Of 262*x^4+955*x^3-741*x^2-510*x+559 4180947303381058 r005 Re(z^2+c),c=-27/46+8/63*I,n=33 4180947306980068 a001 29/144*701408733^(3/8) 4180947324875804 m005 (1/2*3^(1/2)+1/3)/(4/5*2^(1/2)-4) 4180947328807372 r005 Re(z^2+c),c=6/23+2/59*I,n=9 4180947339325756 m001 HardyLittlewoodC5+gamma(3)^StronglyCareFree 4180947343879139 r005 Re(z^2+c),c=-11/19+5/17*I,n=36 4180947352796298 s002 sum(A157344[n]/(16^n),n=1..infinity) 4180947359188210 r009 Im(z^3+c),c=-25/74+37/58*I,n=23 4180947363824531 r009 Im(z^3+c),c=-1/32+39/55*I,n=4 4180947377821895 b008 Sqrt[Gamma[Catalan,5/3]] 4180947381622331 m001 ln(FeigenbaumB)/Bloch*Zeta(5)^2 4180947402452067 m001 1/ln(Champernowne)^2/Artin/MinimumGamma 4180947402959739 a001 64079/5*5^(36/49) 4180947411674880 a007 Real Root Of -140*x^4+153*x^3-581*x^2+861*x+477 4180947416016640 r005 Im(z^2+c),c=29/122+17/47*I,n=63 4180947456228117 r005 Im(z^2+c),c=-5/8+38/93*I,n=29 4180947468338926 r002 23th iterates of z^2 + 4180947471744349 m006 (5/6*Pi^2-3/4)/(2/3/Pi-2) 4180947474039803 v002 sum(1/(5^n+(16*n^2+5*n+10)),n=1..infinity) 4180947498156182 m001 BesselJ(0,1)^Champernowne/exp(Pi) 4180947499780877 m001 (2^(1/3)-3^(1/2))/(Zeta(3)+gamma(1)) 4180947505013398 m001 (Cahen+ZetaP(4))/(3^(1/2)+gamma(2)) 4180947509434299 r002 15th iterates of z^2 + 4180947509434299 r002 15th iterates of z^2 + 4180947510852924 r005 Re(z^2+c),c=-9/16+44/119*I,n=3 4180947511896429 r005 Re(z^2+c),c=-129/98+1/55*I,n=30 4180947512504253 m005 (1/3*2^(1/2)-1/6)/(2/9*gamma-6/7) 4180947513857462 b008 (Pi*(Pi+Csch[1]))/3 4180947538492209 r005 Im(z^2+c),c=-49/110+20/43*I,n=3 4180947540918323 m005 (1/2*3^(1/2)-1/12)/(3/4*exp(1)-1/6) 4180947547202095 s002 sum(A181470[n]/(pi^n+1),n=1..infinity) 4180947547597118 m001 1/GAMMA(13/24)*Paris^2*exp(GAMMA(5/12))^2 4180947550427708 r005 Re(z^2+c),c=29/114+1/58*I,n=47 4180947552815800 r002 51th iterates of z^2 + 4180947570641801 r005 Re(z^2+c),c=-67/114+8/63*I,n=41 4180947580645161 q001 1659/3968 4180947580645161 r002 2th iterates of z^2 + 4180947589463343 r009 Im(z^3+c),c=-9/98+18/37*I,n=12 4180947602612268 a007 Real Root Of 973*x^4-484*x^3+931*x^2-108*x-273 4180947628207827 m001 (Tetranacci-Trott)/(Pi-FeigenbaumD) 4180947629745136 r005 Re(z^2+c),c=-49/106+15/28*I,n=55 4180947640890315 v003 sum((n^3-5*n^2+25*n-16)*n!/n^n,n=1..infinity) 4180947645822449 m004 -100/Pi-125*Pi+Sqrt[5]*Pi*Tan[Sqrt[5]*Pi] 4180947660287883 r002 25i'th iterates of 2*x/(1-x^2) of 4180947660766712 r005 Re(z^2+c),c=-53/78+11/43*I,n=42 4180947664158911 p004 log(13187/8681) 4180947669362114 m001 1/BesselK(1,1)^2*exp(FeigenbaumD)/cos(Pi/12) 4180947673841076 a003 sin(Pi*11/69)*sin(Pi*37/110) 4180947703719286 r005 Re(z^2+c),c=-19/31+5/37*I,n=11 4180947707404046 m001 1/ln(sin(Pi/5))^2/Porter*sqrt(3) 4180947713966469 m001 (Catalan-cos(1/5*Pi))/(GAMMA(3/4)+MertensB3) 4180947714291579 a007 Real Root Of -975*x^4-130*x^3-969*x^2+869*x+553 4180947720696763 r005 Im(z^2+c),c=1/46+28/53*I,n=38 4180947721619647 a007 Real Root Of -22*x^4-930*x^3-408*x^2+752*x-201 4180947734677025 a005 (1/cos(3/142*Pi))^649 4180947772375900 a001 11/5*956722026041^(5/14) 4180947786059095 a001 5473/161*521^(10/13) 4180947786171804 b008 3*Sqrt[2]*SinIntegral[Pi/3] 4180947788940308 r005 Im(z^2+c),c=11/36+17/46*I,n=33 4180947809807315 r005 Re(z^2+c),c=-13/22+13/71*I,n=28 4180947811545263 r009 Re(z^3+c),c=-1/82+22/47*I,n=2 4180947812063478 r005 Re(z^2+c),c=-109/110+11/37*I,n=32 4180947814458524 a007 Real Root Of -276*x^4+585*x^3-466*x^2+948*x+529 4180947822719985 m009 (1/12*Pi^2+2/5)/(1/4*Psi(1,1/3)+2/5) 4180947828746962 r005 Im(z^2+c),c=-13/20+7/22*I,n=5 4180947839796449 m001 cos(Pi/12)^2*exp(GAMMA(3/4))^2/sin(Pi/12) 4180947865205679 m001 (sin(1/5*Pi)-Niven)/(Rabbit+ReciprocalLucas) 4180947893724415 r002 19th iterates of z^2 + 4180947899173273 p001 sum((-1)^n/(268*n+239)/(625^n),n=0..infinity) 4180947926783098 r005 Re(z^2+c),c=-71/94+3/47*I,n=42 4180947928802238 a008 Real Root of x^4-x^3-21*x^2+31*x+5 4180947941771008 r005 Im(z^2+c),c=31/102+17/59*I,n=33 4180947959971188 r002 50th iterates of z^2 + 4180947972080397 h001 (9/10*exp(1)+3/5)/(9/10*exp(2)+7/11) 4180947972790884 b008 -1/2+EulerGamma*ArcCot[7] 4180947983654414 l006 ln(4747/7211) 4180947987335031 m001 (-3^(1/3)+exp(-1/2*Pi))/(Shi(1)+Ei(1)) 4180947992886808 r009 Re(z^3+c),c=-31/110+36/47*I,n=3 4180948006015535 m005 (1/2*gamma-1/7)/(1/10*5^(1/2)+1/8) 4180948027524395 r002 32th iterates of z^2 + 4180948036954987 r009 Im(z^3+c),c=-1/16+37/47*I,n=42 4180948043630180 m001 (3^(1/3)-Khinchin)/(Rabbit-ThueMorse) 4180948052107348 r005 Re(z^2+c),c=-19/27+12/61*I,n=36 4180948071396561 r005 Im(z^2+c),c=-27/122+43/57*I,n=26 4180948071736817 a007 Real Root Of -839*x^4+976*x^3+254*x^2+868*x-453 4180948078406070 m001 (3^(1/2)-3^(1/3))/ln(2) 4180948078406070 m001 (sqrt(3)-(3^(1/3)))/ln(2) 4180948085195698 a007 Real Root Of 121*x^4+254*x^3+8*x^2-814*x+34 4180948099367264 a007 Real Root Of 680*x^4+870*x^3-876*x^2-864*x+430 4180948103833570 r005 Re(z^2+c),c=-47/78+9/29*I,n=36 4180948108102504 r005 Im(z^2+c),c=-5/118+33/52*I,n=35 4180948108310317 a007 Real Root Of 920*x^4-206*x^3-367*x^2-691*x+340 4180948109687666 r002 18th iterates of z^2 + 4180948134964158 m005 (1/3*Zeta(3)+3/4)/(9/11*Pi+2/11) 4180948139636951 r005 Im(z^2+c),c=3/70+16/31*I,n=46 4180948142214775 m001 1/exp(Magata)^2/Bloch/GAMMA(1/6) 4180948147350286 m005 (1/3*Zeta(3)-1/4)/(1/40+3/20*5^(1/2)) 4180948171982524 a001 75025/521*199^(7/11) 4180948177871363 m001 1/Trott*Porter^2/exp(GAMMA(7/24))^2 4180948184930172 m004 -2-Cos[Sqrt[5]*Pi]/2+6*Cot[Sqrt[5]*Pi] 4180948186354170 r005 Im(z^2+c),c=29/122+17/47*I,n=62 4180948188378765 a007 Real Root Of -516*x^4-243*x^3+427*x-145 4180948194154457 r005 Re(z^2+c),c=-77/118+9/64*I,n=13 4180948214785408 r005 Re(z^2+c),c=-15/26+27/115*I,n=49 4180948215438448 a001 29/46368*121393^(14/39) 4180948220489943 r005 Re(z^2+c),c=-17/74+27/43*I,n=11 4180948233660401 h001 (1/9*exp(1)+3/4)/(8/9*exp(1)+1/10) 4180948237503697 r009 Im(z^3+c),c=-6/29+35/46*I,n=2 4180948244317964 m008 (1/3*Pi^6+3/4)/(4/5*Pi^6-5/6) 4180948246076740 m008 (3/5*Pi^5-1)/(1/6*Pi^3-4/5) 4180948251337635 p003 LerchPhi(1/125,2,333/215) 4180948252379776 r002 58th iterates of z^2 + 4180948277492030 r002 41th iterates of z^2 + 4180948285287158 r005 Im(z^2+c),c=1/15+22/35*I,n=55 4180948312752230 b008 35+11^(4/5) 4180948317032863 m001 (cos(1/5*Pi)+Ei(1))/(DuboisRaymond+ZetaP(2)) 4180948319299001 a007 Real Root Of 451*x^4-797*x^3+824*x^2-770*x-538 4180948319518323 r005 Re(z^2+c),c=-15/46+32/55*I,n=5 4180948323988272 r002 42th iterates of z^2 + 4180948333014853 r009 Im(z^3+c),c=-37/90+11/28*I,n=16 4180948345383937 r005 Re(z^2+c),c=-13/27+19/45*I,n=14 4180948346136705 g002 Psi(9/11)+Psi(5/9)-Psi(7/11)-Psi(7/8) 4180948351736008 a001 76/7778742049*2971215073^(5/18) 4180948351736887 a001 76/701408733*514229^(5/18) 4180948354039054 r002 39th iterates of z^2 + 4180948376142003 r005 Re(z^2+c),c=-7/12+17/114*I,n=29 4180948376733112 r005 Re(z^2+c),c=-47/82+13/50*I,n=43 4180948390596491 r002 55th iterates of z^2 + 4180948393410411 a007 Real Root Of -73*x^4+736*x^3-328*x^2+485*x-197 4180948396500419 m001 (BesselJ(0,1)-Zeta(3))/(-MertensB1+Mills) 4180948403728149 a001 341/11592*3^(8/25) 4180948419918585 a007 Real Root Of 157*x^4-932*x^3-889*x^2-723*x+521 4180948428950054 r005 Im(z^2+c),c=8/29+20/53*I,n=23 4180948445527336 r002 44th iterates of z^2 + 4180948454898208 a007 Real Root Of -416*x^4+716*x^3-989*x^2+943*x-261 4180948482492608 l006 ln(2780/4223) 4180948482950760 a001 18/55*5^(7/46) 4180948483625462 a007 Real Root Of 279*x^4-889*x^3+743*x^2-886*x+297 4180948497939562 m001 gamma^Zeta(3)*AlladiGrinstead 4180948510482898 m001 (-GAMMA(13/24)+Sarnak)/(GAMMA(3/4)-exp(Pi)) 4180948546912553 p003 LerchPhi(1/25,4,149/213) 4180948555332418 r009 Re(z^3+c),c=-17/94+26/35*I,n=8 4180948559528655 r009 Im(z^3+c),c=-19/62+7/16*I,n=21 4180948559839538 m005 (1/3*2^(1/2)-1/10)/(1/7*exp(1)+1/2) 4180948567286785 s001 sum(exp(-Pi/2)^n*A136210[n],n=1..infinity) 4180948569228668 m001 BesselJ(1,1)^2*exp(Cahen)/log(1+sqrt(2)) 4180948585093662 q001 1049/2509 4180948588319326 a007 Real Root Of -177*x^4+976*x^3+337*x^2+352*x-272 4180948605744869 r002 48th iterates of z^2 + 4180948605744869 r002 48th iterates of z^2 + 4180948607507166 r009 Im(z^3+c),c=-45/98+9/25*I,n=56 4180948631525154 a007 Real Root Of -130*x^4+516*x^3-874*x^2+85*x+230 4180948632913815 m001 (GAMMA(3/4)-Shi(1))/(FeigenbaumMu+ZetaP(2)) 4180948639251000 r002 38th iterates of z^2 + 4180948642529275 m001 2*Pi/GAMMA(5/6)*(FibonacciFactorial-PlouffeB) 4180948669987106 r002 33th iterates of z^2 + 4180948671409004 m009 (32/5*Catalan+4/5*Pi^2-1/3)/(3/10*Pi^2+1/4) 4180948673907706 m001 (Zeta(1/2)*PlouffeB+FeigenbaumD)/PlouffeB 4180948675043262 m001 GAMMA(5/12)/ln(GAMMA(17/24))^2/cos(Pi/5) 4180948676180388 r009 Im(z^3+c),c=-23/44+8/59*I,n=3 4180948676309873 r005 Im(z^2+c),c=7/74+7/12*I,n=48 4180948680932633 p004 log(18127/11933) 4180948710743199 m001 (PlouffeB+Robbin)/(2^(1/3)-Zeta(1/2)) 4180948720498696 r002 24th iterates of z^2 + 4180948721340933 g007 Psi(2,1/6)-Psi(2,10/11)-Psi(2,7/11)-Psi(2,5/6) 4180948725954209 r009 Re(z^3+c),c=-5/64+23/33*I,n=55 4180948734567643 a007 Real Root Of -5*x^4-204*x^3+224*x^2+558*x+659 4180948746985031 a001 76/233*610^(28/37) 4180948749601676 r005 Re(z^2+c),c=-87/94+7/41*I,n=34 4180948757316490 r009 Im(z^3+c),c=-5/17+16/37*I,n=5 4180948760788754 r009 Im(z^3+c),c=-11/74+28/57*I,n=5 4180948785522917 m005 (1/2*5^(1/2)+5/11)/(5/6*gamma-6/7) 4180948805204819 r002 7th iterates of z^2 + 4180948819552343 r005 Re(z^2+c),c=-61/110+10/31*I,n=36 4180948827805672 r005 Im(z^2+c),c=-17/16+3/64*I,n=23 4180948844213414 h001 (7/9*exp(2)+1/4)/(2/11*exp(2)+1/11) 4180948847134411 r005 Re(z^2+c),c=-1/118+13/64*I,n=8 4180948848408210 a001 377/123*3^(13/46) 4180948854057773 l006 ln(6373/9681) 4180948855278758 a007 Real Root Of 18*x^4+751*x^3-50*x^2+636*x-808 4180948855541002 m001 FeigenbaumKappa/PlouffeB*Porter 4180948881802953 a007 Real Root Of 784*x^4+136*x^3+936*x^2-374*x-334 4180948894823104 a008 Real Root of x^4-x^3-31*x^2+71*x+35 4180948896093726 m005 (1/2*exp(1)+1/2)/(4/7*exp(1)-6) 4180948896774723 r005 Re(z^2+c),c=-61/98+15/49*I,n=38 4180948899839503 r005 Re(z^2+c),c=-15/22+2/73*I,n=18 4180948905232442 p001 sum(1/(511*n+246)/(12^n),n=0..infinity) 4180948908896644 b008 4+73/E^6 4180948909167270 r005 Re(z^2+c),c=-27/40+6/49*I,n=17 4180948918409860 r005 Re(z^2+c),c=-9/16+23/72*I,n=43 4180948919085794 p001 sum(1/(323*n+240)/(125^n),n=0..infinity) 4180948922191930 r005 Im(z^2+c),c=-23/34+25/87*I,n=7 4180948924057830 r005 Re(z^2+c),c=5/118+9/13*I,n=7 4180948933439311 r002 42th iterates of z^2 + 4180948940739596 p001 sum((-1)^n/(380*n+239)/(512^n),n=0..infinity) 4180948942709615 m008 (2/3*Pi^5-4/5)/(5*Pi^4-1) 4180948945720662 r009 Im(z^3+c),c=-13/42+24/55*I,n=24 4180948952318853 a001 47/8*514229^(12/37) 4180948955941604 r009 Im(z^3+c),c=-12/25+17/47*I,n=15 4180948961237692 a001 17711/322*521^(9/13) 4180948977749467 m001 1/GAMMA(1/24)/Champernowne/exp(GAMMA(11/12))^2 4180948979550506 r005 Re(z^2+c),c=-4/7+19/98*I,n=23 4180948992547443 m001 ln(gamma)*BesselI(0,2)+GaussAGM 4180948995665562 a007 Real Root Of 358*x^4+567*x^3+70*x^2-943*x-376 4180949007886844 s002 sum(A096883[n]/(n^3*exp(n)+1),n=1..infinity) 4180949025148686 a008 Real Root of x^4-2*x^3-43*x^2-88*x-68 4180949032897490 s002 sum(A048671[n]/(n^2*2^n+1),n=1..infinity) 4180949060137041 r001 3i'th iterates of 2*x^2-1 of 4180949062046673 m001 (ErdosBorwein+FeigenbaumC)/(Paris+Sarnak) 4180949086616746 m001 1/exp(GAMMA(1/3))/Magata^2/sqrt(2) 4180949094066543 m001 FeigenbaumD^2/Riemann1stZero*ln(BesselJ(1,1)) 4180949094516948 r005 Im(z^2+c),c=5/16+5/18*I,n=41 4180949096721808 r002 27th iterates of z^2 + 4180949097247916 b008 Pi+3*Sqrt[2]*ArcCot[4] 4180949099262984 r002 46th iterates of z^2 + 4180949100835559 m008 (2*Pi-3)/(4/5*Pi^4+3/5) 4180949102099257 r005 Re(z^2+c),c=-16/27+2/63*I,n=60 4180949112786280 m005 (5/4+1/4*5^(1/2))/(7/11*gamma-4/5) 4180949116289759 r005 Im(z^2+c),c=17/110+13/31*I,n=5 4180949135017345 a007 Real Root Of -271*x^4-881*x^3+985*x^2-165*x+512 4180949141547650 l006 ln(3593/5458) 4180949153770880 a003 cos(Pi*13/68)-cos(Pi*22/103) 4180949188753770 r005 Im(z^2+c),c=8/29+10/31*I,n=56 4180949193894122 m005 (11/2+3/2*5^(1/2))/(4/5*gamma-1/4) 4180949196369462 a003 sin(Pi*8/73)/sin(Pi*32/107) 4180949205762339 m001 (2^(1/2)+GAMMA(2/3))/(-Ei(1,1)+QuadraticClass) 4180949206636730 r005 Re(z^2+c),c=-17/30+13/43*I,n=59 4180949210805564 m002 -5/Pi^2+1/(Pi^2*Log[Pi]) 4180949229079071 m001 (2^(1/2)-sin(1/5*Pi))/(-3^(1/3)+GAMMA(13/24)) 4180949246535466 m001 HardHexagonsEntropy*Si(Pi)^2/ln(Pi) 4180949265948456 r002 64th iterates of z^2 + 4180949270468426 r009 Re(z^3+c),c=-55/106+15/59*I,n=34 4180949323290708 m005 (1/2*2^(1/2)+4/5)/(-13/88+5/22*5^(1/2)) 4180949325240029 r002 26th iterates of z^2 + 4180949327067853 a007 Real Root Of 38*x^4-486*x^3+898*x^2-826*x-539 4180949328929254 r005 Re(z^2+c),c=-55/74+5/59*I,n=18 4180949334679867 m001 1/ln(Riemann2ndZero)/CopelandErdos/gamma^2 4180949358231772 r005 Im(z^2+c),c=-15/62+21/43*I,n=4 4180949361751866 r005 Re(z^2+c),c=-12/17+3/28*I,n=21 4180949362846582 r009 Re(z^3+c),c=-3/44+31/56*I,n=29 4180949381525021 r002 43th iterates of z^2 + 4180949420918512 r002 32th iterates of z^2 + 4180949429081326 a007 Real Root Of -841*x^4-356*x^3-678*x^2+796*x+451 4180949430472388 b008 1/4+BesselY[3,1/2] 4180949435716347 r005 Re(z^2+c),c=-17/30+8/21*I,n=63 4180949438897599 a001 843/86267571272*233^(4/15) 4180949449244061 r005 Re(z^2+c),c=25/62+5/14*I,n=12 4180949450885492 r009 Re(z^3+c),c=-53/126+5/38*I,n=30 4180949468507306 p004 log(25537/16811) 4180949479607381 r009 Re(z^3+c),c=-11/29+28/43*I,n=6 4180949482714246 m001 MertensB1*(GaussAGM+LandauRamanujan) 4180949486358520 r009 Im(z^3+c),c=-43/122+1/44*I,n=4 4180949486942352 r009 Im(z^3+c),c=-11/58+11/15*I,n=2 4180949494565454 r009 Re(z^3+c),c=-79/126+22/43*I,n=3 4180949500488904 p004 log(14983/229) 4180949505338841 a007 Real Root Of 211*x^4-786*x^3+849*x^2+735*x+95 4180949535970724 r005 Im(z^2+c),c=-29/56+26/47*I,n=50 4180949557383537 l006 ln(4406/6693) 4180949563268835 a007 Real Root Of 234*x^4-829*x^3+587*x^2-224*x-264 4180949580421220 a007 Real Root Of -754*x^4-492*x^3+815*x^2+781*x-410 4180949581302451 m001 MinimumGamma^2*ln(FeigenbaumB)/Zeta(1,2) 4180949600042709 r009 Im(z^3+c),c=-19/74+23/50*I,n=8 4180949601303871 r009 Re(z^3+c),c=-11/21+12/41*I,n=32 4180949614489724 a007 Real Root Of -110*x^4-368*x^3+629*x^2+958*x-273 4180949640988094 a001 1364*832040^(21/50) 4180949641988901 a007 Real Root Of -617*x^4+599*x^3+991*x^2+942*x-592 4180949647394474 r005 Im(z^2+c),c=23/78+17/56*I,n=41 4180949662100436 r005 Re(z^2+c),c=-37/64+8/31*I,n=38 4180949674638000 a001 29*2^(19/36) 4180949675910209 r002 7th iterates of z^2 + 4180949681036244 a001 9381251041/48*121393^(11/24) 4180949681062251 a001 35355581/36*12586269025^(11/24) 4180949700175449 r005 Re(z^2+c),c=-29/40+6/59*I,n=23 4180949704973307 q001 1488/3559 4180949707047937 a007 Real Root Of -205*x^4-575*x^3+931*x^2-854*x+772 4180949718247749 m001 (MertensB3-Salem*TravellingSalesman)/Salem 4180949730469104 r009 Im(z^3+c),c=-23/44+8/59*I,n=26 4180949732113314 r009 Im(z^3+c),c=-51/70+1/62*I,n=2 4180949733091649 r005 Re(z^2+c),c=-13/22+4/49*I,n=45 4180949744682121 r002 10th iterates of z^2 + 4180949751754473 a007 Real Root Of 261*x^4+908*x^3-819*x^2-394*x-722 4180949752311870 m005 (1/2*Zeta(3)-1/3)/(1/10*5^(1/2)+5/12) 4180949756029200 r002 35th iterates of z^2 + 4180949764712119 r005 Im(z^2+c),c=-6/11*I,n=55 4180949771689881 r009 Im(z^3+c),c=-53/110+9/26*I,n=33 4180949776080119 m001 1/ln(Niven)^2*Cahen/cos(1) 4180949781978945 h001 (11/12*exp(2)+5/6)/(3/8*exp(1)+4/5) 4180949782984245 r009 Im(z^3+c),c=-23/44+8/59*I,n=49 4180949791036335 r005 Re(z^2+c),c=-16/27+1/55*I,n=39 4180949801519910 r005 Re(z^2+c),c=27/82+25/59*I,n=15 4180949802691840 h001 (-5*exp(5)+3)/(-9*exp(3)+4) 4180949805617529 a007 Real Root Of 100*x^4+176*x^3-994*x^2-6*x-343 4180949836047787 s002 sum(A078134[n]/((pi^n+1)/n),n=1..infinity) 4180949843664106 l006 ln(5219/7928) 4180949843835963 r009 Im(z^3+c),c=-57/110+15/41*I,n=36 4180949864144775 r005 Im(z^2+c),c=-9/17+31/56*I,n=55 4180949867962089 m001 1/exp(Trott)/Rabbit*sqrt(3)^2 4180949892121987 r002 36th iterates of z^2 + 4180949900041378 m001 (Salem+ThueMorse)/(2^(1/3)-GAMMA(13/24)) 4180949904973053 m001 1/GAMMA(3/4)*HardHexagonsEntropy/exp(Zeta(9)) 4180949908220719 m001 1/ln(Riemann2ndZero)/Lehmer^2/sqrt(5) 4180949926966581 a001 514229/199*3571^(28/31) 4180949932946954 r005 Re(z^2+c),c=-25/46+23/61*I,n=37 4180949939611930 m001 GAMMA(7/12)*(gamma(1)+FransenRobinson) 4180949939697824 r009 Im(z^3+c),c=-17/86+13/28*I,n=6 4180949946961454 m005 (1/2*gamma-6/7)/(6*5^(1/2)+2/11) 4180949953983559 a007 Real Root Of -519*x^4-645*x^3-528*x^2+806*x+398 4180949956547113 m001 (exp(-1/2*Pi)-MertensB1)/GlaisherKinkelin 4180949966440270 m005 (1/3*2^(1/2)-1/12)/(6/11*Catalan+3/7) 4180949980272665 m005 (1/3*Zeta(3)-1/4)/(Catalan-5/9) 4180949991839502 m001 1/exp(GAMMA(1/24))^2*OneNinth/Zeta(5)^2 4180950005211624 m001 1/BesselJ(1,1)/FeigenbaumD^2/ln(GAMMA(5/12)) 4180950029781841 a001 416020/161*199^(1/11) 4180950039023168 m005 (1/2*exp(1)+5/12)/(3/7*gamma+4) 4180950044543876 m008 (2*Pi+2/5)/(1/6*Pi^4-1/4) 4180950052774212 l006 ln(6032/9163) 4180950054921757 m001 DuboisRaymond*FransenRobinson/Mills 4180950060200368 r005 Im(z^2+c),c=17/50+13/62*I,n=29 4180950071680632 r005 Re(z^2+c),c=-37/64+17/53*I,n=41 4180950073948393 r009 Im(z^3+c),c=-49/94+2/5*I,n=40 4180950088532887 m002 2/Pi^5+Pi^3+Cosh[Pi]/ProductLog[Pi] 4180950092162466 r002 35th iterates of z^2 + 4180950093825188 r005 Re(z^2+c),c=37/110+28/59*I,n=5 4180950113159202 m005 (1/3*3^(1/2)+2/11)/(67/80+7/16*5^(1/2)) 4180950117268118 a001 1/11592*121393^(47/51) 4180950118479846 p001 sum(1/(571*n+398)/n/(25^n),n=1..infinity) 4180950149745352 a001 28657/322*521^(8/13) 4180950151765712 r005 Re(z^2+c),c=-33/29+13/48*I,n=22 4180950153033729 m001 (3^(1/2)+Bloch)/(-GaussAGM+HardyLittlewoodC4) 4180950173192809 m001 ln(2+3^(1/2))^GAMMA(17/24)/Magata 4180950174081160 m001 1/CareFree*Bloch*exp(FeigenbaumC) 4180950174364302 r005 Im(z^2+c),c=-17/16+3/64*I,n=30 4180950179566544 m001 -TwinPrimes/(-BesselK(0,1)+2) 4180950191635156 r002 33th iterates of z^2 + 4180950194966408 r002 40th iterates of z^2 + 4180950201797970 r002 34th iterates of z^2 + 4180950216865579 r005 Im(z^2+c),c=-17/16+3/64*I,n=29 4180950217000058 r005 Re(z^2+c),c=-47/74+4/15*I,n=33 4180950224712583 r005 Im(z^2+c),c=-1/16+3/64*I,n=9 4180950224945097 r002 39th iterates of z^2 + 4180950240930123 a001 75025/199*15127^(30/31) 4180950243864978 r005 Im(z^2+c),c=-17/16+3/64*I,n=34 4180950245633136 r005 Im(z^2+c),c=-1/16+3/64*I,n=10 4180950248230231 r005 Im(z^2+c),c=-17/16+3/64*I,n=33 4180950251119185 r002 46th iterates of z^2 + 4180950251772723 r002 45th iterates of z^2 + 4180950251912002 r005 Im(z^2+c),c=-1/16+3/64*I,n=12 4180950252057193 r005 Im(z^2+c),c=-17/16+3/64*I,n=40 4180950252138124 r002 50th iterates of z^2 + 4180950252191214 r005 Im(z^2+c),c=-17/16+3/64*I,n=39 4180950252224587 r002 49th iterates of z^2 + 4180950252280168 r005 Im(z^2+c),c=-17/16+3/64*I,n=44 4180950252292450 r005 Im(z^2+c),c=-17/16+3/64*I,n=43 4180950252300167 r002 56th iterates of z^2 + 4180950252301116 r005 Im(z^2+c),c=-1/16+3/64*I,n=14 4180950252302275 r002 55th iterates of z^2 + 4180950252303235 r005 Im(z^2+c),c=-17/16+3/64*I,n=50 4180950252303533 r002 60th iterates of z^2 + 4180950252303654 r005 Im(z^2+c),c=-17/16+3/64*I,n=49 4180950252303692 r005 Im(z^2+c),c=-1/16+3/64*I,n=15 4180950252303781 r002 59th iterates of z^2 + 4180950252303943 r005 Im(z^2+c),c=-17/16+3/64*I,n=54 4180950252303977 r005 Im(z^2+c),c=-17/16+3/64*I,n=53 4180950252303983 r005 Im(z^2+c),c=-1/16+3/64*I,n=17 4180950252304007 r005 Im(z^2+c),c=-17/16+3/64*I,n=60 4180950252304009 r005 Im(z^2+c),c=-17/16+3/64*I,n=59 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=19 4180950252304010 r005 Im(z^2+c),c=-17/16+3/64*I,n=64 4180950252304010 r005 Im(z^2+c),c=-17/16+3/64*I,n=63 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=20 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=22 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=24 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=27 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=25 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=29 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=32 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=34 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=37 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=39 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=42 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=44 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=47 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=49 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=50 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=51 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=52 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=53 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=54 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=55 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=56 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=57 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=58 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=59 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=60 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=61 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=62 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=63 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=64 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=48 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=46 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=45 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=43 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=41 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=40 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=38 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=36 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=35 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=33 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=31 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=30 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=28 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=26 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=23 4180950252304010 r005 Im(z^2+c),c=-1/16+3/64*I,n=21 4180950252304010 r005 Im(z^2+c),c=-17/16+3/64*I,n=61 4180950252304011 r005 Im(z^2+c),c=-17/16+3/64*I,n=62 4180950252304011 r005 Im(z^2+c),c=-17/16+3/64*I,n=57 4180950252304013 r005 Im(z^2+c),c=-17/16+3/64*I,n=55 4180950252304013 r005 Im(z^2+c),c=-1/16+3/64*I,n=18 4180950252304014 r005 Im(z^2+c),c=-17/16+3/64*I,n=58 4180950252304014 r002 63th iterates of z^2 + 4180950252304015 r005 Im(z^2+c),c=-17/16+3/64*I,n=56 4180950252304020 r002 64th iterates of z^2 + 4180950252304046 r002 61th iterates of z^2 + 4180950252304082 r002 62th iterates of z^2 + 4180950252304144 r005 Im(z^2+c),c=-17/16+3/64*I,n=51 4180950252304149 r005 Im(z^2+c),c=-1/16+3/64*I,n=16 4180950252304295 r005 Im(z^2+c),c=-17/16+3/64*I,n=52 4180950252304453 r005 Im(z^2+c),c=-17/16+3/64*I,n=47 4180950252304733 r002 53th iterates of z^2 + 4180950252304807 r002 57th iterates of z^2 + 4180950252305060 r005 Im(z^2+c),c=-17/16+3/64*I,n=48 4180950252305380 r005 Im(z^2+c),c=-17/16+3/64*I,n=45 4180950252305714 r002 58th iterates of z^2 + 4180950252306237 r002 54th iterates of z^2 + 4180950252306567 r005 Im(z^2+c),c=-17/16+3/64*I,n=46 4180950252318075 r002 51th iterates of z^2 + 4180950252331954 r002 52th iterates of z^2 + 4180950252335048 r002 43th iterates of z^2 + 4180950252349159 r005 Im(z^2+c),c=-17/16+3/64*I,n=41 4180950252351011 r005 Im(z^2+c),c=-1/16+3/64*I,n=13 4180950252399901 r005 Im(z^2+c),c=-17/16+3/64*I,n=42 4180950252419192 r005 Im(z^2+c),c=-17/16+3/64*I,n=37 4180950252566622 r002 47th iterates of z^2 + 4180950252585791 r005 Im(z^2+c),c=-17/16+3/64*I,n=38 4180950252603323 r002 44th iterates of z^2 + 4180950252867192 r002 48th iterates of z^2 + 4180950252869305 r005 Im(z^2+c),c=-17/16+3/64*I,n=35 4180950253388695 r005 Im(z^2+c),c=-17/16+3/64*I,n=36 4180950254518386 r005 Im(z^2+c),c=-1/16+3/64*I,n=11 4180950257585471 r002 41th iterates of z^2 + 4180950262904133 r002 42th iterates of z^2 + 4180950263075231 r005 Im(z^2+c),c=13/98+22/35*I,n=32 4180950267373135 r005 Im(z^2+c),c=-17/16+3/64*I,n=31 4180950276694958 m005 (1/2*5^(1/2)-5/7)/(2/5*2^(1/2)+2/5) 4180950278523150 p004 log(22031/14503) 4180950279440928 r005 Im(z^2+c),c=-17/16+3/64*I,n=27 4180950284404673 r005 Im(z^2+c),c=-17/16+3/64*I,n=32 4180950306179212 m001 (1+BesselK(1,1))/(FeigenbaumMu+MertensB1) 4180950313047573 r009 Re(z^3+c),c=-7/94+34/53*I,n=49 4180950316015182 a001 1346269/199*5778^(23/31) 4180950322644521 r005 Im(z^2+c),c=-17/16+3/64*I,n=28 4180950322752058 a001 3571/121393*3^(8/25) 4180950326260441 a007 Real Root Of -647*x^4-656*x^3+506*x^2+534*x-244 4180950332627417 r005 Re(z^2+c),c=-23/54+26/63*I,n=9 4180950338299479 r002 37th iterates of z^2 + 4180950346070805 r009 Im(z^3+c),c=-39/98+23/58*I,n=34 4180950346315472 r005 Im(z^2+c),c=-5/4+69/190*I,n=7 4180950360346159 a007 Real Root Of 245*x^4+855*x^3-621*x^2+383*x+81 4180950364408729 a001 23725150497407/21*32951280099^(9/17) 4180950370295528 a001 322*(1/2*5^(1/2)+1/2)^28*4^(10/23) 4180950370678590 r005 Re(z^2+c),c=-33/56+2/31*I,n=24 4180950372891359 a003 sin(Pi*1/73)*sin(Pi*14/33) 4180950381062339 r005 Im(z^2+c),c=15/122+28/61*I,n=36 4180950417586349 m001 (-Ei(1)+Otter)/(sin(1)-sin(1/5*Pi)) 4180950418199556 a005 (1/sin(71/169*Pi))^262 4180950419572618 r005 Im(z^2+c),c=-7/10+53/199*I,n=34 4180950420825591 r002 56th iterates of z^2 + 4180950422808988 a007 Real Root Of 187*x^4+865*x^3+301*x^2-90*x+440 4180950426858731 m001 (-gamma(2)+LandauRamanujan2nd)/(Chi(1)+gamma) 4180950433707393 r005 Im(z^2+c),c=-1/50+29/48*I,n=54 4180950437327260 r002 38th iterates of z^2 + 4180950476252548 r005 Im(z^2+c),c=-17/16+3/64*I,n=25 4180950481618190 r005 Im(z^2+c),c=29/110+17/62*I,n=8 4180950486688256 m005 (1/2*Pi-10/11)/(11/12*exp(1)-10/11) 4180950523240803 r005 Re(z^2+c),c=-27/46+4/57*I,n=15 4180950528319405 m001 (BesselJ(0,1)-Zeta(3))/(Lehmer+ZetaP(2)) 4180950535754567 r002 12th iterates of z^2 + 4180950538040252 m001 1/ln(Zeta(9))^2*GAMMA(7/24)^2*sqrt(Pi) 4180950555800644 h003 exp(Pi*(10^(12/5)-7^(6/5))) 4180950555800644 h008 exp(Pi*(10^(12/5)-7^(6/5))) 4180950556439106 m005 (1/2*exp(1)-1/5)/(5/12*3^(1/2)-4/9) 4180950559256496 r005 Re(z^2+c),c=-27/46+5/64*I,n=24 4180950561456464 r002 14th iterates of z^2 + 4180950566132611 r002 28th iterates of z^2 + 4180950579912190 a007 Real Root Of -738*x^4-939*x^3-761*x^2+677*x+370 4180950582160709 m005 (1/3*Pi-2/5)/(2/7*5^(1/2)+10/11) 4180950587051843 r005 Im(z^2+c),c=37/106+10/41*I,n=36 4180950588423915 r005 Re(z^2+c),c=-17/29+3/20*I,n=61 4180950593843721 g007 Psi(2,10/11)+Psi(2,9/11)+Psi(2,3/8)-Psi(2,4/5) 4180950595149192 m001 GAMMA(11/12)/(CopelandErdos+Riemann3rdZero) 4180950597152333 a007 Real Root Of 958*x^4+836*x^3+140*x^2-539*x-218 4180950602733873 a001 9349/317811*3^(8/25) 4180950605637502 m006 (3*ln(Pi)-1/5)/(3/4*Pi^2+1/3) 4180950606888018 m001 cos(Pi/5)/ln(Artin)^2*sqrt(5)^2 4180950627677539 m001 ZetaQ(2)/Zeta(1/2)/ln(2^(1/2)+1) 4180950643582669 a001 6119/208010*3^(8/25) 4180950649542428 a001 64079/2178309*3^(8/25) 4180950653225762 a001 39603/1346269*3^(8/25) 4180950660096029 r002 14th iterates of z^2 + 4180950668828614 a001 15127/514229*3^(8/25) 4180950670835014 r002 40th iterates of z^2 + 4180950690263263 r005 Im(z^2+c),c=-17/16+3/64*I,n=26 4180950693364243 r005 Re(z^2+c),c=-67/114+7/53*I,n=62 4180950694232576 r002 7th iterates of z^2 + 4180950694596364 g005 GAMMA(5/6)*GAMMA(3/4)/GAMMA(1/11)/GAMMA(2/7) 4180950699754110 r005 Im(z^2+c),c=9/32+17/53*I,n=34 4180950701022886 m004 -2+5*Cos[Sqrt[5]*Pi]-(25*Cos[Sqrt[5]*Pi])/Pi 4180950716354376 r005 Im(z^2+c),c=-135/118+13/57*I,n=60 4180950716428622 m001 (-GAMMA(7/12)+Porter)/(BesselK(0,1)-Ei(1)) 4180950748326942 r002 16th iterates of z^2 + 4180950753802627 a007 Real Root Of -417*x^4+953*x^3-281*x^2+907*x-387 4180950754665625 m001 (2^(1/2)+Chi(1))/(-cos(1)+ZetaQ(4)) 4180950758893389 r009 Im(z^3+c),c=-65/126+18/49*I,n=53 4180950764294030 m001 OneNinth*(AlladiGrinstead-BesselK(0,1)) 4180950772656771 m005 (1/2*Catalan-10/11)/(5/9*gamma-3/7) 4180950772903374 m001 (Pi*ln(2)/ln(10)-gamma)/ln(2^(1/2)+1) 4180950775772151 a001 2889/98209*3^(8/25) 4180950806690138 m001 (TravellingSalesman+Trott)/(2^(1/3)+PlouffeB) 4180950821721453 r005 Re(z^2+c),c=-23/32+3/35*I,n=43 4180950824357159 a007 Real Root Of 115*x^4+518*x^3-54*x^2-840*x+150 4180950847165048 a007 Real Root Of 601*x^4-572*x^3+618*x^2-387*x-330 4180950868639386 r005 Im(z^2+c),c=-1/16+3/64*I,n=8 4180950868655315 r005 Im(z^2+c),c=-5/48+1/20*I,n=4 4180950870126405 r002 47th iterates of z^2 + 4180950889675071 r005 Re(z^2+c),c=19/58+7/54*I,n=2 4180950890794788 a005 (1/sin(52/125*Pi))^1217 4180950898905365 r005 Im(z^2+c),c=-7/10+20/57*I,n=23 4180950958957282 l006 ln(2834/2955) 4180950963603223 a001 2/1597*144^(12/17) 4180950964125954 r005 Re(z^2+c),c=-61/56+18/59*I,n=2 4180950978982452 r005 Re(z^2+c),c=-51/86+1/51*I,n=38 4180950985538620 r005 Im(z^2+c),c=2/7+18/55*I,n=25 4180950991128910 m001 (FeigenbaumC+Paris)/(arctan(1/2)-gamma(3)) 4180950994588936 a001 18/17711*55^(6/17) 4180950995631245 m001 (Psi(2,1/3)-cos(1))/(-GAMMA(2/3)+Khinchin) 4180950997933728 m006 (1/4*ln(Pi)+5/6)/(5*exp(2*Pi)+1/5) 4180951002379228 m001 (2^(1/3)-Shi(1))/(-sin(1/5*Pi)+Lehmer) 4180951019922028 a005 (1/cos(5/227*Pi))^1558 4180951029945707 b008 4+E*ArcCot[15] 4180951048725462 m001 ZetaP(2)^(2^(1/2))/(Chi(1)^(2^(1/2))) 4180951059103927 r002 63th iterates of z^2 + 4180951080232832 m005 (1/3*3^(1/2)-1/8)/(37/90+3/10*5^(1/2)) 4180951087664966 r002 63th iterates of z^2 + 4180951105830185 a001 832040/2207*199^(5/11) 4180951107551693 r005 Im(z^2+c),c=-59/86+16/49*I,n=21 4180951113966348 r005 Re(z^2+c),c=-18/31+5/24*I,n=46 4180951115500499 g001 Psi(1/7,15/52) 4180951128233318 m001 (1+HeathBrownMoroz)/(-RenyiParking+Sarnak) 4180951142707658 m001 Ei(1)*Mills+Niven 4180951152753486 a007 Real Root Of -995*x^4-502*x^3+779*x^2+294*x-192 4180951156539376 r005 Im(z^2+c),c=1/126+11/20*I,n=36 4180951162653771 r002 33th iterates of z^2 + 4180951170100935 r005 Re(z^2+c),c=-73/114+8/29*I,n=38 4180951172116705 r005 Re(z^2+c),c=7/122+21/61*I,n=22 4180951194630840 r009 Im(z^3+c),c=-61/114+17/43*I,n=8 4180951196576071 m001 (-OneNinth+Porter)/(BesselJ(0,1)-BesselJ(1,1)) 4180951197006899 a007 Real Root Of 593*x^4-300*x^3+781*x^2-968*x+272 4180951203913245 r005 Im(z^2+c),c=9/74+29/63*I,n=42 4180951217291971 m001 (TreeGrowth2nd+ZetaP(2))/(BesselI(1,2)+Landau) 4180951222861472 m001 (BesselJ(1,1)+Artin)/(OneNinth+Tribonacci) 4180951230866398 m001 (exp(-Pi)+1/2)/(cos(Pi/12)+1/3) 4180951240520399 r002 30th iterates of z^2 + 4180951245493095 r002 15th iterates of z^2 + 4180951248548099 r005 Re(z^2+c),c=-7/12+22/65*I,n=46 4180951259474223 r005 Re(z^2+c),c=-43/58+1/60*I,n=42 4180951297693424 m001 1/exp(Lehmer)/Khintchine^2/GAMMA(2/3)^2 4180951298954018 a007 Real Root Of 56*x^4-156*x^3+826*x^2-525*x-377 4180951323987895 r002 19th iterates of z^2 + 4180951324954286 r002 4th iterates of z^2 + 4180951333162225 a001 144*521^(7/13) 4180951342272810 r009 Im(z^3+c),c=-33/86+19/47*I,n=22 4180951343237496 a007 Real Root Of 602*x^4+899*x^3+527*x^2-364*x-197 4180951350229551 m001 StolarskyHarborth^(OrthogonalArrays/Cahen) 4180951353839380 m001 (ln(Pi)-Ei(1,1))/(Artin+Tribonacci) 4180951353975247 r005 Re(z^2+c),c=4/17+25/61*I,n=39 4180951383473002 m001 1/KhintchineLevy*Si(Pi)^2/ln(Zeta(7))^2 4180951395142669 l006 ln(813/1235) 4180951407684048 m005 (1/2*2^(1/2)+9/10)/(7/9*gamma-5/6) 4180951425090560 m001 (Landau+MertensB1)/(2^(1/2)-ErdosBorwein) 4180951425475822 r009 Im(z^3+c),c=-7/24+10/23*I,n=5 4180951439128452 r005 Re(z^2+c),c=-53/90+7/55*I,n=30 4180951442075690 a003 cos(Pi*1/28)-cos(Pi*32/105) 4180951451971085 r009 Re(z^3+c),c=-53/122+24/41*I,n=48 4180951462313772 r005 Im(z^2+c),c=29/106+17/53*I,n=23 4180951475476904 p001 sum((-1)^n/(576*n+235)/(16^n),n=0..infinity) 4180951487954244 m001 2/3*BesselK(0,1)*Pi*3^(1/2)/GAMMA(2/3)-Rabbit 4180951508774059 a001 2207/75025*3^(8/25) 4180951543638739 a007 Real Root Of -451*x^4+110*x^3-888*x^2+318*x+310 4180951558403435 r009 Im(z^3+c),c=-6/25+28/61*I,n=25 4180951567743050 r009 Re(z^3+c),c=-8/17+29/53*I,n=15 4180951568842049 r009 Im(z^3+c),c=-7/26+24/61*I,n=2 4180951581108661 m001 GAMMA(5/6)*ErdosBorwein/ln(cosh(1)) 4180951584580650 q001 1/23918 4180951608546158 m005 (1/5*Pi+2/3)/(1/6*Pi-5/6) 4180951608546158 m006 (1/5*Pi+2/3)/(1/6*Pi-5/6) 4180951608546158 m008 (1/5*Pi+2/3)/(1/6*Pi-5/6) 4180951632032025 r002 64th iterates of z^2 + 4180951647673996 r002 28th iterates of z^2 + 4180951651719842 r002 51th iterates of z^2 + 4180951653123789 m008 (2/3*Pi^5-1/5)/(5*Pi^2-3/5) 4180951660175980 r002 29th iterates of z^2 + 4180951669886542 r005 Im(z^2+c),c=11/98+29/62*I,n=44 4180951671099331 m004 (29*Sin[Sqrt[5]*Pi])/6+Tan[Sqrt[5]*Pi] 4180951673343093 m003 -11/2+ProductLog[1/2+Sqrt[5]/2]^(-1) 4180951675353019 r005 Im(z^2+c),c=17/114+18/41*I,n=56 4180951679252382 r005 Im(z^2+c),c=-11/74+10/17*I,n=31 4180951682083510 r005 Re(z^2+c),c=-129/98+1/55*I,n=42 4180951687614830 m004 -6/5+Sqrt[5]*Pi-5*Sqrt[5]*Pi*Sec[Sqrt[5]*Pi] 4180951716514376 a007 Real Root Of 367*x^4-796*x^3+186*x^2-768*x-423 4180951735446644 r005 Im(z^2+c),c=29/94+3/11*I,n=18 4180951742342265 m001 CopelandErdos^(Rabbit/Salem) 4180951744699723 b008 ArcCsch[E]^2/Pi^3 4180951749321182 r005 Re(z^2+c),c=-5/4+153/179*I,n=2 4180951767695686 r002 60th iterates of z^2 + 4180951768598792 r002 13th iterates of z^2 + 4180951786715943 m001 (Chi(1)-CopelandErdos)/(MertensB3+OneNinth) 4180951808393125 r005 Im(z^2+c),c=5/34+26/59*I,n=59 4180951814142733 r005 Re(z^2+c),c=-15/26+26/83*I,n=39 4180951827544681 m001 (ln(2)/ln(10))^Salem-Robbin 4180951829793796 m005 (1/2*gamma-1/4)/(7/12*Zeta(3)+2/9) 4180951838960065 a001 726103/1926*199^(5/11) 4180951843188611 r005 Re(z^2+c),c=15/74+17/46*I,n=60 4180951846854929 m001 (GAMMA(17/24)+Kac)/(exp(1)+Si(Pi)) 4180951848180087 a007 Real Root Of 211*x^4-203*x^3-156*x^2-881*x+404 4180951850976468 r005 Im(z^2+c),c=17/90+15/37*I,n=35 4180951851955591 r005 Re(z^2+c),c=-129/98+1/55*I,n=38 4180951853190493 r002 31th iterates of z^2 + 4180951878384964 m001 FeigenbaumAlpha^2*ln(Conway)^2*GAMMA(7/24)^2 4180951878909594 m001 GAMMA(5/12)*(TwinPrimes-arctan(1/2)) 4180951883269472 r005 Re(z^2+c),c=-7/12+16/105*I,n=31 4180951888912961 m001 Zeta(1,2)^2/GAMMA(1/12)^2/exp(arctan(1/2)) 4180951889350994 m005 (1/2*exp(1)+7/8)/(5*Zeta(3)-2/3) 4180951896347017 m004 -5-125*Pi+75*Sqrt[5]*Pi*Sin[Sqrt[5]*Pi] 4180951900814392 m001 ln(2)^GAMMA(2/3)/Backhouse 4180951903312564 m005 (1/3*5^(1/2)-2/9)/(8/11*5^(1/2)-3/8) 4180951903986760 r005 Re(z^2+c),c=-7/13+25/61*I,n=47 4180951919458288 r005 Re(z^2+c),c=-13/22+9/109*I,n=46 4180951923500959 m001 2^(1/3)-Pi^(1/2)*Weierstrass 4180951932261896 a007 Real Root Of 11*x^4+66*x^3+150*x^2+70*x-867 4180951933398556 s002 sum(A063271[n]/((exp(n)+1)*n),n=1..infinity) 4180951933745322 r005 Re(z^2+c),c=-1/58+11/61*I,n=4 4180951945922295 a001 5702887/15127*199^(5/11) 4180951959433458 r005 Re(z^2+c),c=-1/26+37/50*I,n=58 4180951961527874 a001 4976784/13201*199^(5/11) 4180951963804698 a001 39088169/103682*199^(5/11) 4180951963813646 s002 sum(A243496[n]/(n^3*2^n+1),n=1..infinity) 4180951964136882 a001 34111385/90481*199^(5/11) 4180951964185347 a001 267914296/710647*199^(5/11) 4180951964192418 a001 233802911/620166*199^(5/11) 4180951964193449 a001 1836311903/4870847*199^(5/11) 4180951964193600 a001 1602508992/4250681*199^(5/11) 4180951964193622 a001 12586269025/33385282*199^(5/11) 4180951964193625 a001 10983760033/29134601*199^(5/11) 4180951964193626 a001 86267571272/228826127*199^(5/11) 4180951964193626 a001 267913919/710646*199^(5/11) 4180951964193626 a001 591286729879/1568397607*199^(5/11) 4180951964193626 a001 516002918640/1368706081*199^(5/11) 4180951964193626 a001 4052739537881/10749957122*199^(5/11) 4180951964193626 a001 3536736619241/9381251041*199^(5/11) 4180951964193626 a001 6557470319842/17393796001*199^(5/11) 4180951964193626 a001 2504730781961/6643838879*199^(5/11) 4180951964193626 a001 956722026041/2537720636*199^(5/11) 4180951964193626 a001 365435296162/969323029*199^(5/11) 4180951964193626 a001 139583862445/370248451*199^(5/11) 4180951964193626 a001 53316291173/141422324*199^(5/11) 4180951964193627 a001 20365011074/54018521*199^(5/11) 4180951964193635 a001 7778742049/20633239*199^(5/11) 4180951964193693 a001 2971215073/7881196*199^(5/11) 4180951964194087 a001 1134903170/3010349*199^(5/11) 4180951964196788 a001 433494437/1149851*199^(5/11) 4180951964215300 a001 165580141/439204*199^(5/11) 4180951964342183 a001 63245986/167761*199^(5/11) 4180951965211852 a001 24157817/64079*199^(5/11) 4180951971172653 a001 9227465/24476*199^(5/11) 4180951992915533 r005 Re(z^2+c),c=-129/98+1/55*I,n=54 4180951994161487 a007 Real Root Of -222*x^4-936*x^3-215*x^2-907*x-606 4180951994556961 r005 Re(z^2+c),c=-53/90+1/15*I,n=24 4180952004611281 r005 Re(z^2+c),c=-129/98+1/55*I,n=58 4180952005707582 r005 Re(z^2+c),c=-129/98+1/55*I,n=62 4180952009810078 m001 ln(2+3^(1/2))*(Pi-ln(2)/ln(10))+BesselJ(1,1) 4180952012028591 a001 3524578/9349*199^(5/11) 4180952024155910 r005 Re(z^2+c),c=-129/98+1/55*I,n=50 4180952028490346 m005 (1/2*Zeta(3)+3/7)/(5/6*gamma-8/11) 4180952046122945 m001 (BesselK(0,1)+Ei(1))/(-GAMMA(23/24)+Bloch) 4180952051255069 r005 Re(z^2+c),c=-83/126+21/64*I,n=5 4180952059296159 p004 log(20479/313) 4180952063476012 r002 60th iterates of z^2 + 4180952067672570 m001 1/exp(cos(1))*GAMMA(1/3)^2 4180952080412810 r005 Re(z^2+c),c=-129/98+1/55*I,n=46 4180952096305669 s002 sum(A063271[n]/(n*exp(n)+1),n=1..infinity) 4180952096732858 r008 a(0)=4,K{-n^6,60+11*n^3-66*n^2-11*n} 4180952116669059 s002 sum(A063271[n]/(n*exp(n)-1),n=1..infinity) 4180952119552371 r005 Re(z^2+c),c=-13/22+7/128*I,n=28 4180952126899282 r005 Im(z^2+c),c=11/122+15/31*I,n=33 4180952128836060 b008 14/3+PolyLog[4,-1/2] 4180952129194546 m005 (1/3*gamma+3/5)/(151/154+9/22*5^(1/2)) 4180952156548065 p004 log(32309/21269) 4180952157766629 r005 Re(z^2+c),c=-14/25+20/57*I,n=56 4180952161405597 m001 (exp(Pi)+ln(Pi))/(-GAMMA(23/24)+ErdosBorwein) 4180952162251607 r009 Im(z^3+c),c=-19/48+15/38*I,n=15 4180952194994704 r002 45th iterates of z^2 + 4180952200060869 r005 Re(z^2+c),c=-43/74+2/17*I,n=22 4180952202779197 r002 31th iterates of z^2 + 4180952204931576 m005 (1/2*2^(1/2)+7/12)/(-67/220+3/20*5^(1/2)) 4180952205378989 s002 sum(A096883[n]/(n^3*exp(n)-1),n=1..infinity) 4180952209105019 m008 (4*Pi^5-1/5)/(3*Pi^4+1/2) 4180952213034723 a007 Real Root Of -88*x^4+877*x^3+525*x^2+167*x-223 4180952229610166 m001 (FibonacciFactorial+KhinchinLevy)/gamma 4180952243424613 r008 a(0)=4,K{-n^6,95+26*n^3-94*n^2-33*n} 4180952253506055 r005 Re(z^2+c),c=-33/56+5/47*I,n=43 4180952255815431 r005 Re(z^2+c),c=-5/8+61/186*I,n=45 4180952259987132 r009 Re(z^3+c),c=-9/19+5/27*I,n=61 4180952262989779 p004 log(27059/25951) 4180952268015054 r002 36th iterates of z^2 + 4180952275052902 r005 Im(z^2+c),c=1/52+17/32*I,n=45 4180952292059378 a001 1346269/3571*199^(5/11) 4180952301390140 m005 (1/3*3^(1/2)-1/8)/(2*Catalan-3/4) 4180952301564616 a001 3571/13*3^(13/34) 4180952304110296 r005 Im(z^2+c),c=-9/52+9/13*I,n=44 4180952317149226 m001 1/exp(Sierpinski)^2*Conway/sqrt(Pi) 4180952334286097 a001 521*144^(15/17) 4180952334722756 r009 Im(z^3+c),c=-43/98+23/61*I,n=20 4180952360733681 h001 (-7*exp(1/2)-4)/(-2*exp(3)+3) 4180952390718166 m001 (3^(1/3)+GAMMA(19/24))/(ZetaQ(2)+ZetaQ(3)) 4180952401445407 m004 (5*Pi)/6+(Sqrt[5]*Pi)/2-Log[Sqrt[5]*Pi] 4180952406642286 a007 Real Root Of 629*x^4+217*x^3+32*x^2-732*x-315 4180952406881167 h001 (8/9*exp(1)+1/5)/(5/6*exp(2)+1/10) 4180952409647011 r005 Re(z^2+c),c=-13/22+17/105*I,n=26 4180952411284548 r005 Re(z^2+c),c=-31/54+13/55*I,n=25 4180952417698366 a007 Real Root Of -246*x^4+751*x^3-878*x^2+725*x+519 4180952422165352 r005 Im(z^2+c),c=-11/58+20/27*I,n=12 4180952429803110 r002 32th iterates of z^2 + 4180952435148575 m005 (1/3*Catalan-2/7)/(4/5*3^(1/2)-11/12) 4180952455360411 r009 Re(z^3+c),c=-5/14+3/58*I,n=6 4180952458782593 m001 (ln(2)+2/3)/(-RenyiParking+4) 4180952483486657 r005 Re(z^2+c),c=-33/58+17/63*I,n=39 4180952485054769 r002 44th iterates of z^2 + 4180952488941083 m005 (1/2*Catalan+4/9)/(11/12*exp(1)-1/3) 4180952496587581 r002 30th iterates of z^2 + 4180952497573105 r005 Im(z^2+c),c=-5/28+29/49*I,n=27 4180952501651318 r002 42th iterates of z^2 + 4180952502922673 r002 36th iterates of z^2 + 4180952513766500 r005 Im(z^2+c),c=11/74+21/50*I,n=14 4180952518524071 a001 75025/322*521^(6/13) 4180952520512438 r002 20th iterates of z^2 + 4180952523034048 r005 Re(z^2+c),c=-7/12+16/87*I,n=43 4180952534494574 r009 Re(z^3+c),c=-49/106+8/41*I,n=11 4180952547055215 m008 (2*Pi^4+3/5)/(1/4*Pi^2-2) 4180952548388925 r005 Re(z^2+c),c=-16/27+2/57*I,n=45 4180952557194544 m005 (5/4+1/2*5^(1/2))/(4*Catalan+2) 4180952576108933 r009 Re(z^3+c),c=-21/106+31/59*I,n=2 4180952587762614 m001 Pi/Psi(1,1/3)/ln(2+3^(1/2))/BesselI(1,1) 4180952590885766 a007 Real Root Of 679*x^4-172*x^3+303*x^2-968*x-491 4180952601209249 a007 Real Root Of 432*x^4-218*x^3-839*x^2-542*x+376 4180952606065448 r005 Re(z^2+c),c=-67/114+9/50*I,n=6 4180952616544676 a007 Real Root Of 128*x^4-331*x^3-427*x^2-347*x+240 4180952643658347 a007 Real Root Of -424*x^4-557*x^3-39*x^2+382*x+16 4180952659484564 r009 Im(z^3+c),c=-15/31+3/8*I,n=18 4180952690759108 a007 Real Root Of 570*x^4-315*x^3+657*x^2-559*x-389 4180952707331427 r009 Re(z^3+c),c=-3/7+8/57*I,n=19 4180952708977727 l006 ln(6163/9362) 4180952736218424 r009 Re(z^3+c),c=-11/23+7/37*I,n=32 4180952749422402 r009 Re(z^3+c),c=-53/126+5/38*I,n=22 4180952755179915 m001 Magata^2/ln(FransenRobinson)/GAMMA(13/24)^2 4180952763906707 r005 Re(z^2+c),c=-17/32+16/45*I,n=25 4180952765415998 a007 Real Root Of 865*x^4-837*x^3+64*x^2-730*x-404 4180952766421715 r005 Re(z^2+c),c=-59/110+1/50*I,n=7 4180952770938662 h001 (3/5*exp(2)+4/9)/(1/7*exp(2)+1/9) 4180952775589239 r005 Im(z^2+c),c=-55/94+36/55*I,n=4 4180952800437210 a007 Real Root Of -534*x^4+499*x^3+883*x^2+989*x-588 4180952809493162 r005 Re(z^2+c),c=-47/98+21/55*I,n=9 4180952820368913 m005 (1/2*Catalan+1/12)/(7/9*5^(1/2)-4/9) 4180952821042275 r005 Re(z^2+c),c=-27/40+15/61*I,n=61 4180952834718589 a007 Real Root Of -58*x^4-94*x^3+438*x^2-897*x-554 4180952837132165 r005 Im(z^2+c),c=3/26+21/41*I,n=15 4180952839575522 m005 (1/2*exp(1)-3/7)/(5/8*gamma-7/12) 4180952872568862 r002 3th iterates of z^2 + 4180952876231869 r005 Re(z^2+c),c=-31/70+31/57*I,n=34 4180952879344970 r005 Im(z^2+c),c=-17/78+36/59*I,n=50 4180952891547256 m001 (StolarskyHarborth+ZetaP(2))/(3^(1/3)-exp(1)) 4180952892799557 a007 Real Root Of 980*x^4-158*x^3+889*x^2-953*x-4 4180952895604602 r005 Im(z^2+c),c=17/74+30/59*I,n=23 4180952899705362 r002 46th iterates of z^2 + 4180952903303948 a007 Real Root Of 127*x^4+468*x^3-440*x^2-881*x-595 4180952908631525 l006 ln(5350/8127) 4180952909307872 a007 Real Root Of 225*x^4-734*x^3+18*x^2+291*x+58 4180952920182284 a003 cos(Pi*22/101)*cos(Pi*36/113) 4180952934556287 a001 3/1346269*46368^(19/39) 4180952935284679 r005 Im(z^2+c),c=29/122+14/37*I,n=22 4180952942756248 m005 (1/2*exp(1)-5)/(2+3*5^(1/2)) 4180952947949280 m005 (1/2*Pi+3/8)/(2*5^(1/2)+2/11) 4180952948753763 a001 19/208010*196418^(16/51) 4180952976528071 r005 Im(z^2+c),c=13/38+14/59*I,n=54 4180952978705878 r009 Re(z^3+c),c=-47/106+9/58*I,n=25 4180952978844575 m001 BesselJ(0,1)^2/Porter^2/ln(GAMMA(23/24))^2 4180952981185031 r009 Re(z^3+c),c=-43/70+14/29*I,n=38 4180952994790150 a001 34/15127*76^(27/40) 4180952997615122 m001 1/RenyiParking/exp(Porter)*FeigenbaumKappa 4180953003121127 r004 Re(z^2+c),c=-1/42-1/5*I,z(0)=-1,n=3 4180953004652444 m005 (1/2*3^(1/2)+1/10)/(10/11*Pi-6/11) 4180953011992921 r005 Re(z^2+c),c=-25/54+16/29*I,n=16 4180953015523498 a003 sin(Pi*2/101)*sin(Pi*27/115) 4180953015526277 m001 (Si(Pi)+Zeta(3))/(-Pi^(1/2)+FeigenbaumAlpha) 4180953026208474 m005 (5*Pi-4/5)/(2/5*2^(1/2)+3) 4180953036128214 r005 Re(z^2+c),c=-13/22+8/91*I,n=37 4180953042065363 a007 Real Root Of 49*x^4+245*x^3+94*x^2-243*x+274 4180953044337444 r002 57th iterates of z^2 + 4180953048800395 p001 sum(1/(259*n+241)/(64^n),n=0..infinity) 4180953077830225 m001 GAMMA(3/4)/(BesselJ(0,1)-Kolakoski) 4180953088636647 a003 cos(Pi*23/63)/sin(Pi*50/113) 4180953093015008 r005 Im(z^2+c),c=-16/21+2/11*I,n=12 4180953094597824 r005 Im(z^2+c),c=3/56+27/53*I,n=49 4180953099168889 m001 1/2*sqrt(5)*Artin 4180953102073608 r005 Im(z^2+c),c=5/62+26/53*I,n=64 4180953104069899 m001 (GAMMA(7/12)+Kac)/(PolyaRandomWalk3D+ZetaP(3)) 4180953139027340 h005 exp(cos(Pi*11/57)+cos(Pi*7/24)) 4180953142388522 m001 (ln(Pi)-arctan(1/2))/(FellerTornier+Mills) 4180953143564905 r005 Re(z^2+c),c=-16/27+2/59*I,n=37 4180953148878930 m001 (MasserGramain+ZetaQ(3))/(3^(1/2)+Zeta(1,-1)) 4180953162004581 r009 Re(z^3+c),c=-53/110+1/21*I,n=57 4180953172544228 r005 Re(z^2+c),c=-51/86+1/63*I,n=40 4180953174436886 r002 3th iterates of z^2 + 4180953177689614 r005 Im(z^2+c),c=11/29+5/33*I,n=3 4180953179838563 l006 ln(4537/6892) 4180953196449100 m001 (Zeta(1,-1)+cos(1/12*Pi))/(GAMMA(11/12)+Thue) 4180953215970392 r005 Re(z^2+c),c=-53/90+7/53*I,n=36 4180953226504529 m001 GAMMA(7/24)^GAMMA(5/6)*GAMMA(19/24) 4180953238459042 r002 41th iterates of z^2 + 4180953252984129 h001 (7/12*exp(1)+6/7)/(2/3*exp(2)+11/12) 4180953265236226 m001 5^(1/2)*Conway+BesselI(0,1) 4180953269310567 r009 Im(z^3+c),c=-2/15+13/27*I,n=17 4180953292587496 s002 sum(A223494[n]/(n^2*10^n-1),n=1..infinity) 4180953293816927 r005 Re(z^2+c),c=-49/114+9/22*I,n=9 4180953302215928 a007 Real Root Of 167*x^4+735*x^3+325*x^2+514*x-844 4180953332616996 q001 1/2391799 4180953360316789 m001 1/GolombDickman^2*exp(HardHexagonsEntropy)^2 4180953365271320 r005 Re(z^2+c),c=-21/29+10/29*I,n=36 4180953375795869 m001 (3^(1/2)+Magata)/(-OrthogonalArrays+ZetaP(3)) 4180953390089783 r009 Re(z^3+c),c=-27/122+33/47*I,n=11 4180953421320631 m001 (PolyaRandomWalk3D+ZetaP(4))/(1-gamma(3)) 4180953436924306 r005 Im(z^2+c),c=13/106+29/60*I,n=14 4180953448902152 r009 Im(z^3+c),c=-19/40+3/20*I,n=4 4180953452100744 r002 46th iterates of z^2 + 4180953477452032 r002 29th iterates of z^2 + 4180953483824614 a001 2/5*233^(29/34) 4180953488075585 r005 Re(z^2+c),c=-21/38+17/45*I,n=30 4180953488985004 r009 Im(z^3+c),c=-57/118+13/37*I,n=29 4180953491266271 m001 1/ln(Paris)/Niven*GAMMA(17/24)^2 4180953497997936 r005 Im(z^2+c),c=7/22+13/53*I,n=21 4180953504749392 a007 Real Root Of 24*x^4-118*x^3-711*x^2-985*x+544 4180953523028593 a007 Real Root Of -71*x^4-75*x^3+979*x^2+114*x-423 4180953529933953 b008 BesselI[2,Csch[EulerGamma]] 4180953534341306 r002 42i'th iterates of 2*x/(1-x^2) of 4180953541064549 m005 (1/2*3^(1/2)+2/9)/(11/12*exp(1)+1/9) 4180953555951863 m001 ZetaR(2)^HardyLittlewoodC3*ZetaR(2)^(5^(1/2)) 4180953565349719 r005 Re(z^2+c),c=-47/82+14/51*I,n=45 4180953569461980 l006 ln(3724/5657) 4180953572750510 r005 Im(z^2+c),c=1/28+16/31*I,n=29 4180953576390361 r005 Re(z^2+c),c=-16/27+2/59*I,n=49 4180953577985984 m001 Rabbit*LaplaceLimit^2*ln((3^(1/3)))^2 4180953596167134 r005 Re(z^2+c),c=-17/30+19/100*I,n=16 4180953605478561 m001 1/GAMMA(1/12)/CareFree*ln(Zeta(3))^2 4180953630343659 a007 Real Root Of 583*x^4-743*x^3+989*x^2-177*x-319 4180953640899500 m001 1/FeigenbaumD/exp(ArtinRank2)^2*GAMMA(5/12)^2 4180953644257586 a007 Real Root Of 381*x^4+340*x^3+331*x^2-826*x-390 4180953658643335 r005 Im(z^2+c),c=-71/58+2/53*I,n=5 4180953669240741 r005 Re(z^2+c),c=-17/29+4/27*I,n=48 4180953681569883 r009 Im(z^3+c),c=-25/78+11/25*I,n=9 4180953692084884 r002 20th iterates of z^2 + 4180953696746655 a001 7/13*2504730781961^(7/11) 4180953701214809 a001 377/322*9349^(17/19) 4180953703143467 a001 121393/322*521^(5/13) 4180953706444917 r009 Re(z^3+c),c=-47/102+5/29*I,n=35 4180953723349425 m005 (1/2*Pi+2)/(2/9*exp(1)+1/4) 4180953725740145 r002 15th iterates of z^2 + 4180953738364790 a001 377/322*24476^(17/21) 4180953742704140 a001 48/281*64079^(21/23) 4180953743261872 a001 377/322*64079^(17/23) 4180953743616967 a001 48/281*439204^(7/9) 4180953743633781 a001 48/281*7881196^(7/11) 4180953743633818 a001 48/281*20633239^(3/5) 4180953743633824 a001 48/281*141422324^(7/13) 4180953743633824 a001 48/281*2537720636^(7/15) 4180953743633824 a001 48/281*17393796001^(3/7) 4180953743633824 a001 48/281*45537549124^(7/17) 4180953743633824 a001 48/281*14662949395604^(1/3) 4180953743633824 a001 48/281*(1/2+1/2*5^(1/2))^21 4180953743633824 a001 48/281*192900153618^(7/18) 4180953743633824 a001 48/281*10749957122^(7/16) 4180953743633824 a001 48/281*599074578^(1/2) 4180953743633826 a001 48/281*33385282^(7/12) 4180953743634670 a001 48/281*1860498^(7/10) 4180953743640033 a001 48/281*710647^(3/4) 4180953743974136 a001 48/281*103682^(7/8) 4180953744014473 a001 377/322*45537549124^(1/3) 4180953744014473 a001 377/322*(1/2+1/2*5^(1/2))^17 4180953744014486 a001 377/322*12752043^(1/2) 4180953744289963 a001 377/322*103682^(17/24) 4180953746074370 a001 377/322*39603^(17/22) 4180953746178402 a001 48/281*39603^(21/22) 4180953752173471 a001 987/4*3^(12/25) 4180953752382584 a007 Real Root Of 267*x^4+924*x^3-883*x^2-193*x+573 4180953756496825 a007 Real Root Of -192*x^4-145*x^3-272*x^2+187*x+121 4180953759545089 a001 377/322*15127^(17/20) 4180953769145609 m001 1/Catalan^2*ln(Artin)^2*GAMMA(1/4) 4180953771589481 m005 (1/3*gamma+1/2)/(1/3*exp(1)+3/4) 4180953775592101 a001 7/1346269*10946^(25/53) 4180953783692029 r009 Re(z^3+c),c=-21/44+10/53*I,n=58 4180953805491159 m001 Rabbit^(Khinchin/GAMMA(11/12)) 4180953821664686 r001 4i'th iterates of 2*x^2-1 of 4180953824963700 r005 Im(z^2+c),c=-9/31+24/41*I,n=18 4180953832599593 r005 Re(z^2+c),c=29/64+1/3*I,n=11 4180953835885700 l006 ln(6635/10079) 4180953855291242 a007 Real Root Of 19*x^4+796*x^3+71*x^2+128*x-452 4180953862290500 a001 377/322*5778^(17/18) 4180953874724922 a007 Real Root Of 557*x^4+80*x^3+814*x^2-277*x-13 4180953880416212 r009 Re(z^3+c),c=-61/118+11/42*I,n=34 4180953888185471 r005 Re(z^2+c),c=-21/38+17/30*I,n=32 4180953895226349 a003 sin(Pi*2/107)+sin(Pi*11/94) 4180953897250941 p003 LerchPhi(1/100,6,26/33) 4180953904360136 r005 Re(z^2+c),c=-15/26+23/100*I,n=54 4180953914753999 r005 Im(z^2+c),c=-61/94+11/32*I,n=39 4180953948261600 m001 GaussAGM^StronglyCareFree/exp(-1/2*Pi) 4180953956644061 h005 exp(cos(Pi*4/49)/sin(Pi*13/55)) 4180953960065551 m001 (ln(5)+TwinPrimes)/(Psi(2,1/3)+Chi(1)) 4180953965830696 r005 Im(z^2+c),c=5/54+27/56*I,n=35 4180953967860930 r005 Re(z^2+c),c=-65/118+22/61*I,n=46 4180953981570337 a007 Real Root Of -980*x^4+697*x^3+468*x^2+471*x+196 4180953994483964 m005 (1/2*3^(1/2)-1/11)/(4/11*3^(1/2)-4/9) 4180953994953874 r005 Re(z^2+c),c=-85/122+4/55*I,n=14 4180953996363639 b008 4+95*Sqrt[19] 4180953997233947 r005 Re(z^2+c),c=-15/26+16/63*I,n=40 4180954004639701 r002 61th iterates of z^2 + 4180954015547982 r009 Im(z^3+c),c=-45/98+9/25*I,n=59 4180954022300600 p001 sum((-1)^n/(381*n+239)/(512^n),n=0..infinity) 4180954038656815 r005 Re(z^2+c),c=-53/74+39/61*I,n=3 4180954041748205 r005 Re(z^2+c),c=-69/118+7/43*I,n=46 4180954058717923 m001 (ln(3)+GAMMA(13/24))/(MasserGramain+ZetaQ(3)) 4180954061456267 p004 log(28723/439) 4180954074955309 r002 50th iterates of z^2 + 4180954079768716 r005 Re(z^2+c),c=-43/78+15/43*I,n=45 4180954088318646 m006 (1/3*exp(2*Pi)+1/3)/(4/5*exp(2*Pi)-2/3) 4180954093071294 b008 39+11*ArcCoth[4] 4180954094345667 r005 Im(z^2+c),c=-7/106+31/54*I,n=39 4180954102923231 p001 sum((-1)^n/(269*n+239)/(625^n),n=0..infinity) 4180954111740386 r005 Re(z^2+c),c=-13/22+13/99*I,n=25 4180954114265282 m001 (2^(1/2)+LambertW(1))/(arctan(1/2)+Zeta(1,2)) 4180954128162133 m001 (-GAMMA(19/24)+Cahen)/(3^(1/2)-arctan(1/2)) 4180954146807712 g007 Psi(2,7/8)-14*Zeta(3)-Psi(2,7/9)-Psi(2,1/6) 4180954150478389 m001 (TwinPrimes+ZetaP(2))/(1-BesselI(0,1)) 4180954170559352 a003 cos(Pi*11/104)*sin(Pi*7/48) 4180954176717683 l006 ln(2911/4422) 4180954185310081 a007 Real Root Of -268*x^4-555*x^3-898*x^2+221*x+217 4180954190367176 m005 (9/20+1/4*5^(1/2))/(11/12*5^(1/2)+4/11) 4180954196297310 r002 18th iterates of z^2 + 4180954199161407 r002 32th iterates of z^2 + 4180954211419957 a001 514229/1364*199^(5/11) 4180954222066192 r005 Re(z^2+c),c=35/118+23/43*I,n=35 4180954228164431 r009 Im(z^3+c),c=-8/29+17/37*I,n=6 4180954235677346 m001 (Zeta(1,-1)-Trott2nd)/(ln(3)-ln(Pi)) 4180954237971463 r005 Im(z^2+c),c=15/98+17/39*I,n=63 4180954245409584 a008 Real Root of x^4-13*x^2-64*x+29 4180954261250121 r002 27th iterates of z^2 + 4180954273919037 r008 a(0)=4,K{-n^6,17+27*n-48*n^2-2*n^3} 4180954287308029 m001 PrimesInBinary*(LandauRamanujan-Pi^(1/2)) 4180954303927817 m001 BesselI(0,1)^Artin*ZetaP(4)^Artin 4180954306284741 m001 (Backhouse-Mills)/(GAMMA(11/12)-ArtinRank2) 4180954326072791 r002 7th iterates of z^2 + 4180954332531140 m001 (Rabbit-ZetaP(4))/(exp(-1/2*Pi)+Mills) 4180954348261425 a007 Real Root Of -484*x^4-71*x^3-902*x^2+217*x+258 4180954365419786 m001 MertensB1^2/FransenRobinson*ln(GAMMA(1/6)) 4180954376207200 r005 Re(z^2+c),c=-23/38+7/29*I,n=24 4180954377271631 r005 Re(z^2+c),c=-5/8+8/221*I,n=16 4180954382356866 r005 Re(z^2+c),c=-63/106+1/64*I,n=30 4180954385509129 p004 log(16453/10831) 4180954385906257 m001 1/GAMMA(17/24)^2*CopelandErdos^2/ln(sqrt(5)) 4180954386235122 a007 Real Root Of 18*x^4+753*x^3+33*x^2+611*x-844 4180954402817889 r005 Re(z^2+c),c=-41/70+7/45*I,n=54 4180954405526897 r005 Re(z^2+c),c=-51/94+16/57*I,n=13 4180954424612437 h001 (11/12*exp(1)+3/11)/(5/6*exp(2)+5/11) 4180954428072970 r005 Im(z^2+c),c=-49/78+5/64*I,n=34 4180954428628980 a007 Real Root Of 781*x^4-292*x^3-293*x^2-657*x+28 4180954477127077 r002 61th iterates of z^2 + 4180954498222053 m001 (arctan(1/2)+Bloch)/(BesselJ(0,1)-exp(Pi)) 4180954500470421 r009 Re(z^3+c),c=-29/60+31/64*I,n=16 4180954537606594 r005 Re(z^2+c),c=-15/122+11/14*I,n=45 4180954546170177 r009 Re(z^3+c),c=-9/118+41/61*I,n=36 4180954556547311 m001 (Mills-Psi(1,1/3))/Riemann2ndZero 4180954571144258 r005 Im(z^2+c),c=37/106+17/58*I,n=52 4180954601594017 b008 44/3+E^6 4180954628189059 l006 ln(5009/7609) 4180954654981272 a007 Real Root Of 606*x^4+704*x^3+908*x^2-907*x-505 4180954655260388 r005 Im(z^2+c),c=-3/52+11/19*I,n=49 4180954673769226 r005 Re(z^2+c),c=-12/23+8/19*I,n=54 4180954676316679 r005 Im(z^2+c),c=1/23+31/60*I,n=47 4180954686744447 r005 Re(z^2+c),c=31/106+15/28*I,n=27 4180954690904713 r002 8th iterates of z^2 + 4180954702820530 r005 Re(z^2+c),c=-17/30+35/118*I,n=29 4180954715293292 b008 ArcCsch[Sqrt[2]+Sin[2]] 4180954718126910 r005 Re(z^2+c),c=-107/110+6/41*I,n=16 4180954734581710 r005 Re(z^2+c),c=11/94+16/37*I,n=25 4180954735694509 r002 32th iterates of z^2 + 4180954736791468 m003 33/8+Sqrt[5]/256-Cos[1/2+Sqrt[5]/2] 4180954741117562 m002 -2+Pi^2*Coth[Pi]-4/ProductLog[Pi] 4180954741336505 l006 ln(8947/9329) 4180954746004677 m009 (6*Catalan+3/4*Pi^2-3)/(5/2*Pi^2-1) 4180954791584570 m001 (Ei(1)-GAMMA(5/6))/(FeigenbaumC+ZetaQ(4)) 4180954804526805 a001 1/4*233^(5/53) 4180954816804490 r005 Re(z^2+c),c=-39/70+10/47*I,n=14 4180954837565681 r005 Re(z^2+c),c=-16/27+1/56*I,n=39 4180954850845115 m001 (BesselI(1,1)+CareFree)/GaussKuzminWirsing 4180954856044348 r005 Im(z^2+c),c=-131/98+1/17*I,n=27 4180954868925094 m001 (Chi(1)+cos(1))/(Otter+PolyaRandomWalk3D) 4180954870603745 a007 Real Root Of -349*x^4+997*x^3-674*x^2+865*x+563 4180954885570145 m005 (1/2*gamma+5/11)/(11/12*exp(1)-5/7) 4180954885773474 a003 sin(Pi*13/89)-sin(Pi*35/106) 4180954888046917 a001 98209/161*521^(4/13) 4180954893159705 r005 Re(z^2+c),c=-67/106+27/61*I,n=37 4180954893168029 q001 1585/3791 4180954898371417 r005 Re(z^2+c),c=-11/8+86/89*I,n=2 4180954901582118 r005 Re(z^2+c),c=-59/98+7/20*I,n=44 4180954908730244 r002 13th iterates of z^2 + 4180954908988726 m001 ln(Pi)*exp(sqrt(2))^Catalan 4180954922855778 m001 1/exp(Trott)*RenyiParking^2/GAMMA(1/12)^2 4180954961071250 r002 56th iterates of z^2 + 4180954987035561 m001 (Zeta(1,-1)+FeigenbaumC)/(exp(1)+BesselI(0,1)) 4180954987339353 m001 1/Zeta(9)^2*FeigenbaumB*exp(cos(Pi/5))^2 4180954993933198 a007 Real Root Of -927*x^4-850*x^3-915*x^2+887*x+497 4180955030674941 a003 cos(Pi*5/86)*sin(Pi*13/93) 4180955037994168 m001 GAMMA(17/24)^2*Rabbit^2*ln(sqrt(1+sqrt(3))) 4180955043585028 a007 Real Root Of 923*x^4+81*x^3+849*x^2-857*x-529 4180955074377746 r005 Im(z^2+c),c=-31/46+1/12*I,n=61 4180955076299458 p004 log(26731/17597) 4180955081709163 r009 Re(z^3+c),c=-59/126+9/50*I,n=37 4180955084300821 m001 GAMMA(5/6)^2/exp(Sierpinski)^2*gamma 4180955096405474 r005 Re(z^2+c),c=-81/118+3/14*I,n=37 4180955096511291 r005 Im(z^2+c),c=-3/52+37/64*I,n=61 4180955097697714 r005 Re(z^2+c),c=-27/70+29/53*I,n=38 4180955134275414 a007 Real Root Of -95*x^4-190*x^3+910*x^2+59*x-518 4180955141960715 r002 5th iterates of z^2 + 4180955163525536 r005 Im(z^2+c),c=19/56+14/55*I,n=44 4180955168830888 r005 Im(z^2+c),c=-11/15+1/12*I,n=34 4180955174053643 a007 Real Root Of -975*x^4+945*x^3-825*x^2-866*x-119 4180955176113482 m001 (LandauRamanujan2nd+ThueMorse)/(exp(Pi)+Cahen) 4180955176205664 r005 Re(z^2+c),c=-13/22+7/86*I,n=55 4180955178898016 r002 62th iterates of z^2 + 4180955195247308 r005 Re(z^2+c),c=-4/7+27/101*I,n=50 4180955195793233 r005 Im(z^2+c),c=-63/110+5/12*I,n=14 4180955214650267 r002 25th iterates of z^2 + 4180955233100065 r002 17th iterates of z^2 + 4180955239662901 r005 Im(z^2+c),c=31/102+16/55*I,n=53 4180955251686992 p003 LerchPhi(1/12,1,397/156) 4180955252500441 r005 Im(z^2+c),c=-17/16+3/64*I,n=21 4180955254610939 l006 ln(2098/3187) 4180955264106297 m001 (Psi(1,1/3)-arctan(1/2))/(exp(1/exp(1))+Thue) 4180955279602213 r009 Im(z^3+c),c=-33/98+20/47*I,n=25 4180955288942023 r005 Re(z^2+c),c=-25/44+7/24*I,n=61 4180955299441645 r005 Im(z^2+c),c=5/16+27/62*I,n=31 4180955306266146 m001 Salem^2/RenyiParking/exp(Ei(1))^2 4180955311915027 r002 8th iterates of z^2 + 4180955317806891 h001 (-5*exp(1/3)-8)/(-4*exp(1/3)+2) 4180955320353805 m005 (7/24+1/6*5^(1/2))/(5*Pi+2/11) 4180955331419695 a007 Real Root Of -228*x^4-891*x^3+254*x^2-122*x-400 4180955334126558 s002 sum(A040132[n]/(n^2*exp(n)+1),n=1..infinity) 4180955341893951 a007 Real Root Of 82*x^4-8*x^3+419*x^2-700*x-369 4180955349643160 r005 Im(z^2+c),c=-103/90+1/19*I,n=41 4180955352932024 a007 Real Root Of -10*x^4+346*x^3-429*x^2+233*x+198 4180955355524702 r005 Re(z^2+c),c=-129/98+1/55*I,n=34 4180955362133772 m005 (1/3*5^(1/2)+2/11)/(1/7*Catalan+1/11) 4180955363793626 a007 Real Root Of -186*x^4-753*x^3-140*x^2-958*x+244 4180955365555932 r002 8th iterates of z^2 + 4180955368542772 a001 2207/8*75025^(1/27) 4180955382082904 a007 Real Root Of -709*x^4+635*x^3+756*x^2+481*x-358 4180955382816074 a007 Real Root Of -10*x^4+675*x^3+88*x^2+530*x-286 4180955383468947 a007 Real Root Of 514*x^4-97*x^3+90*x^2-214*x-128 4180955394256592 s001 sum(exp(-3*Pi)^n*A235305[n],n=1..infinity) 4180955397819020 r008 a(0)=4,K{-n^6,31-4*n^3-35*n^2+2*n} 4180955399331929 p001 sum(1/(429*n+326)/n/(32^n),n=1..infinity) 4180955430564627 r005 Re(z^2+c),c=-4/7+29/78*I,n=47 4180955431827810 r005 Re(z^2+c),c=-35/62+13/37*I,n=49 4180955433159475 m005 (1/3*3^(1/2)+1/4)/(2/3*exp(1)+1/6) 4180955442894452 r005 Im(z^2+c),c=-17/16+3/64*I,n=17 4180955443095342 a001 521/610*4181^(4/21) 4180955444441361 r005 Im(z^2+c),c=-143/118+5/36*I,n=13 4180955460409505 r005 Re(z^2+c),c=-55/106+25/58*I,n=59 4180955470935885 r002 58th iterates of z^2 + 4180955474835415 s002 sum(A203926[n]/((exp(n)+1)*n),n=1..infinity) 4180955481248411 r009 Re(z^3+c),c=-25/66+29/44*I,n=31 4180955484170961 a007 Real Root Of 175*x^4+752*x^3+106*x^2+5*x-346 4180955486640880 a007 Real Root Of 93*x^4+498*x^3+522*x^2+293*x+79 4180955490656871 a007 Real Root Of -591*x^4-253*x^3+681*x^2+647*x-353 4180955497961969 m001 (5^(1/2)-LaplaceLimit)/(-Paris+Weierstrass) 4180955498143000 a007 Real Root Of 527*x^4+122*x^3-107*x^2-979*x+403 4180955504374278 r002 21th iterates of z^2 + 4180955511831676 a007 Real Root Of 358*x^4-768*x^3-22*x^2-894*x-437 4180955512266803 m001 LandauRamanujan^(Tribonacci/LambertW(1)) 4180955517431812 r002 56th iterates of z^2 + 4180955520094864 a007 Real Root Of -10*x^4-428*x^3-392*x^2+905*x-795 4180955562440983 m001 1/Magata*exp(Kolakoski)^2*Niven^2 4180955582898996 r005 Im(z^2+c),c=-23/122+33/56*I,n=30 4180955588165051 a007 Real Root Of 778*x^4+775*x^3+656*x^2-811*x-35 4180955607138671 r005 Re(z^2+c),c=-3/4+23/222*I,n=16 4180955611877552 m001 GlaisherKinkelin/Khinchin*ZetaQ(3) 4180955625213965 a007 Real Root Of 551*x^4+15*x^3-938*x^2-385*x+307 4180955639946444 m001 log(1+sqrt(2))^2*ln(Ei(1))^2*log(2+sqrt(3)) 4180955642870985 m008 (2*Pi^2+1/3)/(1/2*Pi^6-3/5) 4180955643928848 r005 Im(z^2+c),c=5/118+25/49*I,n=25 4180955644422469 p003 LerchPhi(1/256,4,407/184) 4180955667325133 r005 Im(z^2+c),c=-11/90+14/23*I,n=47 4180955670934749 m001 1/exp(Zeta(1,2))/MadelungNaCl^2*sqrt(5)^2 4180955678438209 a001 514229/843*199^(4/11) 4180955680793584 r005 Im(z^2+c),c=-23/48+17/30*I,n=19 4180955683973045 r005 Re(z^2+c),c=2/13+17/55*I,n=25 4180955700293863 a007 Real Root Of 802*x^4-737*x^3-981*x^2-462*x+394 4180955707392353 a003 cos(Pi*1/115)-cos(Pi*9/97) 4180955708077246 m001 gamma/GlaisherKinkelin/OneNinth 4180955738922800 r005 Im(z^2+c),c=5/56+31/64*I,n=61 4180955739846703 r009 Im(z^3+c),c=-11/60+25/53*I,n=9 4180955749118178 r009 Re(z^3+c),c=-9/22+5/42*I,n=28 4180955773400139 r009 Im(z^3+c),c=-7/40+23/33*I,n=9 4180955774202469 s002 sum(A197426[n]/(pi^n+1),n=1..infinity) 4180955778578914 r002 12th iterates of z^2 + 4180955780437244 r005 Im(z^2+c),c=-3/4+5/237*I,n=32 4180955788626845 r005 Im(z^2+c),c=-1/90+31/56*I,n=52 4180955827088043 l006 ln(5481/8326) 4180955838318458 r009 Im(z^3+c),c=-17/46+21/40*I,n=6 4180955855527179 q001 1146/2741 4180955863023542 r005 Im(z^2+c),c=3/94+19/36*I,n=34 4180955865189160 a007 Real Root Of 151*x^4+730*x^3+235*x^2-977*x-981 4180955866223947 m001 (MertensB2+ZetaP(4))/(Zeta(3)+Backhouse) 4180955868797167 a007 Real Root Of -222*x^4-801*x^3+632*x^2+648*x+956 4180955875847965 r005 Re(z^2+c),c=-31/54+13/37*I,n=25 4180955888104494 m005 (1/2*exp(1)-7/8)/(1/8*exp(1)+9/11) 4180955895899172 h001 (1/7*exp(2)+1/12)/(9/11*exp(1)+1/2) 4180955914988235 p001 sum((-1)^n/(509*n+238)/(64^n),n=0..infinity) 4180955915237209 m006 (1/5*ln(Pi)-3/5)/(1/6*exp(2*Pi)-1/2) 4180955918503504 r002 44th iterates of z^2 + 4180955927527234 m001 (1+exp(1/exp(1)))/(Stephens+ZetaQ(3)) 4180955928728585 m001 (BesselK(0,1)+Pi^(1/2))/(Magata+Tribonacci) 4180955937033201 a007 Real Root Of -214*x^4-634*x^3+974*x^2-636*x-630 4180955938534386 a001 521/3524578*8^(1/2) 4180955969105202 m001 BesselJ(0,1)*Robbin*exp(GAMMA(11/12))^2 4180955972826212 m001 1/ln(Niven)/KhintchineLevy^2*Pi 4180955973555518 m001 BesselJ(0,1)^Conway*Lehmer 4180955973751568 a007 Real Root Of 374*x^4-958*x^3+494*x^2+674*x+114 4180955976108731 r009 Re(z^3+c),c=-25/58+9/62*I,n=14 4180955982444384 r005 Im(z^2+c),c=-23/90+26/47*I,n=9 4180955983140039 r005 Re(z^2+c),c=-27/46+7/52*I,n=39 4180955983276921 r002 56th iterates of z^2 + 4180955985414396 r005 Re(z^2+c),c=-3/5+18/77*I,n=15 4180956001191419 a008 Real Root of x^4-2*x^3-25*x^2+4*x+2 4180956006502506 r005 Im(z^2+c),c=-75/118+13/37*I,n=12 4180956028592752 r005 Re(z^2+c),c=-29/30+21/124*I,n=54 4180956034060712 m005 (1/2*Pi+5/6)/(3/11*Catalan-6) 4180956046747730 r005 Re(z^2+c),c=-13/22+8/83*I,n=33 4180956053528244 a007 Real Root Of 119*x^4+404*x^3-396*x^2-24*x-14 4180956055644392 r005 Re(z^2+c),c=29/102+1/41*I,n=43 4180956067403086 s002 sum(A060723[n]/(n^2*2^n+1),n=1..infinity) 4180956067843119 r005 Re(z^2+c),c=-13/42+26/51*I,n=7 4180956070134213 m001 (arctan(1/2)+Ei(1,1))/(Zeta(1,-1)+gamma(3)) 4180956072842332 a001 317811/322*521^(3/13) 4180956081751898 r002 62th iterates of z^2 + 4180956090581771 m001 Sierpinski^2/Rabbit^2/exp(gamma)^2 4180956090931499 m001 (-ReciprocalLucas+Tribonacci)/(1-CareFree) 4180956095700137 m001 (-Gompertz+Sarnak)/(BesselJ(0,1)+BesselI(0,2)) 4180956114053518 r005 Re(z^2+c),c=37/90+19/61*I,n=25 4180956128417487 m008 (1/6*Pi^5+1/5)/(4*Pi^5+3/5) 4180956131501571 r002 46th iterates of z^2 + 4180956138531400 r005 Re(z^2+c),c=13/36+6/31*I,n=15 4180956139497241 r002 2th iterates of z^2 + 4180956140911094 r009 Re(z^3+c),c=-53/122+8/49*I,n=8 4180956141816652 s002 sum(A078102[n]/((2^n-1)/n),n=1..infinity) 4180956158759599 a007 Real Root Of 412*x^4-624*x^3-96*x^2-994*x-457 4180956175929018 r005 Re(z^2+c),c=-7/10+2/235*I,n=22 4180956182115211 l006 ln(3383/5139) 4180956195412582 m001 (1+BesselJ(0,1))/(-exp(1/Pi)+MertensB3) 4180956238190387 a007 Real Root Of 496*x^4-54*x^3+188*x^2-24*x-62 4180956247476909 a007 Real Root Of 194*x^4-145*x^3-641*x^2-955*x+516 4180956262861147 a007 Real Root Of -179*x^4-570*x^3+691*x^2-109*x+503 4180956285236087 a001 1/41*3^(26/53) 4180956292045388 r009 Re(z^3+c),c=-7/94+33/52*I,n=25 4180956306567597 r005 Im(z^2+c),c=-21/22+3/79*I,n=12 4180956315689822 r005 Im(z^2+c),c=31/106+29/54*I,n=40 4180956323899660 m005 (-23/4+1/4*5^(1/2))/(3/8*exp(1)+2/9) 4180956324626814 r002 37th iterates of z^2 + 4180956332579829 r005 Re(z^2+c),c=-31/78+33/64*I,n=22 4180956348678947 a007 Real Root Of -851*x^4-417*x^3+945*x^2+918*x-40 4180956350484519 r005 Re(z^2+c),c=-9/14+17/132*I,n=21 4180956373418211 m001 (Mills+Thue)/(ln(5)+FeigenbaumMu) 4180956406231131 r005 Re(z^2+c),c=-15/14+64/91*I,n=2 4180956410146535 r005 Im(z^2+c),c=11/74+15/34*I,n=31 4180956411326979 m001 (FeigenbaumB+ZetaQ(4))/(Shi(1)-Zeta(1,2)) 4180956416963998 m001 (FransenRobinson+Rabbit)/(ln(2)/ln(10)+cos(1)) 4180956417761983 m001 exp(1)/BesselK(0,1)*ln(sqrt(5))^2 4180956433011405 r002 62th iterates of z^2 + 4180956434774473 r005 Re(z^2+c),c=-19/30+22/125*I,n=19 4180956440186362 r005 Im(z^2+c),c=-13/56+17/28*I,n=46 4180956455883561 m001 polylog(4,1/2)+KomornikLoreti^(5^(1/2)) 4180956462931947 r002 4i'th iterates of 2*x/(1-x^2) of 4180956465545996 m001 (BesselI(1,1)+PlouffeB)/(arctan(1/3)+gamma(1)) 4180956494855632 l006 ln(6113/6374) 4180956499333959 m005 (1/2*5^(1/2)-3/4)/(6/11*Pi-5/6) 4180956523371094 a001 322/28657*832040^(13/49) 4180956524614320 a007 Real Root Of 151*x^4+659*x^3-56*x^2-716*x+8 4180956526684234 a007 Real Root Of 305*x^4+92*x^3+392*x^2-480*x+2 4180956532843877 a001 843/28657*3^(8/25) 4180956551104490 a007 Real Root Of -152*x^4-595*x^3+132*x^2-309*x-639 4180956551667473 h005 exp(cos(Pi*2/31)+sin(Pi*7/47)) 4180956552408519 r005 Im(z^2+c),c=31/102+15/52*I,n=30 4180956555099372 r005 Re(z^2+c),c=-13/22+4/49*I,n=59 4180956572223757 a007 Real Root Of -245*x^4+971*x^3-609*x^2+823*x+529 4180956573819839 a007 Real Root Of 754*x^4-591*x^3-348*x^2-885*x+451 4180956598975500 l006 ln(4668/7091) 4180956610796260 a001 4181/3*521^(31/34) 4180956644011010 m001 HardyLittlewoodC4/(FeigenbaumDelta+Khinchin) 4180956647343327 m001 ln(Sierpinski)/FransenRobinson/cos(Pi/5) 4180956650194373 r002 57th iterates of z^2 + 4180956660289148 r009 Re(z^3+c),c=-29/60+7/36*I,n=51 4180956666473268 r005 Re(z^2+c),c=-61/106+13/60*I,n=30 4180956696951221 a007 Real Root Of 133*x^4+635*x^3+145*x^2-592*x+759 4180956700507673 h001 (2/9*exp(2)+1/9)/(4/9*exp(2)+10/11) 4180956704217350 m001 LaplaceLimit/(GlaisherKinkelin^Si(Pi)) 4180956732195189 m001 ln(Rabbit)^2/KhintchineHarmonic^2*Trott 4180956749201291 h001 (-8*exp(2/3)+5)/(-6*exp(1)-9) 4180956762239466 r009 Re(z^3+c),c=-21/86+37/39*I,n=14 4180956762240053 m005 (1/2*5^(1/2)-3/8)/(9/8+7/24*5^(1/2)) 4180956766879280 m001 5^(1/2)/(Psi(2,1/3)+GAMMA(13/24)) 4180956785725418 a003 cos(Pi*34/95)-cos(Pi*57/115) 4180956799744646 r002 62th iterates of z^2 + 4180956802123054 m001 (BesselK(1,1)-MertensB3)/ZetaP(3) 4180956810119340 a003 sin(Pi*8/67)/cos(Pi*4/25) 4180956821151527 a003 sin(Pi*11/82)/sin(Pi*36/83) 4180956835870900 l006 ln(5953/9043) 4180956835870900 p004 log(9043/5953) 4180956846344257 m001 (Backhouse+FeigenbaumC)^Zeta(3) 4180956867249568 r005 Re(z^2+c),c=-13/22+10/123*I,n=47 4180956867487739 m005 (1/2*exp(1)+5/7)/(2/3*gamma+1/9) 4180956868927860 r005 Re(z^2+c),c=-41/90+3/10*I,n=4 4180956873504848 r005 Re(z^2+c),c=-39/64+28/61*I,n=3 4180956876233438 r001 39i'th iterates of 2*x^2-1 of 4180956878017948 r002 46th iterates of z^2 + 4180956888122650 r005 Im(z^2+c),c=-5/6+1/41*I,n=55 4180956889982576 m003 6/Log[1/2+Sqrt[5]/2]+5*Sinh[1/2+Sqrt[5]/2]^2 4180956903769001 r002 2th iterates of z^2 + 4180956913204468 a007 Real Root Of 589*x^4-825*x^3-690*x^2-878*x+530 4180956914712271 p001 sum(1/(323*n+96)/n/(6^n),n=1..infinity) 4180956916742792 r002 32th iterates of z^2 + 4180956927916353 m001 1/FeigenbaumAlpha*exp(DuboisRaymond)/Magata^2 4180956977666055 g001 Psi(4/5,13/40) 4180956995288613 m001 (FeigenbaumKappa+Niven)/(1-3^(1/2)) 4180957023415548 r002 39th iterates of z^2 + 4180957032649718 a007 Real Root Of 729*x^4-357*x^3-159*x^2-532*x-243 4180957050422527 r009 Im(z^3+c),c=-49/110+18/49*I,n=23 4180957104231373 m001 Pi+ln(2)/ln(10)*BesselJ(0,1)+cos(1/5*Pi) 4180957116456503 r009 Im(z^3+c),c=-19/50+15/22*I,n=33 4180957118723433 m005 (1/2*gamma-3/4)/(4/7*Zeta(3)+5/12) 4180957121957412 a007 Real Root Of 261*x^4+951*x^3-650*x^2-368*x-425 4180957125162582 m001 (2^(1/3)-Ei(1))/(Thue+TwinPrimes) 4180957127275205 m001 Robbin^FeigenbaumD*BesselI(0,1) 4180957147359120 m001 (-arctan(1/3)+FeigenbaumMu)/(GAMMA(2/3)-gamma) 4180957147446508 r005 Im(z^2+c),c=-2/27+29/52*I,n=23 4180957160821721 m002 Pi/4+36*Cosh[Pi] 4180957163437019 a008 Real Root of (7+18*x-17*x^2-5*x^3) 4180957177555650 m001 ln(Riemann1stZero)*Backhouse*Trott 4180957177757264 r005 Re(z^2+c),c=-59/122+3/38*I,n=3 4180957185023976 m005 (1/3*exp(1)+1/10)/(2/11*3^(1/2)-5/9) 4180957198008245 a007 Real Root Of -855*x^4+466*x^3-728*x^2+683*x+473 4180957199024255 a007 Real Root Of -806*x^4+217*x^3+151*x^2+728*x-322 4180957205077144 a003 cos(Pi*31/112)-cos(Pi*41/96) 4180957205506485 m001 (Champernowne+Sarnak)/(ln(Pi)+ln(2^(1/2)+1)) 4180957212146781 m005 (1/3*Pi-2/3)/(5/7*2^(1/2)-1/10) 4180957213079802 m001 (3^(1/3)-gamma)/(BesselK(1,1)+Porter) 4180957220214955 r005 Re(z^2+c),c=-17/30+34/123*I,n=30 4180957223359139 a001 3/11*3^(7/18) 4180957239189345 m005 (1/2*3^(1/2)+4)/(4/5*5^(1/2)-5/8) 4180957243927845 r005 Im(z^2+c),c=-7/36+13/24*I,n=10 4180957251085161 a007 Real Root Of 607*x^4+732*x^3+802*x^2-705*x-400 4180957252108878 r005 Im(z^2+c),c=7/52+14/31*I,n=34 4180957257452962 s002 sum(A237680[n]/(n*10^n-1),n=1..infinity) 4180957257679477 a001 514229/322*521^(2/13) 4180957268318140 r005 Im(z^2+c),c=1/25+14/27*I,n=52 4180957269305218 h001 (3/10*exp(2)+1/8)/(7/10*exp(2)+3/7) 4180957276518907 r009 Im(z^3+c),c=-3/40+20/41*I,n=10 4180957313208995 r005 Re(z^2+c),c=15/118+16/35*I,n=13 4180957316432841 a007 Real Root Of 958*x^4+679*x^3+496*x^2-279*x-183 4180957332628991 r002 21th iterates of z^2 + 4180957334085023 r005 Re(z^2+c),c=-43/74+6/61*I,n=20 4180957345469639 r005 Re(z^2+c),c=-49/118+31/56*I,n=51 4180957351953866 m001 1/Kolakoski^2*ln(Artin)*FeigenbaumD 4180957355042070 r005 Im(z^2+c),c=7/22+17/63*I,n=18 4180957355372151 m005 (1/2*gamma+5/7)/(3^(1/2)+2/3) 4180957377049180 a001 1275192/305 4180957377797188 m001 (sin(1/12*Pi)-exp(-1/2*Pi))/(Kac+Lehmer) 4180957379713723 a004 Fibonacci(12)*Lucas(15)/(1/2+sqrt(5)/2)^8 4180957383655441 m001 (Catalan-ln(2))/(FeigenbaumDelta+TwinPrimes) 4180957393030108 r005 Re(z^2+c),c=17/106+37/57*I,n=10 4180957393190859 r009 Im(z^3+c),c=-5/114+42/53*I,n=16 4180957407698809 r005 Re(z^2+c),c=-7/12+23/128*I,n=60 4180957412988069 a007 Real Root Of -366*x^4-648*x^3-422*x^2+752*x+352 4180957419239443 r005 Im(z^2+c),c=11/52+23/59*I,n=18 4180957430741787 m001 (ErdosBorwein-Robbin)/(Pi-ln(2^(1/2)+1)) 4180957439877898 r005 Im(z^2+c),c=3/17+19/46*I,n=19 4180957443799343 m001 exp(GAMMA(19/24))^2*MertensB1*GAMMA(7/12) 4180957463719535 r005 Re(z^2+c),c=-3/5+14/47*I,n=36 4180957468518078 a003 sin(Pi*9/91)/cos(Pi*27/113) 4180957532895870 m001 (-FeigenbaumKappa+Weierstrass)/(3^(1/2)+Artin) 4180957544566423 r005 Re(z^2+c),c=7/25+31/53*I,n=61 4180957547952022 a001 123/17711*75025^(50/51) 4180957549878683 m001 (TravellingSalesman+ZetaP(4))/(Ei(1)-gamma(3)) 4180957549967027 r005 Re(z^2+c),c=-15/26+10/43*I,n=57 4180957554499166 a001 1292/161*1364^(13/15) 4180957577993681 a007 Real Root Of 71*x^4+164*x^3+380*x^2-740*x-366 4180957586071740 r005 Re(z^2+c),c=-3/4+8/205*I,n=40 4180957587409165 r005 Im(z^2+c),c=3/58+24/47*I,n=49 4180957594837847 m001 KhintchineLevy*exp(Cahen)^2*Paris^2 4180957605582166 r005 Im(z^2+c),c=-17/36+18/35*I,n=18 4180957607246152 r002 12th iterates of z^2 + 4180957617612098 r002 20th iterates of z^2 + 4180957619921872 a001 322/89*1597^(1/51) 4180957620451999 m001 (arctan(1/3)-Lehmer)/(MasserGramain+ZetaQ(4)) 4180957627541180 r005 Im(z^2+c),c=-7/60+35/58*I,n=52 4180957633372789 a001 521/4181*102334155^(4/21) 4180957645088610 r009 Im(z^3+c),c=-3/38+20/41*I,n=20 4180957650003234 a007 Real Root Of 184*x^4+704*x^3-319*x^2-216*x-99 4180957658071120 r002 64th iterates of z^2 + 4180957661295391 m001 Robbin^2*Cahen/ln(BesselJ(1,1))^2 4180957664033726 a003 cos(Pi*13/74)*cos(Pi*34/101) 4180957665030540 m001 (ln(Pi)+CareFree)/(Otter+Porter) 4180957667729019 r005 Re(z^2+c),c=-53/94+18/59*I,n=51 4180957671444835 m001 (Pi-gamma(2))/(FeigenbaumC-Sierpinski) 4180957674973516 l006 ln(5967/5992) 4180957680189525 a001 521/28657*2504730781961^(4/21) 4180957682701922 r002 22th iterates of z^2 + 4180957687861470 r002 29th iterates of z^2 + 4180957695532894 r009 Re(z^3+c),c=-25/48+13/53*I,n=56 4180957696437176 l006 ln(1285/1952) 4180957698116999 r002 23th iterates of z^2 + 4180957707126729 r005 Re(z^2+c),c=-143/122+14/55*I,n=10 4180957716764781 m004 6-Log[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]/(Sqrt[5]*Pi) 4180957727515061 a001 46/141*3^(7/31) 4180957727634888 m001 1/exp(Pi)*GAMMA(5/6)^2/log(2+sqrt(3)) 4180957733061264 r002 9th iterates of z^2 + 4180957759018121 r005 Im(z^2+c),c=1/110+5/9*I,n=33 4180957759806659 m004 -50/Pi-5*Pi+25*Sqrt[5]*Pi-Sinh[Sqrt[5]*Pi] 4180957769318640 a001 233*199^(6/11) 4180957774522717 r002 24th iterates of z^2 + 4180957787139541 p003 LerchPhi(1/512,5,649/217) 4180957789733358 r005 Re(z^2+c),c=-13/22+5/81*I,n=34 4180957791905981 m001 (sin(1/12*Pi)+BesselI(1,1))/(Kolakoski+Salem) 4180957793820361 r009 Im(z^3+c),c=-13/25+20/43*I,n=12 4180957794319884 m001 (1-Artin)/(GaussAGM+LaplaceLimit) 4180957797046275 m001 BesselJ(0,1)^GAMMA(1/3)-FeigenbaumDelta 4180957814956388 a008 Real Root of x^4-x^3-28*x^2+33*x+119 4180957815993240 a007 Real Root Of 192*x^4+725*x^3-456*x^2-548*x-2 4180957822732830 m001 (Ei(1)-GAMMA(23/24))/(TwinPrimes-ZetaP(2)) 4180957842027400 r005 Re(z^2+c),c=-71/114+10/49*I,n=17 4180957844359451 a007 Real Root Of -211*x^4+188*x^3-530*x^2+539*x-140 4180957850629667 r002 36th iterates of z^2 + 4180957852203664 a001 18/17711*5^(29/33) 4180957857783387 a001 1597/322*1364^(14/15) 4180957863981447 r005 Re(z^2+c),c=-35/58+1/37*I,n=20 4180957877382735 a001 4181/322*1364^(4/5) 4180957885153840 r005 Re(z^2+c),c=-29/34+33/61*I,n=2 4180957886983899 m001 sin(1)/exp(Riemann2ndZero)*sin(Pi/12)^2 4180957950824946 r005 Re(z^2+c),c=-11/38+25/44*I,n=5 4180957961091489 a001 6765/322*1364^(11/15) 4180957964345370 r005 Re(z^2+c),c=-11/19+5/23*I,n=50 4180957979908343 r005 Re(z^2+c),c=-2/3+1/168*I,n=18 4180957991820101 m005 (1/2*Pi+3/5)/(5*Zeta(3)-9/11) 4180958013010053 q001 707/1691 4180958043778770 r005 Re(z^2+c),c=-9/14+8/149*I,n=14 4180958048721840 r009 Im(z^3+c),c=-3/22+29/61*I,n=6 4180958054142196 m005 (1/2*5^(1/2)+1/10)/(6/7*exp(1)+7/12) 4180958077375264 a003 cos(Pi*7/69)*cos(Pi*52/107) 4180958092368248 r009 Im(z^3+c),c=-63/122+18/61*I,n=34 4180958100884157 a007 Real Root Of -467*x^4-23*x^3-748*x^2+810*x+482 4180958120875113 r005 Re(z^2+c),c=35/86+18/59*I,n=12 4180958122673009 m005 (1/2*exp(1)+6)/(5/9*exp(1)+1/4) 4180958124830957 a001 161/5473*28657^(29/41) 4180958132027931 m001 (-FeigenbaumD+Kac)/(BesselI(1,1)-Shi(1)) 4180958134454280 r002 4th iterates of z^2 + 4180958134756391 m001 Lehmer^ErdosBorwein*gamma(2) 4180958136156904 a001 5473/161*1364^(2/3) 4180958146619784 r005 Re(z^2+c),c=-6/13+29/52*I,n=16 4180958163712708 r005 Im(z^2+c),c=17/58+19/64*I,n=17 4180958165117371 r005 Im(z^2+c),c=5/34+26/59*I,n=60 4180958165291679 l006 ln(9392/9793) 4180958176058152 a007 Real Root Of 179*x^4+745*x^3-73*x^2-294*x-201 4180958179191202 a007 Real Root Of -124*x^4-295*x^3+686*x^2-975*x+262 4180958188431695 a005 (1/sin(70/171*Pi))^707 4180958204734013 r002 24th iterates of z^2 + 4180958224650721 r009 Re(z^3+c),c=-7/94+34/53*I,n=39 4180958231446824 r009 Im(z^3+c),c=-47/118+23/58*I,n=26 4180958240196431 r009 Im(z^3+c),c=-2/5+19/48*I,n=23 4180958246632167 r005 Im(z^2+c),c=19/122+19/44*I,n=26 4180958272875461 r002 57th iterates of z^2 + 4180958276327186 a001 17711/322*1364^(3/5) 4180958279117956 r005 Re(z^2+c),c=-13/22+7/85*I,n=43 4180958293034584 m001 AlladiGrinstead*ZetaP(2)/ZetaQ(3) 4180958304344464 m001 1/Catalan^2*exp(Si(Pi))*GAMMA(1/24)^2 4180958311982834 r005 Im(z^2+c),c=1/50+25/47*I,n=61 4180958324935302 a003 1/2+1/2*2^(1/2)+cos(1/18*Pi)+2*cos(1/30*Pi) 4180958329971480 r009 Im(z^3+c),c=-3/38+20/41*I,n=22 4180958337147097 r002 58th iterates of z^2 + 4180958342128695 r009 Re(z^3+c),c=-27/58+8/53*I,n=11 4180958352681065 r005 Re(z^2+c),c=-71/102+2/21*I,n=29 4180958353750492 r005 Im(z^2+c),c=4/21+17/42*I,n=55 4180958361060309 m005 (5/6*2^(1/2)-4/5)/(1/3*Catalan+3/5) 4180958363656300 m006 (1/2*exp(Pi)+1/6)/(1/5*Pi^2+5/6) 4180958376480358 r009 Im(z^3+c),c=-31/58+3/13*I,n=45 4180958382816446 m001 (Champernowne-Zeta(1/2))^exp(Pi) 4180958386534109 m005 (1/2*exp(1)+9/11)/(1/9*2^(1/2)+4/11) 4180958390839685 m001 ArtinRank2/(FeigenbaumAlpha-GaussAGM) 4180958391720835 r005 Re(z^2+c),c=-4/7+25/83*I,n=39 4180958393774034 a005 (1/sin(76/207*Pi))^683 4180958395986390 m001 Trott^Zeta(5)*Trott^exp(1) 4180958396412813 m005 (1/2*exp(1)-5/9)/(10/11*2^(1/2)+7/11) 4180958424017657 b008 -93/2+Sqrt[22] 4180958424132442 r009 Im(z^3+c),c=-31/86+54/55*I,n=2 4180958425050798 h002 exp(11^(7/3)-14^(2/5)) 4180958425050798 h007 exp(11^(7/3)-14^(2/5)) 4180958429826231 a001 28657/322*1364^(8/15) 4180958431859575 a007 Real Root Of 123*x^4-980*x^3+636*x^2-135*x-243 4180958442501147 a001 416020/161*521^(1/13) 4180958448193556 m005 (1/2*5^(1/2)+1/3)/(9/11*Zeta(3)-7/11) 4180958448939205 a001 123/196418*121393^(5/9) 4180958448992402 a001 123/24157817*701408733^(5/9) 4180958448992404 a001 123/2971215073*4052739537881^(5/9) 4180958448992404 a001 123/267914296*53316291173^(5/9) 4180958448992585 a001 41/726103*9227465^(5/9) 4180958453497337 a007 Real Root Of -863*x^4-166*x^3-317*x^2+594*x+318 4180958456226603 m005 (2/5*Pi-3/4)/(4/5*gamma+3/4) 4180958456480583 s002 sum(A239971[n]/((2*n)!),n=1..infinity) 4180958456917279 r002 2th iterates of z^2 + 4180958465821115 m001 (ln(3)+ln(2^(1/2)+1))/(gamma(3)-PlouffeB) 4180958470429731 r005 Im(z^2+c),c=-73/86+8/39*I,n=22 4180958479671395 a001 141/46*3571^(15/17) 4180958492080543 b008 -1/4+ArcSinh[42] 4180958506394683 m001 (sin(1/5*Pi)+FeigenbaumKappa)/(PlouffeB-Trott) 4180958527020178 m005 (1/2*gamma-7/8)/(8/11*3^(1/2)+1/7) 4180958544560999 p004 log(27527/18121) 4180958552542638 r002 38th iterates of z^2 + 4180958561923973 m001 Paris^Khinchin*Riemann2ndZero 4180958565751515 m005 (1/2*2^(1/2)+2/7)/(4/5*exp(1)+1/5) 4180958578234148 a001 144*1364^(7/15) 4180958585605059 m001 sin(Pi/5)/BesselJ(1,1)/exp(sqrt(3))^2 4180958594849566 r005 Re(z^2+c),c=-16/27+1/29*I,n=47 4180958601124282 r005 Re(z^2+c),c=35/114+33/62*I,n=47 4180958605887801 r005 Im(z^2+c),c=-11/8+10/231*I,n=29 4180958609293659 l006 ln(5612/8525) 4180958618725736 m001 Otter^(2*Pi/GAMMA(5/6))+PisotVijayaraghavan 4180958633298208 a007 Real Root Of 687*x^4-75*x^3+79*x^2-968*x-445 4180958633805805 a001 123/17711*1597^(5/9) 4180958636396400 a007 Real Root Of -139*x^4-469*x^3+386*x^2-217*x+542 4180958653827622 p001 sum((-1)^n/(349*n+225)/(6^n),n=0..infinity) 4180958653916030 m001 (ln(5)+TwinPrimes)^KhinchinHarmonic 4180958663459416 a007 Real Root Of 195*x^4-394*x^3-983*x^2-173*x+267 4180958672921802 a007 Real Root Of -257*x^4-826*x^3+918*x^2-481*x+104 4180958684724212 p004 log(23623/15551) 4180958686753863 a003 cos(Pi*9/88)-sin(Pi*13/73) 4180958706575140 a007 Real Root Of 525*x^4-142*x^3-788*x^2-526*x+352 4180958718961653 r005 Re(z^2+c),c=-59/102+8/37*I,n=41 4180958728586711 a001 75025/322*1364^(2/5) 4180958731200294 a001 141/46*9349^(15/19) 4180958737942852 a003 sin(Pi*10/81)/cos(Pi*15/107) 4180958763979728 a001 141/46*24476^(5/7) 4180958764684826 r005 Re(z^2+c),c=-27/56+26/45*I,n=50 4180958768300688 a001 141/46*64079^(15/23) 4180958768575997 a001 144/2207*(1/2+1/2*5^(1/2))^23 4180958768575997 a001 144/2207*4106118243^(1/2) 4180958768875614 a001 141/46*167761^(3/5) 4180958768948719 a001 144/2207*103682^(23/24) 4180958768952707 a001 141/46*439204^(5/9) 4180958768964718 a001 141/46*7881196^(5/11) 4180958768964744 a001 141/46*20633239^(3/7) 4180958768964748 a001 141/46*141422324^(5/13) 4180958768964749 a001 141/46*2537720636^(1/3) 4180958768964749 a001 141/46*45537549124^(5/17) 4180958768964749 a001 141/46*312119004989^(3/11) 4180958768964749 a001 141/46*14662949395604^(5/21) 4180958768964749 a001 141/46*(1/2+1/2*5^(1/2))^15 4180958768964749 a001 141/46*192900153618^(5/18) 4180958768964749 a001 141/46*28143753123^(3/10) 4180958768964749 a001 141/46*10749957122^(5/16) 4180958768964749 a001 141/46*599074578^(5/14) 4180958768964749 a001 141/46*228826127^(3/8) 4180958768964750 a001 141/46*33385282^(5/12) 4180958768965352 a001 141/46*1860498^(1/2) 4180958769207829 a001 141/46*103682^(5/8) 4180958770782307 a001 141/46*39603^(15/22) 4180958782668250 a001 141/46*15127^(3/4) 4180958790697226 r002 58th iterates of z^2 + 4180958795438592 r005 Re(z^2+c),c=-27/46+7/50*I,n=48 4180958815104974 m009 (2*Psi(1,3/4)-1)/(4*Psi(1,3/4)-2/5) 4180958834930397 a007 Real Root Of -27*x^4+663*x^3-928*x^2-757*x-105 4180958848390442 a007 Real Root Of 16*x^4-26*x^3-233*x^2+803*x+641 4180958873326075 a001 141/46*5778^(5/6) 4180958878196493 a001 121393/322*1364^(1/3) 4180958880386914 l006 ln(4327/6573) 4180958898753521 r009 Im(z^3+c),c=-33/70+6/13*I,n=9 4180958921515483 m006 (3/4*exp(2*Pi)-3/5)/(1/2/Pi+4/5) 4180958935340154 r002 8th iterates of z^2 + 4180958939219351 r005 Re(z^2+c),c=35/118+23/43*I,n=47 4180958955112175 b008 Pi+InverseErfc[-3+Pi] 4180958958987046 r005 Re(z^2+c),c=-16/27+1/21*I,n=37 4180958961051871 r002 62th iterates of z^2 + 4180958973557525 a001 1364/24157817*832040^(6/19) 4180958973557908 a001 1364/433494437*7778742049^(6/19) 4180958989331358 r005 Im(z^2+c),c=-87/122+30/61*I,n=6 4180958989743096 r005 Re(z^2+c),c=-43/82+19/44*I,n=61 4180959003289402 r005 Re(z^2+c),c=-21/86+17/22*I,n=13 4180959017768713 a007 Real Root Of -647*x^4-7*x^3-411*x^2+955*x+4 4180959026628853 r009 Im(z^3+c),c=-3/38+20/41*I,n=24 4180959028089999 a001 98209/161*1364^(4/15) 4180959035058871 l006 ln(7/458) 4180959041355740 r005 Re(z^2+c),c=-87/122+1/18*I,n=18 4180959046556643 r009 Re(z^3+c),c=-9/122+23/36*I,n=26 4180959058235334 a001 9/4*46368^(43/47) 4180959063992768 m005 (1/3*gamma+1/8)/(1/3*3^(1/2)+2/11) 4180959068889181 a003 cos(Pi*16/65)-cos(Pi*21/52) 4180959076958915 r002 9th iterates of z^2 + 4180959079788532 a007 Real Root Of -428*x^4-269*x^3-332*x^2+949*x-306 4180959081189753 m001 1/GAMMA(5/12)^2/Champernowne^2/ln(cos(Pi/12)) 4180959086377795 m002 (Cosh[Pi]^3*ProductLog[Pi])/4 4180959087501710 p001 sum((-1)^n/(382*n+239)/(512^n),n=0..infinity) 4180959089518362 r002 41th iterates of z^2 + 4180959107114423 p001 sum(1/(457*n+447)/n/(3^n),n=1..infinity) 4180959132608102 m001 Backhouse^exp(1)+OrthogonalArrays 4180959159810098 p003 LerchPhi(1/25,5,148/197) 4180959170314591 m008 (2*Pi^6+3/5)/(1/6*Pi^5-5) 4180959177875139 a001 317811/322*1364^(1/5) 4180959195521797 r009 Im(z^3+c),c=-3/70+25/51*I,n=15 4180959201295949 r004 Im(z^2+c),c=2/7-3/14*I,z(0)=exp(5/12*I*Pi),n=8 4180959202686938 r005 Re(z^2+c),c=35/118+23/43*I,n=55 4180959220060391 r005 Im(z^2+c),c=9/62+27/61*I,n=38 4180959220469004 m002 5/Pi^3-(Cosh[Pi]*Coth[Pi])/Pi^4 4180959221004693 v002 sum(1/(3^n+(21*n^2-35*n+64)),n=1..infinity) 4180959235836825 r009 Im(z^3+c),c=-21/94+19/41*I,n=17 4180959244044678 h001 (1/4*exp(1)+2/11)/(8/11*exp(1)+1/12) 4180959251374162 a001 1292/161*3571^(13/17) 4180959256500825 r005 Re(z^2+c),c=35/118+23/43*I,n=63 4180959282191370 r005 Re(z^2+c),c=35/118+23/43*I,n=59 4180959289493932 a001 105937/6*18^(17/57) 4180959298685034 a001 6676992/1597 4180959299073936 a004 Fibonacci(12)*Lucas(17)/(1/2+sqrt(5)/2)^10 4180959309157487 m001 (Ei(1,1)+FransenRobinson)/(Salem-ZetaP(2)) 4180959310256071 a007 Real Root Of 752*x^4+688*x^3-199*x^2-646*x-208 4180959311651164 r009 Re(z^3+c),c=-1/52+43/61*I,n=26 4180959319431094 r009 Im(z^3+c),c=-3/38+20/41*I,n=26 4180959322812935 r005 Im(z^2+c),c=31/106+29/54*I,n=48 4180959327701679 a001 514229/322*1364^(2/15) 4180959329619774 a001 3/2*2537720636^(19/24) 4180959329619774 a001 3/2*817138163596^(5/8) 4180959329619774 a001 3/2*87403803^(15/16) 4180959339433013 a007 Real Root Of 452*x^4-402*x^3-546*x^2-983*x+522 4180959355866544 m001 (Pi+ln(2)/ln(10)+Psi(2,1/3))*cos(1/5*Pi) 4180959370562513 m001 (GaussAGM+Gompertz)/(Kolakoski-ZetaP(2)) 4180959380510282 l006 ln(3042/4621) 4180959396908888 a001 6765/322*3571^(11/17) 4180959409628363 r009 Im(z^3+c),c=-3/38+20/41*I,n=28 4180959414939692 r005 Re(z^2+c),c=35/118+23/43*I,n=51 4180959415078534 a007 Real Root Of 438*x^4+799*x^3+934*x^2-229*x-214 4180959419233380 a007 Real Root Of -174*x^4-620*x^3+262*x^2-756*x+115 4180959431126644 r009 Im(z^3+c),c=-3/38+20/41*I,n=30 4180959432597205 r005 Im(z^2+c),c=-6/11*I,n=59 4180959433560551 r009 Im(z^3+c),c=-3/38+20/41*I,n=33 4180959433823446 r009 Im(z^3+c),c=-3/38+20/41*I,n=35 4180959434032461 r009 Im(z^3+c),c=-3/38+20/41*I,n=37 4180959434115694 r009 Im(z^3+c),c=-3/38+20/41*I,n=39 4180959434140451 r009 Im(z^3+c),c=-3/38+20/41*I,n=41 4180959434146121 r009 Im(z^3+c),c=-3/38+20/41*I,n=43 4180959434146597 r009 Im(z^3+c),c=-3/38+20/41*I,n=46 4180959434146690 r009 Im(z^3+c),c=-3/38+20/41*I,n=48 4180959434146752 r009 Im(z^3+c),c=-3/38+20/41*I,n=50 4180959434146775 r009 Im(z^3+c),c=-3/38+20/41*I,n=52 4180959434146782 r009 Im(z^3+c),c=-3/38+20/41*I,n=54 4180959434146784 r009 Im(z^3+c),c=-3/38+20/41*I,n=56 4180959434146784 r009 Im(z^3+c),c=-3/38+20/41*I,n=59 4180959434146784 r009 Im(z^3+c),c=-3/38+20/41*I,n=61 4180959434146784 r009 Im(z^3+c),c=-3/38+20/41*I,n=57 4180959434146784 r009 Im(z^3+c),c=-3/38+20/41*I,n=63 4180959434146784 r009 Im(z^3+c),c=-3/38+20/41*I,n=64 4180959434146784 r009 Im(z^3+c),c=-3/38+20/41*I,n=62 4180959434146784 r009 Im(z^3+c),c=-3/38+20/41*I,n=60 4180959434146784 r009 Im(z^3+c),c=-3/38+20/41*I,n=58 4180959434146784 r009 Im(z^3+c),c=-3/38+20/41*I,n=55 4180959434146788 r009 Im(z^3+c),c=-3/38+20/41*I,n=53 4180959434146793 r009 Im(z^3+c),c=-3/38+20/41*I,n=44 4180959434146801 r009 Im(z^3+c),c=-3/38+20/41*I,n=51 4180959434146841 r009 Im(z^3+c),c=-3/38+20/41*I,n=49 4180959434146926 r009 Im(z^3+c),c=-3/38+20/41*I,n=47 4180959434146962 r009 Im(z^3+c),c=-3/38+20/41*I,n=45 4180959434149165 r009 Im(z^3+c),c=-3/38+20/41*I,n=42 4180959434161453 r009 Im(z^3+c),c=-3/38+20/41*I,n=40 4180959434208279 r009 Im(z^3+c),c=-3/38+20/41*I,n=38 4180959434346268 r009 Im(z^3+c),c=-3/38+20/41*I,n=36 4180959434527543 r009 Im(z^3+c),c=-3/38+20/41*I,n=31 4180959434609921 r009 Im(z^3+c),c=-3/38+20/41*I,n=32 4180959434620853 r009 Im(z^3+c),c=-3/38+20/41*I,n=34 4180959441445483 a001 5473/161*3571^(10/17) 4180959443305490 r005 Im(z^2+c),c=-61/110+19/30*I,n=27 4180959443471218 m005 (1/2*Catalan+1/9)/(9/11*gamma+8/9) 4180959443728981 a001 4181/322*3571^(12/17) 4180959443803406 r009 Im(z^3+c),c=-3/38+20/41*I,n=29 4180959451086928 a001 17711/322*3571^(9/17) 4180959454493732 r002 33th iterates of z^2 + 4180959463439236 r005 Im(z^2+c),c=31/106+29/54*I,n=56 4180959465200265 r005 Im(z^2+c),c=31/106+29/54*I,n=60 4180959466344307 r005 Im(z^2+c),c=31/106+29/54*I,n=64 4180959469365914 a001 1292/161*9349^(13/19) 4180959474057135 a001 28657/322*3571^(8/17) 4180959477512413 a001 416020/161*1364^(1/15) 4180959482972905 q001 1682/4023 4180959488435547 r005 Re(z^2+c),c=35/118+23/43*I,n=39 4180959489386986 r009 Im(z^3+c),c=-3/38+20/41*I,n=27 4180959490297474 r005 Im(z^2+c),c=31/106+29/54*I,n=52 4180959491936207 a001 144*3571^(7/17) 4180959493881967 m003 -5+Sqrt[5]/32+(3*Sin[1/2+Sqrt[5]/2])/4 4180959494329951 r002 36th iterates of z^2 + 4180959496642362 m001 HeathBrownMoroz/(Sarnak^FeigenbaumMu) 4180959497774761 a001 1292/161*24476^(13/21) 4180959501519594 a001 1292/161*64079^(13/23) 4180959501706182 a001 8/321*20633239^(5/7) 4180959501706189 a001 8/321*2537720636^(5/9) 4180959501706189 a001 8/321*312119004989^(5/11) 4180959501706189 a001 8/321*(1/2+1/2*5^(1/2))^25 4180959501706189 a001 8/321*3461452808002^(5/12) 4180959501706189 a001 8/321*28143753123^(1/2) 4180959501706189 a001 8/321*228826127^(5/8) 4180959501707196 a001 8/321*1860498^(5/6) 4180959502095113 a001 1292/161*141422324^(1/3) 4180959502095113 a001 1292/161*(1/2+1/2*5^(1/2))^13 4180959502095113 a001 1292/161*73681302247^(1/4) 4180959502123485 a001 1292/161*271443^(1/2) 4180959502305783 a001 1292/161*103682^(13/24) 4180959503670331 a001 1292/161*39603^(13/22) 4180959507987064 b008 (2/5+Pi)^2/3 4180959511397937 r002 16i'th iterates of 2*x/(1-x^2) of 4180959511759920 a001 75025/322*3571^(6/17) 4180959513971483 a001 1292/161*15127^(13/20) 4180959517243753 m001 GAMMA(5/6)^2/ln(FeigenbaumKappa)/Zeta(9) 4180959523922749 r005 Re(z^2+c),c=-15/26+25/108*I,n=61 4180959523957331 m001 KhintchineLevy*ln(Lehmer)^2/log(1+sqrt(2))^2 4180959530840847 a001 121393/322*3571^(5/17) 4180959531992235 m008 (Pi^2+1/6)/(3/4*Pi^3+3/4) 4180959544931896 a007 Real Root Of -646*x^4+633*x^3+522*x^2+510*x-331 4180959550205493 a001 98209/161*3571^(4/17) 4180959566910719 m001 (Lehmer+PlouffeB)/(GAMMA(2/3)-ln(3)) 4180959569461768 a001 317811/322*3571^(3/17) 4180959573680811 a001 141/46*2207^(15/16) 4180959575476089 m001 ln(2)^CopelandErdos/Ei(1,1) 4180959579048074 a001 17480592/4181 4180959579104817 a004 Fibonacci(12)*Lucas(19)/(1/2+sqrt(5)/2)^12 4180959581363453 a001 6765/322*9349^(11/19) 4180959584327576 m006 (1/2/Pi-2/3)/(1/3*Pi+1/6) 4180959588759437 a001 514229/322*3571^(2/17) 4180959592541612 a001 1292/161*5778^(13/18) 4180959592987025 r002 29th iterates of z^2 + 4180959598921983 a007 Real Root Of 196*x^4-935*x^3-466*x^2-895*x+518 4180959602004301 a001 17711/322*9349^(9/19) 4180959605401710 a001 6765/322*24476^(11/21) 4180959608041295 a001 416020/161*3571^(1/17) 4180959608205911 a001 28657/322*9349^(8/19) 4180959608570414 a001 6765/322*64079^(11/23) 4180959608668409 a001 144/15127*7881196^(9/11) 4180959608668464 a001 144/15127*141422324^(9/13) 4180959608668464 a001 144/15127*2537720636^(3/5) 4180959608668464 a001 144/15127*45537549124^(9/17) 4180959608668464 a001 144/15127*817138163596^(9/19) 4180959608668464 a001 144/15127*14662949395604^(3/7) 4180959608668464 a001 144/15127*(1/2+1/2*5^(1/2))^27 4180959608668464 a001 144/15127*192900153618^(1/2) 4180959608668464 a001 144/15127*10749957122^(9/16) 4180959608668464 a001 144/15127*599074578^(9/14) 4180959608668467 a001 144/15127*33385282^(3/4) 4180959608669551 a001 144/15127*1860498^(9/10) 4180959608870886 m001 OneNinth*Riemann3rdZero^Si(Pi) 4180959609057370 a001 6765/322*7881196^(1/3) 4180959609057392 a001 6765/322*312119004989^(1/5) 4180959609057392 a001 6765/322*(1/2+1/2*5^(1/2))^11 4180959609057392 a001 6765/322*1568397607^(1/4) 4180959609131453 a001 5473/161*9349^(10/19) 4180959609235651 a001 6765/322*103682^(11/24) 4180959609316387 a001 144*9349^(7/19) 4180959610390268 a001 6765/322*39603^(1/2) 4180959611123198 r002 18th iterates of z^2 + 4180959611804012 m002 -2+2*Pi^3+Pi^3*Sinh[Pi] 4180959612371503 a001 75025/322*9349^(6/19) 4180959614683833 a001 121393/322*9349^(5/19) 4180959617279882 a001 98209/161*9349^(4/19) 4180959617978318 r009 Re(z^3+c),c=-53/102+7/43*I,n=45 4180959619106628 a001 6765/322*15127^(11/20) 4180959619767559 a001 317811/322*9349^(3/19) 4180959619952494 a001 1760184/421 4180959619960772 a004 Fibonacci(12)*Lucas(21)/(1/2+sqrt(5)/2)^14 4180959621671965 a001 17711/322*24476^(3/7) 4180959622296631 a001 514229/322*9349^(2/19) 4180959624264542 a001 17711/322*64079^(9/23) 4180959624274050 a001 48/13201*(1/2+1/2*5^(1/2))^29 4180959624274050 a001 48/13201*1322157322203^(1/2) 4180959624613459 a001 144*24476^(1/3) 4180959624655754 a001 17711/322*439204^(1/3) 4180959624662960 a001 17711/322*7881196^(3/11) 4180959624662978 a001 17711/322*141422324^(3/13) 4180959624662978 a001 17711/322*2537720636^(1/5) 4180959624662978 a001 17711/322*45537549124^(3/17) 4180959624662978 a001 17711/322*14662949395604^(1/7) 4180959624662978 a001 17711/322*(1/2+1/2*5^(1/2))^9 4180959624662978 a001 17711/322*192900153618^(1/6) 4180959624662978 a001 17711/322*10749957122^(3/16) 4180959624662978 a001 17711/322*599074578^(3/14) 4180959624662979 a001 17711/322*33385282^(1/4) 4180959624663341 a001 17711/322*1860498^(3/10) 4180959624808826 a001 17711/322*103682^(3/8) 4180959624809892 a001 416020/161*9349^(1/19) 4180959625483279 a001 75025/322*24476^(2/7) 4180959625610313 a001 121393/322*24476^(5/21) 4180959625688279 a001 28657/322*24476^(8/21) 4180959625753513 a001 17711/322*39603^(9/22) 4180959625920368 a001 119813760/28657 4180959625921576 a004 Fibonacci(12)*Lucas(23)/(1/2+sqrt(5)/2)^16 4180959626021066 a001 98209/161*24476^(4/21) 4180959626323448 a001 317811/322*24476^(1/7) 4180959626550875 a001 72/51841*(1/2+1/2*5^(1/2))^31 4180959626550875 a001 72/51841*9062201101803^(1/2) 4180959626629908 a001 144*64079^(7/23) 4180959626667223 a001 514229/322*24476^(2/21) 4180959626791069 a001 313676496/75025 4180959626791245 a004 Fibonacci(12)*Lucas(25)/(1/2+sqrt(5)/2)^18 4180959626883059 a001 48/90481*141422324^(11/13) 4180959626883059 a001 48/90481*2537720636^(11/15) 4180959626883059 a001 48/90481*45537549124^(11/17) 4180959626883059 a001 48/90481*312119004989^(3/5) 4180959626883059 a001 48/90481*14662949395604^(11/21) 4180959626883059 a001 48/90481*(1/2+1/2*5^(1/2))^33 4180959626883059 a001 48/90481*192900153618^(11/18) 4180959626883059 a001 48/90481*10749957122^(11/16) 4180959626883059 a001 48/90481*1568397607^(3/4) 4180959626883059 a001 48/90481*599074578^(11/14) 4180959626883062 a001 48/90481*33385282^(11/12) 4180959626918103 a001 410607864/98209 4180959626918128 a004 Fibonacci(12)*Lucas(27)/(1/2+sqrt(5)/2)^20 4180959626931524 a001 144/710647*2537720636^(7/9) 4180959626931524 a001 144/710647*17393796001^(5/7) 4180959626931524 a001 144/710647*312119004989^(7/11) 4180959626931524 a001 144/710647*14662949395604^(5/9) 4180959626931524 a001 144/710647*(1/2+1/2*5^(1/2))^35 4180959626931524 a001 144/710647*505019158607^(5/8) 4180959626931524 a001 144/710647*28143753123^(7/10) 4180959626931524 a001 144/710647*599074578^(5/6) 4180959626931524 a001 144/710647*228826127^(7/8) 4180959626936637 a001 2149970688/514229 4180959626936640 a004 Fibonacci(12)*Lucas(29)/(1/2+sqrt(5)/2)^22 4180959626938595 a001 8/103361*(1/2+1/2*5^(1/2))^37 4180959626939341 a001 5628696336/1346269 4180959626939341 a004 Fibonacci(12)*Lucas(31)/(1/2+sqrt(5)/2)^24 4180959626939626 a001 144/4870847*2537720636^(13/15) 4180959626939626 a001 144/4870847*45537549124^(13/17) 4180959626939626 a001 144/4870847*14662949395604^(13/21) 4180959626939626 a001 144/4870847*(1/2+1/2*5^(1/2))^39 4180959626939626 a001 144/4870847*192900153618^(13/18) 4180959626939626 a001 144/4870847*73681302247^(3/4) 4180959626939626 a001 144/4870847*10749957122^(13/16) 4180959626939626 a001 144/4870847*599074578^(13/14) 4180959626939735 a001 7368059160/1762289 4180959626939735 a004 Fibonacci(12)*Lucas(33)/(1/2+sqrt(5)/2)^26 4180959626939777 a001 48/4250681*(1/2+1/2*5^(1/2))^41 4180959626939793 a001 2967666048/709805 4180959626939793 a004 Fibonacci(12)*Lucas(35)/(1/2+sqrt(5)/2)^28 4180959626939799 a001 72/16692641*(1/2+1/2*5^(1/2))^43 4180959626939801 a001 144*20633239^(1/5) 4180959626939801 a001 101002857552/24157817 4180959626939801 a004 Fibonacci(12)*Lucas(37)/(1/2+sqrt(5)/2)^30 4180959626939802 a001 48/29134601*45537549124^(15/17) 4180959626939802 a001 48/29134601*312119004989^(9/11) 4180959626939802 a001 48/29134601*14662949395604^(5/7) 4180959626939802 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^45/Lucas(38) 4180959626939802 a001 48/29134601*192900153618^(5/6) 4180959626939802 a001 48/29134601*28143753123^(9/10) 4180959626939802 a001 48/29134601*10749957122^(15/16) 4180959626939802 a001 132214457016/31622993 4180959626939802 a004 Fibonacci(12)*Lucas(39)/(1/2+sqrt(5)/2)^32 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^47/Lucas(40) 4180959626939803 a001 692283884544/165580141 4180959626939803 a004 Fibonacci(12)*Lucas(41)/(1/2+sqrt(5)/2)^34 4180959626939803 a001 8/33281921*14662949395604^(7/9) 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^49/Lucas(42) 4180959626939803 a001 8/33281921*505019158607^(7/8) 4180959626939803 a001 1812422739600/433494437 4180959626939803 a004 Fibonacci(12)*Lucas(43)/(1/2+sqrt(5)/2)^36 4180959626939803 a001 144/1568397607*817138163596^(17/19) 4180959626939803 a001 144/1568397607*14662949395604^(17/21) 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^51/Lucas(44) 4180959626939803 a001 144/1568397607*192900153618^(17/18) 4180959626939803 a001 2372492167128/567451585 4180959626939803 a004 Fibonacci(12)*Lucas(45)/(1/2+sqrt(5)/2)^38 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^53/Lucas(46) 4180959626939803 a001 12422530263168/2971215073 4180959626939803 a004 Fibonacci(12)*Lucas(47)/(1/2+sqrt(5)/2)^40 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^55/Lucas(48) 4180959626939803 a001 72/5374978561*3461452808002^(11/12) 4180959626939803 a001 2501738958096/598364773 4180959626939803 a004 Fibonacci(12)*Lucas(49)/(1/2+sqrt(5)/2)^42 4180959626939803 a001 48/9381251041*14662949395604^(19/21) 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^57/Lucas(50) 4180959626939803 a001 42572644551288/10182505537 4180959626939803 a004 Fibonacci(12)*Lucas(51)/(1/2+sqrt(5)/2)^44 4180959626939803 a001 144*17393796001^(1/7) 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^59/Lucas(52) 4180959626939803 a001 222913260852480/53316291173 4180959626939803 a004 Fibonacci(12)*Lucas(53)/(1/2+sqrt(5)/2)^46 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^61/Lucas(54) 4180959626939803 a001 583594493454864/139583862445 4180959626939803 a004 Fibonacci(12)*Lucas(55)/(1/2+sqrt(5)/2)^48 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^63/Lucas(56) 4180959626939803 a004 Fibonacci(12)*Lucas(57)/(1/2+sqrt(5)/2)^50 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^65/Lucas(58) 4180959626939803 a004 Fibonacci(12)*Lucas(59)/(1/2+sqrt(5)/2)^52 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^67/Lucas(60) 4180959626939803 a004 Fibonacci(12)*Lucas(61)/(1/2+sqrt(5)/2)^54 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^69/Lucas(62) 4180959626939803 a004 Fibonacci(12)*Lucas(63)/(1/2+sqrt(5)/2)^56 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^71/Lucas(64) 4180959626939803 a004 Fibonacci(12)*Lucas(65)/(1/2+sqrt(5)/2)^58 4180959626939803 a001 144*14662949395604^(1/9) 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^73/Lucas(66) 4180959626939803 a004 Fibonacci(12)*Lucas(67)/(1/2+sqrt(5)/2)^60 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^75/Lucas(68) 4180959626939803 a004 Fibonacci(12)*Lucas(69)/(1/2+sqrt(5)/2)^62 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^77/Lucas(70) 4180959626939803 a004 Fibonacci(12)*Lucas(71)/(1/2+sqrt(5)/2)^64 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^79/Lucas(72) 4180959626939803 a004 Fibonacci(12)*Lucas(73)/(1/2+sqrt(5)/2)^66 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^81/Lucas(74) 4180959626939803 a004 Fibonacci(12)*Lucas(75)/(1/2+sqrt(5)/2)^68 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^83/Lucas(76) 4180959626939803 a004 Fibonacci(12)*Lucas(77)/(1/2+sqrt(5)/2)^70 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^85/Lucas(78) 4180959626939803 a004 Fibonacci(12)*Lucas(79)/(1/2+sqrt(5)/2)^72 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^87/Lucas(80) 4180959626939803 a004 Fibonacci(12)*Lucas(81)/(1/2+sqrt(5)/2)^74 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^89/Lucas(82) 4180959626939803 a004 Fibonacci(12)*Lucas(83)/(1/2+sqrt(5)/2)^76 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^91/Lucas(84) 4180959626939803 a004 Fibonacci(12)*Lucas(85)/(1/2+sqrt(5)/2)^78 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^93/Lucas(86) 4180959626939803 a004 Fibonacci(12)*Lucas(87)/(1/2+sqrt(5)/2)^80 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^95/Lucas(88) 4180959626939803 a004 Fibonacci(12)*Lucas(89)/(1/2+sqrt(5)/2)^82 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^97/Lucas(90) 4180959626939803 a004 Fibonacci(12)*Lucas(91)/(1/2+sqrt(5)/2)^84 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^99/Lucas(92) 4180959626939803 a004 Fibonacci(12)*Lucas(93)/(1/2+sqrt(5)/2)^86 4180959626939803 a004 Fibonacci(12)*Lucas(95)/(1/2+sqrt(5)/2)^88 4180959626939803 a004 Fibonacci(12)*Lucas(97)/(1/2+sqrt(5)/2)^90 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^7/Lucas(1) 4180959626939803 a004 Fibonacci(12)*Lucas(100)/(1/2+sqrt(5)/2)^93 4180959626939803 a004 Fibonacci(12)*Lucas(98)/(1/2+sqrt(5)/2)^91 4180959626939803 a004 Fibonacci(12)*Lucas(99)/(1/2+sqrt(5)/2)^92 4180959626939803 a004 Fibonacci(12)*Lucas(96)/(1/2+sqrt(5)/2)^89 4180959626939803 a004 Fibonacci(12)*Lucas(94)/(1/2+sqrt(5)/2)^87 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^100/Lucas(93) 4180959626939803 a004 Fibonacci(12)*Lucas(92)/(1/2+sqrt(5)/2)^85 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^98/Lucas(91) 4180959626939803 a004 Fibonacci(12)*Lucas(90)/(1/2+sqrt(5)/2)^83 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^96/Lucas(89) 4180959626939803 a004 Fibonacci(12)*Lucas(88)/(1/2+sqrt(5)/2)^81 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^94/Lucas(87) 4180959626939803 a004 Fibonacci(12)*Lucas(86)/(1/2+sqrt(5)/2)^79 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^92/Lucas(85) 4180959626939803 a004 Fibonacci(12)*Lucas(84)/(1/2+sqrt(5)/2)^77 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^90/Lucas(83) 4180959626939803 a004 Fibonacci(12)*Lucas(82)/(1/2+sqrt(5)/2)^75 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^88/Lucas(81) 4180959626939803 a004 Fibonacci(12)*Lucas(80)/(1/2+sqrt(5)/2)^73 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^86/Lucas(79) 4180959626939803 a004 Fibonacci(12)*Lucas(78)/(1/2+sqrt(5)/2)^71 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^84/Lucas(77) 4180959626939803 a004 Fibonacci(12)*Lucas(76)/(1/2+sqrt(5)/2)^69 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^82/Lucas(75) 4180959626939803 a004 Fibonacci(12)*Lucas(74)/(1/2+sqrt(5)/2)^67 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^80/Lucas(73) 4180959626939803 a004 Fibonacci(12)*Lucas(72)/(1/2+sqrt(5)/2)^65 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^78/Lucas(71) 4180959626939803 a004 Fibonacci(12)*Lucas(70)/(1/2+sqrt(5)/2)^63 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^76/Lucas(69) 4180959626939803 a004 Fibonacci(12)*Lucas(68)/(1/2+sqrt(5)/2)^61 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^74/Lucas(67) 4180959626939803 a004 Fibonacci(12)*Lucas(66)/(1/2+sqrt(5)/2)^59 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^72/Lucas(65) 4180959626939803 a004 Fibonacci(12)*Lucas(64)/(1/2+sqrt(5)/2)^57 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^70/Lucas(63) 4180959626939803 a004 Fibonacci(12)*Lucas(62)/(1/2+sqrt(5)/2)^55 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^68/Lucas(61) 4180959626939803 a004 Fibonacci(12)*Lucas(60)/(1/2+sqrt(5)/2)^53 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^66/Lucas(59) 4180959626939803 a004 Fibonacci(12)*Lucas(58)/(1/2+sqrt(5)/2)^51 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^64/Lucas(57) 4180959626939803 a004 Fibonacci(12)*Lucas(56)/(1/2+sqrt(5)/2)^49 4180959626939803 a001 24212198104032/5791062403 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^62/Lucas(55) 4180959626939803 a004 Fibonacci(12)*Lucas(54)/(1/2+sqrt(5)/2)^47 4180959626939803 a001 45085154075298/10783446409 4180959626939803 a001 144/119218851371*14662949395604^(20/21) 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^60/Lucas(53) 4180959626939803 a004 Fibonacci(12)*Lucas(52)/(1/2+sqrt(5)/2)^45 4180959626939803 a001 45922657249968/10983760033 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^58/Lucas(51) 4180959626939803 a004 Fibonacci(12)*Lucas(50)/(1/2+sqrt(5)/2)^43 4180959626939803 a001 52622682647328/12586269025 4180959626939803 a001 144/17393796001*14662949395604^(8/9) 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^56/Lucas(49) 4180959626939803 a004 Fibonacci(12)*Lucas(48)/(1/2+sqrt(5)/2)^41 4180959626939803 a001 139583862445/33385604 4180959626939803 a001 144/6643838879*14662949395604^(6/7) 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^54/Lucas(47) 4180959626939803 a004 Fibonacci(12)*Lucas(46)/(1/2+sqrt(5)/2)^39 4180959626939803 a001 7677545928912/1836311903 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^52/Lucas(45) 4180959626939803 a001 36/634430159*23725150497407^(13/16) 4180959626939803 a001 36/634430159*505019158607^(13/14) 4180959626939803 a004 Fibonacci(12)*Lucas(44)/(1/2+sqrt(5)/2)^37 4180959626939803 a001 977520531552/233802911 4180959626939803 a001 144*599074578^(1/6) 4180959626939803 a001 144/969323029*312119004989^(10/11) 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^50/Lucas(43) 4180959626939803 a001 144/969323029*3461452808002^(5/6) 4180959626939803 a004 Fibonacci(12)*Lucas(42)/(1/2+sqrt(5)/2)^35 4180959626939803 a001 10770565914/2576099 4180959626939803 a001 144/370248451*45537549124^(16/17) 4180959626939803 a001 144/370248451*14662949395604^(16/21) 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^48/Lucas(41) 4180959626939803 a001 144/370248451*192900153618^(8/9) 4180959626939803 a001 144/370248451*73681302247^(12/13) 4180959626939803 a004 Fibonacci(12)*Lucas(40)/(1/2+sqrt(5)/2)^33 4180959626939803 a001 142618323504/34111385 4180959626939803 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^46/Lucas(39) 4180959626939803 a001 36/35355581*10749957122^(23/24) 4180959626939803 a004 Fibonacci(12)*Lucas(38)/(1/2+sqrt(5)/2)^31 4180959626939803 a001 163426056480/39088169 4180959626939804 a001 144/54018521*312119004989^(4/5) 4180959626939804 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^44/Lucas(37) 4180959626939804 a001 144/54018521*23725150497407^(11/16) 4180959626939804 a001 144/54018521*73681302247^(11/13) 4180959626939804 a001 144/54018521*10749957122^(11/12) 4180959626939804 a001 144/54018521*4106118243^(22/23) 4180959626939806 a004 Fibonacci(12)*Lucas(36)/(1/2+sqrt(5)/2)^29 4180959626939806 a001 433494437/103683 4180959626939812 a001 144/20633239*2537720636^(14/15) 4180959626939812 a001 144/20633239*17393796001^(6/7) 4180959626939812 a001 144/20633239*45537549124^(14/17) 4180959626939812 a001 144/20633239*817138163596^(14/19) 4180959626939812 a001 144/20633239*14662949395604^(2/3) 4180959626939812 a001 144/20633239*(1/2+1/2*5^(1/2))^42 4180959626939812 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^42/Lucas(35) 4180959626939812 a001 144/20633239*505019158607^(3/4) 4180959626939812 a001 144/20633239*192900153618^(7/9) 4180959626939812 a001 144/20633239*10749957122^(7/8) 4180959626939812 a001 144/20633239*4106118243^(21/23) 4180959626939812 a001 144/20633239*1568397607^(21/22) 4180959626939828 a004 Fibonacci(12)*Lucas(34)/(1/2+sqrt(5)/2)^27 4180959626939828 a001 23843540304/5702887 4180959626939870 a001 36/1970299*2537720636^(8/9) 4180959626939870 a001 36/1970299*312119004989^(8/11) 4180959626939870 a001 36/1970299*(1/2+1/2*5^(1/2))^40 4180959626939870 a001 36/1970299*23725150497407^(5/8) 4180959626939870 a001 36/1970299*73681302247^(10/13) 4180959626939870 a001 36/1970299*28143753123^(4/5) 4180959626939870 a001 36/1970299*10749957122^(5/6) 4180959626939870 a001 36/1970299*4106118243^(20/23) 4180959626939870 a001 36/1970299*1568397607^(10/11) 4180959626939870 a001 36/1970299*599074578^(20/21) 4180959626939979 a004 Fibonacci(12)*Lucas(32)/(1/2+sqrt(5)/2)^25 4180959626939979 a001 3035807328/726103 4180959626940264 a001 144/3010349*817138163596^(2/3) 4180959626940264 a001 144/3010349*(1/2+1/2*5^(1/2))^38 4180959626940264 a001 144/3010349*10749957122^(19/24) 4180959626940264 a001 144/3010349*4106118243^(19/23) 4180959626940264 a001 144/3010349*1568397607^(19/22) 4180959626940264 a001 144/3010349*599074578^(19/21) 4180959626940264 a001 144/3010349*228826127^(19/20) 4180959626941011 a004 Fibonacci(12)*Lucas(30)/(1/2+sqrt(5)/2)^23 4180959626941012 a001 434840706/104005 4180959626941872 a001 144*710647^(1/4) 4180959626942965 a001 144/1149851*141422324^(12/13) 4180959626942965 a001 144/1149851*2537720636^(4/5) 4180959626942965 a001 144/1149851*45537549124^(12/17) 4180959626942965 a001 144/1149851*14662949395604^(4/7) 4180959626942965 a001 144/1149851*(1/2+1/2*5^(1/2))^36 4180959626942965 a001 144/1149851*505019158607^(9/14) 4180959626942965 a001 144/1149851*192900153618^(2/3) 4180959626942965 a001 144/1149851*73681302247^(9/13) 4180959626942965 a001 144/1149851*10749957122^(3/4) 4180959626942965 a001 144/1149851*4106118243^(18/23) 4180959626942965 a001 144/1149851*1568397607^(9/11) 4180959626942965 a001 144/1149851*599074578^(6/7) 4180959626942965 a001 144/1149851*228826127^(9/10) 4180959626942965 a001 144/1149851*87403803^(18/19) 4180959626948081 a004 Fibonacci(12)*Lucas(28)/(1/2+sqrt(5)/2)^21 4180959626948091 a001 34070640/8149 4180959626961477 a001 36/109801*45537549124^(2/3) 4180959626961477 a001 36/109801*(1/2+1/2*5^(1/2))^34 4180959626961477 a001 36/109801*10749957122^(17/24) 4180959626961477 a001 36/109801*4106118243^(17/23) 4180959626961477 a001 36/109801*1568397607^(17/22) 4180959626961477 a001 36/109801*599074578^(17/21) 4180959626961477 a001 36/109801*228826127^(17/20) 4180959626961477 a001 36/109801*87403803^(17/19) 4180959626961480 a001 36/109801*33385282^(17/18) 4180959626995188 a001 416020/161*24476^(1/21) 4180959626996546 a004 Fibonacci(12)*Lucas(26)/(1/2+sqrt(5)/2)^19 4180959626996614 a001 507539232/121393 4180959627050633 a001 121393/322*64079^(5/23) 4180959627053240 a001 144*103682^(7/24) 4180959627088360 a001 144/167761*(1/2+1/2*5^(1/2))^32 4180959627088360 a001 144/167761*23725150497407^(1/2) 4180959627088360 a001 144/167761*505019158607^(4/7) 4180959627088360 a001 144/167761*73681302247^(8/13) 4180959627088360 a001 144/167761*10749957122^(2/3) 4180959627088360 a001 144/167761*4106118243^(16/23) 4180959627088360 a001 144/167761*1568397607^(8/11) 4180959627088360 a001 144/167761*599074578^(16/21) 4180959627088360 a001 144/167761*228826127^(4/5) 4180959627088360 a001 144/167761*87403803^(16/19) 4180959627088363 a001 144/167761*33385282^(8/9) 4180959627088384 a001 144/167761*12752043^(16/17) 4180959627173322 a001 98209/161*64079^(4/23) 4180959627187640 a001 317811/322*64079^(3/23) 4180959627211664 a001 75025/322*64079^(6/23) 4180959627242275 a001 121393/322*167761^(1/5) 4180959627243351 a001 514229/322*64079^(2/23) 4180959627271985 a001 121393/322*20633239^(1/7) 4180959627271987 a001 121393/322*2537720636^(1/9) 4180959627271987 a001 121393/322*312119004989^(1/11) 4180959627271987 a001 121393/322*(1/2+1/2*5^(1/2))^5 4180959627271987 a001 121393/322*28143753123^(1/10) 4180959627271987 a001 121393/322*228826127^(1/8) 4180959627272188 a001 121393/322*1860498^(1/6) 4180959627283252 a001 416020/161*64079^(1/23) 4180959627318044 a001 317811/322*439204^(1/9) 4180959627320446 a001 317811/322*7881196^(1/11) 4180959627320452 a001 317811/322*141422324^(1/13) 4180959627320452 a001 317811/322*2537720636^(1/15) 4180959627320452 a001 317811/322*45537549124^(1/17) 4180959627320452 a001 317811/322*14662949395604^(1/21) 4180959627320452 a001 317811/322*(1/2+1/2*5^(1/2))^3 4180959627320452 a001 317811/322*192900153618^(1/18) 4180959627320452 a001 317811/322*10749957122^(1/16) 4180959627320452 a001 317811/322*599074578^(1/14) 4180959627320452 a001 317811/322*33385282^(1/12) 4180959627320573 a001 317811/322*1860498^(1/10) 4180959627327523 a001 208010/161+208010/161*5^(1/2) 4180959627328554 a004 Fibonacci(32)/Lucas(12)/(1/2+sqrt(5)/2) 4180959627328705 a004 Fibonacci(34)/Lucas(12)/(1/2+sqrt(5)/2)^3 4180959627328727 a004 Fibonacci(36)/Lucas(12)/(1/2+sqrt(5)/2)^5 4180959627328730 a004 Fibonacci(38)/Lucas(12)/(1/2+sqrt(5)/2)^7 4180959627328731 a004 Fibonacci(40)/Lucas(12)/(1/2+sqrt(5)/2)^9 4180959627328731 a004 Fibonacci(42)/Lucas(12)/(1/2+sqrt(5)/2)^11 4180959627328731 a004 Fibonacci(44)/Lucas(12)/(1/2+sqrt(5)/2)^13 4180959627328731 a004 Fibonacci(46)/Lucas(12)/(1/2+sqrt(5)/2)^15 4180959627328731 a004 Fibonacci(12)*Lucas(24)/(1/2+sqrt(5)/2)^17 4180959627328731 a004 Fibonacci(48)/Lucas(12)/(1/2+sqrt(5)/2)^17 4180959627328731 a004 Fibonacci(50)/Lucas(12)/(1/2+sqrt(5)/2)^19 4180959627328731 a004 Fibonacci(52)/Lucas(12)/(1/2+sqrt(5)/2)^21 4180959627328731 a004 Fibonacci(54)/Lucas(12)/(1/2+sqrt(5)/2)^23 4180959627328731 a004 Fibonacci(56)/Lucas(12)/(1/2+sqrt(5)/2)^25 4180959627328731 a004 Fibonacci(58)/Lucas(12)/(1/2+sqrt(5)/2)^27 4180959627328731 a004 Fibonacci(60)/Lucas(12)/(1/2+sqrt(5)/2)^29 4180959627328731 a004 Fibonacci(62)/Lucas(12)/(1/2+sqrt(5)/2)^31 4180959627328731 a004 Fibonacci(64)/Lucas(12)/(1/2+sqrt(5)/2)^33 4180959627328731 a004 Fibonacci(66)/Lucas(12)/(1/2+sqrt(5)/2)^35 4180959627328731 a004 Fibonacci(68)/Lucas(12)/(1/2+sqrt(5)/2)^37 4180959627328731 a004 Fibonacci(70)/Lucas(12)/(1/2+sqrt(5)/2)^39 4180959627328731 a004 Fibonacci(72)/Lucas(12)/(1/2+sqrt(5)/2)^41 4180959627328731 a004 Fibonacci(74)/Lucas(12)/(1/2+sqrt(5)/2)^43 4180959627328731 a004 Fibonacci(76)/Lucas(12)/(1/2+sqrt(5)/2)^45 4180959627328731 a004 Fibonacci(78)/Lucas(12)/(1/2+sqrt(5)/2)^47 4180959627328731 a004 Fibonacci(80)/Lucas(12)/(1/2+sqrt(5)/2)^49 4180959627328731 a004 Fibonacci(82)/Lucas(12)/(1/2+sqrt(5)/2)^51 4180959627328731 a004 Fibonacci(84)/Lucas(12)/(1/2+sqrt(5)/2)^53 4180959627328731 a004 Fibonacci(86)/Lucas(12)/(1/2+sqrt(5)/2)^55 4180959627328731 a004 Fibonacci(88)/Lucas(12)/(1/2+sqrt(5)/2)^57 4180959627328731 a004 Fibonacci(90)/Lucas(12)/(1/2+sqrt(5)/2)^59 4180959627328731 a004 Fibonacci(92)/Lucas(12)/(1/2+sqrt(5)/2)^61 4180959627328731 a004 Fibonacci(94)/Lucas(12)/(1/2+sqrt(5)/2)^63 4180959627328731 a004 Fibonacci(96)/Lucas(12)/(1/2+sqrt(5)/2)^65 4180959627328731 a004 Fibonacci(98)/Lucas(12)/(1/2+sqrt(5)/2)^67 4180959627328731 a004 Fibonacci(100)/Lucas(12)/(1/2+sqrt(5)/2)^69 4180959627328731 a004 Fibonacci(99)/Lucas(12)/(1/2+sqrt(5)/2)^68 4180959627328731 a004 Fibonacci(97)/Lucas(12)/(1/2+sqrt(5)/2)^66 4180959627328731 a004 Fibonacci(95)/Lucas(12)/(1/2+sqrt(5)/2)^64 4180959627328731 a004 Fibonacci(93)/Lucas(12)/(1/2+sqrt(5)/2)^62 4180959627328731 a004 Fibonacci(91)/Lucas(12)/(1/2+sqrt(5)/2)^60 4180959627328731 a004 Fibonacci(89)/Lucas(12)/(1/2+sqrt(5)/2)^58 4180959627328731 a004 Fibonacci(87)/Lucas(12)/(1/2+sqrt(5)/2)^56 4180959627328731 a004 Fibonacci(85)/Lucas(12)/(1/2+sqrt(5)/2)^54 4180959627328731 a004 Fibonacci(83)/Lucas(12)/(1/2+sqrt(5)/2)^52 4180959627328731 a004 Fibonacci(81)/Lucas(12)/(1/2+sqrt(5)/2)^50 4180959627328731 a004 Fibonacci(79)/Lucas(12)/(1/2+sqrt(5)/2)^48 4180959627328731 a004 Fibonacci(77)/Lucas(12)/(1/2+sqrt(5)/2)^46 4180959627328731 a004 Fibonacci(75)/Lucas(12)/(1/2+sqrt(5)/2)^44 4180959627328731 a004 Fibonacci(73)/Lucas(12)/(1/2+sqrt(5)/2)^42 4180959627328731 a004 Fibonacci(71)/Lucas(12)/(1/2+sqrt(5)/2)^40 4180959627328731 a004 Fibonacci(69)/Lucas(12)/(1/2+sqrt(5)/2)^38 4180959627328731 a004 Fibonacci(67)/Lucas(12)/(1/2+sqrt(5)/2)^36 4180959627328731 a004 Fibonacci(65)/Lucas(12)/(1/2+sqrt(5)/2)^34 4180959627328731 a004 Fibonacci(63)/Lucas(12)/(1/2+sqrt(5)/2)^32 4180959627328731 a004 Fibonacci(61)/Lucas(12)/(1/2+sqrt(5)/2)^30 4180959627328731 a004 Fibonacci(59)/Lucas(12)/(1/2+sqrt(5)/2)^28 4180959627328731 a004 Fibonacci(57)/Lucas(12)/(1/2+sqrt(5)/2)^26 4180959627328731 a004 Fibonacci(55)/Lucas(12)/(1/2+sqrt(5)/2)^24 4180959627328731 a004 Fibonacci(53)/Lucas(12)/(1/2+sqrt(5)/2)^22 4180959627328731 a004 Fibonacci(51)/Lucas(12)/(1/2+sqrt(5)/2)^20 4180959627328731 a004 Fibonacci(49)/Lucas(12)/(1/2+sqrt(5)/2)^18 4180959627328731 a004 Fibonacci(47)/Lucas(12)/(1/2+sqrt(5)/2)^16 4180959627328731 a004 Fibonacci(45)/Lucas(12)/(1/2+sqrt(5)/2)^14 4180959627328731 a004 Fibonacci(43)/Lucas(12)/(1/2+sqrt(5)/2)^12 4180959627328731 a004 Fibonacci(41)/Lucas(12)/(1/2+sqrt(5)/2)^10 4180959627328731 a004 Fibonacci(39)/Lucas(12)/(1/2+sqrt(5)/2)^8 4180959627328732 a004 Fibonacci(37)/Lucas(12)/(1/2+sqrt(5)/2)^6 4180959627328741 a004 Fibonacci(35)/Lucas(12)/(1/2+sqrt(5)/2)^4 4180959627328798 a004 Fibonacci(33)/Lucas(12)/(1/2+sqrt(5)/2)^2 4180959627329192 a001 1346269/322 4180959627331893 a001 514229/322*(1/2+1/2*5^(1/2))^2 4180959627331893 a001 514229/322*10749957122^(1/24) 4180959627331893 a001 514229/322*4106118243^(1/23) 4180959627331893 a001 514229/322*1568397607^(1/22) 4180959627331893 a001 514229/322*599074578^(1/21) 4180959627331893 a001 514229/322*228826127^(1/20) 4180959627331893 a001 514229/322*87403803^(1/19) 4180959627331893 a001 514229/322*33385282^(1/18) 4180959627331894 a001 514229/322*12752043^(1/17) 4180959627331904 a001 514229/322*4870847^(1/16) 4180959627331973 a001 514229/322*1860498^(1/15) 4180959627332484 a001 514229/322*710647^(1/14) 4180959627336258 a001 514229/322*271443^(1/13) 4180959627343728 a001 416020/161*103682^(1/24) 4180959627350405 a001 98209/161*(1/2+1/2*5^(1/2))^4 4180959627350405 a001 98209/161*23725150497407^(1/16) 4180959627350405 a001 98209/161*73681302247^(1/13) 4180959627350405 a001 98209/161*10749957122^(1/12) 4180959627350405 a001 98209/161*4106118243^(2/23) 4180959627350405 a001 98209/161*1568397607^(1/11) 4180959627350405 a001 98209/161*599074578^(2/21) 4180959627350405 a001 98209/161*228826127^(1/10) 4180959627350405 a001 98209/161*87403803^(2/19) 4180959627350405 a001 98209/161*33385282^(1/9) 4180959627350408 a001 98209/161*12752043^(2/17) 4180959627350427 a001 98209/161*4870847^(1/8) 4180959627350566 a001 98209/161*1860498^(2/15) 4180959627351588 a001 98209/161*710647^(1/7) 4180959627353014 a001 121393/322*103682^(5/24) 4180959627359135 a001 98209/161*271443^(2/13) 4180959627364304 a001 514229/322*103682^(1/12) 4180959627369068 a001 317811/322*103682^(1/8) 4180959627415226 a001 98209/161*103682^(1/6) 4180959627448693 a001 416020/161*39603^(1/22) 4180959627472471 a001 75025/322*439204^(2/9) 4180959627477276 a001 75025/322*7881196^(2/11) 4180959627477288 a001 75025/322*141422324^(2/13) 4180959627477288 a001 75025/322*2537720636^(2/15) 4180959627477288 a001 75025/322*45537549124^(2/17) 4180959627477288 a001 75025/322*14662949395604^(2/21) 4180959627477288 a001 75025/322*(1/2+1/2*5^(1/2))^6 4180959627477288 a001 75025/322*10749957122^(1/8) 4180959627477288 a001 75025/322*4106118243^(3/23) 4180959627477288 a001 75025/322*1568397607^(3/22) 4180959627477288 a001 75025/322*599074578^(1/7) 4180959627477288 a001 75025/322*228826127^(3/20) 4180959627477288 a001 75025/322*87403803^(3/19) 4180959627477289 a001 75025/322*33385282^(1/6) 4180959627477293 a001 75025/322*12752043^(3/17) 4180959627477321 a001 75025/322*4870847^(3/16) 4180959627477530 a001 75025/322*1860498^(1/5) 4180959627479062 a001 75025/322*710647^(3/14) 4180959627490383 a001 75025/322*271443^(3/13) 4180959627574234 a001 514229/322*39603^(1/11) 4180959627574520 a001 75025/322*103682^(1/4) 4180959627683964 a001 317811/322*39603^(3/22) 4180959627787997 a001 144*39603^(7/22) 4180959627835087 a001 98209/161*39603^(2/11) 4180959627877840 a001 121393/322*39603^(5/22) 4180959627957968 a001 144/64079*7881196^(10/11) 4180959627958021 a001 144/64079*20633239^(6/7) 4180959627958029 a001 144/64079*141422324^(10/13) 4180959627958029 a001 144/64079*2537720636^(2/3) 4180959627958029 a001 144/64079*45537549124^(10/17) 4180959627958029 a001 144/64079*312119004989^(6/11) 4180959627958029 a001 144/64079*14662949395604^(10/21) 4180959627958029 a001 144/64079*(1/2+1/2*5^(1/2))^30 4180959627958029 a001 144/64079*192900153618^(5/9) 4180959627958029 a001 144/64079*28143753123^(3/5) 4180959627958029 a001 144/64079*10749957122^(5/8) 4180959627958029 a001 144/64079*4106118243^(15/23) 4180959627958029 a001 144/64079*1568397607^(15/22) 4180959627958029 a001 144/64079*599074578^(5/7) 4180959627958030 a001 144/64079*228826127^(3/4) 4180959627958030 a001 144/64079*87403803^(15/19) 4180959627958033 a001 144/64079*33385282^(5/6) 4180959627958052 a001 144/64079*12752043^(15/17) 4180959627958195 a001 144/64079*4870847^(15/16) 4180959627992792 a001 28657/322*64079^(8/23) 4180959628204311 a001 75025/322*39603^(3/11) 4180959628241090 a001 416020/161*15127^(1/20) 4180959628346957 a001 28657/322*(1/2+1/2*5^(1/2))^8 4180959628346957 a001 28657/322*23725150497407^(1/8) 4180959628346957 a001 28657/322*505019158607^(1/7) 4180959628346957 a001 28657/322*73681302247^(2/13) 4180959628346957 a001 28657/322*10749957122^(1/6) 4180959628346957 a001 28657/322*4106118243^(4/23) 4180959628346957 a001 28657/322*1568397607^(2/11) 4180959628346957 a001 28657/322*599074578^(4/21) 4180959628346957 a001 28657/322*228826127^(1/5) 4180959628346958 a001 28657/322*87403803^(4/19) 4180959628346958 a001 28657/322*33385282^(2/9) 4180959628346964 a001 28657/322*12752043^(4/17) 4180959628347002 a001 28657/322*4870847^(1/4) 4180959628347280 a001 28657/322*1860498^(4/15) 4180959628349323 a001 28657/322*710647^(2/7) 4180959628364417 a001 28657/322*271443^(4/13) 4180959628476600 a001 28657/322*103682^(1/3) 4180959629159027 a001 514229/322*15127^(1/10) 4180959629316322 a001 28657/322*39603^(4/11) 4180959629605555 a004 Fibonacci(12)*Lucas(22)/(1/2+sqrt(5)/2)^15 4180959629608717 a001 74048976/17711 4180959630061153 a001 317811/322*15127^(3/20) 4180959630984413 a001 5473/161*24476^(10/21) 4180959631004673 a001 98209/161*15127^(1/5) 4180959631839821 a001 121393/322*15127^(1/4) 4180959632885081 a001 17711/322*15127^(9/20) 4180959632958690 a001 75025/322*15127^(3/10) 4180959633334771 a001 144*15127^(7/20) 4180959633865054 a001 5473/161*64079^(10/23) 4180959633918825 a001 36/6119*20633239^(4/5) 4180959633918833 a001 36/6119*17393796001^(4/7) 4180959633918833 a001 36/6119*14662949395604^(4/9) 4180959633918833 a001 36/6119*(1/2+1/2*5^(1/2))^28 4180959633918833 a001 36/6119*505019158607^(1/2) 4180959633918833 a001 36/6119*73681302247^(7/13) 4180959633918833 a001 36/6119*10749957122^(7/12) 4180959633918833 a001 36/6119*4106118243^(14/23) 4180959633918833 a001 36/6119*1568397607^(7/11) 4180959633918833 a001 36/6119*599074578^(2/3) 4180959633918833 a001 36/6119*228826127^(7/10) 4180959633918833 a001 36/6119*87403803^(14/19) 4180959633918836 a001 36/6119*33385282^(7/9) 4180959633918854 a001 36/6119*12752043^(14/17) 4180959633918987 a001 36/6119*4870847^(7/8) 4180959633919960 a001 36/6119*1860498^(14/15) 4180959634248338 a001 5473/161*167761^(2/5) 4180959634284946 a001 416020/161*5778^(1/18) 4180959634307758 a001 5473/161*20633239^(2/7) 4180959634307761 a001 5473/161*2537720636^(2/9) 4180959634307761 a001 5473/161*312119004989^(2/11) 4180959634307761 a001 5473/161*(1/2+1/2*5^(1/2))^10 4180959634307761 a001 5473/161*28143753123^(1/5) 4180959634307761 a001 5473/161*10749957122^(5/24) 4180959634307761 a001 5473/161*4106118243^(5/23) 4180959634307761 a001 5473/161*1568397607^(5/22) 4180959634307761 a001 5473/161*599074578^(5/21) 4180959634307761 a001 5473/161*228826127^(1/4) 4180959634307761 a001 5473/161*87403803^(5/19) 4180959634307762 a001 5473/161*33385282^(5/18) 4180959634307769 a001 5473/161*12752043^(5/17) 4180959634307816 a001 5473/161*4870847^(5/16) 4180959634308164 a001 5473/161*1860498^(1/3) 4180959634310718 a001 5473/161*710647^(5/14) 4180959634329586 a001 5473/161*271443^(5/13) 4180959634469814 a001 5473/161*103682^(5/12) 4180959635519467 a001 5473/161*39603^(5/11) 4180959635655493 a001 28657/322*15127^(2/5) 4180959641246739 a001 514229/322*5778^(1/9) 4180959643443430 a001 5473/161*15127^(1/2) 4180959644952146 a001 4181/322*9349^(12/19) 4180959645211141 a004 Fibonacci(12)*Lucas(20)/(1/2+sqrt(5)/2)^13 4180959645232815 a001 9428064/2255 4180959648192721 a001 317811/322*5778^(1/6) 4180959651129708 r005 Re(z^2+c),c=-39/64+15/43*I,n=53 4180959652551408 r002 7th iterates of z^2 + 4180959655180097 a001 98209/161*5778^(2/9) 4180959657125204 r009 Im(z^3+c),c=-3/38+20/41*I,n=25 4180959662059102 a001 121393/322*5778^(5/18) 4180959665429361 r009 Re(z^3+c),c=-23/56+13/58*I,n=2 4180959669221827 a001 75025/322*5778^(1/3) 4180959671175699 a001 4181/322*24476^(4/7) 4180959674632467 a001 4181/322*64079^(12/23) 4180959674774788 a001 144/9349*141422324^(2/3) 4180959674774788 a001 144/9349*(1/2+1/2*5^(1/2))^26 4180959674774788 a001 144/9349*73681302247^(1/2) 4180959674774788 a001 144/9349*10749957122^(13/24) 4180959674774788 a001 144/9349*4106118243^(13/23) 4180959674774788 a001 144/9349*1568397607^(13/22) 4180959674774788 a001 144/9349*599074578^(13/21) 4180959674774789 a001 144/9349*228826127^(13/20) 4180959674774789 a001 144/9349*87403803^(13/19) 4180959674774791 a001 144/9349*33385282^(13/18) 4180959674774808 a001 144/9349*12752043^(13/17) 4180959674774932 a001 144/9349*4870847^(13/16) 4180959674775835 a001 144/9349*1860498^(13/15) 4180959674782476 a001 144/9349*710647^(13/14) 4180959675154083 a001 4181/322*439204^(4/9) 4180959675163691 a001 4181/322*7881196^(4/11) 4180959675163716 a001 4181/322*141422324^(4/13) 4180959675163716 a001 4181/322*2537720636^(4/15) 4180959675163716 a001 4181/322*45537549124^(4/17) 4180959675163716 a001 4181/322*817138163596^(4/19) 4180959675163716 a001 4181/322*14662949395604^(4/21) 4180959675163716 a001 4181/322*(1/2+1/2*5^(1/2))^12 4180959675163716 a001 4181/322*192900153618^(2/9) 4180959675163716 a001 4181/322*73681302247^(3/13) 4180959675163716 a001 4181/322*10749957122^(1/4) 4180959675163716 a001 4181/322*4106118243^(6/23) 4180959675163716 a001 4181/322*1568397607^(3/11) 4180959675163716 a001 4181/322*599074578^(2/7) 4180959675163716 a001 4181/322*228826127^(3/10) 4180959675163716 a001 4181/322*87403803^(6/19) 4180959675163717 a001 4181/322*33385282^(1/3) 4180959675163725 a001 4181/322*12752043^(6/17) 4180959675163782 a001 4181/322*4870847^(3/8) 4180959675164199 a001 4181/322*1860498^(2/5) 4180959675167264 a001 4181/322*710647^(3/7) 4180959675189905 a001 4181/322*271443^(6/13) 4180959675358180 a001 4181/322*103682^(1/2) 4180959675641764 a001 144*5778^(7/18) 4180959676617763 a001 4181/322*39603^(6/11) 4180959680975267 a001 416020/161*2207^(1/16) 4180959684006342 a001 28657/322*5778^(4/9) 4180959684208823 r005 Re(z^2+c),c=-4/7+33/122*I,n=63 4180959685187390 a001 1597/322*3571^(14/17) 4180959685589046 a001 6765/322*5778^(11/18) 4180959686126519 a001 4181/322*15127^(3/5) 4180959687279786 a001 17711/322*5778^(1/2) 4180959690654365 a007 Real Root Of -119*x^4+684*x^3-557*x^2+122*x+202 4180959703881992 a001 5473/161*5778^(5/9) 4180959704985433 r002 14th iterates of z^2 + 4180959710185011 r009 Im(z^3+c),c=-23/48+24/49*I,n=27 4180959713956505 r005 Re(z^2+c),c=-16/27+1/57*I,n=39 4180959715398598 a007 Real Root Of 176*x^4+781*x^3-2*x^2-944*x-612 4180959719722347 r005 Re(z^2+c),c=15/74+17/46*I,n=58 4180959721796164 r005 Re(z^2+c),c=35/118+23/43*I,n=43 4180959722625990 r005 Re(z^2+c),c=-15/26+23/94*I,n=42 4180959724483740 r005 Im(z^2+c),c=-15/26+6/79*I,n=38 4180959727688604 m009 (5/6*Psi(1,2/3)+3/5)/(Psi(1,3/4)+5) 4180959728606009 r009 Im(z^3+c),c=-13/28+21/59*I,n=34 4180959734627381 a001 514229/322*2207^(1/8) 4180959736405457 r005 Re(z^2+c),c=-133/122+4/17*I,n=28 4180959737078633 r005 Re(z^2+c),c=-5/31+32/55*I,n=5 4180959742238651 r005 Re(z^2+c),c=-3/5+14/117*I,n=23 4180959752173420 a004 Fibonacci(12)*Lucas(18)/(1/2+sqrt(5)/2)^11 4180959752321981 a001 1350450/323 4180959758652795 a001 4181/322*5778^(2/3) 4180959764082180 r005 Re(z^2+c),c=-53/90+5/43*I,n=52 4180959765309546 a007 Real Root Of 245*x^4+753*x^3+716*x^2-154*x-142 4180959773882738 m001 (exp(Pi)+Gompertz)^ReciprocalFibonacci 4180959774196992 m001 (sin(1/12*Pi)-Conway)/(GAMMA(2/3)+ln(Pi)) 4180959788263685 a001 317811/322*2207^(3/16) 4180959795762650 r005 Im(z^2+c),c=-65/94+3/43*I,n=14 4180959806324697 a008 Real Root of x^4-12*x^2-21*x-8 4180959831444583 l006 ln(4799/7290) 4180959841941384 a001 98209/161*2207^(1/4) 4180959848361357 a001 233/123*29^(34/37) 4180959851998055 r005 Im(z^2+c),c=-53/110+23/40*I,n=54 4180959872599969 m005 (1/2*5^(1/2)+3/4)/(-59/77+1/7*5^(1/2)) 4180959879616918 r005 Im(z^2+c),c=23/86+23/48*I,n=13 4180959886815563 a007 Real Root Of 98*x^4+225*x^3-546*x^2+989*x+178 4180959895414226 r009 Im(z^3+c),c=-25/58+15/53*I,n=2 4180959895510712 a001 121393/322*2207^(5/16) 4180959901678846 r005 Im(z^2+c),c=3/118+28/53*I,n=58 4180959904892667 r005 Im(z^2+c),c=7/22+13/45*I,n=37 4180959916273929 a007 Real Root Of 339*x^4-936*x^3-579*x^2-953*x-376 4180959919947763 a001 1597/322*9349^(14/19) 4180959923397446 a007 Real Root Of 434*x^4+607*x^3-293*x^2-984*x+405 4180959936350388 m001 (ArtinRank2+Champernowne)/(LaplaceLimit-Thue) 4180959939358303 r009 Re(z^3+c),c=-6/29+25/28*I,n=28 4180959942451654 r005 Re(z^2+c),c=-41/70+9/59*I,n=44 4180959947894924 r005 Im(z^2+c),c=13/44+17/47*I,n=24 4180959948996442 r005 Re(z^2+c),c=-55/78+11/40*I,n=59 4180959949363761 a001 75025/322*2207^(3/8) 4180959950541910 a001 1597/322*24476^(2/3) 4180959954574807 a001 1597/322*64079^(14/23) 4180959954786429 a001 144/3571*439204^(8/9) 4180959954805646 a001 144/3571*7881196^(8/11) 4180959954805695 a001 144/3571*141422324^(8/13) 4180959954805695 a001 144/3571*2537720636^(8/15) 4180959954805695 a001 144/3571*45537549124^(8/17) 4180959954805695 a001 144/3571*14662949395604^(8/21) 4180959954805695 a001 144/3571*(1/2+1/2*5^(1/2))^24 4180959954805695 a001 144/3571*192900153618^(4/9) 4180959954805695 a001 144/3571*73681302247^(6/13) 4180959954805695 a001 144/3571*10749957122^(1/2) 4180959954805695 a001 144/3571*4106118243^(12/23) 4180959954805695 a001 144/3571*1568397607^(6/11) 4180959954805695 a001 144/3571*599074578^(4/7) 4180959954805695 a001 144/3571*228826127^(3/5) 4180959954805695 a001 144/3571*87403803^(12/19) 4180959954805697 a001 144/3571*33385282^(2/3) 4180959954805713 a001 144/3571*12752043^(12/17) 4180959954805827 a001 144/3571*4870847^(3/4) 4180959954806661 a001 144/3571*1860498^(4/5) 4180959954812791 a001 144/3571*710647^(6/7) 4180959954858074 a001 144/3571*271443^(12/13) 4180959955194593 a001 1597/322*20633239^(2/5) 4180959955194597 a001 1597/322*17393796001^(2/7) 4180959955194597 a001 1597/322*14662949395604^(2/9) 4180959955194597 a001 1597/322*(1/2+1/2*5^(1/2))^14 4180959955194597 a001 1597/322*505019158607^(1/4) 4180959955194597 a001 1597/322*10749957122^(7/24) 4180959955194597 a001 1597/322*4106118243^(7/23) 4180959955194597 a001 1597/322*1568397607^(7/22) 4180959955194597 a001 1597/322*599074578^(1/3) 4180959955194597 a001 1597/322*228826127^(7/20) 4180959955194597 a001 1597/322*87403803^(7/19) 4180959955194599 a001 1597/322*33385282^(7/18) 4180959955194608 a001 1597/322*12752043^(7/17) 4180959955194674 a001 1597/322*4870847^(7/16) 4180959955195161 a001 1597/322*1860498^(7/15) 4180959955198737 a001 1597/322*710647^(1/2) 4180959955225152 a001 1597/322*271443^(7/13) 4180959955421472 a001 1597/322*103682^(7/12) 4180959956258289 m001 GAMMA(23/24)/(Riemann3rdZero-Weierstrass) 4180959956459554 r005 Re(z^2+c),c=-67/118+8/23*I,n=51 4180959956890985 a001 1597/322*39603^(7/11) 4180959962397162 m001 Robbin^BesselI(0,1)-ZetaP(3) 4180959964540422 r002 17th iterates of z^2 + 4180959967984535 a001 1597/322*15127^(7/10) 4180959971795403 m001 (3^(1/3)-arctan(1/2))/(CopelandErdos-ZetaQ(4)) 4180959974029115 m001 1/exp(arctan(1/2))*Ei(1)^2/cos(1) 4180959990428036 a007 Real Root Of 577*x^4-324*x^3-872*x^2-482*x+360 4180959992432321 r008 a(0)=4,K{-n^6,4+3*n^3-2*n^2-7*n} 4180959993044133 l004 Pi/cosh(249/55*Pi) 4180959993047836 l004 Pi/sinh(249/55*Pi) 4180959994990018 r005 Re(z^2+c),c=-16/27+2/61*I,n=57 4180960002474023 a001 144*2207^(7/16) 4180960004205060 a007 Real Root Of 349*x^4+671*x^3+849*x^2-385*x-271 4180960019753910 r009 Im(z^3+c),c=-31/64+4/13*I,n=7 4180960040679192 l006 ln(6556/9959) 4180960044747287 r005 Im(z^2+c),c=-31/34+23/93*I,n=6 4180960047023775 r005 Re(z^2+c),c=-11/19+10/47*I,n=47 4180960047321128 a007 Real Root Of -690*x^4+385*x^3-564*x^2+132*x+203 4180960047563981 a001 416020/161*843^(1/14) 4180960049642088 r005 Re(z^2+c),c=31/106+15/28*I,n=35 4180960052598529 a001 1597/322*5778^(7/9) 4180960054843131 r005 Im(z^2+c),c=-11/18+37/100*I,n=5 4180960056617100 r005 Re(z^2+c),c=-41/44+11/45*I,n=48 4180960057528927 a001 28657/322*2207^(1/2) 4180960062985145 r005 Im(z^2+c),c=15/98+17/39*I,n=61 4180960067916098 r008 a(0)=4,K{-n^6,75-10*n^3+5*n^2-76*n} 4180960070194484 m001 (-Riemann1stZero+Sierpinski)/(Shi(1)+Niven) 4180960079204059 r005 Im(z^2+c),c=-1/29+26/45*I,n=44 4180960085893100 r005 Im(z^2+c),c=9/29+11/28*I,n=59 4180960102409719 m001 ln(cos(1))^2/ErdosBorwein*sqrt(Pi) 4180960107492696 a001 17711/322*2207^(9/16) 4180960118496307 m001 Artin^Mills/Robbin 4180960131944431 r009 Im(z^3+c),c=-3/38+20/41*I,n=23 4180960134665429 r009 Im(z^3+c),c=-5/21+17/37*I,n=14 4180960139913790 r002 16th iterates of z^2 + 4180960167092716 r005 Im(z^2+c),c=31/106+29/54*I,n=44 4180960170308862 r009 Im(z^3+c),c=-1/78+31/60*I,n=4 4180960170785230 a001 5473/161*2207^(5/8) 4180960173486039 r005 Re(z^2+c),c=-31/54+13/56*I,n=34 4180960178401368 r005 Re(z^2+c),c=-67/118+10/29*I,n=42 4180960185078500 r009 Im(z^3+c),c=-43/102+23/55*I,n=6 4180960197346736 r005 Im(z^2+c),c=5/34+26/59*I,n=55 4180960197586744 r002 40th iterates of z^2 + 4180960199182608 a001 6765/322*2207^(11/16) 4180960199515815 a001 1292/161*2207^(13/16) 4180960210833203 m001 1/BesselK(0,1)^2*KhintchineLevy*exp(Catalan)^2 4180960221838532 a007 Real Root Of 675*x^4-98*x^3+529*x^2-693*x-410 4180960223106184 m001 (GAMMA(5/6)+ZetaP(4))/(Chi(1)+ln(gamma)) 4180960231223730 r002 39th iterates of z^2 + 4180960257412460 r005 Im(z^2+c),c=13/60+8/21*I,n=37 4180960282307190 p001 sum((-1)^n/(270*n+239)/(625^n),n=0..infinity) 4180960282442026 r002 13th iterates of z^2 + 4180960287414512 a007 Real Root Of 738*x^4+127*x^3+828*x^2-928*x-546 4180960300691503 m005 (1/2*Zeta(3)+6)/(5/12*3^(1/2)+6/7) 4180960304695268 r005 Im(z^2+c),c=-21/50+5/9*I,n=52 4180960307728274 m001 Pi^(1/2)/Conway*HardyLittlewoodC4 4180960312698573 a003 sin(Pi*1/38)+sin(Pi*11/101) 4180960313607209 r009 Re(z^3+c),c=-2/27+19/30*I,n=29 4180960318044046 a001 105937/41*47^(1/8) 4180960318936693 a001 4181/322*2207^(3/4) 4180960327297184 r005 Im(z^2+c),c=-133/110+3/52*I,n=64 4180960334147388 a007 Real Root Of 185*x^4+276*x^3+238*x^2-990*x-441 4180960339266988 r005 Re(z^2+c),c=15/86+19/37*I,n=34 4180960341230655 a007 Real Root Of 287*x^4-737*x^3-345*x^2-652*x+378 4180960358409148 s002 sum(A110281[n]/(16^n-1),n=1..infinity) 4180960363244792 m008 (2/5*Pi^5-1/3)/(3*Pi^4-1/4) 4180960385028454 r002 37th iterates of z^2 + 4180960414455169 r005 Re(z^2+c),c=1/126+15/61*I,n=15 4180960417214858 m001 2*Pi/GAMMA(5/6)-Robbin-Sarnak 4180960422541530 r002 40th iterates of z^2 + 4180960428164120 m003 -7/2+Sqrt[5]/32-(3*Csc[1/2+Sqrt[5]/2])/4 4180960433877775 h001 (2/5*exp(1)+5/9)/(1/9*exp(1)+1/11) 4180960446565135 r009 Im(z^3+c),c=-3/38+20/41*I,n=19 4180960453239906 r005 Re(z^2+c),c=-51/82+7/53*I,n=8 4180960455947260 r005 Re(z^2+c),c=-31/26+32/105*I,n=24 4180960459208395 r009 Im(z^3+c),c=-29/56+9/31*I,n=38 4180960460782341 r005 Re(z^2+c),c=-14/29+4/59*I,n=3 4180960462659996 a007 Real Root Of 42*x^4-764*x^3+588*x^2-591*x-407 4180960464434738 r005 Im(z^2+c),c=15/122+17/37*I,n=49 4180960466921125 r005 Im(z^2+c),c=-13/114+28/47*I,n=41 4180960467804851 a001 514229/322*843^(1/7) 4180960485303785 a004 Fibonacci(12)*Lucas(16)/(1/2+sqrt(5)/2)^9 4180960486322188 a001 1375536/329 4180960508936953 r002 9th iterates of z^2 + 4180960516095527 r005 Im(z^2+c),c=6/25+11/29*I,n=17 4180960518311653 r005 Re(z^2+c),c=-37/54+12/53*I,n=63 4180960544166267 r009 Im(z^3+c),c=-23/110+31/63*I,n=5 4180960548885077 q001 975/2332 4180960548885077 r002 2th iterates of z^2 + 4180960548885077 r002 2th iterates of z^2 + 4180960548885077 r002 2th iterates of z^2 + 4180960561291217 r005 Im(z^2+c),c=-7/36+39/55*I,n=29 4180960561370865 r009 Im(z^3+c),c=-16/31+7/52*I,n=26 4180960565925553 a007 Real Root Of 742*x^4-644*x^3+665*x^2-244*x-288 4180960578697632 m001 GAMMA(19/24)^2/Conway/exp(arctan(1/2))^2 4180960589961515 r005 Im(z^2+c),c=31/118+18/53*I,n=33 4180960592175867 a007 Real Root Of -142*x^4-467*x^3+457*x^2-155*x+623 4180960601760486 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)-Thue^Psi(1,1/3) 4180960605136445 a001 123/6557470319842*13^(5/16) 4180960610076130 r002 34th iterates of z^2 + 4180960610360657 m001 Zeta(5)*(3^(1/3))+Khinchin 4180960610360657 m001 Zeta(5)*3^(1/3)+Khinchin 4180960612174269 l006 ln(1757/2669) 4180960632931501 m001 (sin(1)-2/3)^(1/2) 4180960652136159 r005 Re(z^2+c),c=-11/16+39/118*I,n=45 4180960660043288 m001 (CopelandErdos-ZetaQ(2))/(cos(1/5*Pi)-Artin) 4180960664472915 m001 Backhouse/(FeigenbaumDelta-KhinchinLevy) 4180960674873619 m005 (1/2*3^(1/2)-7/9)/(7/10*5^(1/2)+6/11) 4180960675859846 r005 Re(z^2+c),c=31/106+15/28*I,n=43 4180960676015663 s002 sum(A091810[n]/((exp(n)+1)*n),n=1..infinity) 4180960681879819 r009 Im(z^3+c),c=-31/78+25/63*I,n=28 4180960687906611 m005 (5*Catalan-1/2)/(3*Pi+1/3) 4180960691389690 r002 50th iterates of z^2 + 4180960703380006 a001 1346269/2207*199^(4/11) 4180960706263131 a001 1597/322*2207^(7/8) 4180960708792866 m001 (Paris-TravellingSalesman)/(Trott2nd-ZetaP(3)) 4180960710626015 r009 Re(z^3+c),c=-8/17+18/31*I,n=15 4180960725907466 m001 (Artin+OneNinth)/(2^(1/3)-ln(Pi)) 4180960727427527 r002 53th iterates of z^2 + 4180960729853518 r005 Re(z^2+c),c=-7/12+11/61*I,n=56 4180960730703454 r005 Re(z^2+c),c=31/106+15/28*I,n=51 4180960734339003 r008 a(0)=4,K{-n^6,-88-47*n^3+35*n^2+94*n} 4180960734723671 r005 Re(z^2+c),c=31/106+15/28*I,n=59 4180960735046806 r005 Re(z^2+c),c=31/106+15/28*I,n=63 4180960736071544 r005 Re(z^2+c),c=31/106+15/28*I,n=55 4180960751220932 r005 Re(z^2+c),c=31/106+15/28*I,n=47 4180960779510618 a005 (1/sin(82/181*Pi))^1185 4180960784387306 r009 Im(z^3+c),c=-47/110+1/37*I,n=2 4180960794135939 r009 Re(z^3+c),c=-5/82+27/55*I,n=7 4180960799398550 r009 Im(z^3+c),c=-5/14+17/41*I,n=14 4180960803683596 r005 Re(z^2+c),c=-25/26+29/88*I,n=6 4180960806454792 m001 FibonacciFactorial/ln(Cahen)^2*LaplaceLimit 4180960806743622 m001 ln(Salem)*HardHexagonsEntropy^2*GAMMA(1/12)^2 4180960806779450 h001 (4/9*exp(1)+3/4)/(3/5*exp(2)+1/4) 4180960823514623 a007 Real Root Of 101*x^4-87*x^3+895*x^2-890*x-538 4180960826192432 m005 (1/2*exp(1)-5/6)/(19/40+7/20*5^(1/2)) 4180960826959423 r009 Re(z^3+c),c=-33/106+44/47*I,n=3 4180960832753766 r002 58th iterates of z^2 + 4180960842634929 r005 Re(z^2+c),c=7/19+7/39*I,n=61 4180960857891147 r005 Im(z^2+c),c=29/122+17/47*I,n=59 4180960858632041 r002 44th iterates of z^2 + 4180960858644005 r005 Re(z^2+c),c=-18/31+5/24*I,n=44 4180960868201884 r002 21th iterates of z^2 + 4180960868201884 r002 21th iterates of z^2 + 4180960882023738 m001 (1+exp(1/Pi))/(-exp(-1/2*Pi)+StronglyCareFree) 4180960888029953 a001 317811/322*843^(3/14) 4180960888513245 m005 (1/2*gamma+9/11)/(11/5+1/5*5^(1/2)) 4180960892918471 a001 3571/63245986*832040^(6/19) 4180960892918853 a001 3571/1134903170*7778742049^(6/19) 4180960928046573 m005 (1/2*3^(1/2)-7/8)/(2/5*3^(1/2)-5/7) 4180960932843460 r005 Im(z^2+c),c=-21/46+3/61*I,n=5 4180960936302435 r005 Im(z^2+c),c=-17/16+3/64*I,n=22 4180960941345792 r005 Re(z^2+c),c=31/106+15/28*I,n=39 4180960948571246 m005 (1/2*3^(1/2)+1/8)/(5/9*Pi+5/8) 4180960955245344 r009 Im(z^3+c),c=-45/98+9/25*I,n=46 4180960955998322 m001 1/Khintchine*GaussAGM(1,1/sqrt(2))^2/ln(Ei(1)) 4180960994608882 r009 Im(z^3+c),c=-3/38+20/41*I,n=21 4180961024631243 m001 (Bloch-GaussKuzminWirsing)/(Pi+ln(2^(1/2)+1)) 4180961046900975 r002 41th iterates of z^2 + 4180961053219927 r009 Im(z^3+c),c=-8/25+16/37*I,n=18 4180961058193085 r005 Re(z^2+c),c=-7/25+4/7*I,n=13 4180961059186533 r009 Re(z^3+c),c=-53/114+12/59*I,n=11 4180961063221061 r008 a(0)=0,K{-n^6,18+36*n-51*n^2+22*n^3} 4180961063458122 m001 2*Pi/GAMMA(5/6)*(GAMMA(19/24)-ln(3)) 4180961063458122 m001 GAMMA(1/6)*(GAMMA(19/24)-ln(3)) 4180961068125322 m006 (1/4*ln(Pi)-4/5)/(1/5*ln(Pi)+1) 4180961069899363 r002 31th iterates of z^2 + 4180961074647003 m001 (GAMMA(17/24)-Khinchin)/(Pi+exp(-1/2*Pi)) 4180961084746016 m001 (exp(1)+(1+3^(1/2))^(1/2))/(MertensB2+Trott) 4180961095171700 r009 Im(z^3+c),c=-43/98+13/24*I,n=37 4180961103324400 m001 (BesselJ(0,1)-gamma)/(-gamma(2)+TreeGrowth2nd) 4180961147815141 m001 1/Conway^2*exp(Cahen)*GAMMA(11/24)^2 4180961172949459 a001 9349/165580141*832040^(6/19) 4180961172949841 a001 9349/2971215073*7778742049^(6/19) 4180961184718720 r005 Im(z^2+c),c=9/82+23/49*I,n=55 4180961205247452 m001 MertensB1^Mills/PrimesInBinary 4180961213805430 a001 24476/433494437*832040^(6/19) 4180961213805811 a001 24476/7778742049*7778742049^(6/19) 4180961219766235 a001 64079/1134903170*832040^(6/19) 4180961219766617 a001 64079/20365011074*7778742049^(6/19) 4180961220635905 a001 167761/2971215073*832040^(6/19) 4180961220636287 a001 167761/53316291173*7778742049^(6/19) 4180961220762788 a001 439204/7778742049*832040^(6/19) 4180961220763170 a001 439204/139583862445*7778742049^(6/19) 4180961220781300 a001 1149851/20365011074*832040^(6/19) 4180961220781682 a001 1149851/365435296162*7778742049^(6/19) 4180961220784001 a001 3010349/53316291173*832040^(6/19) 4180961220784383 a001 3010349/956722026041*7778742049^(6/19) 4180961220784395 a001 7881196/139583862445*832040^(6/19) 4180961220784453 a001 20633239/365435296162*832040^(6/19) 4180961220784461 a001 54018521/956722026041*832040^(6/19) 4180961220784462 a001 141422324/2504730781961*832040^(6/19) 4180961220784463 a001 370248451/6557470319842*832040^(6/19) 4180961220784463 a001 199691526/3536736619241*832040^(6/19) 4180961220784463 a001 228826127/4052739537881*832040^(6/19) 4180961220784463 a001 29134601/516002918640*832040^(6/19) 4180961220784466 a001 33385282/591286729879*832040^(6/19) 4180961220784488 a001 4250681/75283811239*832040^(6/19) 4180961220784639 a001 4870847/86267571272*832040^(6/19) 4180961220784777 a001 7881196/2504730781961*7778742049^(6/19) 4180961220784834 a001 20633239/6557470319842*7778742049^(6/19) 4180961220784848 a001 4769326/1515744265389*7778742049^(6/19) 4180961220784870 a001 12752043/4052739537881*7778742049^(6/19) 4180961220785020 a001 4870847/1548008755920*7778742049^(6/19) 4180961220785670 a001 620166/10983760033*832040^(6/19) 4180961220786052 a001 1860498/591286729879*7778742049^(6/19) 4180961220792741 a001 710647/12586269025*832040^(6/19) 4180961220793123 a001 1/317811*7778742049^(6/19) 4180961220841206 a001 90481/1602508992*832040^(6/19) 4180961220841588 a001 271443/86267571272*7778742049^(6/19) 4180961221173391 a001 103682/1836311903*832040^(6/19) 4180961221173772 a001 103682/32951280099*7778742049^(6/19) 4180961223450216 a001 1/17711*832040^(6/19) 4180961223450597 a001 39603/12586269025*7778742049^(6/19) 4180961227649611 a007 Real Root Of 209*x^4+904*x^3+165*x^2+324*x+676 4180961231079039 r005 Im(z^2+c),c=-65/106+23/58*I,n=31 4180961239055808 a001 15127/267914296*832040^(6/19) 4180961239056189 a001 2161/686789568*7778742049^(6/19) 4180961239795928 m008 (1/3*Pi^6-4/5)/(4/5*Pi^2-1/4) 4180961242593215 r005 Re(z^2+c),c=-63/94+13/45*I,n=24 4180961255759736 r005 Re(z^2+c),c=-7/12+16/89*I,n=47 4180961264572231 l006 ln(5743/8724) 4180961272724775 m001 Ei(1)*Si(Pi)/exp(GAMMA(5/12)) 4180961275829669 r005 Im(z^2+c),c=-2/3+46/135*I,n=43 4180961279465303 l006 ln(3279/3419) 4180961279540780 m001 GAMMA(1/4)+arctan(1/2)^BesselJ(0,1) 4180961279540780 m001 Pi*2^(1/2)/GAMMA(3/4)+arctan(1/2)^BesselJ(0,1) 4180961300907772 b005 Number DB table 4180961303642893 m001 GAMMA(11/12)/exp(1/exp(1))/MadelungNaCl 4180961305244362 a007 Real Root Of 367*x^4-537*x^3+655*x^2-733*x+220 4180961308296491 a001 98209/161*843^(2/7) 4180961308846870 r002 40th iterates of z^2 + 4180961315997456 r005 Re(z^2+c),c=-16/27+2/63*I,n=58 4180961318031209 m001 1/Ei(1)/FeigenbaumC^2*exp(GAMMA(13/24))^2 4180961318632105 a001 3571/55*121393^(7/44) 4180961345716876 r009 Re(z^3+c),c=-67/118+11/45*I,n=11 4180961346018128 a001 1926/34111385*832040^(6/19) 4180961346018509 a001 5778/1836311903*7778742049^(6/19) 4180961367585979 r009 Re(z^3+c),c=-53/126+5/39*I,n=11 4180961368854374 a007 Real Root Of -622*x^4+748*x^3-299*x^2+365*x-136 4180961393973564 r005 Im(z^2+c),c=9/56+24/53*I,n=19 4180961394688030 m001 (-Kolakoski+Tribonacci)/(Ei(1,1)-exp(1)) 4180961412602934 r005 Re(z^2+c),c=-53/110+1/19*I,n=3 4180961420269515 m001 (ln(5)+Magata)/(RenyiParking+ZetaP(2)) 4180961423661355 a007 Real Root Of 157*x^4+762*x^3+643*x^2+917*x+311 4180961431259797 r005 Re(z^2+c),c=-7/94+13/22*I,n=2 4180961431821579 a007 Real Root Of -177*x^4-955*x^3-852*x^2+192*x-15 4180961432116767 m001 PlouffeB/cos(1)*Weierstrass 4180961436510144 a001 1762289/2889*199^(4/11) 4180961443229818 a007 Real Root Of -23*x^4-961*x^3+35*x^2+383*x+227 4180961446188561 a001 228826127/3*8^(9/11) 4180961463141451 a007 Real Root Of 204*x^4-855*x^3-654*x^2-996*x+587 4180961467892276 r005 Im(z^2+c),c=23/98+19/52*I,n=32 4180961471601664 a007 Real Root Of 194*x^4+822*x^3+227*x^2+530*x-956 4180961472033983 r005 Im(z^2+c),c=-71/102+10/47*I,n=53 4180961492346038 m001 Sierpinski*FeigenbaumDelta^2*exp(Zeta(9))^2 4180961514992990 r005 Re(z^2+c),c=-35/64+18/49*I,n=55 4180961522322568 m001 (gamma(3)*DuboisRaymond-Thue)/gamma(3) 4180961523300846 m001 gamma^(FeigenbaumC/StolarskyHarborth) 4180961543472411 a001 9227465/15127*199^(4/11) 4180961552144525 l006 ln(3986/6055) 4180961559077996 a001 24157817/39603*199^(4/11) 4180961561354820 a001 31622993/51841*199^(4/11) 4180961561687004 a001 165580141/271443*199^(4/11) 4180961561735469 a001 433494437/710647*199^(4/11) 4180961561742540 a001 567451585/930249*199^(4/11) 4180961561743572 a001 2971215073/4870847*199^(4/11) 4180961561743722 a001 7778742049/12752043*199^(4/11) 4180961561743744 a001 10182505537/16692641*199^(4/11) 4180961561743747 a001 53316291173/87403803*199^(4/11) 4180961561743748 a001 139583862445/228826127*199^(4/11) 4180961561743748 a001 182717648081/299537289*199^(4/11) 4180961561743748 a001 956722026041/1568397607*199^(4/11) 4180961561743748 a001 2504730781961/4106118243*199^(4/11) 4180961561743748 a001 3278735159921/5374978561*199^(4/11) 4180961561743748 a001 10610209857723/17393796001*199^(4/11) 4180961561743748 a001 4052739537881/6643838879*199^(4/11) 4180961561743748 a001 1134903780/1860499*199^(4/11) 4180961561743748 a001 591286729879/969323029*199^(4/11) 4180961561743748 a001 225851433717/370248451*199^(4/11) 4180961561743748 a001 21566892818/35355581*199^(4/11) 4180961561743749 a001 32951280099/54018521*199^(4/11) 4180961561743758 a001 1144206275/1875749*199^(4/11) 4180961561743815 a001 1201881744/1970299*199^(4/11) 4180961561744209 a001 1836311903/3010349*199^(4/11) 4180961561746910 a001 701408733/1149851*199^(4/11) 4180961561765422 a001 66978574/109801*199^(4/11) 4180961561892305 a001 9303105/15251*199^(4/11) 4180961562761975 a001 39088169/64079*199^(4/11) 4180961565975005 a001 305/161*3571^(16/17) 4180961567143067 a003 cos(Pi*13/61)*cos(Pi*26/81) 4180961568722778 a001 3732588/6119*199^(4/11) 4180961577145961 a001 322/11*(1/2*5^(1/2)+1/2)^30*11^(17/20) 4180961609578730 a001 5702887/9349*199^(4/11) 4180961614755538 a007 Real Root Of 150*x^4+568*x^3-257*x^2+111*x+634 4180961624938701 m005 (1/2*3^(1/2)-4/11)/(7/10*5^(1/2)-4/11) 4180961634376528 a007 Real Root Of 144*x^4+602*x^3+80*x^2+446*x+462 4180961634792946 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)+Si(Pi)^TwinPrimes 4180961634792946 m001 GAMMA(1/3)+Si(Pi)^TwinPrimes 4180961646283640 a007 Real Root Of 275*x^4-406*x^3+397*x^2-427*x-286 4180961648798019 a001 55/2207*76^(28/43) 4180961649541197 a007 Real Root Of -787*x^4-242*x^3+424*x^2+432*x-213 4180961650416551 r005 Im(z^2+c),c=-51/46+11/38*I,n=10 4180961664135961 a007 Real Root Of 178*x^4+589*x^3-541*x^2+352*x-415 4180961664697593 r005 Im(z^2+c),c=19/86+17/45*I,n=43 4180961672444021 a007 Real Root Of -854*x^4+311*x^3+862*x^2+712*x-445 4180961676567265 m005 (1/2*gamma+7/11)/(6*Zeta(3)-5) 4180961684942781 r005 Im(z^2+c),c=15/74+1/54*I,n=20 4180961691837795 b008 13*Pi+Cos[1/4] 4180961693827271 r005 Re(z^2+c),c=-16/27+1/32*I,n=40 4180961707006785 r005 Re(z^2+c),c=-41/64+7/50*I,n=21 4180961711425243 r005 Re(z^2+c),c=-7/12+15/83*I,n=54 4180961718000442 m001 1/GAMMA(1/12)*ln(BesselJ(0,1))/GAMMA(1/6) 4180961722567407 r005 Im(z^2+c),c=-5/56+25/42*I,n=51 4180961728454700 a001 121393/322*843^(5/14) 4180961741138839 m001 (Lehmer-Psi(2,1/3))/MertensB3 4180961742499402 r005 Im(z^2+c),c=15/64+13/36*I,n=24 4180961747596117 r002 13th iterates of z^2 + 4180961747596117 r002 13th iterates of z^2 + 4180961752133323 r005 Im(z^2+c),c=-67/74+15/61*I,n=6 4180961763382639 r009 Re(z^3+c),c=-15/32+11/60*I,n=22 4180961763851104 m001 Pi/(2^(1/3)/Zeta(5)-arctan(1/2)) 4180961798656759 m001 FeigenbaumDelta*GAMMA(11/12)-RenyiParking 4180961798656759 m001 GAMMA(11/12)*FeigenbaumDelta-RenyiParking 4180961817877050 l006 ln(6215/9441) 4180961826997849 m001 (2^(1/3)-sin(1))/(-exp(1/Pi)+Artin) 4180961834272696 a001 305/161*9349^(16/19) 4180961840578693 r005 Re(z^2+c),c=-16/27+2/53*I,n=35 4180961854197706 m001 1/exp(GAMMA(11/24))^2/FeigenbaumB^2*sinh(1)^2 4180961863001497 a007 Real Root Of -132*x^4-447*x^3+623*x^2+733*x-160 4180961866016727 r005 Im(z^2+c),c=4/25+19/45*I,n=13 4180961868876764 a007 Real Root Of -54*x^4+453*x^3-337*x^2+991*x+508 4180961869237451 a001 305/161*24476^(16/21) 4180961873193134 a001 36/341*64079^(22/23) 4180961873846479 a001 305/161*64079^(16/23) 4180961874167045 a001 36/341*7881196^(2/3) 4180961874167090 a001 36/341*312119004989^(2/5) 4180961874167090 a001 36/341*(1/2+1/2*5^(1/2))^22 4180961874167090 a001 36/341*10749957122^(11/24) 4180961874167090 a001 36/341*4106118243^(11/23) 4180961874167090 a001 36/341*1568397607^(1/2) 4180961874167090 a001 36/341*599074578^(11/21) 4180961874167090 a001 36/341*228826127^(11/20) 4180961874167091 a001 36/341*87403803^(11/19) 4180961874167093 a001 36/341*33385282^(11/18) 4180961874167107 a001 36/341*12752043^(11/17) 4180961874167211 a001 36/341*4870847^(11/16) 4180961874167976 a001 36/341*1860498^(11/15) 4180961874173595 a001 36/341*710647^(11/14) 4180961874215104 a001 36/341*271443^(11/13) 4180961874523608 a001 36/341*103682^(11/12) 4180961874554811 a001 305/161*(1/2+1/2*5^(1/2))^16 4180961874554811 a001 305/161*23725150497407^(1/4) 4180961874554811 a001 305/161*73681302247^(4/13) 4180961874554811 a001 305/161*10749957122^(1/3) 4180961874554811 a001 305/161*4106118243^(8/23) 4180961874554811 a001 305/161*1568397607^(4/11) 4180961874554811 a001 305/161*599074578^(8/21) 4180961874554811 a001 305/161*228826127^(2/5) 4180961874554811 a001 305/161*87403803^(8/19) 4180961874554812 a001 305/161*33385282^(4/9) 4180961874554823 a001 305/161*12752043^(8/17) 4180961874554899 a001 305/161*4870847^(1/2) 4180961874555455 a001 305/161*1860498^(8/15) 4180961874559541 a001 305/161*710647^(4/7) 4180961874589730 a001 305/161*271443^(8/13) 4180961874814096 a001 305/161*103682^(2/3) 4180961876493541 a001 305/161*39603^(8/11) 4180961886277416 r005 Re(z^2+c),c=-67/114+5/29*I,n=7 4180961889171889 a001 305/161*15127^(4/5) 4180961889609615 a001 2178309/3571*199^(4/11) 4180961921558967 r005 Im(z^2+c),c=-53/56+2/51*I,n=4 4180961924967070 r005 Re(z^2+c),c=-16/27+1/25*I,n=39 4180961929005713 a001 29*6765^(31/55) 4180961936869338 a007 Real Root Of -127*x^4-387*x^3+454*x^2-629*x-43 4180961939966759 r005 Im(z^2+c),c=7/102+28/59*I,n=8 4180961950047808 r005 Im(z^2+c),c=9/62+20/37*I,n=26 4180961953935655 m001 1/GAMMA(11/12)*ln(Robbin)^2*sin(Pi/12) 4180961983217284 r002 57th iterates of z^2 + 4180961985873641 a001 305/161*5778^(8/9) 4180961987330933 a001 18/121393*10946^(41/48) 4180961991254624 q001 1243/2973 4180962008871242 r005 Im(z^2+c),c=15/46+20/53*I,n=29 4180962011620727 r005 Re(z^2+c),c=-31/54+16/63*I,n=58 4180962012346650 m001 2*Pi/GAMMA(5/6)-AlladiGrinstead-Stephens 4180962016328846 a007 Real Root Of 452*x^4-908*x^3-118*x^2-576*x+314 4180962056644881 r009 Im(z^3+c),c=-3/38+20/41*I,n=18 4180962057434708 m001 Stephens-Trott^HeathBrownMoroz 4180962069039307 m005 (1/2*Zeta(3)-5)/(13/176+7/16*5^(1/2)) 4180962073564188 m001 (Magata+Totient)/(Catalan+Ei(1,1)) 4180962079148772 a001 2207/39088169*832040^(6/19) 4180962079149153 a001 2207/701408733*7778742049^(6/19) 4180962081667144 m001 FeigenbaumD^2*exp(Bloch)*BesselK(1,1)^2 4180962082508631 r005 Re(z^2+c),c=-49/86+17/61*I,n=49 4180962083257027 m001 Paris+(Pi*csc(1/12*Pi)/GAMMA(11/12))^Stephens 4180962094177792 r005 Im(z^2+c),c=1/110+11/20*I,n=30 4180962095323259 m001 1/ln(GAMMA(23/24))/FeigenbaumB^2*exp(1)^2 4180962097430693 m001 (Gompertz-Paris)/(PlouffeB+TravellingSalesman) 4180962100139439 m001 Si(Pi)*Artin^2*ln(sinh(1)) 4180962105402159 m006 (1/4/Pi+2)/(1/5*Pi^2+3) 4180962112496194 m001 (-Kac+KhinchinLevy)/(2^(1/2)+gamma(1)) 4180962113877151 m001 Otter^(Kolakoski/BesselK(1,1)) 4180962129859047 r005 Re(z^2+c),c=-4/9+27/59*I,n=11 4180962141538858 r005 Im(z^2+c),c=3/28+37/59*I,n=32 4180962148896671 a001 75025/322*843^(3/7) 4180962154830718 m001 Lehmer^(ln(Pi)*Backhouse) 4180962156557250 r002 48th iterates of z^2 + 4180962157060025 p003 LerchPhi(1/1024,1,146/61) 4180962162783345 h001 (7/8*exp(1)+2/5)/(9/11*exp(2)+3/5) 4180962164485775 r005 Im(z^2+c),c=-35/82+25/47*I,n=24 4180962197870164 m001 1/LambertW(1)^2*exp(Conway)^2/Zeta(7) 4180962198628068 r005 Re(z^2+c),c=-39/70+19/55*I,n=55 4180962226036945 r002 13th iterates of z^2 + 4180962258735540 m001 (GAMMA(2/3)-arctan(1/2))/(LaplaceLimit+Porter) 4180962270108537 r009 Im(z^3+c),c=-49/94+7/22*I,n=22 4180962271409530 a007 Real Root Of 135*x^4-754*x^3+641*x^2-809*x-35 4180962285408195 m001 Tribonacci*ln(Robbin)*GAMMA(1/24)^2 4180962286612518 a001 47*377^(7/19) 4180962293072117 l006 ln(2229/3386) 4180962295426893 r005 Im(z^2+c),c=-41/60+21/64*I,n=27 4180962297149702 m001 LandauRamanujan2nd-MertensB2^HeathBrownMoroz 4180962298145244 r005 Re(z^2+c),c=-19/36+19/45*I,n=52 4180962303194786 a007 Real Root Of 998*x^4-897*x^3-757*x^2-719*x+468 4180962305928375 r005 Re(z^2+c),c=-53/90+7/55*I,n=38 4180962321386276 a007 Real Root Of -246*x^4-149*x^3+843*x^2+732*x-435 4180962346621820 r002 50th iterates of z^2 + 4180962352241684 a007 Real Root Of 51*x^4-873*x^3+853*x^2-604*x-467 4180962380165257 a007 Real Root Of 262*x^4-255*x^3-198*x^2-705*x+340 4180962385663438 r005 Re(z^2+c),c=-13/22+10/123*I,n=53 4180962392342403 a007 Real Root Of -465*x^4-275*x^3+84*x^2+786*x-309 4180962392523102 a007 Real Root Of -92*x^4-81*x^3+980*x^2-980*x+964 4180962403219101 r005 Im(z^2+c),c=25/94+1/3*I,n=53 4180962408237255 m006 (3/5*Pi^2-1/3)/(4*Pi+4/5) 4180962408237255 m008 (3/5*Pi^2-1/3)/(4*Pi+4/5) 4180962436327437 r002 59th iterates of z^2 + 4180962457608917 a001 521/4181*4807526976^(6/23) 4180962464495755 r005 Re(z^2+c),c=-16/27+1/32*I,n=52 4180962466153000 a007 Real Root Of -706*x^4+801*x^3+100*x^2+606*x+316 4180962468481206 a007 Real Root Of -327*x^3+843*x^2-52*x-193 4180962476358595 m005 (3/4*Pi+5/6)/(1/6*gamma+2/3) 4180962476876934 m008 (5/6*Pi+2/5)/(3/4*Pi^6+4/5) 4180962501357661 r005 Im(z^2+c),c=5/32+13/30*I,n=38 4180962504803906 r009 Re(z^3+c),c=-53/110+3/20*I,n=11 4180962506086867 r002 14th iterates of z^2 + 4180962509272848 r005 Re(z^2+c),c=-9/16+31/98*I,n=58 4180962513956289 a007 Real Root Of -122*x^4-345*x^3+613*x^2-421*x-411 4180962516835791 a007 Real Root Of 207*x^4+823*x^3-106*x^2+73*x-945 4180962517039829 b008 1/4+PolyLog[2,-11] 4180962526496736 m008 (2/3*Pi^4-1)/(5*Pi^5-4/5) 4180962559187468 m001 (Psi(1,1/3)+Zeta(1,2))/(GAMMA(7/12)+Robbin) 4180962560492852 r002 27th iterates of z^2 + 4180962562993541 a007 Real Root Of -41*x^4+545*x^3-710*x^2+796*x+498 4180962568595896 a001 144*843^(1/2) 4180962577601426 a007 Real Root Of 13*x^4+537*x^3-285*x^2-522*x-522 4180962613096234 m001 (ErdosBorwein+HeathBrownMoroz)/(Pi+CareFree) 4180962630472795 r005 Re(z^2+c),c=-17/32+23/60*I,n=34 4180962637504127 r005 Re(z^2+c),c=-27/118+31/39*I,n=18 4180962637751879 b008 37*ArcSinh[Log[4]] 4180962649862714 r002 25th iterates of z^2 + 4180962655722920 a007 Real Root Of 206*x^4+870*x^3-107*x^2-513*x+363 4180962663116154 m005 (1/3*2^(1/2)-1/8)/(6*2^(1/2)-1/5) 4180962677542684 m001 Trott^Chi(1)*Si(Pi) 4180962677992962 r005 Re(z^2+c),c=9/64+20/43*I,n=58 4180962678711912 r005 Re(z^2+c),c=-5/8+15/74*I,n=24 4180962679786495 r005 Im(z^2+c),c=-3/26+32/33*I,n=35 4180962700461055 m001 ln(2+sqrt(3))*GAMMA(5/24)-ln(5) 4180962714143604 m001 (ln(Pi)+FeigenbaumD)/(PlouffeB+TreeGrowth2nd) 4180962718841866 r002 23th iterates of z^2 + 4180962719542650 r005 Im(z^2+c),c=-40/29+2/19*I,n=7 4180962739290799 a003 cos(Pi*10/91)*sin(Pi*17/116) 4180962742777486 r005 Re(z^2+c),c=-27/46+1/7*I,n=51 4180962742885222 a007 Real Root Of -127*x^4+674*x^3-232*x^2+706*x-300 4180962754929905 r005 Re(z^2+c),c=-73/110+4/51*I,n=12 4180962779363833 r005 Im(z^2+c),c=-5/32+31/51*I,n=42 4180962784648837 a007 Real Root Of -941*x^4+531*x^3-865*x^2+687*x+506 4180962796878305 g005 GAMMA(8/9)/GAMMA(11/12)/GAMMA(4/9)/GAMMA(3/4) 4180962797143274 a001 3*2178309^(17/26) 4180962814694718 r005 Re(z^2+c),c=-13/18+19/101*I,n=28 4180962819323631 m008 (5/6*Pi^4+3)/(4/5*Pi-1/2) 4180962868604275 a007 Real Root Of 727*x^4+372*x^3+431*x^2-521*x+21 4180962869834480 r005 Re(z^2+c),c=31/106+15/28*I,n=31 4180962870050782 m005 (5*Pi-1/6)/(1/5*2^(1/2)-4) 4180962871389529 m001 (Psi(2,1/3)+exp(1))/(BesselK(0,1)+FeigenbaumB) 4180962874174090 m002 6+E^Pi+Pi^5+Pi^6*Sech[Pi] 4180962892126312 l006 ln(4930/7489) 4180962894901995 m001 (-GAMMA(13/24)+5)/(GaussKuzminWirsing+1/2) 4180962914237862 m001 (-PlouffeB+Totient)/(sin(1)+GAMMA(3/4)) 4180962916707290 r009 Re(z^3+c),c=-9/17+13/36*I,n=11 4180962921970116 q001 1511/3614 4180962930943677 g006 Psi(1,2/9)+Psi(1,1/5)-Psi(1,5/8)-Psi(1,3/4) 4180962932603682 r005 Im(z^2+c),c=-15/94+37/61*I,n=36 4180962934907731 m001 (cos(1)+Zeta(3))/(gamma(3)+PrimesInBinary) 4180962948747730 r005 Re(z^2+c),c=-4/9+28/55*I,n=39 4180962961176850 r002 18th iterates of z^2 + 4180962966388946 r005 Re(z^2+c),c=-65/118+27/62*I,n=64 4180962977287569 r005 Re(z^2+c),c=-2/3+41/166*I,n=31 4180962987715653 a001 416020/161*322^(1/12) 4180962990239806 a001 28657/322*843^(4/7) 4180962997831397 r009 Im(z^3+c),c=-6/25+28/61*I,n=22 4180963006062535 r005 Im(z^2+c),c=-33/86+23/37*I,n=31 4180963017344646 r005 Re(z^2+c),c=-19/29+16/51*I,n=52 4180963021959529 s002 sum(A136589[n]/(pi^n+1),n=1..infinity) 4180963027729042 s002 sum(A136589[n]/(pi^n),n=1..infinity) 4180963031124190 a007 Real Root Of -274*x^4+395*x^3+310*x^2+605*x+236 4180963033499320 s002 sum(A136589[n]/(pi^n-1),n=1..infinity) 4180963033908752 r005 Im(z^2+c),c=1/31-13/22*I,n=27 4180963038204319 p001 sum((-1)^n/(269*n+182)/n/(5^n),n=1..infinity) 4180963040901146 m001 GAMMA(5/24)^FeigenbaumAlpha+ln(3) 4180963047949340 m008 (4*Pi^5+1/2)/(3*Pi^4+2/3) 4180963066194078 r009 Re(z^3+c),c=-25/54+9/59*I,n=11 4180963074952231 m001 ln(sin(Pi/12))^2*HardHexagonsEntropy^2*sinh(1) 4180963078721796 m001 (-exp(1/exp(1))+gamma(3))/(2^(1/3)-GAMMA(3/4)) 4180963103737971 r005 Im(z^2+c),c=-5/8+40/111*I,n=12 4180963109006952 r009 Im(z^3+c),c=-17/32+23/64*I,n=35 4180963116251186 r005 Re(z^2+c),c=-33/56+7/54*I,n=34 4180963121380210 m001 exp(1/Pi)/(Landau^MasserGramainDelta) 4180963125906267 r002 23th iterates of z^2 + 4180963129369659 a007 Real Root Of 394*x^4-903*x^3-89*x^2-482*x-264 4180963133686089 h001 (1/4*exp(2)+3/8)/(7/10*exp(2)+1/7) 4180963134788383 a003 sin(Pi*7/92)-sin(Pi*5/22) 4180963137119714 m001 (ln(Pi)-Artin)/(OneNinth+ZetaP(4)) 4180963141692978 a007 Real Root Of 344*x^4-77*x^3+41*x^2-602*x-275 4180963148032104 r005 Im(z^2+c),c=11/118+21/46*I,n=13 4180963149338774 m001 (Kolakoski+Trott2nd)/(gamma(3)+DuboisRaymond) 4180963158161678 m005 (1/2*5^(1/2)+7/10)/(41/12+5/12*5^(1/2)) 4180963158210567 m005 (1/2*gamma-1/8)/(5*Catalan-2/3) 4180963193307320 a001 8/199*2^(3/53) 4180963195867956 a007 Real Root Of 208*x^4+775*x^3-195*x^2+824*x-63 4180963216792270 r005 Re(z^2+c),c=-49/82+4/49*I,n=23 4180963231547041 m001 Landau-ln(3)-Pi*2^(1/2)/GAMMA(3/4) 4180963239045341 m001 1/Sierpinski^2/ln(Riemann2ndZero)/Trott^2 4180963250274969 r009 Re(z^3+c),c=-21/44+10/53*I,n=63 4180963269889359 a007 Real Root Of -190*x^4-579*x^3+867*x^2-87*x+222 4180963287259369 r009 Im(z^3+c),c=-10/29+19/45*I,n=21 4180963297693888 m001 1/GAMMA(7/24)/GAMMA(5/12)*exp(Zeta(7)) 4180963308826942 a007 Real Root Of 409*x^4-963*x^3+458*x^2+74*x-132 4180963324611517 m001 1/BesselJ(0,1)/exp((3^(1/3)))/exp(1)^2 4180963326786736 r005 Im(z^2+c),c=-2/3+63/187*I,n=7 4180963327138063 a007 Real Root Of 947*x^4-251*x^3+98*x^2-681*x+257 4180963327198963 a005 (1/cos(13/191*Pi))^262 4180963336278503 a007 Real Root Of -232*x^4-790*x^3+743*x^2+165*x+856 4180963336866384 r005 Im(z^2+c),c=1/27+25/48*I,n=57 4180963346232361 r005 Re(z^2+c),c=-9/16+6/19*I,n=63 4180963346589055 a007 Real Root Of 376*x^4-614*x^3+624*x^2-274*x-280 4180963358287850 m001 (Porter-ZetaQ(4))/(GAMMA(3/4)+BesselI(0,2)) 4180963360159038 r005 Im(z^2+c),c=3/13+7/19*I,n=49 4180963385358745 h001 (-8*exp(1/2)+3)/(-7*exp(3/2)+7) 4180963386495705 l006 ln(2701/4103) 4180963386796349 s002 sum(A064956[n]/(n^3*2^n+1),n=1..infinity) 4180963406792620 a001 17711/322*843^(9/14) 4180963416090272 r002 35th iterates of z^2 + 4180963422250655 m001 KhintchineLevy^2/Artin^2*ln(TwinPrimes) 4180963437965922 m001 1/GAMMA(11/24)^2*exp(Catalan)^3 4180963452082769 m001 GAMMA(19/24)*GAMMA(13/24)^2/ln(GAMMA(5/12)) 4180963457478169 m008 (1/4*Pi+2/5)/(1/4*Pi^4+4) 4180963470523967 r002 20th iterates of z^2 + 4180963471488127 r009 Re(z^3+c),c=-14/27+1/7*I,n=16 4180963485998604 a007 Real Root Of -447*x^4+15*x^3-527*x^2+902*x+484 4180963498848299 m001 (Paris-Rabbit)/(GAMMA(2/3)+OneNinth) 4180963507300613 r002 56th iterates of z^2 + 4180963513886689 a007 Real Root Of -235*x^4-729*x^3+886*x^2-781*x-224 4180963529310679 m001 ZetaQ(2)^ln(5)*Sierpinski^ln(5) 4180963574590908 m001 (Pi-gamma)/(LambertW(1)+2*Pi/GAMMA(5/6)) 4180963588191986 r005 Re(z^2+c),c=-53/94+19/62*I,n=56 4180963589275419 r009 Im(z^3+c),c=-7/13+7/54*I,n=13 4180963594635730 m002 (Pi^6*Coth[Pi])/E^Pi+ProductLog[Pi]/Pi^2 4180963624185673 b008 Sin[(2+Pi^(-1))^(-1)] 4180963636617390 r009 Im(z^3+c),c=-45/86+9/38*I,n=2 4180963643410334 m001 1/ln(GAMMA(2/3))/Artin^2*sqrt(Pi) 4180963656216463 m001 1/exp(cos(1))/(3^(1/3))^2/sin(Pi/12)^2 4180963657311376 r005 Re(z^2+c),c=31/126+3/7*I,n=34 4180963668728819 a007 Real Root Of -975*x^4+364*x^3-730*x^2-177*x+110 4180963673556752 r009 Im(z^3+c),c=-25/86+27/47*I,n=5 4180963676292849 r005 Re(z^2+c),c=-13/22+6/73*I,n=60 4180963680574970 m001 exp(GAMMA(2/3))^2/GAMMA(1/3)^2*sqrt(2)^2 4180963680579278 a003 cos(Pi*6/59)/cos(Pi*41/96) 4180963717732776 r005 Im(z^2+c),c=-7/19+18/29*I,n=40 4180963732519720 m001 BesselJ(1,1)^2*exp(Tribonacci)^2/GAMMA(2/3)^2 4180963736407483 r005 Re(z^2+c),c=-73/126+11/30*I,n=58 4180963753904795 r005 Re(z^2+c),c=-107/118+12/61*I,n=42 4180963756319998 a007 Real Root Of x^4+419*x^3+379*x^2+499*x-773 4180963757936702 r002 29th iterates of z^2 + 4180963758173948 r005 Im(z^2+c),c=1/44+25/47*I,n=43 4180963764372125 a003 sin(Pi*9/59)*sin(Pi*30/83) 4180963775555834 m005 (1/2*2^(1/2)-3/8)/(1/8*exp(1)+5/11) 4180963794458409 m004 -125*Pi-4*Sqrt[5]*Pi+4*Sin[Sqrt[5]*Pi] 4180963799790265 r005 Re(z^2+c),c=-13/22+9/110*I,n=63 4180963801415860 l006 ln(5874/8923) 4180963807510293 a007 Real Root Of 186*x^4-86*x^3-278*x^2-963*x-366 4180963808970868 a001 610*199^(4/11) 4180963815104067 r002 8th iterates of z^2 + 4180963830647689 m001 Magata^Porter/exp(1/exp(1)) 4180963831160820 b008 Sech[6/5+Pi^(-1)] 4180963836674250 a001 5473/161*843^(5/7) 4180963872409768 r005 Im(z^2+c),c=-31/54+33/53*I,n=18 4180963882607253 m001 GAMMA(1/3)/BesselJ(1,1)/Backhouse 4180963882997153 r005 Re(z^2+c),c=-37/64+6/23*I,n=36 4180963886337069 a007 Real Root Of 129*x^4+663*x^3+458*x^2-129*x+492 4180963900054297 m009 (2*Pi^2-3)/(1/8*Pi^2-5/6) 4180963912970321 r005 Im(z^2+c),c=-69/122+4/53*I,n=34 4180963922578135 a003 cos(Pi*15/113)/cos(Pi*49/114) 4180963928623770 r005 Im(z^2+c),c=7/58+29/55*I,n=25 4180963938305446 a008 Real Root of x^4-x^3+5*x^2-57*x+23 4180963940709683 a007 Real Root Of 196*x^4-19*x^3+219*x^2-63*x-72 4180963962057889 m001 (FeigenbaumDelta+ThueMorse)/(sin(1)+Artin) 4180964005735526 m001 Si(Pi)/(CareFree-MertensB1) 4180964008903015 r002 28th iterates of z^2 + 4180964011693137 m001 (FeigenbaumC+FransenRobinson)/(Psi(1,1/3)+1) 4180964033225364 a007 Real Root Of 160*x^4+575*x^3-407*x^2+78*x+574 4180964033898181 m001 cos(1)/Zeta(5)^2/ln(cos(Pi/12))^2 4180964038326285 b008 LogGamma[7+(1+E)^2] 4180964046746724 r009 Im(z^3+c),c=-9/46+27/58*I,n=2 4180964050807738 r005 Im(z^2+c),c=19/78+21/59*I,n=57 4180964051674551 a003 cos(Pi*25/96)*cos(Pi*37/77) 4180964052287581 r002 2th iterates of z^2 + 4180964059178246 p004 log(33023/21739) 4180964066990235 r009 Im(z^3+c),c=-27/58+16/45*I,n=47 4180964073624969 m009 (5/2*Pi^2+1)/(6*Psi(1,1/3)+5/6) 4180964097826963 a005 (1/cos(11/196*Pi))^1860 4180964101049505 r002 55th iterates of z^2 + 4180964115492029 a007 Real Root Of -348*x^4+769*x^3+590*x^2+693*x+28 4180964129046830 a003 sin(Pi*40/101)-sin(Pi*43/95) 4180964134760375 r005 Re(z^2+c),c=-13/22+9/109*I,n=54 4180964136421797 p001 sum((-1)^n/(383*n+239)/(512^n),n=0..infinity) 4180964154614504 l006 ln(3173/4820) 4180964158353465 a001 47/233*34^(49/57) 4180964171335665 m005 (1/3*5^(1/2)-3/4)/(1/2*2^(1/2)-9/11) 4180964173130340 m001 (MasserGramain+Niven)/(2^(1/3)-ArtinRank2) 4180964183608336 a007 Real Root Of -139*x^4-562*x^3+73*x^2-126*x-403 4180964184520624 r002 24th iterates of z^2 + 4180964194422177 r002 59th iterates of z^2 + 4180964199947606 m004 -ProductLog[Sqrt[5]*Pi]^2+3*Tan[Sqrt[5]*Pi] 4180964217996064 m001 (Conway-FeigenbaumKappa)/(Zeta(1/2)+Ei(1,1)) 4180964223836217 r005 Re(z^2+c),c=-53/90+6/43*I,n=34 4180964231660735 a001 6765/322*843^(11/14) 4180964232623693 m001 (Artin-Rabbit)/(StronglyCareFree+Trott2nd) 4180964246155170 m001 1/Magata/exp(Bloch)^2/sqrt(1+sqrt(3))^2 4180964257020386 r005 Re(z^2+c),c=-33/58+9/26*I,n=26 4180964261676706 r005 Re(z^2+c),c=-5/9+12/35*I,n=59 4180964265453235 r002 9th iterates of z^2 + 4180964271526963 m001 (ln(3)-BesselJ(1,1))/(BesselI(0,2)-CareFree) 4180964293988102 m001 (BesselI(1,1)-BesselI(1,2))/(GAMMA(2/3)+ln(3)) 4180964326862069 a007 Real Root Of 965*x^4+234*x^3-497*x^2-614*x+297 4180964327771814 r005 Re(z^2+c),c=-43/74+17/64*I,n=14 4180964331748512 s002 sum(A046978[n]/(16^n-1),n=1..infinity) 4180964340177830 r005 Im(z^2+c),c=9/98+17/30*I,n=11 4180964359354259 r005 Re(z^2+c),c=31/110+1/31*I,n=18 4180964411009633 m001 (2^(1/3)-Zeta(1,-1))/(gamma(3)+Magata) 4180964424230913 r005 Re(z^2+c),c=-16/27+1/58*I,n=39 4180964424512761 m005 (1/2*5^(1/2)+3/8)/(5/9*2^(1/2)-3/7) 4180964425331169 m008 (5/6*Pi^6+3)/(2*Pi^6+3/5) 4180964436740741 r009 Re(z^3+c),c=-41/114+1/19*I,n=15 4180964438690960 m002 (-4*Cosh[Pi])/Pi^4+5/ProductLog[Pi] 4180964450655781 r002 59th iterates of z^2 + 4180964455284217 r009 Im(z^3+c),c=-1/106+28/57*I,n=12 4180964472735225 r005 Im(z^2+c),c=-1/94+44/59*I,n=31 4180964479947074 p004 log(26237/401) 4180964494193786 a007 Real Root Of 912*x^4+311*x^3-20*x^2-384*x-16 4180964504501018 m001 ln(2)*QuadraticClass+FeigenbaumMu 4180964507993943 m001 (Pi^(1/2)-Conway)/(FeigenbaumC-Rabbit) 4180964513211697 r002 32th iterates of z^2 + 4180964539689818 r005 Im(z^2+c),c=-5/6+1/41*I,n=58 4180964551180508 a007 Real Root Of -572*x^4-985*x^3-650*x^2+679*x+343 4180964554372643 m001 (-Sarnak+ZetaQ(4))/(cos(1)+KhinchinLevy) 4180964563645720 a007 Real Root Of -325*x^4+911*x^3+876*x^2+388*x-372 4180964567838632 r002 37th iterates of z^2 + 4180964582818514 m005 (1/2*5^(1/2)-4/9)/(4/7*5^(1/2)+1/3) 4180964592647609 r002 13th iterates of z^2 + 4180964595035583 r009 Re(z^3+c),c=-14/27+11/52*I,n=45 4180964595551940 r002 42th iterates of z^2 + 4180964603195244 r002 26th iterates of z^2 + 4180964604001232 r005 Im(z^2+c),c=2/21+12/25*I,n=56 4180964606838712 m005 (1/2*Pi-2/7)/(3/8*gamma+1/11) 4180964627916181 r005 Im(z^2+c),c=1/11+15/31*I,n=39 4180964666222111 a007 Real Root Of -253*x^4+71*x^3-511*x^2+528*x+323 4180964701381498 r005 Im(z^2+c),c=33/94+8/51*I,n=46 4180964701870588 m001 (3^(1/2)-ln(5))/(GAMMA(7/12)+OrthogonalArrays) 4180964718004059 a001 4181/322*843^(6/7) 4180964723052443 m001 (GAMMA(5/6)+Stephens)/(Zeta(5)-exp(1/exp(1))) 4180964723755871 p001 sum((-1)^n/(569*n+376)/n/(25^n),n=1..infinity) 4180964723802086 l006 ln(3645/5537) 4180964724921073 m001 ln(log(1+sqrt(2)))^2*GAMMA(7/24)/sinh(1) 4180964726223685 a005 (1/sin(34/165*Pi))^103 4180964732545262 r002 7th iterates of z^2 + 4180964738267118 m005 (1/2*gamma-8/9)/(43/72+3/8*5^(1/2)) 4180964766978129 r002 41th iterates of z^2 + 4180964782270283 r005 Re(z^2+c),c=-59/102+11/47*I,n=42 4180964794042986 r009 Im(z^3+c),c=-75/122+15/28*I,n=15 4180964799333541 m001 (ln(3)-Grothendieck)/(Salem-Totient) 4180964816524520 m001 (FeigenbaumAlpha+MertensB2)/(Niven-Thue) 4180964822866567 m001 (Psi(2,1/3)+Conway*PlouffeB)/Conway 4180964823074504 v002 sum(1/(5^n*(30*n^2-81*n+108)),n=1..infinity) 4180964832622881 r005 Im(z^2+c),c=-9/62+23/42*I,n=13 4180964835250691 r004 Im(z^2+c),c=2/11+7/17*I,z(0)=I,n=44 4180964865276609 m001 (Si(Pi)-Zeta(5))/(-GAMMA(7/12)+Riemann2ndZero) 4180964871898366 r005 Im(z^2+c),c=31/98+14/51*I,n=52 4180964885976595 r002 5th iterates of z^2 + 4180964894488523 m001 HardyLittlewoodC5*MertensB3/Mills 4180964894956394 h001 (1/12*exp(1)+7/8)/(11/12*exp(1)+1/7) 4180964898810547 r005 Re(z^2+c),c=-39/64+10/39*I,n=16 4180964902397121 a007 Real Root Of -147*x^4-831*x^3-927*x^2-27*x+276 4180964917760997 m001 gamma(3)^(GlaisherKinkelin/cos(1)) 4180964924356571 m001 1/Magata^2/ln(FransenRobinson)^2/GAMMA(5/24)^2 4180964931215527 a007 Real Root Of 517*x^4+62*x^3+488*x^2-941*x-490 4180964952007935 r002 30th iterates of z^2 + 4180964957837861 r005 Re(z^2+c),c=-27/86+35/59*I,n=45 4180964965172200 a001 1292/161*843^(13/14) 4180964971119022 a005 (1/cos(11/140*Pi))^1019 4180964972474342 r002 18th iterates of z^2 + 4180964975846952 r005 Im(z^2+c),c=7/118+25/43*I,n=23 4180964983885609 a007 Real Root Of 795*x^4-992*x^3+894*x^2+689*x+35 4180964990998852 a007 Real Root Of 541*x^4-897*x^3+327*x^2-583*x-383 4180964999831075 a001 322/89*6557470319842^(16/17) 4180965001240775 r005 Re(z^2+c),c=-13/22+7/97*I,n=38 4180965003805339 m001 Pi*2^(1/2)/GAMMA(3/4)*(gamma+Stephens) 4180965007251516 m001 (Psi(2,1/3)+Zeta(3))/(Cahen+MasserGramain) 4180965015271650 r009 Re(z^3+c),c=-9/19+5/27*I,n=64 4180965017979186 m008 (2/5*Pi^5-1/4)/(3/5*Pi^2-3) 4180965057488315 r002 37th iterates of z^2 + 4180965057488315 r002 37th iterates of z^2 + 4180965069447229 m001 1/BesselK(1,1)*Rabbit/exp(Zeta(5)) 4180965075494793 r002 41th iterates of z^2 + 4180965082979159 p004 log(30553/20113) 4180965084177891 r005 Im(z^2+c),c=5/98+23/45*I,n=42 4180965100705808 p003 LerchPhi(1/25,7,44/75) 4180965123423165 m008 (3/5*Pi^5-5/6)/(1/5*Pi-5) 4180965127093751 m001 (Stephens+StronglyCareFree)/(Catalan-Lehmer) 4180965133941026 r005 Im(z^2+c),c=13/46+9/43*I,n=3 4180965137156644 r002 34th iterates of z^2 + 4180965145155756 m001 ln(cos(Pi/5))^2*Magata*sqrt(1+sqrt(3))^2 4180965146996257 b008 -23/4+E*EulerGamma 4180965162478819 l006 ln(4117/6254) 4180965162511428 r005 Re(z^2+c),c=-3/4+10/239*I,n=38 4180965171991524 a003 cos(Pi*27/85)-sin(Pi*25/61) 4180965173151856 r002 39th iterates of z^2 + 4180965180467417 a007 Real Root Of -530*x^4+206*x^3+872*x^2+205*x-237 4180965186258963 r002 32th iterates of z^2 + 4180965189514397 r005 Re(z^2+c),c=-7/106+25/36*I,n=25 4180965195027270 v002 sum(1/(2^n+(29*n^2-38*n+58)),n=1..infinity) 4180965197286330 r005 Re(z^2+c),c=5/42+17/62*I,n=5 4180965199466056 r005 Im(z^2+c),c=-7/62+14/23*I,n=58 4180965204563941 r004 Re(z^2+c),c=-23/38-1/14*I,z(0)=-1,n=18 4180965232688806 r005 Re(z^2+c),c=-59/86+3/14*I,n=37 4180965235050138 a007 Real Root Of -93*x^4-252*x^3+655*x^2+406*x+248 4180965264659078 r005 Im(z^2+c),c=27/74+14/51*I,n=45 4180965269405403 r002 24th iterates of z^2 + 4180965275992487 a001 832040/843*199^(3/11) 4180965280355456 r002 11th iterates of z^2 + 4180965282059760 r009 Re(z^3+c),c=-49/102+29/57*I,n=34 4180965289557249 a007 Real Root Of 575*x^4-967*x^3-202*x^2-280*x-170 4180965298414545 m001 (Sierpinski+Tetranacci)/(ln(2)-Pi^(1/2)) 4180965311198762 m002 -6+E^Pi/3+Pi^2/4 4180965318047131 r005 Im(z^2+c),c=-1/110+34/61*I,n=42 4180965326681094 a007 Real Root Of -795*x^4+731*x^3-220*x^2+985*x+528 4180965355518288 a007 Real Root Of 279*x^4-86*x^3+42*x^2-640*x+258 4180965396201609 a007 Real Root Of 114*x^4+449*x^3-108*x^2+102*x+295 4180965399676263 r005 Re(z^2+c),c=-9/14+7/228*I,n=16 4180965405085412 m001 1/GolombDickman*ln(ErdosBorwein)*GAMMA(1/24)^2 4180965410400044 r002 24th iterates of z^2 + 4180965431799043 r005 Im(z^2+c),c=27/110+17/48*I,n=55 4180965435297671 m001 (cos(1/12*Pi)-Thue)/(GAMMA(2/3)-ln(3)) 4180965438020969 m005 (1/2*3^(1/2)+4)/(5/7*exp(1)-7/9) 4180965455554105 r005 Re(z^2+c),c=1/9+23/44*I,n=19 4180965456006444 l006 ln(7003/7302) 4180965457963534 a001 377/12752043*2^(1/2) 4180965463715642 m001 GAMMA(1/3)^2/Robbin^2*ln(GAMMA(23/24)) 4180965468860322 m008 (1/6*Pi^5+1/6)/(4*Pi^5-1/5) 4180965472802282 m001 BesselI(1,2)-exp(1/Pi)-GAMMA(5/24) 4180965475026336 r005 Re(z^2+c),c=-69/118+10/59*I,n=45 4180965477961932 r005 Re(z^2+c),c=7/20+5/34*I,n=17 4180965486512772 a007 Real Root Of 390*x^4-967*x^3-431*x^2-583*x-251 4180965494543915 r005 Re(z^2+c),c=-61/98+3/7*I,n=23 4180965504840917 r005 Re(z^2+c),c=-49/82+3/38*I,n=21 4180965508868000 r005 Im(z^2+c),c=-25/118+16/33*I,n=4 4180965510254060 a004 Fibonacci(12)*Lucas(14)/(1/2+sqrt(5)/2)^7 4180965510915652 l006 ln(4589/6971) 4180965541208062 r005 Re(z^2+c),c=-5/8+11/142*I,n=12 4180965557282198 m001 (Kac+ZetaQ(4))/(Zeta(5)+arctan(1/2)) 4180965564537985 a001 76/377*10946^(4/51) 4180965565870710 m001 (GAMMA(17/24)+Magata)/(Rabbit+ThueMorse) 4180965585983918 r002 12th iterates of z^2 + 4180965587019322 r005 Re(z^2+c),c=-61/106+7/29*I,n=61 4180965589986921 m005 (1/2*Pi-5/6)/(5/7*5^(1/2)+1/6) 4180965595610104 r005 Im(z^2+c),c=-17/16+3/64*I,n=18 4180965598034471 m005 (1/2*exp(1)+2/11)/(1/12*gamma-5/12) 4180965601732140 m001 1/ln(TwinPrimes)/Lehmer^2/GAMMA(13/24) 4180965611322475 h001 (6/7*exp(2)+9/10)/(1/9*exp(2)+10/11) 4180965613295688 r005 Re(z^2+c),c=-37/30+40/119*I,n=7 4180965625679467 r005 Im(z^2+c),c=-13/66+23/41*I,n=13 4180965630370890 r005 Re(z^2+c),c=45/122+10/51*I,n=22 4180965640981512 r002 12th iterates of z^2 + 4180965663993347 r005 Re(z^2+c),c=-15/26+13/60*I,n=27 4180965673689933 a007 Real Root Of -248*x^4-861*x^3+819*x^2+383*x+139 4180965676426906 m005 (1/4*Catalan-2/5)/(-3/20+1/4*5^(1/2)) 4180965683823691 a007 Real Root Of -696*x^4+821*x^3-976*x^2+84*x+287 4180965695797254 m001 (Catalan+Cahen)/(FellerTornier+Magata) 4180965697832396 r008 a(0)=4,K{-n^6,15-40*n-7*n^2+27*n^3} 4180965701072993 m001 (GaussAGM-Riemann1stZero)/(BesselJ(1,1)-Bloch) 4180965751127645 r009 Re(z^3+c),c=-4/9+35/62*I,n=63 4180965755873099 m001 (3^(1/2)+GAMMA(19/24)*Stephens)/Stephens 4180965767120639 m001 (-BesselI(1,1)+Tetranacci)/(exp(1)+cos(1)) 4180965769671954 m001 GaussKuzminWirsing^2*Artin^2*exp(Salem) 4180965781952069 m001 (exp(1)+2^(1/2))/(-cos(1)+GAMMA(7/12)) 4180965785066807 r005 Re(z^2+c),c=-7/12+19/105*I,n=50 4180965790545149 m002 5/Pi^3+(3*Pi^3)/E^Pi 4180965794360504 l006 ln(5061/7688) 4180965800758200 r002 6th iterates of z^2 + 4180965821214554 s002 sum(A167312[n]/(n^2*pi^n-1),n=1..infinity) 4180965826506267 a007 Real Root Of 205*x^4+654*x^3-731*x^2+460*x-142 4180965829678272 s001 sum(exp(-Pi/4)^n*A253941[n],n=1..infinity) 4180965830661088 r005 Re(z^2+c),c=-19/14+8/31*I,n=2 4180965841798957 r005 Im(z^2+c),c=-23/34+23/77*I,n=27 4180965846834012 r005 Re(z^2+c),c=-19/32+5/61*I,n=29 4180965887687570 b008 E^(2*EulerGamma)+Coth[E] 4180965889000900 m001 (Backhouse+Kac)/(Rabbit-TravellingSalesman) 4180965903935354 r002 31th iterates of z^2 + 4180965913192599 r005 Re(z^2+c),c=-5/8+15/131*I,n=17 4180965932164323 r005 Im(z^2+c),c=-4/31+27/43*I,n=35 4180965940448703 r005 Im(z^2+c),c=-25/122+15/26*I,n=21 4180965942807798 r009 Re(z^3+c),c=-10/23+6/41*I,n=28 4180965949366331 m001 (ZetaP(2)+ZetaP(4))/(Shi(1)+exp(-1/2*Pi)) 4180965949961806 a007 Real Root Of 145*x^4-916*x^3-632*x^2-536*x-185 4180965951245984 m001 (KhinchinLevy+ZetaQ(4))/(Zeta(3)+GAMMA(13/24)) 4180965951538560 a007 Real Root Of 128*x^4+429*x^3-259*x^2+948*x+732 4180965952644502 g007 2*Psi(2,3/5)-Psi(2,1/6)-Psi(2,4/5) 4180965955645112 r009 Im(z^3+c),c=-5/56+21/43*I,n=7 4180965961484584 a007 Real Root Of -694*x^4+482*x^3-526*x^2+841*x+500 4180965963313843 m001 (Ei(1,1)+BesselJ(1,1))/(cos(1)+Zeta(5)) 4180965972191686 r005 Re(z^2+c),c=-5/9+8/45*I,n=14 4180965993237880 r005 Re(z^2+c),c=-57/118+21/46*I,n=33 4180966029446062 l006 ln(5533/8405) 4180966051784749 m001 GlaisherKinkelin^GAMMA(7/12)+exp(1) 4180966052780460 r009 Re(z^3+c),c=-3/40+24/37*I,n=44 4180966067674499 r005 Im(z^2+c),c=-4/23+3/5*I,n=42 4180966069465325 m001 1/Porter/MinimumGamma^2*ln(Pi)^2 4180966080012654 m005 (1/3*Zeta(3)+1/4)/(61/55+1/5*5^(1/2)) 4180966083173165 r009 Re(z^3+c),c=-19/40+11/59*I,n=52 4180966089205851 r005 Im(z^2+c),c=35/122+9/29*I,n=57 4180966090224353 r002 42th iterates of z^2 + 4180966090838987 s002 sum(A091250[n]/((pi^n+1)/n),n=1..infinity) 4180966108061584 m001 (Ei(1)-GlaisherKinkelin)/(Porter-ZetaQ(4)) 4180966125542417 m001 3*exp(1/2)-BesselJ(0,1) 4180966134772021 m001 ArtinRank2^(Niven/CareFree) 4180966135985250 r009 Im(z^3+c),c=-11/48+6/13*I,n=12 4180966137747292 a007 Real Root Of -218*x^4-983*x^3-412*x^2-507*x-147 4180966146345999 a003 sin(Pi*3/100)-sin(Pi*19/111) 4180966155207448 r005 Im(z^2+c),c=-29/98+1/16*I,n=8 4180966160070065 r005 Re(z^2+c),c=-71/122+9/47*I,n=44 4180966163154113 m001 (BesselJ(0,1)+1/2*exp(-1/2*Pi))/exp(-1/2*Pi) 4180966164979049 a001 123/610*610^(26/55) 4180966178317255 m001 (cos(1/5*Pi)-arctan(1/3))/(Salem-Trott) 4180966187352240 r005 Re(z^2+c),c=-7/12+25/119*I,n=35 4180966193600970 r005 Im(z^2+c),c=-2/3+23/238*I,n=37 4180966203032905 m001 1/Salem^2/exp(Champernowne)*cos(Pi/5)^2 4180966203239062 a007 Real Root Of 696*x^4-105*x^3+834*x^2-656*x-449 4180966227575618 l006 ln(6005/9122) 4180966228467737 r002 23th iterates of z^2 + 4180966237873889 m001 1/GAMMA(1/4)/exp(Si(Pi))*cos(Pi/12) 4180966248395601 a007 Real Root Of -759*x^4+530*x^3-909*x^2+297*x+345 4180966252007045 r004 Im(z^2+c),c=1/22+12/23*I,z(0)=I,n=21 4180966253321081 a007 Real Root Of 249*x^4+832*x^3-623*x^2+845*x-856 4180966254740496 r009 Re(z^3+c),c=-29/62+11/63*I,n=20 4180966272036465 m001 (BesselI(0,1)-MertensB3)^arctan(1/3) 4180966272358983 r005 Im(z^2+c),c=7/29+9/25*I,n=31 4180966272521198 r005 Im(z^2+c),c=-9/16+4/53*I,n=47 4180966275718074 h001 (5/12*exp(1)+1/8)/(4/5*exp(1)+5/6) 4180966276964407 r002 6th iterates of z^2 + 4180966284807551 a001 6765/4*7^(20/43) 4180966295765844 r005 Im(z^2+c),c=-2/17+15/28*I,n=10 4180966297785992 m001 exp(BesselK(0,1))/CareFree*GAMMA(5/24)^2 4180966301158797 m001 1/Rabbit^2/ln(CopelandErdos)^2*TreeGrowth2nd 4180966303116068 a007 Real Root Of 212*x^4+628*x^3+501*x^2-997*x-465 4180966311797189 r005 Im(z^2+c),c=-43/106+26/47*I,n=29 4180966311852792 r005 Im(z^2+c),c=8/23+12/23*I,n=8 4180966320696474 a007 Real Root Of 273*x^4+788*x^3+958*x^2-375*x-275 4180966348110855 a001 514229/322*322^(1/6) 4180966364877019 r005 Im(z^2+c),c=-15/44+17/31*I,n=17 4180966366441432 m001 exp((2^(1/3)))*Riemann2ndZero/sqrt(Pi) 4180966379415819 m001 Khintchine^2/ArtinRank2^2*exp(Zeta(5)) 4180966396828484 l006 ln(6477/9839) 4180966405584536 m001 Salem^2*exp(FeigenbaumB)*GAMMA(1/4)^2 4180966418397804 r002 40th iterates of z^2 + 4180966432486145 r002 52th iterates of z^2 + 4180966437468403 p001 sum((-1)^n/(271*n+239)/(625^n),n=0..infinity) 4180966463492944 r002 3th iterates of z^2 + 4180966464587836 a007 Real Root Of -221*x^4-678*x^3+932*x^2-236*x+700 4180966478675875 a007 Real Root Of -676*x^4+588*x^3+788*x^2+538*x-385 4180966484483542 a003 cos(Pi*14/83)*cos(Pi*20/59) 4180966495700985 r009 Im(z^3+c),c=-8/15+1/4*I,n=45 4180966517503170 r009 Im(z^3+c),c=-23/90+5/11*I,n=21 4180966521423754 a005 (1/cos(17/130*Pi))^202 4180966545689747 r005 Im(z^2+c),c=17/52+14/47*I,n=20 4180966548561178 r002 4th iterates of z^2 + 4180966552059109 m001 GaussKuzminWirsing^2/Conway/exp(sqrt(2))^2 4180966578063221 a001 4/21*433494437^(17/20) 4180966579649387 m005 (1/3*Pi-1/12)/(2/11*3^(1/2)-6/11) 4180966599892914 r005 Im(z^2+c),c=1/58+7/13*I,n=36 4180966600812071 r005 Re(z^2+c),c=-7/12+10/51*I,n=33 4180966612530592 m001 cos(1/5*Pi)+ln(2)+Zeta(1/2) 4180966612530592 m001 cos(Pi/5)+ln(2)+Zeta(1/2) 4180966621606163 m001 (FeigenbaumC+Otter)/(2^(1/2)-GAMMA(7/12)) 4180966625074925 r002 17th iterates of z^2 + 4180966651333625 a001 11/34*377^(22/51) 4180966655129729 m004 -50/Pi-5*Pi+25*Sqrt[5]*Pi-Cosh[Sqrt[5]*Pi] 4180966669911712 m004 -25/Pi+100*Pi*Sec[Sqrt[5]*Pi] 4180966673314636 r005 Im(z^2+c),c=37/110+15/62*I,n=55 4180966674072679 p003 LerchPhi(1/25,6,197/79) 4180966674694007 m001 (Khinchin+ZetaP(2))/(exp(1/Pi)-GolombDickman) 4180966674793948 a007 Real Root Of 478*x^4-481*x^3+737*x^2-752*x-493 4180966676005638 m001 BesselK(1,1)*exp(FeigenbaumB)^2*GAMMA(1/4)^2 4180966678387571 m001 (Zeta(1,-1)+FeigenbaumC)/(ZetaP(2)-ZetaQ(2)) 4180966690699768 r005 Im(z^2+c),c=33/106+11/39*I,n=59 4180966701535707 r009 Im(z^3+c),c=-7/20+8/19*I,n=15 4180966706442935 r005 Im(z^2+c),c=-21/34+39/109*I,n=5 4180966712451961 m001 (sin(1/5*Pi)-Gompertz)/(Landau-Riemann2ndZero) 4180966718345098 m001 (5^(1/2))^RenyiParking/((5^(1/2))^FeigenbaumC) 4180966739034077 s002 sum(A175274[n]/(exp(2/5*pi*n)),n=1..infinity) 4180966739924428 r009 Im(z^3+c),c=-17/38+18/49*I,n=33 4180966742294411 r002 6th iterates of z^2 + 4180966761892956 r005 Re(z^2+c),c=19/110+37/64*I,n=58 4180966774939537 r009 Re(z^3+c),c=-65/126+7/38*I,n=42 4180966778876393 a003 cos(Pi*15/91)*cos(Pi*33/97) 4180966792239256 a001 521/610*75025^(16/29) 4180966796694480 r009 Re(z^3+c),c=-2/23+41/52*I,n=18 4180966801948196 a007 Real Root Of 550*x^4+698*x^3+359*x^2-25*x-39 4180966823525879 r005 Im(z^2+c),c=1/40+9/17*I,n=50 4180966826407165 m005 (1/2*5^(1/2)-2/9)/(4/11*2^(1/2)-3/10) 4180966827817946 m001 (TreeGrowth2nd-ZetaQ(2))/(ln(gamma)-Artin) 4180966837919679 m001 GaussAGM-Weierstrass^Salem 4180966858414684 m001 1/exp(LambertW(1))^2*ErdosBorwein*cos(Pi/5) 4180966863967310 m001 (1+GAMMA(13/24))/(-OrthogonalArrays+Porter) 4180966866931204 m004 -2+(125*Sqrt[5])/(2*Pi)-Sin[Sqrt[5]*Pi] 4180966875315508 a007 Real Root Of 46*x^4+170*x^3+203*x^2-781*x-351 4180966884905878 r009 Re(z^3+c),c=-41/74+6/49*I,n=9 4180966885543750 a007 Real Root Of -769*x^4+954*x^3+40*x^2+131*x+141 4180966886655107 r002 44th iterates of z^2 + 4180966893488807 r005 Im(z^2+c),c=9/74+23/50*I,n=27 4180966927263313 m001 (Conway-Psi(1,1/3))/(-FeigenbaumMu+Porter) 4180966932404468 m009 (3*Psi(1,3/4)+3/5)/(5/2*Pi^2-5) 4180966960192938 a007 Real Root Of -37*x^4+925*x^3+453*x^2+704*x-440 4180966961107077 m002 3+Pi^3*Cosh[Pi]^2+Sinh[Pi] 4180966968723047 m001 (Stephens+TwinPrimes)/(Zeta(5)-MertensB3) 4180966973452856 r009 Re(z^3+c),c=-29/54+13/57*I,n=16 4180966973731998 r005 Im(z^2+c),c=1/82+34/63*I,n=43 4180966977033023 m005 (1/2*Zeta(3)-2/9)/(5*3^(1/2)+2/5) 4180966987324232 m001 (MadelungNaCl+MertensB2)/(gamma(1)-Lehmer) 4180966991663137 r002 18th iterates of z^2 + 4180966995696251 m005 (1/3*exp(1)-3/5)/(5/12*2^(1/2)+1/7) 4180967005534810 m001 (cos(1/5*Pi)+Champernowne)/(Chi(1)-exp(Pi)) 4180967018466411 r002 9th iterates of z^2 + 4180967018766397 a001 1/846*(1/2*5^(1/2)+1/2)^18*47^(8/17) 4180967027679583 r002 7th iterates of z^2 + 4180967028587471 a007 Real Root Of -312*x^4-838*x^3-847*x^2+456*x+287 4180967033744408 r009 Im(z^3+c),c=-17/36+20/57*I,n=51 4180967047448336 r002 42th iterates of z^2 + 4180967050013028 m001 1/5*5^(1/2)*Zeta(1,-1)*BesselI(1,1) 4180967077841314 a001 7/610*86267571272^(3/5) 4180967083072139 a007 Real Root Of 155*x^4+515*x^3-735*x^2-559*x+787 4180967104002004 m001 (BesselK(1,1)-GAMMA(13/24))/(Cahen+Tribonacci) 4180967104100966 a001 281/4976784*832040^(6/19) 4180967104101344 a001 843/267914296*7778742049^(6/19) 4180967123102403 r005 Im(z^2+c),c=-101/110+1/29*I,n=11 4180967136580180 m001 Otter^sin(1/5*Pi)/ZetaP(2) 4180967141416335 r009 Im(z^3+c),c=-45/106+6/13*I,n=9 4180967226090707 m001 (Kolakoski-MadelungNaCl)/(BesselK(1,1)-Artin) 4180967235339788 r005 Im(z^2+c),c=9/44+20/51*I,n=35 4180967238689547 q001 134/3205 4180967238689547 q001 268/641 4180967251026135 m001 (-Champernowne+Totient)/(Chi(1)-GAMMA(5/6)) 4180967255569617 a007 Real Root Of 154*x^4+791*x^3+544*x^2-308*x-44 4180967263130316 r009 Im(z^3+c),c=-3/58+24/49*I,n=11 4180967266205859 a003 -1-cos(3/7*Pi)-cos(1/21*Pi)-2*cos(1/18*Pi) 4180967267975818 a005 (1/cos(12/97*Pi))^880 4180967268038571 r002 47th iterates of z^2 + 4180967276746184 a007 Real Root Of 193*x^4+635*x^3-807*x^2-240*x+538 4180967278461689 m001 (BesselI(1,2)-gamma)/(FeigenbaumC+Lehmer) 4180967299901755 r009 Re(z^3+c),c=-55/126+4/27*I,n=38 4180967303275976 p003 LerchPhi(1/512,4,491/222) 4180967314623115 r002 43th iterates of z^2 + 4180967332374385 m001 (-BesselJ(1,1)+Thue)/(Psi(1,1/3)+gamma(1)) 4180967343472893 r005 Im(z^2+c),c=1/52+34/57*I,n=43 4180967344322295 m005 (1/2*5^(1/2)+7/11)/(3*3^(1/2)-1) 4180967356731539 h001 (2/3*exp(1)+8/11)/(8/11*exp(2)+7/10) 4180967360806479 r009 Im(z^3+c),c=-1/24+10/13*I,n=47 4180967366960506 a001 196418/521*199^(5/11) 4180967371235740 h001 (-4*exp(3)+1)/(-9*exp(3)-9) 4180967371675202 a007 Real Root Of -467*x^4-383*x^3+215*x^2+999*x-413 4180967380553777 r009 Re(z^3+c),c=-4/9+5/32*I,n=34 4180967390633554 m001 ln(BesselK(1,1))^2/BesselJ(1,1)^2*Pi 4180967394635142 r005 Im(z^2+c),c=6/29+16/41*I,n=41 4180967409776657 r005 Re(z^2+c),c=-2/3+13/164*I,n=12 4180967416196651 r009 Im(z^3+c),c=-37/82+23/50*I,n=9 4180967424966978 a007 Real Root Of -356*x^4+464*x^3+366*x^2+773*x+304 4180967431515078 r005 Im(z^2+c),c=-11/42+7/11*I,n=20 4180967432209796 m001 1/Riemann3rdZero^2/Niven^2/ln(Zeta(5))^2 4180967433796773 r009 Im(z^3+c),c=-19/44+23/61*I,n=29 4180967437988038 m001 (ln(3)-GAMMA(23/24))/(Paris-Tribonacci) 4180967459402584 r009 Re(z^3+c),c=-55/106+11/42*I,n=17 4180967459557019 r005 Im(z^2+c),c=-49/78+12/29*I,n=50 4180967461742020 r009 Im(z^3+c),c=-5/48+20/41*I,n=7 4180967462003510 r002 29th iterates of z^2 + 4180967474492313 a007 Real Root Of -224*x^4-227*x^3-520*x^2+301*x+207 4180967481059690 r009 Re(z^3+c),c=-35/64+29/63*I,n=32 4180967494639970 m001 (-PlouffeB+ReciprocalLucas)/(Si(Pi)+Niven) 4180967513022894 r005 Re(z^2+c),c=-55/86+11/43*I,n=4 4180967514514135 m005 (1/2*exp(1)+4/5)/(1/10*2^(1/2)+3/8) 4180967563384296 r009 Re(z^3+c),c=-31/64+9/46*I,n=53 4180967564744268 r008 a(0)=4,K{-n^6,-26-50*n^3+75*n^2-5*n} 4180967569528459 r005 Re(z^2+c),c=-17/23+1/41*I,n=36 4180967572794723 r005 Re(z^2+c),c=1/50+3/11*I,n=10 4180967595963296 a007 Real Root Of -145*x^4-393*x^3+655*x^2-934*x+230 4180967601833468 a007 Real Root Of 794*x^4-571*x^3+640*x^2-383*x-338 4180967610840375 a007 Real Root Of -572*x^4+930*x^3-74*x^2+544*x-265 4180967627253820 a007 Real Root Of -182*x^4-733*x^3+31*x^2-419*x-252 4180967629498518 r005 Im(z^2+c),c=-7/8+37/166*I,n=8 4180967645979440 a007 Real Root Of -959*x^4+683*x^3+417*x^2+645*x+276 4180967662929685 s002 sum(A046577[n]/(10^n+1),n=1..infinity) 4180967663272533 r005 Re(z^2+c),c=-29/38+9/46*I,n=8 4180967687719199 m005 (1/2*exp(1)+6)/(5/7*2^(1/2)+3/4) 4180967695056302 r005 Im(z^2+c),c=19/82+7/19*I,n=35 4180967709907717 m001 (CareFree+Landau)/(ln(5)+exp(1/Pi)) 4180967714150194 s002 sum(A080265[n]/((exp(n)+1)/n),n=1..infinity) 4180967720245206 r005 Re(z^2+c),c=-4/7+15/56*I,n=64 4180967728837422 r002 10th iterates of z^2 + 4180967732853744 a007 Real Root Of -924*x^4+65*x^3-833*x^2+398*x+345 4180967737563894 r002 35th iterates of z^2 + 4180967763902898 r005 Im(z^2+c),c=33/106+13/47*I,n=34 4180967765610348 m001 (5^(1/2)+Zeta(5))/(-ln(Pi)+Tetranacci) 4180967769279141 r005 Re(z^2+c),c=-23/50+27/53*I,n=21 4180967770999932 r008 a(0)=9,K{-n^6,21+7*n+30*n^2-58*n^3} 4180967779889414 m001 (Catalan+GAMMA(7/12))/(Stephens+ZetaQ(3)) 4180967788995690 m005 (1/2*Pi-5/9)/(5/11*2^(1/2)-2/5) 4180967827209888 m005 (1/2*Zeta(3)-3/7)/(3/5*Catalan-6/11) 4180967833424137 r005 Im(z^2+c),c=7/82+19/39*I,n=56 4180967837328989 a007 Real Root Of 113*x^4+290*x^3-725*x^2+293*x+564 4180967851883139 m005 (3/4*2^(1/2)+1/2)/(4/5*Catalan+3) 4180967856150484 m001 (ln(gamma)+ln(3))/(gamma(2)-Conway) 4180967886489176 g006 Psi(1,3/10)+Psi(1,5/7)-Psi(1,3/7)-Psi(1,1/7) 4180967887739546 a005 (1/sin(88/201*Pi))^1513 4180967889809455 r002 14th iterates of z^2 + 4180967893177821 r005 Re(z^2+c),c=-69/122+19/58*I,n=35 4180967901680049 r008 a(0)=4,K{-n^6,-60-44*n^3+40*n^2+58*n} 4180967921328044 a007 Real Root Of -220*x^4-667*x^3+817*x^2-958*x+190 4180967948029825 a007 Real Root Of -180*x^4-465*x^3+943*x^2-958*x+528 4180967951105660 a007 Real Root Of -696*x^4+694*x^3-218*x^2+865*x-353 4180967954098522 m001 (Trott+ZetaP(2))/(FeigenbaumC-Sarnak) 4180967965858493 a007 Real Root Of 329*x^4+286*x^3+487*x^2-736*x-382 4180967969496288 r005 Im(z^2+c),c=-1/122+26/47*I,n=45 4180967995007175 m008 (2/3*Pi^4-2/5)/(5*Pi^3-2/3) 4180968008313565 h001 (8/9*exp(1)+5/7)/(11/12*exp(2)+5/7) 4180968022387994 r005 Re(z^2+c),c=-65/114+16/59*I,n=48 4180968028347481 r009 Re(z^3+c),c=-9/19+5/27*I,n=56 4180968034154434 m001 GAMMA(23/24)^2/ln(PisotVijayaraghavan)^2*Pi 4180968041055280 r009 Re(z^3+c),c=-11/23+3/17*I,n=19 4180968052737632 r005 Re(z^2+c),c=-61/110+10/31*I,n=33 4180968053288284 m001 1/ln(Trott)^2*Backhouse*sin(Pi/5) 4180968054611937 r009 Im(z^3+c),c=-11/60+26/55*I,n=15 4180968058165115 r005 Re(z^2+c),c=-25/34+23/106*I,n=6 4180968073689857 m005 (1/2*Zeta(3)+2/7)/(3/7*2^(1/2)-9/11) 4180968074220442 r005 Im(z^2+c),c=-85/122+8/23*I,n=41 4180968075597669 a007 Real Root Of 683*x^4+209*x^3+126*x^2-673*x-309 4180968086493355 m001 (TreeGrowth2nd+Thue)/(GAMMA(13/24)+Porter) 4180968089805102 a007 Real Root Of -178*x^4-975*x^3-956*x^2-150*x-783 4180968097499781 a001 2/233*34^(22/49) 4180968098129190 a001 3*3524578^(11/14) 4180968104941373 r005 Re(z^2+c),c=-19/30+1/31*I,n=16 4180968105134593 m005 (1/3*3^(1/2)+1/12)/(245/264+7/24*5^(1/2)) 4180968108473879 m001 1/3*Gompertz^GolombDickman*3^(1/2) 4180968115981705 r005 Re(z^2+c),c=-71/118+19/46*I,n=16 4180968120334335 r004 Re(z^2+c),c=-13/22+2/23*I,z(0)=-1,n=41 4180968128174133 m001 Kolakoski*(polylog(4,1/2)+ZetaQ(3)) 4180968130769056 a007 Real Root Of -691*x^4-996*x^3-936*x^2+567*x+349 4180968132077862 h001 (3/8*exp(1)+3/10)/(2/5*exp(2)+1/5) 4180968132858206 s002 sum(A143288[n]/(exp(n)),n=1..infinity) 4180968152319153 r002 36th iterates of z^2 + 4180968154827443 m001 1/Riemann2ndZero/LaplaceLimit/ln(GAMMA(1/6)) 4180968161847663 r005 Re(z^2+c),c=-49/86+17/59*I,n=52 4180968168137973 m001 (2^(1/2)-Kac)/(KomornikLoreti+Paris) 4180968181992008 m005 (1/15+1/6*5^(1/2))/(19/5+3*5^(1/2)) 4180968187147019 a007 Real Root Of -2*x^4-838*x^3-754*x^2+516*x-49 4180968192832828 a007 Real Root Of -22*x^4+319*x^3+969*x^2+971*x-598 4180968207838600 m001 Ei(1,1)^(BesselJ(1,1)*Mills) 4180968208220403 m001 Champernowne*Artin^2/ln(Robbin) 4180968213845690 m001 LambertW(1)*(Rabbit+Trott2nd) 4180968220038618 r005 Re(z^2+c),c=-51/86+10/57*I,n=24 4180968225654696 r009 Re(z^3+c),c=-9/19+5/27*I,n=49 4180968233579993 r005 Re(z^2+c),c=-19/34+18/127*I,n=12 4180968238439172 m005 (2*gamma-3)/(2^(1/2)+3) 4180968249501530 m001 (Pi-Pi^(1/2))/(KhinchinLevy-Thue) 4180968265474097 r005 Re(z^2+c),c=-14/31+27/56*I,n=16 4180968274573585 r005 Re(z^2+c),c=-4/7+25/82*I,n=12 4180968285204765 s002 sum(A228623[n]/(16^n-1),n=1..infinity) 4180968291774814 r005 Im(z^2+c),c=7/60+23/55*I,n=5 4180968302406217 m008 (2/3*Pi^6-1/2)/(1/2*Pi^5+1/6) 4180968306402492 r005 Im(z^2+c),c=15/46+9/35*I,n=47 4180968309403031 m001 (-ln(5)+GolombDickman)/(exp(Pi)+BesselK(0,1)) 4180968335571476 m001 (cos(1/12*Pi)-exp(1/Pi))/(Pi^(1/2)-Kolakoski) 4180968341027764 r008 a(0)=4,K{-n^6,-7+3*n-33*n^2+32*n^3} 4180968353000906 r002 33th iterates of z^2 + 4180968354743870 p004 log(34483/33071) 4180968363126223 r005 Im(z^2+c),c=4/23+23/55*I,n=23 4180968367887734 m001 GaussAGM(1,1/sqrt(2))*exp(sqrt(2))^GAMMA(5/6) 4180968396059498 m001 (sin(1)+Landau)/(-StolarskyHarborth+ThueMorse) 4180968420528076 m005 (3/4*2^(1/2)+1/5)/(5/6*exp(1)+3/4) 4180968433710336 r005 Im(z^2+c),c=-11/94+17/28*I,n=61 4180968437910853 a003 sin(Pi*7/52)-sin(Pi*23/74) 4180968442221843 r005 Re(z^2+c),c=17/52+2/39*I,n=41 4180968453247905 m005 (1/3*5^(1/2)+1/2)/(3/7*3^(1/2)-4/9) 4180968457884235 m001 (Psi(2,1/3)-ln(2))/(-KomornikLoreti+ZetaP(2)) 4180968466017133 r009 Im(z^3+c),c=-21/40+10/57*I,n=51 4180968493778921 r004 Re(z^2+c),c=-5/38+1/5*I,z(0)=exp(5/8*I*Pi),n=4 4180968499101760 r009 Im(z^3+c),c=-23/94+27/59*I,n=15 4180968500419035 r009 Re(z^3+c),c=-55/106+8/33*I,n=52 4180968501787761 a007 Real Root Of 733*x^4+546*x^3-760*x^2-898*x+446 4180968519009927 s002 sum(A242246[n]/(16^n-1),n=1..infinity) 4180968519009927 s002 sum(A229979[n]/(16^n-1),n=1..infinity) 4180968522079135 m005 (1/2*2^(1/2)-1/2)/(-1/4+1/3*5^(1/2)) 4180968525538261 m002 2+Pi^2+Pi^3-Log[Pi]/ProductLog[Pi] 4180968534520896 m005 (1/2*exp(1)-3)/(23/7+2/7*5^(1/2)) 4180968536282151 s002 sum(A244417[n]/(16^n),n=1..infinity) 4180968537188108 s002 sum(A278718[n]/(16^n-1),n=1..infinity) 4180968549025465 m001 (ln(2)/ln(10)-ln(5))/(gamma(2)+FellerTornier) 4180968550140649 l006 ln(472/717) 4180968555813837 a007 Real Root Of 194*x^4-75*x^3+251*x^2-150*x-118 4180968559465922 r005 Re(z^2+c),c=13/60+25/61*I,n=4 4180968560456317 a007 Real Root Of 484*x^4+384*x^3-851*x^2-591*x+353 4180968565912316 a001 13/521*2^(35/47) 4180968577125098 m001 3^(1/2)*Porter+GAMMA(13/24) 4180968577931665 r005 Re(z^2+c),c=-35/74+28/55*I,n=32 4180968597416644 m001 (ln(5)-BesselJ(1,1))/(FransenRobinson-Trott) 4180968610042547 r005 Re(z^2+c),c=-16/27+1/30*I,n=37 4180968615593229 r009 Re(z^3+c),c=-25/52+4/21*I,n=15 4180968630548908 m001 (MertensB3-OneNinth)/(Ei(1)+MertensB2) 4180968652797038 m001 ln(CopelandErdos)^2/ErdosBorwein*LambertW(1)^2 4180968654685446 m005 (1/3*exp(1)-2/5)/(49/264+11/24*5^(1/2)) 4180968657185883 a003 sin(Pi*7/113)/sin(Pi*15/98) 4180968668225458 m001 (Backhouse-TwinPrimes)/(GAMMA(2/3)-ln(gamma)) 4180968670900523 m005 (5/66+1/6*5^(1/2))/(6*3^(1/2)+1/3) 4180968671161240 m001 Tribonacci/HardHexagonsEntropy^2*exp(Ei(1))^2 4180968681574490 m005 (1/2*5^(1/2)+5/7)/(-5/9+4/9*5^(1/2)) 4180968684529064 a003 sin(Pi*7/93)/cos(Pi*32/103) 4180968687023434 a005 (1/sin(79/203*Pi))^730 4180968687787719 r002 3th iterates of z^2 + 4180968688215254 a003 sin(Pi*13/95)/sin(Pi*47/99) 4180968693468506 a007 Real Root Of -147*x^4-856*x^3-835*x^2+566*x-680 4180968704446055 r005 Im(z^2+c),c=3/46+22/37*I,n=31 4180968736620233 m001 1/ln(Rabbit)^2*Kolakoski^2/GAMMA(17/24) 4180968740923320 r005 Re(z^2+c),c=-25/34+4/123*I,n=30 4180968748028883 r005 Im(z^2+c),c=-9/14+20/29*I,n=6 4180968752654376 r005 Im(z^2+c),c=9/29+11/40*I,n=35 4180968756248050 r002 4th iterates of z^2 + 4180968756630122 r005 Re(z^2+c),c=-13/22+10/121*I,n=46 4180968764220083 a008 Real Root of x^4-8*x^2-4*x-149 4180968786408481 m001 (KhinchinLevy-Landau)/(ln(3)+BesselJ(1,1)) 4180968807431239 a007 Real Root Of -592*x^4+904*x^3-485*x^2-715*x-130 4180968819342303 m001 1/exp(Riemann2ndZero)^2*Conway^2/sqrt(5) 4180968820548924 r002 4th iterates of z^2 + 4180968823399386 r005 Im(z^2+c),c=-7/8+49/204*I,n=21 4180968842342121 r005 Re(z^2+c),c=-31/50+14/37*I,n=48 4180968843003800 m006 (1/3*Pi^2-1/5)/(1/2*ln(Pi)+1/6) 4180968860632611 r002 18th iterates of z^2 + 4180968864367169 r002 32th iterates of z^2 + 4180968873395282 r005 Im(z^2+c),c=2/23+19/35*I,n=24 4180968879331331 b008 3*(-16+ArcCosh[4]) 4180968903988086 r008 a(0)=4,K{-n^6,-42+27*n+55*n^2-46*n^3} 4180968913803492 r005 Re(z^2+c),c=-65/94+8/39*I,n=47 4180968942533039 g001 abs(GAMMA(-13/10+I*59/15)) 4180968944741041 m001 Khintchine^2*GlaisherKinkelin^2*exp((2^(1/3))) 4180968950314393 r005 Re(z^2+c),c=8/27+23/43*I,n=15 4180968959104861 m001 (1-3^(1/2)*Stephens)/Stephens 4180968970449315 a007 Real Root Of 664*x^4-16*x^3+293*x^2-692*x-362 4180968972804825 r005 Re(z^2+c),c=-16/27+1/59*I,n=39 4180968981452674 r002 53th iterates of z^2 + 4180969002207519 r005 Re(z^2+c),c=-35/74+31/64*I,n=51 4180969007201646 r005 Im(z^2+c),c=-59/40+11/36*I,n=3 4180969012911017 m001 StolarskyHarborth/Porter/PisotVijayaraghavan 4180969022191810 m001 (Zeta(3)+gamma(3))/(DuboisRaymond+Khinchin) 4180969027767412 r005 Im(z^2+c),c=-13/122+39/64*I,n=46 4180969029015559 m001 (-RenyiParking+1)/(Zeta(5)+5) 4180969040213749 r005 Re(z^2+c),c=-59/102+7/22*I,n=41 4180969048901799 a008 Real Root of x^4-39*x^2-12*x+326 4180969053467733 a007 Real Root Of -396*x^4-359*x^3+753*x^2+846*x-447 4180969065009887 q001 1/239179 4180969065262223 m005 (1/3*gamma-1/6)/(7/9*gamma+1/6) 4180969068120910 m005 (1/2*gamma+4/9)/(4*gamma-5/9) 4180969068942864 r005 Re(z^2+c),c=-69/118+6/37*I,n=22 4180969072840947 m001 (1+FeigenbaumMu)/(OneNinth+ZetaQ(4)) 4180969076333426 a001 8/199*3^(1/28) 4180969078098830 r005 Re(z^2+c),c=23/86+1/40*I,n=39 4180969081105255 b008 11/4+6^(1/5) 4180969094061915 a001 1364/9227465*8^(1/2) 4180969095349693 m001 1/Robbin*exp(GolombDickman)^2/(2^(1/3)) 4180969098555525 m001 GAMMA(3/4)^2*FeigenbaumKappa^2*exp(exp(1)) 4180969110377597 m001 ln(GAMMA(2/3))^2/Artin/sin(Pi/5) 4180969113064989 a007 Real Root Of -225*x^4+374*x^3+358*x^2+672*x-364 4180969126325239 r005 Im(z^2+c),c=-5/114+27/47*I,n=63 4180969133470962 l006 ln(3724/3883) 4180969138978370 m005 (1/3*5^(1/2)+1/12)/(3^(1/2)+1/4) 4180969141900998 r002 57th iterates of z^2 + 4180969154853068 m001 (Robbin+Trott)/(3^(1/2)-Champernowne) 4180969163306583 r002 29th iterates of z^2 + 4180969163723230 g004 Im(GAMMA(53/15+I*233/60)) 4180969165159902 m001 (Lehmer+ZetaP(4))/(5^(1/2)-HardyLittlewoodC3) 4180969167617781 m001 Trott*FeigenbaumAlpha^2*ln(cos(1)) 4180969169139227 p001 sum((-1)^n/(384*n+239)/(512^n),n=0..infinity) 4180969193262936 r005 Re(z^2+c),c=25/98+1/56*I,n=42 4180969193528653 m001 1/Lehmer^2*ln(GolombDickman)^2*Robbin 4180969209437294 p003 LerchPhi(1/32,5,355/188) 4180969217681362 m001 (Shi(1)-cos(1))/(-gamma(2)+FibonacciFactorial) 4180969230351997 r002 36th iterates of z^2 + 4180969244191556 a007 Real Root Of -653*x^4+564*x^3-612*x^2-108*x+123 4180969257446463 r002 61th iterates of z^2 + 4180969257903941 r002 18th iterates of z^2 + 4180969274899065 r005 Im(z^2+c),c=7/44+19/44*I,n=35 4180969284994953 r005 Re(z^2+c),c=-63/110+7/47*I,n=8 4180969285073301 m001 GAMMA(11/24)*GAMMA(1/12)*ln(cosh(1))^2 4180969287692943 r009 Re(z^3+c),c=-65/122+10/37*I,n=57 4180969303363135 r005 Im(z^2+c),c=-93/106+10/41*I,n=6 4180969311486532 a007 Real Root Of 246*x^4+987*x^3-371*x^2-900*x-312 4180969318092352 a001 7/10946*10610209857723^(3/5) 4180969334025513 r002 37th iterates of z^2 + 4180969339151479 r005 Im(z^2+c),c=1/82+8/15*I,n=35 4180969352791779 r005 Im(z^2+c),c=-3/70+27/47*I,n=60 4180969353813306 r005 Im(z^2+c),c=1/18+1/27*I,n=5 4180969363780616 r009 Im(z^3+c),c=-43/110+13/23*I,n=8 4180969365427168 a007 Real Root Of 567*x^4-289*x^3+823*x^2-248*x-286 4180969367472661 m001 sin(1)*sin(1/12*Pi)^polylog(4,1/2) 4180969367472661 m001 sin(1)*sin(Pi/12)^polylog(4,1/2) 4180969376325060 m001 (GAMMA(19/24)+Khinchin)/(3^(1/2)-cos(1/5*Pi)) 4180969387696606 m001 (Gompertz-Lehmer)/(MadelungNaCl-Thue) 4180969392909085 r005 Im(z^2+c),c=25/94+17/25*I,n=3 4180969393102419 r005 Im(z^2+c),c=-42/29+1/60*I,n=10 4180969398432079 r005 Re(z^2+c),c=-69/118+1/6*I,n=49 4180969419774927 r009 Im(z^3+c),c=-17/114+29/62*I,n=4 4180969435283880 a001 29/86267571272*121393^(14/23) 4180969438765259 m001 1/GAMMA(5/24)^2/ln(Tribonacci)^2/gamma^2 4180969446239281 r005 Re(z^2+c),c=-53/90+7/60*I,n=50 4180969450305310 a001 7/2584*956722026041^(3/5) 4180969455162888 m005 (1/2*exp(1)-1/6)/(1/8*exp(1)-5/8) 4180969466104534 m001 (Pi-Psi(1,1/3))/(ln(5)+ZetaQ(2)) 4180969468055428 m001 Zeta(3)^Si(Pi)*exp(-Pi)^Si(Pi) 4180969468055428 m001 Zeta(3)^Si(Pi)/(exp(Pi)^Si(Pi)) 4180969482897378 r009 Im(z^3+c),c=-8/15+9/35*I,n=47 4180969485835720 m001 (-ln(2)+FeigenbaumAlpha)/(1-LambertW(1)) 4180969486359880 r009 Re(z^3+c),c=-35/64+4/29*I,n=54 4180969487735310 r005 Im(z^2+c),c=-145/114+2/55*I,n=5 4180969513502943 g007 Psi(2,11/12)+Psi(2,3/7)-Psi(2,3/8)-Psi(2,2/5) 4180969523200096 m001 Pi*(1-Zeta(3)-GAMMA(5/6)) 4180969527506219 r002 62th iterates of z^2 + 4180969536578191 a007 Real Root Of -52*x^4-360*x^3-501*x^2+384*x-58 4180969537382024 r005 Im(z^2+c),c=-7/10+52/209*I,n=9 4180969576674821 m001 1/cos(1)/exp(DuboisRaymond)^2/sqrt(3)^2 4180969585959226 r005 Re(z^2+c),c=-15/34+33/62*I,n=62 4180969601237258 r005 Im(z^2+c),c=25/118+5/13*I,n=27 4180969612211635 m001 (-CareFree+ZetaP(2))/(exp(1/exp(1))-sin(1)) 4180969618367167 r008 a(0)=4,K{-n^6,9+30*n^3-19*n^2-25*n} 4180969630303949 r002 3th iterates of z^2 + 4180969645224568 r005 Re(z^2+c),c=-16/27+2/33*I,n=35 4180969646968218 m009 (1/5*Psi(1,1/3)+5/6)/(1/12*Pi^2+6) 4180969647217149 r005 Re(z^2+c),c=-19/110+54/55*I,n=4 4180969656511917 m001 (PolyaRandomWalk3D-Si(Pi))/(Trott2nd+ZetaQ(3)) 4180969664278879 r009 Re(z^3+c),c=-15/29+18/59*I,n=16 4180969684065226 m005 (1/2*gamma-7/12)/(6/11*exp(1)-7/9) 4180969685916073 m001 (-Magata+Trott)/(2^(1/2)-BesselK(1,1)) 4180969698759674 r002 36th iterates of z^2 + 4180969700379327 a007 Real Root Of -117*x^4+289*x^3+926*x^2+971*x+39 4180969701274236 m001 (LandauRamanujan+Niven)/(1-BesselI(1,2)) 4180969708492946 a001 317811/322*322^(1/4) 4180969717475050 r002 3th iterates of z^2 + 4180969737216388 r005 Im(z^2+c),c=-37/78+32/61*I,n=56 4180969747267628 a007 Real Root Of 307*x^4-765*x^3+325*x^2+72*x-92 4180969747515728 m001 GAMMA(5/24)/exp(GlaisherKinkelin)^2/cos(Pi/5) 4180969753370035 h001 (9/10*exp(2)+7/12)/(1/9*exp(2)+10/11) 4180969753994388 r005 Re(z^2+c),c=-14/27+17/42*I,n=32 4180969757875984 r009 Re(z^3+c),c=-55/114+5/26*I,n=32 4180969766763206 a007 Real Root Of -51*x^4+694*x^3-833*x^2+17*x+205 4180969771106434 m001 1/Rabbit^2/ln(Lehmer)^2/log(2+sqrt(3))^2 4180969790838034 m001 Niven*exp(FeigenbaumB)/Zeta(1,2) 4180969801490336 r005 Re(z^2+c),c=-9/16+21/64*I,n=60 4180969811909114 r002 62th iterates of z^2 + 4180969815031442 a007 Real Root Of 444*x^4-546*x^3+967*x^2-635*x-488 4180969816161739 r005 Re(z^2+c),c=-31/30+8/73*I,n=20 4180969818635985 r005 Im(z^2+c),c=-5/16+35/54*I,n=30 4180969823128624 m001 1/LambertW(1)^2*Kolakoski/ln(arctan(1/2))^2 4180969827840582 m006 (1/4*Pi^2-3/5)/(5/6*exp(2*Pi)+2/5) 4180969833143625 m005 (1/2*Zeta(3)-5/9)/(8/9*5^(1/2)-9/10) 4180969837886436 m001 (exp(1)-gamma(3))/(-GAMMA(11/12)+Niven) 4180969839856783 h001 (1/8*exp(1)+8/11)/(6/7*exp(1)+2/9) 4180969842367661 m001 1/GAMMA(5/12)*CareFree*ln(log(1+sqrt(2))) 4180969848680310 r005 Im(z^2+c),c=5/94+26/51*I,n=30 4180969853147950 a007 Real Root Of 784*x^4+135*x^3+725*x^2-65*x-168 4180969861761454 a007 Real Root Of 189*x^4+466*x^3+719*x^2-884*x-467 4180969868047462 a007 Real Root Of -583*x^4+428*x^3+703*x^2+743*x-447 4180969868157408 m001 (Kac-cos(1))/(-Landau+RenyiParking) 4180969871444273 m001 (cos(1)+cos(1/5*Pi))/(-ln(3)+StronglyCareFree) 4180969879551410 a001 121393/3*1364^(11/34) 4180969879713889 m001 Zeta(9)*exp(Paris)^2/cos(1)^2 4180969898191501 m001 FeigenbaumAlpha*Kolakoski/PlouffeB 4180969907564523 a008 Real Root of x^4-2*x^3+2*x^2+208*x-1064 4180969931542015 r009 Re(z^3+c),c=-41/110+2/27*I,n=14 4180969933052070 r005 Im(z^2+c),c=-5/8+45/127*I,n=3 4180969942415183 m001 (GAMMA(17/24)+ZetaQ(3))/(Catalan-GAMMA(3/4)) 4180969954528092 a007 Real Root Of -172*x^4+783*x^3-603*x^2+194*x+249 4180969962015942 a003 cos(Pi*21/86)*cos(Pi*33/109) 4180969998411171 a007 Real Root Of -920*x^4+760*x^3-535*x^2-474*x-21 4180970003738648 m001 2^(1/2)*KhinchinLevy+FeigenbaumAlpha 4180970018683988 r005 Re(z^2+c),c=-16/27+1/30*I,n=53 4180970026933271 r005 Im(z^2+c),c=-13/19+21/62*I,n=21 4180970032931851 m001 (Stephens+TreeGrowth2nd)/(ln(Pi)+GAMMA(17/24)) 4180970060908344 a007 Real Root Of 889*x^4+270*x^3-810*x^2-680*x+379 4180970064509791 h001 (6/11*exp(1)+8/9)/(7/10*exp(2)+1/2) 4180970082752476 r002 28th iterates of z^2 + 4180970083850087 r002 48th iterates of z^2 + 4180970088029239 b008 ExpIntegralE[3,4*Sqrt[2]] 4180970117473860 m005 (-1/44+1/4*5^(1/2))/(1/2*3^(1/2)+5/12) 4180970130453675 r005 Re(z^2+c),c=-33/70+19/36*I,n=41 4180970135640069 m001 (2*Pi/GAMMA(5/6)-5^(1/2))/(-Landau+Totient) 4180970142686972 r004 Re(z^2+c),c=-5/7-2/19*I,z(0)=-1,n=34 4180970198845321 a007 Real Root Of 147*x^4+828*x^3+859*x^2+47*x+777 4180970226783767 r005 Im(z^2+c),c=19/70+14/43*I,n=36 4180970267269626 m005 (1/2*Pi-7/11)/(3/11*5^(1/2)-5/6) 4180970272564913 r008 a(0)=4,K{-n^6,-46-44*n^3+47*n^2+37*n} 4180970276604392 r005 Im(z^2+c),c=31/106+17/58*I,n=12 4180970276812063 r005 Re(z^2+c),c=-77/102+5/63*I,n=24 4180970291086650 m001 (Champernowne+GaussAGM)/(Tribonacci+ZetaP(2)) 4180970300949552 a001 987*199^(3/11) 4180970305512161 h001 (2/11*exp(2)+7/10)/(6/11*exp(2)+6/7) 4180970308687521 r005 Re(z^2+c),c=-19/30+8/27*I,n=31 4180970318740622 r002 33th iterates of z^2 + 4180970322036252 m001 ZetaR(2)^(sin(1)*Landau) 4180970322726976 r002 34th iterates of z^2 + 4180970344608396 m009 (4/5*Psi(1,3/4)+1)/(4*Psi(1,2/3)-5) 4180970352329075 r005 Re(z^2+c),c=-9/16+14/107*I,n=7 4180970376126317 m008 (5/6*Pi^4-3/4)/(2*Pi^6+4/5) 4180970378807023 s002 sum(A204725[n]/(16^n),n=1..infinity) 4180970381203870 r005 Im(z^2+c),c=-1/110+18/31*I,n=35 4180970408722225 r005 Re(z^2+c),c=-4/7+35/128*I,n=52 4180970411408670 p002 log(11^(12/7)+12^(3/5)) 4180970413691351 m001 1/exp(Zeta(5))*LandauRamanujan*cosh(1) 4180970419965915 r005 Re(z^2+c),c=-5/8+46/217*I,n=7 4180970434631264 r002 53th iterates of z^2 + 4180970437809103 m001 (5^(1/2)+ln(3))/(-LandauRamanujan2nd+Robbin) 4180970443727782 m008 (3/4*Pi^3+2)/(1/5*Pi^5-4/5) 4180970449060936 a001 2584/3*9349^(23/34) 4180970452711905 m001 1/Sierpinski*PrimesInBinary*ln(sinh(1))^2 4180970462589339 r002 49th iterates of z^2 + 4180970466439153 p004 log(12497/191) 4180970469496470 r002 25th iterates of z^2 + 4180970473847008 r002 33th iterates of z^2 + 4180970482139695 r002 40th iterates of z^2 + 4180970482927910 a001 141/4769326*2^(1/2) 4180970483666061 m001 1/(2^(1/3))^2*exp(Artin)^2*Pi 4180970488694977 r002 3th iterates of z^2 + 4180970493250868 r005 Im(z^2+c),c=11/46+21/64*I,n=12 4180970516877415 a007 Real Root Of -906*x^4-40*x^3+439*x^2+684*x+234 4180970517985436 a001 1364/1597*4181^(4/21) 4180970518628484 m001 (GAMMA(3/4)-gamma(2))/(Otter-ZetaQ(4)) 4180970525075526 r005 Re(z^2+c),c=-89/110+13/50*I,n=8 4180970531281091 m001 (Catalan+KomornikLoreti)/(Trott+ZetaQ(2)) 4180970535367568 a007 Real Root Of -234*x^4+856*x^3+667*x^2+928*x-560 4180970535425723 m001 (GAMMA(11/12)-Landau)/(Ei(1,1)-exp(1/exp(1))) 4180970553075964 a001 199/6557470319842*3^(7/24) 4180970553445032 r005 Re(z^2+c),c=-21/16+4/101*I,n=14 4180970555779497 m001 (Paris+QuadraticClass)/(Artin-exp(1)) 4180970555897830 a007 Real Root Of 25*x^4-907*x^3+309*x^2-867*x+374 4180970563892899 a007 Real Root Of 103*x^4-343*x^3-509*x^2-713*x+409 4180970567827811 b008 Coth[Sqrt[-1+Pi]/6] 4180970570601737 r005 Re(z^2+c),c=-57/98+11/56*I,n=52 4180970577109339 r009 Im(z^3+c),c=-57/110+18/53*I,n=62 4180970584158549 r005 Re(z^2+c),c=-17/30+34/99*I,n=26 4180970585115513 r005 Im(z^2+c),c=-5/19+25/43*I,n=10 4180970590221017 m006 (2/5*ln(Pi)-4)/(1/3*Pi-1/5) 4180970596463719 m001 1/GAMMA(1/3)/FeigenbaumKappa/ln(GAMMA(11/24)) 4180970599879117 r005 Re(z^2+c),c=-35/52+14/51*I,n=57 4180970601845053 a003 sin(Pi*17/103)*sin(Pi*31/97) 4180970601946472 a007 Real Root Of -419*x^4+390*x^3+432*x^2+321*x+100 4180970605382499 r002 55th iterates of z^2 + 4180970606041291 a001 514229/3*24476^(3/34) 4180970631806109 r009 Im(z^3+c),c=-5/94+18/25*I,n=4 4180970635462893 a001 29/233*832040^(4/45) 4180970635942780 m005 (1/3*exp(1)+1/7)/(5/9*Catalan+2) 4180970651919099 r009 Re(z^3+c),c=-57/110+9/29*I,n=12 4180970660497383 r005 Im(z^2+c),c=4/27+1/36*I,n=4 4180970663298767 m002 -Pi^2-Pi^3-2*Coth[Pi]+ProductLog[Pi] 4180970664730591 s002 sum(A259707[n]/(n^3*2^n+1),n=1..infinity) 4180970674425101 r005 Re(z^2+c),c=-17/30+33/113*I,n=53 4180970678952213 a007 Real Root Of -112*x^4-49*x^3-717*x^2+936*x-259 4180970689453394 m001 KhintchineHarmonic*Bloch*ln(BesselK(1,1)) 4180970696586777 r009 Im(z^3+c),c=-7/34+29/62*I,n=18 4180970702343819 r005 Re(z^2+c),c=-7/12+32/123*I,n=31 4180970705483520 r005 Re(z^2+c),c=-53/90+7/46*I,n=32 4180970712096566 r005 Im(z^2+c),c=3/16+11/27*I,n=49 4180970714559658 s002 sum(A151980[n]/(n!^2),n=1..infinity) 4180970716487126 r009 Re(z^3+c),c=-17/82+28/39*I,n=43 4180970724793752 r009 Re(z^3+c),c=-39/106+39/62*I,n=11 4180970729678067 r009 Re(z^3+c),c=-89/118+53/63*I,n=2 4180970736878989 m001 (Zeta(1,-1)-Magata)/(sin(1/5*Pi)-3^(1/3)) 4180970740407539 r005 Re(z^2+c),c=-65/86+2/23*I,n=22 4180970749566364 m005 (1/2*5^(1/2)+5)/(5/6*Catalan+7/10) 4180970764153528 a001 76/89*21^(12/23) 4180970767207832 a007 Real Root Of -117*x^4+801*x^3+427*x^2+740*x-439 4180970769542508 a007 Real Root Of 992*x^4-555*x^3-397*x^2-482*x-203 4180970775377987 r009 Re(z^3+c),c=-3/44+31/56*I,n=31 4180970775607355 l006 ln(6267/9520) 4180970789867839 b008 11*Gamma[EulerGamma,7] 4180970803130668 m001 (Pi+exp(1))/(ln(5)-exp(-1/2*Pi)) 4180970811131031 r009 Im(z^3+c),c=-13/30+20/53*I,n=21 4180970817849214 r009 Im(z^3+c),c=-37/94+25/63*I,n=14 4180970829761657 a001 682/5473*102334155^(4/21) 4180970830622315 r002 21th iterates of z^2 + 4180970836592149 a001 1364/75025*2504730781961^(4/21) 4180970841600353 r005 Im(z^2+c),c=11/118+13/27*I,n=59 4180970844060181 m008 (1/4*Pi^6+2/3)/(3/5*Pi^4-4/5) 4180970847894057 r005 Im(z^2+c),c=6/23+18/53*I,n=37 4180970850511500 r005 Im(z^2+c),c=-17/36+30/53*I,n=29 4180970853664859 r009 Im(z^3+c),c=-49/110+2/5*I,n=13 4180970856764254 r005 Im(z^2+c),c=-16/29+4/63*I,n=15 4180970861644906 m001 GAMMA(1/6)^2/ln(DuboisRaymond)/GAMMA(5/12)^2 4180970886635126 r002 11th iterates of z^2 + 4180970899260362 m001 (Sarnak+TwinPrimes)/(GolombDickman+Khinchin) 4180970920848980 r002 18th iterates of z^2 + 4180970928903367 r009 Im(z^3+c),c=-6/25+37/55*I,n=5 4180970934702289 m001 (ln(5)+Zeta(1/2))/(Ei(1,1)-Stephens) 4180970938941435 m001 exp(Catalan)*ErdosBorwein^2/cosh(1) 4180970939663369 a007 Real Root Of 361*x^4-410*x^3+568*x^2-150*x-203 4180970950066000 r005 Re(z^2+c),c=-4/11+22/39*I,n=33 4180970956870540 l006 ln(5795/8803) 4180970957780463 r005 Re(z^2+c),c=-19/110+33/52*I,n=40 4180970986757567 m001 BesselI(1,2)^MertensB3*Tribonacci^MertensB3 4180971007108767 r002 53th iterates of z^2 + 4180971013427514 a001 3571/24157817*8^(1/2) 4180971019106259 m001 (ln(3)*FeigenbaumD-Magata)/ln(3) 4180971026357802 r005 Im(z^2+c),c=21/86+11/31*I,n=38 4180971027478825 r009 Im(z^3+c),c=-11/58+26/55*I,n=2 4180971034081917 a001 5702887/5778*199^(3/11) 4180971047303201 r005 Im(z^2+c),c=-1/122+23/42*I,n=40 4180971050140465 m001 (Psi(2,1/3)+ln(2))/(-Kac+Tetranacci) 4180971064247179 q001 1705/4078 4180971067724196 r002 34th iterates of z^2 + 4180971068130172 r005 Im(z^2+c),c=7/22+8/29*I,n=42 4180971074939769 s002 sum(A077738[n]/(n^3*exp(n)-1),n=1..infinity) 4180971085443805 a001 2/233*514229^(8/17) 4180971087313670 r009 Re(z^3+c),c=-29/60+6/31*I,n=37 4180971089094572 m002 Cosh[Pi]+(4*Pi^5*Tanh[Pi])/3 4180971090262072 r002 64th iterates of z^2 + 4180971097166036 m005 (1/3*5^(1/2)+1/6)/(7/8*Catalan-7/12) 4180971101746004 m002 ProductLog[Pi]/Pi+(Pi^6*Sech[Pi])/2 4180971114959793 r009 Im(z^3+c),c=-9/32+25/56*I,n=16 4180971118433791 a007 Real Root Of 540*x^4-193*x^3+742*x^2-889*x-532 4180971118857473 a001 1/116*(1/2*5^(1/2)+1/2)^17*29^(1/11) 4180971129179466 m001 (Shi(1)+LambertW(1))/(Zeta(3)+FeigenbaumD) 4180971133168164 r005 Im(z^2+c),c=21/82+20/61*I,n=13 4180971141044509 a001 14930352/15127*199^(3/11) 4180971144782341 r005 Re(z^2+c),c=15/46+3/44*I,n=31 4180971150698011 r002 48th iterates of z^2 + 4180971155525500 m001 (cos(1)-ln(Pi))^(3^(1/2)) 4180971155525500 m001 (cos(1)-ln(Pi))^sqrt(3) 4180971156650141 a001 39088169/39603*199^(3/11) 4180971158926972 a001 102334155/103682*199^(3/11) 4180971159259158 a001 267914296/271443*199^(3/11) 4180971159307623 a001 701408733/710647*199^(3/11) 4180971159314694 a001 1836311903/1860498*199^(3/11) 4180971159315725 a001 4807526976/4870847*199^(3/11) 4180971159315876 a001 12586269025/12752043*199^(3/11) 4180971159315898 a001 32951280099/33385282*199^(3/11) 4180971159315901 a001 86267571272/87403803*199^(3/11) 4180971159315902 a001 225851433717/228826127*199^(3/11) 4180971159315902 a001 591286729879/599074578*199^(3/11) 4180971159315902 a001 1548008755920/1568397607*199^(3/11) 4180971159315902 a001 4052739537881/4106118243*199^(3/11) 4180971159315902 a001 4807525989/4870846*199^(3/11) 4180971159315902 a001 6557470319842/6643838879*199^(3/11) 4180971159315902 a001 2504730781961/2537720636*199^(3/11) 4180971159315902 a001 956722026041/969323029*199^(3/11) 4180971159315902 a001 365435296162/370248451*199^(3/11) 4180971159315902 a001 139583862445/141422324*199^(3/11) 4180971159315903 a001 53316291173/54018521*199^(3/11) 4180971159315911 a001 20365011074/20633239*199^(3/11) 4180971159315969 a001 7778742049/7881196*199^(3/11) 4180971159316363 a001 2971215073/3010349*199^(3/11) 4180971159319064 a001 1134903170/1149851*199^(3/11) 4180971159337576 a001 433494437/439204*199^(3/11) 4180971159464459 a001 165580141/167761*199^(3/11) 4180971160334131 a001 63245986/64079*199^(3/11) 4180971166294953 a001 24157817/24476*199^(3/11) 4180971170279587 l006 ln(5323/8086) 4180971172544855 r005 Re(z^2+c),c=-13/18+1/66*I,n=28 4180971177325088 r005 Im(z^2+c),c=-63/110+13/28*I,n=6 4180971177346473 s002 sum(A278110[n]/(n^2*2^n+1),n=1..infinity) 4180971192754129 a007 Real Root Of -102*x^4+57*x^3-954*x^2-91*x+136 4180971194896597 h001 (-5*exp(3)+3)/(-12*exp(3)+8) 4180971200176902 m004 -30-125*Pi+(Sqrt[5]*Pi)/ProductLog[Sqrt[5]*Pi] 4180971200810997 r005 Re(z^2+c),c=-29/62+19/37*I,n=46 4180971207151029 a001 9227465/9349*199^(3/11) 4180971216060332 a001 2584/87403803*2^(1/2) 4180971219614058 a007 Real Root Of 935*x^4-641*x^3+649*x^2-792*x-520 4180971226079859 r009 Re(z^3+c),c=-11/31+25/38*I,n=8 4180971233421254 r005 Im(z^2+c),c=-13/74+19/32*I,n=30 4180971245418647 m001 (Ei(1)+FeigenbaumD)/(Salem-StolarskyHarborth) 4180971252638157 r005 Im(z^2+c),c=11/118+10/19*I,n=17 4180971258988942 a007 Real Root Of 114*x^4-9*x^3+804*x^2-570*x-383 4180971273889839 r005 Re(z^2+c),c=-14/25+17/49*I,n=25 4180971282993592 r005 Re(z^2+c),c=23/90+1/55*I,n=42 4180971292344892 m001 FibonacciFactorial/(3^(1/2)+Zeta(3)) 4180971293459181 a001 9349/63245986*8^(1/2) 4180971302681066 r002 24th iterates of z^2 + 4180971303089381 m001 (-3^(1/3)+exp(1/exp(1)))/(Psi(2,1/3)-exp(1)) 4180971306497906 m005 (1/2*Zeta(3)+5/8)/(7/9*exp(1)+9/11) 4180971311247142 r005 Im(z^2+c),c=37/114+14/53*I,n=64 4180971315960572 m001 (ln(3)+sin(1/12*Pi))/(Robbin+Sierpinski) 4180971323022911 a001 6765/228826127*2^(1/2) 4180971324025995 r009 Im(z^3+c),c=-31/78+25/63*I,n=31 4180971333682343 a007 Real Root Of 529*x^4+549*x^3-335*x^2-626*x+264 4180971334315251 a001 24476/165580141*8^(1/2) 4180971338628541 a001 17711/599074578*2^(1/2) 4180971340276071 a001 64079/433494437*8^(1/2) 4180971340905372 a001 6624/224056801*2^(1/2) 4180971341145743 a001 167761/1134903170*8^(1/2) 4180971341237557 a001 121393/4106118243*2^(1/2) 4180971341272627 a001 439204/2971215073*8^(1/2) 4180971341286022 a001 317811/10749957122*2^(1/2) 4180971341291139 a001 1149851/7778742049*8^(1/2) 4180971341293093 a001 832040/28143753123*2^(1/2) 4180971341293840 a001 3010349/20365011074*8^(1/2) 4180971341294125 a001 311187/10525900321*2^(1/2) 4180971341294234 a001 7881196/53316291173*8^(1/2) 4180971341294275 a001 5702887/192900153618*2^(1/2) 4180971341294291 a001 20633239/139583862445*8^(1/2) 4180971341294297 a001 14930352/505019158607*2^(1/2) 4180971341294299 a001 54018521/365435296162*8^(1/2) 4180971341294300 a001 39088169/1322157322203*2^(1/2) 4180971341294301 a001 141422324/956722026041*8^(1/2) 4180971341294301 a001 6765/228826126*2^(1/2) 4180971341294301 a001 370248451/2504730781961*8^(1/2) 4180971341294301 a001 267914296/9062201101803*2^(1/2) 4180971341294301 a001 969323029/6557470319842*8^(1/2) 4180971341294301 a001 701408733/23725150497407*2^(1/2) 4180971341294301 a001 224056801/1515744265389*8^(1/2) 4180971341294301 a001 433494437/14662949395604*2^(1/2) 4180971341294301 a001 599074578/4052739537881*8^(1/2) 4180971341294301 a001 165580141/5600748293801*2^(1/2) 4180971341294301 a001 228826127/1548008755920*8^(1/2) 4180971341294301 a001 63245986/2139295485799*2^(1/2) 4180971341294301 a001 87403803/591286729879*8^(1/2) 4180971341294302 a001 24157817/817138163596*2^(1/2) 4180971341294305 a001 4769326/32264490531*8^(1/2) 4180971341294311 a001 9227465/312119004989*2^(1/2) 4180971341294327 a001 12752043/86267571272*8^(1/2) 4180971341294368 a001 3524578/119218851371*2^(1/2) 4180971341294477 a001 4870847/32951280099*8^(1/2) 4180971341294762 a001 1346269/45537549124*2^(1/2) 4180971341295509 a001 1860498/12586269025*8^(1/2) 4180971341297463 a001 514229/17393796001*2^(1/2) 4180971341302580 a001 101521/686789568*8^(1/2) 4180971341315975 a001 196418/6643838879*2^(1/2) 4180971341351045 a001 271443/1836311903*8^(1/2) 4180971341442859 a001 75025/2537720636*2^(1/2) 4180971341683230 a001 103682/701408733*8^(1/2) 4180971342312531 a001 28657/969323029*2^(1/2) 4180971343960061 a001 39603/267914296*8^(1/2) 4180971348273351 a001 10946/370248451*2^(1/2) 4180971350332738 p004 log(12113/11617) 4180971354989953 m001 (MadelungNaCl+Paris)/(TreeGrowth2nd+ZetaQ(4)) 4180971357702918 m001 (GaussKuzminWirsing-Kolakoski)^GAMMA(3/4) 4180971359565691 a001 1/6765*8^(1/2) 4180971363567295 a008 Real Root of x^4-x^3-19*x^2+25*x+58 4180971385261437 m001 (cos(1/5*Pi)+ln(5))/(ln(2+3^(1/2))-exp(1/Pi)) 4180971389129420 a001 4181/141422324*2^(1/2) 4180971405318986 a001 2/377*13^(33/41) 4180971417679625 r005 Re(z^2+c),c=-23/34+15/101*I,n=13 4180971417932130 m001 (Khinchin-Niven)/(GAMMA(3/4)-FeigenbaumMu) 4180971419921334 m001 (GAMMA(13/24)+GlaisherKinkelin)/(Rabbit-Trott) 4180971425217827 l006 ln(4851/7369) 4180971438384188 a007 Real Root Of 765*x^4-437*x^3-745*x^2-553*x+370 4180971440689199 r005 Im(z^2+c),c=21/82+19/55*I,n=33 4180971444388543 r002 52th iterates of z^2 + 4180971453881590 r002 42th iterates of z^2 + 4180971466528270 a001 5778/39088169*8^(1/2) 4180971470306337 a001 514229/4*7^(20/33) 4180971481380524 m001 Psi(2,1/3)*cos(1/5*Pi)*Zeta(1,2) 4180971487182765 a001 3524578/3571*199^(3/11) 4180971487578444 r005 Re(z^2+c),c=-1/110+16/33*I,n=4 4180971506119616 a007 Real Root Of 128*x^4+563*x^3+272*x^2+698*x+198 4180971543495230 m005 (5*exp(1)-1/4)/(-15/4+1/4*5^(1/2)) 4180971556139963 m007 (-1/2*gamma-1/4)/(-3*gamma-9*ln(2)-3/2*Pi-1/5) 4180971559377083 r002 25th iterates of z^2 + 4180971562765779 a007 Real Root Of -223*x^4-246*x^3+682*x^2+927*x-482 4180971573650878 m005 (7/12+1/4*5^(1/2))/(1/9*Catalan-3/8) 4180971587810390 r009 Re(z^3+c),c=-17/32+49/59*I,n=2 4180971607641955 m001 Zeta(3)+BesselI(0,2)^PisotVijayaraghavan 4180971609156283 r005 Im(z^2+c),c=17/66+20/59*I,n=25 4180971619032142 m001 exp(1)/Catalan/Rabbit 4180971633771979 m001 Zeta(1,2)/gamma(2)/exp(Pi) 4180971634173742 r002 59th iterates of z^2 + 4180971638310521 r002 16th iterates of z^2 + 4180971641456242 r005 Im(z^2+c),c=19/94+24/61*I,n=31 4180971643763312 r002 59th iterates of z^2 + 4180971645416837 r005 Re(z^2+c),c=-57/98+11/57*I,n=51 4180971650102597 m001 2*Pi/GAMMA(5/6)*FeigenbaumB-ZetaP(2) 4180971652514526 r005 Im(z^2+c),c=-4/3+3/160*I,n=15 4180971652697465 a001 6119/2*4181^(23/39) 4180971665417828 a007 Real Root Of 81*x^4+456*x^3+430*x^2-361*x-450 4180971665569290 a001 2/7*7^(9/46) 4180971666064738 m002 4+3/E^Pi+5/Pi^4 4180971669161087 a001 1597/54018521*2^(1/2) 4180971671516690 m001 (2^(1/3)-Psi(2,1/3))/(Totient+ZetaQ(3)) 4180971684863565 a007 Real Root Of 58*x^4-24*x^3-943*x^2+541*x-731 4180971686568166 r005 Re(z^2+c),c=11/82+9/32*I,n=15 4180971694403881 r005 Re(z^2+c),c=-61/110+5/33*I,n=12 4180971731126180 r005 Im(z^2+c),c=9/94+27/55*I,n=25 4180971735114199 l006 ln(4379/6652) 4180971735617753 m001 1/exp(Ei(1))^2/Artin^2*sin(Pi/12) 4180971777713121 q001 1437/3437 4180971778802799 r005 Re(z^2+c),c=-53/110+23/47*I,n=63 4180971781359248 s002 sum(A182071[n]/(16^n),n=1..infinity) 4180971793109527 m001 (LandauRamanujan+OneNinth)/(Zeta(1,-1)+Artin) 4180971800846185 a001 55/521*7^(29/41) 4180971808060416 r008 a(0)=4,K{-n^6,-64+26*n+32*n^2+n^3} 4180971810663185 r002 58th iterates of z^2 + 4180971813582246 s002 sum(A211416[n]/(n!^2),n=1..infinity) 4180971816574506 r005 Re(z^2+c),c=-33/56+1/8*I,n=32 4180971833961507 r009 Re(z^3+c),c=-7/34+36/37*I,n=54 4180971860017607 r005 Im(z^2+c),c=11/118+13/27*I,n=55 4180971860178073 r002 9th iterates of z^2 + 4180971886595140 m005 (1/2*5^(1/2)+4/7)/(3/5*2^(1/2)-4/9) 4180971887619629 m001 (5^(1/2)+BesselI(1,2))/(FellerTornier+Lehmer) 4180971896087733 a001 4/2178309*233^(8/53) 4180971898497200 m001 ln(GAMMA(19/24))^2/Riemann2ndZero/cos(1)^2 4180971899327544 m001 GAMMA(1/3)/ln(Rabbit)^2*GAMMA(2/3)^2 4180971903035019 a001 199*(1/2*5^(1/2)+1/2)^24*3^(9/14) 4180971912541740 b008 ArcSec[Sqrt[1+ArcCot[5]]] 4180971913609097 r002 56th iterates of z^2 + 4180971918743697 a007 Real Root Of 214*x^4+845*x^3-26*x^2+541*x-918 4180971921517424 r009 Re(z^3+c),c=-1/5+55/61*I,n=46 4180971933464126 m001 ln(5)/Pi/csc(5/24*Pi)*GAMMA(19/24)/ZetaQ(3) 4180971935201675 r005 Re(z^2+c),c=-57/86+12/53*I,n=35 4180971951381133 r005 Im(z^2+c),c=-23/42+23/51*I,n=19 4180971960123856 r004 Im(z^2+c),c=1/42+9/17*I,z(0)=I,n=59 4180971964605655 a007 Real Root Of -932*x^4+617*x^3+932*x^2+501*x-389 4180971977685611 a007 Real Root Of 199*x^4+701*x^3-589*x^2-408*x-985 4180971986136242 r005 Re(z^2+c),c=-175/122+24/53*I,n=2 4180971990724623 m003 -1/72+Sqrt[5]/4+2*Sec[1/2+Sqrt[5]/2] 4180971999694819 s002 sum(A140081[n]/(16^n),n=1..infinity) 4180972010600106 r002 19th iterates of z^2 + 4180972012666465 a007 Real Root Of -242*x^4+964*x^3-252*x^2-105*x+78 4180972026395407 r005 Im(z^2+c),c=-5/44+29/51*I,n=19 4180972029313370 a001 89/64079*29^(18/55) 4180972030617639 s002 sum(A257511[n]/(16^n),n=1..infinity) 4180972046592502 r005 Re(z^2+c),c=-3/5+7/73*I,n=15 4180972056072518 a003 cos(Pi*5/37)-sin(Pi*39/97) 4180972057276946 p004 log(32911/503) 4180972058087100 m005 (1/3*3^(1/2)-3/5)/(3/8*Pi-7/11) 4180972066027171 m005 (1/2*Pi+8/11)/(5*Catalan+11/12) 4180972068213578 r002 63th iterates of z^2 + 4180972083760178 h001 (7/8*exp(2)+4/11)/(1/3*exp(1)+8/11) 4180972098813299 a007 Real Root Of -461*x^4+644*x^3-94*x^2+898*x-392 4180972099883320 m005 (1/3*2^(1/2)-2/9)/(5/9*gamma-11/12) 4180972113966437 m001 ((1+3^(1/2))^(1/2)-FeigenbaumC)/(Magata+Thue) 4180972115849658 r005 Re(z^2+c),c=-23/62+23/49*I,n=7 4180972119886978 l006 ln(3907/5935) 4180972126934224 r005 Im(z^2+c),c=-1/30+22/39*I,n=52 4180972127784904 a007 Real Root Of 133*x^4-575*x^3+600*x^2-952*x-549 4180972134438365 r005 Re(z^2+c),c=-13/22+3/122*I,n=27 4180972139084389 r005 Re(z^2+c),c=-67/86+11/34*I,n=4 4180972148918362 m005 (5*Pi+1/4)/(1/5*Catalan-4) 4180972160967609 m001 Zeta(5)*gamma(2)^(2/3*Pi*3^(1/2)/GAMMA(2/3)) 4180972198872270 h001 (4/11*exp(1)+1/9)/(6/7*exp(1)+3/10) 4180972199660692 a001 2207/14930352*8^(1/2) 4180972218716159 g005 GAMMA(7/8)/GAMMA(5/9)/GAMMA(5/7)^2 4180972250557055 h001 (1/9*exp(2)+1/8)/(8/11*exp(1)+2/7) 4180972266609026 a007 Real Root Of 547*x^4-470*x^3+721*x^2-746*x-489 4180972267724089 m001 (-FellerTornier+Magata)/(Psi(1,1/3)-exp(1)) 4180972267835831 r002 40th iterates of z^2 + 4180972270882657 a007 Real Root Of 194*x^4+703*x^3-429*x^2-44*x-586 4180972281177372 r005 Re(z^2+c),c=-43/66+5/39*I,n=15 4180972281666713 a003 cos(Pi*1/110)*cos(Pi*33/91) 4180972295577821 a001 55*123^(9/10) 4180972296265138 m005 (1/2*5^(1/2)-5/9)/(5/9*Pi-2/5) 4180972301258645 a003 cos(Pi*38/103)/sin(Pi*37/91) 4180972303281668 m001 Cahen+FeigenbaumAlpha+MertensB2 4180972312172706 r005 Im(z^2+c),c=-19/70+41/64*I,n=8 4180972332945758 a007 Real Root Of 254*x^4-621*x^3+789*x^2+689*x+97 4180972345529376 m001 BesselI(1,2)/(ln(5)^FransenRobinson) 4180972360405306 m001 (Ei(1,1)-StronglyCareFree)/(Totient-ZetaQ(3)) 4180972381777869 r008 a(0)=4,K{-n^6,-28-45*n^3+59*n^2+8*n} 4180972382589584 m005 (1/2*gamma+4)/(2/11*Pi+5/11) 4180972396271307 l006 ln(7893/8230) 4180972410194488 p001 sum((-1)^n/(311*n+235)/(24^n),n=0..infinity) 4180972441090338 m001 cos(Pi/5)*Ei(1)*exp(sqrt(1+sqrt(3)))^2 4180972444033295 r005 Im(z^2+c),c=-5/66+13/25*I,n=8 4180972447470298 a001 11/233*225851433717^(11/21) 4180972449758963 m001 (Psi(1,1/3)+Mills)^sin(1/5*Pi) 4180972450581338 a005 (1/cos(3/145*Pi))^1766 4180972461620027 h001 (8/9*exp(1)+4/7)/(10/11*exp(2)+3/7) 4180972464758617 m005 (1/3*gamma-1/9)/(1/7*5^(1/2)-1/8) 4180972475969996 m005 (3*Pi-1)/(13/12+5/12*5^(1/2)) 4180972478861004 r005 Im(z^2+c),c=19/78+21/59*I,n=56 4180972490908127 r005 Re(z^2+c),c=-4/7+33/112*I,n=30 4180972495397037 m001 (MertensB1+MinimumGamma)/(GAMMA(11/12)-Cahen) 4180972497387334 m001 1/OneNinth/GolombDickman^2/ln(GAMMA(5/12))^2 4180972497432900 r005 Re(z^2+c),c=9/82+14/33*I,n=37 4180972507181308 h001 (1/12*exp(1)+1/7)/(1/11*exp(1)+7/11) 4180972519831099 r009 Re(z^3+c),c=-63/118+13/61*I,n=36 4180972521692214 a007 Real Root Of 205*x^4+639*x^3-898*x^2+52*x-25 4180972524385843 r009 Im(z^3+c),c=-7/102+21/43*I,n=10 4180972532234312 p004 log(37243/24517) 4180972539882593 m001 (CareFree+Trott2nd)/(Shi(1)+ln(2)) 4180972557721995 r002 27th iterates of z^2 + 4180972559171113 a001 196452*3^(11/16) 4180972561983054 m001 (Zeta(1,-1)+Salem)/(exp(Pi)+Zeta(5)) 4180972562756425 r002 13th iterates of z^2 + 4180972568548999 p001 sum((-1)^n/(272*n+239)/(625^n),n=0..infinity) 4180972572724458 r009 Im(z^3+c),c=-23/106+20/43*I,n=15 4180972586286162 a007 Real Root Of 664*x^4-91*x^3+654*x^2-748*x-454 4180972586313923 a007 Real Root Of -265*x^4-125*x^3-505*x^2+241*x+188 4180972595722984 m001 (sin(1/12*Pi)+Kac)/(StronglyCareFree+Totient) 4180972601456144 a007 Real Root Of 524*x^4-152*x^3+564*x^2-668*x-405 4180972610402240 l006 ln(3435/5218) 4180972610949805 r005 Im(z^2+c),c=-29/25+17/59*I,n=44 4180972610996969 a003 sin(Pi*2/87)*sin(Pi*12/61) 4180972614503018 r005 Im(z^2+c),c=13/126+25/46*I,n=17 4180972617570451 r005 Im(z^2+c),c=15/74+1/54*I,n=44 4180972617570553 r005 Im(z^2+c),c=15/74+1/54*I,n=43 4180972617578052 r005 Im(z^2+c),c=15/74+1/54*I,n=45 4180972617586553 r005 Im(z^2+c),c=15/74+1/54*I,n=46 4180972617593613 r005 Im(z^2+c),c=15/74+1/54*I,n=47 4180972617594866 r005 Im(z^2+c),c=15/74+1/54*I,n=42 4180972617598780 r005 Im(z^2+c),c=15/74+1/54*I,n=48 4180972617602298 r005 Im(z^2+c),c=15/74+1/54*I,n=49 4180972617604577 r005 Im(z^2+c),c=15/74+1/54*I,n=50 4180972617606000 r005 Im(z^2+c),c=15/74+1/54*I,n=51 4180972617606863 r005 Im(z^2+c),c=15/74+1/54*I,n=52 4180972617607372 r005 Im(z^2+c),c=15/74+1/54*I,n=53 4180972617607666 r005 Im(z^2+c),c=15/74+1/54*I,n=54 4180972617607831 r005 Im(z^2+c),c=15/74+1/54*I,n=55 4180972617607923 r005 Im(z^2+c),c=15/74+1/54*I,n=56 4180972617607972 r005 Im(z^2+c),c=15/74+1/54*I,n=57 4180972617607998 r005 Im(z^2+c),c=15/74+1/54*I,n=58 4180972617608011 r005 Im(z^2+c),c=15/74+1/54*I,n=59 4180972617608017 r005 Im(z^2+c),c=15/74+1/54*I,n=60 4180972617608020 r005 Im(z^2+c),c=15/74+1/54*I,n=61 4180972617608022 r005 Im(z^2+c),c=15/74+1/54*I,n=62 4180972617608022 r005 Im(z^2+c),c=15/74+1/54*I,n=63 4180972617608022 r005 Im(z^2+c),c=15/74+1/54*I,n=64 4180972617679908 r005 Im(z^2+c),c=15/74+1/54*I,n=41 4180972617901878 r005 Im(z^2+c),c=15/74+1/54*I,n=40 4180972618413229 r005 Im(z^2+c),c=15/74+1/54*I,n=39 4180972619509121 r005 Im(z^2+c),c=15/74+1/54*I,n=38 4180972621745426 r005 Im(z^2+c),c=15/74+1/54*I,n=37 4180972624316362 m008 (1/3*Pi^2-4)/(1/6*Pi^4+3/4) 4180972626143719 r005 Im(z^2+c),c=15/74+1/54*I,n=36 4180972634539071 r005 Im(z^2+c),c=15/74+1/54*I,n=35 4180972635782220 m001 ZetaQ(2)^ThueMorse*HardHexagonsEntropy 4180972649517380 m003 -17/10+Sqrt[5]/16-Cosh[1/2+Sqrt[5]/2] 4180972650155204 r005 Im(z^2+c),c=15/74+1/54*I,n=34 4180972656250000 r002 2th iterates of z^2 + 4180972659180197 r005 Re(z^2+c),c=-29/52+9/46*I,n=5 4180972664630055 m001 (5^(1/2)-Si(Pi))/(-BesselK(0,1)+Totient) 4180972673280843 a007 Real Root Of -979*x^4+337*x^3+213*x^2+889*x+389 4180972678527916 r005 Im(z^2+c),c=15/74+1/54*I,n=33 4180972685219202 r005 Im(z^2+c),c=15/58+15/44*I,n=61 4180972689522035 r005 Im(z^2+c),c=25/86+3/10*I,n=24 4180972691933264 a007 Real Root Of 266*x^4-749*x^3-892*x^2-788*x+532 4180972693533551 a007 Real Root Of -827*x^4-995*x^3+912*x^2+805*x-398 4180972703935932 a007 Real Root Of 155*x^4+709*x^3+353*x^2+509*x+412 4180972710505489 m009 (1/4*Psi(1,1/3)-4/5)/(1/3*Pi^2+5/6) 4180972712069977 r005 Re(z^2+c),c=-4/7+34/125*I,n=49 4180972717383417 a001 3571/4181*4181^(4/21) 4180972723720851 m004 -5+5*Sqrt[5]*Pi-15*Pi*ProductLog[Sqrt[5]*Pi] 4180972725138699 p004 log(25373/16703) 4180972728934706 r005 Im(z^2+c),c=15/74+1/54*I,n=32 4180972732132815 m001 (Pi-Si(Pi))/(exp(1/exp(1))+GAMMA(13/24)) 4180972735642972 a007 Real Root Of -545*x^4+195*x^3-532*x^2+127*x+177 4180972751492292 r009 Im(z^3+c),c=-3/10+15/34*I,n=8 4180972755088868 a001 3571/28657*102334155^(4/21) 4180972756085423 a001 3571/196418*2504730781961^(4/21) 4180972766040642 h003 exp(Pi*(10^(6/5)-10^(1/6))) 4180972766040642 h008 exp(Pi*(10^(6/5)-10^(1/6))) 4180972766154209 m001 1/ln(cosh(1))*GlaisherKinkelin*sqrt(2) 4180972766656885 r005 Re(z^2+c),c=-37/64+2/17*I,n=20 4180972805136052 a007 Real Root Of 202*x^4-176*x^3-630*x^2-954*x+41 4180972816504354 r005 Im(z^2+c),c=15/74+1/54*I,n=31 4180972818311874 q001 1169/2796 4180972832122066 a001 1/55*832040^(48/53) 4180972837952308 a007 Real Root Of 258*x^4+133*x^3-913*x^2-995*x+558 4180972846616490 m008 (5/6*Pi^2-5)/(4/5*Pi^4-4/5) 4180972847528059 v002 sum(1/(2^n+(8*n^2+35*n+14)),n=1..infinity) 4180972873266929 r005 Im(z^2+c),c=31/106+29/54*I,n=36 4180972902843438 r002 20th iterates of z^2 + 4180972908047264 r002 16th iterates of z^2 + 4180972909940072 l006 ln(6398/9719) 4180972937206887 r005 Re(z^2+c),c=-29/62+13/27*I,n=41 4180972945185045 r005 Im(z^2+c),c=-49/86+9/16*I,n=47 4180972949763305 m001 1/Riemann3rdZero/exp(KhintchineLevy)/cos(1)^2 4180972956290266 r005 Re(z^2+c),c=-15/14+30/161*I,n=2 4180972965118488 r005 Im(z^2+c),c=15/74+1/54*I,n=30 4180972979954010 r009 Re(z^3+c),c=-11/46+8/11*I,n=12 4180972982286669 r002 4th iterates of z^2 + 4180972984345575 r005 Re(z^2+c),c=-51/86+7/17*I,n=10 4180973013654394 r002 16th iterates of z^2 + 4180973019854413 a007 Real Root Of -151*x^4+307*x^3+916*x^2+854*x-535 4180973024281249 a001 2/2504730781961*1836311903^(16/17) 4180973024284225 a001 1/567451585*514229^(16/17) 4180973030107437 m001 RenyiParking/(ReciprocalLucas-ZetaP(3)) 4180973035990322 a001 9349/75025*102334155^(4/21) 4180973036135718 a001 9349/514229*2504730781961^(4/21) 4180973038271282 a001 9349/10946*4181^(4/21) 4180973047576469 r009 Im(z^3+c),c=-25/102+25/54*I,n=8 4180973050612627 r005 Im(z^2+c),c=9/38+23/64*I,n=24 4180973054523610 r005 Re(z^2+c),c=-47/86+22/53*I,n=60 4180973067869589 a007 Real Root Of -103*x^4-211*x^3+826*x^2-335*x+213 4180973068579340 r009 Im(z^3+c),c=-21/46+17/47*I,n=47 4180973068750985 r002 43th iterates of z^2 + 4180973068919132 a001 98209/161*322^(1/3) 4180973070993276 r009 Im(z^3+c),c=-33/64+16/53*I,n=48 4180973076973292 a001 12238/98209*102334155^(4/21) 4180973076994505 a001 24476/1346269*2504730781961^(4/21) 4180973082952627 a001 64079/514229*102334155^(4/21) 4180973082955722 a001 64079/3524578*2504730781961^(4/21) 4180973083825000 a001 167761/1346269*102334155^(4/21) 4180973083825452 a001 167761/9227465*2504730781961^(4/21) 4180973083952278 a001 219602/1762289*102334155^(4/21) 4180973083952344 a001 439204/24157817*2504730781961^(4/21) 4180973083970847 a001 1149851/9227465*102334155^(4/21) 4180973083970857 a001 1149851/63245986*2504730781961^(4/21) 4180973083973556 a001 3010349/24157817*102334155^(4/21) 4180973083973558 a001 3010349/165580141*2504730781961^(4/21) 4180973083973952 a001 3940598/31622993*102334155^(4/21) 4180973083973952 a001 7881196/433494437*2504730781961^(4/21) 4180973083974009 a001 20633239/165580141*102334155^(4/21) 4180973083974009 a001 20633239/1134903170*2504730781961^(4/21) 4180973083974018 a001 54018521/433494437*102334155^(4/21) 4180973083974018 a001 54018521/2971215073*2504730781961^(4/21) 4180973083974019 a001 70711162/567451585*102334155^(4/21) 4180973083974019 a001 141422324/7778742049*2504730781961^(4/21) 4180973083974019 a001 370248451/2971215073*102334155^(4/21) 4180973083974019 a001 370248451/20365011074*2504730781961^(4/21) 4180973083974019 a001 969323029/7778742049*102334155^(4/21) 4180973083974019 a001 1268860318/10182505537*102334155^(4/21) 4180973083974019 a001 6643838879/53316291173*102334155^(4/21) 4180973083974019 a001 17393796001/139583862445*102334155^(4/21) 4180973083974019 a001 22768774562/182717648081*102334155^(4/21) 4180973083974019 a001 119218851371/956722026041*102334155^(4/21) 4180973083974019 a001 312119004989/2504730781961*102334155^(4/21) 4180973083974019 a001 408569081798/3278735159921*102334155^(4/21) 4180973083974019 a001 505019158607/4052739537881*102334155^(4/21) 4180973083974019 a001 10716675201/86000486440*102334155^(4/21) 4180973083974019 a001 73681302247/591286729879*102334155^(4/21) 4180973083974019 a001 9381251041/75283811239*102334155^(4/21) 4180973083974019 a001 5374978561/43133785636*102334155^(4/21) 4180973083974019 a001 1368706081/10983760033*102334155^(4/21) 4180973083974019 a001 1568397607/12586269025*102334155^(4/21) 4180973083974019 a001 969323029/53316291173*2504730781961^(4/21) 4180973083974019 a001 33281921/267084832*102334155^(4/21) 4180973083974019 a001 2537720636/139583862445*2504730781961^(4/21) 4180973083974019 a001 6643838879/365435296162*2504730781961^(4/21) 4180973083974019 a001 17393796001/956722026041*2504730781961^(4/21) 4180973083974019 a001 45537549124/2504730781961*2504730781961^(4/21) 4180973083974019 a001 64300051206/3536736619241*2504730781961^(4/21) 4180973083974019 a001 73681302247/4052739537881*2504730781961^(4/21) 4180973083974019 a001 228811001/12585437040*2504730781961^(4/21) 4180973083974019 a001 10749957122/591286729879*2504730781961^(4/21) 4180973083974019 a001 1368706081/75283811239*2504730781961^(4/21) 4180973083974019 a001 1568397607/86267571272*2504730781961^(4/21) 4180973083974019 a001 199691526/10983760033*2504730781961^(4/21) 4180973083974019 a001 228826127/1836311903*102334155^(4/21) 4180973083974019 a001 228826127/12586269025*2504730781961^(4/21) 4180973083974020 a001 29134601/233802911*102334155^(4/21) 4180973083974020 a001 29134601/1602508992*2504730781961^(4/21) 4180973083974023 a001 16692641/133957148*102334155^(4/21) 4180973083974023 a001 33385282/1836311903*2504730781961^(4/21) 4180973083974045 a001 4250681/233802911*2504730781961^(4/21) 4180973083974045 a001 4250681/34111385*102334155^(4/21) 4180973083974195 a001 4870847/267914296*2504730781961^(4/21) 4180973083974196 a001 4870847/39088169*102334155^(4/21) 4180973083975227 a001 15126/831985*2504730781961^(4/21) 4180973083975231 a001 103361/829464*102334155^(4/21) 4180973083982299 a001 710647/39088169*2504730781961^(4/21) 4180973083982324 a001 710647/5702887*102334155^(4/21) 4180973084030767 a001 90481/4976784*2504730781961^(4/21) 4180973084030939 a001 90481/726103*102334155^(4/21) 4180973084362974 a001 103682/5702887*2504730781961^(4/21) 4180973084364156 a001 51841/416020*102334155^(4/21) 4180973085088191 a001 24476/28657*4181^(4/21) 4180973086639956 a001 13201/726103*2504730781961^(4/21) 4180973086648059 a001 13201/105937*102334155^(4/21) 4180973091918686 a001 64079/75025*4181^(4/21) 4180973092915242 a001 167761/196418*4181^(4/21) 4180973093060638 a001 439204/514229*4181^(4/21) 4180973093081851 a001 1149851/1346269*4181^(4/21) 4180973093084946 a001 3010349/3524578*4181^(4/21) 4180973093085397 a001 7881196/9227465*4181^(4/21) 4180973093085463 a001 20633239/24157817*4181^(4/21) 4180973093085473 a001 54018521/63245986*4181^(4/21) 4180973093085474 a001 141422324/165580141*4181^(4/21) 4180973093085474 a001 370248451/433494437*4181^(4/21) 4180973093085474 a001 969323029/1134903170*4181^(4/21) 4180973093085474 a001 2537720636/2971215073*4181^(4/21) 4180973093085474 a001 6643838879/7778742049*4181^(4/21) 4180973093085474 a001 17393796001/20365011074*4181^(4/21) 4180973093085474 a001 45537549124/53316291173*4181^(4/21) 4180973093085474 a001 119218851371/139583862445*4181^(4/21) 4180973093085474 a001 312119004989/365435296162*4181^(4/21) 4180973093085474 a001 2139295485799/2504730781961*4181^(4/21) 4180973093085474 a001 3020733700601/3536736619241*4181^(4/21) 4180973093085474 a001 505019158607/591286729879*4181^(4/21) 4180973093085474 a001 64300051206/75283811239*4181^(4/21) 4180973093085474 a001 73681302247/86267571272*4181^(4/21) 4180973093085474 a001 9381251041/10983760033*4181^(4/21) 4180973093085474 a001 10749957122/12586269025*4181^(4/21) 4180973093085474 a001 1368706081/1602508992*4181^(4/21) 4180973093085474 a001 1568397607/1836311903*4181^(4/21) 4180973093085474 a001 199691526/233802911*4181^(4/21) 4180973093085474 a001 228826127/267914296*4181^(4/21) 4180973093085475 a001 29134601/34111385*4181^(4/21) 4180973093085479 a001 33385282/39088169*4181^(4/21) 4180973093085504 a001 4250681/4976784*4181^(4/21) 4180973093085676 a001 4870847/5702887*4181^(4/21) 4180973093086858 a001 620166/726103*4181^(4/21) 4180973093094961 a001 710647/832040*4181^(4/21) 4180973093150497 a001 90481/105937*4181^(4/21) 4180973093531148 a001 103682/121393*4181^(4/21) 4180973096140165 a001 13201/15456*4181^(4/21) 4180973102246624 a001 15127/832040*2504730781961^(4/21) 4180973102302161 a001 15127/121393*102334155^(4/21) 4180973104419328 r008 a(0)=4,K{-n^6,-36+24*n+49*n^2-43*n^3} 4180973114022633 a001 15127/17711*4181^(4/21) 4180973129096331 r005 Re(z^2+c),c=-47/82+13/50*I,n=51 4180973134299688 r005 Im(z^2+c),c=1/7+28/43*I,n=39 4180973135129058 p001 sum((-1)^n/(590*n+229)/(6^n),n=0..infinity) 4180973162455942 r005 Im(z^2+c),c=7/44+25/58*I,n=64 4180973165994705 a003 cos(Pi*9/76)*sin(Pi*4/27) 4180973172256453 m001 Ei(1)^2/exp(ErdosBorwein)^2/sin(Pi/5)^2 4180973179809645 r005 Re(z^2+c),c=-37/78+8/15*I,n=51 4180973209216318 a001 1926/105937*2504730781961^(4/21) 4180973209596969 a001 321/2576*102334155^(4/21) 4180973210951233 r005 Im(z^2+c),c=15/74+1/54*I,n=29 4180973220689411 r005 Re(z^2+c),c=-15/26+25/108*I,n=48 4180973222085295 m001 Catalan-KhinchinHarmonic^polylog(4,1/2) 4180973222110937 r005 Im(z^2+c),c=-1/60+37/63*I,n=38 4180973236590893 a001 1926/2255*4181^(4/21) 4180973242300019 m005 (1/3*2^(1/2)+1/11)/(5/12*gamma-3/8) 4180973257193674 l006 ln(2963/4501) 4180973257476814 r005 Re(z^2+c),c=-69/118+8/55*I,n=33 4180973279482782 m001 (Pi+exp(Pi)*ln(5))/cos(1/12*Pi) 4180973294977479 a007 Real Root Of 815*x^4-771*x^3+210*x^2-534*x+218 4180973297550066 m001 ErdosBorwein*(BesselI(0,2)+FellerTornier) 4180973300473452 a007 Real Root Of -191*x^4-641*x^3+911*x^2+906*x-621 4180973317469319 m005 (1/2*Pi+6/7)/(3/7*gamma+1/3) 4180973333419709 r005 Re(z^2+c),c=-25/54+35/64*I,n=40 4180973348388483 a007 Real Root Of -228*x^4-830*x^3+420*x^2-281*x+492 4180973364368396 r005 Re(z^2+c),c=-16/27+1/60*I,n=39 4180973370982230 m005 (1/2*Zeta(3)+1/6)/(1/5*exp(1)-8/11) 4180973392691693 a007 Real Root Of 229*x^4+934*x^3-316*x^2-688*x+934 4180973404887112 m005 (1/2*5^(1/2)-3/5)/(10/11*gamma+5/7) 4180973406549849 a001 1346269/1364*199^(3/11) 4180973413797334 a001 682/305*75025^(6/23) 4180973427570038 r005 Im(z^2+c),c=25/78+8/55*I,n=6 4180973429645414 m002 -E^Pi/(4*Pi)+6*Coth[Pi] 4180973432519088 r005 Im(z^2+c),c=-43/66+23/52*I,n=40 4180973434474413 b008 37+Csc[Pi/15] 4180973439940144 m009 (48*Catalan+6*Pi^2+1/4)/(2*Pi^2+5) 4180973440331273 r009 Im(z^3+c),c=-53/122+13/35*I,n=19 4180973447201092 r005 Im(z^2+c),c=11/86+14/33*I,n=9 4180973480017612 m001 ln(CareFree)^2*Si(Pi)*Tribonacci 4180973497025511 m001 ln(Porter)^2/Cahen*FeigenbaumC 4180973499938653 r002 40th iterates of z^2 + 4180973518302644 r009 Im(z^3+c),c=-5/28+9/19*I,n=15 4180973518792739 m001 (cos(1)+Niven)/(Psi(2,1/3)+2^(1/2)) 4180973518983837 r002 7i'th iterates of 2*x/(1-x^2) of 4180973539512157 r005 Re(z^2+c),c=-13/23+17/57*I,n=47 4180973552753436 a007 Real Root Of 964*x^4+142*x^3-837*x^2-482*x+308 4180973552808381 m001 Conway/gamma(2)/arctan(1/3) 4180973556514328 r002 58th iterates of z^2 + 4180973577288595 r005 Im(z^2+c),c=1/31-11/21*I,n=62 4180973583342296 a007 Real Root Of 241*x^4+789*x^3-886*x^2+82*x-147 4180973586084754 r005 Re(z^2+c),c=-15/28+1/7*I,n=5 4180973588526687 a001 610/20633239*2^(1/2) 4180973592943774 m001 BesselI(1,1)^GaussAGM/(ErdosBorwein^GaussAGM) 4180973594191701 m001 (Chi(1)+GAMMA(13/24))/Lehmer 4180973605753325 r005 Im(z^2+c),c=15/74+1/54*I,n=28 4180973608792249 m003 5/12+(Sqrt[5]*Cosh[1/2+Sqrt[5]/2])/4096 4180973637204575 r005 Im(z^2+c),c=-49/82+17/41*I,n=45 4180973642224268 m001 (Salem+Trott2nd)/(GAMMA(19/24)+Niven) 4180973654754413 a007 Real Root Of 298*x^4-478*x^3+952*x^2+202*x-126 4180973664551294 l006 ln(5454/8285) 4180973688683812 l006 ln(149/9749) 4180973688683812 p004 log(9749/149) 4180973716797171 a007 Real Root Of 375*x^4-768*x^3+963*x^2-634*x-501 4180973718273123 m005 (1/3*3^(1/2)-1/7)/(2/3*Catalan+3/7) 4180973720549815 m001 (Magata+MertensB2)/(GAMMA(2/3)+Zeta(1/2)) 4180973723512179 m006 (5*ln(Pi)-2/5)/(4*Pi+1/6) 4180973723866148 m009 (2/5*Pi^2+1)/(2/5*Psi(1,3/4)+1/6) 4180973725786528 a007 Real Root Of 956*x^4-720*x^3-543*x^2-877*x+485 4180973730554162 r005 Im(z^2+c),c=17/110+10/23*I,n=38 4180973736350925 r002 3th iterates of z^2 + 4180973736350925 r002 3th iterates of z^2 + 4180973738917243 r005 Im(z^2+c),c=13/106+11/24*I,n=32 4180973743033090 a007 Real Root Of 468*x^4-850*x^3-803*x^2-630*x-25 4180973751554785 g006 Psi(1,7/9)+Psi(1,5/8)+Psi(1,5/7)-Psi(1,1/7) 4180973760547916 b008 -7+E^(1+Sqrt[2]) 4180973761873183 m001 (Cahen+ThueMorse)/(Catalan+ln(5)) 4180973774988984 m001 QuadraticClass*(LandauRamanujan2nd-OneNinth) 4180973776744312 r005 Im(z^2+c),c=11/40+11/34*I,n=56 4180973796238290 r005 Re(z^2+c),c=-43/106+22/39*I,n=10 4180973812580140 r005 Re(z^2+c),c=-65/126+8/19*I,n=33 4180973813911583 r005 Im(z^2+c),c=27/110+17/48*I,n=42 4180973817222384 r005 Re(z^2+c),c=-19/34+19/86*I,n=14 4180973821244720 h001 (-12*exp(3)+10)/(-3*exp(3)+5) 4180973826414573 a007 Real Root Of 147*x^4+766*x^3+768*x^2+404*x-671 4180973839009919 r002 21th iterates of z^2 + 4180973858807077 r005 Re(z^2+c),c=-7/12+21/116*I,n=52 4180973858845152 h001 (3/11*exp(2)+3/5)/(1/8*exp(1)+2/7) 4180973861122496 m001 (LambertW(1)-ln(5))/(KhinchinLevy+Mills) 4180973875417874 m001 BesselI(1,1)-Landau^Pi 4180973876862812 r005 Re(z^2+c),c=-7/12+19/106*I,n=20 4180973887974305 r002 17th iterates of z^2 + 4180973903320752 a007 Real Root Of 880*x^4+810*x^3-714*x^2-737*x+32 4180973913792053 r009 Re(z^3+c),c=-53/126+5/38*I,n=28 4180973937092663 m001 (5^(1/2)+Catalan)/(MasserGramain+OneNinth) 4180973942397508 a001 2207/121393*2504730781961^(4/21) 4180973945006526 a001 2207/17711*102334155^(4/21) 4180973948976801 r002 63th iterates of z^2 + 4180973955918545 m005 (1/2*Catalan+3/5)/(1/6*exp(1)-1/5) 4180973968677589 m001 (Riemann1stZero-Sierpinski)/(Backhouse+Mills) 4180973976892344 r005 Im(z^2+c),c=13/42+4/21*I,n=3 4180973980120040 m002 -E^Pi/4+6/Pi^2+Tanh[Pi] 4180973981173858 m001 (Landau+ZetaP(2))/(ln(3)+GlaisherKinkelin) 4180973984955455 a007 Real Root Of -196*x^4+356*x^3-749*x^2+976*x+571 4180973990408562 r002 21th iterates of z^2 + 4180973993131298 m001 gamma(2)/Pi*FeigenbaumKappa 4180973998172268 r005 Im(z^2+c),c=37/106+23/43*I,n=9 4180974000002540 m006 (3*Pi^2+1/4)/(Pi+4) 4180974000002540 m008 (3*Pi^2+1/4)/(Pi+4) 4180974016421897 m001 Grothendieck^cos(1/5*Pi)+Sierpinski 4180974045394704 r002 23th iterates of z^2 + 4180974045459606 m006 (1/6*ln(Pi)+1/2)/(3/4*exp(Pi)-5/6) 4180974063521236 a007 Real Root Of -393*x^4+977*x^3-776*x^2-335*x+79 4180974072270488 a007 Real Root Of 277*x^4+47*x^3+914*x^2-663*x-442 4180974075727000 r005 Im(z^2+c),c=-4/13+43/60*I,n=8 4180974076686271 a001 2207/2584*4181^(4/21) 4180974085432039 m001 (-FeigenbaumB+ZetaP(4))/(sin(1)+cos(1/12*Pi)) 4180974103801277 r005 Re(z^2+c),c=-13/23+17/60*I,n=31 4180974105628137 m006 (4*Pi^2-3)/(1/6*exp(2*Pi)-2) 4180974108197786 r005 Re(z^2+c),c=-19/34+29/91*I,n=11 4180974109760386 m001 1/sin(1)*exp(Sierpinski)^2*sqrt(2)^2 4180974117218374 r002 10th iterates of z^2 + 4180974119280302 r005 Re(z^2+c),c=-33/56+1/7*I,n=32 4180974119780770 m001 1/ln(GAMMA(1/4))^2/FeigenbaumB/sqrt(3) 4180974149095884 l006 ln(2491/3784) 4180974185731863 p001 sum((-1)^n/(385*n+239)/(512^n),n=0..infinity) 4180974187679296 r009 Re(z^3+c),c=-19/32+16/57*I,n=12 4180974194331469 m001 1/2*Pi*2^(2/3)*cos(1/12*Pi)+Pi^(1/2) 4180974207211199 r002 21th iterates of z^2 + 4180974217228256 r005 Im(z^2+c),c=15/74+1/54*I,n=27 4180974221164298 m005 (3/4*Catalan-4)/(1/3*gamma+3/5) 4180974222474426 m001 Salem*exp(Champernowne)*Pi 4180974226841179 a007 Real Root Of 68*x^4+186*x^3-469*x^2-158*x+353 4180974228870711 a007 Real Root Of -57*x^4+404*x^3-895*x^2-95*x+148 4180974229125973 r002 40th iterates of z^2 + 4180974230029604 r005 Im(z^2+c),c=-47/62+4/53*I,n=37 4180974248563015 r005 Re(z^2+c),c=13/70+22/63*I,n=25 4180974252707325 m001 (Magata+PlouffeB)/(Psi(1,1/3)-cos(1/5*Pi)) 4180974278065222 m001 1/ln(Catalan)/ErdosBorwein^2/GAMMA(11/12) 4180974280526707 m001 1/Sierpinski/exp(Bloch)/gamma 4180974297929923 m006 (3*Pi+1/6)/(exp(Pi)-1/5) 4180974313559169 r005 Im(z^2+c),c=11/114+23/48*I,n=46 4180974317741847 r005 Re(z^2+c),c=23/90+15/28*I,n=27 4180974321587517 a007 Real Root Of -13*x^4-554*x^3-436*x^2+102*x+965 4180974324705952 a007 Real Root Of 23*x^4-277*x^3+617*x^2-408*x+16 4180974325340943 m001 Niven/exp(LaplaceLimit)/Riemann2ndZero 4180974331345358 r005 Im(z^2+c),c=-1/70+19/29*I,n=29 4180974344477299 r005 Im(z^2+c),c=2/13+32/63*I,n=22 4180974347210484 m001 cos(Pi/12)*exp(sqrt(2))+exp(-1/2*Pi) 4180974365180978 a007 Real Root Of -152*x^4-483*x^3+828*x^2+645*x-631 4180974368994708 h001 (2/7*exp(2)+1/9)/(7/10*exp(2)+1/7) 4180974369153022 r005 Re(z^2+c),c=-71/110+3/20*I,n=21 4180974369718087 r005 Re(z^2+c),c=-63/110+13/57*I,n=25 4180974388020860 m001 gamma(1)^exp(1/2)*Pi 4180974394985843 r005 Re(z^2+c),c=-63/110+7/27*I,n=59 4180974398227759 r005 Re(z^2+c),c=-19/34+45/124*I,n=63 4180974401180542 r009 Re(z^3+c),c=-47/122+1/11*I,n=17 4180974410407433 r005 Re(z^2+c),c=-51/86+1/43*I,n=36 4180974411040051 l006 ln(142/9291) 4180974441460818 m001 1/exp(gamma)/GAMMA(7/24)^2/sqrt(2) 4180974448740503 a007 Real Root Of 817*x^4-422*x^3-769*x^2-138*x+198 4180974452282110 r009 Im(z^3+c),c=-31/64+19/56*I,n=38 4180974460939039 r009 Re(z^3+c),c=-55/78+28/51*I,n=2 4180974468129442 r002 44th iterates of z^2 + 4180974468164645 a007 Real Root Of -6*x^4+857*x^3-805*x^2+711*x-219 4180974476728680 r002 40th iterates of z^2 + 4180974477958236 q001 901/2155 4180974480398804 a007 Real Root Of 849*x^4+79*x^3+256*x^2-274*x+11 4180974484044555 a001 1/208010*10946^(10/43) 4180974495730044 m006 (3*Pi^2-1/2)/(3*exp(Pi)+1/5) 4180974496815329 m001 (Pi-Backhouse)/(GolombDickman+Magata) 4180974498616898 a007 Real Root Of -588*x^4+473*x^3-307*x^2+674*x+388 4180974515136857 m001 Robbin/ln(GaussKuzminWirsing)^2/GAMMA(11/12)^2 4180974516311641 a007 Real Root Of -244*x^4-901*x^3+352*x^2-390*x+925 4180974518980266 r005 Re(z^2+c),c=-67/118+17/54*I,n=46 4180974554748849 m001 BesselJ(0,1)^2/Bloch^2*exp(arctan(1/2)) 4180974569762140 m001 (Shi(1)+FibonacciFactorial)^(3^(1/2)) 4180974576421633 m001 1/Catalan*Lehmer/exp(GAMMA(1/24)) 4180974583299371 r005 Im(z^2+c),c=13/40+13/43*I,n=36 4180974586236830 r009 Re(z^3+c),c=-35/74+15/29*I,n=34 4180974650314981 m005 (1/2*3^(1/2)+3/10)/(11/12*Pi-1/11) 4180974667945468 s002 sum(A080265[n]/((exp(n)-1)/n),n=1..infinity) 4180974673698975 m008 (4*Pi^4+2/3)/(3*Pi^3+1/3) 4180974677408490 a007 Real Root Of -941*x^4+931*x^3-346*x^2+718*x-279 4180974682560482 m006 (3/Pi-1/3)/(4/5*Pi-4) 4180974691090808 h001 (8/9*exp(2)+7/9)/(1/8*exp(2)+5/6) 4180974714112509 b008 Csch[Sqrt[2]/3]^2 4180974723677418 r005 Im(z^2+c),c=-25/78+3/49*I,n=7 4180974735061750 l006 ln(4510/6851) 4180974748562433 r009 Im(z^3+c),c=-11/50+13/28*I,n=17 4180974753188184 a007 Real Root Of 336*x^4-971*x^3+467*x^2-770*x+301 4180974776005289 r009 Im(z^3+c),c=-4/17+29/63*I,n=21 4180974785559158 a007 Real Root Of -141*x^4-717*x^3-423*x^2+353*x-447 4180974785809969 r009 Re(z^3+c),c=-9/19+5/27*I,n=59 4180974795132539 r005 Re(z^2+c),c=-51/98+23/52*I,n=37 4180974809559057 m001 TravellingSalesman^Porter+FeigenbaumMu 4180974815278756 m001 (Pi-2^(1/2))/(Si(Pi)+BesselI(0,2)) 4180974820149456 a008 Real Root of x^4-x^3-9*x^2-37*x-14 4180974821522084 m008 (5/6*Pi^5+2/3)/(2*Pi^5-1/2) 4180974826458447 r009 Im(z^3+c),c=-15/34+23/57*I,n=13 4180974842414476 a003 sin(Pi*1/85)/sin(Pi*2/71) 4180974852359096 r005 Re(z^2+c),c=-65/106+23/61*I,n=25 4180974853711402 r002 31th iterates of z^2 + 4180974873574837 a001 1346269/843*199^(2/11) 4180974881570906 m001 (PrimesInBinary-QuadraticClass)^ln(Pi) 4180974925725814 m005 (1/2*Pi+2/11)/(19/88+1/11*5^(1/2)) 4180974927013421 s002 sum(A185355[n]/(n^3*pi^n+1),n=1..infinity) 4180974948585495 m005 (1/2*Catalan-1)/(5/11*Zeta(3)+3/4) 4180974949475028 r009 Re(z^3+c),c=-39/98+5/47*I,n=22 4180974950137203 s002 sum(A096223[n]/((exp(n)+1)*n),n=1..infinity) 4180974957612478 m001 BesselK(0,1)^sqrt(Pi)-GAMMA(5/24) 4180974958624456 l006 ln(6529/9918) 4180974966009271 m005 (1/2*Zeta(3)+2/9)/(2/9*5^(1/2)-3/10) 4180974972412956 m001 (ThueMorse-ZetaQ(4))/(Champernowne+Thue) 4180974973290894 r005 Re(z^2+c),c=-13/22+5/86*I,n=32 4180974977795404 m005 (1/2*exp(1)+2/3)/(2/3*3^(1/2)-6) 4180974984727903 a001 233/322*9349^(18/19) 4180975013460875 r005 Re(z^2+c),c=-13/22+5/61*I,n=44 4180975023066519 a001 144/521*24476^(20/21) 4180975024036449 m008 (Pi^3+2/3)/(1/4*Pi^5-3/4) 4180975024063376 a001 233/322*24476^(6/7) 4180975028827821 a001 144/521*64079^(20/23) 4180975029248548 a001 233/322*64079^(18/23) 4180975029594392 a001 144/521*167761^(4/5) 4180975029713233 a001 144/521*20633239^(4/7) 4180975029713239 a001 144/521*2537720636^(4/9) 4180975029713239 a001 144/521*(1/2+1/2*5^(1/2))^20 4180975029713239 a001 144/521*23725150497407^(5/16) 4180975029713239 a001 144/521*505019158607^(5/14) 4180975029713239 a001 144/521*73681302247^(5/13) 4180975029713239 a001 144/521*28143753123^(2/5) 4180975029713239 a001 144/521*10749957122^(5/12) 4180975029713239 a001 144/521*4106118243^(10/23) 4180975029713239 a001 144/521*1568397607^(5/11) 4180975029713239 a001 144/521*599074578^(10/21) 4180975029713239 a001 144/521*228826127^(1/2) 4180975029713239 a001 144/521*87403803^(10/19) 4180975029713241 a001 144/521*33385282^(5/9) 4180975029713254 a001 144/521*12752043^(10/17) 4180975029713349 a001 144/521*4870847^(5/8) 4180975029714044 a001 144/521*1860498^(2/3) 4180975029719152 a001 144/521*710647^(5/7) 4180975029756888 a001 144/521*271443^(10/13) 4180975030030974 a001 233/322*439204^(2/3) 4180975030037346 a001 144/521*103682^(5/6) 4180975030045387 a001 233/322*7881196^(6/11) 4180975030045424 a001 233/322*141422324^(6/13) 4180975030045424 a001 233/322*2537720636^(2/5) 4180975030045424 a001 233/322*45537549124^(6/17) 4180975030045424 a001 233/322*14662949395604^(2/7) 4180975030045424 a001 233/322*(1/2+1/2*5^(1/2))^18 4180975030045424 a001 233/322*192900153618^(1/3) 4180975030045424 a001 233/322*10749957122^(3/8) 4180975030045424 a001 233/322*4106118243^(9/23) 4180975030045424 a001 233/322*1568397607^(9/22) 4180975030045424 a001 233/322*599074578^(3/7) 4180975030045424 a001 233/322*228826127^(9/20) 4180975030045424 a001 233/322*87403803^(9/19) 4180975030045426 a001 233/322*33385282^(1/2) 4180975030045438 a001 233/322*12752043^(9/17) 4180975030045523 a001 233/322*4870847^(9/16) 4180975030046149 a001 233/322*1860498^(3/5) 4180975030050746 a001 233/322*710647^(9/14) 4180975030084708 a001 233/322*271443^(9/13) 4180975030337121 a001 233/322*103682^(3/4) 4180975032136659 a001 144/521*39603^(10/11) 4180975032226502 a001 233/322*39603^(9/11) 4180975037437593 r002 31th iterates of z^2 + 4180975043010731 r002 3th iterates of z^2 + 4180975043533656 r005 Re(z^2+c),c=-57/98+9/32*I,n=34 4180975044931133 v003 sum((7+11/2*n^2-11/2*n)*n!/n^n,n=1..infinity) 4180975045952384 r005 Re(z^2+c),c=-23/36+4/53*I,n=12 4180975046489689 a001 233/322*15127^(9/10) 4180975054884120 r005 Im(z^2+c),c=-77/122+7/17*I,n=64 4180975055755174 m005 (5*gamma+3/4)/(41/60+1/12*5^(1/2)) 4180975063481720 m005 (1/2*3^(1/2)-1/12)/(7/9*Pi-4/7) 4180975066968650 a003 cos(Pi*2/27)/sin(Pi*8/107) 4180975071747365 m001 FeigenbaumB^2*Kolakoski^2*exp(GAMMA(5/6))^2 4180975089308986 m006 (1/6*ln(Pi)-1/2)/(4/5*Pi^2-1/2) 4180975097194543 m001 (RenyiParking-ZetaQ(3))/(GAMMA(13/24)-Magata) 4180975120003559 r005 Im(z^2+c),c=15/74+1/54*I,n=26 4180975127777553 r005 Im(z^2+c),c=-9/14+17/40*I,n=50 4180975144986589 r005 Re(z^2+c),c=31/106+15/28*I,n=23 4180975145904546 r005 Im(z^2+c),c=-1/16+35/58*I,n=62 4180975154775789 r005 Im(z^2+c),c=-43/82+18/37*I,n=11 4180975160346286 p001 sum(floor(nd*n)/(37*n+17)/(6^n),n=0..infinity) 4180975166330492 r009 Im(z^3+c),c=-49/118+12/31*I,n=39 4180975177513053 a007 Real Root Of 948*x^4-767*x^3-5*x^2-710*x-381 4180975182239299 r005 Re(z^2+c),c=43/118+9/32*I,n=2 4180975183830406 r009 Im(z^3+c),c=-13/32+14/33*I,n=7 4180975192448409 a007 Real Root Of -792*x^4-531*x^3-439*x^2+490*x+267 4180975195578311 r005 Im(z^2+c),c=-65/122+21/44*I,n=54 4180975197428398 r005 Re(z^2+c),c=-13/22+1/28*I,n=25 4180975202505981 m008 (Pi^6-2/5)/(3/4*Pi^5+1/3) 4180975204584436 m001 1/Ei(1)*exp(Khintchine)*cos(1) 4180975206558958 a007 Real Root Of 161*x^4-833*x^3+892*x^2-424*x-399 4180975208306702 l006 ln(135/8833) 4180975214203355 r005 Im(z^2+c),c=-29/23+6/35*I,n=6 4180975219639353 m001 (Ei(1,1)-gamma(2))/(AlladiGrinstead-MertensB1) 4180975220085737 m005 (1/3*exp(1)-1/6)/(11/12*Zeta(3)+2/3) 4180975221069923 r009 Im(z^3+c),c=-15/122+15/31*I,n=9 4180975244498039 r008 a(0)=5,K{-n^6,-9+2*n^3+8*n^2+2*n} 4180975260243292 m001 2*exp(gamma)*GAMMA(19/24) 4180975260243292 m001 exp(gamma)*GAMMA(19/24)*sqrt(2)^2 4180975266728546 r005 Re(z^2+c),c=-16/27+2/61*I,n=59 4180975267312101 r009 Re(z^3+c),c=-15/32+14/27*I,n=13 4180975274310355 a001 2/514229*34^(33/49) 4180975282766097 r009 Im(z^3+c),c=-1/30+25/51*I,n=9 4180975287559278 r005 Re(z^2+c),c=-71/110+5/14*I,n=11 4180975296327815 m005 (1/2*exp(1)+3/5)/(2/11*gamma+4/11) 4180975309312658 a003 cos(Pi*7/93)*sin(Pi*15/106) 4180975310799517 l006 ln(4169/4347) 4180975311495189 g006 -Psi(1,9/11)-Psi(1,4/9)-Psi(1,2/5)-Psi(1,1/5) 4180975313418784 m001 1/Rabbit*ln(FransenRobinson)^2/Ei(1)^2 4180975317292681 a007 Real Root Of -135*x^4+834*x^3-200*x^2+904*x+478 4180975327687947 r005 Im(z^2+c),c=1/26+26/55*I,n=8 4180975329447205 a007 Real Root Of -787*x^4+201*x^3-81*x^2+945*x+448 4180975332447419 r005 Im(z^2+c),c=1/118+34/63*I,n=62 4180975355964465 r005 Im(z^2+c),c=17/52+17/64*I,n=55 4180975375461862 a007 Real Root Of 696*x^4+745*x^3+570*x^2-903*x-444 4180975395059715 p003 LerchPhi(1/512,3,107/80) 4180975423379587 r002 56th iterates of z^2 + 4180975433095918 m001 1/exp(OneNinth)^2/Porter/GAMMA(1/4)^2 4180975440586027 m005 (1/2*3^(1/2)-5/9)/(3/11*gamma-9/10) 4180975445828603 a007 Real Root Of 781*x^4-597*x^3-382*x^2+30*x+74 4180975448854753 a007 Real Root Of 143*x^4+575*x^3-212*x^2-341*x+608 4180975453221074 r005 Re(z^2+c),c=-69/118+23/64*I,n=53 4180975458014140 l006 ln(2019/3067) 4180975462354075 r004 Im(z^2+c),c=-5/24-13/23*I,z(0)=I,n=19 4180975465301074 r009 Im(z^3+c),c=-41/114+13/31*I,n=12 4180975465441633 r009 Im(z^3+c),c=-25/62+11/28*I,n=21 4180975478009792 r005 Im(z^2+c),c=-1/12+31/52*I,n=59 4180975490024430 m001 polylog(4,1/2)^LandauRamanujan-MasserGramain 4180975498030101 r005 Im(z^2+c),c=-9/50+35/59*I,n=33 4180975504682043 a007 Real Root Of -698*x^4+222*x^3-733*x^2+161*x+233 4180975511105922 m005 (1/2*exp(1)-4)/(2/5*Pi-5/8) 4180975514718637 a007 Real Root Of -224*x^4-951*x^3-214*x^2-646*x-17 4180975516225009 r005 Im(z^2+c),c=1/11+10/21*I,n=23 4180975521089669 a007 Real Root Of -144*x^4+712*x^3-240*x^2+778*x+33 4180975527212470 a007 Real Root Of -225*x^4-892*x^3+400*x^2+677*x-601 4180975528019102 r005 Re(z^2+c),c=-9/14+53/120*I,n=37 4180975550565606 r005 Im(z^2+c),c=3/62+17/33*I,n=30 4180975562351824 m001 GAMMA(17/24)/(Magata^Catalan) 4180975570510135 r005 Re(z^2+c),c=-69/118+11/34*I,n=41 4180975587165793 r005 Im(z^2+c),c=-9/14+3/7*I,n=43 4180975591382714 p003 LerchPhi(1/64,2,93/190) 4180975596884173 m001 OneNinth^2/ln(Trott)^2/GAMMA(2/3) 4180975601406448 m001 (exp(-1/2*Pi)+ArtinRank2)/(Mills+Thue) 4180975601988095 g005 GAMMA(7/10)/GAMMA(3/7)/GAMMA(3/4)^2 4180975625774856 m001 Magata^2*Champernowne/ln(Rabbit) 4180975639003199 m001 (Psi(1,1/3)+GAMMA(2/3))/(ln(3)+GAMMA(13/24)) 4180975639802811 m001 Lehmer*StronglyCareFree^exp(1/Pi) 4180975651577503 r009 Im(z^3+c),c=-13/90+23/36*I,n=2 4180975654013012 a001 682/5473*4807526976^(6/23) 4180975655875295 m009 (3/5*Psi(1,3/4)-6)/(Pi^2+5/6) 4180975658205542 r005 Im(z^2+c),c=13/40+8/31*I,n=41 4180975662134157 r005 Im(z^2+c),c=15/74+1/54*I,n=21 4180975667680870 m001 Cahen*DuboisRaymond-Landau 4180975695001578 m006 (3*Pi+5/6)/(4/5/Pi-1/2) 4180975697575324 m001 1/BesselJ(1,1)^2/Backhouse^2*exp(cos(1)) 4180975699344725 r005 Re(z^2+c),c=-15/26+26/109*I,n=44 4180975710761988 a001 1/3524667*3^(6/17) 4180975712925712 a001 41/3536736619241*1597^(4/23) 4180975714951946 a007 Real Root Of 807*x^4+207*x^3-968*x^2-927*x+517 4180975716627370 r002 17th iterates of z^2 + 4180975721550693 a007 Real Root Of 26*x^4-806*x^3+273*x^2-927*x-495 4180975722564003 r002 39th iterates of z^2 + 4180975727643262 m005 (1/2*2^(1/2)+7/11)/(6*gamma-1/4) 4180975742709185 q001 1534/3669 4180975753904467 r005 Re(z^2+c),c=-15/31+23/48*I,n=58 4180975754834524 h001 (-9*exp(-3)+3)/(-3*exp(-1)-5) 4180975768637296 m001 (Zeta(5)+exp(-1/2*Pi))/(FeigenbaumMu-Lehmer) 4180975773091033 a005 (1/sin(45/134*Pi))^192 4180975774548823 a001 39603/55*233^(38/51) 4180975776032177 a007 Real Root Of 836*x^4-45*x^3-228*x^2-995*x+42 4180975786223621 m003 (2*E^(1/2+Sqrt[5]/2))/5+2*Coth[1/2+Sqrt[5]/2] 4180975799306091 a001 9349*144^(13/17) 4180975808755089 r002 3th iterates of z^2 + 4180975817883313 m001 (Pi+exp(-1/2*Pi))/(CareFree-GolombDickman) 4180975818209045 r005 Im(z^2+c),c=7/94+37/57*I,n=25 4180975843520050 r002 12th iterates of z^2 + 4180975845922347 r002 37th iterates of z^2 + 4180975860055594 a007 Real Root Of -17*x^4-705*x^3+229*x^2-503*x+70 4180975867611526 a007 Real Root Of 655*x^4-612*x^3-435*x^2-790*x-319 4180975882923133 r005 Re(z^2+c),c=37/82+13/37*I,n=12 4180975895955411 a007 Real Root Of 390*x^4+78*x^3+734*x^2-391*x-298 4180975896984098 m006 (5*Pi+1)/(3/4*exp(2*Pi)-2) 4180975902493767 m001 BesselK(1,1)^2/Backhouse^2*ln(GAMMA(13/24))^2 4180975910910363 r002 22th iterates of z^2 + 4180975916378117 r002 20th iterates of z^2 + 4180975934000728 a007 Real Root Of 435*x^4+130*x^3+196*x^2-854*x+300 4180975939878616 r002 59th iterates of z^2 + 4180975946347140 r002 63th iterates of z^2 + 4180975955202424 r009 Re(z^3+c),c=-7/94+27/41*I,n=22 4180975963570006 a007 Real Root Of -133*x^4-361*x^3+917*x^2+513*x+372 4180975980779577 a007 Real Root Of 224*x^4+872*x^3-114*x^2+669*x+73 4180975987083002 s002 sum(A145201[n]/(16^n),n=1..infinity) 4180975988855832 s002 sum(A159864[n]/(16^n-1),n=1..infinity) 4180975993424473 p004 log(37003/24359) 4180976001764970 m001 (ArtinRank2-ErdosBorwein)/(ln(5)+BesselI(1,1)) 4180976015579569 r005 Re(z^2+c),c=-13/23+18/55*I,n=34 4180976029552286 m001 BesselI(1,1)^gamma(1)-GolombDickman 4180976029880476 r005 Im(z^2+c),c=7/118+15/23*I,n=19 4180976034626112 m005 (1/3*exp(1)-1/7)/(1/9*3^(1/2)-3/8) 4180976041812719 l006 ln(5585/8484) 4180976044616435 m001 (Robbin+ZetaP(3))/(Zeta(1/2)-cos(1)) 4180976063986038 a007 Real Root Of 48*x^4-718*x^3-460*x^2-231*x+228 4180976092773650 l006 ln(128/8375) 4180976095736710 h001 (6/11*exp(2)+3/7)/(1/8*exp(2)+1/7) 4180976098723633 m001 1/GAMMA(5/6)/Salem/ln(GAMMA(7/12))^2 4180976117683381 r002 50th iterates of z^2 + 4180976118444830 r005 Re(z^2+c),c=-16/27+2/53*I,n=41 4180976123940399 r008 a(0)=4,K{-n^6,2-8*n^3+8*n^2-9*n} 4180976125262671 r005 Re(z^2+c),c=-59/102+9/41*I,n=56 4180976126191894 b008 E*(-1+(-5+Pi)^(-1)) 4180976132779235 r009 Im(z^3+c),c=-35/94+22/53*I,n=10 4180976155382791 m005 (1/3*Catalan+2/9)/(4/5*gamma+4/5) 4180976155430701 b008 Sqrt[2]*ArcCsch[15]^3 4180976155666502 a007 Real Root Of 336*x^4+301*x^3+988*x^2-366*x-314 4180976162560108 a007 Real Root Of -225*x^4+758*x^3-512*x^2+565*x+388 4180976167645436 m001 (ln(Pi)+HardyLittlewoodC5)/(1+exp(1)) 4180976170617144 p004 log(13901/9151) 4180976185283429 r009 Re(z^3+c),c=-55/94+34/49*I,n=4 4180976187916954 m009 (4*Psi(1,1/3)+1/4)/(48*Catalan+6*Pi^2-6) 4180976197191347 m005 (1/3*5^(1/2)-1/3)/(21/44+5/22*5^(1/2)) 4180976201787515 a005 (1/cos(10/117*Pi))^1806 4180976205969520 m001 (Ei(1,1)-MertensB1)/(MertensB2-Trott2nd) 4180976209831283 r002 42th iterates of z^2 + 4180976248716828 r005 Im(z^2+c),c=17/56+13/45*I,n=35 4180976252146780 r005 Re(z^2+c),c=-71/122+5/26*I,n=59 4180976260187596 r009 Re(z^3+c),c=-33/64+2/9*I,n=53 4180976262649683 m001 Catalan^Magata/(BesselK(1,1)^Magata) 4180976272953514 r005 Im(z^2+c),c=3/82+25/48*I,n=56 4180976312420415 m001 Paris^2/LaplaceLimit^2/exp(Riemann3rdZero)^2 4180976329234820 r005 Re(z^2+c),c=-33/58+9/44*I,n=23 4180976332188884 a008 Real Root of x^4+3*x^2-94*x+35 4180976356848681 r005 Re(z^2+c),c=-57/106+17/46*I,n=39 4180976362532736 r005 Im(z^2+c),c=-51/82+3/62*I,n=17 4180976362745117 r005 Im(z^2+c),c=15/74+1/54*I,n=25 4180976364630851 m001 exp(Sierpinski)^2*CopelandErdos*Zeta(7) 4180976367078080 m005 (39/44+1/4*5^(1/2))/(5/11*gamma+1/12) 4180976372348131 l006 ln(3566/5417) 4180976374327500 m001 1/Niven^2*ln(Magata)^2*cos(Pi/5) 4180976377585704 r005 Re(z^2+c),c=-23/30+24/85*I,n=9 4180976380636626 r009 Im(z^3+c),c=-37/126+23/52*I,n=12 4180976382298911 b008 6+(3/2)^2^Pi 4180976389080395 r005 Re(z^2+c),c=-9/14+37/254*I,n=21 4180976389244468 h001 (5/11*exp(1)+11/12)/(3/5*exp(2)+5/7) 4180976390257177 a001 1/10182505537*1836311903^(14/17) 4180976390259780 a001 2/24157817*514229^(14/17) 4180976399348393 m001 (Backhouse-Paris)/(Robbin+Sierpinski) 4180976418749716 r002 59th iterates of z^2 + 4180976429239647 a001 121393/322*322^(5/12) 4180976430126383 a007 Real Root Of -509*x^4-262*x^3-831*x^2+814*x+482 4180976438806433 m001 Zeta(1/2)^2/GAMMA(5/24)^2*ln(cos(1))^2 4180976443953418 r009 Im(z^3+c),c=-6/19+23/53*I,n=22 4180976457797996 m005 (1/3*2^(1/2)-1/8)/(5*3^(1/2)-3/8) 4180976459257974 m001 (ArtinRank2-GAMMA(5/6))^Zeta(5) 4180976460338688 m008 (2/5*Pi+3/4)/(1/2*Pi^6-3/4) 4180976461509292 m009 (1/6*Psi(1,1/3)+2/5)/(5*Psi(1,1/3)-2/3) 4180976489664320 r002 54th iterates of z^2 + 4180976497911440 a005 (1/cos(7/160*Pi))^1123 4180976500845995 r005 Re(z^2+c),c=-13/24+11/29*I,n=16 4180976509376102 r005 Re(z^2+c),c=-7/12+10/61*I,n=33 4180976515320667 r009 Re(z^3+c),c=-5/9+6/13*I,n=29 4180976528129038 r005 Im(z^2+c),c=-59/94+29/53*I,n=4 4180976545796745 p003 LerchPhi(1/8,1,508/193) 4180976553816455 a007 Real Root Of 53*x^4-987*x^3+141*x^2-383*x+206 4180976554108193 m001 (gamma(1)+BesselI(1,1))/(Robbin-Tribonacci) 4180976554614239 m001 1/exp(RenyiParking)/MadelungNaCl*cosh(1) 4180976556625213 r009 Im(z^3+c),c=-5/38+12/25*I,n=8 4180976567738377 r005 Re(z^2+c),c=-21/31+1/44*I,n=18 4180976568418855 m001 1/TwinPrimes^2/Artin/ln(GAMMA(5/6))^2 4180976571428053 r002 11th iterates of z^2 + 4180976582676686 a005 (1/sin(98/215*Pi))^148 4180976603411991 a001 64079/21*21^(3/29) 4180976629202299 r005 Im(z^2+c),c=-25/38+2/9*I,n=21 4180976641564501 r009 Im(z^3+c),c=-11/30+19/46*I,n=16 4180976658852013 h001 (4/7*exp(2)+1/8)/(1/8*exp(1)+7/10) 4180976675702641 a007 Real Root Of 180*x^4+637*x^3-403*x^2+416*x+337 4180976684103731 a007 Real Root Of 460*x^4-82*x^3+533*x^2-894*x-487 4180976699347906 r005 Im(z^2+c),c=41/122+14/61*I,n=28 4180976703518332 r002 61th iterates of z^2 + 4180976703860637 m005 (1/2*gamma+4/9)/(4/7*exp(1)+1/5) 4180976733396480 l006 ln(5113/7767) 4180976735950095 r005 Im(z^2+c),c=7/24+19/62*I,n=41 4180976736244899 r002 61th iterates of z^2 + 4180976753792307 r005 Re(z^2+c),c=17/64+1/38*I,n=25 4180976766677729 m001 (exp(1/Pi)-Artin)/(MadelungNaCl+MasserGramain) 4180976767974877 r005 Re(z^2+c),c=-16/27+2/63*I,n=56 4180976789075161 m005 (1/2*gamma-3)/(6*Zeta(3)-8/11) 4180976796644405 a003 2*cos(1/9*Pi)+2*cos(5/21*Pi)+cos(5/27*Pi) 4180976805439682 m001 (BesselK(1,1)+ZetaP(4))/(BesselK(0,1)+Zeta(3)) 4180976807667022 m001 Lehmer^2*ArtinRank2^2/ln(Ei(1))^2 4180976812269555 m001 BesselK(0,1)-log(gamma)^exp(1/2) 4180976816905440 a007 Real Root Of -169*x^4+716*x^3-155*x^2-353*x-63 4180976817811638 r005 Re(z^2+c),c=17/64+1/38*I,n=28 4180976818967572 m001 (Catalan+Otter*RenyiParking)/RenyiParking 4180976820447699 a007 Real Root Of 149*x^4+677*x^3+303*x^2+428*x+442 4180976825391848 r002 40th iterates of z^2 + 4180976838404909 r005 Re(z^2+c),c=-71/122+6/31*I,n=43 4180976858048620 m001 CopelandErdos*(Pi^(1/2)+HeathBrownMoroz) 4180976873091417 p004 log(28001/18433) 4180976884215756 r005 Im(z^2+c),c=-61/118+26/47*I,n=25 4180976890021817 a001 9062201101803/233*144^(16/17) 4180976906450249 m001 (polylog(4,1/2)-Kac)/(Robbin+Tetranacci) 4180976918297672 a007 Real Root Of -53*x^4+18*x^3+855*x^2-679*x-274 4180976935671361 m005 (1/2*Pi+2/11)/(4/7*2^(1/2)-5) 4180976941055643 r002 59th iterates of z^2 + 4180976946623997 m005 (1/2*2^(1/2)+6/7)/(3/11*exp(1)+3) 4180976947295086 r005 Re(z^2+c),c=-2/3+29/248*I,n=23 4180976958705340 h001 (5/11*exp(1)+9/10)/(2/3*exp(2)+2/11) 4180976964516033 a001 317811/521*199^(4/11) 4180976965545489 m001 (-ErdosBorwein+Kac)/(exp(Pi)+arctan(1/3)) 4180976972026385 m001 (GAMMA(3/4)-ln(2)/ln(10))/(MertensB2+Salem) 4180976978833531 a007 Real Root Of 45*x^4-868*x^3+493*x^2-995*x-567 4180976992111235 r005 Re(z^2+c),c=-13/22+1/15*I,n=36 4180977000462871 m001 (3^(1/2)+BesselK(0,1))/(sin(1/5*Pi)+gamma(1)) 4180977025891392 m001 (1-Zeta(5))/(-ln(Pi)+MertensB1) 4180977057938328 r005 Re(z^2+c),c=-16/27+5/36*I,n=8 4180977064574475 r005 Im(z^2+c),c=-16/25+23/57*I,n=8 4180977079148479 r005 Re(z^2+c),c=-35/62+15/44*I,n=53 4180977079157588 m001 (exp(Pi)+ln(5))/(-cos(1/12*Pi)+Artin) 4180977079574692 l006 ln(121/7917) 4180977113980876 r002 18th iterates of z^2 + 4180977119373668 r005 Im(z^2+c),c=-3/40+31/48*I,n=33 4180977121557859 m001 (ln(2)-polylog(4,1/2))/(GAMMA(17/24)-Niven) 4180977122432628 g005 GAMMA(7/9)/GAMMA(7/12)/GAMMA(7/10)/GAMMA(5/8) 4180977128070146 m001 Pi*2^(1/3)+Catalan-ln(2) 4180977131285801 r005 Re(z^2+c),c=-13/24+23/61*I,n=23 4180977138342754 a008 Real Root of x^3-6*x-48 4180977140175624 r005 Re(z^2+c),c=-17/30+5/17*I,n=38 4180977141151784 r009 Im(z^3+c),c=-19/36+13/64*I,n=53 4180977153843604 m001 (Magata+ThueMorse)/(ln(2)-ErdosBorwein) 4180977173233120 m001 1/Zeta(1,2)^2*exp(Conway)/Zeta(9) 4180977191732106 a007 Real Root Of 434*x^4-504*x^3-332*x^2-972*x+488 4180977198356484 a007 Real Root Of 357*x^4-849*x^3-815*x^2-740*x+503 4180977201591843 r009 Re(z^3+c),c=-43/70+14/29*I,n=32 4180977216164698 m001 (Conway-Tribonacci)/(GAMMA(2/3)+gamma(1)) 4180977224625068 a001 843/5702887*8^(1/2) 4180977232673307 m001 GAMMA(13/24)+FeigenbaumC+Rabbit 4180977237655327 m005 (1/2*2^(1/2)+1/10)/(-43/90+3/10*5^(1/2)) 4180977252532181 a001 3571/1597*75025^(6/23) 4180977260968174 b008 BarnesG[6/149] 4180977293956652 r005 Re(z^2+c),c=-13/42+37/58*I,n=57 4180977301940958 m001 (-exp(1/Pi)+Thue)/(cos(1)+ln(2)) 4180977320839529 m001 (5^(1/2)+1)/(arctan(1/3)+ZetaP(2)) 4180977332186077 a007 Real Root Of 308*x^4-172*x^3+765*x^2+437*x+27 4180977335130747 r005 Re(z^2+c),c=-31/50+14/55*I,n=31 4180977353903347 r005 Re(z^2+c),c=-13/22+8/97*I,n=56 4180977366914422 r005 Re(z^2+c),c=-61/102+1/60*I,n=24 4180977377552914 r002 54th iterates of z^2 + 4180977384377131 a001 15127/5*1597^(50/51) 4180977422144260 r009 Re(z^3+c),c=-3/64+13/62*I,n=5 4180977428293859 r005 Re(z^2+c),c=-15/26+74/123*I,n=5 4180977438502971 a007 Real Root Of -69*x^4+955*x^3-725*x^2+323*x-76 4180977461944948 a007 Real Root Of 206*x^4-549*x^3+954*x^2-770*x+189 4180977462965518 r002 55th iterates of z^2 + 4180977467081914 r002 31th iterates of z^2 + 4180977518850120 a007 Real Root Of -923*x^4-345*x^3-105*x^2+633*x+286 4180977527382423 m005 (1/3*2^(1/2)-3/7)/(1/6*exp(1)+4/7) 4180977540683367 h001 (-2*exp(4)-9)/(-7*exp(6)-3) 4180977541417298 r009 Im(z^3+c),c=-53/102+15/43*I,n=58 4180977542932628 q001 633/1514 4180977550536864 r009 Re(z^3+c),c=-2/27+41/64*I,n=20 4180977556693536 m001 (-Magata+Robbin)/(1+2*Pi/GAMMA(5/6)) 4180977557963373 a003 sin(Pi*1/75)*sin(Pi*27/56) 4180977562726706 r002 39th iterates of z^2 + 4180977565651385 l006 ln(1547/2350) 4180977572185799 m009 (3/4*Psi(1,3/4)-2/3)/(1/3*Psi(1,1/3)-2/5) 4180977579342444 a001 3571/28657*4807526976^(6/23) 4180977591047849 a007 Real Root Of 804*x^4+152*x^3-33*x^2-857*x-366 4180977603789986 r005 Re(z^2+c),c=-16/27+1/61*I,n=39 4180977605568667 m003 31/8+Sqrt[5]/32-5*Cos[1/2+Sqrt[5]/2] 4180977606703183 r009 Re(z^3+c),c=-3/44+31/56*I,n=33 4180977609754657 r009 Im(z^3+c),c=-35/86+17/43*I,n=16 4180977632158429 r005 Re(z^2+c),c=-16/27+2/55*I,n=43 4180977636817800 r009 Re(z^3+c),c=-10/27+1/19*I,n=2 4180977637144225 a001 199/2584*8^(48/59) 4180977647498346 m001 GAMMA(23/24)/GAMMA(1/12)^2*exp(Zeta(1/2))^2 4180977651036662 m001 (sin(1/5*Pi)-Porter)/(Riemann2ndZero+ZetaQ(3)) 4180977655547810 r009 Re(z^3+c),c=-9/17+14/37*I,n=47 4180977668004632 a007 Real Root Of -884*x^4-770*x^3-194*x^2+362*x+156 4180977676886964 a001 38/31622993*89^(5/18) 4180977685392948 r002 18th iterates of z^2 + 4180977698097387 r005 Im(z^2+c),c=13/118+18/43*I,n=5 4180977698727706 b008 Sqrt[-3+Pi]/9 4180977702367800 m005 (2*Catalan+1/5)/(1/6*Catalan+1/3) 4180977703489193 m001 (sin(1/5*Pi)-ln(2))/(Zeta(1,-1)+Khinchin) 4180977704869052 r009 Im(z^3+c),c=-8/17+23/48*I,n=15 4180977705088587 m006 (2/5/Pi+1/4)/(3*Pi-2/5) 4180977705756915 m001 (Niven-ZetaQ(3))/(Pi+Catalan) 4180977707466781 m001 (-Trott+ZetaQ(4))/(Catalan+GlaisherKinkelin) 4180977719133937 r009 Im(z^3+c),c=-5/24+26/35*I,n=38 4180977729726325 m005 (1/2*3^(1/2)-4)/(6*Catalan+2) 4180977738049078 r009 Re(z^3+c),c=-55/118+8/45*I,n=47 4180977738224057 r005 Im(z^2+c),c=-2/3+59/190*I,n=60 4180977747691867 m001 FeigenbaumKappa^2*FeigenbaumC*exp((2^(1/3)))^2 4180977751059792 m001 1/GAMMA(11/24)^2*exp(Magata)/GAMMA(5/24)^2 4180977754221330 r009 Re(z^3+c),c=-21/44+10/53*I,n=60 4180977759031852 r009 Im(z^3+c),c=-53/126+20/53*I,n=15 4180977763853211 r002 16th iterates of z^2 + 4180977764829156 s002 sum(A106232[n]/(10^n+1),n=1..infinity) 4180977774849993 r005 Re(z^2+c),c=-67/114+23/64*I,n=25 4180977776985203 r009 Im(z^3+c),c=-43/94+13/36*I,n=50 4180977788387017 b008 (-2*Pi)/7+Erfc[1/2] 4180977789820480 r005 Re(z^2+c),c=-7/12+16/103*I,n=22 4180977791208937 r002 48th iterates of z^2 + 4180977793580452 r005 Re(z^2+c),c=1/44+12/43*I,n=11 4180977799719963 p001 sum(1/(463*n+240)/(100^n),n=0..infinity) 4180977812596342 a001 9349/4181*75025^(6/23) 4180977813652462 r005 Im(z^2+c),c=-31/58+19/31*I,n=4 4180977827551299 m001 Lehmer^3*exp(ArtinRank2) 4180977839642231 r005 Im(z^2+c),c=-41/70+4/9*I,n=13 4180977844574081 h001 (-7*exp(-2)+8)/(-8*exp(3)-8) 4180977860244223 a001 9349/75025*4807526976^(6/23) 4180977870358116 r005 Im(z^2+c),c=1/62+30/53*I,n=19 4180977871441047 a007 Real Root Of -691*x^4+301*x^3-742*x^2+883*x+542 4180977879103704 r005 Re(z^2+c),c=-13/22+7/82*I,n=39 4180977881145884 r005 Im(z^2+c),c=15/74+1/54*I,n=24 4180977894308608 a001 12238/5473*75025^(6/23) 4180977895956278 a007 Real Root Of 29*x^4-90*x^3-616*x^2+902*x-900 4180977898540758 a005 (1/sin(83/173*Pi))^1847 4180977901227240 a001 12238/98209*4807526976^(6/23) 4180977906230267 a001 64079/28657*75025^(6/23) 4180977907206582 a001 64079/514229*4807526976^(6/23) 4180977907969614 a001 167761/75025*75025^(6/23) 4180977908078956 a001 167761/1346269*4807526976^(6/23) 4180977908206234 a001 219602/1762289*4807526976^(6/23) 4180977908223381 a001 219602/98209*75025^(6/23) 4180977908224803 a001 1149851/9227465*4807526976^(6/23) 4180977908227512 a001 3010349/24157817*4807526976^(6/23) 4180977908227908 a001 3940598/31622993*4807526976^(6/23) 4180977908227965 a001 20633239/165580141*4807526976^(6/23) 4180977908227974 a001 54018521/433494437*4807526976^(6/23) 4180977908227975 a001 70711162/567451585*4807526976^(6/23) 4180977908227975 a001 370248451/2971215073*4807526976^(6/23) 4180977908227975 a001 969323029/7778742049*4807526976^(6/23) 4180977908227975 a001 1268860318/10182505537*4807526976^(6/23) 4180977908227975 a001 6643838879/53316291173*4807526976^(6/23) 4180977908227975 a001 17393796001/139583862445*4807526976^(6/23) 4180977908227975 a001 22768774562/182717648081*4807526976^(6/23) 4180977908227975 a001 119218851371/956722026041*4807526976^(6/23) 4180977908227975 a001 312119004989/2504730781961*4807526976^(6/23) 4180977908227975 a001 408569081798/3278735159921*4807526976^(6/23) 4180977908227975 a001 505019158607/4052739537881*4807526976^(6/23) 4180977908227975 a001 10716675201/86000486440*4807526976^(6/23) 4180977908227975 a001 73681302247/591286729879*4807526976^(6/23) 4180977908227975 a001 9381251041/75283811239*4807526976^(6/23) 4180977908227975 a001 5374978561/43133785636*4807526976^(6/23) 4180977908227975 a001 1368706081/10983760033*4807526976^(6/23) 4180977908227975 a001 1568397607/12586269025*4807526976^(6/23) 4180977908227975 a001 33281921/267084832*4807526976^(6/23) 4180977908227975 a001 228826127/1836311903*4807526976^(6/23) 4180977908227976 a001 29134601/233802911*4807526976^(6/23) 4180977908227979 a001 16692641/133957148*4807526976^(6/23) 4180977908228001 a001 4250681/34111385*4807526976^(6/23) 4180977908228152 a001 4870847/39088169*4807526976^(6/23) 4180977908229187 a001 103361/829464*4807526976^(6/23) 4180977908236280 a001 710647/5702887*4807526976^(6/23) 4180977908260405 a001 1149851/514229*75025^(6/23) 4180977908265807 a001 3010349/1346269*75025^(6/23) 4180977908266595 a001 3940598/1762289*75025^(6/23) 4180977908266710 a001 20633239/9227465*75025^(6/23) 4180977908266727 a001 54018521/24157817*75025^(6/23) 4180977908266729 a001 70711162/31622993*75025^(6/23) 4180977908266729 a001 370248451/165580141*75025^(6/23) 4180977908266729 a001 969323029/433494437*75025^(6/23) 4180977908266729 a001 1268860318/567451585*75025^(6/23) 4180977908266729 a001 6643838879/2971215073*75025^(6/23) 4180977908266729 a001 17393796001/7778742049*75025^(6/23) 4180977908266729 a001 22768774562/10182505537*75025^(6/23) 4180977908266729 a001 119218851371/53316291173*75025^(6/23) 4180977908266729 a001 312119004989/139583862445*75025^(6/23) 4180977908266729 a001 1730726404001/774004377960*75025^(6/23) 4180977908266729 a001 1322157322203/591286729879*75025^(6/23) 4180977908266729 a001 505019158607/225851433717*75025^(6/23) 4180977908266729 a001 96450076809/43133785636*75025^(6/23) 4180977908266729 a001 73681302247/32951280099*75025^(6/23) 4180977908266729 a001 28143753123/12586269025*75025^(6/23) 4180977908266729 a001 5374978561/2403763488*75025^(6/23) 4180977908266729 a001 4106118243/1836311903*75025^(6/23) 4180977908266729 a001 1568397607/701408733*75025^(6/23) 4180977908266730 a001 299537289/133957148*75025^(6/23) 4180977908266730 a001 228826127/102334155*75025^(6/23) 4180977908266731 a001 87403803/39088169*75025^(6/23) 4180977908266737 a001 16692641/7465176*75025^(6/23) 4180977908266781 a001 12752043/5702887*75025^(6/23) 4180977908267082 a001 4870847/2178309*75025^(6/23) 4180977908269145 a001 930249/416020*75025^(6/23) 4180977908283287 a001 710647/317811*75025^(6/23) 4180977908284896 a001 90481/726103*4807526976^(6/23) 4180977908380218 a001 271443/121393*75025^(6/23) 4180977908618113 a001 51841/416020*4807526976^(6/23) 4180977909044589 a001 51841/23184*75025^(6/23) 4180977910902018 a001 13201/105937*4807526976^(6/23) 4180977913598258 a001 39603/17711*75025^(6/23) 4180977918090420 a007 Real Root Of 100*x^4-236*x^3-380*x^2-493*x-160 4180977926556138 a001 15127/121393*4807526976^(6/23) 4180977929992336 l006 ln(8783/9158) 4180977944809566 a001 15127/6765*75025^(6/23) 4180977951554946 s001 sum(exp(-Pi/4)^n*A223440[n],n=1..infinity) 4180977956277132 m001 (3^(1/2))^Bloch*FellerTornier 4180977976515444 p004 log(15733/10357) 4180977980462190 m001 MertensB2/(Cahen+FeigenbaumC) 4180978024301350 m001 ln(3)*CareFree+Magata 4180978027266253 a007 Real Root Of -356*x^4-609*x^3+140*x^2+581*x-212 4180978033851070 a001 321/2576*4807526976^(6/23) 4180978038253337 a007 Real Root Of -376*x^4+201*x^3-474*x^2-201*x+25 4180978043949206 r002 48th iterates of z^2 + 4180978048844888 r009 Re(z^3+c),c=-11/24+11/21*I,n=7 4180978050645001 r005 Re(z^2+c),c=-53/122+16/37*I,n=6 4180978050651499 m005 (1/3*gamma-1/8)/(2/3*exp(1)-1/5) 4180978051663253 m001 exp(sin(Pi/12))*GAMMA(7/12)^2*sinh(1)^2 4180978052964638 r005 Im(z^2+c),c=-7/10+15/178*I,n=37 4180978054421092 r002 50th iterates of z^2 + 4180978054443355 a001 15127/3*10946^(19/40) 4180978056566321 a001 47*(1/2*5^(1/2)+1/2)^27*199^(2/15) 4180978065367560 r005 Im(z^2+c),c=21/86+21/59*I,n=37 4180978065994904 a007 Real Root Of 261*x^4+959*x^3-433*x^2+660*x+664 4180978077482164 r009 Im(z^3+c),c=-1/22+26/53*I,n=8 4180978090604976 a007 Real Root Of -23*x^4+761*x^3+281*x^2+442*x+192 4180978098012106 r005 Re(z^2+c),c=-16/27+1/25*I,n=33 4180978099949120 r005 Im(z^2+c),c=3/11+15/46*I,n=59 4180978117850824 r005 Re(z^2+c),c=-10/17+1/8*I,n=47 4180978124806864 a001 76/2504730781961*34^(1/11) 4180978126699467 r005 Im(z^2+c),c=-5/122+17/29*I,n=47 4180978129724463 m001 (Chi(1)+PlouffeB)/Pi 4180978135527430 r002 3th iterates of z^2 + 4180978143900216 r005 Re(z^2+c),c=-15/26+13/125*I,n=16 4180978158735067 a001 2889/1292*75025^(6/23) 4180978162535548 r005 Re(z^2+c),c=-10/31+34/57*I,n=48 4180978168246561 a007 Real Root Of 370*x^4-167*x^3-542*x^2-307*x+224 4180978169046598 h001 (5/7*exp(1)+1/5)/(4/7*exp(2)+9/10) 4180978170637518 a001 1/329*2^(23/50) 4180978180256429 r005 Re(z^2+c),c=-139/126+16/51*I,n=8 4180978187560667 l006 ln(114/7459) 4180978192913876 a003 sin(Pi*5/43)/cos(Pi*4/23) 4180978197822016 r005 Re(z^2+c),c=-67/122+12/41*I,n=22 4180978203434335 s002 sum(A205833[n]/(n*2^n-1),n=1..infinity) 4180978212088572 a007 Real Root Of 289*x^4-468*x^3+873*x^2-484*x-398 4180978213450929 m001 (ln(5)-LandauRamanujan)/(Trott2nd+ZetaP(3)) 4180978222010963 r005 Im(z^2+c),c=7/25+16/51*I,n=28 4180978229050688 r002 27th iterates of z^2 + 4180978231817492 r005 Im(z^2+c),c=-1/48+35/62*I,n=45 4180978237066940 m003 1+(17*Sqrt[5])/256+4*ProductLog[1/2+Sqrt[5]/2] 4180978247265990 r002 47th iterates of z^2 + 4180978252836743 a007 Real Root Of 287*x^4+942*x^3-824*x^2+839*x-940 4180978267596633 a007 Real Root Of -677*x^4+915*x^3+100*x^2+582*x-307 4180978272834294 m001 (CareFree-Grothendieck)/(Khinchin-OneNinth) 4180978310108871 l006 ln(5716/8683) 4180978310273992 m001 (Paris-Riemann1stZero)/(cos(1/5*Pi)-ln(Pi)) 4180978315354899 r002 26th iterates of z^2 + 4180978325046474 a007 Real Root Of -894*x^4+871*x^3-708*x^2+998*x+632 4180978342796536 r002 5th iterates of z^2 + 4180978343180254 r002 44th iterates of z^2 + 4180978350659206 a007 Real Root Of 33*x^4+248*x^3+530*x^2-662*x+165 4180978359591440 r009 Re(z^3+c),c=-23/62+1/14*I,n=12 4180978363748766 a007 Real Root Of -667*x^4+724*x^3-831*x^2+599*x+469 4180978379849226 r009 Re(z^3+c),c=-23/54+8/31*I,n=2 4180978383740084 h001 (-exp(3/2)-8)/(-8*exp(3/2)+6) 4180978386505488 a007 Real Root Of 18*x^4+742*x^3-465*x^2-940*x+581 4180978387811962 r009 Re(z^3+c),c=-3/44+31/56*I,n=36 4180978388975152 a007 Real Root Of -241*x^4-882*x^3+467*x^2-57*x+779 4180978393862305 m001 Chi(1)^HardyLittlewoodC3-PlouffeB 4180978402022126 r002 39th iterates of z^2 + 4180978404597791 a003 cos(Pi*4/113)-cos(Pi*10/101) 4180978437825320 a007 Real Root Of 249*x^4+927*x^3-607*x^2-333*x+882 4180978442415772 r002 9th iterates of z^2 + 4180978445468251 m001 LandauRamanujan2nd^MinimumGamma/Trott 4180978456794318 m001 1/exp(Niven)^2/FransenRobinson^2/Zeta(9) 4180978463427527 r002 28th iterates of z^2 + 4180978464451948 m001 (ln(3)+HardyLittlewoodC3)/PrimesInBinary 4180978472231025 r005 Im(z^2+c),c=13/82+15/34*I,n=20 4180978476711441 a007 Real Root Of -850*x^4+797*x^3-531*x^2+318*x+310 4180978479638647 r005 Im(z^2+c),c=29/82+5/27*I,n=35 4180978484009987 m001 (ErdosBorwein-Robbin)/(gamma(2)+CopelandErdos) 4180978488266458 r009 Re(z^3+c),c=-3/44+31/56*I,n=38 4180978514795314 m001 BesselJ(1,1)/exp(GlaisherKinkelin)/cos(1)^2 4180978522512082 m003 -1/2+Sqrt[5]/1024-2*Tan[1/2+Sqrt[5]/2] 4180978532183266 r009 Im(z^3+c),c=-19/64+15/34*I,n=17 4180978540772532 a001 974168/233 4180978541776740 m001 Si(Pi)*FibonacciFactorial*ln(Zeta(3)) 4180978544898926 m001 exp(Salem)*Niven/GAMMA(1/12)^2 4180978559364172 r002 3th iterates of z^2 + 4180978567816048 r005 Im(z^2+c),c=45/122+7/40*I,n=42 4180978586356334 l006 ln(4169/6333) 4180978599642296 r002 40th iterates of z^2 + 4180978601322028 r005 Im(z^2+c),c=-17/26+2/25*I,n=63 4180978605494126 r002 53th iterates of z^2 + 4180978622782534 m005 (1/2*2^(1/2)+6)/(-17/84+1/12*5^(1/2)) 4180978624094091 r009 Re(z^3+c),c=-53/126+5/38*I,n=35 4180978635791597 h001 (5/11*exp(2)+6/11)/(1/7*exp(1)+6/11) 4180978638593632 r002 57th iterates of z^2 + 4180978648664830 m005 (1/2*exp(1)-8/9)/(10/11*gamma+3/5) 4180978658680954 a008 Real Root of x^4-x^3-15*x^2+4*x+13 4180978663011612 m004 625/Pi+(Log[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi])/5 4180978665507547 m001 (FeigenbaumDelta+KhinchinLevy)^AlladiGrinstead 4180978665949975 a004 Fibonacci(14)*Lucas(13)/(1/2+sqrt(5)/2)^8 4180978666038643 r005 Re(z^2+c),c=-73/122+15/43*I,n=53 4180978667858693 r005 Re(z^2+c),c=-27/26+23/102*I,n=24 4180978669906967 r009 Re(z^3+c),c=-3/44+31/56*I,n=40 4180978671691754 a007 Real Root Of -53*x^4+99*x^3-272*x^2+243*x+158 4180978671954650 m001 (Stephens-ZetaP(2))/(Artin+Sierpinski) 4180978675665021 r005 Re(z^2+c),c=7/122+21/61*I,n=25 4180978675690000 p001 sum((-1)^n/(273*n+239)/(625^n),n=0..infinity) 4180978693013472 m002 (3*E^Pi)/Pi^2+3*Cosh[Pi] 4180978695742516 r005 Re(z^2+c),c=-71/122+7/36*I,n=50 4180978696548687 m001 GAMMA(5/24)^2*ln(Niven)^2/log(2+sqrt(3)) 4180978725502117 m001 1/GAMMA(5/12)^2/ln(GolombDickman)^2/cosh(1)^2 4180978727877429 r005 Re(z^2+c),c=-5/8+55/128*I,n=23 4180978728802790 m006 (5*Pi+1/5)/(1/4*ln(Pi)-2/3) 4180978729613090 m005 (1/2*Pi-4/7)/(10/11*gamma-2/7) 4180978734565318 a007 Real Root Of -655*x^4+279*x^3-112*x^2+244*x+162 4180978740504376 r005 Im(z^2+c),c=13/50+5/16*I,n=13 4180978760931654 r002 55th iterates of z^2 + 4180978762206219 r002 53th iterates of z^2 + 4180978769261475 a001 2207/17711*4807526976^(6/23) 4180978772551442 r001 10i'th iterates of 2*x^2-1 of 4180978780180349 m001 (Otter-ZetaQ(2))/(ArtinRank2-CareFree) 4180978784352320 a007 Real Root Of 843*x^4-857*x^3+985*x^2+695*x+30 4180978791406288 r009 Re(z^3+c),c=-3/44+31/56*I,n=42 4180978808503773 a007 Real Root Of 445*x^4-907*x^3-481*x^2-974*x+544 4180978808965634 r005 Re(z^2+c),c=-7/10+37/199*I,n=62 4180978822314049 r004 Re(z^2+c),c=-3/22-7/16*I,z(0)=-1,n=2 4180978829808628 m001 Gompertz^BesselI(0,2)/(Gompertz^Lehmer) 4180978853744318 r009 Re(z^3+c),c=-3/44+31/56*I,n=44 4180978881045881 r009 Re(z^3+c),c=-3/44+31/56*I,n=46 4180978890335499 m001 exp(GAMMA(23/24))^2*OneNinth^2*arctan(1/2) 4180978891493131 r009 Re(z^3+c),c=-3/44+31/56*I,n=48 4180978894920616 r009 Re(z^3+c),c=-3/44+31/56*I,n=50 4180978895484435 r009 Re(z^3+c),c=-3/44+31/56*I,n=53 4180978895506646 r009 Re(z^3+c),c=-3/44+31/56*I,n=55 4180978895583883 r009 Re(z^3+c),c=-3/44+31/56*I,n=57 4180978895638939 r009 Re(z^3+c),c=-3/44+31/56*I,n=59 4180978895668026 r009 Re(z^3+c),c=-3/44+31/56*I,n=61 4180978895681035 r009 Re(z^3+c),c=-3/44+31/56*I,n=63 4180978895692322 r009 Re(z^3+c),c=-3/44+31/56*I,n=64 4180978895700589 r009 Re(z^3+c),c=-3/44+31/56*I,n=62 4180978895720389 r009 Re(z^3+c),c=-3/44+31/56*I,n=60 4180978895761424 r009 Re(z^3+c),c=-3/44+31/56*I,n=58 4180978895798553 r009 Re(z^3+c),c=-3/44+31/56*I,n=52 4180978895830351 r009 Re(z^3+c),c=-3/44+31/56*I,n=56 4180978895849232 r009 Re(z^3+c),c=-3/44+31/56*I,n=51 4180978895899119 r009 Re(z^3+c),c=-3/44+31/56*I,n=54 4180978897660266 r009 Re(z^3+c),c=-3/44+31/56*I,n=49 4180978903779441 r009 Re(z^3+c),c=-3/44+31/56*I,n=47 4180978912586029 a001 24476/233*4181^(28/39) 4180978920249851 r005 Im(z^2+c),c=-47/48+23/63*I,n=5 4180978920958462 r009 Re(z^3+c),c=-3/44+31/56*I,n=45 4180978925616637 r005 Im(z^2+c),c=21/110+24/59*I,n=29 4180978938637762 r005 Re(z^2+c),c=-13/22+7/85*I,n=58 4180978939913294 r005 Re(z^2+c),c=-15/29+23/61*I,n=16 4180978944628349 r002 24th iterates of z^2 + 4180978952526048 r005 Re(z^2+c),c=-47/90+11/25*I,n=62 4180978955868368 a001 123/610*317811^(8/19) 4180978960048531 m001 (ZetaP(2)-ZetaQ(3))/(polylog(4,1/2)+Landau) 4180978962931364 r009 Re(z^3+c),c=-3/44+31/56*I,n=43 4180978967696143 a001 281/15456*2504730781961^(4/21) 4180978985578636 a001 281/2255*102334155^(4/21) 4180978985702298 r002 27th iterates of z^2 + 4180978997740805 r005 Im(z^2+c),c=9/64+29/51*I,n=58 4180978998585663 a001 29*28657^(13/50) 4180978999551729 a003 sin(Pi*15/88)-sin(Pi*25/66) 4180978999662313 a007 Real Root Of -714*x^4+821*x^3+280*x^2+902*x+410 4180979011996591 r002 54th iterates of z^2 + 4180979015930334 m001 GAMMA(2/3)*Paris/exp(sqrt(3))^2 4180979019333506 r004 Im(z^2+c),c=5/34+10/23*I,z(0)=I,n=28 4180979024070012 r009 Re(z^3+c),c=-3/44+31/56*I,n=34 4180979031272880 m001 (-Trott+ZetaQ(3))/(2*Pi/GAMMA(5/6)-gamma) 4180979040131050 m001 2^(1/2)*LandauRamanujan/Sierpinski 4180979049023922 r005 Im(z^2+c),c=-3/4+4/133*I,n=16 4180979052012809 r009 Re(z^3+c),c=-3/44+31/56*I,n=41 4180979059294199 r005 Im(z^2+c),c=-71/114+11/24*I,n=63 4180979068566797 r002 20th iterates of z^2 + 4180979074758742 r002 44th iterates of z^2 + 4180979081541681 a001 3/24476*76^(17/60) 4180979083245571 m005 (1/2*3^(1/2)-4)/(7/12*2^(1/2)-3/4) 4180979097522581 m001 Robbin*exp(Rabbit)^2/cos(Pi/5)^2 4180979098081436 a007 Real Root Of -97*x^4-251*x^3+762*x^2+273*x-883 4180979098105244 r005 Im(z^2+c),c=-5/32+39/62*I,n=33 4180979101350630 r005 Re(z^2+c),c=-33/46+7/34*I,n=6 4180979102743450 r005 Re(z^2+c),c=-93/122+22/49*I,n=5 4180979116509713 h001 (-9*exp(3/2)-5)/(-3*exp(2/3)-5) 4180979116619270 r005 Im(z^2+c),c=-5/6+1/41*I,n=53 4180979127302406 m001 (Psi(1,1/3)+1)/(ln(2^(1/2)+1)+Pi^(1/2)) 4180979129871254 r005 Re(z^2+c),c=-5/22+14/19*I,n=21 4180979142893851 m005 (1/3*2^(1/2)-1/7)/(1/7*Catalan-11/12) 4180979156121264 a001 521/514229*89^(6/19) 4180979156349125 m001 1/GAMMA(11/12)^2*exp(BesselJ(1,1))*sqrt(3)^2 4180979179723894 r009 Im(z^3+c),c=-4/9+17/46*I,n=42 4180979186277070 p001 sum((-1)^n/(386*n+239)/(512^n),n=0..infinity) 4180979187067477 a007 Real Root Of 307*x^4-648*x^3+302*x^2-632*x-27 4180979188579990 l006 ln(2622/3983) 4180979192917513 r005 Re(z^2+c),c=-17/30+23/77*I,n=64 4180979207750626 r009 Re(z^3+c),c=-3/44+31/56*I,n=39 4180979213556094 r002 2th iterates of z^2 + 4180979218074669 a007 Real Root Of 838*x^4-687*x^3+884*x^2-865*x-592 4180979236093309 q001 1631/3901 4180979258899042 r009 Re(z^3+c),c=-3/44+31/56*I,n=35 4180979280728805 a001 322/55*317811^(9/58) 4180979286773721 a003 cos(Pi*1/34)*sin(Pi*4/29) 4180979291302443 r009 Re(z^3+c),c=-1/29+25/28*I,n=17 4180979296057805 r005 Im(z^2+c),c=15/74+1/54*I,n=23 4180979304884290 m008 (5/6*Pi^4-4/5)/(2*Pi^6-2/5) 4180979321613882 m001 ln(2+3^(1/2))/(exp(1/exp(1))+Niven) 4180979335167294 a007 Real Root Of 511*x^4-468*x^3+980*x^2-667*x-500 4180979336250797 r005 Im(z^2+c),c=3/74+22/41*I,n=4 4180979341981208 r009 Re(z^3+c),c=-43/90+5/26*I,n=26 4180979348327587 r005 Im(z^2+c),c=17/70+5/14*I,n=41 4180979348543135 r002 26th iterates of z^2 + 4180979354387003 r005 Im(z^2+c),c=13/48+20/63*I,n=4 4180979362468256 r005 Re(z^2+c),c=-37/70+17/48*I,n=27 4180979363709927 m005 (1/3*Zeta(3)-3/4)/(3*exp(1)+1/5) 4180979363817056 m001 sin(1/5*Pi)^Ei(1,1)-Bloch 4180979366733235 m009 (4*Catalan+1/2*Pi^2-1/6)/(2/5*Psi(1,3/4)+1) 4180979373181857 r005 Im(z^2+c),c=-47/44+17/63*I,n=28 4180979377488492 m001 2^(1/3)*FransenRobinson+Cahen 4180979377850589 r002 7th iterates of z^2 + 4180979378067521 h001 (1/10*exp(2)+7/11)/(10/11*exp(1)+9/11) 4180979380291583 r002 4th iterates of z^2 + 4180979385106340 r009 Re(z^3+c),c=-3/44+31/56*I,n=37 4180979386147761 a003 cos(Pi*4/61)/cos(Pi*48/113) 4180979402188472 a007 Real Root Of -100*x^4+380*x^3-7*x^2+837*x+382 4180979436923619 m001 (CareFree-Niven)/(Zeta(1,2)-Backhouse) 4180979440515291 l006 ln(107/7001) 4180979440515291 p004 log(7001/107) 4180979446806598 a003 cos(Pi*25/109)/cos(Pi*50/113) 4180979447036858 m001 Zeta(5)^2/GAMMA(11/24)*exp(Zeta(7))^2 4180979460179198 a007 Real Root Of 185*x^4+656*x^3-332*x^2+606*x-249 4180979468276227 r009 Re(z^3+c),c=-51/110+28/45*I,n=3 4180979478923021 r005 Im(z^2+c),c=15/74+1/54*I,n=22 4180979497675779 m001 (1+Sierpinski)/(-Thue+ZetaQ(4)) 4180979503270784 g006 Psi(1,5/11)-Psi(1,6/11)-Psi(1,4/9)-Psi(1,1/6) 4180979508338805 m005 (1/2*Pi-4)/(5/6*gamma+1/10) 4180979514168704 r002 3th iterates of z^2 + 4180979515302574 m005 (1/3*5^(1/2)-2/3)/(8/9*2^(1/2)+5/8) 4180979518140093 r005 Im(z^2+c),c=-57/64+2/63*I,n=11 4180979526521234 h001 (-5*exp(-1)-1)/(-2*exp(1/3)-4) 4180979542673278 r002 49th iterates of z^2 + 4180979544288436 m001 (exp(Pi)+Ei(1))/(Zeta(1,-1)+LandauRamanujan) 4180979547820454 h001 (1/3*exp(2)+4/7)/(1/6*exp(1)+3/11) 4180979555324275 s002 sum(A158407[n]/((exp(n)+1)*n),n=1..infinity) 4180979569066772 r005 Im(z^2+c),c=31/122+19/55*I,n=54 4180979570408364 r002 42th iterates of z^2 + 4180979574455090 m001 (Gompertz-PlouffeB)^ThueMorse 4180979582180606 r005 Im(z^2+c),c=-61/110+7/58*I,n=10 4180979585900816 l006 ln(6319/9599) 4180979590608948 a005 (1/sin(88/197*Pi))^592 4180979592173393 m008 (3/4*Pi^6-3)/(1/4*Pi^2-3/4) 4180979602624924 r005 Im(z^2+c),c=-13/25+17/37*I,n=13 4180979608918075 r005 Re(z^2+c),c=43/114+25/47*I,n=5 4180979608936906 p003 LerchPhi(1/125,2,114/233) 4180979609473028 r005 Re(z^2+c),c=-43/64+1/63*I,n=18 4180979610553203 a007 Real Root Of -46*x^4+564*x^3+875*x^2+510*x-406 4180979614388953 m001 (5^(1/2)+ln(3))/(FellerTornier+Weierstrass) 4180979620643084 m001 (ln(3)+RenyiParking)/(TreeGrowth2nd+ZetaQ(4)) 4180979625002552 a001 2207/987*75025^(6/23) 4180979625466446 r005 Re(z^2+c),c=-73/126+5/28*I,n=21 4180979634229188 r002 17th iterates of z^2 + 4180979638913838 a008 Real Root of x^4-2*x^3-15*x^2+10*x+61 4180979641557172 r002 46th iterates of z^2 + 4180979646149892 r005 Im(z^2+c),c=5/114+16/31*I,n=64 4180979648536208 a007 Real Root Of -105*x^4+257*x^3-272*x^2+788*x+399 4180979672277412 m005 (1/10+1/2*5^(1/2))/(4/5*Pi+2/5) 4180979674595784 r009 Im(z^3+c),c=-3/7+11/29*I,n=38 4180979679186169 r005 Im(z^2+c),c=-2/3+63/193*I,n=16 4180979690553032 r005 Re(z^2+c),c=-4/7+23/114*I,n=19 4180979692249320 r009 Im(z^3+c),c=-4/9+17/46*I,n=46 4180979695539624 m001 1/Conway*Artin^2/ln(GAMMA(19/24))^2 4180979697640733 m001 Salem*ln(HardHexagonsEntropy)/Zeta(1,2) 4180979697873418 r002 55th iterates of z^2 + 4180979704894950 a007 Real Root Of 96*x^4+68*x^3+878*x^2+135*x-95 4180979719236941 a007 Real Root Of 275*x^4-989*x^3-433*x^2-941*x+533 4180979726500312 r005 Re(z^2+c),c=-29/42+1/28*I,n=18 4180979726538234 r005 Re(z^2+c),c=-19/26+5/63*I,n=31 4180979727961864 b008 LogGamma[Csch[3/17]] 4180979731802578 m001 (2/3)^Si(Pi)/GAMMA(5/6) 4180979732807389 r002 54th iterates of z^2 + 4180979733429143 r005 Re(z^2+c),c=-15/26+25/107*I,n=55 4180979735930488 p003 LerchPhi(1/100,3,131/211) 4180979743632104 r009 Re(z^3+c),c=-9/23+1/10*I,n=10 4180979747821730 r002 13th iterates of z^2 + 4180979756234886 a001 2/514229*514229^(12/17) 4180979756235816 a001 2/165580141*1836311903^(12/17) 4180979756235816 a001 2/53316291173*6557470319842^(12/17) 4180979767844328 r009 Im(z^3+c),c=-12/23+10/43*I,n=15 4180979772879200 a001 46/32264490531*317811^(4/15) 4180979772881408 a001 46/1515744265389*591286729879^(4/15) 4180979772881408 a001 161/774004377960*433494437^(4/15) 4180979783328243 p004 log(32063/21107) 4180979789846584 a001 75025/322*322^(1/2) 4180979833924578 m001 1/GAMMA(23/24)/ln(GAMMA(1/24))/exp(1)^2 4180979834786811 a001 281/329*4181^(4/21) 4180979840936346 r005 Im(z^2+c),c=-9/52+37/62*I,n=36 4180979857151068 a007 Real Root Of -472*x^4-365*x^3+20*x^2+829*x-309 4180979857308829 r005 Im(z^2+c),c=-49/110+9/17*I,n=8 4180979857477094 a001 3/199*1149851^(5/21) 4180979857769425 a001 10946/843*521^(12/13) 4180979867690151 l006 ln(3697/5616) 4180979876525479 r009 Re(z^3+c),c=-15/32+9/50*I,n=28 4180979898542010 a001 3524578/2207*199^(2/11) 4180979906332983 r002 60th iterates of z^2 + 4180979908076393 r005 Re(z^2+c),c=37/110+26/55*I,n=5 4180979912407641 r005 Re(z^2+c),c=9/32+1/31*I,n=63 4180979925122290 m001 (ln(5)+CareFree)^Niven 4180979939760038 m001 (FeigenbaumD+Kolakoski)/(sin(1)+gamma(2)) 4180979947954750 r005 Re(z^2+c),c=-9/14+37/119*I,n=5 4180979968715309 a007 Real Root Of -910*x^4+723*x^3+689*x^2+250*x-250 4180979998719427 r005 Re(z^2+c),c=-19/70+35/51*I,n=7 4180980012749583 a001 29/987*4807526976^(16/19) 4180980017975823 m001 FellerTornier/(Cahen^sin(1/5*Pi)) 4180980039227702 h005 exp(cos(Pi*1/27)+cos(Pi*21/59)) 4180980040076349 m005 (-23/36+1/4*5^(1/2))/(7/12*3^(1/2)+9/10) 4180980058734434 p001 sum(1/(351*n+328)/(2^n),n=0..infinity) 4180980062373795 s002 sum(A109452[n]/((2^n+1)/n),n=1..infinity) 4180980074648142 m001 (Psi(1,1/3)+Kac)/(Niven+Thue) 4180980080068653 r005 Im(z^2+c),c=-17/23+4/33*I,n=48 4180980085006270 a007 Real Root Of -252*x^4+635*x^3+239*x^2+700*x+305 4180980086268444 r005 Im(z^2+c),c=1/48+25/47*I,n=34 4180980088114738 r009 Re(z^3+c),c=-63/122+10/41*I,n=9 4180980137906366 m005 (1/3*3^(1/2)-1/7)/(2^(1/2)-3/8) 4180980138778048 m005 (-13/28+1/4*5^(1/2))/(1/7*Pi-2/9) 4180980148181502 r005 Re(z^2+c),c=-15/26+19/61*I,n=41 4180980155455218 r005 Im(z^2+c),c=-2/15+29/52*I,n=16 4180980160636786 m001 (GAMMA(2/3)-Si(Pi))/(-Ei(1)+CareFree) 4180980166566225 r002 54th iterates of z^2 + 4180980170252916 r004 Re(z^2+c),c=4/17*I,z(0)=I,n=5 4180980170979479 a001 8/9349*199^(36/49) 4180980175951219 r002 43th iterates of z^2 + 4180980176963454 r002 38th iterates of z^2 + 4180980180239894 a007 Real Root Of -135*x^4-326*x^3+806*x^2-888*x-376 4180980188244624 r002 27th iterates of z^2 + 4180980193620433 m005 (1/3*3^(1/2)-1/4)/(9/11*5^(1/2)+6) 4180980195339989 r002 59th iterates of z^2 + 4180980196987257 r005 Re(z^2+c),c=-35/66+23/61*I,n=23 4180980198604092 b008 Coth[10/41] 4180980212030486 r002 20th iterates of z^2 + 4180980240830710 l006 ln(4772/7249) 4180980243463854 r009 Im(z^3+c),c=-43/114+7/10*I,n=23 4180980264746678 r002 44th iterates of z^2 + 4180980265721272 r005 Re(z^2+c),c=11/32+4/41*I,n=10 4180980268432295 r002 6th iterates of z^2 + 4180980272738227 m001 Psi(2,1/3)/(ReciprocalLucas^HardyLittlewoodC5) 4180980283008035 m001 (2^(1/3)-FeigenbaumMu)/(-OneNinth+TwinPrimes) 4180980292294991 r005 Re(z^2+c),c=-7/12+20/111*I,n=48 4180980296575472 l006 ln(4614/4811) 4180980304810766 r009 Re(z^3+c),c=-55/126+4/27*I,n=37 4180980310012568 q001 998/2387 4180980335488075 r002 4th iterates of z^2 + 4180980355975848 m004 5+125*Pi+3*Sqrt[5]*Pi-Sin[Sqrt[5]*Pi] 4180980356201875 m001 (GAMMA(23/24)-ThueMorse)/Porter 4180980363925607 m004 -125/Pi-125*Pi+5*Pi*Tan[Sqrt[5]*Pi] 4180980369786865 a007 Real Root Of 810*x^4+209*x^3-900*x^2-315*x+249 4180980370846845 r002 40th iterates of z^2 + 4180980389744475 r002 9th iterates of z^2 + 4180980397109338 m004 6250/Pi+E^(Sqrt[5]*Pi)*Log[Sqrt[5]*Pi] 4180980426103739 r005 Re(z^2+c),c=13/66+37/53*I,n=5 4180980434407457 m008 (3/4*Pi^2+2/5)/(3/5*Pi^5+3) 4180980468242445 r005 Re(z^2+c),c=23/62+13/57*I,n=32 4180980468515482 s002 sum(A116151[n]/(n^2*10^n+1),n=1..infinity) 4180980470620089 r005 Im(z^2+c),c=-49/102+24/41*I,n=19 4180980472132204 r002 4th iterates of z^2 + 4180980476763770 l006 ln(5847/8882) 4180980494978442 m001 (Chi(1)+Zeta(1,-1))/(ErdosBorwein+ZetaQ(4)) 4180980499706847 a007 Real Root Of -728*x^4+703*x^3+554*x^2+443*x+162 4180980502050639 r002 36th iterates of z^2 + 4180980513937947 r002 49th iterates of z^2 + 4180980515882027 r002 35th iterates of z^2 + 4180980522334397 r002 57th iterates of z^2 + 4180980526012952 a007 Real Root Of -444*x^4-468*x^3-253*x^2+520*x+241 4180980548602474 m001 (5^(1/2)-HeathBrownMoroz)/(-Landau+ZetaQ(3)) 4180980572168864 r005 Im(z^2+c),c=19/82+15/32*I,n=28 4180980576026567 m001 1/FeigenbaumB^3*exp(BesselJ(1,1))^2 4180980581044331 r005 Im(z^2+c),c=17/62+11/32*I,n=24 4180980586357063 m005 (1/2*exp(1)+3/5)/(1/10*Pi-5) 4180980587868878 r005 Im(z^2+c),c=33/98+22/53*I,n=28 4180980590023793 r009 Im(z^3+c),c=-13/29+7/20*I,n=13 4180980607303976 r005 Im(z^2+c),c=-8/13+5/64*I,n=51 4180980630864787 a001 701408733/47*7^(9/17) 4180980631675850 a001 9227465/5778*199^(2/11) 4180980633993671 m001 (-GAMMA(2/3)+exp(1/Pi))/(2^(1/3)-BesselJ(0,1)) 4180980645515774 r005 Im(z^2+c),c=-8/9+2/63*I,n=12 4180980651917576 r005 Im(z^2+c),c=-11/58+36/59*I,n=59 4180980655485512 m002 6*Pi^2*Log[Pi]+Pi^5*Log[Pi] 4180980662044796 m001 exp(Robbin)/LandauRamanujan^2*(2^(1/3)) 4180980666348087 r002 35th iterates of z^2 + 4180980672692004 m001 (Sarnak-Totient)/(BesselK(1,1)+Riemann1stZero) 4180980678711345 a003 sin(Pi*22/117)*sin(Pi*10/37) 4180980688532873 a007 Real Root Of 628*x^4-663*x^3+791*x^2+117*x-157 4180980696478327 r001 25i'th iterates of 2*x^2-1 of 4180980709064238 m001 (ln(gamma)+ln(5))/(GAMMA(7/12)-Grothendieck) 4180980738638658 a001 24157817/15127*199^(2/11) 4180980744752299 r002 45th iterates of z^2 + 4180980752972265 m005 (1/3*Catalan+2/7)/(10/11*gamma+8/9) 4180980754244321 a001 63245986/39603*199^(2/11) 4180980756521157 a001 165580141/103682*199^(2/11) 4180980756853343 a001 433494437/271443*199^(2/11) 4180980756901808 a001 1134903170/710647*199^(2/11) 4180980756908879 a001 2971215073/1860498*199^(2/11) 4180980756909911 a001 7778742049/4870847*199^(2/11) 4180980756910061 a001 20365011074/12752043*199^(2/11) 4180980756910083 a001 53316291173/33385282*199^(2/11) 4180980756910086 a001 139583862445/87403803*199^(2/11) 4180980756910087 a001 365435296162/228826127*199^(2/11) 4180980756910087 a001 956722026041/599074578*199^(2/11) 4180980756910087 a001 2504730781961/1568397607*199^(2/11) 4180980756910087 a001 6557470319842/4106118243*199^(2/11) 4180980756910087 a001 10610209857723/6643838879*199^(2/11) 4180980756910087 a001 4052739537881/2537720636*199^(2/11) 4180980756910087 a001 1548008755920/969323029*199^(2/11) 4180980756910087 a001 591286729879/370248451*199^(2/11) 4180980756910087 a001 225851433717/141422324*199^(2/11) 4180980756910088 a001 86267571272/54018521*199^(2/11) 4180980756910097 a001 32951280099/20633239*199^(2/11) 4180980756910154 a001 12586269025/7881196*199^(2/11) 4180980756910548 a001 4807526976/3010349*199^(2/11) 4180980756913249 a001 1836311903/1149851*199^(2/11) 4180980756931761 a001 701408733/439204*199^(2/11) 4180980757058645 a001 267914296/167761*199^(2/11) 4180980757928319 a001 102334155/64079*199^(2/11) 4180980763889152 a001 39088169/24476*199^(2/11) 4180980781109242 r005 Re(z^2+c),c=-21/52+7/20*I,n=4 4180980785155508 m001 (DuboisRaymond+Rabbit)/(GAMMA(3/4)-Zeta(1,2)) 4180980792479775 r005 Re(z^2+c),c=-3/4+3/110*I,n=50 4180980804745311 a001 14930352/9349*199^(2/11) 4180980808065308 r005 Re(z^2+c),c=-12/29+35/61*I,n=45 4180980828157491 m001 (Artin+Kac)/(Zeta(5)+GAMMA(2/3)) 4180980829694214 m005 (1/3*Pi-1/12)/(4/9*Pi+10/11) 4180980860787797 r005 Re(z^2+c),c=-7/10+21/151*I,n=42 4180980867543168 r005 Re(z^2+c),c=-22/23+7/38*I,n=4 4180980868881647 l006 ln(100/6543) 4180980869510278 h001 (-4*exp(2)+6)/(-7*exp(2/3)+8) 4180980873513377 m001 exp(1)+BesselJ(0,1)+ArtinRank2 4180980881672125 a007 Real Root Of -931*x^4+352*x^3+904*x^2+710*x+193 4180980888516748 a001 18/377*514229^(45/52) 4180980901334647 h001 (3/10*exp(2)+7/12)/(6/7*exp(2)+4/11) 4180980914098365 r005 Im(z^2+c),c=15/94+13/31*I,n=18 4180980918997145 m005 (1/3*Catalan+1/10)/(4/11*Catalan+7/11) 4180980920059329 r002 32th iterates of z^2 + 4180980922563982 m005 (1/3*exp(1)+2/5)/(7/8*Pi+3/8) 4180980932045704 r005 Re(z^2+c),c=-13/22+9/112*I,n=42 4180980944378395 r005 Im(z^2+c),c=-41/110+25/48*I,n=9 4180980957234728 m001 (exp(1)-exp(Pi))/(-BesselI(1,1)+ZetaP(4)) 4180981006602173 r005 Re(z^2+c),c=-15/26+10/87*I,n=9 4180981008154268 m002 -2+Pi^3+Pi^4/4-Sinh[Pi] 4180981008728415 r005 Im(z^2+c),c=7/29+22/63*I,n=21 4180981022017079 r005 Re(z^2+c),c=-4/7+17/62*I,n=54 4180981032957037 a001 17711/843*521^(11/13) 4180981035275224 r009 Re(z^3+c),c=-21/44+10/53*I,n=64 4180981049354005 r005 Re(z^2+c),c=-73/126+13/61*I,n=60 4180981081081663 r009 Re(z^3+c),c=-7/20+21/32*I,n=43 4180981082494466 r005 Re(z^2+c),c=-41/70+11/38*I,n=29 4180981084777610 a001 1597*199^(2/11) 4180981090204802 r005 Re(z^2+c),c=-25/42+3/43*I,n=23 4180981100700311 r005 Re(z^2+c),c=17/58+5/58*I,n=5 4180981100847859 r005 Im(z^2+c),c=1/52+26/49*I,n=19 4180981110120946 r009 Im(z^3+c),c=-13/42+24/55*I,n=22 4180981110219498 r005 Re(z^2+c),c=-7/12+9/50*I,n=58 4180981134486618 m004 2+(5*Pi)/24+ProductLog[Sqrt[5]*Pi] 4180981152113689 r009 Im(z^3+c),c=-23/54+8/21*I,n=37 4180981170540018 a007 Real Root Of 222*x^4-678*x^3+828*x^2+402*x-33 4180981177095573 m005 (1/3*exp(1)+1/11)/(6/7*3^(1/2)+9/10) 4180981181458030 m005 (1/2*gamma-5/9)/(2/3*gamma+6) 4180981189683305 m001 BesselI(0,1)^Zeta(1/2)/(BesselI(0,1)^sqrt(5)) 4180981196755594 r009 Re(z^3+c),c=-41/78+18/49*I,n=23 4180981202090091 a001 123/28657*2971215073^(8/19) 4180981207741716 m005 (1/3*gamma+1/3)/(43/132+5/12*5^(1/2)) 4180981219943019 m004 -5*Pi+(15625*Pi)/(6*Log[Sqrt[5]*Pi]) 4180981220802113 m001 (Grothendieck-ZetaP(3))/(Ei(1)-BesselI(0,2)) 4180981222720397 a007 Real Root Of -20*x^4-839*x^3-105*x^2+504*x-297 4180981223378824 m001 (Shi(1)-gamma(2))/(GolombDickman+Tetranacci) 4180981227076708 r002 4th iterates of z^2 + 4180981227649787 r005 Re(z^2+c),c=-2/3+51/152*I,n=23 4180981273116590 r005 Re(z^2+c),c=7/114+5/6*I,n=3 4180981274766637 a007 Real Root Of -677*x^4+282*x^3+562*x^2+892*x+316 4180981275023484 a001 24476/89*28657^(2/49) 4180981275911345 r002 2th iterates of z^2 + 4180981284169863 m001 (GAMMA(3/4)-ln(3))/(3^(1/3)+BesselI(1,2)) 4180981298484464 r002 13th iterates of z^2 + 4180981299830336 r005 Re(z^2+c),c=-65/114+20/47*I,n=28 4180981305179266 m001 (Lehmer+Trott)/(sin(1)+BesselK(1,1)) 4180981309413962 r002 50th iterates of z^2 + 4180981311216682 r005 Im(z^2+c),c=7/48+15/34*I,n=36 4180981320102612 r005 Re(z^2+c),c=-11/16+18/67*I,n=18 4180981323518595 r005 Im(z^2+c),c=-25/42+27/61*I,n=5 4180981332474948 m001 GAMMA(2/3)/gamma*Grothendieck 4180981336622663 m001 1/ln(FeigenbaumDelta)^2*Cahen*cosh(1) 4180981340960351 h001 (5/6*exp(1)+6/7)/(8/9*exp(2)+9/10) 4180981369345527 m003 3+(65*Sqrt[5])/1024+1/(2*Log[1/2+Sqrt[5]/2]) 4180981372955851 r002 17th iterates of z^2 + 4180981383492800 r005 Im(z^2+c),c=11/102+28/59*I,n=29 4180981387919363 r002 30i'th iterates of 2*x/(1-x^2) of 4180981396769386 a007 Real Root Of 138*x^4+649*x^3+124*x^2-610*x+546 4180981402186690 r005 Re(z^2+c),c=-18/31+16/55*I,n=36 4180981402914979 a007 Real Root Of 36*x^4+80*x^3-351*x^2-431*x-820 4180981425982578 r005 Im(z^2+c),c=19/82+18/49*I,n=47 4180981426778663 r005 Im(z^2+c),c=4/21+17/42*I,n=52 4180981433414948 a001 3571/2*4181^(5/49) 4180981436537441 r009 Re(z^3+c),c=-39/98+5/47*I,n=27 4180981445210143 a007 Real Root Of -314*x^4+767*x^3+789*x^2+896*x-559 4180981447099312 m001 (Champernowne+Lehmer)/(gamma(1)-GAMMA(13/24)) 4180981462526336 r005 Im(z^2+c),c=7/34+9/23*I,n=37 4180981466978699 m009 (5/6*Psi(1,1/3)+2/3)/(3/5*Psi(1,2/3)+1/3) 4180981476229511 a001 317811/11*76^(29/47) 4180981479134648 r009 Im(z^3+c),c=-1/24+1/24*I,n=4 4180981486942368 a007 Real Root Of -640*x^4+879*x^3+5*x^2-42*x-28 4180981495767129 r009 Im(z^3+c),c=-1/24+1/24*I,n=5 4180981495931407 r009 Im(z^3+c),c=-1/24+1/24*I,n=8 4180981495931407 r009 Im(z^3+c),c=-1/24+1/24*I,n=9 4180981495931407 r009 Im(z^3+c),c=-1/24+1/24*I,n=12 4180981495931407 r009 Im(z^3+c),c=-1/24+1/24*I,n=13 4180981495931407 r009 Im(z^3+c),c=-1/24+1/24*I,n=16 4180981495931407 r009 Im(z^3+c),c=-1/24+1/24*I,n=17 4180981495931407 r009 Im(z^3+c),c=-1/24+1/24*I,n=20 4180981495931407 r009 Im(z^3+c),c=-1/24+1/24*I,n=21 4180981495931407 r009 Im(z^3+c),c=-1/24+1/24*I,n=24 4180981495931407 r009 Im(z^3+c),c=-1/24+1/24*I,n=19 4180981495931407 r009 Im(z^3+c),c=-1/24+1/24*I,n=18 4180981495931407 r009 Im(z^3+c),c=-1/24+1/24*I,n=15 4180981495931407 r009 Im(z^3+c),c=-1/24+1/24*I,n=14 4180981495931407 r009 Im(z^3+c),c=-1/24+1/24*I,n=11 4180981495931407 r009 Im(z^3+c),c=-1/24+1/24*I,n=10 4180981495931425 r009 Im(z^3+c),c=-1/24+1/24*I,n=7 4180981495933253 r009 Im(z^3+c),c=-1/24+1/24*I,n=6 4180981505976788 m001 (Kolakoski+Stephens)/(exp(1/exp(1))-Pi^(1/2)) 4180981520673951 m001 Salem^2*exp(Niven)^2/Zeta(9) 4180981524087019 l006 ln(1075/1633) 4180981532266641 m005 (1/2*gamma-6/7)/(6/11*Catalan-4/11) 4180981534121169 r005 Im(z^2+c),c=-7/86+10/17*I,n=47 4180981537752224 a001 521/89*8^(52/55) 4180981551349076 r005 Im(z^2+c),c=-45/74+3/37*I,n=26 4180981586990401 a007 Real Root Of -351*x^4+492*x^3+317*x^2+771*x-403 4180981595092024 q001 1363/3260 4180981596868786 a007 Real Root Of -215*x^4-843*x^3+263*x^2+122*x-1 4180981597671772 r009 Re(z^3+c),c=-55/126+4/27*I,n=39 4180981598773330 m001 1/gamma*GlaisherKinkelin/ln(sin(Pi/5)) 4180981604306147 a003 cos(Pi*3/7)/cos(Pi*57/118) 4180981609732504 p003 LerchPhi(1/100,1,5/209) 4180981619722529 a007 Real Root Of -884*x^4-235*x^3+56*x^2+141*x+59 4180981645350580 p001 sum(1/(275*n+238)/n/(5^n),n=1..infinity) 4180981646504902 a007 Real Root Of -536*x^4+981*x^3+854*x^2+553*x+170 4180981652743916 r005 Im(z^2+c),c=19/102+26/53*I,n=7 4180981669675517 m001 GAMMA(1/12)*exp(Cahen)^2*Zeta(9)^2 4180981687685698 a007 Real Root Of 578*x^4-739*x^3-457*x^2-418*x+291 4180981696039304 r005 Re(z^2+c),c=-16/27+1/62*I,n=39 4180981718457974 r008 a(0)=4,K{-n^6,-4-7*n^3+2*n^2+2*n} 4180981719096691 r002 7th iterates of z^2 + 4180981726718192 m001 (cos(1)-ln(gamma))/(MadelungNaCl+Thue) 4180981733865295 m001 Gompertz*(exp(1/exp(1))+2*Pi/GAMMA(5/6)) 4180981740290997 r009 Re(z^3+c),c=-41/110+5/7*I,n=6 4180981752957042 r005 Re(z^2+c),c=-53/56+5/47*I,n=20 4180981757517904 r005 Re(z^2+c),c=-53/122+9/22*I,n=6 4180981758132749 m001 1/Magata^2/LaplaceLimit*ln(LambertW(1))^2 4180981759427707 m001 (Zeta(1/2)-Champernowne)/(FeigenbaumB+Otter) 4180981774306161 r005 Re(z^2+c),c=-51/86+1/62*I,n=40 4180981774863853 r009 Im(z^3+c),c=-1/70+29/60*I,n=5 4180981782065428 r005 Re(z^2+c),c=-99/98+23/56*I,n=4 4180981786695079 m001 ln(GAMMA(23/24))^2/GAMMA(1/12)*exp(1)^2 4180981796367901 a005 (1/cos(20/141*Pi))^238 4180981815888918 r002 32th iterates of z^2 + 4180981818823984 m001 (Kolakoski-Otter)/(GAMMA(3/4)-GAMMA(19/24)) 4180981838484084 a007 Real Root Of 641*x^4-318*x^3-824*x^2-912*x+529 4180981839507705 h005 exp(cos(Pi*1/18)+cos(Pi*6/17)) 4180981851265393 r002 38th iterates of z^2 + 4180981867170270 a001 1364/1597*75025^(16/29) 4180981878183317 r005 Re(z^2+c),c=-13/22+9/110*I,n=61 4180981896713738 m005 (2/5*Pi+1/3)/(1/6*exp(1)-5/6) 4180981900882083 m001 (CareFree-Kolakoski)/(ln(3)+GAMMA(11/12)) 4180981905644594 r005 Re(z^2+c),c=-19/42+10/19*I,n=54 4180981922595197 m001 (FellerTornier+PlouffeB)/(cos(1/5*Pi)-exp(1)) 4180981925912082 a007 Real Root Of -371*x^4+247*x^3+125*x^2+975*x-41 4180981938765215 r005 Re(z^2+c),c=-5/11+23/45*I,n=57 4180981946641862 s002 sum(A206769[n]/(n!^2),n=1..infinity) 4180981949349041 h001 (7/8*exp(2)+9/11)/(3/5*exp(1)+1/9) 4180981958285858 m005 (19/42+1/6*5^(1/2))/(25/24+5/12*5^(1/2)) 4180981969013175 m009 (2*Catalan+1/4*Pi^2-2/5)/(1/4*Psi(1,2/3)+1/6) 4180981970393700 m001 Bloch*MinimumGamma/ZetaQ(4) 4180981982040837 m005 (1/2*exp(1)-5/6)/(5/12*exp(1)+1/8) 4180981993504083 m005 (1/2*Catalan+3/10)/(4/9*Pi+5/12) 4180982007647570 r005 Im(z^2+c),c=-43/102+22/39*I,n=39 4180982023340101 r005 Re(z^2+c),c=-75/118+19/44*I,n=16 4180982036081999 r005 Re(z^2+c),c=-13/22+19/118*I,n=28 4180982041574092 m001 1/FeigenbaumC/ln(FransenRobinson)^2/GAMMA(3/4) 4180982049248529 m005 (53/10+3/10*5^(1/2))/(2/3*2^(1/2)-4/5) 4180982051564125 r005 Re(z^2+c),c=-7/12+13/56*I,n=33 4180982055818144 r002 8th iterates of z^2 + 4180982057977322 r005 Re(z^2+c),c=-37/64+9/40*I,n=55 4180982072949264 r005 Re(z^2+c),c=-5/6+211/249*I,n=3 4180982077779801 r009 Re(z^3+c),c=-11/23+12/47*I,n=5 4180982078356893 r008 a(0)=4,K{-n^6,33-55*n-16*n^2+33*n^3} 4180982082871814 a007 Real Root Of 171*x^4+633*x^3-521*x^2-918*x-720 4180982092816446 a005 (1/cos(15/227*Pi))^172 4180982122375111 a007 Real Root Of -16*x^4-659*x^3+429*x^2+539*x+346 4180982124725590 m005 (1/2*gamma+2/5)/(3/10*Pi-7/9) 4180982124888973 r002 62th iterates of z^2 + 4180982131207064 m004 625/Pi+(Cosh[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi])/5 4180982131387374 m001 1/Trott*Champernowne/exp(Zeta(9)) 4180982133912334 a007 Real Root Of 14*x^4+569*x^3-667*x^2+680*x+343 4180982139331128 r002 60th iterates of z^2 + 4180982140215016 a007 Real Root Of -249*x^4-803*x^3+991*x^2-193*x-731 4180982160999452 r002 49th iterates of z^2 + 4180982170838862 r009 Im(z^3+c),c=-1/30+48/61*I,n=42 4180982177900944 m005 (1/3*2^(1/2)+1/8)/(7/8*Catalan+5/8) 4180982203211385 m006 (4/5*ln(Pi)+2)/(1/5*Pi^2+5) 4180982206069398 m005 (1/2*gamma-8/11)/(4/9*5^(1/2)-8/9) 4180982218396117 m001 Ei(1)+FeigenbaumKappa^exp(1) 4180982221473814 a001 28657/843*521^(10/13) 4180982230520560 a007 Real Root Of 414*x^4-801*x^3+426*x^2-286*x+91 4180982231361975 r005 Im(z^2+c),c=15/98+17/39*I,n=64 4180982235472177 r005 Im(z^2+c),c=7/26+11/34*I,n=21 4180982237833637 m001 (Backhouse*Sierpinski-FeigenbaumD)/Sierpinski 4180982241319376 p001 sum(1/(260*n+161)/n/(6^n),n=1..infinity) 4180982252963415 r005 Im(z^2+c),c=-9/14+53/127*I,n=22 4180982268516822 r002 39th iterates of z^2 + 4180982276071201 m001 1/Zeta(5)*Khintchine*ln(sinh(1)) 4180982296695693 r002 37th iterates of z^2 + 4180982298589980 m005 (1/2*Pi+3/11)/(3*2^(1/2)+1/6) 4180982299871696 r009 Re(z^3+c),c=-12/23+11/52*I,n=48 4180982306509114 r005 Im(z^2+c),c=5/36+17/38*I,n=35 4180982309689630 r005 Re(z^2+c),c=-13/14+86/145*I,n=2 4180982309856661 m001 (Bloch*MasserGramain-OneNinth)/Bloch 4180982317595267 r005 Re(z^2+c),c=-73/126+11/51*I,n=39 4180982338586318 r002 14th iterates of z^2 + 4180982347737572 a007 Real Root Of 240*x^4+949*x^3-381*x^2-788*x-613 4180982364703698 r002 5th iterates of z^2 + 4180982391026406 r001 23i'th iterates of 2*x^2-1 of 4180982432245866 r005 Re(z^2+c),c=-25/42+2/11*I,n=26 4180982442267568 r009 Re(z^3+c),c=-53/126+5/38*I,n=36 4180982445412360 l006 ln(9673/10086) 4180982459481034 m002 (E^Pi*Pi*Sech[Pi])/15 4180982484558636 r005 Im(z^2+c),c=-71/74+1/26*I,n=6 4180982492845982 m005 (1/3*exp(1)+1/7)/(4*gamma+1/5) 4180982496149997 a007 Real Root Of 9*x^4-314*x^3+156*x^2-470*x-247 4180982512268371 l006 ln(93/6085) 4180982542148018 m001 (BesselJ(0,1)-Ei(1))/(MertensB1+ZetaQ(3)) 4180982546484793 a007 Real Root Of 18*x^4+762*x^3+373*x^2-872*x+216 4180982548459451 l006 ln(5978/9081) 4180982555831147 r009 Re(z^3+c),c=-3/44+31/56*I,n=32 4180982568263435 m001 1/GAMMA(23/24)*CopelandErdos^2/exp(sin(Pi/12)) 4180982574370169 r005 Im(z^2+c),c=23/90+14/47*I,n=7 4180982581371323 r005 Im(z^2+c),c=-97/82+20/53*I,n=5 4180982588704792 m001 (Catalan+gamma(2))/(-AlladiGrinstead+Lehmer) 4180982606818708 m001 3^(1/2)+cos(1/5*Pi)+GAMMA(13/24) 4180982606818708 m001 sqrt(3)+cos(Pi/5)+GAMMA(13/24) 4180982638876852 m001 1/ArtinRank2^2*Bloch/exp(sin(1)) 4180982639029774 r005 Re(z^2+c),c=-31/44+20/57*I,n=59 4180982640508101 a005 (1/cos(54/187*Pi))^136 4180982647169161 l006 ln(6683/6711) 4180982652768328 m001 GAMMA(3/4)/ln(BesselK(1,1))*sqrt(3) 4180982654593921 r002 9th iterates of z^2 + 4180982656055622 r002 27th iterates of z^2 + 4180982656743488 a007 Real Root Of -980*x^4-121*x^3-833*x^2+955*x+566 4180982666988865 m005 (1/2*Pi-3/11)/(1/2*3^(1/2)-5/9) 4180982682528998 r005 Re(z^2+c),c=-43/70+13/44*I,n=14 4180982685127531 r005 Im(z^2+c),c=-67/60+7/25*I,n=8 4180982699175037 m001 (FeigenbaumD-ZetaQ(4))/(gamma(3)-Cahen) 4180982706852332 r005 Re(z^2+c),c=-15/26+25/108*I,n=63 4180982715055130 r005 Re(z^2+c),c=-41/70+8/59*I,n=31 4180982717721791 m001 GAMMA(11/12)*Bloch*exp(GAMMA(5/12)) 4180982717965256 r005 Re(z^2+c),c=-61/98+26/59*I,n=30 4180982729973033 r009 Im(z^3+c),c=-37/114+14/33*I,n=7 4180982734544352 m001 (MertensB3-sin(1))/(-Salem+ZetaQ(4)) 4180982743450686 m001 (Riemann3rdZero+ZetaP(2))/(FeigenbaumD+Magata) 4180982762857844 m001 (sin(1/5*Pi)+GAMMA(23/24))/(FeigenbaumD+Salem) 4180982773056697 l006 ln(4903/7448) 4180982774448296 m001 (GAMMA(3/4)+PlouffeB)/(Thue-ZetaP(2)) 4180982798904459 g005 1/GAMMA(10/11)^2/GAMMA(5/11)/GAMMA(7/8) 4180982810491248 g007 2*Psi(2,8/9)+Psi(2,5/8)-Psi(2,1/6) 4180982811577293 r002 6th iterates of z^2 + 4180982823818925 b008 1/3+E^ArcCoth[5]*Pi 4180982832618025 a001 974169/233 4180982844028365 m005 (2/3*Catalan-4)/(3/4*2^(1/2)-1/4) 4180982879800367 a007 Real Root Of 192*x^4+923*x^3+421*x^2-107*x+982 4180982891525399 h005 exp(cos(Pi*3/58)+sin(Pi*6/41)) 4180982900207180 m001 (Niven-Rabbit)/(ln(gamma)-FeigenbaumC) 4180982900315287 r009 Im(z^3+c),c=-9/32+25/56*I,n=22 4180982906496439 r005 Re(z^2+c),c=-53/98+24/61*I,n=49 4180982917786354 h001 (11/12*exp(1)+7/10)/(10/11*exp(2)+11/12) 4180982928791742 r005 Re(z^2+c),c=-49/82+5/59*I,n=17 4180982939277912 m001 1/MinimumGamma^2*LaplaceLimit^2*exp(Rabbit) 4180982941409240 m001 (BesselI(0,1)-BesselJ(1,1))/(-Khinchin+Rabbit) 4180982942686745 r002 64th iterates of z^2 + 4180982950926593 r005 Re(z^2+c),c=-7/12+7/39*I,n=64 4180982957863409 r005 Im(z^2+c),c=-11/18+39/98*I,n=54 4180982967208964 a007 Real Root Of -777*x^4+945*x^3-55*x^2+436*x-218 4180982985560291 m001 Niven*(GAMMA(19/24)-Pi*2^(1/2)/GAMMA(3/4)) 4180982991092696 r005 Re(z^2+c),c=-47/82+8/53*I,n=7 4180983004148556 a001 2178309/1364*199^(2/11) 4180983005760544 r009 Im(z^3+c),c=-23/74+38/59*I,n=15 4180983011345437 r009 Re(z^3+c),c=-23/52+13/45*I,n=2 4180983032497310 r009 Im(z^3+c),c=-1/24+1/24*I,n=3 4180983034650278 m005 (1/2*3^(1/2)-7/8)/(7/8*2^(1/2)+10/11) 4180983052273580 p004 log(36523/24043) 4180983068805653 r005 Im(z^2+c),c=-13/58+3/52*I,n=10 4180983078885011 a007 Real Root Of -188*x^4-675*x^3+485*x^2+225*x+577 4180983082791172 r005 Im(z^2+c),c=-15/22+43/127*I,n=21 4180983084767359 m001 BesselI(1,2)-Catalan*Grothendieck 4180983100355146 r009 Re(z^3+c),c=-3/82+51/56*I,n=13 4180983108147045 a007 Real Root Of 41*x^4-758*x^3-573*x^2-16*x+161 4180983115239955 a001 1/5473*514229^(10/17) 4180983122216703 a001 2/1346269*1836311903^(10/17) 4180983122217164 a001 2/165580141*6557470319842^(10/17) 4180983123799199 l006 ln(3828/5815) 4180983124497541 r009 Im(z^3+c),c=-11/122+18/37*I,n=5 4180983125588275 r009 Im(z^3+c),c=-25/48+15/59*I,n=6 4180983133043405 a007 Real Root Of 177*x^4+524*x^3-957*x^2-176*x+204 4180983135485731 a005 (1/cos(6/113*Pi))^926 4180983139423201 m001 (exp(1)+Catalan)/(Zeta(1,-1)+MertensB2) 4180983149713431 a001 144*322^(7/12) 4180983151694415 r005 Im(z^2+c),c=19/60+3/8*I,n=51 4180983173800087 r002 7th iterates of z^2 + 4180983175519321 m001 2^(1/3)-sin(1/12*Pi)*Riemann2ndZero 4180983182409349 m001 LandauRamanujan-gamma(2)+Magata 4180983185880479 m001 PrimesInBinary/ln(Artin)/Zeta(7) 4180983193314105 m001 (BesselK(0,1)*Zeta(1/2)+GAMMA(3/4))/Zeta(1/2) 4180983200273433 m001 (Salem-Trott2nd)/(exp(-1/2*Pi)-Otter) 4180983202621493 m006 (2/5*Pi-4/5)/(3/5*Pi^2+5) 4180983202621493 m008 (2/5*Pi-4/5)/(3/5*Pi^2+5) 4180983204469486 m008 (1/5*Pi^2-3)/(4/5*Pi^5+3/5) 4180983217424176 m001 (Zeta(1/2)+Salem)/(ZetaP(4)-ZetaQ(3)) 4180983224768401 m001 (exp(1)*Catalan+Totient)/Catalan 4180983230895973 m005 (1/3*Catalan+3/5)/(7/9*3^(1/2)+9/11) 4180983232926326 r005 Re(z^2+c),c=33/106+3/37*I,n=13 4180983250058178 m001 (MertensB3+ZetaP(3))/(Pi+arctan(1/2)) 4180983272640866 a007 Real Root Of 889*x^4-322*x^3-111*x^2-492*x-237 4180983274461954 h005 exp(sin(Pi*7/41)+sin(Pi*13/35)) 4180983279351584 r009 Im(z^3+c),c=-23/90+5/11*I,n=24 4180983291406785 r009 Im(z^3+c),c=-35/118+27/61*I,n=11 4180983303339108 r002 5th iterates of z^2 + 4180983309625400 a001 3/10946*14930352^(7/23) 4180983316612750 a001 1/105937*956722026041^(7/23) 4180983316613199 r002 7th iterates of z^2 + 4180983317251239 r002 61th iterates of z^2 + 4180983317289574 m001 sin(Pi/12)^2/ln(FeigenbaumKappa)^2/sqrt(3) 4180983322322611 r005 Re(z^2+c),c=21/82+1/54*I,n=52 4180983327047436 r009 Re(z^3+c),c=-8/13+29/60*I,n=32 4180983327348065 m001 (3^(1/2)-Psi(1,1/3))/(-gamma(1)+Tetranacci) 4180983340698575 r002 18th iterates of z^2 + 4180983343911546 m006 (1/3*exp(Pi)+2/5)/(2*Pi^2-1/3) 4180983385110615 l006 ln(6581/9997) 4180983403641933 r002 63th iterates of z^2 + 4180983404899765 a001 15456/281*521^(9/13) 4180983415802118 m005 (1/2*3^(1/2)+2/7)/(8/11*exp(1)+7/9) 4180983440742172 r005 Im(z^2+c),c=-15/86+15/23*I,n=24 4180983446553725 b008 3+Sinh[Coth[Pi]] 4180983454572455 m001 Lehmer^FeigenbaumDelta/exp(-1/2*Pi) 4180983454692542 r002 31th iterates of z^2 + 4180983459262255 g001 abs(GAMMA(87/20+I*13/5)) 4180983465770283 r005 Re(z^2+c),c=-18/31+13/64*I,n=64 4180983511486576 h001 (2/11*exp(2)+1/10)/(3/7*exp(2)+2/7) 4180983516628460 m001 exp(GAMMA(23/24))/Cahen/Zeta(5) 4180983528858067 a007 Real Root Of -945*x^4+944*x^3+337*x^2+971*x-505 4180983531680263 a003 sin(Pi*3/22)/sin(Pi*45/97) 4180983542194189 s002 sum(A068821[n]/((pi^n-1)/n),n=1..infinity) 4180983546465175 a007 Real Root Of -64*x^4+657*x^3+444*x^2+692*x-413 4180983582300029 r005 Im(z^2+c),c=5/36+22/51*I,n=14 4180983588159830 m005 (1/2*Zeta(3)-6)/(1/2*Catalan+5/6) 4180983595049502 r002 13th iterates of z^2 + 4180983596097154 r005 Re(z^2+c),c=15/74+17/46*I,n=62 4180983596754717 m001 (5^(1/2)-Pi^(1/2))/(-Gompertz+Niven) 4180983631745919 r002 35th iterates of z^2 + 4180983644940065 p004 log(35089/23099) 4180983646789276 r002 3th iterates of z^2 + 4180983655191797 a007 Real Root Of -345*x^4+670*x^3+266*x^2+574*x+253 4180983661061054 r005 Re(z^2+c),c=-67/114+7/53*I,n=46 4180983662031417 r005 Re(z^2+c),c=-3/46+50/53*I,n=4 4180983675448001 r005 Re(z^2+c),c=-5/8+12/101*I,n=15 4180983684903198 r005 Re(z^2+c),c=-39/58+12/35*I,n=5 4180983690930204 a004 Fibonacci(16)*Lucas(13)/(1/2+sqrt(5)/2)^10 4180983697682676 h001 (7/10*exp(2)+1/4)/(3/11*exp(1)+5/9) 4180983699127546 r005 Re(z^2+c),c=-43/64+21/61*I,n=32 4180983704592548 r002 31th iterates of z^2 + 4180983711150095 r002 8th iterates of z^2 + 4180983723890725 a007 Real Root Of -132*x^4-693*x^3-434*x^2+462*x-795 4180983730232298 r005 Im(z^2+c),c=-3/20+16/27*I,n=34 4180983732675815 r005 Re(z^2+c),c=-13/22+10/121*I,n=54 4180983740306786 a007 Real Root Of -168*x^4+395*x^3+895*x^2+721*x+179 4180983744656096 a007 Real Root Of 144*x^4+266*x^3+369*x^2-317*x-182 4180983748459715 l006 ln(2753/4182) 4180983748519110 m001 (5^(1/2)+Zeta(1,2))/(-GAMMA(7/12)+Tribonacci) 4180983750470135 b008 1-(6*Sqrt[E])/17 4180983773794155 r008 a(0)=0,K{-n^6,-59+98*n^3+42*n^2-57*n} 4180983779293928 a001 39603/5*2178309^(38/51) 4180983793692733 a007 Real Root Of 229*x^4-183*x^3+424*x^2+226*x 4180983802104805 r009 Im(z^3+c),c=-1/6+10/21*I,n=12 4180983809839402 a001 281/2255*4807526976^(6/23) 4180983817638960 m005 (1/2*5^(1/2)-9/11)/(1/4*Zeta(3)+5/12) 4180983819399168 r009 Re(z^3+c),c=-2/29+43/60*I,n=8 4180983827848124 m005 (1/2*Catalan+2/7)/(4/11*Pi+7/11) 4180983856789551 a003 sin(Pi*9/113)/cos(Pi*17/57) 4180983869814080 m002 3/E^Pi-E^Pi/(5*ProductLog[Pi]) 4180983872235680 m001 GAMMA(5/12)/GAMMA(17/24)*ln(sqrt(1+sqrt(3)))^2 4180983878115631 r005 Re(z^2+c),c=9/22+9/38*I,n=7 4180983880286769 a001 322/32951280099*233^(4/15) 4180983881950148 r005 Re(z^2+c),c=37/106+23/33*I,n=7 4180983885019297 h001 (1/9*exp(1)+7/9)/(11/12*exp(1)+1/11) 4180983892906415 m001 1/Khintchine^2*Artin/exp(OneNinth)^2 4180983899904516 s002 sum(A260803[n]/(2^n+1),n=1..infinity) 4180983902061103 s002 sum(A172520[n]/((2^n+1)/n),n=1..infinity) 4180983903300120 p004 log(23459/15443) 4180983904487748 r005 Im(z^2+c),c=-9/14+93/205*I,n=43 4180983924776336 r005 Im(z^2+c),c=1/44+9/17*I,n=41 4180983933947929 r002 10th iterates of z^2 + 4180983945560898 r005 Re(z^2+c),c=-19/50+47/57*I,n=4 4180983950875525 a007 Real Root Of -225*x^4-909*x^3+321*x^2+574*x-893 4180983957117030 a001 167761*144^(11/17) 4180983967199104 r005 Re(z^2+c),c=-29/60+41/49*I,n=3 4180983972942051 m001 1/GAMMA(11/12)/ln(Tribonacci)*GAMMA(13/24)^2 4180983978000785 a007 Real Root Of -18*x^4-774*x^3-918*x^2-947*x-590 4180983997890485 a007 Real Root Of 186*x^4-314*x^3-197*x^2-790*x+382 4180983998943624 a007 Real Root Of 232*x^4+964*x^3-161*x^2-772*x-851 4180984005185538 m001 (Pi-Zeta(1/2))/(Kac+Weierstrass) 4180984029509162 m001 (ln(2)-Zeta(1,-1))/(Mills-ReciprocalFibonacci) 4180984034754578 r005 Re(z^2+c),c=-53/114+31/61*I,n=42 4180984038644261 m001 FeigenbaumDelta*Chi(1)^GolombDickman 4180984059616671 r009 Re(z^3+c),c=-53/126+5/38*I,n=34 4180984065253074 m001 1/TwinPrimes^2*exp(FeigenbaumC)*cos(1)^2 4180984066574221 a001 3571/4181*75025^(16/29) 4180984067402776 r002 24th iterates of z^2 + 4180984085663674 r005 Im(z^2+c),c=3/44+22/39*I,n=31 4180984086860885 m001 (Cahen+ZetaQ(2))/(BesselK(0,1)-sin(1/5*Pi)) 4180984092921673 m005 (1/2*Zeta(3)-7/9)/(-9/16+1/16*5^(1/2)) 4180984093197352 r009 Im(z^3+c),c=-51/106+19/40*I,n=19 4180984094555165 m008 (3/4*Pi^3-2)/(1/6*Pi^5-1/6) 4180984097985077 r002 50th iterates of z^2 + 4180984099759173 m001 GolombDickman/(FeigenbaumC^LaplaceLimit) 4180984114896061 m001 (Ei(1)-Bloch)/(FransenRobinson+Gompertz) 4180984122202712 l003 exp(Pi*51/112) 4180984124508809 m001 Riemann3rdZero/ln(Khintchine)*GAMMA(17/24)^2 4180984126203579 m001 1/Magata^2*FransenRobinson^2*ln(cos(1)) 4180984131905511 s002 sum(A270548[n]/((2*n)!),n=1..infinity) 4180984148973249 r009 Re(z^3+c),c=-9/19+5/27*I,n=54 4180984158016616 a007 Real Root Of 230*x^4-930*x^3-491*x^2-930*x-378 4180984170851719 p001 sum((-1)^n/(387*n+239)/(512^n),n=0..infinity) 4180984172869320 g006 Psi(1,1/7)+Psi(1,1/4)-Psi(1,6/11)-Psi(1,2/9) 4180984180492126 p001 sum(1/(29*n+13)/n/(6^n),,n=0..infinity) 4180984190148651 a001 843/55*377^(52/55) 4180984198957454 r005 Re(z^2+c),c=-5/23+29/46*I,n=62 4180984201104310 g005 GAMMA(5/9)/GAMMA(4/11)/GAMMA(1/11)/GAMMA(3/5) 4180984201988400 r005 Re(z^2+c),c=-55/94+7/44*I,n=46 4180984210926047 r009 Im(z^3+c),c=-33/118+17/38*I,n=14 4180984212309611 m001 exp(-Pi)^LandauRamanujan/(exp(-Pi)^Khinchin) 4180984212309611 m001 exp(Pi)^Khinchin/(exp(Pi)^LandauRamanujan) 4180984213747155 m002 -Pi-Log[Pi]^2+Pi*Sech[Pi] 4180984242617562 m001 AlladiGrinstead*Otter*ZetaP(3) 4180984243596909 r005 Im(z^2+c),c=3/98+32/61*I,n=52 4180984255207999 m001 1/TreeGrowth2nd/CopelandErdos^2*exp(Trott)^2 4180984256142478 r002 19th iterates of z^2 + 4180984264133425 r005 Im(z^2+c),c=-11/17+14/39*I,n=57 4180984264783079 r002 6th iterates of z^2 + 4180984282682596 m005 (1/3*gamma-2/5)/(29/18+3/2*5^(1/2)) 4180984288112236 l006 ln(4431/6731) 4180984293417481 r005 Im(z^2+c),c=17/82+11/28*I,n=22 4180984295896022 r009 Im(z^3+c),c=-11/94+29/60*I,n=10 4180984302813291 r002 39th iterates of z^2 + 4180984304317570 r002 55th iterates of z^2 + 4180984305137851 r005 Im(z^2+c),c=9/56+21/46*I,n=19 4180984315959378 p003 LerchPhi(1/64,3,641/222) 4180984316370789 a007 Real Root Of 8*x^4+336*x^3+62*x^2-69*x-82 4180984319231597 r005 Im(z^2+c),c=1/74+17/30*I,n=33 4180984327320278 r005 Im(z^2+c),c=-5/6+15/59*I,n=6 4180984334118724 r005 Re(z^2+c),c=-16/27+2/61*I,n=37 4180984335506033 m001 (Psi(2,1/3)+sin(1))/(arctan(1/2)+GaussAGM) 4180984338306033 a001 305/9*2^(10/33) 4180984338346093 m001 (KomornikLoreti+RenyiParking)^Zeta(1,2) 4180984342707064 g002 Psi(7/11)+Psi(4/9)+Psi(2/5)-Psi(1/10) 4180984350631036 r009 Re(z^3+c),c=-8/25+23/34*I,n=23 4180984356320066 r002 57th iterates of z^2 + 4180984359160546 m001 Robbin^Zeta(5)/(Riemann1stZero^Zeta(5)) 4180984366756411 r005 Re(z^2+c),c=-65/114+5/18*I,n=59 4180984375731533 r005 Im(z^2+c),c=17/98+26/61*I,n=24 4180984377704577 r005 Re(z^2+c),c=-53/90+7/61*I,n=47 4180984387462958 a001 9349/10946*75025^(16/29) 4180984388164713 r005 Re(z^2+c),c=-2/3+1/167*I,n=18 4180984395728807 a007 Real Root Of 922*x^4-323*x^3+444*x^2-883*x+287 4180984395905531 r005 Re(z^2+c),c=35/118+23/43*I,n=31 4180984396538102 m006 (1/5*exp(Pi)+4)/(1/5/Pi+2) 4180984399595636 r005 Re(z^2+c),c=-7/12+29/128*I,n=29 4180984404272471 a007 Real Root Of 254*x^4+923*x^3-783*x^2-666*x+746 4180984405233115 l006 ln(5059/5275) 4180984409171957 r009 Re(z^3+c),c=-17/38+7/44*I,n=31 4180984418216366 r004 Re(z^2+c),c=-7/12-2/11*I,z(0)=-1,n=43 4180984419801292 r002 24th iterates of z^2 + 4180984423179771 l006 ln(86/5627) 4180984424064939 a004 Fibonacci(18)*Lucas(13)/(1/2+sqrt(5)/2)^12 4180984426224870 m009 (1/5*Psi(1,2/3)+5)/(32/5*Catalan+4/5*Pi^2-1/3) 4180984434279994 a001 24476/28657*75025^(16/29) 4180984436485503 a007 Real Root Of -5*x^4-232*x^3-956*x^2+132*x-719 4180984445331997 a001 13201/15456*75025^(16/29) 4180984449183497 a008 Real Root of x^4-2*x^3-2*x^2-19*x-45 4180984452828850 m008 (4*Pi^2-1/6)/(2/5*Pi^3-3) 4180984457696159 a007 Real Root Of 902*x^4+209*x^3+769*x^2-491*x-352 4180984463214514 a001 15127/17711*75025^(16/29) 4180984471176911 a001 726103/281*199^(1/11) 4180984480323939 a007 Real Root Of -368*x^4-231*x^3-419*x^2+508*x+280 4180984482253583 m007 (-1/2*gamma-3/2*ln(2)-1/4*Pi+1/5)/(-gamma-4) 4180984486763083 a001 9/305*55^(2/23) 4180984493434076 a007 Real Root Of -406*x^4-118*x^3+808*x^2+375*x-277 4180984498922513 a007 Real Root Of -274*x^4+488*x^3-284*x^2+896*x-37 4180984505605725 m004 -6*Sqrt[5]*Pi+Sec[Sqrt[5]*Pi]/4 4180984510665942 r005 Im(z^2+c),c=7/52+23/51*I,n=38 4180984513743948 a001 13201/7*6765^(13/37) 4180984518665966 m001 GolombDickman*ln(ErdosBorwein)/sin(1)^2 4180984523279274 r005 Re(z^2+c),c=5/19+1/45*I,n=16 4180984528714210 r002 42th iterates of z^2 + 4180984531027855 a004 Fibonacci(20)*Lucas(13)/(1/2+sqrt(5)/2)^14 4180984531304793 l006 ln(6109/9280) 4180984541914525 r005 Im(z^2+c),c=7/44+25/58*I,n=60 4180984542029969 h001 (8/11*exp(2)+4/5)/(2/7*exp(1)+7/10) 4180984546633534 a004 Fibonacci(22)*Lucas(13)/(1/2+sqrt(5)/2)^16 4180984548910372 a004 Fibonacci(24)*Lucas(13)/(1/2+sqrt(5)/2)^18 4180984549242558 a004 Fibonacci(26)*Lucas(13)/(1/2+sqrt(5)/2)^20 4180984549291023 a004 Fibonacci(28)*Lucas(13)/(1/2+sqrt(5)/2)^22 4180984549298094 a004 Fibonacci(30)*Lucas(13)/(1/2+sqrt(5)/2)^24 4180984549299126 a004 Fibonacci(32)*Lucas(13)/(1/2+sqrt(5)/2)^26 4180984549299277 a004 Fibonacci(34)*Lucas(13)/(1/2+sqrt(5)/2)^28 4180984549299299 a004 Fibonacci(36)*Lucas(13)/(1/2+sqrt(5)/2)^30 4180984549299302 a004 Fibonacci(38)*Lucas(13)/(1/2+sqrt(5)/2)^32 4180984549299302 a004 Fibonacci(40)*Lucas(13)/(1/2+sqrt(5)/2)^34 4180984549299302 a004 Fibonacci(42)*Lucas(13)/(1/2+sqrt(5)/2)^36 4180984549299302 a004 Fibonacci(44)*Lucas(13)/(1/2+sqrt(5)/2)^38 4180984549299302 a004 Fibonacci(46)*Lucas(13)/(1/2+sqrt(5)/2)^40 4180984549299302 a004 Fibonacci(48)*Lucas(13)/(1/2+sqrt(5)/2)^42 4180984549299302 a004 Fibonacci(50)*Lucas(13)/(1/2+sqrt(5)/2)^44 4180984549299302 a004 Fibonacci(52)*Lucas(13)/(1/2+sqrt(5)/2)^46 4180984549299302 a004 Fibonacci(54)*Lucas(13)/(1/2+sqrt(5)/2)^48 4180984549299302 a004 Fibonacci(56)*Lucas(13)/(1/2+sqrt(5)/2)^50 4180984549299302 a004 Fibonacci(58)*Lucas(13)/(1/2+sqrt(5)/2)^52 4180984549299302 a004 Fibonacci(60)*Lucas(13)/(1/2+sqrt(5)/2)^54 4180984549299302 a004 Fibonacci(62)*Lucas(13)/(1/2+sqrt(5)/2)^56 4180984549299302 a004 Fibonacci(64)*Lucas(13)/(1/2+sqrt(5)/2)^58 4180984549299302 a004 Fibonacci(66)*Lucas(13)/(1/2+sqrt(5)/2)^60 4180984549299302 a004 Fibonacci(68)*Lucas(13)/(1/2+sqrt(5)/2)^62 4180984549299302 a004 Fibonacci(70)*Lucas(13)/(1/2+sqrt(5)/2)^64 4180984549299302 a004 Fibonacci(72)*Lucas(13)/(1/2+sqrt(5)/2)^66 4180984549299302 a004 Fibonacci(74)*Lucas(13)/(1/2+sqrt(5)/2)^68 4180984549299302 a004 Fibonacci(76)*Lucas(13)/(1/2+sqrt(5)/2)^70 4180984549299302 a004 Fibonacci(78)*Lucas(13)/(1/2+sqrt(5)/2)^72 4180984549299302 a004 Fibonacci(80)*Lucas(13)/(1/2+sqrt(5)/2)^74 4180984549299302 a004 Fibonacci(82)*Lucas(13)/(1/2+sqrt(5)/2)^76 4180984549299302 a004 Fibonacci(84)*Lucas(13)/(1/2+sqrt(5)/2)^78 4180984549299302 a004 Fibonacci(86)*Lucas(13)/(1/2+sqrt(5)/2)^80 4180984549299302 a004 Fibonacci(88)*Lucas(13)/(1/2+sqrt(5)/2)^82 4180984549299302 a004 Fibonacci(90)*Lucas(13)/(1/2+sqrt(5)/2)^84 4180984549299302 a004 Fibonacci(92)*Lucas(13)/(1/2+sqrt(5)/2)^86 4180984549299302 a004 Fibonacci(94)*Lucas(13)/(1/2+sqrt(5)/2)^88 4180984549299302 a004 Fibonacci(96)*Lucas(13)/(1/2+sqrt(5)/2)^90 4180984549299302 a004 Fibonacci(98)*Lucas(13)/(1/2+sqrt(5)/2)^92 4180984549299302 a004 Fibonacci(100)*Lucas(13)/(1/2+sqrt(5)/2)^94 4180984549299302 a004 Fibonacci(99)*Lucas(13)/(1/2+sqrt(5)/2)^93 4180984549299302 a004 Fibonacci(97)*Lucas(13)/(1/2+sqrt(5)/2)^91 4180984549299302 a004 Fibonacci(95)*Lucas(13)/(1/2+sqrt(5)/2)^89 4180984549299302 a004 Fibonacci(93)*Lucas(13)/(1/2+sqrt(5)/2)^87 4180984549299302 a004 Fibonacci(91)*Lucas(13)/(1/2+sqrt(5)/2)^85 4180984549299302 a004 Fibonacci(89)*Lucas(13)/(1/2+sqrt(5)/2)^83 4180984549299302 a004 Fibonacci(87)*Lucas(13)/(1/2+sqrt(5)/2)^81 4180984549299302 a004 Fibonacci(85)*Lucas(13)/(1/2+sqrt(5)/2)^79 4180984549299302 a004 Fibonacci(83)*Lucas(13)/(1/2+sqrt(5)/2)^77 4180984549299302 a004 Fibonacci(81)*Lucas(13)/(1/2+sqrt(5)/2)^75 4180984549299302 a004 Fibonacci(79)*Lucas(13)/(1/2+sqrt(5)/2)^73 4180984549299302 a004 Fibonacci(77)*Lucas(13)/(1/2+sqrt(5)/2)^71 4180984549299302 a004 Fibonacci(75)*Lucas(13)/(1/2+sqrt(5)/2)^69 4180984549299302 a004 Fibonacci(73)*Lucas(13)/(1/2+sqrt(5)/2)^67 4180984549299302 a004 Fibonacci(71)*Lucas(13)/(1/2+sqrt(5)/2)^65 4180984549299302 a004 Fibonacci(69)*Lucas(13)/(1/2+sqrt(5)/2)^63 4180984549299302 a004 Fibonacci(67)*Lucas(13)/(1/2+sqrt(5)/2)^61 4180984549299302 a004 Fibonacci(65)*Lucas(13)/(1/2+sqrt(5)/2)^59 4180984549299302 a004 Fibonacci(63)*Lucas(13)/(1/2+sqrt(5)/2)^57 4180984549299302 a004 Fibonacci(61)*Lucas(13)/(1/2+sqrt(5)/2)^55 4180984549299302 a004 Fibonacci(59)*Lucas(13)/(1/2+sqrt(5)/2)^53 4180984549299302 a004 Fibonacci(57)*Lucas(13)/(1/2+sqrt(5)/2)^51 4180984549299302 a004 Fibonacci(55)*Lucas(13)/(1/2+sqrt(5)/2)^49 4180984549299302 a004 Fibonacci(53)*Lucas(13)/(1/2+sqrt(5)/2)^47 4180984549299302 a004 Fibonacci(51)*Lucas(13)/(1/2+sqrt(5)/2)^45 4180984549299302 a004 Fibonacci(49)*Lucas(13)/(1/2+sqrt(5)/2)^43 4180984549299302 a004 Fibonacci(47)*Lucas(13)/(1/2+sqrt(5)/2)^41 4180984549299302 a004 Fibonacci(45)*Lucas(13)/(1/2+sqrt(5)/2)^39 4180984549299302 a004 Fibonacci(43)*Lucas(13)/(1/2+sqrt(5)/2)^37 4180984549299302 a004 Fibonacci(41)*Lucas(13)/(1/2+sqrt(5)/2)^35 4180984549299302 a004 Fibonacci(39)*Lucas(13)/(1/2+sqrt(5)/2)^33 4180984549299304 a004 Fibonacci(37)*Lucas(13)/(1/2+sqrt(5)/2)^31 4180984549299312 a004 Fibonacci(35)*Lucas(13)/(1/2+sqrt(5)/2)^29 4180984549299370 a004 Fibonacci(33)*Lucas(13)/(1/2+sqrt(5)/2)^27 4180984549299764 a004 Fibonacci(31)*Lucas(13)/(1/2+sqrt(5)/2)^25 4180984549302465 a004 Fibonacci(29)*Lucas(13)/(1/2+sqrt(5)/2)^23 4180984549320977 a004 Fibonacci(27)*Lucas(13)/(1/2+sqrt(5)/2)^21 4180984549356046 a001 2/233*(1/2+1/2*5^(1/2))^32 4180984549447860 a004 Fibonacci(25)*Lucas(13)/(1/2+sqrt(5)/2)^19 4180984550317535 a004 Fibonacci(23)*Lucas(13)/(1/2+sqrt(5)/2)^17 4180984556278374 a004 Fibonacci(21)*Lucas(13)/(1/2+sqrt(5)/2)^15 4180984561729101 r005 Re(z^2+c),c=-19/18+54/155*I,n=7 4180984561787945 a007 Real Root Of -864*x^4+432*x^3+586*x^2+972*x-514 4180984576984604 a007 Real Root Of 422*x^4+238*x^3+467*x^2-313*x-208 4180984585783107 a001 1926/2255*75025^(16/29) 4180984588520434 r005 Re(z^2+c),c=-11/19+5/31*I,n=20 4180984590270703 a001 75025/843*521^(8/13) 4180984595357680 m001 (-PlouffeB+ZetaP(2))/(Kolakoski-Psi(2,1/3)) 4180984595636899 r002 35th iterates of z^2 + 4180984597134573 a004 Fibonacci(19)*Lucas(13)/(1/2+sqrt(5)/2)^13 4180984600805293 m006 (3/Pi-3/4)/(5*Pi^2-1/3) 4180984608294467 m009 (2*Psi(1,1/3)+3/5)/(5*Psi(1,1/3)-3/4) 4180984609205637 r002 32th iterates of z^2 + 4180984609440595 r005 Im(z^2+c),c=15/98+17/39*I,n=57 4180984617326031 r002 19th iterates of z^2 + 4180984621018552 m001 exp(FransenRobinson)*FeigenbaumDelta*cos(1) 4180984632429235 r005 Im(z^2+c),c=-1/16+3/64*I,n=6 4180984637809656 m005 (1/2*Zeta(3)-5/9)/(6/11*3^(1/2)+1/7) 4180984660120989 m001 (Backhouse-gamma)/(-Riemann2ndZero+ZetaQ(4)) 4180984660224390 r002 33th iterates of z^2 + 4180984675758227 a007 Real Root Of -220*x^4-705*x^3+944*x^2+75*x-488 4180984679167026 m001 (-CopelandErdos+Trott2nd)/(2^(1/2)-Catalan) 4180984683828275 r005 Re(z^2+c),c=-21/16+3/89*I,n=6 4180984692207112 m001 1/gamma^2*exp(GlaisherKinkelin)/sin(Pi/12) 4180984694847817 r005 Re(z^2+c),c=-53/90+5/43*I,n=31 4180984697852757 m005 (1/3*Pi+2/7)/(-25/132+5/22*5^(1/2)) 4180984698519090 m001 OneNinth^2*exp(Porter)/Zeta(3) 4180984726423089 r005 Im(z^2+c),c=-41/86+30/59*I,n=21 4180984729784728 s002 sum(A044859[n]/(n*exp(pi*n)-1),n=1..infinity) 4180984745639911 m001 (BesselJ(0,1)-cos(1))/(FeigenbaumDelta+Rabbit) 4180984754436986 r005 Im(z^2+c),c=5/32+13/30*I,n=64 4180984756109052 a003 cos(Pi*9/109)/cos(Pi*43/101) 4180984759031327 p001 sum((-1)^n/(274*n+239)/(625^n),n=0..infinity) 4180984785511538 r002 63th iterates of z^2 + 4180984804834019 m004 -1/2+125*Pi+5*Sqrt[5]*Pi*Cos[Sqrt[5]*Pi] 4180984832445568 r005 Re(z^2+c),c=-13/22+6/73*I,n=62 4180984833190201 a007 Real Root Of 377*x^4+360*x^3+529*x^2-979*x-487 4180984835576086 a007 Real Root Of -849*x^4-559*x^3-720*x^2+36*x+126 4180984840880580 s002 sum(A254662[n]/(n^3*pi^n+1),n=1..infinity) 4180984849530746 m005 (1/2*Catalan-2/9)/(2/7*5^(1/2)+5) 4180984854617401 r005 Re(z^2+c),c=-3/82+18/23*I,n=28 4180984867390197 a007 Real Root Of -349*x^4+286*x^3-584*x^2-224*x+40 4180984876782143 a001 28657/2207*521^(12/13) 4180984877167123 a004 Fibonacci(17)*Lucas(13)/(1/2+sqrt(5)/2)^11 4180984879130923 m001 GAMMA(7/24)*ln(KhintchineLevy)^2*arctan(1/2) 4180984890495233 a003 cos(Pi*8/105)-sin(Pi*14/75) 4180984901173937 r005 Re(z^2+c),c=-55/94+5/31*I,n=50 4180984913682404 a003 sin(Pi*6/65)/cos(Pi*19/73) 4180984924620654 r005 Re(z^2+c),c=-19/34+26/113*I,n=17 4180984931167042 r002 9th iterates of z^2 + 4180984933190795 a007 Real Root Of 559*x^4-988*x^3-338*x^2-729*x-335 4180984940661818 r009 Re(z^3+c),c=-31/66+37/56*I,n=5 4180984949026676 m003 -7+2*Cosh[1/2+Sqrt[5]/2]-Sinh[1/2+Sqrt[5]/2] 4180984950305451 r002 30th iterates of z^2 + 4180984950658402 r005 Im(z^2+c),c=-9/14+29/230*I,n=4 4180984956950738 a007 Real Root Of -167*x^4-808*x^3-618*x^2-497*x+702 4180984958268905 r005 Re(z^2+c),c=19/60+41/64*I,n=5 4180984964038498 r009 Im(z^3+c),c=-19/122+30/61*I,n=5 4180984969353593 r005 Im(z^2+c),c=-11/21+36/59*I,n=44 4180984979455874 m001 1/GAMMA(1/4)/Salem^2/exp(GAMMA(11/24))^2 4180984991589415 m001 (Gompertz-Zeta(1,-1)*Stephens)/Zeta(1,-1) 4180985008696171 a007 Real Root Of -735*x^4-97*x^3-640*x^2+992*x+542 4180985018215849 r005 Re(z^2+c),c=-41/62+8/61*I,n=23 4180985020913607 r009 Re(z^3+c),c=-9/19+5/27*I,n=60 4180985023379073 m002 -4+3/Pi^5-Log[Pi]/6 4180985024102984 r009 Im(z^3+c),c=-1/19+31/64*I,n=5 4180985037460672 m005 (-11/42+1/6*5^(1/2))/(7/11*Zeta(3)-1/2) 4180985038982468 a001 7/53316291173*55^(19/22) 4180985055528584 r002 6th iterates of z^2 + 4180985069971579 m001 (Pi+ln(2+3^(1/2)))/(GAMMA(11/12)+Trott) 4180985070147393 h001 (3/10*exp(2)+8/9)/(9/10*exp(2)+7/9) 4180985094590840 p003 LerchPhi(1/32,1,159/65) 4180985097543938 r009 Im(z^3+c),c=-1/4+26/57*I,n=17 4180985108820160 q001 365/873 4180985108820160 r002 2th iterates of z^2 + 4180985108820160 r005 Im(z^2+c),c=-19/18+73/194*I,n=2 4180985113932821 m001 Catalan^2*exp(MinimumGamma)^2*GAMMA(1/3) 4180985119567497 a007 Real Root Of -764*x^4+813*x^3+597*x^2+939*x+371 4180985141259775 m001 (3^(1/3)+GAMMA(5/6))/(Catalan-ln(2)/ln(10)) 4180985145640721 r005 Im(z^2+c),c=5/32+13/30*I,n=61 4180985154994528 m005 (1/3*Pi-1/5)/(3/4*3^(1/2)+8/11) 4180985157817333 r009 Re(z^3+c),c=-11/54+49/51*I,n=4 4180985165207415 m001 Weierstrass/(ZetaQ(3)-ln(Pi)) 4180985168165806 a007 Real Root Of 880*x^4+711*x^3+653*x^2-811*x-35 4180985169082634 a003 cos(Pi*29/80)*sin(Pi*44/91) 4180985173489639 l006 ln(1678/2549) 4180985182808284 r005 Re(z^2+c),c=-13/22+7/86*I,n=47 4180985228851353 m001 (gamma(1)+GAMMA(19/24))/(FellerTornier-Otter) 4180985250325929 r005 Re(z^2+c),c=-73/126+4/37*I,n=20 4180985261712591 r005 Re(z^2+c),c=-19/30+37/107*I,n=21 4180985271510300 r009 Re(z^3+c),c=-53/126+5/38*I,n=19 4180985277572087 r005 Im(z^2+c),c=7/22+9/37*I,n=21 4180985285039281 a007 Real Root Of -608*x^4-340*x^3-695*x^2+894*x+489 4180985329754393 r005 Im(z^2+c),c=15/86+1/43*I,n=12 4180985347053325 r005 Re(z^2+c),c=17/118+25/59*I,n=8 4180985349964274 r005 Im(z^2+c),c=27/86+14/51*I,n=41 4180985357886217 m005 (1/2*Catalan-2/3)/(1/7*gamma+5/12) 4180985381050470 r009 Im(z^3+c),c=-35/114+7/16*I,n=17 4180985384143635 a005 (1/cos(1/23*Pi))^645 4180985391532618 a007 Real Root Of 996*x^4-376*x^3+696*x^2-642*x-448 4180985392993418 m006 (4/5*Pi^2-1/2)/(3/4*exp(Pi)+1/3) 4180985395225211 r005 Re(z^2+c),c=-61/98+13/62*I,n=7 4180985397144149 m005 (1/2*gamma-1)/(81/112+7/16*5^(1/2)) 4180985398831450 a007 Real Root Of -782*x^4-628*x^3+188*x^2+954*x+344 4180985425880765 a001 2207/2584*75025^(16/29) 4180985439506936 a007 Real Root Of -622*x^4+706*x^3-60*x^2-182*x+5 4180985441285674 a001 17/682*11^(11/51) 4180985464470378 r009 Im(z^3+c),c=-12/31+20/49*I,n=13 4180985466419368 a007 Real Root Of 994*x^4-219*x^3+494*x^2-529*x-23 4180985475215429 m001 Rabbit^2*DuboisRaymond^2*ln(GAMMA(5/24))^2 4180985475942493 h001 (8/11*exp(1)+10/11)/(9/11*exp(2)+6/7) 4180985481729313 r005 Im(z^2+c),c=-11/18+4/57*I,n=25 4180985487195522 a001 29/832040*55^(31/50) 4180985491507070 m001 1/exp(TreeGrowth2nd)^2*Bloch^2*GAMMA(5/12)^2 4180985492485863 h001 (-6*exp(2/3)-9)/(-exp(2/3)-3) 4180985493515571 m005 (1/2*Catalan+1/5)/(9/11*2^(1/2)+5/12) 4180985526516200 r005 Re(z^2+c),c=19/74+1/35*I,n=9 4180985530637337 m001 1/ln(Niven)/Lehmer*GAMMA(1/12)^2 4180985535936672 a007 Real Root Of -334*x^4+684*x^3+696*x^2+384*x-322 4180985556033827 m005 (1/2*Catalan-5/9)/(7/8*3^(1/2)+9/11) 4180985556495702 m001 ln(GAMMA(1/24))*GAMMA(1/12)^2*Zeta(9) 4180985566003057 m009 (1/3*Psi(1,2/3)-1)/(24*Catalan+3*Pi^2-2/3) 4180985609047239 a001 75025/5778*521^(12/13) 4180985618603530 r005 Im(z^2+c),c=15/56+19/54*I,n=15 4180985622436252 p003 LerchPhi(1/256,3,103/77) 4180985629201269 r005 Re(z^2+c),c=-13/22+4/49*I,n=57 4180985630721216 r005 Im(z^2+c),c=-1/36+22/41*I,n=17 4180985633267617 r005 Im(z^2+c),c=7/106+19/35*I,n=20 4180985637959136 m001 (GAMMA(7/12)+Porter)/(BesselI(0,1)+ln(gamma)) 4180985646126187 r005 Re(z^2+c),c=-16/27+1/63*I,n=39 4180985652382447 r005 Re(z^2+c),c=-15/22+2/43*I,n=16 4180985659745185 r009 Re(z^3+c),c=-53/126+5/38*I,n=41 4180985660662408 r009 Im(z^3+c),c=-45/86+15/53*I,n=27 4180985661198371 a007 Real Root Of -276*x^4-965*x^3+705*x^2-381*x-107 4180985662929952 h001 (6/11*exp(1)+4/5)/(5/7*exp(2)+2/11) 4180985665908851 m001 Zeta(1,2)^2/LaplaceLimit/exp(gamma)^2 4180985671221819 r005 Re(z^2+c),c=-61/106+14/57*I,n=44 4180985672871281 r004 Im(z^2+c),c=-3/4+7/24*I,z(0)=exp(7/8*I*Pi),n=8 4180985678139568 r005 Re(z^2+c),c=-47/74+16/51*I,n=63 4180985688578821 r002 35th iterates of z^2 + 4180985690113090 a007 Real Root Of -322*x^4+199*x^3-650*x^2+977*x+42 4180985692825453 r002 48th iterates of z^2 + 4180985696756398 a007 Real Root Of -501*x^4-131*x^3-135*x^2+736*x+31 4180985696789040 r009 Re(z^3+c),c=-9/118+2/3*I,n=53 4180985710820680 a001 23184*7^(10/33) 4180985715883298 a001 196418/15127*521^(12/13) 4180985716655393 h001 (-11*exp(1)+5)/(-11*exp(4)+5) 4180985731470469 a001 514229/39603*521^(12/13) 4180985733744607 a001 1346269/103682*521^(12/13) 4180985734076399 a001 3524578/271443*521^(12/13) 4180985734124807 a001 9227465/710647*521^(12/13) 4180985734131870 a001 24157817/1860498*521^(12/13) 4180985734132900 a001 63245986/4870847*521^(12/13) 4180985734133051 a001 165580141/12752043*521^(12/13) 4180985734133072 a001 433494437/33385282*521^(12/13) 4180985734133076 a001 1134903170/87403803*521^(12/13) 4180985734133076 a001 2971215073/228826127*521^(12/13) 4180985734133076 a001 7778742049/599074578*521^(12/13) 4180985734133076 a001 20365011074/1568397607*521^(12/13) 4180985734133076 a001 53316291173/4106118243*521^(12/13) 4180985734133076 a001 139583862445/10749957122*521^(12/13) 4180985734133076 a001 365435296162/28143753123*521^(12/13) 4180985734133076 a001 956722026041/73681302247*521^(12/13) 4180985734133076 a001 2504730781961/192900153618*521^(12/13) 4180985734133076 a001 10610209857723/817138163596*521^(12/13) 4180985734133076 a001 4052739537881/312119004989*521^(12/13) 4180985734133076 a001 1548008755920/119218851371*521^(12/13) 4180985734133076 a001 591286729879/45537549124*521^(12/13) 4180985734133076 a001 7787980473/599786069*521^(12/13) 4180985734133076 a001 86267571272/6643838879*521^(12/13) 4180985734133076 a001 32951280099/2537720636*521^(12/13) 4180985734133076 a001 12586269025/969323029*521^(12/13) 4180985734133076 a001 4807526976/370248451*521^(12/13) 4180985734133076 a001 1836311903/141422324*521^(12/13) 4180985734133078 a001 701408733/54018521*521^(12/13) 4180985734133086 a001 9238424/711491*521^(12/13) 4180985734133143 a001 102334155/7881196*521^(12/13) 4180985734133537 a001 39088169/3010349*521^(12/13) 4180985734136235 a001 14930352/1149851*521^(12/13) 4180985734154725 a001 5702887/439204*521^(12/13) 4180985734281458 a001 2178309/167761*521^(12/13) 4180985735150101 a001 832040/64079*521^(12/13) 4180985741103871 a001 10959/844*521^(12/13) 4180985768765806 a003 sin(Pi*6/109)*sin(Pi*5/64) 4180985774899186 a001 121393/843*521^(7/13) 4180985781911616 a001 121393/9349*521^(12/13) 4180985789873150 r001 54i'th iterates of 2*x^2-1 of 4180985794373112 m001 1/exp(GAMMA(7/12))*GAMMA(11/24)/Zeta(9) 4180985796820085 r005 Im(z^2+c),c=3/38+31/63*I,n=22 4180985811696105 m001 Trott^2*exp(LaplaceLimit)*GAMMA(2/3)^2 4180985813254833 a007 Real Root Of 890*x^4-79*x^3+720*x^2-584*x-403 4180985818626698 r005 Re(z^2+c),c=-16/27+1/31*I,n=64 4180985826921423 r005 Im(z^2+c),c=-3/32+26/43*I,n=51 4180985843064861 r005 Im(z^2+c),c=-2/3+13/174*I,n=46 4180985867178126 a003 sin(Pi*10/109)-sin(Pi*29/117) 4180985869446170 l006 ln(5637/8563) 4180985870004457 h001 (-6*exp(2)-4)/(-9*exp(1/3)+1) 4180985879374833 m001 (-Champernowne+Totient)/(Si(Pi)+Shi(1)) 4180985880562506 r005 Re(z^2+c),c=-29/50+10/49*I,n=40 4180985880577564 m001 GAMMA(7/12)^2*exp(Khintchine)^2/Zeta(3) 4180985882740282 a001 55/4870847*7^(37/55) 4180985889154935 m005 (1/2*Catalan-4/11)/(7/8*5^(1/2)+3/10) 4180985890751159 r009 Im(z^3+c),c=-17/118+12/25*I,n=12 4180985895020961 r002 37th iterates of z^2 + 4180985903025772 h001 (9/11*exp(1)+7/9)/(7/8*exp(2)+5/7) 4180985919370968 m001 1/Salem^2/GlaisherKinkelin*exp(Zeta(9))^2 4180985921668415 h001 (-7*exp(-1)-2)/(-5*exp(3)-9) 4180985928409380 r005 Re(z^2+c),c=7/114+13/37*I,n=15 4180985928884839 r009 Im(z^3+c),c=-5/12+23/38*I,n=56 4180985941106090 m008 (1/2*Pi^6+1/4)/(1/2*Pi^3-4) 4180985958418028 m008 (3*Pi^3+5)/(2/3*Pi+1/4) 4180985965364428 r005 Re(z^2+c),c=-16/27+1/32*I,n=50 4180985969161072 m001 (-Landau+ZetaP(2))/(Chi(1)-GAMMA(11/12)) 4180985973211225 r009 Re(z^3+c),c=-55/126+4/27*I,n=43 4180985982795691 m001 1/2*Magata^FeigenbaumKappa*2^(2/3) 4180985991146038 m003 5/2+(3*Sqrt[5])/4-Cos[1/2+Sqrt[5]/2]/12 4180986008588137 a007 Real Root Of 480*x^4-685*x^3-110*x^2-960*x+456 4180986013536369 r005 Re(z^2+c),c=-37/66+19/58*I,n=50 4180986015504457 m001 exp(FeigenbaumC)/FeigenbaumDelta^2*Zeta(1/2) 4180986022792840 r002 48th iterates of z^2 + 4180986037933184 r005 Im(z^2+c),c=2/17+19/41*I,n=57 4180986043774887 m005 (41/36+1/4*5^(1/2))/(2/7*2^(1/2)-2/5) 4180986051167461 a005 (1/sin(37/98*Pi))^656 4180986056012062 m001 1/GAMMA(23/24)^2*RenyiParking*exp(sqrt(Pi)) 4180986060208846 a001 46368/2207*521^(11/13) 4180986061612085 a001 46368/3571*521^(12/13) 4180986065828655 a007 Real Root Of 561*x^4+567*x^3+321*x^2-187*x-110 4180986066069316 m001 1/Khintchine^2*Champernowne*ln(GAMMA(1/12)) 4180986066182954 r009 Im(z^3+c),c=-37/70+7/23*I,n=32 4180986101153408 a007 Real Root Of -725*x^4-916*x^3-542*x^2+407*x-16 4180986104630700 m005 (1/3*gamma+1/10)/(9/10*Catalan-1/8) 4180986104742160 a003 sin(Pi*12/95)-sin(Pi*25/84) 4180986107449072 m001 log(gamma)*GaussAGM(1,1/sqrt(2))^exp(1/2) 4180986111082483 m001 (GAMMA(7/12)-QuadraticClass*Salem)/Salem 4180986115260377 p001 sum(1/(365*n+284)/(3^n),n=0..infinity) 4180986124089018 r009 Im(z^3+c),c=-9/19+23/47*I,n=24 4180986129911350 r009 Re(z^3+c),c=-7/34+43/61*I,n=27 4180986132436475 m001 (Niven+OneNinth)/(Chi(1)-Kolakoski) 4180986134481949 r009 Im(z^3+c),c=-9/46+14/19*I,n=38 4180986146954136 r002 10th iterates of z^2 + 4180986163117727 r002 52th iterates of z^2 + 4180986164423437 l006 ln(3959/6014) 4180986165293982 m005 (1/2*exp(1)-3/4)/(2*Catalan-3/8) 4180986166620078 a005 (1/cos(32/221*Pi))^636 4180986187288722 m001 (-Otter+Stephens)/(LambertW(1)+gamma(3)) 4180986194972357 a007 Real Root Of -610*x^4-981*x^3-659*x^2+368*x+216 4180986196094789 r009 Im(z^3+c),c=-43/82+22/59*I,n=24 4180986196914847 m001 (-KhinchinHarmonic+ZetaP(3))/(Catalan-cos(1)) 4180986199178243 r009 Re(z^3+c),c=-53/126+5/38*I,n=42 4180986201328335 a007 Real Root Of -602*x^4+827*x^3-778*x^2+230*x+311 4180986210706285 b008 -1/2+ArcCot[E^(5/2)] 4180986217463517 m001 1/TwinPrimes^2/MinimumGamma/exp(GAMMA(1/4)) 4180986225149705 r009 Re(z^3+c),c=-53/126+5/38*I,n=40 4180986231539979 s002 sum(A098834[n]/(n^2*exp(n)-1),n=1..infinity) 4180986236220961 r009 Im(z^3+c),c=-41/106+17/43*I,n=11 4180986238173546 r002 2th iterates of z^2 + 4180986243259312 r009 Im(z^3+c),c=-17/98+28/59*I,n=13 4180986246443815 a007 Real Root Of -185*x^4-841*x^3-421*x^2-529*x+213 4180986248605744 r005 Re(z^2+c),c=-7/12+5/28*I,n=34 4180986249086736 r005 Re(z^2+c),c=-69/118+8/25*I,n=39 4180986267527828 r005 Im(z^2+c),c=-2/29+25/51*I,n=4 4180986272591545 r005 Im(z^2+c),c=1/58+17/31*I,n=33 4180986293570046 a007 Real Root Of 184*x^4+625*x^3-726*x^2-732*x-916 4180986301425688 r005 Im(z^2+c),c=27/98+4/11*I,n=23 4180986307632866 r002 6th iterates of z^2 + 4180986309751549 r009 Im(z^3+c),c=-1/44+27/55*I,n=16 4180986315854128 a003 sin(Pi*9/71)/sin(Pi*31/82) 4180986335212064 r002 57th iterates of z^2 + 4180986338332102 r002 11th iterates of z^2 + 4180986348904964 r005 Re(z^2+c),c=-59/58+19/64*I,n=6 4180986350685299 m005 (1/2*gamma-5/6)/(1/6*exp(1)-7/12) 4180986367433419 r005 Re(z^2+c),c=-11/20+23/62*I,n=64 4180986367574942 m001 (exp(1/exp(1))+MinimumGamma)/(3^(1/2)-Zeta(5)) 4180986372951285 a007 Real Root Of 786*x^4+470*x^3+667*x^2-810*x-35 4180986378203841 a003 sin(Pi*9/67)-sin(Pi*9/29) 4180986381776236 r005 Re(z^2+c),c=-7/12+16/89*I,n=63 4180986421941736 r005 Im(z^2+c),c=11/118+19/40*I,n=23 4180986430895682 l006 ln(6240/9479) 4180986436251463 a007 Real Root Of 372*x^4-984*x^3+41*x^2+257*x+17 4180986441664115 m001 exp(GAMMA(17/24))*OneNinth^2/Zeta(9) 4180986443733060 r005 Re(z^2+c),c=-4/7+33/122*I,n=58 4180986454413115 r005 Im(z^2+c),c=21/64+15/59*I,n=43 4180986469762662 s002 sum(A001776[n]/(exp(n)),n=1..infinity) 4180986472988115 r005 Im(z^2+c),c=-5/8+44/169*I,n=15 4180986480668379 r005 Re(z^2+c),c=-3/5+25/61*I,n=30 4180986481222147 a001 1/5473*1836311903^(8/17) 4180986488198060 a001 2/514229*6557470319842^(8/17) 4180986508064148 m001 Grothendieck^ln(5)*ZetaQ(4) 4180986511527631 a001 28657/322*322^(2/3) 4180986517757527 m001 (ln(2)-ln(Pi))/(BesselI(1,1)-Stephens) 4180986542360287 r009 Re(z^3+c),c=-45/122+3/44*I,n=19 4180986543211123 m001 (polylog(4,1/2)+GaussAGM)/(Mills+Tetranacci) 4180986546115784 r009 Re(z^3+c),c=-53/126+5/38*I,n=47 4180986558341447 m001 1/Niven/exp(ErdosBorwein)^2*BesselK(0,1)^2 4180986562134985 a001 514229/521*199^(3/11) 4180986571305464 r009 Im(z^3+c),c=-5/86+23/47*I,n=17 4180986573441557 r005 Im(z^2+c),c=17/60+17/54*I,n=50 4180986586240378 r008 a(0)=4,K{-n^6,50-63*n-5*n^2+10*n^3} 4180986598846152 m008 (1/4*Pi^6+4/5)/(1/6*Pi^3+3/5) 4180986599211971 r005 Im(z^2+c),c=31/98+14/51*I,n=50 4180986602402685 r009 Re(z^3+c),c=-53/126+5/38*I,n=46 4180986604071303 a001 7/514229*514229^(11/14) 4180986604071981 a001 7/20365011074*365435296162^(11/14) 4180986604071981 a001 1/14619165*433494437^(11/14) 4180986607759047 m004 15+125*Pi+Sqrt[5]*Pi*Csc[Sqrt[5]*Pi] 4180986610382849 p001 sum(1/(61*n+27)/(3^n),n=0..infinity) 4180986610813759 r005 Im(z^2+c),c=7/30+19/42*I,n=20 4180986615369852 r005 Re(z^2+c),c=2/11+24/43*I,n=50 4180986617164813 a005 (1/sin(93/193*Pi))^881 4180986620537904 r009 Re(z^3+c),c=-53/126+5/38*I,n=48 4180986621108601 r005 Im(z^2+c),c=6/25+13/36*I,n=32 4180986635316350 r005 Re(z^2+c),c=-7/12+17/98*I,n=42 4180986637310470 a007 Real Root Of -675*x^4+998*x^3-783*x^2+42*x+248 4180986638920575 r005 Re(z^2+c),c=-9/16+12/37*I,n=64 4180986641201553 r005 Re(z^2+c),c=-57/98+8/41*I,n=57 4180986643783343 r005 Im(z^2+c),c=3/110+29/55*I,n=63 4180986651639877 r002 52th iterates of z^2 + 4180986656860653 r009 Re(z^3+c),c=-53/126+5/38*I,n=53 4180986662096057 r009 Re(z^3+c),c=-53/126+5/38*I,n=52 4180986666936304 r009 Re(z^3+c),c=-53/126+5/38*I,n=54 4180986670586372 r009 Re(z^3+c),c=-53/126+5/38*I,n=59 4180986671017319 r009 Re(z^3+c),c=-53/126+5/38*I,n=58 4180986671929392 r009 Re(z^3+c),c=-53/126+5/38*I,n=60 4180986672300431 r009 Re(z^3+c),c=-53/126+5/38*I,n=64 4180986672691963 r009 Re(z^3+c),c=-53/126+5/38*I,n=63 4180986672729017 l006 ln(79/5169) 4180986673066542 r009 Re(z^3+c),c=-53/126+5/38*I,n=61 4180986673179803 r009 Re(z^3+c),c=-53/126+5/38*I,n=62 4180986674312453 r009 Re(z^3+c),c=-53/126+5/38*I,n=57 4180986676463503 r009 Re(z^3+c),c=-53/126+5/38*I,n=55 4180986677997580 r009 Re(z^3+c),c=-53/126+5/38*I,n=56 4180986689582680 r009 Re(z^3+c),c=-53/126+5/38*I,n=51 4180986694781573 h001 (4/7*exp(2)+3/8)/(4/11*exp(1)+1/9) 4180986695905433 r005 Im(z^2+c),c=1/62+23/40*I,n=36 4180986699672051 r009 Re(z^3+c),c=-53/126+5/38*I,n=49 4180986712357922 r002 43th iterates of z^2 + 4180986717024307 r009 Re(z^3+c),c=-53/126+5/38*I,n=50 4180986721889009 r009 Re(z^3+c),c=-3/64+33/43*I,n=40 4180986724046299 r002 37th iterates of z^2 + 4180986725904997 m001 1/(2^(1/3))^2/Rabbit/exp(GAMMA(1/3))^2 4180986727670975 r009 Re(z^3+c),c=-55/126+4/27*I,n=44 4180986739365639 m006 (1/5*exp(2*Pi)+1)/(3/4*ln(Pi)-3/5) 4180986744054216 a001 233/7881196*2^(1/2) 4180986751239904 r005 Im(z^2+c),c=13/50+13/38*I,n=33 4180986755908494 r005 Re(z^2+c),c=-19/28+15/56*I,n=15 4180986770153695 a003 cos(Pi*4/39)*sin(Pi*17/117) 4180986771719019 a007 Real Root Of 64*x^4-759*x^3-607*x^2-358*x-101 4180986771725707 m001 Artin+Landau*StolarskyHarborth 4180986784724530 r005 Re(z^2+c),c=-5/8+47/109*I,n=9 4180986793676011 a001 121393/5778*521^(11/13) 4180986795744553 p001 sum(1/(503*n+397)/n/(3^n),n=1..infinity) 4180986796538778 a004 Fibonacci(15)*Lucas(13)/(1/2+sqrt(5)/2)^9 4180986827026745 p003 LerchPhi(1/2,4,311/136) 4180986828747042 r005 Re(z^2+c),c=29/122+24/59*I,n=45 4180986829761090 r009 Re(z^3+c),c=-53/126+5/38*I,n=45 4180986837113432 r009 Im(z^3+c),c=-25/78+19/44*I,n=11 4180986843880456 r002 22th iterates of z^2 + 4180986845351563 r005 Im(z^2+c),c=3/56+26/51*I,n=44 4180986847388853 r009 Im(z^3+c),c=-9/19+7/20*I,n=61 4180986850976542 m001 Catalan*(FeigenbaumC-exp(1/Pi)) 4180986851071922 r009 Re(z^3+c),c=-53/126+5/38*I,n=43 4180986855717269 r005 Re(z^2+c),c=-31/26+42/97*I,n=2 4180986857075305 m001 (Conway-KomornikLoreti)/(ln(2)+arctan(1/2)) 4180986868571444 a007 Real Root Of -747*x^4+919*x^3-641*x^2-787*x-127 4180986879147228 m001 1/ln(arctan(1/2))*BesselJ(0,1)/cosh(1)^2 4180986893396155 l006 ln(2281/3465) 4180986900687449 a001 317811/15127*521^(11/13) 4180986913935184 m001 (Artin+Robbin)/(ThueMorse-TwinPrimes) 4180986916300208 a001 832040/39603*521^(11/13) 4180986916547652 m001 (Robbin+Trott2nd)/(GAMMA(11/12)+Lehmer) 4180986918578079 a001 46347/2206*521^(11/13) 4180986918910416 a001 5702887/271443*521^(11/13) 4180986918958903 a001 14930352/710647*521^(11/13) 4180986918965977 a001 39088169/1860498*521^(11/13) 4180986918967010 a001 102334155/4870847*521^(11/13) 4180986918967160 a001 267914296/12752043*521^(11/13) 4180986918967182 a001 701408733/33385282*521^(11/13) 4180986918967185 a001 1836311903/87403803*521^(11/13) 4180986918967186 a001 102287808/4868641*521^(11/13) 4180986918967186 a001 12586269025/599074578*521^(11/13) 4180986918967186 a001 32951280099/1568397607*521^(11/13) 4180986918967186 a001 86267571272/4106118243*521^(11/13) 4180986918967186 a001 225851433717/10749957122*521^(11/13) 4180986918967186 a001 591286729879/28143753123*521^(11/13) 4180986918967186 a001 1548008755920/73681302247*521^(11/13) 4180986918967186 a001 4052739537881/192900153618*521^(11/13) 4180986918967186 a001 225749145909/10745088481*521^(11/13) 4180986918967186 a001 6557470319842/312119004989*521^(11/13) 4180986918967186 a001 2504730781961/119218851371*521^(11/13) 4180986918967186 a001 956722026041/45537549124*521^(11/13) 4180986918967186 a001 365435296162/17393796001*521^(11/13) 4180986918967186 a001 139583862445/6643838879*521^(11/13) 4180986918967186 a001 53316291173/2537720636*521^(11/13) 4180986918967186 a001 20365011074/969323029*521^(11/13) 4180986918967186 a001 7778742049/370248451*521^(11/13) 4180986918967186 a001 2971215073/141422324*521^(11/13) 4180986918967187 a001 1134903170/54018521*521^(11/13) 4180986918967196 a001 433494437/20633239*521^(11/13) 4180986918967253 a001 165580141/7881196*521^(11/13) 4180986918967647 a001 63245986/3010349*521^(11/13) 4180986918970350 a001 24157817/1149851*521^(11/13) 4180986918988870 a001 9227465/439204*521^(11/13) 4180986919115811 a001 3524578/167761*521^(11/13) 4180986919985881 a001 1346269/64079*521^(11/13) 4180986925949424 a001 514229/24476*521^(11/13) 4180986933108437 r009 Im(z^3+c),c=-4/23+28/59*I,n=14 4180986955944835 r005 Im(z^2+c),c=29/86+13/53*I,n=61 4180986959811726 a001 196418/843*521^(6/13) 4180986966430960 m001 (Rabbit-Weierstrass)^BesselK(1,1) 4180986966824158 a001 196418/9349*521^(11/13) 4180986968680350 r005 Im(z^2+c),c=9/122+25/51*I,n=26 4180986969773464 m001 (Totient+ZetaP(4))/(Zeta(1/2)-Tetranacci) 4180986970721553 r005 Re(z^2+c),c=-53/90+7/60*I,n=57 4180986972873174 r005 Re(z^2+c),c=12/29+7/20*I,n=61 4180987000225676 m008 (2/5*Pi^6-4/5)/(3*Pi^5-1/5) 4180987008917204 r002 7th iterates of z^2 + 4180987009959122 r002 14th iterates of z^2 + 4180987019525819 m001 GAMMA(13/24)*FeigenbaumD^2/ln(sin(Pi/5))^2 4180987019589476 m001 (5^(1/2)-Cahen)/(FeigenbaumAlpha+Mills) 4180987030650055 r009 Re(z^3+c),c=-53/126+5/38*I,n=44 4180987046057229 r005 Im(z^2+c),c=-8/27+19/35*I,n=6 4180987050513219 a007 Real Root Of 208*x^4-606*x^3+991*x^2-957*x-624 4180987059861976 r002 5th iterates of z^2 + 4180987073374588 r005 Re(z^2+c),c=-16/27+2/61*I,n=61 4180987074090778 r005 Im(z^2+c),c=-53/40+21/58*I,n=3 4180987076649541 m001 (gamma(1)-GAMMA(11/12))/(Rabbit-TreeGrowth2nd) 4180987086345561 r009 Im(z^3+c),c=-57/106+1/21*I,n=4 4180987112665993 r002 11th iterates of z^2 + 4180987116894082 m001 ln(GAMMA(11/12))*Cahen*Zeta(3) 4180987122112046 a003 sin(Pi*2/81)-sin(Pi*17/103) 4180987124463519 a001 974170/233 4180987134052740 m002 -(E^Pi/Pi^4)+4*Pi^4*ProductLog[Pi] 4180987138822304 s002 sum(A095029[n]/((pi^n-1)/n),n=1..infinity) 4180987141445725 m001 (Si(Pi)-ln(3))/(-Lehmer+ThueMorse) 4180987152982916 a007 Real Root Of -246*x^4-893*x^3+454*x^2-302*x+706 4180987158712693 r005 Im(z^2+c),c=1/58+20/33*I,n=43 4180987166813733 m008 (5*Pi^2-3)/(1/3*Pi^3+3/4) 4180987171373297 r005 Im(z^2+c),c=5/38+24/53*I,n=46 4180987174574438 r005 Im(z^2+c),c=5/19+1/3*I,n=27 4180987186868901 h001 (1/3*exp(2)+6/11)/(9/10*exp(2)+6/11) 4180987188001291 r005 Re(z^2+c),c=-69/118+10/57*I,n=39 4180987190247752 a005 (1/sin(87/211*Pi))^217 4180987199988692 m001 FeigenbaumD/Niven*exp(GAMMA(13/24))^2 4180987224129054 m001 1/ln((2^(1/3)))/Kolakoski^2/GAMMA(13/24) 4180987228267417 m001 KomornikLoreti^OneNinth/(KomornikLoreti^ln(5)) 4180987237149412 m001 FeigenbaumB^2/ln(Backhouse)^2/GAMMA(19/24) 4180987245580537 a001 75025/2207*521^(10/13) 4180987246983776 a001 75025/3571*521^(11/13) 4180987250724396 r005 Re(z^2+c),c=-37/66+13/40*I,n=63 4180987265558997 a001 416020/161*123^(1/10) 4180987269119533 m001 OrthogonalArrays*(gamma(2)+HardyLittlewoodC4) 4180987278331273 m001 (Artin-Backhouse)/sin(1/12*Pi) 4180987278331273 m001 (Artin-Backhouse)/sin(Pi/12) 4180987283631483 m009 (3/5*Psi(1,2/3)-1/6)/(4*Psi(1,1/3)-2/5) 4180987296599718 m001 exp(Conway)/Cahen^2/GAMMA(5/12) 4180987310608202 h001 (7/10*exp(1)+2/3)/(9/11*exp(2)+1/10) 4180987351092265 p004 log(19157/12611) 4180987362072457 r009 Re(z^3+c),c=-39/98+5/47*I,n=28 4180987365368375 a007 Real Root Of -587*x^4-495*x^3-282*x^2+660*x+307 4180987380570841 a001 11/1346269*34^(25/54) 4180987388633308 r002 35th iterates of z^2 + 4180987392174942 m001 (StronglyCareFree+Trott)/(Pi-2^(1/3)) 4180987411251424 r005 Im(z^2+c),c=6/25+23/63*I,n=27 4180987414184873 m001 ln(GolombDickman)^2*Artin*Rabbit^2 4180987422669340 r005 Re(z^2+c),c=-10/17+1/8*I,n=56 4180987432008301 r005 Re(z^2+c),c=-43/78+23/57*I,n=62 4180987452157589 l006 ln(5165/7846) 4180987472147015 a007 Real Root Of -404*x^4-544*x^3-472*x^2+923*x+441 4180987483488665 m001 1/exp(PisotVijayaraghavan)^2*Lehmer/Zeta(9) 4180987491695029 m001 (Zeta(1,-1)-GAMMA(5/6))/(OneNinth-ZetaP(4)) 4180987499991542 b008 Sec[Sech[1]]/3 4180987500811055 r005 Im(z^2+c),c=-1/14+31/46*I,n=33 4180987506219816 r002 61th iterates of z^2 + 4180987507599146 b008 27*Sqrt[Log[11]] 4180987511909483 r002 18th iterates of z^2 + 4180987513936356 m009 (5*Psi(1,2/3)-1/5)/(4/3*Catalan+1/6*Pi^2+3/4) 4180987521504931 p004 log(27919/18379) 4180987522060548 m002 (4*Pi^6*Cosh[Pi]*ProductLog[Pi])/Log[Pi] 4180987528334984 a007 Real Root Of 49*x^4-896*x^3+610*x^2-566*x+194 4180987530069494 r002 17th iterates of z^2 + 4180987536206402 a007 Real Root Of 168*x^4-929*x^3-187*x^2+25*x+85 4180987541611328 a007 Real Root Of -890*x^4-198*x^3-723*x^2-426*x-39 4180987560732126 r009 Re(z^3+c),c=-39/98+5/47*I,n=26 4180987568116612 m001 exp(MadelungNaCl)^2/Khintchine*Magata 4180987571834640 r005 Im(z^2+c),c=5/62+26/53*I,n=63 4180987597279818 m001 FeigenbaumC/(BesselJ(1,1)-gamma(3)) 4180987618257467 a007 Real Root Of -777*x^4-453*x^3+145*x^2+934*x-359 4180987623175097 a007 Real Root Of -266*x^4-924*x^3+655*x^2-734*x-768 4180987629061999 r005 Im(z^2+c),c=1/21+19/37*I,n=57 4180987634642793 r005 Re(z^2+c),c=29/98+18/37*I,n=39 4180987635816717 m001 GolombDickman^(BesselK(0,1)*GAMMA(5/24)) 4180987636668671 r002 17th iterates of z^2 + 4180987659142911 m001 (Robbin-Totient)/(Zeta(1,-1)+KomornikLoreti) 4180987673129263 a003 sin(Pi*5/117)+sin(Pi*10/109) 4180987675942087 m001 (Zeta(5)-Backhouse)/(HardyLittlewoodC5+Lehmer) 4180987678880360 a007 Real Root Of -821*x^4-780*x^3-267*x^2+754*x+330 4180987692170820 m005 (1/2*exp(1)-5/7)/(2/5*Pi+2/7) 4180987693217166 r005 Re(z^2+c),c=-29/54+19/61*I,n=3 4180987694024560 m009 (32/5*Catalan+4/5*Pi^2+1/4)/(4/5*Psi(1,3/4)-2) 4180987696932910 m005 (1/2*3^(1/2)+4/5)/(1/12*exp(1)-5/8) 4180987702604309 a008 Real Root of (-3-4*x+6*x^2-5*x^3-2*x^4+2*x^5) 4180987715120440 r005 Re(z^2+c),c=-5/8+58/241*I,n=15 4180987727869584 r002 9th iterates of z^2 + 4180987746320791 r005 Re(z^2+c),c=-23/32+8/51*I,n=46 4180987769510009 r009 Re(z^3+c),c=-53/126+5/38*I,n=37 4180987772761466 m001 (GAMMA(17/24)-exp(Pi))/(-ArtinRank2+ZetaP(3)) 4180987790688459 a007 Real Root Of -236*x^4-954*x^3-84*x^2-891*x+134 4180987795774822 m001 1/exp(arctan(1/2))^2*BesselJ(0,1)*sinh(1)^2 4180987797232046 r005 Re(z^2+c),c=-85/126+2/17*I,n=25 4180987797812956 r005 Re(z^2+c),c=-63/106+5/42*I,n=25 4180987797909422 r005 Im(z^2+c),c=1/28+23/44*I,n=44 4180987804348363 r005 Re(z^2+c),c=-85/126+4/31*I,n=25 4180987814070287 h001 (5/6*exp(2)+4/7)/(3/7*exp(1)+4/9) 4180987830382754 a001 1/76*(1/2*5^(1/2)+1/2)*199^(9/16) 4180987849518297 l006 ln(5504/5739) 4180987853505798 r005 Re(z^2+c),c=-18/31+13/60*I,n=37 4180987855304376 r002 18th iterates of z^2 + 4180987865467891 a007 Real Root Of 991*x^4-908*x^3-541*x^2-882*x-36 4180987869000088 m005 (1/3*Catalan+2/5)/(3/4*Catalan+1) 4180987874593047 m005 (1/2*Pi+1/10)/(6/11*Catalan-1/10) 4180987879659661 r005 Re(z^2+c),c=-13/22+10/123*I,n=51 4180987883676635 a007 Real Root Of -74*x^4-286*x^3+39*x^2-33*x+890 4180987884980562 r002 39th iterates of z^2 + 4180987888197389 r009 Im(z^3+c),c=-17/42+11/28*I,n=31 4180987894090587 l006 ln(2884/4381) 4180987901451897 r005 Im(z^2+c),c=17/122+21/47*I,n=50 4180987912197791 r005 Im(z^2+c),c=19/98+7/17*I,n=21 4180987939069969 r005 Re(z^2+c),c=-59/98+21/61*I,n=55 4180987953926989 l006 ln(151/9880) 4180987961413149 h001 (-exp(7)+6)/(-exp(3)-6) 4180987976028989 r009 Im(z^3+c),c=-23/90+5/11*I,n=22 4180987978110083 m001 ln(2)/ln(10)/cos(1)/MertensB3 4180987978588839 a001 98209/2889*521^(10/13) 4180987978708626 a001 17711/1364*521^(12/13) 4180987991512547 r005 Re(z^2+c),c=-13/22+7/29*I,n=24 4180988002443754 r009 Im(z^3+c),c=-29/62+17/48*I,n=57 4180988006038995 a007 Real Root Of -914*x^4+632*x^3+97*x^2+2*x+58 4180988008734868 m001 GAMMA(23/24)/FeigenbaumDelta^2/ln(GAMMA(7/24)) 4180988013526641 m005 (1/3*3^(1/2)-2/11)/(5*3^(1/2)+4/5) 4180988021291063 m001 MasserGramain/GaussAGM/Si(Pi) 4180988025639954 a001 47*(1/2*5^(1/2)+1/2)^25*521^(4/15) 4180988044777039 r005 Re(z^2+c),c=-71/110+27/62*I,n=44 4180988056606674 r005 Re(z^2+c),c=-41/70+13/40*I,n=11 4180988058274971 m004 75/Pi+125*Pi+ProductLog[Sqrt[5]*Pi] 4180988070638311 m005 (1/4*Pi-3/5)/(2/5*2^(1/2)-5) 4180988072592910 r009 Im(z^3+c),c=-23/50+23/64*I,n=34 4180988079287976 a007 Real Root Of 20*x^4+826*x^3-422*x^2+192*x+404 4180988081591590 m001 ln(Riemann3rdZero)*KhintchineLevy^2/Trott 4180988085533331 a001 514229/15127*521^(10/13) 4180988085689683 m001 1/RenyiParking/ln(Bloch)^2/LambertW(1) 4180988086804544 b008 ArcCsc[2+Sqrt[3/14]] 4180988090548162 r009 Re(z^3+c),c=-53/126+5/38*I,n=39 4180988095494833 r005 Re(z^2+c),c=-67/118+14/53*I,n=35 4180988097331703 r005 Re(z^2+c),c=-43/74+1/5*I,n=63 4180988097747013 h001 (4/5*exp(2)+1/11)/(5/11*exp(1)+1/5) 4180988101136322 a001 1346269/39603*521^(10/13) 4180988103412768 a001 1762289/51841*521^(10/13) 4180988103744897 a001 9227465/271443*521^(10/13) 4180988103793354 a001 24157817/710647*521^(10/13) 4180988103800424 a001 31622993/930249*521^(10/13) 4180988103801455 a001 165580141/4870847*521^(10/13) 4180988103801606 a001 433494437/12752043*521^(10/13) 4180988103801628 a001 567451585/16692641*521^(10/13) 4180988103801631 a001 2971215073/87403803*521^(10/13) 4180988103801631 a001 7778742049/228826127*521^(10/13) 4180988103801631 a001 10182505537/299537289*521^(10/13) 4180988103801631 a001 53316291173/1568397607*521^(10/13) 4180988103801631 a001 139583862445/4106118243*521^(10/13) 4180988103801631 a001 182717648081/5374978561*521^(10/13) 4180988103801631 a001 956722026041/28143753123*521^(10/13) 4180988103801631 a001 2504730781961/73681302247*521^(10/13) 4180988103801631 a001 3278735159921/96450076809*521^(10/13) 4180988103801631 a001 10610209857723/312119004989*521^(10/13) 4180988103801631 a001 4052739537881/119218851371*521^(10/13) 4180988103801631 a001 387002188980/11384387281*521^(10/13) 4180988103801631 a001 591286729879/17393796001*521^(10/13) 4180988103801631 a001 225851433717/6643838879*521^(10/13) 4180988103801631 a001 1135099622/33391061*521^(10/13) 4180988103801631 a001 32951280099/969323029*521^(10/13) 4180988103801631 a001 12586269025/370248451*521^(10/13) 4180988103801632 a001 1201881744/35355581*521^(10/13) 4180988103801633 a001 1836311903/54018521*521^(10/13) 4180988103801641 a001 701408733/20633239*521^(10/13) 4180988103801699 a001 66978574/1970299*521^(10/13) 4180988103802093 a001 102334155/3010349*521^(10/13) 4180988103804793 a001 39088169/1149851*521^(10/13) 4180988103823302 a001 196452/5779*521^(10/13) 4180988103950164 a001 5702887/167761*521^(10/13) 4180988104819689 a001 2178309/64079*521^(10/13) 4180988110779501 a001 208010/6119*521^(10/13) 4180988117639629 m001 Bloch*MertensB2-FeigenbaumDelta 4180988130439179 r005 Re(z^2+c),c=-1/25+16/25*I,n=24 4180988138061530 m001 (2^(1/3)-gamma(2))/GaussKuzminWirsing 4180988142905683 r005 Im(z^2+c),c=-85/66+2/53*I,n=49 4180988144616230 a001 377*521^(5/13) 4180988144657497 m001 Pi-ln(2)/ln(10)/GAMMA(3/4)+GAMMA(17/24) 4180988147217693 m001 (5^(1/2)-Shi(1))/(exp(1/exp(1))+exp(1/Pi)) 4180988151628664 a001 317811/9349*521^(10/13) 4180988156102118 r005 Im(z^2+c),c=37/122+17/58*I,n=46 4180988158207573 m001 (ln(2+3^(1/2))-FeigenbaumC)/(Salem+ZetaQ(2)) 4180988164811341 r005 Im(z^2+c),c=-13/54+13/19*I,n=9 4180988179124704 a001 377/843*24476^(19/21) 4180988180758098 r002 61th iterates of z^2 + 4180988184597958 a001 377/843*64079^(19/23) 4180988184612078 r005 Re(z^2+c),c=6/29+3/8*I,n=26 4180988184747583 q001 1557/3724 4180988185439107 a001 377/843*817138163596^(1/3) 4180988185439107 a001 377/843*(1/2+1/2*5^(1/2))^19 4180988185439108 a001 377/843*87403803^(1/2) 4180988185747011 a001 377/843*103682^(19/24) 4180988187741364 a001 377/843*39603^(19/22) 4180988202171559 r005 Im(z^2+c),c=7/38+25/61*I,n=39 4180988202796998 a001 377/843*15127^(19/20) 4180988211796331 a007 Real Root Of -106*x^4-135*x^3+7*x^2+478*x+192 4180988212800496 a007 Real Root Of -377*x^4+889*x^3-761*x^2+750*x-234 4180988214142723 r005 Re(z^2+c),c=-13/22+7/86*I,n=53 4180988222946890 m005 (-7/4+1/4*5^(1/2))/(5/6*exp(1)+7/12) 4180988224943494 r005 Im(z^2+c),c=-1/16+29/59*I,n=4 4180988232520356 m001 (Pi^(1/2)+Niven)/(sin(1)+gamma(2)) 4180988236022668 s002 sum(A264382[n]/(n*exp(pi*n)+1),n=1..infinity) 4180988247624613 m001 (ArtinRank2-Niven)/(Sierpinski-ZetaP(3)) 4180988252367756 l006 ln(6371/9678) 4180988255925268 m001 (Si(Pi)+Ei(1))/(-ErdosBorwein+FeigenbaumAlpha) 4180988259600908 p003 LerchPhi(1/256,6,202/119) 4180988266670733 r002 13th iterates of z^2 + 4180988271618689 r002 11th iterates of z^2 + 4180988277678209 a007 Real Root Of -26*x^4+685*x^3-473*x^2+929*x-355 4180988289666557 a003 cos(Pi*16/69)*cos(Pi*32/103) 4180988291495889 r009 Re(z^3+c),c=-23/50+5/29*I,n=27 4180988312956144 m005 (1/3*exp(1)-2/11)/(91/99+4/11*5^(1/2)) 4180988340507657 r009 Im(z^3+c),c=-37/126+23/52*I,n=17 4180988360222090 a007 Real Root Of 218*x^4+798*x^3-402*x^2+314*x+48 4180988361411984 m001 Zeta(5)/(GAMMA(19/24)+Mills) 4180988369165356 m001 (MertensB3-PlouffeB)/(ln(3)-Conway) 4180988380580302 m008 (4/5*Pi+1/2)/(3/4*Pi^6-1/3) 4180988388589819 m001 (BesselK(1,1)-Backhouse)/(Pi-ln(3)) 4180988398437903 r005 Re(z^2+c),c=-16/27+5/28*I,n=7 4180988402870641 a007 Real Root Of 982*x^4+694*x^3-202*x^2-874*x+320 4180988407803903 p004 log(14591/223) 4180988430209773 a001 121393/2207*521^(9/13) 4180988431455341 r002 50th iterates of z^2 + 4180988431613012 a001 121393/3571*521^(10/13) 4180988436803394 r005 Im(z^2+c),c=21/118+13/36*I,n=6 4180988445799237 a007 Real Root Of -13*x^4-550*x^3-248*x^2+938*x-241 4180988457755403 a007 Real Root Of 986*x^4-877*x^3+590*x^2-816*x+272 4180988462999998 r002 24th iterates of z^2 + 4180988469339964 a007 Real Root Of 111*x^4-654*x^3-973*x^2-470*x+411 4180988475759669 r002 43th iterates of z^2 + 4180988476578221 v003 sum((15+4*n)*n!/n^n,n=1..infinity) 4180988486497716 r002 36th iterates of z^2 + 4180988494995388 a001 7/2584*610^(11/14) 4180988529583310 a007 Real Root Of -671*x^4+731*x^3+318*x^2+458*x-280 4180988548688755 l006 ln(3487/5297) 4180988557235757 m001 FellerTornier*(GAMMA(17/24)+Trott) 4180988572648457 m001 cos(Pi/5)^2*exp(GAMMA(1/4))/sin(Pi/5) 4180988582072608 r002 62th iterates of z^2 + 4180988597646062 p003 LerchPhi(1/5,1,672/239) 4180988598707009 m001 BesselK(0,1)*FibonacciFactorial^2/exp(exp(1)) 4180988612002335 r009 Re(z^3+c),c=-23/54+7/51*I,n=21 4180988615558033 h001 (9/10*exp(1)+2/11)/(4/5*exp(2)+3/8) 4180988657975593 r002 9th iterates of z^2 + 4180988659645582 r005 Re(z^2+c),c=-33/34+67/126*I,n=4 4180988673947871 m001 Salem*(DuboisRaymond+ReciprocalFibonacci) 4180988686175731 m002 Pi^3-Cosh[Pi]+Cosh[Pi]^2/6 4180988696489072 a007 Real Root Of 9*x^4+380*x^3+157*x^2+72*x-211 4180988700657991 r001 51i'th iterates of 2*x^2-1 of 4180988704238295 a007 Real Root Of 161*x^4+632*x^3-269*x^2-285*x+504 4180988704926966 r005 Im(z^2+c),c=13/102+21/46*I,n=37 4180988707389769 r002 3th iterates of z^2 + 4180988737490825 r005 Im(z^2+c),c=3/94+21/40*I,n=47 4180988758062514 m001 ln(Tribonacci)*Bloch^2*GAMMA(7/24) 4180988762016599 r005 Im(z^2+c),c=33/94+17/54*I,n=40 4180988772011948 a001 5/4*64079^(6/55) 4180988777560259 r009 Im(z^3+c),c=-57/110+13/37*I,n=61 4180988782405854 m001 (Lehmer+ThueMorse)/(ln(5)+Kolakoski) 4180988782973761 r005 Re(z^2+c),c=-16/27+3/62*I,n=37 4180988794795565 r009 Re(z^3+c),c=-5/27+37/46*I,n=6 4180988797532423 r005 Re(z^2+c),c=-13/22+21/124*I,n=24 4180988818778742 r005 Re(z^2+c),c=-23/36+19/62*I,n=43 4180988832499801 r005 Im(z^2+c),c=19/70+19/58*I,n=52 4180988838220912 m005 (1/2*2^(1/2)-8/11)/(-62/11+4/11*5^(1/2)) 4180988841444947 r002 14th iterates of z^2 + 4180988848370480 h001 (1/12*exp(2)+1/6)/(7/12*exp(1)+2/7) 4180988870982940 h001 (-6*exp(-3)+7)/(-7*exp(1)+3) 4180988874694871 r002 17th iterates of z^2 + 4180988892543861 r005 Im(z^2+c),c=11/64+1/42*I,n=7 4180988904151558 r005 Re(z^2+c),c=-9/26+17/25*I,n=10 4180988923765577 a007 Real Root Of -280*x^4+326*x^3-905*x^2+994*x-40 4180988933970519 r002 22th iterates of z^2 + 4180988951509010 m001 GAMMA(1/12)/ln(MertensB1)^2/GAMMA(7/12) 4180988956223025 r005 Im(z^2+c),c=29/98+3/10*I,n=59 4180988956917185 r002 7th iterates of z^2 + 4180988960073177 r005 Re(z^2+c),c=-55/94+19/58*I,n=41 4180988962683716 r005 Re(z^2+c),c=-3/5+6/23*I,n=27 4180988987706256 m008 (2/3*Pi^6+1/5)/(1/2*Pi^5+1/3) 4180988992776304 m001 GAMMA(2/3)/(Ei(1,1)-Landau) 4180989003238462 m005 (1/2*gamma-3/4)/(2/9*Catalan+9/10) 4180989010268464 l006 ln(4090/6213) 4180989014589968 a005 (1/cos(5/169*Pi))^863 4180989025920188 m001 GaussKuzminWirsing^2/ln(Conway)*Zeta(3) 4180989061292025 m001 1/GAMMA(13/24)^2/ln(Catalan)*Pi^2 4180989072904095 r005 Re(z^2+c),c=-21/40+12/43*I,n=3 4180989074863972 a007 Real Root Of -157*x^4-593*x^3+219*x^2-14*x+748 4180989083328763 h001 (8/11*exp(2)+3/11)/(1/3*exp(1)+4/9) 4180989083771403 m006 (4/Pi-5/6)/(2/5*Pi^2-5) 4180989086780810 r005 Re(z^2+c),c=-37/122+32/51*I,n=55 4180989094244510 r002 11th iterates of z^2 + 4180989098108035 r002 18th iterates of z^2 + 4180989107408760 m001 (BesselK(0,1)+BesselI(0,2))/(-Kolakoski+Thue) 4180989108840338 r009 Im(z^3+c),c=-53/126+23/60*I,n=25 4180989115162347 r002 6th iterates of z^2 + 4180989122371282 m001 Pi+GAMMA(11/12)^TravellingSalesman 4180989126622237 q001 1192/2851 4180989127791049 r005 Re(z^2+c),c=-59/102+2/17*I,n=9 4180989136167473 r005 Re(z^2+c),c=-13/22+6/83*I,n=38 4180989139532192 p001 sum((-1)^n/(388*n+239)/(512^n),n=0..infinity) 4180989145026902 r002 55th iterates of z^2 + 4180989148441258 r005 Re(z^2+c),c=-55/94+9/55*I,n=22 4180989148963540 m001 (sin(1/12*Pi)+Bloch)/ZetaP(3) 4180989162007957 m001 (3^(1/2)+gamma)/(PlouffeB+ZetaP(4)) 4180989163374869 r005 Im(z^2+c),c=5/82+22/45*I,n=15 4180989163393632 a001 105937/1926*521^(9/13) 4180989167227377 a001 28657/1364*521^(11/13) 4180989170737831 r005 Re(z^2+c),c=-53/78+4/63*I,n=14 4180989190570689 m001 (gamma(3)+Magata)/(MasserGramain-MinimumGamma) 4180989219462279 m001 (Pi+Paris)/(RenyiParking+Trott2nd) 4180989224649543 r002 34th iterates of z^2 + 4180989234343251 a001 29*121393^(1/32) 4180989246199415 r009 Re(z^3+c),c=-55/126+4/27*I,n=49 4180989250350354 a007 Real Root Of 268*x^4+157*x^3-540*x^2-711*x+372 4180989261285221 r005 Im(z^2+c),c=1/46+26/49*I,n=51 4180989270363737 a001 832040/15127*521^(9/13) 4180989285329739 r005 Re(z^2+c),c=-31/52+1/58*I,n=26 4180989285970465 a001 726103/13201*521^(9/13) 4180989288247456 a001 5702887/103682*521^(9/13) 4180989288579665 a001 4976784/90481*521^(9/13) 4180989288628133 a001 39088169/710647*521^(9/13) 4180989288635205 a001 831985/15126*521^(9/13) 4180989288636236 a001 267914296/4870847*521^(9/13) 4180989288636387 a001 233802911/4250681*521^(9/13) 4180989288636409 a001 1836311903/33385282*521^(9/13) 4180989288636412 a001 1602508992/29134601*521^(9/13) 4180989288636412 a001 12586269025/228826127*521^(9/13) 4180989288636413 a001 10983760033/199691526*521^(9/13) 4180989288636413 a001 86267571272/1568397607*521^(9/13) 4180989288636413 a001 75283811239/1368706081*521^(9/13) 4180989288636413 a001 591286729879/10749957122*521^(9/13) 4180989288636413 a001 12585437040/228811001*521^(9/13) 4180989288636413 a001 4052739537881/73681302247*521^(9/13) 4180989288636413 a001 3536736619241/64300051206*521^(9/13) 4180989288636413 a001 6557470319842/119218851371*521^(9/13) 4180989288636413 a001 2504730781961/45537549124*521^(9/13) 4180989288636413 a001 956722026041/17393796001*521^(9/13) 4180989288636413 a001 365435296162/6643838879*521^(9/13) 4180989288636413 a001 139583862445/2537720636*521^(9/13) 4180989288636413 a001 53316291173/969323029*521^(9/13) 4180989288636413 a001 20365011074/370248451*521^(9/13) 4180989288636413 a001 7778742049/141422324*521^(9/13) 4180989288636414 a001 2971215073/54018521*521^(9/13) 4180989288636422 a001 1134903170/20633239*521^(9/13) 4180989288636480 a001 433494437/7881196*521^(9/13) 4180989288636874 a001 165580141/3010349*521^(9/13) 4180989288639575 a001 63245986/1149851*521^(9/13) 4180989288658088 a001 24157817/439204*521^(9/13) 4180989288784981 a001 9227465/167761*521^(9/13) 4180989289654714 a001 3524578/64079*521^(9/13) 4180989293208705 m002 -Pi^3-Cosh[Pi]+(Pi*Coth[Pi])/4 4180989295615954 a001 1346269/24476*521^(9/13) 4180989298676172 p001 sum(1/(427*n+24)/(16^n),n=0..infinity) 4180989316765895 r009 Im(z^3+c),c=-3/70+25/51*I,n=17 4180989317320236 m001 (Psi(1,1/3)+Sarnak)/(Tetranacci+TwinPrimes) 4180989317979999 m001 (TwinPrimes-ZetaP(2))/(Pi+FeigenbaumC) 4180989319128491 r002 13th iterates of z^2 + 4180989320134780 r005 Im(z^2+c),c=-11/122+51/55*I,n=6 4180989329462464 a001 514229/843*521^(4/13) 4180989336474900 a001 514229/9349*521^(9/13) 4180989337889367 r002 59th iterates of z^2 + 4180989353232108 l006 ln(4693/7129) 4180989359683985 l006 ln(72/4711) 4180989370654707 r002 59th iterates of z^2 + 4180989375182535 m005 (1/2*3^(1/2)+1/6)/(4/7*exp(1)+11/12) 4180989376330402 a003 cos(Pi*1/8)*cos(Pi*34/97) 4180989387836885 r005 Im(z^2+c),c=-3/52+23/42*I,n=20 4180989431269522 a003 cos(Pi*8/101)*cos(Pi*29/81) 4180989437062417 a003 cos(Pi*15/107)*sin(Pi*13/85) 4180989440834545 r005 Im(z^2+c),c=-85/64+2/43*I,n=53 4180989459052117 r005 Re(z^2+c),c=-16/27+1/64*I,n=39 4180989471357136 r005 Re(z^2+c),c=-23/44+13/34*I,n=32 4180989475575138 m005 (1/2*Zeta(3)-5/7)/(4*gamma+2/5) 4180989488269527 a007 Real Root Of 738*x^4+60*x^3-682*x^2-327*x+229 4180989490197479 r005 Re(z^2+c),c=3/29+33/53*I,n=27 4180989490593181 m008 (1/5*Pi^6+4/5)/(5/6*Pi+2) 4180989495619778 r009 Im(z^3+c),c=-1/29+26/53*I,n=12 4180989496156164 a001 5702887/2207*199^(1/11) 4180989496762814 m001 (BesselI(1,2)-GaussAGM)/(MertensB3+PlouffeB) 4180989502787841 m005 (1/2*2^(1/2)-1/10)/(1/4*Pi+2/3) 4180989503083366 a001 2207/2*4181^(17/39) 4180989510720611 a007 Real Root Of 589*x^4-979*x^3+989*x^2-628*x-525 4180989513641217 m001 Rabbit^FeigenbaumMu/(Rabbit^GAMMA(23/24)) 4180989519685216 r009 Re(z^3+c),c=-12/25+5/26*I,n=35 4180989526319779 a001 2/1597*6557470319842^(6/17) 4180989530526354 r009 Re(z^3+c),c=-53/126+5/38*I,n=38 4180989553680790 r009 Re(z^3+c),c=-45/122+3/44*I,n=18 4180989555925205 m005 (3/8+1/4*5^(1/2))/(221/176+7/16*5^(1/2)) 4180989582736829 a003 sin(Pi*7/51)/sin(Pi*30/61) 4180989596454888 m001 BesselJ(0,1)^2*Conway/exp(BesselK(1,1)) 4180989599446728 m005 (1/2*gamma-1/10)/(1/2*Catalan-10/11) 4180989604943913 r005 Im(z^2+c),c=1/122+27/50*I,n=50 4180989609585334 m001 (-Paris+Porter)/(5^(1/2)+Zeta(5)) 4180989615123065 a001 196418/2207*521^(8/13) 4180989616526305 a001 196418/3571*521^(9/13) 4180989618096394 l006 ln(5296/8045) 4180989623235350 r002 51th iterates of z^2 + 4180989636801121 m001 1/Zeta(1/2)*exp((2^(1/3)))*sqrt(3) 4180989639140532 m001 (Grothendieck-Trott2nd)/(Pi+GAMMA(11/12)) 4180989640019019 m001 3^(1/2)+KomornikLoreti+Robbin 4180989647525923 r005 Re(z^2+c),c=-51/106+2/53*I,n=3 4180989674034410 r002 38th iterates of z^2 + 4180989674963251 a001 843/377*75025^(6/23) 4180989689628818 r009 Re(z^3+c),c=-55/126+4/27*I,n=48 4180989695362562 r002 11th iterates of z^2 + 4180989704615588 r002 13th iterates of z^2 + 4180989714150883 m002 -5-4/(5*Pi)+ProductLog[Pi] 4180989718545183 a007 Real Root Of 732*x^4+30*x^3-883*x^2-144*x+190 4180989718921105 r005 Im(z^2+c),c=-21/44+27/62*I,n=3 4180989720355439 a007 Real Root Of 168*x^4+859*x^3+791*x^2+488*x-342 4180989733134726 a007 Real Root Of -428*x^4+887*x^3-856*x^2-494*x+21 4180989735237959 r005 Re(z^2+c),c=-27/122+27/43*I,n=28 4180989742743545 r005 Re(z^2+c),c=-31/50+3/38*I,n=12 4180989750710340 a001 4181/123*7^(5/47) 4180989753157868 a007 Real Root Of 765*x^4-969*x^3-676*x^2-386*x+327 4180989753229220 b008 32+21^(3/4) 4180989761345000 m001 (GAMMA(2/3)+Backhouse)/(2^(1/3)-sin(1/5*Pi)) 4180989768460710 r009 Im(z^3+c),c=-23/62+25/61*I,n=20 4180989775190703 a007 Real Root Of -489*x^4-87*x^3+931*x^2+970*x-547 4180989776117549 a007 Real Root Of 400*x^4-987*x^3+886*x^2-241*x-340 4180989777700630 a007 Real Root Of -160*x^4+152*x^3+478*x^2+388*x-252 4180989806148923 a001 3/13*1346269^(7/19) 4180989807128450 m005 (1/2*Zeta(3)+6/11)/(7/8*exp(1)+4/11) 4180989825879923 r009 Re(z^3+c),c=-55/126+4/27*I,n=50 4180989827059843 m001 (-HardyLittlewoodC3+Lehmer)/(GaussAGM-Si(Pi)) 4180989828811442 l006 ln(5899/8961) 4180989837248198 r009 Im(z^3+c),c=-9/50+38/53*I,n=2 4180989840523256 m001 1/Porter*exp(GlaisherKinkelin)/sin(Pi/5) 4180989851901858 r009 Im(z^3+c),c=-51/106+21/61*I,n=52 4180989854587011 r005 Im(z^2+c),c=-1/29+31/55*I,n=39 4180989857357476 r005 Im(z^2+c),c=-9/14+94/221*I,n=64 4180989868253364 a001 17711/322*322^(3/4) 4180989884138843 r002 24th iterates of z^2 + 4180989885807684 r002 63th iterates of z^2 + 4180989888045462 a007 Real Root Of 27*x^4-277*x^3+182*x^2-255*x-11 4180989888879943 r009 Im(z^3+c),c=-45/98+9/25*I,n=62 4180989895623685 m001 cos(1/5*Pi)^exp(1/Pi)/KomornikLoreti 4180989897573553 a007 Real Root Of 219*x^4+738*x^3-777*x^2-9*x+562 4180989901453675 r004 Re(z^2+c),c=-13/20-1/6*I,z(0)=-1,n=18 4180989903756658 r005 Re(z^2+c),c=-35/54+16/55*I,n=51 4180989904662135 r005 Re(z^2+c),c=-14/27+14/53*I,n=4 4180989906215751 m005 (1/2*3^(1/2)-1/7)/(56/55+7/22*5^(1/2)) 4180989939945611 r009 Im(z^3+c),c=-4/27+23/48*I,n=15 4180989940105841 m005 (1/2*5^(1/2)-2/3)/(1/4*exp(1)+2/5) 4180989946147849 r005 Re(z^2+c),c=-43/74+10/49*I,n=46 4180989948955457 r005 Im(z^2+c),c=7/86+1/2*I,n=25 4180989951912851 r005 Im(z^2+c),c=-7/29+19/31*I,n=40 4180989957653530 r009 Re(z^3+c),c=-55/126+4/27*I,n=54 4180989959991909 a008 Real Root of x^4-11*x^2-17*x+9 4180989964331756 r009 Im(z^3+c),c=-10/21+7/20*I,n=36 4180989966151781 r009 Re(z^3+c),c=-65/102+1/2*I,n=2 4180989991632407 r009 Re(z^3+c),c=-9/40+19/27*I,n=34 4180989992717445 m005 (1/2*3^(1/2)-9/10)/(5/12*3^(1/2)+1/11) 4180989994392788 m002 -Pi^3+4/(5*ProductLog[Pi])-Sinh[Pi] 4180989996315879 r009 Re(z^3+c),c=-55/126+4/27*I,n=55 4180990000188613 a001 47/610*6765^(39/40) 4180990000442766 l006 ln(6502/9877) 4180990007964831 s002 sum(A195584[n]/(n^2*exp(n)+1),n=1..infinity) 4180990023814474 m001 (2^(1/3)-HeathBrownMoroz)/ln(2)*ln(10) 4180990024048879 r009 Im(z^3+c),c=-15/31+7/20*I,n=32 4180990033735112 a007 Real Root Of -666*x^4-330*x^3+47*x^2+861*x+348 4180990039660965 g007 -Psi(2,9/10)-Psi(2,4/9)-Psi(2,7/8)-Psi(2,4/7) 4180990045559677 a001 23725150497407/610*144^(16/17) 4180990046731757 r005 Re(z^2+c),c=-4/7+11/41*I,n=51 4180990047636468 r005 Re(z^2+c),c=-9/14+51/239*I,n=17 4180990057490211 m001 (Rabbit-ZetaQ(3))/(GAMMA(2/3)+FellerTornier) 4180990059528815 a007 Real Root Of 847*x^4+247*x^3+987*x^2-444*x-366 4180990069657707 r005 Im(z^2+c),c=27/86+26/63*I,n=35 4180990079615906 r009 Im(z^3+c),c=-7/26+29/40*I,n=63 4180990079626250 r009 Im(z^3+c),c=-13/40+39/64*I,n=3 4180990083644754 r002 4th iterates of z^2 + 4180990088760422 r009 Re(z^3+c),c=-55/126+4/27*I,n=60 4180990092551269 r009 Re(z^3+c),c=-37/86+9/64*I,n=16 4180990092697222 m001 (BesselJ(0,1)+FeigenbaumD)/(-Kac+Landau) 4180990102979071 s002 sum(A219483[n]/(exp(n)),n=1..infinity) 4180990103237196 m001 (Riemann3rdZero+Trott2nd)/(ArtinRank2-Paris) 4180990103611872 r009 Re(z^3+c),c=-55/126+4/27*I,n=59 4180990106845148 r005 Im(z^2+c),c=43/114+5/33*I,n=10 4180990110024612 a007 Real Root Of -518*x^4+672*x^3+519*x^2+342*x-267 4180990112127988 r009 Re(z^3+c),c=-55/126+4/27*I,n=61 4180990123535137 r009 Re(z^3+c),c=-55/126+4/27*I,n=64 4180990133622948 m001 (ln(5)*ReciprocalLucas+FeigenbaumMu)/ln(5) 4180990134613879 r009 Re(z^3+c),c=-55/126+4/27*I,n=62 4180990135447539 r009 Re(z^3+c),c=-55/126+4/27*I,n=63 4180990136260883 r009 Re(z^3+c),c=-55/126+4/27*I,n=56 4180990138601039 m001 Gompertz-MertensB2^BesselK(0,1) 4180990157965936 r005 Re(z^2+c),c=-11/18+11/84*I,n=21 4180990160060867 r002 25th iterates of z^2 + 4180990162341861 r009 Re(z^3+c),c=-55/126+4/27*I,n=58 4180990168206172 r009 Re(z^3+c),c=-55/126+4/27*I,n=53 4180990173347103 m001 (gamma(2)+KhinchinLevy)/(cos(1)-sin(1/12*Pi)) 4180990178103574 g006 Psi(1,5/7)+Psi(1,3/5)+Psi(1,1/4)-Psi(1,1/8) 4180990189266763 h003 exp(Pi*(13^(7/4)-17^(1/10))) 4180990189266763 h008 exp(Pi*(13^(7/4)-17^(1/10))) 4180990194385549 m001 (Otter-ZetaQ(2))/(GAMMA(7/12)-GaussAGM) 4180990199975136 r002 6th iterates of z^2 + 4180990200432360 r009 Re(z^3+c),c=-55/126+4/27*I,n=57 4180990224277387 m001 ZetaQ(2)^GAMMA(23/24)*Chi(1) 4180990229291766 a001 2584*199^(1/11) 4180990236983834 r009 Im(z^3+c),c=-9/19+7/20*I,n=54 4180990240121915 p003 LerchPhi(1/5,3,47/163) 4180990259248120 a007 Real Root Of -450*x^4+610*x^3-788*x^2-115*x+148 4180990260834311 m008 (1/4*Pi-4)/(4/5*Pi^6-1/4) 4180990262693943 r005 Re(z^2+c),c=-23/40+9/61*I,n=8 4180990267491386 r009 Im(z^3+c),c=-25/102+11/24*I,n=11 4180990281781347 b008 E*(4+3*E^(4/3)) 4180990303541181 r005 Re(z^2+c),c=-59/98+4/37*I,n=10 4180990306221705 m005 (1/2*gamma+7/9)/(1/7*Zeta(3)+1/12) 4180990307418983 r002 32th iterates of z^2 + 4180990309058719 r009 Re(z^3+c),c=-47/114+4/31*I,n=8 4180990312753507 m008 (Pi^3-4/5)/(5/6*Pi^2-1) 4180990317001174 r002 26th iterates of z^2 + 4180990334990345 m001 (gamma(1)+Backhouse)/(FeigenbaumMu-MertensB1) 4180990336254831 a001 39088169/15127*199^(1/11) 4180990339704281 r009 Re(z^3+c),c=-55/126+4/27*I,n=45 4180990348240154 a001 514229/5778*521^(8/13) 4180990350206520 m001 (Bloch-FeigenbaumMu)/(KhinchinLevy-Tetranacci) 4180990350655294 a001 11592/341*521^(10/13) 4180990351099306 m001 Shi(1)/(1+GAMMA(7/12)) 4180990351860532 a001 34111385/13201*199^(1/11) 4180990354137373 a001 133957148/51841*199^(1/11) 4180990354469560 a001 233802911/90481*199^(1/11) 4180990354518025 a001 1836311903/710647*199^(1/11) 4180990354525096 a001 267084832/103361*199^(1/11) 4180990354526128 a001 12586269025/4870847*199^(1/11) 4180990354526278 a001 10983760033/4250681*199^(1/11) 4180990354526300 a001 43133785636/16692641*199^(1/11) 4180990354526304 a001 75283811239/29134601*199^(1/11) 4180990354526304 a001 591286729879/228826127*199^(1/11) 4180990354526304 a001 86000486440/33281921*199^(1/11) 4180990354526304 a001 4052739537881/1568397607*199^(1/11) 4180990354526304 a001 3536736619241/1368706081*199^(1/11) 4180990354526304 a001 3278735159921/1268860318*199^(1/11) 4180990354526304 a001 2504730781961/969323029*199^(1/11) 4180990354526304 a001 956722026041/370248451*199^(1/11) 4180990354526304 a001 182717648081/70711162*199^(1/11) 4180990354526306 a001 139583862445/54018521*199^(1/11) 4180990354526314 a001 53316291173/20633239*199^(1/11) 4180990354526371 a001 10182505537/3940598*199^(1/11) 4180990354526765 a001 7778742049/3010349*199^(1/11) 4180990354529466 a001 2971215073/1149851*199^(1/11) 4180990354547978 a001 567451585/219602*199^(1/11) 4180990354674862 a001 433494437/167761*199^(1/11) 4180990355544538 a001 165580141/64079*199^(1/11) 4180990357575836 a007 Real Root Of -251*x^4-494*x^3-943*x^2-343*x-7 4180990360691468 m001 (BesselJ(1,1)-ln(1+sqrt(2)))/GAMMA(11/12) 4180990360691468 m001 (BesselJ(1,1)-ln(2^(1/2)+1))/GAMMA(11/12) 4180990361505386 a001 31622993/12238*199^(1/11) 4180990369737449 r005 Re(z^2+c),c=-17/30+24/83*I,n=51 4180990379348175 m001 Ei(1)*Tribonacci^2/exp(Zeta(1,2))^2 4180990380473777 r005 Re(z^2+c),c=-13/22+11/125*I,n=37 4180990396548703 r005 Re(z^2+c),c=-5/8+67/156*I,n=16 4180990402361643 a001 24157817/9349*199^(1/11) 4180990406173443 r009 Im(z^3+c),c=-57/118+13/38*I,n=45 4180990419346458 h001 (1/11*exp(2)+5/11)/(5/6*exp(1)+3/7) 4180990424517616 r005 Im(z^2+c),c=23/114+1/50*I,n=6 4180990425125414 r009 Re(z^3+c),c=-55/126+4/27*I,n=51 4180990428630298 p001 sum((-1)^n/(427*n+298)/n/(3^n),n=1..infinity) 4180990430177459 q001 9/21526 4180990441640844 a007 Real Root Of 100*x^4+397*x^3-33*x^2+95*x-568 4180990453006038 m001 (Pi-exp(1/exp(1)))/(BesselI(0,2)-Khinchin) 4180990455200518 a001 1346269/15127*521^(8/13) 4180990463912357 r005 Re(z^2+c),c=-5/8+45/143*I,n=52 4180990470284997 h001 (-3*exp(-3)+8)/(-9*exp(3)-7) 4180990470805825 a001 3524578/39603*521^(8/13) 4180990471131001 r009 Re(z^3+c),c=-55/126+4/27*I,n=52 4180990473082608 a001 9227465/103682*521^(8/13) 4180990473414787 a001 24157817/271443*521^(8/13) 4180990473463251 a001 63245986/710647*521^(8/13) 4180990473470322 a001 165580141/1860498*521^(8/13) 4180990473471353 a001 433494437/4870847*521^(8/13) 4180990473471504 a001 1134903170/12752043*521^(8/13) 4180990473471526 a001 2971215073/33385282*521^(8/13) 4180990473471529 a001 7778742049/87403803*521^(8/13) 4180990473471529 a001 20365011074/228826127*521^(8/13) 4180990473471529 a001 53316291173/599074578*521^(8/13) 4180990473471529 a001 139583862445/1568397607*521^(8/13) 4180990473471529 a001 365435296162/4106118243*521^(8/13) 4180990473471529 a001 956722026041/10749957122*521^(8/13) 4180990473471529 a001 2504730781961/28143753123*521^(8/13) 4180990473471529 a001 6557470319842/73681302247*521^(8/13) 4180990473471529 a001 10610209857723/119218851371*521^(8/13) 4180990473471529 a001 4052739537881/45537549124*521^(8/13) 4180990473471529 a001 1548008755920/17393796001*521^(8/13) 4180990473471529 a001 591286729879/6643838879*521^(8/13) 4180990473471529 a001 225851433717/2537720636*521^(8/13) 4180990473471530 a001 86267571272/969323029*521^(8/13) 4180990473471530 a001 32951280099/370248451*521^(8/13) 4180990473471530 a001 12586269025/141422324*521^(8/13) 4180990473471531 a001 4807526976/54018521*521^(8/13) 4180990473471539 a001 1836311903/20633239*521^(8/13) 4180990473471597 a001 3524667/39604*521^(8/13) 4180990473471991 a001 267914296/3010349*521^(8/13) 4180990473474692 a001 102334155/1149851*521^(8/13) 4180990473493203 a001 39088169/439204*521^(8/13) 4180990473620084 a001 14930352/167761*521^(8/13) 4180990474489738 a001 5702887/64079*521^(8/13) 4180990477246513 a001 4/317811*317811^(16/25) 4180990479280902 m001 (Ei(1,1)-gamma(3))/(Pi+Psi(2,1/3)) 4180990480450435 a001 2178309/24476*521^(8/13) 4180990481550499 r005 Re(z^2+c),c=1/16+48/55*I,n=3 4180990488600453 r005 Re(z^2+c),c=-15/26+19/108*I,n=25 4180990496235988 r002 60th iterates of z^2 + 4180990504770719 h001 (7/11*exp(2)+1/2)/(2/11*exp(1)+3/4) 4180990507551731 m009 (1/3*Psi(1,3/4)+2/5)/(2/5*Psi(1,3/4)-4) 4180990514293222 a001 832040/843*521^(3/13) 4180990521305660 a001 832040/9349*521^(8/13) 4180990535343602 b008 5/E^(Pi/2)+Pi 4180990536541311 m001 (Bloch-Chi(1))/(Trott+ZetaP(4)) 4180990542941266 a007 Real Root Of 126*x^4+288*x^3-791*x^2+852*x-64 4180990543359516 a008 Real Root of x^4-x^3-9*x^2+35*x-75 4180990582246296 m005 (1/3*gamma-1/8)/(6/7*2^(1/2)+2/5) 4180990601237483 m001 FeigenbaumMu^cos(1)*Riemann2ndZero 4180990605474260 r005 Im(z^2+c),c=3/74+18/35*I,n=16 4180990614363914 r005 Im(z^2+c),c=7/86+22/45*I,n=37 4180990618458638 m001 (-ln(2)+3)/(polylog(4,1/2)+5) 4180990621987560 r009 Im(z^3+c),c=-37/64+15/52*I,n=12 4180990628903423 a007 Real Root Of 391*x^4-695*x^3+814*x^2+665*x+73 4180990632806859 r009 Re(z^3+c),c=-51/98+19/54*I,n=37 4180990646620202 s002 sum(A176982[n]/(pi^n+1),n=1..infinity) 4180990678563954 r005 Re(z^2+c),c=-16/27+2/49*I,n=39 4180990682083178 r002 17th iterates of z^2 + 4180990682083178 r002 17th iterates of z^2 + 4180990682394616 a001 9227465/3571*199^(1/11) 4180990692455123 r009 Im(z^3+c),c=-4/29+13/27*I,n=9 4180990709974373 r002 42th iterates of z^2 + 4180990720236616 a005 (1/sin(91/197*Pi))^1163 4180990733202546 r005 Im(z^2+c),c=-2/19+17/18*I,n=25 4180990734362963 a007 Real Root Of 937*x^4-319*x^3-442*x^2-677*x+355 4180990735810990 m001 ln(FeigenbaumD/ZetaR(3)) 4180990747782895 g001 GAMMA(7/12,80/111) 4180990761866587 h001 (1/9*exp(1)+7/8)/(3/11*exp(2)+4/5) 4180990763219847 r005 Re(z^2+c),c=-15/28+17/54*I,n=22 4180990768881139 m001 ZetaP(3)*(CopelandErdos-Weierstrass) 4180990778521186 l006 ln(5949/6203) 4180990792903442 h001 (5/9*exp(1)+1/11)/(1/10*exp(1)+1/9) 4180990794810875 a007 Real Root Of 781*x^4-252*x^3+901*x^2-907*x-579 4180990798443891 m001 (-CareFree+Mills)/(ArtinRank2-sin(1)) 4180990799663196 r009 Im(z^3+c),c=-1/17+23/47*I,n=13 4180990799928321 a001 317811/2207*521^(7/13) 4180990800897929 a007 Real Root Of 285*x^4+919*x^3-977*x^2+732*x+217 4180990801331562 a001 317811/3571*521^(8/13) 4180990805153610 a003 sin(Pi*11/75)*sin(Pi*37/95) 4180990809184239 a007 Real Root Of -212*x^4+603*x^3+135*x^2+500*x+236 4180990813553292 b008 E+LogGamma[(2+E)^(-1)] 4180990816274376 r005 Im(z^2+c),c=-7/34+44/61*I,n=38 4180990818711814 p001 sum((-1)^n/(275*n+239)/(625^n),n=0..infinity) 4180990822135071 a007 Real Root Of 54*x^4+236*x^3+68*x^2+7*x-412 4180990831976570 m001 1/GAMMA(7/24)^2/FeigenbaumKappa*exp(sin(1))^2 4180990840992854 r002 44th iterates of z^2 + 4180990858898666 r005 Im(z^2+c),c=-101/86+3/53*I,n=22 4180990883012764 r005 Im(z^2+c),c=11/106+9/19*I,n=46 4180990896405433 m001 1/LambertW(1)*GAMMA(1/24)^2/exp(Zeta(1/2)) 4180990899898887 q001 827/1978 4180990906450293 r005 Im(z^2+c),c=-5/102+32/55*I,n=53 4180990909092692 l006 ln(137/8964) 4180990910465489 r005 Re(z^2+c),c=9/52+21/43*I,n=41 4180990916310447 r005 Re(z^2+c),c=-20/29+15/49*I,n=38 4180990921084108 a001 843/13*514229^(16/19) 4180990933842636 r005 Im(z^2+c),c=13/42+15/53*I,n=55 4180990961071053 a007 Real Root Of -892*x^4-255*x^3+135*x^2+916*x+368 4180990962372482 r002 16th iterates of z^2 + 4180990964637166 r005 Im(z^2+c),c=3/26+20/43*I,n=54 4180990967429627 m001 ln(CareFree)/FeigenbaumAlpha^2*RenyiParking 4180990968330636 a001 161/5473*3^(8/25) 4180990980401589 a007 Real Root Of 451*x^4-957*x^3+774*x^2-971*x-625 4180990980960518 r009 Im(z^3+c),c=-19/62+7/16*I,n=18 4180991001143824 r005 Re(z^2+c),c=-67/114+7/51*I,n=40 4180991011906223 m001 (Pi-GAMMA(13/24))/(Champernowne+CopelandErdos) 4180991024950994 a007 Real Root Of 811*x^4+787*x^3+871*x^2-568*x-357 4180991045266461 r009 Re(z^3+c),c=-43/102+4/31*I,n=12 4180991046160795 r009 Re(z^3+c),c=-16/31+9/41*I,n=61 4180991051771495 a007 Real Root Of -239*x^4-97*x^3-836*x^2+743*x+457 4180991059778986 r005 Im(z^2+c),c=1/16+29/57*I,n=31 4180991060350993 p001 sum(1/(428*n+327)/n/(32^n),n=1..infinity) 4180991062529653 a007 Real Root Of -663*x^4-457*x^3-229*x^2+426*x+205 4180991071583101 p004 log(27281/17959) 4180991107504175 r002 12th iterates of z^2 + 4180991118746765 r009 Im(z^3+c),c=-3/8+19/45*I,n=9 4180991129302976 a007 Real Root Of -688*x^4-899*x^3+423*x^2+952*x+39 4180991131401533 a007 Real Root Of -740*x^4-18*x^3+481*x^2+839*x+288 4180991152328388 m005 (1/3*Catalan-3/7)/(3/11*2^(1/2)-1/11) 4180991173017853 r005 Im(z^2+c),c=11/58+15/37*I,n=47 4180991183198348 a001 2/17*17711^(7/54) 4180991183996936 a001 281/329*75025^(16/29) 4180991215661740 r009 Re(z^3+c),c=-67/126+20/51*I,n=52 4180991216621796 r005 Im(z^2+c),c=-5/6+1/41*I,n=56 4180991224699042 m001 Zeta(5)^HeathBrownMoroz-LandauRamanujan2nd 4180991229529886 r009 Re(z^3+c),c=-55/126+4/27*I,n=47 4180991238236515 r005 Re(z^2+c),c=-41/70+1/6*I,n=34 4180991244203627 a007 Real Root Of 405*x^4-826*x^3+333*x^2-787*x-460 4180991253520949 m001 3^(1/3)+ReciprocalLucas+StronglyCareFree 4180991270953685 m005 (1/3*2^(1/2)+1/12)/(7/11*gamma-1/2) 4180991275461849 r009 Im(z^3+c),c=-55/122+19/52*I,n=32 4180991280371593 r005 Re(z^2+c),c=-37/64+11/49*I,n=27 4180991282452430 r005 Re(z^2+c),c=-4/7+31/119*I,n=46 4180991298464601 r002 35th iterates of z^2 + 4180991322795596 r009 Re(z^3+c),c=-3/40+23/40*I,n=10 4180991325557414 m002 3+Log[Pi]+ProductLog[Pi]/(3*Pi^2) 4180991326169768 m001 (sin(Pi/5)*ln(Pi)+exp(sqrt(2)))/ln(Pi) 4180991326324632 r005 Re(z^2+c),c=-5/8+79/220*I,n=12 4180991332400197 r005 Re(z^2+c),c=-23/40+7/27*I,n=34 4180991337807607 r005 Im(z^2+c),c=1/74+4/9*I,n=5 4180991356619892 a007 Real Root Of -713*x^4+295*x^3+514*x^2+728*x-394 4180991366334408 m001 (-FeigenbaumB+Niven)/(Si(Pi)+CopelandErdos) 4180991375101745 m009 (3/10*Pi^2+1/6)/(2/3*Psi(1,1/3)+3/4) 4180991377566617 r005 Re(z^2+c),c=-7/12+3/34*I,n=20 4180991386403078 r005 Re(z^2+c),c=-25/44+17/59*I,n=64 4180991386491199 a003 cos(Pi*1/29)-sin(Pi*17/87) 4180991413594450 r009 Im(z^3+c),c=-3/46+22/45*I,n=17 4180991433500658 m005 (1/3*Pi-2/5)/(7/11*5^(1/2)+1/8) 4180991453279906 r005 Re(z^2+c),c=-12/19+18/41*I,n=37 4180991464082377 r002 14th iterates of z^2 + 4180991469325478 a007 Real Root Of -686*x^4+323*x^3-273*x^2+669*x+372 4180991473882535 m002 Pi^5+Log[Pi]/2+Pi^4*Log[Pi] 4180991478384522 a001 76/75025*377^(37/59) 4180991480600303 m008 (3/5*Pi-5)/(1/4*Pi^5-2) 4180991489016695 r005 Re(z^2+c),c=-65/118+16/47*I,n=43 4180991495958214 m001 (GAMMA(5/6)*Trott2nd-Salem)/Trott2nd 4180991503533280 m001 (Pi+AlladiGrinstead)/(ErdosBorwein-Robbin) 4180991508180113 a007 Real Root Of -194*x^4-937*x^3-568*x^2-151*x+97 4180991510509500 a007 Real Root Of 367*x^4-272*x^3-981*x^2-987*x+43 4180991511219939 a001 2/1762289*55^(9/10) 4180991515237125 r005 Re(z^2+c),c=-67/94+17/57*I,n=37 4180991517596317 r002 33th iterates of z^2 + 4180991525481317 r005 Im(z^2+c),c=-25/34+12/61*I,n=23 4180991533071201 a001 416020/2889*521^(7/13) 4180991536028201 a001 75025/1364*521^(9/13) 4180991539840131 a003 cos(Pi*16/101)*cos(Pi*16/33) 4180991541333155 r002 61th iterates of z^2 + 4180991547524315 r005 Re(z^2+c),c=-71/126+16/51*I,n=52 4180991548434096 r005 Re(z^2+c),c=-47/86+19/56*I,n=31 4180991564648669 r005 Re(z^2+c),c=-1/78+4/21*I,n=5 4180991586328352 r005 Im(z^2+c),c=1/90+7/13*I,n=53 4180991593167783 a007 Real Root Of -205*x^4-786*x^3+187*x^2-231*x+962 4180991596418870 a005 (1/cos(12/137*Pi))^998 4180991601994514 m001 GolombDickman/Chi(1)/Grothendieck 4180991634072514 r002 28th iterates of z^2 + 4180991640035328 a001 311187/2161*521^(7/13) 4180991652011574 m001 (2*Pi/GAMMA(5/6)-Bloch)/(MinimumGamma-Totient) 4180991655641184 a001 5702887/39603*521^(7/13) 4180991657918047 a001 7465176/51841*521^(7/13) 4180991658250237 a001 39088169/271443*521^(7/13) 4180991658298703 a001 14619165/101521*521^(7/13) 4180991658305774 a001 133957148/930249*521^(7/13) 4180991658306806 a001 701408733/4870847*521^(7/13) 4180991658306957 a001 1836311903/12752043*521^(7/13) 4180991658306978 a001 14930208/103681*521^(7/13) 4180991658306982 a001 12586269025/87403803*521^(7/13) 4180991658306982 a001 32951280099/228826127*521^(7/13) 4180991658306982 a001 43133785636/299537289*521^(7/13) 4180991658306982 a001 32264490531/224056801*521^(7/13) 4180991658306982 a001 591286729879/4106118243*521^(7/13) 4180991658306982 a001 774004377960/5374978561*521^(7/13) 4180991658306982 a001 4052739537881/28143753123*521^(7/13) 4180991658306982 a001 1515744265389/10525900321*521^(7/13) 4180991658306982 a001 3278735159921/22768774562*521^(7/13) 4180991658306982 a001 2504730781961/17393796001*521^(7/13) 4180991658306982 a001 956722026041/6643838879*521^(7/13) 4180991658306982 a001 182717648081/1268860318*521^(7/13) 4180991658306982 a001 139583862445/969323029*521^(7/13) 4180991658306982 a001 53316291173/370248451*521^(7/13) 4180991658306982 a001 10182505537/70711162*521^(7/13) 4180991658306984 a001 7778742049/54018521*521^(7/13) 4180991658306992 a001 2971215073/20633239*521^(7/13) 4180991658307050 a001 567451585/3940598*521^(7/13) 4180991658307444 a001 433494437/3010349*521^(7/13) 4180991658310145 a001 165580141/1149851*521^(7/13) 4180991658328657 a001 31622993/219602*521^(7/13) 4180991658455542 a001 24157817/167761*521^(7/13) 4180991659325227 a001 9227465/64079*521^(7/13) 4180991660079257 p003 LerchPhi(1/256,4,107/153) 4180991665286133 a001 1762289/12238*521^(7/13) 4180991673208782 m001 (MertensB3-Mills)/(ln(3)-Bloch) 4180991673713335 r005 Im(z^2+c),c=3/14+22/59*I,n=10 4180991676974972 r009 Re(z^3+c),c=-55/126+4/27*I,n=42 4180991679469448 l006 ln(603/916) 4180991679692759 r002 57th iterates of z^2 + 4180991694864680 b008 ArcSech[Sqrt[Pi]/58] 4180991697117328 a007 Real Root Of 191*x^4+882*x^3+279*x^2-108*x+769 4180991699130356 a001 1346269/843*521^(2/13) 4180991704371347 r002 35th iterates of z^2 + 4180991706142796 a001 1346269/9349*521^(7/13) 4180991711680817 m001 (2^(1/3)+5^(1/2))/(-Ei(1,1)+GAMMA(11/12)) 4180991734181263 h001 (9/10*exp(2)+1/2)/(5/9*exp(1)+1/5) 4180991735537190 r005 Re(z^2+c),c=-29/22+2/55*I,n=2 4180991747592172 r005 Re(z^2+c),c=-19/32+10/39*I,n=27 4180991753025347 r002 34th iterates of z^2 + 4180991772248026 r005 Im(z^2+c),c=11/34+14/45*I,n=30 4180991772409446 r009 Im(z^3+c),c=-17/42+24/61*I,n=23 4180991778924390 s001 sum(exp(-Pi/4)^n*A105308[n],n=1..infinity) 4180991787004219 r005 Re(z^2+c),c=-13/24+19/43*I,n=63 4180991803278688 a001 510081/122 4180991803947166 a007 Real Root Of 122*x^4+350*x^3-803*x^2-620*x-255 4180991821548959 a004 Fibonacci(14)*Lucas(15)/(1/2+sqrt(5)/2)^10 4180991837489216 r005 Re(z^2+c),c=-3/5+11/115*I,n=23 4180991840614768 r005 Re(z^2+c),c=5/36+17/59*I,n=19 4180991848015877 a007 Real Root Of 268*x^4+920*x^3-749*x^2+460*x+362 4180991864255306 r009 Im(z^3+c),c=-67/126+6/23*I,n=14 4180991886363610 r002 5th iterates of z^2 + 4180991892631714 a001 47*(1/2*5^(1/2)+1/2)^16*3571^(11/15) 4180991902061723 p001 sum(1/(459*n+47)/n/(5^n),n=1..infinity) 4180991919299919 m005 (1/2*5^(1/2)-9/10)/(6/7*Catalan-6) 4180991933304535 r009 Re(z^3+c),c=-55/126+4/27*I,n=34 4180991947426820 r005 Re(z^2+c),c=37/118+3/64*I,n=52 4180991955434579 m001 (CopelandErdos+Porter)/(Si(Pi)-exp(1/exp(1))) 4180991958145163 r005 Im(z^2+c),c=-2/31+33/53*I,n=47 4180991969528928 a007 Real Root Of 272*x^4+926*x^3-736*x^2+753*x+576 4180991984775308 a001 514229/2207*521^(6/13) 4180991986178548 a001 514229/3571*521^(7/13) 4180992005603454 m001 1/BesselJ(0,1)*ln(Bloch)^2*LambertW(1) 4180992009300172 a003 sin(Pi*7/100)-sin(Pi*9/41) 4180992010917197 r005 Re(z^2+c),c=-33/64+2/53*I,n=5 4180992019208862 a001 4181/843*1364^(14/15) 4180992022216597 a007 Real Root Of -275*x^4-980*x^3+654*x^2-192*x+173 4180992022792722 m005 (5/6*Pi+3/5)/(7/12+1/12*5^(1/2)) 4180992037225557 m005 (1/2*2^(1/2)-1/3)/(6*2^(1/2)+5/11) 4180992052433175 r009 Im(z^3+c),c=-23/74+17/39*I,n=26 4180992064511710 a003 cos(Pi*1/66)-cos(Pi*33/109) 4180992067405186 a001 3010349*144^(9/17) 4180992077565828 r004 Im(z^2+c),c=3/8-2/7*I,z(0)=exp(5/8*I*Pi),n=30 4180992079559665 r005 Im(z^2+c),c=-12/17+15/64*I,n=9 4180992081054162 m001 (Mills+ZetaP(4))/(Si(Pi)+Backhouse) 4180992091611245 a001 47*(1/2*5^(1/2)+1/2)^12*9349^(13/15) 4180992102918300 a001 2255/281*1364^(13/15) 4180992121853450 a007 Real Root Of -46*x^4-159*x^3-84*x^2-945*x-47 4180992123872458 m001 (2^(1/3)-Zeta(1,-1))/(Khinchin+Sarnak) 4180992128515011 m001 (-Backhouse+LaplaceLimit)/(3^(1/2)-Zeta(1,-1)) 4180992130469440 r009 Re(z^3+c),c=-55/126+4/27*I,n=46 4180992132118202 a001 47*(1/2*5^(1/2)+1/2)^7*64079^(14/15) 4180992133136437 a001 47/64079*(1/2*5^(1/2)+1/2)^30*64079^(14/15) 4180992133246273 a001 47*(1/2*5^(1/2)+1/2)^27*39603^(1/15) 4180992139446602 a001 47/9349*(1/2*5^(1/2)+1/2)^31*9349^(13/15) 4180992143549500 r005 Re(z^2+c),c=-9/14+11/34*I,n=56 4180992143934943 r005 Im(z^2+c),c=35/78+9/23*I,n=13 4180992151421635 m001 Gompertz^(KhinchinHarmonic/MertensB2) 4180992161403021 a007 Real Root Of -254*x^4-40*x^3+444*x^2+949*x+324 4180992186665262 m001 (Zeta(5)+Bloch)/(PrimesInBinary-ZetaQ(2)) 4180992192135108 r005 Re(z^2+c),c=-119/118+8/55*I,n=6 4180992196799594 a007 Real Root Of -163*x^4-514*x^3+706*x^2+51*x+114 4180992205647470 r002 15th iterates of z^2 + 4180992207444817 a007 Real Root Of -7*x^4+206*x^3-659*x^2-271*x-264 4180992210322143 m001 1/MertensB1*exp(ArtinRank2)/FeigenbaumKappa^2 4180992218873493 r002 27th iterates of z^2 + 4180992222514716 a007 Real Root Of 196*x^4+56*x^3+251*x^2-333*x-185 4180992223161058 a007 Real Root Of -291*x^4+627*x^3-459*x^2+323*x+270 4180992226970270 m005 (1/2*5^(1/2)-2/11)/(7/9*exp(1)+1/8) 4180992249250781 b008 -5+(Sqrt[Pi]+Pi)/6 4180992250524596 m005 (1/3*3^(1/2)+1/10)/(62/99+4/9*5^(1/2)) 4180992251159476 a001 4181/3*199^(11/53) 4180992253289297 m001 Sierpinski/LandauRamanujan/cos(1/5*Pi) 4180992258281790 r002 13th iterates of z^2 + 4180992277985145 a001 10946/843*1364^(4/5) 4180992287971351 r005 Im(z^2+c),c=41/94+7/55*I,n=3 4180992292147605 a003 cos(Pi*40/113)*sin(Pi*46/117) 4180992300798176 r002 63th iterates of z^2 + 4180992311019140 a001 34/710647*18^(3/4) 4180992311724492 a001 1364/1346269*89^(6/19) 4180992315070700 r005 Im(z^2+c),c=-25/62+33/59*I,n=29 4180992323778585 r009 Im(z^3+c),c=-31/70+21/44*I,n=12 4180992331547110 a007 Real Root Of 293*x^4-966*x^3-141*x^2-724*x+389 4180992341992405 a001 47/1346269*17711^(24/25) 4180992350054529 a007 Real Root Of -940*x^4-45*x^3-749*x^2-197*x+74 4180992350187445 m001 (Ei(1,1)+2*Pi/GAMMA(5/6))/(Sarnak+TwinPrimes) 4180992379257091 m001 1/ln(BesselJ(0,1))*Paris^2*GAMMA(1/12) 4180992386059778 a007 Real Root Of -937*x^4+68*x^3-795*x^2+123*x+224 4180992407131905 m005 (5/6*Catalan+2/3)/(1/2*Catalan-4/5) 4180992415137292 m001 ArtinRank2/(GAMMA(13/24)^MertensB2) 4180992417898183 a007 Real Root Of 106*x^4+260*x^3-812*x^2-193*x-1 4180992418156571 a001 17711/843*1364^(11/15) 4180992422038476 m005 (1/3*exp(1)-1/10)/(5/11*Pi+1/2) 4180992427854554 a001 3/75025*610^(29/40) 4180992433922466 m005 (1/3*2^(1/2)-3/4)/(1/9*5^(1/2)-2/11) 4180992456147216 r005 Re(z^2+c),c=-73/126+2/9*I,n=37 4180992464647559 a007 Real Root Of 9*x^4-46*x^3-242*x^2+535*x+355 4180992479848792 a005 (1/cos(5/222*Pi))^571 4180992482851853 r002 54th iterates of z^2 + 4180992486201914 r005 Re(z^2+c),c=-19/34+33/98*I,n=63 4180992503584241 r009 Im(z^3+c),c=-47/98+11/23*I,n=28 4180992506510987 r002 54th iterates of z^2 + 4180992507658564 r009 Im(z^3+c),c=-31/114+30/43*I,n=55 4180992522508387 m005 (25/4+1/4*5^(1/2))/(1/8*Pi-5/9) 4180992525488841 r005 Im(z^2+c),c=23/102+19/49*I,n=18 4180992529704339 a007 Real Root Of 115*x^4-312*x^3-482*x^2-666*x+382 4180992533641505 a001 47*(1/2*5^(1/2)+1/2)^21*2207^(7/15) 4180992539734025 q001 1289/3083 4180992541642312 m001 GAMMA(7/24)*ln(BesselJ(1,1))*sqrt(1+sqrt(3)) 4180992542643820 a007 Real Root Of -369*x^4-211*x^3-959*x^2+702*x+457 4180992554783138 s002 sum(A102651[n]/(pi^n+1),n=1..infinity) 4180992556508774 r002 47th iterates of z^2 + 4180992565311115 p003 LerchPhi(1/5,3,43/69) 4180992571656869 a001 28657/843*1364^(2/3) 4180992573885173 p001 sum((-1)^n/(381*n+232)/(12^n),n=0..infinity) 4180992574095737 r002 24th iterates of z^2 + 4180992580023439 m005 (1/2*3^(1/2)+1/2)/(4/5*Catalan-4) 4180992582994714 m001 (arctan(1/2)+MinimumGamma)/(Porter-Tetranacci) 4180992583176048 m001 (2^(1/2)-cos(1))/(GAMMA(11/12)+MertensB2) 4180992592291356 m002 E^Pi/Pi^2+36*Sinh[Pi] 4180992596283446 r005 Re(z^2+c),c=-43/70+6/19*I,n=41 4180992601770175 a001 1762289/682*199^(1/11) 4180992607307853 r005 Re(z^2+c),c=-23/38+6/59*I,n=21 4180992608979427 m001 (BesselI(1,1)+2/3)/(BesselI(0,2)+2/3) 4180992625357996 l006 ln(65/4253) 4180992632160766 p002 log(17^(3/2)-14^(7/12)) 4180992640912467 r009 Re(z^3+c),c=-53/126+5/38*I,n=31 4180992646294399 r005 Im(z^2+c),c=5/106+19/37*I,n=35 4180992651724930 a007 Real Root Of -222*x^4-987*x^3-213*x^2+224*x+361 4180992661429530 b008 3+2^(6/25) 4180992663674075 r005 Im(z^2+c),c=-29/26+5/99*I,n=16 4180992665021922 r002 26th iterates of z^2 + 4180992676046962 m001 1/GAMMA(1/12)/ln(ArtinRank2)*sqrt(3) 4180992683933098 m001 (ln(gamma)+OrthogonalArrays)/(sin(1)+Zeta(3)) 4180992684762384 r005 Re(z^2+c),c=-69/118+9/25*I,n=53 4180992698502697 a007 Real Root Of 49*x^4+190*x^3+x^2+222*x-176 4180992710042183 m001 (PrimesInBinary+Robbin)/(Trott2nd-ZetaQ(4)) 4180992714455214 r005 Im(z^2+c),c=-11/17+3/38*I,n=62 4180992717908624 a001 1346269/5778*521^(6/13) 4180992720065999 a001 15456/281*1364^(3/5) 4180992720658653 a001 121393/1364*521^(8/13) 4180992725184785 a008 Real Root of (-1+5*x^2+4*x^4+4*x^8) 4180992726755797 m005 (1/2*exp(1)+7/9)/(5/8*3^(1/2)-4/7) 4180992742383903 r002 61th iterates of z^2 + 4180992743154995 r005 Im(z^2+c),c=25/94+17/50*I,n=28 4180992756114266 m005 (1/2*Zeta(3)+7/8)/(3/8*2^(1/2)+3) 4180992756765309 a001 2255/6*11^(2/45) 4180992758386349 a007 Real Root Of -480*x^4+155*x^3-682*x^2-266*x+34 4180992766340640 r002 44th iterates of z^2 + 4180992775828845 r009 Im(z^3+c),c=-4/29+26/43*I,n=2 4180992785646679 m001 (KomornikLoreti+Robbin)/(sin(1/5*Pi)-gamma(3)) 4180992794252910 r009 Im(z^3+c),c=-7/16+19/48*I,n=13 4180992796775339 m001 1/ln(Ei(1))/TreeGrowth2nd^2/GAMMA(5/24)^2 4180992797891794 a007 Real Root Of -156*x^4-638*x^3-29*x^2-383*x-54 4180992824871354 a001 3524578/15127*521^(6/13) 4180992840477007 a001 9227465/39603*521^(6/13) 4180992842753841 a001 24157817/103682*521^(6/13) 4180992843086027 a001 63245986/271443*521^(6/13) 4180992843134492 a001 165580141/710647*521^(6/13) 4180992843141563 a001 433494437/1860498*521^(6/13) 4180992843142595 a001 1134903170/4870847*521^(6/13) 4180992843142745 a001 2971215073/12752043*521^(6/13) 4180992843142767 a001 7778742049/33385282*521^(6/13) 4180992843142770 a001 20365011074/87403803*521^(6/13) 4180992843142771 a001 53316291173/228826127*521^(6/13) 4180992843142771 a001 139583862445/599074578*521^(6/13) 4180992843142771 a001 365435296162/1568397607*521^(6/13) 4180992843142771 a001 956722026041/4106118243*521^(6/13) 4180992843142771 a001 2504730781961/10749957122*521^(6/13) 4180992843142771 a001 6557470319842/28143753123*521^(6/13) 4180992843142771 a001 10610209857723/45537549124*521^(6/13) 4180992843142771 a001 4052739537881/17393796001*521^(6/13) 4180992843142771 a001 1548008755920/6643838879*521^(6/13) 4180992843142771 a001 591286729879/2537720636*521^(6/13) 4180992843142771 a001 225851433717/969323029*521^(6/13) 4180992843142771 a001 86267571272/370248451*521^(6/13) 4180992843142771 a001 63246219/271444*521^(6/13) 4180992843142772 a001 12586269025/54018521*521^(6/13) 4180992843142781 a001 4807526976/20633239*521^(6/13) 4180992843142838 a001 1836311903/7881196*521^(6/13) 4180992843143232 a001 701408733/3010349*521^(6/13) 4180992843145933 a001 267914296/1149851*521^(6/13) 4180992843164445 a001 102334155/439204*521^(6/13) 4180992843291329 a001 39088169/167761*521^(6/13) 4180992844161002 a001 14930352/64079*521^(6/13) 4180992847207717 r002 48th iterates of z^2 + 4180992849084017 r005 Re(z^2+c),c=-5/13+23/54*I,n=2 4180992850121831 a001 5702887/24476*521^(6/13) 4180992861695866 r002 14th iterates of z^2 + 4180992870419789 a001 75025/843*1364^(8/15) 4180992870787725 m001 cos(Pi/12)^2/PrimesInBinary/exp(sin(1))^2 4180992872739725 a007 Real Root Of -262*x^4-877*x^3+782*x^2-479*x+291 4180992877379052 m005 (1/2*2^(1/2)+1/8)/(7/10*3^(1/2)+7/9) 4180992877986602 m003 2/3-Log[1/2+Sqrt[5]/2]+4*Sin[1/2+Sqrt[5]/2] 4180992883965518 a001 726103/281*521^(1/13) 4180992885267347 a007 Real Root Of -740*x^4+118*x^3+887*x^2+953*x-4 4180992890977960 a001 2178309/9349*521^(6/13) 4180992894492444 a001 89/199*76^(16/31) 4180992895321566 a007 Real Root Of 276*x^4-650*x^3-315*x^2-775*x+33 4180992899966065 m001 (-5^(1/2)+GAMMA(3/4))/(exp(1)-ln(2)/ln(10)) 4180992907675353 r005 Im(z^2+c),c=5/48+23/43*I,n=25 4180992908400788 m005 (1/3*Pi-1/5)/(4/9*exp(1)+9/11) 4180992921791961 r009 Im(z^3+c),c=-1/78+3/4*I,n=6 4180992928777959 r002 56th iterates of z^2 + 4180992946766007 r002 3th iterates of z^2 + 4180992960504105 a007 Real Root Of -196*x^4-965*x^3-730*x^2-729*x-923 4180992961843793 r002 58th iterates of z^2 + 4180992966000690 r009 Im(z^3+c),c=-1/102+28/57*I,n=12 4180992971471903 a001 281/7*3^(1/27) 4180992973518043 m005 (1/2*gamma-7/10)/(67/84+1/12*5^(1/2)) 4180992980240027 r005 Im(z^2+c),c=21/74+4/13*I,n=27 4180992980694707 r005 Re(z^2+c),c=-18/29+2/7*I,n=38 4180992995025623 m001 (arctan(1/3)+GAMMA(11/12))/(Si(Pi)+3^(1/3)) 4180993007156614 r005 Im(z^2+c),c=13/36+10/39*I,n=13 4180993016341258 a008 Real Root of x^4-2*x^3-44*x^2-63*x+54 4180993016904869 r005 Re(z^2+c),c=-55/94+9/56*I,n=37 4180993019972167 r005 Re(z^2+c),c=-16/27+2/59*I,n=51 4180993020030793 a001 121393/843*1364^(7/15) 4180993037112470 a003 cos(Pi*8/65)-cos(Pi*37/112) 4180993060938472 r005 Im(z^2+c),c=17/74+17/46*I,n=44 4180993062106906 m005 (1/2*exp(1)-1/5)/(-37/77+1/11*5^(1/2)) 4180993084231230 a001 41/15456*17711^(2/43) 4180993084901341 a008 Real Root of x^4-x^3-80*x^2+149*x+543 4180993088375904 r005 Re(z^2+c),c=-21/34+28/107*I,n=16 4180993095343979 r005 Im(z^2+c),c=3/122+33/61*I,n=26 4180993095364354 a007 Real Root Of 61*x^4-784*x^3+226*x^2-689*x+304 4180993125553084 a008 Real Root of x^4-x^3-x^2+x-357 4180993141272683 r005 Re(z^2+c),c=-65/114+17/61*I,n=63 4180993148829966 m001 (OneNinth+Riemann3rdZero)/(3^(1/3)-sin(1)) 4180993165847886 h001 (6/11*exp(2)+5/8)/(4/11*exp(1)+1/8) 4180993167630710 a001 329/281*9349^(17/19) 4180993169606819 a001 832040/2207*521^(5/13) 4180993169925523 a001 196418/843*1364^(2/5) 4180993171010060 a001 832040/3571*521^(6/13) 4180993187409381 r005 Re(z^2+c),c=-13/22+10/123*I,n=49 4180993196337843 r005 Im(z^2+c),c=5/52+23/48*I,n=42 4180993204781041 a001 329/281*24476^(17/21) 4180993205787116 a008 Real Root of x^3-x^2-147*x+559 4180993209492982 a001 377/2207*64079^(21/23) 4180993209678169 a001 329/281*64079^(17/23) 4180993210405817 a001 377/2207*439204^(7/9) 4180993210422632 a001 377/2207*7881196^(7/11) 4180993210422669 a001 377/2207*20633239^(3/5) 4180993210422674 a001 377/2207*141422324^(7/13) 4180993210422674 a001 377/2207*2537720636^(7/15) 4180993210422674 a001 377/2207*17393796001^(3/7) 4180993210422674 a001 377/2207*45537549124^(7/17) 4180993210422674 a001 377/2207*14662949395604^(1/3) 4180993210422674 a001 377/2207*(1/2+1/2*5^(1/2))^21 4180993210422674 a001 377/2207*192900153618^(7/18) 4180993210422674 a001 377/2207*10749957122^(7/16) 4180993210422674 a001 377/2207*599074578^(1/2) 4180993210422677 a001 377/2207*33385282^(7/12) 4180993210423520 a001 377/2207*1860498^(7/10) 4180993210428884 a001 377/2207*710647^(3/4) 4180993210430777 a001 329/281*45537549124^(1/3) 4180993210430777 a001 329/281*(1/2+1/2*5^(1/2))^17 4180993210430790 a001 329/281*12752043^(1/2) 4180993210706270 a001 329/281*103682^(17/24) 4180993210762989 a001 377/2207*103682^(7/8) 4180993212490693 a001 329/281*39603^(17/22) 4180993212967277 a001 377/2207*39603^(21/22) 4180993225961540 a001 329/281*15127^(17/20) 4180993236780715 a001 1/47*(1/2*5^(1/2)+1/2)^14*11^(6/17) 4180993238310660 a001 5473/161*322^(5/6) 4180993260572333 m001 GaussAGM-Zeta(1,-1)-LandauRamanujan2nd 4180993270379987 a007 Real Root Of 768*x^4-706*x^3-361*x^2-201*x-96 4180993271462932 r009 Re(z^3+c),c=-31/64+9/46*I,n=43 4180993277609887 r002 42th iterates of z^2 + 4180993278923118 r005 Re(z^2+c),c=-7/12+22/123*I,n=49 4180993287072965 r009 Im(z^3+c),c=-25/66+15/37*I,n=17 4180993293091828 m005 (2*2^(1/2)+5/6)/(3*Pi-2/3) 4180993299827326 l006 ln(6394/6667) 4180993319711886 a001 377*1364^(1/3) 4180993320598467 m001 (Champernowne+LaplaceLimit)/(Chi(1)-exp(1)) 4180993328511725 m005 (1/2*5^(1/2)-9/11)/(1/2*gamma+3/7) 4180993328707921 a001 329/281*5778^(17/18) 4180993331994260 a003 sin(Pi*7/64)/cos(Pi*23/114) 4180993334041725 r005 Re(z^2+c),c=-16/27+1/31*I,n=62 4180993350740179 a007 Real Root Of -246*x^4+489*x^3+361*x^2+4*x-93 4180993353110128 m001 (Tetranacci+ZetaP(2))/(LambertW(1)+gamma(3)) 4180993357542798 a007 Real Root Of -157*x^4-745*x^3-348*x^2+293*x+834 4180993360033011 m005 (1/2*5^(1/2)-10/11)/(4/11*Catalan+1/6) 4180993360629743 r005 Im(z^2+c),c=11/118+8/17*I,n=20 4180993372768144 r005 Re(z^2+c),c=-15/26+39/110*I,n=51 4180993380637392 r005 Im(z^2+c),c=-129/106+1/53*I,n=7 4180993388299096 m001 (Tribonacci+ThueMorse)/(Paris+TreeGrowth2nd) 4180993396671411 h001 (7/9*exp(2)+11/12)/(6/11*exp(1)+1/9) 4180993397732983 r005 Re(z^2+c),c=-59/90+6/59*I,n=10 4180993401206773 r008 a(0)=4,K{-n^6,17-11*n-54*n^2+43*n^3} 4180993407736865 r005 Im(z^2+c),c=-1/13+31/55*I,n=26 4180993411889867 m001 Khinchin+KomornikLoreti^ln(2) 4180993417087698 r005 Im(z^2+c),c=-11/58+1/18*I,n=13 4180993424314368 m001 1/GAMMA(1/6)^2/Riemann3rdZero*exp(sin(Pi/5))^2 4180993428948138 m001 (-HeathBrownMoroz+ZetaQ(2))/(Gompertz-Si(Pi)) 4180993429061043 h001 (-6*exp(1)-7)/(-7*exp(-1)-3) 4180993432115016 a007 Real Root Of 187*x^4+628*x^3-666*x^2-28*x+281 4180993432269449 m001 (Niven+RenyiParking)/(gamma(2)+Gompertz) 4180993448923838 p004 log(37361/571) 4180993449683368 r002 15th iterates of z^2 + 4180993450657648 a007 Real Root Of -110*x^4-272*x^3+757*x^2-159*x-164 4180993451426857 l006 ln(6161/9359) 4180993459880537 m001 1/Porter/DuboisRaymond^2*exp(BesselK(0,1))^2 4180993466476302 r005 Im(z^2+c),c=7/44+25/58*I,n=61 4180993466808264 a007 Real Root Of -707*x^4+695*x^3-309*x^2+808*x-313 4180993469539650 a001 514229/843*1364^(4/15) 4180993477413738 r009 Im(z^3+c),c=-7/74+31/64*I,n=6 4180993483143325 a007 Real Root Of 727*x^4+459*x^2-848*x-457 4180993488787428 m002 (-3*Cosh[Pi])/Pi^5+4*ProductLog[Pi] 4180993516419117 r005 Im(z^2+c),c=19/118+27/62*I,n=23 4180993533561993 r005 Re(z^2+c),c=-41/60+7/62*I,n=27 4180993555117721 r005 Im(z^2+c),c=-13/94+29/47*I,n=8 4180993556830806 a001 1/311187*4181^(43/50) 4180993557021764 r002 15th iterates of z^2 + 4180993588051580 h001 (2/3*exp(1)+1/9)/(3/5*exp(2)+1/6) 4180993594150278 r005 Re(z^2+c),c=-19/32+7/50*I,n=9 4180993597378748 r005 Re(z^2+c),c=-63/110+17/58*I,n=43 4180993599748856 r005 Re(z^2+c),c=-31/52+22/63*I,n=53 4180993599810469 r005 Im(z^2+c),c=1/18+17/31*I,n=4 4180993601753309 r005 Im(z^2+c),c=7/27+16/47*I,n=43 4180993604385693 r002 14th iterates of z^2 + 4180993614586046 r002 5th iterates of z^2 + 4180993619351607 a001 832040/843*1364^(1/5) 4180993627145837 m002 -Pi^5/6+Pi^6/2-Cosh[Pi] 4180993629293342 r009 Re(z^3+c),c=-55/114+6/31*I,n=46 4180993643670508 l006 ln(5558/8443) 4180993652578941 r005 Re(z^2+c),c=-61/106+7/29*I,n=59 4180993654271394 a001 2584/843*3571^(15/17) 4180993658309831 r009 Im(z^3+c),c=-23/90+5/11*I,n=27 4180993667322310 r005 Im(z^2+c),c=-3/19+20/33*I,n=45 4180993670320425 r005 Re(z^2+c),c=-69/122+13/43*I,n=63 4180993676397299 p001 sum(1/(77*n+25)/(6^n),n=0..infinity) 4180993680280146 m001 (Zeta(5)+Thue)^(5^(1/2)) 4180993702599391 m001 (1-arctan(1/2))/(-Mills+Riemann1stZero) 4180993706684337 m001 ZetaP(3)^MasserGramain*ZetaP(3)^GAMMA(19/24) 4180993708962890 m001 GAMMA(1/4)*MadelungNaCl/exp(exp(1)) 4180993722260964 m006 (2*ln(Pi)+1/2)/(3/5*Pi^2+3/4) 4180993732795844 r005 Im(z^2+c),c=-7/22+3/5*I,n=52 4180993734311721 a001 5/3010349*521^(38/43) 4180993738187031 m001 (Si(Pi)+polylog(4,1/2))/(-Cahen+ZetaP(4)) 4180993738259236 a001 6677047/1597 4180993740924984 a004 Fibonacci(14)*Lucas(17)/(1/2+sqrt(5)/2)^12 4180993759477598 r009 Re(z^3+c),c=-3/40+41/61*I,n=22 4180993759963710 a007 Real Root Of 516*x^4+394*x^3-237*x^2-843*x-298 4180993768826363 m001 ArtinRank2/(KomornikLoreti^ln(2^(1/2)+1)) 4180993769169609 a001 1346269/843*1364^(2/15) 4180993770796134 r005 Re(z^2+c),c=1/15+22/47*I,n=8 4180993781656454 m005 (1/3*Zeta(3)-1/4)/(2/9*exp(1)+3) 4180993798844259 a001 2889*10946^(23/43) 4180993799807318 a001 2255/281*3571^(13/17) 4180993813836393 a001 1568397607/8*987^(7/9) 4180993818545712 m001 exp(sin(Pi/12))^2*Khintchine^2*sin(Pi/5)^2 4180993844344279 a001 10946/843*3571^(12/17) 4180993846627796 a001 4181/843*3571^(14/17) 4180993853255219 a008 Real Root of x^4-9*x^2-29*x-27 4180993853985804 a001 17711/843*3571^(11/17) 4180993855194103 r002 37th iterates of z^2 + 4180993871780374 r005 Re(z^2+c),c=-55/122+15/37*I,n=11 4180993873907605 m001 MasserGramain^Totient/MertensB3 4180993876956199 a001 28657/843*3571^(10/17) 4180993882704436 l006 ln(4955/7527) 4180993887770834 a001 3/377*233^(7/23) 4180993888836121 m001 (Conway-Weierstrass)/(gamma(2)+exp(-1/2*Pi)) 4180993894835419 a001 15456/281*3571^(9/17) 4180993902744075 a001 726103/1926*521^(5/13) 4180993905573161 a001 98209/682*521^(7/13) 4180993905802409 a001 2584/843*9349^(15/19) 4180993911166157 m006 (1/3*exp(2*Pi)+1/6)/(4/Pi+3) 4180993914554796 r009 Re(z^3+c),c=-7/16+1/6*I,n=8 4180993914659295 a001 75025/843*3571^(8/17) 4180993918985310 a001 726103/281*1364^(1/15) 4180993922643868 a007 Real Root Of 265*x^4+899*x^3-841*x^2+117*x-82 4180993925038252 m001 FeigenbaumD*PisotVijayaraghavan*Salem 4180993929791426 r002 25th iterates of z^2 + 4180993930949205 r002 16th iterates of z^2 + 4180993932799633 r002 11th iterates of z^2 + 4180993933740379 a001 121393/843*3571^(7/17) 4180993935357446 h001 (4/7*exp(1)+7/9)/(1/10*exp(1)+2/7) 4180993938582119 a001 2584/843*24476^(5/7) 4180993942903115 a001 2584/843*64079^(15/23) 4180993943478046 a001 2584/843*167761^(3/5) 4180993943555140 a001 2584/843*439204^(5/9) 4180993943558906 a001 377/5778*(1/2+1/2*5^(1/2))^23 4180993943558906 a001 377/5778*4106118243^(1/2) 4180993943567151 a001 2584/843*7881196^(5/11) 4180993943567177 a001 2584/843*20633239^(3/7) 4180993943567181 a001 2584/843*141422324^(5/13) 4180993943567181 a001 2584/843*2537720636^(1/3) 4180993943567181 a001 2584/843*45537549124^(5/17) 4180993943567181 a001 2584/843*312119004989^(3/11) 4180993943567181 a001 2584/843*14662949395604^(5/21) 4180993943567181 a001 2584/843*(1/2+1/2*5^(1/2))^15 4180993943567181 a001 2584/843*192900153618^(5/18) 4180993943567181 a001 2584/843*28143753123^(3/10) 4180993943567181 a001 2584/843*10749957122^(5/16) 4180993943567181 a001 2584/843*599074578^(5/14) 4180993943567181 a001 2584/843*228826127^(3/8) 4180993943567183 a001 2584/843*33385282^(5/12) 4180993943567785 a001 2584/843*1860498^(1/2) 4180993943810263 a001 2584/843*103682^(5/8) 4180993943931632 a001 377/5778*103682^(23/24) 4180993945384755 a001 2584/843*39603^(15/22) 4180993953105184 a001 196418/843*3571^(6/17) 4180993953556255 r002 14th iterates of z^2 + 4180993954573537 r005 Im(z^2+c),c=3/26+20/43*I,n=57 4180993955063026 a007 Real Root Of -477*x^4+461*x^3-506*x^2+369*x+291 4180993957270798 a001 2584/843*15127^(3/4) 4180993958429635 b008 EllipticPi[-4*Pi,-1/5] 4180993963478305 r002 47th iterates of z^2 + 4180993967078927 m001 (Tetranacci+ZetaQ(2))/(arctan(1/2)+Zeta(1,2)) 4180993972236937 r005 Re(z^2+c),c=-71/122+9/47*I,n=55 4180993972361617 a001 377*3571^(5/17) 4180993991659445 a001 514229/843*3571^(4/17) 4180993999712214 a001 54018521/34*6557470319842^(11/19) 4180993999712215 a001 5374978561/17*701408733^(11/19) 4180993999798223 a001 2139295485799/34*75025^(11/19) 4180994001858230 m005 (3/5*gamma+5/6)/(5/6*2^(1/2)-4) 4180994009707381 a001 5702887/15127*521^(5/13) 4180994010571646 m001 (PrimesInBinary+ZetaP(4))/(ln(gamma)-Kac) 4180994010941461 a001 832040/843*3571^(3/17) 4180994017800871 a001 2255/281*9349^(13/19) 4180994017883493 m001 ZetaQ(2)/(gamma(3)+GAMMA(17/24)) 4180994019635564 m001 (gamma(1)-sin(1))/(-Artin+Lehmer) 4180994020569241 a001 17480736/4181 4180994020958172 a004 Fibonacci(14)*Lucas(19)/(1/2+sqrt(5)/2)^14 4180994025313117 a001 4976784/13201*521^(5/13) 4180994027589963 a001 39088169/103682*521^(5/13) 4180994027922151 a001 34111385/90481*521^(5/13) 4180994027970616 a001 267914296/710647*521^(5/13) 4180994027977687 a001 233802911/620166*521^(5/13) 4180994027978719 a001 1836311903/4870847*521^(5/13) 4180994027978869 a001 1602508992/4250681*521^(5/13) 4180994027978891 a001 12586269025/33385282*521^(5/13) 4180994027978894 a001 10983760033/29134601*521^(5/13) 4180994027978895 a001 86267571272/228826127*521^(5/13) 4180994027978895 a001 267913919/710646*521^(5/13) 4180994027978895 a001 591286729879/1568397607*521^(5/13) 4180994027978895 a001 516002918640/1368706081*521^(5/13) 4180994027978895 a001 4052739537881/10749957122*521^(5/13) 4180994027978895 a001 3536736619241/9381251041*521^(5/13) 4180994027978895 a001 6557470319842/17393796001*521^(5/13) 4180994027978895 a001 2504730781961/6643838879*521^(5/13) 4180994027978895 a001 956722026041/2537720636*521^(5/13) 4180994027978895 a001 365435296162/969323029*521^(5/13) 4180994027978895 a001 139583862445/370248451*521^(5/13) 4180994027978895 a001 53316291173/141422324*521^(5/13) 4180994027978896 a001 20365011074/54018521*521^(5/13) 4180994027978905 a001 7778742049/20633239*521^(5/13) 4180994027978962 a001 2971215073/7881196*521^(5/13) 4180994027979356 a001 1134903170/3010349*521^(5/13) 4180994027982057 a001 433494437/1149851*521^(5/13) 4180994028000569 a001 165580141/439204*521^(5/13) 4180994028127454 a001 63245986/167761*521^(5/13) 4180994028997132 a001 24157817/64079*521^(5/13) 4180994030229518 a001 1346269/843*3571^(2/17) 4180994034432460 r009 Re(z^3+c),c=-27/56+6/29*I,n=12 4180994034957993 a001 9227465/24476*521^(5/13) 4180994038441889 a001 17711/843*9349^(11/19) 4180994044643550 a001 28657/843*9349^(10/19) 4180994045569099 a001 10946/843*9349^(12/19) 4180994045754035 a001 15456/281*9349^(9/19) 4180994046209953 a001 2255/281*24476^(13/21) 4180994047929385 a001 2584/843*5778^(5/6) 4180994048809176 a001 75025/843*9349^(8/19) 4180994049515267 a001 726103/281*3571^(1/17) 4180994049954817 a001 2255/281*64079^(13/23) 4180994050522055 a001 377/15127*20633239^(5/7) 4180994050522062 a001 377/15127*2537720636^(5/9) 4180994050522062 a001 377/15127*312119004989^(5/11) 4180994050522062 a001 377/15127*(1/2+1/2*5^(1/2))^25 4180994050522062 a001 377/15127*3461452808002^(5/12) 4180994050522062 a001 377/15127*28143753123^(1/2) 4180994050522062 a001 377/15127*228826127^(5/8) 4180994050523069 a001 377/15127*1860498^(5/6) 4180994050530341 a001 2255/281*141422324^(1/3) 4180994050530341 a001 2255/281*(1/2+1/2*5^(1/2))^13 4180994050530341 a001 2255/281*73681302247^(1/4) 4180994050558713 a001 2255/281*271443^(1/2) 4180994050741012 a001 2255/281*103682^(13/24) 4180994051121525 a001 121393/843*9349^(7/19) 4180994052105571 a001 2255/281*39603^(13/22) 4180994053717595 a001 196418/843*9349^(6/19) 4180994056205294 a001 377*9349^(5/19) 4180994058734386 a001 514229/843*9349^(4/19) 4180994061247668 a001 832040/843*9349^(3/19) 4180994061757719 a001 3520397/842 4180994061814464 a004 Fibonacci(14)*Lucas(21)/(1/2+sqrt(5)/2)^16 4180994062406809 a001 2255/281*15127^(13/20) 4180994062480343 a001 17711/843*24476^(11/21) 4180994063766988 a001 1346269/843*9349^(2/19) 4180994065421861 a001 15456/281*24476^(3/7) 4180994065549448 m006 (5*Pi-3)/(2*ln(Pi)+3/4) 4180994065649074 a001 17711/843*64079^(11/23) 4180994066127722 a001 377/39603*7881196^(9/11) 4180994066127777 a001 377/39603*141422324^(9/13) 4180994066127777 a001 377/39603*2537720636^(3/5) 4180994066127777 a001 377/39603*45537549124^(9/17) 4180994066127777 a001 377/39603*817138163596^(9/19) 4180994066127777 a001 377/39603*14662949395604^(3/7) 4180994066127777 a001 377/39603*(1/2+1/2*5^(1/2))^27 4180994066127777 a001 377/39603*192900153618^(1/2) 4180994066127777 a001 377/39603*10749957122^(9/16) 4180994066127777 a001 377/39603*599074578^(9/14) 4180994066127780 a001 377/39603*33385282^(3/4) 4180994066128864 a001 377/39603*1860498^(9/10) 4180994066136033 a001 17711/843*7881196^(1/3) 4180994066136056 a001 17711/843*312119004989^(1/5) 4180994066136056 a001 17711/843*(1/2+1/2*5^(1/2))^11 4180994066136056 a001 17711/843*1568397607^(1/4) 4180994066284002 a001 726103/281*9349^(1/19) 4180994066291689 a001 75025/843*24476^(8/21) 4180994066314316 a001 17711/843*103682^(11/24) 4180994066418723 a001 121393/843*24476^(1/3) 4180994066496690 a001 28657/843*24476^(10/21) 4180994066829479 a001 196418/843*24476^(2/7) 4180994067131864 a001 377*24476^(5/21) 4180994067468943 a001 17711/843*39603^(1/2) 4180994067475642 a001 514229/843*24476^(4/21) 4180994067767037 a001 119814747/28657 4180994067775316 a004 Fibonacci(14)*Lucas(23)/(1/2+sqrt(5)/2)^18 4180994067803610 a001 832040/843*24476^(1/7) 4180994068014459 a001 15456/281*64079^(9/23) 4180994068137617 a001 1346269/843*24476^(2/21) 4180994068404620 a001 377/103682*(1/2+1/2*5^(1/2))^29 4180994068404620 a001 377/103682*1322157322203^(1/2) 4180994068405674 a001 15456/281*439204^(1/3) 4180994068412881 a001 15456/281*7881196^(3/11) 4180994068412899 a001 15456/281*141422324^(3/13) 4180994068412899 a001 15456/281*2537720636^(1/5) 4180994068412899 a001 15456/281*45537549124^(3/17) 4180994068412899 a001 15456/281*817138163596^(3/19) 4180994068412899 a001 15456/281*14662949395604^(1/7) 4180994068412899 a001 15456/281*(1/2+1/2*5^(1/2))^9 4180994068412899 a001 15456/281*192900153618^(1/6) 4180994068412899 a001 15456/281*10749957122^(3/16) 4180994068412899 a001 15456/281*599074578^(3/14) 4180994068412900 a001 15456/281*33385282^(1/4) 4180994068413261 a001 15456/281*1860498^(3/10) 4180994068435188 a001 121393/843*64079^(7/23) 4180994068469316 a001 726103/281*24476^(1/21) 4180994068557878 a001 196418/843*64079^(6/23) 4180994068558748 a001 15456/281*103682^(3/8) 4180994068572196 a001 377*64079^(5/23) 4180994068596220 a001 75025/843*64079^(8/23) 4180994068627908 a001 514229/843*64079^(4/23) 4180994068643785 a001 62735816/15005 4180994068644993 a004 Fibonacci(14)*Lucas(25)/(1/2+sqrt(5)/2)^20 4180994068667809 a001 832040/843*64079^(3/23) 4180994068713749 a001 1346269/843*64079^(2/23) 4180994068736807 a001 377/271443*(1/2+1/2*5^(1/2))^31 4180994068736807 a001 377/271443*9062201101803^(1/2) 4180994068745084 a001 121393/843*20633239^(1/5) 4180994068745086 a001 121393/843*17393796001^(1/7) 4180994068745086 a001 121393/843*14662949395604^(1/9) 4180994068745086 a001 121393/843*(1/2+1/2*5^(1/2))^7 4180994068745086 a001 121393/843*599074578^(1/6) 4180994068747156 a001 121393/843*710647^(1/4) 4180994068757383 a001 726103/281*64079^(1/23) 4180994068763840 a001 377*167761^(1/5) 4180994068771701 a001 821222493/196418 4180994068771877 a004 Fibonacci(14)*Lucas(27)/(1/2+sqrt(5)/2)^22 4180994068785272 a001 377/710647*141422324^(11/13) 4180994068785272 a001 377/710647*2537720636^(11/15) 4180994068785272 a001 377/710647*45537549124^(11/17) 4180994068785272 a001 377/710647*312119004989^(3/5) 4180994068785272 a001 377/710647*14662949395604^(11/21) 4180994068785272 a001 377/710647*(1/2+1/2*5^(1/2))^33 4180994068785272 a001 377/710647*192900153618^(11/18) 4180994068785272 a001 377/710647*10749957122^(11/16) 4180994068785272 a001 377/710647*1568397607^(3/4) 4180994068785272 a001 377/710647*599074578^(11/14) 4180994068785276 a001 377/710647*33385282^(11/12) 4180994068790363 a001 2149988399/514229 4180994068790389 a004 Fibonacci(14)*Lucas(29)/(1/2+sqrt(5)/2)^24 4180994068792343 a001 377/1860498*2537720636^(7/9) 4180994068792343 a001 377/1860498*17393796001^(5/7) 4180994068792343 a001 377/1860498*312119004989^(7/11) 4180994068792343 a001 377/1860498*14662949395604^(5/9) 4180994068792343 a001 377/1860498*(1/2+1/2*5^(1/2))^35 4180994068792343 a001 377/1860498*505019158607^(5/8) 4180994068792343 a001 377/1860498*28143753123^(7/10) 4180994068792343 a001 377/1860498*599074578^(5/6) 4180994068792343 a001 377/1860498*228826127^(7/8) 4180994068793086 a001 5628742704/1346269 4180994068793090 a004 Fibonacci(14)*Lucas(31)/(1/2+sqrt(5)/2)^26 4180994068793375 a001 377/4870847*(1/2+1/2*5^(1/2))^37 4180994068793483 a001 14736239713/3524578 4180994068793484 a004 Fibonacci(14)*Lucas(33)/(1/2+sqrt(5)/2)^28 4180994068793526 a001 377/12752043*2537720636^(13/15) 4180994068793526 a001 377/12752043*45537549124^(13/17) 4180994068793526 a001 377/12752043*14662949395604^(13/21) 4180994068793526 a001 377/12752043*(1/2+1/2*5^(1/2))^39 4180994068793526 a001 377/12752043*192900153618^(13/18) 4180994068793526 a001 377/12752043*73681302247^(3/4) 4180994068793526 a001 377/12752043*10749957122^(13/16) 4180994068793526 a001 377/12752043*599074578^(13/14) 4180994068793541 a001 593538099/141961 4180994068793541 a004 Fibonacci(14)*Lucas(35)/(1/2+sqrt(5)/2)^30 4180994068793548 a001 377/33385282*(1/2+1/2*5^(1/2))^41 4180994068793550 a001 101003689592/24157817 4180994068793550 a004 Fibonacci(14)*Lucas(37)/(1/2+sqrt(5)/2)^32 4180994068793550 a001 377*20633239^(1/7) 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^43/Lucas(38) 4180994068793551 a001 264431092341/63245986 4180994068793551 a004 Fibonacci(14)*Lucas(39)/(1/2+sqrt(5)/2)^34 4180994068793551 a001 377/228826127*45537549124^(15/17) 4180994068793551 a001 377/228826127*312119004989^(9/11) 4180994068793551 a001 377/228826127*14662949395604^(5/7) 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^45/Lucas(40) 4180994068793551 a001 377/228826127*192900153618^(5/6) 4180994068793551 a001 377/228826127*28143753123^(9/10) 4180994068793551 a001 377/228826127*10749957122^(15/16) 4180994068793551 a001 692289587431/165580141 4180994068793551 a004 Fibonacci(14)*Lucas(41)/(1/2+sqrt(5)/2)^36 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^47/Lucas(42) 4180994068793551 a001 1812437669952/433494437 4180994068793551 a004 Fibonacci(14)*Lucas(43)/(1/2+sqrt(5)/2)^38 4180994068793551 a001 377/1568397607*14662949395604^(7/9) 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^49/Lucas(44) 4180994068793551 a001 377/1568397607*505019158607^(7/8) 4180994068793551 a001 949004684485/226980634 4180994068793551 a004 Fibonacci(14)*Lucas(45)/(1/2+sqrt(5)/2)^40 4180994068793551 a001 377/4106118243*817138163596^(17/19) 4180994068793551 a001 377/4106118243*14662949395604^(17/21) 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^51/Lucas(46) 4180994068793551 a001 377/4106118243*192900153618^(17/18) 4180994068793551 a001 12422632597323/2971215073 4180994068793551 a004 Fibonacci(14)*Lucas(47)/(1/2+sqrt(5)/2)^42 4180994068793551 a001 377*2537720636^(1/9) 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^53/Lucas(48) 4180994068793551 a001 2501759566888/598364773 4180994068793551 a004 Fibonacci(14)*Lucas(49)/(1/2+sqrt(5)/2)^44 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^55/Lucas(50) 4180994068793551 a001 377/28143753123*3461452808002^(11/12) 4180994068793551 a001 85145990511309/20365011074 4180994068793551 a004 Fibonacci(14)*Lucas(51)/(1/2+sqrt(5)/2)^46 4180994068793551 a001 377/73681302247*14662949395604^(19/21) 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^57/Lucas(52) 4180994068793551 a001 222915097164383/53316291173 4180994068793551 a004 Fibonacci(14)*Lucas(53)/(1/2+sqrt(5)/2)^48 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^59/Lucas(54) 4180994068793551 a001 116719860196368/27916772489 4180994068793551 a004 Fibonacci(14)*Lucas(55)/(1/2+sqrt(5)/2)^50 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^61/Lucas(56) 4180994068793551 a001 1527882805781137/365435296162 4180994068793551 a004 Fibonacci(14)*Lucas(57)/(1/2+sqrt(5)/2)^52 4180994068793551 a001 377*312119004989^(1/11) 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^63/Lucas(58) 4180994068793551 a004 Fibonacci(14)*Lucas(59)/(1/2+sqrt(5)/2)^54 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^65/Lucas(60) 4180994068793551 a004 Fibonacci(14)*Lucas(61)/(1/2+sqrt(5)/2)^56 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^67/Lucas(62) 4180994068793551 a004 Fibonacci(14)*Lucas(63)/(1/2+sqrt(5)/2)^58 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^69/Lucas(64) 4180994068793551 a004 Fibonacci(14)*Lucas(65)/(1/2+sqrt(5)/2)^60 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^71/Lucas(66) 4180994068793551 a004 Fibonacci(14)*Lucas(67)/(1/2+sqrt(5)/2)^62 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^73/Lucas(68) 4180994068793551 a004 Fibonacci(14)*Lucas(69)/(1/2+sqrt(5)/2)^64 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^75/Lucas(70) 4180994068793551 a004 Fibonacci(14)*Lucas(71)/(1/2+sqrt(5)/2)^66 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^77/Lucas(72) 4180994068793551 a004 Fibonacci(14)*Lucas(73)/(1/2+sqrt(5)/2)^68 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^79/Lucas(74) 4180994068793551 a004 Fibonacci(14)*Lucas(75)/(1/2+sqrt(5)/2)^70 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^81/Lucas(76) 4180994068793551 a004 Fibonacci(14)*Lucas(77)/(1/2+sqrt(5)/2)^72 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^83/Lucas(78) 4180994068793551 a004 Fibonacci(14)*Lucas(79)/(1/2+sqrt(5)/2)^74 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^85/Lucas(80) 4180994068793551 a004 Fibonacci(14)*Lucas(81)/(1/2+sqrt(5)/2)^76 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^87/Lucas(82) 4180994068793551 a004 Fibonacci(14)*Lucas(83)/(1/2+sqrt(5)/2)^78 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^89/Lucas(84) 4180994068793551 a004 Fibonacci(14)*Lucas(85)/(1/2+sqrt(5)/2)^80 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^91/Lucas(86) 4180994068793551 a004 Fibonacci(14)*Lucas(87)/(1/2+sqrt(5)/2)^82 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^93/Lucas(88) 4180994068793551 a004 Fibonacci(14)*Lucas(89)/(1/2+sqrt(5)/2)^84 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^95/Lucas(90) 4180994068793551 a004 Fibonacci(14)*Lucas(91)/(1/2+sqrt(5)/2)^86 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^97/Lucas(92) 4180994068793551 a004 Fibonacci(14)*Lucas(93)/(1/2+sqrt(5)/2)^88 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^99/Lucas(94) 4180994068793551 a004 Fibonacci(14)*Lucas(95)/(1/2+sqrt(5)/2)^90 4180994068793551 a004 Fibonacci(14)*Lucas(97)/(1/2+sqrt(5)/2)^92 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^5/Lucas(1) 4180994068793551 a004 Fibonacci(14)*Lucas(100)/(1/2+sqrt(5)/2)^95 4180994068793551 a004 Fibonacci(14)*Lucas(99)/(1/2+sqrt(5)/2)^94 4180994068793551 a004 Fibonacci(14)*Lucas(98)/(1/2+sqrt(5)/2)^93 4180994068793551 a004 Fibonacci(14)*Lucas(96)/(1/2+sqrt(5)/2)^91 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^100/Lucas(95) 4180994068793551 a004 Fibonacci(14)*Lucas(94)/(1/2+sqrt(5)/2)^89 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^98/Lucas(93) 4180994068793551 a004 Fibonacci(14)*Lucas(92)/(1/2+sqrt(5)/2)^87 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^96/Lucas(91) 4180994068793551 a004 Fibonacci(14)*Lucas(90)/(1/2+sqrt(5)/2)^85 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^94/Lucas(89) 4180994068793551 a004 Fibonacci(14)*Lucas(88)/(1/2+sqrt(5)/2)^83 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^92/Lucas(87) 4180994068793551 a004 Fibonacci(14)*Lucas(86)/(1/2+sqrt(5)/2)^81 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^90/Lucas(85) 4180994068793551 a004 Fibonacci(14)*Lucas(84)/(1/2+sqrt(5)/2)^79 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^88/Lucas(83) 4180994068793551 a004 Fibonacci(14)*Lucas(82)/(1/2+sqrt(5)/2)^77 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^86/Lucas(81) 4180994068793551 a004 Fibonacci(14)*Lucas(80)/(1/2+sqrt(5)/2)^75 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^84/Lucas(79) 4180994068793551 a004 Fibonacci(14)*Lucas(78)/(1/2+sqrt(5)/2)^73 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^82/Lucas(77) 4180994068793551 a004 Fibonacci(14)*Lucas(76)/(1/2+sqrt(5)/2)^71 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^80/Lucas(75) 4180994068793551 a004 Fibonacci(14)*Lucas(74)/(1/2+sqrt(5)/2)^69 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^78/Lucas(73) 4180994068793551 a004 Fibonacci(14)*Lucas(72)/(1/2+sqrt(5)/2)^67 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^76/Lucas(71) 4180994068793551 a004 Fibonacci(14)*Lucas(70)/(1/2+sqrt(5)/2)^65 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^74/Lucas(69) 4180994068793551 a004 Fibonacci(14)*Lucas(68)/(1/2+sqrt(5)/2)^63 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^72/Lucas(67) 4180994068793551 a004 Fibonacci(14)*Lucas(66)/(1/2+sqrt(5)/2)^61 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^70/Lucas(65) 4180994068793551 a004 Fibonacci(14)*Lucas(64)/(1/2+sqrt(5)/2)^59 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^68/Lucas(63) 4180994068793551 a004 Fibonacci(14)*Lucas(62)/(1/2+sqrt(5)/2)^57 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^66/Lucas(61) 4180994068793551 a004 Fibonacci(14)*Lucas(60)/(1/2+sqrt(5)/2)^55 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^64/Lucas(59) 4180994068793551 a004 Fibonacci(14)*Lucas(58)/(1/2+sqrt(5)/2)^53 4180994068793551 a001 2472166310580434/591286729879 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^62/Lucas(57) 4180994068793551 a004 Fibonacci(14)*Lucas(56)/(1/2+sqrt(5)/2)^51 4180994068793551 a001 2504730781961/599075421 4180994068793551 a001 377/312119004989*14662949395604^(20/21) 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^60/Lucas(55) 4180994068793551 a004 Fibonacci(14)*Lucas(54)/(1/2+sqrt(5)/2)^49 4180994068793551 a001 360684203817457/86267571272 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^58/Lucas(53) 4180994068793551 a001 377*28143753123^(1/10) 4180994068793551 a004 Fibonacci(14)*Lucas(52)/(1/2+sqrt(5)/2)^47 4180994068793551 a001 137769106653074/32951280099 4180994068793551 a001 377/45537549124*14662949395604^(8/9) 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^56/Lucas(51) 4180994068793551 a004 Fibonacci(14)*Lucas(50)/(1/2+sqrt(5)/2)^45 4180994068793551 a001 10524623228353/2517253805 4180994068793551 a001 13/599786069*14662949395604^(6/7) 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^54/Lucas(49) 4180994068793551 a004 Fibonacci(14)*Lucas(48)/(1/2+sqrt(5)/2)^43 4180994068793551 a001 20100241772221/4807526976 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^52/Lucas(47) 4180994068793551 a001 377/6643838879*23725150497407^(13/16) 4180994068793551 a001 377/6643838879*505019158607^(13/14) 4180994068793551 a004 Fibonacci(14)*Lucas(46)/(1/2+sqrt(5)/2)^41 4180994068793551 a001 7677609174898/1836311903 4180994068793551 a001 377/2537720636*312119004989^(10/11) 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^50/Lucas(45) 4180994068793551 a001 377/2537720636*3461452808002^(5/6) 4180994068793551 a004 Fibonacci(14)*Lucas(44)/(1/2+sqrt(5)/2)^39 4180994068793551 a001 2932585752473/701408733 4180994068793551 a001 377/969323029*45537549124^(16/17) 4180994068793551 a001 377/969323029*14662949395604^(16/21) 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^48/Lucas(43) 4180994068793551 a001 377/969323029*192900153618^(8/9) 4180994068793551 a001 377/969323029*73681302247^(12/13) 4180994068793551 a001 377*228826127^(1/8) 4180994068793551 a004 Fibonacci(14)*Lucas(42)/(1/2+sqrt(5)/2)^37 4180994068793551 a001 2971215073/710648 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^46/Lucas(41) 4180994068793551 a001 377/370248451*10749957122^(23/24) 4180994068793551 a004 Fibonacci(14)*Lucas(40)/(1/2+sqrt(5)/2)^35 4180994068793551 a001 85571699018/20466831 4180994068793551 a001 377/141422324*312119004989^(4/5) 4180994068793551 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^44/Lucas(39) 4180994068793551 a001 377/141422324*23725150497407^(11/16) 4180994068793551 a001 377/141422324*73681302247^(11/13) 4180994068793551 a001 377/141422324*10749957122^(11/12) 4180994068793551 a001 377/141422324*4106118243^(22/23) 4180994068793552 a004 Fibonacci(14)*Lucas(38)/(1/2+sqrt(5)/2)^33 4180994068793552 a001 163427402749/39088169 4180994068793553 a001 377/54018521*2537720636^(14/15) 4180994068793553 a001 377/54018521*17393796001^(6/7) 4180994068793553 a001 377/54018521*45537549124^(14/17) 4180994068793553 a001 377/54018521*14662949395604^(2/3) 4180994068793553 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^42/Lucas(37) 4180994068793553 a001 377/54018521*505019158607^(3/4) 4180994068793553 a001 377/54018521*192900153618^(7/9) 4180994068793553 a001 377/54018521*10749957122^(7/8) 4180994068793553 a001 377/54018521*4106118243^(21/23) 4180994068793553 a001 377/54018521*1568397607^(21/22) 4180994068793555 a004 Fibonacci(14)*Lucas(36)/(1/2+sqrt(5)/2)^31 4180994068793555 a001 62423713157/14930352 4180994068793561 a001 13/711491*2537720636^(8/9) 4180994068793561 a001 13/711491*312119004989^(8/11) 4180994068793561 a001 13/711491*(1/2+1/2*5^(1/2))^40 4180994068793561 a001 13/711491*23725150497407^(5/8) 4180994068793561 a001 13/711491*73681302247^(10/13) 4180994068793561 a001 13/711491*28143753123^(4/5) 4180994068793561 a001 13/711491*10749957122^(5/6) 4180994068793561 a001 13/711491*4106118243^(20/23) 4180994068793561 a001 13/711491*1568397607^(10/11) 4180994068793561 a001 13/711491*599074578^(20/21) 4180994068793577 a004 Fibonacci(14)*Lucas(34)/(1/2+sqrt(5)/2)^29 4180994068793577 a001 23843736722/5702887 4180994068793619 a001 377/7881196*817138163596^(2/3) 4180994068793619 a001 377/7881196*(1/2+1/2*5^(1/2))^38 4180994068793619 a001 377/7881196*10749957122^(19/24) 4180994068793619 a001 377/7881196*4106118243^(19/23) 4180994068793619 a001 377/7881196*1568397607^(19/22) 4180994068793619 a001 377/7881196*599074578^(19/21) 4180994068793619 a001 377/7881196*228826127^(19/20) 4180994068793728 a004 Fibonacci(14)*Lucas(32)/(1/2+sqrt(5)/2)^27 4180994068793729 a001 9107497009/2178309 4180994068793753 a001 377*1860498^(1/6) 4180994068794012 a001 377/3010349*141422324^(12/13) 4180994068794013 a001 377/3010349*2537720636^(4/5) 4180994068794013 a001 377/3010349*45537549124^(12/17) 4180994068794013 a001 377/3010349*14662949395604^(4/7) 4180994068794013 a001 377/3010349*(1/2+1/2*5^(1/2))^36 4180994068794013 a001 377/3010349*505019158607^(9/14) 4180994068794013 a001 377/3010349*192900153618^(2/3) 4180994068794013 a001 377/3010349*73681302247^(9/13) 4180994068794013 a001 377/3010349*10749957122^(3/4) 4180994068794013 a001 377/3010349*4106118243^(18/23) 4180994068794013 a001 377/3010349*1568397607^(9/11) 4180994068794013 a001 377/3010349*599074578^(6/7) 4180994068794013 a001 377/3010349*228826127^(9/10) 4180994068794013 a001 377/3010349*87403803^(18/19) 4180994068794759 a004 Fibonacci(14)*Lucas(30)/(1/2+sqrt(5)/2)^25 4180994068794769 a001 695750861/166408 4180994068796714 a001 377/1149851*45537549124^(2/3) 4180994068796714 a001 377/1149851*(1/2+1/2*5^(1/2))^34 4180994068796714 a001 377/1149851*10749957122^(17/24) 4180994068796714 a001 377/1149851*4106118243^(17/23) 4180994068796714 a001 377/1149851*1568397607^(17/22) 4180994068796714 a001 377/1149851*599074578^(17/21) 4180994068796714 a001 377/1149851*228826127^(17/20) 4180994068796714 a001 377/1149851*87403803^(17/19) 4180994068796717 a001 377/1149851*33385282^(17/18) 4180994068798214 a001 832040/843*439204^(1/9) 4180994068800616 a001 832040/843*7881196^(1/11) 4180994068800622 a001 832040/843*141422324^(1/13) 4180994068800622 a001 832040/843*2537720636^(1/15) 4180994068800622 a001 832040/843*45537549124^(1/17) 4180994068800622 a001 832040/843*14662949395604^(1/21) 4180994068800622 a001 832040/843*(1/2+1/2*5^(1/2))^3 4180994068800622 a001 832040/843*192900153618^(1/18) 4180994068800622 a001 832040/843*10749957122^(1/16) 4180994068800622 a001 832040/843*599074578^(1/14) 4180994068800623 a001 832040/843*33385282^(1/12) 4180994068800743 a001 832040/843*1860498^(1/10) 4180994068801654 a001 726103/562+726103/562*5^(1/2) 4180994068801804 a004 Fibonacci(34)/Lucas(14)/(1/2+sqrt(5)/2) 4180994068801826 a004 Fibonacci(36)/Lucas(14)/(1/2+sqrt(5)/2)^3 4180994068801830 a004 Fibonacci(38)/Lucas(14)/(1/2+sqrt(5)/2)^5 4180994068801830 a004 Fibonacci(40)/Lucas(14)/(1/2+sqrt(5)/2)^7 4180994068801830 a004 Fibonacci(42)/Lucas(14)/(1/2+sqrt(5)/2)^9 4180994068801830 a004 Fibonacci(44)/Lucas(14)/(1/2+sqrt(5)/2)^11 4180994068801830 a004 Fibonacci(46)/Lucas(14)/(1/2+sqrt(5)/2)^13 4180994068801830 a004 Fibonacci(48)/Lucas(14)/(1/2+sqrt(5)/2)^15 4180994068801830 a004 Fibonacci(50)/Lucas(14)/(1/2+sqrt(5)/2)^17 4180994068801830 a004 Fibonacci(52)/Lucas(14)/(1/2+sqrt(5)/2)^19 4180994068801830 a004 Fibonacci(54)/Lucas(14)/(1/2+sqrt(5)/2)^21 4180994068801830 a004 Fibonacci(14)*Lucas(28)/(1/2+sqrt(5)/2)^23 4180994068801830 a004 Fibonacci(58)/Lucas(14)/(1/2+sqrt(5)/2)^25 4180994068801830 a004 Fibonacci(60)/Lucas(14)/(1/2+sqrt(5)/2)^27 4180994068801830 a004 Fibonacci(62)/Lucas(14)/(1/2+sqrt(5)/2)^29 4180994068801830 a004 Fibonacci(64)/Lucas(14)/(1/2+sqrt(5)/2)^31 4180994068801830 a004 Fibonacci(66)/Lucas(14)/(1/2+sqrt(5)/2)^33 4180994068801830 a004 Fibonacci(68)/Lucas(14)/(1/2+sqrt(5)/2)^35 4180994068801830 a004 Fibonacci(70)/Lucas(14)/(1/2+sqrt(5)/2)^37 4180994068801830 a004 Fibonacci(72)/Lucas(14)/(1/2+sqrt(5)/2)^39 4180994068801830 a004 Fibonacci(74)/Lucas(14)/(1/2+sqrt(5)/2)^41 4180994068801830 a004 Fibonacci(76)/Lucas(14)/(1/2+sqrt(5)/2)^43 4180994068801830 a004 Fibonacci(78)/Lucas(14)/(1/2+sqrt(5)/2)^45 4180994068801830 a004 Fibonacci(80)/Lucas(14)/(1/2+sqrt(5)/2)^47 4180994068801830 a004 Fibonacci(82)/Lucas(14)/(1/2+sqrt(5)/2)^49 4180994068801830 a004 Fibonacci(84)/Lucas(14)/(1/2+sqrt(5)/2)^51 4180994068801830 a004 Fibonacci(86)/Lucas(14)/(1/2+sqrt(5)/2)^53 4180994068801830 a004 Fibonacci(88)/Lucas(14)/(1/2+sqrt(5)/2)^55 4180994068801830 a004 Fibonacci(90)/Lucas(14)/(1/2+sqrt(5)/2)^57 4180994068801830 a004 Fibonacci(92)/Lucas(14)/(1/2+sqrt(5)/2)^59 4180994068801830 a004 Fibonacci(94)/Lucas(14)/(1/2+sqrt(5)/2)^61 4180994068801830 a004 Fibonacci(96)/Lucas(14)/(1/2+sqrt(5)/2)^63 4180994068801830 a004 Fibonacci(98)/Lucas(14)/(1/2+sqrt(5)/2)^65 4180994068801830 a004 Fibonacci(100)/Lucas(14)/(1/2+sqrt(5)/2)^67 4180994068801830 a004 Fibonacci(99)/Lucas(14)/(1/2+sqrt(5)/2)^66 4180994068801830 a004 Fibonacci(97)/Lucas(14)/(1/2+sqrt(5)/2)^64 4180994068801830 a004 Fibonacci(95)/Lucas(14)/(1/2+sqrt(5)/2)^62 4180994068801830 a004 Fibonacci(93)/Lucas(14)/(1/2+sqrt(5)/2)^60 4180994068801830 a004 Fibonacci(91)/Lucas(14)/(1/2+sqrt(5)/2)^58 4180994068801830 a004 Fibonacci(89)/Lucas(14)/(1/2+sqrt(5)/2)^56 4180994068801830 a004 Fibonacci(87)/Lucas(14)/(1/2+sqrt(5)/2)^54 4180994068801830 a004 Fibonacci(85)/Lucas(14)/(1/2+sqrt(5)/2)^52 4180994068801830 a004 Fibonacci(83)/Lucas(14)/(1/2+sqrt(5)/2)^50 4180994068801830 a004 Fibonacci(81)/Lucas(14)/(1/2+sqrt(5)/2)^48 4180994068801830 a004 Fibonacci(79)/Lucas(14)/(1/2+sqrt(5)/2)^46 4180994068801830 a004 Fibonacci(77)/Lucas(14)/(1/2+sqrt(5)/2)^44 4180994068801830 a004 Fibonacci(75)/Lucas(14)/(1/2+sqrt(5)/2)^42 4180994068801830 a004 Fibonacci(73)/Lucas(14)/(1/2+sqrt(5)/2)^40 4180994068801830 a004 Fibonacci(71)/Lucas(14)/(1/2+sqrt(5)/2)^38 4180994068801830 a004 Fibonacci(69)/Lucas(14)/(1/2+sqrt(5)/2)^36 4180994068801830 a004 Fibonacci(67)/Lucas(14)/(1/2+sqrt(5)/2)^34 4180994068801830 a004 Fibonacci(65)/Lucas(14)/(1/2+sqrt(5)/2)^32 4180994068801830 a004 Fibonacci(63)/Lucas(14)/(1/2+sqrt(5)/2)^30 4180994068801830 a004 Fibonacci(61)/Lucas(14)/(1/2+sqrt(5)/2)^28 4180994068801830 a004 Fibonacci(59)/Lucas(14)/(1/2+sqrt(5)/2)^26 4180994068801830 a004 Fibonacci(57)/Lucas(14)/(1/2+sqrt(5)/2)^24 4180994068801830 a004 Fibonacci(55)/Lucas(14)/(1/2+sqrt(5)/2)^22 4180994068801830 a004 Fibonacci(53)/Lucas(14)/(1/2+sqrt(5)/2)^20 4180994068801830 a004 Fibonacci(51)/Lucas(14)/(1/2+sqrt(5)/2)^18 4180994068801830 a004 Fibonacci(49)/Lucas(14)/(1/2+sqrt(5)/2)^16 4180994068801830 a004 Fibonacci(47)/Lucas(14)/(1/2+sqrt(5)/2)^14 4180994068801830 a004 Fibonacci(45)/Lucas(14)/(1/2+sqrt(5)/2)^12 4180994068801830 a004 Fibonacci(43)/Lucas(14)/(1/2+sqrt(5)/2)^10 4180994068801830 a004 Fibonacci(41)/Lucas(14)/(1/2+sqrt(5)/2)^8 4180994068801830 a004 Fibonacci(39)/Lucas(14)/(1/2+sqrt(5)/2)^6 4180994068801832 a004 Fibonacci(37)/Lucas(14)/(1/2+sqrt(5)/2)^4 4180994068801840 a004 Fibonacci(35)/Lucas(14)/(1/2+sqrt(5)/2)^2 4180994068801897 a001 3524578/843 4180994068802292 a001 1346269/843*(1/2+1/2*5^(1/2))^2 4180994068802292 a001 1346269/843*10749957122^(1/24) 4180994068802292 a001 1346269/843*4106118243^(1/23) 4180994068802292 a001 1346269/843*1568397607^(1/22) 4180994068802292 a001 1346269/843*599074578^(1/21) 4180994068802292 a001 1346269/843*228826127^(1/20) 4180994068802292 a001 1346269/843*87403803^(1/19) 4180994068802292 a001 1346269/843*33385282^(1/18) 4180994068802293 a001 1346269/843*12752043^(1/17) 4180994068802303 a001 1346269/843*4870847^(1/16) 4180994068802372 a001 1346269/843*1860498^(1/15) 4180994068802883 a001 1346269/843*710647^(1/14) 4180994068804992 a001 514229/843*(1/2+1/2*5^(1/2))^4 4180994068804992 a001 514229/843*23725150497407^(1/16) 4180994068804992 a001 514229/843*73681302247^(1/13) 4180994068804992 a001 514229/843*10749957122^(1/12) 4180994068804992 a001 514229/843*4106118243^(2/23) 4180994068804992 a001 514229/843*1568397607^(1/11) 4180994068804992 a001 514229/843*599074578^(2/21) 4180994068804992 a001 514229/843*228826127^(1/10) 4180994068804992 a001 514229/843*87403803^(2/19) 4180994068804993 a001 514229/843*33385282^(1/9) 4180994068804995 a001 514229/843*12752043^(2/17) 4180994068805014 a001 514229/843*4870847^(1/8) 4180994068805153 a001 514229/843*1860498^(2/15) 4180994068806175 a001 514229/843*710647^(1/7) 4180994068806656 a001 1346269/843*271443^(1/13) 4180994068813722 a001 514229/843*271443^(2/13) 4180994068815226 a001 377/439204*(1/2+1/2*5^(1/2))^32 4180994068815226 a001 377/439204*23725150497407^(1/2) 4180994068815226 a001 377/439204*73681302247^(8/13) 4180994068815226 a001 377/439204*10749957122^(2/3) 4180994068815226 a001 377/439204*4106118243^(16/23) 4180994068815226 a001 377/439204*1568397607^(8/11) 4180994068815226 a001 377/439204*599074578^(16/21) 4180994068815226 a001 377/439204*228826127^(4/5) 4180994068815226 a001 377/439204*87403803^(16/19) 4180994068815229 a001 377/439204*33385282^(8/9) 4180994068815250 a001 377/439204*12752043^(16/17) 4180994068817859 a001 726103/281*103682^(1/24) 4180994068818688 a001 196418/843*439204^(2/9) 4180994068823492 a001 196418/843*7881196^(2/11) 4180994068823505 a001 196418/843*141422324^(2/13) 4180994068823505 a001 196418/843*2537720636^(2/15) 4180994068823505 a001 196418/843*45537549124^(2/17) 4180994068823505 a001 196418/843*14662949395604^(2/21) 4180994068823505 a001 196418/843*(1/2+1/2*5^(1/2))^6 4180994068823505 a001 196418/843*10749957122^(1/8) 4180994068823505 a001 196418/843*4106118243^(3/23) 4180994068823505 a001 196418/843*1568397607^(3/22) 4180994068823505 a001 196418/843*599074578^(1/7) 4180994068823505 a001 196418/843*228826127^(3/20) 4180994068823505 a001 196418/843*87403803^(3/19) 4180994068823505 a001 196418/843*33385282^(1/6) 4180994068823509 a001 196418/843*12752043^(3/17) 4180994068823538 a001 196418/843*4870847^(3/16) 4180994068823746 a001 196418/843*1860498^(1/5) 4180994068825279 a001 196418/843*710647^(3/14) 4180994068834702 a001 1346269/843*103682^(1/12) 4180994068836599 a001 196418/843*271443^(3/13) 4180994068849239 a001 832040/843*103682^(1/8) 4180994068850296 a004 Fibonacci(14)*Lucas(26)/(1/2+sqrt(5)/2)^21 4180994068850757 a001 507543413/121393 4180994068858524 a001 121393/843*103682^(7/24) 4180994068869814 a001 514229/843*103682^(1/6) 4180994068874579 a001 377*103682^(5/24) 4180994068920737 a001 196418/843*103682^(1/4) 4180994068922826 a001 726103/281*39603^(1/22) 4180994068942049 a001 377/167761*7881196^(10/11) 4180994068942101 a001 377/167761*20633239^(6/7) 4180994068942110 a001 377/167761*141422324^(10/13) 4180994068942110 a001 377/167761*2537720636^(2/3) 4180994068942110 a001 377/167761*45537549124^(10/17) 4180994068942110 a001 377/167761*312119004989^(6/11) 4180994068942110 a001 377/167761*14662949395604^(10/21) 4180994068942110 a001 377/167761*(1/2+1/2*5^(1/2))^30 4180994068942110 a001 377/167761*192900153618^(5/9) 4180994068942110 a001 377/167761*28143753123^(3/5) 4180994068942110 a001 377/167761*10749957122^(5/8) 4180994068942110 a001 377/167761*4106118243^(15/23) 4180994068942110 a001 377/167761*1568397607^(15/22) 4180994068942110 a001 377/167761*599074578^(5/7) 4180994068942110 a001 377/167761*228826127^(3/4) 4180994068942110 a001 377/167761*87403803^(15/19) 4180994068942113 a001 377/167761*33385282^(5/6) 4180994068942132 a001 377/167761*12752043^(15/17) 4180994068942275 a001 377/167761*4870847^(15/16) 4180994068950389 a001 75025/843*(1/2+1/2*5^(1/2))^8 4180994068950389 a001 75025/843*23725150497407^(1/8) 4180994068950389 a001 75025/843*505019158607^(1/7) 4180994068950389 a001 75025/843*73681302247^(2/13) 4180994068950389 a001 75025/843*10749957122^(1/6) 4180994068950389 a001 75025/843*4106118243^(4/23) 4180994068950389 a001 75025/843*1568397607^(2/11) 4180994068950389 a001 75025/843*599074578^(4/21) 4180994068950389 a001 75025/843*228826127^(1/5) 4180994068950389 a001 75025/843*87403803^(4/19) 4180994068950390 a001 75025/843*33385282^(2/9) 4180994068950395 a001 75025/843*12752043^(4/17) 4180994068950433 a001 75025/843*4870847^(1/4) 4180994068950711 a001 75025/843*1860498^(4/15) 4180994068952754 a001 75025/843*710647^(2/7) 4180994068967848 a001 75025/843*271443^(4/13) 4180994069044635 a001 1346269/843*39603^(1/11) 4180994069080032 a001 75025/843*103682^(1/3) 4180994069103424 r005 Re(z^2+c),c=-23/36+5/17*I,n=49 4180994069164137 a001 832040/843*39603^(3/22) 4180994069182483 a004 Fibonacci(14)*Lucas(24)/(1/2+sqrt(5)/2)^19 4180994069185645 a001 193864333/46368 4180994069289679 a001 514229/843*39603^(2/11) 4180994069377354 a001 28657/843*64079^(10/23) 4180994069399409 a001 377*39603^(5/22) 4180994069503443 a001 15456/281*39603^(9/22) 4180994069550534 a001 196418/843*39603^(3/11) 4180994069593287 a001 121393/843*39603^(7/22) 4180994069715228 a001 726103/281*15127^(1/20) 4180994069760642 a001 28657/843*167761^(2/5) 4180994069811779 a001 377/64079*20633239^(4/5) 4180994069811786 a001 377/64079*17393796001^(4/7) 4180994069811786 a001 377/64079*14662949395604^(4/9) 4180994069811786 a001 377/64079*(1/2+1/2*5^(1/2))^28 4180994069811786 a001 377/64079*73681302247^(7/13) 4180994069811786 a001 377/64079*10749957122^(7/12) 4180994069811786 a001 377/64079*4106118243^(14/23) 4180994069811786 a001 377/64079*1568397607^(7/11) 4180994069811786 a001 377/64079*599074578^(2/3) 4180994069811787 a001 377/64079*228826127^(7/10) 4180994069811787 a001 377/64079*87403803^(14/19) 4180994069811789 a001 377/64079*33385282^(7/9) 4180994069811808 a001 377/64079*12752043^(14/17) 4180994069811941 a001 377/64079*4870847^(7/8) 4180994069812914 a001 377/64079*1860498^(14/15) 4180994069820063 a001 28657/843*20633239^(2/7) 4180994069820065 a001 28657/843*2537720636^(2/9) 4180994069820065 a001 28657/843*312119004989^(2/11) 4180994069820065 a001 28657/843*(1/2+1/2*5^(1/2))^10 4180994069820065 a001 28657/843*28143753123^(1/5) 4180994069820065 a001 28657/843*10749957122^(5/24) 4180994069820065 a001 28657/843*4106118243^(5/23) 4180994069820065 a001 28657/843*1568397607^(5/22) 4180994069820065 a001 28657/843*599074578^(5/21) 4180994069820065 a001 28657/843*228826127^(1/4) 4180994069820065 a001 28657/843*87403803^(5/19) 4180994069820066 a001 28657/843*33385282^(5/18) 4180994069820073 a001 28657/843*12752043^(5/17) 4180994069820120 a001 28657/843*4870847^(5/16) 4180994069820468 a001 28657/843*1860498^(1/3) 4180994069823022 a001 28657/843*710647^(5/14) 4180994069841890 a001 28657/843*271443^(5/13) 4180994069919761 a001 75025/843*39603^(4/11) 4180994069982120 a001 28657/843*103682^(5/12) 4180994070629440 a001 1346269/843*15127^(1/10) 4180994071031781 a001 28657/843*39603^(5/11) 4180994071459326 a004 Fibonacci(14)*Lucas(22)/(1/2+sqrt(5)/2)^17 4180994071481000 a001 74049586/17711 4180994071541346 a001 832040/843*15127^(3/20) 4180994071792868 a001 10946/843*24476^(4/7) 4180994072459290 a001 514229/843*15127^(1/5) 4180994072736447 r005 Im(z^2+c),c=25/64+9/62*I,n=50 4180994073361424 a001 377*15127^(1/4) 4180994074304951 a001 196418/843*15127^(3/10) 4180994075140107 a001 121393/843*15127^(7/20) 4180994075249665 a001 10946/843*64079^(12/23) 4180994075759134 a001 726103/281*5778^(1/18) 4180994075771285 a001 10946/843*439204^(4/9) 4180994075772639 a001 13/844*141422324^(2/3) 4180994075772639 a001 13/844*(1/2+1/2*5^(1/2))^26 4180994075772639 a001 13/844*73681302247^(1/2) 4180994075772639 a001 13/844*10749957122^(13/24) 4180994075772639 a001 13/844*4106118243^(13/23) 4180994075772639 a001 13/844*1568397607^(13/22) 4180994075772639 a001 13/844*599074578^(13/21) 4180994075772639 a001 13/844*228826127^(13/20) 4180994075772639 a001 13/844*87403803^(13/19) 4180994075772642 a001 13/844*33385282^(13/18) 4180994075772659 a001 13/844*12752043^(13/17) 4180994075772782 a001 13/844*4870847^(13/16) 4180994075773686 a001 13/844*1860498^(13/15) 4180994075780327 a001 13/844*710647^(13/14) 4180994075780893 a001 10946/843*7881196^(4/11) 4180994075780918 a001 10946/843*141422324^(4/13) 4180994075780918 a001 10946/843*2537720636^(4/15) 4180994075780918 a001 10946/843*45537549124^(4/17) 4180994075780918 a001 10946/843*817138163596^(4/19) 4180994075780918 a001 10946/843*14662949395604^(4/21) 4180994075780918 a001 10946/843*(1/2+1/2*5^(1/2))^12 4180994075780918 a001 10946/843*192900153618^(2/9) 4180994075780918 a001 10946/843*73681302247^(3/13) 4180994075780918 a001 10946/843*10749957122^(1/4) 4180994075780918 a001 10946/843*4106118243^(6/23) 4180994075780918 a001 10946/843*1568397607^(3/11) 4180994075780918 a001 10946/843*599074578^(2/7) 4180994075780918 a001 10946/843*228826127^(3/10) 4180994075780918 a001 10946/843*87403803^(6/19) 4180994075780919 a001 10946/843*33385282^(1/3) 4180994075780927 a001 10946/843*12752043^(6/17) 4180994075780984 a001 10946/843*4870847^(3/8) 4180994075781401 a001 10946/843*1860498^(2/5) 4180994075784466 a001 10946/843*710647^(3/7) 4180994075807108 a001 10946/843*271443^(6/13) 4180994075814342 a001 3524578/9349*521^(5/13) 4180994075975384 a001 10946/843*103682^(1/2) 4180994076185375 a001 17711/843*15127^(11/20) 4180994076258984 a001 75025/843*15127^(2/5) 4180994076635069 a001 15456/281*15127^(9/20) 4180994077234977 a001 10946/843*39603^(6/11) 4180994078955810 a001 28657/843*15127^(1/2) 4180994081390087 a001 4181/843*9349^(14/19) 4180994082717252 a001 1346269/843*5778^(1/9) 4180994085979285 a007 Real Root Of 36*x^4-7*x^3+470*x^2+131*x-29 4180994086743811 a001 10946/843*15127^(3/5) 4180994087065040 a004 Fibonacci(14)*Lucas(20)/(1/2+sqrt(5)/2)^15 4180994087213599 a001 5656885/1353 4180994088088192 a001 1597/843*3571^(16/17) 4180994089673064 a001 832040/843*5778^(1/6) 4180994092394383 p001 sum((-1)^n/(389*n+239)/(512^n),n=0..infinity) 4180994093014938 r002 12th iterates of z^2 + 4180994096634914 a001 514229/843*5778^(2/9) 4180994101056358 p001 sum((-1)^n/(351*n+214)/(3^n),n=0..infinity) 4180994103580953 a001 377*5778^(5/18) 4180994103597087 m001 (1+3^(1/3))/(FellerTornier+MertensB1) 4180994110568387 a001 196418/843*5778^(1/3) 4180994111984484 a001 4181/843*24476^(2/3) 4180994116017414 a001 4181/843*64079^(14/23) 4180994116609665 a001 377/9349*439204^(8/9) 4180994116628882 a001 377/9349*7881196^(8/11) 4180994116628931 a001 377/9349*141422324^(8/13) 4180994116628931 a001 377/9349*2537720636^(8/15) 4180994116628931 a001 377/9349*45537549124^(8/17) 4180994116628931 a001 377/9349*14662949395604^(8/21) 4180994116628931 a001 377/9349*(1/2+1/2*5^(1/2))^24 4180994116628931 a001 377/9349*192900153618^(4/9) 4180994116628931 a001 377/9349*73681302247^(6/13) 4180994116628931 a001 377/9349*10749957122^(1/2) 4180994116628931 a001 377/9349*4106118243^(12/23) 4180994116628931 a001 377/9349*1568397607^(6/11) 4180994116628931 a001 377/9349*599074578^(4/7) 4180994116628931 a001 377/9349*228826127^(3/5) 4180994116628931 a001 377/9349*87403803^(12/19) 4180994116628934 a001 377/9349*33385282^(2/3) 4180994116628949 a001 377/9349*12752043^(12/17) 4180994116629063 a001 377/9349*4870847^(3/4) 4180994116629897 a001 377/9349*1860498^(4/5) 4180994116636027 a001 377/9349*710647^(6/7) 4180994116637206 a001 4181/843*20633239^(2/5) 4180994116637209 a001 4181/843*17393796001^(2/7) 4180994116637209 a001 4181/843*14662949395604^(2/9) 4180994116637209 a001 4181/843*(1/2+1/2*5^(1/2))^14 4180994116637209 a001 4181/843*10749957122^(7/24) 4180994116637209 a001 4181/843*4106118243^(7/23) 4180994116637209 a001 4181/843*1568397607^(7/22) 4180994116637209 a001 4181/843*599074578^(1/3) 4180994116637209 a001 4181/843*228826127^(7/20) 4180994116637210 a001 4181/843*87403803^(7/19) 4180994116637211 a001 4181/843*33385282^(7/18) 4180994116637220 a001 4181/843*12752043^(7/17) 4180994116637287 a001 4181/843*4870847^(7/16) 4180994116637773 a001 4181/843*1860498^(7/15) 4180994116641349 a001 4181/843*710647^(1/2) 4180994116667764 a001 4181/843*271443^(7/13) 4180994116681310 a001 377/9349*271443^(12/13) 4180994116864086 a001 4181/843*103682^(7/12) 4180994117089041 m003 3+Sqrt[5]/2-(4*Cos[1/2+Sqrt[5]/2])/3 4180994117447449 a001 121393/843*5778^(7/18) 4180994118333611 a001 4181/843*39603^(7/11) 4180994119366160 m001 (-Khinchin+MertensB3)/(exp(1)+polylog(4,1/2)) 4180994121071230 m001 GAMMA(1/12)/ln(CopelandErdos)^2/log(2+sqrt(3)) 4180994122449840 a001 726103/281*2207^(1/16) 4180994124610232 a001 75025/843*5778^(4/9) 4180994128768189 r009 Im(z^3+c),c=-47/98+19/55*I,n=52 4180994129427252 a001 4181/843*15127^(7/10) 4180994131030223 a001 15456/281*5778^(1/2) 4180994139394870 a001 28657/843*5778^(5/9) 4180994140977587 a001 2255/281*5778^(13/18) 4180994142668341 a001 17711/843*5778^(11/18) 4180994149510388 r005 Re(z^2+c),c=-15/26+12/53*I,n=45 4180994159270684 a001 10946/843*5778^(2/3) 4180994166152159 m001 (FeigenbaumC-Khinchin)/(Porter+Stephens) 4180994176098664 a001 1346269/843*2207^(1/8) 4180994187977995 l006 ln(4352/6611) 4180994191933568 m001 (Zeta(1/2)-sin(1))/(-Kac+Salem) 4180994194028200 a004 Fibonacci(14)*Lucas(18)/(1/2+sqrt(5)/2)^13 4180994195046439 a001 10803689/2584 4180994196155767 r005 Im(z^2+c),c=-53/110+28/57*I,n=11 4180994206609443 a007 Real Root Of 943*x^4-982*x^3-133*x^2-346*x-222 4180994212696844 r009 Re(z^3+c),c=-27/62+5/34*I,n=23 4180994214041937 a001 4181/843*5778^(7/9) 4180994218023230 r009 Re(z^3+c),c=-4/23+19/32*I,n=4 4180994223894479 a007 Real Root Of -800*x^4+916*x^3-8*x^2+785*x+421 4180994229573781 r005 Im(z^2+c),c=-5/6+25/108*I,n=7 4180994229745181 a001 832040/843*2207^(3/16) 4180994231101135 a001 3571/3524578*89^(6/19) 4180994237066309 a007 Real Root Of -244*x^4-784*x^3+919*x^2-64*x+928 4180994251272465 r002 29th iterates of z^2 + 4180994253161695 r009 Re(z^3+c),c=-5/64+20/31*I,n=16 4180994262190444 r005 Im(z^2+c),c=-5/6+48/227*I,n=52 4180994283397739 a001 514229/843*2207^(1/4) 4180994289204482 r002 53th iterates of z^2 + 4180994300745531 r002 25th iterates of z^2 + 4180994304815486 a007 Real Root Of 9*x^4+362*x^3-585*x^2+528*x+325 4180994306738091 r009 Re(z^3+c),c=-39/98+5/47*I,n=34 4180994311330467 a007 Real Root Of 506*x^4-88*x^3+28*x^2-962*x-429 4180994334346388 a007 Real Root Of 226*x^4+734*x^3-678*x^2+925*x+305 4180994337034486 a001 377*2207^(5/16) 4180994352415033 m001 exp(1/exp(1))^Champernowne/FeigenbaumAlpha 4180994354274016 r008 a(0)=4,K{-n^6,15+44*n^3-58*n^2-6*n} 4180994354444705 a001 1346269/2207*521^(4/13) 4180994355847946 a001 1346269/3571*521^(5/13) 4180994356317523 r005 Im(z^2+c),c=15/64+18/49*I,n=31 4180994356387970 a001 1597/843*9349^(16/19) 4180994371497382 r005 Re(z^2+c),c=-16/31+11/25*I,n=64 4180994387560951 p003 LerchPhi(1/6,2,379/237) 4180994390712629 a001 196418/843*2207^(3/8) 4180994390844712 r005 Re(z^2+c),c=-17/29+1/12*I,n=24 4180994391352997 a001 1597/843*24476^(16/21) 4180994395688180 a001 377/3571*64079^(22/23) 4180994395962060 a001 1597/843*64079^(16/23) 4180994396662099 a001 377/3571*7881196^(2/3) 4180994396662144 a001 377/3571*312119004989^(2/5) 4180994396662144 a001 377/3571*(1/2+1/2*5^(1/2))^22 4180994396662144 a001 377/3571*10749957122^(11/24) 4180994396662144 a001 377/3571*4106118243^(11/23) 4180994396662144 a001 377/3571*1568397607^(1/2) 4180994396662144 a001 377/3571*599074578^(11/21) 4180994396662144 a001 377/3571*228826127^(11/20) 4180994396662145 a001 377/3571*87403803^(11/19) 4180994396662147 a001 377/3571*33385282^(11/18) 4180994396662161 a001 377/3571*12752043^(11/17) 4180994396662265 a001 377/3571*4870847^(11/16) 4180994396663030 a001 377/3571*1860498^(11/15) 4180994396668649 a001 377/3571*710647^(11/14) 4180994396670397 a001 1597/843*(1/2+1/2*5^(1/2))^16 4180994396670397 a001 1597/843*23725150497407^(1/4) 4180994396670397 a001 1597/843*73681302247^(4/13) 4180994396670397 a001 1597/843*10749957122^(1/3) 4180994396670397 a001 1597/843*4106118243^(8/23) 4180994396670397 a001 1597/843*1568397607^(4/11) 4180994396670397 a001 1597/843*599074578^(8/21) 4180994396670398 a001 1597/843*228826127^(2/5) 4180994396670398 a001 1597/843*87403803^(8/19) 4180994396670399 a001 1597/843*33385282^(4/9) 4180994396670410 a001 1597/843*12752043^(8/17) 4180994396670486 a001 1597/843*4870847^(1/2) 4180994396671042 a001 1597/843*1860498^(8/15) 4180994396675128 a001 1597/843*710647^(4/7) 4180994396705317 a001 1597/843*271443^(8/13) 4180994396710159 a001 377/3571*271443^(11/13) 4180994396929685 a001 1597/843*103682^(2/3) 4180994397018665 a001 377/3571*103682^(11/12) 4180994398609143 a001 1597/843*39603^(8/11) 4180994411287590 a001 1597/843*15127^(4/5) 4180994425792690 r005 Im(z^2+c),c=-1/8+37/60*I,n=56 4180994428366049 m001 GAMMA(1/4)^GAMMA(7/24)/BesselI(0,1) 4180994444282400 a001 121393/843*2207^(7/16) 4180994458116195 r005 Im(z^2+c),c=-1/36+23/41*I,n=31 4180994480440169 a001 64079/8*433494437^(7/9) 4180994481459593 a001 930249/4*5702887^(7/9) 4180994481573949 a001 54018521/8*75025^(7/9) 4180994489041574 a001 726103/281*843^(1/14) 4180994496309482 r005 Re(z^2+c),c=-11/18+42/125*I,n=43 4180994498135893 a001 75025/843*2207^(1/2) 4180994507990094 a001 1597/843*5778^(8/9) 4180994511104089 r002 45th iterates of z^2 + 4180994511134414 a001 9349/9227465*89^(6/19) 4180994519189045 r009 Re(z^3+c),c=-39/98+5/47*I,n=33 4180994531564978 m001 (GAMMA(11/12)-FeigenbaumMu)/(Lehmer+ZetaQ(3)) 4180994535557722 a007 Real Root Of -194*x^4-653*x^3+405*x^2-880*x+797 4180994536967102 l006 ln(123/8048) 4180994545921446 r002 43th iterates of z^2 + 4180994551246595 a001 15456/281*2207^(9/16) 4180994551990718 a001 24476/24157817*89^(6/19) 4180994557467205 r005 Re(z^2+c),c=-37/66+21/52*I,n=36 4180994557951573 a001 64079/63245986*89^(6/19) 4180994558821250 a001 167761/165580141*89^(6/19) 4180994558948134 a001 439204/433494437*89^(6/19) 4180994558966646 a001 1149851/1134903170*89^(6/19) 4180994558969347 a001 3010349/2971215073*89^(6/19) 4180994558969741 a001 7881196/7778742049*89^(6/19) 4180994558969799 a001 20633239/20365011074*89^(6/19) 4180994558969807 a001 54018521/53316291173*89^(6/19) 4180994558969808 a001 141422324/139583862445*89^(6/19) 4180994558969808 a001 370248451/365435296162*89^(6/19) 4180994558969808 a001 969323029/956722026041*89^(6/19) 4180994558969808 a001 2537720636/2504730781961*89^(6/19) 4180994558969808 a001 6643838879/6557470319842*89^(6/19) 4180994558969808 a001 4870846/4807525989*89^(6/19) 4180994558969808 a001 4106118243/4052739537881*89^(6/19) 4180994558969808 a001 1568397607/1548008755920*89^(6/19) 4180994558969808 a001 599074578/591286729879*89^(6/19) 4180994558969808 a001 228826127/225851433717*89^(6/19) 4180994558969809 a001 87403803/86267571272*89^(6/19) 4180994558969812 a001 33385282/32951280099*89^(6/19) 4180994558969834 a001 12752043/12586269025*89^(6/19) 4180994558969985 a001 4870847/4807526976*89^(6/19) 4180994558971016 a001 1860498/1836311903*89^(6/19) 4180994558978087 a001 710647/701408733*89^(6/19) 4180994559026553 a001 271443/267914296*89^(6/19) 4180994559358740 a001 103682/102334155*89^(6/19) 4180994561635584 a001 39603/39088169*89^(6/19) 4180994574941842 r009 Re(z^3+c),c=-27/52+11/47*I,n=3 4180994577241303 a001 15127/14930352*89^(6/19) 4180994582823608 m005 (1/3*3^(1/2)+1/12)/(8/11*gamma-2) 4180994582912399 r009 Im(z^3+c),c=-1/70+27/55*I,n=11 4180994590575892 r009 Im(z^3+c),c=-9/23+16/23*I,n=22 4180994591453704 l006 ln(3749/5695) 4180994597936616 r009 Re(z^3+c),c=-33/62+13/32*I,n=22 4180994606301953 a001 28657/843*2207^(5/8) 4180994608850381 a007 Real Root Of -11*x^4-453*x^3+310*x^2+874*x-374 4180994610442241 m001 Catalan/(Otter^Sarnak) 4180994628766882 m005 (1/2*gamma-9/10)/(2/5*exp(1)+3/8) 4180994636878508 r009 Re(z^3+c),c=-7/118+19/45*I,n=8 4180994637212911 r009 Im(z^3+c),c=-3/110+37/48*I,n=8 4180994639645192 m001 1-arctan(1/2)^CareFree 4180994640576313 r005 Re(z^2+c),c=-7/12+12/67*I,n=57 4180994651637103 r009 Re(z^3+c),c=-39/98+5/47*I,n=35 4180994655167046 r009 Im(z^3+c),c=-47/110+17/23*I,n=3 4180994656266136 a001 17711/843*2207^(11/16) 4180994672075640 r009 Re(z^3+c),c=-39/98+5/47*I,n=29 4180994674515455 m001 (2^(1/2)*Artin+MertensB2)/Artin 4180994675820239 b008 Log[3/37+EulerGamma] 4180994684204498 a001 5778/5702887*89^(6/19) 4180994684978232 a007 Real Root Of 366*x^4-976*x^3+205*x^2-557*x+23 4180994685899298 r005 Im(z^2+c),c=7/82+19/39*I,n=63 4180994689312283 r002 39th iterates of z^2 + 4180994689335277 r005 Im(z^2+c),c=-8/17+26/55*I,n=6 4180994708237445 a007 Real Root Of -263*x^4-83*x^3-122*x^2+956*x+423 4180994719559192 a001 10946/843*2207^(3/4) 4180994746602429 m001 1/exp(GAMMA(1/4))*Salem^2/log(1+sqrt(2)) 4180994747956805 a001 2255/281*2207^(13/16) 4180994748290014 a001 2584/843*2207^(15/16) 4180994748303998 a007 Real Root Of 937*x^4-800*x^3+450*x^2-344*x+95 4180994756267661 m001 Soldner^2/Rabbit^2 4180994763782031 m001 (ln(Pi)+Grothendieck)/(MasserGramain+ZetaQ(2)) 4180994776463488 r005 Im(z^2+c),c=-15/122+14/23*I,n=41 4180994778415314 m001 (-BesselK(1,1)+ZetaQ(3))/(gamma+sin(1)) 4180994785981981 m001 (Kac+LandauRamanujan2nd)/(Shi(1)+FeigenbaumC) 4180994797495087 m001 ln(sqrt(3))^2*GAMMA(1/6)^2/sqrt(5) 4180994804530464 m001 (-Gompertz+Tetranacci)/(gamma-sin(1/12*Pi)) 4180994809924927 a007 Real Root Of -577*x^4+627*x^3+488*x^2+989*x-527 4180994814128167 m005 (4/5*exp(1)+1/5)/(1/4*exp(1)+5) 4180994824660318 a007 Real Root Of -179*x^4-719*x^3-8*x^2-660*x-471 4180994845465574 r005 Im(z^2+c),c=7/24+8/27*I,n=24 4180994845733463 r005 Im(z^2+c),c=1/20+31/51*I,n=54 4180994865114360 r005 Im(z^2+c),c=9/98+13/28*I,n=16 4180994865752041 r005 Re(z^2+c),c=-3/5+46/109*I,n=2 4180994867711880 a001 4181/843*2207^(7/8) 4180994871600244 a007 Real Root Of 547*x^4-677*x^3-568*x^2-892*x+505 4180994876099602 m001 FeigenbaumB^BesselK(1,1)*FeigenbaumDelta 4180994909282174 a001 1346269/843*843^(1/7) 4180994924721942 a001 2207/233*34^(8/19) 4180994927164604 a004 Fibonacci(14)*Lucas(16)/(1/2+sqrt(5)/2)^11 4180994934143870 a001 4126642/987 4180994943297314 r009 Re(z^3+c),c=-3/44+31/56*I,n=30 4180994949976786 r005 Re(z^2+c),c=-53/90+7/60*I,n=55 4180994962580545 r005 Im(z^2+c),c=-35/94+3/5*I,n=3 4180994964118601 r009 Re(z^3+c),c=-39/98+5/47*I,n=41 4180994968619661 m001 GAMMA(3/4)^2*ln(Paris)*Zeta(3) 4180994968766373 a008 Real Root of x^4-5*x^2-12*x-168 4180994970000264 r009 Re(z^3+c),c=-39/98+5/47*I,n=40 4180994973837244 r002 2th iterates of z^2 + 4180994975968403 r002 54th iterates of z^2 + 4180994983541707 r009 Re(z^3+c),c=-39/98+5/47*I,n=42 4180994997264309 r009 Re(z^3+c),c=-39/98+5/47*I,n=48 4180994997321655 r009 Re(z^3+c),c=-39/98+5/47*I,n=47 4180994998330586 r009 Re(z^3+c),c=-39/98+5/47*I,n=49 4180994998432450 r002 23th iterates of z^2 + 4180994998905948 r009 Re(z^3+c),c=-39/98+5/47*I,n=54 4180994998914756 r009 Re(z^3+c),c=-39/98+5/47*I,n=55 4180994998972090 r009 Re(z^3+c),c=-39/98+5/47*I,n=56 4180994998994916 r009 Re(z^3+c),c=-39/98+5/47*I,n=61 4180994998995925 r009 Re(z^3+c),c=-39/98+5/47*I,n=62 4180994998998954 r009 Re(z^3+c),c=-39/98+5/47*I,n=63 4180994999000167 r009 Re(z^3+c),c=-39/98+5/47*I,n=60 4180994999000936 r009 Re(z^3+c),c=-39/98+5/47*I,n=64 4180994999012405 r009 Re(z^3+c),c=-39/98+5/47*I,n=59 4180994999013969 r009 Re(z^3+c),c=-39/98+5/47*I,n=57 4180994999022984 r009 Re(z^3+c),c=-39/98+5/47*I,n=58 4180994999024675 r009 Re(z^3+c),c=-39/98+5/47*I,n=53 4180994999203192 r009 Re(z^3+c),c=-39/98+5/47*I,n=50 4180994999268294 r009 Re(z^3+c),c=-39/98+5/47*I,n=52 4180994999445443 r009 Re(z^3+c),c=-39/98+5/47*I,n=51 4180994999915861 m001 Paris/(exp(Pi)+ZetaP(2)) 4180994999944825 r009 Re(z^3+c),c=-39/98+5/47*I,n=46 4180995001487261 r009 Re(z^3+c),c=-39/98+5/47*I,n=43 4180995004732953 r009 Re(z^3+c),c=-39/98+5/47*I,n=45 4180995005442340 h001 (1/5*exp(1)+5/8)/(7/8*exp(1)+5/12) 4180995007531234 r009 Re(z^3+c),c=-39/98+5/47*I,n=44 4180995011427360 r005 Im(z^2+c),c=1/62+8/15*I,n=45 4180995016081421 r009 Re(z^3+c),c=-39/98+5/47*I,n=36 4180995026862132 r009 Re(z^3+c),c=-39/98+5/47*I,n=39 4180995038732555 m001 ln(Riemann2ndZero)*Conway/GAMMA(7/24)^2 4180995058042817 r002 40th iterates of z^2 + 4180995061249303 m005 (1/2*gamma+4)/(1/3*gamma+5/6) 4180995061249303 m007 (-1/2*gamma-4)/(-1/3*gamma-5/6) 4180995069678609 h001 (5/7*exp(2)+1/5)/(1/6*exp(1)+6/7) 4180995076665311 r005 Re(z^2+c),c=-39/106+14/23*I,n=5 4180995086998814 r005 Im(z^2+c),c=2/29+23/42*I,n=13 4180995087580743 a001 1762289/2889*521^(4/13) 4180995090379633 a001 317811/1364*521^(6/13) 4180995098746157 r002 60th iterates of z^2 + 4180995101879300 r002 61th iterates of z^2 + 4180995113514095 m001 (MertensB3+TreeGrowth2nd)/(FeigenbaumB+Magata) 4180995119709994 r009 Re(z^3+c),c=-39/98+5/47*I,n=38 4180995122385878 a007 Real Root Of -210*x^4+229*x^3-487*x^2+150*x+171 4180995135243651 b008 (Pi*Tan[3/4])/7 4180995138876285 r005 Re(z^2+c),c=-17/29+8/57*I,n=37 4180995139484202 a007 Real Root Of -316*x^4+618*x^3-208*x^2+686*x+378 4180995143230928 a007 Real Root Of -805*x^4+721*x^3+297*x^2+397*x-246 4180995147154148 m001 (exp(1)+Gompertz)/(PolyaRandomWalk3D+ZetaP(2)) 4180995149599350 l006 ln(3146/4779) 4180995159828324 r009 Re(z^3+c),c=-39/98+5/47*I,n=37 4180995161164763 m005 (1/3*Catalan+1/4)/(2/7*3^(1/2)+5/6) 4180995169389582 r002 10i'th iterates of 2*x/(1-x^2) of 4180995183310963 a001 121393/3*521^(43/58) 4180995187669787 r005 Re(z^2+c),c=-37/66+15/49*I,n=35 4180995189640701 m001 (Champernowne-ZetaQ(2))/(Zeta(3)+arctan(1/2)) 4180995194543871 a001 9227465/15127*521^(4/13) 4180995210149581 a001 24157817/39603*521^(4/13) 4180995212426424 a001 31622993/51841*521^(4/13) 4180995212758611 a001 165580141/271443*521^(4/13) 4180995212807076 a001 433494437/710647*521^(4/13) 4180995212814147 a001 567451585/930249*521^(4/13) 4180995212815179 a001 2971215073/4870847*521^(4/13) 4180995212815329 a001 7778742049/12752043*521^(4/13) 4180995212815351 a001 10182505537/16692641*521^(4/13) 4180995212815355 a001 53316291173/87403803*521^(4/13) 4180995212815355 a001 139583862445/228826127*521^(4/13) 4180995212815355 a001 182717648081/299537289*521^(4/13) 4180995212815355 a001 956722026041/1568397607*521^(4/13) 4180995212815355 a001 2504730781961/4106118243*521^(4/13) 4180995212815355 a001 3278735159921/5374978561*521^(4/13) 4180995212815355 a001 10610209857723/17393796001*521^(4/13) 4180995212815355 a001 4052739537881/6643838879*521^(4/13) 4180995212815355 a001 1134903780/1860499*521^(4/13) 4180995212815355 a001 591286729879/969323029*521^(4/13) 4180995212815355 a001 225851433717/370248451*521^(4/13) 4180995212815355 a001 21566892818/35355581*521^(4/13) 4180995212815356 a001 32951280099/54018521*521^(4/13) 4180995212815365 a001 1144206275/1875749*521^(4/13) 4180995212815422 a001 1201881744/1970299*521^(4/13) 4180995212815816 a001 1836311903/3010349*521^(4/13) 4180995212818517 a001 701408733/1149851*521^(4/13) 4180995212837029 a001 66978574/109801*521^(4/13) 4180995212963914 a001 9303105/15251*521^(4/13) 4180995213833590 a001 39088169/64079*521^(4/13) 4180995219794441 a001 3732588/6119*521^(4/13) 4180995226516120 r009 Re(z^3+c),c=-2/29+35/62*I,n=25 4180995243202647 m001 Rabbit^MertensB3*TwinPrimes 4180995247292425 p004 log(32537/21419) 4180995255671465 r005 Im(z^2+c),c=-11/58+1/18*I,n=15 4180995256382592 m001 (GAMMA(11/12)-PlouffeB)/(Tribonacci-ZetaP(2)) 4180995260650722 a001 5702887/9349*521^(4/13) 4180995270859524 a001 47*(1/2*5^(1/2)+1/2)^21*843^(8/15) 4180995281240433 a007 Real Root Of -173*x^4-493*x^3+711*x^2-895*x+662 4180995285927815 q001 4/95671 4180995287086060 r005 Re(z^2+c),c=17/98+31/55*I,n=47 4180995291102007 r002 39th iterates of z^2 + 4180995292285820 r005 Re(z^2+c),c=-3/5+29/102*I,n=14 4180995300813504 r002 45th iterates of z^2 + 4180995314730602 m001 (FeigenbaumC+Weierstrass)/(ln(gamma)-gamma(3)) 4180995329520509 a001 832040/843*843^(3/14) 4180995337547339 m005 (1/2*Catalan-4)/(4/9*5^(1/2)-10/11) 4180995338535853 a007 Real Root Of 426*x^4+385*x^3-533*x^2-861*x+412 4180995339829543 a001 2207/8*32951280099^(7/9) 4180995360711716 a007 Real Root Of -487*x^4+190*x^3-212*x^2+993*x+481 4180995370693519 m001 (Chi(1)+Pi^(1/2))/GolombDickman 4180995378836738 r002 21th iterates of z^2 + 4180995381130433 r002 10th iterates of z^2 + 4180995414327954 r005 Re(z^2+c),c=-71/106+13/60*I,n=30 4180995417341138 a001 1/987*89^(6/19) 4180995437430443 r002 2th iterates of z^2 + 4180995445924628 m001 Paris^ln(3)*Paris^BesselI(0,1) 4180995449984573 r009 Im(z^3+c),c=-15/94+19/41*I,n=4 4180995454556920 r002 7th iterates of z^2 + 4180995462035557 m001 (Weierstrass+ZetaQ(4))/(Psi(1,1/3)+Conway) 4180995472092732 a005 (1/cos(29/238*Pi))^632 4180995473245865 m004 4+5*Sqrt[5]*Pi+(5*Pi)/(3*Log[Sqrt[5]*Pi]) 4180995475113122 q001 462/1105 4180995475113122 r005 Im(z^2+c),c=-27/26+33/85*I,n=2 4180995486767112 m001 (MertensB2+Trott2nd)/(Zeta(3)-Backhouse) 4180995493020756 l006 ln(6839/7131) 4180995504360977 r009 Im(z^3+c),c=-23/90+5/11*I,n=29 4180995517412310 l006 ln(5689/8642) 4180995522116869 m001 (BesselK(1,1)+Khinchin)^Zeta(3) 4180995522116869 m001 (Khinchin+BesselK(1,1))^Zeta(3) 4180995536610595 r005 Im(z^2+c),c=-53/40+4/49*I,n=18 4180995539280620 a001 987*521^(3/13) 4180995540683862 a001 2178309/3571*521^(4/13) 4180995547118023 a003 sin(Pi*5/41)/cos(Pi*17/115) 4180995564899344 r002 30th iterates of z^2 + 4180995567563907 r005 Re(z^2+c),c=-83/126+5/14*I,n=28 4180995574631976 s002 sum(A249238[n]/(n^3*10^n-1),n=1..infinity) 4180995602025523 m001 (ln(gamma)+Kac)/(Shi(1)+BesselJ(0,1)) 4180995605139564 m001 (BesselI(1,1)+MertensB3)/(ZetaP(2)+ZetaQ(4)) 4180995608463732 m001 polylog(4,1/2)-Zeta(1,2)-Zeta(5) 4180995611270339 r005 Im(z^2+c),c=-1/54+26/49*I,n=18 4180995621192231 m001 TwinPrimes^2*ln(MinimumGamma)^2/GAMMA(3/4)^2 4180995622428800 r005 Re(z^2+c),c=-43/74+7/29*I,n=33 4180995622453300 r005 Re(z^2+c),c=-16/27+1/30*I,n=55 4180995636527391 r002 29th iterates of z^2 + 4180995658931493 r002 3th iterates of z^2 + 4180995661458879 h001 (2/3*exp(1)+2/3)/(7/9*exp(2)+2/11) 4180995688125883 m001 1/exp(Si(Pi))/GaussKuzminWirsing*cos(Pi/5) 4180995694823344 m001 AlladiGrinstead/BesselJ(1,1)/TreeGrowth2nd 4180995701146388 r009 Im(z^3+c),c=-5/114+25/51*I,n=10 4180995701240453 m008 (5/6*Pi^6+5/6)/(2*Pi^4-3) 4180995709311002 m001 Salem-Thue^MasserGramainDelta 4180995723014930 g001 GAMMA(2/3,72/97) 4180995731615764 r009 Re(z^3+c),c=-39/98+5/47*I,n=32 4180995732625297 m005 (1/2*Pi-6)/(1/8*Pi+2/3) 4180995742238678 r009 Im(z^3+c),c=-21/82+15/32*I,n=5 4180995749764926 a001 514229/843*843^(2/7) 4180995755397525 b008 5+(2*Sec[8])/3 4180995758783469 a007 Real Root Of 914*x^4-672*x^3+774*x^2+8*x-209 4180995762062135 m002 Pi^2+16*E^Pi*Sech[Pi] 4180995777196291 r005 Im(z^2+c),c=-11/58+1/18*I,n=17 4180995781521394 m001 Khinchin/(arctan(1/2)^Stephens) 4180995786793361 r009 Im(z^3+c),c=-47/106+10/27*I,n=37 4180995793847607 r005 Im(z^2+c),c=15/94+25/58*I,n=39 4180995799692065 r005 Im(z^2+c),c=-22/29+19/55*I,n=6 4180995801559319 r005 Im(z^2+c),c=-15/26+25/51*I,n=36 4180995804391768 r002 38th iterates of z^2 + 4180995811608360 r005 Im(z^2+c),c=25/82+17/58*I,n=41 4180995821554281 m001 Otter/(AlladiGrinstead^GAMMA(13/24)) 4180995828577238 r002 55th iterates of z^2 + 4180995833990141 m005 (1/3*gamma-1/5)/(7/11*3^(1/2)+5/7) 4180995842797537 r005 Re(z^2+c),c=-16/27+2/63*I,n=54 4180995852811254 r005 Im(z^2+c),c=-2/3+80/181*I,n=7 4180995858293398 r005 Im(z^2+c),c=-11/58+1/18*I,n=19 4180995859124008 a007 Real Root Of 83*x^4+273*x^3-321*x^2-51*x-12 4180995861137463 r005 Re(z^2+c),c=-27/58+22/47*I,n=7 4180995862656546 a007 Real Root Of 289*x^4+162*x^3-433*x^2-547*x-150 4180995867783635 r005 Im(z^2+c),c=-11/58+1/18*I,n=21 4180995868628472 r005 Im(z^2+c),c=-11/58+1/18*I,n=23 4180995868667903 r005 Im(z^2+c),c=-11/58+1/18*I,n=26 4180995868669807 r005 Im(z^2+c),c=-11/58+1/18*I,n=28 4180995868670255 r005 Im(z^2+c),c=-11/58+1/18*I,n=30 4180995868670320 r005 Im(z^2+c),c=-11/58+1/18*I,n=32 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=34 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=36 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=39 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=37 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=41 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=43 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=45 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=47 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=49 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=50 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=52 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=54 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=56 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=58 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=60 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=63 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=62 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=64 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=61 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=59 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=57 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=55 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=53 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=51 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=48 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=46 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=44 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=42 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=40 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=38 4180995868670328 r005 Im(z^2+c),c=-11/58+1/18*I,n=35 4180995868670331 r005 Im(z^2+c),c=-11/58+1/18*I,n=33 4180995868670353 r005 Im(z^2+c),c=-11/58+1/18*I,n=31 4180995868670531 r005 Im(z^2+c),c=-11/58+1/18*I,n=29 4180995868671546 r005 Im(z^2+c),c=-11/58+1/18*I,n=27 4180995868672666 r005 Im(z^2+c),c=-11/58+1/18*I,n=24 4180995868673608 r005 Im(z^2+c),c=-11/58+1/18*I,n=25 4180995868889171 r005 Im(z^2+c),c=-11/58+1/18*I,n=22 4180995871834984 r005 Im(z^2+c),c=-11/58+1/18*I,n=20 4180995891803012 r009 Im(z^3+c),c=-25/56+19/51*I,n=21 4180995900461500 r005 Im(z^2+c),c=-11/58+1/18*I,n=18 4180995900772462 r005 Im(z^2+c),c=-1+78/245*I,n=12 4180995901361490 r009 Im(z^3+c),c=-23/90+5/11*I,n=32 4180995910221021 r009 Re(z^3+c),c=-5/11+22/41*I,n=7 4180995913040849 r002 59th iterates of z^2 + 4180995920868852 r005 Im(z^2+c),c=7/34+9/20*I,n=20 4180995937529462 a001 4052739537881/47*505019158607^(21/23) 4180995943253407 m001 (-Robbin+ZetaQ(4))/(Catalan+LaplaceLimit) 4180995949905827 a007 Real Root Of -142*x^4-495*x^3+376*x^2-304*x-630 4180995972441616 l006 ln(2543/3863) 4180995972441616 p004 log(3863/2543) 4180995978696185 m001 sin(1/5*Pi)/(cos(1/12*Pi)+TreeGrowth2nd) 4180995986311579 r005 Im(z^2+c),c=11/90+23/50*I,n=56 4180995998803360 m001 (Mills-PrimesInBinary)/(Sierpinski-ZetaP(2)) 4180996028920711 r005 Im(z^2+c),c=-17/14+56/145*I,n=5 4180996029126321 m001 exp(BesselJ(0,1))*Kolakoski^2*GAMMA(7/24) 4180996040165970 m001 (KhinchinHarmonic+ZetaQ(4))/(exp(-1/2*Pi)-Kac) 4180996047687598 r009 Im(z^3+c),c=-23/90+5/11*I,n=30 4180996055649183 r002 42th iterates of z^2 + 4180996060430779 r005 Re(z^2+c),c=-16/27+2/61*I,n=63 4180996075015610 r005 Im(z^2+c),c=-9/98+34/57*I,n=60 4180996079359716 m005 (1/3*Catalan-1/11)/(2/9*gamma+5) 4180996088927425 m001 GAMMA(1/6)/ln(ArtinRank2)^2/GAMMA(23/24) 4180996103800563 a007 Real Root Of 806*x^4-768*x^3+735*x^2+577*x+32 4180996111814408 r009 Im(z^3+c),c=-23/90+5/11*I,n=35 4180996114929672 r009 Im(z^3+c),c=-4/23+28/59*I,n=19 4180996115073189 r005 Im(z^2+c),c=-11/58+1/18*I,n=16 4180996121474118 m001 (5^(1/2)+3^(1/3))/(-Niven+Sierpinski) 4180996131490194 s002 sum(A252500[n]/(n^3*2^n-1),n=1..infinity) 4180996137305675 r005 Re(z^2+c),c=-47/82+6/23*I,n=56 4180996138754557 r005 Re(z^2+c),c=-67/114+7/53*I,n=60 4180996144241384 r009 Im(z^3+c),c=-23/90+5/11*I,n=37 4180996145926284 m005 (1/2*Zeta(3)-7/11)/(1/7*Catalan+5/7) 4180996153334402 r009 Im(z^3+c),c=-23/90+5/11*I,n=40 4180996156522403 r005 Re(z^2+c),c=-43/74+8/49*I,n=7 4180996157260560 r009 Im(z^3+c),c=-23/90+5/11*I,n=38 4180996157575431 r009 Im(z^3+c),c=-23/90+5/11*I,n=43 4180996158133151 r009 Im(z^3+c),c=-23/90+5/11*I,n=45 4180996158336345 r009 Im(z^3+c),c=-23/90+5/11*I,n=48 4180996158421307 r009 Im(z^3+c),c=-23/90+5/11*I,n=51 4180996158430637 r009 Im(z^3+c),c=-23/90+5/11*I,n=53 4180996158433812 r009 Im(z^3+c),c=-23/90+5/11*I,n=46 4180996158435092 r009 Im(z^3+c),c=-23/90+5/11*I,n=56 4180996158436127 r009 Im(z^3+c),c=-23/90+5/11*I,n=50 4180996158436784 r009 Im(z^3+c),c=-23/90+5/11*I,n=59 4180996158436934 r009 Im(z^3+c),c=-23/90+5/11*I,n=61 4180996158436995 r009 Im(z^3+c),c=-23/90+5/11*I,n=58 4180996158437030 r009 Im(z^3+c),c=-23/90+5/11*I,n=64 4180996158437083 r009 Im(z^3+c),c=-23/90+5/11*I,n=62 4180996158437107 r009 Im(z^3+c),c=-23/90+5/11*I,n=63 4180996158437345 r009 Im(z^3+c),c=-23/90+5/11*I,n=60 4180996158437397 r009 Im(z^3+c),c=-23/90+5/11*I,n=54 4180996158438001 r009 Im(z^3+c),c=-23/90+5/11*I,n=57 4180996158439192 r009 Im(z^3+c),c=-23/90+5/11*I,n=55 4180996158451191 r009 Im(z^3+c),c=-23/90+5/11*I,n=52 4180996158481341 r009 Im(z^3+c),c=-23/90+5/11*I,n=49 4180996158531293 r009 Im(z^3+c),c=-23/90+5/11*I,n=42 4180996158553767 r009 Im(z^3+c),c=-23/90+5/11*I,n=47 4180996159154472 r009 Im(z^3+c),c=-23/90+5/11*I,n=44 4180996159760158 a001 832040/521*199^(2/11) 4180996160517404 r009 Im(z^3+c),c=-23/90+5/11*I,n=41 4180996161824342 r002 34th iterates of z^2 + 4180996164782764 r009 Im(z^3+c),c=-23/90+5/11*I,n=39 4180996169993573 a001 377*843^(5/14) 4180996170408163 r009 Im(z^3+c),c=-23/90+5/11*I,n=34 4180996174899570 a001 199/32951280099*20365011074^(21/22) 4180996174902127 a001 199/1346269*514229^(21/22) 4180996194680644 r009 Im(z^3+c),c=-23/90+5/11*I,n=36 4180996195481535 r001 18i'th iterates of 2*x^2-1 of 4180996203668643 r005 Im(z^2+c),c=25/78+13/62*I,n=16 4180996210557221 m001 1/Zeta(7)^2*BesselJ(0,1)/exp(sin(Pi/5)) 4180996213117732 r008 a(0)=0,K{-n^6,48-20*n+10*n^2-15*n^3} 4180996216979057 m001 ln(gamma)^BesselI(1,1)/Niven 4180996218721327 m005 (1/3*5^(1/2)+1/5)/(5*gamma-5/8) 4180996228401337 a001 610/3*4^(13/25) 4180996233339597 h001 (1/8*exp(1)+8/9)/(3/4*exp(1)+9/10) 4180996237788974 r002 12th iterates of z^2 + 4180996247095619 r002 51th iterates of z^2 + 4180996254976096 r009 Im(z^3+c),c=-23/90+5/11*I,n=33 4180996256939926 r005 Re(z^2+c),c=-8/23+41/64*I,n=55 4180996267439682 r005 Re(z^2+c),c=1/50+3/4*I,n=6 4180996270728670 a001 610/843*9349^(18/19) 4180996272417410 a001 5702887/5778*521^(3/13) 4180996273860161 a001 4/21*832040^(11/15) 4180996275227835 a001 514229/1364*521^(5/13) 4180996297925743 r005 Re(z^2+c),c=-31/42+1/37*I,n=34 4180996300838836 s002 sum(A080399[n]/(n^2*pi^n+1),n=1..infinity) 4180996301849411 m001 GAMMA(5/12)^2/ln(BesselK(1,1))/Zeta(1/2)^2 4180996309392597 a001 377/1364*24476^(20/21) 4180996310064344 a001 610/843*24476^(6/7) 4180996312974455 a007 Real Root Of -770*x^4-644*x^3-815*x^2+689*x+407 4180996315153929 a001 377/1364*64079^(20/23) 4180996315249542 a001 610/843*64079^(18/23) 4180996315920504 a001 377/1364*167761^(4/5) 4180996316031973 a001 610/843*439204^(2/3) 4180996316039345 a001 377/1364*20633239^(4/7) 4180996316039351 a001 377/1364*2537720636^(4/9) 4180996316039351 a001 377/1364*(1/2+1/2*5^(1/2))^20 4180996316039351 a001 377/1364*23725150497407^(5/16) 4180996316039351 a001 377/1364*505019158607^(5/14) 4180996316039351 a001 377/1364*73681302247^(5/13) 4180996316039351 a001 377/1364*28143753123^(2/5) 4180996316039351 a001 377/1364*10749957122^(5/12) 4180996316039351 a001 377/1364*4106118243^(10/23) 4180996316039351 a001 377/1364*1568397607^(5/11) 4180996316039351 a001 377/1364*599074578^(10/21) 4180996316039351 a001 377/1364*228826127^(1/2) 4180996316039351 a001 377/1364*87403803^(10/19) 4180996316039353 a001 377/1364*33385282^(5/9) 4180996316039366 a001 377/1364*12752043^(10/17) 4180996316039461 a001 377/1364*4870847^(5/8) 4180996316040156 a001 377/1364*1860498^(2/3) 4180996316045265 a001 377/1364*710647^(5/7) 4180996316046385 a001 610/843*7881196^(6/11) 4180996316046422 a001 610/843*141422324^(6/13) 4180996316046422 a001 610/843*2537720636^(2/5) 4180996316046422 a001 610/843*45537549124^(6/17) 4180996316046422 a001 610/843*14662949395604^(2/7) 4180996316046422 a001 610/843*(1/2+1/2*5^(1/2))^18 4180996316046422 a001 610/843*192900153618^(1/3) 4180996316046422 a001 610/843*10749957122^(3/8) 4180996316046422 a001 610/843*4106118243^(9/23) 4180996316046422 a001 610/843*1568397607^(9/22) 4180996316046422 a001 610/843*599074578^(3/7) 4180996316046422 a001 610/843*228826127^(9/20) 4180996316046422 a001 610/843*87403803^(9/19) 4180996316046424 a001 610/843*33385282^(1/2) 4180996316046436 a001 610/843*12752043^(9/17) 4180996316046521 a001 610/843*4870847^(9/16) 4180996316047147 a001 610/843*1860498^(3/5) 4180996316051744 a001 610/843*710647^(9/14) 4180996316083001 a001 377/1364*271443^(10/13) 4180996316085707 a001 610/843*271443^(9/13) 4180996316338121 a001 610/843*103682^(3/4) 4180996316363461 a001 377/1364*103682^(5/6) 4180996318227511 a001 610/843*39603^(9/11) 4180996318462784 a001 377/1364*39603^(10/11) 4180996332490771 a001 610/843*15127^(9/10) 4180996370463552 m001 (-FeigenbaumMu+MertensB3)/(Psi(2,1/3)+ln(5)) 4180996374006819 m001 (KhinchinLevy+Paris)/(5^(1/2)+Chi(1)) 4180996379380648 a001 14930352/15127*521^(3/13) 4180996381171739 m002 -E^Pi+(5*Pi^2)/4-Pi^3 4180996385939663 r005 Re(z^2+c),c=-41/70+19/59*I,n=41 4180996390472099 m001 (Sarnak+ThueMorse)/(BesselJ(0,1)-Zeta(5)) 4180996391490745 h001 (1/10*exp(2)+3/8)/(7/8*exp(1)+2/7) 4180996394986375 a001 39088169/39603*521^(3/13) 4180996397263219 a001 102334155/103682*521^(3/13) 4180996397595407 a001 267914296/271443*521^(3/13) 4180996397643872 a001 701408733/710647*521^(3/13) 4180996397650943 a001 1836311903/1860498*521^(3/13) 4180996397651975 a001 4807526976/4870847*521^(3/13) 4180996397652125 a001 12586269025/12752043*521^(3/13) 4180996397652147 a001 32951280099/33385282*521^(3/13) 4180996397652150 a001 86267571272/87403803*521^(3/13) 4180996397652151 a001 225851433717/228826127*521^(3/13) 4180996397652151 a001 591286729879/599074578*521^(3/13) 4180996397652151 a001 1548008755920/1568397607*521^(3/13) 4180996397652151 a001 4052739537881/4106118243*521^(3/13) 4180996397652151 a001 4807525989/4870846*521^(3/13) 4180996397652151 a001 6557470319842/6643838879*521^(3/13) 4180996397652151 a001 2504730781961/2537720636*521^(3/13) 4180996397652151 a001 956722026041/969323029*521^(3/13) 4180996397652151 a001 365435296162/370248451*521^(3/13) 4180996397652151 a001 139583862445/141422324*521^(3/13) 4180996397652152 a001 53316291173/54018521*521^(3/13) 4180996397652161 a001 20365011074/20633239*521^(3/13) 4180996397652218 a001 7778742049/7881196*521^(3/13) 4180996397652612 a001 2971215073/3010349*521^(3/13) 4180996397655313 a001 1134903170/1149851*521^(3/13) 4180996397673825 a001 433494437/439204*521^(3/13) 4180996397800709 a001 165580141/167761*521^(3/13) 4180996398064977 m003 2/5-E^(1/2+Sqrt[5]/2)+Tanh[1/2+Sqrt[5]/2]/2 4180996398670387 a001 63245986/64079*521^(3/13) 4180996404631244 a001 24157817/24476*521^(3/13) 4180996429278283 a007 Real Root Of -8*x^4-322*x^3+511*x^2-437*x+567 4180996437077865 r005 Re(z^2+c),c=-4/15+18/31*I,n=7 4180996445487567 a001 9227465/9349*521^(3/13) 4180996460359337 r002 28th iterates of z^2 + 4180996463188113 m001 Magata/Artin/exp(GAMMA(7/24)) 4180996464298345 m001 Tribonacci^2*CareFree/ln(GAMMA(5/12))^2 4180996475813984 a001 2/47*521^(11/15) 4180996500211940 r009 Im(z^3+c),c=-23/90+5/11*I,n=31 4180996502453990 m001 1/KhintchineLevy/exp(Cahen)^2/GAMMA(1/6) 4180996516764702 s002 sum(A025974[n]/(n^2*10^n-1),n=1..infinity) 4180996520440316 m008 (3/5*Pi^5+1/5)/(2/5*Pi^4+5) 4180996527125572 r009 Re(z^3+c),c=-8/23+1/44*I,n=12 4180996536932421 m001 (Trott2nd+Thue)/(Chi(1)+GlaisherKinkelin) 4180996549881185 l006 ln(4483/6810) 4180996566427854 a003 cos(Pi*23/73)*cos(Pi*49/103) 4180996570919863 a007 Real Root Of 102*x^4-876*x^3-361*x^2+67*x+96 4180996573475213 a001 6765/322*322^(11/12) 4180996587273634 r005 Re(z^2+c),c=-29/22+7/117*I,n=18 4180996590263658 a001 196418/843*843^(3/7) 4180996600342091 a007 Real Root Of -789*x^4-312*x^3+340*x^2+438*x+125 4180996603691130 r005 Im(z^2+c),c=5/21+17/47*I,n=28 4180996643846980 m001 1/KhintchineLevy^2/ln(Kolakoski)*GAMMA(2/3) 4180996645429308 r002 45th iterates of z^2 + 4180996654528450 a007 Real Root Of 809*x^4+93*x^3+586*x^2+252*x-15 4180996679283310 l006 ln(58/3795) 4180996680393047 r005 Im(z^2+c),c=-1/70+28/53*I,n=15 4180996682094261 r005 Im(z^2+c),c=7/30+11/30*I,n=36 4180996682483733 a007 Real Root Of 128*x^4+404*x^3-488*x^2+293*x+169 4180996690065789 r005 Re(z^2+c),c=-25/46+15/62*I,n=12 4180996691881287 m001 LaplaceLimit^2/ln(Khintchine)^2/OneNinth 4180996701809134 r002 29th iterates of z^2 + 4180996710782532 r005 Im(z^2+c),c=15/58+15/44*I,n=60 4180996721311475 a001 1275204/305 4180996724117752 a001 3524578/2207*521^(2/13) 4180996725520994 a001 3524578/3571*521^(3/13) 4180996735262245 a007 Real Root Of 768*x^4-69*x^3+426*x^2-189*x-182 4180996752170439 b008 5/7+ArcSinh[16] 4180996754751984 r005 Re(z^2+c),c=-3/50+5/8*I,n=7 4180996770180939 m001 OneNinth*MinimumGamma*exp(GAMMA(13/24))^2 4180996773685506 a007 Real Root Of -431*x^4+703*x^3-646*x^2+482*x+379 4180996778501575 l006 ln(6423/9757) 4180996783574353 a007 Real Root Of 985*x^4-880*x^3-283*x^2-625*x+345 4180996798997803 r005 Re(z^2+c),c=-19/36+19/51*I,n=32 4180996805153423 r005 Im(z^2+c),c=-9/14+16/205*I,n=36 4180996818388333 m005 (1/3*3^(1/2)-3/5)/(1/11*Catalan-5/8) 4180996819797855 r009 Re(z^3+c),c=-25/74+35/54*I,n=5 4180996838567744 r005 Im(z^2+c),c=-45/106+11/20*I,n=39 4180996839213059 m001 cos(1)*Backhouse/ln(cosh(1))^2 4180996839304960 m001 FeigenbaumKappa^2/exp(Artin)^2/(3^(1/3))^2 4180996846544999 a004 Fibonacci(16)*Lucas(15)/(1/2+sqrt(5)/2)^12 4180996854869218 p001 sum((-1)^n/(276*n+239)/(625^n),n=0..infinity) 4180996867684709 r005 Re(z^2+c),c=5/78+16/45*I,n=26 4180996872637683 r004 Im(z^2+c),c=5/34-9/22*I,z(0)=I,n=17 4180996879952289 h001 (5/6*exp(1)+7/11)/(11/12*exp(2)+1/6) 4180996890175751 m005 (1/2*Zeta(3)+2)/(-49/198+7/18*5^(1/2)) 4180996893177062 r002 30th iterates of z^2 + 4180996894899218 m001 Ei(1)^Champernowne/sin(1/12*Pi) 4180996900946408 a001 199/1597*63245986^(17/24) 4180996903175974 r005 Im(z^2+c),c=-23/18+4/223*I,n=22 4180996903696955 r002 53th iterates of z^2 + 4180996910929827 r005 Re(z^2+c),c=-27/40+3/23*I,n=25 4180996916892121 a007 Real Root Of 761*x^4-9*x^3+265*x^2-882*x-439 4180996930357632 r002 18th iterates of z^2 + 4180996933546134 h001 (-5*exp(1/2)+7)/(-2*exp(1/2)+3) 4180996943419197 a007 Real Root Of -458*x^4+686*x^3+621*x^2+967*x-549 4180996975050567 r002 52th iterates of z^2 + 4180996976977823 m001 (Backhouse+MertensB1)/(ThueMorse-ZetaQ(4)) 4180996997067161 r005 Re(z^2+c),c=-17/31+9/31*I,n=24 4180996997182341 m001 (-BesselJ(1,1)+5)/(-BesselI(1,2)+1/2) 4180996999850700 m001 (Pi-Psi(2,1/3))*ln(2)/cos(1/12*Pi) 4180997003340717 a001 10946/2207*1364^(14/15) 4180997010425412 a001 121393/843*843^(1/2) 4180997012820727 m002 Pi+(Pi*Tanh[Pi]^2)/3 4180997021080228 m001 (2^(1/3)-Zeta(1/2))/(-CareFree+ZetaQ(2)) 4180997022148918 r009 Re(z^3+c),c=-23/44+8/39*I,n=63 4180997024947199 a007 Real Root Of 154*x^4+511*x^3-357*x^2+595*x-983 4180997025034335 b008 42+CosIntegral[5] 4180997052794252 a007 Real Root Of -338*x^4+857*x^3+201*x^2+970*x-493 4180997067277479 m002 (Pi*Coth[Pi])/3+Pi*Tanh[Pi] 4180997069688566 b008 Pi-28*SinIntegral[2] 4180997080437558 m001 ln(5)^Pi*Zeta(1,2) 4180997083966987 m001 GAMMA(5/24)/TreeGrowth2nd^2*ln(Zeta(3)) 4180997098444205 a003 -2^(1/2)-cos(1/9*Pi)-2*cos(2/15*Pi) 4180997108374686 m005 (1/3*Pi+2/11)/(3/4*Pi+7/12) 4180997117151909 r005 Re(z^2+c),c=5/78+16/45*I,n=24 4180997123506461 r005 Im(z^2+c),c=-8/13+8/25*I,n=6 4180997127851455 r009 Im(z^3+c),c=-23/90+5/11*I,n=26 4180997130759246 m001 (Paris+Thue)/(Backhouse+GaussAGM) 4180997135911606 r005 Im(z^2+c),c=11/90+23/50*I,n=40 4180997143512302 a001 17711/2207*1364^(13/15) 4180997206810970 r005 Re(z^2+c),c=-73/126+11/52*I,n=41 4180997207552886 a007 Real Root Of 142*x^4+432*x^3-559*x^2+340*x-625 4180997211289611 r009 Im(z^3+c),c=-3/5+23/43*I,n=33 4180997225025345 r005 Re(z^2+c),c=-7/18+11/18*I,n=16 4180997228815223 a001 199/5702887*6557470319842^(17/24) 4180997230015293 r005 Im(z^2+c),c=-11/58+1/18*I,n=14 4180997242938042 m001 CareFree*ln(GolombDickman)*(2^(1/3)) 4180997248415115 a007 Real Root Of -92*x^4-317*x^3+222*x^2-435*x-755 4180997253761343 a007 Real Root Of 543*x^4-657*x^3+58*x^2-384*x+16 4180997255390987 b008 InverseEllipticNomeQ[1/13]/17 4180997259892551 r002 4th iterates of z^2 + 4180997267468046 r002 21th iterates of z^2 + 4180997297012773 a001 28657/2207*1364^(4/5) 4180997298774342 a007 Real Root Of 578*x^4-857*x^3-607*x^2-990*x+565 4180997306803209 l006 ln(1940/2947) 4180997308666053 m008 (2/3*Pi^5-3)/(5*Pi^6+5/6) 4180997320058594 m001 BesselI(0,2)+GAMMA(13/24)+MertensB1 4180997321131584 m006 (5/6*Pi+3/5)/(1/5/Pi-5/6) 4180997325594463 r002 27th iterates of z^2 + 4180997329172700 s001 sum(exp(-2*Pi/3)^n*A248124[n],n=1..infinity) 4180997337841998 a007 Real Root Of 143*x^4-452*x^3+563*x^2-706*x-431 4180997360978639 p003 LerchPhi(1/16,2,349/223) 4180997398760952 m005 (1/3*2^(1/2)-3/7)/(2/5*gamma-1/3) 4180997418237465 l006 ln(7284/7595) 4180997420970530 a007 Real Root Of -186*x^4-596*x^3+631*x^2-409*x+537 4180997429217466 a001 726103/281*322^(1/12) 4180997430870931 a001 75025/843*843^(4/7) 4180997440620025 m001 BesselK(1,1)/exp(FeigenbaumAlpha)^2*Zeta(5) 4180997445197345 a003 sin(Pi*7/81)/cos(Pi*27/97) 4180997445422070 a001 46368/2207*1364^(11/15) 4180997453079657 a008 Real Root of x^3-x^2+74*x-365 4180997457254542 a001 9227465/5778*521^(2/13) 4180997460060562 a001 610*521^(4/13) 4180997470009004 r005 Re(z^2+c),c=-31/52+25/64*I,n=61 4180997476416914 r002 19th iterates of z^2 + 4180997481947524 m001 (GAMMA(17/24)+Niven)/(Pi^(1/2)-Shi(1)) 4180997482042521 a007 Real Root Of -267*x^4+81*x^3+819*x^2+457*x-332 4180997485806524 m001 1/ln((2^(1/3)))/LandauRamanujan^2/sqrt(Pi) 4180997492094987 a007 Real Root Of 147*x^4-610*x^3-524*x^2-482*x-159 4180997506001356 r009 Re(z^3+c),c=-39/98+5/47*I,n=31 4180997520056541 r009 Re(z^3+c),c=-55/126+4/27*I,n=40 4180997533203732 m001 (-Zeta(1/2)+HeathBrownMoroz)/(2^(1/3)+5^(1/2)) 4180997537724975 r005 Re(z^2+c),c=41/98+15/46*I,n=6 4180997538053997 m005 (1/2*Catalan-6/7)/(2/3*3^(1/2)-1/5) 4180997540312129 m001 GAMMA(17/24)/Kolakoski*Sierpinski 4180997554239394 r002 58th iterates of z^2 + 4180997564217780 a001 24157817/15127*521^(2/13) 4180997567395415 r005 Re(z^2+c),c=-61/60+8/45*I,n=48 4180997579682041 a004 Fibonacci(18)*Lucas(15)/(1/2+sqrt(5)/2)^14 4180997579823506 a001 63245986/39603*521^(2/13) 4180997580675767 m001 PrimesInBinary-Otter-GAMMA(13/24) 4180997582100351 a001 165580141/103682*521^(2/13) 4180997582432538 a001 433494437/271443*521^(2/13) 4180997582481004 a001 1134903170/710647*521^(2/13) 4180997582488075 a001 2971215073/1860498*521^(2/13) 4180997582489106 a001 7778742049/4870847*521^(2/13) 4180997582489257 a001 20365011074/12752043*521^(2/13) 4180997582489279 a001 53316291173/33385282*521^(2/13) 4180997582489282 a001 139583862445/87403803*521^(2/13) 4180997582489282 a001 365435296162/228826127*521^(2/13) 4180997582489282 a001 956722026041/599074578*521^(2/13) 4180997582489282 a001 2504730781961/1568397607*521^(2/13) 4180997582489282 a001 6557470319842/4106118243*521^(2/13) 4180997582489282 a001 10610209857723/6643838879*521^(2/13) 4180997582489282 a001 4052739537881/2537720636*521^(2/13) 4180997582489282 a001 1548008755920/969323029*521^(2/13) 4180997582489282 a001 591286729879/370248451*521^(2/13) 4180997582489283 a001 225851433717/141422324*521^(2/13) 4180997582489284 a001 86267571272/54018521*521^(2/13) 4180997582489292 a001 32951280099/20633239*521^(2/13) 4180997582489350 a001 12586269025/7881196*521^(2/13) 4180997582489744 a001 4807526976/3010349*521^(2/13) 4180997582492445 a001 1836311903/1149851*521^(2/13) 4180997582510957 a001 701408733/439204*521^(2/13) 4180997582637841 a001 267914296/167761*521^(2/13) 4180997583507518 a001 102334155/64079*521^(2/13) 4180997589468376 a001 39088169/24476*521^(2/13) 4180997595776031 a001 75025/2207*1364^(2/3) 4180997609658652 m001 1/GAMMA(11/12)^2*exp(Ei(1))^2*GAMMA(23/24)^2 4180997610394578 p004 log(18517/283) 4180997617172254 m001 1/Zeta(1/2)^2*ln(BesselJ(0,1))*gamma^2 4180997619347496 r002 41th iterates of z^2 + 4180997620950134 a003 cos(Pi*22/109)-cos(Pi*28/75) 4180997630324699 a001 14930352/9349*521^(2/13) 4180997643966310 r005 Im(z^2+c),c=-45/122+31/55*I,n=12 4180997650265214 r009 Im(z^3+c),c=-33/62+19/59*I,n=20 4180997658231360 r005 Re(z^2+c),c=-37/66+19/59*I,n=56 4180997660199802 m001 1/LandauRamanujan*ln(Kolakoski)/FeigenbaumD^2 4180997676584062 r005 Im(z^2+c),c=1/3+18/61*I,n=42 4180997681671163 r005 Re(z^2+c),c=-13/22+6/97*I,n=34 4180997684467552 m001 MertensB1^2/ln(GaussAGM(1,1/sqrt(2)))/Paris 4180997686645294 a004 Fibonacci(20)*Lucas(15)/(1/2+sqrt(5)/2)^16 4180997700812802 a007 Real Root Of -718*x^4+421*x^3-552*x^2+987*x-325 4180997702251022 a004 Fibonacci(22)*Lucas(15)/(1/2+sqrt(5)/2)^18 4180997703539880 a007 Real Root Of 103*x^4+475*x^3+166*x^2-172*x-379 4180997704527867 a004 Fibonacci(24)*Lucas(15)/(1/2+sqrt(5)/2)^20 4180997704860054 a004 Fibonacci(26)*Lucas(15)/(1/2+sqrt(5)/2)^22 4180997704908520 a004 Fibonacci(28)*Lucas(15)/(1/2+sqrt(5)/2)^24 4180997704915591 a004 Fibonacci(30)*Lucas(15)/(1/2+sqrt(5)/2)^26 4180997704916622 a004 Fibonacci(32)*Lucas(15)/(1/2+sqrt(5)/2)^28 4180997704916773 a004 Fibonacci(34)*Lucas(15)/(1/2+sqrt(5)/2)^30 4180997704916795 a004 Fibonacci(36)*Lucas(15)/(1/2+sqrt(5)/2)^32 4180997704916798 a004 Fibonacci(38)*Lucas(15)/(1/2+sqrt(5)/2)^34 4180997704916799 a004 Fibonacci(40)*Lucas(15)/(1/2+sqrt(5)/2)^36 4180997704916799 a004 Fibonacci(42)*Lucas(15)/(1/2+sqrt(5)/2)^38 4180997704916799 a004 Fibonacci(44)*Lucas(15)/(1/2+sqrt(5)/2)^40 4180997704916799 a004 Fibonacci(46)*Lucas(15)/(1/2+sqrt(5)/2)^42 4180997704916799 a004 Fibonacci(48)*Lucas(15)/(1/2+sqrt(5)/2)^44 4180997704916799 a004 Fibonacci(50)*Lucas(15)/(1/2+sqrt(5)/2)^46 4180997704916799 a004 Fibonacci(52)*Lucas(15)/(1/2+sqrt(5)/2)^48 4180997704916799 a004 Fibonacci(54)*Lucas(15)/(1/2+sqrt(5)/2)^50 4180997704916799 a004 Fibonacci(56)*Lucas(15)/(1/2+sqrt(5)/2)^52 4180997704916799 a004 Fibonacci(58)*Lucas(15)/(1/2+sqrt(5)/2)^54 4180997704916799 a004 Fibonacci(60)*Lucas(15)/(1/2+sqrt(5)/2)^56 4180997704916799 a004 Fibonacci(62)*Lucas(15)/(1/2+sqrt(5)/2)^58 4180997704916799 a004 Fibonacci(64)*Lucas(15)/(1/2+sqrt(5)/2)^60 4180997704916799 a004 Fibonacci(66)*Lucas(15)/(1/2+sqrt(5)/2)^62 4180997704916799 a004 Fibonacci(68)*Lucas(15)/(1/2+sqrt(5)/2)^64 4180997704916799 a004 Fibonacci(70)*Lucas(15)/(1/2+sqrt(5)/2)^66 4180997704916799 a004 Fibonacci(72)*Lucas(15)/(1/2+sqrt(5)/2)^68 4180997704916799 a004 Fibonacci(74)*Lucas(15)/(1/2+sqrt(5)/2)^70 4180997704916799 a004 Fibonacci(76)*Lucas(15)/(1/2+sqrt(5)/2)^72 4180997704916799 a004 Fibonacci(78)*Lucas(15)/(1/2+sqrt(5)/2)^74 4180997704916799 a004 Fibonacci(80)*Lucas(15)/(1/2+sqrt(5)/2)^76 4180997704916799 a004 Fibonacci(82)*Lucas(15)/(1/2+sqrt(5)/2)^78 4180997704916799 a004 Fibonacci(84)*Lucas(15)/(1/2+sqrt(5)/2)^80 4180997704916799 a004 Fibonacci(86)*Lucas(15)/(1/2+sqrt(5)/2)^82 4180997704916799 a004 Fibonacci(88)*Lucas(15)/(1/2+sqrt(5)/2)^84 4180997704916799 a004 Fibonacci(90)*Lucas(15)/(1/2+sqrt(5)/2)^86 4180997704916799 a004 Fibonacci(92)*Lucas(15)/(1/2+sqrt(5)/2)^88 4180997704916799 a004 Fibonacci(94)*Lucas(15)/(1/2+sqrt(5)/2)^90 4180997704916799 a004 Fibonacci(96)*Lucas(15)/(1/2+sqrt(5)/2)^92 4180997704916799 a004 Fibonacci(100)*Lucas(15)/(1/2+sqrt(5)/2)^96 4180997704916799 a004 Fibonacci(98)*Lucas(15)/(1/2+sqrt(5)/2)^94 4180997704916799 a004 Fibonacci(99)*Lucas(15)/(1/2+sqrt(5)/2)^95 4180997704916799 a004 Fibonacci(97)*Lucas(15)/(1/2+sqrt(5)/2)^93 4180997704916799 a004 Fibonacci(95)*Lucas(15)/(1/2+sqrt(5)/2)^91 4180997704916799 a004 Fibonacci(93)*Lucas(15)/(1/2+sqrt(5)/2)^89 4180997704916799 a004 Fibonacci(91)*Lucas(15)/(1/2+sqrt(5)/2)^87 4180997704916799 a004 Fibonacci(89)*Lucas(15)/(1/2+sqrt(5)/2)^85 4180997704916799 a004 Fibonacci(87)*Lucas(15)/(1/2+sqrt(5)/2)^83 4180997704916799 a004 Fibonacci(85)*Lucas(15)/(1/2+sqrt(5)/2)^81 4180997704916799 a004 Fibonacci(83)*Lucas(15)/(1/2+sqrt(5)/2)^79 4180997704916799 a004 Fibonacci(81)*Lucas(15)/(1/2+sqrt(5)/2)^77 4180997704916799 a004 Fibonacci(79)*Lucas(15)/(1/2+sqrt(5)/2)^75 4180997704916799 a004 Fibonacci(77)*Lucas(15)/(1/2+sqrt(5)/2)^73 4180997704916799 a004 Fibonacci(75)*Lucas(15)/(1/2+sqrt(5)/2)^71 4180997704916799 a004 Fibonacci(73)*Lucas(15)/(1/2+sqrt(5)/2)^69 4180997704916799 a004 Fibonacci(71)*Lucas(15)/(1/2+sqrt(5)/2)^67 4180997704916799 a004 Fibonacci(69)*Lucas(15)/(1/2+sqrt(5)/2)^65 4180997704916799 a004 Fibonacci(67)*Lucas(15)/(1/2+sqrt(5)/2)^63 4180997704916799 a004 Fibonacci(65)*Lucas(15)/(1/2+sqrt(5)/2)^61 4180997704916799 a004 Fibonacci(63)*Lucas(15)/(1/2+sqrt(5)/2)^59 4180997704916799 a004 Fibonacci(61)*Lucas(15)/(1/2+sqrt(5)/2)^57 4180997704916799 a004 Fibonacci(59)*Lucas(15)/(1/2+sqrt(5)/2)^55 4180997704916799 a004 Fibonacci(57)*Lucas(15)/(1/2+sqrt(5)/2)^53 4180997704916799 a004 Fibonacci(55)*Lucas(15)/(1/2+sqrt(5)/2)^51 4180997704916799 a004 Fibonacci(53)*Lucas(15)/(1/2+sqrt(5)/2)^49 4180997704916799 a004 Fibonacci(51)*Lucas(15)/(1/2+sqrt(5)/2)^47 4180997704916799 a004 Fibonacci(49)*Lucas(15)/(1/2+sqrt(5)/2)^45 4180997704916799 a004 Fibonacci(47)*Lucas(15)/(1/2+sqrt(5)/2)^43 4180997704916799 a004 Fibonacci(45)*Lucas(15)/(1/2+sqrt(5)/2)^41 4180997704916799 a004 Fibonacci(43)*Lucas(15)/(1/2+sqrt(5)/2)^39 4180997704916799 a004 Fibonacci(41)*Lucas(15)/(1/2+sqrt(5)/2)^37 4180997704916799 a004 Fibonacci(39)*Lucas(15)/(1/2+sqrt(5)/2)^35 4180997704916800 a004 Fibonacci(37)*Lucas(15)/(1/2+sqrt(5)/2)^33 4180997704916809 a004 Fibonacci(35)*Lucas(15)/(1/2+sqrt(5)/2)^31 4180997704916866 a004 Fibonacci(33)*Lucas(15)/(1/2+sqrt(5)/2)^29 4180997704917260 a004 Fibonacci(31)*Lucas(15)/(1/2+sqrt(5)/2)^27 4180997704918007 a001 1/305*(1/2+1/2*5^(1/2))^34 4180997704919961 a004 Fibonacci(29)*Lucas(15)/(1/2+sqrt(5)/2)^25 4180997704938473 a004 Fibonacci(27)*Lucas(15)/(1/2+sqrt(5)/2)^23 4180997705065357 a004 Fibonacci(25)*Lucas(15)/(1/2+sqrt(5)/2)^21 4180997705935035 a004 Fibonacci(23)*Lucas(15)/(1/2+sqrt(5)/2)^19 4180997711895893 a004 Fibonacci(21)*Lucas(15)/(1/2+sqrt(5)/2)^17 4180997717449264 r005 Re(z^2+c),c=-31/48+17/45*I,n=27 4180997724627687 r005 Re(z^2+c),c=-71/118+19/59*I,n=30 4180997725912802 m005 (1/2*Catalan-4/7)/(8/11*Pi+3/7) 4180997728176005 m001 1/ln(Cahen)*Backhouse^2/GAMMA(1/12) 4180997730516756 a001 28657/5778*1364^(14/15) 4180997732363595 m001 exp(GolombDickman)/Conway*cos(1)^2 4180997735002920 r005 Im(z^2+c),c=-8/7+13/121*I,n=4 4180997737865327 r009 Im(z^3+c),c=-6/25+28/61*I,n=20 4180997745387203 a001 121393/2207*1364^(3/5) 4180997752752220 a004 Fibonacci(19)*Lucas(15)/(1/2+sqrt(5)/2)^15 4180997761036076 m001 (3^(1/3))^2/ln(GlaisherKinkelin)*sqrt(5)^2 4180997761196732 h001 (-5*exp(3/2)+7)/(-8*exp(3/2)-1) 4180997776421200 m005 (1/2*3^(1/2)-7/8)/(5/9*exp(1)+7/11) 4180997783009619 m005 (1/3*5^(1/2)-2/11)/(2/3*5^(1/2)-1/7) 4180997810082181 m006 (1/4*ln(Pi)-1/6)/(3/4*ln(Pi)+2) 4180997822034021 m005 (1/2*Zeta(3)-9/11)/(7/12*Zeta(3)-2/11) 4180997825429812 m001 (cos(1/12*Pi)-exp(1/Pi))/(FeigenbaumD-Niven) 4180997828017875 p004 log(29669/19531) 4180997828828238 m001 (OneNinth+Stephens)/(Zeta(1,2)-ArtinRank2) 4180997836610331 a001 75025/15127*1364^(14/15) 4180997841074549 a007 Real Root Of 992*x^4+441*x^3-798*x^2-964*x+480 4180997841372733 r004 Im(z^2+c),c=-1/24+4/7*I,z(0)=I,n=59 4180997849178028 m001 (FeigenbaumAlpha+Mills)/(GAMMA(17/24)-Artin) 4180997850573699 a001 15456/281*843^(9/14) 4180997852089176 a001 196418/39603*1364^(14/15) 4180997854347509 a001 514229/103682*1364^(14/15) 4180997854676995 a001 1346269/271443*1364^(14/15) 4180997854725066 a001 3524578/710647*1364^(14/15) 4180997854732080 a001 9227465/1860498*1364^(14/15) 4180997854733103 a001 24157817/4870847*1364^(14/15) 4180997854733253 a001 63245986/12752043*1364^(14/15) 4180997854733274 a001 165580141/33385282*1364^(14/15) 4180997854733278 a001 433494437/87403803*1364^(14/15) 4180997854733278 a001 1134903170/228826127*1364^(14/15) 4180997854733278 a001 2971215073/599074578*1364^(14/15) 4180997854733278 a001 7778742049/1568397607*1364^(14/15) 4180997854733278 a001 20365011074/4106118243*1364^(14/15) 4180997854733278 a001 53316291173/10749957122*1364^(14/15) 4180997854733278 a001 139583862445/28143753123*1364^(14/15) 4180997854733278 a001 365435296162/73681302247*1364^(14/15) 4180997854733278 a001 956722026041/192900153618*1364^(14/15) 4180997854733278 a001 2504730781961/505019158607*1364^(14/15) 4180997854733278 a001 10610209857723/2139295485799*1364^(14/15) 4180997854733278 a001 4052739537881/817138163596*1364^(14/15) 4180997854733278 a001 140728068720/28374454999*1364^(14/15) 4180997854733278 a001 591286729879/119218851371*1364^(14/15) 4180997854733278 a001 225851433717/45537549124*1364^(14/15) 4180997854733278 a001 86267571272/17393796001*1364^(14/15) 4180997854733278 a001 32951280099/6643838879*1364^(14/15) 4180997854733278 a001 1144206275/230701876*1364^(14/15) 4180997854733278 a001 4807526976/969323029*1364^(14/15) 4180997854733278 a001 1836311903/370248451*1364^(14/15) 4180997854733278 a001 701408733/141422324*1364^(14/15) 4180997854733279 a001 267914296/54018521*1364^(14/15) 4180997854733288 a001 9303105/1875749*1364^(14/15) 4180997854733345 a001 39088169/7881196*1364^(14/15) 4180997854733736 a001 14930352/3010349*1364^(14/15) 4180997854736415 a001 5702887/1149851*1364^(14/15) 4180997854754776 a001 2178309/439204*1364^(14/15) 4180997854880629 a001 75640/15251*1364^(14/15) 4180997855743235 a001 317811/64079*1364^(14/15) 4180997860939019 r009 Re(z^3+c),c=-7/19+1/58*I,n=2 4180997861655628 a001 121393/24476*1364^(14/15) 4180997878926068 a001 2576/321*1364^(13/15) 4180997890377069 r005 Im(z^2+c),c=27/110+13/31*I,n=21 4180997895282103 a001 196418/2207*1364^(8/15) 4180997902179770 a001 46368/9349*1364^(14/15) 4180997907213892 a007 Real Root Of -265*x^4-987*x^3+404*x^2-363*x+261 4180997908954883 a001 5702887/2207*521^(1/13) 4180997910358125 a001 1597*521^(2/13) 4180997912278873 m001 (-cos(1/12*Pi)+Trott2nd)/(exp(Pi)-ln(2)) 4180997923384458 r005 Im(z^2+c),c=-1/90+16/29*I,n=56 4180997936547810 r002 3th iterates of z^2 + 4180997947158996 g005 1/Pi/csc(2/5*Pi)/GAMMA(6/7)/GAMMA(1/7) 4180997957230886 l006 ln(5217/7925) 4180997974946032 r009 Im(z^3+c),c=-3/38+20/41*I,n=16 4180997976008867 r009 Re(z^3+c),c=-39/98+5/47*I,n=30 4180997976375851 a007 Real Root Of 13*x^4+543*x^3-32*x^2-413*x-46 4180997979315146 r009 Im(z^3+c),c=-23/90+5/11*I,n=28 4180997986221512 a001 121393/15127*1364^(13/15) 4180997988823006 m006 (3/4/Pi-1/6)/(1/2*ln(Pi)-2/5) 4180998001875707 a001 105937/13201*1364^(13/15) 4180998004159623 a001 416020/51841*1364^(13/15) 4180998004492842 a001 726103/90481*1364^(13/15) 4180998004541458 a001 5702887/710647*1364^(13/15) 4180998004548551 a001 829464/103361*1364^(13/15) 4180998004549586 a001 39088169/4870847*1364^(13/15) 4180998004549737 a001 34111385/4250681*1364^(13/15) 4180998004549759 a001 133957148/16692641*1364^(13/15) 4180998004549762 a001 233802911/29134601*1364^(13/15) 4180998004549763 a001 1836311903/228826127*1364^(13/15) 4180998004549763 a001 267084832/33281921*1364^(13/15) 4180998004549763 a001 12586269025/1568397607*1364^(13/15) 4180998004549763 a001 10983760033/1368706081*1364^(13/15) 4180998004549763 a001 43133785636/5374978561*1364^(13/15) 4180998004549763 a001 75283811239/9381251041*1364^(13/15) 4180998004549763 a001 591286729879/73681302247*1364^(13/15) 4180998004549763 a001 86000486440/10716675201*1364^(13/15) 4180998004549763 a001 4052739537881/505019158607*1364^(13/15) 4180998004549763 a001 3278735159921/408569081798*1364^(13/15) 4180998004549763 a001 2504730781961/312119004989*1364^(13/15) 4180998004549763 a001 956722026041/119218851371*1364^(13/15) 4180998004549763 a001 182717648081/22768774562*1364^(13/15) 4180998004549763 a001 139583862445/17393796001*1364^(13/15) 4180998004549763 a001 53316291173/6643838879*1364^(13/15) 4180998004549763 a001 10182505537/1268860318*1364^(13/15) 4180998004549763 a001 7778742049/969323029*1364^(13/15) 4180998004549763 a001 2971215073/370248451*1364^(13/15) 4180998004549763 a001 567451585/70711162*1364^(13/15) 4180998004549764 a001 433494437/54018521*1364^(13/15) 4180998004549773 a001 165580141/20633239*1364^(13/15) 4180998004549830 a001 31622993/3940598*1364^(13/15) 4180998004550226 a001 24157817/3010349*1364^(13/15) 4180998004552935 a001 9227465/1149851*1364^(13/15) 4180998004571505 a001 1762289/219602*1364^(13/15) 4180998004698783 a001 1346269/167761*1364^(13/15) 4180998004982526 m001 (FibonacciFactorial+Magata)/(ln(3)-gamma(2)) 4180998005571161 a001 514229/64079*1364^(13/15) 4180998006006900 r005 Im(z^2+c),c=7/36+10/27*I,n=11 4180998011550532 a001 98209/12238*1364^(13/15) 4180998012342372 m005 (1/2*Zeta(3)-1/9)/(3/4*2^(1/2)+1/9) 4180998013256389 a001 521*1836311903^(9/17) 4180998026501268 q001 1483/3547 4180998029280044 a001 75025/5778*1364^(4/5) 4180998032785651 a004 Fibonacci(17)*Lucas(15)/(1/2+sqrt(5)/2)^13 4180998045068636 a001 317811/2207*1364^(7/15) 4180998046652539 r005 Im(z^2+c),c=-11/58+1/18*I,n=12 4180998052533746 a001 75025/9349*1364^(13/15) 4180998056715158 r005 Re(z^2+c),c=-15/26+17/73*I,n=62 4180998057915035 r002 56th iterates of z^2 + 4180998062502102 r005 Re(z^2+c),c=-10/17+8/59*I,n=38 4180998064304404 r009 Re(z^3+c),c=-27/52+13/58*I,n=51 4180998076950457 a007 Real Root Of -43*x^4+670*x^3-494*x^2+547*x-190 4180998078072924 r002 54th iterates of z^2 + 4180998091652678 r005 Re(z^2+c),c=-19/56+34/61*I,n=23 4180998097091246 m001 exp(Ei(1))^2*ArtinRank2*GAMMA(2/3) 4180998098349607 a007 Real Root Of -194*x^4-963*x^3-509*x^2+515*x-50 4180998098977570 m002 Pi+Sech[Pi]/2+Tanh[Pi] 4180998100357670 m001 1/PrimesInBinary*Porter/ln(RenyiParking)^2 4180998111335533 m001 (-FeigenbaumD+Trott2nd)/(2^(1/3)-Ei(1)) 4180998136116421 a001 196418/15127*1364^(4/5) 4180998151703638 a001 514229/39603*1364^(4/5) 4180998152085463 r002 15th iterates of z^2 + 4180998153977783 a001 1346269/103682*1364^(4/5) 4180998154309576 a001 3524578/271443*1364^(4/5) 4180998154357984 a001 9227465/710647*1364^(4/5) 4180998154365046 a001 24157817/1860498*1364^(4/5) 4180998154366077 a001 63245986/4870847*1364^(4/5) 4180998154366227 a001 165580141/12752043*1364^(4/5) 4180998154366249 a001 433494437/33385282*1364^(4/5) 4180998154366252 a001 1134903170/87403803*1364^(4/5) 4180998154366253 a001 2971215073/228826127*1364^(4/5) 4180998154366253 a001 7778742049/599074578*1364^(4/5) 4180998154366253 a001 20365011074/1568397607*1364^(4/5) 4180998154366253 a001 53316291173/4106118243*1364^(4/5) 4180998154366253 a001 139583862445/10749957122*1364^(4/5) 4180998154366253 a001 365435296162/28143753123*1364^(4/5) 4180998154366253 a001 956722026041/73681302247*1364^(4/5) 4180998154366253 a001 2504730781961/192900153618*1364^(4/5) 4180998154366253 a001 10610209857723/817138163596*1364^(4/5) 4180998154366253 a001 4052739537881/312119004989*1364^(4/5) 4180998154366253 a001 1548008755920/119218851371*1364^(4/5) 4180998154366253 a001 591286729879/45537549124*1364^(4/5) 4180998154366253 a001 7787980473/599786069*1364^(4/5) 4180998154366253 a001 86267571272/6643838879*1364^(4/5) 4180998154366253 a001 32951280099/2537720636*1364^(4/5) 4180998154366253 a001 12586269025/969323029*1364^(4/5) 4180998154366253 a001 4807526976/370248451*1364^(4/5) 4180998154366253 a001 1836311903/141422324*1364^(4/5) 4180998154366254 a001 701408733/54018521*1364^(4/5) 4180998154366263 a001 9238424/711491*1364^(4/5) 4180998154366320 a001 102334155/7881196*1364^(4/5) 4180998154366714 a001 39088169/3010349*1364^(4/5) 4180998154369411 a001 14930352/1149851*1364^(4/5) 4180998154387902 a001 5702887/439204*1364^(4/5) 4180998154514635 a001 2178309/167761*1364^(4/5) 4180998155383281 a001 832040/64079*1364^(4/5) 4180998161337069 a001 10959/844*1364^(4/5) 4180998170560814 m001 Rabbit^2*ln(Backhouse)^2*sin(Pi/5) 4180998176170609 a001 505618944676/13*144^(16/17) 4180998178891232 a001 121393/5778*1364^(11/15) 4180998179936391 a001 17711/3571*1364^(14/15) 4180998185172898 m001 FibonacciFactorial^2*Backhouse^2*ln(Pi)^2 4180998191517863 r002 56th iterates of z^2 + 4180998194896568 a001 514229/2207*1364^(2/5) 4180998202144935 a001 121393/9349*1364^(4/5) 4180998204968403 m001 (exp(1)*GAMMA(7/12)+5^(1/2))/GAMMA(7/12) 4180998204968403 m001 (exp(1)*GAMMA(7/12)+sqrt(5))/GAMMA(7/12) 4180998213590703 a001 9/4*832040^(1/22) 4180998217884510 a007 Real Root Of -698*x^4-999*x^3-865*x^2+623*x+360 4180998222192540 a007 Real Root Of -20*x^4-824*x^3+513*x^2+125*x+99 4180998227251495 r009 Im(z^3+c),c=-1/40+41/58*I,n=4 4180998229105964 a001 987/2207*24476^(19/21) 4180998232500890 m001 GaussKuzminWirsing/Cahen^2*ln(GAMMA(5/12))^2 4180998234579232 a001 987/2207*64079^(19/23) 4180998235420383 a001 987/2207*817138163596^(1/3) 4180998235420383 a001 987/2207*(1/2+1/2*5^(1/2))^19 4180998235420384 a001 987/2207*87403803^(1/2) 4180998235728288 a001 987/2207*103682^(19/24) 4180998237722645 a001 987/2207*39603^(19/22) 4180998252778315 a001 987/2207*15127^(19/20) 4180998256605752 a007 Real Root Of -26*x^4+52*x^3+624*x^2-246*x-191 4180998262896306 r005 Re(z^2+c),c=1/48+11/40*I,n=9 4180998272221166 a001 28657/843*843^(5/7) 4180998285902962 a001 317811/15127*1364^(11/15) 4180998287103871 r004 Re(z^2+c),c=-19/34+2/23*I,z(0)=-1,n=11 4180998288855895 r002 40th iterates of z^2 + 4180998301515763 a001 832040/39603*1364^(11/15) 4180998303793641 a001 46347/2206*1364^(11/15) 4180998304125978 a001 5702887/271443*1364^(11/15) 4180998304174466 a001 14930352/710647*1364^(11/15) 4180998304181540 a001 39088169/1860498*1364^(11/15) 4180998304182572 a001 102334155/4870847*1364^(11/15) 4180998304182723 a001 267914296/12752043*1364^(11/15) 4180998304182745 a001 701408733/33385282*1364^(11/15) 4180998304182748 a001 1836311903/87403803*1364^(11/15) 4180998304182748 a001 102287808/4868641*1364^(11/15) 4180998304182748 a001 12586269025/599074578*1364^(11/15) 4180998304182748 a001 32951280099/1568397607*1364^(11/15) 4180998304182748 a001 86267571272/4106118243*1364^(11/15) 4180998304182748 a001 225851433717/10749957122*1364^(11/15) 4180998304182748 a001 591286729879/28143753123*1364^(11/15) 4180998304182748 a001 1548008755920/73681302247*1364^(11/15) 4180998304182748 a001 4052739537881/192900153618*1364^(11/15) 4180998304182748 a001 225749145909/10745088481*1364^(11/15) 4180998304182748 a001 6557470319842/312119004989*1364^(11/15) 4180998304182748 a001 2504730781961/119218851371*1364^(11/15) 4180998304182748 a001 956722026041/45537549124*1364^(11/15) 4180998304182748 a001 365435296162/17393796001*1364^(11/15) 4180998304182748 a001 139583862445/6643838879*1364^(11/15) 4180998304182748 a001 53316291173/2537720636*1364^(11/15) 4180998304182748 a001 20365011074/969323029*1364^(11/15) 4180998304182748 a001 7778742049/370248451*1364^(11/15) 4180998304182749 a001 2971215073/141422324*1364^(11/15) 4180998304182750 a001 1134903170/54018521*1364^(11/15) 4180998304182758 a001 433494437/20633239*1364^(11/15) 4180998304182816 a001 165580141/7881196*1364^(11/15) 4180998304183210 a001 63245986/3010349*1364^(11/15) 4180998304185912 a001 24157817/1149851*1364^(11/15) 4180998304204433 a001 9227465/439204*1364^(11/15) 4180998304331374 a001 3524578/167761*1364^(11/15) 4180998305201446 a001 1346269/64079*1364^(11/15) 4180998306661030 r005 Re(z^2+c),c=-4/7+25/71*I,n=51 4180998311165006 a001 514229/24476*1364^(11/15) 4180998311884359 r005 Re(z^2+c),c=-7/12+20/103*I,n=30 4180998313023041 a007 Real Root Of -190*x^4-647*x^3+821*x^2+809*x-197 4180998325355622 s002 sum(A093773[n]/(16^n),n=1..infinity) 4180998328786147 a001 98209/2889*1364^(2/3) 4180998333436901 a001 28657/3571*1364^(13/15) 4180998342287227 l006 ln(3277/4978) 4180998344014568 r002 18th iterates of z^2 + 4180998344708695 a001 832040/2207*1364^(1/3) 4180998345392416 a007 Real Root Of 884*x^4-384*x^3+759*x^2-809*x-526 4180998352039851 a001 196418/9349*1364^(11/15) 4180998356468278 a007 Real Root Of 694*x^4+491*x^3+862*x^2-287*x-256 4180998360655737 a001 2550409/610 4180998362346969 r005 Re(z^2+c),c=-23/40+12/47*I,n=33 4180998388100804 m001 (Stephens+Tribonacci)/(Zeta(1,-1)+OneNinth) 4180998389311222 m005 (1/2*exp(1)+2/5)/(4/7*gamma+1/11) 4180998396709278 m001 (PlouffeB+Salem)/(Pi+AlladiGrinstead) 4180998405388400 r005 Im(z^2+c),c=3/38+30/61*I,n=60 4180998430722171 a008 Real Root of (2+2*x-3*x^2+4*x^3-5*x^4+x^5) 4180998435730903 a001 514229/15127*1364^(2/3) 4180998437349603 r005 Re(z^2+c),c=-43/78+22/53*I,n=47 4180998446660453 r005 Re(z^2+c),c=-25/19+1/46*I,n=30 4180998450692791 r005 Im(z^2+c),c=1/40+33/62*I,n=37 4180998451333933 a001 1346269/39603*1364^(2/3) 4180998453610385 a001 1762289/51841*1364^(2/3) 4180998453942515 a001 9227465/271443*1364^(2/3) 4180998453990972 a001 24157817/710647*1364^(2/3) 4180998453998042 a001 31622993/930249*1364^(2/3) 4180998453999073 a001 165580141/4870847*1364^(2/3) 4180998453999224 a001 433494437/12752043*1364^(2/3) 4180998453999245 a001 567451585/16692641*1364^(2/3) 4180998453999249 a001 2971215073/87403803*1364^(2/3) 4180998453999249 a001 7778742049/228826127*1364^(2/3) 4180998453999249 a001 10182505537/299537289*1364^(2/3) 4180998453999249 a001 53316291173/1568397607*1364^(2/3) 4180998453999249 a001 139583862445/4106118243*1364^(2/3) 4180998453999249 a001 182717648081/5374978561*1364^(2/3) 4180998453999249 a001 956722026041/28143753123*1364^(2/3) 4180998453999249 a001 2504730781961/73681302247*1364^(2/3) 4180998453999249 a001 3278735159921/96450076809*1364^(2/3) 4180998453999249 a001 10610209857723/312119004989*1364^(2/3) 4180998453999249 a001 4052739537881/119218851371*1364^(2/3) 4180998453999249 a001 387002188980/11384387281*1364^(2/3) 4180998453999249 a001 591286729879/17393796001*1364^(2/3) 4180998453999249 a001 225851433717/6643838879*1364^(2/3) 4180998453999249 a001 1135099622/33391061*1364^(2/3) 4180998453999249 a001 32951280099/969323029*1364^(2/3) 4180998453999249 a001 12586269025/370248451*1364^(2/3) 4180998453999249 a001 1201881744/35355581*1364^(2/3) 4180998453999251 a001 1836311903/54018521*1364^(2/3) 4180998453999259 a001 701408733/20633239*1364^(2/3) 4180998453999317 a001 66978574/1970299*1364^(2/3) 4180998453999711 a001 102334155/3010349*1364^(2/3) 4180998454002411 a001 39088169/1149851*1364^(2/3) 4180998454020920 a001 196452/5779*1364^(2/3) 4180998454147782 a001 5702887/167761*1364^(2/3) 4180998455017309 a001 2178309/64079*1364^(2/3) 4180998460977136 a001 208010/6119*1364^(2/3) 4180998461529953 r002 19th iterates of z^2 + 4180998464960405 m001 ZetaP(4)^(Pi^(1/2)*ArtinRank2) 4180998478572696 a001 105937/1926*1364^(3/5) 4180998481846235 a001 46368/3571*1364^(4/5) 4180998494526867 a001 1346269/2207*1364^(4/15) 4180998501826400 a001 317811/9349*1364^(2/3) 4180998527295379 m001 1/cos(Pi/5)/GlaisherKinkelin*ln(cosh(1)) 4180998528700845 a007 Real Root Of 359*x^4+201*x^3+965*x^2-952*x-563 4180998539824499 a001 48/281*7^(23/50) 4180998540083074 r002 48th iterates of z^2 + 4180998540749687 r008 a(0)=4,K{-n^6,14-29*n+41*n^2-32*n^3} 4180998557935632 r005 Re(z^2+c),c=-47/66+11/39*I,n=4 4180998585543039 a001 832040/15127*1364^(3/5) 4180998592236102 p001 sum(1/(493*n+12)/n/(5^n),n=1..infinity) 4180998600006000 r009 Re(z^3+c),c=-31/74+29/41*I,n=4 4180998601149802 a001 726103/13201*1364^(3/5) 4180998603426798 a001 5702887/103682*1364^(3/5) 4180998603759007 a001 4976784/90481*1364^(3/5) 4180998603807476 a001 39088169/710647*1364^(3/5) 4180998603814547 a001 831985/15126*1364^(3/5) 4180998603815579 a001 267914296/4870847*1364^(3/5) 4180998603815730 a001 233802911/4250681*1364^(3/5) 4180998603815752 a001 1836311903/33385282*1364^(3/5) 4180998603815755 a001 1602508992/29134601*1364^(3/5) 4180998603815755 a001 12586269025/228826127*1364^(3/5) 4180998603815755 a001 10983760033/199691526*1364^(3/5) 4180998603815755 a001 86267571272/1568397607*1364^(3/5) 4180998603815755 a001 75283811239/1368706081*1364^(3/5) 4180998603815755 a001 591286729879/10749957122*1364^(3/5) 4180998603815755 a001 12585437040/228811001*1364^(3/5) 4180998603815755 a001 4052739537881/73681302247*1364^(3/5) 4180998603815755 a001 3536736619241/64300051206*1364^(3/5) 4180998603815755 a001 6557470319842/119218851371*1364^(3/5) 4180998603815755 a001 2504730781961/45537549124*1364^(3/5) 4180998603815755 a001 956722026041/17393796001*1364^(3/5) 4180998603815755 a001 365435296162/6643838879*1364^(3/5) 4180998603815755 a001 139583862445/2537720636*1364^(3/5) 4180998603815755 a001 53316291173/969323029*1364^(3/5) 4180998603815755 a001 20365011074/370248451*1364^(3/5) 4180998603815756 a001 7778742049/141422324*1364^(3/5) 4180998603815757 a001 2971215073/54018521*1364^(3/5) 4180998603815765 a001 1134903170/20633239*1364^(3/5) 4180998603815823 a001 433494437/7881196*1364^(3/5) 4180998603816217 a001 165580141/3010349*1364^(3/5) 4180998603818918 a001 63245986/1149851*1364^(3/5) 4180998603837431 a001 24157817/439204*1364^(3/5) 4180998603964324 a001 9227465/167761*1364^(3/5) 4180998604834059 a001 3524578/64079*1364^(3/5) 4180998610795312 a001 1346269/24476*1364^(3/5) 4180998620690518 m001 1/Trott^2*ln(DuboisRaymond)/gamma^2 4180998625285700 r002 34th iterates of z^2 + 4180998628400644 a001 514229/5778*1364^(8/15) 4180998631378885 m001 (Lehmer-exp(-Pi))^Backhouse 4180998632200232 a001 75025/3571*1364^(11/15) 4180998635909349 a003 cos(Pi*5/46)*sin(Pi*6/41) 4180998636920018 r005 Re(z^2+c),c=-13/22+8/97*I,n=43 4180998642091960 a001 2584*521^(1/13) 4180998644342737 a001 987*1364^(1/5) 4180998644791079 a007 Real Root Of -938*x^4-870*x^3-124*x^2+986*x+399 4180998644899664 a001 1346269/1364*521^(3/13) 4180998651654349 a001 514229/9349*1364^(3/5) 4180998654826572 a007 Real Root Of -584*x^4+722*x^3+729*x^2+863*x+304 4180998654973081 m001 -exp(gamma)/(2^(1/3)+3) 4180998669039197 a007 Real Root Of -93*x^4-219*x^3+687*x^2-79*x+73 4180998678592489 r002 62th iterates of z^2 + 4180998688777495 a001 17711/843*843^(11/14) 4180998691440146 r009 Re(z^3+c),c=-13/29+9/56*I,n=19 4180998706013847 m001 BesselK(1,1)^2/FeigenbaumKappa/ln(Ei(1)) 4180998709719868 r005 Re(z^2+c),c=-35/114+12/19*I,n=4 4180998725957861 r005 Im(z^2+c),c=-63/118+30/49*I,n=24 4180998735361219 a001 1346269/15127*1364^(8/15) 4180998738438569 r005 Im(z^2+c),c=5/56+31/64*I,n=64 4180998747651847 a001 6677055/1597 4180998749055240 a001 39088169/15127*521^(1/13) 4180998750966557 a001 3524578/39603*1364^(8/15) 4180998753243345 a001 9227465/103682*1364^(8/15) 4180998753575524 a001 24157817/271443*1364^(8/15) 4180998753623988 a001 63245986/710647*1364^(8/15) 4180998753631059 a001 165580141/1860498*1364^(8/15) 4180998753632091 a001 433494437/4870847*1364^(8/15) 4180998753632241 a001 1134903170/12752043*1364^(8/15) 4180998753632263 a001 2971215073/33385282*1364^(8/15) 4180998753632266 a001 7778742049/87403803*1364^(8/15) 4180998753632267 a001 20365011074/228826127*1364^(8/15) 4180998753632267 a001 53316291173/599074578*1364^(8/15) 4180998753632267 a001 139583862445/1568397607*1364^(8/15) 4180998753632267 a001 365435296162/4106118243*1364^(8/15) 4180998753632267 a001 956722026041/10749957122*1364^(8/15) 4180998753632267 a001 2504730781961/28143753123*1364^(8/15) 4180998753632267 a001 6557470319842/73681302247*1364^(8/15) 4180998753632267 a001 10610209857723/119218851371*1364^(8/15) 4180998753632267 a001 4052739537881/45537549124*1364^(8/15) 4180998753632267 a001 1548008755920/17393796001*1364^(8/15) 4180998753632267 a001 591286729879/6643838879*1364^(8/15) 4180998753632267 a001 225851433717/2537720636*1364^(8/15) 4180998753632267 a001 86267571272/969323029*1364^(8/15) 4180998753632267 a001 32951280099/370248451*1364^(8/15) 4180998753632267 a001 12586269025/141422324*1364^(8/15) 4180998753632268 a001 4807526976/54018521*1364^(8/15) 4180998753632277 a001 1836311903/20633239*1364^(8/15) 4180998753632334 a001 3524667/39604*1364^(8/15) 4180998753632728 a001 267914296/3010349*1364^(8/15) 4180998753635429 a001 102334155/1149851*1364^(8/15) 4180998753653941 a001 39088169/439204*1364^(8/15) 4180998753780822 a001 14930352/167761*1364^(8/15) 4180998754650478 a001 5702887/64079*1364^(8/15) 4180998756203134 m001 1/ln(Tribonacci)*ErdosBorwein^2*Pi^2 4180998760611186 a001 2178309/24476*1364^(8/15) 4180998764660972 a001 34111385/13201*521^(1/13) 4180998765923331 a004 Fibonacci(16)*Lucas(17)/(1/2+sqrt(5)/2)^14 4180998766937818 a001 133957148/51841*521^(1/13) 4180998767270005 a001 233802911/90481*521^(1/13) 4180998767318471 a001 1836311903/710647*521^(1/13) 4180998767325542 a001 267084832/103361*521^(1/13) 4180998767326574 a001 12586269025/4870847*521^(1/13) 4180998767326724 a001 10983760033/4250681*521^(1/13) 4180998767326746 a001 43133785636/16692641*521^(1/13) 4180998767326749 a001 75283811239/29134601*521^(1/13) 4180998767326750 a001 591286729879/228826127*521^(1/13) 4180998767326750 a001 86000486440/33281921*521^(1/13) 4180998767326750 a001 4052739537881/1568397607*521^(1/13) 4180998767326750 a001 3536736619241/1368706081*521^(1/13) 4180998767326750 a001 3278735159921/1268860318*521^(1/13) 4180998767326750 a001 2504730781961/969323029*521^(1/13) 4180998767326750 a001 956722026041/370248451*521^(1/13) 4180998767326750 a001 182717648081/70711162*521^(1/13) 4180998767326751 a001 139583862445/54018521*521^(1/13) 4180998767326760 a001 53316291173/20633239*521^(1/13) 4180998767326817 a001 10182505537/3940598*521^(1/13) 4180998767327211 a001 7778742049/3010349*521^(1/13) 4180998767329912 a001 2971215073/1149851*521^(1/13) 4180998767348424 a001 567451585/219602*521^(1/13) 4180998767475308 a001 433494437/167761*521^(1/13) 4180998768344986 a001 165580141/64079*521^(1/13) 4180998774305846 a001 31622993/12238*521^(1/13) 4180998777666257 l006 ln(4614/7009) 4180998778212786 a001 416020/2889*1364^(7/15) 4180998778482938 r005 Re(z^2+c),c=-17/30+15/59*I,n=30 4180998781811442 a001 121393/3571*1364^(2/3) 4180998786224815 a001 6765/2207*3571^(15/17) 4180998794159493 a001 3524578/2207*1364^(2/15) 4180998798923185 r002 9th iterates of z^2 + 4180998800971484 a003 sin(Pi*6/61)/cos(Pi*13/54) 4180998801466493 a001 832040/9349*1364^(8/15) 4180998815162185 a001 24157817/9349*521^(1/13) 4180998825946083 a001 39603/89*610^(17/24) 4180998827708176 r005 Re(z^2+c),c=41/126+2/37*I,n=12 4180998830761829 a001 10946/2207*3571^(14/17) 4180998833045349 a001 4181/2207*3571^(16/17) 4180998835692737 m005 (1/3*2^(1/2)+3/7)/(73/63+4/9*5^(1/2)) 4180998840403365 a001 17711/2207*3571^(13/17) 4180998847518703 r002 53th iterates of z^2 + 4180998847618908 m001 GAMMA(1/4)+LambertW(1)^Zeta(5) 4180998847618908 m001 Pi*2^(1/2)/GAMMA(3/4)+LambertW(1)^Zeta(5) 4180998849981921 m001 (Trott2nd+Thue)/(BesselI(1,1)-Khinchin) 4180998861135313 r005 Re(z^2+c),c=-15/26+16/69*I,n=59 4180998863373788 a001 28657/2207*3571^(12/17) 4180998877899710 m001 (2^(1/2)-exp(Pi))/(-Gompertz+ZetaP(4)) 4180998881253029 a001 46368/2207*3571^(11/17) 4180998885177098 a001 311187/2161*1364^(7/15) 4180998900782981 a001 5702887/39603*1364^(7/15) 4180998901076929 a001 75025/2207*3571^(10/17) 4180998903059849 a001 7465176/51841*1364^(7/15) 4180998903392039 a001 39088169/271443*1364^(7/15) 4180998903440505 a001 14619165/101521*1364^(7/15) 4180998903447576 a001 133957148/930249*1364^(7/15) 4180998903448608 a001 701408733/4870847*1364^(7/15) 4180998903448758 a001 1836311903/12752043*1364^(7/15) 4180998903448780 a001 14930208/103681*1364^(7/15) 4180998903448783 a001 12586269025/87403803*1364^(7/15) 4180998903448784 a001 32951280099/228826127*1364^(7/15) 4180998903448784 a001 43133785636/299537289*1364^(7/15) 4180998903448784 a001 32264490531/224056801*1364^(7/15) 4180998903448784 a001 591286729879/4106118243*1364^(7/15) 4180998903448784 a001 774004377960/5374978561*1364^(7/15) 4180998903448784 a001 4052739537881/28143753123*1364^(7/15) 4180998903448784 a001 1515744265389/10525900321*1364^(7/15) 4180998903448784 a001 3278735159921/22768774562*1364^(7/15) 4180998903448784 a001 2504730781961/17393796001*1364^(7/15) 4180998903448784 a001 956722026041/6643838879*1364^(7/15) 4180998903448784 a001 182717648081/1268860318*1364^(7/15) 4180998903448784 a001 139583862445/969323029*1364^(7/15) 4180998903448784 a001 53316291173/370248451*1364^(7/15) 4180998903448784 a001 10182505537/70711162*1364^(7/15) 4180998903448785 a001 7778742049/54018521*1364^(7/15) 4180998903448794 a001 2971215073/20633239*1364^(7/15) 4180998903448851 a001 567451585/3940598*1364^(7/15) 4180998903449245 a001 433494437/3010349*1364^(7/15) 4180998903451946 a001 165580141/1149851*1364^(7/15) 4180998903470459 a001 31622993/219602*1364^(7/15) 4180998903597344 a001 24157817/167761*1364^(7/15) 4180998904467030 a001 9227465/64079*1364^(7/15) 4180998910427947 a001 1762289/12238*1364^(7/15) 4180998918058014 m002 -3+Pi^2-Sinh[Pi]+Tanh[Pi]/2 4180998920158035 a001 121393/2207*3571^(9/17) 4180998925757542 a001 2584/2207*9349^(17/19) 4180998928030973 a001 1346269/5778*1364^(2/5) 4180998931706379 a001 196418/3571*1364^(3/5) 4180998935437778 r005 Im(z^2+c),c=-47/70+1/9*I,n=37 4180998936975903 r005 Im(z^2+c),c=23/82+19/60*I,n=36 4180998939522863 a001 196418/2207*3571^(8/17) 4180998943975919 a001 5702887/2207*1364^(1/15) 4180998944656178 r009 Im(z^3+c),c=-3/22+25/51*I,n=5 4180998948847148 p003 LerchPhi(1/3,5,64/135) 4180998951284680 a001 1346269/9349*1364^(7/15) 4180998958779320 a001 317811/2207*3571^(7/17) 4180998962315831 r005 Re(z^2+c),c=-13/22+5/89*I,n=24 4180998962907924 a001 2584/2207*24476^(17/21) 4180998967627802 a001 329/1926*64079^(21/23) 4180998967805059 a001 2584/2207*64079^(17/23) 4180998968540638 a001 329/1926*439204^(7/9) 4180998968557453 a001 329/1926*7881196^(7/11) 4180998968557490 a001 329/1926*20633239^(3/5) 4180998968557496 a001 329/1926*141422324^(7/13) 4180998968557496 a001 329/1926*2537720636^(7/15) 4180998968557496 a001 329/1926*17393796001^(3/7) 4180998968557496 a001 329/1926*45537549124^(7/17) 4180998968557496 a001 329/1926*14662949395604^(1/3) 4180998968557496 a001 329/1926*(1/2+1/2*5^(1/2))^21 4180998968557496 a001 329/1926*192900153618^(7/18) 4180998968557496 a001 329/1926*10749957122^(7/16) 4180998968557496 a001 329/1926*599074578^(1/2) 4180998968557498 a001 329/1926*33385282^(7/12) 4180998968557669 a001 2584/2207*45537549124^(1/3) 4180998968557669 a001 2584/2207*(1/2+1/2*5^(1/2))^17 4180998968557682 a001 2584/2207*12752043^(1/2) 4180998968558342 a001 329/1926*1860498^(7/10) 4180998968563705 a001 329/1926*710647^(3/4) 4180998968833162 a001 2584/2207*103682^(17/24) 4180998968897812 a001 329/1926*103682^(7/8) 4180998970307279 a007 Real Root Of -84*x^4-88*x^3-859*x^2+492*x+352 4180998970617588 a001 2584/2207*39603^(17/22) 4180998971102102 a001 329/1926*39603^(21/22) 4180998978077171 a001 514229/2207*3571^(6/17) 4180998984088453 a001 2584/2207*15127^(17/20) 4180998989692209 h001 (2/9*exp(2)+8/11)/(3/4*exp(2)+1/8) 4180998992340407 a005 (1/sin(31/153*Pi))^78 4180998995085161 a007 Real Root Of 969*x^4-264*x^3+82*x^2-705*x-358 4180998995300638 a003 cos(Pi*15/67)*cos(Pi*35/111) 4180998996471913 m001 (Zeta(5)+Landau)/(Rabbit-RenyiParking) 4180998997359210 a001 832040/2207*3571^(5/17) 4180999007427911 r002 32th iterates of z^2 + 4180999016647289 a001 1346269/2207*3571^(4/17) 4180999017413701 l006 ln(5951/9040) 4180999028275691 r005 Re(z^2+c),c=-63/110+15/59*I,n=48 4180999029513704 p001 sum((-1)^n/(390*n+239)/(512^n),n=0..infinity) 4180999034993863 a001 3524578/15127*1364^(2/5) 4180999035933062 a001 987*3571^(3/17) 4180999037756139 a001 6765/2207*9349^(15/19) 4180999040201936 a007 Real Root Of -338*x^4-401*x^3-394*x^2+713*x+348 4180999043291078 a001 17480757/4181 4180999043918219 r005 Im(z^2+c),c=-1/50+33/59*I,n=41 4180999044622516 a007 Real Root Of 419*x^4+150*x^3-572*x^2-949*x+473 4180999045956855 a004 Fibonacci(16)*Lucas(19)/(1/2+sqrt(5)/2)^16 4180999050599539 a001 9227465/39603*1364^(2/5) 4180999050801009 r005 Re(z^2+c),c=-10/17+2/17*I,n=33 4180999052876376 a001 24157817/103682*1364^(2/5) 4180999053040992 h001 (11/12*exp(1)+3/8)/(11/12*exp(2)+1/12) 4180999053208562 a001 63245986/271443*1364^(2/5) 4180999053257027 a001 165580141/710647*1364^(2/5) 4180999053264098 a001 433494437/1860498*1364^(2/5) 4180999053265130 a001 1134903170/4870847*1364^(2/5) 4180999053265281 a001 2971215073/12752043*1364^(2/5) 4180999053265303 a001 7778742049/33385282*1364^(2/5) 4180999053265306 a001 20365011074/87403803*1364^(2/5) 4180999053265306 a001 53316291173/228826127*1364^(2/5) 4180999053265306 a001 139583862445/599074578*1364^(2/5) 4180999053265306 a001 365435296162/1568397607*1364^(2/5) 4180999053265306 a001 956722026041/4106118243*1364^(2/5) 4180999053265306 a001 2504730781961/10749957122*1364^(2/5) 4180999053265306 a001 6557470319842/28143753123*1364^(2/5) 4180999053265306 a001 10610209857723/45537549124*1364^(2/5) 4180999053265306 a001 4052739537881/17393796001*1364^(2/5) 4180999053265306 a001 1548008755920/6643838879*1364^(2/5) 4180999053265306 a001 591286729879/2537720636*1364^(2/5) 4180999053265306 a001 225851433717/969323029*1364^(2/5) 4180999053265306 a001 86267571272/370248451*1364^(2/5) 4180999053265306 a001 63246219/271444*1364^(2/5) 4180999053265308 a001 12586269025/54018521*1364^(2/5) 4180999053265316 a001 4807526976/20633239*1364^(2/5) 4180999053265374 a001 1836311903/7881196*1364^(2/5) 4180999053265768 a001 701408733/3010349*1364^(2/5) 4180999053268469 a001 267914296/1149851*1364^(2/5) 4180999053286981 a001 102334155/439204*1364^(2/5) 4180999053413864 a001 39088169/167761*1364^(2/5) 4180999054283539 a001 14930352/64079*1364^(2/5) 4180999055219715 a001 3524578/2207*3571^(2/17) 4180999058397181 a001 17711/2207*9349^(13/19) 4180999060244377 a001 5702887/24476*1364^(2/5) 4180999064598850 a001 28657/2207*9349^(12/19) 4180999065524400 a001 10946/2207*9349^(14/19) 4180999065709336 a001 46368/2207*9349^(11/19) 4180999068764481 a001 75025/2207*9349^(10/19) 4180999070535888 a001 6765/2207*24476^(5/7) 4180999071076833 a001 121393/2207*9349^(9/19) 4180999073672906 a001 196418/2207*9349^(8/19) 4180999074506032 a001 5702887/2207*3571^(1/17) 4180999074856890 a001 6765/2207*64079^(15/23) 4180999075431822 a001 6765/2207*167761^(3/5) 4180999075508916 a001 6765/2207*439204^(5/9) 4180999075520781 a001 141/2161*(1/2+1/2*5^(1/2))^23 4180999075520781 a001 141/2161*4106118243^(1/2) 4180999075520927 a001 6765/2207*7881196^(5/11) 4180999075520953 a001 6765/2207*20633239^(3/7) 4180999075520957 a001 6765/2207*141422324^(5/13) 4180999075520957 a001 6765/2207*2537720636^(1/3) 4180999075520957 a001 6765/2207*45537549124^(5/17) 4180999075520957 a001 6765/2207*312119004989^(3/11) 4180999075520957 a001 6765/2207*14662949395604^(5/21) 4180999075520957 a001 6765/2207*(1/2+1/2*5^(1/2))^15 4180999075520957 a001 6765/2207*192900153618^(5/18) 4180999075520957 a001 6765/2207*28143753123^(3/10) 4180999075520957 a001 6765/2207*10749957122^(5/16) 4180999075520957 a001 6765/2207*599074578^(5/14) 4180999075520957 a001 6765/2207*228826127^(3/8) 4180999075520959 a001 6765/2207*33385282^(5/12) 4180999075521561 a001 6765/2207*1860498^(1/2) 4180999075764039 a001 6765/2207*103682^(5/8) 4180999075893507 a001 141/2161*103682^(23/24) 4180999076160607 a001 317811/2207*9349^(7/19) 4180999077338533 a001 6765/2207*39603^(15/22) 4180999077846859 a001 726103/1926*1364^(1/3) 4180999078689703 a001 514229/2207*9349^(6/19) 4180999081202987 a001 832040/2207*9349^(5/19) 4180999081492949 a001 317811/3571*1364^(8/15) 4180999083593370 r005 Re(z^2+c),c=-17/30+25/83*I,n=45 4180999083722311 a001 1346269/2207*9349^(4/19) 4180999086239328 a001 987*9349^(3/19) 4180999086424264 a001 22882608/5473 4180999086806298 a001 17711/2207*24476^(13/21) 4180999086813196 a004 Fibonacci(16)*Lucas(21)/(1/2+sqrt(5)/2)^18 4180999086834976 a001 2584/2207*5778^(17/18) 4180999087685088 r005 Im(z^2+c),c=15/74+17/43*I,n=30 4180999088757226 a001 3524578/2207*9349^(2/19) 4180999089224590 a001 6765/2207*15127^(3/4) 4180999089747819 a001 46368/2207*24476^(11/21) 4180999090551166 a001 17711/2207*64079^(13/23) 4180999090617648 a001 75025/2207*24476^(10/21) 4180999090744683 a001 121393/2207*24476^(3/7) 4180999090822650 a001 28657/2207*24476^(4/7) 4180999091126507 a001 329/13201*20633239^(5/7) 4180999091126514 a001 329/13201*2537720636^(5/9) 4180999091126514 a001 329/13201*312119004989^(5/11) 4180999091126514 a001 329/13201*(1/2+1/2*5^(1/2))^25 4180999091126514 a001 329/13201*3461452808002^(5/12) 4180999091126514 a001 329/13201*28143753123^(1/2) 4180999091126514 a001 329/13201*228826127^(5/8) 4180999091126691 a001 17711/2207*141422324^(1/3) 4180999091126691 a001 17711/2207*(1/2+1/2*5^(1/2))^13 4180999091126691 a001 17711/2207*73681302247^(1/4) 4180999091127521 a001 329/13201*1860498^(5/6) 4180999091155063 a001 17711/2207*271443^(1/2) 4180999091155439 a001 196418/2207*24476^(8/21) 4180999091274788 a001 5702887/2207*9349^(1/19) 4180999091337362 a001 17711/2207*103682^(13/24) 4180999091457824 a001 317811/2207*24476^(1/3) 4180999091801603 a001 514229/2207*24476^(2/7) 4180999092129571 a001 832040/2207*24476^(5/21) 4180999092463578 a001 1346269/2207*24476^(4/21) 4180999092701923 a001 17711/2207*39603^(13/22) 4180999092717311 a001 119814891/28657 4180999092774056 a004 Fibonacci(16)*Lucas(23)/(1/2+sqrt(5)/2)^20 4180999092795278 a001 987*24476^(1/7) 4180999092916554 a001 46368/2207*64079^(11/23) 4180999093127860 a001 3524578/2207*24476^(2/21) 4180999093337283 a001 121393/2207*64079^(9/23) 4180999093403305 a001 21/2206*7881196^(9/11) 4180999093403360 a001 21/2206*141422324^(9/13) 4180999093403360 a001 21/2206*2537720636^(3/5) 4180999093403360 a001 21/2206*45537549124^(9/17) 4180999093403360 a001 21/2206*817138163596^(9/19) 4180999093403360 a001 21/2206*14662949395604^(3/7) 4180999093403360 a001 21/2206*(1/2+1/2*5^(1/2))^27 4180999093403360 a001 21/2206*192900153618^(1/2) 4180999093403360 a001 21/2206*10749957122^(9/16) 4180999093403360 a001 21/2206*599074578^(9/14) 4180999093403363 a001 21/2206*33385282^(3/4) 4180999093403514 a001 46368/2207*7881196^(1/3) 4180999093403536 a001 46368/2207*312119004989^(1/5) 4180999093403536 a001 46368/2207*(1/2+1/2*5^(1/2))^11 4180999093403536 a001 46368/2207*1568397607^(1/4) 4180999093404447 a001 21/2206*1860498^(9/10) 4180999093459973 a001 196418/2207*64079^(8/23) 4180999093460105 a001 5702887/2207*24476^(1/21) 4180999093474291 a001 317811/2207*64079^(7/23) 4180999093498315 a001 75025/2207*64079^(10/23) 4180999093530004 a001 514229/2207*64079^(6/23) 4180999093569905 a001 832040/2207*64079^(5/23) 4180999093581797 a001 46368/2207*103682^(11/24) 4180999093615845 a001 1346269/2207*64079^(4/23) 4180999093635454 a001 313679457/75025 4180999093643733 a004 Fibonacci(16)*Lucas(25)/(1/2+sqrt(5)/2)^22 4180999093659478 a001 987*64079^(3/23) 4180999093683970 m001 CareFree^FeigenbaumMu/(Bloch^FeigenbaumMu) 4180999093703993 a001 3524578/2207*64079^(2/23) 4180999093728499 a001 121393/2207*439204^(1/3) 4180999093735548 a001 329/90481*(1/2+1/2*5^(1/2))^29 4180999093735548 a001 329/90481*1322157322203^(1/2) 4180999093735705 a001 121393/2207*7881196^(3/11) 4180999093735724 a001 121393/2207*141422324^(3/13) 4180999093735724 a001 121393/2207*2537720636^(1/5) 4180999093735724 a001 121393/2207*45537549124^(3/17) 4180999093735724 a001 121393/2207*14662949395604^(1/7) 4180999093735724 a001 121393/2207*(1/2+1/2*5^(1/2))^9 4180999093735724 a001 121393/2207*192900153618^(1/6) 4180999093735724 a001 121393/2207*10749957122^(3/16) 4180999093735724 a001 121393/2207*599074578^(3/14) 4180999093735725 a001 121393/2207*33385282^(1/4) 4180999093736086 a001 121393/2207*1860498^(3/10) 4180999093748171 a001 5702887/2207*64079^(1/23) 4180999093761549 a001 832040/2207*167761^(1/5) 4180999093769410 a001 410611740/98209 4180999093770618 a004 Fibonacci(16)*Lucas(27)/(1/2+sqrt(5)/2)^24 4180999093784013 a001 141/101521*(1/2+1/2*5^(1/2))^31 4180999093784013 a001 141/101521*9062201101803^(1/2) 4180999093784187 a001 317811/2207*20633239^(1/5) 4180999093784189 a001 317811/2207*17393796001^(1/7) 4180999093784189 a001 317811/2207*14662949395604^(1/9) 4180999093784189 a001 317811/2207*(1/2+1/2*5^(1/2))^7 4180999093784189 a001 317811/2207*599074578^(1/6) 4180999093786259 a001 317811/2207*710647^(1/4) 4180999093788953 a001 2149990983/514229 4180999093789130 a004 Fibonacci(16)*Lucas(29)/(1/2+sqrt(5)/2)^26 4180999093789884 a001 987*439204^(1/9) 4180999093790814 a001 514229/2207*439204^(2/9) 4180999093791084 a001 329/620166*141422324^(11/13) 4180999093791084 a001 329/620166*2537720636^(11/15) 4180999093791084 a001 329/620166*45537549124^(11/17) 4180999093791084 a001 329/620166*312119004989^(3/5) 4180999093791084 a001 329/620166*14662949395604^(11/21) 4180999093791084 a001 329/620166*(1/2+1/2*5^(1/2))^33 4180999093791084 a001 329/620166*192900153618^(11/18) 4180999093791084 a001 329/620166*10749957122^(11/16) 4180999093791084 a001 329/620166*1568397607^(3/4) 4180999093791084 a001 329/620166*599074578^(11/14) 4180999093791087 a001 329/620166*33385282^(11/12) 4180999093791259 a001 832040/2207*20633239^(1/7) 4180999093791260 a001 832040/2207*2537720636^(1/9) 4180999093791260 a001 832040/2207*312119004989^(1/11) 4180999093791260 a001 832040/2207*(1/2+1/2*5^(1/2))^5 4180999093791260 a001 832040/2207*28143753123^(1/10) 4180999093791260 a001 832040/2207*228826127^(1/8) 4180999093791462 a001 832040/2207*1860498^(1/6) 4180999093791805 a001 5628749469/1346269 4180999093791831 a004 Fibonacci(16)*Lucas(31)/(1/2+sqrt(5)/2)^28 4180999093792116 a001 987/4870847*2537720636^(7/9) 4180999093792116 a001 987/4870847*17393796001^(5/7) 4180999093792116 a001 987/4870847*312119004989^(7/11) 4180999093792116 a001 987/4870847*14662949395604^(5/9) 4180999093792116 a001 987/4870847*(1/2+1/2*5^(1/2))^35 4180999093792116 a001 987/4870847*505019158607^(5/8) 4180999093792116 a001 987/4870847*28143753123^(7/10) 4180999093792116 a001 987/4870847*599074578^(5/6) 4180999093792116 a001 987/4870847*228826127^(7/8) 4180999093792221 a001 7368128712/1762289 4180999093792225 a004 Fibonacci(16)*Lucas(33)/(1/2+sqrt(5)/2)^30 4180999093792266 a001 329/4250681*(1/2+1/2*5^(1/2))^37 4180999093792282 a001 38580022803/9227465 4180999093792282 a004 Fibonacci(16)*Lucas(35)/(1/2+sqrt(5)/2)^32 4180999093792286 a001 987*7881196^(1/11) 4180999093792288 a001 141/4769326*2537720636^(13/15) 4180999093792288 a001 141/4769326*45537549124^(13/17) 4180999093792288 a001 141/4769326*14662949395604^(13/21) 4180999093792288 a001 141/4769326*(1/2+1/2*5^(1/2))^39 4180999093792288 a001 141/4769326*192900153618^(13/18) 4180999093792288 a001 141/4769326*73681302247^(3/4) 4180999093792288 a001 141/4769326*10749957122^(13/16) 4180999093792288 a001 141/4769326*599074578^(13/14) 4180999093792290 a001 101003810985/24157817 4180999093792290 a004 Fibonacci(16)*Lucas(37)/(1/2+sqrt(5)/2)^34 4180999093792291 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^41/Lucas(38) 4180999093792292 a001 132215705076/31622993 4180999093792292 a004 Fibonacci(16)*Lucas(39)/(1/2+sqrt(5)/2)^36 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^43/Lucas(40) 4180999093792292 a001 692290419471/165580141 4180999093792292 a004 Fibonacci(16)*Lucas(41)/(1/2+sqrt(5)/2)^38 4180999093792292 a001 987*141422324^(1/13) 4180999093792292 a001 329/199691526*45537549124^(15/17) 4180999093792292 a001 329/199691526*312119004989^(9/11) 4180999093792292 a001 329/199691526*14662949395604^(5/7) 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^45/Lucas(42) 4180999093792292 a001 329/199691526*192900153618^(5/6) 4180999093792292 a001 329/199691526*28143753123^(9/10) 4180999093792292 a001 329/199691526*10749957122^(15/16) 4180999093792292 a001 1812439848261/433494437 4180999093792292 a004 Fibonacci(16)*Lucas(43)/(1/2+sqrt(5)/2)^40 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^47/Lucas(44) 4180999093792292 a001 2372514562656/567451585 4180999093792292 a004 Fibonacci(16)*Lucas(45)/(1/2+sqrt(5)/2)^42 4180999093792292 a001 329/1368706081*14662949395604^(7/9) 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^49/Lucas(46) 4180999093792292 a001 329/1368706081*505019158607^(7/8) 4180999093792292 a001 12422647527675/2971215073 4180999093792292 a004 Fibonacci(16)*Lucas(47)/(1/2+sqrt(5)/2)^44 4180999093792292 a001 987*2537720636^(1/15) 4180999093792292 a001 987/10749957122*817138163596^(17/19) 4180999093792292 a001 987/10749957122*14662949395604^(17/21) 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^51/Lucas(48) 4180999093792292 a001 987/10749957122*192900153618^(17/18) 4180999093792292 a001 32522913457713/7778742049 4180999093792292 a004 Fibonacci(16)*Lucas(49)/(1/2+sqrt(5)/2)^46 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^53/Lucas(50) 4180999093792292 a001 42573046422732/10182505537 4180999093792292 a004 Fibonacci(16)*Lucas(51)/(1/2+sqrt(5)/2)^48 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^55/Lucas(52) 4180999093792292 a001 141/10525900321*3461452808002^(11/12) 4180999093792292 a001 222915365078679/53316291173 4180999093792292 a004 Fibonacci(16)*Lucas(53)/(1/2+sqrt(5)/2)^50 4180999093792292 a001 987*45537549124^(1/17) 4180999093792292 a001 329/64300051206*14662949395604^(19/21) 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^57/Lucas(54) 4180999093792292 a001 583600002390573/139583862445 4180999093792292 a004 Fibonacci(16)*Lucas(55)/(1/2+sqrt(5)/2)^52 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^59/Lucas(56) 4180999093792292 a004 Fibonacci(16)*Lucas(57)/(1/2+sqrt(5)/2)^54 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^61/Lucas(58) 4180999093792292 a004 Fibonacci(16)*Lucas(59)/(1/2+sqrt(5)/2)^56 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^63/Lucas(60) 4180999093792292 a001 10472277129572601/2504730781961 4180999093792292 a004 Fibonacci(16)*Lucas(61)/(1/2+sqrt(5)/2)^58 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^65/Lucas(62) 4180999093792292 a004 Fibonacci(16)*Lucas(63)/(1/2+sqrt(5)/2)^60 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^67/Lucas(64) 4180999093792292 a004 Fibonacci(16)*Lucas(65)/(1/2+sqrt(5)/2)^62 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^69/Lucas(66) 4180999093792292 a004 Fibonacci(16)*Lucas(67)/(1/2+sqrt(5)/2)^64 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^71/Lucas(68) 4180999093792292 a004 Fibonacci(16)*Lucas(69)/(1/2+sqrt(5)/2)^66 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^73/Lucas(70) 4180999093792292 a004 Fibonacci(16)*Lucas(71)/(1/2+sqrt(5)/2)^68 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^75/Lucas(72) 4180999093792292 a004 Fibonacci(16)*Lucas(73)/(1/2+sqrt(5)/2)^70 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^77/Lucas(74) 4180999093792292 a004 Fibonacci(16)*Lucas(75)/(1/2+sqrt(5)/2)^72 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^79/Lucas(76) 4180999093792292 a004 Fibonacci(16)*Lucas(77)/(1/2+sqrt(5)/2)^74 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^81/Lucas(78) 4180999093792292 a004 Fibonacci(16)*Lucas(79)/(1/2+sqrt(5)/2)^76 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^83/Lucas(80) 4180999093792292 a004 Fibonacci(16)*Lucas(81)/(1/2+sqrt(5)/2)^78 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^85/Lucas(82) 4180999093792292 a004 Fibonacci(16)*Lucas(83)/(1/2+sqrt(5)/2)^80 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^87/Lucas(84) 4180999093792292 a004 Fibonacci(16)*Lucas(85)/(1/2+sqrt(5)/2)^82 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^89/Lucas(86) 4180999093792292 a004 Fibonacci(16)*Lucas(87)/(1/2+sqrt(5)/2)^84 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^91/Lucas(88) 4180999093792292 a004 Fibonacci(16)*Lucas(89)/(1/2+sqrt(5)/2)^86 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^93/Lucas(90) 4180999093792292 a004 Fibonacci(16)*Lucas(91)/(1/2+sqrt(5)/2)^88 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^95/Lucas(92) 4180999093792292 a004 Fibonacci(16)*Lucas(93)/(1/2+sqrt(5)/2)^90 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^97/Lucas(94) 4180999093792292 a004 Fibonacci(16)*Lucas(95)/(1/2+sqrt(5)/2)^92 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^99/Lucas(96) 4180999093792292 a004 Fibonacci(16)*Lucas(97)/(1/2+sqrt(5)/2)^94 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^3/Lucas(1) 4180999093792292 a004 Fibonacci(16)*Lucas(100)/(1/2+sqrt(5)/2)^97 4180999093792292 a004 Fibonacci(16)*Lucas(99)/(1/2+sqrt(5)/2)^96 4180999093792292 a004 Fibonacci(16)*Lucas(98)/(1/2+sqrt(5)/2)^95 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^100/Lucas(97) 4180999093792292 a004 Fibonacci(16)*Lucas(96)/(1/2+sqrt(5)/2)^93 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^98/Lucas(95) 4180999093792292 a004 Fibonacci(16)*Lucas(94)/(1/2+sqrt(5)/2)^91 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^96/Lucas(93) 4180999093792292 a004 Fibonacci(16)*Lucas(92)/(1/2+sqrt(5)/2)^89 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^94/Lucas(91) 4180999093792292 a004 Fibonacci(16)*Lucas(90)/(1/2+sqrt(5)/2)^87 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^92/Lucas(89) 4180999093792292 a004 Fibonacci(16)*Lucas(88)/(1/2+sqrt(5)/2)^85 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^90/Lucas(87) 4180999093792292 a004 Fibonacci(16)*Lucas(86)/(1/2+sqrt(5)/2)^83 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^88/Lucas(85) 4180999093792292 a004 Fibonacci(16)*Lucas(84)/(1/2+sqrt(5)/2)^81 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^86/Lucas(83) 4180999093792292 a004 Fibonacci(16)*Lucas(82)/(1/2+sqrt(5)/2)^79 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^84/Lucas(81) 4180999093792292 a004 Fibonacci(16)*Lucas(80)/(1/2+sqrt(5)/2)^77 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^82/Lucas(79) 4180999093792292 a004 Fibonacci(16)*Lucas(78)/(1/2+sqrt(5)/2)^75 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^80/Lucas(77) 4180999093792292 a004 Fibonacci(16)*Lucas(76)/(1/2+sqrt(5)/2)^73 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^78/Lucas(75) 4180999093792292 a004 Fibonacci(16)*Lucas(74)/(1/2+sqrt(5)/2)^71 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^76/Lucas(73) 4180999093792292 a004 Fibonacci(16)*Lucas(72)/(1/2+sqrt(5)/2)^69 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^74/Lucas(71) 4180999093792292 a004 Fibonacci(16)*Lucas(70)/(1/2+sqrt(5)/2)^67 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^72/Lucas(69) 4180999093792292 a004 Fibonacci(16)*Lucas(68)/(1/2+sqrt(5)/2)^65 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^70/Lucas(67) 4180999093792292 a004 Fibonacci(16)*Lucas(66)/(1/2+sqrt(5)/2)^63 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^68/Lucas(65) 4180999093792292 a004 Fibonacci(16)*Lucas(64)/(1/2+sqrt(5)/2)^61 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^66/Lucas(63) 4180999093792292 a004 Fibonacci(16)*Lucas(62)/(1/2+sqrt(5)/2)^59 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^64/Lucas(61) 4180999093792292 a004 Fibonacci(16)*Lucas(60)/(1/2+sqrt(5)/2)^57 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^62/Lucas(59) 4180999093792292 a004 Fibonacci(16)*Lucas(58)/(1/2+sqrt(5)/2)^55 4180999093792292 a001 2472169281795507/591286729879 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^60/Lucas(57) 4180999093792292 a004 Fibonacci(16)*Lucas(56)/(1/2+sqrt(5)/2)^53 4180999093792292 a001 44965935223927/10754830177 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^58/Lucas(55) 4180999093792292 a004 Fibonacci(16)*Lucas(54)/(1/2+sqrt(5)/2)^51 4180999093792292 a001 180342318655947/43133785636 4180999093792292 a001 987/119218851371*14662949395604^(8/9) 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^56/Lucas(53) 4180999093792292 a004 Fibonacci(16)*Lucas(52)/(1/2+sqrt(5)/2)^49 4180999093792292 a001 45923090744405/10983760033 4180999093792292 a001 987/45537549124*14662949395604^(6/7) 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^54/Lucas(51) 4180999093792292 a001 987*10749957122^(1/16) 4180999093792292 a004 Fibonacci(16)*Lucas(50)/(1/2+sqrt(5)/2)^47 4180999093792292 a001 52623179387751/12586269025 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^52/Lucas(49) 4180999093792292 a001 987/17393796001*23725150497407^(13/16) 4180999093792292 a001 987/17393796001*505019158607^(13/14) 4180999093792292 a004 Fibonacci(16)*Lucas(48)/(1/2+sqrt(5)/2)^45 4180999093792292 a001 10182505537/2435424 4180999093792292 a001 987/6643838879*312119004989^(10/11) 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^50/Lucas(47) 4180999093792292 a001 987/6643838879*3461452808002^(5/6) 4180999093792292 a004 Fibonacci(16)*Lucas(46)/(1/2+sqrt(5)/2)^43 4180999093792292 a001 7677618402363/1836311903 4180999093792292 a001 987/2537720636*45537549124^(16/17) 4180999093792292 a001 987/2537720636*14662949395604^(16/21) 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^48/Lucas(45) 4180999093792292 a001 987/2537720636*192900153618^(8/9) 4180999093792292 a001 987/2537720636*73681302247^(12/13) 4180999093792292 a001 987*599074578^(1/14) 4180999093792292 a004 Fibonacci(16)*Lucas(44)/(1/2+sqrt(5)/2)^41 4180999093792292 a001 977529759017/233802911 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^46/Lucas(43) 4180999093792292 a001 987/969323029*10749957122^(23/24) 4180999093792292 a004 Fibonacci(16)*Lucas(42)/(1/2+sqrt(5)/2)^39 4180999093792292 a001 560074714395/133957148 4180999093792292 a001 987/370248451*312119004989^(4/5) 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^44/Lucas(41) 4180999093792292 a001 987/370248451*23725150497407^(11/16) 4180999093792292 a001 987/370248451*73681302247^(11/13) 4180999093792292 a001 987/370248451*10749957122^(11/12) 4180999093792292 a001 987/370248451*4106118243^(22/23) 4180999093792292 a004 Fibonacci(16)*Lucas(40)/(1/2+sqrt(5)/2)^37 4180999093792292 a001 20374238539/4873055 4180999093792292 a001 987/141422324*2537720636^(14/15) 4180999093792292 a001 987/141422324*17393796001^(6/7) 4180999093792292 a001 987/141422324*45537549124^(14/17) 4180999093792292 a001 987/141422324*817138163596^(14/19) 4180999093792292 a001 987/141422324*14662949395604^(2/3) 4180999093792292 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^42/Lucas(39) 4180999093792292 a001 987/141422324*505019158607^(3/4) 4180999093792292 a001 987/141422324*192900153618^(7/9) 4180999093792292 a001 987/141422324*10749957122^(7/8) 4180999093792292 a001 987/141422324*4106118243^(21/23) 4180999093792292 a001 987/141422324*1568397607^(21/22) 4180999093792292 a001 987*33385282^(1/12) 4180999093792292 a004 Fibonacci(16)*Lucas(38)/(1/2+sqrt(5)/2)^35 4180999093792293 a001 163427599167/39088169 4180999093792293 a001 987/54018521*2537720636^(8/9) 4180999093792293 a001 987/54018521*312119004989^(8/11) 4180999093792293 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^40/Lucas(37) 4180999093792293 a001 987/54018521*23725150497407^(5/8) 4180999093792293 a001 987/54018521*73681302247^(10/13) 4180999093792293 a001 987/54018521*28143753123^(4/5) 4180999093792293 a001 987/54018521*10749957122^(5/6) 4180999093792293 a001 987/54018521*4106118243^(20/23) 4180999093792293 a001 987/54018521*1568397607^(10/11) 4180999093792293 a001 987/54018521*599074578^(20/21) 4180999093792296 a004 Fibonacci(16)*Lucas(36)/(1/2+sqrt(5)/2)^33 4180999093792296 a001 10403964697/2488392 4180999093792302 a001 987/20633239*817138163596^(2/3) 4180999093792302 a001 987/20633239*(1/2+1/2*5^(1/2))^38 4180999093792302 a001 987/20633239*10749957122^(19/24) 4180999093792302 a001 987/20633239*4106118243^(19/23) 4180999093792302 a001 987/20633239*1568397607^(19/22) 4180999093792302 a001 987/20633239*599074578^(19/21) 4180999093792302 a001 987/20633239*228826127^(19/20) 4180999093792318 a004 Fibonacci(16)*Lucas(34)/(1/2+sqrt(5)/2)^31 4180999093792319 a001 23843765379/5702887 4180999093792359 a001 987/7881196*141422324^(12/13) 4180999093792359 a001 987/7881196*2537720636^(4/5) 4180999093792359 a001 987/7881196*45537549124^(12/17) 4180999093792359 a001 987/7881196*14662949395604^(4/7) 4180999093792359 a001 987/7881196*(1/2+1/2*5^(1/2))^36 4180999093792359 a001 987/7881196*505019158607^(9/14) 4180999093792359 a001 987/7881196*192900153618^(2/3) 4180999093792359 a001 987/7881196*73681302247^(9/13) 4180999093792359 a001 987/7881196*10749957122^(3/4) 4180999093792359 a001 987/7881196*4106118243^(18/23) 4180999093792359 a001 987/7881196*1568397607^(9/11) 4180999093792359 a001 987/7881196*599074578^(6/7) 4180999093792359 a001 987/7881196*228826127^(9/10) 4180999093792360 a001 987/7881196*87403803^(18/19) 4180999093792413 a001 987*1860498^(1/10) 4180999093792442 a001 5702887/4414+5702887/4414*5^(1/2) 4180999093792464 a004 Fibonacci(36)/Lucas(16)/(1/2+sqrt(5)/2) 4180999093792468 a004 Fibonacci(38)/Lucas(16)/(1/2+sqrt(5)/2)^3 4180999093792468 a004 Fibonacci(40)/Lucas(16)/(1/2+sqrt(5)/2)^5 4180999093792468 a004 Fibonacci(42)/Lucas(16)/(1/2+sqrt(5)/2)^7 4180999093792468 a004 Fibonacci(44)/Lucas(16)/(1/2+sqrt(5)/2)^9 4180999093792468 a004 Fibonacci(46)/Lucas(16)/(1/2+sqrt(5)/2)^11 4180999093792468 a004 Fibonacci(48)/Lucas(16)/(1/2+sqrt(5)/2)^13 4180999093792468 a004 Fibonacci(50)/Lucas(16)/(1/2+sqrt(5)/2)^15 4180999093792468 a004 Fibonacci(52)/Lucas(16)/(1/2+sqrt(5)/2)^17 4180999093792468 a004 Fibonacci(54)/Lucas(16)/(1/2+sqrt(5)/2)^19 4180999093792468 a004 Fibonacci(56)/Lucas(16)/(1/2+sqrt(5)/2)^21 4180999093792468 a004 Fibonacci(58)/Lucas(16)/(1/2+sqrt(5)/2)^23 4180999093792468 a004 Fibonacci(60)/Lucas(16)/(1/2+sqrt(5)/2)^25 4180999093792468 a004 Fibonacci(62)/Lucas(16)/(1/2+sqrt(5)/2)^27 4180999093792468 a004 Fibonacci(16)*Lucas(32)/(1/2+sqrt(5)/2)^29 4180999093792468 a004 Fibonacci(66)/Lucas(16)/(1/2+sqrt(5)/2)^31 4180999093792468 a004 Fibonacci(68)/Lucas(16)/(1/2+sqrt(5)/2)^33 4180999093792468 a004 Fibonacci(70)/Lucas(16)/(1/2+sqrt(5)/2)^35 4180999093792468 a004 Fibonacci(72)/Lucas(16)/(1/2+sqrt(5)/2)^37 4180999093792468 a004 Fibonacci(74)/Lucas(16)/(1/2+sqrt(5)/2)^39 4180999093792468 a004 Fibonacci(76)/Lucas(16)/(1/2+sqrt(5)/2)^41 4180999093792468 a004 Fibonacci(78)/Lucas(16)/(1/2+sqrt(5)/2)^43 4180999093792468 a004 Fibonacci(80)/Lucas(16)/(1/2+sqrt(5)/2)^45 4180999093792468 a004 Fibonacci(82)/Lucas(16)/(1/2+sqrt(5)/2)^47 4180999093792468 a004 Fibonacci(84)/Lucas(16)/(1/2+sqrt(5)/2)^49 4180999093792468 a004 Fibonacci(86)/Lucas(16)/(1/2+sqrt(5)/2)^51 4180999093792468 a004 Fibonacci(88)/Lucas(16)/(1/2+sqrt(5)/2)^53 4180999093792468 a004 Fibonacci(90)/Lucas(16)/(1/2+sqrt(5)/2)^55 4180999093792468 a004 Fibonacci(92)/Lucas(16)/(1/2+sqrt(5)/2)^57 4180999093792468 a004 Fibonacci(94)/Lucas(16)/(1/2+sqrt(5)/2)^59 4180999093792468 a004 Fibonacci(96)/Lucas(16)/(1/2+sqrt(5)/2)^61 4180999093792468 a004 Fibonacci(100)/Lucas(16)/(1/2+sqrt(5)/2)^65 4180999093792468 a004 Fibonacci(98)/Lucas(16)/(1/2+sqrt(5)/2)^63 4180999093792468 a004 Fibonacci(99)/Lucas(16)/(1/2+sqrt(5)/2)^64 4180999093792468 a004 Fibonacci(97)/Lucas(16)/(1/2+sqrt(5)/2)^62 4180999093792468 a004 Fibonacci(95)/Lucas(16)/(1/2+sqrt(5)/2)^60 4180999093792468 a004 Fibonacci(93)/Lucas(16)/(1/2+sqrt(5)/2)^58 4180999093792468 a004 Fibonacci(91)/Lucas(16)/(1/2+sqrt(5)/2)^56 4180999093792468 a004 Fibonacci(89)/Lucas(16)/(1/2+sqrt(5)/2)^54 4180999093792468 a004 Fibonacci(87)/Lucas(16)/(1/2+sqrt(5)/2)^52 4180999093792468 a004 Fibonacci(85)/Lucas(16)/(1/2+sqrt(5)/2)^50 4180999093792468 a004 Fibonacci(83)/Lucas(16)/(1/2+sqrt(5)/2)^48 4180999093792468 a004 Fibonacci(81)/Lucas(16)/(1/2+sqrt(5)/2)^46 4180999093792468 a004 Fibonacci(79)/Lucas(16)/(1/2+sqrt(5)/2)^44 4180999093792468 a004 Fibonacci(77)/Lucas(16)/(1/2+sqrt(5)/2)^42 4180999093792468 a004 Fibonacci(75)/Lucas(16)/(1/2+sqrt(5)/2)^40 4180999093792468 a004 Fibonacci(73)/Lucas(16)/(1/2+sqrt(5)/2)^38 4180999093792468 a004 Fibonacci(71)/Lucas(16)/(1/2+sqrt(5)/2)^36 4180999093792468 a004 Fibonacci(69)/Lucas(16)/(1/2+sqrt(5)/2)^34 4180999093792468 a004 Fibonacci(67)/Lucas(16)/(1/2+sqrt(5)/2)^32 4180999093792468 a004 Fibonacci(65)/Lucas(16)/(1/2+sqrt(5)/2)^30 4180999093792468 a004 Fibonacci(63)/Lucas(16)/(1/2+sqrt(5)/2)^28 4180999093792468 a004 Fibonacci(61)/Lucas(16)/(1/2+sqrt(5)/2)^26 4180999093792468 a004 Fibonacci(59)/Lucas(16)/(1/2+sqrt(5)/2)^24 4180999093792468 a004 Fibonacci(57)/Lucas(16)/(1/2+sqrt(5)/2)^22 4180999093792468 a004 Fibonacci(55)/Lucas(16)/(1/2+sqrt(5)/2)^20 4180999093792468 a004 Fibonacci(53)/Lucas(16)/(1/2+sqrt(5)/2)^18 4180999093792468 a004 Fibonacci(51)/Lucas(16)/(1/2+sqrt(5)/2)^16 4180999093792468 a004 Fibonacci(49)/Lucas(16)/(1/2+sqrt(5)/2)^14 4180999093792468 a004 Fibonacci(47)/Lucas(16)/(1/2+sqrt(5)/2)^12 4180999093792468 a004 Fibonacci(45)/Lucas(16)/(1/2+sqrt(5)/2)^10 4180999093792468 a004 Fibonacci(43)/Lucas(16)/(1/2+sqrt(5)/2)^8 4180999093792468 a004 Fibonacci(41)/Lucas(16)/(1/2+sqrt(5)/2)^6 4180999093792468 a004 Fibonacci(39)/Lucas(16)/(1/2+sqrt(5)/2)^4 4180999093792470 a004 Fibonacci(37)/Lucas(16)/(1/2+sqrt(5)/2)^2 4180999093792478 a001 9227465/2207 4180999093792535 a001 3524578/2207*(1/2+1/2*5^(1/2))^2 4180999093792535 a001 3524578/2207*10749957122^(1/24) 4180999093792535 a001 3524578/2207*4106118243^(1/23) 4180999093792535 a001 3524578/2207*1568397607^(1/22) 4180999093792535 a001 3524578/2207*599074578^(1/21) 4180999093792535 a001 3524578/2207*228826127^(1/20) 4180999093792535 a001 3524578/2207*87403803^(1/19) 4180999093792536 a001 3524578/2207*33385282^(1/18) 4180999093792537 a001 3524578/2207*12752043^(1/17) 4180999093792546 a001 3524578/2207*4870847^(1/16) 4180999093792616 a001 3524578/2207*1860498^(1/15) 4180999093792753 a001 987/3010349*45537549124^(2/3) 4180999093792753 a001 987/3010349*(1/2+1/2*5^(1/2))^34 4180999093792753 a001 987/3010349*10749957122^(17/24) 4180999093792753 a001 987/3010349*4106118243^(17/23) 4180999093792753 a001 987/3010349*1568397607^(17/22) 4180999093792753 a001 987/3010349*599074578^(17/21) 4180999093792753 a001 987/3010349*228826127^(17/20) 4180999093792754 a001 987/3010349*87403803^(17/19) 4180999093792757 a001 987/3010349*33385282^(17/18) 4180999093792930 a001 1346269/2207*(1/2+1/2*5^(1/2))^4 4180999093792930 a001 1346269/2207*23725150497407^(1/16) 4180999093792930 a001 1346269/2207*73681302247^(1/13) 4180999093792930 a001 1346269/2207*10749957122^(1/12) 4180999093792930 a001 1346269/2207*4106118243^(2/23) 4180999093792930 a001 1346269/2207*1568397607^(1/11) 4180999093792930 a001 1346269/2207*599074578^(2/21) 4180999093792930 a001 1346269/2207*228826127^(1/10) 4180999093792930 a001 1346269/2207*87403803^(2/19) 4180999093792930 a001 1346269/2207*33385282^(1/9) 4180999093792933 a001 1346269/2207*12752043^(2/17) 4180999093792952 a001 1346269/2207*4870847^(1/8) 4180999093793091 a001 1346269/2207*1860498^(2/15) 4180999093793127 a001 3524578/2207*710647^(1/14) 4180999093793500 a004 Fibonacci(16)*Lucas(30)/(1/2+sqrt(5)/2)^27 4180999093793567 a001 1739379243/416020 4180999093794112 a001 1346269/2207*710647^(1/7) 4180999093795454 a001 987/1149851*(1/2+1/2*5^(1/2))^32 4180999093795454 a001 987/1149851*23725150497407^(1/2) 4180999093795454 a001 987/1149851*505019158607^(4/7) 4180999093795454 a001 987/1149851*73681302247^(8/13) 4180999093795454 a001 987/1149851*10749957122^(2/3) 4180999093795454 a001 987/1149851*4106118243^(16/23) 4180999093795454 a001 987/1149851*1568397607^(8/11) 4180999093795454 a001 987/1149851*599074578^(16/21) 4180999093795454 a001 987/1149851*228826127^(4/5) 4180999093795455 a001 987/1149851*87403803^(16/19) 4180999093795458 a001 987/1149851*33385282^(8/9) 4180999093795478 a001 987/1149851*12752043^(16/17) 4180999093795618 a001 514229/2207*7881196^(2/11) 4180999093795630 a001 514229/2207*141422324^(2/13) 4180999093795630 a001 514229/2207*2537720636^(2/15) 4180999093795630 a001 514229/2207*45537549124^(2/17) 4180999093795630 a001 514229/2207*14662949395604^(2/21) 4180999093795630 a001 514229/2207*(1/2+1/2*5^(1/2))^6 4180999093795630 a001 514229/2207*10749957122^(1/8) 4180999093795630 a001 514229/2207*4106118243^(3/23) 4180999093795630 a001 514229/2207*1568397607^(3/22) 4180999093795630 a001 514229/2207*599074578^(1/7) 4180999093795630 a001 514229/2207*228826127^(3/20) 4180999093795630 a001 514229/2207*87403803^(3/19) 4180999093795631 a001 514229/2207*33385282^(1/6) 4180999093795635 a001 514229/2207*12752043^(3/17) 4180999093795663 a001 514229/2207*4870847^(3/16) 4180999093795872 a001 514229/2207*1860498^(1/5) 4180999093796900 a001 3524578/2207*271443^(1/13) 4180999093797404 a001 514229/2207*710647^(3/14) 4180999093800571 a004 Fibonacci(16)*Lucas(28)/(1/2+sqrt(5)/2)^25 4180999093801032 a001 442922501/105937 4180999093801659 a001 1346269/2207*271443^(2/13) 4180999093808648 a001 5702887/2207*103682^(1/24) 4180999093808725 a001 514229/2207*271443^(3/13) 4180999093813905 a001 987/439204*7881196^(10/11) 4180999093813958 a001 987/439204*20633239^(6/7) 4180999093813966 a001 987/439204*141422324^(10/13) 4180999093813966 a001 987/439204*2537720636^(2/3) 4180999093813966 a001 987/439204*45537549124^(10/17) 4180999093813966 a001 987/439204*312119004989^(6/11) 4180999093813966 a001 987/439204*14662949395604^(10/21) 4180999093813966 a001 987/439204*(1/2+1/2*5^(1/2))^30 4180999093813966 a001 987/439204*192900153618^(5/9) 4180999093813966 a001 987/439204*28143753123^(3/5) 4180999093813966 a001 987/439204*10749957122^(5/8) 4180999093813966 a001 987/439204*4106118243^(15/23) 4180999093813966 a001 987/439204*1568397607^(15/22) 4180999093813966 a001 987/439204*599074578^(5/7) 4180999093813966 a001 987/439204*228826127^(3/4) 4180999093813967 a001 987/439204*87403803^(15/19) 4180999093813969 a001 987/439204*33385282^(5/6) 4180999093813989 a001 987/439204*12752043^(15/17) 4180999093814132 a001 987/439204*4870847^(15/16) 4180999093814143 a001 196418/2207*(1/2+1/2*5^(1/2))^8 4180999093814143 a001 196418/2207*23725150497407^(1/8) 4180999093814143 a001 196418/2207*505019158607^(1/7) 4180999093814143 a001 196418/2207*73681302247^(2/13) 4180999093814143 a001 196418/2207*10749957122^(1/6) 4180999093814143 a001 196418/2207*4106118243^(4/23) 4180999093814143 a001 196418/2207*1568397607^(2/11) 4180999093814143 a001 196418/2207*599074578^(4/21) 4180999093814143 a001 196418/2207*228826127^(1/5) 4180999093814143 a001 196418/2207*87403803^(4/19) 4180999093814143 a001 196418/2207*33385282^(2/9) 4180999093814149 a001 196418/2207*12752043^(4/17) 4180999093814187 a001 196418/2207*4870847^(1/4) 4180999093814465 a001 196418/2207*1860498^(4/15) 4180999093816508 a001 196418/2207*710647^(2/7) 4180999093824946 a001 3524578/2207*103682^(1/12) 4180999093831602 a001 196418/2207*271443^(4/13) 4180999093840908 a001 987*103682^(1/8) 4180999093849036 a004 Fibonacci(16)*Lucas(26)/(1/2+sqrt(5)/2)^23 4180999093852199 a001 507544023/121393 4180999093857751 a001 1346269/2207*103682^(1/6) 4180999093872288 a001 832040/2207*103682^(5/24) 4180999093881573 a001 121393/2207*103682^(3/8) 4180999093881603 a001 75025/2207*167761^(2/5) 4180999093892863 a001 514229/2207*103682^(1/4) 4180999093897628 a001 317811/2207*103682^(7/24) 4180999093913614 a001 5702887/2207*39603^(1/22) 4180999093940843 a001 987/167761*20633239^(4/5) 4180999093940851 a001 987/167761*17393796001^(4/7) 4180999093940851 a001 987/167761*14662949395604^(4/9) 4180999093940851 a001 987/167761*(1/2+1/2*5^(1/2))^28 4180999093940851 a001 987/167761*505019158607^(1/2) 4180999093940851 a001 987/167761*73681302247^(7/13) 4180999093940851 a001 987/167761*10749957122^(7/12) 4180999093940851 a001 987/167761*4106118243^(14/23) 4180999093940851 a001 987/167761*1568397607^(7/11) 4180999093940851 a001 987/167761*599074578^(2/3) 4180999093940851 a001 987/167761*228826127^(7/10) 4180999093940851 a001 987/167761*87403803^(14/19) 4180999093940854 a001 987/167761*33385282^(7/9) 4180999093940872 a001 987/167761*12752043^(14/17) 4180999093941005 a001 987/167761*4870847^(7/8) 4180999093941024 a001 75025/2207*20633239^(2/7) 4180999093941027 a001 75025/2207*2537720636^(2/9) 4180999093941027 a001 75025/2207*312119004989^(2/11) 4180999093941027 a001 75025/2207*(1/2+1/2*5^(1/2))^10 4180999093941027 a001 75025/2207*28143753123^(1/5) 4180999093941027 a001 75025/2207*10749957122^(5/24) 4180999093941027 a001 75025/2207*4106118243^(5/23) 4180999093941027 a001 75025/2207*1568397607^(5/22) 4180999093941027 a001 75025/2207*599074578^(5/21) 4180999093941027 a001 75025/2207*228826127^(1/4) 4180999093941027 a001 75025/2207*87403803^(5/19) 4180999093941028 a001 75025/2207*33385282^(5/18) 4180999093941034 a001 75025/2207*12752043^(5/17) 4180999093941082 a001 75025/2207*4870847^(5/16) 4180999093941429 a001 75025/2207*1860498^(1/3) 4180999093941978 a001 987/167761*1860498^(14/15) 4180999093943786 a001 196418/2207*103682^(1/3) 4180999093943984 a001 75025/2207*710647^(5/14) 4180999093962852 a001 75025/2207*271443^(5/13) 4180999094034879 a001 3524578/2207*39603^(1/11) 4180999094103082 a001 75025/2207*103682^(5/12) 4180999094155807 a001 987*39603^(3/22) 4180999094181224 a004 Fibonacci(16)*Lucas(24)/(1/2+sqrt(5)/2)^21 4180999094202898 a001 4615823/1104 4180999094277616 a001 1346269/2207*39603^(2/11) 4180999094279451 a001 28657/2207*64079^(12/23) 4180999094397119 a001 832040/2207*39603^(5/22) 4180999094522661 a001 514229/2207*39603^(3/11) 4180999094632391 a001 317811/2207*39603^(7/22) 4180999094706018 a001 5702887/2207*15127^(1/20) 4180999094736425 a001 46368/2207*39603^(1/2) 4180999094783516 a001 196418/2207*39603^(4/11) 4180999094801071 a001 28657/2207*439204^(4/9) 4180999094810528 a001 987/64079*141422324^(2/3) 4180999094810528 a001 987/64079*(1/2+1/2*5^(1/2))^26 4180999094810528 a001 987/64079*73681302247^(1/2) 4180999094810528 a001 987/64079*10749957122^(13/24) 4180999094810528 a001 987/64079*4106118243^(13/23) 4180999094810528 a001 987/64079*1568397607^(13/22) 4180999094810528 a001 987/64079*599074578^(13/21) 4180999094810528 a001 987/64079*228826127^(13/20) 4180999094810529 a001 987/64079*87403803^(13/19) 4180999094810531 a001 987/64079*33385282^(13/18) 4180999094810548 a001 987/64079*12752043^(13/17) 4180999094810672 a001 987/64079*4870847^(13/16) 4180999094810680 a001 28657/2207*7881196^(4/11) 4180999094810705 a001 28657/2207*141422324^(4/13) 4180999094810705 a001 28657/2207*2537720636^(4/15) 4180999094810705 a001 28657/2207*45537549124^(4/17) 4180999094810705 a001 28657/2207*817138163596^(4/19) 4180999094810705 a001 28657/2207*14662949395604^(4/21) 4180999094810705 a001 28657/2207*(1/2+1/2*5^(1/2))^12 4180999094810705 a001 28657/2207*192900153618^(2/9) 4180999094810705 a001 28657/2207*73681302247^(3/13) 4180999094810705 a001 28657/2207*10749957122^(1/4) 4180999094810705 a001 28657/2207*4106118243^(6/23) 4180999094810705 a001 28657/2207*1568397607^(3/11) 4180999094810705 a001 28657/2207*599074578^(2/7) 4180999094810705 a001 28657/2207*228826127^(3/10) 4180999094810705 a001 28657/2207*87403803^(6/19) 4180999094810706 a001 28657/2207*33385282^(1/3) 4180999094810714 a001 28657/2207*12752043^(6/17) 4180999094810771 a001 28657/2207*4870847^(3/8) 4180999094811188 a001 28657/2207*1860498^(2/5) 4180999094811575 a001 987/64079*1860498^(13/15) 4180999094814253 a001 28657/2207*710647^(3/7) 4180999094818216 a001 987/64079*710647^(13/14) 4180999094826269 a001 121393/2207*39603^(9/22) 4180999094836894 a001 28657/2207*271443^(6/13) 4180999095005170 a001 28657/2207*103682^(1/2) 4180999095152744 a001 75025/2207*39603^(5/11) 4180999095195721 a001 9227465/3571*521^(1/13) 4180999095619687 a001 3524578/2207*15127^(1/10) 4180999096118834 a001 10946/2207*24476^(2/3) 4180999096264765 a001 28657/2207*39603^(6/11) 4180999096458069 a004 Fibonacci(16)*Lucas(22)/(1/2+sqrt(5)/2)^19 4180999096533019 a001 987*15127^(3/20) 4180999096606628 a001 74049675/17711 4180999096753887 l006 ln(109/7132) 4180999097447232 a001 1346269/2207*15127^(1/5) 4180999098359138 a001 832040/2207*15127^(1/4) 4180999099277084 a001 514229/2207*15127^(3/10) 4180999100151768 a001 10946/2207*64079^(14/23) 4180999100179218 a001 317811/2207*15127^(7/20) 4180999100749931 a001 5702887/2207*5778^(1/18) 4180999100752122 a001 987/24476*439204^(8/9) 4180999100771339 a001 987/24476*7881196^(8/11) 4180999100771388 a001 987/24476*141422324^(8/13) 4180999100771388 a001 987/24476*2537720636^(8/15) 4180999100771388 a001 987/24476*45537549124^(8/17) 4180999100771388 a001 987/24476*14662949395604^(8/21) 4180999100771388 a001 987/24476*(1/2+1/2*5^(1/2))^24 4180999100771388 a001 987/24476*192900153618^(4/9) 4180999100771388 a001 987/24476*73681302247^(6/13) 4180999100771388 a001 987/24476*10749957122^(1/2) 4180999100771388 a001 987/24476*4106118243^(12/23) 4180999100771388 a001 987/24476*1568397607^(6/11) 4180999100771388 a001 987/24476*599074578^(4/7) 4180999100771388 a001 987/24476*228826127^(3/5) 4180999100771388 a001 987/24476*87403803^(12/19) 4180999100771391 a001 987/24476*33385282^(2/3) 4180999100771406 a001 987/24476*12752043^(12/17) 4180999100771520 a001 987/24476*4870847^(3/4) 4180999100771560 a001 10946/2207*20633239^(2/5) 4180999100771564 a001 10946/2207*17393796001^(2/7) 4180999100771564 a001 10946/2207*14662949395604^(2/9) 4180999100771564 a001 10946/2207*(1/2+1/2*5^(1/2))^14 4180999100771564 a001 10946/2207*10749957122^(7/24) 4180999100771564 a001 10946/2207*4106118243^(7/23) 4180999100771564 a001 10946/2207*1568397607^(7/22) 4180999100771564 a001 10946/2207*599074578^(1/3) 4180999100771564 a001 10946/2207*228826127^(7/20) 4180999100771565 a001 10946/2207*87403803^(7/19) 4180999100771566 a001 10946/2207*33385282^(7/18) 4180999100771575 a001 10946/2207*12752043^(7/17) 4180999100771641 a001 10946/2207*4870847^(7/16) 4180999100772128 a001 10946/2207*1860498^(7/15) 4180999100772354 a001 987/24476*1860498^(4/5) 4180999100775704 a001 10946/2207*710647^(1/2) 4180999100778484 a001 987/24476*710647^(6/7) 4180999100802119 a001 10946/2207*271443^(7/13) 4180999100823768 a001 987/24476*271443^(12/13) 4180999100998441 a001 10946/2207*103682^(7/12) 4180999101100567 a001 2178309/9349*1364^(2/5) 4180999101122747 a001 196418/2207*15127^(2/5) 4180999101345431 a001 4181/2207*9349^(16/19) 4180999101957904 a001 121393/2207*15127^(9/20) 4180999102467968 a001 10946/2207*39603^(7/11) 4180999103003173 a001 17711/2207*15127^(13/20) 4180999103076782 a001 75025/2207*15127^(1/2) 4180999103452867 a001 46368/2207*15127^(11/20) 4180999105773611 a001 28657/2207*15127^(3/5) 4180999107707513 a001 3524578/2207*5778^(1/9) 4180999112063803 a004 Fibonacci(16)*Lucas(20)/(1/2+sqrt(5)/2)^17 4180999113082039 a001 9428153/2255 4180999113561622 a001 10946/2207*15127^(7/10) 4180999114664758 a001 987*5778^(1/6) 4180999118662753 a001 10946/843*843^(6/7) 4180999121622885 a001 1346269/2207*5778^(2/9) 4180999121764032 l006 ln(7729/8059) 4180999125504947 r002 19th iterates of z^2 + 4180999128578704 a001 832040/2207*5778^(5/18) 4180999129151715 m005 (1/2*Zeta(3)-5/7)/(11/12*gamma-4/5) 4180999135540563 a001 514229/2207*5778^(1/3) 4180999136310498 a001 4181/2207*24476^(16/21) 4180999136849584 a003 cos(Pi*14/113)*sin(Pi*10/67) 4180999140653764 a001 987/9349*64079^(22/23) 4180999140919567 a001 4181/2207*64079^(16/23) 4180999141627684 a001 987/9349*7881196^(2/3) 4180999141627729 a001 987/9349*312119004989^(2/5) 4180999141627729 a001 987/9349*(1/2+1/2*5^(1/2))^22 4180999141627729 a001 987/9349*10749957122^(11/24) 4180999141627729 a001 987/9349*4106118243^(11/23) 4180999141627729 a001 987/9349*1568397607^(1/2) 4180999141627729 a001 987/9349*599074578^(11/21) 4180999141627729 a001 987/9349*228826127^(11/20) 4180999141627730 a001 987/9349*87403803^(11/19) 4180999141627732 a001 987/9349*33385282^(11/18) 4180999141627746 a001 987/9349*12752043^(11/17) 4180999141627850 a001 987/9349*4870847^(11/16) 4180999141627905 a001 4181/2207*(1/2+1/2*5^(1/2))^16 4180999141627905 a001 4181/2207*23725150497407^(1/4) 4180999141627905 a001 4181/2207*73681302247^(4/13) 4180999141627905 a001 4181/2207*10749957122^(1/3) 4180999141627905 a001 4181/2207*4106118243^(8/23) 4180999141627905 a001 4181/2207*1568397607^(4/11) 4180999141627905 a001 4181/2207*599074578^(8/21) 4180999141627905 a001 4181/2207*228826127^(2/5) 4180999141627905 a001 4181/2207*87403803^(8/19) 4180999141627907 a001 4181/2207*33385282^(4/9) 4180999141627917 a001 4181/2207*12752043^(8/17) 4180999141627993 a001 4181/2207*4870847^(1/2) 4180999141628549 a001 4181/2207*1860498^(8/15) 4180999141628615 a001 987/9349*1860498^(11/15) 4180999141632636 a001 4181/2207*710647^(4/7) 4180999141634234 a001 987/9349*710647^(11/14) 4180999141662825 a001 4181/2207*271443^(8/13) 4180999141675744 a001 987/9349*271443^(11/13) 4180999141887193 a001 4181/2207*103682^(2/3) 4180999141984250 a001 987/9349*103682^(11/12) 4180999142486611 a001 317811/2207*5778^(7/18) 4180999142569458 r002 3th iterates of z^2 + 4180999143566652 a001 4181/2207*39603^(8/11) 4180999147440693 a001 5702887/2207*2207^(1/16) 4180999149474053 a001 196418/2207*5778^(4/9) 4180999150679907 b008 1/3+SphericalBesselJ[1,E*Pi] 4180999154845567 a007 Real Root Of -166*x^4-851*x^3-848*x^2-770*x+133 4180999155606204 m001 polylog(4,1/2)/(ln(gamma)+KomornikLoreti) 4180999155698821 a007 Real Root Of -369*x^4+948*x^3+868*x^2+644*x-479 4180999156126827 m001 Robbin^2/ln(Riemann1stZero)^2*sin(Pi/12)^2 4180999156245114 a001 4181/2207*15127^(4/5) 4180999156353123 a001 121393/2207*5778^(1/2) 4180999163515915 a001 75025/2207*5778^(5/9) 4180999165237907 a007 Real Root Of -707*x^4+243*x^3+872*x^2+520*x-366 4180999165378270 r002 51th iterates of z^2 + 4180999168319784 m006 (1/5/Pi-1/4)/(1/6*exp(Pi)+3/5) 4180999169396254 r005 Re(z^2+c),c=-53/90+7/60*I,n=59 4180999169935913 a001 46368/2207*5778^(11/18) 4180999178300570 a001 28657/2207*5778^(2/3) 4180999179883289 a001 6765/2207*5778^(5/6) 4180999180952427 a007 Real Root Of 400*x^4-257*x^3+431*x^2+185*x-29 4180999180999180 q001 1021/2442 4180999181574045 a001 17711/2207*5778^(13/18) 4180999184810297 a001 5702887/15127*1364^(1/3) 4180999195064132 a007 Real Root Of -251*x^4+515*x^3+678*x^2+647*x-419 4180999196763161 m001 Grothendieck+MasserGramainDelta+Stephens 4180999198176408 a001 10946/2207*5778^(7/9) 4180999199055763 r005 Im(z^2+c),c=-173/118+3/61*I,n=6 4180999200416053 a001 4976784/13201*1364^(1/3) 4180999201089036 a001 3524578/2207*2207^(1/8) 4180999202692902 a001 39088169/103682*1364^(1/3) 4180999203025089 a001 34111385/90481*1364^(1/3) 4180999203073555 a001 267914296/710647*1364^(1/3) 4180999203080626 a001 233802911/620166*1364^(1/3) 4180999203081658 a001 1836311903/4870847*1364^(1/3) 4180999203081808 a001 1602508992/4250681*1364^(1/3) 4180999203081830 a001 12586269025/33385282*1364^(1/3) 4180999203081833 a001 10983760033/29134601*1364^(1/3) 4180999203081834 a001 86267571272/228826127*1364^(1/3) 4180999203081834 a001 267913919/710646*1364^(1/3) 4180999203081834 a001 591286729879/1568397607*1364^(1/3) 4180999203081834 a001 516002918640/1368706081*1364^(1/3) 4180999203081834 a001 4052739537881/10749957122*1364^(1/3) 4180999203081834 a001 3536736619241/9381251041*1364^(1/3) 4180999203081834 a001 6557470319842/17393796001*1364^(1/3) 4180999203081834 a001 2504730781961/6643838879*1364^(1/3) 4180999203081834 a001 956722026041/2537720636*1364^(1/3) 4180999203081834 a001 365435296162/969323029*1364^(1/3) 4180999203081834 a001 139583862445/370248451*1364^(1/3) 4180999203081834 a001 53316291173/141422324*1364^(1/3) 4180999203081835 a001 20365011074/54018521*1364^(1/3) 4180999203081844 a001 7778742049/20633239*1364^(1/3) 4180999203081901 a001 2971215073/7881196*1364^(1/3) 4180999203082295 a001 1134903170/3010349*1364^(1/3) 4180999203084996 a001 433494437/1149851*1364^(1/3) 4180999203103508 a001 165580141/439204*1364^(1/3) 4180999203230393 a001 63245986/167761*1364^(1/3) 4180999204100072 a001 24157817/64079*1364^(1/3) 4180999210060940 a001 9227465/24476*1364^(1/3) 4180999219027091 a004 Fibonacci(16)*Lucas(18)/(1/2+sqrt(5)/2)^15 4180999222369204 r005 Re(z^2+c),c=-65/102+13/49*I,n=24 4180999226006191 a001 5401851/1292 4180999226980263 a007 Real Root Of 840*x^4-986*x^3-7*x^2+6*x-94 4180999227360934 a007 Real Root Of 350*x^4-621*x^3-421*x^2-382*x+268 4180999227663631 a001 1762289/2889*1364^(4/15) 4180999231320918 a001 514229/3571*1364^(7/15) 4180999243112760 r009 Re(z^3+c),c=-53/126+5/38*I,n=33 4180999250917340 a001 3524578/9349*1364^(1/3) 4180999252947728 a001 4181/2207*5778^(8/9) 4180999254737044 a001 987*2207^(3/16) 4180999263271506 a007 Real Root Of -149*x^4-755*x^3-522*x^2+347*x+926 4180999265772879 r002 46th iterates of z^2 + 4180999308385934 a001 1346269/2207*2207^(1/4) 4180999330543262 m001 (Ei(1,1)-FeigenbaumKappa)/(MertensB2-Mills) 4180999331741341 m005 (1/2*5^(1/2)-1/7)/(1/11*gamma-2/7) 4180999334626865 a001 9227465/15127*1364^(4/15) 4180999336923767 m001 Ei(1)/FeigenbaumC^2/ln(sin(Pi/12)) 4180999342537804 r005 Re(z^2+c),c=-17/30+27/65*I,n=2 4180999350232591 a001 24157817/39603*1364^(4/15) 4180999352509435 a001 31622993/51841*1364^(4/15) 4180999352841623 a001 165580141/271443*1364^(4/15) 4180999352842577 r009 Re(z^3+c),c=-55/126+4/27*I,n=41 4180999352890088 a001 433494437/710647*1364^(4/15) 4180999352897159 a001 567451585/930249*1364^(4/15) 4180999352898191 a001 2971215073/4870847*1364^(4/15) 4180999352898341 a001 7778742049/12752043*1364^(4/15) 4180999352898363 a001 10182505537/16692641*1364^(4/15) 4180999352898366 a001 53316291173/87403803*1364^(4/15) 4180999352898367 a001 139583862445/228826127*1364^(4/15) 4180999352898367 a001 182717648081/299537289*1364^(4/15) 4180999352898367 a001 956722026041/1568397607*1364^(4/15) 4180999352898367 a001 2504730781961/4106118243*1364^(4/15) 4180999352898367 a001 3278735159921/5374978561*1364^(4/15) 4180999352898367 a001 10610209857723/17393796001*1364^(4/15) 4180999352898367 a001 4052739537881/6643838879*1364^(4/15) 4180999352898367 a001 1134903780/1860499*1364^(4/15) 4180999352898367 a001 591286729879/969323029*1364^(4/15) 4180999352898367 a001 225851433717/370248451*1364^(4/15) 4180999352898367 a001 21566892818/35355581*1364^(4/15) 4180999352898368 a001 32951280099/54018521*1364^(4/15) 4180999352898377 a001 1144206275/1875749*1364^(4/15) 4180999352898434 a001 1201881744/1970299*1364^(4/15) 4180999352898828 a001 1836311903/3010349*1364^(4/15) 4180999352901529 a001 701408733/1149851*1364^(4/15) 4180999352920041 a001 66978574/109801*1364^(4/15) 4180999353046926 a001 9303105/15251*1364^(4/15) 4180999353916603 a001 39088169/64079*1364^(4/15) 4180999358125571 b008 ArcSinh[17+5*Pi] 4180999359877460 a001 3732588/6119*1364^(4/15) 4180999362032518 a001 832040/2207*2207^(5/16) 4180999368852541 a007 Real Root Of -796*x^4+682*x^3-720*x^2+153*x+264 4180999373825874 a001 377/2+3571/2*5^(1/2) 4180999373825923 a001 6677056/1597 4180999374156545 r009 Im(z^3+c),c=-25/56+7/19*I,n=37 4180999375987588 r002 9th iterates of z^2 + 4180999376343644 a001 1597/2207*9349^(18/19) 4180999377480072 a001 5702887/5778*1364^(1/5) 4180999378539666 a003 sin(Pi*14/117)/sin(Pi*29/85) 4180999381133082 a001 832040/3571*1364^(2/5) 4180999398678352 m001 FeigenbaumKappa^2*FeigenbaumC/ln(sqrt(5)) 4180999400733782 a001 5702887/9349*1364^(4/15) 4180999415014520 a001 987/3571*24476^(20/21) 4180999415679347 a001 1597/2207*24476^(6/7) 4180999415685142 a001 514229/2207*2207^(3/8) 4180999420775856 a001 987/3571*64079^(20/23) 4180999420864549 a001 1597/2207*64079^(18/23) 4180999421542432 a001 987/3571*167761^(4/5) 4180999421646980 a001 1597/2207*439204^(2/3) 4180999421661273 a001 987/3571*20633239^(4/7) 4180999421661279 a001 987/3571*2537720636^(4/9) 4180999421661279 a001 987/3571*(1/2+1/2*5^(1/2))^20 4180999421661279 a001 987/3571*23725150497407^(5/16) 4180999421661279 a001 987/3571*505019158607^(5/14) 4180999421661279 a001 987/3571*73681302247^(5/13) 4180999421661279 a001 987/3571*28143753123^(2/5) 4180999421661279 a001 987/3571*10749957122^(5/12) 4180999421661279 a001 987/3571*4106118243^(10/23) 4180999421661279 a001 987/3571*1568397607^(5/11) 4180999421661279 a001 987/3571*599074578^(10/21) 4180999421661279 a001 987/3571*228826127^(1/2) 4180999421661279 a001 987/3571*87403803^(10/19) 4180999421661281 a001 987/3571*33385282^(5/9) 4180999421661294 a001 987/3571*12752043^(10/17) 4180999421661389 a001 987/3571*4870847^(5/8) 4180999421661393 a001 1597/2207*7881196^(6/11) 4180999421661429 a001 1597/2207*141422324^(6/13) 4180999421661430 a001 1597/2207*2537720636^(2/5) 4180999421661430 a001 1597/2207*45537549124^(6/17) 4180999421661430 a001 1597/2207*14662949395604^(2/7) 4180999421661430 a001 1597/2207*(1/2+1/2*5^(1/2))^18 4180999421661430 a001 1597/2207*192900153618^(1/3) 4180999421661430 a001 1597/2207*10749957122^(3/8) 4180999421661430 a001 1597/2207*4106118243^(9/23) 4180999421661430 a001 1597/2207*1568397607^(9/22) 4180999421661430 a001 1597/2207*599074578^(3/7) 4180999421661430 a001 1597/2207*228826127^(9/20) 4180999421661430 a001 1597/2207*87403803^(9/19) 4180999421661431 a001 1597/2207*33385282^(1/2) 4180999421661443 a001 1597/2207*12752043^(9/17) 4180999421661529 a001 1597/2207*4870847^(9/16) 4180999421662084 a001 987/3571*1860498^(2/3) 4180999421662154 a001 1597/2207*1860498^(3/5) 4180999421666752 a001 1597/2207*710647^(9/14) 4180999421667193 a001 987/3571*710647^(5/7) 4180999421700714 a001 1597/2207*271443^(9/13) 4180999421704929 a001 987/3571*271443^(10/13) 4180999421953128 a001 1597/2207*103682^(3/4) 4180999421985389 a001 987/3571*103682^(5/6) 4180999423842520 a001 1597/2207*39603^(9/11) 4180999424084713 a001 987/3571*39603^(10/11) 4180999426319914 m001 (BesselI(0,2)+RenyiParking)/(Salem-ZetaP(2)) 4180999438105791 a001 1597/2207*15127^(9/10) 4180999441322642 r002 23th iterates of z^2 + 4180999453267372 m005 (1/2*Catalan-3)/(6/7*gamma-5/9) 4180999458571460 a005 (1/cos(8/211*Pi))^525 4180999460475375 r005 Im(z^2+c),c=-2/29+15/26*I,n=42 4180999468492520 r002 23th iterates of z^2 + 4180999469321955 a001 317811/2207*2207^(7/16) 4180999475298694 a005 (1/cos(22/105*Pi))^124 4180999484443389 a001 14930352/15127*1364^(1/5) 4180999498907688 a007 Real Root Of -124*x^4-360*x^3+920*x^2+879*x-827 4180999499060709 a004 Fibonacci(18)*Lucas(17)/(1/2+sqrt(5)/2)^16 4180999500049127 a001 39088169/39603*1364^(1/5) 4180999500946080 m001 (Zeta(5)+Khinchin)/(PlouffeB+PrimesInBinary) 4180999502325974 a001 102334155/103682*1364^(1/5) 4180999502658161 a001 267914296/271443*1364^(1/5) 4180999502706627 a001 701408733/710647*1364^(1/5) 4180999502713698 a001 1836311903/1860498*1364^(1/5) 4180999502714729 a001 4807526976/4870847*1364^(1/5) 4180999502714880 a001 12586269025/12752043*1364^(1/5) 4180999502714902 a001 32951280099/33385282*1364^(1/5) 4180999502714905 a001 86267571272/87403803*1364^(1/5) 4180999502714905 a001 225851433717/228826127*1364^(1/5) 4180999502714905 a001 591286729879/599074578*1364^(1/5) 4180999502714905 a001 1548008755920/1568397607*1364^(1/5) 4180999502714905 a001 4052739537881/4106118243*1364^(1/5) 4180999502714905 a001 4807525989/4870846*1364^(1/5) 4180999502714905 a001 6557470319842/6643838879*1364^(1/5) 4180999502714905 a001 2504730781961/2537720636*1364^(1/5) 4180999502714905 a001 956722026041/969323029*1364^(1/5) 4180999502714905 a001 365435296162/370248451*1364^(1/5) 4180999502714906 a001 139583862445/141422324*1364^(1/5) 4180999502714907 a001 53316291173/54018521*1364^(1/5) 4180999502714915 a001 20365011074/20633239*1364^(1/5) 4180999502714973 a001 7778742049/7881196*1364^(1/5) 4180999502715367 a001 2971215073/3010349*1364^(1/5) 4180999502718068 a001 1134903170/1149851*1364^(1/5) 4180999502736580 a001 433494437/439204*1364^(1/5) 4180999502863464 a001 165580141/167761*1364^(1/5) 4180999503733142 a001 63245986/64079*1364^(1/5) 4180999509694004 a001 24157817/24476*1364^(1/5) 4180999513652571 a001 2255/281*843^(13/14) 4180999514032867 a001 5702887/2207*843^(1/14) 4180999514599303 a003 -1-2*cos(1/10*Pi)-cos(2/15*Pi)-cos(8/21*Pi) 4180999523000163 a001 196418/2207*2207^(1/2) 4180999523124057 m009 (1/4*Psi(1,3/4)-5/6)/(8/3*Catalan+1/3*Pi^2-1) 4180999523795144 m001 GAMMA(23/24)^arctan(1/3)*PrimesInBinary 4180999525326222 a001 5473/2889*3571^(16/17) 4180999527296647 a001 9227465/5778*1364^(2/15) 4180999530951291 a001 1346269/3571*1364^(1/3) 4180999534967759 a001 17711/5778*3571^(15/17) 4180999536493334 r005 Re(z^2+c),c=-73/114+11/35*I,n=14 4180999546896146 a001 6155/2+987/2*5^(1/2) 4180999550550357 a001 9227465/9349*1364^(1/5) 4180999550643640 h001 (3/8*exp(1)+4/9)/(2/5*exp(2)+6/11) 4180999554949766 r004 Im(z^2+c),c=-7/20*I,z(0)=exp(1/12*I*Pi),n=5 4180999557938186 a001 28657/5778*3571^(14/17) 4180999562926841 r005 Re(z^2+c),c=-67/118+13/45*I,n=62 4180999565234246 r005 Im(z^2+c),c=-28/23+9/64*I,n=3 4180999566538911 m001 RenyiParking^exp(Pi)/(Stephens^exp(Pi)) 4180999572490880 a007 Real Root Of -171*x^4+52*x^3+247*x^2+754*x-357 4180999575817430 a001 2576/321*3571^(13/17) 4180999576570000 a001 121393/2207*2207^(9/16) 4180999578355490 m005 (1/2*2^(1/2)-2/11)/(4/5*2^(1/2)+1/8) 4180999595641333 a001 75025/5778*3571^(12/17) 4180999606024011 a004 Fibonacci(20)*Lucas(17)/(1/2+sqrt(5)/2)^18 4180999611567530 r005 Re(z^2+c),c=2/17+32/43*I,n=4 4180999614722443 a001 121393/5778*3571^(11/17) 4180999615438468 m001 (Si(Pi)+FellerTornier)/(OneNinth+ThueMorse) 4180999620588742 r005 Im(z^2+c),c=15/94+17/40*I,n=22 4180999621629746 a004 Fibonacci(22)*Lucas(17)/(1/2+sqrt(5)/2)^20 4180999623906592 a004 Fibonacci(24)*Lucas(17)/(1/2+sqrt(5)/2)^22 4180999624238780 a004 Fibonacci(26)*Lucas(17)/(1/2+sqrt(5)/2)^24 4180999624287245 a004 Fibonacci(28)*Lucas(17)/(1/2+sqrt(5)/2)^26 4180999624294316 a004 Fibonacci(30)*Lucas(17)/(1/2+sqrt(5)/2)^28 4180999624295348 a004 Fibonacci(32)*Lucas(17)/(1/2+sqrt(5)/2)^30 4180999624295498 a004 Fibonacci(34)*Lucas(17)/(1/2+sqrt(5)/2)^32 4180999624295520 a004 Fibonacci(36)*Lucas(17)/(1/2+sqrt(5)/2)^34 4180999624295524 a004 Fibonacci(38)*Lucas(17)/(1/2+sqrt(5)/2)^36 4180999624295524 a004 Fibonacci(40)*Lucas(17)/(1/2+sqrt(5)/2)^38 4180999624295524 a004 Fibonacci(42)*Lucas(17)/(1/2+sqrt(5)/2)^40 4180999624295524 a004 Fibonacci(44)*Lucas(17)/(1/2+sqrt(5)/2)^42 4180999624295524 a004 Fibonacci(46)*Lucas(17)/(1/2+sqrt(5)/2)^44 4180999624295524 a004 Fibonacci(48)*Lucas(17)/(1/2+sqrt(5)/2)^46 4180999624295524 a004 Fibonacci(50)*Lucas(17)/(1/2+sqrt(5)/2)^48 4180999624295524 a004 Fibonacci(52)*Lucas(17)/(1/2+sqrt(5)/2)^50 4180999624295524 a004 Fibonacci(54)*Lucas(17)/(1/2+sqrt(5)/2)^52 4180999624295524 a004 Fibonacci(56)*Lucas(17)/(1/2+sqrt(5)/2)^54 4180999624295524 a004 Fibonacci(58)*Lucas(17)/(1/2+sqrt(5)/2)^56 4180999624295524 a004 Fibonacci(60)*Lucas(17)/(1/2+sqrt(5)/2)^58 4180999624295524 a004 Fibonacci(62)*Lucas(17)/(1/2+sqrt(5)/2)^60 4180999624295524 a004 Fibonacci(64)*Lucas(17)/(1/2+sqrt(5)/2)^62 4180999624295524 a004 Fibonacci(66)*Lucas(17)/(1/2+sqrt(5)/2)^64 4180999624295524 a004 Fibonacci(68)*Lucas(17)/(1/2+sqrt(5)/2)^66 4180999624295524 a004 Fibonacci(70)*Lucas(17)/(1/2+sqrt(5)/2)^68 4180999624295524 a004 Fibonacci(72)*Lucas(17)/(1/2+sqrt(5)/2)^70 4180999624295524 a004 Fibonacci(74)*Lucas(17)/(1/2+sqrt(5)/2)^72 4180999624295524 a004 Fibonacci(76)*Lucas(17)/(1/2+sqrt(5)/2)^74 4180999624295524 a004 Fibonacci(78)*Lucas(17)/(1/2+sqrt(5)/2)^76 4180999624295524 a004 Fibonacci(80)*Lucas(17)/(1/2+sqrt(5)/2)^78 4180999624295524 a004 Fibonacci(82)*Lucas(17)/(1/2+sqrt(5)/2)^80 4180999624295524 a004 Fibonacci(84)*Lucas(17)/(1/2+sqrt(5)/2)^82 4180999624295524 a004 Fibonacci(86)*Lucas(17)/(1/2+sqrt(5)/2)^84 4180999624295524 a004 Fibonacci(88)*Lucas(17)/(1/2+sqrt(5)/2)^86 4180999624295524 a004 Fibonacci(90)*Lucas(17)/(1/2+sqrt(5)/2)^88 4180999624295524 a004 Fibonacci(92)*Lucas(17)/(1/2+sqrt(5)/2)^90 4180999624295524 a004 Fibonacci(94)*Lucas(17)/(1/2+sqrt(5)/2)^92 4180999624295524 a004 Fibonacci(96)*Lucas(17)/(1/2+sqrt(5)/2)^94 4180999624295524 a004 Fibonacci(98)*Lucas(17)/(1/2+sqrt(5)/2)^96 4180999624295524 a004 Fibonacci(100)*Lucas(17)/(1/2+sqrt(5)/2)^98 4180999624295524 a004 Fibonacci(99)*Lucas(17)/(1/2+sqrt(5)/2)^97 4180999624295524 a004 Fibonacci(97)*Lucas(17)/(1/2+sqrt(5)/2)^95 4180999624295524 a004 Fibonacci(95)*Lucas(17)/(1/2+sqrt(5)/2)^93 4180999624295524 a004 Fibonacci(93)*Lucas(17)/(1/2+sqrt(5)/2)^91 4180999624295524 a004 Fibonacci(91)*Lucas(17)/(1/2+sqrt(5)/2)^89 4180999624295524 a004 Fibonacci(89)*Lucas(17)/(1/2+sqrt(5)/2)^87 4180999624295524 a004 Fibonacci(87)*Lucas(17)/(1/2+sqrt(5)/2)^85 4180999624295524 a004 Fibonacci(85)*Lucas(17)/(1/2+sqrt(5)/2)^83 4180999624295524 a004 Fibonacci(83)*Lucas(17)/(1/2+sqrt(5)/2)^81 4180999624295524 a004 Fibonacci(81)*Lucas(17)/(1/2+sqrt(5)/2)^79 4180999624295524 a004 Fibonacci(79)*Lucas(17)/(1/2+sqrt(5)/2)^77 4180999624295524 a004 Fibonacci(77)*Lucas(17)/(1/2+sqrt(5)/2)^75 4180999624295524 a004 Fibonacci(75)*Lucas(17)/(1/2+sqrt(5)/2)^73 4180999624295524 a004 Fibonacci(73)*Lucas(17)/(1/2+sqrt(5)/2)^71 4180999624295524 a004 Fibonacci(71)*Lucas(17)/(1/2+sqrt(5)/2)^69 4180999624295524 a004 Fibonacci(69)*Lucas(17)/(1/2+sqrt(5)/2)^67 4180999624295524 a004 Fibonacci(67)*Lucas(17)/(1/2+sqrt(5)/2)^65 4180999624295524 a004 Fibonacci(65)*Lucas(17)/(1/2+sqrt(5)/2)^63 4180999624295524 a004 Fibonacci(63)*Lucas(17)/(1/2+sqrt(5)/2)^61 4180999624295524 a004 Fibonacci(61)*Lucas(17)/(1/2+sqrt(5)/2)^59 4180999624295524 a004 Fibonacci(59)*Lucas(17)/(1/2+sqrt(5)/2)^57 4180999624295524 a004 Fibonacci(57)*Lucas(17)/(1/2+sqrt(5)/2)^55 4180999624295524 a004 Fibonacci(55)*Lucas(17)/(1/2+sqrt(5)/2)^53 4180999624295524 a004 Fibonacci(53)*Lucas(17)/(1/2+sqrt(5)/2)^51 4180999624295524 a004 Fibonacci(51)*Lucas(17)/(1/2+sqrt(5)/2)^49 4180999624295524 a004 Fibonacci(49)*Lucas(17)/(1/2+sqrt(5)/2)^47 4180999624295524 a004 Fibonacci(47)*Lucas(17)/(1/2+sqrt(5)/2)^45 4180999624295524 a004 Fibonacci(45)*Lucas(17)/(1/2+sqrt(5)/2)^43 4180999624295524 a004 Fibonacci(43)*Lucas(17)/(1/2+sqrt(5)/2)^41 4180999624295524 a004 Fibonacci(41)*Lucas(17)/(1/2+sqrt(5)/2)^39 4180999624295524 a004 Fibonacci(39)*Lucas(17)/(1/2+sqrt(5)/2)^37 4180999624295526 a004 Fibonacci(37)*Lucas(17)/(1/2+sqrt(5)/2)^35 4180999624295534 a004 Fibonacci(35)*Lucas(17)/(1/2+sqrt(5)/2)^33 4180999624295550 a001 2/1597*(1/2+1/2*5^(1/2))^36 4180999624295592 a004 Fibonacci(33)*Lucas(17)/(1/2+sqrt(5)/2)^31 4180999624295986 a004 Fibonacci(31)*Lucas(17)/(1/2+sqrt(5)/2)^29 4180999624298686 a004 Fibonacci(29)*Lucas(17)/(1/2+sqrt(5)/2)^27 4180999624317199 a004 Fibonacci(27)*Lucas(17)/(1/2+sqrt(5)/2)^25 4180999624444083 a004 Fibonacci(25)*Lucas(17)/(1/2+sqrt(5)/2)^23 4180999625313761 a004 Fibonacci(23)*Lucas(17)/(1/2+sqrt(5)/2)^21 4180999626328660 a001 28657/15127*3571^(16/17) 4180999630423559 a001 75025/2207*2207^(5/8) 4180999631274621 a004 Fibonacci(21)*Lucas(17)/(1/2+sqrt(5)/2)^19 4180999634087274 a001 98209/2889*3571^(10/17) 4180999634259937 a001 24157817/15127*1364^(2/15) 4180999641064718 a001 75025/39603*3571^(16/17) 4180999643214680 a001 98209/51841*3571^(16/17) 4180999643528355 a001 514229/271443*3571^(16/17) 4180999643574119 a001 1346269/710647*3571^(16/17) 4180999643580796 a001 1762289/930249*3571^(16/17) 4180999643581771 a001 9227465/4870847*3571^(16/17) 4180999643581913 a001 24157817/12752043*3571^(16/17) 4180999643581933 a001 31622993/16692641*3571^(16/17) 4180999643581936 a001 165580141/87403803*3571^(16/17) 4180999643581937 a001 433494437/228826127*3571^(16/17) 4180999643581937 a001 567451585/299537289*3571^(16/17) 4180999643581937 a001 2971215073/1568397607*3571^(16/17) 4180999643581937 a001 7778742049/4106118243*3571^(16/17) 4180999643581937 a001 10182505537/5374978561*3571^(16/17) 4180999643581937 a001 53316291173/28143753123*3571^(16/17) 4180999643581937 a001 139583862445/73681302247*3571^(16/17) 4180999643581937 a001 182717648081/96450076809*3571^(16/17) 4180999643581937 a001 956722026041/505019158607*3571^(16/17) 4180999643581937 a001 10610209857723/5600748293801*3571^(16/17) 4180999643581937 a001 591286729879/312119004989*3571^(16/17) 4180999643581937 a001 225851433717/119218851371*3571^(16/17) 4180999643581937 a001 21566892818/11384387281*3571^(16/17) 4180999643581937 a001 32951280099/17393796001*3571^(16/17) 4180999643581937 a001 12586269025/6643838879*3571^(16/17) 4180999643581937 a001 1201881744/634430159*3571^(16/17) 4180999643581937 a001 1836311903/969323029*3571^(16/17) 4180999643581937 a001 701408733/370248451*3571^(16/17) 4180999643581937 a001 66978574/35355581*3571^(16/17) 4180999643581938 a001 102334155/54018521*3571^(16/17) 4180999643581946 a001 39088169/20633239*3571^(16/17) 4180999643582001 a001 3732588/1970299*3571^(16/17) 4180999643582373 a001 5702887/3010349*3571^(16/17) 4180999643584923 a001 2178309/1149851*3571^(16/17) 4180999643602403 a001 208010/109801*3571^(16/17) 4180999643722217 a001 317811/167761*3571^(16/17) 4180999644207905 a001 6624/2161*3571^(15/17) 4180999644543429 a001 121393/64079*3571^(16/17) 4180999649476002 r001 6i'th iterates of 2*x^2-1 of 4180999649865672 a001 63245986/39603*1364^(2/15) 4180999650172102 a001 11592/6119*3571^(16/17) 4180999652142517 a001 165580141/103682*1364^(2/15) 4180999652474705 a001 433494437/271443*1364^(2/15) 4180999652523170 a001 1134903170/710647*1364^(2/15) 4180999652530241 a001 2971215073/1860498*1364^(2/15) 4180999652531273 a001 7778742049/4870847*1364^(2/15) 4180999652531423 a001 20365011074/12752043*1364^(2/15) 4180999652531445 a001 53316291173/33385282*1364^(2/15) 4180999652531449 a001 139583862445/87403803*1364^(2/15) 4180999652531449 a001 365435296162/228826127*1364^(2/15) 4180999652531449 a001 956722026041/599074578*1364^(2/15) 4180999652531449 a001 2504730781961/1568397607*1364^(2/15) 4180999652531449 a001 6557470319842/4106118243*1364^(2/15) 4180999652531449 a001 10610209857723/6643838879*1364^(2/15) 4180999652531449 a001 4052739537881/2537720636*1364^(2/15) 4180999652531449 a001 1548008755920/969323029*1364^(2/15) 4180999652531449 a001 591286729879/370248451*1364^(2/15) 4180999652531449 a001 225851433717/141422324*1364^(2/15) 4180999652531451 a001 86267571272/54018521*1364^(2/15) 4180999652531459 a001 32951280099/20633239*1364^(2/15) 4180999652531517 a001 12586269025/7881196*1364^(2/15) 4180999652531911 a001 4807526976/3010349*1364^(2/15) 4180999652534611 a001 1836311903/1149851*1364^(2/15) 4180999652553124 a001 701408733/439204*1364^(2/15) 4180999652680008 a001 267914296/167761*1364^(2/15) 4180999653343734 a001 105937/1926*3571^(9/17) 4180999653549686 a001 102334155/64079*1364^(2/15) 4180999653859456 a001 -1597+2584*5^(1/2) 4180999659510546 a001 39088169/24476*1364^(2/15) 4180999660145828 a001 121393/39603*3571^(15/17) 4180999662471139 a001 317811/103682*3571^(15/17) 4180999662810398 a001 832040/271443*3571^(15/17) 4180999662859895 a001 311187/101521*3571^(15/17) 4180999662867116 a001 5702887/1860498*3571^(15/17) 4180999662868170 a001 14930352/4870847*3571^(15/17) 4180999662868324 a001 39088169/12752043*3571^(15/17) 4180999662868346 a001 14619165/4769326*3571^(15/17) 4180999662868349 a001 267914296/87403803*3571^(15/17) 4180999662868350 a001 701408733/228826127*3571^(15/17) 4180999662868350 a001 1836311903/599074578*3571^(15/17) 4180999662868350 a001 686789568/224056801*3571^(15/17) 4180999662868350 a001 12586269025/4106118243*3571^(15/17) 4180999662868350 a001 32951280099/10749957122*3571^(15/17) 4180999662868350 a001 86267571272/28143753123*3571^(15/17) 4180999662868350 a001 32264490531/10525900321*3571^(15/17) 4180999662868350 a001 591286729879/192900153618*3571^(15/17) 4180999662868350 a001 1548008755920/505019158607*3571^(15/17) 4180999662868350 a001 1515744265389/494493258286*3571^(15/17) 4180999662868350 a001 2504730781961/817138163596*3571^(15/17) 4180999662868350 a001 956722026041/312119004989*3571^(15/17) 4180999662868350 a001 365435296162/119218851371*3571^(15/17) 4180999662868350 a001 139583862445/45537549124*3571^(15/17) 4180999662868350 a001 53316291173/17393796001*3571^(15/17) 4180999662868350 a001 20365011074/6643838879*3571^(15/17) 4180999662868350 a001 7778742049/2537720636*3571^(15/17) 4180999662868350 a001 2971215073/969323029*3571^(15/17) 4180999662868350 a001 1134903170/370248451*3571^(15/17) 4180999662868350 a001 433494437/141422324*3571^(15/17) 4180999662868351 a001 165580141/54018521*3571^(15/17) 4180999662868360 a001 63245986/20633239*3571^(15/17) 4180999662868419 a001 24157817/7881196*3571^(15/17) 4180999662868821 a001 9227465/3010349*3571^(15/17) 4180999662871579 a001 3524578/1149851*3571^(15/17) 4180999662890486 a001 1346269/439204*3571^(15/17) 4180999663020071 a001 514229/167761*3571^(15/17) 4180999663908261 a001 196418/64079*3571^(15/17) 4180999664031808 a001 75025/15127*3571^(14/17) 4180999669996006 a001 75025/24476*3571^(15/17) 4180999672130967 a004 Fibonacci(19)*Lucas(17)/(1/2+sqrt(5)/2)^17 4180999672641588 a001 514229/5778*3571^(8/17) 4180999677113178 a001 2584*1364^(1/15) 4180999679510659 a001 196418/39603*3571^(14/17) 4180999680767198 a001 2178309/3571*1364^(4/15) 4180999681768993 a001 514229/103682*3571^(14/17) 4180999682098480 a001 1346269/271443*3571^(14/17) 4180999682146551 a001 3524578/710647*3571^(14/17) 4180999682153565 a001 9227465/1860498*3571^(14/17) 4180999682154588 a001 24157817/4870847*3571^(14/17) 4180999682154737 a001 63245986/12752043*3571^(14/17) 4180999682154759 a001 165580141/33385282*3571^(14/17) 4180999682154762 a001 433494437/87403803*3571^(14/17) 4180999682154763 a001 1134903170/228826127*3571^(14/17) 4180999682154763 a001 2971215073/599074578*3571^(14/17) 4180999682154763 a001 7778742049/1568397607*3571^(14/17) 4180999682154763 a001 20365011074/4106118243*3571^(14/17) 4180999682154763 a001 53316291173/10749957122*3571^(14/17) 4180999682154763 a001 139583862445/28143753123*3571^(14/17) 4180999682154763 a001 365435296162/73681302247*3571^(14/17) 4180999682154763 a001 956722026041/192900153618*3571^(14/17) 4180999682154763 a001 2504730781961/505019158607*3571^(14/17) 4180999682154763 a001 10610209857723/2139295485799*3571^(14/17) 4180999682154763 a001 4052739537881/817138163596*3571^(14/17) 4180999682154763 a001 140728068720/28374454999*3571^(14/17) 4180999682154763 a001 591286729879/119218851371*3571^(14/17) 4180999682154763 a001 225851433717/45537549124*3571^(14/17) 4180999682154763 a001 86267571272/17393796001*3571^(14/17) 4180999682154763 a001 32951280099/6643838879*3571^(14/17) 4180999682154763 a001 1144206275/230701876*3571^(14/17) 4180999682154763 a001 4807526976/969323029*3571^(14/17) 4180999682154763 a001 1836311903/370248451*3571^(14/17) 4180999682154763 a001 701408733/141422324*3571^(14/17) 4180999682154764 a001 267914296/54018521*3571^(14/17) 4180999682154772 a001 9303105/1875749*3571^(14/17) 4180999682154829 a001 39088169/7881196*3571^(14/17) 4180999682155220 a001 14930352/3010349*3571^(14/17) 4180999682157899 a001 5702887/1149851*3571^(14/17) 4180999682176261 a001 2178309/439204*3571^(14/17) 4180999682302114 a001 75640/15251*3571^(14/17) 4180999683112918 a001 121393/15127*3571^(13/17) 4180999683164720 a001 317811/64079*3571^(14/17) 4180999683534326 a001 46368/2207*2207^(11/16) 4180999688751603 a001 17711/9349*3571^(16/17) 4180999689077115 a001 121393/24476*3571^(14/17) 4180999691923630 a001 416020/2889*3571^(7/17) 4180999695380489 a001 1292/2889*24476^(19/21) 4180999698767119 a001 105937/13201*3571^(13/17) 4180999700366889 a001 14930352/9349*1364^(2/15) 4180999700853758 a001 1292/2889*64079^(19/23) 4180999701051036 a001 416020/51841*3571^(13/17) 4180999701384255 a001 726103/90481*3571^(13/17) 4180999701432871 a001 5702887/710647*3571^(13/17) 4180999701439964 a001 829464/103361*3571^(13/17) 4180999701440999 a001 39088169/4870847*3571^(13/17) 4180999701441150 a001 34111385/4250681*3571^(13/17) 4180999701441172 a001 133957148/16692641*3571^(13/17) 4180999701441175 a001 233802911/29134601*3571^(13/17) 4180999701441176 a001 1836311903/228826127*3571^(13/17) 4180999701441176 a001 267084832/33281921*3571^(13/17) 4180999701441176 a001 12586269025/1568397607*3571^(13/17) 4180999701441176 a001 10983760033/1368706081*3571^(13/17) 4180999701441176 a001 43133785636/5374978561*3571^(13/17) 4180999701441176 a001 75283811239/9381251041*3571^(13/17) 4180999701441176 a001 591286729879/73681302247*3571^(13/17) 4180999701441176 a001 86000486440/10716675201*3571^(13/17) 4180999701441176 a001 4052739537881/505019158607*3571^(13/17) 4180999701441176 a001 3278735159921/408569081798*3571^(13/17) 4180999701441176 a001 2504730781961/312119004989*3571^(13/17) 4180999701441176 a001 956722026041/119218851371*3571^(13/17) 4180999701441176 a001 182717648081/22768774562*3571^(13/17) 4180999701441176 a001 139583862445/17393796001*3571^(13/17) 4180999701441176 a001 53316291173/6643838879*3571^(13/17) 4180999701441176 a001 10182505537/1268860318*3571^(13/17) 4180999701441176 a001 7778742049/969323029*3571^(13/17) 4180999701441176 a001 2971215073/370248451*3571^(13/17) 4180999701441176 a001 567451585/70711162*3571^(13/17) 4180999701441177 a001 433494437/54018521*3571^(13/17) 4180999701441186 a001 165580141/20633239*3571^(13/17) 4180999701441243 a001 31622993/3940598*3571^(13/17) 4180999701441638 a001 24157817/3010349*3571^(13/17) 4180999701444348 a001 9227465/1149851*3571^(13/17) 4180999701462917 a001 1762289/219602*3571^(13/17) 4180999701590196 a001 1346269/167761*3571^(13/17) 4180999701694910 a001 1292/2889*817138163596^(1/3) 4180999701694910 a001 1292/2889*(1/2+1/2*5^(1/2))^19 4180999701694910 a001 1292/2889*87403803^(1/2) 4180999702002814 a001 1292/2889*103682^(19/24) 4180999702462575 a001 514229/64079*3571^(13/17) 4180999702477750 a001 196418/15127*3571^(12/17) 4180999703997173 a001 1292/2889*39603^(19/22) 4180999708441947 a001 98209/12238*3571^(13/17) 4180999708692818 m005 (1/2*Pi+9/11)/(6/11*2^(1/2)-1/5) 4180999709057840 r002 32th iterates of z^2 + 4180999711211713 a001 1346269/5778*3571^(6/17) 4180999711722030 a001 28657/9349*3571^(15/17) 4180999711915420 h001 (6/7*exp(2)+5/7)/(7/12*exp(1)+1/10) 4180999714527951 r005 Re(z^2+c),c=-9/16+11/34*I,n=50 4180999718064973 a001 514229/39603*3571^(12/17) 4180999719052848 a001 1292/2889*15127^(19/20) 4180999719966417 a001 11933/2-1597/2*5^(1/2) 4180999720339118 a001 1346269/103682*3571^(12/17) 4180999720670912 a001 3524578/271443*3571^(12/17) 4180999720719320 a001 9227465/710647*3571^(12/17) 4180999720726382 a001 24157817/1860498*3571^(12/17) 4180999720727413 a001 63245986/4870847*3571^(12/17) 4180999720727563 a001 165580141/12752043*3571^(12/17) 4180999720727585 a001 433494437/33385282*3571^(12/17) 4180999720727588 a001 1134903170/87403803*3571^(12/17) 4180999720727589 a001 2971215073/228826127*3571^(12/17) 4180999720727589 a001 7778742049/599074578*3571^(12/17) 4180999720727589 a001 20365011074/1568397607*3571^(12/17) 4180999720727589 a001 53316291173/4106118243*3571^(12/17) 4180999720727589 a001 139583862445/10749957122*3571^(12/17) 4180999720727589 a001 365435296162/28143753123*3571^(12/17) 4180999720727589 a001 956722026041/73681302247*3571^(12/17) 4180999720727589 a001 2504730781961/192900153618*3571^(12/17) 4180999720727589 a001 10610209857723/817138163596*3571^(12/17) 4180999720727589 a001 4052739537881/312119004989*3571^(12/17) 4180999720727589 a001 1548008755920/119218851371*3571^(12/17) 4180999720727589 a001 591286729879/45537549124*3571^(12/17) 4180999720727589 a001 7787980473/599786069*3571^(12/17) 4180999720727589 a001 86267571272/6643838879*3571^(12/17) 4180999720727589 a001 32951280099/2537720636*3571^(12/17) 4180999720727589 a001 12586269025/969323029*3571^(12/17) 4180999720727589 a001 4807526976/370248451*3571^(12/17) 4180999720727589 a001 1836311903/141422324*3571^(12/17) 4180999720727590 a001 701408733/54018521*3571^(12/17) 4180999720727599 a001 9238424/711491*3571^(12/17) 4180999720727656 a001 102334155/7881196*3571^(12/17) 4180999720728050 a001 39088169/3010349*3571^(12/17) 4180999720730747 a001 14930352/1149851*3571^(12/17) 4180999720749238 a001 5702887/439204*3571^(12/17) 4180999720875971 a001 2178309/167761*3571^(12/17) 4180999721734209 a001 317811/15127*3571^(11/17) 4180999721744617 a001 832040/64079*3571^(12/17) 4180999727698407 a001 10959/844*3571^(12/17) 4180999729601275 a001 46368/9349*3571^(14/17) 4180999730497488 a001 726103/1926*3571^(5/17) 4180999734224409 a005 (1/cos(10/103*Pi))^79 4180999737347016 a001 832040/39603*3571^(11/17) 4180999738589752 a001 28657/2207*2207^(3/4) 4180999739624894 a001 46347/2206*3571^(11/17) 4180999739957232 a001 5702887/271443*3571^(11/17) 4180999740005719 a001 14930352/710647*3571^(11/17) 4180999740012794 a001 39088169/1860498*3571^(11/17) 4180999740013826 a001 102334155/4870847*3571^(11/17) 4180999740013976 a001 267914296/12752043*3571^(11/17) 4180999740013998 a001 701408733/33385282*3571^(11/17) 4180999740014001 a001 1836311903/87403803*3571^(11/17) 4180999740014002 a001 102287808/4868641*3571^(11/17) 4180999740014002 a001 12586269025/599074578*3571^(11/17) 4180999740014002 a001 32951280099/1568397607*3571^(11/17) 4180999740014002 a001 86267571272/4106118243*3571^(11/17) 4180999740014002 a001 225851433717/10749957122*3571^(11/17) 4180999740014002 a001 591286729879/28143753123*3571^(11/17) 4180999740014002 a001 1548008755920/73681302247*3571^(11/17) 4180999740014002 a001 4052739537881/192900153618*3571^(11/17) 4180999740014002 a001 225749145909/10745088481*3571^(11/17) 4180999740014002 a001 6557470319842/312119004989*3571^(11/17) 4180999740014002 a001 2504730781961/119218851371*3571^(11/17) 4180999740014002 a001 956722026041/45537549124*3571^(11/17) 4180999740014002 a001 365435296162/17393796001*3571^(11/17) 4180999740014002 a001 139583862445/6643838879*3571^(11/17) 4180999740014002 a001 53316291173/2537720636*3571^(11/17) 4180999740014002 a001 20365011074/969323029*3571^(11/17) 4180999740014002 a001 7778742049/370248451*3571^(11/17) 4180999740014002 a001 2971215073/141422324*3571^(11/17) 4180999740014003 a001 1134903170/54018521*3571^(11/17) 4180999740014012 a001 433494437/20633239*3571^(11/17) 4180999740014069 a001 165580141/7881196*3571^(11/17) 4180999740014464 a001 63245986/3010349*3571^(11/17) 4180999740017166 a001 24157817/1149851*3571^(11/17) 4180999740035686 a001 9227465/439204*3571^(11/17) 4180999740162628 a001 3524578/167761*3571^(11/17) 4180999741032064 a001 514229/15127*3571^(10/17) 4180999741032700 a001 1346269/64079*3571^(11/17) 4180999742477978 m001 (2^(1/2)-Si(Pi))/(-Zeta(1,-1)+QuadraticClass) 4180999746996261 a001 514229/24476*3571^(11/17) 4180999749425179 a001 75025/9349*3571^(13/17) 4180999749784145 a001 1762289/2889*3571^(4/17) 4180999751123509 a007 Real Root Of 55*x^4+96*x^3-449*x^2+594*x+542 4180999756635099 a001 1346269/39603*3571^(10/17) 4180999758911551 a001 1762289/51841*3571^(10/17) 4180999759243681 a001 9227465/271443*3571^(10/17) 4180999759292138 a001 24157817/710647*3571^(10/17) 4180999759299208 a001 31622993/930249*3571^(10/17) 4180999759300239 a001 165580141/4870847*3571^(10/17) 4180999759300390 a001 433494437/12752043*3571^(10/17) 4180999759300412 a001 567451585/16692641*3571^(10/17) 4180999759300415 a001 2971215073/87403803*3571^(10/17) 4180999759300415 a001 7778742049/228826127*3571^(10/17) 4180999759300415 a001 10182505537/299537289*3571^(10/17) 4180999759300415 a001 53316291173/1568397607*3571^(10/17) 4180999759300415 a001 139583862445/4106118243*3571^(10/17) 4180999759300415 a001 182717648081/5374978561*3571^(10/17) 4180999759300415 a001 956722026041/28143753123*3571^(10/17) 4180999759300415 a001 2504730781961/73681302247*3571^(10/17) 4180999759300415 a001 3278735159921/96450076809*3571^(10/17) 4180999759300415 a001 10610209857723/312119004989*3571^(10/17) 4180999759300415 a001 4052739537881/119218851371*3571^(10/17) 4180999759300415 a001 387002188980/11384387281*3571^(10/17) 4180999759300415 a001 591286729879/17393796001*3571^(10/17) 4180999759300415 a001 225851433717/6643838879*3571^(10/17) 4180999759300415 a001 1135099622/33391061*3571^(10/17) 4180999759300415 a001 32951280099/969323029*3571^(10/17) 4180999759300415 a001 12586269025/370248451*3571^(10/17) 4180999759300415 a001 1201881744/35355581*3571^(10/17) 4180999759300417 a001 1836311903/54018521*3571^(10/17) 4180999759300425 a001 701408733/20633239*3571^(10/17) 4180999759300483 a001 66978574/1970299*3571^(10/17) 4180999759300877 a001 102334155/3010349*3571^(10/17) 4180999759303577 a001 39088169/1149851*3571^(10/17) 4180999759322086 a001 196452/5779*3571^(10/17) 4180999759448948 a001 5702887/167761*3571^(10/17) 4180999760314107 a001 832040/15127*3571^(9/17) 4180999760318476 a001 2178309/64079*3571^(10/17) 4180999760822766 a001 -12543/2+9349/2*5^(1/2) 4180999760822769 a001 17480760/4181 4180999765858082 a001 2255/1926*9349^(17/19) 4180999766278305 a001 208010/6119*3571^(10/17) 4180999768506289 a001 121393/9349*3571^(12/17) 4180999769070465 a001 5702887/5778*3571^(3/17) 4180999775920874 a001 726103/13201*3571^(9/17) 4180999778197871 a001 5702887/103682*3571^(9/17) 4180999778530080 a001 4976784/90481*3571^(9/17) 4180999778578549 a001 39088169/710647*3571^(9/17) 4180999778585621 a001 831985/15126*3571^(9/17) 4180999778586652 a001 267914296/4870847*3571^(9/17) 4180999778586803 a001 233802911/4250681*3571^(9/17) 4180999778586825 a001 1836311903/33385282*3571^(9/17) 4180999778586828 a001 1602508992/29134601*3571^(9/17) 4180999778586829 a001 12586269025/228826127*3571^(9/17) 4180999778586829 a001 10983760033/199691526*3571^(9/17) 4180999778586829 a001 86267571272/1568397607*3571^(9/17) 4180999778586829 a001 75283811239/1368706081*3571^(9/17) 4180999778586829 a001 591286729879/10749957122*3571^(9/17) 4180999778586829 a001 12585437040/228811001*3571^(9/17) 4180999778586829 a001 4052739537881/73681302247*3571^(9/17) 4180999778586829 a001 3536736619241/64300051206*3571^(9/17) 4180999778586829 a001 6557470319842/119218851371*3571^(9/17) 4180999778586829 a001 2504730781961/45537549124*3571^(9/17) 4180999778586829 a001 956722026041/17393796001*3571^(9/17) 4180999778586829 a001 365435296162/6643838879*3571^(9/17) 4180999778586829 a001 139583862445/2537720636*3571^(9/17) 4180999778586829 a001 53316291173/969323029*3571^(9/17) 4180999778586829 a001 20365011074/370248451*3571^(9/17) 4180999778586829 a001 7778742049/141422324*3571^(9/17) 4180999778586830 a001 2971215073/54018521*3571^(9/17) 4180999778586838 a001 1134903170/20633239*3571^(9/17) 4180999778586896 a001 433494437/7881196*3571^(9/17) 4180999778587290 a001 165580141/3010349*3571^(9/17) 4180999778589991 a001 63245986/1149851*3571^(9/17) 4180999778608504 a001 24157817/439204*3571^(9/17) 4180999778735397 a001 9227465/167761*3571^(9/17) 4180999779094283 a004 Fibonacci(18)*Lucas(19)/(1/2+sqrt(5)/2)^18 4180999779378860 r005 Im(z^2+c),c=7/44+25/58*I,n=56 4180999779602189 a001 1346269/15127*3571^(8/17) 4180999779605133 a001 3524578/64079*3571^(9/17) 4180999784076484 a001 39088169/15127*1364^(1/15) 4180999785566387 a001 1346269/24476*3571^(9/17) 4180999786499128 a001 17711/5778*9349^(15/19) 4180999787871121 a001 196418/9349*3571^(11/17) 4180999788356914 a001 9227465/5778*3571^(2/17) 4180999788553996 a001 17711/2207*2207^(13/16) 4180999792700798 a001 28657/5778*9349^(14/19) 4180999793626349 a001 5473/2889*9349^(16/19) 4180999793811285 a001 2576/321*9349^(13/19) 4180999795207531 a001 3524578/39603*3571^(8/17) 4180999796866430 a001 75025/5778*9349^(12/19) 4180999797484320 a001 9227465/103682*3571^(8/17) 4180999797816499 a001 24157817/271443*3571^(8/17) 4180999797864963 a001 63245986/710647*3571^(8/17) 4180999797872034 a001 165580141/1860498*3571^(8/17) 4180999797873066 a001 433494437/4870847*3571^(8/17) 4180999797873216 a001 1134903170/12752043*3571^(8/17) 4180999797873238 a001 2971215073/33385282*3571^(8/17) 4180999797873242 a001 7778742049/87403803*3571^(8/17) 4180999797873242 a001 20365011074/228826127*3571^(8/17) 4180999797873242 a001 53316291173/599074578*3571^(8/17) 4180999797873242 a001 139583862445/1568397607*3571^(8/17) 4180999797873242 a001 365435296162/4106118243*3571^(8/17) 4180999797873242 a001 956722026041/10749957122*3571^(8/17) 4180999797873242 a001 2504730781961/28143753123*3571^(8/17) 4180999797873242 a001 6557470319842/73681302247*3571^(8/17) 4180999797873242 a001 10610209857723/119218851371*3571^(8/17) 4180999797873242 a001 4052739537881/45537549124*3571^(8/17) 4180999797873242 a001 1548008755920/17393796001*3571^(8/17) 4180999797873242 a001 591286729879/6643838879*3571^(8/17) 4180999797873242 a001 225851433717/2537720636*3571^(8/17) 4180999797873242 a001 86267571272/969323029*3571^(8/17) 4180999797873242 a001 32951280099/370248451*3571^(8/17) 4180999797873242 a001 12586269025/141422324*3571^(8/17) 4180999797873244 a001 4807526976/54018521*3571^(8/17) 4180999797873252 a001 1836311903/20633239*3571^(8/17) 4180999797873309 a001 3524667/39604*3571^(8/17) 4180999797873703 a001 267914296/3010349*3571^(8/17) 4180999797876404 a001 102334155/1149851*3571^(8/17) 4180999797894916 a001 39088169/439204*3571^(8/17) 4180999798021797 a001 14930352/167761*3571^(8/17) 4180999798887965 a001 311187/2161*3571^(7/17) 4180999798891453 a001 5702887/64079*3571^(8/17) 4180999799178782 a001 121393/5778*9349^(11/19) 4180999799682220 a001 34111385/13201*1364^(1/15) 4180999800839312 m001 (FeigenbaumMu-Salem)/(Zeta(5)-ln(5)) 4180999801774856 a001 98209/2889*9349^(10/19) 4180999801959067 a001 133957148/51841*1364^(1/15) 4180999802291254 a001 233802911/90481*1364^(1/15) 4180999802339719 a001 1836311903/710647*1364^(1/15) 4180999802346790 a001 267084832/103361*1364^(1/15) 4180999802347822 a001 12586269025/4870847*1364^(1/15) 4180999802347973 a001 10983760033/4250681*1364^(1/15) 4180999802347995 a001 43133785636/16692641*1364^(1/15) 4180999802347998 a001 75283811239/29134601*1364^(1/15) 4180999802347998 a001 591286729879/228826127*1364^(1/15) 4180999802347998 a001 86000486440/33281921*1364^(1/15) 4180999802347998 a001 4052739537881/1568397607*1364^(1/15) 4180999802347998 a001 3536736619241/1368706081*1364^(1/15) 4180999802347998 a001 3278735159921/1268860318*1364^(1/15) 4180999802347998 a001 2504730781961/969323029*1364^(1/15) 4180999802347998 a001 956722026041/370248451*1364^(1/15) 4180999802347999 a001 182717648081/70711162*1364^(1/15) 4180999802348000 a001 139583862445/54018521*1364^(1/15) 4180999802348008 a001 53316291173/20633239*1364^(1/15) 4180999802348066 a001 10182505537/3940598*1364^(1/15) 4180999802348460 a001 7778742049/3010349*1364^(1/15) 4180999802351161 a001 2971215073/1149851*1364^(1/15) 4180999802369673 a001 567451585/219602*1364^(1/15) 4180999802496557 a001 433494437/167761*1364^(1/15) 4180999803008472 a001 2255/1926*24476^(17/21) 4180999803366235 a001 165580141/64079*1364^(1/15) 4180999804262557 a001 105937/1926*9349^(9/19) 4180999804852163 a001 2178309/24476*3571^(8/17) 4180999805836293 r002 4th iterates of z^2 + 4180999806791654 a001 514229/5778*9349^(8/19) 4180999807127581 a001 317811/9349*3571^(10/17) 4180999807643314 a001 2584*3571^(1/17) 4180999807728519 a001 2584/15127*64079^(21/23) 4180999807905608 a001 2255/1926*64079^(17/23) 4180999808641356 a001 2584/15127*439204^(7/9) 4180999808658171 a001 2584/15127*7881196^(7/11) 4180999808658208 a001 2584/15127*20633239^(3/5) 4180999808658214 a001 2584/15127*141422324^(7/13) 4180999808658214 a001 2584/15127*2537720636^(7/15) 4180999808658214 a001 2584/15127*17393796001^(3/7) 4180999808658214 a001 2584/15127*45537549124^(7/17) 4180999808658214 a001 2584/15127*14662949395604^(1/3) 4180999808658214 a001 2584/15127*(1/2+1/2*5^(1/2))^21 4180999808658214 a001 2584/15127*192900153618^(7/18) 4180999808658214 a001 2584/15127*10749957122^(7/16) 4180999808658214 a001 2584/15127*599074578^(1/2) 4180999808658216 a001 2584/15127*33385282^(7/12) 4180999808658217 a001 2255/1926*45537549124^(1/3) 4180999808658217 a001 2255/1926*(1/2+1/2*5^(1/2))^17 4180999808658230 a001 2255/1926*12752043^(1/2) 4180999808659059 a001 2584/15127*1860498^(7/10) 4180999808664423 a001 2584/15127*710647^(3/4) 4180999808933711 a001 2255/1926*103682^(17/24) 4180999808998529 a001 2584/15127*103682^(7/8) 4180999809304939 a001 416020/2889*9349^(7/19) 4180999809327096 a001 31622993/12238*1364^(1/15) 4180999809445793 r005 Re(z^2+c),c=-4/7+22/79*I,n=41 4180999810718137 a001 2255/1926*39603^(17/22) 4180999811202820 a001 2584/15127*39603^(21/22) 4180999811824263 a001 1346269/5778*9349^(6/19) 4180999814341280 a001 726103/1926*9349^(5/19) 4180999814493852 a001 5702887/39603*3571^(7/17) 4180999816770720 a001 7465176/51841*3571^(7/17) 4180999816859179 a001 1762289/2889*9349^(4/19) 4180999817102911 a001 39088169/271443*3571^(7/17) 4180999817151377 a001 14619165/101521*3571^(7/17) 4180999817158448 a001 133957148/930249*3571^(7/17) 4180999817159479 a001 701408733/4870847*3571^(7/17) 4180999817159630 a001 1836311903/12752043*3571^(7/17) 4180999817159652 a001 14930208/103681*3571^(7/17) 4180999817159655 a001 12586269025/87403803*3571^(7/17) 4180999817159656 a001 32951280099/228826127*3571^(7/17) 4180999817159656 a001 43133785636/299537289*3571^(7/17) 4180999817159656 a001 32264490531/224056801*3571^(7/17) 4180999817159656 a001 591286729879/4106118243*3571^(7/17) 4180999817159656 a001 774004377960/5374978561*3571^(7/17) 4180999817159656 a001 4052739537881/28143753123*3571^(7/17) 4180999817159656 a001 1515744265389/10525900321*3571^(7/17) 4180999817159656 a001 3278735159921/22768774562*3571^(7/17) 4180999817159656 a001 2504730781961/17393796001*3571^(7/17) 4180999817159656 a001 956722026041/6643838879*3571^(7/17) 4180999817159656 a001 182717648081/1268860318*3571^(7/17) 4180999817159656 a001 139583862445/969323029*3571^(7/17) 4180999817159656 a001 53316291173/370248451*3571^(7/17) 4180999817159656 a001 10182505537/70711162*3571^(7/17) 4180999817159657 a001 7778742049/54018521*3571^(7/17) 4180999817159665 a001 2971215073/20633239*3571^(7/17) 4180999817159723 a001 567451585/3940598*3571^(7/17) 4180999817160117 a001 433494437/3010349*3571^(7/17) 4180999817162818 a001 165580141/1149851*3571^(7/17) 4180999817181330 a001 31622993/219602*3571^(7/17) 4180999817284852 a001 22882612/5473 4180999817308216 a001 24157817/167761*3571^(7/17) 4180999817525159 m001 (exp(1)-ln(5))/(-GaussKuzminWirsing+Otter) 4180999818174622 a001 3524578/15127*3571^(6/17) 4180999818177902 a001 9227465/64079*3571^(7/17) 4180999819278884 a001 17711/5778*24476^(5/7) 4180999819376741 a001 5702887/5778*9349^(3/19) 4180999819950630 a004 Fibonacci(18)*Lucas(21)/(1/2+sqrt(5)/2)^20 4180999821894431 a001 9227465/5778*9349^(2/19) 4180999822220406 a001 2576/321*24476^(13/21) 4180999823090235 a001 75025/5778*24476^(4/7) 4180999823217269 a001 121393/5778*24476^(11/21) 4180999823295237 a001 28657/5778*24476^(2/3) 4180999823599886 a001 17711/5778*64079^(15/23) 4180999823628026 a001 98209/2889*24476^(10/21) 4180999823930411 a001 105937/1926*24476^(3/7) 4180999824138820 a001 1762289/12238*3571^(7/17) 4180999824174818 a001 17711/5778*167761^(3/5) 4180999824189004 a001 2255/1926*15127^(17/20) 4180999824251912 a001 17711/5778*439204^(5/9) 4180999824263923 a001 17711/5778*7881196^(5/11) 4180999824263949 a001 17711/5778*20633239^(3/7) 4180999824263950 a001 2584/39603*(1/2+1/2*5^(1/2))^23 4180999824263950 a001 2584/39603*4106118243^(1/2) 4180999824263953 a001 17711/5778*141422324^(5/13) 4180999824263954 a001 17711/5778*2537720636^(1/3) 4180999824263954 a001 17711/5778*45537549124^(5/17) 4180999824263954 a001 17711/5778*312119004989^(3/11) 4180999824263954 a001 17711/5778*14662949395604^(5/21) 4180999824263954 a001 17711/5778*(1/2+1/2*5^(1/2))^15 4180999824263954 a001 17711/5778*192900153618^(5/18) 4180999824263954 a001 17711/5778*28143753123^(3/10) 4180999824263954 a001 17711/5778*10749957122^(5/16) 4180999824263954 a001 17711/5778*599074578^(5/14) 4180999824263954 a001 17711/5778*228826127^(3/8) 4180999824263955 a001 17711/5778*33385282^(5/12) 4180999824264557 a001 17711/5778*1860498^(1/2) 4180999824274190 a001 514229/5778*24476^(8/21) 4180999824412073 a001 2584*9349^(1/19) 4180999824507036 a001 17711/5778*103682^(5/8) 4180999824602158 a001 416020/2889*24476^(1/3) 4180999824636676 a001 2584/39603*103682^(23/24) 4180999824936165 a001 1346269/5778*24476^(2/7) 4180999825267865 a001 726103/1926*24476^(5/21) 4180999825522559 a001 119814912/28657 4180999825600447 a001 1762289/2889*24476^(4/21) 4180999825911491 a004 Fibonacci(18)*Lucas(23)/(1/2+sqrt(5)/2)^22 4180999825932692 a001 5702887/5778*24476^(1/7) 4180999825943979 m001 (Ei(1,1)+GaussAGM)/(Lehmer-PolyaRandomWalk3D) 4180999825965275 a001 2576/321*64079^(13/23) 4180999826081529 a001 17711/5778*39603^(15/22) 4180999826265065 a001 9227465/5778*24476^(2/21) 4180999826386004 a001 121393/5778*64079^(11/23) 4180999826425436 a001 514229/9349*3571^(9/17) 4180999826508694 a001 98209/2889*64079^(10/23) 4180999826523012 a001 105937/1926*64079^(9/23) 4180999826540789 a001 1292/51841*20633239^(5/7) 4180999826540796 a001 1292/51841*2537720636^(5/9) 4180999826540796 a001 1292/51841*312119004989^(5/11) 4180999826540796 a001 1292/51841*(1/2+1/2*5^(1/2))^25 4180999826540796 a001 1292/51841*3461452808002^(5/12) 4180999826540796 a001 1292/51841*28143753123^(1/2) 4180999826540796 a001 1292/51841*228826127^(5/8) 4180999826540800 a001 2576/321*141422324^(1/3) 4180999826540800 a001 2576/321*(1/2+1/2*5^(1/2))^13 4180999826540800 a001 2576/321*73681302247^(1/4) 4180999826541803 a001 1292/51841*1860498^(5/6) 4180999826547036 a001 75025/5778*64079^(12/23) 4180999826569172 a001 2576/321*271443^(1/2) 4180999826578725 a001 514229/5778*64079^(8/23) 4180999826597390 a001 2584*24476^(1/21) 4180999826618626 a001 416020/2889*64079^(7/23) 4180999826664566 a001 1346269/5778*64079^(6/23) 4180999826708200 a001 726103/1926*64079^(5/23) 4180999826724425 a001 313679512/75025 4180999826751471 a001 2576/321*103682^(13/24) 4180999826752714 a001 1762289/2889*64079^(4/23) 4180999826781169 a004 Fibonacci(18)*Lucas(25)/(1/2+sqrt(5)/2)^24 4180999826796892 a001 5702887/5778*64079^(3/23) 4180999826841199 a001 9227465/5778*64079^(2/23) 4180999826872928 a001 2584/271443*7881196^(9/11) 4180999826872965 a001 121393/5778*7881196^(1/3) 4180999826872983 a001 2584/271443*141422324^(9/13) 4180999826872983 a001 2584/271443*2537720636^(3/5) 4180999826872983 a001 2584/271443*45537549124^(9/17) 4180999826872983 a001 2584/271443*817138163596^(9/19) 4180999826872983 a001 2584/271443*14662949395604^(3/7) 4180999826872983 a001 2584/271443*(1/2+1/2*5^(1/2))^27 4180999826872983 a001 2584/271443*192900153618^(1/2) 4180999826872983 a001 2584/271443*10749957122^(9/16) 4180999826872983 a001 2584/271443*599074578^(9/14) 4180999826872986 a001 2584/271443*33385282^(3/4) 4180999826872987 a001 121393/5778*312119004989^(1/5) 4180999826872987 a001 121393/5778*(1/2+1/2*5^(1/2))^11 4180999826872987 a001 121393/5778*1568397607^(1/4) 4180999826874070 a001 2584/271443*1860498^(9/10) 4180999826885457 a001 2584*64079^(1/23) 4180999826891982 a001 98209/2889*167761^(2/5) 4180999826899774 a001 24153636/5777 4180999826899844 a001 726103/1926*167761^(1/5) 4180999826908053 a004 Fibonacci(18)*Lucas(27)/(1/2+sqrt(5)/2)^26 4180999826914228 a001 105937/1926*439204^(1/3) 4180999826921434 a001 105937/1926*7881196^(3/11) 4180999826921449 a001 2584/710647*(1/2+1/2*5^(1/2))^29 4180999826921449 a001 2584/710647*1322157322203^(1/2) 4180999826921453 a001 105937/1926*141422324^(3/13) 4180999826921453 a001 105937/1926*2537720636^(1/5) 4180999826921453 a001 105937/1926*45537549124^(3/17) 4180999826921453 a001 105937/1926*14662949395604^(1/7) 4180999826921453 a001 105937/1926*(1/2+1/2*5^(1/2))^9 4180999826921453 a001 105937/1926*192900153618^(1/6) 4180999826921453 a001 105937/1926*10749957122^(3/16) 4180999826921453 a001 105937/1926*599074578^(3/14) 4180999826921454 a001 105937/1926*33385282^(1/4) 4180999826921815 a001 105937/1926*1860498^(3/10) 4180999826925358 a001 2149991360/514229 4180999826925376 a001 1346269/5778*439204^(2/9) 4180999826926566 a004 Fibonacci(18)*Lucas(29)/(1/2+sqrt(5)/2)^28 4180999826927298 a001 5702887/5778*439204^(1/9) 4180999826928520 a001 1292/930249*(1/2+1/2*5^(1/2))^31 4180999826928520 a001 1292/930249*9062201101803^(1/2) 4180999826928522 a001 416020/2889*20633239^(1/5) 4180999826928524 a001 416020/2889*17393796001^(1/7) 4180999826928524 a001 416020/2889*14662949395604^(1/9) 4180999826928524 a001 416020/2889*(1/2+1/2*5^(1/2))^7 4180999826928524 a001 416020/2889*599074578^(1/6) 4180999826929090 a001 5628750456/1346269 4180999826929266 a004 Fibonacci(18)*Lucas(31)/(1/2+sqrt(5)/2)^30 4180999826929551 a001 2584/4870847*141422324^(11/13) 4180999826929552 a001 2584/4870847*2537720636^(11/15) 4180999826929552 a001 2584/4870847*45537549124^(11/17) 4180999826929552 a001 2584/4870847*312119004989^(3/5) 4180999826929552 a001 2584/4870847*817138163596^(11/19) 4180999826929552 a001 2584/4870847*14662949395604^(11/21) 4180999826929552 a001 2584/4870847*(1/2+1/2*5^(1/2))^33 4180999826929552 a001 2584/4870847*192900153618^(11/18) 4180999826929552 a001 2584/4870847*10749957122^(11/16) 4180999826929552 a001 2584/4870847*1568397607^(3/4) 4180999826929552 a001 2584/4870847*599074578^(11/14) 4180999826929554 a001 726103/1926*20633239^(1/7) 4180999826929555 a001 2584/4870847*33385282^(11/12) 4180999826929555 a001 726103/1926*2537720636^(1/9) 4180999826929555 a001 726103/1926*312119004989^(1/11) 4180999826929555 a001 726103/1926*(1/2+1/2*5^(1/2))^5 4180999826929555 a001 726103/1926*28143753123^(1/10) 4180999826929555 a001 726103/1926*228826127^(1/8) 4180999826929635 a001 7368130004/1762289 4180999826929660 a004 Fibonacci(18)*Lucas(33)/(1/2+sqrt(5)/2)^32 4180999826929700 a001 5702887/5778*7881196^(1/11) 4180999826929702 a001 2584/12752043*2537720636^(7/9) 4180999826929702 a001 2584/12752043*17393796001^(5/7) 4180999826929702 a001 2584/12752043*312119004989^(7/11) 4180999826929702 a001 2584/12752043*14662949395604^(5/9) 4180999826929702 a001 2584/12752043*(1/2+1/2*5^(1/2))^35 4180999826929702 a001 2584/12752043*505019158607^(5/8) 4180999826929702 a001 2584/12752043*28143753123^(7/10) 4180999826929702 a001 2584/12752043*599074578^(5/6) 4180999826929702 a001 2584/12752043*228826127^(7/8) 4180999826929706 a001 5702887/5778*141422324^(1/13) 4180999826929706 a001 5702887/5778*2537720636^(1/15) 4180999826929706 a001 5702887/5778*45537549124^(1/17) 4180999826929706 a001 5702887/5778*14662949395604^(1/21) 4180999826929706 a001 5702887/5778*(1/2+1/2*5^(1/2))^3 4180999826929706 a001 5702887/5778*192900153618^(1/18) 4180999826929706 a001 5702887/5778*10749957122^(1/16) 4180999826929706 a001 5702887/5778*599074578^(1/14) 4180999826929706 a001 5702887/5778*33385282^(1/12) 4180999826929714 a001 38580029568/9227465 4180999826929718 a004 Fibonacci(18)*Lucas(35)/(1/2+sqrt(5)/2)^34 4180999826929724 a001 1292/16692641*(1/2+1/2*5^(1/2))^37 4180999826929726 a001 101003828696/24157817 4180999826929726 a004 Fibonacci(18)*Lucas(37)/(1/2+sqrt(5)/2)^36 4180999826929727 a001 2584/87403803*2537720636^(13/15) 4180999826929727 a001 2584/87403803*45537549124^(13/17) 4180999826929727 a001 2584/87403803*14662949395604^(13/21) 4180999826929727 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^39/Lucas(38) 4180999826929727 a001 2584/87403803*192900153618^(13/18) 4180999826929727 a001 2584/87403803*73681302247^(3/4) 4180999826929727 a001 2584/87403803*10749957122^(13/16) 4180999826929727 a001 2584/87403803*599074578^(13/14) 4180999826929727 a001 132215728260/31622993 4180999826929728 a004 Fibonacci(18)*Lucas(39)/(1/2+sqrt(5)/2)^38 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^41/Lucas(40) 4180999826929728 a001 692290540864/165580141 4180999826929728 a004 Fibonacci(18)*Lucas(41)/(1/2+sqrt(5)/2)^40 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^43/Lucas(42) 4180999826929728 a001 1812440166072/433494437 4180999826929728 a004 Fibonacci(18)*Lucas(43)/(1/2+sqrt(5)/2)^42 4180999826929728 a001 2584/1568397607*45537549124^(15/17) 4180999826929728 a001 2584/1568397607*312119004989^(9/11) 4180999826929728 a001 2584/1568397607*14662949395604^(5/7) 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^45/Lucas(44) 4180999826929728 a001 2584/1568397607*192900153618^(5/6) 4180999826929728 a001 2584/1568397607*28143753123^(9/10) 4180999826929728 a001 2584/1568397607*10749957122^(15/16) 4180999826929728 a001 139559704628/33379505 4180999826929728 a004 Fibonacci(18)*Lucas(45)/(1/2+sqrt(5)/2)^44 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^47/Lucas(46) 4180999826929728 a001 12422649705984/2971215073 4180999826929728 a004 Fibonacci(18)*Lucas(47)/(1/2+sqrt(5)/2)^46 4180999826929728 a001 1292/5374978561*14662949395604^(7/9) 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^49/Lucas(48) 4180999826929728 a001 1292/5374978561*505019158607^(7/8) 4180999826929728 a001 32522919160600/7778742049 4180999826929728 a004 Fibonacci(18)*Lucas(49)/(1/2+sqrt(5)/2)^48 4180999826929728 a001 2584/28143753123*817138163596^(17/19) 4180999826929728 a001 2584/28143753123*14662949395604^(17/21) 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^51/Lucas(50) 4180999826929728 a001 2584/28143753123*192900153618^(17/18) 4180999826929728 a001 42573053887908/10182505537 4180999826929728 a004 Fibonacci(18)*Lucas(51)/(1/2+sqrt(5)/2)^50 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^53/Lucas(52) 4180999826929728 a001 222915404166848/53316291173 4180999826929728 a004 Fibonacci(18)*Lucas(53)/(1/2+sqrt(5)/2)^52 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^55/Lucas(54) 4180999826929728 a001 1292/96450076809*3461452808002^(11/12) 4180999826929728 a001 583600104724728/139583862445 4180999826929728 a004 Fibonacci(18)*Lucas(55)/(1/2+sqrt(5)/2)^54 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^57/Lucas(56) 4180999826929728 a001 763942455003668/182717648081 4180999826929728 a004 Fibonacci(18)*Lucas(57)/(1/2+sqrt(5)/2)^56 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^59/Lucas(58) 4180999826929728 a004 Fibonacci(18)*Lucas(59)/(1/2+sqrt(5)/2)^58 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^61/Lucas(60) 4180999826929728 a001 10472278965884504/2504730781961 4180999826929728 a004 Fibonacci(18)*Lucas(61)/(1/2+sqrt(5)/2)^60 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^63/Lucas(62) 4180999826929728 a004 Fibonacci(18)*Lucas(63)/(1/2+sqrt(5)/2)^62 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^65/Lucas(64) 4180999826929728 a004 Fibonacci(18)*Lucas(65)/(1/2+sqrt(5)/2)^64 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^67/Lucas(66) 4180999826929728 a004 Fibonacci(18)*Lucas(67)/(1/2+sqrt(5)/2)^66 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^69/Lucas(68) 4180999826929728 a004 Fibonacci(18)*Lucas(69)/(1/2+sqrt(5)/2)^68 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^71/Lucas(70) 4180999826929728 a004 Fibonacci(18)*Lucas(71)/(1/2+sqrt(5)/2)^70 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^73/Lucas(72) 4180999826929728 a004 Fibonacci(18)*Lucas(73)/(1/2+sqrt(5)/2)^72 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^75/Lucas(74) 4180999826929728 a004 Fibonacci(18)*Lucas(75)/(1/2+sqrt(5)/2)^74 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^77/Lucas(76) 4180999826929728 a004 Fibonacci(18)*Lucas(77)/(1/2+sqrt(5)/2)^76 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^79/Lucas(78) 4180999826929728 a004 Fibonacci(18)*Lucas(79)/(1/2+sqrt(5)/2)^78 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^81/Lucas(80) 4180999826929728 a004 Fibonacci(18)*Lucas(81)/(1/2+sqrt(5)/2)^80 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^83/Lucas(82) 4180999826929728 a004 Fibonacci(18)*Lucas(83)/(1/2+sqrt(5)/2)^82 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^85/Lucas(84) 4180999826929728 a004 Fibonacci(18)*Lucas(85)/(1/2+sqrt(5)/2)^84 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^87/Lucas(86) 4180999826929728 a004 Fibonacci(18)*Lucas(87)/(1/2+sqrt(5)/2)^86 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^89/Lucas(88) 4180999826929728 a004 Fibonacci(18)*Lucas(89)/(1/2+sqrt(5)/2)^88 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^91/Lucas(90) 4180999826929728 a004 Fibonacci(18)*Lucas(91)/(1/2+sqrt(5)/2)^90 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^93/Lucas(92) 4180999826929728 a004 Fibonacci(18)*Lucas(93)/(1/2+sqrt(5)/2)^92 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^95/Lucas(94) 4180999826929728 a004 Fibonacci(18)*Lucas(95)/(1/2+sqrt(5)/2)^94 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^97/Lucas(96) 4180999826929728 a004 Fibonacci(18)*Lucas(97)/(1/2+sqrt(5)/2)^96 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)/Lucas(1) 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^100/Lucas(99) 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^99/Lucas(98) 4180999826929728 a004 Fibonacci(18)*Lucas(100)/(1/2+sqrt(5)/2)^99 4180999826929728 a004 Fibonacci(18)*Lucas(99)/(1/2+sqrt(5)/2)^98 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^98/Lucas(97) 4180999826929728 a004 Fibonacci(18)*Lucas(98)/(1/2+sqrt(5)/2)^97 4180999826929728 a004 Fibonacci(18)*Lucas(96)/(1/2+sqrt(5)/2)^95 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^96/Lucas(95) 4180999826929728 a004 Fibonacci(18)*Lucas(94)/(1/2+sqrt(5)/2)^93 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^94/Lucas(93) 4180999826929728 a004 Fibonacci(18)*Lucas(92)/(1/2+sqrt(5)/2)^91 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^92/Lucas(91) 4180999826929728 a004 Fibonacci(18)*Lucas(90)/(1/2+sqrt(5)/2)^89 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^90/Lucas(89) 4180999826929728 a004 Fibonacci(18)*Lucas(88)/(1/2+sqrt(5)/2)^87 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^88/Lucas(87) 4180999826929728 a004 Fibonacci(18)*Lucas(86)/(1/2+sqrt(5)/2)^85 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^86/Lucas(85) 4180999826929728 a004 Fibonacci(18)*Lucas(84)/(1/2+sqrt(5)/2)^83 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^84/Lucas(83) 4180999826929728 a004 Fibonacci(18)*Lucas(82)/(1/2+sqrt(5)/2)^81 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^82/Lucas(81) 4180999826929728 a004 Fibonacci(18)*Lucas(80)/(1/2+sqrt(5)/2)^79 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^80/Lucas(79) 4180999826929728 a004 Fibonacci(18)*Lucas(78)/(1/2+sqrt(5)/2)^77 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^78/Lucas(77) 4180999826929728 a004 Fibonacci(18)*Lucas(76)/(1/2+sqrt(5)/2)^75 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^76/Lucas(75) 4180999826929728 a004 Fibonacci(18)*Lucas(74)/(1/2+sqrt(5)/2)^73 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^74/Lucas(73) 4180999826929728 a004 Fibonacci(18)*Lucas(72)/(1/2+sqrt(5)/2)^71 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^72/Lucas(71) 4180999826929728 a004 Fibonacci(18)*Lucas(70)/(1/2+sqrt(5)/2)^69 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^70/Lucas(69) 4180999826929728 a004 Fibonacci(18)*Lucas(68)/(1/2+sqrt(5)/2)^67 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^68/Lucas(67) 4180999826929728 a004 Fibonacci(18)*Lucas(66)/(1/2+sqrt(5)/2)^65 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^66/Lucas(65) 4180999826929728 a004 Fibonacci(18)*Lucas(64)/(1/2+sqrt(5)/2)^63 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^64/Lucas(63) 4180999826929728 a004 Fibonacci(18)*Lucas(62)/(1/2+sqrt(5)/2)^61 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^62/Lucas(61) 4180999826929728 a004 Fibonacci(18)*Lucas(60)/(1/2+sqrt(5)/2)^59 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^60/Lucas(59) 4180999826929728 a004 Fibonacci(18)*Lucas(58)/(1/2+sqrt(5)/2)^57 4180999826929728 a001 2472169715289944/591286729879 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^58/Lucas(57) 4180999826929728 a004 Fibonacci(18)*Lucas(56)/(1/2+sqrt(5)/2)^55 4180999826929728 a001 944284805282608/225851433717 4180999826929728 a001 2584/312119004989*14662949395604^(8/9) 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^56/Lucas(55) 4180999826929728 a004 Fibonacci(18)*Lucas(54)/(1/2+sqrt(5)/2)^53 4180999826929728 a001 139583862445/33385283 4180999826929728 a001 2584/119218851371*14662949395604^(6/7) 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^54/Lucas(53) 4180999826929728 a004 Fibonacci(18)*Lucas(52)/(1/2+sqrt(5)/2)^51 4180999826929728 a001 137769296391032/32951280099 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^52/Lucas(51) 4180999826929728 a001 646/11384387281*23725150497407^(13/16) 4180999826929728 a001 646/11384387281*505019158607^(13/14) 4180999826929728 a004 Fibonacci(18)*Lucas(50)/(1/2+sqrt(5)/2)^49 4180999826929728 a001 52623188615216/12586269025 4180999826929728 a001 2584/17393796001*312119004989^(10/11) 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^50/Lucas(49) 4180999826929728 a001 2584/17393796001*3461452808002^(5/6) 4180999826929728 a004 Fibonacci(18)*Lucas(48)/(1/2+sqrt(5)/2)^47 4180999826929728 a001 2512533681827/600940872 4180999826929728 a001 2584/6643838879*45537549124^(16/17) 4180999826929728 a001 2584/6643838879*14662949395604^(16/21) 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^48/Lucas(47) 4180999826929728 a001 2584/6643838879*192900153618^(8/9) 4180999826929728 a001 2584/6643838879*73681302247^(12/13) 4180999826929728 a004 Fibonacci(18)*Lucas(46)/(1/2+sqrt(5)/2)^45 4180999826929728 a001 7677619748632/1836311903 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^46/Lucas(45) 4180999826929728 a001 34/33391061*10749957122^(23/24) 4180999826929728 a004 Fibonacci(18)*Lucas(44)/(1/2+sqrt(5)/2)^43 4180999826929728 a001 2932589791280/701408733 4180999826929728 a001 2584/969323029*312119004989^(4/5) 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^44/Lucas(43) 4180999826929728 a001 2584/969323029*23725150497407^(11/16) 4180999826929728 a001 2584/969323029*73681302247^(11/13) 4180999826929728 a001 2584/969323029*10749957122^(11/12) 4180999826929728 a001 2584/969323029*4106118243^(22/23) 4180999826929728 a004 Fibonacci(18)*Lucas(42)/(1/2+sqrt(5)/2)^41 4180999826929728 a001 140018703151/33489287 4180999826929728 a001 2584/370248451*2537720636^(14/15) 4180999826929728 a001 2584/370248451*17393796001^(6/7) 4180999826929728 a001 2584/370248451*45537549124^(14/17) 4180999826929728 a001 2584/370248451*817138163596^(14/19) 4180999826929728 a001 2584/370248451*14662949395604^(2/3) 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^42/Lucas(41) 4180999826929728 a001 2584/370248451*505019158607^(3/4) 4180999826929728 a001 2584/370248451*192900153618^(7/9) 4180999826929728 a001 2584/370248451*10749957122^(7/8) 4180999826929728 a001 2584/370248451*4106118243^(21/23) 4180999826929728 a001 2584/370248451*1568397607^(21/22) 4180999826929728 a004 Fibonacci(18)*Lucas(40)/(1/2+sqrt(5)/2)^39 4180999826929728 a001 427859084344/102334155 4180999826929728 a001 646/35355581*2537720636^(8/9) 4180999826929728 a001 646/35355581*312119004989^(8/11) 4180999826929728 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^40/Lucas(39) 4180999826929728 a001 646/35355581*23725150497407^(5/8) 4180999826929728 a001 646/35355581*73681302247^(10/13) 4180999826929728 a001 646/35355581*28143753123^(4/5) 4180999826929728 a001 646/35355581*10749957122^(5/6) 4180999826929728 a001 646/35355581*4106118243^(20/23) 4180999826929728 a001 646/35355581*1568397607^(10/11) 4180999826929728 a001 646/35355581*599074578^(20/21) 4180999826929728 a004 Fibonacci(18)*Lucas(38)/(1/2+sqrt(5)/2)^37 4180999826929729 a001 163427627824/39088169 4180999826929729 a001 2584/54018521*817138163596^(2/3) 4180999826929729 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^38/Lucas(37) 4180999826929729 a001 2584/54018521*10749957122^(19/24) 4180999826929729 a001 2584/54018521*4106118243^(19/23) 4180999826929729 a001 2584/54018521*1568397607^(19/22) 4180999826929729 a001 2584/54018521*599074578^(19/21) 4180999826929729 a001 2584/54018521*228826127^(19/20) 4180999826929731 a004 Fibonacci(38)/Lucas(18)/(1/2+sqrt(5)/2) 4180999826929731 a004 Fibonacci(40)/Lucas(18)/(1/2+sqrt(5)/2)^3 4180999826929732 a004 Fibonacci(42)/Lucas(18)/(1/2+sqrt(5)/2)^5 4180999826929732 a004 Fibonacci(44)/Lucas(18)/(1/2+sqrt(5)/2)^7 4180999826929732 a004 Fibonacci(46)/Lucas(18)/(1/2+sqrt(5)/2)^9 4180999826929732 a004 Fibonacci(48)/Lucas(18)/(1/2+sqrt(5)/2)^11 4180999826929732 a004 Fibonacci(50)/Lucas(18)/(1/2+sqrt(5)/2)^13 4180999826929732 a004 Fibonacci(52)/Lucas(18)/(1/2+sqrt(5)/2)^15 4180999826929732 a004 Fibonacci(54)/Lucas(18)/(1/2+sqrt(5)/2)^17 4180999826929732 a004 Fibonacci(56)/Lucas(18)/(1/2+sqrt(5)/2)^19 4180999826929732 a004 Fibonacci(58)/Lucas(18)/(1/2+sqrt(5)/2)^21 4180999826929732 a004 Fibonacci(60)/Lucas(18)/(1/2+sqrt(5)/2)^23 4180999826929732 a004 Fibonacci(62)/Lucas(18)/(1/2+sqrt(5)/2)^25 4180999826929732 a004 Fibonacci(64)/Lucas(18)/(1/2+sqrt(5)/2)^27 4180999826929732 a004 Fibonacci(66)/Lucas(18)/(1/2+sqrt(5)/2)^29 4180999826929732 a004 Fibonacci(68)/Lucas(18)/(1/2+sqrt(5)/2)^31 4180999826929732 a004 Fibonacci(70)/Lucas(18)/(1/2+sqrt(5)/2)^33 4180999826929732 a004 Fibonacci(18)*Lucas(36)/(1/2+sqrt(5)/2)^35 4180999826929732 a004 Fibonacci(74)/Lucas(18)/(1/2+sqrt(5)/2)^37 4180999826929732 a004 Fibonacci(76)/Lucas(18)/(1/2+sqrt(5)/2)^39 4180999826929732 a004 Fibonacci(78)/Lucas(18)/(1/2+sqrt(5)/2)^41 4180999826929732 a004 Fibonacci(80)/Lucas(18)/(1/2+sqrt(5)/2)^43 4180999826929732 a004 Fibonacci(82)/Lucas(18)/(1/2+sqrt(5)/2)^45 4180999826929732 a004 Fibonacci(84)/Lucas(18)/(1/2+sqrt(5)/2)^47 4180999826929732 a004 Fibonacci(86)/Lucas(18)/(1/2+sqrt(5)/2)^49 4180999826929732 a004 Fibonacci(88)/Lucas(18)/(1/2+sqrt(5)/2)^51 4180999826929732 a004 Fibonacci(90)/Lucas(18)/(1/2+sqrt(5)/2)^53 4180999826929732 a004 Fibonacci(92)/Lucas(18)/(1/2+sqrt(5)/2)^55 4180999826929732 a004 Fibonacci(94)/Lucas(18)/(1/2+sqrt(5)/2)^57 4180999826929732 a004 Fibonacci(96)/Lucas(18)/(1/2+sqrt(5)/2)^59 4180999826929732 a004 Fibonacci(100)/Lucas(18)/(1/2+sqrt(5)/2)^63 4180999826929732 a004 Fibonacci(98)/Lucas(18)/(1/2+sqrt(5)/2)^61 4180999826929732 a004 Fibonacci(99)/Lucas(18)/(1/2+sqrt(5)/2)^62 4180999826929732 a004 Fibonacci(97)/Lucas(18)/(1/2+sqrt(5)/2)^60 4180999826929732 a004 Fibonacci(95)/Lucas(18)/(1/2+sqrt(5)/2)^58 4180999826929732 a004 Fibonacci(93)/Lucas(18)/(1/2+sqrt(5)/2)^56 4180999826929732 a004 Fibonacci(91)/Lucas(18)/(1/2+sqrt(5)/2)^54 4180999826929732 a004 Fibonacci(89)/Lucas(18)/(1/2+sqrt(5)/2)^52 4180999826929732 a004 Fibonacci(87)/Lucas(18)/(1/2+sqrt(5)/2)^50 4180999826929732 a004 Fibonacci(85)/Lucas(18)/(1/2+sqrt(5)/2)^48 4180999826929732 a004 Fibonacci(83)/Lucas(18)/(1/2+sqrt(5)/2)^46 4180999826929732 a004 Fibonacci(81)/Lucas(18)/(1/2+sqrt(5)/2)^44 4180999826929732 a004 Fibonacci(79)/Lucas(18)/(1/2+sqrt(5)/2)^42 4180999826929732 a004 Fibonacci(77)/Lucas(18)/(1/2+sqrt(5)/2)^40 4180999826929732 a004 Fibonacci(75)/Lucas(18)/(1/2+sqrt(5)/2)^38 4180999826929732 a004 Fibonacci(73)/Lucas(18)/(1/2+sqrt(5)/2)^36 4180999826929732 a004 Fibonacci(71)/Lucas(18)/(1/2+sqrt(5)/2)^34 4180999826929732 a004 Fibonacci(69)/Lucas(18)/(1/2+sqrt(5)/2)^32 4180999826929732 a004 Fibonacci(67)/Lucas(18)/(1/2+sqrt(5)/2)^30 4180999826929732 a004 Fibonacci(65)/Lucas(18)/(1/2+sqrt(5)/2)^28 4180999826929732 a004 Fibonacci(63)/Lucas(18)/(1/2+sqrt(5)/2)^26 4180999826929732 a004 Fibonacci(61)/Lucas(18)/(1/2+sqrt(5)/2)^24 4180999826929732 a004 Fibonacci(59)/Lucas(18)/(1/2+sqrt(5)/2)^22 4180999826929732 a004 Fibonacci(57)/Lucas(18)/(1/2+sqrt(5)/2)^20 4180999826929732 a004 Fibonacci(55)/Lucas(18)/(1/2+sqrt(5)/2)^18 4180999826929732 a004 Fibonacci(53)/Lucas(18)/(1/2+sqrt(5)/2)^16 4180999826929732 a004 Fibonacci(51)/Lucas(18)/(1/2+sqrt(5)/2)^14 4180999826929732 a004 Fibonacci(49)/Lucas(18)/(1/2+sqrt(5)/2)^12 4180999826929732 a004 Fibonacci(47)/Lucas(18)/(1/2+sqrt(5)/2)^10 4180999826929732 a004 Fibonacci(45)/Lucas(18)/(1/2+sqrt(5)/2)^8 4180999826929732 a004 Fibonacci(43)/Lucas(18)/(1/2+sqrt(5)/2)^6 4180999826929732 a004 Fibonacci(41)/Lucas(18)/(1/2+sqrt(5)/2)^4 4180999826929732 a004 Fibonacci(39)/Lucas(18)/(1/2+sqrt(5)/2)^2 4180999826929733 a001 24157817/5778 4180999826929737 a001 2584/20633239*141422324^(12/13) 4180999826929738 a001 2584/20633239*2537720636^(4/5) 4180999826929738 a001 2584/20633239*45537549124^(12/17) 4180999826929738 a001 2584/20633239*14662949395604^(4/7) 4180999826929738 a001 2584/20633239*(1/2+1/2*5^(1/2))^36 4180999826929738 a001 2584/20633239*505019158607^(9/14) 4180999826929738 a001 2584/20633239*192900153618^(2/3) 4180999826929738 a001 2584/20633239*73681302247^(9/13) 4180999826929738 a001 2584/20633239*10749957122^(3/4) 4180999826929738 a001 2584/20633239*4106118243^(18/23) 4180999826929738 a001 2584/20633239*1568397607^(9/11) 4180999826929738 a001 2584/20633239*599074578^(6/7) 4180999826929738 a001 2584/20633239*228826127^(9/10) 4180999826929738 a001 2584/20633239*87403803^(18/19) 4180999826929741 a001 9227465/5778*(1/2+1/2*5^(1/2))^2 4180999826929741 a001 9227465/5778*10749957122^(1/24) 4180999826929741 a001 9227465/5778*4106118243^(1/23) 4180999826929741 a001 9227465/5778*1568397607^(1/22) 4180999826929741 a001 9227465/5778*599074578^(1/21) 4180999826929741 a001 9227465/5778*228826127^(1/20) 4180999826929741 a001 9227465/5778*87403803^(1/19) 4180999826929742 a001 9227465/5778*33385282^(1/18) 4180999826929743 a001 9227465/5778*12752043^(1/17) 4180999826929752 a001 9227465/5778*4870847^(1/16) 4180999826929753 a004 Fibonacci(18)*Lucas(34)/(1/2+sqrt(5)/2)^33 4180999826929757 a001 726103/1926*1860498^(1/6) 4180999826929763 a001 23843769560/5702887 4180999826929795 a001 646/1970299*45537549124^(2/3) 4180999826929795 a001 646/1970299*(1/2+1/2*5^(1/2))^34 4180999826929795 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^34/Lucas(33) 4180999826929795 a001 646/1970299*10749957122^(17/24) 4180999826929795 a001 646/1970299*4106118243^(17/23) 4180999826929795 a001 646/1970299*1568397607^(17/22) 4180999826929795 a001 646/1970299*599074578^(17/21) 4180999826929795 a001 646/1970299*228826127^(17/20) 4180999826929796 a001 646/1970299*87403803^(17/19) 4180999826929799 a001 646/1970299*33385282^(17/18) 4180999826929799 a001 1762289/2889*(1/2+1/2*5^(1/2))^4 4180999826929799 a001 1762289/2889*23725150497407^(1/16) 4180999826929799 a001 1762289/2889*73681302247^(1/13) 4180999826929799 a001 1762289/2889*10749957122^(1/12) 4180999826929799 a001 1762289/2889*4106118243^(2/23) 4180999826929799 a001 1762289/2889*1568397607^(1/11) 4180999826929799 a001 1762289/2889*599074578^(2/21) 4180999826929799 a001 1762289/2889*228826127^(1/10) 4180999826929799 a001 1762289/2889*87403803^(2/19) 4180999826929799 a001 1762289/2889*33385282^(1/9) 4180999826929802 a001 1762289/2889*12752043^(2/17) 4180999826929821 a001 1762289/2889*4870847^(1/8) 4180999826929822 a001 9227465/5778*1860498^(1/15) 4180999826929827 a001 5702887/5778*1860498^(1/10) 4180999826929904 a004 Fibonacci(18)*Lucas(32)/(1/2+sqrt(5)/2)^31 4180999826929960 a001 1762289/2889*1860498^(2/15) 4180999826929971 a001 9107509552/2178309 4180999826930181 a001 1346269/5778*7881196^(2/11) 4180999826930189 a001 2584/3010349*(1/2+1/2*5^(1/2))^32 4180999826930189 a001 2584/3010349*23725150497407^(1/2) 4180999826930189 a001 2584/3010349*505019158607^(4/7) 4180999826930189 a001 2584/3010349*73681302247^(8/13) 4180999826930189 a001 2584/3010349*10749957122^(2/3) 4180999826930189 a001 2584/3010349*4106118243^(16/23) 4180999826930189 a001 2584/3010349*1568397607^(8/11) 4180999826930189 a001 2584/3010349*599074578^(16/21) 4180999826930189 a001 2584/3010349*228826127^(4/5) 4180999826930190 a001 2584/3010349*87403803^(16/19) 4180999826930192 a001 2584/3010349*33385282^(8/9) 4180999826930193 a001 1346269/5778*141422324^(2/13) 4180999826930193 a001 1346269/5778*2537720636^(2/15) 4180999826930193 a001 1346269/5778*45537549124^(2/17) 4180999826930193 a001 1346269/5778*14662949395604^(2/21) 4180999826930193 a001 1346269/5778*(1/2+1/2*5^(1/2))^6 4180999826930193 a001 1346269/5778*10749957122^(1/8) 4180999826930193 a001 1346269/5778*4106118243^(3/23) 4180999826930193 a001 1346269/5778*1568397607^(3/22) 4180999826930193 a001 1346269/5778*599074578^(1/7) 4180999826930193 a001 1346269/5778*228826127^(3/20) 4180999826930193 a001 1346269/5778*87403803^(3/19) 4180999826930194 a001 1346269/5778*33385282^(1/6) 4180999826930197 a001 1346269/5778*12752043^(3/17) 4180999826930213 a001 2584/3010349*12752043^(16/17) 4180999826930226 a001 1346269/5778*4870847^(3/16) 4180999826930333 a001 9227465/5778*710647^(1/14) 4180999826930434 a001 1346269/5778*1860498^(1/5) 4180999826930593 a001 416020/2889*710647^(1/4) 4180999826930936 a004 Fibonacci(18)*Lucas(30)/(1/2+sqrt(5)/2)^29 4180999826930982 a001 1762289/2889*710647^(1/7) 4180999826931397 a001 434844887/104005 4180999826931967 a001 1346269/5778*710647^(3/14) 4180999826932829 a001 2584/1149851*7881196^(10/11) 4180999826932882 a001 2584/1149851*20633239^(6/7) 4180999826932890 a001 2584/1149851*141422324^(10/13) 4180999826932890 a001 2584/1149851*2537720636^(2/3) 4180999826932890 a001 2584/1149851*45537549124^(10/17) 4180999826932890 a001 2584/1149851*312119004989^(6/11) 4180999826932890 a001 2584/1149851*14662949395604^(10/21) 4180999826932890 a001 2584/1149851*(1/2+1/2*5^(1/2))^30 4180999826932890 a001 2584/1149851*192900153618^(5/9) 4180999826932890 a001 2584/1149851*28143753123^(3/5) 4180999826932890 a001 2584/1149851*10749957122^(5/8) 4180999826932890 a001 2584/1149851*4106118243^(15/23) 4180999826932890 a001 2584/1149851*1568397607^(15/22) 4180999826932890 a001 2584/1149851*599074578^(5/7) 4180999826932890 a001 2584/1149851*228826127^(3/4) 4180999826932890 a001 2584/1149851*87403803^(15/19) 4180999826932893 a001 2584/1149851*33385282^(5/6) 4180999826932894 a001 514229/5778*(1/2+1/2*5^(1/2))^8 4180999826932894 a001 514229/5778*23725150497407^(1/8) 4180999826932894 a001 514229/5778*505019158607^(1/7) 4180999826932894 a001 514229/5778*73681302247^(2/13) 4180999826932894 a001 514229/5778*10749957122^(1/6) 4180999826932894 a001 514229/5778*4106118243^(4/23) 4180999826932894 a001 514229/5778*1568397607^(2/11) 4180999826932894 a001 514229/5778*599074578^(4/21) 4180999826932894 a001 514229/5778*228826127^(1/5) 4180999826932894 a001 514229/5778*87403803^(4/19) 4180999826932895 a001 514229/5778*33385282^(2/9) 4180999826932900 a001 514229/5778*12752043^(4/17) 4180999826932913 a001 2584/1149851*12752043^(15/17) 4180999826932938 a001 514229/5778*4870847^(1/4) 4180999826933055 a001 2584/1149851*4870847^(15/16) 4180999826933216 a001 514229/5778*1860498^(4/15) 4180999826934106 a001 9227465/5778*271443^(1/13) 4180999826935259 a001 514229/5778*710647^(2/7) 4180999826938007 a004 Fibonacci(18)*Lucas(28)/(1/2+sqrt(5)/2)^27 4180999826938529 a001 1762289/2889*271443^(2/13) 4180999826941169 a001 1328767736/317811 4180999826943288 a001 1346269/5778*271443^(3/13) 4180999826945933 a001 2584*103682^(1/24) 4180999826950354 a001 514229/5778*271443^(4/13) 4180999826951394 a001 34/5779*20633239^(4/5) 4180999826951402 a001 34/5779*17393796001^(4/7) 4180999826951402 a001 34/5779*14662949395604^(4/9) 4180999826951402 a001 34/5779*(1/2+1/2*5^(1/2))^28 4180999826951402 a001 34/5779*505019158607^(1/2) 4180999826951402 a001 34/5779*73681302247^(7/13) 4180999826951402 a001 34/5779*10749957122^(7/12) 4180999826951402 a001 34/5779*4106118243^(14/23) 4180999826951402 a001 34/5779*1568397607^(7/11) 4180999826951402 a001 34/5779*599074578^(2/3) 4180999826951402 a001 34/5779*228826127^(7/10) 4180999826951403 a001 34/5779*87403803^(14/19) 4180999826951403 a001 98209/2889*20633239^(2/7) 4180999826951405 a001 34/5779*33385282^(7/9) 4180999826951406 a001 98209/2889*2537720636^(2/9) 4180999826951406 a001 98209/2889*312119004989^(2/11) 4180999826951406 a001 98209/2889*(1/2+1/2*5^(1/2))^10 4180999826951406 a001 98209/2889*28143753123^(1/5) 4180999826951406 a001 98209/2889*10749957122^(5/24) 4180999826951406 a001 98209/2889*4106118243^(5/23) 4180999826951406 a001 98209/2889*1568397607^(5/22) 4180999826951406 a001 98209/2889*599074578^(5/21) 4180999826951406 a001 98209/2889*228826127^(1/4) 4180999826951406 a001 98209/2889*87403803^(5/19) 4180999826951407 a001 98209/2889*33385282^(5/18) 4180999826951414 a001 98209/2889*12752043^(5/17) 4180999826951423 a001 34/5779*12752043^(14/17) 4180999826951461 a001 98209/2889*4870847^(5/16) 4180999826951556 a001 34/5779*4870847^(7/8) 4180999826951809 a001 98209/2889*1860498^(1/3) 4180999826952530 a001 34/5779*1860498^(14/15) 4180999826954363 a001 98209/2889*710647^(5/14) 4180999826962152 a001 9227465/5778*103682^(1/12) 4180999826973231 a001 98209/2889*271443^(5/13) 4180999826978322 a001 5702887/5778*103682^(1/8) 4180999826986472 a004 Fibonacci(18)*Lucas(26)/(1/2+sqrt(5)/2)^25 4180999826994621 a001 1762289/2889*103682^(1/6) 4180999827008147 a001 507544112/121393 4180999827010583 a001 726103/1926*103682^(5/24) 4180999827027426 a001 1346269/5778*103682^(1/4) 4180999827041962 a001 416020/2889*103682^(7/24) 4180999827050900 a001 2584*39603^(1/22) 4180999827051248 a001 121393/5778*103682^(11/24) 4180999827062538 a001 514229/5778*103682^(1/3) 4180999827067302 a001 105937/1926*103682^(3/8) 4180999827068657 a001 75025/5778*439204^(4/9) 4180999827078266 a001 75025/5778*7881196^(4/11) 4180999827078286 a001 2584/167761*141422324^(2/3) 4180999827078287 a001 2584/167761*(1/2+1/2*5^(1/2))^26 4180999827078287 a001 2584/167761*73681302247^(1/2) 4180999827078287 a001 2584/167761*10749957122^(13/24) 4180999827078287 a001 2584/167761*4106118243^(13/23) 4180999827078287 a001 2584/167761*1568397607^(13/22) 4180999827078287 a001 2584/167761*599074578^(13/21) 4180999827078287 a001 2584/167761*228826127^(13/20) 4180999827078287 a001 2584/167761*87403803^(13/19) 4180999827078289 a001 2584/167761*33385282^(13/18) 4180999827078290 a001 75025/5778*141422324^(4/13) 4180999827078290 a001 75025/5778*2537720636^(4/15) 4180999827078290 a001 75025/5778*45537549124^(4/17) 4180999827078290 a001 75025/5778*817138163596^(4/19) 4180999827078290 a001 75025/5778*14662949395604^(4/21) 4180999827078290 a001 75025/5778*(1/2+1/2*5^(1/2))^12 4180999827078290 a001 75025/5778*192900153618^(2/9) 4180999827078290 a001 75025/5778*73681302247^(3/13) 4180999827078290 a001 75025/5778*10749957122^(1/4) 4180999827078290 a001 75025/5778*4106118243^(6/23) 4180999827078290 a001 75025/5778*1568397607^(3/11) 4180999827078290 a001 75025/5778*599074578^(2/7) 4180999827078290 a001 75025/5778*228826127^(3/10) 4180999827078290 a001 75025/5778*87403803^(6/19) 4180999827078292 a001 75025/5778*33385282^(1/3) 4180999827078299 a001 75025/5778*12752043^(6/17) 4180999827078306 a001 2584/167761*12752043^(13/17) 4180999827078356 a001 75025/5778*4870847^(3/8) 4180999827078430 a001 2584/167761*4870847^(13/16) 4180999827078773 a001 75025/5778*1860498^(2/5) 4180999827079333 a001 2584/167761*1860498^(13/15) 4180999827081838 a001 75025/5778*710647^(3/7) 4180999827085974 a001 2584/167761*710647^(13/14) 4180999827104480 a001 75025/5778*271443^(6/13) 4180999827113461 a001 98209/2889*103682^(5/12) 4180999827172085 a001 9227465/5778*39603^(1/11) 4180999827272756 a001 75025/5778*103682^(1/2) 4180999827293221 a001 5702887/5778*39603^(3/22) 4180999827318660 a004 Fibonacci(18)*Lucas(24)/(1/2+sqrt(5)/2)^23 4180999827328172 a001 28657/5778*64079^(14/23) 4180999827414486 a001 1762289/2889*39603^(2/11) 4180999827467218 a001 24233075/5796 4180999827535414 a001 726103/1926*39603^(5/22) 4180999827657223 a001 1346269/5778*39603^(3/11) 4180999827776726 a001 416020/2889*39603^(7/22) 4180999827843303 a001 2584*15127^(1/20) 4180999827902268 a001 514229/5778*39603^(4/11) 4180999827928698 a001 2584/64079*439204^(8/9) 4180999827947915 a001 2584/64079*7881196^(8/11) 4180999827947964 a001 28657/5778*20633239^(2/5) 4180999827947964 a001 2584/64079*141422324^(8/13) 4180999827947964 a001 2584/64079*2537720636^(8/15) 4180999827947964 a001 2584/64079*45537549124^(8/17) 4180999827947964 a001 2584/64079*14662949395604^(8/21) 4180999827947964 a001 2584/64079*(1/2+1/2*5^(1/2))^24 4180999827947964 a001 2584/64079*192900153618^(4/9) 4180999827947964 a001 2584/64079*73681302247^(6/13) 4180999827947964 a001 2584/64079*10749957122^(1/2) 4180999827947964 a001 2584/64079*4106118243^(12/23) 4180999827947964 a001 2584/64079*1568397607^(6/11) 4180999827947964 a001 2584/64079*599074578^(4/7) 4180999827947964 a001 2584/64079*228826127^(3/5) 4180999827947965 a001 2584/64079*87403803^(12/19) 4180999827947967 a001 2584/64079*33385282^(2/3) 4180999827947968 a001 28657/5778*17393796001^(2/7) 4180999827947968 a001 28657/5778*14662949395604^(2/9) 4180999827947968 a001 28657/5778*(1/2+1/2*5^(1/2))^14 4180999827947968 a001 28657/5778*10749957122^(7/24) 4180999827947968 a001 28657/5778*4106118243^(7/23) 4180999827947968 a001 28657/5778*1568397607^(7/22) 4180999827947968 a001 28657/5778*599074578^(1/3) 4180999827947968 a001 28657/5778*228826127^(7/20) 4180999827947968 a001 28657/5778*87403803^(7/19) 4180999827947970 a001 28657/5778*33385282^(7/18) 4180999827947979 a001 28657/5778*12752043^(7/17) 4180999827947983 a001 2584/64079*12752043^(12/17) 4180999827948045 a001 28657/5778*4870847^(7/16) 4180999827948097 a001 2584/64079*4870847^(3/4) 4180999827948532 a001 28657/5778*1860498^(7/15) 4180999827948931 a001 2584/64079*1860498^(4/5) 4180999827952108 a001 28657/5778*710647^(1/2) 4180999827955061 a001 2584/64079*710647^(6/7) 4180999827978523 a001 28657/5778*271443^(7/13) 4180999828000344 a001 2584/64079*271443^(12/13) 4180999828011998 a001 105937/1926*39603^(9/22) 4180999828098879 r009 Im(z^3+c),c=-25/94+21/53*I,n=2 4180999828116032 a001 2576/321*39603^(13/22) 4180999828163123 a001 98209/2889*39603^(5/11) 4180999828174845 a001 28657/5778*103682^(7/12) 4180999828205876 a001 121393/5778*39603^(1/2) 4180999828532351 a001 75025/5778*39603^(6/11) 4180999828591421 a001 5473/2889*24476^(16/21) 4180999828756893 a001 9227465/5778*15127^(1/10) 4180999829447386 a001 4181/5778*9349^(18/19) 4180999829595506 a004 Fibonacci(18)*Lucas(22)/(1/2+sqrt(5)/2)^21 4180999829644372 a001 28657/5778*39603^(7/11) 4180999829670433 a001 5702887/5778*15127^(3/20) 4180999829736795 a001 2178309/1364*521^(2/13) 4180999830583992 a001 3524578/3571*1364^(1/5) 4180999830584102 a001 1762289/2889*15127^(1/5) 4180999830613742 a001 74049688/17711 4180999831497434 a001 726103/1926*15127^(1/4) 4180999832411647 a001 1346269/5778*15127^(3/10) 4180999832934860 a001 646/6119*64079^(22/23) 4180999833200490 a001 5473/2889*64079^(16/23) 4180999833323554 a001 416020/2889*15127^(7/20) 4180999833780301 a001 9227465/39603*3571^(6/17) 4180999833887218 a001 2584*5778^(1/18) 4180999833908780 a001 646/6119*7881196^(2/3) 4180999833908825 a001 646/6119*312119004989^(2/5) 4180999833908825 a001 646/6119*(1/2+1/2*5^(1/2))^22 4180999833908825 a001 646/6119*10749957122^(11/24) 4180999833908825 a001 646/6119*4106118243^(11/23) 4180999833908825 a001 646/6119*1568397607^(1/2) 4180999833908825 a001 646/6119*599074578^(11/21) 4180999833908825 a001 646/6119*228826127^(11/20) 4180999833908826 a001 646/6119*87403803^(11/19) 4180999833908827 a001 646/6119*33385282^(11/18) 4180999833908829 a001 5473/2889*(1/2+1/2*5^(1/2))^16 4180999833908829 a001 5473/2889*23725150497407^(1/4) 4180999833908829 a001 5473/2889*73681302247^(4/13) 4180999833908829 a001 5473/2889*10749957122^(1/3) 4180999833908829 a001 5473/2889*4106118243^(8/23) 4180999833908829 a001 5473/2889*1568397607^(4/11) 4180999833908829 a001 5473/2889*599074578^(8/21) 4180999833908829 a001 5473/2889*228826127^(2/5) 4180999833908829 a001 5473/2889*87403803^(8/19) 4180999833908831 a001 5473/2889*33385282^(4/9) 4180999833908841 a001 5473/2889*12752043^(8/17) 4180999833908842 a001 646/6119*12752043^(11/17) 4180999833908917 a001 5473/2889*4870847^(1/2) 4180999833908946 a001 646/6119*4870847^(11/16) 4180999833909473 a001 5473/2889*1860498^(8/15) 4180999833909711 a001 646/6119*1860498^(11/15) 4180999833913560 a001 5473/2889*710647^(4/7) 4180999833915330 a001 646/6119*710647^(11/14) 4180999833943749 a001 5473/2889*271443^(8/13) 4180999833956840 a001 646/6119*271443^(11/13) 4180999834168117 a001 5473/2889*103682^(2/3) 4180999834241499 a001 514229/5778*15127^(2/5) 4180999834265346 a001 646/6119*103682^(11/12) 4180999835143634 a001 105937/1926*15127^(9/20) 4180999835847577 a001 5473/2889*39603^(8/11) 4180999836057139 a001 24157817/103682*3571^(6/17) 4180999836087163 a001 98209/2889*15127^(1/2) 4180999836389325 a001 63245986/271443*3571^(6/17) 4180999836437790 a001 165580141/710647*3571^(6/17) 4180999836444861 a001 433494437/1860498*3571^(6/17) 4180999836445893 a001 1134903170/4870847*3571^(6/17) 4180999836446044 a001 2971215073/12752043*3571^(6/17) 4180999836446065 a001 7778742049/33385282*3571^(6/17) 4180999836446069 a001 20365011074/87403803*3571^(6/17) 4180999836446069 a001 53316291173/228826127*3571^(6/17) 4180999836446069 a001 139583862445/599074578*3571^(6/17) 4180999836446069 a001 365435296162/1568397607*3571^(6/17) 4180999836446069 a001 956722026041/4106118243*3571^(6/17) 4180999836446069 a001 2504730781961/10749957122*3571^(6/17) 4180999836446069 a001 6557470319842/28143753123*3571^(6/17) 4180999836446069 a001 10610209857723/45537549124*3571^(6/17) 4180999836446069 a001 4052739537881/17393796001*3571^(6/17) 4180999836446069 a001 1548008755920/6643838879*3571^(6/17) 4180999836446069 a001 591286729879/2537720636*3571^(6/17) 4180999836446069 a001 225851433717/969323029*3571^(6/17) 4180999836446069 a001 86267571272/370248451*3571^(6/17) 4180999836446069 a001 63246219/271444*3571^(6/17) 4180999836446071 a001 12586269025/54018521*3571^(6/17) 4180999836446079 a001 4807526976/20633239*3571^(6/17) 4180999836446137 a001 1836311903/7881196*3571^(6/17) 4180999836446531 a001 701408733/3010349*3571^(6/17) 4180999836449231 a001 267914296/1149851*3571^(6/17) 4180999836467744 a001 102334155/439204*3571^(6/17) 4180999836594627 a001 39088169/167761*3571^(6/17) 4180999836922320 a001 121393/5778*15127^(11/20) 4180999837460943 a001 5702887/15127*3571^(5/17) 4180999837464302 a001 14930352/64079*3571^(6/17) 4180999837649421 a007 Real Root Of -143*x^4-786*x^3-595*x^2+607*x-810 4180999837967589 a001 17711/5778*15127^(3/4) 4180999838041199 a001 75025/5778*15127^(3/5) 4180999838417284 a001 2576/321*15127^(13/20) 4180999839596402 m005 (1/2*exp(1)-2)/(10/11*5^(1/2)-1/2) 4180999840738028 a001 28657/5778*15127^(7/10) 4180999840844721 a001 9227465/5778*5778^(1/9) 4180999843425141 a001 5702887/24476*3571^(6/17) 4180999844784415 l006 ln(1337/2031) 4180999845201242 a004 Fibonacci(18)*Lucas(20)/(1/2+sqrt(5)/2)^19 4180999845707480 a001 832040/9349*3571^(8/17) 4180999847802176 a001 5702887/5778*5778^(1/6) 4180999848526040 a001 5473/2889*15127^(4/5) 4180999850183445 a001 24157817/9349*1364^(1/15) 4180999851847130 a001 10946/2207*2207^(7/8) 4180999852180339 a001 28284464/6765 4180999852180340 a001 42187/2-15127/2*5^(1/2) 4180999853066701 a001 4976784/13201*3571^(5/17) 4180999854759759 a001 1762289/2889*5778^(2/9) 4180999855343551 a001 39088169/103682*3571^(5/17) 4180999855675738 a001 34111385/90481*3571^(5/17) 4180999855724204 a001 267914296/710647*3571^(5/17) 4180999855731275 a001 233802911/620166*3571^(5/17) 4180999855732307 a001 1836311903/4870847*3571^(5/17) 4180999855732457 a001 1602508992/4250681*3571^(5/17) 4180999855732479 a001 12586269025/33385282*3571^(5/17) 4180999855732482 a001 10983760033/29134601*3571^(5/17) 4180999855732483 a001 86267571272/228826127*3571^(5/17) 4180999855732483 a001 267913919/710646*3571^(5/17) 4180999855732483 a001 591286729879/1568397607*3571^(5/17) 4180999855732483 a001 516002918640/1368706081*3571^(5/17) 4180999855732483 a001 4052739537881/10749957122*3571^(5/17) 4180999855732483 a001 3536736619241/9381251041*3571^(5/17) 4180999855732483 a001 6557470319842/17393796001*3571^(5/17) 4180999855732483 a001 2504730781961/6643838879*3571^(5/17) 4180999855732483 a001 956722026041/2537720636*3571^(5/17) 4180999855732483 a001 365435296162/969323029*3571^(5/17) 4180999855732483 a001 139583862445/370248451*3571^(5/17) 4180999855732483 a001 53316291173/141422324*3571^(5/17) 4180999855732484 a001 20365011074/54018521*3571^(5/17) 4180999855732493 a001 7778742049/20633239*3571^(5/17) 4180999855732550 a001 2971215073/7881196*3571^(5/17) 4180999855732944 a001 1134903170/3010349*3571^(5/17) 4180999855735645 a001 433494437/1149851*3571^(5/17) 4180999855754157 a001 165580141/439204*3571^(5/17) 4180999855881042 a001 63245986/167761*3571^(5/17) 4180999856747392 a001 9227465/15127*3571^(4/17) 4180999856750721 a001 24157817/64079*3571^(5/17) 4180999861717005 a001 726103/1926*5778^(5/18) 4180999862711590 a001 9227465/24476*3571^(5/17) 4180999864995563 a001 1346269/9349*3571^(7/17) 4180999867786077 a001 -10946+6765*5^(1/2) 4180999868118414 a001 2584/9349*24476^(20/21) 4180999868675133 a001 1346269/5778*5778^(1/3) 4180999868783093 a001 4181/5778*24476^(6/7) 4180999871497983 r005 Im(z^2+c),c=5/122+14/27*I,n=38 4180999872353120 a001 24157817/39603*3571^(4/17) 4180999873007652 m006 (1/2*exp(Pi)-2/3)/(1/5*Pi^2-2) 4180999873879750 a001 2584/9349*64079^(20/23) 4180999873968296 a001 4181/5778*64079^(18/23) 4180999874629965 a001 31622993/51841*3571^(4/17) 4180999874646327 a001 2584/9349*167761^(4/5) 4180999874750727 a001 4181/5778*439204^(2/3) 4180999874765140 a001 4181/5778*7881196^(6/11) 4180999874765168 a001 2584/9349*20633239^(4/7) 4180999874765174 a001 2584/9349*2537720636^(4/9) 4180999874765174 a001 2584/9349*(1/2+1/2*5^(1/2))^20 4180999874765174 a001 2584/9349*23725150497407^(5/16) 4180999874765174 a001 2584/9349*505019158607^(5/14) 4180999874765174 a001 2584/9349*73681302247^(5/13) 4180999874765174 a001 2584/9349*28143753123^(2/5) 4180999874765174 a001 2584/9349*10749957122^(5/12) 4180999874765174 a001 2584/9349*4106118243^(10/23) 4180999874765174 a001 2584/9349*1568397607^(5/11) 4180999874765174 a001 2584/9349*599074578^(10/21) 4180999874765174 a001 2584/9349*228826127^(1/2) 4180999874765174 a001 2584/9349*87403803^(10/19) 4180999874765176 a001 2584/9349*33385282^(5/9) 4180999874765177 a001 4181/5778*141422324^(6/13) 4180999874765177 a001 4181/5778*2537720636^(2/5) 4180999874765177 a001 4181/5778*45537549124^(6/17) 4180999874765177 a001 4181/5778*14662949395604^(2/7) 4180999874765177 a001 4181/5778*(1/2+1/2*5^(1/2))^18 4180999874765177 a001 4181/5778*192900153618^(1/3) 4180999874765177 a001 4181/5778*10749957122^(3/8) 4180999874765177 a001 4181/5778*4106118243^(9/23) 4180999874765177 a001 4181/5778*1568397607^(9/22) 4180999874765177 a001 4181/5778*599074578^(3/7) 4180999874765177 a001 4181/5778*228826127^(9/20) 4180999874765177 a001 4181/5778*87403803^(9/19) 4180999874765179 a001 4181/5778*33385282^(1/2) 4180999874765189 a001 2584/9349*12752043^(10/17) 4180999874765190 a001 4181/5778*12752043^(9/17) 4180999874765276 a001 4181/5778*4870847^(9/16) 4180999874765284 a001 2584/9349*4870847^(5/8) 4180999874765901 a001 4181/5778*1860498^(3/5) 4180999874765979 a001 2584/9349*1860498^(2/3) 4180999874770499 a001 4181/5778*710647^(9/14) 4180999874771087 a001 2584/9349*710647^(5/7) 4180999874804461 a001 4181/5778*271443^(9/13) 4180999874808823 a001 2584/9349*271443^(10/13) 4180999874962152 a001 165580141/271443*3571^(4/17) 4180999875010618 a001 433494437/710647*3571^(4/17) 4180999875017689 a001 567451585/930249*3571^(4/17) 4180999875018721 a001 2971215073/4870847*3571^(4/17) 4180999875018871 a001 7778742049/12752043*3571^(4/17) 4180999875018893 a001 10182505537/16692641*3571^(4/17) 4180999875018896 a001 53316291173/87403803*3571^(4/17) 4180999875018897 a001 139583862445/228826127*3571^(4/17) 4180999875018897 a001 182717648081/299537289*3571^(4/17) 4180999875018897 a001 956722026041/1568397607*3571^(4/17) 4180999875018897 a001 2504730781961/4106118243*3571^(4/17) 4180999875018897 a001 3278735159921/5374978561*3571^(4/17) 4180999875018897 a001 10610209857723/17393796001*3571^(4/17) 4180999875018897 a001 4052739537881/6643838879*3571^(4/17) 4180999875018897 a001 1134903780/1860499*3571^(4/17) 4180999875018897 a001 591286729879/969323029*3571^(4/17) 4180999875018897 a001 225851433717/370248451*3571^(4/17) 4180999875018897 a001 21566892818/35355581*3571^(4/17) 4180999875018898 a001 32951280099/54018521*3571^(4/17) 4180999875018907 a001 1144206275/1875749*3571^(4/17) 4180999875018964 a001 1201881744/1970299*3571^(4/17) 4180999875019358 a001 1836311903/3010349*3571^(4/17) 4180999875022059 a001 701408733/1149851*3571^(4/17) 4180999875040571 a001 66978574/109801*3571^(4/17) 4180999875056876 a001 4181/5778*103682^(3/4) 4180999875089283 a001 2584/9349*103682^(5/6) 4180999875167455 a001 9303105/15251*3571^(4/17) 4180999875630954 a001 416020/2889*5778^(7/18) 4180999876033793 a001 14930352/15127*3571^(3/17) 4180999876037133 a001 39088169/64079*3571^(4/17) 4180999876946268 a001 4181/5778*39603^(9/11) 4180999877188608 a001 2584/9349*39603^(10/11) 4180999880244778 a001 6765/2207*2207^(15/16) 4180999880577987 a001 2584*2207^(1/16) 4180999881997991 a001 3732588/6119*3571^(4/17) 4180999882592814 a001 514229/5778*5778^(4/9) 4180999884281339 a001 2178309/9349*3571^(6/17) 4180999886057592 a004 Fibonacci(20)*Lucas(19)/(1/2+sqrt(5)/2)^20 4180999888427124 a001 17711/15127*9349^(17/19) 4180999889470693 m001 (-gamma(3)+DuboisRaymond)/(1+Zeta(1/2)) 4180999889538863 a001 105937/1926*5778^(1/2) 4180999890968355 m001 (ArtinRank2+Sierpinski)/(gamma+exp(-1/2*Pi)) 4180999891209540 a001 4181/5778*15127^(9/10) 4180999891639532 a001 39088169/39603*3571^(3/17) 4180999893036689 a001 17711/2-4181/2*5^(1/2) 4180999893916379 a001 102334155/103682*3571^(3/17) 4180999894248566 a001 267914296/271443*3571^(3/17) 4180999894297032 a001 701408733/710647*3571^(3/17) 4180999894304103 a001 1836311903/1860498*3571^(3/17) 4180999894305134 a001 4807526976/4870847*3571^(3/17) 4180999894305285 a001 12586269025/12752043*3571^(3/17) 4180999894305307 a001 32951280099/33385282*3571^(3/17) 4180999894305310 a001 86267571272/87403803*3571^(3/17) 4180999894305311 a001 225851433717/228826127*3571^(3/17) 4180999894305311 a001 591286729879/599074578*3571^(3/17) 4180999894305311 a001 1548008755920/1568397607*3571^(3/17) 4180999894305311 a001 4052739537881/4106118243*3571^(3/17) 4180999894305311 a001 4807525989/4870846*3571^(3/17) 4180999894305311 a001 6557470319842/6643838879*3571^(3/17) 4180999894305311 a001 2504730781961/2537720636*3571^(3/17) 4180999894305311 a001 956722026041/969323029*3571^(3/17) 4180999894305311 a001 365435296162/370248451*3571^(3/17) 4180999894305311 a001 139583862445/141422324*3571^(3/17) 4180999894305312 a001 53316291173/54018521*3571^(3/17) 4180999894305320 a001 20365011074/20633239*3571^(3/17) 4180999894305378 a001 7778742049/7881196*3571^(3/17) 4180999894305772 a001 2971215073/3010349*3571^(3/17) 4180999894308473 a001 1134903170/1149851*3571^(3/17) 4180999894326985 a001 433494437/439204*3571^(3/17) 4180999894453869 a001 165580141/167761*3571^(3/17) 4180999894628794 a001 28657/15127*9349^(16/19) 4180999895105440 m001 (Catalan-Ei(1,1))/(-MertensB1+Tetranacci) 4180999895320212 a001 24157817/15127*3571^(2/17) 4180999895323547 a001 63245986/64079*3571^(3/17) 4180999895554344 a001 10946/15127*9349^(18/19) 4180999895739280 a001 6624/2161*9349^(15/19) 4180999896526306 a001 98209/2889*5778^(5/9) 4180999898794426 a001 75025/15127*9349^(14/19) 4180999901106778 a001 121393/15127*9349^(13/19) 4180999901284410 a001 24157817/24476*3571^(3/17) 4180999901663328 a004 Fibonacci(22)*Lucas(19)/(1/2+sqrt(5)/2)^22 4180999903405378 a001 121393/5778*5778^(11/18) 4180999903567996 a001 3524578/9349*3571^(5/17) 4180999903702852 a001 196418/15127*9349^(12/19) 4180999903940174 a004 Fibonacci(24)*Lucas(19)/(1/2+sqrt(5)/2)^24 4180999904272362 a004 Fibonacci(26)*Lucas(19)/(1/2+sqrt(5)/2)^26 4180999904320827 a004 Fibonacci(28)*Lucas(19)/(1/2+sqrt(5)/2)^28 4180999904327898 a004 Fibonacci(30)*Lucas(19)/(1/2+sqrt(5)/2)^30 4180999904328930 a004 Fibonacci(32)*Lucas(19)/(1/2+sqrt(5)/2)^32 4180999904329081 a004 Fibonacci(34)*Lucas(19)/(1/2+sqrt(5)/2)^34 4180999904329103 a004 Fibonacci(36)*Lucas(19)/(1/2+sqrt(5)/2)^36 4180999904329106 a004 Fibonacci(38)*Lucas(19)/(1/2+sqrt(5)/2)^38 4180999904329106 a004 Fibonacci(40)*Lucas(19)/(1/2+sqrt(5)/2)^40 4180999904329106 a004 Fibonacci(42)*Lucas(19)/(1/2+sqrt(5)/2)^42 4180999904329106 a004 Fibonacci(44)*Lucas(19)/(1/2+sqrt(5)/2)^44 4180999904329106 a004 Fibonacci(46)*Lucas(19)/(1/2+sqrt(5)/2)^46 4180999904329106 a004 Fibonacci(48)*Lucas(19)/(1/2+sqrt(5)/2)^48 4180999904329106 a004 Fibonacci(50)*Lucas(19)/(1/2+sqrt(5)/2)^50 4180999904329106 a004 Fibonacci(52)*Lucas(19)/(1/2+sqrt(5)/2)^52 4180999904329106 a004 Fibonacci(54)*Lucas(19)/(1/2+sqrt(5)/2)^54 4180999904329106 a004 Fibonacci(56)*Lucas(19)/(1/2+sqrt(5)/2)^56 4180999904329106 a004 Fibonacci(58)*Lucas(19)/(1/2+sqrt(5)/2)^58 4180999904329106 a004 Fibonacci(60)*Lucas(19)/(1/2+sqrt(5)/2)^60 4180999904329106 a004 Fibonacci(62)*Lucas(19)/(1/2+sqrt(5)/2)^62 4180999904329106 a004 Fibonacci(64)*Lucas(19)/(1/2+sqrt(5)/2)^64 4180999904329106 a004 Fibonacci(66)*Lucas(19)/(1/2+sqrt(5)/2)^66 4180999904329106 a004 Fibonacci(68)*Lucas(19)/(1/2+sqrt(5)/2)^68 4180999904329106 a004 Fibonacci(70)*Lucas(19)/(1/2+sqrt(5)/2)^70 4180999904329106 a004 Fibonacci(72)*Lucas(19)/(1/2+sqrt(5)/2)^72 4180999904329106 a004 Fibonacci(74)*Lucas(19)/(1/2+sqrt(5)/2)^74 4180999904329106 a004 Fibonacci(76)*Lucas(19)/(1/2+sqrt(5)/2)^76 4180999904329106 a004 Fibonacci(78)*Lucas(19)/(1/2+sqrt(5)/2)^78 4180999904329106 a004 Fibonacci(80)*Lucas(19)/(1/2+sqrt(5)/2)^80 4180999904329106 a004 Fibonacci(82)*Lucas(19)/(1/2+sqrt(5)/2)^82 4180999904329106 a004 Fibonacci(84)*Lucas(19)/(1/2+sqrt(5)/2)^84 4180999904329106 a004 Fibonacci(86)*Lucas(19)/(1/2+sqrt(5)/2)^86 4180999904329106 a004 Fibonacci(88)*Lucas(19)/(1/2+sqrt(5)/2)^88 4180999904329106 a004 Fibonacci(90)*Lucas(19)/(1/2+sqrt(5)/2)^90 4180999904329106 a004 Fibonacci(92)*Lucas(19)/(1/2+sqrt(5)/2)^92 4180999904329106 a004 Fibonacci(94)*Lucas(19)/(1/2+sqrt(5)/2)^94 4180999904329106 a004 Fibonacci(96)*Lucas(19)/(1/2+sqrt(5)/2)^96 4180999904329106 a004 Fibonacci(100)*Lucas(19)/(1/2+sqrt(5)/2)^100 4180999904329106 a004 Fibonacci(98)*Lucas(19)/(1/2+sqrt(5)/2)^98 4180999904329106 a004 Fibonacci(99)*Lucas(19)/(1/2+sqrt(5)/2)^99 4180999904329106 a004 Fibonacci(97)*Lucas(19)/(1/2+sqrt(5)/2)^97 4180999904329106 a004 Fibonacci(95)*Lucas(19)/(1/2+sqrt(5)/2)^95 4180999904329106 a004 Fibonacci(93)*Lucas(19)/(1/2+sqrt(5)/2)^93 4180999904329106 a004 Fibonacci(91)*Lucas(19)/(1/2+sqrt(5)/2)^91 4180999904329106 a004 Fibonacci(89)*Lucas(19)/(1/2+sqrt(5)/2)^89 4180999904329106 a004 Fibonacci(87)*Lucas(19)/(1/2+sqrt(5)/2)^87 4180999904329106 a004 Fibonacci(85)*Lucas(19)/(1/2+sqrt(5)/2)^85 4180999904329106 a004 Fibonacci(83)*Lucas(19)/(1/2+sqrt(5)/2)^83 4180999904329106 a004 Fibonacci(81)*Lucas(19)/(1/2+sqrt(5)/2)^81 4180999904329106 a004 Fibonacci(79)*Lucas(19)/(1/2+sqrt(5)/2)^79 4180999904329106 a004 Fibonacci(77)*Lucas(19)/(1/2+sqrt(5)/2)^77 4180999904329106 a004 Fibonacci(75)*Lucas(19)/(1/2+sqrt(5)/2)^75 4180999904329106 a004 Fibonacci(73)*Lucas(19)/(1/2+sqrt(5)/2)^73 4180999904329106 a004 Fibonacci(71)*Lucas(19)/(1/2+sqrt(5)/2)^71 4180999904329106 a004 Fibonacci(69)*Lucas(19)/(1/2+sqrt(5)/2)^69 4180999904329106 a004 Fibonacci(67)*Lucas(19)/(1/2+sqrt(5)/2)^67 4180999904329106 a004 Fibonacci(65)*Lucas(19)/(1/2+sqrt(5)/2)^65 4180999904329106 a004 Fibonacci(63)*Lucas(19)/(1/2+sqrt(5)/2)^63 4180999904329106 a004 Fibonacci(61)*Lucas(19)/(1/2+sqrt(5)/2)^61 4180999904329106 a004 Fibonacci(59)*Lucas(19)/(1/2+sqrt(5)/2)^59 4180999904329106 a004 Fibonacci(57)*Lucas(19)/(1/2+sqrt(5)/2)^57 4180999904329106 a004 Fibonacci(55)*Lucas(19)/(1/2+sqrt(5)/2)^55 4180999904329106 a004 Fibonacci(53)*Lucas(19)/(1/2+sqrt(5)/2)^53 4180999904329106 a004 Fibonacci(51)*Lucas(19)/(1/2+sqrt(5)/2)^51 4180999904329106 a004 Fibonacci(49)*Lucas(19)/(1/2+sqrt(5)/2)^49 4180999904329106 a004 Fibonacci(47)*Lucas(19)/(1/2+sqrt(5)/2)^47 4180999904329106 a004 Fibonacci(45)*Lucas(19)/(1/2+sqrt(5)/2)^45 4180999904329106 a004 Fibonacci(43)*Lucas(19)/(1/2+sqrt(5)/2)^43 4180999904329106 a004 Fibonacci(41)*Lucas(19)/(1/2+sqrt(5)/2)^41 4180999904329106 a004 Fibonacci(39)*Lucas(19)/(1/2+sqrt(5)/2)^39 4180999904329107 a001 2/4181*(1/2+1/2*5^(1/2))^38 4180999904329108 a004 Fibonacci(37)*Lucas(19)/(1/2+sqrt(5)/2)^37 4180999904329116 a004 Fibonacci(35)*Lucas(19)/(1/2+sqrt(5)/2)^35 4180999904329174 a004 Fibonacci(33)*Lucas(19)/(1/2+sqrt(5)/2)^33 4180999904329568 a004 Fibonacci(31)*Lucas(19)/(1/2+sqrt(5)/2)^31 4180999904332269 a004 Fibonacci(29)*Lucas(19)/(1/2+sqrt(5)/2)^29 4180999904350781 a004 Fibonacci(27)*Lucas(19)/(1/2+sqrt(5)/2)^27 4180999904477665 a004 Fibonacci(25)*Lucas(19)/(1/2+sqrt(5)/2)^25 4180999905199220 a001 28657/39603*9349^(18/19) 4180999905347343 a004 Fibonacci(23)*Lucas(19)/(1/2+sqrt(5)/2)^23 4180999905591212 s001 sum(exp(-2*Pi/3)^n*A176061[n],n=1..infinity) 4180999906190553 a001 317811/15127*9349^(11/19) 4180999906309707 a001 15456/13201*9349^(17/19) 4180999906606388 a001 75025/103682*9349^(18/19) 4180999906811691 a001 196418/271443*9349^(18/19) 4180999906841645 a001 514229/710647*9349^(18/19) 4180999906846015 a001 1346269/1860498*9349^(18/19) 4180999906846652 a001 3524578/4870847*9349^(18/19) 4180999906846745 a001 9227465/12752043*9349^(18/19) 4180999906846759 a001 24157817/33385282*9349^(18/19) 4180999906846761 a001 63245986/87403803*9349^(18/19) 4180999906846761 a001 165580141/228826127*9349^(18/19) 4180999906846761 a001 433494437/599074578*9349^(18/19) 4180999906846761 a001 1134903170/1568397607*9349^(18/19) 4180999906846761 a001 2971215073/4106118243*9349^(18/19) 4180999906846761 a001 7778742049/10749957122*9349^(18/19) 4180999906846761 a001 20365011074/28143753123*9349^(18/19) 4180999906846761 a001 53316291173/73681302247*9349^(18/19) 4180999906846761 a001 139583862445/192900153618*9349^(18/19) 4180999906846761 a001 365435296162/505019158607*9349^(18/19) 4180999906846761 a001 10610209857723/14662949395604*9349^(18/19) 4180999906846761 a001 591286729879/817138163596*9349^(18/19) 4180999906846761 a001 225851433717/312119004989*9349^(18/19) 4180999906846761 a001 86267571272/119218851371*9349^(18/19) 4180999906846761 a001 32951280099/45537549124*9349^(18/19) 4180999906846761 a001 12586269025/17393796001*9349^(18/19) 4180999906846761 a001 4807526976/6643838879*9349^(18/19) 4180999906846761 a001 1836311903/2537720636*9349^(18/19) 4180999906846761 a001 701408733/969323029*9349^(18/19) 4180999906846761 a001 267914296/370248451*9349^(18/19) 4180999906846761 a001 102334155/141422324*9349^(18/19) 4180999906846762 a001 39088169/54018521*9349^(18/19) 4180999906846767 a001 14930352/20633239*9349^(18/19) 4180999906846803 a001 5702887/7881196*9349^(18/19) 4180999906847046 a001 2178309/3010349*9349^(18/19) 4180999906848716 a001 832040/1149851*9349^(18/19) 4180999906860157 a001 317811/439204*9349^(18/19) 4180999906938576 a001 121393/167761*9349^(18/19) 4180999907476066 a001 46368/64079*9349^(18/19) 4180999908642426 a001 45765225/10946 4180999908719650 a001 514229/15127*9349^(10/19) 4180999908918740 a001 121393/103682*9349^(17/19) 4180999909299393 a001 105937/90481*9349^(17/19) 4180999909307102 a001 6765/15127*24476^(19/21) 4180999909354930 a001 832040/710647*9349^(17/19) 4180999909363032 a001 726103/620166*9349^(17/19) 4180999909364214 a001 5702887/4870847*9349^(17/19) 4180999909364387 a001 4976784/4250681*9349^(17/19) 4180999909364412 a001 39088169/33385282*9349^(17/19) 4180999909364416 a001 34111385/29134601*9349^(17/19) 4180999909364416 a001 267914296/228826127*9349^(17/19) 4180999909364416 a001 233802911/199691526*9349^(17/19) 4180999909364416 a001 1836311903/1568397607*9349^(17/19) 4180999909364416 a001 1602508992/1368706081*9349^(17/19) 4180999909364416 a001 12586269025/10749957122*9349^(17/19) 4180999909364416 a001 10983760033/9381251041*9349^(17/19) 4180999909364416 a001 86267571272/73681302247*9349^(17/19) 4180999909364416 a001 75283811239/64300051206*9349^(17/19) 4180999909364416 a001 2504730781961/2139295485799*9349^(17/19) 4180999909364416 a001 365435296162/312119004989*9349^(17/19) 4180999909364416 a001 139583862445/119218851371*9349^(17/19) 4180999909364416 a001 53316291173/45537549124*9349^(17/19) 4180999909364416 a001 20365011074/17393796001*9349^(17/19) 4180999909364416 a001 7778742049/6643838879*9349^(17/19) 4180999909364416 a001 2971215073/2537720636*9349^(17/19) 4180999909364416 a001 1134903170/969323029*9349^(17/19) 4180999909364416 a001 433494437/370248451*9349^(17/19) 4180999909364417 a001 165580141/141422324*9349^(17/19) 4180999909364418 a001 63245986/54018521*9349^(17/19) 4180999909364428 a001 24157817/20633239*9349^(17/19) 4180999909364494 a001 9227465/7881196*9349^(17/19) 4180999909364852 a001 75025/39603*9349^(16/19) 4180999909364945 a001 3524578/3010349*9349^(17/19) 4180999909368040 a001 1346269/1149851*9349^(17/19) 4180999909389253 a001 514229/439204*9349^(17/19) 4180999909534650 a001 196418/167761*9349^(17/19) 4180999910531212 a001 75025/64079*9349^(17/19) 4180999910568171 a001 75025/5778*5778^(2/3) 4180999910612148 m001 (GAMMA(11/12)+Porter)/(Stephens+Trott2nd) 4180999910925947 a001 63245986/39603*3571^(2/17) 4180999911160081 a001 17711/24476*9349^(18/19) 4180999911232935 a001 832040/15127*9349^(9/19) 4180999911308204 a004 Fibonacci(21)*Lucas(19)/(1/2+sqrt(5)/2)^21 4180999911514814 a001 98209/51841*9349^(16/19) 4180999911677204 a001 121393/39603*9349^(15/19) 4180999911828489 a001 514229/271443*9349^(16/19) 4180999911874254 a001 1346269/710647*9349^(16/19) 4180999911880931 a001 1762289/930249*9349^(16/19) 4180999911881905 a001 9227465/4870847*9349^(16/19) 4180999911882047 a001 24157817/12752043*9349^(16/19) 4180999911882068 a001 31622993/16692641*9349^(16/19) 4180999911882071 a001 165580141/87403803*9349^(16/19) 4180999911882071 a001 433494437/228826127*9349^(16/19) 4180999911882071 a001 567451585/299537289*9349^(16/19) 4180999911882071 a001 2971215073/1568397607*9349^(16/19) 4180999911882071 a001 7778742049/4106118243*9349^(16/19) 4180999911882071 a001 10182505537/5374978561*9349^(16/19) 4180999911882071 a001 53316291173/28143753123*9349^(16/19) 4180999911882071 a001 139583862445/73681302247*9349^(16/19) 4180999911882071 a001 182717648081/96450076809*9349^(16/19) 4180999911882071 a001 956722026041/505019158607*9349^(16/19) 4180999911882071 a001 10610209857723/5600748293801*9349^(16/19) 4180999911882071 a001 591286729879/312119004989*9349^(16/19) 4180999911882071 a001 225851433717/119218851371*9349^(16/19) 4180999911882071 a001 21566892818/11384387281*9349^(16/19) 4180999911882071 a001 32951280099/17393796001*9349^(16/19) 4180999911882071 a001 12586269025/6643838879*9349^(16/19) 4180999911882071 a001 1201881744/634430159*9349^(16/19) 4180999911882071 a001 1836311903/969323029*9349^(16/19) 4180999911882072 a001 701408733/370248451*9349^(16/19) 4180999911882072 a001 66978574/35355581*9349^(16/19) 4180999911882073 a001 102334155/54018521*9349^(16/19) 4180999911882081 a001 39088169/20633239*9349^(16/19) 4180999911882135 a001 3732588/1970299*9349^(16/19) 4180999911882507 a001 5702887/3010349*9349^(16/19) 4180999911885058 a001 2178309/1149851*9349^(16/19) 4180999911902538 a001 208010/109801*9349^(16/19) 4180999912022351 a001 317811/167761*9349^(16/19) 4180999912843564 a001 121393/64079*9349^(16/19) 4180999913202793 a001 165580141/103682*3571^(2/17) 4180999913534980 a001 433494437/271443*3571^(2/17) 4180999913583446 a001 1134903170/710647*3571^(2/17) 4180999913590517 a001 2971215073/1860498*3571^(2/17) 4180999913591548 a001 7778742049/4870847*3571^(2/17) 4180999913591699 a001 20365011074/12752043*3571^(2/17) 4180999913591721 a001 53316291173/33385282*3571^(2/17) 4180999913591724 a001 139583862445/87403803*3571^(2/17) 4180999913591725 a001 365435296162/228826127*3571^(2/17) 4180999913591725 a001 956722026041/599074578*3571^(2/17) 4180999913591725 a001 2504730781961/1568397607*3571^(2/17) 4180999913591725 a001 6557470319842/4106118243*3571^(2/17) 4180999913591725 a001 10610209857723/6643838879*3571^(2/17) 4180999913591725 a001 4052739537881/2537720636*3571^(2/17) 4180999913591725 a001 1548008755920/969323029*3571^(2/17) 4180999913591725 a001 591286729879/370248451*3571^(2/17) 4180999913591725 a001 225851433717/141422324*3571^(2/17) 4180999913591726 a001 86267571272/54018521*3571^(2/17) 4180999913591734 a001 32951280099/20633239*3571^(2/17) 4180999913591792 a001 12586269025/7881196*3571^(2/17) 4180999913592186 a001 4807526976/3010349*3571^(2/17) 4180999913594887 a001 1836311903/1149851*3571^(2/17) 4180999913613399 a001 701408733/439204*3571^(2/17) 4180999913740283 a001 267914296/167761*3571^(2/17) 4180999913752259 a001 1346269/15127*9349^(8/19) 4180999914002516 a001 317811/103682*9349^(15/19) 4180999914273278 a001 196418/39603*9349^(14/19) 4180999914341774 a001 832040/271443*9349^(15/19) 4180999914391271 a001 311187/101521*9349^(15/19) 4180999914398493 a001 5702887/1860498*9349^(15/19) 4180999914399547 a001 14930352/4870847*9349^(15/19) 4180999914399700 a001 39088169/12752043*9349^(15/19) 4180999914399723 a001 14619165/4769326*9349^(15/19) 4180999914399726 a001 267914296/87403803*9349^(15/19) 4180999914399726 a001 701408733/228826127*9349^(15/19) 4180999914399727 a001 1836311903/599074578*9349^(15/19) 4180999914399727 a001 686789568/224056801*9349^(15/19) 4180999914399727 a001 12586269025/4106118243*9349^(15/19) 4180999914399727 a001 32951280099/10749957122*9349^(15/19) 4180999914399727 a001 86267571272/28143753123*9349^(15/19) 4180999914399727 a001 32264490531/10525900321*9349^(15/19) 4180999914399727 a001 591286729879/192900153618*9349^(15/19) 4180999914399727 a001 1548008755920/505019158607*9349^(15/19) 4180999914399727 a001 1515744265389/494493258286*9349^(15/19) 4180999914399727 a001 2504730781961/817138163596*9349^(15/19) 4180999914399727 a001 956722026041/312119004989*9349^(15/19) 4180999914399727 a001 365435296162/119218851371*9349^(15/19) 4180999914399727 a001 139583862445/45537549124*9349^(15/19) 4180999914399727 a001 53316291173/17393796001*9349^(15/19) 4180999914399727 a001 20365011074/6643838879*9349^(15/19) 4180999914399727 a001 7778742049/2537720636*9349^(15/19) 4180999914399727 a001 2971215073/969323029*9349^(15/19) 4180999914399727 a001 1134903170/370248451*9349^(15/19) 4180999914399727 a001 433494437/141422324*9349^(15/19) 4180999914399728 a001 165580141/54018521*9349^(15/19) 4180999914399737 a001 63245986/20633239*9349^(15/19) 4180999914399795 a001 24157817/7881196*9349^(15/19) 4180999914400198 a001 9227465/3010349*9349^(15/19) 4180999914402956 a001 3524578/1149851*9349^(15/19) 4180999914421862 a001 1346269/439204*9349^(15/19) 4180999914551448 a001 514229/167761*9349^(15/19) 4180999914606624 a001 39088169/15127*3571^(1/17) 4180999914609961 a001 102334155/64079*3571^(2/17) 4180999914780372 a001 6765/15127*64079^(19/23) 4180999915439638 a001 196418/64079*9349^(15/19) 4180999915621524 a001 6765/15127*817138163596^(1/3) 4180999915621524 a001 6765/15127*(1/2+1/2*5^(1/2))^19 4180999915621524 a001 6765/15127*87403803^(1/2) 4180999915929428 a001 6765/15127*103682^(19/24) 4180999916269276 a001 311187/2161*9349^(7/19) 4180999916531612 a001 514229/103682*9349^(14/19) 4180999916760980 a001 105937/13201*9349^(13/19) 4180999916861099 a001 1346269/271443*9349^(14/19) 4180999916909170 a001 3524578/710647*9349^(14/19) 4180999916916184 a001 9227465/1860498*9349^(14/19) 4180999916917207 a001 24157817/4870847*9349^(14/19) 4180999916917356 a001 63245986/12752043*9349^(14/19) 4180999916917378 a001 165580141/33385282*9349^(14/19) 4180999916917381 a001 433494437/87403803*9349^(14/19) 4180999916917382 a001 1134903170/228826127*9349^(14/19) 4180999916917382 a001 2971215073/599074578*9349^(14/19) 4180999916917382 a001 7778742049/1568397607*9349^(14/19) 4180999916917382 a001 20365011074/4106118243*9349^(14/19) 4180999916917382 a001 53316291173/10749957122*9349^(14/19) 4180999916917382 a001 139583862445/28143753123*9349^(14/19) 4180999916917382 a001 365435296162/73681302247*9349^(14/19) 4180999916917382 a001 956722026041/192900153618*9349^(14/19) 4180999916917382 a001 2504730781961/505019158607*9349^(14/19) 4180999916917382 a001 10610209857723/2139295485799*9349^(14/19) 4180999916917382 a001 140728068720/28374454999*9349^(14/19) 4180999916917382 a001 591286729879/119218851371*9349^(14/19) 4180999916917382 a001 225851433717/45537549124*9349^(14/19) 4180999916917382 a001 86267571272/17393796001*9349^(14/19) 4180999916917382 a001 32951280099/6643838879*9349^(14/19) 4180999916917382 a001 1144206275/230701876*9349^(14/19) 4180999916917382 a001 4807526976/969323029*9349^(14/19) 4180999916917382 a001 1836311903/370248451*9349^(14/19) 4180999916917382 a001 701408733/141422324*9349^(14/19) 4180999916917383 a001 267914296/54018521*9349^(14/19) 4180999916917391 a001 9303105/1875749*9349^(14/19) 4180999916917448 a001 39088169/7881196*9349^(14/19) 4180999916917839 a001 14930352/3010349*9349^(14/19) 4180999916920518 a001 5702887/1149851*9349^(14/19) 4180999916938880 a001 2178309/439204*9349^(14/19) 4180999916988170 a001 2576/321*5778^(13/18) 4180999917064732 a001 75640/15251*9349^(14/19) 4180999917361751 a001 28657/24476*9349^(17/19) 4180999917923786 a001 6765/15127*39603^(19/22) 4180999917927339 a001 317811/64079*9349^(14/19) 4180999918287301 a001 28657-10946*5^(1/2) 4180999918472237 a001 11592/6119*9349^(16/19) 4180999918787175 a001 3524578/15127*9349^(6/19) 4180999919044897 a001 416020/51841*9349^(13/19) 4180999919290076 a001 514229/39603*9349^(12/19) 4180999919378116 a001 726103/90481*9349^(13/19) 4180999919426732 a001 5702887/710647*9349^(13/19) 4180999919433825 a001 829464/103361*9349^(13/19) 4180999919434860 a001 39088169/4870847*9349^(13/19) 4180999919435011 a001 34111385/4250681*9349^(13/19) 4180999919435033 a001 133957148/16692641*9349^(13/19) 4180999919435036 a001 233802911/29134601*9349^(13/19) 4180999919435037 a001 1836311903/228826127*9349^(13/19) 4180999919435037 a001 267084832/33281921*9349^(13/19) 4180999919435037 a001 12586269025/1568397607*9349^(13/19) 4180999919435037 a001 10983760033/1368706081*9349^(13/19) 4180999919435037 a001 43133785636/5374978561*9349^(13/19) 4180999919435037 a001 75283811239/9381251041*9349^(13/19) 4180999919435037 a001 591286729879/73681302247*9349^(13/19) 4180999919435037 a001 86000486440/10716675201*9349^(13/19) 4180999919435037 a001 4052739537881/505019158607*9349^(13/19) 4180999919435037 a001 3278735159921/408569081798*9349^(13/19) 4180999919435037 a001 2504730781961/312119004989*9349^(13/19) 4180999919435037 a001 956722026041/119218851371*9349^(13/19) 4180999919435037 a001 182717648081/22768774562*9349^(13/19) 4180999919435037 a001 139583862445/17393796001*9349^(13/19) 4180999919435037 a001 53316291173/6643838879*9349^(13/19) 4180999919435037 a001 10182505537/1268860318*9349^(13/19) 4180999919435037 a001 7778742049/969323029*9349^(13/19) 4180999919435037 a001 2971215073/370248451*9349^(13/19) 4180999919435037 a001 567451585/70711162*9349^(13/19) 4180999919435038 a001 433494437/54018521*9349^(13/19) 4180999919435047 a001 165580141/20633239*9349^(13/19) 4180999919435104 a001 31622993/3940598*9349^(13/19) 4180999919435500 a001 24157817/3010349*9349^(13/19) 4180999919438209 a001 9227465/1149851*9349^(13/19) 4180999919456778 a001 1762289/219602*9349^(13/19) 4180999919584057 a001 1346269/167761*9349^(13/19) 4180999920456436 a001 514229/64079*9349^(13/19) 4180999920570822 a001 39088169/24476*3571^(2/17) 4180999921304737 a001 5702887/15127*9349^(5/19) 4180999921527383 a001 75025/24476*9349^(15/19) 4180999921564221 a001 1346269/103682*9349^(12/19) 4180999921803361 a001 832040/39603*9349^(11/19) 4180999921896015 a001 3524578/271443*9349^(12/19) 4180999921944423 a001 9227465/710647*9349^(12/19) 4180999921951485 a001 24157817/1860498*9349^(12/19) 4180999921952516 a001 63245986/4870847*9349^(12/19) 4180999921952666 a001 165580141/12752043*9349^(12/19) 4180999921952688 a001 433494437/33385282*9349^(12/19) 4180999921952691 a001 1134903170/87403803*9349^(12/19) 4180999921952692 a001 2971215073/228826127*9349^(12/19) 4180999921952692 a001 7778742049/599074578*9349^(12/19) 4180999921952692 a001 20365011074/1568397607*9349^(12/19) 4180999921952692 a001 53316291173/4106118243*9349^(12/19) 4180999921952692 a001 139583862445/10749957122*9349^(12/19) 4180999921952692 a001 365435296162/28143753123*9349^(12/19) 4180999921952692 a001 956722026041/73681302247*9349^(12/19) 4180999921952692 a001 2504730781961/192900153618*9349^(12/19) 4180999921952692 a001 10610209857723/817138163596*9349^(12/19) 4180999921952692 a001 4052739537881/312119004989*9349^(12/19) 4180999921952692 a001 1548008755920/119218851371*9349^(12/19) 4180999921952692 a001 591286729879/45537549124*9349^(12/19) 4180999921952692 a001 7787980473/599786069*9349^(12/19) 4180999921952692 a001 86267571272/6643838879*9349^(12/19) 4180999921952692 a001 32951280099/2537720636*9349^(12/19) 4180999921952692 a001 12586269025/969323029*9349^(12/19) 4180999921952692 a001 4807526976/370248451*9349^(12/19) 4180999921952692 a001 1836311903/141422324*9349^(12/19) 4180999921952693 a001 701408733/54018521*9349^(12/19) 4180999921952702 a001 9238424/711491*9349^(12/19) 4180999921952759 a001 102334155/7881196*9349^(12/19) 4180999921953153 a001 39088169/3010349*9349^(12/19) 4180999921955850 a001 14930352/1149851*9349^(12/19) 4180999921974341 a001 5702887/439204*9349^(12/19) 4180999922101074 a001 2178309/167761*9349^(12/19) 4180999922854317 a001 5702887/9349*3571^(4/17) 4180999922969721 a001 832040/64079*9349^(12/19) 4180999923822428 a001 9227465/15127*9349^(4/19) 4180999923839735 a001 121393/24476*9349^(14/19) 4180999924081239 a001 46347/2206*9349^(11/19) 4180999924322685 a001 1346269/39603*9349^(10/19) 4180999924413577 a001 5702887/271443*9349^(11/19) 4180999924462064 a001 14930352/710647*9349^(11/19) 4180999924469138 a001 39088169/1860498*9349^(11/19) 4180999924470171 a001 102334155/4870847*9349^(11/19) 4180999924470321 a001 267914296/12752043*9349^(11/19) 4180999924470343 a001 701408733/33385282*9349^(11/19) 4180999924470346 a001 1836311903/87403803*9349^(11/19) 4180999924470347 a001 102287808/4868641*9349^(11/19) 4180999924470347 a001 12586269025/599074578*9349^(11/19) 4180999924470347 a001 32951280099/1568397607*9349^(11/19) 4180999924470347 a001 86267571272/4106118243*9349^(11/19) 4180999924470347 a001 225851433717/10749957122*9349^(11/19) 4180999924470347 a001 591286729879/28143753123*9349^(11/19) 4180999924470347 a001 1548008755920/73681302247*9349^(11/19) 4180999924470347 a001 4052739537881/192900153618*9349^(11/19) 4180999924470347 a001 225749145909/10745088481*9349^(11/19) 4180999924470347 a001 6557470319842/312119004989*9349^(11/19) 4180999924470347 a001 2504730781961/119218851371*9349^(11/19) 4180999924470347 a001 956722026041/45537549124*9349^(11/19) 4180999924470347 a001 365435296162/17393796001*9349^(11/19) 4180999924470347 a001 139583862445/6643838879*9349^(11/19) 4180999924470347 a001 53316291173/2537720636*9349^(11/19) 4180999924470347 a001 20365011074/969323029*9349^(11/19) 4180999924470347 a001 7778742049/370248451*9349^(11/19) 4180999924470347 a001 2971215073/141422324*9349^(11/19) 4180999924470348 a001 1134903170/54018521*9349^(11/19) 4180999924470357 a001 433494437/20633239*9349^(11/19) 4180999924470414 a001 165580141/7881196*9349^(11/19) 4180999924470808 a001 63245986/3010349*9349^(11/19) 4180999924473511 a001 24157817/1149851*9349^(11/19) 4180999924492031 a001 9227465/439204*9349^(11/19) 4180999924618973 a001 3524578/167761*9349^(11/19) 4180999925352829 a001 28657/5778*5778^(7/9) 4180999925489045 a001 1346269/64079*9349^(11/19) 4180999925577515 a001 17711/15127*24476^(17/21) 4180999926340069 a001 14930352/15127*9349^(3/19) 4180999926435809 a001 98209/12238*9349^(13/19) 4180999926599138 a001 1762289/51841*9349^(10/19) 4180999926839703 a001 726103/13201*9349^(9/19) 4180999926913941 a004 Fibonacci(20)*Lucas(21)/(1/2+sqrt(5)/2)^22 4180999926931267 a001 9227465/271443*9349^(10/19) 4180999926935548 a001 2255/1926*5778^(17/18) 4180999926979725 a001 24157817/710647*9349^(10/19) 4180999926986794 a001 31622993/930249*9349^(10/19) 4180999926987826 a001 165580141/4870847*9349^(10/19) 4180999926987976 a001 433494437/12752043*9349^(10/19) 4180999926987998 a001 567451585/16692641*9349^(10/19) 4180999926988001 a001 2971215073/87403803*9349^(10/19) 4180999926988002 a001 7778742049/228826127*9349^(10/19) 4180999926988002 a001 10182505537/299537289*9349^(10/19) 4180999926988002 a001 53316291173/1568397607*9349^(10/19) 4180999926988002 a001 139583862445/4106118243*9349^(10/19) 4180999926988002 a001 182717648081/5374978561*9349^(10/19) 4180999926988002 a001 956722026041/28143753123*9349^(10/19) 4180999926988002 a001 2504730781961/73681302247*9349^(10/19) 4180999926988002 a001 3278735159921/96450076809*9349^(10/19) 4180999926988002 a001 10610209857723/312119004989*9349^(10/19) 4180999926988002 a001 4052739537881/119218851371*9349^(10/19) 4180999926988002 a001 387002188980/11384387281*9349^(10/19) 4180999926988002 a001 591286729879/17393796001*9349^(10/19) 4180999926988002 a001 225851433717/6643838879*9349^(10/19) 4180999926988002 a001 1135099622/33391061*9349^(10/19) 4180999926988002 a001 32951280099/969323029*9349^(10/19) 4180999926988002 a001 12586269025/370248451*9349^(10/19) 4180999926988002 a001 1201881744/35355581*9349^(10/19) 4180999926988003 a001 1836311903/54018521*9349^(10/19) 4180999926988012 a001 701408733/20633239*9349^(10/19) 4180999926988069 a001 66978574/1970299*9349^(10/19) 4180999926988463 a001 102334155/3010349*9349^(10/19) 4180999926991164 a001 39088169/1149851*9349^(10/19) 4180999927009673 a001 196452/5779*9349^(10/19) 4180999927136535 a001 5702887/167761*9349^(10/19) 4180999928006062 a001 2178309/64079*9349^(10/19) 4180999928519037 a001 6624/2161*24476^(5/7) 4180999928626304 a001 17711/5778*5778^(5/6) 4180999928857729 a001 24157817/15127*9349^(2/19) 4180999928923510 a001 10959/844*9349^(12/19) 4180999929116700 a001 5702887/103682*9349^(9/19) 4180999929357601 a001 3524578/39603*9349^(8/19) 4180999929388865 a001 75025/15127*24476^(2/3) 4180999929448909 a001 4976784/90481*9349^(9/19) 4180999929497378 a001 39088169/710647*9349^(9/19) 4180999929504449 a001 831985/15126*9349^(9/19) 4180999929505481 a001 267914296/4870847*9349^(9/19) 4180999929505631 a001 233802911/4250681*9349^(9/19) 4180999929505653 a001 1836311903/33385282*9349^(9/19) 4180999929505657 a001 1602508992/29134601*9349^(9/19) 4180999929505657 a001 12586269025/228826127*9349^(9/19) 4180999929505657 a001 10983760033/199691526*9349^(9/19) 4180999929505657 a001 86267571272/1568397607*9349^(9/19) 4180999929505657 a001 75283811239/1368706081*9349^(9/19) 4180999929505657 a001 591286729879/10749957122*9349^(9/19) 4180999929505657 a001 12585437040/228811001*9349^(9/19) 4180999929505657 a001 4052739537881/73681302247*9349^(9/19) 4180999929505657 a001 3536736619241/64300051206*9349^(9/19) 4180999929505657 a001 6557470319842/119218851371*9349^(9/19) 4180999929505657 a001 2504730781961/45537549124*9349^(9/19) 4180999929505657 a001 956722026041/17393796001*9349^(9/19) 4180999929505657 a001 365435296162/6643838879*9349^(9/19) 4180999929505657 a001 139583862445/2537720636*9349^(9/19) 4180999929505657 a001 53316291173/969323029*9349^(9/19) 4180999929505657 a001 20365011074/370248451*9349^(9/19) 4180999929505657 a001 7778742049/141422324*9349^(9/19) 4180999929505658 a001 2971215073/54018521*9349^(9/19) 4180999929505667 a001 1134903170/20633239*9349^(9/19) 4180999929505724 a001 433494437/7881196*9349^(9/19) 4180999929506118 a001 165580141/3010349*9349^(9/19) 4180999929508820 a001 63245986/1149851*9349^(9/19) 4180999929515900 a001 121393/15127*24476^(13/21) 4180999929527333 a001 24157817/439204*9349^(9/19) 4180999929593867 a001 28657/15127*24476^(16/21) 4180999929654226 a001 9227465/167761*9349^(9/19) 4180999929926657 a001 196418/15127*24476^(4/7) 4180999930209023 a001 119814915/28657 4180999930212361 a001 34111385/13201*3571^(1/17) 4180999930229042 a001 317811/15127*24476^(11/21) 4180999930297566 a001 2255/13201*64079^(21/23) 4180999930474650 a001 17711/15127*64079^(17/23) 4180999930523961 a001 3524578/64079*9349^(9/19) 4180999930572821 a001 514229/15127*24476^(10/21) 4180999930900789 a001 832040/15127*24476^(3/7) 4180999930995135 p001 sum((-1)^n/(562*n+237)/(32^n),n=0..infinity) 4180999931210402 a001 2255/13201*439204^(7/9) 4180999931227217 a001 2255/13201*7881196^(7/11) 4180999931227254 a001 2255/13201*20633239^(3/5) 4180999931227260 a001 2255/13201*141422324^(7/13) 4180999931227260 a001 2255/13201*2537720636^(7/15) 4180999931227260 a001 2255/13201*17393796001^(3/7) 4180999931227260 a001 2255/13201*45537549124^(7/17) 4180999931227260 a001 2255/13201*14662949395604^(1/3) 4180999931227260 a001 2255/13201*(1/2+1/2*5^(1/2))^21 4180999931227260 a001 2255/13201*192900153618^(7/18) 4180999931227260 a001 2255/13201*10749957122^(7/16) 4180999931227260 a001 2255/13201*599074578^(1/2) 4180999931227260 a001 17711/15127*45537549124^(1/3) 4180999931227260 a001 17711/15127*(1/2+1/2*5^(1/2))^17 4180999931227262 a001 2255/13201*33385282^(7/12) 4180999931227273 a001 17711/15127*12752043^(1/2) 4180999931228106 a001 2255/13201*1860498^(7/10) 4180999931233469 a001 2255/13201*710647^(3/4) 4180999931234796 a001 1346269/15127*24476^(8/21) 4180999931375383 a001 39088169/15127*9349^(1/19) 4180999931452607 a001 514229/24476*9349^(11/19) 4180999931502754 a001 17711/15127*103682^(17/24) 4180999931566496 a001 311187/2161*24476^(1/3) 4180999931567575 a001 2255/13201*103682^(7/8) 4180999931634390 a001 9227465/103682*9349^(8/19) 4180999931875163 a001 5702887/39603*9349^(7/19) 4180999931899078 a001 3524578/15127*24476^(2/7) 4180999931966569 a001 24157817/271443*9349^(8/19) 4180999932015033 a001 63245986/710647*9349^(8/19) 4180999932022104 a001 165580141/1860498*9349^(8/19) 4180999932023136 a001 433494437/4870847*9349^(8/19) 4180999932023286 a001 1134903170/12752043*9349^(8/19) 4180999932023308 a001 2971215073/33385282*9349^(8/19) 4180999932023312 a001 7778742049/87403803*9349^(8/19) 4180999932023312 a001 20365011074/228826127*9349^(8/19) 4180999932023312 a001 53316291173/599074578*9349^(8/19) 4180999932023312 a001 139583862445/1568397607*9349^(8/19) 4180999932023312 a001 365435296162/4106118243*9349^(8/19) 4180999932023312 a001 956722026041/10749957122*9349^(8/19) 4180999932023312 a001 2504730781961/28143753123*9349^(8/19) 4180999932023312 a001 6557470319842/73681302247*9349^(8/19) 4180999932023312 a001 10610209857723/119218851371*9349^(8/19) 4180999932023312 a001 4052739537881/45537549124*9349^(8/19) 4180999932023312 a001 1548008755920/17393796001*9349^(8/19) 4180999932023312 a001 591286729879/6643838879*9349^(8/19) 4180999932023312 a001 225851433717/2537720636*9349^(8/19) 4180999932023312 a001 86267571272/969323029*9349^(8/19) 4180999932023312 a001 32951280099/370248451*9349^(8/19) 4180999932023312 a001 12586269025/141422324*9349^(8/19) 4180999932023314 a001 4807526976/54018521*9349^(8/19) 4180999932023322 a001 1836311903/20633239*9349^(8/19) 4180999932023379 a001 3524667/39604*9349^(8/19) 4180999932023773 a001 267914296/3010349*9349^(8/19) 4180999932026474 a001 102334155/1149851*9349^(8/19) 4180999932044986 a001 39088169/439204*9349^(8/19) 4180999932171867 a001 14930352/167761*9349^(8/19) 4180999932231323 a001 5702887/15127*24476^(5/21) 4180999932489207 a001 133957148/51841*3571^(1/17) 4180999932563696 a001 9227465/15127*24476^(4/21) 4180999932821394 a001 233802911/90481*3571^(1/17) 4180999932840039 a001 6624/2161*64079^(15/23) 4180999932869860 a001 1836311903/710647*3571^(1/17) 4180999932874802 a004 Fibonacci(20)*Lucas(23)/(1/2+sqrt(5)/2)^24 4180999932876931 a001 267084832/103361*3571^(1/17) 4180999932877962 a001 12586269025/4870847*3571^(1/17) 4180999932878113 a001 10983760033/4250681*3571^(1/17) 4180999932878135 a001 43133785636/16692641*3571^(1/17) 4180999932878138 a001 75283811239/29134601*3571^(1/17) 4180999932878139 a001 591286729879/228826127*3571^(1/17) 4180999932878139 a001 86000486440/33281921*3571^(1/17) 4180999932878139 a001 4052739537881/1568397607*3571^(1/17) 4180999932878139 a001 3536736619241/1368706081*3571^(1/17) 4180999932878139 a001 3278735159921/1268860318*3571^(1/17) 4180999932878139 a001 2504730781961/969323029*3571^(1/17) 4180999932878139 a001 956722026041/370248451*3571^(1/17) 4180999932878139 a001 182717648081/70711162*3571^(1/17) 4180999932878140 a001 139583862445/54018521*3571^(1/17) 4180999932878149 a001 53316291173/20633239*3571^(1/17) 4180999932878206 a001 10182505537/3940598*3571^(1/17) 4180999932878600 a001 7778742049/3010349*3571^(1/17) 4180999932881301 a001 2971215073/1149851*3571^(1/17) 4180999932896021 a001 14930352/15127*24476^(1/7) 4180999932899813 a001 567451585/219602*3571^(1/17) 4180999932979462 a001 6765/15127*15127^(19/20) 4180999933026697 a001 433494437/167761*3571^(1/17) 4180999933041523 a001 5702887/64079*9349^(8/19) 4180999933228364 a001 24157817/15127*24476^(2/21) 4180999933260769 a001 121393/15127*64079^(13/23) 4180999933269282 r005 Re(z^2+c),c=-14/23+1/30*I,n=18 4180999933287180 a001 17711/15127*39603^(17/22) 4180999933355548 a001 62735904/15005 4180999933383459 a001 196418/15127*64079^(12/23) 4180999933397777 a001 317811/15127*64079^(11/23) 4180999933414971 a001 6624/2161*167761^(3/5) 4180999933421801 a001 75025/15127*64079^(14/23) 4180999933453489 a001 514229/15127*64079^(10/23) 4180999933492065 a001 6624/2161*439204^(5/9) 4180999933493390 a001 832040/15127*64079^(9/23) 4180999933504076 a001 6624/2161*7881196^(5/11) 4180999933504102 a001 6624/2161*20633239^(3/7) 4180999933504106 a001 6624/2161*141422324^(5/13) 4180999933504106 a001 6765/103682*(1/2+1/2*5^(1/2))^23 4180999933504106 a001 6765/103682*4106118243^(1/2) 4180999933504106 a001 6624/2161*2537720636^(1/3) 4180999933504106 a001 6624/2161*45537549124^(5/17) 4180999933504106 a001 6624/2161*312119004989^(3/11) 4180999933504106 a001 6624/2161*14662949395604^(5/21) 4180999933504106 a001 6624/2161*(1/2+1/2*5^(1/2))^15 4180999933504106 a001 6624/2161*192900153618^(5/18) 4180999933504106 a001 6624/2161*28143753123^(3/10) 4180999933504106 a001 6624/2161*10749957122^(5/16) 4180999933504106 a001 6624/2161*599074578^(5/14) 4180999933504106 a001 6624/2161*228826127^(3/8) 4180999933504108 a001 6624/2161*33385282^(5/12) 4180999933504710 a001 6624/2161*1860498^(1/2) 4180999933539330 a001 1346269/15127*64079^(8/23) 4180999933560700 a001 39088169/15127*24476^(1/21) 4180999933582964 a001 311187/2161*64079^(7/23) 4180999933627479 a001 3524578/15127*64079^(6/23) 4180999933671657 a001 5702887/15127*64079^(5/23) 4180999933715963 a001 9227465/15127*64079^(4/23) 4180999933744479 a004 Fibonacci(20)*Lucas(25)/(1/2+sqrt(5)/2)^26 4180999933747189 a001 6624/2161*103682^(5/8) 4180999933760221 a001 14930352/15127*64079^(3/23) 4180999933771866 a001 2255/13201*39603^(21/22) 4180999933804497 a001 24157817/15127*64079^(2/23) 4180999933814619 a001 821223645/196418 4180999933836287 a001 2255/90481*20633239^(5/7) 4180999933836294 a001 2255/90481*2537720636^(5/9) 4180999933836294 a001 2255/90481*312119004989^(5/11) 4180999933836294 a001 2255/90481*(1/2+1/2*5^(1/2))^25 4180999933836294 a001 2255/90481*3461452808002^(5/12) 4180999933836294 a001 2255/90481*28143753123^(1/2) 4180999933836294 a001 121393/15127*141422324^(1/3) 4180999933836294 a001 2255/90481*228826127^(5/8) 4180999933836294 a001 121393/15127*(1/2+1/2*5^(1/2))^13 4180999933836294 a001 121393/15127*73681302247^(1/4) 4180999933836777 a001 514229/15127*167761^(2/5) 4180999933837300 a001 2255/90481*1860498^(5/6) 4180999933848767 a001 39088169/15127*64079^(1/23) 4180999933863301 a001 5702887/15127*167761^(1/5) 4180999933864666 a001 121393/15127*271443^(1/2) 4180999933871364 a004 Fibonacci(20)*Lucas(27)/(1/2+sqrt(5)/2)^28 4180999933876833 a001 6765/103682*103682^(23/24) 4180999933881597 a001 2149991415/514229 4180999933884606 a001 832040/15127*439204^(1/3) 4180999933884704 a001 6765/710647*7881196^(9/11) 4180999933884737 a001 317811/15127*7881196^(1/3) 4180999933884759 a001 6765/710647*141422324^(9/13) 4180999933884759 a001 6765/710647*2537720636^(3/5) 4180999933884759 a001 6765/710647*45537549124^(9/17) 4180999933884759 a001 6765/710647*817138163596^(9/19) 4180999933884759 a001 6765/710647*14662949395604^(3/7) 4180999933884759 a001 6765/710647*(1/2+1/2*5^(1/2))^27 4180999933884759 a001 6765/710647*192900153618^(1/2) 4180999933884759 a001 6765/710647*10749957122^(9/16) 4180999933884759 a001 6765/710647*599074578^(9/14) 4180999933884759 a001 317811/15127*312119004989^(1/5) 4180999933884759 a001 317811/15127*(1/2+1/2*5^(1/2))^11 4180999933884759 a001 317811/15127*1568397607^(1/4) 4180999933884762 a001 6765/710647*33385282^(3/4) 4180999933885846 a001 6765/710647*1860498^(9/10) 4180999933888289 a001 3524578/15127*439204^(2/9) 4180999933889876 a004 Fibonacci(20)*Lucas(29)/(1/2+sqrt(5)/2)^30 4180999933890626 a001 14930352/15127*439204^(1/9) 4180999933891369 a001 5628750600/1346269 4180999933891812 a001 832040/15127*7881196^(3/11) 4180999933891830 a001 55/15126*(1/2+1/2*5^(1/2))^29 4180999933891830 a001 55/15126*1322157322203^(1/2) 4180999933891830 a001 832040/15127*141422324^(3/13) 4180999933891830 a001 832040/15127*2537720636^(1/5) 4180999933891830 a001 832040/15127*45537549124^(3/17) 4180999933891830 a001 832040/15127*14662949395604^(1/7) 4180999933891830 a001 832040/15127*(1/2+1/2*5^(1/2))^9 4180999933891830 a001 832040/15127*192900153618^(1/6) 4180999933891830 a001 832040/15127*10749957122^(3/16) 4180999933891830 a001 832040/15127*599074578^(3/14) 4180999933891831 a001 832040/15127*33385282^(1/4) 4180999933892193 a001 832040/15127*1860498^(3/10) 4180999933892577 a004 Fibonacci(20)*Lucas(31)/(1/2+sqrt(5)/2)^32 4180999933892795 a001 14736260385/3524578 4180999933892860 a001 311187/2161*20633239^(1/5) 4180999933892862 a001 6765/4870847*(1/2+1/2*5^(1/2))^31 4180999933892862 a001 6765/4870847*9062201101803^(1/2) 4180999933892862 a001 311187/2161*17393796001^(1/7) 4180999933892862 a001 311187/2161*14662949395604^(1/9) 4180999933892862 a001 311187/2161*(1/2+1/2*5^(1/2))^7 4180999933892862 a001 311187/2161*599074578^(1/6) 4180999933892971 a004 Fibonacci(20)*Lucas(33)/(1/2+sqrt(5)/2)^34 4180999933893003 a001 7716006111/1845493 4180999933893011 a001 5702887/15127*20633239^(1/7) 4180999933893012 a001 2255/4250681*141422324^(11/13) 4180999933893012 a001 2255/4250681*2537720636^(11/15) 4180999933893012 a001 2255/4250681*45537549124^(11/17) 4180999933893012 a001 2255/4250681*312119004989^(3/5) 4180999933893012 a001 2255/4250681*14662949395604^(11/21) 4180999933893012 a001 2255/4250681*(1/2+1/2*5^(1/2))^33 4180999933893012 a001 2255/4250681*192900153618^(11/18) 4180999933893012 a001 2255/4250681*10749957122^(11/16) 4180999933893012 a001 2255/4250681*1568397607^(3/4) 4180999933893012 a001 2255/4250681*599074578^(11/14) 4180999933893013 a001 5702887/15127*2537720636^(1/9) 4180999933893013 a001 5702887/15127*312119004989^(1/11) 4180999933893013 a001 5702887/15127*(1/2+1/2*5^(1/2))^5 4180999933893013 a001 5702887/15127*28143753123^(1/10) 4180999933893013 a001 5702887/15127*228826127^(1/8) 4180999933893016 a001 2255/4250681*33385282^(11/12) 4180999933893028 a004 Fibonacci(20)*Lucas(35)/(1/2+sqrt(5)/2)^36 4180999933893028 a001 14930352/15127*7881196^(1/11) 4180999933893033 a001 101003831280/24157817 4180999933893034 a001 6765/33385282*2537720636^(7/9) 4180999933893034 a001 6765/33385282*17393796001^(5/7) 4180999933893034 a001 6765/33385282*312119004989^(7/11) 4180999933893034 a001 6765/33385282*14662949395604^(5/9) 4180999933893034 a001 6765/33385282*(1/2+1/2*5^(1/2))^35 4180999933893034 a001 6765/33385282*505019158607^(5/8) 4180999933893034 a001 6765/33385282*28143753123^(7/10) 4180999933893034 a001 6765/33385282*599074578^(5/6) 4180999933893034 a001 14930352/15127*141422324^(1/13) 4180999933893034 a001 6765/33385282*228826127^(7/8) 4180999933893034 a001 14930352/15127*2537720636^(1/15) 4180999933893034 a001 14930352/15127*45537549124^(1/17) 4180999933893034 a001 14930352/15127*14662949395604^(1/21) 4180999933893034 a001 14930352/15127*(1/2+1/2*5^(1/2))^3 4180999933893034 a001 14930352/15127*192900153618^(1/18) 4180999933893034 a001 14930352/15127*10749957122^(1/16) 4180999933893034 a001 14930352/15127*599074578^(1/14) 4180999933893035 a001 14930352/15127*33385282^(1/12) 4180999933893037 a004 Fibonacci(20)*Lucas(37)/(1/2+sqrt(5)/2)^38 4180999933893037 a001 264431463285/63245986 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^37/Lucas(38) 4180999933893038 a001 39088169/30254+39088169/30254*5^(1/2) 4180999933893038 a004 Fibonacci(20)*Lucas(39)/(1/2+sqrt(5)/2)^40 4180999933893038 a001 692290558575/165580141 4180999933893038 a001 6765/228826127*2537720636^(13/15) 4180999933893038 a001 6765/228826127*45537549124^(13/17) 4180999933893038 a001 6765/228826127*14662949395604^(13/21) 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^39/Lucas(40) 4180999933893038 a001 6765/228826127*192900153618^(13/18) 4180999933893038 a001 6765/228826127*73681302247^(3/4) 4180999933893038 a001 6765/228826127*10749957122^(13/16) 4180999933893038 a001 6765/228826127*599074578^(13/14) 4180999933893038 a004 Fibonacci(20)*Lucas(41)/(1/2+sqrt(5)/2)^42 4180999933893038 a001 1812440212440/433494437 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^41/Lucas(42) 4180999933893038 a004 Fibonacci(20)*Lucas(43)/(1/2+sqrt(5)/2)^44 4180999933893038 a001 949006015749/226980634 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^43/Lucas(44) 4180999933893038 a004 Fibonacci(20)*Lucas(45)/(1/2+sqrt(5)/2)^46 4180999933893038 a001 12422650023795/2971215073 4180999933893038 a001 2255/1368706081*45537549124^(15/17) 4180999933893038 a001 2255/1368706081*312119004989^(9/11) 4180999933893038 a001 2255/1368706081*14662949395604^(5/7) 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^45/Lucas(46) 4180999933893038 a001 2255/1368706081*192900153618^(5/6) 4180999933893038 a001 2255/1368706081*28143753123^(9/10) 4180999933893038 a001 2255/1368706081*10749957122^(15/16) 4180999933893038 a004 Fibonacci(20)*Lucas(47)/(1/2+sqrt(5)/2)^48 4180999933893038 a001 32522919992640/7778742049 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^47/Lucas(48) 4180999933893038 a004 Fibonacci(20)*Lucas(49)/(1/2+sqrt(5)/2)^50 4180999933893038 a001 85146109954125/20365011074 4180999933893038 a001 55/228811001*14662949395604^(7/9) 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^49/Lucas(50) 4180999933893038 a001 55/228811001*505019158607^(7/8) 4180999933893038 a004 Fibonacci(20)*Lucas(51)/(1/2+sqrt(5)/2)^52 4180999933893038 a001 222915409869735/53316291173 4180999933893038 a001 6765/73681302247*817138163596^(17/19) 4180999933893038 a001 6765/73681302247*14662949395604^(17/21) 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^51/Lucas(52) 4180999933893038 a001 6765/73681302247*192900153618^(17/18) 4180999933893038 a004 Fibonacci(20)*Lucas(53)/(1/2+sqrt(5)/2)^54 4180999933893038 a001 116720023931016/27916772489 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^53/Lucas(54) 4180999933893038 a004 Fibonacci(20)*Lucas(55)/(1/2+sqrt(5)/2)^56 4180999933893038 a001 1527884949095505/365435296162 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^55/Lucas(56) 4180999933893038 a001 6765/505019158607*3461452808002^(11/12) 4180999933893038 a004 Fibonacci(20)*Lucas(57)/(1/2+sqrt(5)/2)^58 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^57/Lucas(58) 4180999933893038 a004 Fibonacci(20)*Lucas(59)/(1/2+sqrt(5)/2)^60 4180999933893038 a001 10472279233798800/2504730781961 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^59/Lucas(60) 4180999933893038 a004 Fibonacci(20)*Lucas(61)/(1/2+sqrt(5)/2)^62 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^61/Lucas(62) 4180999933893038 a004 Fibonacci(20)*Lucas(63)/(1/2+sqrt(5)/2)^64 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^63/Lucas(64) 4180999933893038 a004 Fibonacci(20)*Lucas(65)/(1/2+sqrt(5)/2)^66 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^65/Lucas(66) 4180999933893038 a004 Fibonacci(20)*Lucas(67)/(1/2+sqrt(5)/2)^68 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^67/Lucas(68) 4180999933893038 a004 Fibonacci(20)*Lucas(69)/(1/2+sqrt(5)/2)^70 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^69/Lucas(70) 4180999933893038 a004 Fibonacci(20)*Lucas(71)/(1/2+sqrt(5)/2)^72 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^71/Lucas(72) 4180999933893038 a004 Fibonacci(20)*Lucas(73)/(1/2+sqrt(5)/2)^74 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^73/Lucas(74) 4180999933893038 a004 Fibonacci(20)*Lucas(75)/(1/2+sqrt(5)/2)^76 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^75/Lucas(76) 4180999933893038 a004 Fibonacci(20)*Lucas(77)/(1/2+sqrt(5)/2)^78 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^77/Lucas(78) 4180999933893038 a004 Fibonacci(20)*Lucas(79)/(1/2+sqrt(5)/2)^80 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^79/Lucas(80) 4180999933893038 a004 Fibonacci(20)*Lucas(81)/(1/2+sqrt(5)/2)^82 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^81/Lucas(82) 4180999933893038 a004 Fibonacci(20)*Lucas(83)/(1/2+sqrt(5)/2)^84 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^83/Lucas(84) 4180999933893038 a004 Fibonacci(20)*Lucas(85)/(1/2+sqrt(5)/2)^86 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^85/Lucas(86) 4180999933893038 a004 Fibonacci(20)*Lucas(87)/(1/2+sqrt(5)/2)^88 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^87/Lucas(88) 4180999933893038 a004 Fibonacci(20)*Lucas(89)/(1/2+sqrt(5)/2)^90 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^89/Lucas(90) 4180999933893038 a004 Fibonacci(20)*Lucas(91)/(1/2+sqrt(5)/2)^92 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^91/Lucas(92) 4180999933893038 a004 Fibonacci(20)*Lucas(93)/(1/2+sqrt(5)/2)^94 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^93/Lucas(94) 4180999933893038 a004 Fibonacci(20)*Lucas(95)/(1/2+sqrt(5)/2)^96 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^95/Lucas(96) 4180999933893038 a004 Fibonacci(20)*Lucas(97)/(1/2+sqrt(5)/2)^98 4180999933893038 a004 Fibonacci(10)*Lucas(10)/(1/2+sqrt(5)/2) 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^97/Lucas(98) 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^99/Lucas(100) 4180999933893038 a004 Fibonacci(20)*Lucas(99)/(1/2+sqrt(5)/2)^100 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^98/Lucas(99) 4180999933893038 a004 Fibonacci(20)*Lucas(98)/(1/2+sqrt(5)/2)^99 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^96/Lucas(97) 4180999933893038 a004 Fibonacci(20)*Lucas(96)/(1/2+sqrt(5)/2)^97 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^94/Lucas(95) 4180999933893038 a004 Fibonacci(20)*Lucas(94)/(1/2+sqrt(5)/2)^95 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^92/Lucas(93) 4180999933893038 a004 Fibonacci(20)*Lucas(92)/(1/2+sqrt(5)/2)^93 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^90/Lucas(91) 4180999933893038 a004 Fibonacci(20)*Lucas(90)/(1/2+sqrt(5)/2)^91 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^88/Lucas(89) 4180999933893038 a004 Fibonacci(20)*Lucas(88)/(1/2+sqrt(5)/2)^89 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^86/Lucas(87) 4180999933893038 a004 Fibonacci(20)*Lucas(86)/(1/2+sqrt(5)/2)^87 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^84/Lucas(85) 4180999933893038 a004 Fibonacci(20)*Lucas(84)/(1/2+sqrt(5)/2)^85 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^82/Lucas(83) 4180999933893038 a004 Fibonacci(20)*Lucas(82)/(1/2+sqrt(5)/2)^83 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^80/Lucas(81) 4180999933893038 a004 Fibonacci(20)*Lucas(80)/(1/2+sqrt(5)/2)^81 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^78/Lucas(79) 4180999933893038 a004 Fibonacci(20)*Lucas(78)/(1/2+sqrt(5)/2)^79 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^76/Lucas(77) 4180999933893038 a004 Fibonacci(20)*Lucas(76)/(1/2+sqrt(5)/2)^77 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^74/Lucas(75) 4180999933893038 a004 Fibonacci(20)*Lucas(74)/(1/2+sqrt(5)/2)^75 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^72/Lucas(73) 4180999933893038 a004 Fibonacci(20)*Lucas(72)/(1/2+sqrt(5)/2)^73 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^70/Lucas(71) 4180999933893038 a004 Fibonacci(20)*Lucas(70)/(1/2+sqrt(5)/2)^71 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^68/Lucas(69) 4180999933893038 a004 Fibonacci(20)*Lucas(68)/(1/2+sqrt(5)/2)^69 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^66/Lucas(67) 4180999933893038 a004 Fibonacci(20)*Lucas(66)/(1/2+sqrt(5)/2)^67 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^64/Lucas(65) 4180999933893038 a004 Fibonacci(20)*Lucas(64)/(1/2+sqrt(5)/2)^65 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^62/Lucas(63) 4180999933893038 a004 Fibonacci(20)*Lucas(62)/(1/2+sqrt(5)/2)^63 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^60/Lucas(61) 4180999933893038 a004 Fibonacci(20)*Lucas(60)/(1/2+sqrt(5)/2)^61 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^58/Lucas(59) 4180999933893038 a004 Fibonacci(20)*Lucas(58)/(1/2+sqrt(5)/2)^59 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^56/Lucas(57) 4180999933893038 a001 2472169778535930/591286729879 4180999933893038 a004 Fibonacci(20)*Lucas(56)/(1/2+sqrt(5)/2)^57 4180999933893038 a001 615/28374454999*14662949395604^(6/7) 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^54/Lucas(55) 4180999933893038 a001 314761609813475/75283811239 4180999933893038 a004 Fibonacci(20)*Lucas(54)/(1/2+sqrt(5)/2)^55 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^52/Lucas(53) 4180999933893038 a001 6765/119218851371*23725150497407^(13/16) 4180999933893038 a001 6765/119218851371*505019158607^(13/14) 4180999933893038 a001 360684709785345/86267571272 4180999933893038 a004 Fibonacci(20)*Lucas(52)/(1/2+sqrt(5)/2)^53 4180999933893038 a001 6765/45537549124*312119004989^(10/11) 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^50/Lucas(51) 4180999933893038 a001 6765/45537549124*3461452808002^(5/6) 4180999933893038 a001 45923099971870/10983760033 4180999933893038 a004 Fibonacci(20)*Lucas(50)/(1/2+sqrt(5)/2)^51 4180999933893038 a001 6765/17393796001*45537549124^(16/17) 4180999933893038 a001 6765/17393796001*14662949395604^(16/21) 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^48/Lucas(49) 4180999933893038 a001 6765/17393796001*192900153618^(8/9) 4180999933893038 a001 6765/17393796001*73681302247^(12/13) 4180999933893038 a001 956785272027/228841255 4180999933893038 a004 Fibonacci(20)*Lucas(48)/(1/2+sqrt(5)/2)^49 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^46/Lucas(47) 4180999933893038 a001 6765/6643838879*10749957122^(23/24) 4180999933893038 a001 6700089989615/1602508992 4180999933893038 a004 Fibonacci(20)*Lucas(46)/(1/2+sqrt(5)/2)^47 4180999933893038 a001 615/230701876*312119004989^(4/5) 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^44/Lucas(45) 4180999933893038 a001 615/230701876*23725150497407^(11/16) 4180999933893038 a001 615/230701876*73681302247^(11/13) 4180999933893038 a001 615/230701876*10749957122^(11/12) 4180999933893038 a001 615/230701876*4106118243^(22/23) 4180999933893038 a001 7677619945050/1836311903 4180999933893038 a004 Fibonacci(20)*Lucas(44)/(1/2+sqrt(5)/2)^45 4180999933893038 a001 6765/969323029*2537720636^(14/15) 4180999933893038 a001 6765/969323029*17393796001^(6/7) 4180999933893038 a001 6765/969323029*45537549124^(14/17) 4180999933893038 a001 6765/969323029*817138163596^(14/19) 4180999933893038 a001 6765/969323029*14662949395604^(2/3) 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^42/Lucas(43) 4180999933893038 a001 6765/969323029*505019158607^(3/4) 4180999933893038 a001 6765/969323029*192900153618^(7/9) 4180999933893038 a001 6765/969323029*10749957122^(7/8) 4180999933893038 a001 6765/969323029*4106118243^(21/23) 4180999933893038 a001 6765/969323029*1568397607^(21/22) 4180999933893038 a001 977529955435/233802911 4180999933893038 a004 Fibonacci(20)*Lucas(42)/(1/2+sqrt(5)/2)^43 4180999933893038 a001 6765/370248451*2537720636^(8/9) 4180999933893038 a001 6765/370248451*312119004989^(8/11) 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^40/Lucas(41) 4180999933893038 a001 6765/370248451*23725150497407^(5/8) 4180999933893038 a001 6765/370248451*73681302247^(10/13) 4180999933893038 a001 6765/370248451*28143753123^(4/5) 4180999933893038 a001 6765/370248451*10749957122^(5/6) 4180999933893038 a001 6765/370248451*4106118243^(20/23) 4180999933893038 a001 6765/370248451*1568397607^(10/11) 4180999933893038 a001 6765/370248451*599074578^(20/21) 4180999933893038 a001 1120149653865/267914296 4180999933893038 a004 Fibonacci(42)/Lucas(20)/(1/2+sqrt(5)/2)^3 4180999933893038 a004 Fibonacci(44)/Lucas(20)/(1/2+sqrt(5)/2)^5 4180999933893038 a004 Fibonacci(46)/Lucas(20)/(1/2+sqrt(5)/2)^7 4180999933893038 a004 Fibonacci(48)/Lucas(20)/(1/2+sqrt(5)/2)^9 4180999933893038 a004 Fibonacci(50)/Lucas(20)/(1/2+sqrt(5)/2)^11 4180999933893038 a004 Fibonacci(52)/Lucas(20)/(1/2+sqrt(5)/2)^13 4180999933893038 a004 Fibonacci(54)/Lucas(20)/(1/2+sqrt(5)/2)^15 4180999933893038 a004 Fibonacci(56)/Lucas(20)/(1/2+sqrt(5)/2)^17 4180999933893038 a004 Fibonacci(58)/Lucas(20)/(1/2+sqrt(5)/2)^19 4180999933893038 a004 Fibonacci(60)/Lucas(20)/(1/2+sqrt(5)/2)^21 4180999933893038 a004 Fibonacci(62)/Lucas(20)/(1/2+sqrt(5)/2)^23 4180999933893038 a004 Fibonacci(64)/Lucas(20)/(1/2+sqrt(5)/2)^25 4180999933893038 a004 Fibonacci(66)/Lucas(20)/(1/2+sqrt(5)/2)^27 4180999933893038 a004 Fibonacci(68)/Lucas(20)/(1/2+sqrt(5)/2)^29 4180999933893038 a004 Fibonacci(70)/Lucas(20)/(1/2+sqrt(5)/2)^31 4180999933893038 a004 Fibonacci(72)/Lucas(20)/(1/2+sqrt(5)/2)^33 4180999933893038 a004 Fibonacci(74)/Lucas(20)/(1/2+sqrt(5)/2)^35 4180999933893038 a004 Fibonacci(76)/Lucas(20)/(1/2+sqrt(5)/2)^37 4180999933893038 a004 Fibonacci(78)/Lucas(20)/(1/2+sqrt(5)/2)^39 4180999933893038 a004 Fibonacci(20)*Lucas(40)/(1/2+sqrt(5)/2)^41 4180999933893038 a004 Fibonacci(82)/Lucas(20)/(1/2+sqrt(5)/2)^43 4180999933893038 a004 Fibonacci(84)/Lucas(20)/(1/2+sqrt(5)/2)^45 4180999933893038 a004 Fibonacci(86)/Lucas(20)/(1/2+sqrt(5)/2)^47 4180999933893038 a004 Fibonacci(88)/Lucas(20)/(1/2+sqrt(5)/2)^49 4180999933893038 a004 Fibonacci(90)/Lucas(20)/(1/2+sqrt(5)/2)^51 4180999933893038 a004 Fibonacci(92)/Lucas(20)/(1/2+sqrt(5)/2)^53 4180999933893038 a004 Fibonacci(94)/Lucas(20)/(1/2+sqrt(5)/2)^55 4180999933893038 a004 Fibonacci(96)/Lucas(20)/(1/2+sqrt(5)/2)^57 4180999933893038 a004 Fibonacci(98)/Lucas(20)/(1/2+sqrt(5)/2)^59 4180999933893038 a004 Fibonacci(100)/Lucas(20)/(1/2+sqrt(5)/2)^61 4180999933893038 a004 Fibonacci(99)/Lucas(20)/(1/2+sqrt(5)/2)^60 4180999933893038 a004 Fibonacci(97)/Lucas(20)/(1/2+sqrt(5)/2)^58 4180999933893038 a004 Fibonacci(95)/Lucas(20)/(1/2+sqrt(5)/2)^56 4180999933893038 a004 Fibonacci(93)/Lucas(20)/(1/2+sqrt(5)/2)^54 4180999933893038 a004 Fibonacci(91)/Lucas(20)/(1/2+sqrt(5)/2)^52 4180999933893038 a004 Fibonacci(89)/Lucas(20)/(1/2+sqrt(5)/2)^50 4180999933893038 a004 Fibonacci(87)/Lucas(20)/(1/2+sqrt(5)/2)^48 4180999933893038 a004 Fibonacci(85)/Lucas(20)/(1/2+sqrt(5)/2)^46 4180999933893038 a004 Fibonacci(83)/Lucas(20)/(1/2+sqrt(5)/2)^44 4180999933893038 a004 Fibonacci(81)/Lucas(20)/(1/2+sqrt(5)/2)^42 4180999933893038 a004 Fibonacci(79)/Lucas(20)/(1/2+sqrt(5)/2)^40 4180999933893038 a004 Fibonacci(77)/Lucas(20)/(1/2+sqrt(5)/2)^38 4180999933893038 a004 Fibonacci(75)/Lucas(20)/(1/2+sqrt(5)/2)^36 4180999933893038 a004 Fibonacci(73)/Lucas(20)/(1/2+sqrt(5)/2)^34 4180999933893038 a004 Fibonacci(71)/Lucas(20)/(1/2+sqrt(5)/2)^32 4180999933893038 a004 Fibonacci(69)/Lucas(20)/(1/2+sqrt(5)/2)^30 4180999933893038 a004 Fibonacci(67)/Lucas(20)/(1/2+sqrt(5)/2)^28 4180999933893038 a004 Fibonacci(65)/Lucas(20)/(1/2+sqrt(5)/2)^26 4180999933893038 a004 Fibonacci(63)/Lucas(20)/(1/2+sqrt(5)/2)^24 4180999933893038 a004 Fibonacci(61)/Lucas(20)/(1/2+sqrt(5)/2)^22 4180999933893038 a004 Fibonacci(59)/Lucas(20)/(1/2+sqrt(5)/2)^20 4180999933893038 a004 Fibonacci(57)/Lucas(20)/(1/2+sqrt(5)/2)^18 4180999933893038 a004 Fibonacci(55)/Lucas(20)/(1/2+sqrt(5)/2)^16 4180999933893038 a004 Fibonacci(53)/Lucas(20)/(1/2+sqrt(5)/2)^14 4180999933893038 a004 Fibonacci(51)/Lucas(20)/(1/2+sqrt(5)/2)^12 4180999933893038 a004 Fibonacci(49)/Lucas(20)/(1/2+sqrt(5)/2)^10 4180999933893038 a004 Fibonacci(47)/Lucas(20)/(1/2+sqrt(5)/2)^8 4180999933893038 a004 Fibonacci(45)/Lucas(20)/(1/2+sqrt(5)/2)^6 4180999933893038 a004 Fibonacci(43)/Lucas(20)/(1/2+sqrt(5)/2)^4 4180999933893038 a004 Fibonacci(41)/Lucas(20)/(1/2+sqrt(5)/2)^2 4180999933893038 a001 6765/141422324*817138163596^(2/3) 4180999933893038 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^38/Lucas(39) 4180999933893038 a001 6765/141422324*10749957122^(19/24) 4180999933893038 a001 6765/141422324*4106118243^(19/23) 4180999933893038 a001 6765/141422324*1568397607^(19/22) 4180999933893038 a001 6765/141422324*599074578^(19/21) 4180999933893038 a001 6765/141422324*228826127^(19/20) 4180999933893038 a001 63245986/15127 4180999933893039 a004 Fibonacci(20)*Lucas(38)/(1/2+sqrt(5)/2)^39 4180999933893039 a001 6765/54018521*141422324^(12/13) 4180999933893040 a001 6765/54018521*2537720636^(4/5) 4180999933893040 a001 6765/54018521*45537549124^(12/17) 4180999933893040 a001 6765/54018521*14662949395604^(4/7) 4180999933893040 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^36/Lucas(37) 4180999933893040 a001 6765/54018521*505019158607^(9/14) 4180999933893040 a001 6765/54018521*192900153618^(2/3) 4180999933893040 a001 6765/54018521*73681302247^(9/13) 4180999933893040 a001 6765/54018521*10749957122^(3/4) 4180999933893040 a001 6765/54018521*4106118243^(18/23) 4180999933893040 a001 6765/54018521*1568397607^(9/11) 4180999933893040 a001 6765/54018521*599074578^(6/7) 4180999933893040 a001 6765/54018521*228826127^(9/10) 4180999933893040 a001 24157817/15127*(1/2+1/2*5^(1/2))^2 4180999933893040 a001 24157817/15127*10749957122^(1/24) 4180999933893040 a001 24157817/15127*4106118243^(1/23) 4180999933893040 a001 24157817/15127*1568397607^(1/22) 4180999933893040 a001 24157817/15127*599074578^(1/21) 4180999933893040 a001 24157817/15127*228826127^(1/20) 4180999933893040 a001 24157817/15127*87403803^(1/19) 4180999933893040 a001 24157817/15127*33385282^(1/18) 4180999933893040 a001 6765/54018521*87403803^(18/19) 4180999933893040 a001 163427632005/39088169 4180999933893041 a001 24157817/15127*12752043^(1/17) 4180999933893042 a004 Fibonacci(20)*Lucas(36)/(1/2+sqrt(5)/2)^37 4180999933893048 a001 615/1875749*45537549124^(2/3) 4180999933893048 a001 615/1875749*(1/2+1/2*5^(1/2))^34 4180999933893048 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^34/Lucas(35) 4180999933893048 a001 615/1875749*10749957122^(17/24) 4180999933893048 a001 615/1875749*4106118243^(17/23) 4180999933893048 a001 615/1875749*1568397607^(17/22) 4180999933893048 a001 615/1875749*599074578^(17/21) 4180999933893048 a001 615/1875749*228826127^(17/20) 4180999933893048 a001 9227465/15127*(1/2+1/2*5^(1/2))^4 4180999933893048 a001 9227465/15127*23725150497407^(1/16) 4180999933893048 a001 9227465/15127*73681302247^(1/13) 4180999933893048 a001 9227465/15127*10749957122^(1/12) 4180999933893048 a001 9227465/15127*4106118243^(2/23) 4180999933893048 a001 9227465/15127*1568397607^(1/11) 4180999933893048 a001 9227465/15127*599074578^(2/21) 4180999933893048 a001 9227465/15127*228826127^(1/10) 4180999933893048 a001 9227465/15127*87403803^(2/19) 4180999933893048 a001 615/1875749*87403803^(17/19) 4180999933893048 a001 9227465/15127*33385282^(1/9) 4180999933893051 a001 24157817/15127*4870847^(1/16) 4180999933893051 a001 9227465/15127*12752043^(2/17) 4180999933893052 a001 615/1875749*33385282^(17/18) 4180999933893052 a001 20807933575/4976784 4180999933893064 a004 Fibonacci(20)*Lucas(34)/(1/2+sqrt(5)/2)^35 4180999933893070 a001 9227465/15127*4870847^(1/8) 4180999933893093 a001 3524578/15127*7881196^(2/11) 4180999933893105 a001 6765/7881196*(1/2+1/2*5^(1/2))^32 4180999933893105 a001 6765/7881196*23725150497407^(1/2) 4180999933893105 a001 6765/7881196*505019158607^(4/7) 4180999933893105 a001 6765/7881196*73681302247^(8/13) 4180999933893105 a001 6765/7881196*10749957122^(2/3) 4180999933893105 a001 6765/7881196*4106118243^(16/23) 4180999933893105 a001 6765/7881196*1568397607^(8/11) 4180999933893105 a001 6765/7881196*599074578^(16/21) 4180999933893106 a001 3524578/15127*141422324^(2/13) 4180999933893106 a001 6765/7881196*228826127^(4/5) 4180999933893106 a001 3524578/15127*2537720636^(2/15) 4180999933893106 a001 3524578/15127*45537549124^(2/17) 4180999933893106 a001 3524578/15127*14662949395604^(2/21) 4180999933893106 a001 3524578/15127*(1/2+1/2*5^(1/2))^6 4180999933893106 a001 3524578/15127*10749957122^(1/8) 4180999933893106 a001 3524578/15127*4106118243^(3/23) 4180999933893106 a001 3524578/15127*1568397607^(3/22) 4180999933893106 a001 3524578/15127*599074578^(1/7) 4180999933893106 a001 3524578/15127*228826127^(3/20) 4180999933893106 a001 3524578/15127*87403803^(3/19) 4180999933893106 a001 6765/7881196*87403803^(16/19) 4180999933893106 a001 3524578/15127*33385282^(1/6) 4180999933893109 a001 6765/7881196*33385282^(8/9) 4180999933893110 a001 3524578/15127*12752043^(3/17) 4180999933893120 a001 24157817/15127*1860498^(1/15) 4180999933893130 a001 6765/7881196*12752043^(16/17) 4180999933893131 a001 23843770170/5702887 4180999933893139 a001 3524578/15127*4870847^(3/16) 4180999933893155 a001 14930352/15127*1860498^(1/10) 4180999933893209 a001 9227465/15127*1860498^(2/15) 4180999933893214 a001 5702887/15127*1860498^(1/6) 4180999933893214 a004 Fibonacci(20)*Lucas(32)/(1/2+sqrt(5)/2)^33 4180999933893347 a001 3524578/15127*1860498^(1/5) 4180999933893438 a001 6765/3010349*7881196^(10/11) 4180999933893491 a001 6765/3010349*20633239^(6/7) 4180999933893499 a001 6765/3010349*141422324^(10/13) 4180999933893500 a001 6765/3010349*2537720636^(2/3) 4180999933893500 a001 6765/3010349*45537549124^(10/17) 4180999933893500 a001 6765/3010349*312119004989^(6/11) 4180999933893500 a001 6765/3010349*14662949395604^(10/21) 4180999933893500 a001 6765/3010349*(1/2+1/2*5^(1/2))^30 4180999933893500 a001 6765/3010349*192900153618^(5/9) 4180999933893500 a001 6765/3010349*28143753123^(3/5) 4180999933893500 a001 6765/3010349*10749957122^(5/8) 4180999933893500 a001 6765/3010349*4106118243^(15/23) 4180999933893500 a001 6765/3010349*1568397607^(15/22) 4180999933893500 a001 6765/3010349*599074578^(5/7) 4180999933893500 a001 6765/3010349*228826127^(3/4) 4180999933893500 a001 1346269/15127*(1/2+1/2*5^(1/2))^8 4180999933893500 a001 1346269/15127*23725150497407^(1/8) 4180999933893500 a001 1346269/15127*505019158607^(1/7) 4180999933893500 a001 1346269/15127*73681302247^(2/13) 4180999933893500 a001 1346269/15127*10749957122^(1/6) 4180999933893500 a001 1346269/15127*4106118243^(4/23) 4180999933893500 a001 1346269/15127*1568397607^(2/11) 4180999933893500 a001 1346269/15127*599074578^(4/21) 4180999933893500 a001 1346269/15127*228826127^(1/5) 4180999933893500 a001 1346269/15127*87403803^(4/19) 4180999933893500 a001 6765/3010349*87403803^(15/19) 4180999933893500 a001 1346269/15127*33385282^(2/9) 4180999933893503 a001 6765/3010349*33385282^(5/6) 4180999933893506 a001 1346269/15127*12752043^(4/17) 4180999933893522 a001 6765/3010349*12752043^(15/17) 4180999933893544 a001 1346269/15127*4870847^(1/4) 4180999933893631 a001 24157817/15127*710647^(1/14) 4180999933893665 a001 6765/3010349*4870847^(15/16) 4180999933893676 a001 3035836595/726103 4180999933893822 a001 1346269/15127*1860498^(4/15) 4180999933894231 a001 9227465/15127*710647^(1/7) 4180999933894246 a004 Fibonacci(20)*Lucas(30)/(1/2+sqrt(5)/2)^31 4180999933894880 a001 3524578/15127*710647^(3/14) 4180999933894932 a001 311187/2161*710647^(1/4) 4180999933895865 a001 1346269/15127*710647^(2/7) 4180999933896193 a001 6765/1149851*20633239^(4/5) 4180999933896198 a001 514229/15127*20633239^(2/7) 4180999933896200 a001 6765/1149851*17393796001^(4/7) 4180999933896200 a001 6765/1149851*14662949395604^(4/9) 4180999933896200 a001 6765/1149851*(1/2+1/2*5^(1/2))^28 4180999933896200 a001 6765/1149851*73681302247^(7/13) 4180999933896200 a001 6765/1149851*10749957122^(7/12) 4180999933896200 a001 6765/1149851*4106118243^(14/23) 4180999933896200 a001 6765/1149851*1568397607^(7/11) 4180999933896200 a001 6765/1149851*599074578^(2/3) 4180999933896200 a001 6765/1149851*228826127^(7/10) 4180999933896200 a001 514229/15127*2537720636^(2/9) 4180999933896200 a001 514229/15127*312119004989^(2/11) 4180999933896200 a001 514229/15127*(1/2+1/2*5^(1/2))^10 4180999933896200 a001 514229/15127*28143753123^(1/5) 4180999933896200 a001 514229/15127*10749957122^(5/24) 4180999933896200 a001 514229/15127*4106118243^(5/23) 4180999933896200 a001 514229/15127*1568397607^(5/22) 4180999933896200 a001 514229/15127*599074578^(5/21) 4180999933896201 a001 514229/15127*228826127^(1/4) 4180999933896201 a001 514229/15127*87403803^(5/19) 4180999933896201 a001 6765/1149851*87403803^(14/19) 4180999933896202 a001 514229/15127*33385282^(5/18) 4180999933896203 a001 6765/1149851*33385282^(7/9) 4180999933896208 a001 514229/15127*12752043^(5/17) 4180999933896222 a001 6765/1149851*12752043^(14/17) 4180999933896256 a001 514229/15127*4870847^(5/16) 4180999933896355 a001 6765/1149851*4870847^(7/8) 4180999933896375 a001 165580141/64079*3571^(1/17) 4180999933896603 a001 514229/15127*1860498^(1/3) 4180999933897328 a001 6765/1149851*1860498^(14/15) 4180999933897405 a001 24157817/15127*271443^(1/13) 4180999933897408 a001 63250167/15128 4180999933899157 a001 514229/15127*710647^(5/14) 4180999933901317 a004 Fibonacci(20)*Lucas(28)/(1/2+sqrt(5)/2)^29 4180999933901778 a001 9227465/15127*271443^(2/13) 4180999933905080 a001 196418/15127*439204^(4/9) 4180999933906200 a001 3524578/15127*271443^(3/13) 4180999933909243 a001 39088169/15127*103682^(1/24) 4180999933910959 a001 1346269/15127*271443^(4/13) 4180999933914688 a001 196418/15127*7881196^(4/11) 4180999933914712 a001 6765/439204*141422324^(2/3) 4180999933914713 a001 6765/439204*(1/2+1/2*5^(1/2))^26 4180999933914713 a001 6765/439204*73681302247^(1/2) 4180999933914713 a001 6765/439204*10749957122^(13/24) 4180999933914713 a001 6765/439204*4106118243^(13/23) 4180999933914713 a001 6765/439204*1568397607^(13/22) 4180999933914713 a001 6765/439204*599074578^(13/21) 4180999933914713 a001 196418/15127*141422324^(4/13) 4180999933914713 a001 6765/439204*228826127^(13/20) 4180999933914713 a001 196418/15127*2537720636^(4/15) 4180999933914713 a001 196418/15127*45537549124^(4/17) 4180999933914713 a001 196418/15127*817138163596^(4/19) 4180999933914713 a001 196418/15127*14662949395604^(4/21) 4180999933914713 a001 196418/15127*(1/2+1/2*5^(1/2))^12 4180999933914713 a001 196418/15127*192900153618^(2/9) 4180999933914713 a001 196418/15127*73681302247^(3/13) 4180999933914713 a001 196418/15127*10749957122^(1/4) 4180999933914713 a001 196418/15127*4106118243^(6/23) 4180999933914713 a001 196418/15127*1568397607^(3/11) 4180999933914713 a001 196418/15127*599074578^(2/7) 4180999933914713 a001 196418/15127*228826127^(3/10) 4180999933914713 a001 196418/15127*87403803^(6/19) 4180999933914713 a001 6765/439204*87403803^(13/19) 4180999933914714 a001 196418/15127*33385282^(1/3) 4180999933914715 a001 6765/439204*33385282^(13/18) 4180999933914722 a001 196418/15127*12752043^(6/17) 4180999933914732 a001 6765/439204*12752043^(13/17) 4180999933914779 a001 196418/15127*4870847^(3/8) 4180999933914856 a001 6765/439204*4870847^(13/16) 4180999933915196 a001 196418/15127*1860498^(2/5) 4180999933915759 a001 6765/439204*1860498^(13/15) 4180999933918025 a001 514229/15127*271443^(5/13) 4180999933918261 a001 196418/15127*710647^(3/7) 4180999933922400 a001 6765/439204*710647^(13/14) 4180999933922991 a001 442922590/105937 4180999933925451 a001 24157817/15127*103682^(1/12) 4180999933937309 a001 6765/64079*64079^(22/23) 4180999933940902 a001 196418/15127*271443^(6/13) 4180999933941651 a001 14930352/15127*103682^(1/8) 4180999933949783 a004 Fibonacci(20)*Lucas(26)/(1/2+sqrt(5)/2)^27 4180999933957870 a001 9227465/15127*103682^(1/6) 4180999933965892 a001 208010/6119*9349^(10/19) 4180999933974040 a001 5702887/15127*103682^(5/24) 4180999933990338 a001 3524578/15127*103682^(1/4) 4180999934006300 a001 311187/2161*103682^(7/24) 4180999934012508 a007 Real Root Of -963*x^3+83*x^2-902*x+433 4180999934014209 a001 39088169/15127*39603^(1/22) 4180999934022331 a001 615/15251*439204^(8/9) 4180999934023144 a001 1346269/15127*103682^(1/3) 4180999934037680 a001 832040/15127*103682^(3/8) 4180999934041548 a001 615/15251*7881196^(8/11) 4180999934041593 a001 75025/15127*20633239^(2/5) 4180999934041597 a001 615/15251*141422324^(8/13) 4180999934041597 a001 615/15251*2537720636^(8/15) 4180999934041597 a001 615/15251*45537549124^(8/17) 4180999934041597 a001 615/15251*14662949395604^(8/21) 4180999934041597 a001 615/15251*(1/2+1/2*5^(1/2))^24 4180999934041597 a001 615/15251*192900153618^(4/9) 4180999934041597 a001 615/15251*73681302247^(6/13) 4180999934041597 a001 615/15251*10749957122^(1/2) 4180999934041597 a001 615/15251*4106118243^(12/23) 4180999934041597 a001 615/15251*1568397607^(6/11) 4180999934041597 a001 615/15251*599074578^(4/7) 4180999934041597 a001 615/15251*228826127^(3/5) 4180999934041597 a001 75025/15127*17393796001^(2/7) 4180999934041597 a001 75025/15127*14662949395604^(2/9) 4180999934041597 a001 75025/15127*(1/2+1/2*5^(1/2))^14 4180999934041597 a001 75025/15127*10749957122^(7/24) 4180999934041597 a001 75025/15127*4106118243^(7/23) 4180999934041597 a001 75025/15127*1568397607^(7/22) 4180999934041597 a001 75025/15127*599074578^(1/3) 4180999934041597 a001 75025/15127*228826127^(7/20) 4180999934041597 a001 75025/15127*87403803^(7/19) 4180999934041597 a001 615/15251*87403803^(12/19) 4180999934041598 a001 75025/15127*33385282^(7/18) 4180999934041599 a001 615/15251*33385282^(2/3) 4180999934041608 a001 75025/15127*12752043^(7/17) 4180999934041615 a001 615/15251*12752043^(12/17) 4180999934041674 a001 75025/15127*4870847^(7/16) 4180999934041729 a001 615/15251*4870847^(3/4) 4180999934042161 a001 75025/15127*1860498^(7/15) 4180999934042563 a001 615/15251*1860498^(4/5) 4180999934045736 a001 75025/15127*710647^(1/2) 4180999934046965 a001 121393/15127*103682^(13/24) 4180999934048693 a001 615/15251*710647^(6/7) 4180999934058255 a001 514229/15127*103682^(5/12) 4180999934063020 a001 317811/15127*103682^(11/24) 4180999934072152 a001 75025/15127*271443^(7/13) 4180999934093976 a001 615/15251*271443^(12/13) 4180999934098341 a001 507544125/121393 4180999934109179 a001 196418/15127*103682^(1/2) 4180999934135383 a001 24157817/15127*39603^(1/11) 4180999934152032 a001 7465176/51841*9349^(7/19) 4180999934202936 a001 28657/15127*64079^(16/23) 4180999934225376 a001 6765/24476*24476^(20/21) 4180999934226261 a001 9227465/5778*2207^(1/8) 4180999934256550 a001 14930352/15127*39603^(3/22) 4180999934268474 a001 75025/15127*103682^(7/12) 4180999934273428 a001 3524578/2207*843^(1/7) 4180999934281970 a004 Fibonacci(20)*Lucas(24)/(1/2+sqrt(5)/2)^25 4180999934377735 a001 9227465/15127*39603^(2/11) 4180999934392854 a001 9227465/39603*9349^(6/19) 4180999934484222 a001 39088169/271443*9349^(7/19) 4180999934498871 a001 5702887/15127*39603^(5/22) 4180999934532688 a001 14619165/101521*9349^(7/19) 4180999934539759 a001 133957148/930249*9349^(7/19) 4180999934540791 a001 701408733/4870847*9349^(7/19) 4180999934540942 a001 1836311903/12752043*9349^(7/19) 4180999934540963 a001 14930208/103681*9349^(7/19) 4180999934540967 a001 12586269025/87403803*9349^(7/19) 4180999934540967 a001 32951280099/228826127*9349^(7/19) 4180999934540967 a001 43133785636/299537289*9349^(7/19) 4180999934540967 a001 32264490531/224056801*9349^(7/19) 4180999934540967 a001 591286729879/4106118243*9349^(7/19) 4180999934540967 a001 774004377960/5374978561*9349^(7/19) 4180999934540967 a001 4052739537881/28143753123*9349^(7/19) 4180999934540967 a001 1515744265389/10525900321*9349^(7/19) 4180999934540967 a001 3278735159921/22768774562*9349^(7/19) 4180999934540967 a001 2504730781961/17393796001*9349^(7/19) 4180999934540967 a001 956722026041/6643838879*9349^(7/19) 4180999934540967 a001 182717648081/1268860318*9349^(7/19) 4180999934540967 a001 139583862445/969323029*9349^(7/19) 4180999934540967 a001 53316291173/370248451*9349^(7/19) 4180999934540967 a001 10182505537/70711162*9349^(7/19) 4180999934540969 a001 7778742049/54018521*9349^(7/19) 4180999934540977 a001 2971215073/20633239*9349^(7/19) 4180999934541035 a001 567451585/3940598*9349^(7/19) 4180999934541429 a001 433494437/3010349*9349^(7/19) 4180999934544130 a001 165580141/1149851*9349^(7/19) 4180999934562642 a001 31622993/219602*9349^(7/19) 4180999934620136 a001 3524578/15127*39603^(3/11) 4180999934689527 a001 24157817/167761*9349^(7/19) 4180999934741064 a001 311187/2161*39603^(7/22) 4180999934806613 a001 39088169/15127*15127^(1/20) 4180999934862873 a001 1346269/15127*39603^(4/11) 4180999934890052 a001 10946/15127*24476^(6/7) 4180999934911230 a001 6765/64079*7881196^(2/3) 4180999934911275 a001 6765/64079*312119004989^(2/5) 4180999934911275 a001 6765/64079*(1/2+1/2*5^(1/2))^22 4180999934911275 a001 6765/64079*10749957122^(11/24) 4180999934911275 a001 6765/64079*4106118243^(11/23) 4180999934911275 a001 6765/64079*1568397607^(1/2) 4180999934911275 a001 6765/64079*599074578^(11/21) 4180999934911275 a001 6765/64079*228826127^(11/20) 4180999934911275 a001 28657/15127*(1/2+1/2*5^(1/2))^16 4180999934911275 a001 28657/15127*23725150497407^(1/4) 4180999934911275 a001 28657/15127*73681302247^(4/13) 4180999934911275 a001 28657/15127*10749957122^(1/3) 4180999934911275 a001 28657/15127*4106118243^(8/23) 4180999934911275 a001 28657/15127*1568397607^(4/11) 4180999934911275 a001 28657/15127*599074578^(8/21) 4180999934911275 a001 28657/15127*228826127^(2/5) 4180999934911275 a001 28657/15127*87403803^(8/19) 4180999934911275 a001 6765/64079*87403803^(11/19) 4180999934911277 a001 28657/15127*33385282^(4/9) 4180999934911277 a001 6765/64079*33385282^(11/18) 4180999934911287 a001 28657/15127*12752043^(8/17) 4180999934911291 a001 6765/64079*12752043^(11/17) 4180999934911363 a001 28657/15127*4870847^(1/2) 4180999934911396 a001 6765/64079*4870847^(11/16) 4180999934911919 a001 28657/15127*1860498^(8/15) 4180999934912161 a001 6765/64079*1860498^(11/15) 4180999934916006 a001 28657/15127*710647^(4/7) 4180999934917780 a001 6765/64079*710647^(11/14) 4180999934946194 a001 28657/15127*271443^(8/13) 4180999934959289 a001 6765/64079*271443^(11/13) 4180999934982376 a001 832040/15127*39603^(9/22) 4180999935107918 a001 514229/15127*39603^(5/11) 4180999935170563 a001 28657/15127*103682^(2/3) 4180999935217648 a001 317811/15127*39603^(1/2) 4180999935267796 a001 6765/64079*103682^(11/12) 4180999935300207 a001 64621535/15456 4180999935321682 a001 6624/2161*39603^(15/22) 4180999935368773 a001 196418/15127*39603^(6/11) 4180999935411526 a001 121393/15127*39603^(13/22) 4180999935559214 a001 9227465/64079*9349^(7/19) 4180999935720191 a001 24157817/15127*15127^(1/10) 4180999935738001 a001 75025/15127*39603^(7/11) 4180999936410693 a001 6765/9349*9349^(18/19) 4180999936485216 a001 1346269/24476*9349^(9/19) 4180999936558816 a004 Fibonacci(20)*Lucas(22)/(1/2+sqrt(5)/2)^23 4180999936633762 a001 14930352/15127*15127^(3/20) 4180999936669692 a001 24157817/103682*9349^(6/19) 4180999936850023 a001 28657/15127*39603^(8/11) 4180999936910496 a001 4976784/13201*9349^(5/19) 4180999937001878 a001 63245986/271443*9349^(6/19) 4180999937050343 a001 165580141/710647*9349^(6/19) 4180999937057414 a001 433494437/1860498*9349^(6/19) 4180999937058446 a001 1134903170/4870847*9349^(6/19) 4180999937058597 a001 2971215073/12752043*9349^(6/19) 4180999937058619 a001 7778742049/33385282*9349^(6/19) 4180999937058622 a001 20365011074/87403803*9349^(6/19) 4180999937058622 a001 53316291173/228826127*9349^(6/19) 4180999937058622 a001 139583862445/599074578*9349^(6/19) 4180999937058622 a001 365435296162/1568397607*9349^(6/19) 4180999937058622 a001 956722026041/4106118243*9349^(6/19) 4180999937058622 a001 2504730781961/10749957122*9349^(6/19) 4180999937058622 a001 6557470319842/28143753123*9349^(6/19) 4180999937058622 a001 10610209857723/45537549124*9349^(6/19) 4180999937058622 a001 4052739537881/17393796001*9349^(6/19) 4180999937058622 a001 1548008755920/6643838879*9349^(6/19) 4180999937058622 a001 591286729879/2537720636*9349^(6/19) 4180999937058622 a001 225851433717/969323029*9349^(6/19) 4180999937058622 a001 86267571272/370248451*9349^(6/19) 4180999937058623 a001 63246219/271444*9349^(6/19) 4180999937058624 a001 12586269025/54018521*9349^(6/19) 4180999937058632 a001 4807526976/20633239*9349^(6/19) 4180999937058690 a001 1836311903/7881196*9349^(6/19) 4180999937059084 a001 701408733/3010349*9349^(6/19) 4180999937061785 a001 267914296/1149851*9349^(6/19) 4180999937080297 a001 102334155/439204*9349^(6/19) 4180999937207180 a001 39088169/167761*9349^(6/19) 4180999937547351 a001 9227465/15127*15127^(1/5) 4180999938076855 a001 14930352/64079*9349^(6/19) 4180999938460891 a001 5702887/15127*15127^(1/4) 4180999939002233 a001 2178309/24476*9349^(8/19) 4180999939187345 a001 39088169/103682*9349^(5/19) 4180999939374560 a001 3524578/15127*15127^(3/10) 4180999939428156 a001 24157817/39603*9349^(4/19) 4180999939519533 a001 34111385/90481*9349^(5/19) 4180999939567999 a001 267914296/710647*9349^(5/19) 4180999939575070 a001 233802911/620166*9349^(5/19) 4180999939576101 a001 1836311903/4870847*9349^(5/19) 4180999939576252 a001 1602508992/4250681*9349^(5/19) 4180999939576274 a001 12586269025/33385282*9349^(5/19) 4180999939576277 a001 10983760033/29134601*9349^(5/19) 4180999939576277 a001 86267571272/228826127*9349^(5/19) 4180999939576277 a001 267913919/710646*9349^(5/19) 4180999939576277 a001 591286729879/1568397607*9349^(5/19) 4180999939576277 a001 516002918640/1368706081*9349^(5/19) 4180999939576277 a001 4052739537881/10749957122*9349^(5/19) 4180999939576277 a001 3536736619241/9381251041*9349^(5/19) 4180999939576277 a001 6557470319842/17393796001*9349^(5/19) 4180999939576277 a001 2504730781961/6643838879*9349^(5/19) 4180999939576277 a001 956722026041/2537720636*9349^(5/19) 4180999939576277 a001 365435296162/969323029*9349^(5/19) 4180999939576277 a001 139583862445/370248451*9349^(5/19) 4180999939576278 a001 53316291173/141422324*9349^(5/19) 4180999939576279 a001 20365011074/54018521*9349^(5/19) 4180999939576287 a001 7778742049/20633239*9349^(5/19) 4180999939576345 a001 2971215073/7881196*9349^(5/19) 4180999939576739 a001 1134903170/3010349*9349^(5/19) 4180999939579440 a001 433494437/1149851*9349^(5/19) 4180999939597952 a001 165580141/439204*9349^(5/19) 4180999939724836 a001 63245986/167761*9349^(5/19) 4180999939857237 a001 31622993/12238*3571^(1/17) 4180999939986713 a001 6765/24476*64079^(20/23) 4180999940075255 a001 10946/15127*64079^(18/23) 4180999940287892 a001 311187/2161*15127^(7/20) 4180999940518575 a001 17711/39603*24476^(19/21) 4180999940594515 a001 24157817/64079*9349^(5/19) 4180999940753289 a001 6765/24476*167761^(4/5) 4180999940850528 a001 39088169/15127*5778^(1/18) 4180999940857686 a001 10946/15127*439204^(2/3) 4180999940872099 a001 10946/15127*7881196^(6/11) 4180999940872130 a001 6765/24476*20633239^(4/7) 4180999940872136 a001 10946/15127*141422324^(6/13) 4180999940872136 a001 6765/24476*2537720636^(4/9) 4180999940872136 a001 6765/24476*(1/2+1/2*5^(1/2))^20 4180999940872136 a001 6765/24476*23725150497407^(5/16) 4180999940872136 a001 6765/24476*505019158607^(5/14) 4180999940872136 a001 6765/24476*73681302247^(5/13) 4180999940872136 a001 6765/24476*28143753123^(2/5) 4180999940872136 a001 6765/24476*10749957122^(5/12) 4180999940872136 a001 6765/24476*4106118243^(10/23) 4180999940872136 a001 6765/24476*1568397607^(5/11) 4180999940872136 a001 6765/24476*599074578^(10/21) 4180999940872136 a001 6765/24476*228826127^(1/2) 4180999940872136 a001 10946/15127*2537720636^(2/5) 4180999940872136 a001 10946/15127*45537549124^(6/17) 4180999940872136 a001 10946/15127*14662949395604^(2/7) 4180999940872136 a001 10946/15127*(1/2+1/2*5^(1/2))^18 4180999940872136 a001 10946/15127*192900153618^(1/3) 4180999940872136 a001 10946/15127*10749957122^(3/8) 4180999940872136 a001 10946/15127*4106118243^(9/23) 4180999940872136 a001 10946/15127*1568397607^(9/22) 4180999940872136 a001 10946/15127*599074578^(3/7) 4180999940872136 a001 10946/15127*228826127^(9/20) 4180999940872136 a001 6765/24476*87403803^(10/19) 4180999940872136 a001 10946/15127*87403803^(9/19) 4180999940872138 a001 10946/15127*33385282^(1/2) 4180999940872138 a001 6765/24476*33385282^(5/9) 4180999940872149 a001 10946/15127*12752043^(9/17) 4180999940872151 a001 6765/24476*12752043^(10/17) 4180999940872235 a001 10946/15127*4870847^(9/16) 4180999940872246 a001 6765/24476*4870847^(5/8) 4180999940872861 a001 10946/15127*1860498^(3/5) 4180999940872941 a001 6765/24476*1860498^(2/3) 4180999940877458 a001 10946/15127*710647^(9/14) 4180999940878049 a001 6765/24476*710647^(5/7) 4180999940911420 a001 10946/15127*271443^(9/13) 4180999940915785 a001 6765/24476*271443^(10/13) 4180999941163835 a001 10946/15127*103682^(3/4) 4180999941196246 a001 6765/24476*103682^(5/6) 4180999941202105 a001 1346269/15127*15127^(2/5) 4180999941423706 m001 (Si(Pi)+ln(2+3^(1/2)))/(-GaussAGM+ZetaP(4)) 4180999941520132 a001 1762289/12238*9349^(7/19) 4180999941705001 a001 31622993/51841*9349^(4/19) 4180999941945809 a001 39088169/39603*9349^(3/19) 4180999942037188 a001 165580141/271443*9349^(4/19) 4180999942085654 a001 433494437/710647*9349^(4/19) 4180999942092725 a001 567451585/930249*9349^(4/19) 4180999942093756 a001 2971215073/4870847*9349^(4/19) 4180999942093907 a001 7778742049/12752043*9349^(4/19) 4180999942093929 a001 10182505537/16692641*9349^(4/19) 4180999942093932 a001 53316291173/87403803*9349^(4/19) 4180999942093932 a001 139583862445/228826127*9349^(4/19) 4180999942093932 a001 182717648081/299537289*9349^(4/19) 4180999942093933 a001 956722026041/1568397607*9349^(4/19) 4180999942093933 a001 2504730781961/4106118243*9349^(4/19) 4180999942093933 a001 3278735159921/5374978561*9349^(4/19) 4180999942093933 a001 10610209857723/17393796001*9349^(4/19) 4180999942093933 a001 4052739537881/6643838879*9349^(4/19) 4180999942093933 a001 1134903780/1860499*9349^(4/19) 4180999942093933 a001 591286729879/969323029*9349^(4/19) 4180999942093933 a001 225851433717/370248451*9349^(4/19) 4180999942093933 a001 21566892818/35355581*9349^(4/19) 4180999942093934 a001 32951280099/54018521*9349^(4/19) 4180999942093942 a001 1144206275/1875749*9349^(4/19) 4180999942094000 a001 1201881744/1970299*9349^(4/19) 4180999942094394 a001 1836311903/3010349*9349^(4/19) 4180999942097095 a001 701408733/1149851*9349^(4/19) 4180999942114012 a001 832040/15127*15127^(9/20) 4180999942115607 a001 66978574/109801*9349^(4/19) 4180999942140767 a001 9227465/9349*3571^(3/17) 4180999942242491 a001 9303105/15251*9349^(4/19) 4180999942519677 a004 Fibonacci(22)*Lucas(21)/(1/2+sqrt(5)/2)^24 4180999943031958 a001 514229/15127*15127^(1/2) 4180999943053227 a001 10946/15127*39603^(9/11) 4180999943112169 a001 39088169/64079*9349^(4/19) 4180999943295570 a001 6765/24476*39603^(10/11) 4180999943460097 a001 15456/13201*24476^(17/21) 4180999943537914 a001 74049690/17711 4180999943870252 a001 17711/64079*24476^(20/21) 4180999943934092 a001 317811/15127*15127^(11/20) 4180999944037694 a001 5702887/24476*9349^(6/19) 4180999944222656 a001 102334155/103682*9349^(3/19) 4180999944329926 a001 75025/39603*24476^(16/21) 4180999944456961 a001 121393/39603*24476^(5/7) 4180999944463465 a001 63245986/39603*9349^(2/19) 4180999944534928 a001 28657/39603*24476^(6/7) 4180999944554843 a001 267914296/271443*9349^(3/19) 4180999944603309 a001 701408733/710647*9349^(3/19) 4180999944610380 a001 1836311903/1860498*9349^(3/19) 4180999944611411 a001 4807526976/4870847*9349^(3/19) 4180999944611562 a001 12586269025/12752043*9349^(3/19) 4180999944611584 a001 32951280099/33385282*9349^(3/19) 4180999944611587 a001 86267571272/87403803*9349^(3/19) 4180999944611588 a001 225851433717/228826127*9349^(3/19) 4180999944611588 a001 591286729879/599074578*9349^(3/19) 4180999944611588 a001 1548008755920/1568397607*9349^(3/19) 4180999944611588 a001 4052739537881/4106118243*9349^(3/19) 4180999944611588 a001 4807525989/4870846*9349^(3/19) 4180999944611588 a001 6557470319842/6643838879*9349^(3/19) 4180999944611588 a001 2504730781961/2537720636*9349^(3/19) 4180999944611588 a001 956722026041/969323029*9349^(3/19) 4180999944611588 a001 365435296162/370248451*9349^(3/19) 4180999944611588 a001 139583862445/141422324*9349^(3/19) 4180999944611589 a001 53316291173/54018521*9349^(3/19) 4180999944611597 a001 20365011074/20633239*9349^(3/19) 4180999944611655 a001 7778742049/7881196*9349^(3/19) 4180999944612049 a001 2971215073/3010349*9349^(3/19) 4180999944614750 a001 1134903170/1149851*9349^(3/19) 4180999944633262 a001 433494437/439204*9349^(3/19) 4180999944760146 a001 165580141/167761*9349^(3/19) 4180999944796524 a004 Fibonacci(24)*Lucas(21)/(1/2+sqrt(5)/2)^26 4180999944867718 a001 196418/39603*24476^(2/3) 4180999944877621 a001 196418/15127*15127^(3/5) 4180999945072268 a001 23184/51841*24476^(19/21) 4180999945128711 a004 Fibonacci(26)*Lucas(21)/(1/2+sqrt(5)/2)^28 4180999945170102 a001 105937/13201*24476^(13/21) 4180999945177176 a004 Fibonacci(28)*Lucas(21)/(1/2+sqrt(5)/2)^30 4180999945184247 a004 Fibonacci(30)*Lucas(21)/(1/2+sqrt(5)/2)^32 4180999945185279 a004 Fibonacci(32)*Lucas(21)/(1/2+sqrt(5)/2)^34 4180999945185430 a004 Fibonacci(34)*Lucas(21)/(1/2+sqrt(5)/2)^36 4180999945185452 a004 Fibonacci(36)*Lucas(21)/(1/2+sqrt(5)/2)^38 4180999945185455 a004 Fibonacci(38)*Lucas(21)/(1/2+sqrt(5)/2)^40 4180999945185455 a004 Fibonacci(40)*Lucas(21)/(1/2+sqrt(5)/2)^42 4180999945185455 a004 Fibonacci(42)*Lucas(21)/(1/2+sqrt(5)/2)^44 4180999945185455 a004 Fibonacci(44)*Lucas(21)/(1/2+sqrt(5)/2)^46 4180999945185455 a004 Fibonacci(46)*Lucas(21)/(1/2+sqrt(5)/2)^48 4180999945185455 a004 Fibonacci(48)*Lucas(21)/(1/2+sqrt(5)/2)^50 4180999945185455 a004 Fibonacci(50)*Lucas(21)/(1/2+sqrt(5)/2)^52 4180999945185455 a004 Fibonacci(52)*Lucas(21)/(1/2+sqrt(5)/2)^54 4180999945185455 a004 Fibonacci(54)*Lucas(21)/(1/2+sqrt(5)/2)^56 4180999945185455 a004 Fibonacci(56)*Lucas(21)/(1/2+sqrt(5)/2)^58 4180999945185455 a004 Fibonacci(58)*Lucas(21)/(1/2+sqrt(5)/2)^60 4180999945185455 a004 Fibonacci(60)*Lucas(21)/(1/2+sqrt(5)/2)^62 4180999945185455 a004 Fibonacci(62)*Lucas(21)/(1/2+sqrt(5)/2)^64 4180999945185455 a004 Fibonacci(64)*Lucas(21)/(1/2+sqrt(5)/2)^66 4180999945185455 a004 Fibonacci(66)*Lucas(21)/(1/2+sqrt(5)/2)^68 4180999945185455 a004 Fibonacci(68)*Lucas(21)/(1/2+sqrt(5)/2)^70 4180999945185455 a004 Fibonacci(70)*Lucas(21)/(1/2+sqrt(5)/2)^72 4180999945185455 a004 Fibonacci(72)*Lucas(21)/(1/2+sqrt(5)/2)^74 4180999945185455 a004 Fibonacci(74)*Lucas(21)/(1/2+sqrt(5)/2)^76 4180999945185455 a004 Fibonacci(76)*Lucas(21)/(1/2+sqrt(5)/2)^78 4180999945185455 a004 Fibonacci(78)*Lucas(21)/(1/2+sqrt(5)/2)^80 4180999945185455 a004 Fibonacci(80)*Lucas(21)/(1/2+sqrt(5)/2)^82 4180999945185455 a004 Fibonacci(82)*Lucas(21)/(1/2+sqrt(5)/2)^84 4180999945185455 a004 Fibonacci(84)*Lucas(21)/(1/2+sqrt(5)/2)^86 4180999945185455 a004 Fibonacci(86)*Lucas(21)/(1/2+sqrt(5)/2)^88 4180999945185455 a004 Fibonacci(88)*Lucas(21)/(1/2+sqrt(5)/2)^90 4180999945185455 a004 Fibonacci(90)*Lucas(21)/(1/2+sqrt(5)/2)^92 4180999945185455 a004 Fibonacci(92)*Lucas(21)/(1/2+sqrt(5)/2)^94 4180999945185455 a004 Fibonacci(94)*Lucas(21)/(1/2+sqrt(5)/2)^96 4180999945185455 a004 Fibonacci(96)*Lucas(21)/(1/2+sqrt(5)/2)^98 4180999945185455 a004 Fibonacci(98)*Lucas(21)/(1/2+sqrt(5)/2)^100 4180999945185455 a004 Fibonacci(97)*Lucas(21)/(1/2+sqrt(5)/2)^99 4180999945185455 a004 Fibonacci(95)*Lucas(21)/(1/2+sqrt(5)/2)^97 4180999945185455 a004 Fibonacci(93)*Lucas(21)/(1/2+sqrt(5)/2)^95 4180999945185455 a004 Fibonacci(91)*Lucas(21)/(1/2+sqrt(5)/2)^93 4180999945185455 a004 Fibonacci(89)*Lucas(21)/(1/2+sqrt(5)/2)^91 4180999945185455 a004 Fibonacci(87)*Lucas(21)/(1/2+sqrt(5)/2)^89 4180999945185455 a004 Fibonacci(85)*Lucas(21)/(1/2+sqrt(5)/2)^87 4180999945185455 a004 Fibonacci(83)*Lucas(21)/(1/2+sqrt(5)/2)^85 4180999945185455 a004 Fibonacci(81)*Lucas(21)/(1/2+sqrt(5)/2)^83 4180999945185455 a004 Fibonacci(79)*Lucas(21)/(1/2+sqrt(5)/2)^81 4180999945185455 a004 Fibonacci(77)*Lucas(21)/(1/2+sqrt(5)/2)^79 4180999945185455 a004 Fibonacci(75)*Lucas(21)/(1/2+sqrt(5)/2)^77 4180999945185455 a004 Fibonacci(73)*Lucas(21)/(1/2+sqrt(5)/2)^75 4180999945185455 a004 Fibonacci(71)*Lucas(21)/(1/2+sqrt(5)/2)^73 4180999945185455 a004 Fibonacci(69)*Lucas(21)/(1/2+sqrt(5)/2)^71 4180999945185455 a004 Fibonacci(67)*Lucas(21)/(1/2+sqrt(5)/2)^69 4180999945185455 a004 Fibonacci(65)*Lucas(21)/(1/2+sqrt(5)/2)^67 4180999945185455 a004 Fibonacci(63)*Lucas(21)/(1/2+sqrt(5)/2)^65 4180999945185455 a004 Fibonacci(61)*Lucas(21)/(1/2+sqrt(5)/2)^63 4180999945185455 a004 Fibonacci(59)*Lucas(21)/(1/2+sqrt(5)/2)^61 4180999945185455 a004 Fibonacci(57)*Lucas(21)/(1/2+sqrt(5)/2)^59 4180999945185455 a004 Fibonacci(55)*Lucas(21)/(1/2+sqrt(5)/2)^57 4180999945185455 a004 Fibonacci(53)*Lucas(21)/(1/2+sqrt(5)/2)^55 4180999945185455 a004 Fibonacci(51)*Lucas(21)/(1/2+sqrt(5)/2)^53 4180999945185455 a004 Fibonacci(49)*Lucas(21)/(1/2+sqrt(5)/2)^51 4180999945185455 a004 Fibonacci(47)*Lucas(21)/(1/2+sqrt(5)/2)^49 4180999945185455 a004 Fibonacci(45)*Lucas(21)/(1/2+sqrt(5)/2)^47 4180999945185455 a004 Fibonacci(43)*Lucas(21)/(1/2+sqrt(5)/2)^45 4180999945185455 a001 1/5473*(1/2+1/2*5^(1/2))^40 4180999945185455 a004 Fibonacci(41)*Lucas(21)/(1/2+sqrt(5)/2)^43 4180999945185455 a004 Fibonacci(39)*Lucas(21)/(1/2+sqrt(5)/2)^41 4180999945185457 a004 Fibonacci(37)*Lucas(21)/(1/2+sqrt(5)/2)^39 4180999945185465 a004 Fibonacci(35)*Lucas(21)/(1/2+sqrt(5)/2)^37 4180999945185523 a004 Fibonacci(33)*Lucas(21)/(1/2+sqrt(5)/2)^35 4180999945185917 a004 Fibonacci(31)*Lucas(21)/(1/2+sqrt(5)/2)^33 4180999945188618 a004 Fibonacci(29)*Lucas(21)/(1/2+sqrt(5)/2)^31 4180999945207130 a004 Fibonacci(27)*Lucas(21)/(1/2+sqrt(5)/2)^29 4180999945228670 a001 5473/2889*5778^(8/9) 4180999945277420 a001 46368/167761*24476^(20/21) 4180999945334014 a004 Fibonacci(25)*Lucas(21)/(1/2+sqrt(5)/2)^27 4180999945482723 a001 121393/439204*24476^(20/21) 4180999945512677 a001 317811/1149851*24476^(20/21) 4180999945513881 a001 514229/39603*24476^(4/7) 4180999945517047 a001 832040/3010349*24476^(20/21) 4180999945517684 a001 2178309/7881196*24476^(20/21) 4180999945517777 a001 5702887/20633239*24476^(20/21) 4180999945517791 a001 14930352/54018521*24476^(20/21) 4180999945517793 a001 39088169/141422324*24476^(20/21) 4180999945517793 a001 102334155/370248451*24476^(20/21) 4180999945517793 a001 267914296/969323029*24476^(20/21) 4180999945517793 a001 701408733/2537720636*24476^(20/21) 4180999945517793 a001 1836311903/6643838879*24476^(20/21) 4180999945517793 a001 4807526976/17393796001*24476^(20/21) 4180999945517793 a001 12586269025/45537549124*24476^(20/21) 4180999945517793 a001 32951280099/119218851371*24476^(20/21) 4180999945517793 a001 86267571272/312119004989*24476^(20/21) 4180999945517793 a001 225851433717/817138163596*24476^(20/21) 4180999945517793 a001 1548008755920/5600748293801*24476^(20/21) 4180999945517793 a001 139583862445/505019158607*24476^(20/21) 4180999945517793 a001 53316291173/192900153618*24476^(20/21) 4180999945517793 a001 20365011074/73681302247*24476^(20/21) 4180999945517793 a001 7778742049/28143753123*24476^(20/21) 4180999945517793 a001 2971215073/10749957122*24476^(20/21) 4180999945517793 a001 1134903170/4106118243*24476^(20/21) 4180999945517793 a001 433494437/1568397607*24476^(20/21) 4180999945517793 a001 165580141/599074578*24476^(20/21) 4180999945517793 a001 63245986/228826127*24476^(20/21) 4180999945517794 a001 24157817/87403803*24476^(20/21) 4180999945517799 a001 9227465/33385282*24476^(20/21) 4180999945517835 a001 3524578/12752043*24476^(20/21) 4180999945518078 a001 1346269/4870847*24476^(20/21) 4180999945519748 a001 514229/1860498*24476^(20/21) 4180999945531189 a001 196418/710647*24476^(20/21) 4180999945609608 a001 75025/271443*24476^(20/21) 4180999945629824 a001 63245986/64079*9349^(3/19) 4180999945712778 a001 121393/15127*15127^(13/20) 4180999945736642 a001 121393/271443*24476^(19/21) 4180999945833573 a001 317811/710647*24476^(19/21) 4180999945841849 a001 832040/39603*24476^(11/21) 4180999945847715 a001 416020/930249*24476^(19/21) 4180999945849779 a001 2178309/4870847*24476^(19/21) 4180999945850080 a001 5702887/12752043*24476^(19/21) 4180999945850124 a001 7465176/16692641*24476^(19/21) 4180999945850130 a001 39088169/87403803*24476^(19/21) 4180999945850131 a001 102334155/228826127*24476^(19/21) 4180999945850131 a001 133957148/299537289*24476^(19/21) 4180999945850131 a001 701408733/1568397607*24476^(19/21) 4180999945850131 a001 1836311903/4106118243*24476^(19/21) 4180999945850131 a001 2403763488/5374978561*24476^(19/21) 4180999945850131 a001 12586269025/28143753123*24476^(19/21) 4180999945850131 a001 32951280099/73681302247*24476^(19/21) 4180999945850131 a001 43133785636/96450076809*24476^(19/21) 4180999945850131 a001 225851433717/505019158607*24476^(19/21) 4180999945850131 a001 10610209857723/23725150497407*24476^(19/21) 4180999945850131 a001 182717648081/408569081798*24476^(19/21) 4180999945850131 a001 139583862445/312119004989*24476^(19/21) 4180999945850131 a001 53316291173/119218851371*24476^(19/21) 4180999945850131 a001 10182505537/22768774562*24476^(19/21) 4180999945850131 a001 7778742049/17393796001*24476^(19/21) 4180999945850131 a001 2971215073/6643838879*24476^(19/21) 4180999945850131 a001 567451585/1268860318*24476^(19/21) 4180999945850131 a001 433494437/969323029*24476^(19/21) 4180999945850131 a001 165580141/370248451*24476^(19/21) 4180999945850132 a001 31622993/70711162*24476^(19/21) 4180999945850134 a001 24157817/54018521*24476^(19/21) 4180999945850151 a001 9227465/20633239*24476^(19/21) 4180999945850266 a001 1762289/3940598*24476^(19/21) 4180999945851054 a001 1346269/3010349*24476^(19/21) 4180999945856456 a001 514229/1149851*24476^(19/21) 4180999945893480 a001 98209/219602*24476^(19/21) 4180999945942096 a001 75025/103682*24476^(6/7) 4180999945991845 a001 17711/39603*64079^(19/23) 4180999946069131 a001 121393/103682*24476^(17/21) 4180999946147098 a001 28657/103682*24476^(20/21) 4180999946147249 a001 75025/167761*24476^(19/21) 4180999946147399 a001 196418/271443*24476^(6/7) 4180999946175856 a001 1346269/39603*24476^(10/21) 4180999946177353 a001 514229/710647*24476^(6/7) 4180999946181723 a001 1346269/1860498*24476^(6/7) 4180999946182360 a001 3524578/4870847*24476^(6/7) 4180999946182453 a001 9227465/12752043*24476^(6/7) 4180999946182467 a001 24157817/33385282*24476^(6/7) 4180999946182469 a001 63245986/87403803*24476^(6/7) 4180999946182469 a001 165580141/228826127*24476^(6/7) 4180999946182469 a001 433494437/599074578*24476^(6/7) 4180999946182469 a001 1134903170/1568397607*24476^(6/7) 4180999946182469 a001 2971215073/4106118243*24476^(6/7) 4180999946182469 a001 7778742049/10749957122*24476^(6/7) 4180999946182469 a001 20365011074/28143753123*24476^(6/7) 4180999946182469 a001 53316291173/73681302247*24476^(6/7) 4180999946182469 a001 139583862445/192900153618*24476^(6/7) 4180999946182469 a001 365435296162/505019158607*24476^(6/7) 4180999946182469 a001 10610209857723/14662949395604*24476^(6/7) 4180999946182469 a001 225851433717/312119004989*24476^(6/7) 4180999946182469 a001 86267571272/119218851371*24476^(6/7) 4180999946182469 a001 32951280099/45537549124*24476^(6/7) 4180999946182469 a001 12586269025/17393796001*24476^(6/7) 4180999946182469 a001 4807526976/6643838879*24476^(6/7) 4180999946182469 a001 1836311903/2537720636*24476^(6/7) 4180999946182469 a001 701408733/969323029*24476^(6/7) 4180999946182469 a001 267914296/370248451*24476^(6/7) 4180999946182469 a001 102334155/141422324*24476^(6/7) 4180999946182470 a001 39088169/54018521*24476^(6/7) 4180999946182475 a001 14930352/20633239*24476^(6/7) 4180999946182511 a001 5702887/7881196*24476^(6/7) 4180999946182754 a001 2178309/3010349*24476^(6/7) 4180999946184424 a001 832040/1149851*24476^(6/7) 4180999946195865 a001 317811/439204*24476^(6/7) 4180999946203692 a004 Fibonacci(23)*Lucas(21)/(1/2+sqrt(5)/2)^25 4180999946274284 a001 121393/167761*24476^(6/7) 4180999946449784 a001 105937/90481*24476^(17/21) 4180999946479888 a001 98209/51841*24476^(16/21) 4180999946505320 a001 832040/710647*24476^(17/21) 4180999946507557 a001 726103/13201*24476^(3/7) 4180999946513423 a001 726103/620166*24476^(17/21) 4180999946514605 a001 5702887/4870847*24476^(17/21) 4180999946514778 a001 4976784/4250681*24476^(17/21) 4180999946514803 a001 39088169/33385282*24476^(17/21) 4180999946514807 a001 34111385/29134601*24476^(17/21) 4180999946514807 a001 267914296/228826127*24476^(17/21) 4180999946514807 a001 233802911/199691526*24476^(17/21) 4180999946514807 a001 1836311903/1568397607*24476^(17/21) 4180999946514807 a001 1602508992/1368706081*24476^(17/21) 4180999946514807 a001 12586269025/10749957122*24476^(17/21) 4180999946514807 a001 10983760033/9381251041*24476^(17/21) 4180999946514807 a001 86267571272/73681302247*24476^(17/21) 4180999946514807 a001 75283811239/64300051206*24476^(17/21) 4180999946514807 a001 2504730781961/2139295485799*24476^(17/21) 4180999946514807 a001 365435296162/312119004989*24476^(17/21) 4180999946514807 a001 139583862445/119218851371*24476^(17/21) 4180999946514807 a001 53316291173/45537549124*24476^(17/21) 4180999946514807 a001 20365011074/17393796001*24476^(17/21) 4180999946514807 a001 7778742049/6643838879*24476^(17/21) 4180999946514807 a001 2971215073/2537720636*24476^(17/21) 4180999946514807 a001 1134903170/969323029*24476^(17/21) 4180999946514807 a001 433494437/370248451*24476^(17/21) 4180999946514807 a001 165580141/141422324*24476^(17/21) 4180999946514809 a001 63245986/54018521*24476^(17/21) 4180999946514818 a001 24157817/20633239*24476^(17/21) 4180999946514884 a001 9227465/7881196*24476^(17/21) 4180999946515336 a001 3524578/3010349*24476^(17/21) 4180999946518431 a001 1346269/1149851*24476^(17/21) 4180999946539644 a001 514229/439204*24476^(17/21) 4180999946555385 a001 9227465/24476*9349^(5/19) 4180999946684438 a001 313679521/75025 4180999946685040 a001 196418/167761*24476^(17/21) 4180999946740311 a001 165580141/103682*9349^(2/19) 4180999946758048 a001 17711/15127*15127^(17/20) 4180999946782272 a001 317811/103682*24476^(5/7) 4180999946793563 a001 514229/271443*24476^(16/21) 4180999946811774 a001 46368/64079*24476^(6/7) 4180999946831657 a001 75025/15127*15127^(7/10) 4180999946832997 a001 17711/39603*817138163596^(1/3) 4180999946832997 a001 17711/39603*(1/2+1/2*5^(1/2))^19 4180999946832997 a001 17711/39603*87403803^(1/2) 4180999946839328 a001 1346269/710647*24476^(16/21) 4180999946840138 a001 3524578/39603*24476^(8/21) 4180999946846005 a001 1762289/930249*24476^(16/21) 4180999946846979 a001 9227465/4870847*24476^(16/21) 4180999946847121 a001 24157817/12752043*24476^(16/21) 4180999946847142 a001 31622993/16692641*24476^(16/21) 4180999946847145 a001 165580141/87403803*24476^(16/21) 4180999946847145 a001 433494437/228826127*24476^(16/21) 4180999946847145 a001 567451585/299537289*24476^(16/21) 4180999946847145 a001 2971215073/1568397607*24476^(16/21) 4180999946847145 a001 7778742049/4106118243*24476^(16/21) 4180999946847145 a001 10182505537/5374978561*24476^(16/21) 4180999946847145 a001 53316291173/28143753123*24476^(16/21) 4180999946847145 a001 139583862445/73681302247*24476^(16/21) 4180999946847145 a001 182717648081/96450076809*24476^(16/21) 4180999946847145 a001 956722026041/505019158607*24476^(16/21) 4180999946847145 a001 10610209857723/5600748293801*24476^(16/21) 4180999946847145 a001 591286729879/312119004989*24476^(16/21) 4180999946847145 a001 225851433717/119218851371*24476^(16/21) 4180999946847145 a001 21566892818/11384387281*24476^(16/21) 4180999946847145 a001 32951280099/17393796001*24476^(16/21) 4180999946847145 a001 12586269025/6643838879*24476^(16/21) 4180999946847145 a001 1201881744/634430159*24476^(16/21) 4180999946847145 a001 1836311903/969323029*24476^(16/21) 4180999946847145 a001 701408733/370248451*24476^(16/21) 4180999946847145 a001 66978574/35355581*24476^(16/21) 4180999946847147 a001 102334155/54018521*24476^(16/21) 4180999946847154 a001 39088169/20633239*24476^(16/21) 4180999946847209 a001 3732588/1970299*24476^(16/21) 4180999946847581 a001 5702887/3010349*24476^(16/21) 4180999946850131 a001 2178309/1149851*24476^(16/21) 4180999946867612 a001 208010/109801*24476^(16/21) 4180999946981120 a001 34111385/13201*9349^(1/19) 4180999946987425 a001 317811/167761*24476^(16/21) 4180999947072498 a001 433494437/271443*9349^(2/19) 4180999947120964 a001 1134903170/710647*9349^(2/19) 4180999947121531 a001 832040/271443*24476^(5/7) 4180999947126052 a001 514229/103682*24476^(2/3) 4180999947128035 a001 2971215073/1860498*9349^(2/19) 4180999947129066 a001 7778742049/4870847*9349^(2/19) 4180999947129217 a001 20365011074/12752043*9349^(2/19) 4180999947129239 a001 53316291173/33385282*9349^(2/19) 4180999947129242 a001 139583862445/87403803*9349^(2/19) 4180999947129243 a001 365435296162/228826127*9349^(2/19) 4180999947129243 a001 956722026041/599074578*9349^(2/19) 4180999947129243 a001 2504730781961/1568397607*9349^(2/19) 4180999947129243 a001 6557470319842/4106118243*9349^(2/19) 4180999947129243 a001 10610209857723/6643838879*9349^(2/19) 4180999947129243 a001 4052739537881/2537720636*9349^(2/19) 4180999947129243 a001 1548008755920/969323029*9349^(2/19) 4180999947129243 a001 591286729879/370248451*9349^(2/19) 4180999947129243 a001 225851433717/141422324*9349^(2/19) 4180999947129244 a001 86267571272/54018521*9349^(2/19) 4180999947129253 a001 32951280099/20633239*9349^(2/19) 4180999947129310 a001 12586269025/7881196*9349^(2/19) 4180999947129704 a001 4807526976/3010349*9349^(2/19) 4180999947132405 a001 1836311903/1149851*9349^(2/19) 4180999947140901 a001 17711/39603*103682^(19/24) 4180999947150917 a001 701408733/439204*9349^(2/19) 4180999947171028 a001 311187/101521*24476^(5/7) 4180999947172383 a001 5702887/39603*24476^(1/3) 4180999947178250 a001 5702887/1860498*24476^(5/7) 4180999947179303 a001 14930352/4870847*24476^(5/7) 4180999947179457 a001 39088169/12752043*24476^(5/7) 4180999947179479 a001 14619165/4769326*24476^(5/7) 4180999947179483 a001 267914296/87403803*24476^(5/7) 4180999947179483 a001 701408733/228826127*24476^(5/7) 4180999947179483 a001 1836311903/599074578*24476^(5/7) 4180999947179483 a001 686789568/224056801*24476^(5/7) 4180999947179483 a001 12586269025/4106118243*24476^(5/7) 4180999947179483 a001 32951280099/10749957122*24476^(5/7) 4180999947179483 a001 86267571272/28143753123*24476^(5/7) 4180999947179483 a001 32264490531/10525900321*24476^(5/7) 4180999947179483 a001 591286729879/192900153618*24476^(5/7) 4180999947179483 a001 1548008755920/505019158607*24476^(5/7) 4180999947179483 a001 1515744265389/494493258286*24476^(5/7) 4180999947179483 a001 2504730781961/817138163596*24476^(5/7) 4180999947179483 a001 956722026041/312119004989*24476^(5/7) 4180999947179483 a001 365435296162/119218851371*24476^(5/7) 4180999947179483 a001 139583862445/45537549124*24476^(5/7) 4180999947179483 a001 53316291173/17393796001*24476^(5/7) 4180999947179483 a001 20365011074/6643838879*24476^(5/7) 4180999947179483 a001 7778742049/2537720636*24476^(5/7) 4180999947179483 a001 2971215073/969323029*24476^(5/7) 4180999947179483 a001 1134903170/370248451*24476^(5/7) 4180999947179483 a001 433494437/141422324*24476^(5/7) 4180999947179485 a001 165580141/54018521*24476^(5/7) 4180999947179493 a001 63245986/20633239*24476^(5/7) 4180999947179552 a001 24157817/7881196*24476^(5/7) 4180999947179954 a001 9227465/3010349*24476^(5/7) 4180999947182713 a001 3524578/1149851*24476^(5/7) 4180999947201619 a001 1346269/439204*24476^(5/7) 4180999947207742 a001 6624/2161*15127^(3/4) 4180999947277801 a001 267914296/167761*9349^(2/19) 4180999947331204 a001 514229/167761*24476^(5/7) 4180999947454019 a001 416020/51841*24476^(13/21) 4180999947455538 a001 1346269/271443*24476^(2/3) 4180999947503610 a001 3524578/710647*24476^(2/3) 4180999947504757 a001 9227465/39603*24476^(2/7) 4180999947510623 a001 9227465/1860498*24476^(2/3) 4180999947511646 a001 24157817/4870847*24476^(2/3) 4180999947511796 a001 63245986/12752043*24476^(2/3) 4180999947511817 a001 165580141/33385282*24476^(2/3) 4180999947511821 a001 433494437/87403803*24476^(2/3) 4180999947511821 a001 1134903170/228826127*24476^(2/3) 4180999947511821 a001 2971215073/599074578*24476^(2/3) 4180999947511821 a001 7778742049/1568397607*24476^(2/3) 4180999947511821 a001 20365011074/4106118243*24476^(2/3) 4180999947511821 a001 53316291173/10749957122*24476^(2/3) 4180999947511821 a001 139583862445/28143753123*24476^(2/3) 4180999947511821 a001 365435296162/73681302247*24476^(2/3) 4180999947511821 a001 956722026041/192900153618*24476^(2/3) 4180999947511821 a001 2504730781961/505019158607*24476^(2/3) 4180999947511821 a001 10610209857723/2139295485799*24476^(2/3) 4180999947511821 a001 4052739537881/817138163596*24476^(2/3) 4180999947511821 a001 140728068720/28374454999*24476^(2/3) 4180999947511821 a001 591286729879/119218851371*24476^(2/3) 4180999947511821 a001 225851433717/45537549124*24476^(2/3) 4180999947511821 a001 86267571272/17393796001*24476^(2/3) 4180999947511821 a001 32951280099/6643838879*24476^(2/3) 4180999947511821 a001 1144206275/230701876*24476^(2/3) 4180999947511821 a001 4807526976/969323029*24476^(2/3) 4180999947511821 a001 1836311903/370248451*24476^(2/3) 4180999947511821 a001 701408733/141422324*24476^(2/3) 4180999947511823 a001 267914296/54018521*24476^(2/3) 4180999947511831 a001 9303105/1875749*24476^(2/3) 4180999947511888 a001 39088169/7881196*24476^(2/3) 4180999947512279 a001 14930352/3010349*24476^(2/3) 4180999947514958 a001 5702887/1149851*24476^(2/3) 4180999947533319 a001 2178309/439204*24476^(2/3) 4180999947659172 a001 75640/15251*24476^(2/3) 4180999947681603 a001 75025/64079*24476^(17/21) 4180999947787239 a001 726103/90481*24476^(13/21) 4180999947788027 a001 1346269/103682*24476^(4/7) 4180999947808020 a001 24157817/15127*5778^(1/9) 4180999947808637 a001 121393/64079*24476^(16/21) 4180999947835855 a001 5702887/710647*24476^(13/21) 4180999947837081 a001 4976784/13201*24476^(5/21) 4180999947842948 a001 829464/103361*24476^(13/21) 4180999947843982 a001 39088169/4870847*24476^(13/21) 4180999947844133 a001 34111385/4250681*24476^(13/21) 4180999947844155 a001 133957148/16692641*24476^(13/21) 4180999947844159 a001 233802911/29134601*24476^(13/21) 4180999947844159 a001 1836311903/228826127*24476^(13/21) 4180999947844159 a001 267084832/33281921*24476^(13/21) 4180999947844159 a001 12586269025/1568397607*24476^(13/21) 4180999947844159 a001 10983760033/1368706081*24476^(13/21) 4180999947844159 a001 43133785636/5374978561*24476^(13/21) 4180999947844159 a001 75283811239/9381251041*24476^(13/21) 4180999947844159 a001 591286729879/73681302247*24476^(13/21) 4180999947844159 a001 86000486440/10716675201*24476^(13/21) 4180999947844159 a001 4052739537881/505019158607*24476^(13/21) 4180999947844159 a001 3536736619241/440719107401*24476^(13/21) 4180999947844159 a001 3278735159921/408569081798*24476^(13/21) 4180999947844159 a001 2504730781961/312119004989*24476^(13/21) 4180999947844159 a001 956722026041/119218851371*24476^(13/21) 4180999947844159 a001 182717648081/22768774562*24476^(13/21) 4180999947844159 a001 139583862445/17393796001*24476^(13/21) 4180999947844159 a001 53316291173/6643838879*24476^(13/21) 4180999947844159 a001 10182505537/1268860318*24476^(13/21) 4180999947844159 a001 7778742049/969323029*24476^(13/21) 4180999947844159 a001 2971215073/370248451*24476^(13/21) 4180999947844159 a001 567451585/70711162*24476^(13/21) 4180999947844161 a001 433494437/54018521*24476^(13/21) 4180999947844169 a001 165580141/20633239*24476^(13/21) 4180999947844227 a001 31622993/3940598*24476^(13/21) 4180999947844622 a001 24157817/3010349*24476^(13/21) 4180999947847331 a001 9227465/1149851*24476^(13/21) 4180999947865901 a001 1762289/219602*24476^(13/21) 4180999947886604 a001 28657/64079*24476^(19/21) 4180999947993179 a001 1346269/167761*24476^(13/21) 4180999948119727 a001 46347/2206*24476^(11/21) 4180999948119820 a001 3524578/271443*24476^(4/7) 4180999948147479 a001 102334155/64079*9349^(2/19) 4180999948168228 a001 9227465/710647*24476^(4/7) 4180999948169424 a001 24157817/39603*24476^(4/21) 4180999948175291 a001 24157817/1860498*24476^(4/7) 4180999948176321 a001 63245986/4870847*24476^(4/7) 4180999948176471 a001 165580141/12752043*24476^(4/7) 4180999948176493 a001 433494437/33385282*24476^(4/7) 4180999948176497 a001 1134903170/87403803*24476^(4/7) 4180999948176497 a001 2971215073/228826127*24476^(4/7) 4180999948176497 a001 7778742049/599074578*24476^(4/7) 4180999948176497 a001 20365011074/1568397607*24476^(4/7) 4180999948176497 a001 53316291173/4106118243*24476^(4/7) 4180999948176497 a001 139583862445/10749957122*24476^(4/7) 4180999948176497 a001 365435296162/28143753123*24476^(4/7) 4180999948176497 a001 956722026041/73681302247*24476^(4/7) 4180999948176497 a001 2504730781961/192900153618*24476^(4/7) 4180999948176497 a001 10610209857723/817138163596*24476^(4/7) 4180999948176497 a001 4052739537881/312119004989*24476^(4/7) 4180999948176497 a001 1548008755920/119218851371*24476^(4/7) 4180999948176497 a001 591286729879/45537549124*24476^(4/7) 4180999948176497 a001 7787980473/599786069*24476^(4/7) 4180999948176497 a001 86267571272/6643838879*24476^(4/7) 4180999948176497 a001 32951280099/2537720636*24476^(4/7) 4180999948176497 a001 12586269025/969323029*24476^(4/7) 4180999948176497 a001 4807526976/370248451*24476^(4/7) 4180999948176497 a001 1836311903/141422324*24476^(4/7) 4180999948176499 a001 701408733/54018521*24476^(4/7) 4180999948176507 a001 9238424/711491*24476^(4/7) 4180999948176564 a001 102334155/7881196*24476^(4/7) 4180999948176958 a001 39088169/3010349*24476^(4/7) 4180999948179656 a001 14930352/1149851*24476^(4/7) 4180999948180149 a001 17711/103682*64079^(21/23) 4180999948198146 a001 5702887/439204*24476^(4/7) 4180999948219394 a001 196418/64079*24476^(5/7) 4180999948324880 a001 2178309/167761*24476^(4/7) 4180999948357233 a001 15456/13201*64079^(17/23) 4180999948452065 a001 5702887/271443*24476^(11/21) 4180999948452309 a001 1762289/51841*24476^(10/21) 4180999948480538 a004 Fibonacci(22)*Lucas(23)/(1/2+sqrt(5)/2)^26 4180999948500552 a001 14930352/710647*24476^(11/21) 4180999948501760 a001 39088169/39603*24476^(1/7) 4180999948507627 a001 39088169/1860498*24476^(11/21) 4180999948508659 a001 102334155/4870847*24476^(11/21) 4180999948508809 a001 267914296/12752043*24476^(11/21) 4180999948508831 a001 701408733/33385282*24476^(11/21) 4180999948508835 a001 1836311903/87403803*24476^(11/21) 4180999948508835 a001 102287808/4868641*24476^(11/21) 4180999948508835 a001 12586269025/599074578*24476^(11/21) 4180999948508835 a001 32951280099/1568397607*24476^(11/21) 4180999948508835 a001 86267571272/4106118243*24476^(11/21) 4180999948508835 a001 225851433717/10749957122*24476^(11/21) 4180999948508835 a001 591286729879/28143753123*24476^(11/21) 4180999948508835 a001 1548008755920/73681302247*24476^(11/21) 4180999948508835 a001 4052739537881/192900153618*24476^(11/21) 4180999948508835 a001 225749145909/10745088481*24476^(11/21) 4180999948508835 a001 6557470319842/312119004989*24476^(11/21) 4180999948508835 a001 2504730781961/119218851371*24476^(11/21) 4180999948508835 a001 956722026041/45537549124*24476^(11/21) 4180999948508835 a001 365435296162/17393796001*24476^(11/21) 4180999948508835 a001 139583862445/6643838879*24476^(11/21) 4180999948508835 a001 53316291173/2537720636*24476^(11/21) 4180999948508835 a001 20365011074/969323029*24476^(11/21) 4180999948508835 a001 7778742049/370248451*24476^(11/21) 4180999948508835 a001 2971215073/141422324*24476^(11/21) 4180999948508837 a001 1134903170/54018521*24476^(11/21) 4180999948508845 a001 433494437/20633239*24476^(11/21) 4180999948508902 a001 165580141/7881196*24476^(11/21) 4180999948509297 a001 63245986/3010349*24476^(11/21) 4180999948511999 a001 24157817/1149851*24476^(11/21) 4180999948521779 a001 317811/64079*24476^(2/3) 4180999948530519 a001 9227465/439204*24476^(11/21) 4180999948657461 a001 3524578/167761*24476^(11/21) 4180999948673368 a001 17711/167761*64079^(22/23) 4180999948777963 a001 121393/39603*64079^(15/23) 4180999948784439 a001 9227465/271443*24476^(10/21) 4180999948784554 a001 5702887/103682*24476^(3/7) 4180999948832896 a001 24157817/710647*24476^(10/21) 4180999948834099 a001 63245986/39603*24476^(2/21) 4180999948839965 a001 31622993/930249*24476^(10/21) 4180999948840997 a001 165580141/4870847*24476^(10/21) 4180999948841147 a001 433494437/12752043*24476^(10/21) 4180999948841169 a001 567451585/16692641*24476^(10/21) 4180999948841173 a001 2971215073/87403803*24476^(10/21) 4180999948841173 a001 7778742049/228826127*24476^(10/21) 4180999948841173 a001 10182505537/299537289*24476^(10/21) 4180999948841173 a001 53316291173/1568397607*24476^(10/21) 4180999948841173 a001 139583862445/4106118243*24476^(10/21) 4180999948841173 a001 182717648081/5374978561*24476^(10/21) 4180999948841173 a001 956722026041/28143753123*24476^(10/21) 4180999948841173 a001 2504730781961/73681302247*24476^(10/21) 4180999948841173 a001 3278735159921/96450076809*24476^(10/21) 4180999948841173 a001 10610209857723/312119004989*24476^(10/21) 4180999948841173 a001 4052739537881/119218851371*24476^(10/21) 4180999948841173 a001 387002188980/11384387281*24476^(10/21) 4180999948841173 a001 591286729879/17393796001*24476^(10/21) 4180999948841173 a001 225851433717/6643838879*24476^(10/21) 4180999948841173 a001 1135099622/33391061*24476^(10/21) 4180999948841173 a001 32951280099/969323029*24476^(10/21) 4180999948841173 a001 12586269025/370248451*24476^(10/21) 4180999948841173 a001 1201881744/35355581*24476^(10/21) 4180999948841175 a001 1836311903/54018521*24476^(10/21) 4180999948841183 a001 701408733/20633239*24476^(10/21) 4180999948841240 a001 66978574/1970299*24476^(10/21) 4180999948841634 a001 102334155/3010349*24476^(10/21) 4180999948844335 a001 39088169/1149851*24476^(10/21) 4180999948862844 a001 196452/5779*24476^(10/21) 4180999948865558 a001 514229/64079*24476^(13/21) 4180999948900653 a001 196418/39603*64079^(14/23) 4180999948914971 a001 105937/13201*64079^(13/23) 4180999948938995 a001 75025/39603*64079^(16/23) 4180999948970683 a001 514229/39603*64079^(12/23) 4180999948989706 a001 5702887/167761*24476^(10/21) 4180999949010584 a001 832040/39603*64079^(11/23) 4180999949056525 a001 1346269/39603*64079^(10/23) 4180999949073026 a001 3732588/6119*9349^(4/19) 4180999949088169 a001 410611824/98209 4180999949092985 a001 17711/103682*439204^(7/9) 4180999949100158 a001 726103/13201*64079^(9/23) 4180999949109800 a001 17711/103682*7881196^(7/11) 4180999949109837 a001 17711/103682*20633239^(3/5) 4180999949109843 a001 17711/103682*141422324^(7/13) 4180999949109843 a001 17711/103682*2537720636^(7/15) 4180999949109843 a001 17711/103682*17393796001^(3/7) 4180999949109843 a001 17711/103682*45537549124^(7/17) 4180999949109843 a001 17711/103682*14662949395604^(1/3) 4180999949109843 a001 17711/103682*(1/2+1/2*5^(1/2))^21 4180999949109843 a001 17711/103682*192900153618^(7/18) 4180999949109843 a001 17711/103682*10749957122^(7/16) 4180999949109843 a001 15456/13201*45537549124^(1/3) 4180999949109843 a001 15456/13201*(1/2+1/2*5^(1/2))^17 4180999949109843 a001 17711/103682*599074578^(1/2) 4180999949109845 a001 17711/103682*33385282^(7/12) 4180999949109856 a001 15456/13201*12752043^(1/2) 4180999949110689 a001 17711/103682*1860498^(7/10) 4180999949116052 a001 17711/103682*710647^(3/4) 4180999949116763 a001 4976784/90481*24476^(3/7) 4180999949116927 a001 9227465/103682*24476^(8/21) 4180999949135260 a001 17711/39603*39603^(19/22) 4180999949144673 a001 3524578/39603*64079^(8/23) 4180999949165232 a001 39088169/710647*24476^(3/7) 4180999949166437 a001 34111385/13201*24476^(1/21) 4180999949172303 a001 831985/15126*24476^(3/7) 4180999949173335 a001 267914296/4870847*24476^(3/7) 4180999949173485 a001 233802911/4250681*24476^(3/7) 4180999949173507 a001 1836311903/33385282*24476^(3/7) 4180999949173511 a001 1602508992/29134601*24476^(3/7) 4180999949173511 a001 12586269025/228826127*24476^(3/7) 4180999949173511 a001 10983760033/199691526*24476^(3/7) 4180999949173511 a001 86267571272/1568397607*24476^(3/7) 4180999949173511 a001 75283811239/1368706081*24476^(3/7) 4180999949173511 a001 591286729879/10749957122*24476^(3/7) 4180999949173511 a001 12585437040/228811001*24476^(3/7) 4180999949173511 a001 4052739537881/73681302247*24476^(3/7) 4180999949173511 a001 3536736619241/64300051206*24476^(3/7) 4180999949173511 a001 6557470319842/119218851371*24476^(3/7) 4180999949173511 a001 2504730781961/45537549124*24476^(3/7) 4180999949173511 a001 956722026041/17393796001*24476^(3/7) 4180999949173511 a001 365435296162/6643838879*24476^(3/7) 4180999949173511 a001 139583862445/2537720636*24476^(3/7) 4180999949173511 a001 53316291173/969323029*24476^(3/7) 4180999949173511 a001 20365011074/370248451*24476^(3/7) 4180999949173511 a001 7778742049/141422324*24476^(3/7) 4180999949173512 a001 2971215073/54018521*24476^(3/7) 4180999949173521 a001 1134903170/20633239*24476^(3/7) 4180999949173578 a001 433494437/7881196*24476^(3/7) 4180999949173972 a001 165580141/3010349*24476^(3/7) 4180999949176674 a001 63245986/1149851*24476^(3/7) 4180999949188851 a001 5702887/39603*64079^(7/23) 4180999949193526 a001 832040/64079*24476^(4/7) 4180999949195187 a001 24157817/439204*24476^(3/7) 4180999949233158 a001 9227465/39603*64079^(6/23) 4180999949257966 a001 133957148/51841*9349^(1/19) 4180999949277415 a001 4976784/13201*64079^(5/23) 4180999949321692 a001 24157817/39603*64079^(4/23) 4180999949322080 a001 9227465/167761*24476^(3/7) 4180999949350216 a004 Fibonacci(22)*Lucas(25)/(1/2+sqrt(5)/2)^28 4180999949352895 a001 121393/39603*167761^(3/5) 4180999949365961 a001 39088169/39603*64079^(3/23) 4180999949385336 a001 15456/13201*103682^(17/24) 4180999949410233 a001 63245986/39603*64079^(2/23) 4180999949429989 a001 121393/39603*439204^(5/9) 4180999949438868 a001 2149991423/514229 4180999949439813 a001 1346269/39603*167761^(2/5) 4180999949442000 a001 121393/39603*7881196^(5/11) 4180999949442026 a001 121393/39603*20633239^(3/7) 4180999949442030 a001 121393/39603*141422324^(5/13) 4180999949442030 a001 17711/271443*(1/2+1/2*5^(1/2))^23 4180999949442030 a001 17711/271443*4106118243^(1/2) 4180999949442030 a001 121393/39603*2537720636^(1/3) 4180999949442030 a001 121393/39603*45537549124^(5/17) 4180999949442030 a001 121393/39603*312119004989^(3/11) 4180999949442030 a001 121393/39603*14662949395604^(5/21) 4180999949442030 a001 121393/39603*(1/2+1/2*5^(1/2))^15 4180999949442030 a001 121393/39603*192900153618^(5/18) 4180999949442030 a001 121393/39603*28143753123^(3/10) 4180999949442030 a001 121393/39603*10749957122^(5/16) 4180999949442030 a001 121393/39603*599074578^(5/14) 4180999949442030 a001 121393/39603*228826127^(3/8) 4180999949442032 a001 121393/39603*33385282^(5/12) 4180999949442634 a001 121393/39603*1860498^(1/2) 4180999949449106 a001 24157817/271443*24476^(8/21) 4180999949449251 a001 7465176/51841*24476^(1/3) 4180999949450158 a001 17711/103682*103682^(7/8) 4180999949454504 a001 34111385/13201*64079^(1/23) 4180999949469059 a001 4976784/13201*167761^(1/5) 4180999949477100 a004 Fibonacci(22)*Lucas(27)/(1/2+sqrt(5)/2)^30 4180999949490035 a001 5628750621/1346269 4180999949490489 a001 17711/710647*20633239^(5/7) 4180999949490496 a001 105937/13201*141422324^(1/3) 4180999949490496 a001 17711/710647*2537720636^(5/9) 4180999949490496 a001 17711/710647*312119004989^(5/11) 4180999949490496 a001 17711/710647*(1/2+1/2*5^(1/2))^25 4180999949490496 a001 17711/710647*3461452808002^(5/12) 4180999949490496 a001 17711/710647*28143753123^(1/2) 4180999949490496 a001 105937/13201*(1/2+1/2*5^(1/2))^13 4180999949490496 a001 105937/13201*73681302247^(1/4) 4180999949490496 a001 17711/710647*228826127^(5/8) 4180999949491374 a001 726103/13201*439204^(1/3) 4180999949491502 a001 17711/710647*1860498^(5/6) 4180999949492304 a001 514229/39603*439204^(4/9) 4180999949493968 a001 9227465/39603*439204^(2/9) 4180999949495613 a004 Fibonacci(22)*Lucas(29)/(1/2+sqrt(5)/2)^32 4180999949496366 a001 39088169/39603*439204^(1/9) 4180999949497500 a001 82787980/19801 4180999949497512 a001 17711/1860498*7881196^(9/11) 4180999949497545 a001 832040/39603*7881196^(1/3) 4180999949497567 a001 17711/1860498*141422324^(9/13) 4180999949497567 a001 17711/1860498*2537720636^(3/5) 4180999949497567 a001 17711/1860498*45537549124^(9/17) 4180999949497567 a001 17711/1860498*817138163596^(9/19) 4180999949497567 a001 17711/1860498*14662949395604^(3/7) 4180999949497567 a001 17711/1860498*(1/2+1/2*5^(1/2))^27 4180999949497567 a001 17711/1860498*192900153618^(1/2) 4180999949497567 a001 17711/1860498*10749957122^(9/16) 4180999949497567 a001 832040/39603*312119004989^(1/5) 4180999949497567 a001 832040/39603*(1/2+1/2*5^(1/2))^11 4180999949497567 a001 832040/39603*1568397607^(1/4) 4180999949497567 a001 17711/1860498*599074578^(9/14) 4180999949497570 a001 17711/1860498*33385282^(3/4) 4180999949497570 a001 63245986/710647*24476^(8/21) 4180999949498313 a004 Fibonacci(22)*Lucas(31)/(1/2+sqrt(5)/2)^34 4180999949498580 a001 726103/13201*7881196^(3/11) 4180999949498589 a001 38580030699/9227465 4180999949498599 a001 726103/13201*141422324^(3/13) 4180999949498599 a001 17711/4870847*(1/2+1/2*5^(1/2))^29 4180999949498599 a001 17711/4870847*1322157322203^(1/2) 4180999949498599 a001 726103/13201*2537720636^(1/5) 4180999949498599 a001 726103/13201*45537549124^(3/17) 4180999949498599 a001 726103/13201*817138163596^(3/19) 4180999949498599 a001 726103/13201*14662949395604^(1/7) 4180999949498599 a001 726103/13201*(1/2+1/2*5^(1/2))^9 4180999949498599 a001 726103/13201*192900153618^(1/6) 4180999949498599 a001 726103/13201*10749957122^(3/16) 4180999949498599 a001 726103/13201*599074578^(3/14) 4180999949498600 a001 726103/13201*33385282^(1/4) 4180999949498654 a001 17711/1860498*1860498^(9/10) 4180999949498708 a004 Fibonacci(22)*Lucas(33)/(1/2+sqrt(5)/2)^36 4180999949498747 a001 5702887/39603*20633239^(1/5) 4180999949498748 a001 101003831657/24157817 4180999949498749 a001 17711/12752043*(1/2+1/2*5^(1/2))^31 4180999949498749 a001 17711/12752043*9062201101803^(1/2) 4180999949498749 a001 5702887/39603*17393796001^(1/7) 4180999949498749 a001 5702887/39603*14662949395604^(1/9) 4180999949498749 a001 5702887/39603*(1/2+1/2*5^(1/2))^7 4180999949498749 a001 5702887/39603*599074578^(1/6) 4180999949498765 a004 Fibonacci(22)*Lucas(35)/(1/2+sqrt(5)/2)^38 4180999949498768 a001 39088169/39603*7881196^(1/11) 4180999949498770 a001 4976784/13201*20633239^(1/7) 4180999949498771 a001 132215732136/31622993 4180999949498771 a001 17711/33385282*141422324^(11/13) 4180999949498771 a001 17711/33385282*2537720636^(11/15) 4180999949498771 a001 17711/33385282*45537549124^(11/17) 4180999949498771 a001 17711/33385282*312119004989^(3/5) 4180999949498771 a001 17711/33385282*14662949395604^(11/21) 4180999949498771 a001 17711/33385282*(1/2+1/2*5^(1/2))^33 4180999949498771 a001 17711/33385282*192900153618^(11/18) 4180999949498771 a001 17711/33385282*10749957122^(11/16) 4180999949498771 a001 17711/33385282*1568397607^(3/4) 4180999949498771 a001 4976784/13201*2537720636^(1/9) 4180999949498771 a001 4976784/13201*312119004989^(1/11) 4180999949498771 a001 4976784/13201*(1/2+1/2*5^(1/2))^5 4180999949498771 a001 4976784/13201*28143753123^(1/10) 4180999949498771 a001 17711/33385282*599074578^(11/14) 4180999949498771 a001 4976784/13201*228826127^(1/8) 4180999949498772 a001 9227465/39603*7881196^(2/11) 4180999949498773 a004 Fibonacci(22)*Lucas(37)/(1/2+sqrt(5)/2)^40 4180999949498774 a001 692290561159/165580141 4180999949498774 a001 39088169/39603*141422324^(1/13) 4180999949498774 a001 17711/87403803*2537720636^(7/9) 4180999949498774 a001 17711/87403803*17393796001^(5/7) 4180999949498774 a001 17711/87403803*312119004989^(7/11) 4180999949498774 a001 17711/87403803*14662949395604^(5/9) 4180999949498774 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^35/Lucas(38) 4180999949498774 a001 17711/87403803*505019158607^(5/8) 4180999949498774 a001 17711/87403803*28143753123^(7/10) 4180999949498774 a001 39088169/39603*2537720636^(1/15) 4180999949498774 a001 39088169/39603*45537549124^(1/17) 4180999949498774 a001 39088169/39603*14662949395604^(1/21) 4180999949498774 a001 39088169/39603*(1/2+1/2*5^(1/2))^3 4180999949498774 a001 39088169/39603*192900153618^(1/18) 4180999949498774 a001 39088169/39603*10749957122^(1/16) 4180999949498774 a001 39088169/39603*599074578^(1/14) 4180999949498774 a001 17711/87403803*599074578^(5/6) 4180999949498774 a001 17711/87403803*228826127^(7/8) 4180999949498775 a001 17711/33385282*33385282^(11/12) 4180999949498775 a001 39088169/39603*33385282^(1/12) 4180999949498775 a004 Fibonacci(22)*Lucas(39)/(1/2+sqrt(5)/2)^42 4180999949498775 a001 1812440219205/433494437 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^37/Lucas(40) 4180999949498775 a001 34111385/26402+34111385/26402*5^(1/2) 4180999949498775 a004 Fibonacci(22)*Lucas(41)/(1/2+sqrt(5)/2)^44 4180999949498775 a001 2372515048228/567451585 4180999949498775 a001 17711/599074578*2537720636^(13/15) 4180999949498775 a001 17711/599074578*45537549124^(13/17) 4180999949498775 a001 17711/599074578*14662949395604^(13/21) 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^39/Lucas(42) 4180999949498775 a001 17711/599074578*192900153618^(13/18) 4180999949498775 a001 17711/599074578*73681302247^(3/4) 4180999949498775 a001 17711/599074578*10749957122^(13/16) 4180999949498775 a004 Fibonacci(42)/Lucas(22)/(1/2+sqrt(5)/2) 4180999949498775 a004 Fibonacci(22)*Lucas(43)/(1/2+sqrt(5)/2)^46 4180999949498775 a001 12422650070163/2971215073 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^41/Lucas(44) 4180999949498775 a001 17711/599074578*599074578^(13/14) 4180999949498775 a004 Fibonacci(22)*Lucas(45)/(1/2+sqrt(5)/2)^48 4180999949498775 a001 32522920114033/7778742049 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^43/Lucas(46) 4180999949498775 a004 Fibonacci(22)*Lucas(47)/(1/2+sqrt(5)/2)^50 4180999949498775 a001 42573055135968/10182505537 4180999949498775 a001 17711/10749957122*45537549124^(15/17) 4180999949498775 a001 17711/10749957122*312119004989^(9/11) 4180999949498775 a001 17711/10749957122*14662949395604^(5/7) 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^45/Lucas(48) 4180999949498775 a001 17711/10749957122*192900153618^(5/6) 4180999949498775 a001 17711/10749957122*28143753123^(9/10) 4180999949498775 a004 Fibonacci(22)*Lucas(49)/(1/2+sqrt(5)/2)^52 4180999949498775 a001 222915410701775/53316291173 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^47/Lucas(50) 4180999949498775 a001 17711/10749957122*10749957122^(15/16) 4180999949498775 a004 Fibonacci(22)*Lucas(51)/(1/2+sqrt(5)/2)^54 4180999949498775 a001 6557304739701/1568358005 4180999949498775 a001 17711/73681302247*14662949395604^(7/9) 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^49/Lucas(52) 4180999949498775 a001 17711/73681302247*505019158607^(7/8) 4180999949498775 a004 Fibonacci(22)*Lucas(53)/(1/2+sqrt(5)/2)^56 4180999949498775 a001 17711/192900153618*817138163596^(17/19) 4180999949498775 a001 17711/192900153618*14662949395604^(17/21) 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^51/Lucas(54) 4180999949498775 a004 Fibonacci(22)*Lucas(55)/(1/2+sqrt(5)/2)^58 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^53/Lucas(56) 4180999949498775 a004 Fibonacci(22)*Lucas(57)/(1/2+sqrt(5)/2)^60 4180999949498775 a001 10472279272886969/2504730781961 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^55/Lucas(58) 4180999949498775 a001 17711/1322157322203*3461452808002^(11/12) 4180999949498775 a004 Fibonacci(22)*Lucas(59)/(1/2+sqrt(5)/2)^62 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^57/Lucas(60) 4180999949498775 a004 Fibonacci(22)*Lucas(61)/(1/2+sqrt(5)/2)^64 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^59/Lucas(62) 4180999949498775 a004 Fibonacci(22)*Lucas(63)/(1/2+sqrt(5)/2)^66 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^61/Lucas(64) 4180999949498775 a004 Fibonacci(22)*Lucas(65)/(1/2+sqrt(5)/2)^68 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^63/Lucas(66) 4180999949498775 a004 Fibonacci(22)*Lucas(67)/(1/2+sqrt(5)/2)^70 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^65/Lucas(68) 4180999949498775 a004 Fibonacci(22)*Lucas(69)/(1/2+sqrt(5)/2)^72 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^67/Lucas(70) 4180999949498775 a004 Fibonacci(22)*Lucas(71)/(1/2+sqrt(5)/2)^74 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^69/Lucas(72) 4180999949498775 a004 Fibonacci(22)*Lucas(73)/(1/2+sqrt(5)/2)^76 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^71/Lucas(74) 4180999949498775 a004 Fibonacci(22)*Lucas(75)/(1/2+sqrt(5)/2)^78 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^73/Lucas(76) 4180999949498775 a004 Fibonacci(22)*Lucas(77)/(1/2+sqrt(5)/2)^80 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^75/Lucas(78) 4180999949498775 a004 Fibonacci(22)*Lucas(79)/(1/2+sqrt(5)/2)^82 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^77/Lucas(80) 4180999949498775 a004 Fibonacci(22)*Lucas(81)/(1/2+sqrt(5)/2)^84 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^79/Lucas(82) 4180999949498775 a004 Fibonacci(22)*Lucas(83)/(1/2+sqrt(5)/2)^86 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^81/Lucas(84) 4180999949498775 a004 Fibonacci(22)*Lucas(85)/(1/2+sqrt(5)/2)^88 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^83/Lucas(86) 4180999949498775 a004 Fibonacci(22)*Lucas(87)/(1/2+sqrt(5)/2)^90 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^85/Lucas(88) 4180999949498775 a004 Fibonacci(22)*Lucas(89)/(1/2+sqrt(5)/2)^92 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^87/Lucas(90) 4180999949498775 a004 Fibonacci(22)*Lucas(91)/(1/2+sqrt(5)/2)^94 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^89/Lucas(92) 4180999949498775 a004 Fibonacci(22)*Lucas(93)/(1/2+sqrt(5)/2)^96 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^91/Lucas(94) 4180999949498775 a004 Fibonacci(22)*Lucas(95)/(1/2+sqrt(5)/2)^98 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^93/Lucas(96) 4180999949498775 a004 Fibonacci(22)*Lucas(97)/(1/2+sqrt(5)/2)^100 4180999949498775 a004 Fibonacci(11)*Lucas(11)/(1/2+sqrt(5)/2)^3 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^95/Lucas(98) 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^97/Lucas(100) 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^96/Lucas(99) 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^94/Lucas(97) 4180999949498775 a004 Fibonacci(22)*Lucas(96)/(1/2+sqrt(5)/2)^99 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^92/Lucas(95) 4180999949498775 a004 Fibonacci(22)*Lucas(94)/(1/2+sqrt(5)/2)^97 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^90/Lucas(93) 4180999949498775 a004 Fibonacci(22)*Lucas(92)/(1/2+sqrt(5)/2)^95 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^88/Lucas(91) 4180999949498775 a004 Fibonacci(22)*Lucas(90)/(1/2+sqrt(5)/2)^93 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^86/Lucas(89) 4180999949498775 a004 Fibonacci(22)*Lucas(88)/(1/2+sqrt(5)/2)^91 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^84/Lucas(87) 4180999949498775 a004 Fibonacci(22)*Lucas(86)/(1/2+sqrt(5)/2)^89 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^82/Lucas(85) 4180999949498775 a004 Fibonacci(22)*Lucas(84)/(1/2+sqrt(5)/2)^87 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^80/Lucas(83) 4180999949498775 a004 Fibonacci(22)*Lucas(82)/(1/2+sqrt(5)/2)^85 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^78/Lucas(81) 4180999949498775 a004 Fibonacci(22)*Lucas(80)/(1/2+sqrt(5)/2)^83 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^76/Lucas(79) 4180999949498775 a004 Fibonacci(22)*Lucas(78)/(1/2+sqrt(5)/2)^81 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^74/Lucas(77) 4180999949498775 a004 Fibonacci(22)*Lucas(76)/(1/2+sqrt(5)/2)^79 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^72/Lucas(75) 4180999949498775 a004 Fibonacci(22)*Lucas(74)/(1/2+sqrt(5)/2)^77 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^70/Lucas(73) 4180999949498775 a004 Fibonacci(22)*Lucas(72)/(1/2+sqrt(5)/2)^75 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^68/Lucas(71) 4180999949498775 a004 Fibonacci(22)*Lucas(70)/(1/2+sqrt(5)/2)^73 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^66/Lucas(69) 4180999949498775 a004 Fibonacci(22)*Lucas(68)/(1/2+sqrt(5)/2)^71 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^64/Lucas(67) 4180999949498775 a004 Fibonacci(22)*Lucas(66)/(1/2+sqrt(5)/2)^69 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^62/Lucas(65) 4180999949498775 a004 Fibonacci(22)*Lucas(64)/(1/2+sqrt(5)/2)^67 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^60/Lucas(63) 4180999949498775 a004 Fibonacci(22)*Lucas(62)/(1/2+sqrt(5)/2)^65 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^58/Lucas(61) 4180999949498775 a004 Fibonacci(22)*Lucas(60)/(1/2+sqrt(5)/2)^63 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^56/Lucas(59) 4180999949498775 a001 16944503803212151/4052739537881 4180999949498775 a004 Fibonacci(22)*Lucas(58)/(1/2+sqrt(5)/2)^61 4180999949498775 a001 17711/817138163596*14662949395604^(6/7) 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^54/Lucas(57) 4180999949498775 a004 Fibonacci(22)*Lucas(56)/(1/2+sqrt(5)/2)^59 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^52/Lucas(55) 4180999949498775 a001 2472169787763395/591286729879 4180999949498775 a001 89/1568437211*505019158607^(13/14) 4180999949498775 a004 Fibonacci(22)*Lucas(54)/(1/2+sqrt(5)/2)^57 4180999949498775 a001 17711/45537549124*45537549124^(16/17) 4180999949498775 a001 17711/119218851371*312119004989^(10/11) 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^50/Lucas(53) 4180999949498775 a001 17711/119218851371*3461452808002^(5/6) 4180999949498775 a001 944284832965003/225851433717 4180999949498775 a004 Fibonacci(22)*Lucas(52)/(1/2+sqrt(5)/2)^55 4180999949498775 a001 17711/45537549124*14662949395604^(16/21) 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^48/Lucas(51) 4180999949498775 a001 17711/45537549124*192900153618^(8/9) 4180999949498775 a001 180342355565807/43133785636 4180999949498775 a001 17711/45537549124*73681302247^(12/13) 4180999949498775 a004 Fibonacci(22)*Lucas(50)/(1/2+sqrt(5)/2)^53 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^46/Lucas(49) 4180999949498775 a001 137769300429839/32951280099 4180999949498775 a004 Fibonacci(22)*Lucas(48)/(1/2+sqrt(5)/2)^51 4180999949498775 a001 17711/2537720636*2537720636^(14/15) 4180999949498775 a001 17711/17393796001*10749957122^(23/24) 4180999949498775 a001 17711/6643838879*312119004989^(4/5) 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^44/Lucas(47) 4180999949498775 a001 17711/6643838879*23725150497407^(11/16) 4180999949498775 a001 17711/6643838879*73681302247^(11/13) 4180999949498775 a001 52623190157903/12586269025 4180999949498775 a001 17711/6643838879*10749957122^(11/12) 4180999949498775 a004 Fibonacci(22)*Lucas(46)/(1/2+sqrt(5)/2)^49 4180999949498775 a001 17711/6643838879*4106118243^(22/23) 4180999949498775 a001 17711/2537720636*17393796001^(6/7) 4180999949498775 a001 17711/2537720636*45537549124^(14/17) 4180999949498775 a001 17711/2537720636*817138163596^(14/19) 4180999949498775 a001 17711/2537720636*14662949395604^(2/3) 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^42/Lucas(45) 4180999949498775 a001 17711/2537720636*505019158607^(3/4) 4180999949498775 a001 17711/2537720636*192900153618^(7/9) 4180999949498775 a001 17711/2537720636*10749957122^(7/8) 4180999949498775 a001 10050135021935/2403763488 4180999949498775 a001 17711/2537720636*4106118243^(21/23) 4180999949498775 a004 Fibonacci(46)/Lucas(22)/(1/2+sqrt(5)/2)^5 4180999949498775 a004 Fibonacci(48)/Lucas(22)/(1/2+sqrt(5)/2)^7 4180999949498775 a004 Fibonacci(50)/Lucas(22)/(1/2+sqrt(5)/2)^9 4180999949498775 a004 Fibonacci(52)/Lucas(22)/(1/2+sqrt(5)/2)^11 4180999949498775 a004 Fibonacci(54)/Lucas(22)/(1/2+sqrt(5)/2)^13 4180999949498775 a004 Fibonacci(56)/Lucas(22)/(1/2+sqrt(5)/2)^15 4180999949498775 a004 Fibonacci(58)/Lucas(22)/(1/2+sqrt(5)/2)^17 4180999949498775 a004 Fibonacci(60)/Lucas(22)/(1/2+sqrt(5)/2)^19 4180999949498775 a004 Fibonacci(62)/Lucas(22)/(1/2+sqrt(5)/2)^21 4180999949498775 a004 Fibonacci(64)/Lucas(22)/(1/2+sqrt(5)/2)^23 4180999949498775 a004 Fibonacci(66)/Lucas(22)/(1/2+sqrt(5)/2)^25 4180999949498775 a004 Fibonacci(68)/Lucas(22)/(1/2+sqrt(5)/2)^27 4180999949498775 a004 Fibonacci(70)/Lucas(22)/(1/2+sqrt(5)/2)^29 4180999949498775 a004 Fibonacci(72)/Lucas(22)/(1/2+sqrt(5)/2)^31 4180999949498775 a004 Fibonacci(74)/Lucas(22)/(1/2+sqrt(5)/2)^33 4180999949498775 a004 Fibonacci(76)/Lucas(22)/(1/2+sqrt(5)/2)^35 4180999949498775 a004 Fibonacci(78)/Lucas(22)/(1/2+sqrt(5)/2)^37 4180999949498775 a004 Fibonacci(80)/Lucas(22)/(1/2+sqrt(5)/2)^39 4180999949498775 a004 Fibonacci(82)/Lucas(22)/(1/2+sqrt(5)/2)^41 4180999949498775 a004 Fibonacci(84)/Lucas(22)/(1/2+sqrt(5)/2)^43 4180999949498775 a004 Fibonacci(86)/Lucas(22)/(1/2+sqrt(5)/2)^45 4180999949498775 a004 Fibonacci(22)*Lucas(44)/(1/2+sqrt(5)/2)^47 4180999949498775 a004 Fibonacci(88)/Lucas(22)/(1/2+sqrt(5)/2)^47 4180999949498775 a004 Fibonacci(90)/Lucas(22)/(1/2+sqrt(5)/2)^49 4180999949498775 a004 Fibonacci(92)/Lucas(22)/(1/2+sqrt(5)/2)^51 4180999949498775 a004 Fibonacci(94)/Lucas(22)/(1/2+sqrt(5)/2)^53 4180999949498775 a004 Fibonacci(96)/Lucas(22)/(1/2+sqrt(5)/2)^55 4180999949498775 a004 Fibonacci(100)/Lucas(22)/(1/2+sqrt(5)/2)^59 4180999949498775 a004 Fibonacci(98)/Lucas(22)/(1/2+sqrt(5)/2)^57 4180999949498775 a004 Fibonacci(99)/Lucas(22)/(1/2+sqrt(5)/2)^58 4180999949498775 a004 Fibonacci(97)/Lucas(22)/(1/2+sqrt(5)/2)^56 4180999949498775 a004 Fibonacci(95)/Lucas(22)/(1/2+sqrt(5)/2)^54 4180999949498775 a004 Fibonacci(93)/Lucas(22)/(1/2+sqrt(5)/2)^52 4180999949498775 a004 Fibonacci(91)/Lucas(22)/(1/2+sqrt(5)/2)^50 4180999949498775 a004 Fibonacci(89)/Lucas(22)/(1/2+sqrt(5)/2)^48 4180999949498775 a004 Fibonacci(87)/Lucas(22)/(1/2+sqrt(5)/2)^46 4180999949498775 a004 Fibonacci(85)/Lucas(22)/(1/2+sqrt(5)/2)^44 4180999949498775 a004 Fibonacci(83)/Lucas(22)/(1/2+sqrt(5)/2)^42 4180999949498775 a004 Fibonacci(81)/Lucas(22)/(1/2+sqrt(5)/2)^40 4180999949498775 a004 Fibonacci(79)/Lucas(22)/(1/2+sqrt(5)/2)^38 4180999949498775 a004 Fibonacci(77)/Lucas(22)/(1/2+sqrt(5)/2)^36 4180999949498775 a004 Fibonacci(75)/Lucas(22)/(1/2+sqrt(5)/2)^34 4180999949498775 a004 Fibonacci(73)/Lucas(22)/(1/2+sqrt(5)/2)^32 4180999949498775 a004 Fibonacci(71)/Lucas(22)/(1/2+sqrt(5)/2)^30 4180999949498775 a004 Fibonacci(69)/Lucas(22)/(1/2+sqrt(5)/2)^28 4180999949498775 a004 Fibonacci(67)/Lucas(22)/(1/2+sqrt(5)/2)^26 4180999949498775 a004 Fibonacci(65)/Lucas(22)/(1/2+sqrt(5)/2)^24 4180999949498775 a004 Fibonacci(63)/Lucas(22)/(1/2+sqrt(5)/2)^22 4180999949498775 a004 Fibonacci(61)/Lucas(22)/(1/2+sqrt(5)/2)^20 4180999949498775 a004 Fibonacci(59)/Lucas(22)/(1/2+sqrt(5)/2)^18 4180999949498775 a004 Fibonacci(57)/Lucas(22)/(1/2+sqrt(5)/2)^16 4180999949498775 a004 Fibonacci(55)/Lucas(22)/(1/2+sqrt(5)/2)^14 4180999949498775 a004 Fibonacci(53)/Lucas(22)/(1/2+sqrt(5)/2)^12 4180999949498775 a004 Fibonacci(51)/Lucas(22)/(1/2+sqrt(5)/2)^10 4180999949498775 a004 Fibonacci(49)/Lucas(22)/(1/2+sqrt(5)/2)^8 4180999949498775 a004 Fibonacci(47)/Lucas(22)/(1/2+sqrt(5)/2)^6 4180999949498775 a001 17711/2537720636*1568397607^(21/22) 4180999949498775 a004 Fibonacci(45)/Lucas(22)/(1/2+sqrt(5)/2)^4 4180999949498775 a001 17711/969323029*2537720636^(8/9) 4180999949498775 a001 17711/969323029*312119004989^(8/11) 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^40/Lucas(43) 4180999949498775 a001 17711/969323029*23725150497407^(5/8) 4180999949498775 a001 17711/969323029*73681302247^(10/13) 4180999949498775 a001 17711/969323029*28143753123^(4/5) 4180999949498775 a001 17711/969323029*10749957122^(5/6) 4180999949498775 a001 17711/969323029*4106118243^(20/23) 4180999949498775 a001 7677619973707/1836311903 4180999949498775 a001 17711/969323029*1568397607^(10/11) 4180999949498775 a004 Fibonacci(43)/Lucas(22)/(1/2+sqrt(5)/2)^2 4180999949498775 a004 Fibonacci(22)*Lucas(42)/(1/2+sqrt(5)/2)^45 4180999949498775 a001 17711/969323029*599074578^(20/21) 4180999949498775 a001 17711/141422324*141422324^(12/13) 4180999949498775 a001 17711/370248451*817138163596^(2/3) 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^38/Lucas(41) 4180999949498775 a001 17711/370248451*10749957122^(19/24) 4180999949498775 a001 17711/370248451*4106118243^(19/23) 4180999949498775 a001 17711/370248451*1568397607^(19/22) 4180999949498775 a001 165580141/39603 4180999949498775 a001 17711/370248451*599074578^(19/21) 4180999949498775 a004 Fibonacci(22)*Lucas(40)/(1/2+sqrt(5)/2)^43 4180999949498775 a001 17711/370248451*228826127^(19/20) 4180999949498775 a001 17711/141422324*2537720636^(4/5) 4180999949498775 a001 17711/141422324*45537549124^(12/17) 4180999949498775 a001 17711/141422324*14662949395604^(4/7) 4180999949498775 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^36/Lucas(39) 4180999949498775 a001 17711/141422324*505019158607^(9/14) 4180999949498775 a001 17711/141422324*192900153618^(2/3) 4180999949498775 a001 17711/141422324*73681302247^(9/13) 4180999949498775 a001 17711/141422324*10749957122^(3/4) 4180999949498775 a001 17711/141422324*4106118243^(18/23) 4180999949498775 a001 17711/141422324*1568397607^(9/11) 4180999949498775 a001 63245986/39603*(1/2+1/2*5^(1/2))^2 4180999949498775 a001 63245986/39603*10749957122^(1/24) 4180999949498775 a001 63245986/39603*4106118243^(1/23) 4180999949498775 a001 63245986/39603*1568397607^(1/22) 4180999949498775 a001 63245986/39603*599074578^(1/21) 4180999949498775 a001 63245986/39603*228826127^(1/20) 4180999949498775 a001 17711/141422324*599074578^(6/7) 4180999949498775 a001 560074829023/133957148 4180999949498775 a001 63245986/39603*87403803^(1/19) 4180999949498775 a001 17711/141422324*228826127^(9/10) 4180999949498775 a001 63245986/39603*33385282^(1/18) 4180999949498775 a004 Fibonacci(22)*Lucas(38)/(1/2+sqrt(5)/2)^41 4180999949498776 a001 17711/141422324*87403803^(18/19) 4180999949498776 a001 17711/54018521*45537549124^(2/3) 4180999949498776 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^34/Lucas(37) 4180999949498776 a001 17711/54018521*10749957122^(17/24) 4180999949498776 a001 17711/54018521*4106118243^(17/23) 4180999949498776 a001 17711/54018521*1568397607^(17/22) 4180999949498776 a001 24157817/39603*(1/2+1/2*5^(1/2))^4 4180999949498776 a001 24157817/39603*23725150497407^(1/16) 4180999949498776 a001 24157817/39603*73681302247^(1/13) 4180999949498776 a001 24157817/39603*10749957122^(1/12) 4180999949498776 a001 24157817/39603*4106118243^(2/23) 4180999949498776 a001 24157817/39603*1568397607^(1/11) 4180999949498776 a001 24157817/39603*599074578^(2/21) 4180999949498776 a001 17711/54018521*599074578^(17/21) 4180999949498776 a001 24157817/39603*228826127^(1/10) 4180999949498776 a001 24157817/39603*87403803^(2/19) 4180999949498776 a001 17711/54018521*228826127^(17/20) 4180999949498776 a001 427859096887/102334155 4180999949498777 a001 63245986/39603*12752043^(1/17) 4180999949498777 a001 24157817/39603*33385282^(1/9) 4180999949498777 a001 17711/54018521*87403803^(17/19) 4180999949498779 a004 Fibonacci(22)*Lucas(36)/(1/2+sqrt(5)/2)^39 4180999949498779 a001 24157817/39603*12752043^(2/17) 4180999949498780 a001 17711/54018521*33385282^(17/18) 4180999949498781 a001 89/39604*7881196^(10/11) 4180999949498785 a001 9227465/39603*141422324^(2/13) 4180999949498785 a001 17711/20633239*(1/2+1/2*5^(1/2))^32 4180999949498785 a001 17711/20633239*23725150497407^(1/2) 4180999949498785 a001 17711/20633239*505019158607^(4/7) 4180999949498785 a001 17711/20633239*73681302247^(8/13) 4180999949498785 a001 17711/20633239*10749957122^(2/3) 4180999949498785 a001 17711/20633239*4106118243^(16/23) 4180999949498785 a001 17711/20633239*1568397607^(8/11) 4180999949498785 a001 9227465/39603*2537720636^(2/15) 4180999949498785 a001 9227465/39603*45537549124^(2/17) 4180999949498785 a001 9227465/39603*14662949395604^(2/21) 4180999949498785 a001 9227465/39603*(1/2+1/2*5^(1/2))^6 4180999949498785 a001 9227465/39603*10749957122^(1/8) 4180999949498785 a001 9227465/39603*4106118243^(3/23) 4180999949498785 a001 9227465/39603*1568397607^(3/22) 4180999949498785 a001 9227465/39603*599074578^(1/7) 4180999949498785 a001 17711/20633239*599074578^(16/21) 4180999949498785 a001 9227465/39603*228826127^(3/20) 4180999949498785 a001 17711/20633239*228826127^(4/5) 4180999949498785 a001 9227465/39603*87403803^(3/19) 4180999949498785 a001 17711/20633239*87403803^(16/19) 4180999949498785 a001 163427632615/39088169 4180999949498785 a001 9227465/39603*33385282^(1/6) 4180999949498786 a001 63245986/39603*4870847^(1/16) 4180999949498788 a001 17711/20633239*33385282^(8/9) 4180999949498789 a001 9227465/39603*12752043^(3/17) 4180999949498798 a001 24157817/39603*4870847^(1/8) 4180999949498801 a004 Fibonacci(22)*Lucas(34)/(1/2+sqrt(5)/2)^37 4180999949498809 a001 17711/20633239*12752043^(16/17) 4180999949498818 a001 9227465/39603*4870847^(3/16) 4180999949498834 a001 89/39604*20633239^(6/7) 4180999949498842 a001 89/39604*141422324^(10/13) 4180999949498842 a001 89/39604*2537720636^(2/3) 4180999949498842 a001 89/39604*45537549124^(10/17) 4180999949498842 a001 89/39604*312119004989^(6/11) 4180999949498842 a001 89/39604*14662949395604^(10/21) 4180999949498842 a001 89/39604*(1/2+1/2*5^(1/2))^30 4180999949498842 a001 89/39604*192900153618^(5/9) 4180999949498842 a001 89/39604*28143753123^(3/5) 4180999949498842 a001 89/39604*10749957122^(5/8) 4180999949498842 a001 89/39604*4106118243^(15/23) 4180999949498842 a001 89/39604*1568397607^(15/22) 4180999949498842 a001 3524578/39603*(1/2+1/2*5^(1/2))^8 4180999949498842 a001 3524578/39603*23725150497407^(1/8) 4180999949498842 a001 3524578/39603*505019158607^(1/7) 4180999949498842 a001 3524578/39603*73681302247^(2/13) 4180999949498842 a001 3524578/39603*10749957122^(1/6) 4180999949498842 a001 3524578/39603*4106118243^(4/23) 4180999949498842 a001 3524578/39603*1568397607^(2/11) 4180999949498842 a001 3524578/39603*599074578^(4/21) 4180999949498842 a001 89/39604*599074578^(5/7) 4180999949498842 a001 3524578/39603*228826127^(1/5) 4180999949498842 a001 89/39604*228826127^(3/4) 4180999949498842 a001 3524578/39603*87403803^(4/19) 4180999949498843 a001 89/39604*87403803^(15/19) 4180999949498843 a001 3524578/39603*33385282^(2/9) 4180999949498845 a001 89/39604*33385282^(5/6) 4180999949498846 a001 31211900479/7465176 4180999949498848 a001 3524578/39603*12752043^(4/17) 4180999949498856 a001 63245986/39603*1860498^(1/15) 4180999949498865 a001 89/39604*12752043^(15/17) 4180999949498886 a001 3524578/39603*4870847^(1/4) 4180999949498895 a001 39088169/39603*1860498^(1/10) 4180999949498937 a001 24157817/39603*1860498^(2/15) 4180999949498951 a004 Fibonacci(22)*Lucas(32)/(1/2+sqrt(5)/2)^35 4180999949498961 a001 726103/13201*1860498^(3/10) 4180999949498972 a001 4976784/13201*1860498^(1/6) 4180999949499007 a001 89/39604*4870847^(15/16) 4180999949499026 a001 9227465/39603*1860498^(1/5) 4180999949499164 a001 3524578/39603*1860498^(4/15) 4180999949499228 a001 17711/3010349*20633239^(4/5) 4180999949499233 a001 1346269/39603*20633239^(2/7) 4180999949499236 a001 17711/3010349*17393796001^(4/7) 4180999949499236 a001 17711/3010349*14662949395604^(4/9) 4180999949499236 a001 17711/3010349*(1/2+1/2*5^(1/2))^28 4180999949499236 a001 17711/3010349*73681302247^(7/13) 4180999949499236 a001 17711/3010349*10749957122^(7/12) 4180999949499236 a001 17711/3010349*4106118243^(14/23) 4180999949499236 a001 17711/3010349*1568397607^(7/11) 4180999949499236 a001 1346269/39603*2537720636^(2/9) 4180999949499236 a001 1346269/39603*312119004989^(2/11) 4180999949499236 a001 1346269/39603*(1/2+1/2*5^(1/2))^10 4180999949499236 a001 1346269/39603*28143753123^(1/5) 4180999949499236 a001 1346269/39603*10749957122^(5/24) 4180999949499236 a001 1346269/39603*4106118243^(5/23) 4180999949499236 a001 1346269/39603*1568397607^(5/22) 4180999949499236 a001 1346269/39603*599074578^(5/21) 4180999949499236 a001 17711/3010349*599074578^(2/3) 4180999949499236 a001 1346269/39603*228826127^(1/4) 4180999949499236 a001 17711/3010349*228826127^(7/10) 4180999949499236 a001 1346269/39603*87403803^(5/19) 4180999949499237 a001 17711/3010349*87403803^(14/19) 4180999949499237 a001 1346269/39603*33385282^(5/18) 4180999949499239 a001 17711/3010349*33385282^(7/9) 4180999949499244 a001 1346269/39603*12752043^(5/17) 4180999949499257 a001 17711/3010349*12752043^(14/17) 4180999949499262 a001 23843770259/5702887 4180999949499291 a001 1346269/39603*4870847^(5/16) 4180999949499366 a001 63245986/39603*710647^(1/14) 4180999949499390 a001 17711/3010349*4870847^(7/8) 4180999949499639 a001 1346269/39603*1860498^(1/3) 4180999949499959 a001 24157817/39603*710647^(1/7) 4180999949499983 a004 Fibonacci(22)*Lucas(30)/(1/2+sqrt(5)/2)^33 4180999949500364 a001 17711/3010349*1860498^(14/15) 4180999949500559 a001 9227465/39603*710647^(3/14) 4180999949500819 a001 5702887/39603*710647^(1/4) 4180999949501183 a001 17711/439204*439204^(8/9) 4180999949501208 a001 3524578/39603*710647^(2/7) 4180999949501913 a001 514229/39603*7881196^(4/11) 4180999949501937 a001 17711/1149851*141422324^(2/3) 4180999949501937 a001 514229/39603*141422324^(4/13) 4180999949501937 a001 17711/1149851*(1/2+1/2*5^(1/2))^26 4180999949501937 a001 17711/1149851*73681302247^(1/2) 4180999949501937 a001 17711/1149851*10749957122^(13/24) 4180999949501937 a001 17711/1149851*4106118243^(13/23) 4180999949501937 a001 17711/1149851*1568397607^(13/22) 4180999949501937 a001 514229/39603*2537720636^(4/15) 4180999949501937 a001 514229/39603*45537549124^(4/17) 4180999949501937 a001 514229/39603*817138163596^(4/19) 4180999949501937 a001 514229/39603*14662949395604^(4/21) 4180999949501937 a001 514229/39603*(1/2+1/2*5^(1/2))^12 4180999949501937 a001 514229/39603*192900153618^(2/9) 4180999949501937 a001 514229/39603*73681302247^(3/13) 4180999949501937 a001 514229/39603*10749957122^(1/4) 4180999949501937 a001 514229/39603*4106118243^(6/23) 4180999949501937 a001 514229/39603*1568397607^(3/11) 4180999949501937 a001 514229/39603*599074578^(2/7) 4180999949501937 a001 17711/1149851*599074578^(13/21) 4180999949501937 a001 514229/39603*228826127^(3/10) 4180999949501937 a001 17711/1149851*228826127^(13/20) 4180999949501937 a001 514229/39603*87403803^(6/19) 4180999949501937 a001 17711/1149851*87403803^(13/19) 4180999949501938 a001 514229/39603*33385282^(1/3) 4180999949501940 a001 17711/1149851*33385282^(13/18) 4180999949501946 a001 514229/39603*12752043^(6/17) 4180999949501957 a001 17711/1149851*12752043^(13/17) 4180999949502003 a001 514229/39603*4870847^(3/8) 4180999949502080 a001 17711/1149851*4870847^(13/16) 4180999949502113 a001 9107509819/2178309 4180999949502193 a001 1346269/39603*710647^(5/14) 4180999949502420 a001 514229/39603*1860498^(2/5) 4180999949502984 a001 17711/1149851*1860498^(13/15) 4180999949503140 a001 63245986/39603*271443^(1/13) 4180999949504641 a001 165580141/1860498*24476^(8/21) 4180999949505485 a001 514229/39603*710647^(3/7) 4180999949505673 a001 433494437/4870847*24476^(8/21) 4180999949505823 a001 1134903170/12752043*24476^(8/21) 4180999949505845 a001 2971215073/33385282*24476^(8/21) 4180999949505848 a001 7778742049/87403803*24476^(8/21) 4180999949505849 a001 20365011074/228826127*24476^(8/21) 4180999949505849 a001 53316291173/599074578*24476^(8/21) 4180999949505849 a001 139583862445/1568397607*24476^(8/21) 4180999949505849 a001 365435296162/4106118243*24476^(8/21) 4180999949505849 a001 956722026041/10749957122*24476^(8/21) 4180999949505849 a001 2504730781961/28143753123*24476^(8/21) 4180999949505849 a001 6557470319842/73681302247*24476^(8/21) 4180999949505849 a001 10610209857723/119218851371*24476^(8/21) 4180999949505849 a001 4052739537881/45537549124*24476^(8/21) 4180999949505849 a001 1548008755920/17393796001*24476^(8/21) 4180999949505849 a001 591286729879/6643838879*24476^(8/21) 4180999949505849 a001 225851433717/2537720636*24476^(8/21) 4180999949505849 a001 86267571272/969323029*24476^(8/21) 4180999949505849 a001 32951280099/370248451*24476^(8/21) 4180999949505849 a001 12586269025/141422324*24476^(8/21) 4180999949505850 a001 4807526976/54018521*24476^(8/21) 4180999949505859 a001 1836311903/20633239*24476^(8/21) 4180999949505916 a001 3524667/39604*24476^(8/21) 4180999949506310 a001 267914296/3010349*24476^(8/21) 4180999949507054 a004 Fibonacci(22)*Lucas(28)/(1/2+sqrt(5)/2)^31 4180999949507506 a001 24157817/39603*271443^(2/13) 4180999949509011 a001 102334155/1149851*24476^(8/21) 4180999949509625 a001 17711/1149851*710647^(13/14) 4180999949511879 a001 9227465/39603*271443^(3/13) 4180999949514980 a001 34111385/13201*103682^(1/24) 4180999949516302 a001 3524578/39603*271443^(4/13) 4180999949518868 a001 105937/13201*271443^(1/2) 4180999949520400 a001 17711/439204*7881196^(8/11) 4180999949520445 a001 196418/39603*20633239^(2/5) 4180999949520449 a001 17711/439204*141422324^(8/13) 4180999949520449 a001 17711/439204*2537720636^(8/15) 4180999949520449 a001 17711/439204*45537549124^(8/17) 4180999949520449 a001 17711/439204*14662949395604^(8/21) 4180999949520449 a001 17711/439204*(1/2+1/2*5^(1/2))^24 4180999949520449 a001 17711/439204*192900153618^(4/9) 4180999949520449 a001 17711/439204*73681302247^(6/13) 4180999949520449 a001 17711/439204*10749957122^(1/2) 4180999949520449 a001 17711/439204*4106118243^(12/23) 4180999949520449 a001 17711/439204*1568397607^(6/11) 4180999949520449 a001 196418/39603*17393796001^(2/7) 4180999949520449 a001 196418/39603*14662949395604^(2/9) 4180999949520449 a001 196418/39603*(1/2+1/2*5^(1/2))^14 4180999949520449 a001 196418/39603*505019158607^(1/4) 4180999949520449 a001 196418/39603*10749957122^(7/24) 4180999949520449 a001 196418/39603*4106118243^(7/23) 4180999949520449 a001 196418/39603*1568397607^(7/22) 4180999949520449 a001 196418/39603*599074578^(1/3) 4180999949520449 a001 17711/439204*599074578^(4/7) 4180999949520449 a001 196418/39603*228826127^(7/20) 4180999949520449 a001 17711/439204*228826127^(3/5) 4180999949520449 a001 196418/39603*87403803^(7/19) 4180999949520450 a001 17711/439204*87403803^(12/19) 4180999949520451 a001 196418/39603*33385282^(7/18) 4180999949520452 a001 17711/439204*33385282^(2/3) 4180999949520460 a001 196418/39603*12752043^(7/17) 4180999949520467 a001 17711/439204*12752043^(12/17) 4180999949520526 a001 196418/39603*4870847^(7/16) 4180999949520581 a001 17711/439204*4870847^(3/4) 4180999949521013 a001 196418/39603*1860498^(7/15) 4180999949521061 a001 1346269/39603*271443^(5/13) 4180999949521416 a001 17711/439204*1860498^(4/5) 4180999949521657 a001 1739379599/416020 4180999949524589 a001 196418/39603*710647^(1/2) 4180999949527523 a001 39088169/439204*24476^(8/21) 4180999949527533 a001 1346269/64079*24476^(11/21) 4180999949527545 a001 17711/439204*710647^(6/7) 4180999949528127 a001 514229/39603*271443^(6/13) 4180999949528487 a001 28657/15127*15127^(4/5) 4180999949531186 a001 63245986/39603*103682^(1/12) 4180999949547391 a001 39088169/39603*103682^(1/8) 4180999949551004 a001 196418/39603*271443^(7/13) 4180999949555519 a004 Fibonacci(22)*Lucas(26)/(1/2+sqrt(5)/2)^29 4180999949563598 a001 24157817/39603*103682^(1/6) 4180999949572829 a001 17711/439204*271443^(12/13) 4180999949579799 a001 4976784/13201*103682^(5/24) 4180999949590153 a001 233802911/90481*9349^(1/19) 4180999949596018 a001 9227465/39603*103682^(1/4) 4180999949612188 a001 5702887/39603*103682^(7/24) 4180999949619946 a001 34111385/13201*39603^(1/22) 4180999949628486 a001 3524578/39603*103682^(1/3) 4180999949631588 a001 17711/64079*64079^(20/23) 4180999949638619 a001 1836311903/710647*9349^(1/19) 4180999949644448 a001 726103/13201*103682^(3/8) 4180999949645690 a001 267084832/103361*9349^(1/19) 4180999949646722 a001 12586269025/4870847*9349^(1/19) 4180999949646872 a001 10983760033/4250681*9349^(1/19) 4180999949646894 a001 43133785636/16692641*9349^(1/19) 4180999949646897 a001 75283811239/29134601*9349^(1/19) 4180999949646898 a001 591286729879/228826127*9349^(1/19) 4180999949646898 a001 86000486440/33281921*9349^(1/19) 4180999949646898 a001 4052739537881/1568397607*9349^(1/19) 4180999949646898 a001 3536736619241/1368706081*9349^(1/19) 4180999949646898 a001 3278735159921/1268860318*9349^(1/19) 4180999949646898 a001 2504730781961/969323029*9349^(1/19) 4180999949646898 a001 956722026041/370248451*9349^(1/19) 4180999949646898 a001 182717648081/70711162*9349^(1/19) 4180999949646899 a001 139583862445/54018521*9349^(1/19) 4180999949646908 a001 53316291173/20633239*9349^(1/19) 4180999949646965 a001 10182505537/3940598*9349^(1/19) 4180999949647289 a001 17711/167761*7881196^(2/3) 4180999949647334 a001 17711/167761*312119004989^(2/5) 4180999949647334 a001 17711/167761*(1/2+1/2*5^(1/2))^22 4180999949647334 a001 17711/167761*10749957122^(11/24) 4180999949647334 a001 17711/167761*4106118243^(11/23) 4180999949647334 a001 17711/167761*1568397607^(1/2) 4180999949647334 a001 75025/39603*(1/2+1/2*5^(1/2))^16 4180999949647334 a001 75025/39603*23725150497407^(1/4) 4180999949647334 a001 75025/39603*73681302247^(4/13) 4180999949647334 a001 75025/39603*10749957122^(1/3) 4180999949647334 a001 75025/39603*4106118243^(8/23) 4180999949647334 a001 75025/39603*1568397607^(4/11) 4180999949647334 a001 17711/167761*599074578^(11/21) 4180999949647334 a001 75025/39603*599074578^(8/21) 4180999949647334 a001 75025/39603*228826127^(2/5) 4180999949647334 a001 17711/167761*228826127^(11/20) 4180999949647334 a001 75025/39603*87403803^(8/19) 4180999949647334 a001 17711/167761*87403803^(11/19) 4180999949647335 a001 75025/39603*33385282^(4/9) 4180999949647336 a001 17711/167761*33385282^(11/18) 4180999949647346 a001 75025/39603*12752043^(8/17) 4180999949647350 a001 17711/167761*12752043^(11/17) 4180999949647359 a001 7778742049/3010349*9349^(1/19) 4180999949647422 a001 75025/39603*4870847^(1/2) 4180999949647455 a001 17711/167761*4870847^(11/16) 4180999949647978 a001 75025/39603*1860498^(8/15) 4180999949648219 a001 17711/167761*1860498^(11/15) 4180999949650060 a001 2971215073/1149851*9349^(1/19) 4180999949652064 a001 75025/39603*710647^(4/7) 4180999949653838 a001 17711/167761*710647^(11/14) 4180999949654404 a001 14930352/167761*24476^(8/21) 4180999949655612 a001 1328767775/317811 4180999949661291 a001 1346269/39603*103682^(5/12) 4180999949668572 a001 567451585/219602*9349^(1/19) 4180999949675827 a001 832040/39603*103682^(11/24) 4180999949682253 a001 75025/39603*271443^(8/13) 4180999949685113 a001 121393/39603*103682^(5/8) 4180999949695348 a001 17711/167761*271443^(11/13) 4180999949696403 a001 514229/39603*103682^(1/2) 4180999949701167 a001 105937/13201*103682^(13/24) 4180999949720131 a001 28657/39603*64079^(18/23) 4180999949741118 a001 63245986/39603*39603^(1/11) 4180999949747326 a001 196418/39603*103682^(7/12) 4180999949781442 a001 39088169/271443*24476^(1/3) 4180999949781595 a001 24157817/103682*24476^(2/7) 4180999949795457 a001 433494437/167761*9349^(1/19) 4180999949814757 a001 17711/271443*103682^(23/24) 4180999949829908 a001 14619165/101521*24476^(1/3) 4180999949831113 a001 10946/39603*24476^(20/21) 4180999949836979 a001 133957148/930249*24476^(1/3) 4180999949838011 a001 701408733/4870847*24476^(1/3) 4180999949838161 a001 1836311903/12752043*24476^(1/3) 4180999949838183 a001 14930208/103681*24476^(1/3) 4180999949838186 a001 12586269025/87403803*24476^(1/3) 4180999949838187 a001 32951280099/228826127*24476^(1/3) 4180999949838187 a001 43133785636/299537289*24476^(1/3) 4180999949838187 a001 32264490531/224056801*24476^(1/3) 4180999949838187 a001 591286729879/4106118243*24476^(1/3) 4180999949838187 a001 774004377960/5374978561*24476^(1/3) 4180999949838187 a001 4052739537881/28143753123*24476^(1/3) 4180999949838187 a001 1515744265389/10525900321*24476^(1/3) 4180999949838187 a001 3278735159921/22768774562*24476^(1/3) 4180999949838187 a001 2504730781961/17393796001*24476^(1/3) 4180999949838187 a001 956722026041/6643838879*24476^(1/3) 4180999949838187 a001 182717648081/1268860318*24476^(1/3) 4180999949838187 a001 139583862445/969323029*24476^(1/3) 4180999949838187 a001 53316291173/370248451*24476^(1/3) 4180999949838187 a001 10182505537/70711162*24476^(1/3) 4180999949838188 a001 7778742049/54018521*24476^(1/3) 4180999949838197 a001 2971215073/20633239*24476^(1/3) 4180999949838254 a001 567451585/3940598*24476^(1/3) 4180999949838648 a001 433494437/3010349*24476^(1/3) 4180999949841349 a001 165580141/1149851*24476^(1/3) 4180999949859233 a001 2178309/64079*24476^(10/21) 4180999949859862 a001 31622993/219602*24476^(1/3) 4180999949862289 a001 39088169/39603*39603^(3/22) 4180999949887707 a004 Fibonacci(22)*Lucas(24)/(1/2+sqrt(5)/2)^27 4180999949906621 a001 75025/39603*103682^(2/3) 4180999949983463 a001 24157817/39603*39603^(2/11) 4180999949986747 a001 24157817/167761*24476^(1/3) 4180999950003854 a001 17711/167761*103682^(11/12) 4180999950104630 a001 4976784/13201*39603^(5/22) 4180999950113781 a001 63245986/271443*24476^(2/7) 4180999950113931 a001 39088169/103682*24476^(5/21) 4180999950162246 a001 165580141/710647*24476^(2/7) 4180999950169317 a001 433494437/1860498*24476^(2/7) 4180999950170349 a001 1134903170/4870847*24476^(2/7) 4180999950170499 a001 2971215073/12752043*24476^(2/7) 4180999950170521 a001 7778742049/33385282*24476^(2/7) 4180999950170524 a001 20365011074/87403803*24476^(2/7) 4180999950170525 a001 53316291173/228826127*24476^(2/7) 4180999950170525 a001 139583862445/599074578*24476^(2/7) 4180999950170525 a001 365435296162/1568397607*24476^(2/7) 4180999950170525 a001 956722026041/4106118243*24476^(2/7) 4180999950170525 a001 2504730781961/10749957122*24476^(2/7) 4180999950170525 a001 6557470319842/28143753123*24476^(2/7) 4180999950170525 a001 10610209857723/45537549124*24476^(2/7) 4180999950170525 a001 4052739537881/17393796001*24476^(2/7) 4180999950170525 a001 1548008755920/6643838879*24476^(2/7) 4180999950170525 a001 591286729879/2537720636*24476^(2/7) 4180999950170525 a001 225851433717/969323029*24476^(2/7) 4180999950170525 a001 86267571272/370248451*24476^(2/7) 4180999950170525 a001 63246219/271444*24476^(2/7) 4180999950170526 a001 12586269025/54018521*24476^(2/7) 4180999950170535 a001 4807526976/20633239*24476^(2/7) 4180999950170592 a001 1836311903/7881196*24476^(2/7) 4180999950170986 a001 701408733/3010349*24476^(2/7) 4180999950173687 a001 267914296/1149851*24476^(2/7) 4180999950191815 a001 3524578/64079*24476^(3/7) 4180999950192199 a001 102334155/439204*24476^(2/7) 4180999950225815 a001 9227465/39603*39603^(3/11) 4180999950319083 a001 39088169/167761*24476^(2/7) 4180999950346951 a001 5702887/39603*39603^(7/22) 4180999950398164 a001 17711/64079*167761^(4/5) 4180999950412350 a001 34111385/13201*15127^(1/20) 4180999950446119 a001 34111385/90481*24476^(5/21) 4180999950446269 a001 31622993/51841*24476^(4/21) 4180999950468216 a001 3524578/39603*39603^(4/11) 4180999950494584 a001 267914296/710647*24476^(5/21) 4180999950495789 a001 17711/24476*24476^(6/7) 4180999950501655 a001 233802911/620166*24476^(5/21) 4180999950502562 a001 28657/39603*439204^(2/3) 4180999950502687 a001 1836311903/4870847*24476^(5/21) 4180999950502837 a001 1602508992/4250681*24476^(5/21) 4180999950502859 a001 12586269025/33385282*24476^(5/21) 4180999950502862 a001 10983760033/29134601*24476^(5/21) 4180999950502863 a001 86267571272/228826127*24476^(5/21) 4180999950502863 a001 267913919/710646*24476^(5/21) 4180999950502863 a001 591286729879/1568397607*24476^(5/21) 4180999950502863 a001 516002918640/1368706081*24476^(5/21) 4180999950502863 a001 4052739537881/10749957122*24476^(5/21) 4180999950502863 a001 3536736619241/9381251041*24476^(5/21) 4180999950502863 a001 6557470319842/17393796001*24476^(5/21) 4180999950502863 a001 2504730781961/6643838879*24476^(5/21) 4180999950502863 a001 956722026041/2537720636*24476^(5/21) 4180999950502863 a001 365435296162/969323029*24476^(5/21) 4180999950502863 a001 139583862445/370248451*24476^(5/21) 4180999950502863 a001 53316291173/141422324*24476^(5/21) 4180999950502864 a001 20365011074/54018521*24476^(5/21) 4180999950502873 a001 7778742049/20633239*24476^(5/21) 4180999950502930 a001 2971215073/7881196*24476^(5/21) 4180999950503324 a001 1134903170/3010349*24476^(5/21) 4180999950506025 a001 433494437/1149851*24476^(5/21) 4180999950516975 a001 28657/39603*7881196^(6/11) 4180999950517006 a001 17711/64079*20633239^(4/7) 4180999950517011 a001 28657/39603*141422324^(6/13) 4180999950517011 a001 17711/64079*2537720636^(4/9) 4180999950517011 a001 17711/64079*(1/2+1/2*5^(1/2))^20 4180999950517011 a001 17711/64079*23725150497407^(5/16) 4180999950517011 a001 17711/64079*505019158607^(5/14) 4180999950517011 a001 17711/64079*73681302247^(5/13) 4180999950517011 a001 17711/64079*28143753123^(2/5) 4180999950517011 a001 17711/64079*10749957122^(5/12) 4180999950517011 a001 17711/64079*4106118243^(10/23) 4180999950517011 a001 17711/64079*1568397607^(5/11) 4180999950517011 a001 28657/39603*2537720636^(2/5) 4180999950517011 a001 28657/39603*45537549124^(6/17) 4180999950517011 a001 28657/39603*14662949395604^(2/7) 4180999950517011 a001 28657/39603*(1/2+1/2*5^(1/2))^18 4180999950517011 a001 28657/39603*192900153618^(1/3) 4180999950517011 a001 28657/39603*10749957122^(3/8) 4180999950517011 a001 28657/39603*4106118243^(9/23) 4180999950517011 a001 28657/39603*1568397607^(9/22) 4180999950517011 a001 17711/64079*599074578^(10/21) 4180999950517011 a001 28657/39603*599074578^(3/7) 4180999950517011 a001 28657/39603*228826127^(9/20) 4180999950517011 a001 17711/64079*228826127^(1/2) 4180999950517012 a001 28657/39603*87403803^(9/19) 4180999950517012 a001 17711/64079*87403803^(10/19) 4180999950517013 a001 28657/39603*33385282^(1/2) 4180999950517014 a001 17711/64079*33385282^(5/9) 4180999950517025 a001 28657/39603*12752043^(9/17) 4180999950517027 a001 17711/64079*12752043^(10/17) 4180999950517111 a001 28657/39603*4870847^(9/16) 4180999950517122 a001 17711/64079*4870847^(5/8) 4180999950517736 a001 28657/39603*1860498^(3/5) 4180999950517817 a001 17711/64079*1860498^(2/3) 4180999950522334 a001 28657/39603*710647^(9/14) 4180999950522925 a001 17711/64079*710647^(5/7) 4180999950524060 a001 5702887/64079*24476^(8/21) 4180999950524537 a001 165580141/439204*24476^(5/21) 4180999950545537 a001 23184/51841*64079^(19/23) 4180999950556296 a001 28657/39603*271443^(9/13) 4180999950560661 a001 17711/64079*271443^(10/13) 4180999950573756 a001 507544127/121393 4180999950589144 a001 726103/13201*39603^(9/22) 4180999950651422 a001 63245986/167761*24476^(5/21) 4180999950665134 a001 165580141/64079*9349^(1/19) 4180999950710953 a001 1346269/39603*39603^(5/11) 4180999950757384 a004 Fibonacci(24)*Lucas(23)/(1/2+sqrt(5)/2)^28 4180999950778457 a001 165580141/271443*24476^(4/21) 4180999950778607 a001 102334155/103682*24476^(1/7) 4180999950789182 a001 15456/90481*64079^(21/23) 4180999950808710 a001 28657/39603*103682^(3/4) 4180999950823330 a001 11592/109801*64079^(22/23) 4180999950826922 a001 433494437/710647*24476^(4/21) 4180999950830456 a001 832040/39603*39603^(1/2) 4180999950833993 a001 567451585/930249*24476^(4/21) 4180999950835025 a001 2971215073/4870847*24476^(4/21) 4180999950835175 a001 7778742049/12752043*24476^(4/21) 4180999950835197 a001 10182505537/16692641*24476^(4/21) 4180999950835200 a001 53316291173/87403803*24476^(4/21) 4180999950835201 a001 139583862445/228826127*24476^(4/21) 4180999950835201 a001 182717648081/299537289*24476^(4/21) 4180999950835201 a001 956722026041/1568397607*24476^(4/21) 4180999950835201 a001 2504730781961/4106118243*24476^(4/21) 4180999950835201 a001 3278735159921/5374978561*24476^(4/21) 4180999950835201 a001 10610209857723/17393796001*24476^(4/21) 4180999950835201 a001 4052739537881/6643838879*24476^(4/21) 4180999950835201 a001 1134903780/1860499*24476^(4/21) 4180999950835201 a001 591286729879/969323029*24476^(4/21) 4180999950835201 a001 225851433717/370248451*24476^(4/21) 4180999950835201 a001 21566892818/35355581*24476^(4/21) 4180999950835202 a001 32951280099/54018521*24476^(4/21) 4180999950835211 a001 1144206275/1875749*24476^(4/21) 4180999950835268 a001 1201881744/1970299*24476^(4/21) 4180999950835662 a001 1836311903/3010349*24476^(4/21) 4180999950838363 a001 701408733/1149851*24476^(4/21) 4180999950841121 a001 17711/64079*103682^(5/6) 4180999950856433 a001 9227465/64079*24476^(1/3) 4180999950856875 a001 66978574/109801*24476^(4/21) 4180999950955998 a001 514229/39603*39603^(6/11) 4180999950966267 a001 121393/103682*64079^(17/23) 4180999950983760 a001 9303105/15251*24476^(4/21) 4180999951038757 a001 46368/167761*64079^(20/23) 4180999951065728 a001 105937/13201*39603^(13/22) 4180999951088957 a001 98209/51841*64079^(16/23) 4180999951089572 a004 Fibonacci(26)*Lucas(23)/(1/2+sqrt(5)/2)^30 4180999951103275 a001 317811/103682*64079^(15/23) 4180999951110795 a001 267914296/271443*24476^(1/7) 4180999951110945 a001 165580141/103682*24476^(2/21) 4180999951127299 a001 75025/103682*64079^(18/23) 4180999951137005 a001 121393/1149851*64079^(22/23) 4180999951138037 a004 Fibonacci(28)*Lucas(23)/(1/2+sqrt(5)/2)^32 4180999951145108 a004 Fibonacci(30)*Lucas(23)/(1/2+sqrt(5)/2)^34 4180999951146140 a004 Fibonacci(32)*Lucas(23)/(1/2+sqrt(5)/2)^36 4180999951146291 a004 Fibonacci(34)*Lucas(23)/(1/2+sqrt(5)/2)^38 4180999951146313 a004 Fibonacci(36)*Lucas(23)/(1/2+sqrt(5)/2)^40 4180999951146316 a004 Fibonacci(38)*Lucas(23)/(1/2+sqrt(5)/2)^42 4180999951146316 a004 Fibonacci(40)*Lucas(23)/(1/2+sqrt(5)/2)^44 4180999951146316 a004 Fibonacci(42)*Lucas(23)/(1/2+sqrt(5)/2)^46 4180999951146316 a004 Fibonacci(44)*Lucas(23)/(1/2+sqrt(5)/2)^48 4180999951146316 a004 Fibonacci(46)*Lucas(23)/(1/2+sqrt(5)/2)^50 4180999951146316 a004 Fibonacci(48)*Lucas(23)/(1/2+sqrt(5)/2)^52 4180999951146316 a004 Fibonacci(50)*Lucas(23)/(1/2+sqrt(5)/2)^54 4180999951146316 a004 Fibonacci(52)*Lucas(23)/(1/2+sqrt(5)/2)^56 4180999951146316 a004 Fibonacci(54)*Lucas(23)/(1/2+sqrt(5)/2)^58 4180999951146316 a004 Fibonacci(56)*Lucas(23)/(1/2+sqrt(5)/2)^60 4180999951146316 a004 Fibonacci(58)*Lucas(23)/(1/2+sqrt(5)/2)^62 4180999951146316 a004 Fibonacci(60)*Lucas(23)/(1/2+sqrt(5)/2)^64 4180999951146316 a004 Fibonacci(62)*Lucas(23)/(1/2+sqrt(5)/2)^66 4180999951146316 a004 Fibonacci(64)*Lucas(23)/(1/2+sqrt(5)/2)^68 4180999951146316 a004 Fibonacci(66)*Lucas(23)/(1/2+sqrt(5)/2)^70 4180999951146316 a004 Fibonacci(68)*Lucas(23)/(1/2+sqrt(5)/2)^72 4180999951146316 a004 Fibonacci(70)*Lucas(23)/(1/2+sqrt(5)/2)^74 4180999951146316 a004 Fibonacci(72)*Lucas(23)/(1/2+sqrt(5)/2)^76 4180999951146316 a004 Fibonacci(74)*Lucas(23)/(1/2+sqrt(5)/2)^78 4180999951146316 a004 Fibonacci(76)*Lucas(23)/(1/2+sqrt(5)/2)^80 4180999951146316 a004 Fibonacci(78)*Lucas(23)/(1/2+sqrt(5)/2)^82 4180999951146316 a004 Fibonacci(80)*Lucas(23)/(1/2+sqrt(5)/2)^84 4180999951146316 a004 Fibonacci(82)*Lucas(23)/(1/2+sqrt(5)/2)^86 4180999951146316 a004 Fibonacci(84)*Lucas(23)/(1/2+sqrt(5)/2)^88 4180999951146316 a004 Fibonacci(86)*Lucas(23)/(1/2+sqrt(5)/2)^90 4180999951146316 a004 Fibonacci(88)*Lucas(23)/(1/2+sqrt(5)/2)^92 4180999951146316 a004 Fibonacci(90)*Lucas(23)/(1/2+sqrt(5)/2)^94 4180999951146316 a004 Fibonacci(92)*Lucas(23)/(1/2+sqrt(5)/2)^96 4180999951146316 a004 Fibonacci(94)*Lucas(23)/(1/2+sqrt(5)/2)^98 4180999951146316 a004 Fibonacci(96)*Lucas(23)/(1/2+sqrt(5)/2)^100 4180999951146316 a004 Fibonacci(95)*Lucas(23)/(1/2+sqrt(5)/2)^99 4180999951146316 a004 Fibonacci(93)*Lucas(23)/(1/2+sqrt(5)/2)^97 4180999951146316 a004 Fibonacci(91)*Lucas(23)/(1/2+sqrt(5)/2)^95 4180999951146316 a004 Fibonacci(89)*Lucas(23)/(1/2+sqrt(5)/2)^93 4180999951146316 a004 Fibonacci(87)*Lucas(23)/(1/2+sqrt(5)/2)^91 4180999951146316 a004 Fibonacci(85)*Lucas(23)/(1/2+sqrt(5)/2)^89 4180999951146316 a004 Fibonacci(83)*Lucas(23)/(1/2+sqrt(5)/2)^87 4180999951146316 a004 Fibonacci(81)*Lucas(23)/(1/2+sqrt(5)/2)^85 4180999951146316 a004 Fibonacci(79)*Lucas(23)/(1/2+sqrt(5)/2)^83 4180999951146316 a004 Fibonacci(77)*Lucas(23)/(1/2+sqrt(5)/2)^81 4180999951146316 a004 Fibonacci(75)*Lucas(23)/(1/2+sqrt(5)/2)^79 4180999951146316 a004 Fibonacci(73)*Lucas(23)/(1/2+sqrt(5)/2)^77 4180999951146316 a004 Fibonacci(71)*Lucas(23)/(1/2+sqrt(5)/2)^75 4180999951146316 a004 Fibonacci(69)*Lucas(23)/(1/2+sqrt(5)/2)^73 4180999951146316 a004 Fibonacci(67)*Lucas(23)/(1/2+sqrt(5)/2)^71 4180999951146316 a004 Fibonacci(65)*Lucas(23)/(1/2+sqrt(5)/2)^69 4180999951146316 a004 Fibonacci(63)*Lucas(23)/(1/2+sqrt(5)/2)^67 4180999951146316 a004 Fibonacci(61)*Lucas(23)/(1/2+sqrt(5)/2)^65 4180999951146316 a004 Fibonacci(59)*Lucas(23)/(1/2+sqrt(5)/2)^63 4180999951146316 a004 Fibonacci(57)*Lucas(23)/(1/2+sqrt(5)/2)^61 4180999951146316 a004 Fibonacci(55)*Lucas(23)/(1/2+sqrt(5)/2)^59 4180999951146316 a004 Fibonacci(53)*Lucas(23)/(1/2+sqrt(5)/2)^57 4180999951146316 a004 Fibonacci(51)*Lucas(23)/(1/2+sqrt(5)/2)^55 4180999951146316 a004 Fibonacci(49)*Lucas(23)/(1/2+sqrt(5)/2)^53 4180999951146316 a004 Fibonacci(47)*Lucas(23)/(1/2+sqrt(5)/2)^51 4180999951146316 a001 2/28657*(1/2+1/2*5^(1/2))^42 4180999951146316 a004 Fibonacci(45)*Lucas(23)/(1/2+sqrt(5)/2)^49 4180999951146316 a004 Fibonacci(43)*Lucas(23)/(1/2+sqrt(5)/2)^47 4180999951146316 a004 Fibonacci(41)*Lucas(23)/(1/2+sqrt(5)/2)^45 4180999951146316 a004 Fibonacci(39)*Lucas(23)/(1/2+sqrt(5)/2)^43 4180999951146318 a004 Fibonacci(37)*Lucas(23)/(1/2+sqrt(5)/2)^41 4180999951146326 a004 Fibonacci(35)*Lucas(23)/(1/2+sqrt(5)/2)^39 4180999951146384 a004 Fibonacci(33)*Lucas(23)/(1/2+sqrt(5)/2)^37 4180999951146778 a004 Fibonacci(31)*Lucas(23)/(1/2+sqrt(5)/2)^35 4180999951149479 a004 Fibonacci(29)*Lucas(23)/(1/2+sqrt(5)/2)^33 4180999951158987 a001 514229/103682*64079^(14/23) 4180999951159260 a001 701408733/710647*24476^(1/7) 4180999951166331 a001 1836311903/1860498*24476^(1/7) 4180999951167363 a001 4807526976/4870847*24476^(1/7) 4180999951167513 a001 12586269025/12752043*24476^(1/7) 4180999951167535 a001 32951280099/33385282*24476^(1/7) 4180999951167538 a001 86267571272/87403803*24476^(1/7) 4180999951167539 a001 225851433717/228826127*24476^(1/7) 4180999951167539 a001 591286729879/599074578*24476^(1/7) 4180999951167539 a001 1548008755920/1568397607*24476^(1/7) 4180999951167539 a001 4052739537881/4106118243*24476^(1/7) 4180999951167539 a001 4807525989/4870846*24476^(1/7) 4180999951167539 a001 6557470319842/6643838879*24476^(1/7) 4180999951167539 a001 2504730781961/2537720636*24476^(1/7) 4180999951167539 a001 956722026041/969323029*24476^(1/7) 4180999951167539 a001 365435296162/370248451*24476^(1/7) 4180999951167539 a001 139583862445/141422324*24476^(1/7) 4180999951167540 a001 53316291173/54018521*24476^(1/7) 4180999951167549 a001 20365011074/20633239*24476^(1/7) 4180999951167606 a001 7778742049/7881196*24476^(1/7) 4180999951167991 a004 Fibonacci(27)*Lucas(23)/(1/2+sqrt(5)/2)^31 4180999951168000 a001 2971215073/3010349*24476^(1/7) 4180999951169762 a001 15456/13201*39603^(17/22) 4180999951169835 a001 121393/710647*64079^(21/23) 4180999951170701 a001 1134903170/1149851*24476^(1/7) 4180999951182770 a001 317811/3010349*64079^(22/23) 4180999951188758 a001 14930352/64079*24476^(2/7) 4180999951189213 a001 433494437/439204*24476^(1/7) 4180999951189447 a001 208010/1970299*64079^(22/23) 4180999951190421 a001 2178309/20633239*64079^(22/23) 4180999951190563 a001 5702887/54018521*64079^(22/23) 4180999951190584 a001 3732588/35355581*64079^(22/23) 4180999951190587 a001 39088169/370248451*64079^(22/23) 4180999951190587 a001 102334155/969323029*64079^(22/23) 4180999951190587 a001 66978574/634430159*64079^(22/23) 4180999951190587 a001 701408733/6643838879*64079^(22/23) 4180999951190587 a001 1836311903/17393796001*64079^(22/23) 4180999951190587 a001 1201881744/11384387281*64079^(22/23) 4180999951190587 a001 12586269025/119218851371*64079^(22/23) 4180999951190587 a001 32951280099/312119004989*64079^(22/23) 4180999951190587 a001 21566892818/204284540899*64079^(22/23) 4180999951190587 a001 225851433717/2139295485799*64079^(22/23) 4180999951190587 a001 182717648081/1730726404001*64079^(22/23) 4180999951190587 a001 139583862445/1322157322203*64079^(22/23) 4180999951190587 a001 53316291173/505019158607*64079^(22/23) 4180999951190587 a001 10182505537/96450076809*64079^(22/23) 4180999951190587 a001 7778742049/73681302247*64079^(22/23) 4180999951190587 a001 2971215073/28143753123*64079^(22/23) 4180999951190587 a001 567451585/5374978561*64079^(22/23) 4180999951190587 a001 433494437/4106118243*64079^(22/23) 4180999951190587 a001 165580141/1568397607*64079^(22/23) 4180999951190588 a001 31622993/299537289*64079^(22/23) 4180999951190589 a001 24157817/228826127*64079^(22/23) 4180999951190597 a001 9227465/87403803*64079^(22/23) 4180999951190651 a001 1762289/16692641*64079^(22/23) 4180999951191023 a001 1346269/12752043*64079^(22/23) 4180999951193573 a001 514229/4870847*64079^(22/23) 4180999951198888 a001 416020/51841*64079^(13/23) 4180999951209912 a001 121393/271443*64079^(19/23) 4180999951211054 a001 98209/930249*64079^(22/23) 4180999951216853 a001 196418/39603*39603^(7/11) 4180999951225372 a001 105937/620166*64079^(21/23) 4180999951233474 a001 832040/4870847*64079^(21/23) 4180999951234657 a001 726103/4250681*64079^(21/23) 4180999951234829 a001 5702887/33385282*64079^(21/23) 4180999951234854 a001 4976784/29134601*64079^(21/23) 4180999951234858 a001 39088169/228826127*64079^(21/23) 4180999951234858 a001 34111385/199691526*64079^(21/23) 4180999951234859 a001 267914296/1568397607*64079^(21/23) 4180999951234859 a001 233802911/1368706081*64079^(21/23) 4180999951234859 a001 1836311903/10749957122*64079^(21/23) 4180999951234859 a001 1602508992/9381251041*64079^(21/23) 4180999951234859 a001 12586269025/73681302247*64079^(21/23) 4180999951234859 a001 10983760033/64300051206*64079^(21/23) 4180999951234859 a001 86267571272/505019158607*64079^(21/23) 4180999951234859 a001 75283811239/440719107401*64079^(21/23) 4180999951234859 a001 2504730781961/14662949395604*64079^(21/23) 4180999951234859 a001 139583862445/817138163596*64079^(21/23) 4180999951234859 a001 53316291173/312119004989*64079^(21/23) 4180999951234859 a001 20365011074/119218851371*64079^(21/23) 4180999951234859 a001 7778742049/45537549124*64079^(21/23) 4180999951234859 a001 2971215073/17393796001*64079^(21/23) 4180999951234859 a001 1134903170/6643838879*64079^(21/23) 4180999951234859 a001 433494437/2537720636*64079^(21/23) 4180999951234859 a001 165580141/969323029*64079^(21/23) 4180999951234859 a001 63245986/370248451*64079^(21/23) 4180999951234860 a001 24157817/141422324*64079^(21/23) 4180999951234870 a001 9227465/54018521*64079^(21/23) 4180999951234936 a001 3524578/20633239*64079^(21/23) 4180999951235387 a001 1346269/7881196*64079^(21/23) 4180999951238482 a001 514229/3010349*64079^(21/23) 4180999951244060 a001 121393/439204*64079^(20/23) 4180999951244829 a001 1346269/103682*64079^(12/23) 4180999951259606 a001 121393/39603*39603^(15/22) 4180999951259695 a001 196418/1149851*64079^(21/23) 4180999951274013 a001 317811/1149851*64079^(20/23) 4180999951278383 a001 832040/3010349*64079^(20/23) 4180999951279021 a001 2178309/7881196*64079^(20/23) 4180999951279114 a001 5702887/20633239*64079^(20/23) 4180999951279127 a001 14930352/54018521*64079^(20/23) 4180999951279129 a001 39088169/141422324*64079^(20/23) 4180999951279130 a001 102334155/370248451*64079^(20/23) 4180999951279130 a001 267914296/969323029*64079^(20/23) 4180999951279130 a001 701408733/2537720636*64079^(20/23) 4180999951279130 a001 1836311903/6643838879*64079^(20/23) 4180999951279130 a001 4807526976/17393796001*64079^(20/23) 4180999951279130 a001 12586269025/45537549124*64079^(20/23) 4180999951279130 a001 32951280099/119218851371*64079^(20/23) 4180999951279130 a001 86267571272/312119004989*64079^(20/23) 4180999951279130 a001 225851433717/817138163596*64079^(20/23) 4180999951279130 a001 1548008755920/5600748293801*64079^(20/23) 4180999951279130 a001 139583862445/505019158607*64079^(20/23) 4180999951279130 a001 53316291173/192900153618*64079^(20/23) 4180999951279130 a001 20365011074/73681302247*64079^(20/23) 4180999951279130 a001 7778742049/28143753123*64079^(20/23) 4180999951279130 a001 2971215073/10749957122*64079^(20/23) 4180999951279130 a001 1134903170/4106118243*64079^(20/23) 4180999951279130 a001 433494437/1568397607*64079^(20/23) 4180999951279130 a001 165580141/599074578*64079^(20/23) 4180999951279130 a001 63245986/228826127*64079^(20/23) 4180999951279131 a001 24157817/87403803*64079^(20/23) 4180999951279136 a001 9227465/33385282*64079^(20/23) 4180999951279171 a001 3524578/12752043*64079^(20/23) 4180999951279415 a001 1346269/4870847*64079^(20/23) 4180999951281084 a001 514229/1860498*64079^(20/23) 4180999951288462 a001 46347/2206*64079^(11/23) 4180999951292525 a001 196418/710647*64079^(20/23) 4180999951294875 a004 Fibonacci(25)*Lucas(23)/(1/2+sqrt(5)/2)^29 4180999951306843 a001 317811/710647*64079^(19/23) 4180999951316098 a001 165580141/167761*24476^(1/7) 4180999951320985 a001 416020/930249*64079^(19/23) 4180999951323048 a001 2178309/4870847*64079^(19/23) 4180999951323349 a001 5702887/12752043*64079^(19/23) 4180999951323393 a001 7465176/16692641*64079^(19/23) 4180999951323400 a001 39088169/87403803*64079^(19/23) 4180999951323401 a001 102334155/228826127*64079^(19/23) 4180999951323401 a001 133957148/299537289*64079^(19/23) 4180999951323401 a001 701408733/1568397607*64079^(19/23) 4180999951323401 a001 1836311903/4106118243*64079^(19/23) 4180999951323401 a001 2403763488/5374978561*64079^(19/23) 4180999951323401 a001 12586269025/28143753123*64079^(19/23) 4180999951323401 a001 32951280099/73681302247*64079^(19/23) 4180999951323401 a001 43133785636/96450076809*64079^(19/23) 4180999951323401 a001 225851433717/505019158607*64079^(19/23) 4180999951323401 a001 591286729879/1322157322203*64079^(19/23) 4180999951323401 a001 10610209857723/23725150497407*64079^(19/23) 4180999951323401 a001 182717648081/408569081798*64079^(19/23) 4180999951323401 a001 139583862445/312119004989*64079^(19/23) 4180999951323401 a001 53316291173/119218851371*64079^(19/23) 4180999951323401 a001 10182505537/22768774562*64079^(19/23) 4180999951323401 a001 7778742049/17393796001*64079^(19/23) 4180999951323401 a001 2971215073/6643838879*64079^(19/23) 4180999951323401 a001 567451585/1268860318*64079^(19/23) 4180999951323401 a001 433494437/969323029*64079^(19/23) 4180999951323401 a001 165580141/370248451*64079^(19/23) 4180999951323401 a001 31622993/70711162*64079^(19/23) 4180999951323404 a001 24157817/54018521*64079^(19/23) 4180999951323421 a001 9227465/20633239*64079^(19/23) 4180999951323536 a001 1762289/3940598*64079^(19/23) 4180999951324324 a001 1346269/3010349*64079^(19/23) 4180999951325926 a001 63245986/39603*15127^(1/10) 4180999951329725 a001 514229/1149851*64079^(19/23) 4180999951330867 a001 75025/710647*64079^(22/23) 4180999951332602 a001 196418/271443*64079^(18/23) 4180999951332977 a001 1762289/51841*64079^(10/23) 4180999951346920 a001 105937/90481*64079^(17/23) 4180999951362555 a001 514229/710647*64079^(18/23) 4180999951366750 a001 98209/219602*64079^(19/23) 4180999951366926 a001 1346269/1860498*64079^(18/23) 4180999951367563 a001 3524578/4870847*64079^(18/23) 4180999951367656 a001 9227465/12752043*64079^(18/23) 4180999951367670 a001 24157817/33385282*64079^(18/23) 4180999951367672 a001 63245986/87403803*64079^(18/23) 4180999951367672 a001 165580141/228826127*64079^(18/23) 4180999951367672 a001 433494437/599074578*64079^(18/23) 4180999951367672 a001 1134903170/1568397607*64079^(18/23) 4180999951367672 a001 2971215073/4106118243*64079^(18/23) 4180999951367672 a001 7778742049/10749957122*64079^(18/23) 4180999951367672 a001 20365011074/28143753123*64079^(18/23) 4180999951367672 a001 53316291173/73681302247*64079^(18/23) 4180999951367672 a001 139583862445/192900153618*64079^(18/23) 4180999951367672 a001 365435296162/505019158607*64079^(18/23) 4180999951367672 a001 10610209857723/14662949395604*64079^(18/23) 4180999951367672 a001 225851433717/312119004989*64079^(18/23) 4180999951367672 a001 86267571272/119218851371*64079^(18/23) 4180999951367672 a001 32951280099/45537549124*64079^(18/23) 4180999951367672 a001 12586269025/17393796001*64079^(18/23) 4180999951367672 a001 4807526976/6643838879*64079^(18/23) 4180999951367672 a001 1836311903/2537720636*64079^(18/23) 4180999951367672 a001 701408733/969323029*64079^(18/23) 4180999951367672 a001 267914296/370248451*64079^(18/23) 4180999951367672 a001 102334155/141422324*64079^(18/23) 4180999951367673 a001 39088169/54018521*64079^(18/23) 4180999951367678 a001 14930352/20633239*64079^(18/23) 4180999951367714 a001 5702887/7881196*64079^(18/23) 4180999951367957 a001 2178309/3010349*64079^(18/23) 4180999951369626 a001 832040/1149851*64079^(18/23) 4180999951370944 a001 75025/271443*64079^(20/23) 4180999951377155 a001 5702887/103682*64079^(9/23) 4180999951381068 a001 317811/439204*64079^(18/23) 4180999951383527 a001 2149991424/514229 4180999951386689 a001 23184/51841*817138163596^(1/3) 4180999951386689 a001 23184/51841*(1/2+1/2*5^(1/2))^19 4180999951386690 a001 23184/51841*87403803^(1/2) 4180999951402456 a001 832040/710647*64079^(17/23) 4180999951402632 a001 514229/271443*64079^(16/23) 4180999951405092 a001 75025/439204*64079^(21/23) 4180999951410559 a001 726103/620166*64079^(17/23) 4180999951411741 a001 5702887/4870847*64079^(17/23) 4180999951411914 a001 4976784/4250681*64079^(17/23) 4180999951411939 a001 39088169/33385282*64079^(17/23) 4180999951411943 a001 34111385/29134601*64079^(17/23) 4180999951411943 a001 267914296/228826127*64079^(17/23) 4180999951411943 a001 233802911/199691526*64079^(17/23) 4180999951411943 a001 1836311903/1568397607*64079^(17/23) 4180999951411943 a001 1602508992/1368706081*64079^(17/23) 4180999951411943 a001 12586269025/10749957122*64079^(17/23) 4180999951411943 a001 10983760033/9381251041*64079^(17/23) 4180999951411943 a001 86267571272/73681302247*64079^(17/23) 4180999951411943 a001 75283811239/64300051206*64079^(17/23) 4180999951411943 a001 2504730781961/2139295485799*64079^(17/23) 4180999951411943 a001 365435296162/312119004989*64079^(17/23) 4180999951411943 a001 139583862445/119218851371*64079^(17/23) 4180999951411943 a001 53316291173/45537549124*64079^(17/23) 4180999951411943 a001 20365011074/17393796001*64079^(17/23) 4180999951411943 a001 7778742049/6643838879*64079^(17/23) 4180999951411943 a001 2971215073/2537720636*64079^(17/23) 4180999951411943 a001 1134903170/969323029*64079^(17/23) 4180999951411943 a001 433494437/370248451*64079^(17/23) 4180999951411943 a001 165580141/141422324*64079^(17/23) 4180999951411945 a001 63245986/54018521*64079^(17/23) 4180999951411954 a001 24157817/20633239*64079^(17/23) 4180999951412020 a001 9227465/7881196*64079^(17/23) 4180999951412472 a001 3524578/3010349*64079^(17/23) 4180999951415567 a001 1346269/1149851*64079^(17/23) 4180999951421462 a001 9227465/103682*64079^(8/23) 4180999951436780 a001 514229/439204*64079^(17/23) 4180999951442533 a001 832040/271443*64079^(15/23) 4180999951443133 a001 433494437/271443*24476^(2/21) 4180999951443283 a001 133957148/51841*24476^(1/21) 4180999951448397 a001 1346269/710647*64079^(16/23) 4180999951455074 a001 1762289/930249*64079^(16/23) 4180999951456048 a001 9227465/4870847*64079^(16/23) 4180999951456190 a001 24157817/12752043*64079^(16/23) 4180999951456211 a001 31622993/16692641*64079^(16/23) 4180999951456214 a001 165580141/87403803*64079^(16/23) 4180999951456214 a001 433494437/228826127*64079^(16/23) 4180999951456214 a001 567451585/299537289*64079^(16/23) 4180999951456214 a001 2971215073/1568397607*64079^(16/23) 4180999951456214 a001 7778742049/4106118243*64079^(16/23) 4180999951456214 a001 10182505537/5374978561*64079^(16/23) 4180999951456214 a001 53316291173/28143753123*64079^(16/23) 4180999951456214 a001 139583862445/73681302247*64079^(16/23) 4180999951456214 a001 182717648081/96450076809*64079^(16/23) 4180999951456214 a001 956722026041/505019158607*64079^(16/23) 4180999951456214 a001 10610209857723/5600748293801*64079^(16/23) 4180999951456214 a001 591286729879/312119004989*64079^(16/23) 4180999951456214 a001 225851433717/119218851371*64079^(16/23) 4180999951456214 a001 21566892818/11384387281*64079^(16/23) 4180999951456214 a001 32951280099/17393796001*64079^(16/23) 4180999951456214 a001 12586269025/6643838879*64079^(16/23) 4180999951456214 a001 1201881744/634430159*64079^(16/23) 4180999951456214 a001 1836311903/969323029*64079^(16/23) 4180999951456214 a001 701408733/370248451*64079^(16/23) 4180999951456215 a001 66978574/35355581*64079^(16/23) 4180999951456216 a001 102334155/54018521*64079^(16/23) 4180999951456224 a001 39088169/20633239*64079^(16/23) 4180999951456278 a001 3732588/1970299*64079^(16/23) 4180999951456650 a001 5702887/3010349*64079^(16/23) 4180999951459200 a001 2178309/1149851*64079^(16/23) 4180999951459486 a001 121393/167761*64079^(18/23) 4180999951465719 a001 7465176/51841*64079^(7/23) 4180999951476681 a001 208010/109801*64079^(16/23) 4180999951476995 a008 Real Root of (-3+4*x+6*x^2+9*x^4+4*x^8) 4180999951488474 a001 1346269/271443*64079^(14/23) 4180999951491598 a001 1134903170/710647*24476^(2/21) 4180999951492030 a001 311187/101521*64079^(15/23) 4180999951498669 a001 2971215073/1860498*24476^(2/21) 4180999951499252 a001 5702887/1860498*64079^(15/23) 4180999951499701 a001 7778742049/4870847*24476^(2/21) 4180999951499851 a001 20365011074/12752043*24476^(2/21) 4180999951499873 a001 53316291173/33385282*24476^(2/21) 4180999951499876 a001 139583862445/87403803*24476^(2/21) 4180999951499877 a001 365435296162/228826127*24476^(2/21) 4180999951499877 a001 956722026041/599074578*24476^(2/21) 4180999951499877 a001 2504730781961/1568397607*24476^(2/21) 4180999951499877 a001 6557470319842/4106118243*24476^(2/21) 4180999951499877 a001 10610209857723/6643838879*24476^(2/21) 4180999951499877 a001 4052739537881/2537720636*24476^(2/21) 4180999951499877 a001 1548008755920/969323029*24476^(2/21) 4180999951499877 a001 591286729879/370248451*24476^(2/21) 4180999951499877 a001 225851433717/141422324*24476^(2/21) 4180999951499878 a001 86267571272/54018521*24476^(2/21) 4180999951499887 a001 32951280099/20633239*24476^(2/21) 4180999951499944 a001 12586269025/7881196*24476^(2/21) 4180999951500306 a001 14930352/4870847*64079^(15/23) 4180999951500338 a001 4807526976/3010349*24476^(2/21) 4180999951500459 a001 39088169/12752043*64079^(15/23) 4180999951500482 a001 14619165/4769326*64079^(15/23) 4180999951500485 a001 267914296/87403803*64079^(15/23) 4180999951500485 a001 701408733/228826127*64079^(15/23) 4180999951500486 a001 1836311903/599074578*64079^(15/23) 4180999951500486 a001 686789568/224056801*64079^(15/23) 4180999951500486 a001 12586269025/4106118243*64079^(15/23) 4180999951500486 a001 32951280099/10749957122*64079^(15/23) 4180999951500486 a001 86267571272/28143753123*64079^(15/23) 4180999951500486 a001 32264490531/10525900321*64079^(15/23) 4180999951500486 a001 591286729879/192900153618*64079^(15/23) 4180999951500486 a001 1548008755920/505019158607*64079^(15/23) 4180999951500486 a001 1515744265389/494493258286*64079^(15/23) 4180999951500486 a001 2504730781961/817138163596*64079^(15/23) 4180999951500486 a001 956722026041/312119004989*64079^(15/23) 4180999951500486 a001 365435296162/119218851371*64079^(15/23) 4180999951500486 a001 139583862445/45537549124*64079^(15/23) 4180999951500486 a001 53316291173/17393796001*64079^(15/23) 4180999951500486 a001 20365011074/6643838879*64079^(15/23) 4180999951500486 a001 7778742049/2537720636*64079^(15/23) 4180999951500486 a001 2971215073/969323029*64079^(15/23) 4180999951500486 a001 1134903170/370248451*64079^(15/23) 4180999951500486 a001 433494437/141422324*64079^(15/23) 4180999951500487 a001 165580141/54018521*64079^(15/23) 4180999951500496 a001 63245986/20633239*64079^(15/23) 4180999951500554 a001 24157817/7881196*64079^(15/23) 4180999951500957 a001 9227465/3010349*64079^(15/23) 4180999951503039 a001 1836311903/1149851*24476^(2/21) 4180999951503715 a001 3524578/1149851*64079^(15/23) 4180999951509996 a001 24157817/103682*64079^(6/23) 4180999951521101 a001 24157817/64079*24476^(5/21) 4180999951521551 a001 701408733/439204*24476^(2/21) 4180999951522621 a001 1346269/439204*64079^(15/23) 4180999951532107 a001 726103/90481*64079^(13/23) 4180999951536545 a001 3524578/710647*64079^(14/23) 4180999951543559 a001 9227465/1860498*64079^(14/23) 4180999951544582 a001 24157817/4870847*64079^(14/23) 4180999951544731 a001 63245986/12752043*64079^(14/23) 4180999951544753 a001 165580141/33385282*64079^(14/23) 4180999951544756 a001 433494437/87403803*64079^(14/23) 4180999951544757 a001 1134903170/228826127*64079^(14/23) 4180999951544757 a001 2971215073/599074578*64079^(14/23) 4180999951544757 a001 7778742049/1568397607*64079^(14/23) 4180999951544757 a001 20365011074/4106118243*64079^(14/23) 4180999951544757 a001 53316291173/10749957122*64079^(14/23) 4180999951544757 a001 139583862445/28143753123*64079^(14/23) 4180999951544757 a001 365435296162/73681302247*64079^(14/23) 4180999951544757 a001 956722026041/192900153618*64079^(14/23) 4180999951544757 a001 2504730781961/505019158607*64079^(14/23) 4180999951544757 a001 10610209857723/2139295485799*64079^(14/23) 4180999951544757 a001 4052739537881/817138163596*64079^(14/23) 4180999951544757 a001 140728068720/28374454999*64079^(14/23) 4180999951544757 a001 591286729879/119218851371*64079^(14/23) 4180999951544757 a001 225851433717/45537549124*64079^(14/23) 4180999951544757 a001 86267571272/17393796001*64079^(14/23) 4180999951544757 a001 32951280099/6643838879*64079^(14/23) 4180999951544757 a001 1144206275/230701876*64079^(14/23) 4180999951544757 a001 4807526976/969323029*64079^(14/23) 4180999951544757 a001 1836311903/370248451*64079^(14/23) 4180999951544757 a001 701408733/141422324*64079^(14/23) 4180999951544758 a001 267914296/54018521*64079^(14/23) 4180999951544766 a001 9303105/1875749*64079^(14/23) 4180999951544823 a001 39088169/7881196*64079^(14/23) 4180999951545214 a001 14930352/3010349*64079^(14/23) 4180999951547893 a001 5702887/1149851*64079^(14/23) 4180999951554265 a001 39088169/103682*64079^(5/23) 4180999951566255 a001 2178309/439204*64079^(14/23) 4180999951576622 a001 3524578/271443*64079^(12/23) 4180999951580723 a001 5702887/710647*64079^(13/23) 4180999951582176 a001 196418/167761*64079^(17/23) 4180999951586081 a001 75025/39603*39603^(8/11) 4180999951587816 a001 829464/103361*64079^(13/23) 4180999951588851 a001 39088169/4870847*64079^(13/23) 4180999951589002 a001 34111385/4250681*64079^(13/23) 4180999951589024 a001 133957148/16692641*64079^(13/23) 4180999951589027 a001 233802911/29134601*64079^(13/23) 4180999951589028 a001 1836311903/228826127*64079^(13/23) 4180999951589028 a001 267084832/33281921*64079^(13/23) 4180999951589028 a001 12586269025/1568397607*64079^(13/23) 4180999951589028 a001 10983760033/1368706081*64079^(13/23) 4180999951589028 a001 43133785636/5374978561*64079^(13/23) 4180999951589028 a001 75283811239/9381251041*64079^(13/23) 4180999951589028 a001 591286729879/73681302247*64079^(13/23) 4180999951589028 a001 86000486440/10716675201*64079^(13/23) 4180999951589028 a001 4052739537881/505019158607*64079^(13/23) 4180999951589028 a001 3536736619241/440719107401*64079^(13/23) 4180999951589028 a001 3278735159921/408569081798*64079^(13/23) 4180999951589028 a001 2504730781961/312119004989*64079^(13/23) 4180999951589028 a001 956722026041/119218851371*64079^(13/23) 4180999951589028 a001 182717648081/22768774562*64079^(13/23) 4180999951589028 a001 139583862445/17393796001*64079^(13/23) 4180999951589028 a001 53316291173/6643838879*64079^(13/23) 4180999951589028 a001 10182505537/1268860318*64079^(13/23) 4180999951589028 a001 7778742049/969323029*64079^(13/23) 4180999951589028 a001 2971215073/370248451*64079^(13/23) 4180999951589028 a001 567451585/70711162*64079^(13/23) 4180999951589029 a001 433494437/54018521*64079^(13/23) 4180999951589038 a001 165580141/20633239*64079^(13/23) 4180999951589095 a001 31622993/3940598*64079^(13/23) 4180999951589491 a001 24157817/3010349*64079^(13/23) 4180999951590687 a001 24157817/24476*9349^(3/19) 4180999951592200 a001 9227465/1149851*64079^(13/23) 4180999951596494 a001 317811/167761*64079^(16/23) 4180999951598537 a001 31622993/51841*64079^(4/23) 4180999951610770 a001 1762289/219602*64079^(13/23) 4180999951620518 a001 75025/167761*64079^(19/23) 4180999951620800 a001 5702887/271443*64079^(11/23) 4180999951625030 a001 9227465/710647*64079^(12/23) 4180999951627062 a004 Fibonacci(24)*Lucas(25)/(1/2+sqrt(5)/2)^30 4180999951632093 a001 24157817/1860498*64079^(12/23) 4180999951633123 a001 63245986/4870847*64079^(12/23) 4180999951633273 a001 165580141/12752043*64079^(12/23) 4180999951633295 a001 433494437/33385282*64079^(12/23) 4180999951633298 a001 1134903170/87403803*64079^(12/23) 4180999951633299 a001 2971215073/228826127*64079^(12/23) 4180999951633299 a001 7778742049/599074578*64079^(12/23) 4180999951633299 a001 20365011074/1568397607*64079^(12/23) 4180999951633299 a001 53316291173/4106118243*64079^(12/23) 4180999951633299 a001 139583862445/10749957122*64079^(12/23) 4180999951633299 a001 365435296162/28143753123*64079^(12/23) 4180999951633299 a001 956722026041/73681302247*64079^(12/23) 4180999951633299 a001 2504730781961/192900153618*64079^(12/23) 4180999951633299 a001 10610209857723/817138163596*64079^(12/23) 4180999951633299 a001 4052739537881/312119004989*64079^(12/23) 4180999951633299 a001 1548008755920/119218851371*64079^(12/23) 4180999951633299 a001 591286729879/45537549124*64079^(12/23) 4180999951633299 a001 7787980473/599786069*64079^(12/23) 4180999951633299 a001 86267571272/6643838879*64079^(12/23) 4180999951633299 a001 32951280099/2537720636*64079^(12/23) 4180999951633299 a001 12586269025/969323029*64079^(12/23) 4180999951633299 a001 4807526976/370248451*64079^(12/23) 4180999951633299 a001 1836311903/141422324*64079^(12/23) 4180999951633300 a001 701408733/54018521*64079^(12/23) 4180999951633309 a001 9238424/711491*64079^(12/23) 4180999951633366 a001 102334155/7881196*64079^(12/23) 4180999951633760 a001 39088169/3010349*64079^(12/23) 4180999951636458 a001 14930352/1149851*64079^(12/23) 4180999951642808 a001 102334155/103682*64079^(3/23) 4180999951648436 a001 267914296/167761*24476^(2/21) 4180999951652207 a001 514229/167761*64079^(15/23) 4180999951654449 a001 17711/103682*39603^(21/22) 4180999951654948 a001 5702887/439204*64079^(12/23) 4180999951665107 a001 9227465/271443*64079^(10/23) 4180999951669288 a001 14930352/710647*64079^(11/23) 4180999951676362 a001 39088169/1860498*64079^(11/23) 4180999951677394 a001 102334155/4870847*64079^(11/23) 4180999951677544 a001 267914296/12752043*64079^(11/23) 4180999951677566 a001 701408733/33385282*64079^(11/23) 4180999951677570 a001 1836311903/87403803*64079^(11/23) 4180999951677570 a001 102287808/4868641*64079^(11/23) 4180999951677570 a001 12586269025/599074578*64079^(11/23) 4180999951677570 a001 32951280099/1568397607*64079^(11/23) 4180999951677570 a001 86267571272/4106118243*64079^(11/23) 4180999951677570 a001 225851433717/10749957122*64079^(11/23) 4180999951677570 a001 591286729879/28143753123*64079^(11/23) 4180999951677570 a001 1548008755920/73681302247*64079^(11/23) 4180999951677570 a001 4052739537881/192900153618*64079^(11/23) 4180999951677570 a001 225749145909/10745088481*64079^(11/23) 4180999951677570 a001 6557470319842/312119004989*64079^(11/23) 4180999951677570 a001 2504730781961/119218851371*64079^(11/23) 4180999951677570 a001 956722026041/45537549124*64079^(11/23) 4180999951677570 a001 365435296162/17393796001*64079^(11/23) 4180999951677570 a001 139583862445/6643838879*64079^(11/23) 4180999951677570 a001 53316291173/2537720636*64079^(11/23) 4180999951677570 a001 20365011074/969323029*64079^(11/23) 4180999951677570 a001 7778742049/370248451*64079^(11/23) 4180999951677570 a001 2971215073/141422324*64079^(11/23) 4180999951677572 a001 1134903170/54018521*64079^(11/23) 4180999951677580 a001 433494437/20633239*64079^(11/23) 4180999951677637 a001 165580141/7881196*64079^(11/23) 4180999951678032 a001 63245986/3010349*64079^(11/23) 4180999951678207 a001 317811/103682*167761^(3/5) 4180999951680734 a001 24157817/1149851*64079^(11/23) 4180999951687079 a001 165580141/103682*64079^(2/23) 4180999951692108 a001 75640/15251*64079^(14/23) 4180999951694594 a001 23184/51841*103682^(19/24) 4180999951699254 a001 9227465/439204*64079^(11/23) 4180999951702019 a001 15456/90481*439204^(7/9) 4180999951709364 a001 4976784/90481*64079^(9/23) 4180999951713564 a001 24157817/710647*64079^(10/23) 4180999951716265 a001 1762289/51841*167761^(2/5) 4180999951718415 a001 5628750624/1346269 4180999951718834 a001 15456/90481*7881196^(7/11) 4180999951718871 a001 15456/90481*20633239^(3/5) 4180999951718877 a001 15456/90481*141422324^(7/13) 4180999951718877 a001 15456/90481*2537720636^(7/15) 4180999951718877 a001 15456/90481*17393796001^(3/7) 4180999951718877 a001 15456/90481*45537549124^(7/17) 4180999951718877 a001 15456/90481*14662949395604^(1/3) 4180999951718877 a001 15456/90481*(1/2+1/2*5^(1/2))^21 4180999951718877 a001 15456/90481*192900153618^(7/18) 4180999951718877 a001 15456/90481*10749957122^(7/16) 4180999951718877 a001 121393/103682*45537549124^(1/3) 4180999951718877 a001 121393/103682*(1/2+1/2*5^(1/2))^17 4180999951718877 a001 15456/90481*599074578^(1/2) 4180999951718879 a001 15456/90481*33385282^(7/12) 4180999951718890 a001 121393/103682*12752043^(1/2) 4180999951719722 a001 15456/90481*1860498^(7/10) 4180999951720634 a001 31622993/930249*64079^(10/23) 4180999951721665 a001 165580141/4870847*64079^(10/23) 4180999951721816 a001 433494437/12752043*64079^(10/23) 4180999951721838 a001 567451585/16692641*64079^(10/23) 4180999951721841 a001 2971215073/87403803*64079^(10/23) 4180999951721841 a001 7778742049/228826127*64079^(10/23) 4180999951721841 a001 10182505537/299537289*64079^(10/23) 4180999951721841 a001 53316291173/1568397607*64079^(10/23) 4180999951721841 a001 139583862445/4106118243*64079^(10/23) 4180999951721841 a001 182717648081/5374978561*64079^(10/23) 4180999951721841 a001 956722026041/28143753123*64079^(10/23) 4180999951721841 a001 2504730781961/73681302247*64079^(10/23) 4180999951721841 a001 3278735159921/96450076809*64079^(10/23) 4180999951721841 a001 10610209857723/312119004989*64079^(10/23) 4180999951721841 a001 4052739537881/119218851371*64079^(10/23) 4180999951721841 a001 387002188980/11384387281*64079^(10/23) 4180999951721841 a001 591286729879/17393796001*64079^(10/23) 4180999951721841 a001 225851433717/6643838879*64079^(10/23) 4180999951721841 a001 1135099622/33391061*64079^(10/23) 4180999951721841 a001 32951280099/969323029*64079^(10/23) 4180999951721841 a001 12586269025/370248451*64079^(10/23) 4180999951721842 a001 1201881744/35355581*64079^(10/23) 4180999951721843 a001 1836311903/54018521*64079^(10/23) 4180999951721851 a001 701408733/20633239*64079^(10/23) 4180999951721909 a001 66978574/1970299*64079^(10/23) 4180999951722303 a001 102334155/3010349*64079^(10/23) 4180999951725003 a001 39088169/1149851*64079^(10/23) 4180999951725086 a001 15456/90481*710647^(3/4) 4180999951731350 a001 133957148/51841*64079^(1/23) 4180999951738048 a001 1346269/167761*64079^(13/23) 4180999951743512 a001 196452/5779*64079^(10/23) 4180999951745909 a001 39088169/103682*167761^(1/5) 4180999951753641 a001 24157817/271443*64079^(8/23) 4180999951753947 a004 Fibonacci(24)*Lucas(27)/(1/2+sqrt(5)/2)^32 4180999951755301 a001 317811/103682*439204^(5/9) 4180999951757833 a001 39088169/710647*64079^(9/23) 4180999951759517 a001 46368/1149851*439204^(8/9) 4180999951764905 a001 831985/15126*64079^(9/23) 4180999951765936 a001 267914296/4870847*64079^(9/23) 4180999951766087 a001 233802911/4250681*64079^(9/23) 4180999951766109 a001 1836311903/33385282*64079^(9/23) 4180999951766112 a001 1602508992/29134601*64079^(9/23) 4180999951766112 a001 12586269025/228826127*64079^(9/23) 4180999951766112 a001 10983760033/199691526*64079^(9/23) 4180999951766112 a001 86267571272/1568397607*64079^(9/23) 4180999951766112 a001 75283811239/1368706081*64079^(9/23) 4180999951766112 a001 591286729879/10749957122*64079^(9/23) 4180999951766112 a001 12585437040/228811001*64079^(9/23) 4180999951766112 a001 4052739537881/73681302247*64079^(9/23) 4180999951766112 a001 3536736619241/64300051206*64079^(9/23) 4180999951766112 a001 6557470319842/119218851371*64079^(9/23) 4180999951766112 a001 2504730781961/45537549124*64079^(9/23) 4180999951766112 a001 956722026041/17393796001*64079^(9/23) 4180999951766112 a001 365435296162/6643838879*64079^(9/23) 4180999951766112 a001 139583862445/2537720636*64079^(9/23) 4180999951766112 a001 53316291173/969323029*64079^(9/23) 4180999951766113 a001 20365011074/370248451*64079^(9/23) 4180999951766113 a001 7778742049/141422324*64079^(9/23) 4180999951766114 a001 2971215073/54018521*64079^(9/23) 4180999951766122 a001 1134903170/20633239*64079^(9/23) 4180999951766180 a001 433494437/7881196*64079^(9/23) 4180999951766449 a001 1346269/103682*439204^(4/9) 4180999951766574 a001 165580141/3010349*64079^(9/23) 4180999951767275 a001 7368130224/1762289 4180999951767312 a001 317811/103682*7881196^(5/11) 4180999951767338 a001 317811/103682*20633239^(3/7) 4180999951767342 a001 317811/103682*141422324^(5/13) 4180999951767342 a001 317811/103682*2537720636^(1/3) 4180999951767342 a001 6624/101521*(1/2+1/2*5^(1/2))^23 4180999951767342 a001 317811/103682*45537549124^(5/17) 4180999951767342 a001 317811/103682*312119004989^(3/11) 4180999951767342 a001 317811/103682*14662949395604^(5/21) 4180999951767342 a001 317811/103682*(1/2+1/2*5^(1/2))^15 4180999951767342 a001 317811/103682*192900153618^(5/18) 4180999951767342 a001 317811/103682*28143753123^(3/10) 4180999951767342 a001 317811/103682*10749957122^(5/16) 4180999951767342 a001 6624/101521*4106118243^(1/2) 4180999951767342 a001 317811/103682*599074578^(5/14) 4180999951767342 a001 317811/103682*228826127^(3/8) 4180999951767344 a001 317811/103682*33385282^(5/12) 4180999951767946 a001 317811/103682*1860498^(1/2) 4180999951768371 a001 5702887/103682*439204^(1/3) 4180999951769275 a001 63245986/1149851*64079^(9/23) 4180999951770806 a001 24157817/103682*439204^(2/9) 4180999951772459 a004 Fibonacci(24)*Lucas(29)/(1/2+sqrt(5)/2)^34 4180999951773213 a001 102334155/103682*439204^(1/9) 4180999951774403 a001 7716006144/1845493 4180999951774406 a001 2576/103361*20633239^(5/7) 4180999951774413 a001 416020/51841*141422324^(1/3) 4180999951774413 a001 2576/103361*2537720636^(5/9) 4180999951774413 a001 2576/103361*312119004989^(5/11) 4180999951774413 a001 2576/103361*(1/2+1/2*5^(1/2))^25 4180999951774413 a001 2576/103361*3461452808002^(5/12) 4180999951774413 a001 2576/103361*28143753123^(1/2) 4180999951774413 a001 416020/51841*(1/2+1/2*5^(1/2))^13 4180999951774413 a001 416020/51841*73681302247^(1/4) 4180999951774413 a001 2576/103361*228826127^(5/8) 4180999951775160 a004 Fibonacci(24)*Lucas(31)/(1/2+sqrt(5)/2)^36 4180999951775390 a001 46368/4870847*7881196^(9/11) 4180999951775420 a001 2576/103361*1860498^(5/6) 4180999951775422 a001 46347/2206*7881196^(1/3) 4180999951775443 a001 101003831712/24157817 4180999951775445 a001 46368/4870847*141422324^(9/13) 4180999951775445 a001 46368/4870847*2537720636^(3/5) 4180999951775445 a001 46368/4870847*45537549124^(9/17) 4180999951775445 a001 46368/4870847*817138163596^(9/19) 4180999951775445 a001 46368/4870847*14662949395604^(3/7) 4180999951775445 a001 46368/4870847*(1/2+1/2*5^(1/2))^27 4180999951775445 a001 46368/4870847*192900153618^(1/2) 4180999951775445 a001 46368/4870847*10749957122^(9/16) 4180999951775445 a001 46347/2206*312119004989^(1/5) 4180999951775445 a001 46347/2206*(1/2+1/2*5^(1/2))^11 4180999951775445 a001 46347/2206*1568397607^(1/4) 4180999951775445 a001 46368/4870847*599074578^(9/14) 4180999951775448 a001 46368/4870847*33385282^(3/4) 4180999951775471 a001 233802911/90481*24476^(1/21) 4180999951775554 a004 Fibonacci(24)*Lucas(33)/(1/2+sqrt(5)/2)^38 4180999951775570 a001 46368/20633239*7881196^(10/11) 4180999951775577 a001 5702887/103682*7881196^(3/11) 4180999951775595 a001 132215732208/31622993 4180999951775595 a001 5702887/103682*141422324^(3/13) 4180999951775595 a001 5702887/103682*2537720636^(1/5) 4180999951775595 a001 15456/4250681*(1/2+1/2*5^(1/2))^29 4180999951775595 a001 15456/4250681*1322157322203^(1/2) 4180999951775595 a001 5702887/103682*45537549124^(3/17) 4180999951775595 a001 5702887/103682*14662949395604^(1/7) 4180999951775595 a001 5702887/103682*(1/2+1/2*5^(1/2))^9 4180999951775595 a001 5702887/103682*192900153618^(1/6) 4180999951775595 a001 5702887/103682*10749957122^(3/16) 4180999951775595 a001 5702887/103682*599074578^(3/14) 4180999951775596 a001 5702887/103682*33385282^(1/4) 4180999951775610 a001 24157817/103682*7881196^(2/11) 4180999951775611 a004 Fibonacci(24)*Lucas(35)/(1/2+sqrt(5)/2)^40 4180999951775615 a001 102334155/103682*7881196^(1/11) 4180999951775615 a001 7465176/51841*20633239^(1/5) 4180999951775617 a001 692290561536/165580141 4180999951775617 a001 144/103681*(1/2+1/2*5^(1/2))^31 4180999951775617 a001 144/103681*9062201101803^(1/2) 4180999951775617 a001 7465176/51841*17393796001^(1/7) 4180999951775617 a001 7465176/51841*14662949395604^(1/9) 4180999951775617 a001 7465176/51841*(1/2+1/2*5^(1/2))^7 4180999951775617 a001 7465176/51841*599074578^(1/6) 4180999951775619 a001 39088169/103682*20633239^(1/7) 4180999951775620 a004 Fibonacci(24)*Lucas(37)/(1/2+sqrt(5)/2)^42 4180999951775620 a001 15456/29134601*141422324^(11/13) 4180999951775621 a001 1812440220192/433494437 4180999951775621 a001 15456/29134601*2537720636^(11/15) 4180999951775621 a001 39088169/103682*2537720636^(1/9) 4180999951775621 a001 15456/29134601*45537549124^(11/17) 4180999951775621 a001 15456/29134601*312119004989^(3/5) 4180999951775621 a001 15456/29134601*14662949395604^(11/21) 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^33/Lucas(38) 4180999951775621 a001 15456/29134601*192900153618^(11/18) 4180999951775621 a001 15456/29134601*10749957122^(11/16) 4180999951775621 a001 39088169/103682*312119004989^(1/11) 4180999951775621 a001 39088169/103682*(1/2+1/2*5^(1/2))^5 4180999951775621 a001 39088169/103682*28143753123^(1/10) 4180999951775621 a001 15456/29134601*1568397607^(3/4) 4180999951775621 a001 15456/29134601*599074578^(11/14) 4180999951775621 a001 39088169/103682*228826127^(1/8) 4180999951775621 a004 Fibonacci(24)*Lucas(39)/(1/2+sqrt(5)/2)^44 4180999951775621 a001 46368/370248451*141422324^(12/13) 4180999951775621 a001 102334155/103682*141422324^(1/13) 4180999951775621 a001 474503009904/113490317 4180999951775621 a001 46368/228826127*2537720636^(7/9) 4180999951775621 a001 46368/228826127*17393796001^(5/7) 4180999951775621 a001 102334155/103682*2537720636^(1/15) 4180999951775621 a001 46368/228826127*312119004989^(7/11) 4180999951775621 a001 46368/228826127*14662949395604^(5/9) 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^35/Lucas(40) 4180999951775621 a001 46368/228826127*505019158607^(5/8) 4180999951775621 a001 46368/228826127*28143753123^(7/10) 4180999951775621 a001 102334155/103682*45537549124^(1/17) 4180999951775621 a001 102334155/103682*14662949395604^(1/21) 4180999951775621 a001 102334155/103682*(1/2+1/2*5^(1/2))^3 4180999951775621 a001 102334155/103682*192900153618^(1/18) 4180999951775621 a001 102334155/103682*10749957122^(1/16) 4180999951775621 a001 102334155/103682*599074578^(1/14) 4180999951775621 a001 46368/228826127*599074578^(5/6) 4180999951775621 a004 Fibonacci(24)*Lucas(41)/(1/2+sqrt(5)/2)^46 4180999951775621 a001 12422650076928/2971215073 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^37/Lucas(42) 4180999951775621 a001 66978574/51841+66978574/51841*5^(1/2) 4180999951775621 a001 46368/228826127*228826127^(7/8) 4180999951775621 a004 Fibonacci(24)*Lucas(43)/(1/2+sqrt(5)/2)^48 4180999951775621 a001 6624/224056801*2537720636^(13/15) 4180999951775621 a001 32522920131744/7778742049 4180999951775621 a001 6624/224056801*45537549124^(13/17) 4180999951775621 a001 6624/224056801*14662949395604^(13/21) 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^39/Lucas(44) 4180999951775621 a001 6624/224056801*192900153618^(13/18) 4180999951775621 a001 6624/224056801*73681302247^(3/4) 4180999951775621 a001 6624/224056801*10749957122^(13/16) 4180999951775621 a004 Fibonacci(44)/Lucas(24)/(1/2+sqrt(5)/2) 4180999951775621 a004 Fibonacci(24)*Lucas(45)/(1/2+sqrt(5)/2)^50 4180999951775621 a001 46368/6643838879*2537720636^(14/15) 4180999951775621 a001 42573055159152/10182505537 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^41/Lucas(46) 4180999951775621 a004 Fibonacci(46)/Lucas(24)/(1/2+sqrt(5)/2)^3 4180999951775621 a004 Fibonacci(24)*Lucas(47)/(1/2+sqrt(5)/2)^52 4180999951775621 a001 222915410823168/53316291173 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^43/Lucas(48) 4180999951775621 a004 Fibonacci(24)*Lucas(49)/(1/2+sqrt(5)/2)^54 4180999951775621 a001 15456/9381251041*45537549124^(15/17) 4180999951775621 a001 116720024430240/27916772489 4180999951775621 a001 15456/9381251041*312119004989^(9/11) 4180999951775621 a001 15456/9381251041*14662949395604^(5/7) 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^45/Lucas(50) 4180999951775621 a001 15456/9381251041*192900153618^(5/6) 4180999951775621 a004 Fibonacci(24)*Lucas(51)/(1/2+sqrt(5)/2)^56 4180999951775621 a001 46368/119218851371*45537549124^(16/17) 4180999951775621 a001 763942477815216/182717648081 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^47/Lucas(52) 4180999951775621 a001 15456/9381251041*28143753123^(9/10) 4180999951775621 a004 Fibonacci(24)*Lucas(53)/(1/2+sqrt(5)/2)^58 4180999951775621 a001 2576/10716675201*14662949395604^(7/9) 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^49/Lucas(54) 4180999951775621 a001 2576/10716675201*505019158607^(7/8) 4180999951775621 a004 Fibonacci(24)*Lucas(55)/(1/2+sqrt(5)/2)^60 4180999951775621 a001 46368/505019158607*817138163596^(17/19) 4180999951775621 a001 10472279278589856/2504730781961 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^51/Lucas(56) 4180999951775621 a004 Fibonacci(24)*Lucas(57)/(1/2+sqrt(5)/2)^62 4180999951775621 a001 13708391545514736/3278735159921 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^53/Lucas(58) 4180999951775621 a004 Fibonacci(24)*Lucas(59)/(1/2+sqrt(5)/2)^64 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^55/Lucas(60) 4180999951775621 a004 Fibonacci(24)*Lucas(61)/(1/2+sqrt(5)/2)^66 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^57/Lucas(62) 4180999951775621 a004 Fibonacci(24)*Lucas(63)/(1/2+sqrt(5)/2)^68 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^59/Lucas(64) 4180999951775621 a004 Fibonacci(24)*Lucas(65)/(1/2+sqrt(5)/2)^70 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^61/Lucas(66) 4180999951775621 a004 Fibonacci(24)*Lucas(67)/(1/2+sqrt(5)/2)^72 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^63/Lucas(68) 4180999951775621 a004 Fibonacci(24)*Lucas(69)/(1/2+sqrt(5)/2)^74 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^65/Lucas(70) 4180999951775621 a004 Fibonacci(24)*Lucas(71)/(1/2+sqrt(5)/2)^76 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^67/Lucas(72) 4180999951775621 a004 Fibonacci(24)*Lucas(73)/(1/2+sqrt(5)/2)^78 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^69/Lucas(74) 4180999951775621 a004 Fibonacci(24)*Lucas(75)/(1/2+sqrt(5)/2)^80 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^71/Lucas(76) 4180999951775621 a004 Fibonacci(24)*Lucas(77)/(1/2+sqrt(5)/2)^82 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^73/Lucas(78) 4180999951775621 a004 Fibonacci(24)*Lucas(79)/(1/2+sqrt(5)/2)^84 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^75/Lucas(80) 4180999951775621 a004 Fibonacci(24)*Lucas(81)/(1/2+sqrt(5)/2)^86 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^77/Lucas(82) 4180999951775621 a004 Fibonacci(24)*Lucas(83)/(1/2+sqrt(5)/2)^88 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^79/Lucas(84) 4180999951775621 a004 Fibonacci(24)*Lucas(85)/(1/2+sqrt(5)/2)^90 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^81/Lucas(86) 4180999951775621 a004 Fibonacci(24)*Lucas(87)/(1/2+sqrt(5)/2)^92 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^83/Lucas(88) 4180999951775621 a004 Fibonacci(24)*Lucas(89)/(1/2+sqrt(5)/2)^94 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^85/Lucas(90) 4180999951775621 a004 Fibonacci(24)*Lucas(91)/(1/2+sqrt(5)/2)^96 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^87/Lucas(92) 4180999951775621 a004 Fibonacci(24)*Lucas(93)/(1/2+sqrt(5)/2)^98 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^89/Lucas(94) 4180999951775621 a004 Fibonacci(24)*Lucas(95)/(1/2+sqrt(5)/2)^100 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^91/Lucas(96) 4180999951775621 a004 Fibonacci(12)*Lucas(12)/(1/2+sqrt(5)/2)^5 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^93/Lucas(98) 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^94/Lucas(99) 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^95/Lucas(100) 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^92/Lucas(97) 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^90/Lucas(95) 4180999951775621 a004 Fibonacci(24)*Lucas(94)/(1/2+sqrt(5)/2)^99 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^88/Lucas(93) 4180999951775621 a004 Fibonacci(24)*Lucas(92)/(1/2+sqrt(5)/2)^97 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^86/Lucas(91) 4180999951775621 a004 Fibonacci(24)*Lucas(90)/(1/2+sqrt(5)/2)^95 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^84/Lucas(89) 4180999951775621 a004 Fibonacci(24)*Lucas(88)/(1/2+sqrt(5)/2)^93 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^82/Lucas(87) 4180999951775621 a004 Fibonacci(24)*Lucas(86)/(1/2+sqrt(5)/2)^91 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^80/Lucas(85) 4180999951775621 a004 Fibonacci(24)*Lucas(84)/(1/2+sqrt(5)/2)^89 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^78/Lucas(83) 4180999951775621 a004 Fibonacci(24)*Lucas(82)/(1/2+sqrt(5)/2)^87 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^76/Lucas(81) 4180999951775621 a004 Fibonacci(24)*Lucas(80)/(1/2+sqrt(5)/2)^85 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^74/Lucas(79) 4180999951775621 a004 Fibonacci(24)*Lucas(78)/(1/2+sqrt(5)/2)^83 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^72/Lucas(77) 4180999951775621 a004 Fibonacci(24)*Lucas(76)/(1/2+sqrt(5)/2)^81 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^70/Lucas(75) 4180999951775621 a004 Fibonacci(24)*Lucas(74)/(1/2+sqrt(5)/2)^79 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^68/Lucas(73) 4180999951775621 a004 Fibonacci(24)*Lucas(72)/(1/2+sqrt(5)/2)^77 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^66/Lucas(71) 4180999951775621 a004 Fibonacci(24)*Lucas(70)/(1/2+sqrt(5)/2)^75 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^64/Lucas(69) 4180999951775621 a004 Fibonacci(24)*Lucas(68)/(1/2+sqrt(5)/2)^73 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^62/Lucas(67) 4180999951775621 a004 Fibonacci(24)*Lucas(66)/(1/2+sqrt(5)/2)^71 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^60/Lucas(65) 4180999951775621 a004 Fibonacci(24)*Lucas(64)/(1/2+sqrt(5)/2)^69 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^58/Lucas(63) 4180999951775621 a004 Fibonacci(24)*Lucas(62)/(1/2+sqrt(5)/2)^67 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^56/Lucas(61) 4180999951775621 a004 Fibonacci(24)*Lucas(60)/(1/2+sqrt(5)/2)^65 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^54/Lucas(59) 4180999951775621 a004 Fibonacci(24)*Lucas(58)/(1/2+sqrt(5)/2)^63 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^52/Lucas(57) 4180999951775621 a001 11592/204284540899*23725150497407^(13/16) 4180999951775621 a004 Fibonacci(24)*Lucas(56)/(1/2+sqrt(5)/2)^61 4180999951775621 a001 11592/204284540899*505019158607^(13/14) 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^50/Lucas(55) 4180999951775621 a001 46368/312119004989*3461452808002^(5/6) 4180999951775621 a001 46368/505019158607*192900153618^(17/18) 4180999951775621 a004 Fibonacci(24)*Lucas(54)/(1/2+sqrt(5)/2)^59 4180999951775621 a001 46368/119218851371*14662949395604^(16/21) 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^48/Lucas(53) 4180999951775621 a001 2472169789109664/591286729879 4180999951775621 a001 46368/119218851371*192900153618^(8/9) 4180999951775621 a004 Fibonacci(24)*Lucas(52)/(1/2+sqrt(5)/2)^57 4180999951775621 a001 46368/119218851371*73681302247^(12/13) 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^46/Lucas(51) 4180999951775621 a001 44965944451392/10754830177 4180999951775621 a004 Fibonacci(24)*Lucas(50)/(1/2+sqrt(5)/2)^55 4180999951775621 a001 46368/17393796001*312119004989^(4/5) 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^44/Lucas(49) 4180999951775621 a001 46368/17393796001*23725150497407^(11/16) 4180999951775621 a001 45085588916004/10783446409 4180999951775621 a001 46368/17393796001*73681302247^(11/13) 4180999951775621 a001 15456/9381251041*10749957122^(15/16) 4180999951775621 a004 Fibonacci(50)/Lucas(24)/(1/2+sqrt(5)/2)^7 4180999951775621 a004 Fibonacci(52)/Lucas(24)/(1/2+sqrt(5)/2)^9 4180999951775621 a004 Fibonacci(54)/Lucas(24)/(1/2+sqrt(5)/2)^11 4180999951775621 a004 Fibonacci(56)/Lucas(24)/(1/2+sqrt(5)/2)^13 4180999951775621 a004 Fibonacci(58)/Lucas(24)/(1/2+sqrt(5)/2)^15 4180999951775621 a004 Fibonacci(60)/Lucas(24)/(1/2+sqrt(5)/2)^17 4180999951775621 a004 Fibonacci(62)/Lucas(24)/(1/2+sqrt(5)/2)^19 4180999951775621 a004 Fibonacci(64)/Lucas(24)/(1/2+sqrt(5)/2)^21 4180999951775621 a004 Fibonacci(66)/Lucas(24)/(1/2+sqrt(5)/2)^23 4180999951775621 a004 Fibonacci(68)/Lucas(24)/(1/2+sqrt(5)/2)^25 4180999951775621 a004 Fibonacci(70)/Lucas(24)/(1/2+sqrt(5)/2)^27 4180999951775621 a004 Fibonacci(72)/Lucas(24)/(1/2+sqrt(5)/2)^29 4180999951775621 a004 Fibonacci(74)/Lucas(24)/(1/2+sqrt(5)/2)^31 4180999951775621 a004 Fibonacci(76)/Lucas(24)/(1/2+sqrt(5)/2)^33 4180999951775621 a004 Fibonacci(78)/Lucas(24)/(1/2+sqrt(5)/2)^35 4180999951775621 a004 Fibonacci(80)/Lucas(24)/(1/2+sqrt(5)/2)^37 4180999951775621 a004 Fibonacci(82)/Lucas(24)/(1/2+sqrt(5)/2)^39 4180999951775621 a004 Fibonacci(84)/Lucas(24)/(1/2+sqrt(5)/2)^41 4180999951775621 a004 Fibonacci(86)/Lucas(24)/(1/2+sqrt(5)/2)^43 4180999951775621 a004 Fibonacci(88)/Lucas(24)/(1/2+sqrt(5)/2)^45 4180999951775621 a004 Fibonacci(90)/Lucas(24)/(1/2+sqrt(5)/2)^47 4180999951775621 a004 Fibonacci(92)/Lucas(24)/(1/2+sqrt(5)/2)^49 4180999951775621 a004 Fibonacci(94)/Lucas(24)/(1/2+sqrt(5)/2)^51 4180999951775621 a004 Fibonacci(24)*Lucas(48)/(1/2+sqrt(5)/2)^53 4180999951775621 a004 Fibonacci(100)/Lucas(24)/(1/2+sqrt(5)/2)^57 4180999951775621 a004 Fibonacci(98)/Lucas(24)/(1/2+sqrt(5)/2)^55 4180999951775621 a004 Fibonacci(99)/Lucas(24)/(1/2+sqrt(5)/2)^56 4180999951775621 a004 Fibonacci(97)/Lucas(24)/(1/2+sqrt(5)/2)^54 4180999951775621 a004 Fibonacci(95)/Lucas(24)/(1/2+sqrt(5)/2)^52 4180999951775621 a004 Fibonacci(93)/Lucas(24)/(1/2+sqrt(5)/2)^50 4180999951775621 a004 Fibonacci(91)/Lucas(24)/(1/2+sqrt(5)/2)^48 4180999951775621 a004 Fibonacci(89)/Lucas(24)/(1/2+sqrt(5)/2)^46 4180999951775621 a004 Fibonacci(87)/Lucas(24)/(1/2+sqrt(5)/2)^44 4180999951775621 a004 Fibonacci(85)/Lucas(24)/(1/2+sqrt(5)/2)^42 4180999951775621 a004 Fibonacci(83)/Lucas(24)/(1/2+sqrt(5)/2)^40 4180999951775621 a004 Fibonacci(81)/Lucas(24)/(1/2+sqrt(5)/2)^38 4180999951775621 a004 Fibonacci(79)/Lucas(24)/(1/2+sqrt(5)/2)^36 4180999951775621 a004 Fibonacci(77)/Lucas(24)/(1/2+sqrt(5)/2)^34 4180999951775621 a004 Fibonacci(75)/Lucas(24)/(1/2+sqrt(5)/2)^32 4180999951775621 a004 Fibonacci(73)/Lucas(24)/(1/2+sqrt(5)/2)^30 4180999951775621 a004 Fibonacci(71)/Lucas(24)/(1/2+sqrt(5)/2)^28 4180999951775621 a004 Fibonacci(69)/Lucas(24)/(1/2+sqrt(5)/2)^26 4180999951775621 a004 Fibonacci(67)/Lucas(24)/(1/2+sqrt(5)/2)^24 4180999951775621 a004 Fibonacci(65)/Lucas(24)/(1/2+sqrt(5)/2)^22 4180999951775621 a004 Fibonacci(63)/Lucas(24)/(1/2+sqrt(5)/2)^20 4180999951775621 a004 Fibonacci(61)/Lucas(24)/(1/2+sqrt(5)/2)^18 4180999951775621 a004 Fibonacci(59)/Lucas(24)/(1/2+sqrt(5)/2)^16 4180999951775621 a004 Fibonacci(57)/Lucas(24)/(1/2+sqrt(5)/2)^14 4180999951775621 a004 Fibonacci(55)/Lucas(24)/(1/2+sqrt(5)/2)^12 4180999951775621 a004 Fibonacci(53)/Lucas(24)/(1/2+sqrt(5)/2)^10 4180999951775621 a001 11592/11384387281*10749957122^(23/24) 4180999951775621 a004 Fibonacci(51)/Lucas(24)/(1/2+sqrt(5)/2)^8 4180999951775621 a001 46368/17393796001*10749957122^(11/12) 4180999951775621 a004 Fibonacci(49)/Lucas(24)/(1/2+sqrt(5)/2)^6 4180999951775621 a001 11592/634430159*2537720636^(8/9) 4180999951775621 a001 46368/6643838879*17393796001^(6/7) 4180999951775621 a001 46368/6643838879*45537549124^(14/17) 4180999951775621 a001 46368/6643838879*817138163596^(14/19) 4180999951775621 a001 46368/6643838879*14662949395604^(2/3) 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^42/Lucas(47) 4180999951775621 a001 46368/6643838879*505019158607^(3/4) 4180999951775621 a001 46368/6643838879*192900153618^(7/9) 4180999951775621 a001 45923100168288/10983760033 4180999951775621 a001 46368/6643838879*10749957122^(7/8) 4180999951775621 a004 Fibonacci(47)/Lucas(24)/(1/2+sqrt(5)/2)^4 4180999951775621 a004 Fibonacci(24)*Lucas(46)/(1/2+sqrt(5)/2)^51 4180999951775621 a001 46368/17393796001*4106118243^(22/23) 4180999951775621 a001 46368/6643838879*4106118243^(21/23) 4180999951775621 a001 11592/634430159*312119004989^(8/11) 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^40/Lucas(45) 4180999951775621 a001 11592/634430159*23725150497407^(5/8) 4180999951775621 a001 11592/634430159*73681302247^(10/13) 4180999951775621 a001 11592/634430159*28143753123^(4/5) 4180999951775621 a001 10524638037312/2517253805 4180999951775621 a001 11592/634430159*10749957122^(5/6) 4180999951775621 a004 Fibonacci(45)/Lucas(24)/(1/2+sqrt(5)/2)^2 4180999951775621 a001 11592/634430159*4106118243^(20/23) 4180999951775621 a004 Fibonacci(24)*Lucas(44)/(1/2+sqrt(5)/2)^49 4180999951775621 a001 46368/6643838879*1568397607^(21/22) 4180999951775621 a001 11592/634430159*1568397607^(10/11) 4180999951775621 a001 46368/969323029*817138163596^(2/3) 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^38/Lucas(43) 4180999951775621 a001 46368/969323029*10749957122^(19/24) 4180999951775621 a001 433494437/103682 4180999951775621 a001 46368/969323029*4106118243^(19/23) 4180999951775621 a001 46368/969323029*1568397607^(19/22) 4180999951775621 a001 6624/224056801*599074578^(13/14) 4180999951775621 a004 Fibonacci(24)*Lucas(42)/(1/2+sqrt(5)/2)^47 4180999951775621 a001 11592/634430159*599074578^(20/21) 4180999951775621 a001 46368/969323029*599074578^(19/21) 4180999951775621 a001 46368/370248451*2537720636^(4/5) 4180999951775621 a001 46368/370248451*45537549124^(12/17) 4180999951775621 a001 46368/370248451*14662949395604^(4/7) 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^36/Lucas(41) 4180999951775621 a001 46368/370248451*505019158607^(9/14) 4180999951775621 a001 46368/370248451*192900153618^(2/3) 4180999951775621 a001 46368/370248451*73681302247^(9/13) 4180999951775621 a001 46368/370248451*10749957122^(3/4) 4180999951775621 a001 165580141/103682*(1/2+1/2*5^(1/2))^2 4180999951775621 a001 165580141/103682*10749957122^(1/24) 4180999951775621 a001 165580141/103682*4106118243^(1/23) 4180999951775621 a001 165580141/103682*1568397607^(1/22) 4180999951775621 a001 46368/370248451*4106118243^(18/23) 4180999951775621 a001 7677619977888/1836311903 4180999951775621 a001 165580141/103682*599074578^(1/21) 4180999951775621 a001 46368/370248451*1568397607^(9/11) 4180999951775621 a001 165580141/103682*228826127^(1/20) 4180999951775621 a001 46368/370248451*599074578^(6/7) 4180999951775621 a001 165580141/103682*87403803^(1/19) 4180999951775621 a004 Fibonacci(24)*Lucas(40)/(1/2+sqrt(5)/2)^45 4180999951775621 a001 46368/969323029*228826127^(19/20) 4180999951775621 a001 46368/370248451*228826127^(9/10) 4180999951775621 a001 11592/35355581*45537549124^(2/3) 4180999951775621 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^34/Lucas(39) 4180999951775621 a001 11592/35355581*10749957122^(17/24) 4180999951775621 a001 31622993/51841*(1/2+1/2*5^(1/2))^4 4180999951775621 a001 31622993/51841*23725150497407^(1/16) 4180999951775621 a001 31622993/51841*73681302247^(1/13) 4180999951775621 a001 31622993/51841*10749957122^(1/12) 4180999951775621 a001 31622993/51841*4106118243^(2/23) 4180999951775621 a001 11592/35355581*4106118243^(17/23) 4180999951775621 a001 31622993/51841*1568397607^(1/11) 4180999951775621 a001 31622993/51841*599074578^(2/21) 4180999951775621 a001 11592/35355581*1568397607^(17/22) 4180999951775621 a001 977529959616/233802911 4180999951775621 a001 31622993/51841*228826127^(1/10) 4180999951775621 a001 11592/35355581*599074578^(17/21) 4180999951775621 a001 102334155/103682*33385282^(1/12) 4180999951775621 a001 165580141/103682*33385282^(1/18) 4180999951775621 a001 31622993/51841*87403803^(2/19) 4180999951775621 a001 11592/35355581*228826127^(17/20) 4180999951775622 a004 Fibonacci(24)*Lucas(38)/(1/2+sqrt(5)/2)^43 4180999951775622 a001 46368/370248451*87403803^(18/19) 4180999951775622 a001 31622993/51841*33385282^(1/9) 4180999951775622 a001 11592/35355581*87403803^(17/19) 4180999951775623 a001 24157817/103682*141422324^(2/13) 4180999951775623 a001 46368/20633239*20633239^(6/7) 4180999951775623 a001 24157817/103682*2537720636^(2/15) 4180999951775623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^32/Lucas(37) 4180999951775623 a001 46368/54018521*23725150497407^(1/2) 4180999951775623 a001 46368/54018521*505019158607^(4/7) 4180999951775623 a001 46368/54018521*73681302247^(8/13) 4180999951775623 a001 46368/54018521*10749957122^(2/3) 4180999951775623 a001 24157817/103682*45537549124^(2/17) 4180999951775623 a001 24157817/103682*14662949395604^(2/21) 4180999951775623 a001 24157817/103682*(1/2+1/2*5^(1/2))^6 4180999951775623 a001 24157817/103682*10749957122^(1/8) 4180999951775623 a001 24157817/103682*4106118243^(3/23) 4180999951775623 a001 46368/54018521*4106118243^(16/23) 4180999951775623 a001 24157817/103682*1568397607^(3/22) 4180999951775623 a001 46368/54018521*1568397607^(8/11) 4180999951775623 a001 24157817/103682*599074578^(1/7) 4180999951775623 a001 46368/54018521*599074578^(16/21) 4180999951775623 a001 140018707332/33489287 4180999951775623 a001 24157817/103682*228826127^(3/20) 4180999951775623 a001 46368/54018521*228826127^(4/5) 4180999951775623 a001 24157817/103682*87403803^(3/19) 4180999951775623 a001 165580141/103682*12752043^(1/17) 4180999951775623 a001 46368/54018521*87403803^(16/19) 4180999951775623 a001 24157817/103682*33385282^(1/6) 4180999951775624 a001 15456/29134601*33385282^(11/12) 4180999951775624 a001 31622993/51841*12752043^(2/17) 4180999951775625 a004 Fibonacci(24)*Lucas(36)/(1/2+sqrt(5)/2)^41 4180999951775625 a001 11592/35355581*33385282^(17/18) 4180999951775626 a001 46368/54018521*33385282^(8/9) 4180999951775627 a001 24157817/103682*12752043^(3/17) 4180999951775631 a001 46368/20633239*141422324^(10/13) 4180999951775631 a001 46368/20633239*2537720636^(2/3) 4180999951775631 a001 46368/20633239*45537549124^(10/17) 4180999951775631 a001 46368/20633239*312119004989^(6/11) 4180999951775631 a001 46368/20633239*14662949395604^(10/21) 4180999951775631 a001 46368/20633239*(1/2+1/2*5^(1/2))^30 4180999951775631 a001 46368/20633239*192900153618^(5/9) 4180999951775631 a001 46368/20633239*28143753123^(3/5) 4180999951775631 a001 46368/20633239*10749957122^(5/8) 4180999951775631 a001 9227465/103682*(1/2+1/2*5^(1/2))^8 4180999951775631 a001 9227465/103682*23725150497407^(1/8) 4180999951775631 a001 9227465/103682*505019158607^(1/7) 4180999951775631 a001 9227465/103682*73681302247^(2/13) 4180999951775631 a001 9227465/103682*10749957122^(1/6) 4180999951775631 a001 9227465/103682*4106118243^(4/23) 4180999951775631 a001 46368/20633239*4106118243^(15/23) 4180999951775631 a001 9227465/103682*1568397607^(2/11) 4180999951775631 a001 46368/20633239*1568397607^(15/22) 4180999951775631 a001 9227465/103682*599074578^(4/21) 4180999951775631 a001 46368/20633239*599074578^(5/7) 4180999951775631 a001 9227465/103682*228826127^(1/5) 4180999951775631 a001 46368/20633239*228826127^(3/4) 4180999951775631 a001 4074848544/974611 4180999951775631 a001 9227465/103682*87403803^(4/19) 4180999951775631 a001 46368/20633239*87403803^(15/19) 4180999951775632 a001 9227465/103682*33385282^(2/9) 4180999951775632 a001 165580141/103682*4870847^(1/16) 4180999951775634 a001 46368/20633239*33385282^(5/6) 4180999951775637 a001 9227465/103682*12752043^(4/17) 4180999951775643 a001 31622993/51841*4870847^(1/8) 4180999951775647 a001 46368/54018521*12752043^(16/17) 4180999951775647 a004 Fibonacci(24)*Lucas(34)/(1/2+sqrt(5)/2)^39 4180999951775654 a001 46368/20633239*12752043^(15/17) 4180999951775656 a001 24157817/103682*4870847^(3/16) 4180999951775675 a001 9227465/103682*4870847^(1/4) 4180999951775681 a001 11592/1970299*20633239^(4/5) 4180999951775686 a001 1762289/51841*20633239^(2/7) 4180999951775688 a001 1762289/51841*2537720636^(2/9) 4180999951775688 a001 11592/1970299*17393796001^(4/7) 4180999951775688 a001 11592/1970299*14662949395604^(4/9) 4180999951775688 a001 11592/1970299*(1/2+1/2*5^(1/2))^28 4180999951775688 a001 11592/1970299*505019158607^(1/2) 4180999951775688 a001 11592/1970299*73681302247^(7/13) 4180999951775688 a001 11592/1970299*10749957122^(7/12) 4180999951775688 a001 1762289/51841*312119004989^(2/11) 4180999951775688 a001 1762289/51841*(1/2+1/2*5^(1/2))^10 4180999951775688 a001 1762289/51841*28143753123^(1/5) 4180999951775688 a001 1762289/51841*10749957122^(5/24) 4180999951775688 a001 1762289/51841*4106118243^(5/23) 4180999951775688 a001 11592/1970299*4106118243^(14/23) 4180999951775688 a001 1762289/51841*1568397607^(5/22) 4180999951775688 a001 11592/1970299*1568397607^(7/11) 4180999951775688 a001 1762289/51841*599074578^(5/21) 4180999951775688 a001 11592/1970299*599074578^(2/3) 4180999951775688 a001 1762289/51841*228826127^(1/4) 4180999951775688 a001 11592/1970299*228826127^(7/10) 4180999951775689 a001 1762289/51841*87403803^(5/19) 4180999951775689 a001 11592/1970299*87403803^(14/19) 4180999951775689 a001 163427632704/39088169 4180999951775689 a001 1762289/51841*33385282^(5/18) 4180999951775691 a001 11592/1970299*33385282^(7/9) 4180999951775696 a001 1762289/51841*12752043^(5/17) 4180999951775702 a001 165580141/103682*1860498^(1/15) 4180999951775710 a001 11592/1970299*12752043^(14/17) 4180999951775742 a001 102334155/103682*1860498^(1/10) 4180999951775743 a001 1762289/51841*4870847^(5/16) 4180999951775782 a001 31622993/51841*1860498^(2/15) 4180999951775796 a001 46368/20633239*4870847^(15/16) 4180999951775797 a004 Fibonacci(24)*Lucas(32)/(1/2+sqrt(5)/2)^37 4180999951775822 a001 39088169/103682*1860498^(1/6) 4180999951775843 a001 11592/1970299*4870847^(7/8) 4180999951775864 a001 24157817/103682*1860498^(1/5) 4180999951775953 a001 9227465/103682*1860498^(4/15) 4180999951775958 a001 5702887/103682*1860498^(3/10) 4180999951776058 a001 1346269/103682*7881196^(4/11) 4180999951776082 a001 46368/3010349*141422324^(2/3) 4180999951776082 a001 1346269/103682*141422324^(4/13) 4180999951776082 a001 1346269/103682*2537720636^(4/15) 4180999951776082 a001 46368/3010349*(1/2+1/2*5^(1/2))^26 4180999951776082 a001 46368/3010349*73681302247^(1/2) 4180999951776082 a001 46368/3010349*10749957122^(13/24) 4180999951776082 a001 1346269/103682*45537549124^(4/17) 4180999951776082 a001 1346269/103682*817138163596^(4/19) 4180999951776082 a001 1346269/103682*14662949395604^(4/21) 4180999951776082 a001 1346269/103682*(1/2+1/2*5^(1/2))^12 4180999951776082 a001 1346269/103682*192900153618^(2/9) 4180999951776082 a001 1346269/103682*73681302247^(3/13) 4180999951776082 a001 1346269/103682*10749957122^(1/4) 4180999951776082 a001 1346269/103682*4106118243^(6/23) 4180999951776082 a001 46368/3010349*4106118243^(13/23) 4180999951776082 a001 1346269/103682*1568397607^(3/11) 4180999951776082 a001 46368/3010349*1568397607^(13/22) 4180999951776082 a001 1346269/103682*599074578^(2/7) 4180999951776082 a001 46368/3010349*599074578^(13/21) 4180999951776082 a001 1346269/103682*228826127^(3/10) 4180999951776083 a001 46368/3010349*228826127^(13/20) 4180999951776083 a001 1346269/103682*87403803^(6/19) 4180999951776083 a001 46368/3010349*87403803^(13/19) 4180999951776084 a001 1346269/103682*33385282^(1/3) 4180999951776085 a001 46368/3010349*33385282^(13/18) 4180999951776086 a001 433498618/103683 4180999951776091 a001 1762289/51841*1860498^(1/3) 4180999951776092 a001 1346269/103682*12752043^(6/17) 4180999951776102 a001 46368/3010349*12752043^(13/17) 4180999951776149 a001 1346269/103682*4870847^(3/8) 4180999951776212 a001 165580141/103682*710647^(1/14) 4180999951776226 a001 46368/3010349*4870847^(13/16) 4180999951776532 a001 46368/4870847*1860498^(9/10) 4180999951776566 a001 1346269/103682*1860498^(2/5) 4180999951776804 a001 31622993/51841*710647^(1/7) 4180999951776816 a001 11592/1970299*1860498^(14/15) 4180999951776829 a004 Fibonacci(24)*Lucas(30)/(1/2+sqrt(5)/2)^35 4180999951777129 a001 46368/3010349*1860498^(13/15) 4180999951777397 a001 24157817/103682*710647^(3/14) 4180999951777687 a001 7465176/51841*710647^(1/4) 4180999951777996 a001 9227465/103682*710647^(2/7) 4180999951778645 a001 1762289/51841*710647^(5/14) 4180999951778734 a001 46368/1149851*7881196^(8/11) 4180999951778779 a001 514229/103682*20633239^(2/5) 4180999951778783 a001 46368/1149851*141422324^(8/13) 4180999951778783 a001 46368/1149851*2537720636^(8/15) 4180999951778783 a001 46368/1149851*45537549124^(8/17) 4180999951778783 a001 46368/1149851*14662949395604^(8/21) 4180999951778783 a001 46368/1149851*(1/2+1/2*5^(1/2))^24 4180999951778783 a001 46368/1149851*192900153618^(4/9) 4180999951778783 a001 46368/1149851*73681302247^(6/13) 4180999951778783 a001 46368/1149851*10749957122^(1/2) 4180999951778783 a001 514229/103682*17393796001^(2/7) 4180999951778783 a001 514229/103682*14662949395604^(2/9) 4180999951778783 a001 514229/103682*(1/2+1/2*5^(1/2))^14 4180999951778783 a001 514229/103682*10749957122^(7/24) 4180999951778783 a001 514229/103682*4106118243^(7/23) 4180999951778783 a001 46368/1149851*4106118243^(12/23) 4180999951778783 a001 514229/103682*1568397607^(7/22) 4180999951778783 a001 46368/1149851*1568397607^(6/11) 4180999951778783 a001 514229/103682*599074578^(1/3) 4180999951778783 a001 46368/1149851*599074578^(4/7) 4180999951778783 a001 514229/103682*228826127^(7/20) 4180999951778783 a001 46368/1149851*228826127^(3/5) 4180999951778784 a001 514229/103682*87403803^(7/19) 4180999951778784 a001 46368/1149851*87403803^(12/19) 4180999951778785 a001 514229/103682*33385282^(7/18) 4180999951778786 a001 46368/1149851*33385282^(2/3) 4180999951778794 a001 514229/103682*12752043^(7/17) 4180999951778802 a001 46368/1149851*12752043^(12/17) 4180999951778809 a001 23843770272/5702887 4180999951778860 a001 514229/103682*4870847^(7/16) 4180999951778916 a001 46368/1149851*4870847^(3/4) 4180999951779347 a001 514229/103682*1860498^(7/15) 4180999951779631 a001 1346269/103682*710647^(3/7) 4180999951779750 a001 46368/1149851*1860498^(4/5) 4180999951779986 a001 165580141/103682*271443^(1/13) 4180999951781681 a001 2178309/167761*64079^(12/23) 4180999951782923 a001 514229/103682*710647^(1/2) 4180999951783770 a001 46368/3010349*710647^(13/14) 4180999951783900 a004 Fibonacci(24)*Lucas(28)/(1/2+sqrt(5)/2)^33 4180999951784351 a001 31622993/51841*271443^(2/13) 4180999951785880 a001 46368/1149851*710647^(6/7) 4180999951787788 a001 24157817/439204*64079^(9/23) 4180999951788717 a001 24157817/103682*271443^(3/13) 4180999951791827 a001 133957148/51841*103682^(1/24) 4180999951793091 a001 9227465/103682*271443^(4/13) 4180999951797251 a001 11592/109801*7881196^(2/3) 4180999951797296 a001 11592/109801*312119004989^(2/5) 4180999951797296 a001 11592/109801*(1/2+1/2*5^(1/2))^22 4180999951797296 a001 11592/109801*10749957122^(11/24) 4180999951797296 a001 98209/51841*(1/2+1/2*5^(1/2))^16 4180999951797296 a001 98209/51841*23725150497407^(1/4) 4180999951797296 a001 98209/51841*73681302247^(4/13) 4180999951797296 a001 98209/51841*10749957122^(1/3) 4180999951797296 a001 11592/109801*4106118243^(11/23) 4180999951797296 a001 98209/51841*4106118243^(8/23) 4180999951797296 a001 98209/51841*1568397607^(4/11) 4180999951797296 a001 11592/109801*1568397607^(1/2) 4180999951797296 a001 98209/51841*599074578^(8/21) 4180999951797296 a001 11592/109801*599074578^(11/21) 4180999951797296 a001 98209/51841*228826127^(2/5) 4180999951797296 a001 11592/109801*228826127^(11/20) 4180999951797296 a001 98209/51841*87403803^(8/19) 4180999951797296 a001 11592/109801*87403803^(11/19) 4180999951797297 a001 98209/51841*33385282^(4/9) 4180999951797298 a001 11592/109801*33385282^(11/18) 4180999951797308 a001 98209/51841*12752043^(8/17) 4180999951797312 a001 11592/109801*12752043^(11/17) 4180999951797384 a001 98209/51841*4870847^(1/2) 4180999951797417 a001 11592/109801*4870847^(11/16) 4180999951797472 a001 433690944/103729 4180999951797513 a001 1762289/51841*271443^(5/13) 4180999951797910 a001 39088169/271443*64079^(7/23) 4180999951797940 a001 98209/51841*1860498^(8/15) 4180999951798181 a001 11592/109801*1860498^(11/15) 4180999951802026 a001 98209/51841*710647^(4/7) 4180999951802105 a001 63245986/710647*64079^(8/23) 4180999951802272 a001 1346269/103682*271443^(6/13) 4180999951802785 a001 416020/51841*271443^(1/2) 4180999951803800 a001 11592/109801*710647^(11/14) 4180999951805333 a001 46368/167761*167761^(4/5) 4180999951808032 a001 165580141/103682*103682^(1/12) 4180999951809176 a001 165580141/1860498*64079^(8/23) 4180999951809338 a001 514229/103682*271443^(7/13) 4180999951810207 a001 433494437/4870847*64079^(8/23) 4180999951810358 a001 1134903170/12752043*64079^(8/23) 4180999951810380 a001 2971215073/33385282*64079^(8/23) 4180999951810383 a001 7778742049/87403803*64079^(8/23) 4180999951810384 a001 20365011074/228826127*64079^(8/23) 4180999951810384 a001 53316291173/599074578*64079^(8/23) 4180999951810384 a001 139583862445/1568397607*64079^(8/23) 4180999951810384 a001 365435296162/4106118243*64079^(8/23) 4180999951810384 a001 956722026041/10749957122*64079^(8/23) 4180999951810384 a001 2504730781961/28143753123*64079^(8/23) 4180999951810384 a001 6557470319842/73681302247*64079^(8/23) 4180999951810384 a001 10610209857723/119218851371*64079^(8/23) 4180999951810384 a001 4052739537881/45537549124*64079^(8/23) 4180999951810384 a001 1548008755920/17393796001*64079^(8/23) 4180999951810384 a001 591286729879/6643838879*64079^(8/23) 4180999951810384 a001 225851433717/2537720636*64079^(8/23) 4180999951810384 a001 86267571272/969323029*64079^(8/23) 4180999951810384 a001 32951280099/370248451*64079^(8/23) 4180999951810384 a001 12586269025/141422324*64079^(8/23) 4180999951810385 a001 4807526976/54018521*64079^(8/23) 4180999951810393 a001 1836311903/20633239*64079^(8/23) 4180999951810451 a001 3524667/39604*64079^(8/23) 4180999951810845 a001 267914296/3010349*64079^(8/23) 4180999951813546 a001 102334155/1149851*64079^(8/23) 4180999951823936 a001 1836311903/710647*24476^(1/21) 4180999951824238 a001 102334155/103682*103682^(1/8) 4180999951826196 a001 3524578/167761*64079^(11/23) 4180999951831007 a001 267084832/103361*24476^(1/21) 4180999951831163 a001 46368/1149851*271443^(12/13) 4180999951832039 a001 12586269025/4870847*24476^(1/21) 4180999951832058 a001 39088169/439204*64079^(8/23) 4180999951832189 a001 10983760033/4250681*24476^(1/21) 4180999951832211 a001 43133785636/16692641*24476^(1/21) 4180999951832214 a001 75283811239/29134601*24476^(1/21) 4180999951832215 a001 591286729879/228826127*24476^(1/21) 4180999951832215 a001 86000486440/33281921*24476^(1/21) 4180999951832215 a001 4052739537881/1568397607*24476^(1/21) 4180999951832215 a001 3536736619241/1368706081*24476^(1/21) 4180999951832215 a001 3278735159921/1268860318*24476^(1/21) 4180999951832215 a001 2504730781961/969323029*24476^(1/21) 4180999951832215 a001 956722026041/370248451*24476^(1/21) 4180999951832215 a001 182717648081/70711162*24476^(1/21) 4180999951832215 a001 98209/51841*271443^(8/13) 4180999951832216 a001 139583862445/54018521*24476^(1/21) 4180999951832225 a001 53316291173/20633239*24476^(1/21) 4180999951832282 a001 10182505537/3940598*24476^(1/21) 4180999951832365 a004 Fibonacci(24)*Lucas(26)/(1/2+sqrt(5)/2)^31 4180999951832676 a001 7778742049/3010349*24476^(1/21) 4180999951835377 a001 2971215073/1149851*24476^(1/21) 4180999951840443 a001 31622993/51841*103682^(1/6) 4180999951842182 a001 63245986/271443*64079^(6/23) 4180999951845310 a001 11592/109801*271443^(11/13) 4180999951846376 a001 14619165/101521*64079^(7/23) 4180999951853437 a001 39088169/64079*24476^(4/21) 4180999951853447 a001 133957148/930249*64079^(7/23) 4180999951853889 a001 567451585/219602*24476^(1/21) 4180999951854479 a001 701408733/4870847*64079^(7/23) 4180999951854629 a001 1836311903/12752043*64079^(7/23) 4180999951854651 a001 14930208/103681*64079^(7/23) 4180999951854654 a001 12586269025/87403803*64079^(7/23) 4180999951854655 a001 32951280099/228826127*64079^(7/23) 4180999951854655 a001 43133785636/299537289*64079^(7/23) 4180999951854655 a001 32264490531/224056801*64079^(7/23) 4180999951854655 a001 591286729879/4106118243*64079^(7/23) 4180999951854655 a001 774004377960/5374978561*64079^(7/23) 4180999951854655 a001 4052739537881/28143753123*64079^(7/23) 4180999951854655 a001 1515744265389/10525900321*64079^(7/23) 4180999951854655 a001 3278735159921/22768774562*64079^(7/23) 4180999951854655 a001 2504730781961/17393796001*64079^(7/23) 4180999951854655 a001 956722026041/6643838879*64079^(7/23) 4180999951854655 a001 182717648081/1268860318*64079^(7/23) 4180999951854655 a001 139583862445/969323029*64079^(7/23) 4180999951854655 a001 53316291173/370248451*64079^(7/23) 4180999951854655 a001 10182505537/70711162*64079^(7/23) 4180999951854656 a001 7778742049/54018521*64079^(7/23) 4180999951854665 a001 2971215073/20633239*64079^(7/23) 4180999951854722 a001 567451585/3940598*64079^(7/23) 4180999951855116 a001 433494437/3010349*64079^(7/23) 4180999951856648 a001 39088169/103682*103682^(5/24) 4180999951857817 a001 165580141/1149851*64079^(7/23) 4180999951870374 a001 5702887/167761*64079^(10/23) 4180999951872855 a001 24157817/103682*103682^(1/4) 4180999951876329 a001 31622993/219602*64079^(7/23) 4180999951886453 a001 34111385/90481*64079^(5/23) 4180999951889056 a001 7465176/51841*103682^(7/24) 4180999951890647 a001 165580141/710647*64079^(6/23) 4180999951896793 a001 133957148/51841*39603^(1/22) 4180999951897718 a001 433494437/1860498*64079^(6/23) 4180999951898750 a001 1134903170/4870847*64079^(6/23) 4180999951898900 a001 2971215073/12752043*64079^(6/23) 4180999951898922 a001 7778742049/33385282*64079^(6/23) 4180999951898925 a001 20365011074/87403803*64079^(6/23) 4180999951898926 a001 53316291173/228826127*64079^(6/23) 4180999951898926 a001 139583862445/599074578*64079^(6/23) 4180999951898926 a001 365435296162/1568397607*64079^(6/23) 4180999951898926 a001 956722026041/4106118243*64079^(6/23) 4180999951898926 a001 2504730781961/10749957122*64079^(6/23) 4180999951898926 a001 6557470319842/28143753123*64079^(6/23) 4180999951898926 a001 10610209857723/45537549124*64079^(6/23) 4180999951898926 a001 4052739537881/17393796001*64079^(6/23) 4180999951898926 a001 1548008755920/6643838879*64079^(6/23) 4180999951898926 a001 591286729879/2537720636*64079^(6/23) 4180999951898926 a001 225851433717/969323029*64079^(6/23) 4180999951898926 a001 86267571272/370248451*64079^(6/23) 4180999951898926 a001 63246219/271444*64079^(6/23) 4180999951898927 a001 12586269025/54018521*64079^(6/23) 4180999951898936 a001 4807526976/20633239*64079^(6/23) 4180999951898993 a001 1836311903/7881196*64079^(6/23) 4180999951899387 a001 701408733/3010349*64079^(6/23) 4180999951902088 a001 267914296/1149851*64079^(6/23) 4180999951905275 a001 9227465/103682*103682^(1/3) 4180999951908435 a001 28657/103682*64079^(20/23) 4180999951909730 a001 75025/103682*439204^(2/3) 4180999951914681 a001 9227465/167761*64079^(9/23) 4180999951920600 a001 102334155/439204*64079^(6/23) 4180999951921445 a001 5702887/103682*103682^(3/8) 4180999951924143 a001 75025/103682*7881196^(6/11) 4180999951924174 a001 46368/167761*20633239^(4/7) 4180999951924180 a001 75025/103682*141422324^(6/13) 4180999951924180 a001 46368/167761*2537720636^(4/9) 4180999951924180 a001 75025/103682*2537720636^(2/5) 4180999951924180 a001 46368/167761*(1/2+1/2*5^(1/2))^20 4180999951924180 a001 46368/167761*23725150497407^(5/16) 4180999951924180 a001 46368/167761*505019158607^(5/14) 4180999951924180 a001 46368/167761*73681302247^(5/13) 4180999951924180 a001 46368/167761*28143753123^(2/5) 4180999951924180 a001 46368/167761*10749957122^(5/12) 4180999951924180 a001 75025/103682*45537549124^(6/17) 4180999951924180 a001 75025/103682*14662949395604^(2/7) 4180999951924180 a001 75025/103682*(1/2+1/2*5^(1/2))^18 4180999951924180 a001 75025/103682*192900153618^(1/3) 4180999951924180 a001 75025/103682*10749957122^(3/8) 4180999951924180 a001 46368/167761*4106118243^(10/23) 4180999951924180 a001 75025/103682*4106118243^(9/23) 4180999951924180 a001 75025/103682*1568397607^(9/22) 4180999951924180 a001 46368/167761*1568397607^(5/11) 4180999951924180 a001 75025/103682*599074578^(3/7) 4180999951924180 a001 46368/167761*599074578^(10/21) 4180999951924180 a001 75025/103682*228826127^(9/20) 4180999951924180 a001 46368/167761*228826127^(1/2) 4180999951924180 a001 75025/103682*87403803^(9/19) 4180999951924180 a001 46368/167761*87403803^(10/19) 4180999951924182 a001 75025/103682*33385282^(1/2) 4180999951924182 a001 46368/167761*33385282^(5/9) 4180999951924193 a001 75025/103682*12752043^(9/17) 4180999951924195 a001 46368/167761*12752043^(10/17) 4180999951924279 a001 75025/103682*4870847^(9/16) 4180999951924290 a001 46368/167761*4870847^(5/8) 4180999951924905 a001 75025/103682*1860498^(3/5) 4180999951924985 a001 46368/167761*1860498^(2/3) 4180999951925388 a001 86968980/20801 4180999951929502 a001 75025/103682*710647^(9/14) 4180999951930093 a001 46368/167761*710647^(5/7) 4180999951930724 a001 165580141/271443*64079^(4/23) 4180999951934918 a001 267914296/710647*64079^(5/23) 4180999951937743 a001 1762289/51841*103682^(5/12) 4180999951941989 a001 233802911/620166*64079^(5/23) 4180999951943021 a001 1836311903/4870847*64079^(5/23) 4180999951943171 a001 1602508992/4250681*64079^(5/23) 4180999951943193 a001 12586269025/33385282*64079^(5/23) 4180999951943197 a001 10983760033/29134601*64079^(5/23) 4180999951943197 a001 86267571272/228826127*64079^(5/23) 4180999951943197 a001 267913919/710646*64079^(5/23) 4180999951943197 a001 591286729879/1568397607*64079^(5/23) 4180999951943197 a001 516002918640/1368706081*64079^(5/23) 4180999951943197 a001 4052739537881/10749957122*64079^(5/23) 4180999951943197 a001 3536736619241/9381251041*64079^(5/23) 4180999951943197 a001 6557470319842/17393796001*64079^(5/23) 4180999951943197 a001 2504730781961/6643838879*64079^(5/23) 4180999951943197 a001 956722026041/2537720636*64079^(5/23) 4180999951943197 a001 365435296162/969323029*64079^(5/23) 4180999951943197 a001 139583862445/370248451*64079^(5/23) 4180999951943197 a001 53316291173/141422324*64079^(5/23) 4180999951943199 a001 20365011074/54018521*64079^(5/23) 4180999951943207 a001 7778742049/20633239*64079^(5/23) 4180999951943264 a001 2971215073/7881196*64079^(5/23) 4180999951943658 a001 1134903170/3010349*64079^(5/23) 4180999951946359 a001 433494437/1149851*64079^(5/23) 4180999951953705 a001 46347/2206*103682^(11/24) 4180999951958939 a001 14930352/167761*64079^(8/23) 4180999951959250 a004 Fibonacci(26)*Lucas(25)/(1/2+sqrt(5)/2)^32 4180999951963464 a001 75025/103682*271443^(9/13) 4180999951964872 a001 165580141/439204*64079^(5/23) 4180999951967829 a001 46368/167761*271443^(10/13) 4180999951970548 a001 1346269/103682*103682^(1/2) 4180999951974995 a001 267914296/271443*64079^(3/23) 4180999951979189 a001 433494437/710647*64079^(4/23) 4180999951980774 a001 433494437/167761*24476^(1/21) 4180999951985085 a001 416020/51841*103682^(13/24) 4180999951986260 a001 567451585/930249*64079^(4/23) 4180999951987292 a001 2971215073/4870847*64079^(4/23) 4180999951987443 a001 7778742049/12752043*64079^(4/23) 4180999951987465 a001 10182505537/16692641*64079^(4/23) 4180999951987468 a001 53316291173/87403803*64079^(4/23) 4180999951987468 a001 139583862445/228826127*64079^(4/23) 4180999951987468 a001 182717648081/299537289*64079^(4/23) 4180999951987468 a001 956722026041/1568397607*64079^(4/23) 4180999951987468 a001 2504730781961/4106118243*64079^(4/23) 4180999951987468 a001 3278735159921/5374978561*64079^(4/23) 4180999951987468 a001 10610209857723/17393796001*64079^(4/23) 4180999951987468 a001 4052739537881/6643838879*64079^(4/23) 4180999951987468 a001 1134903780/1860499*64079^(4/23) 4180999951987468 a001 591286729879/969323029*64079^(4/23) 4180999951987468 a001 225851433717/370248451*64079^(4/23) 4180999951987468 a001 21566892818/35355581*64079^(4/23) 4180999951987470 a001 32951280099/54018521*64079^(4/23) 4180999951987478 a001 1144206275/1875749*64079^(4/23) 4180999951987536 a001 1201881744/1970299*64079^(4/23) 4180999951987930 a001 1836311903/3010349*64079^(4/23) 4180999951990631 a001 701408733/1149851*64079^(4/23) 4180999951994370 a001 121393/103682*103682^(17/24) 4180999951996977 a001 46368/64079*64079^(18/23) 4180999952003215 a001 24157817/167761*64079^(7/23) 4180999952005660 a001 514229/103682*103682^(7/12) 4180999952007715 a004 Fibonacci(28)*Lucas(25)/(1/2+sqrt(5)/2)^34 4180999952009143 a001 66978574/109801*64079^(4/23) 4180999952010425 a001 317811/103682*103682^(5/8) 4180999952010636 a001 121393/439204*167761^(4/5) 4180999952014786 a004 Fibonacci(30)*Lucas(25)/(1/2+sqrt(5)/2)^36 4180999952015818 a004 Fibonacci(32)*Lucas(25)/(1/2+sqrt(5)/2)^38 4180999952015968 a004 Fibonacci(34)*Lucas(25)/(1/2+sqrt(5)/2)^40 4180999952015990 a004 Fibonacci(36)*Lucas(25)/(1/2+sqrt(5)/2)^42 4180999952015994 a004 Fibonacci(38)*Lucas(25)/(1/2+sqrt(5)/2)^44 4180999952015994 a004 Fibonacci(40)*Lucas(25)/(1/2+sqrt(5)/2)^46 4180999952015994 a004 Fibonacci(42)*Lucas(25)/(1/2+sqrt(5)/2)^48 4180999952015994 a004 Fibonacci(44)*Lucas(25)/(1/2+sqrt(5)/2)^50 4180999952015994 a004 Fibonacci(46)*Lucas(25)/(1/2+sqrt(5)/2)^52 4180999952015994 a004 Fibonacci(48)*Lucas(25)/(1/2+sqrt(5)/2)^54 4180999952015994 a004 Fibonacci(50)*Lucas(25)/(1/2+sqrt(5)/2)^56 4180999952015994 a004 Fibonacci(52)*Lucas(25)/(1/2+sqrt(5)/2)^58 4180999952015994 a004 Fibonacci(54)*Lucas(25)/(1/2+sqrt(5)/2)^60 4180999952015994 a004 Fibonacci(56)*Lucas(25)/(1/2+sqrt(5)/2)^62 4180999952015994 a004 Fibonacci(58)*Lucas(25)/(1/2+sqrt(5)/2)^64 4180999952015994 a004 Fibonacci(60)*Lucas(25)/(1/2+sqrt(5)/2)^66 4180999952015994 a004 Fibonacci(62)*Lucas(25)/(1/2+sqrt(5)/2)^68 4180999952015994 a004 Fibonacci(64)*Lucas(25)/(1/2+sqrt(5)/2)^70 4180999952015994 a004 Fibonacci(66)*Lucas(25)/(1/2+sqrt(5)/2)^72 4180999952015994 a004 Fibonacci(68)*Lucas(25)/(1/2+sqrt(5)/2)^74 4180999952015994 a004 Fibonacci(70)*Lucas(25)/(1/2+sqrt(5)/2)^76 4180999952015994 a004 Fibonacci(72)*Lucas(25)/(1/2+sqrt(5)/2)^78 4180999952015994 a004 Fibonacci(74)*Lucas(25)/(1/2+sqrt(5)/2)^80 4180999952015994 a004 Fibonacci(76)*Lucas(25)/(1/2+sqrt(5)/2)^82 4180999952015994 a004 Fibonacci(78)*Lucas(25)/(1/2+sqrt(5)/2)^84 4180999952015994 a004 Fibonacci(80)*Lucas(25)/(1/2+sqrt(5)/2)^86 4180999952015994 a004 Fibonacci(82)*Lucas(25)/(1/2+sqrt(5)/2)^88 4180999952015994 a004 Fibonacci(84)*Lucas(25)/(1/2+sqrt(5)/2)^90 4180999952015994 a004 Fibonacci(86)*Lucas(25)/(1/2+sqrt(5)/2)^92 4180999952015994 a004 Fibonacci(88)*Lucas(25)/(1/2+sqrt(5)/2)^94 4180999952015994 a004 Fibonacci(90)*Lucas(25)/(1/2+sqrt(5)/2)^96 4180999952015994 a004 Fibonacci(92)*Lucas(25)/(1/2+sqrt(5)/2)^98 4180999952015994 a004 Fibonacci(94)*Lucas(25)/(1/2+sqrt(5)/2)^100 4180999952015994 a004 Fibonacci(93)*Lucas(25)/(1/2+sqrt(5)/2)^99 4180999952015994 a004 Fibonacci(91)*Lucas(25)/(1/2+sqrt(5)/2)^97 4180999952015994 a004 Fibonacci(89)*Lucas(25)/(1/2+sqrt(5)/2)^95 4180999952015994 a004 Fibonacci(87)*Lucas(25)/(1/2+sqrt(5)/2)^93 4180999952015994 a004 Fibonacci(85)*Lucas(25)/(1/2+sqrt(5)/2)^91 4180999952015994 a004 Fibonacci(83)*Lucas(25)/(1/2+sqrt(5)/2)^89 4180999952015994 a004 Fibonacci(81)*Lucas(25)/(1/2+sqrt(5)/2)^87 4180999952015994 a004 Fibonacci(79)*Lucas(25)/(1/2+sqrt(5)/2)^85 4180999952015994 a004 Fibonacci(77)*Lucas(25)/(1/2+sqrt(5)/2)^83 4180999952015994 a004 Fibonacci(75)*Lucas(25)/(1/2+sqrt(5)/2)^81 4180999952015994 a004 Fibonacci(73)*Lucas(25)/(1/2+sqrt(5)/2)^79 4180999952015994 a004 Fibonacci(71)*Lucas(25)/(1/2+sqrt(5)/2)^77 4180999952015994 a004 Fibonacci(69)*Lucas(25)/(1/2+sqrt(5)/2)^75 4180999952015994 a004 Fibonacci(67)*Lucas(25)/(1/2+sqrt(5)/2)^73 4180999952015994 a004 Fibonacci(65)*Lucas(25)/(1/2+sqrt(5)/2)^71 4180999952015994 a004 Fibonacci(63)*Lucas(25)/(1/2+sqrt(5)/2)^69 4180999952015994 a004 Fibonacci(61)*Lucas(25)/(1/2+sqrt(5)/2)^67 4180999952015994 a004 Fibonacci(59)*Lucas(25)/(1/2+sqrt(5)/2)^65 4180999952015994 a004 Fibonacci(57)*Lucas(25)/(1/2+sqrt(5)/2)^63 4180999952015994 a004 Fibonacci(55)*Lucas(25)/(1/2+sqrt(5)/2)^61 4180999952015994 a004 Fibonacci(53)*Lucas(25)/(1/2+sqrt(5)/2)^59 4180999952015994 a004 Fibonacci(51)*Lucas(25)/(1/2+sqrt(5)/2)^57 4180999952015994 a001 2/75025*(1/2+1/2*5^(1/2))^44 4180999952015994 a004 Fibonacci(49)*Lucas(25)/(1/2+sqrt(5)/2)^55 4180999952015994 a004 Fibonacci(47)*Lucas(25)/(1/2+sqrt(5)/2)^53 4180999952015994 a004 Fibonacci(45)*Lucas(25)/(1/2+sqrt(5)/2)^51 4180999952015994 a004 Fibonacci(43)*Lucas(25)/(1/2+sqrt(5)/2)^49 4180999952015994 a004 Fibonacci(41)*Lucas(25)/(1/2+sqrt(5)/2)^47 4180999952015994 a004 Fibonacci(39)*Lucas(25)/(1/2+sqrt(5)/2)^45 4180999952015996 a004 Fibonacci(37)*Lucas(25)/(1/2+sqrt(5)/2)^43 4180999952016004 a004 Fibonacci(35)*Lucas(25)/(1/2+sqrt(5)/2)^41 4180999952016061 a004 Fibonacci(33)*Lucas(25)/(1/2+sqrt(5)/2)^39 4180999952016456 a004 Fibonacci(31)*Lucas(25)/(1/2+sqrt(5)/2)^37 4180999952017465 a001 832040/271443*167761^(3/5) 4180999952017965 a001 165580141/103682*39603^(1/11) 4180999952019156 a004 Fibonacci(29)*Lucas(25)/(1/2+sqrt(5)/2)^35 4180999952019266 a001 433494437/271443*64079^(2/23) 4180999952023461 a001 701408733/710647*64079^(3/23) 4180999952030532 a001 1836311903/1860498*64079^(3/23) 4180999952031563 a001 4807526976/4870847*64079^(3/23) 4180999952031714 a001 12586269025/12752043*64079^(3/23) 4180999952031736 a001 32951280099/33385282*64079^(3/23) 4180999952031739 a001 86267571272/87403803*64079^(3/23) 4180999952031739 a001 225851433717/228826127*64079^(3/23) 4180999952031739 a001 591286729879/599074578*64079^(3/23) 4180999952031739 a001 1548008755920/1568397607*64079^(3/23) 4180999952031739 a001 4052739537881/4106118243*64079^(3/23) 4180999952031739 a001 4807525989/4870846*64079^(3/23) 4180999952031739 a001 6557470319842/6643838879*64079^(3/23) 4180999952031739 a001 2504730781961/2537720636*64079^(3/23) 4180999952031739 a001 956722026041/969323029*64079^(3/23) 4180999952031739 a001 365435296162/370248451*64079^(3/23) 4180999952031740 a001 139583862445/141422324*64079^(3/23) 4180999952031741 a001 53316291173/54018521*64079^(3/23) 4180999952031749 a001 20365011074/20633239*64079^(3/23) 4180999952031807 a001 7778742049/7881196*64079^(3/23) 4180999952032201 a001 2971215073/3010349*64079^(3/23) 4180999952034902 a001 1134903170/1149851*64079^(3/23) 4180999952037669 a004 Fibonacci(27)*Lucas(25)/(1/2+sqrt(5)/2)^33 4180999952040589 a001 317811/1149851*167761^(4/5) 4180999952044959 a001 832040/3010349*167761^(4/5) 4180999952045597 a001 2178309/7881196*167761^(4/5) 4180999952045690 a001 5702887/20633239*167761^(4/5) 4180999952045704 a001 14930352/54018521*167761^(4/5) 4180999952045706 a001 39088169/141422324*167761^(4/5) 4180999952045706 a001 102334155/370248451*167761^(4/5) 4180999952045706 a001 267914296/969323029*167761^(4/5) 4180999952045706 a001 701408733/2537720636*167761^(4/5) 4180999952045706 a001 1836311903/6643838879*167761^(4/5) 4180999952045706 a001 4807526976/17393796001*167761^(4/5) 4180999952045706 a001 12586269025/45537549124*167761^(4/5) 4180999952045706 a001 32951280099/119218851371*167761^(4/5) 4180999952045706 a001 86267571272/312119004989*167761^(4/5) 4180999952045706 a001 225851433717/817138163596*167761^(4/5) 4180999952045706 a001 1548008755920/5600748293801*167761^(4/5) 4180999952045706 a001 139583862445/505019158607*167761^(4/5) 4180999952045706 a001 53316291173/192900153618*167761^(4/5) 4180999952045706 a001 20365011074/73681302247*167761^(4/5) 4180999952045706 a001 7778742049/28143753123*167761^(4/5) 4180999952045706 a001 2971215073/10749957122*167761^(4/5) 4180999952045706 a001 1134903170/4106118243*167761^(4/5) 4180999952045706 a001 433494437/1568397607*167761^(4/5) 4180999952045706 a001 165580141/599074578*167761^(4/5) 4180999952045706 a001 63245986/228826127*167761^(4/5) 4180999952045707 a001 24157817/87403803*167761^(4/5) 4180999952045712 a001 9227465/33385282*167761^(4/5) 4180999952045748 a001 3524578/12752043*167761^(4/5) 4180999952045991 a001 1346269/4870847*167761^(4/5) 4180999952047484 a001 39088169/167761*64079^(6/23) 4180999952047660 a001 514229/1860498*167761^(4/5) 4180999952048395 a001 9227465/271443*167761^(2/5) 4180999952050997 a001 14736260449/3524578 4180999952051064 a001 121393/271443*817138163596^(1/3) 4180999952051064 a001 121393/271443*(1/2+1/2*5^(1/2))^19 4180999952051064 a001 121393/271443*87403803^(1/2) 4180999952053414 a001 433494437/439204*64079^(3/23) 4180999952056583 a001 98209/51841*103682^(2/3) 4180999952059101 a001 196418/710647*167761^(4/5) 4180999952059192 a001 15456/90481*103682^(7/8) 4180999952063537 a001 233802911/90481*64079^(1/23) 4180999952066963 a001 311187/101521*167761^(3/5) 4180999952067732 a001 1134903170/710647*64079^(2/23) 4180999952074184 a001 5702887/1860498*167761^(3/5) 4180999952074803 a001 2971215073/1860498*64079^(2/23) 4180999952075238 a001 14930352/4870847*167761^(3/5) 4180999952075391 a001 39088169/12752043*167761^(3/5) 4180999952075414 a001 14619165/4769326*167761^(3/5) 4180999952075417 a001 267914296/87403803*167761^(3/5) 4180999952075418 a001 701408733/228826127*167761^(3/5) 4180999952075418 a001 1836311903/599074578*167761^(3/5) 4180999952075418 a001 686789568/224056801*167761^(3/5) 4180999952075418 a001 12586269025/4106118243*167761^(3/5) 4180999952075418 a001 32951280099/10749957122*167761^(3/5) 4180999952075418 a001 86267571272/28143753123*167761^(3/5) 4180999952075418 a001 32264490531/10525900321*167761^(3/5) 4180999952075418 a001 591286729879/192900153618*167761^(3/5) 4180999952075418 a001 1548008755920/505019158607*167761^(3/5) 4180999952075418 a001 1515744265389/494493258286*167761^(3/5) 4180999952075418 a001 2504730781961/817138163596*167761^(3/5) 4180999952075418 a001 956722026041/312119004989*167761^(3/5) 4180999952075418 a001 365435296162/119218851371*167761^(3/5) 4180999952075418 a001 139583862445/45537549124*167761^(3/5) 4180999952075418 a001 53316291173/17393796001*167761^(3/5) 4180999952075418 a001 20365011074/6643838879*167761^(3/5) 4180999952075418 a001 7778742049/2537720636*167761^(3/5) 4180999952075418 a001 2971215073/969323029*167761^(3/5) 4180999952075418 a001 1134903170/370248451*167761^(3/5) 4180999952075418 a001 433494437/141422324*167761^(3/5) 4180999952075419 a001 165580141/54018521*167761^(3/5) 4180999952075428 a001 63245986/20633239*167761^(3/5) 4180999952075486 a001 24157817/7881196*167761^(3/5) 4180999952075834 a001 7778742049/4870847*64079^(2/23) 4180999952075889 a001 9227465/3010349*167761^(3/5) 4180999952075985 a001 20365011074/12752043*64079^(2/23) 4180999952076007 a001 53316291173/33385282*64079^(2/23) 4180999952076010 a001 139583862445/87403803*64079^(2/23) 4180999952076010 a001 365435296162/228826127*64079^(2/23) 4180999952076011 a001 956722026041/599074578*64079^(2/23) 4180999952076011 a001 2504730781961/1568397607*64079^(2/23) 4180999952076011 a001 6557470319842/4106118243*64079^(2/23) 4180999952076011 a001 10610209857723/6643838879*64079^(2/23) 4180999952076011 a001 4052739537881/2537720636*64079^(2/23) 4180999952076011 a001 1548008755920/969323029*64079^(2/23) 4180999952076011 a001 591286729879/370248451*64079^(2/23) 4180999952076011 a001 225851433717/141422324*64079^(2/23) 4180999952076012 a001 86267571272/54018521*64079^(2/23) 4180999952076020 a001 32951280099/20633239*64079^(2/23) 4180999952076078 a001 12586269025/7881196*64079^(2/23) 4180999952076472 a001 4807526976/3010349*64079^(2/23) 4180999952078097 a001 34111385/90481*167761^(1/5) 4180999952078647 a001 3524578/1149851*167761^(3/5) 4180999952079173 a001 1836311903/1149851*64079^(2/23) 4180999952082672 a001 121393/710647*439204^(7/9) 4180999952086134 a004 Fibonacci(26)*Lucas(27)/(1/2+sqrt(5)/2)^34 4180999952089004 a001 121393/3010349*439204^(8/9) 4180999952091756 a001 63245986/167761*64079^(5/23) 4180999952094559 a001 832040/271443*439204^(5/9) 4180999952096852 a001 24157817/710647*167761^(2/5) 4180999952097553 a001 1346269/439204*167761^(3/5) 4180999952097685 a001 701408733/439204*64079^(2/23) 4180999952098243 a001 3524578/271443*439204^(4/9) 4180999952099487 a001 121393/710647*7881196^(7/11) 4180999952099520 a001 2967694671/709805 4180999952099524 a001 121393/710647*20633239^(3/5) 4180999952099529 a001 121393/710647*141422324^(7/13) 4180999952099530 a001 121393/710647*2537720636^(7/15) 4180999952099530 a001 121393/710647*17393796001^(3/7) 4180999952099530 a001 121393/710647*45537549124^(7/17) 4180999952099530 a001 121393/710647*14662949395604^(1/3) 4180999952099530 a001 121393/710647*(1/2+1/2*5^(1/2))^21 4180999952099530 a001 121393/710647*192900153618^(7/18) 4180999952099530 a001 105937/90481*45537549124^(1/3) 4180999952099530 a001 105937/90481*(1/2+1/2*5^(1/2))^17 4180999952099530 a001 121393/710647*10749957122^(7/16) 4180999952099530 a001 121393/710647*599074578^(1/2) 4180999952099532 a001 121393/710647*33385282^(7/12) 4180999952099542 a001 105937/90481*12752043^(1/2) 4180999952100375 a001 121393/710647*1860498^(7/10) 4180999952100580 a001 4976784/90481*439204^(1/3) 4180999952102992 a001 63245986/271443*439204^(2/9) 4180999952103922 a001 31622993/930249*167761^(2/5) 4180999952104646 a004 Fibonacci(26)*Lucas(29)/(1/2+sqrt(5)/2)^36 4180999952104953 a001 165580141/4870847*167761^(2/5) 4180999952105104 a001 433494437/12752043*167761^(2/5) 4180999952105126 a001 567451585/16692641*167761^(2/5) 4180999952105129 a001 2971215073/87403803*167761^(2/5) 4180999952105129 a001 7778742049/228826127*167761^(2/5) 4180999952105129 a001 10182505537/299537289*167761^(2/5) 4180999952105129 a001 53316291173/1568397607*167761^(2/5) 4180999952105129 a001 139583862445/4106118243*167761^(2/5) 4180999952105129 a001 182717648081/5374978561*167761^(2/5) 4180999952105129 a001 956722026041/28143753123*167761^(2/5) 4180999952105129 a001 2504730781961/73681302247*167761^(2/5) 4180999952105129 a001 3278735159921/96450076809*167761^(2/5) 4180999952105129 a001 10610209857723/312119004989*167761^(2/5) 4180999952105129 a001 4052739537881/119218851371*167761^(2/5) 4180999952105129 a001 387002188980/11384387281*167761^(2/5) 4180999952105129 a001 591286729879/17393796001*167761^(2/5) 4180999952105129 a001 225851433717/6643838879*167761^(2/5) 4180999952105129 a001 1135099622/33391061*167761^(2/5) 4180999952105129 a001 32951280099/969323029*167761^(2/5) 4180999952105129 a001 12586269025/370248451*167761^(2/5) 4180999952105130 a001 1201881744/35355581*167761^(2/5) 4180999952105131 a001 1836311903/54018521*167761^(2/5) 4180999952105139 a001 701408733/20633239*167761^(2/5) 4180999952105197 a001 66978574/1970299*167761^(2/5) 4180999952105400 a001 267914296/271443*439204^(1/9) 4180999952105591 a001 102334155/3010349*167761^(2/5) 4180999952105739 a001 121393/710647*710647^(3/4) 4180999952106570 a001 832040/271443*7881196^(5/11) 4180999952106596 a001 832040/271443*20633239^(3/7) 4180999952106599 a001 101003831720/24157817 4180999952106601 a001 832040/271443*141422324^(5/13) 4180999952106601 a001 832040/271443*2537720636^(1/3) 4180999952106601 a001 121393/1860498*(1/2+1/2*5^(1/2))^23 4180999952106601 a001 832040/271443*45537549124^(5/17) 4180999952106601 a001 832040/271443*312119004989^(3/11) 4180999952106601 a001 832040/271443*14662949395604^(5/21) 4180999952106601 a001 832040/271443*(1/2+1/2*5^(1/2))^15 4180999952106601 a001 832040/271443*192900153618^(5/18) 4180999952106601 a001 832040/271443*28143753123^(3/10) 4180999952106601 a001 832040/271443*10749957122^(5/16) 4180999952106601 a001 121393/1860498*4106118243^(1/2) 4180999952106601 a001 832040/271443*599074578^(5/14) 4180999952106601 a001 832040/271443*228826127^(3/8) 4180999952106602 a001 832040/271443*33385282^(5/12) 4180999952107205 a001 832040/271443*1860498^(1/2) 4180999952107347 a004 Fibonacci(26)*Lucas(31)/(1/2+sqrt(5)/2)^38 4180999952107625 a001 121393/4870847*20633239^(5/7) 4180999952107632 a001 1134898989/271442 4180999952107632 a001 726103/90481*141422324^(1/3) 4180999952107632 a001 121393/4870847*2537720636^(5/9) 4180999952107632 a001 121393/4870847*312119004989^(5/11) 4180999952107632 a001 121393/4870847*(1/2+1/2*5^(1/2))^25 4180999952107632 a001 121393/4870847*3461452808002^(5/12) 4180999952107632 a001 726103/90481*(1/2+1/2*5^(1/2))^13 4180999952107632 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^13/Lucas(26) 4180999952107632 a001 726103/90481*73681302247^(1/4) 4180999952107632 a001 121393/4870847*28143753123^(1/2) 4180999952107632 a001 121393/4870847*228826127^(5/8) 4180999952107728 a001 121393/12752043*7881196^(9/11) 4180999952107741 a004 Fibonacci(26)*Lucas(33)/(1/2+sqrt(5)/2)^40 4180999952107749 a001 121393/54018521*7881196^(10/11) 4180999952107760 a001 5702887/271443*7881196^(1/3) 4180999952107783 a001 121393/12752043*141422324^(9/13) 4180999952107783 a001 692290561591/165580141 4180999952107783 a001 121393/12752043*2537720636^(3/5) 4180999952107783 a001 121393/12752043*45537549124^(9/17) 4180999952107783 a001 121393/12752043*817138163596^(9/19) 4180999952107783 a001 121393/12752043*14662949395604^(3/7) 4180999952107783 a001 121393/12752043*(1/2+1/2*5^(1/2))^27 4180999952107783 a001 121393/12752043*192900153618^(1/2) 4180999952107783 a001 5702887/271443*312119004989^(1/5) 4180999952107783 a001 5702887/271443*(1/2+1/2*5^(1/2))^11 4180999952107783 a001 121393/12752043*10749957122^(9/16) 4180999952107783 a001 5702887/271443*1568397607^(1/4) 4180999952107783 a001 121393/12752043*599074578^(9/14) 4180999952107786 a001 121393/12752043*33385282^(3/4) 4180999952107786 a001 4976784/90481*7881196^(3/11) 4180999952107796 a001 63245986/271443*7881196^(2/11) 4180999952107799 a004 Fibonacci(26)*Lucas(35)/(1/2+sqrt(5)/2)^42 4180999952107802 a001 121393/54018521*20633239^(6/7) 4180999952107802 a001 267914296/271443*7881196^(1/11) 4180999952107805 a001 4976784/90481*141422324^(3/13) 4180999952107805 a001 1812440220336/433494437 4180999952107805 a001 4976784/90481*2537720636^(1/5) 4180999952107805 a001 121393/33385282*(1/2+1/2*5^(1/2))^29 4180999952107805 a001 121393/33385282*1322157322203^(1/2) 4180999952107805 a001 4976784/90481*45537549124^(3/17) 4180999952107805 a001 4976784/90481*14662949395604^(1/7) 4180999952107805 a001 4976784/90481*(1/2+1/2*5^(1/2))^9 4180999952107805 a001 4976784/90481*192900153618^(1/6) 4180999952107805 a001 4976784/90481*10749957122^(3/16) 4180999952107805 a001 4976784/90481*599074578^(3/14) 4180999952107806 a001 4976784/90481*33385282^(1/4) 4180999952107806 a001 39088169/271443*20633239^(1/5) 4180999952107807 a001 34111385/90481*20633239^(1/7) 4180999952107807 a004 Fibonacci(26)*Lucas(37)/(1/2+sqrt(5)/2)^44 4180999952107808 a001 4745030099417/1134903170 4180999952107808 a001 39088169/271443*17393796001^(1/7) 4180999952107808 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^31/Lucas(38) 4180999952107808 a001 121393/87403803*9062201101803^(1/2) 4180999952107808 a001 39088169/271443*14662949395604^(1/9) 4180999952107808 a001 39088169/271443*(1/2+1/2*5^(1/2))^7 4180999952107808 a001 39088169/271443*599074578^(1/6) 4180999952107808 a001 121393/228826127*141422324^(11/13) 4180999952107808 a004 Fibonacci(26)*Lucas(39)/(1/2+sqrt(5)/2)^46 4180999952107808 a001 121393/969323029*141422324^(12/13) 4180999952107808 a001 121393/228826127*2537720636^(11/15) 4180999952107808 a001 12422650077915/2971215073 4180999952107808 a001 34111385/90481*2537720636^(1/9) 4180999952107808 a001 121393/228826127*45537549124^(11/17) 4180999952107808 a001 121393/228826127*312119004989^(3/5) 4180999952107808 a001 121393/228826127*817138163596^(11/19) 4180999952107808 a001 121393/228826127*14662949395604^(11/21) 4180999952107808 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^33/Lucas(40) 4180999952107808 a001 121393/228826127*192900153618^(11/18) 4180999952107808 a001 34111385/90481*312119004989^(1/11) 4180999952107808 a001 34111385/90481*(1/2+1/2*5^(1/2))^5 4180999952107808 a001 34111385/90481*28143753123^(1/10) 4180999952107808 a001 121393/228826127*10749957122^(11/16) 4180999952107808 a001 121393/228826127*1568397607^(3/4) 4180999952107808 a001 121393/228826127*599074578^(11/14) 4180999952107808 a001 34111385/90481*228826127^(1/8) 4180999952107808 a004 Fibonacci(26)*Lucas(41)/(1/2+sqrt(5)/2)^48 4180999952107808 a001 267914296/271443*141422324^(1/13) 4180999952107808 a001 121393/599074578*2537720636^(7/9) 4180999952107808 a001 267914296/271443*2537720636^(1/15) 4180999952107808 a001 2501763087256/598364773 4180999952107808 a001 121393/599074578*17393796001^(5/7) 4180999952107808 a001 121393/599074578*312119004989^(7/11) 4180999952107808 a001 121393/599074578*14662949395604^(5/9) 4180999952107808 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^35/Lucas(42) 4180999952107808 a001 121393/599074578*505019158607^(5/8) 4180999952107808 a001 267914296/271443*45537549124^(1/17) 4180999952107808 a001 267914296/271443*14662949395604^(1/21) 4180999952107808 a001 267914296/271443*(1/2+1/2*5^(1/2))^3 4180999952107808 a001 267914296/271443*192900153618^(1/18) 4180999952107808 a001 267914296/271443*10749957122^(1/16) 4180999952107808 a001 121393/599074578*28143753123^(7/10) 4180999952107808 a001 267914296/271443*599074578^(1/14) 4180999952107809 a004 Fibonacci(26)*Lucas(43)/(1/2+sqrt(5)/2)^50 4180999952107809 a001 121393/599074578*599074578^(5/6) 4180999952107809 a001 85146110325069/20365011074 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^37/Lucas(44) 4180999952107809 a001 233802911/180962+233802911/180962*5^(1/2) 4180999952107809 a001 121393/4106118243*2537720636^(13/15) 4180999952107809 a004 Fibonacci(26)*Lucas(45)/(1/2+sqrt(5)/2)^52 4180999952107809 a001 121393/17393796001*2537720636^(14/15) 4180999952107809 a001 121393/6643838879*2537720636^(8/9) 4180999952107809 a001 121393/4106118243*45537549124^(13/17) 4180999952107809 a001 222915410840879/53316291173 4180999952107809 a001 121393/4106118243*14662949395604^(13/21) 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^39/Lucas(46) 4180999952107809 a001 121393/4106118243*192900153618^(13/18) 4180999952107809 a001 121393/4106118243*73681302247^(3/4) 4180999952107809 a004 Fibonacci(46)/Lucas(26)/(1/2+sqrt(5)/2) 4180999952107809 a001 121393/4106118243*10749957122^(13/16) 4180999952107809 a004 Fibonacci(26)*Lucas(47)/(1/2+sqrt(5)/2)^54 4180999952107809 a001 583600122197568/139583862445 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^41/Lucas(48) 4180999952107809 a004 Fibonacci(48)/Lucas(26)/(1/2+sqrt(5)/2)^3 4180999952107809 a004 Fibonacci(26)*Lucas(49)/(1/2+sqrt(5)/2)^56 4180999952107809 a001 1527884955751825/365435296162 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^43/Lucas(50) 4180999952107809 a004 Fibonacci(50)/Lucas(26)/(1/2+sqrt(5)/2)^5 4180999952107809 a001 121393/73681302247*45537549124^(15/17) 4180999952107809 a004 Fibonacci(26)*Lucas(51)/(1/2+sqrt(5)/2)^58 4180999952107809 a001 121393/312119004989*45537549124^(16/17) 4180999952107809 a001 121393/73681302247*312119004989^(9/11) 4180999952107809 a001 4000054745057907/956722026041 4180999952107809 a001 121393/73681302247*14662949395604^(5/7) 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^45/Lucas(52) 4180999952107809 a001 121393/73681302247*192900153618^(5/6) 4180999952107809 a004 Fibonacci(26)*Lucas(53)/(1/2+sqrt(5)/2)^60 4180999952107809 a001 10472279279421896/2504730781961 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^47/Lucas(54) 4180999952107809 a004 Fibonacci(26)*Lucas(55)/(1/2+sqrt(5)/2)^62 4180999952107809 a001 121393/817138163596*312119004989^(10/11) 4180999952107809 a001 2108983314862137/504420793834 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^49/Lucas(56) 4180999952107809 a001 121393/1322157322203*817138163596^(17/19) 4180999952107809 a004 Fibonacci(26)*Lucas(57)/(1/2+sqrt(5)/2)^64 4180999952107809 a001 121393/1322157322203*14662949395604^(17/21) 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^51/Lucas(58) 4180999952107809 a004 Fibonacci(26)*Lucas(59)/(1/2+sqrt(5)/2)^66 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^53/Lucas(60) 4180999952107809 a004 Fibonacci(26)*Lucas(61)/(1/2+sqrt(5)/2)^68 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^55/Lucas(62) 4180999952107809 a004 Fibonacci(26)*Lucas(63)/(1/2+sqrt(5)/2)^70 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^57/Lucas(64) 4180999952107809 a004 Fibonacci(26)*Lucas(65)/(1/2+sqrt(5)/2)^72 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^59/Lucas(66) 4180999952107809 a004 Fibonacci(26)*Lucas(67)/(1/2+sqrt(5)/2)^74 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^61/Lucas(68) 4180999952107809 a004 Fibonacci(26)*Lucas(69)/(1/2+sqrt(5)/2)^76 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^63/Lucas(70) 4180999952107809 a004 Fibonacci(26)*Lucas(71)/(1/2+sqrt(5)/2)^78 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^65/Lucas(72) 4180999952107809 a004 Fibonacci(26)*Lucas(73)/(1/2+sqrt(5)/2)^80 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^67/Lucas(74) 4180999952107809 a004 Fibonacci(26)*Lucas(75)/(1/2+sqrt(5)/2)^82 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^69/Lucas(76) 4180999952107809 a004 Fibonacci(26)*Lucas(77)/(1/2+sqrt(5)/2)^84 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^71/Lucas(78) 4180999952107809 a004 Fibonacci(26)*Lucas(79)/(1/2+sqrt(5)/2)^86 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^73/Lucas(80) 4180999952107809 a004 Fibonacci(26)*Lucas(81)/(1/2+sqrt(5)/2)^88 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^75/Lucas(82) 4180999952107809 a004 Fibonacci(26)*Lucas(83)/(1/2+sqrt(5)/2)^90 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^77/Lucas(84) 4180999952107809 a004 Fibonacci(26)*Lucas(85)/(1/2+sqrt(5)/2)^92 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^79/Lucas(86) 4180999952107809 a004 Fibonacci(26)*Lucas(87)/(1/2+sqrt(5)/2)^94 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^81/Lucas(88) 4180999952107809 a004 Fibonacci(26)*Lucas(89)/(1/2+sqrt(5)/2)^96 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^83/Lucas(90) 4180999952107809 a004 Fibonacci(26)*Lucas(91)/(1/2+sqrt(5)/2)^98 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^85/Lucas(92) 4180999952107809 a004 Fibonacci(26)*Lucas(93)/(1/2+sqrt(5)/2)^100 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^87/Lucas(94) 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^89/Lucas(96) 4180999952107809 a004 Fibonacci(13)*Lucas(13)/(1/2+sqrt(5)/2)^7 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^91/Lucas(98) 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^93/Lucas(100) 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^92/Lucas(99) 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^90/Lucas(97) 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^88/Lucas(95) 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^86/Lucas(93) 4180999952107809 a004 Fibonacci(26)*Lucas(92)/(1/2+sqrt(5)/2)^99 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^84/Lucas(91) 4180999952107809 a004 Fibonacci(26)*Lucas(90)/(1/2+sqrt(5)/2)^97 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^82/Lucas(89) 4180999952107809 a004 Fibonacci(26)*Lucas(88)/(1/2+sqrt(5)/2)^95 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^80/Lucas(87) 4180999952107809 a004 Fibonacci(26)*Lucas(86)/(1/2+sqrt(5)/2)^93 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^78/Lucas(85) 4180999952107809 a004 Fibonacci(26)*Lucas(84)/(1/2+sqrt(5)/2)^91 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^76/Lucas(83) 4180999952107809 a004 Fibonacci(26)*Lucas(82)/(1/2+sqrt(5)/2)^89 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^74/Lucas(81) 4180999952107809 a004 Fibonacci(26)*Lucas(80)/(1/2+sqrt(5)/2)^87 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^72/Lucas(79) 4180999952107809 a004 Fibonacci(26)*Lucas(78)/(1/2+sqrt(5)/2)^85 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^70/Lucas(77) 4180999952107809 a004 Fibonacci(26)*Lucas(76)/(1/2+sqrt(5)/2)^83 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^68/Lucas(75) 4180999952107809 a004 Fibonacci(26)*Lucas(74)/(1/2+sqrt(5)/2)^81 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^66/Lucas(73) 4180999952107809 a004 Fibonacci(26)*Lucas(72)/(1/2+sqrt(5)/2)^79 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^64/Lucas(71) 4180999952107809 a004 Fibonacci(26)*Lucas(70)/(1/2+sqrt(5)/2)^77 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^62/Lucas(69) 4180999952107809 a004 Fibonacci(26)*Lucas(68)/(1/2+sqrt(5)/2)^75 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^60/Lucas(67) 4180999952107809 a004 Fibonacci(26)*Lucas(66)/(1/2+sqrt(5)/2)^73 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^58/Lucas(65) 4180999952107809 a004 Fibonacci(26)*Lucas(64)/(1/2+sqrt(5)/2)^71 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^56/Lucas(63) 4180999952107809 a004 Fibonacci(26)*Lucas(62)/(1/2+sqrt(5)/2)^69 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^54/Lucas(61) 4180999952107809 a004 Fibonacci(26)*Lucas(60)/(1/2+sqrt(5)/2)^67 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^52/Lucas(59) 4180999952107809 a004 Fibonacci(26)*Lucas(58)/(1/2+sqrt(5)/2)^65 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^50/Lucas(57) 4180999952107809 a001 121393/2139295485799*505019158607^(13/14) 4180999952107809 a004 Fibonacci(26)*Lucas(56)/(1/2+sqrt(5)/2)^63 4180999952107809 a001 121393/312119004989*14662949395604^(16/21) 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^48/Lucas(55) 4180999952107809 a001 16944503813785885/4052739537881 4180999952107809 a001 121393/1322157322203*192900153618^(17/18) 4180999952107809 a004 Fibonacci(26)*Lucas(54)/(1/2+sqrt(5)/2)^61 4180999952107809 a001 121393/312119004989*192900153618^(8/9) 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^46/Lucas(53) 4180999952107809 a001 6472224534363989/1548008755920 4180999952107809 a004 Fibonacci(54)/Lucas(26)/(1/2+sqrt(5)/2)^9 4180999952107809 a004 Fibonacci(56)/Lucas(26)/(1/2+sqrt(5)/2)^11 4180999952107809 a001 121393/312119004989*73681302247^(12/13) 4180999952107809 a004 Fibonacci(58)/Lucas(26)/(1/2+sqrt(5)/2)^13 4180999952107809 a004 Fibonacci(60)/Lucas(26)/(1/2+sqrt(5)/2)^15 4180999952107809 a004 Fibonacci(62)/Lucas(26)/(1/2+sqrt(5)/2)^17 4180999952107809 a004 Fibonacci(64)/Lucas(26)/(1/2+sqrt(5)/2)^19 4180999952107809 a004 Fibonacci(66)/Lucas(26)/(1/2+sqrt(5)/2)^21 4180999952107809 a004 Fibonacci(68)/Lucas(26)/(1/2+sqrt(5)/2)^23 4180999952107809 a004 Fibonacci(70)/Lucas(26)/(1/2+sqrt(5)/2)^25 4180999952107809 a004 Fibonacci(72)/Lucas(26)/(1/2+sqrt(5)/2)^27 4180999952107809 a004 Fibonacci(74)/Lucas(26)/(1/2+sqrt(5)/2)^29 4180999952107809 a004 Fibonacci(76)/Lucas(26)/(1/2+sqrt(5)/2)^31 4180999952107809 a004 Fibonacci(78)/Lucas(26)/(1/2+sqrt(5)/2)^33 4180999952107809 a004 Fibonacci(80)/Lucas(26)/(1/2+sqrt(5)/2)^35 4180999952107809 a004 Fibonacci(82)/Lucas(26)/(1/2+sqrt(5)/2)^37 4180999952107809 a004 Fibonacci(84)/Lucas(26)/(1/2+sqrt(5)/2)^39 4180999952107809 a004 Fibonacci(86)/Lucas(26)/(1/2+sqrt(5)/2)^41 4180999952107809 a004 Fibonacci(88)/Lucas(26)/(1/2+sqrt(5)/2)^43 4180999952107809 a004 Fibonacci(90)/Lucas(26)/(1/2+sqrt(5)/2)^45 4180999952107809 a004 Fibonacci(92)/Lucas(26)/(1/2+sqrt(5)/2)^47 4180999952107809 a004 Fibonacci(94)/Lucas(26)/(1/2+sqrt(5)/2)^49 4180999952107809 a004 Fibonacci(96)/Lucas(26)/(1/2+sqrt(5)/2)^51 4180999952107809 a004 Fibonacci(100)/Lucas(26)/(1/2+sqrt(5)/2)^55 4180999952107809 a004 Fibonacci(26)*Lucas(52)/(1/2+sqrt(5)/2)^59 4180999952107809 a004 Fibonacci(98)/Lucas(26)/(1/2+sqrt(5)/2)^53 4180999952107809 a004 Fibonacci(99)/Lucas(26)/(1/2+sqrt(5)/2)^54 4180999952107809 a004 Fibonacci(97)/Lucas(26)/(1/2+sqrt(5)/2)^52 4180999952107809 a004 Fibonacci(95)/Lucas(26)/(1/2+sqrt(5)/2)^50 4180999952107809 a004 Fibonacci(93)/Lucas(26)/(1/2+sqrt(5)/2)^48 4180999952107809 a004 Fibonacci(91)/Lucas(26)/(1/2+sqrt(5)/2)^46 4180999952107809 a004 Fibonacci(89)/Lucas(26)/(1/2+sqrt(5)/2)^44 4180999952107809 a004 Fibonacci(87)/Lucas(26)/(1/2+sqrt(5)/2)^42 4180999952107809 a004 Fibonacci(85)/Lucas(26)/(1/2+sqrt(5)/2)^40 4180999952107809 a004 Fibonacci(83)/Lucas(26)/(1/2+sqrt(5)/2)^38 4180999952107809 a004 Fibonacci(81)/Lucas(26)/(1/2+sqrt(5)/2)^36 4180999952107809 a004 Fibonacci(79)/Lucas(26)/(1/2+sqrt(5)/2)^34 4180999952107809 a004 Fibonacci(77)/Lucas(26)/(1/2+sqrt(5)/2)^32 4180999952107809 a004 Fibonacci(75)/Lucas(26)/(1/2+sqrt(5)/2)^30 4180999952107809 a004 Fibonacci(73)/Lucas(26)/(1/2+sqrt(5)/2)^28 4180999952107809 a004 Fibonacci(71)/Lucas(26)/(1/2+sqrt(5)/2)^26 4180999952107809 a004 Fibonacci(69)/Lucas(26)/(1/2+sqrt(5)/2)^24 4180999952107809 a004 Fibonacci(67)/Lucas(26)/(1/2+sqrt(5)/2)^22 4180999952107809 a004 Fibonacci(65)/Lucas(26)/(1/2+sqrt(5)/2)^20 4180999952107809 a004 Fibonacci(63)/Lucas(26)/(1/2+sqrt(5)/2)^18 4180999952107809 a004 Fibonacci(61)/Lucas(26)/(1/2+sqrt(5)/2)^16 4180999952107809 a004 Fibonacci(59)/Lucas(26)/(1/2+sqrt(5)/2)^14 4180999952107809 a004 Fibonacci(57)/Lucas(26)/(1/2+sqrt(5)/2)^12 4180999952107809 a004 Fibonacci(55)/Lucas(26)/(1/2+sqrt(5)/2)^10 4180999952107809 a004 Fibonacci(53)/Lucas(26)/(1/2+sqrt(5)/2)^8 4180999952107809 a001 121393/17393796001*17393796001^(6/7) 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^44/Lucas(51) 4180999952107809 a001 121393/45537549124*23725150497407^(11/16) 4180999952107809 a001 2472169789306082/591286729879 4180999952107809 a001 121393/45537549124*73681302247^(11/13) 4180999952107809 a004 Fibonacci(51)/Lucas(26)/(1/2+sqrt(5)/2)^6 4180999952107809 a001 121393/73681302247*28143753123^(9/10) 4180999952107809 a004 Fibonacci(26)*Lucas(50)/(1/2+sqrt(5)/2)^57 4180999952107809 a001 121393/17393796001*45537549124^(14/17) 4180999952107809 a001 121393/17393796001*817138163596^(14/19) 4180999952107809 a001 121393/17393796001*14662949395604^(2/3) 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^42/Lucas(49) 4180999952107809 a001 121393/17393796001*505019158607^(3/4) 4180999952107809 a001 121393/17393796001*192900153618^(7/9) 4180999952107809 a004 Fibonacci(49)/Lucas(26)/(1/2+sqrt(5)/2)^4 4180999952107809 a001 121393/73681302247*10749957122^(15/16) 4180999952107809 a001 121393/119218851371*10749957122^(23/24) 4180999952107809 a001 121393/45537549124*10749957122^(11/12) 4180999952107809 a004 Fibonacci(26)*Lucas(48)/(1/2+sqrt(5)/2)^55 4180999952107809 a001 121393/17393796001*10749957122^(7/8) 4180999952107809 a001 121393/6643838879*312119004989^(8/11) 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^40/Lucas(47) 4180999952107809 a001 121393/6643838879*23725150497407^(5/8) 4180999952107809 a001 360684711356689/86267571272 4180999952107809 a001 121393/6643838879*73681302247^(10/13) 4180999952107809 a004 Fibonacci(47)/Lucas(26)/(1/2+sqrt(5)/2)^2 4180999952107809 a001 121393/6643838879*28143753123^(4/5) 4180999952107809 a001 121393/6643838879*10749957122^(5/6) 4180999952107809 a001 121393/45537549124*4106118243^(22/23) 4180999952107809 a001 121393/17393796001*4106118243^(21/23) 4180999952107809 a004 Fibonacci(26)*Lucas(46)/(1/2+sqrt(5)/2)^53 4180999952107809 a001 121393/6643838879*4106118243^(20/23) 4180999952107809 a001 121393/2537720636*817138163596^(2/3) 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^38/Lucas(45) 4180999952107809 a001 1134903170/271443 4180999952107809 a001 121393/2537720636*10749957122^(19/24) 4180999952107809 a001 121393/2537720636*4106118243^(19/23) 4180999952107809 a001 121393/17393796001*1568397607^(21/22) 4180999952107809 a001 121393/6643838879*1568397607^(10/11) 4180999952107809 a004 Fibonacci(26)*Lucas(44)/(1/2+sqrt(5)/2)^51 4180999952107809 a001 121393/2537720636*1568397607^(19/22) 4180999952107809 a001 121393/969323029*2537720636^(4/5) 4180999952107809 a001 121393/969323029*45537549124^(12/17) 4180999952107809 a001 121393/969323029*14662949395604^(4/7) 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^36/Lucas(43) 4180999952107809 a001 121393/969323029*505019158607^(9/14) 4180999952107809 a001 121393/969323029*192900153618^(2/3) 4180999952107809 a001 121393/969323029*73681302247^(9/13) 4180999952107809 a001 433494437/271443*(1/2+1/2*5^(1/2))^2 4180999952107809 a001 433494437/271443*10749957122^(1/24) 4180999952107809 a001 52623190190741/12586269025 4180999952107809 a001 433494437/271443*4106118243^(1/23) 4180999952107809 a001 121393/969323029*10749957122^(3/4) 4180999952107809 a001 433494437/271443*1568397607^(1/22) 4180999952107809 a001 121393/969323029*4106118243^(18/23) 4180999952107809 a001 433494437/271443*599074578^(1/21) 4180999952107809 a001 121393/969323029*1568397607^(9/11) 4180999952107809 a001 433494437/271443*228826127^(1/20) 4180999952107809 a001 121393/4106118243*599074578^(13/14) 4180999952107809 a001 121393/2537720636*599074578^(19/21) 4180999952107809 a001 121393/6643838879*599074578^(20/21) 4180999952107809 a004 Fibonacci(26)*Lucas(42)/(1/2+sqrt(5)/2)^49 4180999952107809 a001 121393/969323029*599074578^(6/7) 4180999952107809 a001 121393/370248451*45537549124^(2/3) 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^34/Lucas(41) 4180999952107809 a001 165580141/271443*(1/2+1/2*5^(1/2))^4 4180999952107809 a001 165580141/271443*23725150497407^(1/16) 4180999952107809 a001 165580141/271443*73681302247^(1/13) 4180999952107809 a001 165580141/271443*10749957122^(1/12) 4180999952107809 a001 165580141/271443*4106118243^(2/23) 4180999952107809 a001 121393/370248451*10749957122^(17/24) 4180999952107809 a001 20100270056413/4807526976 4180999952107809 a001 165580141/271443*1568397607^(1/11) 4180999952107809 a001 121393/370248451*4106118243^(17/23) 4180999952107809 a001 165580141/271443*599074578^(2/21) 4180999952107809 a001 121393/370248451*1568397607^(17/22) 4180999952107809 a001 433494437/271443*87403803^(1/19) 4180999952107809 a001 165580141/271443*228826127^(1/10) 4180999952107809 a001 121393/370248451*599074578^(17/21) 4180999952107809 a001 121393/599074578*228826127^(7/8) 4180999952107809 a001 121393/969323029*228826127^(9/10) 4180999952107809 a001 121393/2537720636*228826127^(19/20) 4180999952107809 a004 Fibonacci(26)*Lucas(40)/(1/2+sqrt(5)/2)^47 4180999952107809 a001 165580141/271443*87403803^(2/19) 4180999952107809 a001 121393/370248451*228826127^(17/20) 4180999952107809 a001 63245986/271443*141422324^(2/13) 4180999952107809 a001 63245986/271443*2537720636^(2/15) 4180999952107809 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^32/Lucas(39) 4180999952107809 a001 233/271444*23725150497407^(1/2) 4180999952107809 a001 233/271444*505019158607^(4/7) 4180999952107809 a001 233/271444*73681302247^(8/13) 4180999952107809 a001 63245986/271443*45537549124^(2/17) 4180999952107809 a001 63245986/271443*14662949395604^(2/21) 4180999952107809 a001 63245986/271443*(1/2+1/2*5^(1/2))^6 4180999952107809 a001 63245986/271443*10749957122^(1/8) 4180999952107809 a001 233/271444*10749957122^(2/3) 4180999952107809 a001 63245986/271443*4106118243^(3/23) 4180999952107809 a001 233/271444*4106118243^(16/23) 4180999952107809 a001 63245986/271443*1568397607^(3/22) 4180999952107809 a001 7677619978498/1836311903 4180999952107809 a001 233/271444*1568397607^(8/11) 4180999952107809 a001 63245986/271443*599074578^(1/7) 4180999952107809 a001 433494437/271443*33385282^(1/18) 4180999952107809 a001 233/271444*599074578^(16/21) 4180999952107809 a001 63245986/271443*228826127^(3/20) 4180999952107809 a001 233/271444*228826127^(4/5) 4180999952107809 a001 63245986/271443*87403803^(3/19) 4180999952107809 a001 267914296/271443*33385282^(1/12) 4180999952107809 a001 165580141/271443*33385282^(1/9) 4180999952107809 a001 121393/370248451*87403803^(17/19) 4180999952107809 a001 121393/969323029*87403803^(18/19) 4180999952107809 a004 Fibonacci(26)*Lucas(38)/(1/2+sqrt(5)/2)^45 4180999952107809 a001 233/271444*87403803^(16/19) 4180999952107809 a001 63245986/271443*33385282^(1/6) 4180999952107810 a001 121393/54018521*141422324^(10/13) 4180999952107810 a001 121393/54018521*2537720636^(2/3) 4180999952107810 a001 121393/54018521*45537549124^(10/17) 4180999952107810 a001 121393/54018521*312119004989^(6/11) 4180999952107810 a001 121393/54018521*14662949395604^(10/21) 4180999952107810 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^30/Lucas(37) 4180999952107810 a001 121393/54018521*192900153618^(5/9) 4180999952107810 a001 24157817/271443*(1/2+1/2*5^(1/2))^8 4180999952107810 a001 24157817/271443*23725150497407^(1/8) 4180999952107810 a001 24157817/271443*505019158607^(1/7) 4180999952107810 a001 24157817/271443*73681302247^(2/13) 4180999952107810 a001 121393/54018521*28143753123^(3/5) 4180999952107810 a001 24157817/271443*10749957122^(1/6) 4180999952107810 a001 121393/54018521*10749957122^(5/8) 4180999952107810 a001 24157817/271443*4106118243^(4/23) 4180999952107810 a001 121393/54018521*4106118243^(15/23) 4180999952107810 a001 24157817/271443*1568397607^(2/11) 4180999952107810 a001 121393/54018521*1568397607^(15/22) 4180999952107810 a001 2932589879081/701408733 4180999952107810 a001 24157817/271443*599074578^(4/21) 4180999952107810 a001 121393/54018521*599074578^(5/7) 4180999952107810 a001 24157817/271443*228826127^(1/5) 4180999952107810 a001 121393/54018521*228826127^(3/4) 4180999952107810 a001 433494437/271443*12752043^(1/17) 4180999952107810 a001 24157817/271443*87403803^(4/19) 4180999952107810 a001 121393/54018521*87403803^(15/19) 4180999952107810 a001 121393/20633239*20633239^(4/5) 4180999952107811 a001 24157817/271443*33385282^(2/9) 4180999952107812 a001 165580141/271443*12752043^(2/17) 4180999952107812 a001 121393/228826127*33385282^(11/12) 4180999952107812 a001 233/271444*33385282^(8/9) 4180999952107812 a001 121393/370248451*33385282^(17/18) 4180999952107812 a004 Fibonacci(26)*Lucas(36)/(1/2+sqrt(5)/2)^43 4180999952107813 a001 121393/54018521*33385282^(5/6) 4180999952107813 a001 63245986/271443*12752043^(3/17) 4180999952107816 a001 9227465/271443*20633239^(2/7) 4180999952107816 a001 24157817/271443*12752043^(4/17) 4180999952107818 a001 9227465/271443*2537720636^(2/9) 4180999952107818 a001 121393/20633239*17393796001^(4/7) 4180999952107818 a001 121393/20633239*14662949395604^(4/9) 4180999952107818 a001 121393/20633239*(1/2+1/2*5^(1/2))^28 4180999952107818 a001 121393/20633239*505019158607^(1/2) 4180999952107818 a001 121393/20633239*73681302247^(7/13) 4180999952107818 a001 9227465/271443*312119004989^(2/11) 4180999952107818 a001 9227465/271443*(1/2+1/2*5^(1/2))^10 4180999952107818 a001 9227465/271443*28143753123^(1/5) 4180999952107818 a001 9227465/271443*10749957122^(5/24) 4180999952107818 a001 121393/20633239*10749957122^(7/12) 4180999952107818 a001 9227465/271443*4106118243^(5/23) 4180999952107818 a001 121393/20633239*4106118243^(14/23) 4180999952107818 a001 9227465/271443*1568397607^(5/22) 4180999952107818 a001 121393/20633239*1568397607^(7/11) 4180999952107818 a001 9227465/271443*599074578^(5/21) 4180999952107818 a001 121393/20633239*599074578^(2/3) 4180999952107818 a001 86165358365/20608792 4180999952107818 a001 9227465/271443*228826127^(1/4) 4180999952107818 a001 121393/20633239*228826127^(7/10) 4180999952107818 a001 9227465/271443*87403803^(5/19) 4180999952107819 a001 121393/20633239*87403803^(14/19) 4180999952107819 a001 9227465/271443*33385282^(5/18) 4180999952107820 a001 433494437/271443*4870847^(1/16) 4180999952107821 a001 121393/20633239*33385282^(7/9) 4180999952107826 a001 9227465/271443*12752043^(5/17) 4180999952107831 a001 165580141/271443*4870847^(1/8) 4180999952107833 a001 121393/54018521*12752043^(15/17) 4180999952107833 a001 233/271444*12752043^(16/17) 4180999952107834 a004 Fibonacci(26)*Lucas(34)/(1/2+sqrt(5)/2)^41 4180999952107839 a001 121393/20633239*12752043^(14/17) 4180999952107842 a001 63245986/271443*4870847^(3/16) 4180999952107851 a001 3524578/271443*7881196^(4/11) 4180999952107854 a001 24157817/271443*4870847^(1/4) 4180999952107873 a001 9227465/271443*4870847^(5/16) 4180999952107876 a001 121393/7881196*141422324^(2/3) 4180999952107876 a001 3524578/271443*141422324^(4/13) 4180999952107876 a001 3524578/271443*2537720636^(4/15) 4180999952107876 a001 121393/7881196*(1/2+1/2*5^(1/2))^26 4180999952107876 a001 3524578/271443*45537549124^(4/17) 4180999952107876 a001 121393/7881196*73681302247^(1/2) 4180999952107876 a001 3524578/271443*817138163596^(4/19) 4180999952107876 a001 3524578/271443*14662949395604^(4/21) 4180999952107876 a001 3524578/271443*(1/2+1/2*5^(1/2))^12 4180999952107876 a001 3524578/271443*192900153618^(2/9) 4180999952107876 a001 3524578/271443*73681302247^(3/13) 4180999952107876 a001 3524578/271443*10749957122^(1/4) 4180999952107876 a001 121393/7881196*10749957122^(13/24) 4180999952107876 a001 3524578/271443*4106118243^(6/23) 4180999952107876 a001 121393/7881196*4106118243^(13/23) 4180999952107876 a001 3524578/271443*1568397607^(3/11) 4180999952107876 a001 121393/7881196*1568397607^(13/22) 4180999952107876 a001 3524578/271443*599074578^(2/7) 4180999952107876 a001 121393/7881196*599074578^(13/21) 4180999952107876 a001 3524578/271443*228826127^(3/10) 4180999952107876 a001 121393/7881196*228826127^(13/20) 4180999952107876 a001 427859097154/102334155 4180999952107876 a001 3524578/271443*87403803^(6/19) 4180999952107876 a001 121393/7881196*87403803^(13/19) 4180999952107877 a001 3524578/271443*33385282^(1/3) 4180999952107879 a001 121393/7881196*33385282^(13/18) 4180999952107885 a001 3524578/271443*12752043^(6/17) 4180999952107889 a001 433494437/271443*1860498^(1/15) 4180999952107895 a001 121393/7881196*12752043^(13/17) 4180999952107929 a001 267914296/271443*1860498^(1/10) 4180999952107942 a001 3524578/271443*4870847^(3/8) 4180999952107970 a001 165580141/271443*1860498^(2/15) 4180999952107973 a001 121393/20633239*4870847^(7/8) 4180999952107975 a001 121393/54018521*4870847^(15/16) 4180999952107985 a004 Fibonacci(26)*Lucas(32)/(1/2+sqrt(5)/2)^39 4180999952108010 a001 34111385/90481*1860498^(1/6) 4180999952108019 a001 121393/7881196*4870847^(13/16) 4180999952108050 a001 63245986/271443*1860498^(1/5) 4180999952108132 a001 24157817/271443*1860498^(4/15) 4180999952108167 a001 4976784/90481*1860498^(3/10) 4180999952108221 a001 121393/3010349*7881196^(8/11) 4180999952108221 a001 9227465/271443*1860498^(1/3) 4180999952108266 a001 1346269/271443*20633239^(2/5) 4180999952108270 a001 121393/3010349*141422324^(8/13) 4180999952108270 a001 121393/3010349*2537720636^(8/15) 4180999952108270 a001 1346269/271443*17393796001^(2/7) 4180999952108270 a001 121393/3010349*45537549124^(8/17) 4180999952108270 a001 121393/3010349*14662949395604^(8/21) 4180999952108270 a001 121393/3010349*(1/2+1/2*5^(1/2))^24 4180999952108270 a001 121393/3010349*192900153618^(4/9) 4180999952108270 a001 121393/3010349*73681302247^(6/13) 4180999952108270 a001 1346269/271443*14662949395604^(2/9) 4180999952108270 a001 1346269/271443*(1/2+1/2*5^(1/2))^14 4180999952108270 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^14/Lucas(26) 4180999952108270 a001 1346269/271443*505019158607^(1/4) 4180999952108270 a001 1346269/271443*10749957122^(7/24) 4180999952108270 a001 121393/3010349*10749957122^(1/2) 4180999952108270 a001 1346269/271443*4106118243^(7/23) 4180999952108270 a001 121393/3010349*4106118243^(12/23) 4180999952108270 a001 1346269/271443*1568397607^(7/22) 4180999952108270 a001 121393/3010349*1568397607^(6/11) 4180999952108270 a001 1346269/271443*599074578^(1/3) 4180999952108270 a001 121393/3010349*599074578^(4/7) 4180999952108270 a001 1346269/271443*228826127^(7/20) 4180999952108270 a001 121393/3010349*228826127^(3/5) 4180999952108270 a001 1346269/271443*87403803^(7/19) 4180999952108270 a001 121393/3010349*87403803^(12/19) 4180999952108270 a001 163427632717/39088169 4180999952108271 a001 1346269/271443*33385282^(7/18) 4180999952108272 a001 121393/3010349*33385282^(2/3) 4180999952108280 a001 1346269/271443*12752043^(7/17) 4180999952108288 a001 121393/3010349*12752043^(12/17) 4180999952108291 a001 39088169/1149851*167761^(2/5) 4180999952108347 a001 1346269/271443*4870847^(7/16) 4180999952108359 a001 3524578/271443*1860498^(2/5) 4180999952108400 a001 433494437/271443*710647^(1/14) 4180999952108402 a001 121393/3010349*4870847^(3/4) 4180999952108639 a001 121393/4870847*1860498^(5/6) 4180999952108834 a001 1346269/271443*1860498^(7/15) 4180999952108870 a001 121393/12752043*1860498^(9/10) 4180999952108923 a001 121393/7881196*1860498^(13/15) 4180999952108946 a001 121393/20633239*1860498^(14/15) 4180999952108991 a001 165580141/271443*710647^(1/7) 4180999952109016 a004 Fibonacci(26)*Lucas(30)/(1/2+sqrt(5)/2)^37 4180999952109236 a001 121393/3010349*1860498^(4/5) 4180999952109583 a001 63245986/271443*710647^(3/14) 4180999952109878 a001 39088169/271443*710647^(1/4) 4180999952110175 a001 24157817/271443*710647^(2/7) 4180999952110775 a001 9227465/271443*710647^(5/14) 4180999952110926 a001 121393/1149851*7881196^(2/3) 4180999952110971 a001 121393/1149851*312119004989^(2/5) 4180999952110971 a001 121393/1149851*(1/2+1/2*5^(1/2))^22 4180999952110971 a001 514229/271443*(1/2+1/2*5^(1/2))^16 4180999952110971 a001 514229/271443*23725150497407^(1/4) 4180999952110971 a001 514229/271443*73681302247^(4/13) 4180999952110971 a001 514229/271443*10749957122^(1/3) 4180999952110971 a001 121393/1149851*10749957122^(11/24) 4180999952110971 a001 514229/271443*4106118243^(8/23) 4180999952110971 a001 121393/1149851*4106118243^(11/23) 4180999952110971 a001 514229/271443*1568397607^(4/11) 4180999952110971 a001 121393/1149851*1568397607^(1/2) 4180999952110971 a001 514229/271443*599074578^(8/21) 4180999952110971 a001 121393/1149851*599074578^(11/21) 4180999952110971 a001 514229/271443*228826127^(2/5) 4180999952110971 a001 121393/1149851*228826127^(11/20) 4180999952110971 a001 514229/271443*87403803^(8/19) 4180999952110971 a001 121393/1149851*87403803^(11/19) 4180999952110972 a001 514229/271443*33385282^(4/9) 4180999952110973 a001 121393/1149851*33385282^(11/18) 4180999952110975 a001 62423800997/14930352 4180999952110983 a001 514229/271443*12752043^(8/17) 4180999952110987 a001 121393/1149851*12752043^(11/17) 4180999952111059 a001 514229/271443*4870847^(1/2) 4180999952111092 a001 121393/1149851*4870847^(11/16) 4180999952111424 a001 3524578/271443*710647^(3/7) 4180999952111615 a001 514229/271443*1860498^(8/15) 4180999952111857 a001 121393/1149851*1860498^(11/15) 4180999952112003 a001 1836311903/710647*64079^(1/23) 4180999952112173 a001 433494437/271443*271443^(1/13) 4180999952112409 a001 1346269/271443*710647^(1/2) 4180999952115033 a001 196418/271443*439204^(2/3) 4180999952115366 a001 121393/3010349*710647^(6/7) 4180999952115563 a001 121393/7881196*710647^(13/14) 4180999952115702 a001 514229/271443*710647^(4/7) 4180999952116087 a004 Fibonacci(26)*Lucas(28)/(1/2+sqrt(5)/2)^35 4180999952116538 a001 165580141/271443*271443^(2/13) 4180999952117476 a001 121393/1149851*710647^(11/14) 4180999952119074 a001 267084832/103361*64079^(1/23) 4180999952120106 a001 12586269025/4870847*64079^(1/23) 4180999952120256 a001 10983760033/4250681*64079^(1/23) 4180999952120278 a001 43133785636/16692641*64079^(1/23) 4180999952120281 a001 75283811239/29134601*64079^(1/23) 4180999952120282 a001 591286729879/228826127*64079^(1/23) 4180999952120282 a001 86000486440/33281921*64079^(1/23) 4180999952120282 a001 4052739537881/1568397607*64079^(1/23) 4180999952120282 a001 3536736619241/1368706081*64079^(1/23) 4180999952120282 a001 3278735159921/1268860318*64079^(1/23) 4180999952120282 a001 2504730781961/969323029*64079^(1/23) 4180999952120282 a001 956722026041/370248451*64079^(1/23) 4180999952120282 a001 182717648081/70711162*64079^(1/23) 4180999952120283 a001 139583862445/54018521*64079^(1/23) 4180999952120292 a001 53316291173/20633239*64079^(1/23) 4180999952120349 a001 10182505537/3940598*64079^(1/23) 4180999952120743 a001 7778742049/3010349*64079^(1/23) 4180999952120904 a001 63245986/271443*271443^(3/13) 4180999952123444 a001 2971215073/1149851*64079^(1/23) 4180999952124014 a001 233802911/90481*103682^(1/24) 4180999952125270 a001 24157817/271443*271443^(4/13) 4180999952126562 a001 267914296/710647*167761^(1/5) 4180999952126800 a001 196452/5779*167761^(2/5) 4180999952129446 a001 196418/271443*7881196^(6/11) 4180999952129477 a001 121393/439204*20633239^(4/7) 4180999952129483 a001 196418/271443*141422324^(6/13) 4180999952129483 a001 121393/439204*2537720636^(4/9) 4180999952129483 a001 196418/271443*2537720636^(2/5) 4180999952129483 a001 196418/271443*45537549124^(6/17) 4180999952129483 a001 121393/439204*(1/2+1/2*5^(1/2))^20 4180999952129483 a001 121393/439204*23725150497407^(5/16) 4180999952129483 a001 121393/439204*505019158607^(5/14) 4180999952129483 a001 121393/439204*73681302247^(5/13) 4180999952129483 a001 196418/271443*14662949395604^(2/7) 4180999952129483 a001 196418/271443*(1/2+1/2*5^(1/2))^18 4180999952129483 a001 196418/271443*192900153618^(1/3) 4180999952129483 a001 121393/439204*28143753123^(2/5) 4180999952129483 a001 196418/271443*10749957122^(3/8) 4180999952129483 a001 121393/439204*10749957122^(5/12) 4180999952129483 a001 196418/271443*4106118243^(9/23) 4180999952129483 a001 121393/439204*4106118243^(10/23) 4180999952129483 a001 196418/271443*1568397607^(9/22) 4180999952129483 a001 121393/439204*1568397607^(5/11) 4180999952129483 a001 196418/271443*599074578^(3/7) 4180999952129483 a001 121393/439204*599074578^(10/21) 4180999952129483 a001 196418/271443*228826127^(9/20) 4180999952129483 a001 121393/439204*228826127^(1/2) 4180999952129483 a001 196418/271443*87403803^(9/19) 4180999952129483 a001 121393/439204*87403803^(10/19) 4180999952129485 a001 196418/271443*33385282^(1/2) 4180999952129485 a001 121393/439204*33385282^(5/9) 4180999952129497 a001 196418/271443*12752043^(9/17) 4180999952129498 a001 121393/439204*12752043^(10/17) 4180999952129509 a001 23843770274/5702887 4180999952129582 a001 196418/271443*4870847^(9/16) 4180999952129593 a001 121393/439204*4870847^(5/8) 4180999952129643 a001 9227465/271443*271443^(5/13) 4180999952130208 a001 196418/271443*1860498^(3/5) 4180999952130288 a001 121393/439204*1860498^(2/3) 4180999952133633 a001 233802911/620166*167761^(1/5) 4180999952134066 a001 3524578/271443*271443^(6/13) 4180999952134600 a004 Fibonacci(28)*Lucas(27)/(1/2+sqrt(5)/2)^36 4180999952134665 a001 1836311903/4870847*167761^(1/5) 4180999952134805 a001 196418/271443*710647^(9/14) 4180999952134815 a001 1602508992/4250681*167761^(1/5) 4180999952134837 a001 12586269025/33385282*167761^(1/5) 4180999952134841 a001 10983760033/29134601*167761^(1/5) 4180999952134841 a001 86267571272/228826127*167761^(1/5) 4180999952134841 a001 267913919/710646*167761^(1/5) 4180999952134841 a001 591286729879/1568397607*167761^(1/5) 4180999952134841 a001 516002918640/1368706081*167761^(1/5) 4180999952134841 a001 4052739537881/10749957122*167761^(1/5) 4180999952134841 a001 3536736619241/9381251041*167761^(1/5) 4180999952134841 a001 6557470319842/17393796001*167761^(1/5) 4180999952134841 a001 2504730781961/6643838879*167761^(1/5) 4180999952134841 a001 956722026041/2537720636*167761^(1/5) 4180999952134841 a001 365435296162/969323029*167761^(1/5) 4180999952134841 a001 139583862445/370248451*167761^(1/5) 4180999952134841 a001 53316291173/141422324*167761^(1/5) 4180999952134843 a001 20365011074/54018521*167761^(1/5) 4180999952134851 a001 7778742049/20633239*167761^(1/5) 4180999952134908 a001 2971215073/7881196*167761^(1/5) 4180999952135303 a001 1134903170/3010349*167761^(1/5) 4180999952135396 a001 121393/439204*710647^(5/7) 4180999952136004 a001 726103/90481*271443^(1/2) 4180999952136027 a001 9303105/15251*64079^(4/23) 4180999952137075 a001 317811/7881196*439204^(8/9) 4180999952137520 a001 75025/271443*167761^(4/5) 4180999952138003 a001 433494437/1149851*167761^(1/5) 4180999952138208 a001 105937/620166*439204^(7/9) 4180999952138825 a001 1346269/271443*271443^(7/13) 4180999952139136 a001 102334155/103682*39603^(3/22) 4180999952140069 a001 6624/101521*103682^(23/24) 4180999952140219 a001 433494437/271443*103682^(1/12) 4180999952141671 a004 Fibonacci(30)*Lucas(27)/(1/2+sqrt(5)/2)^38 4180999952141956 a001 567451585/219602*64079^(1/23) 4180999952142702 a004 Fibonacci(32)*Lucas(27)/(1/2+sqrt(5)/2)^40 4180999952142853 a004 Fibonacci(34)*Lucas(27)/(1/2+sqrt(5)/2)^42 4180999952142875 a004 Fibonacci(36)*Lucas(27)/(1/2+sqrt(5)/2)^44 4180999952142878 a004 Fibonacci(38)*Lucas(27)/(1/2+sqrt(5)/2)^46 4180999952142878 a004 Fibonacci(40)*Lucas(27)/(1/2+sqrt(5)/2)^48 4180999952142878 a004 Fibonacci(42)*Lucas(27)/(1/2+sqrt(5)/2)^50 4180999952142878 a004 Fibonacci(44)*Lucas(27)/(1/2+sqrt(5)/2)^52 4180999952142878 a004 Fibonacci(46)*Lucas(27)/(1/2+sqrt(5)/2)^54 4180999952142878 a004 Fibonacci(48)*Lucas(27)/(1/2+sqrt(5)/2)^56 4180999952142878 a004 Fibonacci(50)*Lucas(27)/(1/2+sqrt(5)/2)^58 4180999952142878 a004 Fibonacci(52)*Lucas(27)/(1/2+sqrt(5)/2)^60 4180999952142878 a004 Fibonacci(54)*Lucas(27)/(1/2+sqrt(5)/2)^62 4180999952142878 a004 Fibonacci(56)*Lucas(27)/(1/2+sqrt(5)/2)^64 4180999952142878 a004 Fibonacci(58)*Lucas(27)/(1/2+sqrt(5)/2)^66 4180999952142878 a004 Fibonacci(60)*Lucas(27)/(1/2+sqrt(5)/2)^68 4180999952142878 a004 Fibonacci(62)*Lucas(27)/(1/2+sqrt(5)/2)^70 4180999952142878 a004 Fibonacci(64)*Lucas(27)/(1/2+sqrt(5)/2)^72 4180999952142878 a004 Fibonacci(66)*Lucas(27)/(1/2+sqrt(5)/2)^74 4180999952142878 a004 Fibonacci(68)*Lucas(27)/(1/2+sqrt(5)/2)^76 4180999952142878 a004 Fibonacci(70)*Lucas(27)/(1/2+sqrt(5)/2)^78 4180999952142878 a004 Fibonacci(72)*Lucas(27)/(1/2+sqrt(5)/2)^80 4180999952142878 a004 Fibonacci(74)*Lucas(27)/(1/2+sqrt(5)/2)^82 4180999952142878 a004 Fibonacci(76)*Lucas(27)/(1/2+sqrt(5)/2)^84 4180999952142878 a004 Fibonacci(78)*Lucas(27)/(1/2+sqrt(5)/2)^86 4180999952142878 a004 Fibonacci(80)*Lucas(27)/(1/2+sqrt(5)/2)^88 4180999952142878 a004 Fibonacci(82)*Lucas(27)/(1/2+sqrt(5)/2)^90 4180999952142878 a004 Fibonacci(84)*Lucas(27)/(1/2+sqrt(5)/2)^92 4180999952142878 a004 Fibonacci(86)*Lucas(27)/(1/2+sqrt(5)/2)^94 4180999952142878 a004 Fibonacci(88)*Lucas(27)/(1/2+sqrt(5)/2)^96 4180999952142878 a004 Fibonacci(90)*Lucas(27)/(1/2+sqrt(5)/2)^98 4180999952142878 a004 Fibonacci(92)*Lucas(27)/(1/2+sqrt(5)/2)^100 4180999952142878 a004 Fibonacci(91)*Lucas(27)/(1/2+sqrt(5)/2)^99 4180999952142878 a004 Fibonacci(89)*Lucas(27)/(1/2+sqrt(5)/2)^97 4180999952142878 a004 Fibonacci(87)*Lucas(27)/(1/2+sqrt(5)/2)^95 4180999952142878 a004 Fibonacci(85)*Lucas(27)/(1/2+sqrt(5)/2)^93 4180999952142878 a004 Fibonacci(83)*Lucas(27)/(1/2+sqrt(5)/2)^91 4180999952142878 a004 Fibonacci(81)*Lucas(27)/(1/2+sqrt(5)/2)^89 4180999952142878 a004 Fibonacci(79)*Lucas(27)/(1/2+sqrt(5)/2)^87 4180999952142878 a004 Fibonacci(77)*Lucas(27)/(1/2+sqrt(5)/2)^85 4180999952142878 a004 Fibonacci(75)*Lucas(27)/(1/2+sqrt(5)/2)^83 4180999952142878 a004 Fibonacci(73)*Lucas(27)/(1/2+sqrt(5)/2)^81 4180999952142878 a004 Fibonacci(71)*Lucas(27)/(1/2+sqrt(5)/2)^79 4180999952142878 a004 Fibonacci(69)*Lucas(27)/(1/2+sqrt(5)/2)^77 4180999952142878 a004 Fibonacci(67)*Lucas(27)/(1/2+sqrt(5)/2)^75 4180999952142878 a004 Fibonacci(65)*Lucas(27)/(1/2+sqrt(5)/2)^73 4180999952142878 a004 Fibonacci(63)*Lucas(27)/(1/2+sqrt(5)/2)^71 4180999952142878 a004 Fibonacci(61)*Lucas(27)/(1/2+sqrt(5)/2)^69 4180999952142878 a004 Fibonacci(59)*Lucas(27)/(1/2+sqrt(5)/2)^67 4180999952142878 a004 Fibonacci(57)*Lucas(27)/(1/2+sqrt(5)/2)^65 4180999952142878 a004 Fibonacci(55)*Lucas(27)/(1/2+sqrt(5)/2)^63 4180999952142878 a001 1/98209*(1/2+1/2*5^(1/2))^46 4180999952142878 a004 Fibonacci(53)*Lucas(27)/(1/2+sqrt(5)/2)^61 4180999952142878 a004 Fibonacci(51)*Lucas(27)/(1/2+sqrt(5)/2)^59 4180999952142878 a004 Fibonacci(49)*Lucas(27)/(1/2+sqrt(5)/2)^57 4180999952142878 a004 Fibonacci(47)*Lucas(27)/(1/2+sqrt(5)/2)^55 4180999952142878 a004 Fibonacci(45)*Lucas(27)/(1/2+sqrt(5)/2)^53 4180999952142878 a004 Fibonacci(43)*Lucas(27)/(1/2+sqrt(5)/2)^51 4180999952142878 a004 Fibonacci(41)*Lucas(27)/(1/2+sqrt(5)/2)^49 4180999952142879 a004 Fibonacci(39)*Lucas(27)/(1/2+sqrt(5)/2)^47 4180999952142880 a004 Fibonacci(37)*Lucas(27)/(1/2+sqrt(5)/2)^45 4180999952142888 a004 Fibonacci(35)*Lucas(27)/(1/2+sqrt(5)/2)^43 4180999952142946 a004 Fibonacci(33)*Lucas(27)/(1/2+sqrt(5)/2)^41 4180999952143340 a004 Fibonacci(31)*Lucas(27)/(1/2+sqrt(5)/2)^39 4180999952144056 a001 311187/101521*439204^(5/9) 4180999952144089 a001 75640/1875749*439204^(8/9) 4180999952144987 a001 514229/710647*439204^(2/3) 4180999952145112 a001 2178309/54018521*439204^(8/9) 4180999952145261 a001 5702887/141422324*439204^(8/9) 4180999952145283 a001 14930352/370248451*439204^(8/9) 4180999952145286 a001 39088169/969323029*439204^(8/9) 4180999952145287 a001 9303105/230701876*439204^(8/9) 4180999952145287 a001 267914296/6643838879*439204^(8/9) 4180999952145287 a001 701408733/17393796001*439204^(8/9) 4180999952145287 a001 1836311903/45537549124*439204^(8/9) 4180999952145287 a001 4807526976/119218851371*439204^(8/9) 4180999952145287 a001 1144206275/28374454999*439204^(8/9) 4180999952145287 a001 32951280099/817138163596*439204^(8/9) 4180999952145287 a001 86267571272/2139295485799*439204^(8/9) 4180999952145287 a001 225851433717/5600748293801*439204^(8/9) 4180999952145287 a001 591286729879/14662949395604*439204^(8/9) 4180999952145287 a001 365435296162/9062201101803*439204^(8/9) 4180999952145287 a001 139583862445/3461452808002*439204^(8/9) 4180999952145287 a001 53316291173/1322157322203*439204^(8/9) 4180999952145287 a001 20365011074/505019158607*439204^(8/9) 4180999952145287 a001 7778742049/192900153618*439204^(8/9) 4180999952145287 a001 2971215073/73681302247*439204^(8/9) 4180999952145287 a001 1134903170/28143753123*439204^(8/9) 4180999952145287 a001 433494437/10749957122*439204^(8/9) 4180999952145287 a001 165580141/4106118243*439204^(8/9) 4180999952145287 a001 63245986/1568397607*439204^(8/9) 4180999952145288 a001 24157817/599074578*439204^(8/9) 4180999952145296 a001 9227465/228826127*439204^(8/9) 4180999952145353 a001 3524578/87403803*439204^(8/9) 4180999952145744 a001 1346269/33385282*439204^(8/9) 4180999952145890 a001 514229/271443*271443^(8/13) 4180999952146041 a004 Fibonacci(29)*Lucas(27)/(1/2+sqrt(5)/2)^37 4180999952146311 a001 832040/4870847*439204^(7/9) 4180999952146651 a001 9227465/710647*439204^(4/9) 4180999952147493 a001 726103/4250681*439204^(7/9) 4180999952147666 a001 5702887/33385282*439204^(7/9) 4180999952147691 a001 4976784/29134601*439204^(7/9) 4180999952147694 a001 39088169/228826127*439204^(7/9) 4180999952147695 a001 34111385/199691526*439204^(7/9) 4180999952147695 a001 267914296/1568397607*439204^(7/9) 4180999952147695 a001 233802911/1368706081*439204^(7/9) 4180999952147695 a001 1836311903/10749957122*439204^(7/9) 4180999952147695 a001 1602508992/9381251041*439204^(7/9) 4180999952147695 a001 12586269025/73681302247*439204^(7/9) 4180999952147695 a001 10983760033/64300051206*439204^(7/9) 4180999952147695 a001 86267571272/505019158607*439204^(7/9) 4180999952147695 a001 75283811239/440719107401*439204^(7/9) 4180999952147695 a001 2504730781961/14662949395604*439204^(7/9) 4180999952147695 a001 139583862445/817138163596*439204^(7/9) 4180999952147695 a001 53316291173/312119004989*439204^(7/9) 4180999952147695 a001 20365011074/119218851371*439204^(7/9) 4180999952147695 a001 7778742049/45537549124*439204^(7/9) 4180999952147695 a001 2971215073/17393796001*439204^(7/9) 4180999952147695 a001 1134903170/6643838879*439204^(7/9) 4180999952147695 a001 433494437/2537720636*439204^(7/9) 4180999952147695 a001 165580141/969323029*439204^(7/9) 4180999952147695 a001 63245986/370248451*439204^(7/9) 4180999952147697 a001 24157817/141422324*439204^(7/9) 4180999952147706 a001 9227465/54018521*439204^(7/9) 4180999952147772 a001 3524578/20633239*439204^(7/9) 4180999952147994 a001 101003831721/24157817 4180999952147995 a001 317811/710647*817138163596^(1/3) 4180999952147995 a001 317811/710647*(1/2+1/2*5^(1/2))^19 4180999952147995 a001 317811/710647*87403803^(1/2) 4180999952148224 a001 1346269/7881196*439204^(7/9) 4180999952148423 a001 514229/12752043*439204^(8/9) 4180999952149049 a001 39088169/710647*439204^(1/3) 4180999952149357 a001 1346269/1860498*439204^(2/3) 4180999952149994 a001 3524578/4870847*439204^(2/3) 4180999952150087 a001 9227465/12752043*439204^(2/3) 4180999952150101 a001 24157817/33385282*439204^(2/3) 4180999952150103 a001 63245986/87403803*439204^(2/3) 4180999952150103 a001 165580141/228826127*439204^(2/3) 4180999952150103 a001 433494437/599074578*439204^(2/3) 4180999952150103 a001 1134903170/1568397607*439204^(2/3) 4180999952150103 a001 2971215073/4106118243*439204^(2/3) 4180999952150103 a001 7778742049/10749957122*439204^(2/3) 4180999952150103 a001 20365011074/28143753123*439204^(2/3) 4180999952150103 a001 53316291173/73681302247*439204^(2/3) 4180999952150103 a001 139583862445/192900153618*439204^(2/3) 4180999952150103 a001 365435296162/505019158607*439204^(2/3) 4180999952150103 a001 10610209857723/14662949395604*439204^(2/3) 4180999952150103 a001 225851433717/312119004989*439204^(2/3) 4180999952150103 a001 86267571272/119218851371*439204^(2/3) 4180999952150103 a001 32951280099/45537549124*439204^(2/3) 4180999952150103 a001 12586269025/17393796001*439204^(2/3) 4180999952150103 a001 4807526976/6643838879*439204^(2/3) 4180999952150103 a001 1836311903/2537720636*439204^(2/3) 4180999952150103 a001 701408733/969323029*439204^(2/3) 4180999952150103 a001 267914296/370248451*439204^(2/3) 4180999952150103 a001 102334155/141422324*439204^(2/3) 4180999952150104 a001 39088169/54018521*439204^(2/3) 4180999952150109 a001 14930352/20633239*439204^(2/3) 4180999952150145 a001 5702887/7881196*439204^(2/3) 4180999952150388 a001 2178309/3010349*439204^(2/3) 4180999952151278 a001 5702887/1860498*439204^(5/9) 4180999952151319 a001 514229/3010349*439204^(7/9) 4180999952151457 a001 165580141/710647*439204^(2/9) 4180999952152058 a001 832040/1149851*439204^(2/3) 4180999952152080 a001 28657/271443*64079^(22/23) 4180999952152332 a001 14930352/4870847*439204^(5/9) 4180999952152485 a001 39088169/12752043*439204^(5/9) 4180999952152508 a001 14619165/4769326*439204^(5/9) 4180999952152511 a001 267914296/87403803*439204^(5/9) 4180999952152511 a001 701408733/228826127*439204^(5/9) 4180999952152512 a001 1836311903/599074578*439204^(5/9) 4180999952152512 a001 686789568/224056801*439204^(5/9) 4180999952152512 a001 12586269025/4106118243*439204^(5/9) 4180999952152512 a001 32951280099/10749957122*439204^(5/9) 4180999952152512 a001 86267571272/28143753123*439204^(5/9) 4180999952152512 a001 32264490531/10525900321*439204^(5/9) 4180999952152512 a001 591286729879/192900153618*439204^(5/9) 4180999952152512 a001 1548008755920/505019158607*439204^(5/9) 4180999952152512 a001 1515744265389/494493258286*439204^(5/9) 4180999952152512 a001 2504730781961/817138163596*439204^(5/9) 4180999952152512 a001 956722026041/312119004989*439204^(5/9) 4180999952152512 a001 365435296162/119218851371*439204^(5/9) 4180999952152512 a001 139583862445/45537549124*439204^(5/9) 4180999952152512 a001 53316291173/17393796001*439204^(5/9) 4180999952152512 a001 20365011074/6643838879*439204^(5/9) 4180999952152512 a001 7778742049/2537720636*439204^(5/9) 4180999952152512 a001 2971215073/969323029*439204^(5/9) 4180999952152512 a001 1134903170/370248451*439204^(5/9) 4180999952152512 a001 433494437/141422324*439204^(5/9) 4180999952152513 a001 165580141/54018521*439204^(5/9) 4180999952152522 a001 63245986/20633239*439204^(5/9) 4180999952152580 a001 24157817/7881196*439204^(5/9) 4180999952152983 a001 9227465/3010349*439204^(5/9) 4180999952153112 a004 Fibonacci(28)*Lucas(29)/(1/2+sqrt(5)/2)^38 4180999952153713 a001 24157817/1860498*439204^(4/9) 4180999952153816 a001 11592/109801*103682^(11/12) 4180999952153866 a001 701408733/710647*439204^(1/9) 4180999952154744 a001 63245986/4870847*439204^(4/9) 4180999952154894 a001 165580141/12752043*439204^(4/9) 4180999952154916 a001 433494437/33385282*439204^(4/9) 4180999952154919 a001 1134903170/87403803*439204^(4/9) 4180999952154920 a001 2971215073/228826127*439204^(4/9) 4180999952154920 a001 7778742049/599074578*439204^(4/9) 4180999952154920 a001 20365011074/1568397607*439204^(4/9) 4180999952154920 a001 53316291173/4106118243*439204^(4/9) 4180999952154920 a001 139583862445/10749957122*439204^(4/9) 4180999952154920 a001 365435296162/28143753123*439204^(4/9) 4180999952154920 a001 956722026041/73681302247*439204^(4/9) 4180999952154920 a001 2504730781961/192900153618*439204^(4/9) 4180999952154920 a001 10610209857723/817138163596*439204^(4/9) 4180999952154920 a001 4052739537881/312119004989*439204^(4/9) 4180999952154920 a001 1548008755920/119218851371*439204^(4/9) 4180999952154920 a001 591286729879/45537549124*439204^(4/9) 4180999952154920 a001 7787980473/599786069*439204^(4/9) 4180999952154920 a001 86267571272/6643838879*439204^(4/9) 4180999952154920 a001 32951280099/2537720636*439204^(4/9) 4180999952154920 a001 12586269025/969323029*439204^(4/9) 4180999952154920 a001 4807526976/370248451*439204^(4/9) 4180999952154920 a001 1836311903/141422324*439204^(4/9) 4180999952154921 a001 701408733/54018521*439204^(4/9) 4180999952154930 a001 9238424/711491*439204^(4/9) 4180999952154987 a001 102334155/7881196*439204^(4/9) 4180999952155023 a001 105937/620166*7881196^(7/11) 4180999952155060 a001 105937/620166*20633239^(3/5) 4180999952155066 a001 132215732220/31622993 4180999952155066 a001 105937/620166*141422324^(7/13) 4180999952155066 a001 105937/620166*2537720636^(7/15) 4180999952155066 a001 105937/620166*17393796001^(3/7) 4180999952155066 a001 105937/620166*45537549124^(7/17) 4180999952155066 a001 832040/710647*45537549124^(1/3) 4180999952155066 a001 105937/620166*14662949395604^(1/3) 4180999952155066 a001 105937/620166*(1/2+1/2*5^(1/2))^21 4180999952155066 a001 832040/710647*(1/2+1/2*5^(1/2))^17 4180999952155066 a001 105937/620166*192900153618^(7/18) 4180999952155066 a001 105937/620166*10749957122^(7/16) 4180999952155066 a001 105937/620166*599074578^(1/2) 4180999952155068 a001 105937/620166*33385282^(7/12) 4180999952155079 a001 832040/710647*12752043^(1/2) 4180999952155381 a001 39088169/3010349*439204^(4/9) 4180999952155741 a001 3524578/1149851*439204^(5/9) 4180999952155813 a004 Fibonacci(28)*Lucas(31)/(1/2+sqrt(5)/2)^40 4180999952155912 a001 105937/620166*1860498^(7/10) 4180999952156067 a001 311187/101521*7881196^(5/11) 4180999952156094 a001 311187/101521*20633239^(3/7) 4180999952156098 a001 311187/101521*141422324^(5/13) 4180999952156098 a001 692290561599/165580141 4180999952156098 a001 311187/101521*2537720636^(1/3) 4180999952156098 a001 311187/101521*45537549124^(5/17) 4180999952156098 a001 317811/4870847*(1/2+1/2*5^(1/2))^23 4180999952156098 a001 311187/101521*312119004989^(3/11) 4180999952156098 a001 311187/101521*14662949395604^(5/21) 4180999952156098 a001 311187/101521*(1/2+1/2*5^(1/2))^15 4180999952156098 a001 311187/101521*192900153618^(5/18) 4180999952156098 a001 311187/101521*28143753123^(3/10) 4180999952156098 a001 311187/101521*10749957122^(5/16) 4180999952156098 a001 317811/4870847*4106118243^(1/2) 4180999952156098 a001 311187/101521*599074578^(5/14) 4180999952156098 a001 311187/101521*228826127^(3/8) 4180999952156099 a001 311187/101521*33385282^(5/12) 4180999952156120 a001 831985/15126*439204^(1/3) 4180999952156207 a004 Fibonacci(28)*Lucas(33)/(1/2+sqrt(5)/2)^42 4180999952156213 a001 317811/141422324*7881196^(10/11) 4180999952156215 a001 317811/33385282*7881196^(9/11) 4180999952156241 a001 105937/4250681*20633239^(5/7) 4180999952156248 a001 14930352/710647*7881196^(1/3) 4180999952156248 a001 5702887/710647*141422324^(1/3) 4180999952156248 a001 1812440220357/433494437 4180999952156248 a001 105937/4250681*2537720636^(5/9) 4180999952156248 a001 105937/4250681*312119004989^(5/11) 4180999952156248 a001 105937/4250681*(1/2+1/2*5^(1/2))^25 4180999952156248 a001 105937/4250681*3461452808002^(5/12) 4180999952156248 a001 5702887/710647*(1/2+1/2*5^(1/2))^13 4180999952156248 a001 5702887/710647*73681302247^(1/4) 4180999952156248 a001 105937/4250681*28143753123^(1/2) 4180999952156248 a001 105937/4250681*228826127^(5/8) 4180999952156255 a001 39088169/710647*7881196^(3/11) 4180999952156259 a001 9227465/710647*7881196^(4/11) 4180999952156262 a001 165580141/710647*7881196^(2/11) 4180999952156264 a004 Fibonacci(28)*Lucas(35)/(1/2+sqrt(5)/2)^44 4180999952156266 a001 317811/141422324*20633239^(6/7) 4180999952156268 a001 317811/54018521*20633239^(4/5) 4180999952156268 a001 701408733/710647*7881196^(1/11) 4180999952156270 a001 317811/33385282*141422324^(9/13) 4180999952156270 a001 139559708808/33379505 4180999952156270 a001 317811/33385282*2537720636^(3/5) 4180999952156270 a001 317811/33385282*45537549124^(9/17) 4180999952156270 a001 317811/33385282*14662949395604^(3/7) 4180999952156270 a001 317811/33385282*(1/2+1/2*5^(1/2))^27 4180999952156270 a001 14930352/710647*312119004989^(1/5) 4180999952156270 a001 14930352/710647*(1/2+1/2*5^(1/2))^11 4180999952156270 a001 317811/33385282*192900153618^(1/2) 4180999952156270 a001 317811/33385282*10749957122^(9/16) 4180999952156270 a001 14930352/710647*1568397607^(1/4) 4180999952156270 a001 317811/33385282*599074578^(9/14) 4180999952156272 a001 14619165/101521*20633239^(1/5) 4180999952156273 a004 Fibonacci(28)*Lucas(37)/(1/2+sqrt(5)/2)^46 4180999952156273 a001 267914296/710647*20633239^(1/7) 4180999952156273 a001 24157817/710647*20633239^(2/7) 4180999952156273 a001 317811/33385282*33385282^(3/4) 4180999952156273 a001 39088169/710647*141422324^(3/13) 4180999952156273 a001 39088169/710647*2537720636^(1/5) 4180999952156273 a001 12422650078059/2971215073 4180999952156273 a001 39088169/710647*45537549124^(3/17) 4180999952156273 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^29/Lucas(38) 4180999952156273 a001 105937/29134601*1322157322203^(1/2) 4180999952156273 a001 39088169/710647*817138163596^(3/19) 4180999952156273 a001 39088169/710647*(1/2+1/2*5^(1/2))^9 4180999952156273 a001 39088169/710647*192900153618^(1/6) 4180999952156273 a001 39088169/710647*10749957122^(3/16) 4180999952156273 a001 39088169/710647*599074578^(3/14) 4180999952156274 a004 Fibonacci(28)*Lucas(39)/(1/2+sqrt(5)/2)^48 4180999952156274 a001 317811/2537720636*141422324^(12/13) 4180999952156274 a001 377/710646*141422324^(11/13) 4180999952156274 a001 2501763087285/598364773 4180999952156274 a001 14619165/101521*17393796001^(1/7) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^31/Lucas(40) 4180999952156274 a001 14619165/101521*14662949395604^(1/9) 4180999952156274 a001 14619165/101521*(1/2+1/2*5^(1/2))^7 4180999952156274 a001 14619165/101521*599074578^(1/6) 4180999952156274 a004 Fibonacci(28)*Lucas(41)/(1/2+sqrt(5)/2)^50 4180999952156274 a001 701408733/710647*141422324^(1/13) 4180999952156274 a001 377/710646*2537720636^(11/15) 4180999952156274 a001 267914296/710647*2537720636^(1/9) 4180999952156274 a001 42573055163028/10182505537 4180999952156274 a001 377/710646*45537549124^(11/17) 4180999952156274 a001 377/710646*312119004989^(3/5) 4180999952156274 a001 377/710646*14662949395604^(11/21) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^33/Lucas(42) 4180999952156274 a001 267914296/710647*312119004989^(1/11) 4180999952156274 a001 267914296/710647*(1/2+1/2*5^(1/2))^5 4180999952156274 a001 377/710646*192900153618^(11/18) 4180999952156274 a001 267914296/710647*28143753123^(1/10) 4180999952156274 a001 377/710646*10749957122^(11/16) 4180999952156274 a001 377/710646*1568397607^(3/4) 4180999952156274 a004 Fibonacci(28)*Lucas(43)/(1/2+sqrt(5)/2)^52 4180999952156274 a001 377/710646*599074578^(11/14) 4180999952156274 a001 317811/1568397607*2537720636^(7/9) 4180999952156274 a001 701408733/710647*2537720636^(1/15) 4180999952156274 a001 317811/1568397607*17393796001^(5/7) 4180999952156274 a001 222915410843463/53316291173 4180999952156274 a001 701408733/710647*45537549124^(1/17) 4180999952156274 a001 317811/1568397607*312119004989^(7/11) 4180999952156274 a001 317811/1568397607*14662949395604^(5/9) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^35/Lucas(44) 4180999952156274 a001 317811/1568397607*505019158607^(5/8) 4180999952156274 a001 701408733/710647*(1/2+1/2*5^(1/2))^3 4180999952156274 a001 701408733/710647*192900153618^(1/18) 4180999952156274 a001 701408733/710647*10749957122^(1/16) 4180999952156274 a001 317811/1568397607*28143753123^(7/10) 4180999952156274 a001 267914296/710647*228826127^(1/8) 4180999952156274 a001 165580141/710647*141422324^(2/13) 4180999952156274 a001 701408733/710647*599074578^(1/14) 4180999952156274 a004 Fibonacci(28)*Lucas(45)/(1/2+sqrt(5)/2)^54 4180999952156274 a001 317811/45537549124*2537720636^(14/15) 4180999952156274 a001 317811/10749957122*2537720636^(13/15) 4180999952156274 a001 10959/599786069*2537720636^(8/9) 4180999952156274 a001 583600122204333/139583862445 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^37/Lucas(46) 4180999952156274 a001 1836311903/1421294+1836311903/1421294*5^(1/2) 4180999952156274 a004 Fibonacci(28)*Lucas(47)/(1/2+sqrt(5)/2)^56 4180999952156274 a001 317811/10749957122*45537549124^(13/17) 4180999952156274 a001 317811/10749957122*14662949395604^(13/21) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^39/Lucas(48) 4180999952156274 a004 Fibonacci(48)/Lucas(28)/(1/2+sqrt(5)/2) 4180999952156274 a001 317811/10749957122*192900153618^(13/18) 4180999952156274 a001 317811/10749957122*73681302247^(3/4) 4180999952156274 a004 Fibonacci(28)*Lucas(49)/(1/2+sqrt(5)/2)^58 4180999952156274 a001 317811/45537549124*17393796001^(6/7) 4180999952156274 a001 317811/10749957122*10749957122^(13/16) 4180999952156274 a001 4000054745104275/956722026041 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^41/Lucas(50) 4180999952156274 a004 Fibonacci(50)/Lucas(28)/(1/2+sqrt(5)/2)^3 4180999952156274 a004 Fibonacci(28)*Lucas(51)/(1/2+sqrt(5)/2)^60 4180999952156274 a001 105937/64300051206*45537549124^(15/17) 4180999952156274 a001 317811/817138163596*45537549124^(16/17) 4180999952156274 a001 10472279279543289/2504730781961 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^43/Lucas(52) 4180999952156274 a004 Fibonacci(52)/Lucas(28)/(1/2+sqrt(5)/2)^5 4180999952156274 a004 Fibonacci(28)*Lucas(53)/(1/2+sqrt(5)/2)^62 4180999952156274 a001 105937/64300051206*312119004989^(9/11) 4180999952156274 a001 62028921026076/14835905701 4180999952156274 a001 105937/64300051206*14662949395604^(5/7) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^45/Lucas(54) 4180999952156274 a004 Fibonacci(54)/Lucas(28)/(1/2+sqrt(5)/2)^7 4180999952156274 a004 Fibonacci(28)*Lucas(55)/(1/2+sqrt(5)/2)^64 4180999952156274 a001 317811/2139295485799*312119004989^(10/11) 4180999952156274 a001 105937/64300051206*192900153618^(5/6) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^47/Lucas(56) 4180999952156274 a004 Fibonacci(28)*Lucas(57)/(1/2+sqrt(5)/2)^66 4180999952156274 a001 105937/440719107401*14662949395604^(7/9) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^49/Lucas(58) 4180999952156274 a004 Fibonacci(28)*Lucas(59)/(1/2+sqrt(5)/2)^68 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^51/Lucas(60) 4180999952156274 a004 Fibonacci(28)*Lucas(61)/(1/2+sqrt(5)/2)^70 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^53/Lucas(62) 4180999952156274 a004 Fibonacci(28)*Lucas(63)/(1/2+sqrt(5)/2)^72 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^55/Lucas(64) 4180999952156274 a004 Fibonacci(28)*Lucas(65)/(1/2+sqrt(5)/2)^74 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^57/Lucas(66) 4180999952156274 a004 Fibonacci(28)*Lucas(67)/(1/2+sqrt(5)/2)^76 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^59/Lucas(68) 4180999952156274 a004 Fibonacci(28)*Lucas(69)/(1/2+sqrt(5)/2)^78 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^61/Lucas(70) 4180999952156274 a004 Fibonacci(28)*Lucas(71)/(1/2+sqrt(5)/2)^80 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^63/Lucas(72) 4180999952156274 a004 Fibonacci(28)*Lucas(73)/(1/2+sqrt(5)/2)^82 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^65/Lucas(74) 4180999952156274 a004 Fibonacci(28)*Lucas(75)/(1/2+sqrt(5)/2)^84 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^67/Lucas(76) 4180999952156274 a004 Fibonacci(28)*Lucas(77)/(1/2+sqrt(5)/2)^86 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^69/Lucas(78) 4180999952156274 a004 Fibonacci(28)*Lucas(79)/(1/2+sqrt(5)/2)^88 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^71/Lucas(80) 4180999952156274 a004 Fibonacci(28)*Lucas(81)/(1/2+sqrt(5)/2)^90 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^73/Lucas(82) 4180999952156274 a004 Fibonacci(28)*Lucas(83)/(1/2+sqrt(5)/2)^92 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^75/Lucas(84) 4180999952156274 a004 Fibonacci(28)*Lucas(85)/(1/2+sqrt(5)/2)^94 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^77/Lucas(86) 4180999952156274 a004 Fibonacci(28)*Lucas(87)/(1/2+sqrt(5)/2)^96 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^79/Lucas(88) 4180999952156274 a004 Fibonacci(28)*Lucas(89)/(1/2+sqrt(5)/2)^98 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^81/Lucas(90) 4180999952156274 a004 Fibonacci(28)*Lucas(91)/(1/2+sqrt(5)/2)^100 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^83/Lucas(92) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^85/Lucas(94) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^87/Lucas(96) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^89/Lucas(98) 4180999952156274 a004 Fibonacci(14)*Lucas(14)/(1/2+sqrt(5)/2)^9 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^90/Lucas(99) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^91/Lucas(100) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^88/Lucas(97) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^86/Lucas(95) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^84/Lucas(93) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^82/Lucas(91) 4180999952156274 a004 Fibonacci(28)*Lucas(90)/(1/2+sqrt(5)/2)^99 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^80/Lucas(89) 4180999952156274 a004 Fibonacci(28)*Lucas(88)/(1/2+sqrt(5)/2)^97 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^78/Lucas(87) 4180999952156274 a004 Fibonacci(28)*Lucas(86)/(1/2+sqrt(5)/2)^95 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^76/Lucas(85) 4180999952156274 a004 Fibonacci(28)*Lucas(84)/(1/2+sqrt(5)/2)^93 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^74/Lucas(83) 4180999952156274 a004 Fibonacci(28)*Lucas(82)/(1/2+sqrt(5)/2)^91 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^72/Lucas(81) 4180999952156274 a004 Fibonacci(28)*Lucas(80)/(1/2+sqrt(5)/2)^89 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^70/Lucas(79) 4180999952156274 a004 Fibonacci(28)*Lucas(78)/(1/2+sqrt(5)/2)^87 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^68/Lucas(77) 4180999952156274 a004 Fibonacci(28)*Lucas(76)/(1/2+sqrt(5)/2)^85 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^66/Lucas(75) 4180999952156274 a004 Fibonacci(28)*Lucas(74)/(1/2+sqrt(5)/2)^83 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^64/Lucas(73) 4180999952156274 a004 Fibonacci(28)*Lucas(72)/(1/2+sqrt(5)/2)^81 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^62/Lucas(71) 4180999952156274 a004 Fibonacci(28)*Lucas(70)/(1/2+sqrt(5)/2)^79 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^60/Lucas(69) 4180999952156274 a004 Fibonacci(28)*Lucas(68)/(1/2+sqrt(5)/2)^77 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^58/Lucas(67) 4180999952156274 a004 Fibonacci(28)*Lucas(66)/(1/2+sqrt(5)/2)^75 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^56/Lucas(65) 4180999952156274 a004 Fibonacci(28)*Lucas(64)/(1/2+sqrt(5)/2)^73 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^54/Lucas(63) 4180999952156274 a004 Fibonacci(28)*Lucas(62)/(1/2+sqrt(5)/2)^71 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^52/Lucas(61) 4180999952156274 a001 317811/23725150497407*3461452808002^(11/12) 4180999952156274 a004 Fibonacci(28)*Lucas(60)/(1/2+sqrt(5)/2)^69 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^50/Lucas(59) 4180999952156274 a004 Fibonacci(28)*Lucas(58)/(1/2+sqrt(5)/2)^67 4180999952156274 a001 317811/817138163596*14662949395604^(16/21) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^48/Lucas(57) 4180999952156274 a001 105937/440719107401*505019158607^(7/8) 4180999952156274 a004 Fibonacci(58)/Lucas(28)/(1/2+sqrt(5)/2)^11 4180999952156274 a001 317811/5600748293801*505019158607^(13/14) 4180999952156274 a004 Fibonacci(60)/Lucas(28)/(1/2+sqrt(5)/2)^13 4180999952156274 a004 Fibonacci(62)/Lucas(28)/(1/2+sqrt(5)/2)^15 4180999952156274 a004 Fibonacci(64)/Lucas(28)/(1/2+sqrt(5)/2)^17 4180999952156274 a004 Fibonacci(66)/Lucas(28)/(1/2+sqrt(5)/2)^19 4180999952156274 a004 Fibonacci(68)/Lucas(28)/(1/2+sqrt(5)/2)^21 4180999952156274 a004 Fibonacci(70)/Lucas(28)/(1/2+sqrt(5)/2)^23 4180999952156274 a004 Fibonacci(72)/Lucas(28)/(1/2+sqrt(5)/2)^25 4180999952156274 a004 Fibonacci(74)/Lucas(28)/(1/2+sqrt(5)/2)^27 4180999952156274 a004 Fibonacci(76)/Lucas(28)/(1/2+sqrt(5)/2)^29 4180999952156274 a004 Fibonacci(78)/Lucas(28)/(1/2+sqrt(5)/2)^31 4180999952156274 a004 Fibonacci(80)/Lucas(28)/(1/2+sqrt(5)/2)^33 4180999952156274 a004 Fibonacci(82)/Lucas(28)/(1/2+sqrt(5)/2)^35 4180999952156274 a004 Fibonacci(84)/Lucas(28)/(1/2+sqrt(5)/2)^37 4180999952156274 a004 Fibonacci(86)/Lucas(28)/(1/2+sqrt(5)/2)^39 4180999952156274 a004 Fibonacci(88)/Lucas(28)/(1/2+sqrt(5)/2)^41 4180999952156274 a004 Fibonacci(90)/Lucas(28)/(1/2+sqrt(5)/2)^43 4180999952156274 a004 Fibonacci(92)/Lucas(28)/(1/2+sqrt(5)/2)^45 4180999952156274 a004 Fibonacci(94)/Lucas(28)/(1/2+sqrt(5)/2)^47 4180999952156274 a004 Fibonacci(96)/Lucas(28)/(1/2+sqrt(5)/2)^49 4180999952156274 a004 Fibonacci(98)/Lucas(28)/(1/2+sqrt(5)/2)^51 4180999952156274 a004 Fibonacci(100)/Lucas(28)/(1/2+sqrt(5)/2)^53 4180999952156274 a004 Fibonacci(28)*Lucas(56)/(1/2+sqrt(5)/2)^65 4180999952156274 a004 Fibonacci(99)/Lucas(28)/(1/2+sqrt(5)/2)^52 4180999952156274 a004 Fibonacci(97)/Lucas(28)/(1/2+sqrt(5)/2)^50 4180999952156274 a004 Fibonacci(95)/Lucas(28)/(1/2+sqrt(5)/2)^48 4180999952156274 a004 Fibonacci(93)/Lucas(28)/(1/2+sqrt(5)/2)^46 4180999952156274 a004 Fibonacci(91)/Lucas(28)/(1/2+sqrt(5)/2)^44 4180999952156274 a004 Fibonacci(89)/Lucas(28)/(1/2+sqrt(5)/2)^42 4180999952156274 a004 Fibonacci(87)/Lucas(28)/(1/2+sqrt(5)/2)^40 4180999952156274 a004 Fibonacci(85)/Lucas(28)/(1/2+sqrt(5)/2)^38 4180999952156274 a004 Fibonacci(83)/Lucas(28)/(1/2+sqrt(5)/2)^36 4180999952156274 a004 Fibonacci(81)/Lucas(28)/(1/2+sqrt(5)/2)^34 4180999952156274 a004 Fibonacci(79)/Lucas(28)/(1/2+sqrt(5)/2)^32 4180999952156274 a004 Fibonacci(77)/Lucas(28)/(1/2+sqrt(5)/2)^30 4180999952156274 a004 Fibonacci(75)/Lucas(28)/(1/2+sqrt(5)/2)^28 4180999952156274 a004 Fibonacci(73)/Lucas(28)/(1/2+sqrt(5)/2)^26 4180999952156274 a004 Fibonacci(71)/Lucas(28)/(1/2+sqrt(5)/2)^24 4180999952156274 a004 Fibonacci(69)/Lucas(28)/(1/2+sqrt(5)/2)^22 4180999952156274 a004 Fibonacci(67)/Lucas(28)/(1/2+sqrt(5)/2)^20 4180999952156274 a004 Fibonacci(65)/Lucas(28)/(1/2+sqrt(5)/2)^18 4180999952156274 a004 Fibonacci(63)/Lucas(28)/(1/2+sqrt(5)/2)^16 4180999952156274 a004 Fibonacci(61)/Lucas(28)/(1/2+sqrt(5)/2)^14 4180999952156274 a004 Fibonacci(59)/Lucas(28)/(1/2+sqrt(5)/2)^12 4180999952156274 a004 Fibonacci(57)/Lucas(28)/(1/2+sqrt(5)/2)^10 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^46/Lucas(55) 4180999952156274 a001 14787095635835965/3536736619241 4180999952156274 a004 Fibonacci(55)/Lucas(28)/(1/2+sqrt(5)/2)^8 4180999952156274 a001 317811/3461452808002*192900153618^(17/18) 4180999952156274 a004 Fibonacci(28)*Lucas(54)/(1/2+sqrt(5)/2)^63 4180999952156274 a001 317811/119218851371*312119004989^(4/5) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^44/Lucas(53) 4180999952156274 a001 317811/119218851371*23725150497407^(11/16) 4180999952156274 a001 16944503813982303/4052739537881 4180999952156274 a004 Fibonacci(53)/Lucas(28)/(1/2+sqrt(5)/2)^6 4180999952156274 a001 317811/45537549124*45537549124^(14/17) 4180999952156274 a001 317811/817138163596*73681302247^(12/13) 4180999952156274 a004 Fibonacci(28)*Lucas(52)/(1/2+sqrt(5)/2)^61 4180999952156274 a001 317811/119218851371*73681302247^(11/13) 4180999952156274 a001 317811/45537549124*14662949395604^(2/3) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^42/Lucas(51) 4180999952156274 a001 1078704089073169/258001459320 4180999952156274 a001 317811/45537549124*505019158607^(3/4) 4180999952156274 a004 Fibonacci(51)/Lucas(28)/(1/2+sqrt(5)/2)^4 4180999952156274 a001 317811/45537549124*192900153618^(7/9) 4180999952156274 a001 105937/64300051206*28143753123^(9/10) 4180999952156274 a004 Fibonacci(28)*Lucas(50)/(1/2+sqrt(5)/2)^59 4180999952156274 a001 10959/599786069*312119004989^(8/11) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^40/Lucas(49) 4180999952156274 a001 10959/599786069*23725150497407^(5/8) 4180999952156274 a004 Fibonacci(49)/Lucas(28)/(1/2+sqrt(5)/2)^2 4180999952156274 a001 10959/599786069*73681302247^(10/13) 4180999952156274 a001 10959/599786069*28143753123^(4/5) 4180999952156274 a001 317811/119218851371*10749957122^(11/12) 4180999952156274 a001 317811/45537549124*10749957122^(7/8) 4180999952156274 a001 105937/64300051206*10749957122^(15/16) 4180999952156274 a001 317811/312119004989*10749957122^(23/24) 4180999952156274 a004 Fibonacci(28)*Lucas(48)/(1/2+sqrt(5)/2)^57 4180999952156274 a001 10959/599786069*10749957122^(5/6) 4180999952156274 a001 317811/6643838879*817138163596^(2/3) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^38/Lucas(47) 4180999952156274 a001 2971215073/710647 4180999952156274 a001 317811/6643838879*10749957122^(19/24) 4180999952156274 a001 317811/2537720636*2537720636^(4/5) 4180999952156274 a001 317811/45537549124*4106118243^(21/23) 4180999952156274 a001 10959/599786069*4106118243^(20/23) 4180999952156274 a001 317811/119218851371*4106118243^(22/23) 4180999952156274 a004 Fibonacci(28)*Lucas(46)/(1/2+sqrt(5)/2)^55 4180999952156274 a001 317811/6643838879*4106118243^(19/23) 4180999952156274 a001 317811/2537720636*45537549124^(12/17) 4180999952156274 a001 317811/2537720636*14662949395604^(4/7) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^36/Lucas(45) 4180999952156274 a001 317811/2537720636*505019158607^(9/14) 4180999952156274 a001 1134903170/710647*(1/2+1/2*5^(1/2))^2 4180999952156274 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^2/Lucas(28) 4180999952156274 a001 317811/2537720636*192900153618^(2/3) 4180999952156274 a001 10608373863555/2537281508 4180999952156274 a001 317811/2537720636*73681302247^(9/13) 4180999952156274 a001 1134903170/710647*10749957122^(1/24) 4180999952156274 a001 1134903170/710647*4106118243^(1/23) 4180999952156274 a001 317811/2537720636*10749957122^(3/4) 4180999952156274 a001 1134903170/710647*1568397607^(1/22) 4180999952156274 a001 317811/2537720636*4106118243^(18/23) 4180999952156274 a001 1134903170/710647*599074578^(1/21) 4180999952156274 a001 10959/599786069*1568397607^(10/11) 4180999952156274 a001 317811/6643838879*1568397607^(19/22) 4180999952156274 a001 317811/45537549124*1568397607^(21/22) 4180999952156274 a004 Fibonacci(28)*Lucas(44)/(1/2+sqrt(5)/2)^53 4180999952156274 a001 317811/2537720636*1568397607^(9/11) 4180999952156274 a001 317811/969323029*45537549124^(2/3) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^34/Lucas(43) 4180999952156274 a001 433494437/710647*(1/2+1/2*5^(1/2))^4 4180999952156274 a001 433494437/710647*23725150497407^(1/16) 4180999952156274 a001 433494437/710647*73681302247^(1/13) 4180999952156274 a001 45923100172469/10983760033 4180999952156274 a001 433494437/710647*10749957122^(1/12) 4180999952156274 a001 433494437/710647*4106118243^(2/23) 4180999952156274 a001 317811/969323029*10749957122^(17/24) 4180999952156274 a001 433494437/710647*1568397607^(1/11) 4180999952156274 a001 317811/969323029*4106118243^(17/23) 4180999952156274 a001 1134903170/710647*228826127^(1/20) 4180999952156274 a001 433494437/710647*599074578^(2/21) 4180999952156274 a001 317811/969323029*1568397607^(17/22) 4180999952156274 a001 317811/1568397607*599074578^(5/6) 4180999952156274 a001 317811/2537720636*599074578^(6/7) 4180999952156274 a001 317811/6643838879*599074578^(19/21) 4180999952156274 a001 317811/10749957122*599074578^(13/14) 4180999952156274 a001 10959/599786069*599074578^(20/21) 4180999952156274 a004 Fibonacci(28)*Lucas(42)/(1/2+sqrt(5)/2)^51 4180999952156274 a001 433494437/710647*228826127^(1/10) 4180999952156274 a001 317811/969323029*599074578^(17/21) 4180999952156274 a001 1134903170/710647*87403803^(1/19) 4180999952156274 a001 165580141/710647*2537720636^(2/15) 4180999952156274 a001 165580141/710647*45537549124^(2/17) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^32/Lucas(41) 4180999952156274 a001 317811/370248451*23725150497407^(1/2) 4180999952156274 a001 317811/370248451*505019158607^(4/7) 4180999952156274 a001 165580141/710647*14662949395604^(2/21) 4180999952156274 a001 165580141/710647*(1/2+1/2*5^(1/2))^6 4180999952156274 a001 317811/370248451*73681302247^(8/13) 4180999952156274 a001 165580141/710647*10749957122^(1/8) 4180999952156274 a001 52623190191351/12586269025 4180999952156274 a001 317811/370248451*10749957122^(2/3) 4180999952156274 a001 165580141/710647*4106118243^(3/23) 4180999952156274 a001 317811/370248451*4106118243^(16/23) 4180999952156274 a001 165580141/710647*1568397607^(3/22) 4180999952156274 a001 317811/370248451*1568397607^(8/11) 4180999952156274 a001 165580141/710647*599074578^(1/7) 4180999952156274 a001 317811/370248451*599074578^(16/21) 4180999952156274 a001 165580141/710647*228826127^(3/20) 4180999952156274 a001 317811/141422324*141422324^(10/13) 4180999952156274 a001 433494437/710647*87403803^(2/19) 4180999952156274 a001 317811/1568397607*228826127^(7/8) 4180999952156274 a001 317811/969323029*228826127^(17/20) 4180999952156274 a001 317811/2537720636*228826127^(9/10) 4180999952156274 a001 317811/6643838879*228826127^(19/20) 4180999952156274 a004 Fibonacci(28)*Lucas(40)/(1/2+sqrt(5)/2)^49 4180999952156274 a001 317811/370248451*228826127^(4/5) 4180999952156274 a001 165580141/710647*87403803^(3/19) 4180999952156274 a001 317811/141422324*2537720636^(2/3) 4180999952156274 a001 317811/141422324*45537549124^(10/17) 4180999952156274 a001 317811/141422324*312119004989^(6/11) 4180999952156274 a001 317811/141422324*14662949395604^(10/21) 4180999952156274 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^30/Lucas(39) 4180999952156274 a001 63245986/710647*(1/2+1/2*5^(1/2))^8 4180999952156274 a001 63245986/710647*23725150497407^(1/8) 4180999952156274 a001 63245986/710647*505019158607^(1/7) 4180999952156274 a001 317811/141422324*192900153618^(5/9) 4180999952156274 a001 63245986/710647*73681302247^(2/13) 4180999952156274 a001 1134903170/710647*33385282^(1/18) 4180999952156274 a001 317811/141422324*28143753123^(3/5) 4180999952156274 a001 63245986/710647*10749957122^(1/6) 4180999952156274 a001 317811/141422324*10749957122^(5/8) 4180999952156274 a001 3350045009441/801254496 4180999952156274 a001 63245986/710647*4106118243^(4/23) 4180999952156274 a001 317811/141422324*4106118243^(15/23) 4180999952156274 a001 63245986/710647*1568397607^(2/11) 4180999952156274 a001 317811/141422324*1568397607^(15/22) 4180999952156274 a001 63245986/710647*599074578^(4/21) 4180999952156274 a001 317811/141422324*599074578^(5/7) 4180999952156274 a001 63245986/710647*228826127^(1/5) 4180999952156274 a001 317811/141422324*228826127^(3/4) 4180999952156274 a001 701408733/710647*33385282^(1/12) 4180999952156274 a001 63245986/710647*87403803^(4/19) 4180999952156274 a001 39088169/710647*33385282^(1/4) 4180999952156274 a001 433494437/710647*33385282^(1/9) 4180999952156274 a001 317811/370248451*87403803^(16/19) 4180999952156274 a001 317811/969323029*87403803^(17/19) 4180999952156275 a001 317811/2537720636*87403803^(18/19) 4180999952156275 a004 Fibonacci(28)*Lucas(38)/(1/2+sqrt(5)/2)^47 4180999952156275 a001 317811/141422324*87403803^(15/19) 4180999952156275 a001 165580141/710647*33385282^(1/6) 4180999952156275 a001 63245986/710647*33385282^(2/9) 4180999952156275 a001 24157817/710647*2537720636^(2/9) 4180999952156275 a001 317811/54018521*17393796001^(4/7) 4180999952156275 a001 317811/54018521*14662949395604^(4/9) 4180999952156275 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^28/Lucas(37) 4180999952156275 a001 24157817/710647*312119004989^(2/11) 4180999952156275 a001 24157817/710647*(1/2+1/2*5^(1/2))^10 4180999952156275 a001 317811/54018521*73681302247^(7/13) 4180999952156275 a001 24157817/710647*28143753123^(1/5) 4180999952156275 a001 24157817/710647*10749957122^(5/24) 4180999952156275 a001 317811/54018521*10749957122^(7/12) 4180999952156275 a001 24157817/710647*4106118243^(5/23) 4180999952156275 a001 317811/54018521*4106118243^(14/23) 4180999952156275 a001 7677619978587/1836311903 4180999952156275 a001 24157817/710647*1568397607^(5/22) 4180999952156275 a001 317811/54018521*1568397607^(7/11) 4180999952156275 a001 24157817/710647*599074578^(5/21) 4180999952156275 a001 317811/54018521*599074578^(2/3) 4180999952156275 a001 24157817/710647*228826127^(1/4) 4180999952156275 a001 317811/54018521*228826127^(7/10) 4180999952156276 a001 1134903170/710647*12752043^(1/17) 4180999952156276 a001 24157817/710647*87403803^(5/19) 4180999952156276 a001 317811/54018521*87403803^(14/19) 4180999952156276 a001 24157817/710647*33385282^(5/18) 4180999952156277 a001 433494437/710647*12752043^(2/17) 4180999952156277 a001 317811/141422324*33385282^(5/6) 4180999952156277 a001 317811/370248451*33385282^(8/9) 4180999952156277 a001 377/710646*33385282^(11/12) 4180999952156278 a001 317811/969323029*33385282^(17/18) 4180999952156278 a004 Fibonacci(28)*Lucas(36)/(1/2+sqrt(5)/2)^45 4180999952156278 a001 317811/54018521*33385282^(7/9) 4180999952156279 a001 165580141/710647*12752043^(3/17) 4180999952156280 a001 63245986/710647*12752043^(4/17) 4180999952156283 a001 24157817/710647*12752043^(5/17) 4180999952156284 a001 10959/711491*141422324^(2/3) 4180999952156284 a001 9227465/710647*141422324^(4/13) 4180999952156284 a001 9227465/710647*2537720636^(4/15) 4180999952156284 a001 10959/711491*(1/2+1/2*5^(1/2))^26 4180999952156284 a001 9227465/710647*817138163596^(4/19) 4180999952156284 a001 9227465/710647*14662949395604^(4/21) 4180999952156284 a001 9227465/710647*(1/2+1/2*5^(1/2))^12 4180999952156284 a001 9227465/710647*192900153618^(2/9) 4180999952156284 a001 9227465/710647*73681302247^(3/13) 4180999952156284 a001 10959/711491*73681302247^(1/2) 4180999952156284 a001 9227465/710647*10749957122^(1/4) 4180999952156284 a001 10959/711491*10749957122^(13/24) 4180999952156284 a001 9227465/710647*4106118243^(6/23) 4180999952156284 a001 10959/711491*4106118243^(13/23) 4180999952156284 a001 9227465/710647*1568397607^(3/11) 4180999952156284 a001 10959/711491*1568397607^(13/22) 4180999952156284 a001 977529959705/233802911 4180999952156284 a001 9227465/710647*599074578^(2/7) 4180999952156284 a001 10959/711491*599074578^(13/21) 4180999952156284 a001 9227465/710647*228826127^(3/10) 4180999952156284 a001 10959/711491*228826127^(13/20) 4180999952156284 a001 9227465/710647*87403803^(6/19) 4180999952156284 a001 10959/711491*87403803^(13/19) 4180999952156285 a001 1134903170/710647*4870847^(1/16) 4180999952156285 a001 9227465/710647*33385282^(1/3) 4180999952156287 a001 10959/711491*33385282^(13/18) 4180999952156292 a001 317811/7881196*7881196^(8/11) 4180999952156293 a001 9227465/710647*12752043^(6/17) 4180999952156296 a001 433494437/710647*4870847^(1/8) 4180999952156297 a001 317811/54018521*12752043^(14/17) 4180999952156297 a001 317811/141422324*12752043^(15/17) 4180999952156298 a001 317811/370248451*12752043^(16/17) 4180999952156300 a004 Fibonacci(28)*Lucas(34)/(1/2+sqrt(5)/2)^43 4180999952156303 a001 10959/711491*12752043^(13/17) 4180999952156307 a001 165580141/710647*4870847^(3/16) 4180999952156318 a001 63245986/710647*4870847^(1/4) 4180999952156330 a001 24157817/710647*4870847^(5/16) 4180999952156337 a001 3524578/710647*20633239^(2/5) 4180999952156341 a001 317811/7881196*141422324^(8/13) 4180999952156341 a001 317811/7881196*2537720636^(8/15) 4180999952156341 a001 3524578/710647*17393796001^(2/7) 4180999952156341 a001 317811/7881196*45537549124^(8/17) 4180999952156341 a001 317811/7881196*14662949395604^(8/21) 4180999952156341 a001 317811/7881196*(1/2+1/2*5^(1/2))^24 4180999952156341 a001 3524578/710647*14662949395604^(2/9) 4180999952156341 a001 3524578/710647*(1/2+1/2*5^(1/2))^14 4180999952156341 a001 3524578/710647*505019158607^(1/4) 4180999952156341 a001 317811/7881196*192900153618^(4/9) 4180999952156341 a001 317811/7881196*73681302247^(6/13) 4180999952156341 a001 3524578/710647*10749957122^(7/24) 4180999952156341 a001 317811/7881196*10749957122^(1/2) 4180999952156341 a001 3524578/710647*4106118243^(7/23) 4180999952156341 a001 317811/7881196*4106118243^(12/23) 4180999952156341 a001 3524578/710647*1568397607^(7/22) 4180999952156341 a001 317811/7881196*1568397607^(6/11) 4180999952156341 a001 3524578/710647*599074578^(1/3) 4180999952156341 a001 317811/7881196*599074578^(4/7) 4180999952156341 a001 1485609627/355324 4180999952156341 a001 3524578/710647*228826127^(7/20) 4180999952156341 a001 317811/7881196*228826127^(3/5) 4180999952156342 a001 3524578/710647*87403803^(7/19) 4180999952156342 a001 317811/7881196*87403803^(12/19) 4180999952156343 a001 3524578/710647*33385282^(7/18) 4180999952156344 a001 317811/7881196*33385282^(2/3) 4180999952156350 a001 9227465/710647*4870847^(3/8) 4180999952156352 a001 3524578/710647*12752043^(7/17) 4180999952156355 a001 1134903170/710647*1860498^(1/15) 4180999952156359 a001 317811/7881196*12752043^(12/17) 4180999952156395 a001 701408733/710647*1860498^(1/10) 4180999952156418 a001 3524578/710647*4870847^(7/16) 4180999952156425 a001 267914296/271443*103682^(1/8) 4180999952156427 a001 10959/711491*4870847^(13/16) 4180999952156430 a001 317811/54018521*4870847^(7/8) 4180999952156435 a001 433494437/710647*1860498^(2/15) 4180999952156439 a001 317811/141422324*4870847^(15/16) 4180999952156450 a004 Fibonacci(28)*Lucas(32)/(1/2+sqrt(5)/2)^41 4180999952156473 a001 317811/7881196*4870847^(3/4) 4180999952156475 a001 267914296/710647*1860498^(1/6) 4180999952156516 a001 165580141/439204*167761^(1/5) 4180999952156516 a001 165580141/710647*1860498^(1/5) 4180999952156596 a001 63245986/710647*1860498^(4/15) 4180999952156636 a001 39088169/710647*1860498^(3/10) 4180999952156678 a001 24157817/710647*1860498^(1/3) 4180999952156690 a001 317811/3010349*7881196^(2/3) 4180999952156702 a001 311187/101521*1860498^(1/2) 4180999952156735 a001 317811/3010349*312119004989^(2/5) 4180999952156735 a001 317811/3010349*(1/2+1/2*5^(1/2))^22 4180999952156735 a001 1346269/710647*(1/2+1/2*5^(1/2))^16 4180999952156735 a001 1346269/710647*23725150497407^(1/4) 4180999952156735 a001 1346269/710647*73681302247^(4/13) 4180999952156735 a001 1346269/710647*10749957122^(1/3) 4180999952156735 a001 317811/3010349*10749957122^(11/24) 4180999952156735 a001 1346269/710647*4106118243^(8/23) 4180999952156735 a001 317811/3010349*4106118243^(11/23) 4180999952156735 a001 1346269/710647*1568397607^(4/11) 4180999952156735 a001 317811/3010349*1568397607^(1/2) 4180999952156735 a001 1346269/710647*599074578^(8/21) 4180999952156735 a001 317811/3010349*599074578^(11/21) 4180999952156735 a001 1346269/710647*228826127^(2/5) 4180999952156735 a001 317811/3010349*228826127^(11/20) 4180999952156735 a001 142619699053/34111385 4180999952156736 a001 1346269/710647*87403803^(8/19) 4180999952156736 a001 317811/3010349*87403803^(11/19) 4180999952156737 a001 1346269/710647*33385282^(4/9) 4180999952156738 a001 317811/3010349*33385282^(11/18) 4180999952156747 a001 1346269/710647*12752043^(8/17) 4180999952156752 a001 317811/3010349*12752043^(11/17) 4180999952156767 a001 9227465/710647*1860498^(2/5) 4180999952156823 a001 1346269/710647*4870847^(1/2) 4180999952156857 a001 317811/3010349*4870847^(11/16) 4180999952156865 a001 1134903170/710647*710647^(1/14) 4180999952156905 a001 3524578/710647*1860498^(7/15) 4180999952157152 a001 267914296/4870847*439204^(1/3) 4180999952157255 a001 105937/4250681*1860498^(5/6) 4180999952157302 a001 233802911/4250681*439204^(1/3) 4180999952157308 a001 317811/7881196*1860498^(4/5) 4180999952157324 a001 1836311903/33385282*439204^(1/3) 4180999952157328 a001 1602508992/29134601*439204^(1/3) 4180999952157328 a001 12586269025/228826127*439204^(1/3) 4180999952157328 a001 10983760033/199691526*439204^(1/3) 4180999952157328 a001 86267571272/1568397607*439204^(1/3) 4180999952157328 a001 75283811239/1368706081*439204^(1/3) 4180999952157328 a001 591286729879/10749957122*439204^(1/3) 4180999952157328 a001 12585437040/228811001*439204^(1/3) 4180999952157328 a001 4052739537881/73681302247*439204^(1/3) 4180999952157328 a001 3536736619241/64300051206*439204^(1/3) 4180999952157328 a001 6557470319842/119218851371*439204^(1/3) 4180999952157328 a001 2504730781961/45537549124*439204^(1/3) 4180999952157328 a001 956722026041/17393796001*439204^(1/3) 4180999952157328 a001 365435296162/6643838879*439204^(1/3) 4180999952157328 a001 139583862445/2537720636*439204^(1/3) 4180999952157328 a001 53316291173/969323029*439204^(1/3) 4180999952157328 a001 20365011074/370248451*439204^(1/3) 4180999952157328 a001 7778742049/141422324*439204^(1/3) 4180999952157330 a001 2971215073/54018521*439204^(1/3) 4180999952157331 a001 10959/711491*1860498^(13/15) 4180999952157338 a001 1134903170/20633239*439204^(1/3) 4180999952157357 a001 317811/33385282*1860498^(9/10) 4180999952157380 a001 1346269/710647*1860498^(8/15) 4180999952157395 a001 433494437/7881196*439204^(1/3) 4180999952157403 a001 317811/54018521*1860498^(14/15) 4180999952157457 a001 433494437/710647*710647^(1/7) 4180999952157482 a004 Fibonacci(28)*Lucas(30)/(1/2+sqrt(5)/2)^39 4180999952157621 a001 317811/3010349*1860498^(11/15) 4180999952157789 a001 165580141/3010349*439204^(1/3) 4180999952158048 a001 165580141/710647*710647^(3/14) 4180999952158078 a001 14930352/1149851*439204^(4/9) 4180999952158344 a001 14619165/101521*710647^(1/4) 4180999952158528 a001 433494437/1860498*439204^(2/9) 4180999952158640 a001 63245986/710647*710647^(2/7) 4180999952158985 a001 121393/1149851*271443^(11/13) 4180999952159232 a001 24157817/710647*710647^(5/14) 4180999952159400 a001 514229/710647*7881196^(6/11) 4180999952159431 a001 317811/1149851*20633239^(4/7) 4180999952159436 a001 514229/710647*141422324^(6/13) 4180999952159436 a001 317811/1149851*2537720636^(4/9) 4180999952159436 a001 514229/710647*2537720636^(2/5) 4180999952159436 a001 514229/710647*45537549124^(6/17) 4180999952159436 a001 317811/1149851*(1/2+1/2*5^(1/2))^20 4180999952159436 a001 317811/1149851*23725150497407^(5/16) 4180999952159436 a001 317811/1149851*505019158607^(5/14) 4180999952159436 a001 514229/710647*(1/2+1/2*5^(1/2))^18 4180999952159436 a001 514229/710647*192900153618^(1/3) 4180999952159436 a001 317811/1149851*73681302247^(5/13) 4180999952159436 a001 317811/1149851*28143753123^(2/5) 4180999952159436 a001 514229/710647*10749957122^(3/8) 4180999952159436 a001 317811/1149851*10749957122^(5/12) 4180999952159436 a001 514229/710647*4106118243^(9/23) 4180999952159436 a001 317811/1149851*4106118243^(10/23) 4180999952159436 a001 514229/710647*1568397607^(9/22) 4180999952159436 a001 317811/1149851*1568397607^(5/11) 4180999952159436 a001 514229/710647*599074578^(3/7) 4180999952159436 a001 317811/1149851*599074578^(10/21) 4180999952159436 a001 514229/710647*228826127^(9/20) 4180999952159436 a001 317811/1149851*228826127^(1/2) 4180999952159437 a001 514229/710647*87403803^(9/19) 4180999952159437 a001 317811/1149851*87403803^(10/19) 4180999952159437 a001 163427632719/39088169 4180999952159438 a001 514229/710647*33385282^(1/2) 4180999952159438 a001 317811/1149851*33385282^(5/9) 4180999952159450 a001 514229/710647*12752043^(9/17) 4180999952159451 a001 317811/1149851*12752043^(10/17) 4180999952159535 a001 514229/710647*4870847^(9/16) 4180999952159546 a001 317811/1149851*4870847^(5/8) 4180999952159560 a001 1134903170/4870847*439204^(2/9) 4180999952159711 a001 2971215073/12752043*439204^(2/9) 4180999952159733 a001 7778742049/33385282*439204^(2/9) 4180999952159736 a001 20365011074/87403803*439204^(2/9) 4180999952159736 a001 53316291173/228826127*439204^(2/9) 4180999952159736 a001 139583862445/599074578*439204^(2/9) 4180999952159736 a001 365435296162/1568397607*439204^(2/9) 4180999952159736 a001 956722026041/4106118243*439204^(2/9) 4180999952159736 a001 2504730781961/10749957122*439204^(2/9) 4180999952159736 a001 6557470319842/28143753123*439204^(2/9) 4180999952159736 a001 10610209857723/45537549124*439204^(2/9) 4180999952159736 a001 4052739537881/17393796001*439204^(2/9) 4180999952159736 a001 1548008755920/6643838879*439204^(2/9) 4180999952159736 a001 591286729879/2537720636*439204^(2/9) 4180999952159736 a001 225851433717/969323029*439204^(2/9) 4180999952159736 a001 86267571272/370248451*439204^(2/9) 4180999952159737 a001 63246219/271444*439204^(2/9) 4180999952159738 a001 12586269025/54018521*439204^(2/9) 4180999952159746 a001 4807526976/20633239*439204^(2/9) 4180999952159804 a001 1836311903/7881196*439204^(2/9) 4180999952159832 a001 9227465/710647*710647^(3/7) 4180999952160161 a001 514229/710647*1860498^(3/5) 4180999952160183 a004 Fibonacci(30)*Lucas(29)/(1/2+sqrt(5)/2)^40 4180999952160198 a001 701408733/3010349*439204^(2/9) 4180999952160241 a001 317811/1149851*1860498^(2/3) 4180999952160481 a001 3524578/710647*710647^(1/2) 4180999952160491 a001 63245986/1149851*439204^(1/3) 4180999952160639 a001 1134903170/710647*271443^(1/13) 4180999952160649 a001 121393/3010349*271443^(12/13) 4180999952160937 a001 1836311903/1860498*439204^(1/9) 4180999952161214 a004 Fibonacci(32)*Lucas(29)/(1/2+sqrt(5)/2)^42 4180999952161275 a001 105937/620166*710647^(3/4) 4180999952161365 a004 Fibonacci(34)*Lucas(29)/(1/2+sqrt(5)/2)^44 4180999952161387 a004 Fibonacci(36)*Lucas(29)/(1/2+sqrt(5)/2)^46 4180999952161390 a004 Fibonacci(38)*Lucas(29)/(1/2+sqrt(5)/2)^48 4180999952161391 a004 Fibonacci(40)*Lucas(29)/(1/2+sqrt(5)/2)^50 4180999952161391 a004 Fibonacci(42)*Lucas(29)/(1/2+sqrt(5)/2)^52 4180999952161391 a004 Fibonacci(44)*Lucas(29)/(1/2+sqrt(5)/2)^54 4180999952161391 a004 Fibonacci(46)*Lucas(29)/(1/2+sqrt(5)/2)^56 4180999952161391 a004 Fibonacci(48)*Lucas(29)/(1/2+sqrt(5)/2)^58 4180999952161391 a004 Fibonacci(50)*Lucas(29)/(1/2+sqrt(5)/2)^60 4180999952161391 a004 Fibonacci(52)*Lucas(29)/(1/2+sqrt(5)/2)^62 4180999952161391 a004 Fibonacci(54)*Lucas(29)/(1/2+sqrt(5)/2)^64 4180999952161391 a004 Fibonacci(56)*Lucas(29)/(1/2+sqrt(5)/2)^66 4180999952161391 a004 Fibonacci(58)*Lucas(29)/(1/2+sqrt(5)/2)^68 4180999952161391 a004 Fibonacci(60)*Lucas(29)/(1/2+sqrt(5)/2)^70 4180999952161391 a004 Fibonacci(62)*Lucas(29)/(1/2+sqrt(5)/2)^72 4180999952161391 a004 Fibonacci(64)*Lucas(29)/(1/2+sqrt(5)/2)^74 4180999952161391 a004 Fibonacci(66)*Lucas(29)/(1/2+sqrt(5)/2)^76 4180999952161391 a004 Fibonacci(68)*Lucas(29)/(1/2+sqrt(5)/2)^78 4180999952161391 a004 Fibonacci(70)*Lucas(29)/(1/2+sqrt(5)/2)^80 4180999952161391 a004 Fibonacci(72)*Lucas(29)/(1/2+sqrt(5)/2)^82 4180999952161391 a004 Fibonacci(74)*Lucas(29)/(1/2+sqrt(5)/2)^84 4180999952161391 a004 Fibonacci(76)*Lucas(29)/(1/2+sqrt(5)/2)^86 4180999952161391 a004 Fibonacci(78)*Lucas(29)/(1/2+sqrt(5)/2)^88 4180999952161391 a004 Fibonacci(80)*Lucas(29)/(1/2+sqrt(5)/2)^90 4180999952161391 a004 Fibonacci(82)*Lucas(29)/(1/2+sqrt(5)/2)^92 4180999952161391 a004 Fibonacci(84)*Lucas(29)/(1/2+sqrt(5)/2)^94 4180999952161391 a004 Fibonacci(86)*Lucas(29)/(1/2+sqrt(5)/2)^96 4180999952161391 a004 Fibonacci(88)*Lucas(29)/(1/2+sqrt(5)/2)^98 4180999952161391 a004 Fibonacci(90)*Lucas(29)/(1/2+sqrt(5)/2)^100 4180999952161391 a004 Fibonacci(89)*Lucas(29)/(1/2+sqrt(5)/2)^99 4180999952161391 a004 Fibonacci(87)*Lucas(29)/(1/2+sqrt(5)/2)^97 4180999952161391 a004 Fibonacci(85)*Lucas(29)/(1/2+sqrt(5)/2)^95 4180999952161391 a004 Fibonacci(83)*Lucas(29)/(1/2+sqrt(5)/2)^93 4180999952161391 a004 Fibonacci(81)*Lucas(29)/(1/2+sqrt(5)/2)^91 4180999952161391 a004 Fibonacci(79)*Lucas(29)/(1/2+sqrt(5)/2)^89 4180999952161391 a004 Fibonacci(77)*Lucas(29)/(1/2+sqrt(5)/2)^87 4180999952161391 a004 Fibonacci(75)*Lucas(29)/(1/2+sqrt(5)/2)^85 4180999952161391 a004 Fibonacci(73)*Lucas(29)/(1/2+sqrt(5)/2)^83 4180999952161391 a004 Fibonacci(71)*Lucas(29)/(1/2+sqrt(5)/2)^81 4180999952161391 a004 Fibonacci(69)*Lucas(29)/(1/2+sqrt(5)/2)^79 4180999952161391 a004 Fibonacci(67)*Lucas(29)/(1/2+sqrt(5)/2)^77 4180999952161391 a004 Fibonacci(65)*Lucas(29)/(1/2+sqrt(5)/2)^75 4180999952161391 a004 Fibonacci(63)*Lucas(29)/(1/2+sqrt(5)/2)^73 4180999952161391 a004 Fibonacci(61)*Lucas(29)/(1/2+sqrt(5)/2)^71 4180999952161391 a004 Fibonacci(59)*Lucas(29)/(1/2+sqrt(5)/2)^69 4180999952161391 a001 2/514229*(1/2+1/2*5^(1/2))^48 4180999952161391 a004 Fibonacci(57)*Lucas(29)/(1/2+sqrt(5)/2)^67 4180999952161391 a004 Fibonacci(55)*Lucas(29)/(1/2+sqrt(5)/2)^65 4180999952161391 a004 Fibonacci(53)*Lucas(29)/(1/2+sqrt(5)/2)^63 4180999952161391 a004 Fibonacci(51)*Lucas(29)/(1/2+sqrt(5)/2)^61 4180999952161391 a004 Fibonacci(49)*Lucas(29)/(1/2+sqrt(5)/2)^59 4180999952161391 a004 Fibonacci(47)*Lucas(29)/(1/2+sqrt(5)/2)^57 4180999952161391 a004 Fibonacci(45)*Lucas(29)/(1/2+sqrt(5)/2)^55 4180999952161391 a004 Fibonacci(43)*Lucas(29)/(1/2+sqrt(5)/2)^53 4180999952161391 a004 Fibonacci(41)*Lucas(29)/(1/2+sqrt(5)/2)^51 4180999952161391 a004 Fibonacci(39)*Lucas(29)/(1/2+sqrt(5)/2)^49 4180999952161392 a004 Fibonacci(37)*Lucas(29)/(1/2+sqrt(5)/2)^47 4180999952161400 a004 Fibonacci(35)*Lucas(29)/(1/2+sqrt(5)/2)^45 4180999952161458 a004 Fibonacci(33)*Lucas(29)/(1/2+sqrt(5)/2)^43 4180999952161466 a001 1346269/710647*710647^(4/7) 4180999952161852 a004 Fibonacci(31)*Lucas(29)/(1/2+sqrt(5)/2)^41 4180999952161968 a001 4807526976/4870847*439204^(1/9) 4180999952162119 a001 12586269025/12752043*439204^(1/9) 4180999952162137 a001 692290561600/165580141 4180999952162137 a001 416020/930249*817138163596^(1/3) 4180999952162137 a001 416020/930249*(1/2+1/2*5^(1/2))^19 4180999952162137 a001 416020/930249*87403803^(1/2) 4180999952162141 a001 32951280099/33385282*439204^(1/9) 4180999952162144 a001 86267571272/87403803*439204^(1/9) 4180999952162145 a001 225851433717/228826127*439204^(1/9) 4180999952162145 a001 591286729879/599074578*439204^(1/9) 4180999952162145 a001 1548008755920/1568397607*439204^(1/9) 4180999952162145 a001 4052739537881/4106118243*439204^(1/9) 4180999952162145 a001 4807525989/4870846*439204^(1/9) 4180999952162145 a001 6557470319842/6643838879*439204^(1/9) 4180999952162145 a001 2504730781961/2537720636*439204^(1/9) 4180999952162145 a001 956722026041/969323029*439204^(1/9) 4180999952162145 a001 365435296162/370248451*439204^(1/9) 4180999952162145 a001 139583862445/141422324*439204^(1/9) 4180999952162146 a001 53316291173/54018521*439204^(1/9) 4180999952162154 a001 20365011074/20633239*439204^(1/9) 4180999952162212 a001 7778742049/7881196*439204^(1/9) 4180999952162606 a001 2971215073/3010349*439204^(1/9) 4180999952162884 a004 Fibonacci(30)*Lucas(31)/(1/2+sqrt(5)/2)^42 4180999952162899 a001 267914296/1149851*439204^(2/9) 4180999952163126 a001 832040/4870847*7881196^(7/11) 4180999952163163 a001 832040/4870847*20633239^(3/5) 4180999952163169 a001 832040/4870847*141422324^(7/13) 4180999952163169 a001 1812440220360/433494437 4180999952163169 a001 832040/4870847*2537720636^(7/15) 4180999952163169 a001 832040/4870847*17393796001^(3/7) 4180999952163169 a001 832040/4870847*45537549124^(7/17) 4180999952163169 a001 726103/620166*45537549124^(1/3) 4180999952163169 a001 832040/4870847*14662949395604^(1/3) 4180999952163169 a001 832040/4870847*(1/2+1/2*5^(1/2))^21 4180999952163169 a001 726103/620166*(1/2+1/2*5^(1/2))^17 4180999952163169 a001 832040/4870847*192900153618^(7/18) 4180999952163169 a001 832040/4870847*10749957122^(7/16) 4180999952163169 a001 832040/4870847*599074578^(1/2) 4180999952163171 a001 832040/4870847*33385282^(7/12) 4180999952163182 a001 726103/620166*12752043^(1/2) 4180999952163240 a001 317811/3010349*710647^(11/14) 4180999952163278 a004 Fibonacci(30)*Lucas(33)/(1/2+sqrt(5)/2)^44 4180999952163284 a001 832040/370248451*7881196^(10/11) 4180999952163289 a001 5702887/1860498*7881196^(5/11) 4180999952163289 a001 832040/87403803*7881196^(9/11) 4180999952163306 a001 75640/1875749*7881196^(8/11) 4180999952163315 a001 5702887/1860498*20633239^(3/7) 4180999952163319 a001 5702887/1860498*141422324^(5/13) 4180999952163319 a001 7778737868/1860497 4180999952163319 a001 5702887/1860498*2537720636^(1/3) 4180999952163319 a001 5702887/1860498*45537549124^(5/17) 4180999952163319 a001 5702887/1860498*312119004989^(3/11) 4180999952163319 a001 832040/12752043*(1/2+1/2*5^(1/2))^23 4180999952163319 a001 5702887/1860498*14662949395604^(5/21) 4180999952163319 a001 5702887/1860498*(1/2+1/2*5^(1/2))^15 4180999952163319 a001 5702887/1860498*192900153618^(5/18) 4180999952163319 a001 5702887/1860498*28143753123^(3/10) 4180999952163319 a001 5702887/1860498*10749957122^(5/16) 4180999952163319 a001 832040/12752043*4106118243^(1/2) 4180999952163319 a001 5702887/1860498*599074578^(5/14) 4180999952163319 a001 5702887/1860498*228826127^(3/8) 4180999952163321 a001 5702887/1860498*33385282^(5/12) 4180999952163322 a001 24157817/1860498*7881196^(4/11) 4180999952163322 a001 39088169/1860498*7881196^(1/3) 4180999952163327 a001 831985/15126*7881196^(3/11) 4180999952163333 a001 433494437/1860498*7881196^(2/11) 4180999952163334 a001 416020/16692641*20633239^(5/7) 4180999952163335 a004 Fibonacci(30)*Lucas(35)/(1/2+sqrt(5)/2)^46 4180999952163337 a001 832040/370248451*20633239^(6/7) 4180999952163337 a001 208010/35355581*20633239^(4/5) 4180999952163339 a001 1836311903/1860498*7881196^(1/11) 4180999952163341 a001 829464/103361*141422324^(1/3) 4180999952163341 a001 416020/16692641*2537720636^(5/9) 4180999952163341 a001 12422650078080/2971215073 4180999952163341 a001 416020/16692641*312119004989^(5/11) 4180999952163341 a001 416020/16692641*(1/2+1/2*5^(1/2))^25 4180999952163341 a001 416020/16692641*3461452808002^(5/12) 4180999952163341 a001 829464/103361*(1/2+1/2*5^(1/2))^13 4180999952163341 a001 829464/103361*73681302247^(1/4) 4180999952163341 a001 416020/16692641*28143753123^(1/2) 4180999952163341 a001 416020/16692641*228826127^(5/8) 4180999952163342 a001 31622993/930249*20633239^(2/7) 4180999952163343 a001 133957148/930249*20633239^(1/5) 4180999952163344 a004 Fibonacci(30)*Lucas(37)/(1/2+sqrt(5)/2)^48 4180999952163344 a001 233802911/620166*20633239^(1/7) 4180999952163344 a001 832040/87403803*141422324^(9/13) 4180999952163344 a001 832040/87403803*2537720636^(3/5) 4180999952163344 a001 32522920134760/7778742049 4180999952163344 a001 832040/87403803*45537549124^(9/17) 4180999952163344 a001 39088169/1860498*312119004989^(1/5) 4180999952163344 a001 832040/87403803*817138163596^(9/19) 4180999952163344 a001 832040/87403803*14662949395604^(3/7) 4180999952163344 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^27/Lucas(38) 4180999952163344 a001 39088169/1860498*(1/2+1/2*5^(1/2))^11 4180999952163344 a001 832040/87403803*192900153618^(1/2) 4180999952163344 a001 832040/87403803*10749957122^(9/16) 4180999952163344 a001 39088169/1860498*1568397607^(1/4) 4180999952163344 a001 832040/87403803*599074578^(9/14) 4180999952163345 a004 Fibonacci(30)*Lucas(39)/(1/2+sqrt(5)/2)^50 4180999952163345 a001 832040/6643838879*141422324^(12/13) 4180999952163345 a001 832040/1568397607*141422324^(11/13) 4180999952163345 a001 832040/370248451*141422324^(10/13) 4180999952163345 a001 831985/15126*141422324^(3/13) 4180999952163345 a001 831985/15126*2537720636^(1/5) 4180999952163345 a001 42573055163100/10182505537 4180999952163345 a001 831985/15126*45537549124^(3/17) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^29/Lucas(40) 4180999952163345 a001 831985/15126*14662949395604^(1/7) 4180999952163345 a001 831985/15126*(1/2+1/2*5^(1/2))^9 4180999952163345 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^9/Lucas(30) 4180999952163345 a001 832040/228826127*1322157322203^(1/2) 4180999952163345 a001 831985/15126*192900153618^(1/6) 4180999952163345 a001 831985/15126*10749957122^(3/16) 4180999952163345 a001 831985/15126*599074578^(3/14) 4180999952163345 a004 Fibonacci(30)*Lucas(41)/(1/2+sqrt(5)/2)^52 4180999952163345 a001 433494437/1860498*141422324^(2/13) 4180999952163345 a001 1836311903/1860498*141422324^(1/13) 4180999952163345 a001 133957148/930249*17393796001^(1/7) 4180999952163345 a001 222915410843840/53316291173 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^31/Lucas(42) 4180999952163345 a001 416020/299537289*9062201101803^(1/2) 4180999952163345 a001 133957148/930249*14662949395604^(1/9) 4180999952163345 a001 133957148/930249*(1/2+1/2*5^(1/2))^7 4180999952163345 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^7/Lucas(30) 4180999952163345 a001 133957148/930249*599074578^(1/6) 4180999952163345 a004 Fibonacci(30)*Lucas(43)/(1/2+sqrt(5)/2)^54 4180999952163345 a001 832040/1568397607*2537720636^(11/15) 4180999952163345 a001 233802911/620166*2537720636^(1/9) 4180999952163345 a001 832040/1568397607*45537549124^(11/17) 4180999952163345 a001 1311460948776/313671601 4180999952163345 a001 832040/1568397607*312119004989^(3/5) 4180999952163345 a001 233802911/620166*312119004989^(1/11) 4180999952163345 a001 832040/1568397607*14662949395604^(11/21) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^33/Lucas(44) 4180999952163345 a001 233802911/620166*(1/2+1/2*5^(1/2))^5 4180999952163345 a001 832040/1568397607*192900153618^(11/18) 4180999952163345 a001 233802911/620166*28143753123^(1/10) 4180999952163345 a001 832040/1568397607*10749957122^(11/16) 4180999952163345 a001 832040/4106118243*2537720636^(7/9) 4180999952163345 a004 Fibonacci(30)*Lucas(45)/(1/2+sqrt(5)/2)^56 4180999952163345 a001 832040/119218851371*2537720636^(14/15) 4180999952163345 a001 208010/11384387281*2537720636^(8/9) 4180999952163345 a001 832040/28143753123*2537720636^(13/15) 4180999952163345 a001 832040/1568397607*1568397607^(3/4) 4180999952163345 a001 832040/6643838879*2537720636^(4/5) 4180999952163345 a001 1836311903/1860498*2537720636^(1/15) 4180999952163345 a001 832040/4106118243*17393796001^(5/7) 4180999952163345 a001 1836311903/1860498*45537549124^(1/17) 4180999952163345 a001 832040/4106118243*312119004989^(7/11) 4180999952163345 a001 763942477886060/182717648081 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^35/Lucas(46) 4180999952163345 a001 1836311903/1860498*14662949395604^(1/21) 4180999952163345 a001 1836311903/1860498*(1/2+1/2*5^(1/2))^3 4180999952163345 a001 1836311903/1860498*192900153618^(1/18) 4180999952163345 a001 832040/4106118243*505019158607^(5/8) 4180999952163345 a001 1836311903/1860498*10749957122^(1/16) 4180999952163345 a001 832040/4106118243*28143753123^(7/10) 4180999952163345 a004 Fibonacci(30)*Lucas(47)/(1/2+sqrt(5)/2)^58 4180999952163345 a001 4000054745111040/956722026041 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^37/Lucas(48) 4180999952163345 a001 133542416/103361+133542416/103361*5^(1/2) 4180999952163345 a004 Fibonacci(30)*Lucas(49)/(1/2+sqrt(5)/2)^60 4180999952163345 a001 832040/119218851371*17393796001^(6/7) 4180999952163345 a001 832040/28143753123*45537549124^(13/17) 4180999952163345 a001 10472279279561000/2504730781961 4180999952163345 a001 832040/28143753123*14662949395604^(13/21) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^39/Lucas(50) 4180999952163345 a004 Fibonacci(50)/Lucas(30)/(1/2+sqrt(5)/2) 4180999952163345 a001 832040/28143753123*192900153618^(13/18) 4180999952163345 a001 832040/28143753123*73681302247^(3/4) 4180999952163345 a004 Fibonacci(30)*Lucas(51)/(1/2+sqrt(5)/2)^62 4180999952163345 a001 832040/2139295485799*45537549124^(16/17) 4180999952163345 a001 832040/505019158607*45537549124^(15/17) 4180999952163345 a001 832040/119218851371*45537549124^(14/17) 4180999952163345 a001 13708391546785980/3278735159921 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^41/Lucas(52) 4180999952163345 a004 Fibonacci(52)/Lucas(30)/(1/2+sqrt(5)/2)^3 4180999952163345 a004 Fibonacci(30)*Lucas(53)/(1/2+sqrt(5)/2)^64 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^43/Lucas(54) 4180999952163345 a004 Fibonacci(54)/Lucas(30)/(1/2+sqrt(5)/2)^5 4180999952163345 a001 832040/505019158607*312119004989^(9/11) 4180999952163345 a004 Fibonacci(30)*Lucas(55)/(1/2+sqrt(5)/2)^66 4180999952163345 a001 832040/5600748293801*312119004989^(10/11) 4180999952163345 a001 832040/505019158607*14662949395604^(5/7) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^45/Lucas(56) 4180999952163345 a004 Fibonacci(56)/Lucas(30)/(1/2+sqrt(5)/2)^7 4180999952163345 a004 Fibonacci(30)*Lucas(57)/(1/2+sqrt(5)/2)^68 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^47/Lucas(58) 4180999952163345 a004 Fibonacci(58)/Lucas(30)/(1/2+sqrt(5)/2)^9 4180999952163345 a004 Fibonacci(30)*Lucas(59)/(1/2+sqrt(5)/2)^70 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^49/Lucas(60) 4180999952163345 a004 Fibonacci(30)*Lucas(61)/(1/2+sqrt(5)/2)^72 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^51/Lucas(62) 4180999952163345 a004 Fibonacci(30)*Lucas(63)/(1/2+sqrt(5)/2)^74 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^53/Lucas(64) 4180999952163345 a004 Fibonacci(30)*Lucas(65)/(1/2+sqrt(5)/2)^76 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^55/Lucas(66) 4180999952163345 a004 Fibonacci(30)*Lucas(67)/(1/2+sqrt(5)/2)^78 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^57/Lucas(68) 4180999952163345 a004 Fibonacci(30)*Lucas(69)/(1/2+sqrt(5)/2)^80 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^59/Lucas(70) 4180999952163345 a004 Fibonacci(30)*Lucas(71)/(1/2+sqrt(5)/2)^82 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^61/Lucas(72) 4180999952163345 a004 Fibonacci(30)*Lucas(73)/(1/2+sqrt(5)/2)^84 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^63/Lucas(74) 4180999952163345 a004 Fibonacci(30)*Lucas(75)/(1/2+sqrt(5)/2)^86 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^65/Lucas(76) 4180999952163345 a004 Fibonacci(30)*Lucas(77)/(1/2+sqrt(5)/2)^88 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^67/Lucas(78) 4180999952163345 a004 Fibonacci(30)*Lucas(79)/(1/2+sqrt(5)/2)^90 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^69/Lucas(80) 4180999952163345 a004 Fibonacci(30)*Lucas(81)/(1/2+sqrt(5)/2)^92 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^71/Lucas(82) 4180999952163345 a004 Fibonacci(30)*Lucas(83)/(1/2+sqrt(5)/2)^94 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^73/Lucas(84) 4180999952163345 a004 Fibonacci(30)*Lucas(85)/(1/2+sqrt(5)/2)^96 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^75/Lucas(86) 4180999952163345 a004 Fibonacci(30)*Lucas(87)/(1/2+sqrt(5)/2)^98 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^77/Lucas(88) 4180999952163345 a004 Fibonacci(30)*Lucas(89)/(1/2+sqrt(5)/2)^100 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^79/Lucas(90) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^81/Lucas(92) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^83/Lucas(94) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^85/Lucas(96) 4180999952163345 a004 Fibonacci(15)*Lucas(15)/(1/2+sqrt(5)/2)^11 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^87/Lucas(98) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^88/Lucas(99) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^89/Lucas(100) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^86/Lucas(97) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^84/Lucas(95) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^82/Lucas(93) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^80/Lucas(91) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^78/Lucas(89) 4180999952163345 a004 Fibonacci(30)*Lucas(88)/(1/2+sqrt(5)/2)^99 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^76/Lucas(87) 4180999952163345 a004 Fibonacci(30)*Lucas(86)/(1/2+sqrt(5)/2)^97 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^74/Lucas(85) 4180999952163345 a004 Fibonacci(30)*Lucas(84)/(1/2+sqrt(5)/2)^95 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^72/Lucas(83) 4180999952163345 a004 Fibonacci(30)*Lucas(82)/(1/2+sqrt(5)/2)^93 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^70/Lucas(81) 4180999952163345 a004 Fibonacci(30)*Lucas(80)/(1/2+sqrt(5)/2)^91 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^68/Lucas(79) 4180999952163345 a004 Fibonacci(30)*Lucas(78)/(1/2+sqrt(5)/2)^89 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^66/Lucas(77) 4180999952163345 a004 Fibonacci(30)*Lucas(76)/(1/2+sqrt(5)/2)^87 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^64/Lucas(75) 4180999952163345 a004 Fibonacci(30)*Lucas(74)/(1/2+sqrt(5)/2)^85 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^62/Lucas(73) 4180999952163345 a004 Fibonacci(30)*Lucas(72)/(1/2+sqrt(5)/2)^83 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^60/Lucas(71) 4180999952163345 a004 Fibonacci(30)*Lucas(70)/(1/2+sqrt(5)/2)^81 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^58/Lucas(69) 4180999952163345 a004 Fibonacci(30)*Lucas(68)/(1/2+sqrt(5)/2)^79 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^56/Lucas(67) 4180999952163345 a004 Fibonacci(30)*Lucas(66)/(1/2+sqrt(5)/2)^77 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^54/Lucas(65) 4180999952163345 a004 Fibonacci(30)*Lucas(64)/(1/2+sqrt(5)/2)^75 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^52/Lucas(63) 4180999952163345 a001 208010/3665737348901*23725150497407^(13/16) 4180999952163345 a004 Fibonacci(30)*Lucas(62)/(1/2+sqrt(5)/2)^73 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^50/Lucas(61) 4180999952163345 a004 Fibonacci(62)/Lucas(30)/(1/2+sqrt(5)/2)^13 4180999952163345 a004 Fibonacci(64)/Lucas(30)/(1/2+sqrt(5)/2)^15 4180999952163345 a004 Fibonacci(66)/Lucas(30)/(1/2+sqrt(5)/2)^17 4180999952163345 a004 Fibonacci(68)/Lucas(30)/(1/2+sqrt(5)/2)^19 4180999952163345 a004 Fibonacci(70)/Lucas(30)/(1/2+sqrt(5)/2)^21 4180999952163345 a004 Fibonacci(72)/Lucas(30)/(1/2+sqrt(5)/2)^23 4180999952163345 a004 Fibonacci(74)/Lucas(30)/(1/2+sqrt(5)/2)^25 4180999952163345 a004 Fibonacci(76)/Lucas(30)/(1/2+sqrt(5)/2)^27 4180999952163345 a004 Fibonacci(78)/Lucas(30)/(1/2+sqrt(5)/2)^29 4180999952163345 a004 Fibonacci(80)/Lucas(30)/(1/2+sqrt(5)/2)^31 4180999952163345 a004 Fibonacci(82)/Lucas(30)/(1/2+sqrt(5)/2)^33 4180999952163345 a004 Fibonacci(84)/Lucas(30)/(1/2+sqrt(5)/2)^35 4180999952163345 a004 Fibonacci(86)/Lucas(30)/(1/2+sqrt(5)/2)^37 4180999952163345 a004 Fibonacci(88)/Lucas(30)/(1/2+sqrt(5)/2)^39 4180999952163345 a004 Fibonacci(90)/Lucas(30)/(1/2+sqrt(5)/2)^41 4180999952163345 a004 Fibonacci(92)/Lucas(30)/(1/2+sqrt(5)/2)^43 4180999952163345 a004 Fibonacci(94)/Lucas(30)/(1/2+sqrt(5)/2)^45 4180999952163345 a004 Fibonacci(96)/Lucas(30)/(1/2+sqrt(5)/2)^47 4180999952163345 a004 Fibonacci(100)/Lucas(30)/(1/2+sqrt(5)/2)^51 4180999952163345 a004 Fibonacci(30)*Lucas(60)/(1/2+sqrt(5)/2)^71 4180999952163345 a004 Fibonacci(98)/Lucas(30)/(1/2+sqrt(5)/2)^49 4180999952163345 a004 Fibonacci(99)/Lucas(30)/(1/2+sqrt(5)/2)^50 4180999952163345 a004 Fibonacci(97)/Lucas(30)/(1/2+sqrt(5)/2)^48 4180999952163345 a004 Fibonacci(95)/Lucas(30)/(1/2+sqrt(5)/2)^46 4180999952163345 a004 Fibonacci(93)/Lucas(30)/(1/2+sqrt(5)/2)^44 4180999952163345 a004 Fibonacci(91)/Lucas(30)/(1/2+sqrt(5)/2)^42 4180999952163345 a004 Fibonacci(89)/Lucas(30)/(1/2+sqrt(5)/2)^40 4180999952163345 a004 Fibonacci(87)/Lucas(30)/(1/2+sqrt(5)/2)^38 4180999952163345 a004 Fibonacci(85)/Lucas(30)/(1/2+sqrt(5)/2)^36 4180999952163345 a004 Fibonacci(83)/Lucas(30)/(1/2+sqrt(5)/2)^34 4180999952163345 a004 Fibonacci(81)/Lucas(30)/(1/2+sqrt(5)/2)^32 4180999952163345 a004 Fibonacci(79)/Lucas(30)/(1/2+sqrt(5)/2)^30 4180999952163345 a004 Fibonacci(77)/Lucas(30)/(1/2+sqrt(5)/2)^28 4180999952163345 a004 Fibonacci(75)/Lucas(30)/(1/2+sqrt(5)/2)^26 4180999952163345 a004 Fibonacci(73)/Lucas(30)/(1/2+sqrt(5)/2)^24 4180999952163345 a004 Fibonacci(71)/Lucas(30)/(1/2+sqrt(5)/2)^22 4180999952163345 a004 Fibonacci(69)/Lucas(30)/(1/2+sqrt(5)/2)^20 4180999952163345 a004 Fibonacci(67)/Lucas(30)/(1/2+sqrt(5)/2)^18 4180999952163345 a004 Fibonacci(65)/Lucas(30)/(1/2+sqrt(5)/2)^16 4180999952163345 a004 Fibonacci(63)/Lucas(30)/(1/2+sqrt(5)/2)^14 4180999952163345 a004 Fibonacci(61)/Lucas(30)/(1/2+sqrt(5)/2)^12 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^48/Lucas(59) 4180999952163345 a004 Fibonacci(59)/Lucas(30)/(1/2+sqrt(5)/2)^10 4180999952163345 a004 Fibonacci(30)*Lucas(58)/(1/2+sqrt(5)/2)^69 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^46/Lucas(57) 4180999952163345 a004 Fibonacci(57)/Lucas(30)/(1/2+sqrt(5)/2)^8 4180999952163345 a001 75640/28374454999*312119004989^(4/5) 4180999952163345 a001 416020/1730726404001*505019158607^(7/8) 4180999952163345 a001 208010/3665737348901*505019158607^(13/14) 4180999952163345 a004 Fibonacci(30)*Lucas(56)/(1/2+sqrt(5)/2)^67 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^44/Lucas(55) 4180999952163345 a001 75640/28374454999*23725150497407^(11/16) 4180999952163345 a004 Fibonacci(55)/Lucas(30)/(1/2+sqrt(5)/2)^6 4180999952163345 a001 832040/505019158607*192900153618^(5/6) 4180999952163345 a001 832040/2139295485799*192900153618^(8/9) 4180999952163345 a001 832040/9062201101803*192900153618^(17/18) 4180999952163345 a004 Fibonacci(30)*Lucas(54)/(1/2+sqrt(5)/2)^65 4180999952163345 a001 832040/119218851371*14662949395604^(2/3) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^42/Lucas(53) 4180999952163345 a001 44361286907582920/10610209857723 4180999952163345 a004 Fibonacci(53)/Lucas(30)/(1/2+sqrt(5)/2)^4 4180999952163345 a001 832040/119218851371*505019158607^(3/4) 4180999952163345 a001 832040/119218851371*192900153618^(7/9) 4180999952163345 a001 75640/28374454999*73681302247^(11/13) 4180999952163345 a001 832040/2139295485799*73681302247^(12/13) 4180999952163345 a004 Fibonacci(30)*Lucas(52)/(1/2+sqrt(5)/2)^63 4180999952163345 a001 208010/11384387281*312119004989^(8/11) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^40/Lucas(51) 4180999952163345 a001 208010/11384387281*23725150497407^(5/8) 4180999952163345 a001 16944503814010960/4052739537881 4180999952163345 a004 Fibonacci(51)/Lucas(30)/(1/2+sqrt(5)/2)^2 4180999952163345 a001 208010/11384387281*73681302247^(10/13) 4180999952163345 a001 832040/505019158607*28143753123^(9/10) 4180999952163345 a004 Fibonacci(30)*Lucas(50)/(1/2+sqrt(5)/2)^61 4180999952163345 a001 208010/11384387281*28143753123^(4/5) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^38/Lucas(49) 4180999952163345 a001 7778742049/1860498 4180999952163345 a001 832040/28143753123*10749957122^(13/16) 4180999952163345 a001 832040/119218851371*10749957122^(7/8) 4180999952163345 a001 208010/11384387281*10749957122^(5/6) 4180999952163345 a001 75640/28374454999*10749957122^(11/12) 4180999952163345 a001 832040/505019158607*10749957122^(15/16) 4180999952163345 a001 208010/204284540899*10749957122^(23/24) 4180999952163345 a004 Fibonacci(30)*Lucas(48)/(1/2+sqrt(5)/2)^59 4180999952163345 a001 832040/17393796001*10749957122^(19/24) 4180999952163345 a001 832040/6643838879*45537549124^(12/17) 4180999952163345 a001 832040/6643838879*14662949395604^(4/7) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^36/Lucas(47) 4180999952163345 a001 2971215073/1860498*(1/2+1/2*5^(1/2))^2 4180999952163345 a001 2472169789338920/591286729879 4180999952163345 a001 832040/6643838879*192900153618^(2/3) 4180999952163345 a001 832040/6643838879*73681302247^(9/13) 4180999952163345 a001 2971215073/1860498*10749957122^(1/24) 4180999952163345 a001 2971215073/1860498*4106118243^(1/23) 4180999952163345 a001 832040/6643838879*10749957122^(3/4) 4180999952163345 a001 2971215073/1860498*1568397607^(1/22) 4180999952163345 a001 208010/11384387281*4106118243^(20/23) 4180999952163345 a001 832040/17393796001*4106118243^(19/23) 4180999952163345 a001 832040/119218851371*4106118243^(21/23) 4180999952163345 a001 75640/28374454999*4106118243^(22/23) 4180999952163345 a004 Fibonacci(30)*Lucas(46)/(1/2+sqrt(5)/2)^57 4180999952163345 a001 832040/6643838879*4106118243^(18/23) 4180999952163345 a001 1836311903/1860498*599074578^(1/14) 4180999952163345 a001 610/1860499*45537549124^(2/3) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^34/Lucas(45) 4180999952163345 a001 567451585/930249*(1/2+1/2*5^(1/2))^4 4180999952163345 a001 567451585/930249*23725150497407^(1/16) 4180999952163345 a001 944284833566800/225851433717 4180999952163345 a001 567451585/930249*73681302247^(1/13) 4180999952163345 a001 2971215073/1860498*599074578^(1/21) 4180999952163345 a001 567451585/930249*10749957122^(1/12) 4180999952163345 a001 567451585/930249*4106118243^(2/23) 4180999952163345 a001 610/1860499*10749957122^(17/24) 4180999952163345 a001 567451585/930249*1568397607^(1/11) 4180999952163345 a001 610/1860499*4106118243^(17/23) 4180999952163345 a001 832040/17393796001*1568397607^(19/22) 4180999952163345 a001 832040/6643838879*1568397607^(9/11) 4180999952163345 a001 208010/11384387281*1568397607^(10/11) 4180999952163345 a001 832040/119218851371*1568397607^(21/22) 4180999952163345 a004 Fibonacci(30)*Lucas(44)/(1/2+sqrt(5)/2)^55 4180999952163345 a001 567451585/930249*599074578^(2/21) 4180999952163345 a001 610/1860499*1568397607^(17/22) 4180999952163345 a001 2971215073/1860498*228826127^(1/20) 4180999952163345 a001 433494437/1860498*2537720636^(2/15) 4180999952163345 a001 433494437/1860498*45537549124^(2/17) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^32/Lucas(43) 4180999952163345 a001 832040/969323029*23725150497407^(1/2) 4180999952163345 a001 433494437/1860498*14662949395604^(2/21) 4180999952163345 a001 433494437/1860498*(1/2+1/2*5^(1/2))^6 4180999952163345 a001 832040/969323029*505019158607^(4/7) 4180999952163345 a001 45085588920185/10783446409 4180999952163345 a001 832040/969323029*73681302247^(8/13) 4180999952163345 a001 433494437/1860498*10749957122^(1/8) 4180999952163345 a001 832040/969323029*10749957122^(2/3) 4180999952163345 a001 433494437/1860498*4106118243^(3/23) 4180999952163345 a001 832040/969323029*4106118243^(16/23) 4180999952163345 a001 433494437/1860498*1568397607^(3/22) 4180999952163345 a001 832040/969323029*1568397607^(8/11) 4180999952163345 a001 433494437/1860498*599074578^(1/7) 4180999952163345 a001 832040/1568397607*599074578^(11/14) 4180999952163345 a001 233802911/620166*228826127^(1/8) 4180999952163345 a001 567451585/930249*228826127^(1/10) 4180999952163345 a001 832040/4106118243*599074578^(5/6) 4180999952163345 a001 610/1860499*599074578^(17/21) 4180999952163345 a001 832040/6643838879*599074578^(6/7) 4180999952163345 a001 832040/17393796001*599074578^(19/21) 4180999952163345 a001 832040/28143753123*599074578^(13/14) 4180999952163345 a001 208010/11384387281*599074578^(20/21) 4180999952163345 a004 Fibonacci(30)*Lucas(42)/(1/2+sqrt(5)/2)^53 4180999952163345 a001 832040/969323029*599074578^(16/21) 4180999952163345 a001 433494437/1860498*228826127^(3/20) 4180999952163345 a001 2971215073/1860498*87403803^(1/19) 4180999952163345 a001 832040/370248451*2537720636^(2/3) 4180999952163345 a001 832040/370248451*45537549124^(10/17) 4180999952163345 a001 832040/370248451*312119004989^(6/11) 4180999952163345 a001 832040/370248451*14662949395604^(10/21) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^30/Lucas(41) 4180999952163345 a001 165580141/1860498*(1/2+1/2*5^(1/2))^8 4180999952163345 a001 165580141/1860498*23725150497407^(1/8) 4180999952163345 a001 832040/370248451*192900153618^(5/9) 4180999952163345 a001 165580141/1860498*73681302247^(2/13) 4180999952163345 a001 137769300517640/32951280099 4180999952163345 a001 832040/370248451*28143753123^(3/5) 4180999952163345 a001 165580141/1860498*10749957122^(1/6) 4180999952163345 a001 832040/370248451*10749957122^(5/8) 4180999952163345 a001 165580141/1860498*4106118243^(4/23) 4180999952163345 a001 832040/370248451*4106118243^(15/23) 4180999952163345 a001 165580141/1860498*1568397607^(2/11) 4180999952163345 a001 832040/370248451*1568397607^(15/22) 4180999952163345 a001 165580141/1860498*599074578^(4/21) 4180999952163345 a001 832040/370248451*599074578^(5/7) 4180999952163345 a001 165580141/1860498*228826127^(1/5) 4180999952163345 a001 567451585/930249*87403803^(2/19) 4180999952163345 a001 832040/969323029*228826127^(4/5) 4180999952163345 a001 610/1860499*228826127^(17/20) 4180999952163345 a001 832040/4106118243*228826127^(7/8) 4180999952163345 a001 832040/6643838879*228826127^(9/10) 4180999952163345 a001 832040/17393796001*228826127^(19/20) 4180999952163345 a004 Fibonacci(30)*Lucas(40)/(1/2+sqrt(5)/2)^51 4180999952163345 a001 832040/370248451*228826127^(3/4) 4180999952163345 a001 433494437/1860498*87403803^(3/19) 4180999952163345 a001 165580141/1860498*87403803^(4/19) 4180999952163345 a001 2971215073/1860498*33385282^(1/18) 4180999952163345 a001 31622993/930249*2537720636^(2/9) 4180999952163345 a001 208010/35355581*17393796001^(4/7) 4180999952163345 a001 31622993/930249*312119004989^(2/11) 4180999952163345 a001 208010/35355581*14662949395604^(4/9) 4180999952163345 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^28/Lucas(39) 4180999952163345 a001 31622993/930249*(1/2+1/2*5^(1/2))^10 4180999952163345 a001 208010/35355581*73681302247^(7/13) 4180999952163345 a001 31622993/930249*28143753123^(1/5) 4180999952163345 a001 956785276208/228841255 4180999952163345 a001 31622993/930249*10749957122^(5/24) 4180999952163345 a001 208010/35355581*10749957122^(7/12) 4180999952163345 a001 31622993/930249*4106118243^(5/23) 4180999952163345 a001 208010/35355581*4106118243^(14/23) 4180999952163345 a001 31622993/930249*1568397607^(5/22) 4180999952163345 a001 208010/35355581*1568397607^(7/11) 4180999952163345 a001 31622993/930249*599074578^(5/21) 4180999952163345 a001 208010/35355581*599074578^(2/3) 4180999952163345 a001 31622993/930249*228826127^(1/4) 4180999952163345 a001 208010/35355581*228826127^(7/10) 4180999952163345 a001 1836311903/1860498*33385282^(1/12) 4180999952163345 a001 31622993/930249*87403803^(5/19) 4180999952163345 a001 567451585/930249*33385282^(1/9) 4180999952163345 a001 832040/370248451*87403803^(15/19) 4180999952163345 a001 832040/969323029*87403803^(16/19) 4180999952163346 a001 610/1860499*87403803^(17/19) 4180999952163346 a001 832040/6643838879*87403803^(18/19) 4180999952163346 a004 Fibonacci(30)*Lucas(38)/(1/2+sqrt(5)/2)^49 4180999952163346 a001 208010/35355581*87403803^(14/19) 4180999952163346 a001 433494437/1860498*33385282^(1/6) 4180999952163346 a001 831985/15126*33385282^(1/4) 4180999952163346 a001 165580141/1860498*33385282^(2/9) 4180999952163346 a001 31622993/930249*33385282^(5/18) 4180999952163346 a001 832040/54018521*141422324^(2/3) 4180999952163346 a001 24157817/1860498*141422324^(4/13) 4180999952163346 a001 24157817/1860498*2537720636^(4/15) 4180999952163346 a001 24157817/1860498*45537549124^(4/17) 4180999952163346 a001 24157817/1860498*817138163596^(4/19) 4180999952163346 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^26/Lucas(37) 4180999952163346 a001 24157817/1860498*14662949395604^(4/21) 4180999952163346 a001 24157817/1860498*(1/2+1/2*5^(1/2))^12 4180999952163346 a001 24157817/1860498*192900153618^(2/9) 4180999952163346 a001 24157817/1860498*73681302247^(3/13) 4180999952163346 a001 832040/54018521*73681302247^(1/2) 4180999952163346 a001 24157817/1860498*10749957122^(1/4) 4180999952163346 a001 832040/54018521*10749957122^(13/24) 4180999952163346 a001 2512533757085/600940872 4180999952163346 a001 24157817/1860498*4106118243^(6/23) 4180999952163346 a001 832040/54018521*4106118243^(13/23) 4180999952163346 a001 24157817/1860498*1568397607^(3/11) 4180999952163346 a001 832040/54018521*1568397607^(13/22) 4180999952163346 a001 24157817/1860498*599074578^(2/7) 4180999952163346 a001 832040/54018521*599074578^(13/21) 4180999952163346 a001 24157817/1860498*228826127^(3/10) 4180999952163346 a001 832040/54018521*228826127^(13/20) 4180999952163347 a001 2971215073/1860498*12752043^(1/17) 4180999952163347 a001 24157817/1860498*87403803^(6/19) 4180999952163347 a001 832040/54018521*87403803^(13/19) 4180999952163347 a001 832040/87403803*33385282^(3/4) 4180999952163348 a001 24157817/1860498*33385282^(1/3) 4180999952163348 a001 567451585/930249*12752043^(2/17) 4180999952163348 a001 208010/35355581*33385282^(7/9) 4180999952163348 a001 832040/370248451*33385282^(5/6) 4180999952163348 a001 832040/969323029*33385282^(8/9) 4180999952163348 a001 832040/1568397607*33385282^(11/12) 4180999952163349 a001 610/1860499*33385282^(17/18) 4180999952163349 a004 Fibonacci(30)*Lucas(36)/(1/2+sqrt(5)/2)^47 4180999952163349 a001 832040/54018521*33385282^(13/18) 4180999952163350 a001 433494437/1860498*12752043^(3/17) 4180999952163351 a001 9227465/1860498*20633239^(2/5) 4180999952163351 a001 165580141/1860498*12752043^(4/17) 4180999952163353 a001 31622993/930249*12752043^(5/17) 4180999952163355 a001 75640/1875749*141422324^(8/13) 4180999952163355 a001 75640/1875749*2537720636^(8/15) 4180999952163355 a001 9227465/1860498*17393796001^(2/7) 4180999952163355 a001 75640/1875749*45537549124^(8/17) 4180999952163355 a001 75640/1875749*14662949395604^(8/21) 4180999952163355 a001 75640/1875749*(1/2+1/2*5^(1/2))^24 4180999952163355 a001 9227465/1860498*14662949395604^(2/9) 4180999952163355 a001 9227465/1860498*(1/2+1/2*5^(1/2))^14 4180999952163355 a001 75640/1875749*192900153618^(4/9) 4180999952163355 a001 75640/1875749*73681302247^(6/13) 4180999952163355 a001 9227465/1860498*10749957122^(7/24) 4180999952163355 a001 75640/1875749*10749957122^(1/2) 4180999952163355 a001 9227465/1860498*4106118243^(7/23) 4180999952163355 a001 75640/1875749*4106118243^(12/23) 4180999952163355 a001 7677619978600/1836311903 4180999952163355 a001 9227465/1860498*1568397607^(7/22) 4180999952163355 a001 75640/1875749*1568397607^(6/11) 4180999952163355 a001 9227465/1860498*599074578^(1/3) 4180999952163355 a001 75640/1875749*599074578^(4/7) 4180999952163355 a001 9227465/1860498*228826127^(7/20) 4180999952163355 a001 75640/1875749*228826127^(3/5) 4180999952163355 a001 9227465/1860498*87403803^(7/19) 4180999952163355 a001 75640/1875749*87403803^(12/19) 4180999952163356 a001 24157817/1860498*12752043^(6/17) 4180999952163356 a001 2971215073/1860498*4870847^(1/16) 4180999952163356 a001 9227465/1860498*33385282^(7/18) 4180999952163357 a001 75640/1875749*33385282^(2/3) 4180999952163365 a001 9227465/1860498*12752043^(7/17) 4180999952163366 a001 832040/54018521*12752043^(13/17) 4180999952163366 a001 208010/35355581*12752043^(14/17) 4180999952163367 a001 567451585/930249*4870847^(1/8) 4180999952163367 a001 208010/1970299*7881196^(2/3) 4180999952163368 a001 832040/370248451*12752043^(15/17) 4180999952163369 a001 832040/969323029*12752043^(16/17) 4180999952163371 a004 Fibonacci(30)*Lucas(34)/(1/2+sqrt(5)/2)^45 4180999952163373 a001 75640/1875749*12752043^(12/17) 4180999952163378 a001 433494437/1860498*4870847^(3/16) 4180999952163389 a001 165580141/1860498*4870847^(1/4) 4180999952163400 a001 31622993/930249*4870847^(5/16) 4180999952163412 a001 208010/1970299*(1/2+1/2*5^(1/2))^22 4180999952163412 a001 1762289/930249*(1/2+1/2*5^(1/2))^16 4180999952163412 a001 1762289/930249*23725150497407^(1/4) 4180999952163412 a001 1762289/930249*73681302247^(4/13) 4180999952163412 a001 1762289/930249*10749957122^(1/3) 4180999952163412 a001 208010/1970299*10749957122^(11/24) 4180999952163412 a001 1762289/930249*4106118243^(8/23) 4180999952163412 a001 208010/1970299*4106118243^(11/23) 4180999952163412 a001 1762289/930249*1568397607^(4/11) 4180999952163412 a001 208010/1970299*1568397607^(1/2) 4180999952163412 a001 32950448080/7880997 4180999952163412 a001 1762289/930249*599074578^(8/21) 4180999952163412 a001 208010/1970299*599074578^(11/21) 4180999952163412 a001 1762289/930249*228826127^(2/5) 4180999952163412 a001 208010/1970299*228826127^(11/20) 4180999952163413 a001 24157817/1860498*4870847^(3/8) 4180999952163413 a001 1762289/930249*87403803^(8/19) 4180999952163413 a001 208010/1970299*87403803^(11/19) 4180999952163414 a001 1762289/930249*33385282^(4/9) 4180999952163415 a001 208010/1970299*33385282^(11/18) 4180999952163424 a001 1762289/930249*12752043^(8/17) 4180999952163426 a001 2971215073/1860498*1860498^(1/15) 4180999952163429 a001 208010/1970299*12752043^(11/17) 4180999952163432 a001 9227465/1860498*4870847^(7/16) 4180999952163438 a001 317811/7881196*710647^(6/7) 4180999952163466 a001 1836311903/1860498*1860498^(1/10) 4180999952163487 a001 75640/1875749*4870847^(3/4) 4180999952163490 a001 832040/54018521*4870847^(13/16) 4180999952163499 a001 317811/439204*439204^(2/3) 4180999952163499 a001 208010/35355581*4870847^(7/8) 4180999952163500 a001 1762289/930249*4870847^(1/2) 4180999952163506 a001 567451585/930249*1860498^(2/15) 4180999952163510 a001 832040/370248451*4870847^(15/16) 4180999952163521 a004 Fibonacci(30)*Lucas(32)/(1/2+sqrt(5)/2)^43 4180999952163533 a001 208010/1970299*4870847^(11/16) 4180999952163546 a001 233802911/620166*1860498^(1/6) 4180999952163587 a001 433494437/1860498*1860498^(1/5) 4180999952163667 a001 165580141/1860498*1860498^(4/15) 4180999952163707 a001 831985/15126*1860498^(3/10) 4180999952163748 a001 31622993/930249*1860498^(1/3) 4180999952163770 a001 1346269/1860498*7881196^(6/11) 4180999952163801 a001 832040/3010349*20633239^(4/7) 4180999952163806 a001 1346269/1860498*141422324^(6/13) 4180999952163806 a001 832040/3010349*2537720636^(4/9) 4180999952163806 a001 1346269/1860498*2537720636^(2/5) 4180999952163806 a001 1346269/1860498*45537549124^(6/17) 4180999952163806 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^20/Lucas(31) 4180999952163806 a001 1346269/1860498*14662949395604^(2/7) 4180999952163806 a001 1346269/1860498*(1/2+1/2*5^(1/2))^18 4180999952163806 a001 832040/3010349*505019158607^(5/14) 4180999952163806 a001 1346269/1860498*192900153618^(1/3) 4180999952163806 a001 832040/3010349*73681302247^(5/13) 4180999952163806 a001 832040/3010349*28143753123^(2/5) 4180999952163806 a001 1346269/1860498*10749957122^(3/8) 4180999952163806 a001 832040/3010349*10749957122^(5/12) 4180999952163806 a001 1346269/1860498*4106118243^(9/23) 4180999952163806 a001 832040/3010349*4106118243^(10/23) 4180999952163806 a001 1346269/1860498*1568397607^(9/22) 4180999952163806 a001 832040/3010349*1568397607^(5/11) 4180999952163806 a001 1346269/1860498*599074578^(3/7) 4180999952163806 a001 832040/3010349*599074578^(10/21) 4180999952163806 a001 140018707345/33489287 4180999952163806 a001 1346269/1860498*228826127^(9/20) 4180999952163806 a001 832040/3010349*228826127^(1/2) 4180999952163807 a001 1346269/1860498*87403803^(9/19) 4180999952163807 a001 832040/3010349*87403803^(10/19) 4180999952163808 a001 1346269/1860498*33385282^(1/2) 4180999952163808 a001 832040/3010349*33385282^(5/9) 4180999952163820 a001 1346269/1860498*12752043^(9/17) 4180999952163822 a001 832040/3010349*12752043^(10/17) 4180999952163830 a001 24157817/1860498*1860498^(2/5) 4180999952163906 a001 1346269/1860498*4870847^(9/16) 4180999952163915 a004 Fibonacci(32)*Lucas(31)/(1/2+sqrt(5)/2)^44 4180999952163917 a001 832040/3010349*4870847^(5/8) 4180999952163919 a001 9227465/1860498*1860498^(7/15) 4180999952163923 a001 5702887/1860498*1860498^(1/2) 4180999952163936 a001 2971215073/1860498*710647^(1/14) 4180999952163971 a001 10959/711491*710647^(13/14) 4180999952164014 a001 832040/4870847*1860498^(7/10) 4180999952164057 a001 1762289/930249*1860498^(8/15) 4180999952164066 a004 Fibonacci(34)*Lucas(31)/(1/2+sqrt(5)/2)^46 4180999952164088 a004 Fibonacci(36)*Lucas(31)/(1/2+sqrt(5)/2)^48 4180999952164091 a004 Fibonacci(38)*Lucas(31)/(1/2+sqrt(5)/2)^50 4180999952164091 a004 Fibonacci(40)*Lucas(31)/(1/2+sqrt(5)/2)^52 4180999952164092 a004 Fibonacci(42)*Lucas(31)/(1/2+sqrt(5)/2)^54 4180999952164092 a004 Fibonacci(44)*Lucas(31)/(1/2+sqrt(5)/2)^56 4180999952164092 a004 Fibonacci(46)*Lucas(31)/(1/2+sqrt(5)/2)^58 4180999952164092 a004 Fibonacci(48)*Lucas(31)/(1/2+sqrt(5)/2)^60 4180999952164092 a004 Fibonacci(50)*Lucas(31)/(1/2+sqrt(5)/2)^62 4180999952164092 a004 Fibonacci(52)*Lucas(31)/(1/2+sqrt(5)/2)^64 4180999952164092 a004 Fibonacci(54)*Lucas(31)/(1/2+sqrt(5)/2)^66 4180999952164092 a004 Fibonacci(56)*Lucas(31)/(1/2+sqrt(5)/2)^68 4180999952164092 a004 Fibonacci(58)*Lucas(31)/(1/2+sqrt(5)/2)^70 4180999952164092 a004 Fibonacci(60)*Lucas(31)/(1/2+sqrt(5)/2)^72 4180999952164092 a004 Fibonacci(62)*Lucas(31)/(1/2+sqrt(5)/2)^74 4180999952164092 a004 Fibonacci(64)*Lucas(31)/(1/2+sqrt(5)/2)^76 4180999952164092 a004 Fibonacci(66)*Lucas(31)/(1/2+sqrt(5)/2)^78 4180999952164092 a004 Fibonacci(68)*Lucas(31)/(1/2+sqrt(5)/2)^80 4180999952164092 a004 Fibonacci(70)*Lucas(31)/(1/2+sqrt(5)/2)^82 4180999952164092 a004 Fibonacci(72)*Lucas(31)/(1/2+sqrt(5)/2)^84 4180999952164092 a004 Fibonacci(74)*Lucas(31)/(1/2+sqrt(5)/2)^86 4180999952164092 a004 Fibonacci(76)*Lucas(31)/(1/2+sqrt(5)/2)^88 4180999952164092 a004 Fibonacci(78)*Lucas(31)/(1/2+sqrt(5)/2)^90 4180999952164092 a004 Fibonacci(80)*Lucas(31)/(1/2+sqrt(5)/2)^92 4180999952164092 a004 Fibonacci(82)*Lucas(31)/(1/2+sqrt(5)/2)^94 4180999952164092 a004 Fibonacci(84)*Lucas(31)/(1/2+sqrt(5)/2)^96 4180999952164092 a004 Fibonacci(86)*Lucas(31)/(1/2+sqrt(5)/2)^98 4180999952164092 a004 Fibonacci(88)*Lucas(31)/(1/2+sqrt(5)/2)^100 4180999952164092 a004 Fibonacci(87)*Lucas(31)/(1/2+sqrt(5)/2)^99 4180999952164092 a004 Fibonacci(85)*Lucas(31)/(1/2+sqrt(5)/2)^97 4180999952164092 a004 Fibonacci(83)*Lucas(31)/(1/2+sqrt(5)/2)^95 4180999952164092 a004 Fibonacci(81)*Lucas(31)/(1/2+sqrt(5)/2)^93 4180999952164092 a004 Fibonacci(79)*Lucas(31)/(1/2+sqrt(5)/2)^91 4180999952164092 a004 Fibonacci(77)*Lucas(31)/(1/2+sqrt(5)/2)^89 4180999952164092 a004 Fibonacci(75)*Lucas(31)/(1/2+sqrt(5)/2)^87 4180999952164092 a004 Fibonacci(73)*Lucas(31)/(1/2+sqrt(5)/2)^85 4180999952164092 a004 Fibonacci(71)*Lucas(31)/(1/2+sqrt(5)/2)^83 4180999952164092 a004 Fibonacci(69)*Lucas(31)/(1/2+sqrt(5)/2)^81 4180999952164092 a004 Fibonacci(67)*Lucas(31)/(1/2+sqrt(5)/2)^79 4180999952164092 a004 Fibonacci(65)*Lucas(31)/(1/2+sqrt(5)/2)^77 4180999952164092 a004 Fibonacci(63)*Lucas(31)/(1/2+sqrt(5)/2)^75 4180999952164092 a001 2/1346269*(1/2+1/2*5^(1/2))^50 4180999952164092 a004 Fibonacci(61)*Lucas(31)/(1/2+sqrt(5)/2)^73 4180999952164092 a004 Fibonacci(59)*Lucas(31)/(1/2+sqrt(5)/2)^71 4180999952164092 a004 Fibonacci(57)*Lucas(31)/(1/2+sqrt(5)/2)^69 4180999952164092 a004 Fibonacci(55)*Lucas(31)/(1/2+sqrt(5)/2)^67 4180999952164092 a004 Fibonacci(53)*Lucas(31)/(1/2+sqrt(5)/2)^65 4180999952164092 a004 Fibonacci(51)*Lucas(31)/(1/2+sqrt(5)/2)^63 4180999952164092 a004 Fibonacci(49)*Lucas(31)/(1/2+sqrt(5)/2)^61 4180999952164092 a004 Fibonacci(47)*Lucas(31)/(1/2+sqrt(5)/2)^59 4180999952164092 a004 Fibonacci(45)*Lucas(31)/(1/2+sqrt(5)/2)^57 4180999952164092 a004 Fibonacci(43)*Lucas(31)/(1/2+sqrt(5)/2)^55 4180999952164092 a004 Fibonacci(41)*Lucas(31)/(1/2+sqrt(5)/2)^53 4180999952164092 a004 Fibonacci(39)*Lucas(31)/(1/2+sqrt(5)/2)^51 4180999952164093 a004 Fibonacci(37)*Lucas(31)/(1/2+sqrt(5)/2)^49 4180999952164101 a004 Fibonacci(35)*Lucas(31)/(1/2+sqrt(5)/2)^47 4180999952164159 a004 Fibonacci(33)*Lucas(31)/(1/2+sqrt(5)/2)^45 4180999952164200 a001 4745030099481/1134903170 4180999952164200 a001 2178309/4870847*817138163596^(1/3) 4180999952164200 a001 2178309/4870847*(1/2+1/2*5^(1/2))^19 4180999952164201 a001 2178309/4870847*87403803^(1/2) 4180999952164298 a001 208010/1970299*1860498^(11/15) 4180999952164308 a001 726103/4250681*7881196^(7/11) 4180999952164309 a004 Fibonacci(32)*Lucas(33)/(1/2+sqrt(5)/2)^46 4180999952164315 a001 2178309/969323029*7881196^(10/11) 4180999952164321 a001 75640/1875749*1860498^(4/5) 4180999952164322 a001 46347/4868641*7881196^(9/11) 4180999952164329 a001 2178309/54018521*7881196^(8/11) 4180999952164342 a001 2178309/20633239*7881196^(2/3) 4180999952164342 a001 14930352/4870847*7881196^(5/11) 4180999952164345 a001 726103/4250681*20633239^(3/5) 4180999952164348 a001 416020/16692641*1860498^(5/6) 4180999952164351 a001 726103/4250681*141422324^(7/13) 4180999952164351 a001 726103/4250681*2537720636^(7/15) 4180999952164351 a001 12422650078083/2971215073 4180999952164351 a001 726103/4250681*17393796001^(3/7) 4180999952164351 a001 726103/4250681*45537549124^(7/17) 4180999952164351 a001 5702887/4870847*45537549124^(1/3) 4180999952164351 a001 726103/4250681*14662949395604^(1/3) 4180999952164351 a001 726103/4250681*(1/2+1/2*5^(1/2))^21 4180999952164351 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^21/Lucas(34) 4180999952164351 a001 5702887/4870847*(1/2+1/2*5^(1/2))^17 4180999952164351 a001 726103/4250681*192900153618^(7/18) 4180999952164351 a001 726103/4250681*10749957122^(7/16) 4180999952164351 a001 726103/4250681*599074578^(1/2) 4180999952164352 a001 63245986/4870847*7881196^(4/11) 4180999952164353 a001 726103/4250681*33385282^(7/12) 4180999952164354 a001 102334155/4870847*7881196^(1/3) 4180999952164358 a001 267914296/4870847*7881196^(3/11) 4180999952164364 a001 5702887/4870847*12752043^(1/2) 4180999952164364 a001 1134903170/4870847*7881196^(2/11) 4180999952164367 a004 Fibonacci(32)*Lucas(35)/(1/2+sqrt(5)/2)^48 4180999952164368 a001 2178309/969323029*20633239^(6/7) 4180999952164369 a001 14930352/4870847*20633239^(3/7) 4180999952164369 a001 2178309/370248451*20633239^(4/5) 4180999952164369 a001 726103/29134601*20633239^(5/7) 4180999952164371 a001 4807526976/4870847*7881196^(1/11) 4180999952164373 a001 14930352/4870847*141422324^(5/13) 4180999952164373 a001 14930352/4870847*2537720636^(1/3) 4180999952164373 a001 32522920134768/7778742049 4180999952164373 a001 14930352/4870847*45537549124^(5/17) 4180999952164373 a001 14930352/4870847*312119004989^(3/11) 4180999952164373 a001 311187/4769326*(1/2+1/2*5^(1/2))^23 4180999952164373 a001 14930352/4870847*14662949395604^(5/21) 4180999952164373 a001 14930352/4870847*(1/2+1/2*5^(1/2))^15 4180999952164373 a001 14930352/4870847*192900153618^(5/18) 4180999952164373 a001 14930352/4870847*28143753123^(3/10) 4180999952164373 a001 14930352/4870847*10749957122^(5/16) 4180999952164373 a001 311187/4769326*4106118243^(1/2) 4180999952164373 a001 14930352/4870847*599074578^(5/14) 4180999952164373 a001 14930352/4870847*228826127^(3/8) 4180999952164374 a001 165580141/4870847*20633239^(2/7) 4180999952164374 a001 24157817/4870847*20633239^(2/5) 4180999952164374 a001 14930352/4870847*33385282^(5/12) 4180999952164375 a001 701408733/4870847*20633239^(1/5) 4180999952164375 a004 Fibonacci(32)*Lucas(37)/(1/2+sqrt(5)/2)^50 4180999952164375 a001 1836311903/4870847*20633239^(1/7) 4180999952164376 a001 39088169/4870847*141422324^(1/3) 4180999952164376 a001 726103/29134601*2537720636^(5/9) 4180999952164376 a001 85146110326221/20365011074 4180999952164376 a001 726103/29134601*312119004989^(5/11) 4180999952164376 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^25/Lucas(38) 4180999952164376 a001 39088169/4870847*(1/2+1/2*5^(1/2))^13 4180999952164376 a001 726103/29134601*3461452808002^(5/12) 4180999952164376 a001 39088169/4870847*73681302247^(1/4) 4180999952164376 a001 726103/29134601*28143753123^(1/2) 4180999952164376 a001 726103/29134601*228826127^(5/8) 4180999952164376 a001 46347/4868641*141422324^(9/13) 4180999952164376 a004 Fibonacci(32)*Lucas(39)/(1/2+sqrt(5)/2)^52 4180999952164376 a001 2178309/17393796001*141422324^(12/13) 4180999952164376 a001 726103/1368706081*141422324^(11/13) 4180999952164377 a001 2178309/969323029*141422324^(10/13) 4180999952164377 a001 46347/4868641*2537720636^(3/5) 4180999952164377 a001 46347/4868641*45537549124^(9/17) 4180999952164377 a001 222915410843895/53316291173 4180999952164377 a001 102334155/4870847*312119004989^(1/5) 4180999952164377 a001 46347/4868641*14662949395604^(3/7) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^27/Lucas(40) 4180999952164377 a001 102334155/4870847*(1/2+1/2*5^(1/2))^11 4180999952164377 a001 46347/4868641*192900153618^(1/2) 4180999952164377 a001 46347/4868641*10749957122^(9/16) 4180999952164377 a001 102334155/4870847*1568397607^(1/4) 4180999952164377 a001 46347/4868641*599074578^(9/14) 4180999952164377 a001 267914296/4870847*141422324^(3/13) 4180999952164377 a001 1134903170/4870847*141422324^(2/13) 4180999952164377 a004 Fibonacci(32)*Lucas(41)/(1/2+sqrt(5)/2)^54 4180999952164377 a001 4807526976/4870847*141422324^(1/13) 4180999952164377 a001 267914296/4870847*2537720636^(1/5) 4180999952164377 a001 267914296/4870847*45537549124^(3/17) 4180999952164377 a001 583600122205464/139583862445 4180999952164377 a001 267914296/4870847*817138163596^(3/19) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^29/Lucas(42) 4180999952164377 a001 267914296/4870847*14662949395604^(1/7) 4180999952164377 a001 267914296/4870847*(1/2+1/2*5^(1/2))^9 4180999952164377 a001 267914296/4870847*192900153618^(1/6) 4180999952164377 a001 267914296/4870847*10749957122^(3/16) 4180999952164377 a001 267914296/4870847*599074578^(3/14) 4180999952164377 a004 Fibonacci(32)*Lucas(43)/(1/2+sqrt(5)/2)^56 4180999952164377 a001 701408733/4870847*17393796001^(1/7) 4180999952164377 a001 1527884955772497/365435296162 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^31/Lucas(44) 4180999952164377 a001 701408733/4870847*14662949395604^(1/9) 4180999952164377 a001 701408733/4870847*(1/2+1/2*5^(1/2))^7 4180999952164377 a001 311187/224056801*9062201101803^(1/2) 4180999952164377 a001 726103/1368706081*2537720636^(11/15) 4180999952164377 a004 Fibonacci(32)*Lucas(45)/(1/2+sqrt(5)/2)^58 4180999952164377 a001 2178309/312119004989*2537720636^(14/15) 4180999952164377 a001 2178309/119218851371*2537720636^(8/9) 4180999952164377 a001 311187/10525900321*2537720636^(13/15) 4180999952164377 a001 987/4870846*2537720636^(7/9) 4180999952164377 a001 2178309/17393796001*2537720636^(4/5) 4180999952164377 a001 1836311903/4870847*2537720636^(1/9) 4180999952164377 a001 726103/1368706081*45537549124^(11/17) 4180999952164377 a001 1836311903/4870847*312119004989^(1/11) 4180999952164377 a001 4000054745112027/956722026041 4180999952164377 a001 726103/1368706081*14662949395604^(11/21) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^33/Lucas(46) 4180999952164377 a001 1836311903/4870847*(1/2+1/2*5^(1/2))^5 4180999952164377 a001 726103/1368706081*192900153618^(11/18) 4180999952164377 a001 1836311903/4870847*28143753123^(1/10) 4180999952164377 a001 726103/1368706081*10749957122^(11/16) 4180999952164377 a004 Fibonacci(32)*Lucas(47)/(1/2+sqrt(5)/2)^60 4180999952164377 a001 4807526976/4870847*2537720636^(1/15) 4180999952164377 a001 987/4870846*17393796001^(5/7) 4180999952164377 a001 4807526976/4870847*45537549124^(1/17) 4180999952164377 a001 987/4870846*312119004989^(7/11) 4180999952164377 a001 10472279279563584/2504730781961 4180999952164377 a001 987/4870846*14662949395604^(5/9) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^35/Lucas(48) 4180999952164377 a001 4807526976/4870847*(1/2+1/2*5^(1/2))^3 4180999952164377 a001 4807526976/4870847*192900153618^(1/18) 4180999952164377 a001 4807526976/4870847*10749957122^(1/16) 4180999952164377 a001 987/4870846*28143753123^(7/10) 4180999952164377 a004 Fibonacci(32)*Lucas(49)/(1/2+sqrt(5)/2)^62 4180999952164377 a001 2178309/312119004989*17393796001^(6/7) 4180999952164377 a001 27416783093578725/6557470319842 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^37/Lucas(50) 4180999952164377 a001 311187/10525900321*45537549124^(13/17) 4180999952164377 a004 Fibonacci(32)*Lucas(51)/(1/2+sqrt(5)/2)^64 4180999952164377 a001 2178309/5600748293801*45537549124^(16/17) 4180999952164377 a001 726103/440719107401*45537549124^(15/17) 4180999952164377 a001 2178309/312119004989*45537549124^(14/17) 4180999952164377 a001 311187/10525900321*14662949395604^(13/21) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^39/Lucas(52) 4180999952164377 a004 Fibonacci(52)/Lucas(32)/(1/2+sqrt(5)/2) 4180999952164377 a001 311187/10525900321*192900153618^(13/18) 4180999952164377 a004 Fibonacci(32)*Lucas(53)/(1/2+sqrt(5)/2)^66 4180999952164377 a001 311187/10525900321*73681302247^(3/4) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^41/Lucas(54) 4180999952164377 a004 Fibonacci(54)/Lucas(32)/(1/2+sqrt(5)/2)^3 4180999952164377 a004 Fibonacci(32)*Lucas(55)/(1/2+sqrt(5)/2)^68 4180999952164377 a001 2178309/14662949395604*312119004989^(10/11) 4180999952164377 a001 2178309/817138163596*312119004989^(4/5) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^43/Lucas(56) 4180999952164377 a004 Fibonacci(56)/Lucas(32)/(1/2+sqrt(5)/2)^5 4180999952164377 a004 Fibonacci(32)*Lucas(57)/(1/2+sqrt(5)/2)^70 4180999952164377 a001 726103/440719107401*14662949395604^(5/7) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^45/Lucas(58) 4180999952164377 a004 Fibonacci(58)/Lucas(32)/(1/2+sqrt(5)/2)^7 4180999952164377 a004 Fibonacci(32)*Lucas(59)/(1/2+sqrt(5)/2)^72 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^47/Lucas(60) 4180999952164377 a004 Fibonacci(60)/Lucas(32)/(1/2+sqrt(5)/2)^9 4180999952164377 a004 Fibonacci(32)*Lucas(61)/(1/2+sqrt(5)/2)^74 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^49/Lucas(62) 4180999952164377 a004 Fibonacci(62)/Lucas(32)/(1/2+sqrt(5)/2)^11 4180999952164377 a001 2178309/23725150497407*14662949395604^(17/21) 4180999952164377 a004 Fibonacci(32)*Lucas(63)/(1/2+sqrt(5)/2)^76 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^51/Lucas(64) 4180999952164377 a004 Fibonacci(32)*Lucas(65)/(1/2+sqrt(5)/2)^78 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^53/Lucas(66) 4180999952164377 a004 Fibonacci(32)*Lucas(67)/(1/2+sqrt(5)/2)^80 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^55/Lucas(68) 4180999952164377 a004 Fibonacci(32)*Lucas(69)/(1/2+sqrt(5)/2)^82 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^57/Lucas(70) 4180999952164377 a004 Fibonacci(32)*Lucas(71)/(1/2+sqrt(5)/2)^84 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^59/Lucas(72) 4180999952164377 a004 Fibonacci(32)*Lucas(73)/(1/2+sqrt(5)/2)^86 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^61/Lucas(74) 4180999952164377 a004 Fibonacci(32)*Lucas(75)/(1/2+sqrt(5)/2)^88 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^63/Lucas(76) 4180999952164377 a004 Fibonacci(32)*Lucas(77)/(1/2+sqrt(5)/2)^90 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^65/Lucas(78) 4180999952164377 a004 Fibonacci(32)*Lucas(79)/(1/2+sqrt(5)/2)^92 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^67/Lucas(80) 4180999952164377 a004 Fibonacci(32)*Lucas(81)/(1/2+sqrt(5)/2)^94 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^69/Lucas(82) 4180999952164377 a004 Fibonacci(32)*Lucas(83)/(1/2+sqrt(5)/2)^96 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^71/Lucas(84) 4180999952164377 a004 Fibonacci(32)*Lucas(85)/(1/2+sqrt(5)/2)^98 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^73/Lucas(86) 4180999952164377 a004 Fibonacci(32)*Lucas(87)/(1/2+sqrt(5)/2)^100 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^75/Lucas(88) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^77/Lucas(90) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^79/Lucas(92) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^81/Lucas(94) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^83/Lucas(96) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^85/Lucas(98) 4180999952164377 a004 Fibonacci(16)*Lucas(16)/(1/2+sqrt(5)/2)^13 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^86/Lucas(99) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^87/Lucas(100) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^84/Lucas(97) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^82/Lucas(95) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^80/Lucas(93) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^78/Lucas(91) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^76/Lucas(89) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^74/Lucas(87) 4180999952164377 a004 Fibonacci(32)*Lucas(86)/(1/2+sqrt(5)/2)^99 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^72/Lucas(85) 4180999952164377 a004 Fibonacci(32)*Lucas(84)/(1/2+sqrt(5)/2)^97 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^70/Lucas(83) 4180999952164377 a004 Fibonacci(32)*Lucas(82)/(1/2+sqrt(5)/2)^95 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^68/Lucas(81) 4180999952164377 a004 Fibonacci(32)*Lucas(80)/(1/2+sqrt(5)/2)^93 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^66/Lucas(79) 4180999952164377 a004 Fibonacci(32)*Lucas(78)/(1/2+sqrt(5)/2)^91 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^64/Lucas(77) 4180999952164377 a004 Fibonacci(32)*Lucas(76)/(1/2+sqrt(5)/2)^89 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^62/Lucas(75) 4180999952164377 a004 Fibonacci(32)*Lucas(74)/(1/2+sqrt(5)/2)^87 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^60/Lucas(73) 4180999952164377 a004 Fibonacci(32)*Lucas(72)/(1/2+sqrt(5)/2)^85 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^58/Lucas(71) 4180999952164377 a004 Fibonacci(32)*Lucas(70)/(1/2+sqrt(5)/2)^83 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^56/Lucas(69) 4180999952164377 a004 Fibonacci(32)*Lucas(68)/(1/2+sqrt(5)/2)^81 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^54/Lucas(67) 4180999952164377 a004 Fibonacci(32)*Lucas(66)/(1/2+sqrt(5)/2)^79 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^52/Lucas(65) 4180999952164377 a004 Fibonacci(66)/Lucas(32)/(1/2+sqrt(5)/2)^15 4180999952164377 a004 Fibonacci(68)/Lucas(32)/(1/2+sqrt(5)/2)^17 4180999952164377 a004 Fibonacci(70)/Lucas(32)/(1/2+sqrt(5)/2)^19 4180999952164377 a004 Fibonacci(72)/Lucas(32)/(1/2+sqrt(5)/2)^21 4180999952164377 a004 Fibonacci(74)/Lucas(32)/(1/2+sqrt(5)/2)^23 4180999952164377 a004 Fibonacci(76)/Lucas(32)/(1/2+sqrt(5)/2)^25 4180999952164377 a004 Fibonacci(78)/Lucas(32)/(1/2+sqrt(5)/2)^27 4180999952164377 a004 Fibonacci(80)/Lucas(32)/(1/2+sqrt(5)/2)^29 4180999952164377 a004 Fibonacci(82)/Lucas(32)/(1/2+sqrt(5)/2)^31 4180999952164377 a004 Fibonacci(84)/Lucas(32)/(1/2+sqrt(5)/2)^33 4180999952164377 a004 Fibonacci(86)/Lucas(32)/(1/2+sqrt(5)/2)^35 4180999952164377 a004 Fibonacci(88)/Lucas(32)/(1/2+sqrt(5)/2)^37 4180999952164377 a004 Fibonacci(90)/Lucas(32)/(1/2+sqrt(5)/2)^39 4180999952164377 a004 Fibonacci(92)/Lucas(32)/(1/2+sqrt(5)/2)^41 4180999952164377 a004 Fibonacci(94)/Lucas(32)/(1/2+sqrt(5)/2)^43 4180999952164377 a004 Fibonacci(96)/Lucas(32)/(1/2+sqrt(5)/2)^45 4180999952164377 a004 Fibonacci(100)/Lucas(32)/(1/2+sqrt(5)/2)^49 4180999952164377 a004 Fibonacci(32)*Lucas(64)/(1/2+sqrt(5)/2)^77 4180999952164377 a004 Fibonacci(98)/Lucas(32)/(1/2+sqrt(5)/2)^47 4180999952164377 a004 Fibonacci(99)/Lucas(32)/(1/2+sqrt(5)/2)^48 4180999952164377 a004 Fibonacci(97)/Lucas(32)/(1/2+sqrt(5)/2)^46 4180999952164377 a004 Fibonacci(95)/Lucas(32)/(1/2+sqrt(5)/2)^44 4180999952164377 a004 Fibonacci(93)/Lucas(32)/(1/2+sqrt(5)/2)^42 4180999952164377 a004 Fibonacci(91)/Lucas(32)/(1/2+sqrt(5)/2)^40 4180999952164377 a004 Fibonacci(89)/Lucas(32)/(1/2+sqrt(5)/2)^38 4180999952164377 a004 Fibonacci(87)/Lucas(32)/(1/2+sqrt(5)/2)^36 4180999952164377 a004 Fibonacci(85)/Lucas(32)/(1/2+sqrt(5)/2)^34 4180999952164377 a004 Fibonacci(83)/Lucas(32)/(1/2+sqrt(5)/2)^32 4180999952164377 a004 Fibonacci(81)/Lucas(32)/(1/2+sqrt(5)/2)^30 4180999952164377 a004 Fibonacci(79)/Lucas(32)/(1/2+sqrt(5)/2)^28 4180999952164377 a004 Fibonacci(77)/Lucas(32)/(1/2+sqrt(5)/2)^26 4180999952164377 a004 Fibonacci(75)/Lucas(32)/(1/2+sqrt(5)/2)^24 4180999952164377 a004 Fibonacci(73)/Lucas(32)/(1/2+sqrt(5)/2)^22 4180999952164377 a004 Fibonacci(71)/Lucas(32)/(1/2+sqrt(5)/2)^20 4180999952164377 a004 Fibonacci(69)/Lucas(32)/(1/2+sqrt(5)/2)^18 4180999952164377 a004 Fibonacci(67)/Lucas(32)/(1/2+sqrt(5)/2)^16 4180999952164377 a004 Fibonacci(65)/Lucas(32)/(1/2+sqrt(5)/2)^14 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^50/Lucas(63) 4180999952164377 a004 Fibonacci(63)/Lucas(32)/(1/2+sqrt(5)/2)^12 4180999952164377 a004 Fibonacci(32)*Lucas(62)/(1/2+sqrt(5)/2)^75 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^48/Lucas(61) 4180999952164377 a004 Fibonacci(61)/Lucas(32)/(1/2+sqrt(5)/2)^10 4180999952164377 a001 2178309/14662949395604*3461452808002^(5/6) 4180999952164377 a004 Fibonacci(32)*Lucas(60)/(1/2+sqrt(5)/2)^73 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^46/Lucas(59) 4180999952164377 a004 Fibonacci(59)/Lucas(32)/(1/2+sqrt(5)/2)^8 4180999952164377 a004 Fibonacci(32)*Lucas(58)/(1/2+sqrt(5)/2)^71 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^44/Lucas(57) 4180999952164377 a004 Fibonacci(57)/Lucas(32)/(1/2+sqrt(5)/2)^6 4180999952164377 a001 726103/3020733700601*505019158607^(7/8) 4180999952164377 a004 Fibonacci(32)*Lucas(56)/(1/2+sqrt(5)/2)^69 4180999952164377 a001 2178309/312119004989*14662949395604^(2/3) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^42/Lucas(55) 4180999952164377 a004 Fibonacci(55)/Lucas(32)/(1/2+sqrt(5)/2)^4 4180999952164377 a001 2178309/312119004989*505019158607^(3/4) 4180999952164377 a001 726103/440719107401*192900153618^(5/6) 4180999952164377 a001 2178309/5600748293801*192900153618^(8/9) 4180999952164377 a001 2178309/23725150497407*192900153618^(17/18) 4180999952164377 a004 Fibonacci(32)*Lucas(54)/(1/2+sqrt(5)/2)^67 4180999952164377 a001 2178309/312119004989*192900153618^(7/9) 4180999952164377 a001 2178309/119218851371*312119004989^(8/11) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^40/Lucas(53) 4180999952164377 a001 2178309/119218851371*23725150497407^(5/8) 4180999952164377 a004 Fibonacci(53)/Lucas(32)/(1/2+sqrt(5)/2)^2 4180999952164377 a001 2178309/817138163596*73681302247^(11/13) 4180999952164377 a001 2178309/5600748293801*73681302247^(12/13) 4180999952164377 a004 Fibonacci(32)*Lucas(52)/(1/2+sqrt(5)/2)^65 4180999952164377 a001 2178309/119218851371*73681302247^(10/13) 4180999952164377 a001 2178309/45537549124*817138163596^(2/3) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^38/Lucas(51) 4180999952164377 a001 20365011074/4870847 4180999952164377 a001 2178309/119218851371*28143753123^(4/5) 4180999952164377 a001 726103/440719107401*28143753123^(9/10) 4180999952164377 a004 Fibonacci(32)*Lucas(50)/(1/2+sqrt(5)/2)^63 4180999952164377 a001 2178309/17393796001*45537549124^(12/17) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^36/Lucas(49) 4180999952164377 a001 7778742049/4870847*(1/2+1/2*5^(1/2))^2 4180999952164377 a001 16944503814015141/4052739537881 4180999952164377 a001 2178309/17393796001*505019158607^(9/14) 4180999952164377 a001 2178309/17393796001*192900153618^(2/3) 4180999952164377 a001 2178309/17393796001*73681302247^(9/13) 4180999952164377 a001 7778742049/4870847*10749957122^(1/24) 4180999952164377 a001 7778742049/4870847*4106118243^(1/23) 4180999952164377 a001 311187/10525900321*10749957122^(13/16) 4180999952164377 a001 2178309/119218851371*10749957122^(5/6) 4180999952164377 a001 2178309/45537549124*10749957122^(19/24) 4180999952164377 a001 2178309/312119004989*10749957122^(7/8) 4180999952164377 a001 2178309/817138163596*10749957122^(11/12) 4180999952164377 a001 726103/440719107401*10749957122^(15/16) 4180999952164377 a001 2178309/2139295485799*10749957122^(23/24) 4180999952164377 a004 Fibonacci(32)*Lucas(48)/(1/2+sqrt(5)/2)^61 4180999952164377 a001 2178309/17393796001*10749957122^(3/4) 4180999952164377 a001 7778742049/4870847*1568397607^(1/22) 4180999952164377 a001 2178309/6643838879*45537549124^(2/3) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^34/Lucas(47) 4180999952164377 a001 2971215073/4870847*(1/2+1/2*5^(1/2))^4 4180999952164377 a001 2157408178150519/516002918640 4180999952164377 a001 2971215073/4870847*73681302247^(1/13) 4180999952164377 a001 2971215073/4870847*10749957122^(1/12) 4180999952164377 a001 2971215073/4870847*4106118243^(2/23) 4180999952164377 a001 2178309/6643838879*10749957122^(17/24) 4180999952164377 a001 2178309/45537549124*4106118243^(19/23) 4180999952164377 a001 2178309/17393796001*4106118243^(18/23) 4180999952164377 a001 2178309/119218851371*4106118243^(20/23) 4180999952164377 a001 2178309/312119004989*4106118243^(21/23) 4180999952164377 a001 2178309/817138163596*4106118243^(22/23) 4180999952164377 a001 701408733/4870847*599074578^(1/6) 4180999952164377 a004 Fibonacci(32)*Lucas(46)/(1/2+sqrt(5)/2)^59 4180999952164377 a001 2971215073/4870847*1568397607^(1/11) 4180999952164377 a001 2178309/6643838879*4106118243^(17/23) 4180999952164377 a001 1134903170/4870847*2537720636^(2/15) 4180999952164377 a001 7778742049/4870847*599074578^(1/21) 4180999952164377 a001 1134903170/4870847*45537549124^(2/17) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^32/Lucas(45) 4180999952164377 a001 1134903170/4870847*14662949395604^(2/21) 4180999952164377 a001 1134903170/4870847*(1/2+1/2*5^(1/2))^6 4180999952164377 a001 2472169789339530/591286729879 4180999952164377 a001 2178309/2537720636*73681302247^(8/13) 4180999952164377 a001 1134903170/4870847*10749957122^(1/8) 4180999952164377 a001 2178309/2537720636*10749957122^(2/3) 4180999952164377 a001 1134903170/4870847*4106118243^(3/23) 4180999952164377 a001 4807526976/4870847*599074578^(1/14) 4180999952164377 a001 2178309/2537720636*4106118243^(16/23) 4180999952164377 a001 1134903170/4870847*1568397607^(3/22) 4180999952164377 a001 726103/1368706081*1568397607^(3/4) 4180999952164377 a001 2971215073/4870847*599074578^(2/21) 4180999952164377 a001 2178309/17393796001*1568397607^(9/11) 4180999952164377 a001 2178309/6643838879*1568397607^(17/22) 4180999952164377 a001 2178309/45537549124*1568397607^(19/22) 4180999952164377 a001 2178309/119218851371*1568397607^(10/11) 4180999952164377 a001 2178309/312119004989*1568397607^(21/22) 4180999952164377 a004 Fibonacci(32)*Lucas(44)/(1/2+sqrt(5)/2)^57 4180999952164377 a001 2178309/2537720636*1568397607^(8/11) 4180999952164377 a001 1134903170/4870847*599074578^(1/7) 4180999952164377 a001 7778742049/4870847*228826127^(1/20) 4180999952164377 a001 2178309/969323029*2537720636^(2/3) 4180999952164377 a001 2178309/969323029*45537549124^(10/17) 4180999952164377 a001 2178309/969323029*312119004989^(6/11) 4180999952164377 a001 2178309/969323029*14662949395604^(10/21) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^30/Lucas(43) 4180999952164377 a001 433494437/4870847*(1/2+1/2*5^(1/2))^8 4180999952164377 a001 433494437/4870847*23725150497407^(1/8) 4180999952164377 a001 44965944455573/10754830177 4180999952164377 a001 2178309/969323029*192900153618^(5/9) 4180999952164377 a001 433494437/4870847*73681302247^(2/13) 4180999952164377 a001 2178309/969323029*28143753123^(3/5) 4180999952164377 a001 433494437/4870847*10749957122^(1/6) 4180999952164377 a001 2178309/969323029*10749957122^(5/8) 4180999952164377 a001 433494437/4870847*4106118243^(4/23) 4180999952164377 a001 2178309/969323029*4106118243^(15/23) 4180999952164377 a001 433494437/4870847*1568397607^(2/11) 4180999952164377 a001 2178309/969323029*1568397607^(15/22) 4180999952164377 a001 433494437/4870847*599074578^(4/21) 4180999952164377 a001 2971215073/4870847*228826127^(1/10) 4180999952164377 a001 726103/1368706081*599074578^(11/14) 4180999952164377 a001 2178309/2537720636*599074578^(16/21) 4180999952164377 a001 2178309/6643838879*599074578^(17/21) 4180999952164377 a001 987/4870846*599074578^(5/6) 4180999952164377 a001 1836311903/4870847*228826127^(1/8) 4180999952164377 a001 2178309/17393796001*599074578^(6/7) 4180999952164377 a001 2178309/45537549124*599074578^(19/21) 4180999952164377 a001 311187/10525900321*599074578^(13/14) 4180999952164377 a001 2178309/119218851371*599074578^(20/21) 4180999952164377 a004 Fibonacci(32)*Lucas(42)/(1/2+sqrt(5)/2)^55 4180999952164377 a001 1134903170/4870847*228826127^(3/20) 4180999952164377 a001 2178309/969323029*599074578^(5/7) 4180999952164377 a001 433494437/4870847*228826127^(1/5) 4180999952164377 a001 7778742049/4870847*87403803^(1/19) 4180999952164377 a001 165580141/4870847*2537720636^(2/9) 4180999952164377 a001 2178309/370248451*17393796001^(4/7) 4180999952164377 a001 165580141/4870847*312119004989^(2/11) 4180999952164377 a001 2178309/370248451*14662949395604^(4/9) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^28/Lucas(41) 4180999952164377 a001 165580141/4870847*(1/2+1/2*5^(1/2))^10 4180999952164377 a001 360684711361569/86267571272 4180999952164377 a001 2178309/370248451*73681302247^(7/13) 4180999952164377 a001 165580141/4870847*28143753123^(1/5) 4180999952164377 a001 165580141/4870847*10749957122^(5/24) 4180999952164377 a001 2178309/370248451*10749957122^(7/12) 4180999952164377 a001 165580141/4870847*4106118243^(5/23) 4180999952164377 a001 2178309/370248451*4106118243^(14/23) 4180999952164377 a001 165580141/4870847*1568397607^(5/22) 4180999952164377 a001 2178309/370248451*1568397607^(7/11) 4180999952164377 a001 165580141/4870847*599074578^(5/21) 4180999952164377 a001 2178309/370248451*599074578^(2/3) 4180999952164377 a001 165580141/4870847*228826127^(1/4) 4180999952164377 a001 2971215073/4870847*87403803^(2/19) 4180999952164377 a001 2178309/969323029*228826127^(3/4) 4180999952164377 a001 2178309/2537720636*228826127^(4/5) 4180999952164377 a001 2178309/6643838879*228826127^(17/20) 4180999952164377 a001 2178309/141422324*141422324^(2/3) 4180999952164377 a001 987/4870846*228826127^(7/8) 4180999952164377 a001 2178309/17393796001*228826127^(9/10) 4180999952164377 a001 2178309/45537549124*228826127^(19/20) 4180999952164377 a004 Fibonacci(32)*Lucas(40)/(1/2+sqrt(5)/2)^53 4180999952164377 a001 2178309/370248451*228826127^(7/10) 4180999952164377 a001 1134903170/4870847*87403803^(3/19) 4180999952164377 a001 433494437/4870847*87403803^(4/19) 4180999952164377 a001 63245986/4870847*141422324^(4/13) 4180999952164377 a001 165580141/4870847*87403803^(5/19) 4180999952164377 a001 7778742049/4870847*33385282^(1/18) 4180999952164377 a001 63245986/4870847*2537720636^(4/15) 4180999952164377 a001 63245986/4870847*45537549124^(4/17) 4180999952164377 a001 63245986/4870847*817138163596^(4/19) 4180999952164377 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^26/Lucas(39) 4180999952164377 a001 63245986/4870847*14662949395604^(4/21) 4180999952164377 a001 63245986/4870847*(1/2+1/2*5^(1/2))^12 4180999952164377 a001 63245986/4870847*192900153618^(2/9) 4180999952164377 a001 63245986/4870847*73681302247^(3/13) 4180999952164377 a001 2178309/141422324*73681302247^(1/2) 4180999952164377 a001 197094850526/47140601 4180999952164377 a001 63245986/4870847*10749957122^(1/4) 4180999952164377 a001 2178309/141422324*10749957122^(13/24) 4180999952164377 a001 63245986/4870847*4106118243^(6/23) 4180999952164377 a001 2178309/141422324*4106118243^(13/23) 4180999952164377 a001 63245986/4870847*1568397607^(3/11) 4180999952164377 a001 2178309/141422324*1568397607^(13/22) 4180999952164377 a001 63245986/4870847*599074578^(2/7) 4180999952164377 a001 2178309/141422324*599074578^(13/21) 4180999952164377 a001 63245986/4870847*228826127^(3/10) 4180999952164377 a001 2178309/141422324*228826127^(13/20) 4180999952164377 a001 4807526976/4870847*33385282^(1/12) 4180999952164377 a001 63245986/4870847*87403803^(6/19) 4180999952164377 a001 2971215073/4870847*33385282^(1/9) 4180999952164377 a001 2178309/370248451*87403803^(14/19) 4180999952164377 a001 2178309/969323029*87403803^(15/19) 4180999952164377 a001 2178309/2537720636*87403803^(16/19) 4180999952164377 a001 2178309/6643838879*87403803^(17/19) 4180999952164377 a001 2178309/17393796001*87403803^(18/19) 4180999952164377 a004 Fibonacci(32)*Lucas(38)/(1/2+sqrt(5)/2)^51 4180999952164377 a001 2178309/141422324*87403803^(13/19) 4180999952164377 a001 1134903170/4870847*33385282^(1/6) 4180999952164377 a001 433494437/4870847*33385282^(2/9) 4180999952164378 a001 267914296/4870847*33385282^(1/4) 4180999952164378 a001 165580141/4870847*33385282^(5/18) 4180999952164378 a001 2178309/54018521*141422324^(8/13) 4180999952164378 a001 2178309/54018521*2537720636^(8/15) 4180999952164378 a001 24157817/4870847*17393796001^(2/7) 4180999952164378 a001 2178309/54018521*45537549124^(8/17) 4180999952164378 a001 2178309/54018521*14662949395604^(8/21) 4180999952164378 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^24/Lucas(37) 4180999952164378 a001 24157817/4870847*14662949395604^(2/9) 4180999952164378 a001 24157817/4870847*(1/2+1/2*5^(1/2))^14 4180999952164378 a001 24157817/4870847*505019158607^(1/4) 4180999952164378 a001 2178309/54018521*192900153618^(4/9) 4180999952164378 a001 2178309/54018521*73681302247^(6/13) 4180999952164378 a001 52623190191453/12586269025 4180999952164378 a001 24157817/4870847*10749957122^(7/24) 4180999952164378 a001 2178309/54018521*10749957122^(1/2) 4180999952164378 a001 24157817/4870847*4106118243^(7/23) 4180999952164378 a001 2178309/54018521*4106118243^(12/23) 4180999952164378 a001 24157817/4870847*1568397607^(7/22) 4180999952164378 a001 2178309/54018521*1568397607^(6/11) 4180999952164378 a001 24157817/4870847*599074578^(1/3) 4180999952164378 a001 2178309/54018521*599074578^(4/7) 4180999952164378 a001 63245986/4870847*33385282^(1/3) 4180999952164378 a001 24157817/4870847*228826127^(7/20) 4180999952164378 a001 2178309/54018521*228826127^(3/5) 4180999952164378 a001 7778742049/4870847*12752043^(1/17) 4180999952164378 a001 24157817/4870847*87403803^(7/19) 4180999952164378 a001 2178309/54018521*87403803^(12/19) 4180999952164379 a001 46347/4868641*33385282^(3/4) 4180999952164380 a001 24157817/4870847*33385282^(7/18) 4180999952164380 a001 2178309/141422324*33385282^(13/18) 4180999952164380 a001 2178309/370248451*33385282^(7/9) 4180999952164380 a001 2971215073/4870847*12752043^(2/17) 4180999952164380 a001 2178309/969323029*33385282^(5/6) 4180999952164380 a001 2178309/2537720636*33385282^(8/9) 4180999952164380 a001 726103/1368706081*33385282^(11/12) 4180999952164380 a001 2178309/6643838879*33385282^(17/18) 4180999952164380 a004 Fibonacci(32)*Lucas(36)/(1/2+sqrt(5)/2)^49 4180999952164381 a001 2178309/54018521*33385282^(2/3) 4180999952164381 a001 1134903170/4870847*12752043^(3/17) 4180999952164383 a001 433494437/4870847*12752043^(4/17) 4180999952164384 a001 165580141/4870847*12752043^(5/17) 4180999952164386 a001 63245986/4870847*12752043^(6/17) 4180999952164386 a001 2178309/20633239*312119004989^(2/5) 4180999952164386 a001 2178309/20633239*(1/2+1/2*5^(1/2))^22 4180999952164386 a001 9227465/4870847*(1/2+1/2*5^(1/2))^16 4180999952164386 a001 9227465/4870847*23725150497407^(1/4) 4180999952164386 a001 9227465/4870847*73681302247^(4/13) 4180999952164386 a001 9227465/4870847*10749957122^(1/3) 4180999952164386 a001 2178309/20633239*10749957122^(11/24) 4180999952164386 a001 20365015255/4870848 4180999952164386 a001 9227465/4870847*4106118243^(8/23) 4180999952164386 a001 2178309/20633239*4106118243^(11/23) 4180999952164386 a001 9227465/4870847*1568397607^(4/11) 4180999952164386 a001 2178309/20633239*1568397607^(1/2) 4180999952164386 a001 9227465/4870847*599074578^(8/21) 4180999952164386 a001 2178309/20633239*599074578^(11/21) 4180999952164387 a001 9227465/4870847*228826127^(2/5) 4180999952164387 a001 2178309/20633239*228826127^(11/20) 4180999952164387 a001 9227465/4870847*87403803^(8/19) 4180999952164387 a001 2178309/20633239*87403803^(11/19) 4180999952164388 a001 7778742049/4870847*4870847^(1/16) 4180999952164388 a001 9227465/4870847*33385282^(4/9) 4180999952164389 a001 24157817/4870847*12752043^(7/17) 4180999952164389 a001 2178309/20633239*33385282^(11/18) 4180999952164393 a001 832040/54018521*1860498^(13/15) 4180999952164396 a001 2178309/54018521*12752043^(12/17) 4180999952164397 a001 2178309/141422324*12752043^(13/17) 4180999952164398 a001 2178309/370248451*12752043^(14/17) 4180999952164399 a001 9227465/4870847*12752043^(8/17) 4180999952164399 a001 2971215073/4870847*4870847^(1/8) 4180999952164399 a001 2178309/969323029*12752043^(15/17) 4180999952164401 a001 2178309/2537720636*12752043^(16/17) 4180999952164402 a004 Fibonacci(32)*Lucas(34)/(1/2+sqrt(5)/2)^47 4180999952164403 a001 2178309/20633239*12752043^(11/17) 4180999952164407 a001 3524578/4870847*7881196^(6/11) 4180999952164410 a001 1134903170/4870847*4870847^(3/16) 4180999952164421 a001 433494437/4870847*4870847^(1/4) 4180999952164432 a001 832040/87403803*1860498^(9/10) 4180999952164432 a001 165580141/4870847*4870847^(5/16) 4180999952164438 a001 2178309/7881196*20633239^(4/7) 4180999952164443 a001 63245986/4870847*4870847^(3/8) 4180999952164444 a001 3524578/4870847*141422324^(6/13) 4180999952164444 a001 2178309/7881196*2537720636^(4/9) 4180999952164444 a001 3524578/4870847*2537720636^(2/5) 4180999952164444 a001 3524578/4870847*45537549124^(6/17) 4180999952164444 a001 2178309/7881196*(1/2+1/2*5^(1/2))^20 4180999952164444 a001 2178309/7881196*23725150497407^(5/16) 4180999952164444 a001 3524578/4870847*(1/2+1/2*5^(1/2))^18 4180999952164444 a001 2178309/7881196*505019158607^(5/14) 4180999952164444 a001 3524578/4870847*192900153618^(1/3) 4180999952164444 a001 2178309/7881196*73681302247^(5/13) 4180999952164444 a001 2178309/7881196*28143753123^(2/5) 4180999952164444 a001 3524578/4870847*10749957122^(3/8) 4180999952164444 a001 2178309/7881196*10749957122^(5/12) 4180999952164444 a001 3524578/4870847*4106118243^(9/23) 4180999952164444 a001 2178309/7881196*4106118243^(10/23) 4180999952164444 a001 7677619978602/1836311903 4180999952164444 a001 3524578/4870847*1568397607^(9/22) 4180999952164444 a001 2178309/7881196*1568397607^(5/11) 4180999952164444 a001 3524578/4870847*599074578^(3/7) 4180999952164444 a001 2178309/7881196*599074578^(10/21) 4180999952164444 a001 3524578/4870847*228826127^(9/20) 4180999952164444 a001 2178309/7881196*228826127^(1/2) 4180999952164444 a001 3524578/4870847*87403803^(9/19) 4180999952164444 a001 2178309/7881196*87403803^(10/19) 4180999952164446 a001 3524578/4870847*33385282^(1/2) 4180999952164446 a001 2178309/7881196*33385282^(5/9) 4180999952164455 a001 24157817/4870847*4870847^(7/16) 4180999952164457 a001 7778742049/4870847*1860498^(1/15) 4180999952164458 a001 3524578/4870847*12752043^(9/17) 4180999952164459 a001 2178309/7881196*12752043^(10/17) 4180999952164460 a004 Fibonacci(34)*Lucas(33)/(1/2+sqrt(5)/2)^48 4180999952164466 a001 5702887/2537720636*7881196^(10/11) 4180999952164472 a001 5702887/599074578*7881196^(9/11) 4180999952164473 a001 208010/35355581*1860498^(14/15) 4180999952164475 a001 9227465/4870847*4870847^(1/2) 4180999952164478 a001 5702887/141422324*7881196^(8/11) 4180999952164481 a001 5702887/33385282*7881196^(7/11) 4180999952164482 a004 Fibonacci(36)*Lucas(33)/(1/2+sqrt(5)/2)^50 4180999952164484 a001 5702887/54018521*7881196^(2/3) 4180999952164485 a004 Fibonacci(38)*Lucas(33)/(1/2+sqrt(5)/2)^52 4180999952164485 a004 Fibonacci(40)*Lucas(33)/(1/2+sqrt(5)/2)^54 4180999952164486 a004 Fibonacci(42)*Lucas(33)/(1/2+sqrt(5)/2)^56 4180999952164486 a004 Fibonacci(44)*Lucas(33)/(1/2+sqrt(5)/2)^58 4180999952164486 a004 Fibonacci(46)*Lucas(33)/(1/2+sqrt(5)/2)^60 4180999952164486 a004 Fibonacci(48)*Lucas(33)/(1/2+sqrt(5)/2)^62 4180999952164486 a004 Fibonacci(50)*Lucas(33)/(1/2+sqrt(5)/2)^64 4180999952164486 a004 Fibonacci(52)*Lucas(33)/(1/2+sqrt(5)/2)^66 4180999952164486 a004 Fibonacci(54)*Lucas(33)/(1/2+sqrt(5)/2)^68 4180999952164486 a004 Fibonacci(56)*Lucas(33)/(1/2+sqrt(5)/2)^70 4180999952164486 a004 Fibonacci(58)*Lucas(33)/(1/2+sqrt(5)/2)^72 4180999952164486 a004 Fibonacci(60)*Lucas(33)/(1/2+sqrt(5)/2)^74 4180999952164486 a004 Fibonacci(62)*Lucas(33)/(1/2+sqrt(5)/2)^76 4180999952164486 a004 Fibonacci(64)*Lucas(33)/(1/2+sqrt(5)/2)^78 4180999952164486 a004 Fibonacci(66)*Lucas(33)/(1/2+sqrt(5)/2)^80 4180999952164486 a004 Fibonacci(68)*Lucas(33)/(1/2+sqrt(5)/2)^82 4180999952164486 a004 Fibonacci(70)*Lucas(33)/(1/2+sqrt(5)/2)^84 4180999952164486 a004 Fibonacci(72)*Lucas(33)/(1/2+sqrt(5)/2)^86 4180999952164486 a004 Fibonacci(74)*Lucas(33)/(1/2+sqrt(5)/2)^88 4180999952164486 a004 Fibonacci(76)*Lucas(33)/(1/2+sqrt(5)/2)^90 4180999952164486 a004 Fibonacci(78)*Lucas(33)/(1/2+sqrt(5)/2)^92 4180999952164486 a004 Fibonacci(80)*Lucas(33)/(1/2+sqrt(5)/2)^94 4180999952164486 a004 Fibonacci(82)*Lucas(33)/(1/2+sqrt(5)/2)^96 4180999952164486 a004 Fibonacci(84)*Lucas(33)/(1/2+sqrt(5)/2)^98 4180999952164486 a004 Fibonacci(86)*Lucas(33)/(1/2+sqrt(5)/2)^100 4180999952164486 a004 Fibonacci(85)*Lucas(33)/(1/2+sqrt(5)/2)^99 4180999952164486 a004 Fibonacci(83)*Lucas(33)/(1/2+sqrt(5)/2)^97 4180999952164486 a004 Fibonacci(81)*Lucas(33)/(1/2+sqrt(5)/2)^95 4180999952164486 a004 Fibonacci(79)*Lucas(33)/(1/2+sqrt(5)/2)^93 4180999952164486 a004 Fibonacci(77)*Lucas(33)/(1/2+sqrt(5)/2)^91 4180999952164486 a004 Fibonacci(75)*Lucas(33)/(1/2+sqrt(5)/2)^89 4180999952164486 a004 Fibonacci(73)*Lucas(33)/(1/2+sqrt(5)/2)^87 4180999952164486 a004 Fibonacci(71)*Lucas(33)/(1/2+sqrt(5)/2)^85 4180999952164486 a004 Fibonacci(69)*Lucas(33)/(1/2+sqrt(5)/2)^83 4180999952164486 a004 Fibonacci(67)*Lucas(33)/(1/2+sqrt(5)/2)^81 4180999952164486 a001 1/1762289*(1/2+1/2*5^(1/2))^52 4180999952164486 a004 Fibonacci(65)*Lucas(33)/(1/2+sqrt(5)/2)^79 4180999952164486 a004 Fibonacci(63)*Lucas(33)/(1/2+sqrt(5)/2)^77 4180999952164486 a004 Fibonacci(61)*Lucas(33)/(1/2+sqrt(5)/2)^75 4180999952164486 a004 Fibonacci(59)*Lucas(33)/(1/2+sqrt(5)/2)^73 4180999952164486 a004 Fibonacci(57)*Lucas(33)/(1/2+sqrt(5)/2)^71 4180999952164486 a004 Fibonacci(55)*Lucas(33)/(1/2+sqrt(5)/2)^69 4180999952164486 a004 Fibonacci(53)*Lucas(33)/(1/2+sqrt(5)/2)^67 4180999952164486 a004 Fibonacci(51)*Lucas(33)/(1/2+sqrt(5)/2)^65 4180999952164486 a004 Fibonacci(49)*Lucas(33)/(1/2+sqrt(5)/2)^63 4180999952164486 a004 Fibonacci(47)*Lucas(33)/(1/2+sqrt(5)/2)^61 4180999952164486 a004 Fibonacci(45)*Lucas(33)/(1/2+sqrt(5)/2)^59 4180999952164486 a004 Fibonacci(43)*Lucas(33)/(1/2+sqrt(5)/2)^57 4180999952164486 a004 Fibonacci(41)*Lucas(33)/(1/2+sqrt(5)/2)^55 4180999952164486 a004 Fibonacci(39)*Lucas(33)/(1/2+sqrt(5)/2)^53 4180999952164487 a004 Fibonacci(37)*Lucas(33)/(1/2+sqrt(5)/2)^51 4180999952164488 a001 14930352/6643838879*7881196^(10/11) 4180999952164491 a001 39088169/17393796001*7881196^(10/11) 4180999952164492 a001 102334155/45537549124*7881196^(10/11) 4180999952164492 a001 267914296/119218851371*7881196^(10/11) 4180999952164492 a001 3524667/1568437211*7881196^(10/11) 4180999952164492 a001 1836311903/817138163596*7881196^(10/11) 4180999952164492 a001 4807526976/2139295485799*7881196^(10/11) 4180999952164492 a001 12586269025/5600748293801*7881196^(10/11) 4180999952164492 a001 32951280099/14662949395604*7881196^(10/11) 4180999952164492 a001 53316291173/23725150497407*7881196^(10/11) 4180999952164492 a001 20365011074/9062201101803*7881196^(10/11) 4180999952164492 a001 7778742049/3461452808002*7881196^(10/11) 4180999952164492 a001 2971215073/1322157322203*7881196^(10/11) 4180999952164492 a001 1134903170/505019158607*7881196^(10/11) 4180999952164492 a001 433494437/192900153618*7881196^(10/11) 4180999952164492 a001 165580141/73681302247*7881196^(10/11) 4180999952164492 a001 63245986/28143753123*7881196^(10/11) 4180999952164493 a001 24157817/10749957122*7881196^(10/11) 4180999952164494 a001 14930352/1568397607*7881196^(9/11) 4180999952164495 a004 Fibonacci(35)*Lucas(33)/(1/2+sqrt(5)/2)^49 4180999952164496 a001 39088169/12752043*7881196^(5/11) 4180999952164497 a001 39088169/4106118243*7881196^(9/11) 4180999952164497 a001 4807526976/4870847*1860498^(1/10) 4180999952164498 a001 102334155/10749957122*7881196^(9/11) 4180999952164498 a001 267914296/28143753123*7881196^(9/11) 4180999952164498 a001 701408733/73681302247*7881196^(9/11) 4180999952164498 a001 1836311903/192900153618*7881196^(9/11) 4180999952164498 a001 102287808/10745088481*7881196^(9/11) 4180999952164498 a001 12586269025/1322157322203*7881196^(9/11) 4180999952164498 a001 32951280099/3461452808002*7881196^(9/11) 4180999952164498 a001 86267571272/9062201101803*7881196^(9/11) 4180999952164498 a001 225851433717/23725150497407*7881196^(9/11) 4180999952164498 a001 139583862445/14662949395604*7881196^(9/11) 4180999952164498 a001 53316291173/5600748293801*7881196^(9/11) 4180999952164498 a001 20365011074/2139295485799*7881196^(9/11) 4180999952164498 a001 7778742049/817138163596*7881196^(9/11) 4180999952164498 a001 2971215073/312119004989*7881196^(9/11) 4180999952164498 a001 1134903170/119218851371*7881196^(9/11) 4180999952164498 a001 433494437/45537549124*7881196^(9/11) 4180999952164498 a001 165580141/17393796001*7881196^(9/11) 4180999952164498 a001 63245986/6643838879*7881196^(9/11) 4180999952164499 a001 24157817/2537720636*7881196^(9/11) 4180999952164500 a001 14930352/370248451*7881196^(8/11) 4180999952164500 a001 9227465/12752043*7881196^(6/11) 4180999952164501 a001 32522920134769/7778742049 4180999952164501 a001 5702887/12752043*817138163596^(1/3) 4180999952164501 a001 5702887/12752043*(1/2+1/2*5^(1/2))^19 4180999952164502 a001 9227465/4106118243*7881196^(10/11) 4180999952164502 a001 5702887/12752043*87403803^(1/2) 4180999952164503 a001 165580141/12752043*7881196^(4/11) 4180999952164503 a001 39088169/969323029*7881196^(8/11) 4180999952164504 a001 9303105/230701876*7881196^(8/11) 4180999952164504 a001 267914296/6643838879*7881196^(8/11) 4180999952164504 a001 701408733/17393796001*7881196^(8/11) 4180999952164504 a001 1836311903/45537549124*7881196^(8/11) 4180999952164504 a001 4807526976/119218851371*7881196^(8/11) 4180999952164504 a001 1144206275/28374454999*7881196^(8/11) 4180999952164504 a001 32951280099/817138163596*7881196^(8/11) 4180999952164504 a001 86267571272/2139295485799*7881196^(8/11) 4180999952164504 a001 225851433717/5600748293801*7881196^(8/11) 4180999952164504 a001 591286729879/14662949395604*7881196^(8/11) 4180999952164504 a001 365435296162/9062201101803*7881196^(8/11) 4180999952164504 a001 139583862445/3461452808002*7881196^(8/11) 4180999952164504 a001 53316291173/1322157322203*7881196^(8/11) 4180999952164504 a001 20365011074/505019158607*7881196^(8/11) 4180999952164504 a001 7778742049/192900153618*7881196^(8/11) 4180999952164504 a001 2971215073/73681302247*7881196^(8/11) 4180999952164504 a001 1134903170/28143753123*7881196^(8/11) 4180999952164504 a001 433494437/10749957122*7881196^(8/11) 4180999952164504 a001 165580141/4106118243*7881196^(8/11) 4180999952164504 a001 63245986/1568397607*7881196^(8/11) 4180999952164504 a001 3732588/35355581*7881196^(2/3) 4180999952164505 a001 267914296/12752043*7881196^(1/3) 4180999952164505 a001 24157817/599074578*7881196^(8/11) 4180999952164506 a001 4976784/29134601*7881196^(7/11) 4180999952164507 a001 39088169/370248451*7881196^(2/3) 4180999952164508 a001 2178309/20633239*4870847^(11/16) 4180999952164508 a001 9227465/969323029*7881196^(9/11) 4180999952164508 a001 102334155/969323029*7881196^(2/3) 4180999952164508 a001 66978574/634430159*7881196^(2/3) 4180999952164508 a001 701408733/6643838879*7881196^(2/3) 4180999952164508 a001 1836311903/17393796001*7881196^(2/3) 4180999952164508 a001 1201881744/11384387281*7881196^(2/3) 4180999952164508 a001 12586269025/119218851371*7881196^(2/3) 4180999952164508 a001 32951280099/312119004989*7881196^(2/3) 4180999952164508 a001 21566892818/204284540899*7881196^(2/3) 4180999952164508 a001 225851433717/2139295485799*7881196^(2/3) 4180999952164508 a001 182717648081/1730726404001*7881196^(2/3) 4180999952164508 a001 139583862445/1322157322203*7881196^(2/3) 4180999952164508 a001 53316291173/505019158607*7881196^(2/3) 4180999952164508 a001 10182505537/96450076809*7881196^(2/3) 4180999952164508 a001 7778742049/73681302247*7881196^(2/3) 4180999952164508 a001 2971215073/28143753123*7881196^(2/3) 4180999952164508 a001 567451585/5374978561*7881196^(2/3) 4180999952164508 a001 433494437/4106118243*7881196^(2/3) 4180999952164508 a001 165580141/1568397607*7881196^(2/3) 4180999952164508 a001 31622993/299537289*7881196^(2/3) 4180999952164509 a001 233802911/4250681*7881196^(3/11) 4180999952164509 a001 24157817/228826127*7881196^(2/3) 4180999952164509 a001 39088169/228826127*7881196^(7/11) 4180999952164510 a001 34111385/199691526*7881196^(7/11) 4180999952164510 a001 267914296/1568397607*7881196^(7/11) 4180999952164510 a001 233802911/1368706081*7881196^(7/11) 4180999952164510 a001 1836311903/10749957122*7881196^(7/11) 4180999952164510 a001 1602508992/9381251041*7881196^(7/11) 4180999952164510 a001 12586269025/73681302247*7881196^(7/11) 4180999952164510 a001 10983760033/64300051206*7881196^(7/11) 4180999952164510 a001 86267571272/505019158607*7881196^(7/11) 4180999952164510 a001 75283811239/440719107401*7881196^(7/11) 4180999952164510 a001 2504730781961/14662949395604*7881196^(7/11) 4180999952164510 a001 139583862445/817138163596*7881196^(7/11) 4180999952164510 a001 53316291173/312119004989*7881196^(7/11) 4180999952164510 a001 20365011074/119218851371*7881196^(7/11) 4180999952164510 a001 7778742049/45537549124*7881196^(7/11) 4180999952164510 a001 2971215073/17393796001*7881196^(7/11) 4180999952164510 a001 1134903170/6643838879*7881196^(7/11) 4180999952164510 a001 433494437/2537720636*7881196^(7/11) 4180999952164510 a001 165580141/969323029*7881196^(7/11) 4180999952164510 a001 2178309/54018521*4870847^(3/4) 4180999952164510 a001 63245986/370248451*7881196^(7/11) 4180999952164512 a001 24157817/141422324*7881196^(7/11) 4180999952164514 a001 9227465/228826127*7881196^(8/11) 4180999952164514 a001 24157817/33385282*7881196^(6/11) 4180999952164515 a001 2971215073/12752043*7881196^(2/11) 4180999952164516 a001 63245986/87403803*7881196^(6/11) 4180999952164516 a001 165580141/228826127*7881196^(6/11) 4180999952164516 a001 433494437/599074578*7881196^(6/11) 4180999952164516 a001 1134903170/1568397607*7881196^(6/11) 4180999952164516 a001 2971215073/4106118243*7881196^(6/11) 4180999952164516 a001 7778742049/10749957122*7881196^(6/11) 4180999952164516 a001 20365011074/28143753123*7881196^(6/11) 4180999952164516 a001 53316291173/73681302247*7881196^(6/11) 4180999952164516 a001 139583862445/192900153618*7881196^(6/11) 4180999952164516 a001 365435296162/505019158607*7881196^(6/11) 4180999952164516 a001 10610209857723/14662949395604*7881196^(6/11) 4180999952164516 a001 225851433717/312119004989*7881196^(6/11) 4180999952164516 a001 86267571272/119218851371*7881196^(6/11) 4180999952164516 a001 32951280099/45537549124*7881196^(6/11) 4180999952164516 a001 12586269025/17393796001*7881196^(6/11) 4180999952164516 a001 4807526976/6643838879*7881196^(6/11) 4180999952164516 a001 1836311903/2537720636*7881196^(6/11) 4180999952164516 a001 701408733/969323029*7881196^(6/11) 4180999952164516 a001 267914296/370248451*7881196^(6/11) 4180999952164516 a001 102334155/141422324*7881196^(6/11) 4180999952164517 a001 39088169/54018521*7881196^(6/11) 4180999952164517 a001 9227465/87403803*7881196^(2/3) 4180999952164517 a004 Fibonacci(34)*Lucas(35)/(1/2+sqrt(5)/2)^50 4180999952164518 a001 5702887/33385282*20633239^(3/5) 4180999952164518 a001 14619165/4769326*7881196^(5/11) 4180999952164519 a001 5702887/2537720636*20633239^(6/7) 4180999952164519 a001 5702887/969323029*20633239^(4/5) 4180999952164520 a001 2178309/141422324*4870847^(13/16) 4180999952164520 a001 5702887/228826127*20633239^(5/7) 4180999952164521 a001 12586269025/12752043*7881196^(1/11) 4180999952164521 a001 9227465/54018521*7881196^(7/11) 4180999952164522 a001 267914296/87403803*7881196^(5/11) 4180999952164522 a001 701408733/228826127*7881196^(5/11) 4180999952164522 a001 14930352/20633239*7881196^(6/11) 4180999952164522 a001 1836311903/599074578*7881196^(5/11) 4180999952164522 a001 686789568/224056801*7881196^(5/11) 4180999952164522 a001 12586269025/4106118243*7881196^(5/11) 4180999952164522 a001 32951280099/10749957122*7881196^(5/11) 4180999952164522 a001 86267571272/28143753123*7881196^(5/11) 4180999952164522 a001 32264490531/10525900321*7881196^(5/11) 4180999952164522 a001 591286729879/192900153618*7881196^(5/11) 4180999952164522 a001 1548008755920/505019158607*7881196^(5/11) 4180999952164522 a001 1515744265389/494493258286*7881196^(5/11) 4180999952164522 a001 2504730781961/817138163596*7881196^(5/11) 4180999952164522 a001 956722026041/312119004989*7881196^(5/11) 4180999952164522 a001 365435296162/119218851371*7881196^(5/11) 4180999952164522 a001 139583862445/45537549124*7881196^(5/11) 4180999952164522 a001 53316291173/17393796001*7881196^(5/11) 4180999952164522 a001 20365011074/6643838879*7881196^(5/11) 4180999952164522 a001 7778742049/2537720636*7881196^(5/11) 4180999952164522 a001 2971215073/969323029*7881196^(5/11) 4180999952164522 a001 1134903170/370248451*7881196^(5/11) 4180999952164522 a001 39088169/12752043*20633239^(3/7) 4180999952164523 a001 433494437/141422324*7881196^(5/11) 4180999952164523 a001 5702887/33385282*141422324^(7/13) 4180999952164523 a001 5702887/33385282*2537720636^(7/15) 4180999952164523 a001 5702887/33385282*17393796001^(3/7) 4180999952164523 a001 26658143496/6376021 4180999952164523 a001 5702887/33385282*45537549124^(7/17) 4180999952164523 a001 4976784/4250681*45537549124^(1/3) 4180999952164523 a001 5702887/33385282*14662949395604^(1/3) 4180999952164523 a001 5702887/33385282*(1/2+1/2*5^(1/2))^21 4180999952164523 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^21/Lucas(36) 4180999952164523 a001 4976784/4250681*(1/2+1/2*5^(1/2))^17 4180999952164523 a001 5702887/33385282*192900153618^(7/18) 4180999952164523 a001 5702887/33385282*10749957122^(7/16) 4180999952164523 a001 5702887/33385282*599074578^(1/2) 4180999952164523 a001 63245986/12752043*20633239^(2/5) 4180999952164524 a001 165580141/54018521*7881196^(5/11) 4180999952164524 a001 433494437/12752043*20633239^(2/7) 4180999952164525 a001 433494437/33385282*7881196^(4/11) 4180999952164525 a001 1836311903/12752043*20633239^(1/5) 4180999952164526 a001 5702887/33385282*33385282^(7/12) 4180999952164526 a004 Fibonacci(34)*Lucas(37)/(1/2+sqrt(5)/2)^52 4180999952164526 a001 1602508992/4250681*20633239^(1/7) 4180999952164527 a001 39088169/12752043*141422324^(5/13) 4180999952164527 a001 39088169/12752043*2537720636^(1/3) 4180999952164527 a001 39088169/12752043*45537549124^(5/17) 4180999952164527 a001 222915410843903/53316291173 4180999952164527 a001 39088169/12752043*312119004989^(3/11) 4180999952164527 a001 39088169/12752043*14662949395604^(5/21) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^23/Lucas(38) 4180999952164527 a001 39088169/12752043*(1/2+1/2*5^(1/2))^15 4180999952164527 a001 39088169/12752043*192900153618^(5/18) 4180999952164527 a001 39088169/12752043*28143753123^(3/10) 4180999952164527 a001 39088169/12752043*10749957122^(5/16) 4180999952164527 a001 5702887/87403803*4106118243^(1/2) 4180999952164527 a001 39088169/12752043*599074578^(5/14) 4180999952164527 a001 39088169/12752043*228826127^(3/8) 4180999952164527 a001 701408733/33385282*7881196^(1/3) 4180999952164527 a004 Fibonacci(34)*Lucas(39)/(1/2+sqrt(5)/2)^54 4180999952164527 a001 1597/12752044*141422324^(12/13) 4180999952164527 a001 5702887/10749957122*141422324^(11/13) 4180999952164527 a001 5702887/2537720636*141422324^(10/13) 4180999952164527 a001 5702887/599074578*141422324^(9/13) 4180999952164527 a001 34111385/4250681*141422324^(1/3) 4180999952164527 a001 5702887/370248451*141422324^(2/3) 4180999952164527 a001 5702887/228826127*2537720636^(5/9) 4180999952164527 a001 116720024441097/27916772489 4180999952164527 a001 5702887/228826127*312119004989^(5/11) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^25/Lucas(40) 4180999952164527 a001 34111385/4250681*(1/2+1/2*5^(1/2))^13 4180999952164527 a001 5702887/228826127*3461452808002^(5/12) 4180999952164527 a001 34111385/4250681*73681302247^(1/4) 4180999952164527 a001 5702887/228826127*28143753123^(1/2) 4180999952164527 a001 233802911/4250681*141422324^(3/13) 4180999952164527 a001 165580141/12752043*141422324^(4/13) 4180999952164527 a001 2971215073/12752043*141422324^(2/13) 4180999952164527 a004 Fibonacci(34)*Lucas(41)/(1/2+sqrt(5)/2)^56 4180999952164527 a001 5702887/228826127*228826127^(5/8) 4180999952164527 a001 12586269025/12752043*141422324^(1/13) 4180999952164527 a001 5702887/599074578*2537720636^(3/5) 4180999952164527 a001 5702887/599074578*45537549124^(9/17) 4180999952164527 a001 267914296/12752043*312119004989^(1/5) 4180999952164527 a001 5702887/599074578*817138163596^(9/19) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^27/Lucas(42) 4180999952164527 a001 267914296/12752043*(1/2+1/2*5^(1/2))^11 4180999952164527 a001 5702887/599074578*192900153618^(1/2) 4180999952164527 a001 5702887/599074578*10749957122^(9/16) 4180999952164527 a001 267914296/12752043*1568397607^(1/4) 4180999952164527 a004 Fibonacci(34)*Lucas(43)/(1/2+sqrt(5)/2)^58 4180999952164527 a001 5702887/599074578*599074578^(9/14) 4180999952164527 a001 233802911/4250681*2537720636^(1/5) 4180999952164527 a001 233802911/4250681*45537549124^(3/17) 4180999952164527 a001 233802911/4250681*817138163596^(3/19) 4180999952164527 a001 233802911/4250681*14662949395604^(1/7) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^29/Lucas(44) 4180999952164527 a001 233802911/4250681*(1/2+1/2*5^(1/2))^9 4180999952164527 a001 233802911/4250681*192900153618^(1/6) 4180999952164527 a001 233802911/4250681*10749957122^(3/16) 4180999952164527 a004 Fibonacci(34)*Lucas(45)/(1/2+sqrt(5)/2)^60 4180999952164527 a001 5702887/817138163596*2537720636^(14/15) 4180999952164527 a001 5702887/312119004989*2537720636^(8/9) 4180999952164527 a001 5702887/192900153618*2537720636^(13/15) 4180999952164527 a001 1597/12752044*2537720636^(4/5) 4180999952164527 a001 5702887/10749957122*2537720636^(11/15) 4180999952164527 a001 5702887/28143753123*2537720636^(7/9) 4180999952164527 a001 1836311903/12752043*17393796001^(1/7) 4180999952164527 a001 10472279279563961/2504730781961 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^31/Lucas(46) 4180999952164527 a001 1836311903/12752043*(1/2+1/2*5^(1/2))^7 4180999952164527 a001 1602508992/4250681*2537720636^(1/9) 4180999952164527 a004 Fibonacci(34)*Lucas(47)/(1/2+sqrt(5)/2)^62 4180999952164527 a001 12586269025/12752043*2537720636^(1/15) 4180999952164527 a001 5702887/10749957122*45537549124^(11/17) 4180999952164527 a001 5702887/10749957122*312119004989^(3/5) 4180999952164527 a001 1602508992/4250681*312119004989^(1/11) 4180999952164527 a001 13708391546789856/3278735159921 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^33/Lucas(48) 4180999952164527 a001 1602508992/4250681*(1/2+1/2*5^(1/2))^5 4180999952164527 a001 5702887/10749957122*192900153618^(11/18) 4180999952164527 a001 1602508992/4250681*28143753123^(1/10) 4180999952164527 a001 5702887/28143753123*17393796001^(5/7) 4180999952164527 a004 Fibonacci(34)*Lucas(49)/(1/2+sqrt(5)/2)^64 4180999952164527 a001 5702887/817138163596*17393796001^(6/7) 4180999952164527 a001 5702887/10749957122*10749957122^(11/16) 4180999952164527 a001 12586269025/12752043*45537549124^(1/17) 4180999952164527 a001 5702887/28143753123*312119004989^(7/11) 4180999952164527 a001 12586269025/12752043*14662949395604^(1/21) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^35/Lucas(50) 4180999952164527 a001 12586269025/12752043*(1/2+1/2*5^(1/2))^3 4180999952164527 a001 12586269025/12752043*192900153618^(1/18) 4180999952164527 a001 5702887/28143753123*505019158607^(5/8) 4180999952164527 a001 12586269025/12752043*10749957122^(1/16) 4180999952164527 a004 Fibonacci(34)*Lucas(51)/(1/2+sqrt(5)/2)^66 4180999952164527 a001 5702887/14662949395604*45537549124^(16/17) 4180999952164527 a001 5702887/3461452808002*45537549124^(15/17) 4180999952164527 a001 5702887/192900153618*45537549124^(13/17) 4180999952164527 a001 5702887/817138163596*45537549124^(14/17) 4180999952164527 a001 5702887/28143753123*28143753123^(7/10) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^37/Lucas(52) 4180999952164527 a004 Fibonacci(34)*Lucas(53)/(1/2+sqrt(5)/2)^68 4180999952164527 a001 5702887/192900153618*14662949395604^(13/21) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^39/Lucas(54) 4180999952164527 a004 Fibonacci(54)/Lucas(34)/(1/2+sqrt(5)/2) 4180999952164527 a004 Fibonacci(34)*Lucas(55)/(1/2+sqrt(5)/2)^70 4180999952164527 a001 5702887/2139295485799*312119004989^(4/5) 4180999952164527 a001 5702887/192900153618*192900153618^(13/18) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^41/Lucas(56) 4180999952164527 a004 Fibonacci(56)/Lucas(34)/(1/2+sqrt(5)/2)^3 4180999952164527 a004 Fibonacci(34)*Lucas(57)/(1/2+sqrt(5)/2)^72 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^43/Lucas(58) 4180999952164527 a004 Fibonacci(58)/Lucas(34)/(1/2+sqrt(5)/2)^5 4180999952164527 a004 Fibonacci(34)*Lucas(59)/(1/2+sqrt(5)/2)^74 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^45/Lucas(60) 4180999952164527 a004 Fibonacci(60)/Lucas(34)/(1/2+sqrt(5)/2)^7 4180999952164527 a004 Fibonacci(34)*Lucas(61)/(1/2+sqrt(5)/2)^76 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^47/Lucas(62) 4180999952164527 a004 Fibonacci(62)/Lucas(34)/(1/2+sqrt(5)/2)^9 4180999952164527 a001 5702887/23725150497407*14662949395604^(7/9) 4180999952164527 a004 Fibonacci(34)*Lucas(63)/(1/2+sqrt(5)/2)^78 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^49/Lucas(64) 4180999952164527 a004 Fibonacci(64)/Lucas(34)/(1/2+sqrt(5)/2)^11 4180999952164527 a004 Fibonacci(34)*Lucas(65)/(1/2+sqrt(5)/2)^80 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^51/Lucas(66) 4180999952164527 a004 Fibonacci(66)/Lucas(34)/(1/2+sqrt(5)/2)^13 4180999952164527 a004 Fibonacci(34)*Lucas(67)/(1/2+sqrt(5)/2)^82 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^53/Lucas(68) 4180999952164527 a004 Fibonacci(34)*Lucas(69)/(1/2+sqrt(5)/2)^84 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^55/Lucas(70) 4180999952164527 a004 Fibonacci(34)*Lucas(71)/(1/2+sqrt(5)/2)^86 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^57/Lucas(72) 4180999952164527 a004 Fibonacci(34)*Lucas(73)/(1/2+sqrt(5)/2)^88 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^59/Lucas(74) 4180999952164527 a004 Fibonacci(34)*Lucas(75)/(1/2+sqrt(5)/2)^90 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^61/Lucas(76) 4180999952164527 a004 Fibonacci(34)*Lucas(77)/(1/2+sqrt(5)/2)^92 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^63/Lucas(78) 4180999952164527 a004 Fibonacci(34)*Lucas(79)/(1/2+sqrt(5)/2)^94 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^65/Lucas(80) 4180999952164527 a004 Fibonacci(34)*Lucas(81)/(1/2+sqrt(5)/2)^96 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^67/Lucas(82) 4180999952164527 a004 Fibonacci(34)*Lucas(83)/(1/2+sqrt(5)/2)^98 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^69/Lucas(84) 4180999952164527 a004 Fibonacci(34)*Lucas(85)/(1/2+sqrt(5)/2)^100 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^71/Lucas(86) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^73/Lucas(88) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^75/Lucas(90) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^77/Lucas(92) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^79/Lucas(94) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^81/Lucas(96) 4180999952164527 a004 Fibonacci(17)*Lucas(17)/(1/2+sqrt(5)/2)^15 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^83/Lucas(98) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^84/Lucas(99) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^85/Lucas(100) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^82/Lucas(97) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^80/Lucas(95) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^78/Lucas(93) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^76/Lucas(91) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^74/Lucas(89) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^72/Lucas(87) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^70/Lucas(85) 4180999952164527 a004 Fibonacci(34)*Lucas(84)/(1/2+sqrt(5)/2)^99 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^68/Lucas(83) 4180999952164527 a004 Fibonacci(34)*Lucas(82)/(1/2+sqrt(5)/2)^97 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^66/Lucas(81) 4180999952164527 a004 Fibonacci(34)*Lucas(80)/(1/2+sqrt(5)/2)^95 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^64/Lucas(79) 4180999952164527 a004 Fibonacci(34)*Lucas(78)/(1/2+sqrt(5)/2)^93 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^62/Lucas(77) 4180999952164527 a004 Fibonacci(34)*Lucas(76)/(1/2+sqrt(5)/2)^91 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^60/Lucas(75) 4180999952164527 a004 Fibonacci(34)*Lucas(74)/(1/2+sqrt(5)/2)^89 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^58/Lucas(73) 4180999952164527 a004 Fibonacci(34)*Lucas(72)/(1/2+sqrt(5)/2)^87 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^56/Lucas(71) 4180999952164527 a004 Fibonacci(34)*Lucas(70)/(1/2+sqrt(5)/2)^85 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^54/Lucas(69) 4180999952164527 a004 Fibonacci(70)/Lucas(34)/(1/2+sqrt(5)/2)^17 4180999952164527 a004 Fibonacci(72)/Lucas(34)/(1/2+sqrt(5)/2)^19 4180999952164527 a004 Fibonacci(74)/Lucas(34)/(1/2+sqrt(5)/2)^21 4180999952164527 a004 Fibonacci(76)/Lucas(34)/(1/2+sqrt(5)/2)^23 4180999952164527 a004 Fibonacci(78)/Lucas(34)/(1/2+sqrt(5)/2)^25 4180999952164527 a004 Fibonacci(80)/Lucas(34)/(1/2+sqrt(5)/2)^27 4180999952164527 a004 Fibonacci(82)/Lucas(34)/(1/2+sqrt(5)/2)^29 4180999952164527 a004 Fibonacci(84)/Lucas(34)/(1/2+sqrt(5)/2)^31 4180999952164527 a004 Fibonacci(86)/Lucas(34)/(1/2+sqrt(5)/2)^33 4180999952164527 a004 Fibonacci(88)/Lucas(34)/(1/2+sqrt(5)/2)^35 4180999952164527 a004 Fibonacci(90)/Lucas(34)/(1/2+sqrt(5)/2)^37 4180999952164527 a004 Fibonacci(92)/Lucas(34)/(1/2+sqrt(5)/2)^39 4180999952164527 a004 Fibonacci(94)/Lucas(34)/(1/2+sqrt(5)/2)^41 4180999952164527 a004 Fibonacci(96)/Lucas(34)/(1/2+sqrt(5)/2)^43 4180999952164527 a004 Fibonacci(100)/Lucas(34)/(1/2+sqrt(5)/2)^47 4180999952164527 a004 Fibonacci(34)*Lucas(68)/(1/2+sqrt(5)/2)^83 4180999952164527 a004 Fibonacci(98)/Lucas(34)/(1/2+sqrt(5)/2)^45 4180999952164527 a004 Fibonacci(99)/Lucas(34)/(1/2+sqrt(5)/2)^46 4180999952164527 a004 Fibonacci(97)/Lucas(34)/(1/2+sqrt(5)/2)^44 4180999952164527 a004 Fibonacci(95)/Lucas(34)/(1/2+sqrt(5)/2)^42 4180999952164527 a004 Fibonacci(93)/Lucas(34)/(1/2+sqrt(5)/2)^40 4180999952164527 a004 Fibonacci(91)/Lucas(34)/(1/2+sqrt(5)/2)^38 4180999952164527 a004 Fibonacci(89)/Lucas(34)/(1/2+sqrt(5)/2)^36 4180999952164527 a004 Fibonacci(87)/Lucas(34)/(1/2+sqrt(5)/2)^34 4180999952164527 a004 Fibonacci(85)/Lucas(34)/(1/2+sqrt(5)/2)^32 4180999952164527 a004 Fibonacci(83)/Lucas(34)/(1/2+sqrt(5)/2)^30 4180999952164527 a004 Fibonacci(81)/Lucas(34)/(1/2+sqrt(5)/2)^28 4180999952164527 a004 Fibonacci(79)/Lucas(34)/(1/2+sqrt(5)/2)^26 4180999952164527 a004 Fibonacci(77)/Lucas(34)/(1/2+sqrt(5)/2)^24 4180999952164527 a004 Fibonacci(75)/Lucas(34)/(1/2+sqrt(5)/2)^22 4180999952164527 a004 Fibonacci(73)/Lucas(34)/(1/2+sqrt(5)/2)^20 4180999952164527 a004 Fibonacci(71)/Lucas(34)/(1/2+sqrt(5)/2)^18 4180999952164527 a004 Fibonacci(69)/Lucas(34)/(1/2+sqrt(5)/2)^16 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^52/Lucas(67) 4180999952164527 a004 Fibonacci(67)/Lucas(34)/(1/2+sqrt(5)/2)^14 4180999952164527 a004 Fibonacci(34)*Lucas(66)/(1/2+sqrt(5)/2)^81 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^50/Lucas(65) 4180999952164527 a004 Fibonacci(65)/Lucas(34)/(1/2+sqrt(5)/2)^12 4180999952164527 a001 5702887/14662949395604*14662949395604^(16/21) 4180999952164527 a004 Fibonacci(34)*Lucas(64)/(1/2+sqrt(5)/2)^79 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^48/Lucas(63) 4180999952164527 a004 Fibonacci(63)/Lucas(34)/(1/2+sqrt(5)/2)^10 4180999952164527 a004 Fibonacci(34)*Lucas(62)/(1/2+sqrt(5)/2)^77 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^46/Lucas(61) 4180999952164527 a004 Fibonacci(61)/Lucas(34)/(1/2+sqrt(5)/2)^8 4180999952164527 a004 Fibonacci(34)*Lucas(60)/(1/2+sqrt(5)/2)^75 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^44/Lucas(59) 4180999952164527 a004 Fibonacci(59)/Lucas(34)/(1/2+sqrt(5)/2)^6 4180999952164527 a001 5702887/2139295485799*23725150497407^(11/16) 4180999952164527 a004 Fibonacci(34)*Lucas(58)/(1/2+sqrt(5)/2)^73 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^42/Lucas(57) 4180999952164527 a004 Fibonacci(57)/Lucas(34)/(1/2+sqrt(5)/2)^4 4180999952164527 a004 Fibonacci(34)*Lucas(56)/(1/2+sqrt(5)/2)^71 4180999952164527 a001 5702887/817138163596*505019158607^(3/4) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^40/Lucas(55) 4180999952164527 a004 Fibonacci(55)/Lucas(34)/(1/2+sqrt(5)/2)^2 4180999952164527 a001 5702887/312119004989*23725150497407^(5/8) 4180999952164527 a001 5702887/3461452808002*192900153618^(5/6) 4180999952164527 a001 5702887/817138163596*192900153618^(7/9) 4180999952164527 a001 5702887/14662949395604*192900153618^(8/9) 4180999952164527 a004 Fibonacci(34)*Lucas(54)/(1/2+sqrt(5)/2)^69 4180999952164527 a001 5702887/119218851371*817138163596^(2/3) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^38/Lucas(53) 4180999952164527 a006 5^(1/2)*Fibonacci(53)/Lucas(34)/sqrt(5) 4180999952164527 a001 5702887/192900153618*73681302247^(3/4) 4180999952164527 a001 1597/12752044*45537549124^(12/17) 4180999952164527 a001 5702887/312119004989*73681302247^(10/13) 4180999952164527 a001 5702887/2139295485799*73681302247^(11/13) 4180999952164527 a001 5702887/14662949395604*73681302247^(12/13) 4180999952164527 a004 Fibonacci(34)*Lucas(52)/(1/2+sqrt(5)/2)^67 4180999952164527 a001 1597/12752044*14662949395604^(4/7) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^36/Lucas(51) 4180999952164527 a001 20365011074/12752043*(1/2+1/2*5^(1/2))^2 4180999952164527 a001 1597/12752044*505019158607^(9/14) 4180999952164527 a001 1597/12752044*192900153618^(2/3) 4180999952164527 a001 1597/12752044*73681302247^(9/13) 4180999952164527 a001 20365011074/12752043*10749957122^(1/24) 4180999952164527 a001 5702887/312119004989*28143753123^(4/5) 4180999952164527 a001 5702887/3461452808002*28143753123^(9/10) 4180999952164527 a004 Fibonacci(34)*Lucas(50)/(1/2+sqrt(5)/2)^65 4180999952164527 a001 2971215073/12752043*2537720636^(2/15) 4180999952164527 a001 5702887/17393796001*45537549124^(2/3) 4180999952164527 a001 20365011074/12752043*4106118243^(1/23) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^34/Lucas(49) 4180999952164527 a001 7778742049/12752043*(1/2+1/2*5^(1/2))^4 4180999952164527 a001 44361286907595463/10610209857723 4180999952164527 a001 7778742049/12752043*73681302247^(1/13) 4180999952164527 a001 7778742049/12752043*10749957122^(1/12) 4180999952164527 a001 5702887/119218851371*10749957122^(19/24) 4180999952164527 a001 1597/12752044*10749957122^(3/4) 4180999952164527 a001 5702887/192900153618*10749957122^(13/16) 4180999952164527 a001 5702887/312119004989*10749957122^(5/6) 4180999952164527 a001 5702887/817138163596*10749957122^(7/8) 4180999952164527 a001 5702887/2139295485799*10749957122^(11/12) 4180999952164527 a001 5702887/3461452808002*10749957122^(15/16) 4180999952164527 a001 5702887/5600748293801*10749957122^(23/24) 4180999952164527 a001 7778742049/12752043*4106118243^(2/23) 4180999952164527 a004 Fibonacci(34)*Lucas(48)/(1/2+sqrt(5)/2)^63 4180999952164527 a001 5702887/17393796001*10749957122^(17/24) 4180999952164527 a001 20365011074/12752043*1568397607^(1/22) 4180999952164527 a001 2971215073/12752043*45537549124^(2/17) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^32/Lucas(47) 4180999952164527 a001 2971215073/12752043*(1/2+1/2*5^(1/2))^6 4180999952164527 a001 16944503814015751/4052739537881 4180999952164527 a001 5702887/6643838879*505019158607^(4/7) 4180999952164527 a001 5702887/6643838879*73681302247^(8/13) 4180999952164527 a001 2971215073/12752043*10749957122^(1/8) 4180999952164527 a001 5702887/6643838879*10749957122^(2/3) 4180999952164527 a001 2971215073/12752043*4106118243^(3/23) 4180999952164527 a001 7778742049/12752043*1568397607^(1/11) 4180999952164527 a001 1597/12752044*4106118243^(18/23) 4180999952164527 a001 5702887/17393796001*4106118243^(17/23) 4180999952164527 a001 5702887/119218851371*4106118243^(19/23) 4180999952164527 a001 5702887/312119004989*4106118243^(20/23) 4180999952164527 a001 5702887/2537720636*2537720636^(2/3) 4180999952164527 a001 5702887/817138163596*4106118243^(21/23) 4180999952164527 a001 5702887/2139295485799*4106118243^(22/23) 4180999952164527 a004 Fibonacci(34)*Lucas(46)/(1/2+sqrt(5)/2)^61 4180999952164527 a001 5702887/6643838879*4106118243^(16/23) 4180999952164527 a001 2971215073/12752043*1568397607^(3/22) 4180999952164527 a001 20365011074/12752043*599074578^(1/21) 4180999952164527 a001 5702887/2537720636*45537549124^(10/17) 4180999952164527 a001 5702887/2537720636*312119004989^(6/11) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^30/Lucas(45) 4180999952164527 a001 1134903170/12752043*(1/2+1/2*5^(1/2))^8 4180999952164527 a001 1134903170/12752043*23725150497407^(1/8) 4180999952164527 a001 10610204154839/2537719272 4180999952164527 a001 5702887/2537720636*192900153618^(5/9) 4180999952164527 a001 1134903170/12752043*73681302247^(2/13) 4180999952164527 a001 5702887/2537720636*28143753123^(3/5) 4180999952164527 a001 1134903170/12752043*10749957122^(1/6) 4180999952164527 a001 5702887/2537720636*10749957122^(5/8) 4180999952164527 a001 1134903170/12752043*4106118243^(4/23) 4180999952164527 a001 233802911/4250681*599074578^(3/14) 4180999952164527 a001 5702887/2537720636*4106118243^(15/23) 4180999952164527 a001 12586269025/12752043*599074578^(1/14) 4180999952164527 a001 1134903170/12752043*1568397607^(2/11) 4180999952164527 a001 7778742049/12752043*599074578^(2/21) 4180999952164527 a001 5702887/10749957122*1568397607^(3/4) 4180999952164527 a001 5702887/17393796001*1568397607^(17/22) 4180999952164527 a001 5702887/6643838879*1568397607^(8/11) 4180999952164527 a001 1597/12752044*1568397607^(9/11) 4180999952164527 a001 5702887/119218851371*1568397607^(19/22) 4180999952164527 a001 5702887/312119004989*1568397607^(10/11) 4180999952164527 a001 5702887/817138163596*1568397607^(21/22) 4180999952164527 a001 1836311903/12752043*599074578^(1/6) 4180999952164527 a004 Fibonacci(34)*Lucas(44)/(1/2+sqrt(5)/2)^59 4180999952164527 a001 2971215073/12752043*599074578^(1/7) 4180999952164527 a001 5702887/2537720636*1568397607^(15/22) 4180999952164527 a001 1134903170/12752043*599074578^(4/21) 4180999952164527 a001 20365011074/12752043*228826127^(1/20) 4180999952164527 a001 433494437/12752043*2537720636^(2/9) 4180999952164527 a001 5702887/969323029*17393796001^(4/7) 4180999952164527 a001 433494437/12752043*312119004989^(2/11) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^28/Lucas(43) 4180999952164527 a001 433494437/12752043*(1/2+1/2*5^(1/2))^10 4180999952164527 a001 2472169789339619/591286729879 4180999952164527 a001 5702887/969323029*505019158607^(1/2) 4180999952164527 a001 5702887/969323029*73681302247^(7/13) 4180999952164527 a001 433494437/12752043*28143753123^(1/5) 4180999952164527 a001 433494437/12752043*10749957122^(5/24) 4180999952164527 a001 5702887/969323029*10749957122^(7/12) 4180999952164527 a001 433494437/12752043*4106118243^(5/23) 4180999952164527 a001 5702887/969323029*4106118243^(14/23) 4180999952164527 a001 433494437/12752043*1568397607^(5/22) 4180999952164527 a001 5702887/969323029*1568397607^(7/11) 4180999952164527 a001 433494437/12752043*599074578^(5/21) 4180999952164527 a001 7778742049/12752043*228826127^(1/10) 4180999952164527 a001 5702887/2537720636*599074578^(5/7) 4180999952164527 a001 5702887/6643838879*599074578^(16/21) 4180999952164527 a001 5702887/10749957122*599074578^(11/14) 4180999952164527 a001 5702887/17393796001*599074578^(17/21) 4180999952164527 a001 5702887/28143753123*599074578^(5/6) 4180999952164527 a001 1602508992/4250681*228826127^(1/8) 4180999952164527 a001 1597/12752044*599074578^(6/7) 4180999952164527 a001 5702887/119218851371*599074578^(19/21) 4180999952164527 a001 5702887/192900153618*599074578^(13/14) 4180999952164527 a001 5702887/312119004989*599074578^(20/21) 4180999952164527 a004 Fibonacci(34)*Lucas(42)/(1/2+sqrt(5)/2)^57 4180999952164527 a001 2971215073/12752043*228826127^(3/20) 4180999952164527 a001 5702887/969323029*599074578^(2/3) 4180999952164527 a001 1134903170/12752043*228826127^(1/5) 4180999952164527 a001 433494437/12752043*228826127^(1/4) 4180999952164527 a001 20365011074/12752043*87403803^(1/19) 4180999952164527 a001 165580141/12752043*2537720636^(4/15) 4180999952164527 a001 165580141/12752043*45537549124^(4/17) 4180999952164527 a001 165580141/12752043*817138163596^(4/19) 4180999952164527 a001 165580141/12752043*14662949395604^(4/21) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^26/Lucas(41) 4180999952164527 a001 165580141/12752043*(1/2+1/2*5^(1/2))^12 4180999952164527 a001 165580141/12752043*192900153618^(2/9) 4180999952164527 a001 165580141/12752043*73681302247^(3/13) 4180999952164527 a001 5702887/370248451*73681302247^(1/2) 4180999952164527 a001 165580141/12752043*10749957122^(1/4) 4180999952164527 a001 5702887/370248451*10749957122^(13/24) 4180999952164527 a001 165580141/12752043*4106118243^(6/23) 4180999952164527 a001 5702887/370248451*4106118243^(13/23) 4180999952164527 a001 165580141/12752043*1568397607^(3/11) 4180999952164527 a001 5702887/370248451*1568397607^(13/22) 4180999952164527 a001 165580141/12752043*599074578^(2/7) 4180999952164527 a001 5702887/370248451*599074578^(13/21) 4180999952164527 a001 165580141/12752043*228826127^(3/10) 4180999952164527 a001 7778742049/12752043*87403803^(2/19) 4180999952164527 a001 5702887/969323029*228826127^(7/10) 4180999952164527 a001 5702887/2537720636*228826127^(3/4) 4180999952164527 a001 5702887/6643838879*228826127^(4/5) 4180999952164527 a001 5702887/17393796001*228826127^(17/20) 4180999952164527 a001 5702887/28143753123*228826127^(7/8) 4180999952164527 a001 1597/12752044*228826127^(9/10) 4180999952164527 a001 5702887/119218851371*228826127^(19/20) 4180999952164527 a004 Fibonacci(34)*Lucas(40)/(1/2+sqrt(5)/2)^55 4180999952164527 a001 5702887/141422324*141422324^(8/13) 4180999952164527 a001 5702887/370248451*228826127^(13/20) 4180999952164527 a001 2971215073/12752043*87403803^(3/19) 4180999952164527 a001 1134903170/12752043*87403803^(4/19) 4180999952164527 a001 433494437/12752043*87403803^(5/19) 4180999952164527 a001 165580141/12752043*87403803^(6/19) 4180999952164527 a001 20365011074/12752043*33385282^(1/18) 4180999952164527 a001 5702887/141422324*2537720636^(8/15) 4180999952164527 a001 63245986/12752043*17393796001^(2/7) 4180999952164527 a001 5702887/141422324*45537549124^(8/17) 4180999952164527 a001 5702887/141422324*14662949395604^(8/21) 4180999952164527 a001 63245986/12752043*14662949395604^(2/9) 4180999952164527 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^24/Lucas(39) 4180999952164527 a001 63245986/12752043*(1/2+1/2*5^(1/2))^14 4180999952164527 a001 5702887/141422324*192900153618^(4/9) 4180999952164527 a001 180342355680791/43133785636 4180999952164527 a001 5702887/141422324*73681302247^(6/13) 4180999952164527 a001 63245986/12752043*10749957122^(7/24) 4180999952164527 a001 5702887/141422324*10749957122^(1/2) 4180999952164527 a001 63245986/12752043*4106118243^(7/23) 4180999952164527 a001 5702887/141422324*4106118243^(12/23) 4180999952164527 a001 63245986/12752043*1568397607^(7/22) 4180999952164527 a001 5702887/141422324*1568397607^(6/11) 4180999952164527 a001 63245986/12752043*599074578^(1/3) 4180999952164527 a001 5702887/141422324*599074578^(4/7) 4180999952164527 a001 63245986/12752043*228826127^(7/20) 4180999952164527 a001 5702887/141422324*228826127^(3/5) 4180999952164527 a001 12586269025/12752043*33385282^(1/12) 4180999952164528 a001 5702887/370248451*87403803^(13/19) 4180999952164528 a001 5702887/969323029*87403803^(14/19) 4180999952164528 a001 63245986/12752043*87403803^(7/19) 4180999952164528 a001 7778742049/12752043*33385282^(1/9) 4180999952164528 a001 5702887/2537720636*87403803^(15/19) 4180999952164528 a001 5702887/6643838879*87403803^(16/19) 4180999952164528 a001 5702887/17393796001*87403803^(17/19) 4180999952164528 a001 1597/12752044*87403803^(18/19) 4180999952164528 a001 567451585/930249*710647^(1/7) 4180999952164528 a004 Fibonacci(34)*Lucas(38)/(1/2+sqrt(5)/2)^53 4180999952164528 a001 5702887/141422324*87403803^(12/19) 4180999952164528 a001 2971215073/12752043*33385282^(1/6) 4180999952164528 a001 1134903170/87403803*7881196^(4/11) 4180999952164528 a001 1134903170/12752043*33385282^(2/9) 4180999952164528 a001 233802911/4250681*33385282^(1/4) 4180999952164528 a001 39088169/12752043*33385282^(5/12) 4180999952164528 a001 433494437/12752043*33385282^(5/18) 4180999952164528 a001 2971215073/228826127*7881196^(4/11) 4180999952164528 a001 7778742049/599074578*7881196^(4/11) 4180999952164528 a001 20365011074/1568397607*7881196^(4/11) 4180999952164528 a001 53316291173/4106118243*7881196^(4/11) 4180999952164528 a001 139583862445/10749957122*7881196^(4/11) 4180999952164528 a001 365435296162/28143753123*7881196^(4/11) 4180999952164528 a001 956722026041/73681302247*7881196^(4/11) 4180999952164528 a001 2504730781961/192900153618*7881196^(4/11) 4180999952164528 a001 10610209857723/817138163596*7881196^(4/11) 4180999952164528 a001 4052739537881/312119004989*7881196^(4/11) 4180999952164528 a001 1548008755920/119218851371*7881196^(4/11) 4180999952164528 a001 591286729879/45537549124*7881196^(4/11) 4180999952164528 a001 7787980473/599786069*7881196^(4/11) 4180999952164528 a001 86267571272/6643838879*7881196^(4/11) 4180999952164528 a001 32951280099/2537720636*7881196^(4/11) 4180999952164528 a001 12586269025/969323029*7881196^(4/11) 4180999952164528 a001 4807526976/370248451*7881196^(4/11) 4180999952164528 a001 165580141/12752043*33385282^(1/3) 4180999952164529 a001 5702887/54018521*312119004989^(2/5) 4180999952164529 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^22/Lucas(37) 4180999952164529 a001 24157817/12752043*(1/2+1/2*5^(1/2))^16 4180999952164529 a001 24157817/12752043*23725150497407^(1/4) 4180999952164529 a001 24157817/12752043*73681302247^(4/13) 4180999952164529 a001 137769300517679/32951280099 4180999952164529 a001 24157817/12752043*10749957122^(1/3) 4180999952164529 a001 5702887/54018521*10749957122^(11/24) 4180999952164529 a001 24157817/12752043*4106118243^(8/23) 4180999952164529 a001 5702887/54018521*4106118243^(11/23) 4180999952164529 a001 24157817/12752043*1568397607^(4/11) 4180999952164529 a001 5702887/54018521*1568397607^(1/2) 4180999952164529 a001 24157817/12752043*599074578^(8/21) 4180999952164529 a001 5702887/54018521*599074578^(11/21) 4180999952164529 a001 1836311903/141422324*7881196^(4/11) 4180999952164529 a001 24157817/12752043*228826127^(2/5) 4180999952164529 a001 5702887/54018521*228826127^(11/20) 4180999952164529 a001 20365011074/12752043*12752043^(1/17) 4180999952164529 a001 24157817/12752043*87403803^(8/19) 4180999952164529 a001 63245986/12752043*33385282^(7/18) 4180999952164529 a001 5702887/54018521*87403803^(11/19) 4180999952164530 a001 701408733/54018521*7881196^(4/11) 4180999952164530 a001 5702887/141422324*33385282^(2/3) 4180999952164530 a001 1836311903/87403803*7881196^(1/3) 4180999952164530 a001 5702887/370248451*33385282^(13/18) 4180999952164530 a001 5702887/599074578*33385282^(3/4) 4180999952164530 a001 5702887/969323029*33385282^(7/9) 4180999952164530 a001 7778742049/12752043*12752043^(2/17) 4180999952164530 a001 24157817/12752043*33385282^(4/9) 4180999952164530 a001 5702887/2537720636*33385282^(5/6) 4180999952164530 a001 102287808/4868641*7881196^(1/3) 4180999952164530 a001 12586269025/599074578*7881196^(1/3) 4180999952164530 a001 32951280099/1568397607*7881196^(1/3) 4180999952164530 a001 86267571272/4106118243*7881196^(1/3) 4180999952164530 a001 225851433717/10749957122*7881196^(1/3) 4180999952164530 a001 591286729879/28143753123*7881196^(1/3) 4180999952164530 a001 1548008755920/73681302247*7881196^(1/3) 4180999952164530 a001 4052739537881/192900153618*7881196^(1/3) 4180999952164530 a001 225749145909/10745088481*7881196^(1/3) 4180999952164530 a001 6557470319842/312119004989*7881196^(1/3) 4180999952164530 a001 2504730781961/119218851371*7881196^(1/3) 4180999952164530 a001 956722026041/45537549124*7881196^(1/3) 4180999952164530 a001 365435296162/17393796001*7881196^(1/3) 4180999952164530 a001 139583862445/6643838879*7881196^(1/3) 4180999952164530 a001 53316291173/2537720636*7881196^(1/3) 4180999952164530 a001 20365011074/969323029*7881196^(1/3) 4180999952164530 a001 7778742049/370248451*7881196^(1/3) 4180999952164531 a001 5702887/6643838879*33385282^(8/9) 4180999952164531 a001 5702887/10749957122*33385282^(11/12) 4180999952164531 a001 2971215073/141422324*7881196^(1/3) 4180999952164531 a001 5702887/17393796001*33385282^(17/18) 4180999952164531 a001 1836311903/33385282*7881196^(3/11) 4180999952164531 a001 2178309/370248451*4870847^(7/8) 4180999952164531 a001 5702887/54018521*33385282^(11/18) 4180999952164531 a004 Fibonacci(34)*Lucas(36)/(1/2+sqrt(5)/2)^51 4180999952164531 a001 1346269/1860498*1860498^(3/5) 4180999952164531 a001 5702887/20633239*20633239^(4/7) 4180999952164532 a001 2971215073/12752043*12752043^(3/17) 4180999952164532 a001 1134903170/54018521*7881196^(1/3) 4180999952164532 a001 63245986/20633239*7881196^(5/11) 4180999952164533 a001 1134903170/12752043*12752043^(4/17) 4180999952164534 a001 1602508992/29134601*7881196^(3/11) 4180999952164534 a001 12586269025/228826127*7881196^(3/11) 4180999952164535 a001 10983760033/199691526*7881196^(3/11) 4180999952164535 a001 86267571272/1568397607*7881196^(3/11) 4180999952164535 a001 75283811239/1368706081*7881196^(3/11) 4180999952164535 a001 591286729879/10749957122*7881196^(3/11) 4180999952164535 a001 12585437040/228811001*7881196^(3/11) 4180999952164535 a001 4052739537881/73681302247*7881196^(3/11) 4180999952164535 a001 3536736619241/64300051206*7881196^(3/11) 4180999952164535 a001 6557470319842/119218851371*7881196^(3/11) 4180999952164535 a001 2504730781961/45537549124*7881196^(3/11) 4180999952164535 a001 956722026041/17393796001*7881196^(3/11) 4180999952164535 a001 365435296162/6643838879*7881196^(3/11) 4180999952164535 a001 139583862445/2537720636*7881196^(3/11) 4180999952164535 a001 53316291173/969323029*7881196^(3/11) 4180999952164535 a001 20365011074/370248451*7881196^(3/11) 4180999952164535 a001 7778742049/141422324*7881196^(3/11) 4180999952164535 a001 433494437/12752043*12752043^(5/17) 4180999952164536 a001 2971215073/54018521*7881196^(3/11) 4180999952164536 a001 4976784/4250681*12752043^(1/2) 4180999952164536 a001 165580141/12752043*12752043^(6/17) 4180999952164537 a001 7778742049/33385282*7881196^(2/11) 4180999952164537 a001 9227465/12752043*141422324^(6/13) 4180999952164537 a001 5702887/20633239*2537720636^(4/9) 4180999952164537 a001 9227465/12752043*2537720636^(2/5) 4180999952164537 a001 9227465/12752043*45537549124^(6/17) 4180999952164537 a001 5702887/20633239*(1/2+1/2*5^(1/2))^20 4180999952164537 a001 9227465/12752043*(1/2+1/2*5^(1/2))^18 4180999952164537 a001 5702887/20633239*23725150497407^(5/16) 4180999952164537 a001 5702887/20633239*505019158607^(5/14) 4180999952164537 a001 9227465/12752043*192900153618^(1/3) 4180999952164537 a001 5702887/20633239*73681302247^(5/13) 4180999952164537 a001 5702887/20633239*28143753123^(2/5) 4180999952164537 a001 10524638038291/2517253805 4180999952164537 a001 9227465/12752043*10749957122^(3/8) 4180999952164537 a001 5702887/20633239*10749957122^(5/12) 4180999952164537 a001 9227465/12752043*4106118243^(9/23) 4180999952164537 a001 5702887/20633239*4106118243^(10/23) 4180999952164537 a001 9227465/12752043*1568397607^(9/22) 4180999952164537 a001 5702887/20633239*1568397607^(5/11) 4180999952164537 a001 9227465/12752043*599074578^(3/7) 4180999952164537 a001 5702887/20633239*599074578^(10/21) 4180999952164537 a001 9227465/12752043*228826127^(9/20) 4180999952164537 a001 5702887/20633239*228826127^(1/2) 4180999952164537 a001 9227465/12752043*87403803^(9/19) 4180999952164537 a001 5702887/20633239*87403803^(10/19) 4180999952164538 a001 2971215073/4870847*1860498^(2/15) 4180999952164538 a001 63245986/12752043*12752043^(7/17) 4180999952164538 a001 20365011074/12752043*4870847^(1/16) 4180999952164538 a001 9238424/711491*7881196^(4/11) 4180999952164539 a001 9227465/12752043*33385282^(1/2) 4180999952164539 a001 5702887/20633239*33385282^(5/9) 4180999952164539 a004 Fibonacci(36)*Lucas(35)/(1/2+sqrt(5)/2)^52 4180999952164540 a001 20365011074/87403803*7881196^(2/11) 4180999952164540 a001 433494437/20633239*7881196^(1/3) 4180999952164541 a001 53316291173/228826127*7881196^(2/11) 4180999952164541 a001 139583862445/599074578*7881196^(2/11) 4180999952164541 a001 365435296162/1568397607*7881196^(2/11) 4180999952164541 a001 956722026041/4106118243*7881196^(2/11) 4180999952164541 a001 2504730781961/10749957122*7881196^(2/11) 4180999952164541 a001 6557470319842/28143753123*7881196^(2/11) 4180999952164541 a001 10610209857723/45537549124*7881196^(2/11) 4180999952164541 a001 4052739537881/17393796001*7881196^(2/11) 4180999952164541 a001 1548008755920/6643838879*7881196^(2/11) 4180999952164541 a001 591286729879/2537720636*7881196^(2/11) 4180999952164541 a001 225851433717/969323029*7881196^(2/11) 4180999952164541 a001 86267571272/370248451*7881196^(2/11) 4180999952164541 a001 24157817/12752043*12752043^(8/17) 4180999952164541 a001 14930352/6643838879*20633239^(6/7) 4180999952164541 a001 63246219/271444*7881196^(2/11) 4180999952164541 a001 196452/33391061*20633239^(4/5) 4180999952164542 a001 2178309/969323029*4870847^(15/16) 4180999952164542 a001 12586269025/54018521*7881196^(2/11) 4180999952164542 a001 829464/33281921*20633239^(5/7) 4180999952164543 a004 Fibonacci(38)*Lucas(35)/(1/2+sqrt(5)/2)^54 4180999952164543 a001 4976784/29134601*20633239^(3/5) 4180999952164543 a004 Fibonacci(40)*Lucas(35)/(1/2+sqrt(5)/2)^56 4180999952164543 a001 32951280099/33385282*7881196^(1/11) 4180999952164543 a004 Fibonacci(42)*Lucas(35)/(1/2+sqrt(5)/2)^58 4180999952164543 a004 Fibonacci(44)*Lucas(35)/(1/2+sqrt(5)/2)^60 4180999952164543 a004 Fibonacci(46)*Lucas(35)/(1/2+sqrt(5)/2)^62 4180999952164543 a004 Fibonacci(48)*Lucas(35)/(1/2+sqrt(5)/2)^64 4180999952164543 a004 Fibonacci(50)*Lucas(35)/(1/2+sqrt(5)/2)^66 4180999952164543 a004 Fibonacci(52)*Lucas(35)/(1/2+sqrt(5)/2)^68 4180999952164543 a004 Fibonacci(54)*Lucas(35)/(1/2+sqrt(5)/2)^70 4180999952164543 a004 Fibonacci(56)*Lucas(35)/(1/2+sqrt(5)/2)^72 4180999952164543 a004 Fibonacci(58)*Lucas(35)/(1/2+sqrt(5)/2)^74 4180999952164543 a004 Fibonacci(60)*Lucas(35)/(1/2+sqrt(5)/2)^76 4180999952164543 a004 Fibonacci(62)*Lucas(35)/(1/2+sqrt(5)/2)^78 4180999952164543 a004 Fibonacci(64)*Lucas(35)/(1/2+sqrt(5)/2)^80 4180999952164543 a004 Fibonacci(66)*Lucas(35)/(1/2+sqrt(5)/2)^82 4180999952164543 a004 Fibonacci(68)*Lucas(35)/(1/2+sqrt(5)/2)^84 4180999952164543 a004 Fibonacci(70)*Lucas(35)/(1/2+sqrt(5)/2)^86 4180999952164543 a004 Fibonacci(72)*Lucas(35)/(1/2+sqrt(5)/2)^88 4180999952164543 a004 Fibonacci(74)*Lucas(35)/(1/2+sqrt(5)/2)^90 4180999952164543 a004 Fibonacci(76)*Lucas(35)/(1/2+sqrt(5)/2)^92 4180999952164543 a004 Fibonacci(78)*Lucas(35)/(1/2+sqrt(5)/2)^94 4180999952164543 a004 Fibonacci(80)*Lucas(35)/(1/2+sqrt(5)/2)^96 4180999952164543 a004 Fibonacci(82)*Lucas(35)/(1/2+sqrt(5)/2)^98 4180999952164543 a004 Fibonacci(84)*Lucas(35)/(1/2+sqrt(5)/2)^100 4180999952164543 a004 Fibonacci(83)*Lucas(35)/(1/2+sqrt(5)/2)^99 4180999952164543 a004 Fibonacci(81)*Lucas(35)/(1/2+sqrt(5)/2)^97 4180999952164543 a004 Fibonacci(79)*Lucas(35)/(1/2+sqrt(5)/2)^95 4180999952164543 a004 Fibonacci(77)*Lucas(35)/(1/2+sqrt(5)/2)^93 4180999952164543 a004 Fibonacci(75)*Lucas(35)/(1/2+sqrt(5)/2)^91 4180999952164543 a004 Fibonacci(73)*Lucas(35)/(1/2+sqrt(5)/2)^89 4180999952164543 a004 Fibonacci(71)*Lucas(35)/(1/2+sqrt(5)/2)^87 4180999952164543 a001 2/9227465*(1/2+1/2*5^(1/2))^54 4180999952164543 a004 Fibonacci(69)*Lucas(35)/(1/2+sqrt(5)/2)^85 4180999952164543 a004 Fibonacci(67)*Lucas(35)/(1/2+sqrt(5)/2)^83 4180999952164543 a004 Fibonacci(65)*Lucas(35)/(1/2+sqrt(5)/2)^81 4180999952164543 a004 Fibonacci(63)*Lucas(35)/(1/2+sqrt(5)/2)^79 4180999952164543 a004 Fibonacci(61)*Lucas(35)/(1/2+sqrt(5)/2)^77 4180999952164543 a004 Fibonacci(59)*Lucas(35)/(1/2+sqrt(5)/2)^75 4180999952164543 a004 Fibonacci(57)*Lucas(35)/(1/2+sqrt(5)/2)^73 4180999952164543 a004 Fibonacci(55)*Lucas(35)/(1/2+sqrt(5)/2)^71 4180999952164543 a004 Fibonacci(53)*Lucas(35)/(1/2+sqrt(5)/2)^69 4180999952164543 a004 Fibonacci(51)*Lucas(35)/(1/2+sqrt(5)/2)^67 4180999952164543 a004 Fibonacci(49)*Lucas(35)/(1/2+sqrt(5)/2)^65 4180999952164543 a004 Fibonacci(47)*Lucas(35)/(1/2+sqrt(5)/2)^63 4180999952164543 a004 Fibonacci(45)*Lucas(35)/(1/2+sqrt(5)/2)^61 4180999952164543 a004 Fibonacci(43)*Lucas(35)/(1/2+sqrt(5)/2)^59 4180999952164543 a004 Fibonacci(41)*Lucas(35)/(1/2+sqrt(5)/2)^57 4180999952164543 a001 3524578/4870847*4870847^(9/16) 4180999952164543 a004 Fibonacci(39)*Lucas(35)/(1/2+sqrt(5)/2)^55 4180999952164544 a001 39088169/17393796001*20633239^(6/7) 4180999952164544 a001 1134903170/20633239*7881196^(3/11) 4180999952164544 a001 102334155/45537549124*20633239^(6/7) 4180999952164544 a001 267914296/119218851371*20633239^(6/7) 4180999952164544 a001 3524667/1568437211*20633239^(6/7) 4180999952164544 a001 1836311903/817138163596*20633239^(6/7) 4180999952164544 a001 4807526976/2139295485799*20633239^(6/7) 4180999952164544 a001 12586269025/5600748293801*20633239^(6/7) 4180999952164544 a001 32951280099/14662949395604*20633239^(6/7) 4180999952164544 a001 53316291173/23725150497407*20633239^(6/7) 4180999952164544 a001 20365011074/9062201101803*20633239^(6/7) 4180999952164544 a001 7778742049/3461452808002*20633239^(6/7) 4180999952164544 a001 2971215073/1322157322203*20633239^(6/7) 4180999952164544 a001 1134903170/505019158607*20633239^(6/7) 4180999952164544 a001 433494437/192900153618*20633239^(6/7) 4180999952164544 a001 39088169/6643838879*20633239^(4/5) 4180999952164544 a004 Fibonacci(37)*Lucas(35)/(1/2+sqrt(5)/2)^53 4180999952164544 a001 165580141/73681302247*20633239^(6/7) 4180999952164545 a001 63245986/28143753123*20633239^(6/7) 4180999952164545 a001 14619165/4769326*20633239^(3/7) 4180999952164545 a001 102334155/17393796001*20633239^(4/5) 4180999952164545 a001 14930352/54018521*20633239^(4/7) 4180999952164545 a001 66978574/11384387281*20633239^(4/5) 4180999952164545 a001 701408733/119218851371*20633239^(4/5) 4180999952164545 a001 1836311903/312119004989*20633239^(4/5) 4180999952164545 a001 1201881744/204284540899*20633239^(4/5) 4180999952164545 a001 12586269025/2139295485799*20633239^(4/5) 4180999952164545 a001 32951280099/5600748293801*20633239^(4/5) 4180999952164545 a001 1135099622/192933544679*20633239^(4/5) 4180999952164545 a001 139583862445/23725150497407*20633239^(4/5) 4180999952164545 a001 53316291173/9062201101803*20633239^(4/5) 4180999952164545 a001 10182505537/1730726404001*20633239^(4/5) 4180999952164545 a001 7778742049/1322157322203*20633239^(4/5) 4180999952164545 a001 2971215073/505019158607*20633239^(4/5) 4180999952164545 a001 567451585/96450076809*20633239^(4/5) 4180999952164545 a001 433494437/73681302247*20633239^(4/5) 4180999952164545 a001 165580141/28143753123*20633239^(4/5) 4180999952164545 a001 165580141/33385282*20633239^(2/5) 4180999952164545 a001 31622993/5374978561*20633239^(4/5) 4180999952164545 a001 5702887/54018521*12752043^(11/17) 4180999952164545 a001 39088169/1568397607*20633239^(5/7) 4180999952164545 a001 222915410843904/53316291173 4180999952164545 a001 7465176/16692641*817138163596^(1/3) 4180999952164545 a001 7465176/16692641*(1/2+1/2*5^(1/2))^19 4180999952164546 a001 5702887/141422324*12752043^(12/17) 4180999952164546 a001 7465176/16692641*87403803^(1/2) 4180999952164546 a001 34111385/1368706081*20633239^(5/7) 4180999952164546 a001 133957148/5374978561*20633239^(5/7) 4180999952164546 a001 233802911/9381251041*20633239^(5/7) 4180999952164546 a001 1836311903/73681302247*20633239^(5/7) 4180999952164546 a001 267084832/10716675201*20633239^(5/7) 4180999952164546 a001 12586269025/505019158607*20633239^(5/7) 4180999952164546 a001 10983760033/440719107401*20633239^(5/7) 4180999952164546 a001 43133785636/1730726404001*20633239^(5/7) 4180999952164546 a001 75283811239/3020733700601*20633239^(5/7) 4180999952164546 a001 182717648081/7331474697802*20633239^(5/7) 4180999952164546 a001 139583862445/5600748293801*20633239^(5/7) 4180999952164546 a001 53316291173/2139295485799*20633239^(5/7) 4180999952164546 a001 10182505537/408569081798*20633239^(5/7) 4180999952164546 a001 7778742049/312119004989*20633239^(5/7) 4180999952164546 a001 2971215073/119218851371*20633239^(5/7) 4180999952164546 a001 567451585/22768774562*20633239^(5/7) 4180999952164546 a001 433494437/17393796001*20633239^(5/7) 4180999952164546 a001 24157817/10749957122*20633239^(6/7) 4180999952164546 a001 165580141/6643838879*20633239^(5/7) 4180999952164546 a001 31622993/1268860318*20633239^(5/7) 4180999952164546 a001 86267571272/87403803*7881196^(1/11) 4180999952164546 a001 567451585/16692641*20633239^(2/7) 4180999952164546 a001 39088169/228826127*20633239^(3/5) 4180999952164546 a001 24157817/4106118243*20633239^(4/5) 4180999952164547 a001 225851433717/228826127*7881196^(1/11) 4180999952164547 a001 591286729879/599074578*7881196^(1/11) 4180999952164547 a001 1548008755920/1568397607*7881196^(1/11) 4180999952164547 a001 4052739537881/4106118243*7881196^(1/11) 4180999952164547 a001 4807525989/4870846*7881196^(1/11) 4180999952164547 a001 6557470319842/6643838879*7881196^(1/11) 4180999952164547 a001 2504730781961/2537720636*7881196^(1/11) 4180999952164547 a001 956722026041/969323029*7881196^(1/11) 4180999952164547 a001 365435296162/370248451*7881196^(1/11) 4180999952164547 a001 5702887/370248451*12752043^(13/17) 4180999952164547 a001 34111385/199691526*20633239^(3/5) 4180999952164547 a001 39088169/141422324*20633239^(4/7) 4180999952164547 a001 139583862445/141422324*7881196^(1/11) 4180999952164547 a001 267914296/1568397607*20633239^(3/5) 4180999952164547 a001 233802911/1368706081*20633239^(3/5) 4180999952164547 a001 1836311903/10749957122*20633239^(3/5) 4180999952164547 a001 1602508992/9381251041*20633239^(3/5) 4180999952164547 a001 12586269025/73681302247*20633239^(3/5) 4180999952164547 a001 10983760033/64300051206*20633239^(3/5) 4180999952164547 a001 86267571272/505019158607*20633239^(3/5) 4180999952164547 a001 75283811239/440719107401*20633239^(3/5) 4180999952164547 a001 2504730781961/14662949395604*20633239^(3/5) 4180999952164547 a001 139583862445/817138163596*20633239^(3/5) 4180999952164547 a001 53316291173/312119004989*20633239^(3/5) 4180999952164547 a001 20365011074/119218851371*20633239^(3/5) 4180999952164547 a001 7778742049/45537549124*20633239^(3/5) 4180999952164547 a001 2971215073/17393796001*20633239^(3/5) 4180999952164547 a001 1134903170/6643838879*20633239^(3/5) 4180999952164547 a001 433494437/2537720636*20633239^(3/5) 4180999952164547 a001 165580141/969323029*20633239^(3/5) 4180999952164547 a001 14930208/103681*20633239^(1/5) 4180999952164547 a001 102334155/370248451*20633239^(4/7) 4180999952164547 a001 63245986/370248451*20633239^(3/5) 4180999952164547 a001 267914296/969323029*20633239^(4/7) 4180999952164547 a001 701408733/2537720636*20633239^(4/7) 4180999952164547 a001 1836311903/6643838879*20633239^(4/7) 4180999952164547 a001 4807526976/17393796001*20633239^(4/7) 4180999952164547 a001 12586269025/45537549124*20633239^(4/7) 4180999952164547 a001 32951280099/119218851371*20633239^(4/7) 4180999952164547 a001 86267571272/312119004989*20633239^(4/7) 4180999952164547 a001 225851433717/817138163596*20633239^(4/7) 4180999952164547 a001 1548008755920/5600748293801*20633239^(4/7) 4180999952164547 a001 139583862445/505019158607*20633239^(4/7) 4180999952164547 a001 53316291173/192900153618*20633239^(4/7) 4180999952164547 a001 20365011074/73681302247*20633239^(4/7) 4180999952164547 a001 7778742049/28143753123*20633239^(4/7) 4180999952164547 a001 2971215073/10749957122*20633239^(4/7) 4180999952164547 a001 1134903170/4106118243*20633239^(4/7) 4180999952164547 a001 433494437/1568397607*20633239^(4/7) 4180999952164547 a001 165580141/599074578*20633239^(4/7) 4180999952164547 a001 24157817/969323029*20633239^(5/7) 4180999952164547 a001 63245986/228826127*20633239^(4/7) 4180999952164548 a004 Fibonacci(36)*Lucas(37)/(1/2+sqrt(5)/2)^54 4180999952164548 a001 12586269025/33385282*20633239^(1/7) 4180999952164548 a001 267914296/87403803*20633239^(3/7) 4180999952164548 a001 24157817/87403803*20633239^(4/7) 4180999952164548 a001 53316291173/54018521*7881196^(1/11) 4180999952164548 a001 5702887/969323029*12752043^(14/17) 4180999952164548 a001 433494437/87403803*20633239^(2/5) 4180999952164548 a001 4976784/29134601*141422324^(7/13) 4180999952164549 a001 4976784/29134601*2537720636^(7/15) 4180999952164549 a001 4976784/29134601*17393796001^(3/7) 4180999952164549 a001 4976784/29134601*45537549124^(7/17) 4180999952164549 a001 39088169/33385282*45537549124^(1/3) 4180999952164549 a001 583600122205488/139583862445 4180999952164549 a001 4976784/29134601*14662949395604^(1/3) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^21/Lucas(38) 4180999952164549 a001 39088169/33385282*(1/2+1/2*5^(1/2))^17 4180999952164549 a001 4976784/29134601*192900153618^(7/18) 4180999952164549 a001 4976784/29134601*10749957122^(7/16) 4180999952164549 a001 4976784/29134601*599074578^(1/2) 4180999952164549 a001 701408733/228826127*20633239^(3/7) 4180999952164549 a001 24157817/141422324*20633239^(3/5) 4180999952164549 a001 1836311903/599074578*20633239^(3/7) 4180999952164549 a001 686789568/224056801*20633239^(3/7) 4180999952164549 a001 12586269025/4106118243*20633239^(3/7) 4180999952164549 a001 32951280099/10749957122*20633239^(3/7) 4180999952164549 a001 86267571272/28143753123*20633239^(3/7) 4180999952164549 a001 32264490531/10525900321*20633239^(3/7) 4180999952164549 a001 591286729879/192900153618*20633239^(3/7) 4180999952164549 a001 1548008755920/505019158607*20633239^(3/7) 4180999952164549 a001 1515744265389/494493258286*20633239^(3/7) 4180999952164549 a001 2504730781961/817138163596*20633239^(3/7) 4180999952164549 a001 956722026041/312119004989*20633239^(3/7) 4180999952164549 a001 365435296162/119218851371*20633239^(3/7) 4180999952164549 a001 139583862445/45537549124*20633239^(3/7) 4180999952164549 a001 53316291173/17393796001*20633239^(3/7) 4180999952164549 a001 20365011074/6643838879*20633239^(3/7) 4180999952164549 a001 7778742049/2537720636*20633239^(3/7) 4180999952164549 a001 2971215073/969323029*20633239^(3/7) 4180999952164549 a001 1134903170/370248451*20633239^(3/7) 4180999952164549 a001 1134903170/228826127*20633239^(2/5) 4180999952164549 a001 433494437/141422324*20633239^(3/7) 4180999952164549 a004 Fibonacci(36)*Lucas(39)/(1/2+sqrt(5)/2)^56 4180999952164549 a001 14930352/119218851371*141422324^(12/13) 4180999952164549 a001 2971215073/599074578*20633239^(2/5) 4180999952164549 a001 7778742049/1568397607*20633239^(2/5) 4180999952164549 a001 20365011074/4106118243*20633239^(2/5) 4180999952164549 a001 53316291173/10749957122*20633239^(2/5) 4180999952164549 a001 139583862445/28143753123*20633239^(2/5) 4180999952164549 a001 365435296162/73681302247*20633239^(2/5) 4180999952164549 a001 956722026041/192900153618*20633239^(2/5) 4180999952164549 a001 2504730781961/505019158607*20633239^(2/5) 4180999952164549 a001 10610209857723/2139295485799*20633239^(2/5) 4180999952164549 a001 4052739537881/817138163596*20633239^(2/5) 4180999952164549 a001 140728068720/28374454999*20633239^(2/5) 4180999952164549 a001 591286729879/119218851371*20633239^(2/5) 4180999952164549 a001 225851433717/45537549124*20633239^(2/5) 4180999952164549 a001 86267571272/17393796001*20633239^(2/5) 4180999952164549 a001 32951280099/6643838879*20633239^(2/5) 4180999952164549 a001 4976784/9381251041*141422324^(11/13) 4180999952164549 a001 1144206275/230701876*20633239^(2/5) 4180999952164549 a001 4807526976/969323029*20633239^(2/5) 4180999952164549 a001 14930352/6643838879*141422324^(10/13) 4180999952164549 a001 14619165/4769326*141422324^(5/13) 4180999952164549 a001 1836311903/370248451*20633239^(2/5) 4180999952164549 a001 14930352/1568397607*141422324^(9/13) 4180999952164549 a001 14930352/969323029*141422324^(2/3) 4180999952164549 a001 14930352/370248451*141422324^(8/13) 4180999952164549 a001 133957148/16692641*141422324^(1/3) 4180999952164549 a001 14619165/4769326*2537720636^(1/3) 4180999952164549 a001 14619165/4769326*45537549124^(5/17) 4180999952164549 a001 14619165/4769326*312119004989^(3/11) 4180999952164549 a001 763942477886280/182717648081 4180999952164549 a001 14619165/4769326*14662949395604^(5/21) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^23/Lucas(40) 4180999952164549 a001 14619165/4769326*(1/2+1/2*5^(1/2))^15 4180999952164549 a001 14619165/4769326*192900153618^(5/18) 4180999952164549 a001 14619165/4769326*28143753123^(3/10) 4180999952164549 a001 14619165/4769326*10749957122^(5/16) 4180999952164549 a001 14930352/228826127*4106118243^(1/2) 4180999952164549 a001 14619165/4769326*599074578^(5/14) 4180999952164549 a001 433494437/33385282*141422324^(4/13) 4180999952164549 a001 14619165/4769326*228826127^(3/8) 4180999952164549 a001 1836311903/33385282*141422324^(3/13) 4180999952164549 a001 7778742049/33385282*141422324^(2/13) 4180999952164549 a004 Fibonacci(36)*Lucas(41)/(1/2+sqrt(5)/2)^58 4180999952164549 a001 32951280099/33385282*141422324^(1/13) 4180999952164549 a001 829464/33281921*2537720636^(5/9) 4180999952164549 a001 829464/33281921*312119004989^(5/11) 4180999952164549 a001 4000054745112192/956722026041 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^25/Lucas(42) 4180999952164549 a001 133957148/16692641*(1/2+1/2*5^(1/2))^13 4180999952164549 a001 829464/33281921*3461452808002^(5/12) 4180999952164549 a001 133957148/16692641*73681302247^(1/4) 4180999952164549 a001 829464/33281921*28143753123^(1/2) 4180999952164549 a004 Fibonacci(36)*Lucas(43)/(1/2+sqrt(5)/2)^60 4180999952164549 a001 14930352/1568397607*2537720636^(3/5) 4180999952164549 a001 14930352/1568397607*45537549124^(9/17) 4180999952164549 a001 10472279279564016/2504730781961 4180999952164549 a001 14930352/1568397607*14662949395604^(3/7) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^27/Lucas(44) 4180999952164549 a001 701408733/33385282*(1/2+1/2*5^(1/2))^11 4180999952164549 a001 14930352/1568397607*192900153618^(1/2) 4180999952164549 a001 14930352/1568397607*10749957122^(9/16) 4180999952164549 a001 701408733/33385282*1568397607^(1/4) 4180999952164549 a004 Fibonacci(36)*Lucas(45)/(1/2+sqrt(5)/2)^62 4180999952164549 a001 14930352/2139295485799*2537720636^(14/15) 4180999952164549 a001 3732588/204284540899*2537720636^(8/9) 4180999952164549 a001 14930352/505019158607*2537720636^(13/15) 4180999952164549 a001 14930352/119218851371*2537720636^(4/5) 4180999952164549 a001 14930352/73681302247*2537720636^(7/9) 4180999952164549 a001 4976784/9381251041*2537720636^(11/15) 4180999952164549 a001 1836311903/33385282*2537720636^(1/5) 4180999952164549 a001 14930352/6643838879*2537720636^(2/3) 4180999952164549 a001 1836311903/33385282*45537549124^(3/17) 4180999952164549 a001 1836311903/33385282*817138163596^(3/19) 4180999952164549 a001 1836311903/33385282*14662949395604^(1/7) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^29/Lucas(46) 4180999952164549 a001 1836311903/33385282*(1/2+1/2*5^(1/2))^9 4180999952164549 a001 4976784/1368706081*1322157322203^(1/2) 4180999952164549 a001 1836311903/33385282*192900153618^(1/6) 4180999952164549 a001 1836311903/33385282*10749957122^(3/16) 4180999952164549 a004 Fibonacci(36)*Lucas(47)/(1/2+sqrt(5)/2)^64 4180999952164549 a001 12586269025/33385282*2537720636^(1/9) 4180999952164549 a001 7778742049/33385282*2537720636^(2/15) 4180999952164549 a001 32951280099/33385282*2537720636^(1/15) 4180999952164549 a001 14930208/103681*17393796001^(1/7) 4180999952164549 a001 14930208/103681*14662949395604^(1/9) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^31/Lucas(48) 4180999952164549 a001 14930208/103681*(1/2+1/2*5^(1/2))^7 4180999952164549 a001 7465176/5374978561*9062201101803^(1/2) 4180999952164549 a004 Fibonacci(36)*Lucas(49)/(1/2+sqrt(5)/2)^66 4180999952164549 a001 14930352/2139295485799*17393796001^(6/7) 4180999952164549 a001 14930352/73681302247*17393796001^(5/7) 4180999952164549 a001 4976784/9381251041*45537549124^(11/17) 4180999952164549 a001 4976784/9381251041*312119004989^(3/5) 4180999952164549 a001 12586269025/33385282*312119004989^(1/11) 4180999952164549 a001 4976784/9381251041*817138163596^(11/19) 4180999952164549 a001 4976784/9381251041*14662949395604^(11/21) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^33/Lucas(50) 4180999952164549 a001 12586269025/33385282*(1/2+1/2*5^(1/2))^5 4180999952164549 a001 4976784/9381251041*192900153618^(11/18) 4180999952164549 a001 12586269025/33385282*28143753123^(1/10) 4180999952164549 a004 Fibonacci(36)*Lucas(51)/(1/2+sqrt(5)/2)^68 4180999952164549 a001 4976784/3020733700601*45537549124^(15/17) 4180999952164549 a001 14930352/2139295485799*45537549124^(14/17) 4180999952164549 a001 14930352/505019158607*45537549124^(13/17) 4180999952164549 a001 14930352/119218851371*45537549124^(12/17) 4180999952164549 a001 32951280099/33385282*45537549124^(1/17) 4180999952164549 a001 14930352/73681302247*312119004989^(7/11) 4180999952164549 a001 14930352/73681302247*14662949395604^(5/9) 4180999952164549 a001 32951280099/33385282*14662949395604^(1/21) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^35/Lucas(52) 4180999952164549 a001 32951280099/33385282*(1/2+1/2*5^(1/2))^3 4180999952164549 a001 14930352/73681302247*505019158607^(5/8) 4180999952164549 a004 Fibonacci(36)*Lucas(53)/(1/2+sqrt(5)/2)^70 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^37/Lucas(54) 4180999952164549 a004 Fibonacci(36)*Lucas(55)/(1/2+sqrt(5)/2)^72 4180999952164549 a001 4976784/3020733700601*312119004989^(9/11) 4180999952164549 a001 14930352/5600748293801*312119004989^(4/5) 4180999952164549 a001 3732588/204284540899*312119004989^(8/11) 4180999952164549 a001 14930352/505019158607*14662949395604^(13/21) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^39/Lucas(56) 4180999952164549 a004 Fibonacci(56)/Lucas(36)/(1/2+sqrt(5)/2) 4180999952164549 a004 Fibonacci(36)*Lucas(57)/(1/2+sqrt(5)/2)^74 4180999952164549 a001 14930352/2139295485799*817138163596^(14/19) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^41/Lucas(58) 4180999952164549 a004 Fibonacci(58)/Lucas(36)/(1/2+sqrt(5)/2)^3 4180999952164549 a004 Fibonacci(36)*Lucas(59)/(1/2+sqrt(5)/2)^76 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^43/Lucas(60) 4180999952164549 a004 Fibonacci(60)/Lucas(36)/(1/2+sqrt(5)/2)^5 4180999952164549 a004 Fibonacci(36)*Lucas(61)/(1/2+sqrt(5)/2)^78 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^45/Lucas(62) 4180999952164549 a004 Fibonacci(62)/Lucas(36)/(1/2+sqrt(5)/2)^7 4180999952164549 a004 Fibonacci(36)*Lucas(63)/(1/2+sqrt(5)/2)^80 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^47/Lucas(64) 4180999952164549 a004 Fibonacci(64)/Lucas(36)/(1/2+sqrt(5)/2)^9 4180999952164549 a004 Fibonacci(36)*Lucas(65)/(1/2+sqrt(5)/2)^82 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^49/Lucas(66) 4180999952164549 a004 Fibonacci(66)/Lucas(36)/(1/2+sqrt(5)/2)^11 4180999952164549 a004 Fibonacci(36)*Lucas(67)/(1/2+sqrt(5)/2)^84 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^51/Lucas(68) 4180999952164549 a004 Fibonacci(68)/Lucas(36)/(1/2+sqrt(5)/2)^13 4180999952164549 a004 Fibonacci(36)*Lucas(69)/(1/2+sqrt(5)/2)^86 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^53/Lucas(70) 4180999952164549 a004 Fibonacci(70)/Lucas(36)/(1/2+sqrt(5)/2)^15 4180999952164549 a004 Fibonacci(36)*Lucas(71)/(1/2+sqrt(5)/2)^88 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^55/Lucas(72) 4180999952164549 a004 Fibonacci(36)*Lucas(73)/(1/2+sqrt(5)/2)^90 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^57/Lucas(74) 4180999952164549 a004 Fibonacci(36)*Lucas(75)/(1/2+sqrt(5)/2)^92 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^59/Lucas(76) 4180999952164549 a004 Fibonacci(36)*Lucas(77)/(1/2+sqrt(5)/2)^94 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^61/Lucas(78) 4180999952164549 a004 Fibonacci(36)*Lucas(79)/(1/2+sqrt(5)/2)^96 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^63/Lucas(80) 4180999952164549 a004 Fibonacci(36)*Lucas(81)/(1/2+sqrt(5)/2)^98 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^65/Lucas(82) 4180999952164549 a004 Fibonacci(36)*Lucas(83)/(1/2+sqrt(5)/2)^100 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^67/Lucas(84) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^69/Lucas(86) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^71/Lucas(88) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^73/Lucas(90) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^75/Lucas(92) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^77/Lucas(94) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^79/Lucas(96) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^81/Lucas(98) 4180999952164549 a004 Fibonacci(18)*Lucas(18)/(1/2+sqrt(5)/2)^17 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^82/Lucas(99) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^83/Lucas(100) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^80/Lucas(97) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^78/Lucas(95) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^76/Lucas(93) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^74/Lucas(91) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^72/Lucas(89) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^70/Lucas(87) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^68/Lucas(85) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^66/Lucas(83) 4180999952164549 a004 Fibonacci(36)*Lucas(82)/(1/2+sqrt(5)/2)^99 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^64/Lucas(81) 4180999952164549 a004 Fibonacci(36)*Lucas(80)/(1/2+sqrt(5)/2)^97 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^62/Lucas(79) 4180999952164549 a004 Fibonacci(36)*Lucas(78)/(1/2+sqrt(5)/2)^95 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^60/Lucas(77) 4180999952164549 a004 Fibonacci(36)*Lucas(76)/(1/2+sqrt(5)/2)^93 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^58/Lucas(75) 4180999952164549 a004 Fibonacci(36)*Lucas(74)/(1/2+sqrt(5)/2)^91 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^56/Lucas(73) 4180999952164549 a004 Fibonacci(74)/Lucas(36)/(1/2+sqrt(5)/2)^19 4180999952164549 a004 Fibonacci(76)/Lucas(36)/(1/2+sqrt(5)/2)^21 4180999952164549 a004 Fibonacci(78)/Lucas(36)/(1/2+sqrt(5)/2)^23 4180999952164549 a004 Fibonacci(80)/Lucas(36)/(1/2+sqrt(5)/2)^25 4180999952164549 a004 Fibonacci(82)/Lucas(36)/(1/2+sqrt(5)/2)^27 4180999952164549 a004 Fibonacci(84)/Lucas(36)/(1/2+sqrt(5)/2)^29 4180999952164549 a004 Fibonacci(86)/Lucas(36)/(1/2+sqrt(5)/2)^31 4180999952164549 a004 Fibonacci(88)/Lucas(36)/(1/2+sqrt(5)/2)^33 4180999952164549 a004 Fibonacci(90)/Lucas(36)/(1/2+sqrt(5)/2)^35 4180999952164549 a004 Fibonacci(92)/Lucas(36)/(1/2+sqrt(5)/2)^37 4180999952164549 a004 Fibonacci(94)/Lucas(36)/(1/2+sqrt(5)/2)^39 4180999952164549 a004 Fibonacci(96)/Lucas(36)/(1/2+sqrt(5)/2)^41 4180999952164549 a004 Fibonacci(100)/Lucas(36)/(1/2+sqrt(5)/2)^45 4180999952164549 a004 Fibonacci(36)*Lucas(72)/(1/2+sqrt(5)/2)^89 4180999952164549 a004 Fibonacci(98)/Lucas(36)/(1/2+sqrt(5)/2)^43 4180999952164549 a004 Fibonacci(99)/Lucas(36)/(1/2+sqrt(5)/2)^44 4180999952164549 a004 Fibonacci(97)/Lucas(36)/(1/2+sqrt(5)/2)^42 4180999952164549 a004 Fibonacci(95)/Lucas(36)/(1/2+sqrt(5)/2)^40 4180999952164549 a004 Fibonacci(93)/Lucas(36)/(1/2+sqrt(5)/2)^38 4180999952164549 a004 Fibonacci(91)/Lucas(36)/(1/2+sqrt(5)/2)^36 4180999952164549 a004 Fibonacci(89)/Lucas(36)/(1/2+sqrt(5)/2)^34 4180999952164549 a004 Fibonacci(87)/Lucas(36)/(1/2+sqrt(5)/2)^32 4180999952164549 a004 Fibonacci(85)/Lucas(36)/(1/2+sqrt(5)/2)^30 4180999952164549 a004 Fibonacci(83)/Lucas(36)/(1/2+sqrt(5)/2)^28 4180999952164549 a004 Fibonacci(81)/Lucas(36)/(1/2+sqrt(5)/2)^26 4180999952164549 a004 Fibonacci(79)/Lucas(36)/(1/2+sqrt(5)/2)^24 4180999952164549 a004 Fibonacci(77)/Lucas(36)/(1/2+sqrt(5)/2)^22 4180999952164549 a004 Fibonacci(75)/Lucas(36)/(1/2+sqrt(5)/2)^20 4180999952164549 a004 Fibonacci(73)/Lucas(36)/(1/2+sqrt(5)/2)^18 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^54/Lucas(71) 4180999952164549 a004 Fibonacci(71)/Lucas(36)/(1/2+sqrt(5)/2)^16 4180999952164549 a004 Fibonacci(36)*Lucas(70)/(1/2+sqrt(5)/2)^87 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^52/Lucas(69) 4180999952164549 a004 Fibonacci(69)/Lucas(36)/(1/2+sqrt(5)/2)^14 4180999952164549 a004 Fibonacci(36)*Lucas(68)/(1/2+sqrt(5)/2)^85 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^50/Lucas(67) 4180999952164549 a004 Fibonacci(67)/Lucas(36)/(1/2+sqrt(5)/2)^12 4180999952164549 a004 Fibonacci(36)*Lucas(66)/(1/2+sqrt(5)/2)^83 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^48/Lucas(65) 4180999952164549 a004 Fibonacci(65)/Lucas(36)/(1/2+sqrt(5)/2)^10 4180999952164549 a004 Fibonacci(36)*Lucas(64)/(1/2+sqrt(5)/2)^81 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^46/Lucas(63) 4180999952164549 a004 Fibonacci(63)/Lucas(36)/(1/2+sqrt(5)/2)^8 4180999952164549 a004 Fibonacci(36)*Lucas(62)/(1/2+sqrt(5)/2)^79 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^44/Lucas(61) 4180999952164549 a004 Fibonacci(61)/Lucas(36)/(1/2+sqrt(5)/2)^6 4180999952164549 a004 Fibonacci(36)*Lucas(60)/(1/2+sqrt(5)/2)^77 4180999952164549 a001 14930352/2139295485799*14662949395604^(2/3) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^42/Lucas(59) 4180999952164549 a004 Fibonacci(59)/Lucas(36)/(1/2+sqrt(5)/2)^4 4180999952164549 a004 Fibonacci(36)*Lucas(58)/(1/2+sqrt(5)/2)^75 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^40/Lucas(57) 4180999952164549 a004 Fibonacci(57)/Lucas(36)/(1/2+sqrt(5)/2)^2 4180999952164549 a001 14930352/2139295485799*505019158607^(3/4) 4180999952164549 a004 Fibonacci(36)*Lucas(56)/(1/2+sqrt(5)/2)^73 4180999952164549 a001 14930352/312119004989*817138163596^(2/3) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^38/Lucas(55) 4180999952164549 a001 14930352/505019158607*192900153618^(13/18) 4180999952164549 a001 14930352/2139295485799*192900153618^(7/9) 4180999952164549 a001 4976784/3020733700601*192900153618^(5/6) 4180999952164549 a004 Fibonacci(36)*Lucas(54)/(1/2+sqrt(5)/2)^71 4180999952164549 a001 14930352/119218851371*14662949395604^(4/7) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^36/Lucas(53) 4180999952164549 a001 53316291173/33385282*(1/2+1/2*5^(1/2))^2 4180999952164549 a001 14930352/119218851371*505019158607^(9/14) 4180999952164549 a001 14930352/119218851371*192900153618^(2/3) 4180999952164549 a001 14930352/505019158607*73681302247^(3/4) 4180999952164549 a001 3732588/204284540899*73681302247^(10/13) 4180999952164549 a001 14930352/5600748293801*73681302247^(11/13) 4180999952164549 a001 3732588/11384387281*45537549124^(2/3) 4180999952164549 a004 Fibonacci(36)*Lucas(52)/(1/2+sqrt(5)/2)^69 4180999952164549 a001 14930352/119218851371*73681302247^(9/13) 4180999952164549 a001 32951280099/33385282*10749957122^(1/16) 4180999952164549 a001 53316291173/33385282*10749957122^(1/24) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^34/Lucas(51) 4180999952164549 a001 10182505537/16692641*(1/2+1/2*5^(1/2))^4 4180999952164549 a001 10182505537/16692641*23725150497407^(1/16) 4180999952164549 a001 10182505537/16692641*73681302247^(1/13) 4180999952164549 a001 14930352/73681302247*28143753123^(7/10) 4180999952164549 a001 3732588/204284540899*28143753123^(4/5) 4180999952164549 a001 4976784/3020733700601*28143753123^(9/10) 4180999952164549 a001 10182505537/16692641*10749957122^(1/12) 4180999952164549 a004 Fibonacci(36)*Lucas(50)/(1/2+sqrt(5)/2)^67 4180999952164549 a001 53316291173/33385282*4106118243^(1/23) 4180999952164549 a001 7778742049/33385282*45537549124^(2/17) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^32/Lucas(49) 4180999952164549 a001 7778742049/33385282*(1/2+1/2*5^(1/2))^6 4180999952164549 a001 14930352/17393796001*23725150497407^(1/2) 4180999952164549 a001 14930352/17393796001*505019158607^(4/7) 4180999952164549 a001 14930352/17393796001*73681302247^(8/13) 4180999952164549 a001 7778742049/33385282*10749957122^(1/8) 4180999952164549 a001 4976784/9381251041*10749957122^(11/16) 4180999952164549 a001 10182505537/16692641*4106118243^(2/23) 4180999952164549 a001 14930352/119218851371*10749957122^(3/4) 4180999952164549 a001 3732588/11384387281*10749957122^(17/24) 4180999952164549 a001 14930352/312119004989*10749957122^(19/24) 4180999952164549 a001 14930352/505019158607*10749957122^(13/16) 4180999952164549 a001 3732588/204284540899*10749957122^(5/6) 4180999952164549 a001 14930352/2139295485799*10749957122^(7/8) 4180999952164549 a001 14930352/5600748293801*10749957122^(11/12) 4180999952164549 a001 4976784/3020733700601*10749957122^(15/16) 4180999952164549 a001 196452/192933544679*10749957122^(23/24) 4180999952164549 a004 Fibonacci(36)*Lucas(48)/(1/2+sqrt(5)/2)^65 4180999952164549 a001 14930352/17393796001*10749957122^(2/3) 4180999952164549 a001 7778742049/33385282*4106118243^(3/23) 4180999952164549 a001 53316291173/33385282*1568397607^(1/22) 4180999952164549 a001 14930352/6643838879*45537549124^(10/17) 4180999952164549 a001 14930352/6643838879*312119004989^(6/11) 4180999952164549 a001 14930352/6643838879*14662949395604^(10/21) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^30/Lucas(47) 4180999952164549 a001 2971215073/33385282*(1/2+1/2*5^(1/2))^8 4180999952164549 a001 14787095635865232/3536736619241 4180999952164549 a001 14930352/6643838879*192900153618^(5/9) 4180999952164549 a001 2971215073/33385282*73681302247^(2/13) 4180999952164549 a001 14930352/6643838879*28143753123^(3/5) 4180999952164549 a001 2971215073/33385282*10749957122^(1/6) 4180999952164549 a001 14930352/6643838879*10749957122^(5/8) 4180999952164549 a001 2971215073/33385282*4106118243^(4/23) 4180999952164549 a001 10182505537/16692641*1568397607^(1/11) 4180999952164549 a001 3732588/11384387281*4106118243^(17/23) 4180999952164549 a001 14930352/17393796001*4106118243^(16/23) 4180999952164549 a001 14930352/119218851371*4106118243^(18/23) 4180999952164549 a001 14930352/312119004989*4106118243^(19/23) 4180999952164549 a001 3732588/204284540899*4106118243^(20/23) 4180999952164549 a001 14930352/2139295485799*4106118243^(21/23) 4180999952164549 a001 14930352/5600748293801*4106118243^(22/23) 4180999952164549 a001 7778742049/33385282*1568397607^(3/22) 4180999952164549 a004 Fibonacci(36)*Lucas(46)/(1/2+sqrt(5)/2)^63 4180999952164549 a001 14930352/6643838879*4106118243^(15/23) 4180999952164549 a001 2971215073/33385282*1568397607^(2/11) 4180999952164549 a001 567451585/16692641*2537720636^(2/9) 4180999952164549 a001 53316291173/33385282*599074578^(1/21) 4180999952164549 a001 196452/33391061*17393796001^(4/7) 4180999952164549 a001 196452/33391061*14662949395604^(4/9) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^28/Lucas(45) 4180999952164549 a001 567451585/16692641*(1/2+1/2*5^(1/2))^10 4180999952164549 a001 16944503814015840/4052739537881 4180999952164549 a001 196452/33391061*73681302247^(7/13) 4180999952164549 a001 567451585/16692641*28143753123^(1/5) 4180999952164549 a001 567451585/16692641*10749957122^(5/24) 4180999952164549 a001 196452/33391061*10749957122^(7/12) 4180999952164549 a001 567451585/16692641*4106118243^(5/23) 4180999952164549 a001 196452/33391061*4106118243^(14/23) 4180999952164549 a001 32951280099/33385282*599074578^(1/14) 4180999952164549 a001 567451585/16692641*1568397607^(5/22) 4180999952164549 a001 10182505537/16692641*599074578^(2/21) 4180999952164549 a001 14930352/17393796001*1568397607^(8/11) 4180999952164549 a001 14930352/6643838879*1568397607^(15/22) 4180999952164549 a001 4976784/9381251041*1568397607^(3/4) 4180999952164549 a001 3732588/11384387281*1568397607^(17/22) 4180999952164549 a001 14930352/119218851371*1568397607^(9/11) 4180999952164549 a001 14930352/312119004989*1568397607^(19/22) 4180999952164549 a001 3732588/204284540899*1568397607^(10/11) 4180999952164549 a001 14930352/2139295485799*1568397607^(21/22) 4180999952164549 a001 7778742049/33385282*599074578^(1/7) 4180999952164549 a004 Fibonacci(36)*Lucas(44)/(1/2+sqrt(5)/2)^61 4180999952164549 a001 196452/33391061*1568397607^(7/11) 4180999952164549 a001 14930208/103681*599074578^(1/6) 4180999952164549 a001 1836311903/33385282*599074578^(3/14) 4180999952164549 a001 2971215073/33385282*599074578^(4/21) 4180999952164549 a001 567451585/16692641*599074578^(5/21) 4180999952164549 a001 53316291173/33385282*228826127^(1/20) 4180999952164549 a001 433494437/33385282*2537720636^(4/15) 4180999952164549 a001 433494437/33385282*45537549124^(4/17) 4180999952164549 a001 433494437/33385282*817138163596^(4/19) 4180999952164549 a001 433494437/33385282*14662949395604^(4/21) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^26/Lucas(43) 4180999952164549 a001 433494437/33385282*(1/2+1/2*5^(1/2))^12 4180999952164549 a001 433494437/33385282*192900153618^(2/9) 4180999952164549 a001 433494437/33385282*73681302247^(3/13) 4180999952164549 a001 14930352/969323029*73681302247^(1/2) 4180999952164549 a001 433494437/33385282*10749957122^(1/4) 4180999952164549 a001 14930352/969323029*10749957122^(13/24) 4180999952164549 a001 433494437/33385282*4106118243^(6/23) 4180999952164549 a001 14930352/969323029*4106118243^(13/23) 4180999952164549 a001 433494437/33385282*1568397607^(3/11) 4180999952164549 a001 14930352/969323029*1568397607^(13/22) 4180999952164549 a001 14930352/1568397607*599074578^(9/14) 4180999952164549 a001 433494437/33385282*599074578^(2/7) 4180999952164549 a001 10182505537/16692641*228826127^(1/10) 4180999952164549 a001 196452/33391061*599074578^(2/3) 4180999952164549 a001 14930352/6643838879*599074578^(5/7) 4180999952164549 a001 14930352/17393796001*599074578^(16/21) 4180999952164549 a001 4976784/9381251041*599074578^(11/14) 4180999952164549 a001 3732588/11384387281*599074578^(17/21) 4180999952164549 a001 14930352/73681302247*599074578^(5/6) 4180999952164549 a001 12586269025/33385282*228826127^(1/8) 4180999952164549 a001 14930352/119218851371*599074578^(6/7) 4180999952164549 a001 14930352/312119004989*599074578^(19/21) 4180999952164549 a001 14930352/505019158607*599074578^(13/14) 4180999952164549 a001 3732588/204284540899*599074578^(20/21) 4180999952164549 a004 Fibonacci(36)*Lucas(42)/(1/2+sqrt(5)/2)^59 4180999952164549 a001 14930352/969323029*599074578^(13/21) 4180999952164549 a001 7778742049/33385282*228826127^(3/20) 4180999952164549 a001 2971215073/33385282*228826127^(1/5) 4180999952164549 a001 567451585/16692641*228826127^(1/4) 4180999952164549 a001 433494437/33385282*228826127^(3/10) 4180999952164549 a001 53316291173/33385282*87403803^(1/19) 4180999952164549 a001 14930352/370248451*2537720636^(8/15) 4180999952164549 a001 701408733/141422324*20633239^(2/5) 4180999952164549 a001 165580141/33385282*17393796001^(2/7) 4180999952164549 a001 14930352/370248451*45537549124^(8/17) 4180999952164549 a001 14930352/370248451*14662949395604^(8/21) 4180999952164549 a001 165580141/33385282*14662949395604^(2/9) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^24/Lucas(41) 4180999952164549 a001 165580141/33385282*(1/2+1/2*5^(1/2))^14 4180999952164549 a001 165580141/33385282*505019158607^(1/4) 4180999952164549 a001 14930352/370248451*192900153618^(4/9) 4180999952164549 a001 14930352/370248451*73681302247^(6/13) 4180999952164549 a001 165580141/33385282*10749957122^(7/24) 4180999952164549 a001 14930352/370248451*10749957122^(1/2) 4180999952164549 a001 165580141/33385282*4106118243^(7/23) 4180999952164549 a001 14930352/370248451*4106118243^(12/23) 4180999952164549 a001 165580141/33385282*1568397607^(7/22) 4180999952164549 a001 14930352/370248451*1568397607^(6/11) 4180999952164549 a001 165580141/33385282*599074578^(1/3) 4180999952164549 a001 14930352/370248451*599074578^(4/7) 4180999952164549 a001 829464/33281921*228826127^(5/8) 4180999952164549 a001 14930352/969323029*228826127^(13/20) 4180999952164549 a001 196452/33391061*228826127^(7/10) 4180999952164549 a001 10182505537/16692641*87403803^(2/19) 4180999952164549 a001 165580141/33385282*228826127^(7/20) 4180999952164549 a001 14930352/6643838879*228826127^(3/4) 4180999952164549 a001 14930352/17393796001*228826127^(4/5) 4180999952164549 a001 3732588/11384387281*228826127^(17/20) 4180999952164549 a001 7778742049/12752043*4870847^(1/8) 4180999952164549 a001 14930352/73681302247*228826127^(7/8) 4180999952164549 a001 14930352/119218851371*228826127^(9/10) 4180999952164549 a001 14930352/312119004989*228826127^(19/20) 4180999952164549 a001 14930352/370248451*228826127^(3/5) 4180999952164549 a004 Fibonacci(36)*Lucas(40)/(1/2+sqrt(5)/2)^57 4180999952164549 a001 7778742049/33385282*87403803^(3/19) 4180999952164549 a001 2971215073/33385282*87403803^(4/19) 4180999952164549 a001 567451585/16692641*87403803^(5/19) 4180999952164549 a001 433494437/33385282*87403803^(6/19) 4180999952164549 a001 53316291173/33385282*33385282^(1/18) 4180999952164549 a001 3732588/35355581*312119004989^(2/5) 4180999952164549 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^22/Lucas(39) 4180999952164549 a001 31622993/16692641*(1/2+1/2*5^(1/2))^16 4180999952164549 a001 31622993/16692641*23725150497407^(1/4) 4180999952164549 a001 314761611189024/75283811239 4180999952164549 a001 31622993/16692641*73681302247^(4/13) 4180999952164549 a001 31622993/16692641*10749957122^(1/3) 4180999952164549 a001 3732588/35355581*10749957122^(11/24) 4180999952164549 a001 31622993/16692641*4106118243^(8/23) 4180999952164549 a001 3732588/35355581*4106118243^(11/23) 4180999952164549 a001 31622993/16692641*1568397607^(4/11) 4180999952164549 a001 3732588/35355581*1568397607^(1/2) 4180999952164549 a001 31622993/16692641*599074578^(8/21) 4180999952164549 a001 3732588/35355581*599074578^(11/21) 4180999952164549 a001 165580141/33385282*87403803^(7/19) 4180999952164549 a001 31622993/16692641*228826127^(2/5) 4180999952164549 a001 3732588/35355581*228826127^(11/20) 4180999952164549 a001 32951280099/33385282*33385282^(1/12) 4180999952164550 a001 14930352/370248451*87403803^(12/19) 4180999952164550 a001 14930352/969323029*87403803^(13/19) 4180999952164550 a001 2971215073/87403803*20633239^(2/7) 4180999952164550 a001 196452/33391061*87403803^(14/19) 4180999952164550 a001 10182505537/16692641*33385282^(1/9) 4180999952164550 a001 14930352/6643838879*87403803^(15/19) 4180999952164550 a001 31622993/16692641*87403803^(8/19) 4180999952164550 a001 14930352/17393796001*87403803^(16/19) 4180999952164550 a001 3732588/11384387281*87403803^(17/19) 4180999952164550 a001 14930352/119218851371*87403803^(18/19) 4180999952164550 a001 3732588/35355581*87403803^(11/19) 4180999952164550 a004 Fibonacci(36)*Lucas(38)/(1/2+sqrt(5)/2)^55 4180999952164550 a001 7778742049/33385282*33385282^(1/6) 4180999952164550 a001 5702887/2537720636*12752043^(15/17) 4180999952164550 a001 2971215073/33385282*33385282^(2/9) 4180999952164550 a001 7778742049/228826127*20633239^(2/7) 4180999952164550 a001 10182505537/299537289*20633239^(2/7) 4180999952164550 a001 1836311903/33385282*33385282^(1/4) 4180999952164550 a001 53316291173/1568397607*20633239^(2/7) 4180999952164550 a001 139583862445/4106118243*20633239^(2/7) 4180999952164550 a001 182717648081/5374978561*20633239^(2/7) 4180999952164550 a001 956722026041/28143753123*20633239^(2/7) 4180999952164550 a001 2504730781961/73681302247*20633239^(2/7) 4180999952164550 a001 3278735159921/96450076809*20633239^(2/7) 4180999952164550 a001 10610209857723/312119004989*20633239^(2/7) 4180999952164550 a001 4052739537881/119218851371*20633239^(2/7) 4180999952164550 a001 387002188980/11384387281*20633239^(2/7) 4180999952164550 a001 591286729879/17393796001*20633239^(2/7) 4180999952164550 a001 225851433717/6643838879*20633239^(2/7) 4180999952164550 a001 1135099622/33391061*20633239^(2/7) 4180999952164550 a001 32951280099/969323029*20633239^(2/7) 4180999952164550 a001 12586269025/370248451*20633239^(2/7) 4180999952164550 a001 165580141/54018521*20633239^(3/7) 4180999952164550 a001 567451585/16692641*33385282^(5/18) 4180999952164550 a001 1201881744/35355581*20633239^(2/7) 4180999952164550 a001 12586269025/87403803*20633239^(1/5) 4180999952164550 a001 267914296/54018521*20633239^(2/5) 4180999952164550 a001 433494437/33385282*33385282^(1/3) 4180999952164550 a001 4807526976/20633239*7881196^(2/11) 4180999952164550 a001 24157817/33385282*141422324^(6/13) 4180999952164551 a001 14930352/54018521*2537720636^(4/9) 4180999952164551 a001 24157817/33385282*2537720636^(2/5) 4180999952164551 a001 24157817/33385282*45537549124^(6/17) 4180999952164551 a001 24157817/33385282*14662949395604^(2/7) 4180999952164551 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^20/Lucas(37) 4180999952164551 a001 24157817/33385282*(1/2+1/2*5^(1/2))^18 4180999952164551 a001 14930352/54018521*23725150497407^(5/16) 4180999952164551 a001 14930352/54018521*505019158607^(5/14) 4180999952164551 a001 24157817/33385282*192900153618^(1/3) 4180999952164551 a001 139583866626/33385283 4180999952164551 a001 14930352/54018521*73681302247^(5/13) 4180999952164551 a001 14930352/54018521*28143753123^(2/5) 4180999952164551 a001 24157817/33385282*10749957122^(3/8) 4180999952164551 a001 14930352/54018521*10749957122^(5/12) 4180999952164551 a001 24157817/33385282*4106118243^(9/23) 4180999952164551 a001 14930352/54018521*4106118243^(10/23) 4180999952164551 a001 24157817/33385282*1568397607^(9/22) 4180999952164551 a001 14930352/54018521*1568397607^(5/11) 4180999952164551 a001 24157817/33385282*599074578^(3/7) 4180999952164551 a001 14930352/54018521*599074578^(10/21) 4180999952164551 a001 24157817/33385282*228826127^(9/20) 4180999952164551 a001 9227465/12752043*12752043^(9/17) 4180999952164551 a001 14930352/54018521*228826127^(1/2) 4180999952164551 a001 14619165/4769326*33385282^(5/12) 4180999952164551 a001 165580141/33385282*33385282^(7/18) 4180999952164551 a001 53316291173/33385282*12752043^(1/17) 4180999952164551 a001 4976784/29134601*33385282^(7/12) 4180999952164551 a001 24157817/33385282*87403803^(9/19) 4180999952164551 a001 32951280099/228826127*20633239^(1/5) 4180999952164551 a001 14930352/54018521*87403803^(10/19) 4180999952164551 a004 Fibonacci(38)*Lucas(37)/(1/2+sqrt(5)/2)^56 4180999952164551 a001 43133785636/299537289*20633239^(1/5) 4180999952164551 a001 32264490531/224056801*20633239^(1/5) 4180999952164551 a001 591286729879/4106118243*20633239^(1/5) 4180999952164551 a001 774004377960/5374978561*20633239^(1/5) 4180999952164551 a001 4052739537881/28143753123*20633239^(1/5) 4180999952164551 a001 1515744265389/10525900321*20633239^(1/5) 4180999952164551 a001 3278735159921/22768774562*20633239^(1/5) 4180999952164551 a001 2504730781961/17393796001*20633239^(1/5) 4180999952164551 a001 956722026041/6643838879*20633239^(1/5) 4180999952164551 a001 182717648081/1268860318*20633239^(1/5) 4180999952164551 a001 139583862445/969323029*20633239^(1/5) 4180999952164551 a001 10983760033/29134601*20633239^(1/7) 4180999952164551 a001 53316291173/370248451*20633239^(1/5) 4180999952164551 a001 31622993/16692641*33385282^(4/9) 4180999952164551 a001 10182505537/70711162*20633239^(1/5) 4180999952164551 a004 Fibonacci(40)*Lucas(37)/(1/2+sqrt(5)/2)^58 4180999952164551 a001 5702887/6643838879*12752043^(16/17) 4180999952164551 a001 86267571272/228826127*20633239^(1/7) 4180999952164551 a004 Fibonacci(42)*Lucas(37)/(1/2+sqrt(5)/2)^60 4180999952164551 a004 Fibonacci(44)*Lucas(37)/(1/2+sqrt(5)/2)^62 4180999952164551 a004 Fibonacci(46)*Lucas(37)/(1/2+sqrt(5)/2)^64 4180999952164551 a004 Fibonacci(48)*Lucas(37)/(1/2+sqrt(5)/2)^66 4180999952164551 a004 Fibonacci(50)*Lucas(37)/(1/2+sqrt(5)/2)^68 4180999952164551 a004 Fibonacci(52)*Lucas(37)/(1/2+sqrt(5)/2)^70 4180999952164551 a004 Fibonacci(54)*Lucas(37)/(1/2+sqrt(5)/2)^72 4180999952164551 a004 Fibonacci(56)*Lucas(37)/(1/2+sqrt(5)/2)^74 4180999952164551 a004 Fibonacci(58)*Lucas(37)/(1/2+sqrt(5)/2)^76 4180999952164551 a004 Fibonacci(60)*Lucas(37)/(1/2+sqrt(5)/2)^78 4180999952164551 a004 Fibonacci(62)*Lucas(37)/(1/2+sqrt(5)/2)^80 4180999952164551 a004 Fibonacci(64)*Lucas(37)/(1/2+sqrt(5)/2)^82 4180999952164551 a004 Fibonacci(66)*Lucas(37)/(1/2+sqrt(5)/2)^84 4180999952164551 a004 Fibonacci(68)*Lucas(37)/(1/2+sqrt(5)/2)^86 4180999952164551 a004 Fibonacci(70)*Lucas(37)/(1/2+sqrt(5)/2)^88 4180999952164551 a004 Fibonacci(72)*Lucas(37)/(1/2+sqrt(5)/2)^90 4180999952164551 a004 Fibonacci(74)*Lucas(37)/(1/2+sqrt(5)/2)^92 4180999952164551 a004 Fibonacci(76)*Lucas(37)/(1/2+sqrt(5)/2)^94 4180999952164551 a004 Fibonacci(78)*Lucas(37)/(1/2+sqrt(5)/2)^96 4180999952164551 a004 Fibonacci(80)*Lucas(37)/(1/2+sqrt(5)/2)^98 4180999952164551 a004 Fibonacci(82)*Lucas(37)/(1/2+sqrt(5)/2)^100 4180999952164551 a004 Fibonacci(81)*Lucas(37)/(1/2+sqrt(5)/2)^99 4180999952164551 a004 Fibonacci(79)*Lucas(37)/(1/2+sqrt(5)/2)^97 4180999952164551 a004 Fibonacci(77)*Lucas(37)/(1/2+sqrt(5)/2)^95 4180999952164551 a004 Fibonacci(75)*Lucas(37)/(1/2+sqrt(5)/2)^93 4180999952164551 a001 2/24157817*(1/2+1/2*5^(1/2))^56 4180999952164551 a004 Fibonacci(73)*Lucas(37)/(1/2+sqrt(5)/2)^91 4180999952164551 a004 Fibonacci(71)*Lucas(37)/(1/2+sqrt(5)/2)^89 4180999952164551 a004 Fibonacci(69)*Lucas(37)/(1/2+sqrt(5)/2)^87 4180999952164551 a004 Fibonacci(67)*Lucas(37)/(1/2+sqrt(5)/2)^85 4180999952164551 a004 Fibonacci(65)*Lucas(37)/(1/2+sqrt(5)/2)^83 4180999952164551 a004 Fibonacci(63)*Lucas(37)/(1/2+sqrt(5)/2)^81 4180999952164551 a004 Fibonacci(61)*Lucas(37)/(1/2+sqrt(5)/2)^79 4180999952164551 a004 Fibonacci(59)*Lucas(37)/(1/2+sqrt(5)/2)^77 4180999952164551 a004 Fibonacci(57)*Lucas(37)/(1/2+sqrt(5)/2)^75 4180999952164551 a004 Fibonacci(55)*Lucas(37)/(1/2+sqrt(5)/2)^73 4180999952164551 a004 Fibonacci(53)*Lucas(37)/(1/2+sqrt(5)/2)^71 4180999952164551 a004 Fibonacci(51)*Lucas(37)/(1/2+sqrt(5)/2)^69 4180999952164551 a004 Fibonacci(49)*Lucas(37)/(1/2+sqrt(5)/2)^67 4180999952164551 a004 Fibonacci(47)*Lucas(37)/(1/2+sqrt(5)/2)^65 4180999952164551 a004 Fibonacci(45)*Lucas(37)/(1/2+sqrt(5)/2)^63 4180999952164551 a004 Fibonacci(43)*Lucas(37)/(1/2+sqrt(5)/2)^61 4180999952164551 a001 267913919/710646*20633239^(1/7) 4180999952164551 a001 591286729879/1568397607*20633239^(1/7) 4180999952164551 a001 516002918640/1368706081*20633239^(1/7) 4180999952164551 a001 4052739537881/10749957122*20633239^(1/7) 4180999952164551 a001 3536736619241/9381251041*20633239^(1/7) 4180999952164551 a001 6557470319842/17393796001*20633239^(1/7) 4180999952164551 a001 2504730781961/6643838879*20633239^(1/7) 4180999952164551 a004 Fibonacci(41)*Lucas(37)/(1/2+sqrt(5)/2)^59 4180999952164551 a001 956722026041/2537720636*20633239^(1/7) 4180999952164551 a001 365435296162/969323029*20633239^(1/7) 4180999952164552 a001 1836311903/54018521*20633239^(2/7) 4180999952164552 a001 139583862445/370248451*20633239^(1/7) 4180999952164552 a001 3732588/35355581*33385282^(11/18) 4180999952164552 a004 Fibonacci(39)*Lucas(37)/(1/2+sqrt(5)/2)^57 4180999952164552 a001 14930352/370248451*33385282^(2/3) 4180999952164552 a001 53316291173/141422324*20633239^(1/7) 4180999952164552 a001 365435291981/87403802 4180999952164552 a001 39088169/87403803*817138163596^(1/3) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^19/Lucas(38) 4180999952164552 a001 14930352/969323029*33385282^(13/18) 4180999952164552 a001 14930352/1568397607*33385282^(3/4) 4180999952164552 a001 196452/33391061*33385282^(7/9) 4180999952164552 a001 39088169/87403803*87403803^(1/2) 4180999952164552 a001 5702887/20633239*12752043^(10/17) 4180999952164552 a004 Fibonacci(38)*Lucas(39)/(1/2+sqrt(5)/2)^58 4180999952164552 a001 39088169/312119004989*141422324^(12/13) 4180999952164552 a001 39088169/228826127*141422324^(7/13) 4180999952164552 a001 10182505537/16692641*12752043^(2/17) 4180999952164552 a001 39088169/73681302247*141422324^(11/13) 4180999952164552 a001 39088169/17393796001*141422324^(10/13) 4180999952164552 a001 39088169/4106118243*141422324^(9/13) 4180999952164552 a001 39088169/2537720636*141422324^(2/3) 4180999952164552 a001 39088169/969323029*141422324^(8/13) 4180999952164552 a001 267914296/87403803*141422324^(5/13) 4180999952164552 a001 39088169/228826127*2537720636^(7/15) 4180999952164552 a001 39088169/228826127*17393796001^(3/7) 4180999952164552 a001 39088169/228826127*45537549124^(7/17) 4180999952164552 a001 34111385/29134601*45537549124^(1/3) 4180999952164552 a001 39088169/228826127*14662949395604^(1/3) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^21/Lucas(40) 4180999952164552 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^17/Lucas(38) 4180999952164552 a001 39088169/228826127*192900153618^(7/18) 4180999952164552 a001 39088169/228826127*10749957122^(7/16) 4180999952164552 a001 14930352/6643838879*33385282^(5/6) 4180999952164552 a001 39088169/228826127*599074578^(1/2) 4180999952164552 a001 233802911/29134601*141422324^(1/3) 4180999952164552 a001 1134903170/87403803*141422324^(4/13) 4180999952164552 a001 1602508992/29134601*141422324^(3/13) 4180999952164552 a001 20365011074/87403803*141422324^(2/13) 4180999952164552 a004 Fibonacci(38)*Lucas(41)/(1/2+sqrt(5)/2)^60 4180999952164552 a001 86267571272/87403803*141422324^(1/13) 4180999952164552 a001 267914296/87403803*2537720636^(1/3) 4180999952164552 a001 267914296/87403803*45537549124^(5/17) 4180999952164552 a001 267914296/87403803*312119004989^(3/11) 4180999952164552 a001 10472279279564024/2504730781961 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^23/Lucas(42) 4180999952164552 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^15/Lucas(38) 4180999952164552 a001 267914296/87403803*192900153618^(5/18) 4180999952164552 a001 267914296/87403803*28143753123^(3/10) 4180999952164552 a001 267914296/87403803*10749957122^(5/16) 4180999952164552 a001 39088169/599074578*4106118243^(1/2) 4180999952164552 a001 267914296/87403803*599074578^(5/14) 4180999952164552 a004 Fibonacci(38)*Lucas(43)/(1/2+sqrt(5)/2)^62 4180999952164552 a001 39088169/1568397607*2537720636^(5/9) 4180999952164552 a001 39088169/1568397607*312119004989^(5/11) 4180999952164552 a001 27416783093579877/6557470319842 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^25/Lucas(44) 4180999952164552 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^13/Lucas(38) 4180999952164552 a001 233802911/29134601*73681302247^(1/4) 4180999952164552 a001 39088169/1568397607*28143753123^(1/2) 4180999952164552 a004 Fibonacci(38)*Lucas(45)/(1/2+sqrt(5)/2)^64 4180999952164552 a001 39088169/4106118243*2537720636^(3/5) 4180999952164552 a001 39088169/5600748293801*2537720636^(14/15) 4180999952164552 a001 39088169/2139295485799*2537720636^(8/9) 4180999952164552 a001 39088169/1322157322203*2537720636^(13/15) 4180999952164552 a001 39088169/312119004989*2537720636^(4/5) 4180999952164552 a001 39088169/192900153618*2537720636^(7/9) 4180999952164552 a001 39088169/73681302247*2537720636^(11/15) 4180999952164552 a001 39088169/17393796001*2537720636^(2/3) 4180999952164552 a001 39088169/4106118243*45537549124^(9/17) 4180999952164552 a001 1836311903/87403803*312119004989^(1/5) 4180999952164552 a001 39088169/4106118243*817138163596^(9/19) 4180999952164552 a001 39088169/4106118243*14662949395604^(3/7) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^27/Lucas(46) 4180999952164552 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^11/Lucas(38) 4180999952164552 a001 39088169/4106118243*192900153618^(1/2) 4180999952164552 a001 39088169/4106118243*10749957122^(9/16) 4180999952164552 a001 1602508992/29134601*2537720636^(1/5) 4180999952164552 a004 Fibonacci(38)*Lucas(47)/(1/2+sqrt(5)/2)^66 4180999952164552 a001 20365011074/87403803*2537720636^(2/15) 4180999952164552 a001 10983760033/29134601*2537720636^(1/9) 4180999952164552 a001 2971215073/87403803*2537720636^(2/9) 4180999952164552 a001 86267571272/87403803*2537720636^(1/15) 4180999952164552 a001 1602508992/29134601*45537549124^(3/17) 4180999952164552 a001 1602508992/29134601*14662949395604^(1/7) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^29/Lucas(48) 4180999952164552 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^9/Lucas(38) 4180999952164552 a001 39088169/10749957122*1322157322203^(1/2) 4180999952164552 a001 1602508992/29134601*192900153618^(1/6) 4180999952164552 a001 1602508992/29134601*10749957122^(3/16) 4180999952164552 a004 Fibonacci(38)*Lucas(49)/(1/2+sqrt(5)/2)^68 4180999952164552 a001 39088169/5600748293801*17393796001^(6/7) 4180999952164552 a001 39088169/192900153618*17393796001^(5/7) 4180999952164552 a001 12586269025/87403803*17393796001^(1/7) 4180999952164552 a001 12586269025/87403803*14662949395604^(1/9) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^31/Lucas(50) 4180999952164552 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^7/Lucas(38) 4180999952164552 a001 39088169/28143753123*9062201101803^(1/2) 4180999952164552 a001 39088169/73681302247*45537549124^(11/17) 4180999952164552 a004 Fibonacci(38)*Lucas(51)/(1/2+sqrt(5)/2)^70 4180999952164552 a001 39088169/23725150497407*45537549124^(15/17) 4180999952164552 a001 39088169/5600748293801*45537549124^(14/17) 4180999952164552 a001 39088169/1322157322203*45537549124^(13/17) 4180999952164552 a001 39088169/312119004989*45537549124^(12/17) 4180999952164552 a001 39088169/119218851371*45537549124^(2/3) 4180999952164552 a001 39088169/73681302247*312119004989^(3/5) 4180999952164552 a001 10983760033/29134601*312119004989^(1/11) 4180999952164552 a001 39088169/73681302247*817138163596^(11/19) 4180999952164552 a001 39088169/73681302247*14662949395604^(11/21) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^33/Lucas(52) 4180999952164552 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^5/Lucas(38) 4180999952164552 a001 39088169/73681302247*192900153618^(11/18) 4180999952164552 a004 Fibonacci(38)*Lucas(53)/(1/2+sqrt(5)/2)^72 4180999952164552 a001 10983760033/29134601*28143753123^(1/10) 4180999952164552 a001 86267571272/87403803*45537549124^(1/17) 4180999952164552 a001 39088169/192900153618*312119004989^(7/11) 4180999952164552 a001 39088169/192900153618*14662949395604^(5/9) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^35/Lucas(54) 4180999952164552 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^3/Lucas(38) 4180999952164552 a001 86267571272/87403803*192900153618^(1/18) 4180999952164552 a001 39088169/192900153618*505019158607^(5/8) 4180999952164552 a004 Fibonacci(38)*Lucas(55)/(1/2+sqrt(5)/2)^74 4180999952164552 a001 39088169/23725150497407*312119004989^(9/11) 4180999952164552 a001 39088169/14662949395604*312119004989^(4/5) 4180999952164552 a001 39088169/2139295485799*312119004989^(8/11) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^37/Lucas(56) 4180999952164552 a004 Fibonacci(56)*(1/2+sqrt(5)/2)/Lucas(38) 4180999952164552 a004 Fibonacci(38)*Lucas(57)/(1/2+sqrt(5)/2)^76 4180999952164552 a001 39088169/5600748293801*817138163596^(14/19) 4180999952164552 a001 39088169/1322157322203*14662949395604^(13/21) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^39/Lucas(58) 4180999952164552 a004 Fibonacci(58)/Lucas(38)/(1/2+sqrt(5)/2) 4180999952164552 a004 Fibonacci(38)*Lucas(59)/(1/2+sqrt(5)/2)^78 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^41/Lucas(60) 4180999952164552 a004 Fibonacci(60)/Lucas(38)/(1/2+sqrt(5)/2)^3 4180999952164552 a004 Fibonacci(38)*Lucas(61)/(1/2+sqrt(5)/2)^80 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^43/Lucas(62) 4180999952164552 a004 Fibonacci(62)/Lucas(38)/(1/2+sqrt(5)/2)^5 4180999952164552 a004 Fibonacci(38)*Lucas(63)/(1/2+sqrt(5)/2)^82 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^45/Lucas(64) 4180999952164552 a004 Fibonacci(64)/Lucas(38)/(1/2+sqrt(5)/2)^7 4180999952164552 a004 Fibonacci(38)*Lucas(65)/(1/2+sqrt(5)/2)^84 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^47/Lucas(66) 4180999952164552 a004 Fibonacci(66)/Lucas(38)/(1/2+sqrt(5)/2)^9 4180999952164552 a004 Fibonacci(38)*Lucas(67)/(1/2+sqrt(5)/2)^86 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^49/Lucas(68) 4180999952164552 a004 Fibonacci(68)/Lucas(38)/(1/2+sqrt(5)/2)^11 4180999952164552 a004 Fibonacci(38)*Lucas(69)/(1/2+sqrt(5)/2)^88 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^51/Lucas(70) 4180999952164552 a004 Fibonacci(70)/Lucas(38)/(1/2+sqrt(5)/2)^13 4180999952164552 a004 Fibonacci(38)*Lucas(71)/(1/2+sqrt(5)/2)^90 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^53/Lucas(72) 4180999952164552 a004 Fibonacci(72)/Lucas(38)/(1/2+sqrt(5)/2)^15 4180999952164552 a004 Fibonacci(38)*Lucas(73)/(1/2+sqrt(5)/2)^92 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^55/Lucas(74) 4180999952164552 a004 Fibonacci(74)/Lucas(38)/(1/2+sqrt(5)/2)^17 4180999952164552 a004 Fibonacci(38)*Lucas(75)/(1/2+sqrt(5)/2)^94 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^57/Lucas(76) 4180999952164552 a004 Fibonacci(38)*Lucas(77)/(1/2+sqrt(5)/2)^96 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^59/Lucas(78) 4180999952164552 a004 Fibonacci(38)*Lucas(79)/(1/2+sqrt(5)/2)^98 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^61/Lucas(80) 4180999952164552 a004 Fibonacci(38)*Lucas(81)/(1/2+sqrt(5)/2)^100 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^63/Lucas(82) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^65/Lucas(84) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^67/Lucas(86) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^69/Lucas(88) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^71/Lucas(90) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^73/Lucas(92) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^75/Lucas(94) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^77/Lucas(96) 4180999952164552 a004 Fibonacci(19)*Lucas(19)/(1/2+sqrt(5)/2)^19 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^79/Lucas(98) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^81/Lucas(100) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^80/Lucas(99) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^78/Lucas(97) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^76/Lucas(95) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^74/Lucas(93) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^72/Lucas(91) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^70/Lucas(89) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^68/Lucas(87) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^66/Lucas(85) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^64/Lucas(83) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^62/Lucas(81) 4180999952164552 a004 Fibonacci(38)*Lucas(80)/(1/2+sqrt(5)/2)^99 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^60/Lucas(79) 4180999952164552 a004 Fibonacci(38)*Lucas(78)/(1/2+sqrt(5)/2)^97 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^58/Lucas(77) 4180999952164552 a004 Fibonacci(78)/Lucas(38)/(1/2+sqrt(5)/2)^21 4180999952164552 a004 Fibonacci(80)/Lucas(38)/(1/2+sqrt(5)/2)^23 4180999952164552 a004 Fibonacci(82)/Lucas(38)/(1/2+sqrt(5)/2)^25 4180999952164552 a004 Fibonacci(84)/Lucas(38)/(1/2+sqrt(5)/2)^27 4180999952164552 a004 Fibonacci(86)/Lucas(38)/(1/2+sqrt(5)/2)^29 4180999952164552 a004 Fibonacci(88)/Lucas(38)/(1/2+sqrt(5)/2)^31 4180999952164552 a004 Fibonacci(90)/Lucas(38)/(1/2+sqrt(5)/2)^33 4180999952164552 a004 Fibonacci(92)/Lucas(38)/(1/2+sqrt(5)/2)^35 4180999952164552 a004 Fibonacci(94)/Lucas(38)/(1/2+sqrt(5)/2)^37 4180999952164552 a004 Fibonacci(96)/Lucas(38)/(1/2+sqrt(5)/2)^39 4180999952164552 a004 Fibonacci(100)/Lucas(38)/(1/2+sqrt(5)/2)^43 4180999952164552 a004 Fibonacci(98)/Lucas(38)/(1/2+sqrt(5)/2)^41 4180999952164552 a004 Fibonacci(99)/Lucas(38)/(1/2+sqrt(5)/2)^42 4180999952164552 a004 Fibonacci(97)/Lucas(38)/(1/2+sqrt(5)/2)^40 4180999952164552 a004 Fibonacci(95)/Lucas(38)/(1/2+sqrt(5)/2)^38 4180999952164552 a004 Fibonacci(93)/Lucas(38)/(1/2+sqrt(5)/2)^36 4180999952164552 a004 Fibonacci(91)/Lucas(38)/(1/2+sqrt(5)/2)^34 4180999952164552 a004 Fibonacci(89)/Lucas(38)/(1/2+sqrt(5)/2)^32 4180999952164552 a004 Fibonacci(87)/Lucas(38)/(1/2+sqrt(5)/2)^30 4180999952164552 a004 Fibonacci(85)/Lucas(38)/(1/2+sqrt(5)/2)^28 4180999952164552 a004 Fibonacci(83)/Lucas(38)/(1/2+sqrt(5)/2)^26 4180999952164552 a004 Fibonacci(81)/Lucas(38)/(1/2+sqrt(5)/2)^24 4180999952164552 a004 Fibonacci(79)/Lucas(38)/(1/2+sqrt(5)/2)^22 4180999952164552 a004 Fibonacci(77)/Lucas(38)/(1/2+sqrt(5)/2)^20 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^56/Lucas(75) 4180999952164552 a004 Fibonacci(75)/Lucas(38)/(1/2+sqrt(5)/2)^18 4180999952164552 a004 Fibonacci(38)*Lucas(74)/(1/2+sqrt(5)/2)^93 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^54/Lucas(73) 4180999952164552 a004 Fibonacci(73)/Lucas(38)/(1/2+sqrt(5)/2)^16 4180999952164552 a004 Fibonacci(38)*Lucas(72)/(1/2+sqrt(5)/2)^91 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^52/Lucas(71) 4180999952164552 a004 Fibonacci(71)/Lucas(38)/(1/2+sqrt(5)/2)^14 4180999952164552 a004 Fibonacci(38)*Lucas(70)/(1/2+sqrt(5)/2)^89 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^50/Lucas(69) 4180999952164552 a004 Fibonacci(69)/Lucas(38)/(1/2+sqrt(5)/2)^12 4180999952164552 a004 Fibonacci(38)*Lucas(68)/(1/2+sqrt(5)/2)^87 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^48/Lucas(67) 4180999952164552 a004 Fibonacci(67)/Lucas(38)/(1/2+sqrt(5)/2)^10 4180999952164552 a004 Fibonacci(38)*Lucas(66)/(1/2+sqrt(5)/2)^85 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^46/Lucas(65) 4180999952164552 a004 Fibonacci(65)/Lucas(38)/(1/2+sqrt(5)/2)^8 4180999952164552 a004 Fibonacci(38)*Lucas(64)/(1/2+sqrt(5)/2)^83 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^44/Lucas(63) 4180999952164552 a004 Fibonacci(63)/Lucas(38)/(1/2+sqrt(5)/2)^6 4180999952164552 a001 39088169/14662949395604*23725150497407^(11/16) 4180999952164552 a004 Fibonacci(38)*Lucas(62)/(1/2+sqrt(5)/2)^81 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^42/Lucas(61) 4180999952164552 a004 Fibonacci(61)/Lucas(38)/(1/2+sqrt(5)/2)^4 4180999952164552 a004 Fibonacci(38)*Lucas(60)/(1/2+sqrt(5)/2)^79 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^40/Lucas(59) 4180999952164552 a004 Fibonacci(59)/Lucas(38)/(1/2+sqrt(5)/2)^2 4180999952164552 a004 Fibonacci(38)*Lucas(58)/(1/2+sqrt(5)/2)^77 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^38/Lucas(57) 4180999952164552 a001 39088169/5600748293801*505019158607^(3/4) 4180999952164552 a004 Fibonacci(38)*Lucas(56)/(1/2+sqrt(5)/2)^75 4180999952164552 a001 39088169/312119004989*14662949395604^(4/7) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^36/Lucas(55) 4180999952164552 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^2/Lucas(38) 4180999952164552 a001 39088169/312119004989*505019158607^(9/14) 4180999952164552 a001 39088169/1322157322203*192900153618^(13/18) 4180999952164552 a001 39088169/5600748293801*192900153618^(7/9) 4180999952164552 a001 39088169/23725150497407*192900153618^(5/6) 4180999952164552 a004 Fibonacci(38)*Lucas(54)/(1/2+sqrt(5)/2)^73 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^34/Lucas(53) 4180999952164552 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^4/Lucas(38) 4180999952164552 a001 53316291173/87403803*23725150497407^(1/16) 4180999952164552 a001 53316291173/87403803*73681302247^(1/13) 4180999952164552 a001 39088169/1322157322203*73681302247^(3/4) 4180999952164552 a001 39088169/312119004989*73681302247^(9/13) 4180999952164552 a001 39088169/2139295485799*73681302247^(10/13) 4180999952164552 a001 39088169/14662949395604*73681302247^(11/13) 4180999952164552 a004 Fibonacci(38)*Lucas(52)/(1/2+sqrt(5)/2)^71 4180999952164552 a001 139583862445/87403803*10749957122^(1/24) 4180999952164552 a001 20365011074/87403803*45537549124^(2/17) 4180999952164552 a001 20365011074/87403803*14662949395604^(2/21) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^32/Lucas(51) 4180999952164552 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^6/Lucas(38) 4180999952164552 a001 39088169/45537549124*23725150497407^(1/2) 4180999952164552 a001 39088169/45537549124*505019158607^(4/7) 4180999952164552 a001 86267571272/87403803*10749957122^(1/16) 4180999952164552 a001 39088169/45537549124*73681302247^(8/13) 4180999952164552 a001 53316291173/87403803*10749957122^(1/12) 4180999952164552 a001 39088169/192900153618*28143753123^(7/10) 4180999952164552 a001 39088169/2139295485799*28143753123^(4/5) 4180999952164552 a001 39088169/23725150497407*28143753123^(9/10) 4180999952164552 a004 Fibonacci(38)*Lucas(50)/(1/2+sqrt(5)/2)^69 4180999952164552 a001 20365011074/87403803*10749957122^(1/8) 4180999952164552 a001 139583862445/87403803*4106118243^(1/23) 4180999952164552 a001 39088169/17393796001*45537549124^(10/17) 4180999952164552 a001 39088169/17393796001*312119004989^(6/11) 4180999952164552 a001 39088169/17393796001*14662949395604^(10/21) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^30/Lucas(49) 4180999952164552 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^8/Lucas(38) 4180999952164552 a001 7778742049/87403803*23725150497407^(1/8) 4180999952164552 a001 39088169/17393796001*192900153618^(5/9) 4180999952164552 a001 7778742049/87403803*73681302247^(2/13) 4180999952164552 a001 39088169/17393796001*28143753123^(3/5) 4180999952164552 a001 7778742049/87403803*10749957122^(1/6) 4180999952164552 a001 53316291173/87403803*4106118243^(2/23) 4180999952164552 a001 39088169/73681302247*10749957122^(11/16) 4180999952164552 a001 39088169/119218851371*10749957122^(17/24) 4180999952164552 a001 39088169/45537549124*10749957122^(2/3) 4180999952164552 a001 39088169/312119004989*10749957122^(3/4) 4180999952164552 a001 4181/87403804*10749957122^(19/24) 4180999952164552 a001 39088169/1322157322203*10749957122^(13/16) 4180999952164552 a001 39088169/2139295485799*10749957122^(5/6) 4180999952164552 a001 39088169/5600748293801*10749957122^(7/8) 4180999952164552 a001 39088169/14662949395604*10749957122^(11/12) 4180999952164552 a001 39088169/23725150497407*10749957122^(15/16) 4180999952164552 a001 20365011074/87403803*4106118243^(3/23) 4180999952164552 a004 Fibonacci(38)*Lucas(48)/(1/2+sqrt(5)/2)^67 4180999952164552 a001 39088169/17393796001*10749957122^(5/8) 4180999952164552 a001 7778742049/87403803*4106118243^(4/23) 4180999952164552 a001 139583862445/87403803*1568397607^(1/22) 4180999952164552 a001 39088169/6643838879*17393796001^(4/7) 4180999952164552 a001 2971215073/87403803*312119004989^(2/11) 4180999952164552 a001 39088169/6643838879*14662949395604^(4/9) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^28/Lucas(47) 4180999952164552 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^10/Lucas(38) 4180999952164552 a001 39088169/6643838879*73681302247^(7/13) 4180999952164552 a001 2971215073/87403803*28143753123^(1/5) 4180999952164552 a001 2971215073/87403803*10749957122^(5/24) 4180999952164552 a001 39088169/6643838879*10749957122^(7/12) 4180999952164552 a001 2971215073/87403803*4106118243^(5/23) 4180999952164552 a001 53316291173/87403803*1568397607^(1/11) 4180999952164552 a001 39088169/45537549124*4106118243^(16/23) 4180999952164552 a001 39088169/17393796001*4106118243^(15/23) 4180999952164552 a001 1836311903/87403803*1568397607^(1/4) 4180999952164552 a001 39088169/119218851371*4106118243^(17/23) 4180999952164552 a001 39088169/312119004989*4106118243^(18/23) 4180999952164552 a001 4181/87403804*4106118243^(19/23) 4180999952164552 a001 39088169/2139295485799*4106118243^(20/23) 4180999952164552 a001 39088169/5600748293801*4106118243^(21/23) 4180999952164552 a001 20365011074/87403803*1568397607^(3/22) 4180999952164552 a001 39088169/14662949395604*4106118243^(22/23) 4180999952164552 a001 39088169/6643838879*4106118243^(14/23) 4180999952164552 a004 Fibonacci(38)*Lucas(46)/(1/2+sqrt(5)/2)^65 4180999952164552 a001 7778742049/87403803*1568397607^(2/11) 4180999952164552 a001 1134903170/87403803*2537720636^(4/15) 4180999952164552 a001 2971215073/87403803*1568397607^(5/22) 4180999952164552 a001 139583862445/87403803*599074578^(1/21) 4180999952164552 a001 1134903170/87403803*45537549124^(4/17) 4180999952164552 a001 1134903170/87403803*817138163596^(4/19) 4180999952164552 a001 1134903170/87403803*14662949395604^(4/21) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^26/Lucas(45) 4180999952164552 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^12/Lucas(38) 4180999952164552 a001 1134903170/87403803*192900153618^(2/9) 4180999952164552 a001 1134903170/87403803*73681302247^(3/13) 4180999952164552 a001 39088169/2537720636*73681302247^(1/2) 4180999952164552 a001 1134903170/87403803*10749957122^(1/4) 4180999952164552 a001 39088169/2537720636*10749957122^(13/24) 4180999952164552 a001 1134903170/87403803*4106118243^(6/23) 4180999952164552 a001 39088169/2537720636*4106118243^(13/23) 4180999952164552 a001 86267571272/87403803*599074578^(1/14) 4180999952164552 a001 53316291173/87403803*599074578^(2/21) 4180999952164552 a001 1134903170/87403803*1568397607^(3/11) 4180999952164552 a001 39088169/17393796001*1568397607^(15/22) 4180999952164552 a001 39088169/6643838879*1568397607^(7/11) 4180999952164552 a001 39088169/45537549124*1568397607^(8/11) 4180999952164552 a001 39088169/73681302247*1568397607^(3/4) 4180999952164552 a001 39088169/119218851371*1568397607^(17/22) 4180999952164552 a001 39088169/312119004989*1568397607^(9/11) 4180999952164552 a001 4181/87403804*1568397607^(19/22) 4180999952164552 a001 39088169/2139295485799*1568397607^(10/11) 4180999952164552 a001 39088169/5600748293801*1568397607^(21/22) 4180999952164552 a001 39088169/2537720636*1568397607^(13/22) 4180999952164552 a001 20365011074/87403803*599074578^(1/7) 4180999952164552 a004 Fibonacci(38)*Lucas(44)/(1/2+sqrt(5)/2)^63 4180999952164552 a001 12586269025/87403803*599074578^(1/6) 4180999952164552 a001 7778742049/87403803*599074578^(4/21) 4180999952164552 a001 1602508992/29134601*599074578^(3/14) 4180999952164552 a001 2971215073/87403803*599074578^(5/21) 4180999952164552 a001 1134903170/87403803*599074578^(2/7) 4180999952164552 a001 139583862445/87403803*228826127^(1/20) 4180999952164552 a001 39088169/969323029*2537720636^(8/15) 4180999952164552 a001 433494437/87403803*17393796001^(2/7) 4180999952164552 a001 39088169/969323029*45537549124^(8/17) 4180999952164552 a001 39088169/969323029*14662949395604^(8/21) 4180999952164552 a001 433494437/87403803*14662949395604^(2/9) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^24/Lucas(43) 4180999952164552 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^14/Lucas(38) 4180999952164552 a001 16944503814015853/4052739537881 4180999952164552 a001 39088169/969323029*192900153618^(4/9) 4180999952164552 a001 39088169/969323029*73681302247^(6/13) 4180999952164552 a001 433494437/87403803*10749957122^(7/24) 4180999952164552 a001 39088169/969323029*10749957122^(1/2) 4180999952164552 a001 433494437/87403803*4106118243^(7/23) 4180999952164552 a001 39088169/969323029*4106118243^(12/23) 4180999952164552 a001 433494437/87403803*1568397607^(7/22) 4180999952164552 a001 39088169/969323029*1568397607^(6/11) 4180999952164552 a001 39088169/4106118243*599074578^(9/14) 4180999952164552 a001 39088169/2537720636*599074578^(13/21) 4180999952164552 a001 39088169/6643838879*599074578^(2/3) 4180999952164552 a001 53316291173/87403803*228826127^(1/10) 4180999952164552 a001 433494437/87403803*599074578^(1/3) 4180999952164552 a001 39088169/17393796001*599074578^(5/7) 4180999952164552 a001 39088169/45537549124*599074578^(16/21) 4180999952164552 a001 39088169/73681302247*599074578^(11/14) 4180999952164552 a001 39088169/119218851371*599074578^(17/21) 4180999952164552 a001 39088169/192900153618*599074578^(5/6) 4180999952164552 a001 10983760033/29134601*228826127^(1/8) 4180999952164552 a001 39088169/312119004989*599074578^(6/7) 4180999952164552 a001 4181/87403804*599074578^(19/21) 4180999952164552 a001 39088169/1322157322203*599074578^(13/14) 4180999952164552 a001 39088169/2139295485799*599074578^(20/21) 4180999952164552 a001 39088169/969323029*599074578^(4/7) 4180999952164552 a004 Fibonacci(38)*Lucas(42)/(1/2+sqrt(5)/2)^61 4180999952164552 a001 20365011074/87403803*228826127^(3/20) 4180999952164552 a001 7778742049/54018521*20633239^(1/5) 4180999952164552 a001 267914296/87403803*228826127^(3/8) 4180999952164552 a001 2971215073/87403803*228826127^(1/4) 4180999952164552 a001 1134903170/87403803*228826127^(3/10) 4180999952164552 a001 139583862445/87403803*87403803^(1/19) 4180999952164552 a001 39088169/370248451*312119004989^(2/5) 4180999952164552 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^22/Lucas(41) 4180999952164552 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^16/Lucas(38) 4180999952164552 a001 165580141/87403803*23725150497407^(1/4) 4180999952164552 a001 6472224534451829/1548008755920 4180999952164552 a001 165580141/87403803*73681302247^(4/13) 4180999952164552 a001 165580141/87403803*10749957122^(1/3) 4180999952164552 a001 39088169/370248451*10749957122^(11/24) 4180999952164552 a001 165580141/87403803*4106118243^(8/23) 4180999952164552 a001 39088169/370248451*4106118243^(11/23) 4180999952164552 a001 165580141/87403803*1568397607^(4/11) 4180999952164552 a001 39088169/370248451*1568397607^(1/2) 4180999952164552 a001 433494437/87403803*228826127^(7/20) 4180999952164552 a001 165580141/87403803*599074578^(8/21) 4180999952164552 a001 39088169/370248451*599074578^(11/21) 4180999952164552 a001 39088169/1568397607*228826127^(5/8) 4180999952164552 a001 39088169/969323029*228826127^(3/5) 4180999952164552 a001 39088169/2537720636*228826127^(13/20) 4180999952164552 a001 39088169/6643838879*228826127^(7/10) 4180999952164552 a001 53316291173/87403803*87403803^(2/19) 4180999952164552 a001 39088169/17393796001*228826127^(3/4) 4180999952164552 a001 165580141/87403803*228826127^(2/5) 4180999952164552 a001 39088169/45537549124*228826127^(4/5) 4180999952164552 a001 39088169/119218851371*228826127^(17/20) 4180999952164552 a001 39088169/192900153618*228826127^(7/8) 4180999952164552 a001 39088169/312119004989*228826127^(9/10) 4180999952164552 a001 39088169/370248451*228826127^(11/20) 4180999952164552 a001 4181/87403804*228826127^(19/20) 4180999952164552 a004 Fibonacci(38)*Lucas(40)/(1/2+sqrt(5)/2)^59 4180999952164552 a001 20365011074/87403803*87403803^(3/19) 4180999952164552 a001 24157817/33385282*33385282^(1/2) 4180999952164552 a001 63245986/87403803*141422324^(6/13) 4180999952164552 a001 7778742049/87403803*87403803^(4/19) 4180999952164552 a001 14930352/17393796001*33385282^(8/9) 4180999952164552 a001 2971215073/87403803*87403803^(5/19) 4180999952164553 a001 1134903170/87403803*87403803^(6/19) 4180999952164553 a001 433494437/87403803*87403803^(7/19) 4180999952164553 a001 139583862445/87403803*33385282^(1/18) 4180999952164553 a001 39088169/141422324*2537720636^(4/9) 4180999952164553 a001 63245986/87403803*2537720636^(2/5) 4180999952164553 a001 63245986/87403803*45537549124^(6/17) 4180999952164553 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^20/Lucas(39) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^18/Lucas(38) 4180999952164553 a001 39088169/141422324*23725150497407^(5/16) 4180999952164553 a001 2472169789339634/591286729879 4180999952164553 a001 39088169/141422324*505019158607^(5/14) 4180999952164553 a001 63245986/87403803*192900153618^(1/3) 4180999952164553 a001 39088169/141422324*73681302247^(5/13) 4180999952164553 a001 39088169/141422324*28143753123^(2/5) 4180999952164553 a001 63245986/87403803*10749957122^(3/8) 4180999952164553 a001 39088169/141422324*10749957122^(5/12) 4180999952164553 a001 63245986/87403803*4106118243^(9/23) 4180999952164553 a001 39088169/141422324*4106118243^(10/23) 4180999952164553 a001 63245986/87403803*1568397607^(9/22) 4180999952164553 a001 39088169/141422324*1568397607^(5/11) 4180999952164553 a001 63245986/87403803*599074578^(3/7) 4180999952164553 a001 39088169/141422324*599074578^(10/21) 4180999952164553 a001 4976784/9381251041*33385282^(11/12) 4180999952164553 a001 63245986/87403803*228826127^(9/20) 4180999952164553 a001 39088169/141422324*228826127^(1/2) 4180999952164553 a004 Fibonacci(40)*Lucas(39)/(1/2+sqrt(5)/2)^60 4180999952164553 a001 165580141/87403803*87403803^(8/19) 4180999952164553 a001 102334155/817138163596*141422324^(12/13) 4180999952164553 a001 34111385/64300051206*141422324^(11/13) 4180999952164553 a001 102334155/45537549124*141422324^(10/13) 4180999952164553 a001 86267571272/87403803*33385282^(1/12) 4180999952164553 a001 14930352/54018521*33385282^(5/9) 4180999952164553 a001 102334155/10749957122*141422324^(9/13) 4180999952164553 a004 Fibonacci(42)*Lucas(39)/(1/2+sqrt(5)/2)^62 4180999952164553 a001 102334155/6643838879*141422324^(2/3) 4180999952164553 a004 Fibonacci(44)*Lucas(39)/(1/2+sqrt(5)/2)^64 4180999952164553 a004 Fibonacci(46)*Lucas(39)/(1/2+sqrt(5)/2)^66 4180999952164553 a004 Fibonacci(48)*Lucas(39)/(1/2+sqrt(5)/2)^68 4180999952164553 a004 Fibonacci(50)*Lucas(39)/(1/2+sqrt(5)/2)^70 4180999952164553 a004 Fibonacci(52)*Lucas(39)/(1/2+sqrt(5)/2)^72 4180999952164553 a004 Fibonacci(54)*Lucas(39)/(1/2+sqrt(5)/2)^74 4180999952164553 a004 Fibonacci(56)*Lucas(39)/(1/2+sqrt(5)/2)^76 4180999952164553 a004 Fibonacci(58)*Lucas(39)/(1/2+sqrt(5)/2)^78 4180999952164553 a004 Fibonacci(60)*Lucas(39)/(1/2+sqrt(5)/2)^80 4180999952164553 a004 Fibonacci(62)*Lucas(39)/(1/2+sqrt(5)/2)^82 4180999952164553 a004 Fibonacci(64)*Lucas(39)/(1/2+sqrt(5)/2)^84 4180999952164553 a004 Fibonacci(66)*Lucas(39)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(68)*Lucas(39)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(70)*Lucas(39)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(72)*Lucas(39)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(74)*Lucas(39)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(76)*Lucas(39)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(78)*Lucas(39)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(80)*Lucas(39)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(79)*Lucas(39)/(1/2+sqrt(5)/2)^99 4180999952164553 a001 1/31622993*(1/2+1/2*5^(1/2))^58 4180999952164553 a004 Fibonacci(77)*Lucas(39)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(75)*Lucas(39)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(73)*Lucas(39)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(71)*Lucas(39)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(69)*Lucas(39)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(67)*Lucas(39)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(65)*Lucas(39)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(63)*Lucas(39)/(1/2+sqrt(5)/2)^83 4180999952164553 a004 Fibonacci(61)*Lucas(39)/(1/2+sqrt(5)/2)^81 4180999952164553 a004 Fibonacci(59)*Lucas(39)/(1/2+sqrt(5)/2)^79 4180999952164553 a004 Fibonacci(57)*Lucas(39)/(1/2+sqrt(5)/2)^77 4180999952164553 a004 Fibonacci(55)*Lucas(39)/(1/2+sqrt(5)/2)^75 4180999952164553 a004 Fibonacci(53)*Lucas(39)/(1/2+sqrt(5)/2)^73 4180999952164553 a004 Fibonacci(51)*Lucas(39)/(1/2+sqrt(5)/2)^71 4180999952164553 a004 Fibonacci(49)*Lucas(39)/(1/2+sqrt(5)/2)^69 4180999952164553 a004 Fibonacci(47)*Lucas(39)/(1/2+sqrt(5)/2)^67 4180999952164553 a004 Fibonacci(45)*Lucas(39)/(1/2+sqrt(5)/2)^65 4180999952164553 a001 3732588/11384387281*33385282^(17/18) 4180999952164553 a001 9303105/230701876*141422324^(8/13) 4180999952164553 a001 267914296/2139295485799*141422324^(12/13) 4180999952164553 a004 Fibonacci(43)*Lucas(39)/(1/2+sqrt(5)/2)^63 4180999952164553 a001 34111385/199691526*141422324^(7/13) 4180999952164553 a001 39088169/370248451*87403803^(11/19) 4180999952164553 a001 39088169/969323029*87403803^(12/19) 4180999952164553 a001 701408733/5600748293801*141422324^(12/13) 4180999952164553 a001 1836311903/14662949395604*141422324^(12/13) 4180999952164553 a001 2971215073/23725150497407*141422324^(12/13) 4180999952164553 a001 1134903170/9062201101803*141422324^(12/13) 4180999952164553 a001 267914296/505019158607*141422324^(11/13) 4180999952164553 a001 433494437/3461452808002*141422324^(12/13) 4180999952164553 a001 233802911/440719107401*141422324^(11/13) 4180999952164553 a004 Fibonacci(41)*Lucas(39)/(1/2+sqrt(5)/2)^61 4180999952164553 a001 1836311903/3461452808002*141422324^(11/13) 4180999952164553 a001 1602508992/3020733700601*141422324^(11/13) 4180999952164553 a001 12586269025/23725150497407*141422324^(11/13) 4180999952164553 a001 7778742049/14662949395604*141422324^(11/13) 4180999952164553 a001 2971215073/5600748293801*141422324^(11/13) 4180999952164553 a001 1134903170/2139295485799*141422324^(11/13) 4180999952164553 a001 267914296/119218851371*141422324^(10/13) 4180999952164553 a001 433494437/817138163596*141422324^(11/13) 4180999952164553 a001 39088169/2537720636*87403803^(13/19) 4180999952164553 a001 3524667/1568437211*141422324^(10/13) 4180999952164553 a001 165580141/1322157322203*141422324^(12/13) 4180999952164553 a001 701408733/228826127*141422324^(5/13) 4180999952164553 a001 1836311903/817138163596*141422324^(10/13) 4180999952164553 a001 4807526976/2139295485799*141422324^(10/13) 4180999952164553 a001 12586269025/5600748293801*141422324^(10/13) 4180999952164553 a001 32951280099/14662949395604*141422324^(10/13) 4180999952164553 a001 53316291173/23725150497407*141422324^(10/13) 4180999952164553 a001 20365011074/9062201101803*141422324^(10/13) 4180999952164553 a001 7778742049/3461452808002*141422324^(10/13) 4180999952164553 a001 2971215073/1322157322203*141422324^(10/13) 4180999952164553 a001 1134903170/505019158607*141422324^(10/13) 4180999952164553 a001 102334155/228826127*817138163596^(1/3) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^19/Lucas(40) 4180999952164553 a001 267914296/28143753123*141422324^(9/13) 4180999952164553 a001 433494437/192900153618*141422324^(10/13) 4180999952164553 a001 9238424/599786069*141422324^(2/3) 4180999952164553 a001 1836311903/228826127*141422324^(1/3) 4180999952164553 a001 701408733/73681302247*141422324^(9/13) 4180999952164553 a001 165580141/312119004989*141422324^(11/13) 4180999952164553 a001 165580141/228826127*141422324^(6/13) 4180999952164553 a001 1836311903/192900153618*141422324^(9/13) 4180999952164553 a001 102287808/10745088481*141422324^(9/13) 4180999952164553 a001 12586269025/1322157322203*141422324^(9/13) 4180999952164553 a001 32951280099/3461452808002*141422324^(9/13) 4180999952164553 a001 86267571272/9062201101803*141422324^(9/13) 4180999952164553 a001 225851433717/23725150497407*141422324^(9/13) 4180999952164553 a001 139583862445/14662949395604*141422324^(9/13) 4180999952164553 a001 53316291173/5600748293801*141422324^(9/13) 4180999952164553 a001 20365011074/2139295485799*141422324^(9/13) 4180999952164553 a001 7778742049/817138163596*141422324^(9/13) 4180999952164553 a001 2971215073/312119004989*141422324^(9/13) 4180999952164553 a001 2971215073/228826127*141422324^(4/13) 4180999952164553 a001 1134903170/119218851371*141422324^(9/13) 4180999952164553 a001 39088169/6643838879*87403803^(14/19) 4180999952164553 a001 701408733/45537549124*141422324^(2/3) 4180999952164553 a001 433494437/45537549124*141422324^(9/13) 4180999952164553 a001 267914296/6643838879*141422324^(8/13) 4180999952164553 a001 1836311903/119218851371*141422324^(2/3) 4180999952164553 a001 4807526976/312119004989*141422324^(2/3) 4180999952164553 a001 12586269025/817138163596*141422324^(2/3) 4180999952164553 a001 32951280099/2139295485799*141422324^(2/3) 4180999952164553 a001 86267571272/5600748293801*141422324^(2/3) 4180999952164553 a001 7787980473/505618944676*141422324^(2/3) 4180999952164553 a001 365435296162/23725150497407*141422324^(2/3) 4180999952164553 a001 139583862445/9062201101803*141422324^(2/3) 4180999952164553 a001 53316291173/3461452808002*141422324^(2/3) 4180999952164553 a001 20365011074/1322157322203*141422324^(2/3) 4180999952164553 a001 7778742049/505019158607*141422324^(2/3) 4180999952164553 a001 2971215073/192900153618*141422324^(2/3) 4180999952164553 a001 1134903170/73681302247*141422324^(2/3) 4180999952164553 a001 433494437/28143753123*141422324^(2/3) 4180999952164553 a001 53316291173/87403803*33385282^(1/9) 4180999952164553 a001 701408733/17393796001*141422324^(8/13) 4180999952164553 a001 165580141/73681302247*141422324^(10/13) 4180999952164553 a001 1836311903/45537549124*141422324^(8/13) 4180999952164553 a001 4807526976/119218851371*141422324^(8/13) 4180999952164553 a001 1144206275/28374454999*141422324^(8/13) 4180999952164553 a001 32951280099/817138163596*141422324^(8/13) 4180999952164553 a001 86267571272/2139295485799*141422324^(8/13) 4180999952164553 a001 225851433717/5600748293801*141422324^(8/13) 4180999952164553 a001 591286729879/14662949395604*141422324^(8/13) 4180999952164553 a001 365435296162/9062201101803*141422324^(8/13) 4180999952164553 a001 139583862445/3461452808002*141422324^(8/13) 4180999952164553 a001 53316291173/1322157322203*141422324^(8/13) 4180999952164553 a001 20365011074/505019158607*141422324^(8/13) 4180999952164553 a001 7778742049/192900153618*141422324^(8/13) 4180999952164553 a001 2971215073/73681302247*141422324^(8/13) 4180999952164553 a001 12586269025/228826127*141422324^(3/13) 4180999952164553 a001 1134903170/28143753123*141422324^(8/13) 4180999952164553 a001 267914296/1568397607*141422324^(7/13) 4180999952164553 a001 433494437/10749957122*141422324^(8/13) 4180999952164553 a001 39088169/17393796001*87403803^(15/19) 4180999952164553 a001 233802911/1368706081*141422324^(7/13) 4180999952164553 a001 165580141/17393796001*141422324^(9/13) 4180999952164553 a001 1836311903/10749957122*141422324^(7/13) 4180999952164553 a001 1602508992/9381251041*141422324^(7/13) 4180999952164553 a001 12586269025/73681302247*141422324^(7/13) 4180999952164553 a001 10983760033/64300051206*141422324^(7/13) 4180999952164553 a001 86267571272/505019158607*141422324^(7/13) 4180999952164553 a001 75283811239/440719107401*141422324^(7/13) 4180999952164553 a001 2504730781961/14662949395604*141422324^(7/13) 4180999952164553 a001 139583862445/817138163596*141422324^(7/13) 4180999952164553 a001 53316291173/312119004989*141422324^(7/13) 4180999952164553 a001 20365011074/119218851371*141422324^(7/13) 4180999952164553 a001 7778742049/45537549124*141422324^(7/13) 4180999952164553 a001 2971215073/17393796001*141422324^(7/13) 4180999952164553 a001 53316291173/228826127*141422324^(2/13) 4180999952164553 a001 1134903170/6643838879*141422324^(7/13) 4180999952164553 a004 Fibonacci(40)*Lucas(41)/(1/2+sqrt(5)/2)^62 4180999952164553 a001 165580141/10749957122*141422324^(2/3) 4180999952164553 a001 433494437/2537720636*141422324^(7/13) 4180999952164553 a001 433494437/599074578*141422324^(6/13) 4180999952164553 a001 165580141/4106118243*141422324^(8/13) 4180999952164553 a001 1134903170/1568397607*141422324^(6/13) 4180999952164553 a001 2971215073/4106118243*141422324^(6/13) 4180999952164553 a001 7778742049/10749957122*141422324^(6/13) 4180999952164553 a001 20365011074/28143753123*141422324^(6/13) 4180999952164553 a001 53316291173/73681302247*141422324^(6/13) 4180999952164553 a001 139583862445/192900153618*141422324^(6/13) 4180999952164553 a001 365435296162/505019158607*141422324^(6/13) 4180999952164553 a001 10610209857723/14662949395604*141422324^(6/13) 4180999952164553 a001 591286729879/817138163596*141422324^(6/13) 4180999952164553 a001 225851433717/312119004989*141422324^(6/13) 4180999952164553 a001 86267571272/119218851371*141422324^(6/13) 4180999952164553 a001 32951280099/45537549124*141422324^(6/13) 4180999952164553 a001 12586269025/17393796001*141422324^(6/13) 4180999952164553 a001 4807526976/6643838879*141422324^(6/13) 4180999952164553 a001 1836311903/2537720636*141422324^(6/13) 4180999952164553 a001 225851433717/228826127*141422324^(1/13) 4180999952164553 a001 701408733/969323029*141422324^(6/13) 4180999952164553 a001 1836311903/599074578*141422324^(5/13) 4180999952164553 a001 34111385/199691526*2537720636^(7/15) 4180999952164553 a001 34111385/199691526*17393796001^(3/7) 4180999952164553 a001 34111385/199691526*45537549124^(7/17) 4180999952164553 a001 267914296/228826127*45537549124^(1/3) 4180999952164553 a001 2504730777780/599074577 4180999952164553 a001 34111385/199691526*14662949395604^(1/3) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^21/Lucas(42) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^17/Lucas(40) 4180999952164553 a001 34111385/199691526*192900153618^(7/18) 4180999952164553 a001 34111385/199691526*10749957122^(7/16) 4180999952164553 a001 39088169/45537549124*87403803^(16/19) 4180999952164553 a001 34111385/199691526*599074578^(1/2) 4180999952164553 a004 Fibonacci(40)*Lucas(43)/(1/2+sqrt(5)/2)^64 4180999952164553 a001 686789568/224056801*141422324^(5/13) 4180999952164553 a001 701408733/228826127*2537720636^(1/3) 4180999952164553 a001 701408733/228826127*45537549124^(5/17) 4180999952164553 a001 701408733/228826127*312119004989^(3/11) 4180999952164553 a001 701408733/228826127*14662949395604^(5/21) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^23/Lucas(44) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^15/Lucas(40) 4180999952164553 a001 701408733/228826127*192900153618^(5/18) 4180999952164553 a001 701408733/228826127*28143753123^(3/10) 4180999952164553 a001 701408733/228826127*10749957122^(5/16) 4180999952164553 a001 14619165/224056801*4106118243^(1/2) 4180999952164553 a001 267084832/33281921*141422324^(1/3) 4180999952164553 a001 12586269025/4106118243*141422324^(5/13) 4180999952164553 a004 Fibonacci(40)*Lucas(45)/(1/2+sqrt(5)/2)^66 4180999952164553 a001 34111385/1368706081*2537720636^(5/9) 4180999952164553 a001 102334155/14662949395604*2537720636^(14/15) 4180999952164553 a001 32951280099/10749957122*141422324^(5/13) 4180999952164553 a001 102334155/5600748293801*2537720636^(8/9) 4180999952164553 a001 6765/228826126*2537720636^(13/15) 4180999952164553 a001 86267571272/28143753123*141422324^(5/13) 4180999952164553 a001 32264490531/10525900321*141422324^(5/13) 4180999952164553 a001 591286729879/192900153618*141422324^(5/13) 4180999952164553 a001 1548008755920/505019158607*141422324^(5/13) 4180999952164553 a001 1515744265389/494493258286*141422324^(5/13) 4180999952164553 a001 2504730781961/817138163596*141422324^(5/13) 4180999952164553 a001 956722026041/312119004989*141422324^(5/13) 4180999952164553 a001 365435296162/119218851371*141422324^(5/13) 4180999952164553 a001 139583862445/45537549124*141422324^(5/13) 4180999952164553 a001 53316291173/17393796001*141422324^(5/13) 4180999952164553 a001 102334155/817138163596*2537720636^(4/5) 4180999952164553 a001 102334155/505019158607*2537720636^(7/9) 4180999952164553 a001 34111385/64300051206*2537720636^(11/15) 4180999952164553 a001 20365011074/6643838879*141422324^(5/13) 4180999952164553 a001 102334155/45537549124*2537720636^(2/3) 4180999952164553 a001 102334155/10749957122*2537720636^(3/5) 4180999952164553 a001 34111385/1368706081*312119004989^(5/11) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^25/Lucas(46) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^13/Lucas(40) 4180999952164553 a001 34111385/1368706081*3461452808002^(5/12) 4180999952164553 a001 1836311903/228826127*73681302247^(1/4) 4180999952164553 a001 34111385/1368706081*28143753123^(1/2) 4180999952164553 a001 12586269025/228826127*2537720636^(1/5) 4180999952164553 a001 7778742049/228826127*2537720636^(2/9) 4180999952164553 a004 Fibonacci(40)*Lucas(47)/(1/2+sqrt(5)/2)^68 4180999952164553 a001 53316291173/228826127*2537720636^(2/15) 4180999952164553 a001 2971215073/228826127*2537720636^(4/15) 4180999952164553 a001 86267571272/228826127*2537720636^(1/9) 4180999952164553 a001 225851433717/228826127*2537720636^(1/15) 4180999952164553 a001 102334155/10749957122*45537549124^(9/17) 4180999952164553 a001 102287808/4868641*312119004989^(1/5) 4180999952164553 a001 102334155/10749957122*14662949395604^(3/7) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^27/Lucas(48) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^11/Lucas(40) 4180999952164553 a001 102334155/10749957122*192900153618^(1/2) 4180999952164553 a001 102334155/10749957122*10749957122^(9/16) 4180999952164553 a004 Fibonacci(40)*Lucas(49)/(1/2+sqrt(5)/2)^70 4180999952164553 a001 102334155/14662949395604*17393796001^(6/7) 4180999952164553 a001 102334155/505019158607*17393796001^(5/7) 4180999952164553 a001 12586269025/228826127*45537549124^(3/17) 4180999952164553 a001 12586269025/228826127*817138163596^(3/19) 4180999952164553 a001 12586269025/228826127*14662949395604^(1/7) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^29/Lucas(50) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^9/Lucas(40) 4180999952164553 a001 831985/228811001*1322157322203^(1/2) 4180999952164553 a001 12586269025/228826127*192900153618^(1/6) 4180999952164553 a001 32951280099/228826127*17393796001^(1/7) 4180999952164553 a004 Fibonacci(40)*Lucas(51)/(1/2+sqrt(5)/2)^72 4180999952164553 a001 102334155/14662949395604*45537549124^(14/17) 4180999952164553 a001 6765/228826126*45537549124^(13/17) 4180999952164553 a001 34111385/64300051206*45537549124^(11/17) 4180999952164553 a001 102334155/817138163596*45537549124^(12/17) 4180999952164553 a001 9303105/28374454999*45537549124^(2/3) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^31/Lucas(52) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^7/Lucas(40) 4180999952164553 a001 14619165/10525900321*9062201101803^(1/2) 4180999952164553 a004 Fibonacci(40)*Lucas(53)/(1/2+sqrt(5)/2)^74 4180999952164553 a001 225851433717/228826127*45537549124^(1/17) 4180999952164553 a001 86267571272/228826127*312119004989^(1/11) 4180999952164553 a001 34111385/64300051206*14662949395604^(11/21) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^33/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^5/Lucas(40) 4180999952164553 a001 102334155/505019158607*312119004989^(7/11) 4180999952164553 a004 Fibonacci(40)*Lucas(55)/(1/2+sqrt(5)/2)^76 4180999952164553 a001 102334155/5600748293801*312119004989^(8/11) 4180999952164553 a001 102334155/505019158607*14662949395604^(5/9) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^35/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^3/Lucas(40) 4180999952164553 a001 225851433717/228826127*192900153618^(1/18) 4180999952164553 a004 Fibonacci(40)*Lucas(57)/(1/2+sqrt(5)/2)^78 4180999952164553 a001 102334155/14662949395604*817138163596^(14/19) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^37/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)/Lucas(40) 4180999952164553 a004 Fibonacci(40)*Lucas(59)/(1/2+sqrt(5)/2)^80 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^39/Lucas(60) 4180999952164553 a004 Fibonacci(60)/Lucas(40)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(40)*Lucas(61)/(1/2+sqrt(5)/2)^82 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^41/Lucas(62) 4180999952164553 a004 Fibonacci(62)/Lucas(40)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(40)*Lucas(63)/(1/2+sqrt(5)/2)^84 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^43/Lucas(64) 4180999952164553 a004 Fibonacci(64)/Lucas(40)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(40)*Lucas(65)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^45/Lucas(66) 4180999952164553 a004 Fibonacci(66)/Lucas(40)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(40)*Lucas(67)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^47/Lucas(68) 4180999952164553 a004 Fibonacci(68)/Lucas(40)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(40)*Lucas(69)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^49/Lucas(70) 4180999952164553 a004 Fibonacci(70)/Lucas(40)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(40)*Lucas(71)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^51/Lucas(72) 4180999952164553 a004 Fibonacci(72)/Lucas(40)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(40)*Lucas(73)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^53/Lucas(74) 4180999952164553 a004 Fibonacci(74)/Lucas(40)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(40)*Lucas(75)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^55/Lucas(76) 4180999952164553 a004 Fibonacci(76)/Lucas(40)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(40)*Lucas(77)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^57/Lucas(78) 4180999952164553 a004 Fibonacci(78)/Lucas(40)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(40)*Lucas(79)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^59/Lucas(80) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^61/Lucas(82) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^63/Lucas(84) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^65/Lucas(86) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^67/Lucas(88) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^69/Lucas(90) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^71/Lucas(92) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^73/Lucas(94) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^75/Lucas(96) 4180999952164553 a004 Fibonacci(20)*Lucas(20)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^77/Lucas(98) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^79/Lucas(100) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^78/Lucas(99) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^76/Lucas(97) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^74/Lucas(95) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^72/Lucas(93) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^70/Lucas(91) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^68/Lucas(89) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^66/Lucas(87) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^64/Lucas(85) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^62/Lucas(83) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^60/Lucas(81) 4180999952164553 a004 Fibonacci(82)/Lucas(40)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(84)/Lucas(40)/(1/2+sqrt(5)/2)^25 4180999952164553 a004 Fibonacci(86)/Lucas(40)/(1/2+sqrt(5)/2)^27 4180999952164553 a004 Fibonacci(88)/Lucas(40)/(1/2+sqrt(5)/2)^29 4180999952164553 a004 Fibonacci(90)/Lucas(40)/(1/2+sqrt(5)/2)^31 4180999952164553 a004 Fibonacci(92)/Lucas(40)/(1/2+sqrt(5)/2)^33 4180999952164553 a004 Fibonacci(94)/Lucas(40)/(1/2+sqrt(5)/2)^35 4180999952164553 a004 Fibonacci(96)/Lucas(40)/(1/2+sqrt(5)/2)^37 4180999952164553 a004 Fibonacci(98)/Lucas(40)/(1/2+sqrt(5)/2)^39 4180999952164553 a004 Fibonacci(100)/Lucas(40)/(1/2+sqrt(5)/2)^41 4180999952164553 a004 Fibonacci(99)/Lucas(40)/(1/2+sqrt(5)/2)^40 4180999952164553 a004 Fibonacci(97)/Lucas(40)/(1/2+sqrt(5)/2)^38 4180999952164553 a004 Fibonacci(95)/Lucas(40)/(1/2+sqrt(5)/2)^36 4180999952164553 a004 Fibonacci(93)/Lucas(40)/(1/2+sqrt(5)/2)^34 4180999952164553 a004 Fibonacci(91)/Lucas(40)/(1/2+sqrt(5)/2)^32 4180999952164553 a004 Fibonacci(89)/Lucas(40)/(1/2+sqrt(5)/2)^30 4180999952164553 a004 Fibonacci(87)/Lucas(40)/(1/2+sqrt(5)/2)^28 4180999952164553 a004 Fibonacci(85)/Lucas(40)/(1/2+sqrt(5)/2)^26 4180999952164553 a004 Fibonacci(83)/Lucas(40)/(1/2+sqrt(5)/2)^24 4180999952164553 a004 Fibonacci(81)/Lucas(40)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^58/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(40)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(40)*Lucas(78)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^56/Lucas(77) 4180999952164553 a004 Fibonacci(77)/Lucas(40)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(40)*Lucas(76)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^54/Lucas(75) 4180999952164553 a004 Fibonacci(75)/Lucas(40)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(40)*Lucas(74)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^52/Lucas(73) 4180999952164553 a004 Fibonacci(73)/Lucas(40)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(40)*Lucas(72)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^50/Lucas(71) 4180999952164553 a004 Fibonacci(71)/Lucas(40)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(40)*Lucas(70)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^48/Lucas(69) 4180999952164553 a004 Fibonacci(69)/Lucas(40)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(40)*Lucas(68)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^46/Lucas(67) 4180999952164553 a004 Fibonacci(67)/Lucas(40)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(40)*Lucas(66)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^44/Lucas(65) 4180999952164553 a004 Fibonacci(65)/Lucas(40)/(1/2+sqrt(5)/2)^6 4180999952164553 a001 102334155/14662949395604*14662949395604^(2/3) 4180999952164553 a004 Fibonacci(40)*Lucas(64)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^42/Lucas(63) 4180999952164553 a004 Fibonacci(63)/Lucas(40)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(40)*Lucas(62)/(1/2+sqrt(5)/2)^83 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^40/Lucas(61) 4180999952164553 a004 Fibonacci(61)/Lucas(40)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(40)*Lucas(60)/(1/2+sqrt(5)/2)^81 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^38/Lucas(59) 4180999952164553 a006 5^(1/2)*Fibonacci(59)/Lucas(40)/sqrt(5) 4180999952164553 a004 Fibonacci(40)*Lucas(58)/(1/2+sqrt(5)/2)^79 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^36/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^2/Lucas(40) 4180999952164553 a001 102334155/14662949395604*505019158607^(3/4) 4180999952164553 a004 Fibonacci(40)*Lucas(56)/(1/2+sqrt(5)/2)^77 4180999952164553 a001 102334155/817138163596*505019158607^(9/14) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^34/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^4/Lucas(40) 4180999952164553 a001 139583862445/228826127*23725150497407^(1/16) 4180999952164553 a001 53316291173/228826127*45537549124^(2/17) 4180999952164553 a001 102334155/14662949395604*192900153618^(7/9) 4180999952164553 a001 139583862445/228826127*73681302247^(1/13) 4180999952164553 a004 Fibonacci(40)*Lucas(54)/(1/2+sqrt(5)/2)^75 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^32/Lucas(53) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^6/Lucas(40) 4180999952164553 a001 102334155/119218851371*23725150497407^(1/2) 4180999952164553 a001 102334155/119218851371*505019158607^(4/7) 4180999952164553 a001 86267571272/228826127*28143753123^(1/10) 4180999952164553 a001 102334155/817138163596*73681302247^(9/13) 4180999952164553 a001 102334155/5600748293801*73681302247^(10/13) 4180999952164553 a001 102334155/119218851371*73681302247^(8/13) 4180999952164553 a004 Fibonacci(40)*Lucas(52)/(1/2+sqrt(5)/2)^73 4180999952164553 a001 102334155/45537549124*45537549124^(10/17) 4180999952164553 a001 12586269025/228826127*10749957122^(3/16) 4180999952164553 a001 102334155/45537549124*312119004989^(6/11) 4180999952164553 a001 102334155/45537549124*14662949395604^(10/21) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^30/Lucas(51) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^8/Lucas(40) 4180999952164553 a001 20365011074/228826127*23725150497407^(1/8) 4180999952164553 a001 20365011074/228826127*505019158607^(1/7) 4180999952164553 a001 102334155/45537549124*192900153618^(5/9) 4180999952164553 a001 20365011074/228826127*73681302247^(2/13) 4180999952164553 a001 225851433717/228826127*10749957122^(1/16) 4180999952164553 a001 139583862445/228826127*10749957122^(1/12) 4180999952164553 a001 102334155/505019158607*28143753123^(7/10) 4180999952164553 a001 102334155/5600748293801*28143753123^(4/5) 4180999952164553 a001 53316291173/228826127*10749957122^(1/8) 4180999952164553 a001 102334155/45537549124*28143753123^(3/5) 4180999952164553 a004 Fibonacci(40)*Lucas(50)/(1/2+sqrt(5)/2)^71 4180999952164553 a001 102334155/17393796001*17393796001^(4/7) 4180999952164553 a001 20365011074/228826127*10749957122^(1/6) 4180999952164553 a001 365435296162/228826127*4106118243^(1/23) 4180999952164553 a001 7778742049/228826127*312119004989^(2/11) 4180999952164553 a001 102334155/17393796001*14662949395604^(4/9) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^28/Lucas(49) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^10/Lucas(40) 4180999952164553 a001 102334155/17393796001*505019158607^(1/2) 4180999952164553 a001 102334155/17393796001*73681302247^(7/13) 4180999952164553 a001 7778742049/228826127*28143753123^(1/5) 4180999952164553 a001 7778742049/228826127*10749957122^(5/24) 4180999952164553 a001 139583862445/228826127*4106118243^(2/23) 4180999952164553 a001 102334155/119218851371*10749957122^(2/3) 4180999952164553 a001 102334155/45537549124*10749957122^(5/8) 4180999952164553 a001 34111385/64300051206*10749957122^(11/16) 4180999952164553 a001 9303105/28374454999*10749957122^(17/24) 4180999952164553 a001 102334155/817138163596*10749957122^(3/4) 4180999952164553 a001 102334155/2139295485799*10749957122^(19/24) 4180999952164553 a001 6765/228826126*10749957122^(13/16) 4180999952164553 a001 102334155/5600748293801*10749957122^(5/6) 4180999952164553 a001 102334155/14662949395604*10749957122^(7/8) 4180999952164553 a001 53316291173/228826127*4106118243^(3/23) 4180999952164553 a001 102334155/17393796001*10749957122^(7/12) 4180999952164553 a004 Fibonacci(40)*Lucas(48)/(1/2+sqrt(5)/2)^69 4180999952164553 a001 20365011074/228826127*4106118243^(4/23) 4180999952164553 a001 7778742049/228826127*4106118243^(5/23) 4180999952164553 a001 365435296162/228826127*1568397607^(1/22) 4180999952164553 a001 2971215073/228826127*45537549124^(4/17) 4180999952164553 a001 2971215073/228826127*817138163596^(4/19) 4180999952164553 a001 2971215073/228826127*14662949395604^(4/21) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^26/Lucas(47) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^12/Lucas(40) 4180999952164553 a001 2971215073/228826127*192900153618^(2/9) 4180999952164553 a001 2971215073/228826127*73681302247^(3/13) 4180999952164553 a001 102334155/6643838879*73681302247^(1/2) 4180999952164553 a001 2971215073/228826127*10749957122^(1/4) 4180999952164553 a001 7778742049/2537720636*141422324^(5/13) 4180999952164553 a001 102334155/6643838879*10749957122^(13/24) 4180999952164553 a001 139583862445/228826127*1568397607^(1/11) 4180999952164553 a001 2971215073/228826127*4106118243^(6/23) 4180999952164553 a001 102334155/45537549124*4106118243^(15/23) 4180999952164553 a001 102334155/17393796001*4106118243^(14/23) 4180999952164553 a001 102334155/119218851371*4106118243^(16/23) 4180999952164553 a001 9303105/28374454999*4106118243^(17/23) 4180999952164553 a001 102334155/817138163596*4106118243^(18/23) 4180999952164553 a001 102334155/2139295485799*4106118243^(19/23) 4180999952164553 a001 102334155/5600748293801*4106118243^(20/23) 4180999952164553 a001 102334155/14662949395604*4106118243^(21/23) 4180999952164553 a001 53316291173/228826127*1568397607^(3/22) 4180999952164553 a001 102334155/6643838879*4106118243^(13/23) 4180999952164553 a004 Fibonacci(40)*Lucas(46)/(1/2+sqrt(5)/2)^67 4180999952164553 a001 9303105/230701876*2537720636^(8/15) 4180999952164553 a001 20365011074/228826127*1568397607^(2/11) 4180999952164553 a001 102287808/4868641*1568397607^(1/4) 4180999952164553 a001 7778742049/228826127*1568397607^(5/22) 4180999952164553 a001 365435296162/228826127*599074578^(1/21) 4180999952164553 a001 2971215073/228826127*1568397607^(3/11) 4180999952164553 a001 1134903170/228826127*17393796001^(2/7) 4180999952164553 a001 9303105/230701876*45537549124^(8/17) 4180999952164553 a001 1134903170/228826127*14662949395604^(2/9) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^24/Lucas(45) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^14/Lucas(40) 4180999952164553 a001 1134903170/228826127*505019158607^(1/4) 4180999952164553 a001 9303105/230701876*192900153618^(4/9) 4180999952164553 a001 9303105/230701876*73681302247^(6/13) 4180999952164553 a001 1134903170/228826127*10749957122^(7/24) 4180999952164553 a001 9303105/230701876*10749957122^(1/2) 4180999952164553 a001 1134903170/228826127*4106118243^(7/23) 4180999952164553 a001 9303105/230701876*4106118243^(12/23) 4180999952164553 a001 225851433717/228826127*599074578^(1/14) 4180999952164553 a001 63245986/87403803*87403803^(9/19) 4180999952164553 a001 102334155/17393796001*1568397607^(7/11) 4180999952164553 a001 102334155/6643838879*1568397607^(13/22) 4180999952164553 a001 139583862445/228826127*599074578^(2/21) 4180999952164553 a001 102334155/45537549124*1568397607^(15/22) 4180999952164553 a001 1134903170/228826127*1568397607^(7/22) 4180999952164553 a001 102334155/119218851371*1568397607^(8/11) 4180999952164553 a001 34111385/64300051206*1568397607^(3/4) 4180999952164553 a001 9303105/28374454999*1568397607^(17/22) 4180999952164553 a001 102334155/817138163596*1568397607^(9/11) 4180999952164553 a001 102334155/2139295485799*1568397607^(19/22) 4180999952164553 a001 102334155/5600748293801*1568397607^(10/11) 4180999952164553 a001 9303105/230701876*1568397607^(6/11) 4180999952164553 a001 102334155/14662949395604*1568397607^(21/22) 4180999952164553 a001 53316291173/228826127*599074578^(1/7) 4180999952164553 a004 Fibonacci(40)*Lucas(44)/(1/2+sqrt(5)/2)^65 4180999952164553 a001 32951280099/228826127*599074578^(1/6) 4180999952164553 a001 267914296/370248451*141422324^(6/13) 4180999952164553 a001 20365011074/228826127*599074578^(4/21) 4180999952164553 a001 165580141/969323029*141422324^(7/13) 4180999952164553 a001 701408733/228826127*599074578^(5/14) 4180999952164553 a001 12586269025/228826127*599074578^(3/14) 4180999952164553 a001 7778742049/228826127*599074578^(5/21) 4180999952164553 a001 2971215073/228826127*599074578^(2/7) 4180999952164553 a001 7778742049/599074578*141422324^(4/13) 4180999952164553 a001 2971215073/969323029*141422324^(5/13) 4180999952164553 a001 365435296162/228826127*228826127^(1/20) 4180999952164553 a001 102334155/969323029*312119004989^(2/5) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^22/Lucas(43) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^16/Lucas(40) 4180999952164553 a001 433494437/228826127*23725150497407^(1/4) 4180999952164553 a001 433494437/228826127*73681302247^(4/13) 4180999952164553 a001 433494437/228826127*10749957122^(1/3) 4180999952164553 a001 102334155/969323029*10749957122^(11/24) 4180999952164553 a001 1134903170/228826127*599074578^(1/3) 4180999952164553 a001 433494437/228826127*4106118243^(8/23) 4180999952164553 a001 102334155/969323029*4106118243^(11/23) 4180999952164553 a001 433494437/228826127*1568397607^(4/11) 4180999952164553 a001 102334155/969323029*1568397607^(1/2) 4180999952164553 a001 9303105/230701876*599074578^(4/7) 4180999952164553 a001 102334155/6643838879*599074578^(13/21) 4180999952164553 a001 102334155/10749957122*599074578^(9/14) 4180999952164553 a001 102334155/17393796001*599074578^(2/3) 4180999952164553 a001 139583862445/228826127*228826127^(1/10) 4180999952164553 a001 102334155/45537549124*599074578^(5/7) 4180999952164553 a001 12586269025/1568397607*141422324^(1/3) 4180999952164553 a001 102334155/119218851371*599074578^(16/21) 4180999952164553 a001 433494437/228826127*599074578^(8/21) 4180999952164553 a001 34111385/64300051206*599074578^(11/14) 4180999952164553 a001 9303105/28374454999*599074578^(17/21) 4180999952164553 a001 102334155/505019158607*599074578^(5/6) 4180999952164553 a001 10983760033/1368706081*141422324^(1/3) 4180999952164553 a001 86267571272/228826127*228826127^(1/8) 4180999952164553 a001 102334155/817138163596*599074578^(6/7) 4180999952164553 a001 43133785636/5374978561*141422324^(1/3) 4180999952164553 a001 75283811239/9381251041*141422324^(1/3) 4180999952164553 a001 591286729879/73681302247*141422324^(1/3) 4180999952164553 a001 86000486440/10716675201*141422324^(1/3) 4180999952164553 a001 4052739537881/505019158607*141422324^(1/3) 4180999952164553 a001 3536736619241/440719107401*141422324^(1/3) 4180999952164553 a001 3278735159921/408569081798*141422324^(1/3) 4180999952164553 a001 2504730781961/312119004989*141422324^(1/3) 4180999952164553 a001 956722026041/119218851371*141422324^(1/3) 4180999952164553 a001 182717648081/22768774562*141422324^(1/3) 4180999952164553 a001 139583862445/17393796001*141422324^(1/3) 4180999952164553 a001 53316291173/6643838879*141422324^(1/3) 4180999952164553 a001 102334155/2139295485799*599074578^(19/21) 4180999952164553 a001 102334155/969323029*599074578^(11/21) 4180999952164553 a001 6765/228826126*599074578^(13/14) 4180999952164553 a001 10182505537/1268860318*141422324^(1/3) 4180999952164553 a001 102334155/5600748293801*599074578^(20/21) 4180999952164553 a004 Fibonacci(40)*Lucas(42)/(1/2+sqrt(5)/2)^63 4180999952164553 a001 53316291173/228826127*228826127^(3/20) 4180999952164553 a001 20365011074/1568397607*141422324^(4/13) 4180999952164553 a001 7778742049/969323029*141422324^(1/3) 4180999952164553 a001 53316291173/4106118243*141422324^(4/13) 4180999952164553 a001 139583862445/10749957122*141422324^(4/13) 4180999952164553 a001 365435296162/28143753123*141422324^(4/13) 4180999952164553 a001 956722026041/73681302247*141422324^(4/13) 4180999952164553 a001 2504730781961/192900153618*141422324^(4/13) 4180999952164553 a001 10610209857723/817138163596*141422324^(4/13) 4180999952164553 a001 4052739537881/312119004989*141422324^(4/13) 4180999952164553 a001 1548008755920/119218851371*141422324^(4/13) 4180999952164553 a001 591286729879/45537549124*141422324^(4/13) 4180999952164553 a001 7787980473/599786069*141422324^(4/13) 4180999952164553 a001 86267571272/6643838879*141422324^(4/13) 4180999952164553 a001 20365011074/228826127*228826127^(1/5) 4180999952164553 a001 32951280099/2537720636*141422324^(4/13) 4180999952164553 a001 10983760033/199691526*141422324^(3/13) 4180999952164553 a001 12586269025/969323029*141422324^(4/13) 4180999952164553 a001 7778742049/228826127*228826127^(1/4) 4180999952164553 a001 39088169/119218851371*87403803^(17/19) 4180999952164553 a001 2971215073/228826127*228826127^(3/10) 4180999952164553 a001 701408733/228826127*228826127^(3/8) 4180999952164553 a001 1134903170/228826127*228826127^(7/20) 4180999952164553 a001 365435296162/228826127*87403803^(1/19) 4180999952164553 a001 39088169/141422324*87403803^(10/19) 4180999952164553 a001 86267571272/1568397607*141422324^(3/13) 4180999952164553 a001 102334155/370248451*2537720636^(4/9) 4180999952164553 a001 165580141/228826127*2537720636^(2/5) 4180999952164553 a001 165580141/228826127*45537549124^(6/17) 4180999952164553 a001 165580141/228826127*14662949395604^(2/7) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^20/Lucas(41) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^18/Lucas(40) 4180999952164553 a001 102334155/370248451*23725150497407^(5/16) 4180999952164553 a001 102334155/370248451*505019158607^(5/14) 4180999952164553 a001 165580141/228826127*192900153618^(1/3) 4180999952164553 a001 102334155/370248451*73681302247^(5/13) 4180999952164553 a001 102334155/370248451*28143753123^(2/5) 4180999952164553 a001 165580141/228826127*10749957122^(3/8) 4180999952164553 a001 102334155/370248451*10749957122^(5/12) 4180999952164553 a001 1134903170/370248451*141422324^(5/13) 4180999952164553 a001 165580141/228826127*4106118243^(9/23) 4180999952164553 a001 102334155/370248451*4106118243^(10/23) 4180999952164553 a001 165580141/228826127*1568397607^(9/22) 4180999952164553 a001 102334155/370248451*1568397607^(5/11) 4180999952164553 a001 75283811239/1368706081*141422324^(3/13) 4180999952164553 a001 591286729879/10749957122*141422324^(3/13) 4180999952164553 a001 12585437040/228811001*141422324^(3/13) 4180999952164553 a001 4052739537881/73681302247*141422324^(3/13) 4180999952164553 a001 3536736619241/64300051206*141422324^(3/13) 4180999952164553 a001 6557470319842/119218851371*141422324^(3/13) 4180999952164553 a001 2504730781961/45537549124*141422324^(3/13) 4180999952164553 a001 956722026041/17393796001*141422324^(3/13) 4180999952164553 a001 365435296162/6643838879*141422324^(3/13) 4180999952164553 a001 139583862445/2537720636*141422324^(3/13) 4180999952164553 a001 165580141/228826127*599074578^(3/7) 4180999952164553 a001 139583862445/599074578*141422324^(2/13) 4180999952164553 a001 102334155/370248451*599074578^(10/21) 4180999952164553 a001 53316291173/969323029*141422324^(3/13) 4180999952164553 a001 433494437/228826127*228826127^(2/5) 4180999952164553 a004 Fibonacci(42)*Lucas(41)/(1/2+sqrt(5)/2)^64 4180999952164553 a001 2971215073/370248451*141422324^(1/3) 4180999952164553 a001 365435296162/1568397607*141422324^(2/13) 4180999952164553 a001 4807526976/370248451*141422324^(4/13) 4180999952164553 a001 956722026041/4106118243*141422324^(2/13) 4180999952164553 a004 Fibonacci(44)*Lucas(41)/(1/2+sqrt(5)/2)^66 4180999952164553 a001 2504730781961/10749957122*141422324^(2/13) 4180999952164553 a001 6557470319842/28143753123*141422324^(2/13) 4180999952164553 a001 10610209857723/45537549124*141422324^(2/13) 4180999952164553 a001 4052739537881/17393796001*141422324^(2/13) 4180999952164553 a001 1548008755920/6643838879*141422324^(2/13) 4180999952164553 a001 591286729879/2537720636*141422324^(2/13) 4180999952164553 a001 102334155/969323029*228826127^(11/20) 4180999952164553 a001 9303105/230701876*228826127^(3/5) 4180999952164553 a004 Fibonacci(46)*Lucas(41)/(1/2+sqrt(5)/2)^68 4180999952164553 a004 Fibonacci(48)*Lucas(41)/(1/2+sqrt(5)/2)^70 4180999952164553 a004 Fibonacci(50)*Lucas(41)/(1/2+sqrt(5)/2)^72 4180999952164553 a004 Fibonacci(52)*Lucas(41)/(1/2+sqrt(5)/2)^74 4180999952164553 a004 Fibonacci(54)*Lucas(41)/(1/2+sqrt(5)/2)^76 4180999952164553 a004 Fibonacci(56)*Lucas(41)/(1/2+sqrt(5)/2)^78 4180999952164553 a004 Fibonacci(58)*Lucas(41)/(1/2+sqrt(5)/2)^80 4180999952164553 a004 Fibonacci(60)*Lucas(41)/(1/2+sqrt(5)/2)^82 4180999952164553 a004 Fibonacci(62)*Lucas(41)/(1/2+sqrt(5)/2)^84 4180999952164553 a004 Fibonacci(64)*Lucas(41)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(66)*Lucas(41)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(68)*Lucas(41)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(70)*Lucas(41)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(72)*Lucas(41)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(74)*Lucas(41)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(76)*Lucas(41)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(78)*Lucas(41)/(1/2+sqrt(5)/2)^100 4180999952164553 a001 2/165580141*(1/2+1/2*5^(1/2))^60 4180999952164553 a004 Fibonacci(77)*Lucas(41)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(75)*Lucas(41)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(73)*Lucas(41)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(71)*Lucas(41)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(69)*Lucas(41)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(67)*Lucas(41)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(65)*Lucas(41)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(63)*Lucas(41)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(61)*Lucas(41)/(1/2+sqrt(5)/2)^83 4180999952164553 a004 Fibonacci(59)*Lucas(41)/(1/2+sqrt(5)/2)^81 4180999952164553 a004 Fibonacci(57)*Lucas(41)/(1/2+sqrt(5)/2)^79 4180999952164553 a004 Fibonacci(55)*Lucas(41)/(1/2+sqrt(5)/2)^77 4180999952164553 a004 Fibonacci(53)*Lucas(41)/(1/2+sqrt(5)/2)^75 4180999952164553 a004 Fibonacci(51)*Lucas(41)/(1/2+sqrt(5)/2)^73 4180999952164553 a004 Fibonacci(49)*Lucas(41)/(1/2+sqrt(5)/2)^71 4180999952164553 a004 Fibonacci(47)*Lucas(41)/(1/2+sqrt(5)/2)^69 4180999952164553 a001 34111385/1368706081*228826127^(5/8) 4180999952164553 a004 Fibonacci(45)*Lucas(41)/(1/2+sqrt(5)/2)^67 4180999952164553 a001 39088169/312119004989*87403803^(18/19) 4180999952164553 a001 102334155/6643838879*228826127^(13/20) 4180999952164553 a001 591286729879/599074578*141422324^(1/13) 4180999952164553 a001 225851433717/969323029*141422324^(2/13) 4180999952164553 a004 Fibonacci(43)*Lucas(41)/(1/2+sqrt(5)/2)^65 4180999952164553 a001 102334155/17393796001*228826127^(7/10) 4180999952164553 a001 133957148/299537289*817138163596^(1/3) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^19/Lucas(42) 4180999952164553 a001 139583862445/228826127*87403803^(2/19) 4180999952164553 a001 102334155/45537549124*228826127^(3/4) 4180999952164553 a001 1548008755920/1568397607*141422324^(1/13) 4180999952164553 a001 20365011074/370248451*141422324^(3/13) 4180999952164553 a001 4052739537881/4106118243*141422324^(1/13) 4180999952164553 a001 4807525989/4870846*141422324^(1/13) 4180999952164553 a004 Fibonacci(42)*Lucas(43)/(1/2+sqrt(5)/2)^66 4180999952164553 a001 6557470319842/6643838879*141422324^(1/13) 4180999952164553 a001 102334155/119218851371*228826127^(4/5) 4180999952164553 a001 2504730781961/2537720636*141422324^(1/13) 4180999952164553 a001 267914296/1568397607*2537720636^(7/15) 4180999952164553 a001 165580141/228826127*228826127^(9/20) 4180999952164553 a001 267914296/1568397607*17393796001^(3/7) 4180999952164553 a001 267914296/1568397607*45537549124^(7/17) 4180999952164553 a001 233802911/199691526*45537549124^(1/3) 4180999952164553 a001 267914296/1568397607*14662949395604^(1/3) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^21/Lucas(44) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^17/Lucas(42) 4180999952164553 a001 267914296/1568397607*192900153618^(7/18) 4180999952164553 a001 267914296/1568397607*10749957122^(7/16) 4180999952164553 a004 Fibonacci(42)*Lucas(45)/(1/2+sqrt(5)/2)^68 4180999952164553 a001 10946/599074579*2537720636^(8/9) 4180999952164553 a001 267914296/9062201101803*2537720636^(13/15) 4180999952164553 a001 267914296/2139295485799*2537720636^(4/5) 4180999952164553 a001 267914296/1322157322203*2537720636^(7/9) 4180999952164553 a001 267914296/505019158607*2537720636^(11/15) 4180999952164553 a001 1836311903/599074578*2537720636^(1/3) 4180999952164553 a001 267914296/119218851371*2537720636^(2/3) 4180999952164553 a001 133957148/5374978561*2537720636^(5/9) 4180999952164553 a001 267914296/28143753123*2537720636^(3/5) 4180999952164553 a001 9303105/28374454999*228826127^(17/20) 4180999952164553 a001 267914296/6643838879*2537720636^(8/15) 4180999952164553 a001 1836311903/599074578*45537549124^(5/17) 4180999952164553 a001 1836311903/599074578*312119004989^(3/11) 4180999952164553 a001 1836311903/599074578*14662949395604^(5/21) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^23/Lucas(46) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^15/Lucas(42) 4180999952164553 a001 1836311903/599074578*192900153618^(5/18) 4180999952164553 a001 1836311903/599074578*28143753123^(3/10) 4180999952164553 a001 1836311903/599074578*10749957122^(5/16) 4180999952164553 a001 7778742049/599074578*2537720636^(4/15) 4180999952164553 a001 10182505537/299537289*2537720636^(2/9) 4180999952164553 a001 10983760033/199691526*2537720636^(1/5) 4180999952164553 a001 267914296/4106118243*4106118243^(1/2) 4180999952164553 a004 Fibonacci(42)*Lucas(47)/(1/2+sqrt(5)/2)^70 4180999952164553 a001 139583862445/599074578*2537720636^(2/15) 4180999952164553 a001 267913919/710646*2537720636^(1/9) 4180999952164553 a001 591286729879/599074578*2537720636^(1/15) 4180999952164553 a001 133957148/5374978561*312119004989^(5/11) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^25/Lucas(48) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^13/Lucas(42) 4180999952164553 a001 133957148/5374978561*3461452808002^(5/12) 4180999952164553 a001 267084832/33281921*73681302247^(1/4) 4180999952164553 a001 133957148/5374978561*28143753123^(1/2) 4180999952164553 a004 Fibonacci(42)*Lucas(49)/(1/2+sqrt(5)/2)^72 4180999952164553 a001 267914296/1322157322203*17393796001^(5/7) 4180999952164553 a001 267914296/28143753123*45537549124^(9/17) 4180999952164553 a001 66978574/11384387281*17393796001^(4/7) 4180999952164553 a001 12586269025/599074578*312119004989^(1/5) 4180999952164553 a001 267914296/28143753123*14662949395604^(3/7) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^27/Lucas(50) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^11/Lucas(42) 4180999952164553 a001 267914296/28143753123*192900153618^(1/2) 4180999952164553 a001 43133785636/299537289*17393796001^(1/7) 4180999952164553 a004 Fibonacci(42)*Lucas(51)/(1/2+sqrt(5)/2)^74 4180999952164553 a001 267914296/9062201101803*45537549124^(13/17) 4180999952164553 a001 267914296/2139295485799*45537549124^(12/17) 4180999952164553 a001 66978574/204284540899*45537549124^(2/3) 4180999952164553 a001 267914296/505019158607*45537549124^(11/17) 4180999952164553 a001 10983760033/199691526*45537549124^(3/17) 4180999952164553 a001 267914296/119218851371*45537549124^(10/17) 4180999952164553 a001 10983760033/199691526*817138163596^(3/19) 4180999952164553 a001 10983760033/199691526*14662949395604^(1/7) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^29/Lucas(52) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^9/Lucas(42) 4180999952164553 a001 267914296/73681302247*1322157322203^(1/2) 4180999952164553 a001 10983760033/199691526*192900153618^(1/6) 4180999952164553 a004 Fibonacci(42)*Lucas(53)/(1/2+sqrt(5)/2)^76 4180999952164553 a001 139583862445/599074578*45537549124^(2/17) 4180999952164553 a001 591286729879/599074578*45537549124^(1/17) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^31/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^7/Lucas(42) 4180999952164553 a001 133957148/96450076809*9062201101803^(1/2) 4180999952164553 a004 Fibonacci(42)*Lucas(55)/(1/2+sqrt(5)/2)^78 4180999952164553 a001 267914296/505019158607*312119004989^(3/5) 4180999952164553 a001 10946/599074579*312119004989^(8/11) 4180999952164553 a001 267914296/505019158607*817138163596^(11/19) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^33/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^5/Lucas(42) 4180999952164553 a004 Fibonacci(42)*Lucas(57)/(1/2+sqrt(5)/2)^80 4180999952164553 a001 267914296/5600748293801*817138163596^(2/3) 4180999952164553 a001 267914296/1322157322203*14662949395604^(5/9) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^35/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^3/Lucas(42) 4180999952164553 a004 Fibonacci(42)*Lucas(59)/(1/2+sqrt(5)/2)^82 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^37/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)/Lucas(42) 4180999952164553 a004 Fibonacci(42)*Lucas(61)/(1/2+sqrt(5)/2)^84 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^39/Lucas(62) 4180999952164553 a004 Fibonacci(62)/Lucas(42)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(42)*Lucas(63)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^41/Lucas(64) 4180999952164553 a004 Fibonacci(64)/Lucas(42)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(42)*Lucas(65)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^43/Lucas(66) 4180999952164553 a004 Fibonacci(66)/Lucas(42)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(42)*Lucas(67)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^45/Lucas(68) 4180999952164553 a004 Fibonacci(68)/Lucas(42)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(42)*Lucas(69)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^47/Lucas(70) 4180999952164553 a004 Fibonacci(70)/Lucas(42)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(42)*Lucas(71)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^49/Lucas(72) 4180999952164553 a004 Fibonacci(72)/Lucas(42)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(42)*Lucas(73)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^51/Lucas(74) 4180999952164553 a004 Fibonacci(74)/Lucas(42)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(42)*Lucas(75)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^53/Lucas(76) 4180999952164553 a004 Fibonacci(76)/Lucas(42)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(42)*Lucas(77)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^55/Lucas(78) 4180999952164553 a004 Fibonacci(78)/Lucas(42)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^57/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(42)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^59/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(42)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^61/Lucas(84) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^63/Lucas(86) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^65/Lucas(88) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^67/Lucas(90) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^69/Lucas(92) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^71/Lucas(94) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^73/Lucas(96) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^75/Lucas(98) 4180999952164553 a004 Fibonacci(21)*Lucas(21)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^76/Lucas(99) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^77/Lucas(100) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^74/Lucas(97) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^72/Lucas(95) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^70/Lucas(93) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^68/Lucas(91) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^66/Lucas(89) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^64/Lucas(87) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^62/Lucas(85) 4180999952164553 a004 Fibonacci(86)/Lucas(42)/(1/2+sqrt(5)/2)^25 4180999952164553 a004 Fibonacci(88)/Lucas(42)/(1/2+sqrt(5)/2)^27 4180999952164553 a004 Fibonacci(90)/Lucas(42)/(1/2+sqrt(5)/2)^29 4180999952164553 a004 Fibonacci(92)/Lucas(42)/(1/2+sqrt(5)/2)^31 4180999952164553 a004 Fibonacci(94)/Lucas(42)/(1/2+sqrt(5)/2)^33 4180999952164553 a004 Fibonacci(96)/Lucas(42)/(1/2+sqrt(5)/2)^35 4180999952164553 a004 Fibonacci(98)/Lucas(42)/(1/2+sqrt(5)/2)^37 4180999952164553 a004 Fibonacci(100)/Lucas(42)/(1/2+sqrt(5)/2)^39 4180999952164553 a004 Fibonacci(99)/Lucas(42)/(1/2+sqrt(5)/2)^38 4180999952164553 a004 Fibonacci(97)/Lucas(42)/(1/2+sqrt(5)/2)^36 4180999952164553 a004 Fibonacci(95)/Lucas(42)/(1/2+sqrt(5)/2)^34 4180999952164553 a004 Fibonacci(93)/Lucas(42)/(1/2+sqrt(5)/2)^32 4180999952164553 a004 Fibonacci(91)/Lucas(42)/(1/2+sqrt(5)/2)^30 4180999952164553 a004 Fibonacci(89)/Lucas(42)/(1/2+sqrt(5)/2)^28 4180999952164553 a004 Fibonacci(87)/Lucas(42)/(1/2+sqrt(5)/2)^26 4180999952164553 a004 Fibonacci(85)/Lucas(42)/(1/2+sqrt(5)/2)^24 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^60/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(42)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^58/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(42)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^56/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(42)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^54/Lucas(77) 4180999952164553 a004 Fibonacci(77)/Lucas(42)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(42)*Lucas(76)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^52/Lucas(75) 4180999952164553 a004 Fibonacci(75)/Lucas(42)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(42)*Lucas(74)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^50/Lucas(73) 4180999952164553 a004 Fibonacci(73)/Lucas(42)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(42)*Lucas(72)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^48/Lucas(71) 4180999952164553 a004 Fibonacci(71)/Lucas(42)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(42)*Lucas(70)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^46/Lucas(69) 4180999952164553 a004 Fibonacci(69)/Lucas(42)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(42)*Lucas(68)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^44/Lucas(67) 4180999952164553 a004 Fibonacci(67)/Lucas(42)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(42)*Lucas(66)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^42/Lucas(65) 4180999952164553 a004 Fibonacci(65)/Lucas(42)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(42)*Lucas(64)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^40/Lucas(63) 4180999952164553 a004 Fibonacci(63)/Lucas(42)/(1/2+sqrt(5)/2)^2 4180999952164553 a001 10946/599074579*23725150497407^(5/8) 4180999952164553 a004 Fibonacci(42)*Lucas(62)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^38/Lucas(61) 4180999952164553 a006 5^(1/2)*Fibonacci(61)/Lucas(42)/sqrt(5) 4180999952164553 a004 Fibonacci(42)*Lucas(60)/(1/2+sqrt(5)/2)^83 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^36/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^2/Lucas(42) 4180999952164553 a004 Fibonacci(42)*Lucas(58)/(1/2+sqrt(5)/2)^81 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^34/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^4/Lucas(42) 4180999952164553 a004 Fibonacci(42)*Lucas(56)/(1/2+sqrt(5)/2)^79 4180999952164553 a001 139583862445/599074578*14662949395604^(2/21) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^32/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^6/Lucas(42) 4180999952164553 a001 267914296/505019158607*192900153618^(11/18) 4180999952164553 a001 267914296/312119004989*505019158607^(4/7) 4180999952164553 a001 182717648081/299537289*73681302247^(1/13) 4180999952164553 a001 267914296/9062201101803*192900153618^(13/18) 4180999952164553 a004 Fibonacci(42)*Lucas(54)/(1/2+sqrt(5)/2)^77 4180999952164553 a001 267914296/119218851371*312119004989^(6/11) 4180999952164553 a001 267914296/119218851371*14662949395604^(10/21) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^30/Lucas(53) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^8/Lucas(42) 4180999952164553 a001 53316291173/599074578*23725150497407^(1/8) 4180999952164553 a001 53316291173/599074578*505019158607^(1/7) 4180999952164553 a001 267914296/119218851371*192900153618^(5/9) 4180999952164553 a001 53316291173/599074578*73681302247^(2/13) 4180999952164553 a001 267913919/710646*28143753123^(1/10) 4180999952164553 a001 267914296/312119004989*73681302247^(8/13) 4180999952164553 a001 267914296/2139295485799*73681302247^(9/13) 4180999952164553 a001 267914296/9062201101803*73681302247^(3/4) 4180999952164553 a001 10946/599074579*73681302247^(10/13) 4180999952164553 a004 Fibonacci(42)*Lucas(52)/(1/2+sqrt(5)/2)^75 4180999952164553 a001 956722026041/599074578*10749957122^(1/24) 4180999952164553 a001 10182505537/299537289*312119004989^(2/11) 4180999952164553 a001 66978574/11384387281*14662949395604^(4/9) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^28/Lucas(51) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^10/Lucas(42) 4180999952164553 a001 591286729879/599074578*10749957122^(1/16) 4180999952164553 a001 66978574/11384387281*73681302247^(7/13) 4180999952164553 a001 182717648081/299537289*10749957122^(1/12) 4180999952164553 a001 10182505537/299537289*28143753123^(1/5) 4180999952164553 a001 267914296/119218851371*28143753123^(3/5) 4180999952164553 a001 267914296/1322157322203*28143753123^(7/10) 4180999952164553 a001 10946/599074579*28143753123^(4/5) 4180999952164553 a001 139583862445/599074578*10749957122^(1/8) 4180999952164553 a004 Fibonacci(42)*Lucas(50)/(1/2+sqrt(5)/2)^73 4180999952164553 a001 10983760033/199691526*10749957122^(3/16) 4180999952164553 a001 53316291173/599074578*10749957122^(1/6) 4180999952164553 a001 10182505537/299537289*10749957122^(5/24) 4180999952164553 a001 956722026041/599074578*4106118243^(1/23) 4180999952164553 a001 7778742049/599074578*45537549124^(4/17) 4180999952164553 a001 7778742049/599074578*817138163596^(4/19) 4180999952164553 a001 7778742049/599074578*14662949395604^(4/21) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^26/Lucas(49) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^12/Lucas(42) 4180999952164553 a001 7778742049/599074578*192900153618^(2/9) 4180999952164553 a001 7778742049/599074578*73681302247^(3/13) 4180999952164553 a001 9238424/599786069*73681302247^(1/2) 4180999952164553 a001 267914296/28143753123*10749957122^(9/16) 4180999952164553 a001 956722026041/969323029*141422324^(1/13) 4180999952164553 a001 182717648081/299537289*4106118243^(2/23) 4180999952164553 a001 7778742049/599074578*10749957122^(1/4) 4180999952164553 a001 267914296/119218851371*10749957122^(5/8) 4180999952164553 a001 66978574/11384387281*10749957122^(7/12) 4180999952164553 a001 267914296/312119004989*10749957122^(2/3) 4180999952164553 a001 267914296/505019158607*10749957122^(11/16) 4180999952164553 a001 66978574/204284540899*10749957122^(17/24) 4180999952164553 a001 267914296/2139295485799*10749957122^(3/4) 4180999952164553 a001 267914296/5600748293801*10749957122^(19/24) 4180999952164553 a001 267914296/9062201101803*10749957122^(13/16) 4180999952164553 a001 10946/599074579*10749957122^(5/6) 4180999952164553 a001 139583862445/599074578*4106118243^(3/23) 4180999952164553 a001 9238424/599786069*10749957122^(13/24) 4180999952164553 a004 Fibonacci(42)*Lucas(48)/(1/2+sqrt(5)/2)^71 4180999952164553 a001 53316291173/599074578*4106118243^(4/23) 4180999952164553 a001 10182505537/299537289*4106118243^(5/23) 4180999952164553 a001 956722026041/599074578*1568397607^(1/22) 4180999952164553 a001 7778742049/599074578*4106118243^(6/23) 4180999952164553 a001 2971215073/599074578*17393796001^(2/7) 4180999952164553 a001 267914296/6643838879*45537549124^(8/17) 4180999952164553 a001 267914296/6643838879*14662949395604^(8/21) 4180999952164553 a001 2971215073/599074578*14662949395604^(2/9) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^24/Lucas(47) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^14/Lucas(42) 4180999952164553 a001 267914296/6643838879*192900153618^(4/9) 4180999952164553 a001 267914296/6643838879*73681302247^(6/13) 4180999952164553 a001 2971215073/599074578*10749957122^(7/24) 4180999952164553 a001 267914296/6643838879*10749957122^(1/2) 4180999952164553 a001 66978574/11384387281*4106118243^(14/23) 4180999952164553 a001 9238424/599786069*4106118243^(13/23) 4180999952164553 a001 182717648081/299537289*1568397607^(1/11) 4180999952164553 a001 267914296/119218851371*4106118243^(15/23) 4180999952164553 a001 2971215073/599074578*4106118243^(7/23) 4180999952164553 a001 267914296/312119004989*4106118243^(16/23) 4180999952164553 a001 66978574/204284540899*4106118243^(17/23) 4180999952164553 a001 267914296/2139295485799*4106118243^(18/23) 4180999952164553 a001 267914296/5600748293801*4106118243^(19/23) 4180999952164553 a001 10946/599074579*4106118243^(20/23) 4180999952164553 a001 267914296/6643838879*4106118243^(12/23) 4180999952164553 a001 139583862445/599074578*1568397607^(3/22) 4180999952164553 a004 Fibonacci(42)*Lucas(46)/(1/2+sqrt(5)/2)^69 4180999952164553 a001 53316291173/599074578*1568397607^(2/11) 4180999952164553 a001 10182505537/299537289*1568397607^(5/22) 4180999952164553 a001 12586269025/599074578*1568397607^(1/4) 4180999952164553 a001 7778742049/599074578*1568397607^(3/11) 4180999952164553 a001 956722026041/599074578*599074578^(1/21) 4180999952164553 a001 2971215073/599074578*1568397607^(7/22) 4180999952164553 a001 66978574/634430159*312119004989^(2/5) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^22/Lucas(45) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^16/Lucas(42) 4180999952164553 a001 567451585/299537289*23725150497407^(1/4) 4180999952164553 a001 567451585/299537289*73681302247^(4/13) 4180999952164553 a001 567451585/299537289*10749957122^(1/3) 4180999952164553 a001 66978574/634430159*10749957122^(11/24) 4180999952164553 a001 567451585/299537289*4106118243^(8/23) 4180999952164553 a001 66978574/634430159*4106118243^(11/23) 4180999952164553 a001 591286729879/599074578*599074578^(1/14) 4180999952164553 a001 9238424/599786069*1568397607^(13/22) 4180999952164553 a001 267914296/6643838879*1568397607^(6/11) 4180999952164553 a001 66978574/11384387281*1568397607^(7/11) 4180999952164553 a001 182717648081/299537289*599074578^(2/21) 4180999952164553 a001 267914296/119218851371*1568397607^(15/22) 4180999952164553 a001 267914296/312119004989*1568397607^(8/11) 4180999952164553 a001 567451585/299537289*1568397607^(4/11) 4180999952164553 a001 267914296/505019158607*1568397607^(3/4) 4180999952164553 a001 66978574/204284540899*1568397607^(17/22) 4180999952164553 a001 267914296/2139295485799*1568397607^(9/11) 4180999952164553 a001 267914296/5600748293801*1568397607^(19/22) 4180999952164553 a001 66978574/634430159*1568397607^(1/2) 4180999952164553 a001 10946/599074579*1568397607^(10/11) 4180999952164553 a001 139583862445/599074578*599074578^(1/7) 4180999952164553 a001 102334155/505019158607*228826127^(7/8) 4180999952164553 a004 Fibonacci(42)*Lucas(44)/(1/2+sqrt(5)/2)^67 4180999952164553 a001 43133785636/299537289*599074578^(1/6) 4180999952164553 a001 53316291173/599074578*599074578^(4/21) 4180999952164553 a001 102334155/370248451*228826127^(1/2) 4180999952164553 a001 10983760033/199691526*599074578^(3/14) 4180999952164553 a001 10182505537/299537289*599074578^(5/21) 4180999952164553 a001 7778742049/599074578*599074578^(2/7) 4180999952164553 a001 102334155/817138163596*228826127^(9/10) 4180999952164553 a001 1836311903/599074578*599074578^(5/14) 4180999952164553 a001 2971215073/599074578*599074578^(1/3) 4180999952164553 a001 956722026041/599074578*228826127^(1/20) 4180999952164553 a001 267914296/1568397607*599074578^(1/2) 4180999952164553 a001 267914296/969323029*2537720636^(4/9) 4180999952164553 a001 433494437/599074578*2537720636^(2/5) 4180999952164553 a001 433494437/599074578*45537549124^(6/17) 4180999952164553 a001 433494437/599074578*14662949395604^(2/7) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^20/Lucas(43) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^18/Lucas(42) 4180999952164553 a001 267914296/969323029*23725150497407^(5/16) 4180999952164553 a001 267914296/969323029*505019158607^(5/14) 4180999952164553 a001 433494437/599074578*192900153618^(1/3) 4180999952164553 a001 267914296/969323029*73681302247^(5/13) 4180999952164553 a001 267914296/969323029*28143753123^(2/5) 4180999952164553 a001 433494437/599074578*10749957122^(3/8) 4180999952164553 a001 267914296/969323029*10749957122^(5/12) 4180999952164553 a001 433494437/599074578*4106118243^(9/23) 4180999952164553 a001 267914296/969323029*4106118243^(10/23) 4180999952164553 a001 567451585/299537289*599074578^(8/21) 4180999952164553 a001 433494437/599074578*1568397607^(9/22) 4180999952164553 a001 267914296/969323029*1568397607^(5/11) 4180999952164553 a004 Fibonacci(44)*Lucas(43)/(1/2+sqrt(5)/2)^68 4180999952164553 a001 66978574/634430159*599074578^(11/21) 4180999952164553 a001 267914296/6643838879*599074578^(4/7) 4180999952164553 a004 Fibonacci(46)*Lucas(43)/(1/2+sqrt(5)/2)^70 4180999952164553 a004 Fibonacci(48)*Lucas(43)/(1/2+sqrt(5)/2)^72 4180999952164553 a004 Fibonacci(50)*Lucas(43)/(1/2+sqrt(5)/2)^74 4180999952164553 a004 Fibonacci(52)*Lucas(43)/(1/2+sqrt(5)/2)^76 4180999952164553 a004 Fibonacci(54)*Lucas(43)/(1/2+sqrt(5)/2)^78 4180999952164553 a004 Fibonacci(56)*Lucas(43)/(1/2+sqrt(5)/2)^80 4180999952164553 a004 Fibonacci(58)*Lucas(43)/(1/2+sqrt(5)/2)^82 4180999952164553 a004 Fibonacci(60)*Lucas(43)/(1/2+sqrt(5)/2)^84 4180999952164553 a004 Fibonacci(62)*Lucas(43)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(64)*Lucas(43)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(66)*Lucas(43)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(68)*Lucas(43)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(70)*Lucas(43)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(72)*Lucas(43)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(74)*Lucas(43)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(76)*Lucas(43)/(1/2+sqrt(5)/2)^100 4180999952164553 a001 2/433494437*(1/2+1/2*5^(1/2))^62 4180999952164553 a004 Fibonacci(75)*Lucas(43)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(73)*Lucas(43)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(71)*Lucas(43)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(69)*Lucas(43)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(67)*Lucas(43)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(65)*Lucas(43)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(63)*Lucas(43)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(61)*Lucas(43)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(59)*Lucas(43)/(1/2+sqrt(5)/2)^83 4180999952164553 a004 Fibonacci(57)*Lucas(43)/(1/2+sqrt(5)/2)^81 4180999952164553 a004 Fibonacci(55)*Lucas(43)/(1/2+sqrt(5)/2)^79 4180999952164553 a004 Fibonacci(53)*Lucas(43)/(1/2+sqrt(5)/2)^77 4180999952164553 a004 Fibonacci(51)*Lucas(43)/(1/2+sqrt(5)/2)^75 4180999952164553 a004 Fibonacci(49)*Lucas(43)/(1/2+sqrt(5)/2)^73 4180999952164553 a001 9238424/599786069*599074578^(13/21) 4180999952164553 a004 Fibonacci(47)*Lucas(43)/(1/2+sqrt(5)/2)^71 4180999952164553 a001 267914296/28143753123*599074578^(9/14) 4180999952164553 a001 102334155/2139295485799*228826127^(19/20) 4180999952164553 a001 66978574/11384387281*599074578^(2/3) 4180999952164553 a004 Fibonacci(45)*Lucas(43)/(1/2+sqrt(5)/2)^69 4180999952164553 a001 182717648081/299537289*228826127^(1/10) 4180999952164553 a001 701408733/1568397607*817138163596^(1/3) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^19/Lucas(44) 4180999952164553 a001 267914296/119218851371*599074578^(5/7) 4180999952164553 a001 267914296/312119004989*599074578^(16/21) 4180999952164553 a001 267914296/505019158607*599074578^(11/14) 4180999952164553 a004 Fibonacci(44)*Lucas(45)/(1/2+sqrt(5)/2)^70 4180999952164553 a001 701408733/23725150497407*2537720636^(13/15) 4180999952164553 a001 233802911/1368706081*2537720636^(7/15) 4180999952164553 a001 701408733/5600748293801*2537720636^(4/5) 4180999952164553 a001 66978574/204284540899*599074578^(17/21) 4180999952164553 a001 433494437/599074578*599074578^(3/7) 4180999952164553 a001 701408733/3461452808002*2537720636^(7/9) 4180999952164553 a001 233802911/440719107401*2537720636^(11/15) 4180999952164553 a001 3524667/1568437211*2537720636^(2/3) 4180999952164553 a001 701408733/73681302247*2537720636^(3/5) 4180999952164553 a001 233802911/9381251041*2537720636^(5/9) 4180999952164553 a001 701408733/17393796001*2537720636^(8/15) 4180999952164553 a001 233802911/1368706081*17393796001^(3/7) 4180999952164553 a001 686789568/224056801*2537720636^(1/3) 4180999952164553 a001 233802911/1368706081*45537549124^(7/17) 4180999952164553 a001 1836311903/1568397607*45537549124^(1/3) 4180999952164553 a001 233802911/1368706081*14662949395604^(1/3) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^21/Lucas(46) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^17/Lucas(44) 4180999952164553 a001 233802911/1368706081*192900153618^(7/18) 4180999952164553 a001 267914296/1322157322203*599074578^(5/6) 4180999952164553 a001 233802911/1368706081*10749957122^(7/16) 4180999952164553 a001 20365011074/1568397607*2537720636^(4/15) 4180999952164553 a001 53316291173/1568397607*2537720636^(2/9) 4180999952164553 a001 86267571272/1568397607*2537720636^(1/5) 4180999952164553 a004 Fibonacci(44)*Lucas(47)/(1/2+sqrt(5)/2)^72 4180999952164553 a001 365435296162/1568397607*2537720636^(2/15) 4180999952164553 a001 591286729879/1568397607*2537720636^(1/9) 4180999952164553 a001 1548008755920/1568397607*2537720636^(1/15) 4180999952164553 a001 686789568/224056801*45537549124^(5/17) 4180999952164553 a001 686789568/224056801*312119004989^(3/11) 4180999952164553 a001 686789568/224056801*14662949395604^(5/21) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^23/Lucas(48) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^15/Lucas(44) 4180999952164553 a001 686789568/224056801*192900153618^(5/18) 4180999952164553 a001 686789568/224056801*28143753123^(3/10) 4180999952164553 a001 686789568/224056801*10749957122^(5/16) 4180999952164553 a004 Fibonacci(44)*Lucas(49)/(1/2+sqrt(5)/2)^74 4180999952164553 a001 701408733/3461452808002*17393796001^(5/7) 4180999952164553 a001 701408733/119218851371*17393796001^(4/7) 4180999952164553 a001 233802911/9381251041*312119004989^(5/11) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^25/Lucas(50) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^13/Lucas(44) 4180999952164553 a001 233802911/9381251041*3461452808002^(5/12) 4180999952164553 a001 12586269025/1568397607*73681302247^(1/4) 4180999952164553 a001 233802911/9381251041*28143753123^(1/2) 4180999952164553 a004 Fibonacci(44)*Lucas(51)/(1/2+sqrt(5)/2)^76 4180999952164553 a001 32264490531/224056801*17393796001^(1/7) 4180999952164553 a001 701408733/73681302247*45537549124^(9/17) 4180999952164553 a001 701408733/23725150497407*45537549124^(13/17) 4180999952164553 a001 701408733/5600748293801*45537549124^(12/17) 4180999952164553 a001 701408733/2139295485799*45537549124^(2/3) 4180999952164553 a001 233802911/440719107401*45537549124^(11/17) 4180999952164553 a001 3524667/1568437211*45537549124^(10/17) 4180999952164553 a001 32951280099/1568397607*312119004989^(1/5) 4180999952164553 a001 701408733/73681302247*817138163596^(9/19) 4180999952164553 a001 701408733/73681302247*14662949395604^(3/7) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^27/Lucas(52) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^11/Lucas(44) 4180999952164553 a001 701408733/73681302247*192900153618^(1/2) 4180999952164553 a001 86267571272/1568397607*45537549124^(3/17) 4180999952164553 a004 Fibonacci(44)*Lucas(53)/(1/2+sqrt(5)/2)^78 4180999952164553 a001 365435296162/1568397607*45537549124^(2/17) 4180999952164553 a001 1548008755920/1568397607*45537549124^(1/17) 4180999952164553 a001 86267571272/1568397607*817138163596^(3/19) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^29/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^9/Lucas(44) 4180999952164553 a001 233802911/64300051206*1322157322203^(1/2) 4180999952164553 a001 86267571272/1568397607*192900153618^(1/6) 4180999952164553 a004 Fibonacci(44)*Lucas(55)/(1/2+sqrt(5)/2)^80 4180999952164553 a001 233802911/440719107401*312119004989^(3/5) 4180999952164553 a001 701408733/3461452808002*312119004989^(7/11) 4180999952164553 a001 32264490531/224056801*14662949395604^(1/9) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^31/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^7/Lucas(44) 4180999952164553 a004 Fibonacci(44)*Lucas(57)/(1/2+sqrt(5)/2)^82 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^33/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^5/Lucas(44) 4180999952164553 a004 Fibonacci(44)*Lucas(59)/(1/2+sqrt(5)/2)^84 4180999952164553 a001 1548008755920/1568397607*14662949395604^(1/21) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^35/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^3/Lucas(44) 4180999952164553 a004 Fibonacci(44)*Lucas(61)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^37/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)/Lucas(44) 4180999952164553 a004 Fibonacci(44)*Lucas(63)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^39/Lucas(64) 4180999952164553 a004 Fibonacci(64)/Lucas(44)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(44)*Lucas(65)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^41/Lucas(66) 4180999952164553 a004 Fibonacci(66)/Lucas(44)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(44)*Lucas(67)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^43/Lucas(68) 4180999952164553 a004 Fibonacci(68)/Lucas(44)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(44)*Lucas(69)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^45/Lucas(70) 4180999952164553 a004 Fibonacci(70)/Lucas(44)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(44)*Lucas(71)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^47/Lucas(72) 4180999952164553 a004 Fibonacci(72)/Lucas(44)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(44)*Lucas(73)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^49/Lucas(74) 4180999952164553 a004 Fibonacci(74)/Lucas(44)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(44)*Lucas(75)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^51/Lucas(76) 4180999952164553 a004 Fibonacci(76)/Lucas(44)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^53/Lucas(78) 4180999952164553 a004 Fibonacci(78)/Lucas(44)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^55/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(44)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^57/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(44)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^59/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(44)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^61/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(44)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^63/Lucas(88) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^65/Lucas(90) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^67/Lucas(92) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^69/Lucas(94) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^71/Lucas(96) 4180999952164553 a004 Fibonacci(22)*Lucas(22)/(1/2+sqrt(5)/2)^25 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^73/Lucas(98) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^75/Lucas(100) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^74/Lucas(99) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^72/Lucas(97) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^70/Lucas(95) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^68/Lucas(93) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^66/Lucas(91) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^64/Lucas(89) 4180999952164553 a004 Fibonacci(90)/Lucas(44)/(1/2+sqrt(5)/2)^27 4180999952164553 a004 Fibonacci(92)/Lucas(44)/(1/2+sqrt(5)/2)^29 4180999952164553 a004 Fibonacci(94)/Lucas(44)/(1/2+sqrt(5)/2)^31 4180999952164553 a004 Fibonacci(96)/Lucas(44)/(1/2+sqrt(5)/2)^33 4180999952164553 a004 Fibonacci(100)/Lucas(44)/(1/2+sqrt(5)/2)^37 4180999952164553 a004 Fibonacci(98)/Lucas(44)/(1/2+sqrt(5)/2)^35 4180999952164553 a004 Fibonacci(99)/Lucas(44)/(1/2+sqrt(5)/2)^36 4180999952164553 a004 Fibonacci(97)/Lucas(44)/(1/2+sqrt(5)/2)^34 4180999952164553 a004 Fibonacci(95)/Lucas(44)/(1/2+sqrt(5)/2)^32 4180999952164553 a004 Fibonacci(93)/Lucas(44)/(1/2+sqrt(5)/2)^30 4180999952164553 a004 Fibonacci(91)/Lucas(44)/(1/2+sqrt(5)/2)^28 4180999952164553 a004 Fibonacci(89)/Lucas(44)/(1/2+sqrt(5)/2)^26 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^62/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(44)/(1/2+sqrt(5)/2)^24 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^60/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(44)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^58/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(44)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^56/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(44)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^54/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(44)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^52/Lucas(77) 4180999952164553 a004 Fibonacci(77)/Lucas(44)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^50/Lucas(75) 4180999952164553 a004 Fibonacci(75)/Lucas(44)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(44)*Lucas(74)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^48/Lucas(73) 4180999952164553 a004 Fibonacci(73)/Lucas(44)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(44)*Lucas(72)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^46/Lucas(71) 4180999952164553 a004 Fibonacci(71)/Lucas(44)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(44)*Lucas(70)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^44/Lucas(69) 4180999952164553 a004 Fibonacci(69)/Lucas(44)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(44)*Lucas(68)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^42/Lucas(67) 4180999952164553 a004 Fibonacci(67)/Lucas(44)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(44)*Lucas(66)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^40/Lucas(65) 4180999952164553 a004 Fibonacci(65)/Lucas(44)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(44)*Lucas(64)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^38/Lucas(63) 4180999952164553 a006 5^(1/2)*Fibonacci(63)/Lucas(44)/sqrt(5) 4180999952164553 a004 Fibonacci(44)*Lucas(62)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^36/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^2/Lucas(44) 4180999952164553 a004 Fibonacci(44)*Lucas(60)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^34/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^4/Lucas(44) 4180999952164553 a004 Fibonacci(44)*Lucas(58)/(1/2+sqrt(5)/2)^83 4180999952164553 a001 1548008755920/1568397607*192900153618^(1/18) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^32/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^6/Lucas(44) 4180999952164553 a001 701408733/3461452808002*505019158607^(5/8) 4180999952164553 a004 Fibonacci(44)*Lucas(56)/(1/2+sqrt(5)/2)^81 4180999952164553 a001 3524667/1568437211*14662949395604^(10/21) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^30/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^8/Lucas(44) 4180999952164553 a001 139583862445/1568397607*23725150497407^(1/8) 4180999952164553 a001 139583862445/1568397607*505019158607^(1/7) 4180999952164553 a001 956722026041/1568397607*73681302247^(1/13) 4180999952164553 a001 233802911/440719107401*192900153618^(11/18) 4180999952164553 a001 701408733/23725150497407*192900153618^(13/18) 4180999952164553 a001 3524667/1568437211*192900153618^(5/9) 4180999952164553 a004 Fibonacci(44)*Lucas(54)/(1/2+sqrt(5)/2)^79 4180999952164553 a001 139583862445/1568397607*73681302247^(2/13) 4180999952164553 a001 53316291173/1568397607*312119004989^(2/11) 4180999952164553 a001 701408733/119218851371*14662949395604^(4/9) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^28/Lucas(53) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^10/Lucas(44) 4180999952164553 a001 701408733/817138163596*73681302247^(8/13) 4180999952164553 a001 591286729879/1568397607*28143753123^(1/10) 4180999952164553 a001 701408733/5600748293801*73681302247^(9/13) 4180999952164553 a001 701408733/23725150497407*73681302247^(3/4) 4180999952164553 a001 701408733/119218851371*73681302247^(7/13) 4180999952164553 a004 Fibonacci(44)*Lucas(52)/(1/2+sqrt(5)/2)^77 4180999952164553 a001 53316291173/1568397607*28143753123^(1/5) 4180999952164553 a001 2504730781961/1568397607*10749957122^(1/24) 4180999952164553 a001 20365011074/1568397607*45537549124^(4/17) 4180999952164553 a001 20365011074/1568397607*817138163596^(4/19) 4180999952164553 a001 20365011074/1568397607*14662949395604^(4/21) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^26/Lucas(51) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^12/Lucas(44) 4180999952164553 a001 20365011074/1568397607*192900153618^(2/9) 4180999952164553 a001 20365011074/1568397607*73681302247^(3/13) 4180999952164553 a001 1548008755920/1568397607*10749957122^(1/16) 4180999952164553 a001 701408733/45537549124*73681302247^(1/2) 4180999952164553 a001 956722026041/1568397607*10749957122^(1/12) 4180999952164553 a001 3524667/1568437211*28143753123^(3/5) 4180999952164553 a001 701408733/3461452808002*28143753123^(7/10) 4180999952164553 a001 365435296162/1568397607*10749957122^(1/8) 4180999952164553 a004 Fibonacci(44)*Lucas(50)/(1/2+sqrt(5)/2)^75 4180999952164553 a001 139583862445/1568397607*10749957122^(1/6) 4180999952164553 a001 86267571272/1568397607*10749957122^(3/16) 4180999952164553 a001 53316291173/1568397607*10749957122^(5/24) 4180999952164553 a001 7778742049/1568397607*17393796001^(2/7) 4180999952164553 a001 2504730781961/1568397607*4106118243^(1/23) 4180999952164553 a001 20365011074/1568397607*10749957122^(1/4) 4180999952164553 a001 701408733/17393796001*45537549124^(8/17) 4180999952164553 a001 701408733/17393796001*14662949395604^(8/21) 4180999952164553 a001 7778742049/1568397607*14662949395604^(2/9) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^24/Lucas(49) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^14/Lucas(44) 4180999952164553 a001 7778742049/1568397607*505019158607^(1/4) 4180999952164553 a001 701408733/17393796001*192900153618^(4/9) 4180999952164553 a001 701408733/17393796001*73681302247^(6/13) 4180999952164553 a001 701408733/73681302247*10749957122^(9/16) 4180999952164553 a001 701408733/119218851371*10749957122^(7/12) 4180999952164553 a001 956722026041/1568397607*4106118243^(2/23) 4180999952164553 a001 701408733/45537549124*10749957122^(13/24) 4180999952164553 a001 3524667/1568437211*10749957122^(5/8) 4180999952164553 a001 701408733/817138163596*10749957122^(2/3) 4180999952164553 a001 7778742049/1568397607*10749957122^(7/24) 4180999952164553 a001 233802911/440719107401*10749957122^(11/16) 4180999952164553 a001 701408733/2139295485799*10749957122^(17/24) 4180999952164553 a001 701408733/5600748293801*10749957122^(3/4) 4180999952164553 a001 701408733/14662949395604*10749957122^(19/24) 4180999952164553 a001 701408733/23725150497407*10749957122^(13/16) 4180999952164553 a001 267913919/710646*228826127^(1/8) 4180999952164553 a001 701408733/17393796001*10749957122^(1/2) 4180999952164553 a001 365435296162/1568397607*4106118243^(3/23) 4180999952164553 a001 267914296/2139295485799*599074578^(6/7) 4180999952164553 a004 Fibonacci(44)*Lucas(48)/(1/2+sqrt(5)/2)^73 4180999952164553 a001 86267571272/370248451*141422324^(2/13) 4180999952164553 a001 139583862445/1568397607*4106118243^(4/23) 4180999952164553 a001 267914296/969323029*599074578^(10/21) 4180999952164553 a001 53316291173/1568397607*4106118243^(5/23) 4180999952164553 a001 20365011074/1568397607*4106118243^(6/23) 4180999952164553 a001 2504730781961/1568397607*1568397607^(1/22) 4180999952164553 a001 701408733/10749957122*4106118243^(1/2) 4180999952164553 a001 7778742049/1568397607*4106118243^(7/23) 4180999952164553 a001 701408733/6643838879*312119004989^(2/5) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^22/Lucas(47) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^16/Lucas(44) 4180999952164553 a001 2971215073/1568397607*23725150497407^(1/4) 4180999952164553 a001 2971215073/1568397607*73681302247^(4/13) 4180999952164553 a001 2971215073/1568397607*10749957122^(1/3) 4180999952164553 a001 701408733/6643838879*10749957122^(11/24) 4180999952164553 a001 701408733/45537549124*4106118243^(13/23) 4180999952164553 a001 701408733/17393796001*4106118243^(12/23) 4180999952164553 a001 701408733/119218851371*4106118243^(14/23) 4180999952164553 a001 956722026041/1568397607*1568397607^(1/11) 4180999952164553 a001 3524667/1568437211*4106118243^(15/23) 4180999952164553 a001 701408733/817138163596*4106118243^(16/23) 4180999952164553 a001 2971215073/1568397607*4106118243^(8/23) 4180999952164553 a001 701408733/2139295485799*4106118243^(17/23) 4180999952164553 a001 701408733/5600748293801*4106118243^(18/23) 4180999952164553 a001 701408733/14662949395604*4106118243^(19/23) 4180999952164553 a001 701408733/6643838879*4106118243^(11/23) 4180999952164553 a001 365435296162/1568397607*1568397607^(3/22) 4180999952164553 a004 Fibonacci(44)*Lucas(46)/(1/2+sqrt(5)/2)^71 4180999952164553 a001 139583862445/1568397607*1568397607^(2/11) 4180999952164553 a001 701408733/2537720636*2537720636^(4/9) 4180999952164553 a001 53316291173/1568397607*1568397607^(5/22) 4180999952164553 a001 1134903170/1568397607*2537720636^(2/5) 4180999952164553 a001 32951280099/1568397607*1568397607^(1/4) 4180999952164553 a001 20365011074/1568397607*1568397607^(3/11) 4180999952164553 a001 7778742049/1568397607*1568397607^(7/22) 4180999952164553 a001 2504730781961/1568397607*599074578^(1/21) 4180999952164553 a001 267914296/5600748293801*599074578^(19/21) 4180999952164553 a001 1134903170/1568397607*45537549124^(6/17) 4180999952164553 a001 1134903170/1568397607*14662949395604^(2/7) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^20/Lucas(45) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^18/Lucas(44) 4180999952164553 a001 701408733/2537720636*505019158607^(5/14) 4180999952164553 a001 1134903170/1568397607*192900153618^(1/3) 4180999952164553 a001 701408733/2537720636*73681302247^(5/13) 4180999952164553 a001 701408733/2537720636*28143753123^(2/5) 4180999952164553 a001 1134903170/1568397607*10749957122^(3/8) 4180999952164553 a001 701408733/2537720636*10749957122^(5/12) 4180999952164553 a001 2971215073/1568397607*1568397607^(4/11) 4180999952164553 a001 1134903170/1568397607*4106118243^(9/23) 4180999952164553 a001 701408733/2537720636*4106118243^(10/23) 4180999952164553 a004 Fibonacci(46)*Lucas(45)/(1/2+sqrt(5)/2)^72 4180999952164553 a001 1548008755920/1568397607*599074578^(1/14) 4180999952164553 a001 267914296/9062201101803*599074578^(13/14) 4180999952164553 a001 1836311903/14662949395604*2537720636^(4/5) 4180999952164553 a001 701408733/17393796001*1568397607^(6/11) 4180999952164553 a001 701408733/6643838879*1568397607^(1/2) 4180999952164553 a001 1836311903/9062201101803*2537720636^(7/9) 4180999952164553 a001 1836311903/3461452808002*2537720636^(11/15) 4180999952164553 a001 701408733/45537549124*1568397607^(13/22) 4180999952164553 a004 Fibonacci(48)*Lucas(45)/(1/2+sqrt(5)/2)^74 4180999952164553 a001 1836311903/817138163596*2537720636^(2/3) 4180999952164553 a004 Fibonacci(50)*Lucas(45)/(1/2+sqrt(5)/2)^76 4180999952164553 a004 Fibonacci(52)*Lucas(45)/(1/2+sqrt(5)/2)^78 4180999952164553 a004 Fibonacci(54)*Lucas(45)/(1/2+sqrt(5)/2)^80 4180999952164553 a004 Fibonacci(56)*Lucas(45)/(1/2+sqrt(5)/2)^82 4180999952164553 a004 Fibonacci(58)*Lucas(45)/(1/2+sqrt(5)/2)^84 4180999952164553 a004 Fibonacci(60)*Lucas(45)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(62)*Lucas(45)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(64)*Lucas(45)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(66)*Lucas(45)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(68)*Lucas(45)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(70)*Lucas(45)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(72)*Lucas(45)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(74)*Lucas(45)/(1/2+sqrt(5)/2)^100 4180999952164553 a001 1/567451585*(1/2+1/2*5^(1/2))^64 4180999952164553 a004 Fibonacci(73)*Lucas(45)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(71)*Lucas(45)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(69)*Lucas(45)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(67)*Lucas(45)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(65)*Lucas(45)/(1/2+sqrt(5)/2)^91 4180999952164553 a001 23725150497407/1134903170*8^(1/3) 4180999952164553 a004 Fibonacci(63)*Lucas(45)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(61)*Lucas(45)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(59)*Lucas(45)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(57)*Lucas(45)/(1/2+sqrt(5)/2)^83 4180999952164553 a004 Fibonacci(55)*Lucas(45)/(1/2+sqrt(5)/2)^81 4180999952164553 a004 Fibonacci(53)*Lucas(45)/(1/2+sqrt(5)/2)^79 4180999952164553 a004 Fibonacci(51)*Lucas(45)/(1/2+sqrt(5)/2)^77 4180999952164553 a001 1836311903/192900153618*2537720636^(3/5) 4180999952164553 a004 Fibonacci(49)*Lucas(45)/(1/2+sqrt(5)/2)^75 4180999952164553 a001 701408733/119218851371*1568397607^(7/11) 4180999952164553 a001 1836311903/73681302247*2537720636^(5/9) 4180999952164553 a001 1836311903/45537549124*2537720636^(8/15) 4180999952164553 a001 956722026041/1568397607*599074578^(2/21) 4180999952164553 a001 1836311903/10749957122*2537720636^(7/15) 4180999952164553 a001 10946/599074579*599074578^(20/21) 4180999952164553 a004 Fibonacci(47)*Lucas(45)/(1/2+sqrt(5)/2)^73 4180999952164553 a001 4807526976/23725150497407*2537720636^(7/9) 4180999952164553 a001 3524667/1568437211*1568397607^(15/22) 4180999952164553 a001 1602508992/3020733700601*2537720636^(11/15) 4180999952164553 a001 1836311903/4106118243*817138163596^(1/3) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^19/Lucas(46) 4180999952164553 a001 12586269025/23725150497407*2537720636^(11/15) 4180999952164553 a001 12586269025/4106118243*2537720636^(1/3) 4180999952164553 a001 4807526976/2139295485799*2537720636^(2/3) 4180999952164553 a001 701408733/817138163596*1568397607^(8/11) 4180999952164553 a001 7778742049/14662949395604*2537720636^(11/15) 4180999952164553 a001 1836311903/6643838879*2537720636^(4/9) 4180999952164553 a001 12586269025/5600748293801*2537720636^(2/3) 4180999952164553 a001 32951280099/14662949395604*2537720636^(2/3) 4180999952164553 a001 53316291173/23725150497407*2537720636^(2/3) 4180999952164553 a001 20365011074/9062201101803*2537720636^(2/3) 4180999952164553 a001 102287808/10745088481*2537720636^(3/5) 4180999952164553 a001 233802911/440719107401*1568397607^(3/4) 4180999952164553 a001 2971215073/23725150497407*2537720636^(4/5) 4180999952164553 a001 53316291173/4106118243*2537720636^(4/15) 4180999952164553 a001 7778742049/3461452808002*2537720636^(2/3) 4180999952164553 a001 2971215073/4106118243*2537720636^(2/5) 4180999952164553 a001 2971215073/14662949395604*2537720636^(7/9) 4180999952164553 a001 267084832/10716675201*2537720636^(5/9) 4180999952164553 a001 12586269025/1322157322203*2537720636^(3/5) 4180999952164553 a001 139583862445/4106118243*2537720636^(2/9) 4180999952164553 a001 32951280099/3461452808002*2537720636^(3/5) 4180999952164553 a001 86267571272/9062201101803*2537720636^(3/5) 4180999952164553 a001 225851433717/23725150497407*2537720636^(3/5) 4180999952164553 a001 139583862445/14662949395604*2537720636^(3/5) 4180999952164553 a001 53316291173/5600748293801*2537720636^(3/5) 4180999952164553 a001 20365011074/2139295485799*2537720636^(3/5) 4180999952164553 a001 701408733/2139295485799*1568397607^(17/22) 4180999952164553 a001 4807526976/119218851371*2537720636^(8/15) 4180999952164553 a001 2971215073/5600748293801*2537720636^(11/15) 4180999952164553 a001 75283811239/1368706081*2537720636^(1/5) 4180999952164553 a001 7778742049/817138163596*2537720636^(3/5) 4180999952164553 a001 12586269025/505019158607*2537720636^(5/9) 4180999952164553 a001 10983760033/440719107401*2537720636^(5/9) 4180999952164553 a001 43133785636/1730726404001*2537720636^(5/9) 4180999952164553 a001 75283811239/3020733700601*2537720636^(5/9) 4180999952164553 a001 182717648081/7331474697802*2537720636^(5/9) 4180999952164553 a001 139583862445/5600748293801*2537720636^(5/9) 4180999952164553 a001 53316291173/2139295485799*2537720636^(5/9) 4180999952164553 a001 10182505537/408569081798*2537720636^(5/9) 4180999952164553 a001 1134903170/1568397607*1568397607^(9/22) 4180999952164553 a001 1144206275/28374454999*2537720636^(8/15) 4180999952164553 a001 32951280099/817138163596*2537720636^(8/15) 4180999952164553 a001 7778742049/312119004989*2537720636^(5/9) 4180999952164553 a001 86267571272/2139295485799*2537720636^(8/15) 4180999952164553 a001 225851433717/5600748293801*2537720636^(8/15) 4180999952164553 a001 591286729879/14662949395604*2537720636^(8/15) 4180999952164553 a001 365435296162/9062201101803*2537720636^(8/15) 4180999952164553 a001 139583862445/3461452808002*2537720636^(8/15) 4180999952164553 a001 53316291173/1322157322203*2537720636^(8/15) 4180999952164553 a001 1602508992/9381251041*2537720636^(7/15) 4180999952164553 a001 20365011074/505019158607*2537720636^(8/15) 4180999952164553 a004 Fibonacci(46)*Lucas(47)/(1/2+sqrt(5)/2)^74 4180999952164553 a001 2971215073/1322157322203*2537720636^(2/3) 4180999952164553 a001 956722026041/4106118243*2537720636^(2/15) 4180999952164553 a001 7778742049/192900153618*2537720636^(8/15) 4180999952164553 a001 516002918640/1368706081*2537720636^(1/9) 4180999952164553 a001 4807526976/17393796001*2537720636^(4/9) 4180999952164553 a001 701408733/5600748293801*1568397607^(9/11) 4180999952164553 a001 12586269025/73681302247*2537720636^(7/15) 4180999952164553 a001 10983760033/64300051206*2537720636^(7/15) 4180999952164553 a001 86267571272/505019158607*2537720636^(7/15) 4180999952164553 a001 75283811239/440719107401*2537720636^(7/15) 4180999952164553 a001 2504730781961/14662949395604*2537720636^(7/15) 4180999952164553 a001 139583862445/817138163596*2537720636^(7/15) 4180999952164553 a001 53316291173/312119004989*2537720636^(7/15) 4180999952164553 a001 20365011074/119218851371*2537720636^(7/15) 4180999952164553 a001 2971215073/312119004989*2537720636^(3/5) 4180999952164553 a001 12586269025/45537549124*2537720636^(4/9) 4180999952164553 a001 4052739537881/4106118243*2537720636^(1/15) 4180999952164553 a001 1836311903/10749957122*17393796001^(3/7) 4180999952164553 a001 32951280099/119218851371*2537720636^(4/9) 4180999952164553 a001 86267571272/312119004989*2537720636^(4/9) 4180999952164553 a001 225851433717/817138163596*2537720636^(4/9) 4180999952164553 a001 1548008755920/5600748293801*2537720636^(4/9) 4180999952164553 a001 139583862445/505019158607*2537720636^(4/9) 4180999952164553 a001 53316291173/192900153618*2537720636^(4/9) 4180999952164553 a001 20365011074/73681302247*2537720636^(4/9) 4180999952164553 a001 7778742049/45537549124*2537720636^(7/15) 4180999952164553 a001 1836311903/10749957122*45537549124^(7/17) 4180999952164553 a001 1602508992/1368706081*45537549124^(1/3) 4180999952164553 a001 1836311903/10749957122*14662949395604^(1/3) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^21/Lucas(48) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^17/Lucas(46) 4180999952164553 a001 1836311903/10749957122*192900153618^(7/18) 4180999952164553 a001 7778742049/10749957122*2537720636^(2/5) 4180999952164553 a001 7778742049/28143753123*2537720636^(4/9) 4180999952164553 a001 701408733/2537720636*1568397607^(5/11) 4180999952164553 a001 1836311903/10749957122*10749957122^(7/16) 4180999952164553 a001 2971215073/119218851371*2537720636^(5/9) 4180999952164553 a001 20365011074/28143753123*2537720636^(2/5) 4180999952164553 a004 Fibonacci(46)*Lucas(49)/(1/2+sqrt(5)/2)^76 4180999952164553 a001 53316291173/73681302247*2537720636^(2/5) 4180999952164553 a001 139583862445/192900153618*2537720636^(2/5) 4180999952164553 a001 10610209857723/14662949395604*2537720636^(2/5) 4180999952164553 a001 591286729879/817138163596*2537720636^(2/5) 4180999952164553 a001 225851433717/312119004989*2537720636^(2/5) 4180999952164553 a001 86267571272/119218851371*2537720636^(2/5) 4180999952164553 a001 32951280099/45537549124*2537720636^(2/5) 4180999952164553 a001 1836311903/9062201101803*17393796001^(5/7) 4180999952164553 a001 1836311903/312119004989*17393796001^(4/7) 4180999952164553 a001 12586269025/4106118243*45537549124^(5/17) 4180999952164553 a001 32951280099/10749957122*2537720636^(1/3) 4180999952164553 a001 12586269025/4106118243*312119004989^(3/11) 4180999952164553 a001 12586269025/4106118243*14662949395604^(5/21) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^23/Lucas(50) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^15/Lucas(46) 4180999952164553 a001 12586269025/4106118243*192900153618^(5/18) 4180999952164553 a001 2971215073/73681302247*2537720636^(8/15) 4180999952164553 a001 12586269025/4106118243*28143753123^(3/10) 4180999952164553 a001 12586269025/17393796001*2537720636^(2/5) 4180999952164553 a004 Fibonacci(46)*Lucas(51)/(1/2+sqrt(5)/2)^78 4180999952164553 a001 591286729879/4106118243*17393796001^(1/7) 4180999952164553 a001 20365011074/4106118243*17393796001^(2/7) 4180999952164553 a001 1836311903/14662949395604*45537549124^(12/17) 4180999952164553 a001 1836311903/5600748293801*45537549124^(2/3) 4180999952164553 a001 1836311903/3461452808002*45537549124^(11/17) 4180999952164553 a001 1836311903/192900153618*45537549124^(9/17) 4180999952164553 a001 1836311903/817138163596*45537549124^(10/17) 4180999952164553 a001 1836311903/73681302247*312119004989^(5/11) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^25/Lucas(52) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^13/Lucas(46) 4180999952164553 a001 1836311903/73681302247*3461452808002^(5/12) 4180999952164553 a001 10983760033/1368706081*73681302247^(1/4) 4180999952164553 a001 75283811239/1368706081*45537549124^(3/17) 4180999952164553 a004 Fibonacci(46)*Lucas(53)/(1/2+sqrt(5)/2)^80 4180999952164553 a001 956722026041/4106118243*45537549124^(2/17) 4180999952164553 a001 53316291173/4106118243*45537549124^(4/17) 4180999952164553 a001 4052739537881/4106118243*45537549124^(1/17) 4180999952164553 a001 1836311903/192900153618*817138163596^(9/19) 4180999952164553 a001 1836311903/192900153618*14662949395604^(3/7) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^27/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^11/Lucas(46) 4180999952164553 a001 1836311903/192900153618*192900153618^(1/2) 4180999952164553 a004 Fibonacci(46)*Lucas(55)/(1/2+sqrt(5)/2)^82 4180999952164553 a001 1836311903/9062201101803*312119004989^(7/11) 4180999952164553 a001 1836311903/3461452808002*312119004989^(3/5) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^29/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^9/Lucas(46) 4180999952164553 a004 Fibonacci(46)*Lucas(57)/(1/2+sqrt(5)/2)^84 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^31/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^7/Lucas(46) 4180999952164553 a001 1836311903/1322157322203*9062201101803^(1/2) 4180999952164553 a004 Fibonacci(46)*Lucas(59)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^33/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^5/Lucas(46) 4180999952164553 a004 Fibonacci(46)*Lucas(61)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^35/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^3/Lucas(46) 4180999952164553 a004 Fibonacci(46)*Lucas(63)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^37/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)/Lucas(46) 4180999952164553 a004 Fibonacci(46)*Lucas(65)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^39/Lucas(66) 4180999952164553 a004 Fibonacci(66)/Lucas(46)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(46)*Lucas(67)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^41/Lucas(68) 4180999952164553 a004 Fibonacci(68)/Lucas(46)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(46)*Lucas(69)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^43/Lucas(70) 4180999952164553 a004 Fibonacci(70)/Lucas(46)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(46)*Lucas(71)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^45/Lucas(72) 4180999952164553 a004 Fibonacci(72)/Lucas(46)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(46)*Lucas(73)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^47/Lucas(74) 4180999952164553 a004 Fibonacci(74)/Lucas(46)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^49/Lucas(76) 4180999952164553 a004 Fibonacci(76)/Lucas(46)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^51/Lucas(78) 4180999952164553 a004 Fibonacci(78)/Lucas(46)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^53/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(46)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^55/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(46)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^57/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(46)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^59/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(46)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^61/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(46)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^63/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(46)/(1/2+sqrt(5)/2)^25 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^65/Lucas(92) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^67/Lucas(94) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^69/Lucas(96) 4180999952164553 a004 Fibonacci(23)*Lucas(23)/(1/2+sqrt(5)/2)^27 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^71/Lucas(98) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^72/Lucas(99) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^73/Lucas(100) 4180999952164553 a004 Fibonacci(92)/Lucas(46)/(1/2+sqrt(5)/2)^27 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^70/Lucas(97) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^68/Lucas(95) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^66/Lucas(93) 4180999952164553 a004 Fibonacci(94)/Lucas(46)/(1/2+sqrt(5)/2)^29 4180999952164553 a004 Fibonacci(96)/Lucas(46)/(1/2+sqrt(5)/2)^31 4180999952164553 a004 Fibonacci(100)/Lucas(46)/(1/2+sqrt(5)/2)^35 4180999952164553 a004 Fibonacci(98)/Lucas(46)/(1/2+sqrt(5)/2)^33 4180999952164553 a004 Fibonacci(99)/Lucas(46)/(1/2+sqrt(5)/2)^34 4180999952164553 a004 Fibonacci(97)/Lucas(46)/(1/2+sqrt(5)/2)^32 4180999952164553 a004 Fibonacci(95)/Lucas(46)/(1/2+sqrt(5)/2)^30 4180999952164553 a004 Fibonacci(93)/Lucas(46)/(1/2+sqrt(5)/2)^28 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^64/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(46)/(1/2+sqrt(5)/2)^26 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^62/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(46)/(1/2+sqrt(5)/2)^24 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^60/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(46)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^58/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(46)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^56/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(46)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^54/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(46)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^52/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(46)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^50/Lucas(77) 4180999952164553 a004 Fibonacci(77)/Lucas(46)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^48/Lucas(75) 4180999952164553 a004 Fibonacci(75)/Lucas(46)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^46/Lucas(73) 4180999952164553 a004 Fibonacci(73)/Lucas(46)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(46)*Lucas(72)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^44/Lucas(71) 4180999952164553 a004 Fibonacci(71)/Lucas(46)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(46)*Lucas(70)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^42/Lucas(69) 4180999952164553 a004 Fibonacci(69)/Lucas(46)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(46)*Lucas(68)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^40/Lucas(67) 4180999952164553 a004 Fibonacci(67)/Lucas(46)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(46)*Lucas(66)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^38/Lucas(65) 4180999952164553 a004 Fibonacci(46)*Lucas(64)/(1/2+sqrt(5)/2)^91 4180999952164553 a001 1836311903/14662949395604*14662949395604^(4/7) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^36/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^2/Lucas(46) 4180999952164553 a004 Fibonacci(46)*Lucas(62)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^34/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^4/Lucas(46) 4180999952164553 a004 Fibonacci(46)*Lucas(60)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^32/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^6/Lucas(46) 4180999952164553 a004 Fibonacci(46)*Lucas(58)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^30/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^8/Lucas(46) 4180999952164553 a001 1836311903/2139295485799*505019158607^(4/7) 4180999952164553 a001 1836311903/14662949395604*505019158607^(9/14) 4180999952164553 a004 Fibonacci(46)*Lucas(56)/(1/2+sqrt(5)/2)^83 4180999952164553 a001 139583862445/4106118243*312119004989^(2/11) 4180999952164553 a001 1836311903/312119004989*14662949395604^(4/9) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^28/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^10/Lucas(46) 4180999952164553 a001 1836311903/312119004989*505019158607^(1/2) 4180999952164553 a001 1836311903/3461452808002*192900153618^(11/18) 4180999952164553 a001 1836311903/14662949395604*192900153618^(2/3) 4180999952164553 a004 Fibonacci(46)*Lucas(54)/(1/2+sqrt(5)/2)^81 4180999952164553 a001 365435296162/4106118243*73681302247^(2/13) 4180999952164553 a001 53316291173/4106118243*817138163596^(4/19) 4180999952164553 a001 53316291173/4106118243*14662949395604^(4/21) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^26/Lucas(53) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^12/Lucas(46) 4180999952164553 a001 53316291173/4106118243*192900153618^(2/9) 4180999952164553 a001 1836311903/312119004989*73681302247^(7/13) 4180999952164553 a001 1836311903/2139295485799*73681302247^(8/13) 4180999952164553 a001 516002918640/1368706081*28143753123^(1/10) 4180999952164553 a001 1836311903/14662949395604*73681302247^(9/13) 4180999952164553 a001 1836311903/119218851371*73681302247^(1/2) 4180999952164553 a004 Fibonacci(46)*Lucas(52)/(1/2+sqrt(5)/2)^79 4180999952164553 a001 139583862445/4106118243*28143753123^(1/5) 4180999952164553 a001 6557470319842/4106118243*10749957122^(1/24) 4180999952164553 a001 1836311903/73681302247*28143753123^(1/2) 4180999952164553 a001 1836311903/45537549124*14662949395604^(8/21) 4180999952164553 a001 20365011074/4106118243*14662949395604^(2/9) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^24/Lucas(51) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^14/Lucas(46) 4180999952164553 a001 20365011074/4106118243*505019158607^(1/4) 4180999952164553 a001 1836311903/45537549124*192900153618^(4/9) 4180999952164553 a001 4052739537881/4106118243*10749957122^(1/16) 4180999952164553 a001 1836311903/45537549124*73681302247^(6/13) 4180999952164553 a001 2504730781961/4106118243*10749957122^(1/12) 4180999952164553 a001 1836311903/817138163596*28143753123^(3/5) 4180999952164553 a001 1836311903/9062201101803*28143753123^(7/10) 4180999952164553 a001 956722026041/4106118243*10749957122^(1/8) 4180999952164553 a004 Fibonacci(46)*Lucas(50)/(1/2+sqrt(5)/2)^77 4180999952164553 a001 12586269025/4106118243*10749957122^(5/16) 4180999952164553 a001 365435296162/4106118243*10749957122^(1/6) 4180999952164553 a001 75283811239/1368706081*10749957122^(3/16) 4180999952164553 a001 139583862445/4106118243*10749957122^(5/24) 4180999952164553 a001 53316291173/4106118243*10749957122^(1/4) 4180999952164553 a001 6557470319842/4106118243*4106118243^(1/23) 4180999952164553 a001 20365011074/4106118243*10749957122^(7/24) 4180999952164553 a001 1836311903/17393796001*312119004989^(2/5) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^22/Lucas(49) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^16/Lucas(46) 4180999952164553 a001 7778742049/4106118243*23725150497407^(1/4) 4180999952164553 a001 7778742049/4106118243*73681302247^(4/13) 4180999952164553 a001 701408733/14662949395604*1568397607^(19/22) 4180999952164553 a001 2971215073/10749957122*2537720636^(4/9) 4180999952164553 a001 1836311903/119218851371*10749957122^(13/24) 4180999952164553 a001 1836311903/45537549124*10749957122^(1/2) 4180999952164553 a001 1836311903/192900153618*10749957122^(9/16) 4180999952164553 a001 1836311903/312119004989*10749957122^(7/12) 4180999952164553 a001 2504730781961/4106118243*4106118243^(2/23) 4180999952164553 a001 1836311903/817138163596*10749957122^(5/8) 4180999952164553 a001 1836311903/2139295485799*10749957122^(2/3) 4180999952164553 a001 1836311903/3461452808002*10749957122^(11/16) 4180999952164553 a001 1836311903/5600748293801*10749957122^(17/24) 4180999952164553 a001 7778742049/4106118243*10749957122^(1/3) 4180999952164553 a001 86267571272/28143753123*2537720636^(1/3) 4180999952164553 a001 1836311903/14662949395604*10749957122^(3/4) 4180999952164553 a001 1836311903/17393796001*10749957122^(11/24) 4180999952164553 a001 32264490531/10525900321*2537720636^(1/3) 4180999952164553 a001 591286729879/192900153618*2537720636^(1/3) 4180999952164553 a001 1548008755920/505019158607*2537720636^(1/3) 4180999952164553 a001 1515744265389/494493258286*2537720636^(1/3) 4180999952164553 a001 2504730781961/817138163596*2537720636^(1/3) 4180999952164553 a001 956722026041/312119004989*2537720636^(1/3) 4180999952164553 a001 365435296162/119218851371*2537720636^(1/3) 4180999952164553 a001 956722026041/4106118243*4106118243^(3/23) 4180999952164553 a001 139583862445/45537549124*2537720636^(1/3) 4180999952164553 a004 Fibonacci(46)*Lucas(48)/(1/2+sqrt(5)/2)^75 4180999952164553 a001 139583862445/10749957122*2537720636^(4/15) 4180999952164553 a001 365435296162/4106118243*4106118243^(4/23) 4180999952164553 a001 53316291173/17393796001*2537720636^(1/3) 4180999952164553 a001 4807526976/6643838879*2537720636^(2/5) 4180999952164553 a001 2971215073/17393796001*2537720636^(7/15) 4180999952164553 a001 139583862445/4106118243*4106118243^(5/23) 4180999952164553 a001 53316291173/4106118243*4106118243^(6/23) 4180999952164553 a001 182717648081/5374978561*2537720636^(2/9) 4180999952164553 a001 365435296162/28143753123*2537720636^(4/15) 4180999952164553 a001 956722026041/73681302247*2537720636^(4/15) 4180999952164553 a001 2504730781961/192900153618*2537720636^(4/15) 4180999952164553 a001 10610209857723/817138163596*2537720636^(4/15) 4180999952164553 a001 4052739537881/312119004989*2537720636^(4/15) 4180999952164553 a001 1548008755920/119218851371*2537720636^(4/15) 4180999952164553 a001 591286729879/45537549124*2537720636^(4/15) 4180999952164553 a001 6557470319842/4106118243*1568397607^(1/22) 4180999952164553 a001 20365011074/4106118243*4106118243^(7/23) 4180999952164553 a001 591286729879/10749957122*2537720636^(1/5) 4180999952164553 a001 7787980473/599786069*2537720636^(4/15) 4180999952164553 a001 2971215073/4106118243*45537549124^(6/17) 4180999952164553 a001 2971215073/4106118243*14662949395604^(2/7) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^20/Lucas(47) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^18/Lucas(46) 4180999952164553 a001 1836311903/6643838879*23725150497407^(5/16) 4180999952164553 a001 1836311903/6643838879*505019158607^(5/14) 4180999952164553 a001 2971215073/4106118243*192900153618^(1/3) 4180999952164553 a001 1836311903/6643838879*73681302247^(5/13) 4180999952164553 a001 1836311903/6643838879*28143753123^(2/5) 4180999952164553 a001 956722026041/28143753123*2537720636^(2/9) 4180999952164553 a001 7778742049/4106118243*4106118243^(8/23) 4180999952164553 a001 2504730781961/73681302247*2537720636^(2/9) 4180999952164553 a001 3278735159921/96450076809*2537720636^(2/9) 4180999952164553 a001 10610209857723/312119004989*2537720636^(2/9) 4180999952164553 a001 4052739537881/119218851371*2537720636^(2/9) 4180999952164553 a001 387002188980/11384387281*2537720636^(2/9) 4180999952164553 a001 2971215073/4106118243*10749957122^(3/8) 4180999952164553 a001 1836311903/6643838879*10749957122^(5/12) 4180999952164553 a001 12585437040/228811001*2537720636^(1/5) 4180999952164553 a004 Fibonacci(48)*Lucas(47)/(1/2+sqrt(5)/2)^76 4180999952164553 a001 4052739537881/73681302247*2537720636^(1/5) 4180999952164553 a001 591286729879/17393796001*2537720636^(2/9) 4180999952164553 a001 3536736619241/64300051206*2537720636^(1/5) 4180999952164553 a001 6557470319842/119218851371*2537720636^(1/5) 4180999952164553 a001 1836311903/28143753123*4106118243^(1/2) 4180999952164553 a001 2504730781961/45537549124*2537720636^(1/5) 4180999952164553 a001 2504730781961/10749957122*2537720636^(2/15) 4180999952164553 a001 20365011074/6643838879*2537720636^(1/3) 4180999952164553 a001 1836311903/45537549124*4106118243^(12/23) 4180999952164553 a001 956722026041/17393796001*2537720636^(1/5) 4180999952164553 a001 1836311903/17393796001*4106118243^(11/23) 4180999952164553 a001 4052739537881/10749957122*2537720636^(1/9) 4180999952164553 a001 1836311903/119218851371*4106118243^(13/23) 4180999952164553 a004 Fibonacci(50)*Lucas(47)/(1/2+sqrt(5)/2)^78 4180999952164553 a001 1836311903/312119004989*4106118243^(14/23) 4180999952164553 a004 Fibonacci(52)*Lucas(47)/(1/2+sqrt(5)/2)^80 4180999952164553 a004 Fibonacci(54)*Lucas(47)/(1/2+sqrt(5)/2)^82 4180999952164553 a004 Fibonacci(56)*Lucas(47)/(1/2+sqrt(5)/2)^84 4180999952164553 a004 Fibonacci(58)*Lucas(47)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(60)*Lucas(47)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(62)*Lucas(47)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(64)*Lucas(47)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(66)*Lucas(47)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(68)*Lucas(47)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(70)*Lucas(47)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(72)*Lucas(47)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(71)*Lucas(47)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(69)*Lucas(47)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(67)*Lucas(47)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(65)*Lucas(47)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(63)*Lucas(47)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(61)*Lucas(47)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(59)*Lucas(47)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(57)*Lucas(47)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(55)*Lucas(47)/(1/2+sqrt(5)/2)^83 4180999952164553 a004 Fibonacci(53)*Lucas(47)/(1/2+sqrt(5)/2)^81 4180999952164553 a001 2504730781961/4106118243*1568397607^(1/11) 4180999952164553 a004 Fibonacci(51)*Lucas(47)/(1/2+sqrt(5)/2)^79 4180999952164553 a001 6557470319842/28143753123*2537720636^(2/15) 4180999952164553 a001 1836311903/817138163596*4106118243^(15/23) 4180999952164553 a001 10610209857723/45537549124*2537720636^(2/15) 4180999952164553 a004 Fibonacci(49)*Lucas(47)/(1/2+sqrt(5)/2)^77 4180999952164553 a001 4807525989/4870846*2537720636^(1/15) 4180999952164553 a001 86267571272/6643838879*2537720636^(4/15) 4180999952164553 a001 3536736619241/9381251041*2537720636^(1/9) 4180999952164553 a001 1836311903/2139295485799*4106118243^(16/23) 4180999952164553 a001 4052739537881/17393796001*2537720636^(2/15) 4180999952164553 a001 2403763488/5374978561*817138163596^(1/3) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^19/Lucas(48) 4180999952164553 a001 1836311903/5600748293801*4106118243^(17/23) 4180999952164553 a001 6557470319842/17393796001*2537720636^(1/9) 4180999952164553 a001 2971215073/4106118243*4106118243^(9/23) 4180999952164553 a001 1836311903/14662949395604*4106118243^(18/23) 4180999952164553 a004 Fibonacci(48)*Lucas(49)/(1/2+sqrt(5)/2)^78 4180999952164553 a001 225851433717/6643838879*2537720636^(2/9) 4180999952164553 a001 1602508992/9381251041*17393796001^(3/7) 4180999952164553 a001 4807526976/23725150497407*17393796001^(5/7) 4180999952164553 a001 1836311903/6643838879*4106118243^(10/23) 4180999952164553 a001 1201881744/204284540899*17393796001^(4/7) 4180999952164553 a001 1602508992/9381251041*45537549124^(7/17) 4180999952164553 a001 12586269025/10749957122*45537549124^(1/3) 4180999952164553 a001 1602508992/9381251041*14662949395604^(1/3) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^21/Lucas(50) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^17/Lucas(48) 4180999952164553 a001 1602508992/9381251041*192900153618^(7/18) 4180999952164553 a001 53316291173/10749957122*17393796001^(2/7) 4180999952164553 a004 Fibonacci(48)*Lucas(51)/(1/2+sqrt(5)/2)^80 4180999952164553 a001 774004377960/5374978561*17393796001^(1/7) 4180999952164553 a001 32951280099/10749957122*45537549124^(5/17) 4180999952164553 a001 1201881744/3665737348901*45537549124^(2/3) 4180999952164553 a001 1602508992/3020733700601*45537549124^(11/17) 4180999952164553 a001 4807526976/2139295485799*45537549124^(10/17) 4180999952164553 a001 102287808/10745088481*45537549124^(9/17) 4180999952164553 a001 32951280099/10749957122*312119004989^(3/11) 4180999952164553 a001 32951280099/10749957122*14662949395604^(5/21) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^23/Lucas(52) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^15/Lucas(48) 4180999952164553 a001 32951280099/10749957122*192900153618^(5/18) 4180999952164553 a001 4807526976/119218851371*45537549124^(8/17) 4180999952164553 a001 139583862445/10749957122*45537549124^(4/17) 4180999952164553 a001 591286729879/10749957122*45537549124^(3/17) 4180999952164553 a004 Fibonacci(48)*Lucas(53)/(1/2+sqrt(5)/2)^82 4180999952164553 a001 2504730781961/10749957122*45537549124^(2/17) 4180999952164553 a001 267084832/10716675201*312119004989^(5/11) 4180999952164553 a001 4807525989/4870846*45537549124^(1/17) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^25/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^13/Lucas(48) 4180999952164553 a001 267084832/10716675201*3461452808002^(5/12) 4180999952164553 a004 Fibonacci(48)*Lucas(55)/(1/2+sqrt(5)/2)^84 4180999952164553 a001 1602508992/3020733700601*312119004989^(3/5) 4180999952164553 a001 102287808/10745088481*14662949395604^(3/7) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^27/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^11/Lucas(48) 4180999952164553 a004 Fibonacci(48)*Lucas(57)/(1/2+sqrt(5)/2)^86 4180999952164553 a001 1602508992/3020733700601*817138163596^(11/19) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^29/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^9/Lucas(48) 4180999952164553 a004 Fibonacci(48)*Lucas(59)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^31/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^7/Lucas(48) 4180999952164553 a004 Fibonacci(48)*Lucas(61)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^33/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^5/Lucas(48) 4180999952164553 a004 Fibonacci(48)*Lucas(63)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^35/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^3/Lucas(48) 4180999952164553 a004 Fibonacci(48)*Lucas(65)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^37/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)/Lucas(48) 4180999952164553 a004 Fibonacci(48)*Lucas(67)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^39/Lucas(68) 4180999952164553 a004 Fibonacci(68)/Lucas(48)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(48)*Lucas(69)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^41/Lucas(70) 4180999952164553 a004 Fibonacci(70)/Lucas(48)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(48)*Lucas(71)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^43/Lucas(72) 4180999952164553 a004 Fibonacci(72)/Lucas(48)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^45/Lucas(74) 4180999952164553 a004 Fibonacci(74)/Lucas(48)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^47/Lucas(76) 4180999952164553 a004 Fibonacci(76)/Lucas(48)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^49/Lucas(78) 4180999952164553 a004 Fibonacci(78)/Lucas(48)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^51/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(48)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^53/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(48)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^55/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(48)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^57/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(48)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^59/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(48)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^61/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(48)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^63/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(48)/(1/2+sqrt(5)/2)^25 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^65/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(48)/(1/2+sqrt(5)/2)^27 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^67/Lucas(96) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^69/Lucas(98) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^71/Lucas(100) 4180999952164553 a004 Fibonacci(24)*Lucas(24)/(1/2+sqrt(5)/2)^29 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^70/Lucas(99) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^68/Lucas(97) 4180999952164553 a004 Fibonacci(98)/Lucas(48)/(1/2+sqrt(5)/2)^31 4180999952164553 a004 Fibonacci(100)/Lucas(48)/(1/2+sqrt(5)/2)^33 4180999952164553 a004 Fibonacci(99)/Lucas(48)/(1/2+sqrt(5)/2)^32 4180999952164553 a004 Fibonacci(97)/Lucas(48)/(1/2+sqrt(5)/2)^30 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^66/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(48)/(1/2+sqrt(5)/2)^28 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^64/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(48)/(1/2+sqrt(5)/2)^26 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^62/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(48)/(1/2+sqrt(5)/2)^24 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^60/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(48)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^58/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(48)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^56/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(48)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^54/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(48)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^52/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(48)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^50/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(48)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^48/Lucas(77) 4180999952164553 a004 Fibonacci(77)/Lucas(48)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^46/Lucas(75) 4180999952164553 a004 Fibonacci(75)/Lucas(48)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^44/Lucas(73) 4180999952164553 a004 Fibonacci(73)/Lucas(48)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^42/Lucas(71) 4180999952164553 a004 Fibonacci(71)/Lucas(48)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(48)*Lucas(70)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^40/Lucas(69) 4180999952164553 a004 Fibonacci(69)/Lucas(48)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(48)*Lucas(68)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^38/Lucas(67) 4180999952164553 a004 Fibonacci(48)*Lucas(66)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^36/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^2/Lucas(48) 4180999952164553 a004 Fibonacci(48)*Lucas(64)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^34/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^4/Lucas(48) 4180999952164553 a004 Fibonacci(48)*Lucas(62)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^32/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^6/Lucas(48) 4180999952164553 a004 Fibonacci(48)*Lucas(60)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^30/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^8/Lucas(48) 4180999952164553 a004 Fibonacci(48)*Lucas(58)/(1/2+sqrt(5)/2)^87 4180999952164553 a001 1201881744/204284540899*14662949395604^(4/9) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^28/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^10/Lucas(48) 4180999952164553 a001 4807526976/23725150497407*505019158607^(5/8) 4180999952164553 a004 Fibonacci(48)*Lucas(56)/(1/2+sqrt(5)/2)^85 4180999952164553 a001 102287808/10745088481*192900153618^(1/2) 4180999952164553 a001 139583862445/10749957122*817138163596^(4/19) 4180999952164553 a001 139583862445/10749957122*14662949395604^(4/21) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^26/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^12/Lucas(48) 4180999952164553 a001 139583862445/10749957122*192900153618^(2/9) 4180999952164553 a001 1602508992/3020733700601*192900153618^(11/18) 4180999952164553 a001 43133785636/5374978561*73681302247^(1/4) 4180999952164553 a004 Fibonacci(48)*Lucas(54)/(1/2+sqrt(5)/2)^83 4180999952164553 a001 956722026041/10749957122*73681302247^(2/13) 4180999952164553 a001 139583862445/10749957122*73681302247^(3/13) 4180999952164553 a001 4807526976/119218851371*14662949395604^(8/21) 4180999952164553 a001 53316291173/10749957122*14662949395604^(2/9) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^24/Lucas(53) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^14/Lucas(48) 4180999952164553 a001 4807526976/119218851371*192900153618^(4/9) 4180999952164553 a001 1201881744/204284540899*73681302247^(7/13) 4180999952164553 a001 4807526976/312119004989*73681302247^(1/2) 4180999952164553 a001 4807526976/5600748293801*73681302247^(8/13) 4180999952164553 a001 4052739537881/10749957122*28143753123^(1/10) 4180999952164553 a001 4807526976/119218851371*73681302247^(6/13) 4180999952164553 a001 365435296162/1568397607*599074578^(1/7) 4180999952164553 a004 Fibonacci(48)*Lucas(52)/(1/2+sqrt(5)/2)^81 4180999952164553 a001 32951280099/10749957122*28143753123^(3/10) 4180999952164553 a001 365435296162/6643838879*2537720636^(1/5) 4180999952164553 a001 182717648081/5374978561*28143753123^(1/5) 4180999952164553 a001 1201881744/11384387281*312119004989^(2/5) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^22/Lucas(51) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^16/Lucas(48) 4180999952164553 a001 10182505537/5374978561*23725150497407^(1/4) 4180999952164553 a001 10182505537/5374978561*73681302247^(4/13) 4180999952164553 a001 267084832/10716675201*28143753123^(1/2) 4180999952164553 a001 3278735159921/5374978561*10749957122^(1/12) 4180999952164553 a001 4807526976/2139295485799*28143753123^(3/5) 4180999952164553 a001 4807526976/23725150497407*28143753123^(7/10) 4180999952164553 a001 2504730781961/10749957122*10749957122^(1/8) 4180999952164553 a004 Fibonacci(48)*Lucas(50)/(1/2+sqrt(5)/2)^79 4180999952164553 a001 956722026041/10749957122*10749957122^(1/6) 4180999952164553 a001 591286729879/10749957122*10749957122^(3/16) 4180999952164553 a001 182717648081/5374978561*10749957122^(5/24) 4180999952164553 a001 139583862445/10749957122*10749957122^(1/4) 4180999952164553 a001 32951280099/10749957122*10749957122^(5/16) 4180999952164553 a001 1602508992/9381251041*10749957122^(7/16) 4180999952164553 a001 53316291173/10749957122*10749957122^(7/24) 4180999952164553 a001 7778742049/10749957122*45537549124^(6/17) 4180999952164553 a001 7778742049/10749957122*14662949395604^(2/7) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^20/Lucas(49) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^18/Lucas(48) 4180999952164553 a001 4807526976/17393796001*23725150497407^(5/16) 4180999952164553 a001 4807526976/17393796001*505019158607^(5/14) 4180999952164553 a001 7778742049/10749957122*192900153618^(1/3) 4180999952164553 a001 10182505537/5374978561*10749957122^(1/3) 4180999952164553 a001 4807526976/17393796001*73681302247^(5/13) 4180999952164553 a001 4807526976/17393796001*28143753123^(2/5) 4180999952164553 a004 Fibonacci(50)*Lucas(49)/(1/2+sqrt(5)/2)^80 4180999952164553 a001 4807526976/119218851371*10749957122^(1/2) 4180999952164553 a001 1201881744/11384387281*10749957122^(11/24) 4180999952164553 a001 4807526976/312119004989*10749957122^(13/24) 4180999952164553 a001 956722026041/4106118243*1568397607^(3/22) 4180999952164553 a001 102287808/10745088481*10749957122^(9/16) 4180999952164553 a001 1201881744/204284540899*10749957122^(7/12) 4180999952164553 a001 3278735159921/5374978561*4106118243^(2/23) 4180999952164553 a004 Fibonacci(52)*Lucas(49)/(1/2+sqrt(5)/2)^82 4180999952164553 a004 Fibonacci(54)*Lucas(49)/(1/2+sqrt(5)/2)^84 4180999952164553 a004 Fibonacci(56)*Lucas(49)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(58)*Lucas(49)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(60)*Lucas(49)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(62)*Lucas(49)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(64)*Lucas(49)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(66)*Lucas(49)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(68)*Lucas(49)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(70)*Lucas(49)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(69)*Lucas(49)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(67)*Lucas(49)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(65)*Lucas(49)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(63)*Lucas(49)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(61)*Lucas(49)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(59)*Lucas(49)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(57)*Lucas(49)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(55)*Lucas(49)/(1/2+sqrt(5)/2)^85 4180999952164553 a001 4807526976/2139295485799*10749957122^(5/8) 4180999952164553 a004 Fibonacci(53)*Lucas(49)/(1/2+sqrt(5)/2)^83 4180999952164553 a001 12586269025/2139295485799*17393796001^(4/7) 4180999952164553 a001 4807526976/5600748293801*10749957122^(2/3) 4180999952164553 a001 12586269025/73681302247*17393796001^(3/7) 4180999952164553 a004 Fibonacci(51)*Lucas(49)/(1/2+sqrt(5)/2)^81 4180999952164553 a001 1602508992/3020733700601*10749957122^(11/16) 4180999952164553 a001 12586269025/28143753123*817138163596^(1/3) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^19/Lucas(50) 4180999952164553 a001 1201881744/3665737348901*10749957122^(17/24) 4180999952164553 a001 139583862445/28143753123*17393796001^(2/7) 4180999952164553 a001 7778742049/10749957122*10749957122^(3/8) 4180999952164553 a001 32951280099/5600748293801*17393796001^(4/7) 4180999952164553 a001 1135099622/192933544679*17393796001^(4/7) 4180999952164553 a001 139583862445/23725150497407*17393796001^(4/7) 4180999952164553 a001 53316291173/9062201101803*17393796001^(4/7) 4180999952164553 a004 Fibonacci(50)*Lucas(51)/(1/2+sqrt(5)/2)^82 4180999952164553 a001 4807526976/17393796001*10749957122^(5/12) 4180999952164553 a001 4052739537881/28143753123*17393796001^(1/7) 4180999952164553 a001 12586269025/73681302247*45537549124^(7/17) 4180999952164553 a001 10983760033/64300051206*17393796001^(3/7) 4180999952164553 a001 10983760033/9381251041*45537549124^(1/3) 4180999952164553 a001 12586269025/23725150497407*45537549124^(11/17) 4180999952164553 a001 12586269025/5600748293801*45537549124^(10/17) 4180999952164553 a001 12586269025/1322157322203*45537549124^(9/17) 4180999952164553 a001 1144206275/28374454999*45537549124^(8/17) 4180999952164553 a001 86267571272/505019158607*17393796001^(3/7) 4180999952164553 a001 12586269025/73681302247*14662949395604^(1/3) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^21/Lucas(52) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^17/Lucas(50) 4180999952164553 a001 12586269025/73681302247*192900153618^(7/18) 4180999952164553 a001 75283811239/440719107401*17393796001^(3/7) 4180999952164553 a001 2504730781961/14662949395604*17393796001^(3/7) 4180999952164553 a001 10182505537/1730726404001*17393796001^(4/7) 4180999952164553 a001 365435296162/28143753123*45537549124^(4/17) 4180999952164553 a001 12585437040/228811001*45537549124^(3/17) 4180999952164553 a001 53316291173/312119004989*17393796001^(3/7) 4180999952164553 a004 Fibonacci(50)*Lucas(53)/(1/2+sqrt(5)/2)^84 4180999952164553 a001 6557470319842/28143753123*45537549124^(2/17) 4180999952164553 a001 86267571272/28143753123*312119004989^(3/11) 4180999952164553 a001 86267571272/28143753123*14662949395604^(5/21) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^23/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^15/Lucas(50) 4180999952164553 a001 86267571272/28143753123*192900153618^(5/18) 4180999952164553 a004 Fibonacci(50)*Lucas(55)/(1/2+sqrt(5)/2)^86 4180999952164553 a001 12586269025/505019158607*312119004989^(5/11) 4180999952164553 a001 12586269025/23725150497407*312119004989^(3/5) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^25/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^13/Lucas(50) 4180999952164553 a004 Fibonacci(50)*Lucas(57)/(1/2+sqrt(5)/2)^88 4180999952164553 a001 12586269025/1322157322203*817138163596^(9/19) 4180999952164553 a001 3536736619241/9381251041*312119004989^(1/11) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^27/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^11/Lucas(50) 4180999952164553 a004 Fibonacci(50)*Lucas(59)/(1/2+sqrt(5)/2)^90 4180999952164553 a001 12585437040/228811001*14662949395604^(1/7) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^29/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^9/Lucas(50) 4180999952164553 a004 Fibonacci(50)*Lucas(61)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^31/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^7/Lucas(50) 4180999952164553 a004 Fibonacci(50)*Lucas(63)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^33/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^5/Lucas(50) 4180999952164553 a004 Fibonacci(50)*Lucas(65)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^35/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^3/Lucas(50) 4180999952164553 a004 Fibonacci(50)*Lucas(67)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^37/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)/Lucas(50) 4180999952164553 a004 Fibonacci(50)*Lucas(69)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^39/Lucas(70) 4180999952164553 a004 Fibonacci(70)/Lucas(50)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^41/Lucas(72) 4180999952164553 a004 Fibonacci(72)/Lucas(50)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^43/Lucas(74) 4180999952164553 a004 Fibonacci(74)/Lucas(50)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^45/Lucas(76) 4180999952164553 a004 Fibonacci(76)/Lucas(50)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^47/Lucas(78) 4180999952164553 a004 Fibonacci(78)/Lucas(50)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^49/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(50)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^51/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(50)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^53/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(50)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^55/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(50)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^57/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(50)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^59/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(50)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^61/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(50)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^63/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(50)/(1/2+sqrt(5)/2)^25 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^65/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(50)/(1/2+sqrt(5)/2)^27 4180999952164553 a004 Fibonacci(100)/Lucas(50)/(1/2+sqrt(5)/2)^31 4180999952164553 a004 Fibonacci(25)*Lucas(25)/(1/2+sqrt(5)/2)^31 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^67/Lucas(98) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^68/Lucas(99) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^69/Lucas(100) 4180999952164553 a004 Fibonacci(98)/Lucas(50)/(1/2+sqrt(5)/2)^29 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^66/Lucas(97) 4180999952164553 a004 Fibonacci(99)/Lucas(50)/(1/2+sqrt(5)/2)^30 4180999952164553 a004 Fibonacci(97)/Lucas(50)/(1/2+sqrt(5)/2)^28 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^64/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(50)/(1/2+sqrt(5)/2)^26 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^62/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(50)/(1/2+sqrt(5)/2)^24 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^60/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(50)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^58/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(50)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^56/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(50)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^54/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(50)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^52/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(50)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^50/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(50)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^48/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(50)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^46/Lucas(77) 4180999952164553 a004 Fibonacci(77)/Lucas(50)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^44/Lucas(75) 4180999952164553 a004 Fibonacci(75)/Lucas(50)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^42/Lucas(73) 4180999952164553 a004 Fibonacci(73)/Lucas(50)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^40/Lucas(71) 4180999952164553 a004 Fibonacci(71)/Lucas(50)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^38/Lucas(69) 4180999952164553 a006 5^(1/2)*Fibonacci(69)/Lucas(50)/sqrt(5) 4180999952164553 a004 Fibonacci(50)*Lucas(68)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^36/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^2/Lucas(50) 4180999952164553 a004 Fibonacci(50)*Lucas(66)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^34/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^4/Lucas(50) 4180999952164553 a004 Fibonacci(50)*Lucas(64)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^32/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^6/Lucas(50) 4180999952164553 a004 Fibonacci(50)*Lucas(62)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^30/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^8/Lucas(50) 4180999952164553 a004 Fibonacci(50)*Lucas(60)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^28/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^10/Lucas(50) 4180999952164553 a004 Fibonacci(50)*Lucas(58)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^26/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^12/Lucas(50) 4180999952164553 a001 12586269025/14662949395604*505019158607^(4/7) 4180999952164553 a004 Fibonacci(50)*Lucas(56)/(1/2+sqrt(5)/2)^87 4180999952164553 a001 12585437040/228811001*192900153618^(1/6) 4180999952164553 a001 1144206275/28374454999*14662949395604^(8/21) 4180999952164553 a001 139583862445/28143753123*14662949395604^(2/9) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^24/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^14/Lucas(50) 4180999952164553 a001 12586269025/1322157322203*192900153618^(1/2) 4180999952164553 a001 12586269025/5600748293801*192900153618^(5/9) 4180999952164553 a001 1144206275/28374454999*192900153618^(4/9) 4180999952164553 a004 Fibonacci(50)*Lucas(54)/(1/2+sqrt(5)/2)^85 4180999952164553 a001 2504730781961/28143753123*73681302247^(2/13) 4180999952164553 a001 75283811239/9381251041*73681302247^(1/4) 4180999952164553 a001 365435296162/28143753123*73681302247^(3/13) 4180999952164553 a001 12586269025/119218851371*312119004989^(2/5) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^22/Lucas(53) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^16/Lucas(50) 4180999952164553 a001 53316291173/28143753123*23725150497407^(1/4) 4180999952164553 a001 12586269025/817138163596*73681302247^(1/2) 4180999952164553 a001 1144206275/28374454999*73681302247^(6/13) 4180999952164553 a001 12586269025/2139295485799*73681302247^(7/13) 4180999952164553 a001 12586269025/14662949395604*73681302247^(8/13) 4180999952164553 a001 3536736619241/9381251041*28143753123^(1/10) 4180999952164553 a001 53316291173/28143753123*73681302247^(4/13) 4180999952164553 a001 365435296162/73681302247*17393796001^(2/7) 4180999952164553 a004 Fibonacci(50)*Lucas(52)/(1/2+sqrt(5)/2)^83 4180999952164553 a001 956722026041/28143753123*28143753123^(1/5) 4180999952164553 a001 956722026041/192900153618*17393796001^(2/7) 4180999952164553 a001 20365011074/28143753123*45537549124^(6/17) 4180999952164553 a001 2504730781961/505019158607*17393796001^(2/7) 4180999952164553 a001 10610209857723/2139295485799*17393796001^(2/7) 4180999952164553 a001 140728068720/28374454999*17393796001^(2/7) 4180999952164553 a001 2504730781961/10749957122*4106118243^(3/23) 4180999952164553 a001 86267571272/28143753123*28143753123^(3/10) 4180999952164553 a001 591286729879/119218851371*17393796001^(2/7) 4180999952164553 a001 20365011074/119218851371*17393796001^(3/7) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^20/Lucas(51) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^18/Lucas(50) 4180999952164553 a001 12586269025/45537549124*23725150497407^(5/16) 4180999952164553 a001 12586269025/45537549124*505019158607^(5/14) 4180999952164553 a001 20365011074/28143753123*192900153618^(1/3) 4180999952164553 a001 12586269025/45537549124*73681302247^(5/13) 4180999952164553 a004 Fibonacci(52)*Lucas(51)/(1/2+sqrt(5)/2)^84 4180999952164553 a001 1515744265389/10525900321*17393796001^(1/7) 4180999952164553 a001 12586269025/505019158607*28143753123^(1/2) 4180999952164553 a004 Fibonacci(54)*Lucas(51)/(1/2+sqrt(5)/2)^86 4180999952164553 a001 12586269025/5600748293801*28143753123^(3/5) 4180999952164553 a004 Fibonacci(56)*Lucas(51)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(58)*Lucas(51)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(60)*Lucas(51)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(62)*Lucas(51)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(64)*Lucas(51)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(66)*Lucas(51)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(68)*Lucas(51)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(67)*Lucas(51)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(65)*Lucas(51)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(63)*Lucas(51)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(61)*Lucas(51)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(59)*Lucas(51)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(57)*Lucas(51)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(55)*Lucas(51)/(1/2+sqrt(5)/2)^87 4180999952164553 a001 32951280099/14662949395604*45537549124^(10/17) 4180999952164553 a001 225851433717/45537549124*17393796001^(2/7) 4180999952164553 a001 32951280099/3461452808002*45537549124^(9/17) 4180999952164553 a004 Fibonacci(53)*Lucas(51)/(1/2+sqrt(5)/2)^85 4180999952164553 a001 10983760033/64300051206*45537549124^(7/17) 4180999952164553 a001 32951280099/817138163596*45537549124^(8/17) 4180999952164553 a001 86267571272/73681302247*45537549124^(1/3) 4180999952164553 a001 32951280099/73681302247*817138163596^(1/3) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^19/Lucas(52) 4180999952164553 a001 32264490531/10525900321*45537549124^(5/17) 4180999952164553 a001 956722026041/73681302247*45537549124^(4/17) 4180999952164553 a001 53316291173/73681302247*45537549124^(6/17) 4180999952164553 a001 12586269025/45537549124*28143753123^(2/5) 4180999952164553 a001 4052739537881/73681302247*45537549124^(3/17) 4180999952164553 a001 225851433717/23725150497407*45537549124^(9/17) 4180999952164553 a004 Fibonacci(52)*Lucas(53)/(1/2+sqrt(5)/2)^86 4180999952164553 a001 86267571272/2139295485799*45537549124^(8/17) 4180999952164553 a001 139583862445/14662949395604*45537549124^(9/17) 4180999952164553 a001 225851433717/5600748293801*45537549124^(8/17) 4180999952164553 a001 86267571272/505019158607*45537549124^(7/17) 4180999952164553 a001 591286729879/14662949395604*45537549124^(8/17) 4180999952164553 a001 365435296162/9062201101803*45537549124^(8/17) 4180999952164553 a001 139583862445/3461452808002*45537549124^(8/17) 4180999952164553 a001 10983760033/64300051206*14662949395604^(1/3) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^21/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^17/Lucas(52) 4180999952164553 a001 75283811239/440719107401*45537549124^(7/17) 4180999952164553 a001 10983760033/64300051206*192900153618^(7/18) 4180999952164553 a004 Fibonacci(52)*Lucas(55)/(1/2+sqrt(5)/2)^88 4180999952164553 a001 32264490531/10525900321*312119004989^(3/11) 4180999952164553 a001 10983760033/440719107401*312119004989^(5/11) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^23/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^15/Lucas(52) 4180999952164553 a001 139583862445/192900153618*45537549124^(6/17) 4180999952164553 a004 Fibonacci(52)*Lucas(57)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^25/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^13/Lucas(52) 4180999952164553 a001 10983760033/440719107401*3461452808002^(5/12) 4180999952164553 a004 Fibonacci(52)*Lucas(59)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^27/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^11/Lucas(52) 4180999952164553 a004 Fibonacci(52)*Lucas(61)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^29/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^9/Lucas(52) 4180999952164553 a004 Fibonacci(52)*Lucas(63)/(1/2+sqrt(5)/2)^96 4180999952164553 a001 1515744265389/10525900321*14662949395604^(1/9) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^31/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^7/Lucas(52) 4180999952164553 a004 Fibonacci(52)*Lucas(65)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^33/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^5/Lucas(52) 4180999952164553 a004 Fibonacci(52)*Lucas(67)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^35/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^3/Lucas(52) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^37/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)/Lucas(52) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^39/Lucas(72) 4180999952164553 a004 Fibonacci(72)/Lucas(52)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^41/Lucas(74) 4180999952164553 a004 Fibonacci(74)/Lucas(52)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^43/Lucas(76) 4180999952164553 a004 Fibonacci(76)/Lucas(52)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^45/Lucas(78) 4180999952164553 a004 Fibonacci(78)/Lucas(52)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^47/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(52)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^49/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(52)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^51/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(52)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^53/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(52)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^55/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(52)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^57/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(52)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^59/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(52)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^61/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(52)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^63/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(52)/(1/2+sqrt(5)/2)^25 4180999952164553 a004 Fibonacci(100)/Lucas(52)/(1/2+sqrt(5)/2)^29 4180999952164553 a004 Fibonacci(26)*Lucas(26)/(1/2+sqrt(5)/2)^33 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^65/Lucas(98) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^66/Lucas(99) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^67/Lucas(100) 4180999952164553 a004 Fibonacci(98)/Lucas(52)/(1/2+sqrt(5)/2)^27 4180999952164553 a004 Fibonacci(99)/Lucas(52)/(1/2+sqrt(5)/2)^28 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^64/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(52)/(1/2+sqrt(5)/2)^26 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^62/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(52)/(1/2+sqrt(5)/2)^24 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^60/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(52)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^58/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(52)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^56/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(52)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^54/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(52)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^52/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(52)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^50/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(52)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^48/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(52)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^46/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(52)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^44/Lucas(77) 4180999952164553 a004 Fibonacci(77)/Lucas(52)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^42/Lucas(75) 4180999952164553 a004 Fibonacci(75)/Lucas(52)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^40/Lucas(73) 4180999952164553 a004 Fibonacci(73)/Lucas(52)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^38/Lucas(71) 4180999952164553 a006 5^(1/2)*Fibonacci(71)/Lucas(52)/sqrt(5) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^36/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^2/Lucas(52) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^34/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^4/Lucas(52) 4180999952164553 a004 Fibonacci(52)*Lucas(66)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^32/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^6/Lucas(52) 4180999952164553 a004 Fibonacci(52)*Lucas(64)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^30/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^8/Lucas(52) 4180999952164553 a004 Fibonacci(52)*Lucas(62)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^28/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^10/Lucas(52) 4180999952164553 a004 Fibonacci(52)*Lucas(60)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^26/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^12/Lucas(52) 4180999952164553 a001 10983760033/3020733700601*1322157322203^(1/2) 4180999952164553 a004 Fibonacci(52)*Lucas(58)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^24/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^14/Lucas(52) 4180999952164553 a004 Fibonacci(52)*Lucas(56)/(1/2+sqrt(5)/2)^89 4180999952164553 a001 32951280099/312119004989*312119004989^(2/5) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^22/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^16/Lucas(52) 4180999952164553 a001 139583862445/73681302247*23725150497407^(1/4) 4180999952164553 a001 32951280099/817138163596*192900153618^(4/9) 4180999952164553 a001 32951280099/14662949395604*192900153618^(5/9) 4180999952164553 a001 225851433717/312119004989*45537549124^(6/17) 4180999952164553 a001 2504730781961/2139295485799*45537549124^(1/3) 4180999952164553 a004 Fibonacci(52)*Lucas(54)/(1/2+sqrt(5)/2)^87 4180999952164553 a001 53316291173/1322157322203*45537549124^(8/17) 4180999952164553 a001 1548008755920/505019158607*45537549124^(5/17) 4180999952164553 a001 1515744265389/494493258286*45537549124^(5/17) 4180999952164553 a001 2504730781961/192900153618*45537549124^(4/17) 4180999952164553 a001 2504730781961/817138163596*45537549124^(5/17) 4180999952164553 a001 956722026041/312119004989*45537549124^(5/17) 4180999952164553 a001 86267571272/119218851371*45537549124^(6/17) 4180999952164553 a001 139583862445/73681302247*73681302247^(4/13) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^20/Lucas(53) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^18/Lucas(52) 4180999952164553 a001 32951280099/119218851371*23725150497407^(5/16) 4180999952164553 a001 32951280099/119218851371*505019158607^(5/14) 4180999952164553 a001 3536736619241/64300051206*45537549124^(3/17) 4180999952164553 a001 10610209857723/817138163596*45537549124^(4/17) 4180999952164553 a001 53316291173/73681302247*192900153618^(1/3) 4180999952164553 a001 4052739537881/312119004989*45537549124^(4/17) 4180999952164553 a001 32951280099/817138163596*73681302247^(6/13) 4180999952164553 a004 Fibonacci(54)*Lucas(53)/(1/2+sqrt(5)/2)^88 4180999952164553 a001 32951280099/2139295485799*73681302247^(1/2) 4180999952164553 a001 32951280099/5600748293801*73681302247^(7/13) 4180999952164553 a001 139583862445/119218851371*45537549124^(1/3) 4180999952164553 a004 Fibonacci(56)*Lucas(53)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(58)*Lucas(53)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(60)*Lucas(53)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(62)*Lucas(53)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(64)*Lucas(53)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(66)*Lucas(53)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(65)*Lucas(53)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(63)*Lucas(53)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(61)*Lucas(53)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(59)*Lucas(53)/(1/2+sqrt(5)/2)^93 4180999952164553 a001 365435296162/119218851371*45537549124^(5/17) 4180999952164553 a004 Fibonacci(57)*Lucas(53)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(55)*Lucas(53)/(1/2+sqrt(5)/2)^89 4180999952164553 a001 43133785636/96450076809*817138163596^(1/3) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^19/Lucas(54) 4180999952164553 a001 1548008755920/119218851371*45537549124^(4/17) 4180999952164553 a004 Fibonacci(54)*Lucas(55)/(1/2+sqrt(5)/2)^90 4180999952164553 a001 43133785636/1730726404001*312119004989^(5/11) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^21/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^17/Lucas(54) 4180999952164553 a001 591286729879/192900153618*312119004989^(3/11) 4180999952164553 a001 3278735159921/96450076809*312119004989^(2/11) 4180999952164553 a004 Fibonacci(54)*Lucas(57)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^23/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^15/Lucas(54) 4180999952164553 a004 Fibonacci(54)*Lucas(59)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^25/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^13/Lucas(54) 4180999952164553 a004 Fibonacci(54)*Lucas(61)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^27/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^11/Lucas(54) 4180999952164553 a004 Fibonacci(54)*Lucas(63)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^29/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^9/Lucas(54) 4180999952164553 a004 Fibonacci(54)*Lucas(65)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^31/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^7/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^33/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^5/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^35/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^3/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^37/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^39/Lucas(74) 4180999952164553 a004 Fibonacci(74)/Lucas(54)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^41/Lucas(76) 4180999952164553 a004 Fibonacci(76)/Lucas(54)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^43/Lucas(78) 4180999952164553 a004 Fibonacci(78)/Lucas(54)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^45/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(54)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^47/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(54)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^49/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(54)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^51/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(54)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^53/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(54)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^55/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(54)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^57/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(54)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^59/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(54)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^61/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(54)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^63/Lucas(98) 4180999952164553 a004 Fibonacci(98)/Lucas(54)/(1/2+sqrt(5)/2)^25 4180999952164553 a004 Fibonacci(100)/Lucas(54)/(1/2+sqrt(5)/2)^27 4180999952164553 a004 Fibonacci(27)*Lucas(27)/(1/2+sqrt(5)/2)^35 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^64/Lucas(99) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^65/Lucas(100) 4180999952164553 a004 Fibonacci(99)/Lucas(54)/(1/2+sqrt(5)/2)^26 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^62/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(54)/(1/2+sqrt(5)/2)^24 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^60/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(54)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^58/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(54)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^56/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(54)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^54/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(54)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^52/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(54)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^50/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(54)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^48/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(54)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^46/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(54)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^44/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(54)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^42/Lucas(77) 4180999952164553 a004 Fibonacci(77)/Lucas(54)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^40/Lucas(75) 4180999952164553 a004 Fibonacci(75)/Lucas(54)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^38/Lucas(73) 4180999952164553 a006 5^(1/2)*Fibonacci(73)/Lucas(54)/sqrt(5) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^36/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^2/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^34/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^4/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^32/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^6/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^30/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^8/Lucas(54) 4180999952164553 a004 Fibonacci(54)*Lucas(64)/(1/2+sqrt(5)/2)^99 4180999952164553 a001 1135099622/192933544679*14662949395604^(4/9) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^28/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^10/Lucas(54) 4180999952164553 a004 Fibonacci(54)*Lucas(62)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^26/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^12/Lucas(54) 4180999952164553 a004 Fibonacci(54)*Lucas(60)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^24/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^14/Lucas(54) 4180999952164553 a001 86267571272/23725150497407*1322157322203^(1/2) 4180999952164553 a004 Fibonacci(54)*Lucas(58)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^22/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^16/Lucas(54) 4180999952164553 a001 1135099622/192933544679*505019158607^(1/2) 4180999952164553 a004 Fibonacci(54)*Lucas(56)/(1/2+sqrt(5)/2)^91 4180999952164553 a001 139583862445/192900153618*14662949395604^(2/7) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^20/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^18/Lucas(54) 4180999952164553 a001 6557470319842/119218851371*45537549124^(3/17) 4180999952164553 a004 Fibonacci(56)*Lucas(55)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(58)*Lucas(55)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(60)*Lucas(55)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(62)*Lucas(55)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(64)*Lucas(55)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(63)*Lucas(55)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(61)*Lucas(55)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(59)*Lucas(55)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(57)*Lucas(55)/(1/2+sqrt(5)/2)^93 4180999952164553 a001 75283811239/3020733700601*312119004989^(5/11) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^19/Lucas(56) 4180999952164553 a001 139583862445/192900153618*192900153618^(1/3) 4180999952164553 a004 Fibonacci(56)*Lucas(57)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^21/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^17/Lucas(56) 4180999952164553 a004 Fibonacci(56)*Lucas(59)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^23/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^15/Lucas(56) 4180999952164553 a004 Fibonacci(56)*Lucas(61)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^25/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^13/Lucas(56) 4180999952164553 a004 Fibonacci(56)*Lucas(63)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^27/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^11/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^29/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^9/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^31/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^7/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^33/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^5/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^35/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^3/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^37/Lucas(74) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^39/Lucas(76) 4180999952164553 a004 Fibonacci(76)/Lucas(56)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^41/Lucas(78) 4180999952164553 a004 Fibonacci(78)/Lucas(56)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^43/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(56)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^45/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(56)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^47/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(56)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^49/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(56)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^51/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(56)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^53/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(56)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^55/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(56)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^57/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(56)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^59/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(56)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^61/Lucas(98) 4180999952164553 a004 Fibonacci(98)/Lucas(56)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(100)/Lucas(56)/(1/2+sqrt(5)/2)^25 4180999952164553 a004 Fibonacci(28)*Lucas(28)/(1/2+sqrt(5)/2)^37 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^62/Lucas(99) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^63/Lucas(100) 4180999952164553 a004 Fibonacci(99)/Lucas(56)/(1/2+sqrt(5)/2)^24 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^60/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(56)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^58/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(56)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^56/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(56)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^54/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(56)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^52/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(56)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^50/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(56)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^48/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(56)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^46/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(56)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^44/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(56)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^42/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(56)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^40/Lucas(77) 4180999952164553 a004 Fibonacci(77)/Lucas(56)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^38/Lucas(75) 4180999952164553 a006 5^(1/2)*Fibonacci(75)/Lucas(56)/sqrt(5) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^36/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^2/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^34/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^4/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^32/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^6/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^30/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^8/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^28/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^10/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^26/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^12/Lucas(56) 4180999952164553 a004 Fibonacci(56)*Lucas(62)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^24/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^14/Lucas(56) 4180999952164553 a004 Fibonacci(56)*Lucas(60)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^22/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^16/Lucas(56) 4180999952164553 a004 Fibonacci(56)*Lucas(58)/(1/2+sqrt(5)/2)^95 4180999952164553 a001 1515744265389/494493258286*312119004989^(3/11) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^20/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^18/Lucas(56) 4180999952164553 a004 Fibonacci(58)*Lucas(57)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(60)*Lucas(57)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(62)*Lucas(57)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(61)*Lucas(57)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(59)*Lucas(57)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^19/Lucas(58) 4180999952164553 a004 Fibonacci(58)*Lucas(59)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^21/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^17/Lucas(58) 4180999952164553 a004 Fibonacci(58)*Lucas(61)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^23/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^15/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^25/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^13/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^27/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^11/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^29/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^9/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^31/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^7/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^33/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^5/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^35/Lucas(74) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^3/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^37/Lucas(76) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^39/Lucas(78) 4180999952164553 a004 Fibonacci(78)/Lucas(58)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^41/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(58)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^43/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(58)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^45/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(58)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^47/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(58)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^49/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(58)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^51/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(58)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^53/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(58)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^55/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(58)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^57/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(58)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(100)/Lucas(58)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(29)*Lucas(29)/(1/2+sqrt(5)/2)^39 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^59/Lucas(98) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^60/Lucas(99) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^61/Lucas(100) 4180999952164553 a004 Fibonacci(98)/Lucas(58)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(99)/Lucas(58)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^58/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(58)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^56/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(58)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^54/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(58)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^52/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(58)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^50/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(58)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^48/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(58)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^46/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(58)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^44/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(58)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^42/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(58)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^40/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(58)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^38/Lucas(77) 4180999952164553 a006 5^(1/2)*Fibonacci(77)/Lucas(58)/sqrt(5) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^36/Lucas(75) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^2/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^34/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^4/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^32/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^6/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^30/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^8/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^28/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^10/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^26/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^12/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^24/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^14/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^22/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^16/Lucas(58) 4180999952164553 a004 Fibonacci(58)*Lucas(60)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^20/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^18/Lucas(58) 4180999952164553 a004 Fibonacci(60)*Lucas(59)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^19/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^21/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^17/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^23/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^15/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^25/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^13/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^27/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^11/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^29/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^9/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^31/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^7/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^33/Lucas(74) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^5/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^35/Lucas(76) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^3/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^37/Lucas(78) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^39/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(60)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^41/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(60)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^43/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(60)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^45/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(60)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^47/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(60)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^49/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(60)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^51/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(60)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^53/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(60)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^55/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(60)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^57/Lucas(98) 4180999952164553 a004 Fibonacci(98)/Lucas(60)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(100)/Lucas(60)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(30)*Lucas(30)/(1/2+sqrt(5)/2)^41 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^58/Lucas(99) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^59/Lucas(100) 4180999952164553 a004 Fibonacci(99)/Lucas(60)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^56/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(60)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^54/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(60)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^52/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(60)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^50/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(60)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^48/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(60)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^46/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(60)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^44/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(60)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^42/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(60)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^40/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(60)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^38/Lucas(79) 4180999952164553 a006 5^(1/2)*Fibonacci(79)/Lucas(60)/sqrt(5) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^36/Lucas(77) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^2/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^34/Lucas(75) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^4/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^32/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^6/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^30/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^8/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^28/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^10/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^26/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^12/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^24/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^14/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^22/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^16/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^20/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^18/Lucas(60) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^19/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^21/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^17/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^23/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^15/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^25/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^13/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^27/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^11/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^29/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^9/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^31/Lucas(74) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^7/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^33/Lucas(76) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^5/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^35/Lucas(78) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^3/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^37/Lucas(80) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^39/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(62)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^41/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(62)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^43/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(62)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^45/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(62)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^47/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(62)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^49/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(62)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^51/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(62)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^53/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(62)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(100)/Lucas(62)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(31)*Lucas(31)/(1/2+sqrt(5)/2)^43 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^55/Lucas(98) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^56/Lucas(99) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^57/Lucas(100) 4180999952164553 a004 Fibonacci(98)/Lucas(62)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(99)/Lucas(62)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^54/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(62)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^52/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(62)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^50/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(62)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^48/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(62)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^46/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(62)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^44/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(62)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^42/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(62)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^40/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(62)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^38/Lucas(81) 4180999952164553 a006 5^(1/2)*Fibonacci(81)/Lucas(62)/sqrt(5) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^36/Lucas(79) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^2/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^34/Lucas(77) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^4/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^32/Lucas(75) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^6/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^30/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^8/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^28/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^10/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^26/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^12/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^24/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^14/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^22/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^16/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^20/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^18/Lucas(62) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^19/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^21/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^17/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^23/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^15/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^25/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^13/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^27/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^11/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^29/Lucas(74) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^9/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^31/Lucas(76) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^7/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^33/Lucas(78) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^5/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^35/Lucas(80) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^3/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^37/Lucas(82) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^39/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(64)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^41/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(64)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^43/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(64)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^45/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(64)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^47/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(64)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^49/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(64)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^51/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(64)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^53/Lucas(98) 4180999952164553 a004 Fibonacci(98)/Lucas(64)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(100)/Lucas(64)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(32)*Lucas(32)/(1/2+sqrt(5)/2)^45 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^54/Lucas(99) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^55/Lucas(100) 4180999952164553 a004 Fibonacci(99)/Lucas(64)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^52/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(64)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^50/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(64)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^48/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(64)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^46/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(64)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^44/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(64)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^42/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(64)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^40/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(64)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^38/Lucas(83) 4180999952164553 a006 5^(1/2)*Fibonacci(83)/Lucas(64)/sqrt(5) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^36/Lucas(81) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^2/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^34/Lucas(79) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^4/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^32/Lucas(77) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^6/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^30/Lucas(75) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^8/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^28/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^10/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^26/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^12/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^24/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^14/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^22/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^16/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^20/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^18/Lucas(64) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^19/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^21/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^17/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^23/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^15/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^25/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^13/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^27/Lucas(74) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^11/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^29/Lucas(76) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^9/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^31/Lucas(78) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^7/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^33/Lucas(80) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^5/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^35/Lucas(82) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^3/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^37/Lucas(84) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^39/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(66)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^41/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(66)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^43/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(66)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^45/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(66)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^47/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(66)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^49/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(66)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^51/Lucas(98) 4180999952164553 a004 Fibonacci(98)/Lucas(66)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(100)/Lucas(66)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(33)*Lucas(33)/(1/2+sqrt(5)/2)^47 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^52/Lucas(99) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^53/Lucas(100) 4180999952164553 a004 Fibonacci(99)/Lucas(66)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^50/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(66)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^48/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(66)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^46/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(66)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^44/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(66)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^42/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(66)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^40/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(66)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^38/Lucas(85) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^36/Lucas(83) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^2/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^34/Lucas(81) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^4/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^32/Lucas(79) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^6/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^30/Lucas(77) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^8/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^28/Lucas(75) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^10/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^26/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^12/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^24/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^14/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^22/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^16/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^20/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^18/Lucas(66) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^19/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^21/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^17/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^23/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^15/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^25/Lucas(74) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^13/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^27/Lucas(76) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^11/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^29/Lucas(78) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^9/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^31/Lucas(80) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^7/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^33/Lucas(82) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^5/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^35/Lucas(84) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^3/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^37/Lucas(86) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^39/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(68)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^41/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(68)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^43/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(68)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^45/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(68)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^47/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(68)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^49/Lucas(98) 4180999952164553 a004 Fibonacci(98)/Lucas(68)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(100)/Lucas(68)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(34)*Lucas(34)/(1/2+sqrt(5)/2)^49 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^50/Lucas(99) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^51/Lucas(100) 4180999952164553 a004 Fibonacci(99)/Lucas(68)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^48/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(68)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^46/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(68)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^44/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(68)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^42/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(68)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^40/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(68)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^38/Lucas(87) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^36/Lucas(85) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^2/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^34/Lucas(83) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^4/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^32/Lucas(81) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^6/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^30/Lucas(79) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^8/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^28/Lucas(77) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^10/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^26/Lucas(75) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^12/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^24/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^14/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^22/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^16/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^20/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^18/Lucas(68) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^19/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^21/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^17/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^23/Lucas(74) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^15/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^25/Lucas(76) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^13/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^27/Lucas(78) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^11/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^29/Lucas(80) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^9/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^31/Lucas(82) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^7/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^33/Lucas(84) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^5/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^35/Lucas(86) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^3/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^37/Lucas(88) 4180999952164553 a004 Fibonacci(88)*(1/2+sqrt(5)/2)/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^39/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(70)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^41/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(70)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^43/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(70)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^45/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(70)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^47/Lucas(98) 4180999952164553 a004 Fibonacci(98)/Lucas(70)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(100)/Lucas(70)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(35)*Lucas(35)/(1/2+sqrt(5)/2)^51 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^48/Lucas(99) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^49/Lucas(100) 4180999952164553 a004 Fibonacci(99)/Lucas(70)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^46/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(70)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^44/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(70)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^42/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(70)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^40/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(70)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^38/Lucas(89) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^36/Lucas(87) 4180999952164553 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^2/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^34/Lucas(85) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^4/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^32/Lucas(83) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^6/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^30/Lucas(81) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^8/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^28/Lucas(79) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^10/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^26/Lucas(77) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^12/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^24/Lucas(75) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^14/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^22/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^16/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^20/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^18/Lucas(70) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^19/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^21/Lucas(74) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^17/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^23/Lucas(76) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^15/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^25/Lucas(78) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^13/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^27/Lucas(80) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^11/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^29/Lucas(82) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^9/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^31/Lucas(84) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^7/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^33/Lucas(86) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^5/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^35/Lucas(88) 4180999952164553 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^3/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^37/Lucas(90) 4180999952164553 a004 Fibonacci(90)*(1/2+sqrt(5)/2)/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^39/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(72)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^41/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(72)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^43/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(72)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(100)/Lucas(72)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^45/Lucas(98) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^47/Lucas(100) 4180999952164553 a004 Fibonacci(98)/Lucas(72)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(36)*Lucas(36)/(1/2+sqrt(5)/2)^53 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^46/Lucas(99) 4180999952164553 a004 Fibonacci(99)/Lucas(72)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^44/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(72)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^42/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(72)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^40/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(72)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^38/Lucas(91) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^36/Lucas(89) 4180999952164553 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^2/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^34/Lucas(87) 4180999952164553 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^4/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^32/Lucas(85) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^6/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^30/Lucas(83) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^8/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^28/Lucas(81) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^10/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^26/Lucas(79) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^12/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^24/Lucas(77) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^14/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^22/Lucas(75) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^16/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^20/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^18/Lucas(72) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^19/Lucas(74) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^21/Lucas(76) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^23/Lucas(78) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^25/Lucas(80) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^27/Lucas(82) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^29/Lucas(84) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^31/Lucas(86) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^7/Lucas(74) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^33/Lucas(88) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^35/Lucas(90) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^37/Lucas(92) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^39/Lucas(94) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^41/Lucas(96) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^43/Lucas(98) 4180999952164553 a004 Fibonacci(37)*Lucas(37)/(1/2+sqrt(5)/2)^55 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^44/Lucas(99) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^45/Lucas(100) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^42/Lucas(97) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^40/Lucas(95) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^38/Lucas(93) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^36/Lucas(91) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^34/Lucas(89) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^32/Lucas(87) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^30/Lucas(85) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^28/Lucas(83) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^26/Lucas(81) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^24/Lucas(79) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^22/Lucas(77) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^20/Lucas(75) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^19/Lucas(76) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^21/Lucas(78) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^23/Lucas(80) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^25/Lucas(82) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^27/Lucas(84) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^29/Lucas(86) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^31/Lucas(88) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^33/Lucas(90) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^35/Lucas(92) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^37/Lucas(94) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^39/Lucas(96) 4180999952164553 a004 Fibonacci(38)*Lucas(38)/(1/2+sqrt(5)/2)^57 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^41/Lucas(98) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^42/Lucas(99) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^43/Lucas(100) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^40/Lucas(97) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^38/Lucas(95) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^36/Lucas(93) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^34/Lucas(91) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^32/Lucas(89) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^30/Lucas(87) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^28/Lucas(85) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^26/Lucas(83) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^24/Lucas(81) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^22/Lucas(79) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^20/Lucas(77) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^19/Lucas(78) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^21/Lucas(80) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^23/Lucas(82) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^25/Lucas(84) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^27/Lucas(86) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^29/Lucas(88) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^31/Lucas(90) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^33/Lucas(92) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^35/Lucas(94) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^37/Lucas(96) 4180999952164553 a004 Fibonacci(39)*Lucas(39)/(1/2+sqrt(5)/2)^59 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^39/Lucas(98) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^40/Lucas(99) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^41/Lucas(100) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^38/Lucas(97) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^36/Lucas(95) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^34/Lucas(93) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^32/Lucas(91) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^30/Lucas(89) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^28/Lucas(87) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^26/Lucas(85) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^24/Lucas(83) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^22/Lucas(81) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^20/Lucas(79) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^19/Lucas(80) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^21/Lucas(82) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^23/Lucas(84) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^25/Lucas(86) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^27/Lucas(88) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^29/Lucas(90) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^31/Lucas(92) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^33/Lucas(94) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^35/Lucas(96) 4180999952164553 a004 Fibonacci(40)*Lucas(40)/(1/2+sqrt(5)/2)^61 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^37/Lucas(98) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^39/Lucas(100) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^38/Lucas(99) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^36/Lucas(97) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^34/Lucas(95) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^32/Lucas(93) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^30/Lucas(91) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^28/Lucas(89) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^26/Lucas(87) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^24/Lucas(85) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^22/Lucas(83) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^18/Lucas(80) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^19/Lucas(82) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^21/Lucas(84) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^23/Lucas(86) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^25/Lucas(88) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^27/Lucas(90) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^29/Lucas(92) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^31/Lucas(94) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^33/Lucas(96) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^35/Lucas(98) 4180999952164553 a004 Fibonacci(41)*Lucas(41)/(1/2+sqrt(5)/2)^63 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^36/Lucas(99) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^37/Lucas(100) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^34/Lucas(97) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^32/Lucas(95) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^30/Lucas(93) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^28/Lucas(91) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^26/Lucas(89) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^24/Lucas(87) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^22/Lucas(85) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^20/Lucas(83) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^19/Lucas(84) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^21/Lucas(86) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^23/Lucas(88) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^25/Lucas(90) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^27/Lucas(92) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^29/Lucas(94) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^31/Lucas(96) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^33/Lucas(98) 4180999952164553 a004 Fibonacci(42)*Lucas(42)/(1/2+sqrt(5)/2)^65 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^34/Lucas(99) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^35/Lucas(100) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^32/Lucas(97) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^30/Lucas(95) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^28/Lucas(93) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^26/Lucas(91) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^24/Lucas(89) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^22/Lucas(87) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^20/Lucas(85) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^19/Lucas(86) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^21/Lucas(88) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^23/Lucas(90) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^25/Lucas(92) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^27/Lucas(94) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^29/Lucas(96) 4180999952164553 a004 Fibonacci(43)*Lucas(43)/(1/2+sqrt(5)/2)^67 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^31/Lucas(98) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^33/Lucas(100) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^32/Lucas(99) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^30/Lucas(97) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^28/Lucas(95) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^26/Lucas(93) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^24/Lucas(91) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^22/Lucas(89) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^20/Lucas(87) 4180999952164553 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^19/Lucas(88) 4180999952164553 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^21/Lucas(90) 4180999952164553 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^23/Lucas(92) 4180999952164553 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^25/Lucas(94) 4180999952164553 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^27/Lucas(96) 4180999952164553 a004 Fibonacci(44)*Lucas(44)/(1/2+sqrt(5)/2)^69 4180999952164553 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^29/Lucas(98) 4180999952164553 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^30/Lucas(99) 4180999952164553 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^31/Lucas(100) 4180999952164553 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^28/Lucas(97) 4180999952164553 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^26/Lucas(95) 4180999952164553 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^24/Lucas(93) 4180999952164553 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^22/Lucas(91) 4180999952164553 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^18/Lucas(88) 4180999952164553 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^19/Lucas(90) 4180999952164553 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^21/Lucas(92) 4180999952164553 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^23/Lucas(94) 4180999952164553 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^25/Lucas(96) 4180999952164553 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^27/Lucas(98) 4180999952164553 a004 Fibonacci(45)*Lucas(45)/(1/2+sqrt(5)/2)^71 4180999952164553 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^28/Lucas(99) 4180999952164553 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^29/Lucas(100) 4180999952164553 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^26/Lucas(97) 4180999952164553 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^12/Lucas(90) 4180999952164553 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^24/Lucas(95) 4180999952164553 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^22/Lucas(93) 4180999952164553 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^20/Lucas(91) 4180999952164553 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^19/Lucas(92) 4180999952164553 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^21/Lucas(94) 4180999952164553 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^23/Lucas(96) 4180999952164553 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^25/Lucas(98) 4180999952164553 a004 Fibonacci(46)*Lucas(46)/(1/2+sqrt(5)/2)^73 4180999952164553 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^26/Lucas(99) 4180999952164553 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^27/Lucas(100) 4180999952164553 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^24/Lucas(97) 4180999952164553 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^22/Lucas(95) 4180999952164553 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^18/Lucas(92) 4180999952164553 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^19/Lucas(94) 4180999952164553 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^21/Lucas(96) 4180999952164553 a004 Fibonacci(47)*Lucas(47)/(1/2+sqrt(5)/2)^75 4180999952164553 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^23/Lucas(98) 4180999952164553 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^25/Lucas(100) 4180999952164553 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^24/Lucas(99) 4180999952164553 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^22/Lucas(97) 4180999952164553 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^20/Lucas(95) 4180999952164553 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^19/Lucas(96) 4180999952164553 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^21/Lucas(98) 4180999952164553 a004 Fibonacci(48)*Lucas(48)/(1/2+sqrt(5)/2)^77 4180999952164553 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^22/Lucas(99) 4180999952164553 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^23/Lucas(100) 4180999952164553 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^20/Lucas(97) 4180999952164553 a004 Fibonacci(49)*Lucas(49)/(1/2+sqrt(5)/2)^79 4180999952164553 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^19/Lucas(98) 4180999952164553 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^21/Lucas(100) 4180999952164553 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^19/Lucas(100) 4180999952164553 a004 Fibonacci(50)*Lucas(50)/(1/2+sqrt(5)/2)^81 4180999952164553 a004 Fibonacci(51)*Lucas(51)/(1/2+sqrt(5)/2)^83 4180999952164553 a004 Fibonacci(52)*Lucas(52)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(53)*Lucas(53)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(54)*Lucas(54)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(55)*Lucas(55)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(56)*Lucas(56)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(57)*Lucas(57)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(58)*Lucas(58)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(59)*Lucas(59)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^20/Lucas(99) 4180999952164553 a004 Fibonacci(99)*(1/2+sqrt(5)/2)^19/Lucas(99) 4180999952164553 a004 Fibonacci(99)*(1/2+sqrt(5)/2)^20/Lucas(100) 4180999952164553 a004 Fibonacci(99)*Lucas(1)/(1/2+sqrt(5)/2)^80 4180999952164553 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^21/Lucas(99) 4180999952164553 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^22/Lucas(100) 4180999952164553 a004 Fibonacci(97)*Lucas(1)/(1/2+sqrt(5)/2)^78 4180999952164553 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^18/Lucas(97) 4180999952164553 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^19/Lucas(97) 4180999952164553 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^20/Lucas(96) 4180999952164553 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^22/Lucas(98) 4180999952164553 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^23/Lucas(99) 4180999952164553 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^24/Lucas(100) 4180999952164553 a004 Fibonacci(95)*Lucas(1)/(1/2+sqrt(5)/2)^76 4180999952164553 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^21/Lucas(97) 4180999952164553 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^19/Lucas(95) 4180999952164553 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^20/Lucas(94) 4180999952164553 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^22/Lucas(96) 4180999952164553 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^24/Lucas(98) 4180999952164553 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^25/Lucas(99) 4180999952164553 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^26/Lucas(100) 4180999952164553 a004 Fibonacci(93)*Lucas(1)/(1/2+sqrt(5)/2)^74 4180999952164553 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^23/Lucas(97) 4180999952164553 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^21/Lucas(95) 4180999952164553 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^19/Lucas(93) 4180999952164553 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^20/Lucas(92) 4180999952164553 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^22/Lucas(94) 4180999952164553 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^24/Lucas(96) 4180999952164553 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^26/Lucas(98) 4180999952164553 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^27/Lucas(99) 4180999952164553 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^28/Lucas(100) 4180999952164553 a004 Fibonacci(91)*Lucas(1)/(1/2+sqrt(5)/2)^72 4180999952164553 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^25/Lucas(97) 4180999952164553 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^23/Lucas(95) 4180999952164553 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^17/Lucas(91) 4180999952164553 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^19/Lucas(91) 4180999952164553 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^20/Lucas(90) 4180999952164553 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^22/Lucas(92) 4180999952164553 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^24/Lucas(94) 4180999952164553 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^26/Lucas(96) 4180999952164553 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^28/Lucas(98) 4180999952164553 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^29/Lucas(99) 4180999952164553 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^30/Lucas(100) 4180999952164553 a004 Fibonacci(89)*Lucas(1)/(1/2+sqrt(5)/2)^70 4180999952164553 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^27/Lucas(97) 4180999952164553 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^25/Lucas(95) 4180999952164553 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^23/Lucas(93) 4180999952164553 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^21/Lucas(91) 4180999952164553 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^17/Lucas(89) 4180999952164553 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^19/Lucas(89) 4180999952164553 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^20/Lucas(88) 4180999952164553 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^22/Lucas(90) 4180999952164553 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^24/Lucas(92) 4180999952164553 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^26/Lucas(94) 4180999952164553 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^28/Lucas(96) 4180999952164553 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^30/Lucas(98) 4180999952164553 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^32/Lucas(100) 4180999952164553 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^31/Lucas(99) 4180999952164553 a004 Fibonacci(87)*Lucas(1)/(1/2+sqrt(5)/2)^68 4180999952164553 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^29/Lucas(97) 4180999952164553 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^27/Lucas(95) 4180999952164553 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^25/Lucas(93) 4180999952164553 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^23/Lucas(91) 4180999952164553 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^21/Lucas(89) 4180999952164553 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^19/Lucas(87) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^20/Lucas(86) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^22/Lucas(88) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^24/Lucas(90) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^26/Lucas(92) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^28/Lucas(94) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^30/Lucas(96) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^32/Lucas(98) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^33/Lucas(99) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^34/Lucas(100) 4180999952164553 a004 Fibonacci(85)*Lucas(1)/(1/2+sqrt(5)/2)^66 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^31/Lucas(97) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^29/Lucas(95) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^27/Lucas(93) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^25/Lucas(91) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^23/Lucas(89) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^21/Lucas(87) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^19/Lucas(85) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^20/Lucas(84) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^22/Lucas(86) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^24/Lucas(88) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^26/Lucas(90) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^28/Lucas(92) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^30/Lucas(94) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^32/Lucas(96) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^34/Lucas(98) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^36/Lucas(100) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^35/Lucas(99) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^33/Lucas(97) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^31/Lucas(95) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^29/Lucas(93) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^27/Lucas(91) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^25/Lucas(89) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^23/Lucas(87) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^21/Lucas(85) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^19/Lucas(83) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^20/Lucas(82) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^22/Lucas(84) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^24/Lucas(86) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^26/Lucas(88) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^28/Lucas(90) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^30/Lucas(92) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^32/Lucas(94) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^34/Lucas(96) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^36/Lucas(98) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^37/Lucas(99) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^38/Lucas(100) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^35/Lucas(97) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^33/Lucas(95) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^31/Lucas(93) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^29/Lucas(91) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^27/Lucas(89) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^25/Lucas(87) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^23/Lucas(85) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^21/Lucas(83) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^19/Lucas(81) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^20/Lucas(80) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^22/Lucas(82) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^24/Lucas(84) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^26/Lucas(86) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^28/Lucas(88) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^30/Lucas(90) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^32/Lucas(92) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^34/Lucas(94) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^36/Lucas(96) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^38/Lucas(98) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^39/Lucas(99) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^40/Lucas(100) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^37/Lucas(97) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^35/Lucas(95) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^33/Lucas(93) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^31/Lucas(91) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^29/Lucas(89) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^27/Lucas(87) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^25/Lucas(85) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^23/Lucas(83) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^21/Lucas(81) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^19/Lucas(79) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^20/Lucas(78) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^22/Lucas(80) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^24/Lucas(82) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^26/Lucas(84) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^28/Lucas(86) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^30/Lucas(88) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^32/Lucas(90) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^34/Lucas(92) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^36/Lucas(94) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^38/Lucas(96) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^40/Lucas(98) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^41/Lucas(99) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^42/Lucas(100) 4180999952164553 a004 Fibonacci(77)*Lucas(1)/(1/2+sqrt(5)/2)^58 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^39/Lucas(97) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^37/Lucas(95) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^35/Lucas(93) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^33/Lucas(91) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^31/Lucas(89) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^29/Lucas(87) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^27/Lucas(85) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^25/Lucas(83) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^23/Lucas(81) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^21/Lucas(79) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^19/Lucas(77) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^20/Lucas(76) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^22/Lucas(78) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^24/Lucas(80) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^26/Lucas(82) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^28/Lucas(84) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^30/Lucas(86) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^32/Lucas(88) 4180999952164553 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^6/Lucas(75) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^34/Lucas(90) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^36/Lucas(92) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^38/Lucas(94) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^40/Lucas(96) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^42/Lucas(98) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^43/Lucas(99) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^44/Lucas(100) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^41/Lucas(97) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^39/Lucas(95) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^37/Lucas(93) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^35/Lucas(91) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^33/Lucas(89) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^31/Lucas(87) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^29/Lucas(85) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^27/Lucas(83) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^25/Lucas(81) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^23/Lucas(79) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^15/Lucas(75) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^21/Lucas(77) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^19/Lucas(75) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^20/Lucas(74) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^22/Lucas(76) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^16/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^24/Lucas(78) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^14/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^26/Lucas(80) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^28/Lucas(82) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^10/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^30/Lucas(84) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^8/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^32/Lucas(86) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^34/Lucas(88) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^36/Lucas(90) 4180999952164553 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^2/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^38/Lucas(92) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^40/Lucas(94) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^42/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(73)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(100)/Lucas(73)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^44/Lucas(98) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^45/Lucas(99) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^46/Lucas(100) 4180999952164553 a004 Fibonacci(73)*Lucas(1)/(1/2+sqrt(5)/2)^54 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^43/Lucas(97) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^41/Lucas(95) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^39/Lucas(93) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^37/Lucas(91) 4180999952164553 a004 Fibonacci(91)*(1/2+sqrt(5)/2)/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^35/Lucas(89) 4180999952164553 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^3/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^33/Lucas(87) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^31/Lucas(85) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^29/Lucas(83) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^27/Lucas(81) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^25/Lucas(79) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^23/Lucas(77) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^15/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^21/Lucas(75) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^19/Lucas(73) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^20/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^18/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^22/Lucas(74) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^16/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^24/Lucas(76) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^14/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^26/Lucas(78) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^12/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^28/Lucas(80) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^10/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^30/Lucas(82) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^8/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^32/Lucas(84) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^6/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^34/Lucas(86) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^4/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^36/Lucas(88) 4180999952164553 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^2/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^38/Lucas(90) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^40/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(71)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^42/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(71)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^44/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(71)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^46/Lucas(98) 4180999952164553 a004 Fibonacci(98)/Lucas(71)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(100)/Lucas(71)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^47/Lucas(99) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^48/Lucas(100) 4180999952164553 a004 Fibonacci(99)/Lucas(71)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^45/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(71)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^43/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(71)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^41/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(71)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^39/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(71)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^37/Lucas(89) 4180999952164553 a004 Fibonacci(89)*(1/2+sqrt(5)/2)/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^35/Lucas(87) 4180999952164553 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^3/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^33/Lucas(85) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^5/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^31/Lucas(83) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^7/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^29/Lucas(81) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^9/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^27/Lucas(79) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^11/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^25/Lucas(77) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^13/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^23/Lucas(75) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^15/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^21/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^17/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^19/Lucas(71) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^20/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^18/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^22/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^16/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^24/Lucas(74) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^14/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^26/Lucas(76) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^12/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^28/Lucas(78) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^10/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^30/Lucas(80) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^8/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^32/Lucas(82) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^6/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^34/Lucas(84) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^4/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^36/Lucas(86) 4180999952164553 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^2/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^38/Lucas(88) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^40/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(69)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^42/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(69)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^44/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(69)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^46/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(69)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(100)/Lucas(69)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^48/Lucas(98) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^49/Lucas(99) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^50/Lucas(100) 4180999952164553 a004 Fibonacci(69)*Lucas(1)/(1/2+sqrt(5)/2)^50 4180999952164553 a004 Fibonacci(98)/Lucas(69)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(99)/Lucas(69)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^47/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(69)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^45/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(69)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^43/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(69)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^41/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(69)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^39/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(69)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^37/Lucas(87) 4180999952164553 a004 Fibonacci(87)*(1/2+sqrt(5)/2)/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^35/Lucas(85) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^3/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^33/Lucas(83) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^5/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^31/Lucas(81) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^7/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^29/Lucas(79) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^9/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^27/Lucas(77) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^11/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^25/Lucas(75) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^13/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^23/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^15/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^21/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^17/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^19/Lucas(69) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^20/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^18/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^22/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^16/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^24/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^14/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^26/Lucas(74) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^12/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^28/Lucas(76) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^10/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^30/Lucas(78) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^8/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^32/Lucas(80) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^6/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^34/Lucas(82) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^4/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^36/Lucas(84) 4180999952164553 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^2/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^38/Lucas(86) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^40/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(67)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^42/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(67)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^44/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(67)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^46/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(67)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^48/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(67)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(100)/Lucas(67)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^50/Lucas(98) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^52/Lucas(100) 4180999952164553 a004 Fibonacci(98)/Lucas(67)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^51/Lucas(99) 4180999952164553 a004 Fibonacci(99)/Lucas(67)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^49/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(67)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^47/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(67)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^45/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(67)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^43/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(67)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^41/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(67)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^39/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(67)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^37/Lucas(85) 4180999952164553 a004 Fibonacci(85)*(1/2+sqrt(5)/2)/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^35/Lucas(83) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^3/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^33/Lucas(81) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^5/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^31/Lucas(79) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^7/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^29/Lucas(77) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^9/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^27/Lucas(75) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^11/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^25/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^13/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^23/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^15/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^21/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^17/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^19/Lucas(67) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^20/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^18/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^22/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^16/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^24/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^14/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^26/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^12/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^28/Lucas(74) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^10/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^30/Lucas(76) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^8/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^32/Lucas(78) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^6/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^34/Lucas(80) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^4/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^36/Lucas(82) 4180999952164553 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^2/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^38/Lucas(84) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^40/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(65)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^42/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(65)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^44/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(65)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^46/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(65)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^48/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(65)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^50/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(65)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(100)/Lucas(65)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^52/Lucas(98) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^53/Lucas(99) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^54/Lucas(100) 4180999952164553 a004 Fibonacci(98)/Lucas(65)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(99)/Lucas(65)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^51/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(65)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^49/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(65)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^47/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(65)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^45/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(65)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^43/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(65)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^41/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(65)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^39/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(65)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^37/Lucas(83) 4180999952164553 a004 Fibonacci(83)*(1/2+sqrt(5)/2)/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^35/Lucas(81) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^3/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^33/Lucas(79) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^5/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^31/Lucas(77) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^7/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^29/Lucas(75) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^9/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^27/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^11/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^25/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^13/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^23/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^15/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^21/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^17/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^19/Lucas(65) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^20/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^18/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^22/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^16/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^24/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^14/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^26/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^12/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^28/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^10/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^30/Lucas(74) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^8/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^32/Lucas(76) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^6/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^34/Lucas(78) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^4/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^36/Lucas(80) 4180999952164553 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^2/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^38/Lucas(82) 4180999952164553 a006 5^(1/2)*Fibonacci(82)/Lucas(63)/sqrt(5) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^40/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(63)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^42/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(63)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^44/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(63)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^46/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(63)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^48/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(63)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^50/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(63)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^52/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(63)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(100)/Lucas(63)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^54/Lucas(98) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^56/Lucas(100) 4180999952164553 a004 Fibonacci(98)/Lucas(63)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^55/Lucas(99) 4180999952164553 a004 Fibonacci(99)/Lucas(63)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^53/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(63)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^51/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(63)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^49/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(63)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^47/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(63)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^45/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(63)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^43/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(63)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^41/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(63)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^39/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(63)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^37/Lucas(81) 4180999952164553 a004 Fibonacci(81)*(1/2+sqrt(5)/2)/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^35/Lucas(79) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^3/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^33/Lucas(77) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^5/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^31/Lucas(75) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^7/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^29/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^9/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^27/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^11/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^25/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^13/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^23/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^15/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^21/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^17/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^19/Lucas(63) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^20/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^18/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^22/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^16/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^24/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^14/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^26/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^12/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^28/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^10/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^30/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^8/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^32/Lucas(74) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^6/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^34/Lucas(76) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^4/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^36/Lucas(78) 4180999952164553 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^2/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^38/Lucas(80) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^40/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(61)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^42/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(61)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^44/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(61)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^46/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(61)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^48/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(61)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^50/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(61)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^52/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(61)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^54/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(61)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(100)/Lucas(61)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^56/Lucas(98) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^57/Lucas(99) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^58/Lucas(100) 4180999952164553 a004 Fibonacci(98)/Lucas(61)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(99)/Lucas(61)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^55/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(61)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^53/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(61)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^51/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(61)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^49/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(61)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^47/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(61)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^45/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(61)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^43/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(61)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^41/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(61)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^39/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(61)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^37/Lucas(79) 4180999952164553 a004 Fibonacci(79)*(1/2+sqrt(5)/2)/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^35/Lucas(77) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^3/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^33/Lucas(75) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^5/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^31/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^7/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^29/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^9/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^27/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^11/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^25/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^13/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^23/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^15/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^21/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^17/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^19/Lucas(61) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^20/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^18/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^22/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^16/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^24/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^14/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^26/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^12/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^28/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^10/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^30/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^8/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^32/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^6/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^34/Lucas(74) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^4/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^36/Lucas(76) 4180999952164553 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^2/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^38/Lucas(78) 4180999952164553 a006 5^(1/2)*Fibonacci(78)/Lucas(59)/sqrt(5) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^40/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(59)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^42/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(59)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^44/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(59)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^46/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(59)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^48/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(59)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^50/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(59)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^52/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(59)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^54/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(59)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^56/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(59)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(100)/Lucas(59)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^58/Lucas(98) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^59/Lucas(99) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^60/Lucas(100) 4180999952164553 a004 Fibonacci(59)*Lucas(1)/(1/2+sqrt(5)/2)^40 4180999952164553 a004 Fibonacci(98)/Lucas(59)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(99)/Lucas(59)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^57/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(59)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^55/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(59)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^53/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(59)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^51/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(59)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^49/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(59)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^47/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(59)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^45/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(59)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^43/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(59)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^41/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(59)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^39/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(59)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^37/Lucas(77) 4180999952164553 a004 Fibonacci(77)*(1/2+sqrt(5)/2)/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^35/Lucas(75) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^3/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^33/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^5/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^31/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^7/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^29/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^9/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^27/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^11/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^25/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^13/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^23/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^15/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^21/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^17/Lucas(59) 4180999952164553 a004 Fibonacci(59)*Lucas(60)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^19/Lucas(59) 4180999952164553 a004 Fibonacci(60)*Lucas(58)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(61)*Lucas(58)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(59)*Lucas(58)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^20/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^18/Lucas(57) 4180999952164553 a004 Fibonacci(57)*Lucas(59)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^22/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^16/Lucas(57) 4180999952164553 a004 Fibonacci(57)*Lucas(61)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^24/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^14/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^26/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^12/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^28/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^10/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^30/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^8/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^32/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^6/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^34/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^4/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^36/Lucas(74) 4180999952164553 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^2/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^38/Lucas(76) 4180999952164553 a006 5^(1/2)*Fibonacci(76)/Lucas(57)/sqrt(5) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^40/Lucas(78) 4180999952164553 a004 Fibonacci(78)/Lucas(57)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^42/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(57)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^44/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(57)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^46/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(57)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^48/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(57)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^50/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(57)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^52/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(57)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^54/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(57)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^56/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(57)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^58/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(57)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(100)/Lucas(57)/(1/2+sqrt(5)/2)^24 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^60/Lucas(98) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^62/Lucas(100) 4180999952164553 a004 Fibonacci(98)/Lucas(57)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^61/Lucas(99) 4180999952164553 a004 Fibonacci(99)/Lucas(57)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^59/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(57)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^57/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(57)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^55/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(57)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^53/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(57)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^51/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(57)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^49/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(57)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^47/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(57)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^45/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(57)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^43/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(57)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^41/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(57)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^39/Lucas(77) 4180999952164553 a004 Fibonacci(77)/Lucas(57)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^37/Lucas(75) 4180999952164553 a004 Fibonacci(75)*(1/2+sqrt(5)/2)/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^35/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^3/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^33/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^5/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^31/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^7/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^29/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^9/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^27/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^11/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^25/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^13/Lucas(57) 4180999952164553 a004 Fibonacci(57)*Lucas(62)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^23/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^15/Lucas(57) 4180999952164553 a004 Fibonacci(57)*Lucas(60)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^21/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^17/Lucas(57) 4180999952164553 a004 Fibonacci(57)*Lucas(58)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^19/Lucas(57) 4180999952164553 a004 Fibonacci(58)*Lucas(56)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(60)*Lucas(56)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(62)*Lucas(56)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(63)*Lucas(56)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(61)*Lucas(56)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(59)*Lucas(56)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(57)*Lucas(56)/(1/2+sqrt(5)/2)^94 4180999952164553 a001 139583862445/1322157322203*312119004989^(2/5) 4180999952164553 a001 139583862445/5600748293801*312119004989^(5/11) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^20/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^18/Lucas(55) 4180999952164553 a001 10610209857723/817138163596*192900153618^(2/9) 4180999952164553 a004 Fibonacci(55)*Lucas(57)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^22/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^16/Lucas(55) 4180999952164553 a004 Fibonacci(55)*Lucas(59)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^24/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^14/Lucas(55) 4180999952164553 a004 Fibonacci(55)*Lucas(61)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^26/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^12/Lucas(55) 4180999952164553 a004 Fibonacci(55)*Lucas(63)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^28/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^10/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^30/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^8/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^32/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^6/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^34/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^4/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^36/Lucas(72) 4180999952164553 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^2/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^38/Lucas(74) 4180999952164553 a006 5^(1/2)*Fibonacci(74)/Lucas(55)/sqrt(5) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^40/Lucas(76) 4180999952164553 a004 Fibonacci(76)/Lucas(55)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^42/Lucas(78) 4180999952164553 a004 Fibonacci(78)/Lucas(55)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^44/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(55)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^46/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(55)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^48/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(55)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^50/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(55)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^52/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(55)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^54/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(55)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^56/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(55)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^58/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(55)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^60/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(55)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(100)/Lucas(55)/(1/2+sqrt(5)/2)^26 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^62/Lucas(98) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^63/Lucas(99) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^64/Lucas(100) 4180999952164553 a004 Fibonacci(98)/Lucas(55)/(1/2+sqrt(5)/2)^24 4180999952164553 a004 Fibonacci(99)/Lucas(55)/(1/2+sqrt(5)/2)^25 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^61/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(55)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^59/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(55)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^57/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(55)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^55/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(55)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^53/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(55)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^51/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(55)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^49/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(55)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^47/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(55)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^45/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(55)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^43/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(55)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^41/Lucas(77) 4180999952164553 a004 Fibonacci(77)/Lucas(55)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^39/Lucas(75) 4180999952164553 a004 Fibonacci(75)/Lucas(55)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^37/Lucas(73) 4180999952164553 a004 Fibonacci(73)*(1/2+sqrt(5)/2)/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^35/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^3/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^33/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^5/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^31/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^7/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^29/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^9/Lucas(55) 4180999952164553 a004 Fibonacci(55)*Lucas(64)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^27/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^11/Lucas(55) 4180999952164553 a004 Fibonacci(55)*Lucas(62)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^25/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^13/Lucas(55) 4180999952164553 a004 Fibonacci(55)*Lucas(60)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^23/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^15/Lucas(55) 4180999952164553 a004 Fibonacci(55)*Lucas(58)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^21/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^17/Lucas(55) 4180999952164553 a001 139583862445/23725150497407*505019158607^(1/2) 4180999952164553 a004 Fibonacci(55)*Lucas(56)/(1/2+sqrt(5)/2)^92 4180999952164553 a001 225851433717/312119004989*192900153618^(1/3) 4180999952164553 a001 2504730781961/192900153618*73681302247^(3/13) 4180999952164553 a001 139583862445/312119004989*817138163596^(1/3) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^19/Lucas(55) 4180999952164553 a001 139583862445/3461452808002*192900153618^(4/9) 4180999952164553 a004 Fibonacci(56)*Lucas(54)/(1/2+sqrt(5)/2)^91 4180999952164553 a001 139583862445/14662949395604*192900153618^(1/2) 4180999952164553 a004 Fibonacci(58)*Lucas(54)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(60)*Lucas(54)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(62)*Lucas(54)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(64)*Lucas(54)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(65)*Lucas(54)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(63)*Lucas(54)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(61)*Lucas(54)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(59)*Lucas(54)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(57)*Lucas(54)/(1/2+sqrt(5)/2)^92 4180999952164553 a001 182717648081/96450076809*73681302247^(4/13) 4180999952164553 a004 Fibonacci(55)*Lucas(54)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^20/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^18/Lucas(53) 4180999952164553 a001 53316291173/192900153618*23725150497407^(5/16) 4180999952164553 a001 10610209857723/817138163596*73681302247^(3/13) 4180999952164553 a001 3536736619241/440719107401*73681302247^(1/4) 4180999952164553 a001 3278735159921/408569081798*73681302247^(1/4) 4180999952164553 a001 86267571272/119218851371*192900153618^(1/3) 4180999952164553 a001 86267571272/312119004989*73681302247^(5/13) 4180999952164553 a001 2504730781961/312119004989*73681302247^(1/4) 4180999952164553 a004 Fibonacci(53)*Lucas(55)/(1/2+sqrt(5)/2)^89 4180999952164553 a001 53316291173/23725150497407*312119004989^(6/11) 4180999952164553 a001 86267571272/5600748293801*73681302247^(1/2) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^22/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^16/Lucas(53) 4180999952164553 a004 Fibonacci(53)*Lucas(57)/(1/2+sqrt(5)/2)^91 4180999952164553 a001 365435296162/119218851371*312119004989^(3/11) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^24/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^14/Lucas(53) 4180999952164553 a001 1548008755920/119218851371*817138163596^(4/19) 4180999952164553 a004 Fibonacci(53)*Lucas(59)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^26/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^12/Lucas(53) 4180999952164553 a004 Fibonacci(53)*Lucas(61)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^28/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^10/Lucas(53) 4180999952164553 a004 Fibonacci(53)*Lucas(63)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^30/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^8/Lucas(53) 4180999952164553 a004 Fibonacci(53)*Lucas(65)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^32/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^6/Lucas(53) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^34/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^4/Lucas(53) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^36/Lucas(70) 4180999952164553 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^2/Lucas(53) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^38/Lucas(72) 4180999952164553 a006 5^(1/2)*Fibonacci(72)/Lucas(53)/sqrt(5) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^40/Lucas(74) 4180999952164553 a004 Fibonacci(74)/Lucas(53)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^42/Lucas(76) 4180999952164553 a004 Fibonacci(76)/Lucas(53)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^44/Lucas(78) 4180999952164553 a004 Fibonacci(78)/Lucas(53)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^46/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(53)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^48/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(53)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^50/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(53)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^52/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(53)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^54/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(53)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^56/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(53)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^58/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(53)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^60/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(53)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^62/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(53)/(1/2+sqrt(5)/2)^24 4180999952164553 a004 Fibonacci(100)/Lucas(53)/(1/2+sqrt(5)/2)^28 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^64/Lucas(98) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^65/Lucas(99) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^66/Lucas(100) 4180999952164553 a004 Fibonacci(53)*Lucas(1)/(1/2+sqrt(5)/2)^34 4180999952164553 a004 Fibonacci(98)/Lucas(53)/(1/2+sqrt(5)/2)^26 4180999952164553 a004 Fibonacci(99)/Lucas(53)/(1/2+sqrt(5)/2)^27 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^63/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(53)/(1/2+sqrt(5)/2)^25 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^61/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(53)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^59/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(53)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^57/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(53)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^55/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(53)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^53/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(53)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^51/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(53)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^49/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(53)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^47/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(53)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^45/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(53)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^43/Lucas(77) 4180999952164553 a004 Fibonacci(77)/Lucas(53)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^41/Lucas(75) 4180999952164553 a004 Fibonacci(75)/Lucas(53)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^39/Lucas(73) 4180999952164553 a004 Fibonacci(73)/Lucas(53)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^37/Lucas(71) 4180999952164553 a004 Fibonacci(71)*(1/2+sqrt(5)/2)/Lucas(53) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^35/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^3/Lucas(53) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^33/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^5/Lucas(53) 4180999952164553 a004 Fibonacci(53)*Lucas(66)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^31/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^7/Lucas(53) 4180999952164553 a004 Fibonacci(53)*Lucas(64)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^29/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^9/Lucas(53) 4180999952164553 a004 Fibonacci(53)*Lucas(62)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^27/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^11/Lucas(53) 4180999952164553 a004 Fibonacci(53)*Lucas(60)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^25/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^13/Lucas(53) 4180999952164553 a001 10610209857723/119218851371*505019158607^(1/7) 4180999952164553 a004 Fibonacci(53)*Lucas(58)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^23/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^15/Lucas(53) 4180999952164553 a004 Fibonacci(53)*Lucas(56)/(1/2+sqrt(5)/2)^90 4180999952164553 a001 139583862445/505019158607*73681302247^(5/13) 4180999952164553 a001 53316291173/312119004989*14662949395604^(1/3) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^21/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^17/Lucas(53) 4180999952164553 a001 225851433717/5600748293801*73681302247^(6/13) 4180999952164553 a001 53316291173/1322157322203*192900153618^(4/9) 4180999952164553 a001 365435296162/9062201101803*73681302247^(6/13) 4180999952164553 a001 139583862445/3461452808002*73681302247^(6/13) 4180999952164553 a004 Fibonacci(53)*Lucas(54)/(1/2+sqrt(5)/2)^88 4180999952164553 a001 10610209857723/119218851371*73681302247^(2/13) 4180999952164553 a001 139583862445/23725150497407*73681302247^(7/13) 4180999952164553 a001 1548008755920/119218851371*73681302247^(3/13) 4180999952164553 a001 53316291173/192900153618*73681302247^(5/13) 4180999952164553 a001 956722026041/119218851371*73681302247^(1/4) 4180999952164553 a001 225851433717/119218851371*73681302247^(4/13) 4180999952164553 a001 32951280099/45537549124*45537549124^(6/17) 4180999952164553 a001 53316291173/119218851371*817138163596^(1/3) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^19/Lucas(53) 4180999952164553 a001 53316291173/1322157322203*73681302247^(6/13) 4180999952164553 a004 Fibonacci(54)*Lucas(52)/(1/2+sqrt(5)/2)^87 4180999952164553 a001 53316291173/3461452808002*73681302247^(1/2) 4180999952164553 a001 53316291173/9062201101803*73681302247^(7/13) 4180999952164553 a001 2504730781961/28143753123*10749957122^(1/6) 4180999952164553 a004 Fibonacci(56)*Lucas(52)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(58)*Lucas(52)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(60)*Lucas(52)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(62)*Lucas(52)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(64)*Lucas(52)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(66)*Lucas(52)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(67)*Lucas(52)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(65)*Lucas(52)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(63)*Lucas(52)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(61)*Lucas(52)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(59)*Lucas(52)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(57)*Lucas(52)/(1/2+sqrt(5)/2)^90 4180999952164553 a001 32264490531/10525900321*28143753123^(3/10) 4180999952164553 a004 Fibonacci(55)*Lucas(52)/(1/2+sqrt(5)/2)^88 4180999952164553 a001 20365011074/9062201101803*45537549124^(10/17) 4180999952164553 a001 3278735159921/96450076809*28143753123^(1/5) 4180999952164553 a001 20365011074/2139295485799*45537549124^(9/17) 4180999952164553 a001 20365011074/505019158607*45537549124^(8/17) 4180999952164553 a004 Fibonacci(53)*Lucas(52)/(1/2+sqrt(5)/2)^86 4180999952164553 a001 10610209857723/312119004989*28143753123^(1/5) 4180999952164553 a001 32951280099/45537549124*14662949395604^(2/7) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^20/Lucas(52) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^18/Lucas(51) 4180999952164553 a001 20365011074/73681302247*23725150497407^(5/16) 4180999952164553 a001 20365011074/73681302247*505019158607^(5/14) 4180999952164553 a001 32951280099/45537549124*192900153618^(1/3) 4180999952164553 a001 4052739537881/119218851371*28143753123^(1/5) 4180999952164553 a001 139583862445/45537549124*45537549124^(5/17) 4180999952164553 a001 20365011074/119218851371*45537549124^(7/17) 4180999952164553 a001 12585437040/228811001*10749957122^(3/16) 4180999952164553 a001 20365011074/73681302247*73681302247^(5/13) 4180999952164553 a001 1548008755920/505019158607*28143753123^(3/10) 4180999952164553 a001 1515744265389/494493258286*28143753123^(3/10) 4180999952164553 a001 2504730781961/817138163596*28143753123^(3/10) 4180999952164553 a001 956722026041/312119004989*28143753123^(3/10) 4180999952164553 a001 32951280099/119218851371*28143753123^(2/5) 4180999952164553 a001 2504730781961/45537549124*45537549124^(3/17) 4180999952164553 a004 Fibonacci(51)*Lucas(53)/(1/2+sqrt(5)/2)^85 4180999952164553 a001 10610209857723/45537549124*45537549124^(2/17) 4180999952164553 a001 10983760033/440719107401*28143753123^(1/2) 4180999952164553 a001 10182505537/96450076809*312119004989^(2/5) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^22/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^16/Lucas(51) 4180999952164553 a004 Fibonacci(51)*Lucas(55)/(1/2+sqrt(5)/2)^87 4180999952164553 a001 20365011074/505019158607*14662949395604^(8/21) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^24/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^14/Lucas(51) 4180999952164553 a001 10182505537/408569081798*312119004989^(5/11) 4180999952164553 a004 Fibonacci(51)*Lucas(57)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^26/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^12/Lucas(51) 4180999952164553 a004 Fibonacci(51)*Lucas(59)/(1/2+sqrt(5)/2)^91 4180999952164553 a001 10182505537/1730726404001*14662949395604^(4/9) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^28/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^10/Lucas(51) 4180999952164553 a004 Fibonacci(51)*Lucas(61)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^30/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^8/Lucas(51) 4180999952164553 a004 Fibonacci(51)*Lucas(63)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^32/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^6/Lucas(51) 4180999952164553 a004 Fibonacci(51)*Lucas(65)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^34/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^4/Lucas(51) 4180999952164553 a004 Fibonacci(51)*Lucas(67)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^36/Lucas(68) 4180999952164553 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^2/Lucas(51) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^38/Lucas(70) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^40/Lucas(72) 4180999952164553 a004 Fibonacci(72)/Lucas(51)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^42/Lucas(74) 4180999952164553 a004 Fibonacci(74)/Lucas(51)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^44/Lucas(76) 4180999952164553 a004 Fibonacci(76)/Lucas(51)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^46/Lucas(78) 4180999952164553 a004 Fibonacci(78)/Lucas(51)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^48/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(51)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^50/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(51)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^52/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(51)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^54/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(51)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^56/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(51)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^58/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(51)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^60/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(51)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^62/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(51)/(1/2+sqrt(5)/2)^24 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^64/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(51)/(1/2+sqrt(5)/2)^26 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^66/Lucas(98) 4180999952164553 a004 Fibonacci(98)/Lucas(51)/(1/2+sqrt(5)/2)^28 4180999952164553 a004 Fibonacci(100)/Lucas(51)/(1/2+sqrt(5)/2)^30 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^67/Lucas(99) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^68/Lucas(100) 4180999952164553 a004 Fibonacci(51)*Lucas(1)/(1/2+sqrt(5)/2)^32 4180999952164553 a004 Fibonacci(99)/Lucas(51)/(1/2+sqrt(5)/2)^29 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^65/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(51)/(1/2+sqrt(5)/2)^27 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^63/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(51)/(1/2+sqrt(5)/2)^25 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^61/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(51)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^59/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(51)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^57/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(51)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^55/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(51)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^53/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(51)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^51/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(51)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^49/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(51)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^47/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(51)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^45/Lucas(77) 4180999952164553 a004 Fibonacci(77)/Lucas(51)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^43/Lucas(75) 4180999952164553 a004 Fibonacci(75)/Lucas(51)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^41/Lucas(73) 4180999952164553 a004 Fibonacci(73)/Lucas(51)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^39/Lucas(71) 4180999952164553 a004 Fibonacci(71)/Lucas(51)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^37/Lucas(69) 4180999952164553 a004 Fibonacci(69)*(1/2+sqrt(5)/2)/Lucas(51) 4180999952164553 a004 Fibonacci(51)*Lucas(68)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^35/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^3/Lucas(51) 4180999952164553 a004 Fibonacci(51)*Lucas(66)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^33/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^5/Lucas(51) 4180999952164553 a004 Fibonacci(51)*Lucas(64)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^31/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^7/Lucas(51) 4180999952164553 a004 Fibonacci(51)*Lucas(62)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^29/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^9/Lucas(51) 4180999952164553 a004 Fibonacci(51)*Lucas(60)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^27/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^11/Lucas(51) 4180999952164553 a004 Fibonacci(51)*Lucas(58)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^25/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^13/Lucas(51) 4180999952164553 a001 10182505537/1730726404001*505019158607^(1/2) 4180999952164553 a004 Fibonacci(51)*Lucas(56)/(1/2+sqrt(5)/2)^88 4180999952164553 a001 591286729879/45537549124*192900153618^(2/9) 4180999952164553 a001 86267571272/312119004989*28143753123^(2/5) 4180999952164553 a001 139583862445/45537549124*312119004989^(3/11) 4180999952164553 a001 139583862445/45537549124*14662949395604^(5/21) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^23/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^15/Lucas(51) 4180999952164553 a001 20365011074/2139295485799*192900153618^(1/2) 4180999952164553 a001 20365011074/9062201101803*192900153618^(5/9) 4180999952164553 a001 139583862445/45537549124*192900153618^(5/18) 4180999952164553 a001 225851433717/817138163596*28143753123^(2/5) 4180999952164553 a001 1548008755920/5600748293801*28143753123^(2/5) 4180999952164553 a004 Fibonacci(51)*Lucas(54)/(1/2+sqrt(5)/2)^86 4180999952164553 a001 139583862445/505019158607*28143753123^(2/5) 4180999952164553 a001 21566892818/11384387281*73681302247^(4/13) 4180999952164553 a001 591286729879/45537549124*73681302247^(3/13) 4180999952164553 a001 182717648081/22768774562*73681302247^(1/4) 4180999952164553 a001 956722026041/28143753123*10749957122^(5/24) 4180999952164553 a001 53316291173/192900153618*28143753123^(2/5) 4180999952164553 a001 20365011074/119218851371*14662949395604^(1/3) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^21/Lucas(53) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^17/Lucas(51) 4180999952164553 a001 20365011074/119218851371*192900153618^(7/18) 4180999952164553 a001 20365011074/505019158607*73681302247^(6/13) 4180999952164553 a001 20365011074/1322157322203*73681302247^(1/2) 4180999952164553 a001 10182505537/1730726404001*73681302247^(7/13) 4180999952164553 a001 20365011074/23725150497407*73681302247^(8/13) 4180999952164553 a001 43133785636/1730726404001*28143753123^(1/2) 4180999952164553 a001 75283811239/3020733700601*28143753123^(1/2) 4180999952164553 a001 182717648081/7331474697802*28143753123^(1/2) 4180999952164553 a001 139583862445/5600748293801*28143753123^(1/2) 4180999952164553 a004 Fibonacci(51)*Lucas(52)/(1/2+sqrt(5)/2)^84 4180999952164553 a001 53316291173/2139295485799*28143753123^(1/2) 4180999952164553 a001 387002188980/11384387281*28143753123^(1/5) 4180999952164553 a001 20365011074/73681302247*28143753123^(2/5) 4180999952164553 a001 53316291173/23725150497407*28143753123^(3/5) 4180999952164553 a001 139583862445/45537549124*28143753123^(3/10) 4180999952164553 a001 365435296162/28143753123*10749957122^(1/4) 4180999952164553 a001 10182505537/22768774562*817138163596^(1/3) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^19/Lucas(51) 4180999952164553 a004 Fibonacci(52)*Lucas(50)/(1/2+sqrt(5)/2)^83 4180999952164553 a001 10182505537/408569081798*28143753123^(1/2) 4180999952164553 a004 Fibonacci(54)*Lucas(50)/(1/2+sqrt(5)/2)^85 4180999952164553 a001 20365011074/9062201101803*28143753123^(3/5) 4180999952164553 a001 6557470319842/73681302247*10749957122^(1/6) 4180999952164553 a004 Fibonacci(56)*Lucas(50)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(58)*Lucas(50)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(60)*Lucas(50)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(62)*Lucas(50)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(64)*Lucas(50)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(66)*Lucas(50)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(68)*Lucas(50)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(69)*Lucas(50)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(67)*Lucas(50)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(65)*Lucas(50)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(63)*Lucas(50)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(61)*Lucas(50)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(59)*Lucas(50)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(57)*Lucas(50)/(1/2+sqrt(5)/2)^88 4180999952164553 a001 139583862445/28143753123*10749957122^(7/24) 4180999952164553 a004 Fibonacci(55)*Lucas(50)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(53)*Lucas(50)/(1/2+sqrt(5)/2)^84 4180999952164553 a001 7778742049/1322157322203*17393796001^(4/7) 4180999952164553 a001 4052739537881/73681302247*10749957122^(3/16) 4180999952164553 a001 10610209857723/119218851371*10749957122^(1/6) 4180999952164553 a001 10610209857723/45537549124*10749957122^(1/8) 4180999952164553 a001 3536736619241/64300051206*10749957122^(3/16) 4180999952164553 a001 2504730781961/73681302247*10749957122^(5/24) 4180999952164553 a001 956722026041/10749957122*4106118243^(4/23) 4180999952164553 a001 53316291173/28143753123*10749957122^(1/3) 4180999952164553 a001 6557470319842/119218851371*10749957122^(3/16) 4180999952164553 a004 Fibonacci(51)*Lucas(50)/(1/2+sqrt(5)/2)^82 4180999952164553 a001 3278735159921/96450076809*10749957122^(5/24) 4180999952164553 a001 10610209857723/312119004989*10749957122^(5/24) 4180999952164553 a001 12586269025/17393796001*45537549124^(6/17) 4180999952164553 a001 4052739537881/45537549124*10749957122^(1/6) 4180999952164553 a001 1548008755920/6643838879*2537720636^(2/15) 4180999952164553 a001 956722026041/73681302247*10749957122^(1/4) 4180999952164553 a001 12586269025/17393796001*14662949395604^(2/7) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^20/Lucas(50) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^18/Lucas(49) 4180999952164553 a001 7778742049/28143753123*23725150497407^(5/16) 4180999952164553 a001 7778742049/28143753123*505019158607^(5/14) 4180999952164553 a001 12586269025/17393796001*192900153618^(1/3) 4180999952164553 a001 2504730781961/45537549124*10749957122^(3/16) 4180999952164553 a001 7778742049/28143753123*73681302247^(5/13) 4180999952164553 a001 2504730781961/192900153618*10749957122^(1/4) 4180999952164553 a001 10610209857723/817138163596*10749957122^(1/4) 4180999952164553 a001 4052739537881/312119004989*10749957122^(1/4) 4180999952164553 a001 1548008755920/119218851371*10749957122^(1/4) 4180999952164553 a001 387002188980/11384387281*10749957122^(5/24) 4180999952164553 a001 86267571272/17393796001*17393796001^(2/7) 4180999952164553 a001 12586269025/73681302247*10749957122^(7/16) 4180999952164553 a001 7778742049/45537549124*17393796001^(3/7) 4180999952164553 a001 20365011074/28143753123*10749957122^(3/8) 4180999952164553 a001 956722026041/192900153618*10749957122^(7/24) 4180999952164553 a001 32264490531/10525900321*10749957122^(5/16) 4180999952164553 a001 2504730781961/505019158607*10749957122^(7/24) 4180999952164553 a001 4052739537881/817138163596*10749957122^(7/24) 4180999952164553 a001 140728068720/28374454999*10749957122^(7/24) 4180999952164553 a001 7778742049/28143753123*28143753123^(2/5) 4180999952164553 a001 591286729879/119218851371*10749957122^(7/24) 4180999952164553 a001 591286729879/45537549124*10749957122^(1/4) 4180999952164553 a001 591286729879/192900153618*10749957122^(5/16) 4180999952164553 a001 1548008755920/505019158607*10749957122^(5/16) 4180999952164553 a001 1515744265389/494493258286*10749957122^(5/16) 4180999952164553 a001 139583862445/73681302247*10749957122^(1/3) 4180999952164553 a001 956722026041/312119004989*10749957122^(5/16) 4180999952164553 a001 12586269025/119218851371*10749957122^(11/24) 4180999952164553 a004 Fibonacci(49)*Lucas(51)/(1/2+sqrt(5)/2)^81 4180999952164553 a001 12586269025/45537549124*10749957122^(5/12) 4180999952164553 a001 2504730781961/17393796001*17393796001^(1/7) 4180999952164553 a001 182717648081/96450076809*10749957122^(1/3) 4180999952164553 a001 956722026041/505019158607*10749957122^(1/3) 4180999952164553 a001 10610209857723/5600748293801*10749957122^(1/3) 4180999952164553 a001 591286729879/312119004989*10749957122^(1/3) 4180999952164553 a001 225851433717/119218851371*10749957122^(1/3) 4180999952164553 a001 7778742049/23725150497407*45537549124^(2/3) 4180999952164553 a001 7778742049/14662949395604*45537549124^(11/17) 4180999952164553 a001 225851433717/45537549124*10749957122^(7/24) 4180999952164553 a001 7778742049/3461452808002*45537549124^(10/17) 4180999952164553 a001 7778742049/192900153618*45537549124^(8/17) 4180999952164553 a001 7778742049/817138163596*45537549124^(9/17) 4180999952164553 a001 1144206275/28374454999*10749957122^(1/2) 4180999952164553 a001 7778742049/73681302247*312119004989^(2/5) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^22/Lucas(52) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^16/Lucas(49) 4180999952164553 a001 32951280099/17393796001*23725150497407^(1/4) 4180999952164553 a001 53316291173/73681302247*10749957122^(3/8) 4180999952164553 a001 32951280099/17393796001*73681302247^(4/13) 4180999952164553 a001 7787980473/599786069*45537549124^(4/17) 4180999952164553 a001 139583862445/45537549124*10749957122^(5/16) 4180999952164553 a001 956722026041/17393796001*45537549124^(3/17) 4180999952164553 a001 139583862445/192900153618*10749957122^(3/8) 4180999952164553 a001 53316291173/17393796001*45537549124^(5/17) 4180999952164553 a004 Fibonacci(49)*Lucas(53)/(1/2+sqrt(5)/2)^83 4180999952164553 a001 365435296162/505019158607*10749957122^(3/8) 4180999952164553 a001 591286729879/817138163596*10749957122^(3/8) 4180999952164553 a001 4052739537881/17393796001*45537549124^(2/17) 4180999952164553 a001 225851433717/312119004989*10749957122^(3/8) 4180999952164553 a001 7778742049/192900153618*14662949395604^(8/21) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^24/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^14/Lucas(49) 4180999952164553 a001 86267571272/17393796001*505019158607^(1/4) 4180999952164553 a001 86267571272/119218851371*10749957122^(3/8) 4180999952164553 a001 7778742049/192900153618*192900153618^(4/9) 4180999952164553 a004 Fibonacci(49)*Lucas(55)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^26/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^12/Lucas(49) 4180999952164553 a004 Fibonacci(49)*Lucas(57)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^28/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^10/Lucas(49) 4180999952164553 a004 Fibonacci(49)*Lucas(59)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^30/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^8/Lucas(49) 4180999952164553 a001 1548008755920/17393796001*23725150497407^(1/8) 4180999952164553 a004 Fibonacci(49)*Lucas(61)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^32/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^6/Lucas(49) 4180999952164553 a004 Fibonacci(49)*Lucas(63)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^34/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^4/Lucas(49) 4180999952164553 a004 Fibonacci(49)*Lucas(65)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^36/Lucas(66) 4180999952164553 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^2/Lucas(49) 4180999952164553 a004 Fibonacci(49)*Lucas(67)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^38/Lucas(68) 4180999952164553 a006 5^(1/2)*Fibonacci(68)/Lucas(49)/sqrt(5) 4180999952164553 a004 Fibonacci(49)*Lucas(69)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^40/Lucas(70) 4180999952164553 a004 Fibonacci(70)/Lucas(49)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^42/Lucas(72) 4180999952164553 a004 Fibonacci(72)/Lucas(49)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^44/Lucas(74) 4180999952164553 a004 Fibonacci(74)/Lucas(49)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^46/Lucas(76) 4180999952164553 a004 Fibonacci(76)/Lucas(49)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^48/Lucas(78) 4180999952164553 a004 Fibonacci(78)/Lucas(49)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^50/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(49)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^52/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(49)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^54/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(49)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^56/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(49)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^58/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(49)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^60/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(49)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^62/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(49)/(1/2+sqrt(5)/2)^24 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^64/Lucas(94) 4180999952164553 a004 Fibonacci(94)/Lucas(49)/(1/2+sqrt(5)/2)^26 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^66/Lucas(96) 4180999952164553 a004 Fibonacci(96)/Lucas(49)/(1/2+sqrt(5)/2)^28 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^68/Lucas(98) 4180999952164553 a004 Fibonacci(100)/Lucas(49)/(1/2+sqrt(5)/2)^32 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^69/Lucas(99) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^70/Lucas(100) 4180999952164553 a004 Fibonacci(99)/Lucas(49)/(1/2+sqrt(5)/2)^31 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^67/Lucas(97) 4180999952164553 a004 Fibonacci(97)/Lucas(49)/(1/2+sqrt(5)/2)^29 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^65/Lucas(95) 4180999952164553 a004 Fibonacci(95)/Lucas(49)/(1/2+sqrt(5)/2)^27 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^63/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(49)/(1/2+sqrt(5)/2)^25 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^61/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(49)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^59/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(49)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^57/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(49)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^55/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(49)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^53/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(49)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^51/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(49)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^49/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(49)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^47/Lucas(77) 4180999952164553 a004 Fibonacci(77)/Lucas(49)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^45/Lucas(75) 4180999952164553 a004 Fibonacci(75)/Lucas(49)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^43/Lucas(73) 4180999952164553 a004 Fibonacci(73)/Lucas(49)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^41/Lucas(71) 4180999952164553 a004 Fibonacci(71)/Lucas(49)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(49)*Lucas(70)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^39/Lucas(69) 4180999952164553 a004 Fibonacci(69)/Lucas(49)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(49)*Lucas(68)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^37/Lucas(67) 4180999952164553 a004 Fibonacci(67)*(1/2+sqrt(5)/2)/Lucas(49) 4180999952164553 a004 Fibonacci(49)*Lucas(66)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^35/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^3/Lucas(49) 4180999952164553 a004 Fibonacci(49)*Lucas(64)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^33/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^5/Lucas(49) 4180999952164553 a004 Fibonacci(49)*Lucas(62)/(1/2+sqrt(5)/2)^92 4180999952164553 a001 2504730781961/17393796001*14662949395604^(1/9) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^31/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^7/Lucas(49) 4180999952164553 a004 Fibonacci(49)*Lucas(60)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^29/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^9/Lucas(49) 4180999952164553 a004 Fibonacci(49)*Lucas(58)/(1/2+sqrt(5)/2)^88 4180999952164553 a001 7778742049/817138163596*14662949395604^(3/7) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^27/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^11/Lucas(49) 4180999952164553 a004 Fibonacci(49)*Lucas(56)/(1/2+sqrt(5)/2)^86 4180999952164553 a001 956722026041/17393796001*192900153618^(1/6) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^25/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^13/Lucas(49) 4180999952164553 a001 7778742049/312119004989*3461452808002^(5/12) 4180999952164553 a001 10610209857723/17393796001*73681302247^(1/13) 4180999952164553 a001 7778742049/3461452808002*192900153618^(5/9) 4180999952164553 a001 7778742049/14662949395604*192900153618^(11/18) 4180999952164553 a004 Fibonacci(49)*Lucas(54)/(1/2+sqrt(5)/2)^84 4180999952164553 a001 1548008755920/17393796001*73681302247^(2/13) 4180999952164553 a001 21566892818/11384387281*10749957122^(1/3) 4180999952164553 a001 7787980473/599786069*73681302247^(3/13) 4180999952164553 a001 139583862445/17393796001*73681302247^(1/4) 4180999952164553 a001 7778742049/192900153618*73681302247^(6/13) 4180999952164553 a001 53316291173/17393796001*312119004989^(3/11) 4180999952164553 a001 53316291173/17393796001*14662949395604^(5/21) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^23/Lucas(53) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^15/Lucas(49) 4180999952164553 a001 53316291173/17393796001*192900153618^(5/18) 4180999952164553 a001 7778742049/505019158607*73681302247^(1/2) 4180999952164553 a001 7778742049/1322157322203*73681302247^(7/13) 4180999952164553 a001 7778742049/9062201101803*73681302247^(8/13) 4180999952164553 a001 12586269025/817138163596*10749957122^(13/24) 4180999952164553 a001 6557470319842/17393796001*28143753123^(1/10) 4180999952164553 a004 Fibonacci(49)*Lucas(52)/(1/2+sqrt(5)/2)^82 4180999952164553 a001 32951280099/119218851371*10749957122^(5/12) 4180999952164553 a001 32951280099/45537549124*10749957122^(3/8) 4180999952164553 a001 591286729879/17393796001*28143753123^(1/5) 4180999952164553 a001 10983760033/64300051206*10749957122^(7/16) 4180999952164553 a001 7778742049/45537549124*45537549124^(7/17) 4180999952164553 a001 86267571272/312119004989*10749957122^(5/12) 4180999952164553 a001 225851433717/817138163596*10749957122^(5/12) 4180999952164553 a001 12586269025/1322157322203*10749957122^(9/16) 4180999952164553 a001 1548008755920/5600748293801*10749957122^(5/12) 4180999952164553 a001 139583862445/505019158607*10749957122^(5/12) 4180999952164553 a001 20365011074/17393796001*45537549124^(1/3) 4180999952164553 a001 53316291173/192900153618*10749957122^(5/12) 4180999952164553 a001 53316291173/17393796001*28143753123^(3/10) 4180999952164553 a001 86267571272/505019158607*10749957122^(7/16) 4180999952164553 a001 75283811239/440719107401*10749957122^(7/16) 4180999952164553 a001 12586269025/2139295485799*10749957122^(7/12) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^21/Lucas(51) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^17/Lucas(49) 4180999952164553 a001 32951280099/312119004989*10749957122^(11/24) 4180999952164553 a001 139583862445/817138163596*10749957122^(7/16) 4180999952164553 a001 53316291173/312119004989*10749957122^(7/16) 4180999952164553 a001 20365011074/73681302247*10749957122^(5/12) 4180999952164553 a001 21566892818/204284540899*10749957122^(11/24) 4180999952164553 a001 7778742049/312119004989*28143753123^(1/2) 4180999952164553 a001 225851433717/2139295485799*10749957122^(11/24) 4180999952164553 a001 182717648081/1730726404001*10749957122^(11/24) 4180999952164553 a001 139583862445/1322157322203*10749957122^(11/24) 4180999952164553 a001 10610209857723/17393796001*10749957122^(1/12) 4180999952164553 a001 53316291173/505019158607*10749957122^(11/24) 4180999952164553 a001 7778742049/3461452808002*28143753123^(3/5) 4180999952164553 a001 32951280099/817138163596*10749957122^(1/2) 4180999952164553 a001 12586269025/5600748293801*10749957122^(5/8) 4180999952164553 a001 182717648081/5374978561*4106118243^(5/23) 4180999952164553 a001 86267571272/2139295485799*10749957122^(1/2) 4180999952164553 a001 225851433717/5600748293801*10749957122^(1/2) 4180999952164553 a001 591286729879/14662949395604*10749957122^(1/2) 4180999952164553 a001 365435296162/9062201101803*10749957122^(1/2) 4180999952164553 a001 139583862445/3461452808002*10749957122^(1/2) 4180999952164553 a001 20365011074/119218851371*10749957122^(7/16) 4180999952164553 a001 4052739537881/17393796001*10749957122^(1/8) 4180999952164553 a001 53316291173/1322157322203*10749957122^(1/2) 4180999952164553 a001 10182505537/96450076809*10749957122^(11/24) 4180999952164553 a001 32951280099/2139295485799*10749957122^(13/24) 4180999952164553 a001 12586269025/14662949395604*10749957122^(2/3) 4180999952164553 a004 Fibonacci(49)*Lucas(50)/(1/2+sqrt(5)/2)^80 4180999952164553 a001 86267571272/5600748293801*10749957122^(13/24) 4180999952164553 a001 32951280099/3461452808002*10749957122^(9/16) 4180999952164553 a001 7787980473/505618944676*10749957122^(13/24) 4180999952164553 a001 12586269025/23725150497407*10749957122^(11/16) 4180999952164553 a001 139583862445/9062201101803*10749957122^(13/24) 4180999952164553 a001 1548008755920/17393796001*10749957122^(1/6) 4180999952164553 a001 53316291173/3461452808002*10749957122^(13/24) 4180999952164553 a001 20365011074/505019158607*10749957122^(1/2) 4180999952164553 a001 86267571272/9062201101803*10749957122^(9/16) 4180999952164553 a001 225851433717/23725150497407*10749957122^(9/16) 4180999952164553 a001 139583862445/14662949395604*10749957122^(9/16) 4180999952164553 a001 956722026041/17393796001*10749957122^(3/16) 4180999952164553 a001 53316291173/5600748293801*10749957122^(9/16) 4180999952164553 a001 1135099622/192933544679*10749957122^(7/12) 4180999952164553 a001 139583862445/23725150497407*10749957122^(7/12) 4180999952164553 a001 591286729879/17393796001*10749957122^(5/24) 4180999952164553 a001 53316291173/9062201101803*10749957122^(7/12) 4180999952164553 a001 20365011074/1322157322203*10749957122^(13/24) 4180999952164553 a001 32951280099/14662949395604*10749957122^(5/8) 4180999952164553 a001 12586269025/17393796001*10749957122^(3/8) 4180999952164553 a001 20365011074/2139295485799*10749957122^(9/16) 4180999952164553 a001 2504730781961/6643838879*2537720636^(1/9) 4180999952164553 a001 7787980473/599786069*10749957122^(1/4) 4180999952164553 a001 53316291173/23725150497407*10749957122^(5/8) 4180999952164553 a001 10182505537/1730726404001*10749957122^(7/12) 4180999952164553 a001 7778742049/28143753123*10749957122^(5/12) 4180999952164553 a001 86267571272/17393796001*10749957122^(7/24) 4180999952164553 a001 20365011074/9062201101803*10749957122^(5/8) 4180999952164553 a001 32951280099/17393796001*10749957122^(1/3) 4180999952164553 a001 53316291173/17393796001*10749957122^(5/16) 4180999952164553 a001 20365011074/23725150497407*10749957122^(2/3) 4180999952164553 a001 6557470319842/28143753123*4106118243^(3/23) 4180999952164553 a001 7778742049/17393796001*817138163596^(1/3) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^19/Lucas(49) 4180999952164553 a001 139583862445/10749957122*4106118243^(6/23) 4180999952164553 a001 7778742049/73681302247*10749957122^(11/24) 4180999952164553 a004 Fibonacci(50)*Lucas(48)/(1/2+sqrt(5)/2)^79 4180999952164553 a001 7778742049/45537549124*10749957122^(7/16) 4180999952164553 a001 7778742049/192900153618*10749957122^(1/2) 4180999952164553 a001 7778742049/505019158607*10749957122^(13/24) 4180999952164553 a001 7778742049/817138163596*10749957122^(9/16) 4180999952164553 a001 10610209857723/45537549124*4106118243^(3/23) 4180999952164553 a001 7778742049/1322157322203*10749957122^(7/12) 4180999952164553 a001 10610209857723/17393796001*4106118243^(2/23) 4180999952164553 a004 Fibonacci(52)*Lucas(48)/(1/2+sqrt(5)/2)^81 4180999952164553 a004 Fibonacci(54)*Lucas(48)/(1/2+sqrt(5)/2)^83 4180999952164553 a004 Fibonacci(56)*Lucas(48)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(58)*Lucas(48)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(60)*Lucas(48)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(62)*Lucas(48)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(64)*Lucas(48)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(66)*Lucas(48)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(68)*Lucas(48)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(70)*Lucas(48)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(71)*Lucas(48)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(69)*Lucas(48)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(67)*Lucas(48)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(65)*Lucas(48)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(63)*Lucas(48)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(61)*Lucas(48)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(59)*Lucas(48)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(57)*Lucas(48)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(55)*Lucas(48)/(1/2+sqrt(5)/2)^84 4180999952164553 a001 7778742049/3461452808002*10749957122^(5/8) 4180999952164553 a004 Fibonacci(53)*Lucas(48)/(1/2+sqrt(5)/2)^82 4180999952164553 a001 2504730781961/28143753123*4106118243^(4/23) 4180999952164553 a001 7778742049/9062201101803*10749957122^(2/3) 4180999952164553 a004 Fibonacci(51)*Lucas(48)/(1/2+sqrt(5)/2)^80 4180999952164553 a001 7778742049/14662949395604*10749957122^(11/16) 4180999952164553 a001 7778742049/23725150497407*10749957122^(17/24) 4180999952164553 a001 53316291173/10749957122*4106118243^(7/23) 4180999952164553 a001 6557470319842/73681302247*4106118243^(4/23) 4180999952164553 a001 10610209857723/119218851371*4106118243^(4/23) 4180999952164553 a001 4052739537881/45537549124*4106118243^(4/23) 4180999952164553 a001 4052739537881/17393796001*4106118243^(3/23) 4180999952164553 a001 956722026041/28143753123*4106118243^(5/23) 4180999952164553 a004 Fibonacci(49)*Lucas(48)/(1/2+sqrt(5)/2)^78 4180999952164553 a001 6557470319842/6643838879*2537720636^(1/15) 4180999952164553 a001 10182505537/5374978561*4106118243^(8/23) 4180999952164553 a001 2504730781961/73681302247*4106118243^(5/23) 4180999952164553 a001 3278735159921/96450076809*4106118243^(5/23) 4180999952164553 a001 10610209857723/312119004989*4106118243^(5/23) 4180999952164553 a001 4052739537881/119218851371*4106118243^(5/23) 4180999952164553 a001 387002188980/11384387281*4106118243^(5/23) 4180999952164553 a001 1548008755920/17393796001*4106118243^(4/23) 4180999952164553 a001 4807526976/6643838879*45537549124^(6/17) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^20/Lucas(48) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^18/Lucas(47) 4180999952164553 a001 2971215073/10749957122*23725150497407^(5/16) 4180999952164553 a001 2971215073/10749957122*505019158607^(5/14) 4180999952164553 a001 4807526976/6643838879*192900153618^(1/3) 4180999952164553 a001 2971215073/10749957122*73681302247^(5/13) 4180999952164553 a001 365435296162/28143753123*4106118243^(6/23) 4180999952164553 a001 2971215073/10749957122*28143753123^(2/5) 4180999952164553 a001 365435296162/4106118243*1568397607^(2/11) 4180999952164553 a001 956722026041/73681302247*4106118243^(6/23) 4180999952164553 a001 2504730781961/192900153618*4106118243^(6/23) 4180999952164553 a001 10610209857723/817138163596*4106118243^(6/23) 4180999952164553 a001 4052739537881/312119004989*4106118243^(6/23) 4180999952164553 a001 1548008755920/119218851371*4106118243^(6/23) 4180999952164553 a001 591286729879/45537549124*4106118243^(6/23) 4180999952164553 a001 591286729879/17393796001*4106118243^(5/23) 4180999952164553 a001 139583862445/28143753123*4106118243^(7/23) 4180999952164553 a001 4807526976/6643838879*10749957122^(3/8) 4180999952164553 a001 2971215073/10749957122*10749957122^(5/12) 4180999952164553 a001 7778742049/10749957122*4106118243^(9/23) 4180999952164553 a001 365435296162/73681302247*4106118243^(7/23) 4180999952164553 a001 956722026041/192900153618*4106118243^(7/23) 4180999952164553 a001 2504730781961/505019158607*4106118243^(7/23) 4180999952164553 a001 10610209857723/2139295485799*4106118243^(7/23) 4180999952164553 a001 140728068720/28374454999*4106118243^(7/23) 4180999952164553 a001 591286729879/119218851371*4106118243^(7/23) 4180999952164553 a001 225851433717/45537549124*4106118243^(7/23) 4180999952164553 a001 7787980473/599786069*4106118243^(6/23) 4180999952164553 a004 Fibonacci(47)*Lucas(49)/(1/2+sqrt(5)/2)^77 4180999952164553 a001 53316291173/28143753123*4106118243^(8/23) 4180999952164553 a001 1201881744/11384387281*4106118243^(11/23) 4180999952164553 a001 2971215073/14662949395604*17393796001^(5/7) 4180999952164553 a001 4807526976/17393796001*4106118243^(10/23) 4180999952164553 a001 139583862445/73681302247*4106118243^(8/23) 4180999952164553 a001 182717648081/96450076809*4106118243^(8/23) 4180999952164553 a001 956722026041/505019158607*4106118243^(8/23) 4180999952164553 a001 10610209857723/5600748293801*4106118243^(8/23) 4180999952164553 a001 591286729879/312119004989*4106118243^(8/23) 4180999952164553 a001 225851433717/119218851371*4106118243^(8/23) 4180999952164553 a001 2971215073/505019158607*17393796001^(4/7) 4180999952164553 a001 686789568/10525900321*4106118243^(1/2) 4180999952164553 a001 21566892818/11384387281*4106118243^(8/23) 4180999952164553 a001 86267571272/17393796001*4106118243^(7/23) 4180999952164553 a001 2971215073/28143753123*312119004989^(2/5) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^22/Lucas(50) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^16/Lucas(47) 4180999952164553 a001 12586269025/6643838879*23725150497407^(1/4) 4180999952164553 a001 12586269025/6643838879*73681302247^(4/13) 4180999952164553 a001 32951280099/6643838879*17393796001^(2/7) 4180999952164553 a004 Fibonacci(47)*Lucas(51)/(1/2+sqrt(5)/2)^79 4180999952164553 a001 956722026041/6643838879*17393796001^(1/7) 4180999952164553 a001 2971215073/73681302247*45537549124^(8/17) 4180999952164553 a001 2971215073/23725150497407*45537549124^(12/17) 4180999952164553 a001 2971215073/9062201101803*45537549124^(2/3) 4180999952164553 a001 2971215073/5600748293801*45537549124^(11/17) 4180999952164553 a001 4807526976/119218851371*4106118243^(12/23) 4180999952164553 a001 2971215073/1322157322203*45537549124^(10/17) 4180999952164553 a001 2971215073/312119004989*45537549124^(9/17) 4180999952164553 a001 20365011074/28143753123*4106118243^(9/23) 4180999952164553 a001 2971215073/73681302247*14662949395604^(8/21) 4180999952164553 a001 32951280099/6643838879*14662949395604^(2/9) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^24/Lucas(52) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^14/Lucas(47) 4180999952164553 a001 2971215073/73681302247*192900153618^(4/9) 4180999952164553 a001 86267571272/6643838879*45537549124^(4/17) 4180999952164553 a001 2971215073/73681302247*73681302247^(6/13) 4180999952164553 a001 365435296162/6643838879*45537549124^(3/17) 4180999952164553 a004 Fibonacci(47)*Lucas(53)/(1/2+sqrt(5)/2)^81 4180999952164553 a001 1548008755920/6643838879*45537549124^(2/17) 4180999952164553 a001 6557470319842/6643838879*45537549124^(1/17) 4180999952164553 a001 86267571272/6643838879*14662949395604^(4/21) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^26/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^12/Lucas(47) 4180999952164553 a001 86267571272/6643838879*192900153618^(2/9) 4180999952164553 a004 Fibonacci(47)*Lucas(55)/(1/2+sqrt(5)/2)^83 4180999952164553 a001 2971215073/1322157322203*312119004989^(6/11) 4180999952164553 a001 225851433717/6643838879*312119004989^(2/11) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^28/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^10/Lucas(47) 4180999952164553 a004 Fibonacci(47)*Lucas(57)/(1/2+sqrt(5)/2)^85 4180999952164553 a001 2504730781961/6643838879*312119004989^(1/11) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^30/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^8/Lucas(47) 4180999952164553 a004 Fibonacci(47)*Lucas(59)/(1/2+sqrt(5)/2)^87 4180999952164553 a001 1548008755920/6643838879*14662949395604^(2/21) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^32/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^6/Lucas(47) 4180999952164553 a004 Fibonacci(47)*Lucas(61)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^34/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^4/Lucas(47) 4180999952164553 a004 Fibonacci(47)*Lucas(63)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^36/Lucas(64) 4180999952164553 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^2/Lucas(47) 4180999952164553 a004 Fibonacci(47)*Lucas(65)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^38/Lucas(66) 4180999952164553 a006 5^(1/2)*Fibonacci(66)/Lucas(47)/sqrt(5) 4180999952164553 a004 Fibonacci(47)*Lucas(67)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^40/Lucas(68) 4180999952164553 a004 Fibonacci(68)/Lucas(47)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(47)*Lucas(69)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^42/Lucas(70) 4180999952164553 a004 Fibonacci(70)/Lucas(47)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(47)*Lucas(71)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^44/Lucas(72) 4180999952164553 a004 Fibonacci(72)/Lucas(47)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^46/Lucas(74) 4180999952164553 a004 Fibonacci(74)/Lucas(47)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^48/Lucas(76) 4180999952164553 a004 Fibonacci(76)/Lucas(47)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^50/Lucas(78) 4180999952164553 a004 Fibonacci(78)/Lucas(47)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^52/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(47)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^54/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(47)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^56/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(47)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^58/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(47)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^60/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(47)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^62/Lucas(90) 4180999952164553 a004 Fibonacci(90)/Lucas(47)/(1/2+sqrt(5)/2)^24 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^64/Lucas(92) 4180999952164553 a004 Fibonacci(92)/Lucas(47)/(1/2+sqrt(5)/2)^26 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^66/Lucas(94) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^68/Lucas(96) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^70/Lucas(98) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^71/Lucas(99) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^72/Lucas(100) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^69/Lucas(97) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^67/Lucas(95) 4180999952164553 a004 Fibonacci(96)/Lucas(47)/(1/2+sqrt(5)/2)^30 4180999952164553 a004 Fibonacci(100)/Lucas(47)/(1/2+sqrt(5)/2)^34 4180999952164553 a004 Fibonacci(98)/Lucas(47)/(1/2+sqrt(5)/2)^32 4180999952164553 a004 Fibonacci(99)/Lucas(47)/(1/2+sqrt(5)/2)^33 4180999952164553 a004 Fibonacci(97)/Lucas(47)/(1/2+sqrt(5)/2)^31 4180999952164553 a004 Fibonacci(95)/Lucas(47)/(1/2+sqrt(5)/2)^29 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^65/Lucas(93) 4180999952164553 a004 Fibonacci(93)/Lucas(47)/(1/2+sqrt(5)/2)^27 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^63/Lucas(91) 4180999952164553 a004 Fibonacci(91)/Lucas(47)/(1/2+sqrt(5)/2)^25 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^61/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(47)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^59/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(47)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^57/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(47)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^55/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(47)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^53/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(47)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^51/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(47)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^49/Lucas(77) 4180999952164553 a004 Fibonacci(77)/Lucas(47)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^47/Lucas(75) 4180999952164553 a004 Fibonacci(75)/Lucas(47)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^45/Lucas(73) 4180999952164553 a004 Fibonacci(73)/Lucas(47)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(47)*Lucas(72)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^43/Lucas(71) 4180999952164553 a004 Fibonacci(71)/Lucas(47)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(47)*Lucas(70)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^41/Lucas(69) 4180999952164553 a004 Fibonacci(69)/Lucas(47)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(47)*Lucas(68)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^39/Lucas(67) 4180999952164553 a004 Fibonacci(67)/Lucas(47)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(47)*Lucas(66)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^37/Lucas(65) 4180999952164553 a004 Fibonacci(65)*(1/2+sqrt(5)/2)/Lucas(47) 4180999952164553 a004 Fibonacci(47)*Lucas(64)/(1/2+sqrt(5)/2)^92 4180999952164553 a001 2971215073/14662949395604*14662949395604^(5/9) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^35/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^3/Lucas(47) 4180999952164553 a004 Fibonacci(47)*Lucas(62)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^33/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^5/Lucas(47) 4180999952164553 a004 Fibonacci(47)*Lucas(60)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^31/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^7/Lucas(47) 4180999952164553 a004 Fibonacci(47)*Lucas(58)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^29/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^9/Lucas(47) 4180999952164553 a001 2971215073/3461452808002*505019158607^(4/7) 4180999952164553 a001 2971215073/14662949395604*505019158607^(5/8) 4180999952164553 a004 Fibonacci(47)*Lucas(56)/(1/2+sqrt(5)/2)^84 4180999952164553 a001 139583862445/6643838879*312119004989^(1/5) 4180999952164553 a001 2971215073/312119004989*14662949395604^(3/7) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^27/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^11/Lucas(47) 4180999952164553 a001 2971215073/1322157322203*192900153618^(5/9) 4180999952164553 a001 2971215073/5600748293801*192900153618^(11/18) 4180999952164553 a001 2971215073/23725150497407*192900153618^(2/3) 4180999952164553 a001 2971215073/312119004989*192900153618^(1/2) 4180999952164553 a004 Fibonacci(47)*Lucas(54)/(1/2+sqrt(5)/2)^82 4180999952164553 a001 591286729879/6643838879*73681302247^(2/13) 4180999952164553 a001 2971215073/192900153618*73681302247^(1/2) 4180999952164553 a001 2971215073/119218851371*312119004989^(5/11) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^25/Lucas(53) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^13/Lucas(47) 4180999952164553 a001 2971215073/119218851371*3461452808002^(5/12) 4180999952164553 a001 2971215073/505019158607*73681302247^(7/13) 4180999952164553 a001 2971215073/3461452808002*73681302247^(8/13) 4180999952164553 a001 53316291173/6643838879*73681302247^(1/4) 4180999952164553 a001 2504730781961/6643838879*28143753123^(1/10) 4180999952164553 a001 2971215073/23725150497407*73681302247^(9/13) 4180999952164553 a004 Fibonacci(47)*Lucas(52)/(1/2+sqrt(5)/2)^80 4180999952164553 a001 225851433717/6643838879*28143753123^(1/5) 4180999952164553 a001 20365011074/6643838879*45537549124^(5/17) 4180999952164553 a001 10610209857723/6643838879*10749957122^(1/24) 4180999952164553 a001 53316291173/73681302247*4106118243^(9/23) 4180999952164553 a001 20365011074/6643838879*312119004989^(3/11) 4180999952164553 a001 20365011074/6643838879*14662949395604^(5/21) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^23/Lucas(51) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^15/Lucas(47) 4180999952164553 a001 20365011074/6643838879*192900153618^(5/18) 4180999952164553 a001 139583862445/192900153618*4106118243^(9/23) 4180999952164553 a001 6557470319842/6643838879*10749957122^(1/16) 4180999952164553 a001 365435296162/505019158607*4106118243^(9/23) 4180999952164553 a001 225851433717/312119004989*4106118243^(9/23) 4180999952164553 a001 86267571272/119218851371*4106118243^(9/23) 4180999952164553 a001 2971215073/119218851371*28143753123^(1/2) 4180999952164553 a001 4052739537881/6643838879*10749957122^(1/12) 4180999952164553 a001 2971215073/1322157322203*28143753123^(3/5) 4180999952164553 a001 32951280099/45537549124*4106118243^(9/23) 4180999952164553 a001 20365011074/6643838879*28143753123^(3/10) 4180999952164553 a001 2971215073/14662949395604*28143753123^(7/10) 4180999952164553 a001 1548008755920/6643838879*10749957122^(1/8) 4180999952164553 a001 32951280099/17393796001*4106118243^(8/23) 4180999952164553 a004 Fibonacci(47)*Lucas(50)/(1/2+sqrt(5)/2)^78 4180999952164553 a001 591286729879/6643838879*10749957122^(1/6) 4180999952164553 a001 12586269025/6643838879*10749957122^(1/3) 4180999952164553 a001 365435296162/6643838879*10749957122^(3/16) 4180999952164553 a001 225851433717/6643838879*10749957122^(5/24) 4180999952164553 a001 2971215073/17393796001*17393796001^(3/7) 4180999952164553 a001 86267571272/6643838879*10749957122^(1/4) 4180999952164553 a001 4807526976/312119004989*4106118243^(13/23) 4180999952164553 a001 32951280099/6643838879*10749957122^(7/24) 4180999952164553 a001 12586269025/45537549124*4106118243^(10/23) 4180999952164553 a001 10610209857723/6643838879*4106118243^(1/23) 4180999952164553 a001 12586269025/17393796001*4106118243^(9/23) 4180999952164553 a001 2971215073/28143753123*10749957122^(11/24) 4180999952164553 a001 32951280099/119218851371*4106118243^(10/23) 4180999952164553 a001 2971215073/17393796001*45537549124^(7/17) 4180999952164553 a001 86267571272/312119004989*4106118243^(10/23) 4180999952164553 a001 225851433717/817138163596*4106118243^(10/23) 4180999952164553 a001 1548008755920/5600748293801*4106118243^(10/23) 4180999952164553 a001 139583862445/505019158607*4106118243^(10/23) 4180999952164553 a001 7778742049/6643838879*45537549124^(1/3) 4180999952164553 a001 53316291173/192900153618*4106118243^(10/23) 4180999952164553 a001 20365011074/6643838879*10749957122^(5/16) 4180999952164553 a001 2971215073/17393796001*14662949395604^(1/3) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^21/Lucas(49) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^17/Lucas(47) 4180999952164553 a001 2971215073/17393796001*192900153618^(7/18) 4180999952164553 a001 20365011074/73681302247*4106118243^(10/23) 4180999952164553 a001 2971215073/73681302247*10749957122^(1/2) 4180999952164553 a001 1134903170/4106118243*2537720636^(4/9) 4180999952164553 a001 12586269025/119218851371*4106118243^(11/23) 4180999952164553 a001 2971215073/192900153618*10749957122^(13/24) 4180999952164553 a001 1201881744/204284540899*4106118243^(14/23) 4180999952164553 a001 2971215073/312119004989*10749957122^(9/16) 4180999952164553 a001 2971215073/505019158607*10749957122^(7/12) 4180999952164553 a001 4052739537881/6643838879*4106118243^(2/23) 4180999952164553 a001 7778742049/28143753123*4106118243^(10/23) 4180999952164553 a001 2971215073/1322157322203*10749957122^(5/8) 4180999952164553 a001 32951280099/312119004989*4106118243^(11/23) 4180999952164553 a001 3278735159921/5374978561*1568397607^(1/11) 4180999952164553 a001 21566892818/204284540899*4106118243^(11/23) 4180999952164553 a001 225851433717/2139295485799*4106118243^(11/23) 4180999952164553 a001 12586269025/192900153618*4106118243^(1/2) 4180999952164553 a001 182717648081/1730726404001*4106118243^(11/23) 4180999952164553 a001 139583862445/1322157322203*4106118243^(11/23) 4180999952164553 a001 2971215073/3461452808002*10749957122^(2/3) 4180999952164553 a001 53316291173/505019158607*4106118243^(11/23) 4180999952164553 a001 2971215073/5600748293801*10749957122^(11/16) 4180999952164553 a001 2971215073/9062201101803*10749957122^(17/24) 4180999952164553 a001 10182505537/96450076809*4106118243^(11/23) 4180999952164553 a001 2971215073/23725150497407*10749957122^(3/4) 4180999952164553 a001 32951280099/505019158607*4106118243^(1/2) 4180999952164553 a001 86267571272/1322157322203*4106118243^(1/2) 4180999952164553 a001 32264490531/494493258286*4106118243^(1/2) 4180999952164553 a001 591286729879/9062201101803*4106118243^(1/2) 4180999952164553 a001 1548008755920/23725150497407*4106118243^(1/2) 4180999952164553 a001 139583862445/2139295485799*4106118243^(1/2) 4180999952164553 a001 1144206275/28374454999*4106118243^(12/23) 4180999952164553 a001 53316291173/817138163596*4106118243^(1/2) 4180999952164553 a001 2971215073/17393796001*10749957122^(7/16) 4180999952164553 a001 4807526976/2139295485799*4106118243^(15/23) 4180999952164553 a001 20365011074/312119004989*4106118243^(1/2) 4180999952164553 a001 1548008755920/6643838879*4106118243^(3/23) 4180999952164553 a001 32951280099/817138163596*4106118243^(12/23) 4180999952164553 a001 86267571272/2139295485799*4106118243^(12/23) 4180999952164553 a001 225851433717/5600748293801*4106118243^(12/23) 4180999952164553 a001 591286729879/14662949395604*4106118243^(12/23) 4180999952164553 a001 365435296162/9062201101803*4106118243^(12/23) 4180999952164553 a001 139583862445/3461452808002*4106118243^(12/23) 4180999952164553 a001 53316291173/1322157322203*4106118243^(12/23) 4180999952164553 a001 1134903170/9062201101803*2537720636^(4/5) 4180999952164553 a004 Fibonacci(47)*Lucas(48)/(1/2+sqrt(5)/2)^76 4180999952164553 a001 20365011074/505019158607*4106118243^(12/23) 4180999952164553 a001 7778742049/73681302247*4106118243^(11/23) 4180999952164553 a001 12586269025/817138163596*4106118243^(13/23) 4180999952164553 a001 4807526976/5600748293801*4106118243^(16/23) 4180999952164553 a001 591286729879/6643838879*4106118243^(4/23) 4180999952164553 a001 7778742049/119218851371*4106118243^(1/2) 4180999952164553 a001 139583862445/4106118243*1568397607^(5/22) 4180999952164553 a001 32951280099/2139295485799*4106118243^(13/23) 4180999952164553 a001 86267571272/5600748293801*4106118243^(13/23) 4180999952164553 a001 7787980473/505618944676*4106118243^(13/23) 4180999952164553 a001 365435296162/23725150497407*4106118243^(13/23) 4180999952164553 a001 139583862445/9062201101803*4106118243^(13/23) 4180999952164553 a001 53316291173/3461452808002*4106118243^(13/23) 4180999952164553 a001 1836311903/2537720636*2537720636^(2/5) 4180999952164553 a001 20365011074/1322157322203*4106118243^(13/23) 4180999952164553 a001 7778742049/192900153618*4106118243^(12/23) 4180999952164553 a001 1134903170/5600748293801*2537720636^(7/9) 4180999952164553 a001 12586269025/2139295485799*4106118243^(14/23) 4180999952164553 a001 1201881744/3665737348901*4106118243^(17/23) 4180999952164553 a001 225851433717/6643838879*4106118243^(5/23) 4180999952164553 a001 32951280099/5600748293801*4106118243^(14/23) 4180999952164553 a001 1135099622/192933544679*4106118243^(14/23) 4180999952164553 a001 139583862445/23725150497407*4106118243^(14/23) 4180999952164553 a001 53316291173/9062201101803*4106118243^(14/23) 4180999952164553 a001 10182505537/1730726404001*4106118243^(14/23) 4180999952164553 a001 7778742049/505019158607*4106118243^(13/23) 4180999952164553 a001 4807526976/6643838879*4106118243^(9/23) 4180999952164553 a001 12586269025/5600748293801*4106118243^(15/23) 4180999952164553 a001 86267571272/6643838879*4106118243^(6/23) 4180999952164553 a001 32951280099/14662949395604*4106118243^(15/23) 4180999952164553 a001 53316291173/23725150497407*4106118243^(15/23) 4180999952164553 a001 20365011074/9062201101803*4106118243^(15/23) 4180999952164553 a001 7778742049/1322157322203*4106118243^(14/23) 4180999952164553 a001 2971215073/10749957122*4106118243^(10/23) 4180999952164553 a001 12586269025/14662949395604*4106118243^(16/23) 4180999952164553 a001 10610209857723/17393796001*1568397607^(1/11) 4180999952164553 a001 32951280099/6643838879*4106118243^(7/23) 4180999952164553 a001 10610209857723/6643838879*1568397607^(1/22) 4180999952164553 a001 1134903170/2139295485799*2537720636^(11/15) 4180999952164553 a001 20365011074/23725150497407*4106118243^(16/23) 4180999952164553 a001 7778742049/3461452808002*4106118243^(15/23) 4180999952164553 a001 12586269025/6643838879*4106118243^(8/23) 4180999952164553 a001 86267571272/4106118243*1568397607^(1/4) 4180999952164553 a001 7778742049/9062201101803*4106118243^(16/23) 4180999952164553 a001 2971215073/6643838879*817138163596^(1/3) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^19/Lucas(47) 4180999952164553 a001 2504730781961/10749957122*1568397607^(3/22) 4180999952164553 a001 7778742049/23725150497407*4106118243^(17/23) 4180999952164553 a001 2971215073/28143753123*4106118243^(11/23) 4180999952164553 a004 Fibonacci(48)*Lucas(46)/(1/2+sqrt(5)/2)^75 4180999952164553 a001 53316291173/4106118243*1568397607^(3/11) 4180999952164553 a001 1134903170/505019158607*2537720636^(2/3) 4180999952164553 a001 2971215073/45537549124*4106118243^(1/2) 4180999952164553 a001 2971215073/73681302247*4106118243^(12/23) 4180999952164553 a001 6557470319842/28143753123*1568397607^(3/22) 4180999952164553 a001 10610209857723/45537549124*1568397607^(3/22) 4180999952164553 a001 2971215073/192900153618*4106118243^(13/23) 4180999952164553 a001 32264490531/224056801*599074578^(1/6) 4180999952164553 a004 Fibonacci(50)*Lucas(46)/(1/2+sqrt(5)/2)^77 4180999952164553 a001 4052739537881/17393796001*1568397607^(3/22) 4180999952164553 a001 2971215073/505019158607*4106118243^(14/23) 4180999952164553 a004 Fibonacci(52)*Lucas(46)/(1/2+sqrt(5)/2)^79 4180999952164553 a004 Fibonacci(54)*Lucas(46)/(1/2+sqrt(5)/2)^81 4180999952164553 a004 Fibonacci(56)*Lucas(46)/(1/2+sqrt(5)/2)^83 4180999952164553 a004 Fibonacci(58)*Lucas(46)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(60)*Lucas(46)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(62)*Lucas(46)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(64)*Lucas(46)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(66)*Lucas(46)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(68)*Lucas(46)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(70)*Lucas(46)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(72)*Lucas(46)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(73)*Lucas(46)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(71)*Lucas(46)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(69)*Lucas(46)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(67)*Lucas(46)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(65)*Lucas(46)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(63)*Lucas(46)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(61)*Lucas(46)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(59)*Lucas(46)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(57)*Lucas(46)/(1/2+sqrt(5)/2)^84 4180999952164553 a004 Fibonacci(55)*Lucas(46)/(1/2+sqrt(5)/2)^82 4180999952164553 a004 Fibonacci(53)*Lucas(46)/(1/2+sqrt(5)/2)^80 4180999952164553 a001 4052739537881/6643838879*1568397607^(1/11) 4180999952164553 a004 Fibonacci(51)*Lucas(46)/(1/2+sqrt(5)/2)^78 4180999952164553 a001 2971215073/1322157322203*4106118243^(15/23) 4180999952164553 a001 1134903170/119218851371*2537720636^(3/5) 4180999952164553 a004 Fibonacci(49)*Lucas(46)/(1/2+sqrt(5)/2)^76 4180999952164553 a001 2971215073/3461452808002*4106118243^(16/23) 4180999952164553 a001 956722026041/10749957122*1568397607^(2/11) 4180999952164553 a001 2971215073/9062201101803*4106118243^(17/23) 4180999952164553 a001 2971215073/23725150497407*4106118243^(18/23) 4180999952164553 a001 567451585/22768774562*2537720636^(5/9) 4180999952164553 a001 20365011074/4106118243*1568397607^(7/22) 4180999952164553 a001 1134903170/28143753123*2537720636^(8/15) 4180999952164553 a001 2504730781961/28143753123*1568397607^(2/11) 4180999952164553 a001 6557470319842/4106118243*599074578^(1/21) 4180999952164553 a001 6557470319842/73681302247*1568397607^(2/11) 4180999952164553 a001 10610209857723/119218851371*1568397607^(2/11) 4180999952164553 a001 4052739537881/45537549124*1568397607^(2/11) 4180999952164553 a001 1548008755920/17393796001*1568397607^(2/11) 4180999952164553 a001 1548008755920/6643838879*1568397607^(3/22) 4180999952164553 a001 139583862445/599074578*228826127^(3/20) 4180999952164553 a004 Fibonacci(47)*Lucas(46)/(1/2+sqrt(5)/2)^74 4180999952164553 a001 182717648081/5374978561*1568397607^(5/22) 4180999952164553 a001 956722026041/28143753123*1568397607^(5/22) 4180999952164553 a001 7778742049/4106118243*1568397607^(4/11) 4180999952164553 a001 2504730781961/73681302247*1568397607^(5/22) 4180999952164553 a001 3278735159921/96450076809*1568397607^(5/22) 4180999952164553 a001 10610209857723/312119004989*1568397607^(5/22) 4180999952164553 a001 4052739537881/119218851371*1568397607^(5/22) 4180999952164553 a001 387002188980/11384387281*1568397607^(5/22) 4180999952164553 a001 225851433717/10749957122*1568397607^(1/4) 4180999952164553 a001 591286729879/17393796001*1568397607^(5/22) 4180999952164553 a001 1836311903/2537720636*45537549124^(6/17) 4180999952164553 a001 1836311903/2537720636*14662949395604^(2/7) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^20/Lucas(46) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^18/Lucas(45) 4180999952164553 a001 1134903170/4106118243*23725150497407^(5/16) 4180999952164553 a001 1134903170/4106118243*505019158607^(5/14) 4180999952164553 a001 1836311903/2537720636*192900153618^(1/3) 4180999952164553 a001 1134903170/4106118243*73681302247^(5/13) 4180999952164553 a001 1134903170/4106118243*28143753123^(2/5) 4180999952164553 a001 591286729879/6643838879*1568397607^(2/11) 4180999952164553 a001 1836311903/2537720636*10749957122^(3/8) 4180999952164553 a001 1134903170/4106118243*10749957122^(5/12) 4180999952164553 a001 591286729879/28143753123*1568397607^(1/4) 4180999952164553 a001 1548008755920/73681302247*1568397607^(1/4) 4180999952164553 a001 4052739537881/192900153618*1568397607^(1/4) 4180999952164553 a001 225749145909/10745088481*1568397607^(1/4) 4180999952164553 a001 6557470319842/312119004989*1568397607^(1/4) 4180999952164553 a001 2504730781961/119218851371*1568397607^(1/4) 4180999952164553 a001 956722026041/45537549124*1568397607^(1/4) 4180999952164553 a001 139583862445/10749957122*1568397607^(3/11) 4180999952164553 a001 365435296162/17393796001*1568397607^(1/4) 4180999952164553 a001 1134903170/6643838879*2537720636^(7/15) 4180999952164553 a001 7778742049/2537720636*2537720636^(1/3) 4180999952164553 a001 365435296162/28143753123*1568397607^(3/11) 4180999952164553 a001 956722026041/73681302247*1568397607^(3/11) 4180999952164553 a001 2504730781961/192900153618*1568397607^(3/11) 4180999952164553 a001 10610209857723/817138163596*1568397607^(3/11) 4180999952164553 a001 4052739537881/312119004989*1568397607^(3/11) 4180999952164553 a001 1548008755920/119218851371*1568397607^(3/11) 4180999952164553 a001 591286729879/45537549124*1568397607^(3/11) 4180999952164553 a001 32951280099/2537720636*2537720636^(4/15) 4180999952164553 a001 7787980473/599786069*1568397607^(3/11) 4180999952164553 a001 225851433717/6643838879*1568397607^(5/22) 4180999952164553 a001 1836311903/2537720636*4106118243^(9/23) 4180999952164553 a001 1135099622/33391061*2537720636^(2/9) 4180999952164553 a001 53316291173/10749957122*1568397607^(7/22) 4180999952164553 a001 1134903170/4106118243*4106118243^(10/23) 4180999952164553 a001 139583862445/1568397607*599074578^(4/21) 4180999952164553 a001 139583862445/2537720636*2537720636^(1/5) 4180999952164553 a001 139583862445/6643838879*1568397607^(1/4) 4180999952164553 a001 139583862445/28143753123*1568397607^(7/22) 4180999952164553 a001 365435296162/73681302247*1568397607^(7/22) 4180999952164553 a001 956722026041/192900153618*1568397607^(7/22) 4180999952164553 a001 2504730781961/505019158607*1568397607^(7/22) 4180999952164553 a001 10610209857723/2139295485799*1568397607^(7/22) 4180999952164553 a001 4052739537881/817138163596*1568397607^(7/22) 4180999952164553 a001 140728068720/28374454999*1568397607^(7/22) 4180999952164553 a001 591286729879/119218851371*1568397607^(7/22) 4180999952164553 a001 2971215073/4106118243*1568397607^(9/22) 4180999952164553 a001 225851433717/45537549124*1568397607^(7/22) 4180999952164553 a004 Fibonacci(45)*Lucas(47)/(1/2+sqrt(5)/2)^73 4180999952164553 a001 86267571272/17393796001*1568397607^(7/22) 4180999952164553 a001 86267571272/6643838879*1568397607^(3/11) 4180999952164553 a001 591286729879/2537720636*2537720636^(2/15) 4180999952164553 a001 956722026041/2537720636*2537720636^(1/9) 4180999952164553 a001 10182505537/5374978561*1568397607^(4/11) 4180999952164553 a001 4052739537881/4106118243*599074578^(1/14) 4180999952164553 a001 2504730781961/2537720636*2537720636^(1/15) 4180999952164553 a001 567451585/5374978561*312119004989^(2/5) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^22/Lucas(48) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^16/Lucas(45) 4180999952164553 a001 1201881744/634430159*23725150497407^(1/4) 4180999952164553 a001 53316291173/28143753123*1568397607^(4/11) 4180999952164553 a001 1201881744/634430159*73681302247^(4/13) 4180999952164553 a001 1836311903/17393796001*1568397607^(1/2) 4180999952164553 a001 139583862445/73681302247*1568397607^(4/11) 4180999952164553 a001 182717648081/96450076809*1568397607^(4/11) 4180999952164553 a001 956722026041/505019158607*1568397607^(4/11) 4180999952164553 a001 10610209857723/5600748293801*1568397607^(4/11) 4180999952164553 a001 591286729879/312119004989*1568397607^(4/11) 4180999952164553 a001 225851433717/119218851371*1568397607^(4/11) 4180999952164553 a001 1836311903/6643838879*1568397607^(5/11) 4180999952164553 a001 21566892818/11384387281*1568397607^(4/11) 4180999952164553 a001 1201881744/634430159*10749957122^(1/3) 4180999952164553 a001 567451585/5374978561*10749957122^(11/24) 4180999952164553 a001 32951280099/17393796001*1568397607^(4/11) 4180999952164553 a001 32951280099/6643838879*1568397607^(7/22) 4180999952164553 a004 Fibonacci(45)*Lucas(49)/(1/2+sqrt(5)/2)^75 4180999952164553 a001 1134903170/5600748293801*17393796001^(5/7) 4180999952164553 a001 1144206275/230701876*17393796001^(2/7) 4180999952164553 a001 567451585/96450076809*17393796001^(4/7) 4180999952164553 a001 1134903170/28143753123*45537549124^(8/17) 4180999952164553 a001 1134903170/28143753123*14662949395604^(8/21) 4180999952164553 a001 1144206275/230701876*14662949395604^(2/9) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^24/Lucas(50) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^14/Lucas(45) 4180999952164553 a001 1134903170/28143753123*192900153618^(4/9) 4180999952164553 a001 1134903170/28143753123*73681302247^(6/13) 4180999952164553 a004 Fibonacci(45)*Lucas(51)/(1/2+sqrt(5)/2)^77 4180999952164553 a001 182717648081/1268860318*17393796001^(1/7) 4180999952164553 a001 1134903170/9062201101803*45537549124^(12/17) 4180999952164553 a001 567451585/1730726404001*45537549124^(2/3) 4180999952164553 a001 1134903170/2139295485799*45537549124^(11/17) 4180999952164553 a001 32951280099/2537720636*45537549124^(4/17) 4180999952164553 a001 1134903170/505019158607*45537549124^(10/17) 4180999952164553 a001 1134903170/119218851371*45537549124^(9/17) 4180999952164553 a001 32951280099/2537720636*817138163596^(4/19) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^26/Lucas(52) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^12/Lucas(45) 4180999952164553 a001 32951280099/2537720636*192900153618^(2/9) 4180999952164553 a001 32951280099/2537720636*73681302247^(3/13) 4180999952164553 a001 1134903170/73681302247*73681302247^(1/2) 4180999952164553 a001 139583862445/2537720636*45537549124^(3/17) 4180999952164553 a004 Fibonacci(45)*Lucas(53)/(1/2+sqrt(5)/2)^79 4180999952164553 a001 591286729879/2537720636*45537549124^(2/17) 4180999952164553 a001 1135099622/33391061*312119004989^(2/11) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^28/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^10/Lucas(45) 4180999952164553 a001 567451585/96450076809*505019158607^(1/2) 4180999952164553 a004 Fibonacci(45)*Lucas(55)/(1/2+sqrt(5)/2)^81 4180999952164553 a001 1134903170/505019158607*312119004989^(6/11) 4180999952164553 a001 1134903170/2139295485799*312119004989^(3/5) 4180999952164553 a001 1134903170/505019158607*14662949395604^(10/21) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^30/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^8/Lucas(45) 4180999952164553 a004 Fibonacci(45)*Lucas(57)/(1/2+sqrt(5)/2)^83 4180999952164553 a001 1134903170/2139295485799*817138163596^(11/19) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^32/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^6/Lucas(45) 4180999952164553 a001 1134903170/1322157322203*23725150497407^(1/2) 4180999952164553 a004 Fibonacci(45)*Lucas(59)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^34/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^4/Lucas(45) 4180999952164553 a004 Fibonacci(45)*Lucas(61)/(1/2+sqrt(5)/2)^87 4180999952164553 a001 1134903170/9062201101803*14662949395604^(4/7) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^36/Lucas(62) 4180999952164553 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^2/Lucas(45) 4180999952164553 a004 Fibonacci(45)*Lucas(63)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^38/Lucas(64) 4180999952164553 a004 Fibonacci(45)*Lucas(65)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^40/Lucas(66) 4180999952164553 a004 Fibonacci(66)/Lucas(45)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(45)*Lucas(67)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^42/Lucas(68) 4180999952164553 a004 Fibonacci(68)/Lucas(45)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(45)*Lucas(69)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^44/Lucas(70) 4180999952164553 a004 Fibonacci(70)/Lucas(45)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(45)*Lucas(71)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^46/Lucas(72) 4180999952164553 a004 Fibonacci(72)/Lucas(45)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(45)*Lucas(73)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^48/Lucas(74) 4180999952164553 a004 Fibonacci(74)/Lucas(45)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^50/Lucas(76) 4180999952164553 a004 Fibonacci(76)/Lucas(45)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^52/Lucas(78) 4180999952164553 a004 Fibonacci(78)/Lucas(45)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^54/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(45)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^56/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(45)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^58/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(45)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^60/Lucas(86) 4180999952164553 a004 Fibonacci(86)/Lucas(45)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^62/Lucas(88) 4180999952164553 a004 Fibonacci(88)/Lucas(45)/(1/2+sqrt(5)/2)^24 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^64/Lucas(90) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^66/Lucas(92) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^68/Lucas(94) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^70/Lucas(96) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^72/Lucas(98) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^73/Lucas(99) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^74/Lucas(100) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^71/Lucas(97) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^69/Lucas(95) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^67/Lucas(93) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^65/Lucas(91) 4180999952164553 a004 Fibonacci(92)/Lucas(45)/(1/2+sqrt(5)/2)^28 4180999952164553 a004 Fibonacci(94)/Lucas(45)/(1/2+sqrt(5)/2)^30 4180999952164553 a004 Fibonacci(96)/Lucas(45)/(1/2+sqrt(5)/2)^32 4180999952164553 a004 Fibonacci(100)/Lucas(45)/(1/2+sqrt(5)/2)^36 4180999952164553 a004 Fibonacci(98)/Lucas(45)/(1/2+sqrt(5)/2)^34 4180999952164553 a004 Fibonacci(99)/Lucas(45)/(1/2+sqrt(5)/2)^35 4180999952164553 a004 Fibonacci(97)/Lucas(45)/(1/2+sqrt(5)/2)^33 4180999952164553 a004 Fibonacci(95)/Lucas(45)/(1/2+sqrt(5)/2)^31 4180999952164553 a004 Fibonacci(93)/Lucas(45)/(1/2+sqrt(5)/2)^29 4180999952164553 a004 Fibonacci(91)/Lucas(45)/(1/2+sqrt(5)/2)^27 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^63/Lucas(89) 4180999952164553 a004 Fibonacci(89)/Lucas(45)/(1/2+sqrt(5)/2)^25 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^61/Lucas(87) 4180999952164553 a004 Fibonacci(87)/Lucas(45)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^59/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(45)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^57/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(45)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^55/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(45)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^53/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(45)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^51/Lucas(77) 4180999952164553 a004 Fibonacci(77)/Lucas(45)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^49/Lucas(75) 4180999952164553 a004 Fibonacci(75)/Lucas(45)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(45)*Lucas(74)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^47/Lucas(73) 4180999952164553 a004 Fibonacci(73)/Lucas(45)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(45)*Lucas(72)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^45/Lucas(71) 4180999952164553 a004 Fibonacci(71)/Lucas(45)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(45)*Lucas(70)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^43/Lucas(69) 4180999952164553 a004 Fibonacci(69)/Lucas(45)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(45)*Lucas(68)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^41/Lucas(67) 4180999952164553 a004 Fibonacci(67)/Lucas(45)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(45)*Lucas(66)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^39/Lucas(65) 4180999952164553 a004 Fibonacci(65)/Lucas(45)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(45)*Lucas(64)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^37/Lucas(63) 4180999952164553 a004 Fibonacci(63)*(1/2+sqrt(5)/2)/Lucas(45) 4180999952164553 a004 Fibonacci(45)*Lucas(62)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^35/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^3/Lucas(45) 4180999952164553 a004 Fibonacci(45)*Lucas(60)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^33/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^5/Lucas(45) 4180999952164553 a004 Fibonacci(45)*Lucas(58)/(1/2+sqrt(5)/2)^84 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^31/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^7/Lucas(45) 4180999952164553 a001 1134903170/1322157322203*505019158607^(4/7) 4180999952164553 a004 Fibonacci(45)*Lucas(56)/(1/2+sqrt(5)/2)^82 4180999952164553 a001 139583862445/2537720636*14662949395604^(1/7) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^29/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^9/Lucas(45) 4180999952164553 a001 1134903170/312119004989*1322157322203^(1/2) 4180999952164553 a001 1134903170/505019158607*192900153618^(5/9) 4180999952164553 a001 1134903170/2139295485799*192900153618^(11/18) 4180999952164553 a001 1134903170/9062201101803*192900153618^(2/3) 4180999952164553 a001 225851433717/2537720636*73681302247^(2/13) 4180999952164553 a004 Fibonacci(45)*Lucas(54)/(1/2+sqrt(5)/2)^80 4180999952164553 a001 10610209857723/6643838879*599074578^(1/21) 4180999952164553 a001 53316291173/2537720636*312119004989^(1/5) 4180999952164553 a001 1134903170/119218851371*817138163596^(9/19) 4180999952164553 a001 1134903170/119218851371*14662949395604^(3/7) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^27/Lucas(53) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^11/Lucas(45) 4180999952164553 a001 1134903170/119218851371*192900153618^(1/2) 4180999952164553 a001 1134903170/1322157322203*73681302247^(8/13) 4180999952164553 a001 1134903170/9062201101803*73681302247^(9/13) 4180999952164553 a004 Fibonacci(45)*Lucas(52)/(1/2+sqrt(5)/2)^78 4180999952164553 a001 1135099622/33391061*28143753123^(1/5) 4180999952164553 a001 4052739537881/2537720636*10749957122^(1/24) 4180999952164553 a001 567451585/22768774562*312119004989^(5/11) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^25/Lucas(51) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^13/Lucas(45) 4180999952164553 a001 567451585/22768774562*3461452808002^(5/12) 4180999952164553 a001 10182505537/1268860318*73681302247^(1/4) 4180999952164553 a001 2504730781961/2537720636*10749957122^(1/16) 4180999952164553 a001 1134903780/1860499*10749957122^(1/12) 4180999952164553 a001 1134903170/505019158607*28143753123^(3/5) 4180999952164553 a001 1134903170/5600748293801*28143753123^(7/10) 4180999952164553 a001 591286729879/2537720636*10749957122^(1/8) 4180999952164553 a001 567451585/22768774562*28143753123^(1/2) 4180999952164553 a001 1144206275/230701876*10749957122^(7/24) 4180999952164553 a004 Fibonacci(45)*Lucas(50)/(1/2+sqrt(5)/2)^76 4180999952164553 a001 225851433717/2537720636*10749957122^(1/6) 4180999952164553 a001 139583862445/2537720636*10749957122^(3/16) 4180999952164553 a001 1135099622/33391061*10749957122^(5/24) 4180999952164553 a001 32951280099/2537720636*10749957122^(1/4) 4180999952164553 a001 4052739537881/2537720636*4106118243^(1/23) 4180999952164553 a001 1134903170/28143753123*10749957122^(1/2) 4180999952164553 a001 7778742049/2537720636*45537549124^(5/17) 4180999952164553 a001 7778742049/2537720636*312119004989^(3/11) 4180999952164553 a001 7778742049/2537720636*14662949395604^(5/21) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^23/Lucas(49) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^15/Lucas(45) 4180999952164553 a001 7778742049/2537720636*192900153618^(5/18) 4180999952164553 a001 7778742049/2537720636*28143753123^(3/10) 4180999952164553 a001 1134903170/73681302247*10749957122^(13/24) 4180999952164553 a001 1134903170/119218851371*10749957122^(9/16) 4180999952164553 a001 567451585/96450076809*10749957122^(7/12) 4180999952164553 a001 1134903780/1860499*4106118243^(2/23) 4180999952164553 a001 1134903170/505019158607*10749957122^(5/8) 4180999952164553 a001 7778742049/10749957122*1568397607^(9/22) 4180999952164553 a001 1134903170/1322157322203*10749957122^(2/3) 4180999952164553 a001 1134903170/2139295485799*10749957122^(11/16) 4180999952164553 a001 7778742049/2537720636*10749957122^(5/16) 4180999952164553 a001 567451585/1730726404001*10749957122^(17/24) 4180999952164553 a001 1134903170/9062201101803*10749957122^(3/4) 4180999952164553 a001 1134903170/23725150497407*10749957122^(19/24) 4180999952164553 a001 1836311903/45537549124*1568397607^(6/11) 4180999952164553 a001 591286729879/2537720636*4106118243^(3/23) 4180999952164553 a004 Fibonacci(45)*Lucas(48)/(1/2+sqrt(5)/2)^74 4180999952164553 a001 20365011074/28143753123*1568397607^(9/22) 4180999952164553 a001 225851433717/2537720636*4106118243^(4/23) 4180999952164553 a001 53316291173/73681302247*1568397607^(9/22) 4180999952164553 a001 139583862445/192900153618*1568397607^(9/22) 4180999952164553 a001 591286729879/817138163596*1568397607^(9/22) 4180999952164553 a001 225851433717/312119004989*1568397607^(9/22) 4180999952164553 a001 86267571272/119218851371*1568397607^(9/22) 4180999952164553 a001 32951280099/45537549124*1568397607^(9/22) 4180999952164553 a001 1201881744/634430159*4106118243^(8/23) 4180999952164553 a001 1135099622/33391061*4106118243^(5/23) 4180999952164553 a001 12586269025/17393796001*1568397607^(9/22) 4180999952164553 a001 12586269025/6643838879*1568397607^(4/11) 4180999952164553 a001 32951280099/2537720636*4106118243^(6/23) 4180999952164553 a001 1144206275/230701876*4106118243^(7/23) 4180999952164553 a001 4052739537881/2537720636*1568397607^(1/22) 4180999952164553 a001 567451585/5374978561*4106118243^(11/23) 4180999952164553 a001 1134903170/6643838879*17393796001^(3/7) 4180999952164553 a001 1134903170/6643838879*45537549124^(7/17) 4180999952164553 a001 2971215073/2537720636*45537549124^(1/3) 4180999952164553 a001 1134903170/6643838879*14662949395604^(1/3) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^21/Lucas(47) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^17/Lucas(45) 4180999952164553 a001 1134903170/6643838879*192900153618^(7/18) 4180999952164553 a001 4807526976/17393796001*1568397607^(5/11) 4180999952164553 a001 4807526976/6643838879*1568397607^(9/22) 4180999952164553 a001 1836311903/119218851371*1568397607^(13/22) 4180999952164553 a001 1134903170/6643838879*10749957122^(7/16) 4180999952164553 a001 12586269025/45537549124*1568397607^(5/11) 4180999952164553 a001 32951280099/119218851371*1568397607^(5/11) 4180999952164553 a001 86267571272/312119004989*1568397607^(5/11) 4180999952164553 a001 225851433717/817138163596*1568397607^(5/11) 4180999952164553 a001 1548008755920/5600748293801*1568397607^(5/11) 4180999952164553 a001 139583862445/505019158607*1568397607^(5/11) 4180999952164553 a001 53316291173/192900153618*1568397607^(5/11) 4180999952164553 a001 1134903170/28143753123*4106118243^(12/23) 4180999952164553 a001 20365011074/73681302247*1568397607^(5/11) 4180999952164553 a001 7778742049/28143753123*1568397607^(5/11) 4180999952164553 a001 1134903170/17393796001*4106118243^(1/2) 4180999952164553 a001 1134903170/73681302247*4106118243^(13/23) 4180999952164553 a001 4807525989/4870846*599074578^(1/14) 4180999952164553 a001 86267571272/1568397607*599074578^(3/14) 4180999952164553 a001 567451585/96450076809*4106118243^(14/23) 4180999952164553 a001 1134903780/1860499*1568397607^(1/11) 4180999952164553 a001 1134903170/505019158607*4106118243^(15/23) 4180999952164553 a001 1201881744/11384387281*1568397607^(1/2) 4180999952164553 a001 1134903170/1322157322203*4106118243^(16/23) 4180999952164553 a001 2971215073/10749957122*1568397607^(5/11) 4180999952164553 a001 567451585/1730726404001*4106118243^(17/23) 4180999952164553 a001 1836311903/312119004989*1568397607^(7/11) 4180999952164553 a001 1134903170/9062201101803*4106118243^(18/23) 4180999952164553 a001 12586269025/119218851371*1568397607^(1/2) 4180999952164553 a001 32951280099/312119004989*1568397607^(1/2) 4180999952164553 a001 21566892818/204284540899*1568397607^(1/2) 4180999952164553 a001 225851433717/2139295485799*1568397607^(1/2) 4180999952164553 a001 182717648081/1730726404001*1568397607^(1/2) 4180999952164553 a001 139583862445/1322157322203*1568397607^(1/2) 4180999952164553 a001 53316291173/505019158607*1568397607^(1/2) 4180999952164553 a001 10182505537/96450076809*1568397607^(1/2) 4180999952164553 a001 1134903170/23725150497407*4106118243^(19/23) 4180999952164553 a001 2504730781961/4106118243*599074578^(2/21) 4180999952164553 a001 7778742049/73681302247*1568397607^(1/2) 4180999952164553 a001 591286729879/2537720636*1568397607^(3/22) 4180999952164553 a001 4807526976/119218851371*1568397607^(6/11) 4180999952164553 a004 Fibonacci(45)*Lucas(46)/(1/2+sqrt(5)/2)^72 4180999952164553 a001 1836311903/817138163596*1568397607^(15/22) 4180999952164553 a001 1144206275/28374454999*1568397607^(6/11) 4180999952164553 a001 32951280099/817138163596*1568397607^(6/11) 4180999952164553 a001 6557470319842/6643838879*599074578^(1/14) 4180999952164553 a001 86267571272/2139295485799*1568397607^(6/11) 4180999952164553 a001 225851433717/5600748293801*1568397607^(6/11) 4180999952164553 a001 591286729879/14662949395604*1568397607^(6/11) 4180999952164553 a001 365435296162/9062201101803*1568397607^(6/11) 4180999952164553 a001 139583862445/3461452808002*1568397607^(6/11) 4180999952164553 a001 53316291173/1322157322203*1568397607^(6/11) 4180999952164553 a001 20365011074/505019158607*1568397607^(6/11) 4180999952164553 a001 2971215073/28143753123*1568397607^(1/2) 4180999952164553 a001 7778742049/192900153618*1568397607^(6/11) 4180999952164553 a001 225851433717/2537720636*1568397607^(2/11) 4180999952164553 a001 4807526976/312119004989*1568397607^(13/22) 4180999952164553 a001 1836311903/2139295485799*1568397607^(8/11) 4180999952164553 a001 12586269025/817138163596*1568397607^(13/22) 4180999952164553 a001 32951280099/2139295485799*1568397607^(13/22) 4180999952164553 a001 86267571272/5600748293801*1568397607^(13/22) 4180999952164553 a001 7787980473/505618944676*1568397607^(13/22) 4180999952164553 a001 365435296162/23725150497407*1568397607^(13/22) 4180999952164553 a001 139583862445/9062201101803*1568397607^(13/22) 4180999952164553 a001 53316291173/3461452808002*1568397607^(13/22) 4180999952164553 a001 20365011074/1322157322203*1568397607^(13/22) 4180999952164553 a001 7778742049/505019158607*1568397607^(13/22) 4180999952164553 a001 2971215073/73681302247*1568397607^(6/11) 4180999952164553 a001 1836311903/3461452808002*1568397607^(3/4) 4180999952164553 a001 1135099622/33391061*1568397607^(5/22) 4180999952164553 a001 1201881744/204284540899*1568397607^(7/11) 4180999952164553 a001 1836311903/5600748293801*1568397607^(17/22) 4180999952164553 a001 3278735159921/5374978561*599074578^(2/21) 4180999952164553 a001 53316291173/1568397607*599074578^(5/21) 4180999952164553 a001 53316291173/2537720636*1568397607^(1/4) 4180999952164553 a001 12586269025/2139295485799*1568397607^(7/11) 4180999952164553 a001 32951280099/5600748293801*1568397607^(7/11) 4180999952164553 a001 1135099622/192933544679*1568397607^(7/11) 4180999952164553 a001 139583862445/23725150497407*1568397607^(7/11) 4180999952164553 a001 53316291173/9062201101803*1568397607^(7/11) 4180999952164553 a001 10182505537/1730726404001*1568397607^(7/11) 4180999952164553 a001 7778742049/1322157322203*1568397607^(7/11) 4180999952164553 a001 1836311903/2537720636*1568397607^(9/22) 4180999952164553 a001 2971215073/192900153618*1568397607^(13/22) 4180999952164553 a001 32951280099/2537720636*1568397607^(3/11) 4180999952164553 a001 4807526976/2139295485799*1568397607^(15/22) 4180999952164553 a001 10610209857723/17393796001*599074578^(2/21) 4180999952164553 a001 1836311903/14662949395604*1568397607^(9/11) 4180999952164553 a001 12586269025/5600748293801*1568397607^(15/22) 4180999952164553 a001 32951280099/14662949395604*1568397607^(15/22) 4180999952164553 a001 53316291173/23725150497407*1568397607^(15/22) 4180999952164553 a001 20365011074/9062201101803*1568397607^(15/22) 4180999952164553 a001 7778742049/3461452808002*1568397607^(15/22) 4180999952164553 a001 1134903170/4106118243*1568397607^(5/11) 4180999952164553 a001 2971215073/505019158607*1568397607^(7/11) 4180999952164553 a001 1144206275/230701876*1568397607^(7/22) 4180999952164553 a001 4807526976/5600748293801*1568397607^(8/11) 4180999952164553 a001 4052739537881/2537720636*599074578^(1/21) 4180999952164553 a001 4052739537881/6643838879*599074578^(2/21) 4180999952164553 a001 12586269025/14662949395604*1568397607^(8/11) 4180999952164553 a001 1201881744/634430159*1568397607^(4/11) 4180999952164553 a001 20365011074/23725150497407*1568397607^(8/11) 4180999952164553 a001 1602508992/3020733700601*1568397607^(3/4) 4180999952164553 a001 7778742049/9062201101803*1568397607^(8/11) 4180999952164553 a001 2971215073/1322157322203*1568397607^(15/22) 4180999952164553 a001 12586269025/23725150497407*1568397607^(3/4) 4180999952164553 a001 1201881744/3665737348901*1568397607^(17/22) 4180999952164553 a001 7778742049/14662949395604*1568397607^(3/4) 4180999952164553 a001 567451585/1268860318*817138163596^(1/3) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^19/Lucas(45) 4180999952164553 a001 7778742049/23725150497407*1568397607^(17/22) 4180999952164553 a001 2971215073/3461452808002*1568397607^(8/11) 4180999952164553 a001 2971215073/5600748293801*1568397607^(3/4) 4180999952164553 a001 2971215073/9062201101803*1568397607^(17/22) 4180999952164553 a001 956722026041/4106118243*599074578^(1/7) 4180999952164553 a004 Fibonacci(46)*Lucas(44)/(1/2+sqrt(5)/2)^71 4180999952164553 a001 567451585/5374978561*1568397607^(1/2) 4180999952164553 a001 2504730781961/2537720636*599074578^(1/14) 4180999952164553 a001 2971215073/23725150497407*1568397607^(9/11) 4180999952164553 a001 1134903170/28143753123*1568397607^(6/11) 4180999952164553 a001 2504730781961/10749957122*599074578^(1/7) 4180999952164553 a001 20365011074/1568397607*599074578^(2/7) 4180999952164553 a001 1134903170/73681302247*1568397607^(13/22) 4180999952164553 a001 6557470319842/28143753123*599074578^(1/7) 4180999952164553 a004 Fibonacci(48)*Lucas(44)/(1/2+sqrt(5)/2)^73 4180999952164553 a001 10610209857723/45537549124*599074578^(1/7) 4180999952164553 a001 4052739537881/17393796001*599074578^(1/7) 4180999952164553 a001 591286729879/4106118243*599074578^(1/6) 4180999952164553 a004 Fibonacci(50)*Lucas(44)/(1/2+sqrt(5)/2)^75 4180999952164553 a004 Fibonacci(52)*Lucas(44)/(1/2+sqrt(5)/2)^77 4180999952164553 a004 Fibonacci(54)*Lucas(44)/(1/2+sqrt(5)/2)^79 4180999952164553 a004 Fibonacci(56)*Lucas(44)/(1/2+sqrt(5)/2)^81 4180999952164553 a004 Fibonacci(58)*Lucas(44)/(1/2+sqrt(5)/2)^83 4180999952164553 a004 Fibonacci(60)*Lucas(44)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(62)*Lucas(44)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(64)*Lucas(44)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(66)*Lucas(44)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(68)*Lucas(44)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(70)*Lucas(44)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(72)*Lucas(44)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(74)*Lucas(44)/(1/2+sqrt(5)/2)^99 4180999952164553 a001 2/701408733*(1/2+1/2*5^(1/2))^63 4180999952164553 a004 Fibonacci(75)*Lucas(44)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(73)*Lucas(44)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(71)*Lucas(44)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(69)*Lucas(44)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(67)*Lucas(44)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(65)*Lucas(44)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(63)*Lucas(44)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(61)*Lucas(44)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(59)*Lucas(44)/(1/2+sqrt(5)/2)^84 4180999952164553 a004 Fibonacci(57)*Lucas(44)/(1/2+sqrt(5)/2)^82 4180999952164553 a004 Fibonacci(55)*Lucas(44)/(1/2+sqrt(5)/2)^80 4180999952164553 a004 Fibonacci(53)*Lucas(44)/(1/2+sqrt(5)/2)^78 4180999952164553 a004 Fibonacci(51)*Lucas(44)/(1/2+sqrt(5)/2)^76 4180999952164553 a004 Fibonacci(49)*Lucas(44)/(1/2+sqrt(5)/2)^74 4180999952164553 a001 567451585/96450076809*1568397607^(7/11) 4180999952164553 a001 1134903780/1860499*599074578^(2/21) 4180999952164553 a001 1548008755920/6643838879*599074578^(1/7) 4180999952164553 a004 Fibonacci(47)*Lucas(44)/(1/2+sqrt(5)/2)^72 4180999952164553 a001 1134903170/505019158607*1568397607^(15/22) 4180999952164553 a001 1134903170/1322157322203*1568397607^(8/11) 4180999952164553 a001 774004377960/5374978561*599074578^(1/6) 4180999952164553 a001 1134903170/2139295485799*1568397607^(3/4) 4180999952164553 a001 4052739537881/28143753123*599074578^(1/6) 4180999952164553 a001 1515744265389/10525900321*599074578^(1/6) 4180999952164553 a001 3278735159921/22768774562*599074578^(1/6) 4180999952164553 a001 2504730781961/17393796001*599074578^(1/6) 4180999952164553 a001 567451585/1730726404001*1568397607^(17/22) 4180999952164553 a001 365435296162/4106118243*599074578^(4/21) 4180999952164553 a001 956722026041/6643838879*599074578^(1/6) 4180999952164553 a001 1134903170/9062201101803*1568397607^(9/11) 4180999952164553 a001 1134903170/23725150497407*1568397607^(19/22) 4180999952164553 a001 956722026041/10749957122*599074578^(4/21) 4180999952164553 a001 7778742049/1568397607*599074578^(1/3) 4180999952164553 a001 2504730781961/28143753123*599074578^(4/21) 4180999952164553 a001 6557470319842/73681302247*599074578^(4/21) 4180999952164553 a001 10610209857723/119218851371*599074578^(4/21) 4180999952164553 a001 4052739537881/45537549124*599074578^(4/21) 4180999952164553 a001 1548008755920/17393796001*599074578^(4/21) 4180999952164553 a001 75283811239/1368706081*599074578^(3/14) 4180999952164553 a001 2504730781961/1568397607*228826127^(1/20) 4180999952164553 a001 591286729879/2537720636*599074578^(1/7) 4180999952164553 a001 591286729879/6643838879*599074578^(4/21) 4180999952164553 a004 Fibonacci(45)*Lucas(44)/(1/2+sqrt(5)/2)^70 4180999952164553 a001 686789568/224056801*599074578^(5/14) 4180999952164553 a001 591286729879/10749957122*599074578^(3/14) 4180999952164553 a001 433494437/1568397607*2537720636^(4/9) 4180999952164553 a001 701408733/969323029*2537720636^(2/5) 4180999952164553 a001 12585437040/228811001*599074578^(3/14) 4180999952164553 a001 4052739537881/73681302247*599074578^(3/14) 4180999952164553 a001 3536736619241/64300051206*599074578^(3/14) 4180999952164553 a001 6557470319842/119218851371*599074578^(3/14) 4180999952164553 a001 2504730781961/45537549124*599074578^(3/14) 4180999952164553 a001 956722026041/17393796001*599074578^(3/14) 4180999952164553 a001 139583862445/4106118243*599074578^(5/21) 4180999952164553 a001 182717648081/1268860318*599074578^(1/6) 4180999952164553 a001 365435296162/6643838879*599074578^(3/14) 4180999952164553 a001 182717648081/5374978561*599074578^(5/21) 4180999952164553 a001 701408733/969323029*45537549124^(6/17) 4180999952164553 a001 701408733/969323029*14662949395604^(2/7) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^20/Lucas(44) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^18/Lucas(43) 4180999952164553 a001 433494437/1568397607*23725150497407^(5/16) 4180999952164553 a001 433494437/1568397607*505019158607^(5/14) 4180999952164553 a001 701408733/969323029*192900153618^(1/3) 4180999952164553 a001 433494437/1568397607*73681302247^(5/13) 4180999952164553 a001 433494437/1568397607*28143753123^(2/5) 4180999952164553 a001 701408733/969323029*10749957122^(3/8) 4180999952164553 a001 433494437/1568397607*10749957122^(5/12) 4180999952164553 a001 956722026041/28143753123*599074578^(5/21) 4180999952164553 a001 2504730781961/73681302247*599074578^(5/21) 4180999952164553 a001 3278735159921/96450076809*599074578^(5/21) 4180999952164553 a001 10610209857723/312119004989*599074578^(5/21) 4180999952164553 a001 4052739537881/119218851371*599074578^(5/21) 4180999952164553 a001 387002188980/11384387281*599074578^(5/21) 4180999952164553 a001 591286729879/17393796001*599074578^(5/21) 4180999952164553 a001 2971215073/1568397607*599074578^(8/21) 4180999952164553 a001 701408733/969323029*4106118243^(9/23) 4180999952164553 a001 433494437/1568397607*4106118243^(10/23) 4180999952164553 a001 225851433717/2537720636*599074578^(4/21) 4180999952164553 a001 225851433717/6643838879*599074578^(5/21) 4180999952164553 a001 53316291173/4106118243*599074578^(2/7) 4180999952164553 a001 139583862445/2537720636*599074578^(3/14) 4180999952164553 a001 139583862445/10749957122*599074578^(2/7) 4180999952164553 a001 365435296162/28143753123*599074578^(2/7) 4180999952164553 a001 956722026041/73681302247*599074578^(2/7) 4180999952164553 a001 2504730781961/192900153618*599074578^(2/7) 4180999952164553 a001 10610209857723/817138163596*599074578^(2/7) 4180999952164553 a001 4052739537881/312119004989*599074578^(2/7) 4180999952164553 a001 1548008755920/119218851371*599074578^(2/7) 4180999952164553 a001 591286729879/45537549124*599074578^(2/7) 4180999952164553 a001 7787980473/599786069*599074578^(2/7) 4180999952164553 a001 1135099622/33391061*599074578^(5/21) 4180999952164553 a001 86267571272/6643838879*599074578^(2/7) 4180999952164553 a001 701408733/969323029*1568397607^(9/22) 4180999952164553 a001 433494437/1568397607*1568397607^(5/11) 4180999952164553 a001 20365011074/4106118243*599074578^(1/3) 4180999952164553 a001 6557470319842/4106118243*228826127^(1/20) 4180999952164553 a004 Fibonacci(43)*Lucas(45)/(1/2+sqrt(5)/2)^69 4180999952164553 a001 53316291173/10749957122*599074578^(1/3) 4180999952164553 a001 433494437/23725150497407*2537720636^(8/9) 4180999952164553 a001 233802911/1368706081*599074578^(1/2) 4180999952164553 a001 139583862445/28143753123*599074578^(1/3) 4180999952164553 a001 365435296162/73681302247*599074578^(1/3) 4180999952164553 a001 956722026041/192900153618*599074578^(1/3) 4180999952164553 a001 2504730781961/505019158607*599074578^(1/3) 4180999952164553 a001 10610209857723/2139295485799*599074578^(1/3) 4180999952164553 a001 4052739537881/817138163596*599074578^(1/3) 4180999952164553 a001 140728068720/28374454999*599074578^(1/3) 4180999952164553 a001 591286729879/119218851371*599074578^(1/3) 4180999952164553 a001 225851433717/45537549124*599074578^(1/3) 4180999952164553 a001 433494437/14662949395604*2537720636^(13/15) 4180999952164553 a001 86267571272/17393796001*599074578^(1/3) 4180999952164553 a001 12586269025/4106118243*599074578^(5/14) 4180999952164553 a001 433494437/3461452808002*2537720636^(4/5) 4180999952164553 a001 1134903170/1568397607*599074578^(3/7) 4180999952164553 a001 433494437/2139295485799*2537720636^(7/9) 4180999952164553 a001 433494437/817138163596*2537720636^(11/15) 4180999952164553 a001 32951280099/2537720636*599074578^(2/7) 4180999952164553 a001 32951280099/6643838879*599074578^(1/3) 4180999952164553 a001 433494437/192900153618*2537720636^(2/3) 4180999952164553 a001 433494437/45537549124*2537720636^(3/5) 4180999952164553 a001 433494437/10749957122*2537720636^(8/15) 4180999952164553 a001 10610209857723/6643838879*228826127^(1/20) 4180999952164553 a001 433494437/17393796001*2537720636^(5/9) 4180999952164553 a001 32951280099/10749957122*599074578^(5/14) 4180999952164553 a001 86267571272/28143753123*599074578^(5/14) 4180999952164553 a001 32264490531/10525900321*599074578^(5/14) 4180999952164553 a001 591286729879/192900153618*599074578^(5/14) 4180999952164553 a001 1548008755920/505019158607*599074578^(5/14) 4180999952164553 a001 1515744265389/494493258286*599074578^(5/14) 4180999952164553 a001 2504730781961/817138163596*599074578^(5/14) 4180999952164553 a001 956722026041/312119004989*599074578^(5/14) 4180999952164553 a001 365435296162/119218851371*599074578^(5/14) 4180999952164553 a001 139583862445/45537549124*599074578^(5/14) 4180999952164553 a001 53316291173/17393796001*599074578^(5/14) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^22/Lucas(46) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^16/Lucas(43) 4180999952164553 a001 1836311903/969323029*23725150497407^(1/4) 4180999952164553 a001 1836311903/969323029*73681302247^(4/13) 4180999952164553 a001 7778742049/4106118243*599074578^(8/21) 4180999952164553 a001 1836311903/969323029*10749957122^(1/3) 4180999952164553 a001 433494437/4106118243*10749957122^(11/24) 4180999952164553 a001 20365011074/6643838879*599074578^(5/14) 4180999952164553 a001 12586269025/969323029*2537720636^(4/15) 4180999952164553 a001 1836311903/969323029*4106118243^(8/23) 4180999952164553 a001 32951280099/969323029*2537720636^(2/9) 4180999952164553 a001 53316291173/599074578*228826127^(1/5) 4180999952164553 a001 53316291173/969323029*2537720636^(1/5) 4180999952164553 a001 433494437/4106118243*4106118243^(11/23) 4180999952164553 a001 2971215073/969323029*2537720636^(1/3) 4180999952164553 a004 Fibonacci(43)*Lucas(47)/(1/2+sqrt(5)/2)^71 4180999952164553 a001 225851433717/969323029*2537720636^(2/15) 4180999952164553 a001 365435296162/969323029*2537720636^(1/9) 4180999952164553 a001 10182505537/5374978561*599074578^(8/21) 4180999952164553 a001 956722026041/969323029*2537720636^(1/15) 4180999952164553 a001 4807526976/969323029*17393796001^(2/7) 4180999952164553 a001 433494437/10749957122*45537549124^(8/17) 4180999952164553 a001 433494437/10749957122*14662949395604^(8/21) 4180999952164553 a001 4807526976/969323029*14662949395604^(2/9) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^24/Lucas(48) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^14/Lucas(43) 4180999952164553 a001 4807526976/969323029*505019158607^(1/4) 4180999952164553 a001 433494437/10749957122*192900153618^(4/9) 4180999952164553 a001 433494437/10749957122*73681302247^(6/13) 4180999952164553 a001 4807526976/969323029*10749957122^(7/24) 4180999952164553 a001 433494437/10749957122*10749957122^(1/2) 4180999952164553 a001 53316291173/28143753123*599074578^(8/21) 4180999952164553 a004 Fibonacci(43)*Lucas(49)/(1/2+sqrt(5)/2)^73 4180999952164553 a001 139583862445/73681302247*599074578^(8/21) 4180999952164553 a001 182717648081/96450076809*599074578^(8/21) 4180999952164553 a001 956722026041/505019158607*599074578^(8/21) 4180999952164553 a001 10610209857723/5600748293801*599074578^(8/21) 4180999952164553 a001 591286729879/312119004989*599074578^(8/21) 4180999952164553 a001 225851433717/119218851371*599074578^(8/21) 4180999952164553 a001 21566892818/11384387281*599074578^(8/21) 4180999952164553 a001 433494437/2139295485799*17393796001^(5/7) 4180999952164553 a001 433494437/73681302247*17393796001^(4/7) 4180999952164553 a001 12586269025/969323029*45537549124^(4/17) 4180999952164553 a001 12586269025/969323029*817138163596^(4/19) 4180999952164553 a001 12586269025/969323029*14662949395604^(4/21) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^26/Lucas(50) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^12/Lucas(43) 4180999952164553 a001 12586269025/969323029*192900153618^(2/9) 4180999952164553 a001 12586269025/969323029*73681302247^(3/13) 4180999952164553 a001 433494437/28143753123*73681302247^(1/2) 4180999952164553 a004 Fibonacci(43)*Lucas(51)/(1/2+sqrt(5)/2)^75 4180999952164553 a001 139583862445/969323029*17393796001^(1/7) 4180999952164553 a001 433494437/14662949395604*45537549124^(13/17) 4180999952164553 a001 433494437/3461452808002*45537549124^(12/17) 4180999952164553 a001 433494437/1322157322203*45537549124^(2/3) 4180999952164553 a001 433494437/192900153618*45537549124^(10/17) 4180999952164553 a001 32951280099/969323029*312119004989^(2/11) 4180999952164553 a001 433494437/73681302247*14662949395604^(4/9) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^28/Lucas(52) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^10/Lucas(43) 4180999952164553 a001 433494437/73681302247*505019158607^(1/2) 4180999952164553 a001 433494437/73681302247*73681302247^(7/13) 4180999952164553 a004 Fibonacci(43)*Lucas(53)/(1/2+sqrt(5)/2)^77 4180999952164553 a001 225851433717/969323029*45537549124^(2/17) 4180999952164553 a001 433494437/192900153618*312119004989^(6/11) 4180999952164553 a001 433494437/192900153618*14662949395604^(10/21) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^30/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^8/Lucas(43) 4180999952164553 a001 86267571272/969323029*23725150497407^(1/8) 4180999952164553 a001 86267571272/969323029*505019158607^(1/7) 4180999952164553 a001 53316291173/969323029*45537549124^(3/17) 4180999952164553 a001 433494437/192900153618*192900153618^(5/9) 4180999952164553 a004 Fibonacci(43)*Lucas(55)/(1/2+sqrt(5)/2)^79 4180999952164553 a001 433494437/2139295485799*312119004989^(7/11) 4180999952164553 a001 225851433717/969323029*14662949395604^(2/21) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^32/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^6/Lucas(43) 4180999952164553 a004 Fibonacci(43)*Lucas(57)/(1/2+sqrt(5)/2)^81 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^34/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^4/Lucas(43) 4180999952164553 a004 Fibonacci(43)*Lucas(59)/(1/2+sqrt(5)/2)^83 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^36/Lucas(60) 4180999952164553 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^2/Lucas(43) 4180999952164553 a004 Fibonacci(43)*Lucas(61)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^38/Lucas(62) 4180999952164553 a004 Fibonacci(43)*Lucas(63)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^40/Lucas(64) 4180999952164553 a004 Fibonacci(64)/Lucas(43)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(43)*Lucas(65)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^42/Lucas(66) 4180999952164553 a004 Fibonacci(66)/Lucas(43)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(43)*Lucas(67)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^44/Lucas(68) 4180999952164553 a004 Fibonacci(68)/Lucas(43)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(43)*Lucas(69)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^46/Lucas(70) 4180999952164553 a004 Fibonacci(70)/Lucas(43)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(43)*Lucas(71)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^48/Lucas(72) 4180999952164553 a004 Fibonacci(72)/Lucas(43)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(43)*Lucas(73)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^50/Lucas(74) 4180999952164553 a004 Fibonacci(74)/Lucas(43)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(43)*Lucas(75)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^52/Lucas(76) 4180999952164553 a004 Fibonacci(76)/Lucas(43)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^54/Lucas(78) 4180999952164553 a004 Fibonacci(78)/Lucas(43)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^56/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(43)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^58/Lucas(82) 4180999952164553 a004 Fibonacci(82)/Lucas(43)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^60/Lucas(84) 4180999952164553 a004 Fibonacci(84)/Lucas(43)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^62/Lucas(86) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^64/Lucas(88) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^66/Lucas(90) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^68/Lucas(92) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^70/Lucas(94) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^72/Lucas(96) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^74/Lucas(98) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^75/Lucas(99) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^76/Lucas(100) 4180999952164553 a004 Fibonacci(43)*Lucas(1)/(1/2+sqrt(5)/2)^24 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^73/Lucas(97) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^71/Lucas(95) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^69/Lucas(93) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^67/Lucas(91) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^65/Lucas(89) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^63/Lucas(87) 4180999952164553 a004 Fibonacci(88)/Lucas(43)/(1/2+sqrt(5)/2)^26 4180999952164553 a004 Fibonacci(90)/Lucas(43)/(1/2+sqrt(5)/2)^28 4180999952164553 a004 Fibonacci(92)/Lucas(43)/(1/2+sqrt(5)/2)^30 4180999952164553 a004 Fibonacci(94)/Lucas(43)/(1/2+sqrt(5)/2)^32 4180999952164553 a004 Fibonacci(96)/Lucas(43)/(1/2+sqrt(5)/2)^34 4180999952164553 a004 Fibonacci(100)/Lucas(43)/(1/2+sqrt(5)/2)^38 4180999952164553 a004 Fibonacci(98)/Lucas(43)/(1/2+sqrt(5)/2)^36 4180999952164553 a004 Fibonacci(99)/Lucas(43)/(1/2+sqrt(5)/2)^37 4180999952164553 a004 Fibonacci(97)/Lucas(43)/(1/2+sqrt(5)/2)^35 4180999952164553 a004 Fibonacci(95)/Lucas(43)/(1/2+sqrt(5)/2)^33 4180999952164553 a004 Fibonacci(93)/Lucas(43)/(1/2+sqrt(5)/2)^31 4180999952164553 a004 Fibonacci(91)/Lucas(43)/(1/2+sqrt(5)/2)^29 4180999952164553 a004 Fibonacci(89)/Lucas(43)/(1/2+sqrt(5)/2)^27 4180999952164553 a004 Fibonacci(87)/Lucas(43)/(1/2+sqrt(5)/2)^25 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^61/Lucas(85) 4180999952164553 a004 Fibonacci(85)/Lucas(43)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^59/Lucas(83) 4180999952164553 a004 Fibonacci(83)/Lucas(43)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^57/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(43)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^55/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(43)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^53/Lucas(77) 4180999952164553 a004 Fibonacci(77)/Lucas(43)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(43)*Lucas(76)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^51/Lucas(75) 4180999952164553 a004 Fibonacci(75)/Lucas(43)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(43)*Lucas(74)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^49/Lucas(73) 4180999952164553 a004 Fibonacci(73)/Lucas(43)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(43)*Lucas(72)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^47/Lucas(71) 4180999952164553 a004 Fibonacci(71)/Lucas(43)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(43)*Lucas(70)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^45/Lucas(69) 4180999952164553 a004 Fibonacci(69)/Lucas(43)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(43)*Lucas(68)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^43/Lucas(67) 4180999952164553 a004 Fibonacci(67)/Lucas(43)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(43)*Lucas(66)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^41/Lucas(65) 4180999952164553 a004 Fibonacci(65)/Lucas(43)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(43)*Lucas(64)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^39/Lucas(63) 4180999952164553 a004 Fibonacci(63)/Lucas(43)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(43)*Lucas(62)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^37/Lucas(61) 4180999952164553 a004 Fibonacci(61)*(1/2+sqrt(5)/2)/Lucas(43) 4180999952164553 a004 Fibonacci(43)*Lucas(60)/(1/2+sqrt(5)/2)^84 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^35/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^3/Lucas(43) 4180999952164553 a001 365435296162/969323029*312119004989^(1/11) 4180999952164553 a004 Fibonacci(43)*Lucas(58)/(1/2+sqrt(5)/2)^82 4180999952164553 a001 433494437/817138163596*14662949395604^(11/21) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^33/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^5/Lucas(43) 4180999952164553 a001 433494437/2139295485799*505019158607^(5/8) 4180999952164553 a004 Fibonacci(43)*Lucas(56)/(1/2+sqrt(5)/2)^80 4180999952164553 a001 139583862445/969323029*14662949395604^(1/9) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^31/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^7/Lucas(43) 4180999952164553 a001 433494437/312119004989*9062201101803^(1/2) 4180999952164553 a001 591286729879/969323029*73681302247^(1/13) 4180999952164553 a001 433494437/3461452808002*192900153618^(2/3) 4180999952164553 a001 433494437/14662949395604*192900153618^(13/18) 4180999952164553 a004 Fibonacci(43)*Lucas(54)/(1/2+sqrt(5)/2)^78 4180999952164553 a001 32951280099/969323029*28143753123^(1/5) 4180999952164553 a001 53316291173/969323029*817138163596^(3/19) 4180999952164553 a001 53316291173/969323029*14662949395604^(1/7) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^29/Lucas(53) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^9/Lucas(43) 4180999952164553 a001 433494437/119218851371*1322157322203^(1/2) 4180999952164553 a001 433494437/505019158607*73681302247^(8/13) 4180999952164553 a001 365435296162/969323029*28143753123^(1/10) 4180999952164553 a001 433494437/14662949395604*73681302247^(3/4) 4180999952164553 a001 433494437/23725150497407*73681302247^(10/13) 4180999952164553 a004 Fibonacci(43)*Lucas(52)/(1/2+sqrt(5)/2)^76 4180999952164553 a001 433494437/45537549124*45537549124^(9/17) 4180999952164553 a001 32951280099/17393796001*599074578^(8/21) 4180999952164553 a001 1548008755920/969323029*10749957122^(1/24) 4180999952164553 a001 20365011074/969323029*312119004989^(1/5) 4180999952164553 a001 433494437/45537549124*817138163596^(9/19) 4180999952164553 a001 433494437/45537549124*14662949395604^(3/7) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^27/Lucas(51) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^11/Lucas(43) 4180999952164553 a001 433494437/45537549124*192900153618^(1/2) 4180999952164553 a001 956722026041/969323029*10749957122^(1/16) 4180999952164553 a001 591286729879/969323029*10749957122^(1/12) 4180999952164553 a001 433494437/192900153618*28143753123^(3/5) 4180999952164553 a001 433494437/2139295485799*28143753123^(7/10) 4180999952164553 a001 12586269025/969323029*10749957122^(1/4) 4180999952164553 a001 433494437/23725150497407*28143753123^(4/5) 4180999952164553 a001 225851433717/969323029*10749957122^(1/8) 4180999952164553 a004 Fibonacci(43)*Lucas(50)/(1/2+sqrt(5)/2)^74 4180999952164553 a001 86267571272/969323029*10749957122^(1/6) 4180999952164553 a001 32951280099/969323029*10749957122^(5/24) 4180999952164553 a001 53316291173/969323029*10749957122^(3/16) 4180999952164553 a001 1548008755920/969323029*4106118243^(1/23) 4180999952164553 a001 433494437/17393796001*312119004989^(5/11) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^25/Lucas(49) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^13/Lucas(43) 4180999952164553 a001 433494437/17393796001*3461452808002^(5/12) 4180999952164553 a001 7778742049/969323029*73681302247^(1/4) 4180999952164553 a001 433494437/28143753123*10749957122^(13/24) 4180999952164553 a001 433494437/17393796001*28143753123^(1/2) 4180999952164553 a001 433494437/73681302247*10749957122^(7/12) 4180999952164553 a001 591286729879/969323029*4106118243^(2/23) 4180999952164553 a001 433494437/45537549124*10749957122^(9/16) 4180999952164553 a001 433494437/192900153618*10749957122^(5/8) 4180999952164553 a001 433494437/505019158607*10749957122^(2/3) 4180999952164553 a001 433494437/817138163596*10749957122^(11/16) 4180999952164553 a001 433494437/1322157322203*10749957122^(17/24) 4180999952164553 a001 433494437/3461452808002*10749957122^(3/4) 4180999952164553 a001 433494437/9062201101803*10749957122^(19/24) 4180999952164553 a001 433494437/14662949395604*10749957122^(13/16) 4180999952164553 a001 433494437/23725150497407*10749957122^(5/6) 4180999952164553 a001 225851433717/969323029*4106118243^(3/23) 4180999952164553 a004 Fibonacci(43)*Lucas(48)/(1/2+sqrt(5)/2)^72 4180999952164553 a001 4807526976/969323029*4106118243^(7/23) 4180999952164553 a001 86267571272/969323029*4106118243^(4/23) 4180999952164553 a001 701408733/2537720636*599074578^(10/21) 4180999952164553 a001 701408733/6643838879*599074578^(11/21) 4180999952164553 a001 32951280099/969323029*4106118243^(5/23) 4180999952164553 a001 12586269025/969323029*4106118243^(6/23) 4180999952164553 a001 1548008755920/969323029*1568397607^(1/22) 4180999952164553 a001 1144206275/230701876*599074578^(1/3) 4180999952164553 a001 12586269025/6643838879*599074578^(8/21) 4180999952164553 a001 433494437/10749957122*4106118243^(12/23) 4180999952164553 a001 2971215073/969323029*45537549124^(5/17) 4180999952164553 a001 2971215073/969323029*312119004989^(3/11) 4180999952164553 a001 2971215073/969323029*14662949395604^(5/21) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^23/Lucas(47) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^15/Lucas(43) 4180999952164553 a001 2971215073/969323029*192900153618^(5/18) 4180999952164553 a001 2971215073/969323029*28143753123^(3/10) 4180999952164553 a001 2971215073/969323029*10749957122^(5/16) 4180999952164553 a001 433494437/28143753123*4106118243^(13/23) 4180999952164553 a001 433494437/73681302247*4106118243^(14/23) 4180999952164553 a001 591286729879/969323029*1568397607^(1/11) 4180999952164553 a001 433494437/192900153618*4106118243^(15/23) 4180999952164553 a001 433494437/505019158607*4106118243^(16/23) 4180999952164553 a001 433494437/1322157322203*4106118243^(17/23) 4180999952164553 a001 4052739537881/2537720636*228826127^(1/20) 4180999952164553 a001 433494437/3461452808002*4106118243^(18/23) 4180999952164553 a001 433494437/9062201101803*4106118243^(19/23) 4180999952164553 a001 433494437/23725150497407*4106118243^(20/23) 4180999952164553 a001 433494437/6643838879*4106118243^(1/2) 4180999952164553 a001 225851433717/969323029*1568397607^(3/22) 4180999952164553 a004 Fibonacci(43)*Lucas(46)/(1/2+sqrt(5)/2)^70 4180999952164553 a001 86267571272/969323029*1568397607^(2/11) 4180999952164553 a001 433494437/2537720636*2537720636^(7/15) 4180999952164553 a001 1836311903/969323029*1568397607^(4/11) 4180999952164553 a001 7778742049/2537720636*599074578^(5/14) 4180999952164553 a001 32951280099/969323029*1568397607^(5/22) 4180999952164553 a001 2971215073/4106118243*599074578^(3/7) 4180999952164553 a001 20365011074/969323029*1568397607^(1/4) 4180999952164553 a001 12586269025/969323029*1568397607^(3/11) 4180999952164553 a001 4807526976/969323029*1568397607^(7/22) 4180999952164553 a001 7778742049/10749957122*599074578^(3/7) 4180999952164553 a001 701408733/17393796001*599074578^(4/7) 4180999952164553 a001 20365011074/28143753123*599074578^(3/7) 4180999952164553 a001 53316291173/73681302247*599074578^(3/7) 4180999952164553 a001 139583862445/192900153618*599074578^(3/7) 4180999952164553 a001 10610209857723/14662949395604*599074578^(3/7) 4180999952164553 a001 591286729879/817138163596*599074578^(3/7) 4180999952164553 a001 225851433717/312119004989*599074578^(3/7) 4180999952164553 a001 86267571272/119218851371*599074578^(3/7) 4180999952164553 a001 32951280099/45537549124*599074578^(3/7) 4180999952164553 a001 12586269025/17393796001*599074578^(3/7) 4180999952164553 a001 1548008755920/969323029*599074578^(1/21) 4180999952164553 a001 1201881744/634430159*599074578^(8/21) 4180999952164553 a001 4807526976/6643838879*599074578^(3/7) 4180999952164553 a001 433494437/4106118243*1568397607^(1/2) 4180999952164553 a001 433494437/2537720636*17393796001^(3/7) 4180999952164553 a001 433494437/2537720636*45537549124^(7/17) 4180999952164553 a001 1134903170/969323029*45537549124^(1/3) 4180999952164553 a001 433494437/2537720636*14662949395604^(1/3) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^21/Lucas(45) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^17/Lucas(43) 4180999952164553 a001 433494437/2537720636*192900153618^(7/18) 4180999952164553 a001 433494437/2537720636*10749957122^(7/16) 4180999952164553 a001 956722026041/969323029*599074578^(1/14) 4180999952164553 a001 433494437/10749957122*1568397607^(6/11) 4180999952164553 a001 1836311903/2537720636*599074578^(3/7) 4180999952164553 a001 1836311903/6643838879*599074578^(10/21) 4180999952164553 a001 433494437/28143753123*1568397607^(13/22) 4180999952164553 a001 701408733/45537549124*599074578^(13/21) 4180999952164553 a001 4807526976/17393796001*599074578^(10/21) 4180999952164553 a001 433494437/73681302247*1568397607^(7/11) 4180999952164553 a001 1836311903/10749957122*599074578^(1/2) 4180999952164553 a001 12586269025/45537549124*599074578^(10/21) 4180999952164553 a001 32951280099/119218851371*599074578^(10/21) 4180999952164553 a001 86267571272/312119004989*599074578^(10/21) 4180999952164553 a001 225851433717/817138163596*599074578^(10/21) 4180999952164553 a001 1548008755920/5600748293801*599074578^(10/21) 4180999952164553 a001 139583862445/505019158607*599074578^(10/21) 4180999952164553 a001 53316291173/192900153618*599074578^(10/21) 4180999952164553 a001 20365011074/73681302247*599074578^(10/21) 4180999952164553 a001 7778742049/28143753123*599074578^(10/21) 4180999952164553 a001 591286729879/969323029*599074578^(2/21) 4180999952164553 a001 2971215073/10749957122*599074578^(10/21) 4180999952164553 a001 433494437/192900153618*1568397607^(15/22) 4180999952164553 a001 433494437/505019158607*1568397607^(8/11) 4180999952164553 a001 433494437/817138163596*1568397607^(3/4) 4180999952164553 a001 433494437/1322157322203*1568397607^(17/22) 4180999952164553 a001 1602508992/9381251041*599074578^(1/2) 4180999952164553 a001 701408733/73681302247*599074578^(9/14) 4180999952164553 a001 12586269025/73681302247*599074578^(1/2) 4180999952164553 a001 10983760033/64300051206*599074578^(1/2) 4180999952164553 a001 86267571272/505019158607*599074578^(1/2) 4180999952164553 a001 75283811239/440719107401*599074578^(1/2) 4180999952164553 a001 2504730781961/14662949395604*599074578^(1/2) 4180999952164553 a001 139583862445/817138163596*599074578^(1/2) 4180999952164553 a001 53316291173/312119004989*599074578^(1/2) 4180999952164553 a001 20365011074/119218851371*599074578^(1/2) 4180999952164553 a001 433494437/3461452808002*1568397607^(9/11) 4180999952164553 a001 7778742049/45537549124*599074578^(1/2) 4180999952164553 a001 1836311903/17393796001*599074578^(11/21) 4180999952164553 a001 433494437/9062201101803*1568397607^(19/22) 4180999952164553 a001 2971215073/17393796001*599074578^(1/2) 4180999952164553 a001 1134903170/4106118243*599074578^(10/21) 4180999952164553 a001 433494437/23725150497407*1568397607^(10/11) 4180999952164553 a001 701408733/119218851371*599074578^(2/3) 4180999952164553 a001 1201881744/11384387281*599074578^(11/21) 4180999952164553 a001 12586269025/119218851371*599074578^(11/21) 4180999952164553 a001 32951280099/312119004989*599074578^(11/21) 4180999952164553 a001 21566892818/204284540899*599074578^(11/21) 4180999952164553 a001 225851433717/2139295485799*599074578^(11/21) 4180999952164553 a001 182717648081/1730726404001*599074578^(11/21) 4180999952164553 a001 139583862445/1322157322203*599074578^(11/21) 4180999952164553 a001 53316291173/505019158607*599074578^(11/21) 4180999952164553 a001 10182505537/96450076809*599074578^(11/21) 4180999952164553 a001 225851433717/969323029*599074578^(1/7) 4180999952164553 a001 7778742049/73681302247*599074578^(11/21) 4180999952164553 a004 Fibonacci(43)*Lucas(44)/(1/2+sqrt(5)/2)^68 4180999952164553 a001 2971215073/28143753123*599074578^(11/21) 4180999952164553 a001 956722026041/1568397607*228826127^(1/10) 4180999952164553 a001 139583862445/969323029*599074578^(1/6) 4180999952164553 a001 1836311903/45537549124*599074578^(4/7) 4180999952164553 a001 53316291173/228826127*87403803^(3/19) 4180999952164553 a001 1134903170/6643838879*599074578^(1/2) 4180999952164553 a001 4807526976/119218851371*599074578^(4/7) 4180999952164553 a001 3524667/1568437211*599074578^(5/7) 4180999952164553 a001 1144206275/28374454999*599074578^(4/7) 4180999952164553 a001 32951280099/817138163596*599074578^(4/7) 4180999952164553 a001 86267571272/2139295485799*599074578^(4/7) 4180999952164553 a001 225851433717/5600748293801*599074578^(4/7) 4180999952164553 a001 591286729879/14662949395604*599074578^(4/7) 4180999952164553 a001 365435296162/9062201101803*599074578^(4/7) 4180999952164553 a001 139583862445/3461452808002*599074578^(4/7) 4180999952164553 a001 53316291173/1322157322203*599074578^(4/7) 4180999952164553 a001 20365011074/505019158607*599074578^(4/7) 4180999952164553 a001 86267571272/969323029*599074578^(4/21) 4180999952164553 a001 7778742049/192900153618*599074578^(4/7) 4180999952164553 a001 567451585/5374978561*599074578^(11/21) 4180999952164553 a001 2971215073/73681302247*599074578^(4/7) 4180999952164553 a001 53316291173/969323029*599074578^(3/14) 4180999952164553 a001 1836311903/119218851371*599074578^(13/21) 4180999952164553 a001 4807526976/312119004989*599074578^(13/21) 4180999952164553 a001 701408733/817138163596*599074578^(16/21) 4180999952164553 a001 12586269025/817138163596*599074578^(13/21) 4180999952164553 a001 32951280099/2139295485799*599074578^(13/21) 4180999952164553 a001 86267571272/5600748293801*599074578^(13/21) 4180999952164553 a001 7787980473/505618944676*599074578^(13/21) 4180999952164553 a001 365435296162/23725150497407*599074578^(13/21) 4180999952164553 a001 139583862445/9062201101803*599074578^(13/21) 4180999952164553 a001 53316291173/3461452808002*599074578^(13/21) 4180999952164553 a001 20365011074/1322157322203*599074578^(13/21) 4180999952164553 a001 32951280099/969323029*599074578^(5/21) 4180999952164553 a001 7778742049/505019158607*599074578^(13/21) 4180999952164553 a001 1836311903/192900153618*599074578^(9/14) 4180999952164553 a001 1134903170/28143753123*599074578^(4/7) 4180999952164553 a001 2971215073/192900153618*599074578^(13/21) 4180999952164553 a001 102287808/10745088481*599074578^(9/14) 4180999952164553 a001 233802911/440719107401*599074578^(11/14) 4180999952164553 a001 12586269025/1322157322203*599074578^(9/14) 4180999952164553 a001 32951280099/3461452808002*599074578^(9/14) 4180999952164553 a001 86267571272/9062201101803*599074578^(9/14) 4180999952164553 a001 225851433717/23725150497407*599074578^(9/14) 4180999952164553 a001 139583862445/14662949395604*599074578^(9/14) 4180999952164553 a001 53316291173/5600748293801*599074578^(9/14) 4180999952164553 a001 20365011074/2139295485799*599074578^(9/14) 4180999952164553 a001 7778742049/817138163596*599074578^(9/14) 4180999952164553 a001 1836311903/312119004989*599074578^(2/3) 4180999952164553 a001 2971215073/312119004989*599074578^(9/14) 4180999952164553 a001 1201881744/204284540899*599074578^(2/3) 4180999952164553 a001 701408733/2139295485799*599074578^(17/21) 4180999952164553 a001 2504730781961/4106118243*228826127^(1/10) 4180999952164553 a001 701408733/969323029*599074578^(3/7) 4180999952164553 a001 12586269025/2139295485799*599074578^(2/3) 4180999952164553 a001 32951280099/5600748293801*599074578^(2/3) 4180999952164553 a001 1135099622/192933544679*599074578^(2/3) 4180999952164553 a001 139583862445/23725150497407*599074578^(2/3) 4180999952164553 a001 53316291173/9062201101803*599074578^(2/3) 4180999952164553 a001 10182505537/1730726404001*599074578^(2/3) 4180999952164553 a001 12586269025/969323029*599074578^(2/7) 4180999952164553 a001 7778742049/1322157322203*599074578^(2/3) 4180999952164553 a001 1134903170/73681302247*599074578^(13/21) 4180999952164553 a001 2971215073/505019158607*599074578^(2/3) 4180999952164553 a001 3278735159921/5374978561*228826127^(1/10) 4180999952164553 a001 10610209857723/17393796001*228826127^(1/10) 4180999952164553 a001 701408733/3461452808002*599074578^(5/6) 4180999952164553 a001 1836311903/817138163596*599074578^(5/7) 4180999952164553 a001 4052739537881/6643838879*228826127^(1/10) 4180999952164553 a001 1134903170/119218851371*599074578^(9/14) 4180999952164553 a001 591286729879/1568397607*228826127^(1/8) 4180999952164553 a001 4807526976/2139295485799*599074578^(5/7) 4180999952164553 a001 701408733/5600748293801*599074578^(6/7) 4180999952164553 a001 4807526976/969323029*599074578^(1/3) 4180999952164553 a001 433494437/1568397607*599074578^(10/21) 4180999952164553 a001 10182505537/299537289*228826127^(1/4) 4180999952164553 a001 12586269025/5600748293801*599074578^(5/7) 4180999952164553 a001 32951280099/14662949395604*599074578^(5/7) 4180999952164553 a001 53316291173/23725150497407*599074578^(5/7) 4180999952164553 a001 20365011074/9062201101803*599074578^(5/7) 4180999952164553 a001 7778742049/3461452808002*599074578^(5/7) 4180999952164553 a001 567451585/96450076809*599074578^(2/3) 4180999952164553 a001 2971215073/1322157322203*599074578^(5/7) 4180999952164553 a001 1548008755920/969323029*228826127^(1/20) 4180999952164553 a001 1836311903/2139295485799*599074578^(16/21) 4180999952164553 a001 1134903780/1860499*228826127^(1/10) 4180999952164553 a001 1836311903/969323029*599074578^(8/21) 4180999952164553 a001 2971215073/969323029*599074578^(5/14) 4180999952164553 a001 4807526976/5600748293801*599074578^(16/21) 4180999952164553 a001 701408733/14662949395604*599074578^(19/21) 4180999952164553 a001 12586269025/14662949395604*599074578^(16/21) 4180999952164553 a001 20365011074/23725150497407*599074578^(16/21) 4180999952164553 a001 7778742049/9062201101803*599074578^(16/21) 4180999952164553 a001 433494437/969323029*817138163596^(1/3) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^19/Lucas(43) 4180999952164553 a001 1836311903/3461452808002*599074578^(11/14) 4180999952164553 a001 1134903170/505019158607*599074578^(5/7) 4180999952164553 a001 2971215073/3461452808002*599074578^(16/21) 4180999952164553 a001 1602508992/3020733700601*599074578^(11/14) 4180999952164553 a001 701408733/23725150497407*599074578^(13/14) 4180999952164553 a001 12586269025/23725150497407*599074578^(11/14) 4180999952164553 a001 7778742049/14662949395604*599074578^(11/14) 4180999952164553 a001 1836311903/5600748293801*599074578^(17/21) 4180999952164553 a001 2971215073/5600748293801*599074578^(11/14) 4180999952164553 a001 1201881744/3665737348901*599074578^(17/21) 4180999952164553 a001 7778742049/23725150497407*599074578^(17/21) 4180999952164553 a001 1836311903/9062201101803*599074578^(5/6) 4180999952164553 a001 1134903170/1322157322203*599074578^(16/21) 4180999952164553 a001 2971215073/9062201101803*599074578^(17/21) 4180999952164553 a001 4807526976/23725150497407*599074578^(5/6) 4180999952164553 a001 516002918640/1368706081*228826127^(1/8) 4180999952164553 a001 1836311903/14662949395604*599074578^(6/7) 4180999952164553 a001 1134903170/2139295485799*599074578^(11/14) 4180999952164553 a001 2971215073/14662949395604*599074578^(5/6) 4180999952164553 a001 4052739537881/10749957122*228826127^(1/8) 4180999952164553 a004 Fibonacci(44)*Lucas(42)/(1/2+sqrt(5)/2)^67 4180999952164553 a001 3536736619241/9381251041*228826127^(1/8) 4180999952164553 a001 6557470319842/17393796001*228826127^(1/8) 4180999952164553 a001 2504730781961/6643838879*228826127^(1/8) 4180999952164553 a001 567451585/1730726404001*599074578^(17/21) 4180999952164553 a001 2971215073/23725150497407*599074578^(6/7) 4180999952164553 a001 365435296162/1568397607*228826127^(3/20) 4180999952164553 a001 433494437/4106118243*599074578^(11/21) 4180999952164553 a001 1134903170/5600748293801*599074578^(5/6) 4180999952164553 a001 956722026041/2537720636*228826127^(1/8) 4180999952164553 a001 1134903170/9062201101803*599074578^(6/7) 4180999952164553 a001 433494437/2537720636*599074578^(1/2) 4180999952164553 a001 433494437/10749957122*599074578^(4/7) 4180999952164553 a001 1134903170/23725150497407*599074578^(19/21) 4180999952164553 a004 Fibonacci(46)*Lucas(42)/(1/2+sqrt(5)/2)^69 4180999952164553 a004 Fibonacci(48)*Lucas(42)/(1/2+sqrt(5)/2)^71 4180999952164553 a004 Fibonacci(50)*Lucas(42)/(1/2+sqrt(5)/2)^73 4180999952164553 a004 Fibonacci(52)*Lucas(42)/(1/2+sqrt(5)/2)^75 4180999952164553 a004 Fibonacci(54)*Lucas(42)/(1/2+sqrt(5)/2)^77 4180999952164553 a004 Fibonacci(56)*Lucas(42)/(1/2+sqrt(5)/2)^79 4180999952164553 a004 Fibonacci(58)*Lucas(42)/(1/2+sqrt(5)/2)^81 4180999952164553 a004 Fibonacci(60)*Lucas(42)/(1/2+sqrt(5)/2)^83 4180999952164553 a001 5600748293801/267914296*8^(1/3) 4180999952164553 a004 Fibonacci(62)*Lucas(42)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(64)*Lucas(42)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(66)*Lucas(42)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(68)*Lucas(42)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(70)*Lucas(42)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(72)*Lucas(42)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(74)*Lucas(42)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(76)*Lucas(42)/(1/2+sqrt(5)/2)^99 4180999952164553 a001 1/133957148*(1/2+1/2*5^(1/2))^61 4180999952164553 a004 Fibonacci(77)*Lucas(42)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(75)*Lucas(42)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(73)*Lucas(42)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(71)*Lucas(42)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(69)*Lucas(42)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(67)*Lucas(42)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(65)*Lucas(42)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(63)*Lucas(42)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(61)*Lucas(42)/(1/2+sqrt(5)/2)^84 4180999952164553 a004 Fibonacci(59)*Lucas(42)/(1/2+sqrt(5)/2)^82 4180999952164553 a004 Fibonacci(57)*Lucas(42)/(1/2+sqrt(5)/2)^80 4180999952164553 a004 Fibonacci(55)*Lucas(42)/(1/2+sqrt(5)/2)^78 4180999952164553 a004 Fibonacci(53)*Lucas(42)/(1/2+sqrt(5)/2)^76 4180999952164553 a004 Fibonacci(51)*Lucas(42)/(1/2+sqrt(5)/2)^74 4180999952164553 a001 433494437/28143753123*599074578^(13/21) 4180999952164553 a004 Fibonacci(49)*Lucas(42)/(1/2+sqrt(5)/2)^72 4180999952164553 a001 956722026041/4106118243*228826127^(3/20) 4180999952164553 a004 Fibonacci(47)*Lucas(42)/(1/2+sqrt(5)/2)^70 4180999952164553 a001 433494437/45537549124*599074578^(9/14) 4180999952164553 a001 2504730781961/10749957122*228826127^(3/20) 4180999952164553 a001 6557470319842/28143753123*228826127^(3/20) 4180999952164553 a001 10610209857723/45537549124*228826127^(3/20) 4180999952164553 a001 4052739537881/17393796001*228826127^(3/20) 4180999952164553 a001 1548008755920/6643838879*228826127^(3/20) 4180999952164553 a001 433494437/73681302247*599074578^(2/3) 4180999952164553 a004 Fibonacci(45)*Lucas(42)/(1/2+sqrt(5)/2)^68 4180999952164553 a001 7778742049/599074578*228826127^(3/10) 4180999952164553 a001 591286729879/969323029*228826127^(1/10) 4180999952164553 a001 591286729879/2537720636*228826127^(3/20) 4180999952164553 a001 433494437/192900153618*599074578^(5/7) 4180999952164553 a001 433494437/505019158607*599074578^(16/21) 4180999952164553 a001 433494437/817138163596*599074578^(11/14) 4180999952164553 a001 433494437/1322157322203*599074578^(17/21) 4180999952164553 a001 433494437/2139295485799*599074578^(5/6) 4180999952164553 a001 139583862445/1568397607*228826127^(1/5) 4180999952164553 a001 365435296162/370248451*141422324^(1/13) 4180999952164553 a001 365435296162/969323029*228826127^(1/8) 4180999952164553 a001 433494437/3461452808002*599074578^(6/7) 4180999952164553 a001 433494437/9062201101803*599074578^(19/21) 4180999952164553 a001 433494437/14662949395604*599074578^(13/14) 4180999952164553 a001 433494437/23725150497407*599074578^(20/21) 4180999952164553 a001 365435296162/4106118243*228826127^(1/5) 4180999952164553 a001 956722026041/10749957122*228826127^(1/5) 4180999952164553 a001 2504730781961/28143753123*228826127^(1/5) 4180999952164553 a001 6557470319842/73681302247*228826127^(1/5) 4180999952164553 a001 10610209857723/119218851371*228826127^(1/5) 4180999952164553 a001 4052739537881/45537549124*228826127^(1/5) 4180999952164553 a001 1548008755920/17393796001*228826127^(1/5) 4180999952164553 a001 591286729879/6643838879*228826127^(1/5) 4180999952164553 a001 63245986/505019158607*141422324^(12/13) 4180999952164553 a004 Fibonacci(43)*Lucas(42)/(1/2+sqrt(5)/2)^66 4180999952164553 a001 2971215073/599074578*228826127^(7/20) 4180999952164553 a001 225851433717/969323029*228826127^(3/20) 4180999952164553 a001 225851433717/2537720636*228826127^(1/5) 4180999952164553 a001 956722026041/599074578*87403803^(1/19) 4180999952164553 a001 1836311903/599074578*228826127^(3/8) 4180999952164553 a001 53316291173/1568397607*228826127^(1/4) 4180999952164553 a001 165580141/599074578*2537720636^(4/9) 4180999952164553 a001 267914296/370248451*2537720636^(2/5) 4180999952164553 a001 267914296/370248451*45537549124^(6/17) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^20/Lucas(42) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^18/Lucas(41) 4180999952164553 a001 165580141/599074578*23725150497407^(5/16) 4180999952164553 a001 44361286907595736/10610209857723 4180999952164553 a001 165580141/599074578*505019158607^(5/14) 4180999952164553 a001 267914296/370248451*192900153618^(1/3) 4180999952164553 a001 165580141/599074578*73681302247^(5/13) 4180999952164553 a001 165580141/599074578*28143753123^(2/5) 4180999952164553 a001 267914296/370248451*10749957122^(3/8) 4180999952164553 a001 165580141/599074578*10749957122^(5/12) 4180999952164553 a001 267914296/370248451*4106118243^(9/23) 4180999952164553 a001 165580141/599074578*4106118243^(10/23) 4180999952164553 a001 267914296/370248451*1568397607^(9/22) 4180999952164553 a001 165580141/599074578*1568397607^(5/11) 4180999952164553 a001 139583862445/4106118243*228826127^(1/4) 4180999952164553 a001 182717648081/5374978561*228826127^(1/4) 4180999952164553 a001 956722026041/28143753123*228826127^(1/4) 4180999952164553 a001 2504730781961/73681302247*228826127^(1/4) 4180999952164553 a001 3278735159921/96450076809*228826127^(1/4) 4180999952164553 a001 10610209857723/312119004989*228826127^(1/4) 4180999952164553 a001 4052739537881/119218851371*228826127^(1/4) 4180999952164553 a001 387002188980/11384387281*228826127^(1/4) 4180999952164553 a001 591286729879/17393796001*228826127^(1/4) 4180999952164553 a001 225851433717/6643838879*228826127^(1/4) 4180999952164553 a001 86267571272/969323029*228826127^(1/5) 4180999952164553 a001 1135099622/33391061*228826127^(1/4) 4180999952164553 a001 567451585/299537289*228826127^(2/5) 4180999952164553 a001 20365011074/1568397607*228826127^(3/10) 4180999952164553 a001 53316291173/4106118243*228826127^(3/10) 4180999952164553 a001 267914296/370248451*599074578^(3/7) 4180999952164553 a001 139583862445/10749957122*228826127^(3/10) 4180999952164553 a001 365435296162/28143753123*228826127^(3/10) 4180999952164553 a001 956722026041/73681302247*228826127^(3/10) 4180999952164553 a001 2504730781961/192900153618*228826127^(3/10) 4180999952164553 a001 10610209857723/817138163596*228826127^(3/10) 4180999952164553 a001 4052739537881/312119004989*228826127^(3/10) 4180999952164553 a001 1548008755920/119218851371*228826127^(3/10) 4180999952164553 a001 591286729879/45537549124*228826127^(3/10) 4180999952164553 a001 7787980473/599786069*228826127^(3/10) 4180999952164553 a001 86267571272/6643838879*228826127^(3/10) 4180999952164553 a001 165580141/599074578*599074578^(10/21) 4180999952164553 a001 32951280099/969323029*228826127^(1/4) 4180999952164553 a001 32951280099/2537720636*228826127^(3/10) 4180999952164553 a004 Fibonacci(41)*Lucas(43)/(1/2+sqrt(5)/2)^65 4180999952164553 a001 7778742049/1568397607*228826127^(7/20) 4180999952164553 a001 2504730781961/1568397607*87403803^(1/19) 4180999952164553 a001 20365011074/4106118243*228826127^(7/20) 4180999952164553 a001 53316291173/10749957122*228826127^(7/20) 4180999952164553 a001 139583862445/28143753123*228826127^(7/20) 4180999952164553 a001 365435296162/73681302247*228826127^(7/20) 4180999952164553 a001 956722026041/192900153618*228826127^(7/20) 4180999952164553 a001 2504730781961/505019158607*228826127^(7/20) 4180999952164553 a001 10610209857723/2139295485799*228826127^(7/20) 4180999952164553 a001 4052739537881/817138163596*228826127^(7/20) 4180999952164553 a001 140728068720/28374454999*228826127^(7/20) 4180999952164553 a001 591286729879/119218851371*228826127^(7/20) 4180999952164553 a001 225851433717/45537549124*228826127^(7/20) 4180999952164553 a001 86267571272/17393796001*228826127^(7/20) 4180999952164553 a001 32951280099/6643838879*228826127^(7/20) 4180999952164553 a001 686789568/224056801*228826127^(3/8) 4180999952164553 a001 12586269025/969323029*228826127^(3/10) 4180999952164553 a001 6557470319842/4106118243*87403803^(1/19) 4180999952164553 a001 1144206275/230701876*228826127^(7/20) 4180999952164553 a001 433494437/599074578*228826127^(9/20) 4180999952164553 a001 165580141/1568397607*312119004989^(2/5) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^22/Lucas(44) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^16/Lucas(41) 4180999952164553 a001 701408733/370248451*23725150497407^(1/4) 4180999952164553 a001 701408733/370248451*73681302247^(4/13) 4180999952164553 a001 701408733/370248451*10749957122^(1/3) 4180999952164553 a001 165580141/1568397607*10749957122^(11/24) 4180999952164553 a001 701408733/370248451*4106118243^(8/23) 4180999952164553 a001 10610209857723/6643838879*87403803^(1/19) 4180999952164553 a001 165580141/1568397607*4106118243^(11/23) 4180999952164553 a001 701408733/370248451*1568397607^(4/11) 4180999952164553 a001 4052739537881/2537720636*87403803^(1/19) 4180999952164553 a001 165580141/1568397607*1568397607^(1/2) 4180999952164553 a001 12586269025/4106118243*228826127^(3/8) 4180999952164553 a004 Fibonacci(41)*Lucas(45)/(1/2+sqrt(5)/2)^67 4180999952164553 a001 20365011074/54018521*20633239^(1/7) 4180999952164553 a001 165580141/23725150497407*2537720636^(14/15) 4180999952164553 a001 165580141/4106118243*2537720636^(8/15) 4180999952164553 a001 32951280099/10749957122*228826127^(3/8) 4180999952164553 a001 165580141/9062201101803*2537720636^(8/9) 4180999952164553 a001 165580141/5600748293801*2537720636^(13/15) 4180999952164553 a001 86267571272/28143753123*228826127^(3/8) 4180999952164553 a001 32264490531/10525900321*228826127^(3/8) 4180999952164553 a001 591286729879/192900153618*228826127^(3/8) 4180999952164553 a001 1548008755920/505019158607*228826127^(3/8) 4180999952164553 a001 1515744265389/494493258286*228826127^(3/8) 4180999952164553 a001 2504730781961/817138163596*228826127^(3/8) 4180999952164553 a001 956722026041/312119004989*228826127^(3/8) 4180999952164553 a001 365435296162/119218851371*228826127^(3/8) 4180999952164553 a001 139583862445/45537549124*228826127^(3/8) 4180999952164553 a001 53316291173/17393796001*228826127^(3/8) 4180999952164553 a001 165580141/1322157322203*2537720636^(4/5) 4180999952164553 a001 165580141/817138163596*2537720636^(7/9) 4180999952164553 a001 165580141/312119004989*2537720636^(11/15) 4180999952164553 a001 20365011074/6643838879*228826127^(3/8) 4180999952164553 a001 165580141/73681302247*2537720636^(2/3) 4180999952164553 a001 165580141/17393796001*2537720636^(3/5) 4180999952164553 a001 165580141/6643838879*2537720636^(5/9) 4180999952164553 a001 1836311903/370248451*17393796001^(2/7) 4180999952164553 a001 165580141/4106118243*45537549124^(8/17) 4180999952164553 a001 165580141/4106118243*14662949395604^(8/21) 4180999952164553 a001 1836311903/370248451*14662949395604^(2/9) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^24/Lucas(46) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^14/Lucas(41) 4180999952164553 a001 1836311903/370248451*505019158607^(1/4) 4180999952164553 a001 165580141/4106118243*192900153618^(4/9) 4180999952164553 a001 165580141/4106118243*73681302247^(6/13) 4180999952164553 a001 1836311903/370248451*10749957122^(7/24) 4180999952164553 a001 165580141/4106118243*10749957122^(1/2) 4180999952164553 a001 4807526976/370248451*2537720636^(4/15) 4180999952164553 a001 1836311903/370248451*4106118243^(7/23) 4180999952164553 a001 2971215073/1568397607*228826127^(2/5) 4180999952164553 a001 12586269025/370248451*2537720636^(2/9) 4180999952164553 a001 20365011074/370248451*2537720636^(1/5) 4180999952164553 a001 165580141/4106118243*4106118243^(12/23) 4180999952164553 a004 Fibonacci(41)*Lucas(47)/(1/2+sqrt(5)/2)^69 4180999952164553 a001 86267571272/370248451*2537720636^(2/15) 4180999952164553 a001 139583862445/370248451*2537720636^(1/9) 4180999952164553 a001 365435296162/370248451*2537720636^(1/15) 4180999952164553 a001 4807526976/370248451*45537549124^(4/17) 4180999952164553 a001 4807526976/370248451*817138163596^(4/19) 4180999952164553 a001 4807526976/370248451*14662949395604^(4/21) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^26/Lucas(48) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^12/Lucas(41) 4180999952164553 a001 4807526976/370248451*192900153618^(2/9) 4180999952164553 a001 4807526976/370248451*73681302247^(3/13) 4180999952164553 a001 165580141/10749957122*73681302247^(1/2) 4180999952164553 a001 4807526976/370248451*10749957122^(1/4) 4180999952164553 a001 165580141/10749957122*10749957122^(13/24) 4180999952164553 a004 Fibonacci(41)*Lucas(49)/(1/2+sqrt(5)/2)^71 4180999952164553 a001 165580141/28143753123*17393796001^(4/7) 4180999952164553 a001 165580141/23725150497407*17393796001^(6/7) 4180999952164553 a001 165580141/817138163596*17393796001^(5/7) 4180999952164553 a001 12586269025/370248451*312119004989^(2/11) 4180999952164553 a001 165580141/28143753123*14662949395604^(4/9) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^28/Lucas(50) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^10/Lucas(41) 4180999952164553 a001 165580141/28143753123*73681302247^(7/13) 4180999952164553 a001 12586269025/370248451*28143753123^(1/5) 4180999952164553 a004 Fibonacci(41)*Lucas(51)/(1/2+sqrt(5)/2)^73 4180999952164553 a001 165580141/73681302247*45537549124^(10/17) 4180999952164553 a001 53316291173/370248451*17393796001^(1/7) 4180999952164553 a001 165580141/23725150497407*45537549124^(14/17) 4180999952164553 a001 165580141/5600748293801*45537549124^(13/17) 4180999952164553 a001 165580141/1322157322203*45537549124^(12/17) 4180999952164553 a001 165580141/505019158607*45537549124^(2/3) 4180999952164553 a001 165580141/312119004989*45537549124^(11/17) 4180999952164553 a001 165580141/73681302247*312119004989^(6/11) 4180999952164553 a001 165580141/73681302247*14662949395604^(10/21) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^30/Lucas(52) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^8/Lucas(41) 4180999952164553 a001 32951280099/370248451*505019158607^(1/7) 4180999952164553 a001 165580141/73681302247*192900153618^(5/9) 4180999952164553 a001 32951280099/370248451*73681302247^(2/13) 4180999952164553 a001 86267571272/370248451*45537549124^(2/17) 4180999952164553 a004 Fibonacci(41)*Lucas(53)/(1/2+sqrt(5)/2)^75 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^32/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^6/Lucas(41) 4180999952164553 a001 165580141/192900153618*23725150497407^(1/2) 4180999952164553 a001 365435296162/370248451*45537549124^(1/17) 4180999952164553 a004 Fibonacci(41)*Lucas(55)/(1/2+sqrt(5)/2)^77 4180999952164553 a001 165580141/9062201101803*312119004989^(8/11) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^34/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^4/Lucas(41) 4180999952164553 a004 Fibonacci(41)*Lucas(57)/(1/2+sqrt(5)/2)^79 4180999952164553 a001 165580141/1322157322203*14662949395604^(4/7) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^36/Lucas(58) 4180999952164553 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^2/Lucas(41) 4180999952164553 a004 Fibonacci(41)*Lucas(59)/(1/2+sqrt(5)/2)^81 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^38/Lucas(60) 4180999952164553 a006 5^(1/2)*Fibonacci(60)/Lucas(41)/sqrt(5) 4180999952164553 a004 Fibonacci(41)*Lucas(61)/(1/2+sqrt(5)/2)^83 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^40/Lucas(62) 4180999952164553 a004 Fibonacci(62)/Lucas(41)/(1/2+sqrt(5)/2)^2 4180999952164553 a004 Fibonacci(41)*Lucas(63)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^42/Lucas(64) 4180999952164553 a004 Fibonacci(64)/Lucas(41)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(41)*Lucas(65)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^44/Lucas(66) 4180999952164553 a004 Fibonacci(66)/Lucas(41)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(41)*Lucas(67)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^46/Lucas(68) 4180999952164553 a004 Fibonacci(68)/Lucas(41)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(41)*Lucas(69)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^48/Lucas(70) 4180999952164553 a004 Fibonacci(70)/Lucas(41)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(41)*Lucas(71)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^50/Lucas(72) 4180999952164553 a004 Fibonacci(72)/Lucas(41)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(41)*Lucas(73)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^52/Lucas(74) 4180999952164553 a004 Fibonacci(74)/Lucas(41)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(41)*Lucas(75)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^54/Lucas(76) 4180999952164553 a004 Fibonacci(76)/Lucas(41)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(41)*Lucas(77)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^56/Lucas(78) 4180999952164553 a004 Fibonacci(78)/Lucas(41)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^58/Lucas(80) 4180999952164553 a004 Fibonacci(80)/Lucas(41)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^60/Lucas(82) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^62/Lucas(84) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^64/Lucas(86) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^66/Lucas(88) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^68/Lucas(90) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^70/Lucas(92) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^72/Lucas(94) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^74/Lucas(96) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^76/Lucas(98) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^77/Lucas(99) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^78/Lucas(100) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^75/Lucas(97) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^73/Lucas(95) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^71/Lucas(93) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^69/Lucas(91) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^67/Lucas(89) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^65/Lucas(87) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^63/Lucas(85) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^61/Lucas(83) 4180999952164553 a004 Fibonacci(84)/Lucas(41)/(1/2+sqrt(5)/2)^24 4180999952164553 a004 Fibonacci(86)/Lucas(41)/(1/2+sqrt(5)/2)^26 4180999952164553 a004 Fibonacci(88)/Lucas(41)/(1/2+sqrt(5)/2)^28 4180999952164553 a004 Fibonacci(90)/Lucas(41)/(1/2+sqrt(5)/2)^30 4180999952164553 a004 Fibonacci(92)/Lucas(41)/(1/2+sqrt(5)/2)^32 4180999952164553 a004 Fibonacci(94)/Lucas(41)/(1/2+sqrt(5)/2)^34 4180999952164553 a004 Fibonacci(96)/Lucas(41)/(1/2+sqrt(5)/2)^36 4180999952164553 a004 Fibonacci(98)/Lucas(41)/(1/2+sqrt(5)/2)^38 4180999952164553 a004 Fibonacci(100)/Lucas(41)/(1/2+sqrt(5)/2)^40 4180999952164553 a004 Fibonacci(99)/Lucas(41)/(1/2+sqrt(5)/2)^39 4180999952164553 a004 Fibonacci(97)/Lucas(41)/(1/2+sqrt(5)/2)^37 4180999952164553 a004 Fibonacci(95)/Lucas(41)/(1/2+sqrt(5)/2)^35 4180999952164553 a004 Fibonacci(93)/Lucas(41)/(1/2+sqrt(5)/2)^33 4180999952164553 a004 Fibonacci(91)/Lucas(41)/(1/2+sqrt(5)/2)^31 4180999952164553 a004 Fibonacci(89)/Lucas(41)/(1/2+sqrt(5)/2)^29 4180999952164553 a004 Fibonacci(87)/Lucas(41)/(1/2+sqrt(5)/2)^27 4180999952164553 a004 Fibonacci(85)/Lucas(41)/(1/2+sqrt(5)/2)^25 4180999952164553 a004 Fibonacci(83)/Lucas(41)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^59/Lucas(81) 4180999952164553 a004 Fibonacci(81)/Lucas(41)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^57/Lucas(79) 4180999952164553 a004 Fibonacci(79)/Lucas(41)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(41)*Lucas(78)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^55/Lucas(77) 4180999952164553 a004 Fibonacci(77)/Lucas(41)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(41)*Lucas(76)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^53/Lucas(75) 4180999952164553 a004 Fibonacci(75)/Lucas(41)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(41)*Lucas(74)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^51/Lucas(73) 4180999952164553 a004 Fibonacci(73)/Lucas(41)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(41)*Lucas(72)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^49/Lucas(71) 4180999952164553 a004 Fibonacci(71)/Lucas(41)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(41)*Lucas(70)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^47/Lucas(69) 4180999952164553 a004 Fibonacci(69)/Lucas(41)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(41)*Lucas(68)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^45/Lucas(67) 4180999952164553 a004 Fibonacci(67)/Lucas(41)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(41)*Lucas(66)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^43/Lucas(65) 4180999952164553 a004 Fibonacci(65)/Lucas(41)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(41)*Lucas(64)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^41/Lucas(63) 4180999952164553 a004 Fibonacci(63)/Lucas(41)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(41)*Lucas(62)/(1/2+sqrt(5)/2)^84 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^39/Lucas(61) 4180999952164553 a004 Fibonacci(61)/Lucas(41)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(41)*Lucas(60)/(1/2+sqrt(5)/2)^82 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^37/Lucas(59) 4180999952164553 a004 Fibonacci(59)*(1/2+sqrt(5)/2)/Lucas(41) 4180999952164553 a004 Fibonacci(41)*Lucas(58)/(1/2+sqrt(5)/2)^80 4180999952164553 a001 165580141/817138163596*14662949395604^(5/9) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^35/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^3/Lucas(41) 4180999952164553 a001 165580141/1322157322203*505019158607^(9/14) 4180999952164553 a001 165580141/23725150497407*505019158607^(3/4) 4180999952164553 a004 Fibonacci(41)*Lucas(56)/(1/2+sqrt(5)/2)^78 4180999952164553 a001 139583862445/370248451*312119004989^(1/11) 4180999952164553 a001 225851433717/370248451*73681302247^(1/13) 4180999952164553 a001 165580141/312119004989*14662949395604^(11/21) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^33/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^5/Lucas(41) 4180999952164553 a001 165580141/1322157322203*192900153618^(2/3) 4180999952164553 a001 165580141/5600748293801*192900153618^(13/18) 4180999952164553 a001 165580141/23725150497407*192900153618^(7/9) 4180999952164553 a001 165580141/312119004989*192900153618^(11/18) 4180999952164553 a004 Fibonacci(41)*Lucas(54)/(1/2+sqrt(5)/2)^76 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^31/Lucas(53) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^7/Lucas(41) 4180999952164553 a001 165580141/119218851371*9062201101803^(1/2) 4180999952164553 a001 165580141/192900153618*73681302247^(8/13) 4180999952164553 a001 165580141/1322157322203*73681302247^(9/13) 4180999952164553 a001 139583862445/370248451*28143753123^(1/10) 4180999952164553 a001 165580141/5600748293801*73681302247^(3/4) 4180999952164553 a001 165580141/9062201101803*73681302247^(10/13) 4180999952164553 a004 Fibonacci(41)*Lucas(52)/(1/2+sqrt(5)/2)^74 4180999952164553 a001 591286729879/370248451*10749957122^(1/24) 4180999952164553 a001 20365011074/370248451*45537549124^(3/17) 4180999952164553 a001 20365011074/370248451*14662949395604^(1/7) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^29/Lucas(51) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^9/Lucas(41) 4180999952164553 a001 165580141/45537549124*1322157322203^(1/2) 4180999952164553 a001 20365011074/370248451*192900153618^(1/6) 4180999952164553 a001 12586269025/370248451*10749957122^(5/24) 4180999952164553 a001 365435296162/370248451*10749957122^(1/16) 4180999952164553 a001 165580141/73681302247*28143753123^(3/5) 4180999952164553 a001 225851433717/370248451*10749957122^(1/12) 4180999952164553 a001 165580141/817138163596*28143753123^(7/10) 4180999952164553 a001 165580141/9062201101803*28143753123^(4/5) 4180999952164553 a001 86267571272/370248451*10749957122^(1/8) 4180999952164553 a001 32951280099/370248451*10749957122^(1/6) 4180999952164553 a004 Fibonacci(41)*Lucas(50)/(1/2+sqrt(5)/2)^72 4180999952164553 a001 20365011074/370248451*10749957122^(3/16) 4180999952164553 a001 591286729879/370248451*4106118243^(1/23) 4180999952164553 a001 165580141/17393796001*45537549124^(9/17) 4180999952164553 a001 7778742049/370248451*312119004989^(1/5) 4180999952164553 a001 165580141/17393796001*817138163596^(9/19) 4180999952164553 a001 165580141/17393796001*14662949395604^(3/7) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^27/Lucas(49) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^11/Lucas(41) 4180999952164553 a001 165580141/17393796001*192900153618^(1/2) 4180999952164553 a001 165580141/28143753123*10749957122^(7/12) 4180999952164553 a001 225851433717/370248451*4106118243^(2/23) 4180999952164553 a001 165580141/73681302247*10749957122^(5/8) 4180999952164553 a001 165580141/192900153618*10749957122^(2/3) 4180999952164553 a001 165580141/312119004989*10749957122^(11/16) 4180999952164553 a001 165580141/505019158607*10749957122^(17/24) 4180999952164553 a001 165580141/1322157322203*10749957122^(3/4) 4180999952164553 a001 4807526976/370248451*4106118243^(6/23) 4180999952164553 a001 165580141/3461452808002*10749957122^(19/24) 4180999952164553 a001 165580141/5600748293801*10749957122^(13/16) 4180999952164553 a001 165580141/9062201101803*10749957122^(5/6) 4180999952164553 a001 165580141/23725150497407*10749957122^(7/8) 4180999952164553 a001 86267571272/370248451*4106118243^(3/23) 4180999952164553 a001 165580141/17393796001*10749957122^(9/16) 4180999952164553 a004 Fibonacci(41)*Lucas(48)/(1/2+sqrt(5)/2)^70 4180999952164553 a001 32951280099/370248451*4106118243^(4/23) 4180999952164553 a001 12586269025/370248451*4106118243^(5/23) 4180999952164553 a001 591286729879/370248451*1568397607^(1/22) 4180999952164553 a001 165580141/6643838879*312119004989^(5/11) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^25/Lucas(47) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^13/Lucas(41) 4180999952164553 a001 165580141/6643838879*3461452808002^(5/12) 4180999952164553 a001 2971215073/370248451*73681302247^(1/4) 4180999952164553 a001 165580141/6643838879*28143753123^(1/2) 4180999952164553 a001 165580141/10749957122*4106118243^(13/23) 4180999952164553 a001 7778742049/2537720636*228826127^(3/8) 4180999952164553 a001 165580141/28143753123*4106118243^(14/23) 4180999952164553 a001 225851433717/370248451*1568397607^(1/11) 4180999952164553 a001 165580141/73681302247*4106118243^(15/23) 4180999952164553 a001 165580141/192900153618*4106118243^(16/23) 4180999952164553 a001 165580141/505019158607*4106118243^(17/23) 4180999952164553 a001 165580141/1322157322203*4106118243^(18/23) 4180999952164553 a001 165580141/3461452808002*4106118243^(19/23) 4180999952164553 a001 165580141/9062201101803*4106118243^(20/23) 4180999952164553 a001 165580141/23725150497407*4106118243^(21/23) 4180999952164553 a001 86267571272/370248451*1568397607^(3/22) 4180999952164553 a004 Fibonacci(41)*Lucas(46)/(1/2+sqrt(5)/2)^68 4180999952164553 a001 1836311903/370248451*1568397607^(7/22) 4180999952164553 a001 32951280099/370248451*1568397607^(2/11) 4180999952164553 a001 12586269025/370248451*1568397607^(5/22) 4180999952164553 a001 4807526976/370248451*1568397607^(3/11) 4180999952164553 a001 1134903170/370248451*2537720636^(1/3) 4180999952164553 a001 7778742049/370248451*1568397607^(1/4) 4180999952164553 a001 591286729879/370248451*599074578^(1/21) 4180999952164553 a001 1134903170/370248451*45537549124^(5/17) 4180999952164553 a001 1134903170/370248451*312119004989^(3/11) 4180999952164553 a001 1134903170/370248451*14662949395604^(5/21) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^23/Lucas(45) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^15/Lucas(41) 4180999952164553 a001 1134903170/370248451*192900153618^(5/18) 4180999952164553 a001 1134903170/370248451*28143753123^(3/10) 4180999952164553 a001 1134903170/370248451*10749957122^(5/16) 4180999952164553 a001 165580141/4106118243*1568397607^(6/11) 4180999952164553 a001 165580141/2537720636*4106118243^(1/2) 4180999952164553 a001 365435296162/370248451*599074578^(1/14) 4180999952164553 a001 165580141/10749957122*1568397607^(13/22) 4180999952164553 a001 165580141/28143753123*1568397607^(7/11) 4180999952164553 a001 225851433717/370248451*599074578^(2/21) 4180999952164553 a001 165580141/73681302247*1568397607^(15/22) 4180999952164553 a001 7778742049/4106118243*228826127^(2/5) 4180999952164553 a001 165580141/192900153618*1568397607^(8/11) 4180999952164553 a001 165580141/312119004989*1568397607^(3/4) 4180999952164553 a001 165580141/505019158607*1568397607^(17/22) 4180999952164553 a001 165580141/1322157322203*1568397607^(9/11) 4180999952164553 a001 10182505537/5374978561*228826127^(2/5) 4180999952164553 a001 53316291173/28143753123*228826127^(2/5) 4180999952164553 a001 139583862445/73681302247*228826127^(2/5) 4180999952164553 a001 182717648081/96450076809*228826127^(2/5) 4180999952164553 a001 956722026041/505019158607*228826127^(2/5) 4180999952164553 a001 10610209857723/5600748293801*228826127^(2/5) 4180999952164553 a001 591286729879/312119004989*228826127^(2/5) 4180999952164553 a001 225851433717/119218851371*228826127^(2/5) 4180999952164553 a001 21566892818/11384387281*228826127^(2/5) 4180999952164553 a001 32951280099/17393796001*228826127^(2/5) 4180999952164553 a001 165580141/3461452808002*1568397607^(19/22) 4180999952164553 a001 12586269025/6643838879*228826127^(2/5) 4180999952164553 a001 165580141/9062201101803*1568397607^(10/11) 4180999952164553 a001 165580141/23725150497407*1568397607^(21/22) 4180999952164553 a001 63245986/119218851371*141422324^(11/13) 4180999952164553 a001 86267571272/370248451*599074578^(1/7) 4180999952164553 a004 Fibonacci(41)*Lucas(44)/(1/2+sqrt(5)/2)^66 4180999952164553 a001 4807526976/969323029*228826127^(7/20) 4180999952164553 a001 53316291173/370248451*599074578^(1/6) 4180999952164553 a001 1201881744/634430159*228826127^(2/5) 4180999952164553 a001 102334155/141422324*141422324^(6/13) 4180999952164553 a001 32951280099/370248451*599074578^(4/21) 4180999952164553 a001 267914296/969323029*228826127^(1/2) 4180999952164553 a001 66978574/634430159*228826127^(11/20) 4180999952164553 a001 20365011074/370248451*599074578^(3/14) 4180999952164553 a001 701408733/370248451*599074578^(8/21) 4180999952164553 a001 1548008755920/969323029*87403803^(1/19) 4180999952164553 a001 12586269025/370248451*599074578^(5/21) 4180999952164553 a001 4807526976/370248451*599074578^(2/7) 4180999952164553 a001 1836311903/370248451*599074578^(1/3) 4180999952164553 a001 2971215073/969323029*228826127^(3/8) 4180999952164553 a001 591286729879/370248451*228826127^(1/20) 4180999952164553 a001 165580141/969323029*2537720636^(7/15) 4180999952164553 a001 1134903170/1568397607*228826127^(9/20) 4180999952164553 a001 165580141/1568397607*599074578^(11/21) 4180999952164553 a001 165580141/969323029*17393796001^(3/7) 4180999952164553 a001 165580141/969323029*45537549124^(7/17) 4180999952164553 a001 433494437/370248451*45537549124^(1/3) 4180999952164553 a001 165580141/969323029*14662949395604^(1/3) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^21/Lucas(43) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^17/Lucas(41) 4180999952164553 a001 165580141/969323029*192900153618^(7/18) 4180999952164553 a001 165580141/969323029*10749957122^(7/16) 4180999952164553 a001 1134903170/370248451*599074578^(5/14) 4180999952164553 a001 20365011074/228826127*87403803^(4/19) 4180999952164553 a001 2971215073/4106118243*228826127^(9/20) 4180999952164553 a001 7778742049/10749957122*228826127^(9/20) 4180999952164553 a001 20365011074/28143753123*228826127^(9/20) 4180999952164553 a001 53316291173/73681302247*228826127^(9/20) 4180999952164553 a001 139583862445/192900153618*228826127^(9/20) 4180999952164553 a001 365435296162/505019158607*228826127^(9/20) 4180999952164553 a001 10610209857723/14662949395604*228826127^(9/20) 4180999952164553 a001 225851433717/312119004989*228826127^(9/20) 4180999952164553 a001 86267571272/119218851371*228826127^(9/20) 4180999952164553 a001 32951280099/45537549124*228826127^(9/20) 4180999952164553 a001 12586269025/17393796001*228826127^(9/20) 4180999952164553 a001 4807526976/6643838879*228826127^(9/20) 4180999952164553 a001 1836311903/969323029*228826127^(2/5) 4180999952164553 a001 1836311903/2537720636*228826127^(9/20) 4180999952164553 a001 267914296/6643838879*228826127^(3/5) 4180999952164553 a001 165580141/4106118243*599074578^(4/7) 4180999952164553 a001 165580141/10749957122*599074578^(13/21) 4180999952164553 a001 165580141/17393796001*599074578^(9/14) 4180999952164553 a001 133957148/5374978561*228826127^(5/8) 4180999952164553 a001 165580141/28143753123*599074578^(2/3) 4180999952164553 a001 225851433717/370248451*228826127^(1/10) 4180999952164553 a001 701408733/969323029*228826127^(9/20) 4180999952164553 a001 165580141/73681302247*599074578^(5/7) 4180999952164553 a001 701408733/2537720636*228826127^(1/2) 4180999952164553 a001 165580141/192900153618*599074578^(16/21) 4180999952164553 a001 165580141/312119004989*599074578^(11/14) 4180999952164553 a001 1836311903/6643838879*228826127^(1/2) 4180999952164553 a001 4807526976/17393796001*228826127^(1/2) 4180999952164553 a001 12586269025/45537549124*228826127^(1/2) 4180999952164553 a001 32951280099/119218851371*228826127^(1/2) 4180999952164553 a001 86267571272/312119004989*228826127^(1/2) 4180999952164553 a001 225851433717/817138163596*228826127^(1/2) 4180999952164553 a001 1548008755920/5600748293801*228826127^(1/2) 4180999952164553 a001 139583862445/505019158607*228826127^(1/2) 4180999952164553 a001 53316291173/192900153618*228826127^(1/2) 4180999952164553 a001 20365011074/73681302247*228826127^(1/2) 4180999952164553 a001 165580141/505019158607*599074578^(17/21) 4180999952164553 a001 7778742049/28143753123*228826127^(1/2) 4180999952164553 a001 2971215073/10749957122*228826127^(1/2) 4180999952164553 a001 165580141/817138163596*599074578^(5/6) 4180999952164553 a001 9238424/599786069*228826127^(13/20) 4180999952164553 a001 1134903170/4106118243*228826127^(1/2) 4180999952164553 a001 139583862445/370248451*228826127^(1/8) 4180999952164553 a001 165580141/1322157322203*599074578^(6/7) 4180999952164553 a001 165580141/969323029*599074578^(1/2) 4180999952164553 a001 165580141/3461452808002*599074578^(19/21) 4180999952164553 a001 165580141/5600748293801*599074578^(13/14) 4180999952164553 a001 165580141/9062201101803*599074578^(20/21) 4180999952164553 a004 Fibonacci(41)*Lucas(42)/(1/2+sqrt(5)/2)^64 4180999952164553 a001 701408733/6643838879*228826127^(11/20) 4180999952164553 a001 86267571272/370248451*228826127^(3/20) 4180999952164553 a001 433494437/1568397607*228826127^(1/2) 4180999952164553 a001 1836311903/17393796001*228826127^(11/20) 4180999952164553 a001 1201881744/11384387281*228826127^(11/20) 4180999952164553 a001 12586269025/119218851371*228826127^(11/20) 4180999952164553 a001 32951280099/312119004989*228826127^(11/20) 4180999952164553 a001 21566892818/204284540899*228826127^(11/20) 4180999952164553 a001 225851433717/2139295485799*228826127^(11/20) 4180999952164553 a001 182717648081/1730726404001*228826127^(11/20) 4180999952164553 a001 139583862445/1322157322203*228826127^(11/20) 4180999952164553 a001 53316291173/505019158607*228826127^(11/20) 4180999952164553 a001 10182505537/96450076809*228826127^(11/20) 4180999952164553 a001 7778742049/73681302247*228826127^(11/20) 4180999952164553 a001 2971215073/28143753123*228826127^(11/20) 4180999952164553 a001 66978574/11384387281*228826127^(7/10) 4180999952164553 a001 567451585/5374978561*228826127^(11/20) 4180999952164553 a001 182717648081/299537289*87403803^(2/19) 4180999952164553 a001 701408733/17393796001*228826127^(3/5) 4180999952164553 a001 32951280099/370248451*228826127^(1/5) 4180999952164553 a001 1836311903/45537549124*228826127^(3/5) 4180999952164553 a001 4807526976/119218851371*228826127^(3/5) 4180999952164553 a001 1144206275/28374454999*228826127^(3/5) 4180999952164553 a001 32951280099/817138163596*228826127^(3/5) 4180999952164553 a001 86267571272/2139295485799*228826127^(3/5) 4180999952164553 a001 225851433717/5600748293801*228826127^(3/5) 4180999952164553 a001 591286729879/14662949395604*228826127^(3/5) 4180999952164553 a001 365435296162/9062201101803*228826127^(3/5) 4180999952164553 a001 139583862445/3461452808002*228826127^(3/5) 4180999952164553 a001 53316291173/1322157322203*228826127^(3/5) 4180999952164553 a001 20365011074/505019158607*228826127^(3/5) 4180999952164553 a001 7778742049/192900153618*228826127^(3/5) 4180999952164553 a001 2971215073/73681302247*228826127^(3/5) 4180999952164553 a001 433494437/4106118243*228826127^(11/20) 4180999952164553 a001 233802911/9381251041*228826127^(5/8) 4180999952164553 a001 63245986/28143753123*141422324^(10/13) 4180999952164553 a001 267914296/119218851371*228826127^(3/4) 4180999952164553 a001 1134903170/28143753123*228826127^(3/5) 4180999952164553 a001 1836311903/73681302247*228826127^(5/8) 4180999952164553 a001 267084832/10716675201*228826127^(5/8) 4180999952164553 a001 12586269025/505019158607*228826127^(5/8) 4180999952164553 a001 10983760033/440719107401*228826127^(5/8) 4180999952164553 a001 43133785636/1730726404001*228826127^(5/8) 4180999952164553 a001 75283811239/3020733700601*228826127^(5/8) 4180999952164553 a001 182717648081/7331474697802*228826127^(5/8) 4180999952164553 a001 139583862445/5600748293801*228826127^(5/8) 4180999952164553 a001 53316291173/2139295485799*228826127^(5/8) 4180999952164553 a001 10182505537/408569081798*228826127^(5/8) 4180999952164553 a001 7778742049/312119004989*228826127^(5/8) 4180999952164553 a001 2971215073/119218851371*228826127^(5/8) 4180999952164553 a001 701408733/45537549124*228826127^(13/20) 4180999952164553 a001 12586269025/370248451*228826127^(1/4) 4180999952164553 a001 567451585/22768774562*228826127^(5/8) 4180999952164553 a001 1836311903/119218851371*228826127^(13/20) 4180999952164553 a001 4807526976/312119004989*228826127^(13/20) 4180999952164553 a001 12586269025/817138163596*228826127^(13/20) 4180999952164553 a001 32951280099/2139295485799*228826127^(13/20) 4180999952164553 a001 86267571272/5600748293801*228826127^(13/20) 4180999952164553 a001 7787980473/505618944676*228826127^(13/20) 4180999952164553 a001 365435296162/23725150497407*228826127^(13/20) 4180999952164553 a001 139583862445/9062201101803*228826127^(13/20) 4180999952164553 a001 53316291173/3461452808002*228826127^(13/20) 4180999952164553 a001 20365011074/1322157322203*228826127^(13/20) 4180999952164553 a001 7778742049/505019158607*228826127^(13/20) 4180999952164553 a001 2971215073/192900153618*228826127^(13/20) 4180999952164553 a001 267914296/312119004989*228826127^(4/5) 4180999952164553 a001 433494437/10749957122*228826127^(3/5) 4180999952164553 a001 1134903170/73681302247*228826127^(13/20) 4180999952164553 a001 701408733/119218851371*228826127^(7/10) 4180999952164553 a001 433494437/17393796001*228826127^(5/8) 4180999952164553 a001 4807526976/370248451*228826127^(3/10) 4180999952164553 a001 267914296/370248451*228826127^(9/20) 4180999952164553 a001 1836311903/312119004989*228826127^(7/10) 4180999952164553 a001 1201881744/204284540899*228826127^(7/10) 4180999952164553 a001 12586269025/2139295485799*228826127^(7/10) 4180999952164553 a001 32951280099/5600748293801*228826127^(7/10) 4180999952164553 a001 1135099622/192933544679*228826127^(7/10) 4180999952164553 a001 139583862445/23725150497407*228826127^(7/10) 4180999952164553 a001 53316291173/9062201101803*228826127^(7/10) 4180999952164553 a001 10182505537/1730726404001*228826127^(7/10) 4180999952164553 a001 7778742049/1322157322203*228826127^(7/10) 4180999952164553 a001 956722026041/1568397607*87403803^(2/19) 4180999952164553 a001 2971215073/505019158607*228826127^(7/10) 4180999952164553 a001 66978574/204284540899*228826127^(17/20) 4180999952164553 a001 433494437/28143753123*228826127^(13/20) 4180999952164553 a001 567451585/96450076809*228826127^(7/10) 4180999952164553 a001 2504730781961/4106118243*87403803^(2/19) 4180999952164553 a001 3278735159921/5374978561*87403803^(2/19) 4180999952164553 a001 10610209857723/17393796001*87403803^(2/19) 4180999952164553 a001 4052739537881/6643838879*87403803^(2/19) 4180999952164553 a001 3524667/1568437211*228826127^(3/4) 4180999952164553 a001 1836311903/370248451*228826127^(7/20) 4180999952164553 a001 267914296/1322157322203*228826127^(7/8) 4180999952164553 a001 1134903780/1860499*87403803^(2/19) 4180999952164553 a001 165580141/599074578*228826127^(1/2) 4180999952164553 a001 591286729879/370248451*87403803^(1/19) 4180999952164553 a001 1836311903/817138163596*228826127^(3/4) 4180999952164553 a001 4807526976/2139295485799*228826127^(3/4) 4180999952164553 a001 12586269025/5600748293801*228826127^(3/4) 4180999952164553 a001 32951280099/14662949395604*228826127^(3/4) 4180999952164553 a001 53316291173/23725150497407*228826127^(3/4) 4180999952164553 a001 20365011074/9062201101803*228826127^(3/4) 4180999952164553 a001 7778742049/3461452808002*228826127^(3/4) 4180999952164553 a001 2971215073/1322157322203*228826127^(3/4) 4180999952164553 a001 267914296/2139295485799*228826127^(9/10) 4180999952164553 a001 433494437/73681302247*228826127^(7/10) 4180999952164553 a001 1134903170/505019158607*228826127^(3/4) 4180999952164553 a001 701408733/370248451*228826127^(2/5) 4180999952164553 a001 165580141/370248451*817138163596^(1/3) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^19/Lucas(41) 4180999952164553 a001 1134903170/370248451*228826127^(3/8) 4180999952164553 a001 591286729879/969323029*87403803^(2/19) 4180999952164553 a001 701408733/817138163596*228826127^(4/5) 4180999952164553 a001 1836311903/2139295485799*228826127^(4/5) 4180999952164553 a001 4807526976/5600748293801*228826127^(4/5) 4180999952164553 a001 12586269025/14662949395604*228826127^(4/5) 4180999952164553 a001 20365011074/23725150497407*228826127^(4/5) 4180999952164553 a001 7778742049/9062201101803*228826127^(4/5) 4180999952164553 a001 2971215073/3461452808002*228826127^(4/5) 4180999952164553 a001 7778742049/228826127*87403803^(5/19) 4180999952164553 a001 267914296/5600748293801*228826127^(19/20) 4180999952164553 a001 433494437/192900153618*228826127^(3/4) 4180999952164553 a001 63245986/6643838879*141422324^(9/13) 4180999952164553 a001 1134903170/1322157322203*228826127^(4/5) 4180999952164553 a001 701408733/2139295485799*228826127^(17/20) 4180999952164553 a001 1836311903/5600748293801*228826127^(17/20) 4180999952164553 a001 1201881744/3665737348901*228826127^(17/20) 4180999952164553 a001 7778742049/23725150497407*228826127^(17/20) 4180999952164553 a001 2971215073/9062201101803*228826127^(17/20) 4180999952164553 a001 701408733/3461452808002*228826127^(7/8) 4180999952164553 a004 Fibonacci(42)*Lucas(40)/(1/2+sqrt(5)/2)^63 4180999952164553 a001 433494437/505019158607*228826127^(4/5) 4180999952164553 a001 567451585/1730726404001*228826127^(17/20) 4180999952164553 a001 63245986/4106118243*141422324^(2/3) 4180999952164553 a001 1836311903/9062201101803*228826127^(7/8) 4180999952164553 a001 4807526976/23725150497407*228826127^(7/8) 4180999952164553 a001 2971215073/14662949395604*228826127^(7/8) 4180999952164553 a001 701408733/5600748293801*228826127^(9/10) 4180999952164553 a001 1134903170/5600748293801*228826127^(7/8) 4180999952164553 a001 1836311903/14662949395604*228826127^(9/10) 4180999952164553 a001 2971215073/23725150497407*228826127^(9/10) 4180999952164553 a001 433494437/1322157322203*228826127^(17/20) 4180999952164553 a001 1134903170/9062201101803*228826127^(9/10) 4180999952164553 a001 165580141/1568397607*228826127^(11/20) 4180999952164553 a001 701408733/14662949395604*228826127^(19/20) 4180999952164553 a001 433494437/2139295485799*228826127^(7/8) 4180999952164553 a001 139583862445/599074578*87403803^(3/19) 4180999952164553 a001 433494437/3461452808002*228826127^(9/10) 4180999952164553 a001 1134903170/23725150497407*228826127^(19/20) 4180999952164553 a001 20365011074/87403803*33385282^(1/6) 4180999952164553 a004 Fibonacci(44)*Lucas(40)/(1/2+sqrt(5)/2)^65 4180999952164553 a001 165580141/4106118243*228826127^(3/5) 4180999952164553 a001 63245986/1568397607*141422324^(8/13) 4180999952164553 a004 Fibonacci(46)*Lucas(40)/(1/2+sqrt(5)/2)^67 4180999952164553 a004 Fibonacci(48)*Lucas(40)/(1/2+sqrt(5)/2)^69 4180999952164553 a004 Fibonacci(50)*Lucas(40)/(1/2+sqrt(5)/2)^71 4180999952164553 a004 Fibonacci(52)*Lucas(40)/(1/2+sqrt(5)/2)^73 4180999952164553 a004 Fibonacci(54)*Lucas(40)/(1/2+sqrt(5)/2)^75 4180999952164553 a004 Fibonacci(56)*Lucas(40)/(1/2+sqrt(5)/2)^77 4180999952164553 a004 Fibonacci(58)*Lucas(40)/(1/2+sqrt(5)/2)^79 4180999952164553 a004 Fibonacci(60)*Lucas(40)/(1/2+sqrt(5)/2)^81 4180999952164553 a004 Fibonacci(62)*Lucas(40)/(1/2+sqrt(5)/2)^83 4180999952164553 a004 Fibonacci(64)*Lucas(40)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(66)*Lucas(40)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(68)*Lucas(40)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(70)*Lucas(40)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(72)*Lucas(40)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(74)*Lucas(40)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(76)*Lucas(40)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(78)*Lucas(40)/(1/2+sqrt(5)/2)^99 4180999952164553 a001 2/102334155*(1/2+1/2*5^(1/2))^59 4180999952164553 a004 Fibonacci(79)*Lucas(40)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(77)*Lucas(40)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(75)*Lucas(40)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(73)*Lucas(40)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(71)*Lucas(40)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(69)*Lucas(40)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(67)*Lucas(40)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(65)*Lucas(40)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(63)*Lucas(40)/(1/2+sqrt(5)/2)^84 4180999952164553 a004 Fibonacci(61)*Lucas(40)/(1/2+sqrt(5)/2)^82 4180999952164553 a004 Fibonacci(59)*Lucas(40)/(1/2+sqrt(5)/2)^80 4180999952164553 a004 Fibonacci(57)*Lucas(40)/(1/2+sqrt(5)/2)^78 4180999952164553 a004 Fibonacci(55)*Lucas(40)/(1/2+sqrt(5)/2)^76 4180999952164553 a004 Fibonacci(53)*Lucas(40)/(1/2+sqrt(5)/2)^74 4180999952164553 a004 Fibonacci(51)*Lucas(40)/(1/2+sqrt(5)/2)^72 4180999952164553 a004 Fibonacci(49)*Lucas(40)/(1/2+sqrt(5)/2)^70 4180999952164553 a004 Fibonacci(47)*Lucas(40)/(1/2+sqrt(5)/2)^68 4180999952164553 a001 433494437/9062201101803*228826127^(19/20) 4180999952164553 a004 Fibonacci(45)*Lucas(40)/(1/2+sqrt(5)/2)^66 4180999952164553 a001 165580141/6643838879*228826127^(5/8) 4180999952164553 a001 165580141/10749957122*228826127^(13/20) 4180999952164553 a004 Fibonacci(43)*Lucas(40)/(1/2+sqrt(5)/2)^64 4180999952164553 a001 365435296162/1568397607*87403803^(3/19) 4180999952164553 a001 956722026041/4106118243*87403803^(3/19) 4180999952164553 a001 2504730781961/10749957122*87403803^(3/19) 4180999952164553 a001 165580141/28143753123*228826127^(7/10) 4180999952164553 a001 6557470319842/28143753123*87403803^(3/19) 4180999952164553 a001 10610209857723/45537549124*87403803^(3/19) 4180999952164553 a001 4052739537881/17393796001*87403803^(3/19) 4180999952164553 a001 1548008755920/6643838879*87403803^(3/19) 4180999952164553 a001 591286729879/2537720636*87403803^(3/19) 4180999952164553 a001 225851433717/370248451*87403803^(2/19) 4180999952164553 a001 165580141/73681302247*228826127^(3/4) 4180999952164553 a001 225851433717/969323029*87403803^(3/19) 4180999952164553 a001 2971215073/228826127*87403803^(6/19) 4180999952164553 a001 165580141/192900153618*228826127^(4/5) 4180999952164553 a001 165580141/505019158607*228826127^(17/20) 4180999952164553 a001 165580141/817138163596*228826127^(7/8) 4180999952164553 a001 165580141/1322157322203*228826127^(9/10) 4180999952164553 a001 53316291173/599074578*87403803^(4/19) 4180999952164553 a001 165580141/3461452808002*228826127^(19/20) 4180999952164553 a004 Fibonacci(41)*Lucas(40)/(1/2+sqrt(5)/2)^62 4180999952164553 a001 139583862445/1568397607*87403803^(4/19) 4180999952164553 a001 102334155/228826127*87403803^(1/2) 4180999952164553 a001 365435296162/4106118243*87403803^(4/19) 4180999952164553 a001 956722026041/10749957122*87403803^(4/19) 4180999952164553 a001 2504730781961/28143753123*87403803^(4/19) 4180999952164553 a001 6557470319842/73681302247*87403803^(4/19) 4180999952164553 a001 10610209857723/119218851371*87403803^(4/19) 4180999952164553 a001 4052739537881/45537549124*87403803^(4/19) 4180999952164553 a001 1548008755920/17393796001*87403803^(4/19) 4180999952164553 a001 591286729879/6643838879*87403803^(4/19) 4180999952164553 a001 225851433717/2537720636*87403803^(4/19) 4180999952164553 a001 86267571272/370248451*87403803^(3/19) 4180999952164553 a001 86267571272/969323029*87403803^(4/19) 4180999952164553 a001 1134903170/228826127*87403803^(7/19) 4180999952164553 a001 63245986/370248451*141422324^(7/13) 4180999952164553 a001 365435296162/228826127*33385282^(1/18) 4180999952164553 a001 63245986/228826127*2537720636^(4/9) 4180999952164553 a001 102334155/141422324*2537720636^(2/5) 4180999952164553 a001 102334155/141422324*45537549124^(6/17) 4180999952164553 a001 102334155/141422324*14662949395604^(2/7) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^20/Lucas(40) 4180999952164553 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^18/Lucas(39) 4180999952164553 a001 63245986/228826127*23725150497407^(5/16) 4180999952164553 a001 63245986/228826127*505019158607^(5/14) 4180999952164553 a001 102334155/141422324*192900153618^(1/3) 4180999952164553 a001 63245986/228826127*73681302247^(5/13) 4180999952164553 a001 63245986/228826127*28143753123^(2/5) 4180999952164553 a001 102334155/141422324*10749957122^(3/8) 4180999952164553 a001 63245986/228826127*10749957122^(5/12) 4180999952164553 a001 102334155/141422324*4106118243^(9/23) 4180999952164553 a001 63245986/228826127*4106118243^(10/23) 4180999952164553 a001 102334155/141422324*1568397607^(9/22) 4180999952164553 a001 63245986/228826127*1568397607^(5/11) 4180999952164553 a001 10182505537/299537289*87403803^(5/19) 4180999952164553 a001 433494437/141422324*141422324^(5/13) 4180999952164553 a001 102334155/141422324*599074578^(3/7) 4180999952164553 a001 63245986/228826127*599074578^(10/21) 4180999952164553 a001 567451585/70711162*141422324^(1/3) 4180999952164553 a001 53316291173/1568397607*87403803^(5/19) 4180999952164553 a001 139583862445/4106118243*87403803^(5/19) 4180999952164553 a001 182717648081/5374978561*87403803^(5/19) 4180999952164553 a001 956722026041/28143753123*87403803^(5/19) 4180999952164553 a001 2504730781961/73681302247*87403803^(5/19) 4180999952164553 a001 3278735159921/96450076809*87403803^(5/19) 4180999952164553 a001 10610209857723/312119004989*87403803^(5/19) 4180999952164553 a001 4052739537881/119218851371*87403803^(5/19) 4180999952164553 a001 387002188980/11384387281*87403803^(5/19) 4180999952164553 a001 591286729879/17393796001*87403803^(5/19) 4180999952164553 a001 225851433717/6643838879*87403803^(5/19) 4180999952164553 a001 1836311903/141422324*141422324^(4/13) 4180999952164553 a001 1135099622/33391061*87403803^(5/19) 4180999952164553 a001 32951280099/370248451*87403803^(4/19) 4180999952164553 a001 32951280099/969323029*87403803^(5/19) 4180999952164553 a001 433494437/228826127*87403803^(8/19) 4180999952164553 a001 7778742049/141422324*141422324^(3/13) 4180999952164553 a001 7778742049/599074578*87403803^(6/19) 4180999952164553 a001 102334155/141422324*228826127^(9/20) 4180999952164553 a001 63245986/228826127*228826127^(1/2) 4180999952164553 a001 20365011074/1568397607*87403803^(6/19) 4180999952164553 a001 53316291173/4106118243*87403803^(6/19) 4180999952164553 a001 139583862445/10749957122*87403803^(6/19) 4180999952164553 a001 365435296162/28143753123*87403803^(6/19) 4180999952164553 a001 956722026041/73681302247*87403803^(6/19) 4180999952164553 a001 2504730781961/192900153618*87403803^(6/19) 4180999952164553 a001 10610209857723/817138163596*87403803^(6/19) 4180999952164553 a001 4052739537881/312119004989*87403803^(6/19) 4180999952164553 a001 1548008755920/119218851371*87403803^(6/19) 4180999952164553 a001 591286729879/45537549124*87403803^(6/19) 4180999952164553 a001 7787980473/599786069*87403803^(6/19) 4180999952164553 a001 86267571272/6643838879*87403803^(6/19) 4180999952164553 a001 32951280099/2537720636*87403803^(6/19) 4180999952164553 a001 12586269025/370248451*87403803^(5/19) 4180999952164553 a001 63246219/271444*141422324^(2/13) 4180999952164553 a001 12586269025/969323029*87403803^(6/19) 4180999952164553 a004 Fibonacci(39)*Lucas(41)/(1/2+sqrt(5)/2)^61 4180999952164553 a001 2971215073/599074578*87403803^(7/19) 4180999952164553 a001 139583862445/141422324*141422324^(1/13) 4180999952164553 a001 956722026041/599074578*33385282^(1/18) 4180999952164553 a001 31622993/299537289*312119004989^(2/5) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^22/Lucas(42) 4180999952164553 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^16/Lucas(39) 4180999952164553 a001 66978574/35355581*23725150497407^(1/4) 4180999952164553 a001 16944503814015856/4052739537881 4180999952164553 a001 66978574/35355581*73681302247^(4/13) 4180999952164553 a001 66978574/35355581*10749957122^(1/3) 4180999952164553 a001 31622993/299537289*10749957122^(11/24) 4180999952164553 a001 66978574/35355581*4106118243^(8/23) 4180999952164553 a001 31622993/299537289*4106118243^(11/23) 4180999952164553 a001 66978574/35355581*1568397607^(4/11) 4180999952164553 a001 31622993/299537289*1568397607^(1/2) 4180999952164553 a001 7778742049/1568397607*87403803^(7/19) 4180999952164553 a001 20365011074/4106118243*87403803^(7/19) 4180999952164553 a001 53316291173/10749957122*87403803^(7/19) 4180999952164553 a001 139583862445/28143753123*87403803^(7/19) 4180999952164553 a001 365435296162/73681302247*87403803^(7/19) 4180999952164553 a001 956722026041/192900153618*87403803^(7/19) 4180999952164553 a001 2504730781961/505019158607*87403803^(7/19) 4180999952164553 a001 10610209857723/2139295485799*87403803^(7/19) 4180999952164553 a001 4052739537881/817138163596*87403803^(7/19) 4180999952164553 a001 140728068720/28374454999*87403803^(7/19) 4180999952164553 a001 591286729879/119218851371*87403803^(7/19) 4180999952164553 a001 225851433717/45537549124*87403803^(7/19) 4180999952164553 a001 86267571272/17393796001*87403803^(7/19) 4180999952164553 a001 32951280099/6643838879*87403803^(7/19) 4180999952164553 a001 66978574/35355581*599074578^(8/21) 4180999952164553 a001 1144206275/230701876*87403803^(7/19) 4180999952164553 a001 4807526976/370248451*87403803^(6/19) 4180999952164553 a001 31622993/299537289*599074578^(11/21) 4180999952164553 a004 Fibonacci(39)*Lucas(43)/(1/2+sqrt(5)/2)^63 4180999952164553 a001 4807526976/969323029*87403803^(7/19) 4180999952164553 a001 2504730781961/1568397607*33385282^(1/18) 4180999952164553 a001 63245986/1568397607*2537720636^(8/15) 4180999952164553 a001 701408733/141422324*17393796001^(2/7) 4180999952164553 a001 63245986/1568397607*45537549124^(8/17) 4180999952164553 a001 63245986/1568397607*14662949395604^(8/21) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^24/Lucas(44) 4180999952164553 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^14/Lucas(39) 4180999952164553 a001 14787095635865246/3536736619241 4180999952164553 a001 63245986/1568397607*192900153618^(4/9) 4180999952164553 a001 63245986/1568397607*73681302247^(6/13) 4180999952164553 a001 701408733/141422324*10749957122^(7/24) 4180999952164553 a001 63245986/1568397607*10749957122^(1/2) 4180999952164553 a001 701408733/141422324*4106118243^(7/23) 4180999952164553 a001 63245986/1568397607*4106118243^(12/23) 4180999952164553 a001 701408733/141422324*1568397607^(7/22) 4180999952164553 a001 6557470319842/4106118243*33385282^(1/18) 4180999952164553 a001 63245986/1568397607*1568397607^(6/11) 4180999952164553 a004 Fibonacci(39)*Lucas(45)/(1/2+sqrt(5)/2)^65 4180999952164553 a001 63245986/9062201101803*2537720636^(14/15) 4180999952164553 a001 31622993/1730726404001*2537720636^(8/9) 4180999952164553 a001 63245986/2139295485799*2537720636^(13/15) 4180999952164553 a001 10610209857723/6643838879*33385282^(1/18) 4180999952164553 a001 63245986/505019158607*2537720636^(4/5) 4180999952164553 a001 63245986/312119004989*2537720636^(7/9) 4180999952164553 a001 63245986/119218851371*2537720636^(11/15) 4180999952164553 a001 63245986/28143753123*2537720636^(2/3) 4180999952164553 a001 1836311903/141422324*2537720636^(4/15) 4180999952164553 a001 63245986/6643838879*2537720636^(3/5) 4180999952164553 a001 1836311903/141422324*45537549124^(4/17) 4180999952164553 a001 1836311903/141422324*817138163596^(4/19) 4180999952164553 a001 1836311903/141422324*14662949395604^(4/21) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^26/Lucas(46) 4180999952164553 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^12/Lucas(39) 4180999952164553 a001 1836311903/141422324*192900153618^(2/9) 4180999952164553 a001 1836311903/141422324*73681302247^(3/13) 4180999952164553 a001 63245986/4106118243*73681302247^(1/2) 4180999952164553 a001 1836311903/141422324*10749957122^(1/4) 4180999952164553 a001 63245986/4106118243*10749957122^(13/24) 4180999952164553 a001 1836311903/141422324*4106118243^(6/23) 4180999952164553 a001 1201881744/35355581*2537720636^(2/9) 4180999952164553 a001 7778742049/141422324*2537720636^(1/5) 4180999952164553 a001 63245986/4106118243*4106118243^(13/23) 4180999952164553 a004 Fibonacci(39)*Lucas(47)/(1/2+sqrt(5)/2)^67 4180999952164553 a001 63246219/271444*2537720636^(2/15) 4180999952164553 a001 53316291173/141422324*2537720636^(1/9) 4180999952164553 a001 31622993/5374978561*17393796001^(4/7) 4180999952164553 a001 139583862445/141422324*2537720636^(1/15) 4180999952164553 a001 1201881744/35355581*312119004989^(2/11) 4180999952164553 a001 31622993/5374978561*14662949395604^(4/9) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^28/Lucas(48) 4180999952164553 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^10/Lucas(39) 4180999952164553 a001 31622993/5374978561*505019158607^(1/2) 4180999952164553 a001 31622993/5374978561*73681302247^(7/13) 4180999952164553 a001 1201881744/35355581*28143753123^(1/5) 4180999952164553 a001 1201881744/35355581*10749957122^(5/24) 4180999952164553 a001 31622993/5374978561*10749957122^(7/12) 4180999952164553 a004 Fibonacci(39)*Lucas(49)/(1/2+sqrt(5)/2)^69 4180999952164553 a001 63245986/9062201101803*17393796001^(6/7) 4180999952164553 a001 63245986/312119004989*17393796001^(5/7) 4180999952164553 a001 63245986/28143753123*45537549124^(10/17) 4180999952164553 a001 63245986/28143753123*312119004989^(6/11) 4180999952164553 a001 63245986/28143753123*14662949395604^(10/21) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^30/Lucas(50) 4180999952164553 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^8/Lucas(39) 4180999952164553 a001 12586269025/141422324*23725150497407^(1/8) 4180999952164553 a001 12586269025/141422324*505019158607^(1/7) 4180999952164553 a001 63245986/28143753123*192900153618^(5/9) 4180999952164553 a001 12586269025/141422324*73681302247^(2/13) 4180999952164553 a001 63245986/28143753123*28143753123^(3/5) 4180999952164553 a004 Fibonacci(39)*Lucas(51)/(1/2+sqrt(5)/2)^71 4180999952164553 a001 63245986/9062201101803*45537549124^(14/17) 4180999952164553 a001 63245986/2139295485799*45537549124^(13/17) 4180999952164553 a001 31622993/96450076809*45537549124^(2/3) 4180999952164553 a001 63245986/505019158607*45537549124^(12/17) 4180999952164553 a001 63245986/119218851371*45537549124^(11/17) 4180999952164553 a001 63246219/271444*45537549124^(2/17) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^32/Lucas(52) 4180999952164553 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^6/Lucas(39) 4180999952164553 a001 63245986/73681302247*23725150497407^(1/2) 4180999952164553 a001 63245986/73681302247*505019158607^(4/7) 4180999952164553 a001 63245986/73681302247*73681302247^(8/13) 4180999952164553 a004 Fibonacci(39)*Lucas(53)/(1/2+sqrt(5)/2)^73 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^34/Lucas(54) 4180999952164553 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^4/Lucas(39) 4180999952164553 a001 21566892818/35355581*23725150497407^(1/16) 4180999952164553 a001 139583862445/141422324*45537549124^(1/17) 4180999952164553 a001 21566892818/35355581*73681302247^(1/13) 4180999952164553 a004 Fibonacci(39)*Lucas(55)/(1/2+sqrt(5)/2)^75 4180999952164553 a001 63245986/23725150497407*312119004989^(4/5) 4180999952164553 a001 31622993/1730726404001*312119004989^(8/11) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^36/Lucas(56) 4180999952164553 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^2/Lucas(39) 4180999952164553 a001 63245986/1322157322203*817138163596^(2/3) 4180999952164553 a004 Fibonacci(39)*Lucas(57)/(1/2+sqrt(5)/2)^77 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^38/Lucas(58) 4180999952164553 a006 5^(1/2)*Fibonacci(58)/Lucas(39)/sqrt(5) 4180999952164553 a004 Fibonacci(39)*Lucas(59)/(1/2+sqrt(5)/2)^79 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^40/Lucas(60) 4180999952164553 a004 Fibonacci(60)/Lucas(39)/(1/2+sqrt(5)/2)^2 4180999952164553 a001 31622993/1730726404001*23725150497407^(5/8) 4180999952164553 a004 Fibonacci(39)*Lucas(61)/(1/2+sqrt(5)/2)^81 4180999952164553 a001 63245986/9062201101803*14662949395604^(2/3) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^42/Lucas(62) 4180999952164553 a004 Fibonacci(62)/Lucas(39)/(1/2+sqrt(5)/2)^4 4180999952164553 a004 Fibonacci(39)*Lucas(63)/(1/2+sqrt(5)/2)^83 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^44/Lucas(64) 4180999952164553 a004 Fibonacci(64)/Lucas(39)/(1/2+sqrt(5)/2)^6 4180999952164553 a004 Fibonacci(39)*Lucas(65)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^46/Lucas(66) 4180999952164553 a004 Fibonacci(66)/Lucas(39)/(1/2+sqrt(5)/2)^8 4180999952164553 a004 Fibonacci(39)*Lucas(67)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^48/Lucas(68) 4180999952164553 a004 Fibonacci(68)/Lucas(39)/(1/2+sqrt(5)/2)^10 4180999952164553 a004 Fibonacci(39)*Lucas(69)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^50/Lucas(70) 4180999952164553 a004 Fibonacci(70)/Lucas(39)/(1/2+sqrt(5)/2)^12 4180999952164553 a004 Fibonacci(39)*Lucas(71)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^52/Lucas(72) 4180999952164553 a004 Fibonacci(72)/Lucas(39)/(1/2+sqrt(5)/2)^14 4180999952164553 a004 Fibonacci(39)*Lucas(73)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^54/Lucas(74) 4180999952164553 a004 Fibonacci(74)/Lucas(39)/(1/2+sqrt(5)/2)^16 4180999952164553 a004 Fibonacci(39)*Lucas(75)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^56/Lucas(76) 4180999952164553 a004 Fibonacci(76)/Lucas(39)/(1/2+sqrt(5)/2)^18 4180999952164553 a004 Fibonacci(39)*Lucas(77)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^58/Lucas(78) 4180999952164553 a004 Fibonacci(39)*Lucas(79)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^60/Lucas(80) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^62/Lucas(82) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^64/Lucas(84) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^66/Lucas(86) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^68/Lucas(88) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^70/Lucas(90) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^72/Lucas(92) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^74/Lucas(94) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^76/Lucas(96) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^78/Lucas(98) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^79/Lucas(99) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^80/Lucas(100) 4180999952164553 a004 Fibonacci(39)*Lucas(1)/(1/2+sqrt(5)/2)^20 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^77/Lucas(97) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^75/Lucas(95) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^73/Lucas(93) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^71/Lucas(91) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^69/Lucas(89) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^67/Lucas(87) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^65/Lucas(85) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^63/Lucas(83) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^61/Lucas(81) 4180999952164553 a004 Fibonacci(39)*Lucas(80)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^59/Lucas(79) 4180999952164553 a004 Fibonacci(80)/Lucas(39)/(1/2+sqrt(5)/2)^22 4180999952164553 a004 Fibonacci(82)/Lucas(39)/(1/2+sqrt(5)/2)^24 4180999952164553 a004 Fibonacci(84)/Lucas(39)/(1/2+sqrt(5)/2)^26 4180999952164553 a004 Fibonacci(86)/Lucas(39)/(1/2+sqrt(5)/2)^28 4180999952164553 a004 Fibonacci(88)/Lucas(39)/(1/2+sqrt(5)/2)^30 4180999952164553 a004 Fibonacci(90)/Lucas(39)/(1/2+sqrt(5)/2)^32 4180999952164553 a004 Fibonacci(92)/Lucas(39)/(1/2+sqrt(5)/2)^34 4180999952164553 a004 Fibonacci(94)/Lucas(39)/(1/2+sqrt(5)/2)^36 4180999952164553 a004 Fibonacci(96)/Lucas(39)/(1/2+sqrt(5)/2)^38 4180999952164553 a004 Fibonacci(100)/Lucas(39)/(1/2+sqrt(5)/2)^42 4180999952164553 a004 Fibonacci(98)/Lucas(39)/(1/2+sqrt(5)/2)^40 4180999952164553 a004 Fibonacci(99)/Lucas(39)/(1/2+sqrt(5)/2)^41 4180999952164553 a004 Fibonacci(97)/Lucas(39)/(1/2+sqrt(5)/2)^39 4180999952164553 a004 Fibonacci(95)/Lucas(39)/(1/2+sqrt(5)/2)^37 4180999952164553 a004 Fibonacci(93)/Lucas(39)/(1/2+sqrt(5)/2)^35 4180999952164553 a004 Fibonacci(91)/Lucas(39)/(1/2+sqrt(5)/2)^33 4180999952164553 a004 Fibonacci(89)/Lucas(39)/(1/2+sqrt(5)/2)^31 4180999952164553 a004 Fibonacci(87)/Lucas(39)/(1/2+sqrt(5)/2)^29 4180999952164553 a004 Fibonacci(85)/Lucas(39)/(1/2+sqrt(5)/2)^27 4180999952164553 a004 Fibonacci(83)/Lucas(39)/(1/2+sqrt(5)/2)^25 4180999952164553 a004 Fibonacci(81)/Lucas(39)/(1/2+sqrt(5)/2)^23 4180999952164553 a004 Fibonacci(79)/Lucas(39)/(1/2+sqrt(5)/2)^21 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^57/Lucas(77) 4180999952164553 a004 Fibonacci(77)/Lucas(39)/(1/2+sqrt(5)/2)^19 4180999952164553 a004 Fibonacci(39)*Lucas(76)/(1/2+sqrt(5)/2)^96 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^55/Lucas(75) 4180999952164553 a004 Fibonacci(75)/Lucas(39)/(1/2+sqrt(5)/2)^17 4180999952164553 a004 Fibonacci(39)*Lucas(74)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^53/Lucas(73) 4180999952164553 a004 Fibonacci(73)/Lucas(39)/(1/2+sqrt(5)/2)^15 4180999952164553 a004 Fibonacci(39)*Lucas(72)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^51/Lucas(71) 4180999952164553 a004 Fibonacci(71)/Lucas(39)/(1/2+sqrt(5)/2)^13 4180999952164553 a004 Fibonacci(39)*Lucas(70)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^49/Lucas(69) 4180999952164553 a004 Fibonacci(69)/Lucas(39)/(1/2+sqrt(5)/2)^11 4180999952164553 a004 Fibonacci(39)*Lucas(68)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^47/Lucas(67) 4180999952164553 a004 Fibonacci(67)/Lucas(39)/(1/2+sqrt(5)/2)^9 4180999952164553 a004 Fibonacci(39)*Lucas(66)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^45/Lucas(65) 4180999952164553 a004 Fibonacci(65)/Lucas(39)/(1/2+sqrt(5)/2)^7 4180999952164553 a004 Fibonacci(39)*Lucas(64)/(1/2+sqrt(5)/2)^84 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^43/Lucas(63) 4180999952164553 a004 Fibonacci(63)/Lucas(39)/(1/2+sqrt(5)/2)^5 4180999952164553 a004 Fibonacci(39)*Lucas(62)/(1/2+sqrt(5)/2)^82 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^41/Lucas(61) 4180999952164553 a004 Fibonacci(61)/Lucas(39)/(1/2+sqrt(5)/2)^3 4180999952164553 a004 Fibonacci(39)*Lucas(60)/(1/2+sqrt(5)/2)^80 4180999952164553 a001 63245986/2139295485799*14662949395604^(13/21) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^39/Lucas(59) 4180999952164553 a004 Fibonacci(59)/Lucas(39)/(1/2+sqrt(5)/2) 4180999952164553 a004 Fibonacci(39)*Lucas(58)/(1/2+sqrt(5)/2)^78 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^37/Lucas(57) 4180999952164553 a004 Fibonacci(57)*(1/2+sqrt(5)/2)/Lucas(39) 4180999952164553 a001 63245986/312119004989*312119004989^(7/11) 4180999952164553 a004 Fibonacci(39)*Lucas(56)/(1/2+sqrt(5)/2)^76 4180999952164553 a001 10182505537/70711162*17393796001^(1/7) 4180999952164553 a001 139583862445/141422324*14662949395604^(1/21) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^35/Lucas(55) 4180999952164553 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^3/Lucas(39) 4180999952164553 a001 63245986/312119004989*505019158607^(5/8) 4180999952164553 a001 63245986/2139295485799*192900153618^(13/18) 4180999952164553 a001 63245986/9062201101803*192900153618^(7/9) 4180999952164553 a004 Fibonacci(39)*Lucas(54)/(1/2+sqrt(5)/2)^74 4180999952164553 a001 63245986/119218851371*312119004989^(3/5) 4180999952164553 a001 53316291173/141422324*312119004989^(1/11) 4180999952164553 a001 63245986/119218851371*817138163596^(11/19) 4180999952164553 a001 63245986/119218851371*14662949395604^(11/21) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^33/Lucas(53) 4180999952164553 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^5/Lucas(39) 4180999952164553 a001 63245986/119218851371*192900153618^(11/18) 4180999952164553 a001 63245986/505019158607*73681302247^(9/13) 4180999952164553 a001 63245986/2139295485799*73681302247^(3/4) 4180999952164553 a001 31622993/1730726404001*73681302247^(10/13) 4180999952164553 a001 63245986/23725150497407*73681302247^(11/13) 4180999952164553 a001 12586269025/141422324*10749957122^(1/6) 4180999952164553 a004 Fibonacci(39)*Lucas(52)/(1/2+sqrt(5)/2)^72 4180999952164553 a001 53316291173/141422324*28143753123^(1/10) 4180999952164553 a001 225851433717/141422324*10749957122^(1/24) 4180999952164553 a001 10182505537/70711162*14662949395604^(1/9) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^31/Lucas(51) 4180999952164553 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^7/Lucas(39) 4180999952164553 a001 31622993/22768774562*9062201101803^(1/2) 4180999952164553 a001 139583862445/141422324*10749957122^(1/16) 4180999952164553 a001 21566892818/35355581*10749957122^(1/12) 4180999952164553 a001 63245986/312119004989*28143753123^(7/10) 4180999952164553 a001 63246219/271444*10749957122^(1/8) 4180999952164553 a001 31622993/1730726404001*28143753123^(4/5) 4180999952164553 a004 Fibonacci(39)*Lucas(50)/(1/2+sqrt(5)/2)^70 4180999952164553 a001 225851433717/141422324*4106118243^(1/23) 4180999952164553 a001 7778742049/141422324*45537549124^(3/17) 4180999952164553 a001 7778742049/141422324*14662949395604^(1/7) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^29/Lucas(49) 4180999952164553 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^9/Lucas(39) 4180999952164553 a001 63245986/17393796001*1322157322203^(1/2) 4180999952164553 a001 63245986/28143753123*10749957122^(5/8) 4180999952164553 a001 1201881744/35355581*4106118243^(5/23) 4180999952164553 a001 7778742049/141422324*10749957122^(3/16) 4180999952164553 a001 21566892818/35355581*4106118243^(2/23) 4180999952164553 a001 63245986/73681302247*10749957122^(2/3) 4180999952164553 a001 63245986/119218851371*10749957122^(11/16) 4180999952164553 a001 31622993/96450076809*10749957122^(17/24) 4180999952164553 a001 63245986/505019158607*10749957122^(3/4) 4180999952164553 a001 63245986/1322157322203*10749957122^(19/24) 4180999952164553 a001 63245986/2139295485799*10749957122^(13/16) 4180999952164553 a001 31622993/1730726404001*10749957122^(5/6) 4180999952164553 a001 63246219/271444*4106118243^(3/23) 4180999952164553 a001 63245986/9062201101803*10749957122^(7/8) 4180999952164553 a001 63245986/23725150497407*10749957122^(11/12) 4180999952164553 a004 Fibonacci(39)*Lucas(48)/(1/2+sqrt(5)/2)^68 4180999952164553 a001 12586269025/141422324*4106118243^(4/23) 4180999952164553 a001 225851433717/141422324*1568397607^(1/22) 4180999952164553 a001 63245986/6643838879*45537549124^(9/17) 4180999952164553 a001 2971215073/141422324*312119004989^(1/5) 4180999952164553 a001 63245986/6643838879*14662949395604^(3/7) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^27/Lucas(47) 4180999952164553 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^11/Lucas(39) 4180999952164553 a001 63245986/6643838879*192900153618^(1/2) 4180999952164553 a001 31622993/5374978561*4106118243^(14/23) 4180999952164553 a001 63245986/6643838879*10749957122^(9/16) 4180999952164553 a001 21566892818/35355581*1568397607^(1/11) 4180999952164553 a001 63245986/28143753123*4106118243^(15/23) 4180999952164553 a001 63245986/73681302247*4106118243^(16/23) 4180999952164553 a001 31622993/96450076809*4106118243^(17/23) 4180999952164553 a001 63245986/505019158607*4106118243^(18/23) 4180999952164553 a001 63245986/1322157322203*4106118243^(19/23) 4180999952164553 a001 1836311903/141422324*1568397607^(3/11) 4180999952164553 a001 31622993/1730726404001*4106118243^(20/23) 4180999952164553 a001 63245986/9062201101803*4106118243^(21/23) 4180999952164553 a001 63246219/271444*1568397607^(3/22) 4180999952164553 a001 63245986/23725150497407*4106118243^(22/23) 4180999952164553 a004 Fibonacci(39)*Lucas(46)/(1/2+sqrt(5)/2)^66 4180999952164553 a001 31622993/1268860318*2537720636^(5/9) 4180999952164553 a001 12586269025/141422324*1568397607^(2/11) 4180999952164553 a001 1201881744/35355581*1568397607^(5/22) 4180999952164553 a001 2971215073/141422324*1568397607^(1/4) 4180999952164553 a001 225851433717/141422324*599074578^(1/21) 4180999952164553 a001 31622993/1268860318*312119004989^(5/11) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^25/Lucas(45) 4180999952164553 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^13/Lucas(39) 4180999952164553 a001 31622993/1268860318*3461452808002^(5/12) 4180999952164553 a001 567451585/70711162*73681302247^(1/4) 4180999952164553 a001 31622993/1268860318*28143753123^(1/2) 4180999952164553 a001 63245986/4106118243*1568397607^(13/22) 4180999952164553 a001 139583862445/141422324*599074578^(1/14) 4180999952164553 a001 165580141/228826127*87403803^(9/19) 4180999952164553 a001 31622993/5374978561*1568397607^(7/11) 4180999952164553 a001 21566892818/35355581*599074578^(2/21) 4180999952164553 a001 63245986/28143753123*1568397607^(15/22) 4180999952164553 a001 63245986/73681302247*1568397607^(8/11) 4180999952164553 a001 63245986/119218851371*1568397607^(3/4) 4180999952164553 a001 31622993/96450076809*1568397607^(17/22) 4180999952164553 a001 63245986/505019158607*1568397607^(9/11) 4180999952164553 a001 63245986/1322157322203*1568397607^(19/22) 4180999952164553 a001 31622993/1730726404001*1568397607^(10/11) 4180999952164553 a001 63245986/9062201101803*1568397607^(21/22) 4180999952164553 a001 63246219/271444*599074578^(1/7) 4180999952164553 a004 Fibonacci(39)*Lucas(44)/(1/2+sqrt(5)/2)^64 4180999952164553 a001 10182505537/70711162*599074578^(1/6) 4180999952164553 a001 701408733/141422324*599074578^(1/3) 4180999952164553 a001 12586269025/141422324*599074578^(4/21) 4180999952164553 a001 7778742049/141422324*599074578^(3/14) 4180999952164553 a001 1201881744/35355581*599074578^(5/21) 4180999952164553 a001 1836311903/141422324*599074578^(2/7) 4180999952164553 a001 1548008755920/969323029*33385282^(1/18) 4180999952164553 a001 225851433717/141422324*228826127^(1/20) 4180999952164553 a001 433494437/141422324*2537720636^(1/3) 4180999952164553 a001 433494437/141422324*45537549124^(5/17) 4180999952164553 a001 433494437/141422324*312119004989^(3/11) 4180999952164553 a001 13708391546789941/3278735159921 4180999952164553 a001 433494437/141422324*14662949395604^(5/21) 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^23/Lucas(43) 4180999952164553 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^15/Lucas(39) 4180999952164553 a001 433494437/141422324*192900153618^(5/18) 4180999952164553 a001 433494437/141422324*28143753123^(3/10) 4180999952164553 a001 433494437/141422324*10749957122^(5/16) 4180999952164553 a001 63245986/969323029*4106118243^(1/2) 4180999952164553 a001 63245986/1568397607*599074578^(4/7) 4180999952164553 a001 63245986/4106118243*599074578^(13/21) 4180999952164553 a001 63245986/6643838879*599074578^(9/14) 4180999952164553 a001 31622993/5374978561*599074578^(2/3) 4180999952164553 a001 21566892818/35355581*228826127^(1/10) 4180999952164553 a001 63245986/28143753123*599074578^(5/7) 4180999952164553 a001 433494437/141422324*599074578^(5/14) 4180999952164553 a001 63245986/73681302247*599074578^(16/21) 4180999952164553 a001 63245986/119218851371*599074578^(11/14) 4180999952164553 a001 31622993/96450076809*599074578^(17/21) 4180999952164553 a001 63245986/312119004989*599074578^(5/6) 4180999952164553 a001 53316291173/141422324*228826127^(1/8) 4180999952164553 a001 63245986/505019158607*599074578^(6/7) 4180999952164553 a001 567451585/299537289*87403803^(8/19) 4180999952164553 a001 63245986/1322157322203*599074578^(19/21) 4180999952164553 a001 63245986/2139295485799*599074578^(13/14) 4180999952164553 a001 31622993/1730726404001*599074578^(20/21) 4180999952164553 a004 Fibonacci(39)*Lucas(42)/(1/2+sqrt(5)/2)^62 4180999952164553 a001 63246219/271444*228826127^(3/20) 4180999952164553 a001 12586269025/141422324*228826127^(1/5) 4180999952164553 a001 2971215073/1568397607*87403803^(8/19) 4180999952164553 a001 1201881744/35355581*228826127^(1/4) 4180999952164553 a001 66978574/35355581*228826127^(2/5) 4180999952164553 a001 7778742049/4106118243*87403803^(8/19) 4180999952164553 a001 10182505537/5374978561*87403803^(8/19) 4180999952164553 a001 53316291173/28143753123*87403803^(8/19) 4180999952164553 a001 139583862445/73681302247*87403803^(8/19) 4180999952164553 a001 182717648081/96450076809*87403803^(8/19) 4180999952164553 a001 956722026041/505019158607*87403803^(8/19) 4180999952164553 a001 10610209857723/5600748293801*87403803^(8/19) 4180999952164553 a001 591286729879/312119004989*87403803^(8/19) 4180999952164553 a001 225851433717/119218851371*87403803^(8/19) 4180999952164553 a001 21566892818/11384387281*87403803^(8/19) 4180999952164553 a001 32951280099/17393796001*87403803^(8/19) 4180999952164553 a001 12586269025/6643838879*87403803^(8/19) 4180999952164553 a001 1201881744/634430159*87403803^(8/19) 4180999952164553 a001 1836311903/370248451*87403803^(7/19) 4180999952164553 a001 225851433717/228826127*33385282^(1/12) 4180999952164553 a001 1836311903/141422324*228826127^(3/10) 4180999952164553 a001 1836311903/969323029*87403803^(8/19) 4180999952164553 a001 701408733/141422324*228826127^(7/20) 4180999952164553 a001 225851433717/141422324*87403803^(1/19) 4180999952164553 a001 102334155/370248451*87403803^(10/19) 4180999952164553 a001 591286729879/370248451*33385282^(1/18) 4180999952164553 a001 63245986/370248451*2537720636^(7/15) 4180999952164553 a001 63245986/370248451*17393796001^(3/7) 4180999952164553 a001 63245986/370248451*45537549124^(7/17) 4180999952164553 a001 165580141/141422324*45537549124^(1/3) 4180999952164553 a001 10472279279564026/2504730781961 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^21/Lucas(41) 4180999952164553 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^17/Lucas(39) 4180999952164553 a001 63245986/370248451*192900153618^(7/18) 4180999952164553 a001 63245986/370248451*10749957122^(7/16) 4180999952164553 a001 31622993/299537289*228826127^(11/20) 4180999952164553 a001 102334155/969323029*87403803^(11/19) 4180999952164553 a001 433494437/141422324*228826127^(3/8) 4180999952164553 a001 63245986/370248451*599074578^(1/2) 4180999952164553 a001 133957148/299537289*87403803^(1/2) 4180999952164553 a001 433494437/599074578*87403803^(9/19) 4180999952164553 a001 63245986/1568397607*228826127^(3/5) 4180999952164553 a001 1134903170/1568397607*87403803^(9/19) 4180999952164553 a001 2971215073/4106118243*87403803^(9/19) 4180999952164553 a001 7778742049/10749957122*87403803^(9/19) 4180999952164553 a001 701408733/370248451*87403803^(8/19) 4180999952164553 a001 20365011074/28143753123*87403803^(9/19) 4180999952164553 a001 53316291173/73681302247*87403803^(9/19) 4180999952164553 a001 139583862445/192900153618*87403803^(9/19) 4180999952164553 a001 10610209857723/14662949395604*87403803^(9/19) 4180999952164553 a001 591286729879/817138163596*87403803^(9/19) 4180999952164553 a001 225851433717/312119004989*87403803^(9/19) 4180999952164553 a001 86267571272/119218851371*87403803^(9/19) 4180999952164553 a001 32951280099/45537549124*87403803^(9/19) 4180999952164553 a001 12586269025/17393796001*87403803^(9/19) 4180999952164553 a001 4807526976/6643838879*87403803^(9/19) 4180999952164553 a001 31622993/1268860318*228826127^(5/8) 4180999952164553 a001 1836311903/2537720636*87403803^(9/19) 4180999952164553 a001 63245986/4106118243*228826127^(13/20) 4180999952164553 a001 701408733/969323029*87403803^(9/19) 4180999952164553 a001 31622993/5374978561*228826127^(7/10) 4180999952164553 a001 9303105/230701876*87403803^(12/19) 4180999952164553 a001 21566892818/35355581*87403803^(2/19) 4180999952164553 a001 63245986/28143753123*228826127^(3/4) 4180999952164553 a001 701408733/1568397607*87403803^(1/2) 4180999952164553 a001 63245986/73681302247*228826127^(4/5) 4180999952164553 a001 1836311903/4106118243*87403803^(1/2) 4180999952164553 a001 2403763488/5374978561*87403803^(1/2) 4180999952164553 a001 12586269025/28143753123*87403803^(1/2) 4180999952164553 a001 32951280099/73681302247*87403803^(1/2) 4180999952164553 a001 43133785636/96450076809*87403803^(1/2) 4180999952164553 a001 225851433717/505019158607*87403803^(1/2) 4180999952164553 a001 591286729879/1322157322203*87403803^(1/2) 4180999952164553 a001 10610209857723/23725150497407*87403803^(1/2) 4180999952164553 a001 182717648081/408569081798*87403803^(1/2) 4180999952164553 a001 139583862445/312119004989*87403803^(1/2) 4180999952164553 a001 53316291173/119218851371*87403803^(1/2) 4180999952164553 a001 10182505537/22768774562*87403803^(1/2) 4180999952164553 a001 7778742049/17393796001*87403803^(1/2) 4180999952164553 a001 2971215073/6643838879*87403803^(1/2) 4180999952164553 a001 567451585/1268860318*87403803^(1/2) 4180999952164553 a001 31622993/96450076809*228826127^(17/20) 4180999952164553 a001 267914296/370248451*87403803^(9/19) 4180999952164553 a001 63245986/312119004989*228826127^(7/8) 4180999952164553 a001 267914296/969323029*87403803^(10/19) 4180999952164553 a001 63245986/505019158607*228826127^(9/10) 4180999952164553 a001 433494437/969323029*87403803^(1/2) 4180999952164553 a001 63245986/1322157322203*228826127^(19/20) 4180999952164553 a001 7778742049/87403803*33385282^(2/9) 4180999952164553 a001 701408733/2537720636*87403803^(10/19) 4180999952164553 a001 1836311903/6643838879*87403803^(10/19) 4180999952164553 a001 4807526976/17393796001*87403803^(10/19) 4180999952164553 a001 12586269025/45537549124*87403803^(10/19) 4180999952164553 a001 32951280099/119218851371*87403803^(10/19) 4180999952164553 a001 86267571272/312119004989*87403803^(10/19) 4180999952164553 a001 225851433717/817138163596*87403803^(10/19) 4180999952164553 a001 1548008755920/5600748293801*87403803^(10/19) 4180999952164553 a001 139583862445/505019158607*87403803^(10/19) 4180999952164553 a001 53316291173/192900153618*87403803^(10/19) 4180999952164553 a001 20365011074/73681302247*87403803^(10/19) 4180999952164553 a001 7778742049/28143753123*87403803^(10/19) 4180999952164553 a001 2971215073/10749957122*87403803^(10/19) 4180999952164553 a001 1134903170/4106118243*87403803^(10/19) 4180999952164553 a004 Fibonacci(39)*Lucas(40)/(1/2+sqrt(5)/2)^60 4180999952164553 a001 433494437/1568397607*87403803^(10/19) 4180999952164553 a001 102334155/6643838879*87403803^(13/19) 4180999952164553 a001 63246219/271444*87403803^(3/19) 4180999952164553 a001 591286729879/599074578*33385282^(1/12) 4180999952164553 a001 66978574/634430159*87403803^(11/19) 4180999952164553 a001 165580141/599074578*87403803^(10/19) 4180999952164553 a001 1548008755920/1568397607*33385282^(1/12) 4180999952164553 a001 4052739537881/4106118243*33385282^(1/12) 4180999952164553 a001 4807525989/4870846*33385282^(1/12) 4180999952164553 a001 6557470319842/6643838879*33385282^(1/12) 4180999952164553 a001 2504730781961/2537720636*33385282^(1/12) 4180999952164553 a001 701408733/6643838879*87403803^(11/19) 4180999952164553 a001 1836311903/17393796001*87403803^(11/19) 4180999952164553 a001 1201881744/11384387281*87403803^(11/19) 4180999952164553 a001 12586269025/119218851371*87403803^(11/19) 4180999952164553 a001 32951280099/312119004989*87403803^(11/19) 4180999952164553 a001 21566892818/204284540899*87403803^(11/19) 4180999952164553 a001 225851433717/2139295485799*87403803^(11/19) 4180999952164553 a001 182717648081/1730726404001*87403803^(11/19) 4180999952164553 a001 139583862445/1322157322203*87403803^(11/19) 4180999952164553 a001 53316291173/505019158607*87403803^(11/19) 4180999952164553 a001 10182505537/96450076809*87403803^(11/19) 4180999952164553 a001 7778742049/73681302247*87403803^(11/19) 4180999952164553 a001 2971215073/28143753123*87403803^(11/19) 4180999952164553 a001 956722026041/969323029*33385282^(1/12) 4180999952164553 a001 567451585/5374978561*87403803^(11/19) 4180999952164553 a001 433494437/4106118243*87403803^(11/19) 4180999952164553 a001 102334155/17393796001*87403803^(14/19) 4180999952164553 a001 12586269025/141422324*87403803^(4/19) 4180999952164553 a001 267914296/6643838879*87403803^(12/19) 4180999952164553 a001 165580141/370248451*87403803^(1/2) 4180999952164553 a001 139583862445/228826127*33385282^(1/9) 4180999952164553 a001 365435296162/370248451*33385282^(1/12) 4180999952164553 a001 701408733/17393796001*87403803^(12/19) 4180999952164553 a001 1836311903/45537549124*87403803^(12/19) 4180999952164553 a001 4807526976/119218851371*87403803^(12/19) 4180999952164553 a001 1144206275/28374454999*87403803^(12/19) 4180999952164553 a001 165580141/1568397607*87403803^(11/19) 4180999952164553 a001 32951280099/817138163596*87403803^(12/19) 4180999952164553 a001 86267571272/2139295485799*87403803^(12/19) 4180999952164553 a001 225851433717/5600748293801*87403803^(12/19) 4180999952164553 a001 591286729879/14662949395604*87403803^(12/19) 4180999952164553 a001 365435296162/9062201101803*87403803^(12/19) 4180999952164553 a001 139583862445/3461452808002*87403803^(12/19) 4180999952164553 a001 53316291173/1322157322203*87403803^(12/19) 4180999952164553 a001 20365011074/505019158607*87403803^(12/19) 4180999952164553 a001 7778742049/192900153618*87403803^(12/19) 4180999952164553 a001 2971215073/73681302247*87403803^(12/19) 4180999952164553 a001 1134903170/28143753123*87403803^(12/19) 4180999952164553 a001 433494437/10749957122*87403803^(12/19) 4180999952164553 a001 102334155/45537549124*87403803^(15/19) 4180999952164553 a001 1201881744/35355581*87403803^(5/19) 4180999952164553 a001 9238424/599786069*87403803^(13/19) 4180999952164553 a001 701408733/45537549124*87403803^(13/19) 4180999952164553 a001 1836311903/119218851371*87403803^(13/19) 4180999952164553 a001 4807526976/312119004989*87403803^(13/19) 4180999952164553 a001 12586269025/817138163596*87403803^(13/19) 4180999952164553 a001 32951280099/2139295485799*87403803^(13/19) 4180999952164553 a001 86267571272/5600748293801*87403803^(13/19) 4180999952164553 a001 7787980473/505618944676*87403803^(13/19) 4180999952164553 a001 365435296162/23725150497407*87403803^(13/19) 4180999952164553 a001 139583862445/9062201101803*87403803^(13/19) 4180999952164553 a001 53316291173/3461452808002*87403803^(13/19) 4180999952164553 a001 20365011074/1322157322203*87403803^(13/19) 4180999952164553 a001 7778742049/505019158607*87403803^(13/19) 4180999952164553 a001 2971215073/192900153618*87403803^(13/19) 4180999952164553 a001 1134903170/73681302247*87403803^(13/19) 4180999952164553 a001 165580141/4106118243*87403803^(12/19) 4180999952164553 a001 433494437/28143753123*87403803^(13/19) 4180999952164553 a001 102334155/119218851371*87403803^(16/19) 4180999952164553 a001 1836311903/141422324*87403803^(6/19) 4180999952164553 a001 102334155/141422324*87403803^(9/19) 4180999952164553 a001 1602508992/29134601*33385282^(1/4) 4180999952164553 a001 66978574/11384387281*87403803^(14/19) 4180999952164553 a001 701408733/119218851371*87403803^(14/19) 4180999952164553 a001 1836311903/312119004989*87403803^(14/19) 4180999952164553 a001 1201881744/204284540899*87403803^(14/19) 4180999952164553 a001 12586269025/2139295485799*87403803^(14/19) 4180999952164553 a001 32951280099/5600748293801*87403803^(14/19) 4180999952164553 a001 1135099622/192933544679*87403803^(14/19) 4180999952164553 a001 139583862445/23725150497407*87403803^(14/19) 4180999952164553 a001 53316291173/9062201101803*87403803^(14/19) 4180999952164553 a001 10182505537/1730726404001*87403803^(14/19) 4180999952164553 a001 7778742049/1322157322203*87403803^(14/19) 4180999952164553 a001 2971215073/505019158607*87403803^(14/19) 4180999952164553 a001 567451585/96450076809*87403803^(14/19) 4180999952164553 a001 165580141/10749957122*87403803^(13/19) 4180999952164553 a001 182717648081/299537289*33385282^(1/9) 4180999952164553 a001 433494437/73681302247*87403803^(14/19) 4180999952164553 a001 701408733/141422324*87403803^(7/19) 4180999952164553 a001 9303105/28374454999*87403803^(17/19) 4180999952164553 a001 956722026041/1568397607*33385282^(1/9) 4180999952164553 a001 2504730781961/4106118243*33385282^(1/9) 4180999952164553 a001 3278735159921/5374978561*33385282^(1/9) 4180999952164553 a001 10610209857723/17393796001*33385282^(1/9) 4180999952164553 a001 4052739537881/6643838879*33385282^(1/9) 4180999952164553 a001 63245986/228826127*87403803^(10/19) 4180999952164553 a001 225851433717/141422324*33385282^(1/18) 4180999952164553 a001 1134903780/1860499*33385282^(1/9) 4180999952164553 a001 31622993/70711162*817138163596^(1/3) 4180999952164553 a001 4000054745112196/956722026041 4180999952164553 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^19/Lucas(39) 4180999952164553 a001 267914296/119218851371*87403803^(15/19) 4180999952164553 a001 591286729879/969323029*33385282^(1/9) 4180999952164553 a001 66978574/35355581*87403803^(8/19) 4180999952164553 a001 3524667/1568437211*87403803^(15/19) 4180999952164553 a001 1836311903/817138163596*87403803^(15/19) 4180999952164553 a001 4807526976/2139295485799*87403803^(15/19) 4180999952164553 a001 12586269025/5600748293801*87403803^(15/19) 4180999952164553 a001 32951280099/14662949395604*87403803^(15/19) 4180999952164553 a001 53316291173/23725150497407*87403803^(15/19) 4180999952164553 a001 20365011074/9062201101803*87403803^(15/19) 4180999952164553 a001 7778742049/3461452808002*87403803^(15/19) 4180999952164553 a001 2971215073/1322157322203*87403803^(15/19) 4180999952164553 a001 1134903170/505019158607*87403803^(15/19) 4180999952164553 a001 165580141/28143753123*87403803^(14/19) 4180999952164553 a001 433494437/192900153618*87403803^(15/19) 4180999952164553 a001 102334155/817138163596*87403803^(18/19) 4180999952164553 a001 225851433717/370248451*33385282^(1/9) 4180999952164553 a001 267914296/312119004989*87403803^(16/19) 4180999952164553 a001 9227465/33385282*20633239^(4/7) 4180999952164553 a001 701408733/817138163596*87403803^(16/19) 4180999952164553 a001 1836311903/2139295485799*87403803^(16/19) 4180999952164553 a001 4807526976/5600748293801*87403803^(16/19) 4180999952164553 a001 12586269025/14662949395604*87403803^(16/19) 4180999952164553 a001 20365011074/23725150497407*87403803^(16/19) 4180999952164553 a001 7778742049/9062201101803*87403803^(16/19) 4180999952164553 a001 2971215073/3461452808002*87403803^(16/19) 4180999952164553 a001 1134903170/1322157322203*87403803^(16/19) 4180999952164553 a001 165580141/73681302247*87403803^(15/19) 4180999952164553 a001 433494437/505019158607*87403803^(16/19) 4180999952164553 a004 Fibonacci(40)*Lucas(38)/(1/2+sqrt(5)/2)^59 4180999952164553 a001 66978574/204284540899*87403803^(17/19) 4180999952164553 a001 701408733/2139295485799*87403803^(17/19) 4180999952164553 a001 1836311903/5600748293801*87403803^(17/19) 4180999952164553 a001 1201881744/3665737348901*87403803^(17/19) 4180999952164553 a001 7778742049/23725150497407*87403803^(17/19) 4180999952164553 a001 2971215073/9062201101803*87403803^(17/19) 4180999952164553 a001 567451585/1730726404001*87403803^(17/19) 4180999952164553 a001 165580141/192900153618*87403803^(16/19) 4180999952164553 a001 433494437/1322157322203*87403803^(17/19) 4180999952164553 a001 2971215073/87403803*33385282^(5/18) 4180999952164553 a001 267914296/2139295485799*87403803^(18/19) 4180999952164553 a001 31622993/299537289*87403803^(11/19) 4180999952164553 a001 701408733/5600748293801*87403803^(18/19) 4180999952164553 a001 1836311903/14662949395604*87403803^(18/19) 4180999952164553 a001 2971215073/23725150497407*87403803^(18/19) 4180999952164553 a001 1134903170/9062201101803*87403803^(18/19) 4180999952164553 a001 165580141/505019158607*87403803^(17/19) 4180999952164553 a001 139583862445/141422324*33385282^(1/12) 4180999952164553 a001 433494437/3461452808002*87403803^(18/19) 4180999952164553 a004 Fibonacci(42)*Lucas(38)/(1/2+sqrt(5)/2)^61 4180999952164553 a001 53316291173/228826127*33385282^(1/6) 4180999952164553 a004 Fibonacci(44)*Lucas(38)/(1/2+sqrt(5)/2)^63 4180999952164553 a004 Fibonacci(46)*Lucas(38)/(1/2+sqrt(5)/2)^65 4180999952164553 a004 Fibonacci(48)*Lucas(38)/(1/2+sqrt(5)/2)^67 4180999952164553 a004 Fibonacci(50)*Lucas(38)/(1/2+sqrt(5)/2)^69 4180999952164553 a004 Fibonacci(52)*Lucas(38)/(1/2+sqrt(5)/2)^71 4180999952164553 a004 Fibonacci(54)*Lucas(38)/(1/2+sqrt(5)/2)^73 4180999952164553 a004 Fibonacci(56)*Lucas(38)/(1/2+sqrt(5)/2)^75 4180999952164553 a004 Fibonacci(58)*Lucas(38)/(1/2+sqrt(5)/2)^77 4180999952164553 a004 Fibonacci(60)*Lucas(38)/(1/2+sqrt(5)/2)^79 4180999952164553 a004 Fibonacci(62)*Lucas(38)/(1/2+sqrt(5)/2)^81 4180999952164553 a004 Fibonacci(64)*Lucas(38)/(1/2+sqrt(5)/2)^83 4180999952164553 a004 Fibonacci(66)*Lucas(38)/(1/2+sqrt(5)/2)^85 4180999952164553 a004 Fibonacci(68)*Lucas(38)/(1/2+sqrt(5)/2)^87 4180999952164553 a004 Fibonacci(70)*Lucas(38)/(1/2+sqrt(5)/2)^89 4180999952164553 a004 Fibonacci(72)*Lucas(38)/(1/2+sqrt(5)/2)^91 4180999952164553 a004 Fibonacci(74)*Lucas(38)/(1/2+sqrt(5)/2)^93 4180999952164553 a004 Fibonacci(76)*Lucas(38)/(1/2+sqrt(5)/2)^95 4180999952164553 a004 Fibonacci(78)*Lucas(38)/(1/2+sqrt(5)/2)^97 4180999952164553 a004 Fibonacci(80)*Lucas(38)/(1/2+sqrt(5)/2)^99 4180999952164553 a004 Fibonacci(81)*Lucas(38)/(1/2+sqrt(5)/2)^100 4180999952164553 a004 Fibonacci(79)*Lucas(38)/(1/2+sqrt(5)/2)^98 4180999952164553 a004 Fibonacci(77)*Lucas(38)/(1/2+sqrt(5)/2)^96 4180999952164553 a001 2/39088169*(1/2+1/2*5^(1/2))^57 4180999952164553 a004 Fibonacci(75)*Lucas(38)/(1/2+sqrt(5)/2)^94 4180999952164553 a004 Fibonacci(73)*Lucas(38)/(1/2+sqrt(5)/2)^92 4180999952164553 a004 Fibonacci(71)*Lucas(38)/(1/2+sqrt(5)/2)^90 4180999952164553 a004 Fibonacci(69)*Lucas(38)/(1/2+sqrt(5)/2)^88 4180999952164553 a004 Fibonacci(67)*Lucas(38)/(1/2+sqrt(5)/2)^86 4180999952164553 a004 Fibonacci(65)*Lucas(38)/(1/2+sqrt(5)/2)^84 4180999952164553 a004 Fibonacci(63)*Lucas(38)/(1/2+sqrt(5)/2)^82 4180999952164553 a004 Fibonacci(61)*Lucas(38)/(1/2+sqrt(5)/2)^80 4180999952164553 a004 Fibonacci(59)*Lucas(38)/(1/2+sqrt(5)/2)^78 4180999952164553 a004 Fibonacci(57)*Lucas(38)/(1/2+sqrt(5)/2)^76 4180999952164553 a004 Fibonacci(55)*Lucas(38)/(1/2+sqrt(5)/2)^74 4180999952164553 a004 Fibonacci(53)*Lucas(38)/(1/2+sqrt(5)/2)^72 4180999952164553 a004 Fibonacci(51)*Lucas(38)/(1/2+sqrt(5)/2)^70 4180999952164553 a004 Fibonacci(49)*Lucas(38)/(1/2+sqrt(5)/2)^68 4180999952164553 a004 Fibonacci(47)*Lucas(38)/(1/2+sqrt(5)/2)^66 4180999952164553 a004 Fibonacci(45)*Lucas(38)/(1/2+sqrt(5)/2)^64 4180999952164553 a001 165580141/1322157322203*87403803^(18/19) 4180999952164553 a004 Fibonacci(43)*Lucas(38)/(1/2+sqrt(5)/2)^62 4180999952164553 a001 63245986/1568397607*87403803^(12/19) 4180999952164553 a004 Fibonacci(41)*Lucas(38)/(1/2+sqrt(5)/2)^60 4180999952164553 a001 63245986/4106118243*87403803^(13/19) 4180999952164553 a001 31622993/5374978561*87403803^(14/19) 4180999952164554 a001 139583862445/599074578*33385282^(1/6) 4180999952164554 a001 365435296162/1568397607*33385282^(1/6) 4180999952164554 a001 956722026041/4106118243*33385282^(1/6) 4180999952164554 a001 2504730781961/10749957122*33385282^(1/6) 4180999952164554 a001 6557470319842/28143753123*33385282^(1/6) 4180999952164554 a001 10610209857723/45537549124*33385282^(1/6) 4180999952164554 a001 4052739537881/17393796001*33385282^(1/6) 4180999952164554 a001 1548008755920/6643838879*33385282^(1/6) 4180999952164554 a001 21566892818/35355581*33385282^(1/9) 4180999952164554 a001 591286729879/2537720636*33385282^(1/6) 4180999952164554 a001 225851433717/969323029*33385282^(1/6) 4180999952164554 a001 63245986/28143753123*87403803^(15/19) 4180999952164554 a001 86267571272/370248451*33385282^(1/6) 4180999952164554 a001 63245986/73681302247*87403803^(16/19) 4180999952164554 a001 31622993/70711162*87403803^(1/2) 4180999952164554 a001 31622993/96450076809*87403803^(17/19) 4180999952164554 a001 1134903170/87403803*33385282^(1/3) 4180999952164554 a001 63245986/505019158607*87403803^(18/19) 4180999952164554 a001 20365011074/228826127*33385282^(2/9) 4180999952164554 a004 Fibonacci(39)*Lucas(38)/(1/2+sqrt(5)/2)^58 4180999952164554 a001 7778742049/33385282*12752043^(3/17) 4180999952164554 a001 39088169/54018521*141422324^(6/13) 4180999952164554 a001 53316291173/599074578*33385282^(2/9) 4180999952164554 a001 139583862445/1568397607*33385282^(2/9) 4180999952164554 a001 365435296162/4106118243*33385282^(2/9) 4180999952164554 a001 956722026041/10749957122*33385282^(2/9) 4180999952164554 a001 2504730781961/28143753123*33385282^(2/9) 4180999952164554 a001 6557470319842/73681302247*33385282^(2/9) 4180999952164554 a001 10610209857723/119218851371*33385282^(2/9) 4180999952164554 a001 4052739537881/45537549124*33385282^(2/9) 4180999952164554 a001 1548008755920/17393796001*33385282^(2/9) 4180999952164554 a001 591286729879/6643838879*33385282^(2/9) 4180999952164554 a001 63246219/271444*33385282^(1/6) 4180999952164554 a001 225851433717/2537720636*33385282^(2/9) 4180999952164554 a001 86267571272/969323029*33385282^(2/9) 4180999952164554 a001 12586269025/228826127*33385282^(1/4) 4180999952164554 a001 32951280099/370248451*33385282^(2/9) 4180999952164554 a001 24157817/87403803*2537720636^(4/9) 4180999952164554 a001 39088169/54018521*2537720636^(2/5) 4180999952164554 a001 39088169/54018521*45537549124^(6/17) 4180999952164554 a001 39088169/54018521*14662949395604^(2/7) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^20/Lucas(38) 4180999952164554 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^18/Lucas(37) 4180999952164554 a001 24157817/87403803*23725150497407^(5/16) 4180999952164554 a001 24157817/87403803*505019158607^(5/14) 4180999952164554 a001 944284833567073/225851433717 4180999952164554 a001 39088169/54018521*192900153618^(1/3) 4180999952164554 a001 24157817/87403803*73681302247^(5/13) 4180999952164554 a001 24157817/87403803*28143753123^(2/5) 4180999952164554 a001 39088169/54018521*10749957122^(3/8) 4180999952164554 a001 24157817/87403803*10749957122^(5/12) 4180999952164554 a001 39088169/54018521*4106118243^(9/23) 4180999952164554 a001 24157817/87403803*4106118243^(10/23) 4180999952164554 a001 39088169/54018521*1568397607^(9/22) 4180999952164554 a001 24157817/87403803*1568397607^(5/11) 4180999952164554 a001 39088169/54018521*599074578^(3/7) 4180999952164554 a001 24157817/87403803*599074578^(10/21) 4180999952164554 a001 433494437/87403803*33385282^(7/18) 4180999952164554 a001 39088169/54018521*228826127^(9/20) 4180999952164554 a001 24157817/87403803*228826127^(1/2) 4180999952164554 a001 10983760033/199691526*33385282^(1/4) 4180999952164554 a001 86267571272/1568397607*33385282^(1/4) 4180999952164554 a001 75283811239/1368706081*33385282^(1/4) 4180999952164554 a001 591286729879/10749957122*33385282^(1/4) 4180999952164554 a001 12585437040/228811001*33385282^(1/4) 4180999952164554 a001 4052739537881/73681302247*33385282^(1/4) 4180999952164554 a001 3536736619241/64300051206*33385282^(1/4) 4180999952164554 a001 6557470319842/119218851371*33385282^(1/4) 4180999952164554 a001 2504730781961/45537549124*33385282^(1/4) 4180999952164554 a001 956722026041/17393796001*33385282^(1/4) 4180999952164554 a001 365435296162/6643838879*33385282^(1/4) 4180999952164554 a001 139583862445/2537720636*33385282^(1/4) 4180999952164554 a001 53316291173/969323029*33385282^(1/4) 4180999952164554 a001 7778742049/228826127*33385282^(5/18) 4180999952164554 a001 139583862445/87403803*12752043^(1/17) 4180999952164554 a001 20365011074/370248451*33385282^(1/4) 4180999952164554 a001 267914296/87403803*33385282^(5/12) 4180999952164554 a001 10182505537/299537289*33385282^(5/18) 4180999952164554 a001 53316291173/1568397607*33385282^(5/18) 4180999952164554 a001 139583862445/4106118243*33385282^(5/18) 4180999952164554 a001 182717648081/5374978561*33385282^(5/18) 4180999952164554 a001 956722026041/28143753123*33385282^(5/18) 4180999952164554 a001 2504730781961/73681302247*33385282^(5/18) 4180999952164554 a001 3278735159921/96450076809*33385282^(5/18) 4180999952164554 a001 10610209857723/312119004989*33385282^(5/18) 4180999952164554 a001 4052739537881/119218851371*33385282^(5/18) 4180999952164554 a001 387002188980/11384387281*33385282^(5/18) 4180999952164554 a001 591286729879/17393796001*33385282^(5/18) 4180999952164554 a001 225851433717/6643838879*33385282^(5/18) 4180999952164554 a001 12586269025/141422324*33385282^(2/9) 4180999952164554 a001 1135099622/33391061*33385282^(5/18) 4180999952164554 a001 32951280099/969323029*33385282^(5/18) 4180999952164554 a001 12586269025/370248451*33385282^(5/18) 4180999952164554 a001 39088169/54018521*87403803^(9/19) 4180999952164554 a001 7778742049/141422324*33385282^(1/4) 4180999952164554 a001 165580141/87403803*33385282^(4/9) 4180999952164554 a001 2971215073/228826127*33385282^(1/3) 4180999952164554 a001 24157817/87403803*87403803^(10/19) 4180999952164554 a004 Fibonacci(37)*Lucas(39)/(1/2+sqrt(5)/2)^57 4180999952164554 a001 2178309/7881196*4870847^(5/8) 4180999952164554 a001 7778742049/599074578*33385282^(1/3) 4180999952164554 a001 24157817/192900153618*141422324^(12/13) 4180999952164554 a001 20365011074/1568397607*33385282^(1/3) 4180999952164554 a001 53316291173/4106118243*33385282^(1/3) 4180999952164554 a001 139583862445/10749957122*33385282^(1/3) 4180999952164554 a001 365435296162/28143753123*33385282^(1/3) 4180999952164554 a001 956722026041/73681302247*33385282^(1/3) 4180999952164554 a001 2504730781961/192900153618*33385282^(1/3) 4180999952164554 a001 10610209857723/817138163596*33385282^(1/3) 4180999952164554 a001 4052739537881/312119004989*33385282^(1/3) 4180999952164554 a001 1548008755920/119218851371*33385282^(1/3) 4180999952164554 a001 591286729879/45537549124*33385282^(1/3) 4180999952164554 a001 7787980473/599786069*33385282^(1/3) 4180999952164554 a001 86267571272/6643838879*33385282^(1/3) 4180999952164554 a001 1201881744/35355581*33385282^(5/18) 4180999952164554 a001 32951280099/2537720636*33385282^(1/3) 4180999952164554 a001 12586269025/969323029*33385282^(1/3) 4180999952164554 a001 24157817/45537549124*141422324^(11/13) 4180999952164554 a001 24157817/10749957122*141422324^(10/13) 4180999952164554 a001 4807526976/370248451*33385282^(1/3) 4180999952164554 a001 24157817/2537720636*141422324^(9/13) 4180999952164554 a001 24157817/1568397607*141422324^(2/3) 4180999952164554 a001 24157817/599074578*141422324^(8/13) 4180999952164554 a001 24157817/228826127*312119004989^(2/5) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^22/Lucas(40) 4180999952164554 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^16/Lucas(37) 4180999952164554 a001 102334155/54018521*23725150497407^(1/4) 4180999952164554 a001 102334155/54018521*73681302247^(4/13) 4180999952164554 a001 102334155/54018521*10749957122^(1/3) 4180999952164554 a001 24157817/228826127*10749957122^(11/24) 4180999952164554 a001 102334155/54018521*4106118243^(8/23) 4180999952164554 a001 24157817/228826127*4106118243^(11/23) 4180999952164554 a001 102334155/54018521*1568397607^(4/11) 4180999952164554 a001 24157817/228826127*1568397607^(1/2) 4180999952164554 a001 102334155/54018521*599074578^(8/21) 4180999952164554 a001 24157817/228826127*599074578^(11/21) 4180999952164554 a001 701408733/54018521*141422324^(4/13) 4180999952164554 a001 433494437/54018521*141422324^(1/3) 4180999952164554 a001 1134903170/228826127*33385282^(7/18) 4180999952164554 a001 165580141/54018521*141422324^(5/13) 4180999952164554 a001 2971215073/54018521*141422324^(3/13) 4180999952164554 a001 102334155/54018521*228826127^(2/5) 4180999952164554 a001 24157817/228826127*228826127^(11/20) 4180999952164554 a001 12586269025/54018521*141422324^(2/13) 4180999952164554 a004 Fibonacci(37)*Lucas(41)/(1/2+sqrt(5)/2)^59 4180999952164554 a001 9227465/4106118243*20633239^(6/7) 4180999952164554 a001 53316291173/54018521*141422324^(1/13) 4180999952164554 a001 24157817/599074578*2537720636^(8/15) 4180999952164554 a001 267914296/54018521*17393796001^(2/7) 4180999952164554 a001 24157817/599074578*45537549124^(8/17) 4180999952164554 a001 24157817/599074578*14662949395604^(8/21) 4180999952164554 a001 267914296/54018521*14662949395604^(2/9) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^24/Lucas(42) 4180999952164554 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^14/Lucas(37) 4180999952164554 a001 24157817/599074578*192900153618^(4/9) 4180999952164554 a001 24157817/599074578*73681302247^(6/13) 4180999952164554 a001 267914296/54018521*10749957122^(7/24) 4180999952164554 a001 24157817/599074578*10749957122^(1/2) 4180999952164554 a001 267914296/54018521*4106118243^(7/23) 4180999952164554 a001 24157817/599074578*4106118243^(12/23) 4180999952164554 a001 267914296/54018521*1568397607^(7/22) 4180999952164554 a001 24157817/599074578*1568397607^(6/11) 4180999952164554 a001 267914296/54018521*599074578^(1/3) 4180999952164554 a001 24157817/599074578*599074578^(4/7) 4180999952164554 a004 Fibonacci(37)*Lucas(43)/(1/2+sqrt(5)/2)^61 4180999952164554 a001 701408733/54018521*2537720636^(4/15) 4180999952164554 a001 701408733/54018521*45537549124^(4/17) 4180999952164554 a001 701408733/54018521*817138163596^(4/19) 4180999952164554 a001 701408733/54018521*14662949395604^(4/21) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^26/Lucas(44) 4180999952164554 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^12/Lucas(37) 4180999952164554 a001 16944503814015861/4052739537881 4180999952164554 a001 701408733/54018521*192900153618^(2/9) 4180999952164554 a001 701408733/54018521*73681302247^(3/13) 4180999952164554 a001 24157817/1568397607*73681302247^(1/2) 4180999952164554 a001 701408733/54018521*10749957122^(1/4) 4180999952164554 a001 24157817/1568397607*10749957122^(13/24) 4180999952164554 a001 701408733/54018521*4106118243^(6/23) 4180999952164554 a001 24157817/1568397607*4106118243^(13/23) 4180999952164554 a001 701408733/54018521*1568397607^(3/11) 4180999952164554 a001 24157817/1568397607*1568397607^(13/22) 4180999952164554 a004 Fibonacci(37)*Lucas(45)/(1/2+sqrt(5)/2)^63 4180999952164554 a001 24157817/3461452808002*2537720636^(14/15) 4180999952164554 a001 24157817/1322157322203*2537720636^(8/9) 4180999952164554 a001 24157817/817138163596*2537720636^(13/15) 4180999952164554 a001 24157817/192900153618*2537720636^(4/5) 4180999952164554 a001 24157817/119218851371*2537720636^(7/9) 4180999952164554 a001 24157817/45537549124*2537720636^(11/15) 4180999952164554 a001 24157817/10749957122*2537720636^(2/3) 4180999952164554 a001 1836311903/54018521*2537720636^(2/9) 4180999952164554 a001 365435296162/228826127*12752043^(1/17) 4180999952164554 a001 24157817/4106118243*17393796001^(4/7) 4180999952164554 a001 1836311903/54018521*312119004989^(2/11) 4180999952164554 a001 24157817/4106118243*14662949395604^(4/9) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^28/Lucas(46) 4180999952164554 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^10/Lucas(37) 4180999952164554 a001 24157817/4106118243*73681302247^(7/13) 4180999952164554 a001 1836311903/54018521*28143753123^(1/5) 4180999952164554 a001 1836311903/54018521*10749957122^(5/24) 4180999952164554 a001 24157817/4106118243*10749957122^(7/12) 4180999952164554 a001 1836311903/54018521*4106118243^(5/23) 4180999952164554 a001 24157817/4106118243*4106118243^(14/23) 4180999952164554 a004 Fibonacci(37)*Lucas(47)/(1/2+sqrt(5)/2)^65 4180999952164554 a001 12586269025/54018521*2537720636^(2/15) 4180999952164554 a001 20365011074/54018521*2537720636^(1/9) 4180999952164554 a001 53316291173/54018521*2537720636^(1/15) 4180999952164554 a001 24157817/10749957122*45537549124^(10/17) 4180999952164554 a001 24157817/10749957122*312119004989^(6/11) 4180999952164554 a001 24157817/10749957122*14662949395604^(10/21) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^30/Lucas(48) 4180999952164554 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^8/Lucas(37) 4180999952164554 a001 4807526976/54018521*505019158607^(1/7) 4180999952164554 a001 24157817/10749957122*192900153618^(5/9) 4180999952164554 a001 4807526976/54018521*73681302247^(2/13) 4180999952164554 a001 2971215073/54018521*2537720636^(1/5) 4180999952164554 a001 24157817/10749957122*28143753123^(3/5) 4180999952164554 a001 4807526976/54018521*10749957122^(1/6) 4180999952164554 a004 Fibonacci(37)*Lucas(49)/(1/2+sqrt(5)/2)^67 4180999952164554 a001 24157817/10749957122*10749957122^(5/8) 4180999952164554 a001 24157817/3461452808002*17393796001^(6/7) 4180999952164554 a001 24157817/119218851371*17393796001^(5/7) 4180999952164554 a001 12586269025/54018521*45537549124^(2/17) 4180999952164554 a001 12586269025/54018521*14662949395604^(2/21) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^32/Lucas(50) 4180999952164554 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^6/Lucas(37) 4180999952164554 a001 24157817/28143753123*505019158607^(4/7) 4180999952164554 a001 24157817/28143753123*73681302247^(8/13) 4180999952164554 a001 24157817/73681302247*45537549124^(2/3) 4180999952164554 a004 Fibonacci(37)*Lucas(51)/(1/2+sqrt(5)/2)^69 4180999952164554 a001 24157817/14662949395604*45537549124^(15/17) 4180999952164554 a001 24157817/3461452808002*45537549124^(14/17) 4180999952164554 a001 24157817/192900153618*45537549124^(12/17) 4180999952164554 a001 24157817/817138163596*45537549124^(13/17) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^34/Lucas(52) 4180999952164554 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^4/Lucas(37) 4180999952164554 a001 32951280099/54018521*23725150497407^(1/16) 4180999952164554 a001 12586269025/54018521*10749957122^(1/8) 4180999952164554 a001 32951280099/54018521*73681302247^(1/13) 4180999952164554 a004 Fibonacci(37)*Lucas(53)/(1/2+sqrt(5)/2)^71 4180999952164554 a001 24157817/192900153618*14662949395604^(4/7) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^36/Lucas(54) 4180999952164554 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^2/Lucas(37) 4180999952164554 a001 24157817/192900153618*505019158607^(9/14) 4180999952164554 a004 Fibonacci(37)*Lucas(55)/(1/2+sqrt(5)/2)^73 4180999952164554 a001 24157817/192900153618*192900153618^(2/3) 4180999952164554 a001 24157817/14662949395604*312119004989^(9/11) 4180999952164554 a001 24157817/1322157322203*312119004989^(8/11) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^38/Lucas(56) 4180999952164554 a006 5^(1/2)*Fibonacci(56)/Lucas(37)/sqrt(5) 4180999952164554 a004 Fibonacci(37)*Lucas(57)/(1/2+sqrt(5)/2)^75 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^40/Lucas(58) 4180999952164554 a004 Fibonacci(58)/Lucas(37)/(1/2+sqrt(5)/2)^2 4180999952164554 a001 24157817/1322157322203*23725150497407^(5/8) 4180999952164554 a004 Fibonacci(37)*Lucas(59)/(1/2+sqrt(5)/2)^77 4180999952164554 a001 24157817/3461452808002*14662949395604^(2/3) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^42/Lucas(60) 4180999952164554 a004 Fibonacci(60)/Lucas(37)/(1/2+sqrt(5)/2)^4 4180999952164554 a004 Fibonacci(37)*Lucas(61)/(1/2+sqrt(5)/2)^79 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^44/Lucas(62) 4180999952164554 a004 Fibonacci(62)/Lucas(37)/(1/2+sqrt(5)/2)^6 4180999952164554 a004 Fibonacci(37)*Lucas(63)/(1/2+sqrt(5)/2)^81 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^46/Lucas(64) 4180999952164554 a004 Fibonacci(64)/Lucas(37)/(1/2+sqrt(5)/2)^8 4180999952164554 a004 Fibonacci(37)*Lucas(65)/(1/2+sqrt(5)/2)^83 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^48/Lucas(66) 4180999952164554 a004 Fibonacci(66)/Lucas(37)/(1/2+sqrt(5)/2)^10 4180999952164554 a004 Fibonacci(37)*Lucas(67)/(1/2+sqrt(5)/2)^85 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^50/Lucas(68) 4180999952164554 a004 Fibonacci(68)/Lucas(37)/(1/2+sqrt(5)/2)^12 4180999952164554 a004 Fibonacci(37)*Lucas(69)/(1/2+sqrt(5)/2)^87 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^52/Lucas(70) 4180999952164554 a004 Fibonacci(70)/Lucas(37)/(1/2+sqrt(5)/2)^14 4180999952164554 a004 Fibonacci(37)*Lucas(71)/(1/2+sqrt(5)/2)^89 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^54/Lucas(72) 4180999952164554 a004 Fibonacci(72)/Lucas(37)/(1/2+sqrt(5)/2)^16 4180999952164554 a004 Fibonacci(37)*Lucas(73)/(1/2+sqrt(5)/2)^91 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^56/Lucas(74) 4180999952164554 a004 Fibonacci(37)*Lucas(75)/(1/2+sqrt(5)/2)^93 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^58/Lucas(76) 4180999952164554 a004 Fibonacci(37)*Lucas(77)/(1/2+sqrt(5)/2)^95 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^60/Lucas(78) 4180999952164554 a004 Fibonacci(37)*Lucas(79)/(1/2+sqrt(5)/2)^97 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^62/Lucas(80) 4180999952164554 a004 Fibonacci(37)*Lucas(81)/(1/2+sqrt(5)/2)^99 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^64/Lucas(82) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^66/Lucas(84) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^68/Lucas(86) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^70/Lucas(88) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^72/Lucas(90) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^74/Lucas(92) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^76/Lucas(94) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^78/Lucas(96) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^80/Lucas(98) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^81/Lucas(99) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^82/Lucas(100) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^79/Lucas(97) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^77/Lucas(95) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^75/Lucas(93) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^73/Lucas(91) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^71/Lucas(89) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^69/Lucas(87) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^67/Lucas(85) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^65/Lucas(83) 4180999952164554 a004 Fibonacci(37)*Lucas(82)/(1/2+sqrt(5)/2)^100 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^63/Lucas(81) 4180999952164554 a004 Fibonacci(37)*Lucas(80)/(1/2+sqrt(5)/2)^98 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^61/Lucas(79) 4180999952164554 a004 Fibonacci(37)*Lucas(78)/(1/2+sqrt(5)/2)^96 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^59/Lucas(77) 4180999952164554 a004 Fibonacci(37)*Lucas(76)/(1/2+sqrt(5)/2)^94 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^57/Lucas(75) 4180999952164554 a004 Fibonacci(76)/Lucas(37)/(1/2+sqrt(5)/2)^20 4180999952164554 a004 Fibonacci(78)/Lucas(37)/(1/2+sqrt(5)/2)^22 4180999952164554 a004 Fibonacci(80)/Lucas(37)/(1/2+sqrt(5)/2)^24 4180999952164554 a004 Fibonacci(82)/Lucas(37)/(1/2+sqrt(5)/2)^26 4180999952164554 a004 Fibonacci(84)/Lucas(37)/(1/2+sqrt(5)/2)^28 4180999952164554 a004 Fibonacci(86)/Lucas(37)/(1/2+sqrt(5)/2)^30 4180999952164554 a004 Fibonacci(88)/Lucas(37)/(1/2+sqrt(5)/2)^32 4180999952164554 a004 Fibonacci(90)/Lucas(37)/(1/2+sqrt(5)/2)^34 4180999952164554 a004 Fibonacci(92)/Lucas(37)/(1/2+sqrt(5)/2)^36 4180999952164554 a004 Fibonacci(94)/Lucas(37)/(1/2+sqrt(5)/2)^38 4180999952164554 a004 Fibonacci(96)/Lucas(37)/(1/2+sqrt(5)/2)^40 4180999952164554 a004 Fibonacci(100)/Lucas(37)/(1/2+sqrt(5)/2)^44 4180999952164554 a004 Fibonacci(37)*Lucas(74)/(1/2+sqrt(5)/2)^92 4180999952164554 a004 Fibonacci(98)/Lucas(37)/(1/2+sqrt(5)/2)^42 4180999952164554 a004 Fibonacci(99)/Lucas(37)/(1/2+sqrt(5)/2)^43 4180999952164554 a004 Fibonacci(97)/Lucas(37)/(1/2+sqrt(5)/2)^41 4180999952164554 a004 Fibonacci(95)/Lucas(37)/(1/2+sqrt(5)/2)^39 4180999952164554 a004 Fibonacci(93)/Lucas(37)/(1/2+sqrt(5)/2)^37 4180999952164554 a004 Fibonacci(91)/Lucas(37)/(1/2+sqrt(5)/2)^35 4180999952164554 a004 Fibonacci(89)/Lucas(37)/(1/2+sqrt(5)/2)^33 4180999952164554 a004 Fibonacci(87)/Lucas(37)/(1/2+sqrt(5)/2)^31 4180999952164554 a004 Fibonacci(85)/Lucas(37)/(1/2+sqrt(5)/2)^29 4180999952164554 a004 Fibonacci(83)/Lucas(37)/(1/2+sqrt(5)/2)^27 4180999952164554 a004 Fibonacci(81)/Lucas(37)/(1/2+sqrt(5)/2)^25 4180999952164554 a004 Fibonacci(79)/Lucas(37)/(1/2+sqrt(5)/2)^23 4180999952164554 a004 Fibonacci(77)/Lucas(37)/(1/2+sqrt(5)/2)^21 4180999952164554 a004 Fibonacci(75)/Lucas(37)/(1/2+sqrt(5)/2)^19 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^55/Lucas(73) 4180999952164554 a004 Fibonacci(73)/Lucas(37)/(1/2+sqrt(5)/2)^17 4180999952164554 a004 Fibonacci(37)*Lucas(72)/(1/2+sqrt(5)/2)^90 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^53/Lucas(71) 4180999952164554 a004 Fibonacci(71)/Lucas(37)/(1/2+sqrt(5)/2)^15 4180999952164554 a004 Fibonacci(37)*Lucas(70)/(1/2+sqrt(5)/2)^88 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^51/Lucas(69) 4180999952164554 a004 Fibonacci(69)/Lucas(37)/(1/2+sqrt(5)/2)^13 4180999952164554 a004 Fibonacci(37)*Lucas(68)/(1/2+sqrt(5)/2)^86 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^49/Lucas(67) 4180999952164554 a004 Fibonacci(67)/Lucas(37)/(1/2+sqrt(5)/2)^11 4180999952164554 a004 Fibonacci(37)*Lucas(66)/(1/2+sqrt(5)/2)^84 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^47/Lucas(65) 4180999952164554 a004 Fibonacci(65)/Lucas(37)/(1/2+sqrt(5)/2)^9 4180999952164554 a001 24157817/14662949395604*14662949395604^(5/7) 4180999952164554 a004 Fibonacci(37)*Lucas(64)/(1/2+sqrt(5)/2)^82 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^45/Lucas(63) 4180999952164554 a004 Fibonacci(63)/Lucas(37)/(1/2+sqrt(5)/2)^7 4180999952164554 a004 Fibonacci(37)*Lucas(62)/(1/2+sqrt(5)/2)^80 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^43/Lucas(61) 4180999952164554 a004 Fibonacci(61)/Lucas(37)/(1/2+sqrt(5)/2)^5 4180999952164554 a004 Fibonacci(37)*Lucas(60)/(1/2+sqrt(5)/2)^78 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^41/Lucas(59) 4180999952164554 a004 Fibonacci(59)/Lucas(37)/(1/2+sqrt(5)/2)^3 4180999952164554 a004 Fibonacci(37)*Lucas(58)/(1/2+sqrt(5)/2)^76 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^39/Lucas(57) 4180999952164554 a004 Fibonacci(57)/Lucas(37)/(1/2+sqrt(5)/2) 4180999952164554 a004 Fibonacci(37)*Lucas(56)/(1/2+sqrt(5)/2)^74 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^37/Lucas(55) 4180999952164554 a004 Fibonacci(55)*(1/2+sqrt(5)/2)/Lucas(37) 4180999952164554 a001 24157817/3461452808002*192900153618^(7/9) 4180999952164554 a001 24157817/14662949395604*192900153618^(5/6) 4180999952164554 a004 Fibonacci(37)*Lucas(54)/(1/2+sqrt(5)/2)^72 4180999952164554 a001 53316291173/54018521*45537549124^(1/17) 4180999952164554 a001 24157817/119218851371*312119004989^(7/11) 4180999952164554 a001 24157817/119218851371*14662949395604^(5/9) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^35/Lucas(53) 4180999952164554 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^3/Lucas(37) 4180999952164554 a001 53316291173/54018521*192900153618^(1/18) 4180999952164554 a001 24157817/119218851371*505019158607^(5/8) 4180999952164554 a001 24157817/192900153618*73681302247^(9/13) 4180999952164554 a001 24157817/1322157322203*73681302247^(10/13) 4180999952164554 a001 24157817/9062201101803*73681302247^(11/13) 4180999952164554 a001 24157817/45537549124*45537549124^(11/17) 4180999952164554 a004 Fibonacci(37)*Lucas(52)/(1/2+sqrt(5)/2)^70 4180999952164554 a001 86267571272/54018521*10749957122^(1/24) 4180999952164554 a001 24157817/45537549124*312119004989^(3/5) 4180999952164554 a001 20365011074/54018521*312119004989^(1/11) 4180999952164554 a001 24157817/45537549124*14662949395604^(11/21) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^33/Lucas(51) 4180999952164554 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^5/Lucas(37) 4180999952164554 a001 24157817/45537549124*192900153618^(11/18) 4180999952164554 a001 32951280099/54018521*10749957122^(1/12) 4180999952164554 a001 20365011074/54018521*28143753123^(1/10) 4180999952164554 a001 53316291173/54018521*10749957122^(1/16) 4180999952164554 a001 24157817/119218851371*28143753123^(7/10) 4180999952164554 a001 24157817/1322157322203*28143753123^(4/5) 4180999952164554 a001 24157817/14662949395604*28143753123^(9/10) 4180999952164554 a004 Fibonacci(37)*Lucas(50)/(1/2+sqrt(5)/2)^68 4180999952164554 a001 4807526976/54018521*4106118243^(4/23) 4180999952164554 a001 86267571272/54018521*4106118243^(1/23) 4180999952164554 a001 7778742049/54018521*17393796001^(1/7) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^31/Lucas(49) 4180999952164554 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^7/Lucas(37) 4180999952164554 a001 24157817/17393796001*9062201101803^(1/2) 4180999952164554 a001 24157817/28143753123*10749957122^(2/3) 4180999952164554 a001 32951280099/54018521*4106118243^(2/23) 4180999952164554 a001 24157817/73681302247*10749957122^(17/24) 4180999952164554 a001 24157817/45537549124*10749957122^(11/16) 4180999952164554 a001 24157817/192900153618*10749957122^(3/4) 4180999952164554 a001 12586269025/54018521*4106118243^(3/23) 4180999952164554 a001 24157817/505019158607*10749957122^(19/24) 4180999952164554 a001 24157817/817138163596*10749957122^(13/16) 4180999952164554 a001 24157817/1322157322203*10749957122^(5/6) 4180999952164554 a001 24157817/3461452808002*10749957122^(7/8) 4180999952164554 a001 24157817/9062201101803*10749957122^(11/12) 4180999952164554 a001 24157817/14662949395604*10749957122^(15/16) 4180999952164554 a001 24157817/23725150497407*10749957122^(23/24) 4180999952164554 a004 Fibonacci(37)*Lucas(48)/(1/2+sqrt(5)/2)^66 4180999952164554 a001 86267571272/54018521*1568397607^(1/22) 4180999952164554 a001 2971215073/54018521*45537549124^(3/17) 4180999952164554 a001 2971215073/54018521*817138163596^(3/19) 4180999952164554 a001 2971215073/54018521*14662949395604^(1/7) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^29/Lucas(47) 4180999952164554 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^9/Lucas(37) 4180999952164554 a001 24157817/6643838879*1322157322203^(1/2) 4180999952164554 a001 2971215073/54018521*192900153618^(1/6) 4180999952164554 a001 2971215073/54018521*10749957122^(3/16) 4180999952164554 a001 24157817/10749957122*4106118243^(15/23) 4180999952164554 a001 1836311903/54018521*1568397607^(5/22) 4180999952164554 a001 32951280099/54018521*1568397607^(1/11) 4180999952164554 a001 24157817/28143753123*4106118243^(16/23) 4180999952164554 a001 24157817/73681302247*4106118243^(17/23) 4180999952164554 a001 24157817/192900153618*4106118243^(18/23) 4180999952164554 a001 24157817/505019158607*4106118243^(19/23) 4180999952164554 a001 24157817/1322157322203*4106118243^(20/23) 4180999952164554 a001 24157817/3461452808002*4106118243^(21/23) 4180999952164554 a001 12586269025/54018521*1568397607^(3/22) 4180999952164554 a001 24157817/9062201101803*4106118243^(22/23) 4180999952164554 a004 Fibonacci(37)*Lucas(46)/(1/2+sqrt(5)/2)^64 4180999952164554 a001 24157817/2537720636*2537720636^(3/5) 4180999952164554 a001 4807526976/54018521*1568397607^(2/11) 4180999952164554 a001 86267571272/54018521*599074578^(1/21) 4180999952164554 a001 24157817/2537720636*45537549124^(9/17) 4180999952164554 a001 1134903170/54018521*312119004989^(1/5) 4180999952164554 a001 24157817/2537720636*817138163596^(9/19) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^27/Lucas(45) 4180999952164554 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^11/Lucas(37) 4180999952164554 a001 24157817/2537720636*192900153618^(1/2) 4180999952164554 a001 24157817/2537720636*10749957122^(9/16) 4180999952164554 a001 53316291173/54018521*599074578^(1/14) 4180999952164554 a001 24157817/4106118243*1568397607^(7/11) 4180999952164554 a001 1134903170/54018521*1568397607^(1/4) 4180999952164554 a001 32951280099/54018521*599074578^(2/21) 4180999952164554 a001 24157817/10749957122*1568397607^(15/22) 4180999952164554 a001 24157817/28143753123*1568397607^(8/11) 4180999952164554 a001 24157817/45537549124*1568397607^(3/4) 4180999952164554 a001 24157817/73681302247*1568397607^(17/22) 4180999952164554 a001 24157817/192900153618*1568397607^(9/11) 4180999952164554 a001 24157817/505019158607*1568397607^(19/22) 4180999952164554 a001 24157817/1322157322203*1568397607^(10/11) 4180999952164554 a001 24157817/3461452808002*1568397607^(21/22) 4180999952164554 a001 701408733/54018521*599074578^(2/7) 4180999952164554 a001 12586269025/54018521*599074578^(1/7) 4180999952164554 a004 Fibonacci(37)*Lucas(44)/(1/2+sqrt(5)/2)^62 4180999952164554 a001 7778742049/54018521*599074578^(1/6) 4180999952164554 a001 4807526976/54018521*599074578^(4/21) 4180999952164554 a001 1836311903/54018521*599074578^(5/21) 4180999952164554 a001 2971215073/54018521*599074578^(3/14) 4180999952164554 a001 86267571272/54018521*228826127^(1/20) 4180999952164554 a001 24157817/969323029*2537720636^(5/9) 4180999952164554 a001 24157817/969323029*312119004989^(5/11) 4180999952164554 a001 10472279279564029/2504730781961 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^25/Lucas(43) 4180999952164554 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^13/Lucas(37) 4180999952164554 a001 433494437/54018521*73681302247^(1/4) 4180999952164554 a001 24157817/969323029*28143753123^(1/2) 4180999952164554 a001 24157817/1568397607*599074578^(13/21) 4180999952164554 a001 24157817/4106118243*599074578^(2/3) 4180999952164554 a001 32951280099/54018521*228826127^(1/10) 4180999952164554 a001 24157817/2537720636*599074578^(9/14) 4180999952164554 a001 24157817/10749957122*599074578^(5/7) 4180999952164554 a001 24157817/28143753123*599074578^(16/21) 4180999952164554 a001 24157817/45537549124*599074578^(11/14) 4180999952164554 a001 24157817/73681302247*599074578^(17/21) 4180999952164554 a001 24157817/119218851371*599074578^(5/6) 4180999952164554 a001 20365011074/54018521*228826127^(1/8) 4180999952164554 a001 24157817/192900153618*599074578^(6/7) 4180999952164554 a001 24157817/505019158607*599074578^(19/21) 4180999952164554 a001 24157817/817138163596*599074578^(13/14) 4180999952164554 a001 24157817/1322157322203*599074578^(20/21) 4180999952164554 a004 Fibonacci(37)*Lucas(42)/(1/2+sqrt(5)/2)^60 4180999952164554 a001 12586269025/54018521*228826127^(3/20) 4180999952164554 a001 2971215073/599074578*33385282^(7/18) 4180999952164554 a001 4807526976/54018521*228826127^(1/5) 4180999952164554 a001 267914296/54018521*228826127^(7/20) 4180999952164554 a001 1836311903/54018521*228826127^(1/4) 4180999952164554 a001 701408733/54018521*228826127^(3/10) 4180999952164554 a001 7778742049/1568397607*33385282^(7/18) 4180999952164554 a001 20365011074/4106118243*33385282^(7/18) 4180999952164554 a001 53316291173/10749957122*33385282^(7/18) 4180999952164554 a001 139583862445/28143753123*33385282^(7/18) 4180999952164554 a001 365435296162/73681302247*33385282^(7/18) 4180999952164554 a001 956722026041/192900153618*33385282^(7/18) 4180999952164554 a001 2504730781961/505019158607*33385282^(7/18) 4180999952164554 a001 10610209857723/2139295485799*33385282^(7/18) 4180999952164554 a001 4052739537881/817138163596*33385282^(7/18) 4180999952164554 a001 140728068720/28374454999*33385282^(7/18) 4180999952164554 a001 591286729879/119218851371*33385282^(7/18) 4180999952164554 a001 225851433717/45537549124*33385282^(7/18) 4180999952164554 a001 86267571272/17393796001*33385282^(7/18) 4180999952164554 a001 32951280099/6643838879*33385282^(7/18) 4180999952164554 a001 1836311903/141422324*33385282^(1/3) 4180999952164554 a001 1144206275/230701876*33385282^(7/18) 4180999952164554 a001 86267571272/54018521*87403803^(1/19) 4180999952164554 a001 165580141/54018521*2537720636^(1/3) 4180999952164554 a001 4807526976/969323029*33385282^(7/18) 4180999952164554 a001 165580141/54018521*45537549124^(5/17) 4180999952164554 a001 165580141/54018521*312119004989^(3/11) 4180999952164554 a001 165580141/54018521*14662949395604^(5/21) 4180999952164554 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^23/Lucas(41) 4180999952164554 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^15/Lucas(37) 4180999952164554 a001 165580141/54018521*192900153618^(5/18) 4180999952164554 a001 165580141/54018521*28143753123^(3/10) 4180999952164554 a001 165580141/54018521*10749957122^(5/16) 4180999952164554 a001 24157817/370248451*4106118243^(1/2) 4180999952164554 a001 165580141/54018521*599074578^(5/14) 4180999952164554 a001 24157817/599074578*228826127^(3/5) 4180999952164554 a001 701408733/228826127*33385282^(5/12) 4180999952164554 a001 24157817/1568397607*228826127^(13/20) 4180999952164554 a001 24157817/969323029*228826127^(5/8) 4180999952164554 a001 24157817/4106118243*228826127^(7/10) 4180999952164554 a001 1836311903/370248451*33385282^(7/18) 4180999952164554 a001 32951280099/54018521*87403803^(2/19) 4180999952164554 a001 24157817/10749957122*228826127^(3/4) 4180999952164554 a001 165580141/54018521*228826127^(3/8) 4180999952164554 a001 24157817/28143753123*228826127^(4/5) 4180999952164554 a001 24157817/73681302247*228826127^(17/20) 4180999952164554 a001 956722026041/599074578*12752043^(1/17) 4180999952164554 a001 24157817/119218851371*228826127^(7/8) 4180999952164554 a001 24157817/192900153618*228826127^(9/10) 4180999952164554 a001 24157817/505019158607*228826127^(19/20) 4180999952164554 a001 2504730781961/1568397607*12752043^(1/17) 4180999952164554 a001 6557470319842/4106118243*12752043^(1/17) 4180999952164554 a001 10610209857723/6643838879*12752043^(1/17) 4180999952164554 a004 Fibonacci(37)*Lucas(40)/(1/2+sqrt(5)/2)^58 4180999952164554 a001 4052739537881/2537720636*12752043^(1/17) 4180999952164554 a001 1548008755920/969323029*12752043^(1/17) 4180999952164554 a001 12586269025/54018521*87403803^(3/19) 4180999952164554 a001 24157817/141422324*141422324^(7/13) 4180999952164554 a001 63245986/87403803*33385282^(1/2) 4180999952164554 a001 591286729879/370248451*12752043^(1/17) 4180999952164554 a001 4807526976/54018521*87403803^(4/19) 4180999952164554 a001 1836311903/599074578*33385282^(5/12) 4180999952164554 a001 39088169/228826127*33385282^(7/12) 4180999952164554 a001 686789568/224056801*33385282^(5/12) 4180999952164554 a001 12586269025/4106118243*33385282^(5/12) 4180999952164554 a001 32951280099/10749957122*33385282^(5/12) 4180999952164554 a001 86267571272/28143753123*33385282^(5/12) 4180999952164554 a001 32264490531/10525900321*33385282^(5/12) 4180999952164554 a001 591286729879/192900153618*33385282^(5/12) 4180999952164554 a001 1548008755920/505019158607*33385282^(5/12) 4180999952164554 a001 1515744265389/494493258286*33385282^(5/12) 4180999952164554 a001 2504730781961/817138163596*33385282^(5/12) 4180999952164554 a001 956722026041/312119004989*33385282^(5/12) 4180999952164554 a001 365435296162/119218851371*33385282^(5/12) 4180999952164554 a001 139583862445/45537549124*33385282^(5/12) 4180999952164554 a001 53316291173/17393796001*33385282^(5/12) 4180999952164554 a001 20365011074/6643838879*33385282^(5/12) 4180999952164554 a001 7778742049/2537720636*33385282^(5/12) 4180999952164554 a001 2971215073/969323029*33385282^(5/12) 4180999952164554 a001 1836311903/54018521*87403803^(5/19) 4180999952164554 a001 102334155/54018521*87403803^(8/19) 4180999952164554 a001 433494437/228826127*33385282^(4/9) 4180999952164554 a001 1134903170/370248451*33385282^(5/12) 4180999952164554 a001 701408733/54018521*87403803^(6/19) 4180999952164555 a001 267914296/54018521*87403803^(7/19) 4180999952164555 a001 86267571272/54018521*33385282^(1/18) 4180999952164555 a001 24157817/141422324*2537720636^(7/15) 4180999952164555 a001 24157817/141422324*17393796001^(3/7) 4180999952164555 a001 24157817/141422324*45537549124^(7/17) 4180999952164555 a001 63245986/54018521*45537549124^(1/3) 4180999952164555 a001 763942477886281/182717648081 4180999952164555 a001 24157817/141422324*14662949395604^(1/3) 4180999952164555 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^21/Lucas(39) 4180999952164555 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^17/Lucas(37) 4180999952164555 a001 24157817/141422324*192900153618^(7/18) 4180999952164555 a001 24157817/141422324*10749957122^(7/16) 4180999952164555 a001 24157817/141422324*599074578^(1/2) 4180999952164555 a001 567451585/299537289*33385282^(4/9) 4180999952164555 a001 2971215073/1568397607*33385282^(4/9) 4180999952164555 a001 701408733/141422324*33385282^(7/18) 4180999952164555 a001 7778742049/4106118243*33385282^(4/9) 4180999952164555 a001 10182505537/5374978561*33385282^(4/9) 4180999952164555 a001 53316291173/28143753123*33385282^(4/9) 4180999952164555 a001 139583862445/73681302247*33385282^(4/9) 4180999952164555 a001 182717648081/96450076809*33385282^(4/9) 4180999952164555 a001 956722026041/505019158607*33385282^(4/9) 4180999952164555 a001 10610209857723/5600748293801*33385282^(4/9) 4180999952164555 a001 591286729879/312119004989*33385282^(4/9) 4180999952164555 a001 225851433717/119218851371*33385282^(4/9) 4180999952164555 a001 21566892818/11384387281*33385282^(4/9) 4180999952164555 a001 32951280099/17393796001*33385282^(4/9) 4180999952164555 a001 12586269025/6643838879*33385282^(4/9) 4180999952164555 a001 1201881744/634430159*33385282^(4/9) 4180999952164555 a001 24157817/228826127*87403803^(11/19) 4180999952164555 a001 1836311903/969323029*33385282^(4/9) 4180999952164555 a001 701408733/370248451*33385282^(4/9) 4180999952164555 a001 225851433717/141422324*12752043^(1/17) 4180999952164555 a001 53316291173/54018521*33385282^(1/12) 4180999952164555 a001 39088169/141422324*33385282^(5/9) 4180999952164555 a001 24157817/599074578*87403803^(12/19) 4180999952164555 a001 39088169/370248451*33385282^(11/18) 4180999952164555 a001 433494437/141422324*33385282^(5/12) 4180999952164555 a001 24157817/1568397607*87403803^(13/19) 4180999952164555 a001 165580141/228826127*33385282^(1/2) 4180999952164555 a001 24157817/4106118243*87403803^(14/19) 4180999952164555 a001 32951280099/54018521*33385282^(1/9) 4180999952164555 a001 66978574/35355581*33385282^(4/9) 4180999952164555 a001 24157817/10749957122*87403803^(15/19) 4180999952164555 a001 433494437/599074578*33385282^(1/2) 4180999952164555 a001 1134903170/1568397607*33385282^(1/2) 4180999952164555 a001 2971215073/4106118243*33385282^(1/2) 4180999952164555 a001 7778742049/10749957122*33385282^(1/2) 4180999952164555 a001 20365011074/28143753123*33385282^(1/2) 4180999952164555 a001 53316291173/73681302247*33385282^(1/2) 4180999952164555 a001 139583862445/192900153618*33385282^(1/2) 4180999952164555 a001 365435296162/505019158607*33385282^(1/2) 4180999952164555 a001 10610209857723/14662949395604*33385282^(1/2) 4180999952164555 a001 225851433717/312119004989*33385282^(1/2) 4180999952164555 a001 86267571272/119218851371*33385282^(1/2) 4180999952164555 a001 32951280099/45537549124*33385282^(1/2) 4180999952164555 a001 12586269025/17393796001*33385282^(1/2) 4180999952164555 a001 4807526976/6643838879*33385282^(1/2) 4180999952164555 a001 1836311903/2537720636*33385282^(1/2) 4180999952164555 a001 701408733/969323029*33385282^(1/2) 4180999952164555 a001 24157817/28143753123*87403803^(16/19) 4180999952164555 a001 267914296/370248451*33385282^(1/2) 4180999952164555 a001 24157817/73681302247*87403803^(17/19) 4180999952164555 a001 24157817/192900153618*87403803^(18/19) 4180999952164555 a001 39088169/969323029*33385282^(2/3) 4180999952164555 a001 9227465/1568397607*20633239^(4/5) 4180999952164555 a004 Fibonacci(37)*Lucas(38)/(1/2+sqrt(5)/2)^56 4180999952164555 a001 102334155/141422324*33385282^(1/2) 4180999952164555 a001 102334155/370248451*33385282^(5/9) 4180999952164555 a001 12586269025/54018521*33385282^(1/6) 4180999952164555 a001 267914296/969323029*33385282^(5/9) 4180999952164555 a001 701408733/2537720636*33385282^(5/9) 4180999952164555 a001 1836311903/6643838879*33385282^(5/9) 4180999952164555 a001 4807526976/17393796001*33385282^(5/9) 4180999952164555 a001 12586269025/45537549124*33385282^(5/9) 4180999952164555 a001 32951280099/119218851371*33385282^(5/9) 4180999952164555 a001 86267571272/312119004989*33385282^(5/9) 4180999952164555 a001 225851433717/817138163596*33385282^(5/9) 4180999952164555 a001 1548008755920/5600748293801*33385282^(5/9) 4180999952164555 a001 139583862445/505019158607*33385282^(5/9) 4180999952164555 a001 53316291173/192900153618*33385282^(5/9) 4180999952164555 a001 20365011074/73681302247*33385282^(5/9) 4180999952164555 a001 7778742049/28143753123*33385282^(5/9) 4180999952164555 a001 2971215073/10749957122*33385282^(5/9) 4180999952164555 a001 1134903170/4106118243*33385282^(5/9) 4180999952164555 a001 433494437/1568397607*33385282^(5/9) 4180999952164555 a001 34111385/199691526*33385282^(7/12) 4180999952164555 a001 165580141/599074578*33385282^(5/9) 4180999952164555 a001 39088169/2537720636*33385282^(13/18) 4180999952164555 a001 267914296/1568397607*33385282^(7/12) 4180999952164555 a001 233802911/1368706081*33385282^(7/12) 4180999952164555 a001 1836311903/10749957122*33385282^(7/12) 4180999952164555 a001 1602508992/9381251041*33385282^(7/12) 4180999952164555 a001 12586269025/73681302247*33385282^(7/12) 4180999952164555 a001 10983760033/64300051206*33385282^(7/12) 4180999952164555 a001 86267571272/505019158607*33385282^(7/12) 4180999952164555 a001 75283811239/440719107401*33385282^(7/12) 4180999952164555 a001 2504730781961/14662949395604*33385282^(7/12) 4180999952164555 a001 139583862445/817138163596*33385282^(7/12) 4180999952164555 a001 53316291173/312119004989*33385282^(7/12) 4180999952164555 a001 20365011074/119218851371*33385282^(7/12) 4180999952164555 a001 7778742049/45537549124*33385282^(7/12) 4180999952164555 a001 2971215073/17393796001*33385282^(7/12) 4180999952164555 a001 1134903170/6643838879*33385282^(7/12) 4180999952164555 a001 433494437/2537720636*33385282^(7/12) 4180999952164555 a001 63245986/228826127*33385282^(5/9) 4180999952164555 a001 102334155/969323029*33385282^(11/18) 4180999952164555 a001 165580141/969323029*33385282^(7/12) 4180999952164555 a001 39088169/4106118243*33385282^(3/4) 4180999952164555 a001 4807526976/54018521*33385282^(2/9) 4180999952164555 a001 66978574/634430159*33385282^(11/18) 4180999952164555 a001 701408733/6643838879*33385282^(11/18) 4180999952164555 a001 1836311903/17393796001*33385282^(11/18) 4180999952164555 a001 1201881744/11384387281*33385282^(11/18) 4180999952164555 a001 12586269025/119218851371*33385282^(11/18) 4180999952164555 a001 32951280099/312119004989*33385282^(11/18) 4180999952164555 a001 21566892818/204284540899*33385282^(11/18) 4180999952164555 a001 225851433717/2139295485799*33385282^(11/18) 4180999952164555 a001 182717648081/1730726404001*33385282^(11/18) 4180999952164555 a001 139583862445/1322157322203*33385282^(11/18) 4180999952164555 a001 53316291173/505019158607*33385282^(11/18) 4180999952164555 a001 10182505537/96450076809*33385282^(11/18) 4180999952164555 a001 7778742049/73681302247*33385282^(11/18) 4180999952164555 a001 2971215073/28143753123*33385282^(11/18) 4180999952164555 a001 567451585/5374978561*33385282^(11/18) 4180999952164555 a001 433494437/4106118243*33385282^(11/18) 4180999952164555 a001 2971215073/33385282*12752043^(4/17) 4180999952164555 a001 165580141/1568397607*33385282^(11/18) 4180999952164555 a001 39088169/6643838879*33385282^(7/9) 4180999952164555 a001 2971215073/54018521*33385282^(1/4) 4180999952164555 a001 9303105/230701876*33385282^(2/3) 4180999952164555 a001 63245986/370248451*33385282^(7/12) 4180999952164555 a001 1836311903/54018521*33385282^(5/18) 4180999952164555 a001 53316291173/87403803*12752043^(2/17) 4180999952164555 a001 267914296/6643838879*33385282^(2/3) 4180999952164555 a001 31622993/299537289*33385282^(11/18) 4180999952164555 a001 701408733/17393796001*33385282^(2/3) 4180999952164555 a001 1836311903/45537549124*33385282^(2/3) 4180999952164555 a001 4807526976/119218851371*33385282^(2/3) 4180999952164555 a001 1144206275/28374454999*33385282^(2/3) 4180999952164555 a001 32951280099/817138163596*33385282^(2/3) 4180999952164555 a001 86267571272/2139295485799*33385282^(2/3) 4180999952164555 a001 225851433717/5600748293801*33385282^(2/3) 4180999952164555 a001 591286729879/14662949395604*33385282^(2/3) 4180999952164555 a001 365435296162/9062201101803*33385282^(2/3) 4180999952164555 a001 139583862445/3461452808002*33385282^(2/3) 4180999952164555 a001 53316291173/1322157322203*33385282^(2/3) 4180999952164555 a001 20365011074/505019158607*33385282^(2/3) 4180999952164555 a001 7778742049/192900153618*33385282^(2/3) 4180999952164555 a001 2971215073/73681302247*33385282^(2/3) 4180999952164555 a001 1134903170/28143753123*33385282^(2/3) 4180999952164555 a001 433494437/10749957122*33385282^(2/3) 4180999952164555 a001 165580141/4106118243*33385282^(2/3) 4180999952164555 a001 39088169/17393796001*33385282^(5/6) 4180999952164556 a001 102334155/6643838879*33385282^(13/18) 4180999952164556 a001 701408733/54018521*33385282^(1/3) 4180999952164556 a001 9238424/599786069*33385282^(13/18) 4180999952164556 a001 701408733/45537549124*33385282^(13/18) 4180999952164556 a001 63245986/1568397607*33385282^(2/3) 4180999952164556 a001 1836311903/119218851371*33385282^(13/18) 4180999952164556 a001 4807526976/312119004989*33385282^(13/18) 4180999952164556 a001 12586269025/817138163596*33385282^(13/18) 4180999952164556 a001 32951280099/2139295485799*33385282^(13/18) 4180999952164556 a001 86267571272/5600748293801*33385282^(13/18) 4180999952164556 a001 7787980473/505618944676*33385282^(13/18) 4180999952164556 a001 365435296162/23725150497407*33385282^(13/18) 4180999952164556 a001 139583862445/9062201101803*33385282^(13/18) 4180999952164556 a001 53316291173/3461452808002*33385282^(13/18) 4180999952164556 a001 20365011074/1322157322203*33385282^(13/18) 4180999952164556 a001 7778742049/505019158607*33385282^(13/18) 4180999952164556 a001 2971215073/192900153618*33385282^(13/18) 4180999952164556 a001 1134903170/73681302247*33385282^(13/18) 4180999952164556 a001 433494437/28143753123*33385282^(13/18) 4180999952164556 a001 102334155/10749957122*33385282^(3/4) 4180999952164556 a001 165580141/10749957122*33385282^(13/18) 4180999952164556 a001 39088169/54018521*33385282^(1/2) 4180999952164556 a001 39088169/45537549124*33385282^(8/9) 4180999952164556 a001 267914296/28143753123*33385282^(3/4) 4180999952164556 a001 701408733/73681302247*33385282^(3/4) 4180999952164556 a001 1836311903/192900153618*33385282^(3/4) 4180999952164556 a001 102287808/10745088481*33385282^(3/4) 4180999952164556 a001 12586269025/1322157322203*33385282^(3/4) 4180999952164556 a001 32951280099/3461452808002*33385282^(3/4) 4180999952164556 a001 86267571272/9062201101803*33385282^(3/4) 4180999952164556 a001 225851433717/23725150497407*33385282^(3/4) 4180999952164556 a001 139583862445/14662949395604*33385282^(3/4) 4180999952164556 a001 53316291173/5600748293801*33385282^(3/4) 4180999952164556 a001 20365011074/2139295485799*33385282^(3/4) 4180999952164556 a001 7778742049/817138163596*33385282^(3/4) 4180999952164556 a001 2971215073/312119004989*33385282^(3/4) 4180999952164556 a001 1134903170/119218851371*33385282^(3/4) 4180999952164556 a001 433494437/45537549124*33385282^(3/4) 4180999952164556 a001 9227465/370248451*20633239^(5/7) 4180999952164556 a001 102334155/17393796001*33385282^(7/9) 4180999952164556 a001 165580141/17393796001*33385282^(3/4) 4180999952164556 a001 583600122205489/139583862445 4180999952164556 a001 24157817/54018521*817138163596^(1/3) 4180999952164556 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^19/Lucas(37) 4180999952164556 a001 267914296/54018521*33385282^(7/18) 4180999952164556 a001 39088169/73681302247*33385282^(11/12) 4180999952164556 a001 66978574/11384387281*33385282^(7/9) 4180999952164556 a001 701408733/119218851371*33385282^(7/9) 4180999952164556 a001 1836311903/312119004989*33385282^(7/9) 4180999952164556 a001 1201881744/204284540899*33385282^(7/9) 4180999952164556 a001 12586269025/2139295485799*33385282^(7/9) 4180999952164556 a001 32951280099/5600748293801*33385282^(7/9) 4180999952164556 a001 1135099622/192933544679*33385282^(7/9) 4180999952164556 a001 139583862445/23725150497407*33385282^(7/9) 4180999952164556 a001 53316291173/9062201101803*33385282^(7/9) 4180999952164556 a001 10182505537/1730726404001*33385282^(7/9) 4180999952164556 a001 7778742049/1322157322203*33385282^(7/9) 4180999952164556 a001 2971215073/505019158607*33385282^(7/9) 4180999952164556 a001 63245986/4106118243*33385282^(13/18) 4180999952164556 a001 567451585/96450076809*33385282^(7/9) 4180999952164556 a001 433494437/73681302247*33385282^(7/9) 4180999952164556 a001 139583862445/228826127*12752043^(2/17) 4180999952164556 a001 86267571272/54018521*12752043^(1/17) 4180999952164556 a001 165580141/28143753123*33385282^(7/9) 4180999952164556 a001 24157817/87403803*33385282^(5/9) 4180999952164556 a001 39088169/119218851371*33385282^(17/18) 4180999952164556 a001 182717648081/299537289*12752043^(2/17) 4180999952164556 a001 102334155/54018521*33385282^(4/9) 4180999952164556 a001 63245986/6643838879*33385282^(3/4) 4180999952164556 a001 956722026041/1568397607*12752043^(2/17) 4180999952164556 a001 2504730781961/4106118243*12752043^(2/17) 4180999952164556 a001 3278735159921/5374978561*12752043^(2/17) 4180999952164556 a001 10610209857723/17393796001*12752043^(2/17) 4180999952164556 a001 4052739537881/6643838879*12752043^(2/17) 4180999952164556 a001 1134903780/1860499*12752043^(2/17) 4180999952164556 a001 165580141/54018521*33385282^(5/12) 4180999952164556 a001 591286729879/969323029*12752043^(2/17) 4180999952164556 a001 102334155/45537549124*33385282^(5/6) 4180999952164556 a001 225851433717/370248451*12752043^(2/17) 4180999952164556 a001 267914296/119218851371*33385282^(5/6) 4180999952164556 a001 3524667/1568437211*33385282^(5/6) 4180999952164556 a001 1836311903/817138163596*33385282^(5/6) 4180999952164556 a001 4807526976/2139295485799*33385282^(5/6) 4180999952164556 a001 12586269025/5600748293801*33385282^(5/6) 4180999952164556 a001 32951280099/14662949395604*33385282^(5/6) 4180999952164556 a001 53316291173/23725150497407*33385282^(5/6) 4180999952164556 a001 20365011074/9062201101803*33385282^(5/6) 4180999952164556 a001 7778742049/3461452808002*33385282^(5/6) 4180999952164556 a001 2971215073/1322157322203*33385282^(5/6) 4180999952164556 a001 31622993/5374978561*33385282^(7/9) 4180999952164556 a001 1134903170/505019158607*33385282^(5/6) 4180999952164556 a001 433494437/192900153618*33385282^(5/6) 4180999952164556 a001 24157817/54018521*87403803^(1/2) 4180999952164556 a001 165580141/73681302247*33385282^(5/6) 4180999952164556 a004 Fibonacci(38)*Lucas(36)/(1/2+sqrt(5)/2)^55 4180999952164556 a001 21566892818/35355581*12752043^(2/17) 4180999952164556 a001 102334155/119218851371*33385282^(8/9) 4180999952164556 a001 267914296/312119004989*33385282^(8/9) 4180999952164556 a001 701408733/817138163596*33385282^(8/9) 4180999952164556 a001 1836311903/2139295485799*33385282^(8/9) 4180999952164556 a001 4807526976/5600748293801*33385282^(8/9) 4180999952164556 a001 12586269025/14662949395604*33385282^(8/9) 4180999952164556 a001 20365011074/23725150497407*33385282^(8/9) 4180999952164556 a001 7778742049/9062201101803*33385282^(8/9) 4180999952164556 a001 2971215073/3461452808002*33385282^(8/9) 4180999952164556 a001 63245986/28143753123*33385282^(5/6) 4180999952164556 a001 1134903170/1322157322203*33385282^(8/9) 4180999952164556 a001 433494437/505019158607*33385282^(8/9) 4180999952164556 a001 34111385/64300051206*33385282^(11/12) 4180999952164556 a001 165580141/192900153618*33385282^(8/9) 4180999952164556 a001 267914296/505019158607*33385282^(11/12) 4180999952164556 a001 233802911/440719107401*33385282^(11/12) 4180999952164556 a001 1836311903/3461452808002*33385282^(11/12) 4180999952164556 a001 1602508992/3020733700601*33385282^(11/12) 4180999952164556 a001 12586269025/23725150497407*33385282^(11/12) 4180999952164556 a001 7778742049/14662949395604*33385282^(11/12) 4180999952164556 a001 2971215073/5600748293801*33385282^(11/12) 4180999952164556 a001 1134903170/2139295485799*33385282^(11/12) 4180999952164556 a001 433494437/817138163596*33385282^(11/12) 4180999952164556 a001 9303105/28374454999*33385282^(17/18) 4180999952164556 a001 165580141/312119004989*33385282^(11/12) 4180999952164556 a001 66978574/204284540899*33385282^(17/18) 4180999952164556 a001 701408733/2139295485799*33385282^(17/18) 4180999952164556 a001 1836311903/5600748293801*33385282^(17/18) 4180999952164556 a001 1201881744/3665737348901*33385282^(17/18) 4180999952164556 a001 7778742049/23725150497407*33385282^(17/18) 4180999952164556 a001 2971215073/9062201101803*33385282^(17/18) 4180999952164556 a001 63245986/73681302247*33385282^(8/9) 4180999952164556 a001 567451585/1730726404001*33385282^(17/18) 4180999952164556 a001 433494437/1322157322203*33385282^(17/18) 4180999952164556 a001 165580141/505019158607*33385282^(17/18) 4180999952164557 a001 24157817/228826127*33385282^(11/18) 4180999952164557 a001 63245986/119218851371*33385282^(11/12) 4180999952164557 a004 Fibonacci(40)*Lucas(36)/(1/2+sqrt(5)/2)^57 4180999952164557 a001 20365011074/20633239*7881196^(1/11) 4180999952164557 a004 Fibonacci(42)*Lucas(36)/(1/2+sqrt(5)/2)^59 4180999952164557 a004 Fibonacci(44)*Lucas(36)/(1/2+sqrt(5)/2)^61 4180999952164557 a004 Fibonacci(46)*Lucas(36)/(1/2+sqrt(5)/2)^63 4180999952164557 a004 Fibonacci(48)*Lucas(36)/(1/2+sqrt(5)/2)^65 4180999952164557 a004 Fibonacci(50)*Lucas(36)/(1/2+sqrt(5)/2)^67 4180999952164557 a004 Fibonacci(52)*Lucas(36)/(1/2+sqrt(5)/2)^69 4180999952164557 a004 Fibonacci(54)*Lucas(36)/(1/2+sqrt(5)/2)^71 4180999952164557 a004 Fibonacci(56)*Lucas(36)/(1/2+sqrt(5)/2)^73 4180999952164557 a004 Fibonacci(58)*Lucas(36)/(1/2+sqrt(5)/2)^75 4180999952164557 a004 Fibonacci(60)*Lucas(36)/(1/2+sqrt(5)/2)^77 4180999952164557 a004 Fibonacci(62)*Lucas(36)/(1/2+sqrt(5)/2)^79 4180999952164557 a004 Fibonacci(64)*Lucas(36)/(1/2+sqrt(5)/2)^81 4180999952164557 a004 Fibonacci(66)*Lucas(36)/(1/2+sqrt(5)/2)^83 4180999952164557 a004 Fibonacci(68)*Lucas(36)/(1/2+sqrt(5)/2)^85 4180999952164557 a004 Fibonacci(70)*Lucas(36)/(1/2+sqrt(5)/2)^87 4180999952164557 a004 Fibonacci(72)*Lucas(36)/(1/2+sqrt(5)/2)^89 4180999952164557 a004 Fibonacci(74)*Lucas(36)/(1/2+sqrt(5)/2)^91 4180999952164557 a004 Fibonacci(76)*Lucas(36)/(1/2+sqrt(5)/2)^93 4180999952164557 a004 Fibonacci(78)*Lucas(36)/(1/2+sqrt(5)/2)^95 4180999952164557 a004 Fibonacci(80)*Lucas(36)/(1/2+sqrt(5)/2)^97 4180999952164557 a004 Fibonacci(82)*Lucas(36)/(1/2+sqrt(5)/2)^99 4180999952164557 a004 Fibonacci(83)*Lucas(36)/(1/2+sqrt(5)/2)^100 4180999952164557 a004 Fibonacci(81)*Lucas(36)/(1/2+sqrt(5)/2)^98 4180999952164557 a004 Fibonacci(79)*Lucas(36)/(1/2+sqrt(5)/2)^96 4180999952164557 a004 Fibonacci(77)*Lucas(36)/(1/2+sqrt(5)/2)^94 4180999952164557 a004 Fibonacci(75)*Lucas(36)/(1/2+sqrt(5)/2)^92 4180999952164557 a004 Fibonacci(73)*Lucas(36)/(1/2+sqrt(5)/2)^90 4180999952164557 a001 1/7465176*(1/2+1/2*5^(1/2))^55 4180999952164557 a004 Fibonacci(71)*Lucas(36)/(1/2+sqrt(5)/2)^88 4180999952164557 a004 Fibonacci(69)*Lucas(36)/(1/2+sqrt(5)/2)^86 4180999952164557 a004 Fibonacci(67)*Lucas(36)/(1/2+sqrt(5)/2)^84 4180999952164557 a004 Fibonacci(65)*Lucas(36)/(1/2+sqrt(5)/2)^82 4180999952164557 a004 Fibonacci(63)*Lucas(36)/(1/2+sqrt(5)/2)^80 4180999952164557 a004 Fibonacci(61)*Lucas(36)/(1/2+sqrt(5)/2)^78 4180999952164557 a004 Fibonacci(59)*Lucas(36)/(1/2+sqrt(5)/2)^76 4180999952164557 a004 Fibonacci(57)*Lucas(36)/(1/2+sqrt(5)/2)^74 4180999952164557 a004 Fibonacci(55)*Lucas(36)/(1/2+sqrt(5)/2)^72 4180999952164557 a004 Fibonacci(53)*Lucas(36)/(1/2+sqrt(5)/2)^70 4180999952164557 a004 Fibonacci(51)*Lucas(36)/(1/2+sqrt(5)/2)^68 4180999952164557 a004 Fibonacci(49)*Lucas(36)/(1/2+sqrt(5)/2)^66 4180999952164557 a004 Fibonacci(47)*Lucas(36)/(1/2+sqrt(5)/2)^64 4180999952164557 a001 31622993/96450076809*33385282^(17/18) 4180999952164557 a004 Fibonacci(45)*Lucas(36)/(1/2+sqrt(5)/2)^62 4180999952164557 a004 Fibonacci(43)*Lucas(36)/(1/2+sqrt(5)/2)^60 4180999952164557 a004 Fibonacci(41)*Lucas(36)/(1/2+sqrt(5)/2)^58 4180999952164557 a001 567451585/16692641*12752043^(5/17) 4180999952164557 a001 24157817/141422324*33385282^(7/12) 4180999952164557 a001 24157817/599074578*33385282^(2/3) 4180999952164557 a004 Fibonacci(39)*Lucas(36)/(1/2+sqrt(5)/2)^56 4180999952164557 a001 20365011074/87403803*12752043^(3/17) 4180999952164557 a001 24157817/1568397607*33385282^(13/18) 4180999952164557 a001 24157817/2537720636*33385282^(3/4) 4180999952164557 a001 24157817/4106118243*33385282^(7/9) 4180999952164557 a001 53316291173/228826127*12752043^(3/17) 4180999952164557 a001 32951280099/54018521*12752043^(2/17) 4180999952164557 a001 139583862445/599074578*12752043^(3/17) 4180999952164557 a001 365435296162/1568397607*12752043^(3/17) 4180999952164557 a001 956722026041/4106118243*12752043^(3/17) 4180999952164557 a001 2504730781961/10749957122*12752043^(3/17) 4180999952164557 a001 6557470319842/28143753123*12752043^(3/17) 4180999952164557 a001 10610209857723/45537549124*12752043^(3/17) 4180999952164557 a001 4052739537881/17393796001*12752043^(3/17) 4180999952164557 a001 1548008755920/6643838879*12752043^(3/17) 4180999952164557 a001 591286729879/2537720636*12752043^(3/17) 4180999952164557 a001 225851433717/969323029*12752043^(3/17) 4180999952164557 a001 24157817/10749957122*33385282^(5/6) 4180999952164557 a001 86267571272/370248451*12752043^(3/17) 4180999952164558 a001 63246219/271444*12752043^(3/17) 4180999952164558 a001 24157817/28143753123*33385282^(8/9) 4180999952164558 a001 24157817/45537549124*33385282^(11/12) 4180999952164558 a001 5702887/7881196*7881196^(6/11) 4180999952164558 a001 24157817/73681302247*33385282^(17/18) 4180999952164558 a004 Fibonacci(37)*Lucas(36)/(1/2+sqrt(5)/2)^54 4180999952164558 a001 433494437/33385282*12752043^(6/17) 4180999952164558 a001 9227465/54018521*20633239^(3/5) 4180999952164558 a001 7778742049/87403803*12752043^(4/17) 4180999952164559 a001 9303105/1875749*20633239^(2/5) 4180999952164559 a001 63245986/20633239*20633239^(3/7) 4180999952164559 a001 20365011074/228826127*12752043^(4/17) 4180999952164559 a001 12586269025/54018521*12752043^(3/17) 4180999952164559 a001 14930352/20633239*141422324^(6/13) 4180999952164559 a001 53316291173/599074578*12752043^(4/17) 4180999952164559 a001 139583862445/1568397607*12752043^(4/17) 4180999952164559 a001 365435296162/4106118243*12752043^(4/17) 4180999952164559 a001 956722026041/10749957122*12752043^(4/17) 4180999952164559 a001 2504730781961/28143753123*12752043^(4/17) 4180999952164559 a001 6557470319842/73681302247*12752043^(4/17) 4180999952164559 a001 10610209857723/119218851371*12752043^(4/17) 4180999952164559 a001 4052739537881/45537549124*12752043^(4/17) 4180999952164559 a001 1548008755920/17393796001*12752043^(4/17) 4180999952164559 a001 591286729879/6643838879*12752043^(4/17) 4180999952164559 a001 225851433717/2537720636*12752043^(4/17) 4180999952164559 a001 86267571272/969323029*12752043^(4/17) 4180999952164559 a001 9227465/33385282*2537720636^(4/9) 4180999952164559 a001 14930352/20633239*2537720636^(2/5) 4180999952164559 a001 14930352/20633239*45537549124^(6/17) 4180999952164559 a001 14930352/20633239*14662949395604^(2/7) 4180999952164559 a001 9227465/33385282*(1/2+1/2*5^(1/2))^20 4180999952164559 a001 14930352/20633239*(1/2+1/2*5^(1/2))^18 4180999952164559 a001 9227465/33385282*505019158607^(5/14) 4180999952164559 a001 14930352/20633239*192900153618^(1/3) 4180999952164559 a001 9227465/33385282*73681302247^(5/13) 4180999952164559 a001 45923100172560/10983760033 4180999952164559 a001 9227465/33385282*28143753123^(2/5) 4180999952164559 a001 14930352/20633239*10749957122^(3/8) 4180999952164559 a001 9227465/33385282*10749957122^(5/12) 4180999952164559 a001 14930352/20633239*4106118243^(9/23) 4180999952164559 a001 9227465/33385282*4106118243^(10/23) 4180999952164559 a001 14930352/20633239*1568397607^(9/22) 4180999952164559 a001 9227465/33385282*1568397607^(5/11) 4180999952164559 a001 14930352/20633239*599074578^(3/7) 4180999952164559 a001 9227465/33385282*599074578^(10/21) 4180999952164559 a001 32951280099/370248451*12752043^(4/17) 4180999952164559 a001 14930352/20633239*228826127^(9/20) 4180999952164559 a001 9227465/33385282*228826127^(1/2) 4180999952164559 a001 3524578/1568397607*7881196^(10/11) 4180999952164559 a001 12586269025/141422324*12752043^(4/17) 4180999952164559 a001 14930352/20633239*87403803^(9/19) 4180999952164559 a001 9227465/33385282*87403803^(10/19) 4180999952164560 a001 165580141/33385282*12752043^(7/17) 4180999952164560 a001 701408733/20633239*20633239^(2/7) 4180999952164560 a001 2971215073/87403803*12752043^(5/17) 4180999952164560 a001 53316291173/33385282*4870847^(1/16) 4180999952164560 a001 2971215073/12752043*4870847^(3/16) 4180999952164560 a001 7778742049/228826127*12752043^(5/17) 4180999952164560 a001 4807526976/54018521*12752043^(4/17) 4180999952164560 a001 10182505537/299537289*12752043^(5/17) 4180999952164560 a001 53316291173/1568397607*12752043^(5/17) 4180999952164560 a001 139583862445/4106118243*12752043^(5/17) 4180999952164560 a001 182717648081/5374978561*12752043^(5/17) 4180999952164560 a001 956722026041/28143753123*12752043^(5/17) 4180999952164560 a001 2504730781961/73681302247*12752043^(5/17) 4180999952164560 a001 3278735159921/96450076809*12752043^(5/17) 4180999952164560 a001 10610209857723/312119004989*12752043^(5/17) 4180999952164560 a001 4052739537881/119218851371*12752043^(5/17) 4180999952164560 a001 387002188980/11384387281*12752043^(5/17) 4180999952164560 a001 591286729879/17393796001*12752043^(5/17) 4180999952164560 a001 225851433717/6643838879*12752043^(5/17) 4180999952164560 a001 1135099622/33391061*12752043^(5/17) 4180999952164560 a001 32951280099/969323029*12752043^(5/17) 4180999952164560 a001 12586269025/370248451*12752043^(5/17) 4180999952164561 a001 1201881744/35355581*12752043^(5/17) 4180999952164561 a001 2971215073/20633239*20633239^(1/5) 4180999952164561 a001 14930352/20633239*33385282^(1/2) 4180999952164561 a001 9227465/33385282*33385282^(5/9) 4180999952164561 a004 Fibonacci(35)*Lucas(37)/(1/2+sqrt(5)/2)^53 4180999952164561 a001 7778742049/20633239*20633239^(1/7) 4180999952164561 a001 1134903170/87403803*12752043^(6/17) 4180999952164561 a001 39088169/33385282*12752043^(1/2) 4180999952164561 a001 31622993/16692641*12752043^(8/17) 4180999952164562 a001 1836311903/54018521*12752043^(5/17) 4180999952164562 a001 2971215073/228826127*12752043^(6/17) 4180999952164562 a001 7778742049/599074578*12752043^(6/17) 4180999952164562 a001 20365011074/1568397607*12752043^(6/17) 4180999952164562 a001 53316291173/4106118243*12752043^(6/17) 4180999952164562 a001 139583862445/10749957122*12752043^(6/17) 4180999952164562 a001 365435296162/28143753123*12752043^(6/17) 4180999952164562 a001 956722026041/73681302247*12752043^(6/17) 4180999952164562 a001 2504730781961/192900153618*12752043^(6/17) 4180999952164562 a001 10610209857723/817138163596*12752043^(6/17) 4180999952164562 a001 4052739537881/312119004989*12752043^(6/17) 4180999952164562 a001 1548008755920/119218851371*12752043^(6/17) 4180999952164562 a001 591286729879/45537549124*12752043^(6/17) 4180999952164562 a001 7787980473/599786069*12752043^(6/17) 4180999952164562 a001 86267571272/6643838879*12752043^(6/17) 4180999952164562 a001 32951280099/2537720636*12752043^(6/17) 4180999952164562 a001 12586269025/969323029*12752043^(6/17) 4180999952164562 a001 4807526976/370248451*12752043^(6/17) 4180999952164562 a001 9227465/87403803*312119004989^(2/5) 4180999952164562 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^22/Lucas(38) 4180999952164562 a001 39088169/20633239*(1/2+1/2*5^(1/2))^16 4180999952164562 a001 39088169/20633239*23725150497407^(1/4) 4180999952164562 a001 360684711361585/86267571272 4180999952164562 a001 39088169/20633239*73681302247^(4/13) 4180999952164562 a001 39088169/20633239*10749957122^(1/3) 4180999952164562 a001 9227465/87403803*10749957122^(11/24) 4180999952164562 a001 39088169/20633239*4106118243^(8/23) 4180999952164562 a001 9227465/87403803*4106118243^(11/23) 4180999952164562 a001 39088169/20633239*1568397607^(4/11) 4180999952164562 a001 9227465/87403803*1568397607^(1/2) 4180999952164562 a001 39088169/20633239*599074578^(8/21) 4180999952164562 a001 9227465/87403803*599074578^(11/21) 4180999952164562 a001 1836311903/141422324*12752043^(6/17) 4180999952164562 a001 39088169/20633239*228826127^(2/5) 4180999952164562 a001 9227465/87403803*228826127^(11/20) 4180999952164562 a001 39088169/20633239*87403803^(8/19) 4180999952164562 a001 9227465/87403803*87403803^(11/19) 4180999952164562 a004 Fibonacci(35)*Lucas(39)/(1/2+sqrt(5)/2)^55 4180999952164562 a001 9227465/228826127*141422324^(8/13) 4180999952164563 a001 9227465/73681302247*141422324^(12/13) 4180999952164563 a001 9227465/17393796001*141422324^(11/13) 4180999952164563 a001 9227465/4106118243*141422324^(10/13) 4180999952164563 a001 9227465/599074578*141422324^(2/3) 4180999952164563 a001 9227465/969323029*141422324^(9/13) 4180999952164563 a001 9227465/228826127*2537720636^(8/15) 4180999952164563 a001 9303105/1875749*17393796001^(2/7) 4180999952164563 a001 9227465/228826127*45537549124^(8/17) 4180999952164563 a001 9227465/228826127*14662949395604^(8/21) 4180999952164563 a001 9303105/1875749*14662949395604^(2/9) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^24/Lucas(40) 4180999952164563 a001 9303105/1875749*(1/2+1/2*5^(1/2))^14 4180999952164563 a001 3458918804275/827294629 4180999952164563 a001 9227465/228826127*192900153618^(4/9) 4180999952164563 a001 9227465/228826127*73681302247^(6/13) 4180999952164563 a001 9303105/1875749*10749957122^(7/24) 4180999952164563 a001 9227465/228826127*10749957122^(1/2) 4180999952164563 a001 9303105/1875749*4106118243^(7/23) 4180999952164563 a001 9227465/228826127*4106118243^(12/23) 4180999952164563 a001 9303105/1875749*1568397607^(7/22) 4180999952164563 a001 9227465/228826127*1568397607^(6/11) 4180999952164563 a001 9238424/711491*141422324^(4/13) 4180999952164563 a001 9303105/1875749*599074578^(1/3) 4180999952164563 a001 9227465/228826127*599074578^(4/7) 4180999952164563 a001 9303105/1875749*228826127^(7/20) 4180999952164563 a001 1134903170/20633239*141422324^(3/13) 4180999952164563 a001 165580141/20633239*141422324^(1/3) 4180999952164563 a001 4807526976/20633239*141422324^(2/13) 4180999952164563 a001 9227465/228826127*228826127^(3/5) 4180999952164563 a004 Fibonacci(35)*Lucas(41)/(1/2+sqrt(5)/2)^57 4180999952164563 a001 20365011074/20633239*141422324^(1/13) 4180999952164563 a001 9238424/711491*2537720636^(4/15) 4180999952164563 a001 9238424/711491*45537549124^(4/17) 4180999952164563 a001 9238424/711491*817138163596^(4/19) 4180999952164563 a001 9238424/711491*14662949395604^(4/21) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^26/Lucas(42) 4180999952164563 a001 9238424/711491*(1/2+1/2*5^(1/2))^12 4180999952164563 a001 2472169789339640/591286729879 4180999952164563 a001 9238424/711491*192900153618^(2/9) 4180999952164563 a001 9238424/711491*73681302247^(3/13) 4180999952164563 a001 9227465/599074578*73681302247^(1/2) 4180999952164563 a001 9238424/711491*10749957122^(1/4) 4180999952164563 a001 9227465/599074578*10749957122^(13/24) 4180999952164563 a001 9238424/711491*4106118243^(6/23) 4180999952164563 a001 9227465/599074578*4106118243^(13/23) 4180999952164563 a001 9238424/711491*1568397607^(3/11) 4180999952164563 a001 9227465/599074578*1568397607^(13/22) 4180999952164563 a001 9238424/711491*599074578^(2/7) 4180999952164563 a004 Fibonacci(35)*Lucas(43)/(1/2+sqrt(5)/2)^59 4180999952164563 a001 9227465/599074578*599074578^(13/21) 4180999952164563 a001 701408733/20633239*2537720636^(2/9) 4180999952164563 a001 9227465/1568397607*17393796001^(4/7) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^28/Lucas(44) 4180999952164563 a001 701408733/20633239*(1/2+1/2*5^(1/2))^10 4180999952164563 a001 431481635630123/103200583728 4180999952164563 a001 9227465/1568397607*505019158607^(1/2) 4180999952164563 a001 9227465/1568397607*73681302247^(7/13) 4180999952164563 a001 701408733/20633239*28143753123^(1/5) 4180999952164563 a001 701408733/20633239*10749957122^(5/24) 4180999952164563 a001 9227465/1568397607*10749957122^(7/12) 4180999952164563 a001 701408733/20633239*4106118243^(5/23) 4180999952164563 a001 9227465/1568397607*4106118243^(14/23) 4180999952164563 a001 701408733/20633239*1568397607^(5/22) 4180999952164563 a001 9227465/4106118243*2537720636^(2/3) 4180999952164563 a004 Fibonacci(35)*Lucas(45)/(1/2+sqrt(5)/2)^61 4180999952164563 a001 9227465/1568397607*1568397607^(7/11) 4180999952164563 a001 9227465/1322157322203*2537720636^(14/15) 4180999952164563 a001 9227465/505019158607*2537720636^(8/9) 4180999952164563 a001 9227465/312119004989*2537720636^(13/15) 4180999952164563 a001 9227465/73681302247*2537720636^(4/5) 4180999952164563 a001 9227465/45537549124*2537720636^(7/9) 4180999952164563 a001 9227465/17393796001*2537720636^(11/15) 4180999952164563 a001 9227465/4106118243*45537549124^(10/17) 4180999952164563 a001 9227465/4106118243*312119004989^(6/11) 4180999952164563 a001 9227465/4106118243*14662949395604^(10/21) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^30/Lucas(46) 4180999952164563 a001 1836311903/20633239*(1/2+1/2*5^(1/2))^8 4180999952164563 a001 1836311903/20633239*23725150497407^(1/8) 4180999952164563 a001 16944503814015895/4052739537881 4180999952164563 a001 9227465/4106118243*192900153618^(5/9) 4180999952164563 a001 1836311903/20633239*73681302247^(2/13) 4180999952164563 a001 9227465/4106118243*28143753123^(3/5) 4180999952164563 a001 1836311903/20633239*10749957122^(1/6) 4180999952164563 a001 9227465/4106118243*10749957122^(5/8) 4180999952164563 a001 1836311903/20633239*4106118243^(4/23) 4180999952164563 a001 4807526976/20633239*2537720636^(2/15) 4180999952164563 a004 Fibonacci(35)*Lucas(47)/(1/2+sqrt(5)/2)^63 4180999952164563 a001 9227465/4106118243*4106118243^(15/23) 4180999952164563 a001 7778742049/20633239*2537720636^(1/9) 4180999952164563 a001 20365011074/20633239*2537720636^(1/15) 4180999952164563 a001 4807526976/20633239*45537549124^(2/17) 4180999952164563 a001 4807526976/20633239*14662949395604^(2/21) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^32/Lucas(48) 4180999952164563 a001 4807526976/20633239*(1/2+1/2*5^(1/2))^6 4180999952164563 a001 44945579440320/10749959329 4180999952164563 a001 9227465/10749957122*505019158607^(4/7) 4180999952164563 a001 9227465/10749957122*73681302247^(8/13) 4180999952164563 a001 4807526976/20633239*10749957122^(1/8) 4180999952164563 a004 Fibonacci(35)*Lucas(49)/(1/2+sqrt(5)/2)^65 4180999952164563 a001 9227465/10749957122*10749957122^(2/3) 4180999952164563 a001 9227465/1322157322203*17393796001^(6/7) 4180999952164563 a001 9227465/45537549124*17393796001^(5/7) 4180999952164563 a001 9227465/28143753123*45537549124^(2/3) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^34/Lucas(50) 4180999952164563 a001 1144206275/1875749*(1/2+1/2*5^(1/2))^4 4180999952164563 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^4/Lucas(35) 4180999952164563 a001 1144206275/1875749*23725150497407^(1/16) 4180999952164563 a001 1144206275/1875749*73681302247^(1/13) 4180999952164563 a001 4807526976/20633239*4106118243^(3/23) 4180999952164563 a001 1144206275/1875749*10749957122^(1/12) 4180999952164563 a001 9227465/73681302247*45537549124^(12/17) 4180999952164563 a004 Fibonacci(35)*Lucas(51)/(1/2+sqrt(5)/2)^67 4180999952164563 a001 9227465/23725150497407*45537549124^(16/17) 4180999952164563 a001 9227465/5600748293801*45537549124^(15/17) 4180999952164563 a001 9227465/1322157322203*45537549124^(14/17) 4180999952164563 a001 9227465/312119004989*45537549124^(13/17) 4180999952164563 a001 9227465/73681302247*14662949395604^(4/7) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^36/Lucas(52) 4180999952164563 a001 32951280099/20633239*(1/2+1/2*5^(1/2))^2 4180999952164563 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^2/Lucas(35) 4180999952164563 a001 9227465/73681302247*505019158607^(9/14) 4180999952164563 a001 9227465/73681302247*192900153618^(2/3) 4180999952164563 a004 Fibonacci(35)*Lucas(53)/(1/2+sqrt(5)/2)^69 4180999952164563 a001 9227465/73681302247*73681302247^(9/13) 4180999952164563 a001 9227465/192900153618*817138163596^(2/3) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^38/Lucas(54) 4180999952164563 a004 Fibonacci(35)*Lucas(55)/(1/2+sqrt(5)/2)^71 4180999952164563 a001 9227465/3461452808002*312119004989^(4/5) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^40/Lucas(56) 4180999952164563 a004 Fibonacci(56)/Lucas(35)/(1/2+sqrt(5)/2)^2 4180999952164563 a001 9227465/505019158607*23725150497407^(5/8) 4180999952164563 a004 Fibonacci(35)*Lucas(57)/(1/2+sqrt(5)/2)^73 4180999952164563 a001 9227465/1322157322203*14662949395604^(2/3) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^42/Lucas(58) 4180999952164563 a004 Fibonacci(58)/Lucas(35)/(1/2+sqrt(5)/2)^4 4180999952164563 a004 Fibonacci(35)*Lucas(59)/(1/2+sqrt(5)/2)^75 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^44/Lucas(60) 4180999952164563 a004 Fibonacci(60)/Lucas(35)/(1/2+sqrt(5)/2)^6 4180999952164563 a001 9227465/3461452808002*23725150497407^(11/16) 4180999952164563 a004 Fibonacci(35)*Lucas(61)/(1/2+sqrt(5)/2)^77 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^46/Lucas(62) 4180999952164563 a004 Fibonacci(62)/Lucas(35)/(1/2+sqrt(5)/2)^8 4180999952164563 a004 Fibonacci(35)*Lucas(63)/(1/2+sqrt(5)/2)^79 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^48/Lucas(64) 4180999952164563 a004 Fibonacci(64)/Lucas(35)/(1/2+sqrt(5)/2)^10 4180999952164563 a004 Fibonacci(35)*Lucas(65)/(1/2+sqrt(5)/2)^81 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^50/Lucas(66) 4180999952164563 a004 Fibonacci(66)/Lucas(35)/(1/2+sqrt(5)/2)^12 4180999952164563 a004 Fibonacci(35)*Lucas(67)/(1/2+sqrt(5)/2)^83 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^52/Lucas(68) 4180999952164563 a004 Fibonacci(68)/Lucas(35)/(1/2+sqrt(5)/2)^14 4180999952164563 a004 Fibonacci(35)*Lucas(69)/(1/2+sqrt(5)/2)^85 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^54/Lucas(70) 4180999952164563 a004 Fibonacci(35)*Lucas(71)/(1/2+sqrt(5)/2)^87 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^56/Lucas(72) 4180999952164563 a004 Fibonacci(35)*Lucas(73)/(1/2+sqrt(5)/2)^89 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^58/Lucas(74) 4180999952164563 a004 Fibonacci(35)*Lucas(75)/(1/2+sqrt(5)/2)^91 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^60/Lucas(76) 4180999952164563 a004 Fibonacci(35)*Lucas(77)/(1/2+sqrt(5)/2)^93 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^62/Lucas(78) 4180999952164563 a004 Fibonacci(35)*Lucas(79)/(1/2+sqrt(5)/2)^95 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^64/Lucas(80) 4180999952164563 a004 Fibonacci(35)*Lucas(81)/(1/2+sqrt(5)/2)^97 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^66/Lucas(82) 4180999952164563 a004 Fibonacci(35)*Lucas(83)/(1/2+sqrt(5)/2)^99 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^68/Lucas(84) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^70/Lucas(86) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^72/Lucas(88) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^74/Lucas(90) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^76/Lucas(92) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^78/Lucas(94) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^80/Lucas(96) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^82/Lucas(98) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^83/Lucas(99) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^84/Lucas(100) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^81/Lucas(97) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^79/Lucas(95) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^77/Lucas(93) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^75/Lucas(91) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^73/Lucas(89) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^71/Lucas(87) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^69/Lucas(85) 4180999952164563 a004 Fibonacci(35)*Lucas(84)/(1/2+sqrt(5)/2)^100 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^67/Lucas(83) 4180999952164563 a004 Fibonacci(35)*Lucas(82)/(1/2+sqrt(5)/2)^98 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^65/Lucas(81) 4180999952164563 a004 Fibonacci(35)*Lucas(80)/(1/2+sqrt(5)/2)^96 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^63/Lucas(79) 4180999952164563 a004 Fibonacci(35)*Lucas(78)/(1/2+sqrt(5)/2)^94 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^61/Lucas(77) 4180999952164563 a004 Fibonacci(35)*Lucas(76)/(1/2+sqrt(5)/2)^92 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^59/Lucas(75) 4180999952164563 a004 Fibonacci(35)*Lucas(74)/(1/2+sqrt(5)/2)^90 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^57/Lucas(73) 4180999952164563 a004 Fibonacci(35)*Lucas(72)/(1/2+sqrt(5)/2)^88 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^55/Lucas(71) 4180999952164563 a004 Fibonacci(72)/Lucas(35)/(1/2+sqrt(5)/2)^18 4180999952164563 a004 Fibonacci(74)/Lucas(35)/(1/2+sqrt(5)/2)^20 4180999952164563 a004 Fibonacci(76)/Lucas(35)/(1/2+sqrt(5)/2)^22 4180999952164563 a004 Fibonacci(78)/Lucas(35)/(1/2+sqrt(5)/2)^24 4180999952164563 a004 Fibonacci(80)/Lucas(35)/(1/2+sqrt(5)/2)^26 4180999952164563 a004 Fibonacci(82)/Lucas(35)/(1/2+sqrt(5)/2)^28 4180999952164563 a004 Fibonacci(84)/Lucas(35)/(1/2+sqrt(5)/2)^30 4180999952164563 a004 Fibonacci(86)/Lucas(35)/(1/2+sqrt(5)/2)^32 4180999952164563 a004 Fibonacci(88)/Lucas(35)/(1/2+sqrt(5)/2)^34 4180999952164563 a004 Fibonacci(90)/Lucas(35)/(1/2+sqrt(5)/2)^36 4180999952164563 a004 Fibonacci(92)/Lucas(35)/(1/2+sqrt(5)/2)^38 4180999952164563 a004 Fibonacci(94)/Lucas(35)/(1/2+sqrt(5)/2)^40 4180999952164563 a004 Fibonacci(96)/Lucas(35)/(1/2+sqrt(5)/2)^42 4180999952164563 a004 Fibonacci(100)/Lucas(35)/(1/2+sqrt(5)/2)^46 4180999952164563 a004 Fibonacci(35)*Lucas(70)/(1/2+sqrt(5)/2)^86 4180999952164563 a004 Fibonacci(98)/Lucas(35)/(1/2+sqrt(5)/2)^44 4180999952164563 a004 Fibonacci(99)/Lucas(35)/(1/2+sqrt(5)/2)^45 4180999952164563 a004 Fibonacci(97)/Lucas(35)/(1/2+sqrt(5)/2)^43 4180999952164563 a004 Fibonacci(95)/Lucas(35)/(1/2+sqrt(5)/2)^41 4180999952164563 a004 Fibonacci(93)/Lucas(35)/(1/2+sqrt(5)/2)^39 4180999952164563 a004 Fibonacci(91)/Lucas(35)/(1/2+sqrt(5)/2)^37 4180999952164563 a004 Fibonacci(89)/Lucas(35)/(1/2+sqrt(5)/2)^35 4180999952164563 a004 Fibonacci(87)/Lucas(35)/(1/2+sqrt(5)/2)^33 4180999952164563 a004 Fibonacci(85)/Lucas(35)/(1/2+sqrt(5)/2)^31 4180999952164563 a004 Fibonacci(83)/Lucas(35)/(1/2+sqrt(5)/2)^29 4180999952164563 a004 Fibonacci(81)/Lucas(35)/(1/2+sqrt(5)/2)^27 4180999952164563 a004 Fibonacci(79)/Lucas(35)/(1/2+sqrt(5)/2)^25 4180999952164563 a004 Fibonacci(77)/Lucas(35)/(1/2+sqrt(5)/2)^23 4180999952164563 a004 Fibonacci(75)/Lucas(35)/(1/2+sqrt(5)/2)^21 4180999952164563 a004 Fibonacci(73)/Lucas(35)/(1/2+sqrt(5)/2)^19 4180999952164563 a004 Fibonacci(71)/Lucas(35)/(1/2+sqrt(5)/2)^17 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^53/Lucas(69) 4180999952164563 a004 Fibonacci(69)/Lucas(35)/(1/2+sqrt(5)/2)^15 4180999952164563 a004 Fibonacci(35)*Lucas(68)/(1/2+sqrt(5)/2)^84 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^51/Lucas(67) 4180999952164563 a004 Fibonacci(67)/Lucas(35)/(1/2+sqrt(5)/2)^13 4180999952164563 a004 Fibonacci(35)*Lucas(66)/(1/2+sqrt(5)/2)^82 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^49/Lucas(65) 4180999952164563 a004 Fibonacci(65)/Lucas(35)/(1/2+sqrt(5)/2)^11 4180999952164563 a004 Fibonacci(35)*Lucas(64)/(1/2+sqrt(5)/2)^80 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^47/Lucas(63) 4180999952164563 a004 Fibonacci(63)/Lucas(35)/(1/2+sqrt(5)/2)^9 4180999952164563 a004 Fibonacci(35)*Lucas(62)/(1/2+sqrt(5)/2)^78 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^45/Lucas(61) 4180999952164563 a004 Fibonacci(61)/Lucas(35)/(1/2+sqrt(5)/2)^7 4180999952164563 a004 Fibonacci(35)*Lucas(60)/(1/2+sqrt(5)/2)^76 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^43/Lucas(59) 4180999952164563 a004 Fibonacci(59)/Lucas(35)/(1/2+sqrt(5)/2)^5 4180999952164563 a004 Fibonacci(35)*Lucas(58)/(1/2+sqrt(5)/2)^74 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^41/Lucas(57) 4180999952164563 a004 Fibonacci(57)/Lucas(35)/(1/2+sqrt(5)/2)^3 4180999952164563 a001 9227465/1322157322203*505019158607^(3/4) 4180999952164563 a004 Fibonacci(35)*Lucas(56)/(1/2+sqrt(5)/2)^72 4180999952164563 a001 9227465/312119004989*14662949395604^(13/21) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^39/Lucas(55) 4180999952164563 a004 Fibonacci(55)/Lucas(35)/(1/2+sqrt(5)/2) 4180999952164563 a001 9227465/1322157322203*192900153618^(7/9) 4180999952164563 a001 9227465/23725150497407*192900153618^(8/9) 4180999952164563 a004 Fibonacci(35)*Lucas(54)/(1/2+sqrt(5)/2)^70 4180999952164563 a001 9227465/312119004989*192900153618^(13/18) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^37/Lucas(53) 4180999952164563 a001 9227465/505019158607*73681302247^(10/13) 4180999952164563 a001 9227465/312119004989*73681302247^(3/4) 4180999952164563 a001 9227465/3461452808002*73681302247^(11/13) 4180999952164563 a001 9227465/23725150497407*73681302247^(12/13) 4180999952164563 a001 32951280099/20633239*10749957122^(1/24) 4180999952164563 a004 Fibonacci(35)*Lucas(52)/(1/2+sqrt(5)/2)^68 4180999952164563 a001 20365011074/20633239*45537549124^(1/17) 4180999952164563 a001 9227465/45537549124*312119004989^(7/11) 4180999952164563 a001 20365011074/20633239*14662949395604^(1/21) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^35/Lucas(51) 4180999952164563 a001 20365011074/20633239*(1/2+1/2*5^(1/2))^3 4180999952164563 a001 20365011074/20633239*192900153618^(1/18) 4180999952164563 a001 9227465/45537549124*505019158607^(5/8) 4180999952164563 a001 9227465/505019158607*28143753123^(4/5) 4180999952164563 a001 20365011074/20633239*10749957122^(1/16) 4180999952164563 a001 9227465/5600748293801*28143753123^(9/10) 4180999952164563 a004 Fibonacci(35)*Lucas(50)/(1/2+sqrt(5)/2)^66 4180999952164563 a001 9227465/45537549124*28143753123^(7/10) 4180999952164563 a001 32951280099/20633239*4106118243^(1/23) 4180999952164563 a001 9227465/17393796001*45537549124^(11/17) 4180999952164563 a001 9227465/17393796001*312119004989^(3/5) 4180999952164563 a001 7778742049/20633239*312119004989^(1/11) 4180999952164563 a001 9227465/17393796001*817138163596^(11/19) 4180999952164563 a001 9227465/17393796001*14662949395604^(11/21) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^33/Lucas(49) 4180999952164563 a001 7778742049/20633239*(1/2+1/2*5^(1/2))^5 4180999952164563 a001 9227465/17393796001*192900153618^(11/18) 4180999952164563 a001 7778742049/20633239*28143753123^(1/10) 4180999952164563 a001 1144206275/1875749*4106118243^(2/23) 4180999952164563 a001 9227465/28143753123*10749957122^(17/24) 4180999952164563 a001 9227465/73681302247*10749957122^(3/4) 4180999952164563 a001 9227465/192900153618*10749957122^(19/24) 4180999952164563 a001 9227465/312119004989*10749957122^(13/16) 4180999952164563 a001 9227465/505019158607*10749957122^(5/6) 4180999952164563 a001 9227465/1322157322203*10749957122^(7/8) 4180999952164563 a001 9227465/3461452808002*10749957122^(11/12) 4180999952164563 a001 9227465/5600748293801*10749957122^(15/16) 4180999952164563 a001 9227465/9062201101803*10749957122^(23/24) 4180999952164563 a004 Fibonacci(35)*Lucas(48)/(1/2+sqrt(5)/2)^64 4180999952164563 a001 9227465/17393796001*10749957122^(11/16) 4180999952164563 a001 1836311903/20633239*1568397607^(2/11) 4180999952164563 a001 32951280099/20633239*1568397607^(1/22) 4180999952164563 a001 2971215073/20633239*17393796001^(1/7) 4180999952164563 a001 2108983314890765/504420793834 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^31/Lucas(47) 4180999952164563 a001 2971215073/20633239*(1/2+1/2*5^(1/2))^7 4180999952164563 a001 9227465/6643838879*9062201101803^(1/2) 4180999952164563 a001 9227465/10749957122*4106118243^(16/23) 4180999952164563 a001 1144206275/1875749*1568397607^(1/11) 4180999952164563 a001 9227465/28143753123*4106118243^(17/23) 4180999952164563 a001 9227465/73681302247*4106118243^(18/23) 4180999952164563 a001 4807526976/20633239*1568397607^(3/22) 4180999952164563 a001 9227465/192900153618*4106118243^(19/23) 4180999952164563 a001 9227465/505019158607*4106118243^(20/23) 4180999952164563 a001 9227465/1322157322203*4106118243^(21/23) 4180999952164563 a001 9227465/3461452808002*4106118243^(22/23) 4180999952164563 a004 Fibonacci(35)*Lucas(46)/(1/2+sqrt(5)/2)^62 4180999952164563 a001 1134903170/20633239*2537720636^(1/5) 4180999952164563 a001 32951280099/20633239*599074578^(1/21) 4180999952164563 a001 1134903170/20633239*45537549124^(3/17) 4180999952164563 a001 10472279279564050/2504730781961 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^29/Lucas(45) 4180999952164563 a001 1134903170/20633239*(1/2+1/2*5^(1/2))^9 4180999952164563 a001 9227465/2537720636*1322157322203^(1/2) 4180999952164563 a001 1134903170/20633239*192900153618^(1/6) 4180999952164563 a001 1134903170/20633239*10749957122^(3/16) 4180999952164563 a001 20365011074/20633239*599074578^(1/14) 4180999952164563 a001 9227465/4106118243*1568397607^(15/22) 4180999952164563 a001 701408733/20633239*599074578^(5/21) 4180999952164563 a001 1144206275/1875749*599074578^(2/21) 4180999952164563 a001 9227465/10749957122*1568397607^(8/11) 4180999952164563 a001 9227465/17393796001*1568397607^(3/4) 4180999952164563 a001 9227465/28143753123*1568397607^(17/22) 4180999952164563 a001 9227465/73681302247*1568397607^(9/11) 4180999952164563 a001 9227465/192900153618*1568397607^(19/22) 4180999952164563 a001 9227465/505019158607*1568397607^(10/11) 4180999952164563 a001 9227465/1322157322203*1568397607^(21/22) 4180999952164563 a001 4807526976/20633239*599074578^(1/7) 4180999952164563 a004 Fibonacci(35)*Lucas(44)/(1/2+sqrt(5)/2)^60 4180999952164563 a001 1836311903/20633239*599074578^(4/21) 4180999952164563 a001 2971215073/20633239*599074578^(1/6) 4180999952164563 a001 1134903170/20633239*599074578^(3/14) 4180999952164563 a001 32951280099/20633239*228826127^(1/20) 4180999952164563 a001 9227465/969323029*2537720636^(3/5) 4180999952164563 a001 9227465/969323029*45537549124^(9/17) 4180999952164563 a001 4000054745112205/956722026041 4180999952164563 a001 9227465/969323029*14662949395604^(3/7) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^27/Lucas(43) 4180999952164563 a001 433494437/20633239*(1/2+1/2*5^(1/2))^11 4180999952164563 a001 9227465/969323029*192900153618^(1/2) 4180999952164563 a001 9227465/969323029*10749957122^(9/16) 4180999952164563 a001 433494437/20633239*1568397607^(1/4) 4180999952164563 a001 9227465/1568397607*599074578^(2/3) 4180999952164563 a001 1144206275/1875749*228826127^(1/10) 4180999952164563 a001 9227465/4106118243*599074578^(5/7) 4180999952164563 a001 9227465/10749957122*599074578^(16/21) 4180999952164563 a001 9227465/17393796001*599074578^(11/14) 4180999952164563 a001 9227465/28143753123*599074578^(17/21) 4180999952164563 a001 9227465/45537549124*599074578^(5/6) 4180999952164563 a001 9227465/73681302247*599074578^(6/7) 4180999952164563 a001 7778742049/20633239*228826127^(1/8) 4180999952164563 a001 9227465/192900153618*599074578^(19/21) 4180999952164563 a001 9227465/312119004989*599074578^(13/14) 4180999952164563 a001 9227465/505019158607*599074578^(20/21) 4180999952164563 a004 Fibonacci(35)*Lucas(42)/(1/2+sqrt(5)/2)^58 4180999952164563 a001 9227465/969323029*599074578^(9/14) 4180999952164563 a001 4807526976/20633239*228826127^(3/20) 4180999952164563 a001 9238424/711491*228826127^(3/10) 4180999952164563 a001 1836311903/20633239*228826127^(1/5) 4180999952164563 a001 701408733/20633239*228826127^(1/4) 4180999952164563 a001 32951280099/20633239*87403803^(1/19) 4180999952164563 a001 9227465/370248451*2537720636^(5/9) 4180999952164563 a001 9227465/370248451*312119004989^(5/11) 4180999952164563 a001 1527884955772565/365435296162 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^25/Lucas(41) 4180999952164563 a001 165580141/20633239*(1/2+1/2*5^(1/2))^13 4180999952164563 a001 9227465/370248451*3461452808002^(5/12) 4180999952164563 a001 165580141/20633239*73681302247^(1/4) 4180999952164563 a001 9227465/370248451*28143753123^(1/2) 4180999952164563 a001 9227465/599074578*228826127^(13/20) 4180999952164563 a001 9227465/1568397607*228826127^(7/10) 4180999952164563 a001 1144206275/1875749*87403803^(2/19) 4180999952164563 a001 9227465/4106118243*228826127^(3/4) 4180999952164563 a001 9227465/10749957122*228826127^(4/5) 4180999952164563 a001 9227465/28143753123*228826127^(17/20) 4180999952164563 a001 9227465/45537549124*228826127^(7/8) 4180999952164563 a001 9227465/73681302247*228826127^(9/10) 4180999952164563 a001 9227465/192900153618*228826127^(19/20) 4180999952164563 a004 Fibonacci(35)*Lucas(40)/(1/2+sqrt(5)/2)^56 4180999952164563 a001 9227465/370248451*228826127^(5/8) 4180999952164563 a001 4807526976/20633239*87403803^(3/19) 4180999952164563 a001 1836311903/20633239*87403803^(4/19) 4180999952164563 a001 9303105/1875749*87403803^(7/19) 4180999952164563 a001 63245986/20633239*141422324^(5/13) 4180999952164563 a001 701408733/20633239*87403803^(5/19) 4180999952164563 a001 9238424/711491*87403803^(6/19) 4180999952164563 a001 32951280099/20633239*33385282^(1/18) 4180999952164563 a001 63245986/20633239*2537720636^(1/3) 4180999952164563 a001 63245986/20633239*45537549124^(5/17) 4180999952164563 a001 116720024441098/27916772489 4180999952164563 a001 63245986/20633239*312119004989^(3/11) 4180999952164563 a001 63245986/20633239*14662949395604^(5/21) 4180999952164563 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^23/Lucas(39) 4180999952164563 a001 63245986/20633239*(1/2+1/2*5^(1/2))^15 4180999952164563 a001 63245986/20633239*192900153618^(5/18) 4180999952164563 a001 63245986/20633239*28143753123^(3/10) 4180999952164563 a001 63245986/20633239*10749957122^(5/16) 4180999952164563 a001 9227465/141422324*4106118243^(1/2) 4180999952164563 a001 63245986/20633239*599074578^(5/14) 4180999952164563 a001 433494437/87403803*12752043^(7/17) 4180999952164563 a001 63245986/20633239*228826127^(3/8) 4180999952164563 a001 9227465/228826127*87403803^(12/19) 4180999952164563 a001 20365011074/20633239*33385282^(1/12) 4180999952164563 a001 9227465/599074578*87403803^(13/19) 4180999952164563 a001 9227465/1568397607*87403803^(14/19) 4180999952164563 a001 1144206275/1875749*33385282^(1/9) 4180999952164563 a001 9227465/4106118243*87403803^(15/19) 4180999952164563 a001 9227465/10749957122*87403803^(16/19) 4180999952164563 a001 9227465/28143753123*87403803^(17/19) 4180999952164563 a001 9227465/73681302247*87403803^(18/19) 4180999952164563 a004 Fibonacci(35)*Lucas(38)/(1/2+sqrt(5)/2)^54 4180999952164563 a001 4807526976/20633239*33385282^(1/6) 4180999952164563 a001 139583862445/87403803*4870847^(1/16) 4180999952164563 a001 701408733/54018521*12752043^(6/17) 4180999952164563 a001 1134903170/228826127*12752043^(7/17) 4180999952164563 a001 2971215073/599074578*12752043^(7/17) 4180999952164563 a001 7778742049/1568397607*12752043^(7/17) 4180999952164563 a001 20365011074/4106118243*12752043^(7/17) 4180999952164563 a001 53316291173/10749957122*12752043^(7/17) 4180999952164563 a001 139583862445/28143753123*12752043^(7/17) 4180999952164563 a001 365435296162/73681302247*12752043^(7/17) 4180999952164563 a001 956722026041/192900153618*12752043^(7/17) 4180999952164563 a001 2504730781961/505019158607*12752043^(7/17) 4180999952164563 a001 10610209857723/2139295485799*12752043^(7/17) 4180999952164563 a001 4052739537881/817138163596*12752043^(7/17) 4180999952164563 a001 140728068720/28374454999*12752043^(7/17) 4180999952164563 a001 591286729879/119218851371*12752043^(7/17) 4180999952164563 a001 225851433717/45537549124*12752043^(7/17) 4180999952164563 a001 86267571272/17393796001*12752043^(7/17) 4180999952164563 a001 32951280099/6643838879*12752043^(7/17) 4180999952164563 a001 1144206275/230701876*12752043^(7/17) 4180999952164563 a001 4807526976/969323029*12752043^(7/17) 4180999952164564 a001 1836311903/370248451*12752043^(7/17) 4180999952164564 a001 1836311903/20633239*33385282^(2/9) 4180999952164564 a001 1134903170/20633239*33385282^(1/4) 4180999952164564 a001 701408733/141422324*12752043^(7/17) 4180999952164564 a001 701408733/20633239*33385282^(5/18) 4180999952164564 a001 365435296162/228826127*4870847^(1/16) 4180999952164564 a001 39088169/20633239*33385282^(4/9) 4180999952164564 a001 956722026041/599074578*4870847^(1/16) 4180999952164564 a001 2504730781961/1568397607*4870847^(1/16) 4180999952164564 a001 6557470319842/4106118243*4870847^(1/16) 4180999952164564 a001 10610209857723/6643838879*4870847^(1/16) 4180999952164564 a001 4052739537881/2537720636*4870847^(1/16) 4180999952164564 a001 1548008755920/969323029*4870847^(1/16) 4180999952164564 a001 591286729879/370248451*4870847^(1/16) 4180999952164564 a001 9238424/711491*33385282^(1/3) 4180999952164564 a001 9227465/54018521*141422324^(7/13) 4180999952164564 a001 9303105/1875749*33385282^(7/18) 4180999952164564 a001 225851433717/141422324*4870847^(1/16) 4180999952164564 a001 9227465/54018521*2537720636^(7/15) 4180999952164564 a001 9227465/54018521*17393796001^(3/7) 4180999952164564 a001 9227465/54018521*45537549124^(7/17) 4180999952164564 a001 24157817/20633239*45537549124^(1/3) 4180999952164564 a001 222915410843905/53316291173 4180999952164564 a001 9227465/54018521*14662949395604^(1/3) 4180999952164564 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^21/Lucas(37) 4180999952164564 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^17/Lucas(35) 4180999952164564 a001 9227465/54018521*192900153618^(7/18) 4180999952164564 a001 9227465/54018521*10749957122^(7/16) 4180999952164564 a001 9227465/54018521*599074578^(1/2) 4180999952164564 a001 24157817/33385282*12752043^(9/17) 4180999952164564 a001 32951280099/20633239*12752043^(1/17) 4180999952164564 a001 9227465/87403803*33385282^(11/18) 4180999952164564 a001 165580141/87403803*12752043^(8/17) 4180999952164564 a001 63245986/20633239*33385282^(5/12) 4180999952164565 a001 267914296/54018521*12752043^(7/17) 4180999952164565 a001 433494437/228826127*12752043^(8/17) 4180999952164565 a001 567451585/299537289*12752043^(8/17) 4180999952164565 a001 2971215073/1568397607*12752043^(8/17) 4180999952164565 a001 7778742049/4106118243*12752043^(8/17) 4180999952164565 a001 10182505537/5374978561*12752043^(8/17) 4180999952164565 a001 53316291173/28143753123*12752043^(8/17) 4180999952164565 a001 139583862445/73681302247*12752043^(8/17) 4180999952164565 a001 182717648081/96450076809*12752043^(8/17) 4180999952164565 a001 956722026041/505019158607*12752043^(8/17) 4180999952164565 a001 10610209857723/5600748293801*12752043^(8/17) 4180999952164565 a001 591286729879/312119004989*12752043^(8/17) 4180999952164565 a001 225851433717/119218851371*12752043^(8/17) 4180999952164565 a001 21566892818/11384387281*12752043^(8/17) 4180999952164565 a001 32951280099/17393796001*12752043^(8/17) 4180999952164565 a001 12586269025/6643838879*12752043^(8/17) 4180999952164565 a001 1201881744/634430159*12752043^(8/17) 4180999952164565 a001 1836311903/969323029*12752043^(8/17) 4180999952164565 a001 701408733/370248451*12752043^(8/17) 4180999952164565 a001 34111385/29134601*12752043^(1/2) 4180999952164565 a001 9227465/228826127*33385282^(2/3) 4180999952164565 a001 3524578/370248451*7881196^(9/11) 4180999952164565 a001 66978574/35355581*12752043^(8/17) 4180999952164565 a001 86267571272/54018521*4870847^(1/16) 4180999952164565 a001 9227465/599074578*33385282^(13/18) 4180999952164566 a001 9227465/969323029*33385282^(3/4) 4180999952164566 a001 9227465/1568397607*33385282^(7/9) 4180999952164566 a001 267914296/228826127*12752043^(1/2) 4180999952164566 a001 14930352/54018521*12752043^(10/17) 4180999952164566 a001 233802911/199691526*12752043^(1/2) 4180999952164566 a001 1144206275/1875749*12752043^(2/17) 4180999952164566 a001 1836311903/1568397607*12752043^(1/2) 4180999952164566 a001 1602508992/1368706081*12752043^(1/2) 4180999952164566 a001 12586269025/10749957122*12752043^(1/2) 4180999952164566 a001 10983760033/9381251041*12752043^(1/2) 4180999952164566 a001 86267571272/73681302247*12752043^(1/2) 4180999952164566 a001 75283811239/64300051206*12752043^(1/2) 4180999952164566 a001 2504730781961/2139295485799*12752043^(1/2) 4180999952164566 a001 365435296162/312119004989*12752043^(1/2) 4180999952164566 a001 139583862445/119218851371*12752043^(1/2) 4180999952164566 a001 53316291173/45537549124*12752043^(1/2) 4180999952164566 a001 20365011074/17393796001*12752043^(1/2) 4180999952164566 a001 7778742049/6643838879*12752043^(1/2) 4180999952164566 a001 2971215073/2537720636*12752043^(1/2) 4180999952164566 a001 1134903170/969323029*12752043^(1/2) 4180999952164566 a001 433494437/370248451*12752043^(1/2) 4180999952164566 a001 9227465/4106118243*33385282^(5/6) 4180999952164566 a001 3732588/35355581*12752043^(11/17) 4180999952164566 a001 165580141/141422324*12752043^(1/2) 4180999952164566 a001 9227465/10749957122*33385282^(8/9) 4180999952164566 a001 9227465/17393796001*33385282^(11/12) 4180999952164566 a001 63245986/87403803*12752043^(9/17) 4180999952164566 a001 9227465/28143753123*33385282^(17/18) 4180999952164566 a001 9227465/54018521*33385282^(7/12) 4180999952164566 a001 102334155/54018521*12752043^(8/17) 4180999952164566 a001 165580141/228826127*12752043^(9/17) 4180999952164566 a004 Fibonacci(35)*Lucas(36)/(1/2+sqrt(5)/2)^52 4180999952164566 a001 433494437/599074578*12752043^(9/17) 4180999952164566 a001 1134903170/1568397607*12752043^(9/17) 4180999952164566 a001 2971215073/4106118243*12752043^(9/17) 4180999952164566 a001 7778742049/10749957122*12752043^(9/17) 4180999952164566 a001 20365011074/28143753123*12752043^(9/17) 4180999952164566 a001 53316291173/73681302247*12752043^(9/17) 4180999952164566 a001 139583862445/192900153618*12752043^(9/17) 4180999952164566 a001 365435296162/505019158607*12752043^(9/17) 4180999952164566 a001 10610209857723/14662949395604*12752043^(9/17) 4180999952164566 a001 591286729879/817138163596*12752043^(9/17) 4180999952164566 a001 225851433717/312119004989*12752043^(9/17) 4180999952164566 a001 86267571272/119218851371*12752043^(9/17) 4180999952164566 a001 32951280099/45537549124*12752043^(9/17) 4180999952164566 a001 12586269025/17393796001*12752043^(9/17) 4180999952164566 a001 4807526976/6643838879*12752043^(9/17) 4180999952164566 a001 1836311903/2537720636*12752043^(9/17) 4180999952164567 a001 701408733/969323029*12752043^(9/17) 4180999952164567 a001 267914296/370248451*12752043^(9/17) 4180999952164567 a001 102334155/141422324*12752043^(9/17) 4180999952164567 a001 4807526976/20633239*12752043^(3/17) 4180999952164567 a001 14930352/370248451*12752043^(12/17) 4180999952164567 a001 39088169/54018521*12752043^(9/17) 4180999952164567 a001 63245986/54018521*12752043^(1/2) 4180999952164568 a001 39088169/141422324*12752043^(10/17) 4180999952164568 a001 102334155/370248451*12752043^(10/17) 4180999952164568 a001 267914296/969323029*12752043^(10/17) 4180999952164568 a001 701408733/2537720636*12752043^(10/17) 4180999952164568 a001 1836311903/6643838879*12752043^(10/17) 4180999952164568 a001 4807526976/17393796001*12752043^(10/17) 4180999952164568 a001 12586269025/45537549124*12752043^(10/17) 4180999952164568 a001 32951280099/119218851371*12752043^(10/17) 4180999952164568 a001 86267571272/312119004989*12752043^(10/17) 4180999952164568 a001 225851433717/817138163596*12752043^(10/17) 4180999952164568 a001 1548008755920/5600748293801*12752043^(10/17) 4180999952164568 a001 139583862445/505019158607*12752043^(10/17) 4180999952164568 a001 53316291173/192900153618*12752043^(10/17) 4180999952164568 a001 20365011074/73681302247*12752043^(10/17) 4180999952164568 a001 7778742049/28143753123*12752043^(10/17) 4180999952164568 a001 2971215073/10749957122*12752043^(10/17) 4180999952164568 a001 1134903170/4106118243*12752043^(10/17) 4180999952164568 a001 433494437/1568397607*12752043^(10/17) 4180999952164568 a001 165580141/599074578*12752043^(10/17) 4180999952164568 a001 63245986/228826127*12752043^(10/17) 4180999952164569 a001 1836311903/20633239*12752043^(4/17) 4180999952164569 a001 14930352/969323029*12752043^(13/17) 4180999952164569 a001 24157817/87403803*12752043^(10/17) 4180999952164569 a001 39088169/370248451*12752043^(11/17) 4180999952164569 a001 102334155/969323029*12752043^(11/17) 4180999952164570 a001 66978574/634430159*12752043^(11/17) 4180999952164570 a001 701408733/6643838879*12752043^(11/17) 4180999952164570 a001 1836311903/17393796001*12752043^(11/17) 4180999952164570 a001 1201881744/11384387281*12752043^(11/17) 4180999952164570 a001 12586269025/119218851371*12752043^(11/17) 4180999952164570 a001 32951280099/312119004989*12752043^(11/17) 4180999952164570 a001 21566892818/204284540899*12752043^(11/17) 4180999952164570 a001 225851433717/2139295485799*12752043^(11/17) 4180999952164570 a001 182717648081/1730726404001*12752043^(11/17) 4180999952164570 a001 139583862445/1322157322203*12752043^(11/17) 4180999952164570 a001 53316291173/505019158607*12752043^(11/17) 4180999952164570 a001 10182505537/96450076809*12752043^(11/17) 4180999952164570 a001 7778742049/73681302247*12752043^(11/17) 4180999952164570 a001 2971215073/28143753123*12752043^(11/17) 4180999952164570 a001 567451585/5374978561*12752043^(11/17) 4180999952164570 a001 433494437/4106118243*12752043^(11/17) 4180999952164570 a001 165580141/1568397607*12752043^(11/17) 4180999952164570 a001 31622993/299537289*12752043^(11/17) 4180999952164570 a001 701408733/20633239*12752043^(5/17) 4180999952164570 a001 196452/33391061*12752043^(14/17) 4180999952164570 a001 39088169/969323029*12752043^(12/17) 4180999952164571 a001 3524578/87403803*7881196^(8/11) 4180999952164571 a001 24157817/228826127*12752043^(11/17) 4180999952164571 a001 9303105/230701876*12752043^(12/17) 4180999952164571 a001 267914296/6643838879*12752043^(12/17) 4180999952164571 a001 701408733/17393796001*12752043^(12/17) 4180999952164571 a001 1836311903/45537549124*12752043^(12/17) 4180999952164571 a001 4807526976/119218851371*12752043^(12/17) 4180999952164571 a001 1144206275/28374454999*12752043^(12/17) 4180999952164571 a001 32951280099/817138163596*12752043^(12/17) 4180999952164571 a001 86267571272/2139295485799*12752043^(12/17) 4180999952164571 a001 225851433717/5600748293801*12752043^(12/17) 4180999952164571 a001 591286729879/14662949395604*12752043^(12/17) 4180999952164571 a001 365435296162/9062201101803*12752043^(12/17) 4180999952164571 a001 139583862445/3461452808002*12752043^(12/17) 4180999952164571 a001 53316291173/1322157322203*12752043^(12/17) 4180999952164571 a001 20365011074/505019158607*12752043^(12/17) 4180999952164571 a001 7778742049/192900153618*12752043^(12/17) 4180999952164571 a001 2971215073/73681302247*12752043^(12/17) 4180999952164571 a001 1134903170/28143753123*12752043^(12/17) 4180999952164571 a001 433494437/10749957122*12752043^(12/17) 4180999952164571 a001 165580141/4106118243*12752043^(12/17) 4180999952164571 a001 10182505537/16692641*4870847^(1/8) 4180999952164571 a001 1134903170/12752043*4870847^(1/4) 4180999952164571 a001 63245986/1568397607*12752043^(12/17) 4180999952164572 a001 1762289/16692641*7881196^(2/3) 4180999952164572 a001 9238424/711491*12752043^(6/17) 4180999952164572 a001 14930352/6643838879*12752043^(15/17) 4180999952164572 a001 39088169/2537720636*12752043^(13/17) 4180999952164572 a001 24157817/599074578*12752043^(12/17) 4180999952164572 a001 102334155/6643838879*12752043^(13/17) 4180999952164573 a001 85146110326225/20365011074 4180999952164573 a001 9227465/20633239*817138163596^(1/3) 4180999952164573 a001 9227465/20633239*(1/2+1/2*5^(1/2))^19 4180999952164573 a001 9238424/599786069*12752043^(13/17) 4180999952164573 a001 701408733/45537549124*12752043^(13/17) 4180999952164573 a001 1836311903/119218851371*12752043^(13/17) 4180999952164573 a001 4807526976/312119004989*12752043^(13/17) 4180999952164573 a001 12586269025/817138163596*12752043^(13/17) 4180999952164573 a001 32951280099/2139295485799*12752043^(13/17) 4180999952164573 a001 86267571272/5600748293801*12752043^(13/17) 4180999952164573 a001 7787980473/505618944676*12752043^(13/17) 4180999952164573 a001 365435296162/23725150497407*12752043^(13/17) 4180999952164573 a001 139583862445/9062201101803*12752043^(13/17) 4180999952164573 a001 53316291173/3461452808002*12752043^(13/17) 4180999952164573 a001 20365011074/1322157322203*12752043^(13/17) 4180999952164573 a001 7778742049/505019158607*12752043^(13/17) 4180999952164573 a001 2971215073/192900153618*12752043^(13/17) 4180999952164573 a001 1134903170/73681302247*12752043^(13/17) 4180999952164573 a001 433494437/28143753123*12752043^(13/17) 4180999952164573 a001 14930352/20633239*12752043^(9/17) 4180999952164573 a001 165580141/10749957122*12752043^(13/17) 4180999952164573 a001 63245986/4106118243*12752043^(13/17) 4180999952164573 a001 9227465/20633239*87403803^(1/2) 4180999952164573 a001 9303105/1875749*12752043^(7/17) 4180999952164573 a001 14930352/17393796001*12752043^(16/17) 4180999952164574 a001 39088169/6643838879*12752043^(14/17) 4180999952164574 a001 32951280099/20633239*4870847^(1/16) 4180999952164574 a001 24157817/1568397607*12752043^(13/17) 4180999952164574 a001 102334155/17393796001*12752043^(14/17) 4180999952164574 a001 66978574/11384387281*12752043^(14/17) 4180999952164574 a001 701408733/119218851371*12752043^(14/17) 4180999952164574 a001 1836311903/312119004989*12752043^(14/17) 4180999952164574 a001 1201881744/204284540899*12752043^(14/17) 4180999952164574 a001 12586269025/2139295485799*12752043^(14/17) 4180999952164574 a001 32951280099/5600748293801*12752043^(14/17) 4180999952164574 a001 1135099622/192933544679*12752043^(14/17) 4180999952164574 a001 139583862445/23725150497407*12752043^(14/17) 4180999952164574 a001 53316291173/9062201101803*12752043^(14/17) 4180999952164574 a001 10182505537/1730726404001*12752043^(14/17) 4180999952164574 a001 7778742049/1322157322203*12752043^(14/17) 4180999952164574 a001 2971215073/505019158607*12752043^(14/17) 4180999952164574 a001 567451585/96450076809*12752043^(14/17) 4180999952164574 a001 433494437/73681302247*12752043^(14/17) 4180999952164574 a001 9227465/33385282*12752043^(10/17) 4180999952164574 a001 165580141/28143753123*12752043^(14/17) 4180999952164574 a001 39088169/20633239*12752043^(8/17) 4180999952164574 a001 31622993/5374978561*12752043^(14/17) 4180999952164574 a001 53316291173/87403803*4870847^(1/8) 4180999952164575 a001 139583862445/228826127*4870847^(1/8) 4180999952164575 a004 Fibonacci(36)*Lucas(34)/(1/2+sqrt(5)/2)^51 4180999952164575 a001 182717648081/299537289*4870847^(1/8) 4180999952164575 a001 956722026041/1568397607*4870847^(1/8) 4180999952164575 a001 2504730781961/4106118243*4870847^(1/8) 4180999952164575 a001 3278735159921/5374978561*4870847^(1/8) 4180999952164575 a001 10610209857723/17393796001*4870847^(1/8) 4180999952164575 a001 4052739537881/6643838879*4870847^(1/8) 4180999952164575 a001 1134903780/1860499*4870847^(1/8) 4180999952164575 a001 591286729879/969323029*4870847^(1/8) 4180999952164575 a001 225851433717/370248451*4870847^(1/8) 4180999952164575 a001 39088169/17393796001*12752043^(15/17) 4180999952164575 a001 21566892818/35355581*4870847^(1/8) 4180999952164575 a001 102334155/45537549124*12752043^(15/17) 4180999952164575 a001 24157817/4106118243*12752043^(14/17) 4180999952164576 a001 267914296/119218851371*12752043^(15/17) 4180999952164576 a001 3524667/1568437211*12752043^(15/17) 4180999952164576 a001 1836311903/817138163596*12752043^(15/17) 4180999952164576 a001 4807526976/2139295485799*12752043^(15/17) 4180999952164576 a001 12586269025/5600748293801*12752043^(15/17) 4180999952164576 a001 32951280099/14662949395604*12752043^(15/17) 4180999952164576 a001 53316291173/23725150497407*12752043^(15/17) 4180999952164576 a001 20365011074/9062201101803*12752043^(15/17) 4180999952164576 a001 7778742049/3461452808002*12752043^(15/17) 4180999952164576 a001 2971215073/1322157322203*12752043^(15/17) 4180999952164576 a001 1134903170/505019158607*12752043^(15/17) 4180999952164576 a001 433494437/192900153618*12752043^(15/17) 4180999952164576 a001 165580141/73681302247*12752043^(15/17) 4180999952164576 a001 63245986/28143753123*12752043^(15/17) 4180999952164576 a001 32951280099/54018521*4870847^(1/8) 4180999952164577 a001 39088169/45537549124*12752043^(16/17) 4180999952164577 a001 24157817/20633239*12752043^(1/2) 4180999952164577 a001 102334155/119218851371*12752043^(16/17) 4180999952164577 a001 24157817/10749957122*12752043^(15/17) 4180999952164577 a001 267914296/312119004989*12752043^(16/17) 4180999952164577 a001 701408733/817138163596*12752043^(16/17) 4180999952164577 a001 1836311903/2139295485799*12752043^(16/17) 4180999952164577 a001 4807526976/5600748293801*12752043^(16/17) 4180999952164577 a001 12586269025/14662949395604*12752043^(16/17) 4180999952164577 a001 20365011074/23725150497407*12752043^(16/17) 4180999952164577 a001 7778742049/9062201101803*12752043^(16/17) 4180999952164577 a001 2971215073/3461452808002*12752043^(16/17) 4180999952164577 a001 1134903170/1322157322203*12752043^(16/17) 4180999952164577 a001 433494437/505019158607*12752043^(16/17) 4180999952164577 a001 165580141/192900153618*12752043^(16/17) 4180999952164577 a001 63245986/73681302247*12752043^(16/17) 4180999952164578 a001 1836311903/4870847*1860498^(1/6) 4180999952164578 a004 Fibonacci(38)*Lucas(34)/(1/2+sqrt(5)/2)^53 4180999952164579 a004 Fibonacci(40)*Lucas(34)/(1/2+sqrt(5)/2)^55 4180999952164579 a001 24157817/28143753123*12752043^(16/17) 4180999952164579 a004 Fibonacci(42)*Lucas(34)/(1/2+sqrt(5)/2)^57 4180999952164579 a004 Fibonacci(44)*Lucas(34)/(1/2+sqrt(5)/2)^59 4180999952164579 a004 Fibonacci(46)*Lucas(34)/(1/2+sqrt(5)/2)^61 4180999952164579 a004 Fibonacci(48)*Lucas(34)/(1/2+sqrt(5)/2)^63 4180999952164579 a004 Fibonacci(50)*Lucas(34)/(1/2+sqrt(5)/2)^65 4180999952164579 a004 Fibonacci(52)*Lucas(34)/(1/2+sqrt(5)/2)^67 4180999952164579 a004 Fibonacci(54)*Lucas(34)/(1/2+sqrt(5)/2)^69 4180999952164579 a004 Fibonacci(56)*Lucas(34)/(1/2+sqrt(5)/2)^71 4180999952164579 a004 Fibonacci(58)*Lucas(34)/(1/2+sqrt(5)/2)^73 4180999952164579 a004 Fibonacci(60)*Lucas(34)/(1/2+sqrt(5)/2)^75 4180999952164579 a004 Fibonacci(62)*Lucas(34)/(1/2+sqrt(5)/2)^77 4180999952164579 a004 Fibonacci(64)*Lucas(34)/(1/2+sqrt(5)/2)^79 4180999952164579 a004 Fibonacci(66)*Lucas(34)/(1/2+sqrt(5)/2)^81 4180999952164579 a004 Fibonacci(68)*Lucas(34)/(1/2+sqrt(5)/2)^83 4180999952164579 a004 Fibonacci(70)*Lucas(34)/(1/2+sqrt(5)/2)^85 4180999952164579 a004 Fibonacci(72)*Lucas(34)/(1/2+sqrt(5)/2)^87 4180999952164579 a004 Fibonacci(74)*Lucas(34)/(1/2+sqrt(5)/2)^89 4180999952164579 a004 Fibonacci(76)*Lucas(34)/(1/2+sqrt(5)/2)^91 4180999952164579 a004 Fibonacci(78)*Lucas(34)/(1/2+sqrt(5)/2)^93 4180999952164579 a004 Fibonacci(80)*Lucas(34)/(1/2+sqrt(5)/2)^95 4180999952164579 a004 Fibonacci(82)*Lucas(34)/(1/2+sqrt(5)/2)^97 4180999952164579 a004 Fibonacci(84)*Lucas(34)/(1/2+sqrt(5)/2)^99 4180999952164579 a004 Fibonacci(85)*Lucas(34)/(1/2+sqrt(5)/2)^100 4180999952164579 a004 Fibonacci(83)*Lucas(34)/(1/2+sqrt(5)/2)^98 4180999952164579 a004 Fibonacci(81)*Lucas(34)/(1/2+sqrt(5)/2)^96 4180999952164579 a004 Fibonacci(79)*Lucas(34)/(1/2+sqrt(5)/2)^94 4180999952164579 a004 Fibonacci(77)*Lucas(34)/(1/2+sqrt(5)/2)^92 4180999952164579 a004 Fibonacci(75)*Lucas(34)/(1/2+sqrt(5)/2)^90 4180999952164579 a004 Fibonacci(73)*Lucas(34)/(1/2+sqrt(5)/2)^88 4180999952164579 a004 Fibonacci(71)*Lucas(34)/(1/2+sqrt(5)/2)^86 4180999952164579 a004 Fibonacci(69)*Lucas(34)/(1/2+sqrt(5)/2)^84 4180999952164579 a001 2/5702887*(1/2+1/2*5^(1/2))^53 4180999952164579 a004 Fibonacci(67)*Lucas(34)/(1/2+sqrt(5)/2)^82 4180999952164579 a004 Fibonacci(65)*Lucas(34)/(1/2+sqrt(5)/2)^80 4180999952164579 a004 Fibonacci(63)*Lucas(34)/(1/2+sqrt(5)/2)^78 4180999952164579 a004 Fibonacci(61)*Lucas(34)/(1/2+sqrt(5)/2)^76 4180999952164579 a004 Fibonacci(59)*Lucas(34)/(1/2+sqrt(5)/2)^74 4180999952164579 a004 Fibonacci(57)*Lucas(34)/(1/2+sqrt(5)/2)^72 4180999952164579 a004 Fibonacci(55)*Lucas(34)/(1/2+sqrt(5)/2)^70 4180999952164579 a004 Fibonacci(53)*Lucas(34)/(1/2+sqrt(5)/2)^68 4180999952164579 a004 Fibonacci(51)*Lucas(34)/(1/2+sqrt(5)/2)^66 4180999952164579 a004 Fibonacci(49)*Lucas(34)/(1/2+sqrt(5)/2)^64 4180999952164579 a004 Fibonacci(47)*Lucas(34)/(1/2+sqrt(5)/2)^62 4180999952164579 a004 Fibonacci(45)*Lucas(34)/(1/2+sqrt(5)/2)^60 4180999952164579 a004 Fibonacci(43)*Lucas(34)/(1/2+sqrt(5)/2)^58 4180999952164579 a004 Fibonacci(41)*Lucas(34)/(1/2+sqrt(5)/2)^56 4180999952164579 a001 9227465/87403803*12752043^(11/17) 4180999952164579 a004 Fibonacci(39)*Lucas(34)/(1/2+sqrt(5)/2)^54 4180999952164580 a004 Fibonacci(37)*Lucas(34)/(1/2+sqrt(5)/2)^52 4180999952164581 a001 9227465/228826127*12752043^(12/17) 4180999952164582 a001 7778742049/33385282*4870847^(3/16) 4180999952164582 a001 433494437/12752043*4870847^(5/16) 4180999952164582 a001 9227465/599074578*12752043^(13/17) 4180999952164584 a001 9227465/1568397607*12752043^(14/17) 4180999952164585 a001 1144206275/1875749*4870847^(1/8) 4180999952164585 a001 20365011074/87403803*4870847^(3/16) 4180999952164585 a001 9227465/4106118243*12752043^(15/17) 4180999952164586 a001 53316291173/228826127*4870847^(3/16) 4180999952164586 a001 139583862445/599074578*4870847^(3/16) 4180999952164586 a001 365435296162/1568397607*4870847^(3/16) 4180999952164586 a001 956722026041/4106118243*4870847^(3/16) 4180999952164586 a001 2504730781961/10749957122*4870847^(3/16) 4180999952164586 a001 6557470319842/28143753123*4870847^(3/16) 4180999952164586 a001 10610209857723/45537549124*4870847^(3/16) 4180999952164586 a001 4052739537881/17393796001*4870847^(3/16) 4180999952164586 a001 1548008755920/6643838879*4870847^(3/16) 4180999952164586 a001 591286729879/2537720636*4870847^(3/16) 4180999952164586 a001 225851433717/969323029*4870847^(3/16) 4180999952164586 a001 86267571272/370248451*4870847^(3/16) 4180999952164586 a001 63246219/271444*4870847^(3/16) 4180999952164587 a001 9227465/10749957122*12752043^(16/17) 4180999952164587 a001 3524578/20633239*7881196^(7/11) 4180999952164587 a001 12586269025/54018521*4870847^(3/16) 4180999952164588 a004 Fibonacci(35)*Lucas(34)/(1/2+sqrt(5)/2)^50 4180999952164589 a001 3524578/12752043*20633239^(4/7) 4180999952164591 a001 24157817/7881196*7881196^(5/11) 4180999952164593 a001 2971215073/33385282*4870847^(1/4) 4180999952164593 a001 165580141/12752043*4870847^(3/8) 4180999952164594 a001 5702887/7881196*141422324^(6/13) 4180999952164594 a001 3524578/12752043*2537720636^(4/9) 4180999952164594 a001 5702887/7881196*2537720636^(2/5) 4180999952164594 a001 5702887/7881196*45537549124^(6/17) 4180999952164594 a001 5702887/7881196*14662949395604^(2/7) 4180999952164594 a001 3524578/12752043*(1/2+1/2*5^(1/2))^20 4180999952164594 a001 5702887/7881196*(1/2+1/2*5^(1/2))^18 4180999952164594 a001 3524578/12752043*23725150497407^(5/16) 4180999952164594 a001 3524578/12752043*505019158607^(5/14) 4180999952164594 a001 5702887/7881196*192900153618^(1/3) 4180999952164594 a001 3524578/12752043*73681302247^(5/13) 4180999952164594 a001 3524578/12752043*28143753123^(2/5) 4180999952164594 a001 5702887/7881196*10749957122^(3/8) 4180999952164594 a001 3524578/12752043*10749957122^(5/12) 4180999952164594 a001 10050135028343/2403763488 4180999952164594 a001 5702887/7881196*4106118243^(9/23) 4180999952164594 a001 3524578/12752043*4106118243^(10/23) 4180999952164594 a001 5702887/7881196*1568397607^(9/22) 4180999952164594 a001 3524578/12752043*1568397607^(5/11) 4180999952164594 a001 5702887/7881196*599074578^(3/7) 4180999952164594 a001 3524578/12752043*599074578^(10/21) 4180999952164595 a001 5702887/7881196*228826127^(9/20) 4180999952164595 a001 3524578/12752043*228826127^(1/2) 4180999952164595 a001 5702887/7881196*87403803^(9/19) 4180999952164595 a001 3524578/12752043*87403803^(10/19) 4180999952164596 a001 102334155/7881196*7881196^(4/11) 4180999952164596 a001 4807526976/20633239*4870847^(3/16) 4180999952164596 a001 5702887/7881196*33385282^(1/2) 4180999952164596 a001 7778742049/87403803*4870847^(1/4) 4180999952164597 a001 3524578/12752043*33385282^(5/9) 4180999952164597 a001 20365011074/228826127*4870847^(1/4) 4180999952164597 a001 53316291173/599074578*4870847^(1/4) 4180999952164597 a001 139583862445/1568397607*4870847^(1/4) 4180999952164597 a001 365435296162/4106118243*4870847^(1/4) 4180999952164597 a001 956722026041/10749957122*4870847^(1/4) 4180999952164597 a001 2504730781961/28143753123*4870847^(1/4) 4180999952164597 a001 6557470319842/73681302247*4870847^(1/4) 4180999952164597 a001 10610209857723/119218851371*4870847^(1/4) 4180999952164597 a001 4052739537881/45537549124*4870847^(1/4) 4180999952164597 a001 1548008755920/17393796001*4870847^(1/4) 4180999952164597 a001 591286729879/6643838879*4870847^(1/4) 4180999952164597 a001 225851433717/2537720636*4870847^(1/4) 4180999952164597 a001 86267571272/969323029*4870847^(1/4) 4180999952164597 a001 32951280099/370248451*4870847^(1/4) 4180999952164597 a001 12586269025/141422324*4870847^(1/4) 4180999952164598 a001 165580141/7881196*7881196^(1/3) 4180999952164598 a001 4807526976/54018521*4870847^(1/4) 4180999952164602 a001 433494437/7881196*7881196^(3/11) 4180999952164604 a001 567451585/16692641*4870847^(5/16) 4180999952164604 a001 63245986/12752043*4870847^(7/16) 4180999952164607 a001 1836311903/20633239*4870847^(1/4) 4180999952164607 a001 2971215073/87403803*4870847^(5/16) 4180999952164608 a001 20365011074/12752043*1860498^(1/15) 4180999952164608 a001 7778742049/228826127*4870847^(5/16) 4180999952164608 a001 10182505537/299537289*4870847^(5/16) 4180999952164608 a001 53316291173/1568397607*4870847^(5/16) 4180999952164608 a001 139583862445/4106118243*4870847^(5/16) 4180999952164608 a001 182717648081/5374978561*4870847^(5/16) 4180999952164608 a001 956722026041/28143753123*4870847^(5/16) 4180999952164608 a001 2504730781961/73681302247*4870847^(5/16) 4180999952164608 a001 3278735159921/96450076809*4870847^(5/16) 4180999952164608 a001 10610209857723/312119004989*4870847^(5/16) 4180999952164608 a001 4052739537881/119218851371*4870847^(5/16) 4180999952164608 a001 387002188980/11384387281*4870847^(5/16) 4180999952164608 a001 591286729879/17393796001*4870847^(5/16) 4180999952164608 a001 225851433717/6643838879*4870847^(5/16) 4180999952164608 a001 1135099622/33391061*4870847^(5/16) 4180999952164608 a001 1836311903/7881196*7881196^(2/11) 4180999952164608 a001 32951280099/969323029*4870847^(5/16) 4180999952164608 a001 12586269025/370248451*4870847^(5/16) 4180999952164608 a001 5702887/7881196*12752043^(9/17) 4180999952164608 a001 1201881744/35355581*4870847^(5/16) 4180999952164609 a001 1836311903/54018521*4870847^(5/16) 4180999952164610 a001 3524578/12752043*12752043^(10/17) 4180999952164610 a004 Fibonacci(33)*Lucas(35)/(1/2+sqrt(5)/2)^49 4180999952164612 a001 832040/3010349*1860498^(2/3) 4180999952164612 a001 3524578/1568397607*20633239^(6/7) 4180999952164612 a001 1762289/299537289*20633239^(4/5) 4180999952164613 a001 1762289/70711162*20633239^(5/7) 4180999952164614 a001 7778742049/7881196*7881196^(1/11) 4180999952164615 a001 433494437/33385282*4870847^(3/8) 4180999952164616 a001 39088169/7881196*20633239^(2/5) 4180999952164616 a001 1762289/16692641*312119004989^(2/5) 4180999952164616 a001 1762289/16692641*(1/2+1/2*5^(1/2))^22 4180999952164616 a001 3732588/1970299*(1/2+1/2*5^(1/2))^16 4180999952164616 a001 3732588/1970299*23725150497407^(1/4) 4180999952164616 a001 3732588/1970299*73681302247^(4/13) 4180999952164616 a001 52623190191456/12586269025 4180999952164616 a001 3732588/1970299*10749957122^(1/3) 4180999952164616 a001 1762289/16692641*10749957122^(11/24) 4180999952164616 a001 3732588/1970299*4106118243^(8/23) 4180999952164616 a001 1762289/16692641*4106118243^(11/23) 4180999952164616 a001 3732588/1970299*1568397607^(4/11) 4180999952164616 a001 1762289/16692641*1568397607^(1/2) 4180999952164616 a001 3732588/1970299*599074578^(8/21) 4180999952164616 a001 1762289/16692641*599074578^(11/21) 4180999952164616 a001 3732588/1970299*228826127^(2/5) 4180999952164616 a001 1762289/16692641*228826127^(11/20) 4180999952164617 a001 3732588/1970299*87403803^(8/19) 4180999952164617 a001 24157817/12752043*4870847^(1/2) 4180999952164617 a001 1762289/16692641*87403803^(11/19) 4180999952164617 a001 66978574/1970299*20633239^(2/7) 4180999952164617 a001 24157817/7881196*20633239^(3/7) 4180999952164618 a001 701408733/20633239*4870847^(5/16) 4180999952164618 a001 3732588/1970299*33385282^(4/9) 4180999952164618 a001 1134903170/4870847*1860498^(1/5) 4180999952164618 a001 567451585/3940598*20633239^(1/5) 4180999952164618 a001 1134903170/87403803*4870847^(3/8) 4180999952164619 a001 1762289/16692641*33385282^(11/18) 4180999952164619 a004 Fibonacci(33)*Lucas(37)/(1/2+sqrt(5)/2)^51 4180999952164619 a001 2971215073/7881196*20633239^(1/7) 4180999952164619 a001 2971215073/228826127*4870847^(3/8) 4180999952164619 a001 7778742049/599074578*4870847^(3/8) 4180999952164619 a001 20365011074/1568397607*4870847^(3/8) 4180999952164619 a001 53316291173/4106118243*4870847^(3/8) 4180999952164619 a001 139583862445/10749957122*4870847^(3/8) 4180999952164619 a001 365435296162/28143753123*4870847^(3/8) 4180999952164619 a001 956722026041/73681302247*4870847^(3/8) 4180999952164619 a001 2504730781961/192900153618*4870847^(3/8) 4180999952164619 a001 10610209857723/817138163596*4870847^(3/8) 4180999952164619 a001 4052739537881/312119004989*4870847^(3/8) 4180999952164619 a001 1548008755920/119218851371*4870847^(3/8) 4180999952164619 a001 591286729879/45537549124*4870847^(3/8) 4180999952164619 a001 7787980473/599786069*4870847^(3/8) 4180999952164619 a001 86267571272/6643838879*4870847^(3/8) 4180999952164619 a001 32951280099/2537720636*4870847^(3/8) 4180999952164619 a001 12586269025/969323029*4870847^(3/8) 4180999952164619 a001 4807526976/370248451*4870847^(3/8) 4180999952164619 a001 1836311903/141422324*4870847^(3/8) 4180999952164620 a001 3524578/87403803*141422324^(8/13) 4180999952164620 a001 3524578/87403803*2537720636^(8/15) 4180999952164620 a001 39088169/7881196*17393796001^(2/7) 4180999952164620 a001 3524578/87403803*45537549124^(8/17) 4180999952164620 a001 3524578/87403803*14662949395604^(8/21) 4180999952164620 a001 39088169/7881196*14662949395604^(2/9) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^24/Lucas(38) 4180999952164620 a001 39088169/7881196*(1/2+1/2*5^(1/2))^14 4180999952164620 a001 3524578/87403803*192900153618^(4/9) 4180999952164620 a001 3524578/87403803*73681302247^(6/13) 4180999952164620 a001 137769300517682/32951280099 4180999952164620 a001 39088169/7881196*10749957122^(7/24) 4180999952164620 a001 3524578/87403803*10749957122^(1/2) 4180999952164620 a001 39088169/7881196*4106118243^(7/23) 4180999952164620 a001 3524578/87403803*4106118243^(12/23) 4180999952164620 a001 39088169/7881196*1568397607^(7/22) 4180999952164620 a001 3524578/87403803*1568397607^(6/11) 4180999952164620 a001 39088169/7881196*599074578^(1/3) 4180999952164620 a001 3524578/87403803*599074578^(4/7) 4180999952164620 a001 39088169/7881196*228826127^(7/20) 4180999952164620 a001 3524578/87403803*228826127^(3/5) 4180999952164620 a001 39088169/7881196*87403803^(7/19) 4180999952164620 a001 3524578/228826127*141422324^(2/3) 4180999952164620 a004 Fibonacci(33)*Lucas(39)/(1/2+sqrt(5)/2)^53 4180999952164620 a001 3524578/87403803*87403803^(12/19) 4180999952164620 a001 3524578/28143753123*141422324^(12/13) 4180999952164620 a001 3524578/6643838879*141422324^(11/13) 4180999952164620 a001 3524578/1568397607*141422324^(10/13) 4180999952164620 a001 102334155/7881196*141422324^(4/13) 4180999952164620 a001 3524578/370248451*141422324^(9/13) 4180999952164620 a001 102334155/7881196*2537720636^(4/15) 4180999952164620 a001 102334155/7881196*45537549124^(4/17) 4180999952164620 a001 102334155/7881196*817138163596^(4/19) 4180999952164620 a001 102334155/7881196*14662949395604^(4/21) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^26/Lucas(40) 4180999952164620 a001 102334155/7881196*(1/2+1/2*5^(1/2))^12 4180999952164620 a001 102334155/7881196*192900153618^(2/9) 4180999952164620 a001 180342355680795/43133785636 4180999952164620 a001 102334155/7881196*73681302247^(3/13) 4180999952164620 a001 3524578/228826127*73681302247^(1/2) 4180999952164620 a001 102334155/7881196*10749957122^(1/4) 4180999952164620 a001 3524578/228826127*10749957122^(13/24) 4180999952164620 a001 102334155/7881196*4106118243^(6/23) 4180999952164620 a001 3524578/228826127*4106118243^(13/23) 4180999952164620 a001 102334155/7881196*1568397607^(3/11) 4180999952164620 a001 3524578/228826127*1568397607^(13/22) 4180999952164620 a001 102334155/7881196*599074578^(2/7) 4180999952164620 a001 3524578/228826127*599074578^(13/21) 4180999952164620 a001 102334155/7881196*228826127^(3/10) 4180999952164620 a001 433494437/7881196*141422324^(3/13) 4180999952164620 a001 1836311903/7881196*141422324^(2/13) 4180999952164620 a004 Fibonacci(33)*Lucas(41)/(1/2+sqrt(5)/2)^55 4180999952164620 a001 3524578/228826127*228826127^(13/20) 4180999952164620 a001 7778742049/7881196*141422324^(1/13) 4180999952164620 a001 66978574/1970299*2537720636^(2/9) 4180999952164620 a001 1762289/299537289*17393796001^(4/7) 4180999952164620 a001 66978574/1970299*312119004989^(2/11) 4180999952164620 a001 1762289/299537289*14662949395604^(4/9) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^28/Lucas(42) 4180999952164620 a001 66978574/1970299*(1/2+1/2*5^(1/2))^10 4180999952164620 a001 1762289/299537289*505019158607^(1/2) 4180999952164620 a001 2504734306544/599075421 4180999952164620 a001 1762289/299537289*73681302247^(7/13) 4180999952164620 a001 66978574/1970299*28143753123^(1/5) 4180999952164620 a001 66978574/1970299*10749957122^(5/24) 4180999952164620 a001 1762289/299537289*10749957122^(7/12) 4180999952164620 a001 66978574/1970299*4106118243^(5/23) 4180999952164620 a001 1762289/299537289*4106118243^(14/23) 4180999952164620 a001 66978574/1970299*1568397607^(5/22) 4180999952164620 a001 1762289/299537289*1568397607^(7/11) 4180999952164620 a001 66978574/1970299*599074578^(5/21) 4180999952164620 a004 Fibonacci(33)*Lucas(43)/(1/2+sqrt(5)/2)^57 4180999952164620 a001 1762289/299537289*599074578^(2/3) 4180999952164620 a001 3524578/1568397607*2537720636^(2/3) 4180999952164620 a001 3524578/1568397607*45537549124^(10/17) 4180999952164620 a001 3524578/1568397607*312119004989^(6/11) 4180999952164620 a001 3524578/1568397607*14662949395604^(10/21) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^30/Lucas(44) 4180999952164620 a001 3524667/39604*(1/2+1/2*5^(1/2))^8 4180999952164620 a001 2472169789339674/591286729879 4180999952164620 a001 3524578/1568397607*192900153618^(5/9) 4180999952164620 a001 3524667/39604*73681302247^(2/13) 4180999952164620 a001 3524578/1568397607*28143753123^(3/5) 4180999952164620 a001 3524667/39604*10749957122^(1/6) 4180999952164620 a001 3524578/1568397607*10749957122^(5/8) 4180999952164620 a001 3524667/39604*4106118243^(4/23) 4180999952164620 a001 3524578/1568397607*4106118243^(15/23) 4180999952164620 a001 3524667/39604*1568397607^(2/11) 4180999952164620 a004 Fibonacci(33)*Lucas(45)/(1/2+sqrt(5)/2)^59 4180999952164620 a001 3524578/505019158607*2537720636^(14/15) 4180999952164620 a001 1762289/96450076809*2537720636^(8/9) 4180999952164620 a001 3524578/119218851371*2537720636^(13/15) 4180999952164620 a001 3524578/1568397607*1568397607^(15/22) 4180999952164620 a001 3524578/28143753123*2537720636^(4/5) 4180999952164620 a001 3524578/17393796001*2537720636^(7/9) 4180999952164620 a001 3524578/6643838879*2537720636^(11/15) 4180999952164620 a001 1836311903/7881196*2537720636^(2/15) 4180999952164620 a001 1836311903/7881196*45537549124^(2/17) 4180999952164620 a001 1836311903/7881196*14662949395604^(2/21) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^32/Lucas(46) 4180999952164620 a001 1836311903/7881196*(1/2+1/2*5^(1/2))^6 4180999952164620 a001 3236112267225967/774004377960 4180999952164620 a001 3524578/4106118243*505019158607^(4/7) 4180999952164620 a001 3524578/4106118243*73681302247^(8/13) 4180999952164620 a001 1836311903/7881196*10749957122^(1/8) 4180999952164620 a001 3524578/4106118243*10749957122^(2/3) 4180999952164620 a001 1836311903/7881196*4106118243^(3/23) 4180999952164620 a004 Fibonacci(33)*Lucas(47)/(1/2+sqrt(5)/2)^61 4180999952164620 a001 3524578/4106118243*4106118243^(16/23) 4180999952164620 a001 1762289/5374978561*45537549124^(2/3) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^34/Lucas(48) 4180999952164620 a001 1201881744/1970299*(1/2+1/2*5^(1/2))^4 4180999952164620 a001 1201881744/1970299*23725150497407^(1/16) 4180999952164620 a001 1201881744/1970299*73681302247^(1/13) 4180999952164620 a001 1201881744/1970299*10749957122^(1/12) 4180999952164620 a001 7778742049/7881196*2537720636^(1/15) 4180999952164620 a001 1836311903/7881196*1568397607^(3/22) 4180999952164620 a001 1201881744/1970299*4106118243^(2/23) 4180999952164620 a004 Fibonacci(33)*Lucas(49)/(1/2+sqrt(5)/2)^63 4180999952164620 a001 3524578/505019158607*17393796001^(6/7) 4180999952164620 a001 1762289/5374978561*10749957122^(17/24) 4180999952164620 a001 3524578/28143753123*45537549124^(12/17) 4180999952164620 a001 3524578/28143753123*14662949395604^(4/7) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^36/Lucas(50) 4180999952164620 a001 12586269025/7881196*(1/2+1/2*5^(1/2))^2 4180999952164620 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^2/Lucas(33) 4180999952164620 a001 3524578/28143753123*505019158607^(9/14) 4180999952164620 a001 3524578/28143753123*192900153618^(2/3) 4180999952164620 a001 3524578/28143753123*73681302247^(9/13) 4180999952164620 a001 12586269025/7881196*10749957122^(1/24) 4180999952164620 a004 Fibonacci(33)*Lucas(51)/(1/2+sqrt(5)/2)^65 4180999952164620 a001 3524578/9062201101803*45537549124^(16/17) 4180999952164620 a001 3524578/2139295485799*45537549124^(15/17) 4180999952164620 a001 3524578/505019158607*45537549124^(14/17) 4180999952164620 a001 3524578/119218851371*45537549124^(13/17) 4180999952164620 a001 3524578/73681302247*817138163596^(2/3) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^38/Lucas(52) 4180999952164620 a006 5^(1/2)*Fibonacci(52)/Lucas(33)/sqrt(5) 4180999952164620 a004 Fibonacci(33)*Lucas(53)/(1/2+sqrt(5)/2)^67 4180999952164620 a001 1762289/96450076809*312119004989^(8/11) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^40/Lucas(54) 4180999952164620 a004 Fibonacci(54)/Lucas(33)/(1/2+sqrt(5)/2)^2 4180999952164620 a001 1762289/96450076809*23725150497407^(5/8) 4180999952164620 a004 Fibonacci(33)*Lucas(55)/(1/2+sqrt(5)/2)^69 4180999952164620 a001 3524578/23725150497407*312119004989^(10/11) 4180999952164620 a001 3524578/1322157322203*312119004989^(4/5) 4180999952164620 a001 3524578/505019158607*817138163596^(14/19) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^42/Lucas(56) 4180999952164620 a004 Fibonacci(56)/Lucas(33)/(1/2+sqrt(5)/2)^4 4180999952164620 a004 Fibonacci(33)*Lucas(57)/(1/2+sqrt(5)/2)^71 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^44/Lucas(58) 4180999952164620 a004 Fibonacci(58)/Lucas(33)/(1/2+sqrt(5)/2)^6 4180999952164620 a001 3524578/1322157322203*23725150497407^(11/16) 4180999952164620 a004 Fibonacci(33)*Lucas(59)/(1/2+sqrt(5)/2)^73 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^46/Lucas(60) 4180999952164620 a004 Fibonacci(60)/Lucas(33)/(1/2+sqrt(5)/2)^8 4180999952164620 a004 Fibonacci(33)*Lucas(61)/(1/2+sqrt(5)/2)^75 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^48/Lucas(62) 4180999952164620 a004 Fibonacci(62)/Lucas(33)/(1/2+sqrt(5)/2)^10 4180999952164620 a004 Fibonacci(33)*Lucas(63)/(1/2+sqrt(5)/2)^77 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^50/Lucas(64) 4180999952164620 a004 Fibonacci(64)/Lucas(33)/(1/2+sqrt(5)/2)^12 4180999952164620 a004 Fibonacci(33)*Lucas(65)/(1/2+sqrt(5)/2)^79 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^52/Lucas(66) 4180999952164620 a004 Fibonacci(33)*Lucas(67)/(1/2+sqrt(5)/2)^81 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^54/Lucas(68) 4180999952164620 a004 Fibonacci(33)*Lucas(69)/(1/2+sqrt(5)/2)^83 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^56/Lucas(70) 4180999952164620 a004 Fibonacci(33)*Lucas(71)/(1/2+sqrt(5)/2)^85 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^58/Lucas(72) 4180999952164620 a004 Fibonacci(33)*Lucas(73)/(1/2+sqrt(5)/2)^87 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^60/Lucas(74) 4180999952164620 a004 Fibonacci(33)*Lucas(75)/(1/2+sqrt(5)/2)^89 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^62/Lucas(76) 4180999952164620 a004 Fibonacci(33)*Lucas(77)/(1/2+sqrt(5)/2)^91 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^64/Lucas(78) 4180999952164620 a004 Fibonacci(33)*Lucas(79)/(1/2+sqrt(5)/2)^93 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^66/Lucas(80) 4180999952164620 a004 Fibonacci(33)*Lucas(81)/(1/2+sqrt(5)/2)^95 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^68/Lucas(82) 4180999952164620 a004 Fibonacci(33)*Lucas(83)/(1/2+sqrt(5)/2)^97 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^70/Lucas(84) 4180999952164620 a004 Fibonacci(33)*Lucas(85)/(1/2+sqrt(5)/2)^99 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^72/Lucas(86) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^74/Lucas(88) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^76/Lucas(90) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^78/Lucas(92) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^80/Lucas(94) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^82/Lucas(96) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^84/Lucas(98) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^86/Lucas(100) 4180999952164620 a004 Fibonacci(33)*Lucas(1)/(1/2+sqrt(5)/2)^14 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^85/Lucas(99) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^83/Lucas(97) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^81/Lucas(95) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^79/Lucas(93) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^77/Lucas(91) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^75/Lucas(89) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^73/Lucas(87) 4180999952164620 a004 Fibonacci(33)*Lucas(86)/(1/2+sqrt(5)/2)^100 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^71/Lucas(85) 4180999952164620 a004 Fibonacci(33)*Lucas(84)/(1/2+sqrt(5)/2)^98 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^69/Lucas(83) 4180999952164620 a004 Fibonacci(33)*Lucas(82)/(1/2+sqrt(5)/2)^96 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^67/Lucas(81) 4180999952164620 a004 Fibonacci(33)*Lucas(80)/(1/2+sqrt(5)/2)^94 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^65/Lucas(79) 4180999952164620 a004 Fibonacci(33)*Lucas(78)/(1/2+sqrt(5)/2)^92 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^63/Lucas(77) 4180999952164620 a004 Fibonacci(33)*Lucas(76)/(1/2+sqrt(5)/2)^90 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^61/Lucas(75) 4180999952164620 a004 Fibonacci(33)*Lucas(74)/(1/2+sqrt(5)/2)^88 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^59/Lucas(73) 4180999952164620 a004 Fibonacci(33)*Lucas(72)/(1/2+sqrt(5)/2)^86 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^57/Lucas(71) 4180999952164620 a004 Fibonacci(33)*Lucas(70)/(1/2+sqrt(5)/2)^84 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^55/Lucas(69) 4180999952164620 a004 Fibonacci(33)*Lucas(68)/(1/2+sqrt(5)/2)^82 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^53/Lucas(67) 4180999952164620 a004 Fibonacci(68)/Lucas(33)/(1/2+sqrt(5)/2)^16 4180999952164620 a004 Fibonacci(70)/Lucas(33)/(1/2+sqrt(5)/2)^18 4180999952164620 a004 Fibonacci(72)/Lucas(33)/(1/2+sqrt(5)/2)^20 4180999952164620 a004 Fibonacci(74)/Lucas(33)/(1/2+sqrt(5)/2)^22 4180999952164620 a004 Fibonacci(76)/Lucas(33)/(1/2+sqrt(5)/2)^24 4180999952164620 a004 Fibonacci(78)/Lucas(33)/(1/2+sqrt(5)/2)^26 4180999952164620 a004 Fibonacci(80)/Lucas(33)/(1/2+sqrt(5)/2)^28 4180999952164620 a004 Fibonacci(82)/Lucas(33)/(1/2+sqrt(5)/2)^30 4180999952164620 a004 Fibonacci(84)/Lucas(33)/(1/2+sqrt(5)/2)^32 4180999952164620 a004 Fibonacci(86)/Lucas(33)/(1/2+sqrt(5)/2)^34 4180999952164620 a004 Fibonacci(88)/Lucas(33)/(1/2+sqrt(5)/2)^36 4180999952164620 a004 Fibonacci(90)/Lucas(33)/(1/2+sqrt(5)/2)^38 4180999952164620 a004 Fibonacci(92)/Lucas(33)/(1/2+sqrt(5)/2)^40 4180999952164620 a004 Fibonacci(94)/Lucas(33)/(1/2+sqrt(5)/2)^42 4180999952164620 a004 Fibonacci(96)/Lucas(33)/(1/2+sqrt(5)/2)^44 4180999952164620 a004 Fibonacci(98)/Lucas(33)/(1/2+sqrt(5)/2)^46 4180999952164620 a004 Fibonacci(100)/Lucas(33)/(1/2+sqrt(5)/2)^48 4180999952164620 a004 Fibonacci(33)*Lucas(66)/(1/2+sqrt(5)/2)^80 4180999952164620 a004 Fibonacci(99)/Lucas(33)/(1/2+sqrt(5)/2)^47 4180999952164620 a004 Fibonacci(97)/Lucas(33)/(1/2+sqrt(5)/2)^45 4180999952164620 a004 Fibonacci(95)/Lucas(33)/(1/2+sqrt(5)/2)^43 4180999952164620 a004 Fibonacci(93)/Lucas(33)/(1/2+sqrt(5)/2)^41 4180999952164620 a004 Fibonacci(91)/Lucas(33)/(1/2+sqrt(5)/2)^39 4180999952164620 a004 Fibonacci(89)/Lucas(33)/(1/2+sqrt(5)/2)^37 4180999952164620 a004 Fibonacci(87)/Lucas(33)/(1/2+sqrt(5)/2)^35 4180999952164620 a004 Fibonacci(85)/Lucas(33)/(1/2+sqrt(5)/2)^33 4180999952164620 a004 Fibonacci(83)/Lucas(33)/(1/2+sqrt(5)/2)^31 4180999952164620 a004 Fibonacci(81)/Lucas(33)/(1/2+sqrt(5)/2)^29 4180999952164620 a004 Fibonacci(79)/Lucas(33)/(1/2+sqrt(5)/2)^27 4180999952164620 a004 Fibonacci(77)/Lucas(33)/(1/2+sqrt(5)/2)^25 4180999952164620 a004 Fibonacci(75)/Lucas(33)/(1/2+sqrt(5)/2)^23 4180999952164620 a004 Fibonacci(73)/Lucas(33)/(1/2+sqrt(5)/2)^21 4180999952164620 a004 Fibonacci(71)/Lucas(33)/(1/2+sqrt(5)/2)^19 4180999952164620 a004 Fibonacci(69)/Lucas(33)/(1/2+sqrt(5)/2)^17 4180999952164620 a004 Fibonacci(67)/Lucas(33)/(1/2+sqrt(5)/2)^15 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^51/Lucas(65) 4180999952164620 a004 Fibonacci(65)/Lucas(33)/(1/2+sqrt(5)/2)^13 4180999952164620 a001 1762289/7331474697802*14662949395604^(7/9) 4180999952164620 a004 Fibonacci(33)*Lucas(64)/(1/2+sqrt(5)/2)^78 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^49/Lucas(63) 4180999952164620 a004 Fibonacci(63)/Lucas(33)/(1/2+sqrt(5)/2)^11 4180999952164620 a004 Fibonacci(33)*Lucas(62)/(1/2+sqrt(5)/2)^76 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^47/Lucas(61) 4180999952164620 a004 Fibonacci(61)/Lucas(33)/(1/2+sqrt(5)/2)^9 4180999952164620 a004 Fibonacci(33)*Lucas(60)/(1/2+sqrt(5)/2)^74 4180999952164620 a001 3524578/2139295485799*14662949395604^(5/7) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^45/Lucas(59) 4180999952164620 a004 Fibonacci(59)/Lucas(33)/(1/2+sqrt(5)/2)^7 4180999952164620 a004 Fibonacci(33)*Lucas(58)/(1/2+sqrt(5)/2)^72 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^43/Lucas(57) 4180999952164620 a004 Fibonacci(57)/Lucas(33)/(1/2+sqrt(5)/2)^5 4180999952164620 a001 1762289/7331474697802*505019158607^(7/8) 4180999952164620 a004 Fibonacci(33)*Lucas(56)/(1/2+sqrt(5)/2)^70 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^41/Lucas(55) 4180999952164620 a004 Fibonacci(55)/Lucas(33)/(1/2+sqrt(5)/2)^3 4180999952164620 a001 3524578/505019158607*192900153618^(7/9) 4180999952164620 a001 3524578/2139295485799*192900153618^(5/6) 4180999952164620 a001 3524578/9062201101803*192900153618^(8/9) 4180999952164620 a004 Fibonacci(33)*Lucas(54)/(1/2+sqrt(5)/2)^68 4180999952164620 a001 3524578/119218851371*14662949395604^(13/21) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^39/Lucas(53) 4180999952164620 a004 Fibonacci(53)/Lucas(33)/(1/2+sqrt(5)/2) 4180999952164620 a001 3524578/119218851371*192900153618^(13/18) 4180999952164620 a001 1762289/96450076809*73681302247^(10/13) 4180999952164620 a001 3524578/1322157322203*73681302247^(11/13) 4180999952164620 a001 3524578/9062201101803*73681302247^(12/13) 4180999952164620 a004 Fibonacci(33)*Lucas(52)/(1/2+sqrt(5)/2)^66 4180999952164620 a001 3524578/119218851371*73681302247^(3/4) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^37/Lucas(51) 4180999952164620 a001 3524578/17393796001*17393796001^(5/7) 4180999952164620 a001 1762289/96450076809*28143753123^(4/5) 4180999952164620 a001 3524578/2139295485799*28143753123^(9/10) 4180999952164620 a004 Fibonacci(33)*Lucas(50)/(1/2+sqrt(5)/2)^64 4180999952164620 a001 12586269025/7881196*4106118243^(1/23) 4180999952164620 a001 7778742049/7881196*45537549124^(1/17) 4180999952164620 a001 3524578/17393796001*312119004989^(7/11) 4180999952164620 a001 1054491657445397/252210396917 4180999952164620 a001 3524578/17393796001*14662949395604^(5/9) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^35/Lucas(49) 4180999952164620 a001 7778742049/7881196*(1/2+1/2*5^(1/2))^3 4180999952164620 a001 3524578/17393796001*505019158607^(5/8) 4180999952164620 a001 7778742049/7881196*10749957122^(1/16) 4180999952164620 a001 3524578/17393796001*28143753123^(7/10) 4180999952164620 a001 3524578/28143753123*10749957122^(3/4) 4180999952164620 a001 2971215073/7881196*2537720636^(1/9) 4180999952164620 a001 3524578/73681302247*10749957122^(19/24) 4180999952164620 a001 3524578/119218851371*10749957122^(13/16) 4180999952164620 a001 1762289/96450076809*10749957122^(5/6) 4180999952164620 a001 3524578/505019158607*10749957122^(7/8) 4180999952164620 a001 3524578/1322157322203*10749957122^(11/12) 4180999952164620 a001 3524578/2139295485799*10749957122^(15/16) 4180999952164620 a001 1762289/1730726404001*10749957122^(23/24) 4180999952164620 a004 Fibonacci(33)*Lucas(48)/(1/2+sqrt(5)/2)^62 4180999952164620 a001 12586269025/7881196*1568397607^(1/22) 4180999952164620 a001 3524578/6643838879*45537549124^(11/17) 4180999952164620 a001 3524578/6643838879*312119004989^(3/5) 4180999952164620 a001 2971215073/7881196*312119004989^(1/11) 4180999952164620 a001 10472279279564194/2504730781961 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^33/Lucas(47) 4180999952164620 a001 2971215073/7881196*(1/2+1/2*5^(1/2))^5 4180999952164620 a001 3524578/6643838879*192900153618^(11/18) 4180999952164620 a001 2971215073/7881196*28143753123^(1/10) 4180999952164620 a001 1201881744/1970299*1568397607^(1/11) 4180999952164620 a001 3524578/6643838879*10749957122^(11/16) 4180999952164620 a001 1762289/5374978561*4106118243^(17/23) 4180999952164620 a001 3524578/28143753123*4106118243^(18/23) 4180999952164620 a001 3524578/73681302247*4106118243^(19/23) 4180999952164620 a001 1762289/96450076809*4106118243^(20/23) 4180999952164620 a001 3524578/505019158607*4106118243^(21/23) 4180999952164620 a001 3524578/1322157322203*4106118243^(22/23) 4180999952164620 a004 Fibonacci(33)*Lucas(46)/(1/2+sqrt(5)/2)^60 4180999952164620 a001 3524667/39604*599074578^(4/21) 4180999952164620 a001 12586269025/7881196*599074578^(1/21) 4180999952164620 a001 567451585/3940598*17393796001^(1/7) 4180999952164620 a001 567451585/3940598*14662949395604^(1/9) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^31/Lucas(45) 4180999952164620 a001 567451585/3940598*(1/2+1/2*5^(1/2))^7 4180999952164620 a001 1762289/1268860318*9062201101803^(1/2) 4180999952164620 a001 7778742049/7881196*599074578^(1/14) 4180999952164620 a001 3524578/4106118243*1568397607^(8/11) 4180999952164620 a001 1201881744/1970299*599074578^(2/21) 4180999952164620 a001 1762289/5374978561*1568397607^(17/22) 4180999952164620 a001 3524578/6643838879*1568397607^(3/4) 4180999952164620 a001 3524578/28143753123*1568397607^(9/11) 4180999952164620 a001 1836311903/7881196*599074578^(1/7) 4180999952164620 a001 3524578/73681302247*1568397607^(19/22) 4180999952164620 a001 1762289/96450076809*1568397607^(10/11) 4180999952164620 a001 3524578/505019158607*1568397607^(21/22) 4180999952164620 a004 Fibonacci(33)*Lucas(44)/(1/2+sqrt(5)/2)^58 4180999952164620 a001 567451585/3940598*599074578^(1/6) 4180999952164620 a001 12586269025/7881196*228826127^(1/20) 4180999952164620 a001 433494437/7881196*2537720636^(1/5) 4180999952164620 a001 433494437/7881196*45537549124^(3/17) 4180999952164620 a001 433494437/7881196*817138163596^(3/19) 4180999952164620 a001 433494437/7881196*14662949395604^(1/7) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^29/Lucas(43) 4180999952164620 a001 433494437/7881196*(1/2+1/2*5^(1/2))^9 4180999952164620 a001 3524578/969323029*1322157322203^(1/2) 4180999952164620 a001 433494437/7881196*10749957122^(3/16) 4180999952164620 a001 3524578/1568397607*599074578^(5/7) 4180999952164620 a001 433494437/7881196*599074578^(3/14) 4180999952164620 a001 1201881744/1970299*228826127^(1/10) 4180999952164620 a001 66978574/1970299*228826127^(1/4) 4180999952164620 a001 3524578/4106118243*599074578^(16/21) 4180999952164620 a001 3524578/6643838879*599074578^(11/14) 4180999952164620 a001 1762289/5374978561*599074578^(17/21) 4180999952164620 a001 3524578/17393796001*599074578^(5/6) 4180999952164620 a001 3524578/28143753123*599074578^(6/7) 4180999952164620 a001 2971215073/7881196*228826127^(1/8) 4180999952164620 a001 3524578/73681302247*599074578^(19/21) 4180999952164620 a001 3524578/119218851371*599074578^(13/14) 4180999952164620 a001 1762289/96450076809*599074578^(20/21) 4180999952164620 a004 Fibonacci(33)*Lucas(42)/(1/2+sqrt(5)/2)^56 4180999952164620 a001 1836311903/7881196*228826127^(3/20) 4180999952164620 a001 3524667/39604*228826127^(1/5) 4180999952164620 a001 12586269025/7881196*87403803^(1/19) 4180999952164620 a001 3524578/370248451*2537720636^(3/5) 4180999952164620 a001 3524578/370248451*45537549124^(9/17) 4180999952164620 a001 6557304743882/1568358005 4180999952164620 a001 165580141/7881196*312119004989^(1/5) 4180999952164620 a001 3524578/370248451*817138163596^(9/19) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^27/Lucas(41) 4180999952164620 a001 165580141/7881196*(1/2+1/2*5^(1/2))^11 4180999952164620 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^11/Lucas(33) 4180999952164620 a001 3524578/370248451*192900153618^(1/2) 4180999952164620 a001 3524578/370248451*10749957122^(9/16) 4180999952164620 a001 165580141/7881196*1568397607^(1/4) 4180999952164620 a001 3524578/370248451*599074578^(9/14) 4180999952164620 a001 1762289/299537289*228826127^(7/10) 4180999952164620 a001 1201881744/1970299*87403803^(2/19) 4180999952164620 a001 3524578/1568397607*228826127^(3/4) 4180999952164620 a001 3524578/4106118243*228826127^(4/5) 4180999952164620 a001 1762289/5374978561*228826127^(17/20) 4180999952164620 a001 3524578/17393796001*228826127^(7/8) 4180999952164620 a001 3524578/28143753123*228826127^(9/10) 4180999952164620 a001 3524578/73681302247*228826127^(19/20) 4180999952164620 a004 Fibonacci(33)*Lucas(40)/(1/2+sqrt(5)/2)^54 4180999952164620 a001 1836311903/7881196*87403803^(3/19) 4180999952164620 a001 102334155/7881196*87403803^(6/19) 4180999952164620 a001 3524667/39604*87403803^(4/19) 4180999952164620 a001 66978574/1970299*87403803^(5/19) 4180999952164620 a001 31622993/3940598*141422324^(1/3) 4180999952164620 a001 701408733/54018521*4870847^(3/8) 4180999952164620 a001 12586269025/7881196*33385282^(1/18) 4180999952164620 a001 1762289/70711162*2537720636^(5/9) 4180999952164620 a001 222915410843908/53316291173 4180999952164620 a001 1762289/70711162*312119004989^(5/11) 4180999952164620 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^25/Lucas(39) 4180999952164620 a001 31622993/3940598*(1/2+1/2*5^(1/2))^13 4180999952164620 a001 1762289/70711162*3461452808002^(5/12) 4180999952164620 a001 31622993/3940598*73681302247^(1/4) 4180999952164620 a001 1762289/70711162*28143753123^(1/2) 4180999952164620 a001 1762289/70711162*228826127^(5/8) 4180999952164620 a001 3524578/228826127*87403803^(13/19) 4180999952164621 a001 7778742049/7881196*33385282^(1/12) 4180999952164621 a001 1762289/299537289*87403803^(14/19) 4180999952164621 a001 1201881744/1970299*33385282^(1/9) 4180999952164621 a001 3524578/1568397607*87403803^(15/19) 4180999952164621 a001 3524578/4106118243*87403803^(16/19) 4180999952164621 a001 1762289/5374978561*87403803^(17/19) 4180999952164621 a001 3524578/28143753123*87403803^(18/19) 4180999952164621 a004 Fibonacci(33)*Lucas(38)/(1/2+sqrt(5)/2)^52 4180999952164621 a001 1836311903/7881196*33385282^(1/6) 4180999952164621 a001 3524667/39604*33385282^(2/9) 4180999952164621 a001 39088169/7881196*33385282^(7/18) 4180999952164621 a001 433494437/7881196*33385282^(1/4) 4180999952164621 a001 66978574/1970299*33385282^(5/18) 4180999952164621 a001 102334155/7881196*33385282^(1/3) 4180999952164622 a001 24157817/7881196*141422324^(5/13) 4180999952164622 a001 24157817/7881196*2537720636^(1/3) 4180999952164622 a001 42573055163113/10182505537 4180999952164622 a001 24157817/7881196*45537549124^(5/17) 4180999952164622 a001 24157817/7881196*312119004989^(3/11) 4180999952164622 a001 24157817/7881196*14662949395604^(5/21) 4180999952164622 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^23/Lucas(37) 4180999952164622 a001 24157817/7881196*(1/2+1/2*5^(1/2))^15 4180999952164622 a001 24157817/7881196*192900153618^(5/18) 4180999952164622 a001 24157817/7881196*28143753123^(3/10) 4180999952164622 a001 24157817/7881196*10749957122^(5/16) 4180999952164622 a001 3524578/54018521*4106118243^(1/2) 4180999952164622 a001 24157817/7881196*599074578^(5/14) 4180999952164622 a001 24157817/7881196*228826127^(3/8) 4180999952164622 a001 12586269025/7881196*12752043^(1/17) 4180999952164622 a001 3524578/87403803*33385282^(2/3) 4180999952164623 a001 3524578/228826127*33385282^(13/18) 4180999952164623 a001 3524578/370248451*33385282^(3/4) 4180999952164623 a001 1762289/299537289*33385282^(7/9) 4180999952164623 a001 24157817/7881196*33385282^(5/12) 4180999952164623 a001 1201881744/1970299*12752043^(2/17) 4180999952164623 a001 3524578/1568397607*33385282^(5/6) 4180999952164624 a001 3524578/4106118243*33385282^(8/9) 4180999952164624 a001 3524578/6643838879*33385282^(11/12) 4180999952164624 a001 1762289/5374978561*33385282^(17/18) 4180999952164624 a004 Fibonacci(33)*Lucas(36)/(1/2+sqrt(5)/2)^50 4180999952164624 a001 3524578/20633239*20633239^(3/5) 4180999952164625 a001 1836311903/7881196*12752043^(3/17) 4180999952164626 a001 3524667/39604*12752043^(4/17) 4180999952164626 a001 165580141/33385282*4870847^(7/16) 4180999952164628 a001 66978574/1970299*12752043^(5/17) 4180999952164629 a001 3732588/1970299*12752043^(8/17) 4180999952164629 a001 9238424/711491*4870847^(3/8) 4180999952164629 a001 102334155/7881196*12752043^(6/17) 4180999952164629 a001 433494437/87403803*4870847^(7/16) 4180999952164630 a001 53316291173/33385282*1860498^(1/15) 4180999952164630 a001 1134903170/228826127*4870847^(7/16) 4180999952164630 a001 3524578/20633239*141422324^(7/13) 4180999952164630 a001 2971215073/599074578*4870847^(7/16) 4180999952164630 a001 7778742049/1568397607*4870847^(7/16) 4180999952164630 a001 20365011074/4106118243*4870847^(7/16) 4180999952164630 a001 53316291173/10749957122*4870847^(7/16) 4180999952164630 a001 139583862445/28143753123*4870847^(7/16) 4180999952164630 a001 365435296162/73681302247*4870847^(7/16) 4180999952164630 a001 956722026041/192900153618*4870847^(7/16) 4180999952164630 a001 2504730781961/505019158607*4870847^(7/16) 4180999952164630 a001 10610209857723/2139295485799*4870847^(7/16) 4180999952164630 a001 4052739537881/817138163596*4870847^(7/16) 4180999952164630 a001 140728068720/28374454999*4870847^(7/16) 4180999952164630 a001 591286729879/119218851371*4870847^(7/16) 4180999952164630 a001 225851433717/45537549124*4870847^(7/16) 4180999952164630 a001 86267571272/17393796001*4870847^(7/16) 4180999952164630 a001 32951280099/6643838879*4870847^(7/16) 4180999952164630 a001 1144206275/230701876*4870847^(7/16) 4180999952164630 a001 4807526976/969323029*4870847^(7/16) 4180999952164630 a001 1836311903/370248451*4870847^(7/16) 4180999952164630 a001 3524578/20633239*2537720636^(7/15) 4180999952164630 a001 2501763087290/598364773 4180999952164630 a001 3524578/20633239*17393796001^(3/7) 4180999952164630 a001 3524578/20633239*45537549124^(7/17) 4180999952164630 a001 9227465/7881196*45537549124^(1/3) 4180999952164630 a001 3524578/20633239*14662949395604^(1/3) 4180999952164630 a001 3524578/20633239*(1/2+1/2*5^(1/2))^21 4180999952164630 a001 9227465/7881196*(1/2+1/2*5^(1/2))^17 4180999952164630 a001 3524578/20633239*192900153618^(7/18) 4180999952164630 a001 3524578/20633239*10749957122^(7/16) 4180999952164630 a001 3524578/20633239*599074578^(1/2) 4180999952164630 a001 701408733/141422324*4870847^(7/16) 4180999952164630 a001 39088169/7881196*12752043^(7/17) 4180999952164631 a001 12586269025/7881196*4870847^(1/16) 4180999952164631 a001 267914296/54018521*4870847^(7/16) 4180999952164632 a001 3524578/20633239*33385282^(7/12) 4180999952164633 a001 139583862445/87403803*1860498^(1/15) 4180999952164633 a001 1762289/16692641*12752043^(11/17) 4180999952164633 a001 365435296162/228826127*1860498^(1/15) 4180999952164633 a001 956722026041/599074578*1860498^(1/15) 4180999952164633 a001 2504730781961/1568397607*1860498^(1/15) 4180999952164633 a001 6557470319842/4106118243*1860498^(1/15) 4180999952164633 a001 10610209857723/6643838879*1860498^(1/15) 4180999952164633 a001 4052739537881/2537720636*1860498^(1/15) 4180999952164633 a001 1548008755920/969323029*1860498^(1/15) 4180999952164633 a001 591286729879/370248451*1860498^(1/15) 4180999952164634 a001 225851433717/141422324*1860498^(1/15) 4180999952164635 a001 86267571272/54018521*1860498^(1/15) 4180999952164636 a001 9227465/12752043*4870847^(9/16) 4180999952164637 a001 31622993/16692641*4870847^(1/2) 4180999952164638 a001 3524578/87403803*12752043^(12/17) 4180999952164640 a001 9303105/1875749*4870847^(7/16) 4180999952164640 a001 3524578/228826127*12752043^(13/17) 4180999952164640 a001 165580141/87403803*4870847^(1/2) 4180999952164641 a001 433494437/228826127*4870847^(1/2) 4180999952164641 a001 567451585/299537289*4870847^(1/2) 4180999952164641 a001 2971215073/1568397607*4870847^(1/2) 4180999952164641 a001 7778742049/4106118243*4870847^(1/2) 4180999952164641 a001 10182505537/5374978561*4870847^(1/2) 4180999952164641 a001 53316291173/28143753123*4870847^(1/2) 4180999952164641 a001 139583862445/73681302247*4870847^(1/2) 4180999952164641 a001 182717648081/96450076809*4870847^(1/2) 4180999952164641 a001 956722026041/505019158607*4870847^(1/2) 4180999952164641 a001 10610209857723/5600748293801*4870847^(1/2) 4180999952164641 a001 591286729879/312119004989*4870847^(1/2) 4180999952164641 a001 225851433717/119218851371*4870847^(1/2) 4180999952164641 a001 21566892818/11384387281*4870847^(1/2) 4180999952164641 a001 32951280099/17393796001*4870847^(1/2) 4180999952164641 a001 12586269025/6643838879*4870847^(1/2) 4180999952164641 a001 1201881744/634430159*4870847^(1/2) 4180999952164641 a001 1836311903/969323029*4870847^(1/2) 4180999952164641 a001 701408733/370248451*4870847^(1/2) 4180999952164641 a001 66978574/35355581*4870847^(1/2) 4180999952164641 a001 1762289/299537289*12752043^(14/17) 4180999952164642 a001 1201881744/1970299*4870847^(1/8) 4180999952164642 a001 102334155/54018521*4870847^(1/2) 4180999952164643 a001 9227465/7881196*12752043^(1/2) 4180999952164643 a001 3524578/1568397607*12752043^(15/17) 4180999952164643 a001 32951280099/20633239*1860498^(1/15) 4180999952164644 a001 3524578/4106118243*12752043^(16/17) 4180999952164646 a004 Fibonacci(33)*Lucas(34)/(1/2+sqrt(5)/2)^48 4180999952164647 a001 5702887/20633239*4870847^(5/8) 4180999952164648 a001 12586269025/12752043*1860498^(1/10) 4180999952164650 a001 24157817/33385282*4870847^(9/16) 4180999952164650 a001 5702887/54018521*4870847^(11/16) 4180999952164650 a001 39088169/20633239*4870847^(1/2) 4180999952164652 a001 63245986/87403803*4870847^(9/16) 4180999952164652 a001 165580141/228826127*4870847^(9/16) 4180999952164652 a001 433494437/599074578*4870847^(9/16) 4180999952164652 a001 1134903170/1568397607*4870847^(9/16) 4180999952164652 a001 2971215073/4106118243*4870847^(9/16) 4180999952164652 a001 7778742049/10749957122*4870847^(9/16) 4180999952164652 a001 20365011074/28143753123*4870847^(9/16) 4180999952164652 a001 53316291173/73681302247*4870847^(9/16) 4180999952164652 a001 139583862445/192900153618*4870847^(9/16) 4180999952164652 a001 365435296162/505019158607*4870847^(9/16) 4180999952164652 a001 10610209857723/14662949395604*4870847^(9/16) 4180999952164652 a001 225851433717/312119004989*4870847^(9/16) 4180999952164652 a001 86267571272/119218851371*4870847^(9/16) 4180999952164652 a001 32951280099/45537549124*4870847^(9/16) 4180999952164652 a001 12586269025/17393796001*4870847^(9/16) 4180999952164652 a001 4807526976/6643838879*4870847^(9/16) 4180999952164652 a001 1836311903/2537720636*4870847^(9/16) 4180999952164652 a001 701408733/969323029*4870847^(9/16) 4180999952164652 a001 267914296/370248451*4870847^(9/16) 4180999952164652 a001 102334155/141422324*4870847^(9/16) 4180999952164653 a001 39088169/54018521*4870847^(9/16) 4180999952164653 a001 1836311903/7881196*4870847^(3/16) 4180999952164658 a001 14930352/20633239*4870847^(9/16) 4180999952164660 a001 5702887/141422324*4870847^(3/4) 4180999952164661 a001 14930352/54018521*4870847^(5/8) 4180999952164663 a001 39088169/141422324*4870847^(5/8) 4180999952164663 a001 102334155/370248451*4870847^(5/8) 4180999952164663 a001 267914296/969323029*4870847^(5/8) 4180999952164663 a001 701408733/2537720636*4870847^(5/8) 4180999952164663 a001 1836311903/6643838879*4870847^(5/8) 4180999952164663 a001 4807526976/17393796001*4870847^(5/8) 4180999952164663 a001 12586269025/45537549124*4870847^(5/8) 4180999952164663 a001 32951280099/119218851371*4870847^(5/8) 4180999952164663 a001 86267571272/312119004989*4870847^(5/8) 4180999952164663 a001 225851433717/817138163596*4870847^(5/8) 4180999952164663 a001 1548008755920/5600748293801*4870847^(5/8) 4180999952164663 a001 139583862445/505019158607*4870847^(5/8) 4180999952164663 a001 53316291173/192900153618*4870847^(5/8) 4180999952164663 a001 20365011074/73681302247*4870847^(5/8) 4180999952164663 a001 7778742049/28143753123*4870847^(5/8) 4180999952164663 a001 2971215073/10749957122*4870847^(5/8) 4180999952164663 a001 1134903170/4106118243*4870847^(5/8) 4180999952164663 a001 433494437/1568397607*4870847^(5/8) 4180999952164663 a001 165580141/599074578*4870847^(5/8) 4180999952164663 a001 63245986/228826127*4870847^(5/8) 4180999952164664 a001 24157817/87403803*4870847^(5/8) 4180999952164664 a001 3524667/39604*4870847^(1/4) 4180999952164669 a001 9227465/33385282*4870847^(5/8) 4180999952164670 a001 32951280099/33385282*1860498^(1/10) 4180999952164670 a001 5702887/370248451*4870847^(13/16) 4180999952164671 a001 3732588/35355581*4870847^(11/16) 4180999952164673 a001 86267571272/87403803*1860498^(1/10) 4180999952164674 a001 39088169/370248451*4870847^(11/16) 4180999952164674 a001 225851433717/228826127*1860498^(1/10) 4180999952164674 a001 591286729879/599074578*1860498^(1/10) 4180999952164674 a001 1548008755920/1568397607*1860498^(1/10) 4180999952164674 a001 4052739537881/4106118243*1860498^(1/10) 4180999952164674 a001 4807525989/4870846*1860498^(1/10) 4180999952164674 a001 6557470319842/6643838879*1860498^(1/10) 4180999952164674 a001 2504730781961/2537720636*1860498^(1/10) 4180999952164674 a001 956722026041/969323029*1860498^(1/10) 4180999952164674 a001 365435296162/370248451*1860498^(1/10) 4180999952164674 a001 139583862445/141422324*1860498^(1/10) 4180999952164674 a001 102334155/969323029*4870847^(11/16) 4180999952164674 a001 66978574/634430159*4870847^(11/16) 4180999952164674 a001 701408733/6643838879*4870847^(11/16) 4180999952164674 a001 1836311903/17393796001*4870847^(11/16) 4180999952164674 a001 1201881744/11384387281*4870847^(11/16) 4180999952164674 a001 12586269025/119218851371*4870847^(11/16) 4180999952164674 a001 32951280099/312119004989*4870847^(11/16) 4180999952164674 a001 21566892818/204284540899*4870847^(11/16) 4180999952164674 a001 225851433717/2139295485799*4870847^(11/16) 4180999952164674 a001 182717648081/1730726404001*4870847^(11/16) 4180999952164674 a001 139583862445/1322157322203*4870847^(11/16) 4180999952164674 a001 53316291173/505019158607*4870847^(11/16) 4180999952164674 a001 10182505537/96450076809*4870847^(11/16) 4180999952164674 a001 7778742049/73681302247*4870847^(11/16) 4180999952164674 a001 2971215073/28143753123*4870847^(11/16) 4180999952164674 a001 567451585/5374978561*4870847^(11/16) 4180999952164674 a001 433494437/4106118243*4870847^(11/16) 4180999952164674 a001 165580141/1568397607*4870847^(11/16) 4180999952164674 a001 31622993/299537289*4870847^(11/16) 4180999952164675 a001 53316291173/54018521*1860498^(1/10) 4180999952164675 a001 66978574/1970299*4870847^(5/16) 4180999952164675 a001 24157817/228826127*4870847^(11/16) 4180999952164681 a001 14930352/370248451*4870847^(3/4) 4180999952164681 a001 5702887/969323029*4870847^(7/8) 4180999952164683 a001 9227465/87403803*4870847^(11/16) 4180999952164683 a001 20365011074/20633239*1860498^(1/10) 4180999952164685 a001 39088169/969323029*4870847^(3/4) 4180999952164685 a001 9303105/230701876*4870847^(3/4) 4180999952164685 a001 267914296/6643838879*4870847^(3/4) 4180999952164685 a001 701408733/17393796001*4870847^(3/4) 4180999952164685 a001 1836311903/45537549124*4870847^(3/4) 4180999952164685 a001 4807526976/119218851371*4870847^(3/4) 4180999952164685 a001 1144206275/28374454999*4870847^(3/4) 4180999952164685 a001 32951280099/817138163596*4870847^(3/4) 4180999952164685 a001 86267571272/2139295485799*4870847^(3/4) 4180999952164685 a001 225851433717/5600748293801*4870847^(3/4) 4180999952164685 a001 591286729879/14662949395604*4870847^(3/4) 4180999952164685 a001 365435296162/9062201101803*4870847^(3/4) 4180999952164685 a001 139583862445/3461452808002*4870847^(3/4) 4180999952164685 a001 53316291173/1322157322203*4870847^(3/4) 4180999952164685 a001 20365011074/505019158607*4870847^(3/4) 4180999952164685 a001 7778742049/192900153618*4870847^(3/4) 4180999952164685 a001 2971215073/73681302247*4870847^(3/4) 4180999952164685 a001 1134903170/28143753123*4870847^(3/4) 4180999952164685 a001 433494437/10749957122*4870847^(3/4) 4180999952164685 a001 165580141/4106118243*4870847^(3/4) 4180999952164685 a001 63245986/1568397607*4870847^(3/4) 4180999952164686 a001 102334155/7881196*4870847^(3/8) 4180999952164686 a001 24157817/599074578*4870847^(3/4) 4180999952164688 a001 12422650078084/2971215073 4180999952164688 a001 1762289/3940598*817138163596^(1/3) 4180999952164688 a001 1762289/3940598*(1/2+1/2*5^(1/2))^19 4180999952164688 a001 1762289/3940598*87403803^(1/2) 4180999952164688 a001 7778742049/12752043*1860498^(2/15) 4180999952164692 a001 14930352/969323029*4870847^(13/16) 4180999952164692 a001 5702887/2537720636*4870847^(15/16) 4180999952164694 a001 5702887/7881196*4870847^(9/16) 4180999952164695 a001 9227465/228826127*4870847^(3/4) 4180999952164696 a001 39088169/2537720636*4870847^(13/16) 4180999952164696 a001 102334155/6643838879*4870847^(13/16) 4180999952164696 a001 9238424/599786069*4870847^(13/16) 4180999952164696 a001 701408733/45537549124*4870847^(13/16) 4180999952164696 a001 1836311903/119218851371*4870847^(13/16) 4180999952164696 a001 4807526976/312119004989*4870847^(13/16) 4180999952164696 a001 12586269025/817138163596*4870847^(13/16) 4180999952164696 a001 32951280099/2139295485799*4870847^(13/16) 4180999952164696 a001 86267571272/5600748293801*4870847^(13/16) 4180999952164696 a001 7787980473/505618944676*4870847^(13/16) 4180999952164696 a001 365435296162/23725150497407*4870847^(13/16) 4180999952164696 a001 139583862445/9062201101803*4870847^(13/16) 4180999952164696 a001 53316291173/3461452808002*4870847^(13/16) 4180999952164696 a001 20365011074/1322157322203*4870847^(13/16) 4180999952164696 a001 7778742049/505019158607*4870847^(13/16) 4180999952164696 a001 2971215073/192900153618*4870847^(13/16) 4180999952164696 a001 1134903170/73681302247*4870847^(13/16) 4180999952164696 a001 433494437/28143753123*4870847^(13/16) 4180999952164696 a001 165580141/10749957122*4870847^(13/16) 4180999952164696 a001 63245986/4106118243*4870847^(13/16) 4180999952164697 a001 39088169/7881196*4870847^(7/16) 4180999952164698 a001 24157817/1568397607*4870847^(13/16) 4180999952164699 a001 433494437/4870847*1860498^(4/15) 4180999952164701 a001 12586269025/7881196*1860498^(1/15) 4180999952164703 a001 196452/33391061*4870847^(7/8) 4180999952164703 a004 Fibonacci(34)*Lucas(32)/(1/2+sqrt(5)/2)^47 4180999952164705 a001 3732588/1970299*4870847^(1/2) 4180999952164705 a001 3524578/12752043*4870847^(5/8) 4180999952164706 a001 9227465/599074578*4870847^(13/16) 4180999952164707 a001 39088169/6643838879*4870847^(7/8) 4180999952164707 a001 102334155/17393796001*4870847^(7/8) 4180999952164707 a001 66978574/11384387281*4870847^(7/8) 4180999952164707 a001 701408733/119218851371*4870847^(7/8) 4180999952164707 a001 1836311903/312119004989*4870847^(7/8) 4180999952164707 a001 1201881744/204284540899*4870847^(7/8) 4180999952164707 a001 12586269025/2139295485799*4870847^(7/8) 4180999952164707 a001 32951280099/5600748293801*4870847^(7/8) 4180999952164707 a001 1135099622/192933544679*4870847^(7/8) 4180999952164707 a001 139583862445/23725150497407*4870847^(7/8) 4180999952164707 a001 53316291173/9062201101803*4870847^(7/8) 4180999952164707 a001 10182505537/1730726404001*4870847^(7/8) 4180999952164707 a001 7778742049/1322157322203*4870847^(7/8) 4180999952164707 a001 2971215073/505019158607*4870847^(7/8) 4180999952164707 a001 567451585/96450076809*4870847^(7/8) 4180999952164707 a001 433494437/73681302247*4870847^(7/8) 4180999952164707 a001 165580141/28143753123*4870847^(7/8) 4180999952164707 a001 31622993/5374978561*4870847^(7/8) 4180999952164709 a001 24157817/4106118243*4870847^(7/8) 4180999952164710 a001 10182505537/16692641*1860498^(2/15) 4180999952164713 a001 53316291173/87403803*1860498^(2/15) 4180999952164714 a001 139583862445/228826127*1860498^(2/15) 4180999952164714 a001 182717648081/299537289*1860498^(2/15) 4180999952164714 a001 956722026041/1568397607*1860498^(2/15) 4180999952164714 a001 2504730781961/4106118243*1860498^(2/15) 4180999952164714 a001 3278735159921/5374978561*1860498^(2/15) 4180999952164714 a001 10610209857723/17393796001*1860498^(2/15) 4180999952164714 a001 4052739537881/6643838879*1860498^(2/15) 4180999952164714 a001 1134903780/1860499*1860498^(2/15) 4180999952164714 a001 591286729879/969323029*1860498^(2/15) 4180999952164714 a001 225851433717/370248451*1860498^(2/15) 4180999952164714 a001 21566892818/35355581*1860498^(2/15) 4180999952164714 a001 14930352/6643838879*4870847^(15/16) 4180999952164715 a001 32951280099/54018521*1860498^(2/15) 4180999952164717 a001 9227465/1568397607*4870847^(7/8) 4180999952164718 a001 39088169/17393796001*4870847^(15/16) 4180999952164718 a001 102334155/45537549124*4870847^(15/16) 4180999952164718 a001 267914296/119218851371*4870847^(15/16) 4180999952164718 a001 3524667/1568437211*4870847^(15/16) 4180999952164718 a001 1836311903/817138163596*4870847^(15/16) 4180999952164718 a001 4807526976/2139295485799*4870847^(15/16) 4180999952164718 a001 12586269025/5600748293801*4870847^(15/16) 4180999952164718 a001 32951280099/14662949395604*4870847^(15/16) 4180999952164718 a001 53316291173/23725150497407*4870847^(15/16) 4180999952164718 a001 20365011074/9062201101803*4870847^(15/16) 4180999952164718 a001 7778742049/3461452808002*4870847^(15/16) 4180999952164718 a001 2971215073/1322157322203*4870847^(15/16) 4180999952164718 a001 1134903170/505019158607*4870847^(15/16) 4180999952164718 a001 433494437/192900153618*4870847^(15/16) 4180999952164718 a001 165580141/73681302247*4870847^(15/16) 4180999952164718 a001 63245986/28143753123*4870847^(15/16) 4180999952164720 a001 24157817/10749957122*4870847^(15/16) 4180999952164724 a001 1144206275/1875749*1860498^(2/15) 4180999952164725 a004 Fibonacci(36)*Lucas(32)/(1/2+sqrt(5)/2)^49 4180999952164728 a001 9227465/4106118243*4870847^(15/16) 4180999952164728 a001 1602508992/4250681*1860498^(1/6) 4180999952164729 a004 Fibonacci(38)*Lucas(32)/(1/2+sqrt(5)/2)^51 4180999952164729 a004 Fibonacci(40)*Lucas(32)/(1/2+sqrt(5)/2)^53 4180999952164729 a004 Fibonacci(42)*Lucas(32)/(1/2+sqrt(5)/2)^55 4180999952164729 a004 Fibonacci(44)*Lucas(32)/(1/2+sqrt(5)/2)^57 4180999952164729 a004 Fibonacci(46)*Lucas(32)/(1/2+sqrt(5)/2)^59 4180999952164729 a004 Fibonacci(48)*Lucas(32)/(1/2+sqrt(5)/2)^61 4180999952164729 a004 Fibonacci(50)*Lucas(32)/(1/2+sqrt(5)/2)^63 4180999952164729 a004 Fibonacci(52)*Lucas(32)/(1/2+sqrt(5)/2)^65 4180999952164729 a004 Fibonacci(54)*Lucas(32)/(1/2+sqrt(5)/2)^67 4180999952164729 a004 Fibonacci(56)*Lucas(32)/(1/2+sqrt(5)/2)^69 4180999952164729 a004 Fibonacci(58)*Lucas(32)/(1/2+sqrt(5)/2)^71 4180999952164729 a004 Fibonacci(60)*Lucas(32)/(1/2+sqrt(5)/2)^73 4180999952164729 a004 Fibonacci(62)*Lucas(32)/(1/2+sqrt(5)/2)^75 4180999952164729 a004 Fibonacci(64)*Lucas(32)/(1/2+sqrt(5)/2)^77 4180999952164729 a004 Fibonacci(66)*Lucas(32)/(1/2+sqrt(5)/2)^79 4180999952164729 a004 Fibonacci(68)*Lucas(32)/(1/2+sqrt(5)/2)^81 4180999952164729 a004 Fibonacci(70)*Lucas(32)/(1/2+sqrt(5)/2)^83 4180999952164729 a004 Fibonacci(72)*Lucas(32)/(1/2+sqrt(5)/2)^85 4180999952164729 a004 Fibonacci(74)*Lucas(32)/(1/2+sqrt(5)/2)^87 4180999952164729 a004 Fibonacci(76)*Lucas(32)/(1/2+sqrt(5)/2)^89 4180999952164729 a004 Fibonacci(78)*Lucas(32)/(1/2+sqrt(5)/2)^91 4180999952164729 a004 Fibonacci(80)*Lucas(32)/(1/2+sqrt(5)/2)^93 4180999952164729 a004 Fibonacci(82)*Lucas(32)/(1/2+sqrt(5)/2)^95 4180999952164729 a004 Fibonacci(84)*Lucas(32)/(1/2+sqrt(5)/2)^97 4180999952164729 a004 Fibonacci(86)*Lucas(32)/(1/2+sqrt(5)/2)^99 4180999952164729 a004 Fibonacci(87)*Lucas(32)/(1/2+sqrt(5)/2)^100 4180999952164729 a004 Fibonacci(85)*Lucas(32)/(1/2+sqrt(5)/2)^98 4180999952164729 a004 Fibonacci(83)*Lucas(32)/(1/2+sqrt(5)/2)^96 4180999952164729 a004 Fibonacci(81)*Lucas(32)/(1/2+sqrt(5)/2)^94 4180999952164729 a004 Fibonacci(79)*Lucas(32)/(1/2+sqrt(5)/2)^92 4180999952164729 a004 Fibonacci(77)*Lucas(32)/(1/2+sqrt(5)/2)^90 4180999952164729 a004 Fibonacci(75)*Lucas(32)/(1/2+sqrt(5)/2)^88 4180999952164729 a004 Fibonacci(73)*Lucas(32)/(1/2+sqrt(5)/2)^86 4180999952164729 a004 Fibonacci(71)*Lucas(32)/(1/2+sqrt(5)/2)^84 4180999952164729 a004 Fibonacci(69)*Lucas(32)/(1/2+sqrt(5)/2)^82 4180999952164729 a004 Fibonacci(67)*Lucas(32)/(1/2+sqrt(5)/2)^80 4180999952164729 a004 Fibonacci(65)*Lucas(32)/(1/2+sqrt(5)/2)^78 4180999952164729 a001 2/2178309*(1/2+1/2*5^(1/2))^51 4180999952164729 a004 Fibonacci(63)*Lucas(32)/(1/2+sqrt(5)/2)^76 4180999952164729 a004 Fibonacci(61)*Lucas(32)/(1/2+sqrt(5)/2)^74 4180999952164729 a004 Fibonacci(59)*Lucas(32)/(1/2+sqrt(5)/2)^72 4180999952164729 a004 Fibonacci(57)*Lucas(32)/(1/2+sqrt(5)/2)^70 4180999952164729 a004 Fibonacci(55)*Lucas(32)/(1/2+sqrt(5)/2)^68 4180999952164729 a004 Fibonacci(53)*Lucas(32)/(1/2+sqrt(5)/2)^66 4180999952164729 a004 Fibonacci(51)*Lucas(32)/(1/2+sqrt(5)/2)^64 4180999952164729 a004 Fibonacci(49)*Lucas(32)/(1/2+sqrt(5)/2)^62 4180999952164729 a004 Fibonacci(47)*Lucas(32)/(1/2+sqrt(5)/2)^60 4180999952164729 a004 Fibonacci(45)*Lucas(32)/(1/2+sqrt(5)/2)^58 4180999952164729 a004 Fibonacci(43)*Lucas(32)/(1/2+sqrt(5)/2)^56 4180999952164729 a004 Fibonacci(41)*Lucas(32)/(1/2+sqrt(5)/2)^54 4180999952164729 a004 Fibonacci(39)*Lucas(32)/(1/2+sqrt(5)/2)^52 4180999952164731 a004 Fibonacci(37)*Lucas(32)/(1/2+sqrt(5)/2)^50 4180999952164738 a001 1762289/16692641*4870847^(11/16) 4180999952164739 a004 Fibonacci(35)*Lucas(32)/(1/2+sqrt(5)/2)^48 4180999952164739 a001 267914296/4870847*1860498^(3/10) 4180999952164741 a001 7778742049/7881196*1860498^(1/10) 4180999952164750 a001 12586269025/33385282*1860498^(1/6) 4180999952164752 a001 3524578/87403803*4870847^(3/4) 4180999952164754 a001 10983760033/29134601*1860498^(1/6) 4180999952164754 a001 86267571272/228826127*1860498^(1/6) 4180999952164754 a001 267913919/710646*1860498^(1/6) 4180999952164754 a001 591286729879/1568397607*1860498^(1/6) 4180999952164754 a001 516002918640/1368706081*1860498^(1/6) 4180999952164754 a001 4052739537881/10749957122*1860498^(1/6) 4180999952164754 a001 3536736619241/9381251041*1860498^(1/6) 4180999952164754 a001 6557470319842/17393796001*1860498^(1/6) 4180999952164754 a001 2504730781961/6643838879*1860498^(1/6) 4180999952164754 a001 956722026041/2537720636*1860498^(1/6) 4180999952164754 a001 365435296162/969323029*1860498^(1/6) 4180999952164754 a001 139583862445/370248451*1860498^(1/6) 4180999952164754 a001 53316291173/141422324*1860498^(1/6) 4180999952164756 a001 20365011074/54018521*1860498^(1/6) 4180999952164758 a001 514229/710647*710647^(9/14) 4180999952164763 a001 3524578/228826127*4870847^(13/16) 4180999952164764 a001 7778742049/20633239*1860498^(1/6) 4180999952164769 a001 2971215073/12752043*1860498^(1/5) 4180999952164774 a001 1762289/299537289*4870847^(7/8) 4180999952164779 a001 165580141/4870847*1860498^(1/3) 4180999952164781 a001 1201881744/1970299*1860498^(2/15) 4180999952164785 a001 3524578/1568397607*4870847^(15/16) 4180999952164791 a001 7778742049/33385282*1860498^(1/5) 4180999952164794 a001 20365011074/87403803*1860498^(1/5) 4180999952164794 a001 53316291173/228826127*1860498^(1/5) 4180999952164794 a001 139583862445/599074578*1860498^(1/5) 4180999952164794 a001 365435296162/1568397607*1860498^(1/5) 4180999952164794 a001 956722026041/4106118243*1860498^(1/5) 4180999952164794 a001 2504730781961/10749957122*1860498^(1/5) 4180999952164794 a001 6557470319842/28143753123*1860498^(1/5) 4180999952164794 a001 10610209857723/45537549124*1860498^(1/5) 4180999952164794 a001 4052739537881/17393796001*1860498^(1/5) 4180999952164794 a001 1548008755920/6643838879*1860498^(1/5) 4180999952164794 a001 591286729879/2537720636*1860498^(1/5) 4180999952164794 a001 225851433717/969323029*1860498^(1/5) 4180999952164794 a001 86267571272/370248451*1860498^(1/5) 4180999952164795 a001 63246219/271444*1860498^(1/5) 4180999952164796 a001 12586269025/54018521*1860498^(1/5) 4180999952164796 a004 Fibonacci(33)*Lucas(32)/(1/2+sqrt(5)/2)^46 4180999952164801 a001 2178309/3010349*7881196^(6/11) 4180999952164804 a001 4807526976/20633239*1860498^(1/5) 4180999952164822 a001 2971215073/7881196*1860498^(1/6) 4180999952164832 a001 1346269/4870847*20633239^(4/7) 4180999952164838 a001 2178309/3010349*141422324^(6/13) 4180999952164838 a001 1346269/4870847*2537720636^(4/9) 4180999952164838 a001 2178309/3010349*2537720636^(2/5) 4180999952164838 a001 2178309/3010349*45537549124^(6/17) 4180999952164838 a001 1346269/4870847*(1/2+1/2*5^(1/2))^20 4180999952164838 a001 1346269/4870847*23725150497407^(5/16) 4180999952164838 a001 2178309/3010349*(1/2+1/2*5^(1/2))^18 4180999952164838 a001 1346269/4870847*505019158607^(5/14) 4180999952164838 a001 2178309/3010349*192900153618^(1/3) 4180999952164838 a001 1346269/4870847*73681302247^(5/13) 4180999952164838 a001 1346269/4870847*28143753123^(2/5) 4180999952164838 a001 2178309/3010349*10749957122^(3/8) 4180999952164838 a001 1346269/4870847*10749957122^(5/12) 4180999952164838 a001 2178309/3010349*4106118243^(9/23) 4180999952164838 a001 1346269/4870847*4106118243^(10/23) 4180999952164838 a001 2178309/3010349*1568397607^(9/22) 4180999952164838 a001 1346269/4870847*1568397607^(5/11) 4180999952164838 a001 977529959707/233802911 4180999952164838 a001 2178309/3010349*599074578^(3/7) 4180999952164838 a001 1346269/4870847*599074578^(10/21) 4180999952164838 a001 2178309/3010349*228826127^(9/20) 4180999952164838 a001 1346269/4870847*228826127^(1/2) 4180999952164838 a001 2178309/3010349*87403803^(9/19) 4180999952164838 a001 1346269/4870847*87403803^(10/19) 4180999952164840 a001 2178309/3010349*33385282^(1/2) 4180999952164840 a001 1346269/4870847*33385282^(5/9) 4180999952164849 a001 1134903170/12752043*1860498^(4/15) 4180999952164852 a001 2178309/3010349*12752043^(9/17) 4180999952164853 a001 1346269/4870847*12752043^(10/17) 4180999952164860 a001 63245986/4870847*1860498^(2/5) 4180999952164862 a001 1836311903/7881196*1860498^(1/5) 4180999952164871 a001 2971215073/33385282*1860498^(4/15) 4180999952164874 a001 7778742049/87403803*1860498^(4/15) 4180999952164875 a001 20365011074/228826127*1860498^(4/15) 4180999952164875 a001 53316291173/599074578*1860498^(4/15) 4180999952164875 a001 139583862445/1568397607*1860498^(4/15) 4180999952164875 a001 365435296162/4106118243*1860498^(4/15) 4180999952164875 a001 956722026041/10749957122*1860498^(4/15) 4180999952164875 a001 2504730781961/28143753123*1860498^(4/15) 4180999952164875 a001 6557470319842/73681302247*1860498^(4/15) 4180999952164875 a001 10610209857723/119218851371*1860498^(4/15) 4180999952164875 a001 4052739537881/45537549124*1860498^(4/15) 4180999952164875 a001 1548008755920/17393796001*1860498^(4/15) 4180999952164875 a001 591286729879/6643838879*1860498^(4/15) 4180999952164875 a001 225851433717/2537720636*1860498^(4/15) 4180999952164875 a001 86267571272/969323029*1860498^(4/15) 4180999952164875 a001 32951280099/370248451*1860498^(4/15) 4180999952164875 a001 12586269025/141422324*1860498^(4/15) 4180999952164876 a001 4807526976/54018521*1860498^(4/15) 4180999952164885 a001 1836311903/20633239*1860498^(4/15) 4180999952164890 a001 233802911/4250681*1860498^(3/10) 4180999952164911 a001 1836311903/33385282*1860498^(3/10) 4180999952164915 a001 1602508992/29134601*1860498^(3/10) 4180999952164915 a001 12586269025/228826127*1860498^(3/10) 4180999952164915 a001 10983760033/199691526*1860498^(3/10) 4180999952164915 a001 86267571272/1568397607*1860498^(3/10) 4180999952164915 a001 75283811239/1368706081*1860498^(3/10) 4180999952164915 a001 591286729879/10749957122*1860498^(3/10) 4180999952164915 a001 12585437040/228811001*1860498^(3/10) 4180999952164915 a001 4052739537881/73681302247*1860498^(3/10) 4180999952164915 a001 3536736619241/64300051206*1860498^(3/10) 4180999952164915 a001 6557470319842/119218851371*1860498^(3/10) 4180999952164915 a001 2504730781961/45537549124*1860498^(3/10) 4180999952164915 a001 956722026041/17393796001*1860498^(3/10) 4180999952164915 a001 365435296162/6643838879*1860498^(3/10) 4180999952164915 a001 139583862445/2537720636*1860498^(3/10) 4180999952164915 a001 53316291173/969323029*1860498^(3/10) 4180999952164915 a001 20365011074/370248451*1860498^(3/10) 4180999952164915 a001 7778742049/141422324*1860498^(3/10) 4180999952164917 a001 2971215073/54018521*1860498^(3/10) 4180999952164925 a001 1134903170/20633239*1860498^(3/10) 4180999952164930 a001 433494437/12752043*1860498^(1/3) 4180999952164937 a001 2178309/3010349*4870847^(9/16) 4180999952164942 a001 24157817/4870847*1860498^(7/15) 4180999952164942 a001 3524667/39604*1860498^(4/15) 4180999952164944 a001 1346269/12752043*7881196^(2/3) 4180999952164947 a004 Fibonacci(31)*Lucas(33)/(1/2+sqrt(5)/2)^45 4180999952164948 a001 1346269/4870847*4870847^(5/8) 4180999952164952 a001 567451585/16692641*1860498^(1/3) 4180999952164953 a001 1346269/599074578*7881196^(10/11) 4180999952164955 a001 2971215073/87403803*1860498^(1/3) 4180999952164955 a001 7778742049/228826127*1860498^(1/3) 4180999952164956 a001 10182505537/299537289*1860498^(1/3) 4180999952164956 a001 53316291173/1568397607*1860498^(1/3) 4180999952164956 a001 139583862445/4106118243*1860498^(1/3) 4180999952164956 a001 182717648081/5374978561*1860498^(1/3) 4180999952164956 a001 956722026041/28143753123*1860498^(1/3) 4180999952164956 a001 2504730781961/73681302247*1860498^(1/3) 4180999952164956 a001 3278735159921/96450076809*1860498^(1/3) 4180999952164956 a001 10610209857723/312119004989*1860498^(1/3) 4180999952164956 a001 4052739537881/119218851371*1860498^(1/3) 4180999952164956 a001 387002188980/11384387281*1860498^(1/3) 4180999952164956 a001 591286729879/17393796001*1860498^(1/3) 4180999952164956 a001 225851433717/6643838879*1860498^(1/3) 4180999952164956 a001 1135099622/33391061*1860498^(1/3) 4180999952164956 a001 32951280099/969323029*1860498^(1/3) 4180999952164956 a001 12586269025/370248451*1860498^(1/3) 4180999952164956 a001 1201881744/35355581*1860498^(1/3) 4180999952164957 a001 1836311903/54018521*1860498^(1/3) 4180999952164959 a001 1346269/141422324*7881196^(9/11) 4180999952164962 a001 1346269/33385282*7881196^(8/11) 4180999952164965 a001 701408733/20633239*1860498^(1/3) 4180999952164968 a001 7778742049/4870847*710647^(1/14) 4180999952164977 a001 14930352/4870847*1860498^(1/2) 4180999952164983 a001 433494437/7881196*1860498^(3/10) 4180999952164989 a001 1346269/12752043*312119004989^(2/5) 4180999952164989 a001 1346269/12752043*(1/2+1/2*5^(1/2))^22 4180999952164989 a001 5702887/3010349*(1/2+1/2*5^(1/2))^16 4180999952164989 a001 5702887/3010349*23725150497407^(1/4) 4180999952164989 a001 5702887/3010349*73681302247^(4/13) 4180999952164989 a001 5702887/3010349*10749957122^(1/3) 4180999952164989 a001 1346269/12752043*10749957122^(11/24) 4180999952164989 a001 5702887/3010349*4106118243^(8/23) 4180999952164989 a001 1346269/12752043*4106118243^(11/23) 4180999952164989 a001 7677619978603/1836311903 4180999952164989 a001 5702887/3010349*1568397607^(4/11) 4180999952164989 a001 1346269/12752043*1568397607^(1/2) 4180999952164989 a001 5702887/3010349*599074578^(8/21) 4180999952164989 a001 1346269/12752043*599074578^(11/21) 4180999952164989 a001 5702887/3010349*228826127^(2/5) 4180999952164989 a001 1346269/12752043*228826127^(11/20) 4180999952164989 a001 5702887/3010349*87403803^(8/19) 4180999952164989 a001 1346269/12752043*87403803^(11/19) 4180999952164989 a001 39088169/3010349*7881196^(4/11) 4180999952164990 a001 5702887/3010349*33385282^(4/9) 4180999952164991 a001 1346269/12752043*33385282^(11/18) 4180999952164992 a001 63245986/3010349*7881196^(1/3) 4180999952164993 a001 9227465/3010349*7881196^(5/11) 4180999952164996 a001 165580141/3010349*7881196^(3/11) 4180999952165001 a001 5702887/3010349*12752043^(8/17) 4180999952165002 a001 701408733/3010349*7881196^(2/11) 4180999952165004 a001 433494437/710647*271443^(2/13) 4180999952165004 a004 Fibonacci(31)*Lucas(35)/(1/2+sqrt(5)/2)^47 4180999952165005 a001 1346269/12752043*12752043^(11/17) 4180999952165006 a001 1346269/599074578*20633239^(6/7) 4180999952165006 a001 1346269/228826127*20633239^(4/5) 4180999952165007 a001 14930352/3010349*20633239^(2/5) 4180999952165008 a001 2971215073/3010349*7881196^(1/11) 4180999952165009 a001 1346269/54018521*20633239^(5/7) 4180999952165010 a001 165580141/12752043*1860498^(2/5) 4180999952165010 a001 1346269/33385282*141422324^(8/13) 4180999952165011 a001 1346269/33385282*2537720636^(8/15) 4180999952165011 a001 14930352/3010349*17393796001^(2/7) 4180999952165011 a001 1346269/33385282*45537549124^(8/17) 4180999952165011 a001 1346269/33385282*14662949395604^(8/21) 4180999952165011 a001 1346269/33385282*(1/2+1/2*5^(1/2))^24 4180999952165011 a001 14930352/3010349*14662949395604^(2/9) 4180999952165011 a001 14930352/3010349*(1/2+1/2*5^(1/2))^14 4180999952165011 a001 1346269/33385282*192900153618^(4/9) 4180999952165011 a001 1346269/33385282*73681302247^(6/13) 4180999952165011 a001 14930352/3010349*10749957122^(7/24) 4180999952165011 a001 1346269/33385282*10749957122^(1/2) 4180999952165011 a001 139585208727/33385604 4180999952165011 a001 14930352/3010349*4106118243^(7/23) 4180999952165011 a001 1346269/33385282*4106118243^(12/23) 4180999952165011 a001 14930352/3010349*1568397607^(7/22) 4180999952165011 a001 1346269/33385282*1568397607^(6/11) 4180999952165011 a001 14930352/3010349*599074578^(1/3) 4180999952165011 a001 1346269/33385282*599074578^(4/7) 4180999952165011 a001 14930352/3010349*228826127^(7/20) 4180999952165011 a001 1346269/33385282*228826127^(3/5) 4180999952165011 a001 14930352/3010349*87403803^(7/19) 4180999952165011 a001 1346269/33385282*87403803^(12/19) 4180999952165011 a001 102334155/3010349*20633239^(2/7) 4180999952165012 a001 14930352/3010349*33385282^(7/18) 4180999952165012 a001 433494437/3010349*20633239^(1/5) 4180999952165013 a004 Fibonacci(31)*Lucas(37)/(1/2+sqrt(5)/2)^49 4180999952165013 a001 1134903170/3010349*20633239^(1/7) 4180999952165013 a001 1346269/33385282*33385282^(2/3) 4180999952165014 a001 1346269/87403803*141422324^(2/3) 4180999952165014 a001 39088169/3010349*141422324^(4/13) 4180999952165014 a001 39088169/3010349*2537720636^(4/15) 4180999952165014 a001 39088169/3010349*45537549124^(4/17) 4180999952165014 a001 39088169/3010349*817138163596^(4/19) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^26/Lucas(38) 4180999952165014 a001 39088169/3010349*14662949395604^(4/21) 4180999952165014 a001 39088169/3010349*(1/2+1/2*5^(1/2))^12 4180999952165014 a001 39088169/3010349*192900153618^(2/9) 4180999952165014 a001 39088169/3010349*73681302247^(3/13) 4180999952165014 a001 1346269/87403803*73681302247^(1/2) 4180999952165014 a001 52623190191461/12586269025 4180999952165014 a001 39088169/3010349*10749957122^(1/4) 4180999952165014 a001 1346269/87403803*10749957122^(13/24) 4180999952165014 a001 39088169/3010349*4106118243^(6/23) 4180999952165014 a001 1346269/87403803*4106118243^(13/23) 4180999952165014 a001 39088169/3010349*1568397607^(3/11) 4180999952165014 a001 1346269/87403803*1568397607^(13/22) 4180999952165014 a001 39088169/3010349*599074578^(2/7) 4180999952165014 a001 1346269/87403803*599074578^(13/21) 4180999952165014 a001 39088169/3010349*228826127^(3/10) 4180999952165014 a001 1346269/87403803*228826127^(13/20) 4180999952165014 a001 39088169/3010349*87403803^(6/19) 4180999952165014 a004 Fibonacci(31)*Lucas(39)/(1/2+sqrt(5)/2)^51 4180999952165014 a001 1346269/10749957122*141422324^(12/13) 4180999952165014 a001 1346269/2537720636*141422324^(11/13) 4180999952165014 a001 1346269/87403803*87403803^(13/19) 4180999952165014 a001 1346269/599074578*141422324^(10/13) 4180999952165014 a001 102334155/3010349*2537720636^(2/9) 4180999952165014 a001 1346269/228826127*17393796001^(4/7) 4180999952165014 a001 102334155/3010349*312119004989^(2/11) 4180999952165014 a001 1346269/228826127*14662949395604^(4/9) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^28/Lucas(40) 4180999952165014 a001 102334155/3010349*(1/2+1/2*5^(1/2))^10 4180999952165014 a001 1346269/228826127*505019158607^(1/2) 4180999952165014 a001 1346269/228826127*73681302247^(7/13) 4180999952165014 a001 45923100172565/10983760033 4180999952165014 a001 102334155/3010349*28143753123^(1/5) 4180999952165014 a001 102334155/3010349*10749957122^(5/24) 4180999952165014 a001 1346269/228826127*10749957122^(7/12) 4180999952165014 a001 102334155/3010349*4106118243^(5/23) 4180999952165014 a001 1346269/228826127*4106118243^(14/23) 4180999952165014 a001 102334155/3010349*1568397607^(5/22) 4180999952165014 a001 1346269/228826127*1568397607^(7/11) 4180999952165014 a001 102334155/3010349*599074578^(5/21) 4180999952165014 a001 1346269/228826127*599074578^(2/3) 4180999952165014 a001 102334155/3010349*228826127^(1/4) 4180999952165014 a001 701408733/3010349*141422324^(2/13) 4180999952165014 a004 Fibonacci(31)*Lucas(41)/(1/2+sqrt(5)/2)^53 4180999952165014 a001 1346269/228826127*228826127^(7/10) 4180999952165014 a001 165580141/3010349*141422324^(3/13) 4180999952165014 a001 2971215073/3010349*141422324^(1/13) 4180999952165014 a001 1346269/599074578*2537720636^(2/3) 4180999952165014 a001 1346269/599074578*45537549124^(10/17) 4180999952165014 a001 1346269/599074578*312119004989^(6/11) 4180999952165014 a001 1346269/599074578*14662949395604^(10/21) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^30/Lucas(42) 4180999952165014 a001 267914296/3010349*(1/2+1/2*5^(1/2))^8 4180999952165014 a001 267914296/3010349*23725150497407^(1/8) 4180999952165014 a001 267914296/3010349*505019158607^(1/7) 4180999952165014 a001 1346269/599074578*192900153618^(5/9) 4180999952165014 a001 267914296/3010349*73681302247^(2/13) 4180999952165014 a001 1346269/599074578*28143753123^(3/5) 4180999952165014 a001 267914296/3010349*10749957122^(1/6) 4180999952165014 a001 1346269/599074578*10749957122^(5/8) 4180999952165014 a001 267914296/3010349*4106118243^(4/23) 4180999952165014 a001 1346269/599074578*4106118243^(15/23) 4180999952165014 a001 267914296/3010349*1568397607^(2/11) 4180999952165014 a001 1346269/599074578*1568397607^(15/22) 4180999952165014 a001 267914296/3010349*599074578^(4/21) 4180999952165014 a004 Fibonacci(31)*Lucas(43)/(1/2+sqrt(5)/2)^55 4180999952165014 a001 1346269/599074578*599074578^(5/7) 4180999952165014 a001 701408733/3010349*2537720636^(2/15) 4180999952165014 a001 701408733/3010349*45537549124^(2/17) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^32/Lucas(44) 4180999952165014 a001 1346269/1568397607*23725150497407^(1/2) 4180999952165014 a001 701408733/3010349*(1/2+1/2*5^(1/2))^6 4180999952165014 a001 1346269/1568397607*505019158607^(4/7) 4180999952165014 a001 1346269/1568397607*73681302247^(8/13) 4180999952165014 a001 701408733/3010349*10749957122^(1/8) 4180999952165014 a001 1346269/1568397607*10749957122^(2/3) 4180999952165014 a001 701408733/3010349*4106118243^(3/23) 4180999952165014 a001 1346269/1568397607*4106118243^(16/23) 4180999952165014 a001 701408733/3010349*1568397607^(3/22) 4180999952165014 a004 Fibonacci(31)*Lucas(45)/(1/2+sqrt(5)/2)^57 4180999952165014 a001 1346269/192900153618*2537720636^(14/15) 4180999952165014 a001 1346269/73681302247*2537720636^(8/9) 4180999952165014 a001 1346269/45537549124*2537720636^(13/15) 4180999952165014 a001 1346269/10749957122*2537720636^(4/5) 4180999952165014 a001 1346269/1568397607*1568397607^(8/11) 4180999952165014 a001 1346269/6643838879*2537720636^(7/9) 4180999952165014 a001 1346269/4106118243*45537549124^(2/3) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^34/Lucas(46) 4180999952165014 a001 1836311903/3010349*(1/2+1/2*5^(1/2))^4 4180999952165014 a001 1836311903/3010349*23725150497407^(1/16) 4180999952165014 a001 1836311903/3010349*73681302247^(1/13) 4180999952165014 a001 1836311903/3010349*10749957122^(1/12) 4180999952165014 a001 1836311903/3010349*4106118243^(2/23) 4180999952165014 a001 1346269/4106118243*10749957122^(17/24) 4180999952165014 a004 Fibonacci(31)*Lucas(47)/(1/2+sqrt(5)/2)^59 4180999952165014 a001 1836311903/3010349*1568397607^(1/11) 4180999952165014 a001 1346269/4106118243*4106118243^(17/23) 4180999952165014 a001 1346269/10749957122*45537549124^(12/17) 4180999952165014 a001 1346269/10749957122*14662949395604^(4/7) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^36/Lucas(48) 4180999952165014 a001 4807526976/3010349*(1/2+1/2*5^(1/2))^2 4180999952165014 a001 1346269/10749957122*505019158607^(9/14) 4180999952165014 a001 1346269/10749957122*192900153618^(2/3) 4180999952165014 a001 1346269/10749957122*73681302247^(9/13) 4180999952165014 a001 701408733/3010349*599074578^(1/7) 4180999952165014 a001 4807526976/3010349*10749957122^(1/24) 4180999952165014 a001 4807526976/3010349*4106118243^(1/23) 4180999952165014 a004 Fibonacci(31)*Lucas(49)/(1/2+sqrt(5)/2)^61 4180999952165014 a001 1346269/192900153618*17393796001^(6/7) 4180999952165014 a001 1346269/10749957122*10749957122^(3/4) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^38/Lucas(50) 4180999952165014 a001 12586269025/3010349 4180999952165014 a004 Fibonacci(31)*Lucas(51)/(1/2+sqrt(5)/2)^63 4180999952165014 a001 1346269/3461452808002*45537549124^(16/17) 4180999952165014 a001 1346269/192900153618*45537549124^(14/17) 4180999952165014 a001 1346269/817138163596*45537549124^(15/17) 4180999952165014 a001 1346269/73681302247*312119004989^(8/11) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^40/Lucas(52) 4180999952165014 a001 1346269/73681302247*23725150497407^(5/8) 4180999952165014 a004 Fibonacci(52)/Lucas(31)/(1/2+sqrt(5)/2)^2 4180999952165014 a004 Fibonacci(31)*Lucas(53)/(1/2+sqrt(5)/2)^65 4180999952165014 a001 1346269/73681302247*73681302247^(10/13) 4180999952165014 a001 1346269/192900153618*817138163596^(14/19) 4180999952165014 a001 1346269/192900153618*14662949395604^(2/3) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^42/Lucas(54) 4180999952165014 a004 Fibonacci(54)/Lucas(31)/(1/2+sqrt(5)/2)^4 4180999952165014 a001 1346269/192900153618*505019158607^(3/4) 4180999952165014 a001 1346269/505019158607*312119004989^(4/5) 4180999952165014 a004 Fibonacci(31)*Lucas(55)/(1/2+sqrt(5)/2)^67 4180999952165014 a001 1346269/817138163596*312119004989^(9/11) 4180999952165014 a001 1346269/192900153618*192900153618^(7/9) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^44/Lucas(56) 4180999952165014 a004 Fibonacci(56)/Lucas(31)/(1/2+sqrt(5)/2)^6 4180999952165014 a004 Fibonacci(31)*Lucas(57)/(1/2+sqrt(5)/2)^69 4180999952165014 a001 1346269/14662949395604*817138163596^(17/19) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^46/Lucas(58) 4180999952165014 a004 Fibonacci(58)/Lucas(31)/(1/2+sqrt(5)/2)^8 4180999952165014 a004 Fibonacci(31)*Lucas(59)/(1/2+sqrt(5)/2)^71 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^48/Lucas(60) 4180999952165014 a004 Fibonacci(60)/Lucas(31)/(1/2+sqrt(5)/2)^10 4180999952165014 a004 Fibonacci(31)*Lucas(61)/(1/2+sqrt(5)/2)^73 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^50/Lucas(62) 4180999952165014 a004 Fibonacci(31)*Lucas(63)/(1/2+sqrt(5)/2)^75 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^52/Lucas(64) 4180999952165014 a004 Fibonacci(31)*Lucas(65)/(1/2+sqrt(5)/2)^77 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^54/Lucas(66) 4180999952165014 a004 Fibonacci(31)*Lucas(67)/(1/2+sqrt(5)/2)^79 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^56/Lucas(68) 4180999952165014 a004 Fibonacci(31)*Lucas(69)/(1/2+sqrt(5)/2)^81 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^58/Lucas(70) 4180999952165014 a004 Fibonacci(31)*Lucas(71)/(1/2+sqrt(5)/2)^83 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^60/Lucas(72) 4180999952165014 a004 Fibonacci(31)*Lucas(73)/(1/2+sqrt(5)/2)^85 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^62/Lucas(74) 4180999952165014 a004 Fibonacci(31)*Lucas(75)/(1/2+sqrt(5)/2)^87 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^64/Lucas(76) 4180999952165014 a004 Fibonacci(31)*Lucas(77)/(1/2+sqrt(5)/2)^89 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^66/Lucas(78) 4180999952165014 a004 Fibonacci(31)*Lucas(79)/(1/2+sqrt(5)/2)^91 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^68/Lucas(80) 4180999952165014 a004 Fibonacci(31)*Lucas(81)/(1/2+sqrt(5)/2)^93 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^70/Lucas(82) 4180999952165014 a004 Fibonacci(31)*Lucas(83)/(1/2+sqrt(5)/2)^95 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^72/Lucas(84) 4180999952165014 a004 Fibonacci(31)*Lucas(85)/(1/2+sqrt(5)/2)^97 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^74/Lucas(86) 4180999952165014 a004 Fibonacci(31)*Lucas(87)/(1/2+sqrt(5)/2)^99 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^76/Lucas(88) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^78/Lucas(90) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^80/Lucas(92) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^82/Lucas(94) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^84/Lucas(96) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^86/Lucas(98) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^87/Lucas(99) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^88/Lucas(100) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^85/Lucas(97) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^83/Lucas(95) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^81/Lucas(93) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^79/Lucas(91) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^77/Lucas(89) 4180999952165014 a004 Fibonacci(31)*Lucas(88)/(1/2+sqrt(5)/2)^100 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^75/Lucas(87) 4180999952165014 a004 Fibonacci(31)*Lucas(86)/(1/2+sqrt(5)/2)^98 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^73/Lucas(85) 4180999952165014 a004 Fibonacci(31)*Lucas(84)/(1/2+sqrt(5)/2)^96 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^71/Lucas(83) 4180999952165014 a004 Fibonacci(31)*Lucas(82)/(1/2+sqrt(5)/2)^94 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^69/Lucas(81) 4180999952165014 a004 Fibonacci(31)*Lucas(80)/(1/2+sqrt(5)/2)^92 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^67/Lucas(79) 4180999952165014 a004 Fibonacci(31)*Lucas(78)/(1/2+sqrt(5)/2)^90 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^65/Lucas(77) 4180999952165014 a004 Fibonacci(31)*Lucas(76)/(1/2+sqrt(5)/2)^88 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^63/Lucas(75) 4180999952165014 a004 Fibonacci(31)*Lucas(74)/(1/2+sqrt(5)/2)^86 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^61/Lucas(73) 4180999952165014 a004 Fibonacci(31)*Lucas(72)/(1/2+sqrt(5)/2)^84 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^59/Lucas(71) 4180999952165014 a004 Fibonacci(31)*Lucas(70)/(1/2+sqrt(5)/2)^82 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^57/Lucas(69) 4180999952165014 a004 Fibonacci(31)*Lucas(68)/(1/2+sqrt(5)/2)^80 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^55/Lucas(67) 4180999952165014 a004 Fibonacci(31)*Lucas(66)/(1/2+sqrt(5)/2)^78 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^53/Lucas(65) 4180999952165014 a001 1346269/14662949395604*14662949395604^(17/21) 4180999952165014 a004 Fibonacci(31)*Lucas(64)/(1/2+sqrt(5)/2)^76 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^51/Lucas(63) 4180999952165014 a004 Fibonacci(64)/Lucas(31)/(1/2+sqrt(5)/2)^14 4180999952165014 a004 Fibonacci(66)/Lucas(31)/(1/2+sqrt(5)/2)^16 4180999952165014 a004 Fibonacci(68)/Lucas(31)/(1/2+sqrt(5)/2)^18 4180999952165014 a004 Fibonacci(70)/Lucas(31)/(1/2+sqrt(5)/2)^20 4180999952165014 a004 Fibonacci(72)/Lucas(31)/(1/2+sqrt(5)/2)^22 4180999952165014 a004 Fibonacci(74)/Lucas(31)/(1/2+sqrt(5)/2)^24 4180999952165014 a004 Fibonacci(76)/Lucas(31)/(1/2+sqrt(5)/2)^26 4180999952165014 a004 Fibonacci(78)/Lucas(31)/(1/2+sqrt(5)/2)^28 4180999952165014 a004 Fibonacci(80)/Lucas(31)/(1/2+sqrt(5)/2)^30 4180999952165014 a004 Fibonacci(82)/Lucas(31)/(1/2+sqrt(5)/2)^32 4180999952165014 a004 Fibonacci(84)/Lucas(31)/(1/2+sqrt(5)/2)^34 4180999952165014 a004 Fibonacci(86)/Lucas(31)/(1/2+sqrt(5)/2)^36 4180999952165014 a004 Fibonacci(88)/Lucas(31)/(1/2+sqrt(5)/2)^38 4180999952165014 a004 Fibonacci(90)/Lucas(31)/(1/2+sqrt(5)/2)^40 4180999952165014 a004 Fibonacci(92)/Lucas(31)/(1/2+sqrt(5)/2)^42 4180999952165014 a004 Fibonacci(94)/Lucas(31)/(1/2+sqrt(5)/2)^44 4180999952165014 a004 Fibonacci(96)/Lucas(31)/(1/2+sqrt(5)/2)^46 4180999952165014 a004 Fibonacci(98)/Lucas(31)/(1/2+sqrt(5)/2)^48 4180999952165014 a004 Fibonacci(100)/Lucas(31)/(1/2+sqrt(5)/2)^50 4180999952165014 a004 Fibonacci(31)*Lucas(62)/(1/2+sqrt(5)/2)^74 4180999952165014 a004 Fibonacci(99)/Lucas(31)/(1/2+sqrt(5)/2)^49 4180999952165014 a004 Fibonacci(97)/Lucas(31)/(1/2+sqrt(5)/2)^47 4180999952165014 a004 Fibonacci(95)/Lucas(31)/(1/2+sqrt(5)/2)^45 4180999952165014 a004 Fibonacci(93)/Lucas(31)/(1/2+sqrt(5)/2)^43 4180999952165014 a004 Fibonacci(91)/Lucas(31)/(1/2+sqrt(5)/2)^41 4180999952165014 a004 Fibonacci(89)/Lucas(31)/(1/2+sqrt(5)/2)^39 4180999952165014 a004 Fibonacci(87)/Lucas(31)/(1/2+sqrt(5)/2)^37 4180999952165014 a004 Fibonacci(85)/Lucas(31)/(1/2+sqrt(5)/2)^35 4180999952165014 a004 Fibonacci(83)/Lucas(31)/(1/2+sqrt(5)/2)^33 4180999952165014 a004 Fibonacci(81)/Lucas(31)/(1/2+sqrt(5)/2)^31 4180999952165014 a004 Fibonacci(79)/Lucas(31)/(1/2+sqrt(5)/2)^29 4180999952165014 a004 Fibonacci(77)/Lucas(31)/(1/2+sqrt(5)/2)^27 4180999952165014 a004 Fibonacci(75)/Lucas(31)/(1/2+sqrt(5)/2)^25 4180999952165014 a004 Fibonacci(73)/Lucas(31)/(1/2+sqrt(5)/2)^23 4180999952165014 a004 Fibonacci(71)/Lucas(31)/(1/2+sqrt(5)/2)^21 4180999952165014 a004 Fibonacci(69)/Lucas(31)/(1/2+sqrt(5)/2)^19 4180999952165014 a004 Fibonacci(67)/Lucas(31)/(1/2+sqrt(5)/2)^17 4180999952165014 a004 Fibonacci(65)/Lucas(31)/(1/2+sqrt(5)/2)^15 4180999952165014 a004 Fibonacci(63)/Lucas(31)/(1/2+sqrt(5)/2)^13 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^49/Lucas(61) 4180999952165014 a004 Fibonacci(61)/Lucas(31)/(1/2+sqrt(5)/2)^11 4180999952165014 a004 Fibonacci(31)*Lucas(60)/(1/2+sqrt(5)/2)^72 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^47/Lucas(59) 4180999952165014 a004 Fibonacci(59)/Lucas(31)/(1/2+sqrt(5)/2)^9 4180999952165014 a004 Fibonacci(31)*Lucas(58)/(1/2+sqrt(5)/2)^70 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^45/Lucas(57) 4180999952165014 a004 Fibonacci(57)/Lucas(31)/(1/2+sqrt(5)/2)^7 4180999952165014 a001 1346269/5600748293801*505019158607^(7/8) 4180999952165014 a004 Fibonacci(31)*Lucas(56)/(1/2+sqrt(5)/2)^68 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^43/Lucas(55) 4180999952165014 a004 Fibonacci(55)/Lucas(31)/(1/2+sqrt(5)/2)^5 4180999952165014 a001 1346269/3461452808002*192900153618^(8/9) 4180999952165014 a001 1346269/817138163596*192900153618^(5/6) 4180999952165014 a001 1346269/14662949395604*192900153618^(17/18) 4180999952165014 a004 Fibonacci(31)*Lucas(54)/(1/2+sqrt(5)/2)^66 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^41/Lucas(53) 4180999952165014 a004 Fibonacci(53)/Lucas(31)/(1/2+sqrt(5)/2)^3 4180999952165014 a001 1346269/45537549124*45537549124^(13/17) 4180999952165014 a001 1346269/505019158607*73681302247^(11/13) 4180999952165014 a001 1346269/3461452808002*73681302247^(12/13) 4180999952165014 a004 Fibonacci(31)*Lucas(52)/(1/2+sqrt(5)/2)^64 4180999952165014 a001 13708391546791453/3278735159921 4180999952165014 a001 1346269/45537549124*14662949395604^(13/21) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^39/Lucas(51) 4180999952165014 a004 Fibonacci(51)/Lucas(31)/(1/2+sqrt(5)/2) 4180999952165014 a001 1346269/45537549124*192900153618^(13/18) 4180999952165014 a001 1346269/45537549124*73681302247^(3/4) 4180999952165014 a001 1346269/73681302247*28143753123^(4/5) 4180999952165014 a001 1346269/817138163596*28143753123^(9/10) 4180999952165014 a004 Fibonacci(31)*Lucas(50)/(1/2+sqrt(5)/2)^62 4180999952165014 a001 10472279279565181/2504730781961 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^37/Lucas(49) 4180999952165014 a001 7778742049/6020698+7778742049/6020698*5^(1/2) 4180999952165014 a001 1346269/28143753123*10749957122^(19/24) 4180999952165014 a001 1346269/73681302247*10749957122^(5/6) 4180999952165014 a001 1346269/45537549124*10749957122^(13/16) 4180999952165014 a001 1346269/192900153618*10749957122^(7/8) 4180999952165014 a001 1346269/505019158607*10749957122^(11/12) 4180999952165014 a001 1346269/817138163596*10749957122^(15/16) 4180999952165014 a001 1346269/1322157322203*10749957122^(23/24) 4180999952165014 a004 Fibonacci(31)*Lucas(48)/(1/2+sqrt(5)/2)^60 4180999952165014 a001 4807526976/3010349*1568397607^(1/22) 4180999952165014 a001 2971215073/3010349*2537720636^(1/15) 4180999952165014 a001 1346269/6643838879*17393796001^(5/7) 4180999952165014 a001 2971215073/3010349*45537549124^(1/17) 4180999952165014 a001 1346269/6643838879*312119004989^(7/11) 4180999952165014 a001 1346269/6643838879*14662949395604^(5/9) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^35/Lucas(47) 4180999952165014 a001 2971215073/3010349*14662949395604^(1/21) 4180999952165014 a001 2971215073/3010349*(1/2+1/2*5^(1/2))^3 4180999952165014 a001 1346269/6643838879*505019158607^(5/8) 4180999952165014 a001 2971215073/3010349*10749957122^(1/16) 4180999952165014 a001 1346269/6643838879*28143753123^(7/10) 4180999952165014 a001 1346269/10749957122*4106118243^(18/23) 4180999952165014 a001 1346269/2537720636*2537720636^(11/15) 4180999952165014 a001 1346269/28143753123*4106118243^(19/23) 4180999952165014 a001 1346269/73681302247*4106118243^(20/23) 4180999952165014 a001 1346269/192900153618*4106118243^(21/23) 4180999952165014 a001 1346269/505019158607*4106118243^(22/23) 4180999952165014 a004 Fibonacci(31)*Lucas(46)/(1/2+sqrt(5)/2)^58 4180999952165014 a001 4807526976/3010349*599074578^(1/21) 4180999952165014 a001 1134903170/3010349*2537720636^(1/9) 4180999952165014 a001 1346269/2537720636*45537549124^(11/17) 4180999952165014 a001 1346269/2537720636*312119004989^(3/5) 4180999952165014 a001 1134903170/3010349*312119004989^(1/11) 4180999952165014 a001 1346269/2537720636*14662949395604^(11/21) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^33/Lucas(45) 4180999952165014 a001 1134903170/3010349*(1/2+1/2*5^(1/2))^5 4180999952165014 a001 1346269/2537720636*192900153618^(11/18) 4180999952165014 a001 1134903170/3010349*28143753123^(1/10) 4180999952165014 a001 1346269/2537720636*10749957122^(11/16) 4180999952165014 a001 1836311903/3010349*599074578^(2/21) 4180999952165014 a001 2971215073/3010349*599074578^(1/14) 4180999952165014 a001 1346269/4106118243*1568397607^(17/22) 4180999952165014 a001 1346269/10749957122*1568397607^(9/11) 4180999952165014 a001 1346269/28143753123*1568397607^(19/22) 4180999952165014 a001 1346269/73681302247*1568397607^(10/11) 4180999952165014 a001 1346269/192900153618*1568397607^(21/22) 4180999952165014 a004 Fibonacci(31)*Lucas(44)/(1/2+sqrt(5)/2)^56 4180999952165014 a001 1346269/2537720636*1568397607^(3/4) 4180999952165014 a001 4807526976/3010349*228826127^(1/20) 4180999952165014 a001 267914296/3010349*228826127^(1/5) 4180999952165014 a001 433494437/3010349*17393796001^(1/7) 4180999952165014 a001 583600122205553/139583862445 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^31/Lucas(43) 4180999952165014 a001 1346269/969323029*9062201101803^(1/2) 4180999952165014 a001 433494437/3010349*14662949395604^(1/9) 4180999952165014 a001 433494437/3010349*(1/2+1/2*5^(1/2))^7 4180999952165014 a001 433494437/3010349*599074578^(1/6) 4180999952165014 a001 1346269/1568397607*599074578^(16/21) 4180999952165014 a001 1836311903/3010349*228826127^(1/10) 4180999952165014 a001 1346269/4106118243*599074578^(17/21) 4180999952165014 a001 1346269/2537720636*599074578^(11/14) 4180999952165014 a001 1346269/6643838879*599074578^(5/6) 4180999952165014 a001 1346269/10749957122*599074578^(6/7) 4180999952165014 a001 701408733/3010349*228826127^(3/20) 4180999952165014 a001 1346269/28143753123*599074578^(19/21) 4180999952165014 a001 1134903170/3010349*228826127^(1/8) 4180999952165014 a001 1346269/45537549124*599074578^(13/14) 4180999952165014 a001 1346269/73681302247*599074578^(20/21) 4180999952165014 a004 Fibonacci(31)*Lucas(42)/(1/2+sqrt(5)/2)^54 4180999952165014 a001 4807526976/3010349*87403803^(1/19) 4180999952165014 a001 165580141/3010349*2537720636^(1/5) 4180999952165014 a001 165580141/3010349*45537549124^(3/17) 4180999952165014 a001 222915410843929/53316291173 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^29/Lucas(41) 4180999952165014 a001 165580141/3010349*14662949395604^(1/7) 4180999952165014 a001 165580141/3010349*(1/2+1/2*5^(1/2))^9 4180999952165014 a001 1346269/370248451*1322157322203^(1/2) 4180999952165014 a001 165580141/3010349*192900153618^(1/6) 4180999952165014 a001 165580141/3010349*10749957122^(3/16) 4180999952165014 a001 165580141/3010349*599074578^(3/14) 4180999952165014 a001 1346269/599074578*228826127^(3/4) 4180999952165014 a001 1836311903/3010349*87403803^(2/19) 4180999952165014 a001 1346269/1568397607*228826127^(4/5) 4180999952165014 a001 102334155/3010349*87403803^(5/19) 4180999952165014 a001 1346269/141422324*141422324^(9/13) 4180999952165014 a001 1346269/4106118243*228826127^(17/20) 4180999952165014 a001 1346269/6643838879*228826127^(7/8) 4180999952165014 a001 1346269/10749957122*228826127^(9/10) 4180999952165014 a001 1346269/28143753123*228826127^(19/20) 4180999952165014 a004 Fibonacci(31)*Lucas(40)/(1/2+sqrt(5)/2)^52 4180999952165014 a001 701408733/3010349*87403803^(3/19) 4180999952165014 a001 267914296/3010349*87403803^(4/19) 4180999952165014 a001 4807526976/3010349*33385282^(1/18) 4180999952165014 a001 1346269/141422324*2537720636^(3/5) 4180999952165014 a001 42573055163117/10182505537 4180999952165014 a001 1346269/141422324*45537549124^(9/17) 4180999952165014 a001 1346269/141422324*817138163596^(9/19) 4180999952165014 a001 1346269/141422324*14662949395604^(3/7) 4180999952165014 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^27/Lucas(39) 4180999952165014 a001 63245986/3010349*(1/2+1/2*5^(1/2))^11 4180999952165014 a001 1346269/141422324*192900153618^(1/2) 4180999952165014 a001 1346269/141422324*10749957122^(9/16) 4180999952165014 a001 63245986/3010349*1568397607^(1/4) 4180999952165014 a001 1346269/141422324*599074578^(9/14) 4180999952165015 a001 2971215073/3010349*33385282^(1/12) 4180999952165015 a001 1346269/228826127*87403803^(14/19) 4180999952165015 a001 1836311903/3010349*33385282^(1/9) 4180999952165015 a001 1346269/599074578*87403803^(15/19) 4180999952165015 a001 1346269/1568397607*87403803^(16/19) 4180999952165015 a001 1346269/4106118243*87403803^(17/19) 4180999952165015 a001 1346269/10749957122*87403803^(18/19) 4180999952165015 a004 Fibonacci(31)*Lucas(38)/(1/2+sqrt(5)/2)^50 4180999952165015 a001 701408733/3010349*33385282^(1/6) 4180999952165015 a001 39088169/3010349*33385282^(1/3) 4180999952165015 a001 267914296/3010349*33385282^(2/9) 4180999952165015 a001 102334155/3010349*33385282^(5/18) 4180999952165015 a001 165580141/3010349*33385282^(1/4) 4180999952165016 a001 24157817/3010349*141422324^(1/3) 4180999952165016 a001 1346269/54018521*2537720636^(5/9) 4180999952165016 a001 32522920134773/7778742049 4180999952165016 a001 1346269/54018521*312119004989^(5/11) 4180999952165016 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^25/Lucas(37) 4180999952165016 a001 24157817/3010349*(1/2+1/2*5^(1/2))^13 4180999952165016 a001 1346269/54018521*3461452808002^(5/12) 4180999952165016 a001 24157817/3010349*73681302247^(1/4) 4180999952165016 a001 1346269/54018521*28143753123^(1/2) 4180999952165016 a001 1346269/54018521*228826127^(5/8) 4180999952165016 a001 4807526976/3010349*12752043^(1/17) 4180999952165016 a001 1346269/87403803*33385282^(13/18) 4180999952165017 a001 1346269/228826127*33385282^(7/9) 4180999952165017 a001 1346269/141422324*33385282^(3/4) 4180999952165017 a001 1836311903/3010349*12752043^(2/17) 4180999952165017 a001 1346269/599074578*33385282^(5/6) 4180999952165018 a001 1346269/1568397607*33385282^(8/9) 4180999952165018 a001 1346269/2537720636*33385282^(11/12) 4180999952165018 a001 1346269/4106118243*33385282^(17/18) 4180999952165018 a004 Fibonacci(31)*Lucas(36)/(1/2+sqrt(5)/2)^48 4180999952165019 a001 701408733/3010349*12752043^(3/17) 4180999952165020 a001 9227465/3010349*20633239^(3/7) 4180999952165020 a001 267914296/3010349*12752043^(4/17) 4180999952165021 a001 14930352/3010349*12752043^(7/17) 4180999952165022 a001 102334155/3010349*12752043^(5/17) 4180999952165023 a001 39088169/3010349*12752043^(6/17) 4180999952165023 a001 66978574/1970299*1860498^(1/3) 4180999952165024 a001 9227465/3010349*141422324^(5/13) 4180999952165024 a001 9227465/3010349*2537720636^(1/3) 4180999952165024 a001 12422650078085/2971215073 4180999952165024 a001 9227465/3010349*45537549124^(5/17) 4180999952165024 a001 9227465/3010349*312119004989^(3/11) 4180999952165024 a001 1346269/20633239*(1/2+1/2*5^(1/2))^23 4180999952165024 a001 9227465/3010349*14662949395604^(5/21) 4180999952165024 a001 9227465/3010349*(1/2+1/2*5^(1/2))^15 4180999952165024 a001 9227465/3010349*192900153618^(5/18) 4180999952165024 a001 9227465/3010349*28143753123^(3/10) 4180999952165024 a001 9227465/3010349*10749957122^(5/16) 4180999952165024 a001 1346269/20633239*4106118243^(1/2) 4180999952165024 a001 9227465/3010349*599074578^(5/14) 4180999952165024 a001 9227465/3010349*228826127^(3/8) 4180999952165025 a001 4807526976/3010349*4870847^(1/16) 4180999952165026 a001 9227465/3010349*33385282^(5/12) 4180999952165029 a001 1346269/33385282*12752043^(12/17) 4180999952165031 a001 9227465/4870847*1860498^(8/15) 4180999952165032 a001 433494437/33385282*1860498^(2/5) 4180999952165033 a001 1346269/87403803*12752043^(13/17) 4180999952165035 a001 1346269/228826127*12752043^(14/17) 4180999952165035 a001 1134903170/87403803*1860498^(2/5) 4180999952165036 a001 2971215073/228826127*1860498^(2/5) 4180999952165036 a001 7778742049/599074578*1860498^(2/5) 4180999952165036 a001 20365011074/1568397607*1860498^(2/5) 4180999952165036 a001 53316291173/4106118243*1860498^(2/5) 4180999952165036 a001 139583862445/10749957122*1860498^(2/5) 4180999952165036 a001 365435296162/28143753123*1860498^(2/5) 4180999952165036 a001 956722026041/73681302247*1860498^(2/5) 4180999952165036 a001 2504730781961/192900153618*1860498^(2/5) 4180999952165036 a001 10610209857723/817138163596*1860498^(2/5) 4180999952165036 a001 4052739537881/312119004989*1860498^(2/5) 4180999952165036 a001 1548008755920/119218851371*1860498^(2/5) 4180999952165036 a001 591286729879/45537549124*1860498^(2/5) 4180999952165036 a001 7787980473/599786069*1860498^(2/5) 4180999952165036 a001 86267571272/6643838879*1860498^(2/5) 4180999952165036 a001 32951280099/2537720636*1860498^(2/5) 4180999952165036 a001 12586269025/969323029*1860498^(2/5) 4180999952165036 a001 4807526976/370248451*1860498^(2/5) 4180999952165036 a001 1836311903/141422324*1860498^(2/5) 4180999952165036 a001 1836311903/3010349*4870847^(1/8) 4180999952165037 a001 1346269/599074578*12752043^(15/17) 4180999952165037 a001 701408733/54018521*1860498^(2/5) 4180999952165038 a001 1346269/1568397607*12752043^(16/17) 4180999952165039 a001 1346269/7881196*7881196^(7/11) 4180999952165040 a004 Fibonacci(31)*Lucas(34)/(1/2+sqrt(5)/2)^46 4180999952165046 a001 9238424/711491*1860498^(2/5) 4180999952165047 a001 701408733/3010349*4870847^(3/16) 4180999952165058 a001 267914296/3010349*4870847^(1/4) 4180999952165069 a001 102334155/3010349*4870847^(5/16) 4180999952165076 a001 1346269/7881196*20633239^(3/5) 4180999952165077 a001 5702887/3010349*4870847^(1/2) 4180999952165080 a001 39088169/3010349*4870847^(3/8) 4180999952165081 a001 1346269/7881196*141422324^(7/13) 4180999952165082 a001 2372515049741/567451585 4180999952165082 a001 1346269/7881196*2537720636^(7/15) 4180999952165082 a001 1346269/7881196*17393796001^(3/7) 4180999952165082 a001 1346269/7881196*45537549124^(7/17) 4180999952165082 a001 3524578/3010349*45537549124^(1/3) 4180999952165082 a001 1346269/7881196*14662949395604^(1/3) 4180999952165082 a001 1346269/7881196*(1/2+1/2*5^(1/2))^21 4180999952165082 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^21/Lucas(33) 4180999952165082 a001 3524578/3010349*(1/2+1/2*5^(1/2))^17 4180999952165082 a001 1346269/7881196*192900153618^(7/18) 4180999952165082 a001 1346269/7881196*10749957122^(7/16) 4180999952165082 a001 1346269/7881196*599074578^(1/2) 4180999952165084 a001 1346269/7881196*33385282^(7/12) 4180999952165088 a001 14930352/3010349*4870847^(7/16) 4180999952165091 a001 63245986/12752043*1860498^(7/15) 4180999952165094 a001 3524578/3010349*12752043^(1/2) 4180999952165095 a001 4807526976/3010349*1860498^(1/15) 4180999952165103 a001 102334155/7881196*1860498^(2/5) 4180999952165110 a001 1346269/12752043*4870847^(11/16) 4180999952165113 a001 165580141/33385282*1860498^(7/15) 4180999952165116 a001 433494437/87403803*1860498^(7/15) 4180999952165116 a001 1134903170/228826127*1860498^(7/15) 4180999952165117 a001 2971215073/599074578*1860498^(7/15) 4180999952165117 a001 7778742049/1568397607*1860498^(7/15) 4180999952165117 a001 20365011074/4106118243*1860498^(7/15) 4180999952165117 a001 53316291173/10749957122*1860498^(7/15) 4180999952165117 a001 139583862445/28143753123*1860498^(7/15) 4180999952165117 a001 365435296162/73681302247*1860498^(7/15) 4180999952165117 a001 956722026041/192900153618*1860498^(7/15) 4180999952165117 a001 2504730781961/505019158607*1860498^(7/15) 4180999952165117 a001 10610209857723/2139295485799*1860498^(7/15) 4180999952165117 a001 4052739537881/817138163596*1860498^(7/15) 4180999952165117 a001 140728068720/28374454999*1860498^(7/15) 4180999952165117 a001 591286729879/119218851371*1860498^(7/15) 4180999952165117 a001 225851433717/45537549124*1860498^(7/15) 4180999952165117 a001 86267571272/17393796001*1860498^(7/15) 4180999952165117 a001 32951280099/6643838879*1860498^(7/15) 4180999952165117 a001 1144206275/230701876*1860498^(7/15) 4180999952165117 a001 4807526976/969323029*1860498^(7/15) 4180999952165117 a001 1836311903/370248451*1860498^(7/15) 4180999952165117 a001 701408733/141422324*1860498^(7/15) 4180999952165118 a001 267914296/54018521*1860498^(7/15) 4180999952165119 a001 20365011074/12752043*710647^(1/14) 4180999952165119 a001 433494437/1860498*710647^(3/14) 4180999952165126 a001 9303105/1875749*1860498^(7/15) 4180999952165131 a001 39088169/12752043*1860498^(1/2) 4180999952165135 a001 2971215073/3010349*1860498^(1/10) 4180999952165140 a001 53316291173/33385282*710647^(1/14) 4180999952165143 a001 1346269/33385282*4870847^(3/4) 4180999952165144 a001 139583862445/87403803*710647^(1/14) 4180999952165144 a001 365435296162/228826127*710647^(1/14) 4180999952165144 a001 956722026041/599074578*710647^(1/14) 4180999952165144 a001 2504730781961/1568397607*710647^(1/14) 4180999952165144 a001 6557470319842/4106118243*710647^(1/14) 4180999952165144 a001 10610209857723/6643838879*710647^(1/14) 4180999952165144 a001 4052739537881/2537720636*710647^(1/14) 4180999952165144 a001 1548008755920/969323029*710647^(1/14) 4180999952165144 a001 591286729879/370248451*710647^(1/14) 4180999952165144 a001 225851433717/141422324*710647^(1/14) 4180999952165146 a001 86267571272/54018521*710647^(1/14) 4180999952165153 a001 14619165/4769326*1860498^(1/2) 4180999952165154 a001 32951280099/20633239*710647^(1/14) 4180999952165156 a001 267914296/87403803*1860498^(1/2) 4180999952165157 a001 701408733/228826127*1860498^(1/2) 4180999952165157 a001 1836311903/599074578*1860498^(1/2) 4180999952165157 a001 686789568/224056801*1860498^(1/2) 4180999952165157 a001 12586269025/4106118243*1860498^(1/2) 4180999952165157 a001 32951280099/10749957122*1860498^(1/2) 4180999952165157 a001 86267571272/28143753123*1860498^(1/2) 4180999952165157 a001 32264490531/10525900321*1860498^(1/2) 4180999952165157 a001 591286729879/192900153618*1860498^(1/2) 4180999952165157 a001 1548008755920/505019158607*1860498^(1/2) 4180999952165157 a001 1515744265389/494493258286*1860498^(1/2) 4180999952165157 a001 2504730781961/817138163596*1860498^(1/2) 4180999952165157 a001 956722026041/312119004989*1860498^(1/2) 4180999952165157 a001 365435296162/119218851371*1860498^(1/2) 4180999952165157 a001 139583862445/45537549124*1860498^(1/2) 4180999952165157 a001 53316291173/17393796001*1860498^(1/2) 4180999952165157 a001 20365011074/6643838879*1860498^(1/2) 4180999952165157 a001 7778742049/2537720636*1860498^(1/2) 4180999952165157 a001 2971215073/969323029*1860498^(1/2) 4180999952165157 a001 1134903170/370248451*1860498^(1/2) 4180999952165157 a001 1346269/87403803*4870847^(13/16) 4180999952165157 a001 433494437/141422324*1860498^(1/2) 4180999952165158 a001 165580141/54018521*1860498^(1/2) 4180999952165167 a001 63245986/20633239*1860498^(1/2) 4180999952165168 a001 1346269/228826127*4870847^(7/8) 4180999952165169 a001 3524578/4870847*1860498^(3/5) 4180999952165173 a001 24157817/12752043*1860498^(8/15) 4180999952165175 a001 1836311903/3010349*1860498^(2/15) 4180999952165179 a001 1346269/599074578*4870847^(15/16) 4180999952165183 a001 39088169/7881196*1860498^(7/15) 4180999952165190 a004 Fibonacci(31)*Lucas(32)/(1/2+sqrt(5)/2)^44 4180999952165194 a001 31622993/16692641*1860498^(8/15) 4180999952165196 a001 726103/4250681*1860498^(7/10) 4180999952165197 a001 165580141/87403803*1860498^(8/15) 4180999952165197 a001 433494437/228826127*1860498^(8/15) 4180999952165197 a001 567451585/299537289*1860498^(8/15) 4180999952165197 a001 2971215073/1568397607*1860498^(8/15) 4180999952165197 a001 7778742049/4106118243*1860498^(8/15) 4180999952165197 a001 10182505537/5374978561*1860498^(8/15) 4180999952165197 a001 53316291173/28143753123*1860498^(8/15) 4180999952165197 a001 139583862445/73681302247*1860498^(8/15) 4180999952165197 a001 182717648081/96450076809*1860498^(8/15) 4180999952165197 a001 956722026041/505019158607*1860498^(8/15) 4180999952165197 a001 10610209857723/5600748293801*1860498^(8/15) 4180999952165197 a001 591286729879/312119004989*1860498^(8/15) 4180999952165197 a001 225851433717/119218851371*1860498^(8/15) 4180999952165197 a001 21566892818/11384387281*1860498^(8/15) 4180999952165197 a001 32951280099/17393796001*1860498^(8/15) 4180999952165197 a001 12586269025/6643838879*1860498^(8/15) 4180999952165197 a001 1201881744/634430159*1860498^(8/15) 4180999952165197 a001 1836311903/969323029*1860498^(8/15) 4180999952165197 a001 701408733/370248451*1860498^(8/15) 4180999952165197 a001 66978574/35355581*1860498^(8/15) 4180999952165198 a001 102334155/54018521*1860498^(8/15) 4180999952165206 a001 39088169/20633239*1860498^(8/15) 4180999952165212 a001 12586269025/7881196*710647^(1/14) 4180999952165216 a001 1134903170/3010349*1860498^(1/6) 4180999952165226 a001 24157817/7881196*1860498^(1/2) 4180999952165249 a001 2178309/7881196*1860498^(2/3) 4180999952165256 a001 701408733/3010349*1860498^(1/5) 4180999952165261 a001 3732588/1970299*1860498^(8/15) 4180999952165262 a001 9227465/12752043*1860498^(3/5) 4180999952165272 a001 2178309/20633239*1860498^(11/15) 4180999952165275 a001 24157817/33385282*1860498^(3/5) 4180999952165277 a001 63245986/87403803*1860498^(3/5) 4180999952165278 a001 165580141/228826127*1860498^(3/5) 4180999952165278 a001 433494437/599074578*1860498^(3/5) 4180999952165278 a001 1134903170/1568397607*1860498^(3/5) 4180999952165278 a001 2971215073/4106118243*1860498^(3/5) 4180999952165278 a001 7778742049/10749957122*1860498^(3/5) 4180999952165278 a001 20365011074/28143753123*1860498^(3/5) 4180999952165278 a001 53316291173/73681302247*1860498^(3/5) 4180999952165278 a001 139583862445/192900153618*1860498^(3/5) 4180999952165278 a001 365435296162/505019158607*1860498^(3/5) 4180999952165278 a001 10610209857723/14662949395604*1860498^(3/5) 4180999952165278 a001 591286729879/817138163596*1860498^(3/5) 4180999952165278 a001 225851433717/312119004989*1860498^(3/5) 4180999952165278 a001 86267571272/119218851371*1860498^(3/5) 4180999952165278 a001 32951280099/45537549124*1860498^(3/5) 4180999952165278 a001 12586269025/17393796001*1860498^(3/5) 4180999952165278 a001 4807526976/6643838879*1860498^(3/5) 4180999952165278 a001 1836311903/2537720636*1860498^(3/5) 4180999952165278 a001 701408733/969323029*1860498^(3/5) 4180999952165278 a001 267914296/370248451*1860498^(3/5) 4180999952165278 a001 102334155/141422324*1860498^(3/5) 4180999952165278 a001 39088169/54018521*1860498^(3/5) 4180999952165284 a001 14930352/20633239*1860498^(3/5) 4180999952165307 a001 1134903170/1149851*439204^(1/9) 4180999952165319 a001 5702887/7881196*1860498^(3/5) 4180999952165336 a001 267914296/3010349*1860498^(4/15) 4180999952165342 a001 5702887/20633239*1860498^(2/3) 4180999952165344 a001 2178309/54018521*1860498^(4/5) 4180999952165350 a001 317811/1149851*710647^(5/7) 4180999952165356 a001 14930352/54018521*1860498^(2/3) 4180999952165358 a001 39088169/141422324*1860498^(2/3) 4180999952165358 a001 102334155/370248451*1860498^(2/3) 4180999952165358 a001 267914296/969323029*1860498^(2/3) 4180999952165358 a001 701408733/2537720636*1860498^(2/3) 4180999952165358 a001 1836311903/6643838879*1860498^(2/3) 4180999952165358 a001 4807526976/17393796001*1860498^(2/3) 4180999952165358 a001 12586269025/45537549124*1860498^(2/3) 4180999952165358 a001 32951280099/119218851371*1860498^(2/3) 4180999952165358 a001 86267571272/312119004989*1860498^(2/3) 4180999952165358 a001 225851433717/817138163596*1860498^(2/3) 4180999952165358 a001 1548008755920/5600748293801*1860498^(2/3) 4180999952165358 a001 139583862445/505019158607*1860498^(2/3) 4180999952165358 a001 53316291173/192900153618*1860498^(2/3) 4180999952165358 a001 20365011074/73681302247*1860498^(2/3) 4180999952165358 a001 7778742049/28143753123*1860498^(2/3) 4180999952165358 a001 2971215073/10749957122*1860498^(2/3) 4180999952165358 a001 1134903170/4106118243*1860498^(2/3) 4180999952165358 a001 433494437/1568397607*1860498^(2/3) 4180999952165358 a001 165580141/599074578*1860498^(2/3) 4180999952165358 a001 63245986/228826127*1860498^(2/3) 4180999952165359 a001 24157817/87403803*1860498^(2/3) 4180999952165364 a001 9227465/33385282*1860498^(2/3) 4180999952165369 a001 5702887/33385282*1860498^(7/10) 4180999952165377 a001 165580141/3010349*1860498^(3/10) 4180999952165383 a001 726103/29134601*1860498^(5/6) 4180999952165394 a001 4976784/29134601*1860498^(7/10) 4180999952165398 a001 39088169/228826127*1860498^(7/10) 4180999952165398 a001 34111385/199691526*1860498^(7/10) 4180999952165398 a001 267914296/1568397607*1860498^(7/10) 4180999952165398 a001 233802911/1368706081*1860498^(7/10) 4180999952165398 a001 1836311903/10749957122*1860498^(7/10) 4180999952165398 a001 1602508992/9381251041*1860498^(7/10) 4180999952165398 a001 12586269025/73681302247*1860498^(7/10) 4180999952165398 a001 10983760033/64300051206*1860498^(7/10) 4180999952165398 a001 86267571272/505019158607*1860498^(7/10) 4180999952165398 a001 75283811239/440719107401*1860498^(7/10) 4180999952165398 a001 2504730781961/14662949395604*1860498^(7/10) 4180999952165398 a001 139583862445/817138163596*1860498^(7/10) 4180999952165398 a001 53316291173/312119004989*1860498^(7/10) 4180999952165398 a001 20365011074/119218851371*1860498^(7/10) 4180999952165398 a001 7778742049/45537549124*1860498^(7/10) 4180999952165398 a001 2971215073/17393796001*1860498^(7/10) 4180999952165398 a001 1134903170/6643838879*1860498^(7/10) 4180999952165398 a001 433494437/2537720636*1860498^(7/10) 4180999952165398 a001 165580141/969323029*1860498^(7/10) 4180999952165399 a001 63245986/370248451*1860498^(7/10) 4180999952165400 a001 3524578/12752043*1860498^(2/3) 4180999952165400 a001 24157817/141422324*1860498^(7/10) 4180999952165410 a001 9227465/54018521*1860498^(7/10) 4180999952165414 a001 5702887/54018521*1860498^(11/15) 4180999952165415 a001 133957148/930249*710647^(1/4) 4180999952165417 a001 102334155/3010349*1860498^(1/3) 4180999952165424 a001 2178309/141422324*1860498^(13/15) 4180999952165435 a001 3732588/35355581*1860498^(11/15) 4180999952165438 a001 39088169/370248451*1860498^(11/15) 4180999952165439 a001 102334155/969323029*1860498^(11/15) 4180999952165439 a001 66978574/634430159*1860498^(11/15) 4180999952165439 a001 701408733/6643838879*1860498^(11/15) 4180999952165439 a001 1836311903/17393796001*1860498^(11/15) 4180999952165439 a001 1201881744/11384387281*1860498^(11/15) 4180999952165439 a001 12586269025/119218851371*1860498^(11/15) 4180999952165439 a001 32951280099/312119004989*1860498^(11/15) 4180999952165439 a001 21566892818/204284540899*1860498^(11/15) 4180999952165439 a001 225851433717/2139295485799*1860498^(11/15) 4180999952165439 a001 182717648081/1730726404001*1860498^(11/15) 4180999952165439 a001 139583862445/1322157322203*1860498^(11/15) 4180999952165439 a001 53316291173/505019158607*1860498^(11/15) 4180999952165439 a001 10182505537/96450076809*1860498^(11/15) 4180999952165439 a001 7778742049/73681302247*1860498^(11/15) 4180999952165439 a001 2971215073/28143753123*1860498^(11/15) 4180999952165439 a001 567451585/5374978561*1860498^(11/15) 4180999952165439 a001 433494437/4106118243*1860498^(11/15) 4180999952165439 a001 165580141/1568397607*1860498^(11/15) 4180999952165439 a001 31622993/299537289*1860498^(11/15) 4180999952165440 a001 24157817/228826127*1860498^(11/15) 4180999952165448 a001 9227465/87403803*1860498^(11/15) 4180999952165464 a001 46347/4868641*1860498^(9/10) 4180999952165476 a001 3524578/20633239*1860498^(7/10) 4180999952165476 a001 1812440220361/433494437 4180999952165476 a001 1346269/3010349*817138163596^(1/3) 4180999952165476 a001 1346269/3010349*(1/2+1/2*5^(1/2))^19 4180999952165476 a001 1346269/3010349*87403803^(1/2) 4180999952165494 a001 5702887/141422324*1860498^(4/5) 4180999952165497 a001 39088169/3010349*1860498^(2/5) 4180999952165502 a001 1762289/16692641*1860498^(11/15) 4180999952165504 a001 2178309/370248451*1860498^(14/15) 4180999952165515 a001 14930352/370248451*1860498^(4/5) 4180999952165519 a001 39088169/969323029*1860498^(4/5) 4180999952165519 a001 9303105/230701876*1860498^(4/5) 4180999952165519 a001 267914296/6643838879*1860498^(4/5) 4180999952165519 a001 701408733/17393796001*1860498^(4/5) 4180999952165519 a001 1836311903/45537549124*1860498^(4/5) 4180999952165519 a001 4807526976/119218851371*1860498^(4/5) 4180999952165519 a001 1144206275/28374454999*1860498^(4/5) 4180999952165519 a001 32951280099/817138163596*1860498^(4/5) 4180999952165519 a001 86267571272/2139295485799*1860498^(4/5) 4180999952165519 a001 225851433717/5600748293801*1860498^(4/5) 4180999952165519 a001 591286729879/14662949395604*1860498^(4/5) 4180999952165519 a001 365435296162/9062201101803*1860498^(4/5) 4180999952165519 a001 139583862445/3461452808002*1860498^(4/5) 4180999952165519 a001 53316291173/1322157322203*1860498^(4/5) 4180999952165519 a001 20365011074/505019158607*1860498^(4/5) 4180999952165519 a001 7778742049/192900153618*1860498^(4/5) 4180999952165519 a001 2971215073/73681302247*1860498^(4/5) 4180999952165519 a001 1134903170/28143753123*1860498^(4/5) 4180999952165519 a001 433494437/10749957122*1860498^(4/5) 4180999952165519 a001 165580141/4106118243*1860498^(4/5) 4180999952165519 a001 63245986/1568397607*1860498^(4/5) 4180999952165521 a001 24157817/599074578*1860498^(4/5) 4180999952165529 a001 9227465/228826127*1860498^(4/5) 4180999952165534 a001 5702887/228826127*1860498^(5/6) 4180999952165556 a001 829464/33281921*1860498^(5/6) 4180999952165559 a001 39088169/1568397607*1860498^(5/6) 4180999952165559 a001 2971215073/4870847*710647^(1/7) 4180999952165559 a001 34111385/1368706081*1860498^(5/6) 4180999952165559 a001 133957148/5374978561*1860498^(5/6) 4180999952165559 a001 233802911/9381251041*1860498^(5/6) 4180999952165559 a001 1836311903/73681302247*1860498^(5/6) 4180999952165559 a001 267084832/10716675201*1860498^(5/6) 4180999952165559 a001 12586269025/505019158607*1860498^(5/6) 4180999952165559 a001 10983760033/440719107401*1860498^(5/6) 4180999952165559 a001 43133785636/1730726404001*1860498^(5/6) 4180999952165559 a001 75283811239/3020733700601*1860498^(5/6) 4180999952165559 a001 182717648081/7331474697802*1860498^(5/6) 4180999952165559 a001 139583862445/5600748293801*1860498^(5/6) 4180999952165559 a001 53316291173/2139295485799*1860498^(5/6) 4180999952165559 a001 10182505537/408569081798*1860498^(5/6) 4180999952165559 a001 7778742049/312119004989*1860498^(5/6) 4180999952165559 a001 2971215073/119218851371*1860498^(5/6) 4180999952165559 a001 567451585/22768774562*1860498^(5/6) 4180999952165559 a001 433494437/17393796001*1860498^(5/6) 4180999952165559 a001 165580141/6643838879*1860498^(5/6) 4180999952165560 a001 31622993/1268860318*1860498^(5/6) 4180999952165561 a001 24157817/969323029*1860498^(5/6) 4180999952165563 a001 2178309/3010349*1860498^(3/5) 4180999952165569 a001 9227465/370248451*1860498^(5/6) 4180999952165574 a001 5702887/370248451*1860498^(13/15) 4180999952165574 a001 14930352/3010349*1860498^(7/15) 4180999952165585 a004 Fibonacci(32)*Lucas(30)/(1/2+sqrt(5)/2)^43 4180999952165586 a001 3524578/87403803*1860498^(4/5) 4180999952165596 a001 14930352/969323029*1860498^(13/15) 4180999952165599 a001 39088169/2537720636*1860498^(13/15) 4180999952165600 a001 102334155/6643838879*1860498^(13/15) 4180999952165600 a001 9238424/599786069*1860498^(13/15) 4180999952165600 a001 701408733/45537549124*1860498^(13/15) 4180999952165600 a001 1836311903/119218851371*1860498^(13/15) 4180999952165600 a001 4807526976/312119004989*1860498^(13/15) 4180999952165600 a001 12586269025/817138163596*1860498^(13/15) 4180999952165600 a001 32951280099/2139295485799*1860498^(13/15) 4180999952165600 a001 86267571272/5600748293801*1860498^(13/15) 4180999952165600 a001 7787980473/505618944676*1860498^(13/15) 4180999952165600 a001 365435296162/23725150497407*1860498^(13/15) 4180999952165600 a001 139583862445/9062201101803*1860498^(13/15) 4180999952165600 a001 53316291173/3461452808002*1860498^(13/15) 4180999952165600 a001 20365011074/1322157322203*1860498^(13/15) 4180999952165600 a001 7778742049/505019158607*1860498^(13/15) 4180999952165600 a001 2971215073/192900153618*1860498^(13/15) 4180999952165600 a001 1134903170/73681302247*1860498^(13/15) 4180999952165600 a001 433494437/28143753123*1860498^(13/15) 4180999952165600 a001 165580141/10749957122*1860498^(13/15) 4180999952165600 a001 63245986/4106118243*1860498^(13/15) 4180999952165601 a001 24157817/1568397607*1860498^(13/15) 4180999952165606 a001 4807526976/3010349*710647^(1/14) 4180999952165610 a001 9227465/599074578*1860498^(13/15) 4180999952165614 a001 5702887/599074578*1860498^(9/10) 4180999952165627 a001 1762289/70711162*1860498^(5/6) 4180999952165628 a001 9227465/3010349*1860498^(1/2) 4180999952165633 a001 5702887/3010349*1860498^(8/15) 4180999952165636 a001 14930352/1568397607*1860498^(9/10) 4180999952165639 a001 39088169/4106118243*1860498^(9/10) 4180999952165640 a001 102334155/10749957122*1860498^(9/10) 4180999952165640 a001 267914296/28143753123*1860498^(9/10) 4180999952165640 a001 701408733/73681302247*1860498^(9/10) 4180999952165640 a001 1836311903/192900153618*1860498^(9/10) 4180999952165640 a001 102287808/10745088481*1860498^(9/10) 4180999952165640 a001 12586269025/1322157322203*1860498^(9/10) 4180999952165640 a001 32951280099/3461452808002*1860498^(9/10) 4180999952165640 a001 86267571272/9062201101803*1860498^(9/10) 4180999952165640 a001 225851433717/23725150497407*1860498^(9/10) 4180999952165640 a001 139583862445/14662949395604*1860498^(9/10) 4180999952165640 a001 53316291173/5600748293801*1860498^(9/10) 4180999952165640 a001 20365011074/2139295485799*1860498^(9/10) 4180999952165640 a001 7778742049/817138163596*1860498^(9/10) 4180999952165640 a001 2971215073/312119004989*1860498^(9/10) 4180999952165640 a001 1134903170/119218851371*1860498^(9/10) 4180999952165640 a001 433494437/45537549124*1860498^(9/10) 4180999952165640 a001 165580141/17393796001*1860498^(9/10) 4180999952165640 a001 63245986/6643838879*1860498^(9/10) 4180999952165641 a001 24157817/2537720636*1860498^(9/10) 4180999952165643 a001 1346269/4870847*1860498^(2/3) 4180999952165650 a001 9227465/969323029*1860498^(9/10) 4180999952165655 a001 5702887/969323029*1860498^(14/15) 4180999952165667 a001 3524578/228826127*1860498^(13/15) 4180999952165676 a001 196452/33391061*1860498^(14/15) 4180999952165680 a001 39088169/6643838879*1860498^(14/15) 4180999952165680 a001 102334155/17393796001*1860498^(14/15) 4180999952165680 a001 66978574/11384387281*1860498^(14/15) 4180999952165680 a001 701408733/119218851371*1860498^(14/15) 4180999952165680 a001 1836311903/312119004989*1860498^(14/15) 4180999952165680 a001 1201881744/204284540899*1860498^(14/15) 4180999952165680 a001 12586269025/2139295485799*1860498^(14/15) 4180999952165680 a001 32951280099/5600748293801*1860498^(14/15) 4180999952165680 a001 1135099622/192933544679*1860498^(14/15) 4180999952165680 a001 139583862445/23725150497407*1860498^(14/15) 4180999952165680 a001 53316291173/9062201101803*1860498^(14/15) 4180999952165680 a001 10182505537/1730726404001*1860498^(14/15) 4180999952165680 a001 7778742049/1322157322203*1860498^(14/15) 4180999952165680 a001 2971215073/505019158607*1860498^(14/15) 4180999952165680 a001 567451585/96450076809*1860498^(14/15) 4180999952165680 a001 433494437/73681302247*1860498^(14/15) 4180999952165680 a001 165580141/28143753123*1860498^(14/15) 4180999952165680 a001 31622993/5374978561*1860498^(14/15) 4180999952165682 a001 24157817/4106118243*1860498^(14/15) 4180999952165690 a001 9227465/1568397607*1860498^(14/15) 4180999952165707 a001 3524578/370248451*1860498^(9/10) 4180999952165710 a001 7778742049/12752043*710647^(1/7) 4180999952165710 a001 165580141/1860498*710647^(2/7) 4180999952165732 a001 10182505537/16692641*710647^(1/7) 4180999952165735 a001 53316291173/87403803*710647^(1/7) 4180999952165735 a004 Fibonacci(34)*Lucas(30)/(1/2+sqrt(5)/2)^45 4180999952165736 a001 139583862445/228826127*710647^(1/7) 4180999952165736 a001 182717648081/299537289*710647^(1/7) 4180999952165736 a001 956722026041/1568397607*710647^(1/7) 4180999952165736 a001 2504730781961/4106118243*710647^(1/7) 4180999952165736 a001 3278735159921/5374978561*710647^(1/7) 4180999952165736 a001 10610209857723/17393796001*710647^(1/7) 4180999952165736 a001 4052739537881/6643838879*710647^(1/7) 4180999952165736 a001 1134903780/1860499*710647^(1/7) 4180999952165736 a001 591286729879/969323029*710647^(1/7) 4180999952165736 a001 225851433717/370248451*710647^(1/7) 4180999952165736 a001 21566892818/35355581*710647^(1/7) 4180999952165737 a001 32951280099/54018521*710647^(1/7) 4180999952165745 a001 1144206275/1875749*710647^(1/7) 4180999952165748 a001 1762289/299537289*1860498^(14/15) 4180999952165757 a004 Fibonacci(36)*Lucas(30)/(1/2+sqrt(5)/2)^47 4180999952165760 a004 Fibonacci(38)*Lucas(30)/(1/2+sqrt(5)/2)^49 4180999952165761 a004 Fibonacci(40)*Lucas(30)/(1/2+sqrt(5)/2)^51 4180999952165761 a004 Fibonacci(42)*Lucas(30)/(1/2+sqrt(5)/2)^53 4180999952165761 a004 Fibonacci(44)*Lucas(30)/(1/2+sqrt(5)/2)^55 4180999952165761 a004 Fibonacci(46)*Lucas(30)/(1/2+sqrt(5)/2)^57 4180999952165761 a004 Fibonacci(48)*Lucas(30)/(1/2+sqrt(5)/2)^59 4180999952165761 a004 Fibonacci(50)*Lucas(30)/(1/2+sqrt(5)/2)^61 4180999952165761 a004 Fibonacci(52)*Lucas(30)/(1/2+sqrt(5)/2)^63 4180999952165761 a004 Fibonacci(54)*Lucas(30)/(1/2+sqrt(5)/2)^65 4180999952165761 a004 Fibonacci(56)*Lucas(30)/(1/2+sqrt(5)/2)^67 4180999952165761 a004 Fibonacci(58)*Lucas(30)/(1/2+sqrt(5)/2)^69 4180999952165761 a004 Fibonacci(60)*Lucas(30)/(1/2+sqrt(5)/2)^71 4180999952165761 a004 Fibonacci(62)*Lucas(30)/(1/2+sqrt(5)/2)^73 4180999952165761 a004 Fibonacci(64)*Lucas(30)/(1/2+sqrt(5)/2)^75 4180999952165761 a004 Fibonacci(66)*Lucas(30)/(1/2+sqrt(5)/2)^77 4180999952165761 a004 Fibonacci(68)*Lucas(30)/(1/2+sqrt(5)/2)^79 4180999952165761 a004 Fibonacci(70)*Lucas(30)/(1/2+sqrt(5)/2)^81 4180999952165761 a004 Fibonacci(72)*Lucas(30)/(1/2+sqrt(5)/2)^83 4180999952165761 a004 Fibonacci(74)*Lucas(30)/(1/2+sqrt(5)/2)^85 4180999952165761 a004 Fibonacci(76)*Lucas(30)/(1/2+sqrt(5)/2)^87 4180999952165761 a004 Fibonacci(78)*Lucas(30)/(1/2+sqrt(5)/2)^89 4180999952165761 a004 Fibonacci(80)*Lucas(30)/(1/2+sqrt(5)/2)^91 4180999952165761 a004 Fibonacci(82)*Lucas(30)/(1/2+sqrt(5)/2)^93 4180999952165761 a004 Fibonacci(84)*Lucas(30)/(1/2+sqrt(5)/2)^95 4180999952165761 a004 Fibonacci(86)*Lucas(30)/(1/2+sqrt(5)/2)^97 4180999952165761 a004 Fibonacci(88)*Lucas(30)/(1/2+sqrt(5)/2)^99 4180999952165761 a004 Fibonacci(89)*Lucas(30)/(1/2+sqrt(5)/2)^100 4180999952165761 a004 Fibonacci(87)*Lucas(30)/(1/2+sqrt(5)/2)^98 4180999952165761 a004 Fibonacci(85)*Lucas(30)/(1/2+sqrt(5)/2)^96 4180999952165761 a004 Fibonacci(83)*Lucas(30)/(1/2+sqrt(5)/2)^94 4180999952165761 a004 Fibonacci(81)*Lucas(30)/(1/2+sqrt(5)/2)^92 4180999952165761 a004 Fibonacci(79)*Lucas(30)/(1/2+sqrt(5)/2)^90 4180999952165761 a004 Fibonacci(77)*Lucas(30)/(1/2+sqrt(5)/2)^88 4180999952165761 a004 Fibonacci(75)*Lucas(30)/(1/2+sqrt(5)/2)^86 4180999952165761 a004 Fibonacci(73)*Lucas(30)/(1/2+sqrt(5)/2)^84 4180999952165761 a004 Fibonacci(71)*Lucas(30)/(1/2+sqrt(5)/2)^82 4180999952165761 a004 Fibonacci(69)*Lucas(30)/(1/2+sqrt(5)/2)^80 4180999952165761 a004 Fibonacci(67)*Lucas(30)/(1/2+sqrt(5)/2)^78 4180999952165761 a004 Fibonacci(65)*Lucas(30)/(1/2+sqrt(5)/2)^76 4180999952165761 a004 Fibonacci(63)*Lucas(30)/(1/2+sqrt(5)/2)^74 4180999952165761 a004 Fibonacci(61)*Lucas(30)/(1/2+sqrt(5)/2)^72 4180999952165761 a001 1/416020*(1/2+1/2*5^(1/2))^49 4180999952165761 a004 Fibonacci(59)*Lucas(30)/(1/2+sqrt(5)/2)^70 4180999952165761 a004 Fibonacci(57)*Lucas(30)/(1/2+sqrt(5)/2)^68 4180999952165761 a004 Fibonacci(55)*Lucas(30)/(1/2+sqrt(5)/2)^66 4180999952165761 a004 Fibonacci(53)*Lucas(30)/(1/2+sqrt(5)/2)^64 4180999952165761 a004 Fibonacci(51)*Lucas(30)/(1/2+sqrt(5)/2)^62 4180999952165761 a004 Fibonacci(49)*Lucas(30)/(1/2+sqrt(5)/2)^60 4180999952165761 a004 Fibonacci(47)*Lucas(30)/(1/2+sqrt(5)/2)^58 4180999952165761 a004 Fibonacci(45)*Lucas(30)/(1/2+sqrt(5)/2)^56 4180999952165761 a004 Fibonacci(43)*Lucas(30)/(1/2+sqrt(5)/2)^54 4180999952165761 a004 Fibonacci(41)*Lucas(30)/(1/2+sqrt(5)/2)^52 4180999952165761 a004 Fibonacci(39)*Lucas(30)/(1/2+sqrt(5)/2)^50 4180999952165762 a004 Fibonacci(37)*Lucas(30)/(1/2+sqrt(5)/2)^48 4180999952165771 a004 Fibonacci(35)*Lucas(30)/(1/2+sqrt(5)/2)^46 4180999952165803 a001 1201881744/1970299*710647^(1/7) 4180999952165828 a004 Fibonacci(33)*Lucas(30)/(1/2+sqrt(5)/2)^44 4180999952165874 a001 1346269/12752043*1860498^(11/15) 4180999952165927 a001 1346269/7881196*1860498^(7/10) 4180999952165977 a001 1346269/33385282*1860498^(4/5) 4180999952166022 a001 1346269/54018521*1860498^(5/6) 4180999952166061 a001 1346269/87403803*1860498^(13/15) 4180999952166102 a001 1346269/141422324*1860498^(9/10) 4180999952166142 a001 1346269/228826127*1860498^(14/15) 4180999952166151 a001 1134903170/4870847*710647^(3/14) 4180999952166197 a001 1836311903/3010349*710647^(1/7) 4180999952166222 a004 Fibonacci(31)*Lucas(30)/(1/2+sqrt(5)/2)^42 4180999952166301 a001 2971215073/12752043*710647^(3/14) 4180999952166302 a001 31622993/930249*710647^(5/14) 4180999952166323 a001 7778742049/33385282*710647^(3/14) 4180999952166326 a001 20365011074/87403803*710647^(3/14) 4180999952166327 a001 53316291173/228826127*710647^(3/14) 4180999952166327 a001 139583862445/599074578*710647^(3/14) 4180999952166327 a001 365435296162/1568397607*710647^(3/14) 4180999952166327 a001 956722026041/4106118243*710647^(3/14) 4180999952166327 a001 2504730781961/10749957122*710647^(3/14) 4180999952166327 a001 6557470319842/28143753123*710647^(3/14) 4180999952166327 a001 10610209857723/45537549124*710647^(3/14) 4180999952166327 a001 4052739537881/17393796001*710647^(3/14) 4180999952166327 a001 1548008755920/6643838879*710647^(3/14) 4180999952166327 a001 591286729879/2537720636*710647^(3/14) 4180999952166327 a001 225851433717/969323029*710647^(3/14) 4180999952166327 a001 86267571272/370248451*710647^(3/14) 4180999952166327 a001 63246219/271444*710647^(3/14) 4180999952166328 a001 12586269025/54018521*710647^(3/14) 4180999952166337 a001 4807526976/20633239*710647^(3/14) 4180999952166394 a001 1836311903/7881196*710647^(3/14) 4180999952166446 a001 701408733/4870847*710647^(1/4) 4180999952166471 a001 832040/1149851*7881196^(6/11) 4180999952166502 a001 514229/1860498*20633239^(4/7) 4180999952166507 a001 832040/1149851*141422324^(6/13) 4180999952166507 a001 514229/1860498*2537720636^(4/9) 4180999952166507 a001 832040/1149851*2537720636^(2/5) 4180999952166507 a001 832040/1149851*45537549124^(6/17) 4180999952166507 a001 514229/1860498*(1/2+1/2*5^(1/2))^20 4180999952166507 a001 514229/1860498*23725150497407^(5/16) 4180999952166507 a001 832040/1149851*14662949395604^(2/7) 4180999952166507 a001 832040/1149851*(1/2+1/2*5^(1/2))^18 4180999952166507 a001 514229/1860498*505019158607^(5/14) 4180999952166507 a001 832040/1149851*192900153618^(1/3) 4180999952166507 a001 514229/1860498*73681302247^(5/13) 4180999952166507 a001 514229/1860498*28143753123^(2/5) 4180999952166507 a001 832040/1149851*10749957122^(3/8) 4180999952166507 a001 514229/1860498*10749957122^(5/12) 4180999952166507 a001 832040/1149851*4106118243^(9/23) 4180999952166507 a001 514229/1860498*4106118243^(10/23) 4180999952166507 a001 832040/1149851*1568397607^(9/22) 4180999952166507 a001 514229/1860498*1568397607^(5/11) 4180999952166507 a001 832040/1149851*599074578^(3/7) 4180999952166507 a001 514229/1860498*599074578^(10/21) 4180999952166507 a001 832040/1149851*228826127^(9/20) 4180999952166507 a001 514229/1860498*228826127^(1/2) 4180999952166507 a001 7779256312/1860621 4180999952166508 a001 832040/1149851*87403803^(9/19) 4180999952166508 a001 514229/1860498*87403803^(10/19) 4180999952166509 a001 832040/1149851*33385282^(1/2) 4180999952166509 a001 514229/1860498*33385282^(5/9) 4180999952166521 a001 832040/1149851*12752043^(9/17) 4180999952166522 a001 514229/1860498*12752043^(10/17) 4180999952166597 a001 1836311903/12752043*710647^(1/4) 4180999952166606 a001 832040/1149851*4870847^(9/16) 4180999952166617 a001 514229/1860498*4870847^(5/8) 4180999952166619 a001 14930208/103681*710647^(1/4) 4180999952166622 a001 12586269025/87403803*710647^(1/4) 4180999952166623 a001 32951280099/228826127*710647^(1/4) 4180999952166623 a001 43133785636/299537289*710647^(1/4) 4180999952166623 a001 32264490531/224056801*710647^(1/4) 4180999952166623 a001 591286729879/4106118243*710647^(1/4) 4180999952166623 a001 774004377960/5374978561*710647^(1/4) 4180999952166623 a001 4052739537881/28143753123*710647^(1/4) 4180999952166623 a001 1515744265389/10525900321*710647^(1/4) 4180999952166623 a001 3278735159921/22768774562*710647^(1/4) 4180999952166623 a001 2504730781961/17393796001*710647^(1/4) 4180999952166623 a001 956722026041/6643838879*710647^(1/4) 4180999952166623 a001 182717648081/1268860318*710647^(1/4) 4180999952166623 a001 139583862445/969323029*710647^(1/4) 4180999952166623 a001 53316291173/370248451*710647^(1/4) 4180999952166623 a001 10182505537/70711162*710647^(1/4) 4180999952166624 a001 7778742049/54018521*710647^(1/4) 4180999952166632 a001 2971215073/20633239*710647^(1/4) 4180999952166690 a001 567451585/3940598*710647^(1/4) 4180999952166742 a001 433494437/4870847*710647^(2/7) 4180999952166785 a001 196418/4870847*439204^(8/9) 4180999952166788 a001 701408733/3010349*710647^(3/14) 4180999952166893 a001 1134903170/12752043*710647^(2/7) 4180999952166895 a001 24157817/1860498*710647^(3/7) 4180999952166915 a001 2971215073/33385282*710647^(2/7) 4180999952166918 a001 7778742049/87403803*710647^(2/7) 4180999952166918 a001 20365011074/228826127*710647^(2/7) 4180999952166918 a001 53316291173/599074578*710647^(2/7) 4180999952166918 a001 139583862445/1568397607*710647^(2/7) 4180999952166918 a001 365435296162/4106118243*710647^(2/7) 4180999952166918 a001 956722026041/10749957122*710647^(2/7) 4180999952166918 a001 2504730781961/28143753123*710647^(2/7) 4180999952166918 a001 6557470319842/73681302247*710647^(2/7) 4180999952166918 a001 10610209857723/119218851371*710647^(2/7) 4180999952166918 a001 4052739537881/45537549124*710647^(2/7) 4180999952166918 a001 1548008755920/17393796001*710647^(2/7) 4180999952166918 a001 591286729879/6643838879*710647^(2/7) 4180999952166918 a001 225851433717/2537720636*710647^(2/7) 4180999952166918 a001 86267571272/969323029*710647^(2/7) 4180999952166918 a001 32951280099/370248451*710647^(2/7) 4180999952166918 a001 12586269025/141422324*710647^(2/7) 4180999952166920 a001 4807526976/54018521*710647^(2/7) 4180999952166928 a001 1836311903/20633239*710647^(2/7) 4180999952166986 a001 3524667/39604*710647^(2/7) 4180999952167084 a001 433494437/3010349*710647^(1/4) 4180999952167232 a001 832040/1149851*1860498^(3/5) 4180999952167254 a004 Fibonacci(29)*Lucas(31)/(1/2+sqrt(5)/2)^41 4180999952167313 a001 514229/1860498*1860498^(2/3) 4180999952167333 a001 165580141/4870847*710647^(5/14) 4180999952167380 a001 267914296/3010349*710647^(2/7) 4180999952167484 a001 433494437/12752043*710647^(5/14) 4180999952167494 a001 514229/4870847*7881196^(2/3) 4180999952167494 a001 9227465/1860498*710647^(1/2) 4180999952167506 a001 567451585/16692641*710647^(5/14) 4180999952167509 a001 2971215073/87403803*710647^(5/14) 4180999952167510 a001 7778742049/228826127*710647^(5/14) 4180999952167510 a001 10182505537/299537289*710647^(5/14) 4180999952167510 a001 53316291173/1568397607*710647^(5/14) 4180999952167510 a001 139583862445/4106118243*710647^(5/14) 4180999952167510 a001 182717648081/5374978561*710647^(5/14) 4180999952167510 a001 956722026041/28143753123*710647^(5/14) 4180999952167510 a001 2504730781961/73681302247*710647^(5/14) 4180999952167510 a001 3278735159921/96450076809*710647^(5/14) 4180999952167510 a001 10610209857723/312119004989*710647^(5/14) 4180999952167510 a001 4052739537881/119218851371*710647^(5/14) 4180999952167510 a001 387002188980/11384387281*710647^(5/14) 4180999952167510 a001 591286729879/17393796001*710647^(5/14) 4180999952167510 a001 225851433717/6643838879*710647^(5/14) 4180999952167510 a001 1135099622/33391061*710647^(5/14) 4180999952167510 a001 32951280099/969323029*710647^(5/14) 4180999952167510 a001 12586269025/370248451*710647^(5/14) 4180999952167510 a001 1201881744/35355581*710647^(5/14) 4180999952167511 a001 1836311903/54018521*710647^(5/14) 4180999952167519 a001 701408733/20633239*710647^(5/14) 4180999952167539 a001 514229/4870847*312119004989^(2/5) 4180999952167539 a001 514229/4870847*(1/2+1/2*5^(1/2))^22 4180999952167539 a001 2178309/1149851*(1/2+1/2*5^(1/2))^16 4180999952167539 a001 2178309/1149851*23725150497407^(1/4) 4180999952167539 a001 2178309/1149851*73681302247^(4/13) 4180999952167539 a001 2178309/1149851*10749957122^(1/3) 4180999952167539 a001 514229/4870847*10749957122^(11/24) 4180999952167539 a001 2178309/1149851*4106118243^(8/23) 4180999952167539 a001 514229/4870847*4106118243^(11/23) 4180999952167539 a001 2178309/1149851*1568397607^(4/11) 4180999952167539 a001 514229/4870847*1568397607^(1/2) 4180999952167539 a001 2178309/1149851*599074578^(8/21) 4180999952167539 a001 514229/4870847*599074578^(11/21) 4180999952167539 a001 1120149658761/267914296 4180999952167539 a001 2178309/1149851*228826127^(2/5) 4180999952167539 a001 514229/4870847*228826127^(11/20) 4180999952167539 a001 2178309/1149851*87403803^(8/19) 4180999952167539 a001 514229/4870847*87403803^(11/19) 4180999952167541 a001 2178309/1149851*33385282^(4/9) 4180999952167541 a001 514229/4870847*33385282^(11/18) 4180999952167551 a001 2178309/1149851*12752043^(8/17) 4180999952167556 a001 514229/4870847*12752043^(11/17) 4180999952167577 a001 66978574/1970299*710647^(5/14) 4180999952167627 a001 2178309/1149851*4870847^(1/2) 4180999952167640 a001 514229/12752043*7881196^(8/11) 4180999952167648 a004 Fibonacci(29)*Lucas(33)/(1/2+sqrt(5)/2)^43 4180999952167654 a001 514229/228826127*7881196^(10/11) 4180999952167660 a001 514229/4870847*4870847^(11/16) 4180999952167662 a001 514229/54018521*7881196^(9/11) 4180999952167686 a001 5702887/1149851*20633239^(2/5) 4180999952167687 a001 14930352/1149851*7881196^(4/11) 4180999952167689 a001 514229/12752043*141422324^(8/13) 4180999952167689 a001 514229/12752043*2537720636^(8/15) 4180999952167689 a001 5702887/1149851*17393796001^(2/7) 4180999952167689 a001 514229/12752043*45537549124^(8/17) 4180999952167689 a001 514229/12752043*14662949395604^(8/21) 4180999952167689 a001 514229/12752043*(1/2+1/2*5^(1/2))^24 4180999952167689 a001 5702887/1149851*14662949395604^(2/9) 4180999952167689 a001 5702887/1149851*(1/2+1/2*5^(1/2))^14 4180999952167689 a001 5702887/1149851*505019158607^(1/4) 4180999952167689 a001 514229/12752043*192900153618^(4/9) 4180999952167689 a001 514229/12752043*73681302247^(6/13) 4180999952167689 a001 5702887/1149851*10749957122^(7/24) 4180999952167689 a001 514229/12752043*10749957122^(1/2) 4180999952167689 a001 5702887/1149851*4106118243^(7/23) 4180999952167689 a001 514229/12752043*4106118243^(12/23) 4180999952167689 a001 5702887/1149851*1568397607^(7/22) 4180999952167689 a001 514229/12752043*1568397607^(6/11) 4180999952167689 a001 2932589879123/701408733 4180999952167689 a001 5702887/1149851*599074578^(1/3) 4180999952167689 a001 514229/12752043*599074578^(4/7) 4180999952167689 a001 5702887/1149851*228826127^(7/20) 4180999952167689 a001 514229/12752043*228826127^(3/5) 4180999952167690 a001 5702887/1149851*87403803^(7/19) 4180999952167690 a001 514229/12752043*87403803^(12/19) 4180999952167691 a001 5702887/1149851*33385282^(7/18) 4180999952167692 a001 514229/12752043*33385282^(2/3) 4180999952167694 a001 24157817/1149851*7881196^(1/3) 4180999952167697 a001 63245986/1149851*7881196^(3/11) 4180999952167700 a001 5702887/1149851*12752043^(7/17) 4180999952167703 a001 267914296/1149851*7881196^(2/11) 4180999952167705 a004 Fibonacci(29)*Lucas(35)/(1/2+sqrt(5)/2)^45 4180999952167707 a001 514229/228826127*20633239^(6/7) 4180999952167707 a001 514229/87403803*20633239^(4/5) 4180999952167708 a001 514229/12752043*12752043^(12/17) 4180999952167709 a001 1134903170/1149851*7881196^(1/11) 4180999952167710 a001 2971215073/1860498*271443^(1/13) 4180999952167711 a001 514229/33385282*141422324^(2/3) 4180999952167711 a001 14930352/1149851*141422324^(4/13) 4180999952167711 a001 14930352/1149851*2537720636^(4/15) 4180999952167711 a001 14930352/1149851*45537549124^(4/17) 4180999952167711 a001 514229/33385282*(1/2+1/2*5^(1/2))^26 4180999952167711 a001 14930352/1149851*817138163596^(4/19) 4180999952167711 a001 14930352/1149851*14662949395604^(4/21) 4180999952167711 a001 14930352/1149851*(1/2+1/2*5^(1/2))^12 4180999952167711 a001 14930352/1149851*192900153618^(2/9) 4180999952167711 a001 14930352/1149851*73681302247^(3/13) 4180999952167711 a001 514229/33385282*73681302247^(1/2) 4180999952167711 a001 14930352/1149851*10749957122^(1/4) 4180999952167711 a001 514229/33385282*10749957122^(13/24) 4180999952167711 a001 14930352/1149851*4106118243^(6/23) 4180999952167711 a001 514229/33385282*4106118243^(13/23) 4180999952167711 a001 7677619978608/1836311903 4180999952167711 a001 14930352/1149851*1568397607^(3/11) 4180999952167711 a001 514229/33385282*1568397607^(13/22) 4180999952167711 a001 14930352/1149851*599074578^(2/7) 4180999952167711 a001 514229/33385282*599074578^(13/21) 4180999952167711 a001 14930352/1149851*228826127^(3/10) 4180999952167711 a001 514229/33385282*228826127^(13/20) 4180999952167712 a001 14930352/1149851*87403803^(6/19) 4180999952167712 a001 514229/33385282*87403803^(13/19) 4180999952167712 a001 39088169/1149851*20633239^(2/7) 4180999952167713 a001 14930352/1149851*33385282^(1/3) 4180999952167713 a001 165580141/1149851*20633239^(1/5) 4180999952167714 a004 Fibonacci(29)*Lucas(37)/(1/2+sqrt(5)/2)^47 4180999952167714 a001 433494437/1149851*20633239^(1/7) 4180999952167714 a001 514229/33385282*33385282^(13/18) 4180999952167715 a001 39088169/1149851*2537720636^(2/9) 4180999952167715 a001 514229/87403803*17393796001^(4/7) 4180999952167715 a001 39088169/1149851*312119004989^(2/11) 4180999952167715 a001 514229/87403803*14662949395604^(4/9) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^28/Lucas(38) 4180999952167715 a001 39088169/1149851*(1/2+1/2*5^(1/2))^10 4180999952167715 a001 514229/87403803*505019158607^(1/2) 4180999952167715 a001 514229/87403803*73681302247^(7/13) 4180999952167715 a001 39088169/1149851*28143753123^(1/5) 4180999952167715 a001 39088169/1149851*10749957122^(5/24) 4180999952167715 a001 514229/87403803*10749957122^(7/12) 4180999952167715 a001 20100270056701/4807526976 4180999952167715 a001 39088169/1149851*4106118243^(5/23) 4180999952167715 a001 514229/87403803*4106118243^(14/23) 4180999952167715 a001 39088169/1149851*1568397607^(5/22) 4180999952167715 a001 514229/87403803*1568397607^(7/11) 4180999952167715 a001 39088169/1149851*599074578^(5/21) 4180999952167715 a001 514229/87403803*599074578^(2/3) 4180999952167715 a001 39088169/1149851*228826127^(1/4) 4180999952167715 a001 514229/87403803*228826127^(7/10) 4180999952167715 a001 39088169/1149851*87403803^(5/19) 4180999952167715 a001 514229/228826127*141422324^(10/13) 4180999952167715 a004 Fibonacci(29)*Lucas(39)/(1/2+sqrt(5)/2)^49 4180999952167715 a001 514229/4106118243*141422324^(12/13) 4180999952167715 a001 514229/969323029*141422324^(11/13) 4180999952167715 a001 514229/87403803*87403803^(14/19) 4180999952167715 a001 514229/228826127*2537720636^(2/3) 4180999952167715 a001 514229/228826127*45537549124^(10/17) 4180999952167715 a001 514229/228826127*312119004989^(6/11) 4180999952167715 a001 514229/228826127*14662949395604^(10/21) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^30/Lucas(40) 4180999952167715 a001 102334155/1149851*(1/2+1/2*5^(1/2))^8 4180999952167715 a001 102334155/1149851*23725150497407^(1/8) 4180999952167715 a001 102334155/1149851*505019158607^(1/7) 4180999952167715 a001 514229/228826127*192900153618^(5/9) 4180999952167715 a001 102334155/1149851*73681302247^(2/13) 4180999952167715 a001 514229/228826127*28143753123^(3/5) 4180999952167715 a001 956785276209/228841255 4180999952167715 a001 102334155/1149851*10749957122^(1/6) 4180999952167715 a001 514229/228826127*10749957122^(5/8) 4180999952167715 a001 102334155/1149851*4106118243^(4/23) 4180999952167715 a001 514229/228826127*4106118243^(15/23) 4180999952167715 a001 102334155/1149851*1568397607^(2/11) 4180999952167715 a001 514229/228826127*1568397607^(15/22) 4180999952167715 a001 102334155/1149851*599074578^(4/21) 4180999952167715 a001 514229/228826127*599074578^(5/7) 4180999952167715 a001 102334155/1149851*228826127^(1/5) 4180999952167715 a001 267914296/1149851*141422324^(2/13) 4180999952167715 a004 Fibonacci(29)*Lucas(41)/(1/2+sqrt(5)/2)^51 4180999952167715 a001 514229/228826127*228826127^(3/4) 4180999952167715 a001 1134903170/1149851*141422324^(1/13) 4180999952167715 a001 267914296/1149851*2537720636^(2/15) 4180999952167715 a001 267914296/1149851*45537549124^(2/17) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^32/Lucas(42) 4180999952167715 a001 514229/599074578*23725150497407^(1/2) 4180999952167715 a001 267914296/1149851*14662949395604^(2/21) 4180999952167715 a001 267914296/1149851*(1/2+1/2*5^(1/2))^6 4180999952167715 a001 514229/599074578*505019158607^(4/7) 4180999952167715 a001 514229/599074578*73681302247^(8/13) 4180999952167715 a001 137769300517784/32951280099 4180999952167715 a001 267914296/1149851*10749957122^(1/8) 4180999952167715 a001 514229/599074578*10749957122^(2/3) 4180999952167715 a001 267914296/1149851*4106118243^(3/23) 4180999952167715 a001 514229/599074578*4106118243^(16/23) 4180999952167715 a001 267914296/1149851*1568397607^(3/22) 4180999952167715 a001 514229/599074578*1568397607^(8/11) 4180999952167715 a001 267914296/1149851*599074578^(1/7) 4180999952167715 a004 Fibonacci(29)*Lucas(43)/(1/2+sqrt(5)/2)^53 4180999952167715 a001 514229/599074578*599074578^(16/21) 4180999952167715 a001 514229/1568397607*45537549124^(2/3) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^34/Lucas(44) 4180999952167715 a001 701408733/1149851*(1/2+1/2*5^(1/2))^4 4180999952167715 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^4/Lucas(29) 4180999952167715 a001 701408733/1149851*23725150497407^(1/16) 4180999952167715 a001 701408733/1149851*73681302247^(1/13) 4180999952167715 a001 360684711361857/86267571272 4180999952167715 a001 701408733/1149851*10749957122^(1/12) 4180999952167715 a001 701408733/1149851*4106118243^(2/23) 4180999952167715 a001 514229/1568397607*10749957122^(17/24) 4180999952167715 a001 701408733/1149851*1568397607^(1/11) 4180999952167715 a001 514229/1568397607*4106118243^(17/23) 4180999952167715 a001 514229/4106118243*2537720636^(4/5) 4180999952167715 a004 Fibonacci(29)*Lucas(45)/(1/2+sqrt(5)/2)^55 4180999952167715 a001 514229/73681302247*2537720636^(14/15) 4180999952167715 a001 701408733/1149851*599074578^(2/21) 4180999952167715 a001 514229/28143753123*2537720636^(8/9) 4180999952167715 a001 514229/17393796001*2537720636^(13/15) 4180999952167715 a001 514229/1568397607*1568397607^(17/22) 4180999952167715 a001 514229/4106118243*45537549124^(12/17) 4180999952167715 a001 514229/4106118243*14662949395604^(4/7) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^36/Lucas(46) 4180999952167715 a001 1836311903/1149851*(1/2+1/2*5^(1/2))^2 4180999952167715 a001 514229/4106118243*505019158607^(9/14) 4180999952167715 a001 944284833567787/225851433717 4180999952167715 a001 514229/4106118243*192900153618^(2/3) 4180999952167715 a001 514229/4106118243*73681302247^(9/13) 4180999952167715 a001 1836311903/1149851*10749957122^(1/24) 4180999952167715 a001 1836311903/1149851*4106118243^(1/23) 4180999952167715 a001 514229/4106118243*10749957122^(3/4) 4180999952167715 a001 1836311903/1149851*1568397607^(1/22) 4180999952167715 a004 Fibonacci(29)*Lucas(47)/(1/2+sqrt(5)/2)^57 4180999952167715 a001 514229/4106118243*4106118243^(18/23) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^38/Lucas(48) 4180999952167715 a001 4807526976/1149851 4180999952167715 a004 Fibonacci(29)*Lucas(49)/(1/2+sqrt(5)/2)^59 4180999952167715 a001 514229/73681302247*17393796001^(6/7) 4180999952167715 a001 514229/10749957122*10749957122^(19/24) 4180999952167715 a001 514229/28143753123*312119004989^(8/11) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^40/Lucas(50) 4180999952167715 a001 117676809717395/28145613744 4180999952167715 a004 Fibonacci(50)/Lucas(29)/(1/2+sqrt(5)/2)^2 4180999952167715 a001 514229/28143753123*73681302247^(10/13) 4180999952167715 a001 514229/73681302247*45537549124^(14/17) 4180999952167715 a004 Fibonacci(29)*Lucas(51)/(1/2+sqrt(5)/2)^61 4180999952167715 a001 514229/1322157322203*45537549124^(16/17) 4180999952167715 a001 514229/312119004989*45537549124^(15/17) 4180999952167715 a001 514229/28143753123*28143753123^(4/5) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^42/Lucas(52) 4180999952167715 a001 16944503814028671/4052739537881 4180999952167715 a004 Fibonacci(52)/Lucas(29)/(1/2+sqrt(5)/2)^4 4180999952167715 a001 514229/73681302247*505019158607^(3/4) 4180999952167715 a001 514229/73681302247*192900153618^(7/9) 4180999952167715 a004 Fibonacci(29)*Lucas(53)/(1/2+sqrt(5)/2)^63 4180999952167715 a001 514229/192900153618*312119004989^(4/5) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^44/Lucas(54) 4180999952167715 a001 44361286907629288/10610209857723 4180999952167715 a004 Fibonacci(54)/Lucas(29)/(1/2+sqrt(5)/2)^6 4180999952167715 a004 Fibonacci(29)*Lucas(55)/(1/2+sqrt(5)/2)^65 4180999952167715 a001 514229/3461452808002*312119004989^(10/11) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^46/Lucas(56) 4180999952167715 a004 Fibonacci(56)/Lucas(29)/(1/2+sqrt(5)/2)^8 4180999952167715 a004 Fibonacci(29)*Lucas(57)/(1/2+sqrt(5)/2)^67 4180999952167715 a001 514229/1322157322203*14662949395604^(16/21) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^48/Lucas(58) 4180999952167715 a004 Fibonacci(29)*Lucas(59)/(1/2+sqrt(5)/2)^69 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^50/Lucas(60) 4180999952167715 a004 Fibonacci(29)*Lucas(61)/(1/2+sqrt(5)/2)^71 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^52/Lucas(62) 4180999952167715 a004 Fibonacci(29)*Lucas(63)/(1/2+sqrt(5)/2)^73 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^54/Lucas(64) 4180999952167715 a004 Fibonacci(29)*Lucas(65)/(1/2+sqrt(5)/2)^75 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^56/Lucas(66) 4180999952167715 a004 Fibonacci(29)*Lucas(67)/(1/2+sqrt(5)/2)^77 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^58/Lucas(68) 4180999952167715 a004 Fibonacci(29)*Lucas(69)/(1/2+sqrt(5)/2)^79 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^60/Lucas(70) 4180999952167715 a004 Fibonacci(29)*Lucas(71)/(1/2+sqrt(5)/2)^81 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^62/Lucas(72) 4180999952167715 a004 Fibonacci(29)*Lucas(73)/(1/2+sqrt(5)/2)^83 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^64/Lucas(74) 4180999952167715 a004 Fibonacci(29)*Lucas(75)/(1/2+sqrt(5)/2)^85 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^66/Lucas(76) 4180999952167715 a004 Fibonacci(29)*Lucas(77)/(1/2+sqrt(5)/2)^87 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^68/Lucas(78) 4180999952167715 a004 Fibonacci(29)*Lucas(79)/(1/2+sqrt(5)/2)^89 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^70/Lucas(80) 4180999952167715 a004 Fibonacci(29)*Lucas(81)/(1/2+sqrt(5)/2)^91 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^72/Lucas(82) 4180999952167715 a004 Fibonacci(29)*Lucas(83)/(1/2+sqrt(5)/2)^93 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^74/Lucas(84) 4180999952167715 a004 Fibonacci(29)*Lucas(85)/(1/2+sqrt(5)/2)^95 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^76/Lucas(86) 4180999952167715 a004 Fibonacci(29)*Lucas(87)/(1/2+sqrt(5)/2)^97 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^78/Lucas(88) 4180999952167715 a004 Fibonacci(29)*Lucas(89)/(1/2+sqrt(5)/2)^99 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^80/Lucas(90) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^82/Lucas(92) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^84/Lucas(94) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^86/Lucas(96) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^88/Lucas(98) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^90/Lucas(100) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^89/Lucas(99) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^87/Lucas(97) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^85/Lucas(95) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^83/Lucas(93) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^81/Lucas(91) 4180999952167715 a004 Fibonacci(29)*Lucas(90)/(1/2+sqrt(5)/2)^100 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^79/Lucas(89) 4180999952167715 a004 Fibonacci(29)*Lucas(88)/(1/2+sqrt(5)/2)^98 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^77/Lucas(87) 4180999952167715 a004 Fibonacci(29)*Lucas(86)/(1/2+sqrt(5)/2)^96 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^75/Lucas(85) 4180999952167715 a004 Fibonacci(29)*Lucas(84)/(1/2+sqrt(5)/2)^94 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^73/Lucas(83) 4180999952167715 a004 Fibonacci(29)*Lucas(82)/(1/2+sqrt(5)/2)^92 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^71/Lucas(81) 4180999952167715 a004 Fibonacci(29)*Lucas(80)/(1/2+sqrt(5)/2)^90 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^69/Lucas(79) 4180999952167715 a004 Fibonacci(29)*Lucas(78)/(1/2+sqrt(5)/2)^88 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^67/Lucas(77) 4180999952167715 a004 Fibonacci(29)*Lucas(76)/(1/2+sqrt(5)/2)^86 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^65/Lucas(75) 4180999952167715 a004 Fibonacci(29)*Lucas(74)/(1/2+sqrt(5)/2)^84 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^63/Lucas(73) 4180999952167715 a004 Fibonacci(29)*Lucas(72)/(1/2+sqrt(5)/2)^82 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^61/Lucas(71) 4180999952167715 a004 Fibonacci(29)*Lucas(70)/(1/2+sqrt(5)/2)^80 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^59/Lucas(69) 4180999952167715 a004 Fibonacci(29)*Lucas(68)/(1/2+sqrt(5)/2)^78 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^57/Lucas(67) 4180999952167715 a004 Fibonacci(29)*Lucas(66)/(1/2+sqrt(5)/2)^76 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^55/Lucas(65) 4180999952167715 a004 Fibonacci(29)*Lucas(64)/(1/2+sqrt(5)/2)^74 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^53/Lucas(63) 4180999952167715 a004 Fibonacci(29)*Lucas(62)/(1/2+sqrt(5)/2)^72 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^51/Lucas(61) 4180999952167715 a004 Fibonacci(29)*Lucas(60)/(1/2+sqrt(5)/2)^70 4180999952167715 a001 514229/2139295485799*14662949395604^(7/9) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^49/Lucas(59) 4180999952167715 a004 Fibonacci(60)/Lucas(29)/(1/2+sqrt(5)/2)^12 4180999952167715 a004 Fibonacci(62)/Lucas(29)/(1/2+sqrt(5)/2)^14 4180999952167715 a004 Fibonacci(64)/Lucas(29)/(1/2+sqrt(5)/2)^16 4180999952167715 a004 Fibonacci(66)/Lucas(29)/(1/2+sqrt(5)/2)^18 4180999952167715 a004 Fibonacci(68)/Lucas(29)/(1/2+sqrt(5)/2)^20 4180999952167715 a004 Fibonacci(70)/Lucas(29)/(1/2+sqrt(5)/2)^22 4180999952167715 a004 Fibonacci(72)/Lucas(29)/(1/2+sqrt(5)/2)^24 4180999952167715 a004 Fibonacci(74)/Lucas(29)/(1/2+sqrt(5)/2)^26 4180999952167715 a004 Fibonacci(76)/Lucas(29)/(1/2+sqrt(5)/2)^28 4180999952167715 a004 Fibonacci(78)/Lucas(29)/(1/2+sqrt(5)/2)^30 4180999952167715 a004 Fibonacci(80)/Lucas(29)/(1/2+sqrt(5)/2)^32 4180999952167715 a004 Fibonacci(82)/Lucas(29)/(1/2+sqrt(5)/2)^34 4180999952167715 a004 Fibonacci(84)/Lucas(29)/(1/2+sqrt(5)/2)^36 4180999952167715 a004 Fibonacci(86)/Lucas(29)/(1/2+sqrt(5)/2)^38 4180999952167715 a004 Fibonacci(88)/Lucas(29)/(1/2+sqrt(5)/2)^40 4180999952167715 a004 Fibonacci(90)/Lucas(29)/(1/2+sqrt(5)/2)^42 4180999952167715 a004 Fibonacci(92)/Lucas(29)/(1/2+sqrt(5)/2)^44 4180999952167715 a004 Fibonacci(94)/Lucas(29)/(1/2+sqrt(5)/2)^46 4180999952167715 a004 Fibonacci(96)/Lucas(29)/(1/2+sqrt(5)/2)^48 4180999952167715 a004 Fibonacci(98)/Lucas(29)/(1/2+sqrt(5)/2)^50 4180999952167715 a004 Fibonacci(100)/Lucas(29)/(1/2+sqrt(5)/2)^52 4180999952167715 a004 Fibonacci(29)*Lucas(58)/(1/2+sqrt(5)/2)^68 4180999952167715 a004 Fibonacci(99)/Lucas(29)/(1/2+sqrt(5)/2)^51 4180999952167715 a004 Fibonacci(97)/Lucas(29)/(1/2+sqrt(5)/2)^49 4180999952167715 a004 Fibonacci(95)/Lucas(29)/(1/2+sqrt(5)/2)^47 4180999952167715 a004 Fibonacci(93)/Lucas(29)/(1/2+sqrt(5)/2)^45 4180999952167715 a004 Fibonacci(91)/Lucas(29)/(1/2+sqrt(5)/2)^43 4180999952167715 a004 Fibonacci(89)/Lucas(29)/(1/2+sqrt(5)/2)^41 4180999952167715 a004 Fibonacci(87)/Lucas(29)/(1/2+sqrt(5)/2)^39 4180999952167715 a004 Fibonacci(85)/Lucas(29)/(1/2+sqrt(5)/2)^37 4180999952167715 a004 Fibonacci(83)/Lucas(29)/(1/2+sqrt(5)/2)^35 4180999952167715 a004 Fibonacci(81)/Lucas(29)/(1/2+sqrt(5)/2)^33 4180999952167715 a004 Fibonacci(79)/Lucas(29)/(1/2+sqrt(5)/2)^31 4180999952167715 a004 Fibonacci(77)/Lucas(29)/(1/2+sqrt(5)/2)^29 4180999952167715 a004 Fibonacci(75)/Lucas(29)/(1/2+sqrt(5)/2)^27 4180999952167715 a004 Fibonacci(73)/Lucas(29)/(1/2+sqrt(5)/2)^25 4180999952167715 a004 Fibonacci(71)/Lucas(29)/(1/2+sqrt(5)/2)^23 4180999952167715 a004 Fibonacci(69)/Lucas(29)/(1/2+sqrt(5)/2)^21 4180999952167715 a004 Fibonacci(67)/Lucas(29)/(1/2+sqrt(5)/2)^19 4180999952167715 a004 Fibonacci(65)/Lucas(29)/(1/2+sqrt(5)/2)^17 4180999952167715 a004 Fibonacci(63)/Lucas(29)/(1/2+sqrt(5)/2)^15 4180999952167715 a004 Fibonacci(61)/Lucas(29)/(1/2+sqrt(5)/2)^13 4180999952167715 a004 Fibonacci(59)/Lucas(29)/(1/2+sqrt(5)/2)^11 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^47/Lucas(57) 4180999952167715 a004 Fibonacci(57)/Lucas(29)/(1/2+sqrt(5)/2)^9 4180999952167715 a001 514229/2139295485799*505019158607^(7/8) 4180999952167715 a004 Fibonacci(29)*Lucas(56)/(1/2+sqrt(5)/2)^66 4180999952167715 a001 514229/312119004989*14662949395604^(5/7) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^45/Lucas(55) 4180999952167715 a004 Fibonacci(55)/Lucas(29)/(1/2+sqrt(5)/2)^7 4180999952167715 a001 514229/1322157322203*192900153618^(8/9) 4180999952167715 a001 514229/5600748293801*192900153618^(17/18) 4180999952167715 a004 Fibonacci(29)*Lucas(54)/(1/2+sqrt(5)/2)^64 4180999952167715 a001 514229/312119004989*192900153618^(5/6) 4180999952167715 a001 27416783093600617/6557470319842 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^43/Lucas(53) 4180999952167715 a004 Fibonacci(53)/Lucas(29)/(1/2+sqrt(5)/2)^5 4180999952167715 a001 514229/192900153618*73681302247^(11/13) 4180999952167715 a001 514229/1322157322203*73681302247^(12/13) 4180999952167715 a004 Fibonacci(29)*Lucas(52)/(1/2+sqrt(5)/2)^62 4180999952167715 a001 10472279279571946/2504730781961 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^41/Lucas(51) 4180999952167715 a004 Fibonacci(51)/Lucas(29)/(1/2+sqrt(5)/2)^3 4180999952167715 a001 514229/312119004989*28143753123^(9/10) 4180999952167715 a004 Fibonacci(29)*Lucas(50)/(1/2+sqrt(5)/2)^60 4180999952167715 a001 514229/17393796001*45537549124^(13/17) 4180999952167715 a001 4000054745115221/956722026041 4180999952167715 a001 514229/17393796001*14662949395604^(13/21) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^39/Lucas(49) 4180999952167715 a004 Fibonacci(49)/Lucas(29)/(1/2+sqrt(5)/2) 4180999952167715 a001 514229/17393796001*192900153618^(13/18) 4180999952167715 a001 514229/17393796001*73681302247^(3/4) 4180999952167715 a001 514229/28143753123*10749957122^(5/6) 4180999952167715 a001 514229/73681302247*10749957122^(7/8) 4180999952167715 a001 514229/192900153618*10749957122^(11/12) 4180999952167715 a001 514229/312119004989*10749957122^(15/16) 4180999952167715 a001 514229/505019158607*10749957122^(23/24) 4180999952167715 a004 Fibonacci(29)*Lucas(48)/(1/2+sqrt(5)/2)^58 4180999952167715 a001 514229/17393796001*10749957122^(13/16) 4180999952167715 a001 1527884955773717/365435296162 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^37/Lucas(47) 4180999952167715 a001 2971215073/2299702+2971215073/2299702*5^(1/2) 4180999952167715 a001 514229/2537720636*2537720636^(7/9) 4180999952167715 a001 514229/10749957122*4106118243^(19/23) 4180999952167715 a001 514229/28143753123*4106118243^(20/23) 4180999952167715 a001 514229/73681302247*4106118243^(21/23) 4180999952167715 a001 514229/192900153618*4106118243^(22/23) 4180999952167715 a004 Fibonacci(29)*Lucas(46)/(1/2+sqrt(5)/2)^56 4180999952167715 a001 1836311903/1149851*599074578^(1/21) 4180999952167715 a001 267914296/1149851*228826127^(3/20) 4180999952167715 a001 1134903170/1149851*2537720636^(1/15) 4180999952167715 a001 514229/2537720636*17393796001^(5/7) 4180999952167715 a001 1134903170/1149851*45537549124^(1/17) 4180999952167715 a001 116720024441186/27916772489 4180999952167715 a001 514229/2537720636*14662949395604^(5/9) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^35/Lucas(45) 4180999952167715 a001 1134903170/1149851*14662949395604^(1/21) 4180999952167715 a001 1134903170/1149851*(1/2+1/2*5^(1/2))^3 4180999952167715 a001 1134903170/1149851*192900153618^(1/18) 4180999952167715 a001 1134903170/1149851*10749957122^(1/16) 4180999952167715 a001 514229/2537720636*28143753123^(7/10) 4180999952167715 a001 514229/4106118243*1568397607^(9/11) 4180999952167715 a001 514229/10749957122*1568397607^(19/22) 4180999952167715 a001 1134903170/1149851*599074578^(1/14) 4180999952167715 a001 514229/28143753123*1568397607^(10/11) 4180999952167715 a001 514229/73681302247*1568397607^(21/22) 4180999952167715 a004 Fibonacci(29)*Lucas(44)/(1/2+sqrt(5)/2)^54 4180999952167715 a001 1836311903/1149851*228826127^(1/20) 4180999952167715 a001 514229/969323029*2537720636^(11/15) 4180999952167715 a001 433494437/1149851*2537720636^(1/9) 4180999952167715 a001 514229/969323029*45537549124^(11/17) 4180999952167715 a001 222915410844073/53316291173 4180999952167715 a001 514229/969323029*312119004989^(3/5) 4180999952167715 a001 433494437/1149851*312119004989^(1/11) 4180999952167715 a001 514229/969323029*14662949395604^(11/21) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^33/Lucas(43) 4180999952167715 a001 433494437/1149851*(1/2+1/2*5^(1/2))^5 4180999952167715 a001 514229/969323029*192900153618^(11/18) 4180999952167715 a001 433494437/1149851*28143753123^(1/10) 4180999952167715 a001 514229/969323029*10749957122^(11/16) 4180999952167715 a001 514229/969323029*1568397607^(3/4) 4180999952167715 a001 701408733/1149851*228826127^(1/10) 4180999952167715 a001 514229/1568397607*599074578^(17/21) 4180999952167715 a001 514229/4106118243*599074578^(6/7) 4180999952167715 a001 514229/2537720636*599074578^(5/6) 4180999952167715 a001 514229/10749957122*599074578^(19/21) 4180999952167715 a001 514229/17393796001*599074578^(13/14) 4180999952167715 a001 514229/28143753123*599074578^(20/21) 4180999952167715 a004 Fibonacci(29)*Lucas(42)/(1/2+sqrt(5)/2)^52 4180999952167715 a001 514229/969323029*599074578^(11/14) 4180999952167715 a001 433494437/1149851*228826127^(1/8) 4180999952167715 a001 1836311903/1149851*87403803^(1/19) 4180999952167715 a001 85146110326289/20365011074 4180999952167715 a001 165580141/1149851*17393796001^(1/7) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^31/Lucas(41) 4180999952167715 a001 514229/370248451*9062201101803^(1/2) 4180999952167715 a001 165580141/1149851*14662949395604^(1/9) 4180999952167715 a001 165580141/1149851*(1/2+1/2*5^(1/2))^7 4180999952167715 a001 165580141/1149851*599074578^(1/6) 4180999952167715 a001 102334155/1149851*87403803^(4/19) 4180999952167715 a001 514229/599074578*228826127^(4/5) 4180999952167715 a001 701408733/1149851*87403803^(2/19) 4180999952167715 a001 514229/1568397607*228826127^(17/20) 4180999952167715 a001 514229/2537720636*228826127^(7/8) 4180999952167715 a001 514229/4106118243*228826127^(9/10) 4180999952167715 a001 267914296/1149851*87403803^(3/19) 4180999952167715 a001 514229/10749957122*228826127^(19/20) 4180999952167715 a004 Fibonacci(29)*Lucas(40)/(1/2+sqrt(5)/2)^50 4180999952167715 a001 63245986/1149851*141422324^(3/13) 4180999952167715 a001 1836311903/1149851*33385282^(1/18) 4180999952167715 a001 63245986/1149851*2537720636^(1/5) 4180999952167715 a001 32522920134794/7778742049 4180999952167715 a001 63245986/1149851*45537549124^(3/17) 4180999952167715 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^29/Lucas(39) 4180999952167715 a001 514229/141422324*1322157322203^(1/2) 4180999952167715 a001 63245986/1149851*14662949395604^(1/7) 4180999952167715 a001 63245986/1149851*(1/2+1/2*5^(1/2))^9 4180999952167715 a001 63245986/1149851*192900153618^(1/6) 4180999952167715 a001 63245986/1149851*10749957122^(3/16) 4180999952167715 a001 63245986/1149851*599074578^(3/14) 4180999952167715 a001 1134903170/1149851*33385282^(1/12) 4180999952167715 a001 514229/228826127*87403803^(15/19) 4180999952167716 a001 701408733/1149851*33385282^(1/9) 4180999952167716 a001 514229/599074578*87403803^(16/19) 4180999952167716 a001 514229/1568397607*87403803^(17/19) 4180999952167716 a001 39088169/1149851*33385282^(5/18) 4180999952167716 a001 514229/4106118243*87403803^(18/19) 4180999952167716 a004 Fibonacci(29)*Lucas(38)/(1/2+sqrt(5)/2)^48 4180999952167716 a001 267914296/1149851*33385282^(1/6) 4180999952167716 a001 102334155/1149851*33385282^(2/9) 4180999952167716 a001 63245986/1149851*33385282^(1/4) 4180999952167716 a001 514229/54018521*141422324^(9/13) 4180999952167717 a001 514229/54018521*2537720636^(3/5) 4180999952167717 a001 12422650078093/2971215073 4180999952167717 a001 514229/54018521*45537549124^(9/17) 4180999952167717 a001 24157817/1149851*312119004989^(1/5) 4180999952167717 a001 514229/54018521*817138163596^(9/19) 4180999952167717 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^27/Lucas(37) 4180999952167717 a001 24157817/1149851*(1/2+1/2*5^(1/2))^11 4180999952167717 a001 514229/54018521*192900153618^(1/2) 4180999952167717 a001 514229/54018521*10749957122^(9/16) 4180999952167717 a001 24157817/1149851*1568397607^(1/4) 4180999952167717 a001 514229/54018521*599074578^(9/14) 4180999952167717 a001 1836311903/1149851*12752043^(1/17) 4180999952167718 a001 514229/87403803*33385282^(7/9) 4180999952167718 a001 514229/20633239*20633239^(5/7) 4180999952167718 a001 701408733/1149851*12752043^(2/17) 4180999952167718 a001 514229/228826127*33385282^(5/6) 4180999952167718 a001 514229/599074578*33385282^(8/9) 4180999952167719 a001 514229/969323029*33385282^(11/12) 4180999952167719 a001 514229/1568397607*33385282^(17/18) 4180999952167719 a004 Fibonacci(29)*Lucas(36)/(1/2+sqrt(5)/2)^46 4180999952167719 a001 514229/54018521*33385282^(3/4) 4180999952167720 a001 267914296/1149851*12752043^(3/17) 4180999952167720 a001 14930352/1149851*12752043^(6/17) 4180999952167721 a001 102334155/1149851*12752043^(4/17) 4180999952167722 a001 39088169/1149851*12752043^(5/17) 4180999952167725 a001 9227465/1149851*141422324^(1/3) 4180999952167725 a001 949006019897/226980634 4180999952167725 a001 514229/20633239*2537720636^(5/9) 4180999952167725 a001 514229/20633239*312119004989^(5/11) 4180999952167725 a001 514229/20633239*(1/2+1/2*5^(1/2))^25 4180999952167725 a001 514229/20633239*3461452808002^(5/12) 4180999952167725 a001 9227465/1149851*(1/2+1/2*5^(1/2))^13 4180999952167725 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^13/Lucas(29) 4180999952167725 a001 9227465/1149851*73681302247^(1/4) 4180999952167725 a001 514229/20633239*28143753123^(1/2) 4180999952167725 a001 514229/20633239*228826127^(5/8) 4180999952167726 a001 1836311903/1149851*4870847^(1/16) 4180999952167731 a001 514229/33385282*12752043^(13/17) 4180999952167736 a001 514229/87403803*12752043^(14/17) 4180999952167737 a001 701408733/1149851*4870847^(1/8) 4180999952167738 a001 514229/228826127*12752043^(15/17) 4180999952167739 a001 514229/599074578*12752043^(16/17) 4180999952167741 a004 Fibonacci(29)*Lucas(34)/(1/2+sqrt(5)/2)^44 4180999952167748 a001 267914296/1149851*4870847^(3/16) 4180999952167752 a001 3524578/1149851*7881196^(5/11) 4180999952167759 a001 102334155/1149851*4870847^(1/4) 4180999952167767 a001 5702887/1149851*4870847^(7/16) 4180999952167770 a001 39088169/1149851*4870847^(5/16) 4180999952167777 a001 14930352/1149851*4870847^(3/8) 4180999952167778 a001 3524578/1149851*20633239^(3/7) 4180999952167782 a001 3524578/1149851*141422324^(5/13) 4180999952167782 a001 1812440220362/433494437 4180999952167782 a001 3524578/1149851*2537720636^(1/3) 4180999952167782 a001 3524578/1149851*45537549124^(5/17) 4180999952167782 a001 3524578/1149851*312119004989^(3/11) 4180999952167782 a001 514229/7881196*(1/2+1/2*5^(1/2))^23 4180999952167782 a001 3524578/1149851*14662949395604^(5/21) 4180999952167782 a001 3524578/1149851*(1/2+1/2*5^(1/2))^15 4180999952167782 a001 3524578/1149851*192900153618^(5/18) 4180999952167782 a001 3524578/1149851*28143753123^(3/10) 4180999952167782 a001 3524578/1149851*10749957122^(5/16) 4180999952167782 a001 514229/7881196*4106118243^(1/2) 4180999952167782 a001 3524578/1149851*599074578^(5/14) 4180999952167782 a001 3524578/1149851*228826127^(3/8) 4180999952167784 a001 3524578/1149851*33385282^(5/12) 4180999952167796 a001 1836311903/1149851*1860498^(1/15) 4180999952167822 a001 514229/12752043*4870847^(3/4) 4180999952167836 a001 1134903170/1149851*1860498^(1/10) 4180999952167855 a001 514229/33385282*4870847^(13/16) 4180999952167869 a001 514229/87403803*4870847^(7/8) 4180999952167876 a001 701408733/1149851*1860498^(2/15) 4180999952167880 a001 514229/228826127*4870847^(15/16) 4180999952167891 a004 Fibonacci(29)*Lucas(32)/(1/2+sqrt(5)/2)^42 4180999952167916 a001 433494437/1149851*1860498^(1/6) 4180999952167925 a001 63245986/4870847*710647^(3/7) 4180999952167957 a001 267914296/1149851*1860498^(1/5) 4180999952167971 a001 102334155/3010349*710647^(5/14) 4180999952168037 a001 102334155/1149851*1860498^(4/15) 4180999952168075 a001 165580141/12752043*710647^(3/7) 4180999952168078 a001 63245986/1149851*1860498^(3/10) 4180999952168097 a001 433494437/33385282*710647^(3/7) 4180999952168100 a001 1134903170/87403803*710647^(3/7) 4180999952168101 a001 2971215073/228826127*710647^(3/7) 4180999952168101 a001 7778742049/599074578*710647^(3/7) 4180999952168101 a001 20365011074/1568397607*710647^(3/7) 4180999952168101 a001 53316291173/4106118243*710647^(3/7) 4180999952168101 a001 139583862445/10749957122*710647^(3/7) 4180999952168101 a001 365435296162/28143753123*710647^(3/7) 4180999952168101 a001 956722026041/73681302247*710647^(3/7) 4180999952168101 a001 2504730781961/192900153618*710647^(3/7) 4180999952168101 a001 10610209857723/817138163596*710647^(3/7) 4180999952168101 a001 4052739537881/312119004989*710647^(3/7) 4180999952168101 a001 1548008755920/119218851371*710647^(3/7) 4180999952168101 a001 591286729879/45537549124*710647^(3/7) 4180999952168101 a001 7787980473/599786069*710647^(3/7) 4180999952168101 a001 86267571272/6643838879*710647^(3/7) 4180999952168101 a001 32951280099/2537720636*710647^(3/7) 4180999952168101 a001 12586269025/969323029*710647^(3/7) 4180999952168101 a001 4807526976/370248451*710647^(3/7) 4180999952168101 a001 1836311903/141422324*710647^(3/7) 4180999952168102 a001 701408733/54018521*710647^(3/7) 4180999952168111 a001 9238424/711491*710647^(3/7) 4180999952168117 a001 39088169/1149851*1860498^(1/3) 4180999952168134 a001 514229/3010349*7881196^(7/11) 4180999952168143 a001 1762289/930249*710647^(4/7) 4180999952168168 a001 102334155/7881196*710647^(3/7) 4180999952168171 a001 514229/3010349*20633239^(3/5) 4180999952168176 a001 514229/3010349*141422324^(7/13) 4180999952168176 a001 692290561601/165580141 4180999952168177 a001 514229/3010349*2537720636^(7/15) 4180999952168177 a001 514229/3010349*17393796001^(3/7) 4180999952168177 a001 514229/3010349*45537549124^(7/17) 4180999952168177 a001 1346269/1149851*45537549124^(1/3) 4180999952168177 a001 514229/3010349*14662949395604^(1/3) 4180999952168177 a001 514229/3010349*(1/2+1/2*5^(1/2))^21 4180999952168177 a001 1346269/1149851*(1/2+1/2*5^(1/2))^17 4180999952168177 a001 514229/3010349*192900153618^(7/18) 4180999952168177 a001 514229/3010349*10749957122^(7/16) 4180999952168177 a001 514229/3010349*599074578^(1/2) 4180999952168179 a001 514229/3010349*33385282^(7/12) 4180999952168183 a001 2178309/1149851*1860498^(8/15) 4180999952168189 a001 1346269/1149851*12752043^(1/2) 4180999952168195 a001 14930352/1149851*1860498^(2/5) 4180999952168253 a001 5702887/1149851*1860498^(7/15) 4180999952168306 a001 1836311903/1149851*710647^(1/14) 4180999952168386 a001 3524578/1149851*1860498^(1/2) 4180999952168425 a001 514229/4870847*1860498^(11/15) 4180999952168518 a001 24157817/4870847*710647^(1/2) 4180999952168562 a001 39088169/3010349*710647^(3/7) 4180999952168656 a001 514229/12752043*1860498^(4/5) 4180999952168667 a001 63245986/12752043*710647^(1/2) 4180999952168689 a001 165580141/33385282*710647^(1/2) 4180999952168692 a001 433494437/87403803*710647^(1/2) 4180999952168692 a001 1134903170/228826127*710647^(1/2) 4180999952168692 a001 2971215073/599074578*710647^(1/2) 4180999952168692 a001 7778742049/1568397607*710647^(1/2) 4180999952168692 a001 20365011074/4106118243*710647^(1/2) 4180999952168692 a001 53316291173/10749957122*710647^(1/2) 4180999952168692 a001 139583862445/28143753123*710647^(1/2) 4180999952168692 a001 365435296162/73681302247*710647^(1/2) 4180999952168692 a001 956722026041/192900153618*710647^(1/2) 4180999952168692 a001 2504730781961/505019158607*710647^(1/2) 4180999952168692 a001 10610209857723/2139295485799*710647^(1/2) 4180999952168692 a001 4052739537881/817138163596*710647^(1/2) 4180999952168692 a001 140728068720/28374454999*710647^(1/2) 4180999952168692 a001 591286729879/119218851371*710647^(1/2) 4180999952168692 a001 225851433717/45537549124*710647^(1/2) 4180999952168692 a001 86267571272/17393796001*710647^(1/2) 4180999952168692 a001 32951280099/6643838879*710647^(1/2) 4180999952168692 a001 1144206275/230701876*710647^(1/2) 4180999952168692 a001 4807526976/969323029*710647^(1/2) 4180999952168692 a001 1836311903/370248451*710647^(1/2) 4180999952168693 a001 701408733/141422324*710647^(1/2) 4180999952168694 a001 267914296/54018521*710647^(1/2) 4180999952168702 a001 9303105/1875749*710647^(1/2) 4180999952168732 a001 514229/20633239*1860498^(5/6) 4180999952168742 a001 7778742049/4870847*271443^(1/13) 4180999952168758 a001 514229/33385282*1860498^(13/15) 4180999952168759 a001 39088169/7881196*710647^(1/2) 4180999952168768 a001 196418/271443*271443^(9/13) 4180999952168804 a001 514229/54018521*1860498^(9/10) 4180999952168842 a001 514229/87403803*1860498^(14/15) 4180999952168892 a001 20365011074/12752043*271443^(1/13) 4180999952168898 a001 701408733/1149851*710647^(1/7) 4180999952168914 a001 53316291173/33385282*271443^(1/13) 4180999952168917 a001 139583862445/87403803*271443^(1/13) 4180999952168918 a001 365435296162/228826127*271443^(1/13) 4180999952168918 a001 956722026041/599074578*271443^(1/13) 4180999952168918 a001 2504730781961/1568397607*271443^(1/13) 4180999952168918 a001 6557470319842/4106118243*271443^(1/13) 4180999952168918 a001 10610209857723/6643838879*271443^(1/13) 4180999952168918 a001 4052739537881/2537720636*271443^(1/13) 4180999952168918 a001 1548008755920/969323029*271443^(1/13) 4180999952168918 a001 591286729879/370248451*271443^(1/13) 4180999952168918 a001 225851433717/141422324*271443^(1/13) 4180999952168919 a001 86267571272/54018521*271443^(1/13) 4180999952168923 a004 Fibonacci(29)*Lucas(30)/(1/2+sqrt(5)/2)^40 4180999952168928 a001 32951280099/20633239*271443^(1/13) 4180999952168985 a001 12586269025/7881196*271443^(1/13) 4180999952169022 a001 514229/3010349*1860498^(7/10) 4180999952169117 a001 9227465/4870847*710647^(4/7) 4180999952169129 a001 1346269/1860498*710647^(9/14) 4180999952169150 a001 14930352/3010349*710647^(1/2) 4180999952169259 a001 24157817/12752043*710647^(4/7) 4180999952169280 a001 31622993/16692641*710647^(4/7) 4180999952169283 a001 165580141/87403803*710647^(4/7) 4180999952169284 a001 433494437/228826127*710647^(4/7) 4180999952169284 a001 567451585/299537289*710647^(4/7) 4180999952169284 a001 2971215073/1568397607*710647^(4/7) 4180999952169284 a001 7778742049/4106118243*710647^(4/7) 4180999952169284 a001 10182505537/5374978561*710647^(4/7) 4180999952169284 a001 53316291173/28143753123*710647^(4/7) 4180999952169284 a001 139583862445/73681302247*710647^(4/7) 4180999952169284 a001 182717648081/96450076809*710647^(4/7) 4180999952169284 a001 956722026041/505019158607*710647^(4/7) 4180999952169284 a001 10610209857723/5600748293801*710647^(4/7) 4180999952169284 a001 591286729879/312119004989*710647^(4/7) 4180999952169284 a001 225851433717/119218851371*710647^(4/7) 4180999952169284 a001 21566892818/11384387281*710647^(4/7) 4180999952169284 a001 32951280099/17393796001*710647^(4/7) 4180999952169284 a001 12586269025/6643838879*710647^(4/7) 4180999952169284 a001 1201881744/634430159*710647^(4/7) 4180999952169284 a001 1836311903/969323029*710647^(4/7) 4180999952169284 a001 701408733/370248451*710647^(4/7) 4180999952169284 a001 66978574/35355581*710647^(4/7) 4180999952169285 a001 102334155/54018521*710647^(4/7) 4180999952169293 a001 39088169/20633239*710647^(4/7) 4180999952169347 a001 3732588/1970299*710647^(4/7) 4180999952169369 a001 165580141/710647*271443^(3/13) 4180999952169378 a001 832040/4870847*710647^(3/4) 4180999952169379 a001 4807526976/3010349*271443^(1/13) 4180999952169489 a001 267914296/1149851*710647^(3/14) 4180999952169719 a001 5702887/3010349*710647^(4/7) 4180999952169720 a001 832040/3010349*710647^(5/7) 4180999952169766 a001 3524578/4870847*710647^(9/14) 4180999952169785 a001 165580141/1149851*710647^(1/4) 4180999952169859 a001 9227465/12752043*710647^(9/14) 4180999952169873 a001 24157817/33385282*710647^(9/14) 4180999952169875 a001 63245986/87403803*710647^(9/14) 4180999952169875 a001 165580141/228826127*710647^(9/14) 4180999952169875 a001 433494437/599074578*710647^(9/14) 4180999952169875 a001 1134903170/1568397607*710647^(9/14) 4180999952169875 a001 2971215073/4106118243*710647^(9/14) 4180999952169875 a001 7778742049/10749957122*710647^(9/14) 4180999952169875 a001 20365011074/28143753123*710647^(9/14) 4180999952169875 a001 53316291173/73681302247*710647^(9/14) 4180999952169875 a001 139583862445/192900153618*710647^(9/14) 4180999952169875 a001 365435296162/505019158607*710647^(9/14) 4180999952169875 a001 10610209857723/14662949395604*710647^(9/14) 4180999952169875 a001 591286729879/817138163596*710647^(9/14) 4180999952169875 a001 225851433717/312119004989*710647^(9/14) 4180999952169875 a001 86267571272/119218851371*710647^(9/14) 4180999952169875 a001 32951280099/45537549124*710647^(9/14) 4180999952169875 a001 12586269025/17393796001*710647^(9/14) 4180999952169875 a001 4807526976/6643838879*710647^(9/14) 4180999952169875 a001 1836311903/2537720636*710647^(9/14) 4180999952169875 a001 701408733/969323029*710647^(9/14) 4180999952169875 a001 267914296/370248451*710647^(9/14) 4180999952169875 a001 102334155/141422324*710647^(9/14) 4180999952169876 a001 39088169/54018521*710647^(9/14) 4180999952169881 a001 14930352/20633239*710647^(9/14) 4180999952169917 a001 5702887/7881196*710647^(9/14) 4180999952169917 a001 208010/1970299*710647^(11/14) 4180999952170080 a001 102334155/1149851*710647^(2/7) 4180999952170160 a001 2178309/3010349*710647^(9/14) 4180999952170357 a001 2178309/7881196*710647^(5/7) 4180999952170450 a001 5702887/20633239*710647^(5/7) 4180999952170451 a001 75640/1875749*710647^(6/7) 4180999952170464 a001 14930352/54018521*710647^(5/7) 4180999952170466 a001 39088169/141422324*710647^(5/7) 4180999952170466 a001 102334155/370248451*710647^(5/7) 4180999952170466 a001 267914296/969323029*710647^(5/7) 4180999952170466 a001 701408733/2537720636*710647^(5/7) 4180999952170466 a001 1836311903/6643838879*710647^(5/7) 4180999952170466 a001 4807526976/17393796001*710647^(5/7) 4180999952170466 a001 12586269025/45537549124*710647^(5/7) 4180999952170466 a001 32951280099/119218851371*710647^(5/7) 4180999952170466 a001 86267571272/312119004989*710647^(5/7) 4180999952170466 a001 225851433717/817138163596*710647^(5/7) 4180999952170466 a001 1548008755920/5600748293801*710647^(5/7) 4180999952170466 a001 139583862445/505019158607*710647^(5/7) 4180999952170466 a001 53316291173/192900153618*710647^(5/7) 4180999952170466 a001 20365011074/73681302247*710647^(5/7) 4180999952170466 a001 7778742049/28143753123*710647^(5/7) 4180999952170466 a001 2971215073/10749957122*710647^(5/7) 4180999952170466 a001 1134903170/4106118243*710647^(5/7) 4180999952170466 a001 433494437/1568397607*710647^(5/7) 4180999952170466 a001 165580141/599074578*710647^(5/7) 4180999952170467 a001 63245986/228826127*710647^(5/7) 4180999952170467 a001 24157817/87403803*710647^(5/7) 4180999952170472 a001 9227465/33385282*710647^(5/7) 4180999952170508 a001 3524578/12752043*710647^(5/7) 4180999952170560 a001 726103/4250681*710647^(3/4) 4180999952170671 a001 39088169/1149851*710647^(5/14) 4180999952170733 a001 5702887/33385282*710647^(3/4) 4180999952170752 a001 1346269/4870847*710647^(5/7) 4180999952170758 a001 4976784/29134601*710647^(3/4) 4180999952170761 a001 39088169/228826127*710647^(3/4) 4180999952170762 a001 34111385/199691526*710647^(3/4) 4180999952170762 a001 267914296/1568397607*710647^(3/4) 4180999952170762 a001 233802911/1368706081*710647^(3/4) 4180999952170762 a001 1836311903/10749957122*710647^(3/4) 4180999952170762 a001 1602508992/9381251041*710647^(3/4) 4180999952170762 a001 12586269025/73681302247*710647^(3/4) 4180999952170762 a001 10983760033/64300051206*710647^(3/4) 4180999952170762 a001 86267571272/505019158607*710647^(3/4) 4180999952170762 a001 75283811239/440719107401*710647^(3/4) 4180999952170762 a001 2504730781961/14662949395604*710647^(3/4) 4180999952170762 a001 139583862445/817138163596*710647^(3/4) 4180999952170762 a001 53316291173/312119004989*710647^(3/4) 4180999952170762 a001 20365011074/119218851371*710647^(3/4) 4180999952170762 a001 7778742049/45537549124*710647^(3/4) 4180999952170762 a001 2971215073/17393796001*710647^(3/4) 4180999952170762 a001 1134903170/6643838879*710647^(3/4) 4180999952170762 a001 433494437/2537720636*710647^(3/4) 4180999952170762 a001 165580141/969323029*710647^(3/4) 4180999952170762 a001 63245986/370248451*710647^(3/4) 4180999952170764 a001 24157817/141422324*710647^(3/4) 4180999952170773 a001 9227465/54018521*710647^(3/4) 4180999952170839 a001 3524578/20633239*710647^(3/4) 4180999952170877 a001 264431464441/63245986 4180999952170877 a001 514229/1149851*817138163596^(1/3) 4180999952170877 a001 514229/1149851*(1/2+1/2*5^(1/2))^19 4180999952170878 a001 514229/1149851*87403803^(1/2) 4180999952170891 a001 2178309/20633239*710647^(11/14) 4180999952171033 a001 5702887/54018521*710647^(11/14) 4180999952171034 a001 832040/54018521*710647^(13/14) 4180999952171054 a001 3732588/35355581*710647^(11/14) 4180999952171057 a001 39088169/370248451*710647^(11/14) 4180999952171058 a001 102334155/969323029*710647^(11/14) 4180999952171058 a001 66978574/634430159*710647^(11/14) 4180999952171058 a001 701408733/6643838879*710647^(11/14) 4180999952171058 a001 1836311903/17393796001*710647^(11/14) 4180999952171058 a001 1201881744/11384387281*710647^(11/14) 4180999952171058 a001 12586269025/119218851371*710647^(11/14) 4180999952171058 a001 32951280099/312119004989*710647^(11/14) 4180999952171058 a001 21566892818/204284540899*710647^(11/14) 4180999952171058 a001 225851433717/2139295485799*710647^(11/14) 4180999952171058 a001 182717648081/1730726404001*710647^(11/14) 4180999952171058 a001 139583862445/1322157322203*710647^(11/14) 4180999952171058 a001 53316291173/505019158607*710647^(11/14) 4180999952171058 a001 10182505537/96450076809*710647^(11/14) 4180999952171058 a001 7778742049/73681302247*710647^(11/14) 4180999952171058 a001 2971215073/28143753123*710647^(11/14) 4180999952171058 a001 567451585/5374978561*710647^(11/14) 4180999952171058 a001 433494437/4106118243*710647^(11/14) 4180999952171058 a001 165580141/1568397607*710647^(11/14) 4180999952171058 a001 31622993/299537289*710647^(11/14) 4180999952171059 a001 24157817/228826127*710647^(11/14) 4180999952171067 a001 9227465/87403803*710647^(11/14) 4180999952171121 a001 1762289/16692641*710647^(11/14) 4180999952171259 a001 14930352/1149851*710647^(3/7) 4180999952171291 a001 1346269/7881196*710647^(3/4) 4180999952171474 a001 2178309/54018521*710647^(6/7) 4180999952171493 a001 1346269/12752043*710647^(11/14) 4180999952171624 a001 5702887/141422324*710647^(6/7) 4180999952171624 a004 Fibonacci(30)*Lucas(28)/(1/2+sqrt(5)/2)^39 4180999952171645 a001 14930352/370248451*710647^(6/7) 4180999952171649 a001 39088169/969323029*710647^(6/7) 4180999952171649 a001 9303105/230701876*710647^(6/7) 4180999952171649 a001 267914296/6643838879*710647^(6/7) 4180999952171649 a001 701408733/17393796001*710647^(6/7) 4180999952171649 a001 1836311903/45537549124*710647^(6/7) 4180999952171649 a001 4807526976/119218851371*710647^(6/7) 4180999952171649 a001 1144206275/28374454999*710647^(6/7) 4180999952171649 a001 32951280099/817138163596*710647^(6/7) 4180999952171649 a001 86267571272/2139295485799*710647^(6/7) 4180999952171649 a001 225851433717/5600748293801*710647^(6/7) 4180999952171649 a001 591286729879/14662949395604*710647^(6/7) 4180999952171649 a001 365435296162/9062201101803*710647^(6/7) 4180999952171649 a001 139583862445/3461452808002*710647^(6/7) 4180999952171649 a001 53316291173/1322157322203*710647^(6/7) 4180999952171649 a001 20365011074/505019158607*710647^(6/7) 4180999952171649 a001 7778742049/192900153618*710647^(6/7) 4180999952171649 a001 2971215073/73681302247*710647^(6/7) 4180999952171649 a001 1134903170/28143753123*710647^(6/7) 4180999952171649 a001 433494437/10749957122*710647^(6/7) 4180999952171649 a001 165580141/4106118243*710647^(6/7) 4180999952171649 a001 63245986/1568397607*710647^(6/7) 4180999952171651 a001 24157817/599074578*710647^(6/7) 4180999952171659 a001 9227465/228826127*710647^(6/7) 4180999952171716 a001 3524578/87403803*710647^(6/7) 4180999952171829 a001 5702887/1149851*710647^(1/2) 4180999952171829 a001 832040/1149851*710647^(9/14) 4180999952172064 a001 2178309/141422324*710647^(13/14) 4180999952172075 a001 567451585/930249*271443^(2/13) 4180999952172080 a001 1836311903/1149851*271443^(1/13) 4180999952172107 a001 1346269/33385282*710647^(6/7) 4180999952172215 a001 5702887/370248451*710647^(13/14) 4180999952172237 a001 14930352/969323029*710647^(13/14) 4180999952172240 a001 39088169/2537720636*710647^(13/14) 4180999952172240 a001 102334155/6643838879*710647^(13/14) 4180999952172240 a001 9238424/599786069*710647^(13/14) 4180999952172240 a001 701408733/45537549124*710647^(13/14) 4180999952172240 a001 1836311903/119218851371*710647^(13/14) 4180999952172240 a001 4807526976/312119004989*710647^(13/14) 4180999952172240 a001 12586269025/817138163596*710647^(13/14) 4180999952172240 a001 32951280099/2139295485799*710647^(13/14) 4180999952172240 a001 86267571272/5600748293801*710647^(13/14) 4180999952172240 a001 7787980473/505618944676*710647^(13/14) 4180999952172240 a001 365435296162/23725150497407*710647^(13/14) 4180999952172240 a001 139583862445/9062201101803*710647^(13/14) 4180999952172240 a001 53316291173/3461452808002*710647^(13/14) 4180999952172240 a001 20365011074/1322157322203*710647^(13/14) 4180999952172240 a001 7778742049/505019158607*710647^(13/14) 4180999952172240 a001 2971215073/192900153618*710647^(13/14) 4180999952172240 a001 1134903170/73681302247*710647^(13/14) 4180999952172240 a001 433494437/28143753123*710647^(13/14) 4180999952172240 a001 165580141/10749957122*710647^(13/14) 4180999952172241 a001 63245986/4106118243*710647^(13/14) 4180999952172242 a001 24157817/1568397607*710647^(13/14) 4180999952172250 a001 9227465/599074578*710647^(13/14) 4180999952172270 a001 2178309/1149851*710647^(4/7) 4180999952172308 a001 3524578/228826127*710647^(13/14) 4180999952172421 a001 514229/1860498*710647^(5/7) 4180999952172479 a001 1836311903/710647*103682^(1/24) 4180999952172532 a001 196418/1149851*439204^(7/9) 4180999952172630 a001 165580141/271443*103682^(1/6) 4180999952172656 a004 Fibonacci(32)*Lucas(28)/(1/2+sqrt(5)/2)^41 4180999952172701 a001 1346269/87403803*710647^(13/14) 4180999952172806 a004 Fibonacci(34)*Lucas(28)/(1/2+sqrt(5)/2)^43 4180999952172828 a004 Fibonacci(36)*Lucas(28)/(1/2+sqrt(5)/2)^45 4180999952172831 a004 Fibonacci(38)*Lucas(28)/(1/2+sqrt(5)/2)^47 4180999952172832 a004 Fibonacci(40)*Lucas(28)/(1/2+sqrt(5)/2)^49 4180999952172832 a004 Fibonacci(42)*Lucas(28)/(1/2+sqrt(5)/2)^51 4180999952172832 a004 Fibonacci(44)*Lucas(28)/(1/2+sqrt(5)/2)^53 4180999952172832 a004 Fibonacci(46)*Lucas(28)/(1/2+sqrt(5)/2)^55 4180999952172832 a004 Fibonacci(48)*Lucas(28)/(1/2+sqrt(5)/2)^57 4180999952172832 a004 Fibonacci(50)*Lucas(28)/(1/2+sqrt(5)/2)^59 4180999952172832 a004 Fibonacci(52)*Lucas(28)/(1/2+sqrt(5)/2)^61 4180999952172832 a004 Fibonacci(54)*Lucas(28)/(1/2+sqrt(5)/2)^63 4180999952172832 a004 Fibonacci(56)*Lucas(28)/(1/2+sqrt(5)/2)^65 4180999952172832 a004 Fibonacci(58)*Lucas(28)/(1/2+sqrt(5)/2)^67 4180999952172832 a004 Fibonacci(60)*Lucas(28)/(1/2+sqrt(5)/2)^69 4180999952172832 a004 Fibonacci(62)*Lucas(28)/(1/2+sqrt(5)/2)^71 4180999952172832 a004 Fibonacci(64)*Lucas(28)/(1/2+sqrt(5)/2)^73 4180999952172832 a004 Fibonacci(66)*Lucas(28)/(1/2+sqrt(5)/2)^75 4180999952172832 a004 Fibonacci(68)*Lucas(28)/(1/2+sqrt(5)/2)^77 4180999952172832 a004 Fibonacci(70)*Lucas(28)/(1/2+sqrt(5)/2)^79 4180999952172832 a004 Fibonacci(72)*Lucas(28)/(1/2+sqrt(5)/2)^81 4180999952172832 a004 Fibonacci(74)*Lucas(28)/(1/2+sqrt(5)/2)^83 4180999952172832 a004 Fibonacci(76)*Lucas(28)/(1/2+sqrt(5)/2)^85 4180999952172832 a004 Fibonacci(78)*Lucas(28)/(1/2+sqrt(5)/2)^87 4180999952172832 a004 Fibonacci(80)*Lucas(28)/(1/2+sqrt(5)/2)^89 4180999952172832 a004 Fibonacci(82)*Lucas(28)/(1/2+sqrt(5)/2)^91 4180999952172832 a004 Fibonacci(84)*Lucas(28)/(1/2+sqrt(5)/2)^93 4180999952172832 a004 Fibonacci(86)*Lucas(28)/(1/2+sqrt(5)/2)^95 4180999952172832 a004 Fibonacci(88)*Lucas(28)/(1/2+sqrt(5)/2)^97 4180999952172832 a004 Fibonacci(90)*Lucas(28)/(1/2+sqrt(5)/2)^99 4180999952172832 a004 Fibonacci(91)*Lucas(28)/(1/2+sqrt(5)/2)^100 4180999952172832 a004 Fibonacci(89)*Lucas(28)/(1/2+sqrt(5)/2)^98 4180999952172832 a004 Fibonacci(87)*Lucas(28)/(1/2+sqrt(5)/2)^96 4180999952172832 a004 Fibonacci(85)*Lucas(28)/(1/2+sqrt(5)/2)^94 4180999952172832 a004 Fibonacci(83)*Lucas(28)/(1/2+sqrt(5)/2)^92 4180999952172832 a004 Fibonacci(81)*Lucas(28)/(1/2+sqrt(5)/2)^90 4180999952172832 a004 Fibonacci(79)*Lucas(28)/(1/2+sqrt(5)/2)^88 4180999952172832 a004 Fibonacci(77)*Lucas(28)/(1/2+sqrt(5)/2)^86 4180999952172832 a004 Fibonacci(75)*Lucas(28)/(1/2+sqrt(5)/2)^84 4180999952172832 a004 Fibonacci(73)*Lucas(28)/(1/2+sqrt(5)/2)^82 4180999952172832 a004 Fibonacci(71)*Lucas(28)/(1/2+sqrt(5)/2)^80 4180999952172832 a004 Fibonacci(69)*Lucas(28)/(1/2+sqrt(5)/2)^78 4180999952172832 a004 Fibonacci(67)*Lucas(28)/(1/2+sqrt(5)/2)^76 4180999952172832 a004 Fibonacci(65)*Lucas(28)/(1/2+sqrt(5)/2)^74 4180999952172832 a004 Fibonacci(63)*Lucas(28)/(1/2+sqrt(5)/2)^72 4180999952172832 a004 Fibonacci(61)*Lucas(28)/(1/2+sqrt(5)/2)^70 4180999952172832 a004 Fibonacci(59)*Lucas(28)/(1/2+sqrt(5)/2)^68 4180999952172832 a004 Fibonacci(57)*Lucas(28)/(1/2+sqrt(5)/2)^66 4180999952172832 a001 2/317811*(1/2+1/2*5^(1/2))^47 4180999952172832 a004 Fibonacci(55)*Lucas(28)/(1/2+sqrt(5)/2)^64 4180999952172832 a004 Fibonacci(53)*Lucas(28)/(1/2+sqrt(5)/2)^62 4180999952172832 a004 Fibonacci(51)*Lucas(28)/(1/2+sqrt(5)/2)^60 4180999952172832 a004 Fibonacci(49)*Lucas(28)/(1/2+sqrt(5)/2)^58 4180999952172832 a004 Fibonacci(47)*Lucas(28)/(1/2+sqrt(5)/2)^56 4180999952172832 a004 Fibonacci(45)*Lucas(28)/(1/2+sqrt(5)/2)^54 4180999952172832 a004 Fibonacci(43)*Lucas(28)/(1/2+sqrt(5)/2)^52 4180999952172832 a004 Fibonacci(41)*Lucas(28)/(1/2+sqrt(5)/2)^50 4180999952172832 a004 Fibonacci(39)*Lucas(28)/(1/2+sqrt(5)/2)^48 4180999952172833 a004 Fibonacci(37)*Lucas(28)/(1/2+sqrt(5)/2)^46 4180999952172842 a004 Fibonacci(35)*Lucas(28)/(1/2+sqrt(5)/2)^44 4180999952172899 a004 Fibonacci(33)*Lucas(28)/(1/2+sqrt(5)/2)^42 4180999952173107 a001 2971215073/4870847*271443^(2/13) 4180999952173132 a001 121393/439204*271443^(10/13) 4180999952173257 a001 7778742049/12752043*271443^(2/13) 4180999952173279 a001 10182505537/16692641*271443^(2/13) 4180999952173282 a001 53316291173/87403803*271443^(2/13) 4180999952173283 a001 139583862445/228826127*271443^(2/13) 4180999952173283 a001 182717648081/299537289*271443^(2/13) 4180999952173283 a001 956722026041/1568397607*271443^(2/13) 4180999952173283 a001 2504730781961/4106118243*271443^(2/13) 4180999952173283 a001 3278735159921/5374978561*271443^(2/13) 4180999952173283 a001 10610209857723/17393796001*271443^(2/13) 4180999952173283 a001 4052739537881/6643838879*271443^(2/13) 4180999952173283 a001 1134903780/1860499*271443^(2/13) 4180999952173283 a001 591286729879/969323029*271443^(2/13) 4180999952173283 a001 225851433717/370248451*271443^(2/13) 4180999952173283 a001 21566892818/35355581*271443^(2/13) 4180999952173284 a001 32951280099/54018521*271443^(2/13) 4180999952173293 a001 1144206275/1875749*271443^(2/13) 4180999952173293 a004 Fibonacci(31)*Lucas(28)/(1/2+sqrt(5)/2)^40 4180999952173350 a001 1201881744/1970299*271443^(2/13) 4180999952173734 a001 63245986/710647*271443^(4/13) 4180999952173744 a001 1836311903/3010349*271443^(2/13) 4180999952174044 a001 514229/4870847*710647^(11/14) 4180999952174386 a001 514229/3010349*710647^(3/4) 4180999952174647 a001 1346269/439204*439204^(5/9) 4180999952174786 a001 514229/12752043*710647^(6/7) 4180999952175399 a001 514229/33385282*710647^(13/14) 4180999952175994 a004 Fibonacci(29)*Lucas(28)/(1/2+sqrt(5)/2)^38 4180999952176440 a001 433494437/1860498*271443^(3/13) 4180999952176445 a001 701408733/1149851*271443^(2/13) 4180999952176569 a001 5702887/439204*439204^(4/9) 4180999952177472 a001 1134903170/4870847*271443^(3/13) 4180999952177622 a001 2971215073/12752043*271443^(3/13) 4180999952177644 a001 7778742049/33385282*271443^(3/13) 4180999952177647 a001 20365011074/87403803*271443^(3/13) 4180999952177648 a001 53316291173/228826127*271443^(3/13) 4180999952177648 a001 139583862445/599074578*271443^(3/13) 4180999952177648 a001 365435296162/1568397607*271443^(3/13) 4180999952177648 a001 956722026041/4106118243*271443^(3/13) 4180999952177648 a001 2504730781961/10749957122*271443^(3/13) 4180999952177648 a001 6557470319842/28143753123*271443^(3/13) 4180999952177648 a001 10610209857723/45537549124*271443^(3/13) 4180999952177648 a001 4052739537881/17393796001*271443^(3/13) 4180999952177648 a001 1548008755920/6643838879*271443^(3/13) 4180999952177648 a001 591286729879/2537720636*271443^(3/13) 4180999952177648 a001 225851433717/969323029*271443^(3/13) 4180999952177648 a001 86267571272/370248451*271443^(3/13) 4180999952177648 a001 63246219/271444*271443^(3/13) 4180999952177649 a001 12586269025/54018521*271443^(3/13) 4180999952177658 a001 4807526976/20633239*271443^(3/13) 4180999952177715 a001 1836311903/7881196*271443^(3/13) 4180999952177912 a001 317811/439204*7881196^(6/11) 4180999952177943 a001 196418/710647*20633239^(4/7) 4180999952177948 a001 317811/439204*141422324^(6/13) 4180999952177948 a001 196418/710647*2537720636^(4/9) 4180999952177948 a001 317811/439204*2537720636^(2/5) 4180999952177948 a001 317811/439204*45537549124^(6/17) 4180999952177948 a001 196418/710647*(1/2+1/2*5^(1/2))^20 4180999952177948 a001 196418/710647*23725150497407^(5/16) 4180999952177948 a001 196418/710647*505019158607^(5/14) 4180999952177948 a001 317811/439204*14662949395604^(2/7) 4180999952177948 a001 317811/439204*(1/2+1/2*5^(1/2))^18 4180999952177948 a001 317811/439204*192900153618^(1/3) 4180999952177948 a001 196418/710647*73681302247^(5/13) 4180999952177948 a001 196418/710647*28143753123^(2/5) 4180999952177948 a001 317811/439204*10749957122^(3/8) 4180999952177948 a001 196418/710647*10749957122^(5/12) 4180999952177948 a001 317811/439204*4106118243^(9/23) 4180999952177948 a001 196418/710647*4106118243^(10/23) 4180999952177948 a001 317811/439204*1568397607^(9/22) 4180999952177948 a001 196418/710647*1568397607^(5/11) 4180999952177948 a001 317811/439204*599074578^(3/7) 4180999952177948 a001 196418/710647*599074578^(10/21) 4180999952177948 a001 317811/439204*228826127^(9/20) 4180999952177948 a001 196418/710647*228826127^(1/2) 4180999952177949 a001 317811/439204*87403803^(9/19) 4180999952177949 a001 196418/710647*87403803^(10/19) 4180999952177950 a001 317811/439204*33385282^(1/2) 4180999952177951 a001 196418/710647*33385282^(5/9) 4180999952177952 a001 611998049/146376 4180999952177962 a001 317811/439204*12752043^(9/17) 4180999952177964 a001 196418/710647*12752043^(10/17) 4180999952178048 a001 317811/439204*4870847^(9/16) 4180999952178059 a001 196418/710647*4870847^(5/8) 4180999952178100 a001 24157817/710647*271443^(5/13) 4180999952178109 a001 701408733/3010349*271443^(3/13) 4180999952178673 a001 317811/439204*1860498^(3/5) 4180999952178754 a001 196418/710647*1860498^(2/3) 4180999952179004 a001 24157817/439204*439204^(1/3) 4180999952179551 a001 267084832/103361*103682^(1/24) 4180999952180298 a001 165580141/167761*64079^(3/23) 4180999952180582 a001 12586269025/4870847*103682^(1/24) 4180999952180733 a001 10983760033/4250681*103682^(1/24) 4180999952180755 a001 43133785636/16692641*103682^(1/24) 4180999952180758 a001 75283811239/29134601*103682^(1/24) 4180999952180758 a001 591286729879/228826127*103682^(1/24) 4180999952180758 a001 86000486440/33281921*103682^(1/24) 4180999952180758 a001 4052739537881/1568397607*103682^(1/24) 4180999952180758 a001 3536736619241/1368706081*103682^(1/24) 4180999952180758 a001 3278735159921/1268860318*103682^(1/24) 4180999952180758 a001 2504730781961/969323029*103682^(1/24) 4180999952180758 a001 956722026041/370248451*103682^(1/24) 4180999952180759 a001 182717648081/70711162*103682^(1/24) 4180999952180760 a001 139583862445/54018521*103682^(1/24) 4180999952180768 a001 53316291173/20633239*103682^(1/24) 4180999952180805 a001 165580141/1860498*271443^(4/13) 4180999952180810 a001 267914296/1149851*271443^(3/13) 4180999952180826 a001 10182505537/3940598*103682^(1/24) 4180999952181220 a001 7778742049/3010349*103682^(1/24) 4180999952181411 a001 102334155/439204*439204^(2/9) 4180999952181836 a001 433494437/4870847*271443^(4/13) 4180999952181987 a001 1134903170/12752043*271443^(4/13) 4180999952182009 a001 2971215073/33385282*271443^(4/13) 4180999952182012 a001 7778742049/87403803*271443^(4/13) 4180999952182013 a001 20365011074/228826127*271443^(4/13) 4180999952182013 a001 53316291173/599074578*271443^(4/13) 4180999952182013 a001 139583862445/1568397607*271443^(4/13) 4180999952182013 a001 365435296162/4106118243*271443^(4/13) 4180999952182013 a001 956722026041/10749957122*271443^(4/13) 4180999952182013 a001 2504730781961/28143753123*271443^(4/13) 4180999952182013 a001 6557470319842/73681302247*271443^(4/13) 4180999952182013 a001 10610209857723/119218851371*271443^(4/13) 4180999952182013 a001 4052739537881/45537549124*271443^(4/13) 4180999952182013 a001 1548008755920/17393796001*271443^(4/13) 4180999952182013 a001 591286729879/6643838879*271443^(4/13) 4180999952182013 a001 225851433717/2537720636*271443^(4/13) 4180999952182013 a001 86267571272/969323029*271443^(4/13) 4180999952182013 a001 32951280099/370248451*271443^(4/13) 4180999952182013 a001 12586269025/141422324*271443^(4/13) 4180999952182014 a001 4807526976/54018521*271443^(4/13) 4180999952182023 a001 1836311903/20633239*271443^(4/13) 4180999952182080 a001 3524667/39604*271443^(4/13) 4180999952182474 a001 9227465/710647*271443^(6/13) 4180999952182474 a001 267914296/3010349*271443^(4/13) 4180999952183065 a004 Fibonacci(27)*Lucas(29)/(1/2+sqrt(5)/2)^37 4180999952183271 a001 317811/439204*710647^(9/14) 4180999952183819 a001 433494437/439204*439204^(1/9) 4180999952183862 a001 196418/710647*710647^(5/7) 4180999952183921 a001 2971215073/1149851*103682^(1/24) 4180999952184620 a001 5702887/710647*271443^(1/2) 4180999952184975 a001 98209/930249*7881196^(2/3) 4180999952185019 a001 98209/930249*312119004989^(2/5) 4180999952185019 a001 98209/930249*(1/2+1/2*5^(1/2))^22 4180999952185019 a001 208010/109801*(1/2+1/2*5^(1/2))^16 4180999952185019 a001 208010/109801*23725150497407^(1/4) 4180999952185019 a001 208010/109801*73681302247^(4/13) 4180999952185019 a001 208010/109801*10749957122^(1/3) 4180999952185019 a001 98209/930249*10749957122^(11/24) 4180999952185019 a001 208010/109801*4106118243^(8/23) 4180999952185019 a001 98209/930249*4106118243^(11/23) 4180999952185019 a001 208010/109801*1568397607^(4/11) 4180999952185019 a001 98209/930249*1568397607^(1/2) 4180999952185019 a001 208010/109801*599074578^(8/21) 4180999952185019 a001 98209/930249*599074578^(11/21) 4180999952185019 a001 208010/109801*228826127^(2/5) 4180999952185019 a001 98209/930249*228826127^(11/20) 4180999952185020 a001 208010/109801*87403803^(8/19) 4180999952185020 a001 98209/930249*87403803^(11/19) 4180999952185020 a001 163427632720/39088169 4180999952185021 a001 208010/109801*33385282^(4/9) 4180999952185022 a001 98209/930249*33385282^(11/18) 4180999952185032 a001 208010/109801*12752043^(8/17) 4180999952185036 a001 98209/930249*12752043^(11/17) 4180999952185108 a001 208010/109801*4870847^(1/2) 4180999952185141 a001 98209/930249*4870847^(11/16) 4180999952185170 a001 31622993/930249*271443^(5/13) 4180999952185175 a001 102334155/1149851*271443^(4/13) 4180999952185664 a001 208010/109801*1860498^(8/15) 4180999952185766 a004 Fibonacci(27)*Lucas(31)/(1/2+sqrt(5)/2)^39 4180999952185776 a001 63245986/64079*24476^(1/7) 4180999952185905 a001 98209/930249*1860498^(11/15) 4180999952186002 a001 196418/4870847*7881196^(8/11) 4180999952186047 a001 2178309/439204*20633239^(2/5) 4180999952186051 a001 196418/4870847*141422324^(8/13) 4180999952186051 a001 196418/4870847*2537720636^(8/15) 4180999952186051 a001 2178309/439204*17393796001^(2/7) 4180999952186051 a001 196418/4870847*45537549124^(8/17) 4180999952186051 a001 196418/4870847*14662949395604^(8/21) 4180999952186051 a001 196418/4870847*(1/2+1/2*5^(1/2))^24 4180999952186051 a001 196418/4870847*192900153618^(4/9) 4180999952186051 a001 2178309/439204*14662949395604^(2/9) 4180999952186051 a001 2178309/439204*(1/2+1/2*5^(1/2))^14 4180999952186051 a001 196418/4870847*73681302247^(6/13) 4180999952186051 a001 2178309/439204*10749957122^(7/24) 4180999952186051 a001 196418/4870847*10749957122^(1/2) 4180999952186051 a001 2178309/439204*4106118243^(7/23) 4180999952186051 a001 196418/4870847*4106118243^(12/23) 4180999952186051 a001 2178309/439204*1568397607^(7/22) 4180999952186051 a001 196418/4870847*1568397607^(6/11) 4180999952186051 a001 2178309/439204*599074578^(1/3) 4180999952186051 a001 196418/4870847*599074578^(4/7) 4180999952186051 a001 2178309/439204*228826127^(7/20) 4180999952186051 a001 196418/4870847*228826127^(3/5) 4180999952186051 a001 20374242722/4873055 4180999952186051 a001 2178309/439204*87403803^(7/19) 4180999952186051 a001 196418/4870847*87403803^(12/19) 4180999952186053 a001 2178309/439204*33385282^(7/18) 4180999952186054 a001 196418/4870847*33385282^(2/3) 4180999952186062 a001 2178309/439204*12752043^(7/17) 4180999952186069 a001 196418/4870847*12752043^(12/17) 4180999952186128 a001 2178309/439204*4870847^(7/16) 4180999952186160 a004 Fibonacci(27)*Lucas(33)/(1/2+sqrt(5)/2)^41 4180999952186166 a001 196418/87403803*7881196^(10/11) 4180999952186177 a001 5702887/439204*7881196^(4/11) 4180999952186182 a001 196418/20633239*7881196^(9/11) 4180999952186183 a001 196418/4870847*4870847^(3/4) 4180999952186201 a001 165580141/4870847*271443^(5/13) 4180999952186201 a001 196418/12752043*141422324^(2/3) 4180999952186202 a001 5702887/439204*141422324^(4/13) 4180999952186202 a001 5702887/439204*2537720636^(4/15) 4180999952186202 a001 5702887/439204*45537549124^(4/17) 4180999952186202 a001 196418/12752043*(1/2+1/2*5^(1/2))^26 4180999952186202 a001 5702887/439204*817138163596^(4/19) 4180999952186202 a001 5702887/439204*14662949395604^(4/21) 4180999952186202 a001 5702887/439204*(1/2+1/2*5^(1/2))^12 4180999952186202 a001 5702887/439204*192900153618^(2/9) 4180999952186202 a001 5702887/439204*73681302247^(3/13) 4180999952186202 a001 196418/12752043*73681302247^(1/2) 4180999952186202 a001 5702887/439204*10749957122^(1/4) 4180999952186202 a001 196418/12752043*10749957122^(13/24) 4180999952186202 a001 5702887/439204*4106118243^(6/23) 4180999952186202 a001 196418/12752043*4106118243^(13/23) 4180999952186202 a001 5702887/439204*1568397607^(3/11) 4180999952186202 a001 196418/12752043*1568397607^(13/22) 4180999952186202 a001 5702887/439204*599074578^(2/7) 4180999952186202 a001 196418/12752043*599074578^(13/21) 4180999952186202 a001 560074829383/133957148 4180999952186202 a001 5702887/439204*228826127^(3/10) 4180999952186202 a001 196418/12752043*228826127^(13/20) 4180999952186202 a001 5702887/439204*87403803^(6/19) 4180999952186202 a001 196418/12752043*87403803^(13/19) 4180999952186203 a001 5702887/439204*33385282^(1/3) 4180999952186204 a001 196418/12752043*33385282^(13/18) 4180999952186210 a001 24157817/439204*7881196^(3/11) 4180999952186211 a001 5702887/439204*12752043^(6/17) 4180999952186215 a001 9227465/439204*7881196^(1/3) 4180999952186215 a001 102334155/439204*7881196^(2/11) 4180999952186216 a001 98209/16692641*20633239^(4/5) 4180999952186217 a004 Fibonacci(27)*Lucas(35)/(1/2+sqrt(5)/2)^43 4180999952186218 a001 196418/87403803*20633239^(6/7) 4180999952186221 a001 196452/5779*20633239^(2/7) 4180999952186221 a001 433494437/439204*7881196^(1/11) 4180999952186221 a001 196418/12752043*12752043^(13/17) 4180999952186224 a001 196452/5779*2537720636^(2/9) 4180999952186224 a001 98209/16692641*17393796001^(4/7) 4180999952186224 a001 98209/16692641*14662949395604^(4/9) 4180999952186224 a001 98209/16692641*(1/2+1/2*5^(1/2))^28 4180999952186224 a001 196452/5779*312119004989^(2/11) 4180999952186224 a001 196452/5779*(1/2+1/2*5^(1/2))^10 4180999952186224 a001 98209/16692641*73681302247^(7/13) 4180999952186224 a001 196452/5779*28143753123^(1/5) 4180999952186224 a001 196452/5779*10749957122^(5/24) 4180999952186224 a001 98209/16692641*10749957122^(7/12) 4180999952186224 a001 196452/5779*4106118243^(5/23) 4180999952186224 a001 98209/16692641*4106118243^(14/23) 4180999952186224 a001 196452/5779*1568397607^(5/22) 4180999952186224 a001 98209/16692641*1568397607^(7/11) 4180999952186224 a001 977529959712/233802911 4180999952186224 a001 196452/5779*599074578^(5/21) 4180999952186224 a001 98209/16692641*599074578^(2/3) 4180999952186224 a001 196452/5779*228826127^(1/4) 4180999952186224 a001 98209/16692641*228826127^(7/10) 4180999952186224 a001 196452/5779*87403803^(5/19) 4180999952186224 a001 98209/16692641*87403803^(14/19) 4180999952186225 a001 196452/5779*33385282^(5/18) 4180999952186226 a001 31622993/219602*20633239^(1/5) 4180999952186226 a004 Fibonacci(27)*Lucas(37)/(1/2+sqrt(5)/2)^45 4180999952186226 a001 165580141/439204*20633239^(1/7) 4180999952186226 a001 98209/16692641*33385282^(7/9) 4180999952186227 a001 196418/87403803*141422324^(10/13) 4180999952186227 a001 196418/87403803*2537720636^(2/3) 4180999952186227 a001 196418/87403803*45537549124^(10/17) 4180999952186227 a001 196418/87403803*312119004989^(6/11) 4180999952186227 a001 196418/87403803*14662949395604^(10/21) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^30/Lucas(38) 4180999952186227 a001 196418/87403803*192900153618^(5/9) 4180999952186227 a001 39088169/439204*(1/2+1/2*5^(1/2))^8 4180999952186227 a001 39088169/439204*23725150497407^(1/8) 4180999952186227 a001 39088169/439204*73681302247^(2/13) 4180999952186227 a001 196418/87403803*28143753123^(3/5) 4180999952186227 a001 39088169/439204*10749957122^(1/6) 4180999952186227 a001 196418/87403803*10749957122^(5/8) 4180999952186227 a001 39088169/439204*4106118243^(4/23) 4180999952186227 a001 196418/87403803*4106118243^(15/23) 4180999952186227 a001 7677619978642/1836311903 4180999952186227 a001 39088169/439204*1568397607^(2/11) 4180999952186227 a001 196418/87403803*1568397607^(15/22) 4180999952186227 a001 39088169/439204*599074578^(4/21) 4180999952186227 a001 196418/87403803*599074578^(5/7) 4180999952186227 a001 39088169/439204*228826127^(1/5) 4180999952186227 a001 196418/87403803*228826127^(3/4) 4180999952186227 a001 39088169/439204*87403803^(4/19) 4180999952186227 a004 Fibonacci(27)*Lucas(39)/(1/2+sqrt(5)/2)^47 4180999952186227 a001 196418/1568397607*141422324^(12/13) 4180999952186227 a001 196418/370248451*141422324^(11/13) 4180999952186227 a001 196418/87403803*87403803^(15/19) 4180999952186227 a001 102334155/439204*141422324^(2/13) 4180999952186227 a001 102334155/439204*2537720636^(2/15) 4180999952186227 a001 102334155/439204*45537549124^(2/17) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^32/Lucas(40) 4180999952186227 a001 196418/228826127*505019158607^(4/7) 4180999952186227 a001 102334155/439204*14662949395604^(2/21) 4180999952186227 a001 102334155/439204*(1/2+1/2*5^(1/2))^6 4180999952186227 a001 196418/228826127*73681302247^(8/13) 4180999952186227 a001 102334155/439204*10749957122^(1/8) 4180999952186227 a001 196418/228826127*10749957122^(2/3) 4180999952186227 a001 102334155/439204*4106118243^(3/23) 4180999952186227 a001 478577858495/114464928 4180999952186227 a001 196418/228826127*4106118243^(16/23) 4180999952186227 a001 102334155/439204*1568397607^(3/22) 4180999952186227 a001 196418/228826127*1568397607^(8/11) 4180999952186227 a001 102334155/439204*599074578^(1/7) 4180999952186227 a001 196418/228826127*599074578^(16/21) 4180999952186227 a001 102334155/439204*228826127^(3/20) 4180999952186227 a004 Fibonacci(27)*Lucas(41)/(1/2+sqrt(5)/2)^49 4180999952186227 a001 196418/228826127*228826127^(4/5) 4180999952186227 a001 98209/299537289*45537549124^(2/3) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^34/Lucas(42) 4180999952186227 a001 66978574/109801*(1/2+1/2*5^(1/2))^4 4180999952186227 a001 66978574/109801*23725150497407^(1/16) 4180999952186227 a001 66978574/109801*73681302247^(1/13) 4180999952186227 a001 66978574/109801*10749957122^(1/12) 4180999952186227 a001 52623190191728/12586269025 4180999952186227 a001 433494437/439204*141422324^(1/13) 4180999952186227 a001 66978574/109801*4106118243^(2/23) 4180999952186227 a001 98209/299537289*10749957122^(17/24) 4180999952186227 a001 66978574/109801*1568397607^(1/11) 4180999952186227 a001 98209/299537289*4106118243^(17/23) 4180999952186227 a001 66978574/109801*599074578^(2/21) 4180999952186227 a001 98209/299537289*1568397607^(17/22) 4180999952186227 a004 Fibonacci(27)*Lucas(43)/(1/2+sqrt(5)/2)^51 4180999952186227 a001 66978574/109801*228826127^(1/10) 4180999952186227 a001 196418/1568397607*2537720636^(4/5) 4180999952186227 a001 98209/299537289*599074578^(17/21) 4180999952186227 a001 196418/1568397607*45537549124^(12/17) 4180999952186227 a001 196418/1568397607*14662949395604^(4/7) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^36/Lucas(44) 4180999952186227 a001 196418/1568397607*505019158607^(9/14) 4180999952186227 a001 196418/1568397607*192900153618^(2/3) 4180999952186227 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^2/Lucas(27) 4180999952186227 a001 196418/1568397607*73681302247^(9/13) 4180999952186227 a001 45923100172798/10983760033 4180999952186227 a001 701408733/439204*10749957122^(1/24) 4180999952186227 a001 701408733/439204*4106118243^(1/23) 4180999952186227 a001 196418/1568397607*10749957122^(3/4) 4180999952186227 a001 701408733/439204*1568397607^(1/22) 4180999952186227 a001 196418/1568397607*4106118243^(18/23) 4180999952186227 a001 701408733/439204*599074578^(1/21) 4180999952186227 a004 Fibonacci(27)*Lucas(45)/(1/2+sqrt(5)/2)^53 4180999952186227 a001 98209/5374978561*2537720636^(8/9) 4180999952186227 a001 196418/28143753123*2537720636^(14/15) 4180999952186227 a001 196418/6643838879*2537720636^(13/15) 4180999952186227 a001 196418/1568397607*1568397607^(9/11) 4180999952186227 a001 196418/4106118243*817138163596^(2/3) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^38/Lucas(46) 4180999952186227 a001 1836311903/439204 4180999952186227 a001 196418/4106118243*10749957122^(19/24) 4180999952186227 a004 Fibonacci(27)*Lucas(47)/(1/2+sqrt(5)/2)^55 4180999952186227 a001 196418/4106118243*4106118243^(19/23) 4180999952186227 a001 98209/5374978561*312119004989^(8/11) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^40/Lucas(48) 4180999952186227 a001 98209/5374978561*23725150497407^(5/8) 4180999952186227 a001 44965944455808/10754830177 4180999952186227 a004 Fibonacci(48)/Lucas(27)/(1/2+sqrt(5)/2)^2 4180999952186227 a001 98209/5374978561*73681302247^(10/13) 4180999952186227 a001 98209/5374978561*28143753123^(4/5) 4180999952186227 a001 196418/28143753123*17393796001^(6/7) 4180999952186227 a004 Fibonacci(27)*Lucas(49)/(1/2+sqrt(5)/2)^57 4180999952186227 a001 196418/28143753123*45537549124^(14/17) 4180999952186227 a001 98209/5374978561*10749957122^(5/6) 4180999952186227 a001 196418/28143753123*817138163596^(14/19) 4180999952186227 a001 196418/28143753123*14662949395604^(2/3) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^42/Lucas(50) 4180999952186227 a001 196418/28143753123*505019158607^(3/4) 4180999952186227 a001 196418/28143753123*192900153618^(7/9) 4180999952186227 a004 Fibonacci(50)/Lucas(27)/(1/2+sqrt(5)/2)^4 4180999952186227 a004 Fibonacci(27)*Lucas(51)/(1/2+sqrt(5)/2)^59 4180999952186227 a001 196418/505019158607*45537549124^(16/17) 4180999952186227 a001 196418/119218851371*45537549124^(15/17) 4180999952186227 a001 196418/73681302247*312119004989^(4/5) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^44/Lucas(52) 4180999952186227 a001 1078704089080897/258001459320 4180999952186227 a004 Fibonacci(52)/Lucas(27)/(1/2+sqrt(5)/2)^6 4180999952186227 a004 Fibonacci(27)*Lucas(53)/(1/2+sqrt(5)/2)^61 4180999952186227 a001 196418/73681302247*73681302247^(11/13) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^46/Lucas(54) 4180999952186227 a001 16944503814103696/4052739537881 4180999952186227 a004 Fibonacci(27)*Lucas(55)/(1/2+sqrt(5)/2)^63 4180999952186227 a001 196418/1322157322203*312119004989^(10/11) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^48/Lucas(56) 4180999952186227 a001 2112442233705986/505248088463 4180999952186227 a004 Fibonacci(27)*Lucas(57)/(1/2+sqrt(5)/2)^65 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^50/Lucas(58) 4180999952186227 a001 196418/1322157322203*3461452808002^(5/6) 4180999952186227 a004 Fibonacci(27)*Lucas(59)/(1/2+sqrt(5)/2)^67 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^52/Lucas(60) 4180999952186227 a004 Fibonacci(27)*Lucas(61)/(1/2+sqrt(5)/2)^69 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^54/Lucas(62) 4180999952186227 a004 Fibonacci(27)*Lucas(63)/(1/2+sqrt(5)/2)^71 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^56/Lucas(64) 4180999952186227 a004 Fibonacci(27)*Lucas(65)/(1/2+sqrt(5)/2)^73 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^58/Lucas(66) 4180999952186227 a004 Fibonacci(27)*Lucas(67)/(1/2+sqrt(5)/2)^75 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^60/Lucas(68) 4180999952186227 a004 Fibonacci(27)*Lucas(69)/(1/2+sqrt(5)/2)^77 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^62/Lucas(70) 4180999952186227 a004 Fibonacci(27)*Lucas(71)/(1/2+sqrt(5)/2)^79 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^64/Lucas(72) 4180999952186227 a004 Fibonacci(27)*Lucas(73)/(1/2+sqrt(5)/2)^81 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^66/Lucas(74) 4180999952186227 a004 Fibonacci(27)*Lucas(75)/(1/2+sqrt(5)/2)^83 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^68/Lucas(76) 4180999952186227 a004 Fibonacci(27)*Lucas(77)/(1/2+sqrt(5)/2)^85 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^70/Lucas(78) 4180999952186227 a004 Fibonacci(27)*Lucas(79)/(1/2+sqrt(5)/2)^87 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^72/Lucas(80) 4180999952186227 a004 Fibonacci(27)*Lucas(81)/(1/2+sqrt(5)/2)^89 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^74/Lucas(82) 4180999952186227 a004 Fibonacci(27)*Lucas(83)/(1/2+sqrt(5)/2)^91 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^76/Lucas(84) 4180999952186227 a004 Fibonacci(27)*Lucas(85)/(1/2+sqrt(5)/2)^93 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^78/Lucas(86) 4180999952186227 a004 Fibonacci(27)*Lucas(87)/(1/2+sqrt(5)/2)^95 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^80/Lucas(88) 4180999952186227 a004 Fibonacci(27)*Lucas(89)/(1/2+sqrt(5)/2)^97 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^82/Lucas(90) 4180999952186227 a004 Fibonacci(27)*Lucas(91)/(1/2+sqrt(5)/2)^99 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^84/Lucas(92) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^86/Lucas(94) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^88/Lucas(96) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^90/Lucas(98) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^91/Lucas(99) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^92/Lucas(100) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^89/Lucas(97) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^87/Lucas(95) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^85/Lucas(93) 4180999952186227 a004 Fibonacci(27)*Lucas(92)/(1/2+sqrt(5)/2)^100 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^83/Lucas(91) 4180999952186227 a004 Fibonacci(27)*Lucas(90)/(1/2+sqrt(5)/2)^98 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^81/Lucas(89) 4180999952186227 a004 Fibonacci(27)*Lucas(88)/(1/2+sqrt(5)/2)^96 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^79/Lucas(87) 4180999952186227 a004 Fibonacci(27)*Lucas(86)/(1/2+sqrt(5)/2)^94 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^77/Lucas(85) 4180999952186227 a004 Fibonacci(27)*Lucas(84)/(1/2+sqrt(5)/2)^92 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^75/Lucas(83) 4180999952186227 a004 Fibonacci(27)*Lucas(82)/(1/2+sqrt(5)/2)^90 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^73/Lucas(81) 4180999952186227 a004 Fibonacci(27)*Lucas(80)/(1/2+sqrt(5)/2)^88 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^71/Lucas(79) 4180999952186227 a004 Fibonacci(27)*Lucas(78)/(1/2+sqrt(5)/2)^86 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^69/Lucas(77) 4180999952186227 a004 Fibonacci(27)*Lucas(76)/(1/2+sqrt(5)/2)^84 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^67/Lucas(75) 4180999952186227 a004 Fibonacci(27)*Lucas(74)/(1/2+sqrt(5)/2)^82 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^65/Lucas(73) 4180999952186227 a004 Fibonacci(27)*Lucas(72)/(1/2+sqrt(5)/2)^80 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^63/Lucas(71) 4180999952186227 a004 Fibonacci(27)*Lucas(70)/(1/2+sqrt(5)/2)^78 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^61/Lucas(69) 4180999952186227 a004 Fibonacci(27)*Lucas(68)/(1/2+sqrt(5)/2)^76 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^59/Lucas(67) 4180999952186227 a004 Fibonacci(27)*Lucas(66)/(1/2+sqrt(5)/2)^74 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^57/Lucas(65) 4180999952186227 a004 Fibonacci(27)*Lucas(64)/(1/2+sqrt(5)/2)^72 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^55/Lucas(63) 4180999952186227 a004 Fibonacci(27)*Lucas(62)/(1/2+sqrt(5)/2)^70 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^53/Lucas(61) 4180999952186227 a004 Fibonacci(27)*Lucas(60)/(1/2+sqrt(5)/2)^68 4180999952186227 a001 196418/2139295485799*14662949395604^(17/21) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^51/Lucas(59) 4180999952186227 a004 Fibonacci(27)*Lucas(58)/(1/2+sqrt(5)/2)^66 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^49/Lucas(57) 4180999952186227 a001 98209/1730726404001*505019158607^(13/14) 4180999952186227 a004 Fibonacci(27)*Lucas(56)/(1/2+sqrt(5)/2)^64 4180999952186227 a001 98209/408569081798*505019158607^(7/8) 4180999952186227 a001 806375973344765/192866774113 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^47/Lucas(55) 4180999952186227 a001 196418/505019158607*192900153618^(8/9) 4180999952186227 a004 Fibonacci(56)/Lucas(27)/(1/2+sqrt(5)/2)^10 4180999952186227 a001 196418/2139295485799*192900153618^(17/18) 4180999952186227 a004 Fibonacci(58)/Lucas(27)/(1/2+sqrt(5)/2)^12 4180999952186227 a004 Fibonacci(60)/Lucas(27)/(1/2+sqrt(5)/2)^14 4180999952186227 a004 Fibonacci(62)/Lucas(27)/(1/2+sqrt(5)/2)^16 4180999952186227 a004 Fibonacci(64)/Lucas(27)/(1/2+sqrt(5)/2)^18 4180999952186227 a004 Fibonacci(66)/Lucas(27)/(1/2+sqrt(5)/2)^20 4180999952186227 a004 Fibonacci(68)/Lucas(27)/(1/2+sqrt(5)/2)^22 4180999952186227 a004 Fibonacci(70)/Lucas(27)/(1/2+sqrt(5)/2)^24 4180999952186227 a004 Fibonacci(72)/Lucas(27)/(1/2+sqrt(5)/2)^26 4180999952186227 a004 Fibonacci(74)/Lucas(27)/(1/2+sqrt(5)/2)^28 4180999952186227 a004 Fibonacci(76)/Lucas(27)/(1/2+sqrt(5)/2)^30 4180999952186227 a004 Fibonacci(78)/Lucas(27)/(1/2+sqrt(5)/2)^32 4180999952186227 a004 Fibonacci(80)/Lucas(27)/(1/2+sqrt(5)/2)^34 4180999952186227 a004 Fibonacci(82)/Lucas(27)/(1/2+sqrt(5)/2)^36 4180999952186227 a004 Fibonacci(84)/Lucas(27)/(1/2+sqrt(5)/2)^38 4180999952186227 a004 Fibonacci(86)/Lucas(27)/(1/2+sqrt(5)/2)^40 4180999952186227 a004 Fibonacci(88)/Lucas(27)/(1/2+sqrt(5)/2)^42 4180999952186227 a004 Fibonacci(90)/Lucas(27)/(1/2+sqrt(5)/2)^44 4180999952186227 a004 Fibonacci(92)/Lucas(27)/(1/2+sqrt(5)/2)^46 4180999952186227 a004 Fibonacci(94)/Lucas(27)/(1/2+sqrt(5)/2)^48 4180999952186227 a004 Fibonacci(96)/Lucas(27)/(1/2+sqrt(5)/2)^50 4180999952186227 a004 Fibonacci(100)/Lucas(27)/(1/2+sqrt(5)/2)^54 4180999952186227 a004 Fibonacci(27)*Lucas(54)/(1/2+sqrt(5)/2)^62 4180999952186227 a004 Fibonacci(98)/Lucas(27)/(1/2+sqrt(5)/2)^52 4180999952186227 a004 Fibonacci(99)/Lucas(27)/(1/2+sqrt(5)/2)^53 4180999952186227 a004 Fibonacci(97)/Lucas(27)/(1/2+sqrt(5)/2)^51 4180999952186227 a004 Fibonacci(95)/Lucas(27)/(1/2+sqrt(5)/2)^49 4180999952186227 a004 Fibonacci(93)/Lucas(27)/(1/2+sqrt(5)/2)^47 4180999952186227 a004 Fibonacci(91)/Lucas(27)/(1/2+sqrt(5)/2)^45 4180999952186227 a004 Fibonacci(89)/Lucas(27)/(1/2+sqrt(5)/2)^43 4180999952186227 a004 Fibonacci(87)/Lucas(27)/(1/2+sqrt(5)/2)^41 4180999952186227 a004 Fibonacci(85)/Lucas(27)/(1/2+sqrt(5)/2)^39 4180999952186227 a004 Fibonacci(83)/Lucas(27)/(1/2+sqrt(5)/2)^37 4180999952186227 a004 Fibonacci(81)/Lucas(27)/(1/2+sqrt(5)/2)^35 4180999952186227 a004 Fibonacci(79)/Lucas(27)/(1/2+sqrt(5)/2)^33 4180999952186227 a004 Fibonacci(77)/Lucas(27)/(1/2+sqrt(5)/2)^31 4180999952186227 a004 Fibonacci(75)/Lucas(27)/(1/2+sqrt(5)/2)^29 4180999952186227 a004 Fibonacci(73)/Lucas(27)/(1/2+sqrt(5)/2)^27 4180999952186227 a004 Fibonacci(71)/Lucas(27)/(1/2+sqrt(5)/2)^25 4180999952186227 a004 Fibonacci(69)/Lucas(27)/(1/2+sqrt(5)/2)^23 4180999952186227 a004 Fibonacci(67)/Lucas(27)/(1/2+sqrt(5)/2)^21 4180999952186227 a004 Fibonacci(65)/Lucas(27)/(1/2+sqrt(5)/2)^19 4180999952186227 a004 Fibonacci(63)/Lucas(27)/(1/2+sqrt(5)/2)^17 4180999952186227 a004 Fibonacci(61)/Lucas(27)/(1/2+sqrt(5)/2)^15 4180999952186227 a004 Fibonacci(59)/Lucas(27)/(1/2+sqrt(5)/2)^13 4180999952186227 a004 Fibonacci(57)/Lucas(27)/(1/2+sqrt(5)/2)^11 4180999952186227 a004 Fibonacci(55)/Lucas(27)/(1/2+sqrt(5)/2)^9 4180999952186227 a001 196418/119218851371*312119004989^(9/11) 4180999952186227 a001 10472279279618314/2504730781961 4180999952186227 a001 196418/119218851371*14662949395604^(5/7) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^45/Lucas(53) 4180999952186227 a001 196418/119218851371*192900153618^(5/6) 4180999952186227 a004 Fibonacci(53)/Lucas(27)/(1/2+sqrt(5)/2)^7 4180999952186227 a001 196418/505019158607*73681302247^(12/13) 4180999952186227 a004 Fibonacci(27)*Lucas(52)/(1/2+sqrt(5)/2)^60 4180999952186227 a001 4000054745132932/956722026041 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^43/Lucas(51) 4180999952186227 a004 Fibonacci(51)/Lucas(27)/(1/2+sqrt(5)/2)^5 4180999952186227 a001 196418/119218851371*28143753123^(9/10) 4180999952186227 a004 Fibonacci(27)*Lucas(50)/(1/2+sqrt(5)/2)^58 4180999952186227 a001 763942477890241/182717648081 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^41/Lucas(49) 4180999952186227 a004 Fibonacci(49)/Lucas(27)/(1/2+sqrt(5)/2)^3 4180999952186227 a001 196418/28143753123*10749957122^(7/8) 4180999952186227 a001 196418/73681302247*10749957122^(11/12) 4180999952186227 a001 196418/119218851371*10749957122^(15/16) 4180999952186227 a001 98209/96450076809*10749957122^(23/24) 4180999952186227 a004 Fibonacci(27)*Lucas(48)/(1/2+sqrt(5)/2)^56 4180999952186227 a001 196418/6643838879*45537549124^(13/17) 4180999952186227 a001 583600122208514/139583862445 4180999952186227 a001 196418/6643838879*14662949395604^(13/21) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^39/Lucas(47) 4180999952186227 a001 196418/6643838879*192900153618^(13/18) 4180999952186227 a004 Fibonacci(47)/Lucas(27)/(1/2+sqrt(5)/2) 4180999952186227 a001 196418/6643838879*73681302247^(3/4) 4180999952186227 a001 196418/6643838879*10749957122^(13/16) 4180999952186227 a001 98209/5374978561*4106118243^(20/23) 4180999952186227 a001 196418/28143753123*4106118243^(21/23) 4180999952186227 a001 196418/73681302247*4106118243^(22/23) 4180999952186227 a004 Fibonacci(27)*Lucas(46)/(1/2+sqrt(5)/2)^54 4180999952186227 a001 222915410845060/53316291173 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^37/Lucas(45) 4180999952186227 a001 567451585/439204+567451585/439204*5^(1/2) 4180999952186227 a001 196418/4106118243*1568397607^(19/22) 4180999952186227 a001 98209/5374978561*1568397607^(10/11) 4180999952186227 a001 196418/28143753123*1568397607^(21/22) 4180999952186227 a004 Fibonacci(27)*Lucas(44)/(1/2+sqrt(5)/2)^52 4180999952186227 a001 701408733/439204*228826127^(1/20) 4180999952186227 a001 196418/969323029*2537720636^(7/9) 4180999952186227 a001 433494437/439204*2537720636^(1/15) 4180999952186227 a001 196418/969323029*17393796001^(5/7) 4180999952186227 a001 42573055163333/10182505537 4180999952186227 a001 196418/969323029*312119004989^(7/11) 4180999952186227 a001 433494437/439204*45537549124^(1/17) 4180999952186227 a001 196418/969323029*14662949395604^(5/9) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^35/Lucas(43) 4180999952186227 a001 196418/969323029*505019158607^(5/8) 4180999952186227 a001 433494437/439204*14662949395604^(1/21) 4180999952186227 a001 433494437/439204*(1/2+1/2*5^(1/2))^3 4180999952186227 a001 433494437/439204*192900153618^(1/18) 4180999952186227 a001 433494437/439204*10749957122^(1/16) 4180999952186227 a001 196418/969323029*28143753123^(7/10) 4180999952186227 a001 433494437/439204*599074578^(1/14) 4180999952186227 a001 102334155/439204*87403803^(3/19) 4180999952186227 a001 196418/1568397607*599074578^(6/7) 4180999952186227 a001 196418/4106118243*599074578^(19/21) 4180999952186227 a001 196418/6643838879*599074578^(13/14) 4180999952186227 a001 98209/5374978561*599074578^(20/21) 4180999952186227 a004 Fibonacci(27)*Lucas(42)/(1/2+sqrt(5)/2)^50 4180999952186227 a001 196418/969323029*599074578^(5/6) 4180999952186227 a001 701408733/439204*87403803^(1/19) 4180999952186227 a001 196418/370248451*2537720636^(11/15) 4180999952186227 a001 165580141/439204*2537720636^(1/9) 4180999952186227 a001 32522920134938/7778742049 4180999952186227 a001 196418/370248451*45537549124^(11/17) 4180999952186227 a001 196418/370248451*312119004989^(3/5) 4180999952186227 a001 196418/370248451*817138163596^(11/19) 4180999952186227 a001 196418/370248451*14662949395604^(11/21) 4180999952186227 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^33/Lucas(41) 4180999952186227 a001 196418/370248451*192900153618^(11/18) 4180999952186227 a001 165580141/439204*312119004989^(1/11) 4180999952186227 a001 165580141/439204*(1/2+1/2*5^(1/2))^5 4180999952186227 a001 165580141/439204*28143753123^(1/10) 4180999952186227 a001 196418/370248451*10749957122^(11/16) 4180999952186227 a001 196418/370248451*1568397607^(3/4) 4180999952186227 a001 196418/370248451*599074578^(11/14) 4180999952186227 a001 165580141/439204*228826127^(1/8) 4180999952186227 a001 66978574/109801*87403803^(2/19) 4180999952186227 a001 98209/299537289*228826127^(17/20) 4180999952186227 a001 196418/1568397607*228826127^(9/10) 4180999952186227 a001 196418/969323029*228826127^(7/8) 4180999952186227 a001 196418/4106118243*228826127^(19/20) 4180999952186227 a004 Fibonacci(27)*Lucas(40)/(1/2+sqrt(5)/2)^48 4180999952186228 a001 701408733/439204*33385282^(1/18) 4180999952186228 a001 12422650078148/2971215073 4180999952186228 a001 31622993/219602*17393796001^(1/7) 4180999952186228 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^31/Lucas(39) 4180999952186228 a001 98209/70711162*9062201101803^(1/2) 4180999952186228 a001 31622993/219602*14662949395604^(1/9) 4180999952186228 a001 31622993/219602*(1/2+1/2*5^(1/2))^7 4180999952186228 a001 31622993/219602*599074578^(1/6) 4180999952186228 a001 39088169/439204*33385282^(2/9) 4180999952186228 a001 433494437/439204*33385282^(1/12) 4180999952186228 a001 196418/228826127*87403803^(16/19) 4180999952186228 a001 66978574/109801*33385282^(1/9) 4180999952186228 a001 98209/299537289*87403803^(17/19) 4180999952186228 a001 196418/1568397607*87403803^(18/19) 4180999952186228 a001 102334155/439204*33385282^(1/6) 4180999952186228 a004 Fibonacci(27)*Lucas(38)/(1/2+sqrt(5)/2)^46 4180999952186229 a001 24157817/439204*141422324^(3/13) 4180999952186229 a001 139559708809/33379505 4180999952186229 a001 24157817/439204*2537720636^(1/5) 4180999952186229 a001 24157817/439204*45537549124^(3/17) 4180999952186229 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^29/Lucas(37) 4180999952186229 a001 196418/54018521*1322157322203^(1/2) 4180999952186229 a001 24157817/439204*817138163596^(3/19) 4180999952186229 a001 24157817/439204*14662949395604^(1/7) 4180999952186229 a001 24157817/439204*(1/2+1/2*5^(1/2))^9 4180999952186229 a001 24157817/439204*192900153618^(1/6) 4180999952186229 a001 24157817/439204*10749957122^(3/16) 4180999952186229 a001 24157817/439204*599074578^(3/14) 4180999952186229 a001 701408733/439204*12752043^(1/17) 4180999952186230 a001 24157817/439204*33385282^(1/4) 4180999952186230 a001 196418/87403803*33385282^(5/6) 4180999952186230 a001 66978574/109801*12752043^(2/17) 4180999952186231 a001 196418/228826127*33385282^(8/9) 4180999952186231 a001 196418/370248451*33385282^(11/12) 4180999952186231 a001 98209/299537289*33385282^(17/18) 4180999952186231 a004 Fibonacci(27)*Lucas(36)/(1/2+sqrt(5)/2)^44 4180999952186231 a001 196452/5779*12752043^(5/17) 4180999952186232 a001 102334155/439204*12752043^(3/17) 4180999952186233 a001 39088169/439204*12752043^(4/17) 4180999952186237 a001 196418/20633239*141422324^(9/13) 4180999952186237 a001 1812440220370/433494437 4180999952186237 a001 196418/20633239*2537720636^(3/5) 4180999952186237 a001 196418/20633239*45537549124^(9/17) 4180999952186237 a001 196418/20633239*817138163596^(9/19) 4180999952186237 a001 196418/20633239*14662949395604^(3/7) 4180999952186237 a001 196418/20633239*(1/2+1/2*5^(1/2))^27 4180999952186237 a001 196418/20633239*192900153618^(1/2) 4180999952186237 a001 9227465/439204*312119004989^(1/5) 4180999952186237 a001 9227465/439204*(1/2+1/2*5^(1/2))^11 4180999952186237 a001 196418/20633239*10749957122^(9/16) 4180999952186237 a001 9227465/439204*1568397607^(1/4) 4180999952186237 a001 196418/20633239*599074578^(9/14) 4180999952186238 a001 701408733/439204*4870847^(1/16) 4180999952186240 a001 196418/20633239*33385282^(3/4) 4180999952186245 a001 98209/16692641*12752043^(14/17) 4180999952186249 a001 66978574/109801*4870847^(1/8) 4180999952186249 a001 196418/87403803*12752043^(15/17) 4180999952186251 a001 196418/228826127*12752043^(16/17) 4180999952186253 a004 Fibonacci(27)*Lucas(34)/(1/2+sqrt(5)/2)^42 4180999952186260 a001 102334155/439204*4870847^(3/16) 4180999952186268 a001 5702887/439204*4870847^(3/8) 4180999952186271 a001 39088169/439204*4870847^(1/4) 4180999952186279 a001 196452/5779*4870847^(5/16) 4180999952186288 a001 98209/3940598*20633239^(5/7) 4180999952186295 a001 1762289/219602*141422324^(1/3) 4180999952186295 a001 692290561604/165580141 4180999952186295 a001 98209/3940598*2537720636^(5/9) 4180999952186295 a001 98209/3940598*312119004989^(5/11) 4180999952186295 a001 98209/3940598*(1/2+1/2*5^(1/2))^25 4180999952186295 a001 98209/3940598*3461452808002^(5/12) 4180999952186295 a001 1762289/219602*(1/2+1/2*5^(1/2))^13 4180999952186295 a001 1762289/219602*73681302247^(1/4) 4180999952186295 a001 98209/3940598*28143753123^(1/2) 4180999952186295 a001 98209/3940598*228826127^(5/8) 4180999952186308 a001 701408733/439204*1860498^(1/15) 4180999952186345 a001 196418/12752043*4870847^(13/16) 4180999952186348 a001 433494437/439204*1860498^(1/10) 4180999952186352 a001 433494437/12752043*271443^(5/13) 4180999952186374 a001 567451585/16692641*271443^(5/13) 4180999952186377 a001 2971215073/87403803*271443^(5/13) 4180999952186378 a001 7778742049/228826127*271443^(5/13) 4180999952186378 a001 10182505537/299537289*271443^(5/13) 4180999952186378 a001 53316291173/1568397607*271443^(5/13) 4180999952186378 a001 139583862445/4106118243*271443^(5/13) 4180999952186378 a001 182717648081/5374978561*271443^(5/13) 4180999952186378 a001 956722026041/28143753123*271443^(5/13) 4180999952186378 a001 2504730781961/73681302247*271443^(5/13) 4180999952186378 a001 3278735159921/96450076809*271443^(5/13) 4180999952186378 a001 10610209857723/312119004989*271443^(5/13) 4180999952186378 a001 4052739537881/119218851371*271443^(5/13) 4180999952186378 a001 387002188980/11384387281*271443^(5/13) 4180999952186378 a001 591286729879/17393796001*271443^(5/13) 4180999952186378 a001 225851433717/6643838879*271443^(5/13) 4180999952186378 a001 1135099622/33391061*271443^(5/13) 4180999952186378 a001 32951280099/969323029*271443^(5/13) 4180999952186378 a001 12586269025/370248451*271443^(5/13) 4180999952186378 a001 98209/16692641*4870847^(7/8) 4180999952186378 a001 1201881744/35355581*271443^(5/13) 4180999952186379 a001 1836311903/54018521*271443^(5/13) 4180999952186387 a001 701408733/20633239*271443^(5/13) 4180999952186388 a001 66978574/109801*1860498^(2/15) 4180999952186392 a001 196418/87403803*4870847^(15/16) 4180999952186404 a004 Fibonacci(27)*Lucas(32)/(1/2+sqrt(5)/2)^40 4180999952186429 a001 165580141/439204*1860498^(1/6) 4180999952186445 a001 66978574/1970299*271443^(5/13) 4180999952186469 a001 102334155/439204*1860498^(1/5) 4180999952186549 a001 39088169/439204*1860498^(4/15) 4180999952186591 a001 24157817/439204*1860498^(3/10) 4180999952186615 a001 2178309/439204*1860498^(7/15) 4180999952186626 a001 196452/5779*1860498^(1/3) 4180999952186658 a001 1346269/439204*7881196^(5/11) 4180999952186684 a001 1346269/439204*20633239^(3/7) 4180999952186685 a001 5702887/439204*1860498^(2/5) 4180999952186688 a001 132215732221/31622993 4180999952186689 a001 1346269/439204*141422324^(5/13) 4180999952186689 a001 1346269/439204*2537720636^(1/3) 4180999952186689 a001 1346269/439204*45537549124^(5/17) 4180999952186689 a001 196418/3010349*(1/2+1/2*5^(1/2))^23 4180999952186689 a001 1346269/439204*312119004989^(3/11) 4180999952186689 a001 1346269/439204*14662949395604^(5/21) 4180999952186689 a001 1346269/439204*(1/2+1/2*5^(1/2))^15 4180999952186689 a001 1346269/439204*192900153618^(5/18) 4180999952186689 a001 1346269/439204*28143753123^(3/10) 4180999952186689 a001 1346269/439204*10749957122^(5/16) 4180999952186689 a001 196418/3010349*4106118243^(1/2) 4180999952186689 a001 1346269/439204*599074578^(5/14) 4180999952186689 a001 1346269/439204*228826127^(3/8) 4180999952186690 a001 1346269/439204*33385282^(5/12) 4180999952186819 a001 701408733/439204*710647^(1/14) 4180999952186839 a001 102334155/3010349*271443^(5/13) 4180999952186896 a001 3524578/710647*271443^(7/13) 4180999952187017 a001 196418/4870847*1860498^(4/5) 4180999952187248 a001 196418/12752043*1860498^(13/15) 4180999952187293 a001 1346269/439204*1860498^(1/2) 4180999952187301 a001 98209/3940598*1860498^(5/6) 4180999952187324 a001 196418/20633239*1860498^(9/10) 4180999952187351 a001 98209/16692641*1860498^(14/15) 4180999952187410 a001 66978574/109801*710647^(1/7) 4180999952187435 a004 Fibonacci(27)*Lucas(30)/(1/2+sqrt(5)/2)^38 4180999952188001 a001 102334155/439204*710647^(3/14) 4180999952188297 a001 31622993/219602*710647^(1/4) 4180999952188592 a001 39088169/439204*710647^(2/7) 4180999952188685 a001 1134903170/710647*103682^(1/12) 4180999952188836 a001 34111385/90481*103682^(5/24) 4180999952189180 a001 196452/5779*710647^(5/14) 4180999952189347 a001 196418/1149851*7881196^(7/11) 4180999952189384 a001 196418/1149851*20633239^(3/5) 4180999952189388 a001 101003831722/24157817 4180999952189389 a001 196418/1149851*141422324^(7/13) 4180999952189390 a001 196418/1149851*2537720636^(7/15) 4180999952189390 a001 196418/1149851*17393796001^(3/7) 4180999952189390 a001 196418/1149851*45537549124^(7/17) 4180999952189390 a001 514229/439204*45537549124^(1/3) 4180999952189390 a001 196418/1149851*14662949395604^(1/3) 4180999952189390 a001 196418/1149851*(1/2+1/2*5^(1/2))^21 4180999952189390 a001 196418/1149851*192900153618^(7/18) 4180999952189390 a001 514229/439204*(1/2+1/2*5^(1/2))^17 4180999952189390 a001 196418/1149851*10749957122^(7/16) 4180999952189390 a001 196418/1149851*599074578^(1/2) 4180999952189392 a001 196418/1149851*33385282^(7/12) 4180999952189402 a001 514229/439204*12752043^(1/2) 4180999952189536 a001 24157817/1860498*271443^(6/13) 4180999952189539 a001 39088169/1149851*271443^(5/13) 4180999952189750 a001 5702887/439204*710647^(3/7) 4180999952189750 a001 208010/109801*710647^(4/7) 4180999952190191 a001 2178309/439204*710647^(1/2) 4180999952190235 a001 196418/1149851*1860498^(7/10) 4180999952190567 a001 63245986/4870847*271443^(6/13) 4180999952190592 a001 701408733/439204*271443^(1/13) 4180999952190717 a001 165580141/12752043*271443^(6/13) 4180999952190739 a001 433494437/33385282*271443^(6/13) 4180999952190742 a001 1134903170/87403803*271443^(6/13) 4180999952190743 a001 2971215073/228826127*271443^(6/13) 4180999952190743 a001 7778742049/599074578*271443^(6/13) 4180999952190743 a001 20365011074/1568397607*271443^(6/13) 4180999952190743 a001 53316291173/4106118243*271443^(6/13) 4180999952190743 a001 139583862445/10749957122*271443^(6/13) 4180999952190743 a001 365435296162/28143753123*271443^(6/13) 4180999952190743 a001 956722026041/73681302247*271443^(6/13) 4180999952190743 a001 2504730781961/192900153618*271443^(6/13) 4180999952190743 a001 10610209857723/817138163596*271443^(6/13) 4180999952190743 a001 4052739537881/312119004989*271443^(6/13) 4180999952190743 a001 1548008755920/119218851371*271443^(6/13) 4180999952190743 a001 591286729879/45537549124*271443^(6/13) 4180999952190743 a001 7787980473/599786069*271443^(6/13) 4180999952190743 a001 86267571272/6643838879*271443^(6/13) 4180999952190743 a001 32951280099/2537720636*271443^(6/13) 4180999952190743 a001 12586269025/969323029*271443^(6/13) 4180999952190743 a001 4807526976/370248451*271443^(6/13) 4180999952190743 a001 1836311903/141422324*271443^(6/13) 4180999952190744 a001 701408733/54018521*271443^(6/13) 4180999952190752 a001 9238424/711491*271443^(6/13) 4180999952190810 a001 102334155/7881196*271443^(6/13) 4180999952191203 a001 39088169/3010349*271443^(6/13) 4180999952191524 a001 98209/930249*710647^(11/14) 4180999952191655 a001 1346269/710647*271443^(8/13) 4180999952191713 a001 829464/103361*271443^(1/2) 4180999952192748 a001 39088169/4870847*271443^(1/2) 4180999952192899 a001 34111385/4250681*271443^(1/2) 4180999952192921 a001 133957148/16692641*271443^(1/2) 4180999952192925 a001 233802911/29134601*271443^(1/2) 4180999952192925 a001 1836311903/228826127*271443^(1/2) 4180999952192925 a001 267084832/33281921*271443^(1/2) 4180999952192925 a001 12586269025/1568397607*271443^(1/2) 4180999952192925 a001 10983760033/1368706081*271443^(1/2) 4180999952192925 a001 43133785636/5374978561*271443^(1/2) 4180999952192925 a001 75283811239/9381251041*271443^(1/2) 4180999952192925 a001 591286729879/73681302247*271443^(1/2) 4180999952192925 a001 86000486440/10716675201*271443^(1/2) 4180999952192925 a001 4052739537881/505019158607*271443^(1/2) 4180999952192925 a001 3278735159921/408569081798*271443^(1/2) 4180999952192925 a001 2504730781961/312119004989*271443^(1/2) 4180999952192925 a001 956722026041/119218851371*271443^(1/2) 4180999952192925 a001 182717648081/22768774562*271443^(1/2) 4180999952192925 a001 139583862445/17393796001*271443^(1/2) 4180999952192925 a001 53316291173/6643838879*271443^(1/2) 4180999952192925 a001 10182505537/1268860318*271443^(1/2) 4180999952192925 a001 7778742049/969323029*271443^(1/2) 4180999952192925 a001 2971215073/370248451*271443^(1/2) 4180999952192925 a001 567451585/70711162*271443^(1/2) 4180999952192927 a001 433494437/54018521*271443^(1/2) 4180999952192935 a001 165580141/20633239*271443^(1/2) 4180999952192993 a001 31622993/3940598*271443^(1/2) 4180999952193147 a001 196418/4870847*710647^(6/7) 4180999952193388 a001 24157817/3010349*271443^(1/2) 4180999952193889 a001 196418/12752043*710647^(13/14) 4180999952193901 a001 14930352/1149851*271443^(6/13) 4180999952193910 a001 9227465/1860498*271443^(7/13) 4180999952194506 a004 Fibonacci(27)*Lucas(28)/(1/2+sqrt(5)/2)^36 4180999952194933 a001 24157817/4870847*271443^(7/13) 4180999952194957 a001 66978574/109801*271443^(2/13) 4180999952195082 a001 63245986/12752043*271443^(7/13) 4180999952195104 a001 165580141/33385282*271443^(7/13) 4180999952195107 a001 433494437/87403803*271443^(7/13) 4180999952195107 a001 1134903170/228826127*271443^(7/13) 4180999952195108 a001 2971215073/599074578*271443^(7/13) 4180999952195108 a001 7778742049/1568397607*271443^(7/13) 4180999952195108 a001 20365011074/4106118243*271443^(7/13) 4180999952195108 a001 53316291173/10749957122*271443^(7/13) 4180999952195108 a001 139583862445/28143753123*271443^(7/13) 4180999952195108 a001 365435296162/73681302247*271443^(7/13) 4180999952195108 a001 956722026041/192900153618*271443^(7/13) 4180999952195108 a001 2504730781961/505019158607*271443^(7/13) 4180999952195108 a001 10610209857723/2139295485799*271443^(7/13) 4180999952195108 a001 4052739537881/817138163596*271443^(7/13) 4180999952195108 a001 140728068720/28374454999*271443^(7/13) 4180999952195108 a001 591286729879/119218851371*271443^(7/13) 4180999952195108 a001 225851433717/45537549124*271443^(7/13) 4180999952195108 a001 86267571272/17393796001*271443^(7/13) 4180999952195108 a001 32951280099/6643838879*271443^(7/13) 4180999952195108 a001 1144206275/230701876*271443^(7/13) 4180999952195108 a001 4807526976/969323029*271443^(7/13) 4180999952195108 a001 1836311903/370248451*271443^(7/13) 4180999952195108 a001 701408733/141422324*271443^(7/13) 4180999952195109 a001 267914296/54018521*271443^(7/13) 4180999952195117 a001 9303105/1875749*271443^(7/13) 4180999952195174 a001 39088169/7881196*271443^(7/13) 4180999952195565 a001 14930352/3010349*271443^(7/13) 4180999952195599 a001 196418/1149851*710647^(3/4) 4180999952195756 a001 2971215073/1860498*103682^(1/12) 4180999952196097 a001 9227465/1149851*271443^(1/2) 4180999952196788 a001 7778742049/4870847*103682^(1/12) 4180999952196938 a001 20365011074/12752043*103682^(1/12) 4180999952196960 a001 53316291173/33385282*103682^(1/12) 4180999952196963 a001 139583862445/87403803*103682^(1/12) 4180999952196964 a001 365435296162/228826127*103682^(1/12) 4180999952196964 a001 956722026041/599074578*103682^(1/12) 4180999952196964 a001 2504730781961/1568397607*103682^(1/12) 4180999952196964 a001 6557470319842/4106118243*103682^(1/12) 4180999952196964 a001 10610209857723/6643838879*103682^(1/12) 4180999952196964 a001 4052739537881/2537720636*103682^(1/12) 4180999952196964 a001 1548008755920/969323029*103682^(1/12) 4180999952196964 a001 591286729879/370248451*103682^(1/12) 4180999952196964 a001 225851433717/141422324*103682^(1/12) 4180999952196965 a001 86267571272/54018521*103682^(1/12) 4180999952196974 a001 32951280099/20633239*103682^(1/12) 4180999952197031 a001 12586269025/7881196*103682^(1/12) 4180999952197425 a001 4807526976/3010349*103682^(1/12) 4180999952198244 a001 5702887/1149851*271443^(7/13) 4180999952198332 a001 1762289/930249*271443^(8/13) 4180999952198721 a001 514229/710647*271443^(9/13) 4180999952199306 a001 9227465/4870847*271443^(8/13) 4180999952199322 a001 102334155/439204*271443^(3/13) 4180999952199448 a001 24157817/12752043*271443^(8/13) 4180999952199469 a001 31622993/16692641*271443^(8/13) 4180999952199472 a001 165580141/87403803*271443^(8/13) 4180999952199472 a001 433494437/228826127*271443^(8/13) 4180999952199472 a001 567451585/299537289*271443^(8/13) 4180999952199473 a001 2971215073/1568397607*271443^(8/13) 4180999952199473 a001 7778742049/4106118243*271443^(8/13) 4180999952199473 a001 10182505537/5374978561*271443^(8/13) 4180999952199473 a001 53316291173/28143753123*271443^(8/13) 4180999952199473 a001 139583862445/73681302247*271443^(8/13) 4180999952199473 a001 182717648081/96450076809*271443^(8/13) 4180999952199473 a001 956722026041/505019158607*271443^(8/13) 4180999952199473 a001 10610209857723/5600748293801*271443^(8/13) 4180999952199473 a001 591286729879/312119004989*271443^(8/13) 4180999952199473 a001 225851433717/119218851371*271443^(8/13) 4180999952199473 a001 21566892818/11384387281*271443^(8/13) 4180999952199473 a001 32951280099/17393796001*271443^(8/13) 4180999952199473 a001 12586269025/6643838879*271443^(8/13) 4180999952199473 a001 1201881744/634430159*271443^(8/13) 4180999952199473 a001 1836311903/969323029*271443^(8/13) 4180999952199473 a001 701408733/370248451*271443^(8/13) 4180999952199473 a001 66978574/35355581*271443^(8/13) 4180999952199474 a001 102334155/54018521*271443^(8/13) 4180999952199482 a001 39088169/20633239*271443^(8/13) 4180999952199536 a001 3732588/1970299*271443^(8/13) 4180999952199908 a001 5702887/3010349*271443^(8/13) 4180999952200126 a001 1836311903/1149851*103682^(1/12) 4180999952202433 a001 567451585/219602*103682^(1/24) 4180999952202459 a001 2178309/1149851*271443^(8/13) 4180999952203086 a001 317811/1149851*271443^(10/13) 4180999952203091 a001 1346269/1860498*271443^(9/13) 4180999952203687 a001 39088169/439204*271443^(4/13) 4180999952203729 a001 3524578/4870847*271443^(9/13) 4180999952203822 a001 9227465/12752043*271443^(9/13) 4180999952203835 a001 24157817/33385282*271443^(9/13) 4180999952203837 a001 63245986/87403803*271443^(9/13) 4180999952203837 a001 165580141/228826127*271443^(9/13) 4180999952203837 a001 433494437/599074578*271443^(9/13) 4180999952203837 a001 1134903170/1568397607*271443^(9/13) 4180999952203837 a001 2971215073/4106118243*271443^(9/13) 4180999952203837 a001 7778742049/10749957122*271443^(9/13) 4180999952203837 a001 20365011074/28143753123*271443^(9/13) 4180999952203837 a001 53316291173/73681302247*271443^(9/13) 4180999952203837 a001 139583862445/192900153618*271443^(9/13) 4180999952203837 a001 10610209857723/14662949395604*271443^(9/13) 4180999952203837 a001 591286729879/817138163596*271443^(9/13) 4180999952203837 a001 225851433717/312119004989*271443^(9/13) 4180999952203837 a001 86267571272/119218851371*271443^(9/13) 4180999952203837 a001 32951280099/45537549124*271443^(9/13) 4180999952203837 a001 12586269025/17393796001*271443^(9/13) 4180999952203837 a001 4807526976/6643838879*271443^(9/13) 4180999952203837 a001 1836311903/2537720636*271443^(9/13) 4180999952203837 a001 701408733/969323029*271443^(9/13) 4180999952203837 a001 267914296/370248451*271443^(9/13) 4180999952203838 a001 102334155/141422324*271443^(9/13) 4180999952203838 a001 39088169/54018521*271443^(9/13) 4180999952203844 a001 14930352/20633239*271443^(9/13) 4180999952203879 a001 5702887/7881196*271443^(9/13) 4180999952204123 a001 2178309/3010349*271443^(9/13) 4180999952204750 a001 317811/3010349*271443^(11/13) 4180999952204890 a001 701408733/710647*103682^(1/8) 4180999952205042 a001 63245986/271443*103682^(1/4) 4180999952205792 a001 832040/1149851*271443^(9/13) 4180999952207456 a001 832040/3010349*271443^(10/13) 4180999952207892 a001 38580030724/9227465 4180999952207902 a001 98209/219602*817138163596^(1/3) 4180999952207902 a001 98209/219602*(1/2+1/2*5^(1/2))^19 4180999952207902 a001 98209/219602*87403803^(1/2) 4180999952208048 a001 196452/5779*271443^(5/13) 4180999952208093 a001 2178309/7881196*271443^(10/13) 4180999952208187 a001 5702887/20633239*271443^(10/13) 4180999952208200 a001 14930352/54018521*271443^(10/13) 4180999952208202 a001 39088169/141422324*271443^(10/13) 4180999952208202 a001 102334155/370248451*271443^(10/13) 4180999952208202 a001 267914296/969323029*271443^(10/13) 4180999952208202 a001 701408733/2537720636*271443^(10/13) 4180999952208202 a001 1836311903/6643838879*271443^(10/13) 4180999952208202 a001 4807526976/17393796001*271443^(10/13) 4180999952208202 a001 12586269025/45537549124*271443^(10/13) 4180999952208202 a001 32951280099/119218851371*271443^(10/13) 4180999952208202 a001 86267571272/312119004989*271443^(10/13) 4180999952208202 a001 225851433717/817138163596*271443^(10/13) 4180999952208202 a001 1548008755920/5600748293801*271443^(10/13) 4180999952208202 a001 139583862445/505019158607*271443^(10/13) 4180999952208202 a001 53316291173/192900153618*271443^(10/13) 4180999952208202 a001 20365011074/73681302247*271443^(10/13) 4180999952208202 a001 7778742049/28143753123*271443^(10/13) 4180999952208202 a001 2971215073/10749957122*271443^(10/13) 4180999952208202 a001 1134903170/4106118243*271443^(10/13) 4180999952208202 a001 433494437/1568397607*271443^(10/13) 4180999952208202 a001 165580141/599074578*271443^(10/13) 4180999952208203 a001 63245986/228826127*271443^(10/13) 4180999952208203 a001 24157817/87403803*271443^(10/13) 4180999952208208 a001 9227465/33385282*271443^(10/13) 4180999952208244 a001 3524578/12752043*271443^(10/13) 4180999952208488 a001 1346269/4870847*271443^(10/13) 4180999952208721 a001 317811/7881196*271443^(12/13) 4180999952210157 a001 514229/1860498*271443^(10/13) 4180999952211427 a001 208010/1970299*271443^(11/13) 4180999952211961 a001 1836311903/1860498*103682^(1/8) 4180999952212391 a001 5702887/439204*271443^(6/13) 4180999952212401 a001 2178309/20633239*271443^(11/13) 4180999952212543 a001 5702887/54018521*271443^(11/13) 4180999952212564 a001 3732588/35355581*271443^(11/13) 4180999952212567 a001 39088169/370248451*271443^(11/13) 4180999952212567 a001 102334155/969323029*271443^(11/13) 4180999952212567 a001 66978574/634430159*271443^(11/13) 4180999952212567 a001 701408733/6643838879*271443^(11/13) 4180999952212567 a001 1836311903/17393796001*271443^(11/13) 4180999952212567 a001 1201881744/11384387281*271443^(11/13) 4180999952212567 a001 12586269025/119218851371*271443^(11/13) 4180999952212567 a001 32951280099/312119004989*271443^(11/13) 4180999952212567 a001 21566892818/204284540899*271443^(11/13) 4180999952212567 a001 225851433717/2139295485799*271443^(11/13) 4180999952212567 a001 182717648081/1730726404001*271443^(11/13) 4180999952212567 a001 139583862445/1322157322203*271443^(11/13) 4180999952212567 a001 53316291173/505019158607*271443^(11/13) 4180999952212567 a001 10182505537/96450076809*271443^(11/13) 4180999952212567 a001 7778742049/73681302247*271443^(11/13) 4180999952212567 a001 2971215073/28143753123*271443^(11/13) 4180999952212567 a001 567451585/5374978561*271443^(11/13) 4180999952212567 a001 433494437/4106118243*271443^(11/13) 4180999952212567 a001 165580141/1568397607*271443^(11/13) 4180999952212568 a001 31622993/299537289*271443^(11/13) 4180999952212569 a001 24157817/228826127*271443^(11/13) 4180999952212577 a001 9227465/87403803*271443^(11/13) 4180999952212631 a001 1762289/16692641*271443^(11/13) 4180999952212993 a001 4807526976/4870847*103682^(1/8) 4180999952213003 a001 1346269/12752043*271443^(11/13) 4180999952213018 a004 Fibonacci(28)*Lucas(26)/(1/2+sqrt(5)/2)^35 4180999952213144 a001 12586269025/12752043*103682^(1/8) 4180999952213166 a001 32951280099/33385282*103682^(1/8) 4180999952213169 a001 86267571272/87403803*103682^(1/8) 4180999952213169 a001 225851433717/228826127*103682^(1/8) 4180999952213169 a001 591286729879/599074578*103682^(1/8) 4180999952213169 a001 1548008755920/1568397607*103682^(1/8) 4180999952213169 a001 4052739537881/4106118243*103682^(1/8) 4180999952213169 a001 4807525989/4870846*103682^(1/8) 4180999952213169 a001 6557470319842/6643838879*103682^(1/8) 4180999952213169 a001 2504730781961/2537720636*103682^(1/8) 4180999952213169 a001 956722026041/969323029*103682^(1/8) 4180999952213169 a001 365435296162/370248451*103682^(1/8) 4180999952213170 a001 139583862445/141422324*103682^(1/8) 4180999952213171 a001 53316291173/54018521*103682^(1/8) 4180999952213179 a001 20365011074/20633239*103682^(1/8) 4180999952213237 a001 7778742049/7881196*103682^(1/8) 4180999952213631 a001 2971215073/3010349*103682^(1/8) 4180999952214667 a001 1762289/219602*271443^(1/2) 4180999952215553 a001 514229/4870847*271443^(11/13) 4180999952215734 a001 75640/1875749*271443^(12/13) 4180999952215879 a001 75025/103682*103682^(3/4) 4180999952216332 a001 1134903170/1149851*103682^(1/8) 4180999952216606 a001 2178309/439204*271443^(7/13) 4180999952216758 a001 2178309/54018521*271443^(12/13) 4180999952216907 a001 5702887/141422324*271443^(12/13) 4180999952216929 a001 14930352/370248451*271443^(12/13) 4180999952216932 a001 39088169/969323029*271443^(12/13) 4180999952216932 a001 9303105/230701876*271443^(12/13) 4180999952216932 a001 267914296/6643838879*271443^(12/13) 4180999952216932 a001 701408733/17393796001*271443^(12/13) 4180999952216932 a001 1836311903/45537549124*271443^(12/13) 4180999952216932 a001 4807526976/119218851371*271443^(12/13) 4180999952216932 a001 1144206275/28374454999*271443^(12/13) 4180999952216932 a001 32951280099/817138163596*271443^(12/13) 4180999952216932 a001 86267571272/2139295485799*271443^(12/13) 4180999952216932 a001 225851433717/5600748293801*271443^(12/13) 4180999952216932 a001 591286729879/14662949395604*271443^(12/13) 4180999952216932 a001 365435296162/9062201101803*271443^(12/13) 4180999952216932 a001 139583862445/3461452808002*271443^(12/13) 4180999952216932 a001 53316291173/1322157322203*271443^(12/13) 4180999952216932 a001 20365011074/505019158607*271443^(12/13) 4180999952216932 a001 7778742049/192900153618*271443^(12/13) 4180999952216932 a001 2971215073/73681302247*271443^(12/13) 4180999952216932 a001 1134903170/28143753123*271443^(12/13) 4180999952216932 a001 433494437/10749957122*271443^(12/13) 4180999952216932 a001 165580141/4106118243*271443^(12/13) 4180999952216933 a001 63245986/1568397607*271443^(12/13) 4180999952216934 a001 24157817/599074578*271443^(12/13) 4180999952216942 a001 9227465/228826127*271443^(12/13) 4180999952216999 a001 3524578/87403803*271443^(12/13) 4180999952217233 a001 317811/439204*271443^(9/13) 4180999952217390 a001 1346269/33385282*271443^(12/13) 4180999952218638 a001 701408733/439204*103682^(1/12) 4180999952219939 a001 208010/109801*271443^(8/13) 4180999952220069 a001 514229/12752043*271443^(12/13) 4180999952220089 a004 Fibonacci(30)*Lucas(26)/(1/2+sqrt(5)/2)^37 4180999952221096 a001 433494437/710647*103682^(1/6) 4180999952221121 a004 Fibonacci(32)*Lucas(26)/(1/2+sqrt(5)/2)^39 4180999952221246 a001 39088169/271443*103682^(7/24) 4180999952221272 a004 Fibonacci(34)*Lucas(26)/(1/2+sqrt(5)/2)^41 4180999952221294 a004 Fibonacci(36)*Lucas(26)/(1/2+sqrt(5)/2)^43 4180999952221297 a004 Fibonacci(38)*Lucas(26)/(1/2+sqrt(5)/2)^45 4180999952221297 a004 Fibonacci(40)*Lucas(26)/(1/2+sqrt(5)/2)^47 4180999952221297 a004 Fibonacci(42)*Lucas(26)/(1/2+sqrt(5)/2)^49 4180999952221297 a004 Fibonacci(44)*Lucas(26)/(1/2+sqrt(5)/2)^51 4180999952221297 a004 Fibonacci(46)*Lucas(26)/(1/2+sqrt(5)/2)^53 4180999952221297 a004 Fibonacci(48)*Lucas(26)/(1/2+sqrt(5)/2)^55 4180999952221297 a004 Fibonacci(50)*Lucas(26)/(1/2+sqrt(5)/2)^57 4180999952221297 a004 Fibonacci(52)*Lucas(26)/(1/2+sqrt(5)/2)^59 4180999952221297 a004 Fibonacci(54)*Lucas(26)/(1/2+sqrt(5)/2)^61 4180999952221297 a004 Fibonacci(56)*Lucas(26)/(1/2+sqrt(5)/2)^63 4180999952221297 a004 Fibonacci(58)*Lucas(26)/(1/2+sqrt(5)/2)^65 4180999952221297 a004 Fibonacci(60)*Lucas(26)/(1/2+sqrt(5)/2)^67 4180999952221297 a004 Fibonacci(62)*Lucas(26)/(1/2+sqrt(5)/2)^69 4180999952221297 a004 Fibonacci(64)*Lucas(26)/(1/2+sqrt(5)/2)^71 4180999952221297 a004 Fibonacci(66)*Lucas(26)/(1/2+sqrt(5)/2)^73 4180999952221297 a004 Fibonacci(68)*Lucas(26)/(1/2+sqrt(5)/2)^75 4180999952221297 a004 Fibonacci(70)*Lucas(26)/(1/2+sqrt(5)/2)^77 4180999952221297 a004 Fibonacci(72)*Lucas(26)/(1/2+sqrt(5)/2)^79 4180999952221297 a004 Fibonacci(74)*Lucas(26)/(1/2+sqrt(5)/2)^81 4180999952221297 a004 Fibonacci(76)*Lucas(26)/(1/2+sqrt(5)/2)^83 4180999952221297 a004 Fibonacci(78)*Lucas(26)/(1/2+sqrt(5)/2)^85 4180999952221297 a004 Fibonacci(80)*Lucas(26)/(1/2+sqrt(5)/2)^87 4180999952221297 a004 Fibonacci(82)*Lucas(26)/(1/2+sqrt(5)/2)^89 4180999952221297 a004 Fibonacci(84)*Lucas(26)/(1/2+sqrt(5)/2)^91 4180999952221297 a004 Fibonacci(86)*Lucas(26)/(1/2+sqrt(5)/2)^93 4180999952221297 a004 Fibonacci(88)*Lucas(26)/(1/2+sqrt(5)/2)^95 4180999952221297 a004 Fibonacci(90)*Lucas(26)/(1/2+sqrt(5)/2)^97 4180999952221297 a004 Fibonacci(92)*Lucas(26)/(1/2+sqrt(5)/2)^99 4180999952221297 a004 Fibonacci(93)*Lucas(26)/(1/2+sqrt(5)/2)^100 4180999952221297 a004 Fibonacci(91)*Lucas(26)/(1/2+sqrt(5)/2)^98 4180999952221297 a004 Fibonacci(89)*Lucas(26)/(1/2+sqrt(5)/2)^96 4180999952221297 a004 Fibonacci(87)*Lucas(26)/(1/2+sqrt(5)/2)^94 4180999952221297 a004 Fibonacci(85)*Lucas(26)/(1/2+sqrt(5)/2)^92 4180999952221297 a004 Fibonacci(83)*Lucas(26)/(1/2+sqrt(5)/2)^90 4180999952221297 a004 Fibonacci(81)*Lucas(26)/(1/2+sqrt(5)/2)^88 4180999952221297 a004 Fibonacci(79)*Lucas(26)/(1/2+sqrt(5)/2)^86 4180999952221297 a004 Fibonacci(77)*Lucas(26)/(1/2+sqrt(5)/2)^84 4180999952221297 a004 Fibonacci(75)*Lucas(26)/(1/2+sqrt(5)/2)^82 4180999952221297 a004 Fibonacci(73)*Lucas(26)/(1/2+sqrt(5)/2)^80 4180999952221297 a004 Fibonacci(71)*Lucas(26)/(1/2+sqrt(5)/2)^78 4180999952221297 a004 Fibonacci(69)*Lucas(26)/(1/2+sqrt(5)/2)^76 4180999952221297 a004 Fibonacci(67)*Lucas(26)/(1/2+sqrt(5)/2)^74 4180999952221297 a004 Fibonacci(65)*Lucas(26)/(1/2+sqrt(5)/2)^72 4180999952221297 a004 Fibonacci(63)*Lucas(26)/(1/2+sqrt(5)/2)^70 4180999952221297 a004 Fibonacci(61)*Lucas(26)/(1/2+sqrt(5)/2)^68 4180999952221297 a004 Fibonacci(59)*Lucas(26)/(1/2+sqrt(5)/2)^66 4180999952221297 a004 Fibonacci(57)*Lucas(26)/(1/2+sqrt(5)/2)^64 4180999952221297 a004 Fibonacci(55)*Lucas(26)/(1/2+sqrt(5)/2)^62 4180999952221297 a004 Fibonacci(53)*Lucas(26)/(1/2+sqrt(5)/2)^60 4180999952221297 a001 2/121393*(1/2+1/2*5^(1/2))^45 4180999952221297 a004 Fibonacci(51)*Lucas(26)/(1/2+sqrt(5)/2)^58 4180999952221297 a004 Fibonacci(49)*Lucas(26)/(1/2+sqrt(5)/2)^56 4180999952221297 a004 Fibonacci(47)*Lucas(26)/(1/2+sqrt(5)/2)^54 4180999952221297 a004 Fibonacci(45)*Lucas(26)/(1/2+sqrt(5)/2)^52 4180999952221297 a004 Fibonacci(43)*Lucas(26)/(1/2+sqrt(5)/2)^50 4180999952221297 a004 Fibonacci(41)*Lucas(26)/(1/2+sqrt(5)/2)^48 4180999952221297 a004 Fibonacci(39)*Lucas(26)/(1/2+sqrt(5)/2)^46 4180999952221299 a004 Fibonacci(37)*Lucas(26)/(1/2+sqrt(5)/2)^44 4180999952221307 a004 Fibonacci(35)*Lucas(26)/(1/2+sqrt(5)/2)^42 4180999952221365 a004 Fibonacci(33)*Lucas(26)/(1/2+sqrt(5)/2)^40 4180999952221598 a001 196418/710647*271443^(10/13) 4180999952221759 a004 Fibonacci(31)*Lucas(26)/(1/2+sqrt(5)/2)^38 4180999952224460 a004 Fibonacci(29)*Lucas(26)/(1/2+sqrt(5)/2)^36 4180999952224569 a001 267914296/167761*64079^(2/23) 4180999952227139 a001 514229/167761*167761^(3/5) 4180999952228167 a001 567451585/930249*103682^(1/6) 4180999952228980 a001 233802911/90481*39603^(1/22) 4180999952229199 a001 2971215073/4870847*103682^(1/6) 4180999952229349 a001 7778742049/12752043*103682^(1/6) 4180999952229371 a001 10182505537/16692641*103682^(1/6) 4180999952229374 a001 53316291173/87403803*103682^(1/6) 4180999952229375 a001 139583862445/228826127*103682^(1/6) 4180999952229375 a001 182717648081/299537289*103682^(1/6) 4180999952229375 a001 956722026041/1568397607*103682^(1/6) 4180999952229375 a001 2504730781961/4106118243*103682^(1/6) 4180999952229375 a001 3278735159921/5374978561*103682^(1/6) 4180999952229375 a001 10610209857723/17393796001*103682^(1/6) 4180999952229375 a001 4052739537881/6643838879*103682^(1/6) 4180999952229375 a001 1134903780/1860499*103682^(1/6) 4180999952229375 a001 591286729879/969323029*103682^(1/6) 4180999952229375 a001 225851433717/370248451*103682^(1/6) 4180999952229375 a001 21566892818/35355581*103682^(1/6) 4180999952229376 a001 32951280099/54018521*103682^(1/6) 4180999952229385 a001 1144206275/1875749*103682^(1/6) 4180999952229442 a001 1201881744/1970299*103682^(1/6) 4180999952229836 a001 1836311903/3010349*103682^(1/6) 4180999952232537 a001 701408733/1149851*103682^(1/6) 4180999952233034 a001 98209/930249*271443^(11/13) 4180999952234844 a001 433494437/439204*103682^(1/8) 4180999952237301 a001 267914296/710647*103682^(5/24) 4180999952237454 a001 24157817/271443*103682^(1/3) 4180999952238431 a001 196418/4870847*271443^(12/13) 4180999952239501 a001 39088169/39603*15127^(3/20) 4180999952241918 a001 121393/167761*439204^(2/3) 4180999952242972 a004 Fibonacci(27)*Lucas(26)/(1/2+sqrt(5)/2)^34 4180999952244372 a001 233802911/620166*103682^(5/24) 4180999952245404 a001 1836311903/4870847*103682^(5/24) 4180999952245555 a001 1602508992/4250681*103682^(5/24) 4180999952245577 a001 12586269025/33385282*103682^(5/24) 4180999952245580 a001 10983760033/29134601*103682^(5/24) 4180999952245580 a001 86267571272/228826127*103682^(5/24) 4180999952245580 a001 267913919/710646*103682^(5/24) 4180999952245580 a001 591286729879/1568397607*103682^(5/24) 4180999952245580 a001 516002918640/1368706081*103682^(5/24) 4180999952245580 a001 4052739537881/10749957122*103682^(5/24) 4180999952245580 a001 3536736619241/9381251041*103682^(5/24) 4180999952245580 a001 6557470319842/17393796001*103682^(5/24) 4180999952245580 a001 2504730781961/6643838879*103682^(5/24) 4180999952245580 a001 956722026041/2537720636*103682^(5/24) 4180999952245580 a001 365435296162/969323029*103682^(5/24) 4180999952245580 a001 139583862445/370248451*103682^(5/24) 4180999952245581 a001 53316291173/141422324*103682^(5/24) 4180999952245582 a001 20365011074/54018521*103682^(5/24) 4180999952245590 a001 7778742049/20633239*103682^(5/24) 4180999952245648 a001 2971215073/7881196*103682^(5/24) 4180999952246042 a001 1134903170/3010349*103682^(5/24) 4180999952248290 a001 46368/167761*103682^(5/6) 4180999952248743 a001 433494437/1149851*103682^(5/24) 4180999952251049 a001 66978574/109801*103682^(1/6) 4180999952253507 a001 165580141/710647*103682^(1/4) 4180999952253654 a001 4976784/90481*103682^(3/8) 4180999952253662 a001 5702887/167761*167761^(2/5) 4180999952256331 a001 121393/167761*7881196^(6/11) 4180999952256362 a001 75025/271443*20633239^(4/7) 4180999952256367 a001 121393/167761*141422324^(6/13) 4180999952256367 a001 75025/271443*2537720636^(4/9) 4180999952256367 a001 121393/167761*2537720636^(2/5) 4180999952256367 a001 75025/271443*(1/2+1/2*5^(1/2))^20 4180999952256367 a001 75025/271443*23725150497407^(5/16) 4180999952256367 a001 75025/271443*505019158607^(5/14) 4180999952256367 a001 75025/271443*73681302247^(5/13) 4180999952256367 a001 75025/271443*28143753123^(2/5) 4180999952256367 a001 121393/167761*45537549124^(6/17) 4180999952256367 a001 121393/167761*14662949395604^(2/7) 4180999952256367 a001 121393/167761*(1/2+1/2*5^(1/2))^18 4180999952256367 a001 121393/167761*192900153618^(1/3) 4180999952256367 a001 75025/271443*10749957122^(5/12) 4180999952256367 a001 121393/167761*10749957122^(3/8) 4180999952256367 a001 121393/167761*4106118243^(9/23) 4180999952256367 a001 75025/271443*4106118243^(10/23) 4180999952256367 a001 121393/167761*1568397607^(9/22) 4180999952256367 a001 75025/271443*1568397607^(5/11) 4180999952256367 a001 121393/167761*599074578^(3/7) 4180999952256367 a001 75025/271443*599074578^(10/21) 4180999952256367 a001 121393/167761*228826127^(9/20) 4180999952256367 a001 75025/271443*228826127^(1/2) 4180999952256367 a001 121393/167761*87403803^(9/19) 4180999952256368 a001 75025/271443*87403803^(10/19) 4180999952256369 a001 121393/167761*33385282^(1/2) 4180999952256369 a001 75025/271443*33385282^(5/9) 4180999952256381 a001 121393/167761*12752043^(9/17) 4180999952256382 a001 75025/271443*12752043^(10/17) 4180999952256466 a001 121393/167761*4870847^(9/16) 4180999952256477 a001 75025/271443*4870847^(5/8) 4180999952256543 a001 9107509825/2178309 4180999952257092 a001 121393/167761*1860498^(3/5) 4180999952257172 a001 75025/271443*1860498^(2/3) 4180999952260308 a001 31622993/51841*39603^(2/11) 4180999952260578 a001 433494437/1860498*103682^(1/4) 4180999952261610 a001 1134903170/4870847*103682^(1/4) 4180999952261689 a001 121393/167761*710647^(9/14) 4180999952261760 a001 2971215073/12752043*103682^(1/4) 4180999952261782 a001 7778742049/33385282*103682^(1/4) 4180999952261785 a001 20365011074/87403803*103682^(1/4) 4180999952261786 a001 53316291173/228826127*103682^(1/4) 4180999952261786 a001 139583862445/599074578*103682^(1/4) 4180999952261786 a001 365435296162/1568397607*103682^(1/4) 4180999952261786 a001 956722026041/4106118243*103682^(1/4) 4180999952261786 a001 2504730781961/10749957122*103682^(1/4) 4180999952261786 a001 6557470319842/28143753123*103682^(1/4) 4180999952261786 a001 10610209857723/45537549124*103682^(1/4) 4180999952261786 a001 4052739537881/17393796001*103682^(1/4) 4180999952261786 a001 1548008755920/6643838879*103682^(1/4) 4180999952261786 a001 591286729879/2537720636*103682^(1/4) 4180999952261786 a001 225851433717/969323029*103682^(1/4) 4180999952261786 a001 86267571272/370248451*103682^(1/4) 4180999952261786 a001 63246219/271444*103682^(1/4) 4180999952261787 a001 12586269025/54018521*103682^(1/4) 4180999952261796 a001 4807526976/20633239*103682^(1/4) 4180999952261853 a001 1836311903/7881196*103682^(1/4) 4180999952262247 a001 701408733/3010349*103682^(1/4) 4180999952262281 a001 75025/271443*710647^(5/7) 4180999952264948 a001 267914296/1149851*103682^(1/4) 4180999952267255 a001 165580141/439204*103682^(5/24) 4180999952268840 a001 433494437/167761*64079^(1/23) 4180999952269712 a001 14619165/101521*103682^(7/24) 4180999952269873 a001 9227465/271443*103682^(5/12) 4180999952276783 a001 133957148/930249*103682^(7/24) 4180999952277446 a001 1836311903/710647*39603^(1/22) 4180999952277815 a001 701408733/4870847*103682^(7/24) 4180999952277966 a001 1836311903/12752043*103682^(7/24) 4180999952277988 a001 14930208/103681*103682^(7/24) 4180999952277991 a001 12586269025/87403803*103682^(7/24) 4180999952277991 a001 32951280099/228826127*103682^(7/24) 4180999952277991 a001 43133785636/299537289*103682^(7/24) 4180999952277991 a001 32264490531/224056801*103682^(7/24) 4180999952277991 a001 591286729879/4106118243*103682^(7/24) 4180999952277991 a001 774004377960/5374978561*103682^(7/24) 4180999952277991 a001 4052739537881/28143753123*103682^(7/24) 4180999952277991 a001 1515744265389/10525900321*103682^(7/24) 4180999952277991 a001 3278735159921/22768774562*103682^(7/24) 4180999952277991 a001 2504730781961/17393796001*103682^(7/24) 4180999952277991 a001 956722026041/6643838879*103682^(7/24) 4180999952277991 a001 182717648081/1268860318*103682^(7/24) 4180999952277991 a001 139583862445/969323029*103682^(7/24) 4180999952277991 a001 53316291173/370248451*103682^(7/24) 4180999952277992 a001 10182505537/70711162*103682^(7/24) 4180999952277993 a001 7778742049/54018521*103682^(7/24) 4180999952278001 a001 2971215073/20633239*103682^(7/24) 4180999952278059 a001 567451585/3940598*103682^(7/24) 4180999952278453 a001 433494437/3010349*103682^(7/24) 4180999952281154 a001 165580141/1149851*103682^(7/24) 4180999952283400 a001 63245986/167761*167761^(1/5) 4180999952283460 a001 102334155/439204*103682^(1/4) 4180999952284517 a001 267084832/103361*39603^(1/22) 4180999952285548 a001 12586269025/4870847*39603^(1/22) 4180999952285699 a001 10983760033/4250681*39603^(1/22) 4180999952285721 a001 43133785636/16692641*39603^(1/22) 4180999952285724 a001 75283811239/29134601*39603^(1/22) 4180999952285725 a001 591286729879/228826127*39603^(1/22) 4180999952285725 a001 86000486440/33281921*39603^(1/22) 4180999952285725 a001 4052739537881/1568397607*39603^(1/22) 4180999952285725 a001 3536736619241/1368706081*39603^(1/22) 4180999952285725 a001 3278735159921/1268860318*39603^(1/22) 4180999952285725 a001 2504730781961/969323029*39603^(1/22) 4180999952285725 a001 956722026041/370248451*39603^(1/22) 4180999952285725 a001 182717648081/70711162*39603^(1/22) 4180999952285726 a001 139583862445/54018521*39603^(1/22) 4180999952285734 a001 53316291173/20633239*39603^(1/22) 4180999952285792 a001 10182505537/3940598*39603^(1/22) 4180999952285918 a001 63245986/710647*103682^(1/3) 4180999952286043 a001 5702887/271443*103682^(11/24) 4180999952286186 a001 7778742049/3010349*39603^(1/22) 4180999952288887 a001 2971215073/1149851*39603^(1/22) 4180999952291437 a004 Fibonacci(25)*Lucas(27)/(1/2+sqrt(5)/2)^33 4180999952292638 a001 75025/1860498*439204^(8/9) 4180999952292989 a001 165580141/1860498*103682^(1/3) 4180999952294021 a001 433494437/4870847*103682^(1/3) 4180999952294171 a001 1134903170/12752043*103682^(1/3) 4180999952294193 a001 2971215073/33385282*103682^(1/3) 4180999952294196 a001 7778742049/87403803*103682^(1/3) 4180999952294197 a001 20365011074/228826127*103682^(1/3) 4180999952294197 a001 53316291173/599074578*103682^(1/3) 4180999952294197 a001 139583862445/1568397607*103682^(1/3) 4180999952294197 a001 365435296162/4106118243*103682^(1/3) 4180999952294197 a001 956722026041/10749957122*103682^(1/3) 4180999952294197 a001 2504730781961/28143753123*103682^(1/3) 4180999952294197 a001 6557470319842/73681302247*103682^(1/3) 4180999952294197 a001 10610209857723/119218851371*103682^(1/3) 4180999952294197 a001 4052739537881/45537549124*103682^(1/3) 4180999952294197 a001 1548008755920/17393796001*103682^(1/3) 4180999952294197 a001 591286729879/6643838879*103682^(1/3) 4180999952294197 a001 225851433717/2537720636*103682^(1/3) 4180999952294197 a001 86267571272/969323029*103682^(1/3) 4180999952294197 a001 32951280099/370248451*103682^(1/3) 4180999952294197 a001 12586269025/141422324*103682^(1/3) 4180999952294198 a001 4807526976/54018521*103682^(1/3) 4180999952294207 a001 1836311903/20633239*103682^(1/3) 4180999952294264 a001 3524667/39604*103682^(1/3) 4180999952294658 a001 267914296/3010349*103682^(1/3) 4180999952295652 a001 121393/167761*271443^(9/13) 4180999952297359 a001 102334155/1149851*103682^(1/3) 4180999952299666 a001 31622993/219602*103682^(7/24) 4180999952300017 a001 75025/271443*271443^(10/13) 4180999952302123 a001 39088169/710647*103682^(3/8) 4180999952302342 a001 3524578/271443*103682^(1/2) 4180999952303302 a001 2178309/167761*439204^(4/9) 4180999952304233 a001 514229/167761*439204^(5/9) 4180999952304788 a001 75025/710647*7881196^(2/3) 4180999952304833 a001 75025/710647*312119004989^(2/5) 4180999952304833 a001 75025/710647*(1/2+1/2*5^(1/2))^22 4180999952304833 a001 317811/167761*(1/2+1/2*5^(1/2))^16 4180999952304833 a001 317811/167761*23725150497407^(1/4) 4180999952304833 a001 317811/167761*73681302247^(4/13) 4180999952304833 a001 75025/710647*10749957122^(11/24) 4180999952304833 a001 317811/167761*10749957122^(1/3) 4180999952304833 a001 317811/167761*4106118243^(8/23) 4180999952304833 a001 75025/710647*4106118243^(11/23) 4180999952304833 a001 317811/167761*1568397607^(4/11) 4180999952304833 a001 75025/710647*1568397607^(1/2) 4180999952304833 a001 317811/167761*599074578^(8/21) 4180999952304833 a001 75025/710647*599074578^(11/21) 4180999952304833 a001 317811/167761*228826127^(2/5) 4180999952304833 a001 75025/710647*228826127^(11/20) 4180999952304833 a001 317811/167761*87403803^(8/19) 4180999952304833 a001 75025/710647*87403803^(11/19) 4180999952304834 a001 317811/167761*33385282^(4/9) 4180999952304835 a001 75025/710647*33385282^(11/18) 4180999952304845 a001 317811/167761*12752043^(8/17) 4180999952304849 a001 75025/710647*12752043^(11/17) 4180999952304858 a001 23843770275/5702887 4180999952304921 a001 317811/167761*4870847^(1/2) 4180999952304954 a001 75025/710647*4870847^(11/16) 4180999952305477 a001 317811/167761*1860498^(8/15) 4180999952305718 a001 75025/710647*1860498^(11/15) 4180999952305897 a001 9227465/167761*439204^(1/3) 4180999952307399 a001 567451585/219602*39603^(1/22) 4180999952308295 a001 39088169/167761*439204^(2/9) 4180999952309194 a001 831985/15126*103682^(3/8) 4180999952309564 a001 317811/167761*710647^(4/7) 4180999952309949 a004 Fibonacci(25)*Lucas(29)/(1/2+sqrt(5)/2)^35 4180999952310226 a001 267914296/4870847*103682^(3/8) 4180999952310377 a001 233802911/4250681*103682^(3/8) 4180999952310399 a001 1836311903/33385282*103682^(3/8) 4180999952310402 a001 1602508992/29134601*103682^(3/8) 4180999952310402 a001 12586269025/228826127*103682^(3/8) 4180999952310402 a001 10983760033/199691526*103682^(3/8) 4180999952310402 a001 86267571272/1568397607*103682^(3/8) 4180999952310402 a001 75283811239/1368706081*103682^(3/8) 4180999952310402 a001 591286729879/10749957122*103682^(3/8) 4180999952310402 a001 12585437040/228811001*103682^(3/8) 4180999952310402 a001 4052739537881/73681302247*103682^(3/8) 4180999952310402 a001 3536736619241/64300051206*103682^(3/8) 4180999952310402 a001 6557470319842/119218851371*103682^(3/8) 4180999952310402 a001 2504730781961/45537549124*103682^(3/8) 4180999952310402 a001 956722026041/17393796001*103682^(3/8) 4180999952310402 a001 365435296162/6643838879*103682^(3/8) 4180999952310402 a001 139583862445/2537720636*103682^(3/8) 4180999952310402 a001 53316291173/969323029*103682^(3/8) 4180999952310402 a001 20365011074/370248451*103682^(3/8) 4180999952310403 a001 7778742049/141422324*103682^(3/8) 4180999952310404 a001 2971215073/54018521*103682^(3/8) 4180999952310412 a001 1134903170/20633239*103682^(3/8) 4180999952310470 a001 433494437/7881196*103682^(3/8) 4180999952310703 a001 165580141/167761*439204^(1/9) 4180999952310864 a001 165580141/3010349*103682^(3/8) 4180999952311338 a001 75025/710647*710647^(11/14) 4180999952311855 a001 75025/1860498*7881196^(8/11) 4180999952311900 a001 75640/15251*20633239^(2/5) 4180999952311904 a001 75025/1860498*141422324^(8/13) 4180999952311904 a001 75025/1860498*2537720636^(8/15) 4180999952311904 a001 75025/1860498*45537549124^(8/17) 4180999952311904 a001 75025/1860498*14662949395604^(8/21) 4180999952311904 a001 75025/1860498*(1/2+1/2*5^(1/2))^24 4180999952311904 a001 75025/1860498*192900153618^(4/9) 4180999952311904 a001 75025/1860498*73681302247^(6/13) 4180999952311904 a001 75640/15251*17393796001^(2/7) 4180999952311904 a001 75640/15251*14662949395604^(2/9) 4180999952311904 a001 75640/15251*(1/2+1/2*5^(1/2))^14 4180999952311904 a001 75640/15251*505019158607^(1/4) 4180999952311904 a001 75640/15251*10749957122^(7/24) 4180999952311904 a001 75025/1860498*10749957122^(1/2) 4180999952311904 a001 75640/15251*4106118243^(7/23) 4180999952311904 a001 75025/1860498*4106118243^(12/23) 4180999952311904 a001 75640/15251*1568397607^(7/22) 4180999952311904 a001 75025/1860498*1568397607^(6/11) 4180999952311904 a001 75640/15251*599074578^(1/3) 4180999952311904 a001 75025/1860498*599074578^(4/7) 4180999952311904 a001 75640/15251*228826127^(7/20) 4180999952311904 a001 75025/1860498*228826127^(3/5) 4180999952311904 a001 75640/15251*87403803^(7/19) 4180999952311904 a001 75025/1860498*87403803^(12/19) 4180999952311905 a001 75640/15251*33385282^(7/18) 4180999952311906 a001 75025/1860498*33385282^(2/3) 4180999952311907 a001 7802975125/1866294 4180999952311914 a001 75640/15251*12752043^(7/17) 4180999952311922 a001 75025/1860498*12752043^(12/17) 4180999952311981 a001 75640/15251*4870847^(7/16) 4180999952312036 a001 75025/1860498*4870847^(3/4) 4180999952312467 a001 75640/15251*1860498^(7/15) 4180999952312650 a004 Fibonacci(25)*Lucas(31)/(1/2+sqrt(5)/2)^37 4180999952312870 a001 75025/1860498*1860498^(4/5) 4180999952312911 a001 2178309/167761*7881196^(4/11) 4180999952312935 a001 75025/4870847*141422324^(2/3) 4180999952312935 a001 2178309/167761*141422324^(4/13) 4180999952312935 a001 2178309/167761*2537720636^(4/15) 4180999952312935 a001 75025/4870847*(1/2+1/2*5^(1/2))^26 4180999952312935 a001 75025/4870847*73681302247^(1/2) 4180999952312935 a001 2178309/167761*45537549124^(4/17) 4180999952312935 a001 2178309/167761*817138163596^(4/19) 4180999952312935 a001 2178309/167761*14662949395604^(4/21) 4180999952312935 a001 2178309/167761*(1/2+1/2*5^(1/2))^12 4180999952312935 a001 2178309/167761*192900153618^(2/9) 4180999952312935 a001 2178309/167761*73681302247^(3/13) 4180999952312935 a001 2178309/167761*10749957122^(1/4) 4180999952312935 a001 75025/4870847*10749957122^(13/24) 4180999952312935 a001 2178309/167761*4106118243^(6/23) 4180999952312935 a001 75025/4870847*4106118243^(13/23) 4180999952312935 a001 2178309/167761*1568397607^(3/11) 4180999952312935 a001 75025/4870847*1568397607^(13/22) 4180999952312935 a001 2178309/167761*599074578^(2/7) 4180999952312935 a001 75025/4870847*599074578^(13/21) 4180999952312935 a001 2178309/167761*228826127^(3/10) 4180999952312935 a001 75025/4870847*228826127^(13/20) 4180999952312936 a001 2178309/167761*87403803^(6/19) 4180999952312936 a001 75025/4870847*87403803^(13/19) 4180999952312936 a001 163427632725/39088169 4180999952312937 a001 2178309/167761*33385282^(1/3) 4180999952312938 a001 75025/4870847*33385282^(13/18) 4180999952312944 a001 2178309/167761*12752043^(6/17) 4180999952312955 a001 75025/4870847*12752043^(13/17) 4180999952313001 a001 2178309/167761*4870847^(3/8) 4180999952313044 a004 Fibonacci(25)*Lucas(33)/(1/2+sqrt(5)/2)^39 4180999952313047 a001 75025/33385282*7881196^(10/11) 4180999952313078 a001 75025/12752043*20633239^(4/5) 4180999952313079 a001 75025/4870847*4870847^(13/16) 4180999952313083 a001 5702887/167761*20633239^(2/7) 4180999952313086 a001 5702887/167761*2537720636^(2/9) 4180999952313086 a001 75025/12752043*17393796001^(4/7) 4180999952313086 a001 75025/12752043*14662949395604^(4/9) 4180999952313086 a001 75025/12752043*(1/2+1/2*5^(1/2))^28 4180999952313086 a001 75025/12752043*505019158607^(1/2) 4180999952313086 a001 75025/12752043*73681302247^(7/13) 4180999952313086 a001 5702887/167761*312119004989^(2/11) 4180999952313086 a001 5702887/167761*(1/2+1/2*5^(1/2))^10 4180999952313086 a001 5702887/167761*28143753123^(1/5) 4180999952313086 a001 5702887/167761*10749957122^(5/24) 4180999952313086 a001 75025/12752043*10749957122^(7/12) 4180999952313086 a001 5702887/167761*4106118243^(5/23) 4180999952313086 a001 75025/12752043*4106118243^(14/23) 4180999952313086 a001 5702887/167761*1568397607^(5/22) 4180999952313086 a001 75025/12752043*1568397607^(7/11) 4180999952313086 a001 5702887/167761*599074578^(5/21) 4180999952313086 a001 75025/12752043*599074578^(2/3) 4180999952313086 a001 5702887/167761*228826127^(1/4) 4180999952313086 a001 75025/12752043*228826127^(7/10) 4180999952313086 a001 85571819435/20466831 4180999952313086 a001 5702887/167761*87403803^(5/19) 4180999952313086 a001 75025/12752043*87403803^(14/19) 4180999952313087 a001 5702887/167761*33385282^(5/18) 4180999952313089 a001 75025/12752043*33385282^(7/9) 4180999952313093 a001 5702887/167761*12752043^(5/17) 4180999952313099 a001 39088169/167761*7881196^(2/11) 4180999952313099 a001 75025/33385282*20633239^(6/7) 4180999952313102 a004 Fibonacci(25)*Lucas(35)/(1/2+sqrt(5)/2)^41 4180999952313103 a001 9227465/167761*7881196^(3/11) 4180999952313106 a001 165580141/167761*7881196^(1/11) 4180999952313107 a001 75025/12752043*12752043^(14/17) 4180999952313108 a001 75025/33385282*141422324^(10/13) 4180999952313108 a001 75025/33385282*2537720636^(2/3) 4180999952313108 a001 75025/33385282*45537549124^(10/17) 4180999952313108 a001 75025/33385282*312119004989^(6/11) 4180999952313108 a001 75025/33385282*14662949395604^(10/21) 4180999952313108 a001 75025/33385282*(1/2+1/2*5^(1/2))^30 4180999952313108 a001 75025/33385282*192900153618^(5/9) 4180999952313108 a001 75025/33385282*28143753123^(3/5) 4180999952313108 a001 14930352/167761*(1/2+1/2*5^(1/2))^8 4180999952313108 a001 14930352/167761*23725150497407^(1/8) 4180999952313108 a001 14930352/167761*505019158607^(1/7) 4180999952313108 a001 14930352/167761*73681302247^(2/13) 4180999952313108 a001 14930352/167761*10749957122^(1/6) 4180999952313108 a001 75025/33385282*10749957122^(5/8) 4180999952313108 a001 14930352/167761*4106118243^(4/23) 4180999952313108 a001 75025/33385282*4106118243^(15/23) 4180999952313108 a001 14930352/167761*1568397607^(2/11) 4180999952313108 a001 75025/33385282*1568397607^(15/22) 4180999952313108 a001 14930352/167761*599074578^(4/21) 4180999952313108 a001 75025/33385282*599074578^(5/7) 4180999952313108 a001 140018707350/33489287 4180999952313108 a001 14930352/167761*228826127^(1/5) 4180999952313108 a001 75025/33385282*228826127^(3/4) 4180999952313108 a001 14930352/167761*87403803^(4/19) 4180999952313108 a001 75025/33385282*87403803^(15/19) 4180999952313109 a001 14930352/167761*33385282^(2/9) 4180999952313110 a004 Fibonacci(25)*Lucas(37)/(1/2+sqrt(5)/2)^43 4180999952313110 a001 63245986/167761*20633239^(1/7) 4180999952313111 a001 75025/33385282*33385282^(5/6) 4180999952313111 a001 39088169/167761*141422324^(2/13) 4180999952313111 a001 39088169/167761*2537720636^(2/15) 4180999952313111 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^32/Lucas(38) 4180999952313111 a001 75025/87403803*23725150497407^(1/2) 4180999952313111 a001 75025/87403803*505019158607^(4/7) 4180999952313111 a001 75025/87403803*73681302247^(8/13) 4180999952313111 a001 39088169/167761*45537549124^(2/17) 4180999952313111 a001 39088169/167761*14662949395604^(2/21) 4180999952313111 a001 39088169/167761*(1/2+1/2*5^(1/2))^6 4180999952313111 a001 39088169/167761*10749957122^(1/8) 4180999952313111 a001 75025/87403803*10749957122^(2/3) 4180999952313111 a001 39088169/167761*4106118243^(3/23) 4180999952313111 a001 75025/87403803*4106118243^(16/23) 4180999952313111 a001 39088169/167761*1568397607^(3/22) 4180999952313111 a001 75025/87403803*1568397607^(8/11) 4180999952313111 a001 39088169/167761*599074578^(1/7) 4180999952313111 a001 2932589879225/701408733 4180999952313111 a001 75025/87403803*599074578^(16/21) 4180999952313111 a001 39088169/167761*228826127^(3/20) 4180999952313111 a001 24157817/167761*20633239^(1/5) 4180999952313111 a001 75025/87403803*228826127^(4/5) 4180999952313111 a001 39088169/167761*87403803^(3/19) 4180999952313111 a004 Fibonacci(25)*Lucas(39)/(1/2+sqrt(5)/2)^45 4180999952313111 a001 75025/599074578*141422324^(12/13) 4180999952313112 a001 75025/87403803*87403803^(16/19) 4180999952313112 a001 75025/228826127*45537549124^(2/3) 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^34/Lucas(40) 4180999952313112 a001 9303105/15251*(1/2+1/2*5^(1/2))^4 4180999952313112 a001 9303105/15251*23725150497407^(1/16) 4180999952313112 a001 9303105/15251*73681302247^(1/13) 4180999952313112 a001 9303105/15251*10749957122^(1/12) 4180999952313112 a001 75025/228826127*10749957122^(17/24) 4180999952313112 a001 9303105/15251*4106118243^(2/23) 4180999952313112 a001 9303105/15251*1568397607^(1/11) 4180999952313112 a001 75025/228826127*4106118243^(17/23) 4180999952313112 a001 7677619978875/1836311903 4180999952313112 a001 9303105/15251*599074578^(2/21) 4180999952313112 a001 75025/228826127*1568397607^(17/22) 4180999952313112 a001 9303105/15251*228826127^(1/10) 4180999952313112 a001 75025/228826127*599074578^(17/21) 4180999952313112 a004 Fibonacci(25)*Lucas(41)/(1/2+sqrt(5)/2)^47 4180999952313112 a001 9303105/15251*87403803^(2/19) 4180999952313112 a001 75025/599074578*2537720636^(4/5) 4180999952313112 a001 75025/228826127*228826127^(17/20) 4180999952313112 a001 75025/599074578*45537549124^(12/17) 4180999952313112 a001 75025/599074578*14662949395604^(4/7) 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^36/Lucas(42) 4180999952313112 a001 75025/599074578*505019158607^(9/14) 4180999952313112 a001 75025/599074578*192900153618^(2/3) 4180999952313112 a001 75025/599074578*73681302247^(9/13) 4180999952313112 a001 267914296/167761*(1/2+1/2*5^(1/2))^2 4180999952313112 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^2/Lucas(25) 4180999952313112 a001 267914296/167761*10749957122^(1/24) 4180999952313112 a001 267914296/167761*4106118243^(1/23) 4180999952313112 a001 75025/599074578*10749957122^(3/4) 4180999952313112 a001 2512533757175/600940872 4180999952313112 a001 267914296/167761*1568397607^(1/22) 4180999952313112 a001 75025/599074578*4106118243^(18/23) 4180999952313112 a001 267914296/167761*599074578^(1/21) 4180999952313112 a001 75025/599074578*1568397607^(9/11) 4180999952313112 a001 267914296/167761*228826127^(1/20) 4180999952313112 a004 Fibonacci(25)*Lucas(43)/(1/2+sqrt(5)/2)^49 4180999952313112 a001 75025/1568397607*817138163596^(2/3) 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^38/Lucas(44) 4180999952313112 a001 701408733/167761 4180999952313112 a001 75025/1568397607*10749957122^(19/24) 4180999952313112 a001 75025/599074578*599074578^(6/7) 4180999952313112 a001 75025/1568397607*4106118243^(19/23) 4180999952313112 a001 75025/4106118243*2537720636^(8/9) 4180999952313112 a004 Fibonacci(25)*Lucas(45)/(1/2+sqrt(5)/2)^51 4180999952313112 a001 75025/10749957122*2537720636^(14/15) 4180999952313112 a001 75025/4106118243*312119004989^(8/11) 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^40/Lucas(46) 4180999952313112 a001 75025/4106118243*23725150497407^(5/8) 4180999952313112 a001 75025/4106118243*73681302247^(10/13) 4180999952313112 a001 137769300522575/32951280099 4180999952313112 a001 75025/4106118243*28143753123^(4/5) 4180999952313112 a004 Fibonacci(46)/Lucas(25)/(1/2+sqrt(5)/2)^2 4180999952313112 a001 75025/1568397607*1568397607^(19/22) 4180999952313112 a001 75025/4106118243*10749957122^(5/6) 4180999952313112 a004 Fibonacci(25)*Lucas(47)/(1/2+sqrt(5)/2)^53 4180999952313112 a001 75025/10749957122*17393796001^(6/7) 4180999952313112 a001 75025/10749957122*45537549124^(14/17) 4180999952313112 a001 75025/10749957122*14662949395604^(2/3) 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^42/Lucas(48) 4180999952313112 a001 75025/10749957122*505019158607^(3/4) 4180999952313112 a001 75025/10749957122*192900153618^(7/9) 4180999952313112 a001 45085588921800/10783446409 4180999952313112 a001 75025/4106118243*4106118243^(20/23) 4180999952313112 a004 Fibonacci(48)/Lucas(25)/(1/2+sqrt(5)/2)^4 4180999952313112 a004 Fibonacci(25)*Lucas(49)/(1/2+sqrt(5)/2)^55 4180999952313112 a001 75025/28143753123*312119004989^(4/5) 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^44/Lucas(50) 4180999952313112 a001 75025/28143753123*23725150497407^(11/16) 4180999952313112 a001 75025/28143753123*73681302247^(11/13) 4180999952313112 a001 75025/10749957122*10749957122^(7/8) 4180999952313112 a004 Fibonacci(25)*Lucas(51)/(1/2+sqrt(5)/2)^57 4180999952313112 a001 75025/192900153618*45537549124^(16/17) 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^46/Lucas(52) 4180999952313112 a001 2472169789427475/591286729879 4180999952313112 a004 Fibonacci(25)*Lucas(53)/(1/2+sqrt(5)/2)^59 4180999952313112 a001 75025/192900153618*14662949395604^(16/21) 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^48/Lucas(54) 4180999952313112 a001 161805613367045/38700218898 4180999952313112 a001 75025/505019158607*312119004989^(10/11) 4180999952313112 a004 Fibonacci(25)*Lucas(55)/(1/2+sqrt(5)/2)^61 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^50/Lucas(56) 4180999952313112 a001 16944503814617925/4052739537881 4180999952313112 a001 75025/192900153618*192900153618^(8/9) 4180999952313112 a004 Fibonacci(25)*Lucas(57)/(1/2+sqrt(5)/2)^63 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^52/Lucas(58) 4180999952313112 a001 44361286909171975/10610209857723 4180999952313112 a004 Fibonacci(25)*Lucas(59)/(1/2+sqrt(5)/2)^65 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^54/Lucas(60) 4180999952313112 a004 Fibonacci(25)*Lucas(61)/(1/2+sqrt(5)/2)^67 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^56/Lucas(62) 4180999952313112 a004 Fibonacci(25)*Lucas(63)/(1/2+sqrt(5)/2)^69 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^58/Lucas(64) 4180999952313112 a004 Fibonacci(25)*Lucas(65)/(1/2+sqrt(5)/2)^71 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^60/Lucas(66) 4180999952313112 a004 Fibonacci(25)*Lucas(67)/(1/2+sqrt(5)/2)^73 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^62/Lucas(68) 4180999952313112 a004 Fibonacci(25)*Lucas(69)/(1/2+sqrt(5)/2)^75 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^64/Lucas(70) 4180999952313112 a004 Fibonacci(25)*Lucas(71)/(1/2+sqrt(5)/2)^77 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^66/Lucas(72) 4180999952313112 a004 Fibonacci(25)*Lucas(73)/(1/2+sqrt(5)/2)^79 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^68/Lucas(74) 4180999952313112 a004 Fibonacci(25)*Lucas(75)/(1/2+sqrt(5)/2)^81 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^70/Lucas(76) 4180999952313112 a004 Fibonacci(25)*Lucas(77)/(1/2+sqrt(5)/2)^83 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^72/Lucas(78) 4180999952313112 a004 Fibonacci(25)*Lucas(79)/(1/2+sqrt(5)/2)^85 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^74/Lucas(80) 4180999952313112 a004 Fibonacci(25)*Lucas(81)/(1/2+sqrt(5)/2)^87 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^76/Lucas(82) 4180999952313112 a004 Fibonacci(25)*Lucas(83)/(1/2+sqrt(5)/2)^89 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^78/Lucas(84) 4180999952313112 a004 Fibonacci(25)*Lucas(85)/(1/2+sqrt(5)/2)^91 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^80/Lucas(86) 4180999952313112 a004 Fibonacci(25)*Lucas(87)/(1/2+sqrt(5)/2)^93 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^82/Lucas(88) 4180999952313112 a004 Fibonacci(25)*Lucas(89)/(1/2+sqrt(5)/2)^95 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^84/Lucas(90) 4180999952313112 a004 Fibonacci(25)*Lucas(91)/(1/2+sqrt(5)/2)^97 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^86/Lucas(92) 4180999952313112 a004 Fibonacci(25)*Lucas(93)/(1/2+sqrt(5)/2)^99 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^88/Lucas(94) 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^90/Lucas(96) 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^92/Lucas(98) 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^93/Lucas(99) 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^94/Lucas(100) 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^91/Lucas(97) 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^89/Lucas(95) 4180999952313112 a004 Fibonacci(25)*Lucas(94)/(1/2+sqrt(5)/2)^100 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^87/Lucas(93) 4180999952313112 a004 Fibonacci(25)*Lucas(92)/(1/2+sqrt(5)/2)^98 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^85/Lucas(91) 4180999952313112 a004 Fibonacci(25)*Lucas(90)/(1/2+sqrt(5)/2)^96 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^83/Lucas(89) 4180999952313112 a004 Fibonacci(25)*Lucas(88)/(1/2+sqrt(5)/2)^94 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^81/Lucas(87) 4180999952313112 a004 Fibonacci(25)*Lucas(86)/(1/2+sqrt(5)/2)^92 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^79/Lucas(85) 4180999952313112 a004 Fibonacci(25)*Lucas(84)/(1/2+sqrt(5)/2)^90 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^77/Lucas(83) 4180999952313112 a004 Fibonacci(25)*Lucas(82)/(1/2+sqrt(5)/2)^88 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^75/Lucas(81) 4180999952313112 a004 Fibonacci(25)*Lucas(80)/(1/2+sqrt(5)/2)^86 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^73/Lucas(79) 4180999952313112 a004 Fibonacci(25)*Lucas(78)/(1/2+sqrt(5)/2)^84 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^71/Lucas(77) 4180999952313112 a004 Fibonacci(25)*Lucas(76)/(1/2+sqrt(5)/2)^82 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^69/Lucas(75) 4180999952313112 a004 Fibonacci(25)*Lucas(74)/(1/2+sqrt(5)/2)^80 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^67/Lucas(73) 4180999952313112 a004 Fibonacci(25)*Lucas(72)/(1/2+sqrt(5)/2)^78 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^65/Lucas(71) 4180999952313112 a004 Fibonacci(25)*Lucas(70)/(1/2+sqrt(5)/2)^76 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^63/Lucas(69) 4180999952313112 a004 Fibonacci(25)*Lucas(68)/(1/2+sqrt(5)/2)^74 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^61/Lucas(67) 4180999952313112 a004 Fibonacci(25)*Lucas(66)/(1/2+sqrt(5)/2)^72 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^59/Lucas(65) 4180999952313112 a004 Fibonacci(25)*Lucas(64)/(1/2+sqrt(5)/2)^70 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^57/Lucas(63) 4180999952313112 a004 Fibonacci(25)*Lucas(62)/(1/2+sqrt(5)/2)^68 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^55/Lucas(61) 4180999952313112 a004 Fibonacci(25)*Lucas(60)/(1/2+sqrt(5)/2)^66 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^53/Lucas(59) 4180999952313112 a004 Fibonacci(25)*Lucas(58)/(1/2+sqrt(5)/2)^64 4180999952313112 a001 13708391547277025/3278735159921 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^51/Lucas(57) 4180999952313112 a004 Fibonacci(25)*Lucas(56)/(1/2+sqrt(5)/2)^62 4180999952313112 a001 10472279279936125/2504730781961 4180999952313112 a001 75025/312119004989*14662949395604^(7/9) 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^49/Lucas(55) 4180999952313112 a001 75025/312119004989*505019158607^(7/8) 4180999952313112 a004 Fibonacci(25)*Lucas(54)/(1/2+sqrt(5)/2)^60 4180999952313112 a001 75025/817138163596*192900153618^(17/18) 4180999952313112 a001 75025/45537549124*45537549124^(15/17) 4180999952313112 a001 4000054745254325/956722026041 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^47/Lucas(53) 4180999952313112 a001 75025/192900153618*73681302247^(12/13) 4180999952313112 a004 Fibonacci(25)*Lucas(52)/(1/2+sqrt(5)/2)^58 4180999952313112 a001 75025/45537549124*312119004989^(9/11) 4180999952313112 a001 763942477913425/182717648081 4180999952313112 a001 75025/45537549124*14662949395604^(5/7) 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^45/Lucas(51) 4180999952313112 a001 75025/45537549124*192900153618^(5/6) 4180999952313112 a004 Fibonacci(52)/Lucas(25)/(1/2+sqrt(5)/2)^8 4180999952313112 a004 Fibonacci(54)/Lucas(25)/(1/2+sqrt(5)/2)^10 4180999952313112 a004 Fibonacci(56)/Lucas(25)/(1/2+sqrt(5)/2)^12 4180999952313112 a004 Fibonacci(58)/Lucas(25)/(1/2+sqrt(5)/2)^14 4180999952313112 a004 Fibonacci(60)/Lucas(25)/(1/2+sqrt(5)/2)^16 4180999952313112 a004 Fibonacci(62)/Lucas(25)/(1/2+sqrt(5)/2)^18 4180999952313112 a004 Fibonacci(64)/Lucas(25)/(1/2+sqrt(5)/2)^20 4180999952313112 a004 Fibonacci(66)/Lucas(25)/(1/2+sqrt(5)/2)^22 4180999952313112 a004 Fibonacci(68)/Lucas(25)/(1/2+sqrt(5)/2)^24 4180999952313112 a004 Fibonacci(70)/Lucas(25)/(1/2+sqrt(5)/2)^26 4180999952313112 a004 Fibonacci(72)/Lucas(25)/(1/2+sqrt(5)/2)^28 4180999952313112 a004 Fibonacci(74)/Lucas(25)/(1/2+sqrt(5)/2)^30 4180999952313112 a004 Fibonacci(76)/Lucas(25)/(1/2+sqrt(5)/2)^32 4180999952313112 a004 Fibonacci(78)/Lucas(25)/(1/2+sqrt(5)/2)^34 4180999952313112 a004 Fibonacci(80)/Lucas(25)/(1/2+sqrt(5)/2)^36 4180999952313112 a004 Fibonacci(82)/Lucas(25)/(1/2+sqrt(5)/2)^38 4180999952313112 a004 Fibonacci(84)/Lucas(25)/(1/2+sqrt(5)/2)^40 4180999952313112 a004 Fibonacci(86)/Lucas(25)/(1/2+sqrt(5)/2)^42 4180999952313112 a004 Fibonacci(88)/Lucas(25)/(1/2+sqrt(5)/2)^44 4180999952313112 a004 Fibonacci(90)/Lucas(25)/(1/2+sqrt(5)/2)^46 4180999952313112 a004 Fibonacci(92)/Lucas(25)/(1/2+sqrt(5)/2)^48 4180999952313112 a004 Fibonacci(94)/Lucas(25)/(1/2+sqrt(5)/2)^50 4180999952313112 a004 Fibonacci(96)/Lucas(25)/(1/2+sqrt(5)/2)^52 4180999952313112 a004 Fibonacci(98)/Lucas(25)/(1/2+sqrt(5)/2)^54 4180999952313112 a004 Fibonacci(25)*Lucas(50)/(1/2+sqrt(5)/2)^56 4180999952313112 a004 Fibonacci(99)/Lucas(25)/(1/2+sqrt(5)/2)^55 4180999952313112 a004 Fibonacci(97)/Lucas(25)/(1/2+sqrt(5)/2)^53 4180999952313112 a004 Fibonacci(95)/Lucas(25)/(1/2+sqrt(5)/2)^51 4180999952313112 a004 Fibonacci(93)/Lucas(25)/(1/2+sqrt(5)/2)^49 4180999952313112 a004 Fibonacci(91)/Lucas(25)/(1/2+sqrt(5)/2)^47 4180999952313112 a004 Fibonacci(89)/Lucas(25)/(1/2+sqrt(5)/2)^45 4180999952313112 a004 Fibonacci(87)/Lucas(25)/(1/2+sqrt(5)/2)^43 4180999952313112 a004 Fibonacci(85)/Lucas(25)/(1/2+sqrt(5)/2)^41 4180999952313112 a004 Fibonacci(83)/Lucas(25)/(1/2+sqrt(5)/2)^39 4180999952313112 a004 Fibonacci(81)/Lucas(25)/(1/2+sqrt(5)/2)^37 4180999952313112 a004 Fibonacci(79)/Lucas(25)/(1/2+sqrt(5)/2)^35 4180999952313112 a004 Fibonacci(77)/Lucas(25)/(1/2+sqrt(5)/2)^33 4180999952313112 a004 Fibonacci(75)/Lucas(25)/(1/2+sqrt(5)/2)^31 4180999952313112 a004 Fibonacci(73)/Lucas(25)/(1/2+sqrt(5)/2)^29 4180999952313112 a004 Fibonacci(71)/Lucas(25)/(1/2+sqrt(5)/2)^27 4180999952313112 a004 Fibonacci(69)/Lucas(25)/(1/2+sqrt(5)/2)^25 4180999952313112 a004 Fibonacci(67)/Lucas(25)/(1/2+sqrt(5)/2)^23 4180999952313112 a004 Fibonacci(65)/Lucas(25)/(1/2+sqrt(5)/2)^21 4180999952313112 a004 Fibonacci(63)/Lucas(25)/(1/2+sqrt(5)/2)^19 4180999952313112 a004 Fibonacci(61)/Lucas(25)/(1/2+sqrt(5)/2)^17 4180999952313112 a004 Fibonacci(59)/Lucas(25)/(1/2+sqrt(5)/2)^15 4180999952313112 a004 Fibonacci(57)/Lucas(25)/(1/2+sqrt(5)/2)^13 4180999952313112 a004 Fibonacci(55)/Lucas(25)/(1/2+sqrt(5)/2)^11 4180999952313112 a004 Fibonacci(53)/Lucas(25)/(1/2+sqrt(5)/2)^9 4180999952313112 a001 75025/45537549124*28143753123^(9/10) 4180999952313112 a004 Fibonacci(51)/Lucas(25)/(1/2+sqrt(5)/2)^7 4180999952313112 a001 116720024445245/27916772489 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^43/Lucas(49) 4180999952313112 a004 Fibonacci(49)/Lucas(25)/(1/2+sqrt(5)/2)^5 4180999952313112 a001 75025/28143753123*10749957122^(11/12) 4180999952313112 a001 75025/73681302247*10749957122^(23/24) 4180999952313112 a001 75025/45537549124*10749957122^(15/16) 4180999952313112 a004 Fibonacci(25)*Lucas(48)/(1/2+sqrt(5)/2)^54 4180999952313112 a001 75025/2537720636*2537720636^(13/15) 4180999952313112 a001 222915410851825/53316291173 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^41/Lucas(47) 4180999952313112 a004 Fibonacci(47)/Lucas(25)/(1/2+sqrt(5)/2)^3 4180999952313112 a001 75025/10749957122*4106118243^(21/23) 4180999952313112 a001 75025/28143753123*4106118243^(22/23) 4180999952313112 a004 Fibonacci(25)*Lucas(46)/(1/2+sqrt(5)/2)^52 4180999952313112 a001 42573055164625/10182505537 4180999952313112 a001 75025/2537720636*45537549124^(13/17) 4180999952313112 a001 75025/2537720636*14662949395604^(13/21) 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^39/Lucas(45) 4180999952313112 a001 75025/2537720636*192900153618^(13/18) 4180999952313112 a001 75025/2537720636*73681302247^(3/4) 4180999952313112 a004 Fibonacci(45)/Lucas(25)/(1/2+sqrt(5)/2) 4180999952313112 a001 75025/2537720636*10749957122^(13/16) 4180999952313112 a001 75025/4106118243*1568397607^(10/11) 4180999952313112 a001 75025/10749957122*1568397607^(21/22) 4180999952313112 a004 Fibonacci(25)*Lucas(44)/(1/2+sqrt(5)/2)^50 4180999952313112 a001 32522920135925/7778742049 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^37/Lucas(43) 4180999952313112 a001 433494437/335522+433494437/335522*5^(1/2) 4180999952313112 a001 75025/1568397607*599074578^(19/21) 4180999952313112 a001 75025/4106118243*599074578^(20/21) 4180999952313112 a001 75025/2537720636*599074578^(13/14) 4180999952313112 a004 Fibonacci(25)*Lucas(42)/(1/2+sqrt(5)/2)^48 4180999952313112 a001 165580141/167761*141422324^(1/13) 4180999952313112 a001 267914296/167761*87403803^(1/19) 4180999952313112 a001 75025/370248451*2537720636^(7/9) 4180999952313112 a001 12422650078525/2971215073 4180999952313112 a001 165580141/167761*2537720636^(1/15) 4180999952313112 a001 75025/370248451*17393796001^(5/7) 4180999952313112 a001 75025/370248451*312119004989^(7/11) 4180999952313112 a001 75025/370248451*14662949395604^(5/9) 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^35/Lucas(41) 4180999952313112 a001 75025/370248451*505019158607^(5/8) 4180999952313112 a001 75025/370248451*28143753123^(7/10) 4180999952313112 a001 165580141/167761*45537549124^(1/17) 4180999952313112 a001 165580141/167761*14662949395604^(1/21) 4180999952313112 a001 165580141/167761*(1/2+1/2*5^(1/2))^3 4180999952313112 a001 165580141/167761*192900153618^(1/18) 4180999952313112 a001 165580141/167761*10749957122^(1/16) 4180999952313112 a001 165580141/167761*599074578^(1/14) 4180999952313112 a001 75025/141422324*141422324^(11/13) 4180999952313112 a001 75025/370248451*599074578^(5/6) 4180999952313112 a001 75025/599074578*228826127^(9/10) 4180999952313112 a001 75025/1568397607*228826127^(19/20) 4180999952313112 a001 39088169/167761*33385282^(1/6) 4180999952313112 a004 Fibonacci(25)*Lucas(40)/(1/2+sqrt(5)/2)^46 4180999952313112 a001 75025/370248451*228826127^(7/8) 4180999952313112 a001 267914296/167761*33385282^(1/18) 4180999952313112 a001 474503009965/113490317 4180999952313112 a001 75025/141422324*2537720636^(11/15) 4180999952313112 a001 63245986/167761*2537720636^(1/9) 4180999952313112 a001 75025/141422324*45537549124^(11/17) 4180999952313112 a001 75025/141422324*312119004989^(3/5) 4180999952313112 a001 75025/141422324*14662949395604^(11/21) 4180999952313112 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^33/Lucas(39) 4180999952313112 a001 75025/141422324*192900153618^(11/18) 4180999952313112 a001 63245986/167761*312119004989^(1/11) 4180999952313112 a001 63245986/167761*(1/2+1/2*5^(1/2))^5 4180999952313112 a001 63245986/167761*28143753123^(1/10) 4180999952313112 a001 75025/141422324*10749957122^(11/16) 4180999952313112 a001 75025/141422324*1568397607^(3/4) 4180999952313112 a001 75025/141422324*599074578^(11/14) 4180999952313112 a001 63245986/167761*228826127^(1/8) 4180999952313112 a001 9303105/15251*33385282^(1/9) 4180999952313112 a001 165580141/167761*33385282^(1/12) 4180999952313112 a001 75025/228826127*87403803^(17/19) 4180999952313112 a001 75025/599074578*87403803^(18/19) 4180999952313112 a004 Fibonacci(25)*Lucas(38)/(1/2+sqrt(5)/2)^44 4180999952313113 a001 1812440220425/433494437 4180999952313113 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^31/Lucas(37) 4180999952313113 a001 75025/54018521*9062201101803^(1/2) 4180999952313113 a001 24157817/167761*17393796001^(1/7) 4180999952313113 a001 24157817/167761*14662949395604^(1/9) 4180999952313113 a001 24157817/167761*(1/2+1/2*5^(1/2))^7 4180999952313113 a001 24157817/167761*599074578^(1/6) 4180999952313113 a001 267914296/167761*12752043^(1/17) 4180999952313114 a001 14930352/167761*12752043^(4/17) 4180999952313114 a001 75025/87403803*33385282^(8/9) 4180999952313115 a001 9303105/15251*12752043^(2/17) 4180999952313115 a001 75025/228826127*33385282^(17/18) 4180999952313115 a001 75025/141422324*33385282^(11/12) 4180999952313115 a004 Fibonacci(25)*Lucas(36)/(1/2+sqrt(5)/2)^42 4180999952313116 a001 39088169/167761*12752043^(3/17) 4180999952313121 a001 9227465/167761*141422324^(3/13) 4180999952313121 a001 692290561625/165580141 4180999952313121 a001 9227465/167761*2537720636^(1/5) 4180999952313121 a001 75025/20633239*(1/2+1/2*5^(1/2))^29 4180999952313121 a001 75025/20633239*1322157322203^(1/2) 4180999952313121 a001 9227465/167761*45537549124^(3/17) 4180999952313121 a001 9227465/167761*14662949395604^(1/7) 4180999952313121 a001 9227465/167761*(1/2+1/2*5^(1/2))^9 4180999952313121 a001 9227465/167761*192900153618^(1/6) 4180999952313121 a001 9227465/167761*10749957122^(3/16) 4180999952313121 a001 9227465/167761*599074578^(3/14) 4180999952313122 a001 9227465/167761*33385282^(1/4) 4180999952313123 a001 267914296/167761*4870847^(1/16) 4180999952313124 a001 75025/7881196*7881196^(9/11) 4180999952313131 a001 75025/33385282*12752043^(15/17) 4180999952313134 a001 9303105/15251*4870847^(1/8) 4180999952313135 a001 75025/87403803*12752043^(16/17) 4180999952313137 a004 Fibonacci(25)*Lucas(34)/(1/2+sqrt(5)/2)^40 4180999952313141 a001 5702887/167761*4870847^(5/16) 4180999952313144 a001 39088169/167761*4870847^(3/16) 4180999952313152 a001 14930352/167761*4870847^(1/4) 4180999952313156 a001 3524578/167761*7881196^(1/3) 4180999952313179 a001 132215732225/31622993 4180999952313179 a001 75025/7881196*141422324^(9/13) 4180999952313179 a001 75025/7881196*2537720636^(3/5) 4180999952313179 a001 75025/7881196*45537549124^(9/17) 4180999952313179 a001 75025/7881196*817138163596^(9/19) 4180999952313179 a001 75025/7881196*14662949395604^(3/7) 4180999952313179 a001 75025/7881196*(1/2+1/2*5^(1/2))^27 4180999952313179 a001 75025/7881196*192900153618^(1/2) 4180999952313179 a001 3524578/167761*312119004989^(1/5) 4180999952313179 a001 3524578/167761*(1/2+1/2*5^(1/2))^11 4180999952313179 a001 75025/7881196*10749957122^(9/16) 4180999952313179 a001 3524578/167761*1568397607^(1/4) 4180999952313179 a001 75025/7881196*599074578^(9/14) 4180999952313182 a001 75025/7881196*33385282^(3/4) 4180999952313192 a001 267914296/167761*1860498^(1/15) 4180999952313232 a001 165580141/167761*1860498^(1/10) 4180999952313240 a001 75025/12752043*4870847^(7/8) 4180999952313273 a001 9303105/15251*1860498^(2/15) 4180999952313273 a001 75025/33385282*4870847^(15/16) 4180999952313288 a004 Fibonacci(25)*Lucas(32)/(1/2+sqrt(5)/2)^38 4180999952313313 a001 63245986/167761*1860498^(1/6) 4180999952313353 a001 39088169/167761*1860498^(1/5) 4180999952313419 a001 2178309/167761*1860498^(2/5) 4180999952313430 a001 14930352/167761*1860498^(4/15) 4180999952313484 a001 9227465/167761*1860498^(3/10) 4180999952313489 a001 5702887/167761*1860498^(1/3) 4180999952313565 a001 63245986/1149851*103682^(3/8) 4180999952313566 a001 75025/3010349*20633239^(5/7) 4180999952313572 a001 101003831725/24157817 4180999952313573 a001 1346269/167761*141422324^(1/3) 4180999952313573 a001 75025/3010349*2537720636^(5/9) 4180999952313573 a001 75025/3010349*312119004989^(5/11) 4180999952313573 a001 75025/3010349*(1/2+1/2*5^(1/2))^25 4180999952313573 a001 75025/3010349*3461452808002^(5/12) 4180999952313573 a001 75025/3010349*28143753123^(1/2) 4180999952313573 a001 1346269/167761*(1/2+1/2*5^(1/2))^13 4180999952313573 a001 1346269/167761*73681302247^(1/4) 4180999952313573 a001 75025/3010349*228826127^(5/8) 4180999952313703 a001 267914296/167761*710647^(1/14) 4180999952313982 a001 75025/4870847*1860498^(13/15) 4180999952314213 a001 75025/12752043*1860498^(14/15) 4180999952314266 a001 75025/7881196*1860498^(9/10) 4180999952314294 a001 9303105/15251*710647^(1/7) 4180999952314319 a004 Fibonacci(25)*Lucas(30)/(1/2+sqrt(5)/2)^36 4180999952314580 a001 75025/3010349*1860498^(5/6) 4180999952314885 a001 39088169/167761*710647^(3/14) 4180999952315183 a001 24157817/167761*710647^(1/4) 4180999952315473 a001 14930352/167761*710647^(2/7) 4180999952315871 a001 39088169/439204*103682^(1/3) 4180999952316043 a001 5702887/167761*710647^(5/14) 4180999952316043 a001 75640/15251*710647^(1/2) 4180999952316243 a001 514229/167761*7881196^(5/11) 4180999952316264 a001 7716006145/1845493 4180999952316270 a001 514229/167761*20633239^(3/7) 4180999952316274 a001 514229/167761*141422324^(5/13) 4180999952316274 a001 514229/167761*2537720636^(1/3) 4180999952316274 a001 75025/1149851*(1/2+1/2*5^(1/2))^23 4180999952316274 a001 514229/167761*45537549124^(5/17) 4180999952316274 a001 514229/167761*312119004989^(3/11) 4180999952316274 a001 514229/167761*14662949395604^(5/21) 4180999952316274 a001 514229/167761*(1/2+1/2*5^(1/2))^15 4180999952316274 a001 514229/167761*192900153618^(5/18) 4180999952316274 a001 514229/167761*28143753123^(3/10) 4180999952316274 a001 514229/167761*10749957122^(5/16) 4180999952316274 a001 75025/1149851*4106118243^(1/2) 4180999952316274 a001 514229/167761*599074578^(5/14) 4180999952316274 a001 514229/167761*228826127^(3/8) 4180999952316275 a001 514229/167761*33385282^(5/12) 4180999952316483 a001 2178309/167761*710647^(3/7) 4180999952316878 a001 514229/167761*1860498^(1/2) 4180999952317477 a001 267914296/167761*271443^(1/13) 4180999952317928 a001 75025/439204*439204^(7/9) 4180999952318304 a001 726103/90481*103682^(13/24) 4180999952318330 a001 24157817/710647*103682^(5/12) 4180999952319000 a001 75025/1860498*710647^(6/7) 4180999952320623 a001 75025/4870847*710647^(13/14) 4180999952321391 a004 Fibonacci(25)*Lucas(28)/(1/2+sqrt(5)/2)^34 4180999952321841 a001 9303105/15251*271443^(2/13) 4180999952325400 a001 31622993/930249*103682^(5/12) 4180999952326206 a001 39088169/167761*271443^(3/13) 4180999952326432 a001 165580141/4870847*103682^(5/12) 4180999952326582 a001 433494437/12752043*103682^(5/12) 4180999952326604 a001 567451585/16692641*103682^(5/12) 4180999952326607 a001 2971215073/87403803*103682^(5/12) 4180999952326608 a001 7778742049/228826127*103682^(5/12) 4180999952326608 a001 10182505537/299537289*103682^(5/12) 4180999952326608 a001 53316291173/1568397607*103682^(5/12) 4180999952326608 a001 139583862445/4106118243*103682^(5/12) 4180999952326608 a001 182717648081/5374978561*103682^(5/12) 4180999952326608 a001 956722026041/28143753123*103682^(5/12) 4180999952326608 a001 2504730781961/73681302247*103682^(5/12) 4180999952326608 a001 3278735159921/96450076809*103682^(5/12) 4180999952326608 a001 10610209857723/312119004989*103682^(5/12) 4180999952326608 a001 4052739537881/119218851371*103682^(5/12) 4180999952326608 a001 387002188980/11384387281*103682^(5/12) 4180999952326608 a001 591286729879/17393796001*103682^(5/12) 4180999952326608 a001 225851433717/6643838879*103682^(5/12) 4180999952326608 a001 1135099622/33391061*103682^(5/12) 4180999952326608 a001 32951280099/969323029*103682^(5/12) 4180999952326608 a001 12586269025/370248451*103682^(5/12) 4180999952326608 a001 1201881744/35355581*103682^(5/12) 4180999952326609 a001 1836311903/54018521*103682^(5/12) 4180999952326618 a001 701408733/20633239*103682^(5/12) 4180999952326675 a001 66978574/1970299*103682^(5/12) 4180999952327069 a001 102334155/3010349*103682^(5/12) 4180999952329317 a001 433494437/167761*103682^(1/24) 4180999952329770 a001 39088169/1149851*103682^(5/12) 4180999952330568 a001 14930352/167761*271443^(4/13) 4180999952332078 a001 24157817/439204*103682^(3/8) 4180999952334531 a001 14930352/710647*103682^(11/24) 4180999952334719 a001 7368130225/1762289 4180999952334743 a001 75025/439204*7881196^(7/11) 4180999952334780 a001 75025/439204*20633239^(3/5) 4180999952334786 a001 75025/439204*141422324^(7/13) 4180999952334786 a001 75025/439204*2537720636^(7/15) 4180999952334786 a001 75025/439204*17393796001^(3/7) 4180999952334786 a001 75025/439204*45537549124^(7/17) 4180999952334786 a001 75025/439204*14662949395604^(1/3) 4180999952334786 a001 75025/439204*(1/2+1/2*5^(1/2))^21 4180999952334786 a001 75025/439204*192900153618^(7/18) 4180999952334786 a001 196418/167761*45537549124^(1/3) 4180999952334786 a001 196418/167761*(1/2+1/2*5^(1/2))^17 4180999952334786 a001 75025/439204*10749957122^(7/16) 4180999952334786 a001 75025/439204*599074578^(1/2) 4180999952334788 a001 75025/439204*33385282^(7/12) 4180999952334799 a001 196418/167761*12752043^(1/2) 4180999952334911 a001 5702887/167761*271443^(5/13) 4180999952335147 a001 1346269/271443*103682^(7/12) 4180999952335632 a001 75025/439204*1860498^(7/10) 4180999952339125 a001 2178309/167761*271443^(6/13) 4180999952339752 a001 317811/167761*271443^(8/13) 4180999952340995 a001 75025/439204*710647^(3/4) 4180999952341605 a001 39088169/1860498*103682^(11/24) 4180999952341945 a001 1346269/167761*271443^(1/2) 4180999952342458 a001 75640/15251*271443^(7/13) 4180999952342637 a001 102334155/4870847*103682^(11/24) 4180999952342788 a001 267914296/12752043*103682^(11/24) 4180999952342810 a001 701408733/33385282*103682^(11/24) 4180999952342813 a001 1836311903/87403803*103682^(11/24) 4180999952342813 a001 102287808/4868641*103682^(11/24) 4180999952342813 a001 12586269025/599074578*103682^(11/24) 4180999952342813 a001 32951280099/1568397607*103682^(11/24) 4180999952342813 a001 86267571272/4106118243*103682^(11/24) 4180999952342813 a001 225851433717/10749957122*103682^(11/24) 4180999952342813 a001 591286729879/28143753123*103682^(11/24) 4180999952342813 a001 1548008755920/73681302247*103682^(11/24) 4180999952342813 a001 4052739537881/192900153618*103682^(11/24) 4180999952342813 a001 225749145909/10745088481*103682^(11/24) 4180999952342813 a001 6557470319842/312119004989*103682^(11/24) 4180999952342813 a001 2504730781961/119218851371*103682^(11/24) 4180999952342813 a001 956722026041/45537549124*103682^(11/24) 4180999952342813 a001 365435296162/17393796001*103682^(11/24) 4180999952342813 a001 139583862445/6643838879*103682^(11/24) 4180999952342813 a001 53316291173/2537720636*103682^(11/24) 4180999952342813 a001 20365011074/969323029*103682^(11/24) 4180999952342813 a001 7778742049/370248451*103682^(11/24) 4180999952342813 a001 2971215073/141422324*103682^(11/24) 4180999952342815 a001 1134903170/54018521*103682^(11/24) 4180999952342823 a001 433494437/20633239*103682^(11/24) 4180999952342881 a001 165580141/7881196*103682^(11/24) 4180999952343275 a001 63245986/3010349*103682^(11/24) 4180999952345523 a001 267914296/167761*103682^(1/12) 4180999952345977 a001 24157817/1149851*103682^(11/24) 4180999952348278 a001 196452/5779*103682^(5/12) 4180999952349683 a001 832040/271443*103682^(5/8) 4180999952350152 a001 433494437/271443*39603^(1/11) 4180999952350750 a001 9227465/710647*103682^(1/2) 4180999952352847 a001 75025/710647*271443^(11/13) 4180999952357812 a001 24157817/1860498*103682^(1/2) 4180999952358843 a001 63245986/4870847*103682^(1/2) 4180999952358968 a001 121393/271443*103682^(19/24) 4180999952358993 a001 165580141/12752043*103682^(1/2) 4180999952359015 a001 433494437/33385282*103682^(1/2) 4180999952359018 a001 1134903170/87403803*103682^(1/2) 4180999952359019 a001 2971215073/228826127*103682^(1/2) 4180999952359019 a001 7778742049/599074578*103682^(1/2) 4180999952359019 a001 20365011074/1568397607*103682^(1/2) 4180999952359019 a001 53316291173/4106118243*103682^(1/2) 4180999952359019 a001 139583862445/10749957122*103682^(1/2) 4180999952359019 a001 365435296162/28143753123*103682^(1/2) 4180999952359019 a001 956722026041/73681302247*103682^(1/2) 4180999952359019 a001 2504730781961/192900153618*103682^(1/2) 4180999952359019 a001 10610209857723/817138163596*103682^(1/2) 4180999952359019 a001 4052739537881/312119004989*103682^(1/2) 4180999952359019 a001 1548008755920/119218851371*103682^(1/2) 4180999952359019 a001 591286729879/45537549124*103682^(1/2) 4180999952359019 a001 7787980473/599786069*103682^(1/2) 4180999952359019 a001 86267571272/6643838879*103682^(1/2) 4180999952359019 a001 32951280099/2537720636*103682^(1/2) 4180999952359019 a001 12586269025/969323029*103682^(1/2) 4180999952359019 a001 4807526976/370248451*103682^(1/2) 4180999952359019 a001 1836311903/141422324*103682^(1/2) 4180999952359020 a001 701408733/54018521*103682^(1/2) 4180999952359029 a001 9238424/711491*103682^(1/2) 4180999952359086 a001 102334155/7881196*103682^(1/2) 4180999952359480 a001 39088169/3010349*103682^(1/2) 4180999952361728 a001 165580141/167761*103682^(1/8) 4180999952362177 a001 14930352/1149851*103682^(1/2) 4180999952364283 a001 75025/1860498*271443^(12/13) 4180999952364498 a001 9227465/439204*103682^(11/24) 4180999952366920 a001 5702887/710647*103682^(13/24) 4180999952369856 a004 Fibonacci(25)*Lucas(26)/(1/2+sqrt(5)/2)^32 4180999952370259 a001 514229/271443*103682^(2/3) 4180999952374013 a001 829464/103361*103682^(13/24) 4180999952375023 a001 105937/90481*103682^(17/24) 4180999952375047 a001 39088169/4870847*103682^(13/24) 4180999952375198 a001 34111385/4250681*103682^(13/24) 4180999952375221 a001 133957148/16692641*103682^(13/24) 4180999952375224 a001 233802911/29134601*103682^(13/24) 4180999952375224 a001 1836311903/228826127*103682^(13/24) 4180999952375224 a001 267084832/33281921*103682^(13/24) 4180999952375224 a001 12586269025/1568397607*103682^(13/24) 4180999952375224 a001 10983760033/1368706081*103682^(13/24) 4180999952375224 a001 43133785636/5374978561*103682^(13/24) 4180999952375224 a001 75283811239/9381251041*103682^(13/24) 4180999952375224 a001 591286729879/73681302247*103682^(13/24) 4180999952375224 a001 86000486440/10716675201*103682^(13/24) 4180999952375224 a001 4052739537881/505019158607*103682^(13/24) 4180999952375224 a001 3278735159921/408569081798*103682^(13/24) 4180999952375224 a001 2504730781961/312119004989*103682^(13/24) 4180999952375224 a001 956722026041/119218851371*103682^(13/24) 4180999952375224 a001 182717648081/22768774562*103682^(13/24) 4180999952375224 a001 139583862445/17393796001*103682^(13/24) 4180999952375224 a001 53316291173/6643838879*103682^(13/24) 4180999952375224 a001 10182505537/1268860318*103682^(13/24) 4180999952375224 a001 7778742049/969323029*103682^(13/24) 4180999952375224 a001 2971215073/370248451*103682^(13/24) 4180999952375224 a001 567451585/70711162*103682^(13/24) 4180999952375226 a001 433494437/54018521*103682^(13/24) 4180999952375234 a001 165580141/20633239*103682^(13/24) 4180999952375292 a001 31622993/3940598*103682^(13/24) 4180999952375687 a001 24157817/3010349*103682^(13/24) 4180999952377933 a001 9303105/15251*103682^(1/6) 4180999952378396 a001 9227465/1149851*103682^(13/24) 4180999952380667 a001 5702887/439204*103682^(1/2) 4180999952381479 a001 39088169/103682*39603^(5/22) 4180999952383218 a001 3524578/710647*103682^(7/12) 4180999952390232 a001 9227465/1860498*103682^(7/12) 4180999952391255 a001 24157817/4870847*103682^(7/12) 4180999952391404 a001 63245986/12752043*103682^(7/12) 4180999952391426 a001 165580141/33385282*103682^(7/12) 4180999952391429 a001 433494437/87403803*103682^(7/12) 4180999952391430 a001 1134903170/228826127*103682^(7/12) 4180999952391430 a001 2971215073/599074578*103682^(7/12) 4180999952391430 a001 7778742049/1568397607*103682^(7/12) 4180999952391430 a001 20365011074/4106118243*103682^(7/12) 4180999952391430 a001 53316291173/10749957122*103682^(7/12) 4180999952391430 a001 139583862445/28143753123*103682^(7/12) 4180999952391430 a001 365435296162/73681302247*103682^(7/12) 4180999952391430 a001 956722026041/192900153618*103682^(7/12) 4180999952391430 a001 2504730781961/505019158607*103682^(7/12) 4180999952391430 a001 10610209857723/2139295485799*103682^(7/12) 4180999952391430 a001 4052739537881/817138163596*103682^(7/12) 4180999952391430 a001 140728068720/28374454999*103682^(7/12) 4180999952391430 a001 591286729879/119218851371*103682^(7/12) 4180999952391430 a001 225851433717/45537549124*103682^(7/12) 4180999952391430 a001 86267571272/17393796001*103682^(7/12) 4180999952391430 a001 32951280099/6643838879*103682^(7/12) 4180999952391430 a001 1144206275/230701876*103682^(7/12) 4180999952391430 a001 4807526976/969323029*103682^(7/12) 4180999952391430 a001 1836311903/370248451*103682^(7/12) 4180999952391430 a001 701408733/141422324*103682^(7/12) 4180999952391431 a001 267914296/54018521*103682^(7/12) 4180999952391439 a001 9303105/1875749*103682^(7/12) 4180999952391497 a001 39088169/7881196*103682^(7/12) 4180999952391887 a001 14930352/3010349*103682^(7/12) 4180999952394139 a001 63245986/167761*103682^(5/24) 4180999952394566 a001 5702887/1149851*103682^(7/12) 4180999952396966 a001 1762289/219602*103682^(13/24) 4180999952398617 a001 1134903170/710647*39603^(1/11) 4180999952399180 a001 311187/101521*103682^(5/8) 4180999952401654 a001 28657/167761*64079^(21/23) 4180999952405688 a001 2971215073/1860498*39603^(1/11) 4180999952406402 a001 5702887/1860498*103682^(5/8) 4180999952406720 a001 7778742049/4870847*39603^(1/11) 4180999952406871 a001 20365011074/12752043*39603^(1/11) 4180999952406893 a001 53316291173/33385282*39603^(1/11) 4180999952406896 a001 139583862445/87403803*39603^(1/11) 4180999952406896 a001 365435296162/228826127*39603^(1/11) 4180999952406896 a001 956722026041/599074578*39603^(1/11) 4180999952406896 a001 2504730781961/1568397607*39603^(1/11) 4180999952406896 a001 6557470319842/4106118243*39603^(1/11) 4180999952406896 a001 10610209857723/6643838879*39603^(1/11) 4180999952406896 a001 4052739537881/2537720636*39603^(1/11) 4180999952406896 a001 1548008755920/969323029*39603^(1/11) 4180999952406896 a001 591286729879/370248451*39603^(1/11) 4180999952406897 a001 225851433717/141422324*39603^(1/11) 4180999952406898 a001 86267571272/54018521*39603^(1/11) 4180999952406906 a001 32951280099/20633239*39603^(1/11) 4180999952406964 a001 12586269025/7881196*39603^(1/11) 4180999952407358 a001 4807526976/3010349*39603^(1/11) 4180999952407455 a001 14930352/4870847*103682^(5/8) 4180999952407609 a001 39088169/12752043*103682^(5/8) 4180999952407631 a001 14619165/4769326*103682^(5/8) 4180999952407635 a001 267914296/87403803*103682^(5/8) 4180999952407635 a001 701408733/228826127*103682^(5/8) 4180999952407635 a001 1836311903/599074578*103682^(5/8) 4180999952407635 a001 686789568/224056801*103682^(5/8) 4180999952407635 a001 12586269025/4106118243*103682^(5/8) 4180999952407635 a001 32951280099/10749957122*103682^(5/8) 4180999952407635 a001 86267571272/28143753123*103682^(5/8) 4180999952407635 a001 32264490531/10525900321*103682^(5/8) 4180999952407635 a001 591286729879/192900153618*103682^(5/8) 4180999952407635 a001 1548008755920/505019158607*103682^(5/8) 4180999952407635 a001 1515744265389/494493258286*103682^(5/8) 4180999952407635 a001 2504730781961/817138163596*103682^(5/8) 4180999952407635 a001 956722026041/312119004989*103682^(5/8) 4180999952407635 a001 365435296162/119218851371*103682^(5/8) 4180999952407635 a001 139583862445/45537549124*103682^(5/8) 4180999952407635 a001 53316291173/17393796001*103682^(5/8) 4180999952407635 a001 20365011074/6643838879*103682^(5/8) 4180999952407635 a001 7778742049/2537720636*103682^(5/8) 4180999952407635 a001 2971215073/969323029*103682^(5/8) 4180999952407635 a001 1134903170/370248451*103682^(5/8) 4180999952407635 a001 433494437/141422324*103682^(5/8) 4180999952407637 a001 165580141/54018521*103682^(5/8) 4180999952407645 a001 63245986/20633239*103682^(5/8) 4180999952407704 a001 24157817/7881196*103682^(5/8) 4180999952408106 a001 9227465/3010349*103682^(5/8) 4180999952410059 a001 1836311903/1149851*39603^(1/11) 4180999952410344 a001 39088169/167761*103682^(1/4) 4180999952410865 a001 3524578/1149851*103682^(5/8) 4180999952412928 a001 2178309/439204*103682^(7/12) 4180999952416023 a001 1346269/710647*103682^(2/3) 4180999952417707 a001 121393/64079*64079^(16/23) 4180999952421182 a001 196418/271443*103682^(3/4) 4180999952422700 a001 1762289/930249*103682^(2/3) 4180999952423674 a001 9227465/4870847*103682^(2/3) 4180999952423816 a001 24157817/12752043*103682^(2/3) 4180999952423837 a001 31622993/16692641*103682^(2/3) 4180999952423840 a001 165580141/87403803*103682^(2/3) 4180999952423841 a001 433494437/228826127*103682^(2/3) 4180999952423841 a001 567451585/299537289*103682^(2/3) 4180999952423841 a001 2971215073/1568397607*103682^(2/3) 4180999952423841 a001 7778742049/4106118243*103682^(2/3) 4180999952423841 a001 10182505537/5374978561*103682^(2/3) 4180999952423841 a001 53316291173/28143753123*103682^(2/3) 4180999952423841 a001 139583862445/73681302247*103682^(2/3) 4180999952423841 a001 182717648081/96450076809*103682^(2/3) 4180999952423841 a001 956722026041/505019158607*103682^(2/3) 4180999952423841 a001 10610209857723/5600748293801*103682^(2/3) 4180999952423841 a001 591286729879/312119004989*103682^(2/3) 4180999952423841 a001 225851433717/119218851371*103682^(2/3) 4180999952423841 a001 21566892818/11384387281*103682^(2/3) 4180999952423841 a001 32951280099/17393796001*103682^(2/3) 4180999952423841 a001 12586269025/6643838879*103682^(2/3) 4180999952423841 a001 1201881744/634430159*103682^(2/3) 4180999952423841 a001 1836311903/969323029*103682^(2/3) 4180999952423841 a001 701408733/370248451*103682^(2/3) 4180999952423841 a001 66978574/35355581*103682^(2/3) 4180999952423842 a001 102334155/54018521*103682^(2/3) 4180999952423850 a001 39088169/20633239*103682^(2/3) 4180999952423904 a001 3732588/1970299*103682^(2/3) 4180999952424276 a001 5702887/3010349*103682^(2/3) 4180999952426551 a001 24157817/167761*103682^(7/24) 4180999952426827 a001 2178309/1149851*103682^(2/3) 4180999952428571 a001 701408733/439204*39603^(1/11) 4180999952429771 a001 1346269/439204*103682^(5/8) 4180999952430559 a001 832040/710647*103682^(17/24) 4180999952434283 a001 433494437/167761*39603^(1/22) 4180999952438662 a001 726103/620166*103682^(17/24) 4180999952439844 a001 5702887/4870847*103682^(17/24) 4180999952439845 a001 121393/710647*103682^(7/8) 4180999952440017 a001 4976784/4250681*103682^(17/24) 4180999952440042 a001 39088169/33385282*103682^(17/24) 4180999952440046 a001 34111385/29134601*103682^(17/24) 4180999952440046 a001 267914296/228826127*103682^(17/24) 4180999952440046 a001 233802911/199691526*103682^(17/24) 4180999952440046 a001 1836311903/1568397607*103682^(17/24) 4180999952440046 a001 1602508992/1368706081*103682^(17/24) 4180999952440046 a001 12586269025/10749957122*103682^(17/24) 4180999952440046 a001 10983760033/9381251041*103682^(17/24) 4180999952440046 a001 86267571272/73681302247*103682^(17/24) 4180999952440046 a001 75283811239/64300051206*103682^(17/24) 4180999952440046 a001 2504730781961/2139295485799*103682^(17/24) 4180999952440046 a001 365435296162/312119004989*103682^(17/24) 4180999952440046 a001 139583862445/119218851371*103682^(17/24) 4180999952440046 a001 53316291173/45537549124*103682^(17/24) 4180999952440046 a001 20365011074/17393796001*103682^(17/24) 4180999952440046 a001 7778742049/6643838879*103682^(17/24) 4180999952440046 a001 2971215073/2537720636*103682^(17/24) 4180999952440046 a001 1134903170/969323029*103682^(17/24) 4180999952440046 a001 433494437/370248451*103682^(17/24) 4180999952440046 a001 165580141/141422324*103682^(17/24) 4180999952440048 a001 63245986/54018521*103682^(17/24) 4180999952440057 a001 24157817/20633239*103682^(17/24) 4180999952440123 a001 9227465/7881196*103682^(17/24) 4180999952440575 a001 3524578/3010349*103682^(17/24) 4180999952442752 a001 14930352/167761*103682^(1/3) 4180999952443670 a001 1346269/1149851*103682^(17/24) 4180999952444307 a001 208010/109801*103682^(2/3) 4180999952451135 a001 514229/710647*103682^(3/4) 4180999952453593 a001 121393/439204*103682^(5/6) 4180999952455505 a001 1346269/1860498*103682^(3/4) 4180999952455899 a001 317811/710647*103682^(19/24) 4180999952456143 a001 3524578/4870847*103682^(3/4) 4180999952456236 a001 9227465/12752043*103682^(3/4) 4180999952456249 a001 24157817/33385282*103682^(3/4) 4180999952456251 a001 63245986/87403803*103682^(3/4) 4180999952456252 a001 165580141/228826127*103682^(3/4) 4180999952456252 a001 433494437/599074578*103682^(3/4) 4180999952456252 a001 1134903170/1568397607*103682^(3/4) 4180999952456252 a001 2971215073/4106118243*103682^(3/4) 4180999952456252 a001 7778742049/10749957122*103682^(3/4) 4180999952456252 a001 20365011074/28143753123*103682^(3/4) 4180999952456252 a001 53316291173/73681302247*103682^(3/4) 4180999952456252 a001 139583862445/192900153618*103682^(3/4) 4180999952456252 a001 10610209857723/14662949395604*103682^(3/4) 4180999952456252 a001 591286729879/817138163596*103682^(3/4) 4180999952456252 a001 225851433717/312119004989*103682^(3/4) 4180999952456252 a001 86267571272/119218851371*103682^(3/4) 4180999952456252 a001 32951280099/45537549124*103682^(3/4) 4180999952456252 a001 12586269025/17393796001*103682^(3/4) 4180999952456252 a001 4807526976/6643838879*103682^(3/4) 4180999952456252 a001 1836311903/2537720636*103682^(3/4) 4180999952456252 a001 701408733/969323029*103682^(3/4) 4180999952456252 a001 267914296/370248451*103682^(3/4) 4180999952456252 a001 102334155/141422324*103682^(3/4) 4180999952456253 a001 39088169/54018521*103682^(3/4) 4180999952456258 a001 14930352/20633239*103682^(3/4) 4180999952456293 a001 5702887/7881196*103682^(3/4) 4180999952456537 a001 2178309/3010349*103682^(3/4) 4180999952458206 a001 832040/1149851*103682^(3/4) 4180999952458971 a001 9227465/167761*103682^(3/8) 4180999952461209 a001 5628750625/1346269 4180999952461670 a001 75025/167761*817138163596^(1/3) 4180999952461670 a001 75025/167761*(1/2+1/2*5^(1/2))^19 4180999952461671 a001 75025/167761*87403803^(1/2) 4180999952464883 a001 514229/439204*103682^(17/24) 4180999952467492 a001 121393/1149851*103682^(11/12) 4180999952469647 a001 317811/439204*103682^(3/4) 4180999952470041 a001 416020/930249*103682^(19/24) 4180999952471324 a001 267914296/271443*39603^(3/22) 4180999952472105 a001 2178309/4870847*103682^(19/24) 4180999952472406 a001 5702887/12752043*103682^(19/24) 4180999952472450 a001 7465176/16692641*103682^(19/24) 4180999952472456 a001 39088169/87403803*103682^(19/24) 4180999952472457 a001 102334155/228826127*103682^(19/24) 4180999952472457 a001 133957148/299537289*103682^(19/24) 4180999952472457 a001 701408733/1568397607*103682^(19/24) 4180999952472457 a001 1836311903/4106118243*103682^(19/24) 4180999952472457 a001 2403763488/5374978561*103682^(19/24) 4180999952472457 a001 12586269025/28143753123*103682^(19/24) 4180999952472457 a001 32951280099/73681302247*103682^(19/24) 4180999952472457 a001 43133785636/96450076809*103682^(19/24) 4180999952472457 a001 225851433717/505019158607*103682^(19/24) 4180999952472457 a001 591286729879/1322157322203*103682^(19/24) 4180999952472457 a001 10610209857723/23725150497407*103682^(19/24) 4180999952472457 a001 182717648081/408569081798*103682^(19/24) 4180999952472457 a001 139583862445/312119004989*103682^(19/24) 4180999952472457 a001 53316291173/119218851371*103682^(19/24) 4180999952472457 a001 10182505537/22768774562*103682^(19/24) 4180999952472457 a001 7778742049/17393796001*103682^(19/24) 4180999952472457 a001 2971215073/6643838879*103682^(19/24) 4180999952472457 a001 567451585/1268860318*103682^(19/24) 4180999952472457 a001 433494437/969323029*103682^(19/24) 4180999952472457 a001 165580141/370248451*103682^(19/24) 4180999952472458 a001 31622993/70711162*103682^(19/24) 4180999952472460 a001 24157817/54018521*103682^(19/24) 4180999952472477 a001 9227465/20633239*103682^(19/24) 4180999952472592 a001 1762289/3940598*103682^(19/24) 4180999952473380 a001 1346269/3010349*103682^(19/24) 4180999952475141 a001 5702887/167761*103682^(5/12) 4180999952478782 a001 514229/1149851*103682^(19/24) 4180999952479327 a001 121393/1860498*103682^(23/24) 4180999952483546 a001 317811/1149851*103682^(5/6) 4180999952487916 a001 832040/3010349*103682^(5/6) 4180999952488554 a001 2178309/7881196*103682^(5/6) 4180999952488647 a001 5702887/20633239*103682^(5/6) 4180999952488660 a001 14930352/54018521*103682^(5/6) 4180999952488662 a001 39088169/141422324*103682^(5/6) 4180999952488663 a001 102334155/370248451*103682^(5/6) 4180999952488663 a001 267914296/969323029*103682^(5/6) 4180999952488663 a001 701408733/2537720636*103682^(5/6) 4180999952488663 a001 1836311903/6643838879*103682^(5/6) 4180999952488663 a001 4807526976/17393796001*103682^(5/6) 4180999952488663 a001 12586269025/45537549124*103682^(5/6) 4180999952488663 a001 32951280099/119218851371*103682^(5/6) 4180999952488663 a001 86267571272/312119004989*103682^(5/6) 4180999952488663 a001 225851433717/817138163596*103682^(5/6) 4180999952488663 a001 1548008755920/5600748293801*103682^(5/6) 4180999952488663 a001 139583862445/505019158607*103682^(5/6) 4180999952488663 a001 53316291173/192900153618*103682^(5/6) 4180999952488663 a001 20365011074/73681302247*103682^(5/6) 4180999952488663 a001 7778742049/28143753123*103682^(5/6) 4180999952488663 a001 2971215073/10749957122*103682^(5/6) 4180999952488663 a001 1134903170/4106118243*103682^(5/6) 4180999952488663 a001 433494437/1568397607*103682^(5/6) 4180999952488663 a001 165580141/599074578*103682^(5/6) 4180999952488663 a001 63245986/228826127*103682^(5/6) 4180999952488664 a001 24157817/87403803*103682^(5/6) 4180999952488669 a001 9227465/33385282*103682^(5/6) 4180999952488704 a001 3524578/12752043*103682^(5/6) 4180999952488948 a001 1346269/4870847*103682^(5/6) 4180999952490617 a001 514229/1860498*103682^(5/6) 4180999952491439 a001 3524578/167761*103682^(11/24) 4180999952495381 a001 105937/620166*103682^(7/8) 4180999952496740 a004 Fibonacci(26)*Lucas(24)/(1/2+sqrt(5)/2)^31 4180999952502058 a001 196418/710647*103682^(5/6) 4180999952502653 a001 24157817/103682*39603^(3/11) 4180999952503484 a001 832040/4870847*103682^(7/8) 4180999952504666 a001 726103/4250681*103682^(7/8) 4180999952504839 a001 5702887/33385282*103682^(7/8) 4180999952504864 a001 4976784/29134601*103682^(7/8) 4180999952504868 a001 39088169/228826127*103682^(7/8) 4180999952504868 a001 34111385/199691526*103682^(7/8) 4180999952504868 a001 267914296/1568397607*103682^(7/8) 4180999952504868 a001 233802911/1368706081*103682^(7/8) 4180999952504868 a001 1836311903/10749957122*103682^(7/8) 4180999952504868 a001 1602508992/9381251041*103682^(7/8) 4180999952504868 a001 12586269025/73681302247*103682^(7/8) 4180999952504868 a001 10983760033/64300051206*103682^(7/8) 4180999952504868 a001 86267571272/505019158607*103682^(7/8) 4180999952504868 a001 75283811239/440719107401*103682^(7/8) 4180999952504868 a001 2504730781961/14662949395604*103682^(7/8) 4180999952504868 a001 139583862445/817138163596*103682^(7/8) 4180999952504868 a001 53316291173/312119004989*103682^(7/8) 4180999952504868 a001 20365011074/119218851371*103682^(7/8) 4180999952504868 a001 7778742049/45537549124*103682^(7/8) 4180999952504868 a001 2971215073/17393796001*103682^(7/8) 4180999952504868 a001 1134903170/6643838879*103682^(7/8) 4180999952504868 a001 433494437/2537720636*103682^(7/8) 4180999952504868 a001 165580141/969323029*103682^(7/8) 4180999952504868 a001 63245986/370248451*103682^(7/8) 4180999952504870 a001 24157817/141422324*103682^(7/8) 4180999952504879 a001 9227465/54018521*103682^(7/8) 4180999952504945 a001 3524578/20633239*103682^(7/8) 4180999952505397 a001 1346269/7881196*103682^(7/8) 4180999952507401 a001 2178309/167761*103682^(1/2) 4180999952508492 a001 514229/3010349*103682^(7/8) 4180999952513256 a001 317811/3010349*103682^(11/12) 4180999952515806 a001 98209/219602*103682^(19/24) 4180999952518113 a001 102334155/64079*24476^(2/21) 4180999952519789 a001 701408733/710647*39603^(3/22) 4180999952519933 a001 208010/1970299*103682^(11/12) 4180999952520907 a001 2178309/20633239*103682^(11/12) 4180999952521049 a001 5702887/54018521*103682^(11/12) 4180999952521070 a001 3732588/35355581*103682^(11/12) 4180999952521073 a001 39088169/370248451*103682^(11/12) 4180999952521074 a001 102334155/969323029*103682^(11/12) 4180999952521074 a001 66978574/634430159*103682^(11/12) 4180999952521074 a001 701408733/6643838879*103682^(11/12) 4180999952521074 a001 1836311903/17393796001*103682^(11/12) 4180999952521074 a001 1201881744/11384387281*103682^(11/12) 4180999952521074 a001 12586269025/119218851371*103682^(11/12) 4180999952521074 a001 32951280099/312119004989*103682^(11/12) 4180999952521074 a001 21566892818/204284540899*103682^(11/12) 4180999952521074 a001 225851433717/2139295485799*103682^(11/12) 4180999952521074 a001 182717648081/1730726404001*103682^(11/12) 4180999952521074 a001 139583862445/1322157322203*103682^(11/12) 4180999952521074 a001 53316291173/505019158607*103682^(11/12) 4180999952521074 a001 10182505537/96450076809*103682^(11/12) 4180999952521074 a001 7778742049/73681302247*103682^(11/12) 4180999952521074 a001 2971215073/28143753123*103682^(11/12) 4180999952521074 a001 567451585/5374978561*103682^(11/12) 4180999952521074 a001 433494437/4106118243*103682^(11/12) 4180999952521074 a001 165580141/1568397607*103682^(11/12) 4180999952521074 a001 31622993/299537289*103682^(11/12) 4180999952521075 a001 24157817/228826127*103682^(11/12) 4180999952521083 a001 9227465/87403803*103682^(11/12) 4180999952521137 a001 1762289/16692641*103682^(11/12) 4180999952521509 a001 1346269/12752043*103682^(11/12) 4180999952524060 a001 514229/4870847*103682^(11/12) 4180999952524244 a001 1346269/167761*103682^(13/24) 4180999952526860 a001 1836311903/1860498*39603^(3/22) 4180999952527892 a001 4807526976/4870847*39603^(3/22) 4180999952528042 a001 12586269025/12752043*39603^(3/22) 4180999952528064 a001 32951280099/33385282*39603^(3/22) 4180999952528068 a001 86267571272/87403803*39603^(3/22) 4180999952528068 a001 225851433717/228826127*39603^(3/22) 4180999952528068 a001 591286729879/599074578*39603^(3/22) 4180999952528068 a001 1548008755920/1568397607*39603^(3/22) 4180999952528068 a001 4052739537881/4106118243*39603^(3/22) 4180999952528068 a001 4807525989/4870846*39603^(3/22) 4180999952528068 a001 6557470319842/6643838879*39603^(3/22) 4180999952528068 a001 2504730781961/2537720636*39603^(3/22) 4180999952528068 a001 956722026041/969323029*39603^(3/22) 4180999952528068 a001 365435296162/370248451*39603^(3/22) 4180999952528068 a001 139583862445/141422324*39603^(3/22) 4180999952528070 a001 53316291173/54018521*39603^(3/22) 4180999952528078 a001 20365011074/20633239*39603^(3/22) 4180999952528135 a001 7778742049/7881196*39603^(3/22) 4180999952528529 a001 2971215073/3010349*39603^(3/22) 4180999952528824 a001 317811/4870847*103682^(23/24) 4180999952529705 a001 196418/1149851*103682^(7/8) 4180999952531230 a001 1134903170/1149851*39603^(3/22) 4180999952536046 a001 832040/12752043*103682^(23/24) 4180999952537099 a001 311187/4769326*103682^(23/24) 4180999952537253 a001 5702887/87403803*103682^(23/24) 4180999952537275 a001 14930352/228826127*103682^(23/24) 4180999952537279 a001 39088169/599074578*103682^(23/24) 4180999952537279 a001 14619165/224056801*103682^(23/24) 4180999952537279 a001 267914296/4106118243*103682^(23/24) 4180999952537279 a001 701408733/10749957122*103682^(23/24) 4180999952537279 a001 1836311903/28143753123*103682^(23/24) 4180999952537279 a001 686789568/10525900321*103682^(23/24) 4180999952537279 a001 12586269025/192900153618*103682^(23/24) 4180999952537279 a001 32951280099/505019158607*103682^(23/24) 4180999952537279 a001 86267571272/1322157322203*103682^(23/24) 4180999952537279 a001 32264490531/494493258286*103682^(23/24) 4180999952537279 a001 591286729879/9062201101803*103682^(23/24) 4180999952537279 a001 1548008755920/23725150497407*103682^(23/24) 4180999952537279 a001 365435296162/5600748293801*103682^(23/24) 4180999952537279 a001 139583862445/2139295485799*103682^(23/24) 4180999952537279 a001 53316291173/817138163596*103682^(23/24) 4180999952537279 a001 20365011074/312119004989*103682^(23/24) 4180999952537279 a001 7778742049/119218851371*103682^(23/24) 4180999952537279 a001 2971215073/45537549124*103682^(23/24) 4180999952537279 a001 1134903170/17393796001*103682^(23/24) 4180999952537279 a001 433494437/6643838879*103682^(23/24) 4180999952537279 a001 165580141/2537720636*103682^(23/24) 4180999952537279 a001 63245986/969323029*103682^(23/24) 4180999952537281 a001 24157817/370248451*103682^(23/24) 4180999952537289 a001 9227465/141422324*103682^(23/24) 4180999952537348 a001 3524578/54018521*103682^(23/24) 4180999952537750 a001 1346269/20633239*103682^(23/24) 4180999952538781 a001 75640/15251*103682^(7/12) 4180999952540397 a001 196418/64079*64079^(15/23) 4180999952540509 a001 514229/7881196*103682^(23/24) 4180999952541540 a001 98209/930249*103682^(11/12) 4180999952545206 a004 Fibonacci(28)*Lucas(24)/(1/2+sqrt(5)/2)^33 4180999952548066 a001 121393/167761*103682^(3/4) 4180999952549743 a001 433494437/439204*39603^(3/22) 4180999952552277 a004 Fibonacci(30)*Lucas(24)/(1/2+sqrt(5)/2)^35 4180999952553308 a004 Fibonacci(32)*Lucas(24)/(1/2+sqrt(5)/2)^37 4180999952553459 a004 Fibonacci(34)*Lucas(24)/(1/2+sqrt(5)/2)^39 4180999952553481 a004 Fibonacci(36)*Lucas(24)/(1/2+sqrt(5)/2)^41 4180999952553484 a004 Fibonacci(38)*Lucas(24)/(1/2+sqrt(5)/2)^43 4180999952553485 a004 Fibonacci(40)*Lucas(24)/(1/2+sqrt(5)/2)^45 4180999952553485 a004 Fibonacci(42)*Lucas(24)/(1/2+sqrt(5)/2)^47 4180999952553485 a001 969323029/46368*8^(1/3) 4180999952553485 a004 Fibonacci(44)*Lucas(24)/(1/2+sqrt(5)/2)^49 4180999952553485 a004 Fibonacci(46)*Lucas(24)/(1/2+sqrt(5)/2)^51 4180999952553485 a004 Fibonacci(48)*Lucas(24)/(1/2+sqrt(5)/2)^53 4180999952553485 a004 Fibonacci(50)*Lucas(24)/(1/2+sqrt(5)/2)^55 4180999952553485 a004 Fibonacci(52)*Lucas(24)/(1/2+sqrt(5)/2)^57 4180999952553485 a004 Fibonacci(54)*Lucas(24)/(1/2+sqrt(5)/2)^59 4180999952553485 a004 Fibonacci(56)*Lucas(24)/(1/2+sqrt(5)/2)^61 4180999952553485 a004 Fibonacci(58)*Lucas(24)/(1/2+sqrt(5)/2)^63 4180999952553485 a004 Fibonacci(60)*Lucas(24)/(1/2+sqrt(5)/2)^65 4180999952553485 a004 Fibonacci(62)*Lucas(24)/(1/2+sqrt(5)/2)^67 4180999952553485 a004 Fibonacci(64)*Lucas(24)/(1/2+sqrt(5)/2)^69 4180999952553485 a004 Fibonacci(66)*Lucas(24)/(1/2+sqrt(5)/2)^71 4180999952553485 a004 Fibonacci(68)*Lucas(24)/(1/2+sqrt(5)/2)^73 4180999952553485 a004 Fibonacci(70)*Lucas(24)/(1/2+sqrt(5)/2)^75 4180999952553485 a004 Fibonacci(72)*Lucas(24)/(1/2+sqrt(5)/2)^77 4180999952553485 a004 Fibonacci(74)*Lucas(24)/(1/2+sqrt(5)/2)^79 4180999952553485 a004 Fibonacci(76)*Lucas(24)/(1/2+sqrt(5)/2)^81 4180999952553485 a004 Fibonacci(78)*Lucas(24)/(1/2+sqrt(5)/2)^83 4180999952553485 a004 Fibonacci(80)*Lucas(24)/(1/2+sqrt(5)/2)^85 4180999952553485 a004 Fibonacci(82)*Lucas(24)/(1/2+sqrt(5)/2)^87 4180999952553485 a004 Fibonacci(84)*Lucas(24)/(1/2+sqrt(5)/2)^89 4180999952553485 a004 Fibonacci(86)*Lucas(24)/(1/2+sqrt(5)/2)^91 4180999952553485 a004 Fibonacci(88)*Lucas(24)/(1/2+sqrt(5)/2)^93 4180999952553485 a004 Fibonacci(90)*Lucas(24)/(1/2+sqrt(5)/2)^95 4180999952553485 a004 Fibonacci(92)*Lucas(24)/(1/2+sqrt(5)/2)^97 4180999952553485 a004 Fibonacci(94)*Lucas(24)/(1/2+sqrt(5)/2)^99 4180999952553485 a004 Fibonacci(95)*Lucas(24)/(1/2+sqrt(5)/2)^100 4180999952553485 a004 Fibonacci(93)*Lucas(24)/(1/2+sqrt(5)/2)^98 4180999952553485 a004 Fibonacci(91)*Lucas(24)/(1/2+sqrt(5)/2)^96 4180999952553485 a004 Fibonacci(89)*Lucas(24)/(1/2+sqrt(5)/2)^94 4180999952553485 a004 Fibonacci(87)*Lucas(24)/(1/2+sqrt(5)/2)^92 4180999952553485 a004 Fibonacci(85)*Lucas(24)/(1/2+sqrt(5)/2)^90 4180999952553485 a004 Fibonacci(83)*Lucas(24)/(1/2+sqrt(5)/2)^88 4180999952553485 a004 Fibonacci(81)*Lucas(24)/(1/2+sqrt(5)/2)^86 4180999952553485 a004 Fibonacci(79)*Lucas(24)/(1/2+sqrt(5)/2)^84 4180999952553485 a004 Fibonacci(77)*Lucas(24)/(1/2+sqrt(5)/2)^82 4180999952553485 a004 Fibonacci(75)*Lucas(24)/(1/2+sqrt(5)/2)^80 4180999952553485 a004 Fibonacci(73)*Lucas(24)/(1/2+sqrt(5)/2)^78 4180999952553485 a004 Fibonacci(71)*Lucas(24)/(1/2+sqrt(5)/2)^76 4180999952553485 a004 Fibonacci(69)*Lucas(24)/(1/2+sqrt(5)/2)^74 4180999952553485 a004 Fibonacci(67)*Lucas(24)/(1/2+sqrt(5)/2)^72 4180999952553485 a004 Fibonacci(65)*Lucas(24)/(1/2+sqrt(5)/2)^70 4180999952553485 a004 Fibonacci(63)*Lucas(24)/(1/2+sqrt(5)/2)^68 4180999952553485 a004 Fibonacci(61)*Lucas(24)/(1/2+sqrt(5)/2)^66 4180999952553485 a004 Fibonacci(59)*Lucas(24)/(1/2+sqrt(5)/2)^64 4180999952553485 a004 Fibonacci(57)*Lucas(24)/(1/2+sqrt(5)/2)^62 4180999952553485 a004 Fibonacci(55)*Lucas(24)/(1/2+sqrt(5)/2)^60 4180999952553485 a004 Fibonacci(53)*Lucas(24)/(1/2+sqrt(5)/2)^58 4180999952553485 a004 Fibonacci(51)*Lucas(24)/(1/2+sqrt(5)/2)^56 4180999952553485 a004 Fibonacci(49)*Lucas(24)/(1/2+sqrt(5)/2)^54 4180999952553485 a001 1/23184*(1/2+1/2*5^(1/2))^43 4180999952553485 a004 Fibonacci(47)*Lucas(24)/(1/2+sqrt(5)/2)^52 4180999952553485 a004 Fibonacci(45)*Lucas(24)/(1/2+sqrt(5)/2)^50 4180999952553485 a004 Fibonacci(43)*Lucas(24)/(1/2+sqrt(5)/2)^48 4180999952553485 a004 Fibonacci(41)*Lucas(24)/(1/2+sqrt(5)/2)^46 4180999952553485 a004 Fibonacci(39)*Lucas(24)/(1/2+sqrt(5)/2)^44 4180999952553486 a004 Fibonacci(37)*Lucas(24)/(1/2+sqrt(5)/2)^42 4180999952553494 a004 Fibonacci(35)*Lucas(24)/(1/2+sqrt(5)/2)^40 4180999952553552 a004 Fibonacci(33)*Lucas(24)/(1/2+sqrt(5)/2)^38 4180999952553946 a004 Fibonacci(31)*Lucas(24)/(1/2+sqrt(5)/2)^36 4180999952554714 a001 317811/64079*64079^(14/23) 4180999952555455 a001 267914296/167761*39603^(1/11) 4180999952556647 a004 Fibonacci(29)*Lucas(24)/(1/2+sqrt(5)/2)^34 4180999952559356 a001 514229/167761*103682^(5/8) 4180999952559415 a001 196418/3010349*103682^(23/24) 4180999952564121 a001 317811/167761*103682^(2/3) 4180999952575159 a004 Fibonacci(27)*Lucas(24)/(1/2+sqrt(5)/2)^32 4180999952578739 a001 75025/64079*64079^(17/23) 4180999952580477 a001 75025/271443*103682^(5/6) 4180999952592495 a001 165580141/271443*39603^(2/11) 4180999952610279 a001 196418/167761*103682^(17/24) 4180999952610427 a001 514229/64079*64079^(13/23) 4180999952623819 a001 7465176/51841*39603^(7/22) 4180999952640961 a001 433494437/710647*39603^(2/11) 4180999952648032 a001 567451585/930249*39603^(2/11) 4180999952649064 a001 2971215073/4870847*39603^(2/11) 4180999952649214 a001 7778742049/12752043*39603^(2/11) 4180999952649236 a001 10182505537/16692641*39603^(2/11) 4180999952649239 a001 53316291173/87403803*39603^(2/11) 4180999952649240 a001 139583862445/228826127*39603^(2/11) 4180999952649240 a001 182717648081/299537289*39603^(2/11) 4180999952649240 a001 956722026041/1568397607*39603^(2/11) 4180999952649240 a001 2504730781961/4106118243*39603^(2/11) 4180999952649240 a001 3278735159921/5374978561*39603^(2/11) 4180999952649240 a001 10610209857723/17393796001*39603^(2/11) 4180999952649240 a001 4052739537881/6643838879*39603^(2/11) 4180999952649240 a001 1134903780/1860499*39603^(2/11) 4180999952649240 a001 591286729879/969323029*39603^(2/11) 4180999952649240 a001 225851433717/370248451*39603^(2/11) 4180999952649240 a001 21566892818/35355581*39603^(2/11) 4180999952649241 a001 32951280099/54018521*39603^(2/11) 4180999952649250 a001 1144206275/1875749*39603^(2/11) 4180999952649307 a001 1201881744/1970299*39603^(2/11) 4180999952649701 a001 1836311903/3010349*39603^(2/11) 4180999952650328 a001 832040/64079*64079^(12/23) 4180999952652402 a001 701408733/1149851*39603^(2/11) 4180999952661354 a001 75025/710647*103682^(11/12) 4180999952670914 a001 66978574/109801*39603^(2/11) 4180999952675011 a001 28657/103682*167761^(4/5) 4180999952675101 a001 75025/439204*103682^(7/8) 4180999952676627 a001 165580141/167761*39603^(3/22) 4180999952689000 a001 75025/1149851*103682^(23/24) 4180999952689197 a001 133957148/51841*15127^(1/20) 4180999952696268 a001 1346269/64079*64079^(11/23) 4180999952698103 a001 28657/39603*39603^(9/11) 4180999952702043 a004 Fibonacci(25)*Lucas(24)/(1/2+sqrt(5)/2)^30 4180999952713667 a001 34111385/90481*39603^(5/22) 4180999952739902 a001 2178309/64079*64079^(10/23) 4180999952745005 a001 9227465/103682*39603^(4/11) 4180999952762133 a001 267914296/710647*39603^(5/22) 4180999952769204 a001 233802911/620166*39603^(5/22) 4180999952769575 a001 75025/167761*103682^(19/24) 4180999952770235 a001 1836311903/4870847*39603^(5/22) 4180999952770386 a001 1602508992/4250681*39603^(5/22) 4180999952770408 a001 12586269025/33385282*39603^(5/22) 4180999952770411 a001 10983760033/29134601*39603^(5/22) 4180999952770411 a001 86267571272/228826127*39603^(5/22) 4180999952770412 a001 267913919/710646*39603^(5/22) 4180999952770412 a001 591286729879/1568397607*39603^(5/22) 4180999952770412 a001 516002918640/1368706081*39603^(5/22) 4180999952770412 a001 4052739537881/10749957122*39603^(5/22) 4180999952770412 a001 3536736619241/9381251041*39603^(5/22) 4180999952770412 a001 6557470319842/17393796001*39603^(5/22) 4180999952770412 a001 2504730781961/6643838879*39603^(5/22) 4180999952770412 a001 956722026041/2537720636*39603^(5/22) 4180999952770412 a001 365435296162/969323029*39603^(5/22) 4180999952770412 a001 139583862445/370248451*39603^(5/22) 4180999952770412 a001 53316291173/141422324*39603^(5/22) 4180999952770413 a001 20365011074/54018521*39603^(5/22) 4180999952770421 a001 7778742049/20633239*39603^(5/22) 4180999952770479 a001 2971215073/7881196*39603^(5/22) 4180999952770873 a001 1134903170/3010349*39603^(5/22) 4180999952773574 a001 433494437/1149851*39603^(5/22) 4180999952779408 a001 46368/64079*439204^(2/3) 4180999952784416 a001 3524578/64079*64079^(9/23) 4180999952792086 a001 165580141/439204*39603^(5/22) 4180999952793821 a001 46368/64079*7881196^(6/11) 4180999952793852 a001 28657/103682*20633239^(4/7) 4180999952793858 a001 46368/64079*141422324^(6/13) 4180999952793858 a001 28657/103682*2537720636^(4/9) 4180999952793858 a001 46368/64079*2537720636^(2/5) 4180999952793858 a001 28657/103682*(1/2+1/2*5^(1/2))^20 4180999952793858 a001 28657/103682*23725150497407^(5/16) 4180999952793858 a001 28657/103682*505019158607^(5/14) 4180999952793858 a001 28657/103682*73681302247^(5/13) 4180999952793858 a001 28657/103682*28143753123^(2/5) 4180999952793858 a001 28657/103682*10749957122^(5/12) 4180999952793858 a001 28657/103682*4106118243^(10/23) 4180999952793858 a001 46368/64079*45537549124^(6/17) 4180999952793858 a001 46368/64079*14662949395604^(2/7) 4180999952793858 a001 46368/64079*(1/2+1/2*5^(1/2))^18 4180999952793858 a001 46368/64079*192900153618^(1/3) 4180999952793858 a001 46368/64079*10749957122^(3/8) 4180999952793858 a001 46368/64079*4106118243^(9/23) 4180999952793858 a001 28657/103682*1568397607^(5/11) 4180999952793858 a001 46368/64079*1568397607^(9/22) 4180999952793858 a001 46368/64079*599074578^(3/7) 4180999952793858 a001 28657/103682*599074578^(10/21) 4180999952793858 a001 46368/64079*228826127^(9/20) 4180999952793858 a001 28657/103682*228826127^(1/2) 4180999952793858 a001 46368/64079*87403803^(9/19) 4180999952793858 a001 28657/103682*87403803^(10/19) 4180999952793860 a001 46368/64079*33385282^(1/2) 4180999952793860 a001 28657/103682*33385282^(5/9) 4180999952793871 a001 46368/64079*12752043^(9/17) 4180999952793873 a001 28657/103682*12752043^(10/17) 4180999952793957 a001 46368/64079*4870847^(9/16) 4180999952793968 a001 28657/103682*4870847^(5/8) 4180999952794582 a001 46368/64079*1860498^(3/5) 4180999952794663 a001 28657/103682*1860498^(2/3) 4180999952797798 a001 9303105/15251*39603^(2/11) 4180999952799180 a001 46368/64079*710647^(9/14) 4180999952799771 a001 28657/103682*710647^(5/7) 4180999952802137 a001 442922592/105937 4180999952828595 a001 5702887/64079*64079^(8/23) 4180999952833142 a001 46368/64079*271443^(9/13) 4180999952834839 a001 63245986/271443*39603^(3/11) 4180999952837507 a001 28657/103682*271443^(10/13) 4180999952850452 a001 165580141/64079*24476^(1/21) 4180999952866141 a001 5702887/103682*39603^(9/22) 4180999952872901 a001 9227465/64079*64079^(7/23) 4180999952883304 a001 165580141/710647*39603^(3/11) 4180999952890375 a001 433494437/1860498*39603^(3/11) 4180999952891407 a001 1134903170/4870847*39603^(3/11) 4180999952891558 a001 2971215073/12752043*39603^(3/11) 4180999952891580 a001 7778742049/33385282*39603^(3/11) 4180999952891583 a001 20365011074/87403803*39603^(3/11) 4180999952891583 a001 53316291173/228826127*39603^(3/11) 4180999952891583 a001 139583862445/599074578*39603^(3/11) 4180999952891583 a001 365435296162/1568397607*39603^(3/11) 4180999952891583 a001 956722026041/4106118243*39603^(3/11) 4180999952891583 a001 2504730781961/10749957122*39603^(3/11) 4180999952891583 a001 6557470319842/28143753123*39603^(3/11) 4180999952891583 a001 10610209857723/45537549124*39603^(3/11) 4180999952891583 a001 4052739537881/17393796001*39603^(3/11) 4180999952891583 a001 1548008755920/6643838879*39603^(3/11) 4180999952891583 a001 591286729879/2537720636*39603^(3/11) 4180999952891583 a001 225851433717/969323029*39603^(3/11) 4180999952891583 a001 86267571272/370248451*39603^(3/11) 4180999952891583 a001 63246219/271444*39603^(3/11) 4180999952891585 a001 12586269025/54018521*39603^(3/11) 4180999952891593 a001 4807526976/20633239*39603^(3/11) 4180999952891651 a001 1836311903/7881196*39603^(3/11) 4180999952892045 a001 701408733/3010349*39603^(3/11) 4180999952894746 a001 267914296/1149851*39603^(3/11) 4180999952913258 a001 102334155/439204*39603^(3/11) 4180999952917159 a001 14930352/64079*64079^(6/23) 4180999952918970 a001 63245986/167761*39603^(5/22) 4180999952940446 a001 17711/64079*39603^(10/11) 4180999952956010 a001 39088169/271443*39603^(7/22) 4180999952961435 a001 24157817/64079*64079^(5/23) 4180999952987406 a001 1762289/51841*39603^(5/11) 4180999953004476 a001 14619165/101521*39603^(7/22) 4180999953005704 a001 39088169/64079*64079^(4/23) 4180999953011547 a001 133957148/930249*39603^(7/22) 4180999953012579 a001 701408733/4870847*39603^(7/22) 4180999953012729 a001 1836311903/12752043*39603^(7/22) 4180999953012751 a001 14930208/103681*39603^(7/22) 4180999953012754 a001 12586269025/87403803*39603^(7/22) 4180999953012755 a001 32951280099/228826127*39603^(7/22) 4180999953012755 a001 43133785636/299537289*39603^(7/22) 4180999953012755 a001 32264490531/224056801*39603^(7/22) 4180999953012755 a001 591286729879/4106118243*39603^(7/22) 4180999953012755 a001 774004377960/5374978561*39603^(7/22) 4180999953012755 a001 4052739537881/28143753123*39603^(7/22) 4180999953012755 a001 1515744265389/10525900321*39603^(7/22) 4180999953012755 a001 3278735159921/22768774562*39603^(7/22) 4180999953012755 a001 2504730781961/17393796001*39603^(7/22) 4180999953012755 a001 956722026041/6643838879*39603^(7/22) 4180999953012755 a001 182717648081/1268860318*39603^(7/22) 4180999953012755 a001 139583862445/969323029*39603^(7/22) 4180999953012755 a001 53316291173/370248451*39603^(7/22) 4180999953012755 a001 10182505537/70711162*39603^(7/22) 4180999953012756 a001 7778742049/54018521*39603^(7/22) 4180999953012765 a001 2971215073/20633239*39603^(7/22) 4180999953012822 a001 567451585/3940598*39603^(7/22) 4180999953013216 a001 433494437/3010349*39603^(7/22) 4180999953015917 a001 165580141/1149851*39603^(7/22) 4180999953021384 a001 233802911/90481*15127^(1/20) 4180999953034231 a004 Fibonacci(23)*Lucas(25)/(1/2+sqrt(5)/2)^29 4180999953034430 a001 31622993/219602*39603^(7/22) 4180999953040141 a001 39088169/167761*39603^(3/11) 4180999953049976 a001 63245986/64079*64079^(3/23) 4180999953069850 a001 1836311903/710647*15127^(1/20) 4180999953076921 a001 267084832/103361*15127^(1/20) 4180999953077184 a001 24157817/271443*39603^(4/11) 4180999953077952 a001 12586269025/4870847*15127^(1/20) 4180999953078103 a001 10983760033/4250681*15127^(1/20) 4180999953078125 a001 43133785636/16692641*15127^(1/20) 4180999953078128 a001 75283811239/29134601*15127^(1/20) 4180999953078129 a001 591286729879/228826127*15127^(1/20) 4180999953078129 a001 86000486440/33281921*15127^(1/20) 4180999953078129 a001 4052739537881/1568397607*15127^(1/20) 4180999953078129 a001 3536736619241/1368706081*15127^(1/20) 4180999953078129 a001 3278735159921/1268860318*15127^(1/20) 4180999953078129 a001 2504730781961/969323029*15127^(1/20) 4180999953078129 a001 956722026041/370248451*15127^(1/20) 4180999953078129 a001 182717648081/70711162*15127^(1/20) 4180999953078130 a001 139583862445/54018521*15127^(1/20) 4180999953078138 a001 53316291173/20633239*15127^(1/20) 4180999953078196 a001 10182505537/3940598*15127^(1/20) 4180999953078590 a001 7778742049/3010349*15127^(1/20) 4180999953081291 a001 2971215073/1149851*15127^(1/20) 4180999953085557 a001 46368/64079*103682^(3/4) 4180999953094247 a001 102334155/64079*64079^(2/23) 4180999953099803 a001 567451585/219602*15127^(1/20) 4180999953108334 a001 46347/2206*39603^(1/2) 4180999953115329 a001 196418/64079*167761^(3/5) 4180999953117968 a001 28657/103682*103682^(5/6) 4180999953123190 a001 2178309/64079*167761^(2/5) 4180999953125648 a001 63245986/710647*39603^(4/11) 4180999953126000 a001 28657/271443*7881196^(2/3) 4180999953126045 a001 28657/271443*312119004989^(2/5) 4180999953126045 a001 28657/271443*(1/2+1/2*5^(1/2))^22 4180999953126045 a001 28657/271443*10749957122^(11/24) 4180999953126045 a001 28657/271443*4106118243^(11/23) 4180999953126045 a001 121393/64079*(1/2+1/2*5^(1/2))^16 4180999953126045 a001 121393/64079*23725150497407^(1/4) 4180999953126045 a001 121393/64079*73681302247^(4/13) 4180999953126045 a001 121393/64079*10749957122^(1/3) 4180999953126045 a001 121393/64079*4106118243^(8/23) 4180999953126045 a001 28657/271443*1568397607^(1/2) 4180999953126045 a001 121393/64079*1568397607^(4/11) 4180999953126045 a001 121393/64079*599074578^(8/21) 4180999953126045 a001 28657/271443*599074578^(11/21) 4180999953126045 a001 121393/64079*228826127^(2/5) 4180999953126045 a001 28657/271443*228826127^(11/20) 4180999953126045 a001 121393/64079*87403803^(8/19) 4180999953126045 a001 28657/271443*87403803^(11/19) 4180999953126047 a001 121393/64079*33385282^(4/9) 4180999953126047 a001 28657/271443*33385282^(11/18) 4180999953126057 a001 121393/64079*12752043^(8/17) 4180999953126062 a001 28657/271443*12752043^(11/17) 4180999953126133 a001 121393/64079*4870847^(1/2) 4180999953126166 a001 28657/271443*4870847^(11/16) 4180999953126689 a001 121393/64079*1860498^(8/15) 4180999953126931 a001 28657/271443*1860498^(11/15) 4180999953127253 a001 3478759201/832040 4180999953130776 a001 121393/64079*710647^(4/7) 4180999953132550 a001 28657/271443*710647^(11/14) 4180999953132719 a001 165580141/1860498*39603^(4/11) 4180999953133751 a001 433494437/4870847*39603^(4/11) 4180999953133901 a001 1134903170/12752043*39603^(4/11) 4180999953133923 a001 2971215073/33385282*39603^(4/11) 4180999953133926 a001 7778742049/87403803*39603^(4/11) 4180999953133927 a001 20365011074/228826127*39603^(4/11) 4180999953133927 a001 53316291173/599074578*39603^(4/11) 4180999953133927 a001 139583862445/1568397607*39603^(4/11) 4180999953133927 a001 365435296162/4106118243*39603^(4/11) 4180999953133927 a001 956722026041/10749957122*39603^(4/11) 4180999953133927 a001 2504730781961/28143753123*39603^(4/11) 4180999953133927 a001 6557470319842/73681302247*39603^(4/11) 4180999953133927 a001 10610209857723/119218851371*39603^(4/11) 4180999953133927 a001 4052739537881/45537549124*39603^(4/11) 4180999953133927 a001 1548008755920/17393796001*39603^(4/11) 4180999953133927 a001 591286729879/6643838879*39603^(4/11) 4180999953133927 a001 225851433717/2537720636*39603^(4/11) 4180999953133927 a001 86267571272/969323029*39603^(4/11) 4180999953133927 a001 32951280099/370248451*39603^(4/11) 4180999953133927 a001 12586269025/141422324*39603^(4/11) 4180999953133928 a001 4807526976/54018521*39603^(4/11) 4180999953133937 a001 1836311903/20633239*39603^(4/11) 4180999953133994 a001 3524667/39604*39603^(4/11) 4180999953134388 a001 267914296/3010349*39603^(4/11) 4180999953137089 a001 102334155/1149851*39603^(4/11) 4180999953138518 a001 165580141/64079*64079^(1/23) 4180999953153079 a001 24157817/39603*15127^(1/5) 4180999953153079 a001 24157817/64079*167761^(1/5) 4180999953155244 a001 28657/710647*439204^(8/9) 4180999953155601 a001 39088169/439204*39603^(4/11) 4180999953160965 a001 121393/64079*271443^(8/13) 4180999953161115 a004 Fibonacci(23)*Lucas(27)/(1/2+sqrt(5)/2)^31 4180999953161315 a001 24157817/167761*39603^(7/22) 4180999953171949 a001 832040/64079*439204^(4/9) 4180999953174060 a001 28657/271443*271443^(11/13) 4180999953174462 a001 28657/710647*7881196^(8/11) 4180999953174507 a001 317811/64079*20633239^(2/5) 4180999953174510 a001 28657/710647*141422324^(8/13) 4180999953174511 a001 28657/710647*2537720636^(8/15) 4180999953174511 a001 28657/710647*45537549124^(8/17) 4180999953174511 a001 28657/710647*14662949395604^(8/21) 4180999953174511 a001 28657/710647*(1/2+1/2*5^(1/2))^24 4180999953174511 a001 28657/710647*192900153618^(4/9) 4180999953174511 a001 28657/710647*73681302247^(6/13) 4180999953174511 a001 28657/710647*10749957122^(1/2) 4180999953174511 a001 28657/710647*4106118243^(12/23) 4180999953174511 a001 317811/64079*17393796001^(2/7) 4180999953174511 a001 317811/64079*14662949395604^(2/9) 4180999953174511 a001 317811/64079*(1/2+1/2*5^(1/2))^14 4180999953174511 a001 317811/64079*505019158607^(1/4) 4180999953174511 a001 317811/64079*10749957122^(7/24) 4180999953174511 a001 317811/64079*4106118243^(7/23) 4180999953174511 a001 317811/64079*1568397607^(7/22) 4180999953174511 a001 28657/710647*1568397607^(6/11) 4180999953174511 a001 317811/64079*599074578^(1/3) 4180999953174511 a001 28657/710647*599074578^(4/7) 4180999953174511 a001 317811/64079*228826127^(7/20) 4180999953174511 a001 28657/710647*228826127^(3/5) 4180999953174511 a001 317811/64079*87403803^(7/19) 4180999953174511 a001 28657/710647*87403803^(12/19) 4180999953174512 a001 317811/64079*33385282^(7/18) 4180999953174513 a001 28657/710647*33385282^(2/3) 4180999953174521 a001 317811/64079*12752043^(7/17) 4180999953174529 a001 28657/710647*12752043^(12/17) 4180999953174588 a001 317811/64079*4870847^(7/16) 4180999953174643 a001 28657/710647*4870847^(3/4) 4180999953174687 a001 3035836609/726103 4180999953175074 a001 317811/64079*1860498^(7/15) 4180999953175477 a001 28657/710647*1860498^(4/5) 4180999953175632 a001 3524578/64079*439204^(1/3) 4180999953177969 a001 14930352/64079*439204^(2/9) 4180999953178650 a001 317811/64079*710647^(1/2) 4180999953179452 a001 6765/3571*3571^(16/17) 4180999953179627 a004 Fibonacci(23)*Lucas(29)/(1/2+sqrt(5)/2)^33 4180999953180381 a001 63245986/64079*439204^(1/9) 4180999953181557 a001 832040/64079*7881196^(4/11) 4180999953181581 a001 28657/1860498*141422324^(2/3) 4180999953181582 a001 832040/64079*141422324^(4/13) 4180999953181582 a001 28657/1860498*(1/2+1/2*5^(1/2))^26 4180999953181582 a001 28657/1860498*73681302247^(1/2) 4180999953181582 a001 28657/1860498*10749957122^(13/24) 4180999953181582 a001 832040/64079*2537720636^(4/15) 4180999953181582 a001 28657/1860498*4106118243^(13/23) 4180999953181582 a001 832040/64079*45537549124^(4/17) 4180999953181582 a001 832040/64079*817138163596^(4/19) 4180999953181582 a001 832040/64079*14662949395604^(4/21) 4180999953181582 a001 832040/64079*(1/2+1/2*5^(1/2))^12 4180999953181582 a001 832040/64079*192900153618^(2/9) 4180999953181582 a001 832040/64079*73681302247^(3/13) 4180999953181582 a001 832040/64079*10749957122^(1/4) 4180999953181582 a001 832040/64079*4106118243^(6/23) 4180999953181582 a001 832040/64079*1568397607^(3/11) 4180999953181582 a001 28657/1860498*1568397607^(13/22) 4180999953181582 a001 832040/64079*599074578^(2/7) 4180999953181582 a001 28657/1860498*599074578^(13/21) 4180999953181582 a001 832040/64079*228826127^(3/10) 4180999953181582 a001 28657/1860498*228826127^(13/20) 4180999953181582 a001 832040/64079*87403803^(6/19) 4180999953181582 a001 28657/1860498*87403803^(13/19) 4180999953181583 a001 832040/64079*33385282^(1/3) 4180999953181584 a001 28657/1860498*33385282^(13/18) 4180999953181591 a001 832040/64079*12752043^(6/17) 4180999953181601 a001 28657/1860498*12752043^(13/17) 4180999953181607 a001 28657/710647*710647^(6/7) 4180999953181607 a001 23843770280/5702887 4180999953181648 a001 832040/64079*4870847^(3/8) 4180999953181725 a001 28657/1860498*4870847^(13/16) 4180999953182065 a001 832040/64079*1860498^(2/5) 4180999953182328 a004 Fibonacci(23)*Lucas(31)/(1/2+sqrt(5)/2)^35 4180999953182605 a001 28657/4870847*20633239^(4/5) 4180999953182610 a001 2178309/64079*20633239^(2/7) 4180999953182613 a001 28657/4870847*17393796001^(4/7) 4180999953182613 a001 28657/4870847*14662949395604^(4/9) 4180999953182613 a001 28657/4870847*(1/2+1/2*5^(1/2))^28 4180999953182613 a001 28657/4870847*73681302247^(7/13) 4180999953182613 a001 28657/4870847*10749957122^(7/12) 4180999953182613 a001 2178309/64079*2537720636^(2/9) 4180999953182613 a001 28657/4870847*4106118243^(14/23) 4180999953182613 a001 2178309/64079*312119004989^(2/11) 4180999953182613 a001 2178309/64079*(1/2+1/2*5^(1/2))^10 4180999953182613 a001 2178309/64079*28143753123^(1/5) 4180999953182613 a001 2178309/64079*10749957122^(5/24) 4180999953182613 a001 2178309/64079*4106118243^(5/23) 4180999953182613 a001 2178309/64079*1568397607^(5/22) 4180999953182613 a001 28657/4870847*1568397607^(7/11) 4180999953182613 a001 2178309/64079*599074578^(5/21) 4180999953182613 a001 28657/4870847*599074578^(2/3) 4180999953182613 a001 2178309/64079*228826127^(1/4) 4180999953182613 a001 28657/4870847*228826127^(7/10) 4180999953182613 a001 2178309/64079*87403803^(5/19) 4180999953182614 a001 28657/4870847*87403803^(14/19) 4180999953182614 a001 2178309/64079*33385282^(5/18) 4180999953182616 a001 28657/4870847*33385282^(7/9) 4180999953182617 a001 20807933671/4976784 4180999953182621 a001 2178309/64079*12752043^(5/17) 4180999953182628 a001 28657/1860498*1860498^(13/15) 4180999953182634 a001 28657/4870847*12752043^(14/17) 4180999953182668 a001 2178309/64079*4870847^(5/16) 4180999953182703 a001 28657/12752043*7881196^(10/11) 4180999953182722 a004 Fibonacci(23)*Lucas(33)/(1/2+sqrt(5)/2)^37 4180999953182755 a001 28657/12752043*20633239^(6/7) 4180999953182764 a001 28657/12752043*141422324^(10/13) 4180999953182764 a001 28657/12752043*2537720636^(2/3) 4180999953182764 a001 28657/12752043*45537549124^(10/17) 4180999953182764 a001 28657/12752043*312119004989^(6/11) 4180999953182764 a001 28657/12752043*14662949395604^(10/21) 4180999953182764 a001 28657/12752043*(1/2+1/2*5^(1/2))^30 4180999953182764 a001 28657/12752043*192900153618^(5/9) 4180999953182764 a001 28657/12752043*28143753123^(3/5) 4180999953182764 a001 28657/12752043*10749957122^(5/8) 4180999953182764 a001 28657/12752043*4106118243^(15/23) 4180999953182764 a001 5702887/64079*(1/2+1/2*5^(1/2))^8 4180999953182764 a001 5702887/64079*23725150497407^(1/8) 4180999953182764 a001 5702887/64079*505019158607^(1/7) 4180999953182764 a001 5702887/64079*73681302247^(2/13) 4180999953182764 a001 5702887/64079*10749957122^(1/6) 4180999953182764 a001 5702887/64079*4106118243^(4/23) 4180999953182764 a001 5702887/64079*1568397607^(2/11) 4180999953182764 a001 28657/12752043*1568397607^(15/22) 4180999953182764 a001 5702887/64079*599074578^(4/21) 4180999953182764 a001 28657/12752043*599074578^(5/7) 4180999953182764 a001 5702887/64079*228826127^(1/5) 4180999953182764 a001 28657/12752043*228826127^(3/4) 4180999953182764 a001 5702887/64079*87403803^(4/19) 4180999953182764 a001 28657/12752043*87403803^(15/19) 4180999953182764 a001 163427632759/39088169 4180999953182765 a001 5702887/64079*33385282^(2/9) 4180999953182767 a001 28657/12752043*33385282^(5/6) 4180999953182767 a001 28657/4870847*4870847^(7/8) 4180999953182770 a001 5702887/64079*12752043^(4/17) 4180999953182774 a001 14930352/64079*7881196^(2/11) 4180999953182780 a004 Fibonacci(23)*Lucas(35)/(1/2+sqrt(5)/2)^39 4180999953182784 a001 63245986/64079*7881196^(1/11) 4180999953182786 a001 14930352/64079*141422324^(2/13) 4180999953182786 a001 28657/33385282*(1/2+1/2*5^(1/2))^32 4180999953182786 a001 28657/33385282*23725150497407^(1/2) 4180999953182786 a001 28657/33385282*505019158607^(4/7) 4180999953182786 a001 28657/33385282*73681302247^(8/13) 4180999953182786 a001 28657/33385282*10749957122^(2/3) 4180999953182786 a001 14930352/64079*2537720636^(2/15) 4180999953182786 a001 28657/33385282*4106118243^(16/23) 4180999953182786 a001 14930352/64079*45537549124^(2/17) 4180999953182786 a001 14930352/64079*14662949395604^(2/21) 4180999953182786 a001 14930352/64079*(1/2+1/2*5^(1/2))^6 4180999953182786 a001 14930352/64079*10749957122^(1/8) 4180999953182786 a001 14930352/64079*4106118243^(3/23) 4180999953182786 a001 14930352/64079*1568397607^(3/22) 4180999953182786 a001 28657/33385282*1568397607^(8/11) 4180999953182786 a001 14930352/64079*599074578^(1/7) 4180999953182786 a001 28657/33385282*599074578^(16/21) 4180999953182786 a001 14930352/64079*228826127^(3/20) 4180999953182786 a001 28657/33385282*228826127^(4/5) 4180999953182786 a001 142619699088/34111385 4180999953182786 a001 14930352/64079*87403803^(3/19) 4180999953182786 a001 28657/33385282*87403803^(16/19) 4180999953182786 a001 14930352/64079*33385282^(1/6) 4180999953182786 a001 28657/12752043*12752043^(15/17) 4180999953182788 a004 Fibonacci(23)*Lucas(37)/(1/2+sqrt(5)/2)^41 4180999953182789 a001 28657/87403803*45537549124^(2/3) 4180999953182789 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^34/Lucas(38) 4180999953182789 a001 28657/87403803*10749957122^(17/24) 4180999953182789 a001 28657/87403803*4106118243^(17/23) 4180999953182789 a001 39088169/64079*(1/2+1/2*5^(1/2))^4 4180999953182789 a001 39088169/64079*23725150497407^(1/16) 4180999953182789 a001 39088169/64079*73681302247^(1/13) 4180999953182789 a001 39088169/64079*10749957122^(1/12) 4180999953182789 a001 39088169/64079*4106118243^(2/23) 4180999953182789 a001 39088169/64079*1568397607^(1/11) 4180999953182789 a001 28657/87403803*1568397607^(17/22) 4180999953182789 a001 39088169/64079*599074578^(2/21) 4180999953182789 a001 39088169/64079*228826127^(1/10) 4180999953182789 a001 28657/87403803*599074578^(17/21) 4180999953182789 a001 1120149659033/267914296 4180999953182789 a001 39088169/64079*87403803^(2/19) 4180999953182789 a001 28657/87403803*228826127^(17/20) 4180999953182789 a001 28657/33385282*33385282^(8/9) 4180999953182789 a001 28657/228826127*141422324^(12/13) 4180999953182789 a004 Fibonacci(23)*Lucas(39)/(1/2+sqrt(5)/2)^43 4180999953182789 a001 39088169/64079*33385282^(1/9) 4180999953182789 a001 28657/228826127*2537720636^(4/5) 4180999953182789 a001 28657/228826127*45537549124^(12/17) 4180999953182789 a001 28657/228826127*14662949395604^(4/7) 4180999953182789 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^36/Lucas(40) 4180999953182789 a001 28657/228826127*505019158607^(9/14) 4180999953182789 a001 28657/228826127*192900153618^(2/3) 4180999953182789 a001 28657/228826127*73681302247^(9/13) 4180999953182789 a001 28657/228826127*10749957122^(3/4) 4180999953182789 a001 28657/228826127*4106118243^(18/23) 4180999953182789 a001 102334155/64079*(1/2+1/2*5^(1/2))^2 4180999953182789 a001 102334155/64079*10749957122^(1/24) 4180999953182789 a001 102334155/64079*4106118243^(1/23) 4180999953182789 a001 102334155/64079*1568397607^(1/22) 4180999953182789 a001 102334155/64079*599074578^(1/21) 4180999953182789 a001 28657/228826127*1568397607^(9/11) 4180999953182789 a001 977529959945/233802911 4180999953182789 a001 102334155/64079*228826127^(1/20) 4180999953182789 a001 28657/228826127*599074578^(6/7) 4180999953182789 a001 28657/87403803*87403803^(17/19) 4180999953182789 a001 102334155/64079*87403803^(1/19) 4180999953182789 a004 Fibonacci(23)*Lucas(41)/(1/2+sqrt(5)/2)^45 4180999953182789 a001 28657/599074578*817138163596^(2/3) 4180999953182789 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^38/Lucas(42) 4180999953182789 a001 28657/599074578*10749957122^(19/24) 4180999953182789 a001 28657/599074578*4106118243^(19/23) 4180999953182789 a001 267914296/64079 4180999953182789 a001 28657/599074578*1568397607^(19/22) 4180999953182789 a001 28657/228826127*228826127^(9/10) 4180999953182790 a004 Fibonacci(23)*Lucas(43)/(1/2+sqrt(5)/2)^47 4180999953182790 a001 28657/1568397607*2537720636^(8/9) 4180999953182790 a001 28657/1568397607*312119004989^(8/11) 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^40/Lucas(44) 4180999953182790 a001 28657/1568397607*23725150497407^(5/8) 4180999953182790 a001 28657/1568397607*73681302247^(10/13) 4180999953182790 a001 28657/1568397607*28143753123^(4/5) 4180999953182790 a001 28657/1568397607*10749957122^(5/6) 4180999953182790 a001 6700090020527/1602508992 4180999953182790 a001 28657/1568397607*4106118243^(20/23) 4180999953182790 a004 Fibonacci(44)/Lucas(23)/(1/2+sqrt(5)/2)^2 4180999953182790 a001 28657/599074578*599074578^(19/21) 4180999953182790 a001 28657/4106118243*2537720636^(14/15) 4180999953182790 a004 Fibonacci(23)*Lucas(45)/(1/2+sqrt(5)/2)^49 4180999953182790 a001 28657/4106118243*17393796001^(6/7) 4180999953182790 a001 28657/4106118243*45537549124^(14/17) 4180999953182790 a001 28657/4106118243*817138163596^(14/19) 4180999953182790 a001 28657/4106118243*14662949395604^(2/3) 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^42/Lucas(46) 4180999953182790 a001 28657/4106118243*505019158607^(3/4) 4180999953182790 a001 28657/4106118243*192900153618^(7/9) 4180999953182790 a001 52623190204271/12586269025 4180999953182790 a001 28657/4106118243*10749957122^(7/8) 4180999953182790 a001 28657/1568397607*1568397607^(10/11) 4180999953182790 a004 Fibonacci(23)*Lucas(47)/(1/2+sqrt(5)/2)^51 4180999953182790 a001 28657/10749957122*312119004989^(4/5) 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^44/Lucas(48) 4180999953182790 a001 28657/10749957122*23725150497407^(11/16) 4180999953182790 a001 28657/10749957122*73681302247^(11/13) 4180999953182790 a001 45923100183744/10983760033 4180999953182790 a001 28657/4106118243*4106118243^(21/23) 4180999953182790 a004 Fibonacci(23)*Lucas(49)/(1/2+sqrt(5)/2)^53 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^46/Lucas(50) 4180999953182790 a001 360684711449425/86267571272 4180999953182790 a001 28657/10749957122*10749957122^(11/12) 4180999953182790 a001 28657/73681302247*45537549124^(16/17) 4180999953182790 a004 Fibonacci(23)*Lucas(51)/(1/2+sqrt(5)/2)^55 4180999953182790 a001 28657/73681302247*14662949395604^(16/21) 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^48/Lucas(52) 4180999953182790 a001 28657/73681302247*192900153618^(8/9) 4180999953182790 a004 Fibonacci(23)*Lucas(53)/(1/2+sqrt(5)/2)^57 4180999953182790 a001 28657/192900153618*312119004989^(10/11) 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^50/Lucas(54) 4180999953182790 a001 2472169789941704/591286729879 4180999953182790 a001 28657/73681302247*73681302247^(12/13) 4180999953182790 a004 Fibonacci(23)*Lucas(55)/(1/2+sqrt(5)/2)^59 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^52/Lucas(56) 4180999953182790 a001 2157408178676023/516002918640 4180999953182790 a004 Fibonacci(23)*Lucas(57)/(1/2+sqrt(5)/2)^61 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^54/Lucas(58) 4180999953182790 a004 Fibonacci(23)*Lucas(59)/(1/2+sqrt(5)/2)^63 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^56/Lucas(60) 4180999953182790 a001 14787095639466480/3536736619241 4180999953182790 a004 Fibonacci(23)*Lucas(61)/(1/2+sqrt(5)/2)^65 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^58/Lucas(62) 4180999953182790 a001 28657/23725150497407*14662949395604^(20/21) 4180999953182790 a004 Fibonacci(23)*Lucas(63)/(1/2+sqrt(5)/2)^67 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^60/Lucas(64) 4180999953182790 a004 Fibonacci(23)*Lucas(65)/(1/2+sqrt(5)/2)^69 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^62/Lucas(66) 4180999953182790 a004 Fibonacci(23)*Lucas(67)/(1/2+sqrt(5)/2)^71 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^64/Lucas(68) 4180999953182790 a004 Fibonacci(23)*Lucas(69)/(1/2+sqrt(5)/2)^73 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^66/Lucas(70) 4180999953182790 a004 Fibonacci(23)*Lucas(71)/(1/2+sqrt(5)/2)^75 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^68/Lucas(72) 4180999953182790 a004 Fibonacci(23)*Lucas(73)/(1/2+sqrt(5)/2)^77 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^70/Lucas(74) 4180999953182790 a004 Fibonacci(23)*Lucas(75)/(1/2+sqrt(5)/2)^79 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^72/Lucas(76) 4180999953182790 a004 Fibonacci(23)*Lucas(77)/(1/2+sqrt(5)/2)^81 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^74/Lucas(78) 4180999953182790 a004 Fibonacci(23)*Lucas(79)/(1/2+sqrt(5)/2)^83 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^76/Lucas(80) 4180999953182790 a004 Fibonacci(23)*Lucas(81)/(1/2+sqrt(5)/2)^85 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^78/Lucas(82) 4180999953182790 a004 Fibonacci(23)*Lucas(83)/(1/2+sqrt(5)/2)^87 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^80/Lucas(84) 4180999953182790 a004 Fibonacci(23)*Lucas(85)/(1/2+sqrt(5)/2)^89 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^82/Lucas(86) 4180999953182790 a004 Fibonacci(23)*Lucas(87)/(1/2+sqrt(5)/2)^91 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^84/Lucas(88) 4180999953182790 a004 Fibonacci(23)*Lucas(89)/(1/2+sqrt(5)/2)^93 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^86/Lucas(90) 4180999953182790 a004 Fibonacci(23)*Lucas(91)/(1/2+sqrt(5)/2)^95 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^88/Lucas(92) 4180999953182790 a004 Fibonacci(23)*Lucas(93)/(1/2+sqrt(5)/2)^97 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^90/Lucas(94) 4180999953182790 a004 Fibonacci(23)*Lucas(95)/(1/2+sqrt(5)/2)^99 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^92/Lucas(96) 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^94/Lucas(98) 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^96/Lucas(100) 4180999953182790 a004 Fibonacci(23)*Lucas(1)/(1/2+sqrt(5)/2)^4 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^95/Lucas(99) 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^93/Lucas(97) 4180999953182790 a004 Fibonacci(23)*Lucas(96)/(1/2+sqrt(5)/2)^100 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^91/Lucas(95) 4180999953182790 a004 Fibonacci(23)*Lucas(94)/(1/2+sqrt(5)/2)^98 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^89/Lucas(93) 4180999953182790 a004 Fibonacci(23)*Lucas(92)/(1/2+sqrt(5)/2)^96 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^87/Lucas(91) 4180999953182790 a004 Fibonacci(23)*Lucas(90)/(1/2+sqrt(5)/2)^94 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^85/Lucas(89) 4180999953182790 a004 Fibonacci(23)*Lucas(88)/(1/2+sqrt(5)/2)^92 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^83/Lucas(87) 4180999953182790 a004 Fibonacci(23)*Lucas(86)/(1/2+sqrt(5)/2)^90 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^81/Lucas(85) 4180999953182790 a004 Fibonacci(23)*Lucas(84)/(1/2+sqrt(5)/2)^88 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^79/Lucas(83) 4180999953182790 a004 Fibonacci(23)*Lucas(82)/(1/2+sqrt(5)/2)^86 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^77/Lucas(81) 4180999953182790 a004 Fibonacci(23)*Lucas(80)/(1/2+sqrt(5)/2)^84 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^75/Lucas(79) 4180999953182790 a004 Fibonacci(23)*Lucas(78)/(1/2+sqrt(5)/2)^82 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^73/Lucas(77) 4180999953182790 a004 Fibonacci(23)*Lucas(76)/(1/2+sqrt(5)/2)^80 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^71/Lucas(75) 4180999953182790 a004 Fibonacci(23)*Lucas(74)/(1/2+sqrt(5)/2)^78 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^69/Lucas(73) 4180999953182790 a004 Fibonacci(23)*Lucas(72)/(1/2+sqrt(5)/2)^76 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^67/Lucas(71) 4180999953182790 a004 Fibonacci(23)*Lucas(70)/(1/2+sqrt(5)/2)^74 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^65/Lucas(69) 4180999953182790 a004 Fibonacci(23)*Lucas(68)/(1/2+sqrt(5)/2)^72 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^63/Lucas(67) 4180999953182790 a004 Fibonacci(23)*Lucas(66)/(1/2+sqrt(5)/2)^70 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^61/Lucas(65) 4180999953182790 a004 Fibonacci(23)*Lucas(64)/(1/2+sqrt(5)/2)^68 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^59/Lucas(63) 4180999953182790 a004 Fibonacci(23)*Lucas(62)/(1/2+sqrt(5)/2)^66 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^57/Lucas(61) 4180999953182790 a004 Fibonacci(23)*Lucas(60)/(1/2+sqrt(5)/2)^64 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^55/Lucas(59) 4180999953182790 a004 Fibonacci(23)*Lucas(58)/(1/2+sqrt(5)/2)^62 4180999953182790 a001 10472279282114434/2504730781961 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^53/Lucas(57) 4180999953182790 a004 Fibonacci(23)*Lucas(56)/(1/2+sqrt(5)/2)^60 4180999953182790 a001 28657/312119004989*817138163596^(17/19) 4180999953182790 a001 28657/312119004989*14662949395604^(17/21) 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^51/Lucas(55) 4180999953182790 a004 Fibonacci(23)*Lucas(54)/(1/2+sqrt(5)/2)^58 4180999953182790 a001 28657/312119004989*192900153618^(17/18) 4180999953182790 a001 1527884956144661/365435296162 4180999953182790 a001 28657/119218851371*14662949395604^(7/9) 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^49/Lucas(53) 4180999953182790 a001 28657/119218851371*505019158607^(7/8) 4180999953182790 a004 Fibonacci(23)*Lucas(52)/(1/2+sqrt(5)/2)^56 4180999953182790 a001 583600122347618/139583862445 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^47/Lucas(51) 4180999953182790 a004 Fibonacci(23)*Lucas(50)/(1/2+sqrt(5)/2)^54 4180999953182790 a001 28657/17393796001*45537549124^(15/17) 4180999953182790 a001 222915410898193/53316291173 4180999953182790 a001 28657/17393796001*312119004989^(9/11) 4180999953182790 a001 28657/17393796001*14662949395604^(5/7) 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^45/Lucas(49) 4180999953182790 a001 28657/17393796001*192900153618^(5/6) 4180999953182790 a001 28657/17393796001*28143753123^(9/10) 4180999953182790 a001 28657/28143753123*10749957122^(23/24) 4180999953182790 a004 Fibonacci(23)*Lucas(48)/(1/2+sqrt(5)/2)^52 4180999953182790 a001 28657/17393796001*10749957122^(15/16) 4180999953182790 a001 85146110346961/20365011074 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^43/Lucas(47) 4180999953182790 a001 28657/10749957122*4106118243^(22/23) 4180999953182790 a004 Fibonacci(48)/Lucas(23)/(1/2+sqrt(5)/2)^6 4180999953182790 a004 Fibonacci(50)/Lucas(23)/(1/2+sqrt(5)/2)^8 4180999953182790 a004 Fibonacci(52)/Lucas(23)/(1/2+sqrt(5)/2)^10 4180999953182790 a004 Fibonacci(54)/Lucas(23)/(1/2+sqrt(5)/2)^12 4180999953182790 a004 Fibonacci(56)/Lucas(23)/(1/2+sqrt(5)/2)^14 4180999953182790 a004 Fibonacci(58)/Lucas(23)/(1/2+sqrt(5)/2)^16 4180999953182790 a004 Fibonacci(60)/Lucas(23)/(1/2+sqrt(5)/2)^18 4180999953182790 a004 Fibonacci(62)/Lucas(23)/(1/2+sqrt(5)/2)^20 4180999953182790 a004 Fibonacci(64)/Lucas(23)/(1/2+sqrt(5)/2)^22 4180999953182790 a004 Fibonacci(66)/Lucas(23)/(1/2+sqrt(5)/2)^24 4180999953182790 a004 Fibonacci(68)/Lucas(23)/(1/2+sqrt(5)/2)^26 4180999953182790 a004 Fibonacci(70)/Lucas(23)/(1/2+sqrt(5)/2)^28 4180999953182790 a004 Fibonacci(72)/Lucas(23)/(1/2+sqrt(5)/2)^30 4180999953182790 a004 Fibonacci(74)/Lucas(23)/(1/2+sqrt(5)/2)^32 4180999953182790 a004 Fibonacci(76)/Lucas(23)/(1/2+sqrt(5)/2)^34 4180999953182790 a004 Fibonacci(78)/Lucas(23)/(1/2+sqrt(5)/2)^36 4180999953182790 a004 Fibonacci(80)/Lucas(23)/(1/2+sqrt(5)/2)^38 4180999953182790 a004 Fibonacci(82)/Lucas(23)/(1/2+sqrt(5)/2)^40 4180999953182790 a004 Fibonacci(84)/Lucas(23)/(1/2+sqrt(5)/2)^42 4180999953182790 a004 Fibonacci(86)/Lucas(23)/(1/2+sqrt(5)/2)^44 4180999953182790 a004 Fibonacci(88)/Lucas(23)/(1/2+sqrt(5)/2)^46 4180999953182790 a004 Fibonacci(90)/Lucas(23)/(1/2+sqrt(5)/2)^48 4180999953182790 a004 Fibonacci(23)*Lucas(46)/(1/2+sqrt(5)/2)^50 4180999953182790 a004 Fibonacci(94)/Lucas(23)/(1/2+sqrt(5)/2)^52 4180999953182790 a004 Fibonacci(96)/Lucas(23)/(1/2+sqrt(5)/2)^54 4180999953182790 a004 Fibonacci(98)/Lucas(23)/(1/2+sqrt(5)/2)^56 4180999953182790 a004 Fibonacci(100)/Lucas(23)/(1/2+sqrt(5)/2)^58 4180999953182790 a004 Fibonacci(99)/Lucas(23)/(1/2+sqrt(5)/2)^57 4180999953182790 a004 Fibonacci(97)/Lucas(23)/(1/2+sqrt(5)/2)^55 4180999953182790 a004 Fibonacci(95)/Lucas(23)/(1/2+sqrt(5)/2)^53 4180999953182790 a004 Fibonacci(93)/Lucas(23)/(1/2+sqrt(5)/2)^51 4180999953182790 a004 Fibonacci(91)/Lucas(23)/(1/2+sqrt(5)/2)^49 4180999953182790 a004 Fibonacci(89)/Lucas(23)/(1/2+sqrt(5)/2)^47 4180999953182790 a004 Fibonacci(87)/Lucas(23)/(1/2+sqrt(5)/2)^45 4180999953182790 a004 Fibonacci(85)/Lucas(23)/(1/2+sqrt(5)/2)^43 4180999953182790 a004 Fibonacci(83)/Lucas(23)/(1/2+sqrt(5)/2)^41 4180999953182790 a004 Fibonacci(81)/Lucas(23)/(1/2+sqrt(5)/2)^39 4180999953182790 a004 Fibonacci(79)/Lucas(23)/(1/2+sqrt(5)/2)^37 4180999953182790 a004 Fibonacci(77)/Lucas(23)/(1/2+sqrt(5)/2)^35 4180999953182790 a004 Fibonacci(75)/Lucas(23)/(1/2+sqrt(5)/2)^33 4180999953182790 a004 Fibonacci(73)/Lucas(23)/(1/2+sqrt(5)/2)^31 4180999953182790 a004 Fibonacci(71)/Lucas(23)/(1/2+sqrt(5)/2)^29 4180999953182790 a004 Fibonacci(69)/Lucas(23)/(1/2+sqrt(5)/2)^27 4180999953182790 a004 Fibonacci(67)/Lucas(23)/(1/2+sqrt(5)/2)^25 4180999953182790 a004 Fibonacci(65)/Lucas(23)/(1/2+sqrt(5)/2)^23 4180999953182790 a004 Fibonacci(63)/Lucas(23)/(1/2+sqrt(5)/2)^21 4180999953182790 a004 Fibonacci(61)/Lucas(23)/(1/2+sqrt(5)/2)^19 4180999953182790 a004 Fibonacci(59)/Lucas(23)/(1/2+sqrt(5)/2)^17 4180999953182790 a004 Fibonacci(57)/Lucas(23)/(1/2+sqrt(5)/2)^15 4180999953182790 a004 Fibonacci(55)/Lucas(23)/(1/2+sqrt(5)/2)^13 4180999953182790 a004 Fibonacci(53)/Lucas(23)/(1/2+sqrt(5)/2)^11 4180999953182790 a004 Fibonacci(51)/Lucas(23)/(1/2+sqrt(5)/2)^9 4180999953182790 a004 Fibonacci(49)/Lucas(23)/(1/2+sqrt(5)/2)^7 4180999953182790 a004 Fibonacci(47)/Lucas(23)/(1/2+sqrt(5)/2)^5 4180999953182790 a001 32522920142690/7778742049 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^41/Lucas(45) 4180999953182790 a004 Fibonacci(45)/Lucas(23)/(1/2+sqrt(5)/2)^3 4180999953182790 a001 28657/4106118243*1568397607^(21/22) 4180999953182790 a004 Fibonacci(23)*Lucas(44)/(1/2+sqrt(5)/2)^48 4180999953182790 a001 28657/969323029*2537720636^(13/15) 4180999953182790 a001 12422650081109/2971215073 4180999953182790 a001 28657/969323029*45537549124^(13/17) 4180999953182790 a001 28657/969323029*14662949395604^(13/21) 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^39/Lucas(43) 4180999953182790 a001 28657/969323029*192900153618^(13/18) 4180999953182790 a001 28657/969323029*73681302247^(3/4) 4180999953182790 a001 28657/969323029*10749957122^(13/16) 4180999953182790 a004 Fibonacci(43)/Lucas(23)/(1/2+sqrt(5)/2) 4180999953182790 a001 28657/1568397607*599074578^(20/21) 4180999953182790 a004 Fibonacci(23)*Lucas(42)/(1/2+sqrt(5)/2)^46 4180999953182790 a001 28657/969323029*599074578^(13/14) 4180999953182790 a001 4745030100637/1134903170 4180999953182790 a001 24157817/64079*20633239^(1/7) 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^37/Lucas(41) 4180999953182790 a001 165580141/128158+165580141/128158*5^(1/2) 4180999953182790 a001 28657/599074578*228826127^(19/20) 4180999953182790 a004 Fibonacci(23)*Lucas(40)/(1/2+sqrt(5)/2)^44 4180999953182790 a001 102334155/64079*33385282^(1/18) 4180999953182790 a001 63245986/64079*141422324^(1/13) 4180999953182790 a001 1812440220802/433494437 4180999953182790 a001 28657/141422324*2537720636^(7/9) 4180999953182790 a001 28657/141422324*17393796001^(5/7) 4180999953182790 a001 28657/141422324*312119004989^(7/11) 4180999953182790 a001 28657/141422324*14662949395604^(5/9) 4180999953182790 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^35/Lucas(39) 4180999953182790 a001 28657/141422324*505019158607^(5/8) 4180999953182790 a001 28657/141422324*28143753123^(7/10) 4180999953182790 a001 63245986/64079*2537720636^(1/15) 4180999953182790 a001 63245986/64079*45537549124^(1/17) 4180999953182790 a001 63245986/64079*14662949395604^(1/21) 4180999953182790 a001 63245986/64079*(1/2+1/2*5^(1/2))^3 4180999953182790 a001 63245986/64079*192900153618^(1/18) 4180999953182790 a001 63245986/64079*10749957122^(1/16) 4180999953182790 a001 63245986/64079*599074578^(1/14) 4180999953182790 a001 28657/141422324*599074578^(5/6) 4180999953182790 a001 28657/141422324*228826127^(7/8) 4180999953182790 a001 28657/228826127*87403803^(18/19) 4180999953182790 a001 63245986/64079*33385282^(1/12) 4180999953182790 a004 Fibonacci(23)*Lucas(38)/(1/2+sqrt(5)/2)^42 4180999953182790 a001 14930352/64079*12752043^(3/17) 4180999953182791 a001 28657/54018521*141422324^(11/13) 4180999953182791 a001 692290561769/165580141 4180999953182791 a001 28657/54018521*2537720636^(11/15) 4180999953182791 a001 102334155/64079*12752043^(1/17) 4180999953182791 a001 28657/54018521*45537549124^(11/17) 4180999953182791 a001 28657/54018521*312119004989^(3/5) 4180999953182791 a001 28657/54018521*817138163596^(11/19) 4180999953182791 a001 28657/54018521*14662949395604^(11/21) 4180999953182791 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^33/Lucas(37) 4180999953182791 a001 28657/54018521*192900153618^(11/18) 4180999953182791 a001 28657/54018521*10749957122^(11/16) 4180999953182791 a001 24157817/64079*2537720636^(1/9) 4180999953182791 a001 24157817/64079*312119004989^(1/11) 4180999953182791 a001 24157817/64079*(1/2+1/2*5^(1/2))^5 4180999953182791 a001 24157817/64079*28143753123^(1/10) 4180999953182791 a001 28657/54018521*1568397607^(3/4) 4180999953182791 a001 28657/54018521*599074578^(11/14) 4180999953182791 a001 24157817/64079*228826127^(1/8) 4180999953182792 a001 39088169/64079*12752043^(2/17) 4180999953182793 a001 28657/87403803*33385282^(17/18) 4180999953182793 a004 Fibonacci(23)*Lucas(36)/(1/2+sqrt(5)/2)^40 4180999953182794 a001 28657/54018521*33385282^(11/12) 4180999953182797 a001 9227465/64079*20633239^(1/5) 4180999953182799 a001 264431464505/63245986 4180999953182799 a001 28657/20633239*(1/2+1/2*5^(1/2))^31 4180999953182799 a001 28657/20633239*9062201101803^(1/2) 4180999953182799 a001 9227465/64079*17393796001^(1/7) 4180999953182799 a001 9227465/64079*14662949395604^(1/9) 4180999953182799 a001 9227465/64079*(1/2+1/2*5^(1/2))^7 4180999953182799 a001 9227465/64079*599074578^(1/6) 4180999953182800 a001 102334155/64079*4870847^(1/16) 4180999953182808 a001 5702887/64079*4870847^(1/4) 4180999953182810 a001 28657/33385282*12752043^(16/17) 4180999953182811 a001 39088169/64079*4870847^(1/8) 4180999953182815 a004 Fibonacci(23)*Lucas(34)/(1/2+sqrt(5)/2)^38 4180999953182819 a001 14930352/64079*4870847^(3/16) 4180999953182838 a001 3524578/64079*7881196^(3/11) 4180999953182855 a001 101003831746/24157817 4180999953182857 a001 3524578/64079*141422324^(3/13) 4180999953182857 a001 28657/7881196*(1/2+1/2*5^(1/2))^29 4180999953182857 a001 28657/7881196*1322157322203^(1/2) 4180999953182857 a001 3524578/64079*2537720636^(1/5) 4180999953182857 a001 3524578/64079*45537549124^(3/17) 4180999953182857 a001 3524578/64079*817138163596^(3/19) 4180999953182857 a001 3524578/64079*14662949395604^(1/7) 4180999953182857 a001 3524578/64079*(1/2+1/2*5^(1/2))^9 4180999953182857 a001 3524578/64079*192900153618^(1/6) 4180999953182857 a001 3524578/64079*10749957122^(3/16) 4180999953182857 a001 3524578/64079*599074578^(3/14) 4180999953182858 a001 3524578/64079*33385282^(1/4) 4180999953182870 a001 102334155/64079*1860498^(1/15) 4180999953182911 a001 63245986/64079*1860498^(1/10) 4180999953182929 a001 28657/12752043*4870847^(15/16) 4180999953182950 a001 39088169/64079*1860498^(2/15) 4180999953182966 a004 Fibonacci(23)*Lucas(32)/(1/2+sqrt(5)/2)^36 4180999953182992 a001 24157817/64079*1860498^(1/6) 4180999953183016 a001 2178309/64079*1860498^(1/3) 4180999953183027 a001 14930352/64079*1860498^(1/5) 4180999953183086 a001 5702887/64079*1860498^(4/15) 4180999953183196 a001 28657/3010349*7881196^(9/11) 4180999953183219 a001 3524578/64079*1860498^(3/10) 4180999953183228 a001 1346269/64079*7881196^(1/3) 4180999953183241 a001 38580030733/9227465 4180999953183251 a001 28657/3010349*141422324^(9/13) 4180999953183251 a001 28657/3010349*2537720636^(3/5) 4180999953183251 a001 28657/3010349*45537549124^(9/17) 4180999953183251 a001 28657/3010349*817138163596^(9/19) 4180999953183251 a001 28657/3010349*14662949395604^(3/7) 4180999953183251 a001 28657/3010349*(1/2+1/2*5^(1/2))^27 4180999953183251 a001 28657/3010349*192900153618^(1/2) 4180999953183251 a001 28657/3010349*10749957122^(9/16) 4180999953183251 a001 1346269/64079*312119004989^(1/5) 4180999953183251 a001 1346269/64079*(1/2+1/2*5^(1/2))^11 4180999953183251 a001 1346269/64079*1568397607^(1/4) 4180999953183251 a001 28657/3010349*599074578^(9/14) 4180999953183254 a001 28657/3010349*33385282^(3/4) 4180999953183381 a001 102334155/64079*710647^(1/14) 4180999953183741 a001 28657/4870847*1860498^(14/15) 4180999953183972 a001 39088169/64079*710647^(1/7) 4180999953183997 a004 Fibonacci(23)*Lucas(30)/(1/2+sqrt(5)/2)^34 4180999953184338 a001 28657/3010349*1860498^(9/10) 4180999953184560 a001 14930352/64079*710647^(3/14) 4180999953184869 a001 9227465/64079*710647^(1/4) 4180999953185129 a001 5702887/64079*710647^(2/7) 4180999953185130 a001 832040/64079*710647^(3/7) 4180999953185570 a001 2178309/64079*710647^(5/14) 4180999953185884 a001 14736260453/3524578 4180999953185945 a001 28657/1149851*20633239^(5/7) 4180999953185952 a001 514229/64079*141422324^(1/3) 4180999953185952 a001 28657/1149851*2537720636^(5/9) 4180999953185952 a001 28657/1149851*312119004989^(5/11) 4180999953185952 a001 28657/1149851*(1/2+1/2*5^(1/2))^25 4180999953185952 a001 28657/1149851*3461452808002^(5/12) 4180999953185952 a001 28657/1149851*28143753123^(1/2) 4180999953185952 a001 514229/64079*(1/2+1/2*5^(1/2))^13 4180999953185952 a001 514229/64079*73681302247^(1/4) 4180999953185952 a001 28657/1149851*228826127^(5/8) 4180999953186958 a001 28657/1149851*1860498^(5/6) 4180999953187154 a001 102334155/64079*271443^(1/13) 4180999953189269 a001 28657/1860498*710647^(13/14) 4180999953191068 a004 Fibonacci(23)*Lucas(28)/(1/2+sqrt(5)/2)^32 4180999953191519 a001 39088169/64079*271443^(2/13) 4180999953192423 a001 196418/64079*439204^(5/9) 4180999953195881 a001 14930352/64079*271443^(3/13) 4180999953198350 a001 4976784/90481*39603^(9/22) 4180999953198995 a001 165580141/64079*103682^(1/24) 4180999953200224 a001 5702887/64079*271443^(4/13) 4180999953204003 a001 5628750626/1346269 4180999953204433 a001 196418/64079*7881196^(5/11) 4180999953204438 a001 2178309/64079*271443^(5/13) 4180999953204460 a001 196418/64079*20633239^(3/7) 4180999953204464 a001 196418/64079*141422324^(5/13) 4180999953204464 a001 28657/439204*(1/2+1/2*5^(1/2))^23 4180999953204464 a001 196418/64079*2537720636^(1/3) 4180999953204464 a001 28657/439204*4106118243^(1/2) 4180999953204464 a001 196418/64079*45537549124^(5/17) 4180999953204464 a001 196418/64079*312119004989^(3/11) 4180999953204464 a001 196418/64079*14662949395604^(5/21) 4180999953204464 a001 196418/64079*(1/2+1/2*5^(1/2))^15 4180999953204464 a001 196418/64079*192900153618^(5/18) 4180999953204464 a001 196418/64079*28143753123^(3/10) 4180999953204464 a001 196418/64079*10749957122^(5/16) 4180999953204464 a001 196418/64079*599074578^(5/14) 4180999953204464 a001 196418/64079*228826127^(3/8) 4180999953204465 a001 196418/64079*33385282^(5/12) 4180999953205065 a001 317811/64079*271443^(7/13) 4180999953205068 a001 196418/64079*1860498^(1/2) 4180999953207771 a001 832040/64079*271443^(6/13) 4180999953214324 a001 514229/64079*271443^(1/2) 4180999953215200 a001 102334155/64079*103682^(1/12) 4180999953226687 a001 433494437/167761*15127^(1/20) 4180999953226890 a001 28657/710647*271443^(12/13) 4180999953230143 a001 1346269/103682*39603^(6/11) 4180999953231406 a001 63245986/64079*103682^(1/8) 4180999953239534 a004 Fibonacci(23)*Lucas(26)/(1/2+sqrt(5)/2)^30 4180999953246819 a001 39088169/710647*39603^(9/22) 4180999953247611 a001 39088169/64079*103682^(1/6) 4180999953253891 a001 831985/15126*39603^(9/22) 4180999953254922 a001 267914296/4870847*39603^(9/22) 4180999953255073 a001 233802911/4250681*39603^(9/22) 4180999953255095 a001 1836311903/33385282*39603^(9/22) 4180999953255098 a001 1602508992/29134601*39603^(9/22) 4180999953255098 a001 12586269025/228826127*39603^(9/22) 4180999953255098 a001 10983760033/199691526*39603^(9/22) 4180999953255098 a001 86267571272/1568397607*39603^(9/22) 4180999953255098 a001 75283811239/1368706081*39603^(9/22) 4180999953255098 a001 591286729879/10749957122*39603^(9/22) 4180999953255098 a001 12585437040/228811001*39603^(9/22) 4180999953255098 a001 4052739537881/73681302247*39603^(9/22) 4180999953255098 a001 3536736619241/64300051206*39603^(9/22) 4180999953255098 a001 6557470319842/119218851371*39603^(9/22) 4180999953255098 a001 2504730781961/45537549124*39603^(9/22) 4180999953255098 a001 956722026041/17393796001*39603^(9/22) 4180999953255098 a001 365435296162/6643838879*39603^(9/22) 4180999953255098 a001 139583862445/2537720636*39603^(9/22) 4180999953255098 a001 53316291173/969323029*39603^(9/22) 4180999953255098 a001 20365011074/370248451*39603^(9/22) 4180999953255099 a001 7778742049/141422324*39603^(9/22) 4180999953255100 a001 2971215073/54018521*39603^(9/22) 4180999953255108 a001 1134903170/20633239*39603^(9/22) 4180999953255166 a001 433494437/7881196*39603^(9/22) 4180999953255560 a001 165580141/3010349*39603^(9/22) 4180999953258261 a001 63245986/1149851*39603^(9/22) 4180999953263818 a001 24157817/64079*103682^(5/24) 4180999953276774 a001 24157817/439204*39603^(9/22) 4180999953280019 a001 14930352/64079*103682^(1/4) 4180999953282482 a001 14930352/167761*39603^(4/11) 4180999953296238 a001 9227465/64079*103682^(7/24) 4180999953303961 a001 165580141/64079*39603^(1/22) 4180999953312408 a001 5702887/64079*103682^(1/3) 4180999953314490 a001 28657/167761*439204^(7/9) 4180999953319536 a001 9227465/271443*39603^(5/11) 4180999953328186 a001 2149991425/514229 4180999953328706 a001 3524578/64079*103682^(3/8) 4180999953331305 a001 28657/167761*7881196^(7/11) 4180999953331342 a001 28657/167761*20633239^(3/5) 4180999953331348 a001 28657/167761*141422324^(7/13) 4180999953331348 a001 28657/167761*2537720636^(7/15) 4180999953331348 a001 28657/167761*17393796001^(3/7) 4180999953331348 a001 28657/167761*45537549124^(7/17) 4180999953331348 a001 28657/167761*14662949395604^(1/3) 4180999953331348 a001 28657/167761*(1/2+1/2*5^(1/2))^21 4180999953331348 a001 28657/167761*192900153618^(7/18) 4180999953331348 a001 28657/167761*10749957122^(7/16) 4180999953331348 a001 75025/64079*45537549124^(1/3) 4180999953331348 a001 75025/64079*(1/2+1/2*5^(1/2))^17 4180999953331348 a001 28657/167761*599074578^(1/2) 4180999953331350 a001 28657/167761*33385282^(7/12) 4180999953331361 a001 75025/64079*12752043^(1/2) 4180999953332194 a001 28657/167761*1860498^(7/10) 4180999953337557 a001 28657/167761*710647^(3/4) 4180999953344668 a001 2178309/64079*103682^(5/12) 4180999953349646 a001 416020/51841*39603^(13/22) 4180999953359874 a001 28657/64079*64079^(19/23) 4180999953361511 a001 1346269/64079*103682^(11/24) 4180999953367993 a001 24157817/710647*39603^(5/11) 4180999953375063 a001 31622993/930249*39603^(5/11) 4180999953376048 a001 832040/64079*103682^(1/2) 4180999953376094 a001 165580141/4870847*39603^(5/11) 4180999953376244 a001 433494437/12752043*39603^(5/11) 4180999953376266 a001 567451585/16692641*39603^(5/11) 4180999953376270 a001 2971215073/87403803*39603^(5/11) 4180999953376270 a001 7778742049/228826127*39603^(5/11) 4180999953376270 a001 10182505537/299537289*39603^(5/11) 4180999953376270 a001 53316291173/1568397607*39603^(5/11) 4180999953376270 a001 139583862445/4106118243*39603^(5/11) 4180999953376270 a001 182717648081/5374978561*39603^(5/11) 4180999953376270 a001 956722026041/28143753123*39603^(5/11) 4180999953376270 a001 2504730781961/73681302247*39603^(5/11) 4180999953376270 a001 3278735159921/96450076809*39603^(5/11) 4180999953376270 a001 10610209857723/312119004989*39603^(5/11) 4180999953376270 a001 4052739537881/119218851371*39603^(5/11) 4180999953376270 a001 387002188980/11384387281*39603^(5/11) 4180999953376270 a001 591286729879/17393796001*39603^(5/11) 4180999953376270 a001 225851433717/6643838879*39603^(5/11) 4180999953376270 a001 1135099622/33391061*39603^(5/11) 4180999953376270 a001 32951280099/969323029*39603^(5/11) 4180999953376270 a001 12586269025/370248451*39603^(5/11) 4180999953376270 a001 1201881744/35355581*39603^(5/11) 4180999953376272 a001 1836311903/54018521*39603^(5/11) 4180999953376280 a001 701408733/20633239*39603^(5/11) 4180999953376337 a001 66978574/1970299*39603^(5/11) 4180999953376731 a001 102334155/3010349*39603^(5/11) 4180999953379432 a001 39088169/1149851*39603^(5/11) 4180999953385333 a001 121393/64079*103682^(2/3) 4180999953396623 a001 514229/64079*103682^(13/24) 4180999953397941 a001 196452/5779*39603^(5/11) 4180999953401387 a001 317811/64079*103682^(7/12) 4180999953403667 a001 9227465/167761*39603^(9/22) 4180999953425133 a001 102334155/64079*39603^(1/11) 4180999953437311 a001 11592/6119*24476^(16/21) 4180999953440672 a001 5702887/271443*39603^(1/2) 4180999953447546 a001 196418/64079*103682^(5/8) 4180999953475188 a001 514229/103682*39603^(7/11) 4180999953482566 a001 28657/271443*103682^(11/12) 4180999953489159 a001 14930352/710647*39603^(1/2) 4180999953496234 a001 39088169/1860498*39603^(1/2) 4180999953497266 a001 102334155/4870847*39603^(1/2) 4180999953497416 a001 267914296/12752043*39603^(1/2) 4180999953497438 a001 701408733/33385282*39603^(1/2) 4180999953497441 a001 1836311903/87403803*39603^(1/2) 4180999953497442 a001 102287808/4868641*39603^(1/2) 4180999953497442 a001 12586269025/599074578*39603^(1/2) 4180999953497442 a001 32951280099/1568397607*39603^(1/2) 4180999953497442 a001 86267571272/4106118243*39603^(1/2) 4180999953497442 a001 225851433717/10749957122*39603^(1/2) 4180999953497442 a001 591286729879/28143753123*39603^(1/2) 4180999953497442 a001 1548008755920/73681302247*39603^(1/2) 4180999953497442 a001 4052739537881/192900153618*39603^(1/2) 4180999953497442 a001 225749145909/10745088481*39603^(1/2) 4180999953497442 a001 6557470319842/312119004989*39603^(1/2) 4180999953497442 a001 2504730781961/119218851371*39603^(1/2) 4180999953497442 a001 956722026041/45537549124*39603^(1/2) 4180999953497442 a001 365435296162/17393796001*39603^(1/2) 4180999953497442 a001 139583862445/6643838879*39603^(1/2) 4180999953497442 a001 53316291173/2537720636*39603^(1/2) 4180999953497442 a001 20365011074/969323029*39603^(1/2) 4180999953497442 a001 7778742049/370248451*39603^(1/2) 4180999953497442 a001 2971215073/141422324*39603^(1/2) 4180999953497443 a001 1134903170/54018521*39603^(1/2) 4180999953497452 a001 433494437/20633239*39603^(1/2) 4180999953497509 a001 165580141/7881196*39603^(1/2) 4180999953497903 a001 63245986/3010349*39603^(1/2) 4180999953500606 a001 24157817/1149851*39603^(1/2) 4180999953519126 a001 9227465/439204*39603^(1/2) 4180999953524803 a001 5702887/167761*39603^(5/11) 4180999953546305 a001 63245986/64079*39603^(3/22) 4180999953561937 a001 3524578/271443*39603^(6/11) 4180999953571721 a004 Fibonacci(23)*Lucas(24)/(1/2+sqrt(5)/2)^28 4180999953577190 a001 28657/439204*103682^(23/24) 4180999953584918 a001 317811/103682*39603^(15/22) 4180999953602773 a001 165580141/103682*15127^(1/10) 4180999953606842 a001 75025/64079*103682^(17/24) 4180999953610345 a001 9227465/710647*39603^(6/11) 4180999953617407 a001 24157817/1860498*39603^(6/11) 4180999953618438 a001 63245986/4870847*39603^(6/11) 4180999953618588 a001 165580141/12752043*39603^(6/11) 4180999953618610 a001 433494437/33385282*39603^(6/11) 4180999953618613 a001 1134903170/87403803*39603^(6/11) 4180999953618614 a001 2971215073/228826127*39603^(6/11) 4180999953618614 a001 7778742049/599074578*39603^(6/11) 4180999953618614 a001 20365011074/1568397607*39603^(6/11) 4180999953618614 a001 53316291173/4106118243*39603^(6/11) 4180999953618614 a001 139583862445/10749957122*39603^(6/11) 4180999953618614 a001 365435296162/28143753123*39603^(6/11) 4180999953618614 a001 956722026041/73681302247*39603^(6/11) 4180999953618614 a001 2504730781961/192900153618*39603^(6/11) 4180999953618614 a001 10610209857723/817138163596*39603^(6/11) 4180999953618614 a001 4052739537881/312119004989*39603^(6/11) 4180999953618614 a001 1548008755920/119218851371*39603^(6/11) 4180999953618614 a001 591286729879/45537549124*39603^(6/11) 4180999953618614 a001 7787980473/599786069*39603^(6/11) 4180999953618614 a001 86267571272/6643838879*39603^(6/11) 4180999953618614 a001 32951280099/2537720636*39603^(6/11) 4180999953618614 a001 12586269025/969323029*39603^(6/11) 4180999953618614 a001 4807526976/370248451*39603^(6/11) 4180999953618614 a001 1836311903/141422324*39603^(6/11) 4180999953618615 a001 701408733/54018521*39603^(6/11) 4180999953618623 a001 9238424/711491*39603^(6/11) 4180999953618681 a001 102334155/7881196*39603^(6/11) 4180999953619074 a001 39088169/3010349*39603^(6/11) 4180999953621772 a001 14930352/1149851*39603^(6/11) 4180999953640262 a001 5702887/439204*39603^(6/11) 4180999953646068 a001 3524578/167761*39603^(1/2) 4180999953667476 a001 39088169/64079*39603^(2/11) 4180999953671664 a001 28657/167761*103682^(7/8) 4180999953682865 a001 726103/90481*39603^(13/22) 4180999953688952 a001 23184/51841*39603^(19/22) 4180999953731481 a001 5702887/710647*39603^(13/22) 4180999953736043 a001 98209/51841*39603^(8/11) 4180999953738574 a001 829464/103361*39603^(13/22) 4180999953739609 a001 39088169/4870847*39603^(13/22) 4180999953739760 a001 34111385/4250681*39603^(13/22) 4180999953739782 a001 133957148/16692641*39603^(13/22) 4180999953739785 a001 233802911/29134601*39603^(13/22) 4180999953739785 a001 1836311903/228826127*39603^(13/22) 4180999953739785 a001 267084832/33281921*39603^(13/22) 4180999953739785 a001 12586269025/1568397607*39603^(13/22) 4180999953739785 a001 10983760033/1368706081*39603^(13/22) 4180999953739785 a001 43133785636/5374978561*39603^(13/22) 4180999953739785 a001 75283811239/9381251041*39603^(13/22) 4180999953739785 a001 591286729879/73681302247*39603^(13/22) 4180999953739785 a001 86000486440/10716675201*39603^(13/22) 4180999953739785 a001 4052739537881/505019158607*39603^(13/22) 4180999953739785 a001 3278735159921/408569081798*39603^(13/22) 4180999953739785 a001 2504730781961/312119004989*39603^(13/22) 4180999953739785 a001 956722026041/119218851371*39603^(13/22) 4180999953739785 a001 182717648081/22768774562*39603^(13/22) 4180999953739785 a001 139583862445/17393796001*39603^(13/22) 4180999953739785 a001 53316291173/6643838879*39603^(13/22) 4180999953739785 a001 10182505537/1268860318*39603^(13/22) 4180999953739785 a001 7778742049/969323029*39603^(13/22) 4180999953739785 a001 2971215073/370248451*39603^(13/22) 4180999953739786 a001 567451585/70711162*39603^(13/22) 4180999953739787 a001 433494437/54018521*39603^(13/22) 4180999953739795 a001 165580141/20633239*39603^(13/22) 4180999953739853 a001 31622993/3940598*39603^(13/22) 4180999953740248 a001 24157817/3010349*39603^(13/22) 4180999953742957 a001 9227465/1149851*39603^(13/22) 4180999953761527 a001 1762289/219602*39603^(13/22) 4180999953766996 a001 2178309/167761*39603^(6/11) 4180999953778796 a001 121393/103682*39603^(17/22) 4180999953788650 a001 24157817/64079*39603^(5/22) 4180999953804674 a001 1346269/271443*39603^(7/11) 4180999953852746 a001 3524578/710647*39603^(7/11) 4180999953859759 a001 9227465/1860498*39603^(7/11) 4180999953860782 a001 24157817/4870847*39603^(7/11) 4180999953860932 a001 63245986/12752043*39603^(7/11) 4180999953860953 a001 165580141/33385282*39603^(7/11) 4180999953860957 a001 433494437/87403803*39603^(7/11) 4180999953860957 a001 1134903170/228826127*39603^(7/11) 4180999953860957 a001 2971215073/599074578*39603^(7/11) 4180999953860957 a001 7778742049/1568397607*39603^(7/11) 4180999953860957 a001 20365011074/4106118243*39603^(7/11) 4180999953860957 a001 53316291173/10749957122*39603^(7/11) 4180999953860957 a001 139583862445/28143753123*39603^(7/11) 4180999953860957 a001 365435296162/73681302247*39603^(7/11) 4180999953860957 a001 956722026041/192900153618*39603^(7/11) 4180999953860957 a001 2504730781961/505019158607*39603^(7/11) 4180999953860957 a001 10610209857723/2139295485799*39603^(7/11) 4180999953860957 a001 4052739537881/817138163596*39603^(7/11) 4180999953860957 a001 140728068720/28374454999*39603^(7/11) 4180999953860957 a001 591286729879/119218851371*39603^(7/11) 4180999953860957 a001 225851433717/45537549124*39603^(7/11) 4180999953860957 a001 86267571272/17393796001*39603^(7/11) 4180999953860957 a001 32951280099/6643838879*39603^(7/11) 4180999953860957 a001 1144206275/230701876*39603^(7/11) 4180999953860957 a001 4807526976/969323029*39603^(7/11) 4180999953860957 a001 1836311903/370248451*39603^(7/11) 4180999953860957 a001 701408733/141422324*39603^(7/11) 4180999953860959 a001 267914296/54018521*39603^(7/11) 4180999953860967 a001 9303105/1875749*39603^(7/11) 4180999953861024 a001 39088169/7881196*39603^(7/11) 4180999953861415 a001 14930352/3010349*39603^(7/11) 4180999953864094 a001 5702887/1149851*39603^(7/11) 4180999953882455 a001 2178309/439204*39603^(7/11) 4180999953888805 a001 1346269/167761*39603^(13/22) 4180999953909816 a001 14930352/64079*39603^(3/11) 4180999953924177 a001 832040/271443*39603^(15/22) 4180999953934960 a001 433494437/271443*15127^(1/10) 4180999953973674 a001 311187/101521*39603^(15/22) 4180999953980895 a001 5702887/1860498*39603^(15/22) 4180999953981949 a001 14930352/4870847*39603^(15/22) 4180999953982103 a001 39088169/12752043*39603^(15/22) 4180999953982125 a001 14619165/4769326*39603^(15/22) 4180999953982128 a001 267914296/87403803*39603^(15/22) 4180999953982129 a001 701408733/228826127*39603^(15/22) 4180999953982129 a001 1836311903/599074578*39603^(15/22) 4180999953982129 a001 686789568/224056801*39603^(15/22) 4180999953982129 a001 12586269025/4106118243*39603^(15/22) 4180999953982129 a001 32951280099/10749957122*39603^(15/22) 4180999953982129 a001 86267571272/28143753123*39603^(15/22) 4180999953982129 a001 32264490531/10525900321*39603^(15/22) 4180999953982129 a001 591286729879/192900153618*39603^(15/22) 4180999953982129 a001 1548008755920/505019158607*39603^(15/22) 4180999953982129 a001 1515744265389/494493258286*39603^(15/22) 4180999953982129 a001 2504730781961/817138163596*39603^(15/22) 4180999953982129 a001 956722026041/312119004989*39603^(15/22) 4180999953982129 a001 365435296162/119218851371*39603^(15/22) 4180999953982129 a001 139583862445/45537549124*39603^(15/22) 4180999953982129 a001 53316291173/17393796001*39603^(15/22) 4180999953982129 a001 20365011074/6643838879*39603^(15/22) 4180999953982129 a001 7778742049/2537720636*39603^(15/22) 4180999953982129 a001 2971215073/969323029*39603^(15/22) 4180999953982129 a001 1134903170/370248451*39603^(15/22) 4180999953982129 a001 433494437/141422324*39603^(15/22) 4180999953982130 a001 165580141/54018521*39603^(15/22) 4180999953982139 a001 63245986/20633239*39603^(15/22) 4180999953982198 a001 24157817/7881196*39603^(15/22) 4180999953982600 a001 9227465/3010349*39603^(15/22) 4180999953983425 a001 1134903170/710647*15127^(1/10) 4180999953985358 a001 3524578/1149851*39603^(15/22) 4180999953990496 a001 2971215073/1860498*15127^(1/10) 4180999953991528 a001 7778742049/4870847*15127^(1/10) 4180999953991679 a001 20365011074/12752043*15127^(1/10) 4180999953991701 a001 53316291173/33385282*15127^(1/10) 4180999953991704 a001 139583862445/87403803*15127^(1/10) 4180999953991704 a001 365435296162/228826127*15127^(1/10) 4180999953991704 a001 956722026041/599074578*15127^(1/10) 4180999953991704 a001 2504730781961/1568397607*15127^(1/10) 4180999953991704 a001 6557470319842/4106118243*15127^(1/10) 4180999953991704 a001 10610209857723/6643838879*15127^(1/10) 4180999953991704 a001 4052739537881/2537720636*15127^(1/10) 4180999953991704 a001 1548008755920/969323029*15127^(1/10) 4180999953991704 a001 591286729879/370248451*15127^(1/10) 4180999953991705 a001 225851433717/141422324*15127^(1/10) 4180999953991706 a001 86267571272/54018521*15127^(1/10) 4180999953991714 a001 32951280099/20633239*15127^(1/10) 4180999953991772 a001 12586269025/7881196*15127^(1/10) 4180999953992166 a001 4807526976/3010349*15127^(1/10) 4180999953994867 a001 1836311903/1149851*15127^(1/10) 4180999954004265 a001 1346269/439204*39603^(15/22) 4180999954008308 a001 75640/15251*39603^(7/11) 4180999954013379 a001 701408733/439204*15127^(1/10) 4180999954031001 a001 9227465/64079*39603^(7/22) 4180999954049718 a001 514229/271443*39603^(8/11) 4180999954066650 a001 4976784/13201*15127^(1/4) 4180999954095483 a001 1346269/710647*39603^(8/11) 4180999954096365 a001 165580141/64079*15127^(1/20) 4180999954102160 a001 1762289/930249*39603^(8/11) 4180999954103134 a001 9227465/4870847*39603^(8/11) 4180999954103276 a001 24157817/12752043*39603^(8/11) 4180999954103297 a001 31622993/16692641*39603^(8/11) 4180999954103300 a001 165580141/87403803*39603^(8/11) 4180999954103301 a001 433494437/228826127*39603^(8/11) 4180999954103301 a001 567451585/299537289*39603^(8/11) 4180999954103301 a001 2971215073/1568397607*39603^(8/11) 4180999954103301 a001 7778742049/4106118243*39603^(8/11) 4180999954103301 a001 10182505537/5374978561*39603^(8/11) 4180999954103301 a001 53316291173/28143753123*39603^(8/11) 4180999954103301 a001 139583862445/73681302247*39603^(8/11) 4180999954103301 a001 182717648081/96450076809*39603^(8/11) 4180999954103301 a001 956722026041/505019158607*39603^(8/11) 4180999954103301 a001 10610209857723/5600748293801*39603^(8/11) 4180999954103301 a001 591286729879/312119004989*39603^(8/11) 4180999954103301 a001 225851433717/119218851371*39603^(8/11) 4180999954103301 a001 21566892818/11384387281*39603^(8/11) 4180999954103301 a001 32951280099/17393796001*39603^(8/11) 4180999954103301 a001 12586269025/6643838879*39603^(8/11) 4180999954103301 a001 1201881744/634430159*39603^(8/11) 4180999954103301 a001 1836311903/969323029*39603^(8/11) 4180999954103301 a001 701408733/370248451*39603^(8/11) 4180999954103301 a001 66978574/35355581*39603^(8/11) 4180999954103302 a001 102334155/54018521*39603^(8/11) 4180999954103310 a001 39088169/20633239*39603^(8/11) 4180999954103364 a001 3732588/1970299*39603^(8/11) 4180999954103736 a001 5702887/3010349*39603^(8/11) 4180999954105271 a001 75025/103682*39603^(9/11) 4180999954106287 a001 2178309/1149851*39603^(8/11) 4180999954108340 a001 39088169/24476*9349^(2/19) 4180999954123767 a001 208010/109801*39603^(8/11) 4180999954133850 a001 514229/167761*39603^(15/22) 4180999954140263 a001 267914296/167761*15127^(1/10) 4180999954152138 a001 5702887/64079*39603^(4/11) 4180999954159449 a001 105937/90481*39603^(17/22) 4180999954179352 a001 821223649/196418 4180999954201026 a001 28657/64079*817138163596^(1/3) 4180999954201026 a001 28657/64079*(1/2+1/2*5^(1/2))^19 4180999954201026 a001 28657/64079*87403803^(1/2) 4180999954214986 a001 832040/710647*39603^(17/22) 4180999954223088 a001 726103/620166*39603^(17/22) 4180999954224270 a001 5702887/4870847*39603^(17/22) 4180999954224443 a001 4976784/4250681*39603^(17/22) 4180999954224468 a001 39088169/33385282*39603^(17/22) 4180999954224472 a001 34111385/29134601*39603^(17/22) 4180999954224472 a001 267914296/228826127*39603^(17/22) 4180999954224472 a001 233802911/199691526*39603^(17/22) 4180999954224472 a001 1836311903/1568397607*39603^(17/22) 4180999954224472 a001 1602508992/1368706081*39603^(17/22) 4180999954224472 a001 12586269025/10749957122*39603^(17/22) 4180999954224472 a001 10983760033/9381251041*39603^(17/22) 4180999954224472 a001 86267571272/73681302247*39603^(17/22) 4180999954224472 a001 75283811239/64300051206*39603^(17/22) 4180999954224472 a001 2504730781961/2139295485799*39603^(17/22) 4180999954224472 a001 365435296162/312119004989*39603^(17/22) 4180999954224472 a001 139583862445/119218851371*39603^(17/22) 4180999954224472 a001 53316291173/45537549124*39603^(17/22) 4180999954224472 a001 20365011074/17393796001*39603^(17/22) 4180999954224472 a001 7778742049/6643838879*39603^(17/22) 4180999954224472 a001 2971215073/2537720636*39603^(17/22) 4180999954224472 a001 1134903170/969323029*39603^(17/22) 4180999954224472 a001 433494437/370248451*39603^(17/22) 4180999954224473 a001 165580141/141422324*39603^(17/22) 4180999954224474 a001 63245986/54018521*39603^(17/22) 4180999954224484 a001 24157817/20633239*39603^(17/22) 4180999954224549 a001 9227465/7881196*39603^(17/22) 4180999954225001 a001 3524578/3010349*39603^(17/22) 4180999954228096 a001 1346269/1149851*39603^(17/22) 4180999954243580 a001 317811/167761*39603^(8/11) 4180999954249309 a001 514229/439204*39603^(17/22) 4180999954263483 a001 15456/90481*39603^(21/22) 4180999954273402 a001 3524578/64079*39603^(9/22) 4180999954307139 a001 75025/24476*24476^(5/7) 4180999954310574 a001 196418/271443*39603^(9/11) 4180999954340527 a001 514229/710647*39603^(9/11) 4180999954344898 a001 1346269/1860498*39603^(9/11) 4180999954345535 a001 3524578/4870847*39603^(9/11) 4180999954345628 a001 9227465/12752043*39603^(9/11) 4180999954345642 a001 24157817/33385282*39603^(9/11) 4180999954345644 a001 63245986/87403803*39603^(9/11) 4180999954345644 a001 165580141/228826127*39603^(9/11) 4180999954345644 a001 433494437/599074578*39603^(9/11) 4180999954345644 a001 1134903170/1568397607*39603^(9/11) 4180999954345644 a001 2971215073/4106118243*39603^(9/11) 4180999954345644 a001 7778742049/10749957122*39603^(9/11) 4180999954345644 a001 20365011074/28143753123*39603^(9/11) 4180999954345644 a001 53316291173/73681302247*39603^(9/11) 4180999954345644 a001 139583862445/192900153618*39603^(9/11) 4180999954345644 a001 10610209857723/14662949395604*39603^(9/11) 4180999954345644 a001 591286729879/817138163596*39603^(9/11) 4180999954345644 a001 225851433717/312119004989*39603^(9/11) 4180999954345644 a001 86267571272/119218851371*39603^(9/11) 4180999954345644 a001 32951280099/45537549124*39603^(9/11) 4180999954345644 a001 12586269025/17393796001*39603^(9/11) 4180999954345644 a001 4807526976/6643838879*39603^(9/11) 4180999954345644 a001 1836311903/2537720636*39603^(9/11) 4180999954345644 a001 701408733/969323029*39603^(9/11) 4180999954345644 a001 267914296/370248451*39603^(9/11) 4180999954345644 a001 102334155/141422324*39603^(9/11) 4180999954345645 a001 39088169/54018521*39603^(9/11) 4180999954345650 a001 14930352/20633239*39603^(9/11) 4180999954345686 a001 5702887/7881196*39603^(9/11) 4180999954345929 a001 2178309/3010349*39603^(9/11) 4180999954347598 a001 832040/1149851*39603^(9/11) 4180999954347614 a001 46368/167761*39603^(10/11) 4180999954353327 a001 121393/271443*39603^(19/22) 4180999954359040 a001 317811/439204*39603^(9/11) 4180999954394331 a001 2178309/64079*39603^(5/11) 4180999954394705 a001 196418/167761*39603^(17/22) 4180999954434174 a001 121393/24476*24476^(2/3) 4180999954437458 a001 121393/167761*39603^(9/11) 4180999954441399 a004 Fibonacci(24)*Lucas(22)/(1/2+sqrt(5)/2)^27 4180999954450258 a001 317811/710647*39603^(19/22) 4180999954464400 a001 416020/930249*39603^(19/22) 4180999954466463 a001 2178309/4870847*39603^(19/22) 4180999954466764 a001 5702887/12752043*39603^(19/22) 4180999954466808 a001 7465176/16692641*39603^(19/22) 4180999954466815 a001 39088169/87403803*39603^(19/22) 4180999954466816 a001 102334155/228826127*39603^(19/22) 4180999954466816 a001 133957148/299537289*39603^(19/22) 4180999954466816 a001 701408733/1568397607*39603^(19/22) 4180999954466816 a001 1836311903/4106118243*39603^(19/22) 4180999954466816 a001 2403763488/5374978561*39603^(19/22) 4180999954466816 a001 12586269025/28143753123*39603^(19/22) 4180999954466816 a001 32951280099/73681302247*39603^(19/22) 4180999954466816 a001 43133785636/96450076809*39603^(19/22) 4180999954466816 a001 225851433717/505019158607*39603^(19/22) 4180999954466816 a001 591286729879/1322157322203*39603^(19/22) 4180999954466816 a001 10610209857723/23725150497407*39603^(19/22) 4180999954466816 a001 182717648081/408569081798*39603^(19/22) 4180999954466816 a001 139583862445/312119004989*39603^(19/22) 4180999954466816 a001 53316291173/119218851371*39603^(19/22) 4180999954466816 a001 10182505537/22768774562*39603^(19/22) 4180999954466816 a001 7778742049/17393796001*39603^(19/22) 4180999954466816 a001 2971215073/6643838879*39603^(19/22) 4180999954466816 a001 567451585/1268860318*39603^(19/22) 4180999954466816 a001 433494437/969323029*39603^(19/22) 4180999954466816 a001 165580141/370248451*39603^(19/22) 4180999954466816 a001 31622993/70711162*39603^(19/22) 4180999954466819 a001 24157817/54018521*39603^(19/22) 4180999954466835 a001 9227465/20633239*39603^(19/22) 4180999954466950 a001 1762289/3940598*39603^(19/22) 4180999954467739 a001 1346269/3010349*39603^(19/22) 4180999954473140 a001 514229/1149851*39603^(19/22) 4180999954508930 a001 28657/64079*103682^(19/24) 4180999954510165 a001 98209/219602*39603^(19/22) 4180999954512141 a001 28657/24476*24476^(17/21) 4180999954516140 a001 1346269/64079*39603^(1/2) 4180999954516348 a001 102334155/103682*15127^(3/20) 4180999954552918 a001 121393/439204*39603^(10/11) 4180999954582871 a001 317811/1149851*39603^(10/11) 4180999954587241 a001 832040/3010349*39603^(10/11) 4180999954587879 a001 2178309/7881196*39603^(10/11) 4180999954587972 a001 5702887/20633239*39603^(10/11) 4180999954587985 a001 14930352/54018521*39603^(10/11) 4180999954587987 a001 39088169/141422324*39603^(10/11) 4180999954587987 a001 102334155/370248451*39603^(10/11) 4180999954587987 a001 267914296/969323029*39603^(10/11) 4180999954587987 a001 701408733/2537720636*39603^(10/11) 4180999954587987 a001 1836311903/6643838879*39603^(10/11) 4180999954587987 a001 4807526976/17393796001*39603^(10/11) 4180999954587987 a001 12586269025/45537549124*39603^(10/11) 4180999954587987 a001 32951280099/119218851371*39603^(10/11) 4180999954587987 a001 86267571272/312119004989*39603^(10/11) 4180999954587987 a001 225851433717/817138163596*39603^(10/11) 4180999954587987 a001 1548008755920/5600748293801*39603^(10/11) 4180999954587987 a001 139583862445/505019158607*39603^(10/11) 4180999954587987 a001 53316291173/192900153618*39603^(10/11) 4180999954587987 a001 20365011074/73681302247*39603^(10/11) 4180999954587987 a001 7778742049/28143753123*39603^(10/11) 4180999954587987 a001 2971215073/10749957122*39603^(10/11) 4180999954587988 a001 1134903170/4106118243*39603^(10/11) 4180999954587988 a001 433494437/1568397607*39603^(10/11) 4180999954587988 a001 165580141/599074578*39603^(10/11) 4180999954587988 a001 63245986/228826127*39603^(10/11) 4180999954587988 a001 24157817/87403803*39603^(10/11) 4180999954587994 a001 9227465/33385282*39603^(10/11) 4180999954588029 a001 3524578/12752043*39603^(10/11) 4180999954588273 a001 1346269/4870847*39603^(10/11) 4180999954589942 a001 514229/1860498*39603^(10/11) 4180999954601383 a001 196418/710647*39603^(10/11) 4180999954635642 a001 832040/64079*39603^(6/11) 4180999954644136 a001 121393/710647*39603^(21/22) 4180999954679802 a001 75025/271443*39603^(10/11) 4180999954699672 a001 105937/620166*39603^(21/22) 4180999954707775 a001 832040/4870847*39603^(21/22) 4180999954708957 a001 726103/4250681*39603^(21/22) 4180999954709130 a001 5702887/33385282*39603^(21/22) 4180999954709155 a001 4976784/29134601*39603^(21/22) 4180999954709159 a001 39088169/228826127*39603^(21/22) 4180999954709159 a001 34111385/199691526*39603^(21/22) 4180999954709159 a001 267914296/1568397607*39603^(21/22) 4180999954709159 a001 233802911/1368706081*39603^(21/22) 4180999954709159 a001 1836311903/10749957122*39603^(21/22) 4180999954709159 a001 1602508992/9381251041*39603^(21/22) 4180999954709159 a001 12586269025/73681302247*39603^(21/22) 4180999954709159 a001 10983760033/64300051206*39603^(21/22) 4180999954709159 a001 86267571272/505019158607*39603^(21/22) 4180999954709159 a001 75283811239/440719107401*39603^(21/22) 4180999954709159 a001 2504730781961/14662949395604*39603^(21/22) 4180999954709159 a001 139583862445/817138163596*39603^(21/22) 4180999954709159 a001 53316291173/312119004989*39603^(21/22) 4180999954709159 a001 20365011074/119218851371*39603^(21/22) 4180999954709159 a001 7778742049/45537549124*39603^(21/22) 4180999954709159 a001 2971215073/17393796001*39603^(21/22) 4180999954709159 a001 1134903170/6643838879*39603^(21/22) 4180999954709159 a001 433494437/2537720636*39603^(21/22) 4180999954709159 a001 165580141/969323029*39603^(21/22) 4180999954709159 a001 63245986/370248451*39603^(21/22) 4180999954709161 a001 24157817/141422324*39603^(21/22) 4180999954709170 a001 9227465/54018521*39603^(21/22) 4180999954709236 a001 3524578/20633239*39603^(21/22) 4180999954709688 a001 1346269/7881196*39603^(21/22) 4180999954712783 a001 514229/3010349*39603^(21/22) 4180999954733996 a001 196418/1149851*39603^(21/22) 4180999954761184 a001 514229/64079*39603^(13/22) 4180999954763933 a001 75025/167761*39603^(19/22) 4180999954765505 a001 14930352/15127*5778^(1/6) 4180999954773587 a004 Fibonacci(26)*Lucas(22)/(1/2+sqrt(5)/2)^29 4180999954822052 a004 Fibonacci(28)*Lucas(22)/(1/2+sqrt(5)/2)^31 4180999954829123 a004 Fibonacci(30)*Lucas(22)/(1/2+sqrt(5)/2)^33 4180999954830155 a004 Fibonacci(32)*Lucas(22)/(1/2+sqrt(5)/2)^35 4180999954830305 a004 Fibonacci(34)*Lucas(22)/(1/2+sqrt(5)/2)^37 4180999954830327 a004 Fibonacci(36)*Lucas(22)/(1/2+sqrt(5)/2)^39 4180999954830330 a004 Fibonacci(38)*Lucas(22)/(1/2+sqrt(5)/2)^41 4180999954830331 a004 Fibonacci(40)*Lucas(22)/(1/2+sqrt(5)/2)^43 4180999954830331 a004 Fibonacci(42)*Lucas(22)/(1/2+sqrt(5)/2)^45 4180999954830331 a004 Fibonacci(44)*Lucas(22)/(1/2+sqrt(5)/2)^47 4180999954830331 a004 Fibonacci(46)*Lucas(22)/(1/2+sqrt(5)/2)^49 4180999954830331 a004 Fibonacci(48)*Lucas(22)/(1/2+sqrt(5)/2)^51 4180999954830331 a004 Fibonacci(50)*Lucas(22)/(1/2+sqrt(5)/2)^53 4180999954830331 a004 Fibonacci(52)*Lucas(22)/(1/2+sqrt(5)/2)^55 4180999954830331 a004 Fibonacci(54)*Lucas(22)/(1/2+sqrt(5)/2)^57 4180999954830331 a004 Fibonacci(56)*Lucas(22)/(1/2+sqrt(5)/2)^59 4180999954830331 a004 Fibonacci(58)*Lucas(22)/(1/2+sqrt(5)/2)^61 4180999954830331 a004 Fibonacci(60)*Lucas(22)/(1/2+sqrt(5)/2)^63 4180999954830331 a004 Fibonacci(62)*Lucas(22)/(1/2+sqrt(5)/2)^65 4180999954830331 a004 Fibonacci(64)*Lucas(22)/(1/2+sqrt(5)/2)^67 4180999954830331 a004 Fibonacci(66)*Lucas(22)/(1/2+sqrt(5)/2)^69 4180999954830331 a004 Fibonacci(68)*Lucas(22)/(1/2+sqrt(5)/2)^71 4180999954830331 a004 Fibonacci(70)*Lucas(22)/(1/2+sqrt(5)/2)^73 4180999954830331 a004 Fibonacci(72)*Lucas(22)/(1/2+sqrt(5)/2)^75 4180999954830331 a004 Fibonacci(74)*Lucas(22)/(1/2+sqrt(5)/2)^77 4180999954830331 a004 Fibonacci(76)*Lucas(22)/(1/2+sqrt(5)/2)^79 4180999954830331 a004 Fibonacci(78)*Lucas(22)/(1/2+sqrt(5)/2)^81 4180999954830331 a004 Fibonacci(80)*Lucas(22)/(1/2+sqrt(5)/2)^83 4180999954830331 a004 Fibonacci(82)*Lucas(22)/(1/2+sqrt(5)/2)^85 4180999954830331 a004 Fibonacci(84)*Lucas(22)/(1/2+sqrt(5)/2)^87 4180999954830331 a004 Fibonacci(86)*Lucas(22)/(1/2+sqrt(5)/2)^89 4180999954830331 a004 Fibonacci(88)*Lucas(22)/(1/2+sqrt(5)/2)^91 4180999954830331 a004 Fibonacci(90)*Lucas(22)/(1/2+sqrt(5)/2)^93 4180999954830331 a004 Fibonacci(92)*Lucas(22)/(1/2+sqrt(5)/2)^95 4180999954830331 a004 Fibonacci(94)*Lucas(22)/(1/2+sqrt(5)/2)^97 4180999954830331 a004 Fibonacci(96)*Lucas(22)/(1/2+sqrt(5)/2)^99 4180999954830331 a004 Fibonacci(97)*Lucas(22)/(1/2+sqrt(5)/2)^100 4180999954830331 a004 Fibonacci(95)*Lucas(22)/(1/2+sqrt(5)/2)^98 4180999954830331 a004 Fibonacci(93)*Lucas(22)/(1/2+sqrt(5)/2)^96 4180999954830331 a004 Fibonacci(91)*Lucas(22)/(1/2+sqrt(5)/2)^94 4180999954830331 a004 Fibonacci(89)*Lucas(22)/(1/2+sqrt(5)/2)^92 4180999954830331 a004 Fibonacci(87)*Lucas(22)/(1/2+sqrt(5)/2)^90 4180999954830331 a004 Fibonacci(85)*Lucas(22)/(1/2+sqrt(5)/2)^88 4180999954830331 a004 Fibonacci(83)*Lucas(22)/(1/2+sqrt(5)/2)^86 4180999954830331 a004 Fibonacci(81)*Lucas(22)/(1/2+sqrt(5)/2)^84 4180999954830331 a004 Fibonacci(79)*Lucas(22)/(1/2+sqrt(5)/2)^82 4180999954830331 a004 Fibonacci(77)*Lucas(22)/(1/2+sqrt(5)/2)^80 4180999954830331 a004 Fibonacci(75)*Lucas(22)/(1/2+sqrt(5)/2)^78 4180999954830331 a004 Fibonacci(73)*Lucas(22)/(1/2+sqrt(5)/2)^76 4180999954830331 a004 Fibonacci(71)*Lucas(22)/(1/2+sqrt(5)/2)^74 4180999954830331 a004 Fibonacci(69)*Lucas(22)/(1/2+sqrt(5)/2)^72 4180999954830331 a004 Fibonacci(67)*Lucas(22)/(1/2+sqrt(5)/2)^70 4180999954830331 a004 Fibonacci(65)*Lucas(22)/(1/2+sqrt(5)/2)^68 4180999954830331 a004 Fibonacci(63)*Lucas(22)/(1/2+sqrt(5)/2)^66 4180999954830331 a004 Fibonacci(61)*Lucas(22)/(1/2+sqrt(5)/2)^64 4180999954830331 a004 Fibonacci(59)*Lucas(22)/(1/2+sqrt(5)/2)^62 4180999954830331 a004 Fibonacci(57)*Lucas(22)/(1/2+sqrt(5)/2)^60 4180999954830331 a004 Fibonacci(55)*Lucas(22)/(1/2+sqrt(5)/2)^58 4180999954830331 a004 Fibonacci(53)*Lucas(22)/(1/2+sqrt(5)/2)^56 4180999954830331 a004 Fibonacci(51)*Lucas(22)/(1/2+sqrt(5)/2)^54 4180999954830331 a004 Fibonacci(49)*Lucas(22)/(1/2+sqrt(5)/2)^52 4180999954830331 a004 Fibonacci(47)*Lucas(22)/(1/2+sqrt(5)/2)^50 4180999954830331 a004 Fibonacci(45)*Lucas(22)/(1/2+sqrt(5)/2)^48 4180999954830331 a001 2/17711*(1/2+1/2*5^(1/2))^41 4180999954830331 a004 Fibonacci(43)*Lucas(22)/(1/2+sqrt(5)/2)^46 4180999954830331 a004 Fibonacci(41)*Lucas(22)/(1/2+sqrt(5)/2)^44 4180999954830331 a004 Fibonacci(39)*Lucas(22)/(1/2+sqrt(5)/2)^42 4180999954830332 a004 Fibonacci(37)*Lucas(22)/(1/2+sqrt(5)/2)^40 4180999954830341 a004 Fibonacci(35)*Lucas(22)/(1/2+sqrt(5)/2)^38 4180999954830398 a004 Fibonacci(33)*Lucas(22)/(1/2+sqrt(5)/2)^36 4180999954830792 a004 Fibonacci(31)*Lucas(22)/(1/2+sqrt(5)/2)^34 4180999954833493 a004 Fibonacci(29)*Lucas(22)/(1/2+sqrt(5)/2)^32 4180999954844931 a001 98209/12238*24476^(13/21) 4180999954848536 a001 267914296/271443*15127^(3/20) 4180999954852005 a004 Fibonacci(27)*Lucas(22)/(1/2+sqrt(5)/2)^30 4180999954870915 a001 317811/64079*39603^(7/11) 4180999954879392 a001 75025/439204*39603^(21/22) 4180999954897001 a001 701408733/710647*15127^(3/20) 4180999954904072 a001 1836311903/1860498*15127^(3/20) 4180999954905104 a001 4807526976/4870847*15127^(3/20) 4180999954905254 a001 12586269025/12752043*15127^(3/20) 4180999954905276 a001 32951280099/33385282*15127^(3/20) 4180999954905280 a001 86267571272/87403803*15127^(3/20) 4180999954905280 a001 225851433717/228826127*15127^(3/20) 4180999954905280 a001 591286729879/599074578*15127^(3/20) 4180999954905280 a001 1548008755920/1568397607*15127^(3/20) 4180999954905280 a001 4052739537881/4106118243*15127^(3/20) 4180999954905280 a001 4807525989/4870846*15127^(3/20) 4180999954905280 a001 6557470319842/6643838879*15127^(3/20) 4180999954905280 a001 2504730781961/2537720636*15127^(3/20) 4180999954905280 a001 956722026041/969323029*15127^(3/20) 4180999954905280 a001 365435296162/370248451*15127^(3/20) 4180999954905280 a001 139583862445/141422324*15127^(3/20) 4180999954905282 a001 53316291173/54018521*15127^(3/20) 4180999954905290 a001 20365011074/20633239*15127^(3/20) 4180999954905347 a001 7778742049/7881196*15127^(3/20) 4180999954905741 a001 2971215073/3010349*15127^(3/20) 4180999954908442 a001 1134903170/1149851*15127^(3/20) 4180999954926955 a001 433494437/439204*15127^(3/20) 4180999954974949 a001 46368/64079*39603^(9/11) 4180999954978890 a004 Fibonacci(25)*Lucas(22)/(1/2+sqrt(5)/2)^28 4180999954980239 a001 9227465/39603*15127^(3/10) 4180999955009941 a001 102334155/64079*15127^(1/10) 4180999955022040 a001 196418/64079*39603^(15/22) 4180999955053839 a001 165580141/167761*15127^(3/20) 4180999955064793 a001 121393/64079*39603^(8/11) 4180999955147316 a001 10959/844*24476^(4/7) 4180999955217292 a001 28657/103682*39603^(10/11) 4180999955391268 a001 75025/64079*39603^(17/22) 4180999955429924 a001 31622993/51841*15127^(1/5) 4180999955491095 a001 514229/24476*24476^(11/21) 4180999955592449 a001 10946/39603*64079^(20/23) 4180999955680992 a001 17711/24476*64079^(18/23) 4180999955762111 a001 165580141/271443*15127^(1/5) 4180999955810577 a001 433494437/710647*15127^(1/5) 4180999955817648 a001 567451585/930249*15127^(1/5) 4180999955818680 a001 2971215073/4870847*15127^(1/5) 4180999955818830 a001 7778742049/12752043*15127^(1/5) 4180999955818852 a001 10182505537/16692641*15127^(1/5) 4180999955818855 a001 53316291173/87403803*15127^(1/5) 4180999955818856 a001 139583862445/228826127*15127^(1/5) 4180999955818856 a001 182717648081/299537289*15127^(1/5) 4180999955818856 a001 956722026041/1568397607*15127^(1/5) 4180999955818856 a001 2504730781961/4106118243*15127^(1/5) 4180999955818856 a001 3278735159921/5374978561*15127^(1/5) 4180999955818856 a001 10610209857723/17393796001*15127^(1/5) 4180999955818856 a001 4052739537881/6643838879*15127^(1/5) 4180999955818856 a001 1134903780/1860499*15127^(1/5) 4180999955818856 a001 591286729879/969323029*15127^(1/5) 4180999955818856 a001 225851433717/370248451*15127^(1/5) 4180999955818856 a001 21566892818/35355581*15127^(1/5) 4180999955818857 a001 32951280099/54018521*15127^(1/5) 4180999955818866 a001 1144206275/1875749*15127^(1/5) 4180999955818923 a001 1201881744/1970299*15127^(1/5) 4180999955819063 a001 208010/6119*24476^(10/21) 4180999955819317 a001 1836311903/3010349*15127^(1/5) 4180999955822018 a001 701408733/1149851*15127^(1/5) 4180999955840530 a001 66978574/109801*15127^(1/5) 4180999955848568 a004 Fibonacci(23)*Lucas(22)/(1/2+sqrt(5)/2)^26 4180999955875955 a001 28657/167761*39603^(21/22) 4180999955893779 a001 5702887/39603*15127^(7/20) 4180999955923517 a001 63245986/64079*15127^(3/20) 4180999955967414 a001 9303105/15251*15127^(1/5) 4180999956153070 a001 1346269/24476*24476^(3/7) 4180999956343499 a001 39088169/103682*15127^(1/4) 4180999956359025 a001 10946/39603*167761^(4/5) 4180999956456265 a001 34111385/13201*5778^(1/18) 4180999956463423 a001 17711/24476*439204^(2/3) 4180999956477836 a001 17711/24476*7881196^(6/11) 4180999956477867 a001 10946/39603*20633239^(4/7) 4180999956477872 a001 17711/24476*141422324^(6/13) 4180999956477872 a001 10946/39603*2537720636^(4/9) 4180999956477872 a001 10946/39603*(1/2+1/2*5^(1/2))^20 4180999956477872 a001 10946/39603*23725150497407^(5/16) 4180999956477872 a001 10946/39603*505019158607^(5/14) 4180999956477872 a001 10946/39603*73681302247^(5/13) 4180999956477872 a001 10946/39603*28143753123^(2/5) 4180999956477872 a001 10946/39603*10749957122^(5/12) 4180999956477872 a001 10946/39603*4106118243^(10/23) 4180999956477872 a001 10946/39603*1568397607^(5/11) 4180999956477872 a001 10946/39603*599074578^(10/21) 4180999956477872 a001 17711/24476*2537720636^(2/5) 4180999956477872 a001 17711/24476*45537549124^(6/17) 4180999956477872 a001 17711/24476*14662949395604^(2/7) 4180999956477872 a001 17711/24476*(1/2+1/2*5^(1/2))^18 4180999956477872 a001 17711/24476*192900153618^(1/3) 4180999956477872 a001 17711/24476*10749957122^(3/8) 4180999956477872 a001 17711/24476*4106118243^(9/23) 4180999956477872 a001 17711/24476*1568397607^(9/22) 4180999956477872 a001 17711/24476*599074578^(3/7) 4180999956477872 a001 10946/39603*228826127^(1/2) 4180999956477872 a001 17711/24476*228826127^(9/20) 4180999956477873 a001 17711/24476*87403803^(9/19) 4180999956477873 a001 10946/39603*87403803^(10/19) 4180999956477874 a001 17711/24476*33385282^(1/2) 4180999956477874 a001 10946/39603*33385282^(5/9) 4180999956477886 a001 17711/24476*12752043^(9/17) 4180999956477888 a001 10946/39603*12752043^(10/17) 4180999956477972 a001 17711/24476*4870847^(9/16) 4180999956477983 a001 10946/39603*4870847^(5/8) 4180999956478597 a001 17711/24476*1860498^(3/5) 4180999956478678 a001 10946/39603*1860498^(2/3) 4180999956483195 a001 17711/24476*710647^(9/14) 4180999956483786 a001 10946/39603*710647^(5/7) 4180999956484770 a001 2178309/24476*24476^(8/21) 4180999956503289 a001 28657/64079*39603^(19/22) 4180999956517157 a001 17711/24476*271443^(9/13) 4180999956521522 a001 10946/39603*271443^(10/13) 4180999956625996 a001 31622993/12238*9349^(1/19) 4180999956675687 a001 34111385/90481*15127^(1/4) 4180999956724153 a001 267914296/710647*15127^(1/4) 4180999956731224 a001 233802911/620166*15127^(1/4) 4180999956732255 a001 1836311903/4870847*15127^(1/4) 4180999956732406 a001 1602508992/4250681*15127^(1/4) 4180999956732428 a001 12586269025/33385282*15127^(1/4) 4180999956732431 a001 10983760033/29134601*15127^(1/4) 4180999956732431 a001 86267571272/228826127*15127^(1/4) 4180999956732432 a001 267913919/710646*15127^(1/4) 4180999956732432 a001 591286729879/1568397607*15127^(1/4) 4180999956732432 a001 516002918640/1368706081*15127^(1/4) 4180999956732432 a001 4052739537881/10749957122*15127^(1/4) 4180999956732432 a001 3536736619241/9381251041*15127^(1/4) 4180999956732432 a001 6557470319842/17393796001*15127^(1/4) 4180999956732432 a001 2504730781961/6643838879*15127^(1/4) 4180999956732432 a001 956722026041/2537720636*15127^(1/4) 4180999956732432 a001 365435296162/969323029*15127^(1/4) 4180999956732432 a001 139583862445/370248451*15127^(1/4) 4180999956732432 a001 53316291173/141422324*15127^(1/4) 4180999956732433 a001 20365011074/54018521*15127^(1/4) 4180999956732441 a001 7778742049/20633239*15127^(1/4) 4180999956732499 a001 2971215073/7881196*15127^(1/4) 4180999956732893 a001 1134903170/3010349*15127^(1/4) 4180999956735594 a001 433494437/1149851*15127^(1/4) 4180999956754106 a001 165580141/439204*15127^(1/4) 4180999956769571 a001 17711/24476*103682^(3/4) 4180999956801982 a001 10946/39603*103682^(5/6) 4180999956807448 a001 3524578/39603*15127^(2/5) 4180999956817352 a001 1762289/12238*24476^(1/3) 4180999956837092 a001 39088169/64079*15127^(1/5) 4180999956866804 a001 96932303/23184 4180999956880990 a001 63245986/167761*15127^(1/4) 4180999957051740 a001 17711/9349*9349^(16/19) 4180999957149597 a001 5702887/24476*24476^(2/7) 4180999957257077 a001 24157817/103682*15127^(3/10) 4180999957316499 a001 10946/15127*15127^(9/10) 4180999957481970 a001 9227465/24476*24476^(5/21) 4180999957589263 a001 63245986/271443*15127^(3/10) 4180999957637728 a001 165580141/710647*15127^(3/10) 4180999957644799 a001 433494437/1860498*15127^(3/10) 4180999957645831 a001 1134903170/4870847*15127^(3/10) 4180999957645982 a001 2971215073/12752043*15127^(3/10) 4180999957646004 a001 7778742049/33385282*15127^(3/10) 4180999957646007 a001 20365011074/87403803*15127^(3/10) 4180999957646007 a001 53316291173/228826127*15127^(3/10) 4180999957646007 a001 139583862445/599074578*15127^(3/10) 4180999957646007 a001 365435296162/1568397607*15127^(3/10) 4180999957646007 a001 956722026041/4106118243*15127^(3/10) 4180999957646007 a001 2504730781961/10749957122*15127^(3/10) 4180999957646007 a001 6557470319842/28143753123*15127^(3/10) 4180999957646007 a001 10610209857723/45537549124*15127^(3/10) 4180999957646007 a001 4052739537881/17393796001*15127^(3/10) 4180999957646007 a001 1548008755920/6643838879*15127^(3/10) 4180999957646007 a001 591286729879/2537720636*15127^(3/10) 4180999957646007 a001 225851433717/969323029*15127^(3/10) 4180999957646007 a001 86267571272/370248451*15127^(3/10) 4180999957646008 a001 63246219/271444*15127^(3/10) 4180999957646009 a001 12586269025/54018521*15127^(3/10) 4180999957646017 a001 4807526976/20633239*15127^(3/10) 4180999957646075 a001 1836311903/7881196*15127^(3/10) 4180999957646469 a001 701408733/3010349*15127^(3/10) 4180999957649170 a001 267914296/1149851*15127^(3/10) 4180999957667682 a001 102334155/439204*15127^(3/10) 4180999957720780 a001 726103/13201*15127^(9/20) 4180999957750670 a001 24157817/64079*15127^(1/4) 4180999957780753 a001 5473/51841*64079^(22/23) 4180999957794565 a001 39088169/167761*15127^(3/10) 4180999957814295 a001 3732588/6119*24476^(4/21) 4180999958046380 a001 11592/6119*64079^(16/23) 4180999958125414 a004 Fibonacci(21)*Lucas(23)/(1/2+sqrt(5)/2)^25 4180999958146638 a001 24157817/24476*24476^(1/7) 4180999958170648 a001 7465176/51841*15127^(7/20) 4180999958467110 a001 121393/24476*64079^(14/23) 4180999958478974 a001 39088169/24476*24476^(2/21) 4180999958502838 a001 39088169/271443*15127^(7/20) 4180999958551304 a001 14619165/101521*15127^(7/20) 4180999958558375 a001 133957148/930249*15127^(7/20) 4180999958559407 a001 701408733/4870847*15127^(7/20) 4180999958559557 a001 1836311903/12752043*15127^(7/20) 4180999958559579 a001 14930208/103681*15127^(7/20) 4180999958559582 a001 12586269025/87403803*15127^(7/20) 4180999958559583 a001 32951280099/228826127*15127^(7/20) 4180999958559583 a001 43133785636/299537289*15127^(7/20) 4180999958559583 a001 32264490531/224056801*15127^(7/20) 4180999958559583 a001 591286729879/4106118243*15127^(7/20) 4180999958559583 a001 774004377960/5374978561*15127^(7/20) 4180999958559583 a001 4052739537881/28143753123*15127^(7/20) 4180999958559583 a001 1515744265389/10525900321*15127^(7/20) 4180999958559583 a001 3278735159921/22768774562*15127^(7/20) 4180999958559583 a001 2504730781961/17393796001*15127^(7/20) 4180999958559583 a001 956722026041/6643838879*15127^(7/20) 4180999958559583 a001 182717648081/1268860318*15127^(7/20) 4180999958559583 a001 139583862445/969323029*15127^(7/20) 4180999958559583 a001 53316291173/370248451*15127^(7/20) 4180999958559583 a001 10182505537/70711162*15127^(7/20) 4180999958559584 a001 7778742049/54018521*15127^(7/20) 4180999958559593 a001 2971215073/20633239*15127^(7/20) 4180999958559650 a001 567451585/3940598*15127^(7/20) 4180999958560044 a001 433494437/3010349*15127^(7/20) 4180999958562745 a001 165580141/1149851*15127^(7/20) 4180999958581258 a001 31622993/219602*15127^(7/20) 4180999958589800 a001 98209/12238*64079^(13/23) 4180999958604118 a001 10959/844*64079^(12/23) 4180999958628142 a001 75025/24476*64079^(15/23) 4180999958634994 a001 1346269/39603*15127^(1/2) 4180999958658964 a001 17711/24476*39603^(9/11) 4180999958659830 a001 514229/24476*64079^(11/23) 4180999958664240 a001 14930352/64079*15127^(3/10) 4180999958699731 a001 208010/6119*64079^(10/23) 4180999958708143 a001 24157817/167761*15127^(7/20) 4180999958733111 a001 133957148/51841*5778^(1/18) 4180999958745671 a001 1346269/24476*64079^(9/23) 4180999958754674 a001 5473/51841*7881196^(2/3) 4180999958754719 a001 5473/51841*312119004989^(2/5) 4180999958754719 a001 5473/51841*(1/2+1/2*5^(1/2))^22 4180999958754719 a001 5473/51841*10749957122^(11/24) 4180999958754719 a001 5473/51841*4106118243^(11/23) 4180999958754719 a001 5473/51841*1568397607^(1/2) 4180999958754719 a001 5473/51841*599074578^(11/21) 4180999958754719 a001 11592/6119*(1/2+1/2*5^(1/2))^16 4180999958754719 a001 11592/6119*23725150497407^(1/4) 4180999958754719 a001 11592/6119*73681302247^(4/13) 4180999958754719 a001 11592/6119*10749957122^(1/3) 4180999958754719 a001 11592/6119*4106118243^(8/23) 4180999958754719 a001 11592/6119*1568397607^(4/11) 4180999958754719 a001 11592/6119*599074578^(8/21) 4180999958754719 a001 11592/6119*228826127^(2/5) 4180999958754719 a001 5473/51841*228826127^(11/20) 4180999958754719 a001 11592/6119*87403803^(8/19) 4180999958754719 a001 5473/51841*87403803^(11/19) 4180999958754720 a001 11592/6119*33385282^(4/9) 4180999958754721 a001 5473/51841*33385282^(11/18) 4180999958754731 a001 11592/6119*12752043^(8/17) 4180999958754735 a001 5473/51841*12752043^(11/17) 4180999958754807 a001 11592/6119*4870847^(1/2) 4180999958754840 a001 5473/51841*4870847^(11/16) 4180999958755363 a001 11592/6119*1860498^(8/15) 4180999958755604 a001 5473/51841*1860498^(11/15) 4180999958759450 a001 11592/6119*710647^(4/7) 4180999958761224 a001 5473/51841*710647^(11/14) 4180999958789305 a001 2178309/24476*64079^(8/23) 4180999958789638 a001 11592/6119*271443^(8/13) 4180999958802733 a001 5473/51841*271443^(11/13) 4180999958811313 a001 31622993/12238*24476^(1/21) 4180999958811463 a001 507544128/121393 4180999958833820 a001 1762289/12238*64079^(7/23) 4180999958877998 a001 5702887/24476*64079^(6/23) 4180999958901307 a001 10946/39603*39603^(10/11) 4180999958922305 a001 9227465/24476*64079^(5/23) 4180999958966562 a001 3732588/6119*64079^(4/23) 4180999958995092 a004 Fibonacci(21)*Lucas(25)/(1/2+sqrt(5)/2)^27 4180999959010838 a001 24157817/24476*64079^(3/23) 4180999959014007 a001 11592/6119*103682^(2/3) 4180999959055108 a001 39088169/24476*64079^(2/23) 4180999959065299 a001 233802911/90481*5778^(1/18) 4180999959067640 a001 10946/271443*439204^(8/9) 4180999959083019 a001 208010/6119*167761^(2/5) 4180999959084237 a001 9227465/103682*15127^(2/5) 4180999959086857 a001 10946/271443*7881196^(8/11) 4180999959086902 a001 121393/24476*20633239^(2/5) 4180999959086906 a001 10946/271443*141422324^(8/13) 4180999959086906 a001 10946/271443*2537720636^(8/15) 4180999959086906 a001 10946/271443*45537549124^(8/17) 4180999959086906 a001 10946/271443*14662949395604^(8/21) 4180999959086906 a001 10946/271443*(1/2+1/2*5^(1/2))^24 4180999959086906 a001 10946/271443*192900153618^(4/9) 4180999959086906 a001 10946/271443*73681302247^(6/13) 4180999959086906 a001 10946/271443*10749957122^(1/2) 4180999959086906 a001 10946/271443*4106118243^(12/23) 4180999959086906 a001 10946/271443*1568397607^(6/11) 4180999959086906 a001 10946/271443*599074578^(4/7) 4180999959086906 a001 121393/24476*17393796001^(2/7) 4180999959086906 a001 121393/24476*14662949395604^(2/9) 4180999959086906 a001 121393/24476*(1/2+1/2*5^(1/2))^14 4180999959086906 a001 121393/24476*10749957122^(7/24) 4180999959086906 a001 121393/24476*4106118243^(7/23) 4180999959086906 a001 121393/24476*1568397607^(7/22) 4180999959086906 a001 121393/24476*599074578^(1/3) 4180999959086906 a001 121393/24476*228826127^(7/20) 4180999959086906 a001 10946/271443*228826127^(3/5) 4180999959086906 a001 121393/24476*87403803^(7/19) 4180999959086906 a001 10946/271443*87403803^(12/19) 4180999959086908 a001 121393/24476*33385282^(7/18) 4180999959086909 a001 10946/271443*33385282^(2/3) 4180999959086917 a001 121393/24476*12752043^(7/17) 4180999959086924 a001 10946/271443*12752043^(12/17) 4180999959086983 a001 121393/24476*4870847^(7/16) 4180999959087038 a001 10946/271443*4870847^(3/4) 4180999959087470 a001 121393/24476*1860498^(7/15) 4180999959087872 a001 10946/271443*1860498^(4/5) 4180999959091046 a001 121393/24476*710647^(1/2) 4180999959094002 a001 10946/271443*710647^(6/7) 4180999959095185 a001 102212906/24447 4180999959099380 a001 31622993/12238*64079^(1/23) 4180999959111240 a001 5473/51841*103682^(11/12) 4180999959113764 a001 1836311903/710647*5778^(1/18) 4180999959113949 a001 9227465/24476*167761^(1/5) 4180999959117461 a001 121393/24476*271443^(7/13) 4180999959120835 a001 267084832/103361*5778^(1/18) 4180999959121867 a001 12586269025/4870847*5778^(1/18) 4180999959121976 a004 Fibonacci(21)*Lucas(27)/(1/2+sqrt(5)/2)^29 4180999959122017 a001 10983760033/4250681*5778^(1/18) 4180999959122039 a001 43133785636/16692641*5778^(1/18) 4180999959122043 a001 75283811239/29134601*5778^(1/18) 4180999959122043 a001 591286729879/228826127*5778^(1/18) 4180999959122043 a001 86000486440/33281921*5778^(1/18) 4180999959122043 a001 4052739537881/1568397607*5778^(1/18) 4180999959122043 a001 3536736619241/1368706081*5778^(1/18) 4180999959122043 a001 3278735159921/1268860318*5778^(1/18) 4180999959122043 a001 2504730781961/969323029*5778^(1/18) 4180999959122043 a001 956722026041/370248451*5778^(1/18) 4180999959122043 a001 182717648081/70711162*5778^(1/18) 4180999959122045 a001 139583862445/54018521*5778^(1/18) 4180999959122053 a001 53316291173/20633239*5778^(1/18) 4180999959122110 a001 10182505537/3940598*5778^(1/18) 4180999959122504 a001 7778742049/3010349*5778^(1/18) 4180999959125205 a001 2971215073/1149851*5778^(1/18) 4180999959125739 a001 10959/844*439204^(4/9) 4180999959135347 a001 10959/844*7881196^(4/11) 4180999959135371 a001 10946/710647*141422324^(2/3) 4180999959135372 a001 10959/844*141422324^(4/13) 4180999959135372 a001 10946/710647*(1/2+1/2*5^(1/2))^26 4180999959135372 a001 10946/710647*73681302247^(1/2) 4180999959135372 a001 10946/710647*10749957122^(13/24) 4180999959135372 a001 10946/710647*4106118243^(13/23) 4180999959135372 a001 10946/710647*1568397607^(13/22) 4180999959135372 a001 10946/710647*599074578^(13/21) 4180999959135372 a001 10959/844*2537720636^(4/15) 4180999959135372 a001 10959/844*45537549124^(4/17) 4180999959135372 a001 10959/844*817138163596^(4/19) 4180999959135372 a001 10959/844*14662949395604^(4/21) 4180999959135372 a001 10959/844*(1/2+1/2*5^(1/2))^12 4180999959135372 a001 10959/844*192900153618^(2/9) 4180999959135372 a001 10959/844*73681302247^(3/13) 4180999959135372 a001 10959/844*10749957122^(1/4) 4180999959135372 a001 10959/844*4106118243^(6/23) 4180999959135372 a001 10959/844*1568397607^(3/11) 4180999959135372 a001 10959/844*599074578^(2/7) 4180999959135372 a001 10959/844*228826127^(3/10) 4180999959135372 a001 10946/710647*228826127^(13/20) 4180999959135372 a001 10959/844*87403803^(6/19) 4180999959135372 a001 10946/710647*87403803^(13/19) 4180999959135373 a001 10959/844*33385282^(1/3) 4180999959135374 a001 10946/710647*33385282^(13/18) 4180999959135381 a001 10959/844*12752043^(6/17) 4180999959135391 a001 10946/710647*12752043^(13/17) 4180999959135438 a001 10959/844*4870847^(3/8) 4180999959135515 a001 10946/710647*4870847^(13/16) 4180999959135855 a001 10959/844*1860498^(2/5) 4180999959136418 a001 10946/710647*1860498^(13/15) 4180999959136579 a001 1739379603/416020 4180999959136887 a001 1346269/24476*439204^(1/3) 4180999959138808 a001 5702887/24476*439204^(2/9) 4180999959138920 a001 10959/844*710647^(3/7) 4180999959139286 a001 10946/271443*271443^(12/13) 4180999959140488 a004 Fibonacci(21)*Lucas(29)/(1/2+sqrt(5)/2)^31 4180999959141244 a001 24157817/24476*439204^(1/9) 4180999959142435 a001 5473/930249*20633239^(4/5) 4180999959142440 a001 208010/6119*20633239^(2/7) 4180999959142443 a001 5473/930249*17393796001^(4/7) 4180999959142443 a001 5473/930249*14662949395604^(4/9) 4180999959142443 a001 5473/930249*(1/2+1/2*5^(1/2))^28 4180999959142443 a001 5473/930249*505019158607^(1/2) 4180999959142443 a001 5473/930249*73681302247^(7/13) 4180999959142443 a001 5473/930249*10749957122^(7/12) 4180999959142443 a001 5473/930249*4106118243^(14/23) 4180999959142443 a001 5473/930249*1568397607^(7/11) 4180999959142443 a001 5473/930249*599074578^(2/3) 4180999959142443 a001 208010/6119*2537720636^(2/9) 4180999959142443 a001 208010/6119*312119004989^(2/11) 4180999959142443 a001 208010/6119*(1/2+1/2*5^(1/2))^10 4180999959142443 a001 208010/6119*28143753123^(1/5) 4180999959142443 a001 208010/6119*10749957122^(5/24) 4180999959142443 a001 208010/6119*4106118243^(5/23) 4180999959142443 a001 208010/6119*1568397607^(5/22) 4180999959142443 a001 208010/6119*599074578^(5/21) 4180999959142443 a001 208010/6119*228826127^(1/4) 4180999959142443 a001 5473/930249*228826127^(7/10) 4180999959142443 a001 208010/6119*87403803^(5/19) 4180999959142443 a001 5473/930249*87403803^(14/19) 4180999959142444 a001 208010/6119*33385282^(5/18) 4180999959142446 a001 5473/930249*33385282^(7/9) 4180999959142450 a001 208010/6119*12752043^(5/17) 4180999959142464 a001 5473/930249*12752043^(14/17) 4180999959142498 a001 208010/6119*4870847^(5/16) 4180999959142597 a001 5473/930249*4870847^(7/8) 4180999959142619 a001 9107509840/2178309 4180999959142845 a001 208010/6119*1860498^(1/3) 4180999959143059 a001 10946/710647*710647^(13/14) 4180999959143189 a004 Fibonacci(21)*Lucas(31)/(1/2+sqrt(5)/2)^33 4180999959143413 a001 10946/4870847*7881196^(10/11) 4180999959143466 a001 10946/4870847*20633239^(6/7) 4180999959143474 a001 10946/4870847*141422324^(10/13) 4180999959143474 a001 10946/4870847*2537720636^(2/3) 4180999959143474 a001 10946/4870847*45537549124^(10/17) 4180999959143474 a001 10946/4870847*312119004989^(6/11) 4180999959143474 a001 10946/4870847*14662949395604^(10/21) 4180999959143474 a001 10946/4870847*(1/2+1/2*5^(1/2))^30 4180999959143474 a001 10946/4870847*192900153618^(5/9) 4180999959143474 a001 10946/4870847*28143753123^(3/5) 4180999959143474 a001 10946/4870847*10749957122^(5/8) 4180999959143474 a001 10946/4870847*4106118243^(15/23) 4180999959143474 a001 10946/4870847*1568397607^(15/22) 4180999959143474 a001 10946/4870847*599074578^(5/7) 4180999959143474 a001 2178309/24476*(1/2+1/2*5^(1/2))^8 4180999959143474 a001 2178309/24476*23725150497407^(1/8) 4180999959143474 a001 2178309/24476*505019158607^(1/7) 4180999959143474 a001 2178309/24476*73681302247^(2/13) 4180999959143474 a001 2178309/24476*10749957122^(1/6) 4180999959143474 a001 2178309/24476*4106118243^(4/23) 4180999959143474 a001 2178309/24476*1568397607^(2/11) 4180999959143474 a001 2178309/24476*599074578^(4/21) 4180999959143474 a001 2178309/24476*228826127^(1/5) 4180999959143474 a001 10946/4870847*228826127^(3/4) 4180999959143474 a001 2178309/24476*87403803^(4/19) 4180999959143475 a001 10946/4870847*87403803^(15/19) 4180999959143475 a001 2178309/24476*33385282^(2/9) 4180999959143477 a001 10946/4870847*33385282^(5/6) 4180999959143480 a001 2178309/24476*12752043^(4/17) 4180999959143497 a001 10946/4870847*12752043^(15/17) 4180999959143500 a001 23843770314/5702887 4180999959143518 a001 2178309/24476*4870847^(1/4) 4180999959143570 a001 5473/930249*1860498^(14/15) 4180999959143583 a004 Fibonacci(21)*Lucas(33)/(1/2+sqrt(5)/2)^35 4180999959143613 a001 5702887/24476*7881196^(2/11) 4180999959143625 a001 5702887/24476*141422324^(2/13) 4180999959143625 a001 10946/12752043*(1/2+1/2*5^(1/2))^32 4180999959143625 a001 10946/12752043*23725150497407^(1/2) 4180999959143625 a001 10946/12752043*505019158607^(4/7) 4180999959143625 a001 10946/12752043*73681302247^(8/13) 4180999959143625 a001 10946/12752043*10749957122^(2/3) 4180999959143625 a001 10946/12752043*4106118243^(16/23) 4180999959143625 a001 10946/12752043*1568397607^(8/11) 4180999959143625 a001 10946/12752043*599074578^(16/21) 4180999959143625 a001 5702887/24476*2537720636^(2/15) 4180999959143625 a001 5702887/24476*45537549124^(2/17) 4180999959143625 a001 5702887/24476*14662949395604^(2/21) 4180999959143625 a001 5702887/24476*(1/2+1/2*5^(1/2))^6 4180999959143625 a001 5702887/24476*10749957122^(1/8) 4180999959143625 a001 5702887/24476*4106118243^(3/23) 4180999959143625 a001 5702887/24476*1568397607^(3/22) 4180999959143625 a001 5702887/24476*599074578^(1/7) 4180999959143625 a001 5702887/24476*228826127^(3/20) 4180999959143625 a001 10946/12752043*228826127^(4/5) 4180999959143625 a001 5702887/24476*87403803^(3/19) 4180999959143625 a001 10946/12752043*87403803^(16/19) 4180999959143625 a001 5702887/24476*33385282^(1/6) 4180999959143628 a001 10946/12752043*33385282^(8/9) 4180999959143629 a001 31211900551/7465176 4180999959143629 a001 5702887/24476*12752043^(3/17) 4180999959143639 a001 10946/4870847*4870847^(15/16) 4180999959143641 a004 Fibonacci(21)*Lucas(35)/(1/2+sqrt(5)/2)^37 4180999959143646 a001 24157817/24476*7881196^(1/11) 4180999959143647 a001 5473/16692641*45537549124^(2/3) 4180999959143647 a001 5473/16692641*(1/2+1/2*5^(1/2))^34 4180999959143647 a001 5473/16692641*10749957122^(17/24) 4180999959143647 a001 5473/16692641*4106118243^(17/23) 4180999959143647 a001 5473/16692641*1568397607^(17/22) 4180999959143647 a001 5473/16692641*599074578^(17/21) 4180999959143647 a001 3732588/6119*(1/2+1/2*5^(1/2))^4 4180999959143647 a001 3732588/6119*23725150497407^(1/16) 4180999959143647 a001 3732588/6119*73681302247^(1/13) 4180999959143647 a001 3732588/6119*10749957122^(1/12) 4180999959143647 a001 3732588/6119*4106118243^(2/23) 4180999959143647 a001 3732588/6119*1568397607^(1/11) 4180999959143647 a001 3732588/6119*599074578^(2/21) 4180999959143647 a001 3732588/6119*228826127^(1/10) 4180999959143647 a001 5473/16692641*228826127^(17/20) 4180999959143647 a001 3732588/6119*87403803^(2/19) 4180999959143647 a001 3732588/6119*33385282^(1/9) 4180999959143647 a001 5473/16692641*87403803^(17/19) 4180999959143647 a001 163427632992/39088169 4180999959143649 a001 10946/12752043*12752043^(16/17) 4180999959143649 a004 Fibonacci(21)*Lucas(37)/(1/2+sqrt(5)/2)^39 4180999959143650 a001 10946/87403803*141422324^(12/13) 4180999959143650 a001 3732588/6119*12752043^(2/17) 4180999959143650 a001 10946/87403803*2537720636^(4/5) 4180999959143650 a001 10946/87403803*45537549124^(12/17) 4180999959143650 a001 10946/87403803*14662949395604^(4/7) 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^36/Lucas(38) 4180999959143650 a001 10946/87403803*505019158607^(9/14) 4180999959143650 a001 10946/87403803*192900153618^(2/3) 4180999959143650 a001 10946/87403803*73681302247^(9/13) 4180999959143650 a001 10946/87403803*10749957122^(3/4) 4180999959143650 a001 10946/87403803*4106118243^(18/23) 4180999959143650 a001 10946/87403803*1568397607^(9/11) 4180999959143650 a001 10946/87403803*599074578^(6/7) 4180999959143650 a001 39088169/24476*(1/2+1/2*5^(1/2))^2 4180999959143650 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^2/Lucas(21) 4180999959143650 a001 39088169/24476*10749957122^(1/24) 4180999959143650 a001 39088169/24476*4106118243^(1/23) 4180999959143650 a001 39088169/24476*1568397607^(1/22) 4180999959143650 a001 39088169/24476*599074578^(1/21) 4180999959143650 a001 39088169/24476*228826127^(1/20) 4180999959143650 a001 39088169/24476*87403803^(1/19) 4180999959143650 a001 10946/87403803*228826127^(9/10) 4180999959143650 a001 427859097874/102334155 4180999959143650 a001 39088169/24476*33385282^(1/18) 4180999959143650 a004 Fibonacci(21)*Lucas(39)/(1/2+sqrt(5)/2)^41 4180999959143650 a001 5473/16692641*33385282^(17/18) 4180999959143650 a001 10946/228826127*817138163596^(2/3) 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^38/Lucas(40) 4180999959143650 a001 10946/228826127*10749957122^(19/24) 4180999959143650 a001 10946/228826127*4106118243^(19/23) 4180999959143650 a001 10946/228826127*1568397607^(19/22) 4180999959143650 a001 10946/228826127*599074578^(19/21) 4180999959143650 a001 102334155/24476 4180999959143650 a004 Fibonacci(21)*Lucas(41)/(1/2+sqrt(5)/2)^43 4180999959143650 a001 10946/87403803*87403803^(18/19) 4180999959143650 a001 5473/299537289*2537720636^(8/9) 4180999959143650 a001 5473/299537289*312119004989^(8/11) 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^40/Lucas(42) 4180999959143650 a001 5473/299537289*23725150497407^(5/8) 4180999959143650 a001 5473/299537289*73681302247^(10/13) 4180999959143650 a001 5473/299537289*28143753123^(4/5) 4180999959143650 a001 5473/299537289*10749957122^(5/6) 4180999959143650 a001 5473/299537289*4106118243^(20/23) 4180999959143650 a001 5473/299537289*1568397607^(10/11) 4180999959143650 a001 2932589884016/701408733 4180999959143650 a004 Fibonacci(21)*Lucas(43)/(1/2+sqrt(5)/2)^45 4180999959143650 a001 10946/228826127*228826127^(19/20) 4180999959143650 a001 10946/1568397607*2537720636^(14/15) 4180999959143650 a001 10946/1568397607*17393796001^(6/7) 4180999959143650 a001 10946/1568397607*45537549124^(14/17) 4180999959143650 a001 10946/1568397607*14662949395604^(2/3) 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^42/Lucas(44) 4180999959143650 a001 10946/1568397607*505019158607^(3/4) 4180999959143650 a001 10946/1568397607*192900153618^(7/9) 4180999959143650 a001 10946/1568397607*10749957122^(7/8) 4180999959143650 a001 10946/1568397607*4106118243^(21/23) 4180999959143650 a001 7677619991418/1836311903 4180999959143650 a004 Fibonacci(21)*Lucas(45)/(1/2+sqrt(5)/2)^47 4180999959143650 a001 5473/299537289*599074578^(20/21) 4180999959143650 a001 10946/4106118243*312119004989^(4/5) 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^44/Lucas(46) 4180999959143650 a001 10946/4106118243*23725150497407^(11/16) 4180999959143650 a001 10946/4106118243*73681302247^(11/13) 4180999959143650 a001 10946/4106118243*10749957122^(11/12) 4180999959143650 a001 10050135045119/2403763488 4180999959143650 a004 Fibonacci(21)*Lucas(47)/(1/2+sqrt(5)/2)^49 4180999959143650 a001 10946/1568397607*1568397607^(21/22) 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^46/Lucas(48) 4180999959143650 a001 52623190279296/12586269025 4180999959143650 a004 Fibonacci(21)*Lucas(49)/(1/2+sqrt(5)/2)^51 4180999959143650 a001 10946/4106118243*4106118243^(22/23) 4180999959143650 a001 10946/28143753123*45537549124^(16/17) 4180999959143650 a001 10946/28143753123*14662949395604^(16/21) 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^48/Lucas(50) 4180999959143650 a001 10946/28143753123*192900153618^(8/9) 4180999959143650 a001 10946/28143753123*73681302247^(12/13) 4180999959143650 a001 137769300747650/32951280099 4180999959143650 a004 Fibonacci(21)*Lucas(51)/(1/2+sqrt(5)/2)^53 4180999959143650 a001 5473/5374978561*10749957122^(23/24) 4180999959143650 a001 10946/73681302247*312119004989^(10/11) 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^50/Lucas(52) 4180999959143650 a001 10946/73681302247*3461452808002^(5/6) 4180999959143650 a001 180342355981827/43133785636 4180999959143650 a004 Fibonacci(21)*Lucas(53)/(1/2+sqrt(5)/2)^55 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^52/Lucas(54) 4180999959143650 a001 5473/96450076809*23725150497407^(13/16) 4180999959143650 a001 5473/96450076809*505019158607^(13/14) 4180999959143650 a001 72637295011024/17373187209 4180999959143650 a004 Fibonacci(21)*Lucas(55)/(1/2+sqrt(5)/2)^57 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^54/Lucas(56) 4180999959143650 a001 2472169793466282/591286729879 4180999959143650 a004 Fibonacci(21)*Lucas(57)/(1/2+sqrt(5)/2)^59 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^56/Lucas(58) 4180999959143650 a004 Fibonacci(21)*Lucas(59)/(1/2+sqrt(5)/2)^61 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^58/Lucas(60) 4180999959143650 a004 Fibonacci(21)*Lucas(61)/(1/2+sqrt(5)/2)^63 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^60/Lucas(62) 4180999959143650 a004 Fibonacci(21)*Lucas(63)/(1/2+sqrt(5)/2)^65 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^62/Lucas(64) 4180999959143650 a004 Fibonacci(21)*Lucas(65)/(1/2+sqrt(5)/2)^67 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^64/Lucas(66) 4180999959143650 a004 Fibonacci(21)*Lucas(67)/(1/2+sqrt(5)/2)^69 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^66/Lucas(68) 4180999959143650 a004 Fibonacci(21)*Lucas(69)/(1/2+sqrt(5)/2)^71 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^68/Lucas(70) 4180999959143650 a004 Fibonacci(21)*Lucas(71)/(1/2+sqrt(5)/2)^73 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^70/Lucas(72) 4180999959143650 a004 Fibonacci(21)*Lucas(73)/(1/2+sqrt(5)/2)^75 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^72/Lucas(74) 4180999959143650 a004 Fibonacci(21)*Lucas(75)/(1/2+sqrt(5)/2)^77 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^74/Lucas(76) 4180999959143650 a004 Fibonacci(21)*Lucas(77)/(1/2+sqrt(5)/2)^79 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^76/Lucas(78) 4180999959143650 a004 Fibonacci(21)*Lucas(79)/(1/2+sqrt(5)/2)^81 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^78/Lucas(80) 4180999959143650 a004 Fibonacci(21)*Lucas(81)/(1/2+sqrt(5)/2)^83 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^80/Lucas(82) 4180999959143650 a004 Fibonacci(21)*Lucas(83)/(1/2+sqrt(5)/2)^85 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^82/Lucas(84) 4180999959143650 a004 Fibonacci(21)*Lucas(85)/(1/2+sqrt(5)/2)^87 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^84/Lucas(86) 4180999959143650 a004 Fibonacci(21)*Lucas(87)/(1/2+sqrt(5)/2)^89 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^86/Lucas(88) 4180999959143650 a004 Fibonacci(21)*Lucas(89)/(1/2+sqrt(5)/2)^91 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^88/Lucas(90) 4180999959143650 a004 Fibonacci(21)*Lucas(91)/(1/2+sqrt(5)/2)^93 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^90/Lucas(92) 4180999959143650 a004 Fibonacci(21)*Lucas(93)/(1/2+sqrt(5)/2)^95 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^92/Lucas(94) 4180999959143650 a004 Fibonacci(21)*Lucas(95)/(1/2+sqrt(5)/2)^97 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^94/Lucas(96) 4180999959143650 a004 Fibonacci(21)*Lucas(97)/(1/2+sqrt(5)/2)^99 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^96/Lucas(98) 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^98/Lucas(100) 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^97/Lucas(99) 4180999959143650 a004 Fibonacci(21)*Lucas(98)/(1/2+sqrt(5)/2)^100 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^95/Lucas(97) 4180999959143650 a004 Fibonacci(21)*Lucas(96)/(1/2+sqrt(5)/2)^98 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^93/Lucas(95) 4180999959143650 a004 Fibonacci(21)*Lucas(94)/(1/2+sqrt(5)/2)^96 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^91/Lucas(93) 4180999959143650 a004 Fibonacci(21)*Lucas(92)/(1/2+sqrt(5)/2)^94 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^89/Lucas(91) 4180999959143650 a004 Fibonacci(21)*Lucas(90)/(1/2+sqrt(5)/2)^92 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^87/Lucas(89) 4180999959143650 a004 Fibonacci(21)*Lucas(88)/(1/2+sqrt(5)/2)^90 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^85/Lucas(87) 4180999959143650 a004 Fibonacci(21)*Lucas(86)/(1/2+sqrt(5)/2)^88 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^83/Lucas(85) 4180999959143650 a004 Fibonacci(21)*Lucas(84)/(1/2+sqrt(5)/2)^86 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^81/Lucas(83) 4180999959143650 a004 Fibonacci(21)*Lucas(82)/(1/2+sqrt(5)/2)^84 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^79/Lucas(81) 4180999959143650 a004 Fibonacci(21)*Lucas(80)/(1/2+sqrt(5)/2)^82 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^77/Lucas(79) 4180999959143650 a004 Fibonacci(21)*Lucas(78)/(1/2+sqrt(5)/2)^80 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^75/Lucas(77) 4180999959143650 a004 Fibonacci(21)*Lucas(76)/(1/2+sqrt(5)/2)^78 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^73/Lucas(75) 4180999959143650 a004 Fibonacci(21)*Lucas(74)/(1/2+sqrt(5)/2)^76 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^71/Lucas(73) 4180999959143650 a004 Fibonacci(21)*Lucas(72)/(1/2+sqrt(5)/2)^74 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^69/Lucas(71) 4180999959143650 a004 Fibonacci(21)*Lucas(70)/(1/2+sqrt(5)/2)^72 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^67/Lucas(69) 4180999959143650 a004 Fibonacci(21)*Lucas(68)/(1/2+sqrt(5)/2)^70 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^65/Lucas(67) 4180999959143650 a004 Fibonacci(21)*Lucas(66)/(1/2+sqrt(5)/2)^68 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^63/Lucas(65) 4180999959143650 a004 Fibonacci(21)*Lucas(64)/(1/2+sqrt(5)/2)^66 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^61/Lucas(63) 4180999959143650 a004 Fibonacci(21)*Lucas(62)/(1/2+sqrt(5)/2)^64 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^59/Lucas(61) 4180999959143650 a004 Fibonacci(21)*Lucas(60)/(1/2+sqrt(5)/2)^62 4180999959143650 a001 10472279297044786/2504730781961 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^57/Lucas(59) 4180999959143650 a004 Fibonacci(21)*Lucas(58)/(1/2+sqrt(5)/2)^60 4180999959143650 a001 4000054751789252/956722026041 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^55/Lucas(57) 4180999959143650 a004 Fibonacci(21)*Lucas(56)/(1/2+sqrt(5)/2)^58 4180999959143650 a001 763942479161485/182717648081 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^53/Lucas(55) 4180999959143650 a004 Fibonacci(21)*Lucas(54)/(1/2+sqrt(5)/2)^56 4180999959143650 a001 583600123179658/139583862445 4180999959143650 a001 10946/119218851371*817138163596^(17/19) 4180999959143650 a001 10946/119218851371*14662949395604^(17/21) 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^51/Lucas(53) 4180999959143650 a001 10946/119218851371*192900153618^(17/18) 4180999959143650 a004 Fibonacci(21)*Lucas(52)/(1/2+sqrt(5)/2)^54 4180999959143650 a001 222915411216004/53316291173 4180999959143650 a001 5473/22768774562*14662949395604^(7/9) 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^49/Lucas(51) 4180999959143650 a001 5473/22768774562*505019158607^(7/8) 4180999959143650 a004 Fibonacci(21)*Lucas(50)/(1/2+sqrt(5)/2)^52 4180999959143650 a001 42573055234177/10182505537 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^47/Lucas(49) 4180999959143650 a004 Fibonacci(21)*Lucas(48)/(1/2+sqrt(5)/2)^50 4180999959143650 a001 2501763091466/598364773 4180999959143650 a001 10946/6643838879*45537549124^(15/17) 4180999959143650 a001 10946/6643838879*312119004989^(9/11) 4180999959143650 a001 10946/6643838879*14662949395604^(5/7) 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^45/Lucas(47) 4180999959143650 a001 10946/6643838879*192900153618^(5/6) 4180999959143650 a001 10946/6643838879*28143753123^(9/10) 4180999959143650 a001 10946/6643838879*10749957122^(15/16) 4180999959143650 a004 Fibonacci(21)*Lucas(46)/(1/2+sqrt(5)/2)^48 4180999959143650 a001 12422650098820/2971215073 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^43/Lucas(45) 4180999959143650 a004 Fibonacci(21)*Lucas(44)/(1/2+sqrt(5)/2)^46 4180999959143650 a001 2372515053701/567451585 4180999959143650 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^41/Lucas(43) 4180999959143651 a004 Fibonacci(44)/Lucas(21)/(1/2+sqrt(5)/2)^4 4180999959143651 a004 Fibonacci(46)/Lucas(21)/(1/2+sqrt(5)/2)^6 4180999959143651 a004 Fibonacci(48)/Lucas(21)/(1/2+sqrt(5)/2)^8 4180999959143651 a004 Fibonacci(50)/Lucas(21)/(1/2+sqrt(5)/2)^10 4180999959143651 a004 Fibonacci(52)/Lucas(21)/(1/2+sqrt(5)/2)^12 4180999959143651 a004 Fibonacci(54)/Lucas(21)/(1/2+sqrt(5)/2)^14 4180999959143651 a004 Fibonacci(56)/Lucas(21)/(1/2+sqrt(5)/2)^16 4180999959143651 a004 Fibonacci(58)/Lucas(21)/(1/2+sqrt(5)/2)^18 4180999959143651 a004 Fibonacci(60)/Lucas(21)/(1/2+sqrt(5)/2)^20 4180999959143651 a004 Fibonacci(62)/Lucas(21)/(1/2+sqrt(5)/2)^22 4180999959143651 a004 Fibonacci(64)/Lucas(21)/(1/2+sqrt(5)/2)^24 4180999959143651 a004 Fibonacci(66)/Lucas(21)/(1/2+sqrt(5)/2)^26 4180999959143651 a004 Fibonacci(68)/Lucas(21)/(1/2+sqrt(5)/2)^28 4180999959143651 a004 Fibonacci(70)/Lucas(21)/(1/2+sqrt(5)/2)^30 4180999959143651 a004 Fibonacci(72)/Lucas(21)/(1/2+sqrt(5)/2)^32 4180999959143651 a004 Fibonacci(74)/Lucas(21)/(1/2+sqrt(5)/2)^34 4180999959143651 a004 Fibonacci(76)/Lucas(21)/(1/2+sqrt(5)/2)^36 4180999959143651 a004 Fibonacci(78)/Lucas(21)/(1/2+sqrt(5)/2)^38 4180999959143651 a004 Fibonacci(80)/Lucas(21)/(1/2+sqrt(5)/2)^40 4180999959143651 a004 Fibonacci(82)/Lucas(21)/(1/2+sqrt(5)/2)^42 4180999959143651 a004 Fibonacci(21)*Lucas(42)/(1/2+sqrt(5)/2)^44 4180999959143651 a004 Fibonacci(86)/Lucas(21)/(1/2+sqrt(5)/2)^46 4180999959143651 a004 Fibonacci(88)/Lucas(21)/(1/2+sqrt(5)/2)^48 4180999959143651 a004 Fibonacci(90)/Lucas(21)/(1/2+sqrt(5)/2)^50 4180999959143651 a004 Fibonacci(92)/Lucas(21)/(1/2+sqrt(5)/2)^52 4180999959143651 a004 Fibonacci(94)/Lucas(21)/(1/2+sqrt(5)/2)^54 4180999959143651 a004 Fibonacci(96)/Lucas(21)/(1/2+sqrt(5)/2)^56 4180999959143651 a004 Fibonacci(100)/Lucas(21)/(1/2+sqrt(5)/2)^60 4180999959143651 a004 Fibonacci(98)/Lucas(21)/(1/2+sqrt(5)/2)^58 4180999959143651 a004 Fibonacci(99)/Lucas(21)/(1/2+sqrt(5)/2)^59 4180999959143651 a004 Fibonacci(97)/Lucas(21)/(1/2+sqrt(5)/2)^57 4180999959143651 a004 Fibonacci(95)/Lucas(21)/(1/2+sqrt(5)/2)^55 4180999959143651 a004 Fibonacci(93)/Lucas(21)/(1/2+sqrt(5)/2)^53 4180999959143651 a004 Fibonacci(91)/Lucas(21)/(1/2+sqrt(5)/2)^51 4180999959143651 a004 Fibonacci(89)/Lucas(21)/(1/2+sqrt(5)/2)^49 4180999959143651 a004 Fibonacci(87)/Lucas(21)/(1/2+sqrt(5)/2)^47 4180999959143651 a004 Fibonacci(85)/Lucas(21)/(1/2+sqrt(5)/2)^45 4180999959143651 a004 Fibonacci(83)/Lucas(21)/(1/2+sqrt(5)/2)^43 4180999959143651 a004 Fibonacci(81)/Lucas(21)/(1/2+sqrt(5)/2)^41 4180999959143651 a004 Fibonacci(79)/Lucas(21)/(1/2+sqrt(5)/2)^39 4180999959143651 a004 Fibonacci(77)/Lucas(21)/(1/2+sqrt(5)/2)^37 4180999959143651 a004 Fibonacci(75)/Lucas(21)/(1/2+sqrt(5)/2)^35 4180999959143651 a004 Fibonacci(73)/Lucas(21)/(1/2+sqrt(5)/2)^33 4180999959143651 a004 Fibonacci(71)/Lucas(21)/(1/2+sqrt(5)/2)^31 4180999959143651 a004 Fibonacci(69)/Lucas(21)/(1/2+sqrt(5)/2)^29 4180999959143651 a004 Fibonacci(67)/Lucas(21)/(1/2+sqrt(5)/2)^27 4180999959143651 a004 Fibonacci(65)/Lucas(21)/(1/2+sqrt(5)/2)^25 4180999959143651 a004 Fibonacci(63)/Lucas(21)/(1/2+sqrt(5)/2)^23 4180999959143651 a004 Fibonacci(61)/Lucas(21)/(1/2+sqrt(5)/2)^21 4180999959143651 a004 Fibonacci(59)/Lucas(21)/(1/2+sqrt(5)/2)^19 4180999959143651 a004 Fibonacci(57)/Lucas(21)/(1/2+sqrt(5)/2)^17 4180999959143651 a004 Fibonacci(55)/Lucas(21)/(1/2+sqrt(5)/2)^15 4180999959143651 a004 Fibonacci(53)/Lucas(21)/(1/2+sqrt(5)/2)^13 4180999959143651 a004 Fibonacci(51)/Lucas(21)/(1/2+sqrt(5)/2)^11 4180999959143651 a004 Fibonacci(49)/Lucas(21)/(1/2+sqrt(5)/2)^9 4180999959143651 a004 Fibonacci(47)/Lucas(21)/(1/2+sqrt(5)/2)^7 4180999959143651 a004 Fibonacci(45)/Lucas(21)/(1/2+sqrt(5)/2)^5 4180999959143651 a004 Fibonacci(43)/Lucas(21)/(1/2+sqrt(5)/2)^3 4180999959143651 a001 1812440223386/433494437 4180999959143651 a001 10946/370248451*2537720636^(13/15) 4180999959143651 a001 10946/370248451*45537549124^(13/17) 4180999959143651 a001 10946/370248451*14662949395604^(13/21) 4180999959143651 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^39/Lucas(41) 4180999959143651 a001 10946/370248451*192900153618^(13/18) 4180999959143651 a001 10946/370248451*73681302247^(3/4) 4180999959143651 a001 10946/370248451*10749957122^(13/16) 4180999959143651 a001 10946/370248451*599074578^(13/14) 4180999959143651 a004 Fibonacci(41)/Lucas(21)/(1/2+sqrt(5)/2) 4180999959143651 a004 Fibonacci(21)*Lucas(40)/(1/2+sqrt(5)/2)^42 4180999959143651 a001 692290562756/165580141 4180999959143651 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^37/Lucas(39) 4180999959143651 a001 31622993/24476+31622993/24476*5^(1/2) 4180999959143651 a004 Fibonacci(21)*Lucas(38)/(1/2+sqrt(5)/2)^40 4180999959143651 a001 39088169/24476*12752043^(1/17) 4180999959143652 a001 132215732441/31622993 4180999959143652 a001 24157817/24476*141422324^(1/13) 4180999959143652 a001 10946/54018521*2537720636^(7/9) 4180999959143652 a001 10946/54018521*17393796001^(5/7) 4180999959143652 a001 10946/54018521*312119004989^(7/11) 4180999959143652 a001 10946/54018521*14662949395604^(5/9) 4180999959143652 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^35/Lucas(37) 4180999959143652 a001 10946/54018521*505019158607^(5/8) 4180999959143652 a001 10946/54018521*28143753123^(7/10) 4180999959143652 a001 10946/54018521*599074578^(5/6) 4180999959143652 a001 24157817/24476*2537720636^(1/15) 4180999959143652 a001 24157817/24476*45537549124^(1/17) 4180999959143652 a001 24157817/24476*14662949395604^(1/21) 4180999959143652 a001 24157817/24476*(1/2+1/2*5^(1/2))^3 4180999959143652 a001 24157817/24476*192900153618^(1/18) 4180999959143652 a001 24157817/24476*10749957122^(1/16) 4180999959143652 a001 24157817/24476*599074578^(1/14) 4180999959143652 a001 10946/54018521*228826127^(7/8) 4180999959143652 a001 24157817/24476*33385282^(1/12) 4180999959143654 a004 Fibonacci(21)*Lucas(36)/(1/2+sqrt(5)/2)^38 4180999959143658 a001 5702887/24476*4870847^(3/16) 4180999959143659 a001 101003831890/24157817 4180999959143659 a001 9227465/24476*20633239^(1/7) 4180999959143660 a001 10946/20633239*141422324^(11/13) 4180999959143660 a001 10946/20633239*2537720636^(11/15) 4180999959143660 a001 10946/20633239*45537549124^(11/17) 4180999959143660 a001 10946/20633239*312119004989^(3/5) 4180999959143660 a001 10946/20633239*817138163596^(11/19) 4180999959143660 a001 10946/20633239*14662949395604^(11/21) 4180999959143660 a001 10946/20633239*(1/2+1/2*5^(1/2))^33 4180999959143660 a001 10946/20633239*192900153618^(11/18) 4180999959143660 a001 10946/20633239*10749957122^(11/16) 4180999959143660 a001 10946/20633239*1568397607^(3/4) 4180999959143660 a001 10946/20633239*599074578^(11/14) 4180999959143660 a001 9227465/24476*2537720636^(1/9) 4180999959143660 a001 9227465/24476*312119004989^(1/11) 4180999959143660 a001 9227465/24476*(1/2+1/2*5^(1/2))^5 4180999959143660 a001 9227465/24476*28143753123^(1/10) 4180999959143660 a001 9227465/24476*228826127^(1/8) 4180999959143661 a001 39088169/24476*4870847^(1/16) 4180999959143664 a001 10946/20633239*33385282^(11/12) 4180999959143669 a001 3732588/6119*4870847^(1/8) 4180999959143676 a004 Fibonacci(21)*Lucas(34)/(1/2+sqrt(5)/2)^36 4180999959143708 a001 2967694676/709805 4180999959143716 a001 1762289/12238*20633239^(1/5) 4180999959143717 a001 567451585/219602*5778^(1/18) 4180999959143718 a001 5473/3940598*(1/2+1/2*5^(1/2))^31 4180999959143718 a001 5473/3940598*9062201101803^(1/2) 4180999959143718 a001 1762289/12238*17393796001^(1/7) 4180999959143718 a001 1762289/12238*14662949395604^(1/9) 4180999959143718 a001 1762289/12238*(1/2+1/2*5^(1/2))^7 4180999959143718 a001 1762289/12238*599074578^(1/6) 4180999959143730 a001 39088169/24476*1860498^(1/15) 4180999959143773 a001 24157817/24476*1860498^(1/10) 4180999959143796 a001 2178309/24476*1860498^(4/15) 4180999959143808 a001 3732588/6119*1860498^(2/15) 4180999959143827 a004 Fibonacci(21)*Lucas(32)/(1/2+sqrt(5)/2)^34 4180999959143862 a001 9227465/24476*1860498^(1/6) 4180999959143866 a001 5702887/24476*1860498^(1/5) 4180999959144045 a001 7368130237/1762289 4180999959144094 a001 1346269/24476*7881196^(3/11) 4180999959144112 a001 1346269/24476*141422324^(3/13) 4180999959144112 a001 10946/3010349*(1/2+1/2*5^(1/2))^29 4180999959144112 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^29/Lucas(31) 4180999959144112 a001 10946/3010349*1322157322203^(1/2) 4180999959144112 a001 1346269/24476*2537720636^(1/5) 4180999959144112 a001 1346269/24476*45537549124^(3/17) 4180999959144112 a001 1346269/24476*14662949395604^(1/7) 4180999959144112 a001 1346269/24476*(1/2+1/2*5^(1/2))^9 4180999959144112 a001 1346269/24476*192900153618^(1/6) 4180999959144112 a001 1346269/24476*10749957122^(3/16) 4180999959144112 a001 1346269/24476*599074578^(3/14) 4180999959144113 a001 1346269/24476*33385282^(1/4) 4180999959144241 a001 39088169/24476*710647^(1/14) 4180999959144474 a001 1346269/24476*1860498^(3/10) 4180999959144829 a001 3732588/6119*710647^(1/7) 4180999959144858 a004 Fibonacci(21)*Lucas(30)/(1/2+sqrt(5)/2)^32 4180999959145399 a001 5702887/24476*710647^(3/14) 4180999959145399 a001 208010/6119*710647^(5/14) 4180999959145788 a001 1762289/12238*710647^(1/4) 4180999959145840 a001 2178309/24476*710647^(2/7) 4180999959146351 a001 5628750634/1346269 4180999959146758 a001 10946/1149851*7881196^(9/11) 4180999959146790 a001 514229/24476*7881196^(1/3) 4180999959146813 a001 10946/1149851*141422324^(9/13) 4180999959146813 a001 10946/1149851*2537720636^(3/5) 4180999959146813 a001 10946/1149851*45537549124^(9/17) 4180999959146813 a001 10946/1149851*817138163596^(9/19) 4180999959146813 a001 10946/1149851*14662949395604^(3/7) 4180999959146813 a001 10946/1149851*(1/2+1/2*5^(1/2))^27 4180999959146813 a001 10946/1149851*192900153618^(1/2) 4180999959146813 a001 10946/1149851*10749957122^(9/16) 4180999959146813 a001 10946/1149851*599074578^(9/14) 4180999959146813 a001 514229/24476*312119004989^(1/5) 4180999959146813 a001 514229/24476*(1/2+1/2*5^(1/2))^11 4180999959146813 a001 514229/24476*1568397607^(1/4) 4180999959146816 a001 10946/1149851*33385282^(3/4) 4180999959147900 a001 10946/1149851*1860498^(9/10) 4180999959148015 a001 39088169/24476*271443^(1/13) 4180999959151929 a004 Fibonacci(21)*Lucas(28)/(1/2+sqrt(5)/2)^30 4180999959152377 a001 3732588/6119*271443^(2/13) 4180999959156720 a001 5702887/24476*271443^(3/13) 4180999959159856 a001 31622993/12238*103682^(1/24) 4180999959160934 a001 2178309/24476*271443^(4/13) 4180999959161561 a001 10959/844*271443^(6/13) 4180999959162163 a001 2149991428/514229 4180999959164267 a001 208010/6119*271443^(5/13) 4180999959165318 a001 5473/219602*20633239^(5/7) 4180999959165325 a001 98209/12238*141422324^(1/3) 4180999959165325 a001 5473/219602*2537720636^(5/9) 4180999959165325 a001 5473/219602*312119004989^(5/11) 4180999959165325 a001 5473/219602*(1/2+1/2*5^(1/2))^25 4180999959165325 a001 5473/219602*3461452808002^(5/12) 4180999959165325 a001 5473/219602*28143753123^(1/2) 4180999959165325 a001 98209/12238*(1/2+1/2*5^(1/2))^13 4180999959165325 a001 98209/12238*73681302247^(1/4) 4180999959165325 a001 5473/219602*228826127^(5/8) 4180999959166331 a001 5473/219602*1860498^(5/6) 4180999959176061 a001 39088169/24476*103682^(1/12) 4180999959192268 a001 24157817/24476*103682^(1/8) 4180999959193697 a001 98209/12238*271443^(1/2) 4180999959200395 a004 Fibonacci(21)*Lucas(26)/(1/2+sqrt(5)/2)^28 4180999959203074 a001 75025/24476*167761^(3/5) 4180999959208469 a001 3732588/6119*103682^(1/6) 4180999959224688 a001 9227465/24476*103682^(5/24) 4180999959232193 a001 10946/64079*64079^(21/23) 4180999959240858 a001 5702887/24476*103682^(1/4) 4180999959257156 a001 1762289/12238*103682^(7/24) 4180999959264822 a001 31622993/12238*39603^(1/22) 4180999959270535 a001 410611825/98209 4180999959270602 a001 433494437/167761*5778^(1/18) 4180999959273118 a001 2178309/24476*103682^(1/3) 4180999959280168 a001 75025/24476*439204^(5/9) 4180999959289961 a001 1346269/24476*103682^(3/8) 4180999959292179 a001 75025/24476*7881196^(5/11) 4180999959292205 a001 75025/24476*20633239^(3/7) 4180999959292209 a001 75025/24476*141422324^(5/13) 4180999959292209 a001 10946/167761*(1/2+1/2*5^(1/2))^23 4180999959292209 a001 10946/167761*4106118243^(1/2) 4180999959292209 a001 75025/24476*2537720636^(1/3) 4180999959292209 a001 75025/24476*45537549124^(5/17) 4180999959292209 a001 75025/24476*312119004989^(3/11) 4180999959292209 a001 75025/24476*14662949395604^(5/21) 4180999959292209 a001 75025/24476*(1/2+1/2*5^(1/2))^15 4180999959292209 a001 75025/24476*192900153618^(5/18) 4180999959292209 a001 75025/24476*28143753123^(3/10) 4180999959292209 a001 75025/24476*10749957122^(5/16) 4180999959292209 a001 75025/24476*599074578^(5/14) 4180999959292209 a001 75025/24476*228826127^(3/8) 4180999959292211 a001 75025/24476*33385282^(5/12) 4180999959292813 a001 75025/24476*1860498^(1/2) 4180999959304498 a001 208010/6119*103682^(5/12) 4180999959313783 a001 121393/24476*103682^(7/12) 4180999959325073 a001 514229/24476*103682^(11/24) 4180999959329837 a001 10959/844*103682^(1/2) 4180999959375996 a001 98209/12238*103682^(13/24) 4180999959385993 a001 39088169/24476*39603^(1/11) 4180999959409277 a001 28657/24476*64079^(17/23) 4180999959416416 a001 24157817/271443*15127^(2/5) 4180999959464880 a001 63245986/710647*15127^(2/5) 4180999959471951 a001 165580141/1860498*15127^(2/5) 4180999959472983 a001 433494437/4870847*15127^(2/5) 4180999959473133 a001 1134903170/12752043*15127^(2/5) 4180999959473155 a001 2971215073/33385282*15127^(2/5) 4180999959473158 a001 7778742049/87403803*15127^(2/5) 4180999959473159 a001 20365011074/228826127*15127^(2/5) 4180999959473159 a001 53316291173/599074578*15127^(2/5) 4180999959473159 a001 139583862445/1568397607*15127^(2/5) 4180999959473159 a001 365435296162/4106118243*15127^(2/5) 4180999959473159 a001 956722026041/10749957122*15127^(2/5) 4180999959473159 a001 2504730781961/28143753123*15127^(2/5) 4180999959473159 a001 6557470319842/73681302247*15127^(2/5) 4180999959473159 a001 10610209857723/119218851371*15127^(2/5) 4180999959473159 a001 4052739537881/45537549124*15127^(2/5) 4180999959473159 a001 1548008755920/17393796001*15127^(2/5) 4180999959473159 a001 591286729879/6643838879*15127^(2/5) 4180999959473159 a001 225851433717/2537720636*15127^(2/5) 4180999959473159 a001 86267571272/969323029*15127^(2/5) 4180999959473159 a001 32951280099/370248451*15127^(2/5) 4180999959473159 a001 12586269025/141422324*15127^(2/5) 4180999959473160 a001 4807526976/54018521*15127^(2/5) 4180999959473169 a001 1836311903/20633239*15127^(2/5) 4180999959473226 a001 3524667/39604*15127^(2/5) 4180999959473620 a001 267914296/3010349*15127^(2/5) 4180999959476321 a001 102334155/1149851*15127^(2/5) 4180999959494833 a001 39088169/439204*15127^(2/5) 4180999959507167 a001 24157817/24476*39603^(3/22) 4180999959532582 a004 Fibonacci(21)*Lucas(24)/(1/2+sqrt(5)/2)^26 4180999959535292 a001 75025/24476*103682^(5/8) 4180999959546900 a001 832040/39603*15127^(11/20) 4180999959577829 a001 9227465/64079*15127^(7/20) 4180999959621714 a001 14930352/167761*15127^(2/5) 4180999959628334 a001 3732588/6119*39603^(2/11) 4180999959664936 a001 10946/167761*103682^(23/24) 4180999959749519 a001 9227465/24476*39603^(5/22) 4180999959808326 a001 5473/12238*24476^(19/21) 4180999959870655 a001 5702887/24476*39603^(3/11) 4180999959991920 a001 1762289/12238*39603^(7/22) 4180999959997777 a001 5702887/103682*15127^(9/20) 4180999960013328 a001 313679522/75025 4180999960057226 a001 31622993/12238*15127^(1/20) 4180999960112848 a001 2178309/24476*39603^(4/11) 4180999960140280 a001 165580141/64079*5778^(1/18) 4180999960145029 a001 10946/64079*439204^(7/9) 4180999960161844 a001 10946/64079*7881196^(7/11) 4180999960161881 a001 10946/64079*20633239^(3/5) 4180999960161887 a001 10946/64079*141422324^(7/13) 4180999960161887 a001 10946/64079*2537720636^(7/15) 4180999960161887 a001 10946/64079*17393796001^(3/7) 4180999960161887 a001 10946/64079*45537549124^(7/17) 4180999960161887 a001 10946/64079*14662949395604^(1/3) 4180999960161887 a001 10946/64079*(1/2+1/2*5^(1/2))^21 4180999960161887 a001 10946/64079*192900153618^(7/18) 4180999960161887 a001 10946/64079*10749957122^(7/16) 4180999960161887 a001 10946/64079*599074578^(1/2) 4180999960161887 a001 28657/24476*45537549124^(1/3) 4180999960161887 a001 28657/24476*(1/2+1/2*5^(1/2))^17 4180999960161889 a001 10946/64079*33385282^(7/12) 4180999960161900 a001 28657/24476*12752043^(1/2) 4180999960162733 a001 10946/64079*1860498^(7/10) 4180999960168096 a001 10946/64079*710647^(3/4) 4180999960234657 a001 1346269/24476*39603^(9/22) 4180999960329986 a001 4976784/90481*15127^(9/20) 4180999960354160 a001 208010/6119*39603^(5/11) 4180999960378455 a001 39088169/710647*15127^(9/20) 4180999960385527 a001 831985/15126*15127^(9/20) 4180999960386558 a001 267914296/4870847*15127^(9/20) 4180999960386709 a001 233802911/4250681*15127^(9/20) 4180999960386731 a001 1836311903/33385282*15127^(9/20) 4180999960386734 a001 1602508992/29134601*15127^(9/20) 4180999960386734 a001 12586269025/228826127*15127^(9/20) 4180999960386734 a001 10983760033/199691526*15127^(9/20) 4180999960386735 a001 86267571272/1568397607*15127^(9/20) 4180999960386735 a001 75283811239/1368706081*15127^(9/20) 4180999960386735 a001 591286729879/10749957122*15127^(9/20) 4180999960386735 a001 12585437040/228811001*15127^(9/20) 4180999960386735 a001 4052739537881/73681302247*15127^(9/20) 4180999960386735 a001 3536736619241/64300051206*15127^(9/20) 4180999960386735 a001 6557470319842/119218851371*15127^(9/20) 4180999960386735 a001 2504730781961/45537549124*15127^(9/20) 4180999960386735 a001 956722026041/17393796001*15127^(9/20) 4180999960386735 a001 365435296162/6643838879*15127^(9/20) 4180999960386735 a001 139583862445/2537720636*15127^(9/20) 4180999960386735 a001 53316291173/969323029*15127^(9/20) 4180999960386735 a001 20365011074/370248451*15127^(9/20) 4180999960386735 a001 7778742049/141422324*15127^(9/20) 4180999960386736 a001 2971215073/54018521*15127^(9/20) 4180999960386744 a001 1134903170/20633239*15127^(9/20) 4180999960386802 a001 433494437/7881196*15127^(9/20) 4180999960387196 a001 165580141/3010349*15127^(9/20) 4180999960389897 a001 63245986/1149851*15127^(9/20) 4180999960408410 a001 24157817/439204*15127^(9/20) 4180999960437380 a001 28657/24476*103682^(17/24) 4180999960464846 a001 514229/39603*15127^(3/5) 4180999960479702 a001 514229/24476*39603^(1/2) 4180999960491370 a001 5702887/64079*15127^(2/5) 4180999960502202 a001 10946/64079*103682^(7/8) 4180999960535303 a001 9227465/167761*15127^(9/20) 4180999960589432 a001 10959/844*39603^(6/11) 4180999960693466 a001 11592/6119*39603^(8/11) 4180999960740557 a001 98209/12238*39603^(13/22) 4180999960783310 a001 121393/24476*39603^(7/11) 4180999960911446 a001 1762289/51841*15127^(1/2) 4180999960970801 a001 39088169/24476*15127^(1/10) 4180999961109785 a001 75025/24476*39603^(15/22) 4180999961243576 a001 9227465/271443*15127^(1/2) 4180999961292033 a001 24157817/710647*15127^(1/2) 4180999961299103 a001 31622993/930249*15127^(1/2) 4180999961300134 a001 165580141/4870847*15127^(1/2) 4180999961300285 a001 433494437/12752043*15127^(1/2) 4180999961300306 a001 567451585/16692641*15127^(1/2) 4180999961300310 a001 2971215073/87403803*15127^(1/2) 4180999961300310 a001 7778742049/228826127*15127^(1/2) 4180999961300310 a001 10182505537/299537289*15127^(1/2) 4180999961300310 a001 53316291173/1568397607*15127^(1/2) 4180999961300310 a001 139583862445/4106118243*15127^(1/2) 4180999961300310 a001 182717648081/5374978561*15127^(1/2) 4180999961300310 a001 956722026041/28143753123*15127^(1/2) 4180999961300310 a001 2504730781961/73681302247*15127^(1/2) 4180999961300310 a001 3278735159921/96450076809*15127^(1/2) 4180999961300310 a001 10610209857723/312119004989*15127^(1/2) 4180999961300310 a001 4052739537881/119218851371*15127^(1/2) 4180999961300310 a001 387002188980/11384387281*15127^(1/2) 4180999961300310 a001 591286729879/17393796001*15127^(1/2) 4180999961300310 a001 225851433717/6643838879*15127^(1/2) 4180999961300310 a001 1135099622/33391061*15127^(1/2) 4180999961300310 a001 32951280099/969323029*15127^(1/2) 4180999961300310 a001 12586269025/370248451*15127^(1/2) 4180999961300310 a001 1201881744/35355581*15127^(1/2) 4180999961300312 a001 1836311903/54018521*15127^(1/2) 4180999961300320 a001 701408733/20633239*15127^(1/2) 4180999961300378 a001 66978574/1970299*15127^(1/2) 4180999961300772 a001 102334155/3010349*15127^(1/2) 4180999961303472 a001 39088169/1149851*15127^(1/2) 4180999961321981 a001 196452/5779*15127^(1/2) 4180999961366980 a001 105937/13201*15127^(13/20) 4180999961405038 a001 3524578/64079*15127^(9/20) 4180999961427168 a001 14930352/9349*3571^(2/17) 4180999961448843 a001 5702887/167761*15127^(1/2) 4180999961576971 r005 Re(z^2+c),c=-8/17+25/59*I,n=14 4180999961723009 a001 9227465/15127*5778^(2/9) 4180999961809429 a004 Fibonacci(21)*Lucas(22)/(1/2+sqrt(5)/2)^24 4180999961824778 a001 46347/2206*15127^(11/20) 4180999961884379 a001 24157817/24476*15127^(3/20) 4180999962157116 a001 5702887/271443*15127^(11/20) 4180999962205603 a001 14930352/710647*15127^(11/20) 4180999962212678 a001 39088169/1860498*15127^(11/20) 4180999962213710 a001 102334155/4870847*15127^(11/20) 4180999962213860 a001 267914296/12752043*15127^(11/20) 4180999962213882 a001 701408733/33385282*15127^(11/20) 4180999962213885 a001 1836311903/87403803*15127^(11/20) 4180999962213886 a001 102287808/4868641*15127^(11/20) 4180999962213886 a001 12586269025/599074578*15127^(11/20) 4180999962213886 a001 32951280099/1568397607*15127^(11/20) 4180999962213886 a001 86267571272/4106118243*15127^(11/20) 4180999962213886 a001 225851433717/10749957122*15127^(11/20) 4180999962213886 a001 591286729879/28143753123*15127^(11/20) 4180999962213886 a001 1548008755920/73681302247*15127^(11/20) 4180999962213886 a001 4052739537881/192900153618*15127^(11/20) 4180999962213886 a001 225749145909/10745088481*15127^(11/20) 4180999962213886 a001 6557470319842/312119004989*15127^(11/20) 4180999962213886 a001 2504730781961/119218851371*15127^(11/20) 4180999962213886 a001 956722026041/45537549124*15127^(11/20) 4180999962213886 a001 365435296162/17393796001*15127^(11/20) 4180999962213886 a001 139583862445/6643838879*15127^(11/20) 4180999962213886 a001 53316291173/2537720636*15127^(11/20) 4180999962213886 a001 20365011074/969323029*15127^(11/20) 4180999962213886 a001 7778742049/370248451*15127^(11/20) 4180999962213886 a001 2971215073/141422324*15127^(11/20) 4180999962213887 a001 1134903170/54018521*15127^(11/20) 4180999962213896 a001 433494437/20633239*15127^(11/20) 4180999962213953 a001 165580141/7881196*15127^(11/20) 4180999962214348 a001 63245986/3010349*15127^(11/20) 4180999962217050 a001 24157817/1149851*15127^(11/20) 4180999962221807 a001 28657/24476*39603^(17/22) 4180999962235570 a001 9227465/439204*15127^(11/20) 4180999962310510 a001 196418/39603*15127^(7/10) 4180999962318371 a001 2178309/64079*15127^(1/2) 4180999962362512 a001 3524578/167761*15127^(11/20) 4180999962706493 a001 10946/64079*39603^(21/22) 4180999962738991 a001 1346269/103682*15127^(3/5) 4180999962797950 a001 3732588/6119*15127^(1/5) 4180999963070785 a001 3524578/271443*15127^(3/5) 4180999963119193 a001 9227465/710647*15127^(3/5) 4180999963126255 a001 24157817/1860498*15127^(3/5) 4180999963127286 a001 63245986/4870847*15127^(3/5) 4180999963127436 a001 165580141/12752043*15127^(3/5) 4180999963127458 a001 433494437/33385282*15127^(3/5) 4180999963127461 a001 1134903170/87403803*15127^(3/5) 4180999963127462 a001 2971215073/228826127*15127^(3/5) 4180999963127462 a001 7778742049/599074578*15127^(3/5) 4180999963127462 a001 20365011074/1568397607*15127^(3/5) 4180999963127462 a001 53316291173/4106118243*15127^(3/5) 4180999963127462 a001 139583862445/10749957122*15127^(3/5) 4180999963127462 a001 365435296162/28143753123*15127^(3/5) 4180999963127462 a001 956722026041/73681302247*15127^(3/5) 4180999963127462 a001 2504730781961/192900153618*15127^(3/5) 4180999963127462 a001 10610209857723/817138163596*15127^(3/5) 4180999963127462 a001 4052739537881/312119004989*15127^(3/5) 4180999963127462 a001 1548008755920/119218851371*15127^(3/5) 4180999963127462 a001 591286729879/45537549124*15127^(3/5) 4180999963127462 a001 7787980473/599786069*15127^(3/5) 4180999963127462 a001 86267571272/6643838879*15127^(3/5) 4180999963127462 a001 32951280099/2537720636*15127^(3/5) 4180999963127462 a001 12586269025/969323029*15127^(3/5) 4180999963127462 a001 4807526976/370248451*15127^(3/5) 4180999963127462 a001 1836311903/141422324*15127^(3/5) 4180999963127463 a001 701408733/54018521*15127^(3/5) 4180999963127472 a001 9238424/711491*15127^(3/5) 4180999963127529 a001 102334155/7881196*15127^(3/5) 4180999963127923 a001 39088169/3010349*15127^(3/5) 4180999963130620 a001 14930352/1149851*15127^(3/5) 4180999963145666 a001 121393/39603*15127^(3/4) 4180999963149110 a001 5702887/439204*15127^(3/5) 4180999963232584 a001 1346269/64079*15127^(11/20) 4180999963253410 a001 28657/9349*9349^(15/19) 4180999963275844 a001 2178309/167761*15127^(3/5) 4180999963413755 a001 63245986/39603*5778^(1/9) 4180999963468182 m001 GolombDickman-exp(-1/2*Pi)+ZetaQ(4) 4180999963650898 a001 416020/51841*15127^(13/20) 4180999963711539 a001 9227465/24476*15127^(1/4) 4180999963984117 a001 726103/90481*15127^(13/20) 4180999964032733 a001 5702887/710647*15127^(13/20) 4180999964039826 a001 829464/103361*15127^(13/20) 4180999964040861 a001 39088169/4870847*15127^(13/20) 4180999964041012 a001 34111385/4250681*15127^(13/20) 4180999964041034 a001 133957148/16692641*15127^(13/20) 4180999964041037 a001 233802911/29134601*15127^(13/20) 4180999964041037 a001 1836311903/228826127*15127^(13/20) 4180999964041037 a001 267084832/33281921*15127^(13/20) 4180999964041037 a001 12586269025/1568397607*15127^(13/20) 4180999964041037 a001 10983760033/1368706081*15127^(13/20) 4180999964041037 a001 43133785636/5374978561*15127^(13/20) 4180999964041037 a001 75283811239/9381251041*15127^(13/20) 4180999964041037 a001 591286729879/73681302247*15127^(13/20) 4180999964041037 a001 86000486440/10716675201*15127^(13/20) 4180999964041037 a001 4052739537881/505019158607*15127^(13/20) 4180999964041037 a001 3536736619241/440719107401*15127^(13/20) 4180999964041037 a001 3278735159921/408569081798*15127^(13/20) 4180999964041037 a001 2504730781961/312119004989*15127^(13/20) 4180999964041037 a001 956722026041/119218851371*15127^(13/20) 4180999964041037 a001 182717648081/22768774562*15127^(13/20) 4180999964041037 a001 139583862445/17393796001*15127^(13/20) 4180999964041037 a001 53316291173/6643838879*15127^(13/20) 4180999964041037 a001 10182505537/1268860318*15127^(13/20) 4180999964041037 a001 7778742049/969323029*15127^(13/20) 4180999964041037 a001 2971215073/370248451*15127^(13/20) 4180999964041038 a001 567451585/70711162*15127^(13/20) 4180999964041039 a001 433494437/54018521*15127^(13/20) 4180999964041047 a001 165580141/20633239*15127^(13/20) 4180999964041105 a001 31622993/3940598*15127^(13/20) 4180999964041500 a001 24157817/3010349*15127^(13/20) 4180999964044210 a001 9227465/1149851*15127^(13/20) 4180999964062779 a001 1762289/219602*15127^(13/20) 4180999964144490 a001 832040/64079*15127^(3/5) 4180999964178961 a001 10946/9349*9349^(17/19) 4180999964190058 a001 1346269/167761*15127^(13/20) 4180999964190936 a001 17711/39603*15127^(19/20) 4180999964264545 a001 75025/39603*15127^(4/5) 4180999964363897 a001 46368/9349*9349^(14/19) 4180999964568844 a001 514229/103682*15127^(7/10) 4180999964625079 a001 5702887/24476*15127^(3/10) 4180999964640631 a001 15456/13201*15127^(17/20) 4180999964898330 a001 1346269/271443*15127^(7/10) 4180999964946402 a001 3524578/710647*15127^(7/10) 4180999964953415 a001 9227465/1860498*15127^(7/10) 4180999964954438 a001 24157817/4870847*15127^(7/10) 4180999964954588 a001 63245986/12752043*15127^(7/10) 4180999964954609 a001 165580141/33385282*15127^(7/10) 4180999964954613 a001 433494437/87403803*15127^(7/10) 4180999964954613 a001 1134903170/228826127*15127^(7/10) 4180999964954613 a001 2971215073/599074578*15127^(7/10) 4180999964954613 a001 7778742049/1568397607*15127^(7/10) 4180999964954613 a001 20365011074/4106118243*15127^(7/10) 4180999964954613 a001 53316291173/10749957122*15127^(7/10) 4180999964954613 a001 139583862445/28143753123*15127^(7/10) 4180999964954613 a001 365435296162/73681302247*15127^(7/10) 4180999964954613 a001 956722026041/192900153618*15127^(7/10) 4180999964954613 a001 2504730781961/505019158607*15127^(7/10) 4180999964954613 a001 10610209857723/2139295485799*15127^(7/10) 4180999964954613 a001 140728068720/28374454999*15127^(7/10) 4180999964954613 a001 591286729879/119218851371*15127^(7/10) 4180999964954613 a001 225851433717/45537549124*15127^(7/10) 4180999964954613 a001 86267571272/17393796001*15127^(7/10) 4180999964954613 a001 32951280099/6643838879*15127^(7/10) 4180999964954613 a001 1144206275/230701876*15127^(7/10) 4180999964954613 a001 4807526976/969323029*15127^(7/10) 4180999964954613 a001 1836311903/370248451*15127^(7/10) 4180999964954613 a001 701408733/141422324*15127^(7/10) 4180999964954615 a001 267914296/54018521*15127^(7/10) 4180999964954623 a001 9303105/1875749*15127^(7/10) 4180999964954680 a001 39088169/7881196*15127^(7/10) 4180999964955071 a001 14930352/3010349*15127^(7/10) 4180999964957750 a001 5702887/1149851*15127^(7/10) 4180999964976111 a001 2178309/439204*15127^(7/10) 4180999965062436 a001 514229/64079*15127^(13/20) 4180999965101964 a001 75640/15251*15127^(7/10) 4180999965104511 a001 119814916/28657 4180999965281596 a001 5473/12238*64079^(19/23) 4180999965470978 a001 317811/103682*15127^(3/4) 4180999965538748 a001 1762289/12238*15127^(7/20) 4180999965596455 r005 Im(z^2+c),c=3/110+28/53*I,n=43 4180999965690602 a001 165580141/103682*5778^(1/9) 4180999965810237 a001 832040/271443*15127^(3/4) 4180999965859734 a001 311187/101521*15127^(3/4) 4180999965866955 a001 5702887/1860498*15127^(3/4) 4180999965868009 a001 14930352/4870847*15127^(3/4) 4180999965868163 a001 39088169/12752043*15127^(3/4) 4180999965868185 a001 14619165/4769326*15127^(3/4) 4180999965868188 a001 267914296/87403803*15127^(3/4) 4180999965868189 a001 701408733/228826127*15127^(3/4) 4180999965868189 a001 1836311903/599074578*15127^(3/4) 4180999965868189 a001 686789568/224056801*15127^(3/4) 4180999965868189 a001 12586269025/4106118243*15127^(3/4) 4180999965868189 a001 32951280099/10749957122*15127^(3/4) 4180999965868189 a001 86267571272/28143753123*15127^(3/4) 4180999965868189 a001 32264490531/10525900321*15127^(3/4) 4180999965868189 a001 591286729879/192900153618*15127^(3/4) 4180999965868189 a001 1548008755920/505019158607*15127^(3/4) 4180999965868189 a001 1515744265389/494493258286*15127^(3/4) 4180999965868189 a001 2504730781961/817138163596*15127^(3/4) 4180999965868189 a001 956722026041/312119004989*15127^(3/4) 4180999965868189 a001 365435296162/119218851371*15127^(3/4) 4180999965868189 a001 139583862445/45537549124*15127^(3/4) 4180999965868189 a001 53316291173/17393796001*15127^(3/4) 4180999965868189 a001 20365011074/6643838879*15127^(3/4) 4180999965868189 a001 7778742049/2537720636*15127^(3/4) 4180999965868189 a001 2971215073/969323029*15127^(3/4) 4180999965868189 a001 1134903170/370248451*15127^(3/4) 4180999965868189 a001 433494437/141422324*15127^(3/4) 4180999965868190 a001 165580141/54018521*15127^(3/4) 4180999965868199 a001 63245986/20633239*15127^(3/4) 4180999965868258 a001 24157817/7881196*15127^(3/4) 4180999965868660 a001 9227465/3010349*15127^(3/4) 4180999965871419 a001 3524578/1149851*15127^(3/4) 4180999965890325 a001 1346269/439204*15127^(3/4) 4180999965964571 a001 317811/64079*15127^(7/10) 4180999966019910 a001 514229/167761*15127^(3/4) 4180999966022789 a001 433494437/271443*5778^(1/9) 4180999966071254 a001 1134903170/710647*5778^(1/9) 4180999966078325 a001 2971215073/1860498*5778^(1/9) 4180999966079357 a001 7778742049/4870847*5778^(1/9) 4180999966079508 a001 20365011074/12752043*5778^(1/9) 4180999966079530 a001 53316291173/33385282*5778^(1/9) 4180999966079533 a001 139583862445/87403803*5778^(1/9) 4180999966079533 a001 365435296162/228826127*5778^(1/9) 4180999966079533 a001 956722026041/599074578*5778^(1/9) 4180999966079533 a001 2504730781961/1568397607*5778^(1/9) 4180999966079533 a001 6557470319842/4106118243*5778^(1/9) 4180999966079533 a001 10610209857723/6643838879*5778^(1/9) 4180999966079533 a001 4052739537881/2537720636*5778^(1/9) 4180999966079533 a001 1548008755920/969323029*5778^(1/9) 4180999966079533 a001 591286729879/370248451*5778^(1/9) 4180999966079533 a001 225851433717/141422324*5778^(1/9) 4180999966079535 a001 86267571272/54018521*5778^(1/9) 4180999966079543 a001 32951280099/20633239*5778^(1/9) 4180999966079601 a001 12586269025/7881196*5778^(1/9) 4180999966079995 a001 4807526976/3010349*5778^(1/9) 4180999966082696 a001 1836311903/1149851*5778^(1/9) 4180999966101141 a001 31622993/12238*5778^(1/18) 4180999966101208 a001 701408733/439204*5778^(1/9) 4180999966122748 a001 5473/12238*817138163596^(1/3) 4180999966122748 a001 5473/12238*(1/2+1/2*5^(1/2))^19 4180999966122748 a001 5473/12238*87403803^(1/2) 4180999966228092 a001 267914296/167761*5778^(1/9) 4180999966414507 a001 98209/51841*15127^(4/5) 4180999966430652 a001 5473/12238*103682^(19/24) 4180999966452080 a001 2178309/24476*15127^(2/5) 4180999966728183 a001 514229/271443*15127^(4/5) 4180999966773947 a001 1346269/710647*15127^(4/5) 4180999966780624 a001 1762289/930249*15127^(4/5) 4180999966781598 a001 9227465/4870847*15127^(4/5) 4180999966781740 a001 24157817/12752043*15127^(4/5) 4180999966781761 a001 31622993/16692641*15127^(4/5) 4180999966781764 a001 165580141/87403803*15127^(4/5) 4180999966781765 a001 433494437/228826127*15127^(4/5) 4180999966781765 a001 567451585/299537289*15127^(4/5) 4180999966781765 a001 2971215073/1568397607*15127^(4/5) 4180999966781765 a001 7778742049/4106118243*15127^(4/5) 4180999966781765 a001 10182505537/5374978561*15127^(4/5) 4180999966781765 a001 53316291173/28143753123*15127^(4/5) 4180999966781765 a001 139583862445/73681302247*15127^(4/5) 4180999966781765 a001 182717648081/96450076809*15127^(4/5) 4180999966781765 a001 956722026041/505019158607*15127^(4/5) 4180999966781765 a001 10610209857723/5600748293801*15127^(4/5) 4180999966781765 a001 591286729879/312119004989*15127^(4/5) 4180999966781765 a001 225851433717/119218851371*15127^(4/5) 4180999966781765 a001 21566892818/11384387281*15127^(4/5) 4180999966781765 a001 32951280099/17393796001*15127^(4/5) 4180999966781765 a001 12586269025/6643838879*15127^(4/5) 4180999966781765 a001 1201881744/634430159*15127^(4/5) 4180999966781765 a001 1836311903/969323029*15127^(4/5) 4180999966781765 a001 701408733/370248451*15127^(4/5) 4180999966781765 a001 66978574/35355581*15127^(4/5) 4180999966781766 a001 102334155/54018521*15127^(4/5) 4180999966781774 a001 39088169/20633239*15127^(4/5) 4180999966781828 a001 3732588/1970299*15127^(4/5) 4180999966782200 a001 5702887/3010349*15127^(4/5) 4180999966784751 a001 2178309/1149851*15127^(4/5) 4180999966802231 a001 208010/109801*15127^(4/5) 4180999966908100 a001 196418/64079*15127^(3/4) 4180999966922044 a001 317811/167761*15127^(4/5) 4180999966961375 a001 28657/39603*15127^(9/10) 4180999967097770 a001 102334155/64079*5778^(1/9) 4180999967249664 a001 121393/103682*15127^(17/20) 4180999967366294 a001 1346269/24476*15127^(9/20) 4180999967419042 a001 75025/9349*9349^(13/19) 4180999967630317 a001 105937/90481*15127^(17/20) 4180999967685854 a001 832040/710647*15127^(17/20) 4180999967693956 a001 726103/620166*15127^(17/20) 4180999967695138 a001 5702887/4870847*15127^(17/20) 4180999967695311 a001 4976784/4250681*15127^(17/20) 4180999967695336 a001 39088169/33385282*15127^(17/20) 4180999967695340 a001 34111385/29134601*15127^(17/20) 4180999967695340 a001 267914296/228826127*15127^(17/20) 4180999967695340 a001 233802911/199691526*15127^(17/20) 4180999967695340 a001 1836311903/1568397607*15127^(17/20) 4180999967695340 a001 1602508992/1368706081*15127^(17/20) 4180999967695340 a001 12586269025/10749957122*15127^(17/20) 4180999967695340 a001 10983760033/9381251041*15127^(17/20) 4180999967695340 a001 86267571272/73681302247*15127^(17/20) 4180999967695340 a001 75283811239/64300051206*15127^(17/20) 4180999967695340 a001 2504730781961/2139295485799*15127^(17/20) 4180999967695340 a001 365435296162/312119004989*15127^(17/20) 4180999967695340 a001 139583862445/119218851371*15127^(17/20) 4180999967695340 a001 53316291173/45537549124*15127^(17/20) 4180999967695340 a001 20365011074/17393796001*15127^(17/20) 4180999967695340 a001 7778742049/6643838879*15127^(17/20) 4180999967695340 a001 2971215073/2537720636*15127^(17/20) 4180999967695340 a001 1134903170/969323029*15127^(17/20) 4180999967695340 a001 433494437/370248451*15127^(17/20) 4180999967695341 a001 165580141/141422324*15127^(17/20) 4180999967695342 a001 63245986/54018521*15127^(17/20) 4180999967695352 a001 24157817/20633239*15127^(17/20) 4180999967695418 a001 9227465/7881196*15127^(17/20) 4180999967695869 a001 3524578/3010349*15127^(17/20) 4180999967698964 a001 1346269/1149851*15127^(17/20) 4180999967720177 a001 514229/439204*15127^(17/20) 4180999967743257 a001 121393/64079*15127^(4/5) 4180999967770290 a004 Fibonacci(22)*Lucas(20)/(1/2+sqrt(5)/2)^23 4180999967865574 a001 196418/167761*15127^(17/20) 4180999968278200 a001 208010/6119*15127^(1/2) 4180999968368543 a001 75025/103682*15127^(9/10) 4180999968425011 a001 5473/12238*39603^(19/22) 4180999968573846 a001 196418/271443*15127^(9/10) 4180999968603800 a001 514229/710647*15127^(9/10) 4180999968608170 a001 1346269/1860498*15127^(9/10) 4180999968608807 a001 3524578/4870847*15127^(9/10) 4180999968608900 a001 9227465/12752043*15127^(9/10) 4180999968608914 a001 24157817/33385282*15127^(9/10) 4180999968608916 a001 63245986/87403803*15127^(9/10) 4180999968608916 a001 165580141/228826127*15127^(9/10) 4180999968608916 a001 433494437/599074578*15127^(9/10) 4180999968608916 a001 1134903170/1568397607*15127^(9/10) 4180999968608916 a001 2971215073/4106118243*15127^(9/10) 4180999968608916 a001 7778742049/10749957122*15127^(9/10) 4180999968608916 a001 20365011074/28143753123*15127^(9/10) 4180999968608916 a001 53316291173/73681302247*15127^(9/10) 4180999968608916 a001 139583862445/192900153618*15127^(9/10) 4180999968608916 a001 10610209857723/14662949395604*15127^(9/10) 4180999968608916 a001 591286729879/817138163596*15127^(9/10) 4180999968608916 a001 225851433717/312119004989*15127^(9/10) 4180999968608916 a001 86267571272/119218851371*15127^(9/10) 4180999968608916 a001 32951280099/45537549124*15127^(9/10) 4180999968608916 a001 12586269025/17393796001*15127^(9/10) 4180999968608916 a001 4807526976/6643838879*15127^(9/10) 4180999968608916 a001 1836311903/2537720636*15127^(9/10) 4180999968608916 a001 701408733/969323029*15127^(9/10) 4180999968608916 a001 267914296/370248451*15127^(9/10) 4180999968608916 a001 102334155/141422324*15127^(9/10) 4180999968608917 a001 39088169/54018521*15127^(9/10) 4180999968608922 a001 14930352/20633239*15127^(9/10) 4180999968608958 a001 5702887/7881196*15127^(9/10) 4180999968609201 a001 2178309/3010349*15127^(9/10) 4180999968610871 a001 832040/1149851*15127^(9/10) 4180999968622312 a001 317811/439204*15127^(9/10) 4180999968680463 a001 5702887/15127*5778^(5/18) 4180999968700730 a001 121393/167761*15127^(9/10) 4180999968744628 a001 23184/51841*15127^(19/20) 4180999968862136 a001 75025/64079*15127^(17/20) 4180999969196146 a001 514229/24476*15127^(11/20) 4180999969238221 a001 46368/64079*15127^(9/10) 4180999969409003 a001 121393/271443*15127^(19/20) 4180999969505934 a001 317811/710647*15127^(19/20) 4180999969520076 a001 416020/930249*15127^(19/20) 4180999969522139 a001 2178309/4870847*15127^(19/20) 4180999969522440 a001 5702887/12752043*15127^(19/20) 4180999969522484 a001 7465176/16692641*15127^(19/20) 4180999969522491 a001 39088169/87403803*15127^(19/20) 4180999969522492 a001 102334155/228826127*15127^(19/20) 4180999969522492 a001 133957148/299537289*15127^(19/20) 4180999969522492 a001 701408733/1568397607*15127^(19/20) 4180999969522492 a001 1836311903/4106118243*15127^(19/20) 4180999969522492 a001 2403763488/5374978561*15127^(19/20) 4180999969522492 a001 12586269025/28143753123*15127^(19/20) 4180999969522492 a001 32951280099/73681302247*15127^(19/20) 4180999969522492 a001 43133785636/96450076809*15127^(19/20) 4180999969522492 a001 225851433717/505019158607*15127^(19/20) 4180999969522492 a001 591286729879/1322157322203*15127^(19/20) 4180999969522492 a001 10610209857723/23725150497407*15127^(19/20) 4180999969522492 a001 182717648081/408569081798*15127^(19/20) 4180999969522492 a001 139583862445/312119004989*15127^(19/20) 4180999969522492 a001 53316291173/119218851371*15127^(19/20) 4180999969522492 a001 10182505537/22768774562*15127^(19/20) 4180999969522492 a001 7778742049/17393796001*15127^(19/20) 4180999969522492 a001 2971215073/6643838879*15127^(19/20) 4180999969522492 a001 567451585/1268860318*15127^(19/20) 4180999969522492 a001 433494437/969323029*15127^(19/20) 4180999969522492 a001 165580141/370248451*15127^(19/20) 4180999969522492 a001 31622993/70711162*15127^(19/20) 4180999969522495 a001 24157817/54018521*15127^(19/20) 4180999969522512 a001 9227465/20633239*15127^(19/20) 4180999969522627 a001 1762289/3940598*15127^(19/20) 4180999969523415 a001 1346269/3010349*15127^(19/20) 4180999969528816 a001 514229/1149851*15127^(19/20) 4180999969565841 a001 98209/219602*15127^(19/20) 4180999969731394 a001 121393/9349*9349^(12/19) 4180999969819609 a001 75025/167761*15127^(19/20) 4180999970047136 a004 Fibonacci(24)*Lucas(20)/(1/2+sqrt(5)/2)^25 4180999970098280 a001 10959/844*15127^(3/5) 4180999970371245 a001 39088169/39603*5778^(1/6) 4180999970379323 a004 Fibonacci(26)*Lucas(20)/(1/2+sqrt(5)/2)^27 4180999970427789 a004 Fibonacci(28)*Lucas(20)/(1/2+sqrt(5)/2)^29 4180999970434860 a004 Fibonacci(30)*Lucas(20)/(1/2+sqrt(5)/2)^31 4180999970435891 a004 Fibonacci(32)*Lucas(20)/(1/2+sqrt(5)/2)^33 4180999970436042 a004 Fibonacci(34)*Lucas(20)/(1/2+sqrt(5)/2)^35 4180999970436064 a004 Fibonacci(36)*Lucas(20)/(1/2+sqrt(5)/2)^37 4180999970436067 a004 Fibonacci(38)*Lucas(20)/(1/2+sqrt(5)/2)^39 4180999970436068 a004 Fibonacci(40)*Lucas(20)/(1/2+sqrt(5)/2)^41 4180999970436068 a004 Fibonacci(42)*Lucas(20)/(1/2+sqrt(5)/2)^43 4180999970436068 a004 Fibonacci(44)*Lucas(20)/(1/2+sqrt(5)/2)^45 4180999970436068 a004 Fibonacci(46)*Lucas(20)/(1/2+sqrt(5)/2)^47 4180999970436068 a004 Fibonacci(48)*Lucas(20)/(1/2+sqrt(5)/2)^49 4180999970436068 a004 Fibonacci(50)*Lucas(20)/(1/2+sqrt(5)/2)^51 4180999970436068 a004 Fibonacci(52)*Lucas(20)/(1/2+sqrt(5)/2)^53 4180999970436068 a004 Fibonacci(54)*Lucas(20)/(1/2+sqrt(5)/2)^55 4180999970436068 a004 Fibonacci(56)*Lucas(20)/(1/2+sqrt(5)/2)^57 4180999970436068 a004 Fibonacci(58)*Lucas(20)/(1/2+sqrt(5)/2)^59 4180999970436068 a004 Fibonacci(60)*Lucas(20)/(1/2+sqrt(5)/2)^61 4180999970436068 a004 Fibonacci(62)*Lucas(20)/(1/2+sqrt(5)/2)^63 4180999970436068 a004 Fibonacci(64)*Lucas(20)/(1/2+sqrt(5)/2)^65 4180999970436068 a004 Fibonacci(66)*Lucas(20)/(1/2+sqrt(5)/2)^67 4180999970436068 a004 Fibonacci(68)*Lucas(20)/(1/2+sqrt(5)/2)^69 4180999970436068 a004 Fibonacci(70)*Lucas(20)/(1/2+sqrt(5)/2)^71 4180999970436068 a004 Fibonacci(72)*Lucas(20)/(1/2+sqrt(5)/2)^73 4180999970436068 a004 Fibonacci(74)*Lucas(20)/(1/2+sqrt(5)/2)^75 4180999970436068 a004 Fibonacci(76)*Lucas(20)/(1/2+sqrt(5)/2)^77 4180999970436068 a004 Fibonacci(78)*Lucas(20)/(1/2+sqrt(5)/2)^79 4180999970436068 a004 Fibonacci(80)*Lucas(20)/(1/2+sqrt(5)/2)^81 4180999970436068 a004 Fibonacci(82)*Lucas(20)/(1/2+sqrt(5)/2)^83 4180999970436068 a004 Fibonacci(84)*Lucas(20)/(1/2+sqrt(5)/2)^85 4180999970436068 a004 Fibonacci(86)*Lucas(20)/(1/2+sqrt(5)/2)^87 4180999970436068 a004 Fibonacci(88)*Lucas(20)/(1/2+sqrt(5)/2)^89 4180999970436068 a004 Fibonacci(90)*Lucas(20)/(1/2+sqrt(5)/2)^91 4180999970436068 a004 Fibonacci(92)*Lucas(20)/(1/2+sqrt(5)/2)^93 4180999970436068 a004 Fibonacci(94)*Lucas(20)/(1/2+sqrt(5)/2)^95 4180999970436068 a004 Fibonacci(96)*Lucas(20)/(1/2+sqrt(5)/2)^97 4180999970436068 a004 Fibonacci(98)*Lucas(20)/(1/2+sqrt(5)/2)^99 4180999970436068 a004 Fibonacci(99)*Lucas(20)/(1/2+sqrt(5)/2)^100 4180999970436068 a004 Fibonacci(97)*Lucas(20)/(1/2+sqrt(5)/2)^98 4180999970436068 a004 Fibonacci(95)*Lucas(20)/(1/2+sqrt(5)/2)^96 4180999970436068 a004 Fibonacci(93)*Lucas(20)/(1/2+sqrt(5)/2)^94 4180999970436068 a004 Fibonacci(91)*Lucas(20)/(1/2+sqrt(5)/2)^92 4180999970436068 a004 Fibonacci(89)*Lucas(20)/(1/2+sqrt(5)/2)^90 4180999970436068 a004 Fibonacci(87)*Lucas(20)/(1/2+sqrt(5)/2)^88 4180999970436068 a004 Fibonacci(85)*Lucas(20)/(1/2+sqrt(5)/2)^86 4180999970436068 a004 Fibonacci(83)*Lucas(20)/(1/2+sqrt(5)/2)^84 4180999970436068 a004 Fibonacci(81)*Lucas(20)/(1/2+sqrt(5)/2)^82 4180999970436068 a004 Fibonacci(79)*Lucas(20)/(1/2+sqrt(5)/2)^80 4180999970436068 a004 Fibonacci(77)*Lucas(20)/(1/2+sqrt(5)/2)^78 4180999970436068 a004 Fibonacci(75)*Lucas(20)/(1/2+sqrt(5)/2)^76 4180999970436068 a004 Fibonacci(73)*Lucas(20)/(1/2+sqrt(5)/2)^74 4180999970436068 a004 Fibonacci(71)*Lucas(20)/(1/2+sqrt(5)/2)^72 4180999970436068 a004 Fibonacci(69)*Lucas(20)/(1/2+sqrt(5)/2)^70 4180999970436068 a004 Fibonacci(67)*Lucas(20)/(1/2+sqrt(5)/2)^68 4180999970436068 a004 Fibonacci(65)*Lucas(20)/(1/2+sqrt(5)/2)^66 4180999970436068 a004 Fibonacci(63)*Lucas(20)/(1/2+sqrt(5)/2)^64 4180999970436068 a004 Fibonacci(61)*Lucas(20)/(1/2+sqrt(5)/2)^62 4180999970436068 a004 Fibonacci(59)*Lucas(20)/(1/2+sqrt(5)/2)^60 4180999970436068 a004 Fibonacci(57)*Lucas(20)/(1/2+sqrt(5)/2)^58 4180999970436068 a004 Fibonacci(55)*Lucas(20)/(1/2+sqrt(5)/2)^56 4180999970436068 a004 Fibonacci(53)*Lucas(20)/(1/2+sqrt(5)/2)^54 4180999970436068 a004 Fibonacci(51)*Lucas(20)/(1/2+sqrt(5)/2)^52 4180999970436068 a004 Fibonacci(49)*Lucas(20)/(1/2+sqrt(5)/2)^50 4180999970436068 a004 Fibonacci(47)*Lucas(20)/(1/2+sqrt(5)/2)^48 4180999970436068 a004 Fibonacci(45)*Lucas(20)/(1/2+sqrt(5)/2)^46 4180999970436068 a004 Fibonacci(43)*Lucas(20)/(1/2+sqrt(5)/2)^44 4180999970436068 a004 Fibonacci(41)*Lucas(20)/(1/2+sqrt(5)/2)^42 4180999970436068 a001 2/6765*(1/2+1/2*5^(1/2))^39 4180999970436068 a004 Fibonacci(39)*Lucas(20)/(1/2+sqrt(5)/2)^40 4180999970436069 a004 Fibonacci(37)*Lucas(20)/(1/2+sqrt(5)/2)^38 4180999970436077 a004 Fibonacci(35)*Lucas(20)/(1/2+sqrt(5)/2)^36 4180999970436135 a004 Fibonacci(33)*Lucas(20)/(1/2+sqrt(5)/2)^34 4180999970436529 a004 Fibonacci(31)*Lucas(20)/(1/2+sqrt(5)/2)^32 4180999970439230 a004 Fibonacci(29)*Lucas(20)/(1/2+sqrt(5)/2)^30 4180999970457742 a004 Fibonacci(27)*Lucas(20)/(1/2+sqrt(5)/2)^28 4180999970584626 a004 Fibonacci(25)*Lucas(20)/(1/2+sqrt(5)/2)^26 4180999971041810 a001 98209/12238*15127^(13/20) 4180999971454304 a004 Fibonacci(23)*Lucas(20)/(1/2+sqrt(5)/2)^24 4180999971558965 a001 28657/64079*15127^(19/20) 4180999971876966 a001 121393/24476*15127^(7/10) 4180999972327468 a001 196418/9349*9349^(11/19) 4180999972648092 a001 102334155/103682*5778^(1/6) 4180999972922236 a001 17711/24476*15127^(9/10) 4180999972980279 a001 267914296/271443*5778^(1/6) 4180999972995845 a001 75025/24476*15127^(3/4) 4180999973028745 a001 701408733/710647*5778^(1/6) 4180999973035816 a001 1836311903/1860498*5778^(1/6) 4180999973036847 a001 4807526976/4870847*5778^(1/6) 4180999973036998 a001 12586269025/12752043*5778^(1/6) 4180999973037020 a001 32951280099/33385282*5778^(1/6) 4180999973037023 a001 86267571272/87403803*5778^(1/6) 4180999973037023 a001 225851433717/228826127*5778^(1/6) 4180999973037023 a001 591286729879/599074578*5778^(1/6) 4180999973037023 a001 1548008755920/1568397607*5778^(1/6) 4180999973037023 a001 4052739537881/4106118243*5778^(1/6) 4180999973037023 a001 4807525989/4870846*5778^(1/6) 4180999973037023 a001 6557470319842/6643838879*5778^(1/6) 4180999973037023 a001 2504730781961/2537720636*5778^(1/6) 4180999973037023 a001 956722026041/969323029*5778^(1/6) 4180999973037024 a001 365435296162/370248451*5778^(1/6) 4180999973037024 a001 139583862445/141422324*5778^(1/6) 4180999973037025 a001 53316291173/54018521*5778^(1/6) 4180999973037033 a001 20365011074/20633239*5778^(1/6) 4180999973037091 a001 7778742049/7881196*5778^(1/6) 4180999973037485 a001 2971215073/3010349*5778^(1/6) 4180999973040186 a001 1134903170/1149851*5778^(1/6) 4180999973058630 a001 39088169/24476*5778^(1/9) 4180999973058698 a001 433494437/439204*5778^(1/6) 4180999973185582 a001 165580141/167761*5778^(1/6) 4180999973371931 a001 11592/6119*15127^(4/5) 4180999974055260 a001 63245986/64079*5778^(1/6) 4180999974815170 a001 317811/9349*9349^(10/19) 4180999975081725 a001 4181/15127*24476^(20/21) 4180999975133869 r005 Im(z^2+c),c=25/122+20/51*I,n=50 4180999975615537 r005 Re(z^2+c),c=-11/19+8/37*I,n=52 4180999975638047 a001 3524578/15127*5778^(1/3) 4180999975692675 a001 28657/24476*15127^(17/20) 4180999975746401 a001 6765/9349*24476^(6/7) 4180999977328737 a001 24157817/39603*5778^(2/9) 4180999977344266 a001 514229/9349*9349^(9/19) 4180999977415165 a004 Fibonacci(21)*Lucas(20)/(1/2+sqrt(5)/2)^22 4180999979605582 a001 31622993/51841*5778^(2/9) 4180999979857551 a001 832040/9349*9349^(8/19) 4180999979937769 a001 165580141/271443*5778^(2/9) 4180999979986235 a001 433494437/710647*5778^(2/9) 4180999979993306 a001 567451585/930249*5778^(2/9) 4180999979994337 a001 2971215073/4870847*5778^(2/9) 4180999979994488 a001 7778742049/12752043*5778^(2/9) 4180999979994510 a001 10182505537/16692641*5778^(2/9) 4180999979994513 a001 53316291173/87403803*5778^(2/9) 4180999979994514 a001 139583862445/228826127*5778^(2/9) 4180999979994514 a001 182717648081/299537289*5778^(2/9) 4180999979994514 a001 956722026041/1568397607*5778^(2/9) 4180999979994514 a001 2504730781961/4106118243*5778^(2/9) 4180999979994514 a001 3278735159921/5374978561*5778^(2/9) 4180999979994514 a001 10610209857723/17393796001*5778^(2/9) 4180999979994514 a001 4052739537881/6643838879*5778^(2/9) 4180999979994514 a001 1134903780/1860499*5778^(2/9) 4180999979994514 a001 591286729879/969323029*5778^(2/9) 4180999979994514 a001 225851433717/370248451*5778^(2/9) 4180999979994514 a001 21566892818/35355581*5778^(2/9) 4180999979994515 a001 32951280099/54018521*5778^(2/9) 4180999979994524 a001 1144206275/1875749*5778^(2/9) 4180999979994581 a001 1201881744/1970299*5778^(2/9) 4180999979994975 a001 1836311903/3010349*5778^(2/9) 4180999979997676 a001 701408733/1149851*5778^(2/9) 4180999980016123 a001 24157817/24476*5778^(1/6) 4180999980016188 a001 66978574/109801*5778^(2/9) 4180999980143072 a001 9303105/15251*5778^(2/9) 4180999980400454 a001 1597*1364^(2/15) 4180999980713587 a001 24157817/9349*3571^(1/17) 4180999980843061 a001 4181/15127*64079^(20/23) 4180999980931604 a001 6765/9349*64079^(18/23) 4180999981012750 a001 39088169/64079*5778^(2/9) 4180999981609638 a001 4181/15127*167761^(4/5) 4180999981714035 a001 6765/9349*439204^(2/3) 4180999981728448 a001 6765/9349*7881196^(6/11) 4180999981728479 a001 4181/15127*20633239^(4/7) 4180999981728485 a001 4181/15127*2537720636^(4/9) 4180999981728485 a001 4181/15127*(1/2+1/2*5^(1/2))^20 4180999981728485 a001 4181/15127*23725150497407^(5/16) 4180999981728485 a001 4181/15127*505019158607^(5/14) 4180999981728485 a001 4181/15127*73681302247^(5/13) 4180999981728485 a001 4181/15127*28143753123^(2/5) 4180999981728485 a001 4181/15127*10749957122^(5/12) 4180999981728485 a001 4181/15127*4106118243^(10/23) 4180999981728485 a001 4181/15127*1568397607^(5/11) 4180999981728485 a001 4181/15127*599074578^(10/21) 4180999981728485 a001 4181/15127*228826127^(1/2) 4180999981728485 a001 4181/15127*87403803^(10/19) 4180999981728485 a001 6765/9349*141422324^(6/13) 4180999981728485 a001 6765/9349*2537720636^(2/5) 4180999981728485 a001 6765/9349*45537549124^(6/17) 4180999981728485 a001 6765/9349*14662949395604^(2/7) 4180999981728485 a001 6765/9349*(1/2+1/2*5^(1/2))^18 4180999981728485 a001 6765/9349*192900153618^(1/3) 4180999981728485 a001 6765/9349*10749957122^(3/8) 4180999981728485 a001 6765/9349*4106118243^(9/23) 4180999981728485 a001 6765/9349*1568397607^(9/22) 4180999981728485 a001 6765/9349*599074578^(3/7) 4180999981728485 a001 6765/9349*228826127^(9/20) 4180999981728485 a001 6765/9349*87403803^(9/19) 4180999981728487 a001 4181/15127*33385282^(5/9) 4180999981728487 a001 6765/9349*33385282^(1/2) 4180999981728499 a001 6765/9349*12752043^(9/17) 4180999981728500 a001 4181/15127*12752043^(10/17) 4180999981728584 a001 6765/9349*4870847^(9/16) 4180999981728595 a001 4181/15127*4870847^(5/8) 4180999981729210 a001 6765/9349*1860498^(3/5) 4180999981729290 a001 4181/15127*1860498^(2/3) 4180999981733807 a001 6765/9349*710647^(9/14) 4180999981734398 a001 4181/15127*710647^(5/7) 4180999981767770 a001 6765/9349*271443^(9/13) 4180999981772134 a001 4181/15127*271443^(10/13) 4180999982020184 a001 6765/9349*103682^(3/4) 4180999982052594 a001 4181/15127*103682^(5/6) 4180999982376876 a001 1346269/9349*9349^(7/19) 4180999982595293 a001 311187/2161*5778^(7/18) 4180999983480687 a001 5473/12238*15127^(19/20) 4180999983909576 a001 6765/9349*39603^(9/11) 4180999984151919 a001 4181/15127*39603^(10/11) 4180999984286222 a001 4976784/13201*5778^(5/18) 4180999984893893 a001 2178309/9349*9349^(6/19) 4180999986563072 a001 39088169/103682*5778^(5/18) 4180999986895259 a001 34111385/90481*5778^(5/18) 4180999986943725 a001 267914296/710647*5778^(5/18) 4180999986950796 a001 233802911/620166*5778^(5/18) 4180999986951828 a001 1836311903/4870847*5778^(5/18) 4180999986951978 a001 1602508992/4250681*5778^(5/18) 4180999986952000 a001 12586269025/33385282*5778^(5/18) 4180999986952003 a001 10983760033/29134601*5778^(5/18) 4180999986952004 a001 86267571272/228826127*5778^(5/18) 4180999986952004 a001 267913919/710646*5778^(5/18) 4180999986952004 a001 591286729879/1568397607*5778^(5/18) 4180999986952004 a001 516002918640/1368706081*5778^(5/18) 4180999986952004 a001 4052739537881/10749957122*5778^(5/18) 4180999986952004 a001 3536736619241/9381251041*5778^(5/18) 4180999986952004 a001 6557470319842/17393796001*5778^(5/18) 4180999986952004 a001 2504730781961/6643838879*5778^(5/18) 4180999986952004 a001 956722026041/2537720636*5778^(5/18) 4180999986952004 a001 365435296162/969323029*5778^(5/18) 4180999986952004 a001 139583862445/370248451*5778^(5/18) 4180999986952004 a001 53316291173/141422324*5778^(5/18) 4180999986952005 a001 20365011074/54018521*5778^(5/18) 4180999986952014 a001 7778742049/20633239*5778^(5/18) 4180999986952071 a001 2971215073/7881196*5778^(5/18) 4180999986952465 a001 1134903170/3010349*5778^(5/18) 4180999986955166 a001 433494437/1149851*5778^(5/18) 4180999986973608 a001 3732588/6119*5778^(2/9) 4180999986973678 a001 165580141/439204*5778^(5/18) 4180999987100563 a001 63245986/167761*5778^(5/18) 4180999987411792 a001 3524578/9349*9349^(5/19) 4180999987541299 a001 39088169/15127*2207^(1/16) 4180999987874487 a001 5702887/5778*2207^(3/16) 4180999987970242 a001 24157817/64079*5778^(5/18) 4180999989553421 a001 1346269/15127*5778^(4/9) 4180999989929354 a001 5702887/9349*9349^(4/19) 4180999991243726 a001 9227465/39603*5778^(1/3) 4180999992016814 a001 17711/9349*24476^(16/21) 4180999992447044 a001 9227465/9349*9349^(3/19) 4180999993020902 a004 Fibonacci(19)*Lucas(21)/(1/2+sqrt(5)/2)^21 4180999993520564 a001 24157817/103682*5778^(1/3) 4180999993852750 a001 63245986/271443*5778^(1/3) 4180999993901215 a001 165580141/710647*5778^(1/3) 4180999993908286 a001 433494437/1860498*5778^(1/3) 4180999993909318 a001 1134903170/4870847*5778^(1/3) 4180999993909468 a001 2971215073/12752043*5778^(1/3) 4180999993909490 a001 7778742049/33385282*5778^(1/3) 4180999993909494 a001 20365011074/87403803*5778^(1/3) 4180999993909494 a001 53316291173/228826127*5778^(1/3) 4180999993909494 a001 139583862445/599074578*5778^(1/3) 4180999993909494 a001 365435296162/1568397607*5778^(1/3) 4180999993909494 a001 956722026041/4106118243*5778^(1/3) 4180999993909494 a001 2504730781961/10749957122*5778^(1/3) 4180999993909494 a001 6557470319842/28143753123*5778^(1/3) 4180999993909494 a001 10610209857723/45537549124*5778^(1/3) 4180999993909494 a001 4052739537881/17393796001*5778^(1/3) 4180999993909494 a001 1548008755920/6643838879*5778^(1/3) 4180999993909494 a001 591286729879/2537720636*5778^(1/3) 4180999993909494 a001 225851433717/969323029*5778^(1/3) 4180999993909494 a001 86267571272/370248451*5778^(1/3) 4180999993909494 a001 63246219/271444*5778^(1/3) 4180999993909496 a001 12586269025/54018521*5778^(1/3) 4180999993909504 a001 4807526976/20633239*5778^(1/3) 4180999993909561 a001 1836311903/7881196*5778^(1/3) 4180999993909956 a001 701408733/3010349*5778^(1/3) 4180999993912656 a001 267914296/1149851*5778^(1/3) 4180999993931111 a001 9227465/24476*5778^(5/18) 4180999993931169 a001 102334155/439204*5778^(1/3) 4180999994058052 a001 39088169/167761*5778^(1/3) 4180999994927727 a001 14930352/64079*5778^(1/3) 4180999994958336 a001 46368/9349*24476^(2/3) 4180999994964686 a001 14930352/9349*9349^(2/19) 4180999995828165 a001 75025/9349*24476^(13/21) 4180999995955200 a001 121393/9349*24476^(4/7) 4180999996033167 a001 28657/9349*24476^(5/7) 4180999996360256 a001 4181/39603*64079^(22/23) 4180999996365957 a001 196418/9349*24476^(11/21) 4180999996509242 a001 832040/15127*5778^(1/2) 4180999996625883 a001 17711/9349*64079^(16/23) 4180999996668341 a001 317811/9349*24476^(10/21) 4180999997012120 a001 514229/9349*24476^(3/7) 4180999997334177 a001 4181/39603*7881196^(2/3) 4180999997334221 a001 4181/39603*312119004989^(2/5) 4180999997334221 a001 4181/39603*(1/2+1/2*5^(1/2))^22 4180999997334221 a001 4181/39603*10749957122^(11/24) 4180999997334221 a001 4181/39603*4106118243^(11/23) 4180999997334221 a001 4181/39603*1568397607^(1/2) 4180999997334221 a001 4181/39603*599074578^(11/21) 4180999997334221 a001 4181/39603*228826127^(11/20) 4180999997334222 a001 4181/39603*87403803^(11/19) 4180999997334222 a001 17711/9349*(1/2+1/2*5^(1/2))^16 4180999997334222 a001 17711/9349*23725150497407^(1/4) 4180999997334222 a001 17711/9349*73681302247^(4/13) 4180999997334222 a001 17711/9349*10749957122^(1/3) 4180999997334222 a001 17711/9349*4106118243^(8/23) 4180999997334222 a001 17711/9349*1568397607^(4/11) 4180999997334222 a001 17711/9349*599074578^(8/21) 4180999997334222 a001 17711/9349*228826127^(2/5) 4180999997334222 a001 17711/9349*87403803^(8/19) 4180999997334224 a001 17711/9349*33385282^(4/9) 4180999997334224 a001 4181/39603*33385282^(11/18) 4180999997334234 a001 17711/9349*12752043^(8/17) 4180999997334238 a001 4181/39603*12752043^(11/17) 4180999997334310 a001 17711/9349*4870847^(1/2) 4180999997334343 a001 4181/39603*4870847^(11/16) 4180999997334866 a001 17711/9349*1860498^(8/15) 4180999997335107 a001 4181/39603*1860498^(11/15) 4180999997338953 a001 17711/9349*710647^(4/7) 4180999997340088 a001 832040/9349*24476^(8/21) 4180999997340726 a001 4181/39603*710647^(11/14) 4180999997369142 a001 17711/9349*271443^(8/13) 4180999997382236 a001 4181/39603*271443^(11/13) 4180999997482346 a001 24157817/9349*9349^(1/19) 4180999997593510 a001 17711/9349*103682^(2/3) 4180999997674096 a001 1346269/9349*24476^(1/3) 4180999997690742 a001 4181/39603*103682^(11/12) 4180999997716479 a001 10946/3571*3571^(15/17) 4180999998005796 a001 2178309/9349*24476^(2/7) 4180999998172848 a001 6765/9349*15127^(9/10) 4180999998201181 a001 5702887/39603*5778^(7/18) 4180999998338377 a001 3524578/9349*24476^(5/21) 4180999998670622 a001 5702887/9349*24476^(4/21) 4180999998981763 a004 Fibonacci(19)*Lucas(23)/(1/2+sqrt(5)/2)^23 4180999998991272 a001 46368/9349*64079^(14/23) 4180999999002996 a001 9227465/9349*24476^(1/7) 4180999999272970 a001 17711/9349*39603^(8/11) 4180999999335320 a001 14930352/9349*24476^(2/21) 4180999999412002 a001 121393/9349*64079^(12/23) 4180999999534692 a001 196418/9349*64079^(11/23) 4180999999549010 a001 317811/9349*64079^(10/23) 4180999999573034 a001 75025/9349*64079^(13/23) 4180999999591802 a001 4181/103682*439204^(8/9) 4180999999604722 a001 514229/9349*64079^(9/23) 4180999999611019 a001 4181/103682*7881196^(8/11) 4180999999611064 a001 46368/9349*20633239^(2/5) 4180999999611068 a001 4181/103682*141422324^(8/13) 4180999999611068 a001 4181/103682*2537720636^(8/15) 4180999999611068 a001 4181/103682*45537549124^(8/17) 4180999999611068 a001 4181/103682*14662949395604^(8/21) 4180999999611068 a001 4181/103682*(1/2+1/2*5^(1/2))^24 4180999999611068 a001 4181/103682*192900153618^(4/9) 4180999999611068 a001 4181/103682*73681302247^(6/13) 4180999999611068 a001 4181/103682*10749957122^(1/2) 4180999999611068 a001 4181/103682*4106118243^(12/23) 4180999999611068 a001 4181/103682*1568397607^(6/11) 4180999999611068 a001 4181/103682*599074578^(4/7) 4180999999611068 a001 4181/103682*228826127^(3/5) 4180999999611068 a001 4181/103682*87403803^(12/19) 4180999999611068 a001 46368/9349*17393796001^(2/7) 4180999999611068 a001 46368/9349*14662949395604^(2/9) 4180999999611068 a001 46368/9349*(1/2+1/2*5^(1/2))^14 4180999999611068 a001 46368/9349*10749957122^(7/24) 4180999999611068 a001 46368/9349*4106118243^(7/23) 4180999999611068 a001 46368/9349*1568397607^(7/22) 4180999999611068 a001 46368/9349*599074578^(1/3) 4180999999611068 a001 46368/9349*228826127^(7/20) 4180999999611068 a001 46368/9349*87403803^(7/19) 4180999999611070 a001 46368/9349*33385282^(7/18) 4180999999611070 a001 4181/103682*33385282^(2/3) 4180999999611079 a001 46368/9349*12752043^(7/17) 4180999999611086 a001 4181/103682*12752043^(12/17) 4180999999611145 a001 46368/9349*4870847^(7/16) 4180999999611200 a001 4181/103682*4870847^(3/4) 4180999999611632 a001 46368/9349*1860498^(7/15) 4180999999612034 a001 4181/103682*1860498^(4/5) 4180999999615208 a001 46368/9349*710647^(1/2) 4180999999618164 a001 4181/103682*710647^(6/7) 4180999999641623 a001 46368/9349*271443^(7/13) 4180999999644623 a001 832040/9349*64079^(8/23) 4180999999663447 a001 4181/103682*271443^(12/13) 4180999999667663 a001 24157817/9349*24476^(1/21) 4180999999690563 a001 1346269/9349*64079^(7/23) 4180999999734197 a001 2178309/9349*64079^(6/23) 4180999999778712 a001 3524578/9349*64079^(5/23) 4180999999822890 a001 5702887/9349*64079^(4/23) 4180999999837945 a001 46368/9349*103682^(7/12) 4180999999851441 a004 Fibonacci(19)*Lucas(25)/(1/2+sqrt(5)/2)^25 4180999999867196 a001 9227465/9349*64079^(3/23) 4180999999911454 a001 14930352/9349*64079^(2/23) 4180999999932298 a001 317811/9349*167761^(2/5) 4180999999933623 a001 121393/9349*439204^(4/9) 4180999999943231 a001 121393/9349*7881196^(4/11) 4180999999943255 a001 4181/271443*141422324^(2/3) 4180999999943255 a001 4181/271443*(1/2+1/2*5^(1/2))^26 4180999999943255 a001 4181/271443*73681302247^(1/2) 4180999999943255 a001 4181/271443*10749957122^(13/24) 4180999999943255 a001 4181/271443*4106118243^(13/23) 4180999999943255 a001 4181/271443*1568397607^(13/22) 4180999999943255 a001 4181/271443*599074578^(13/21) 4180999999943255 a001 4181/271443*228826127^(13/20) 4180999999943255 a001 4181/271443*87403803^(13/19) 4180999999943256 a001 121393/9349*141422324^(4/13) 4180999999943256 a001 121393/9349*2537720636^(4/15) 4180999999943256 a001 121393/9349*45537549124^(4/17) 4180999999943256 a001 121393/9349*817138163596^(4/19) 4180999999943256 a001 121393/9349*14662949395604^(4/21) 4180999999943256 a001 121393/9349*(1/2+1/2*5^(1/2))^12 4180999999943256 a001 121393/9349*192900153618^(2/9) 4180999999943256 a001 121393/9349*73681302247^(3/13) 4180999999943256 a001 121393/9349*10749957122^(1/4) 4180999999943256 a001 121393/9349*4106118243^(6/23) 4180999999943256 a001 121393/9349*1568397607^(3/11) 4180999999943256 a001 121393/9349*599074578^(2/7) 4180999999943256 a001 121393/9349*228826127^(3/10) 4180999999943256 a001 121393/9349*87403803^(6/19) 4180999999943257 a001 121393/9349*33385282^(1/3) 4180999999943258 a001 4181/271443*33385282^(13/18) 4180999999943265 a001 121393/9349*12752043^(6/17) 4180999999943275 a001 4181/271443*12752043^(13/17) 4180999999943322 a001 121393/9349*4870847^(3/8) 4180999999943398 a001 4181/271443*4870847^(13/16) 4180999999943739 a001 121393/9349*1860498^(2/5) 4180999999944302 a001 4181/271443*1860498^(13/15) 4180999999946804 a001 121393/9349*710647^(3/7) 4180999999950943 a001 4181/271443*710647^(13/14) 4180999999955730 a001 24157817/9349*64079^(1/23) 4180999999969445 a001 121393/9349*271443^(6/13) 4180999999970356 a001 3524578/9349*167761^(1/5) 4180999999978325 a004 Fibonacci(19)*Lucas(27)/(1/2+sqrt(5)/2)^27 4180999999991713 a001 4181/710647*20633239^(4/5) 4180999999991718 a001 317811/9349*20633239^(2/7) 4180999999991721 a001 4181/710647*17393796001^(4/7) 4180999999991721 a001 4181/710647*14662949395604^(4/9) 4180999999991721 a001 4181/710647*(1/2+1/2*5^(1/2))^28 4180999999991721 a001 4181/710647*73681302247^(7/13) 4180999999991721 a001 4181/710647*10749957122^(7/12) 4180999999991721 a001 4181/710647*4106118243^(14/23) 4180999999991721 a001 4181/710647*1568397607^(7/11) 4180999999991721 a001 4181/710647*599074578^(2/3) 4180999999991721 a001 4181/710647*228826127^(7/10) 4180999999991721 a001 4181/710647*87403803^(14/19) 4180999999991721 a001 317811/9349*2537720636^(2/9) 4180999999991721 a001 317811/9349*312119004989^(2/11) 4180999999991721 a001 317811/9349*(1/2+1/2*5^(1/2))^10 4180999999991721 a001 317811/9349*28143753123^(1/5) 4180999999991721 a001 317811/9349*10749957122^(5/24) 4180999999991721 a001 317811/9349*4106118243^(5/23) 4180999999991721 a001 317811/9349*1568397607^(5/22) 4180999999991721 a001 317811/9349*599074578^(5/21) 4180999999991721 a001 317811/9349*228826127^(1/4) 4180999999991721 a001 317811/9349*87403803^(5/19) 4180999999991722 a001 317811/9349*33385282^(5/18) 4180999999991724 a001 4181/710647*33385282^(7/9) 4180999999991729 a001 317811/9349*12752043^(5/17) 4180999999991742 a001 4181/710647*12752043^(14/17) 4180999999991776 a001 317811/9349*4870847^(5/16) 4180999999991875 a001 4181/710647*4870847^(7/8) 4180999999992124 a001 317811/9349*1860498^(1/3) 4180999999992848 a001 4181/710647*1860498^(14/15) 4180999999994678 a001 317811/9349*710647^(5/14) 4180999999995007 a001 2178309/9349*439204^(2/9) 4180999999995937 a001 514229/9349*439204^(1/3) 4180999999996837 a004 Fibonacci(19)*Lucas(29)/(1/2+sqrt(5)/2)^29 4180999999997602 a001 9227465/9349*439204^(1/9) 4180999999998730 a001 4181/1860498*7881196^(10/11) 4180999999998783 a001 4181/1860498*20633239^(6/7) 4180999999998791 a001 4181/1860498*141422324^(10/13) 4180999999998792 a001 4181/1860498*2537720636^(2/3) 4180999999998792 a001 4181/1860498*45537549124^(10/17) 4180999999998792 a001 4181/1860498*312119004989^(6/11) 4180999999998792 a001 4181/1860498*14662949395604^(10/21) 4180999999998792 a001 4181/1860498*(1/2+1/2*5^(1/2))^30 4180999999998792 a001 4181/1860498*192900153618^(5/9) 4180999999998792 a001 4181/1860498*28143753123^(3/5) 4180999999998792 a001 4181/1860498*10749957122^(5/8) 4180999999998792 a001 4181/1860498*4106118243^(15/23) 4180999999998792 a001 4181/1860498*1568397607^(15/22) 4180999999998792 a001 4181/1860498*599074578^(5/7) 4180999999998792 a001 4181/1860498*228826127^(3/4) 4180999999998792 a001 4181/1860498*87403803^(15/19) 4180999999998792 a001 832040/9349*(1/2+1/2*5^(1/2))^8 4180999999998792 a001 832040/9349*23725150497407^(1/8) 4180999999998792 a001 832040/9349*505019158607^(1/7) 4180999999998792 a001 832040/9349*73681302247^(2/13) 4180999999998792 a001 832040/9349*10749957122^(1/6) 4180999999998792 a001 832040/9349*4106118243^(4/23) 4180999999998792 a001 832040/9349*1568397607^(2/11) 4180999999998792 a001 832040/9349*599074578^(4/21) 4180999999998792 a001 832040/9349*228826127^(1/5) 4180999999998792 a001 832040/9349*87403803^(4/19) 4180999999998793 a001 832040/9349*33385282^(2/9) 4180999999998795 a001 4181/1860498*33385282^(5/6) 4180999999998798 a001 832040/9349*12752043^(4/17) 4180999999998814 a001 4181/1860498*12752043^(15/17) 4180999999998836 a001 832040/9349*4870847^(1/4) 4180999999998957 a001 4181/1860498*4870847^(15/16) 4180999999999114 a001 832040/9349*1860498^(4/15) 4180999999999538 a004 Fibonacci(19)*Lucas(31)/(1/2+sqrt(5)/2)^31 4180999999999812 a001 2178309/9349*7881196^(2/11) 4180999999999823 a001 4181/4870847*(1/2+1/2*5^(1/2))^32 4180999999999823 a001 4181/4870847*23725150497407^(1/2) 4180999999999823 a001 4181/4870847*505019158607^(4/7) 4180999999999823 a001 4181/4870847*73681302247^(8/13) 4180999999999823 a001 4181/4870847*10749957122^(2/3) 4180999999999823 a001 4181/4870847*4106118243^(16/23) 4180999999999823 a001 4181/4870847*1568397607^(8/11) 4180999999999823 a001 4181/4870847*599074578^(16/21) 4180999999999823 a001 4181/4870847*228826127^(4/5) 4180999999999824 a001 4181/4870847*87403803^(16/19) 4180999999999824 a001 2178309/9349*141422324^(2/13) 4180999999999824 a001 2178309/9349*2537720636^(2/15) 4180999999999824 a001 2178309/9349*45537549124^(2/17) 4180999999999824 a001 2178309/9349*14662949395604^(2/21) 4180999999999824 a001 2178309/9349*(1/2+1/2*5^(1/2))^6 4180999999999824 a001 2178309/9349*10749957122^(1/8) 4180999999999824 a001 2178309/9349*4106118243^(3/23) 4180999999999824 a001 2178309/9349*1568397607^(3/22) 4180999999999824 a001 2178309/9349*599074578^(1/7) 4180999999999824 a001 2178309/9349*228826127^(3/20) 4180999999999824 a001 2178309/9349*87403803^(3/19) 4180999999999824 a001 2178309/9349*33385282^(1/6) 4180999999999827 a001 4181/4870847*33385282^(8/9) 4180999999999828 a001 2178309/9349*12752043^(3/17) 4180999999999847 a001 4181/4870847*12752043^(16/17) 4180999999999857 a001 2178309/9349*4870847^(3/16) 4180999999999932 a004 Fibonacci(19)*Lucas(33)/(1/2+sqrt(5)/2)^33 4180999999999974 a001 4181/12752043*45537549124^(2/3) 4180999999999974 a001 4181/12752043*(1/2+1/2*5^(1/2))^34 4180999999999974 a001 4181/12752043*10749957122^(17/24) 4180999999999974 a001 4181/12752043*4106118243^(17/23) 4180999999999974 a001 4181/12752043*1568397607^(17/22) 4180999999999974 a001 4181/12752043*599074578^(17/21) 4180999999999974 a001 4181/12752043*228826127^(17/20) 4180999999999974 a001 4181/12752043*87403803^(17/19) 4180999999999974 a001 5702887/9349*(1/2+1/2*5^(1/2))^4 4180999999999974 a001 5702887/9349*23725150497407^(1/16) 4180999999999974 a001 5702887/9349*73681302247^(1/13) 4180999999999974 a001 5702887/9349*10749957122^(1/12) 4180999999999974 a001 5702887/9349*4106118243^(2/23) 4180999999999974 a001 5702887/9349*1568397607^(1/11) 4180999999999974 a001 5702887/9349*599074578^(2/21) 4180999999999974 a001 5702887/9349*228826127^(1/10) 4180999999999974 a001 5702887/9349*87403803^(2/19) 4180999999999975 a001 5702887/9349*33385282^(1/9) 4180999999999977 a001 4181/12752043*33385282^(17/18) 4180999999999977 a001 5702887/9349*12752043^(2/17) 4180999999999990 a004 Fibonacci(19)*Lucas(35)/(1/2+sqrt(5)/2)^35 4180999999999996 a001 4181/33385282*141422324^(12/13) 4180999999999996 a001 4181/33385282*2537720636^(4/5) 4180999999999996 a001 4181/33385282*45537549124^(12/17) 4180999999999996 a001 4181/33385282*14662949395604^(4/7) 4180999999999996 a001 4181/33385282*(1/2+1/2*5^(1/2))^36 4180999999999996 a001 4181/33385282*505019158607^(9/14) 4180999999999996 a001 4181/33385282*192900153618^(2/3) 4180999999999996 a001 4181/33385282*73681302247^(9/13) 4180999999999996 a001 4181/33385282*10749957122^(3/4) 4180999999999996 a001 4181/33385282*4106118243^(18/23) 4180999999999996 a001 4181/33385282*1568397607^(9/11) 4180999999999996 a001 4181/33385282*599074578^(6/7) 4180999999999996 a001 4181/33385282*228826127^(9/10) 4180999999999996 a001 4181/33385282*87403803^(18/19) 4180999999999996 a001 14930352/9349*(1/2+1/2*5^(1/2))^2 4180999999999996 a001 14930352/9349*10749957122^(1/24) 4180999999999996 a001 14930352/9349*4106118243^(1/23) 4180999999999996 a001 14930352/9349*1568397607^(1/22) 4180999999999996 a001 14930352/9349*599074578^(1/21) 4180999999999996 a001 14930352/9349*228826127^(1/20) 4180999999999996 a001 14930352/9349*87403803^(1/19) 4180999999999996 a001 5702887/9349*4870847^(1/8) 4180999999999997 a001 14930352/9349*33385282^(1/18) 4180999999999998 a001 14930352/9349*12752043^(1/17) 4180999999999998 a004 Fibonacci(19)*Lucas(37)/(1/2+sqrt(5)/2)^37 4180999999999999 a001 4181/87403803*817138163596^(2/3) 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^38/Lucas(38) 4180999999999999 a001 4181/87403803*10749957122^(19/24) 4180999999999999 a001 4181/87403803*4106118243^(19/23) 4180999999999999 a001 4181/87403803*1568397607^(19/22) 4180999999999999 a001 4181/87403803*599074578^(19/21) 4180999999999999 a001 4181/87403803*228826127^(19/20) 4180999999999999 a004 Fibonacci(19)*Lucas(39)/(1/2+sqrt(5)/2)^39 4180999999999999 a001 4181/228826127*2537720636^(8/9) 4180999999999999 a001 4181/228826127*312119004989^(8/11) 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^40/Lucas(40) 4180999999999999 a001 4181/228826127*23725150497407^(5/8) 4180999999999999 a001 4181/228826127*73681302247^(10/13) 4180999999999999 a001 4181/228826127*28143753123^(4/5) 4180999999999999 a001 4181/228826127*10749957122^(5/6) 4180999999999999 a001 4181/228826127*4106118243^(20/23) 4180999999999999 a001 4181/228826127*1568397607^(10/11) 4180999999999999 a001 4181/228826127*599074578^(20/21) 4180999999999999 a004 Fibonacci(19)*Lucas(41)/(1/2+sqrt(5)/2)^41 4180999999999999 a001 4181/599074578*2537720636^(14/15) 4180999999999999 a001 4181/599074578*17393796001^(6/7) 4180999999999999 a001 4181/599074578*45537549124^(14/17) 4180999999999999 a001 4181/599074578*817138163596^(14/19) 4180999999999999 a001 4181/599074578*14662949395604^(2/3) 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^42/Lucas(42) 4180999999999999 a001 4181/599074578*505019158607^(3/4) 4180999999999999 a001 4181/599074578*192900153618^(7/9) 4180999999999999 a001 4181/599074578*10749957122^(7/8) 4180999999999999 a001 4181/599074578*4106118243^(21/23) 4180999999999999 a001 4181/599074578*1568397607^(21/22) 4180999999999999 a004 Fibonacci(19)*Lucas(43)/(1/2+sqrt(5)/2)^43 4180999999999999 a001 4181/1568397607*312119004989^(4/5) 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^44/Lucas(44) 4180999999999999 a001 4181/1568397607*23725150497407^(11/16) 4180999999999999 a001 4181/1568397607*73681302247^(11/13) 4180999999999999 a001 4181/1568397607*10749957122^(11/12) 4180999999999999 a001 4181/1568397607*4106118243^(22/23) 4180999999999999 a004 Fibonacci(19)*Lucas(45)/(1/2+sqrt(5)/2)^45 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^46/Lucas(46) 4180999999999999 a001 4181/4106118243*10749957122^(23/24) 4180999999999999 a004 Fibonacci(19)*Lucas(47)/(1/2+sqrt(5)/2)^47 4180999999999999 a001 4181/10749957122*45537549124^(16/17) 4180999999999999 a001 4181/10749957122*14662949395604^(16/21) 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^48/Lucas(48) 4180999999999999 a001 4181/10749957122*192900153618^(8/9) 4180999999999999 a001 4181/10749957122*73681302247^(12/13) 4180999999999999 a004 Fibonacci(19)*Lucas(49)/(1/2+sqrt(5)/2)^49 4180999999999999 a001 4181/28143753123*312119004989^(10/11) 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^50/Lucas(50) 4180999999999999 a001 4181/28143753123*3461452808002^(5/6) 4180999999999999 a004 Fibonacci(19)*Lucas(51)/(1/2+sqrt(5)/2)^51 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^52/Lucas(52) 4180999999999999 a001 4181/73681302247*23725150497407^(13/16) 4180999999999999 a001 4181/73681302247*505019158607^(13/14) 4180999999999999 a004 Fibonacci(19)*Lucas(53)/(1/2+sqrt(5)/2)^53 4180999999999999 a001 4181/192900153618*14662949395604^(6/7) 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^54/Lucas(54) 4180999999999999 a004 Fibonacci(19)*Lucas(55)/(1/2+sqrt(5)/2)^55 4180999999999999 a001 4181/505019158607*14662949395604^(8/9) 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^56/Lucas(56) 4180999999999999 a004 Fibonacci(19)*Lucas(57)/(1/2+sqrt(5)/2)^57 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^58/Lucas(58) 4180999999999999 a004 Fibonacci(19)*Lucas(59)/(1/2+sqrt(5)/2)^59 4180999999999999 a001 4181/3461452808002*14662949395604^(20/21) 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^60/Lucas(60) 4180999999999999 a004 Fibonacci(19)*Lucas(61)/(1/2+sqrt(5)/2)^61 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^62/Lucas(62) 4180999999999999 a004 Fibonacci(19)*Lucas(63)/(1/2+sqrt(5)/2)^63 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^64/Lucas(64) 4180999999999999 a004 Fibonacci(19)*Lucas(65)/(1/2+sqrt(5)/2)^65 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^66/Lucas(66) 4180999999999999 a004 Fibonacci(19)*Lucas(67)/(1/2+sqrt(5)/2)^67 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^68/Lucas(68) 4180999999999999 a004 Fibonacci(19)*Lucas(69)/(1/2+sqrt(5)/2)^69 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^70/Lucas(70) 4180999999999999 a004 Fibonacci(19)*Lucas(71)/(1/2+sqrt(5)/2)^71 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^72/Lucas(72) 4180999999999999 a004 Fibonacci(19)*Lucas(73)/(1/2+sqrt(5)/2)^73 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^74/Lucas(74) 4180999999999999 a004 Fibonacci(19)*Lucas(75)/(1/2+sqrt(5)/2)^75 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^76/Lucas(76) 4180999999999999 a004 Fibonacci(19)*Lucas(77)/(1/2+sqrt(5)/2)^77 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^78/Lucas(78) 4180999999999999 a004 Fibonacci(19)*Lucas(79)/(1/2+sqrt(5)/2)^79 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^80/Lucas(80) 4180999999999999 a004 Fibonacci(19)*Lucas(81)/(1/2+sqrt(5)/2)^81 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^82/Lucas(82) 4180999999999999 a004 Fibonacci(19)*Lucas(83)/(1/2+sqrt(5)/2)^83 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^84/Lucas(84) 4180999999999999 a004 Fibonacci(19)*Lucas(85)/(1/2+sqrt(5)/2)^85 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^86/Lucas(86) 4180999999999999 a004 Fibonacci(19)*Lucas(87)/(1/2+sqrt(5)/2)^87 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^88/Lucas(88) 4180999999999999 a004 Fibonacci(19)*Lucas(89)/(1/2+sqrt(5)/2)^89 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^90/Lucas(90) 4180999999999999 a004 Fibonacci(19)*Lucas(91)/(1/2+sqrt(5)/2)^91 4180999999999999 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^92/Lucas(92)