4324100009893951 m001 (TreeGrowth2nd+ZetaP(4))/(Psi(1,1/3)+Si(Pi)) 4324100018833373 a007 Real Root Of 383*x^4-81*x^3+990*x^2-918*x-602 4324100031769846 m001 exp(Salem)^2*Champernowne*gamma^2 4324100062468329 r005 Im(z^2+c),c=-65/98+3/38*I,n=54 4324100065256703 r009 Re(z^3+c),c=-71/106+16/31*I,n=51 4324100065419445 r005 Im(z^2+c),c=-7/10+49/143*I,n=3 4324100079589982 r005 Re(z^2+c),c=-17/26+17/90*I,n=32 4324100086778937 r005 Im(z^2+c),c=-23/26+37/117*I,n=4 4324100091383176 r002 50th iterates of z^2 + 4324100093067899 r009 Re(z^3+c),c=-27/58+5/32*I,n=38 4324100093495021 s002 sum(A111374[n]/(exp(n)+1),n=1..infinity) 4324100095838616 r009 Im(z^3+c),c=-1/12+31/61*I,n=8 4324100122542162 m001 (ln(3)+FibonacciFactorial)/(Pi+5^(1/2)) 4324100137216113 k008 concat of cont frac of 4324100155705634 m001 (-AlladiGrinstead+Tetranacci)/(exp(Pi)+exp(1)) 4324100175855332 a007 Real Root Of -97*x^4-133*x^3-540*x^2+997*x-316 4324100184127152 m005 (1/3*Catalan-2/11)/(3*Zeta(3)-3/4) 4324100211964452 r005 Re(z^2+c),c=-27/44+11/59*I,n=41 4324100215260187 m001 (BesselI(1,2)+Kolakoski)/(ln(gamma)-gamma(3)) 4324100226073161 l006 ln(4882/7523) 4324100237129273 m005 (1/2*3^(1/2)-1/3)/(7/10*5^(1/2)-1/3) 4324100246469019 a001 15127/34*4181^(3/11) 4324100251799065 a007 Real Root Of 889*x^4-511*x^3-858*x^2-976*x-334 4324100255749359 m001 1/exp(BesselJ(1,1))*Si(Pi)*GAMMA(1/4) 4324100262550579 r002 54th iterates of z^2 + 4324100265282310 r005 Im(z^2+c),c=13/44+12/29*I,n=23 4324100275786568 r005 Re(z^2+c),c=-21/34+8/101*I,n=50 4324100335948314 r002 21th iterates of z^2 + 4324100389323839 a007 Real Root Of 4*x^4-476*x^3-40*x^2-483*x-240 4324100403971945 a008 Real Root of x^4-13*x^2-14*x-46 4324100418749650 r002 30th iterates of z^2 + 4324100441376075 a007 Real Root Of -658*x^4+573*x^3+264*x^2+454*x-269 4324100451244765 m008 (4/5*Pi^3+1/6)/(3/5*Pi^6+2/3) 4324100451902087 m001 (-Magata+Riemann2ndZero)/(1-Lehmer) 4324100457693795 m005 (1/2*Zeta(3)-5/9)/(1/10*exp(1)-1/6) 4324100472381040 a007 Real Root Of -814*x^4-67*x^3+786*x^2+985*x+302 4324100489237273 r002 10th iterates of z^2 + 4324100506812357 r005 Im(z^2+c),c=-133/110+2/37*I,n=31 4324100514070714 a001 5/39603*7^(31/49) 4324100524301947 r009 Re(z^3+c),c=-31/66+6/53*I,n=11 4324100526588480 r009 Im(z^3+c),c=-7/74+30/59*I,n=25 4324100528762128 r005 Im(z^2+c),c=29/102+23/60*I,n=32 4324100569716010 r002 51th iterates of z^2 + 4324100571094999 r002 12th iterates of z^2 + 4324100577720040 r005 Im(z^2+c),c=-2/3+21/256*I,n=64 4324100586875970 a007 Real Root Of -722*x^4+853*x^3+24*x^2-411*x-88 4324100587830739 r002 19th iterates of z^2 + 4324100618453659 a001 521/196418*55^(5/41) 4324100619273293 a007 Real Root Of -55*x^4+623*x^3+244*x^2+726*x-408 4324100635333792 r005 Im(z^2+c),c=25/78+23/55*I,n=19 4324100639477775 r005 Re(z^2+c),c=-15/22+33/97*I,n=32 4324100643233217 r005 Im(z^2+c),c=2/7+19/59*I,n=27 4324100645044361 a007 Real Root Of 3*x^4+131*x^3+64*x^2+380*x+11 4324100649396992 a001 1/36*1597^(3/50) 4324100652024344 r002 11th iterates of z^2 + 4324100654872779 r002 2th iterates of z^2 + 4324100679712081 a005 (1/cos(71/200*Pi))^13 4324100689501895 b008 43+Tanh[2]/4 4324100690914185 m001 Zeta(1,2)^MertensB1/(exp(Pi)^MertensB1) 4324100703291233 r005 Im(z^2+c),c=-20/31+22/57*I,n=15 4324100718101829 m006 (3*exp(2*Pi)-2)/(1/5*ln(Pi)-3/5) 4324100725947991 m001 1/Rabbit*exp(PisotVijayaraghavan)/GAMMA(3/4) 4324100748808418 m005 (1/2*exp(1)+7/9)/(16/55+1/11*5^(1/2)) 4324100752438535 m001 1/Tribonacci^2*ln(FeigenbaumD)^2*GAMMA(3/4)^2 4324100804552684 a001 1860498/233*317811^(2/15) 4324100804561139 a001 710647/233*433494437^(2/15) 4324100804611263 a001 271443/233*591286729879^(2/15) 4324100821766591 r009 Re(z^3+c),c=-1/19+15/52*I,n=7 4324100837431620 m001 (Salem-ZetaQ(4))/(Cahen-ReciprocalFibonacci) 4324100851342351 r002 50th iterates of z^2 + 4324100857238864 r005 Re(z^2+c),c=8/27+2/37*I,n=8 4324100868127325 q001 1046/2419 4324100897615261 r009 Im(z^3+c),c=-19/48+25/46*I,n=14 4324100900894724 m001 (-ln(3)+ZetaQ(4))/(sin(1)-sin(1/5*Pi)) 4324100902539777 l006 ln(1965/3028) 4324100903508533 m005 (1/3*gamma+3/5)/(5/8*3^(1/2)+3/4) 4324100906785236 m001 (ArtinRank2+KhinchinLevy)/(ln(5)-GAMMA(19/24)) 4324100908117028 a007 Real Root Of 926*x^4-995*x^3+290*x^2-523*x+220 4324100914432633 m001 ln(GAMMA(7/24))*Riemann1stZero*exp(1) 4324100927604858 r002 11th iterates of z^2 + 4324100957323038 a007 Real Root Of 159*x^4+502*x^3-784*x^2+100*x+91 4324100971673988 r002 45th iterates of z^2 + 4324100992291321 r002 31th iterates of z^2 + 4324100992802957 r009 Re(z^3+c),c=-17/110+37/64*I,n=4 4324100996907255 r002 4th iterates of z^2 + 4324101001765043 r005 Re(z^2+c),c=-19/26+3/17*I,n=8 4324101018822758 r005 Re(z^2+c),c=-59/110+15/52*I,n=10 4324101023067375 r005 Im(z^2+c),c=-13/10+1/43*I,n=52 4324101038285079 r009 Im(z^3+c),c=-1/78+33/64*I,n=8 4324101041653846 r005 Im(z^2+c),c=31/110+11/32*I,n=43 4324101054784120 r005 Re(z^2+c),c=-71/114+1/15*I,n=31 4324101069018635 r005 Re(z^2+c),c=-53/90+18/41*I,n=55 4324101071091024 a007 Real Root Of -221*x^4-785*x^3+633*x^2-653*x-864 4324101086631363 m001 (gamma(1)-LaplaceLimit)/(3^(1/3)+sin(1/12*Pi)) 4324101087213593 r002 62th iterates of z^2 + 4324101100905097 m001 Kolakoski^2*Khintchine*ln(GAMMA(23/24)) 4324101101608285 r009 Im(z^3+c),c=-5/23+24/37*I,n=7 4324101106713048 a007 Real Root Of 218*x^4+802*x^3-832*x^2-989*x-92 4324101111081331 r005 Re(z^2+c),c=-5/8+37/214*I,n=32 4324101111621412 k007 concat of cont frac of 4324101118046351 a007 Real Root Of -581*x^4+720*x^3+430*x^2+327*x-15 4324101119217693 a007 Real Root Of -193*x^4-834*x^3-222*x^2-847*x+533 4324101135684235 m001 Si(Pi)/FeigenbaumAlpha^2/exp(GAMMA(1/6))^2 4324101162110467 k008 concat of cont frac of 4324101168837361 r002 23th iterates of z^2 + 4324101172361322 k007 concat of cont frac of 4324101175721346 m001 (-Lehmer+Otter)/(Psi(2,1/3)+Bloch) 4324101188463739 b008 Pi*ArcSinh[EllipticK[1/2]] 4324101189121231 k009 concat of cont frac of 4324101190675813 a007 Real Root Of -30*x^4+271*x^3+897*x^2+630*x-461 4324101197541519 m001 exp(1/2)*exp(sqrt(2))^GAMMA(1/6) 4324101205059949 m005 (1/2*exp(1)-3/11)/(9/10*5^(1/2)+1/2) 4324101210480498 m001 (Ei(1)-ArtinRank2)/(Khinchin+Riemann3rdZero) 4324101215981832 m001 1/GAMMA(5/6)^2*Riemann1stZero^2/ln(Zeta(5)) 4324101219449276 r009 Re(z^3+c),c=-55/106+9/22*I,n=7 4324101228454151 m001 (GAMMA(5/12)+1/2)/(OneNinth+1/2) 4324101230555475 a003 sin(Pi*3/97)*sin(Pi*5/34) 4324101231190460 r005 Im(z^2+c),c=-6/19+15/28*I,n=6 4324101235789906 a007 Real Root Of -204*x^4-726*x^3+747*x^2+284*x-117 4324101263013039 r009 Im(z^3+c),c=-53/86+19/63*I,n=33 4324101271117424 k006 concat of cont frac of 4324101278262267 r005 Im(z^2+c),c=1/54+34/61*I,n=58 4324101281041473 r002 47th iterates of z^2 + 4324101281893075 r005 Re(z^2+c),c=3/16+8/23*I,n=21 4324101307801783 m001 ln(GAMMA(5/6))/FeigenbaumAlpha^2*sqrt(5) 4324101312532386 a001 1364/75025*8^(5/12) 4324101322111122 k006 concat of cont frac of 4324101354760386 r002 11th iterates of z^2 + 4324101361122662 r002 27th iterates of z^2 + 4324101383916966 r002 29th iterates of z^2 + 4324101393157115 m008 (1/3*Pi^5-3/5)/(3/4*Pi^5+5) 4324101395802308 a007 Real Root Of -692*x^4+729*x^3+915*x^2+955*x+325 4324101411210871 k007 concat of cont frac of 4324101411825107 m001 (2^(1/2)+ln(2))/(Conway+FeigenbaumMu) 4324101420135755 r005 Re(z^2+c),c=5/17+33/59*I,n=48 4324101441415827 r002 59th iterates of z^2 + 4324101472128324 m001 (exp(1)+LandauRamanujan)/(-Porter+Robbin) 4324101475843441 r005 Re(z^2+c),c=-73/118+3/47*I,n=47 4324101497259840 a007 Real Root Of 652*x^4-610*x^3+420*x^2+168*x-78 4324101499285577 r005 Re(z^2+c),c=-11/18+19/101*I,n=35 4324101515716036 r009 Re(z^3+c),c=-47/114+43/50*I,n=2 4324101541701422 a001 144/199*199^(17/22) 4324101548648280 r005 Im(z^2+c),c=5/86+34/59*I,n=31 4324101559737866 a007 Real Root Of 28*x^4-355*x^3+883*x^2+472*x+362 4324101569355504 a001 1926*10946^(2/23) 4324101569862984 r002 30th iterates of z^2 + 4324101570658288 l006 ln(4943/7617) 4324101584370563 r009 Re(z^3+c),c=-53/102+25/58*I,n=18 4324101590813996 r005 Re(z^2+c),c=41/110+10/57*I,n=43 4324101600023866 m001 (Zeta(1,2)-Bloch)/(GaussKuzminWirsing+Otter) 4324101606408899 m005 (1/2*3^(1/2)+4/9)/(6/7*Zeta(3)-8/11) 4324101626469328 r009 Im(z^3+c),c=-25/64+23/38*I,n=43 4324101626665115 a007 Real Root Of -271*x^4-452*x^3-416*x^2+447*x+244 4324101626715621 r005 Re(z^2+c),c=-143/102+9/35*I,n=4 4324101641232974 a001 305/161*322^(13/24) 4324101646857115 s002 sum(A020876[n]/((exp(n)-1)/n),n=1..infinity) 4324101647964794 r005 Im(z^2+c),c=8/27+10/31*I,n=46 4324101651819751 r005 Im(z^2+c),c=19/60+19/64*I,n=50 4324101654114111 k008 concat of cont frac of 4324101657656471 m001 GAMMA(17/24)^2*exp(Paris)^2*arctan(1/2)^2 4324101661557370 a007 Real Root Of -132*x^4-347*x^3+956*x^2+25*x+326 4324101664538417 r009 Im(z^3+c),c=-19/46+20/33*I,n=38 4324101680267073 a005 (1/sin(88/213*Pi))^161 4324101689982007 r005 Im(z^2+c),c=-127/118+1/21*I,n=6 4324101696868416 r009 Im(z^3+c),c=-15/28+13/41*I,n=52 4324101707024811 r005 Re(z^2+c),c=-23/36+3/38*I,n=14 4324101707057723 a001 1346269/4*18^(53/60) 4324101710672334 r009 Im(z^3+c),c=-13/38+21/47*I,n=14 4324101721103750 r005 Im(z^2+c),c=1/56+24/43*I,n=61 4324101722271462 k007 concat of cont frac of 4324101727438856 r005 Im(z^2+c),c=13/126+33/62*I,n=32 4324101727478944 m005 (1/2*Zeta(3)-4/5)/(7/9*gamma-10/11) 4324101734770292 a003 cos(Pi*39/115)/cos(Pi*13/28) 4324101758764332 r002 14th iterates of z^2 + 4324101759009404 r005 Im(z^2+c),c=-43/110+31/52*I,n=47 4324101763959663 m001 (DuboisRaymond-exp(1))/(-Lehmer+Salem) 4324101767986347 a001 18/5*28657^(1/56) 4324101775742486 a001 199/7778742049*46368^(5/19) 4324101775848339 a001 199/956722026041*4052739537881^(5/19) 4324101775848339 a001 199/86267571272*433494437^(5/19) 4324101778970667 r009 Im(z^3+c),c=-1/86+28/37*I,n=8 4324101787115725 m001 (exp(Pi)+Si(Pi))/(LambertW(1)+Trott) 4324101793247038 p001 sum((-1)^n/(535*n+416)/n/(24^n),n=1..infinity) 4324101804778258 a001 377/1364*521^(21/26) 4324101806225727 r009 Im(z^3+c),c=-41/98+22/51*I,n=13 4324101806817499 a007 Real Root Of -149*x^4+494*x^3+95*x^2+355*x-206 4324101812105143 r005 Im(z^2+c),c=3/25+19/39*I,n=55 4324101822550094 r005 Re(z^2+c),c=-13/20+10/33*I,n=63 4324101828567366 r005 Im(z^2+c),c=-8/15+29/62*I,n=25 4324101829329478 m001 GAMMA(17/24)+Grothendieck*Niven 4324101851170922 m001 1/Riemann1stZero*ln(Conway)^2/GAMMA(1/12) 4324101877103408 m005 (1/2*Pi-1/4)/(10/11*exp(1)+7/12) 4324101877566787 r005 Im(z^2+c),c=-25/86+11/20*I,n=12 4324101890724745 r005 Im(z^2+c),c=29/66+15/64*I,n=7 4324101895721511 v002 sum(1/(3^n+(22*n^2-66*n+107)),n=1..infinity) 4324101900689544 m009 (5*Psi(1,1/3)-1/2)/(1/12*Pi^2+1/3) 4324101906928173 m001 (ln(2)-BesselK(1,1))/(Sierpinski-Weierstrass) 4324101907512251 r002 60th iterates of z^2 + 4324101915699850 a007 Real Root Of -239*x^4+869*x^3-651*x^2-572*x-47 4324101927034813 r005 Im(z^2+c),c=1/9+13/23*I,n=49 4324101934676831 r002 51i'th iterates of 2*x/(1-x^2) of 4324101937978042 m001 GAMMA(1/6)^2/ln(Salem)^2/exp(1) 4324101943420487 h001 (7/8*exp(2)+1/5)/(4/9*exp(1)+1/3) 4324101978982008 m001 (GaussAGM-Otter*TravellingSalesman)/Otter 4324101979810405 r009 Im(z^3+c),c=-37/86+19/48*I,n=11 4324101980717741 r005 Re(z^2+c),c=-5/8+11/37*I,n=54 4324102000294428 r005 Re(z^2+c),c=-37/36+8/43*I,n=16 4324102001645187 q001 1577/3647 4324102004301701 a007 Real Root Of -839*x^4-630*x^3+441*x^2+872*x+273 4324102006524140 a001 439204/3*46368^(9/17) 4324102011508792 l006 ln(2978/4589) 4324102028237085 m001 1/exp(Riemann2ndZero)/Lehmer*sin(Pi/5)^2 4324102031805944 r009 Im(z^3+c),c=-10/27+10/23*I,n=21 4324102032697944 r005 Re(z^2+c),c=-21/34+8/105*I,n=59 4324102035342136 r005 Re(z^2+c),c=-53/86+1/37*I,n=29 4324102038979571 r002 61th iterates of z^2 + 4324102042696523 r002 51th iterates of z^2 + 4324102048006770 g001 abs(GAMMA(-19/10+I*7/2)) 4324102051356605 a001 3/17711*13^(19/52) 4324102051453587 r002 31th iterates of z^2 + 4324102061082972 m001 (BesselI(1,1)+2)/(GAMMA(11/24)+4) 4324102064429496 m001 (sin(1/5*Pi)-BesselJ(1,1))/(GaussAGM-Salem) 4324102069461568 m001 GAMMA(7/24)/(LandauRamanujan^(2^(1/3))) 4324102071742063 a003 sin(Pi*1/28)*sin(Pi*13/103) 4324102071839397 r005 Im(z^2+c),c=-8/15+29/63*I,n=13 4324102087820793 a003 cos(Pi*8/77)-cos(Pi*20/61) 4324102114384257 a008 Real Root of x^4-2*x^3+12*x^2+70*x-433 4324102116978026 r009 Im(z^3+c),c=-29/62+11/27*I,n=14 4324102118701791 r005 Re(z^2+c),c=-21/34+6/89*I,n=46 4324102128005887 a007 Real Root Of -405*x^4+456*x^3+606*x^2+814*x-488 4324102128851154 r005 Im(z^2+c),c=-55/118+3/53*I,n=7 4324102136280715 a001 1926*165580141^(9/17) 4324102168491279 r002 16th iterates of z^2 + 4324102168626716 r002 40th iterates of z^2 + 4324102188576117 m001 1/ln(LaplaceLimit)*Backhouse^2*Catalan^2 4324102200713835 a007 Real Root Of 742*x^4+429*x^3+193*x^2-744*x+225 4324102205624395 r005 Im(z^2+c),c=-9/86+19/31*I,n=34 4324102215112711 k007 concat of cont frac of 4324102216390480 h001 (4/11*exp(2)+1/3)/(8/9*exp(2)+5/12) 4324102221139311 k009 concat of cont frac of 4324102232145861 a007 Real Root Of -101*x^4-334*x^3-458*x^2+32*x+76 4324102260511652 r009 Re(z^3+c),c=-23/54+9/14*I,n=4 4324102267336342 a007 Real Root Of -205*x^4+849*x^3+636*x^2+716*x-490 4324102269044187 a001 329/281*521^(15/26) 4324102276296655 a001 987/9349*521^(25/26) 4324102281220848 r005 Im(z^2+c),c=17/74+13/33*I,n=52 4324102283074739 m006 (2*exp(2*Pi)-4/5)/(Pi-2/3) 4324102286818929 a007 Real Root Of 475*x^4-588*x^3-741*x^2+52*x+147 4324102290580691 m001 (-Thue+ZetaP(4))/(1+AlladiGrinstead) 4324102312824507 r002 63th iterates of z^2 + 4324102325600484 a007 Real Root Of 639*x^4-875*x^3+129*x^2-728*x-432 4324102326958105 a001 2207/3*701408733^(2/23) 4324102331561539 m006 (1/4*exp(Pi)+1/2)/(4/5/Pi-2/5) 4324102332705928 m001 1/exp(Riemann2ndZero)*Conway/sqrt(5) 4324102342131731 k007 concat of cont frac of 4324102345673440 r005 Im(z^2+c),c=2/11+10/27*I,n=6 4324102353076892 r004 Im(z^2+c),c=1/6+9/20*I,z(0)=I,n=47 4324102360117403 r005 Re(z^2+c),c=-27/58+29/59*I,n=39 4324102372849502 a003 sin(Pi*2/99)-sin(Pi*18/109) 4324102375812266 m001 (ln(gamma)+ln(5))/(2^(1/2)+Zeta(5)) 4324102381988762 m001 BesselJ(0,1)/exp(Rabbit)^2*GAMMA(7/12)^2 4324102386078258 m001 ln(5)^HeathBrownMoroz/exp(Pi) 4324102389079238 m001 1/ArtinRank2^2*ln(Champernowne)^2/(3^(1/3))^2 4324102393361208 r005 Im(z^2+c),c=25/114+15/37*I,n=33 4324102411893121 b008 -44+SinIntegral[Pi/4] 4324102426730899 r005 Re(z^2+c),c=-8/13+3/49*I,n=24 4324102426801288 a005 (1/cos(64/223*Pi))^32 4324102427629229 r005 Im(z^2+c),c=17/82+24/41*I,n=3 4324102439684331 m001 FeigenbaumD/cos(1/5*Pi)/ZetaP(4) 4324102447706075 a007 Real Root Of -126*x^4+606*x^3+788*x^2+502*x-409 4324102448761941 p004 log(23039/14951) 4324102449291500 r005 Re(z^2+c),c=-71/118+11/42*I,n=58 4324102449598083 r005 Re(z^2+c),c=-29/44+6/59*I,n=19 4324102454482058 r005 Im(z^2+c),c=13/86+20/41*I,n=26 4324102508971746 m001 1/exp(BesselK(1,1))^2*Si(Pi)/GAMMA(17/24) 4324102509457766 r002 57th iterates of z^2 + 4324102517078221 r005 Re(z^2+c),c=-85/114+1/18*I,n=30 4324102520409266 m001 (Zeta(1/2)-KomornikLoreti)/(Sarnak+Trott2nd) 4324102523338941 m001 BesselI(1,2)^FeigenbaumAlpha+GAMMA(5/6) 4324102523338941 m001 GAMMA(5/6)+BesselI(1,2)^FeigenbaumAlpha 4324102525746676 m001 (GolombDickman+Tribonacci)/(Psi(2,1/3)-Si(Pi)) 4324102531895487 r002 28th iterates of z^2 + 4324102533621841 r009 Re(z^3+c),c=-15/32+9/59*I,n=21 4324102534051241 r005 Re(z^2+c),c=-14/23+13/45*I,n=43 4324102555698161 m001 (2^(1/2))^(exp(1)/Cahen) 4324102555698161 m001 sqrt(2)^(exp(1)/Cahen) 4324102556465660 r009 Re(z^3+c),c=-8/21+3/43*I,n=13 4324102557518296 l006 ln(3991/6150) 4324102557783989 m001 (-Paris+Totient)/(2^(1/2)+Backhouse) 4324102564077661 r002 5th iterates of z^2 + 4324102580490095 r002 3th iterates of z^2 + 4324102580490095 r002 3th iterates of z^2 + 4324102597723528 r002 42th iterates of z^2 + 4324102601114658 m001 GAMMA(2/3)+BesselI(1,1)+BesselJZeros(0,1) 4324102608249787 b008 5/3+ExpIntegralEi[-1/8] 4324102615823399 r005 Im(z^2+c),c=15/98+28/57*I,n=26 4324102619251887 r005 Im(z^2+c),c=-5/7+23/114*I,n=62 4324102630701640 r005 Re(z^2+c),c=-39/64+10/53*I,n=48 4324102640416285 r005 Re(z^2+c),c=43/126+24/55*I,n=60 4324102644863607 a007 Real Root Of -377*x^4+773*x^3-759*x^2+31*x+231 4324102654592576 a001 46368/2207*199^(3/22) 4324102654644403 p003 LerchPhi(1/100,3,51/179) 4324102671736069 m001 ln(FibonacciFactorial)*Backhouse^2/Zeta(9) 4324102697063164 s002 sum(A196081[n]/(exp(n)),n=1..infinity) 4324102697339854 m002 E^Pi/36+Pi^3+Cosh[Pi] 4324102703514198 m005 (1/3*gamma-3/5)/(1/11*Zeta(3)+5/6) 4324102712604192 r005 Re(z^2+c),c=-59/94+7/36*I,n=19 4324102713988234 m001 (PlouffeB-cos(1/12*Pi))^Salem 4324102716858470 m001 (-DuboisRaymond+Porter)/(2^(1/2)+GAMMA(7/12)) 4324102736908724 r002 11th iterates of z^2 + 4324102737417915 m001 (FeigenbaumD-ln(gamma))/RenyiParking 4324102737735498 m001 Conway^BesselI(0,1)-FeigenbaumC 4324102749040077 a001 329/90481*2^(1/4) 4324102759579236 m007 (-1/3*gamma-ln(2)-1/6*Pi+5/6)/(-3*gamma+2/5) 4324102785667042 m001 1/Riemann2ndZero*Backhouse/ln(GAMMA(19/24)) 4324102789002603 m005 (1/2*2^(1/2)-1)/(1/3*3^(1/2)+1/10) 4324102796062692 r009 Im(z^3+c),c=-53/114+22/59*I,n=22 4324102805629481 a007 Real Root Of -103*x^4+750*x^3-954*x^2-198*x+157 4324102811507374 a007 Real Root Of 264*x^4-623*x^3+39*x^2-486*x+244 4324102817916594 m001 1/Khintchine^2*Champernowne/exp(Tribonacci)^2 4324102848070390 h001 (-exp(-3)+4)/(-exp(-2)-9) 4324102859328521 m001 (-exp(1/exp(1))+GAMMA(17/24))/(cos(1)-gamma) 4324102870667640 m001 (GAMMA(2/3)-Psi(1,1/3))/(Trott2nd+ZetaP(3)) 4324102882461588 l006 ln(5004/7711) 4324102901397446 a007 Real Root Of 901*x^4-448*x^3-651*x^2-554*x+366 4324102903403757 a007 Real Root Of 266*x^4+353*x^3+738*x^2-884*x-501 4324102904390313 m001 MadelungNaCl^2*ln(Lehmer)^2/GAMMA(5/24)^2 4324102905606431 m001 (GAMMA(2/3)+gamma(2))/(Niven+OrthogonalArrays) 4324102928556154 a001 4870847/233*233^(2/15) 4324102929326650 a001 4181/199*76^(1/6) 4324102930899467 m001 (Salem+TwinPrimes)/(exp(1)+GAMMA(7/12)) 4324102936239688 m001 (gamma-sin(1))/(-BesselI(1,1)+Salem) 4324102939883639 r009 Im(z^3+c),c=-51/110+18/47*I,n=40 4324102942831158 b008 2+Sqrt[1/3+E]+EulerGamma 4324102943864207 l006 ln(5318/5553) 4324102955278090 a007 Real Root Of 25*x^4-118*x^3+415*x^2-481*x-296 4324102958331181 r002 40th iterates of z^2 + 4324102962583935 m001 gamma(2)^ln(3)/(exp(1/Pi)^ln(3)) 4324102964101918 r009 Im(z^3+c),c=-33/98+22/53*I,n=5 4324102964790629 r005 Re(z^2+c),c=-43/70+11/53*I,n=39 4324102972465059 a007 Real Root Of -55*x^4-210*x^3+83*x^2-308*x-634 4324102988045479 m001 1/exp(arctan(1/2))^2/Zeta(5)^2*sinh(1) 4324102992272469 a001 646/6119*521^(25/26) 4324102998258947 r002 16th iterates of z^2 + 4324103026748513 m005 (1/2*Zeta(3)+2/3)/(5/12*5^(1/2)+2) 4324103048467586 m008 (5/6*Pi^4+1)/(3/5*Pi^3+2/5) 4324103060460014 a007 Real Root Of 246*x^4+494*x^3+882*x^2-334*x-278 4324103063945837 m005 (1/2*2^(1/2)+2/9)/(2/11*3^(1/2)-1/10) 4324103066559757 r005 Re(z^2+c),c=-55/94+17/64*I,n=4 4324103067855369 r002 57th iterates of z^2 + 4324103079941015 m001 cos(1/12*Pi)/(HardHexagonsEntropy^exp(Pi)) 4324103095461951 r002 63th iterates of z^2 + 4324103096731931 a001 6765/64079*521^(25/26) 4324103097837156 m005 (1/3*Catalan+1/4)/(4/9*Zeta(3)+3/4) 4324103097992358 l006 ln(6017/9272) 4324103098547618 a007 Real Root Of 631*x^4-65*x^3-452*x^2-796*x-287 4324103107508009 m001 1/exp(GAMMA(1/24))*Riemann2ndZero/Pi 4324103111972361 a001 17711/167761*521^(25/26) 4324103114195910 a001 11592/109801*521^(25/26) 4324103114520321 a001 121393/1149851*521^(25/26) 4324103114567652 a001 317811/3010349*521^(25/26) 4324103114578825 a001 514229/4870847*521^(25/26) 4324103114596904 a001 98209/930249*521^(25/26) 4324103114720818 a001 75025/710647*521^(25/26) 4324103115570138 a001 28657/271443*521^(25/26) 4324103121391465 a001 5473/51841*521^(25/26) 4324103121498001 r005 Re(z^2+c),c=-13/20+10/57*I,n=32 4324103124143692 r002 30th iterates of z^2 + 4324103125062753 m001 1/ln(GAMMA(23/24))^2*(2^(1/3))^2*sqrt(Pi) 4324103142502446 r002 24th iterates of z^2 + 4324103143616163 r005 Re(z^2+c),c=-21/34+11/83*I,n=38 4324103153474490 r005 Re(z^2+c),c=-8/13+7/60*I,n=60 4324103153734265 r005 Re(z^2+c),c=9/32+18/47*I,n=26 4324103161291429 a001 4181/39603*521^(25/26) 4324103164371767 a007 Real Root Of 768*x^4-681*x^3+898*x^2-271*x-367 4324103167072976 r005 Re(z^2+c),c=-75/122+8/59*I,n=44 4324103184437201 r002 43th iterates of z^2 + 4324103186257697 m001 FeigenbaumAlpha*(Pi+Riemann1stZero) 4324103193787931 h001 (-4*exp(-2)-3)/(-8*exp(1/2)+5) 4324103220432130 m005 (1/2*5^(1/2)+5/11)/(4/7*2^(1/2)-4/9) 4324103226481680 r002 33th iterates of z^2 + 4324103227336342 m001 (exp(1/exp(1))-gamma(2))/(GAMMA(13/24)-Conway) 4324103246283145 m005 (1/2*5^(1/2)-5/7)/(1/9*Catalan-1/9) 4324103251333273 r009 Im(z^3+c),c=-9/118+25/49*I,n=15 4324103260910757 r002 15th iterates of z^2 + 4324103268229760 r005 Im(z^2+c),c=-33/46+14/51*I,n=60 4324103291262624 r002 12th iterates of z^2 + 4324103297737190 a001 3571/196418*8^(5/12) 4324103298114563 a007 Real Root Of -646*x^4-44*x^3+513*x^2+951*x-481 4324103306067432 g001 GAMMA(4/5,34/45) 4324103306713809 m001 LaplaceLimit/ln(2)*ZetaP(2) 4324103308066427 r009 Im(z^3+c),c=-17/54+27/59*I,n=20 4324103312650877 p004 log(23227/15073) 4324103322694071 a001 329/1926*521^(23/26) 4324103323186385 r005 Im(z^2+c),c=-13/10+1/43*I,n=60 4324103334997131 a001 3/4052739537881*267914296^(13/19) 4324103335717665 a001 3/7778742049*28657^(13/19) 4324103350217301 r005 Im(z^2+c),c=5/56+21/41*I,n=31 4324103368369393 a007 Real Root Of -170*x^4-668*x^3+201*x^2-397*x-50 4324103384197105 a007 Real Root Of -534*x^4+251*x^3-206*x^2+954*x+490 4324103400659989 m005 (1/2*3^(1/2)+5/7)/(1/7*Pi-1/12) 4324103400934619 m001 (Kolakoski-Riemann1stZero)^BesselI(1,1) 4324103413166574 a001 121393/5778*199^(3/22) 4324103423073914 r009 Im(z^3+c),c=-1/118+20/39*I,n=11 4324103434769850 a001 1597/15127*521^(25/26) 4324103455299756 m001 (Porter+Salem)/(polylog(4,1/2)-GAMMA(5/6)) 4324103455687169 a003 cos(Pi*10/33)-cos(Pi*24/53) 4324103459736325 r002 30th iterates of z^2 + 4324103461411237 r004 Im(z^2+c),c=7/46+6/13*I,z(0)=I,n=52 4324103462307446 l005 195364/6241/(exp(442/79)^2-1) 4324103463128377 m001 (Zeta(3)-DuboisRaymond)/(Kac-Otter) 4324103472733035 r002 51th iterates of z^2 + 4324103478536966 r005 Re(z^2+c),c=2/13+21/43*I,n=34 4324103483495261 m001 KhinchinLevy-FeigenbaumDelta-sin(1) 4324103507320837 a001 2584/710647*2^(1/4) 4324103512285604 m001 (GAMMA(17/24)+ZetaQ(4))/(Chi(1)-cos(1)) 4324103513922641 a001 199/46368*4181^(26/47) 4324103517586290 a007 Real Root Of -177*x^4-728*x^3+78*x^2-178*x+793 4324103519042314 a001 4/9*24476^(32/47) 4324103523841051 a001 317811/15127*199^(3/22) 4324103533067776 r002 53th iterates of z^2 + 4324103537842552 m005 (1/2*Zeta(3)+1/12)/(11/12*exp(1)-10/11) 4324103539988240 a001 832040/39603*199^(3/22) 4324103542344084 a001 46347/2206*199^(3/22) 4324103542687797 a001 5702887/271443*199^(3/22) 4324103542737944 a001 14930352/710647*199^(3/22) 4324103542745260 a001 39088169/1860498*199^(3/22) 4324103542746327 a001 102334155/4870847*199^(3/22) 4324103542746483 a001 267914296/12752043*199^(3/22) 4324103542746506 a001 701408733/33385282*199^(3/22) 4324103542746509 a001 1836311903/87403803*199^(3/22) 4324103542746510 a001 102287808/4868641*199^(3/22) 4324103542746510 a001 12586269025/599074578*199^(3/22) 4324103542746510 a001 32951280099/1568397607*199^(3/22) 4324103542746510 a001 86267571272/4106118243*199^(3/22) 4324103542746510 a001 225851433717/10749957122*199^(3/22) 4324103542746510 a001 591286729879/28143753123*199^(3/22) 4324103542746510 a001 1548008755920/73681302247*199^(3/22) 4324103542746510 a001 4052739537881/192900153618*199^(3/22) 4324103542746510 a001 225749145909/10745088481*199^(3/22) 4324103542746510 a001 6557470319842/312119004989*199^(3/22) 4324103542746510 a001 2504730781961/119218851371*199^(3/22) 4324103542746510 a001 956722026041/45537549124*199^(3/22) 4324103542746510 a001 365435296162/17393796001*199^(3/22) 4324103542746510 a001 139583862445/6643838879*199^(3/22) 4324103542746510 a001 53316291173/2537720636*199^(3/22) 4324103542746510 a001 20365011074/969323029*199^(3/22) 4324103542746510 a001 7778742049/370248451*199^(3/22) 4324103542746510 a001 2971215073/141422324*199^(3/22) 4324103542746511 a001 1134903170/54018521*199^(3/22) 4324103542746520 a001 433494437/20633239*199^(3/22) 4324103542746579 a001 165580141/7881196*199^(3/22) 4324103542746987 a001 63245986/3010349*199^(3/22) 4324103542749782 a001 24157817/1149851*199^(3/22) 4324103542768936 a001 9227465/439204*199^(3/22) 4324103542900223 a001 3524578/167761*199^(3/22) 4324103543800075 a001 1346269/64079*199^(3/22) 4324103549967752 a001 514229/24476*199^(3/22) 4324103558495937 a007 Real Root Of 71*x^4-700*x^3-589*x^2-48*x+185 4324103576496073 p003 LerchPhi(1/3,2,53/108) 4324103582788347 r009 Im(z^3+c),c=-29/74+25/59*I,n=33 4324103587374667 a001 9349/514229*8^(5/12) 4324103592241643 a001 196418/9349*199^(3/22) 4324103594108046 r005 Im(z^2+c),c=7/26+18/49*I,n=32 4324103598228495 r005 Im(z^2+c),c=-19/30+43/93*I,n=27 4324103608008957 m001 gamma(2)^(2^(1/3))*gamma(2)^OrthogonalArrays 4324103617952509 a001 55/15126*2^(1/4) 4324103629632205 a001 24476/1346269*8^(5/12) 4324103629948138 a001 1/87*(1/2*5^(1/2)+1/2)^31*29^(3/4) 4324103634093452 a001 17711/4870847*2^(1/4) 4324103635797497 a001 64079/3524578*8^(5/12) 4324103636448384 a001 15456/4250681*2^(1/4) 4324103636533090 r009 Re(z^3+c),c=-1/58+13/17*I,n=38 4324103636697001 a001 167761/9227465*8^(5/12) 4324103636791964 a001 121393/33385282*2^(1/4) 4324103636828237 a001 439204/24157817*8^(5/12) 4324103636842092 a001 105937/29134601*2^(1/4) 4324103636847384 a001 1149851/63245986*8^(5/12) 4324103636849405 a001 832040/228826127*2^(1/4) 4324103636850178 a001 3010349/165580141*8^(5/12) 4324103636850472 a001 726103/199691526*2^(1/4) 4324103636850585 a001 7881196/433494437*8^(5/12) 4324103636850628 a001 5702887/1568397607*2^(1/4) 4324103636850645 a001 20633239/1134903170*8^(5/12) 4324103636850651 a001 4976784/1368706081*2^(1/4) 4324103636850653 a001 54018521/2971215073*8^(5/12) 4324103636850654 a001 39088169/10749957122*2^(1/4) 4324103636850654 a001 141422324/7778742049*8^(5/12) 4324103636850655 a001 831985/228811001*2^(1/4) 4324103636850655 a001 370248451/20365011074*8^(5/12) 4324103636850655 a001 267914296/73681302247*2^(1/4) 4324103636850655 a001 969323029/53316291173*8^(5/12) 4324103636850655 a001 233802911/64300051206*2^(1/4) 4324103636850655 a001 2537720636/139583862445*8^(5/12) 4324103636850655 a001 1836311903/505019158607*2^(1/4) 4324103636850655 a001 6643838879/365435296162*8^(5/12) 4324103636850655 a001 1602508992/440719107401*2^(1/4) 4324103636850655 a001 17393796001/956722026041*8^(5/12) 4324103636850655 a001 12586269025/3461452808002*2^(1/4) 4324103636850655 a001 45537549124/2504730781961*8^(5/12) 4324103636850655 a001 10983760033/3020733700601*2^(1/4) 4324103636850655 a001 119218851371/6557470319842*8^(5/12) 4324103636850655 a001 86267571272/23725150497407*2^(1/4) 4324103636850655 a001 64300051206/3536736619241*8^(5/12) 4324103636850655 a001 53316291173/14662949395604*2^(1/4) 4324103636850655 a001 73681302247/4052739537881*8^(5/12) 4324103636850655 a001 20365011074/5600748293801*2^(1/4) 4324103636850655 a001 228811001/12585437040*8^(5/12) 4324103636850655 a001 7778742049/2139295485799*2^(1/4) 4324103636850655 a001 10749957122/591286729879*8^(5/12) 4324103636850655 a001 2971215073/817138163596*2^(1/4) 4324103636850655 a001 1368706081/75283811239*8^(5/12) 4324103636850655 a001 1134903170/312119004989*2^(1/4) 4324103636850655 a001 1568397607/86267571272*8^(5/12) 4324103636850655 a001 433494437/119218851371*2^(1/4) 4324103636850655 a001 199691526/10983760033*8^(5/12) 4324103636850655 a001 165580141/45537549124*2^(1/4) 4324103636850655 a001 228826127/12586269025*8^(5/12) 4324103636850655 a001 63245986/17393796001*2^(1/4) 4324103636850655 a001 29134601/1602508992*8^(5/12) 4324103636850656 a001 24157817/6643838879*2^(1/4) 4324103636850659 a001 33385282/1836311903*8^(5/12) 4324103636850665 a001 9227465/2537720636*2^(1/4) 4324103636850681 a001 4250681/233802911*8^(5/12) 4324103636850724 a001 3524578/969323029*2^(1/4) 4324103636850837 a001 4870847/267914296*8^(5/12) 4324103636851132 a001 1346269/370248451*2^(1/4) 4324103636851904 a001 15126/831985*8^(5/12) 4324103636853925 a001 514229/141422324*2^(1/4) 4324103636859218 a001 710647/39088169*8^(5/12) 4324103636873072 a001 196418/54018521*2^(1/4) 4324103636909345 a001 90481/4976784*8^(5/12) 4324103637004308 a001 75025/20633239*2^(1/4) 4324103637252925 a001 103682/5702887*8^(5/12) 4324103637903812 a001 28657/7881196*2^(1/4) 4324103639607857 a001 13201/726103*8^(5/12) 4324103644069104 a001 10946/3010349*2^(1/4) 4324103655748800 a001 15127/832040*8^(5/12) 4324103663725815 r009 Re(z^3+c),c=-9/31+19/25*I,n=3 4324103666629775 m005 (1/2*gamma+2)/(4/9*gamma+3/11) 4324103672292223 m001 (sin(1/5*Pi)+Zeta(1,-1))/(cos(1/12*Pi)+Trott) 4324103682545565 r009 Im(z^3+c),c=-7/74+30/59*I,n=23 4324103684694294 r002 3th iterates of z^2 + 4324103684972274 a007 Real Root Of -799*x^4+292*x^3-121*x^2+217*x+168 4324103686326642 a001 4181/1149851*2^(1/4) 4324103690741863 a007 Real Root Of -163*x^4-454*x^3+844*x^2-950*x+391 4324103695007402 a003 sin(Pi*11/92)/cos(Pi*19/107) 4324103698976013 a007 Real Root Of -986*x^4+668*x^3-920*x^2+651*x+542 4324103703100440 a007 Real Root Of 415*x^4-658*x^3-372*x^2-196*x+193 4324103731664548 r005 Im(z^2+c),c=1/32+28/51*I,n=41 4324103739516271 r002 3th iterates of z^2 + 4324103746102091 r002 4th iterates of z^2 + 4324103749724011 r002 61th iterates of z^2 + 4324103756166150 r009 Im(z^3+c),c=-8/29+25/47*I,n=5 4324103764205547 r009 Im(z^3+c),c=-33/62+11/40*I,n=51 4324103766380472 a001 1926/105937*8^(5/12) 4324103781011467 h001 (2/9*exp(1)+2/3)/(3/4*exp(1)+9/10) 4324103792549784 a007 Real Root Of -754*x^4+303*x^3-806*x^2-184*x+122 4324103794077550 m005 (-17/28+1/4*5^(1/2))/(3/11*2^(1/2)+8/11) 4324103803780797 r005 Im(z^2+c),c=3/20+25/54*I,n=43 4324103807279214 m001 (ln(2)+2/3)/(ln(Pi)+2) 4324103807786707 r005 Im(z^2+c),c=-3/56+33/64*I,n=8 4324103826149248 m001 (gamma(2)+Landau)/(MertensB3-Paris) 4324103838037327 a007 Real Root Of -356*x^4-85*x^3-368*x^2+161*x+144 4324103881991221 a001 75025/3571*199^(3/22) 4324103902611511 a007 Real Root Of 491*x^4-960*x^3+974*x^2-398*x-449 4324103920453722 r005 Re(z^2+c),c=21/52+8/35*I,n=15 4324103920788897 a007 Real Root Of -159*x^4-703*x^3-56*x^2+236*x+817 4324103926942758 m001 Catalan/exp(GolombDickman)*log(1+sqrt(2)) 4324103932399485 r002 51th iterates of z^2 + 4324103949264161 r005 Im(z^2+c),c=17/48+31/48*I,n=24 4324103970076580 r005 Re(z^2+c),c=-14/31+26/51*I,n=6 4324103975964120 a001 1597/439204*2^(1/4) 4324103982854072 m001 (FeigenbaumDelta-GAMMA(5/12))/sin(Pi/5) 4324103988220237 a007 Real Root Of 145*x^4+526*x^3-281*x^2+523*x-650 4324103990136037 r005 Re(z^2+c),c=-5/9+20/59*I,n=24 4324103993293552 b008 (7+Csch[1/6])/3 4324104010942755 a005 (1/cos(12/175*Pi))^358 4324104021609592 a007 Real Root Of 193*x^4+717*x^3-726*x^2-933*x+36 4324104027766572 r005 Im(z^2+c),c=-1/32+31/53*I,n=59 4324104034032608 m001 1/gamma/exp(Khintchine)/sqrt(1+sqrt(3))^2 4324104049611112 r005 Re(z^2+c),c=-21/34+7/92*I,n=57 4324104061073385 m002 -Pi^2+(3*E^Pi)/ProductLog[Pi]-Sinh[Pi] 4324104069151198 r005 Re(z^2+c),c=-13/21+1/17*I,n=45 4324104069529752 r005 Im(z^2+c),c=15/94+5/11*I,n=40 4324104077199286 r009 Re(z^3+c),c=-11/31+1/45*I,n=16 4324104088327976 a001 123*(1/2*5^(1/2)+1/2)^4*11^(15/22) 4324104094405552 m001 1/GAMMA(7/12)^2/ln(CopelandErdos)*Zeta(1/2) 4324104097986360 m005 (1/2*Zeta(3)-2/5)/(5/11*gamma-8/11) 4324104098265324 m001 (Catalan-ln(5))/(GAMMA(5/6)+Weierstrass) 4324104102156145 a007 Real Root Of -951*x^4+189*x^3+132*x^2+521*x-232 4324104105613222 m001 (PlouffeB-Psi(2,1/3))/(Rabbit+Stephens) 4324104107733995 r005 Im(z^2+c),c=-25/36+11/41*I,n=7 4324104108283597 r005 Re(z^2+c),c=2/15+28/61*I,n=54 4324104112088166 r002 19th iterates of z^2 + 4324104119756349 m001 Conway^(Pi*csc(5/12*Pi)/GAMMA(7/12)/gamma(1)) 4324104122104575 m001 (GAMMA(3/4)-gamma)/(-ErdosBorwein+OneNinth) 4324104141108456 r009 Im(z^3+c),c=-33/74+19/48*I,n=26 4324104148177025 m001 Pi+3^(1/2)+ln(gamma) 4324104148177025 m001 Pi+sqrt(3)+log(gamma) 4324104158426243 m005 (1/3*Pi+2/3)/(11/12*Catalan-4/5) 4324104162667486 l006 ln(1013/1561) 4324104165202952 m005 (1/2*2^(1/2)+2/5)/(7/8*exp(1)+2/11) 4324104177584730 p003 LerchPhi(1/25,2,40/83) 4324104178829509 r009 Im(z^3+c),c=-1/3+19/31*I,n=13 4324104180213851 m001 (ln(5)-Zeta(1,-1))/(ArtinRank2+Magata) 4324104185900483 p003 LerchPhi(1/100,3,131/99) 4324104188715027 r002 37th iterates of z^2 + 4324104191549177 a001 2584/15127*521^(23/26) 4324104196260383 a001 15127/55*317811^(1/28) 4324104215967520 a007 Real Root Of 94*x^4-453*x^3+123*x^2-942*x-41 4324104232020266 m001 (sin(1/5*Pi)-ln(Pi))/(FeigenbaumC-Landau) 4324104234527687 q001 531/1228 4324104235691042 a001 199/75025*28657^(1/21) 4324104235853225 a001 199/121393*701408733^(1/21) 4324104239432965 r009 Im(z^3+c),c=-13/29+13/33*I,n=26 4324104239775701 m004 36+Cosh[Sqrt[5]*Pi]/6-Sinh[Sqrt[5]*Pi] 4324104240899148 r005 Im(z^2+c),c=-37/86+1/14*I,n=22 4324104243497839 a007 Real Root Of -36*x^4-154*x^3-8*x^2+82*x+639 4324104248130167 a007 Real Root Of -61*x^4-399*x^3-686*x^2-374*x+276 4324104255568408 a001 610/843*521^(17/26) 4324104263218804 r002 60th iterates of z^2 + 4324104266721259 a003 sin(Pi*10/103)/cos(Pi*54/113) 4324104282293656 r002 41th iterates of z^2 + 4324104292961751 r005 Re(z^2+c),c=-43/58+3/61*I,n=53 4324104317266849 a001 4/9*2207^(42/47) 4324104318313433 a001 2255/13201*521^(23/26) 4324104322843722 m001 (gamma(3)+Zeta(1,2))/(GAMMA(5/6)+MertensB2) 4324104326680248 a007 Real Root Of 41*x^4-801*x^3+754*x^2-698*x-509 4324104332781107 r002 28th iterates of z^2 + 4324104334559437 r005 Im(z^2+c),c=29/114+17/46*I,n=55 4324104336808089 a001 17711/103682*521^(23/26) 4324104339506422 a001 15456/90481*521^(23/26) 4324104339900104 a001 121393/710647*521^(23/26) 4324104339957541 a001 105937/620166*521^(23/26) 4324104339965921 a001 832040/4870847*521^(23/26) 4324104339971101 a001 514229/3010349*521^(23/26) 4324104339993040 a001 196418/1149851*521^(23/26) 4324104340143413 a001 75025/439204*521^(23/26) 4324104341174084 a001 28657/167761*521^(23/26) 4324104348238414 a001 10946/64079*521^(23/26) 4324104357828162 r005 Im(z^2+c),c=11/94+31/60*I,n=10 4324104369416611 r005 Re(z^2+c),c=55/126+15/34*I,n=2 4324104369681926 m006 (1/3*Pi^2-1/5)/(4/5*Pi^2-3/4) 4324104369681926 m008 (1/3*Pi^2-1/5)/(4/5*Pi^2-3/4) 4324104378314174 r005 Im(z^2+c),c=25/122+15/28*I,n=35 4324104386978291 m002 2/5+3/(4*E^Pi) 4324104391236398 m001 ErdosBorwein^BesselI(0,2)*Porter 4324104396658052 a001 4181/24476*521^(23/26) 4324104396991802 a007 Real Root Of -618*x^4+227*x^3-357*x^2+701*x+31 4324104398527015 r005 Im(z^2+c),c=-89/126+11/32*I,n=53 4324104412551082 r005 Im(z^2+c),c=-7/19+42/61*I,n=3 4324104418234934 r005 Re(z^2+c),c=-21/34+7/93*I,n=48 4324104437597926 r009 Im(z^3+c),c=-1/22+21/41*I,n=13 4324104442361321 k009 concat of cont frac of 4324104452363707 m001 ((1+3^(1/2))^(1/2)-1)/(Backhouse+ZetaQ(2)) 4324104465728369 a007 Real Root Of 263*x^4-213*x^3-853*x^2-274*x+286 4324104490126848 a007 Real Root Of 207*x^4+822*x^3-203*x^2+678*x+818 4324104497538502 a001 4/317811*233^(12/53) 4324104507816540 m001 Zeta(1/2)+MertensB2^cos(1/5*Pi) 4324104517477965 r009 Re(z^3+c),c=-12/25+10/37*I,n=6 4324104522873878 m001 (BesselI(0,2)+Kac)/(ln(5)+Zeta(1,2)) 4324104524661233 a001 2207/121393*8^(5/12) 4324104527423745 a007 Real Root Of 448*x^4-912*x^3+57*x^2-134*x-158 4324104532441643 a007 Real Root Of -853*x^4-145*x^3+478*x^2+900*x-437 4324104538016987 m001 Tribonacci^2/Riemann1stZero^2/exp(Zeta(1,2)) 4324104541429484 m001 1/GAMMA(1/4)^2/GaussKuzminWirsing*ln(sin(1)) 4324104557241382 r002 8th iterates of z^2 + 4324104559432660 r002 26th iterates of z^2 + 4324104560959256 h001 (1/9*exp(1)+7/9)/(5/7*exp(1)+5/9) 4324104610255691 h001 (9/11*exp(1)+5/11)/(5/7*exp(2)+11/12) 4324104623932687 m001 ln(2)/(Ei(1)+Riemann1stZero) 4324104624822708 a001 7/3524578*17711^(11/14) 4324104626989006 a001 7/701408733*14930352^(11/14) 4324104626989009 a001 7/139583862445*12586269025^(11/14) 4324104638052993 m001 ln(BesselK(0,1))^2*Tribonacci*Pi 4324104649172068 a007 Real Root Of 942*x^4+384*x^3+842*x^2+84*x-123 4324104654003694 r009 Im(z^3+c),c=-23/66+27/61*I,n=16 4324104677402658 a005 (1/cos(11/157*Pi))^1757 4324104690222993 a005 (1/sin(47/175*Pi))^163 4324104695124049 r005 Im(z^2+c),c=1/9+31/63*I,n=28 4324104697290377 r002 26th iterates of z^2 + 4324104698614296 r002 10th iterates of z^2 + 4324104701743506 r005 Re(z^2+c),c=-67/110+9/47*I,n=58 4324104714317043 m001 1/cos(Pi/12)^2/GAMMA(1/6)*exp(cos(Pi/5)) 4324104721278715 a001 1597/843*521^(1/2) 4324104727409421 r005 Re(z^2+c),c=-2/3+4/213*I,n=22 4324104728531187 a001 1597/9349*521^(23/26) 4324104729744097 a007 Real Root Of -176*x^4-686*x^3+197*x^2-706*x-669 4324104732857594 r002 3th iterates of z^2 + 4324104745656513 m001 (ln(2)/ln(10)+gamma)/(-Bloch+FeigenbaumAlpha) 4324104748866625 r005 Re(z^2+c),c=-17/30+38/107*I,n=45 4324104750310365 a007 Real Root Of 101*x^4+249*x^3-804*x^2+230*x+849 4324104759571260 r009 Re(z^3+c),c=-45/98+8/53*I,n=29 4324104771425968 m001 1/GaussKuzminWirsing*ln(Backhouse)^2/Zeta(5)^2 4324104782925250 r002 54th iterates of z^2 + 4324104789699304 r009 Re(z^3+c),c=-12/29+8/39*I,n=2 4324104790515442 a001 377/843*1364^(19/30) 4324104794849394 r005 Im(z^2+c),c=23/122+22/51*I,n=41 4324104804027098 r009 Im(z^3+c),c=-5/12+23/56*I,n=42 4324104824163850 m001 (exp(-1/2*Pi)+ZetaQ(2))/(2^(1/2)-cos(1/5*Pi)) 4324104828695277 r002 23th iterates of z^2 + 4324104830127430 a007 Real Root Of -222*x^4-857*x^3+312*x^2-574*x+8 4324104853301667 a001 843/832040*10946^(28/43) 4324104855870579 r005 Re(z^2+c),c=-21/34+5/91*I,n=42 4324104859022270 r005 Im(z^2+c),c=9/122+12/23*I,n=56 4324104869950093 s002 sum(A073231[n]/((2^n+1)/n),n=1..infinity) 4324104873620533 r002 51th iterates of z^2 + 4324104887799778 r009 Im(z^3+c),c=-23/106+31/57*I,n=5 4324104897944677 m001 (gamma(2)+CareFree)/ErdosBorwein 4324104898685433 m001 (ErdosBorwein+Salem)/(cos(1/5*Pi)+Zeta(1,-1)) 4324104899847158 r002 22th iterates of z^2 + 4324104900562322 m005 (1/2*Zeta(3)+3/8)/(4/7*gamma-5/9) 4324104900983491 m001 (1-MertensB2)/(RenyiParking+ZetaQ(2)) 4324104903333543 m001 (FeigenbaumD+FellerTornier)/(3^(1/2)-Zeta(5)) 4324104911772180 r005 Re(z^2+c),c=-16/27+9/25*I,n=49 4324104934982957 g001 Psi(7/9,11/42) 4324104940627455 r009 Re(z^3+c),c=-37/78+13/30*I,n=4 4324104945006890 r005 Im(z^2+c),c=3/62+10/17*I,n=43 4324104959655323 m001 FeigenbaumAlpha^Si(Pi)-ln(Pi) 4324104959655323 m001 ln(Pi)-FeigenbaumAlpha^Si(Pi) 4324104965875043 r009 Im(z^3+c),c=-31/60+9/29*I,n=32 4324104975627866 a007 Real Root Of -589*x^4+840*x^3-103*x^2+433*x+295 4324105002355662 r009 Im(z^3+c),c=-14/25+9/53*I,n=16 4324105014710915 r005 Re(z^2+c),c=-21/34+7/87*I,n=52 4324105015246913 a001 987/2207*521^(19/26) 4324105016650028 r005 Im(z^2+c),c=-53/114+28/53*I,n=13 4324105016698186 a001 987/3571*521^(21/26) 4324105016901217 a007 Real Root Of -545*x^4+681*x^3-489*x^2+267*x+281 4324105028719181 r002 4th iterates of z^2 + 4324105050757315 r009 Im(z^3+c),c=-49/94+19/53*I,n=42 4324105052697291 r005 Re(z^2+c),c=-129/110+6/23*I,n=4 4324105059525772 a001 3/4*322^(33/47) 4324105066868087 r004 Im(z^2+c),c=-47/42+1/19*I,z(0)=-1,n=14 4324105069262447 m001 (3^(1/3)+Grothendieck)/(Sierpinski-Tribonacci) 4324105080903363 r005 Re(z^2+c),c=-41/74+8/21*I,n=46 4324105102174734 m001 (Zeta(3)-OrthogonalArrays)/(PlouffeB-ZetaQ(3)) 4324105115596267 a007 Real Root Of -636*x^4+59*x^3+772*x^2+812*x-478 4324105136298202 r005 Im(z^2+c),c=-123/94+3/55*I,n=13 4324105154153368 m005 (1/2*gamma+5/8)/(1/12*Zeta(3)+1/9) 4324105182965481 r005 Re(z^2+c),c=-5/8+9/58*I,n=23 4324105186143599 r005 Re(z^2+c),c=-57/94+2/9*I,n=50 4324105196372773 a001 322/13*832040^(23/42) 4324105203625964 m001 1/arctan(1/2)/exp(Magata)/sqrt(1+sqrt(3)) 4324105206007596 r009 Im(z^3+c),c=-27/56+10/27*I,n=59 4324105206184276 l006 ln(6139/9460) 4324105207709584 m001 (GAMMA(7/12)+MertensB3)/Robbin 4324105210921285 r002 8th iterates of z^2 + 4324105224792008 a007 Real Root Of 460*x^4-309*x^3+380*x^2-416*x-292 4324105237914570 r005 Re(z^2+c),c=25/82+1/15*I,n=15 4324105240114977 m001 (2*Pi/GAMMA(5/6)+Landau)^cos(1/5*Pi) 4324105249872492 m001 (GAMMA(7/12)-ThueMorse)/(cos(1/5*Pi)+Pi^(1/2)) 4324105258222517 r005 Re(z^2+c),c=-39/62+11/57*I,n=22 4324105260141549 a007 Real Root Of -191*x^4-351*x^3-810*x^2+995*x+560 4324105273854774 r002 18th iterates of z^2 + 4324105293636331 m001 1/exp(BesselJ(0,1))*TwinPrimes^2*Zeta(1/2)^2 4324105304551107 m001 1/3*LandauRamanujan*3^(2/3)/GAMMA(3/4) 4324105304551107 m001 LandauRamanujan/(3^(1/3))/GAMMA(3/4) 4324105309218776 a001 305/2889*521^(25/26) 4324105312835897 r005 Re(z^2+c),c=-13/31+13/37*I,n=4 4324105319288506 s002 sum(A181290[n]/(n^3*exp(n)+1),n=1..infinity) 4324105335822859 r005 Re(z^2+c),c=-16/27+1/3*I,n=44 4324105339119132 r005 Im(z^2+c),c=-45/82+13/28*I,n=37 4324105339234710 m005 (1/3*Zeta(3)-1/11)/(5/11*5^(1/2)-3/10) 4324105342303475 r002 62th iterates of z^2 + 4324105342609076 m003 -33/8+Sqrt[5]/4-ProductLog[1/2+Sqrt[5]/2] 4324105342796119 m001 GAMMA(5/6)^FibonacciFactorial/FeigenbaumD 4324105350922988 m005 (1/2*5^(1/2)+5/7)/(8/9*2^(1/2)-5/6) 4324105353772527 m001 FeigenbaumKappa/Si(Pi)*ln(arctan(1/2))^2 4324105363667344 r002 32th iterates of z^2 + 4324105366227677 r009 Im(z^3+c),c=-49/106+19/53*I,n=16 4324105367319500 a007 Real Root Of 828*x^4-979*x^3-247*x^2+53*x-39 4324105374014701 r009 Im(z^3+c),c=-3/64+6/11*I,n=4 4324105377361155 r005 Re(z^2+c),c=-53/86+1/8*I,n=32 4324105389304340 a007 Real Root Of 821*x^4-411*x^3+751*x^2-131*x-259 4324105397780165 r005 Im(z^2+c),c=27/106+4/11*I,n=30 4324105399655568 m005 (1/2*exp(1)-5/8)/(9/11*Zeta(3)+5/7) 4324105401317703 r009 Re(z^3+c),c=-7/15+7/15*I,n=4 4324105412404026 l006 ln(5126/7899) 4324105412811226 r002 35th iterates of z^2 + 4324105420966480 m001 (HardyLittlewoodC5+Kac)/(exp(Pi)+cos(1/5*Pi)) 4324105425124893 r008 a(0)=4,K{-n^6,1-7*n^3+7*n^2-6*n} 4324105426448271 r009 Im(z^3+c),c=-37/106+29/45*I,n=36 4324105446619368 r005 Re(z^2+c),c=-51/110+24/55*I,n=14 4324105478058268 a001 2584/843*521^(11/26) 4324105480142298 r005 Re(z^2+c),c=-57/110+29/60*I,n=57 4324105484612252 a007 Real Root Of -663*x^4+479*x^3-113*x^2+672*x-285 4324105485310741 a001 2584/9349*521^(21/26) 4324105487941870 a001 439204/3*267914296^(7/17) 4324105488027578 a001 4250681*75025^(7/17) 4324105492228310 s003 concatenated sequence A189742 4324105493782525 r009 Re(z^3+c),c=-1/126+19/37*I,n=6 4324105497673984 r005 Im(z^2+c),c=-25/46+37/58*I,n=6 4324105506861191 a001 15127/3*956722026041^(7/17) 4324105520086304 m006 (1/2*Pi+1/4)/(4*ln(Pi)-5) 4324105529134669 m005 (1/2*2^(1/2)+3/5)/(3*Zeta(3)-7/12) 4324105530236733 a007 Real Root Of 572*x^4-806*x^3-442*x^2-274*x-121 4324105532046026 r009 Im(z^3+c),c=-3/40+27/53*I,n=8 4324105537104295 m001 Lehmer*Cahen^TravellingSalesman 4324105545626786 r005 Im(z^2+c),c=-5/7+25/83*I,n=31 4324105545659067 h001 (7/10*exp(2)+1/4)/(2/5*exp(1)+1/6) 4324105547658451 a007 Real Root Of -459*x^4+935*x^3-557*x^2+315*x+332 4324105547957141 q001 1/2312617 4324105553369002 a007 Real Root Of -506*x^4+328*x^3-692*x^2+515*x-21 4324105553680386 a001 6765/24476*521^(21/26) 4324105558395959 m003 1/12+Sqrt[5]/8-18*Sinh[1/2+Sqrt[5]/2] 4324105563655383 a001 17711/64079*521^(21/26) 4324105565110715 a001 46368/167761*521^(21/26) 4324105565323045 a001 121393/439204*521^(21/26) 4324105565354024 a001 317811/1149851*521^(21/26) 4324105565358544 a001 832040/3010349*521^(21/26) 4324105565359611 a001 1346269/4870847*521^(21/26) 4324105565361337 a001 514229/1860498*521^(21/26) 4324105565373170 a001 196418/710647*521^(21/26) 4324105565454273 a001 75025/271443*521^(21/26) 4324105565551717 r005 Im(z^2+c),c=5/64+15/29*I,n=51 4324105566010160 a001 28657/103682*521^(21/26) 4324105569820270 a001 10946/39603*521^(21/26) 4324105576522526 m001 ZetaP(4)^(Riemann1stZero/ln(2)*ln(10)) 4324105588116344 m001 sin(1/12*Pi)^Thue*Backhouse^Thue 4324105591669594 r002 8th iterates of z^2 + 4324105595935150 a001 4181/15127*521^(21/26) 4324105602896842 r002 61th iterates of z^2 + 4324105604086069 m001 MertensB1^ZetaR(2)/Ei(1) 4324105617398294 r005 Re(z^2+c),c=-65/102+19/59*I,n=56 4324105618378542 h001 (1/8*exp(2)+1/5)/(3/11*exp(2)+7/12) 4324105624688429 r009 Im(z^3+c),c=-3/44+23/45*I,n=11 4324105648472551 r002 55th iterates of z^2 + 4324105654179782 r002 48th iterates of z^2 + 4324105657227994 m002 -4-Pi^4-Pi^5+Pi^6/Log[Pi] 4324105668607992 m001 1/Salem^2/Robbin*exp(Tribonacci)^2 4324105669452839 r005 Im(z^2+c),c=15/122+21/40*I,n=21 4324105681053377 a007 Real Root Of -679*x^4+794*x^3-649*x^2+633*x+483 4324105695640870 a007 Real Root Of 53*x^4-357*x^3-84*x^2-669*x+332 4324105717303871 a001 123/75025*75025^(40/57) 4324105717713460 m001 (Totient+ZetaP(4))/(FeigenbaumD+Lehmer) 4324105720204419 l006 ln(4113/6338) 4324105722329546 m004 -36+(5*Sinh[Sqrt[5]*Pi])/6 4324105725688470 a007 Real Root Of 295*x^4+395*x^3+370*x^2-859*x-419 4324105733295832 p003 LerchPhi(1/64,1,159/68) 4324105741737013 m001 1/exp(Riemann1stZero)^2*Paris^2*sin(1) 4324105763426401 r009 Im(z^3+c),c=-5/24+24/49*I,n=15 4324105773222332 r009 Im(z^3+c),c=-1/56+41/61*I,n=4 4324105774929197 a001 1597/5778*521^(21/26) 4324105783124465 m008 (4/5*Pi^3+1)/(1/6*Pi^3+4/5) 4324105797455485 m005 (1/2*exp(1)-3/7)/(3/10*Pi-8/11) 4324105805894457 r005 Re(z^2+c),c=-37/34+51/116*I,n=4 4324105821848572 r005 Re(z^2+c),c=-21/34+9/113*I,n=60 4324105827591905 r005 Re(z^2+c),c=-79/90+16/63*I,n=25 4324105828687636 m001 (FeigenbaumKappa-Gompertz)/(MertensB2-Thue) 4324105835033082 a007 Real Root Of 302*x^4+289*x^3+126*x^2-995*x-441 4324105837266326 m001 (Sarnak+Thue)/(Zeta(1,2)+Conway) 4324105849914963 r005 Re(z^2+c),c=-29/48+12/53*I,n=52 4324105860466544 s002 sum(A057585[n]/((10^n-1)/n),n=1..infinity) 4324105867965422 a001 28657/1364*199^(3/22) 4324105874948271 m002 Pi^6/6+(3*Pi^4)/ProductLog[Pi] 4324105880994546 r002 6th iterates of z^2 + 4324105882788809 s002 sum(A235725[n]/(2^n+1),n=1..infinity) 4324105886416761 m001 (Trott-ZetaQ(2))/(Zeta(5)+Zeta(1,2)) 4324105888589457 r009 Im(z^3+c),c=-12/25+12/35*I,n=16 4324105896026195 a007 Real Root Of -852*x^4-275*x^3-666*x^2-21*x+123 4324105899883881 m001 ErdosBorwein^polylog(4,1/2)/Otter 4324105905452399 m001 (Landau+Sarnak)/(ln(3)+FeigenbaumC) 4324105908211114 m001 1/MertensB1*Champernowne^2*exp(Zeta(9))^2 4324105912775389 m001 (2^(1/3))*GlaisherKinkelin*ln(BesselJ(0,1)) 4324105920208879 a005 (1/sin(75/227*Pi))^411 4324105932205190 r009 Im(z^3+c),c=-29/60+10/27*I,n=52 4324105943367491 m001 (Gompertz-Niven)/(Pi-gamma) 4324105947540604 r005 Re(z^2+c),c=-11/12+19/61*I,n=29 4324105959671073 a007 Real Root Of 294*x^4+392*x^3+416*x^2-760*x-385 4324105961168923 a001 610/167761*2^(1/4) 4324105961324574 r005 Im(z^2+c),c=19/56+3/11*I,n=64 4324105981186443 l006 ln(5929/6191) 4324105984082103 r005 Re(z^2+c),c=-7/29+31/47*I,n=14 4324105984313117 m001 Khinchin^Zeta(1,2)/Catalan 4324105988527760 r005 Re(z^2+c),c=-27/44+8/55*I,n=55 4324106004115334 a007 Real Root Of -569*x^4+656*x^3-693*x^2+984*x+628 4324106016692352 m001 (2^(1/3)+arctan(1/2)*ErdosBorwein)/arctan(1/2) 4324106024754106 r005 Re(z^2+c),c=-41/60+21/62*I,n=32 4324106032466518 r005 Re(z^2+c),c=11/58+19/54*I,n=28 4324106036489990 a007 Real Root Of -915*x^4-347*x^3-95*x^2+972*x+442 4324106036725453 r005 Im(z^2+c),c=5/44+30/61*I,n=50 4324106039269575 r005 Re(z^2+c),c=-15/26+25/83*I,n=31 4324106047597504 m001 (Pi-Zeta(1/2))/(GolombDickman+TreeGrowth2nd) 4324106053608680 a007 Real Root Of -480*x^4+400*x^3-151*x^2+205*x+166 4324106067742804 r002 8th iterates of z^2 + 4324106072995235 a001 377/843*3571^(19/34) 4324106088484862 a007 Real Root Of 124*x^4-872*x^3-605*x^2-892*x+565 4324106095538179 h001 (-6*exp(2)-12)/(-7*exp(1)+6) 4324106097162085 r005 Re(z^2+c),c=-23/38+3/13*I,n=57 4324106100007241 r002 49th iterates of z^2 + 4324106104990174 m009 (3/5*Psi(1,3/4)+3)/(16/3*Catalan+2/3*Pi^2-1) 4324106129237459 m001 ZetaR(2)/(ReciprocalFibonacci-gamma(1)) 4324106132103298 r002 2th iterates of z^2 + 4324106141527722 r002 18th iterates of z^2 + 4324106142075005 r009 Im(z^3+c),c=-31/66+14/37*I,n=63 4324106173285930 m005 (1/2*5^(1/2)-11/12)/(2/5*2^(1/2)-1/10) 4324106190627264 r005 Re(z^2+c),c=-29/42+12/59*I,n=6 4324106191509046 m001 1-PrimesInBinary^Cahen 4324106197959422 g006 Psi(1,1/7)+Psi(1,5/6)-Psi(1,7/10)-Psi(1,3/7) 4324106204533789 a007 Real Root Of 80*x^4-889*x^3+792*x^2-211*x-314 4324106218044203 m001 ln(Riemann1stZero)/Magata^2*Ei(1) 4324106218056721 r005 Re(z^2+c),c=-21/34+3/38*I,n=64 4324106229074431 m001 AlladiGrinstead*(Pi^(1/2)+FeigenbaumMu) 4324106229167242 l006 ln(3100/4777) 4324106237751036 a001 377/843*9349^(1/2) 4324106239122124 p003 LerchPhi(1/10,1,446/179) 4324106247291555 a007 Real Root Of -47*x^4+888*x^3+934*x^2+352*x-397 4324106258588379 m001 GlaisherKinkelin*Artin^2*exp(BesselJ(1,1))^2 4324106259222135 a001 377/843*24476^(19/42) 4324106262052439 a001 377/843*64079^(19/46) 4324106262487410 a001 377/843*817138163596^(1/6) 4324106262487410 a001 377/843*87403803^(1/4) 4324106263677942 a001 377/843*39603^(19/44) 4324106267650038 m005 (1/2*gamma-9/11)/(1/8*Zeta(3)-3/11) 4324106269617219 p002 log(2^(5/6)+6^(12/5)) 4324106269630456 r009 Im(z^3+c),c=-31/102+6/13*I,n=20 4324106271463441 a001 377/843*15127^(19/40) 4324106281386446 m001 OneNinth^2*exp(Conway)/Pi^2 4324106298816756 a001 843/34*165580141^(3/11) 4324106299479360 m001 exp(GAMMA(17/24))*Champernowne^2/GAMMA(5/6)^2 4324106313780090 a007 Real Root Of 249*x^4+161*x^3+588*x^2-468*x-308 4324106314059925 r005 Re(z^2+c),c=23/114+15/41*I,n=45 4324106330845892 a001 377/843*5778^(19/36) 4324106331832573 a001 18/29*(1/2*5^(1/2)+1/2)^18*29^(1/18) 4324106337970441 m008 (3*Pi-2/5)/(2/3*Pi^3+1/5) 4324106347659422 r009 Re(z^3+c),c=-17/52+30/41*I,n=6 4324106349838341 r009 Im(z^3+c),c=-31/78+8/19*I,n=31 4324106383540429 r009 Re(z^3+c),c=-49/94+2/9*I,n=42 4324106384363749 m001 (FellerTornier+MertensB3)/(ln(Pi)+FeigenbaumD) 4324106397307216 r002 41th iterates of z^2 + 4324106405874115 r002 25th iterates of z^2 + 4324106423004568 q001 1609/3721 4324106429409396 m001 Tribonacci^2*ErdosBorwein*exp(Zeta(5))^2 4324106433766701 a001 2/3571*123^(28/31) 4324106434874919 m005 (1/2*5^(1/2)-5/6)/(1/10*Catalan-3/4) 4324106436569179 r002 45th iterates of z^2 + 4324106460810966 r005 Im(z^2+c),c=-67/94+2/33*I,n=62 4324106464113215 r005 Im(z^2+c),c=29/110+9/25*I,n=31 4324106487942252 r002 28th iterates of z^2 + 4324106495302960 a001 18/13*610^(22/41) 4324106499080805 r005 Im(z^2+c),c=3/74+33/61*I,n=36 4324106502797967 m001 (OneNinth+4)/(-GAMMA(1/12)+2) 4324106507607438 m001 (Ei(1,1)-LandauRamanujan2nd*Porter)/Porter 4324106531391649 a001 7/34*2178309^(3/59) 4324106531708934 a001 1292/2889*521^(19/26) 4324106533933266 r002 22th iterates of z^2 + 4324106537841249 r002 5th iterates of z^2 + 4324106551289233 p003 LerchPhi(1/5,5,109/146) 4324106564569314 a001 3/312119004989*123^(5/16) 4324106580793807 a008 Real Root of x^4-2*x^3-38*x^2-50*x-17 4324106584319060 m008 (4*Pi^4+3/5)/(5/6*Pi^2+4/5) 4324106590438616 r002 17th iterates of z^2 + 4324106601854403 p001 sum(1/(499*n+232)/(100^n),n=0..infinity) 4324106605071328 a007 Real Root Of 936*x^4-215*x^3+749*x^2+375*x-28 4324106621941038 r002 4th iterates of z^2 + 4324106629319127 m005 (1/2*Pi-5/8)/(4/7*gamma-1/9) 4324106632746188 l006 ln(5187/7993) 4324106675655722 r002 4th iterates of z^2 + 4324106681864682 r009 Im(z^3+c),c=-27/118+25/52*I,n=9 4324106710572197 r005 Im(z^2+c),c=9/82+1/2*I,n=36 4324106710620696 r005 Re(z^2+c),c=-14/27+16/29*I,n=30 4324106712567708 r009 Re(z^3+c),c=-25/54+2/13*I,n=50 4324106715584304 a003 cos(Pi*15/82)*cos(Pi*39/119) 4324106719979452 h001 (3/4*exp(2)+3/10)/(4/9*exp(1)+1/7) 4324106721533560 p001 sum(1/(275*n+252)/(6^n),n=0..infinity) 4324106728059121 r002 22th iterates of z^2 + 4324106730491380 r005 Im(z^2+c),c=11/62+26/59*I,n=59 4324106739274578 r005 Re(z^2+c),c=-69/52+5/63*I,n=16 4324106739770921 r005 Re(z^2+c),c=11/40+1/34*I,n=25 4324106743172018 m006 (5/6*exp(Pi)-3/4)/(1/4*ln(Pi)+4) 4324106752275719 m005 (1/2*gamma-4/11)/(4/7*exp(1)+2/11) 4324106752957806 a001 6765/15127*521^(19/26) 4324106759896144 s002 sum(A159330[n]/(exp(n)+1),n=1..infinity) 4324106763575758 r005 Im(z^2+c),c=-43/34+33/97*I,n=8 4324106769380444 r009 Re(z^3+c),c=-9/38+31/42*I,n=5 4324106785237582 a001 17711/39603*521^(19/26) 4324106789590394 a001 377/843*2207^(19/32) 4324106789947138 a001 23184/51841*521^(19/26) 4324106790634253 a001 121393/271443*521^(19/26) 4324106790734501 a001 317811/710647*521^(19/26) 4324106790749128 a001 416020/930249*521^(19/26) 4324106790751261 a001 2178309/4870847*521^(19/26) 4324106790752580 a001 1346269/3010349*521^(19/26) 4324106790758167 a001 514229/1149851*521^(19/26) 4324106790796459 a001 98209/219602*521^(19/26) 4324106791058913 a001 75025/167761*521^(19/26) 4324106792857803 a001 28657/64079*521^(19/26) 4324106805187581 a001 5473/12238*521^(19/26) 4324106811300136 a007 Real Root Of 672*x^4-882*x^3-985*x^2-858*x+603 4324106821000217 a007 Real Root Of -428*x^4+990*x^3-496*x^2+847*x+554 4324106823126856 r009 Im(z^3+c),c=-11/29+23/53*I,n=15 4324106845391912 a007 Real Root Of -777*x^4+739*x^3+949*x^2+30*x-223 4324106859378816 r005 Re(z^2+c),c=4/15+1/44*I,n=28 4324106868100759 m005 (1/2*Catalan-11/12)/(5/8*gamma+7/10) 4324106879977546 m001 1/LaplaceLimit/ln(CareFree)*Zeta(9)^2 4324106881590418 m001 1/RenyiParking*CareFree/exp(GAMMA(7/24)) 4324106882444658 a001 4181/843*521^(9/26) 4324106887376052 p004 log(19403/257) 4324106889697134 a001 4181/9349*521^(19/26) 4324106889744429 a007 Real Root Of 16*x^4-990*x^3-405*x^2-516*x-228 4324106892372671 m001 1/(2^(1/3))*OneNinth^2/exp(GAMMA(7/12))^2 4324106913529896 a007 Real Root Of -135*x^4-373*x^3+880*x^2-357*x-958 4324106928839281 p001 sum(1/(592*n+287)/(2^n),n=0..infinity) 4324106957432870 r002 50th iterates of z^2 + 4324106957927545 a007 Real Root Of -713*x^4+175*x^3-200*x^2+584*x+329 4324106958824460 r005 Re(z^2+c),c=-59/98+9/53*I,n=29 4324106960505566 a007 Real Root Of 220*x^4+920*x^3-303*x^2-594*x+566 4324106961557286 r002 4i'th iterates of 2*x/(1-x^2) of 4324106971050022 m001 (Artin+FeigenbaumD)/(Kac+StolarskyHarborth) 4324106982897809 r005 Re(z^2+c),c=-21/34+11/75*I,n=28 4324106985242736 v002 sum(1/(2^n+(10*n^2+29*n+13)),n=1..infinity) 4324106989886681 r005 Re(z^2+c),c=-71/118+11/46*I,n=50 4324106991024863 r002 41th iterates of z^2 + 4324107001772395 a001 610/2207*521^(21/26) 4324107003223669 a001 610/3571*521^(23/26) 4324107017214449 a007 Real Root Of 867*x^4-474*x^3-953*x^2-654*x+469 4324107019510500 m001 Porter/sin(1/5*Pi)/gamma 4324107028639156 r009 Im(z^3+c),c=-8/19+20/49*I,n=37 4324107030105283 r005 Im(z^2+c),c=7/38+10/23*I,n=61 4324107032743127 a001 75025^(3/23) 4324107042714416 r005 Im(z^2+c),c=-23/18+7/194*I,n=61 4324107069503561 m001 2/3-GAMMA(11/12)^MadelungNaCl 4324107074465813 m001 (CareFree-MertensB2)/(gamma(2)+gamma(3)) 4324107076828944 r005 Im(z^2+c),c=4/25+21/46*I,n=30 4324107081985873 m001 (-FeigenbaumB+FellerTornier)/(5^(1/2)-Shi(1)) 4324107086685084 m001 (Ei(1)-GolombDickman)/(Gompertz-Kac) 4324107096139176 m005 (1/2*5^(1/2)+1/9)/(1/11*3^(1/2)-3) 4324107124741780 a007 Real Root Of -105*x^4-293*x^3+575*x^2-575*x-218 4324107126465971 a007 Real Root Of -322*x^4-7*x^3+295*x^2+508*x-263 4324107126694399 m001 arctan(1/3)^(FeigenbaumMu*StronglyCareFree) 4324107139412333 r009 Im(z^3+c),c=-5/23+20/41*I,n=13 4324107139618509 r002 20th iterates of z^2 + 4324107140662612 m001 1/TwinPrimes^2*exp(Khintchine)*GAMMA(17/24) 4324107171248519 m001 ln(Pi)/Pi/csc(7/24*Pi)*GAMMA(17/24)/Thue 4324107178655852 a007 Real Root Of 566*x^4-819*x^3+388*x^2-775*x+309 4324107194548410 m001 BesselJ(0,1)/FeigenbaumDelta/ln(cos(1))^2 4324107195844471 r009 Re(z^3+c),c=-55/118+8/51*I,n=39 4324107203872444 g005 1/2/GAMMA(4/7)/GAMMA(5/6)/Pi^2*GAMMA(3/4)^2 4324107211811583 m001 (BesselI(0,2)+Paris)/(cos(1)-gamma(2)) 4324107230163338 a007 Real Root Of -531*x^4+469*x^3-993*x^2-375*x+80 4324107232216562 l006 ln(2087/3216) 4324107234901126 a007 Real Root Of -693*x^4+430*x^3+457*x^2+673*x-387 4324107241500676 r002 12th iterates of z^2 + 4324107243241072 k006 concat of cont frac of 4324107250348915 r009 Re(z^3+c),c=-27/70+4/53*I,n=18 4324107266173026 r009 Re(z^3+c),c=-59/106+5/37*I,n=4 4324107268883352 m001 (FeigenbaumB+FeigenbaumC)/(OneNinth-Sarnak) 4324107277005688 r005 Re(z^2+c),c=33/118+1/34*I,n=37 4324107286354618 p001 sum(1/(317*n+255)/(5^n),n=0..infinity) 4324107296923076 r005 Re(z^2+c),c=6/25+31/58*I,n=15 4324107322697443 r005 Re(z^2+c),c=-69/74+9/61*I,n=30 4324107334769354 r002 7th iterates of z^2 + 4324107345341686 m001 FellerTornier-RenyiParking^cos(1/12*Pi) 4324107348749202 r005 Re(z^2+c),c=-43/110+29/52*I,n=51 4324107349482690 r005 Im(z^2+c),c=8/27+13/40*I,n=48 4324107364095280 r002 17th iterates of z^2 + 4324107365866880 r005 Re(z^2+c),c=15/44+2/29*I,n=16 4324107368085163 m001 (Psi(2,1/3)-sin(1))/(KhinchinLevy+OneNinth) 4324107370250216 a007 Real Root Of -285*x^4+889*x^3+643*x^2+261*x-295 4324107378974510 a007 Real Root Of 266*x^4+984*x^3-700*x^2+176*x+411 4324107385212900 a001 28657/843*199^(1/22) 4324107388473316 r005 Re(z^2+c),c=-71/54+3/61*I,n=26 4324107390143685 m005 (1/3*Pi+1/4)/(1/9*2^(1/2)+1/7) 4324107403533546 m001 (Psi(1,1/3)-Zeta(5))/(gamma(1)+Riemann2ndZero) 4324107405193411 a001 123/514229*28657^(3/52) 4324107424347805 r005 Re(z^2+c),c=-59/98+13/54*I,n=63 4324107467482998 a001 1597/2207*521^(17/26) 4324107468934272 a001 1597/3571*521^(19/26) 4324107477522364 m005 (1/3*Zeta(3)-2/11)/(2*exp(1)-3/8) 4324107478577618 a007 Real Root Of -207*x^4+62*x^3-341*x^2+444*x+268 4324107486011451 r009 Im(z^3+c),c=-9/58+1/2*I,n=13 4324107489075934 m001 PrimesInBinary-ln(gamma)+ReciprocalFibonacci 4324107490452509 a007 Real Root Of -915*x^4-690*x^3+472*x^2+806*x-349 4324107493380133 m005 (1/3*2^(1/2)-1/12)/(1/2*3^(1/2)-7/8) 4324107501002807 q001 1078/2493 4324107503056033 a007 Real Root Of 941*x^4-941*x^3-185*x^2-803*x+425 4324107524572063 r002 51th iterates of z^2 + 4324107539932331 r005 Im(z^2+c),c=-13/58+30/49*I,n=55 4324107542947087 m001 (-Kolakoski+ZetaP(3))/(GAMMA(17/24)-exp(1)) 4324107555184534 r005 Re(z^2+c),c=-15/26+16/49*I,n=47 4324107561103121 r009 Re(z^3+c),c=-45/106+13/20*I,n=4 4324107563262745 a007 Real Root Of -490*x^4+887*x^3+139*x^2+856*x+433 4324107582361887 b008 -46+21^(1/3) 4324107585647931 m001 (Conway+Totient)/(polylog(4,1/2)-GAMMA(5/6)) 4324107589554806 r005 Re(z^2+c),c=-51/86+13/51*I,n=39 4324107600727826 p003 LerchPhi(1/5,5,250/211) 4324107608228812 r002 57th iterates of z^2 + 4324107623413111 a001 10946/11*123^(29/37) 4324107649431665 m001 (-ln(3)+cos(1/12*Pi))/(1-ln(2)) 4324107649861925 r005 Re(z^2+c),c=1/6+25/53*I,n=26 4324107650455469 a003 sin(Pi*20/109)*sin(Pi*7/24) 4324107653033177 a007 Real Root Of 900*x^4+120*x^3+837*x^2-973*x-599 4324107662467281 a007 Real Root Of 323*x^4+213*x^3+273*x^2-379*x-209 4324107664950879 r005 Im(z^2+c),c=-33/56+25/57*I,n=39 4324107680446704 r005 Im(z^2+c),c=29/94+19/61*I,n=60 4324107685067926 r005 Im(z^2+c),c=-27/22+4/81*I,n=47 4324107698883516 r009 Im(z^3+c),c=-5/58+37/47*I,n=8 4324107705636300 r005 Re(z^2+c),c=1/22+22/31*I,n=8 4324107705774404 m001 3^(1/3)/(GAMMA(13/24)-Mills) 4324107715837106 m001 (-5^(1/2)+DuboisRaymond)/(2^(1/3)-3^(1/2)) 4324107718011602 p001 sum(1/(477*n+394)/n/(3^n),n=1..infinity) 4324107753640471 r005 Re(z^2+c),c=-43/74+13/43*I,n=12 4324107756121305 b008 4+(3*Csc[1])/11 4324107776893968 r005 Im(z^2+c),c=15/62+6/13*I,n=37 4324107782386614 r005 Im(z^2+c),c=3/62+27/50*I,n=58 4324107788944805 m009 (3/5*Psi(1,3/4)+1/3)/(3/4*Psi(1,2/3)+2) 4324107796714628 m001 (2^(1/3)-polylog(4,1/2))/(GAMMA(19/24)+Landau) 4324107809265916 m001 FeigenbaumC-Zeta(5)-FibonacciFactorial 4324107824718971 l006 ln(5248/8087) 4324107824921087 r002 55th iterates of z^2 + 4324107850102198 m001 exp(cos(1))*Rabbit^2*sqrt(5)^2 4324107855446065 r005 Re(z^2+c),c=-71/118+11/54*I,n=36 4324107862597154 a007 Real Root Of -507*x^4+941*x^3-90*x^2+616*x+377 4324107869654711 m005 (1/3*exp(1)+2/7)/(3/4*Pi+2/5) 4324107897245196 m005 (1/2*Pi-7/10)/(7/9*3^(1/2)+2/3) 4324107900332174 a008 Real Root of x^4-x^3-11*x^2+9*x-102 4324107911103669 r005 Re(z^2+c),c=-18/29+5/53*I,n=33 4324107916295223 a007 Real Root Of -57*x^4-159*x^3+283*x^2-188*x+968 4324107933487007 m001 (-DuboisRaymond+Paris)/(cos(1/12*Pi)-exp(Pi)) 4324107934103901 m001 (2^(1/3)-Zeta(3))/(-Champernowne+MinimumGamma) 4324107936095667 a001 4181/5778*521^(17/26) 4324107947559263 m009 (3/4*Psi(1,1/3)+3/5)/(6*Catalan+3/4*Pi^2+6) 4324107963444747 r005 Im(z^2+c),c=3/110+11/20*I,n=48 4324107970183732 m001 Rabbit*Conway^2/exp(GAMMA(23/24)) 4324107971146702 r009 Im(z^3+c),c=-25/78+29/51*I,n=5 4324107975450195 a007 Real Root Of 61*x^4-971*x^3+815*x^2-30*x-246 4324107989817571 r005 Re(z^2+c),c=-5/8+5/128*I,n=24 4324107998756319 m001 1/Rabbit^2/MadelungNaCl^2*exp(Ei(1)) 4324108004465347 a001 10946/15127*521^(17/26) 4324108007215165 r005 Im(z^2+c),c=1/19+7/13*I,n=51 4324108014440350 a001 28657/39603*521^(17/26) 4324108015895683 a001 75025/103682*521^(17/26) 4324108016108013 a001 196418/271443*521^(17/26) 4324108016138992 a001 514229/710647*521^(17/26) 4324108016143511 a001 1346269/1860498*521^(17/26) 4324108016144578 a001 2178309/3010349*521^(17/26) 4324108016146305 a001 832040/1149851*521^(17/26) 4324108016158138 a001 317811/439204*521^(17/26) 4324108016239240 a001 121393/167761*521^(17/26) 4324108016277957 a007 Real Root Of -438*x^4-159*x^3-822*x^2+890*x+541 4324108016795128 a001 46368/64079*521^(17/26) 4324108020605240 a001 17711/24476*521^(17/26) 4324108024885131 a007 Real Root Of -936*x^4-267*x^3+175*x^2+193*x+8 4324108039467658 a001 2255/281*521^(7/26) 4324108046720136 a001 6765/9349*521^(17/26) 4324108054985931 a007 Real Root Of -665*x^4-488*x^3-559*x^2+811*x+439 4324108059660387 a007 Real Root Of 59*x^4+444*x^3+787*x^2-126*x+11 4324108062724862 s002 sum(A203454[n]/(n^2*2^n-1),n=1..infinity) 4324108067344769 r009 Re(z^3+c),c=-9/19+9/55*I,n=53 4324108086734429 r005 Re(z^2+c),c=-33/74+34/61*I,n=20 4324108102708189 m001 ZetaP(2)^(Pi*2^(1/2)/GAMMA(3/4)/Catalan) 4324108110765130 r009 Re(z^3+c),c=-1/12+43/60*I,n=63 4324108123953085 m001 (TreeGrowth2nd+Tribonacci)/(Kac-Paris) 4324108128907881 m001 ln(GAMMA(1/6))/ArtinRank2^2*GAMMA(3/4) 4324108160358018 p001 sum((-1)^n/(565*n+231)/(256^n),n=0..infinity) 4324108168245168 a007 Real Root Of 331*x^4-175*x^3+353*x^2+226*x+6 4324108173564452 r005 Im(z^2+c),c=9/52+21/47*I,n=32 4324108191279175 m005 (1/2*Catalan+4)/(2/9*5^(1/2)-3/5) 4324108196033536 a007 Real Root Of -315*x^4-645*x^3-444*x^2+352*x+16 4324108201662404 m001 1/FeigenbaumD^2/Sierpinski*ln(sqrt(5)) 4324108209851820 m005 (1/3*gamma+3/5)/(7/11*Pi-1/6) 4324108215223890 r005 Im(z^2+c),c=-29/36+7/18*I,n=4 4324108215909249 l006 ln(3161/4871) 4324108217412983 m001 1/exp(Catalan)*BesselJ(0,1)/sin(1)^2 4324108224263032 a001 2584/2207*521^(15/26) 4324108225714306 a001 2584/3571*521^(17/26) 4324108247062262 a007 Real Root Of 119*x^4+383*x^3-561*x^2-114*x-641 4324108249729196 a007 Real Root Of 321*x^4+24*x^3+438*x^2-983*x+330 4324108256711440 a007 Real Root Of -355*x^4+958*x^3-683*x^2+297*x+346 4324108259418208 p002 log(12^(12/7)+15^(4/7)) 4324108262696419 m001 (Pi-Psi(2,1/3))/(Zeta(1/2)+FransenRobinson) 4324108262868966 r005 Re(z^2+c),c=-57/106+17/43*I,n=15 4324108272706473 r005 Im(z^2+c),c=-7/38+31/51*I,n=42 4324108273594905 m001 (Psi(1,1/3)+Khinchin)/Otter 4324108277025030 r005 Im(z^2+c),c=-37/54+13/29*I,n=11 4324108278528403 r009 Im(z^3+c),c=-8/21+22/51*I,n=13 4324108281470142 r005 Im(z^2+c),c=-13/18+8/113*I,n=4 4324108294533765 m001 (FeigenbaumB-Kac)/(MasserGramainDelta+Otter) 4324108309565269 r005 Re(z^2+c),c=-53/86+3/31*I,n=49 4324108312779355 p001 sum(1/(501*n+368)/n/(3^n),n=1..infinity) 4324108338803316 r005 Re(z^2+c),c=-17/30+41/105*I,n=57 4324108342377087 m001 (gamma(2)-gamma)/(FellerTornier+MertensB2) 4324108348756090 p003 LerchPhi(1/12,2,275/178) 4324108386199677 r005 Im(z^2+c),c=-45/122+33/52*I,n=23 4324108387065534 a001 1/199*(1/2*5^(1/2)+1/2)^12*3^(17/19) 4324108395172609 p001 sum((-1)^n/(314*n+23)/(12^n),n=0..infinity) 4324108405574237 r005 Re(z^2+c),c=-21/34+5/62*I,n=54 4324108430127337 r005 Re(z^2+c),c=-13/28+21/41*I,n=42 4324108450984487 l006 ln(6540/6829) 4324108456983261 l006 ln(4846/4867) 4324108480397247 r005 Re(z^2+c),c=-37/60+3/32*I,n=55 4324108488071518 m001 sqrt(Pi)^exp(1/Pi)+GAMMA(5/12) 4324108492002560 a007 Real Root Of -235*x^4-947*x^3+423*x^2+463*x-315 4324108497738904 r005 Im(z^2+c),c=23/126+20/59*I,n=3 4324108505366347 a007 Real Root Of 727*x^4-604*x^3-306*x^2-542*x+315 4324108516098791 r005 Im(z^2+c),c=3/50+31/52*I,n=33 4324108527639993 r009 Im(z^3+c),c=-7/26+39/56*I,n=62 4324108536048625 r009 Im(z^3+c),c=-5/21+27/56*I,n=21 4324108548685638 r005 Im(z^2+c),c=19/50+15/61*I,n=58 4324108550593793 h001 (7/10*exp(2)+1/11)/(1/11*exp(2)+6/11) 4324108568387440 q001 1625/3758 4324108578537457 a007 Real Root Of 40*x^4-55*x^3-802*x^2+838*x+188 4324108595594296 r002 40th iterates of z^2 + 4324108599346739 r002 25th iterates of z^2 + 4324108600574222 r005 Re(z^2+c),c=-73/106+1/7*I,n=38 4324108601993917 r009 Im(z^3+c),c=-41/102+18/43*I,n=41 4324108602853966 m005 (4/15+1/6*5^(1/2))/(5/8*Zeta(3)+8/11) 4324108616740891 r005 Im(z^2+c),c=5/126+23/42*I,n=41 4324108623219138 a002 10^(5/3)-2^(5/3) 4324108624787968 m001 sin(1/12*Pi)*(Zeta(1,-1)-ZetaQ(4)) 4324108636928829 r005 Re(z^2+c),c=-79/126+9/47*I,n=22 4324108655492788 a003 sin(Pi*16/89)-sin(Pi*49/117) 4324108657707085 r009 Re(z^3+c),c=-17/40+10/17*I,n=45 4324108658069509 a007 Real Root Of -137*x^4-688*x^3-610*x^2-810*x+174 4324108667126552 m001 Lehmer^MertensB2/(MertensB3^MertensB2) 4324108688357381 r005 Im(z^2+c),c=-1/94+30/47*I,n=10 4324108700671111 l006 ln(4235/6526) 4324108722463559 r002 6th iterates of z^2 + 4324108726551110 a007 Real Root Of -5*x^4-109*x^3-708*x^2+625*x+394 4324108736786277 r005 Im(z^2+c),c=29/74+8/53*I,n=3 4324108737433400 m001 1/ln(FeigenbaumC)^2/Magata^2*FeigenbaumKappa^2 4324108743123912 m008 (3/5*Pi^4-5)/(1/6*Pi-2/5) 4324108745698599 m001 (Lehmer-PisotVijayaraghavan)/(Artin-Landau) 4324108759983162 m005 (1/2*Catalan+7/11)/(2/9*exp(1)-6/7) 4324108771852284 m001 Artin/Zeta(1,2)*Trott 4324108776601210 r004 Re(z^2+c),c=-21/34+1/13*I,z(0)=-1,n=39 4324108780925225 a007 Real Root Of -25*x^4+434*x^3-893*x^2+798*x+548 4324108783953246 m001 BesselJ(1,1)+gamma(1)^HardHexagonsEntropy 4324108790312253 r002 9th iterates of z^2 + 4324108810970381 a007 Real Root Of -577*x^4-638*x^3-223*x^2+707*x+316 4324108821184801 m001 Khintchine^2/FeigenbaumAlpha^2*exp(Robbin)^2 4324108835107158 r009 Im(z^3+c),c=-7/36+27/38*I,n=2 4324108841210031 r005 Re(z^2+c),c=-53/94+22/63*I,n=38 4324108856148084 m001 (Lehmer+Magata*MasserGramain)/MasserGramain 4324108871388699 a003 sin(Pi*5/118)-sin(Pi*13/68) 4324108892325166 a007 Real Root Of 796*x^4-588*x^3-809*x^2-229*x+270 4324108905498908 r009 Im(z^3+c),c=-27/122+18/37*I,n=23 4324108909123640 r002 45th iterates of z^2 + 4324108912154953 a001 4181/18*2^(26/29) 4324108915612992 m001 1/PisotVijayaraghavan*exp(KhintchineHarmonic) 4324108915612992 m001 exp(1)^KhinchinHarmonic/PisotVijayaraghavan 4324108917434073 a007 Real Root Of 365*x^4-786*x^3+349*x^2-903*x+376 4324108920820538 a007 Real Root Of 83*x^4+262*x^3-251*x^2+674*x-227 4324108941714414 r005 Im(z^2+c),c=13/66+25/59*I,n=52 4324108963613949 a001 969323029/3*6765^(5/17) 4324108969171797 a001 7881196/3*86267571272^(5/17) 4324108969171867 a001 29134601*24157817^(5/17) 4324108974510883 m001 1/(2^(1/3))^2*exp(Sierpinski)/GAMMA(11/24) 4324108980682894 r009 Im(z^3+c),c=-4/9+15/38*I,n=37 4324108989300267 l006 ln(5309/8181) 4324108999110551 m001 (FransenRobinson+MertensB1)/Rabbit 4324109008901277 r005 Re(z^2+c),c=15/56+11/26*I,n=63 4324109009577768 m005 (1/2*exp(1)-3/4)/(6/11*Catalan+10/11) 4324109011664945 r005 Re(z^2+c),c=-23/38+11/49*I,n=61 4324109030658236 a001 29*3^(4/11) 4324109071389930 r005 Im(z^2+c),c=11/52+21/41*I,n=24 4324109074910759 r002 56th iterates of z^2 + 4324109076901207 m001 (FeigenbaumMu-Otter)/(ln(3)+arctan(1/3)) 4324109082715897 h001 (9/11*exp(2)+7/10)/(1/8*exp(2)+7/11) 4324109093118948 a001 2255/1926*521^(15/26) 4324109105468586 a008 Real Root of x^4-x^3-25*x^2+70*x-104 4324109112878616 h001 (7/11*exp(1)+1/12)/(4/9*exp(2)+10/11) 4324109150206944 a003 cos(Pi*19/99)*cos(Pi*35/108) 4324109150429268 r009 Re(z^3+c),c=-41/90+6/41*I,n=27 4324109154819298 r005 Re(z^2+c),c=-41/62+6/29*I,n=41 4324109173053234 r009 Re(z^3+c),c=-37/90+5/46*I,n=10 4324109180800258 l006 ln(6383/9836) 4324109185801175 r005 Re(z^2+c),c=-29/56+16/35*I,n=47 4324109190361532 r002 49th iterates of z^2 + 4324109209280141 a007 Real Root Of -293*x^4-259*x^3-183*x^2+311*x+158 4324109213101386 r002 14th iterates of z^2 + 4324109215240517 r005 Re(z^2+c),c=-3/5+29/122*I,n=39 4324109219743229 r009 Im(z^3+c),c=-15/74+27/55*I,n=20 4324109219883344 a001 17711/15127*521^(15/26) 4324109238378020 a001 15456/13201*521^(15/26) 4324109241076357 a001 121393/103682*521^(15/26) 4324109241470039 a001 105937/90481*521^(15/26) 4324109241527477 a001 832040/710647*521^(15/26) 4324109241535857 a001 726103/620166*521^(15/26) 4324109241541036 a001 1346269/1149851*521^(15/26) 4324109241562975 a001 514229/439204*521^(15/26) 4324109241713348 a001 196418/167761*521^(15/26) 4324109241893147 m001 (BesselJ(1,1)+MertensB1)/(Shi(1)+BesselI(1,1)) 4324109242744021 a001 75025/64079*521^(15/26) 4324109249808359 a001 28657/24476*521^(15/26) 4324109253937423 s002 sum(A009421[n]/((3*n)!),n=1..infinity) 4324109262495387 h001 (3/10*exp(1)+9/10)/(1/2*exp(2)+3/11) 4324109266695472 a007 Real Root Of -250*x^4-967*x^3+300*x^2-765*x+302 4324109268353476 m005 (1/3*3^(1/2)+2/3)/(8/11*exp(1)+9/10) 4324109271881285 a007 Real Root Of -227*x^4-900*x^3+305*x^2-60*x+633 4324109274336157 a007 Real Root Of -565*x^4-280*x^3-511*x^2+572*x+340 4324109277033447 r005 Re(z^2+c),c=-75/122+4/31*I,n=48 4324109285091143 a001 76/987*6765^(9/46) 4324109285425414 a001 41*4052739537881^(7/11) 4324109287934365 r002 46th iterates of z^2 + 4324109290975572 a001 10946/843*521^(5/26) 4324109298228052 a001 10946/9349*521^(15/26) 4324109312343865 r005 Re(z^2+c),c=-53/86+3/53*I,n=26 4324109316374349 a007 Real Root Of 430*x^4-692*x^3-197*x^2-594*x-291 4324109317138388 p004 log(11491/7457) 4324109317650316 r002 53th iterates of z^2 + 4324109321231204 r005 Im(z^2+c),c=-8/7+5/92*I,n=29 4324109325437706 r002 2th iterates of z^2 + 4324109330712226 m005 (1/3*5^(1/2)+1/11)/(6/11*5^(1/2)+5/7) 4324109336718793 r005 Im(z^2+c),c=-9/118+37/61*I,n=47 4324109350565372 r009 Im(z^3+c),c=-23/66+15/34*I,n=13 4324109357960493 p003 LerchPhi(1/512,5,710/239) 4324109361846705 r009 Im(z^3+c),c=-11/30+17/39*I,n=33 4324109362319034 r005 Im(z^2+c),c=-55/102+1/13*I,n=47 4324109371380506 m001 ln(FeigenbaumB)/FransenRobinson*Robbin 4324109399276431 a007 Real Root Of -16*x^4-671*x^3+903*x^2+43*x-195 4324109403838175 m005 (1/2*Zeta(3)-5)/(4*exp(1)-7/10) 4324109422205690 r009 Re(z^3+c),c=-53/118+6/55*I,n=7 4324109442632103 r009 Im(z^3+c),c=-25/46+11/43*I,n=10 4324109448041802 r009 Im(z^3+c),c=-3/64+31/45*I,n=4 4324109450996029 a001 24476/5*4181^(48/59) 4324109452559244 a001 987/1364*521^(17/26) 4324109453726038 m001 (Paris+PrimesInBinary)/(Salem+Trott) 4324109463219102 a008 Real Root of x^4-19*x^2-2*x-3 4324109478802741 m001 Zeta(1,2)^((1+3^(1/2))^(1/2))/exp(-1/2*Pi) 4324109478802741 m001 Zeta(1,2)^sqrt(1+sqrt(3))/exp(-1/2*Pi) 4324109489832326 m001 (GAMMA(17/24)-Shi(1))/(FeigenbaumD+Sierpinski) 4324109514157203 r002 40th iterates of z^2 + 4324109515896556 r005 Re(z^2+c),c=-61/98+1/56*I,n=32 4324109527794914 a001 6765/521*199^(5/22) 4324109529230575 r005 Im(z^2+c),c=13/56+23/58*I,n=14 4324109537911135 r004 Re(z^2+c),c=3/7-8/23*I,z(0)=exp(7/12*I*Pi),n=7 4324109543353951 m005 (41/12+5/12*5^(1/2))/(4/5*Catalan-5/6) 4324109548966296 m001 (1/3-FeigenbaumDelta*cos(Pi/12))/cos(Pi/12) 4324109561473218 r009 Im(z^3+c),c=-15/46+29/64*I,n=30 4324109565595950 r005 Re(z^2+c),c=-73/102+9/56*I,n=13 4324109567630951 a007 Real Root Of -600*x^4+335*x^3-920*x^2+90*x+259 4324109583532363 r005 Im(z^2+c),c=-77/102+9/34*I,n=10 4324109591112533 r005 Re(z^2+c),c=-5/36+13/21*I,n=8 4324109592273865 a007 Real Root Of -84*x^4-492*x^3-468*x^2+500*x+501 4324109593041395 a001 11/63245986*55^(5/22) 4324109597534784 r005 Im(z^2+c),c=-83/122+15/43*I,n=43 4324109598777563 a007 Real Root Of -290*x^4+177*x^3-990*x^2+859*x+581 4324109600900943 m001 1/GAMMA(5/6)^2/ln(FeigenbaumC)/sqrt(3)^2 4324109601532963 m001 Kolakoski-Mills^BesselJ(0,1) 4324109602219783 a007 Real Root Of -529*x^4+527*x^3-664*x^2-588*x-69 4324109612373071 m001 (OneNinth-ZetaP(3))/(Ei(1,1)+MertensB3) 4324109612772463 a003 cos(Pi*34/95)/sin(Pi*55/114) 4324109614164818 m001 (MasserGramain+ZetaQ(3))/(Zeta(1,2)-gamma) 4324109628650314 a001 4181/2207*521^(1/2) 4324109630101589 a001 4181/3571*521^(15/26) 4324109631416607 a007 Real Root Of -213*x^4-876*x^3+229*x^2+329*x+782 4324109649845987 r005 Re(z^2+c),c=-25/38+13/55*I,n=39 4324109664133538 m001 (-ln(2)+MertensB1)/(gamma+BesselK(0,1)) 4324109667051747 r005 Re(z^2+c),c=-35/58+5/22*I,n=54 4324109672858123 a001 2/98209*377^(28/31) 4324109675948726 r002 8th iterates of z^2 + 4324109677616710 a001 377/2207*1364^(23/30) 4324109689150143 r005 Im(z^2+c),c=-7/13+1/13*I,n=29 4324109691384616 r009 Re(z^3+c),c=-9/106+25/51*I,n=4 4324109696242985 m001 exp(GAMMA(1/6))^2/(2^(1/3))^2*Zeta(9)^2 4324109698694221 m001 sin(1)*GAMMA(5/24)+GolombDickman 4324109705143743 m001 (-BesselI(1,1)+Paris)/(Psi(1,1/3)+ln(2)) 4324109721994883 a001 281/15456*8^(5/12) 4324109724491858 r005 Im(z^2+c),c=-2/25+31/49*I,n=62 4324109726807598 r005 Re(z^2+c),c=-27/44+4/49*I,n=32 4324109740953951 r005 Im(z^2+c),c=-149/118+13/36*I,n=11 4324109741643047 m001 (ln(5)-BesselI(1,1))/(Niven+Rabbit) 4324109745298163 r005 Re(z^2+c),c=-43/106+4/7*I,n=40 4324109749642595 b008 -3+BesselK[1,2/15] 4324109756952142 r002 39th iterates of z^2 + 4324109762827570 r005 Re(z^2+c),c=-3/5+15/41*I,n=48 4324109764337183 a007 Real Root Of 689*x^4+183*x^3-803*x^2-788*x+452 4324109770610346 b008 E+E^4/34 4324109772148509 r005 Im(z^2+c),c=1/8+29/60*I,n=52 4324109780762192 a001 1/2576*377^(1/55) 4324109786262675 r009 Im(z^3+c),c=-11/74+22/45*I,n=4 4324109801522002 m005 (1/2*2^(1/2)-3/4)/(1/5*Pi+4/11) 4324109809849074 r002 35th iterates of z^2 + 4324109822994501 m001 1/ln(Rabbit)/MadelungNaCl^2*GAMMA(5/12)^2 4324109847613236 m001 GAMMA(23/24)/(MasserGramainDelta-ln(gamma)) 4324109881609782 a001 4/102334155*21^(15/19) 4324109890187131 m002 (ProductLog[Pi]*Sech[Pi])/(4*E^(2*Pi)) 4324109911405773 r005 Im(z^2+c),c=-31/118+19/31*I,n=24 4324109918831310 r005 Re(z^2+c),c=-13/22+7/31*I,n=17 4324109935775511 s001 sum(exp(-2*Pi/3)^n*A076159[n],n=1..infinity) 4324109946382876 m001 (sin(1/5*Pi)-Backhouse)/(CareFree+Conway) 4324109950516612 a001 144/11*47^(9/29) 4324109953939367 a007 Real Root Of -302*x^4+173*x^3-253*x^2+634*x+346 4324109965286626 b008 Sqrt[ArcCot[37/7]] 4324109967848715 m006 (ln(Pi)+2/5)/(1/2*ln(Pi)+3) 4324109973114672 a001 5/199*199^(4/39) 4324109984875070 m006 (4/5*exp(Pi)-4)/(3/4*Pi+1) 4324110002591248 r009 Im(z^3+c),c=-12/31+26/61*I,n=24 4324110009921545 r009 Im(z^3+c),c=-3/10+25/54*I,n=19 4324110021678129 r002 47th iterates of z^2 + 4324110034927941 m001 (Bloch*FeigenbaumC+Salem)/Bloch 4324110052232717 r005 Re(z^2+c),c=33/118+34/55*I,n=52 4324110061404929 r009 Im(z^3+c),c=-31/110+26/59*I,n=4 4324110069220627 h001 (3/8*exp(1)+1/8)/(9/10*exp(1)+1/5) 4324110078746015 r005 Im(z^2+c),c=17/52+17/64*I,n=10 4324110078867465 m001 1/ln(cos(1))*GAMMA(1/24)/log(1+sqrt(2)) 4324110082347704 s002 sum(A075769[n]/((2*n+1)!),n=1..infinity) 4324110085070451 r002 4th iterates of z^2 + 4324110097642135 r002 14th iterates of z^2 + 4324110104312224 k007 concat of cont frac of 4324110111139313 k007 concat of cont frac of 4324110111281722 k008 concat of cont frac of 4324110111351341 k006 concat of cont frac of 4324110111611110 k006 concat of cont frac of 4324110117022611 r002 26th iterates of z^2 + 4324110117171111 k007 concat of cont frac of 4324110124341740 k006 concat of cont frac of 4324110125959207 a001 377/5778*1364^(9/10) 4324110127423532 l006 ln(1074/1655) 4324110132442926 k006 concat of cont frac of 4324110135344109 r005 Re(z^2+c),c=3/29+33/56*I,n=22 4324110138411211 k008 concat of cont frac of 4324110150008864 a001 377/9349*1364^(29/30) 4324110158341595 r005 Re(z^2+c),c=-79/126+7/25*I,n=47 4324110169709790 r005 Im(z^2+c),c=-65/122+24/49*I,n=49 4324110178610721 r002 38th iterates of z^2 + 4324110180594546 m001 KhintchineLevy*exp(DuboisRaymond)*sqrt(3)^2 4324110183560359 a007 Real Root Of -183*x^4-797*x^3-140*x^2-632*x-575 4324110190786634 r005 Im(z^2+c),c=-9/14+74/197*I,n=46 4324110194383306 r009 Re(z^3+c),c=-29/82+1/56*I,n=12 4324110195675762 m001 (1+ZetaP(2))^Psi(1,1/3) 4324110198530934 m001 GAMMA(1/4)-ln(5)*BesselI(0,2) 4324110198530934 m001 Pi*2^(1/2)/GAMMA(3/4)-ln(5)*BesselI(0,2) 4324110217856948 m005 (-1/40+3/8*5^(1/2))/(4/5*2^(1/2)+3/4) 4324110222903459 r005 Im(z^2+c),c=4/27+26/55*I,n=27 4324110239219887 m002 -5-Pi^2/5+Pi^2*Log[Pi] 4324110250439082 r005 Re(z^2+c),c=-17/28+15/64*I,n=40 4324110261632567 p003 LerchPhi(1/8,1,328/129) 4324110270235980 r005 Im(z^2+c),c=-5/8+13/162*I,n=48 4324110276266467 m001 (-PlouffeB+Rabbit)/(Psi(2,1/3)+cos(1/12*Pi)) 4324110288053326 r005 Im(z^2+c),c=3/13+23/58*I,n=34 4324110293014975 m001 (Otter+Trott2nd)/(2*Pi/GAMMA(5/6)+MertensB3) 4324110297403401 a001 329/281*1364^(1/2) 4324110299662903 r002 17th iterates of z^2 + 4324110323639230 m001 CareFree/(ReciprocalLucas^Sarnak) 4324110328854093 r009 Im(z^3+c),c=-4/13+23/50*I,n=21 4324110344627167 a001 5473/2889*521^(1/2) 4324110352807403 r009 Re(z^3+c),c=-13/22+27/58*I,n=22 4324110354806766 a007 Real Root Of 20*x^4+855*x^3-433*x^2-349*x+396 4324110357090580 r002 52th iterates of z^2 + 4324110357387381 s002 sum(A067006[n]/(n^3*exp(n)-1),n=1..infinity) 4324110358572528 r005 Im(z^2+c),c=-13/86+37/60*I,n=49 4324110374262961 a007 Real Root Of 742*x^4-270*x^3+394*x^2-406*x-297 4324110381408214 r005 Re(z^2+c),c=11/126+17/43*I,n=36 4324110391421044 a001 377/843*843^(19/28) 4324110394019178 m001 ln(OneNinth)/GolombDickman^2/GAMMA(1/12)^2 4324110400883518 a007 Real Root Of 282*x^4-574*x^3+569*x^2-498*x-378 4324110403347352 m002 -2+2/Pi^4-E^Pi/Pi^2 4324110403589030 r009 Im(z^3+c),c=-17/86+31/63*I,n=17 4324110411122212 k006 concat of cont frac of 4324110419697829 a007 Real Root Of 385*x^4-291*x^3-62*x^2-790*x-367 4324110420062371 r002 41th iterates of z^2 + 4324110422552882 a007 Real Root Of -423*x^4-909*x^3-480*x^2+807*x+380 4324110433991576 r002 25th iterates of z^2 + 4324110437313075 r005 Re(z^2+c),c=-85/118+11/51*I,n=21 4324110444364868 a001 317811/322*18^(23/45) 4324110448133137 a007 Real Root Of 347*x^4+564*x^3+649*x^2-738*x-407 4324110448236762 m001 1/Zeta(9)^2/ln(Zeta(7))^2/gamma^2 4324110449086804 a001 28657/15127*521^(1/2) 4324110464327259 a001 75025/39603*521^(1/2) 4324110466550812 a001 98209/51841*521^(1/2) 4324110466875224 a001 514229/271443*521^(1/2) 4324110466922555 a001 1346269/710647*521^(1/2) 4324110466929461 a001 1762289/930249*521^(1/2) 4324110466930468 a001 9227465/4870847*521^(1/2) 4324110466930615 a001 24157817/12752043*521^(1/2) 4324110466930637 a001 31622993/16692641*521^(1/2) 4324110466930640 a001 165580141/87403803*521^(1/2) 4324110466930640 a001 433494437/228826127*521^(1/2) 4324110466930640 a001 567451585/299537289*521^(1/2) 4324110466930640 a001 2971215073/1568397607*521^(1/2) 4324110466930640 a001 7778742049/4106118243*521^(1/2) 4324110466930640 a001 10182505537/5374978561*521^(1/2) 4324110466930640 a001 53316291173/28143753123*521^(1/2) 4324110466930640 a001 139583862445/73681302247*521^(1/2) 4324110466930640 a001 182717648081/96450076809*521^(1/2) 4324110466930640 a001 956722026041/505019158607*521^(1/2) 4324110466930640 a001 10610209857723/5600748293801*521^(1/2) 4324110466930640 a001 591286729879/312119004989*521^(1/2) 4324110466930640 a001 225851433717/119218851371*521^(1/2) 4324110466930640 a001 21566892818/11384387281*521^(1/2) 4324110466930640 a001 32951280099/17393796001*521^(1/2) 4324110466930640 a001 12586269025/6643838879*521^(1/2) 4324110466930640 a001 1201881744/634430159*521^(1/2) 4324110466930640 a001 1836311903/969323029*521^(1/2) 4324110466930640 a001 701408733/370248451*521^(1/2) 4324110466930640 a001 66978574/35355581*521^(1/2) 4324110466930642 a001 102334155/54018521*521^(1/2) 4324110466930650 a001 39088169/20633239*521^(1/2) 4324110466930706 a001 3732588/1970299*521^(1/2) 4324110466931091 a001 5702887/3010349*521^(1/2) 4324110466933728 a001 2178309/1149851*521^(1/2) 4324110466951807 a001 208010/109801*521^(1/2) 4324110467075722 a001 317811/167761*521^(1/2) 4324110467925043 a001 121393/64079*521^(1/2) 4324110473746379 a001 11592/6119*521^(1/2) 4324110478215893 m001 GaussKuzminWirsing^GAMMA(5/24)/GAMMA(3/4) 4324110486715985 m005 (1/2*exp(1)+6)/(11/12*Zeta(3)+3/5) 4324110491533421 a007 Real Root Of 251*x^4+902*x^3-926*x^2-512*x+276 4324110496396022 a007 Real Root Of 160*x^4+648*x^3-70*x^2+312*x-888 4324110498730574 l006 ln(7151/7467) 4324110499657650 r005 Re(z^2+c),c=-39/64+8/43*I,n=61 4324110506393930 a001 17711/843*521^(3/26) 4324110513646412 a001 17711/9349*521^(1/2) 4324110530541455 a007 Real Root Of 833*x^4+255*x^3-575*x^2-766*x+389 4324110547770185 m001 Conway^Psi(1,1/3)/(FransenRobinson^Psi(1,1/3)) 4324110549755078 m001 (1-Catalan)/(GAMMA(7/12)+PrimesInBinary) 4324110552716063 a007 Real Root Of -130*x^4+946*x^3+921*x^2+567*x+154 4324110561271469 r005 Re(z^2+c),c=-5/8+2/231*I,n=30 4324110566581865 r009 Re(z^3+c),c=-8/17+9/56*I,n=46 4324110587506879 r002 38th iterates of z^2 + 4324110607108286 r002 17th iterates of z^2 + 4324110609117886 a001 48/281*322^(23/24) 4324110620164984 m001 1/ln(GAMMA(2/3))/GAMMA(13/24)*arctan(1/2)^2 4324110626323276 m006 (5/6*ln(Pi)+2/3)/(2/5*Pi^2-1/5) 4324110629069924 h001 (1/12*exp(2)+2/5)/(9/11*exp(1)+1/8) 4324110637297412 r002 24th iterates of z^2 + 4324110649746455 m001 1/arctan(1/2)^2*exp(Kolakoski)/cosh(1)^2 4324110671936758 q001 547/1265 4324110695660235 m005 (1/2*Pi-7/8)/(41/63+3/7*5^(1/2)) 4324110707920940 r005 Re(z^2+c),c=-57/58+3/20*I,n=20 4324110726911320 b008 Log[10*Sqrt[57]] 4324110740152632 a005 (1/sin(49/121*Pi))^185 4324110740871935 r005 Re(z^2+c),c=5/66+27/41*I,n=7 4324110749516853 a001 377/3571*1364^(5/6) 4324110775443944 a003 cos(Pi*27/109)*cos(Pi*19/65) 4324110785674049 a001 6765/2207*521^(11/26) 4324110787125323 a001 6765/3571*521^(1/2) 4324110789593398 r002 60th iterates of z^2 + 4324110790054557 a007 Real Root Of -16*x^4-7*x^3+467*x^2+821*x-154 4324110790960511 p001 sum(1/(133*n+99)/n/(100^n),n=0..infinity) 4324110800772309 m001 (Kac+MasserGramain)/(GAMMA(5/6)-GaussAGM) 4324110809760505 r002 14th iterates of z^2 + 4324110813957926 m001 1/ln(Niven)^2/MadelungNaCl*Porter^2 4324110827898748 a007 Real Root Of -238*x^4-861*x^3+820*x^2+290*x-484 4324110828812657 r008 a(0)=5,K{-n^6,-7-16*n^3+52*n^2-26*n} 4324110841054119 a007 Real Root Of -653*x^4+170*x^3+290*x^2+187*x-126 4324110875812827 m001 FeigenbaumB^2*ln(ArtinRank2)/gamma 4324110894474969 a007 Real Root Of 209*x^4+988*x^3+436*x^2+255*x-237 4324110910294121 r009 Re(z^3+c),c=-14/27+20/53*I,n=32 4324110914431438 k007 concat of cont frac of 4324110937106395 r009 Re(z^3+c),c=-23/52+7/52*I,n=33 4324110937407059 r005 Im(z^2+c),c=-15/22+7/80*I,n=61 4324110943864146 r005 Im(z^2+c),c=-57/44+2/27*I,n=25 4324110964932314 r002 44th iterates of z^2 + 4324110982434019 m001 (RenyiParking-Thue)/(CopelandErdos-MertensB1) 4324110983232728 r005 Re(z^2+c),c=-21/34+9/40*I,n=37 4324110993590653 r009 Im(z^3+c),c=-5/38+41/56*I,n=11 4324111000674710 r005 Re(z^2+c),c=-73/118+1/20*I,n=64 4324111009151690 h001 (3/11*exp(2)+3/10)/(7/10*exp(2)+2/11) 4324111009998944 b008 (9*ArcCsch[16])/13 4324111011213341 k006 concat of cont frac of 4324111015581666 m001 (-cos(1)+HardyLittlewoodC3)/(Chi(1)-Shi(1)) 4324111015581666 m001 (cos(1)-HardyLittlewoodC3)/Ei(1,1) 4324111023880159 m001 1/ln(CopelandErdos)/ErdosBorwein*Zeta(9)^2 4324111037055119 m001 (GAMMA(19/24)+Trott)/Trott2nd 4324111050418538 r002 48th iterates of z^2 + 4324111052029727 r005 Re(z^2+c),c=1/54+19/61*I,n=4 4324111056292985 l006 ln(6505/10024) 4324111061308239 h001 (2/7*exp(1)+1/2)/(4/5*exp(1)+7/9) 4324111076736176 m006 (4*exp(2*Pi)+3/5)/(3/Pi+4) 4324111096291774 a003 cos(Pi*9/77)*cos(Pi*26/75) 4324111100348065 r005 Im(z^2+c),c=-45/122+41/64*I,n=15 4324111101122212 k006 concat of cont frac of 4324111102220171 k006 concat of cont frac of 4324111106428635 a001 322/89*196418^(25/43) 4324111107202423 a007 Real Root Of -946*x^4+982*x^3-638*x^2+285*x+355 4324111111022121 k006 concat of cont frac of 4324111111071121 k008 concat of cont frac of 4324111111087119 k007 concat of cont frac of 4324111111118142 k007 concat of cont frac of 4324111111131121 k007 concat of cont frac of 4324111111141611 k007 concat of cont frac of 4324111111171413 k007 concat of cont frac of 4324111111194011 k006 concat of cont frac of 4324111111211111 k009 concat of cont frac of 4324111112111121 k008 concat of cont frac of 4324111112291101 k007 concat of cont frac of 4324111112325512 k007 concat of cont frac of 4324111112422103 k006 concat of cont frac of 4324111115111423 k007 concat of cont frac of 4324111117612111 k007 concat of cont frac of 4324111118843131 k007 concat of cont frac of 4324111121204111 k009 concat of cont frac of 4324111121332146 k006 concat of cont frac of 4324111122216131 k007 concat of cont frac of 4324111122314131 k006 concat of cont frac of 4324111122413156 k008 concat of cont frac of 4324111123311111 k006 concat of cont frac of 4324111124112101 k007 concat of cont frac of 4324111127750851 m001 (-Landau+Niven)/(cos(1)-cos(1/5*Pi)) 4324111131112125 k008 concat of cont frac of 4324111131154411 k006 concat of cont frac of 4324111132251511 k008 concat of cont frac of 4324111133631111 k006 concat of cont frac of 4324111134142152 k007 concat of cont frac of 4324111141111232 k007 concat of cont frac of 4324111143411101 k006 concat of cont frac of 4324111144125421 k008 concat of cont frac of 4324111144134611 k007 concat of cont frac of 4324111144159134 k006 concat of cont frac of 4324111151113163 k006 concat of cont frac of 4324111154715081 b008 -46+LogIntegral[1+E] 4324111157219867 r005 Re(z^2+c),c=-5/8+17/233*I,n=29 4324111159123141 k006 concat of cont frac of 4324111161114112 k009 concat of cont frac of 4324111162171261 k007 concat of cont frac of 4324111162211111 k006 concat of cont frac of 4324111162923721 r002 6th iterates of z^2 + 4324111171314111 k006 concat of cont frac of 4324111175640214 r009 Im(z^3+c),c=-15/52+7/15*I,n=18 4324111181232382 r005 Im(z^2+c),c=-71/126+41/64*I,n=4 4324111181822342 k008 concat of cont frac of 4324111187523223 k006 concat of cont frac of 4324111199802545 h001 (10/11*exp(2)+3/7)/(4/9*exp(1)+4/9) 4324111200255971 r002 30th iterates of z^2 + 4324111210210141 k006 concat of cont frac of 4324111211311131 k009 concat of cont frac of 4324111212161126 k009 concat of cont frac of 4324111212411212 k006 concat of cont frac of 4324111212436911 k008 concat of cont frac of 4324111213298958 r005 Im(z^2+c),c=15/118+13/27*I,n=63 4324111213613113 k006 concat of cont frac of 4324111215321192 k007 concat of cont frac of 4324111218213512 k008 concat of cont frac of 4324111219412131 k007 concat of cont frac of 4324111221111312 k008 concat of cont frac of 4324111221191183 k007 concat of cont frac of 4324111221313112 k007 concat of cont frac of 4324111222213152 k008 concat of cont frac of 4324111224221212 k007 concat of cont frac of 4324111224716648 m001 exp(Paris)*Magata*GAMMA(1/12) 4324111230094052 a001 377/2207*3571^(23/34) 4324111231192171 k007 concat of cont frac of 4324111232121122 k006 concat of cont frac of 4324111239980287 l006 ln(5431/8369) 4324111239980287 p004 log(8369/5431) 4324111240116321 k008 concat of cont frac of 4324111245201006 r009 Re(z^3+c),c=-31/64+7/39*I,n=26 4324111247937501 a003 sin(Pi*3/86)/cos(Pi*18/43) 4324111250197373 r005 Im(z^2+c),c=-35/58+24/55*I,n=46 4324111252891734 r002 55th iterates of z^2 + 4324111267225111 k006 concat of cont frac of 4324111271132544 m004 -6+Log[Sqrt[5]*Pi]/6+2*Sin[Sqrt[5]*Pi] 4324111272326636 r009 Re(z^3+c),c=-5/14+23/35*I,n=13 4324111283532871 r005 Re(z^2+c),c=-18/29+3/56*I,n=29 4324111284893549 r002 48th iterates of z^2 + 4324111288335352 m001 (3^(1/3)+Pi^(1/2))/(Gompertz-Totient) 4324111291111116 k007 concat of cont frac of 4324111293921303 r005 Re(z^2+c),c=19/78+4/7*I,n=52 4324111309888706 a001 329/281*3571^(15/34) 4324111310851394 m001 (ln(5)-BesselK(1,1))/(Kac-Otter) 4324111311133910 k007 concat of cont frac of 4324111312441142 k009 concat of cont frac of 4324111312521421 k007 concat of cont frac of 4324111318915252 r002 15th iterates of z^2 + 4324111322121312 k006 concat of cont frac of 4324111322221224 k008 concat of cont frac of 4324111324612231 a007 Real Root Of -269*x^4-985*x^3+773*x^2-53*x-276 4324111332532312 k008 concat of cont frac of 4324111340569225 r005 Im(z^2+c),c=11/29+3/23*I,n=34 4324111341332816 k008 concat of cont frac of 4324111343788152 m005 (1/2*5^(1/2)-7/9)/(2/9*Catalan+7/12) 4324111347657801 r005 Re(z^2+c),c=-7/12+14/45*I,n=49 4324111356149695 r002 3th iterates of z^2 + 4324111361431114 k007 concat of cont frac of 4324111364912566 r009 Im(z^3+c),c=-47/122+37/62*I,n=32 4324111365524603 a001 2584/843*1364^(11/30) 4324111374072973 m001 1/MertensB1*FeigenbaumDelta/ln(Robbin) 4324111376601441 a001 45537549124/3*377^(3/17) 4324111379479235 r005 Im(z^2+c),c=31/102+17/54*I,n=63 4324111379561108 m002 -2*E^Pi-Pi^(-2)+Pi 4324111392132313 k009 concat of cont frac of 4324111397793698 a007 Real Root Of 207*x^4+745*x^3-591*x^2+252*x+5 4324111406279756 r005 Im(z^2+c),c=-23/29+1/36*I,n=14 4324111411015182 k007 concat of cont frac of 4324111411214231 k007 concat of cont frac of 4324111413121412 k006 concat of cont frac of 4324111414411171 k007 concat of cont frac of 4324111421759384 m003 -3/2+(9*Sqrt[5])/32+5/(2*Log[1/2+Sqrt[5]/2]) 4324111429535524 a001 377/2207*9349^(23/38) 4324111432711118 k007 concat of cont frac of 4324111432989447 m001 1/exp(Ei(1))^2/Rabbit^2/Zeta(5) 4324111434891021 r005 Re(z^2+c),c=-5/94+26/31*I,n=52 4324111435155511 k009 concat of cont frac of 4324111439086765 a001 305/682*521^(19/26) 4324111439959232 a001 329/281*9349^(15/38) 4324111440217708 r009 Re(z^3+c),c=-39/74+14/45*I,n=39 4324111442136113 k007 concat of cont frac of 4324111448369941 a001 11/987*987^(26/49) 4324111455526885 a001 377/2207*24476^(23/42) 4324111456910120 a001 329/281*24476^(5/14) 4324111458953047 a001 377/2207*64079^(1/2) 4324111459144573 a001 329/281*64079^(15/46) 4324111459441879 a001 329/281*167761^(3/10) 4324111459479592 a001 377/2207*4106118243^(1/4) 4324111459481745 a001 329/281*439204^(5/18) 4324111459487956 a001 329/281*7881196^(5/22) 4324111459487970 a001 329/281*20633239^(3/14) 4324111459487972 a001 329/281*2537720636^(1/6) 4324111459487972 a001 329/281*312119004989^(3/22) 4324111459487972 a001 329/281*28143753123^(3/20) 4324111459487972 a001 329/281*228826127^(3/16) 4324111459487973 a001 329/281*33385282^(5/24) 4324111459488284 a001 329/281*1860498^(1/4) 4324111459613673 a001 329/281*103682^(5/16) 4324111460427867 a001 329/281*39603^(15/44) 4324111460920764 a001 377/2207*39603^(23/44) 4324111461113513 k006 concat of cont frac of 4324111466574321 a001 329/281*15127^(3/8) 4324111470345327 a001 377/2207*15127^(23/40) 4324111499702804 a007 Real Root Of -987*x^4-728*x^3-760*x^2+995*x+548 4324111510221715 k006 concat of cont frac of 4324111511912211 k007 concat of cont frac of 4324111513455259 a001 329/281*5778^(5/12) 4324111514225381 l006 ln(4357/6714) 4324111515413184 m002 Pi^3+Pi/(4*Log[Pi])+Sinh[Pi] 4324111521321781 k006 concat of cont frac of 4324111523220535 r002 3th iterates of z^2 + 4324111523349334 k006 concat of cont frac of 4324111542229432 a001 377/2207*5778^(23/36) 4324111548732834 r009 Im(z^3+c),c=-45/122+10/23*I,n=22 4324111560045822 a001 17711/5778*521^(11/26) 4324111563349108 r002 35th iterates of z^2 + 4324111577108887 m001 exp(Pi)/DuboisRaymond^2/sqrt(2) 4324111588986161 a007 Real Root Of 620*x^4-786*x^3+706*x^2-795*x-561 4324111592362436 m005 (1/2*exp(1)-4)/(6/11*Catalan+1/9) 4324111607823272 k006 concat of cont frac of 4324111614116115 k008 concat of cont frac of 4324111631231441 k006 concat of cont frac of 4324111638640075 a007 Real Root Of -84*x^4-349*x^3-2*x^2-483*x-901 4324111641168262 a007 Real Root Of -111*x^4-384*x^3+617*x^2+931*x+249 4324111673025163 a001 6624/2161*521^(11/26) 4324111679193118 a001 1597/843*1364^(13/30) 4324111689508628 a001 121393/39603*521^(11/26) 4324111691913533 a001 317811/103682*521^(11/26) 4324111692264404 a001 832040/271443*521^(11/26) 4324111692315595 a001 311187/101521*521^(11/26) 4324111692347233 a001 1346269/439204*521^(11/26) 4324111692481254 a001 514229/167761*521^(11/26) 4324111693399846 a001 196418/64079*521^(11/26) 4324111695910163 a001 2/4181*4181^(40/49) 4324111698580076 r005 Im(z^2+c),c=35/114+5/31*I,n=4 4324111699463537 a001 4181/843*1364^(3/10) 4324111699695969 a001 75025/24476*521^(11/26) 4324111712612132 k006 concat of cont frac of 4324111714105112 k008 concat of cont frac of 4324111719639263 r009 Im(z^3+c),c=-25/106+23/48*I,n=6 4324111731014445 r002 32th iterates of z^2 + 4324111732121014 k008 concat of cont frac of 4324111735597755 a001 28657/843*521^(1/26) 4324111742112164 k008 concat of cont frac of 4324111742850239 a001 28657/9349*521^(11/26) 4324111748326611 r009 Im(z^3+c),c=-9/40+5/9*I,n=5 4324111757336001 a003 sin(Pi*10/77)/sin(Pi*27/73) 4324111767788621 r005 Re(z^2+c),c=-13/21+2/41*I,n=49 4324111773864745 p001 sum(1/(544*n+263)/(3^n),n=0..infinity) 4324111780263250 a008 Real Root of x^3-x^2+89*x-447 4324111782121116 k007 concat of cont frac of 4324111786038436 a001 2255/281*1364^(7/30) 4324111799178040 m005 (1/2*3^(1/2)-9/11)/(2/3*Catalan-1/2) 4324111805526129 r005 Im(z^2+c),c=-91/64+9/64*I,n=8 4324111811913895 k007 concat of cont frac of 4324111814413254 m001 cosh(1)*MadelungNaCl^Psi(1,1/3) 4324111821131331 k006 concat of cont frac of 4324111821935336 r009 Im(z^3+c),c=-11/23+19/51*I,n=56 4324111824221416 k008 concat of cont frac of 4324111830243425 r005 Im(z^2+c),c=-73/102+2/21*I,n=39 4324111832764559 a007 Real Root Of 306*x^4-688*x^3-293*x^2-484*x+309 4324111837508821 a008 Real Root of x^4-33*x^2-63*x-5 4324111838457434 a007 Real Root Of 942*x^4-116*x^3+319*x^2-606*x-364 4324111860537169 r005 Im(z^2+c),c=-29/54+15/28*I,n=55 4324111863153175 m001 BesselJ(1,1)/(Ei(1)^Trott2nd) 4324111865343046 r009 Re(z^3+c),c=-21/40+13/53*I,n=40 4324111865950887 s003 concatenated sequence A281986 4324111875622401 a001 329/281*2207^(15/32) 4324111886782203 m001 LambertW(1)^Si(Pi)/cos(1/5*Pi) 4324111886782203 m001 LambertW(1)^Si(Pi)/cos(Pi/5) 4324111897041454 r009 Im(z^3+c),c=-39/94+13/27*I,n=12 4324111899865816 r005 Im(z^2+c),c=5/66+13/25*I,n=53 4324111902044050 m001 (BesselK(1,1)+Thue)/(Zeta(5)-exp(1/Pi)) 4324111904797846 a001 1597/1364*521^(15/26) 4324111910092830 a007 Real Root Of 49*x^4+222*x^3-104*x^2-576*x+272 4324111911461212 k009 concat of cont frac of 4324111916270350 a005 (1/cos(21/95*Pi))^58 4324111919331163 k007 concat of cont frac of 4324111923211721 k007 concat of cont frac of 4324111932316391 r005 Im(z^2+c),c=-149/110+3/55*I,n=15 4324111932431814 r005 Im(z^2+c),c=-5/4+71/166*I,n=4 4324111933075444 a001 2207/8*233^(51/55) 4324111946112481 k007 concat of cont frac of 4324111947085344 r009 Im(z^3+c),c=-7/86+25/49*I,n=11 4324111948432854 a001 377/5778*3571^(27/34) 4324111953197968 m005 (1/4*2^(1/2)-2)/(1/3*gamma-4) 4324111966494657 a001 233/76*24476^(52/55) 4324111967098000 a001 10946/843*1364^(1/6) 4324111967903434 l006 ln(3283/5059) 4324111983747872 a007 Real Root Of -231*x^4-848*x^3+552*x^2-376*x+251 4324111986858862 r005 Im(z^2+c),c=-45/46+17/46*I,n=5 4324111987862969 r005 Re(z^2+c),c=-39/38+15/47*I,n=14 4324111989502455 r005 Re(z^2+c),c=-113/106+39/55*I,n=2 4324112010635208 m001 1/GolombDickman*ln(FransenRobinson)*MertensB1 4324112013457887 r005 Im(z^2+c),c=37/118+7/23*I,n=55 4324112019164282 a001 377/15127*3571^(31/34) 4324112022709472 m001 1/2*(Pi+1)*2^(2/3)+Zeta(5) 4324112025332629 a001 13/844*3571^(33/34) 4324112037182758 a001 10946/2207*521^(9/26) 4324112038634033 a001 10946/3571*521^(11/26) 4324112041152114 k008 concat of cont frac of 4324112051411295 a001 7/1926*7^(5/56) 4324112059430876 r009 Im(z^3+c),c=-7/74+30/59*I,n=21 4324112071663809 m005 (1/2*Pi-3/5)/(1/9*Zeta(3)-1/9) 4324112080097785 m001 1/Robbin^2*ln(MertensB1)^2*GAMMA(23/24)^2 4324112081516279 r002 60th iterates of z^2 + 4324112084635596 h001 (3/4*exp(1)+4/7)/(4/5*exp(2)+1/8) 4324112086259739 g005 GAMMA(1/11)/GAMMA(8/11)/GAMMA(7/10)/GAMMA(3/5) 4324112088121990 s001 sum(1/10^(n-1)*A159589[n]/n^n,n=1..infinity) 4324112094054903 m001 (Chi(1)-FeigenbaumAlpha)/(-Trott2nd+ThueMorse) 4324112097239496 m005 (4*exp(1)-1/5)/(exp(1)-1/4) 4324112097552400 a001 377/2207*2207^(23/32) 4324112098807264 r005 Im(z^2+c),c=15/58+23/63*I,n=53 4324112107480601 a001 377/9349*3571^(29/34) 4324112108013987 a001 2584/843*3571^(11/34) 4324112108528759 b008 Pi-45*ArcCsch[6] 4324112111112142 k007 concat of cont frac of 4324112111112311 k007 concat of cont frac of 4324112111171442 k007 concat of cont frac of 4324112111216111 k007 concat of cont frac of 4324112111329112 k006 concat of cont frac of 4324112112067639 a001 17711/843*1364^(1/10) 4324112112127181 k008 concat of cont frac of 4324112112149211 k009 concat of cont frac of 4324112112238391 k007 concat of cont frac of 4324112113321521 k006 concat of cont frac of 4324112115812646 k006 concat of cont frac of 4324112116213011 k006 concat of cont frac of 4324112119159728 r002 10th iterates of z^2 + 4324112121128162 k009 concat of cont frac of 4324112131336171 k006 concat of cont frac of 4324112131492411 k007 concat of cont frac of 4324112132233714 k006 concat of cont frac of 4324112139945626 a007 Real Root Of 98*x^4-322*x^3+348*x^2-655*x-29 4324112140126026 m001 (ArtinRank2-Conway)/(Kac+StronglyCareFree) 4324112140132274 k006 concat of cont frac of 4324112144715112 k008 concat of cont frac of 4324112146458513 m005 (1/3*exp(1)+3/4)/(1/6*Zeta(3)-7/12) 4324112151013121 k008 concat of cont frac of 4324112151113416 k007 concat of cont frac of 4324112159501980 m001 (RenyiParking-ZetaP(2))/(arctan(1/2)+Ei(1,1)) 4324112161102115 k008 concat of cont frac of 4324112167585788 g004 Im(GAMMA(17/10+I*229/60)) 4324112179419082 r002 56th iterates of z^2 + 4324112182559839 a001 377/5778*9349^(27/38) 4324112184986606 r005 Re(z^2+c),c=-25/42+12/43*I,n=50 4324112189587134 r005 Re(z^2+c),c=29/114+34/63*I,n=35 4324112190922251 r005 Im(z^2+c),c=13/70+23/53*I,n=25 4324112191137926 r002 50th iterates of z^2 + 4324112196014173 a005 (1/cos(13/209*Pi))^1634 4324112201579582 a008 Real Root of x^4-2*x^3-46*x+11 4324112203399057 a001 2584/843*9349^(11/38) 4324112212129121 k006 concat of cont frac of 4324112212511152 k008 concat of cont frac of 4324112213071442 a001 377/5778*24476^(9/14) 4324112215829710 a001 2584/843*24476^(11/42) 4324112217093459 a001 377/5778*64079^(27/46) 4324112217700368 a001 377/5778*439204^(1/2) 4324112217711548 a001 377/5778*7881196^(9/22) 4324112217711577 a001 377/5778*2537720636^(3/10) 4324112217711577 a001 377/5778*14662949395604^(3/14) 4324112217711577 a001 377/5778*192900153618^(1/4) 4324112217711578 a001 377/5778*33385282^(3/8) 4324112217712139 a001 377/5778*1860498^(9/20) 4324112217720123 a001 2584/843*7881196^(1/6) 4324112217720135 a001 2584/843*312119004989^(1/10) 4324112217720135 a001 2584/843*1568397607^(1/8) 4324112217937839 a001 377/5778*103682^(9/16) 4324112218409391 a001 2584/843*39603^(1/4) 4324112219217181 k008 concat of cont frac of 4324112219403388 a001 377/5778*39603^(27/44) 4324112219442561 k008 concat of cont frac of 4324112221113116 k007 concat of cont frac of 4324112221123231 k007 concat of cont frac of 4324112221417281 k006 concat of cont frac of 4324112222110123 k006 concat of cont frac of 4324112222916792 a001 2584/843*15127^(11/40) 4324112224092486 l006 ln(7762/8105) 4324112227462019 b008 1/8+13*Sqrt[11] 4324112230467007 a001 377/5778*15127^(27/40) 4324112255039257 r005 Re(z^2+c),c=-57/74+26/29*I,n=3 4324112255290325 r001 6i'th iterates of 2*x^2-1 of 4324112257296152 a001 2584/843*5778^(11/36) 4324112258531711 a001 2255/281*3571^(7/34) 4324112260647864 r009 Im(z^3+c),c=-2/7+29/62*I,n=20 4324112270822411 a001 28657/843*1364^(1/30) 4324112271637211 k009 concat of cont frac of 4324112274091293 m001 (Totient+Thue)/(HardyLittlewoodC5+Paris) 4324112285991133 m005 (1/2*5^(1/2)+2)/(4/9*5^(1/2)-3/11) 4324112287976751 a001 377/15127*9349^(31/38) 4324112291131211 k007 concat of cont frac of 4324112294262681 h001 (3/10*exp(2)+2/9)/(2/3*exp(2)+5/7) 4324112298908995 a001 377/39603*9349^(35/38) 4324112300115278 a001 377/64079*9349^(37/38) 4324112300319857 a007 Real Root Of -360*x^4+697*x^3+520*x^2+373*x+133 4324112304593205 a001 10946/843*3571^(5/34) 4324112306954889 a001 4181/843*3571^(9/34) 4324112311487840 a001 13/844*9349^(33/38) 4324112314314011 k006 concat of cont frac of 4324112314564766 a001 17711/843*3571^(3/34) 4324112314852711 a001 377/5778*5778^(3/4) 4324112319231303 a001 2255/281*9349^(7/38) 4324112322859162 m001 (ErdosBorwein+MertensB3)/(exp(-1/2*Pi)+Bloch) 4324112323008593 a001 377/15127*24476^(31/42) 4324112327141719 a001 2255/281*24476^(1/6) 4324112327626463 a001 377/15127*64079^(31/46) 4324112327822443 l006 ln(5492/8463) 4324112328335916 a001 377/15127*3010349^(1/2) 4324112328336155 a001 377/15127*9062201101803^(1/4) 4324112328344716 a001 2255/281*20633239^(1/10) 4324112328344717 a001 2255/281*17393796001^(1/14) 4324112328344717 a001 2255/281*14662949395604^(1/18) 4324112328344717 a001 2255/281*505019158607^(1/16) 4324112328344717 a001 2255/281*599074578^(1/12) 4324112328345787 a001 2255/281*710647^(1/8) 4324112328783334 a001 2255/281*39603^(7/44) 4324112330055479 a005 (1/cos(17/229*Pi))^1144 4324112330278604 a001 377/15127*39603^(31/44) 4324112331651680 a001 2255/281*15127^(7/40) 4324112338321455 a001 28657/843*3571^(1/34) 4324112338461075 a001 377/39603*24476^(5/6) 4324112338822258 m001 Porter*(ReciprocalFibonacci-ThueMorse) 4324112338851704 r005 Im(z^2+c),c=23/82+10/29*I,n=43 4324112340128428 a001 377/103682*24476^(13/14) 4324112340340603 a001 377/167761*24476^(41/42) 4324112340578877 a001 17711/843*9349^(3/38) 4324112341927477 a001 377/64079*24476^(37/42) 4324112342981279 a001 377/15127*15127^(31/40) 4324112343674799 a001 377/39603*64079^(35/46) 4324112343969055 a001 17711/843*24476^(1/14) 4324112344368513 a001 377/39603*167761^(7/10) 4324112344476058 a001 377/39603*20633239^(1/2) 4324112344476063 a001 377/39603*2537720636^(7/18) 4324112344476063 a001 377/39603*17393796001^(5/14) 4324112344476063 a001 377/39603*312119004989^(7/22) 4324112344476063 a001 377/39603*14662949395604^(5/18) 4324112344476063 a001 377/39603*505019158607^(5/16) 4324112344476063 a001 377/39603*28143753123^(7/20) 4324112344476063 a001 377/39603*599074578^(5/12) 4324112344476064 a001 377/39603*228826127^(7/16) 4324112344476792 a001 377/39603*1860498^(7/12) 4324112344481415 a001 377/39603*710647^(5/8) 4324112344483380 a001 17711/843*439204^(1/18) 4324112344484623 a001 17711/843*7881196^(1/22) 4324112344484626 a001 17711/843*33385282^(1/24) 4324112344484688 a001 17711/843*1860498^(1/20) 4324112344509766 a001 17711/843*103682^(1/16) 4324112344672605 a001 17711/843*39603^(3/44) 4324112345901896 a001 17711/843*15127^(3/40) 4324112345938007 a001 377/103682*64079^(39/46) 4324112346189992 a001 377/271443*64079^(43/46) 4324112346225309 a001 377/439204*64079^(45/46) 4324112346448109 a001 377/167761*64079^(41/46) 4324112346669152 a001 377/39603*39603^(35/44) 4324112346814655 a001 377/103682*439204^(13/18) 4324112346830803 a001 377/103682*7881196^(13/22) 4324112346830844 a001 377/103682*141422324^(1/2) 4324112346830844 a001 377/103682*73681302247^(3/8) 4324112346830847 a001 377/103682*33385282^(13/24) 4324112346831656 a001 377/103682*1860498^(13/20) 4324112346874859 a001 377/103682*271443^(3/4) 4324112346992825 a001 28657/843*9349^(1/38) 4324112347117226 a001 377/439204*167761^(9/10) 4324112347157668 a001 377/103682*103682^(13/16) 4324112347174402 a001 377/271443*969323029^(1/2) 4324112347210669 a001 377/1860498*439204^(17/18) 4324112347224527 a001 377/710647*6643838879^(1/2) 4324112347231786 a001 377/1860498*7881196^(17/22) 4324112347231840 a001 377/1860498*45537549124^(1/2) 4324112347231843 a001 377/1860498*33385282^(17/24) 4324112347231860 a001 377/1860498*12752043^(3/4) 4324112347232849 a001 377/4870847*7881196^(5/6) 4324112347232899 a001 377/4870847*20633239^(11/14) 4324112347232902 a001 377/1860498*1860498^(17/20) 4324112347232907 a001 377/4870847*2537720636^(11/18) 4324112347232907 a001 377/4870847*312119004989^(1/2) 4324112347232907 a001 377/4870847*3461452808002^(11/24) 4324112347232907 a001 377/4870847*28143753123^(11/20) 4324112347232907 a001 377/4870847*1568397607^(5/8) 4324112347232907 a001 377/4870847*228826127^(11/16) 4324112347233019 a001 377/33385282*7881196^(21/22) 4324112347233062 a001 377/12752043*2139295485799^(1/2) 4324112347233076 a001 377/33385282*20633239^(9/10) 4324112347233081 a001 377/54018521*20633239^(13/14) 4324112347233085 a001 377/33385282*2537720636^(7/10) 4324112347233085 a001 377/33385282*17393796001^(9/14) 4324112347233085 a001 377/33385282*14662949395604^(1/2) 4324112347233085 a001 377/33385282*505019158607^(9/16) 4324112347233085 a001 377/33385282*192900153618^(7/12) 4324112347233085 a001 377/33385282*599074578^(3/4) 4324112347233089 a001 377/33385282*33385282^(7/8) 4324112347233089 a001 377/599074578*2537720636^(5/6) 4324112347233089 a001 377/599074578*312119004989^(15/22) 4324112347233089 a001 377/599074578*3461452808002^(5/8) 4324112347233089 a001 377/599074578*28143753123^(3/4) 4324112347233089 a001 377/6643838879*2537720636^(17/18) 4324112347233089 a001 377/10749957122*1322157322203^(3/4) 4324112347233089 a001 377/28143753123*17393796001^(13/14) 4324112347233089 a001 377/28143753123*14662949395604^(13/18) 4324112347233089 a001 377/28143753123*505019158607^(13/16) 4324112347233089 a001 377/28143753123*73681302247^(7/8) 4324112347233089 a001 377/73681302247*312119004989^(19/22) 4324112347233089 a001 377/73681302247*3461452808002^(19/24) 4324112347233089 a001 377/192900153618*312119004989^(9/10) 4324112347233089 a001 377/192900153618*14662949395604^(11/14) 4324112347233089 a001 377/817138163596*312119004989^(21/22) 4324112347233089 a001 377/192900153618*192900153618^(11/12) 4324112347233089 a001 13/505618944676*14662949395604^(13/14) 4324112347233089 a001 377/9062201101803*3461452808002^(23/24) 4324112347233089 a001 377/817138163596*505019158607^(15/16) 4324112347233089 a001 377/45537549124*9062201101803^(3/4) 4324112347233089 a001 377/73681302247*28143753123^(19/20) 4324112347233089 a001 377/2537720636*2537720636^(9/10) 4324112347233089 a001 377/6643838879*45537549124^(5/6) 4324112347233089 a001 377/6643838879*312119004989^(17/22) 4324112347233089 a001 377/6643838879*3461452808002^(17/24) 4324112347233089 a001 377/6643838879*28143753123^(17/20) 4324112347233089 a001 377/2537720636*14662949395604^(9/14) 4324112347233089 a001 377/2537720636*192900153618^(3/4) 4324112347233089 a001 377/969323029*17393796001^(11/14) 4324112347233089 a001 377/969323029*14662949395604^(11/18) 4324112347233089 a001 377/969323029*505019158607^(11/16) 4324112347233089 a001 377/969323029*1568397607^(7/8) 4324112347233089 a001 377/969323029*599074578^(11/12) 4324112347233089 a001 377/599074578*228826127^(15/16) 4324112347233089 a001 377/141422324*4106118243^(3/4) 4324112347233090 a001 377/54018521*141422324^(5/6) 4324112347233091 a001 377/54018521*2537720636^(13/18) 4324112347233091 a001 377/54018521*312119004989^(13/22) 4324112347233091 a001 377/54018521*3461452808002^(13/24) 4324112347233091 a001 377/54018521*73681302247^(5/8) 4324112347233091 a001 377/54018521*28143753123^(13/20) 4324112347233091 a001 377/54018521*228826127^(13/16) 4324112347233093 a001 377/141422324*33385282^(23/24) 4324112347233099 a001 377/7881196*7881196^(19/22) 4324112347233099 a001 13/711491*5600748293801^(1/2) 4324112347233159 a001 377/7881196*817138163596^(1/2) 4324112347233159 a001 377/7881196*87403803^(3/4) 4324112347233162 a001 377/7881196*33385282^(19/24) 4324112347233566 a001 377/3010349*119218851371^(1/2) 4324112347234052 a001 377/4870847*1860498^(11/12) 4324112347234345 a001 377/7881196*1860498^(19/20) 4324112347236352 a001 377/1149851*20633239^(7/10) 4324112347236360 a001 377/1149851*17393796001^(1/2) 4324112347236360 a001 377/1149851*14662949395604^(7/18) 4324112347236360 a001 377/1149851*505019158607^(7/16) 4324112347236360 a001 377/1149851*599074578^(7/12) 4324112347236825 a001 377/439204*439204^(5/6) 4324112347243852 a001 377/1149851*710647^(7/8) 4324112347255458 a001 377/439204*7881196^(15/22) 4324112347255499 a001 377/439204*20633239^(9/14) 4324112347255505 a001 377/439204*2537720636^(1/2) 4324112347255505 a001 377/439204*312119004989^(9/22) 4324112347255505 a001 377/439204*14662949395604^(5/14) 4324112347255505 a001 377/439204*192900153618^(5/12) 4324112347255505 a001 377/439204*28143753123^(9/20) 4324112347255505 a001 377/439204*228826127^(9/16) 4324112347255508 a001 377/439204*33385282^(5/8) 4324112347256442 a001 377/439204*1860498^(3/4) 4324112347386733 a001 377/167761*370248451^(1/2) 4324112347439128 a001 377/64079*64079^(37/46) 4324112347632610 a001 377/439204*103682^(15/16) 4324112347950057 a001 10946/843*9349^(5/38) 4324112348122885 a001 28657/843*24476^(1/42) 4324112348286178 a001 377/64079*54018521^(1/2) 4324112348357401 a001 28657/843*39603^(1/44) 4324112348767165 a001 28657/843*15127^(1/40) 4324112348779801 a001 13/844*24476^(11/14) 4324112349274572 a001 377/103682*39603^(39/44) 4324112349868768 a001 377/271443*39603^(43/44) 4324112349955779 a001 377/167761*39603^(41/44) 4324112350604587 a001 377/64079*39603^(37/44) 4324112351053017 a007 Real Root Of 869*x^4-358*x^3-964*x^2-49*x+200 4324112351892561 a001 28657/843*5778^(1/36) 4324112353529456 a001 2255/281*5778^(7/36) 4324112353600354 a001 10946/843*24476^(5/42) 4324112353695598 a001 13/844*64079^(33/46) 4324112354437377 a001 13/844*439204^(11/18) 4324112354444274 a001 10946/843*167761^(1/10) 4324112354451041 a001 13/844*7881196^(1/2) 4324112354451076 a001 13/844*312119004989^(3/10) 4324112354451076 a001 13/844*1568397607^(3/8) 4324112354451078 a001 13/844*33385282^(11/24) 4324112354451763 a001 13/844*1860498^(11/20) 4324112354459637 a001 10946/843*20633239^(1/14) 4324112354459638 a001 10946/843*2537720636^(1/18) 4324112354459638 a001 10946/843*312119004989^(1/22) 4324112354459638 a001 10946/843*28143753123^(1/20) 4324112354459638 a001 10946/843*228826127^(1/16) 4324112354459742 a001 10946/843*1860498^(1/12) 4324112354727619 a001 13/844*103682^(11/16) 4324112354772936 a001 10946/843*39603^(5/44) 4324112355278085 a001 17711/843*5778^(1/12) 4324112356518845 a001 13/844*39603^(3/4) 4324112356821755 a001 10946/843*15127^(1/8) 4324112358950335 a001 377/9349*9349^(29/38) 4324112361010881 a001 377/39603*15127^(7/8) 4324112365255356 a001 377/103682*15127^(39/40) 4324112365765844 a001 377/64079*15127^(37/40) 4324112370033282 r005 Re(z^2+c),c=-59/94+5/17*I,n=49 4324112370041047 a001 13/844*15127^(33/40) 4324112372448737 a001 10946/843*5778^(5/36) 4324112376037041 a001 28657/843*2207^(1/32) 4324112384997222 a001 4181/843*9349^(9/38) 4324112386660866 r005 Im(z^2+c),c=11/114+27/55*I,n=23 4324112391722059 a001 377/9349*24476^(29/42) 4324112395167757 a001 4181/843*24476^(3/14) 4324112396042002 a001 377/9349*64079^(29/46) 4324112396704271 a001 377/9349*1149851^(1/2) 4324112396705907 a001 377/9349*1322157322203^(1/4) 4324112396710732 a001 4181/843*439204^(1/6) 4324112396714459 a001 4181/843*7881196^(3/22) 4324112396714468 a001 4181/843*2537720636^(1/10) 4324112396714468 a001 4181/843*14662949395604^(1/14) 4324112396714468 a001 4181/843*192900153618^(1/12) 4324112396714469 a001 4181/843*33385282^(1/8) 4324112396714656 a001 4181/843*1860498^(3/20) 4324112396789889 a001 4181/843*103682^(3/16) 4324112397278405 a001 4181/843*39603^(9/44) 4324112398523037 a001 377/9349*39603^(29/44) 4324112400966279 a001 4181/843*15127^(9/40) 4324112410262162 k007 concat of cont frac of 4324112410406184 a001 377/9349*15127^(29/40) 4324112411095426 r005 Re(z^2+c),c=-51/118+32/57*I,n=42 4324112413028128 a007 Real Root Of -179*x^4-868*x^3-595*x^2-995*x-776 4324112415125112 k007 concat of cont frac of 4324112427711525 a001 17711/843*2207^(3/32) 4324112429094847 a001 4181/843*5778^(1/4) 4324112429770957 r005 Re(z^2+c),c=-73/118+2/41*I,n=60 4324112436992670 a001 377/3571*3571^(25/34) 4324112439868571 a001 377/15127*5778^(31/36) 4324112440325295 a007 Real Root Of 678*x^4-982*x^3+637*x^2+463*x-22 4324112442112122 k008 concat of cont frac of 4324112443211631 k009 concat of cont frac of 4324112443629102 r009 Re(z^3+c),c=-23/52+7/52*I,n=35 4324112450382249 a001 2537720636/3*4807526976^(3/17) 4324112450382333 a001 10749957122/3*1346269^(3/17) 4324112467493782 r005 Re(z^2+c),c=-31/66+19/62*I,n=6 4324112470399760 a001 377/39603*5778^(35/36) 4324112473179132 a001 13/844*5778^(11/12) 4324112477133477 r005 Im(z^2+c),c=-61/48+10/61*I,n=6 4324112485358671 a001 610/3*322^(9/17) 4324112493171139 a001 10946/843*2207^(5/32) 4324112501042685 a001 377/9349*5778^(29/36) 4324112502754201 m001 exp(Robbin)/Si(Pi)^2*BesselJ(0,1) 4324112503425278 a007 Real Root Of 429*x^4-882*x^3+54*x^2-602*x+26 4324112513114141 k006 concat of cont frac of 4324112518596689 m002 -4+Pi^3+Pi^4/6 4324112520953948 a007 Real Root Of -60*x^4-78*x^3+857*x^2+419*x+458 4324112522540818 a001 2255/281*2207^(7/32) 4324112522885433 a001 2584/843*2207^(11/32) 4324112528839656 m001 (Robbin-Tetranacci)/(Zeta(1/2)-Porter) 4324112531111221 k007 concat of cont frac of 4324112556680649 a001 1597/843*3571^(13/34) 4324112565607245 a001 28657/843*843^(1/28) 4324112578237017 m001 (gamma(2)+exp(-1/2*Pi))/(Magata+Salem) 4324112581306985 a001 75025/2207*199^(1/22) 4324112590386133 m001 1/Paris*exp(Magata)*Riemann1stZero 4324112607812183 r002 33th iterates of z^2 + 4324112608450126 r005 Re(z^2+c),c=-27/44+5/49*I,n=32 4324112611613538 a007 Real Root Of 208*x^4+745*x^3-412*x^2+877*x-989 4324112632678687 r009 Im(z^3+c),c=-2/29+24/47*I,n=14 4324112639005528 m001 (Zeta(3)-GAMMA(17/24))/(Porter+ZetaP(2)) 4324112639444168 a007 Real Root Of -263*x^4-446*x^3-748*x^2+616*x+28 4324112646189516 r002 41th iterates of z^2 + 4324112646231314 k009 concat of cont frac of 4324112646395175 a001 4181/843*2207^(9/32) 4324112649562025 m005 (1/2*2^(1/2)-7/10)/(5*Pi+8/11) 4324112653776939 a001 377/3571*9349^(25/38) 4324112654571060 r002 5th iterates of z^2 + 4324112661578656 a001 646/341*521^(1/2) 4324112669408471 a001 1597/843*9349^(13/38) 4324112677830055 a007 Real Root Of 119*x^4+435*x^3-236*x^2+329*x-598 4324112680740999 m001 1/ln((2^(1/3)))/Salem*sinh(1) 4324112681611231 k006 concat of cont frac of 4324112682028427 a001 377/3571*24476^(25/42) 4324112683768093 m001 1/Robbin/ln(Si(Pi))/LambertW(1) 4324112684099244 a001 1597/843*24476^(13/42) 4324112685752516 a001 377/3571*64079^(25/46) 4324112686035771 a001 1597/843*64079^(13/46) 4324112686248026 a001 377/3571*167761^(1/2) 4324112686324844 a001 377/3571*20633239^(5/14) 4324112686324848 a001 377/3571*2537720636^(5/18) 4324112686324848 a001 377/3571*312119004989^(5/22) 4324112686324848 a001 377/3571*3461452808002^(5/24) 4324112686324848 a001 377/3571*28143753123^(1/4) 4324112686324848 a001 377/3571*228826127^(5/16) 4324112686325368 a001 377/3571*1860498^(5/12) 4324112686333383 a001 1597/843*141422324^(1/6) 4324112686333383 a001 1597/843*73681302247^(1/8) 4324112686348055 a001 1597/843*271443^(1/4) 4324112687147959 a001 1597/843*39603^(13/44) 4324112687891340 a001 377/3571*39603^(25/44) 4324112692474888 a001 1597/843*15127^(13/40) 4324112698135433 a001 377/3571*15127^(5/8) 4324112711513132 k007 concat of cont frac of 4324112724926465 r009 Im(z^3+c),c=-19/46+26/63*I,n=44 4324112733105045 a001 1597/843*5778^(13/36) 4324112734864300 q001 1657/3832 4324112746432885 r005 Re(z^2+c),c=-65/106+5/34*I,n=62 4324112760023790 m009 (1/3*Psi(1,1/3)-2/5)/(3/5*Psi(1,1/3)+4/5) 4324112771738993 s002 sum(A151911[n]/((2^n-1)/n),n=1..infinity) 4324112776270352 a001 377/3571*5778^(25/36) 4324112776893760 m001 1/Robbin/exp(Lehmer)/GAMMA(11/24) 4324112789194164 r005 Re(z^2+c),c=-19/31+6/35*I,n=45 4324112789249947 a001 28657/5778*521^(9/26) 4324112813653191 m005 (4/5*Catalan-1)/(5/6*Pi-2) 4324112813712672 a001 7/832040*8^(37/47) 4324112823202143 k007 concat of cont frac of 4324112834914796 v002 sum(1/(3^n+(21*n^2-34*n+60)),n=1..infinity) 4324112838987362 r005 Im(z^2+c),c=-4/3+8/249*I,n=42 4324112848334285 r009 Im(z^3+c),c=-5/62+23/32*I,n=4 4324112850216099 r005 Re(z^2+c),c=-43/98+20/37*I,n=29 4324112862731475 l006 ln(2209/3404) 4324112866389949 r005 Re(z^2+c),c=-49/82+4/15*I,n=44 4324112868768076 a008 Real Root of x^4-x^3-3*x^2+32*x-236 4324112872975399 h001 (10/11*exp(2)+4/5)/(4/11*exp(1)+3/4) 4324112895171278 a003 sin(Pi*7/51)/sin(Pi*43/103) 4324112898975093 a001 75025/15127*521^(9/26) 4324112904533202 m001 (Bloch+CareFree)/(exp(1)+gamma(3)) 4324112914838553 r009 Im(z^3+c),c=-3/7+21/52*I,n=37 4324112914983776 a001 196418/39603*521^(9/26) 4324112917319412 a001 514229/103682*521^(9/26) 4324112917660176 a001 1346269/271443*521^(9/26) 4324112917740620 a001 2178309/439204*521^(9/26) 4324112917870781 a001 75640/15251*521^(9/26) 4324112918762914 a001 317811/64079*521^(9/26) 4324112920213799 r009 Re(z^3+c),c=-19/60+43/60*I,n=33 4324112924877687 a001 121393/24476*521^(9/26) 4324112957908858 r005 Re(z^2+c),c=-59/98+5/22*I,n=38 4324112961472871 r005 Re(z^2+c),c=-5/8+17/138*I,n=27 4324112966753709 a001 377/5778*2207^(27/32) 4324112966788965 a001 46368/9349*521^(9/26) 4324112978503328 m001 1/Salem*exp(Robbin)^2*GAMMA(2/3) 4324112981795578 m001 (-GAMMA(2/3)+1/3)/(-5^(1/2)+2) 4324112996422170 a001 17711/843*843^(3/28) 4324113017508385 m001 Gompertz*Stephens-StronglyCareFree 4324113023049768 m001 1/ln(sin(1))*GAMMA(11/12)^2*sin(Pi/12)^2 4324113033383202 r005 Im(z^2+c),c=27/62+14/33*I,n=4 4324113044484125 a001 377/1364*1364^(7/10) 4324113046983322 a001 1597/843*2207^(13/32) 4324113050973986 a007 Real Root Of 935*x^4+224*x^3-169*x^2-759*x+309 4324113087529581 r008 a(0)=4,K{-n^6,7-8*n^3-5*n^2+2*n} 4324113106935173 p001 sum((-1)^n/(473*n+23)/(8^n),n=0..infinity) 4324113112112802 k006 concat of cont frac of 4324113112612415 k007 concat of cont frac of 4324113114431114 k007 concat of cont frac of 4324113115151112 k006 concat of cont frac of 4324113118112114 k008 concat of cont frac of 4324113121141471 k007 concat of cont frac of 4324113122119111 k007 concat of cont frac of 4324113125594117 m005 (1/2*2^(1/2)-5/9)/(11/12*Pi+5/8) 4324113129117141 k008 concat of cont frac of 4324113131215187 k007 concat of cont frac of 4324113131403132 r009 Im(z^3+c),c=-53/114+5/13*I,n=34 4324113131732231 k006 concat of cont frac of 4324113135098772 m004 -36+(5*Cosh[Sqrt[5]*Pi])/6 4324113141247141 k006 concat of cont frac of 4324113144162569 r005 Im(z^2+c),c=3/22+9/19*I,n=40 4324113157495829 m001 GAMMA(13/24)^2/CopelandErdos*ln(cos(1))^2 4324113162341943 k006 concat of cont frac of 4324113168954831 m001 Trott/Niven^2*exp(GAMMA(3/4))^2 4324113171127310 k007 concat of cont frac of 4324113171635212 k006 concat of cont frac of 4324113188347525 a001 377/15127*2207^(31/32) 4324113191144748 b008 Erfc[Sqrt[ArcCot[Pi]]] 4324113201232680 a001 377/9349*2207^(29/32) 4324113216111191 k007 concat of cont frac of 4324113221211451 k007 concat of cont frac of 4324113224738495 m001 (-GAMMA(13/24)+LandauRamanujan)/(exp(1)-ln(2)) 4324113250602253 h001 (-8*exp(-2)+9)/(-6*exp(1)-2) 4324113252601887 a001 17711/2207*521^(7/26) 4324113254053163 a001 17711/3571*521^(9/26) 4324113267660157 r002 57th iterates of z^2 + 4324113269461410 r005 Re(z^2+c),c=-13/27+27/52*I,n=37 4324113279343531 m001 (KomornikLoreti-Thue)/(Pi^(1/2)+Artin) 4324113297257111 a007 Real Root Of 130*x^4+507*x^3-129*x^2+681*x+899 4324113303280421 m001 MertensB1*(Shi(1)+Gompertz) 4324113305813134 k008 concat of cont frac of 4324113311111421 k006 concat of cont frac of 4324113312114212 k008 concat of cont frac of 4324113322224174 k008 concat of cont frac of 4324113327312962 r005 Re(z^2+c),c=-37/62+2/59*I,n=15 4324113331971112 k007 concat of cont frac of 4324113334916811 a001 199/5*144^(12/25) 4324113336763510 m008 (Pi^5+3/4)/(2/3*Pi+5) 4324113339407939 a001 98209/2889*199^(1/22) 4324113341611083 k006 concat of cont frac of 4324113354380823 a001 610/843*1364^(17/30) 4324113372888940 m001 (Riemann2ndZero-exp(1))/(Trott+ThueMorse) 4324113379882449 a001 377/3571*2207^(25/32) 4324113384744411 m001 1/Zeta(7)^2*Lehmer*exp(Zeta(9))^2 4324113385948254 a007 Real Root Of 278*x^4-8*x^3+795*x^2-703*x-463 4324113391764476 l006 ln(5553/8557) 4324113398434305 r005 Im(z^2+c),c=5/62+17/33*I,n=36 4324113409906495 a007 Real Root Of 141*x^4+526*x^3-282*x^2+344*x-7 4324113412212211 k007 concat of cont frac of 4324113412311161 k007 concat of cont frac of 4324113423111314 k008 concat of cont frac of 4324113441022269 a001 10946/843*843^(5/28) 4324113449384595 m001 Zeta(9)^2*exp(Lehmer)*cosh(1)^2 4324113450013400 a001 514229/15127*199^(1/22) 4324113459920078 r009 Im(z^3+c),c=-5/12+23/56*I,n=45 4324113466150519 a001 1346269/39603*199^(1/22) 4324113468231111 k006 concat of cont frac of 4324113468504893 a001 1762289/51841*199^(1/22) 4324113468848392 a001 9227465/271443*199^(1/22) 4324113468898508 a001 24157817/710647*199^(1/22) 4324113468905819 a001 31622993/930249*199^(1/22) 4324113468906886 a001 165580141/4870847*199^(1/22) 4324113468907042 a001 433494437/12752043*199^(1/22) 4324113468907065 a001 567451585/16692641*199^(1/22) 4324113468907068 a001 2971215073/87403803*199^(1/22) 4324113468907068 a001 7778742049/228826127*199^(1/22) 4324113468907068 a001 10182505537/299537289*199^(1/22) 4324113468907068 a001 53316291173/1568397607*199^(1/22) 4324113468907068 a001 139583862445/4106118243*199^(1/22) 4324113468907068 a001 182717648081/5374978561*199^(1/22) 4324113468907068 a001 956722026041/28143753123*199^(1/22) 4324113468907068 a001 2504730781961/73681302247*199^(1/22) 4324113468907068 a001 3278735159921/96450076809*199^(1/22) 4324113468907068 a001 10610209857723/312119004989*199^(1/22) 4324113468907068 a001 4052739537881/119218851371*199^(1/22) 4324113468907068 a001 387002188980/11384387281*199^(1/22) 4324113468907068 a001 591286729879/17393796001*199^(1/22) 4324113468907068 a001 225851433717/6643838879*199^(1/22) 4324113468907068 a001 1135099622/33391061*199^(1/22) 4324113468907068 a001 32951280099/969323029*199^(1/22) 4324113468907068 a001 12586269025/370248451*199^(1/22) 4324113468907069 a001 1201881744/35355581*199^(1/22) 4324113468907070 a001 1836311903/54018521*199^(1/22) 4324113468907079 a001 701408733/20633239*199^(1/22) 4324113468907138 a001 66978574/1970299*199^(1/22) 4324113468907546 a001 102334155/3010349*199^(1/22) 4324113468910338 a001 39088169/1149851*199^(1/22) 4324113468929481 a001 196452/5779*199^(1/22) 4324113469060686 a001 5702887/167761*199^(1/22) 4324113469917462 a007 Real Root Of 202*x^4+981*x^3+321*x^2-444*x+772 4324113469959977 a001 2178309/64079*199^(1/22) 4324113476123808 a001 208010/6119*199^(1/22) 4324113500356921 m001 (MertensB3-Trott)/(GAMMA(3/4)+FeigenbaumC) 4324113504408305 m001 Robbin^2/Paris*ln(FeigenbaumD)^2 4324113508659100 a001 8/3*1364^(22/57) 4324113510069033 r005 Im(z^2+c),c=-17/28+4/61*I,n=21 4324113518371337 a001 317811/9349*199^(1/22) 4324113519625839 m005 (1/2*Pi-4/9)/(7/11*exp(1)+7/8) 4324113561293396 m005 (1/2*gamma-1)/(7/11*5^(1/2)+2/9) 4324113565409197 r005 Im(z^2+c),c=-9/8+1/189*I,n=26 4324113572705662 a007 Real Root Of 562*x^4-510*x^3+611*x^2+368*x-16 4324113575580205 r002 29th iterates of z^2 + 4324113581878947 r005 Im(z^2+c),c=-5/7+12/83*I,n=44 4324113594868372 m001 (PlouffeB-ZetaQ(4))/(GaussAGM+MertensB1) 4324113638735644 r005 Im(z^2+c),c=33/98+9/53*I,n=18 4324113650864883 r005 Im(z^2+c),c=21/64+16/55*I,n=41 4324113655395022 r009 Im(z^3+c),c=-1/114+20/39*I,n=11 4324113658841318 r009 Im(z^3+c),c=-21/40+22/63*I,n=64 4324113660828549 m001 2*Pi/GAMMA(5/6)/Zeta(1,-1)*GAMMA(17/24) 4324113667482800 r009 Im(z^3+c),c=-3/31+31/61*I,n=14 4324113676771868 r005 Re(z^2+c),c=-5/8+55/206*I,n=4 4324113684188724 m001 (Mills+OneNinth)/(ln(5)-GlaisherKinkelin) 4324113687835119 m001 BesselI(1,1)^Chi(1)*ArtinRank2 4324113697645911 l006 ln(8373/8743) 4324113698093687 r005 Im(z^2+c),c=7/90+25/49*I,n=30 4324113709914051 a007 Real Root Of -643*x^4-309*x^3-444*x^2+968*x-41 4324113713403532 r002 55th iterates of z^2 + 4324113722902334 m001 exp(1/exp(1))^Mills/Artin 4324113734079859 m006 (5/6*ln(Pi)+4/5)/(3/4*exp(2*Pi)+4) 4324113741236320 l006 ln(3344/5153) 4324113741860206 r009 Im(z^3+c),c=-27/98+8/17*I,n=15 4324113751460849 q001 111/2567 4324113757705444 r002 48th iterates of z^2 + 4324113759522191 v002 sum(1/(5^n*(14*n^2-37*n+79)),n=1..infinity) 4324113760413674 r005 Re(z^2+c),c=-125/118+7/50*I,n=2 4324113779239895 a001 11/13*75025^(5/9) 4324113792297585 r005 Re(z^2+c),c=-4/9+16/39*I,n=6 4324113807940228 a001 121393/3571*199^(1/22) 4324113813111111 k007 concat of cont frac of 4324113818302755 b008 -1/2+CoshIntegral[5/9] 4324113823747262 r009 Im(z^3+c),c=-29/98+13/28*I,n=23 4324113824382231 k008 concat of cont frac of 4324113840886286 r005 Im(z^2+c),c=33/94+6/31*I,n=42 4324113848026025 m001 (MadelungNaCl+MertensB1)/(Lehmer-Shi(1)) 4324113849532468 a001 2255/281*843^(1/4) 4324113852939515 g007 Psi(2,3/10)+Psi(2,2/9)-Psi(2,6/7)-Psi(2,1/7) 4324113858019349 m001 (-Kac+ZetaQ(2))/(1+FellerTornier) 4324113880584665 r002 48th iterates of z^2 + 4324113880880541 m001 (AlladiGrinstead-GAMMA(5/6)*ZetaR(2))/ZetaR(2) 4324113902125199 r002 29th iterates of z^2 + 4324113904092132 r009 Im(z^3+c),c=-53/122+13/32*I,n=20 4324113923113133 r004 Re(z^2+c),c=-29/22-1/24*I,z(0)=-1,n=45 4324113930948116 r009 Im(z^3+c),c=-31/86+25/57*I,n=25 4324113939812126 r009 Im(z^3+c),c=-7/36+26/49*I,n=5 4324113946041456 m002 Pi^6*Csch[Pi]-Log[Pi]+Pi^5*Log[Pi] 4324113950767445 r009 Im(z^3+c),c=-17/98+6/11*I,n=2 4324113950933698 r005 Re(z^2+c),c=-23/38+26/63*I,n=59 4324113954941412 h001 (-2*exp(1)-5)/(-6*exp(6)+7) 4324113969340935 m001 (Paris+ZetaQ(4))/(Zeta(5)+GlaisherKinkelin) 4324113970717585 r002 43th iterates of z^2 + 4324114001370515 r009 Im(z^3+c),c=-37/64+43/59*I,n=3 4324114001430686 a007 Real Root Of -215*x^4-927*x^3-96*x^2-392*x+317 4324114002448577 r002 40th iterates of z^2 + 4324114013188969 a001 2576/321*521^(7/26) 4324114015080928 a001 75025/3*199^(3/29) 4324114023975341 m001 Zeta(1,2)*GAMMA(5/24)*exp(sinh(1))^2 4324114041170293 a007 Real Root Of 753*x^4-838*x^3-650*x^2-902*x+553 4324114044265994 h001 (1/4*exp(2)+3/5)/(8/11*exp(2)+2/7) 4324114052179699 r002 5th iterates of z^2 + 4324114055920789 m001 2*Pi/GAMMA(5/6)-Backhouse^gamma 4324114055920789 m001 Backhouse^gamma-GAMMA(1/6) 4324114065967380 a001 4181/1364*521^(11/26) 4324114070575193 p003 LerchPhi(1/32,3,495/173) 4324114073808777 r002 61th iterates of z^2 + 4324114086016961 a001 28657/843*322^(1/24) 4324114111116114 k006 concat of cont frac of 4324114112161128 k008 concat of cont frac of 4324114112321511 k006 concat of cont frac of 4324114112931135 k007 concat of cont frac of 4324114114213012 k007 concat of cont frac of 4324114116182452 k006 concat of cont frac of 4324114120112501 k009 concat of cont frac of 4324114123308836 s001 sum(exp(-Pi/4)^(n-1)*A205398[n],n=1..infinity) 4324114124157151 a001 121393/15127*521^(7/26) 4324114132188162 k007 concat of cont frac of 4324114136959135 m001 (exp(Pi)-ln(2+3^(1/2)))/(GAMMA(13/24)+Magata) 4324114138161478 m001 (-Landau+ReciprocalLucas)/(Khinchin-exp(1)) 4324114140347191 a001 105937/13201*521^(7/26) 4324114142709286 a001 416020/51841*521^(7/26) 4324114143053911 a001 726103/90481*521^(7/26) 4324114143266901 a001 1346269/167761*521^(7/26) 4324114144169141 a001 514229/64079*521^(7/26) 4324114144241272 r005 Re(z^2+c),c=-17/28+12/59*I,n=60 4324114147263209 a008 Real Root of x^4-2*x^3-35*x^2+12*x+195 4324114150326386 r005 Im(z^2+c),c=-17/16+16/43*I,n=3 4324114150353186 a001 98209/12238*521^(7/26) 4324114157814422 m001 (Psi(1,1/3)+exp(-1/2*Pi))/(-GaussAGM+Gompertz) 4324114159393699 r009 Re(z^3+c),c=-7/34+60/61*I,n=34 4324114161739312 k006 concat of cont frac of 4324114172131455 r005 Re(z^2+c),c=-1+59/234*I,n=12 4324114174506486 l006 ln(4479/6902) 4324114184358244 a007 Real Root Of -51*x^4-284*x^3-382*x^2-623*x-683 4324114191487747 m009 (4/5*Psi(1,3/4)+2/5)/(2*Psi(1,2/3)-1/2) 4324114192739262 a001 75025/9349*521^(7/26) 4324114199327798 r005 Re(z^2+c),c=-19/31+13/40*I,n=45 4324114199781744 r009 Re(z^3+c),c=-27/50+20/53*I,n=3 4324114203741158 r005 Re(z^2+c),c=9/82+38/61*I,n=38 4324114210430256 m001 (Zeta(1,-1)+GAMMA(17/24))/(Robbin+Tetranacci) 4324114211022232 k007 concat of cont frac of 4324114216926245 r005 Re(z^2+c),c=-5/8+2/89*I,n=28 4324114219218144 m001 (Riemann3rdZero+StronglyCareFree)/Gompertz 4324114222149211 k007 concat of cont frac of 4324114224151217 k008 concat of cont frac of 4324114224410135 a001 1364/514229*55^(5/41) 4324114233553608 m005 (1/2*2^(1/2)-1/4)/(4/9*2^(1/2)+3/7) 4324114253334683 r005 Re(z^2+c),c=39/98+11/30*I,n=4 4324114284056755 r005 Re(z^2+c),c=-7/12+19/55*I,n=34 4324114299342411 a007 Real Root Of 577*x^4-782*x^3-553*x^2-998*x+578 4324114301231199 p001 sum((-1)^n/(566*n+231)/(256^n),n=0..infinity) 4324114318268706 r009 Im(z^3+c),c=-7/94+24/47*I,n=7 4324114324941773 a007 Real Root Of 172*x^4+643*x^3-505*x^2-527*x-982 4324114352527420 a001 4181/843*843^(9/28) 4324114356587776 r005 Re(z^2+c),c=-73/118+1/36*I,n=37 4324114357348747 m002 -E^(2*Pi)+Pi^5/3+ProductLog[Pi] 4324114361403963 r005 Re(z^2+c),c=-11/18+20/119*I,n=38 4324114370234640 m001 Conway*DuboisRaymond*Niven 4324114383837036 m001 (sin(1)+Bloch)/(Sierpinski+ZetaP(2)) 4324114392704867 r005 Im(z^2+c),c=6/17+14/33*I,n=11 4324114393666867 m001 (Ei(1)-BesselI(1,2))/(StolarskyHarborth-Trott) 4324114401799565 a001 199/832040*2584^(21/22) 4324114405707478 a001 8/3*312119004989^(2/19) 4324114406433011 a001 8/3*39603^(5/19) 4324114410432095 a001 4870847/610*317811^(2/15) 4324114410434303 a001 930249/305*433494437^(2/15) 4324114410441616 a001 710647/610*591286729879^(2/15) 4324114411177645 a001 8/3*15127^(11/38) 4324114421313224 k007 concat of cont frac of 4324114425788008 m001 Robbin*GolombDickman^2/ln(GAMMA(1/12))^2 4324114429090841 a007 Real Root Of -931*x^4+46*x^3-672*x^2-16*x+155 4324114429981799 a007 Real Root Of -525*x^4+415*x^3+760*x^2+293*x-284 4324114432585464 l006 ln(5614/8651) 4324114435469380 r005 Im(z^2+c),c=-13/10+1/43*I,n=56 4324114446483222 r002 4th iterates of z^2 + 4324114461964519 a001 377/1364*3571^(21/34) 4324114471814320 m001 1/Trott/Tribonacci/exp(GAMMA(3/4))^2 4324114481806494 a001 28657/2207*521^(5/26) 4324114482708432 r009 Re(z^3+c),c=-15/32+9/56*I,n=28 4324114483257770 a001 28657/3571*521^(7/26) 4324114496742370 r002 11th iterates of z^2 + 4324114501864998 a001 610/843*3571^(1/2) 4324114502455436 r005 Re(z^2+c),c=27/74+9/55*I,n=43 4324114503332682 r002 20th iterates of z^2 + 4324114506458460 r005 Re(z^2+c),c=-57/52+23/59*I,n=4 4324114517980703 r002 30th iterates of z^2 + 4324114520028754 r009 Re(z^3+c),c=-15/26+14/41*I,n=7 4324114522164649 a007 Real Root Of 583*x^4-44*x^3-770*x^2-939*x-286 4324114523957801 a007 Real Root Of 401*x^4-338*x^3+312*x^2-454*x-296 4324114525432553 a001 199/20365011074*102334155^(21/22) 4324114532625990 m001 (ln(3)-Zeta(1,-1))/(BesselI(1,2)+MertensB3) 4324114540562793 a007 Real Root Of 675*x^4-682*x^3+174*x^2-370*x+159 4324114548591821 a007 Real Root Of -565*x^4+769*x^3-923*x^2-133*x+197 4324114555840087 r005 Re(z^2+c),c=-103/78+1/30*I,n=6 4324114560803938 m001 1/GAMMA(1/24)^2/Cahen^2*ln(GAMMA(1/3)) 4324114577137664 r004 Im(z^2+c),c=5/34+11/23*I,z(0)=I,n=37 4324114582274399 m001 (Landau+LaplaceLimit)/(2^(1/2)+exp(1/Pi)) 4324114586283998 r002 15th iterates of z^2 + 4324114592974836 r005 Im(z^2+c),c=-67/102+4/45*I,n=45 4324114601340540 m001 (Conway+FeigenbaumC)/(HeathBrownMoroz+Sarnak) 4324114608158208 a001 2584/843*843^(11/28) 4324114617652617 m004 36-Cosh[Sqrt[5]*Pi]+Sinh[Sqrt[5]*Pi]/6 4324114622573205 a003 cos(Pi*4/111)-cos(Pi*9/29) 4324114627228436 a007 Real Root Of -824*x^4+910*x^3+331*x^2+424*x-290 4324114632822025 a003 sin(Pi*19/87)*sin(Pi*11/46) 4324114636548859 r002 8th iterates of z^2 + 4324114644063390 a001 377/1364*9349^(21/38) 4324114649278370 a001 610/843*9349^(17/38) 4324114666579743 r002 28th iterates of z^2 + 4324114667794650 a001 377/1364*24476^(1/2) 4324114668489391 a001 610/843*24476^(17/42) 4324114669287949 s002 sum(A260562[n]/((pi^n+1)/n),n=1..infinity) 4324114669570850 p004 log(22549/14633) 4324114670922886 a001 377/1364*64079^(21/46) 4324114670954050 r002 12th iterates of z^2 + 4324114671021773 a001 610/843*64079^(17/46) 4324114671394928 a001 377/1364*439204^(7/18) 4324114671403623 a001 377/1364*7881196^(7/22) 4324114671403642 a001 377/1364*20633239^(3/10) 4324114671403645 a001 377/1364*17393796001^(3/14) 4324114671403645 a001 377/1364*14662949395604^(1/6) 4324114671403645 a001 377/1364*599074578^(1/4) 4324114671403646 a001 377/1364*33385282^(7/24) 4324114671404082 a001 377/1364*1860498^(7/20) 4324114671406856 a001 377/1364*710647^(3/8) 4324114671410958 a001 610/843*45537549124^(1/6) 4324114671410965 a001 610/843*12752043^(1/4) 4324114671579627 a001 377/1364*103682^(7/16) 4324114672476173 a001 610/843*39603^(17/44) 4324114672719499 a001 377/1364*39603^(21/44) 4324114679442160 a001 610/843*15127^(17/40) 4324114681324541 a001 377/1364*15127^(21/40) 4324114684846600 b008 3*(-1/2+Cosh[Glaisher]) 4324114689814363 s002 sum(A000094[n]/(n^3*pi^n-1),n=1..infinity) 4324114693065802 m001 (Ei(1,1)+Champernowne)/(Kolakoski-ZetaQ(4)) 4324114699368325 m001 (Catalan+Backhouse)/(Bloch+ZetaP(4)) 4324114704849747 a003 cos(Pi*5/119)*cos(Pi*31/87) 4324114708367837 r005 Re(z^2+c),c=-11/18+5/29*I,n=54 4324114719176010 a001 329/281*843^(15/28) 4324114731751093 m001 Zeta(1,-1)^Weierstrass*MertensB2^Weierstrass 4324114732573929 a001 610/843*5778^(17/36) 4324114734979881 a007 Real Root Of -775*x^4+970*x^3-164*x^2+868*x-396 4324114739423314 a007 Real Root Of 557*x^4-90*x^3+463*x^2+121*x-61 4324114746957903 a001 377/1364*5778^(7/12) 4324114751646517 m001 OneNinth^2*ln(KhintchineHarmonic)*sin(Pi/12)^2 4324114758335487 q001 1673/3869 4324114766164679 m001 (GAMMA(3/4)-Shi(1))/(ln(5)+BesselI(0,2)) 4324114774043809 m005 (1/2*5^(1/2)+1/5)/(1/12*gamma+3) 4324114790965899 r009 Im(z^3+c),c=-27/74+24/55*I,n=19 4324114794409357 r002 64th iterates of z^2 + 4324114804522036 r005 Re(z^2+c),c=-17/26+1/55*I,n=22 4324114817509220 r009 Re(z^3+c),c=-11/30+3/62*I,n=11 4324114827536136 h001 (4/7*exp(1)+10/11)/(5/7*exp(2)+5/12) 4324114836867916 r009 Re(z^3+c),c=-13/29+8/57*I,n=31 4324114840447665 m005 (1/2*2^(1/2)+2/11)/(44/35+5/14*5^(1/2)) 4324114842846235 s002 sum(A020217[n]/(n^3*2^n-1),n=1..infinity) 4324114844922291 r004 Im(z^2+c),c=5/34-2/5*I,z(0)=exp(7/24*I*Pi),n=6 4324114854504698 s002 sum(A109759[n]/(n^2*exp(n)-1),n=1..infinity) 4324114865141024 r005 Re(z^2+c),c=-63/118+14/37*I,n=27 4324114866138926 r001 14i'th iterates of 2*x^2-1 of 4324114870740488 m001 (-PlouffeB+Riemann3rdZero)/(exp(1)+Otter) 4324114885294738 r005 Im(z^2+c),c=7/25+19/55*I,n=42 4324114886217469 r002 16th iterates of z^2 + 4324114895958022 r005 Re(z^2+c),c=-3/5+30/119*I,n=61 4324114912131231 k006 concat of cont frac of 4324114928046960 r005 Re(z^2+c),c=-4/27+24/37*I,n=56 4324114931688192 r005 Im(z^2+c),c=25/118+21/50*I,n=29 4324114933263075 a007 Real Root Of 733*x^4-541*x^3-805*x^2-542*x+403 4324114941836199 r002 52th iterates of z^2 + 4324114941836199 r002 52th iterates of z^2 + 4324114944842215 r005 Re(z^2+c),c=-19/27+2/21*I,n=23 4324114947689199 a007 Real Root Of 255*x^4+923*x^3-555*x^2+832*x-550 4324114955561248 a007 Real Root Of -496*x^4+408*x^3-678*x^2+941*x+584 4324114956145017 m002 4*ProductLog[Pi]+(ProductLog[Pi]*Sech[Pi])/Pi 4324114970767186 l006 ln(8984/9381) 4324114976499909 a007 Real Root Of -756*x^4-441*x^3-981*x^2+617*x+441 4324114980186325 r002 37th iterates of z^2 + 4324114985346163 r009 Im(z^3+c),c=-31/66+14/37*I,n=59 4324114991971134 m001 (gamma+arctan(1/2))/(KhinchinHarmonic+Robbin) 4324115014996871 m001 (gamma(1)+ZetaQ(3))/(2^(1/2)-BesselI(0,1)) 4324115015558729 r002 50th iterates of z^2 + 4324115032975559 m001 MertensB1/(BesselI(1,1)^ln(2^(1/2)+1)) 4324115048716185 m005 (1/2*Zeta(3)+1/11)/(101/126+5/14*5^(1/2)) 4324115086049818 r009 Re(z^3+c),c=-17/52+19/28*I,n=33 4324115095645478 a007 Real Root Of 102*x^4+322*x^3-339*x^2+619*x-611 4324115097728038 a007 Real Root Of 589*x^4-583*x^3-226*x^2-584*x-278 4324115102347700 m001 (FeigenbaumD+Landau)/(Ei(1)+2*Pi/GAMMA(5/6)) 4324115112211071 k007 concat of cont frac of 4324115116475386 m001 1/DuboisRaymond^2*ln(Cahen)^2*sin(1) 4324115125013812 k006 concat of cont frac of 4324115129250834 a007 Real Root Of -124*x^4-523*x^3+24*x^2+41*x+795 4324115142417101 k006 concat of cont frac of 4324115143030331 a001 610/843*2207^(17/32) 4324115158350846 r005 Im(z^2+c),c=5/23+15/37*I,n=55 4324115167294645 r005 Re(z^2+c),c=-19/48+29/53*I,n=33 4324115173278033 a007 Real Root Of 240*x^4-735*x^3-17*x^2+93*x+14 4324115178864149 m001 (Kac+Sarnak)/(arctan(1/3)+gamma(2)) 4324115184510893 a001 987/2207*1364^(19/30) 4324115199293001 m001 (GaussAGM+RenyiParking)/(Pi+polylog(4,1/2)) 4324115201341370 m001 BesselK(0,1)/Zeta(3)*Champernowne 4324115208500676 r002 34th iterates of z^2 + 4324115208500676 r002 34th iterates of z^2 + 4324115214753357 m001 Niven^2/Cahen^2*ln(cos(1)) 4324115215888325 r002 61th iterates of z^2 + 4324115217686993 r005 Re(z^2+c),c=-5/4+63/184*I,n=5 4324115221451232 k007 concat of cont frac of 4324115222992302 a001 615/124*521^(9/26) 4324115237926334 r005 Im(z^2+c),c=-67/90+1/51*I,n=25 4324115239139562 a001 75025/5778*521^(5/26) 4324115245261432 k007 concat of cont frac of 4324115250005663 m001 (Otter-TwinPrimes)/(Gompertz-Landau) 4324115251207508 m001 (Pi^(1/2)-Psi(1,1/3))/(-Sierpinski+TwinPrimes) 4324115253992290 a001 377/1364*2207^(21/32) 4324115270916056 p001 sum(1/(542*n+395)/n/(25^n),n=1..infinity) 4324115276112312 k006 concat of cont frac of 4324115281355247 m001 Riemann3rdZero/(exp(1)-Psi(2,1/3)) 4324115304759238 a001 987/24476*1364^(29/30) 4324115316056694 m001 GAMMA(1/24)^2*BesselK(1,1)^2/exp(GAMMA(7/12)) 4324115318435176 r009 Im(z^3+c),c=-15/34+23/58*I,n=47 4324115347933435 m001 GAMMA(1/6)*Conway/exp(sin(Pi/12))^2 4324115349632989 a001 196418/15127*521^(5/26) 4324115350877718 a005 (1/cos(59/148*Pi))^31 4324115352324019 a007 Real Root Of 683*x^4-499*x^3-526*x^2-368*x-125 4324115365753764 a001 514229/39603*521^(5/26) 4324115368105753 a001 1346269/103682*521^(5/26) 4324115368660982 a001 2178309/167761*521^(5/26) 4324115369559362 a001 832040/64079*521^(5/26) 4324115370745380 r005 Im(z^2+c),c=1/6+17/45*I,n=6 4324115370878001 a007 Real Root Of 351*x^4-406*x^3-724*x^2-428*x+341 4324115375716950 a001 10959/844*521^(5/26) 4324115378767038 r002 60th iterates of z^2 + 4324115379702432 r005 Im(z^2+c),c=8/29+17/49*I,n=53 4324115381978196 a007 Real Root Of 113*x^4-539*x^3+505*x^2-421*x-324 4324115410669196 a001 233/843*521^(21/26) 4324115411212261 k007 concat of cont frac of 4324115411321231 k007 concat of cont frac of 4324115416821950 m001 (BesselJ(0,1)+cos(1/12*Pi))/(Gompertz+Magata) 4324115417921686 a001 121393/9349*521^(5/26) 4324115422666297 a001 2/11*1364^(18/41) 4324115433589069 a001 141/2161*1364^(9/10) 4324115451030990 l006 ln(1135/1749) 4324115455797007 a007 Real Root Of -201*x^4-780*x^3+291*x^2-184*x+971 4324115466177007 m001 1/(3^(1/3))/Cahen^2/exp(GAMMA(2/3)) 4324115477738947 m001 (HeathBrownMoroz-ZetaP(3))/(ln(3)-ArtinRank2) 4324115482853838 a007 Real Root Of 261*x^4-169*x^3+913*x^2+577*x+56 4324115493502145 a007 Real Root Of 761*x^4-875*x^3-988*x^2-993*x-342 4324115497873480 a007 Real Root Of -618*x^4-712*x^3+47*x^2+694*x+3 4324115502798975 r005 Im(z^2+c),c=-5/26+29/40*I,n=8 4324115511397009 a001 1597/843*843^(13/28) 4324115523898464 h001 (4/9*exp(2)+1/4)/(1/10*exp(1)+6/11) 4324115529811608 r009 Re(z^3+c),c=-6/13+7/46*I,n=32 4324115561318664 a007 Real Root Of x^4+432*x^3-180*x^2-883*x-685 4324115564515335 a007 Real Root Of 488*x^4-638*x^3+807*x^2-466*x+2 4324115570851731 a003 cos(Pi*17/55)-sin(Pi*47/99) 4324115572942951 r009 Im(z^3+c),c=-89/94+2/17*I,n=2 4324115601997474 r005 Im(z^2+c),c=13/46+16/47*I,n=57 4324115612710261 k007 concat of cont frac of 4324115614312225 k006 concat of cont frac of 4324115615057694 r005 Im(z^2+c),c=-9/14+77/177*I,n=43 4324115615424421 a001 199/9227465*20365011074^(17/24) 4324115631586208 m005 (1/2*exp(1)+1/12)/(4/11*Catalan-2/3) 4324115632853960 a001 329/1926*1364^(23/30) 4324115643182221 a007 Real Root Of 180*x^4+978*x^3+928*x^2+271*x-37 4324115656903648 a001 987/9349*1364^(5/6) 4324115658190416 r005 Im(z^2+c),c=25/106+19/49*I,n=49 4324115661823213 r005 Re(z^2+c),c=-67/110+4/13*I,n=54 4324115678498697 m001 exp(Lehmer)*Champernowne*BesselJ(1,1)^2 4324115689596044 b008 4+(5*Erf[1])/13 4324115691960641 m005 (-9/44+1/4*5^(1/2))/(6/11*3^(1/2)-1/8) 4324115696475324 a003 sin(Pi*1/91)-sin(Pi*15/97) 4324115705745995 a001 46368/2207*521^(3/26) 4324115707197271 a001 46368/3571*521^(5/26) 4324115717084106 r005 Re(z^2+c),c=-14/23+25/57*I,n=3 4324115737637413 a007 Real Root Of -221*x^4+285*x^3+534*x^2+69*x-145 4324115744961928 a001 199/2584*196418^(17/24) 4324115749267675 r005 Re(z^2+c),c=-37/60+4/43*I,n=43 4324115751420341 k006 concat of cont frac of 4324115751868650 a001 322/2504730781961*8^(7/12) 4324115761847366 r002 18th iterates of z^2 + 4324115762523886 m001 sin(1)^FeigenbaumAlpha/(Salem^FeigenbaumAlpha) 4324115766436413 m001 2^(1/2)*ln(3)*Pi/GAMMA(5/6) 4324115766436413 m001 ln(3)/sqrt(2)*GAMMA(1/6) 4324115766436413 m001 sqrt(2)*GAMMA(1/6)*ln(sqrt(3)) 4324115767663133 a007 Real Root Of 184*x^4+820*x^3+54*x^2-99*x+532 4324115773991270 r002 10th iterates of z^2 + 4324115787316115 m001 (Pi^(1/2))^DuboisRaymond/Sierpinski 4324115792675983 a001 11592/341*199^(1/22) 4324115803550642 m005 (1/2*gamma-1/10)/(1/11*Zeta(3)-6/11) 4324115817862415 r009 Re(z^3+c),c=-7/106+20/39*I,n=9 4324115821735741 m001 (-OneNinth+Sarnak)/(3^(1/2)-HardyLittlewoodC4) 4324115825414312 m002 Pi^4+6*ProductLog[Pi]+Pi^5*ProductLog[Pi] 4324115841736611 r005 Im(z^2+c),c=29/82+11/17*I,n=21 4324115851354024 m001 (Kolakoski-Trott)/(sin(1/12*Pi)-BesselJ(1,1)) 4324115853472667 r002 56th iterates of z^2 + 4324115853472667 r002 56th iterates of z^2 + 4324115917865195 m001 exp(CopelandErdos)^2/Champernowne*gamma^2 4324115923976515 a001 817138163596/3*2584^(1/17) 4324115931595435 a001 312119004989/3*32951280099^(1/17) 4324115931595435 a001 505019158607/3*9227465^(1/17) 4324115932470298 m001 (Gompertz+Paris)/(Conway+GaussKuzminWirsing) 4324115936914815 s001 sum(exp(-4*Pi/5)^n*A090462[n],n=1..infinity) 4324115966580834 m001 FeigenbaumAlpha/BesselK(0,1)/exp(1/Pi) 4324115966580834 m001 FeigenbaumAlpha/exp(1/Pi)/BesselK(0,1) 4324115972724717 m001 GAMMA(5/12)/exp(Porter)*log(1+sqrt(2)) 4324115973779273 r005 Re(z^2+c),c=3/29+18/43*I,n=26 4324115977271720 a007 Real Root Of 148*x^4-805*x^3-576*x^2-933*x-366 4324116013654254 m005 (1/2*Zeta(3)-6/11)/(4*Pi+2/7) 4324116039953348 p004 log(29921/19417) 4324116047197542 a008 Real Root of x^4-2*x^3-14*x^2+15*x+9 4324116054607869 m001 1/Riemann1stZero*CareFree^2/exp(GAMMA(5/24)) 4324116056827174 a001 2584/64079*1364^(29/30) 4324116075525895 r005 Re(z^2+c),c=-19/31+9/61*I,n=56 4324116076743131 r002 43th iterates of z^2 + 4324116081746270 l006 ln(9595/10019) 4324116104071895 s002 sum(A146837[n]/(n*exp(n)+1),n=1..infinity) 4324116108265916 a007 Real Root Of -720*x^4+509*x^3+572*x^2+724*x-436 4324116112151713 k009 concat of cont frac of 4324116121128165 k008 concat of cont frac of 4324116121412251 k009 concat of cont frac of 4324116121921725 m001 1/exp(Salem)^2/Magata^2/Ei(1) 4324116122141111 k006 concat of cont frac of 4324116130427688 r005 Re(z^2+c),c=-35/58+13/54*I,n=64 4324116143399449 s002 sum(A020394[n]/((2*n+1)!),n=1..infinity) 4324116151439031 r009 Im(z^3+c),c=-55/122+17/49*I,n=3 4324116166052400 r009 Re(z^3+c),c=-23/58+5/56*I,n=12 4324116166552407 a001 615/15251*1364^(29/30) 4324116182561103 a001 17711/439204*1364^(29/30) 4324116184896740 a001 46368/1149851*1364^(29/30) 4324116185237505 a001 121393/3010349*1364^(29/30) 4324116185317948 a001 196418/4870847*1364^(29/30) 4324116185448109 a001 75025/1860498*1364^(29/30) 4324116186340243 a001 28657/710647*1364^(29/30) 4324116192455021 a001 10946/271443*1364^(29/30) 4324116203666344 m001 (Pi-2^(1/3))/ln(2)+ln(5) 4324116207832839 m001 exp(Pi)/(Psi(2,1/3)+ErdosBorwein) 4324116207961853 a001 2584/39603*1364^(9/10) 4324116209492432 a001 3571/1346269*55^(5/41) 4324116211019134 k008 concat of cont frac of 4324116217459739 r002 15th iterates of z^2 + 4324116217551111 k009 concat of cont frac of 4324116221281112 k007 concat of cont frac of 4324116229023411 a003 cos(Pi*1/116)/cos(Pi*43/101) 4324116231351373 r002 61th iterates of z^2 + 4324116231456796 s002 sum(A112582[n]/(pi^n+1),n=1..infinity) 4324116232181032 k008 concat of cont frac of 4324116234366330 a001 4181/103682*1364^(29/30) 4324116244463422 r002 53i'th iterates of 2*x/(1-x^2) of 4324116245378427 r002 33th iterates of z^2 + 4324116252633302 a001 2584/2207*1364^(1/2) 4324116252898861 r005 Im(z^2+c),c=13/70+29/63*I,n=19 4324116256412401 a001 987/3571*1364^(7/10) 4324116257565363 a007 Real Root Of -432*x^4-958*x^3-913*x^2+390*x+277 4324116257985967 m005 (1/2*5^(1/2)+5/8)/(2/9*5^(1/2)-9/10) 4324116267418009 h001 (6/7*exp(1)+7/9)/(1/9*exp(1)+5/12) 4324116296685481 m001 (gamma+Zeta(1,2))/(-GaussAGM+HeathBrownMoroz) 4324116298062963 m005 (1/2*gamma-1/11)/(5/11*Pi-6) 4324116302562647 m001 Pi^(1/2)/(Landau^MinimumGamma) 4324116304115716 m001 Sierpinski^(ln(2)/ZetaP(3)) 4324116308256322 m001 (-GolombDickman+Sarnak)/(2^(1/3)+Zeta(5)) 4324116308567458 m001 Backhouse^GaussAGM+Otter 4324116318921778 b008 EulerGamma*(1/2+SinIntegral[1/4]) 4324116320941320 a001 6765/103682*1364^(9/10) 4324116323501130 r002 6th iterates of z^2 + 4324116323564532 a007 Real Root Of -732*x^4+215*x^3-410*x^2+727*x+434 4324116337424802 a001 17711/271443*1364^(9/10) 4324116339829709 a001 6624/101521*1364^(9/10) 4324116340180581 a001 121393/1860498*1364^(9/10) 4324116340231772 a001 317811/4870847*1364^(9/10) 4324116340239241 a001 832040/12752043*1364^(9/10) 4324116340240330 a001 311187/4769326*1364^(9/10) 4324116340240489 a001 5702887/87403803*1364^(9/10) 4324116340240513 a001 14930352/228826127*1364^(9/10) 4324116340240516 a001 39088169/599074578*1364^(9/10) 4324116340240517 a001 14619165/224056801*1364^(9/10) 4324116340240517 a001 267914296/4106118243*1364^(9/10) 4324116340240517 a001 701408733/10749957122*1364^(9/10) 4324116340240517 a001 1836311903/28143753123*1364^(9/10) 4324116340240517 a001 686789568/10525900321*1364^(9/10) 4324116340240517 a001 12586269025/192900153618*1364^(9/10) 4324116340240517 a001 32951280099/505019158607*1364^(9/10) 4324116340240517 a001 86267571272/1322157322203*1364^(9/10) 4324116340240517 a001 32264490531/494493258286*1364^(9/10) 4324116340240517 a001 591286729879/9062201101803*1364^(9/10) 4324116340240517 a001 1548008755920/23725150497407*1364^(9/10) 4324116340240517 a001 139583862445/2139295485799*1364^(9/10) 4324116340240517 a001 53316291173/817138163596*1364^(9/10) 4324116340240517 a001 20365011074/312119004989*1364^(9/10) 4324116340240517 a001 7778742049/119218851371*1364^(9/10) 4324116340240517 a001 2971215073/45537549124*1364^(9/10) 4324116340240517 a001 1134903170/17393796001*1364^(9/10) 4324116340240517 a001 433494437/6643838879*1364^(9/10) 4324116340240517 a001 165580141/2537720636*1364^(9/10) 4324116340240517 a001 63245986/969323029*1364^(9/10) 4324116340240518 a001 24157817/370248451*1364^(9/10) 4324116340240527 a001 9227465/141422324*1364^(9/10) 4324116340240588 a001 3524578/54018521*1364^(9/10) 4324116340241004 a001 1346269/20633239*1364^(9/10) 4324116340243857 a001 514229/7881196*1364^(9/10) 4324116340263410 a001 196418/3010349*1364^(9/10) 4324116340397431 a001 75025/1149851*1364^(9/10) 4324116341316024 a001 28657/439204*1364^(9/10) 4324116347612154 a001 10946/167761*1364^(9/10) 4324116355300345 b008 (9*SinIntegral[5]^2)/5 4324116363959577 r009 Im(z^3+c),c=-1/11+29/57*I,n=14 4324116372881677 a001 646/6119*1364^(5/6) 4324116378437472 r005 Im(z^2+c),c=-21/34+34/87*I,n=17 4324116390766470 a001 4181/64079*1364^(9/10) 4324116395510306 a001 12752043/1597*317811^(2/15) 4324116395511603 a001 4870847/1597*433494437^(2/15) 4324116395512670 a001 1860498/1597*591286729879^(2/15) 4324116399113214 k007 concat of cont frac of 4324116407111753 a007 Real Root Of 140*x^4-250*x^3+835*x^2-943*x-589 4324116408066274 r005 Im(z^2+c),c=-25/44+4/51*I,n=39 4324116419538329 m005 (-1/4+1/4*5^(1/2))/(1/7*2^(1/2)-11/12) 4324116440595677 m005 (1/2*2^(1/2)-1/4)/(4/7*gamma+8/11) 4324116447814916 l006 ln(5736/8839) 4324116451160174 r005 Im(z^2+c),c=-81/110+1/59*I,n=49 4324116457668921 a001 377/2207*843^(23/28) 4324116464322283 a001 121393/5778*521^(3/26) 4324116466993769 a001 987/2207*3571^(19/34) 4324116474502295 a001 5473/682*521^(7/26) 4324116477341463 a001 6765/64079*1364^(5/6) 4324116478249219 r004 Im(z^2+c),c=1/42-14/23*I,z(0)=I,n=43 4324116490420395 a001 2/11*5778^(15/41) 4324116492581940 a001 17711/167761*1364^(5/6) 4324116492623093 m001 1/ln(Sierpinski)/MadelungNaCl*GAMMA(1/3)^2 4324116493135519 a003 -1-cos(1/9*Pi)-2*cos(4/27*Pi)-cos(8/27*Pi) 4324116494805496 a001 11592/109801*1364^(5/6) 4324116495129908 a001 121393/1149851*1364^(5/6) 4324116495177239 a001 317811/3010349*1364^(5/6) 4324116495184145 a001 208010/1970299*1364^(5/6) 4324116495185152 a001 2178309/20633239*1364^(5/6) 4324116495185299 a001 5702887/54018521*1364^(5/6) 4324116495185321 a001 3732588/35355581*1364^(5/6) 4324116495185324 a001 39088169/370248451*1364^(5/6) 4324116495185325 a001 102334155/969323029*1364^(5/6) 4324116495185325 a001 66978574/634430159*1364^(5/6) 4324116495185325 a001 701408733/6643838879*1364^(5/6) 4324116495185325 a001 1836311903/17393796001*1364^(5/6) 4324116495185325 a001 1201881744/11384387281*1364^(5/6) 4324116495185325 a001 12586269025/119218851371*1364^(5/6) 4324116495185325 a001 32951280099/312119004989*1364^(5/6) 4324116495185325 a001 21566892818/204284540899*1364^(5/6) 4324116495185325 a001 225851433717/2139295485799*1364^(5/6) 4324116495185325 a001 182717648081/1730726404001*1364^(5/6) 4324116495185325 a001 139583862445/1322157322203*1364^(5/6) 4324116495185325 a001 53316291173/505019158607*1364^(5/6) 4324116495185325 a001 10182505537/96450076809*1364^(5/6) 4324116495185325 a001 7778742049/73681302247*1364^(5/6) 4324116495185325 a001 2971215073/28143753123*1364^(5/6) 4324116495185325 a001 567451585/5374978561*1364^(5/6) 4324116495185325 a001 433494437/4106118243*1364^(5/6) 4324116495185325 a001 165580141/1568397607*1364^(5/6) 4324116495185325 a001 31622993/299537289*1364^(5/6) 4324116495185326 a001 24157817/228826127*1364^(5/6) 4324116495185334 a001 9227465/87403803*1364^(5/6) 4324116495185390 a001 1762289/16692641*1364^(5/6) 4324116495185775 a001 1346269/12752043*1364^(5/6) 4324116495188413 a001 514229/4870847*1364^(5/6) 4324116495206492 a001 98209/930249*1364^(5/6) 4324116495330406 a001 75025/710647*1364^(5/6) 4324116496179729 a001 28657/271443*1364^(5/6) 4324116499145332 r002 33th iterates of z^2 + 4324116501711540 a001 2584/15127*1364^(23/30) 4324116502001073 a001 5473/51841*1364^(5/6) 4324116511081499 a007 Real Root Of 596*x^4-974*x^3+133*x^2+193*x-41 4324116521630719 a001 1597/39603*1364^(29/30) 4324116523291837 h001 (5/11*exp(2)+3/5)/(3/10*exp(1)+1/10) 4324116527978427 r005 Im(z^2+c),c=7/114+25/47*I,n=37 4324116534443159 a001 12752043/610*233^(2/15) 4324116541901161 a001 4181/39603*1364^(5/6) 4324116545311117 k006 concat of cont frac of 4324116545639243 r002 34th iterates of z^2 + 4324116551026264 m001 1/ln(GAMMA(5/24))^2*Catalan/cos(Pi/12) 4324116551711462 k008 concat of cont frac of 4324116561063026 r009 Im(z^3+c),c=-57/118+18/37*I,n=27 4324116566302172 a001 1597/2207*1364^(17/30) 4324116574997094 a001 317811/15127*521^(3/26) 4324116584722017 a005 (1/cos(5/124*Pi))^182 4324116586572614 a001 4181/2207*1364^(13/30) 4324116591144331 a001 832040/39603*521^(3/26) 4324116593500182 a001 46347/2206*521^(3/26) 4324116594956177 a001 1346269/64079*521^(3/26) 4324116598875292 m001 (GAMMA(5/6)+Champernowne)/(cos(1/5*Pi)-ln(3)) 4324116601123873 a001 514229/24476*521^(3/26) 4324116604702494 r009 Re(z^3+c),c=-15/28+23/58*I,n=9 4324116624555339 m001 2^(1/3)*BesselK(0,1)/FibonacciFactorial 4324116628476156 a001 2255/13201*1364^(23/30) 4324116631749966 a001 987/2207*9349^(1/2) 4324116634073682 m005 (1/2*Zeta(3)+5/9)/(11/12*5^(1/2)+5/8) 4324116643397891 a001 196418/9349*521^(3/26) 4324116645645605 r009 Im(z^3+c),c=-5/16+11/24*I,n=31 4324116646970865 a001 17711/103682*1364^(23/30) 4324116649669206 a001 15456/90481*1364^(23/30) 4324116650062889 a001 121393/710647*1364^(23/30) 4324116650120327 a001 105937/620166*1364^(23/30) 4324116650128707 a001 832040/4870847*1364^(23/30) 4324116650133886 a001 514229/3010349*1364^(23/30) 4324116650155825 a001 196418/1149851*1364^(23/30) 4324116650306198 a001 75025/439204*1364^(23/30) 4324116651336873 a001 28657/167761*1364^(23/30) 4324116653221116 a001 987/2207*24476^(19/42) 4324116656051427 a001 987/2207*64079^(19/46) 4324116656486399 a001 987/2207*817138163596^(1/6) 4324116656486399 a001 987/2207*87403803^(1/4) 4324116657676934 a001 987/2207*39603^(19/44) 4324116658401223 a001 10946/64079*1364^(23/30) 4324116658787589 a007 Real Root Of 777*x^4+132*x^3-689*x^2-895*x+478 4324116665380714 r005 Im(z^2+c),c=3/50+33/62*I,n=51 4324116665462452 a001 987/2207*15127^(19/40) 4324116673147611 a001 6765/2207*1364^(11/30) 4324116678106795 a001 1926/726103*55^(5/41) 4324116680842480 m005 (1/2*Catalan+1/6)/(2/9*gamma-3/11) 4324116683114335 a007 Real Root Of -39*x^4-260*x^3-654*x^2+246*x+209 4324116685129466 a001 33385282/4181*317811^(2/15) 4324116685130630 a001 12752043/4181*433494437^(2/15) 4324116685130786 a001 4870847/4181*591286729879^(2/15) 4324116686550556 a001 1597/24476*1364^(9/10) 4324116693707045 l006 ln(4601/7090) 4324116700976481 a001 1292/2889*1364^(19/30) 4324116706820998 a001 4181/24476*1364^(23/30) 4324116724845045 a001 987/2207*5778^(19/36) 4324116725026174 a001 2584/9349*1364^(7/10) 4324116727384335 a001 87403803/10946*317811^(2/15) 4324116727385480 a001 16692641/5473*433494437^(2/15) 4324116727385503 a001 12752043/10946*591286729879^(2/15) 4324116733543187 r005 Im(z^2+c),c=-97/82+2/35*I,n=52 4324116733549237 a001 228826127/28657*317811^(2/15) 4324116733550379 a001 87403803/28657*433494437^(2/15) 4324116733550383 a001 33385282/28657*591286729879^(2/15) 4324116733553874 a007 Real Root Of 98*x^4+259*x^3-691*x^2+124*x+135 4324116734448684 a001 599074578/75025*317811^(2/15) 4324116734449826 a001 228826127/75025*433494437^(2/15) 4324116734449827 a001 87403803/75025*591286729879^(2/15) 4324116734579912 a001 1568397607/196418*317811^(2/15) 4324116734581054 a001 299537289/98209*433494437^(2/15) 4324116734581054 a001 228826127/196418*591286729879^(2/15) 4324116734599058 a001 4106118243/514229*317811^(2/15) 4324116734600199 a001 1568397607/514229*433494437^(2/15) 4324116734600200 a001 599074578/514229*591286729879^(2/15) 4324116734601851 a001 10749957122/1346269*317811^(2/15) 4324116734602259 a001 28143753123/3524578*317811^(2/15) 4324116734602318 a001 73681302247/9227465*317811^(2/15) 4324116734602327 a001 192900153618/24157817*317811^(2/15) 4324116734602328 a001 505019158607/63245986*317811^(2/15) 4324116734602328 a001 1322157322203/165580141*317811^(2/15) 4324116734602328 a001 3461452808002/433494437*317811^(2/15) 4324116734602328 a001 9062201101803/1134903170*317811^(2/15) 4324116734602328 a001 23725150497407/2971215073*317811^(2/15) 4324116734602328 a001 14662949395604/1836311903*317811^(2/15) 4324116734602328 a001 5600748293801/701408733*317811^(2/15) 4324116734602328 a001 2139295485799/267914296*317811^(2/15) 4324116734602328 a001 817138163596/102334155*317811^(2/15) 4324116734602329 a001 312119004989/39088169*317811^(2/15) 4324116734602332 a001 119218851371/14930352*317811^(2/15) 4324116734602355 a001 12752044/1597*317811^(2/15) 4324116734602511 a001 17393796001/2178309*317811^(2/15) 4324116734602993 a001 4106118243/1346269*433494437^(2/15) 4324116734602993 a001 1568397607/1346269*591286729879^(2/15) 4324116734603400 a001 4106118243/3524578*591286729879^(2/15) 4324116734603400 a001 5374978561/1762289*433494437^(2/15) 4324116734603460 a001 10749957122/9227465*591286729879^(2/15) 4324116734603460 a001 28143753123/9227465*433494437^(2/15) 4324116734603469 a001 28143753123/24157817*591286729879^(2/15) 4324116734603469 a001 73681302247/24157817*433494437^(2/15) 4324116734603470 a001 73681302247/63245986*591286729879^(2/15) 4324116734603470 a001 96450076809/31622993*433494437^(2/15) 4324116734603470 a001 192900153618/165580141*591286729879^(2/15) 4324116734603470 a001 505019158607/165580141*433494437^(2/15) 4324116734603470 a001 505019158607/433494437*591286729879^(2/15) 4324116734603470 a001 1322157322203/433494437*433494437^(2/15) 4324116734603470 a001 1322157322203/1134903170*591286729879^(2/15) 4324116734603470 a001 3461452808002/2971215073*591286729879^(2/15) 4324116734603470 a001 1730726404001/567451585*433494437^(2/15) 4324116734603470 a001 9062201101803/7778742049*591286729879^(2/15) 4324116734603470 a001 23725150497407/20365011074*591286729879^(2/15) 4324116734603470 a001 14662949395604/12586269025*591286729879^(2/15) 4324116734603470 a001 5600748293801/4807526976*591286729879^(2/15) 4324116734603470 a001 2139295485799/1836311903*591286729879^(2/15) 4324116734603470 a001 9062201101803/2971215073*433494437^(2/15) 4324116734603470 a001 23725150497407/7778742049*433494437^(2/15) 4324116734603470 a001 3665737348901/1201881744*433494437^(2/15) 4324116734603470 a001 5600748293801/1836311903*433494437^(2/15) 4324116734603470 a001 817138163596/701408733*591286729879^(2/15) 4324116734603470 a001 2139295485799/701408733*433494437^(2/15) 4324116734603470 a001 312119004989/267914296*591286729879^(2/15) 4324116734603470 a001 204284540899/66978574*433494437^(2/15) 4324116734603470 a001 119218851371/102334155*591286729879^(2/15) 4324116734603470 a001 28374454999/9303105*433494437^(2/15) 4324116734603471 a001 45537549124/39088169*591286729879^(2/15) 4324116734603471 a001 119218851371/39088169*433494437^(2/15) 4324116734603474 a001 17393796001/14930352*591286729879^(2/15) 4324116734603474 a001 11384387281/3732588*433494437^(2/15) 4324116734603497 a001 6643838879/5702887*591286729879^(2/15) 4324116734603497 a001 17393796001/5702887*433494437^(2/15) 4324116734603578 a001 6643838879/832040*317811^(2/15) 4324116734603652 a001 2537720636/2178309*591286729879^(2/15) 4324116734603652 a001 6643838879/2178309*433494437^(2/15) 4324116734604719 a001 969323029/832040*591286729879^(2/15) 4324116734604719 a001 1860499/610*433494437^(2/15) 4324116734610891 a001 2537720636/317811*317811^(2/15) 4324116734612032 a001 370248451/317811*591286729879^(2/15) 4324116734612032 a001 969323029/317811*433494437^(2/15) 4324116734661015 a001 969323029/121393*317811^(2/15) 4324116734662157 a001 271444/233*591286729879^(2/15) 4324116734662157 a001 370248451/121393*433494437^(2/15) 4324116735004573 a001 370248451/46368*317811^(2/15) 4324116735005714 a001 54018521/46368*591286729879^(2/15) 4324116735005715 a001 35355581/11592*433494437^(2/15) 4324116737359357 a001 141422324/17711*317811^(2/15) 4324116737360488 a001 20633239/17711*591286729879^(2/15) 4324116737360497 a001 54018521/17711*433494437^(2/15) 4324116743471582 q001 563/1302 4324116745413367 r005 Im(z^2+c),c=35/106+15/47*I,n=46 4324116749153144 p003 LerchPhi(1/3,3,157/116) 4324116753499281 a001 54018521/6765*317811^(2/15) 4324116753500354 a001 7881196/6765*591286729879^(2/15) 4324116753500414 a001 1875749/615*433494437^(2/15) 4324116768437843 a007 Real Root Of 771*x^4-690*x^3+677*x^2-212*x-301 4324116780369022 r005 Re(z^2+c),c=-31/50+8/55*I,n=30 4324116787154392 r005 Re(z^2+c),c=-4/13+23/35*I,n=51 4324116793395997 a001 6765/24476*1364^(7/10) 4324116793889245 m005 (17/66+1/6*5^(1/2))/(5/8*3^(1/2)+3/8) 4324116802739618 r005 Re(z^2+c),c=25/114+25/49*I,n=59 4324116803371020 a001 17711/64079*1364^(7/10) 4324116804826356 a001 46368/167761*1364^(7/10) 4324116805038687 a001 121393/439204*1364^(7/10) 4324116805069665 a001 317811/1149851*1364^(7/10) 4324116805074185 a001 832040/3010349*1364^(7/10) 4324116805074845 a001 2178309/7881196*1364^(7/10) 4324116805074941 a001 5702887/20633239*1364^(7/10) 4324116805074955 a001 14930352/54018521*1364^(7/10) 4324116805074957 a001 39088169/141422324*1364^(7/10) 4324116805074957 a001 102334155/370248451*1364^(7/10) 4324116805074957 a001 267914296/969323029*1364^(7/10) 4324116805074957 a001 701408733/2537720636*1364^(7/10) 4324116805074957 a001 1836311903/6643838879*1364^(7/10) 4324116805074957 a001 4807526976/17393796001*1364^(7/10) 4324116805074957 a001 12586269025/45537549124*1364^(7/10) 4324116805074957 a001 32951280099/119218851371*1364^(7/10) 4324116805074957 a001 86267571272/312119004989*1364^(7/10) 4324116805074957 a001 225851433717/817138163596*1364^(7/10) 4324116805074957 a001 1548008755920/5600748293801*1364^(7/10) 4324116805074957 a001 139583862445/505019158607*1364^(7/10) 4324116805074957 a001 53316291173/192900153618*1364^(7/10) 4324116805074957 a001 20365011074/73681302247*1364^(7/10) 4324116805074957 a001 7778742049/28143753123*1364^(7/10) 4324116805074957 a001 2971215073/10749957122*1364^(7/10) 4324116805074957 a001 1134903170/4106118243*1364^(7/10) 4324116805074957 a001 433494437/1568397607*1364^(7/10) 4324116805074957 a001 165580141/599074578*1364^(7/10) 4324116805074957 a001 63245986/228826127*1364^(7/10) 4324116805074958 a001 24157817/87403803*1364^(7/10) 4324116805074963 a001 9227465/33385282*1364^(7/10) 4324116805075000 a001 3524578/12752043*1364^(7/10) 4324116805075252 a001 1346269/4870847*1364^(7/10) 4324116805076978 a001 514229/1860498*1364^(7/10) 4324116805088811 a001 196418/710647*1364^(7/10) 4324116805169914 a001 75025/271443*1364^(7/10) 4324116805725803 a001 28657/103682*1364^(7/10) 4324116805829743 s002 sum(A128856[n]/(n^3*2^n-1),n=1..infinity) 4324116809535923 a001 10946/39603*1364^(7/10) 4324116815380428 a001 1597/15127*1364^(5/6) 4324116823726625 r002 39th iterates of z^2 + 4324116823787291 a003 sin(Pi*5/56)/cos(Pi*29/104) 4324116825666951 m001 arctan(1/2)^Zeta(5)*arctan(1/2)^ZetaQ(2) 4324116835650871 a001 4181/15127*1364^(7/10) 4324116840747330 r005 Re(z^2+c),c=-21/34+13/98*I,n=38 4324116854207379 a001 10946/2207*1364^(3/10) 4324116864123970 a001 20633239/2584*317811^(2/15) 4324116864124644 a001 3010349/2584*591286729879^(2/15) 4324116864125052 a001 1970299/646*433494437^(2/15) 4324116875142235 r005 Re(z^2+c),c=-49/82+10/37*I,n=52 4324116908176060 h001 (3/8*exp(2)+3/10)/(7/8*exp(2)+7/11) 4324116913442676 m001 exp(GAMMA(2/3))/BesselK(0,1)/GAMMA(5/12) 4324116922225873 a001 6765/15127*1364^(19/30) 4324116931697068 a001 75025/2207*521^(1/26) 4324116932380603 p002 log(18^(1/5)+6^(12/5)) 4324116933148345 a001 75025/3571*521^(3/26) 4324116937808685 m005 (1/2*exp(1)+3/4)/(1/12*exp(1)-5/7) 4324116947139041 r002 42th iterates of z^2 + 4324116954505725 a001 17711/39603*1364^(19/30) 4324116956836942 r005 Re(z^2+c),c=-71/118+1/4*I,n=36 4324116959215292 a001 23184/51841*1364^(19/30) 4324116959902408 a001 121393/271443*1364^(19/30) 4324116960002657 a001 317811/710647*1364^(19/30) 4324116960017283 a001 416020/930249*1364^(19/30) 4324116960019417 a001 2178309/4870847*1364^(19/30) 4324116960020736 a001 1346269/3010349*1364^(19/30) 4324116960026323 a001 514229/1149851*1364^(19/30) 4324116960064614 a001 98209/219602*1364^(19/30) 4324116960327070 a001 75025/167761*1364^(19/30) 4324116962106209 m001 1/Cahen^2*Artin^2*exp(Champernowne)^2 4324116962125964 a001 28657/64079*1364^(19/30) 4324116970583785 m001 1/Porter^2*Cahen/ln(Zeta(7))^2 4324116974455771 a001 5473/12238*1364^(19/30) 4324116997944668 r005 Im(z^2+c),c=35/122+8/25*I,n=23 4324116999177182 a001 17711/2207*1364^(7/30) 4324117014645383 a001 1597/5778*1364^(7/10) 4324117034337882 r009 Re(z^3+c),c=-5/32+26/31*I,n=28 4324117034915827 a001 4181/5778*1364^(17/30) 4324117038695078 a001 1597/9349*1364^(23/30) 4324117058965522 a001 4181/9349*1364^(19/30) 4324117064053532 r005 Re(z^2+c),c=-21/34+7/87*I,n=56 4324117087262010 r005 Re(z^2+c),c=-27/46+17/48*I,n=26 4324117090532732 m008 (5/6*Pi^4-2/5)/(5/6*Pi-3/4) 4324117100642189 l006 ln(3466/5341) 4324117103285651 a001 10946/15127*1364^(17/30) 4324117104896172 r005 Re(z^2+c),c=-77/122+7/52*I,n=25 4324117105394379 m001 AlladiGrinstead+Magata+OneNinth 4324117107906607 m001 1/ArtinRank2*ln(Conway)/Zeta(1,2)^2 4324117109801212 m001 (BesselK(0,1)+Conway)/(-Mills+Niven) 4324117113260675 a001 28657/39603*1364^(17/30) 4324117113537246 m001 ln(GolombDickman)^2*Artin^2/GAMMA(1/3)^2 4324117114716011 a001 75025/103682*1364^(17/30) 4324117114928342 a001 196418/271443*1364^(17/30) 4324117114959320 a001 514229/710647*1364^(17/30) 4324117114963840 a001 1346269/1860498*1364^(17/30) 4324117114964907 a001 2178309/3010349*1364^(17/30) 4324117114966633 a001 832040/1149851*1364^(17/30) 4324117114978466 a001 317811/439204*1364^(17/30) 4324117115059569 a001 121393/167761*1364^(17/30) 4324117115615458 a001 46368/64079*1364^(17/30) 4324117119425578 a001 17711/24476*1364^(17/30) 4324117121490832 a001 2255/1926*1364^(1/2) 4324117124489323 m008 (1/6*Pi+1/6)/(1/6*Pi^6-3/5) 4324117131118141 k007 concat of cont frac of 4324117131730328 r005 Im(z^2+c),c=3/28+29/50*I,n=53 4324117133058333 m001 (GAMMA(19/24)-Champernowne)/(Niven+Sarnak) 4324117138111412 k006 concat of cont frac of 4324117145540528 a001 6765/9349*1364^(17/30) 4324117152311111 k007 concat of cont frac of 4324117157932134 a001 28657/2207*1364^(1/6) 4324117159006658 r002 35th iterates of z^2 + 4324117159288063 r004 Re(z^2+c),c=-3/5+3/11*I,z(0)=-1,n=51 4324117168533713 a001 123/55*55^(17/23) 4324117169026330 a003 cos(Pi*1/32)-cos(Pi*35/113) 4324117177679634 r005 Re(z^2+c),c=-21/34+1/40*I,n=33 4324117183590650 a001 987/2207*2207^(19/32) 4324117185333440 a001 329/1926*3571^(23/34) 4324117191452145 m001 ln(LaplaceLimit)*FeigenbaumAlpha/cosh(1)^2 4324117197646617 m001 (Trott2nd+ZetaP(3))/(LambertW(1)-MertensB2) 4324117206880747 r009 Im(z^3+c),c=-33/64+8/17*I,n=52 4324117210465117 r009 Re(z^3+c),c=-7/102+19/36*I,n=15 4324117212216144 k006 concat of cont frac of 4324117216175213 a001 987/64079*3571^(33/34) 4324117232311689 a001 329/13201*3571^(31/34) 4324117247623358 r002 2th iterates of z^2 + 4324117248255463 a001 17711/15127*1364^(1/2) 4324117253192036 k007 concat of cont frac of 4324117256064954 a001 141/2161*3571^(27/34) 4324117262233309 a001 987/24476*3571^(29/34) 4324117262508831 r005 Re(z^2+c),c=-16/23+5/42*I,n=17 4324117265120002 a001 2584/2207*3571^(15/34) 4324117266750174 a001 15456/13201*1364^(1/2) 4324117269448516 a001 121393/103682*1364^(1/2) 4324117269842199 a001 105937/90481*1364^(1/2) 4324117269899636 a001 832040/710647*1364^(1/2) 4324117269908016 a001 726103/620166*1364^(1/2) 4324117269909239 a001 5702887/4870847*1364^(1/2) 4324117269909417 a001 4976784/4250681*1364^(1/2) 4324117269909443 a001 39088169/33385282*1364^(1/2) 4324117269909447 a001 34111385/29134601*1364^(1/2) 4324117269909448 a001 267914296/228826127*1364^(1/2) 4324117269909448 a001 233802911/199691526*1364^(1/2) 4324117269909448 a001 1836311903/1568397607*1364^(1/2) 4324117269909448 a001 1602508992/1368706081*1364^(1/2) 4324117269909448 a001 12586269025/10749957122*1364^(1/2) 4324117269909448 a001 10983760033/9381251041*1364^(1/2) 4324117269909448 a001 86267571272/73681302247*1364^(1/2) 4324117269909448 a001 75283811239/64300051206*1364^(1/2) 4324117269909448 a001 2504730781961/2139295485799*1364^(1/2) 4324117269909448 a001 365435296162/312119004989*1364^(1/2) 4324117269909448 a001 139583862445/119218851371*1364^(1/2) 4324117269909448 a001 53316291173/45537549124*1364^(1/2) 4324117269909448 a001 20365011074/17393796001*1364^(1/2) 4324117269909448 a001 7778742049/6643838879*1364^(1/2) 4324117269909448 a001 2971215073/2537720636*1364^(1/2) 4324117269909448 a001 1134903170/969323029*1364^(1/2) 4324117269909448 a001 433494437/370248451*1364^(1/2) 4324117269909448 a001 165580141/141422324*1364^(1/2) 4324117269909449 a001 63245986/54018521*1364^(1/2) 4324117269909459 a001 24157817/20633239*1364^(1/2) 4324117269909527 a001 9227465/7881196*1364^(1/2) 4324117269909994 a001 3524578/3010349*1364^(1/2) 4324117269913195 a001 1346269/1149851*1364^(1/2) 4324117269935135 a001 514229/439204*1364^(1/2) 4324117270085508 a001 196418/167761*1364^(1/2) 4324117270248361 m001 GAMMA(2/3)/exp(MadelungNaCl)^2*GAMMA(23/24)^2 4324117271116183 a001 75025/64079*1364^(1/2) 4324117273447447 a007 Real Root Of 943*x^4+532*x^3+858*x^2-272*x-268 4324117278180534 a001 28657/24476*1364^(1/2) 4324117279792282 a001 24157817/47*18^(14/19) 4324117280670728 r009 Re(z^3+c),c=-29/60+27/59*I,n=7 4324117286568599 m001 ArtinRank2/ln(Artin)/GAMMA(13/24) 4324117287601165 a007 Real Root Of 982*x^4+533*x^3+945*x^2-724*x-481 4324117289348541 r005 Im(z^2+c),c=27/86+7/23*I,n=27 4324117293927951 a007 Real Root Of 591*x^4-508*x^3+24*x^2-738*x-32 4324117297080101 a001 599074578/233*2^(3/4) 4324117299392361 a007 Real Root Of 121*x^4-483*x^3+741*x^2+180*x-104 4324117302550619 a001 5473/2889*1364^(13/30) 4324117302763397 r009 Re(z^3+c),c=-13/32+6/61*I,n=15 4324117311421635 a001 46368/2207*1364^(1/10) 4324117315967158 m001 Kolakoski^PrimesInBinary/Riemann2ndZero 4324117322229348 r002 13th iterates of z^2 + 4324117324535075 a001 2584/3571*1364^(17/30) 4324117326600317 a001 10946/9349*1364^(1/2) 4324117342688391 r009 Im(z^3+c),c=-29/56+14/45*I,n=44 4324117344381380 a001 987/9349*3571^(25/34) 4324117346509417 m001 (-exp(1/Pi)+Bloch)/(BesselI(0,1)-Shi(1)) 4324117351592005 s002 sum(A193697[n]/(n!^2),n=1..infinity) 4324117352174309 r004 Im(z^2+c),c=-5/16+1/16*I,z(0)=-1,n=9 4324117355297447 a007 Real Root Of 887*x^4-567*x^3-315*x^2-458*x-216 4324117362056183 m005 (1/2*gamma+3/4)/(2/3*gamma-5/8) 4324117367312552 r005 Re(z^2+c),c=-53/94+8/39*I,n=6 4324117379066892 r002 54th iterates of z^2 + 4324117384775187 a001 329/1926*9349^(23/38) 4324117391811259 m005 (1/2*Zeta(3)-11/12)/(2/11*gamma+5/8) 4324117395190707 a001 2584/2207*9349^(15/38) 4324117406884497 r002 60th iterates of z^2 + 4324117407010424 a001 28657/15127*1364^(13/30) 4324117410766584 a001 329/1926*24476^(23/42) 4324117412141619 a001 2584/2207*24476^(5/14) 4324117412341112 k006 concat of cont frac of 4324117414192750 a001 329/1926*64079^(1/2) 4324117414673381 a001 2584/2207*167761^(3/10) 4324117414713247 a001 2584/2207*439204^(5/18) 4324117414719296 a001 329/1926*4106118243^(1/4) 4324117414719458 a001 2584/2207*7881196^(5/22) 4324117414719472 a001 2584/2207*20633239^(3/14) 4324117414719474 a001 2584/2207*2537720636^(1/6) 4324117414719474 a001 2584/2207*312119004989^(3/22) 4324117414719474 a001 2584/2207*28143753123^(3/20) 4324117414719474 a001 2584/2207*228826127^(3/16) 4324117414719475 a001 2584/2207*33385282^(5/24) 4324117414719786 a001 2584/2207*1860498^(1/4) 4324117414845176 a001 2584/2207*103682^(5/16) 4324117415637906 a001 6765/2207*3571^(11/34) 4324117415659370 a001 2584/2207*39603^(15/44) 4324117416160470 a001 329/1926*39603^(23/44) 4324117421805833 a001 2584/2207*15127^(3/8) 4324117422250904 a001 75025/39603*1364^(13/30) 4324117423621062 l006 ln(5797/8933) 4324117424474460 a001 98209/51841*1364^(13/30) 4324117424798873 a001 514229/271443*1364^(13/30) 4324117424846204 a001 1346269/710647*1364^(13/30) 4324117424857377 a001 2178309/1149851*1364^(13/30) 4324117424875456 a001 208010/109801*1364^(13/30) 4324117424999371 a001 317811/167761*1364^(13/30) 4324117425585046 a001 329/1926*15127^(23/40) 4324117425848693 a001 121393/64079*1364^(13/30) 4324117428906533 b008 1/2+7*Tan[1/2] 4324117431104111 k006 concat of cont frac of 4324117431670039 a001 11592/6119*1364^(13/30) 4324117436340762 a001 2207/832040*55^(5/41) 4324117447520438 a001 17711/5778*1364^(11/30) 4324117452224793 r002 49th iterates of z^2 + 4324117461699455 a001 10946/2207*3571^(9/34) 4324117464061141 a001 4181/2207*3571^(13/34) 4324117466922366 a001 75025/2207*1364^(1/30) 4324117468686835 a001 2584/2207*5778^(5/12) 4324117471570136 a001 17711/9349*1364^(13/30) 4324117471671027 a001 17711/2207*3571^(7/34) 4324117473863887 m005 (1/2*gamma-5/7)/(4*5^(1/2)+9/10) 4324117476296381 r002 43th iterates of z^2 + 4324117490192226 a001 141/2161*9349^(27/38) 4324117495427744 a001 28657/2207*3571^(5/34) 4324117496223649 a001 987/167761*9349^(37/38) 4324117497062279 a005 (1/cos(7/193*Pi))^579 4324117497469250 a001 329/1926*5778^(23/36) 4324117498271596 a001 21/2206*9349^(35/38) 4324117501124483 a001 329/13201*9349^(31/38) 4324117502330768 a001 987/64079*9349^(33/38) 4324117511023093 a001 6765/2207*9349^(11/38) 4324117512145284 r005 Re(z^2+c),c=-37/30+42/73*I,n=2 4324117513703343 a001 987/24476*9349^(29/38) 4324117513919005 a001 46368/2207*3571^(3/34) 4324117520703867 a001 141/2161*24476^(9/14) 4324117523453761 a001 6765/2207*24476^(11/42) 4324117524725888 a001 141/2161*64079^(27/46) 4324117525332798 a001 141/2161*439204^(1/2) 4324117525343978 a001 141/2161*7881196^(9/22) 4324117525344006 a001 141/2161*2537720636^(3/10) 4324117525344006 a001 141/2161*14662949395604^(3/14) 4324117525344006 a001 141/2161*192900153618^(1/4) 4324117525344008 a001 141/2161*33385282^(3/8) 4324117525344177 a001 6765/2207*7881196^(1/6) 4324117525344189 a001 6765/2207*312119004989^(1/10) 4324117525344189 a001 6765/2207*1568397607^(1/8) 4324117525344569 a001 141/2161*1860498^(9/20) 4324117525570269 a001 141/2161*103682^(9/16) 4324117526033446 a001 6765/2207*39603^(1/4) 4324117527035820 a001 141/2161*39603^(27/44) 4324117530540852 a001 6765/2207*15127^(11/40) 4324117532370692 a001 17711/2207*9349^(7/38) 4324117534421491 a001 75025/2207*3571^(1/34) 4324117536040528 r002 2th iterates of z^2 + 4324117536156367 a001 329/13201*24476^(31/42) 4324117537217242 a001 987/439204*24476^(41/42) 4324117537479853 a001 329/90481*24476^(13/14) 4324117537823722 a001 21/2206*24476^(5/6) 4324117538035897 a001 987/167761*24476^(37/42) 4324117538099453 a001 141/2161*15127^(27/40) 4324117538384585 m001 (Gompertz+ZetaP(2))/(Si(Pi)-ln(5)) 4324117538784648 a001 28657/2207*9349^(5/38) 4324117539622773 a001 987/64079*24476^(11/14) 4324117539741881 a001 10946/2207*9349^(9/38) 4324117539933147 a001 46368/2207*9349^(3/38) 4324117540281118 a001 17711/2207*24476^(1/6) 4324117540774243 a001 329/13201*64079^(31/46) 4324117541483696 a001 329/13201*3010349^(1/2) 4324117541483935 a001 329/13201*9062201101803^(1/4) 4324117541484116 a001 17711/2207*20633239^(1/10) 4324117541484117 a001 17711/2207*17393796001^(1/14) 4324117541484117 a001 17711/2207*14662949395604^(1/18) 4324117541484117 a001 17711/2207*505019158607^(1/16) 4324117541484117 a001 17711/2207*599074578^(1/12) 4324117541485187 a001 17711/2207*710647^(1/8) 4324117541922735 a001 17711/2207*39603^(7/44) 4324117543037453 a001 21/2206*64079^(35/46) 4324117543092872 a001 75025/2207*9349^(1/38) 4324117543214036 a001 987/1149851*64079^(45/46) 4324117543247990 a001 141/101521*64079^(43/46) 4324117543289439 a001 329/90481*64079^(39/46) 4324117543323330 a001 46368/2207*24476^(1/14) 4324117543324755 a001 987/439204*64079^(41/46) 4324117543426387 a001 329/13201*39603^(31/44) 4324117543547556 a001 987/167761*64079^(37/46) 4324117543731168 a001 21/2206*167761^(7/10) 4324117543837655 a001 46368/2207*439204^(1/18) 4324117543838714 a001 21/2206*20633239^(1/2) 4324117543838719 a001 21/2206*2537720636^(7/18) 4324117543838719 a001 21/2206*17393796001^(5/14) 4324117543838719 a001 21/2206*312119004989^(7/22) 4324117543838719 a001 21/2206*14662949395604^(5/18) 4324117543838719 a001 21/2206*28143753123^(7/20) 4324117543838719 a001 21/2206*599074578^(5/12) 4324117543838719 a001 21/2206*228826127^(7/16) 4324117543838898 a001 46368/2207*7881196^(1/22) 4324117543838901 a001 46368/2207*33385282^(1/24) 4324117543838963 a001 46368/2207*1860498^(1/20) 4324117543839447 a001 21/2206*1860498^(7/12) 4324117543844070 a001 21/2206*710647^(5/8) 4324117543864041 a001 46368/2207*103682^(1/16) 4324117544026880 a001 46368/2207*39603^(3/44) 4324117544105955 a001 987/1149851*167761^(9/10) 4324117544166087 a001 329/90481*439204^(13/18) 4324117544182236 a001 329/90481*7881196^(13/22) 4324117544182277 a001 329/90481*141422324^(1/2) 4324117544182277 a001 329/90481*73681302247^(3/8) 4324117544182279 a001 329/90481*33385282^(13/24) 4324117544183089 a001 329/90481*1860498^(13/20) 4324117544219610 a001 987/4870847*439204^(17/18) 4324117544222933 a001 75025/2207*24476^(1/42) 4324117544225554 a001 987/1149851*439204^(5/6) 4324117544226292 a001 329/90481*271443^(3/4) 4324117544232401 a001 141/101521*969323029^(1/2) 4324117544239714 a001 329/620166*6643838879^(1/2) 4324117544240728 a001 987/4870847*7881196^(17/22) 4324117544240781 a001 987/4870847*45537549124^(1/2) 4324117544240784 a001 987/4870847*33385282^(17/24) 4324117544240801 a001 987/4870847*12752043^(3/4) 4324117544240879 a001 329/4250681*7881196^(5/6) 4324117544240897 a001 329/29134601*7881196^(21/22) 4324117544240914 a001 987/20633239*7881196^(19/22) 4324117544240929 a001 329/4250681*20633239^(11/14) 4324117544240937 a001 329/4250681*2537720636^(11/18) 4324117544240937 a001 329/4250681*312119004989^(1/2) 4324117544240937 a001 329/4250681*3461452808002^(11/24) 4324117544240937 a001 329/4250681*28143753123^(11/20) 4324117544240937 a001 329/4250681*1568397607^(5/8) 4324117544240937 a001 329/4250681*228826127^(11/16) 4324117544240954 a001 329/29134601*20633239^(9/10) 4324117544240954 a001 987/141422324*20633239^(13/14) 4324117544240960 a001 141/4769326*2139295485799^(1/2) 4324117544240963 a001 329/29134601*2537720636^(7/10) 4324117544240963 a001 329/29134601*17393796001^(9/14) 4324117544240963 a001 329/29134601*14662949395604^(1/2) 4324117544240963 a001 329/29134601*505019158607^(9/16) 4324117544240963 a001 329/29134601*192900153618^(7/12) 4324117544240963 a001 329/29134601*599074578^(3/4) 4324117544240964 a001 141/224056801*2537720636^(5/6) 4324117544240964 a001 141/224056801*312119004989^(15/22) 4324117544240964 a001 141/224056801*3461452808002^(5/8) 4324117544240964 a001 141/224056801*28143753123^(3/4) 4324117544240964 a001 987/17393796001*2537720636^(17/18) 4324117544240964 a001 987/6643838879*2537720636^(9/10) 4324117544240964 a001 141/10525900321*17393796001^(13/14) 4324117544240964 a001 329/9381251041*1322157322203^(3/4) 4324117544240964 a001 141/10525900321*14662949395604^(13/18) 4324117544240964 a001 141/10525900321*505019158607^(13/16) 4324117544240964 a001 329/64300051206*312119004989^(19/22) 4324117544240964 a001 329/64300051206*817138163596^(5/6) 4324117544240964 a001 329/64300051206*3461452808002^(19/24) 4324117544240964 a001 141/10525900321*73681302247^(7/8) 4324117544240964 a001 21/10745088481*312119004989^(9/10) 4324117544240964 a001 987/2139295485799*312119004989^(21/22) 4324117544240964 a001 21/10745088481*14662949395604^(11/14) 4324117544240964 a001 987/2139295485799*14662949395604^(5/6) 4324117544240964 a001 987/2139295485799*505019158607^(15/16) 4324117544240964 a001 21/10745088481*192900153618^(11/12) 4324117544240964 a001 987/119218851371*9062201101803^(3/4) 4324117544240964 a001 329/64300051206*28143753123^(19/20) 4324117544240964 a001 987/17393796001*45537549124^(5/6) 4324117544240964 a001 987/17393796001*312119004989^(17/22) 4324117544240964 a001 987/17393796001*3461452808002^(17/24) 4324117544240964 a001 987/17393796001*28143753123^(17/20) 4324117544240964 a001 987/6643838879*14662949395604^(9/14) 4324117544240964 a001 987/6643838879*192900153618^(3/4) 4324117544240964 a001 987/2537720636*17393796001^(11/14) 4324117544240964 a001 987/2537720636*14662949395604^(11/18) 4324117544240964 a001 987/2537720636*505019158607^(11/16) 4324117544240964 a001 987/2537720636*1568397607^(7/8) 4324117544240964 a001 987/2537720636*599074578^(11/12) 4324117544240964 a001 987/370248451*4106118243^(3/4) 4324117544240964 a001 987/141422324*141422324^(5/6) 4324117544240964 a001 141/224056801*228826127^(15/16) 4324117544240964 a001 987/141422324*2537720636^(13/18) 4324117544240964 a001 987/141422324*312119004989^(13/22) 4324117544240964 a001 987/141422324*3461452808002^(13/24) 4324117544240964 a001 987/141422324*73681302247^(5/8) 4324117544240964 a001 987/141422324*28143753123^(13/20) 4324117544240964 a001 987/141422324*228826127^(13/16) 4324117544240965 a001 987/54018521*5600748293801^(1/2) 4324117544240967 a001 329/29134601*33385282^(7/8) 4324117544240967 a001 987/370248451*33385282^(23/24) 4324117544240974 a001 987/20633239*817138163596^(1/2) 4324117544240974 a001 987/20633239*87403803^(3/4) 4324117544240977 a001 987/20633239*33385282^(19/24) 4324117544241033 a001 987/7881196*119218851371^(1/2) 4324117544241434 a001 987/3010349*20633239^(7/10) 4324117544241441 a001 987/3010349*17393796001^(1/2) 4324117544241441 a001 987/3010349*14662949395604^(7/18) 4324117544241441 a001 987/3010349*505019158607^(7/16) 4324117544241441 a001 987/3010349*599074578^(7/12) 4324117544241843 a001 987/4870847*1860498^(17/20) 4324117544242082 a001 329/4250681*1860498^(11/12) 4324117544242161 a001 987/20633239*1860498^(19/20) 4324117544244187 a001 987/1149851*7881196^(15/22) 4324117544244228 a001 987/1149851*20633239^(9/14) 4324117544244234 a001 987/1149851*2537720636^(1/2) 4324117544244234 a001 987/1149851*312119004989^(9/22) 4324117544244234 a001 987/1149851*14662949395604^(5/14) 4324117544244234 a001 987/1149851*192900153618^(5/12) 4324117544244234 a001 987/1149851*28143753123^(9/20) 4324117544244234 a001 987/1149851*228826127^(9/16) 4324117544244237 a001 987/1149851*33385282^(5/8) 4324117544245171 a001 987/1149851*1860498^(3/4) 4324117544248933 a001 987/3010349*710647^(7/8) 4324117544263380 a001 987/439204*370248451^(1/2) 4324117544394607 a001 987/167761*54018521^(1/2) 4324117544434952 a001 28657/2207*24476^(5/42) 4324117544457450 a001 75025/2207*39603^(1/44) 4324117544509101 a001 329/90481*103682^(13/16) 4324117544538576 a001 987/64079*64079^(33/46) 4324117544621339 a001 987/1149851*103682^(15/16) 4324117544791085 a001 17711/2207*15127^(7/40) 4324117544867214 a001 75025/2207*15127^(1/40) 4324117545256173 a001 46368/2207*15127^(3/40) 4324117545278873 a001 28657/2207*167761^(1/10) 4324117545280356 a001 987/64079*439204^(11/18) 4324117545294020 a001 987/64079*7881196^(1/2) 4324117545294055 a001 987/64079*312119004989^(3/10) 4324117545294055 a001 987/64079*1568397607^(3/8) 4324117545294057 a001 987/64079*33385282^(11/24) 4324117545294237 a001 28657/2207*20633239^(1/14) 4324117545294237 a001 28657/2207*2537720636^(1/18) 4324117545294237 a001 28657/2207*312119004989^(1/22) 4324117545294237 a001 28657/2207*28143753123^(1/20) 4324117545294237 a001 28657/2207*228826127^(1/16) 4324117545294341 a001 28657/2207*1860498^(1/12) 4324117545294742 a001 987/64079*1860498^(11/20) 4324117545570599 a001 987/64079*103682^(11/16) 4324117545607536 a001 28657/2207*39603^(5/44) 4324117546031810 a001 21/2206*39603^(35/44) 4324117546475105 a001 987/24476*24476^(29/42) 4324117546626007 a001 329/90481*39603^(39/44) 4324117546713018 a001 987/167761*39603^(37/44) 4324117546832430 a001 987/439204*39603^(41/44) 4324117546926771 a001 141/101521*39603^(43/44) 4324117547361827 a001 987/64079*39603^(3/4) 4324117547656357 a001 28657/2207*15127^(1/8) 4324117547992614 a001 75025/2207*5778^(1/36) 4324117549912428 a001 10946/2207*24476^(3/14) 4324117550795054 a001 987/24476*64079^(29/46) 4324117551455405 a001 10946/2207*439204^(1/6) 4324117551457324 a001 987/24476*1149851^(1/2) 4324117551458959 a001 987/24476*1322157322203^(1/4) 4324117551459132 a001 10946/2207*7881196^(3/22) 4324117551459141 a001 10946/2207*2537720636^(1/10) 4324117551459141 a001 10946/2207*14662949395604^(1/14) 4324117551459141 a001 10946/2207*192900153618^(1/12) 4324117551459142 a001 10946/2207*33385282^(1/8) 4324117551459329 a001 10946/2207*1860498^(3/20) 4324117551534562 a001 10946/2207*103682^(3/16) 4324117552023079 a001 10946/2207*39603^(9/44) 4324117553276092 a001 987/24476*39603^(29/44) 4324117554632373 a001 46368/2207*5778^(1/12) 4324117555710957 a001 10946/2207*15127^(9/40) 4324117556129077 a001 329/13201*15127^(31/40) 4324117557653376 a001 17711/843*322^(1/8) 4324117560219737 v003 sum((2/3*n^3+46/3*n+8)/(n!+1),n=1..infinity) 4324117560373556 a001 21/2206*15127^(7/8) 4324117560499933 a001 6624/2161*1364^(11/30) 4324117560884045 a001 987/64079*15127^(33/40) 4324117561165895 a001 987/9349*9349^(25/38) 4324117561874293 a001 987/167761*15127^(37/40) 4324117562606810 a001 329/90481*15127^(39/40) 4324117563283358 a001 28657/2207*5778^(5/36) 4324117564920255 a001 6765/2207*5778^(11/36) 4324117565159253 a001 987/24476*15127^(29/40) 4324117566668886 a001 17711/2207*5778^(7/36) 4324117566705094 r005 Re(z^2+c),c=-8/13+4/35*I,n=51 4324117572137123 a001 75025/2207*2207^(1/32) 4324117574795157 m001 (ArtinRank2+Kolakoski)/(2^(1/3)-GAMMA(3/4)) 4324117575106584 a007 Real Root Of -188*x^4-579*x^3+853*x^2-536*x+647 4324117576024871 r002 48th iterates of z^2 + 4324117576789091 a001 4181/2207*9349^(13/38) 4324117576983420 a001 121393/39603*1364^(11/30) 4324117579388328 a001 317811/103682*1364^(11/30) 4324117579739200 a001 832040/271443*1364^(11/30) 4324117579790391 a001 311187/101521*1364^(11/30) 4324117579822029 a001 1346269/439204*1364^(11/30) 4324117579956050 a001 514229/167761*1364^(11/30) 4324117580874643 a001 196418/64079*1364^(11/30) 4324117583839559 a001 10946/2207*5778^(1/4) 4324117586756744 r002 23th iterates of z^2 + 4324117587170775 a001 75025/24476*1364^(11/30) 4324117589417415 a001 987/9349*24476^(25/42) 4324117591479881 a001 4181/2207*24476^(13/42) 4324117593141508 a001 987/9349*64079^(25/46) 4324117593637019 a001 987/9349*167761^(1/2) 4324117593713837 a001 987/9349*20633239^(5/14) 4324117593713841 a001 987/9349*2537720636^(5/18) 4324117593713841 a001 987/9349*312119004989^(5/22) 4324117593713841 a001 987/9349*3461452808002^(5/24) 4324117593713841 a001 987/9349*28143753123^(1/4) 4324117593713841 a001 987/9349*228826127^(5/16) 4324117593714022 a001 4181/2207*141422324^(1/6) 4324117593714022 a001 4181/2207*73681302247^(1/8) 4324117593714361 a001 987/9349*1860498^(5/12) 4324117593728694 a001 4181/2207*271443^(1/4) 4324117594528599 a001 4181/2207*39603^(13/44) 4324117595280334 a001 987/9349*39603^(25/44) 4324117599855534 a001 4181/2207*15127^(13/40) 4324117605524439 a001 987/9349*15127^(5/8) 4324117606275406 a001 28657/5778*1364^(3/10) 4324117614490372 a007 Real Root Of -157*x^4-792*x^3-624*x^2-645*x-267 4324117622354962 a001 1149851/987*591286729879^(2/15) 4324117622357021 a001 7881196/987*317811^(2/15) 4324117622357755 a001 3010349/987*433494437^(2/15) 4324117622485260 a001 141/2161*5778^(3/4) 4324117627065901 a001 46368/2207*2207^(3/32) 4324117630325105 a001 28657/9349*1364^(11/30) 4324117630331892 a007 Real Root Of -603*x^4+568*x^3-637*x^2+194*x+270 4324117638204022 a001 1597/3571*1364^(19/30) 4324117638867479 r005 Im(z^2+c),c=21/58+8/49*I,n=6 4324117639673456 r002 43th iterates of z^2 + 4324117640485737 a001 4181/2207*5778^(13/36) 4324117641264456 m001 FeigenbaumKappa*(exp(1)+Bloch) 4324117648082078 r005 Im(z^2+c),c=-9/8+1/185*I,n=16 4324117653016485 a001 329/13201*5778^(31/36) 4324117655795861 a001 987/24476*5778^(29/36) 4324117656463811 a007 Real Root Of -857*x^4+184*x^3-185*x^2-112*x+31 4324117658474469 a001 4181/3571*1364^(1/2) 4324117660016012 m005 (1/2*2^(1/2)-5)/(10/11*Zeta(3)-1/10) 4324117664022254 a001 987/64079*5778^(11/12) 4324117669762566 a001 21/2206*5778^(35/36) 4324117670482773 r005 Im(z^2+c),c=1/50+29/54*I,n=4 4324117670552244 a007 Real Root Of 624*x^4-677*x^3+645*x^2-964*x-614 4324117673893848 a001 987/3571*3571^(21/34) 4324117683659447 a001 987/9349*5778^(25/36) 4324117684005904 a001 28657/2207*2207^(5/32) 4324117684314822 m005 (1/2*5^(1/2)+3)/(5/9*2^(1/2)+1/6) 4324117688483689 r002 19th iterates of z^2 + 4324117689798785 a001 98209/2889*521^(1/26) 4324117689922672 a001 17711/1364*521^(5/26) 4324117700290314 r009 Re(z^3+c),c=-27/64+36/59*I,n=27 4324117701932748 m001 (Pi^(1/2)+Trott)/(3^(1/3)-2*Pi/GAMMA(5/6)) 4324117704170758 a007 Real Root Of -219*x^4-989*x^3-378*x^2-770*x+341 4324117704196071 m001 1/Rabbit^2*ln(Backhouse)^2*cosh(1) 4324117713787199 a001 1597/2207*3571^(1/2) 4324117716000674 a001 75025/15127*1364^(3/10) 4324117720275337 r002 30th iterates of z^2 + 4324117723934636 m001 (-Kac+Thue)/(1+Pi*csc(5/24*Pi)/GAMMA(19/24)) 4324117732009375 a001 196418/39603*1364^(3/10) 4324117734345014 a001 514229/103682*1364^(3/10) 4324117734685779 a001 1346269/271443*1364^(3/10) 4324117734735495 a001 3524578/710647*1364^(3/10) 4324117734742749 a001 9227465/1860498*1364^(3/10) 4324117734743807 a001 24157817/4870847*1364^(3/10) 4324117734743962 a001 63245986/12752043*1364^(3/10) 4324117734743984 a001 165580141/33385282*1364^(3/10) 4324117734743988 a001 433494437/87403803*1364^(3/10) 4324117734743988 a001 1134903170/228826127*1364^(3/10) 4324117734743988 a001 2971215073/599074578*1364^(3/10) 4324117734743988 a001 7778742049/1568397607*1364^(3/10) 4324117734743988 a001 20365011074/4106118243*1364^(3/10) 4324117734743988 a001 53316291173/10749957122*1364^(3/10) 4324117734743988 a001 139583862445/28143753123*1364^(3/10) 4324117734743988 a001 365435296162/73681302247*1364^(3/10) 4324117734743988 a001 956722026041/192900153618*1364^(3/10) 4324117734743988 a001 2504730781961/505019158607*1364^(3/10) 4324117734743988 a001 10610209857723/2139295485799*1364^(3/10) 4324117734743988 a001 4052739537881/817138163596*1364^(3/10) 4324117734743988 a001 140728068720/28374454999*1364^(3/10) 4324117734743988 a001 591286729879/119218851371*1364^(3/10) 4324117734743988 a001 225851433717/45537549124*1364^(3/10) 4324117734743988 a001 86267571272/17393796001*1364^(3/10) 4324117734743988 a001 32951280099/6643838879*1364^(3/10) 4324117734743988 a001 1144206275/230701876*1364^(3/10) 4324117734743988 a001 4807526976/969323029*1364^(3/10) 4324117734743988 a001 1836311903/370248451*1364^(3/10) 4324117734743988 a001 701408733/141422324*1364^(3/10) 4324117734743990 a001 267914296/54018521*1364^(3/10) 4324117734743998 a001 9303105/1875749*1364^(3/10) 4324117734744057 a001 39088169/7881196*1364^(3/10) 4324117734744461 a001 14930352/3010349*1364^(3/10) 4324117734747232 a001 5702887/1149851*1364^(3/10) 4324117734766222 a001 2178309/439204*1364^(3/10) 4324117734896383 a001 75640/15251*1364^(3/10) 4324117735680452 a001 17711/2207*2207^(7/32) 4324117735788517 a001 317811/64079*1364^(3/10) 4324117741825758 a001 1/29*2^(16/49) 4324117741903297 a001 121393/24476*1364^(3/10) 4324117742552280 s002 sum(A231569[n]/(10^n+1),n=1..infinity) 4324117745049487 a001 6765/3571*1364^(13/30) 4324117759764923 a001 2576/321*1364^(7/30) 4324117761707555 a001 75025/2207*843^(1/28) 4324117762963073 m005 (1/2*gamma+2/11)/(1/3*exp(1)+2/11) 4324117774785791 s001 sum(exp(-Pi)^n*A199806[n],n=1..infinity) 4324117774785791 s002 sum(A199806[n]/(exp(pi*n)),n=1..infinity) 4324117775977134 a007 Real Root Of 526*x^4+782*x^3+751*x^2-852*x-464 4324117779713281 r009 Im(z^3+c),c=-7/18+7/16*I,n=12 4324117783814622 a001 46368/9349*1364^(3/10) 4324117798165135 g007 Psi(2,5/12)-14*Zeta(3)-Psi(2,7/12)-Psi(2,3/8) 4324117800132000 a008 Real Root of x^4-11*x^2-43*x+42 4324117800404357 a001 514229/15127*521^(1/26) 4324117801140146 a001 10946/2207*2207^(9/32) 4324117810433131 r005 Re(z^2+c),c=-19/30+7/52*I,n=11 4324117816541493 a001 1346269/39603*521^(1/26) 4324117817549827 a007 Real Root Of 46*x^4+145*x^3+612*x^2-980*x+296 4324117820350954 a001 2178309/64079*521^(1/26) 4324117824858343 m005 (1/2*Catalan-9/10)/(23/40+1/5*5^(1/2)) 4324117826514791 a001 208010/6119*521^(1/26) 4324117828280821 a007 Real Root Of 144*x^4+456*x^3-668*x^2+184*x-190 4324117830509861 a001 6765/2207*2207^(11/32) 4324117830854476 a001 2584/2207*2207^(15/32) 4324117835841874 m001 1/Kolakoski*ln(GlaisherKinkelin)*sinh(1)^2 4324117843151935 m001 1/FransenRobinson*ln(ErdosBorwein)^2/Si(Pi) 4324117845354431 r005 Re(z^2+c),c=-49/82+13/48*I,n=64 4324117849195103 r005 Im(z^2+c),c=2/9+3/8*I,n=15 4324117855992854 a001 987/3571*9349^(21/38) 4324117861200681 a001 1597/2207*9349^(17/38) 4324117861509868 a001 377/521*521^(17/26) 4324117868762362 a001 317811/9349*521^(1/26) 4324117870729365 r005 Re(z^2+c),c=-37/60+2/27*I,n=40 4324117870733201 a001 121393/15127*1364^(7/30) 4324117872232544 r009 Re(z^3+c),c=-3/52+25/41*I,n=9 4324117879724132 a001 987/3571*24476^(1/2) 4324117880411716 a001 1597/2207*24476^(17/42) 4324117882852371 a001 987/3571*64079^(21/46) 4324117882944100 a001 1597/2207*64079^(17/46) 4324117883324412 a001 987/3571*439204^(7/18) 4324117883333108 a001 987/3571*7881196^(7/22) 4324117883333127 a001 987/3571*20633239^(3/10) 4324117883333130 a001 987/3571*17393796001^(3/14) 4324117883333130 a001 987/3571*14662949395604^(1/6) 4324117883333130 a001 987/3571*599074578^(1/4) 4324117883333131 a001 987/3571*33385282^(7/24) 4324117883333285 a001 1597/2207*45537549124^(1/6) 4324117883333292 a001 1597/2207*12752043^(1/4) 4324117883333567 a001 987/3571*1860498^(7/20) 4324117883336341 a001 987/3571*710647^(3/8) 4324117883509112 a001 987/3571*103682^(7/16) 4324117884392166 r009 Re(z^3+c),c=-51/106+7/41*I,n=36 4324117884398501 a001 1597/2207*39603^(17/44) 4324117884648985 a001 987/3571*39603^(21/44) 4324117886193486 r005 Re(z^2+c),c=-13/21+1/33*I,n=50 4324117886923255 a001 105937/13201*1364^(7/30) 4324117889200404 m001 (Zeta(1/2)+GAMMA(13/24))/(Khinchin+Porter) 4324117889285352 a001 416020/51841*1364^(7/30) 4324117889629977 a001 726103/90481*1364^(7/30) 4324117889842967 a001 1346269/167761*1364^(7/30) 4324117890745208 a001 514229/64079*1364^(7/30) 4324117891364493 a001 1597/2207*15127^(17/40) 4324117892896879 m001 Psi(1,1/3)/Artin/GolombDickman 4324117893254033 a001 987/3571*15127^(21/40) 4324117896929258 a001 98209/12238*1364^(7/30) 4324117899809981 r009 Re(z^3+c),c=-5/19+13/18*I,n=5 4324117903863330 l006 ln(2331/3592) 4324117904191335 r002 5th iterates of z^2 + 4324117904570218 m001 (Khinchin-Thue)/(sin(1/5*Pi)+Zeta(1,-1)) 4324117915265670 a001 75025/5778*1364^(1/6) 4324117916202012 m001 exp(1)+BesselI(0,2)*CareFree 4324117926109301 a001 10946/3571*1364^(11/30) 4324117935369332 a003 sin(Pi*7/41)*sin(Pi*35/109) 4324117939315371 a001 75025/9349*1364^(7/30) 4324117944143850 a007 Real Root Of 228*x^4+837*x^3-467*x^2+811*x+200 4324117944496302 a001 1597/2207*5778^(17/36) 4324117952459749 a007 Real Root Of -498*x^4+807*x^3-657*x^2+873*x+583 4324117954216599 m001 exp(cos(1))/Zeta(1/2)/exp(1) 4324117954364370 a001 4181/2207*2207^(13/32) 4324117958887444 a001 987/3571*5778^(7/12) 4324117960397517 p003 LerchPhi(1/12,4,25/114) 4324117963713190 m005 (1/2*Pi-2/5)/(7/12*Pi+7/8) 4324117964017140 r005 Im(z^2+c),c=5/66+32/55*I,n=37 4324117967858054 m001 (exp(-1/2*Pi)-gamma)/(-Mills+ZetaP(2)) 4324117973508939 a001 2584/167761*3571^(33/34) 4324117978433535 h001 (-7*exp(1)-9)/(-12*exp(4)+7) 4324117983246457 a003 sin(Pi*11/115)-sin(Pi*20/77) 4324117983459806 a001 1292/2889*3571^(19/34) 4324117989018167 a007 Real Root Of -7*x^4-305*x^3-80*x^2+886*x+986 4324117992899649 a001 1292/51841*3571^(31/34) 4324117993468913 r002 50th iterates of z^2 + 4324118014301585 a001 2584/64079*3571^(29/34) 4324118015263535 r005 Re(z^2+c),c=-13/21+2/47*I,n=53 4324118015679666 r002 60th iterates of z^2 + 4324118025759167 a001 196418/15127*1364^(1/6) 4324118030438063 a001 2584/39603*3571^(27/34) 4324118041879951 a001 514229/39603*1364^(1/6) 4324118044231942 a001 1346269/103682*1364^(1/6) 4324118044575092 a001 3524578/271443*1364^(1/6) 4324118044625157 a001 9227465/710647*1364^(1/6) 4324118044632462 a001 24157817/1860498*1364^(1/6) 4324118044633528 a001 63245986/4870847*1364^(1/6) 4324118044633683 a001 165580141/12752043*1364^(1/6) 4324118044633706 a001 433494437/33385282*1364^(1/6) 4324118044633709 a001 1134903170/87403803*1364^(1/6) 4324118044633709 a001 2971215073/228826127*1364^(1/6) 4324118044633710 a001 7778742049/599074578*1364^(1/6) 4324118044633710 a001 20365011074/1568397607*1364^(1/6) 4324118044633710 a001 53316291173/4106118243*1364^(1/6) 4324118044633710 a001 139583862445/10749957122*1364^(1/6) 4324118044633710 a001 365435296162/28143753123*1364^(1/6) 4324118044633710 a001 956722026041/73681302247*1364^(1/6) 4324118044633710 a001 2504730781961/192900153618*1364^(1/6) 4324118044633710 a001 10610209857723/817138163596*1364^(1/6) 4324118044633710 a001 4052739537881/312119004989*1364^(1/6) 4324118044633710 a001 1548008755920/119218851371*1364^(1/6) 4324118044633710 a001 591286729879/45537549124*1364^(1/6) 4324118044633710 a001 7787980473/599786069*1364^(1/6) 4324118044633710 a001 86267571272/6643838879*1364^(1/6) 4324118044633710 a001 32951280099/2537720636*1364^(1/6) 4324118044633710 a001 12586269025/969323029*1364^(1/6) 4324118044633710 a001 4807526976/370248451*1364^(1/6) 4324118044633710 a001 1836311903/141422324*1364^(1/6) 4324118044633711 a001 701408733/54018521*1364^(1/6) 4324118044633720 a001 9238424/711491*1364^(1/6) 4324118044633779 a001 102334155/7881196*1364^(1/6) 4324118044634186 a001 39088169/3010349*1364^(1/6) 4324118044636976 a001 14930352/1149851*1364^(1/6) 4324118044656099 a001 5702887/439204*1364^(1/6) 4324118044787171 a001 2178309/167761*1364^(1/6) 4324118045685552 a001 832040/64079*1364^(1/6) 4324118051843144 a001 10959/844*1364^(1/6) 4324118052792982 a001 329/1926*2207^(23/32) 4324118054191332 a001 2584/15127*3571^(23/34) 4324118060359688 a001 646/6119*3571^(25/34) 4324118069998204 a001 121393/5778*1364^(1/10) 4324118071079140 a001 17711/3571*1364^(3/10) 4324118084002440 a001 6765/439204*3571^(33/34) 4324118085152843 a001 377/5778*843^(27/28) 4324118092070689 m001 1/GAMMA(3/4)/exp(Cahen)*Zeta(7) 4324118094047905 a001 121393/9349*1364^(1/6) 4324118094502649 s002 sum(A130627[n]/(pi^n),n=1..infinity) 4324118094511723 s002 sum(A006209[n]/(pi^n),n=1..infinity) 4324118100123225 a001 17711/1149851*3571^(33/34) 4324118102475215 a001 46368/3010349*3571^(33/34) 4324118103030445 a001 75025/4870847*3571^(33/34) 4324118103867937 a001 2255/90481*3571^(31/34) 4324118103928826 a001 28657/1860498*3571^(33/34) 4324118109377797 r005 Re(z^2+c),c=-17/28+17/54*I,n=59 4324118110086417 a001 10946/710647*3571^(33/34) 4324118119141151 a001 377/3571*843^(25/28) 4324118120057992 a001 17711/710647*3571^(31/34) 4324118122420089 a001 2576/103361*3571^(31/34) 4324118122764714 a001 121393/4870847*3571^(31/34) 4324118122977704 a001 75025/3010349*3571^(31/34) 4324118123879945 a001 28657/1149851*3571^(31/34) 4324118124026867 a001 615/15251*3571^(29/34) 4324118128807873 m005 (1/2*5^(1/2)+3/11)/(2/7*Catalan-7/12) 4324118130063996 a001 5473/219602*3571^(31/34) 4324118130168649 r002 10th iterates of z^2 + 4324118132451863 k007 concat of cont frac of 4324118133977735 a001 2255/1926*3571^(15/34) 4324118139795060 a008 Real Root of x^4-x^3+29*x^2+45*x-2 4324118140035570 a001 17711/439204*3571^(29/34) 4324118141339657 a007 Real Root Of -99*x^4+419*x^3-950*x^2-178*x+138 4324118141949789 r005 Re(z^2+c),c=-39/62+11/36*I,n=63 4324118142112521 k009 concat of cont frac of 4324118142371208 a001 46368/1149851*3571^(29/34) 4324118142507775 a001 2584/9349*3571^(21/34) 4324118142711973 a001 121393/3010349*3571^(29/34) 4324118142792417 a001 196418/4870847*3571^(29/34) 4324118142922578 a001 75025/1860498*3571^(29/34) 4324118143417578 a001 6765/103682*3571^(27/34) 4324118143814712 a001 28657/710647*3571^(29/34) 4324118148216061 a001 1292/2889*9349^(1/2) 4324118149929493 a001 10946/271443*3571^(29/34) 4324118152291179 a001 4181/271443*3571^(33/34) 4324118156880268 a001 233/2207*521^(25/26) 4324118158331545 a001 121393/3571*521^(1/26) 4324118158748885 r005 Re(z^2+c),c=-3/7+31/58*I,n=25 4324118159901067 a001 17711/271443*3571^(27/34) 4324118162305976 a001 6624/101521*3571^(27/34) 4324118162656847 a001 121393/1860498*3571^(27/34) 4324118162708039 a001 317811/4870847*3571^(27/34) 4324118162739677 a001 196418/3010349*3571^(27/34) 4324118162873698 a001 75025/1149851*3571^(27/34) 4324118163792291 a001 28657/439204*3571^(27/34) 4324118164819515 a001 6765/64079*3571^(25/34) 4324118166388718 m001 (Weierstrass+ZetaP(2))/(Chi(1)+Mills) 4324118167794037 r002 5th iterates of z^2 + 4324118169687219 a001 1292/2889*24476^(19/42) 4324118170088424 a001 10946/167761*3571^(27/34) 4324118172450110 a001 4181/167761*3571^(31/34) 4324118172952503 a001 1292/2889*817138163596^(1/6) 4324118172952503 a001 1292/2889*87403803^(1/4) 4324118174143039 a001 1292/2889*39603^(19/44) 4324118180039292 a001 5473/2889*3571^(13/34) 4324118180059998 a001 17711/167761*3571^(25/34) 4324118180673056 a001 317811/15127*1364^(1/10) 4324118180955994 a001 2255/13201*3571^(23/34) 4324118181928559 a001 1292/2889*15127^(19/40) 4324118182283554 a001 11592/109801*3571^(25/34) 4324118182400978 a001 4181/5778*3571^(1/2) 4324118182607967 a001 121393/1149851*3571^(25/34) 4324118182655298 a001 317811/3010349*3571^(25/34) 4324118182666471 a001 514229/4870847*3571^(25/34) 4324118182684550 a001 98209/930249*3571^(25/34) 4324118182808465 a001 75025/710647*3571^(25/34) 4324118183071219 r005 Re(z^2+c),c=-67/110+9/44*I,n=50 4324118183657788 a001 28657/271443*3571^(25/34) 4324118189479135 a001 5473/51841*3571^(25/34) 4324118190010866 a001 17711/5778*3571^(11/34) 4324118191840821 a001 4181/103682*3571^(29/34) 4324118195777229 a001 46368/2207*843^(3/28) 4324118196820300 a001 832040/39603*1364^(1/10) 4324118198252354 a001 17393796001/233*102334155^(2/21) 4324118198252354 a001 6643838879/233*2504730781961^(2/21) 4324118199176151 a001 46347/2206*1364^(1/10) 4324118199450709 a001 17711/103682*3571^(23/34) 4324118199519865 a001 5702887/271443*1364^(1/10) 4324118199570012 a001 14930352/710647*1364^(1/10) 4324118199577329 a001 39088169/1860498*1364^(1/10) 4324118199578396 a001 102334155/4870847*1364^(1/10) 4324118199578552 a001 267914296/12752043*1364^(1/10) 4324118199578575 a001 701408733/33385282*1364^(1/10) 4324118199578578 a001 1836311903/87403803*1364^(1/10) 4324118199578579 a001 102287808/4868641*1364^(1/10) 4324118199578579 a001 12586269025/599074578*1364^(1/10) 4324118199578579 a001 32951280099/1568397607*1364^(1/10) 4324118199578579 a001 86267571272/4106118243*1364^(1/10) 4324118199578579 a001 225851433717/10749957122*1364^(1/10) 4324118199578579 a001 591286729879/28143753123*1364^(1/10) 4324118199578579 a001 1548008755920/73681302247*1364^(1/10) 4324118199578579 a001 4052739537881/192900153618*1364^(1/10) 4324118199578579 a001 225749145909/10745088481*1364^(1/10) 4324118199578579 a001 6557470319842/312119004989*1364^(1/10) 4324118199578579 a001 2504730781961/119218851371*1364^(1/10) 4324118199578579 a001 956722026041/45537549124*1364^(1/10) 4324118199578579 a001 365435296162/17393796001*1364^(1/10) 4324118199578579 a001 139583862445/6643838879*1364^(1/10) 4324118199578579 a001 53316291173/2537720636*1364^(1/10) 4324118199578579 a001 20365011074/969323029*1364^(1/10) 4324118199578579 a001 7778742049/370248451*1364^(1/10) 4324118199578579 a001 2971215073/141422324*1364^(1/10) 4324118199578580 a001 1134903170/54018521*1364^(1/10) 4324118199578589 a001 433494437/20633239*1364^(1/10) 4324118199578648 a001 165580141/7881196*1364^(1/10) 4324118199579056 a001 63245986/3010349*1364^(1/10) 4324118199581851 a001 24157817/1149851*1364^(1/10) 4324118199601005 a001 9227465/439204*1364^(1/10) 4324118199732292 a001 3524578/167761*1364^(1/10) 4324118200632147 a001 1346269/64079*1364^(1/10) 4324118201184568 a007 Real Root Of -777*x^4+547*x^3+561*x^2+532*x-352 4324118202149052 a001 15456/90481*3571^(23/34) 4324118202542734 a001 121393/710647*3571^(23/34) 4324118202600172 a001 105937/620166*3571^(23/34) 4324118202608552 a001 832040/4870847*3571^(23/34) 4324118202613731 a001 514229/3010349*3571^(23/34) 4324118202635670 a001 196418/1149851*3571^(23/34) 4324118202786044 a001 75025/439204*3571^(23/34) 4324118202964057 a001 45537549124/233*4181^(2/21) 4324118203816719 a001 28657/167761*3571^(23/34) 4324118204709264 a001 6765/15127*3571^(19/34) 4324118205399745 r005 Re(z^2+c),c=-21/34+5/118*I,n=27 4324118206799846 a001 514229/24476*1364^(1/10) 4324118210877620 a001 6765/24476*3571^(21/34) 4324118210881071 a001 10946/64079*3571^(23/34) 4324118211136211 k007 concat of cont frac of 4324118211851586 m001 (ln(2)/ln(10)+Catalan)/(-Lehmer+Magata) 4324118213242758 a001 4181/64079*3571^(27/34) 4324118213767587 a001 28657/5778*3571^(9/34) 4324118214673424 m001 (Chi(1)*MertensB3-cos(1))/MertensB3 4324118217507990 r005 Re(z^2+c),c=-3/98+33/52*I,n=2 4324118220852646 a001 17711/64079*3571^(21/34) 4324118222307983 a001 46368/167761*3571^(21/34) 4324118222520313 a001 121393/439204*3571^(21/34) 4324118222551292 a001 317811/1149851*3571^(21/34) 4324118222555812 a001 832040/3010349*3571^(21/34) 4324118222556879 a001 1346269/4870847*3571^(21/34) 4324118222558605 a001 514229/1860498*3571^(21/34) 4324118222570438 a001 196418/710647*3571^(21/34) 4324118222651541 a001 75025/271443*3571^(21/34) 4324118223207430 a001 28657/103682*3571^(21/34) 4324118225024177 a001 98209/2889*1364^(1/30) 4324118227017551 a001 10946/39603*3571^(21/34) 4324118229379238 a001 4181/39603*3571^(25/34) 4324118229834131 a001 28657/3571*1364^(7/30) 4324118232258851 a001 2576/321*3571^(7/34) 4324118236989125 a001 17711/39603*3571^(19/34) 4324118239601587 m001 (LandauRamanujan+ZetaQ(2))/(BesselI(0,1)+Kac) 4324118241311173 a001 1292/2889*5778^(19/36) 4324118241491770 a001 610/2207*1364^(7/10) 4324118241698694 a001 23184/51841*3571^(19/34) 4324118242385811 a001 121393/271443*3571^(19/34) 4324118242486060 a001 317811/710647*3571^(19/34) 4324118242500686 a001 416020/930249*3571^(19/34) 4324118242502820 a001 2178309/4870847*3571^(19/34) 4324118242504138 a001 1346269/3010349*3571^(19/34) 4324118242509725 a001 514229/1149851*3571^(19/34) 4324118242548017 a001 98209/219602*3571^(19/34) 4324118242810472 a001 75025/167761*3571^(19/34) 4324118244609367 a001 28657/64079*3571^(19/34) 4324118249073879 a001 196418/9349*1364^(1/10) 4324118250770821 a001 10946/15127*3571^(1/2) 4324118252761340 a001 75025/5778*3571^(5/34) 4324118253132508 a001 4181/15127*3571^(21/34) 4324118253633119 a001 2584/15127*9349^(23/38) 4324118254325643 a001 34/5779*9349^(37/38) 4324118254895094 r009 Re(z^3+c),c=-19/48+5/57*I,n=13 4324118256848376 a001 2584/271443*9349^(35/38) 4324118256939177 a001 5473/12238*3571^(19/34) 4324118259300864 a001 4181/24476*3571^(23/34) 4324118259664543 a001 2584/167761*9349^(33/38) 4324118260742395 a001 17711/15127*3571^(15/34) 4324118260745847 a001 28657/39603*3571^(1/2) 4324118261055705 a007 Real Root Of 655*x^4+103*x^3+292*x^2-587*x+168 4324118261712490 a001 1292/51841*9349^(31/38) 4324118262201183 a001 75025/103682*3571^(1/2) 4324118262413514 a001 196418/271443*3571^(1/2) 4324118262444493 a001 514229/710647*3571^(1/2) 4324118262449013 a001 1346269/1860498*3571^(1/2) 4324118262449672 a001 3524578/4870847*3571^(1/2) 4324118262449768 a001 9227465/12752043*3571^(1/2) 4324118262449782 a001 24157817/33385282*3571^(1/2) 4324118262449784 a001 63245986/87403803*3571^(1/2) 4324118262449785 a001 165580141/228826127*3571^(1/2) 4324118262449785 a001 433494437/599074578*3571^(1/2) 4324118262449785 a001 1134903170/1568397607*3571^(1/2) 4324118262449785 a001 2971215073/4106118243*3571^(1/2) 4324118262449785 a001 7778742049/10749957122*3571^(1/2) 4324118262449785 a001 20365011074/28143753123*3571^(1/2) 4324118262449785 a001 53316291173/73681302247*3571^(1/2) 4324118262449785 a001 139583862445/192900153618*3571^(1/2) 4324118262449785 a001 10610209857723/14662949395604*3571^(1/2) 4324118262449785 a001 591286729879/817138163596*3571^(1/2) 4324118262449785 a001 225851433717/312119004989*3571^(1/2) 4324118262449785 a001 86267571272/119218851371*3571^(1/2) 4324118262449785 a001 32951280099/45537549124*3571^(1/2) 4324118262449785 a001 12586269025/17393796001*3571^(1/2) 4324118262449785 a001 4807526976/6643838879*3571^(1/2) 4324118262449785 a001 1836311903/2537720636*3571^(1/2) 4324118262449785 a001 701408733/969323029*3571^(1/2) 4324118262449785 a001 267914296/370248451*3571^(1/2) 4324118262449785 a001 102334155/141422324*3571^(1/2) 4324118262449786 a001 39088169/54018521*3571^(1/2) 4324118262449791 a001 14930352/20633239*3571^(1/2) 4324118262449828 a001 5702887/7881196*3571^(1/2) 4324118262450080 a001 2178309/3010349*3571^(1/2) 4324118262451806 a001 832040/1149851*3571^(1/2) 4324118262463639 a001 317811/439204*3571^(1/2) 4324118262544742 a001 121393/167761*3571^(1/2) 4324118263100631 a001 46368/64079*3571^(1/2) 4324118264048467 a001 2255/1926*9349^(15/38) 4324118264565378 a001 2584/39603*9349^(27/38) 4324118265727963 r002 6th iterates of z^2 + 4324118265771663 a001 2584/64079*9349^(29/38) 4324118266891684 r005 Re(z^2+c),c=-21/86+16/25*I,n=11 4324118266910752 a001 17711/24476*3571^(1/2) 4324118267186175 a007 Real Root Of 176*x^4+820*x^3+166*x^2-456*x-309 4324118272208201 a003 sin(Pi*11/106)/sin(Pi*30/113) 4324118272495610 a001 121393/5778*3571^(3/34) 4324118274387059 a001 141/2161*2207^(27/32) 4324118276777473 r005 Im(z^2+c),c=13/74+4/9*I,n=35 4324118277144240 a001 646/6119*9349^(25/38) 4324118279237111 a001 15456/13201*3571^(15/34) 4324118279624521 a001 2584/15127*24476^(23/42) 4324118280999381 a001 2255/1926*24476^(5/14) 4324118281935453 a001 121393/103682*3571^(15/34) 4324118282329136 a001 105937/90481*3571^(15/34) 4324118282386574 a001 832040/710647*3571^(15/34) 4324118282394954 a001 726103/620166*3571^(15/34) 4324118282400133 a001 1346269/1149851*3571^(15/34) 4324118282422072 a001 514229/439204*3571^(15/34) 4324118282572446 a001 196418/167761*3571^(15/34) 4324118282966304 r002 63th iterates of z^2 + 4324118283050688 a001 2584/15127*64079^(1/2) 4324118283531144 a001 2255/1926*167761^(3/10) 4324118283571011 a001 2255/1926*439204^(5/18) 4324118283577221 a001 2255/1926*7881196^(5/22) 4324118283577233 a001 2584/15127*4106118243^(1/4) 4324118283577235 a001 2255/1926*20633239^(3/14) 4324118283577237 a001 2255/1926*2537720636^(1/6) 4324118283577237 a001 2255/1926*312119004989^(3/22) 4324118283577237 a001 2255/1926*28143753123^(3/20) 4324118283577237 a001 2255/1926*228826127^(3/16) 4324118283577238 a001 2255/1926*33385282^(5/24) 4324118283577550 a001 2255/1926*1860498^(1/4) 4324118283603121 a001 75025/64079*3571^(15/34) 4324118283702939 a001 2255/1926*103682^(5/16) 4324118284499117 a001 28657/15127*3571^(13/34) 4324118284517134 a001 2255/1926*39603^(15/44) 4324118285018408 a001 2584/15127*39603^(23/44) 4324118285396070 a001 17711/5778*9349^(11/38) 4324118287272229 a001 987/9349*2207^(25/32) 4324118290663597 a001 2255/1926*15127^(3/8) 4324118290667473 a001 28657/24476*3571^(15/34) 4324118291810027 a001 28657/5778*9349^(9/38) 4324118292523314 a001 98209/2889*3571^(1/34) 4324118292767260 a001 5473/2889*9349^(13/38) 4324118292958526 a001 2576/321*9349^(7/38) 4324118293025709 a001 6765/9349*3571^(1/2) 4324118294442986 a001 2584/15127*15127^(23/40) 4324118295077024 a001 2584/39603*24476^(9/14) 4324118295431325 a001 2584/1149851*24476^(41/42) 4324118295506046 m001 GAMMA(3/4)*MinimumGamma*exp(log(1+sqrt(2))) 4324118295763206 a001 2584/710647*24476^(13/14) 4324118296118252 a001 75025/5778*9349^(5/38) 4324118296137899 a001 34/5779*24476^(37/42) 4324118296400510 a001 2584/271443*24476^(5/6) 4324118296744380 a001 1292/51841*24476^(31/42) 4324118296956555 a001 2584/167761*24476^(11/14) 4324118297826741 a001 17711/5778*24476^(11/42) 4324118298509757 a001 121393/5778*9349^(3/38) 4324118298543431 a001 2584/64079*24476^(29/42) 4324118299705956 a001 2584/39603*439204^(1/2) 4324118299717136 a001 2584/39603*7881196^(9/22) 4324118299717157 a001 17711/5778*7881196^(1/6) 4324118299717165 a001 2584/39603*2537720636^(3/10) 4324118299717165 a001 2584/39603*14662949395604^(3/14) 4324118299717165 a001 2584/39603*192900153618^(1/4) 4324118299717166 a001 2584/39603*33385282^(3/8) 4324118299717168 a001 17711/5778*312119004989^(1/10) 4324118299717168 a001 17711/5778*1568397607^(1/8) 4324118299717727 a001 2584/39603*1860498^(9/20) 4324118299739601 a001 75025/39603*3571^(13/34) 4324118299943427 a001 2584/39603*103682^(9/16) 4324118300069683 r002 51i'th iterates of 2*x/(1-x^2) of 4324118300406426 a001 17711/5778*39603^(1/4) 4324118300868953 a001 2576/321*24476^(1/6) 4324118301194696 a001 98209/2889*9349^(1/38) 4324118301408978 a001 2584/39603*39603^(27/44) 4324118301768557 a001 75025/5778*24476^(5/42) 4324118301899940 a001 121393/5778*24476^(1/14) 4324118301963157 a001 98209/51841*3571^(13/34) 4324118301980576 a001 28657/5778*24476^(3/14) 4324118302071710 a001 1292/51841*3010349^(1/2) 4324118302071949 a001 1292/51841*9062201101803^(1/4) 4324118302071952 a001 2576/321*20633239^(1/10) 4324118302071953 a001 2576/321*17393796001^(1/14) 4324118302071953 a001 2576/321*14662949395604^(1/18) 4324118302071953 a001 2576/321*505019158607^(1/16) 4324118302071953 a001 2576/321*599074578^(1/12) 4324118302073023 a001 2576/321*710647^(1/8) 4324118302287570 a001 514229/271443*3571^(13/34) 4324118302307956 a001 2584/271443*167761^(7/10) 4324118302324757 a001 98209/2889*24476^(1/42) 4324118302334901 a001 1346269/710647*3571^(13/34) 4324118302336392 a001 2584/3010349*167761^(9/10) 4324118302346074 a001 2178309/1149851*3571^(13/34) 4324118302364153 a001 208010/109801*3571^(13/34) 4324118302414266 a001 121393/5778*439204^(1/18) 4324118302415502 a001 2584/271443*20633239^(1/2) 4324118302415507 a001 2584/271443*2537720636^(7/18) 4324118302415507 a001 2584/271443*17393796001^(5/14) 4324118302415507 a001 2584/271443*312119004989^(7/22) 4324118302415507 a001 2584/271443*14662949395604^(5/18) 4324118302415507 a001 2584/271443*505019158607^(5/16) 4324118302415507 a001 2584/271443*28143753123^(7/20) 4324118302415507 a001 2584/271443*599074578^(5/12) 4324118302415507 a001 2584/271443*228826127^(7/16) 4324118302415508 a001 121393/5778*7881196^(1/22) 4324118302415511 a001 121393/5778*33385282^(1/24) 4324118302415574 a001 121393/5778*1860498^(1/20) 4324118302416236 a001 2584/271443*1860498^(7/12) 4324118302420859 a001 2584/271443*710647^(5/8) 4324118302440651 a001 121393/5778*103682^(1/16) 4324118302449442 a001 2584/710647*439204^(13/18) 4324118302452996 a001 2584/12752043*439204^(17/18) 4324118302455991 a001 2584/3010349*439204^(5/6) 4324118302465591 a001 2584/710647*7881196^(13/22) 4324118302465632 a001 2584/710647*141422324^(1/2) 4324118302465632 a001 2584/710647*73681302247^(3/8) 4324118302465634 a001 2584/710647*33385282^(13/24) 4324118302466444 a001 2584/710647*1860498^(13/20) 4324118302472945 a001 1292/930249*969323029^(1/2) 4324118302474012 a001 2584/4870847*6643838879^(1/2) 4324118302474114 a001 2584/12752043*7881196^(17/22) 4324118302474127 a001 2584/228826127*7881196^(21/22) 4324118302474132 a001 1292/16692641*7881196^(5/6) 4324118302474135 a001 2584/54018521*7881196^(19/22) 4324118302474167 a001 2584/12752043*45537549124^(1/2) 4324118302474170 a001 2584/12752043*33385282^(17/24) 4324118302474182 a001 1292/16692641*20633239^(11/14) 4324118302474185 a001 2584/370248451*20633239^(13/14) 4324118302474185 a001 2584/228826127*20633239^(9/10) 4324118302474187 a001 2584/12752043*12752043^(3/4) 4324118302474190 a001 1292/16692641*2537720636^(11/18) 4324118302474190 a001 1292/16692641*312119004989^(1/2) 4324118302474190 a001 1292/16692641*3461452808002^(11/24) 4324118302474190 a001 1292/16692641*28143753123^(11/20) 4324118302474190 a001 1292/16692641*1568397607^(5/8) 4324118302474190 a001 1292/16692641*228826127^(11/16) 4324118302474193 a001 2584/87403803*2139295485799^(1/2) 4324118302474194 a001 2584/370248451*141422324^(5/6) 4324118302474194 a001 2584/228826127*2537720636^(7/10) 4324118302474194 a001 2584/228826127*17393796001^(9/14) 4324118302474194 a001 2584/228826127*14662949395604^(1/2) 4324118302474194 a001 2584/228826127*505019158607^(9/16) 4324118302474194 a001 2584/228826127*192900153618^(7/12) 4324118302474194 a001 2584/228826127*599074578^(3/4) 4324118302474194 a001 2584/4106118243*2537720636^(5/6) 4324118302474194 a001 646/11384387281*2537720636^(17/18) 4324118302474194 a001 2584/17393796001*2537720636^(9/10) 4324118302474194 a001 2584/4106118243*312119004989^(15/22) 4324118302474194 a001 2584/4106118243*3461452808002^(5/8) 4324118302474194 a001 2584/4106118243*28143753123^(3/4) 4324118302474194 a001 1292/96450076809*17393796001^(13/14) 4324118302474194 a001 2584/73681302247*1322157322203^(3/4) 4324118302474194 a001 1292/96450076809*14662949395604^(13/18) 4324118302474194 a001 1292/96450076809*505019158607^(13/16) 4324118302474194 a001 2584/505019158607*312119004989^(19/22) 4324118302474194 a001 2584/1322157322203*312119004989^(9/10) 4324118302474194 a001 2584/505019158607*3461452808002^(19/24) 4324118302474194 a001 2584/1322157322203*14662949395604^(11/14) 4324118302474194 a001 2584/5600748293801*505019158607^(15/16) 4324118302474194 a001 2584/312119004989*9062201101803^(3/4) 4324118302474194 a001 2584/1322157322203*192900153618^(11/12) 4324118302474194 a001 646/11384387281*45537549124^(5/6) 4324118302474194 a001 1292/96450076809*73681302247^(7/8) 4324118302474194 a001 646/11384387281*312119004989^(17/22) 4324118302474194 a001 646/11384387281*3461452808002^(17/24) 4324118302474194 a001 2584/505019158607*28143753123^(19/20) 4324118302474194 a001 646/11384387281*28143753123^(17/20) 4324118302474194 a001 2584/17393796001*14662949395604^(9/14) 4324118302474194 a001 2584/17393796001*192900153618^(3/4) 4324118302474194 a001 2584/6643838879*17393796001^(11/14) 4324118302474194 a001 2584/6643838879*14662949395604^(11/18) 4324118302474194 a001 2584/6643838879*505019158607^(11/16) 4324118302474194 a001 2584/6643838879*1568397607^(7/8) 4324118302474194 a001 2584/969323029*4106118243^(3/4) 4324118302474194 a001 2584/6643838879*599074578^(11/12) 4324118302474194 a001 2584/370248451*2537720636^(13/18) 4324118302474194 a001 2584/370248451*312119004989^(13/22) 4324118302474194 a001 2584/370248451*3461452808002^(13/24) 4324118302474194 a001 2584/370248451*73681302247^(5/8) 4324118302474194 a001 2584/370248451*28143753123^(13/20) 4324118302474194 a001 2584/4106118243*228826127^(15/16) 4324118302474194 a001 2584/370248451*228826127^(13/16) 4324118302474194 a001 646/35355581*5600748293801^(1/2) 4324118302474195 a001 2584/54018521*817138163596^(1/2) 4324118302474196 a001 2584/54018521*87403803^(3/4) 4324118302474197 a001 2584/228826127*33385282^(7/8) 4324118302474198 a001 2584/969323029*33385282^(23/24) 4324118302474199 a001 2584/54018521*33385282^(19/24) 4324118302474204 a001 2584/20633239*119218851371^(1/2) 4324118302474256 a001 646/1970299*20633239^(7/10) 4324118302474264 a001 646/1970299*17393796001^(1/2) 4324118302474264 a001 646/1970299*14662949395604^(7/18) 4324118302474264 a001 646/1970299*505019158607^(7/16) 4324118302474264 a001 646/1970299*599074578^(7/12) 4324118302474624 a001 2584/3010349*7881196^(15/22) 4324118302474665 a001 2584/3010349*20633239^(9/14) 4324118302474671 a001 2584/3010349*2537720636^(1/2) 4324118302474671 a001 2584/3010349*312119004989^(9/22) 4324118302474671 a001 2584/3010349*14662949395604^(5/14) 4324118302474671 a001 2584/3010349*192900153618^(5/12) 4324118302474671 a001 2584/3010349*28143753123^(9/20) 4324118302474671 a001 2584/3010349*228826127^(9/16) 4324118302474674 a001 2584/3010349*33385282^(5/8) 4324118302475229 a001 2584/12752043*1860498^(17/20) 4324118302475335 a001 1292/16692641*1860498^(11/12) 4324118302475382 a001 2584/54018521*1860498^(19/20) 4324118302475608 a001 2584/3010349*1860498^(3/4) 4324118302477464 a001 2584/1149851*370248451^(1/2) 4324118302481756 a001 646/1970299*710647^(7/8) 4324118302488068 a001 317811/167761*3571^(13/34) 4324118302496610 a001 34/5779*54018521^(1/2) 4324118302509647 a001 2584/710647*271443^(3/4) 4324118302510571 a001 2576/321*39603^(7/44) 4324118302559274 a001 98209/2889*39603^(1/44) 4324118302603490 a001 121393/5778*39603^(3/44) 4324118302612477 a001 75025/5778*167761^(1/10) 4324118302614139 a001 2584/167761*439204^(11/18) 4324118302627803 a001 2584/167761*7881196^(1/2) 4324118302627838 a001 2584/167761*312119004989^(3/10) 4324118302627838 a001 2584/167761*1568397607^(3/8) 4324118302627840 a001 2584/167761*33385282^(11/24) 4324118302627841 a001 75025/5778*20633239^(1/14) 4324118302627842 a001 75025/5778*2537720636^(1/18) 4324118302627842 a001 75025/5778*312119004989^(1/22) 4324118302627842 a001 75025/5778*28143753123^(1/20) 4324118302627842 a001 75025/5778*228826127^(1/16) 4324118302627946 a001 75025/5778*1860498^(1/12) 4324118302628525 a001 2584/167761*1860498^(11/20) 4324118302792456 a001 2584/710647*103682^(13/16) 4324118302851776 a001 2584/3010349*103682^(15/16) 4324118302904382 a001 2584/167761*103682^(11/16) 4324118302941141 a001 75025/5778*39603^(5/44) 4324118302969038 a001 98209/2889*15127^(1/40) 4324118302990381 a001 6624/2161*3571^(11/34) 4324118303337391 a001 121393/64079*3571^(13/34) 4324118303523553 a001 28657/5778*439204^(1/6) 4324118303525650 a001 2584/64079*1149851^(1/2) 4324118303527280 a001 28657/5778*7881196^(3/22) 4324118303527285 a001 2584/64079*1322157322203^(1/4) 4324118303527289 a001 28657/5778*2537720636^(1/10) 4324118303527289 a001 28657/5778*14662949395604^(1/14) 4324118303527289 a001 28657/5778*192900153618^(1/12) 4324118303527290 a001 28657/5778*33385282^(1/8) 4324118303527477 a001 28657/5778*1860498^(3/20) 4324118303602710 a001 28657/5778*103682^(3/16) 4324118303832783 a001 121393/5778*15127^(3/40) 4324118304014401 a001 1292/51841*39603^(31/44) 4324118304091227 a001 28657/5778*39603^(9/44) 4324118304608599 a001 2584/271443*39603^(35/44) 4324118304695610 a001 2584/167761*39603^(3/4) 4324118304815021 a001 34/5779*39603^(37/44) 4324118304909362 a001 2584/710647*39603^(39/44) 4324118304913833 a001 17711/5778*15127^(11/40) 4324118304989962 a001 75025/5778*15127^(1/8) 4324118305046515 a001 2584/1149851*39603^(41/44) 4324118305167314 a001 1292/930249*39603^(43/44) 4324118305344419 a001 2584/64079*39603^(29/44) 4324118305378921 a001 2576/321*15127^(7/40) 4324118305395764 a001 646/6119*24476^(25/42) 4324118306094439 a001 98209/2889*5778^(1/36) 4324118307458053 a001 5473/2889*24476^(13/42) 4324118307779105 a001 28657/5778*15127^(9/40) 4324118309158737 a001 11592/6119*3571^(13/34) 4324118309615369 a001 646/6119*167761^(1/2) 4324118309692187 a001 646/6119*20633239^(5/14) 4324118309692191 a001 646/6119*2537720636^(5/18) 4324118309692191 a001 646/6119*312119004989^(5/22) 4324118309692191 a001 646/6119*3461452808002^(5/24) 4324118309692191 a001 646/6119*28143753123^(1/4) 4324118309692191 a001 646/6119*228826127^(5/16) 4324118309692194 a001 5473/2889*141422324^(1/6) 4324118309692195 a001 5473/2889*73681302247^(1/8) 4324118309692711 a001 646/6119*1860498^(5/12) 4324118309706866 a001 5473/2889*271443^(1/4) 4324118310506771 a001 5473/2889*39603^(13/44) 4324118311258685 a001 646/6119*39603^(25/44) 4324118312472613 a001 2584/39603*15127^(27/40) 4324118313208985 a001 121393/5778*5778^(1/12) 4324118314776347 r009 Im(z^3+c),c=-17/52+24/53*I,n=26 4324118314818237 r005 Re(z^2+c),c=-11/19+13/41*I,n=20 4324118315833707 a001 5473/2889*15127^(13/40) 4324118316717093 a001 1292/51841*15127^(31/40) 4324118317227582 a001 2584/64079*15127^(29/40) 4324118318217830 a001 2584/167761*15127^(33/40) 4324118318950348 a001 2584/271443*15127^(7/8) 4324118319473870 a001 121393/39603*3571^(11/34) 4324118319976299 a001 34/5779*15127^(37/40) 4324118320616966 a001 75025/5778*5778^(5/36) 4324118320890168 a001 2584/710647*15127^(39/40) 4324118321502791 a001 646/6119*15127^(5/8) 4324118321878779 a001 317811/103682*3571^(11/34) 4324118322229651 a001 832040/271443*3571^(11/34) 4324118322280842 a001 311187/101521*3571^(11/34) 4324118322312480 a001 1346269/439204*3571^(11/34) 4324118322446501 a001 514229/167761*3571^(11/34) 4324118323365095 a001 196418/64079*3571^(11/34) 4324118323492871 a001 75025/15127*3571^(9/34) 4324118324606801 a001 2584/9349*9349^(21/38) 4324118326024407 r005 Im(z^2+c),c=1/15+32/61*I,n=32 4324118327256726 a001 2576/321*5778^(7/36) 4324118329661227 a001 75025/24476*3571^(11/34) 4324118329814476 a001 4181/5778*9349^(17/38) 4324118330238952 a001 98209/2889*2207^(1/32) 4324118335629763 a001 514229/15127*1364^(1/30) 4324118335907713 a001 28657/5778*5778^(1/4) 4324118337544609 a001 2255/1926*5778^(5/12) 4324118339087267 a001 10946/9349*3571^(15/34) 4324118339293241 a001 17711/5778*5778^(11/36) 4324118339501574 a001 196418/39603*3571^(9/34) 4324118341448954 a001 4181/9349*3571^(19/34) 4324118341837213 a001 514229/103682*3571^(9/34) 4324118342177978 a001 1346269/271443*3571^(9/34) 4324118342258422 a001 2178309/439204*3571^(9/34) 4324118342388582 a001 75640/15251*3571^(9/34) 4324118343227141 a001 121393/15127*3571^(7/34) 4324118343280717 a001 317811/64079*3571^(9/34) 4324118343459980 r002 38th iterates of z^2 + 4324118348338081 a001 2584/9349*24476^(1/2) 4324118349025513 a001 4181/5778*24476^(17/42) 4324118349058842 a001 17711/9349*3571^(13/34) 4324118349395497 a001 121393/24476*3571^(9/34) 4324118351766901 a001 1346269/39603*1364^(1/30) 4324118351938362 a001 2584/9349*439204^(7/18) 4324118351947057 a001 2584/9349*7881196^(7/22) 4324118351947077 a001 2584/9349*20633239^(3/10) 4324118351947080 a001 2584/9349*17393796001^(3/14) 4324118351947080 a001 2584/9349*14662949395604^(1/6) 4324118351947080 a001 2584/9349*599074578^(1/4) 4324118351947081 a001 2584/9349*33385282^(7/24) 4324118351947083 a001 4181/5778*45537549124^(1/6) 4324118351947090 a001 4181/5778*12752043^(1/4) 4324118351947517 a001 2584/9349*1860498^(7/20) 4324118351950290 a001 2584/9349*710647^(3/8) 4324118352123062 a001 2584/9349*103682^(7/16) 4324118353012299 a001 4181/5778*39603^(17/44) 4324118353262935 a001 2584/9349*39603^(21/44) 4324118354953009 a001 1597/2207*2207^(17/32) 4324118355576362 a001 2178309/64079*1364^(1/30) 4324118355986692 a001 987/24476*2207^(29/32) 4324118356463917 a001 5473/2889*5778^(13/36) 4324118356601625 r009 Re(z^3+c),c=-9/118+37/55*I,n=26 4324118358675169 r009 Re(z^3+c),c=-53/110+10/59*I,n=34 4324118359417197 a001 105937/13201*3571^(7/34) 4324118359978291 a001 4181/5778*15127^(17/40) 4324118361740201 a001 208010/6119*1364^(1/30) 4324118361779294 a001 416020/51841*3571^(7/34) 4324118361867984 a001 2584/9349*15127^(21/40) 4324118362123919 a001 726103/90481*3571^(7/34) 4324118362336910 a001 1346269/167761*3571^(7/34) 4324118363239151 a001 514229/64079*3571^(7/34) 4324118363254845 a001 196418/15127*3571^(5/34) 4324118364931234 a001 6765/1149851*9349^(37/38) 4324118365726998 a001 610/843*843^(17/28) 4324118366327204 a001 2584/15127*5778^(23/36) 4324118367523237 a001 6765/710647*9349^(35/38) 4324118369423202 a001 98209/12238*3571^(7/34) 4324118369465527 a001 6765/15127*9349^(1/2) 4324118370158052 a001 6765/439204*9349^(33/38) 4324118372128338 r005 Im(z^2+c),c=-21/122+31/50*I,n=24 4324118372680785 a001 2255/90481*9349^(31/38) 4324118372815564 a001 28657/9349*3571^(11/34) 4324118374066064 r002 21th iterates of z^2 + 4324118375496952 a001 615/15251*9349^(29/38) 4324118377129102 r009 Re(z^3+c),c=-7/12+6/25*I,n=15 4324118377544898 a001 6765/103682*9349^(27/38) 4324118379104761 l006 ln(5858/9027) 4324118379375631 a001 514229/39603*3571^(5/34) 4324118380397786 a001 2255/13201*9349^(23/38) 4324118381068372 a001 17711/3010349*9349^(37/38) 4324118381604071 a001 6765/64079*9349^(25/38) 4324118381727622 a001 1346269/103682*3571^(5/34) 4324118382282851 a001 2178309/167761*3571^(5/34) 4324118383170467 a001 317811/15127*3571^(3/34) 4324118383181232 a001 832040/64079*3571^(5/34) 4324118383323670 a001 46368/3571*1364^(1/6) 4324118383670481 a001 17711/1860498*9349^(35/38) 4324118384877833 a001 28657/4870847*9349^(37/38) 4324118385642525 a001 121393/5778*2207^(3/32) 4324118386026333 a001 46368/4870847*9349^(35/38) 4324118386278837 a001 17711/1149851*9349^(33/38) 4324118387482329 a001 28657/3010349*9349^(35/38) 4324118388630828 a001 46368/3010349*9349^(33/38) 4324118388870841 a001 17711/710647*9349^(31/38) 4324118389186058 a001 75025/4870847*9349^(33/38) 4324118389338824 a001 10959/844*3571^(5/34) 4324118390084439 a001 28657/1860498*9349^(33/38) 4324118390813131 a001 17711/15127*9349^(15/38) 4324118390936686 a001 6765/15127*24476^(19/42) 4324118390952500 a001 1/2*233^(9/11) 4324118391041672 a001 5473/930249*9349^(37/38) 4324118391232938 a001 2576/103361*9349^(31/38) 4324118391306828 a001 46368/9349*3571^(9/34) 4324118391505655 a001 17711/439204*9349^(29/38) 4324118391577563 a001 121393/4870847*9349^(31/38) 4324118391790554 a001 75025/3010349*9349^(31/38) 4324118392692794 a001 28657/1149851*9349^(31/38) 4324118392976649 a001 6765/24476*9349^(21/38) 4324118393650027 a001 10946/1149851*9349^(35/38) 4324118393841294 a001 46368/1149851*9349^(29/38) 4324118394028388 a001 17711/271443*9349^(27/38) 4324118394182059 a001 121393/3010349*9349^(29/38) 4324118394201970 a001 6765/15127*817138163596^(1/6) 4324118394201971 a001 6765/15127*87403803^(1/4) 4324118394262503 a001 196418/4870847*9349^(29/38) 4324118394392663 a001 75025/1860498*9349^(29/38) 4324118395284798 a001 28657/710647*9349^(29/38) 4324118395392506 a001 6765/15127*39603^(19/44) 4324118396242031 a001 10946/710647*9349^(33/38) 4324118396433297 a001 6624/101521*9349^(27/38) 4324118396779591 m001 Si(Pi)^2*Cahen^2*ln(Riemann2ndZero) 4324118396784169 a001 121393/1860498*9349^(27/38) 4324118396835360 a001 317811/4870847*9349^(27/38) 4324118396844555 a001 17711/167761*9349^(25/38) 4324118396858435 a001 2584/39603*5778^(3/4) 4324118396866998 a001 196418/3010349*9349^(27/38) 4324118397001019 a001 75025/1149851*9349^(27/38) 4324118397227088 a001 28657/15127*9349^(13/38) 4324118397919613 a001 28657/439204*9349^(27/38) 4324118398184321 a001 10946/15127*9349^(17/38) 4324118398375588 a001 6624/2161*9349^(11/38) 4324118398876846 a001 5473/219602*9349^(31/38) 4324118398892502 a001 17711/103682*9349^(23/38) 4324118399068112 a001 11592/109801*9349^(25/38) 4324118399317712 a001 832040/39603*3571^(3/34) 4324118399392525 a001 121393/1149851*9349^(25/38) 4324118399439856 a001 317811/3010349*9349^(25/38) 4324118399451029 a001 514229/4870847*9349^(25/38) 4324118399469108 a001 98209/930249*9349^(25/38) 4324118399593022 a001 75025/710647*9349^(25/38) 4324118399637812 a001 646/6119*5778^(25/36) 4324118400442346 a001 28657/271443*9349^(25/38) 4324118401399579 a001 10946/271443*9349^(29/38) 4324118401496342 a001 329/13201*2207^(31/32) 4324118401535313 a001 75025/15127*9349^(9/38) 4324118401590845 a001 15456/90481*9349^(23/38) 4324118401673563 a001 46347/2206*3571^(3/34) 4324118401745390 a001 17711/39603*9349^(1/2) 4324118401984528 a001 121393/710647*9349^(23/38) 4324118402041965 a001 105937/620166*9349^(23/38) 4324118402050345 a001 832040/4870847*9349^(23/38) 4324118402055525 a001 514229/3010349*9349^(23/38) 4324118402077464 a001 196418/1149851*9349^(23/38) 4324118402227837 a001 75025/439204*9349^(23/38) 4324118402951675 a001 17711/64079*9349^(21/38) 4324118403128901 a001 514229/15127*3571^(1/34) 4324118403129559 a001 1346269/64079*3571^(3/34) 4324118403178027 a001 6765/15127*15127^(19/40) 4324118403258512 a001 28657/167761*9349^(23/38) 4324118403926818 a001 121393/15127*9349^(7/38) 4324118403987777 a001 317811/9349*1364^(1/30) 4324118404215745 a001 10946/167761*9349^(27/38) 4324118404407012 a001 46368/167761*9349^(21/38) 4324118404619343 a001 121393/439204*9349^(21/38) 4324118404650321 a001 317811/1149851*9349^(21/38) 4324118404654841 a001 832040/3010349*9349^(21/38) 4324118404655908 a001 1346269/4870847*9349^(21/38) 4324118404657634 a001 514229/1860498*9349^(21/38) 4324118404669467 a001 196418/710647*9349^(21/38) 4324118404750570 a001 75025/271443*9349^(21/38) 4324118405306459 a001 28657/103682*9349^(21/38) 4324118406053269 a001 6765/3010349*24476^(41/42) 4324118406263692 a001 5473/51841*9349^(25/38) 4324118406389189 a001 2255/13201*24476^(23/42) 4324118406395257 a001 55/15126*24476^(13/14) 4324118406454959 a001 23184/51841*9349^(1/2) 4324118406611757 a001 196418/15127*9349^(5/38) 4324118406743490 a001 6765/1149851*24476^(37/42) 4324118407075372 a001 6765/710647*24476^(5/6) 4324118407142076 a001 121393/271443*9349^(1/2) 4324118407242325 a001 317811/710647*9349^(1/2) 4324118407256951 a001 416020/930249*9349^(1/2) 4324118407259085 a001 2178309/4870847*9349^(1/2) 4324118407259396 a001 5702887/12752043*9349^(1/2) 4324118407259441 a001 7465176/16692641*9349^(1/2) 4324118407259448 a001 39088169/87403803*9349^(1/2) 4324118407259449 a001 102334155/228826127*9349^(1/2) 4324118407259449 a001 133957148/299537289*9349^(1/2) 4324118407259449 a001 701408733/1568397607*9349^(1/2) 4324118407259449 a001 1836311903/4106118243*9349^(1/2) 4324118407259449 a001 2403763488/5374978561*9349^(1/2) 4324118407259449 a001 12586269025/28143753123*9349^(1/2) 4324118407259449 a001 32951280099/73681302247*9349^(1/2) 4324118407259449 a001 43133785636/96450076809*9349^(1/2) 4324118407259449 a001 225851433717/505019158607*9349^(1/2) 4324118407259449 a001 591286729879/1322157322203*9349^(1/2) 4324118407259449 a001 10610209857723/23725150497407*9349^(1/2) 4324118407259449 a001 182717648081/408569081798*9349^(1/2) 4324118407259449 a001 139583862445/312119004989*9349^(1/2) 4324118407259449 a001 53316291173/119218851371*9349^(1/2) 4324118407259449 a001 10182505537/22768774562*9349^(1/2) 4324118407259449 a001 7778742049/17393796001*9349^(1/2) 4324118407259449 a001 2971215073/6643838879*9349^(1/2) 4324118407259449 a001 567451585/1268860318*9349^(1/2) 4324118407259449 a001 433494437/969323029*9349^(1/2) 4324118407259449 a001 165580141/370248451*9349^(1/2) 4324118407259450 a001 31622993/70711162*9349^(1/2) 4324118407259452 a001 24157817/54018521*9349^(1/2) 4324118407259470 a001 9227465/20633239*9349^(1/2) 4324118407259588 a001 1762289/3940598*9349^(1/2) 4324118407260404 a001 1346269/3010349*9349^(1/2) 4324118407265990 a001 514229/1149851*9349^(1/2) 4324118407304282 a001 98209/219602*9349^(1/2) 4324118407450065 a001 6765/439204*24476^(11/14) 4324118407566737 a001 75025/167761*9349^(1/2) 4324118407712676 a001 2255/90481*24476^(31/42) 4324118407764046 a001 17711/15127*24476^(5/14) 4324118407864206 a001 2584/64079*5778^(29/36) 4324118408056545 a001 6765/103682*24476^(9/14) 4324118408159347 a001 28657/39603*9349^(17/38) 4324118408268720 a001 615/15251*24476^(29/42) 4324118409116580 a001 10946/39603*9349^(21/38) 4324118409184615 a001 317811/15127*9349^(3/38) 4324118409297258 a001 514229/24476*3571^(3/34) 4324118409307847 a001 15456/13201*9349^(15/38) 4324118409365632 a001 28657/64079*9349^(1/2) 4324118409614684 a001 75025/103682*9349^(17/38) 4324118409815356 a001 2255/13201*64079^(1/2) 4324118409827015 a001 196418/271443*9349^(17/38) 4324118409855596 a001 6765/64079*24476^(25/42) 4324118409857994 a001 514229/710647*9349^(17/38) 4324118409862513 a001 1346269/1860498*9349^(17/38) 4324118409863580 a001 2178309/3010349*9349^(17/38) 4324118409865307 a001 832040/1149851*9349^(17/38) 4324118409877139 a001 317811/439204*9349^(17/38) 4324118409958243 a001 121393/167761*9349^(17/38) 4324118410295809 a001 17711/15127*167761^(3/10) 4324118410322865 a001 10946/64079*9349^(23/38) 4324118410335675 a001 17711/15127*439204^(5/18) 4324118410341886 a001 17711/15127*7881196^(5/22) 4324118410341900 a001 17711/15127*20633239^(3/14) 4324118410341902 a001 2255/13201*4106118243^(1/4) 4324118410341902 a001 17711/15127*2537720636^(1/6) 4324118410341902 a001 17711/15127*312119004989^(3/22) 4324118410341902 a001 17711/15127*28143753123^(3/20) 4324118410341902 a001 17711/15127*228826127^(3/16) 4324118410341903 a001 17711/15127*33385282^(5/24) 4324118410342214 a001 17711/15127*1860498^(1/4) 4324118410467604 a001 17711/15127*103682^(5/16) 4324118410514132 a001 46368/64079*9349^(17/38) 4324118410806259 a001 6624/2161*24476^(11/42) 4324118411281798 a001 17711/15127*39603^(15/44) 4324118411705862 a001 75025/15127*24476^(3/14) 4324118411783076 a001 2255/13201*39603^(23/44) 4324118411800284 a001 514229/15127*9349^(1/38) 4324118411809319 a001 75025/9349*3571^(7/34) 4324118411837245 a001 121393/15127*24476^(1/6) 4324118411917881 a001 28657/15127*24476^(13/42) 4324118412006190 a001 121393/103682*9349^(15/38) 4324118412262062 a001 196418/15127*24476^(5/42) 4324118412399872 a001 105937/90481*9349^(15/38) 4324118412457310 a001 832040/710647*9349^(15/38) 4324118412465690 a001 726103/620166*9349^(15/38) 4324118412467572 a001 75025/39603*9349^(13/38) 4324118412470869 a001 1346269/1149851*9349^(15/38) 4324118412492808 a001 514229/439204*9349^(15/38) 4324118412574798 a001 317811/15127*24476^(1/14) 4324118412643182 a001 196418/167761*9349^(15/38) 4324118412685478 a001 6765/103682*439204^(1/2) 4324118412696658 a001 6765/103682*7881196^(9/22) 4324118412696675 a001 6624/2161*7881196^(1/6) 4324118412696686 a001 6765/103682*2537720636^(3/10) 4324118412696686 a001 6765/103682*14662949395604^(3/14) 4324118412696686 a001 6765/103682*192900153618^(1/4) 4324118412696686 a001 6624/2161*312119004989^(1/10) 4324118412696686 a001 6624/2161*1568397607^(1/8) 4324118412696688 a001 6765/103682*33385282^(3/8) 4324118412697248 a001 6765/103682*1860498^(9/20) 4324118412922949 a001 6765/103682*103682^(9/16) 4324118412930345 a001 514229/15127*24476^(1/42) 4324118412960721 a001 6765/7881196*167761^(9/10) 4324118412982818 a001 6765/710647*167761^(7/10) 4324118413040006 a001 2255/90481*3010349^(1/2) 4324118413040244 a001 121393/15127*20633239^(1/10) 4324118413040245 a001 2255/90481*9062201101803^(1/4) 4324118413040245 a001 121393/15127*17393796001^(1/14) 4324118413040245 a001 121393/15127*14662949395604^(1/18) 4324118413040245 a001 121393/15127*505019158607^(1/16) 4324118413040245 a001 121393/15127*599074578^(1/12) 4324118413041315 a001 121393/15127*710647^(1/8) 4324118413077757 a001 6765/33385282*439204^(17/18) 4324118413080321 a001 6765/7881196*439204^(5/6) 4324118413081493 a001 55/15126*439204^(13/18) 4324118413089124 a001 317811/15127*439204^(1/18) 4324118413090364 a001 6765/710647*20633239^(1/2) 4324118413090366 a001 317811/15127*7881196^(1/22) 4324118413090369 a001 6765/710647*2537720636^(7/18) 4324118413090369 a001 6765/710647*17393796001^(5/14) 4324118413090369 a001 6765/710647*312119004989^(7/22) 4324118413090369 a001 6765/710647*14662949395604^(5/18) 4324118413090369 a001 6765/710647*505019158607^(5/16) 4324118413090369 a001 6765/710647*28143753123^(7/20) 4324118413090369 a001 6765/710647*599074578^(5/12) 4324118413090369 a001 6765/710647*228826127^(7/16) 4324118413090369 a001 317811/15127*33385282^(1/24) 4324118413090432 a001 317811/15127*1860498^(1/20) 4324118413091098 a001 6765/710647*1860498^(7/12) 4324118413095721 a001 6765/710647*710647^(5/8) 4324118413097641 a001 55/15126*7881196^(13/22) 4324118413097682 a001 55/15126*141422324^(1/2) 4324118413097682 a001 55/15126*73681302247^(3/8) 4324118413097684 a001 55/15126*33385282^(13/24) 4324118413098494 a001 55/15126*1860498^(13/20) 4324118413098749 a001 6765/4870847*969323029^(1/2) 4324118413098865 a001 2255/199691526*7881196^(21/22) 4324118413098871 a001 6765/141422324*7881196^(19/22) 4324118413098873 a001 2255/29134601*7881196^(5/6) 4324118413098874 a001 6765/33385282*7881196^(17/22) 4324118413098905 a001 2255/4250681*6643838879^(1/2) 4324118413098922 a001 6765/969323029*20633239^(13/14) 4324118413098922 a001 2255/199691526*20633239^(9/10) 4324118413098923 a001 2255/29134601*20633239^(11/14) 4324118413098928 a001 6765/33385282*45537549124^(1/2) 4324118413098930 a001 6765/33385282*33385282^(17/24) 4324118413098931 a001 2255/29134601*2537720636^(11/18) 4324118413098931 a001 2255/29134601*312119004989^(1/2) 4324118413098931 a001 2255/29134601*3461452808002^(11/24) 4324118413098931 a001 2255/29134601*28143753123^(11/20) 4324118413098931 a001 2255/29134601*1568397607^(5/8) 4324118413098931 a001 2255/29134601*228826127^(11/16) 4324118413098931 a001 6765/969323029*141422324^(5/6) 4324118413098931 a001 6765/228826127*2139295485799^(1/2) 4324118413098931 a001 2255/199691526*2537720636^(7/10) 4324118413098931 a001 2255/199691526*17393796001^(9/14) 4324118413098931 a001 2255/199691526*14662949395604^(1/2) 4324118413098931 a001 2255/199691526*505019158607^(9/16) 4324118413098931 a001 2255/199691526*192900153618^(7/12) 4324118413098931 a001 2255/199691526*599074578^(3/4) 4324118413098931 a001 6765/119218851371*2537720636^(17/18) 4324118413098931 a001 6765/45537549124*2537720636^(9/10) 4324118413098931 a001 6765/10749957122*2537720636^(5/6) 4324118413098931 a001 6765/10749957122*312119004989^(15/22) 4324118413098931 a001 6765/10749957122*3461452808002^(5/8) 4324118413098931 a001 6765/10749957122*28143753123^(3/4) 4324118413098931 a001 6765/505019158607*17393796001^(13/14) 4324118413098931 a001 6765/119218851371*45537549124^(5/6) 4324118413098931 a001 2255/64300051206*1322157322203^(3/4) 4324118413098931 a001 2255/440719107401*312119004989^(19/22) 4324118413098931 a001 6765/3461452808002*312119004989^(9/10) 4324118413098931 a001 2255/440719107401*817138163596^(5/6) 4324118413098931 a001 2255/440719107401*3461452808002^(19/24) 4324118413098931 a001 6765/14662949395604*505019158607^(15/16) 4324118413098931 a001 6765/3461452808002*192900153618^(11/12) 4324118413098931 a001 6765/119218851371*312119004989^(17/22) 4324118413098931 a001 6765/119218851371*3461452808002^(17/24) 4324118413098931 a001 6765/505019158607*73681302247^(7/8) 4324118413098931 a001 6765/45537549124*14662949395604^(9/14) 4324118413098931 a001 6765/45537549124*192900153618^(3/4) 4324118413098931 a001 6765/17393796001*17393796001^(11/14) 4324118413098931 a001 6765/119218851371*28143753123^(17/20) 4324118413098931 a001 2255/440719107401*28143753123^(19/20) 4324118413098931 a001 6765/17393796001*14662949395604^(11/18) 4324118413098931 a001 6765/17393796001*505019158607^(11/16) 4324118413098931 a001 615/230701876*4106118243^(3/4) 4324118413098931 a001 6765/17393796001*1568397607^(7/8) 4324118413098931 a001 6765/969323029*2537720636^(13/18) 4324118413098931 a001 6765/969323029*312119004989^(13/22) 4324118413098931 a001 6765/969323029*3461452808002^(13/24) 4324118413098931 a001 6765/969323029*73681302247^(5/8) 4324118413098931 a001 6765/969323029*28143753123^(13/20) 4324118413098931 a001 6765/17393796001*599074578^(11/12) 4324118413098931 a001 6765/370248451*5600748293801^(1/2) 4324118413098931 a001 6765/969323029*228826127^(13/16) 4324118413098931 a001 6765/10749957122*228826127^(15/16) 4324118413098932 a001 6765/141422324*817138163596^(1/2) 4324118413098932 a001 6765/141422324*87403803^(3/4) 4324118413098933 a001 6765/54018521*119218851371^(1/2) 4324118413098934 a001 615/1875749*20633239^(7/10) 4324118413098935 a001 6765/141422324*33385282^(19/24) 4324118413098935 a001 2255/199691526*33385282^(7/8) 4324118413098935 a001 615/230701876*33385282^(23/24) 4324118413098942 a001 615/1875749*17393796001^(1/2) 4324118413098942 a001 615/1875749*14662949395604^(7/18) 4324118413098942 a001 615/1875749*505019158607^(7/16) 4324118413098942 a001 615/1875749*599074578^(7/12) 4324118413098947 a001 6765/33385282*12752043^(3/4) 4324118413098954 a001 6765/7881196*7881196^(15/22) 4324118413098994 a001 6765/7881196*20633239^(9/14) 4324118413099001 a001 6765/7881196*2537720636^(1/2) 4324118413099001 a001 6765/7881196*312119004989^(9/22) 4324118413099001 a001 6765/7881196*14662949395604^(5/14) 4324118413099001 a001 6765/7881196*192900153618^(5/12) 4324118413099001 a001 6765/7881196*28143753123^(9/20) 4324118413099001 a001 6765/7881196*228826127^(9/16) 4324118413099003 a001 6765/7881196*33385282^(5/8) 4324118413099409 a001 6765/3010349*370248451^(1/2) 4324118413099938 a001 6765/7881196*1860498^(3/4) 4324118413099989 a001 6765/33385282*1860498^(17/20) 4324118413100076 a001 2255/29134601*1860498^(11/12) 4324118413100118 a001 6765/141422324*1860498^(19/20) 4324118413102201 a001 6765/1149851*54018521^(1/2) 4324118413105983 a001 196418/15127*167761^(1/10) 4324118413106434 a001 615/1875749*710647^(7/8) 4324118413107649 a001 6765/439204*439204^(11/18) 4324118413110106 a001 4181/5778*5778^(17/36) 4324118413115510 a001 317811/15127*103682^(1/16) 4324118413121313 a001 6765/439204*7881196^(1/2) 4324118413121347 a001 196418/15127*20633239^(1/14) 4324118413121348 a001 6765/439204*312119004989^(3/10) 4324118413121348 a001 6765/439204*1568397607^(3/8) 4324118413121348 a001 196418/15127*2537720636^(1/18) 4324118413121348 a001 196418/15127*312119004989^(1/22) 4324118413121348 a001 196418/15127*28143753123^(1/20) 4324118413121348 a001 196418/15127*228826127^(1/16) 4324118413121350 a001 6765/439204*33385282^(11/24) 4324118413121452 a001 196418/15127*1860498^(1/12) 4324118413122035 a001 6765/439204*1860498^(11/20) 4324118413141697 a001 55/15126*271443^(3/4) 4324118413164862 a001 514229/15127*39603^(1/44) 4324118413248839 a001 75025/15127*439204^(1/6) 4324118413250940 a001 615/15251*1149851^(1/2) 4324118413252566 a001 75025/15127*7881196^(3/22) 4324118413252575 a001 615/15251*1322157322203^(1/4) 4324118413252575 a001 75025/15127*2537720636^(1/10) 4324118413252575 a001 75025/15127*14662949395604^(1/14) 4324118413252575 a001 75025/15127*192900153618^(1/12) 4324118413252576 a001 75025/15127*33385282^(1/8) 4324118413252763 a001 75025/15127*1860498^(3/20) 4324118413278348 a001 317811/15127*39603^(3/44) 4324118413327996 a001 75025/15127*103682^(3/16) 4324118413385944 a001 6624/2161*39603^(1/4) 4324118413397891 a001 6765/439204*103682^(11/16) 4324118413424506 a001 55/15126*103682^(13/16) 4324118413434647 a001 196418/15127*39603^(5/44) 4324118413476106 a001 6765/7881196*103682^(15/16) 4324118413478863 a001 121393/15127*39603^(7/44) 4324118413574626 a001 514229/15127*15127^(1/40) 4324118413604519 a001 1292/51841*5778^(31/36) 4324118413673857 a001 75025/64079*9349^(15/38) 4324118413816513 a001 75025/15127*39603^(9/44) 4324118414075201 a001 6765/64079*167761^(1/2) 4324118414152019 a001 6765/64079*20633239^(5/14) 4324118414152023 a001 6765/64079*2537720636^(5/18) 4324118414152023 a001 6765/64079*312119004989^(5/22) 4324118414152023 a001 6765/64079*3461452808002^(5/24) 4324118414152023 a001 6765/64079*28143753123^(1/4) 4324118414152023 a001 6765/64079*228826127^(5/16) 4324118414152023 a001 28657/15127*141422324^(1/6) 4324118414152023 a001 28657/15127*73681302247^(1/8) 4324118414152543 a001 6765/64079*1860498^(5/12) 4324118414166695 a001 28657/15127*271443^(1/4) 4324118414324253 a001 17711/24476*9349^(17/38) 4324118414388500 a001 6765/103682*39603^(27/44) 4324118414405844 g005 2*Pi/GAMMA(5/6)/GAMMA(7/10)/GAMMA(2/7)^2 4324118414507641 a001 317811/15127*15127^(3/40) 4324118414691129 a001 98209/51841*9349^(13/38) 4324118414859077 a001 121393/39603*9349^(11/38) 4324118414966600 a001 28657/15127*39603^(13/44) 4324118414982697 a001 2255/90481*39603^(31/44) 4324118415015541 a001 514229/271443*9349^(13/38) 4324118415062872 a001 1346269/710647*9349^(13/38) 4324118415069708 a001 615/15251*39603^(29/44) 4324118415074046 a001 2178309/1149851*9349^(13/38) 4324118415092125 a001 208010/109801*9349^(13/38) 4324118415189120 a001 6765/439204*39603^(3/4) 4324118415216039 a001 317811/167761*9349^(13/38) 4324118415283461 a001 6765/710647*39603^(35/44) 4324118415420613 a001 6765/1149851*39603^(37/44) 4324118415483468 a001 196418/15127*15127^(1/8) 4324118415541413 a001 55/15126*39603^(39/44) 4324118415668459 a001 6765/3010349*39603^(41/44) 4324118415718517 a001 6765/64079*39603^(25/44) 4324118415793119 a001 6765/4870847*39603^(43/44) 4324118416065362 a001 121393/64079*9349^(13/38) 4324118416347213 a001 121393/15127*15127^(7/40) 4324118416700027 a001 514229/15127*5778^(1/36) 4324118416707930 a001 6765/24476*24476^(1/2) 4324118417263986 a001 317811/103682*9349^(11/38) 4324118417395358 a001 10946/15127*24476^(17/42) 4324118417428262 a001 17711/15127*15127^(3/8) 4324118417504392 a001 75025/15127*15127^(9/40) 4324118417544017 a001 196418/39603*9349^(9/38) 4324118417614858 a001 832040/271443*9349^(11/38) 4324118417666049 a001 311187/101521*9349^(11/38) 4324118417697687 a001 1346269/439204*9349^(11/38) 4324118417831708 a001 514229/167761*9349^(11/38) 4324118417893351 a001 6624/2161*15127^(11/40) 4324118418750302 a001 196418/64079*9349^(11/38) 4324118418989453 r002 52th iterates of z^2 + 4324118419266040 a001 1346269/39603*3571^(1/34) 4324118419879655 a001 514229/103682*9349^(9/38) 4324118420116874 a001 105937/13201*9349^(7/38) 4324118420220420 a001 1346269/271443*9349^(9/38) 4324118420293535 a001 28657/15127*15127^(13/40) 4324118420300864 a001 2178309/439204*9349^(9/38) 4324118420308211 a001 6765/24476*439204^(7/18) 4324118420316906 a001 6765/24476*7881196^(7/22) 4324118420316925 a001 6765/24476*20633239^(3/10) 4324118420316928 a001 6765/24476*17393796001^(3/14) 4324118420316928 a001 6765/24476*14662949395604^(1/6) 4324118420316928 a001 6765/24476*599074578^(1/4) 4324118420316928 a001 10946/15127*45537549124^(1/6) 4324118420316929 a001 6765/24476*33385282^(7/24) 4324118420316935 a001 10946/15127*12752043^(1/4) 4324118420317365 a001 6765/24476*1860498^(7/20) 4324118420320139 a001 6765/24476*710647^(3/8) 4324118420431025 a001 75640/15251*9349^(9/38) 4324118420492911 a001 6765/24476*103682^(7/16) 4324118420738210 a001 28657/24476*9349^(15/38) 4324118421207655 a001 2255/13201*15127^(23/40) 4324118421323159 a001 317811/64079*9349^(9/38) 4324118421356058 a001 2584/167761*5778^(11/12) 4324118421382144 a001 10946/15127*39603^(17/44) 4324118421632783 a001 6765/24476*39603^(21/44) 4324118421695443 a001 5473/12238*9349^(1/2) 4324118421886709 a001 11592/6119*9349^(13/38) 4324118422417209 m001 1/exp(ArtinRank2)/FransenRobinson^2/Zeta(1/2) 4324118422478972 a001 416020/51841*9349^(7/38) 4324118422536255 a001 17711/4870847*24476^(13/14) 4324118422732543 a001 514229/39603*9349^(5/38) 4324118422823597 a001 726103/90481*9349^(7/38) 4324118422880629 a001 17711/3010349*24476^(37/42) 4324118423036587 a001 1346269/167761*9349^(7/38) 4324118423075501 a001 2178309/64079*3571^(1/34) 4324118423216549 a001 17711/39603*24476^(19/42) 4324118423222616 a001 17711/1860498*24476^(5/6) 4324118423570850 a001 17711/1149851*24476^(11/14) 4324118423883844 a001 317811/15127*5778^(1/12) 4324118423902732 a001 17711/710647*24476^(31/42) 4324118423938828 a001 514229/64079*9349^(7/38) 4324118424277424 a001 17711/439204*24476^(29/42) 4324118424540035 a001 17711/271443*24476^(9/14) 4324118424883905 a001 17711/103682*24476^(23/42) 4324118424891195 a001 15456/4250681*24476^(13/14) 4324118425046435 a001 75025/24476*9349^(11/38) 4324118425084534 a001 1346269/103682*9349^(5/38) 4324118425096080 a001 17711/167761*24476^(25/42) 4324118425234776 a001 121393/33385282*24476^(13/14) 4324118425284904 a001 105937/29134601*24476^(13/14) 4324118425292218 a001 832040/228826127*24476^(13/14) 4324118425293285 a001 726103/199691526*24476^(13/14) 4324118425293440 a001 5702887/1568397607*24476^(13/14) 4324118425293463 a001 4976784/1368706081*24476^(13/14) 4324118425293466 a001 39088169/10749957122*24476^(13/14) 4324118425293467 a001 831985/228811001*24476^(13/14) 4324118425293467 a001 267914296/73681302247*24476^(13/14) 4324118425293467 a001 233802911/64300051206*24476^(13/14) 4324118425293467 a001 1836311903/505019158607*24476^(13/14) 4324118425293467 a001 1602508992/440719107401*24476^(13/14) 4324118425293467 a001 12586269025/3461452808002*24476^(13/14) 4324118425293467 a001 10983760033/3020733700601*24476^(13/14) 4324118425293467 a001 86267571272/23725150497407*24476^(13/14) 4324118425293467 a001 53316291173/14662949395604*24476^(13/14) 4324118425293467 a001 20365011074/5600748293801*24476^(13/14) 4324118425293467 a001 7778742049/2139295485799*24476^(13/14) 4324118425293467 a001 2971215073/817138163596*24476^(13/14) 4324118425293467 a001 1134903170/312119004989*24476^(13/14) 4324118425293467 a001 433494437/119218851371*24476^(13/14) 4324118425293467 a001 165580141/45537549124*24476^(13/14) 4324118425293467 a001 63245986/17393796001*24476^(13/14) 4324118425293468 a001 24157817/6643838879*24476^(13/14) 4324118425293477 a001 9227465/2537720636*24476^(13/14) 4324118425293536 a001 3524578/969323029*24476^(13/14) 4324118425293944 a001 1346269/370248451*24476^(13/14) 4324118425296738 a001 514229/141422324*24476^(13/14) 4324118425315885 a001 196418/54018521*24476^(13/14) 4324118425331860 a001 832040/39603*9349^(3/38) 4324118425447121 a001 75025/20633239*24476^(13/14) 4324118425452135 a001 6765/103682*15127^(27/40) 4324118425578468 a001 46368/4870847*24476^(5/6) 4324118425639764 a001 2178309/167761*9349^(5/38) 4324118425922182 a001 121393/12752043*24476^(5/6) 4324118425922841 a001 46368/3010349*24476^(11/14) 4324118425962624 a001 6765/64079*15127^(5/8) 4324118425972329 a001 317811/33385282*24476^(5/6) 4324118425979645 a001 832040/87403803*24476^(5/6) 4324118425980713 a001 46347/4868641*24476^(5/6) 4324118425980869 a001 5702887/599074578*24476^(5/6) 4324118425980891 a001 14930352/1568397607*24476^(5/6) 4324118425980895 a001 39088169/4106118243*24476^(5/6) 4324118425980895 a001 102334155/10749957122*24476^(5/6) 4324118425980895 a001 267914296/28143753123*24476^(5/6) 4324118425980895 a001 701408733/73681302247*24476^(5/6) 4324118425980895 a001 1836311903/192900153618*24476^(5/6) 4324118425980895 a001 102287808/10745088481*24476^(5/6) 4324118425980895 a001 12586269025/1322157322203*24476^(5/6) 4324118425980895 a001 32951280099/3461452808002*24476^(5/6) 4324118425980895 a001 86267571272/9062201101803*24476^(5/6) 4324118425980895 a001 225851433717/23725150497407*24476^(5/6) 4324118425980895 a001 139583862445/14662949395604*24476^(5/6) 4324118425980895 a001 53316291173/5600748293801*24476^(5/6) 4324118425980895 a001 20365011074/2139295485799*24476^(5/6) 4324118425980895 a001 7778742049/817138163596*24476^(5/6) 4324118425980895 a001 2971215073/312119004989*24476^(5/6) 4324118425980895 a001 1134903170/119218851371*24476^(5/6) 4324118425980895 a001 433494437/45537549124*24476^(5/6) 4324118425980895 a001 165580141/17393796001*24476^(5/6) 4324118425980895 a001 63245986/6643838879*24476^(5/6) 4324118425980897 a001 24157817/2537720636*24476^(5/6) 4324118425980905 a001 9227465/969323029*24476^(5/6) 4324118425980965 a001 3524578/370248451*24476^(5/6) 4324118425981373 a001 1346269/141422324*24476^(5/6) 4324118425984167 a001 514229/54018521*24476^(5/6) 4324118426003322 a001 196418/20633239*24476^(5/6) 4324118426134609 a001 75025/7881196*24476^(5/6) 4324118426258762 a001 15456/13201*24476^(5/14) 4324118426264829 a001 2576/103361*24476^(31/42) 4324118426265992 a001 121393/7881196*24476^(11/14) 4324118426316057 a001 10959/711491*24476^(11/14) 4324118426323362 a001 832040/54018521*24476^(11/14) 4324118426324427 a001 2178309/141422324*24476^(11/14) 4324118426324583 a001 5702887/370248451*24476^(11/14) 4324118426324605 a001 14930352/969323029*24476^(11/14) 4324118426324609 a001 39088169/2537720636*24476^(11/14) 4324118426324609 a001 102334155/6643838879*24476^(11/14) 4324118426324609 a001 9238424/599786069*24476^(11/14) 4324118426324609 a001 701408733/45537549124*24476^(11/14) 4324118426324609 a001 1836311903/119218851371*24476^(11/14) 4324118426324609 a001 4807526976/312119004989*24476^(11/14) 4324118426324609 a001 12586269025/817138163596*24476^(11/14) 4324118426324609 a001 32951280099/2139295485799*24476^(11/14) 4324118426324609 a001 86267571272/5600748293801*24476^(11/14) 4324118426324609 a001 7787980473/505618944676*24476^(11/14) 4324118426324609 a001 365435296162/23725150497407*24476^(11/14) 4324118426324609 a001 139583862445/9062201101803*24476^(11/14) 4324118426324609 a001 53316291173/3461452808002*24476^(11/14) 4324118426324609 a001 20365011074/1322157322203*24476^(11/14) 4324118426324609 a001 7778742049/505019158607*24476^(11/14) 4324118426324609 a001 2971215073/192900153618*24476^(11/14) 4324118426324609 a001 1134903170/73681302247*24476^(11/14) 4324118426324609 a001 433494437/28143753123*24476^(11/14) 4324118426324609 a001 165580141/10749957122*24476^(11/14) 4324118426324610 a001 63245986/4106118243*24476^(11/14) 4324118426324611 a001 24157817/1568397607*24476^(11/14) 4324118426324619 a001 9227465/599074578*24476^(11/14) 4324118426324679 a001 3524578/228826127*24476^(11/14) 4324118426325086 a001 1346269/87403803*24476^(11/14) 4324118426327876 a001 514229/33385282*24476^(11/14) 4324118426346628 a001 28657/7881196*24476^(13/14) 4324118426346999 a001 196418/12752043*24476^(11/14) 4324118426478071 a001 75025/4870847*24476^(11/14) 4324118426481834 a001 17711/39603*817138163596^(1/6) 4324118426481834 a001 17711/39603*87403803^(1/4) 4324118426538145 a001 832040/64079*9349^(5/38) 4324118426609454 a001 121393/4870847*24476^(31/42) 4324118426613063 a001 46368/1149851*24476^(29/42) 4324118426682956 a001 17711/64079*24476^(1/2) 4324118426690090 a001 28657/4870847*24476^(37/42) 4324118426822445 a001 75025/3010349*24476^(31/42) 4324118426944944 a001 6624/101521*24476^(9/14) 4324118426952872 a001 615/15251*15127^(29/40) 4324118426953828 a001 121393/3010349*24476^(29/42) 4324118427034272 a001 196418/4870847*24476^(29/42) 4324118427034464 a001 28657/3010349*24476^(5/6) 4324118427158365 a001 75025/39603*24476^(13/42) 4324118427164432 a001 75025/1860498*24476^(29/42) 4324118427289749 a001 121393/39603*24476^(11/42) 4324118427295816 a001 121393/1860498*24476^(9/14) 4324118427319637 a001 11592/109801*24476^(25/42) 4324118427347007 a001 317811/4870847*24476^(9/14) 4324118427354476 a001 832040/12752043*24476^(9/14) 4324118427355566 a001 311187/4769326*24476^(9/14) 4324118427355725 a001 5702887/87403803*24476^(9/14) 4324118427355748 a001 14930352/228826127*24476^(9/14) 4324118427355751 a001 39088169/599074578*24476^(9/14) 4324118427355752 a001 14619165/224056801*24476^(9/14) 4324118427355752 a001 267914296/4106118243*24476^(9/14) 4324118427355752 a001 701408733/10749957122*24476^(9/14) 4324118427355752 a001 1836311903/28143753123*24476^(9/14) 4324118427355752 a001 686789568/10525900321*24476^(9/14) 4324118427355752 a001 12586269025/192900153618*24476^(9/14) 4324118427355752 a001 32951280099/505019158607*24476^(9/14) 4324118427355752 a001 86267571272/1322157322203*24476^(9/14) 4324118427355752 a001 32264490531/494493258286*24476^(9/14) 4324118427355752 a001 1548008755920/23725150497407*24476^(9/14) 4324118427355752 a001 365435296162/5600748293801*24476^(9/14) 4324118427355752 a001 139583862445/2139295485799*24476^(9/14) 4324118427355752 a001 53316291173/817138163596*24476^(9/14) 4324118427355752 a001 20365011074/312119004989*24476^(9/14) 4324118427355752 a001 7778742049/119218851371*24476^(9/14) 4324118427355752 a001 2971215073/45537549124*24476^(9/14) 4324118427355752 a001 1134903170/17393796001*24476^(9/14) 4324118427355752 a001 433494437/6643838879*24476^(9/14) 4324118427355752 a001 165580141/2537720636*24476^(9/14) 4324118427355752 a001 63245986/969323029*24476^(9/14) 4324118427355753 a001 24157817/370248451*24476^(9/14) 4324118427355762 a001 9227465/141422324*24476^(9/14) 4324118427355823 a001 3524578/54018521*24476^(9/14) 4324118427356239 a001 1346269/20633239*24476^(9/14) 4324118427359092 a001 514229/7881196*24476^(9/14) 4324118427370384 a001 28657/39603*24476^(17/42) 4324118427376452 a001 28657/1860498*24476^(11/14) 4324118427378645 a001 196418/3010349*24476^(9/14) 4324118427437940 a001 121393/24476*9349^(9/38) 4324118427501402 a001 2584/9349*5778^(7/12) 4324118427512666 a001 75025/1149851*24476^(9/14) 4324118427582248 a001 15456/90481*24476^(23/42) 4324118427644050 a001 121393/1149851*24476^(25/42) 4324118427672369 a001 17711/39603*39603^(19/44) 4324118427685389 a001 2255/90481*15127^(31/40) 4324118427687711 a001 46347/2206*9349^(3/38) 4324118427691381 a001 317811/3010349*24476^(25/42) 4324118427702554 a001 514229/4870847*24476^(25/42) 4324118427714566 a001 196418/39603*24476^(3/14) 4324118427720633 a001 98209/930249*24476^(25/42) 4324118427724685 a001 28657/1149851*24476^(31/42) 4324118427844548 a001 75025/710647*24476^(25/42) 4324118427926118 a001 23184/51841*24476^(19/42) 4324118427937422 a001 1346269/39603*9349^(1/38) 4324118427975931 a001 121393/710647*24476^(23/42) 4324118428027301 a001 105937/13201*24476^(1/6) 4324118428033368 a001 105937/620166*24476^(23/42) 4324118428041748 a001 832040/4870847*24476^(23/42) 4324118428046928 a001 514229/3010349*24476^(23/42) 4324118428056567 a001 28657/710647*24476^(29/42) 4324118428068867 a001 196418/1149851*24476^(23/42) 4324118428138293 a001 46368/167761*24476^(1/2) 4324118428219240 a001 75025/439204*24476^(23/42) 4324118428310072 a001 17711/103682*64079^(1/2) 4324118428339377 a001 2584/271443*5778^(35/36) 4324118428348137 a001 10946/15127*15127^(17/40) 4324118428350624 a001 121393/439204*24476^(1/2) 4324118428381602 a001 317811/1149851*24476^(1/2) 4324118428382848 a001 514229/39603*24476^(5/42) 4324118428386122 a001 832040/3010349*24476^(1/2) 4324118428386781 a001 2178309/7881196*24476^(1/2) 4324118428386878 a001 5702887/20633239*24476^(1/2) 4324118428386892 a001 14930352/54018521*24476^(1/2) 4324118428386894 a001 39088169/141422324*24476^(1/2) 4324118428386894 a001 102334155/370248451*24476^(1/2) 4324118428386894 a001 267914296/969323029*24476^(1/2) 4324118428386894 a001 701408733/2537720636*24476^(1/2) 4324118428386894 a001 1836311903/6643838879*24476^(1/2) 4324118428386894 a001 4807526976/17393796001*24476^(1/2) 4324118428386894 a001 12586269025/45537549124*24476^(1/2) 4324118428386894 a001 32951280099/119218851371*24476^(1/2) 4324118428386894 a001 86267571272/312119004989*24476^(1/2) 4324118428386894 a001 225851433717/817138163596*24476^(1/2) 4324118428386894 a001 1548008755920/5600748293801*24476^(1/2) 4324118428386894 a001 139583862445/505019158607*24476^(1/2) 4324118428386894 a001 53316291173/192900153618*24476^(1/2) 4324118428386894 a001 20365011074/73681302247*24476^(1/2) 4324118428386894 a001 7778742049/28143753123*24476^(1/2) 4324118428386894 a001 2971215073/10749957122*24476^(1/2) 4324118428386894 a001 1134903170/4106118243*24476^(1/2) 4324118428386894 a001 433494437/1568397607*24476^(1/2) 4324118428386894 a001 165580141/599074578*24476^(1/2) 4324118428386894 a001 63245986/228826127*24476^(1/2) 4324118428386895 a001 24157817/87403803*24476^(1/2) 4324118428386900 a001 9227465/33385282*24476^(1/2) 4324118428386937 a001 3524578/12752043*24476^(1/2) 4324118428387189 a001 1346269/4870847*24476^(1/2) 4324118428388915 a001 514229/1860498*24476^(1/2) 4324118428400748 a001 196418/710647*24476^(1/2) 4324118428431260 a001 28657/439204*24476^(9/14) 4324118428481851 a001 75025/271443*24476^(1/2) 4324118428613235 a001 121393/271443*24476^(19/42) 4324118428693871 a001 28657/271443*24476^(25/42) 4324118428711341 a001 6765/439204*15127^(33/40) 4324118428713484 a001 317811/710647*24476^(19/42) 4324118428722043 a001 832040/39603*24476^(1/14) 4324118428728110 a001 416020/930249*24476^(19/42) 4324118428730244 a001 2178309/4870847*24476^(19/42) 4324118428731563 a001 1346269/3010349*24476^(19/42) 4324118428737149 a001 514229/1149851*24476^(19/42) 4324118428775441 a001 98209/219602*24476^(19/42) 4324118428790525 a001 15456/13201*167761^(3/10) 4324118428825721 a001 75025/103682*24476^(17/42) 4324118428830391 a001 15456/13201*439204^(5/18) 4324118428836602 a001 15456/13201*7881196^(5/22) 4324118428836616 a001 15456/13201*20633239^(3/14) 4324118428836618 a001 17711/103682*4106118243^(1/4) 4324118428836618 a001 15456/13201*2537720636^(1/6) 4324118428836618 a001 15456/13201*312119004989^(3/22) 4324118428836618 a001 15456/13201*28143753123^(3/20) 4324118428836618 a001 15456/13201*228826127^(3/16) 4324118428836619 a001 15456/13201*33385282^(5/24) 4324118428836930 a001 15456/13201*1860498^(1/4) 4324118428957105 a001 121393/103682*24476^(5/14) 4324118428962320 a001 15456/13201*103682^(5/16) 4324118429037740 a001 28657/103682*24476^(1/2) 4324118429037896 a001 75025/167761*24476^(19/42) 4324118429038052 a001 196418/271443*24476^(17/42) 4324118429067483 a001 1346269/39603*24476^(1/42) 4324118429069031 a001 514229/710647*24476^(17/42) 4324118429073550 a001 1346269/1860498*24476^(17/42) 4324118429074617 a001 2178309/3010349*24476^(17/42) 4324118429076344 a001 832040/1149851*24476^(17/42) 4324118429088176 a001 317811/439204*24476^(17/42) 4324118429100594 a001 17711/20633239*167761^(9/10) 4324118429130063 a001 17711/1860498*167761^(7/10) 4324118429143707 a001 1346269/64079*9349^(3/38) 4324118429168968 a001 17711/271443*439204^(1/2) 4324118429169280 a001 121393/167761*24476^(17/42) 4324118429180148 a001 17711/271443*7881196^(9/22) 4324118429180165 a001 121393/39603*7881196^(1/6) 4324118429180176 a001 17711/271443*2537720636^(3/10) 4324118429180176 a001 17711/271443*14662949395604^(3/14) 4324118429180176 a001 17711/271443*192900153618^(1/4) 4324118429180176 a001 121393/39603*312119004989^(1/10) 4324118429180176 a001 121393/39603*1568397607^(1/8) 4324118429180178 a001 17711/271443*33385282^(3/8) 4324118429180738 a001 17711/271443*1860498^(9/20) 4324118429217692 a001 17711/87403803*439204^(17/18) 4324118429220193 a001 17711/20633239*439204^(5/6) 4324118429222491 a001 17711/4870847*439204^(13/18) 4324118429226769 a001 514229/39603*167761^(1/10) 4324118429228435 a001 17711/1149851*439204^(11/18) 4324118429230062 a001 17711/710647*3010349^(1/2) 4324118429230300 a001 105937/13201*20633239^(1/10) 4324118429230301 a001 17711/710647*9062201101803^(1/4) 4324118429230301 a001 105937/13201*17393796001^(1/14) 4324118429230301 a001 105937/13201*14662949395604^(1/18) 4324118429230301 a001 105937/13201*599074578^(1/12) 4324118429231371 a001 105937/13201*710647^(1/8) 4324118429236368 a001 832040/39603*439204^(1/18) 4324118429237609 a001 17711/1860498*20633239^(1/2) 4324118429237611 a001 832040/39603*7881196^(1/22) 4324118429237614 a001 17711/1860498*2537720636^(7/18) 4324118429237614 a001 17711/1860498*17393796001^(5/14) 4324118429237614 a001 17711/1860498*312119004989^(7/22) 4324118429237614 a001 17711/1860498*14662949395604^(5/18) 4324118429237614 a001 17711/1860498*505019158607^(5/16) 4324118429237614 a001 17711/1860498*28143753123^(7/20) 4324118429237614 a001 17711/1860498*599074578^(5/12) 4324118429237614 a001 17711/1860498*228826127^(7/16) 4324118429237614 a001 832040/39603*33385282^(1/24) 4324118429237676 a001 832040/39603*1860498^(1/20) 4324118429238343 a001 17711/1860498*1860498^(7/12) 4324118429238640 a001 17711/4870847*7881196^(13/22) 4324118429238681 a001 17711/4870847*141422324^(1/2) 4324118429238681 a001 17711/4870847*73681302247^(3/8) 4324118429238683 a001 17711/4870847*33385282^(13/24) 4324118429238797 a001 17711/1568397607*7881196^(21/22) 4324118429238803 a001 17711/370248451*7881196^(19/22) 4324118429238805 a001 17711/228826127*7881196^(5/6) 4324118429238809 a001 17711/87403803*7881196^(17/22) 4324118429238826 a001 17711/20633239*7881196^(15/22) 4324118429238836 a001 17711/12752043*969323029^(1/2) 4324118429238854 a001 17711/2537720636*20633239^(13/14) 4324118429238854 a001 17711/1568397607*20633239^(9/10) 4324118429238855 a001 17711/228826127*20633239^(11/14) 4324118429238857 a001 17711/54018521*20633239^(7/10) 4324118429238859 a001 17711/33385282*6643838879^(1/2) 4324118429238863 a001 17711/87403803*45537549124^(1/2) 4324118429238863 a001 17711/2537720636*141422324^(5/6) 4324118429238863 a001 17711/228826127*2537720636^(11/18) 4324118429238863 a001 17711/228826127*312119004989^(1/2) 4324118429238863 a001 17711/228826127*3461452808002^(11/24) 4324118429238863 a001 17711/228826127*28143753123^(11/20) 4324118429238863 a001 17711/228826127*1568397607^(5/8) 4324118429238863 a001 17711/228826127*228826127^(11/16) 4324118429238863 a001 17711/599074578*2139295485799^(1/2) 4324118429238863 a001 17711/1568397607*2537720636^(7/10) 4324118429238863 a001 17711/1568397607*17393796001^(9/14) 4324118429238863 a001 17711/1568397607*14662949395604^(1/2) 4324118429238863 a001 17711/1568397607*505019158607^(9/16) 4324118429238863 a001 17711/1568397607*192900153618^(7/12) 4324118429238863 a001 89/1568437211*2537720636^(17/18) 4324118429238863 a001 17711/119218851371*2537720636^(9/10) 4324118429238863 a001 17711/28143753123*2537720636^(5/6) 4324118429238863 a001 17711/1322157322203*17393796001^(13/14) 4324118429238863 a001 17711/45537549124*17393796001^(11/14) 4324118429238863 a001 17711/28143753123*312119004989^(15/22) 4324118429238863 a001 17711/28143753123*3461452808002^(5/8) 4324118429238863 a001 89/1568437211*45537549124^(5/6) 4324118429238863 a001 17711/28143753123*28143753123^(3/4) 4324118429238863 a001 17711/9062201101803*312119004989^(9/10) 4324118429238863 a001 17711/3461452808002*312119004989^(19/22) 4324118429238863 a001 17711/1322157322203*14662949395604^(13/18) 4324118429238863 a001 17711/2139295485799*9062201101803^(3/4) 4324118429238863 a001 89/1568437211*312119004989^(17/22) 4324118429238863 a001 17711/1322157322203*505019158607^(13/16) 4324118429238863 a001 89/1568437211*3461452808002^(17/24) 4324118429238863 a001 17711/9062201101803*192900153618^(11/12) 4324118429238863 a001 17711/119218851371*14662949395604^(9/14) 4324118429238863 a001 17711/119218851371*192900153618^(3/4) 4324118429238863 a001 17711/1322157322203*73681302247^(7/8) 4324118429238863 a001 17711/45537549124*14662949395604^(11/18) 4324118429238863 a001 17711/45537549124*505019158607^(11/16) 4324118429238863 a001 89/1568437211*28143753123^(17/20) 4324118429238863 a001 17711/3461452808002*28143753123^(19/20) 4324118429238863 a001 17711/2537720636*2537720636^(13/18) 4324118429238863 a001 17711/6643838879*4106118243^(3/4) 4324118429238863 a001 17711/2537720636*312119004989^(13/22) 4324118429238863 a001 17711/2537720636*3461452808002^(13/24) 4324118429238863 a001 17711/2537720636*73681302247^(5/8) 4324118429238863 a001 17711/2537720636*28143753123^(13/20) 4324118429238863 a001 17711/45537549124*1568397607^(7/8) 4324118429238863 a006 5^(1/2)*Fibonacci(63/2)/Lucas(22)/sqrt(5) 4324118429238863 a001 17711/969323029*5600748293801^(1/2) 4324118429238863 a001 17711/1568397607*599074578^(3/4) 4324118429238863 a001 17711/45537549124*599074578^(11/12) 4324118429238863 a001 17711/370248451*817138163596^(1/2) 4324118429238863 a001 17711/2537720636*228826127^(13/16) 4324118429238863 a001 17711/28143753123*228826127^(15/16) 4324118429238863 a001 17711/141422324*119218851371^(1/2) 4324118429238864 a001 17711/370248451*87403803^(3/4) 4324118429238865 a001 17711/54018521*17393796001^(1/2) 4324118429238865 a001 17711/54018521*14662949395604^(7/18) 4324118429238865 a001 17711/54018521*505019158607^(7/16) 4324118429238865 a001 17711/54018521*599074578^(7/12) 4324118429238865 a001 17711/87403803*33385282^(17/24) 4324118429238866 a001 17711/370248451*33385282^(19/24) 4324118429238866 a001 17711/1568397607*33385282^(7/8) 4324118429238867 a001 17711/20633239*20633239^(9/14) 4324118429238867 a001 17711/6643838879*33385282^(23/24) 4324118429238873 a001 17711/20633239*2537720636^(1/2) 4324118429238873 a001 17711/20633239*312119004989^(9/22) 4324118429238873 a001 17711/20633239*14662949395604^(5/14) 4324118429238873 a001 17711/20633239*192900153618^(5/12) 4324118429238873 a001 17711/20633239*28143753123^(9/20) 4324118429238873 a001 17711/20633239*228826127^(9/16) 4324118429238876 a001 17711/20633239*33385282^(5/8) 4324118429238882 a001 17711/87403803*12752043^(3/4) 4324118429238933 a001 89/39604*370248451^(1/2) 4324118429239158 a006 5^(1/2)*fibonacci(63/2)/Lucas(22)/sqrt(5) 4324118429239339 a001 17711/3010349*54018521^(1/2) 4324118429239340 a001 208010/6119*3571^(1/34) 4324118429239493 a001 17711/4870847*1860498^(13/20) 4324118429239810 a001 17711/20633239*1860498^(3/4) 4324118429239924 a001 17711/87403803*1860498^(17/20) 4324118429240008 a001 17711/228826127*1860498^(11/12) 4324118429240050 a001 17711/370248451*1860498^(19/20) 4324118429242099 a001 17711/1149851*7881196^(1/2) 4324118429242133 a001 514229/39603*20633239^(1/14) 4324118429242134 a001 17711/1149851*312119004989^(3/10) 4324118429242134 a001 17711/1149851*1568397607^(3/8) 4324118429242134 a001 514229/39603*2537720636^(1/18) 4324118429242134 a001 514229/39603*312119004989^(1/22) 4324118429242134 a001 514229/39603*28143753123^(1/20) 4324118429242134 a001 514229/39603*228826127^(1/16) 4324118429242135 a001 17711/1149851*33385282^(11/24) 4324118429242238 a001 514229/39603*1860498^(1/12) 4324118429242821 a001 17711/1149851*1860498^(11/20) 4324118429242965 a001 17711/1860498*710647^(5/8) 4324118429246357 a001 17711/54018521*710647^(7/8) 4324118429249916 a001 28657/167761*24476^(23/42) 4324118429257543 a001 196418/39603*439204^(1/6) 4324118429259644 a001 17711/439204*1149851^(1/2) 4324118429261270 a001 196418/39603*7881196^(3/22) 4324118429261279 a001 17711/439204*1322157322203^(1/4) 4324118429261279 a001 196418/39603*2537720636^(1/10) 4324118429261279 a001 196418/39603*14662949395604^(1/14) 4324118429261279 a001 196418/39603*192900153618^(1/12) 4324118429261280 a001 196418/39603*33385282^(1/8) 4324118429261467 a001 196418/39603*1860498^(3/20) 4324118429262754 a001 832040/39603*103682^(1/16) 4324118429282696 a001 17711/4870847*271443^(3/4) 4324118429302000 a001 1346269/39603*39603^(1/44) 4324118429315685 a001 17711/167761*167761^(1/2) 4324118429336700 a001 196418/39603*103682^(3/16) 4324118429350787 a001 105937/90481*24476^(5/14) 4324118429381922 a001 98209/51841*24476^(13/42) 4324118429392503 a001 17711/167761*20633239^(5/14) 4324118429392507 a001 75025/39603*141422324^(1/6) 4324118429392507 a001 17711/167761*2537720636^(5/18) 4324118429392507 a001 17711/167761*312119004989^(5/22) 4324118429392507 a001 17711/167761*3461452808002^(5/24) 4324118429392507 a001 17711/167761*28143753123^(1/4) 4324118429392507 a001 75025/39603*73681302247^(1/8) 4324118429392507 a001 17711/167761*228826127^(5/16) 4324118429393028 a001 17711/167761*1860498^(5/12) 4324118429406439 a001 17711/271443*103682^(9/16) 4324118429407179 a001 75025/39603*271443^(1/4) 4324118429408225 a001 832040/710647*24476^(5/14) 4324118429416605 a001 726103/620166*24476^(5/14) 4324118429417828 a001 5702887/4870847*24476^(5/14) 4324118429418006 a001 4976784/4250681*24476^(5/14) 4324118429418032 a001 39088169/33385282*24476^(5/14) 4324118429418036 a001 34111385/29134601*24476^(5/14) 4324118429418036 a001 267914296/228826127*24476^(5/14) 4324118429418037 a001 233802911/199691526*24476^(5/14) 4324118429418037 a001 1836311903/1568397607*24476^(5/14) 4324118429418037 a001 1602508992/1368706081*24476^(5/14) 4324118429418037 a001 12586269025/10749957122*24476^(5/14) 4324118429418037 a001 10983760033/9381251041*24476^(5/14) 4324118429418037 a001 86267571272/73681302247*24476^(5/14) 4324118429418037 a001 75283811239/64300051206*24476^(5/14) 4324118429418037 a001 2504730781961/2139295485799*24476^(5/14) 4324118429418037 a001 365435296162/312119004989*24476^(5/14) 4324118429418037 a001 139583862445/119218851371*24476^(5/14) 4324118429418037 a001 53316291173/45537549124*24476^(5/14) 4324118429418037 a001 20365011074/17393796001*24476^(5/14) 4324118429418037 a001 7778742049/6643838879*24476^(5/14) 4324118429418037 a001 2971215073/2537720636*24476^(5/14) 4324118429418037 a001 1134903170/969323029*24476^(5/14) 4324118429418037 a001 433494437/370248451*24476^(5/14) 4324118429418037 a001 165580141/141422324*24476^(5/14) 4324118429418038 a001 63245986/54018521*24476^(5/14) 4324118429418048 a001 24157817/20633239*24476^(5/14) 4324118429418116 a001 9227465/7881196*24476^(5/14) 4324118429418583 a001 3524578/3010349*24476^(5/14) 4324118429421784 a001 1346269/1149851*24476^(5/14) 4324118429425593 a001 832040/39603*39603^(3/44) 4324118429443723 a001 514229/439204*24476^(5/14) 4324118429518677 a001 17711/1149851*103682^(11/16) 4324118429555432 a001 514229/39603*39603^(5/44) 4324118429565505 a001 17711/4870847*103682^(13/16) 4324118429594097 a001 196418/167761*24476^(5/14) 4324118429615978 a001 17711/20633239*103682^(15/16) 4324118429625210 a001 6765/710647*15127^(7/8) 4324118429668919 a001 105937/13201*39603^(7/44) 4324118429694657 a001 317811/103682*24476^(11/42) 4324118429706334 a001 514229/271443*24476^(13/42) 4324118429711764 a001 1346269/39603*15127^(1/40) 4324118429725169 a001 46368/64079*24476^(17/42) 4324118429753666 a001 1346269/710647*24476^(13/42) 4324118429764839 a001 2178309/1149851*24476^(13/42) 4324118429776514 a001 15456/13201*39603^(15/44) 4324118429782918 a001 208010/109801*24476^(13/42) 4324118429825217 a001 196418/39603*39603^(9/44) 4324118429869434 a001 121393/39603*39603^(1/4) 4324118429906832 a001 317811/167761*24476^(13/42) 4324118430045529 a001 832040/271443*24476^(11/42) 4324118430050204 a001 514229/103682*24476^(3/14) 4324118430096720 a001 311187/101521*24476^(11/42) 4324118430122879 a001 98209/12238*9349^(7/38) 4324118430128358 a001 1346269/439204*24476^(11/42) 4324118430207084 a001 75025/39603*39603^(13/44) 4324118430237833 a001 6765/24476*15127^(21/40) 4324118430262379 a001 514229/167761*24476^(11/42) 4324118430277792 a001 17711/103682*39603^(23/44) 4324118430283237 a001 17711/64079*439204^(7/18) 4324118430291932 a001 17711/64079*7881196^(7/22) 4324118430291952 a001 17711/64079*20633239^(3/10) 4324118430291955 a001 17711/64079*17393796001^(3/14) 4324118430291955 a001 17711/64079*14662949395604^(1/6) 4324118430291955 a001 28657/39603*45537549124^(1/6) 4324118430291955 a001 17711/64079*599074578^(1/4) 4324118430291956 a001 17711/64079*33385282^(7/24) 4324118430291961 a001 28657/39603*12752043^(1/4) 4324118430292392 a001 17711/64079*1860498^(7/20) 4324118430295165 a001 17711/64079*710647^(3/8) 4324118430389399 a001 416020/51841*24476^(1/6) 4324118430390969 a001 1346269/271443*24476^(3/14) 4324118430440686 a001 3524578/710647*24476^(3/14) 4324118430447940 a001 9227465/1860498*24476^(3/14) 4324118430448998 a001 24157817/4870847*24476^(3/14) 4324118430449153 a001 63245986/12752043*24476^(3/14) 4324118430449175 a001 165580141/33385282*24476^(3/14) 4324118430449178 a001 433494437/87403803*24476^(3/14) 4324118430449179 a001 1134903170/228826127*24476^(3/14) 4324118430449179 a001 2971215073/599074578*24476^(3/14) 4324118430449179 a001 7778742049/1568397607*24476^(3/14) 4324118430449179 a001 20365011074/4106118243*24476^(3/14) 4324118430449179 a001 53316291173/10749957122*24476^(3/14) 4324118430449179 a001 139583862445/28143753123*24476^(3/14) 4324118430449179 a001 365435296162/73681302247*24476^(3/14) 4324118430449179 a001 956722026041/192900153618*24476^(3/14) 4324118430449179 a001 2504730781961/505019158607*24476^(3/14) 4324118430449179 a001 10610209857723/2139295485799*24476^(3/14) 4324118430449179 a001 4052739537881/817138163596*24476^(3/14) 4324118430449179 a001 140728068720/28374454999*24476^(3/14) 4324118430449179 a001 591286729879/119218851371*24476^(3/14) 4324118430449179 a001 225851433717/45537549124*24476^(3/14) 4324118430449179 a001 86267571272/17393796001*24476^(3/14) 4324118430449179 a001 32951280099/6643838879*24476^(3/14) 4324118430449179 a001 1144206275/230701876*24476^(3/14) 4324118430449179 a001 4807526976/969323029*24476^(3/14) 4324118430449179 a001 1836311903/370248451*24476^(3/14) 4324118430449179 a001 701408733/141422324*24476^(3/14) 4324118430449180 a001 267914296/54018521*24476^(3/14) 4324118430449189 a001 9303105/1875749*24476^(3/14) 4324118430449248 a001 39088169/7881196*24476^(3/14) 4324118430449652 a001 14930352/3010349*24476^(3/14) 4324118430452423 a001 5702887/1149851*24476^(3/14) 4324118430467937 a001 17711/64079*103682^(7/16) 4324118430471413 a001 2178309/439204*24476^(3/14) 4324118430581891 a001 6765/1149851*15127^(37/40) 4324118430601574 a001 75640/15251*24476^(3/14) 4324118430624772 a001 75025/64079*24476^(5/14) 4324118430654886 a001 832040/39603*15127^(3/40) 4324118430734024 a001 726103/90481*24476^(1/6) 4324118430734839 a001 1346269/103682*24476^(5/42) 4324118430756155 a001 121393/64079*24476^(13/42) 4324118430784304 a001 5702887/710647*24476^(1/6) 4324118430791640 a001 829464/103361*24476^(1/6) 4324118430792710 a001 39088169/4870847*24476^(1/6) 4324118430792866 a001 34111385/4250681*24476^(1/6) 4324118430792889 a001 133957148/16692641*24476^(1/6) 4324118430792892 a001 233802911/29134601*24476^(1/6) 4324118430792893 a001 1836311903/228826127*24476^(1/6) 4324118430792893 a001 267084832/33281921*24476^(1/6) 4324118430792893 a001 12586269025/1568397607*24476^(1/6) 4324118430792893 a001 10983760033/1368706081*24476^(1/6) 4324118430792893 a001 43133785636/5374978561*24476^(1/6) 4324118430792893 a001 75283811239/9381251041*24476^(1/6) 4324118430792893 a001 591286729879/73681302247*24476^(1/6) 4324118430792893 a001 86000486440/10716675201*24476^(1/6) 4324118430792893 a001 4052739537881/505019158607*24476^(1/6) 4324118430792893 a001 3278735159921/408569081798*24476^(1/6) 4324118430792893 a001 2504730781961/312119004989*24476^(1/6) 4324118430792893 a001 956722026041/119218851371*24476^(1/6) 4324118430792893 a001 182717648081/22768774562*24476^(1/6) 4324118430792893 a001 139583862445/17393796001*24476^(1/6) 4324118430792893 a001 53316291173/6643838879*24476^(1/6) 4324118430792893 a001 10182505537/1268860318*24476^(1/6) 4324118430792893 a001 7778742049/969323029*24476^(1/6) 4324118430792893 a001 2971215073/370248451*24476^(1/6) 4324118430792893 a001 567451585/70711162*24476^(1/6) 4324118430792895 a001 433494437/54018521*24476^(1/6) 4324118430792903 a001 165580141/20633239*24476^(1/6) 4324118430792963 a001 31622993/3940598*24476^(1/6) 4324118430793372 a001 24157817/3010349*24476^(1/6) 4324118430796174 a001 9227465/1149851*24476^(1/6) 4324118430815379 a001 1762289/219602*24476^(1/6) 4324118430836791 a001 28657/64079*24476^(19/42) 4324118430871990 a001 17711/271443*39603^(27/44) 4324118430947014 a001 1346269/167761*24476^(1/6) 4324118430959001 a001 17711/167761*39603^(25/44) 4324118431008415 a001 15456/90481*64079^(1/2) 4324118431077894 a001 46347/2206*24476^(1/14) 4324118431078412 a001 17711/439204*39603^(29/44) 4324118431110472 a001 196418/15127*5778^(5/36) 4324118431172753 a001 17711/710647*39603^(31/44) 4324118431180973 a001 196418/64079*24476^(11/42) 4324118431191402 a001 23184/51841*817138163596^(1/6) 4324118431191402 a001 23184/51841*87403803^(1/4) 4324118431290069 a001 2178309/167761*24476^(5/42) 4324118431309906 a001 17711/1149851*39603^(3/4) 4324118431357171 a001 28657/39603*39603^(17/44) 4324118431402098 a001 121393/710647*64079^(1/2) 4324118431421608 a001 5702887/271443*24476^(1/14) 4324118431430705 a001 17711/1860498*39603^(35/44) 4324118431455369 a001 46368/54018521*167761^(9/10) 4324118431459535 a001 105937/620166*64079^(1/2) 4324118431467915 a001 832040/4870847*64079^(1/2) 4324118431469138 a001 726103/4250681*64079^(1/2) 4324118431469316 a001 5702887/33385282*64079^(1/2) 4324118431469342 a001 4976784/29134601*64079^(1/2) 4324118431469346 a001 39088169/228826127*64079^(1/2) 4324118431469347 a001 34111385/199691526*64079^(1/2) 4324118431469347 a001 267914296/1568397607*64079^(1/2) 4324118431469347 a001 233802911/1368706081*64079^(1/2) 4324118431469347 a001 1836311903/10749957122*64079^(1/2) 4324118431469347 a001 1602508992/9381251041*64079^(1/2) 4324118431469347 a001 12586269025/73681302247*64079^(1/2) 4324118431469347 a001 10983760033/64300051206*64079^(1/2) 4324118431469347 a001 86267571272/505019158607*64079^(1/2) 4324118431469347 a001 75283811239/440719107401*64079^(1/2) 4324118431469347 a001 2504730781961/14662949395604*64079^(1/2) 4324118431469347 a001 139583862445/817138163596*64079^(1/2) 4324118431469347 a001 53316291173/312119004989*64079^(1/2) 4324118431469347 a001 20365011074/119218851371*64079^(1/2) 4324118431469347 a001 7778742049/45537549124*64079^(1/2) 4324118431469347 a001 2971215073/17393796001*64079^(1/2) 4324118431469347 a001 1134903170/6643838879*64079^(1/2) 4324118431469347 a001 433494437/2537720636*64079^(1/2) 4324118431469347 a001 165580141/969323029*64079^(1/2) 4324118431469347 a001 63245986/370248451*64079^(1/2) 4324118431469348 a001 24157817/141422324*64079^(1/2) 4324118431469358 a001 9227465/54018521*64079^(1/2) 4324118431469427 a001 3524578/20633239*64079^(1/2) 4324118431469894 a001 1346269/7881196*64079^(1/2) 4324118431471755 a001 14930352/710647*24476^(1/14) 4324118431473094 a001 514229/3010349*64079^(1/2) 4324118431479072 a001 39088169/1860498*24476^(1/14) 4324118431480139 a001 102334155/4870847*24476^(1/14) 4324118431480295 a001 267914296/12752043*24476^(1/14) 4324118431480317 a001 701408733/33385282*24476^(1/14) 4324118431480321 a001 1836311903/87403803*24476^(1/14) 4324118431480321 a001 102287808/4868641*24476^(1/14) 4324118431480321 a001 12586269025/599074578*24476^(1/14) 4324118431480321 a001 32951280099/1568397607*24476^(1/14) 4324118431480321 a001 86267571272/4106118243*24476^(1/14) 4324118431480321 a001 225851433717/10749957122*24476^(1/14) 4324118431480321 a001 591286729879/28143753123*24476^(1/14) 4324118431480321 a001 1548008755920/73681302247*24476^(1/14) 4324118431480321 a001 4052739537881/192900153618*24476^(1/14) 4324118431480321 a001 225749145909/10745088481*24476^(1/14) 4324118431480321 a001 6557470319842/312119004989*24476^(1/14) 4324118431480321 a001 2504730781961/119218851371*24476^(1/14) 4324118431480321 a001 956722026041/45537549124*24476^(1/14) 4324118431480321 a001 365435296162/17393796001*24476^(1/14) 4324118431480321 a001 139583862445/6643838879*24476^(1/14) 4324118431480321 a001 53316291173/2537720636*24476^(1/14) 4324118431480321 a001 20365011074/969323029*24476^(1/14) 4324118431480321 a001 7778742049/370248451*24476^(1/14) 4324118431480322 a001 2971215073/141422324*24476^(1/14) 4324118431480323 a001 1134903170/54018521*24476^(1/14) 4324118431480332 a001 433494437/20633239*24476^(1/14) 4324118431480391 a001 165580141/7881196*24476^(1/14) 4324118431480799 a001 63245986/3010349*24476^(1/14) 4324118431483593 a001 24157817/1149851*24476^(1/14) 4324118431485914 a001 46368/4870847*167761^(7/10) 4324118431488867 a001 121393/103682*167761^(3/10) 4324118431493708 a001 317811/64079*24476^(3/14) 4324118431495034 a001 196418/1149851*64079^(1/2) 4324118431502748 a001 9227465/439204*24476^(1/14) 4324118431522219 a001 55/15126*15127^(39/40) 4324118431528734 a001 121393/103682*439204^(5/18) 4324118431534945 a001 121393/103682*7881196^(5/22) 4324118431534958 a001 121393/103682*20633239^(3/14) 4324118431534961 a001 121393/103682*2537720636^(1/6) 4324118431534961 a001 121393/103682*312119004989^(3/22) 4324118431534961 a001 121393/103682*28143753123^(3/20) 4324118431534961 a001 15456/90481*4106118243^(1/4) 4324118431534961 a001 121393/103682*228826127^(3/16) 4324118431534961 a001 121393/103682*33385282^(5/24) 4324118431535273 a001 121393/103682*1860498^(1/4) 4324118431539242 a001 11592/109801*167761^(1/2) 4324118431543589 a001 121393/9349*3571^(5/34) 4324118431557751 a001 17711/3010349*39603^(37/44) 4324118431572476 a001 46368/228826127*439204^(17/18) 4324118431573877 a001 6624/101521*439204^(1/2) 4324118431574969 a001 46368/54018521*439204^(5/6) 4324118431577431 a001 15456/4250681*439204^(13/18) 4324118431578760 a001 1346269/103682*167761^(1/10) 4324118431580426 a001 46368/3010349*439204^(11/18) 4324118431585057 a001 6624/101521*7881196^(9/22) 4324118431585073 a001 317811/103682*7881196^(1/6) 4324118431585085 a001 6624/101521*2537720636^(3/10) 4324118431585085 a001 6624/101521*14662949395604^(3/14) 4324118431585085 a001 6624/101521*192900153618^(1/4) 4324118431585085 a001 317811/103682*312119004989^(1/10) 4324118431585085 a001 317811/103682*1568397607^(1/8) 4324118431585087 a001 6624/101521*33385282^(3/8) 4324118431585647 a001 6624/101521*1860498^(9/20) 4324118431592160 a001 2576/103361*3010349^(1/2) 4324118431592220 a001 46347/2206*439204^(1/18) 4324118431592397 a001 416020/51841*20633239^(1/10) 4324118431592398 a001 2576/103361*9062201101803^(1/4) 4324118431592398 a001 416020/51841*17393796001^(1/14) 4324118431592398 a001 416020/51841*14662949395604^(1/18) 4324118431592398 a001 416020/51841*505019158607^(1/16) 4324118431592398 a001 416020/51841*599074578^(1/12) 4324118431593182 a001 514229/103682*439204^(1/6) 4324118431593460 a001 46368/4870847*20633239^(1/2) 4324118431593462 a001 46347/2206*7881196^(1/22) 4324118431593465 a001 46368/4870847*2537720636^(7/18) 4324118431593465 a001 46368/4870847*17393796001^(5/14) 4324118431593465 a001 46368/4870847*312119004989^(7/22) 4324118431593465 a001 46368/4870847*14662949395604^(5/18) 4324118431593465 a001 46368/4870847*505019158607^(5/16) 4324118431593465 a001 46368/4870847*28143753123^(7/20) 4324118431593465 a001 46368/4870847*599074578^(5/12) 4324118431593465 a001 46368/4870847*228826127^(7/16) 4324118431593465 a001 46347/2206*33385282^(1/24) 4324118431593468 a001 416020/51841*710647^(1/8) 4324118431593528 a001 46347/2206*1860498^(1/20) 4324118431593580 a001 15456/4250681*7881196^(13/22) 4324118431593581 a001 15456/1368706081*7881196^(21/22) 4324118431593587 a001 46368/969323029*7881196^(19/22) 4324118431593589 a001 2576/33281921*7881196^(5/6) 4324118431593593 a001 46368/228826127*7881196^(17/22) 4324118431593601 a001 46368/54018521*7881196^(15/22) 4324118431593621 a001 15456/4250681*141422324^(1/2) 4324118431593621 a001 15456/4250681*73681302247^(3/8) 4324118431593623 a001 15456/4250681*33385282^(13/24) 4324118431593638 a001 46368/6643838879*20633239^(13/14) 4324118431593638 a001 15456/1368706081*20633239^(9/10) 4324118431593639 a001 2576/33281921*20633239^(11/14) 4324118431593640 a001 11592/35355581*20633239^(7/10) 4324118431593642 a001 46368/54018521*20633239^(9/14) 4324118431593643 a001 144/103681*969323029^(1/2) 4324118431593647 a001 15456/29134601*6643838879^(1/2) 4324118431593647 a001 46368/6643838879*141422324^(5/6) 4324118431593647 a001 46368/228826127*45537549124^(1/2) 4324118431593647 a001 2576/33281921*2537720636^(11/18) 4324118431593647 a001 2576/33281921*312119004989^(1/2) 4324118431593647 a001 2576/33281921*3461452808002^(11/24) 4324118431593647 a001 2576/33281921*28143753123^(11/20) 4324118431593647 a001 2576/33281921*1568397607^(5/8) 4324118431593647 a001 6624/224056801*2139295485799^(1/2) 4324118431593647 a001 15456/1368706081*2537720636^(7/10) 4324118431593647 a001 11592/204284540899*2537720636^(17/18) 4324118431593647 a001 46368/312119004989*2537720636^(9/10) 4324118431593647 a001 6624/10525900321*2537720636^(5/6) 4324118431593647 a001 46368/6643838879*2537720636^(13/18) 4324118431593647 a001 15456/1368706081*17393796001^(9/14) 4324118431593647 a001 15456/1368706081*14662949395604^(1/2) 4324118431593647 a001 15456/1368706081*505019158607^(9/16) 4324118431593647 a001 15456/1368706081*192900153618^(7/12) 4324118431593647 a001 144/10749853441*17393796001^(13/14) 4324118431593647 a001 46368/119218851371*17393796001^(11/14) 4324118431593647 a001 11592/204284540899*45537549124^(5/6) 4324118431593647 a001 6624/10525900321*312119004989^(15/22) 4324118431593647 a001 6624/10525900321*3461452808002^(5/8) 4324118431593647 a001 46368/23725150497407*312119004989^(9/10) 4324118431593647 a001 15456/3020733700601*312119004989^(19/22) 4324118431593647 a001 11592/204284540899*312119004989^(17/22) 4324118431593647 a001 144/10749853441*14662949395604^(13/18) 4324118431593647 a001 11592/204284540899*3461452808002^(17/24) 4324118431593647 a001 144/10749853441*505019158607^(13/16) 4324118431593647 a001 46368/312119004989*14662949395604^(9/14) 4324118431593647 a001 46368/23725150497407*192900153618^(11/12) 4324118431593647 a001 46368/312119004989*192900153618^(3/4) 4324118431593647 a001 46368/119218851371*14662949395604^(11/18) 4324118431593647 a001 46368/119218851371*505019158607^(11/16) 4324118431593647 a001 144/10749853441*73681302247^(7/8) 4324118431593647 a001 6624/10525900321*28143753123^(3/4) 4324118431593647 a001 11592/204284540899*28143753123^(17/20) 4324118431593647 a001 15456/3020733700601*28143753123^(19/20) 4324118431593647 a006 5^(1/2)*Fibonacci(67/2)/Lucas(24)/sqrt(5) 4324118431593647 a001 46368/6643838879*312119004989^(13/22) 4324118431593647 a001 46368/6643838879*3461452808002^(13/24) 4324118431593647 a001 46368/6643838879*73681302247^(5/8) 4324118431593647 a001 46368/6643838879*28143753123^(13/20) 4324118431593647 a001 46368/17393796001*4106118243^(3/4) 4324118431593647 a001 11592/634430159*5600748293801^(1/2) 4324118431593647 a001 46368/119218851371*1568397607^(7/8) 4324118431593647 a001 46368/969323029*817138163596^(1/2) 4324118431593647 a001 15456/1368706081*599074578^(3/4) 4324118431593647 a001 46368/119218851371*599074578^(11/12) 4324118431593647 a001 46368/370248451*119218851371^(1/2) 4324118431593647 a001 2576/33281921*228826127^(11/16) 4324118431593647 a001 46368/6643838879*228826127^(13/16) 4324118431593647 a001 6624/10525900321*228826127^(15/16) 4324118431593648 a001 11592/35355581*17393796001^(1/2) 4324118431593648 a001 11592/35355581*14662949395604^(7/18) 4324118431593648 a001 11592/35355581*505019158607^(7/16) 4324118431593648 a001 11592/35355581*599074578^(7/12) 4324118431593648 a001 46368/969323029*87403803^(3/4) 4324118431593649 a001 46368/54018521*2537720636^(1/2) 4324118431593649 a001 46368/54018521*312119004989^(9/22) 4324118431593649 a001 46368/54018521*14662949395604^(5/14) 4324118431593649 a001 46368/54018521*192900153618^(5/12) 4324118431593649 a001 46368/54018521*28143753123^(9/20) 4324118431593649 a001 46368/54018521*228826127^(9/16) 4324118431593650 a001 46368/228826127*33385282^(17/24) 4324118431593650 a001 46368/969323029*33385282^(19/24) 4324118431593651 a001 15456/1368706081*33385282^(7/8) 4324118431593651 a001 46368/17393796001*33385282^(23/24) 4324118431593651 a001 46368/54018521*33385282^(5/8) 4324118431593658 a001 46368/20633239*370248451^(1/2) 4324118431593667 a001 46368/228826127*12752043^(3/4) 4324118431593690 a006 5^(1/2)*fibonacci(67/2)/Lucas(24)/sqrt(5) 4324118431593716 a001 11592/1970299*54018521^(1/2) 4324118431594090 a001 46368/3010349*7881196^(1/2) 4324118431594124 a001 1346269/103682*20633239^(1/14) 4324118431594125 a001 46368/3010349*312119004989^(3/10) 4324118431594125 a001 1346269/103682*2537720636^(1/18) 4324118431594125 a001 1346269/103682*312119004989^(1/22) 4324118431594125 a001 1346269/103682*28143753123^(1/20) 4324118431594125 a001 46368/3010349*1568397607^(3/8) 4324118431594125 a001 1346269/103682*228826127^(1/16) 4324118431594126 a001 46368/3010349*33385282^(11/24) 4324118431594194 a001 46368/4870847*1860498^(7/12) 4324118431594229 a001 1346269/103682*1860498^(1/12) 4324118431594433 a001 15456/4250681*1860498^(13/20) 4324118431594586 a001 46368/54018521*1860498^(3/4) 4324118431594709 a001 46368/228826127*1860498^(17/20) 4324118431594792 a001 2576/33281921*1860498^(11/12) 4324118431594812 a001 46368/3010349*1860498^(11/20) 4324118431594834 a001 46368/969323029*1860498^(19/20) 4324118431595283 a001 46368/1149851*1149851^(1/2) 4324118431596908 a001 514229/103682*7881196^(3/22) 4324118431596918 a001 514229/103682*2537720636^(1/10) 4324118431596918 a001 46368/1149851*1322157322203^(1/4) 4324118431596918 a001 514229/103682*14662949395604^(1/14) 4324118431596918 a001 514229/103682*192900153618^(1/12) 4324118431596918 a001 514229/103682*33385282^(1/8) 4324118431597105 a001 514229/103682*1860498^(3/20) 4324118431598817 a001 46368/4870847*710647^(5/8) 4324118431601140 a001 11592/35355581*710647^(7/8) 4324118431604254 a001 514229/39603*15127^(1/8) 4324118431607810 a001 17711/64079*39603^(21/44) 4324118431616060 a001 11592/109801*20633239^(5/14) 4324118431616064 a001 98209/51841*141422324^(1/6) 4324118431616064 a001 11592/109801*2537720636^(5/18) 4324118431616064 a001 11592/109801*312119004989^(5/22) 4324118431616064 a001 11592/109801*3461452808002^(5/24) 4324118431616064 a001 11592/109801*28143753123^(1/4) 4324118431616064 a001 98209/51841*73681302247^(1/8) 4324118431616064 a001 11592/109801*228826127^(5/16) 4324118431616584 a001 11592/109801*1860498^(5/12) 4324118431618605 a001 46347/2206*103682^(1/16) 4324118431630735 a001 98209/51841*271443^(1/4) 4324118431634035 a001 3524578/167761*24476^(1/14) 4324118431637636 a001 15456/4250681*271443^(3/4) 4324118431645407 a001 75025/439204*64079^(1/2) 4324118431660662 a001 121393/103682*103682^(5/16) 4324118431672339 a001 514229/103682*103682^(3/16) 4324118431682411 a001 17711/4870847*39603^(39/44) 4324118431738574 a001 46368/167761*439204^(7/18) 4324118431746884 a001 2178309/64079*9349^(1/38) 4324118431747269 a001 46368/167761*7881196^(7/22) 4324118431747288 a001 46368/167761*20633239^(3/10) 4324118431747291 a001 46368/167761*17393796001^(3/14) 4324118431747291 a001 46368/167761*14662949395604^(1/6) 4324118431747291 a001 75025/103682*45537549124^(1/6) 4324118431747291 a001 46368/167761*599074578^(1/4) 4324118431747292 a001 46368/167761*33385282^(7/24) 4324118431747298 a001 75025/103682*12752043^(1/4) 4324118431747729 a001 46368/167761*1860498^(7/20) 4324118431750502 a001 46368/167761*710647^(3/8) 4324118431781444 a001 46347/2206*39603^(3/44) 4324118431798926 a001 233/271444*167761^(9/10) 4324118431811348 a001 6624/101521*103682^(9/16) 4324118431829628 a001 121393/12752043*167761^(7/10) 4324118431849051 a001 317811/370248451*167761^(9/10) 4324118431849255 a001 514229/64079*24476^(1/6) 4324118431856364 a001 832040/969323029*167761^(9/10) 4324118431857431 a001 2178309/2537720636*167761^(9/10) 4324118431857586 a001 5702887/6643838879*167761^(9/10) 4324118431857609 a001 14930352/17393796001*167761^(9/10) 4324118431857612 a001 39088169/45537549124*167761^(9/10) 4324118431857613 a001 102334155/119218851371*167761^(9/10) 4324118431857613 a001 267914296/312119004989*167761^(9/10) 4324118431857613 a001 701408733/817138163596*167761^(9/10) 4324118431857613 a001 1836311903/2139295485799*167761^(9/10) 4324118431857613 a001 4807526976/5600748293801*167761^(9/10) 4324118431857613 a001 12586269025/14662949395604*167761^(9/10) 4324118431857613 a001 20365011074/23725150497407*167761^(9/10) 4324118431857613 a001 7778742049/9062201101803*167761^(9/10) 4324118431857613 a001 2971215073/3461452808002*167761^(9/10) 4324118431857613 a001 1134903170/1322157322203*167761^(9/10) 4324118431857613 a001 433494437/505019158607*167761^(9/10) 4324118431857613 a001 165580141/192900153618*167761^(9/10) 4324118431857613 a001 63245986/73681302247*167761^(9/10) 4324118431857614 a001 24157817/28143753123*167761^(9/10) 4324118431857623 a001 9227465/10749957122*167761^(9/10) 4324118431857683 a001 3524578/4106118243*167761^(9/10) 4324118431858090 a001 1346269/1568397607*167761^(9/10) 4324118431860883 a001 514229/599074578*167761^(9/10) 4324118431863654 a001 121393/1149851*167761^(1/2) 4324118431870668 a001 46368/3010349*103682^(11/16) 4324118431878519 a001 121393/271443*817138163596^(1/6) 4324118431878519 a001 121393/271443*87403803^(1/4) 4324118431879776 a001 317811/33385282*167761^(7/10) 4324118431880029 a001 196418/228826127*167761^(9/10) 4324118431882550 a001 105937/90481*167761^(3/10) 4324118431887092 a001 832040/87403803*167761^(7/10) 4324118431888159 a001 46347/4868641*167761^(7/10) 4324118431888315 a001 5702887/599074578*167761^(7/10) 4324118431888338 a001 14930352/1568397607*167761^(7/10) 4324118431888341 a001 39088169/4106118243*167761^(7/10) 4324118431888342 a001 102334155/10749957122*167761^(7/10) 4324118431888342 a001 267914296/28143753123*167761^(7/10) 4324118431888342 a001 701408733/73681302247*167761^(7/10) 4324118431888342 a001 1836311903/192900153618*167761^(7/10) 4324118431888342 a001 102287808/10745088481*167761^(7/10) 4324118431888342 a001 12586269025/1322157322203*167761^(7/10) 4324118431888342 a001 32951280099/3461452808002*167761^(7/10) 4324118431888342 a001 86267571272/9062201101803*167761^(7/10) 4324118431888342 a001 225851433717/23725150497407*167761^(7/10) 4324118431888342 a001 139583862445/14662949395604*167761^(7/10) 4324118431888342 a001 53316291173/5600748293801*167761^(7/10) 4324118431888342 a001 20365011074/2139295485799*167761^(7/10) 4324118431888342 a001 7778742049/817138163596*167761^(7/10) 4324118431888342 a001 2971215073/312119004989*167761^(7/10) 4324118431888342 a001 1134903170/119218851371*167761^(7/10) 4324118431888342 a001 433494437/45537549124*167761^(7/10) 4324118431888342 a001 165580141/17393796001*167761^(7/10) 4324118431888342 a001 63245986/6643838879*167761^(7/10) 4324118431888343 a001 24157817/2537720636*167761^(7/10) 4324118431888352 a001 9227465/969323029*167761^(7/10) 4324118431888411 a001 3524578/370248451*167761^(7/10) 4324118431888819 a001 1346269/141422324*167761^(7/10) 4324118431891614 a001 514229/54018521*167761^(7/10) 4324118431907423 a001 1346269/103682*39603^(5/44) 4324118431910768 a001 196418/20633239*167761^(7/10) 4324118431910985 a001 317811/3010349*167761^(1/2) 4324118431916035 a001 121393/599074578*439204^(17/18) 4324118431917891 a001 208010/1970299*167761^(1/2) 4324118431918526 a001 233/271444*439204^(5/6) 4324118431918898 a001 2178309/20633239*167761^(1/2) 4324118431919045 a001 5702887/54018521*167761^(1/2) 4324118431919067 a001 3732588/35355581*167761^(1/2) 4324118431919070 a001 39088169/370248451*167761^(1/2) 4324118431919070 a001 102334155/969323029*167761^(1/2) 4324118431919071 a001 66978574/634430159*167761^(1/2) 4324118431919071 a001 701408733/6643838879*167761^(1/2) 4324118431919071 a001 1836311903/17393796001*167761^(1/2) 4324118431919071 a001 1201881744/11384387281*167761^(1/2) 4324118431919071 a001 12586269025/119218851371*167761^(1/2) 4324118431919071 a001 32951280099/312119004989*167761^(1/2) 4324118431919071 a001 21566892818/204284540899*167761^(1/2) 4324118431919071 a001 225851433717/2139295485799*167761^(1/2) 4324118431919071 a001 182717648081/1730726404001*167761^(1/2) 4324118431919071 a001 139583862445/1322157322203*167761^(1/2) 4324118431919071 a001 53316291173/505019158607*167761^(1/2) 4324118431919071 a001 10182505537/96450076809*167761^(1/2) 4324118431919071 a001 7778742049/73681302247*167761^(1/2) 4324118431919071 a001 2971215073/28143753123*167761^(1/2) 4324118431919071 a001 567451585/5374978561*167761^(1/2) 4324118431919071 a001 433494437/4106118243*167761^(1/2) 4324118431919071 a001 165580141/1568397607*167761^(1/2) 4324118431919071 a001 31622993/299537289*167761^(1/2) 4324118431919072 a001 24157817/228826127*167761^(1/2) 4324118431919080 a001 9227465/87403803*167761^(1/2) 4324118431919136 a001 1762289/16692641*167761^(1/2) 4324118431919521 a001 1346269/12752043*167761^(1/2) 4324118431920445 a001 15456/4250681*103682^(13/16) 4324118431921012 a001 121393/33385282*439204^(13/18) 4324118431921911 a001 3524578/271443*167761^(1/10) 4324118431922159 a001 514229/4870847*167761^(1/2) 4324118431922417 a001 105937/90481*439204^(5/18) 4324118431923274 a001 46368/167761*103682^(7/16) 4324118431923576 a001 121393/7881196*439204^(11/18) 4324118431924748 a001 121393/1860498*439204^(1/2) 4324118431928628 a001 105937/90481*7881196^(5/22) 4324118431928641 a001 105937/90481*20633239^(3/14) 4324118431928643 a001 105937/90481*2537720636^(1/6) 4324118431928643 a001 105937/90481*312119004989^(3/22) 4324118431928643 a001 105937/90481*28143753123^(3/20) 4324118431928643 a001 121393/710647*4106118243^(1/4) 4324118431928643 a001 105937/90481*228826127^(3/16) 4324118431928644 a001 105937/90481*33385282^(5/24) 4324118431928956 a001 105937/90481*1860498^(1/4) 4324118431933947 a001 1346269/271443*439204^(1/6) 4324118431935928 a001 121393/1860498*7881196^(9/22) 4324118431935934 a001 5702887/271443*439204^(1/18) 4324118431935945 a001 832040/271443*7881196^(1/6) 4324118431935957 a001 121393/1860498*2537720636^(3/10) 4324118431935957 a001 121393/1860498*14662949395604^(3/14) 4324118431935957 a001 121393/1860498*192900153618^(1/4) 4324118431935957 a001 832040/271443*312119004989^(1/10) 4324118431935957 a001 832040/271443*1568397607^(1/8) 4324118431935958 a001 121393/1860498*33385282^(3/8) 4324118431936048 a001 121393/3010349*1149851^(1/2) 4324118431936519 a001 121393/1860498*1860498^(9/20) 4324118431936785 a001 121393/4870847*3010349^(1/2) 4324118431937022 a001 726103/90481*20633239^(1/10) 4324118431937024 a001 726103/90481*17393796001^(1/14) 4324118431937024 a001 121393/4870847*9062201101803^(1/4) 4324118431937024 a001 726103/90481*14662949395604^(1/18) 4324118431937024 a001 726103/90481*505019158607^(1/16) 4324118431937024 a001 726103/90481*599074578^(1/12) 4324118431937139 a001 121393/10749957122*7881196^(21/22) 4324118431937146 a001 121393/2537720636*7881196^(19/22) 4324118431937148 a001 121393/1568397607*7881196^(5/6) 4324118431937152 a001 121393/599074578*7881196^(17/22) 4324118431937159 a001 233/271444*7881196^(15/22) 4324118431937161 a001 121393/33385282*7881196^(13/22) 4324118431937174 a001 121393/12752043*20633239^(1/2) 4324118431937176 a001 5702887/271443*7881196^(1/22) 4324118431937179 a001 121393/12752043*2537720636^(7/18) 4324118431937179 a001 121393/12752043*17393796001^(5/14) 4324118431937179 a001 121393/12752043*14662949395604^(5/18) 4324118431937179 a001 121393/12752043*505019158607^(5/16) 4324118431937179 a001 121393/12752043*28143753123^(7/20) 4324118431937179 a001 121393/12752043*599074578^(5/12) 4324118431937179 a001 121393/12752043*228826127^(7/16) 4324118431937179 a001 5702887/271443*33385282^(1/24) 4324118431937196 a001 121393/17393796001*20633239^(13/14) 4324118431937197 a001 121393/10749957122*20633239^(9/10) 4324118431937198 a001 121393/1568397607*20633239^(11/14) 4324118431937199 a001 121393/370248451*20633239^(7/10) 4324118431937199 a001 233/271444*20633239^(9/14) 4324118431937202 a001 121393/33385282*141422324^(1/2) 4324118431937202 a001 121393/33385282*73681302247^(3/8) 4324118431937204 a001 121393/33385282*33385282^(13/24) 4324118431937205 a001 121393/87403803*969323029^(1/2) 4324118431937206 a001 121393/17393796001*141422324^(5/6) 4324118431937206 a001 121393/228826127*6643838879^(1/2) 4324118431937206 a001 121393/599074578*45537549124^(1/2) 4324118431937206 a001 121393/1568397607*2537720636^(11/18) 4324118431937206 a001 121393/1568397607*312119004989^(1/2) 4324118431937206 a001 121393/1568397607*3461452808002^(11/24) 4324118431937206 a001 121393/1568397607*28143753123^(11/20) 4324118431937206 a001 121393/1568397607*1568397607^(5/8) 4324118431937206 a001 121393/2139295485799*2537720636^(17/18) 4324118431937206 a001 121393/817138163596*2537720636^(9/10) 4324118431937206 a001 121393/192900153618*2537720636^(5/6) 4324118431937206 a001 121393/10749957122*2537720636^(7/10) 4324118431937206 a001 121393/17393796001*2537720636^(13/18) 4324118431937206 a001 121393/4106118243*2139295485799^(1/2) 4324118431937206 a001 121393/10749957122*17393796001^(9/14) 4324118431937206 a001 121393/10749957122*14662949395604^(1/2) 4324118431937206 a001 121393/10749957122*505019158607^(9/16) 4324118431937206 a001 121393/10749957122*192900153618^(7/12) 4324118431937206 a001 121393/9062201101803*17393796001^(13/14) 4324118431937206 a001 121393/312119004989*17393796001^(11/14) 4324118431937206 a001 121393/2139295485799*45537549124^(5/6) 4324118431937206 a001 121393/192900153618*312119004989^(15/22) 4324118431937206 a001 121393/192900153618*3461452808002^(5/8) 4324118431937206 a001 121393/2139295485799*312119004989^(17/22) 4324118431937206 a001 121393/23725150497407*817138163596^(5/6) 4324118431937206 a001 121393/14662949395604*9062201101803^(3/4) 4324118431937206 a001 121393/3461452808002*1322157322203^(3/4) 4324118431937206 a001 121393/9062201101803*505019158607^(13/16) 4324118431937206 a001 121393/312119004989*14662949395604^(11/18) 4324118431937206 a001 121393/312119004989*505019158607^(11/16) 4324118431937206 a001 121393/817138163596*192900153618^(3/4) 4324118431937206 a001 121393/9062201101803*73681302247^(7/8) 4324118431937206 a001 121393/192900153618*28143753123^(3/4) 4324118431937206 a001 121393/2139295485799*28143753123^(17/20) 4324118431937206 a001 121393/23725150497407*28143753123^(19/20) 4324118431937206 a001 121393/17393796001*312119004989^(13/22) 4324118431937206 a001 121393/17393796001*3461452808002^(13/24) 4324118431937206 a001 121393/17393796001*73681302247^(5/8) 4324118431937206 a001 121393/17393796001*28143753123^(13/20) 4324118431937206 a001 121393/6643838879*5600748293801^(1/2) 4324118431937206 a001 121393/45537549124*4106118243^(3/4) 4324118431937206 a001 121393/2537720636*817138163596^(1/2) 4324118431937206 a001 121393/312119004989*1568397607^(7/8) 4324118431937206 a001 121393/969323029*119218851371^(1/2) 4324118431937206 a001 121393/10749957122*599074578^(3/4) 4324118431937206 a001 121393/312119004989*599074578^(11/12) 4324118431937206 a001 121393/370248451*17393796001^(1/2) 4324118431937206 a001 121393/370248451*14662949395604^(7/18) 4324118431937206 a001 121393/370248451*505019158607^(7/16) 4324118431937206 a001 121393/370248451*599074578^(7/12) 4324118431937206 a001 121393/1568397607*228826127^(11/16) 4324118431937206 a001 121393/17393796001*228826127^(13/16) 4324118431937206 a001 121393/192900153618*228826127^(15/16) 4324118431937206 a001 233/271444*2537720636^(1/2) 4324118431937206 a001 233/271444*312119004989^(9/22) 4324118431937206 a001 233/271444*14662949395604^(5/14) 4324118431937206 a001 233/271444*192900153618^(5/12) 4324118431937206 a001 233/271444*28143753123^(9/20) 4324118431937206 a001 233/271444*228826127^(9/16) 4324118431937206 a001 121393/2537720636*87403803^(3/4) 4324118431937207 a001 121393/54018521*370248451^(1/2) 4324118431937208 a001 233/271444*33385282^(5/8) 4324118431937209 a001 121393/599074578*33385282^(17/24) 4324118431937209 a001 121393/2537720636*33385282^(19/24) 4324118431937209 a001 121393/10749957122*33385282^(7/8) 4324118431937209 a001 121393/45537549124*33385282^(23/24) 4324118431937215 a001 121393/20633239*54018521^(1/2) 4324118431937226 a001 121393/599074578*12752043^(3/4) 4324118431937241 a001 121393/7881196*7881196^(1/2) 4324118431937242 a001 5702887/271443*1860498^(1/20) 4324118431937275 a001 3524578/271443*20633239^(1/14) 4324118431937275 a001 3524578/271443*2537720636^(1/18) 4324118431937275 a001 121393/7881196*312119004989^(3/10) 4324118431937275 a001 3524578/271443*312119004989^(1/22) 4324118431937275 a001 3524578/271443*28143753123^(1/20) 4324118431937275 a001 121393/7881196*1568397607^(3/8) 4324118431937275 a001 3524578/271443*228826127^(1/16) 4324118431937277 a001 121393/7881196*33385282^(11/24) 4324118431937379 a001 3524578/271443*1860498^(1/12) 4324118431937673 a001 1346269/271443*7881196^(3/22) 4324118431937683 a001 1346269/271443*2537720636^(1/10) 4324118431937683 a001 121393/3010349*1322157322203^(1/4) 4324118431937683 a001 1346269/271443*14662949395604^(1/14) 4324118431937683 a001 1346269/271443*192900153618^(1/12) 4324118431937683 a001 1346269/271443*33385282^(1/8) 4324118431937870 a001 1346269/271443*1860498^(3/20) 4324118431937908 a001 121393/12752043*1860498^(7/12) 4324118431937962 a001 121393/7881196*1860498^(11/20) 4324118431938014 a001 121393/33385282*1860498^(13/20) 4324118431938094 a001 726103/90481*710647^(1/8) 4324118431938143 a001 233/271444*1860498^(3/4) 4324118431938268 a001 121393/599074578*1860498^(17/20) 4324118431938351 a001 121393/1568397607*1860498^(11/12) 4324118431938393 a001 121393/2537720636*1860498^(19/20) 4324118431939988 a001 832040/710647*167761^(3/10) 4324118431940238 a001 98209/930249*167761^(1/2) 4324118431940473 a001 121393/1149851*20633239^(5/14) 4324118431940476 a001 514229/271443*141422324^(1/6) 4324118431940476 a001 121393/1149851*2537720636^(5/18) 4324118431940476 a001 121393/1149851*312119004989^(5/22) 4324118431940476 a001 121393/1149851*3461452808002^(5/24) 4324118431940476 a001 514229/271443*73681302247^(1/8) 4324118431940476 a001 121393/1149851*28143753123^(1/4) 4324118431940476 a001 121393/1149851*228826127^(5/16) 4324118431940997 a001 121393/1149851*1860498^(5/12) 4324118431942531 a001 121393/12752043*710647^(5/8) 4324118431944698 a001 121393/370248451*710647^(7/8) 4324118431948368 a001 726103/620166*167761^(3/10) 4324118431949591 a001 5702887/4870847*167761^(3/10) 4324118431949769 a001 4976784/4250681*167761^(3/10) 4324118431949795 a001 39088169/33385282*167761^(3/10) 4324118431949799 a001 34111385/29134601*167761^(3/10) 4324118431949799 a001 267914296/228826127*167761^(3/10) 4324118431949799 a001 233802911/199691526*167761^(3/10) 4324118431949799 a001 1836311903/1568397607*167761^(3/10) 4324118431949799 a001 1602508992/1368706081*167761^(3/10) 4324118431949799 a001 12586269025/10749957122*167761^(3/10) 4324118431949799 a001 10983760033/9381251041*167761^(3/10) 4324118431949799 a001 86267571272/73681302247*167761^(3/10) 4324118431949799 a001 75283811239/64300051206*167761^(3/10) 4324118431949799 a001 2504730781961/2139295485799*167761^(3/10) 4324118431949799 a001 365435296162/312119004989*167761^(3/10) 4324118431949799 a001 139583862445/119218851371*167761^(3/10) 4324118431949799 a001 53316291173/45537549124*167761^(3/10) 4324118431949799 a001 20365011074/17393796001*167761^(3/10) 4324118431949799 a001 7778742049/6643838879*167761^(3/10) 4324118431949799 a001 2971215073/2537720636*167761^(3/10) 4324118431949799 a001 1134903170/969323029*167761^(3/10) 4324118431949799 a001 433494437/370248451*167761^(3/10) 4324118431949800 a001 165580141/141422324*167761^(3/10) 4324118431949801 a001 63245986/54018521*167761^(3/10) 4324118431949811 a001 24157817/20633239*167761^(3/10) 4324118431949879 a001 9227465/7881196*167761^(3/10) 4324118431950346 a001 3524578/3010349*167761^(3/10) 4324118431950905 a001 121393/439204*439204^(7/18) 4324118431953547 a001 1346269/1149851*167761^(3/10) 4324118431955148 a001 514229/271443*271443^(1/4) 4324118431959600 a001 121393/439204*7881196^(7/22) 4324118431959619 a001 121393/439204*20633239^(3/10) 4324118431959622 a001 121393/439204*17393796001^(3/14) 4324118431959622 a001 121393/439204*14662949395604^(1/6) 4324118431959622 a001 196418/271443*45537549124^(1/6) 4324118431959622 a001 121393/439204*599074578^(1/4) 4324118431959623 a001 121393/439204*33385282^(7/24) 4324118431959629 a001 196418/271443*12752043^(1/4) 4324118431960059 a001 121393/439204*1860498^(7/20) 4324118431962319 a001 5702887/271443*103682^(1/16) 4324118431962833 a001 121393/439204*710647^(3/8) 4324118431966159 a001 317811/1568397607*439204^(17/18) 4324118431968650 a001 317811/370248451*439204^(5/6) 4324118431970754 a001 46368/54018521*103682^(15/16) 4324118431971140 a001 105937/29134601*439204^(13/18) 4324118431971976 a001 9227465/710647*167761^(1/10) 4324118431973472 a001 832040/4106118243*439204^(17/18) 4324118431973642 a001 10959/711491*439204^(11/18) 4324118431974539 a001 987/4870846*439204^(17/18) 4324118431974695 a001 5702887/28143753123*439204^(17/18) 4324118431974718 a001 14930352/73681302247*439204^(17/18) 4324118431974721 a001 39088169/192900153618*439204^(17/18) 4324118431974721 a001 102334155/505019158607*439204^(17/18) 4324118431974722 a001 267914296/1322157322203*439204^(17/18) 4324118431974722 a001 701408733/3461452808002*439204^(17/18) 4324118431974722 a001 1836311903/9062201101803*439204^(17/18) 4324118431974722 a001 4807526976/23725150497407*439204^(17/18) 4324118431974722 a001 2971215073/14662949395604*439204^(17/18) 4324118431974722 a001 1134903170/5600748293801*439204^(17/18) 4324118431974722 a001 433494437/2139295485799*439204^(17/18) 4324118431974722 a001 165580141/817138163596*439204^(17/18) 4324118431974722 a001 63245986/312119004989*439204^(17/18) 4324118431974723 a001 24157817/119218851371*439204^(17/18) 4324118431974732 a001 9227465/45537549124*439204^(17/18) 4324118431974791 a001 3524578/17393796001*439204^(17/18) 4324118431975199 a001 1346269/6643838879*439204^(17/18) 4324118431975486 a001 514229/439204*167761^(3/10) 4324118431975940 a001 317811/4870847*439204^(1/2) 4324118431975963 a001 832040/969323029*439204^(5/6) 4324118431977030 a001 2178309/2537720636*439204^(5/6) 4324118431977186 a001 5702887/6643838879*439204^(5/6) 4324118431977208 a001 14930352/17393796001*439204^(5/6) 4324118431977212 a001 39088169/45537549124*439204^(5/6) 4324118431977212 a001 102334155/119218851371*439204^(5/6) 4324118431977212 a001 267914296/312119004989*439204^(5/6) 4324118431977212 a001 701408733/817138163596*439204^(5/6) 4324118431977212 a001 1836311903/2139295485799*439204^(5/6) 4324118431977212 a001 4807526976/5600748293801*439204^(5/6) 4324118431977212 a001 12586269025/14662949395604*439204^(5/6) 4324118431977212 a001 20365011074/23725150497407*439204^(5/6) 4324118431977212 a001 7778742049/9062201101803*439204^(5/6) 4324118431977212 a001 2971215073/3461452808002*439204^(5/6) 4324118431977212 a001 1134903170/1322157322203*439204^(5/6) 4324118431977212 a001 433494437/505019158607*439204^(5/6) 4324118431977212 a001 165580141/192900153618*439204^(5/6) 4324118431977212 a001 63245986/73681302247*439204^(5/6) 4324118431977214 a001 24157817/28143753123*439204^(5/6) 4324118431977222 a001 9227465/10749957122*439204^(5/6) 4324118431977282 a001 3524578/4106118243*439204^(5/6) 4324118431977689 a001 1346269/1568397607*439204^(5/6) 4324118431977992 a001 514229/2537720636*439204^(17/18) 4324118431978454 a001 832040/228826127*439204^(13/18) 4324118431978768 a001 317811/710647*817138163596^(1/6) 4324118431978768 a001 317811/710647*87403803^(1/4) 4324118431979280 a001 24157817/1860498*167761^(1/10) 4324118431979521 a001 726103/199691526*439204^(13/18) 4324118431979676 a001 5702887/1568397607*439204^(13/18) 4324118431979699 a001 4976784/1368706081*439204^(13/18) 4324118431979702 a001 39088169/10749957122*439204^(13/18) 4324118431979703 a001 831985/228811001*439204^(13/18) 4324118431979703 a001 267914296/73681302247*439204^(13/18) 4324118431979703 a001 233802911/64300051206*439204^(13/18) 4324118431979703 a001 1836311903/505019158607*439204^(13/18) 4324118431979703 a001 1602508992/440719107401*439204^(13/18) 4324118431979703 a001 12586269025/3461452808002*439204^(13/18) 4324118431979703 a001 10983760033/3020733700601*439204^(13/18) 4324118431979703 a001 86267571272/23725150497407*439204^(13/18) 4324118431979703 a001 53316291173/14662949395604*439204^(13/18) 4324118431979703 a001 20365011074/5600748293801*439204^(13/18) 4324118431979703 a001 7778742049/2139295485799*439204^(13/18) 4324118431979703 a001 2971215073/817138163596*439204^(13/18) 4324118431979703 a001 1134903170/312119004989*439204^(13/18) 4324118431979703 a001 433494437/119218851371*439204^(13/18) 4324118431979703 a001 165580141/45537549124*439204^(13/18) 4324118431979703 a001 63245986/17393796001*439204^(13/18) 4324118431979704 a001 24157817/6643838879*439204^(13/18) 4324118431979713 a001 9227465/2537720636*439204^(13/18) 4324118431979773 a001 3524578/969323029*439204^(13/18) 4324118431979854 a001 832040/710647*439204^(5/18) 4324118431980180 a001 1346269/370248451*439204^(13/18) 4324118431980346 a001 63245986/4870847*167761^(1/10) 4324118431980483 a001 514229/599074578*439204^(5/6) 4324118431980502 a001 165580141/12752043*167761^(1/10) 4324118431980524 a001 433494437/33385282*167761^(1/10) 4324118431980528 a001 1134903170/87403803*167761^(1/10) 4324118431980528 a001 2971215073/228826127*167761^(1/10) 4324118431980528 a001 7778742049/599074578*167761^(1/10) 4324118431980528 a001 20365011074/1568397607*167761^(1/10) 4324118431980528 a001 53316291173/4106118243*167761^(1/10) 4324118431980528 a001 139583862445/10749957122*167761^(1/10) 4324118431980528 a001 365435296162/28143753123*167761^(1/10) 4324118431980528 a001 956722026041/73681302247*167761^(1/10) 4324118431980528 a001 2504730781961/192900153618*167761^(1/10) 4324118431980528 a001 10610209857723/817138163596*167761^(1/10) 4324118431980528 a001 4052739537881/312119004989*167761^(1/10) 4324118431980528 a001 1548008755920/119218851371*167761^(1/10) 4324118431980528 a001 591286729879/45537549124*167761^(1/10) 4324118431980528 a001 7787980473/599786069*167761^(1/10) 4324118431980528 a001 86267571272/6643838879*167761^(1/10) 4324118431980528 a001 32951280099/2537720636*167761^(1/10) 4324118431980528 a001 12586269025/969323029*167761^(1/10) 4324118431980528 a001 4807526976/370248451*167761^(1/10) 4324118431980528 a001 1836311903/141422324*167761^(1/10) 4324118431980530 a001 701408733/54018521*167761^(1/10) 4324118431980538 a001 9238424/711491*167761^(1/10) 4324118431980598 a001 102334155/7881196*167761^(1/10) 4324118431980946 a001 832040/54018521*439204^(11/18) 4324118431981005 a001 39088169/3010349*167761^(1/10) 4324118431981217 a001 121393/33385282*271443^(3/4) 4324118431981883 a001 317811/1149851*439204^(7/18) 4324118431982012 a001 2178309/141422324*439204^(11/18) 4324118431982167 a001 5702887/370248451*439204^(11/18) 4324118431982190 a001 14930352/969323029*439204^(11/18) 4324118431982193 a001 39088169/2537720636*439204^(11/18) 4324118431982194 a001 102334155/6643838879*439204^(11/18) 4324118431982194 a001 9238424/599786069*439204^(11/18) 4324118431982194 a001 701408733/45537549124*439204^(11/18) 4324118431982194 a001 1836311903/119218851371*439204^(11/18) 4324118431982194 a001 4807526976/312119004989*439204^(11/18) 4324118431982194 a001 12586269025/817138163596*439204^(11/18) 4324118431982194 a001 32951280099/2139295485799*439204^(11/18) 4324118431982194 a001 86267571272/5600748293801*439204^(11/18) 4324118431982194 a001 7787980473/505618944676*439204^(11/18) 4324118431982194 a001 365435296162/23725150497407*439204^(11/18) 4324118431982194 a001 139583862445/9062201101803*439204^(11/18) 4324118431982194 a001 53316291173/3461452808002*439204^(11/18) 4324118431982194 a001 20365011074/1322157322203*439204^(11/18) 4324118431982194 a001 7778742049/505019158607*439204^(11/18) 4324118431982194 a001 2971215073/192900153618*439204^(11/18) 4324118431982194 a001 1134903170/73681302247*439204^(11/18) 4324118431982194 a001 433494437/28143753123*439204^(11/18) 4324118431982194 a001 165580141/10749957122*439204^(11/18) 4324118431982194 a001 63245986/4106118243*439204^(11/18) 4324118431982195 a001 24157817/1568397607*439204^(11/18) 4324118431982204 a001 9227465/599074578*439204^(11/18) 4324118431982263 a001 3524578/228826127*439204^(11/18) 4324118431982670 a001 1346269/87403803*439204^(11/18) 4324118431982974 a001 514229/141422324*439204^(13/18) 4324118431983409 a001 832040/12752043*439204^(1/2) 4324118431983664 a001 3524578/710647*439204^(1/6) 4324118431983795 a001 14930352/1149851*167761^(1/10) 4324118431984498 a001 311187/4769326*439204^(1/2) 4324118431984657 a001 5702887/87403803*439204^(1/2) 4324118431984680 a001 14930352/228826127*439204^(1/2) 4324118431984684 a001 39088169/599074578*439204^(1/2) 4324118431984684 a001 14619165/224056801*439204^(1/2) 4324118431984684 a001 267914296/4106118243*439204^(1/2) 4324118431984684 a001 701408733/10749957122*439204^(1/2) 4324118431984684 a001 1836311903/28143753123*439204^(1/2) 4324118431984684 a001 686789568/10525900321*439204^(1/2) 4324118431984684 a001 12586269025/192900153618*439204^(1/2) 4324118431984684 a001 32951280099/505019158607*439204^(1/2) 4324118431984684 a001 86267571272/1322157322203*439204^(1/2) 4324118431984684 a001 32264490531/494493258286*439204^(1/2) 4324118431984684 a001 1548008755920/23725150497407*439204^(1/2) 4324118431984684 a001 365435296162/5600748293801*439204^(1/2) 4324118431984684 a001 139583862445/2139295485799*439204^(1/2) 4324118431984684 a001 53316291173/817138163596*439204^(1/2) 4324118431984684 a001 20365011074/312119004989*439204^(1/2) 4324118431984684 a001 7778742049/119218851371*439204^(1/2) 4324118431984684 a001 2971215073/45537549124*439204^(1/2) 4324118431984684 a001 1134903170/17393796001*439204^(1/2) 4324118431984684 a001 433494437/6643838879*439204^(1/2) 4324118431984684 a001 165580141/2537720636*439204^(1/2) 4324118431984685 a001 63245986/969323029*439204^(1/2) 4324118431984686 a001 24157817/370248451*439204^(1/2) 4324118431984695 a001 9227465/141422324*439204^(1/2) 4324118431984755 a001 3524578/54018521*439204^(1/2) 4324118431985172 a001 1346269/20633239*439204^(1/2) 4324118431985460 a001 514229/33385282*439204^(11/18) 4324118431985765 a001 317811/7881196*1149851^(1/2) 4324118431986065 a001 832040/710647*7881196^(5/22) 4324118431986079 a001 832040/710647*20633239^(3/14) 4324118431986081 a001 14930352/710647*439204^(1/18) 4324118431986081 a001 832040/710647*2537720636^(1/6) 4324118431986081 a001 832040/710647*312119004989^(3/22) 4324118431986081 a001 832040/710647*28143753123^(3/20) 4324118431986081 a001 105937/620166*4106118243^(1/4) 4324118431986081 a001 832040/710647*228826127^(3/16) 4324118431986082 a001 832040/710647*33385282^(5/24) 4324118431986393 a001 832040/710647*1860498^(1/4) 4324118431986403 a001 832040/3010349*439204^(7/18) 4324118431987062 a001 2178309/7881196*439204^(7/18) 4324118431987065 a001 105937/4250681*3010349^(1/2) 4324118431987120 a001 317811/4870847*7881196^(9/22) 4324118431987136 a001 311187/101521*7881196^(1/6) 4324118431987148 a001 317811/4870847*2537720636^(3/10) 4324118431987148 a001 317811/4870847*14662949395604^(3/14) 4324118431987148 a001 311187/101521*312119004989^(1/10) 4324118431987148 a001 311187/101521*1568397607^(1/8) 4324118431987149 a001 317811/4870847*33385282^(3/8) 4324118431987159 a001 5702887/20633239*439204^(7/18) 4324118431987173 a001 14930352/54018521*439204^(7/18) 4324118431987175 a001 39088169/141422324*439204^(7/18) 4324118431987175 a001 102334155/370248451*439204^(7/18) 4324118431987175 a001 267914296/969323029*439204^(7/18) 4324118431987175 a001 701408733/2537720636*439204^(7/18) 4324118431987175 a001 1836311903/6643838879*439204^(7/18) 4324118431987175 a001 4807526976/17393796001*439204^(7/18) 4324118431987175 a001 12586269025/45537549124*439204^(7/18) 4324118431987175 a001 32951280099/119218851371*439204^(7/18) 4324118431987175 a001 86267571272/312119004989*439204^(7/18) 4324118431987175 a001 225851433717/817138163596*439204^(7/18) 4324118431987175 a001 1548008755920/5600748293801*439204^(7/18) 4324118431987175 a001 139583862445/505019158607*439204^(7/18) 4324118431987175 a001 53316291173/192900153618*439204^(7/18) 4324118431987175 a001 20365011074/73681302247*439204^(7/18) 4324118431987175 a001 7778742049/28143753123*439204^(7/18) 4324118431987175 a001 2971215073/10749957122*439204^(7/18) 4324118431987175 a001 1134903170/4106118243*439204^(7/18) 4324118431987175 a001 433494437/1568397607*439204^(7/18) 4324118431987175 a001 165580141/599074578*439204^(7/18) 4324118431987175 a001 63245986/228826127*439204^(7/18) 4324118431987176 a001 24157817/87403803*439204^(7/18) 4324118431987181 a001 9227465/33385282*439204^(7/18) 4324118431987218 a001 3524578/12752043*439204^(7/18) 4324118431987264 a001 105937/9381251041*7881196^(21/22) 4324118431987270 a001 317811/6643838879*7881196^(19/22) 4324118431987272 a001 105937/1368706081*7881196^(5/6) 4324118431987276 a001 317811/1568397607*7881196^(17/22) 4324118431987283 a001 317811/370248451*7881196^(15/22) 4324118431987289 a001 105937/29134601*7881196^(13/22) 4324118431987303 a001 5702887/710647*20633239^(1/10) 4324118431987304 a001 5702887/710647*17393796001^(1/14) 4324118431987304 a001 105937/4250681*9062201101803^(1/4) 4324118431987304 a001 5702887/710647*14662949395604^(1/18) 4324118431987304 a001 5702887/710647*599074578^(1/12) 4324118431987306 a001 10959/711491*7881196^(1/2) 4324118431987321 a001 317811/45537549124*20633239^(13/14) 4324118431987321 a001 105937/9381251041*20633239^(9/10) 4324118431987321 a001 317811/33385282*20633239^(1/2) 4324118431987322 a001 105937/1368706081*20633239^(11/14) 4324118431987323 a001 317811/969323029*20633239^(7/10) 4324118431987323 a001 14930352/710647*7881196^(1/22) 4324118431987324 a001 317811/370248451*20633239^(9/14) 4324118431987326 a001 317811/33385282*2537720636^(7/18) 4324118431987326 a001 317811/33385282*17393796001^(5/14) 4324118431987326 a001 317811/33385282*312119004989^(7/22) 4324118431987326 a001 317811/33385282*14662949395604^(5/18) 4324118431987326 a001 317811/33385282*505019158607^(5/16) 4324118431987326 a001 317811/33385282*28143753123^(7/20) 4324118431987326 a001 317811/33385282*599074578^(5/12) 4324118431987326 a001 317811/33385282*228826127^(7/16) 4324118431987327 a001 14930352/710647*33385282^(1/24) 4324118431987330 a001 105937/29134601*141422324^(1/2) 4324118431987330 a001 105937/29134601*73681302247^(3/8) 4324118431987330 a001 317811/45537549124*141422324^(5/6) 4324118431987330 a001 317811/228826127*969323029^(1/2) 4324118431987330 a001 377/710646*6643838879^(1/2) 4324118431987330 a001 317811/1568397607*45537549124^(1/2) 4324118431987330 a001 105937/1368706081*2537720636^(11/18) 4324118431987330 a001 317811/5600748293801*2537720636^(17/18) 4324118431987330 a001 317811/2139295485799*2537720636^(9/10) 4324118431987330 a001 317811/505019158607*2537720636^(5/6) 4324118431987330 a001 317811/45537549124*2537720636^(13/18) 4324118431987330 a001 105937/9381251041*2537720636^(7/10) 4324118431987330 a001 105937/1368706081*312119004989^(1/2) 4324118431987330 a001 105937/1368706081*3461452808002^(11/24) 4324118431987330 a001 105937/1368706081*28143753123^(11/20) 4324118431987330 a001 317811/10749957122*2139295485799^(1/2) 4324118431987330 a001 105937/9381251041*17393796001^(9/14) 4324118431987330 a001 317811/23725150497407*17393796001^(13/14) 4324118431987330 a001 317811/817138163596*17393796001^(11/14) 4324118431987330 a001 105937/9381251041*14662949395604^(1/2) 4324118431987330 a001 105937/9381251041*505019158607^(9/16) 4324118431987330 a001 105937/9381251041*192900153618^(7/12) 4324118431987330 a001 317811/5600748293801*45537549124^(5/6) 4324118431987330 a001 317811/505019158607*312119004989^(15/22) 4324118431987330 a001 317811/5600748293801*312119004989^(17/22) 4324118431987330 a001 317811/505019158607*3461452808002^(5/8) 4324118431987330 a001 317811/23725150497407*14662949395604^(13/18) 4324118431987330 a001 317811/2139295485799*14662949395604^(9/14) 4324118431987330 a001 105937/3020733700601*1322157322203^(3/4) 4324118431987330 a001 317811/817138163596*505019158607^(11/16) 4324118431987330 a001 317811/2139295485799*192900153618^(3/4) 4324118431987330 a001 317811/23725150497407*73681302247^(7/8) 4324118431987330 a001 317811/45537549124*312119004989^(13/22) 4324118431987330 a001 317811/45537549124*3461452808002^(13/24) 4324118431987330 a001 317811/45537549124*73681302247^(5/8) 4324118431987330 a001 317811/505019158607*28143753123^(3/4) 4324118431987330 a001 317811/5600748293801*28143753123^(17/20) 4324118431987330 a001 317811/45537549124*28143753123^(13/20) 4324118431987330 a001 10959/599786069*5600748293801^(1/2) 4324118431987330 a001 317811/6643838879*817138163596^(1/2) 4324118431987330 a001 317811/119218851371*4106118243^(3/4) 4324118431987330 a001 317811/2537720636*119218851371^(1/2) 4324118431987330 a001 105937/1368706081*1568397607^(5/8) 4324118431987330 a001 317811/817138163596*1568397607^(7/8) 4324118431987330 a001 317811/969323029*17393796001^(1/2) 4324118431987330 a001 317811/969323029*14662949395604^(7/18) 4324118431987330 a001 317811/969323029*505019158607^(7/16) 4324118431987330 a001 105937/9381251041*599074578^(3/4) 4324118431987330 a001 317811/817138163596*599074578^(11/12) 4324118431987330 a001 317811/969323029*599074578^(7/12) 4324118431987330 a001 317811/370248451*2537720636^(1/2) 4324118431987330 a001 317811/370248451*312119004989^(9/22) 4324118431987330 a001 317811/370248451*14662949395604^(5/14) 4324118431987330 a001 317811/370248451*192900153618^(5/12) 4324118431987330 a001 317811/370248451*28143753123^(9/20) 4324118431987330 a001 105937/1368706081*228826127^(11/16) 4324118431987330 a001 317811/45537549124*228826127^(13/16) 4324118431987330 a001 317811/505019158607*228826127^(15/16) 4324118431987330 a001 317811/370248451*228826127^(9/16) 4324118431987330 a001 317811/141422324*370248451^(1/2) 4324118431987331 a001 317811/6643838879*87403803^(3/4) 4324118431987331 a001 317811/54018521*54018521^(1/2) 4324118431987332 a001 105937/29134601*33385282^(13/24) 4324118431987333 a001 317811/370248451*33385282^(5/8) 4324118431987333 a001 317811/1568397607*33385282^(17/24) 4324118431987333 a001 317811/6643838879*33385282^(19/24) 4324118431987334 a001 105937/9381251041*33385282^(7/8) 4324118431987334 a001 317811/119218851371*33385282^(23/24) 4324118431987340 a001 9227465/710647*20633239^(1/14) 4324118431987340 a001 9227465/710647*2537720636^(1/18) 4324118431987340 a001 10959/711491*312119004989^(3/10) 4324118431987340 a001 9227465/710647*312119004989^(1/22) 4324118431987340 a001 9227465/710647*28143753123^(1/20) 4324118431987340 a001 10959/711491*1568397607^(3/8) 4324118431987340 a001 9227465/710647*228826127^(1/16) 4324118431987342 a001 10959/711491*33385282^(11/24) 4324118431987350 a001 317811/1568397607*12752043^(3/4) 4324118431987389 a001 14930352/710647*1860498^(1/20) 4324118431987390 a001 3524578/710647*7881196^(3/22) 4324118431987400 a001 3524578/710647*2537720636^(1/10) 4324118431987400 a001 317811/7881196*1322157322203^(1/4) 4324118431987400 a001 3524578/710647*14662949395604^(1/14) 4324118431987400 a001 3524578/710647*192900153618^(1/12) 4324118431987400 a001 3524578/710647*33385282^(1/8) 4324118431987445 a001 9227465/710647*1860498^(1/12) 4324118431987470 a001 1346269/4870847*439204^(7/18) 4324118431987587 a001 3524578/710647*1860498^(3/20) 4324118431987710 a001 317811/4870847*1860498^(9/20) 4324118431987804 a001 317811/3010349*20633239^(5/14) 4324118431987807 a001 1346269/710647*141422324^(1/6) 4324118431987807 a001 317811/3010349*2537720636^(5/18) 4324118431987807 a001 317811/3010349*312119004989^(5/22) 4324118431987807 a001 317811/3010349*3461452808002^(5/24) 4324118431987807 a001 1346269/710647*73681302247^(1/8) 4324118431987807 a001 317811/3010349*28143753123^(1/4) 4324118431987807 a001 317811/3010349*228826127^(5/16) 4324118431988024 a001 514229/7881196*439204^(1/2) 4324118431988027 a001 10959/711491*1860498^(11/20) 4324118431988055 a001 317811/33385282*1860498^(7/12) 4324118431988142 a001 105937/29134601*1860498^(13/20) 4324118431988234 a001 726103/620166*439204^(5/18) 4324118431988267 a001 317811/370248451*1860498^(3/4) 4324118431988328 a001 317811/3010349*1860498^(5/12) 4324118431988374 a001 5702887/710647*710647^(1/8) 4324118431988392 a001 317811/1568397607*1860498^(17/20) 4324118431988475 a001 105937/1368706081*1860498^(11/12) 4324118431988517 a001 317811/6643838879*1860498^(19/20) 4324118431989196 a001 514229/1860498*439204^(7/18) 4324118431989457 a001 5702887/4870847*439204^(5/18) 4324118431989635 a001 4976784/4250681*439204^(5/18) 4324118431989661 a001 39088169/33385282*439204^(5/18) 4324118431989665 a001 34111385/29134601*439204^(5/18) 4324118431989666 a001 267914296/228826127*439204^(5/18) 4324118431989666 a001 233802911/199691526*439204^(5/18) 4324118431989666 a001 1836311903/1568397607*439204^(5/18) 4324118431989666 a001 1602508992/1368706081*439204^(5/18) 4324118431989666 a001 12586269025/10749957122*439204^(5/18) 4324118431989666 a001 10983760033/9381251041*439204^(5/18) 4324118431989666 a001 86267571272/73681302247*439204^(5/18) 4324118431989666 a001 75283811239/64300051206*439204^(5/18) 4324118431989666 a001 2504730781961/2139295485799*439204^(5/18) 4324118431989666 a001 365435296162/312119004989*439204^(5/18) 4324118431989666 a001 139583862445/119218851371*439204^(5/18) 4324118431989666 a001 53316291173/45537549124*439204^(5/18) 4324118431989666 a001 20365011074/17393796001*439204^(5/18) 4324118431989666 a001 7778742049/6643838879*439204^(5/18) 4324118431989666 a001 2971215073/2537720636*439204^(5/18) 4324118431989666 a001 1134903170/969323029*439204^(5/18) 4324118431989666 a001 433494437/370248451*439204^(5/18) 4324118431989666 a001 165580141/141422324*439204^(5/18) 4324118431989667 a001 63245986/54018521*439204^(5/18) 4324118431989677 a001 24157817/20633239*439204^(5/18) 4324118431989746 a001 9227465/7881196*439204^(5/18) 4324118431990213 a001 3524578/3010349*439204^(5/18) 4324118431990579 a001 317811/1149851*7881196^(7/22) 4324118431990598 a001 317811/1149851*20633239^(3/10) 4324118431990601 a001 317811/1149851*17393796001^(3/14) 4324118431990601 a001 514229/710647*45537549124^(1/6) 4324118431990601 a001 317811/1149851*14662949395604^(1/6) 4324118431990601 a001 317811/1149851*599074578^(1/4) 4324118431990602 a001 317811/1149851*33385282^(7/24) 4324118431990607 a001 514229/710647*12752043^(1/4) 4324118431990917 a001 9227465/1860498*439204^(1/6) 4324118431991038 a001 317811/1149851*1860498^(7/20) 4324118431991976 a001 24157817/4870847*439204^(1/6) 4324118431992130 a001 63245986/12752043*439204^(1/6) 4324118431992153 a001 165580141/33385282*439204^(1/6) 4324118431992156 a001 433494437/87403803*439204^(1/6) 4324118431992156 a001 1134903170/228826127*439204^(1/6) 4324118431992156 a001 2971215073/599074578*439204^(1/6) 4324118431992156 a001 7778742049/1568397607*439204^(1/6) 4324118431992156 a001 20365011074/4106118243*439204^(1/6) 4324118431992156 a001 53316291173/10749957122*439204^(1/6) 4324118431992156 a001 139583862445/28143753123*439204^(1/6) 4324118431992156 a001 365435296162/73681302247*439204^(1/6) 4324118431992156 a001 956722026041/192900153618*439204^(1/6) 4324118431992156 a001 2504730781961/505019158607*439204^(1/6) 4324118431992156 a001 10610209857723/2139295485799*439204^(1/6) 4324118431992156 a001 4052739537881/817138163596*439204^(1/6) 4324118431992156 a001 140728068720/28374454999*439204^(1/6) 4324118431992156 a001 591286729879/119218851371*439204^(1/6) 4324118431992156 a001 225851433717/45537549124*439204^(1/6) 4324118431992156 a001 86267571272/17393796001*439204^(1/6) 4324118431992156 a001 32951280099/6643838879*439204^(1/6) 4324118431992156 a001 1144206275/230701876*439204^(1/6) 4324118431992156 a001 4807526976/969323029*439204^(1/6) 4324118431992157 a001 1836311903/370248451*439204^(1/6) 4324118431992157 a001 701408733/141422324*439204^(1/6) 4324118431992158 a001 267914296/54018521*439204^(1/6) 4324118431992167 a001 9303105/1875749*439204^(1/6) 4324118431992226 a001 39088169/7881196*439204^(1/6) 4324118431992630 a001 14930352/3010349*439204^(1/6) 4324118431992678 a001 317811/33385282*710647^(5/8) 4324118431993018 a001 75640/1875749*1149851^(1/2) 4324118431993394 a001 416020/930249*817138163596^(1/6) 4324118431993394 a001 416020/930249*87403803^(1/4) 4324118431993397 a001 39088169/1860498*439204^(1/18) 4324118431993413 a001 1346269/1149851*439204^(5/18) 4324118431993812 a001 317811/1149851*710647^(3/8) 4324118431994077 a001 2178309/54018521*1149851^(1/2) 4324118431994231 a001 5702887/141422324*1149851^(1/2) 4324118431994253 a001 14930352/370248451*1149851^(1/2) 4324118431994257 a001 39088169/969323029*1149851^(1/2) 4324118431994257 a001 9303105/230701876*1149851^(1/2) 4324118431994257 a001 267914296/6643838879*1149851^(1/2) 4324118431994257 a001 701408733/17393796001*1149851^(1/2) 4324118431994257 a001 1836311903/45537549124*1149851^(1/2) 4324118431994257 a001 4807526976/119218851371*1149851^(1/2) 4324118431994257 a001 1144206275/28374454999*1149851^(1/2) 4324118431994257 a001 32951280099/817138163596*1149851^(1/2) 4324118431994257 a001 86267571272/2139295485799*1149851^(1/2) 4324118431994257 a001 225851433717/5600748293801*1149851^(1/2) 4324118431994257 a001 591286729879/14662949395604*1149851^(1/2) 4324118431994257 a001 365435296162/9062201101803*1149851^(1/2) 4324118431994257 a001 139583862445/3461452808002*1149851^(1/2) 4324118431994257 a001 53316291173/1322157322203*1149851^(1/2) 4324118431994257 a001 20365011074/505019158607*1149851^(1/2) 4324118431994257 a001 7778742049/192900153618*1149851^(1/2) 4324118431994257 a001 2971215073/73681302247*1149851^(1/2) 4324118431994257 a001 1134903170/28143753123*1149851^(1/2) 4324118431994257 a001 433494437/10749957122*1149851^(1/2) 4324118431994257 a001 165580141/4106118243*1149851^(1/2) 4324118431994258 a001 63245986/1568397607*1149851^(1/2) 4324118431994259 a001 24157817/599074578*1149851^(1/2) 4324118431994267 a001 9227465/228826127*1149851^(1/2) 4324118431994326 a001 3524578/87403803*1149851^(1/2) 4324118431994401 a001 416020/16692641*3010349^(1/2) 4324118431994445 a001 726103/620166*7881196^(5/22) 4324118431994459 a001 726103/620166*20633239^(3/14) 4324118431994461 a001 726103/620166*2537720636^(1/6) 4324118431994461 a001 726103/620166*312119004989^(3/22) 4324118431994461 a001 726103/620166*28143753123^(3/20) 4324118431994461 a001 832040/4870847*4106118243^(1/4) 4324118431994461 a001 726103/620166*228826127^(3/16) 4324118431994462 a001 726103/620166*33385282^(5/24) 4324118431994465 a001 102334155/4870847*439204^(1/18) 4324118431994577 a001 832040/73681302247*7881196^(21/22) 4324118431994583 a001 832040/17393796001*7881196^(19/22) 4324118431994585 a001 416020/5374978561*7881196^(5/6) 4324118431994588 a001 832040/12752043*7881196^(9/22) 4324118431994590 a001 832040/4106118243*7881196^(17/22) 4324118431994596 a001 832040/969323029*7881196^(15/22) 4324118431994602 a001 832040/228826127*7881196^(13/22) 4324118431994605 a001 5702887/1860498*7881196^(1/6) 4324118431994610 a001 832040/54018521*7881196^(1/2) 4324118431994617 a001 832040/12752043*2537720636^(3/10) 4324118431994617 a001 5702887/1860498*312119004989^(1/10) 4324118431994617 a001 832040/12752043*14662949395604^(3/14) 4324118431994617 a001 832040/12752043*192900153618^(1/4) 4324118431994617 a001 5702887/1860498*1568397607^(1/8) 4324118431994618 a001 832040/12752043*33385282^(3/8) 4324118431994621 a001 267914296/12752043*439204^(1/18) 4324118431994634 a001 832040/119218851371*20633239^(13/14) 4324118431994634 a001 832040/73681302247*20633239^(9/10) 4324118431994635 a001 416020/5374978561*20633239^(11/14) 4324118431994636 a001 610/1860499*20633239^(7/10) 4324118431994637 a001 832040/969323029*20633239^(9/14) 4324118431994638 a001 832040/87403803*20633239^(1/2) 4324118431994638 a001 829464/103361*20633239^(1/10) 4324118431994639 a001 829464/103361*17393796001^(1/14) 4324118431994639 a001 416020/16692641*9062201101803^(1/4) 4324118431994639 a001 829464/103361*505019158607^(1/16) 4324118431994639 a001 829464/103361*599074578^(1/12) 4324118431994640 a001 39088169/1860498*7881196^(1/22) 4324118431994643 a001 832040/87403803*2537720636^(7/18) 4324118431994643 a001 832040/87403803*17393796001^(5/14) 4324118431994643 a001 832040/87403803*312119004989^(7/22) 4324118431994643 a001 832040/87403803*14662949395604^(5/18) 4324118431994643 a001 832040/87403803*505019158607^(5/16) 4324118431994643 a001 832040/87403803*28143753123^(7/20) 4324118431994643 a001 832040/87403803*599074578^(5/12) 4324118431994643 a001 832040/87403803*228826127^(7/16) 4324118431994643 a001 208010/35355581*54018521^(1/2) 4324118431994643 a001 39088169/1860498*33385282^(1/24) 4324118431994643 a001 832040/228826127*141422324^(1/2) 4324118431994643 a001 832040/119218851371*141422324^(5/6) 4324118431994643 a001 832040/228826127*73681302247^(3/8) 4324118431994643 a001 416020/299537289*969323029^(1/2) 4324118431994643 a001 701408733/33385282*439204^(1/18) 4324118431994643 a001 832040/1568397607*6643838879^(1/2) 4324118431994643 a001 208010/3665737348901*2537720636^(17/18) 4324118431994643 a001 832040/5600748293801*2537720636^(9/10) 4324118431994643 a001 832040/1322157322203*2537720636^(5/6) 4324118431994643 a001 832040/119218851371*2537720636^(13/18) 4324118431994643 a001 832040/73681302247*2537720636^(7/10) 4324118431994643 a001 416020/5374978561*2537720636^(11/18) 4324118431994643 a001 832040/4106118243*45537549124^(1/2) 4324118431994643 a001 416020/5374978561*312119004989^(1/2) 4324118431994643 a001 416020/5374978561*3461452808002^(11/24) 4324118431994643 a001 416020/5374978561*28143753123^(11/20) 4324118431994643 a001 832040/2139295485799*17393796001^(11/14) 4324118431994643 a001 832040/73681302247*17393796001^(9/14) 4324118431994643 a001 832040/28143753123*2139295485799^(1/2) 4324118431994643 a001 208010/3665737348901*45537549124^(5/6) 4324118431994643 a001 832040/73681302247*14662949395604^(1/2) 4324118431994643 a001 832040/73681302247*505019158607^(9/16) 4324118431994643 a001 832040/73681302247*192900153618^(7/12) 4324118431994643 a001 208010/3665737348901*312119004989^(17/22) 4324118431994643 a001 832040/5600748293801*14662949395604^(9/14) 4324118431994643 a001 208010/3665737348901*3461452808002^(17/24) 4324118431994643 a006 5^(1/2)*Fibonacci(79/2)/Lucas(30)/sqrt(5) 4324118431994643 a001 832040/2139295485799*14662949395604^(11/18) 4324118431994643 a001 832040/23725150497407*1322157322203^(3/4) 4324118431994643 a001 832040/2139295485799*505019158607^(11/16) 4324118431994643 a001 832040/5600748293801*192900153618^(3/4) 4324118431994643 a001 832040/119218851371*312119004989^(13/22) 4324118431994643 a001 832040/119218851371*3461452808002^(13/24) 4324118431994643 a001 832040/119218851371*73681302247^(5/8) 4324118431994643 a001 208010/11384387281*5600748293801^(1/2) 4324118431994643 a001 832040/119218851371*28143753123^(13/20) 4324118431994643 a001 832040/1322157322203*28143753123^(3/4) 4324118431994643 a001 208010/3665737348901*28143753123^(17/20) 4324118431994643 a001 832040/17393796001*817138163596^(1/2) 4324118431994643 a001 832040/6643838879*119218851371^(1/2) 4324118431994643 a001 75640/28374454999*4106118243^(3/4) 4324118431994643 a001 610/1860499*17393796001^(1/2) 4324118431994643 a001 610/1860499*14662949395604^(7/18) 4324118431994643 a001 610/1860499*505019158607^(7/16) 4324118431994643 a001 416020/5374978561*1568397607^(5/8) 4324118431994643 a001 832040/2139295485799*1568397607^(7/8) 4324118431994643 a001 832040/969323029*2537720636^(1/2) 4324118431994643 a001 832040/969323029*312119004989^(9/22) 4324118431994643 a001 832040/969323029*14662949395604^(5/14) 4324118431994643 a001 832040/969323029*192900153618^(5/12) 4324118431994643 a001 832040/969323029*28143753123^(9/20) 4324118431994643 a001 610/1860499*599074578^(7/12) 4324118431994643 a001 832040/73681302247*599074578^(3/4) 4324118431994643 a001 832040/2139295485799*599074578^(11/12) 4324118431994643 a001 832040/370248451*370248451^(1/2) 4324118431994643 a001 832040/969323029*228826127^(9/16) 4324118431994643 a001 416020/5374978561*228826127^(11/16) 4324118431994643 a001 832040/119218851371*228826127^(13/16) 4324118431994643 a001 832040/1322157322203*228826127^(15/16) 4324118431994643 a006 5^(1/2)*fibonacci(79/2)/Lucas(30)/sqrt(5) 4324118431994644 a001 832040/17393796001*87403803^(3/4) 4324118431994644 a001 9227465/1860498*7881196^(3/22) 4324118431994644 a001 24157817/1860498*20633239^(1/14) 4324118431994645 a001 24157817/1860498*2537720636^(1/18) 4324118431994645 a001 832040/54018521*312119004989^(3/10) 4324118431994645 a001 24157817/1860498*312119004989^(1/22) 4324118431994645 a001 24157817/1860498*28143753123^(1/20) 4324118431994645 a001 832040/54018521*1568397607^(3/8) 4324118431994645 a001 24157817/1860498*228826127^(1/16) 4324118431994645 a001 832040/228826127*33385282^(13/24) 4324118431994646 a001 832040/969323029*33385282^(5/8) 4324118431994646 a001 832040/4106118243*33385282^(17/24) 4324118431994646 a001 832040/17393796001*33385282^(19/24) 4324118431994647 a001 832040/54018521*33385282^(11/24) 4324118431994647 a001 1836311903/87403803*439204^(1/18) 4324118431994647 a001 832040/73681302247*33385282^(7/8) 4324118431994647 a001 75640/28374454999*33385282^(23/24) 4324118431994647 a001 102287808/4868641*439204^(1/18) 4324118431994647 a001 12586269025/599074578*439204^(1/18) 4324118431994647 a001 32951280099/1568397607*439204^(1/18) 4324118431994647 a001 86267571272/4106118243*439204^(1/18) 4324118431994647 a001 225851433717/10749957122*439204^(1/18) 4324118431994647 a001 591286729879/28143753123*439204^(1/18) 4324118431994647 a001 1548008755920/73681302247*439204^(1/18) 4324118431994647 a001 4052739537881/192900153618*439204^(1/18) 4324118431994647 a001 225749145909/10745088481*439204^(1/18) 4324118431994647 a001 6557470319842/312119004989*439204^(1/18) 4324118431994647 a001 2504730781961/119218851371*439204^(1/18) 4324118431994647 a001 956722026041/45537549124*439204^(1/18) 4324118431994647 a001 365435296162/17393796001*439204^(1/18) 4324118431994647 a001 139583862445/6643838879*439204^(1/18) 4324118431994647 a001 53316291173/2537720636*439204^(1/18) 4324118431994647 a001 20365011074/969323029*439204^(1/18) 4324118431994647 a001 7778742049/370248451*439204^(1/18) 4324118431994647 a001 2971215073/141422324*439204^(1/18) 4324118431994649 a001 1134903170/54018521*439204^(1/18) 4324118431994653 a001 9227465/1860498*2537720636^(1/10) 4324118431994653 a001 9227465/1860498*14662949395604^(1/14) 4324118431994653 a001 75640/1875749*1322157322203^(1/4) 4324118431994653 a001 9227465/1860498*192900153618^(1/12) 4324118431994654 a001 9227465/1860498*33385282^(1/8) 4324118431994657 a001 433494437/20633239*439204^(1/18) 4324118431994663 a001 832040/4106118243*12752043^(3/4) 4324118431994705 a001 39088169/1860498*1860498^(1/20) 4324118431994709 a001 208010/1970299*20633239^(5/14) 4324118431994713 a001 1762289/930249*141422324^(1/6) 4324118431994713 a001 208010/1970299*2537720636^(5/18) 4324118431994713 a001 208010/1970299*312119004989^(5/22) 4324118431994713 a001 208010/1970299*3461452808002^(5/24) 4324118431994713 a001 1762289/930249*73681302247^(1/8) 4324118431994713 a001 208010/1970299*28143753123^(1/4) 4324118431994713 a001 208010/1970299*228826127^(5/16) 4324118431994717 a001 165580141/7881196*439204^(1/18) 4324118431994731 a001 1346269/33385282*1149851^(1/2) 4324118431994749 a001 24157817/1860498*1860498^(1/12) 4324118431994773 a001 726103/620166*1860498^(1/4) 4324118431994822 a001 317811/969323029*710647^(7/8) 4324118431994841 a001 9227465/1860498*1860498^(3/20) 4324118431995098 a001 832040/3010349*7881196^(7/22) 4324118431995117 a001 832040/3010349*20633239^(3/10) 4324118431995120 a001 832040/3010349*17393796001^(3/14) 4324118431995120 a001 1346269/1860498*45537549124^(1/6) 4324118431995120 a001 832040/3010349*14662949395604^(1/6) 4324118431995120 a001 832040/3010349*599074578^(1/4) 4324118431995122 a001 832040/3010349*33385282^(7/24) 4324118431995125 a001 63245986/3010349*439204^(1/18) 4324118431995127 a001 1346269/1860498*12752043^(1/4) 4324118431995179 a001 832040/12752043*1860498^(9/20) 4324118431995233 a001 208010/1970299*1860498^(5/12) 4324118431995332 a001 832040/54018521*1860498^(11/20) 4324118431995371 a001 832040/87403803*1860498^(7/12) 4324118431995400 a001 5702887/1149851*439204^(1/6) 4324118431995455 a001 832040/228826127*1860498^(13/20) 4324118431995471 a001 726103/29134601*3010349^(1/2) 4324118431995528 a001 2178309/4870847*817138163596^(1/6) 4324118431995528 a001 2178309/4870847*87403803^(1/4) 4324118431995558 a001 832040/3010349*1860498^(7/20) 4324118431995580 a001 832040/969323029*1860498^(3/4) 4324118431995627 a001 5702887/228826127*3010349^(1/2) 4324118431995644 a001 726103/64300051206*7881196^(21/22) 4324118431995650 a001 829464/33281921*3010349^(1/2) 4324118431995650 a001 2178309/45537549124*7881196^(19/22) 4324118431995652 a001 726103/9381251041*7881196^(5/6) 4324118431995653 a001 39088169/1568397607*3010349^(1/2) 4324118431995654 a001 34111385/1368706081*3010349^(1/2) 4324118431995654 a001 133957148/5374978561*3010349^(1/2) 4324118431995654 a001 233802911/9381251041*3010349^(1/2) 4324118431995654 a001 1836311903/73681302247*3010349^(1/2) 4324118431995654 a001 267084832/10716675201*3010349^(1/2) 4324118431995654 a001 12586269025/505019158607*3010349^(1/2) 4324118431995654 a001 10983760033/440719107401*3010349^(1/2) 4324118431995654 a001 43133785636/1730726404001*3010349^(1/2) 4324118431995654 a001 75283811239/3020733700601*3010349^(1/2) 4324118431995654 a001 182717648081/7331474697802*3010349^(1/2) 4324118431995654 a001 139583862445/5600748293801*3010349^(1/2) 4324118431995654 a001 53316291173/2139295485799*3010349^(1/2) 4324118431995654 a001 10182505537/408569081798*3010349^(1/2) 4324118431995654 a001 7778742049/312119004989*3010349^(1/2) 4324118431995654 a001 2971215073/119218851371*3010349^(1/2) 4324118431995654 a001 567451585/22768774562*3010349^(1/2) 4324118431995654 a001 433494437/17393796001*3010349^(1/2) 4324118431995654 a001 165580141/6643838879*3010349^(1/2) 4324118431995654 a001 31622993/1268860318*3010349^(1/2) 4324118431995655 a001 24157817/969323029*3010349^(1/2) 4324118431995656 a001 987/4870846*7881196^(17/22) 4324118431995663 a001 2178309/2537720636*7881196^(15/22) 4324118431995664 a001 9227465/370248451*3010349^(1/2) 4324118431995668 a001 5702887/4870847*7881196^(5/22) 4324118431995669 a001 726103/199691526*7881196^(13/22) 4324118431995676 a001 2178309/141422324*7881196^(1/2) 4324118431995678 a001 311187/4769326*7881196^(9/22) 4324118431995682 a001 5702887/4870847*20633239^(3/14) 4324118431995684 a001 5702887/4870847*2537720636^(1/6) 4324118431995684 a001 5702887/4870847*312119004989^(3/22) 4324118431995684 a001 5702887/4870847*28143753123^(3/20) 4324118431995684 a001 726103/4250681*4106118243^(1/4) 4324118431995684 a001 5702887/4870847*228826127^(3/16) 4324118431995685 a001 5702887/4870847*33385282^(5/24) 4324118431995695 a001 14930352/4870847*7881196^(1/6) 4324118431995701 a001 2178309/312119004989*20633239^(13/14) 4324118431995701 a001 726103/64300051206*20633239^(9/10) 4324118431995702 a001 24157817/4870847*7881196^(3/22) 4324118431995702 a001 726103/9381251041*20633239^(11/14) 4324118431995703 a001 2178309/6643838879*20633239^(7/10) 4324118431995704 a001 2178309/2537720636*20633239^(9/14) 4324118431995705 a001 46347/4868641*20633239^(1/2) 4324118431995705 a001 832040/4106118243*1860498^(17/20) 4324118431995706 a001 311187/4769326*2537720636^(3/10) 4324118431995706 a001 14930352/4870847*312119004989^(1/10) 4324118431995706 a001 311187/4769326*14662949395604^(3/14) 4324118431995706 a001 311187/4769326*192900153618^(1/4) 4324118431995706 a001 14930352/4870847*1568397607^(1/8) 4324118431995707 a001 102334155/4870847*7881196^(1/22) 4324118431995708 a001 311187/4769326*33385282^(3/8) 4324118431995709 a001 39088169/4870847*20633239^(1/10) 4324118431995710 a001 2178309/370248451*54018521^(1/2) 4324118431995710 a001 39088169/4870847*17393796001^(1/14) 4324118431995710 a001 39088169/4870847*14662949395604^(1/18) 4324118431995710 a001 726103/29134601*9062201101803^(1/4) 4324118431995710 a001 39088169/4870847*505019158607^(1/16) 4324118431995710 a001 39088169/4870847*599074578^(1/12) 4324118431995710 a001 829464/103361*710647^(1/8) 4324118431995710 a001 63245986/4870847*20633239^(1/14) 4324118431995710 a001 2178309/312119004989*141422324^(5/6) 4324118431995710 a001 726103/199691526*141422324^(1/2) 4324118431995710 a001 46347/4868641*2537720636^(7/18) 4324118431995710 a001 46347/4868641*17393796001^(5/14) 4324118431995710 a001 46347/4868641*312119004989^(7/22) 4324118431995710 a001 46347/4868641*14662949395604^(5/18) 4324118431995710 a001 46347/4868641*505019158607^(5/16) 4324118431995710 a001 46347/4868641*28143753123^(7/20) 4324118431995710 a001 46347/4868641*599074578^(5/12) 4324118431995710 a001 46347/4868641*228826127^(7/16) 4324118431995710 a001 726103/199691526*73681302247^(3/8) 4324118431995710 a001 2178309/969323029*370248451^(1/2) 4324118431995710 a001 311187/224056801*969323029^(1/2) 4324118431995710 a001 2178309/14662949395604*2537720636^(9/10) 4324118431995710 a001 311187/494493258286*2537720636^(5/6) 4324118431995710 a001 2178309/312119004989*2537720636^(13/18) 4324118431995710 a001 726103/64300051206*2537720636^(7/10) 4324118431995710 a001 726103/9381251041*2537720636^(11/18) 4324118431995710 a001 726103/1368706081*6643838879^(1/2) 4324118431995710 a001 987/4870846*45537549124^(1/2) 4324118431995710 a001 2178309/5600748293801*17393796001^(11/14) 4324118431995710 a001 726103/64300051206*17393796001^(9/14) 4324118431995710 a001 726103/9381251041*312119004989^(1/2) 4324118431995710 a001 726103/9381251041*3461452808002^(11/24) 4324118431995710 a001 726103/9381251041*28143753123^(11/20) 4324118431995710 a001 311187/10525900321*2139295485799^(1/2) 4324118431995710 a001 726103/64300051206*14662949395604^(1/2) 4324118431995710 a001 726103/64300051206*505019158607^(9/16) 4324118431995710 a001 726103/64300051206*192900153618^(7/12) 4324118431995710 a001 311187/494493258286*312119004989^(15/22) 4324118431995710 a001 2178309/14662949395604*14662949395604^(9/14) 4324118431995710 a006 5^(1/2)*Fibonacci(83/2)/Lucas(32)/sqrt(5) 4324118431995710 a001 2178309/5600748293801*14662949395604^(11/18) 4324118431995710 a001 2178309/5600748293801*505019158607^(11/16) 4324118431995710 a001 2178309/312119004989*312119004989^(13/22) 4324118431995710 a001 2178309/312119004989*3461452808002^(13/24) 4324118431995710 a001 2178309/14662949395604*192900153618^(3/4) 4324118431995710 a001 2178309/119218851371*5600748293801^(1/2) 4324118431995710 a001 2178309/312119004989*73681302247^(5/8) 4324118431995710 a001 2178309/45537549124*817138163596^(1/2) 4324118431995710 a001 2178309/312119004989*28143753123^(13/20) 4324118431995710 a001 311187/494493258286*28143753123^(3/4) 4324118431995710 a001 2178309/17393796001*119218851371^(1/2) 4324118431995710 a001 2178309/6643838879*17393796001^(1/2) 4324118431995710 a001 2178309/6643838879*14662949395604^(7/18) 4324118431995710 a001 2178309/6643838879*505019158607^(7/16) 4324118431995710 a001 2178309/817138163596*4106118243^(3/4) 4324118431995710 a001 2178309/2537720636*2537720636^(1/2) 4324118431995710 a001 2178309/2537720636*312119004989^(9/22) 4324118431995710 a001 2178309/2537720636*14662949395604^(5/14) 4324118431995710 a001 2178309/2537720636*192900153618^(5/12) 4324118431995710 a001 2178309/2537720636*28143753123^(9/20) 4324118431995710 a001 726103/9381251041*1568397607^(5/8) 4324118431995710 a001 2178309/5600748293801*1568397607^(7/8) 4324118431995710 a001 2178309/6643838879*599074578^(7/12) 4324118431995710 a001 726103/64300051206*599074578^(3/4) 4324118431995710 a001 2178309/5600748293801*599074578^(11/12) 4324118431995710 a006 5^(1/2)*fibonacci(83/2)/Lucas(32)/sqrt(5) 4324118431995710 a001 2178309/2537720636*228826127^(9/16) 4324118431995710 a001 726103/9381251041*228826127^(11/16) 4324118431995710 a001 2178309/312119004989*228826127^(13/16) 4324118431995710 a001 311187/494493258286*228826127^(15/16) 4324118431995710 a001 102334155/4870847*33385282^(1/24) 4324118431995711 a001 63245986/4870847*2537720636^(1/18) 4324118431995711 a001 2178309/141422324*312119004989^(3/10) 4324118431995711 a001 63245986/4870847*312119004989^(1/22) 4324118431995711 a001 63245986/4870847*28143753123^(1/20) 4324118431995711 a001 2178309/141422324*1568397607^(3/8) 4324118431995711 a001 63245986/4870847*228826127^(1/16) 4324118431995711 a001 2178309/45537549124*87403803^(3/4) 4324118431995712 a001 24157817/4870847*2537720636^(1/10) 4324118431995712 a001 24157817/4870847*14662949395604^(1/14) 4324118431995712 a001 2178309/54018521*1322157322203^(1/4) 4324118431995712 a001 24157817/4870847*192900153618^(1/12) 4324118431995712 a001 24157817/4870847*33385282^(1/8) 4324118431995712 a001 2178309/141422324*33385282^(11/24) 4324118431995712 a001 726103/199691526*33385282^(13/24) 4324118431995713 a001 2178309/2537720636*33385282^(5/8) 4324118431995713 a001 987/4870846*33385282^(17/24) 4324118431995713 a001 2178309/45537549124*33385282^(19/24) 4324118431995714 a001 726103/64300051206*33385282^(7/8) 4324118431995714 a001 2178309/817138163596*33385282^(23/24) 4324118431995717 a001 2178309/20633239*20633239^(5/14) 4324118431995720 a001 9227465/4870847*141422324^(1/6) 4324118431995720 a001 2178309/20633239*2537720636^(5/18) 4324118431995720 a001 2178309/20633239*312119004989^(5/22) 4324118431995720 a001 2178309/20633239*3461452808002^(5/24) 4324118431995720 a001 9227465/4870847*73681302247^(1/8) 4324118431995720 a001 2178309/20633239*28143753123^(1/4) 4324118431995720 a001 2178309/20633239*228826127^(5/16) 4324118431995724 a001 1762289/70711162*3010349^(1/2) 4324118431995730 a001 987/4870846*12752043^(3/4) 4324118431995758 a001 2178309/7881196*7881196^(7/22) 4324118431995773 a001 102334155/4870847*1860498^(1/20) 4324118431995777 a001 2178309/7881196*20633239^(3/10) 4324118431995780 a001 2178309/7881196*17393796001^(3/14) 4324118431995780 a001 3524578/4870847*45537549124^(1/6) 4324118431995780 a001 2178309/7881196*14662949395604^(1/6) 4324118431995780 a001 2178309/7881196*599074578^(1/4) 4324118431995781 a001 2178309/7881196*33385282^(7/24) 4324118431995787 a001 3524578/4870847*12752043^(1/4) 4324118431995788 a001 416020/5374978561*1860498^(11/12) 4324118431995800 a001 5702887/505019158607*7881196^(21/22) 4324118431995806 a001 5702887/119218851371*7881196^(19/22) 4324118431995808 a001 5702887/73681302247*7881196^(5/6) 4324118431995812 a001 5702887/28143753123*7881196^(17/22) 4324118431995815 a001 63245986/4870847*1860498^(1/12) 4324118431995818 a001 5702887/6643838879*7881196^(15/22) 4324118431995822 a001 4976784/440719107401*7881196^(21/22) 4324118431995825 a001 5702887/1568397607*7881196^(13/22) 4324118431995826 a001 39088169/3461452808002*7881196^(21/22) 4324118431995826 a001 34111385/3020733700601*7881196^(21/22) 4324118431995826 a001 267914296/23725150497407*7881196^(21/22) 4324118431995826 a001 165580141/14662949395604*7881196^(21/22) 4324118431995826 a001 63245986/5600748293801*7881196^(21/22) 4324118431995828 a001 24157817/2139295485799*7881196^(21/22) 4324118431995829 a001 14930352/312119004989*7881196^(19/22) 4324118431995830 a001 832040/17393796001*1860498^(19/20) 4324118431995831 a001 2584/33385281*7881196^(5/6) 4324118431995831 a001 5702887/370248451*7881196^(1/2) 4324118431995832 a001 4181/87403804*7881196^(19/22) 4324118431995832 a001 102334155/2139295485799*7881196^(19/22) 4324118431995832 a001 267914296/5600748293801*7881196^(19/22) 4324118431995832 a001 701408733/14662949395604*7881196^(19/22) 4324118431995832 a001 1134903170/23725150497407*7881196^(19/22) 4324118431995832 a001 433494437/9062201101803*7881196^(19/22) 4324118431995832 a001 165580141/3461452808002*7881196^(19/22) 4324118431995833 a001 63245986/1322157322203*7881196^(19/22) 4324118431995834 a001 24157817/505019158607*7881196^(19/22) 4324118431995834 a001 39088169/505019158607*7881196^(5/6) 4324118431995834 a001 34111385/440719107401*7881196^(5/6) 4324118431995835 a001 133957148/1730726404001*7881196^(5/6) 4324118431995835 a001 233802911/3020733700601*7881196^(5/6) 4324118431995835 a001 1836311903/23725150497407*7881196^(5/6) 4324118431995835 a001 567451585/7331474697802*7881196^(5/6) 4324118431995835 a001 433494437/5600748293801*7881196^(5/6) 4324118431995835 a001 165580141/2139295485799*7881196^(5/6) 4324118431995835 a001 31622993/408569081798*7881196^(5/6) 4324118431995835 a001 14930352/73681302247*7881196^(17/22) 4324118431995836 a001 24157817/312119004989*7881196^(5/6) 4324118431995836 a001 9227465/817138163596*7881196^(21/22) 4324118431995837 a001 5702887/87403803*7881196^(9/22) 4324118431995838 a001 39088169/192900153618*7881196^(17/22) 4324118431995839 a001 102334155/505019158607*7881196^(17/22) 4324118431995839 a001 267914296/1322157322203*7881196^(17/22) 4324118431995839 a001 701408733/3461452808002*7881196^(17/22) 4324118431995839 a001 1836311903/9062201101803*7881196^(17/22) 4324118431995839 a001 4807526976/23725150497407*7881196^(17/22) 4324118431995839 a001 2971215073/14662949395604*7881196^(17/22) 4324118431995839 a001 1134903170/5600748293801*7881196^(17/22) 4324118431995839 a001 433494437/2139295485799*7881196^(17/22) 4324118431995839 a001 165580141/817138163596*7881196^(17/22) 4324118431995839 a001 63245986/312119004989*7881196^(17/22) 4324118431995839 a001 5702887/12752043*817138163596^(1/6) 4324118431995840 a001 5702887/12752043*87403803^(1/4) 4324118431995840 a001 24157817/119218851371*7881196^(17/22) 4324118431995841 a001 14930352/17393796001*7881196^(15/22) 4324118431995843 a001 9227465/192900153618*7881196^(19/22) 4324118431995845 a001 39088169/45537549124*7881196^(15/22) 4324118431995845 a001 9227465/119218851371*7881196^(5/6) 4324118431995845 a001 102334155/119218851371*7881196^(15/22) 4324118431995845 a001 267914296/312119004989*7881196^(15/22) 4324118431995845 a001 701408733/817138163596*7881196^(15/22) 4324118431995845 a001 1836311903/2139295485799*7881196^(15/22) 4324118431995845 a001 4807526976/5600748293801*7881196^(15/22) 4324118431995845 a001 12586269025/14662949395604*7881196^(15/22) 4324118431995845 a001 20365011074/23725150497407*7881196^(15/22) 4324118431995845 a001 7778742049/9062201101803*7881196^(15/22) 4324118431995845 a001 2971215073/3461452808002*7881196^(15/22) 4324118431995845 a001 1134903170/1322157322203*7881196^(15/22) 4324118431995845 a001 433494437/505019158607*7881196^(15/22) 4324118431995845 a001 165580141/192900153618*7881196^(15/22) 4324118431995845 a001 63245986/73681302247*7881196^(15/22) 4324118431995846 a001 4976784/4250681*7881196^(5/22) 4324118431995847 a001 24157817/28143753123*7881196^(15/22) 4324118431995848 a001 4976784/1368706081*7881196^(13/22) 4324118431995849 a001 9227465/45537549124*7881196^(17/22) 4324118431995851 a001 39088169/10749957122*7881196^(13/22) 4324118431995851 a001 831985/228811001*7881196^(13/22) 4324118431995851 a001 267914296/73681302247*7881196^(13/22) 4324118431995851 a001 233802911/64300051206*7881196^(13/22) 4324118431995851 a001 1836311903/505019158607*7881196^(13/22) 4324118431995851 a001 1602508992/440719107401*7881196^(13/22) 4324118431995851 a001 12586269025/3461452808002*7881196^(13/22) 4324118431995851 a001 10983760033/3020733700601*7881196^(13/22) 4324118431995851 a001 86267571272/23725150497407*7881196^(13/22) 4324118431995851 a001 53316291173/14662949395604*7881196^(13/22) 4324118431995851 a001 20365011074/5600748293801*7881196^(13/22) 4324118431995851 a001 7778742049/2139295485799*7881196^(13/22) 4324118431995851 a001 2971215073/817138163596*7881196^(13/22) 4324118431995851 a001 1134903170/312119004989*7881196^(13/22) 4324118431995851 a001 433494437/119218851371*7881196^(13/22) 4324118431995851 a001 165580141/45537549124*7881196^(13/22) 4324118431995852 a001 63245986/17393796001*7881196^(13/22) 4324118431995853 a001 24157817/6643838879*7881196^(13/22) 4324118431995854 a001 39088169/12752043*7881196^(1/6) 4324118431995854 a001 14930352/969323029*7881196^(1/2) 4324118431995854 a001 5702887/20633239*7881196^(7/22) 4324118431995855 a001 9227465/10749957122*7881196^(15/22) 4324118431995857 a001 5702887/817138163596*20633239^(13/14) 4324118431995857 a001 63245986/12752043*7881196^(3/22) 4324118431995857 a001 5702887/505019158607*20633239^(9/10) 4324118431995857 a001 39088169/2537720636*7881196^(1/2) 4324118431995858 a001 102334155/6643838879*7881196^(1/2) 4324118431995858 a001 9238424/599786069*7881196^(1/2) 4324118431995858 a001 701408733/45537549124*7881196^(1/2) 4324118431995858 a001 1836311903/119218851371*7881196^(1/2) 4324118431995858 a001 4807526976/312119004989*7881196^(1/2) 4324118431995858 a001 12586269025/817138163596*7881196^(1/2) 4324118431995858 a001 32951280099/2139295485799*7881196^(1/2) 4324118431995858 a001 86267571272/5600748293801*7881196^(1/2) 4324118431995858 a001 7787980473/505618944676*7881196^(1/2) 4324118431995858 a001 365435296162/23725150497407*7881196^(1/2) 4324118431995858 a001 139583862445/9062201101803*7881196^(1/2) 4324118431995858 a001 53316291173/3461452808002*7881196^(1/2) 4324118431995858 a001 20365011074/1322157322203*7881196^(1/2) 4324118431995858 a001 7778742049/505019158607*7881196^(1/2) 4324118431995858 a001 2971215073/192900153618*7881196^(1/2) 4324118431995858 a001 1134903170/73681302247*7881196^(1/2) 4324118431995858 a001 433494437/28143753123*7881196^(1/2) 4324118431995858 a001 165580141/10749957122*7881196^(1/2) 4324118431995858 a001 63245986/4106118243*7881196^(1/2) 4324118431995858 a001 5702887/73681302247*20633239^(11/14) 4324118431995859 a001 5702887/17393796001*20633239^(7/10) 4324118431995859 a001 24157817/1568397607*7881196^(1/2) 4324118431995859 a001 5702887/6643838879*20633239^(9/14) 4324118431995860 a001 4976784/4250681*20633239^(3/14) 4324118431995860 a001 14930352/228826127*7881196^(9/22) 4324118431995861 a001 5702887/599074578*20633239^(1/2) 4324118431995862 a001 9227465/2537720636*7881196^(13/22) 4324118431995862 a001 4976784/4250681*2537720636^(1/6) 4324118431995862 a001 4976784/4250681*312119004989^(3/22) 4324118431995862 a001 4976784/4250681*28143753123^(3/20) 4324118431995862 a001 5702887/33385282*4106118243^(1/4) 4324118431995862 a001 4976784/4250681*228826127^(3/16) 4324118431995863 a001 267914296/12752043*7881196^(1/22) 4324118431995863 a001 4976784/4250681*33385282^(5/24) 4324118431995863 a001 39088169/599074578*7881196^(9/22) 4324118431995864 a001 5702887/54018521*20633239^(5/14) 4324118431995864 a001 14619165/224056801*7881196^(9/22) 4324118431995864 a001 267914296/4106118243*7881196^(9/22) 4324118431995864 a001 701408733/10749957122*7881196^(9/22) 4324118431995864 a001 1836311903/28143753123*7881196^(9/22) 4324118431995864 a001 686789568/10525900321*7881196^(9/22) 4324118431995864 a001 12586269025/192900153618*7881196^(9/22) 4324118431995864 a001 32951280099/505019158607*7881196^(9/22) 4324118431995864 a001 86267571272/1322157322203*7881196^(9/22) 4324118431995864 a001 32264490531/494493258286*7881196^(9/22) 4324118431995864 a001 591286729879/9062201101803*7881196^(9/22) 4324118431995864 a001 1548008755920/23725150497407*7881196^(9/22) 4324118431995864 a001 139583862445/2139295485799*7881196^(9/22) 4324118431995864 a001 53316291173/817138163596*7881196^(9/22) 4324118431995864 a001 20365011074/312119004989*7881196^(9/22) 4324118431995864 a001 7778742049/119218851371*7881196^(9/22) 4324118431995864 a001 2971215073/45537549124*7881196^(9/22) 4324118431995864 a001 1134903170/17393796001*7881196^(9/22) 4324118431995864 a001 433494437/6643838879*7881196^(9/22) 4324118431995864 a001 165580141/2537720636*7881196^(9/22) 4324118431995864 a001 63245986/969323029*7881196^(9/22) 4324118431995865 a001 34111385/4250681*20633239^(1/10) 4324118431995865 a001 5702887/969323029*54018521^(1/2) 4324118431995865 a001 165580141/12752043*20633239^(1/14) 4324118431995865 a001 5702887/87403803*2537720636^(3/10) 4324118431995865 a001 39088169/12752043*312119004989^(1/10) 4324118431995865 a001 5702887/87403803*192900153618^(1/4) 4324118431995865 a001 39088169/12752043*1568397607^(1/8) 4324118431995866 a001 24157817/370248451*7881196^(9/22) 4324118431995866 a001 5702887/817138163596*141422324^(5/6) 4324118431995866 a001 5702887/1568397607*141422324^(1/2) 4324118431995866 a001 34111385/4250681*17393796001^(1/14) 4324118431995866 a001 34111385/4250681*14662949395604^(1/18) 4324118431995866 a001 34111385/4250681*505019158607^(1/16) 4324118431995866 a001 34111385/4250681*599074578^(1/12) 4324118431995866 a001 5702887/2537720636*370248451^(1/2) 4324118431995866 a001 5702887/599074578*2537720636^(7/18) 4324118431995866 a001 5702887/599074578*17393796001^(5/14) 4324118431995866 a001 5702887/599074578*312119004989^(7/22) 4324118431995866 a001 5702887/599074578*14662949395604^(5/18) 4324118431995866 a001 5702887/599074578*505019158607^(5/16) 4324118431995866 a001 5702887/599074578*28143753123^(7/20) 4324118431995866 a001 5702887/599074578*599074578^(5/12) 4324118431995866 a001 5702887/4106118243*969323029^(1/2) 4324118431995866 a001 5702887/1568397607*73681302247^(3/8) 4324118431995866 a001 5702887/9062201101803*2537720636^(5/6) 4324118431995866 a001 5702887/817138163596*2537720636^(13/18) 4324118431995866 a001 5702887/505019158607*2537720636^(7/10) 4324118431995866 a001 5702887/73681302247*2537720636^(11/18) 4324118431995866 a001 5702887/6643838879*2537720636^(1/2) 4324118431995866 a001 5702887/10749957122*6643838879^(1/2) 4324118431995866 a001 5702887/14662949395604*17393796001^(11/14) 4324118431995866 a001 5702887/505019158607*17393796001^(9/14) 4324118431995866 a001 5702887/28143753123*45537549124^(1/2) 4324118431995866 a001 5702887/73681302247*312119004989^(1/2) 4324118431995866 a001 5702887/73681302247*3461452808002^(11/24) 4324118431995866 a001 5702887/192900153618*2139295485799^(1/2) 4324118431995866 a001 5702887/817138163596*312119004989^(13/22) 4324118431995866 a001 5702887/505019158607*14662949395604^(1/2) 4324118431995866 a001 5702887/505019158607*505019158607^(9/16) 4324118431995866 a006 5^(1/2)*Fibonacci(87/2)/Lucas(34)/sqrt(5) 4324118431995866 a001 5702887/14662949395604*14662949395604^(11/18) 4324118431995866 a001 5702887/14662949395604*505019158607^(11/16) 4324118431995866 a001 5702887/312119004989*5600748293801^(1/2) 4324118431995866 a001 5702887/505019158607*192900153618^(7/12) 4324118431995866 a001 5702887/119218851371*817138163596^(1/2) 4324118431995866 a001 5702887/817138163596*73681302247^(5/8) 4324118431995866 a001 1597/12752044*119218851371^(1/2) 4324118431995866 a001 5702887/73681302247*28143753123^(11/20) 4324118431995866 a001 5702887/817138163596*28143753123^(13/20) 4324118431995866 a001 5702887/9062201101803*28143753123^(3/4) 4324118431995866 a001 5702887/17393796001*17393796001^(1/2) 4324118431995866 a001 5702887/17393796001*14662949395604^(7/18) 4324118431995866 a001 5702887/17393796001*505019158607^(7/16) 4324118431995866 a001 5702887/6643838879*312119004989^(9/22) 4324118431995866 a001 5702887/6643838879*14662949395604^(5/14) 4324118431995866 a001 5702887/6643838879*192900153618^(5/12) 4324118431995866 a001 5702887/6643838879*28143753123^(9/20) 4324118431995866 a001 5702887/2139295485799*4106118243^(3/4) 4324118431995866 a001 5702887/73681302247*1568397607^(5/8) 4324118431995866 a001 5702887/14662949395604*1568397607^(7/8) 4324118431995866 a006 5^(1/2)*fibonacci(87/2)/Lucas(34)/sqrt(5) 4324118431995866 a001 5702887/17393796001*599074578^(7/12) 4324118431995866 a001 5702887/505019158607*599074578^(3/4) 4324118431995866 a001 5702887/14662949395604*599074578^(11/12) 4324118431995866 a001 5702887/599074578*228826127^(7/16) 4324118431995866 a001 165580141/12752043*2537720636^(1/18) 4324118431995866 a001 5702887/370248451*312119004989^(3/10) 4324118431995866 a001 165580141/12752043*312119004989^(1/22) 4324118431995866 a001 165580141/12752043*28143753123^(1/20) 4324118431995866 a001 5702887/370248451*1568397607^(3/8) 4324118431995866 a001 165580141/12752043*228826127^(1/16) 4324118431995866 a001 5702887/6643838879*228826127^(9/16) 4324118431995866 a001 5702887/73681302247*228826127^(11/16) 4324118431995866 a001 5702887/817138163596*228826127^(13/16) 4324118431995866 a001 5702887/9062201101803*228826127^(15/16) 4324118431995866 a001 267914296/12752043*33385282^(1/24) 4324118431995866 a001 63245986/12752043*2537720636^(1/10) 4324118431995866 a001 5702887/141422324*1322157322203^(1/4) 4324118431995866 a001 63245986/12752043*192900153618^(1/12) 4324118431995866 a001 5702887/119218851371*87403803^(3/4) 4324118431995867 a001 63245986/12752043*33385282^(1/8) 4324118431995867 a001 5702887/87403803*33385282^(3/8) 4324118431995867 a001 24157817/12752043*141422324^(1/6) 4324118431995867 a001 5702887/54018521*2537720636^(5/18) 4324118431995867 a001 5702887/54018521*312119004989^(5/22) 4324118431995867 a001 5702887/54018521*3461452808002^(5/24) 4324118431995867 a001 24157817/12752043*73681302247^(1/8) 4324118431995867 a001 5702887/54018521*28143753123^(1/4) 4324118431995867 a001 5702887/54018521*228826127^(5/16) 4324118431995868 a001 5702887/370248451*33385282^(11/24) 4324118431995868 a001 9227465/599074578*7881196^(1/2) 4324118431995868 a001 14930352/54018521*7881196^(7/22) 4324118431995868 a001 5702887/1568397607*33385282^(13/24) 4324118431995868 a001 5702887/6643838879*33385282^(5/8) 4324118431995869 a001 5702887/28143753123*33385282^(17/24) 4324118431995869 a001 5702887/119218851371*33385282^(19/24) 4324118431995869 a001 5702887/505019158607*33385282^(7/8) 4324118431995870 a001 5702887/2139295485799*33385282^(23/24) 4324118431995870 a001 39088169/141422324*7881196^(7/22) 4324118431995870 a001 102334155/370248451*7881196^(7/22) 4324118431995870 a001 267914296/969323029*7881196^(7/22) 4324118431995870 a001 701408733/2537720636*7881196^(7/22) 4324118431995870 a001 1836311903/6643838879*7881196^(7/22) 4324118431995870 a001 4807526976/17393796001*7881196^(7/22) 4324118431995870 a001 12586269025/45537549124*7881196^(7/22) 4324118431995870 a001 32951280099/119218851371*7881196^(7/22) 4324118431995870 a001 86267571272/312119004989*7881196^(7/22) 4324118431995870 a001 225851433717/817138163596*7881196^(7/22) 4324118431995870 a001 1548008755920/5600748293801*7881196^(7/22) 4324118431995870 a001 139583862445/505019158607*7881196^(7/22) 4324118431995870 a001 53316291173/192900153618*7881196^(7/22) 4324118431995870 a001 20365011074/73681302247*7881196^(7/22) 4324118431995870 a001 7778742049/28143753123*7881196^(7/22) 4324118431995870 a001 2971215073/10749957122*7881196^(7/22) 4324118431995870 a001 1134903170/4106118243*7881196^(7/22) 4324118431995870 a001 433494437/1568397607*7881196^(7/22) 4324118431995870 a001 165580141/599074578*7881196^(7/22) 4324118431995871 a001 63245986/228826127*7881196^(7/22) 4324118431995871 a001 24157817/87403803*7881196^(7/22) 4324118431995872 a001 39088169/33385282*7881196^(5/22) 4324118431995873 a001 5702887/20633239*20633239^(3/10) 4324118431995874 a001 9227465/141422324*7881196^(9/22) 4324118431995876 a001 34111385/29134601*7881196^(5/22) 4324118431995876 a001 5702887/20633239*17393796001^(3/14) 4324118431995876 a001 9227465/12752043*45537549124^(1/6) 4324118431995876 a001 5702887/20633239*14662949395604^(1/6) 4324118431995876 a001 5702887/20633239*599074578^(1/4) 4324118431995877 a001 267914296/228826127*7881196^(5/22) 4324118431995877 a001 9227465/33385282*7881196^(7/22) 4324118431995877 a001 233802911/199691526*7881196^(5/22) 4324118431995877 a001 1836311903/1568397607*7881196^(5/22) 4324118431995877 a001 1602508992/1368706081*7881196^(5/22) 4324118431995877 a001 12586269025/10749957122*7881196^(5/22) 4324118431995877 a001 10983760033/9381251041*7881196^(5/22) 4324118431995877 a001 86267571272/73681302247*7881196^(5/22) 4324118431995877 a001 75283811239/64300051206*7881196^(5/22) 4324118431995877 a001 2504730781961/2139295485799*7881196^(5/22) 4324118431995877 a001 365435296162/312119004989*7881196^(5/22) 4324118431995877 a001 139583862445/119218851371*7881196^(5/22) 4324118431995877 a001 53316291173/45537549124*7881196^(5/22) 4324118431995877 a001 20365011074/17393796001*7881196^(5/22) 4324118431995877 a001 7778742049/6643838879*7881196^(5/22) 4324118431995877 a001 2971215073/2537720636*7881196^(5/22) 4324118431995877 a001 1134903170/969323029*7881196^(5/22) 4324118431995877 a001 433494437/370248451*7881196^(5/22) 4324118431995877 a001 165580141/141422324*7881196^(5/22) 4324118431995877 a001 14619165/4769326*7881196^(1/6) 4324118431995877 a001 5702887/20633239*33385282^(7/24) 4324118431995878 a001 63245986/54018521*7881196^(5/22) 4324118431995879 a001 165580141/33385282*7881196^(3/22) 4324118431995879 a001 14930352/2139295485799*20633239^(13/14) 4324118431995880 a001 4976784/440719107401*20633239^(9/10) 4324118431995880 a001 267914296/87403803*7881196^(1/6) 4324118431995881 a001 2584/33385281*20633239^(11/14) 4324118431995881 a001 701408733/228826127*7881196^(1/6) 4324118431995881 a001 1836311903/599074578*7881196^(1/6) 4324118431995881 a001 686789568/224056801*7881196^(1/6) 4324118431995881 a001 12586269025/4106118243*7881196^(1/6) 4324118431995881 a001 32951280099/10749957122*7881196^(1/6) 4324118431995881 a001 86267571272/28143753123*7881196^(1/6) 4324118431995881 a001 32264490531/10525900321*7881196^(1/6) 4324118431995881 a001 591286729879/192900153618*7881196^(1/6) 4324118431995881 a001 1548008755920/505019158607*7881196^(1/6) 4324118431995881 a001 1515744265389/494493258286*7881196^(1/6) 4324118431995881 a001 2504730781961/817138163596*7881196^(1/6) 4324118431995881 a001 956722026041/312119004989*7881196^(1/6) 4324118431995881 a001 365435296162/119218851371*7881196^(1/6) 4324118431995881 a001 139583862445/45537549124*7881196^(1/6) 4324118431995881 a001 53316291173/17393796001*7881196^(1/6) 4324118431995881 a001 20365011074/6643838879*7881196^(1/6) 4324118431995881 a001 7778742049/2537720636*7881196^(1/6) 4324118431995881 a001 2971215073/969323029*7881196^(1/6) 4324118431995881 a001 1134903170/370248451*7881196^(1/6) 4324118431995881 a001 433494437/141422324*7881196^(1/6) 4324118431995882 a001 3732588/11384387281*20633239^(7/10) 4324118431995882 a001 14930352/17393796001*20633239^(9/14) 4324118431995882 a001 165580141/54018521*7881196^(1/6) 4324118431995882 a001 433494437/87403803*7881196^(3/22) 4324118431995883 a001 39088169/5600748293801*20633239^(13/14) 4324118431995883 a001 9227465/12752043*12752043^(1/4) 4324118431995883 a001 39088169/3461452808002*20633239^(9/10) 4324118431995883 a001 1134903170/228826127*7881196^(3/22) 4324118431995883 a001 102334155/14662949395604*20633239^(13/14) 4324118431995883 a001 2971215073/599074578*7881196^(3/22) 4324118431995883 a001 7778742049/1568397607*7881196^(3/22) 4324118431995883 a001 20365011074/4106118243*7881196^(3/22) 4324118431995883 a001 53316291173/10749957122*7881196^(3/22) 4324118431995883 a001 139583862445/28143753123*7881196^(3/22) 4324118431995883 a001 365435296162/73681302247*7881196^(3/22) 4324118431995883 a001 956722026041/192900153618*7881196^(3/22) 4324118431995883 a001 2504730781961/505019158607*7881196^(3/22) 4324118431995883 a001 10610209857723/2139295485799*7881196^(3/22) 4324118431995883 a001 4052739537881/817138163596*7881196^(3/22) 4324118431995883 a001 140728068720/28374454999*7881196^(3/22) 4324118431995883 a001 591286729879/119218851371*7881196^(3/22) 4324118431995883 a001 225851433717/45537549124*7881196^(3/22) 4324118431995883 a001 86267571272/17393796001*7881196^(3/22) 4324118431995883 a001 32951280099/6643838879*7881196^(3/22) 4324118431995883 a001 1144206275/230701876*7881196^(3/22) 4324118431995883 a001 4807526976/969323029*7881196^(3/22) 4324118431995883 a001 1836311903/370248451*7881196^(3/22) 4324118431995883 a001 165580141/23725150497407*20633239^(13/14) 4324118431995883 a001 701408733/141422324*7881196^(3/22) 4324118431995883 a001 34111385/3020733700601*20633239^(9/10) 4324118431995883 a001 63245986/9062201101803*20633239^(13/14) 4324118431995883 a001 267914296/23725150497407*20633239^(9/10) 4324118431995883 a001 165580141/14662949395604*20633239^(9/10) 4324118431995884 a001 14930352/1568397607*20633239^(1/2) 4324118431995884 a001 63245986/5600748293801*20633239^(9/10) 4324118431995884 a001 39088169/505019158607*20633239^(11/14) 4324118431995884 a001 34111385/440719107401*20633239^(11/14) 4324118431995885 a001 267914296/54018521*7881196^(3/22) 4324118431995885 a001 133957148/1730726404001*20633239^(11/14) 4324118431995885 a001 233802911/3020733700601*20633239^(11/14) 4324118431995885 a001 1836311903/23725150497407*20633239^(11/14) 4324118431995885 a001 567451585/7331474697802*20633239^(11/14) 4324118431995885 a001 433494437/5600748293801*20633239^(11/14) 4324118431995885 a001 24157817/3461452808002*20633239^(13/14) 4324118431995885 a001 165580141/2139295485799*20633239^(11/14) 4324118431995885 a001 31622993/408569081798*20633239^(11/14) 4324118431995885 a001 7465176/16692641*817138163596^(1/6) 4324118431995885 a001 39088169/119218851371*20633239^(7/10) 4324118431995885 a001 24157817/2139295485799*20633239^(9/10) 4324118431995885 a001 7465176/16692641*87403803^(1/4) 4324118431995885 a001 3732588/35355581*20633239^(5/14) 4324118431995885 a001 9303105/28374454999*20633239^(7/10) 4324118431995885 a001 66978574/204284540899*20633239^(7/10) 4324118431995885 a001 701408733/2139295485799*20633239^(7/10) 4324118431995885 a001 1836311903/5600748293801*20633239^(7/10) 4324118431995885 a001 1201881744/3665737348901*20633239^(7/10) 4324118431995885 a001 7778742049/23725150497407*20633239^(7/10) 4324118431995885 a001 2971215073/9062201101803*20633239^(7/10) 4324118431995885 a001 567451585/1730726404001*20633239^(7/10) 4324118431995885 a001 433494437/1322157322203*20633239^(7/10) 4324118431995885 a001 39088169/45537549124*20633239^(9/14) 4324118431995885 a001 165580141/505019158607*20633239^(7/10) 4324118431995886 a001 701408733/33385282*7881196^(1/22) 4324118431995886 a001 31622993/96450076809*20633239^(7/10) 4324118431995886 a001 5702887/28143753123*12752043^(3/4) 4324118431995886 a001 39088169/33385282*20633239^(3/14) 4324118431995886 a001 102334155/119218851371*20633239^(9/14) 4324118431995886 a001 267914296/312119004989*20633239^(9/14) 4324118431995886 a001 701408733/817138163596*20633239^(9/14) 4324118431995886 a001 1836311903/2139295485799*20633239^(9/14) 4324118431995886 a001 4807526976/5600748293801*20633239^(9/14) 4324118431995886 a001 12586269025/14662949395604*20633239^(9/14) 4324118431995886 a001 20365011074/23725150497407*20633239^(9/14) 4324118431995886 a001 7778742049/9062201101803*20633239^(9/14) 4324118431995886 a001 2971215073/3461452808002*20633239^(9/14) 4324118431995886 a001 1134903170/1322157322203*20633239^(9/14) 4324118431995886 a001 433494437/505019158607*20633239^(9/14) 4324118431995886 a001 24157817/312119004989*20633239^(11/14) 4324118431995886 a001 165580141/192900153618*20633239^(9/14) 4324118431995886 a001 63245986/73681302247*20633239^(9/14) 4324118431995887 a001 39088169/4106118243*20633239^(1/2) 4324118431995887 a001 24157817/73681302247*20633239^(7/10) 4324118431995887 a001 14930352/54018521*20633239^(3/10) 4324118431995887 a001 102334155/10749957122*20633239^(1/2) 4324118431995887 a001 267914296/28143753123*20633239^(1/2) 4324118431995887 a001 701408733/73681302247*20633239^(1/2) 4324118431995887 a001 1836311903/192900153618*20633239^(1/2) 4324118431995887 a001 102287808/10745088481*20633239^(1/2) 4324118431995887 a001 12586269025/1322157322203*20633239^(1/2) 4324118431995887 a001 32951280099/3461452808002*20633239^(1/2) 4324118431995887 a001 86267571272/9062201101803*20633239^(1/2) 4324118431995887 a001 225851433717/23725150497407*20633239^(1/2) 4324118431995887 a001 139583862445/14662949395604*20633239^(1/2) 4324118431995887 a001 53316291173/5600748293801*20633239^(1/2) 4324118431995887 a001 20365011074/2139295485799*20633239^(1/2) 4324118431995887 a001 7778742049/817138163596*20633239^(1/2) 4324118431995887 a001 2971215073/312119004989*20633239^(1/2) 4324118431995887 a001 1134903170/119218851371*20633239^(1/2) 4324118431995887 a001 433494437/45537549124*20633239^(1/2) 4324118431995887 a001 24157817/28143753123*20633239^(9/14) 4324118431995887 a001 165580141/17393796001*20633239^(1/2) 4324118431995888 a001 133957148/16692641*20633239^(1/10) 4324118431995888 a001 63245986/6643838879*20633239^(1/2) 4324118431995888 a001 196452/33391061*54018521^(1/2) 4324118431995888 a001 433494437/33385282*20633239^(1/14) 4324118431995888 a001 39088169/33385282*2537720636^(1/6) 4324118431995888 a001 39088169/33385282*312119004989^(3/22) 4324118431995888 a001 39088169/33385282*28143753123^(3/20) 4324118431995888 a001 4976784/29134601*4106118243^(1/4) 4324118431995888 a001 39088169/33385282*228826127^(3/16) 4324118431995888 a001 24157817/20633239*7881196^(5/22) 4324118431995888 a001 39088169/370248451*20633239^(5/14) 4324118431995888 a001 14930352/2139295485799*141422324^(5/6) 4324118431995889 a001 4976784/1368706081*141422324^(1/2) 4324118431995889 a001 14930352/228826127*2537720636^(3/10) 4324118431995889 a001 14619165/4769326*312119004989^(1/10) 4324118431995889 a001 14930352/228826127*14662949395604^(3/14) 4324118431995889 a001 14930352/228826127*192900153618^(1/4) 4324118431995889 a001 14619165/4769326*1568397607^(1/8) 4324118431995889 a001 14930352/6643838879*370248451^(1/2) 4324118431995889 a001 133957148/16692641*17393796001^(1/14) 4324118431995889 a001 133957148/16692641*14662949395604^(1/18) 4324118431995889 a001 829464/33281921*9062201101803^(1/4) 4324118431995889 a001 133957148/16692641*505019158607^(1/16) 4324118431995889 a001 133957148/16692641*599074578^(1/12) 4324118431995889 a001 7465176/5374978561*969323029^(1/2) 4324118431995889 a001 14930352/1568397607*2537720636^(7/18) 4324118431995889 a001 14930352/1568397607*17393796001^(5/14) 4324118431995889 a001 14930352/1568397607*312119004989^(7/22) 4324118431995889 a001 14930352/1568397607*14662949395604^(5/18) 4324118431995889 a001 14930352/1568397607*505019158607^(5/16) 4324118431995889 a001 14930352/1568397607*28143753123^(7/20) 4324118431995889 a001 14930352/23725150497407*2537720636^(5/6) 4324118431995889 a001 14930352/2139295485799*2537720636^(13/18) 4324118431995889 a001 4976784/440719107401*2537720636^(7/10) 4324118431995889 a001 2584/33385281*2537720636^(11/18) 4324118431995889 a001 14930352/17393796001*2537720636^(1/2) 4324118431995889 a001 4976784/1368706081*73681302247^(3/8) 4324118431995889 a001 4976784/9381251041*6643838879^(1/2) 4324118431995889 a001 4976784/440719107401*17393796001^(9/14) 4324118431995889 a001 3732588/11384387281*17393796001^(1/2) 4324118431995889 a001 14930352/73681302247*45537549124^(1/2) 4324118431995889 a001 2584/33385281*312119004989^(1/2) 4324118431995889 a001 2584/33385281*3461452808002^(11/24) 4324118431995889 a001 14930352/2139295485799*312119004989^(13/22) 4324118431995889 a001 14930352/505019158607*2139295485799^(1/2) 4324118431995889 a001 4976784/440719107401*14662949395604^(1/2) 4324118431995889 a001 14930352/2139295485799*3461452808002^(13/24) 4324118431995889 a001 3732588/204284540899*5600748293801^(1/2) 4324118431995889 a001 4976784/440719107401*505019158607^(9/16) 4324118431995889 a001 14930352/312119004989*817138163596^(1/2) 4324118431995889 a001 4976784/440719107401*192900153618^(7/12) 4324118431995889 a001 14930352/119218851371*119218851371^(1/2) 4324118431995889 a001 14930352/2139295485799*73681302247^(5/8) 4324118431995889 a001 3732588/11384387281*14662949395604^(7/18) 4324118431995889 a001 3732588/11384387281*505019158607^(7/16) 4324118431995889 a001 2584/33385281*28143753123^(11/20) 4324118431995889 a001 14930352/2139295485799*28143753123^(13/20) 4324118431995889 a001 14930352/23725150497407*28143753123^(3/4) 4324118431995889 a001 14930352/17393796001*312119004989^(9/22) 4324118431995889 a001 14930352/17393796001*14662949395604^(5/14) 4324118431995889 a001 14930352/17393796001*192900153618^(5/12) 4324118431995889 a001 14930352/17393796001*28143753123^(9/20) 4324118431995889 a001 14930352/5600748293801*4106118243^(3/4) 4324118431995889 a001 2584/33385281*1568397607^(5/8) 4324118431995889 a001 14930352/1568397607*599074578^(5/12) 4324118431995889 a001 433494437/33385282*2537720636^(1/18) 4324118431995889 a001 14930352/969323029*312119004989^(3/10) 4324118431995889 a001 433494437/33385282*312119004989^(1/22) 4324118431995889 a001 433494437/33385282*28143753123^(1/20) 4324118431995889 a001 14930352/969323029*1568397607^(3/8) 4324118431995889 a001 3732588/11384387281*599074578^(7/12) 4324118431995889 a001 4976784/440719107401*599074578^(3/4) 4324118431995889 a001 433494437/33385282*228826127^(1/16) 4324118431995889 a001 165580141/33385282*2537720636^(1/10) 4324118431995889 a001 14930352/370248451*1322157322203^(1/4) 4324118431995889 a001 165580141/33385282*192900153618^(1/12) 4324118431995889 a001 14930352/1568397607*228826127^(7/16) 4324118431995889 a001 14930352/17393796001*228826127^(9/16) 4324118431995889 a001 2584/33385281*228826127^(11/16) 4324118431995889 a001 14930352/2139295485799*228826127^(13/16) 4324118431995889 a001 14930352/23725150497407*228826127^(15/16) 4324118431995889 a001 1836311903/87403803*7881196^(1/22) 4324118431995889 a001 701408733/33385282*33385282^(1/24) 4324118431995889 a001 102334155/969323029*20633239^(5/14) 4324118431995889 a001 31622993/16692641*141422324^(1/6) 4324118431995889 a001 3732588/35355581*2537720636^(5/18) 4324118431995889 a001 3732588/35355581*312119004989^(5/22) 4324118431995889 a001 3732588/35355581*3461452808002^(5/24) 4324118431995889 a001 31622993/16692641*73681302247^(1/8) 4324118431995889 a001 3732588/35355581*28143753123^(1/4) 4324118431995889 a001 66978574/634430159*20633239^(5/14) 4324118431995889 a001 3732588/35355581*228826127^(5/16) 4324118431995889 a001 39088169/33385282*33385282^(5/24) 4324118431995889 a001 701408733/6643838879*20633239^(5/14) 4324118431995889 a001 1836311903/17393796001*20633239^(5/14) 4324118431995889 a001 1201881744/11384387281*20633239^(5/14) 4324118431995889 a001 12586269025/119218851371*20633239^(5/14) 4324118431995889 a001 32951280099/312119004989*20633239^(5/14) 4324118431995889 a001 21566892818/204284540899*20633239^(5/14) 4324118431995889 a001 225851433717/2139295485799*20633239^(5/14) 4324118431995889 a001 182717648081/1730726404001*20633239^(5/14) 4324118431995889 a001 139583862445/1322157322203*20633239^(5/14) 4324118431995889 a001 53316291173/505019158607*20633239^(5/14) 4324118431995889 a001 10182505537/96450076809*20633239^(5/14) 4324118431995889 a001 7778742049/73681302247*20633239^(5/14) 4324118431995889 a001 2971215073/28143753123*20633239^(5/14) 4324118431995889 a001 567451585/5374978561*20633239^(5/14) 4324118431995889 a001 433494437/4106118243*20633239^(5/14) 4324118431995889 a001 165580141/1568397607*20633239^(5/14) 4324118431995889 a001 24157817/2537720636*20633239^(1/2) 4324118431995889 a001 14930352/312119004989*87403803^(3/4) 4324118431995889 a001 31622993/299537289*20633239^(5/14) 4324118431995889 a001 39088169/141422324*20633239^(3/10) 4324118431995889 a001 165580141/33385282*33385282^(1/8) 4324118431995889 a001 102287808/4868641*7881196^(1/22) 4324118431995889 a001 12586269025/599074578*7881196^(1/22) 4324118431995889 a001 32951280099/1568397607*7881196^(1/22) 4324118431995889 a001 86267571272/4106118243*7881196^(1/22) 4324118431995889 a001 225851433717/10749957122*7881196^(1/22) 4324118431995889 a001 591286729879/28143753123*7881196^(1/22) 4324118431995889 a001 1548008755920/73681302247*7881196^(1/22) 4324118431995889 a001 4052739537881/192900153618*7881196^(1/22) 4324118431995889 a001 225749145909/10745088481*7881196^(1/22) 4324118431995889 a001 6557470319842/312119004989*7881196^(1/22) 4324118431995889 a001 2504730781961/119218851371*7881196^(1/22) 4324118431995889 a001 956722026041/45537549124*7881196^(1/22) 4324118431995889 a001 365435296162/17393796001*7881196^(1/22) 4324118431995889 a001 139583862445/6643838879*7881196^(1/22) 4324118431995889 a001 53316291173/2537720636*7881196^(1/22) 4324118431995889 a001 20365011074/969323029*7881196^(1/22) 4324118431995889 a001 7778742049/370248451*7881196^(1/22) 4324118431995889 a001 102334155/370248451*20633239^(3/10) 4324118431995889 a001 267914296/969323029*20633239^(3/10) 4324118431995889 a001 701408733/2537720636*20633239^(3/10) 4324118431995889 a001 1836311903/6643838879*20633239^(3/10) 4324118431995889 a001 4807526976/17393796001*20633239^(3/10) 4324118431995889 a001 12586269025/45537549124*20633239^(3/10) 4324118431995889 a001 32951280099/119218851371*20633239^(3/10) 4324118431995889 a001 86267571272/312119004989*20633239^(3/10) 4324118431995889 a001 225851433717/817138163596*20633239^(3/10) 4324118431995889 a001 1548008755920/5600748293801*20633239^(3/10) 4324118431995889 a001 139583862445/505019158607*20633239^(3/10) 4324118431995889 a001 53316291173/192900153618*20633239^(3/10) 4324118431995889 a001 20365011074/73681302247*20633239^(3/10) 4324118431995889 a001 7778742049/28143753123*20633239^(3/10) 4324118431995889 a001 2971215073/10749957122*20633239^(3/10) 4324118431995890 a001 1134903170/4106118243*20633239^(3/10) 4324118431995890 a001 433494437/1568397607*20633239^(3/10) 4324118431995890 a001 165580141/599074578*20633239^(3/10) 4324118431995890 a001 2971215073/141422324*7881196^(1/22) 4324118431995890 a001 63245986/228826127*20633239^(3/10) 4324118431995890 a001 34111385/29134601*20633239^(3/14) 4324118431995890 a001 14930352/228826127*33385282^(3/8) 4324118431995890 a001 14930352/54018521*17393796001^(3/14) 4324118431995890 a001 24157817/33385282*45537549124^(1/6) 4324118431995890 a001 14930352/54018521*14662949395604^(1/6) 4324118431995890 a001 14930352/54018521*599074578^(1/4) 4324118431995890 a001 267914296/228826127*20633239^(3/14) 4324118431995890 a001 24157817/228826127*20633239^(5/14) 4324118431995890 a001 233802911/199691526*20633239^(3/14) 4324118431995890 a001 1836311903/1568397607*20633239^(3/14) 4324118431995890 a001 1602508992/1368706081*20633239^(3/14) 4324118431995890 a001 12586269025/10749957122*20633239^(3/14) 4324118431995890 a001 10983760033/9381251041*20633239^(3/14) 4324118431995890 a001 86267571272/73681302247*20633239^(3/14) 4324118431995890 a001 75283811239/64300051206*20633239^(3/14) 4324118431995890 a001 2504730781961/2139295485799*20633239^(3/14) 4324118431995890 a001 365435296162/312119004989*20633239^(3/14) 4324118431995890 a001 139583862445/119218851371*20633239^(3/14) 4324118431995890 a001 53316291173/45537549124*20633239^(3/14) 4324118431995890 a001 20365011074/17393796001*20633239^(3/14) 4324118431995890 a001 7778742049/6643838879*20633239^(3/14) 4324118431995890 a001 2971215073/2537720636*20633239^(3/14) 4324118431995890 a001 1134903170/969323029*20633239^(3/14) 4324118431995890 a001 433494437/370248451*20633239^(3/14) 4324118431995890 a001 24157817/87403803*20633239^(3/10) 4324118431995890 a001 14930352/969323029*33385282^(11/24) 4324118431995891 a001 165580141/141422324*20633239^(3/14) 4324118431995891 a001 4976784/1368706081*33385282^(13/24) 4324118431995891 a001 1134903170/54018521*7881196^(1/22) 4324118431995891 a001 233802911/29134601*20633239^(1/10) 4324118431995891 a001 14930352/17393796001*33385282^(5/8) 4324118431995891 a001 39088169/6643838879*54018521^(1/2) 4324118431995891 a001 1134903170/87403803*20633239^(1/14) 4324118431995891 a001 14930352/54018521*33385282^(7/24) 4324118431995891 a001 63245986/20633239*7881196^(1/6) 4324118431995891 a001 39088169/87403803*817138163596^(1/6) 4324118431995891 a001 14930352/73681302247*33385282^(17/24) 4324118431995891 a001 1836311903/228826127*20633239^(1/10) 4324118431995892 a001 267084832/33281921*20633239^(1/10) 4324118431995892 a001 12586269025/1568397607*20633239^(1/10) 4324118431995892 a001 10983760033/1368706081*20633239^(1/10) 4324118431995892 a001 43133785636/5374978561*20633239^(1/10) 4324118431995892 a001 75283811239/9381251041*20633239^(1/10) 4324118431995892 a001 591286729879/73681302247*20633239^(1/10) 4324118431995892 a001 86000486440/10716675201*20633239^(1/10) 4324118431995892 a001 4052739537881/505019158607*20633239^(1/10) 4324118431995892 a001 3536736619241/440719107401*20633239^(1/10) 4324118431995892 a001 3278735159921/408569081798*20633239^(1/10) 4324118431995892 a001 2504730781961/312119004989*20633239^(1/10) 4324118431995892 a001 956722026041/119218851371*20633239^(1/10) 4324118431995892 a001 182717648081/22768774562*20633239^(1/10) 4324118431995892 a001 139583862445/17393796001*20633239^(1/10) 4324118431995892 a001 53316291173/6643838879*20633239^(1/10) 4324118431995892 a001 10182505537/1268860318*20633239^(1/10) 4324118431995892 a001 7778742049/969323029*20633239^(1/10) 4324118431995892 a001 39088169/87403803*87403803^(1/4) 4324118431995892 a001 2971215073/370248451*20633239^(1/10) 4324118431995892 a001 102334155/17393796001*54018521^(1/2) 4324118431995892 a001 14930352/312119004989*33385282^(19/24) 4324118431995892 a001 2971215073/228826127*20633239^(1/14) 4324118431995892 a001 567451585/70711162*20633239^(1/10) 4324118431995892 a001 66978574/11384387281*54018521^(1/2) 4324118431995892 a001 39088169/5600748293801*141422324^(5/6) 4324118431995892 a001 701408733/119218851371*54018521^(1/2) 4324118431995892 a001 1836311903/312119004989*54018521^(1/2) 4324118431995892 a001 1201881744/204284540899*54018521^(1/2) 4324118431995892 a001 12586269025/2139295485799*54018521^(1/2) 4324118431995892 a001 32951280099/5600748293801*54018521^(1/2) 4324118431995892 a001 1135099622/192933544679*54018521^(1/2) 4324118431995892 a001 139583862445/23725150497407*54018521^(1/2) 4324118431995892 a001 53316291173/9062201101803*54018521^(1/2) 4324118431995892 a001 10182505537/1730726404001*54018521^(1/2) 4324118431995892 a001 7778742049/1322157322203*54018521^(1/2) 4324118431995892 a001 2971215073/505019158607*54018521^(1/2) 4324118431995892 a001 567451585/96450076809*54018521^(1/2) 4324118431995892 a001 7778742049/599074578*20633239^(1/14) 4324118431995892 a001 433494437/73681302247*54018521^(1/2) 4324118431995892 a001 20365011074/1568397607*20633239^(1/14) 4324118431995892 a001 53316291173/4106118243*20633239^(1/14) 4324118431995892 a001 139583862445/10749957122*20633239^(1/14) 4324118431995892 a001 365435296162/28143753123*20633239^(1/14) 4324118431995892 a001 956722026041/73681302247*20633239^(1/14) 4324118431995892 a001 2504730781961/192900153618*20633239^(1/14) 4324118431995892 a001 10610209857723/817138163596*20633239^(1/14) 4324118431995892 a001 4052739537881/312119004989*20633239^(1/14) 4324118431995892 a001 1548008755920/119218851371*20633239^(1/14) 4324118431995892 a001 591286729879/45537549124*20633239^(1/14) 4324118431995892 a001 7787980473/599786069*20633239^(1/14) 4324118431995892 a001 86267571272/6643838879*20633239^(1/14) 4324118431995892 a001 32951280099/2537720636*20633239^(1/14) 4324118431995892 a001 12586269025/969323029*20633239^(1/14) 4324118431995892 a001 165580141/28143753123*54018521^(1/2) 4324118431995892 a001 4807526976/370248451*20633239^(1/14) 4324118431995892 a001 39088169/10749957122*141422324^(1/2) 4324118431995892 a001 34111385/29134601*2537720636^(1/6) 4324118431995892 a001 34111385/29134601*312119004989^(3/22) 4324118431995892 a001 34111385/29134601*28143753123^(3/20) 4324118431995892 a001 39088169/228826127*4106118243^(1/4) 4324118431995892 a001 34111385/29134601*228826127^(3/16) 4324118431995892 a001 39088169/17393796001*370248451^(1/2) 4324118431995892 a001 39088169/599074578*2537720636^(3/10) 4324118431995892 a001 267914296/87403803*312119004989^(1/10) 4324118431995892 a001 39088169/599074578*14662949395604^(3/14) 4324118431995892 a001 39088169/599074578*192900153618^(1/4) 4324118431995892 a001 267914296/87403803*1568397607^(1/8) 4324118431995892 a001 165580141/87403803*141422324^(1/6) 4324118431995892 a001 39088169/28143753123*969323029^(1/2) 4324118431995892 a001 233802911/29134601*17393796001^(1/14) 4324118431995892 a001 233802911/29134601*14662949395604^(1/18) 4324118431995892 a001 233802911/29134601*599074578^(1/12) 4324118431995892 a001 39088169/4106118243*2537720636^(7/18) 4324118431995892 a001 39088169/5600748293801*2537720636^(13/18) 4324118431995892 a001 39088169/3461452808002*2537720636^(7/10) 4324118431995892 a001 39088169/505019158607*2537720636^(11/18) 4324118431995892 a001 39088169/45537549124*2537720636^(1/2) 4324118431995892 a001 39088169/4106118243*17393796001^(5/14) 4324118431995892 a001 39088169/4106118243*312119004989^(7/22) 4324118431995892 a001 39088169/4106118243*14662949395604^(5/18) 4324118431995892 a001 39088169/4106118243*505019158607^(5/16) 4324118431995892 a001 39088169/4106118243*28143753123^(7/20) 4324118431995892 a001 39088169/73681302247*6643838879^(1/2) 4324118431995892 a001 39088169/10749957122*73681302247^(3/8) 4324118431995892 a001 39088169/3461452808002*17393796001^(9/14) 4324118431995892 a001 39088169/119218851371*17393796001^(1/2) 4324118431995892 a001 39088169/192900153618*45537549124^(1/2) 4324118431995892 a001 39088169/312119004989*119218851371^(1/2) 4324118431995892 a001 39088169/505019158607*312119004989^(1/2) 4324118431995892 a001 39088169/505019158607*3461452808002^(11/24) 4324118431995892 a001 39088169/1322157322203*2139295485799^(1/2) 4324118431995892 a006 5^(1/2)*Fibonacci(95/2)/Lucas(38)/sqrt(5) 4324118431995892 a001 39088169/3461452808002*505019158607^(9/16) 4324118431995892 a001 39088169/3461452808002*192900153618^(7/12) 4324118431995892 a001 39088169/119218851371*14662949395604^(7/18) 4324118431995892 a001 39088169/119218851371*505019158607^(7/16) 4324118431995892 a001 39088169/5600748293801*73681302247^(5/8) 4324118431995892 a001 39088169/45537549124*312119004989^(9/22) 4324118431995892 a001 39088169/45537549124*14662949395604^(5/14) 4324118431995892 a001 39088169/45537549124*192900153618^(5/12) 4324118431995892 a001 39088169/505019158607*28143753123^(11/20) 4324118431995892 a001 39088169/5600748293801*28143753123^(13/20) 4324118431995892 a001 39088169/45537549124*28143753123^(9/20) 4324118431995892 a006 5^(1/2)*fibonacci(95/2)/Lucas(38)/sqrt(5) 4324118431995892 a001 39088169/14662949395604*4106118243^(3/4) 4324118431995892 a001 1134903170/87403803*2537720636^(1/18) 4324118431995892 a001 39088169/2537720636*312119004989^(3/10) 4324118431995892 a001 1134903170/87403803*312119004989^(1/22) 4324118431995892 a001 1134903170/87403803*28143753123^(1/20) 4324118431995892 a001 39088169/505019158607*1568397607^(5/8) 4324118431995892 a001 39088169/2537720636*1568397607^(3/8) 4324118431995892 a001 433494437/87403803*2537720636^(1/10) 4324118431995892 a001 39088169/969323029*1322157322203^(1/4) 4324118431995892 a001 433494437/87403803*192900153618^(1/12) 4324118431995892 a001 39088169/4106118243*599074578^(5/12) 4324118431995892 a001 1134903170/87403803*228826127^(1/16) 4324118431995892 a001 39088169/119218851371*599074578^(7/12) 4324118431995892 a001 39088169/3461452808002*599074578^(3/4) 4324118431995892 a001 39088169/370248451*2537720636^(5/18) 4324118431995892 a001 39088169/370248451*312119004989^(5/22) 4324118431995892 a001 39088169/370248451*3461452808002^(5/24) 4324118431995892 a001 165580141/87403803*73681302247^(1/8) 4324118431995892 a001 39088169/370248451*28143753123^(1/4) 4324118431995892 a001 39088169/4106118243*228826127^(7/16) 4324118431995892 a001 31622993/5374978561*54018521^(1/2) 4324118431995892 a001 39088169/45537549124*228826127^(9/16) 4324118431995892 a001 1836311903/141422324*20633239^(1/14) 4324118431995892 a001 39088169/505019158607*228826127^(11/16) 4324118431995892 a001 39088169/370248451*228826127^(5/16) 4324118431995892 a001 39088169/5600748293801*228826127^(13/16) 4324118431995892 a001 4976784/440719107401*33385282^(7/8) 4324118431995892 a001 63245986/54018521*20633239^(3/14) 4324118431995892 a001 1836311903/87403803*33385282^(1/24) 4324118431995892 a001 39088169/141422324*17393796001^(3/14) 4324118431995892 a001 63245986/87403803*45537549124^(1/6) 4324118431995892 a001 39088169/141422324*14662949395604^(1/6) 4324118431995892 a001 39088169/141422324*599074578^(1/4) 4324118431995892 a001 102334155/14662949395604*141422324^(5/6) 4324118431995892 a001 831985/228811001*141422324^(1/2) 4324118431995892 a001 102334155/228826127*817138163596^(1/6) 4324118431995892 a001 14930352/5600748293801*33385282^(23/24) 4324118431995892 a001 165580141/23725150497407*141422324^(5/6) 4324118431995892 a001 4181/87403804*87403803^(3/4) 4324118431995892 a001 267914296/73681302247*141422324^(1/2) 4324118431995892 a001 433494437/228826127*141422324^(1/6) 4324118431995892 a001 233802911/64300051206*141422324^(1/2) 4324118431995892 a001 1836311903/505019158607*141422324^(1/2) 4324118431995892 a001 1602508992/440719107401*141422324^(1/2) 4324118431995892 a001 12586269025/3461452808002*141422324^(1/2) 4324118431995892 a001 10983760033/3020733700601*141422324^(1/2) 4324118431995892 a001 86267571272/23725150497407*141422324^(1/2) 4324118431995892 a001 53316291173/14662949395604*141422324^(1/2) 4324118431995892 a001 20365011074/5600748293801*141422324^(1/2) 4324118431995892 a001 7778742049/2139295485799*141422324^(1/2) 4324118431995892 a001 2971215073/817138163596*141422324^(1/2) 4324118431995892 a001 1134903170/312119004989*141422324^(1/2) 4324118431995892 a001 433494437/119218851371*141422324^(1/2) 4324118431995892 a001 102334155/45537549124*370248451^(1/2) 4324118431995892 a001 267914296/228826127*2537720636^(1/6) 4324118431995892 a001 267914296/228826127*312119004989^(3/22) 4324118431995892 a001 267914296/228826127*28143753123^(3/20) 4324118431995892 a001 34111385/199691526*4106118243^(1/4) 4324118431995892 a001 14619165/10525900321*969323029^(1/2) 4324118431995892 a001 14619165/224056801*2537720636^(3/10) 4324118431995892 a001 701408733/228826127*312119004989^(1/10) 4324118431995892 a001 14619165/224056801*14662949395604^(3/14) 4324118431995892 a001 14619165/224056801*192900153618^(1/4) 4324118431995892 a001 701408733/228826127*1568397607^(1/8) 4324118431995892 a001 102334155/14662949395604*2537720636^(13/18) 4324118431995892 a001 34111385/3020733700601*2537720636^(7/10) 4324118431995892 a001 34111385/440719107401*2537720636^(11/18) 4324118431995892 a001 102334155/119218851371*2537720636^(1/2) 4324118431995892 a001 102334155/10749957122*2537720636^(7/18) 4324118431995892 a001 1836311903/228826127*17393796001^(1/14) 4324118431995892 a001 1836311903/228826127*14662949395604^(1/18) 4324118431995892 a001 1836311903/228826127*505019158607^(1/16) 4324118431995892 a001 34111385/64300051206*6643838879^(1/2) 4324118431995892 a001 102334155/10749957122*17393796001^(5/14) 4324118431995892 a001 102334155/10749957122*312119004989^(7/22) 4324118431995892 a001 102334155/10749957122*14662949395604^(5/18) 4324118431995892 a001 102334155/10749957122*505019158607^(5/16) 4324118431995892 a001 102334155/10749957122*28143753123^(7/20) 4324118431995892 a001 34111385/3020733700601*17393796001^(9/14) 4324118431995892 a001 9303105/28374454999*17393796001^(1/2) 4324118431995892 a001 831985/228811001*73681302247^(3/8) 4324118431995892 a001 102334155/505019158607*45537549124^(1/2) 4324118431995892 a001 102334155/817138163596*119218851371^(1/2) 4324118431995892 a001 102334155/14662949395604*312119004989^(13/22) 4324118431995892 a001 102334155/2139295485799*817138163596^(1/2) 4324118431995892 a001 34111385/3020733700601*14662949395604^(1/2) 4324118431995892 a006 5^(1/2)*Fibonacci(99/2)/Lucas(40)/sqrt(5) 4324118431995892 a001 102334155/14662949395604*3461452808002^(13/24) 4324118431995892 a001 9303105/28374454999*14662949395604^(7/18) 4324118431995892 a001 9303105/28374454999*505019158607^(7/16) 4324118431995892 a001 34111385/3020733700601*192900153618^(7/12) 4324118431995892 a001 102334155/119218851371*312119004989^(9/22) 4324118431995892 a001 102334155/119218851371*14662949395604^(5/14) 4324118431995892 a001 102334155/119218851371*192900153618^(5/12) 4324118431995892 a001 102334155/14662949395604*73681302247^(5/8) 4324118431995892 a001 102334155/119218851371*28143753123^(9/20) 4324118431995892 a001 34111385/440719107401*28143753123^(11/20) 4324118431995892 a001 102334155/14662949395604*28143753123^(13/20) 4324118431995892 a006 5^(1/2)*fibonacci(99/2)/Lucas(40)/sqrt(5) 4324118431995892 a001 2971215073/228826127*2537720636^(1/18) 4324118431995892 a001 102334155/6643838879*312119004989^(3/10) 4324118431995892 a001 2971215073/228826127*312119004989^(1/22) 4324118431995892 a001 2971215073/228826127*28143753123^(1/20) 4324118431995892 a001 1134903170/228826127*2537720636^(1/10) 4324118431995892 a001 1134903170/228826127*14662949395604^(1/14) 4324118431995892 a001 9303105/230701876*1322157322203^(1/4) 4324118431995892 a001 1134903170/228826127*192900153618^(1/12) 4324118431995892 a001 1836311903/228826127*599074578^(1/12) 4324118431995892 a001 102334155/6643838879*1568397607^(3/8) 4324118431995892 a001 34111385/440719107401*1568397607^(5/8) 4324118431995892 a001 267914296/228826127*228826127^(3/16) 4324118431995892 a001 102334155/969323029*2537720636^(5/18) 4324118431995892 a001 102334155/969323029*312119004989^(5/22) 4324118431995892 a001 102334155/969323029*3461452808002^(5/24) 4324118431995892 a001 433494437/228826127*73681302247^(1/8) 4324118431995892 a001 102334155/969323029*28143753123^(1/4) 4324118431995892 a001 102334155/10749957122*599074578^(5/12) 4324118431995892 a001 2971215073/228826127*228826127^(1/16) 4324118431995892 a001 165580141/45537549124*141422324^(1/2) 4324118431995892 a001 433494437/87403803*33385282^(1/8) 4324118431995892 a001 9303105/28374454999*599074578^(7/12) 4324118431995892 a001 34111385/3020733700601*599074578^(3/4) 4324118431995892 a001 102334155/969323029*228826127^(5/16) 4324118431995892 a001 102334155/370248451*17393796001^(3/14) 4324118431995892 a001 165580141/228826127*45537549124^(1/6) 4324118431995892 a001 102334155/370248451*14662949395604^(1/6) 4324118431995892 a001 102334155/370248451*599074578^(1/4) 4324118431995892 a001 567451585/299537289*141422324^(1/6) 4324118431995893 a001 102334155/10749957122*228826127^(7/16) 4324118431995893 a001 2971215073/1568397607*141422324^(1/6) 4324118431995893 a001 7778742049/4106118243*141422324^(1/6) 4324118431995893 a001 102334155/119218851371*228826127^(9/16) 4324118431995893 a001 10182505537/5374978561*141422324^(1/6) 4324118431995893 a001 53316291173/28143753123*141422324^(1/6) 4324118431995893 a001 139583862445/73681302247*141422324^(1/6) 4324118431995893 a001 182717648081/96450076809*141422324^(1/6) 4324118431995893 a001 956722026041/505019158607*141422324^(1/6) 4324118431995893 a001 10610209857723/5600748293801*141422324^(1/6) 4324118431995893 a001 591286729879/312119004989*141422324^(1/6) 4324118431995893 a001 225851433717/119218851371*141422324^(1/6) 4324118431995893 a001 21566892818/11384387281*141422324^(1/6) 4324118431995893 a001 32951280099/17393796001*141422324^(1/6) 4324118431995893 a001 12586269025/6643838879*141422324^(1/6) 4324118431995893 a001 1201881744/634430159*141422324^(1/6) 4324118431995893 a001 1836311903/969323029*141422324^(1/6) 4324118431995893 a001 267914296/119218851371*370248451^(1/2) 4324118431995893 a001 34111385/440719107401*228826127^(11/16) 4324118431995893 a001 133957148/299537289*817138163596^(1/6) 4324118431995893 a001 102334155/228826127*87403803^(1/4) 4324118431995893 a001 3524667/1568437211*370248451^(1/2) 4324118431995893 a001 1836311903/817138163596*370248451^(1/2) 4324118431995893 a001 4807526976/2139295485799*370248451^(1/2) 4324118431995893 a001 12586269025/5600748293801*370248451^(1/2) 4324118431995893 a001 32951280099/14662949395604*370248451^(1/2) 4324118431995893 a001 53316291173/23725150497407*370248451^(1/2) 4324118431995893 a001 20365011074/9062201101803*370248451^(1/2) 4324118431995893 a001 7778742049/3461452808002*370248451^(1/2) 4324118431995893 a001 2971215073/1322157322203*370248451^(1/2) 4324118431995893 a001 102334155/14662949395604*228826127^(13/16) 4324118431995893 a001 1134903170/505019158607*370248451^(1/2) 4324118431995893 a001 133957148/96450076809*969323029^(1/2) 4324118431995893 a001 233802911/199691526*2537720636^(1/6) 4324118431995893 a001 233802911/199691526*312119004989^(3/22) 4324118431995893 a001 233802911/199691526*28143753123^(3/20) 4324118431995893 a001 267914296/1568397607*4106118243^(1/4) 4324118431995893 a001 267914296/23725150497407*2537720636^(7/10) 4324118431995893 a001 267914296/4106118243*2537720636^(3/10) 4324118431995893 a001 133957148/1730726404001*2537720636^(11/18) 4324118431995893 a001 267914296/312119004989*2537720636^(1/2) 4324118431995893 a001 267914296/28143753123*2537720636^(7/18) 4324118431995893 a001 1836311903/599074578*312119004989^(1/10) 4324118431995893 a001 267914296/4106118243*14662949395604^(3/14) 4324118431995893 a001 267914296/4106118243*192900153618^(1/4) 4324118431995893 a001 267914296/505019158607*6643838879^(1/2) 4324118431995893 a001 267084832/33281921*17393796001^(1/14) 4324118431995893 a001 267084832/33281921*14662949395604^(1/18) 4324118431995893 a001 133957148/5374978561*9062201101803^(1/4) 4324118431995893 a001 267084832/33281921*505019158607^(1/16) 4324118431995893 a001 1836311903/599074578*1568397607^(1/8) 4324118431995893 a001 7778742049/599074578*2537720636^(1/18) 4324118431995893 a001 267914296/28143753123*17393796001^(5/14) 4324118431995893 a001 267914296/23725150497407*17393796001^(9/14) 4324118431995893 a001 66978574/204284540899*17393796001^(1/2) 4324118431995893 a001 267914296/28143753123*312119004989^(7/22) 4324118431995893 a001 267914296/28143753123*14662949395604^(5/18) 4324118431995893 a001 267914296/28143753123*505019158607^(5/16) 4324118431995893 a001 267914296/28143753123*28143753123^(7/20) 4324118431995893 a001 267914296/1322157322203*45537549124^(1/2) 4324118431995893 a001 267914296/73681302247*73681302247^(3/8) 4324118431995893 a001 267914296/2139295485799*119218851371^(1/2) 4324118431995893 a001 133957148/1730726404001*312119004989^(1/2) 4324118431995893 a001 267914296/9062201101803*2139295485799^(1/2) 4324118431995893 a001 10946/599074579*5600748293801^(1/2) 4324118431995893 a001 267914296/23725150497407*14662949395604^(1/2) 4324118431995893 a006 5^(1/2)*Fibonacci(103/2)/Lucas(42)/sqrt(5) 4324118431995893 a001 66978574/204284540899*14662949395604^(7/18) 4324118431995893 a001 267914296/23725150497407*505019158607^(9/16) 4324118431995893 a001 267914296/312119004989*14662949395604^(5/14) 4324118431995893 a001 267914296/23725150497407*192900153618^(7/12) 4324118431995893 a001 267914296/312119004989*192900153618^(5/12) 4324118431995893 a006 5^(1/2)*fibonacci(103/2)/Lucas(42)/sqrt(5) 4324118431995893 a001 267914296/312119004989*28143753123^(9/20) 4324118431995893 a001 133957148/1730726404001*28143753123^(11/20) 4324118431995893 a001 9238424/599786069*312119004989^(3/10) 4324118431995893 a001 7778742049/599074578*312119004989^(1/22) 4324118431995893 a001 7778742049/599074578*28143753123^(1/20) 4324118431995893 a001 2971215073/599074578*2537720636^(1/10) 4324118431995893 a001 267914296/6643838879*1322157322203^(1/4) 4324118431995893 a001 2971215073/599074578*192900153618^(1/12) 4324118431995893 a001 66978574/634430159*2537720636^(5/18) 4324118431995893 a001 66978574/634430159*312119004989^(5/22) 4324118431995893 a001 66978574/634430159*3461452808002^(5/24) 4324118431995893 a001 567451585/299537289*73681302247^(1/8) 4324118431995893 a001 66978574/634430159*28143753123^(1/4) 4324118431995893 a001 9238424/599786069*1568397607^(3/8) 4324118431995893 a001 433494437/192900153618*370248451^(1/2) 4324118431995893 a001 267084832/33281921*599074578^(1/12) 4324118431995893 a001 133957148/1730726404001*1568397607^(5/8) 4324118431995893 a001 267914296/969323029*17393796001^(3/14) 4324118431995893 a001 433494437/599074578*45537549124^(1/6) 4324118431995893 a001 267914296/969323029*14662949395604^(1/6) 4324118431995893 a001 267914296/28143753123*599074578^(5/12) 4324118431995893 a001 7778742049/599074578*228826127^(1/16) 4324118431995893 a001 701408733/370248451*141422324^(1/6) 4324118431995893 a001 66978574/204284540899*599074578^(7/12) 4324118431995893 a001 267914296/969323029*599074578^(1/4) 4324118431995893 a001 701408733/505019158607*969323029^(1/2) 4324118431995893 a001 701408733/1568397607*817138163596^(1/6) 4324118431995893 a001 267914296/23725150497407*599074578^(3/4) 4324118431995893 a001 1836311903/1322157322203*969323029^(1/2) 4324118431995893 a001 14930208/10749853441*969323029^(1/2) 4324118431995893 a001 12586269025/9062201101803*969323029^(1/2) 4324118431995893 a001 32951280099/23725150497407*969323029^(1/2) 4324118431995893 a001 10182505537/7331474697802*969323029^(1/2) 4324118431995893 a001 7778742049/5600748293801*969323029^(1/2) 4324118431995893 a001 2971215073/2139295485799*969323029^(1/2) 4324118431995893 a001 233802911/3020733700601*2537720636^(11/18) 4324118431995893 a001 1836311903/1568397607*2537720636^(1/6) 4324118431995893 a001 701408733/817138163596*2537720636^(1/2) 4324118431995893 a001 701408733/73681302247*2537720636^(7/18) 4324118431995893 a001 1836311903/1568397607*312119004989^(3/22) 4324118431995893 a001 1836311903/1568397607*28143753123^(3/20) 4324118431995893 a001 701408733/10749957122*2537720636^(3/10) 4324118431995893 a001 233802911/1368706081*4106118243^(1/4) 4324118431995893 a001 701408733/6643838879*2537720636^(5/18) 4324118431995893 a001 7778742049/1568397607*2537720636^(1/10) 4324118431995893 a001 233802911/440719107401*6643838879^(1/2) 4324118431995893 a001 686789568/224056801*312119004989^(1/10) 4324118431995893 a001 701408733/10749957122*14662949395604^(3/14) 4324118431995893 a001 701408733/10749957122*192900153618^(1/4) 4324118431995893 a001 20365011074/1568397607*2537720636^(1/18) 4324118431995893 a001 701408733/2139295485799*17393796001^(1/2) 4324118431995893 a001 12586269025/1568397607*17393796001^(1/14) 4324118431995893 a001 701408733/73681302247*17393796001^(5/14) 4324118431995893 a001 12586269025/1568397607*14662949395604^(1/18) 4324118431995893 a001 12586269025/1568397607*505019158607^(1/16) 4324118431995893 a001 701408733/3461452808002*45537549124^(1/2) 4324118431995893 a001 701408733/73681302247*312119004989^(7/22) 4324118431995893 a001 701408733/73681302247*14662949395604^(5/18) 4324118431995893 a001 701408733/73681302247*505019158607^(5/16) 4324118431995893 a001 701408733/5600748293801*119218851371^(1/2) 4324118431995893 a001 233802911/3020733700601*312119004989^(1/2) 4324118431995893 a001 701408733/817138163596*312119004989^(9/22) 4324118431995893 a001 701408733/23725150497407*2139295485799^(1/2) 4324118431995893 a006 5^(1/2)*Fibonacci(107/2)/Lucas(44)/sqrt(5) 4324118431995893 a001 233802911/3020733700601*3461452808002^(11/24) 4324118431995893 a001 701408733/2139295485799*505019158607^(7/16) 4324118431995893 a001 701408733/817138163596*192900153618^(5/12) 4324118431995893 a001 233802911/64300051206*73681302247^(3/8) 4324118431995893 a006 5^(1/2)*fibonacci(107/2)/Lucas(44)/sqrt(5) 4324118431995893 a001 701408733/73681302247*28143753123^(7/20) 4324118431995893 a001 701408733/45537549124*312119004989^(3/10) 4324118431995893 a001 20365011074/1568397607*312119004989^(1/22) 4324118431995893 a001 20365011074/1568397607*28143753123^(1/20) 4324118431995893 a001 701408733/817138163596*28143753123^(9/20) 4324118431995893 a001 233802911/3020733700601*28143753123^(11/20) 4324118431995893 a001 7778742049/1568397607*14662949395604^(1/14) 4324118431995893 a001 701408733/17393796001*1322157322203^(1/4) 4324118431995893 a001 7778742049/1568397607*192900153618^(1/12) 4324118431995893 a001 701408733/6643838879*312119004989^(5/22) 4324118431995893 a001 701408733/6643838879*3461452808002^(5/24) 4324118431995893 a001 2971215073/1568397607*73681302247^(1/8) 4324118431995893 a001 701408733/6643838879*28143753123^(1/4) 4324118431995893 a001 567451585/408569081798*969323029^(1/2) 4324118431995893 a001 686789568/224056801*1568397607^(1/8) 4324118431995893 a001 701408733/45537549124*1568397607^(3/8) 4324118431995893 a001 701408733/2537720636*17393796001^(3/14) 4324118431995893 a001 1134903170/1568397607*45537549124^(1/6) 4324118431995893 a001 701408733/2537720636*14662949395604^(1/6) 4324118431995893 a001 12586269025/1568397607*599074578^(1/12) 4324118431995893 a001 1836311903/23725150497407*2537720636^(11/18) 4324118431995893 a001 233802911/3020733700601*1568397607^(5/8) 4324118431995893 a001 1836311903/2139295485799*2537720636^(1/2) 4324118431995893 a001 1836311903/192900153618*2537720636^(7/18) 4324118431995893 a001 1836311903/4106118243*817138163596^(1/6) 4324118431995893 a001 1836311903/28143753123*2537720636^(3/10) 4324118431995893 a001 1836311903/17393796001*2537720636^(5/18) 4324118431995893 a001 1602508992/1368706081*2537720636^(1/6) 4324118431995893 a001 4807526976/5600748293801*2537720636^(1/2) 4324118431995893 a001 12586269025/14662949395604*2537720636^(1/2) 4324118431995893 a001 20365011074/23725150497407*2537720636^(1/2) 4324118431995893 a001 20365011074/4106118243*2537720636^(1/10) 4324118431995893 a001 7778742049/9062201101803*2537720636^(1/2) 4324118431995893 a001 1836311903/3461452808002*6643838879^(1/2) 4324118431995893 a001 102287808/10745088481*2537720636^(7/18) 4324118431995893 a001 1602508992/1368706081*312119004989^(3/22) 4324118431995893 a001 53316291173/4106118243*2537720636^(1/18) 4324118431995893 a001 1602508992/1368706081*28143753123^(3/20) 4324118431995893 a001 12586269025/1322157322203*2537720636^(7/18) 4324118431995893 a001 1836311903/5600748293801*17393796001^(1/2) 4324118431995893 a001 12586269025/4106118243*312119004989^(1/10) 4324118431995893 a001 1836311903/28143753123*14662949395604^(3/14) 4324118431995893 a001 32951280099/3461452808002*2537720636^(7/18) 4324118431995893 a001 1836311903/28143753123*192900153618^(1/4) 4324118431995893 a001 1836311903/192900153618*17393796001^(5/14) 4324118431995893 a001 86267571272/9062201101803*2537720636^(7/18) 4324118431995893 a001 225851433717/23725150497407*2537720636^(7/18) 4324118431995893 a001 139583862445/14662949395604*2537720636^(7/18) 4324118431995893 a001 53316291173/5600748293801*2537720636^(7/18) 4324118431995893 a001 20365011074/2139295485799*2537720636^(7/18) 4324118431995893 a001 10983760033/1368706081*17393796001^(1/14) 4324118431995893 a001 1836311903/9062201101803*45537549124^(1/2) 4324118431995893 a001 10983760033/1368706081*14662949395604^(1/18) 4324118431995893 a001 1836311903/73681302247*9062201101803^(1/4) 4324118431995893 a001 10983760033/1368706081*505019158607^(1/16) 4324118431995893 a001 1836311903/14662949395604*119218851371^(1/2) 4324118431995893 a001 1836311903/192900153618*312119004989^(7/22) 4324118431995893 a001 1836311903/192900153618*14662949395604^(5/18) 4324118431995893 a001 1836311903/192900153618*505019158607^(5/16) 4324118431995893 a001 1836311903/2139295485799*312119004989^(9/22) 4324118431995893 a006 5^(1/2)*Fibonacci(111/2)/Lucas(46)/sqrt(5) 4324118431995893 a001 1836311903/5600748293801*14662949395604^(7/18) 4324118431995893 a001 1836311903/2139295485799*14662949395604^(5/14) 4324118431995893 a001 1836311903/5600748293801*505019158607^(7/16) 4324118431995893 a006 5^(1/2)*fibonacci(111/2)/Lucas(46)/sqrt(5) 4324118431995893 a001 1836311903/2139295485799*192900153618^(5/12) 4324118431995893 a001 1836311903/119218851371*312119004989^(3/10) 4324118431995893 a001 53316291173/4106118243*312119004989^(1/22) 4324118431995893 a001 53316291173/4106118243*28143753123^(1/20) 4324118431995893 a001 1836311903/192900153618*28143753123^(7/20) 4324118431995893 a001 20365011074/4106118243*14662949395604^(1/14) 4324118431995893 a001 1836311903/45537549124*1322157322203^(1/4) 4324118431995893 a001 20365011074/4106118243*192900153618^(1/12) 4324118431995893 a001 1836311903/2139295485799*28143753123^(9/20) 4324118431995893 a001 1836311903/23725150497407*28143753123^(11/20) 4324118431995893 a001 7778742049/817138163596*2537720636^(7/18) 4324118431995893 a001 1836311903/17393796001*312119004989^(5/22) 4324118431995893 a001 1836311903/17393796001*3461452808002^(5/24) 4324118431995893 a001 7778742049/4106118243*73681302247^(1/8) 4324118431995893 a001 1836311903/17393796001*28143753123^(1/4) 4324118431995893 a001 686789568/10525900321*2537720636^(3/10) 4324118431995893 a001 2971215073/3461452808002*2537720636^(1/2) 4324118431995893 a001 1836311903/10749957122*4106118243^(1/4) 4324118431995893 a001 1201881744/11384387281*2537720636^(5/18) 4324118431995893 a001 12586269025/192900153618*2537720636^(3/10) 4324118431995893 a001 32951280099/505019158607*2537720636^(3/10) 4324118431995893 a001 86267571272/1322157322203*2537720636^(3/10) 4324118431995893 a001 32264490531/494493258286*2537720636^(3/10) 4324118431995893 a001 591286729879/9062201101803*2537720636^(3/10) 4324118431995893 a001 1548008755920/23725150497407*2537720636^(3/10) 4324118431995893 a001 139583862445/2139295485799*2537720636^(3/10) 4324118431995893 a001 53316291173/817138163596*2537720636^(3/10) 4324118431995893 a001 20365011074/312119004989*2537720636^(3/10) 4324118431995893 a001 12586269025/119218851371*2537720636^(5/18) 4324118431995893 a001 32951280099/312119004989*2537720636^(5/18) 4324118431995893 a001 7778742049/119218851371*2537720636^(3/10) 4324118431995893 a001 21566892818/204284540899*2537720636^(5/18) 4324118431995893 a001 225851433717/2139295485799*2537720636^(5/18) 4324118431995893 a001 182717648081/1730726404001*2537720636^(5/18) 4324118431995893 a001 139583862445/1322157322203*2537720636^(5/18) 4324118431995893 a001 53316291173/505019158607*2537720636^(5/18) 4324118431995893 a001 10182505537/96450076809*2537720636^(5/18) 4324118431995893 a001 7778742049/73681302247*2537720636^(5/18) 4324118431995893 a001 2971215073/312119004989*2537720636^(7/18) 4324118431995893 a001 1836311903/6643838879*17393796001^(3/14) 4324118431995893 a001 2971215073/4106118243*45537549124^(1/6) 4324118431995893 a001 1836311903/6643838879*14662949395604^(1/6) 4324118431995893 a001 12586269025/10749957122*2537720636^(1/6) 4324118431995893 a001 10983760033/9381251041*2537720636^(1/6) 4324118431995893 a001 86267571272/73681302247*2537720636^(1/6) 4324118431995893 a001 75283811239/64300051206*2537720636^(1/6) 4324118431995893 a001 2504730781961/2139295485799*2537720636^(1/6) 4324118431995893 a001 365435296162/312119004989*2537720636^(1/6) 4324118431995893 a001 139583862445/119218851371*2537720636^(1/6) 4324118431995893 a001 53316291173/45537549124*2537720636^(1/6) 4324118431995893 a001 53316291173/10749957122*2537720636^(1/10) 4324118431995893 a001 2971215073/45537549124*2537720636^(3/10) 4324118431995893 a001 20365011074/17393796001*2537720636^(1/6) 4324118431995893 a001 2971215073/28143753123*2537720636^(5/18) 4324118431995893 a001 1602508992/3020733700601*6643838879^(1/2) 4324118431995893 a001 2403763488/5374978561*817138163596^(1/6) 4324118431995893 a001 139583862445/10749957122*2537720636^(1/18) 4324118431995893 a001 139583862445/28143753123*2537720636^(1/10) 4324118431995893 a001 365435296162/73681302247*2537720636^(1/10) 4324118431995893 a001 956722026041/192900153618*2537720636^(1/10) 4324118431995893 a001 2504730781961/505019158607*2537720636^(1/10) 4324118431995893 a001 10610209857723/2139295485799*2537720636^(1/10) 4324118431995893 a001 4052739537881/817138163596*2537720636^(1/10) 4324118431995893 a001 140728068720/28374454999*2537720636^(1/10) 4324118431995893 a001 591286729879/119218851371*2537720636^(1/10) 4324118431995893 a001 225851433717/45537549124*2537720636^(1/10) 4324118431995893 a001 12586269025/23725150497407*6643838879^(1/2) 4324118431995893 a001 86267571272/17393796001*2537720636^(1/10) 4324118431995893 a001 1201881744/3665737348901*17393796001^(1/2) 4324118431995893 a001 12586269025/10749957122*312119004989^(3/22) 4324118431995893 a001 365435296162/28143753123*2537720636^(1/18) 4324118431995893 a001 102287808/10745088481*17393796001^(5/14) 4324118431995893 a001 12586269025/4106118243*1568397607^(1/8) 4324118431995893 a001 12586269025/10749957122*28143753123^(3/20) 4324118431995893 a001 43133785636/5374978561*17393796001^(1/14) 4324118431995893 a001 4807526976/23725150497407*45537549124^(1/2) 4324118431995893 a001 32951280099/10749957122*312119004989^(1/10) 4324118431995893 a001 686789568/10525900321*14662949395604^(3/14) 4324118431995893 a001 686789568/10525900321*192900153618^(1/4) 4324118431995893 a001 956722026041/73681302247*2537720636^(1/18) 4324118431995893 a001 267084832/10716675201*9062201101803^(1/4) 4324118431995893 a001 43133785636/5374978561*505019158607^(1/16) 4324118431995893 a001 102287808/10745088481*312119004989^(7/22) 4324118431995893 a001 102287808/10745088481*14662949395604^(5/18) 4324118431995893 a001 102287808/10745088481*505019158607^(5/16) 4324118431995893 a001 2504730781961/192900153618*2537720636^(1/18) 4324118431995893 a001 4807526976/5600748293801*14662949395604^(5/14) 4324118431995893 a001 1201881744/3665737348901*505019158607^(7/16) 4324118431995893 a001 139583862445/10749957122*312119004989^(1/22) 4324118431995893 a001 10610209857723/817138163596*2537720636^(1/18) 4324118431995893 a001 4052739537881/312119004989*2537720636^(1/18) 4324118431995893 a001 1602508992/440719107401*73681302247^(3/8) 4324118431995893 a001 53316291173/10749957122*192900153618^(1/12) 4324118431995893 a001 139583862445/10749957122*28143753123^(1/20) 4324118431995893 a001 1548008755920/119218851371*2537720636^(1/18) 4324118431995893 a001 102287808/10745088481*28143753123^(7/20) 4324118431995893 a001 1201881744/11384387281*312119004989^(5/22) 4324118431995893 a001 1201881744/11384387281*3461452808002^(5/24) 4324118431995893 a001 10182505537/5374978561*73681302247^(1/8) 4324118431995893 a001 591286729879/45537549124*2537720636^(1/18) 4324118431995893 a001 4807526976/5600748293801*28143753123^(9/20) 4324118431995893 a001 7778742049/14662949395604*6643838879^(1/2) 4324118431995893 a001 1201881744/11384387281*28143753123^(1/4) 4324118431995893 a001 4807526976/17393796001*17393796001^(3/14) 4324118431995893 a001 7778742049/10749957122*45537549124^(1/6) 4324118431995893 a001 4807526976/17393796001*14662949395604^(1/6) 4324118431995893 a001 7787980473/599786069*2537720636^(1/18) 4324118431995893 a001 12586269025/28143753123*817138163596^(1/6) 4324118431995893 a001 12586269025/1322157322203*17393796001^(5/14) 4324118431995893 a001 75283811239/9381251041*17393796001^(1/14) 4324118431995893 a001 12586269025/45537549124*17393796001^(3/14) 4324118431995893 a001 10983760033/9381251041*312119004989^(3/22) 4324118431995893 a001 32951280099/3461452808002*17393796001^(5/14) 4324118431995893 a001 86267571272/28143753123*312119004989^(1/10) 4324118431995893 a001 12586269025/192900153618*14662949395604^(3/14) 4324118431995893 a001 12586269025/192900153618*192900153618^(1/4) 4324118431995893 a001 12586269025/505019158607*9062201101803^(1/4) 4324118431995893 a001 12586269025/1322157322203*312119004989^(7/22) 4324118431995893 a001 12586269025/1322157322203*505019158607^(5/16) 4324118431995893 a001 10983760033/9381251041*28143753123^(3/20) 4324118431995893 a001 1144206275/28374454999*1322157322203^(1/4) 4324118431995893 a001 12586269025/14662949395604*192900153618^(5/12) 4324118431995893 a001 86267571272/9062201101803*17393796001^(5/14) 4324118431995893 a001 365435296162/28143753123*28143753123^(1/20) 4324118431995893 a001 12586269025/119218851371*312119004989^(5/22) 4324118431995893 a001 12586269025/3461452808002*73681302247^(3/8) 4324118431995893 a001 12586269025/119218851371*3461452808002^(5/24) 4324118431995893 a001 225851433717/23725150497407*17393796001^(5/14) 4324118431995893 a001 139583862445/14662949395604*17393796001^(5/14) 4324118431995893 a001 53316291173/5600748293801*17393796001^(5/14) 4324118431995893 a001 12586269025/119218851371*28143753123^(1/4) 4324118431995893 a001 20365011074/28143753123*45537549124^(1/6) 4324118431995893 a001 12586269025/1322157322203*28143753123^(7/20) 4324118431995893 a001 12586269025/45537549124*14662949395604^(1/6) 4324118431995893 a001 86267571272/312119004989*17393796001^(3/14) 4324118431995893 a001 225851433717/817138163596*17393796001^(3/14) 4324118431995893 a001 1548008755920/5600748293801*17393796001^(3/14) 4324118431995893 a001 139583862445/505019158607*17393796001^(3/14) 4324118431995893 a001 20365011074/2139295485799*17393796001^(5/14) 4324118431995893 a001 12586269025/14662949395604*28143753123^(9/20) 4324118431995893 a001 53316291173/192900153618*17393796001^(3/14) 4324118431995893 a001 591286729879/73681302247*17393796001^(1/14) 4324118431995893 a001 20365011074/73681302247*17393796001^(3/14) 4324118431995893 a001 32951280099/73681302247*817138163596^(1/6) 4324118431995893 a001 86000486440/10716675201*17393796001^(1/14) 4324118431995893 a001 4052739537881/505019158607*17393796001^(1/14) 4324118431995893 a001 3536736619241/440719107401*17393796001^(1/14) 4324118431995893 a001 3278735159921/408569081798*17393796001^(1/14) 4324118431995893 a001 2504730781961/312119004989*17393796001^(1/14) 4324118431995893 a001 86267571272/73681302247*312119004989^(3/22) 4324118431995893 a001 53316291173/73681302247*45537549124^(1/6) 4324118431995893 a001 32264490531/10525900321*312119004989^(1/10) 4324118431995893 a001 32951280099/2139295485799*312119004989^(3/10) 4324118431995893 a001 10983760033/440719107401*9062201101803^(1/4) 4324118431995893 a001 32951280099/3461452808002*505019158607^(5/16) 4324118431995893 a001 32951280099/505019158607*192900153618^(1/4) 4324118431995893 a001 32951280099/312119004989*312119004989^(5/22) 4324118431995893 a001 32951280099/312119004989*3461452808002^(5/24) 4324118431995893 a001 956722026041/119218851371*17393796001^(1/14) 4324118431995893 a001 139583862445/73681302247*73681302247^(1/8) 4324118431995893 a001 956722026041/73681302247*28143753123^(1/20) 4324118431995893 a001 10983760033/3020733700601*73681302247^(3/8) 4324118431995893 a001 32951280099/119218851371*14662949395604^(1/6) 4324118431995893 a001 139583862445/192900153618*45537549124^(1/6) 4324118431995893 a001 365435296162/505019158607*45537549124^(1/6) 4324118431995893 a001 591286729879/817138163596*45537549124^(1/6) 4324118431995893 a001 225851433717/312119004989*45537549124^(1/6) 4324118431995893 a001 43133785636/96450076809*817138163596^(1/6) 4324118431995893 a001 86267571272/119218851371*45537549124^(1/6) 4324118431995893 a001 75283811239/64300051206*312119004989^(3/22) 4324118431995893 a001 86267571272/5600748293801*312119004989^(3/10) 4324118431995893 a001 21566892818/204284540899*312119004989^(5/22) 4324118431995893 a001 43133785636/1730726404001*9062201101803^(1/4) 4324118431995893 a001 21566892818/204284540899*3461452808002^(5/24) 4324118431995893 a001 86267571272/1322157322203*192900153618^(1/4) 4324118431995893 a001 86267571272/312119004989*14662949395604^(1/6) 4324118431995893 a001 225851433717/505019158607*817138163596^(1/6) 4324118431995893 a001 225851433717/2139295485799*312119004989^(5/22) 4324118431995893 a006 5^(1/2)*Fibonacci(135/2)/Lucas(58)/sqrt(5) 4324118431995893 a006 5^(1/2)*fibonacci(135/2)/Lucas(58)/sqrt(5) 4324118431995893 a006 5^(1/2)*Fibonacci(139/2)/Lucas(60)/sqrt(5) 4324118431995893 a006 5^(1/2)*fibonacci(139/2)/Lucas(60)/sqrt(5) 4324118431995893 a006 5^(1/2)*Fibonacci(143/2)/Lucas(62)/sqrt(5) 4324118431995893 a006 5^(1/2)*fibonacci(143/2)/Lucas(62)/sqrt(5) 4324118431995893 a006 5^(1/2)*fibonacci(141/2)/Lucas(61)/sqrt(5) 4324118431995893 a006 5^(1/2)*Fibonacci(141/2)/Lucas(61)/sqrt(5) 4324118431995893 a001 139583862445/9062201101803*312119004989^(3/10) 4324118431995893 a001 139583862445/1322157322203*312119004989^(5/22) 4324118431995893 a006 5^(1/2)*fibonacci(129/2)/Lucas(55)/sqrt(5) 4324118431995893 a006 5^(1/2)*Fibonacci(129/2)/Lucas(55)/sqrt(5) 4324118431995893 a001 139583862445/2139295485799*192900153618^(1/4) 4324118431995893 a001 139583862445/312119004989*817138163596^(1/6) 4324118431995893 a001 10610209857723/5600748293801*73681302247^(1/8) 4324118431995893 a001 591286729879/312119004989*73681302247^(1/8) 4324118431995893 a001 2504730781961/192900153618*28143753123^(1/20) 4324118431995893 a001 86267571272/23725150497407*73681302247^(3/8) 4324118431995893 a001 53316291173/192900153618*14662949395604^(1/6) 4324118431995893 a001 10610209857723/817138163596*28143753123^(1/20) 4324118431995893 a001 1548008755920/119218851371*312119004989^(1/22) 4324118431995893 a006 5^(1/2)*fibonacci(125/2)/Lucas(53)/sqrt(5) 4324118431995893 a006 5^(1/2)*Fibonacci(125/2)/Lucas(53)/sqrt(5) 4324118431995893 a001 365435296162/119218851371*312119004989^(1/10) 4324118431995893 a001 4052739537881/312119004989*28143753123^(1/20) 4324118431995893 a001 53316291173/817138163596*192900153618^(1/4) 4324118431995893 a001 139583862445/119218851371*312119004989^(3/22) 4324118431995893 a001 7778742049/6643838879*2537720636^(1/6) 4324118431995893 a001 225851433717/119218851371*73681302247^(1/8) 4324118431995893 a001 1548008755920/119218851371*28143753123^(1/20) 4324118431995893 a001 53316291173/119218851371*817138163596^(1/6) 4324118431995893 a001 32951280099/312119004989*28143753123^(1/4) 4324118431995893 a001 75283811239/64300051206*28143753123^(3/20) 4324118431995893 a001 2504730781961/2139295485799*28143753123^(3/20) 4324118431995893 a001 365435296162/312119004989*28143753123^(3/20) 4324118431995893 a001 32951280099/45537549124*45537549124^(1/6) 4324118431995893 a001 182717648081/22768774562*17393796001^(1/14) 4324118431995893 a001 32951280099/3461452808002*28143753123^(7/20) 4324118431995893 a001 139583862445/119218851371*28143753123^(3/20) 4324118431995893 a001 21566892818/204284540899*28143753123^(1/4) 4324118431995893 a001 20365011074/73681302247*14662949395604^(1/6) 4324118431995893 a001 225851433717/2139295485799*28143753123^(1/4) 4324118431995893 a001 182717648081/1730726404001*28143753123^(1/4) 4324118431995893 a001 139583862445/1322157322203*28143753123^(1/4) 4324118431995893 a001 53316291173/505019158607*28143753123^(1/4) 4324118431995893 a001 86267571272/9062201101803*28143753123^(7/20) 4324118431995893 a001 225851433717/23725150497407*28143753123^(7/20) 4324118431995893 a001 139583862445/14662949395604*28143753123^(7/20) 4324118431995893 a001 10182505537/96450076809*312119004989^(5/22) 4324118431995893 a001 10182505537/96450076809*3461452808002^(5/24) 4324118431995893 a001 20365011074/23725150497407*312119004989^(9/22) 4324118431995893 a001 20365011074/1322157322203*312119004989^(3/10) 4324118431995893 a006 5^(1/2)*fibonacci(121/2)/Lucas(51)/sqrt(5) 4324118431995893 a006 5^(1/2)*Fibonacci(121/2)/Lucas(51)/sqrt(5) 4324118431995893 a001 182717648081/22768774562*14662949395604^(1/18) 4324118431995893 a001 10182505537/408569081798*9062201101803^(1/4) 4324118431995893 a001 139583862445/45537549124*312119004989^(1/10) 4324118431995893 a001 20365011074/312119004989*192900153618^(1/4) 4324118431995893 a001 53316291173/5600748293801*28143753123^(7/20) 4324118431995893 a001 591286729879/45537549124*28143753123^(1/20) 4324118431995893 a001 20365011074/5600748293801*73681302247^(3/8) 4324118431995893 a001 53316291173/45537549124*28143753123^(3/20) 4324118431995893 a001 10182505537/96450076809*28143753123^(1/4) 4324118431995893 a001 20365011074/2139295485799*28143753123^(7/20) 4324118431995893 a001 10182505537/22768774562*817138163596^(1/6) 4324118431995893 a001 20365011074/23725150497407*28143753123^(9/20) 4324118431995893 a001 7778742049/28143753123*17393796001^(3/14) 4324118431995893 a001 7778742049/23725150497407*17393796001^(1/2) 4324118431995893 a001 12586269025/17393796001*45537549124^(1/6) 4324118431995893 a001 7778742049/28143753123*14662949395604^(1/6) 4324118431995893 a001 7778742049/817138163596*17393796001^(5/14) 4324118431995893 a001 139583862445/17393796001*17393796001^(1/14) 4324118431995893 a001 7778742049/73681302247*312119004989^(5/22) 4324118431995893 a001 7778742049/73681302247*3461452808002^(5/24) 4324118431995893 a001 32951280099/17393796001*73681302247^(1/8) 4324118431995893 a001 7778742049/192900153618*1322157322203^(1/4) 4324118431995893 a001 86267571272/17393796001*192900153618^(1/12) 4324118431995893 a001 7778742049/505019158607*312119004989^(3/10) 4324118431995893 a001 7778742049/9062201101803*312119004989^(9/22) 4324118431995893 a006 5^(1/2)*fibonacci(117/2)/Lucas(49)/sqrt(5) 4324118431995893 a006 5^(1/2)*Fibonacci(117/2)/Lucas(49)/sqrt(5) 4324118431995893 a001 7778742049/817138163596*14662949395604^(5/18) 4324118431995893 a001 7778742049/23725150497407*505019158607^(7/16) 4324118431995893 a001 7778742049/817138163596*505019158607^(5/16) 4324118431995893 a001 139583862445/17393796001*14662949395604^(1/18) 4324118431995893 a001 139583862445/17393796001*505019158607^(1/16) 4324118431995893 a001 7787980473/599786069*28143753123^(1/20) 4324118431995893 a001 53316291173/17393796001*312119004989^(1/10) 4324118431995893 a001 7778742049/119218851371*14662949395604^(3/14) 4324118431995893 a001 7778742049/119218851371*192900153618^(1/4) 4324118431995893 a001 7778742049/73681302247*28143753123^(1/4) 4324118431995893 a001 7778742049/817138163596*28143753123^(7/20) 4324118431995893 a001 20365011074/17393796001*312119004989^(3/22) 4324118431995893 a001 7778742049/9062201101803*28143753123^(9/20) 4324118431995893 a001 20365011074/17393796001*28143753123^(3/20) 4324118431995893 a001 1602508992/9381251041*4106118243^(1/4) 4324118431995893 a001 7778742049/17393796001*817138163596^(1/6) 4324118431995893 a001 32951280099/6643838879*2537720636^(1/10) 4324118431995893 a001 2971215073/5600748293801*6643838879^(1/2) 4324118431995893 a001 2971215073/10749957122*17393796001^(3/14) 4324118431995893 a001 12586269025/73681302247*4106118243^(1/4) 4324118431995893 a001 4807526976/6643838879*45537549124^(1/6) 4324118431995893 a001 2971215073/10749957122*14662949395604^(1/6) 4324118431995893 a001 10983760033/64300051206*4106118243^(1/4) 4324118431995893 a001 86267571272/505019158607*4106118243^(1/4) 4324118431995893 a001 75283811239/440719107401*4106118243^(1/4) 4324118431995893 a001 2504730781961/14662949395604*4106118243^(1/4) 4324118431995893 a001 139583862445/817138163596*4106118243^(1/4) 4324118431995893 a001 53316291173/312119004989*4106118243^(1/4) 4324118431995893 a001 20365011074/119218851371*4106118243^(1/4) 4324118431995893 a001 7778742049/45537549124*4106118243^(1/4) 4324118431995893 a001 2971215073/9062201101803*17393796001^(1/2) 4324118431995893 a001 2971215073/28143753123*312119004989^(5/22) 4324118431995893 a001 2971215073/28143753123*3461452808002^(5/24) 4324118431995893 a001 12586269025/6643838879*73681302247^(1/8) 4324118431995893 a001 2971215073/312119004989*17393796001^(5/14) 4324118431995893 a001 2971215073/28143753123*28143753123^(1/4) 4324118431995893 a001 2971215073/14662949395604*45537549124^(1/2) 4324118431995893 a001 32951280099/6643838879*14662949395604^(1/14) 4324118431995893 a001 2971215073/73681302247*1322157322203^(1/4) 4324118431995893 a001 32951280099/6643838879*192900153618^(1/12) 4324118431995893 a001 53316291173/6643838879*17393796001^(1/14) 4324118431995893 a001 2971215073/23725150497407*119218851371^(1/2) 4324118431995893 a001 2971215073/192900153618*312119004989^(3/10) 4324118431995893 a001 2971215073/3461452808002*312119004989^(9/22) 4324118431995893 a001 2971215073/3461452808002*14662949395604^(5/14) 4324118431995893 a001 2971215073/9062201101803*14662949395604^(7/18) 4324118431995893 a001 2971215073/312119004989*312119004989^(7/22) 4324118431995893 a001 2971215073/312119004989*14662949395604^(5/18) 4324118431995893 a001 2971215073/312119004989*505019158607^(5/16) 4324118431995893 a001 86267571272/6643838879*28143753123^(1/20) 4324118431995893 a001 53316291173/6643838879*14662949395604^(1/18) 4324118431995893 a001 2971215073/119218851371*9062201101803^(1/4) 4324118431995893 a001 2971215073/817138163596*73681302247^(3/8) 4324118431995893 a001 2971215073/312119004989*28143753123^(7/20) 4324118431995893 a001 20365011074/6643838879*312119004989^(1/10) 4324118431995893 a001 2971215073/45537549124*14662949395604^(3/14) 4324118431995893 a001 2971215073/45537549124*192900153618^(1/4) 4324118431995893 a001 2971215073/3461452808002*28143753123^(9/20) 4324118431995893 a001 7778742049/6643838879*312119004989^(3/22) 4324118431995893 a001 7778742049/6643838879*28143753123^(3/20) 4324118431995893 a001 2971215073/17393796001*4106118243^(1/4) 4324118431995893 a001 32951280099/10749957122*1568397607^(1/8) 4324118431995893 a001 2971215073/6643838879*817138163596^(1/6) 4324118431995893 a001 86267571272/28143753123*1568397607^(1/8) 4324118431995893 a001 32264490531/10525900321*1568397607^(1/8) 4324118431995893 a001 591286729879/192900153618*1568397607^(1/8) 4324118431995893 a001 1548008755920/505019158607*1568397607^(1/8) 4324118431995893 a001 1515744265389/494493258286*1568397607^(1/8) 4324118431995893 a001 2504730781961/817138163596*1568397607^(1/8) 4324118431995893 a001 956722026041/312119004989*1568397607^(1/8) 4324118431995893 a001 365435296162/119218851371*1568397607^(1/8) 4324118431995893 a001 139583862445/45537549124*1568397607^(1/8) 4324118431995893 a001 53316291173/17393796001*1568397607^(1/8) 4324118431995893 a001 567451585/7331474697802*2537720636^(11/18) 4324118431995893 a001 20365011074/6643838879*1568397607^(1/8) 4324118431995893 a001 1134903170/1322157322203*2537720636^(1/2) 4324118431995893 a001 1836311903/119218851371*1568397607^(3/8) 4324118431995893 a001 1134903170/119218851371*2537720636^(7/18) 4324118431995893 a001 1134903170/4106118243*17393796001^(3/14) 4324118431995893 a001 1836311903/2537720636*45537549124^(1/6) 4324118431995893 a001 1134903170/4106118243*14662949395604^(1/6) 4324118431995893 a001 567451585/5374978561*2537720636^(5/18) 4324118431995893 a001 1134903170/17393796001*2537720636^(3/10) 4324118431995893 a001 1144206275/230701876*2537720636^(1/10) 4324118431995893 a001 4807526976/312119004989*1568397607^(3/8) 4324118431995893 a001 1134903170/2139295485799*6643838879^(1/2) 4324118431995893 a001 32951280099/2537720636*2537720636^(1/18) 4324118431995893 a001 567451585/5374978561*312119004989^(5/22) 4324118431995893 a001 567451585/5374978561*3461452808002^(5/24) 4324118431995893 a001 1201881744/634430159*73681302247^(1/8) 4324118431995893 a001 567451585/5374978561*28143753123^(1/4) 4324118431995893 a001 12586269025/817138163596*1568397607^(3/8) 4324118431995893 a001 2971215073/2537720636*2537720636^(1/6) 4324118431995893 a001 32951280099/2139295485799*1568397607^(3/8) 4324118431995893 a001 86267571272/5600748293801*1568397607^(3/8) 4324118431995893 a001 7787980473/505618944676*1568397607^(3/8) 4324118431995893 a001 365435296162/23725150497407*1568397607^(3/8) 4324118431995893 a001 139583862445/9062201101803*1568397607^(3/8) 4324118431995893 a001 53316291173/3461452808002*1568397607^(3/8) 4324118431995893 a001 20365011074/1322157322203*1568397607^(3/8) 4324118431995893 a001 567451585/1730726404001*17393796001^(1/2) 4324118431995893 a001 1134903170/28143753123*1322157322203^(1/4) 4324118431995893 a001 1144206275/230701876*192900153618^(1/12) 4324118431995893 a001 1134903170/119218851371*17393796001^(5/14) 4324118431995893 a001 1134903170/5600748293801*45537549124^(1/2) 4324118431995893 a001 1134903170/73681302247*312119004989^(3/10) 4324118431995893 a001 32951280099/2537720636*312119004989^(1/22) 4324118431995893 a001 32951280099/2537720636*28143753123^(1/20) 4324118431995893 a001 1134903170/9062201101803*119218851371^(1/2) 4324118431995893 a006 5^(1/2)*fibonacci(109/2)/Lucas(45)/sqrt(5) 4324118431995893 a001 1134903170/1322157322203*312119004989^(9/22) 4324118431995893 a001 1134903170/1322157322203*14662949395604^(5/14) 4324118431995893 a001 567451585/1730726404001*14662949395604^(7/18) 4324118431995893 a006 5^(1/2)*Fibonacci(109/2)/Lucas(45)/sqrt(5) 4324118431995893 a001 567451585/1730726404001*505019158607^(7/16) 4324118431995893 a001 1134903170/1322157322203*192900153618^(5/12) 4324118431995893 a001 1134903170/119218851371*312119004989^(7/22) 4324118431995893 a001 1134903170/119218851371*14662949395604^(5/18) 4324118431995893 a001 1134903170/119218851371*505019158607^(5/16) 4324118431995893 a001 1134903170/312119004989*73681302247^(3/8) 4324118431995893 a001 10182505537/1268860318*17393796001^(1/14) 4324118431995893 a001 7778742049/505019158607*1568397607^(3/8) 4324118431995893 a001 10182505537/1268860318*14662949395604^(1/18) 4324118431995893 a001 10182505537/1268860318*505019158607^(1/16) 4324118431995893 a001 1134903170/119218851371*28143753123^(7/20) 4324118431995893 a001 1134903170/1322157322203*28143753123^(9/20) 4324118431995893 a001 567451585/7331474697802*28143753123^(11/20) 4324118431995893 a001 7778742049/2537720636*312119004989^(1/10) 4324118431995893 a001 1134903170/17393796001*14662949395604^(3/14) 4324118431995893 a001 1134903170/17393796001*192900153618^(1/4) 4324118431995893 a001 10983760033/1368706081*599074578^(1/12) 4324118431995893 a001 2971215073/192900153618*1568397607^(3/8) 4324118431995893 a001 2971215073/2537720636*312119004989^(3/22) 4324118431995893 a001 2971215073/2537720636*28143753123^(3/20) 4324118431995893 a001 1134903170/6643838879*4106118243^(1/4) 4324118431995893 a001 1836311903/23725150497407*1568397607^(5/8) 4324118431995893 a001 7778742049/2537720636*1568397607^(1/8) 4324118431995893 a001 43133785636/5374978561*599074578^(1/12) 4324118431995893 a001 75283811239/9381251041*599074578^(1/12) 4324118431995893 a001 591286729879/73681302247*599074578^(1/12) 4324118431995893 a001 86000486440/10716675201*599074578^(1/12) 4324118431995893 a001 4052739537881/505019158607*599074578^(1/12) 4324118431995893 a001 3278735159921/408569081798*599074578^(1/12) 4324118431995893 a001 2504730781961/312119004989*599074578^(1/12) 4324118431995893 a001 956722026041/119218851371*599074578^(1/12) 4324118431995893 a001 182717648081/22768774562*599074578^(1/12) 4324118431995893 a001 139583862445/17393796001*599074578^(1/12) 4324118431995893 a001 53316291173/6643838879*599074578^(1/12) 4324118431995893 a001 1134903170/73681302247*1568397607^(3/8) 4324118431995893 a001 567451585/1268860318*817138163596^(1/6) 4324118431995893 a001 10182505537/1268860318*599074578^(1/12) 4324118431995893 a001 233802911/199691526*228826127^(3/16) 4324118431995893 a001 567451585/7331474697802*1568397607^(5/8) 4324118431995893 a001 701408733/2537720636*599074578^(1/4) 4324118431995893 a001 433494437/312119004989*969323029^(1/2) 4324118431995893 a001 433494437/1568397607*17393796001^(3/14) 4324118431995893 a001 701408733/969323029*45537549124^(1/6) 4324118431995893 a001 433494437/1568397607*14662949395604^(1/6) 4324118431995893 a001 1836311903/6643838879*599074578^(1/4) 4324118431995893 a001 4807526976/17393796001*599074578^(1/4) 4324118431995893 a001 12586269025/45537549124*599074578^(1/4) 4324118431995893 a001 32951280099/119218851371*599074578^(1/4) 4324118431995893 a001 86267571272/312119004989*599074578^(1/4) 4324118431995893 a001 225851433717/817138163596*599074578^(1/4) 4324118431995893 a001 1548008755920/5600748293801*599074578^(1/4) 4324118431995893 a001 139583862445/505019158607*599074578^(1/4) 4324118431995893 a001 53316291173/192900153618*599074578^(1/4) 4324118431995893 a001 20365011074/73681302247*599074578^(1/4) 4324118431995893 a001 7778742049/28143753123*599074578^(1/4) 4324118431995893 a001 2971215073/10749957122*599074578^(1/4) 4324118431995893 a001 701408733/73681302247*599074578^(5/12) 4324118431995893 a001 20365011074/1568397607*228826127^(1/16) 4324118431995893 a001 1134903170/4106118243*599074578^(1/4) 4324118431995893 a001 433494437/4106118243*2537720636^(5/18) 4324118431995893 a001 433494437/5600748293801*2537720636^(11/18) 4324118431995893 a001 433494437/505019158607*2537720636^(1/2) 4324118431995893 a001 433494437/45537549124*2537720636^(7/18) 4324118431995893 a001 433494437/4106118243*312119004989^(5/22) 4324118431995893 a001 433494437/4106118243*3461452808002^(5/24) 4324118431995893 a001 1836311903/969323029*73681302247^(1/8) 4324118431995893 a001 433494437/4106118243*28143753123^(1/4) 4324118431995893 a001 4807526976/969323029*2537720636^(1/10) 4324118431995893 a001 433494437/6643838879*2537720636^(3/10) 4324118431995893 a001 433494437/817138163596*6643838879^(1/2) 4324118431995893 a001 12586269025/969323029*2537720636^(1/18) 4324118431995893 a001 4807526976/969323029*14662949395604^(1/14) 4324118431995893 a001 433494437/10749957122*1322157322203^(1/4) 4324118431995893 a001 4807526976/969323029*192900153618^(1/12) 4324118431995893 a001 433494437/1322157322203*17393796001^(1/2) 4324118431995893 a001 433494437/28143753123*312119004989^(3/10) 4324118431995893 a001 12586269025/969323029*312119004989^(1/22) 4324118431995893 a001 12586269025/969323029*28143753123^(1/20) 4324118431995893 a001 433494437/45537549124*17393796001^(5/14) 4324118431995893 a001 433494437/2139295485799*45537549124^(1/2) 4324118431995893 a001 433494437/3461452808002*119218851371^(1/2) 4324118431995893 a001 433494437/505019158607*312119004989^(9/22) 4324118431995893 a001 433494437/5600748293801*312119004989^(1/2) 4324118431995893 a001 433494437/1322157322203*14662949395604^(7/18) 4324118431995893 a001 433494437/14662949395604*2139295485799^(1/2) 4324118431995893 a001 433494437/23725150497407*5600748293801^(1/2) 4324118431995893 a001 433494437/1322157322203*505019158607^(7/16) 4324118431995893 a001 433494437/505019158607*192900153618^(5/12) 4324118431995893 a001 433494437/119218851371*73681302247^(3/8) 4324118431995893 a001 433494437/45537549124*312119004989^(7/22) 4324118431995893 a001 433494437/45537549124*14662949395604^(5/18) 4324118431995893 a001 433494437/45537549124*505019158607^(5/16) 4324118431995893 a001 433494437/505019158607*28143753123^(9/20) 4324118431995893 a001 433494437/5600748293801*28143753123^(11/20) 4324118431995893 a001 433494437/45537549124*28143753123^(7/20) 4324118431995893 a001 7778742049/969323029*17393796001^(1/14) 4324118431995893 a001 7778742049/969323029*14662949395604^(1/18) 4324118431995893 a001 433494437/17393796001*9062201101803^(1/4) 4324118431995893 a001 2971215073/969323029*312119004989^(1/10) 4324118431995893 a001 433494437/6643838879*14662949395604^(3/14) 4324118431995893 a001 433494437/6643838879*192900153618^(1/4) 4324118431995893 a001 1836311903/192900153618*599074578^(5/12) 4324118431995893 a001 53316291173/4106118243*228826127^(1/16) 4324118431995893 a001 2971215073/969323029*1568397607^(1/8) 4324118431995893 a001 102287808/10745088481*599074578^(5/12) 4324118431995893 a001 12586269025/1322157322203*599074578^(5/12) 4324118431995893 a001 32951280099/3461452808002*599074578^(5/12) 4324118431995893 a001 86267571272/9062201101803*599074578^(5/12) 4324118431995893 a001 225851433717/23725150497407*599074578^(5/12) 4324118431995893 a001 139583862445/14662949395604*599074578^(5/12) 4324118431995893 a001 53316291173/5600748293801*599074578^(5/12) 4324118431995893 a001 20365011074/2139295485799*599074578^(5/12) 4324118431995893 a001 7778742049/817138163596*599074578^(5/12) 4324118431995893 a001 2971215073/312119004989*599074578^(5/12) 4324118431995893 a001 139583862445/10749957122*228826127^(1/16) 4324118431995893 a001 365435296162/28143753123*228826127^(1/16) 4324118431995893 a001 956722026041/73681302247*228826127^(1/16) 4324118431995893 a001 2504730781961/192900153618*228826127^(1/16) 4324118431995893 a001 10610209857723/817138163596*228826127^(1/16) 4324118431995893 a001 4052739537881/312119004989*228826127^(1/16) 4324118431995893 a001 1134903170/969323029*2537720636^(1/6) 4324118431995893 a001 1548008755920/119218851371*228826127^(1/16) 4324118431995893 a001 591286729879/45537549124*228826127^(1/16) 4324118431995893 a001 7787980473/599786069*228826127^(1/16) 4324118431995893 a001 433494437/28143753123*1568397607^(3/8) 4324118431995893 a001 86267571272/6643838879*228826127^(1/16) 4324118431995893 a001 701408733/2139295485799*599074578^(7/12) 4324118431995893 a001 1134903170/969323029*312119004989^(3/22) 4324118431995893 a001 1134903170/969323029*28143753123^(3/20) 4324118431995893 a001 433494437/2537720636*4106118243^(1/4) 4324118431995893 a001 7778742049/969323029*599074578^(1/12) 4324118431995893 a001 1134903170/119218851371*599074578^(5/12) 4324118431995893 a001 433494437/5600748293801*1568397607^(5/8) 4324118431995893 a001 32951280099/2537720636*228826127^(1/16) 4324118431995893 a001 433494437/1568397607*599074578^(1/4) 4324118431995893 a001 1836311903/5600748293801*599074578^(7/12) 4324118431995893 a001 1201881744/3665737348901*599074578^(7/12) 4324118431995893 a001 7778742049/23725150497407*599074578^(7/12) 4324118431995893 a001 2971215073/9062201101803*599074578^(7/12) 4324118431995893 a001 567451585/1730726404001*599074578^(7/12) 4324118431995893 a001 433494437/969323029*817138163596^(1/6) 4324118431995893 a001 433494437/45537549124*599074578^(5/12) 4324118431995893 a001 12586269025/969323029*228826127^(1/16) 4324118431995893 a001 433494437/1322157322203*599074578^(7/12) 4324118431995893 a001 1836311903/1568397607*228826127^(3/16) 4324118431995893 a001 66978574/634430159*228826127^(5/16) 4324118431995893 a001 1602508992/1368706081*228826127^(3/16) 4324118431995893 a001 12586269025/10749957122*228826127^(3/16) 4324118431995893 a001 10983760033/9381251041*228826127^(3/16) 4324118431995893 a001 86267571272/73681302247*228826127^(3/16) 4324118431995893 a001 75283811239/64300051206*228826127^(3/16) 4324118431995893 a001 2504730781961/2139295485799*228826127^(3/16) 4324118431995893 a001 365435296162/312119004989*228826127^(3/16) 4324118431995893 a001 139583862445/119218851371*228826127^(3/16) 4324118431995893 a001 53316291173/45537549124*228826127^(3/16) 4324118431995893 a001 20365011074/17393796001*228826127^(3/16) 4324118431995893 a001 7778742049/6643838879*228826127^(3/16) 4324118431995893 a001 165580141/73681302247*370248451^(1/2) 4324118431995893 a001 2971215073/2537720636*228826127^(3/16) 4324118431995893 a001 165580141/599074578*17393796001^(3/14) 4324118431995893 a001 267914296/370248451*45537549124^(1/6) 4324118431995893 a001 165580141/599074578*14662949395604^(1/6) 4324118431995893 a001 1134903170/969323029*228826127^(3/16) 4324118431995893 a001 165580141/599074578*599074578^(1/4) 4324118431995893 a001 267914296/28143753123*228826127^(7/16) 4324118431995893 a001 701408733/6643838879*228826127^(5/16) 4324118431995893 a001 1836311903/17393796001*228826127^(5/16) 4324118431995893 a001 1201881744/11384387281*228826127^(5/16) 4324118431995893 a001 12586269025/119218851371*228826127^(5/16) 4324118431995893 a001 32951280099/312119004989*228826127^(5/16) 4324118431995893 a001 21566892818/204284540899*228826127^(5/16) 4324118431995893 a001 225851433717/2139295485799*228826127^(5/16) 4324118431995893 a001 182717648081/1730726404001*228826127^(5/16) 4324118431995893 a001 139583862445/1322157322203*228826127^(5/16) 4324118431995893 a001 53316291173/505019158607*228826127^(5/16) 4324118431995893 a001 10182505537/96450076809*228826127^(5/16) 4324118431995893 a001 7778742049/73681302247*228826127^(5/16) 4324118431995893 a001 2971215073/28143753123*228826127^(5/16) 4324118431995893 a001 567451585/5374978561*228826127^(5/16) 4324118431995893 a001 165580141/119218851371*969323029^(1/2) 4324118431995893 a001 165580141/1568397607*2537720636^(5/18) 4324118431995893 a001 165580141/1568397607*312119004989^(5/22) 4324118431995893 a001 165580141/1568397607*3461452808002^(5/24) 4324118431995893 a001 701408733/370248451*73681302247^(1/8) 4324118431995893 a001 165580141/1568397607*28143753123^(1/4) 4324118431995893 a001 433494437/4106118243*228826127^(5/16) 4324118431995893 a001 165580141/23725150497407*2537720636^(13/18) 4324118431995893 a001 165580141/14662949395604*2537720636^(7/10) 4324118431995893 a001 165580141/2139295485799*2537720636^(11/18) 4324118431995893 a001 165580141/192900153618*2537720636^(1/2) 4324118431995893 a001 1836311903/370248451*2537720636^(1/10) 4324118431995893 a001 1836311903/370248451*14662949395604^(1/14) 4324118431995893 a001 165580141/4106118243*1322157322203^(1/4) 4324118431995893 a001 1836311903/370248451*192900153618^(1/12) 4324118431995893 a001 165580141/17393796001*2537720636^(7/18) 4324118431995893 a001 4807526976/370248451*2537720636^(1/18) 4324118431995893 a001 165580141/312119004989*6643838879^(1/2) 4324118431995893 a001 165580141/10749957122*312119004989^(3/10) 4324118431995893 a001 4807526976/370248451*312119004989^(1/22) 4324118431995893 a001 4807526976/370248451*28143753123^(1/20) 4324118431995893 a001 165580141/14662949395604*17393796001^(9/14) 4324118431995893 a001 165580141/505019158607*17393796001^(1/2) 4324118431995893 a006 5^(1/2)*fibonacci(101/2)/Lucas(41)/sqrt(5) 4324118431995893 a001 165580141/817138163596*45537549124^(1/2) 4324118431995893 a001 165580141/1322157322203*119218851371^(1/2) 4324118431995893 a001 165580141/192900153618*312119004989^(9/22) 4324118431995893 a001 165580141/192900153618*14662949395604^(5/14) 4324118431995893 a001 165580141/192900153618*192900153618^(5/12) 4324118431995893 a001 165580141/2139295485799*312119004989^(1/2) 4324118431995893 a001 165580141/505019158607*14662949395604^(7/18) 4324118431995893 a006 5^(1/2)*Fibonacci(101/2)/Lucas(41)/sqrt(5) 4324118431995893 a001 165580141/14662949395604*14662949395604^(1/2) 4324118431995893 a001 165580141/14662949395604*505019158607^(9/16) 4324118431995893 a001 165580141/14662949395604*192900153618^(7/12) 4324118431995893 a001 165580141/23725150497407*73681302247^(5/8) 4324118431995893 a001 165580141/192900153618*28143753123^(9/20) 4324118431995893 a001 165580141/45537549124*73681302247^(3/8) 4324118431995893 a001 165580141/2139295485799*28143753123^(11/20) 4324118431995893 a001 165580141/23725150497407*28143753123^(13/20) 4324118431995893 a001 165580141/17393796001*17393796001^(5/14) 4324118431995893 a001 165580141/17393796001*312119004989^(7/22) 4324118431995893 a001 165580141/17393796001*14662949395604^(5/18) 4324118431995893 a001 165580141/17393796001*505019158607^(5/16) 4324118431995893 a001 165580141/17393796001*28143753123^(7/20) 4324118431995893 a001 2971215073/370248451*17393796001^(1/14) 4324118431995893 a001 2971215073/370248451*14662949395604^(1/18) 4324118431995893 a001 165580141/6643838879*9062201101803^(1/4) 4324118431995893 a001 165580141/2537720636*2537720636^(3/10) 4324118431995893 a001 165580141/10749957122*1568397607^(3/8) 4324118431995893 a001 1134903170/370248451*312119004989^(1/10) 4324118431995893 a001 165580141/2537720636*14662949395604^(3/14) 4324118431995893 a001 165580141/2537720636*192900153618^(1/4) 4324118431995893 a001 1134903170/370248451*1568397607^(1/8) 4324118431995893 a001 165580141/2139295485799*1568397607^(5/8) 4324118431995893 a001 2971215073/370248451*599074578^(1/12) 4324118431995893 a001 701408733/73681302247*228826127^(7/16) 4324118431995893 a001 267914296/312119004989*228826127^(9/16) 4324118431995893 a001 1836311903/192900153618*228826127^(7/16) 4324118431995893 a001 63245986/9062201101803*141422324^(5/6) 4324118431995893 a001 433494437/370248451*2537720636^(1/6) 4324118431995893 a001 102287808/10745088481*228826127^(7/16) 4324118431995893 a001 12586269025/1322157322203*228826127^(7/16) 4324118431995893 a001 32951280099/3461452808002*228826127^(7/16) 4324118431995893 a001 86267571272/9062201101803*228826127^(7/16) 4324118431995893 a001 225851433717/23725150497407*228826127^(7/16) 4324118431995893 a001 139583862445/14662949395604*228826127^(7/16) 4324118431995893 a001 53316291173/5600748293801*228826127^(7/16) 4324118431995893 a001 20365011074/2139295485799*228826127^(7/16) 4324118431995893 a001 7778742049/817138163596*228826127^(7/16) 4324118431995893 a001 433494437/370248451*312119004989^(3/22) 4324118431995893 a001 433494437/370248451*28143753123^(3/20) 4324118431995893 a001 165580141/969323029*4106118243^(1/4) 4324118431995893 a001 2971215073/312119004989*228826127^(7/16) 4324118431995893 a001 165580141/17393796001*599074578^(5/12) 4324118431995893 a001 4807526976/370248451*228826127^(1/16) 4324118431995893 a001 1134903170/119218851371*228826127^(7/16) 4324118431995893 a001 165580141/505019158607*599074578^(7/12) 4324118431995893 a001 165580141/14662949395604*599074578^(3/4) 4324118431995893 a001 433494437/45537549124*228826127^(7/16) 4324118431995893 a001 701408733/817138163596*228826127^(9/16) 4324118431995893 a001 133957148/1730726404001*228826127^(11/16) 4324118431995893 a001 1836311903/2139295485799*228826127^(9/16) 4324118431995893 a001 4807526976/5600748293801*228826127^(9/16) 4324118431995893 a001 12586269025/14662949395604*228826127^(9/16) 4324118431995893 a001 20365011074/23725150497407*228826127^(9/16) 4324118431995893 a001 7778742049/9062201101803*228826127^(9/16) 4324118431995893 a001 2971215073/3461452808002*228826127^(9/16) 4324118431995893 a001 1134903170/1322157322203*228826127^(9/16) 4324118431995893 a001 433494437/505019158607*228826127^(9/16) 4324118431995893 a001 433494437/370248451*228826127^(3/16) 4324118431995893 a001 233802911/3020733700601*228826127^(11/16) 4324118431995893 a001 165580141/1568397607*228826127^(5/16) 4324118431995893 a001 1836311903/23725150497407*228826127^(11/16) 4324118431995893 a001 567451585/7331474697802*228826127^(11/16) 4324118431995893 a001 433494437/5600748293801*228826127^(11/16) 4324118431995893 a001 165580141/370248451*817138163596^(1/6) 4324118431995893 a001 165580141/17393796001*228826127^(7/16) 4324118431995893 a001 165580141/192900153618*228826127^(9/16) 4324118431995893 a001 102287808/4868641*33385282^(1/24) 4324118431995893 a001 165580141/2139295485799*228826127^(11/16) 4324118431995893 a001 165580141/23725150497407*228826127^(13/16) 4324118431995893 a001 63245986/17393796001*141422324^(1/2) 4324118431995893 a001 133957148/299537289*87403803^(1/4) 4324118431995893 a001 63245986/228826127*17393796001^(3/14) 4324118431995893 a001 102334155/141422324*45537549124^(1/6) 4324118431995893 a001 63245986/228826127*14662949395604^(1/6) 4324118431995893 a001 63245986/228826127*599074578^(1/4) 4324118431995893 a001 701408733/1568397607*87403803^(1/4) 4324118431995893 a001 1836311903/4106118243*87403803^(1/4) 4324118431995893 a001 2403763488/5374978561*87403803^(1/4) 4324118431995893 a001 12586269025/28143753123*87403803^(1/4) 4324118431995893 a001 32951280099/73681302247*87403803^(1/4) 4324118431995893 a001 43133785636/96450076809*87403803^(1/4) 4324118431995893 a001 225851433717/505019158607*87403803^(1/4) 4324118431995893 a001 591286729879/1322157322203*87403803^(1/4) 4324118431995893 a001 10610209857723/23725150497407*87403803^(1/4) 4324118431995893 a001 182717648081/408569081798*87403803^(1/4) 4324118431995893 a001 139583862445/312119004989*87403803^(1/4) 4324118431995893 a001 53316291173/119218851371*87403803^(1/4) 4324118431995893 a001 10182505537/22768774562*87403803^(1/4) 4324118431995893 a001 7778742049/17393796001*87403803^(1/4) 4324118431995893 a001 2971215073/6643838879*87403803^(1/4) 4324118431995893 a001 567451585/1268860318*87403803^(1/4) 4324118431995893 a001 12586269025/599074578*33385282^(1/24) 4324118431995893 a001 433494437/969323029*87403803^(1/4) 4324118431995893 a001 34111385/29134601*33385282^(5/24) 4324118431995893 a001 32951280099/1568397607*33385282^(1/24) 4324118431995893 a001 86267571272/4106118243*33385282^(1/24) 4324118431995893 a001 225851433717/10749957122*33385282^(1/24) 4324118431995893 a001 591286729879/28143753123*33385282^(1/24) 4324118431995893 a001 1548008755920/73681302247*33385282^(1/24) 4324118431995893 a001 4052739537881/192900153618*33385282^(1/24) 4324118431995893 a001 225749145909/10745088481*33385282^(1/24) 4324118431995893 a001 6557470319842/312119004989*33385282^(1/24) 4324118431995893 a001 2504730781961/119218851371*33385282^(1/24) 4324118431995893 a001 956722026041/45537549124*33385282^(1/24) 4324118431995893 a001 365435296162/17393796001*33385282^(1/24) 4324118431995893 a001 139583862445/6643838879*33385282^(1/24) 4324118431995893 a001 53316291173/2537720636*33385282^(1/24) 4324118431995893 a001 20365011074/969323029*33385282^(1/24) 4324118431995893 a001 66978574/35355581*141422324^(1/6) 4324118431995893 a001 7778742049/370248451*33385282^(1/24) 4324118431995893 a001 63245986/28143753123*370248451^(1/2) 4324118431995893 a001 31622993/299537289*2537720636^(5/18) 4324118431995893 a001 31622993/299537289*312119004989^(5/22) 4324118431995893 a001 31622993/299537289*3461452808002^(5/24) 4324118431995893 a001 66978574/35355581*73681302247^(1/8) 4324118431995893 a001 31622993/299537289*28143753123^(1/4) 4324118431995893 a001 165580141/370248451*87403803^(1/4) 4324118431995893 a001 31622993/22768774562*969323029^(1/2) 4324118431995893 a001 701408733/141422324*2537720636^(1/10) 4324118431995893 a001 701408733/141422324*14662949395604^(1/14) 4324118431995893 a001 63245986/1568397607*1322157322203^(1/4) 4324118431995893 a001 701408733/141422324*192900153618^(1/12) 4324118431995893 a001 63245986/9062201101803*2537720636^(13/18) 4324118431995893 a001 63245986/5600748293801*2537720636^(7/10) 4324118431995893 a001 31622993/408569081798*2537720636^(11/18) 4324118431995893 a001 63245986/73681302247*2537720636^(1/2) 4324118431995893 a001 1836311903/141422324*2537720636^(1/18) 4324118431995893 a001 1836311903/141422324*312119004989^(1/22) 4324118431995893 a001 1836311903/141422324*28143753123^(1/20) 4324118431995893 a001 63245986/6643838879*2537720636^(7/18) 4324118431995893 a001 63245986/119218851371*6643838879^(1/2) 4324118431995893 a006 5^(1/2)*fibonacci(97/2)/Lucas(39)/sqrt(5) 4324118431995893 a001 63245986/5600748293801*17393796001^(9/14) 4324118431995893 a001 31622993/96450076809*17393796001^(1/2) 4324118431995893 a001 63245986/312119004989*45537549124^(1/2) 4324118431995893 a001 63245986/73681302247*312119004989^(9/22) 4324118431995893 a001 63245986/73681302247*14662949395604^(5/14) 4324118431995893 a001 63245986/73681302247*192900153618^(5/12) 4324118431995893 a001 63245986/505019158607*119218851371^(1/2) 4324118431995893 a001 31622993/96450076809*14662949395604^(7/18) 4324118431995893 a001 31622993/96450076809*505019158607^(7/16) 4324118431995893 a001 63245986/9062201101803*312119004989^(13/22) 4324118431995893 a001 31622993/408569081798*312119004989^(1/2) 4324118431995893 a001 63245986/1322157322203*817138163596^(1/2) 4324118431995893 a001 31622993/1730726404001*5600748293801^(1/2) 4324118431995893 a006 5^(1/2)*Fibonacci(97/2)/Lucas(39)/sqrt(5) 4324118431995893 a001 63245986/5600748293801*192900153618^(7/12) 4324118431995893 a001 63245986/9062201101803*73681302247^(5/8) 4324118431995893 a001 63245986/73681302247*28143753123^(9/20) 4324118431995893 a001 31622993/408569081798*28143753123^(11/20) 4324118431995893 a001 63245986/9062201101803*28143753123^(13/20) 4324118431995893 a001 63245986/17393796001*73681302247^(3/8) 4324118431995893 a001 63245986/6643838879*17393796001^(5/14) 4324118431995893 a001 63245986/6643838879*312119004989^(7/22) 4324118431995893 a001 63245986/6643838879*14662949395604^(5/18) 4324118431995893 a001 63245986/6643838879*505019158607^(5/16) 4324118431995893 a001 63245986/6643838879*28143753123^(7/20) 4324118431995893 a001 63245986/23725150497407*4106118243^(3/4) 4324118431995893 a001 63245986/4106118243*1568397607^(3/8) 4324118431995893 a001 567451585/70711162*17393796001^(1/14) 4324118431995893 a001 567451585/70711162*14662949395604^(1/18) 4324118431995893 a001 31622993/1268860318*9062201101803^(1/4) 4324118431995893 a001 567451585/70711162*505019158607^(1/16) 4324118431995893 a001 31622993/408569081798*1568397607^(5/8) 4324118431995893 a001 567451585/70711162*599074578^(1/12) 4324118431995893 a001 63245986/969323029*2537720636^(3/10) 4324118431995893 a001 433494437/141422324*312119004989^(1/10) 4324118431995893 a001 63245986/969323029*14662949395604^(3/14) 4324118431995893 a001 63245986/969323029*192900153618^(1/4) 4324118431995893 a001 433494437/141422324*1568397607^(1/8) 4324118431995893 a001 1836311903/141422324*228826127^(1/16) 4324118431995893 a001 63245986/6643838879*599074578^(5/12) 4324118431995893 a001 31622993/96450076809*599074578^(7/12) 4324118431995893 a001 63245986/5600748293801*599074578^(3/4) 4324118431995893 a001 31622993/299537289*228826127^(5/16) 4324118431995893 a001 165580141/141422324*2537720636^(1/6) 4324118431995893 a001 165580141/141422324*312119004989^(3/22) 4324118431995893 a001 165580141/141422324*28143753123^(3/20) 4324118431995893 a001 63245986/370248451*4106118243^(1/4) 4324118431995893 a001 63245986/6643838879*228826127^(7/16) 4324118431995893 a001 63245986/73681302247*228826127^(9/16) 4324118431995893 a001 165580141/141422324*228826127^(3/16) 4324118431995893 a001 31622993/408569081798*228826127^(11/16) 4324118431995893 a001 63245986/9062201101803*228826127^(13/16) 4324118431995893 a001 102334155/2139295485799*87403803^(3/4) 4324118431995893 a001 2971215073/141422324*33385282^(1/24) 4324118431995893 a001 1134903170/228826127*33385282^(1/8) 4324118431995893 a001 267914296/5600748293801*87403803^(3/4) 4324118431995893 a001 701408733/14662949395604*87403803^(3/4) 4324118431995893 a001 1134903170/23725150497407*87403803^(3/4) 4324118431995893 a001 433494437/9062201101803*87403803^(3/4) 4324118431995893 a001 31622993/70711162*817138163596^(1/6) 4324118431995893 a001 165580141/3461452808002*87403803^(3/4) 4324118431995893 a001 433494437/54018521*20633239^(1/10) 4324118431995893 a001 2971215073/599074578*33385282^(1/8) 4324118431995893 a001 7778742049/1568397607*33385282^(1/8) 4324118431995893 a001 20365011074/4106118243*33385282^(1/8) 4324118431995893 a001 53316291173/10749957122*33385282^(1/8) 4324118431995893 a001 139583862445/28143753123*33385282^(1/8) 4324118431995893 a001 365435296162/73681302247*33385282^(1/8) 4324118431995893 a001 956722026041/192900153618*33385282^(1/8) 4324118431995893 a001 2504730781961/505019158607*33385282^(1/8) 4324118431995893 a001 10610209857723/2139295485799*33385282^(1/8) 4324118431995893 a001 4052739537881/817138163596*33385282^(1/8) 4324118431995893 a001 140728068720/28374454999*33385282^(1/8) 4324118431995893 a001 591286729879/119218851371*33385282^(1/8) 4324118431995893 a001 225851433717/45537549124*33385282^(1/8) 4324118431995893 a001 86267571272/17393796001*33385282^(1/8) 4324118431995893 a001 32951280099/6643838879*33385282^(1/8) 4324118431995893 a001 1144206275/230701876*33385282^(1/8) 4324118431995893 a001 4807526976/969323029*33385282^(1/8) 4324118431995893 a001 1836311903/370248451*33385282^(1/8) 4324118431995893 a001 31622993/70711162*87403803^(1/4) 4324118431995893 a001 9303105/1875749*7881196^(3/22) 4324118431995893 a001 63245986/1322157322203*87403803^(3/4) 4324118431995893 a001 701408733/141422324*33385282^(1/8) 4324118431995893 a001 267914296/228826127*33385282^(5/24) 4324118431995893 a001 9227465/1322157322203*20633239^(13/14) 4324118431995893 a001 24157817/4106118243*54018521^(1/2) 4324118431995893 a001 701408733/54018521*20633239^(1/14) 4324118431995893 a001 39088169/141422324*33385282^(7/24) 4324118431995893 a001 233802911/199691526*33385282^(5/24) 4324118431995893 a001 1836311903/1568397607*33385282^(5/24) 4324118431995893 a001 1602508992/1368706081*33385282^(5/24) 4324118431995893 a001 12586269025/10749957122*33385282^(5/24) 4324118431995893 a001 10983760033/9381251041*33385282^(5/24) 4324118431995893 a001 86267571272/73681302247*33385282^(5/24) 4324118431995893 a001 75283811239/64300051206*33385282^(5/24) 4324118431995893 a001 2504730781961/2139295485799*33385282^(5/24) 4324118431995893 a001 365435296162/312119004989*33385282^(5/24) 4324118431995893 a001 139583862445/119218851371*33385282^(5/24) 4324118431995893 a001 53316291173/45537549124*33385282^(5/24) 4324118431995893 a001 20365011074/17393796001*33385282^(5/24) 4324118431995893 a001 7778742049/6643838879*33385282^(5/24) 4324118431995893 a001 2971215073/2537720636*33385282^(5/24) 4324118431995893 a001 1134903170/969323029*33385282^(5/24) 4324118431995893 a001 433494437/370248451*33385282^(5/24) 4324118431995893 a001 39088169/599074578*33385282^(3/8) 4324118431995893 a001 24157817/87403803*17393796001^(3/14) 4324118431995893 a001 39088169/54018521*45537549124^(1/6) 4324118431995893 a001 24157817/87403803*14662949395604^(1/6) 4324118431995893 a001 24157817/87403803*599074578^(1/4) 4324118431995894 a001 9227465/817138163596*20633239^(9/10) 4324118431995894 a001 165580141/141422324*33385282^(5/24) 4324118431995894 a001 102334155/370248451*33385282^(7/24) 4324118431995894 a001 267914296/969323029*33385282^(7/24) 4324118431995894 a001 701408733/2537720636*33385282^(7/24) 4324118431995894 a001 1836311903/6643838879*33385282^(7/24) 4324118431995894 a001 4807526976/17393796001*33385282^(7/24) 4324118431995894 a001 12586269025/45537549124*33385282^(7/24) 4324118431995894 a001 32951280099/119218851371*33385282^(7/24) 4324118431995894 a001 86267571272/312119004989*33385282^(7/24) 4324118431995894 a001 225851433717/817138163596*33385282^(7/24) 4324118431995894 a001 1548008755920/5600748293801*33385282^(7/24) 4324118431995894 a001 139583862445/505019158607*33385282^(7/24) 4324118431995894 a001 53316291173/192900153618*33385282^(7/24) 4324118431995894 a001 20365011074/73681302247*33385282^(7/24) 4324118431995894 a001 7778742049/28143753123*33385282^(7/24) 4324118431995894 a001 2971215073/10749957122*33385282^(7/24) 4324118431995894 a001 1134903170/4106118243*33385282^(7/24) 4324118431995894 a001 433494437/1568397607*33385282^(7/24) 4324118431995894 a001 165580141/599074578*33385282^(7/24) 4324118431995894 a001 39088169/2537720636*33385282^(11/24) 4324118431995894 a001 63245986/228826127*33385282^(7/24) 4324118431995894 a001 24157817/3461452808002*141422324^(5/6) 4324118431995894 a001 102334155/54018521*141422324^(1/6) 4324118431995894 a001 14619165/224056801*33385282^(3/8) 4324118431995894 a001 24157817/6643838879*141422324^(1/2) 4324118431995894 a001 24157817/228826127*2537720636^(5/18) 4324118431995894 a001 24157817/228826127*312119004989^(5/22) 4324118431995894 a001 24157817/228826127*3461452808002^(5/24) 4324118431995894 a001 102334155/54018521*73681302247^(1/8) 4324118431995894 a001 24157817/228826127*28143753123^(1/4) 4324118431995894 a001 24157817/228826127*228826127^(5/16) 4324118431995894 a001 267914296/4106118243*33385282^(3/8) 4324118431995894 a001 701408733/10749957122*33385282^(3/8) 4324118431995894 a001 1836311903/28143753123*33385282^(3/8) 4324118431995894 a001 686789568/10525900321*33385282^(3/8) 4324118431995894 a001 12586269025/192900153618*33385282^(3/8) 4324118431995894 a001 32951280099/505019158607*33385282^(3/8) 4324118431995894 a001 86267571272/1322157322203*33385282^(3/8) 4324118431995894 a001 32264490531/494493258286*33385282^(3/8) 4324118431995894 a001 1548008755920/23725150497407*33385282^(3/8) 4324118431995894 a001 365435296162/5600748293801*33385282^(3/8) 4324118431995894 a001 139583862445/2139295485799*33385282^(3/8) 4324118431995894 a001 53316291173/817138163596*33385282^(3/8) 4324118431995894 a001 20365011074/312119004989*33385282^(3/8) 4324118431995894 a001 7778742049/119218851371*33385282^(3/8) 4324118431995894 a001 2971215073/45537549124*33385282^(3/8) 4324118431995894 a001 1134903170/17393796001*33385282^(3/8) 4324118431995894 a001 433494437/6643838879*33385282^(3/8) 4324118431995894 a001 24157817/10749957122*370248451^(1/2) 4324118431995894 a001 267914296/54018521*2537720636^(1/10) 4324118431995894 a001 24157817/599074578*1322157322203^(1/4) 4324118431995894 a001 267914296/54018521*192900153618^(1/12) 4324118431995894 a001 24157817/17393796001*969323029^(1/2) 4324118431995894 a001 701408733/54018521*2537720636^(1/18) 4324118431995894 a001 24157817/1568397607*312119004989^(3/10) 4324118431995894 a001 701408733/54018521*312119004989^(1/22) 4324118431995894 a001 701408733/54018521*28143753123^(1/20) 4324118431995894 a001 24157817/1568397607*1568397607^(3/8) 4324118431995894 a001 24157817/3461452808002*2537720636^(13/18) 4324118431995894 a001 24157817/2139295485799*2537720636^(7/10) 4324118431995894 a001 24157817/312119004989*2537720636^(11/18) 4324118431995894 a001 24157817/28143753123*2537720636^(1/2) 4324118431995894 a006 5^(1/2)*fibonacci(93/2)/Lucas(37)/sqrt(5) 4324118431995894 a001 24157817/45537549124*6643838879^(1/2) 4324118431995894 a001 24157817/2139295485799*17393796001^(9/14) 4324118431995894 a001 24157817/73681302247*17393796001^(1/2) 4324118431995894 a001 24157817/28143753123*312119004989^(9/22) 4324118431995894 a001 24157817/28143753123*14662949395604^(5/14) 4324118431995894 a001 24157817/28143753123*192900153618^(5/12) 4324118431995894 a001 24157817/28143753123*28143753123^(9/20) 4324118431995894 a001 24157817/73681302247*14662949395604^(7/18) 4324118431995894 a001 24157817/73681302247*505019158607^(7/16) 4324118431995894 a001 24157817/119218851371*45537549124^(1/2) 4324118431995894 a001 24157817/192900153618*119218851371^(1/2) 4324118431995894 a001 24157817/3461452808002*312119004989^(13/22) 4324118431995894 a001 24157817/505019158607*817138163596^(1/2) 4324118431995894 a001 24157817/1322157322203*5600748293801^(1/2) 4324118431995894 a006 5^(1/2)*Fibonacci(93/2)/Lucas(37)/sqrt(5) 4324118431995894 a001 24157817/2139295485799*14662949395604^(1/2) 4324118431995894 a001 24157817/312119004989*312119004989^(1/2) 4324118431995894 a001 24157817/312119004989*3461452808002^(11/24) 4324118431995894 a001 24157817/2139295485799*192900153618^(7/12) 4324118431995894 a001 24157817/3461452808002*73681302247^(5/8) 4324118431995894 a001 24157817/312119004989*28143753123^(11/20) 4324118431995894 a001 24157817/3461452808002*28143753123^(13/20) 4324118431995894 a001 24157817/6643838879*73681302247^(3/8) 4324118431995894 a001 24157817/9062201101803*4106118243^(3/4) 4324118431995894 a001 24157817/2537720636*2537720636^(7/18) 4324118431995894 a001 24157817/2537720636*17393796001^(5/14) 4324118431995894 a001 24157817/2537720636*312119004989^(7/22) 4324118431995894 a001 24157817/2537720636*14662949395604^(5/18) 4324118431995894 a001 24157817/2537720636*505019158607^(5/16) 4324118431995894 a001 24157817/2537720636*28143753123^(7/20) 4324118431995894 a001 24157817/312119004989*1568397607^(5/8) 4324118431995894 a001 701408733/54018521*228826127^(1/16) 4324118431995894 a001 433494437/54018521*17393796001^(1/14) 4324118431995894 a001 433494437/54018521*14662949395604^(1/18) 4324118431995894 a001 24157817/969323029*9062201101803^(1/4) 4324118431995894 a001 165580141/2537720636*33385282^(3/8) 4324118431995894 a001 433494437/54018521*599074578^(1/12) 4324118431995894 a001 24157817/2537720636*599074578^(5/12) 4324118431995894 a001 24157817/73681302247*599074578^(7/12) 4324118431995894 a001 24157817/2139295485799*599074578^(3/4) 4324118431995894 a001 24157817/370248451*2537720636^(3/10) 4324118431995894 a001 165580141/54018521*312119004989^(1/10) 4324118431995894 a001 24157817/370248451*14662949395604^(3/14) 4324118431995894 a001 24157817/370248451*192900153618^(1/4) 4324118431995894 a001 165580141/54018521*1568397607^(1/8) 4324118431995894 a001 24157817/2537720636*228826127^(7/16) 4324118431995894 a001 24157817/28143753123*228826127^(9/16) 4324118431995894 a001 39088169/10749957122*33385282^(13/24) 4324118431995894 a001 24157817/312119004989*228826127^(11/16) 4324118431995894 a001 24157817/3461452808002*228826127^(13/16) 4324118431995894 a001 1134903170/54018521*33385282^(1/24) 4324118431995894 a001 63245986/969323029*33385282^(3/8) 4324118431995894 a001 102334155/6643838879*33385282^(11/24) 4324118431995894 a001 63245986/54018521*2537720636^(1/6) 4324118431995894 a001 63245986/54018521*312119004989^(3/22) 4324118431995894 a001 63245986/54018521*28143753123^(3/20) 4324118431995894 a001 24157817/141422324*4106118243^(1/4) 4324118431995894 a001 63245986/54018521*228826127^(3/16) 4324118431995894 a001 9238424/599786069*33385282^(11/24) 4324118431995894 a001 701408733/45537549124*33385282^(11/24) 4324118431995894 a001 1836311903/119218851371*33385282^(11/24) 4324118431995894 a001 4807526976/312119004989*33385282^(11/24) 4324118431995894 a001 12586269025/817138163596*33385282^(11/24) 4324118431995894 a001 32951280099/2139295485799*33385282^(11/24) 4324118431995894 a001 86267571272/5600748293801*33385282^(11/24) 4324118431995894 a001 7787980473/505618944676*33385282^(11/24) 4324118431995894 a001 365435296162/23725150497407*33385282^(11/24) 4324118431995894 a001 139583862445/9062201101803*33385282^(11/24) 4324118431995894 a001 53316291173/3461452808002*33385282^(11/24) 4324118431995894 a001 20365011074/1322157322203*33385282^(11/24) 4324118431995894 a001 7778742049/505019158607*33385282^(11/24) 4324118431995894 a001 2971215073/192900153618*33385282^(11/24) 4324118431995894 a001 1134903170/73681302247*33385282^(11/24) 4324118431995894 a001 433494437/28143753123*33385282^(11/24) 4324118431995894 a001 165580141/10749957122*33385282^(11/24) 4324118431995894 a001 39088169/45537549124*33385282^(5/8) 4324118431995894 a001 24157817/505019158607*87403803^(3/4) 4324118431995895 a001 267914296/54018521*33385282^(1/8) 4324118431995895 a001 63245986/4106118243*33385282^(11/24) 4324118431995895 a001 831985/228811001*33385282^(13/24) 4324118431995895 a001 24157817/87403803*33385282^(7/24) 4324118431995895 a001 267914296/73681302247*33385282^(13/24) 4324118431995895 a001 233802911/64300051206*33385282^(13/24) 4324118431995895 a001 1836311903/505019158607*33385282^(13/24) 4324118431995895 a001 1602508992/440719107401*33385282^(13/24) 4324118431995895 a001 12586269025/3461452808002*33385282^(13/24) 4324118431995895 a001 10983760033/3020733700601*33385282^(13/24) 4324118431995895 a001 86267571272/23725150497407*33385282^(13/24) 4324118431995895 a001 53316291173/14662949395604*33385282^(13/24) 4324118431995895 a001 20365011074/5600748293801*33385282^(13/24) 4324118431995895 a001 7778742049/2139295485799*33385282^(13/24) 4324118431995895 a001 2971215073/817138163596*33385282^(13/24) 4324118431995895 a001 1134903170/312119004989*33385282^(13/24) 4324118431995895 a001 433494437/119218851371*33385282^(13/24) 4324118431995895 a001 165580141/45537549124*33385282^(13/24) 4324118431995895 a001 9227465/119218851371*20633239^(11/14) 4324118431995895 a001 39088169/192900153618*33385282^(17/24) 4324118431995895 a001 63245986/17393796001*33385282^(13/24) 4324118431995895 a001 102334155/119218851371*33385282^(5/8) 4324118431995895 a001 267914296/312119004989*33385282^(5/8) 4324118431995895 a001 701408733/817138163596*33385282^(5/8) 4324118431995895 a001 1836311903/2139295485799*33385282^(5/8) 4324118431995895 a001 4807526976/5600748293801*33385282^(5/8) 4324118431995895 a001 12586269025/14662949395604*33385282^(5/8) 4324118431995895 a001 20365011074/23725150497407*33385282^(5/8) 4324118431995895 a001 7778742049/9062201101803*33385282^(5/8) 4324118431995895 a001 2971215073/3461452808002*33385282^(5/8) 4324118431995895 a001 1134903170/1322157322203*33385282^(5/8) 4324118431995895 a001 433494437/505019158607*33385282^(5/8) 4324118431995895 a001 165580141/192900153618*33385282^(5/8) 4324118431995895 a001 4181/87403804*33385282^(19/24) 4324118431995895 a001 63245986/54018521*33385282^(5/24) 4324118431995895 a001 63245986/73681302247*33385282^(5/8) 4324118431995895 a001 102334155/505019158607*33385282^(17/24) 4324118431995895 a001 267914296/1322157322203*33385282^(17/24) 4324118431995895 a001 701408733/3461452808002*33385282^(17/24) 4324118431995895 a001 1836311903/9062201101803*33385282^(17/24) 4324118431995895 a001 4807526976/23725150497407*33385282^(17/24) 4324118431995895 a001 2971215073/14662949395604*33385282^(17/24) 4324118431995895 a001 1134903170/5600748293801*33385282^(17/24) 4324118431995895 a001 433494437/2139295485799*33385282^(17/24) 4324118431995895 a001 165580141/817138163596*33385282^(17/24) 4324118431995895 a001 39088169/3461452808002*33385282^(7/8) 4324118431995896 a001 24157817/54018521*817138163596^(1/6) 4324118431995896 a001 63245986/312119004989*33385282^(17/24) 4324118431995896 a001 24157817/370248451*33385282^(3/8) 4324118431995896 a001 102334155/2139295485799*33385282^(19/24) 4324118431995896 a001 9227465/28143753123*20633239^(7/10) 4324118431995896 a001 267914296/5600748293801*33385282^(19/24) 4324118431995896 a001 701408733/14662949395604*33385282^(19/24) 4324118431995896 a001 1134903170/23725150497407*33385282^(19/24) 4324118431995896 a001 433494437/9062201101803*33385282^(19/24) 4324118431995896 a001 165580141/3461452808002*33385282^(19/24) 4324118431995896 a001 24157817/54018521*87403803^(1/4) 4324118431995896 a001 39088169/14662949395604*33385282^(23/24) 4324118431995896 a001 3524578/312119004989*7881196^(21/22) 4324118431995896 a001 9227465/33385282*20633239^(3/10) 4324118431995896 a001 24157817/1568397607*33385282^(11/24) 4324118431995896 a001 63245986/1322157322203*33385282^(19/24) 4324118431995896 a001 34111385/3020733700601*33385282^(7/8) 4324118431995896 a001 267914296/23725150497407*33385282^(7/8) 4324118431995896 a001 165580141/14662949395604*33385282^(7/8) 4324118431995896 a001 24157817/6643838879*33385282^(13/24) 4324118431995896 a001 63245986/5600748293801*33385282^(7/8) 4324118431995896 a001 9227465/10749957122*20633239^(9/14) 4324118431995896 a001 24157817/28143753123*33385282^(5/8) 4324118431995896 a001 63245986/23725150497407*33385282^(23/24) 4324118431995897 a001 24157817/119218851371*33385282^(17/24) 4324118431995897 a001 24157817/33385282*12752043^(1/4) 4324118431995897 a001 24157817/505019158607*33385282^(19/24) 4324118431995897 a001 24157817/2139295485799*33385282^(7/8) 4324118431995898 a001 9227465/969323029*20633239^(1/2) 4324118431995898 a001 24157817/9062201101803*33385282^(23/24) 4324118431995899 a001 9227465/87403803*20633239^(5/14) 4324118431995899 a001 9227465/33385282*17393796001^(3/14) 4324118431995899 a001 14930352/20633239*45537549124^(1/6) 4324118431995899 a001 9227465/33385282*14662949395604^(1/6) 4324118431995899 a001 9227465/33385282*599074578^(1/4) 4324118431995899 a001 63245986/87403803*12752043^(1/4) 4324118431995899 a001 165580141/228826127*12752043^(1/4) 4324118431995899 a001 24157817/4870847*1860498^(3/20) 4324118431995899 a001 433494437/599074578*12752043^(1/4) 4324118431995899 a001 1134903170/1568397607*12752043^(1/4) 4324118431995899 a001 2971215073/4106118243*12752043^(1/4) 4324118431995899 a001 7778742049/10749957122*12752043^(1/4) 4324118431995899 a001 20365011074/28143753123*12752043^(1/4) 4324118431995899 a001 53316291173/73681302247*12752043^(1/4) 4324118431995899 a001 139583862445/192900153618*12752043^(1/4) 4324118431995899 a001 10610209857723/14662949395604*12752043^(1/4) 4324118431995899 a001 591286729879/817138163596*12752043^(1/4) 4324118431995899 a001 225851433717/312119004989*12752043^(1/4) 4324118431995899 a001 86267571272/119218851371*12752043^(1/4) 4324118431995899 a001 32951280099/45537549124*12752043^(1/4) 4324118431995899 a001 12586269025/17393796001*12752043^(1/4) 4324118431995899 a001 4807526976/6643838879*12752043^(1/4) 4324118431995899 a001 1836311903/2537720636*12752043^(1/4) 4324118431995899 a001 701408733/969323029*12752043^(1/4) 4324118431995899 a001 267914296/370248451*12752043^(1/4) 4324118431995899 a001 102334155/141422324*12752043^(1/4) 4324118431995900 a001 433494437/20633239*7881196^(1/22) 4324118431995900 a001 9227465/33385282*33385282^(7/24) 4324118431995900 a001 39088169/54018521*12752043^(1/4) 4324118431995902 a001 165580141/20633239*20633239^(1/10) 4324118431995902 a001 9227465/1568397607*54018521^(1/2) 4324118431995902 a001 9238424/711491*20633239^(1/14) 4324118431995902 a001 24157817/20633239*20633239^(3/14) 4324118431995902 a001 3524578/73681302247*7881196^(19/22) 4324118431995902 a001 39088169/20633239*141422324^(1/6) 4324118431995902 a001 9227465/87403803*2537720636^(5/18) 4324118431995902 a001 9227465/87403803*312119004989^(5/22) 4324118431995902 a001 9227465/87403803*3461452808002^(5/24) 4324118431995902 a001 39088169/20633239*73681302247^(1/8) 4324118431995902 a001 9227465/87403803*28143753123^(1/4) 4324118431995902 a001 9227465/87403803*228826127^(5/16) 4324118431995903 a001 9227465/1322157322203*141422324^(5/6) 4324118431995903 a001 9227465/2537720636*141422324^(1/2) 4324118431995903 a001 9303105/1875749*2537720636^(1/10) 4324118431995903 a001 9303105/1875749*14662949395604^(1/14) 4324118431995903 a001 9227465/228826127*1322157322203^(1/4) 4324118431995903 a001 9303105/1875749*192900153618^(1/12) 4324118431995903 a001 9227465/4106118243*370248451^(1/2) 4324118431995903 a001 9238424/711491*2537720636^(1/18) 4324118431995903 a001 9227465/599074578*312119004989^(3/10) 4324118431995903 a001 9238424/711491*312119004989^(1/22) 4324118431995903 a001 9238424/711491*28143753123^(1/20) 4324118431995903 a001 9227465/599074578*1568397607^(3/8) 4324118431995903 a001 9238424/711491*228826127^(1/16) 4324118431995903 a001 9227465/6643838879*969323029^(1/2) 4324118431995903 a006 5^(1/2)*fibonacci(89/2)/Lucas(35)/sqrt(5) 4324118431995903 a001 9227465/14662949395604*2537720636^(5/6) 4324118431995903 a001 9227465/1322157322203*2537720636^(13/18) 4324118431995903 a001 9227465/817138163596*2537720636^(7/10) 4324118431995903 a001 9227465/119218851371*2537720636^(11/18) 4324118431995903 a001 9227465/10749957122*2537720636^(1/2) 4324118431995903 a001 9227465/10749957122*312119004989^(9/22) 4324118431995903 a001 9227465/10749957122*14662949395604^(5/14) 4324118431995903 a001 9227465/10749957122*192900153618^(5/12) 4324118431995903 a001 9227465/10749957122*28143753123^(9/20) 4324118431995903 a001 9227465/17393796001*6643838879^(1/2) 4324118431995903 a001 9227465/28143753123*17393796001^(1/2) 4324118431995903 a001 9227465/23725150497407*17393796001^(11/14) 4324118431995903 a001 9227465/817138163596*17393796001^(9/14) 4324118431995903 a001 9227465/28143753123*14662949395604^(7/18) 4324118431995903 a001 9227465/28143753123*505019158607^(7/16) 4324118431995903 a001 9227465/73681302247*119218851371^(1/2) 4324118431995903 a001 9227465/192900153618*817138163596^(1/2) 4324118431995903 a001 9227465/1322157322203*312119004989^(13/22) 4324118431995903 a001 9227465/505019158607*5600748293801^(1/2) 4324118431995903 a001 9227465/1322157322203*3461452808002^(13/24) 4324118431995903 a001 9227465/23725150497407*14662949395604^(11/18) 4324118431995903 a006 5^(1/2)*Fibonacci(89/2)/Lucas(35)/sqrt(5) 4324118431995903 a001 9227465/817138163596*14662949395604^(1/2) 4324118431995903 a001 9227465/23725150497407*505019158607^(11/16) 4324118431995903 a001 9227465/312119004989*2139295485799^(1/2) 4324118431995903 a001 9227465/817138163596*192900153618^(7/12) 4324118431995903 a001 9227465/119218851371*312119004989^(1/2) 4324118431995903 a001 9227465/119218851371*3461452808002^(11/24) 4324118431995903 a001 9227465/1322157322203*73681302247^(5/8) 4324118431995903 a001 9227465/45537549124*45537549124^(1/2) 4324118431995903 a001 9227465/119218851371*28143753123^(11/20) 4324118431995903 a001 9227465/1322157322203*28143753123^(13/20) 4324118431995903 a001 9227465/14662949395604*28143753123^(3/4) 4324118431995903 a001 9227465/3461452808002*4106118243^(3/4) 4324118431995903 a001 9227465/2537720636*73681302247^(3/8) 4324118431995903 a001 9227465/119218851371*1568397607^(5/8) 4324118431995903 a001 9227465/23725150497407*1568397607^(7/8) 4324118431995903 a001 9227465/969323029*2537720636^(7/18) 4324118431995903 a001 9227465/969323029*17393796001^(5/14) 4324118431995903 a001 9227465/969323029*312119004989^(7/22) 4324118431995903 a001 9227465/969323029*14662949395604^(5/18) 4324118431995903 a001 9227465/969323029*505019158607^(5/16) 4324118431995903 a001 9227465/969323029*28143753123^(7/20) 4324118431995903 a001 9227465/28143753123*599074578^(7/12) 4324118431995903 a001 9227465/817138163596*599074578^(3/4) 4324118431995903 a001 9227465/969323029*599074578^(5/12) 4324118431995903 a001 9227465/23725150497407*599074578^(11/12) 4324118431995903 a001 165580141/20633239*17393796001^(1/14) 4324118431995903 a001 165580141/20633239*14662949395604^(1/18) 4324118431995903 a001 165580141/20633239*505019158607^(1/16) 4324118431995903 a001 165580141/20633239*599074578^(1/12) 4324118431995903 a001 9227465/969323029*228826127^(7/16) 4324118431995903 a001 9227465/10749957122*228826127^(9/16) 4324118431995903 a001 9227465/119218851371*228826127^(11/16) 4324118431995903 a001 9227465/1322157322203*228826127^(13/16) 4324118431995903 a001 9227465/14662949395604*228826127^(15/16) 4324118431995903 a001 433494437/20633239*33385282^(1/24) 4324118431995903 a001 9227465/141422324*2537720636^(3/10) 4324118431995903 a001 63245986/20633239*312119004989^(1/10) 4324118431995903 a001 9227465/141422324*14662949395604^(3/14) 4324118431995903 a001 9227465/141422324*192900153618^(1/4) 4324118431995903 a001 63245986/20633239*1568397607^(1/8) 4324118431995903 a001 9303105/1875749*33385282^(1/8) 4324118431995903 a001 9227465/192900153618*87403803^(3/4) 4324118431995904 a001 1762289/22768774562*7881196^(5/6) 4324118431995904 a001 24157817/20633239*2537720636^(1/6) 4324118431995904 a001 24157817/20633239*312119004989^(3/22) 4324118431995904 a001 24157817/20633239*28143753123^(3/20) 4324118431995904 a001 9227465/54018521*4106118243^(1/4) 4324118431995904 a001 24157817/20633239*228826127^(3/16) 4324118431995904 a001 9227465/141422324*33385282^(3/8) 4324118431995904 a001 9227465/599074578*33385282^(11/24) 4324118431995905 a001 9227465/2537720636*33385282^(13/24) 4324118431995905 a001 24157817/20633239*33385282^(5/24) 4324118431995905 a001 9227465/10749957122*33385282^(5/8) 4324118431995905 a001 9227465/45537549124*33385282^(17/24) 4324118431995905 a001 14930352/20633239*12752043^(1/4) 4324118431995906 a001 9227465/192900153618*33385282^(19/24) 4324118431995906 a001 9227465/817138163596*33385282^(7/8) 4324118431995906 a001 9227465/3461452808002*33385282^(23/24) 4324118431995908 a001 3524578/17393796001*7881196^(17/22) 4324118431995909 a001 14930352/73681302247*12752043^(3/4) 4324118431995912 a001 39088169/192900153618*12752043^(3/4) 4324118431995912 a001 102334155/505019158607*12752043^(3/4) 4324118431995912 a001 267914296/1322157322203*12752043^(3/4) 4324118431995912 a001 701408733/3461452808002*12752043^(3/4) 4324118431995912 a001 1836311903/9062201101803*12752043^(3/4) 4324118431995912 a001 4807526976/23725150497407*12752043^(3/4) 4324118431995912 a001 2971215073/14662949395604*12752043^(3/4) 4324118431995912 a001 1134903170/5600748293801*12752043^(3/4) 4324118431995912 a001 433494437/2139295485799*12752043^(3/4) 4324118431995913 a001 165580141/817138163596*12752043^(3/4) 4324118431995913 a001 63245986/312119004989*12752043^(3/4) 4324118431995913 a001 9227465/20633239*817138163596^(1/6) 4324118431995913 a001 9227465/20633239*87403803^(1/4) 4324118431995913 a001 3524578/12752043*7881196^(7/22) 4324118431995914 a001 24157817/119218851371*12752043^(3/4) 4324118431995915 a001 3524578/4106118243*7881196^(15/22) 4324118431995921 a001 3524578/969323029*7881196^(13/22) 4324118431995923 a001 9227465/45537549124*12752043^(3/4) 4324118431995927 a001 3524578/228826127*7881196^(1/2) 4324118431995928 a001 267914296/12752043*1860498^(1/20) 4324118431995933 a001 3524578/12752043*20633239^(3/10) 4324118431995935 a001 3524578/54018521*7881196^(9/22) 4324118431995936 a001 3524578/12752043*17393796001^(3/14) 4324118431995936 a001 5702887/7881196*45537549124^(1/6) 4324118431995936 a001 3524578/12752043*14662949395604^(1/6) 4324118431995936 a001 3524578/12752043*599074578^(1/4) 4324118431995937 a001 3524578/12752043*33385282^(7/24) 4324118431995942 a001 5702887/7881196*12752043^(1/4) 4324118431995951 a001 701408733/33385282*1860498^(1/20) 4324118431995952 a001 24157817/7881196*7881196^(1/6) 4324118431995952 a001 39088169/7881196*7881196^(3/22) 4324118431995953 a001 3524578/505019158607*20633239^(13/14) 4324118431995953 a001 3524578/312119004989*20633239^(9/10) 4324118431995954 a001 1762289/22768774562*20633239^(11/14) 4324118431995954 a001 1836311903/87403803*1860498^(1/20) 4324118431995955 a001 1762289/16692641*20633239^(5/14) 4324118431995955 a001 102287808/4868641*1860498^(1/20) 4324118431995955 a001 12586269025/599074578*1860498^(1/20) 4324118431995955 a001 32951280099/1568397607*1860498^(1/20) 4324118431995955 a001 86267571272/4106118243*1860498^(1/20) 4324118431995955 a001 225851433717/10749957122*1860498^(1/20) 4324118431995955 a001 591286729879/28143753123*1860498^(1/20) 4324118431995955 a001 1548008755920/73681302247*1860498^(1/20) 4324118431995955 a001 4052739537881/192900153618*1860498^(1/20) 4324118431995955 a001 225749145909/10745088481*1860498^(1/20) 4324118431995955 a001 6557470319842/312119004989*1860498^(1/20) 4324118431995955 a001 2504730781961/119218851371*1860498^(1/20) 4324118431995955 a001 956722026041/45537549124*1860498^(1/20) 4324118431995955 a001 365435296162/17393796001*1860498^(1/20) 4324118431995955 a001 139583862445/6643838879*1860498^(1/20) 4324118431995955 a001 53316291173/2537720636*1860498^(1/20) 4324118431995955 a001 20365011074/969323029*1860498^(1/20) 4324118431995955 a001 7778742049/370248451*1860498^(1/20) 4324118431995955 a001 1762289/5374978561*20633239^(7/10) 4324118431995955 a001 2971215073/141422324*1860498^(1/20) 4324118431995956 a001 3524578/4106118243*20633239^(9/14) 4324118431995956 a001 1134903170/54018521*1860498^(1/20) 4324118431995956 a001 9227465/7881196*7881196^(5/22) 4324118431995957 a001 3524578/370248451*20633239^(1/2) 4324118431995958 a001 3732588/1970299*141422324^(1/6) 4324118431995958 a001 1762289/16692641*2537720636^(5/18) 4324118431995958 a001 1762289/16692641*312119004989^(5/22) 4324118431995958 a001 1762289/16692641*3461452808002^(5/24) 4324118431995958 a001 3732588/1970299*73681302247^(1/8) 4324118431995958 a001 1762289/16692641*28143753123^(1/4) 4324118431995958 a001 1762289/16692641*228826127^(5/16) 4324118431995959 a001 165580141/7881196*7881196^(1/22) 4324118431995961 a001 102334155/7881196*20633239^(1/14) 4324118431995961 a001 31622993/3940598*20633239^(1/10) 4324118431995961 a001 1762289/299537289*54018521^(1/2) 4324118431995962 a001 39088169/7881196*2537720636^(1/10) 4324118431995962 a001 3524578/87403803*1322157322203^(1/4) 4324118431995962 a001 39088169/7881196*192900153618^(1/12) 4324118431995962 a001 3524578/505019158607*141422324^(5/6) 4324118431995962 a001 3524578/969323029*141422324^(1/2) 4324118431995962 a001 102334155/7881196*2537720636^(1/18) 4324118431995962 a001 3524578/228826127*312119004989^(3/10) 4324118431995962 a001 102334155/7881196*312119004989^(1/22) 4324118431995962 a001 102334155/7881196*28143753123^(1/20) 4324118431995962 a001 3524578/228826127*1568397607^(3/8) 4324118431995962 a001 39088169/7881196*33385282^(1/8) 4324118431995962 a001 102334155/7881196*228826127^(1/16) 4324118431995962 a001 3524578/1568397607*370248451^(1/2) 4324118431995962 a006 5^(1/2)*fibonacci(85/2)/Lucas(33)/sqrt(5) 4324118431995962 a001 1762289/1268860318*969323029^(1/2) 4324118431995962 a001 3524578/23725150497407*2537720636^(9/10) 4324118431995962 a001 3524578/4106118243*2537720636^(1/2) 4324118431995962 a001 3524578/5600748293801*2537720636^(5/6) 4324118431995962 a001 3524578/505019158607*2537720636^(13/18) 4324118431995962 a001 3524578/312119004989*2537720636^(7/10) 4324118431995962 a001 1762289/22768774562*2537720636^(11/18) 4324118431995962 a001 3524578/4106118243*312119004989^(9/22) 4324118431995962 a001 3524578/4106118243*14662949395604^(5/14) 4324118431995962 a001 3524578/4106118243*192900153618^(5/12) 4324118431995962 a001 3524578/4106118243*28143753123^(9/20) 4324118431995962 a001 1762289/5374978561*17393796001^(1/2) 4324118431995962 a001 1762289/5374978561*14662949395604^(7/18) 4324118431995962 a001 1762289/5374978561*505019158607^(7/16) 4324118431995962 a001 3524578/9062201101803*17393796001^(11/14) 4324118431995962 a001 3524578/312119004989*17393796001^(9/14) 4324118431995962 a001 3524578/28143753123*119218851371^(1/2) 4324118431995962 a001 3524578/73681302247*817138163596^(1/2) 4324118431995962 a001 1762289/96450076809*5600748293801^(1/2) 4324118431995962 a001 3524578/505019158607*312119004989^(13/22) 4324118431995962 a001 3524578/5600748293801*312119004989^(15/22) 4324118431995962 a001 3524578/505019158607*3461452808002^(13/24) 4324118431995962 a001 3524578/23725150497407*14662949395604^(9/14) 4324118431995962 a006 5^(1/2)*Fibonacci(85/2)/Lucas(33)/sqrt(5) 4324118431995962 a001 3524578/9062201101803*505019158607^(11/16) 4324118431995962 a001 3524578/312119004989*14662949395604^(1/2) 4324118431995962 a001 3524578/312119004989*505019158607^(9/16) 4324118431995962 a001 3524578/23725150497407*192900153618^(3/4) 4324118431995962 a001 3524578/119218851371*2139295485799^(1/2) 4324118431995962 a001 3524578/505019158607*73681302247^(5/8) 4324118431995962 a001 1762289/22768774562*312119004989^(1/2) 4324118431995962 a001 1762289/22768774562*3461452808002^(11/24) 4324118431995962 a001 3524578/505019158607*28143753123^(13/20) 4324118431995962 a001 3524578/5600748293801*28143753123^(3/4) 4324118431995962 a001 1762289/22768774562*28143753123^(11/20) 4324118431995962 a001 3524578/17393796001*45537549124^(1/2) 4324118431995962 a001 3524578/6643838879*6643838879^(1/2) 4324118431995962 a001 3524578/1322157322203*4106118243^(3/4) 4324118431995962 a001 1762289/22768774562*1568397607^(5/8) 4324118431995962 a001 3524578/9062201101803*1568397607^(7/8) 4324118431995962 a001 3524578/969323029*73681302247^(3/8) 4324118431995962 a001 1762289/5374978561*599074578^(7/12) 4324118431995962 a001 3524578/312119004989*599074578^(3/4) 4324118431995962 a001 3524578/9062201101803*599074578^(11/12) 4324118431995962 a001 3524578/370248451*2537720636^(7/18) 4324118431995962 a001 3524578/370248451*17393796001^(5/14) 4324118431995962 a001 3524578/370248451*312119004989^(7/22) 4324118431995962 a001 3524578/370248451*14662949395604^(5/18) 4324118431995962 a001 3524578/370248451*505019158607^(5/16) 4324118431995962 a001 3524578/370248451*28143753123^(7/20) 4324118431995962 a001 3524578/370248451*599074578^(5/12) 4324118431995962 a001 3524578/4106118243*228826127^(9/16) 4324118431995962 a001 1762289/22768774562*228826127^(11/16) 4324118431995962 a001 3524578/505019158607*228826127^(13/16) 4324118431995962 a001 3524578/370248451*228826127^(7/16) 4324118431995962 a001 3524578/5600748293801*228826127^(15/16) 4324118431995962 a001 165580141/7881196*33385282^(1/24) 4324118431995962 a001 31622993/3940598*17393796001^(1/14) 4324118431995962 a001 31622993/3940598*14662949395604^(1/18) 4324118431995962 a001 1762289/70711162*9062201101803^(1/4) 4324118431995962 a001 31622993/3940598*505019158607^(1/16) 4324118431995962 a001 31622993/3940598*599074578^(1/12) 4324118431995963 a001 3524578/73681302247*87403803^(3/4) 4324118431995964 a001 3524578/54018521*2537720636^(3/10) 4324118431995964 a001 24157817/7881196*312119004989^(1/10) 4324118431995964 a001 3524578/54018521*14662949395604^(3/14) 4324118431995964 a001 3524578/54018521*192900153618^(1/4) 4324118431995964 a001 24157817/7881196*1568397607^(1/8) 4324118431995964 a001 3524578/228826127*33385282^(11/24) 4324118431995964 a001 3524578/969323029*33385282^(13/24) 4324118431995965 a001 3524578/4106118243*33385282^(5/8) 4324118431995965 a001 3524578/17393796001*33385282^(17/24) 4324118431995965 a001 3524578/54018521*33385282^(3/8) 4324118431995965 a001 433494437/20633239*1860498^(1/20) 4324118431995965 a001 3524578/73681302247*33385282^(19/24) 4324118431995966 a001 3524578/312119004989*33385282^(7/8) 4324118431995966 a001 3524578/1322157322203*33385282^(23/24) 4324118431995970 a001 165580141/12752043*1860498^(1/12) 4324118431995970 a001 9227465/7881196*20633239^(3/14) 4324118431995972 a001 9227465/7881196*2537720636^(1/6) 4324118431995972 a001 9227465/7881196*312119004989^(3/22) 4324118431995972 a001 9227465/7881196*28143753123^(3/20) 4324118431995972 a001 3524578/20633239*4106118243^(1/4) 4324118431995972 a001 9227465/7881196*228826127^(3/16) 4324118431995973 a001 9227465/7881196*33385282^(5/24) 4324118431995982 a001 3524578/17393796001*12752043^(3/4) 4324118431995993 a001 433494437/33385282*1860498^(1/12) 4324118431995996 a001 5702887/4870847*1860498^(1/4) 4324118431995996 a001 1134903170/87403803*1860498^(1/12) 4324118431995997 a001 2971215073/228826127*1860498^(1/12) 4324118431995997 a001 7778742049/599074578*1860498^(1/12) 4324118431995997 a001 20365011074/1568397607*1860498^(1/12) 4324118431995997 a001 53316291173/4106118243*1860498^(1/12) 4324118431995997 a001 139583862445/10749957122*1860498^(1/12) 4324118431995997 a001 365435296162/28143753123*1860498^(1/12) 4324118431995997 a001 956722026041/73681302247*1860498^(1/12) 4324118431995997 a001 2504730781961/192900153618*1860498^(1/12) 4324118431995997 a001 10610209857723/817138163596*1860498^(1/12) 4324118431995997 a001 4052739537881/312119004989*1860498^(1/12) 4324118431995997 a001 1548008755920/119218851371*1860498^(1/12) 4324118431995997 a001 591286729879/45537549124*1860498^(1/12) 4324118431995997 a001 7787980473/599786069*1860498^(1/12) 4324118431995997 a001 86267571272/6643838879*1860498^(1/12) 4324118431995997 a001 32951280099/2537720636*1860498^(1/12) 4324118431995997 a001 12586269025/969323029*1860498^(1/12) 4324118431995997 a001 4807526976/370248451*1860498^(1/12) 4324118431995997 a001 1836311903/141422324*1860498^(1/12) 4324118431995998 a001 701408733/54018521*1860498^(1/12) 4324118431996007 a001 9238424/711491*1860498^(1/12) 4324118431996025 a001 165580141/7881196*1860498^(1/20) 4324118431996032 a001 1762289/3940598*817138163596^(1/6) 4324118431996032 a001 1762289/3940598*87403803^(1/4) 4324118431996054 a001 63245986/12752043*1860498^(3/20) 4324118431996066 a001 102334155/7881196*1860498^(1/12) 4324118431996076 a001 165580141/33385282*1860498^(3/20) 4324118431996079 a001 433494437/87403803*1860498^(3/20) 4324118431996080 a001 1134903170/228826127*1860498^(3/20) 4324118431996080 a001 2971215073/599074578*1860498^(3/20) 4324118431996080 a001 7778742049/1568397607*1860498^(3/20) 4324118431996080 a001 20365011074/4106118243*1860498^(3/20) 4324118431996080 a001 53316291173/10749957122*1860498^(3/20) 4324118431996080 a001 139583862445/28143753123*1860498^(3/20) 4324118431996080 a001 365435296162/73681302247*1860498^(3/20) 4324118431996080 a001 956722026041/192900153618*1860498^(3/20) 4324118431996080 a001 2504730781961/505019158607*1860498^(3/20) 4324118431996080 a001 10610209857723/2139295485799*1860498^(3/20) 4324118431996080 a001 4052739537881/817138163596*1860498^(3/20) 4324118431996080 a001 140728068720/28374454999*1860498^(3/20) 4324118431996080 a001 591286729879/119218851371*1860498^(3/20) 4324118431996080 a001 225851433717/45537549124*1860498^(3/20) 4324118431996080 a001 86267571272/17393796001*1860498^(3/20) 4324118431996080 a001 32951280099/6643838879*1860498^(3/20) 4324118431996080 a001 1144206275/230701876*1860498^(3/20) 4324118431996080 a001 4807526976/969323029*1860498^(3/20) 4324118431996080 a001 1836311903/370248451*1860498^(3/20) 4324118431996080 a001 701408733/141422324*1860498^(3/20) 4324118431996081 a001 267914296/54018521*1860498^(3/20) 4324118431996090 a001 9303105/1875749*1860498^(3/20) 4324118431996133 a001 1346269/54018521*3010349^(1/2) 4324118431996149 a001 39088169/7881196*1860498^(3/20) 4324118431996165 a001 1346269/4870847*7881196^(7/22) 4324118431996174 a001 4976784/4250681*1860498^(1/4) 4324118431996184 a001 1346269/4870847*20633239^(3/10) 4324118431996187 a001 1346269/4870847*17393796001^(3/14) 4324118431996187 a001 2178309/3010349*45537549124^(1/6) 4324118431996187 a001 1346269/4870847*14662949395604^(1/6) 4324118431996187 a001 1346269/4870847*599074578^(1/4) 4324118431996189 a001 1346269/4870847*33385282^(7/24) 4324118431996194 a001 2178309/3010349*12752043^(1/4) 4324118431996200 a001 39088169/33385282*1860498^(1/4) 4324118431996204 a001 34111385/29134601*1860498^(1/4) 4324118431996205 a001 267914296/228826127*1860498^(1/4) 4324118431996205 a001 233802911/199691526*1860498^(1/4) 4324118431996205 a001 1836311903/1568397607*1860498^(1/4) 4324118431996205 a001 1602508992/1368706081*1860498^(1/4) 4324118431996205 a001 12586269025/10749957122*1860498^(1/4) 4324118431996205 a001 10983760033/9381251041*1860498^(1/4) 4324118431996205 a001 86267571272/73681302247*1860498^(1/4) 4324118431996205 a001 75283811239/64300051206*1860498^(1/4) 4324118431996205 a001 2504730781961/2139295485799*1860498^(1/4) 4324118431996205 a001 365435296162/312119004989*1860498^(1/4) 4324118431996205 a001 139583862445/119218851371*1860498^(1/4) 4324118431996205 a001 53316291173/45537549124*1860498^(1/4) 4324118431996205 a001 20365011074/17393796001*1860498^(1/4) 4324118431996205 a001 7778742049/6643838879*1860498^(1/4) 4324118431996205 a001 2971215073/2537720636*1860498^(1/4) 4324118431996205 a001 1134903170/969323029*1860498^(1/4) 4324118431996205 a001 433494437/370248451*1860498^(1/4) 4324118431996205 a001 165580141/141422324*1860498^(1/4) 4324118431996207 a001 63245986/54018521*1860498^(1/4) 4324118431996216 a001 24157817/20633239*1860498^(1/4) 4324118431996217 a001 2178309/7881196*1860498^(7/20) 4324118431996241 a001 2178309/20633239*1860498^(5/12) 4324118431996269 a001 311187/4769326*1860498^(9/20) 4324118431996285 a001 9227465/7881196*1860498^(1/4) 4324118431996303 a001 1346269/119218851371*7881196^(21/22) 4324118431996310 a001 1346269/28143753123*7881196^(19/22) 4324118431996312 a001 1346269/17393796001*7881196^(5/6) 4324118431996313 a001 5702887/20633239*1860498^(7/20) 4324118431996316 a001 1346269/6643838879*7881196^(17/22) 4324118431996322 a001 1346269/1568397607*7881196^(15/22) 4324118431996327 a001 14930352/54018521*1860498^(7/20) 4324118431996329 a001 1346269/370248451*7881196^(13/22) 4324118431996329 a001 39088169/141422324*1860498^(7/20) 4324118431996330 a001 102334155/370248451*1860498^(7/20) 4324118431996330 a001 267914296/969323029*1860498^(7/20) 4324118431996330 a001 701408733/2537720636*1860498^(7/20) 4324118431996330 a001 1836311903/6643838879*1860498^(7/20) 4324118431996330 a001 4807526976/17393796001*1860498^(7/20) 4324118431996330 a001 12586269025/45537549124*1860498^(7/20) 4324118431996330 a001 32951280099/119218851371*1860498^(7/20) 4324118431996330 a001 86267571272/312119004989*1860498^(7/20) 4324118431996330 a001 225851433717/817138163596*1860498^(7/20) 4324118431996330 a001 1548008755920/5600748293801*1860498^(7/20) 4324118431996330 a001 139583862445/505019158607*1860498^(7/20) 4324118431996330 a001 53316291173/192900153618*1860498^(7/20) 4324118431996330 a001 20365011074/73681302247*1860498^(7/20) 4324118431996330 a001 7778742049/28143753123*1860498^(7/20) 4324118431996330 a001 2971215073/10749957122*1860498^(7/20) 4324118431996330 a001 1134903170/4106118243*1860498^(7/20) 4324118431996330 a001 433494437/1568397607*1860498^(7/20) 4324118431996330 a001 165580141/599074578*1860498^(7/20) 4324118431996330 a001 63245986/228826127*1860498^(7/20) 4324118431996331 a001 24157817/87403803*1860498^(7/20) 4324118431996334 a001 1346269/87403803*7881196^(1/2) 4324118431996336 a001 9227465/33385282*1860498^(7/20) 4324118431996339 a001 1346269/12752043*20633239^(5/14) 4324118431996343 a001 5702887/3010349*141422324^(1/6) 4324118431996343 a001 1346269/12752043*2537720636^(5/18) 4324118431996343 a001 1346269/12752043*312119004989^(5/22) 4324118431996343 a001 1346269/12752043*3461452808002^(5/24) 4324118431996343 a001 5702887/3010349*73681302247^(1/8) 4324118431996343 a001 1346269/12752043*28143753123^(1/4) 4324118431996343 a001 1346269/12752043*228826127^(5/16) 4324118431996351 a001 1346269/20633239*7881196^(9/22) 4324118431996356 a001 14930352/3010349*7881196^(3/22) 4324118431996360 a001 1346269/192900153618*20633239^(13/14) 4324118431996361 a001 1346269/119218851371*20633239^(9/10) 4324118431996362 a001 1346269/17393796001*20633239^(11/14) 4324118431996363 a001 1346269/4106118243*20633239^(7/10) 4324118431996363 a001 1346269/1568397607*20633239^(9/14) 4324118431996365 a001 1346269/141422324*20633239^(1/2) 4324118431996366 a001 14930352/3010349*2537720636^(1/10) 4324118431996366 a001 1346269/33385282*1322157322203^(1/4) 4324118431996366 a001 14930352/3010349*192900153618^(1/12) 4324118431996366 a001 14930352/3010349*33385282^(1/8) 4324118431996367 a001 63245986/3010349*7881196^(1/22) 4324118431996368 a001 9227465/3010349*7881196^(1/6) 4324118431996368 a001 39088169/3010349*20633239^(1/14) 4324118431996369 a001 1346269/228826127*54018521^(1/2) 4324118431996369 a001 39088169/3010349*2537720636^(1/18) 4324118431996369 a001 1346269/87403803*312119004989^(3/10) 4324118431996369 a001 39088169/3010349*312119004989^(1/22) 4324118431996369 a001 39088169/3010349*28143753123^(1/20) 4324118431996369 a001 1346269/87403803*1568397607^(3/8) 4324118431996369 a001 39088169/3010349*228826127^(1/16) 4324118431996370 a001 1346269/192900153618*141422324^(5/6) 4324118431996370 a001 1346269/370248451*141422324^(1/2) 4324118431996370 a001 1346269/599074578*370248451^(1/2) 4324118431996370 a001 1346269/1568397607*2537720636^(1/2) 4324118431996370 a001 1346269/1568397607*312119004989^(9/22) 4324118431996370 a001 1346269/1568397607*14662949395604^(5/14) 4324118431996370 a001 1346269/1568397607*192900153618^(5/12) 4324118431996370 a001 1346269/1568397607*28143753123^(9/20) 4324118431996370 a001 1346269/23725150497407*2537720636^(17/18) 4324118431996370 a001 1346269/9062201101803*2537720636^(9/10) 4324118431996370 a001 1346269/2139295485799*2537720636^(5/6) 4324118431996370 a001 1346269/192900153618*2537720636^(13/18) 4324118431996370 a001 1346269/119218851371*2537720636^(7/10) 4324118431996370 a001 1346269/17393796001*2537720636^(11/18) 4324118431996370 a001 1346269/4106118243*17393796001^(1/2) 4324118431996370 a001 1346269/4106118243*14662949395604^(7/18) 4324118431996370 a001 1346269/4106118243*505019158607^(7/16) 4324118431996370 a001 1346269/10749957122*119218851371^(1/2) 4324118431996370 a001 1346269/3461452808002*17393796001^(11/14) 4324118431996370 a001 1346269/119218851371*17393796001^(9/14) 4324118431996370 a001 1346269/28143753123*817138163596^(1/2) 4324118431996370 a001 1346269/23725150497407*45537549124^(5/6) 4324118431996370 a001 1346269/73681302247*5600748293801^(1/2) 4324118431996370 a001 1346269/192900153618*312119004989^(13/22) 4324118431996370 a001 1346269/192900153618*3461452808002^(13/24) 4324118431996370 a001 1346269/23725150497407*312119004989^(17/22) 4324118431996370 a001 1346269/2139295485799*312119004989^(15/22) 4324118431996370 a001 1346269/3461452808002*14662949395604^(11/18) 4324118431996370 a001 1346269/9062201101803*14662949395604^(9/14) 4324118431996370 a001 1346269/2139295485799*3461452808002^(5/8) 4324118431996370 a001 1346269/3461452808002*505019158607^(11/16) 4324118431996370 a001 1346269/9062201101803*192900153618^(3/4) 4324118431996370 a001 1346269/119218851371*14662949395604^(1/2) 4324118431996370 a001 1346269/119218851371*505019158607^(9/16) 4324118431996370 a001 1346269/119218851371*192900153618^(7/12) 4324118431996370 a001 1346269/192900153618*73681302247^(5/8) 4324118431996370 a001 1346269/45537549124*2139295485799^(1/2) 4324118431996370 a001 1346269/192900153618*28143753123^(13/20) 4324118431996370 a001 1346269/2139295485799*28143753123^(3/4) 4324118431996370 a001 1346269/23725150497407*28143753123^(17/20) 4324118431996370 a001 1346269/17393796001*312119004989^(1/2) 4324118431996370 a001 1346269/17393796001*3461452808002^(11/24) 4324118431996370 a001 1346269/17393796001*28143753123^(11/20) 4324118431996370 a001 1346269/6643838879*45537549124^(1/2) 4324118431996370 a001 1346269/505019158607*4106118243^(3/4) 4324118431996370 a001 1346269/2537720636*6643838879^(1/2) 4324118431996370 a001 1346269/17393796001*1568397607^(5/8) 4324118431996370 a001 1346269/3461452808002*1568397607^(7/8) 4324118431996370 a001 1346269/969323029*969323029^(1/2) 4324118431996370 a001 1346269/4106118243*599074578^(7/12) 4324118431996370 a001 1346269/119218851371*599074578^(3/4) 4324118431996370 a001 1346269/3461452808002*599074578^(11/12) 4324118431996370 a001 1346269/370248451*73681302247^(3/8) 4324118431996370 a001 1346269/1568397607*228826127^(9/16) 4324118431996370 a001 1346269/17393796001*228826127^(11/16) 4324118431996370 a001 1346269/192900153618*228826127^(13/16) 4324118431996370 a001 1346269/2139295485799*228826127^(15/16) 4324118431996370 a001 1346269/141422324*2537720636^(7/18) 4324118431996370 a001 1346269/141422324*17393796001^(5/14) 4324118431996370 a001 1346269/141422324*312119004989^(7/22) 4324118431996370 a001 1346269/141422324*14662949395604^(5/18) 4324118431996370 a001 1346269/141422324*505019158607^(5/16) 4324118431996370 a001 1346269/141422324*28143753123^(7/20) 4324118431996370 a001 1346269/141422324*599074578^(5/12) 4324118431996370 a001 1346269/141422324*228826127^(7/16) 4324118431996370 a001 63245986/3010349*33385282^(1/24) 4324118431996370 a001 1346269/28143753123*87403803^(3/4) 4324118431996370 a001 24157817/3010349*20633239^(1/10) 4324118431996371 a001 1346269/87403803*33385282^(11/24) 4324118431996371 a001 24157817/3010349*17393796001^(1/14) 4324118431996371 a001 1346269/54018521*9062201101803^(1/4) 4324118431996371 a001 24157817/3010349*505019158607^(1/16) 4324118431996371 a001 24157817/3010349*599074578^(1/12) 4324118431996372 a001 1346269/370248451*33385282^(13/24) 4324118431996372 a001 1346269/1568397607*33385282^(5/8) 4324118431996372 a001 1346269/6643838879*33385282^(17/24) 4324118431996373 a001 1346269/28143753123*33385282^(19/24) 4324118431996373 a001 3524578/12752043*1860498^(7/20) 4324118431996373 a001 1346269/119218851371*33385282^(7/8) 4324118431996373 a001 1346269/505019158607*33385282^(23/24) 4324118431996380 a001 1346269/20633239*2537720636^(3/10) 4324118431996380 a001 1346269/20633239*14662949395604^(3/14) 4324118431996380 a001 1346269/20633239*192900153618^(1/4) 4324118431996380 a001 9227465/3010349*1568397607^(1/8) 4324118431996381 a001 1346269/20633239*33385282^(3/8) 4324118431996388 a001 5702887/54018521*1860498^(5/12) 4324118431996390 a001 1346269/6643838879*12752043^(3/4) 4324118431996398 a001 2178309/141422324*1860498^(11/20) 4324118431996409 a001 3732588/35355581*1860498^(5/12) 4324118431996413 a001 39088169/370248451*1860498^(5/12) 4324118431996413 a001 102334155/969323029*1860498^(5/12) 4324118431996413 a001 66978574/634430159*1860498^(5/12) 4324118431996413 a001 701408733/6643838879*1860498^(5/12) 4324118431996413 a001 1836311903/17393796001*1860498^(5/12) 4324118431996413 a001 1201881744/11384387281*1860498^(5/12) 4324118431996413 a001 12586269025/119218851371*1860498^(5/12) 4324118431996413 a001 32951280099/312119004989*1860498^(5/12) 4324118431996413 a001 21566892818/204284540899*1860498^(5/12) 4324118431996413 a001 225851433717/2139295485799*1860498^(5/12) 4324118431996413 a001 182717648081/1730726404001*1860498^(5/12) 4324118431996413 a001 139583862445/1322157322203*1860498^(5/12) 4324118431996413 a001 53316291173/505019158607*1860498^(5/12) 4324118431996413 a001 10182505537/96450076809*1860498^(5/12) 4324118431996413 a001 7778742049/73681302247*1860498^(5/12) 4324118431996413 a001 2971215073/28143753123*1860498^(5/12) 4324118431996413 a001 567451585/5374978561*1860498^(5/12) 4324118431996413 a001 433494437/4106118243*1860498^(5/12) 4324118431996413 a001 165580141/1568397607*1860498^(5/12) 4324118431996413 a001 31622993/299537289*1860498^(5/12) 4324118431996414 a001 24157817/228826127*1860498^(5/12) 4324118431996423 a001 9227465/87403803*1860498^(5/12) 4324118431996424 a001 3524578/3010349*7881196^(5/22) 4324118431996428 a001 5702887/87403803*1860498^(9/20) 4324118431996432 a001 63245986/3010349*1860498^(1/20) 4324118431996437 a001 3524578/3010349*20633239^(3/14) 4324118431996439 a001 46347/4868641*1860498^(7/12) 4324118431996439 a001 3524578/3010349*2537720636^(1/6) 4324118431996439 a001 3524578/3010349*312119004989^(3/22) 4324118431996439 a001 3524578/3010349*28143753123^(3/20) 4324118431996439 a001 1346269/7881196*4106118243^(1/4) 4324118431996439 a001 3524578/3010349*228826127^(3/16) 4324118431996440 a001 3524578/3010349*33385282^(5/24) 4324118431996451 a001 14930352/228826127*1860498^(9/20) 4324118431996454 a001 39088169/599074578*1860498^(9/20) 4324118431996455 a001 14619165/224056801*1860498^(9/20) 4324118431996455 a001 267914296/4106118243*1860498^(9/20) 4324118431996455 a001 701408733/10749957122*1860498^(9/20) 4324118431996455 a001 1836311903/28143753123*1860498^(9/20) 4324118431996455 a001 686789568/10525900321*1860498^(9/20) 4324118431996455 a001 12586269025/192900153618*1860498^(9/20) 4324118431996455 a001 32951280099/505019158607*1860498^(9/20) 4324118431996455 a001 86267571272/1322157322203*1860498^(9/20) 4324118431996455 a001 32264490531/494493258286*1860498^(9/20) 4324118431996455 a001 591286729879/9062201101803*1860498^(9/20) 4324118431996455 a001 1548008755920/23725150497407*1860498^(9/20) 4324118431996455 a001 365435296162/5600748293801*1860498^(9/20) 4324118431996455 a001 139583862445/2139295485799*1860498^(9/20) 4324118431996455 a001 53316291173/817138163596*1860498^(9/20) 4324118431996455 a001 20365011074/312119004989*1860498^(9/20) 4324118431996455 a001 7778742049/119218851371*1860498^(9/20) 4324118431996455 a001 2971215073/45537549124*1860498^(9/20) 4324118431996455 a001 1134903170/17393796001*1860498^(9/20) 4324118431996455 a001 433494437/6643838879*1860498^(9/20) 4324118431996455 a001 165580141/2537720636*1860498^(9/20) 4324118431996455 a001 63245986/969323029*1860498^(9/20) 4324118431996456 a001 24157817/370248451*1860498^(9/20) 4324118431996465 a001 9227465/141422324*1860498^(9/20) 4324118431996473 a001 39088169/3010349*1860498^(1/12) 4324118431996479 a001 1762289/16692641*1860498^(5/12) 4324118431996522 a001 726103/199691526*1860498^(13/20) 4324118431996526 a001 3524578/54018521*1860498^(9/20) 4324118431996553 a001 5702887/370248451*1860498^(11/20) 4324118431996553 a001 14930352/3010349*1860498^(3/20) 4324118431996576 a001 14930352/969323029*1860498^(11/20) 4324118431996579 a001 39088169/2537720636*1860498^(11/20) 4324118431996580 a001 102334155/6643838879*1860498^(11/20) 4324118431996580 a001 9238424/599786069*1860498^(11/20) 4324118431996580 a001 701408733/45537549124*1860498^(11/20) 4324118431996580 a001 1836311903/119218851371*1860498^(11/20) 4324118431996580 a001 4807526976/312119004989*1860498^(11/20) 4324118431996580 a001 12586269025/817138163596*1860498^(11/20) 4324118431996580 a001 32951280099/2139295485799*1860498^(11/20) 4324118431996580 a001 86267571272/5600748293801*1860498^(11/20) 4324118431996580 a001 7787980473/505618944676*1860498^(11/20) 4324118431996580 a001 365435296162/23725150497407*1860498^(11/20) 4324118431996580 a001 139583862445/9062201101803*1860498^(11/20) 4324118431996580 a001 53316291173/3461452808002*1860498^(11/20) 4324118431996580 a001 20365011074/1322157322203*1860498^(11/20) 4324118431996580 a001 7778742049/505019158607*1860498^(11/20) 4324118431996580 a001 2971215073/192900153618*1860498^(11/20) 4324118431996580 a001 1134903170/73681302247*1860498^(11/20) 4324118431996580 a001 433494437/28143753123*1860498^(11/20) 4324118431996580 a001 165580141/10749957122*1860498^(11/20) 4324118431996580 a001 63245986/4106118243*1860498^(11/20) 4324118431996581 a001 24157817/1568397607*1860498^(11/20) 4324118431996590 a001 9227465/599074578*1860498^(11/20) 4324118431996595 a001 5702887/599074578*1860498^(7/12) 4324118431996617 a001 14930352/1568397607*1860498^(7/12) 4324118431996621 a001 39088169/4106118243*1860498^(7/12) 4324118431996621 a001 102334155/10749957122*1860498^(7/12) 4324118431996621 a001 267914296/28143753123*1860498^(7/12) 4324118431996621 a001 701408733/73681302247*1860498^(7/12) 4324118431996621 a001 1836311903/192900153618*1860498^(7/12) 4324118431996621 a001 102287808/10745088481*1860498^(7/12) 4324118431996621 a001 12586269025/1322157322203*1860498^(7/12) 4324118431996621 a001 32951280099/3461452808002*1860498^(7/12) 4324118431996621 a001 86267571272/9062201101803*1860498^(7/12) 4324118431996621 a001 225851433717/23725150497407*1860498^(7/12) 4324118431996621 a001 139583862445/14662949395604*1860498^(7/12) 4324118431996621 a001 53316291173/5600748293801*1860498^(7/12) 4324118431996621 a001 20365011074/2139295485799*1860498^(7/12) 4324118431996621 a001 7778742049/817138163596*1860498^(7/12) 4324118431996621 a001 2971215073/312119004989*1860498^(7/12) 4324118431996621 a001 1134903170/119218851371*1860498^(7/12) 4324118431996621 a001 433494437/45537549124*1860498^(7/12) 4324118431996621 a001 165580141/17393796001*1860498^(7/12) 4324118431996621 a001 63245986/6643838879*1860498^(7/12) 4324118431996623 a001 24157817/2537720636*1860498^(7/12) 4324118431996625 a001 1346269/4870847*1860498^(7/20) 4324118431996631 a001 9227465/969323029*1860498^(7/12) 4324118431996647 a001 2178309/2537720636*1860498^(3/4) 4324118431996649 a001 3524578/228826127*1860498^(11/20) 4324118431996678 a001 5702887/1568397607*1860498^(13/20) 4324118431996691 a001 3524578/370248451*1860498^(7/12) 4324118431996701 a001 4976784/1368706081*1860498^(13/20) 4324118431996704 a001 39088169/10749957122*1860498^(13/20) 4324118431996704 a001 831985/228811001*1860498^(13/20) 4324118431996705 a001 267914296/73681302247*1860498^(13/20) 4324118431996705 a001 233802911/64300051206*1860498^(13/20) 4324118431996705 a001 1836311903/505019158607*1860498^(13/20) 4324118431996705 a001 1602508992/440719107401*1860498^(13/20) 4324118431996705 a001 12586269025/3461452808002*1860498^(13/20) 4324118431996705 a001 10983760033/3020733700601*1860498^(13/20) 4324118431996705 a001 86267571272/23725150497407*1860498^(13/20) 4324118431996705 a001 53316291173/14662949395604*1860498^(13/20) 4324118431996705 a001 20365011074/5600748293801*1860498^(13/20) 4324118431996705 a001 7778742049/2139295485799*1860498^(13/20) 4324118431996705 a001 2971215073/817138163596*1860498^(13/20) 4324118431996705 a001 1134903170/312119004989*1860498^(13/20) 4324118431996705 a001 433494437/119218851371*1860498^(13/20) 4324118431996705 a001 165580141/45537549124*1860498^(13/20) 4324118431996705 a001 63245986/17393796001*1860498^(13/20) 4324118431996706 a001 24157817/6643838879*1860498^(13/20) 4324118431996715 a001 9227465/2537720636*1860498^(13/20) 4324118431996752 a001 3524578/3010349*1860498^(1/4) 4324118431996772 a001 987/4870846*1860498^(17/20) 4324118431996774 a001 3524578/969323029*1860498^(13/20) 4324118431996780 a001 39088169/4870847*710647^(1/8) 4324118431996803 a001 5702887/6643838879*1860498^(3/4) 4324118431996826 a001 14930352/17393796001*1860498^(3/4) 4324118431996829 a001 39088169/45537549124*1860498^(3/4) 4324118431996829 a001 102334155/119218851371*1860498^(3/4) 4324118431996829 a001 267914296/312119004989*1860498^(3/4) 4324118431996829 a001 701408733/817138163596*1860498^(3/4) 4324118431996829 a001 1836311903/2139295485799*1860498^(3/4) 4324118431996829 a001 4807526976/5600748293801*1860498^(3/4) 4324118431996829 a001 12586269025/14662949395604*1860498^(3/4) 4324118431996829 a001 20365011074/23725150497407*1860498^(3/4) 4324118431996829 a001 7778742049/9062201101803*1860498^(3/4) 4324118431996829 a001 2971215073/3461452808002*1860498^(3/4) 4324118431996829 a001 1134903170/1322157322203*1860498^(3/4) 4324118431996829 a001 433494437/505019158607*1860498^(3/4) 4324118431996829 a001 165580141/192900153618*1860498^(3/4) 4324118431996830 a001 63245986/73681302247*1860498^(3/4) 4324118431996831 a001 24157817/28143753123*1860498^(3/4) 4324118431996840 a001 9227465/10749957122*1860498^(3/4) 4324118431996847 a001 1346269/3010349*817138163596^(1/6) 4324118431996847 a001 1346269/3010349*87403803^(1/4) 4324118431996855 a001 726103/9381251041*1860498^(11/12) 4324118431996864 a001 1346269/12752043*1860498^(5/12) 4324118431996897 a001 2178309/45537549124*1860498^(19/20) 4324118431996899 a001 3524578/4106118243*1860498^(3/4) 4324118431996928 a001 5702887/28143753123*1860498^(17/20) 4324118431996936 a001 34111385/4250681*710647^(1/8) 4324118431996942 a001 1346269/20633239*1860498^(9/20) 4324118431996951 a001 14930352/73681302247*1860498^(17/20) 4324118431996954 a001 39088169/192900153618*1860498^(17/20) 4324118431996954 a001 102334155/505019158607*1860498^(17/20) 4324118431996954 a001 267914296/1322157322203*1860498^(17/20) 4324118431996954 a001 701408733/3461452808002*1860498^(17/20) 4324118431996954 a001 1836311903/9062201101803*1860498^(17/20) 4324118431996954 a001 4807526976/23725150497407*1860498^(17/20) 4324118431996954 a001 2971215073/14662949395604*1860498^(17/20) 4324118431996954 a001 1134903170/5600748293801*1860498^(17/20) 4324118431996954 a001 433494437/2139295485799*1860498^(17/20) 4324118431996954 a001 165580141/817138163596*1860498^(17/20) 4324118431996955 a001 63245986/312119004989*1860498^(17/20) 4324118431996956 a001 24157817/119218851371*1860498^(17/20) 4324118431996959 a001 133957148/16692641*710647^(1/8) 4324118431996962 a001 233802911/29134601*710647^(1/8) 4324118431996963 a001 1836311903/228826127*710647^(1/8) 4324118431996963 a001 267084832/33281921*710647^(1/8) 4324118431996963 a001 12586269025/1568397607*710647^(1/8) 4324118431996963 a001 10983760033/1368706081*710647^(1/8) 4324118431996963 a001 43133785636/5374978561*710647^(1/8) 4324118431996963 a001 75283811239/9381251041*710647^(1/8) 4324118431996963 a001 591286729879/73681302247*710647^(1/8) 4324118431996963 a001 86000486440/10716675201*710647^(1/8) 4324118431996963 a001 4052739537881/505019158607*710647^(1/8) 4324118431996963 a001 3278735159921/408569081798*710647^(1/8) 4324118431996963 a001 2504730781961/312119004989*710647^(1/8) 4324118431996963 a001 956722026041/119218851371*710647^(1/8) 4324118431996963 a001 182717648081/22768774562*710647^(1/8) 4324118431996963 a001 139583862445/17393796001*710647^(1/8) 4324118431996963 a001 53316291173/6643838879*710647^(1/8) 4324118431996963 a001 10182505537/1268860318*710647^(1/8) 4324118431996963 a001 7778742049/969323029*710647^(1/8) 4324118431996963 a001 2971215073/370248451*710647^(1/8) 4324118431996963 a001 567451585/70711162*710647^(1/8) 4324118431996964 a001 433494437/54018521*710647^(1/8) 4324118431996965 a001 9227465/45537549124*1860498^(17/20) 4324118431996973 a001 165580141/20633239*710647^(1/8) 4324118431997011 a001 5702887/73681302247*1860498^(11/12) 4324118431997024 a001 3524578/17393796001*1860498^(17/20) 4324118431997033 a001 31622993/3940598*710647^(1/8) 4324118431997034 a001 2584/33385281*1860498^(11/12) 4324118431997037 a001 39088169/505019158607*1860498^(11/12) 4324118431997038 a001 34111385/440719107401*1860498^(11/12) 4324118431997038 a001 133957148/1730726404001*1860498^(11/12) 4324118431997038 a001 233802911/3020733700601*1860498^(11/12) 4324118431997038 a001 1836311903/23725150497407*1860498^(11/12) 4324118431997038 a001 567451585/7331474697802*1860498^(11/12) 4324118431997038 a001 433494437/5600748293801*1860498^(11/12) 4324118431997038 a001 165580141/2139295485799*1860498^(11/12) 4324118431997038 a001 31622993/408569081798*1860498^(11/12) 4324118431997039 a001 24157817/312119004989*1860498^(11/12) 4324118431997048 a001 9227465/119218851371*1860498^(11/12) 4324118431997053 a001 5702887/119218851371*1860498^(19/20) 4324118431997056 a001 1346269/87403803*1860498^(11/20) 4324118431997075 a001 14930352/312119004989*1860498^(19/20) 4324118431997079 a001 4181/87403804*1860498^(19/20) 4324118431997079 a001 102334155/2139295485799*1860498^(19/20) 4324118431997079 a001 267914296/5600748293801*1860498^(19/20) 4324118431997079 a001 701408733/14662949395604*1860498^(19/20) 4324118431997079 a001 1134903170/23725150497407*1860498^(19/20) 4324118431997079 a001 433494437/9062201101803*1860498^(19/20) 4324118431997079 a001 165580141/3461452808002*1860498^(19/20) 4324118431997080 a001 63245986/1322157322203*1860498^(19/20) 4324118431997081 a001 24157817/505019158607*1860498^(19/20) 4324118431997089 a001 9227465/192900153618*1860498^(19/20) 4324118431997099 a001 1346269/141422324*1860498^(7/12) 4324118431997107 a001 1762289/22768774562*1860498^(11/12) 4324118431997138 a001 196418/969323029*439204^(17/18) 4324118431997149 a001 3524578/73681302247*1860498^(19/20) 4324118431997182 a001 1346269/370248451*1860498^(13/20) 4324118431997307 a001 1346269/1568397607*1860498^(3/4) 4324118431997432 a001 1346269/6643838879*1860498^(17/20) 4324118431997441 a001 24157817/3010349*710647^(1/8) 4324118431997501 a001 514229/12752043*1149851^(1/2) 4324118431997515 a001 1346269/17393796001*1860498^(11/12) 4324118431997556 a001 1346269/28143753123*1860498^(19/20) 4324118431997892 a001 514229/1860498*7881196^(7/22) 4324118431997911 a001 514229/1860498*20633239^(3/10) 4324118431997914 a001 514229/1860498*17393796001^(3/14) 4324118431997914 a001 832040/1149851*45537549124^(1/6) 4324118431997914 a001 514229/1860498*14662949395604^(1/6) 4324118431997914 a001 514229/1860498*599074578^(1/4) 4324118431997915 a001 514229/1860498*33385282^(7/24) 4324118431997919 a001 24157817/1149851*439204^(1/18) 4324118431997920 a001 832040/1149851*12752043^(1/4) 4324118431998331 a001 832040/3010349*710647^(3/8) 4324118431998351 a001 514229/1860498*1860498^(7/20) 4324118431998935 a001 514229/20633239*3010349^(1/2) 4324118431998977 a001 514229/4870847*20633239^(5/14) 4324118431998981 a001 2178309/1149851*141422324^(1/6) 4324118431998981 a001 514229/4870847*2537720636^(5/18) 4324118431998981 a001 514229/4870847*312119004989^(5/22) 4324118431998981 a001 514229/4870847*3461452808002^(5/24) 4324118431998981 a001 2178309/1149851*73681302247^(1/8) 4324118431998981 a001 514229/4870847*28143753123^(1/4) 4324118431998981 a001 514229/4870847*228826127^(5/16) 4324118431998991 a001 2178309/7881196*710647^(3/8) 4324118431999087 a001 5702887/20633239*710647^(3/8) 4324118431999097 a001 514229/45537549124*7881196^(21/22) 4324118431999101 a001 14930352/54018521*710647^(3/8) 4324118431999103 a001 514229/10749957122*7881196^(19/22) 4324118431999103 a001 39088169/141422324*710647^(3/8) 4324118431999103 a001 102334155/370248451*710647^(3/8) 4324118431999103 a001 267914296/969323029*710647^(3/8) 4324118431999103 a001 701408733/2537720636*710647^(3/8) 4324118431999103 a001 1836311903/6643838879*710647^(3/8) 4324118431999103 a001 4807526976/17393796001*710647^(3/8) 4324118431999103 a001 12586269025/45537549124*710647^(3/8) 4324118431999103 a001 32951280099/119218851371*710647^(3/8) 4324118431999103 a001 86267571272/312119004989*710647^(3/8) 4324118431999103 a001 225851433717/817138163596*710647^(3/8) 4324118431999103 a001 1548008755920/5600748293801*710647^(3/8) 4324118431999103 a001 139583862445/505019158607*710647^(3/8) 4324118431999103 a001 53316291173/192900153618*710647^(3/8) 4324118431999103 a001 20365011074/73681302247*710647^(3/8) 4324118431999103 a001 7778742049/28143753123*710647^(3/8) 4324118431999103 a001 2971215073/10749957122*710647^(3/8) 4324118431999103 a001 1134903170/4106118243*710647^(3/8) 4324118431999103 a001 433494437/1568397607*710647^(3/8) 4324118431999103 a001 165580141/599074578*710647^(3/8) 4324118431999104 a001 63245986/228826127*710647^(3/8) 4324118431999104 a001 24157817/87403803*710647^(3/8) 4324118431999105 a001 514229/6643838879*7881196^(5/6) 4324118431999109 a001 514229/2537720636*7881196^(17/22) 4324118431999110 a001 9227465/33385282*710647^(3/8) 4324118431999116 a001 514229/599074578*7881196^(15/22) 4324118431999122 a001 514229/141422324*7881196^(13/22) 4324118431999124 a001 514229/33385282*7881196^(1/2) 4324118431999127 a001 5702887/1149851*7881196^(3/22) 4324118431999136 a001 5702887/1149851*2537720636^(1/10) 4324118431999136 a001 514229/12752043*1322157322203^(1/4) 4324118431999136 a001 5702887/1149851*14662949395604^(1/14) 4324118431999136 a001 5702887/1149851*192900153618^(1/12) 4324118431999137 a001 5702887/1149851*33385282^(1/8) 4324118431999146 a001 3524578/12752043*710647^(3/8) 4324118431999154 a001 514229/73681302247*20633239^(13/14) 4324118431999154 a001 514229/45537549124*20633239^(9/10) 4324118431999155 a001 514229/6643838879*20633239^(11/14) 4324118431999156 a001 514229/1568397607*20633239^(7/10) 4324118431999157 a001 514229/599074578*20633239^(9/14) 4324118431999158 a001 14930352/1149851*20633239^(1/14) 4324118431999159 a001 14930352/1149851*2537720636^(1/18) 4324118431999159 a001 514229/33385282*312119004989^(3/10) 4324118431999159 a001 14930352/1149851*312119004989^(1/22) 4324118431999159 a001 14930352/1149851*28143753123^(1/20) 4324118431999159 a001 514229/33385282*1568397607^(3/8) 4324118431999159 a001 14930352/1149851*228826127^(1/16) 4324118431999159 a001 514229/54018521*20633239^(1/2) 4324118431999161 a001 514229/33385282*33385282^(11/24) 4324118431999161 a001 24157817/1149851*7881196^(1/22) 4324118431999162 a001 514229/87403803*54018521^(1/2) 4324118431999163 a006 5^(1/2)*fibonacci(77/2)/Lucas(29)/sqrt(5) 4324118431999163 a001 514229/73681302247*141422324^(5/6) 4324118431999163 a001 514229/228826127*370248451^(1/2) 4324118431999163 a001 514229/599074578*2537720636^(1/2) 4324118431999163 a001 514229/599074578*312119004989^(9/22) 4324118431999163 a001 514229/599074578*14662949395604^(5/14) 4324118431999163 a001 514229/599074578*192900153618^(5/12) 4324118431999163 a001 514229/599074578*28143753123^(9/20) 4324118431999163 a001 514229/1568397607*17393796001^(1/2) 4324118431999163 a001 514229/1568397607*14662949395604^(7/18) 4324118431999163 a001 514229/1568397607*505019158607^(7/16) 4324118431999163 a001 514229/9062201101803*2537720636^(17/18) 4324118431999163 a001 514229/3461452808002*2537720636^(9/10) 4324118431999163 a001 514229/817138163596*2537720636^(5/6) 4324118431999163 a001 514229/73681302247*2537720636^(13/18) 4324118431999163 a001 514229/45537549124*2537720636^(7/10) 4324118431999163 a001 514229/6643838879*2537720636^(11/18) 4324118431999163 a001 514229/4106118243*119218851371^(1/2) 4324118431999163 a001 514229/10749957122*817138163596^(1/2) 4324118431999163 a001 514229/1322157322203*17393796001^(11/14) 4324118431999163 a001 514229/45537549124*17393796001^(9/14) 4324118431999163 a001 514229/28143753123*5600748293801^(1/2) 4324118431999163 a001 514229/9062201101803*45537549124^(5/6) 4324118431999163 a001 514229/73681302247*312119004989^(13/22) 4324118431999163 a001 514229/73681302247*3461452808002^(13/24) 4324118431999163 a001 514229/73681302247*73681302247^(5/8) 4324118431999163 a001 514229/9062201101803*312119004989^(17/22) 4324118431999163 a001 514229/1322157322203*14662949395604^(11/18) 4324118431999163 a001 514229/9062201101803*3461452808002^(17/24) 4324118431999163 a001 514229/14662949395604*1322157322203^(3/4) 4324118431999163 a006 5^(1/2)*Fibonacci(77/2)/Lucas(29)/sqrt(5) 4324118431999163 a001 514229/1322157322203*505019158607^(11/16) 4324118431999163 a001 514229/3461452808002*192900153618^(3/4) 4324118431999163 a001 514229/45537549124*14662949395604^(1/2) 4324118431999163 a001 514229/45537549124*505019158607^(9/16) 4324118431999163 a001 514229/45537549124*192900153618^(7/12) 4324118431999163 a001 514229/73681302247*28143753123^(13/20) 4324118431999163 a001 514229/817138163596*28143753123^(3/4) 4324118431999163 a001 514229/9062201101803*28143753123^(17/20) 4324118431999163 a001 514229/17393796001*2139295485799^(1/2) 4324118431999163 a001 514229/6643838879*312119004989^(1/2) 4324118431999163 a001 514229/6643838879*3461452808002^(11/24) 4324118431999163 a001 514229/6643838879*28143753123^(11/20) 4324118431999163 a001 514229/192900153618*4106118243^(3/4) 4324118431999163 a001 514229/2537720636*45537549124^(1/2) 4324118431999163 a001 514229/6643838879*1568397607^(5/8) 4324118431999163 a001 514229/1322157322203*1568397607^(7/8) 4324118431999163 a001 514229/969323029*6643838879^(1/2) 4324118431999163 a001 514229/1568397607*599074578^(7/12) 4324118431999163 a001 514229/45537549124*599074578^(3/4) 4324118431999163 a001 514229/1322157322203*599074578^(11/12) 4324118431999163 a001 514229/370248451*969323029^(1/2) 4324118431999163 a001 514229/599074578*228826127^(9/16) 4324118431999163 a001 514229/6643838879*228826127^(11/16) 4324118431999163 a001 514229/73681302247*228826127^(13/16) 4324118431999163 a001 514229/817138163596*228826127^(15/16) 4324118431999163 a001 514229/141422324*141422324^(1/2) 4324118431999163 a001 514229/141422324*73681302247^(3/8) 4324118431999163 a001 514229/10749957122*87403803^(3/4) 4324118431999165 a001 514229/54018521*2537720636^(7/18) 4324118431999165 a001 514229/54018521*17393796001^(5/14) 4324118431999165 a001 514229/54018521*312119004989^(7/22) 4324118431999165 a001 514229/54018521*14662949395604^(5/18) 4324118431999165 a001 514229/54018521*505019158607^(5/16) 4324118431999165 a001 514229/54018521*28143753123^(7/20) 4324118431999165 a001 514229/54018521*599074578^(5/12) 4324118431999165 a001 514229/54018521*228826127^(7/16) 4324118431999165 a001 24157817/1149851*33385282^(1/24) 4324118431999165 a001 514229/141422324*33385282^(13/24) 4324118431999165 a001 514229/599074578*33385282^(5/8) 4324118431999166 a001 514229/2537720636*33385282^(17/24) 4324118431999166 a001 514229/10749957122*33385282^(19/24) 4324118431999166 a001 514229/45537549124*33385282^(7/8) 4324118431999167 a001 514229/192900153618*33385282^(23/24) 4324118431999172 a001 9227465/1149851*20633239^(1/10) 4324118431999173 a001 9227465/1149851*17393796001^(1/14) 4324118431999173 a001 514229/20633239*9062201101803^(1/4) 4324118431999173 a001 9227465/1149851*599074578^(1/12) 4324118431999183 a001 514229/2537720636*12752043^(3/4) 4324118431999204 a001 514229/7881196*7881196^(9/22) 4324118431999221 a001 3524578/1149851*7881196^(1/6) 4324118431999227 a001 24157817/1149851*1860498^(1/20) 4324118431999233 a001 514229/7881196*2537720636^(3/10) 4324118431999233 a001 3524578/1149851*312119004989^(1/10) 4324118431999233 a001 514229/7881196*14662949395604^(3/14) 4324118431999233 a001 514229/7881196*192900153618^(1/4) 4324118431999233 a001 3524578/1149851*1568397607^(1/8) 4324118431999234 a001 514229/7881196*33385282^(3/8) 4324118431999263 a001 14930352/1149851*1860498^(1/12) 4324118431999324 a001 5702887/1149851*1860498^(3/20) 4324118431999398 a001 1346269/4870847*710647^(3/8) 4324118431999501 a001 514229/4870847*1860498^(5/12) 4324118431999624 a001 1346269/1149851*7881196^(5/22) 4324118431999629 a001 196418/228826127*439204^(5/6) 4324118431999638 a001 1346269/1149851*20633239^(3/14) 4324118431999640 a001 1346269/1149851*2537720636^(1/6) 4324118431999640 a001 1346269/1149851*312119004989^(3/22) 4324118431999640 a001 1346269/1149851*28143753123^(3/20) 4324118431999640 a001 514229/3010349*4106118243^(1/4) 4324118431999640 a001 1346269/1149851*228826127^(3/16) 4324118431999641 a001 1346269/1149851*33385282^(5/24) 4324118431999795 a001 514229/7881196*1860498^(9/20) 4324118431999846 a001 514229/33385282*1860498^(11/20) 4324118431999893 a001 514229/54018521*1860498^(7/12) 4324118431999953 a001 1346269/1149851*1860498^(1/4) 4324118431999975 a001 514229/141422324*1860498^(13/20) 4324118431999994 a001 832040/87403803*710647^(5/8) 4324118432000100 a001 514229/599074578*1860498^(3/4) 4324118432000225 a001 514229/2537720636*1860498^(17/20) 4324118432000243 a001 9227465/1149851*710647^(1/8) 4324118432000308 a001 514229/6643838879*1860498^(11/12) 4324118432000350 a001 514229/10749957122*1860498^(19/20) 4324118432001029 a001 196418/710647*439204^(7/18) 4324118432001062 a001 46347/4868641*710647^(5/8) 4324118432001125 a001 514229/1860498*710647^(3/8) 4324118432001217 a001 5702887/599074578*710647^(5/8) 4324118432001240 a001 14930352/1568397607*710647^(5/8) 4324118432001243 a001 39088169/4106118243*710647^(5/8) 4324118432001244 a001 102334155/10749957122*710647^(5/8) 4324118432001244 a001 267914296/28143753123*710647^(5/8) 4324118432001244 a001 701408733/73681302247*710647^(5/8) 4324118432001244 a001 1836311903/192900153618*710647^(5/8) 4324118432001244 a001 102287808/10745088481*710647^(5/8) 4324118432001244 a001 12586269025/1322157322203*710647^(5/8) 4324118432001244 a001 32951280099/3461452808002*710647^(5/8) 4324118432001244 a001 86267571272/9062201101803*710647^(5/8) 4324118432001244 a001 225851433717/23725150497407*710647^(5/8) 4324118432001244 a001 139583862445/14662949395604*710647^(5/8) 4324118432001244 a001 53316291173/5600748293801*710647^(5/8) 4324118432001244 a001 20365011074/2139295485799*710647^(5/8) 4324118432001244 a001 7778742049/817138163596*710647^(5/8) 4324118432001244 a001 2971215073/312119004989*710647^(5/8) 4324118432001244 a001 1134903170/119218851371*710647^(5/8) 4324118432001244 a001 433494437/45537549124*710647^(5/8) 4324118432001244 a001 165580141/17393796001*710647^(5/8) 4324118432001244 a001 63245986/6643838879*710647^(5/8) 4324118432001245 a001 24157817/2537720636*710647^(5/8) 4324118432001254 a001 9227465/969323029*710647^(5/8) 4324118432001314 a001 3524578/370248451*710647^(5/8) 4324118432001721 a001 1346269/141422324*710647^(5/8) 4324118432002121 a001 196418/54018521*439204^(13/18) 4324118432002135 a001 610/1860499*710647^(7/8) 4324118432002434 a001 514229/1149851*817138163596^(1/6) 4324118432002434 a001 514229/1149851*87403803^(1/4) 4324118432002479 a001 1346269/710647*271443^(1/4) 4324118432002918 a001 5702887/439204*167761^(1/10) 4324118432003202 a001 2178309/6643838879*710647^(7/8) 4324118432003358 a001 5702887/17393796001*710647^(7/8) 4324118432003381 a001 3732588/11384387281*710647^(7/8) 4324118432003384 a001 39088169/119218851371*710647^(7/8) 4324118432003384 a001 9303105/28374454999*710647^(7/8) 4324118432003385 a001 66978574/204284540899*710647^(7/8) 4324118432003385 a001 701408733/2139295485799*710647^(7/8) 4324118432003385 a001 1836311903/5600748293801*710647^(7/8) 4324118432003385 a001 1201881744/3665737348901*710647^(7/8) 4324118432003385 a001 7778742049/23725150497407*710647^(7/8) 4324118432003385 a001 2971215073/9062201101803*710647^(7/8) 4324118432003385 a001 567451585/1730726404001*710647^(7/8) 4324118432003385 a001 433494437/1322157322203*710647^(7/8) 4324118432003385 a001 165580141/505019158607*710647^(7/8) 4324118432003385 a001 31622993/96450076809*710647^(7/8) 4324118432003386 a001 24157817/73681302247*710647^(7/8) 4324118432003395 a001 9227465/28143753123*710647^(7/8) 4324118432003454 a001 1762289/5374978561*710647^(7/8) 4324118432003862 a001 1346269/4106118243*710647^(7/8) 4324118432004516 a001 514229/54018521*710647^(5/8) 4324118432004583 a001 196418/12752043*439204^(11/18) 4324118432006655 a001 514229/1568397607*710647^(7/8) 4324118432007578 a001 196418/3010349*439204^(1/2) 4324118432009385 a001 1762289/930249*271443^(1/4) 4324118432009724 a001 196418/710647*7881196^(7/22) 4324118432009744 a001 196418/710647*20633239^(3/10) 4324118432009747 a001 196418/710647*17393796001^(3/14) 4324118432009747 a001 317811/439204*45537549124^(1/6) 4324118432009747 a001 196418/710647*14662949395604^(1/6) 4324118432009747 a001 196418/710647*599074578^(1/4) 4324118432009748 a001 196418/710647*33385282^(7/24) 4324118432009753 a001 317811/439204*12752043^(1/4) 4324118432010184 a001 196418/710647*1860498^(7/20) 4324118432010392 a001 9227465/4870847*271443^(1/4) 4324118432010539 a001 24157817/12752043*271443^(1/4) 4324118432010561 a001 31622993/16692641*271443^(1/4) 4324118432010564 a001 165580141/87403803*271443^(1/4) 4324118432010564 a001 433494437/228826127*271443^(1/4) 4324118432010564 a001 567451585/299537289*271443^(1/4) 4324118432010564 a001 2971215073/1568397607*271443^(1/4) 4324118432010564 a001 7778742049/4106118243*271443^(1/4) 4324118432010564 a001 10182505537/5374978561*271443^(1/4) 4324118432010564 a001 53316291173/28143753123*271443^(1/4) 4324118432010564 a001 139583862445/73681302247*271443^(1/4) 4324118432010564 a001 182717648081/96450076809*271443^(1/4) 4324118432010564 a001 956722026041/505019158607*271443^(1/4) 4324118432010564 a001 10610209857723/5600748293801*271443^(1/4) 4324118432010564 a001 591286729879/312119004989*271443^(1/4) 4324118432010564 a001 225851433717/119218851371*271443^(1/4) 4324118432010564 a001 21566892818/11384387281*271443^(1/4) 4324118432010564 a001 32951280099/17393796001*271443^(1/4) 4324118432010564 a001 12586269025/6643838879*271443^(1/4) 4324118432010564 a001 1201881744/634430159*271443^(1/4) 4324118432010564 a001 1836311903/969323029*271443^(1/4) 4324118432010564 a001 701408733/370248451*271443^(1/4) 4324118432010564 a001 66978574/35355581*271443^(1/4) 4324118432010566 a001 102334155/54018521*271443^(1/4) 4324118432010574 a001 39088169/20633239*271443^(1/4) 4324118432010630 a001 3732588/1970299*271443^(1/4) 4324118432011015 a001 5702887/3010349*271443^(1/4) 4324118432011256 a001 75025/87403803*167761^(9/10) 4324118432012467 a001 14930352/710647*103682^(1/16) 4324118432012957 a001 196418/710647*710647^(3/8) 4324118432013104 a001 1346269/271443*103682^(3/16) 4324118432013652 a001 2178309/1149851*271443^(1/4) 4324118432014391 a001 2178309/439204*439204^(1/6) 4324118432015353 a001 514229/439204*439204^(5/18) 4324118432016491 a001 196418/4870847*1149851^(1/2) 4324118432017056 a001 98209/930249*20633239^(5/14) 4324118432017060 a001 208010/109801*141422324^(1/6) 4324118432017060 a001 98209/930249*2537720636^(5/18) 4324118432017060 a001 98209/930249*312119004989^(5/22) 4324118432017060 a001 98209/930249*3461452808002^(5/24) 4324118432017060 a001 208010/109801*73681302247^(1/8) 4324118432017060 a001 98209/930249*28143753123^(1/4) 4324118432017060 a001 98209/930249*228826127^(5/16) 4324118432017074 a001 9227465/439204*439204^(1/18) 4324118432017580 a001 98209/930249*1860498^(5/12) 4324118432018117 a001 2178309/439204*7881196^(3/22) 4324118432018127 a001 2178309/439204*2537720636^(1/10) 4324118432018127 a001 196418/4870847*1322157322203^(1/4) 4324118432018127 a001 2178309/439204*14662949395604^(1/14) 4324118432018127 a001 2178309/439204*192900153618^(1/12) 4324118432018127 a001 2178309/439204*33385282^(1/8) 4324118432018140 a001 98209/3940598*3010349^(1/2) 4324118432018242 a001 196418/17393796001*7881196^(21/22) 4324118432018248 a001 196418/12752043*7881196^(1/2) 4324118432018249 a001 196418/4106118243*7881196^(19/22) 4324118432018251 a001 98209/1268860318*7881196^(5/6) 4324118432018255 a001 196418/969323029*7881196^(17/22) 4324118432018261 a001 196418/228826127*7881196^(15/22) 4324118432018269 a001 196418/54018521*7881196^(13/22) 4324118432018282 a001 5702887/439204*20633239^(1/14) 4324118432018282 a001 5702887/439204*2537720636^(1/18) 4324118432018282 a001 196418/12752043*312119004989^(3/10) 4324118432018282 a001 5702887/439204*312119004989^(1/22) 4324118432018282 a001 5702887/439204*28143753123^(1/20) 4324118432018282 a001 196418/12752043*1568397607^(3/8) 4324118432018282 a001 5702887/439204*228826127^(1/16) 4324118432018284 a001 196418/12752043*33385282^(11/24) 4324118432018299 a001 196418/28143753123*20633239^(13/14) 4324118432018300 a001 196418/17393796001*20633239^(9/10) 4324118432018301 a001 98209/1268860318*20633239^(11/14) 4324118432018302 a001 98209/299537289*20633239^(7/10) 4324118432018302 a001 196418/228826127*20633239^(9/14) 4324118432018304 a001 98209/16692641*54018521^(1/2) 4324118432018307 a006 5^(1/2)*fibonacci(73/2)/Lucas(27)/sqrt(5) 4324118432018308 a001 196418/87403803*370248451^(1/2) 4324118432018309 a001 196418/28143753123*141422324^(5/6) 4324118432018309 a001 196418/228826127*2537720636^(1/2) 4324118432018309 a001 196418/228826127*312119004989^(9/22) 4324118432018309 a001 196418/228826127*14662949395604^(5/14) 4324118432018309 a001 196418/228826127*192900153618^(5/12) 4324118432018309 a001 196418/228826127*28143753123^(9/20) 4324118432018309 a001 196418/228826127*228826127^(9/16) 4324118432018309 a001 98209/299537289*17393796001^(1/2) 4324118432018309 a001 98209/299537289*14662949395604^(7/18) 4324118432018309 a001 98209/299537289*505019158607^(7/16) 4324118432018309 a001 98209/299537289*599074578^(7/12) 4324118432018309 a001 196418/1568397607*119218851371^(1/2) 4324118432018309 a001 98209/1730726404001*2537720636^(17/18) 4324118432018309 a001 196418/1322157322203*2537720636^(9/10) 4324118432018309 a001 196418/312119004989*2537720636^(5/6) 4324118432018309 a001 196418/28143753123*2537720636^(13/18) 4324118432018309 a001 196418/17393796001*2537720636^(7/10) 4324118432018309 a001 196418/4106118243*817138163596^(1/2) 4324118432018309 a001 98209/5374978561*5600748293801^(1/2) 4324118432018309 a001 98209/7331474697802*17393796001^(13/14) 4324118432018309 a001 196418/505019158607*17393796001^(11/14) 4324118432018309 a001 196418/28143753123*312119004989^(13/22) 4324118432018309 a001 196418/28143753123*3461452808002^(13/24) 4324118432018309 a001 196418/28143753123*73681302247^(5/8) 4324118432018309 a001 196418/28143753123*28143753123^(13/20) 4324118432018309 a001 98209/1730726404001*45537549124^(5/6) 4324118432018309 a001 98209/1730726404001*312119004989^(17/22) 4324118432018309 a001 196418/505019158607*14662949395604^(11/18) 4324118432018309 a001 196418/1322157322203*14662949395604^(9/14) 4324118432018309 a001 196418/23725150497407*9062201101803^(3/4) 4324118432018309 a001 196418/312119004989*312119004989^(15/22) 4324118432018309 a001 196418/312119004989*3461452808002^(5/8) 4324118432018309 a001 196418/1322157322203*192900153618^(3/4) 4324118432018309 a006 5^(1/2)*Fibonacci(73/2)/Lucas(27)/sqrt(5) 4324118432018309 a001 98209/7331474697802*73681302247^(7/8) 4324118432018309 a001 196418/312119004989*28143753123^(3/4) 4324118432018309 a001 98209/1730726404001*28143753123^(17/20) 4324118432018309 a001 196418/17393796001*17393796001^(9/14) 4324118432018309 a001 196418/17393796001*14662949395604^(1/2) 4324118432018309 a001 196418/17393796001*505019158607^(9/16) 4324118432018309 a001 196418/17393796001*192900153618^(7/12) 4324118432018309 a001 196418/6643838879*2139295485799^(1/2) 4324118432018309 a001 196418/73681302247*4106118243^(3/4) 4324118432018309 a001 98209/1268860318*2537720636^(11/18) 4324118432018309 a001 98209/1268860318*312119004989^(1/2) 4324118432018309 a001 98209/1268860318*3461452808002^(11/24) 4324118432018309 a001 98209/1268860318*28143753123^(11/20) 4324118432018309 a001 196418/505019158607*1568397607^(7/8) 4324118432018309 a001 98209/1268860318*1568397607^(5/8) 4324118432018309 a001 196418/969323029*45537549124^(1/2) 4324118432018309 a001 196418/17393796001*599074578^(3/4) 4324118432018309 a001 196418/505019158607*599074578^(11/12) 4324118432018309 a001 196418/370248451*6643838879^(1/2) 4324118432018309 a001 98209/1268860318*228826127^(11/16) 4324118432018309 a001 196418/28143753123*228826127^(13/16) 4324118432018309 a001 196418/312119004989*228826127^(15/16) 4324118432018309 a001 98209/70711162*969323029^(1/2) 4324118432018309 a001 196418/4106118243*87403803^(3/4) 4324118432018310 a001 196418/54018521*141422324^(1/2) 4324118432018310 a001 196418/54018521*73681302247^(3/8) 4324118432018311 a001 196418/228826127*33385282^(5/8) 4324118432018312 a001 196418/969323029*33385282^(17/24) 4324118432018312 a001 196418/4106118243*33385282^(19/24) 4324118432018312 a001 196418/17393796001*33385282^(7/8) 4324118432018312 a001 196418/54018521*33385282^(13/24) 4324118432018313 a001 196418/73681302247*33385282^(23/24) 4324118432018314 a001 196418/20633239*20633239^(1/2) 4324118432018314 a001 2178309/439204*1860498^(3/20) 4324118432018316 a001 9227465/439204*7881196^(1/22) 4324118432018319 a001 196418/20633239*2537720636^(7/18) 4324118432018319 a001 196418/20633239*17393796001^(5/14) 4324118432018319 a001 196418/20633239*312119004989^(7/22) 4324118432018319 a001 196418/20633239*14662949395604^(5/18) 4324118432018319 a001 196418/20633239*505019158607^(5/16) 4324118432018319 a001 196418/20633239*28143753123^(7/20) 4324118432018319 a001 196418/20633239*599074578^(5/12) 4324118432018319 a001 196418/20633239*228826127^(7/16) 4324118432018319 a001 9227465/439204*33385282^(1/24) 4324118432018329 a001 196418/969323029*12752043^(3/4) 4324118432018378 a001 1762289/219602*20633239^(1/10) 4324118432018379 a001 1762289/219602*17393796001^(1/14) 4324118432018379 a001 98209/3940598*9062201101803^(1/4) 4324118432018379 a001 1762289/219602*14662949395604^(1/18) 4324118432018379 a001 1762289/219602*505019158607^(1/16) 4324118432018379 a001 1762289/219602*599074578^(1/12) 4324118432018382 a001 9227465/439204*1860498^(1/20) 4324118432018386 a001 5702887/439204*1860498^(1/12) 4324118432018758 a001 196418/3010349*7881196^(9/22) 4324118432018774 a001 1346269/439204*7881196^(1/6) 4324118432018786 a001 196418/3010349*2537720636^(3/10) 4324118432018786 a001 196418/3010349*14662949395604^(3/14) 4324118432018786 a001 196418/3010349*192900153618^(1/4) 4324118432018786 a001 1346269/439204*312119004989^(1/10) 4324118432018786 a001 1346269/439204*1568397607^(1/8) 4324118432018788 a001 196418/3010349*33385282^(3/8) 4324118432018969 a001 196418/12752043*1860498^(11/20) 4324118432019048 a001 196418/20633239*1860498^(7/12) 4324118432019122 a001 196418/54018521*1860498^(13/20) 4324118432019246 a001 196418/228826127*1860498^(3/4) 4324118432019348 a001 196418/3010349*1860498^(9/20) 4324118432019371 a001 196418/969323029*1860498^(17/20) 4324118432019449 a001 1762289/219602*710647^(1/8) 4324118432019454 a001 98209/1268860318*1860498^(11/12) 4324118432019496 a001 196418/4106118243*1860498^(19/20) 4324118432019783 a001 39088169/1860498*103682^(1/16) 4324118432020851 a001 102334155/4870847*103682^(1/16) 4324118432021006 a001 267914296/12752043*103682^(1/16) 4324118432021029 a001 701408733/33385282*103682^(1/16) 4324118432021032 a001 1836311903/87403803*103682^(1/16) 4324118432021033 a001 102287808/4868641*103682^(1/16) 4324118432021033 a001 12586269025/599074578*103682^(1/16) 4324118432021033 a001 32951280099/1568397607*103682^(1/16) 4324118432021033 a001 86267571272/4106118243*103682^(1/16) 4324118432021033 a001 225851433717/10749957122*103682^(1/16) 4324118432021033 a001 591286729879/28143753123*103682^(1/16) 4324118432021033 a001 1548008755920/73681302247*103682^(1/16) 4324118432021033 a001 4052739537881/192900153618*103682^(1/16) 4324118432021033 a001 225749145909/10745088481*103682^(1/16) 4324118432021033 a001 6557470319842/312119004989*103682^(1/16) 4324118432021033 a001 2504730781961/119218851371*103682^(1/16) 4324118432021033 a001 956722026041/45537549124*103682^(1/16) 4324118432021033 a001 365435296162/17393796001*103682^(1/16) 4324118432021033 a001 139583862445/6643838879*103682^(1/16) 4324118432021033 a001 53316291173/2537720636*103682^(1/16) 4324118432021033 a001 20365011074/969323029*103682^(1/16) 4324118432021033 a001 7778742049/370248451*103682^(1/16) 4324118432021033 a001 2971215073/141422324*103682^(1/16) 4324118432021034 a001 1134903170/54018521*103682^(1/16) 4324118432021043 a001 433494437/20633239*103682^(1/16) 4324118432021103 a001 165580141/7881196*103682^(1/16) 4324118432021510 a001 63245986/3010349*103682^(1/16) 4324118432021564 a001 514229/439204*7881196^(5/22) 4324118432021577 a001 514229/439204*20633239^(3/14) 4324118432021579 a001 514229/439204*2537720636^(1/6) 4324118432021579 a001 514229/439204*312119004989^(3/22) 4324118432021579 a001 514229/439204*28143753123^(3/20) 4324118432021579 a001 196418/1149851*4106118243^(1/4) 4324118432021579 a001 514229/439204*228826127^(3/16) 4324118432021580 a001 514229/439204*33385282^(5/24) 4324118432021892 a001 514229/439204*1860498^(1/4) 4324118432023670 a001 196418/20633239*710647^(5/8) 4324118432024305 a001 24157817/1149851*103682^(1/16) 4324118432025801 a001 98209/299537289*710647^(7/8) 4324118432031016 a001 416020/51841*39603^(7/44) 4324118432031345 a001 105937/29134601*271443^(3/4) 4324118432031731 a001 208010/109801*271443^(1/4) 4324118432038658 a001 832040/228826127*271443^(3/4) 4324118432039725 a001 726103/199691526*271443^(3/4) 4324118432039881 a001 5702887/1568397607*271443^(3/4) 4324118432039904 a001 4976784/1368706081*271443^(3/4) 4324118432039907 a001 39088169/10749957122*271443^(3/4) 4324118432039908 a001 831985/228811001*271443^(3/4) 4324118432039908 a001 267914296/73681302247*271443^(3/4) 4324118432039908 a001 233802911/64300051206*271443^(3/4) 4324118432039908 a001 1836311903/505019158607*271443^(3/4) 4324118432039908 a001 1602508992/440719107401*271443^(3/4) 4324118432039908 a001 12586269025/3461452808002*271443^(3/4) 4324118432039908 a001 10983760033/3020733700601*271443^(3/4) 4324118432039908 a001 86267571272/23725150497407*271443^(3/4) 4324118432039908 a001 53316291173/14662949395604*271443^(3/4) 4324118432039908 a001 20365011074/5600748293801*271443^(3/4) 4324118432039908 a001 7778742049/2139295485799*271443^(3/4) 4324118432039908 a001 2971215073/817138163596*271443^(3/4) 4324118432039908 a001 1134903170/312119004989*271443^(3/4) 4324118432039908 a001 433494437/119218851371*271443^(3/4) 4324118432039908 a001 165580141/45537549124*271443^(3/4) 4324118432039908 a001 63245986/17393796001*271443^(3/4) 4324118432039909 a001 24157817/6643838879*271443^(3/4) 4324118432039918 a001 9227465/2537720636*271443^(3/4) 4324118432039977 a001 3524578/969323029*271443^(3/4) 4324118432040385 a001 1346269/370248451*271443^(3/4) 4324118432040725 a001 98209/219602*817138163596^(1/6) 4324118432040725 a001 98209/219602*87403803^(1/4) 4324118432042055 a001 75025/7881196*167761^(7/10) 4324118432043178 a001 514229/141422324*271443^(3/4) 4324118432043459 a001 9227465/439204*103682^(1/16) 4324118432054345 a001 105937/90481*103682^(5/16) 4324118432062325 a001 196418/54018521*271443^(3/4) 4324118432062821 a001 3524578/710647*103682^(3/16) 4324118432064152 a001 75025/710647*167761^(1/2) 4324118432070074 a001 9227465/1860498*103682^(3/16) 4324118432071133 a001 24157817/4870847*103682^(3/16) 4324118432071287 a001 63245986/12752043*103682^(3/16) 4324118432071310 a001 165580141/33385282*103682^(3/16) 4324118432071313 a001 433494437/87403803*103682^(3/16) 4324118432071313 a001 1134903170/228826127*103682^(3/16) 4324118432071314 a001 2971215073/599074578*103682^(3/16) 4324118432071314 a001 7778742049/1568397607*103682^(3/16) 4324118432071314 a001 20365011074/4106118243*103682^(3/16) 4324118432071314 a001 53316291173/10749957122*103682^(3/16) 4324118432071314 a001 139583862445/28143753123*103682^(3/16) 4324118432071314 a001 365435296162/73681302247*103682^(3/16) 4324118432071314 a001 956722026041/192900153618*103682^(3/16) 4324118432071314 a001 2504730781961/505019158607*103682^(3/16) 4324118432071314 a001 10610209857723/2139295485799*103682^(3/16) 4324118432071314 a001 4052739537881/817138163596*103682^(3/16) 4324118432071314 a001 140728068720/28374454999*103682^(3/16) 4324118432071314 a001 591286729879/119218851371*103682^(3/16) 4324118432071314 a001 225851433717/45537549124*103682^(3/16) 4324118432071314 a001 86267571272/17393796001*103682^(3/16) 4324118432071314 a001 32951280099/6643838879*103682^(3/16) 4324118432071314 a001 1144206275/230701876*103682^(3/16) 4324118432071314 a001 4807526976/969323029*103682^(3/16) 4324118432071314 a001 1836311903/370248451*103682^(3/16) 4324118432071314 a001 701408733/141422324*103682^(3/16) 4324118432071315 a001 267914296/54018521*103682^(3/16) 4324118432071324 a001 9303105/1875749*103682^(3/16) 4324118432071383 a001 39088169/7881196*103682^(3/16) 4324118432071787 a001 14930352/3010349*103682^(3/16) 4324118432074557 a001 5702887/1149851*103682^(3/16) 4324118432082132 a001 75025/271443*439204^(7/18) 4324118432090828 a001 75025/271443*7881196^(7/22) 4324118432090847 a001 75025/271443*20633239^(3/10) 4324118432090850 a001 75025/271443*17393796001^(3/14) 4324118432090850 a001 75025/271443*14662949395604^(1/6) 4324118432090850 a001 121393/167761*45537549124^(1/6) 4324118432090850 a001 75025/271443*599074578^(1/4) 4324118432090851 a001 75025/271443*33385282^(7/24) 4324118432090856 a001 121393/167761*12752043^(1/4) 4324118432091287 a001 75025/271443*1860498^(7/20) 4324118432093548 a001 2178309/439204*103682^(3/16) 4324118432094061 a001 75025/271443*710647^(3/8) 4324118432111783 a001 832040/710647*103682^(5/16) 4324118432120163 a001 726103/620166*103682^(5/16) 4324118432121385 a001 5702887/4870847*103682^(5/16) 4324118432121564 a001 4976784/4250681*103682^(5/16) 4324118432121590 a001 39088169/33385282*103682^(5/16) 4324118432121594 a001 34111385/29134601*103682^(5/16) 4324118432121594 a001 267914296/228826127*103682^(5/16) 4324118432121594 a001 233802911/199691526*103682^(5/16) 4324118432121594 a001 1836311903/1568397607*103682^(5/16) 4324118432121594 a001 1602508992/1368706081*103682^(5/16) 4324118432121594 a001 12586269025/10749957122*103682^(5/16) 4324118432121594 a001 10983760033/9381251041*103682^(5/16) 4324118432121594 a001 86267571272/73681302247*103682^(5/16) 4324118432121594 a001 75283811239/64300051206*103682^(5/16) 4324118432121594 a001 2504730781961/2139295485799*103682^(5/16) 4324118432121594 a001 365435296162/312119004989*103682^(5/16) 4324118432121594 a001 139583862445/119218851371*103682^(5/16) 4324118432121594 a001 53316291173/45537549124*103682^(5/16) 4324118432121594 a001 20365011074/17393796001*103682^(5/16) 4324118432121594 a001 7778742049/6643838879*103682^(5/16) 4324118432121594 a001 2971215073/2537720636*103682^(5/16) 4324118432121594 a001 1134903170/969323029*103682^(5/16) 4324118432121594 a001 433494437/370248451*103682^(5/16) 4324118432121594 a001 165580141/141422324*103682^(5/16) 4324118432121596 a001 63245986/54018521*103682^(5/16) 4324118432121606 a001 24157817/20633239*103682^(5/16) 4324118432121674 a001 9227465/7881196*103682^(5/16) 4324118432122141 a001 3524578/3010349*103682^(5/16) 4324118432125342 a001 1346269/1149851*103682^(5/16) 4324118432125860 a001 196418/167761*167761^(3/10) 4324118432127078 a001 1597/5778*3571^(21/34) 4324118432128366 a001 75025/370248451*439204^(17/18) 4324118432130856 a001 75025/87403803*439204^(5/6) 4324118432133357 a001 75025/20633239*439204^(13/18) 4324118432133990 a001 2178309/167761*167761^(1/10) 4324118432135604 a001 121393/439204*103682^(7/16) 4324118432135655 a001 75025/4870847*439204^(11/18) 4324118432140971 a001 75025/710647*20633239^(5/14) 4324118432140974 a001 317811/167761*141422324^(1/6) 4324118432140974 a001 75025/710647*2537720636^(5/18) 4324118432140974 a001 75025/710647*312119004989^(5/22) 4324118432140974 a001 75025/710647*3461452808002^(5/24) 4324118432140974 a001 75025/710647*28143753123^(1/4) 4324118432140974 a001 317811/167761*73681302247^(1/8) 4324118432140974 a001 75025/710647*228826127^(5/16) 4324118432141495 a001 75025/710647*1860498^(5/12) 4324118432141599 a001 75025/1149851*439204^(1/2) 4324118432144551 a001 75640/15251*439204^(1/6) 4324118432146652 a001 75025/1860498*1149851^(1/2) 4324118432147281 a001 514229/439204*103682^(5/16) 4324118432148278 a001 75640/15251*7881196^(3/22) 4324118432148287 a001 75640/15251*2537720636^(1/10) 4324118432148287 a001 75025/1860498*1322157322203^(1/4) 4324118432148287 a001 75640/15251*14662949395604^(1/14) 4324118432148287 a001 75640/15251*192900153618^(1/12) 4324118432148288 a001 75640/15251*33385282^(1/8) 4324118432148361 a001 3524578/167761*439204^(1/18) 4324118432148475 a001 75640/15251*1860498^(3/20) 4324118432149319 a001 75025/4870847*7881196^(1/2) 4324118432149354 a001 2178309/167761*20633239^(1/14) 4324118432149354 a001 2178309/167761*2537720636^(1/18) 4324118432149354 a001 75025/4870847*312119004989^(3/10) 4324118432149354 a001 2178309/167761*312119004989^(1/22) 4324118432149354 a001 2178309/167761*28143753123^(1/20) 4324118432149354 a001 75025/4870847*1568397607^(3/8) 4324118432149354 a001 2178309/167761*228826127^(1/16) 4324118432149356 a001 75025/4870847*33385282^(11/24) 4324118432149458 a001 2178309/167761*1860498^(1/12) 4324118432149470 a001 75025/6643838879*7881196^(21/22) 4324118432149476 a001 75025/1568397607*7881196^(19/22) 4324118432149479 a001 75025/969323029*7881196^(5/6) 4324118432149483 a001 75025/370248451*7881196^(17/22) 4324118432149489 a001 75025/87403803*7881196^(15/22) 4324118432149506 a001 75025/20633239*7881196^(13/22) 4324118432149509 a001 75025/12752043*54018521^(1/2) 4324118432149520 a006 5^(1/2)*fibonacci(69/2)/Lucas(25)/sqrt(5) 4324118432149527 a001 75025/10749957122*20633239^(13/14) 4324118432149527 a001 75025/6643838879*20633239^(9/10) 4324118432149529 a001 75025/969323029*20633239^(11/14) 4324118432149529 a001 75025/228826127*20633239^(7/10) 4324118432149529 a001 75025/87403803*20633239^(9/14) 4324118432149533 a001 75025/33385282*370248451^(1/2) 4324118432149536 a001 75025/87403803*2537720636^(1/2) 4324118432149536 a001 75025/87403803*312119004989^(9/22) 4324118432149536 a001 75025/87403803*14662949395604^(5/14) 4324118432149536 a001 75025/87403803*192900153618^(5/12) 4324118432149536 a001 75025/87403803*28143753123^(9/20) 4324118432149536 a001 75025/87403803*228826127^(9/16) 4324118432149536 a001 75025/10749957122*141422324^(5/6) 4324118432149536 a001 75025/228826127*17393796001^(1/2) 4324118432149536 a001 75025/228826127*14662949395604^(7/18) 4324118432149536 a001 75025/228826127*505019158607^(7/16) 4324118432149536 a001 75025/228826127*599074578^(7/12) 4324118432149537 a001 75025/599074578*119218851371^(1/2) 4324118432149537 a001 75025/1568397607*817138163596^(1/2) 4324118432149537 a001 75025/1322157322203*2537720636^(17/18) 4324118432149537 a001 75025/505019158607*2537720636^(9/10) 4324118432149537 a001 75025/119218851371*2537720636^(5/6) 4324118432149537 a001 75025/10749957122*2537720636^(13/18) 4324118432149537 a001 75025/6643838879*2537720636^(7/10) 4324118432149537 a001 75025/4106118243*5600748293801^(1/2) 4324118432149537 a001 75025/10749957122*312119004989^(13/22) 4324118432149537 a001 75025/10749957122*3461452808002^(13/24) 4324118432149537 a001 75025/10749957122*73681302247^(5/8) 4324118432149537 a001 75025/10749957122*28143753123^(13/20) 4324118432149537 a001 75025/5600748293801*17393796001^(13/14) 4324118432149537 a001 75025/192900153618*17393796001^(11/14) 4324118432149537 a001 75025/1322157322203*45537549124^(5/6) 4324118432149537 a001 75025/192900153618*14662949395604^(11/18) 4324118432149537 a001 75025/192900153618*505019158607^(11/16) 4324118432149537 a001 75025/1322157322203*312119004989^(17/22) 4324118432149537 a001 75025/1322157322203*3461452808002^(17/24) 4324118432149537 a001 75025/14662949395604*3461452808002^(19/24) 4324118432149537 a001 75025/2139295485799*1322157322203^(3/4) 4324118432149537 a001 75025/505019158607*192900153618^(3/4) 4324118432149537 a001 75025/119218851371*312119004989^(15/22) 4324118432149537 a001 75025/119218851371*3461452808002^(5/8) 4324118432149537 a001 75025/5600748293801*73681302247^(7/8) 4324118432149537 a001 75025/119218851371*28143753123^(3/4) 4324118432149537 a001 75025/1322157322203*28143753123^(17/20) 4324118432149537 a001 75025/14662949395604*28143753123^(19/20) 4324118432149537 a006 5^(1/2)*Fibonacci(69/2)/Lucas(25)/sqrt(5) 4324118432149537 a001 75025/6643838879*17393796001^(9/14) 4324118432149537 a001 75025/6643838879*14662949395604^(1/2) 4324118432149537 a001 75025/6643838879*505019158607^(9/16) 4324118432149537 a001 75025/6643838879*192900153618^(7/12) 4324118432149537 a001 75025/28143753123*4106118243^(3/4) 4324118432149537 a001 75025/2537720636*2139295485799^(1/2) 4324118432149537 a001 75025/192900153618*1568397607^(7/8) 4324118432149537 a001 75025/969323029*2537720636^(11/18) 4324118432149537 a001 75025/969323029*312119004989^(1/2) 4324118432149537 a001 75025/969323029*3461452808002^(11/24) 4324118432149537 a001 75025/969323029*28143753123^(11/20) 4324118432149537 a001 75025/969323029*1568397607^(5/8) 4324118432149537 a001 75025/6643838879*599074578^(3/4) 4324118432149537 a001 75025/192900153618*599074578^(11/12) 4324118432149537 a001 75025/370248451*45537549124^(1/2) 4324118432149537 a001 75025/969323029*228826127^(11/16) 4324118432149537 a001 75025/10749957122*228826127^(13/16) 4324118432149537 a001 75025/119218851371*228826127^(15/16) 4324118432149537 a001 75025/141422324*6643838879^(1/2) 4324118432149537 a001 75025/1568397607*87403803^(3/4) 4324118432149538 a001 75025/54018521*969323029^(1/2) 4324118432149538 a001 75025/87403803*33385282^(5/8) 4324118432149539 a001 75025/370248451*33385282^(17/24) 4324118432149540 a001 75025/1568397607*33385282^(19/24) 4324118432149540 a001 75025/6643838879*33385282^(7/8) 4324118432149540 a001 75025/28143753123*33385282^(23/24) 4324118432149547 a001 75025/20633239*141422324^(1/2) 4324118432149547 a001 75025/20633239*73681302247^(3/8) 4324118432149549 a001 75025/20633239*33385282^(13/24) 4324118432149557 a001 75025/370248451*12752043^(3/4) 4324118432149601 a001 75025/7881196*20633239^(1/2) 4324118432149603 a001 3524578/167761*7881196^(1/22) 4324118432149606 a001 75025/7881196*2537720636^(7/18) 4324118432149606 a001 75025/7881196*17393796001^(5/14) 4324118432149606 a001 75025/7881196*312119004989^(7/22) 4324118432149606 a001 75025/7881196*14662949395604^(5/18) 4324118432149606 a001 75025/7881196*28143753123^(7/20) 4324118432149606 a001 75025/7881196*599074578^(5/12) 4324118432149606 a001 75025/7881196*228826127^(7/16) 4324118432149606 a001 3524578/167761*33385282^(1/24) 4324118432149669 a001 3524578/167761*1860498^(1/20) 4324118432149775 a001 75025/3010349*3010349^(1/2) 4324118432150013 a001 1346269/167761*20633239^(1/10) 4324118432150014 a001 75025/3010349*9062201101803^(1/4) 4324118432150014 a001 1346269/167761*17393796001^(1/14) 4324118432150014 a001 1346269/167761*14662949395604^(1/18) 4324118432150014 a001 1346269/167761*505019158607^(1/16) 4324118432150014 a001 1346269/167761*599074578^(1/12) 4324118432150041 a001 75025/4870847*1860498^(11/20) 4324118432150335 a001 75025/7881196*1860498^(7/12) 4324118432150359 a001 75025/20633239*1860498^(13/20) 4324118432150473 a001 75025/87403803*1860498^(3/4) 4324118432150598 a001 75025/370248451*1860498^(17/20) 4324118432150682 a001 75025/969323029*1860498^(11/12) 4324118432150723 a001 75025/1568397607*1860498^(19/20) 4324118432151084 a001 1346269/167761*710647^(1/8) 4324118432152779 a001 75025/1149851*7881196^(9/22) 4324118432152795 a001 514229/167761*7881196^(1/6) 4324118432152807 a001 75025/1149851*2537720636^(3/10) 4324118432152807 a001 75025/1149851*14662949395604^(3/14) 4324118432152807 a001 75025/1149851*192900153618^(1/4) 4324118432152807 a001 514229/167761*312119004989^(1/10) 4324118432152807 a001 514229/167761*1568397607^(1/8) 4324118432152808 a001 75025/1149851*33385282^(3/8) 4324118432153369 a001 75025/1149851*1860498^(9/20) 4324118432154958 a001 75025/7881196*710647^(5/8) 4324118432155646 a001 317811/167761*271443^(1/4) 4324118432157028 a001 75025/228826127*710647^(7/8) 4324118432160856 a001 514229/103682*39603^(9/44) 4324118432162219 a001 121393/1860498*103682^(9/16) 4324118432165726 a001 196418/167761*439204^(5/18) 4324118432166583 a001 317811/1149851*103682^(7/16) 4324118432167567 a001 10946/4870847*24476^(41/42) 4324118432171103 a001 832040/3010349*103682^(7/16) 4324118432171762 a001 2178309/7881196*103682^(7/16) 4324118432171858 a001 5702887/20633239*103682^(7/16) 4324118432171872 a001 14930352/54018521*103682^(7/16) 4324118432171874 a001 39088169/141422324*103682^(7/16) 4324118432171875 a001 102334155/370248451*103682^(7/16) 4324118432171875 a001 267914296/969323029*103682^(7/16) 4324118432171875 a001 701408733/2537720636*103682^(7/16) 4324118432171875 a001 1836311903/6643838879*103682^(7/16) 4324118432171875 a001 4807526976/17393796001*103682^(7/16) 4324118432171875 a001 12586269025/45537549124*103682^(7/16) 4324118432171875 a001 32951280099/119218851371*103682^(7/16) 4324118432171875 a001 86267571272/312119004989*103682^(7/16) 4324118432171875 a001 225851433717/817138163596*103682^(7/16) 4324118432171875 a001 1548008755920/5600748293801*103682^(7/16) 4324118432171875 a001 139583862445/505019158607*103682^(7/16) 4324118432171875 a001 53316291173/192900153618*103682^(7/16) 4324118432171875 a001 20365011074/73681302247*103682^(7/16) 4324118432171875 a001 7778742049/28143753123*103682^(7/16) 4324118432171875 a001 2971215073/10749957122*103682^(7/16) 4324118432171875 a001 1134903170/4106118243*103682^(7/16) 4324118432171875 a001 433494437/1568397607*103682^(7/16) 4324118432171875 a001 165580141/599074578*103682^(7/16) 4324118432171875 a001 63245986/228826127*103682^(7/16) 4324118432171876 a001 24157817/87403803*103682^(7/16) 4324118432171881 a001 9227465/33385282*103682^(7/16) 4324118432171918 a001 3524578/12752043*103682^(7/16) 4324118432171937 a001 196418/167761*7881196^(5/22) 4324118432171951 a001 196418/167761*20633239^(3/14) 4324118432171953 a001 196418/167761*2537720636^(1/6) 4324118432171953 a001 196418/167761*312119004989^(3/22) 4324118432171953 a001 196418/167761*28143753123^(3/20) 4324118432171953 a001 75025/439204*4106118243^(1/4) 4324118432171953 a001 196418/167761*228826127^(3/16) 4324118432171954 a001 196418/167761*33385282^(5/24) 4324118432172170 a001 1346269/4870847*103682^(7/16) 4324118432172265 a001 196418/167761*1860498^(1/4) 4324118432173896 a001 514229/1860498*103682^(7/16) 4324118432174746 a001 3524578/167761*103682^(1/16) 4324118432185729 a001 196418/710647*103682^(7/16) 4324118432188450 a001 832040/64079*24476^(5/42) 4324118432193562 a001 75025/20633239*271443^(3/4) 4324118432213411 a001 317811/4870847*103682^(9/16) 4324118432213819 a001 121393/7881196*103682^(11/16) 4324118432220880 a001 832040/12752043*103682^(9/16) 4324118432221969 a001 311187/4769326*103682^(9/16) 4324118432222128 a001 5702887/87403803*103682^(9/16) 4324118432222151 a001 14930352/228826127*103682^(9/16) 4324118432222155 a001 39088169/599074578*103682^(9/16) 4324118432222155 a001 14619165/224056801*103682^(9/16) 4324118432222155 a001 267914296/4106118243*103682^(9/16) 4324118432222155 a001 701408733/10749957122*103682^(9/16) 4324118432222155 a001 1836311903/28143753123*103682^(9/16) 4324118432222155 a001 686789568/10525900321*103682^(9/16) 4324118432222155 a001 12586269025/192900153618*103682^(9/16) 4324118432222155 a001 32951280099/505019158607*103682^(9/16) 4324118432222155 a001 86267571272/1322157322203*103682^(9/16) 4324118432222155 a001 32264490531/494493258286*103682^(9/16) 4324118432222155 a001 591286729879/9062201101803*103682^(9/16) 4324118432222155 a001 1548008755920/23725150497407*103682^(9/16) 4324118432222155 a001 139583862445/2139295485799*103682^(9/16) 4324118432222155 a001 53316291173/817138163596*103682^(9/16) 4324118432222155 a001 20365011074/312119004989*103682^(9/16) 4324118432222155 a001 7778742049/119218851371*103682^(9/16) 4324118432222155 a001 2971215073/45537549124*103682^(9/16) 4324118432222155 a001 1134903170/17393796001*103682^(9/16) 4324118432222155 a001 433494437/6643838879*103682^(9/16) 4324118432222155 a001 165580141/2537720636*103682^(9/16) 4324118432222156 a001 63245986/969323029*103682^(9/16) 4324118432222157 a001 24157817/370248451*103682^(9/16) 4324118432222166 a001 9227465/141422324*103682^(9/16) 4324118432222227 a001 3524578/54018521*103682^(9/16) 4324118432222643 a001 1346269/20633239*103682^(9/16) 4324118432223708 a001 75640/15251*103682^(3/16) 4324118432225496 a001 514229/7881196*103682^(9/16) 4324118432245049 a001 196418/3010349*103682^(9/16) 4324118432263884 a001 10959/711491*103682^(11/16) 4324118432264026 a001 121393/33385282*103682^(13/16) 4324118432266832 a001 75025/271443*103682^(7/16) 4324118432271188 a001 832040/54018521*103682^(11/16) 4324118432272254 a001 2178309/141422324*103682^(11/16) 4324118432272410 a001 5702887/370248451*103682^(11/16) 4324118432272432 a001 14930352/969323029*103682^(11/16) 4324118432272436 a001 39088169/2537720636*103682^(11/16) 4324118432272436 a001 102334155/6643838879*103682^(11/16) 4324118432272436 a001 9238424/599786069*103682^(11/16) 4324118432272436 a001 701408733/45537549124*103682^(11/16) 4324118432272436 a001 1836311903/119218851371*103682^(11/16) 4324118432272436 a001 4807526976/312119004989*103682^(11/16) 4324118432272436 a001 12586269025/817138163596*103682^(11/16) 4324118432272436 a001 32951280099/2139295485799*103682^(11/16) 4324118432272436 a001 86267571272/5600748293801*103682^(11/16) 4324118432272436 a001 7787980473/505618944676*103682^(11/16) 4324118432272436 a001 365435296162/23725150497407*103682^(11/16) 4324118432272436 a001 139583862445/9062201101803*103682^(11/16) 4324118432272436 a001 53316291173/3461452808002*103682^(11/16) 4324118432272436 a001 20365011074/1322157322203*103682^(11/16) 4324118432272436 a001 7778742049/505019158607*103682^(11/16) 4324118432272436 a001 2971215073/192900153618*103682^(11/16) 4324118432272436 a001 1134903170/73681302247*103682^(11/16) 4324118432272436 a001 433494437/28143753123*103682^(11/16) 4324118432272436 a001 165580141/10749957122*103682^(11/16) 4324118432272436 a001 63245986/4106118243*103682^(11/16) 4324118432272438 a001 24157817/1568397607*103682^(11/16) 4324118432272446 a001 9227465/599074578*103682^(11/16) 4324118432272506 a001 3524578/228826127*103682^(11/16) 4324118432272913 a001 1346269/87403803*103682^(11/16) 4324118432274342 a001 317811/103682*39603^(1/4) 4324118432275703 a001 514229/33385282*103682^(11/16) 4324118432294826 a001 196418/12752043*103682^(11/16) 4324118432297655 a001 196418/167761*103682^(5/16) 4324118432303181 a001 75025/167761*817138163596^(1/6) 4324118432303181 a001 75025/167761*87403803^(1/4) 4324118432314154 a001 105937/29134601*103682^(13/16) 4324118432314311 a001 233/271444*103682^(15/16) 4324118432321467 a001 832040/228826127*103682^(13/16) 4324118432322534 a001 726103/199691526*103682^(13/16) 4324118432322690 a001 5702887/1568397607*103682^(13/16) 4324118432322713 a001 4976784/1368706081*103682^(13/16) 4324118432322716 a001 39088169/10749957122*103682^(13/16) 4324118432322717 a001 831985/228811001*103682^(13/16) 4324118432322717 a001 267914296/73681302247*103682^(13/16) 4324118432322717 a001 233802911/64300051206*103682^(13/16) 4324118432322717 a001 1836311903/505019158607*103682^(13/16) 4324118432322717 a001 1602508992/440719107401*103682^(13/16) 4324118432322717 a001 12586269025/3461452808002*103682^(13/16) 4324118432322717 a001 10983760033/3020733700601*103682^(13/16) 4324118432322717 a001 86267571272/23725150497407*103682^(13/16) 4324118432322717 a001 53316291173/14662949395604*103682^(13/16) 4324118432322717 a001 20365011074/5600748293801*103682^(13/16) 4324118432322717 a001 7778742049/2139295485799*103682^(13/16) 4324118432322717 a001 2971215073/817138163596*103682^(13/16) 4324118432322717 a001 1134903170/312119004989*103682^(13/16) 4324118432322717 a001 433494437/119218851371*103682^(13/16) 4324118432322717 a001 165580141/45537549124*103682^(13/16) 4324118432322717 a001 63245986/17393796001*103682^(13/16) 4324118432322718 a001 24157817/6643838879*103682^(13/16) 4324118432322727 a001 9227465/2537720636*103682^(13/16) 4324118432322786 a001 3524578/969323029*103682^(13/16) 4324118432323194 a001 1346269/370248451*103682^(13/16) 4324118432325987 a001 514229/141422324*103682^(13/16) 4324118432345135 a001 196418/54018521*103682^(13/16) 4324118432364435 a001 317811/370248451*103682^(15/16) 4324118432371748 a001 832040/969323029*103682^(15/16) 4324118432372815 a001 2178309/2537720636*103682^(15/16) 4324118432372971 a001 5702887/6643838879*103682^(15/16) 4324118432372994 a001 14930352/17393796001*103682^(15/16) 4324118432372997 a001 39088169/45537549124*103682^(15/16) 4324118432372997 a001 102334155/119218851371*103682^(15/16) 4324118432372997 a001 267914296/312119004989*103682^(15/16) 4324118432372997 a001 701408733/817138163596*103682^(15/16) 4324118432372997 a001 1836311903/2139295485799*103682^(15/16) 4324118432372997 a001 4807526976/5600748293801*103682^(15/16) 4324118432372997 a001 12586269025/14662949395604*103682^(15/16) 4324118432372997 a001 20365011074/23725150497407*103682^(15/16) 4324118432372997 a001 7778742049/9062201101803*103682^(15/16) 4324118432372997 a001 2971215073/3461452808002*103682^(15/16) 4324118432372997 a001 1134903170/1322157322203*103682^(15/16) 4324118432372997 a001 433494437/505019158607*103682^(15/16) 4324118432372997 a001 165580141/192900153618*103682^(15/16) 4324118432372998 a001 63245986/73681302247*103682^(15/16) 4324118432372999 a001 24157817/28143753123*103682^(15/16) 4324118432373008 a001 9227465/10749957122*103682^(15/16) 4324118432373067 a001 3524578/4106118243*103682^(15/16) 4324118432373475 a001 1346269/1568397607*103682^(15/16) 4324118432375642 a001 726103/90481*39603^(7/44) 4324118432376268 a001 514229/599074578*103682^(15/16) 4324118432379070 a001 75025/1149851*103682^(9/16) 4324118432381938 a001 23184/51841*39603^(19/44) 4324118432395414 a001 196418/228826127*103682^(15/16) 4324118432425898 a001 75025/4870847*103682^(11/16) 4324118432430641 a001 98209/51841*39603^(13/44) 4324118432462653 a001 2178309/167761*39603^(5/44) 4324118432474857 a001 121393/103682*39603^(15/44) 4324118432476371 a001 75025/20633239*103682^(13/16) 4324118432501621 a001 1346269/271443*39603^(9/44) 4324118432511941 a001 10946/3010349*24476^(13/14) 4324118432526641 a001 75025/87403803*103682^(15/16) 4324118432533890 a001 1346269/64079*24476^(1/14) 4324118432537269 a001 105937/13201*15127^(7/40) 4324118432582064 a001 2178309/439204*39603^(9/44) 4324118432588632 a001 1346269/167761*39603^(7/44) 4324118432625214 a001 832040/271443*39603^(1/4) 4324118432638021 a001 28657/103682*439204^(7/18) 4324118432646717 a001 28657/103682*7881196^(7/22) 4324118432646736 a001 28657/103682*20633239^(3/10) 4324118432646739 a001 28657/103682*17393796001^(3/14) 4324118432646739 a001 28657/103682*14662949395604^(1/6) 4324118432646739 a001 46368/64079*45537549124^(1/6) 4324118432646739 a001 28657/103682*599074578^(1/4) 4324118432646740 a001 28657/103682*33385282^(7/24) 4324118432646746 a001 46368/64079*12752043^(1/4) 4324118432647176 a001 28657/103682*1860498^(7/20) 4324118432649950 a001 28657/103682*710647^(3/8) 4324118432676082 a001 28657/167761*64079^(1/2) 4324118432676405 a001 311187/101521*39603^(1/4) 4324118432683874 a001 5702887/1860498*39603^(1/4) 4324118432684964 a001 14930352/4870847*39603^(1/4) 4324118432685123 a001 39088169/12752043*39603^(1/4) 4324118432685146 a001 14619165/4769326*39603^(1/4) 4324118432685149 a001 267914296/87403803*39603^(1/4) 4324118432685150 a001 701408733/228826127*39603^(1/4) 4324118432685150 a001 1836311903/599074578*39603^(1/4) 4324118432685150 a001 686789568/224056801*39603^(1/4) 4324118432685150 a001 12586269025/4106118243*39603^(1/4) 4324118432685150 a001 32951280099/10749957122*39603^(1/4) 4324118432685150 a001 86267571272/28143753123*39603^(1/4) 4324118432685150 a001 32264490531/10525900321*39603^(1/4) 4324118432685150 a001 591286729879/192900153618*39603^(1/4) 4324118432685150 a001 1548008755920/505019158607*39603^(1/4) 4324118432685150 a001 1515744265389/494493258286*39603^(1/4) 4324118432685150 a001 2504730781961/817138163596*39603^(1/4) 4324118432685150 a001 956722026041/312119004989*39603^(1/4) 4324118432685150 a001 365435296162/119218851371*39603^(1/4) 4324118432685150 a001 139583862445/45537549124*39603^(1/4) 4324118432685150 a001 53316291173/17393796001*39603^(1/4) 4324118432685150 a001 20365011074/6643838879*39603^(1/4) 4324118432685150 a001 7778742049/2537720636*39603^(1/4) 4324118432685150 a001 2971215073/969323029*39603^(1/4) 4324118432685150 a001 1134903170/370248451*39603^(1/4) 4324118432685150 a001 433494437/141422324*39603^(1/4) 4324118432685151 a001 165580141/54018521*39603^(1/4) 4324118432685160 a001 63245986/20633239*39603^(1/4) 4324118432685221 a001 24157817/7881196*39603^(1/4) 4324118432685637 a001 9227465/3010349*39603^(1/4) 4324118432688490 a001 3524578/1149851*39603^(1/4) 4324118432695737 a001 10959/844*9349^(5/38) 4324118432708043 a001 1346269/439204*39603^(1/4) 4324118432712225 a001 75640/15251*39603^(9/44) 4324118432755053 a001 514229/271443*39603^(13/44) 4324118432802384 a001 1346269/710647*39603^(13/44) 4324118432812507 a001 75025/103682*39603^(17/44) 4324118432813558 a001 2178309/1149851*39603^(13/44) 4324118432822721 a001 28657/103682*103682^(7/16) 4324118432831637 a001 208010/109801*39603^(13/44) 4324118432837165 a001 1346269/39603*5778^(1/36) 4324118432842064 a001 514229/167761*39603^(1/4) 4324118432847862 a001 10946/39603*24476^(1/2) 4324118432853929 a001 5473/930249*24476^(37/42) 4324118432868540 a001 105937/90481*39603^(15/44) 4324118432876945 a001 2178309/64079*24476^(1/42) 4324118432910701 a001 28657/33385282*167761^(9/10) 4324118432913475 a001 28657/271443*167761^(1/2) 4324118432925977 a001 832040/710647*39603^(15/44) 4324118432934357 a001 726103/620166*39603^(15/44) 4324118432939537 a001 1346269/1149851*39603^(15/44) 4324118432941910 a001 28657/3010349*167761^(7/10) 4324118432955551 a001 317811/167761*39603^(13/44) 4324118432961476 a001 514229/439204*39603^(15/44) 4324118432976135 a001 15456/90481*39603^(23/44) 4324118432990294 a001 28657/271443*20633239^(5/14) 4324118432990297 a001 121393/64079*141422324^(1/6) 4324118432990297 a001 28657/271443*2537720636^(5/18) 4324118432990297 a001 28657/271443*312119004989^(5/22) 4324118432990297 a001 28657/271443*3461452808002^(5/24) 4324118432990297 a001 28657/271443*28143753123^(1/4) 4324118432990297 a001 121393/64079*73681302247^(1/8) 4324118432990297 a001 28657/271443*228826127^(5/16) 4324118432990818 a001 28657/271443*1860498^(5/12) 4324118433004969 a001 121393/64079*271443^(1/4) 4324118433010737 a001 46347/2206*15127^(3/40) 4324118433024838 a001 196418/271443*39603^(17/44) 4324118433027813 a001 28657/141422324*439204^(17/18) 4324118433030300 a001 28657/33385282*439204^(5/6) 4324118433032370 a001 832040/64079*167761^(1/10) 4324118433032864 a001 28657/7881196*439204^(13/18) 4324118433034036 a001 28657/1860498*439204^(11/18) 4324118433036686 a001 317811/64079*439204^(1/6) 4324118433038787 a001 28657/710647*1149851^(1/2) 4324118433040412 a001 317811/64079*7881196^(3/22) 4324118433040422 a001 28657/710647*1322157322203^(1/4) 4324118433040422 a001 317811/64079*2537720636^(1/10) 4324118433040422 a001 317811/64079*14662949395604^(1/14) 4324118433040422 a001 317811/64079*192900153618^(1/12) 4324118433040422 a001 317811/64079*33385282^(1/8) 4324118433040609 a001 317811/64079*1860498^(3/20) 4324118433047700 a001 28657/1860498*7881196^(1/2) 4324118433047734 a001 832040/64079*20633239^(1/14) 4324118433047735 a001 28657/1860498*312119004989^(3/10) 4324118433047735 a001 832040/64079*2537720636^(1/18) 4324118433047735 a001 832040/64079*312119004989^(1/22) 4324118433047735 a001 832040/64079*28143753123^(1/20) 4324118433047735 a001 28657/1860498*1568397607^(3/8) 4324118433047735 a001 832040/64079*228826127^(1/16) 4324118433047737 a001 28657/1860498*33385282^(11/24) 4324118433047839 a001 832040/64079*1860498^(1/12) 4324118433048216 a001 1346269/64079*439204^(1/18) 4324118433048422 a001 28657/1860498*1860498^(11/20) 4324118433048801 a001 28657/4870847*54018521^(1/2) 4324118433048871 a006 5^(1/2)*fibonacci(65/2)/Lucas(23)/sqrt(5) 4324118433048918 a001 28657/2537720636*7881196^(21/22) 4324118433048924 a001 28657/599074578*7881196^(19/22) 4324118433048926 a001 28657/370248451*7881196^(5/6) 4324118433048931 a001 28657/141422324*7881196^(17/22) 4324118433048933 a001 28657/33385282*7881196^(15/22) 4324118433048957 a001 28657/12752043*370248451^(1/2) 4324118433048974 a001 28657/33385282*20633239^(9/14) 4324118433048975 a001 28657/4106118243*20633239^(13/14) 4324118433048975 a001 28657/2537720636*20633239^(9/10) 4324118433048976 a001 28657/370248451*20633239^(11/14) 4324118433048976 a001 28657/87403803*20633239^(7/10) 4324118433048980 a001 28657/33385282*2537720636^(1/2) 4324118433048980 a001 28657/33385282*312119004989^(9/22) 4324118433048980 a001 28657/33385282*14662949395604^(5/14) 4324118433048980 a001 28657/33385282*192900153618^(5/12) 4324118433048980 a001 28657/33385282*28143753123^(9/20) 4324118433048980 a001 28657/33385282*228826127^(9/16) 4324118433048983 a001 28657/33385282*33385282^(5/8) 4324118433048984 a001 28657/87403803*17393796001^(1/2) 4324118433048984 a001 28657/87403803*14662949395604^(7/18) 4324118433048984 a001 28657/87403803*505019158607^(7/16) 4324118433048984 a001 28657/87403803*599074578^(7/12) 4324118433048984 a001 28657/4106118243*141422324^(5/6) 4324118433048984 a001 28657/228826127*119218851371^(1/2) 4324118433048984 a001 28657/599074578*817138163596^(1/2) 4324118433048984 a001 28657/1568397607*5600748293801^(1/2) 4324118433048984 a001 28657/4106118243*2537720636^(13/18) 4324118433048984 a001 28657/505019158607*2537720636^(17/18) 4324118433048984 a001 28657/192900153618*2537720636^(9/10) 4324118433048984 a001 28657/45537549124*2537720636^(5/6) 4324118433048984 a001 28657/4106118243*312119004989^(13/22) 4324118433048984 a001 28657/4106118243*3461452808002^(13/24) 4324118433048984 a001 28657/4106118243*73681302247^(5/8) 4324118433048984 a001 28657/4106118243*28143753123^(13/20) 4324118433048984 a001 28657/2139295485799*17393796001^(13/14) 4324118433048984 a001 28657/73681302247*17393796001^(11/14) 4324118433048984 a001 28657/505019158607*45537549124^(5/6) 4324118433048984 a001 28657/73681302247*14662949395604^(11/18) 4324118433048984 a001 28657/73681302247*505019158607^(11/16) 4324118433048984 a001 28657/192900153618*14662949395604^(9/14) 4324118433048984 a001 28657/505019158607*312119004989^(17/22) 4324118433048984 a001 28657/14662949395604*312119004989^(9/10) 4324118433048984 a001 28657/192900153618*192900153618^(3/4) 4324118433048984 a001 28657/14662949395604*14662949395604^(11/14) 4324118433048984 a001 28657/2139295485799*14662949395604^(13/18) 4324118433048984 a001 28657/817138163596*1322157322203^(3/4) 4324118433048984 a001 28657/14662949395604*192900153618^(11/12) 4324118433048984 a001 28657/2139295485799*73681302247^(7/8) 4324118433048984 a001 28657/45537549124*312119004989^(15/22) 4324118433048984 a001 28657/45537549124*3461452808002^(5/8) 4324118433048984 a001 28657/505019158607*28143753123^(17/20) 4324118433048984 a001 28657/5600748293801*28143753123^(19/20) 4324118433048984 a001 28657/45537549124*28143753123^(3/4) 4324118433048984 a001 28657/10749957122*4106118243^(3/4) 4324118433048984 a001 28657/2537720636*2537720636^(7/10) 4324118433048984 a006 5^(1/2)*Fibonacci(65/2)/Lucas(23)/sqrt(5) 4324118433048984 a001 28657/2537720636*17393796001^(9/14) 4324118433048984 a001 28657/2537720636*14662949395604^(1/2) 4324118433048984 a001 28657/2537720636*505019158607^(9/16) 4324118433048984 a001 28657/2537720636*192900153618^(7/12) 4324118433048984 a001 28657/73681302247*1568397607^(7/8) 4324118433048984 a001 28657/969323029*2139295485799^(1/2) 4324118433048984 a001 28657/2537720636*599074578^(3/4) 4324118433048984 a001 28657/73681302247*599074578^(11/12) 4324118433048984 a001 28657/370248451*2537720636^(11/18) 4324118433048984 a001 28657/370248451*312119004989^(1/2) 4324118433048984 a001 28657/370248451*3461452808002^(11/24) 4324118433048984 a001 28657/370248451*28143753123^(11/20) 4324118433048984 a001 28657/370248451*1568397607^(5/8) 4324118433048984 a001 28657/4106118243*228826127^(13/16) 4324118433048984 a001 28657/45537549124*228826127^(15/16) 4324118433048984 a001 28657/370248451*228826127^(11/16) 4324118433048984 a001 28657/141422324*45537549124^(1/2) 4324118433048985 a001 28657/599074578*87403803^(3/4) 4324118433048986 a001 28657/54018521*6643838879^(1/2) 4324118433048987 a001 28657/141422324*33385282^(17/24) 4324118433048987 a001 28657/599074578*33385282^(19/24) 4324118433048987 a001 28657/2537720636*33385282^(7/8) 4324118433048988 a001 28657/10749957122*33385282^(23/24) 4324118433048994 a001 28657/20633239*969323029^(1/2) 4324118433049004 a001 28657/141422324*12752043^(3/4) 4324118433049013 a001 28657/7881196*7881196^(13/22) 4324118433049054 a001 28657/7881196*141422324^(1/2) 4324118433049054 a001 28657/7881196*73681302247^(3/8) 4324118433049056 a001 28657/7881196*33385282^(13/24) 4324118433049456 a001 28657/3010349*20633239^(1/2) 4324118433049458 a001 1346269/64079*7881196^(1/22) 4324118433049461 a001 28657/3010349*2537720636^(7/18) 4324118433049461 a001 28657/3010349*17393796001^(5/14) 4324118433049461 a001 28657/3010349*312119004989^(7/22) 4324118433049461 a001 28657/3010349*14662949395604^(5/18) 4324118433049461 a001 28657/3010349*505019158607^(5/16) 4324118433049461 a001 28657/3010349*28143753123^(7/20) 4324118433049461 a001 28657/3010349*599074578^(5/12) 4324118433049461 a001 28657/3010349*228826127^(7/16) 4324118433049461 a001 1346269/64079*33385282^(1/24) 4324118433049524 a001 1346269/64079*1860498^(1/20) 4324118433049866 a001 28657/7881196*1860498^(13/20) 4324118433049917 a001 28657/33385282*1860498^(3/4) 4324118433050046 a001 28657/141422324*1860498^(17/20) 4324118433050129 a001 28657/370248451*1860498^(11/12) 4324118433050171 a001 28657/599074578*1860498^(19/20) 4324118433050190 a001 28657/3010349*1860498^(7/12) 4324118433052016 a001 28657/1149851*3010349^(1/2) 4324118433052254 a001 514229/64079*20633239^(1/10) 4324118433052255 a001 28657/1149851*9062201101803^(1/4) 4324118433052255 a001 514229/64079*17393796001^(1/14) 4324118433052255 a001 514229/64079*14662949395604^(1/18) 4324118433052255 a001 514229/64079*505019158607^(1/16) 4324118433052255 a001 514229/64079*599074578^(1/12) 4324118433053325 a001 514229/64079*710647^(1/8) 4324118433054813 a001 28657/3010349*710647^(5/8) 4324118433055817 a001 514229/710647*39603^(17/44) 4324118433056476 a001 28657/87403803*710647^(7/8) 4324118433060192 a001 28657/439204*439204^(1/2) 4324118433060336 a001 1346269/1860498*39603^(17/44) 4324118433061403 a001 2178309/3010349*39603^(17/44) 4324118433063130 a001 832040/1149851*39603^(17/44) 4324118433063146 a001 46368/167761*39603^(21/44) 4324118433069054 a001 121393/271443*39603^(19/44) 4324118433071372 a001 28657/439204*7881196^(9/22) 4324118433071389 a001 196418/64079*7881196^(1/6) 4324118433071400 a001 28657/439204*2537720636^(3/10) 4324118433071400 a001 28657/439204*14662949395604^(3/14) 4324118433071400 a001 28657/439204*192900153618^(1/4) 4324118433071400 a001 196418/64079*312119004989^(1/10) 4324118433071400 a001 196418/64079*1568397607^(1/8) 4324118433071402 a001 28657/439204*33385282^(3/8) 4324118433071963 a001 28657/439204*1860498^(9/20) 4324118433074602 a001 1346269/64079*103682^(1/16) 4324118433074963 a001 317811/439204*39603^(17/44) 4324118433093069 a001 28657/7881196*271443^(3/4) 4324118433111462 a001 2178309/64079*39603^(1/44) 4324118433111849 a001 196418/167761*39603^(15/44) 4324118433115843 a001 317811/64079*103682^(3/16) 4324118433156066 a001 121393/167761*39603^(17/44) 4324118433156535 a001 75025/64079*167761^(3/10) 4324118433169303 a001 317811/710647*39603^(19/44) 4324118433182558 a001 11592/109801*39603^(25/44) 4324118433183930 a001 416020/930249*39603^(19/44) 4324118433186063 a001 2178309/4870847*39603^(19/44) 4324118433187382 a001 1346269/3010349*39603^(19/44) 4324118433192969 a001 514229/1149851*39603^(19/44) 4324118433196401 a001 75025/64079*439204^(5/18) 4324118433202163 a001 10946/1149851*24476^(5/6) 4324118433202612 a001 75025/64079*7881196^(5/22) 4324118433202626 a001 75025/64079*20633239^(3/14) 4324118433202628 a001 28657/167761*4106118243^(1/4) 4324118433202628 a001 75025/64079*2537720636^(1/6) 4324118433202628 a001 75025/64079*312119004989^(3/22) 4324118433202628 a001 75025/64079*28143753123^(3/20) 4324118433202628 a001 75025/64079*228826127^(3/16) 4324118433202629 a001 75025/64079*33385282^(5/24) 4324118433202940 a001 75025/64079*1860498^(1/4) 4324118433231261 a001 98209/219602*39603^(19/44) 4324118433237441 a001 1346269/64079*39603^(3/44) 4324118433275477 a001 121393/439204*39603^(21/44) 4324118433276899 a001 6624/101521*39603^(27/44) 4324118433289248 a001 4181/710647*9349^(37/38) 4324118433297663 a001 28657/439204*103682^(9/16) 4324118433306456 a001 317811/1149851*39603^(21/44) 4324118433310975 a001 832040/3010349*39603^(21/44) 4324118433312042 a001 1346269/4870847*39603^(21/44) 4324118433313769 a001 514229/1860498*39603^(21/44) 4324118433324278 a001 28657/1860498*103682^(11/16) 4324118433325602 a001 196418/710647*39603^(21/44) 4324118433328330 a001 75025/64079*103682^(5/16) 4324118433361034 a001 832040/64079*39603^(5/44) 4324118433369818 a001 121393/710647*39603^(23/44) 4324118433375878 a001 28657/7881196*103682^(13/16) 4324118433406705 a001 75025/271443*39603^(21/44) 4324118433414051 a001 46368/1149851*39603^(29/44) 4324118433426085 a001 28657/33385282*103682^(15/16) 4324118433427256 a001 105937/620166*39603^(23/44) 4324118433435636 a001 832040/4870847*39603^(23/44) 4324118433440815 a001 514229/3010349*39603^(23/44) 4324118433462754 a001 196418/1149851*39603^(23/44) 4324118433490873 a001 514229/64079*39603^(7/44) 4324118433493716 a001 75025/167761*39603^(19/44) 4324118433506970 a001 121393/1149851*39603^(25/44) 4324118433513096 a001 196418/39603*15127^(9/40) 4324118433521226 a001 2178309/64079*15127^(1/40) 4324118433534044 a001 10946/710647*24476^(11/14) 4324118433534851 a001 2576/103361*39603^(31/44) 4324118433535290 a001 17711/24476*24476^(17/42) 4324118433554301 a001 317811/3010349*39603^(25/44) 4324118433565475 a001 514229/4870847*39603^(25/44) 4324118433583554 a001 98209/930249*39603^(25/44) 4324118433604360 a001 317811/64079*39603^(9/44) 4324118433613127 a001 75025/439204*39603^(23/44) 4324118433627770 a001 121393/1860498*39603^(27/44) 4324118433661897 a001 46368/3010349*39603^(3/4) 4324118433678962 a001 317811/4870847*39603^(27/44) 4324118433707468 a001 75025/710647*39603^(25/44) 4324118433710600 a001 196418/3010349*39603^(27/44) 4324118433711955 a001 46368/64079*39603^(17/44) 4324118433754816 a001 121393/3010349*39603^(29/44) 4324118433760658 a001 196418/64079*39603^(1/4) 4324118433786557 a001 46368/4870847*39603^(35/44) 4324118433804874 a001 121393/64079*39603^(13/44) 4324118433835260 a001 196418/4870847*39603^(29/44) 4324118433844621 a001 75025/1149851*39603^(27/44) 4324118433879476 a001 121393/4870847*39603^(31/44) 4324118433908737 a001 5473/219602*24476^(31/42) 4324118433956245 a001 1346269/103682*15127^(1/8) 4324118433962594 a001 28657/103682*39603^(21/44) 4324118433965420 a001 75025/1860498*39603^(29/44) 4324118434005047 a001 121393/7881196*39603^(3/4) 4324118434055113 a001 10959/711491*39603^(3/4) 4324118434062417 a001 832040/54018521*39603^(3/4) 4324118434063483 a001 2178309/141422324*39603^(3/4) 4324118434063638 a001 5702887/370248451*39603^(3/4) 4324118434063661 a001 14930352/969323029*39603^(3/4) 4324118434063664 a001 39088169/2537720636*39603^(3/4) 4324118434063665 a001 102334155/6643838879*39603^(3/4) 4324118434063665 a001 9238424/599786069*39603^(3/4) 4324118434063665 a001 701408733/45537549124*39603^(3/4) 4324118434063665 a001 1836311903/119218851371*39603^(3/4) 4324118434063665 a001 4807526976/312119004989*39603^(3/4) 4324118434063665 a001 12586269025/817138163596*39603^(3/4) 4324118434063665 a001 32951280099/2139295485799*39603^(3/4) 4324118434063665 a001 86267571272/5600748293801*39603^(3/4) 4324118434063665 a001 7787980473/505618944676*39603^(3/4) 4324118434063665 a001 365435296162/23725150497407*39603^(3/4) 4324118434063665 a001 139583862445/9062201101803*39603^(3/4) 4324118434063665 a001 53316291173/3461452808002*39603^(3/4) 4324118434063665 a001 20365011074/1322157322203*39603^(3/4) 4324118434063665 a001 7778742049/505019158607*39603^(3/4) 4324118434063665 a001 2971215073/192900153618*39603^(3/4) 4324118434063665 a001 1134903170/73681302247*39603^(3/4) 4324118434063665 a001 433494437/28143753123*39603^(3/4) 4324118434063665 a001 165580141/10749957122*39603^(3/4) 4324118434063665 a001 63245986/4106118243*39603^(3/4) 4324118434063666 a001 24157817/1568397607*39603^(3/4) 4324118434063675 a001 9227465/599074578*39603^(3/4) 4324118434063734 a001 3524578/228826127*39603^(3/4) 4324118434064141 a001 1346269/87403803*39603^(3/4) 4324118434066931 a001 514229/33385282*39603^(3/4) 4324118434086054 a001 196418/12752043*39603^(3/4) 4324118434092466 a001 75025/3010349*39603^(31/44) 4324118434102076 a001 28657/64079*817138163596^(1/6) 4324118434102076 a001 28657/64079*87403803^(1/4) 4324118434142524 a001 75025/64079*39603^(15/44) 4324118434171348 a001 10946/271443*24476^(29/42) 4324118434217126 a001 75025/4870847*39603^(3/4) 4324118434299396 a001 3524578/271443*15127^(1/8) 4324118434349461 a001 9227465/710647*15127^(1/8) 4324118434356765 a001 24157817/1860498*15127^(1/8) 4324118434357831 a001 63245986/4870847*15127^(1/8) 4324118434357986 a001 165580141/12752043*15127^(1/8) 4324118434358009 a001 433494437/33385282*15127^(1/8) 4324118434358012 a001 1134903170/87403803*15127^(1/8) 4324118434358013 a001 2971215073/228826127*15127^(1/8) 4324118434358013 a001 7778742049/599074578*15127^(1/8) 4324118434358013 a001 20365011074/1568397607*15127^(1/8) 4324118434358013 a001 53316291173/4106118243*15127^(1/8) 4324118434358013 a001 139583862445/10749957122*15127^(1/8) 4324118434358013 a001 365435296162/28143753123*15127^(1/8) 4324118434358013 a001 956722026041/73681302247*15127^(1/8) 4324118434358013 a001 2504730781961/192900153618*15127^(1/8) 4324118434358013 a001 10610209857723/817138163596*15127^(1/8) 4324118434358013 a001 4052739537881/312119004989*15127^(1/8) 4324118434358013 a001 1548008755920/119218851371*15127^(1/8) 4324118434358013 a001 591286729879/45537549124*15127^(1/8) 4324118434358013 a001 7787980473/599786069*15127^(1/8) 4324118434358013 a001 86267571272/6643838879*15127^(1/8) 4324118434358013 a001 32951280099/2537720636*15127^(1/8) 4324118434358013 a001 12586269025/969323029*15127^(1/8) 4324118434358013 a001 4807526976/370248451*15127^(1/8) 4324118434358013 a001 1836311903/141422324*15127^(1/8) 4324118434358014 a001 701408733/54018521*15127^(1/8) 4324118434358023 a001 9238424/711491*15127^(1/8) 4324118434358082 a001 102334155/7881196*15127^(1/8) 4324118434358489 a001 39088169/3010349*15127^(1/8) 4324118434361279 a001 14930352/1149851*15127^(1/8) 4324118434376841 a001 121393/39603*15127^(11/40) 4324118434380402 a001 5702887/439204*15127^(1/8) 4324118434466733 a001 1346269/64079*15127^(3/40) 4324118434511474 a001 2178309/167761*15127^(1/8) 4324118434515218 a001 5473/51841*24476^(25/42) 4324118434556791 a001 28657/271443*39603^(25/44) 4324118434643803 a001 28657/167761*39603^(23/44) 4324118434727393 a001 10946/167761*24476^(9/14) 4324118434763214 a001 28657/439204*39603^(27/44) 4324118434857555 a001 28657/710647*39603^(29/44) 4324118434899366 a001 416020/51841*15127^(7/40) 4324118434994707 a001 28657/1149851*39603^(31/44) 4324118435115507 a001 28657/1860498*39603^(3/4) 4324118435231538 a001 4181/15127*9349^(21/38) 4324118435242553 a001 28657/3010349*39603^(35/44) 4324118435243992 a001 726103/90481*15127^(7/40) 4324118435292611 a001 28657/64079*39603^(19/44) 4324118435311406 a001 514229/24476*9349^(3/38) 4324118435367213 a001 28657/4870847*39603^(37/44) 4324118435409855 a001 832040/64079*15127^(1/8) 4324118435456982 a001 1346269/167761*15127^(7/40) 4324118435457890 a001 17711/39603*15127^(19/40) 4324118435534019 a001 75025/39603*15127^(13/40) 4324118435848734 a001 514229/103682*15127^(9/40) 4324118435922978 a001 15456/13201*15127^(3/8) 4324118435924063 a001 4181/439204*9349^(35/38) 4324118436189499 a001 1346269/271443*15127^(9/40) 4324118436269943 a001 2178309/439204*15127^(9/40) 4324118436306402 r002 46th iterates of z^2 + 4324118436314268 a001 10946/64079*24476^(23/42) 4324118436359223 a001 514229/64079*15127^(7/40) 4324118436400104 a001 75640/15251*15127^(9/40) 4324118436448142 a001 10946/39603*439204^(7/18) 4324118436456838 a001 10946/39603*7881196^(7/22) 4324118436456857 a001 10946/39603*20633239^(3/10) 4324118436456860 a001 10946/39603*17393796001^(3/14) 4324118436456860 a001 10946/39603*14662949395604^(1/6) 4324118436456860 a001 10946/39603*599074578^(1/4) 4324118436456860 a001 17711/24476*45537549124^(1/6) 4324118436456861 a001 10946/39603*33385282^(7/24) 4324118436456867 a001 17711/24476*12752043^(1/4) 4324118436457297 a001 10946/39603*1860498^(7/20) 4324118436460071 a001 10946/39603*710647^(3/8) 4324118436577502 a001 11592/6119*24476^(13/42) 4324118436632842 a001 10946/39603*103682^(7/16) 4324118436646627 a001 2178309/64079*5778^(1/36) 4324118436781749 a001 317811/103682*15127^(11/40) 4324118437132621 a001 832040/271443*15127^(11/40) 4324118437183812 a001 311187/101521*15127^(11/40) 4324118437215450 a001 1346269/439204*15127^(11/40) 4324118437292238 a001 317811/64079*15127^(9/40) 4324118437349471 a001 514229/167761*15127^(11/40) 4324118437477106 a001 75025/24476*24476^(11/42) 4324118437522076 a001 17711/24476*39603^(17/44) 4324118437608489 a001 121393/24476*24476^(3/14) 4324118437689125 a001 28657/24476*24476^(5/14) 4324118437757576 a001 98209/51841*15127^(13/40) 4324118437772715 a001 10946/39603*39603^(21/44) 4324118437910722 a001 208010/6119*9349^(1/38) 4324118438033306 a001 98209/12238*24476^(1/6) 4324118438081989 a001 514229/271443*15127^(13/40) 4324118438129320 a001 1346269/710647*15127^(13/40) 4324118438140493 a001 2178309/1149851*15127^(13/40) 4324118438158572 a001 208010/109801*15127^(13/40) 4324118438225019 a001 121393/15127*5778^(7/36) 4324118438268065 a001 196418/64079*15127^(11/40) 4324118438282487 a001 317811/167761*15127^(13/40) 4324118438323163 a001 28657/39603*15127^(17/40) 4324118438346042 a001 10959/844*24476^(5/42) 4324118438446796 a001 4181/271443*9349^(33/38) 4324118438621321 a001 121393/103682*15127^(3/8) 4324118438701589 a001 514229/24476*24476^(1/14) 4324118438734822 a001 5473/51841*167761^(1/2) 4324118438811641 a001 5473/51841*20633239^(5/14) 4324118438811644 a001 11592/6119*141422324^(1/6) 4324118438811644 a001 5473/51841*2537720636^(5/18) 4324118438811644 a001 5473/51841*312119004989^(5/22) 4324118438811644 a001 5473/51841*3461452808002^(5/24) 4324118438811644 a001 5473/51841*28143753123^(1/4) 4324118438811644 a001 11592/6119*73681302247^(1/8) 4324118438811644 a001 5473/51841*228826127^(5/16) 4324118438812165 a001 5473/51841*1860498^(5/12) 4324118438826316 a001 11592/6119*271443^(1/4) 4324118439015004 a001 105937/90481*15127^(3/8) 4324118439040783 a001 208010/6119*24476^(1/42) 4324118439072441 a001 832040/710647*15127^(3/8) 4324118439075583 a001 10946/12752043*167761^(9/10) 4324118439080821 a001 726103/620166*15127^(3/8) 4324118439082044 a001 5702887/4870847*15127^(3/8) 4324118439082222 a001 4976784/4250681*15127^(3/8) 4324118439082249 a001 39088169/33385282*15127^(3/8) 4324118439082252 a001 34111385/29134601*15127^(3/8) 4324118439082253 a001 267914296/228826127*15127^(3/8) 4324118439082253 a001 233802911/199691526*15127^(3/8) 4324118439082253 a001 1836311903/1568397607*15127^(3/8) 4324118439082253 a001 1602508992/1368706081*15127^(3/8) 4324118439082253 a001 12586269025/10749957122*15127^(3/8) 4324118439082253 a001 10983760033/9381251041*15127^(3/8) 4324118439082253 a001 86267571272/73681302247*15127^(3/8) 4324118439082253 a001 75283811239/64300051206*15127^(3/8) 4324118439082253 a001 2504730781961/2139295485799*15127^(3/8) 4324118439082253 a001 365435296162/312119004989*15127^(3/8) 4324118439082253 a001 139583862445/119218851371*15127^(3/8) 4324118439082253 a001 53316291173/45537549124*15127^(3/8) 4324118439082253 a001 20365011074/17393796001*15127^(3/8) 4324118439082253 a001 7778742049/6643838879*15127^(3/8) 4324118439082253 a001 2971215073/2537720636*15127^(3/8) 4324118439082253 a001 1134903170/969323029*15127^(3/8) 4324118439082253 a001 433494437/370248451*15127^(3/8) 4324118439082253 a001 165580141/141422324*15127^(3/8) 4324118439082255 a001 63245986/54018521*15127^(3/8) 4324118439082265 a001 24157817/20633239*15127^(3/8) 4324118439082333 a001 9227465/7881196*15127^(3/8) 4324118439082800 a001 3524578/3010349*15127^(3/8) 4324118439086001 a001 1346269/1149851*15127^(3/8) 4324118439107940 a001 514229/439204*15127^(3/8) 4324118439109609 a001 10946/1149851*167761^(7/10) 4324118439131810 a001 121393/64079*15127^(13/40) 4324118439151467 a001 121393/24476*439204^(1/6) 4324118439153567 a001 10946/271443*1149851^(1/2) 4324118439155193 a001 121393/24476*7881196^(3/22) 4324118439155203 a001 10946/271443*1322157322203^(1/4) 4324118439155203 a001 121393/24476*2537720636^(1/10) 4324118439155203 a001 121393/24476*14662949395604^(1/14) 4324118439155203 a001 121393/24476*192900153618^(1/12) 4324118439155203 a001 121393/24476*33385282^(1/8) 4324118439155390 a001 121393/24476*1860498^(3/20) 4324118439189963 a001 10959/844*167761^(1/10) 4324118439191628 a001 10946/710647*439204^(11/18) 4324118439192720 a001 10946/54018521*439204^(17/18) 4324118439195183 a001 10946/12752043*439204^(5/6) 4324118439198177 a001 10946/3010349*439204^(13/18) 4324118439205292 a001 10946/710647*7881196^(1/2) 4324118439205326 a001 10959/844*20633239^(1/14) 4324118439205327 a001 10946/710647*312119004989^(3/10) 4324118439205327 a001 10946/710647*1568397607^(3/8) 4324118439205327 a001 10959/844*2537720636^(1/18) 4324118439205327 a001 10959/844*312119004989^(1/22) 4324118439205327 a001 10959/844*28143753123^(1/20) 4324118439205327 a001 10959/844*228826127^(1/16) 4324118439205329 a001 10946/710647*33385282^(11/24) 4324118439205431 a001 10959/844*1860498^(1/12) 4324118439206014 a001 10946/710647*1860498^(11/20) 4324118439212639 a001 5473/930249*54018521^(1/2) 4324118439213117 a006 5^(1/2)*fibonacci(61/2)/Lucas(21)/sqrt(5) 4324118439213707 a001 10946/4870847*370248451^(1/2) 4324118439213815 a001 10946/12752043*7881196^(15/22) 4324118439213823 a001 10946/969323029*7881196^(21/22) 4324118439213829 a001 10946/228826127*7881196^(19/22) 4324118439213832 a001 5473/70711162*7881196^(5/6) 4324118439213837 a001 10946/54018521*7881196^(17/22) 4324118439213856 a001 10946/12752043*20633239^(9/14) 4324118439213863 a001 10946/12752043*2537720636^(1/2) 4324118439213863 a001 10946/12752043*312119004989^(9/22) 4324118439213863 a001 10946/12752043*14662949395604^(5/14) 4324118439213863 a001 10946/12752043*192900153618^(5/12) 4324118439213863 a001 10946/12752043*28143753123^(9/20) 4324118439213863 a001 10946/12752043*228826127^(9/16) 4324118439213865 a001 10946/12752043*33385282^(5/8) 4324118439213878 a001 5473/16692641*20633239^(7/10) 4324118439213880 a001 10946/1568397607*20633239^(13/14) 4324118439213880 a001 10946/969323029*20633239^(9/10) 4324118439213882 a001 5473/70711162*20633239^(11/14) 4324118439213886 a001 5473/16692641*17393796001^(1/2) 4324118439213886 a001 5473/16692641*14662949395604^(7/18) 4324118439213886 a001 5473/16692641*505019158607^(7/16) 4324118439213886 a001 5473/16692641*599074578^(7/12) 4324118439213889 a001 10946/87403803*119218851371^(1/2) 4324118439213889 a001 10946/1568397607*141422324^(5/6) 4324118439213889 a001 10946/228826127*817138163596^(1/2) 4324118439213889 a001 5473/299537289*5600748293801^(1/2) 4324118439213889 a001 10946/1568397607*2537720636^(13/18) 4324118439213889 a001 10946/1568397607*312119004989^(13/22) 4324118439213889 a001 10946/1568397607*3461452808002^(13/24) 4324118439213889 a001 10946/1568397607*73681302247^(5/8) 4324118439213889 a001 10946/1568397607*28143753123^(13/20) 4324118439213889 a001 5473/96450076809*2537720636^(17/18) 4324118439213889 a001 10946/73681302247*2537720636^(9/10) 4324118439213889 a001 10946/17393796001*2537720636^(5/6) 4324118439213889 a001 10946/4106118243*4106118243^(3/4) 4324118439213889 a001 10946/28143753123*17393796001^(11/14) 4324118439213889 a001 5473/408569081798*17393796001^(13/14) 4324118439213889 a001 10946/28143753123*14662949395604^(11/18) 4324118439213889 a001 10946/28143753123*505019158607^(11/16) 4324118439213889 a001 5473/96450076809*45537549124^(5/6) 4324118439213889 a001 10946/73681302247*14662949395604^(9/14) 4324118439213889 a001 10946/73681302247*192900153618^(3/4) 4324118439213889 a001 5473/96450076809*312119004989^(17/22) 4324118439213889 a001 5473/96450076809*3461452808002^(17/24) 4324118439213889 a001 10946/5600748293801*312119004989^(9/10) 4324118439213889 a001 10946/2139295485799*312119004989^(19/22) 4324118439213889 a001 10946/1322157322203*9062201101803^(3/4) 4324118439213889 a001 10946/2139295485799*3461452808002^(19/24) 4324118439213889 a001 5473/408569081798*14662949395604^(13/18) 4324118439213889 a001 10946/23725150497407*505019158607^(15/16) 4324118439213889 a001 10946/312119004989*1322157322203^(3/4) 4324118439213889 a001 10946/5600748293801*192900153618^(11/12) 4324118439213889 a001 5473/408569081798*73681302247^(7/8) 4324118439213889 a001 5473/96450076809*28143753123^(17/20) 4324118439213889 a001 10946/2139295485799*28143753123^(19/20) 4324118439213889 a001 10946/17393796001*312119004989^(15/22) 4324118439213889 a001 10946/17393796001*3461452808002^(5/8) 4324118439213889 a001 10946/17393796001*28143753123^(3/4) 4324118439213889 a001 10946/28143753123*1568397607^(7/8) 4324118439213889 a001 10946/969323029*2537720636^(7/10) 4324118439213889 a001 10946/969323029*17393796001^(9/14) 4324118439213889 a001 10946/969323029*14662949395604^(1/2) 4324118439213889 a001 10946/969323029*505019158607^(9/16) 4324118439213889 a001 10946/969323029*192900153618^(7/12) 4324118439213889 a001 10946/28143753123*599074578^(11/12) 4324118439213889 a006 5^(1/2)*Fibonacci(61/2)/Lucas(21)/sqrt(5) 4324118439213889 a001 10946/969323029*599074578^(3/4) 4324118439213889 a001 10946/370248451*2139295485799^(1/2) 4324118439213889 a001 10946/1568397607*228826127^(13/16) 4324118439213889 a001 10946/17393796001*228826127^(15/16) 4324118439213890 a001 5473/70711162*2537720636^(11/18) 4324118439213890 a001 5473/70711162*312119004989^(1/2) 4324118439213890 a001 5473/70711162*3461452808002^(11/24) 4324118439213890 a001 5473/70711162*28143753123^(11/20) 4324118439213890 a001 5473/70711162*1568397607^(5/8) 4324118439213890 a001 5473/70711162*228826127^(11/16) 4324118439213890 a001 10946/228826127*87403803^(3/4) 4324118439213891 a001 10946/54018521*45537549124^(1/2) 4324118439213892 a001 10946/228826127*33385282^(19/24) 4324118439213893 a001 10946/969323029*33385282^(7/8) 4324118439213893 a001 10946/4106118243*33385282^(23/24) 4324118439213894 a001 10946/54018521*33385282^(17/24) 4324118439213900 a001 10946/20633239*6643838879^(1/2) 4324118439213911 a001 10946/54018521*12752043^(3/4) 4324118439213959 a001 5473/3940598*969323029^(1/2) 4324118439214325 a001 10946/3010349*7881196^(13/22) 4324118439214366 a001 10946/3010349*141422324^(1/2) 4324118439214367 a001 10946/3010349*73681302247^(3/8) 4324118439214369 a001 10946/3010349*33385282^(13/24) 4324118439214800 a001 10946/12752043*1860498^(3/4) 4324118439214953 a001 10946/54018521*1860498^(17/20) 4324118439215035 a001 5473/70711162*1860498^(11/12) 4324118439215076 a001 10946/228826127*1860498^(19/20) 4324118439215179 a001 10946/3010349*1860498^(13/20) 4324118439215915 a001 514229/24476*439204^(1/18) 4324118439217155 a001 10946/1149851*20633239^(1/2) 4324118439217157 a001 514229/24476*7881196^(1/22) 4324118439217160 a001 10946/1149851*2537720636^(7/18) 4324118439217160 a001 10946/1149851*17393796001^(5/14) 4324118439217160 a001 10946/1149851*312119004989^(7/22) 4324118439217160 a001 10946/1149851*14662949395604^(5/18) 4324118439217160 a001 10946/1149851*505019158607^(5/16) 4324118439217160 a001 10946/1149851*28143753123^(7/20) 4324118439217160 a001 10946/1149851*599074578^(5/12) 4324118439217160 a001 10946/1149851*228826127^(7/16) 4324118439217160 a001 514229/24476*33385282^(1/24) 4324118439217222 a001 514229/24476*1860498^(1/20) 4324118439217889 a001 10946/1149851*1860498^(7/12) 4324118439221378 a001 5473/16692641*710647^(7/8) 4324118439222511 a001 10946/1149851*710647^(5/8) 4324118439230624 a001 121393/24476*103682^(3/16) 4324118439236067 a001 5473/219602*3010349^(1/2) 4324118439236305 a001 98209/12238*20633239^(1/10) 4324118439236306 a001 5473/219602*9062201101803^(1/4) 4324118439236306 a001 98209/12238*17393796001^(1/14) 4324118439236306 a001 98209/12238*14662949395604^(1/18) 4324118439236306 a001 98209/12238*505019158607^(1/16) 4324118439236306 a001 98209/12238*599074578^(1/12) 4324118439237376 a001 98209/12238*710647^(1/8) 4324118439242300 a001 514229/24476*103682^(1/16) 4324118439258313 a001 196418/167761*15127^(3/8) 4324118439258382 a001 10946/3010349*271443^(3/4) 4324118439275300 a001 208010/6119*39603^(1/44) 4324118439356325 a001 10946/167761*439204^(1/2) 4324118439367505 a001 10946/167761*7881196^(9/22) 4324118439367522 a001 75025/24476*7881196^(1/6) 4324118439367533 a001 10946/167761*2537720636^(3/10) 4324118439367533 a001 10946/167761*14662949395604^(3/14) 4324118439367533 a001 10946/167761*192900153618^(1/4) 4324118439367533 a001 75025/24476*312119004989^(1/10) 4324118439367533 a001 75025/24476*1568397607^(1/8) 4324118439367535 a001 10946/167761*33385282^(3/8) 4324118439368096 a001 10946/167761*1860498^(9/20) 4324118439405139 a001 514229/24476*39603^(3/44) 4324118439481871 a001 10946/710647*103682^(11/16) 4324118439518626 a001 10959/844*39603^(5/44) 4324118439541191 a001 10946/3010349*103682^(13/16) 4324118439590968 a001 10946/12752043*103682^(15/16) 4324118439593796 a001 10946/167761*103682^(9/16) 4324118439626221 a001 11592/6119*39603^(13/44) 4324118439674924 a001 98209/12238*39603^(7/44) 4324118439685064 a001 208010/6119*15127^(1/40) 4324118439702371 a001 17711/103682*15127^(23/40) 4324118439719141 a001 121393/24476*39603^(9/44) 4324118439740435 a001 10946/64079*64079^(1/2) 4324118439778500 a001 75025/103682*15127^(17/40) 4324118439990831 a001 196418/271443*15127^(17/40) 4324118440021809 a001 514229/710647*15127^(17/40) 4324118440026329 a001 1346269/1860498*15127^(17/40) 4324118440027396 a001 2178309/3010349*15127^(17/40) 4324118440029122 a001 832040/1149851*15127^(17/40) 4324118440031089 a001 832040/39603*5778^(1/12) 4324118440040955 a001 317811/439204*15127^(17/40) 4324118440056791 a001 75025/24476*39603^(1/4) 4324118440122058 a001 121393/167761*15127^(17/40) 4324118440167459 a001 23184/51841*15127^(19/40) 4324118440212859 a001 17711/64079*15127^(21/40) 4324118440220888 a001 28657/24476*167761^(3/10) 4324118440260754 a001 28657/24476*439204^(5/18) 4324118440266965 a001 28657/24476*7881196^(5/22) 4324118440266979 a001 28657/24476*20633239^(3/14) 4324118440266981 a001 10946/64079*4106118243^(1/4) 4324118440266981 a001 28657/24476*2537720636^(1/6) 4324118440266981 a001 28657/24476*312119004989^(3/22) 4324118440266981 a001 28657/24476*28143753123^(3/20) 4324118440266981 a001 28657/24476*228826127^(3/16) 4324118440266982 a001 28657/24476*33385282^(5/24) 4324118440267293 a001 28657/24476*1860498^(1/4) 4324118440288989 a001 75025/64079*15127^(3/8) 4324118440378138 a001 5473/51841*39603^(25/44) 4324118440392683 a001 28657/24476*103682^(5/16) 4324118440439211 a001 6765/9349*9349^(17/38) 4324118440634432 a001 514229/24476*15127^(3/40) 4324118440677947 a001 46368/64079*15127^(17/40) 4324118440844541 a001 514229/15127*2207^(1/32) 4324118440854576 a001 121393/271443*15127^(19/40) 4324118440954825 a001 317811/710647*15127^(19/40) 4324118440969451 a001 416020/930249*15127^(19/40) 4324118440971585 a001 2178309/4870847*15127^(19/40) 4324118440972336 a001 10946/271443*39603^(29/44) 4324118440972903 a001 1346269/3010349*15127^(19/40) 4324118440978490 a001 514229/1149851*15127^(19/40) 4324118441016782 a001 98209/219602*15127^(19/40) 4324118441059347 a001 10946/167761*39603^(27/44) 4324118441178758 a001 5473/219602*39603^(31/44) 4324118441203108 a001 17711/167761*15127^(5/8) 4324118441206877 a001 28657/24476*39603^(15/44) 4324118441262963 a001 4181/167761*9349^(31/38) 4324118441273099 a001 10946/710647*39603^(3/4) 4324118441279237 a001 75025/167761*15127^(19/40) 4324118441339533 a001 75025/5778*2207^(5/32) 4324118441410252 a001 10946/1149851*39603^(35/44) 4324118441531051 a001 5473/930249*39603^(37/44) 4324118441566921 a001 1597/103682*3571^(33/34) 4324118441567447 a001 10959/844*15127^(1/8) 4324118441658097 a001 10946/3010349*39603^(39/44) 4324118441668196 a001 46368/167761*15127^(21/40) 4324118441708155 a001 10946/64079*39603^(23/44) 4324118441782757 a001 10946/4870847*39603^(41/44) 4324118441880527 a001 121393/439204*15127^(21/40) 4324118441911505 a001 317811/1149851*15127^(21/40) 4324118441916025 a001 832040/3010349*15127^(21/40) 4324118441917092 a001 1346269/4870847*15127^(21/40) 4324118441918818 a001 514229/1860498*15127^(21/40) 4324118441930651 a001 196418/710647*15127^(21/40) 4324118441935625 a001 17711/271443*15127^(27/40) 4324118442011754 a001 75025/271443*15127^(21/40) 4324118442386940 a001 46347/2206*5778^(1/12) 4324118442400713 a001 15456/90481*15127^(23/40) 4324118442543274 a001 98209/12238*15127^(7/40) 4324118442567644 a001 28657/103682*15127^(21/40) 4324118442730654 a001 5702887/271443*5778^(1/12) 4324118442780801 a001 14930352/710647*5778^(1/12) 4324118442788117 a001 39088169/1860498*5778^(1/12) 4324118442789185 a001 102334155/4870847*5778^(1/12) 4324118442789341 a001 267914296/12752043*5778^(1/12) 4324118442789363 a001 701408733/33385282*5778^(1/12) 4324118442789367 a001 1836311903/87403803*5778^(1/12) 4324118442789367 a001 102287808/4868641*5778^(1/12) 4324118442789367 a001 12586269025/599074578*5778^(1/12) 4324118442789367 a001 32951280099/1568397607*5778^(1/12) 4324118442789367 a001 86267571272/4106118243*5778^(1/12) 4324118442789367 a001 225851433717/10749957122*5778^(1/12) 4324118442789367 a001 591286729879/28143753123*5778^(1/12) 4324118442789367 a001 1548008755920/73681302247*5778^(1/12) 4324118442789367 a001 4052739537881/192900153618*5778^(1/12) 4324118442789367 a001 225749145909/10745088481*5778^(1/12) 4324118442789367 a001 6557470319842/312119004989*5778^(1/12) 4324118442789367 a001 2504730781961/119218851371*5778^(1/12) 4324118442789367 a001 956722026041/45537549124*5778^(1/12) 4324118442789367 a001 365435296162/17393796001*5778^(1/12) 4324118442789367 a001 139583862445/6643838879*5778^(1/12) 4324118442789367 a001 53316291173/2537720636*5778^(1/12) 4324118442789367 a001 20365011074/969323029*5778^(1/12) 4324118442789367 a001 7778742049/370248451*5778^(1/12) 4324118442789367 a001 2971215073/141422324*5778^(1/12) 4324118442789369 a001 1134903170/54018521*5778^(1/12) 4324118442789377 a001 433494437/20633239*5778^(1/12) 4324118442789437 a001 165580141/7881196*5778^(1/12) 4324118442789845 a001 63245986/3010349*5778^(1/12) 4324118442792639 a001 24157817/1149851*5778^(1/12) 4324118442794396 a001 121393/710647*15127^(23/40) 4324118442810465 a001 208010/6119*5778^(1/36) 4324118442811794 a001 9227465/439204*5778^(1/12) 4324118442851834 a001 105937/620166*15127^(23/40) 4324118442860214 a001 832040/4870847*15127^(23/40) 4324118442865393 a001 514229/3010349*15127^(23/40) 4324118442887332 a001 196418/1149851*15127^(23/40) 4324118442943081 a001 3524578/167761*5778^(1/12) 4324118442961576 a001 17711/439204*15127^(29/40) 4324118443037706 a001 75025/439204*15127^(23/40) 4324118443078132 a001 28657/64079*15127^(19/40) 4324118443166602 a001 5473/12238*24476^(19/42) 4324118443310909 a001 4181/103682*9349^(29/38) 4324118443407019 a001 121393/24476*15127^(9/40) 4324118443426664 a001 11592/109801*15127^(5/8) 4324118443751077 a001 121393/1149851*15127^(5/8) 4324118443798408 a001 317811/3010349*15127^(5/8) 4324118443805314 a001 208010/1970299*15127^(5/8) 4324118443806321 a001 2178309/20633239*15127^(5/8) 4324118443806468 a001 5702887/54018521*15127^(5/8) 4324118443806490 a001 3732588/35355581*15127^(5/8) 4324118443806493 a001 39088169/370248451*15127^(5/8) 4324118443806493 a001 102334155/969323029*15127^(5/8) 4324118443806493 a001 66978574/634430159*15127^(5/8) 4324118443806493 a001 701408733/6643838879*15127^(5/8) 4324118443806493 a001 1836311903/17393796001*15127^(5/8) 4324118443806493 a001 1201881744/11384387281*15127^(5/8) 4324118443806493 a001 12586269025/119218851371*15127^(5/8) 4324118443806493 a001 32951280099/312119004989*15127^(5/8) 4324118443806493 a001 21566892818/204284540899*15127^(5/8) 4324118443806493 a001 225851433717/2139295485799*15127^(5/8) 4324118443806493 a001 182717648081/1730726404001*15127^(5/8) 4324118443806493 a001 139583862445/1322157322203*15127^(5/8) 4324118443806493 a001 53316291173/505019158607*15127^(5/8) 4324118443806493 a001 10182505537/96450076809*15127^(5/8) 4324118443806493 a001 7778742049/73681302247*15127^(5/8) 4324118443806493 a001 2971215073/28143753123*15127^(5/8) 4324118443806493 a001 567451585/5374978561*15127^(5/8) 4324118443806493 a001 433494437/4106118243*15127^(5/8) 4324118443806493 a001 165580141/1568397607*15127^(5/8) 4324118443806493 a001 31622993/299537289*15127^(5/8) 4324118443806495 a001 24157817/228826127*15127^(5/8) 4324118443806503 a001 9227465/87403803*15127^(5/8) 4324118443806559 a001 1762289/16692641*15127^(5/8) 4324118443806944 a001 1346269/12752043*15127^(5/8) 4324118443809581 a001 514229/4870847*15127^(5/8) 4324118443827660 a001 98209/930249*15127^(5/8) 4324118443842936 a001 1346269/64079*5778^(1/12) 4324118443875446 a001 17711/710647*15127^(31/40) 4324118443951575 a001 75025/710647*15127^(5/8) 4324118444068381 a001 28657/167761*15127^(23/40) 4324118444340534 a001 6624/101521*15127^(27/40) 4324118444488068 a001 17711/24476*15127^(17/40) 4324118444564198 a001 75025/24476*15127^(11/40) 4324118444691405 a001 121393/1860498*15127^(27/40) 4324118444742597 a001 317811/4870847*15127^(27/40) 4324118444774235 a001 196418/3010349*15127^(27/40) 4324118444800898 a001 28657/271443*15127^(5/8) 4324118444832127 a001 17711/1149851*15127^(33/40) 4324118444908256 a001 75025/1149851*15127^(27/40) 4324118444953157 a001 11592/6119*15127^(13/40) 4324118445297215 a001 46368/1149851*15127^(29/40) 4324118445633000 a001 75025/15127*5778^(1/4) 4324118445637980 a001 121393/3010349*15127^(29/40) 4324118445718423 a001 196418/4870847*15127^(29/40) 4324118445772455 a001 17711/1860498*15127^(7/8) 4324118445826849 a001 28657/439204*15127^(27/40) 4324118445848584 a001 75025/1860498*15127^(29/40) 4324118446163798 a001 4181/39603*9349^(25/38) 4324118446237543 a001 2576/103361*15127^(31/40) 4324118446377765 a001 10946/39603*15127^(21/40) 4324118446431886 a001 5473/12238*817138163596^(1/6) 4324118446431886 a001 5473/12238*87403803^(1/4) 4324118446582168 a001 121393/4870847*15127^(31/40) 4324118446719029 a001 17711/3010349*15127^(37/40) 4324118446740719 a001 28657/710647*15127^(29/40) 4324118446795159 a001 75025/3010349*15127^(31/40) 4324118447184117 a001 46368/3010349*15127^(33/40) 4324118447231258 a001 514229/39603*5778^(5/36) 4324118447353341 a001 28657/24476*15127^(3/8) 4324118447370082 a001 4181/64079*9349^(27/38) 4324118447622422 a001 5473/12238*39603^(19/44) 4324118447663218 a001 17711/4870847*15127^(39/40) 4324118447686791 s002 sum(A221374[n]/(n^3*exp(n)+1),n=1..infinity) 4324118447697399 a001 28657/1149851*15127^(31/40) 4324118447739347 a001 75025/4870847*15127^(33/40) 4324118448128306 a001 46368/4870847*15127^(7/8) 4324118448472020 a001 121393/12752043*15127^(7/8) 4324118448522167 a001 317811/33385282*15127^(7/8) 4324118448529484 a001 832040/87403803*15127^(7/8) 4324118448530551 a001 46347/4868641*15127^(7/8) 4324118448530707 a001 5702887/599074578*15127^(7/8) 4324118448530730 a001 14930352/1568397607*15127^(7/8) 4324118448530733 a001 39088169/4106118243*15127^(7/8) 4324118448530733 a001 102334155/10749957122*15127^(7/8) 4324118448530734 a001 267914296/28143753123*15127^(7/8) 4324118448530734 a001 701408733/73681302247*15127^(7/8) 4324118448530734 a001 1836311903/192900153618*15127^(7/8) 4324118448530734 a001 102287808/10745088481*15127^(7/8) 4324118448530734 a001 12586269025/1322157322203*15127^(7/8) 4324118448530734 a001 32951280099/3461452808002*15127^(7/8) 4324118448530734 a001 86267571272/9062201101803*15127^(7/8) 4324118448530734 a001 225851433717/23725150497407*15127^(7/8) 4324118448530734 a001 139583862445/14662949395604*15127^(7/8) 4324118448530734 a001 53316291173/5600748293801*15127^(7/8) 4324118448530734 a001 20365011074/2139295485799*15127^(7/8) 4324118448530734 a001 7778742049/817138163596*15127^(7/8) 4324118448530734 a001 2971215073/312119004989*15127^(7/8) 4324118448530734 a001 1134903170/119218851371*15127^(7/8) 4324118448530734 a001 433494437/45537549124*15127^(7/8) 4324118448530734 a001 165580141/17393796001*15127^(7/8) 4324118448530734 a001 63245986/6643838879*15127^(7/8) 4324118448530735 a001 24157817/2537720636*15127^(7/8) 4324118448530744 a001 9227465/969323029*15127^(7/8) 4324118448530803 a001 3524578/370248451*15127^(7/8) 4324118448531211 a001 1346269/141422324*15127^(7/8) 4324118448534006 a001 514229/54018521*15127^(7/8) 4324118448553160 a001 196418/20633239*15127^(7/8) 4324118448637728 a001 28657/1860498*15127^(33/40) 4324118448684447 a001 75025/7881196*15127^(7/8) 4324118449450726 m001 1/BesselK(1,1)*Paris/ln(cos(1))^2 4324118449583249 a001 1346269/103682*5778^(5/36) 4324118449584302 a001 28657/3010349*15127^(7/8) 4324118450010635 a001 514229/24476*5778^(1/12) 4324118450138479 a001 2178309/167761*5778^(5/36) 4324118450528491 a001 28657/4870847*15127^(37/40) 4324118450622245 a001 5473/51841*15127^(5/8) 4324118451036859 a001 832040/64079*5778^(5/36) 4324118451132734 a001 10946/64079*15127^(23/40) 4324118451571294 a001 196418/9349*3571^(3/34) 4324118452122982 a001 10946/167761*15127^(27/40) 4324118452272760 a001 6624/2161*5778^(11/36) 4324118452855499 a001 10946/271443*15127^(29/40) 4324118453881451 a001 5473/219602*15127^(31/40) 4324118454415075 a001 105937/13201*5778^(7/36) 4324118454795320 a001 10946/710647*15127^(33/40) 4324118455407943 a001 5473/12238*15127^(19/40) 4324118455752001 a001 10946/1149851*15127^(7/8) 4324118456692329 a001 5473/930249*15127^(37/40) 4324118456777173 a001 416020/51841*5778^(7/36) 4324118456981679 a001 1346269/39603*2207^(1/32) 4324118457121798 a001 726103/90481*5778^(7/36) 4324118457194452 a001 10959/844*5778^(5/36) 4324118457334788 a001 1346269/167761*5778^(7/36) 4324118457638904 a001 10946/3010349*15127^(39/40) 4324118458237029 a001 514229/64079*5778^(7/36) 4324118458742660 a001 4181/24476*9349^(23/38) 4324118458962819 a001 4181/15127*24476^(1/2) 4324118459650248 a001 6765/9349*24476^(17/42) 4324118460791141 a001 2178309/64079*2207^(1/32) 4324118460923747 a001 28657/15127*5778^(13/36) 4324118461641704 a001 196418/39603*5778^(1/4) 4324118461786815 a001 17711/9349*9349^(13/38) 4324118462560644 a001 6765/15127*5778^(19/36) 4324118462563100 a001 4181/15127*439204^(7/18) 4324118462571796 a001 4181/15127*7881196^(7/22) 4324118462571815 a001 4181/15127*20633239^(3/10) 4324118462571818 a001 4181/15127*17393796001^(3/14) 4324118462571818 a001 4181/15127*14662949395604^(1/6) 4324118462571818 a001 4181/15127*599074578^(1/4) 4324118462571818 a001 6765/9349*45537549124^(1/6) 4324118462571819 a001 4181/15127*33385282^(7/24) 4324118462571825 a001 6765/9349*12752043^(1/4) 4324118462572255 a001 4181/15127*1860498^(7/20) 4324118462575029 a001 4181/15127*710647^(3/8) 4324118462747800 a001 4181/15127*103682^(7/16) 4324118462968860 a001 1597/64079*3571^(31/34) 4324118463637034 a001 6765/9349*39603^(17/44) 4324118463887673 a001 4181/15127*39603^(21/44) 4324118463977342 a001 514229/103682*5778^(1/4) 4324118464309276 a001 17711/15127*5778^(5/12) 4324118464318107 a001 1346269/271443*5778^(1/4) 4324118464367824 a001 3524578/710647*5778^(1/4) 4324118464375078 a001 9227465/1860498*5778^(1/4) 4324118464376136 a001 24157817/4870847*5778^(1/4) 4324118464376290 a001 63245986/12752043*5778^(1/4) 4324118464376313 a001 165580141/33385282*5778^(1/4) 4324118464376316 a001 433494437/87403803*5778^(1/4) 4324118464376317 a001 1134903170/228826127*5778^(1/4) 4324118464376317 a001 2971215073/599074578*5778^(1/4) 4324118464376317 a001 7778742049/1568397607*5778^(1/4) 4324118464376317 a001 20365011074/4106118243*5778^(1/4) 4324118464376317 a001 53316291173/10749957122*5778^(1/4) 4324118464376317 a001 139583862445/28143753123*5778^(1/4) 4324118464376317 a001 365435296162/73681302247*5778^(1/4) 4324118464376317 a001 956722026041/192900153618*5778^(1/4) 4324118464376317 a001 2504730781961/505019158607*5778^(1/4) 4324118464376317 a001 10610209857723/2139295485799*5778^(1/4) 4324118464376317 a001 4052739537881/817138163596*5778^(1/4) 4324118464376317 a001 140728068720/28374454999*5778^(1/4) 4324118464376317 a001 591286729879/119218851371*5778^(1/4) 4324118464376317 a001 225851433717/45537549124*5778^(1/4) 4324118464376317 a001 86267571272/17393796001*5778^(1/4) 4324118464376317 a001 32951280099/6643838879*5778^(1/4) 4324118464376317 a001 1144206275/230701876*5778^(1/4) 4324118464376317 a001 4807526976/969323029*5778^(1/4) 4324118464376317 a001 1836311903/370248451*5778^(1/4) 4324118464376317 a001 701408733/141422324*5778^(1/4) 4324118464376318 a001 267914296/54018521*5778^(1/4) 4324118464376327 a001 9303105/1875749*5778^(1/4) 4324118464376386 a001 39088169/7881196*5778^(1/4) 4324118464376790 a001 14930352/3010349*5778^(1/4) 4324118464379561 a001 5702887/1149851*5778^(1/4) 4324118464398551 a001 2178309/439204*5778^(1/4) 4324118464421080 a001 98209/12238*5778^(7/36) 4324118464528712 a001 75640/15251*5778^(1/4) 4324118465420846 a001 317811/64079*5778^(1/4) 4324118465922207 a001 987/3571*2207^(21/32) 4324118466954979 a001 208010/6119*2207^(1/32) 4324118468200772 a001 28657/9349*9349^(11/38) 4324118468756250 a001 121393/39603*5778^(11/36) 4324118469158005 a001 10946/9349*9349^(15/38) 4324118469349272 a001 46368/9349*9349^(9/38) 4324118470603027 a001 6765/9349*15127^(17/40) 4324118471161159 a001 317811/103682*5778^(11/36) 4324118471486917 a001 317811/9349*3571^(1/34) 4324118471512031 a001 832040/271443*5778^(11/36) 4324118471535627 a001 121393/24476*5778^(1/4) 4324118471563222 a001 311187/101521*5778^(11/36) 4324118471594860 a001 1346269/439204*5778^(11/36) 4324118471728881 a001 514229/167761*5778^(11/36) 4324118472020303 a001 2584/3571*3571^(1/2) 4324118472492723 a001 4181/15127*15127^(21/40) 4324118472508997 a001 75025/9349*9349^(7/38) 4324118472647475 a001 196418/64079*5778^(11/36) 4324118474415323 a001 4181/39603*24476^(25/42) 4324118474421390 a001 4181/1860498*24476^(41/42) 4324118474769624 a001 4181/1149851*24476^(13/14) 4324118474900502 a001 121393/9349*9349^(5/38) 4324118475101505 a001 4181/710647*24476^(37/42) 4324118475476198 a001 4181/439204*24476^(5/6) 4324118475738809 a001 4181/271443*24476^(11/14) 4324118476082679 a001 4181/103682*24476^(29/42) 4324118476164231 a001 75025/39603*5778^(13/36) 4324118476294854 a001 4181/167761*24476^(31/42) 4324118476477608 a001 17711/9349*24476^(13/42) 4324118477585442 a001 196418/9349*9349^(3/38) 4324118477881730 a001 4181/64079*24476^(9/14) 4324118478387788 a001 98209/51841*5778^(13/36) 4324118478634928 a001 4181/39603*167761^(1/2) 4324118478711746 a001 4181/39603*20633239^(5/14) 4324118478711750 a001 4181/39603*2537720636^(5/18) 4324118478711750 a001 4181/39603*312119004989^(5/22) 4324118478711750 a001 4181/39603*3461452808002^(5/24) 4324118478711750 a001 4181/39603*28143753123^(1/4) 4324118478711750 a001 4181/39603*228826127^(5/16) 4324118478711750 a001 17711/9349*141422324^(1/6) 4324118478711750 a001 17711/9349*73681302247^(1/8) 4324118478712200 a001 514229/271443*5778^(13/36) 4324118478712270 a001 4181/39603*1860498^(5/12) 4324118478726422 a001 17711/9349*271443^(1/4) 4324118478759531 a001 1346269/710647*5778^(13/36) 4324118478770705 a001 2178309/1149851*5778^(13/36) 4324118478788784 a001 208010/109801*5778^(13/36) 4324118478912698 a001 317811/167761*5778^(13/36) 4324118478943608 a001 75025/24476*5778^(11/36) 4324118479105340 a001 1597/39603*3571^(29/34) 4324118479519821 a001 46368/9349*24476^(3/14) 4324118479526327 a001 17711/9349*39603^(13/44) 4324118479762021 a001 121393/64079*5778^(13/36) 4324118480158299 a001 317811/9349*9349^(1/38) 4324118480278244 a001 4181/39603*39603^(25/44) 4324118480419424 a001 75025/9349*24476^(1/6) 4324118480550808 a001 121393/9349*24476^(5/42) 4324118480631443 a001 28657/9349*24476^(11/42) 4324118480975625 a001 196418/9349*24476^(1/14) 4324118481062798 a001 46368/9349*439204^(1/6) 4324118481064899 a001 4181/103682*1149851^(1/2) 4324118481066525 a001 46368/9349*7881196^(3/22) 4324118481066534 a001 4181/103682*1322157322203^(1/4) 4324118481066535 a001 46368/9349*2537720636^(1/10) 4324118481066535 a001 46368/9349*14662949395604^(1/14) 4324118481066535 a001 46368/9349*192900153618^(1/12) 4324118481066535 a001 46368/9349*33385282^(1/8) 4324118481066722 a001 46368/9349*1860498^(3/20) 4324118481141955 a001 46368/9349*103682^(3/16) 4324118481288360 a001 317811/9349*24476^(1/42) 4324118481330317 a001 4181/4870847*167761^(9/10) 4324118481383645 a001 4181/439204*167761^(7/10) 4324118481394729 a001 121393/9349*167761^(1/10) 4324118481396393 a001 4181/271443*439204^(11/18) 4324118481410058 a001 4181/271443*7881196^(1/2) 4324118481410092 a001 121393/9349*20633239^(1/14) 4324118481410092 a001 4181/271443*312119004989^(3/10) 4324118481410092 a001 4181/271443*1568397607^(3/8) 4324118481410093 a001 121393/9349*2537720636^(1/18) 4324118481410093 a001 121393/9349*312119004989^(1/22) 4324118481410093 a001 121393/9349*28143753123^(1/20) 4324118481410093 a001 121393/9349*228826127^(1/16) 4324118481410094 a001 4181/271443*33385282^(11/24) 4324118481410197 a001 121393/9349*1860498^(1/12) 4324118481410779 a001 4181/271443*1860498^(11/20) 4324118481447618 a001 4181/20633239*439204^(17/18) 4324118481449917 a001 4181/4870847*439204^(5/6) 4324118481455860 a001 4181/1149851*439204^(13/18) 4324118481460216 a001 4181/710647*54018521^(1/2) 4324118481463488 a006 5^(1/2)*fibonacci(57/2)/Lucas(19)/sqrt(5) 4324118481467530 a001 4181/1860498*370248451^(1/2) 4324118481468549 a001 4181/4870847*7881196^(15/22) 4324118481468590 a001 4181/4870847*20633239^(9/14) 4324118481468597 a001 4181/4870847*2537720636^(1/2) 4324118481468597 a001 4181/4870847*312119004989^(9/22) 4324118481468597 a001 4181/4870847*14662949395604^(5/14) 4324118481468597 a001 4181/4870847*192900153618^(5/12) 4324118481468597 a001 4181/4870847*28143753123^(9/20) 4324118481468597 a001 4181/4870847*228826127^(9/16) 4324118481468599 a001 4181/4870847*33385282^(5/8) 4324118481468713 a001 4181/370248451*7881196^(21/22) 4324118481468718 a001 4181/87403803*7881196^(19/22) 4324118481468723 a001 4181/54018521*7881196^(5/6) 4324118481468735 a001 4181/20633239*7881196^(17/22) 4324118481468745 a001 4181/12752043*20633239^(7/10) 4324118481468753 a001 4181/12752043*17393796001^(1/2) 4324118481468753 a001 4181/12752043*14662949395604^(7/18) 4324118481468753 a001 4181/12752043*505019158607^(7/16) 4324118481468753 a001 4181/12752043*599074578^(7/12) 4324118481468770 a001 4181/599074578*20633239^(13/14) 4324118481468770 a001 4181/370248451*20633239^(9/10) 4324118481468773 a001 4181/54018521*20633239^(11/14) 4324118481468775 a001 4181/33385282*119218851371^(1/2) 4324118481468779 a001 4181/87403803*817138163596^(1/2) 4324118481468779 a001 4181/599074578*141422324^(5/6) 4324118481468779 a001 4181/87403803*87403803^(3/4) 4324118481468779 a001 4181/228826127*5600748293801^(1/2) 4324118481468779 a001 4181/599074578*2537720636^(13/18) 4324118481468779 a001 4181/599074578*312119004989^(13/22) 4324118481468779 a001 4181/599074578*3461452808002^(13/24) 4324118481468779 a001 4181/599074578*73681302247^(5/8) 4324118481468779 a001 4181/599074578*28143753123^(13/20) 4324118481468779 a001 4181/1568397607*4106118243^(3/4) 4324118481468779 a001 4181/73681302247*2537720636^(17/18) 4324118481468779 a001 4181/28143753123*2537720636^(9/10) 4324118481468779 a001 4181/6643838879*2537720636^(5/6) 4324118481468779 a001 4181/10749957122*17393796001^(11/14) 4324118481468779 a001 4181/10749957122*14662949395604^(11/18) 4324118481468779 a001 4181/10749957122*505019158607^(11/16) 4324118481468779 a001 4181/312119004989*17393796001^(13/14) 4324118481468779 a001 4181/28143753123*14662949395604^(9/14) 4324118481468779 a001 4181/28143753123*192900153618^(3/4) 4324118481468779 a001 4181/73681302247*45537549124^(5/6) 4324118481468779 a001 4181/73681302247*312119004989^(17/22) 4324118481468779 a001 4181/73681302247*3461452808002^(17/24) 4324118481468779 a001 4181/9062201101803*312119004989^(21/22) 4324118481468779 a001 4181/2139295485799*312119004989^(9/10) 4324118481468779 a001 4181/817138163596*312119004989^(19/22) 4324118481468779 a001 4181/2139295485799*14662949395604^(11/14) 4324118481468779 a001 4181/817138163596*3461452808002^(19/24) 4324118481468779 a001 4181/9062201101803*505019158607^(15/16) 4324118481468779 a001 4181/312119004989*14662949395604^(13/18) 4324118481468779 a001 4181/312119004989*505019158607^(13/16) 4324118481468779 a001 4181/2139295485799*192900153618^(11/12) 4324118481468779 a001 4181/119218851371*1322157322203^(3/4) 4324118481468779 a001 4181/312119004989*73681302247^(7/8) 4324118481468779 a001 4181/73681302247*28143753123^(17/20) 4324118481468779 a001 4181/817138163596*28143753123^(19/20) 4324118481468779 a001 4181/6643838879*312119004989^(15/22) 4324118481468779 a001 4181/6643838879*3461452808002^(5/8) 4324118481468779 a001 4181/6643838879*28143753123^(3/4) 4324118481468779 a001 4181/10749957122*1568397607^(7/8) 4324118481468779 a001 4181/10749957122*599074578^(11/12) 4324118481468779 a001 4181/370248451*2537720636^(7/10) 4324118481468779 a001 4181/370248451*17393796001^(9/14) 4324118481468779 a001 4181/370248451*14662949395604^(1/2) 4324118481468779 a001 4181/370248451*505019158607^(9/16) 4324118481468779 a001 4181/370248451*192900153618^(7/12) 4324118481468779 a001 4181/370248451*599074578^(3/4) 4324118481468779 a001 4181/599074578*228826127^(13/16) 4324118481468779 a001 4181/6643838879*228826127^(15/16) 4324118481468779 a001 4181/141422324*2139295485799^(1/2) 4324118481468780 a006 5^(1/2)*Fibonacci(57/2)/Lucas(19)/sqrt(5) 4324118481468781 a001 4181/54018521*2537720636^(11/18) 4324118481468781 a001 4181/54018521*312119004989^(1/2) 4324118481468781 a001 4181/54018521*3461452808002^(11/24) 4324118481468781 a001 4181/54018521*28143753123^(11/20) 4324118481468781 a001 4181/54018521*1568397607^(5/8) 4324118481468781 a001 4181/54018521*228826127^(11/16) 4324118481468782 a001 4181/87403803*33385282^(19/24) 4324118481468783 a001 4181/370248451*33385282^(7/8) 4324118481468783 a001 4181/1568397607*33385282^(23/24) 4324118481468789 a001 4181/20633239*45537549124^(1/2) 4324118481468792 a001 4181/20633239*33385282^(17/24) 4324118481468809 a001 4181/20633239*12752043^(3/4) 4324118481468849 a001 4181/7881196*6643838879^(1/2) 4324118481469256 a001 4181/3010349*969323029^(1/2) 4324118481469534 a001 4181/4870847*1860498^(3/4) 4324118481469851 a001 4181/20633239*1860498^(17/20) 4324118481469926 a001 4181/54018521*1860498^(11/12) 4324118481469965 a001 4181/87403803*1860498^(19/20) 4324118481472008 a001 4181/1149851*7881196^(13/22) 4324118481472050 a001 4181/1149851*141422324^(1/2) 4324118481472050 a001 4181/1149851*73681302247^(3/8) 4324118481472052 a001 4181/1149851*33385282^(13/24) 4324118481472862 a001 4181/1149851*1860498^(13/20) 4324118481476245 a001 4181/12752043*710647^(7/8) 4324118481479952 a001 10946/15127*5778^(17/36) 4324118481489951 a001 196418/9349*439204^(1/18) 4324118481491190 a001 4181/439204*20633239^(1/2) 4324118481491193 a001 196418/9349*7881196^(1/22) 4324118481491195 a001 4181/439204*2537720636^(7/18) 4324118481491195 a001 4181/439204*17393796001^(5/14) 4324118481491195 a001 4181/439204*312119004989^(7/22) 4324118481491195 a001 4181/439204*14662949395604^(5/18) 4324118481491195 a001 4181/439204*505019158607^(5/16) 4324118481491195 a001 4181/439204*28143753123^(7/20) 4324118481491195 a001 4181/439204*599074578^(5/12) 4324118481491196 a001 4181/439204*228826127^(7/16) 4324118481491196 a001 196418/9349*33385282^(1/24) 4324118481491259 a001 196418/9349*1860498^(1/20) 4324118481491924 a001 4181/439204*1860498^(7/12) 4324118481496547 a001 4181/439204*710647^(5/8) 4324118481516065 a001 4181/1149851*271443^(3/4) 4324118481516336 a001 196418/9349*103682^(1/16) 4324118481522877 a001 317811/9349*39603^(1/44) 4324118481622185 a001 4181/167761*3010349^(1/2) 4324118481622423 a001 75025/9349*20633239^(1/10) 4324118481622423 a001 4181/167761*9062201101803^(1/4) 4324118481622424 a001 75025/9349*17393796001^(1/14) 4324118481622424 a001 75025/9349*14662949395604^(1/18) 4324118481622424 a001 75025/9349*505019158607^(1/16) 4324118481622424 a001 75025/9349*599074578^(1/12) 4324118481623494 a001 75025/9349*710647^(1/8) 4324118481630472 a001 46368/9349*39603^(9/44) 4324118481679175 a001 196418/9349*39603^(3/44) 4324118481686636 a001 4181/271443*103682^(11/16) 4324118481723392 a001 121393/9349*39603^(5/44) 4324118481798874 a001 4181/1149851*103682^(13/16) 4324118481845702 a001 4181/4870847*103682^(15/16) 4324118481932641 a001 317811/9349*15127^(1/40) 4324118482061042 a001 75025/9349*39603^(7/44) 4324118482510663 a001 4181/64079*439204^(1/2) 4324118482521842 a001 4181/64079*7881196^(9/22) 4324118482521860 a001 28657/9349*7881196^(1/6) 4324118482521871 a001 4181/64079*2537720636^(3/10) 4324118482521871 a001 4181/64079*14662949395604^(3/14) 4324118482521871 a001 4181/64079*192900153618^(1/4) 4324118482521871 a001 28657/9349*312119004989^(1/10) 4324118482521871 a001 28657/9349*1568397607^(1/8) 4324118482521872 a001 4181/64079*33385282^(3/8) 4324118482522433 a001 4181/64079*1860498^(9/20) 4324118482748134 a001 4181/64079*103682^(9/16) 4324118482803992 a001 15456/13201*5778^(5/12) 4324118482883667 a001 4181/103682*39603^(29/44) 4324118482908468 a001 196418/9349*15127^(3/40) 4324118483211129 a001 28657/9349*39603^(1/4) 4324118483477864 a001 4181/271443*39603^(3/4) 4324118483564876 a001 4181/167761*39603^(31/44) 4324118483684287 a001 4181/439204*39603^(35/44) 4324118483772213 a001 121393/9349*15127^(1/8) 4324118483778628 a001 4181/710647*39603^(37/44) 4324118483915780 a001 4181/1149851*39603^(39/44) 4324118484036580 a001 4181/1860498*39603^(41/44) 4324118484163626 a001 4181/3010349*39603^(43/44) 4324118484213684 a001 4181/64079*39603^(27/44) 4324118484734063 a001 4181/24476*24476^(23/42) 4324118484853263 a001 17711/9349*15127^(13/40) 4324118484929392 a001 75025/9349*15127^(7/40) 4324118485058042 a001 317811/9349*5778^(1/36) 4324118485318351 a001 46368/9349*15127^(9/40) 4324118485502335 a001 121393/103682*5778^(5/12) 4324118485583368 a001 11592/6119*5778^(13/36) 4324118485896017 a001 105937/90481*5778^(5/12) 4324118485953455 a001 832040/710647*5778^(5/12) 4324118485961835 a001 726103/620166*5778^(5/12) 4324118485963058 a001 5702887/4870847*5778^(5/12) 4324118485963236 a001 4976784/4250681*5778^(5/12) 4324118485963262 a001 39088169/33385282*5778^(5/12) 4324118485963266 a001 34111385/29134601*5778^(5/12) 4324118485963266 a001 267914296/228826127*5778^(5/12) 4324118485963266 a001 233802911/199691526*5778^(5/12) 4324118485963266 a001 1836311903/1568397607*5778^(5/12) 4324118485963266 a001 1602508992/1368706081*5778^(5/12) 4324118485963266 a001 12586269025/10749957122*5778^(5/12) 4324118485963266 a001 10983760033/9381251041*5778^(5/12) 4324118485963266 a001 86267571272/73681302247*5778^(5/12) 4324118485963266 a001 75283811239/64300051206*5778^(5/12) 4324118485963266 a001 2504730781961/2139295485799*5778^(5/12) 4324118485963266 a001 365435296162/312119004989*5778^(5/12) 4324118485963266 a001 139583862445/119218851371*5778^(5/12) 4324118485963266 a001 53316291173/45537549124*5778^(5/12) 4324118485963266 a001 20365011074/17393796001*5778^(5/12) 4324118485963266 a001 7778742049/6643838879*5778^(5/12) 4324118485963266 a001 2971215073/2537720636*5778^(5/12) 4324118485963266 a001 1134903170/969323029*5778^(5/12) 4324118485963267 a001 433494437/370248451*5778^(5/12) 4324118485963267 a001 165580141/141422324*5778^(5/12) 4324118485963268 a001 63245986/54018521*5778^(5/12) 4324118485963278 a001 24157817/20633239*5778^(5/12) 4324118485963346 a001 9227465/7881196*5778^(5/12) 4324118485963813 a001 3524578/3010349*5778^(5/12) 4324118485967014 a001 1346269/1149851*5778^(5/12) 4324118485988953 a001 514229/439204*5778^(5/12) 4324118486108921 a001 10946/9349*24476^(5/14) 4324118486139327 a001 196418/167761*5778^(5/12) 4324118487170002 a001 75025/64079*5778^(5/12) 4324118487718536 a001 28657/9349*15127^(11/40) 4324118488160230 a001 4181/24476*64079^(1/2) 4324118488640683 a001 10946/9349*167761^(3/10) 4324118488680550 a001 10946/9349*439204^(5/18) 4324118488686761 a001 10946/9349*7881196^(5/22) 4324118488686774 a001 10946/9349*20633239^(3/14) 4324118488686776 a001 4181/24476*4106118243^(1/4) 4324118488686777 a001 10946/9349*2537720636^(1/6) 4324118488686777 a001 10946/9349*312119004989^(3/22) 4324118488686777 a001 10946/9349*28143753123^(3/20) 4324118488686777 a001 10946/9349*228826127^(3/16) 4324118488686777 a001 10946/9349*33385282^(5/24) 4324118488687089 a001 10946/9349*1860498^(1/4) 4324118488812478 a001 10946/9349*103682^(5/16) 4324118489626673 a001 10946/9349*39603^(15/44) 4324118490127951 a001 4181/24476*39603^(23/44) 4324118490522350 a001 4181/39603*15127^(5/8) 4324118490570123 a001 610/15127*1364^(29/30) 4324118491454978 a001 28657/39603*5778^(17/36) 4324118492284671 a001 196418/9349*5778^(1/12) 4324118492910315 a001 75025/103682*5778^(17/36) 4324118493091875 a001 2255/13201*5778^(23/36) 4324118493122646 a001 196418/271443*5778^(17/36) 4324118493153625 a001 514229/710647*5778^(17/36) 4324118493158144 a001 1346269/1860498*5778^(17/36) 4324118493159211 a001 2178309/3010349*5778^(17/36) 4324118493160938 a001 832040/1149851*5778^(17/36) 4324118493172770 a001 317811/439204*5778^(17/36) 4324118493253874 a001 121393/167761*5778^(17/36) 4324118493809763 a001 46368/64079*5778^(17/36) 4324118493942951 r005 Im(z^2+c),c=35/122+17/42*I,n=35 4324118494234355 a001 28657/24476*5778^(5/12) 4324118494766831 a001 4181/103682*15127^(29/40) 4324118494840507 a001 17711/39603*5778^(19/36) 4324118495277320 a001 4181/64079*15127^(27/40) 4324118495773137 a001 10946/9349*15127^(3/8) 4324118495871252 a001 6765/24476*5778^(7/12) 4324118496267568 a001 4181/167761*15127^(31/40) 4324118496268322 a001 2576/321*2207^(7/32) 4324118496317386 a001 317811/15127*2207^(3/32) 4324118497000085 a001 4181/271443*15127^(33/40) 4324118497619884 a001 17711/24476*5778^(17/36) 4324118498026037 a001 4181/439204*15127^(7/8) 4324118498939906 a001 4181/710647*15127^(37/40) 4324118499399218 a001 121393/9349*5778^(5/36) 4324118499550076 a001 23184/51841*5778^(19/36) 4324118499552529 a001 4181/24476*15127^(23/40) 4324118499896587 a001 4181/1149851*15127^(39/40) 4324118500237193 a001 121393/271443*5778^(19/36) 4324118500337442 a001 317811/710647*5778^(19/36) 4324118500352068 a001 416020/930249*5778^(19/36) 4324118500354202 a001 2178309/4870847*5778^(19/36) 4324118500355521 a001 1346269/3010349*5778^(19/36) 4324118500361107 a001 514229/1149851*5778^(19/36) 4324118500399399 a001 98209/219602*5778^(19/36) 4324118500661854 a001 75025/167761*5778^(19/36) 4324118502460749 a001 28657/64079*5778^(19/36) 4324118502858611 a001 1597/15127*3571^(25/34) 4324118504097646 a001 6765/64079*5778^(25/36) 4324118505846278 a001 17711/64079*5778^(7/12) 4324118506205223 a001 4181/9349*9349^(1/2) 4324118506807198 a001 75025/9349*5778^(7/36) 4324118507301615 a001 46368/167761*5778^(7/12) 4324118507513946 a001 121393/439204*5778^(7/12) 4324118507544924 a001 317811/1149851*5778^(7/12) 4324118507549444 a001 832040/3010349*5778^(7/12) 4324118507550104 a001 2178309/7881196*5778^(7/12) 4324118507550200 a001 5702887/20633239*5778^(7/12) 4324118507550214 a001 14930352/54018521*5778^(7/12) 4324118507550216 a001 39088169/141422324*5778^(7/12) 4324118507550216 a001 102334155/370248451*5778^(7/12) 4324118507550216 a001 267914296/969323029*5778^(7/12) 4324118507550216 a001 701408733/2537720636*5778^(7/12) 4324118507550216 a001 1836311903/6643838879*5778^(7/12) 4324118507550216 a001 4807526976/17393796001*5778^(7/12) 4324118507550216 a001 12586269025/45537549124*5778^(7/12) 4324118507550216 a001 32951280099/119218851371*5778^(7/12) 4324118507550216 a001 86267571272/312119004989*5778^(7/12) 4324118507550216 a001 225851433717/817138163596*5778^(7/12) 4324118507550216 a001 1548008755920/5600748293801*5778^(7/12) 4324118507550216 a001 139583862445/505019158607*5778^(7/12) 4324118507550216 a001 53316291173/192900153618*5778^(7/12) 4324118507550216 a001 20365011074/73681302247*5778^(7/12) 4324118507550216 a001 7778742049/28143753123*5778^(7/12) 4324118507550216 a001 2971215073/10749957122*5778^(7/12) 4324118507550216 a001 1134903170/4106118243*5778^(7/12) 4324118507550216 a001 433494437/1568397607*5778^(7/12) 4324118507550216 a001 165580141/599074578*5778^(7/12) 4324118507550216 a001 63245986/228826127*5778^(7/12) 4324118507550217 a001 24157817/87403803*5778^(7/12) 4324118507550223 a001 9227465/33385282*5778^(7/12) 4324118507550259 a001 3524578/12752043*5778^(7/12) 4324118507550511 a001 1346269/4870847*5778^(7/12) 4324118507552238 a001 514229/1860498*5778^(7/12) 4324118507564070 a001 196418/710647*5778^(7/12) 4324118507645173 a001 75025/271443*5778^(7/12) 4324118508201063 a001 28657/103682*5778^(7/12) 4324118509026968 a001 1597/24476*3571^(27/34) 4324118509202556 a001 317811/9349*2207^(1/32) 4324118509837959 a001 6765/103682*5778^(3/4) 4324118511586591 a001 17711/103682*5778^(23/36) 4324118512011184 a001 10946/39603*5778^(7/12) 4324118512116685 r002 3th iterates of z^2 + 4324118512464631 a001 832040/39603*2207^(3/32) 4324118513446959 a001 46368/9349*5778^(1/4) 4324118514284934 a001 15456/90481*5778^(23/36) 4324118514678617 a001 121393/710647*5778^(23/36) 4324118514736055 a001 105937/620166*5778^(23/36) 4324118514744435 a001 832040/4870847*5778^(23/36) 4324118514749614 a001 514229/3010349*5778^(23/36) 4324118514771553 a001 196418/1149851*5778^(23/36) 4324118514790560 a001 5473/12238*5778^(19/36) 4324118514820482 a001 46347/2206*2207^(3/32) 4324118514921927 a001 75025/439204*5778^(23/36) 4324118515952602 a001 28657/167761*5778^(23/36) 4324118516276478 a001 1346269/64079*2207^(3/32) 4324118517589498 a001 615/15251*5778^(29/36) 4324118519338131 a001 17711/167761*5778^(25/36) 4324118519522478 a001 33385282/1597*233^(2/15) 4324118519809418 a001 98209/2889*843^(1/28) 4324118521166471 r005 Im(z^2+c),c=-7/60+16/27*I,n=11 4324118521561687 a001 11592/109801*5778^(25/36) 4324118521886100 a001 121393/1149851*5778^(25/36) 4324118521933431 a001 317811/3010349*5778^(25/36) 4324118521944604 a001 514229/4870847*5778^(25/36) 4324118521962683 a001 98209/930249*5778^(25/36) 4324118522086598 a001 75025/710647*5778^(25/36) 4324118522097946 a001 28657/9349*5778^(11/36) 4324118522444177 a001 514229/24476*2207^(3/32) 4324118522935921 a001 28657/271443*5778^(25/36) 4324118523016955 a001 10946/64079*5778^(23/36) 4324118523734843 a001 6765/9349*5778^(17/36) 4324118524572818 a001 2255/90481*5778^(31/36) 4324118525483475 a001 17711/9349*5778^(13/36) 4324118526321450 a001 17711/271443*5778^(3/4) 4324118526465524 m005 (1/2*5^(1/2)-5/6)/(7/8*3^(1/2)-6/7) 4324118527676382 a001 4181/9349*24476^(19/42) 4324118528726359 a001 6624/101521*5778^(3/4) 4324118528757268 a001 5473/51841*5778^(25/36) 4324118529077230 a001 121393/1860498*5778^(3/4) 4324118529128422 a001 317811/4870847*5778^(3/4) 4324118529135890 a001 832040/12752043*5778^(3/4) 4324118529136980 a001 311187/4769326*5778^(3/4) 4324118529137139 a001 5702887/87403803*5778^(3/4) 4324118529137162 a001 14930352/228826127*5778^(3/4) 4324118529137166 a001 39088169/599074578*5778^(3/4) 4324118529137166 a001 14619165/224056801*5778^(3/4) 4324118529137166 a001 267914296/4106118243*5778^(3/4) 4324118529137166 a001 701408733/10749957122*5778^(3/4) 4324118529137166 a001 1836311903/28143753123*5778^(3/4) 4324118529137166 a001 686789568/10525900321*5778^(3/4) 4324118529137166 a001 12586269025/192900153618*5778^(3/4) 4324118529137166 a001 32951280099/505019158607*5778^(3/4) 4324118529137166 a001 86267571272/1322157322203*5778^(3/4) 4324118529137166 a001 32264490531/494493258286*5778^(3/4) 4324118529137166 a001 1548008755920/23725150497407*5778^(3/4) 4324118529137166 a001 365435296162/5600748293801*5778^(3/4) 4324118529137166 a001 139583862445/2139295485799*5778^(3/4) 4324118529137166 a001 53316291173/817138163596*5778^(3/4) 4324118529137166 a001 20365011074/312119004989*5778^(3/4) 4324118529137166 a001 7778742049/119218851371*5778^(3/4) 4324118529137166 a001 2971215073/45537549124*5778^(3/4) 4324118529137166 a001 1134903170/17393796001*5778^(3/4) 4324118529137166 a001 433494437/6643838879*5778^(3/4) 4324118529137166 a001 165580141/2537720636*5778^(3/4) 4324118529137166 a001 63245986/969323029*5778^(3/4) 4324118529137168 a001 24157817/370248451*5778^(3/4) 4324118529137176 a001 9227465/141422324*5778^(3/4) 4324118529137237 a001 3524578/54018521*5778^(3/4) 4324118529137653 a001 1346269/20633239*5778^(3/4) 4324118529140506 a001 514229/7881196*5778^(3/4) 4324118529160060 a001 196418/3010349*5778^(3/4) 4324118529294081 a001 75025/1149851*5778^(3/4) 4324118530212674 a001 28657/439204*5778^(3/4) 4324118530941667 a001 4181/9349*817138163596^(1/6) 4324118530941667 a001 4181/9349*87403803^(1/4) 4324118531849571 a001 6765/439204*5778^(11/12) 4324118532132202 a001 4181/9349*39603^(19/44) 4324118533598203 a001 17711/439204*5778^(29/36) 4324118534337486 m001 (Si(Pi)-sin(1))/(Artin+ReciprocalLucas) 4324118535933841 a001 46368/1149851*5778^(29/36) 4324118536274606 a001 121393/3010349*5778^(29/36) 4324118536355050 a001 196418/4870847*5778^(29/36) 4324118536485211 a001 75025/1860498*5778^(29/36) 4324118536508807 a001 10946/167761*5778^(3/4) 4324118537377345 a001 28657/710647*5778^(29/36) 4324118538126142 a001 4181/15127*5778^(7/12) 4324118538824440 a001 75025/3571*1364^(1/10) 4324118539014242 a001 6765/710647*5778^(35/36) 4324118539917724 a001 4181/9349*15127^(19/40) 4324118540762874 a001 17711/710647*5778^(31/36) 4324118542654151 a001 10946/9349*5778^(5/12) 4324118543124972 a001 2576/103361*5778^(31/36) 4324118543469597 a001 121393/4870847*5778^(31/36) 4324118543492126 a001 10946/271443*5778^(29/36) 4324118543682587 a001 75025/3010349*5778^(31/36) 4324118544429667 m001 (GAMMA(23/24)+MertensB1)/(exp(1)+sin(1/12*Pi)) 4324118544584828 a001 28657/1149851*5778^(31/36) 4324118547970357 a001 17711/1149851*5778^(11/12) 4324118550322348 a001 46368/3010349*5778^(11/12) 4324118550665499 a001 121393/7881196*5778^(11/12) 4324118550715564 a001 10959/711491*5778^(11/12) 4324118550722868 a001 832040/54018521*5778^(11/12) 4324118550723934 a001 2178309/141422324*5778^(11/12) 4324118550724090 a001 5702887/370248451*5778^(11/12) 4324118550724112 a001 14930352/969323029*5778^(11/12) 4324118550724116 a001 39088169/2537720636*5778^(11/12) 4324118550724116 a001 102334155/6643838879*5778^(11/12) 4324118550724116 a001 9238424/599786069*5778^(11/12) 4324118550724116 a001 701408733/45537549124*5778^(11/12) 4324118550724116 a001 1836311903/119218851371*5778^(11/12) 4324118550724116 a001 4807526976/312119004989*5778^(11/12) 4324118550724116 a001 12586269025/817138163596*5778^(11/12) 4324118550724116 a001 32951280099/2139295485799*5778^(11/12) 4324118550724116 a001 86267571272/5600748293801*5778^(11/12) 4324118550724116 a001 7787980473/505618944676*5778^(11/12) 4324118550724116 a001 365435296162/23725150497407*5778^(11/12) 4324118550724116 a001 139583862445/9062201101803*5778^(11/12) 4324118550724116 a001 53316291173/3461452808002*5778^(11/12) 4324118550724116 a001 20365011074/1322157322203*5778^(11/12) 4324118550724116 a001 7778742049/505019158607*5778^(11/12) 4324118550724116 a001 2971215073/192900153618*5778^(11/12) 4324118550724116 a001 1134903170/73681302247*5778^(11/12) 4324118550724116 a001 433494437/28143753123*5778^(11/12) 4324118550724116 a001 165580141/10749957122*5778^(11/12) 4324118550724116 a001 63245986/4106118243*5778^(11/12) 4324118550724118 a001 24157817/1568397607*5778^(11/12) 4324118550724126 a001 9227465/599074578*5778^(11/12) 4324118550724186 a001 3524578/228826127*5778^(11/12) 4324118550724593 a001 1346269/87403803*5778^(11/12) 4324118550727383 a001 514229/33385282*5778^(11/12) 4324118550746506 a001 196418/12752043*5778^(11/12) 4324118550768880 a001 5473/219602*5778^(31/36) 4324118550877578 a001 75025/4870847*5778^(11/12) 4324118551382595 a001 987/1364*1364^(17/30) 4324118551775958 a001 28657/1860498*5778^(11/12) 4324118551833043 a001 196418/15127*2207^(5/32) 4324118552272223 r005 Im(z^2+c),c=13/50+17/47*I,n=15 4324118553208337 a001 28657/5778*2207^(9/32) 4324118555161487 a001 17711/1860498*5778^(35/36) 4324118557517339 a001 46368/4870847*5778^(35/36) 4324118557742628 r005 Re(z^2+c),c=-37/60+1/10*I,n=56 4324118557933551 a001 10946/710647*5778^(11/12) 4324118558973335 a001 28657/3010349*5778^(35/36) 4324118564718214 a001 196418/9349*2207^(3/32) 4324118565141034 a001 10946/1149851*5778^(35/36) 4324118567953829 a001 514229/39603*2207^(5/32) 4324118568657374 a001 4181/39603*5778^(25/36) 4324118570305820 a001 1346269/103682*2207^(5/32) 4324118570861050 a001 2178309/167761*2207^(5/32) 4324118571436751 a001 4181/24476*5778^(23/36) 4324118571759431 a001 832040/64079*2207^(5/32) 4324118574167123 m008 (1/2*Pi-3/4)/(1/5*Pi^4-1/2) 4324118577917023 a001 10959/844*2207^(5/32) 4324118579109555 r009 Im(z^3+c),c=-39/74+11/37*I,n=56 4324118579384419 a007 Real Root Of -812*x^4-338*x^3+283*x^2+821*x-36 4324118579663145 a001 4181/64079*5778^(3/4) 4324118585403459 a001 4181/103682*5778^(29/36) 4324118587292688 a007 Real Root Of -970*x^4+820*x^3+366*x^2+493*x-314 4324118587636797 a007 Real Root Of -407*x^4+604*x^3-385*x^2-125*x+81 4324118591175063 a001 1597/9349*3571^(23/34) 4324118593154998 a001 4181/167761*5778^(31/36) 4324118599300342 a001 4181/9349*5778^(19/36) 4324118600079267 a007 Real Root Of -110*x^4-526*x^3-210*x^2-46*x-343 4324118600138317 a001 4181/271443*5778^(11/12) 4324118602817610 a007 Real Root Of -35*x^4+444*x^3-574*x^2-526*x-83 4324118604882895 a001 17711/5778*2207^(11/32) 4324118607236619 a001 121393/15127*2207^(7/32) 4324118607415070 a001 4181/439204*5778^(35/36) 4324118609496588 r005 Re(z^2+c),c=-27/38+2/43*I,n=22 4324118614226116 a001 1597/5778*9349^(21/38) 4324118615817338 r009 Im(z^3+c),c=-43/106+5/12*I,n=41 4324118619433811 a001 2584/3571*9349^(17/38) 4324118620121790 a001 121393/9349*2207^(5/32) 4324118622538249 a001 6765/3571*3571^(13/34) 4324118623426676 a001 105937/13201*2207^(7/32) 4324118625184386 r005 Re(z^2+c),c=-11/18+20/119*I,n=52 4324118625788773 a001 416020/51841*2207^(7/32) 4324118626133399 a001 726103/90481*2207^(7/32) 4324118626346389 a001 1346269/167761*2207^(7/32) 4324118627248630 a001 514229/64079*2207^(7/32) 4324118630415011 a001 514229/15127*843^(1/28) 4324118631858173 a001 28657/2207*843^(5/28) 4324118632845863 r002 25th iterates of z^2 + 4324118633432681 a001 98209/12238*2207^(7/32) 4324118634722875 m001 exp(Backhouse)^2/Artin*Zeta(1,2)^2 4324118637957398 a001 1597/5778*24476^(1/2) 4324118638644849 a001 2584/3571*24476^(17/42) 4324118641085638 a001 1597/5778*64079^(21/46) 4324118641557679 a001 1597/5778*439204^(7/18) 4324118641566375 a001 1597/5778*7881196^(7/22) 4324118641566394 a001 1597/5778*20633239^(3/10) 4324118641566397 a001 1597/5778*17393796001^(3/14) 4324118641566397 a001 1597/5778*14662949395604^(1/6) 4324118641566397 a001 1597/5778*599074578^(1/4) 4324118641566398 a001 1597/5778*33385282^(7/24) 4324118641566420 a001 2584/3571*45537549124^(1/6) 4324118641566426 a001 2584/3571*12752043^(1/4) 4324118641566834 a001 1597/5778*1860498^(7/20) 4324118641569608 a001 1597/5778*710647^(3/8) 4324118641742379 a001 1597/5778*103682^(7/16) 4324118642631636 a001 2584/3571*39603^(17/44) 4324118642882252 a001 1597/5778*39603^(21/44) 4324118646552150 a001 1346269/39603*843^(1/28) 4324118649597628 a001 2584/3571*15127^(17/40) 4324118650361612 a001 2178309/64079*843^(1/28) 4324118651487302 a001 1597/5778*15127^(21/40) 4324118656525450 a001 208010/6119*843^(1/28) 4324118662933630 a001 75025/15127*2207^(9/32) 4324118663215463 a007 Real Root Of 347*x^4+261*x^3+785*x^2-867*x+36 4324118665964943 a007 Real Root Of 107*x^4-478*x^3+438*x^2-744*x-446 4324118665975254 r005 Re(z^2+c),c=-21/34+5/106*I,n=34 4324118668599811 a001 10946/3571*3571^(11/34) 4324118670342602 a001 5473/2889*2207^(13/32) 4324118670961498 a001 4181/3571*3571^(15/34) 4324118672341837 b008 7-29/EulerGamma 4324118675818801 a001 75025/9349*2207^(7/32) 4324118678571387 a001 17711/3571*3571^(9/34) 4324118678942335 a001 196418/39603*2207^(9/32) 4324118681277973 a001 514229/103682*2207^(9/32) 4324118681618738 a001 1346269/271443*2207^(9/32) 4324118681699182 a001 2178309/439204*2207^(9/32) 4324118681829343 a001 75640/15251*2207^(9/32) 4324118682721477 a001 317811/64079*2207^(9/32) 4324118688836258 a001 121393/24476*2207^(9/32) 4324118689835155 a001 305/2889*1364^(5/6) 4324118691351762 q001 1705/3943 4324118692013269 m001 exp(1/exp(1))/(ln(gamma)^FeigenbaumC) 4324118693192578 l006 ln(3527/5435) 4324118693556996 a001 121393/3571*1364^(1/30) 4324118698773030 a001 317811/9349*843^(1/28) 4324118699712323 a001 2255/1926*2207^(15/32) 4324118700056939 a001 1292/2889*2207^(19/32) 4324118702328110 a001 28657/3571*3571^(7/34) 4324118702729446 a001 2584/3571*5778^(17/36) 4324118710815448 r009 Im(z^3+c),c=-23/82+7/13*I,n=5 4324118711003200 m001 1/Cahen*exp(Artin)^2*log(2+sqrt(3)) 4324118713884860 a001 610/9349*1364^(9/10) 4324118715956568 r002 20th iterates of z^2 + 4324118717120724 a001 1597/5778*5778^(7/12) 4324118717862421 a001 6624/2161*2207^(11/32) 4324118719643185 a001 1597/15127*9349^(25/38) 4324118719937303 r005 Re(z^2+c),c=-33/50+6/43*I,n=25 4324118720819376 a001 46368/3571*3571^(5/34) 4324118722858443 a001 1597/271443*9349^(37/38) 4324118723527303 r005 Re(z^2+c),c=-23/34+9/46*I,n=41 4324118725674610 a001 1597/167761*9349^(35/38) 4324118727722557 a001 1597/103682*9349^(33/38) 4324118730575445 a001 1597/39603*9349^(29/38) 4324118730747593 a001 46368/9349*2207^(9/32) 4324118731781730 a001 1597/64079*9349^(31/38) 4324118734345912 a001 121393/39603*2207^(11/32) 4324118735266229 a001 6765/3571*9349^(13/38) 4324118736750821 a001 317811/103682*2207^(11/32) 4324118737101693 a001 832040/271443*2207^(11/32) 4324118737152884 a001 311187/101521*2207^(11/32) 4324118737184522 a001 1346269/439204*2207^(11/32) 4324118737318543 a001 514229/167761*2207^(11/32) 4324118737438241 h001 (2/5*exp(1)+7/9)/(4/7*exp(2)+1/11) 4324118738237137 a001 196418/64079*2207^(11/32) 4324118741321868 a001 75025/3571*3571^(3/34) 4324118743154308 a001 1597/24476*9349^(27/38) 4324118744533270 a001 75025/24476*2207^(11/32) 4324118747894712 a001 1597/15127*24476^(25/42) 4324118749957024 a001 6765/3571*24476^(13/42) 4324118750429181 m001 Zeta(1/2)/(HardyLittlewoodC5-RenyiParking) 4324118751618807 a001 1597/15127*64079^(25/46) 4324118752114317 a001 1597/15127*167761^(1/2) 4324118752191136 a001 1597/15127*20633239^(5/14) 4324118752191139 a001 1597/15127*2537720636^(5/18) 4324118752191139 a001 1597/15127*312119004989^(5/22) 4324118752191139 a001 1597/15127*3461452808002^(5/24) 4324118752191139 a001 1597/15127*28143753123^(1/4) 4324118752191139 a001 1597/15127*228826127^(5/16) 4324118752191166 a001 6765/3571*141422324^(1/6) 4324118752191166 a001 6765/3571*73681302247^(1/8) 4324118752191660 a001 1597/15127*1860498^(5/12) 4324118752205837 a001 6765/3571*271443^(1/4) 4324118753005743 a001 6765/3571*39603^(13/44) 4324118753757633 a001 1597/15127*39603^(25/44) 4324118756613835 a001 17711/3571*9349^(9/38) 4324118758332678 a001 6765/3571*15127^(13/40) 4324118761056140 a001 121393/3571*3571^(1/34) 4324118763027793 a001 28657/3571*9349^(7/38) 4324118763347217 a001 1597/39603*24476^(29/42) 4324118763985026 a001 10946/3571*9349^(11/38) 4324118764001741 a001 1597/15127*15127^(5/8) 4324118764033399 a001 1597/710647*24476^(41/42) 4324118764176292 a001 46368/3571*9349^(5/38) 4324118764408092 a001 1597/439204*24476^(13/14) 4324118764670703 a001 1597/271443*24476^(37/42) 4324118765014573 a001 1597/103682*24476^(11/14) 4324118765226748 a001 1597/167761*24476^(5/6) 4324118766784385 a001 17711/3571*24476^(3/14) 4324118766813624 a001 1597/64079*24476^(31/42) 4324118767336018 a001 75025/3571*9349^(3/38) 4324118767667166 a001 1597/39603*64079^(29/46) 4324118768327363 a001 17711/3571*439204^(1/6) 4324118768329437 a001 1597/39603*1149851^(1/2) 4324118768331072 a001 1597/39603*1322157322203^(1/4) 4324118768331089 a001 17711/3571*7881196^(3/22) 4324118768331099 a001 17711/3571*2537720636^(1/10) 4324118768331099 a001 17711/3571*14662949395604^(1/14) 4324118768331099 a001 17711/3571*192900153618^(1/12) 4324118768331099 a001 17711/3571*33385282^(1/8) 4324118768331286 a001 17711/3571*1860498^(3/20) 4324118768406520 a001 17711/3571*103682^(3/16) 4324118768895036 a001 17711/3571*39603^(9/44) 4324118769727523 a001 121393/3571*9349^(1/38) 4324118769826598 a001 46368/3571*24476^(5/42) 4324118769930378 a001 1597/103682*64079^(33/46) 4324118770140914 a001 1597/710647*64079^(41/46) 4324118770148205 a001 1597/39603*39603^(29/44) 4324118770182363 a001 1597/271443*64079^(37/46) 4324118770217679 a001 1597/439204*64079^(39/46) 4324118770440480 a001 1597/167761*64079^(35/46) 4324118770670519 a001 46368/3571*167761^(1/10) 4324118770672158 a001 1597/103682*439204^(11/18) 4324118770685822 a001 1597/103682*7881196^(1/2) 4324118770685856 a001 1597/103682*312119004989^(3/10) 4324118770685856 a001 1597/103682*1568397607^(3/8) 4324118770685858 a001 1597/103682*33385282^(11/24) 4324118770685882 a001 46368/3571*20633239^(1/14) 4324118770685883 a001 46368/3571*2537720636^(1/18) 4324118770685883 a001 46368/3571*312119004989^(1/22) 4324118770685883 a001 46368/3571*28143753123^(1/20) 4324118770685883 a001 46368/3571*228826127^(1/16) 4324118770685987 a001 46368/3571*1860498^(1/12) 4324118770686544 a001 1597/103682*1860498^(11/20) 4324118770726201 a001 75025/3571*24476^(1/14) 4324118770857584 a001 121393/3571*24476^(1/42) 4324118770938220 a001 28657/3571*24476^(1/6) 4324118770948573 a001 1597/1860498*167761^(9/10) 4324118770962400 a001 1597/103682*103682^(11/16) 4324118770999182 a001 46368/3571*39603^(5/44) 4324118771029414 a001 1597/271443*54018521^(1/2) 4324118771067000 a001 1597/7881196*439204^(17/18) 4324118771068172 a001 1597/1860498*439204^(5/6) 4324118771079539 a001 1597/710647*370248451^(1/2) 4324118771086805 a001 1597/1860498*7881196^(15/22) 4324118771086846 a001 1597/1860498*20633239^(9/14) 4324118771086852 a001 1597/1860498*2537720636^(1/2) 4324118771086852 a001 1597/1860498*312119004989^(9/22) 4324118771086852 a001 1597/1860498*14662949395604^(5/14) 4324118771086852 a001 1597/1860498*192900153618^(5/12) 4324118771086852 a001 1597/1860498*28143753123^(9/20) 4324118771086853 a001 1597/1860498*228826127^(9/16) 4324118771086855 a001 1597/1860498*33385282^(5/8) 4324118771087789 a001 1597/1860498*1860498^(3/4) 4324118771087912 a001 1597/4870847*20633239^(7/10) 4324118771087919 a001 1597/4870847*17393796001^(1/2) 4324118771087919 a001 1597/4870847*14662949395604^(7/18) 4324118771087919 a001 1597/4870847*505019158607^(7/16) 4324118771087919 a001 1597/4870847*599074578^(7/12) 4324118771088035 a001 1597/141422324*7881196^(21/22) 4324118771088038 a001 1597/33385282*7881196^(19/22) 4324118771088054 a001 1597/20633239*7881196^(5/6) 4324118771088075 a001 1597/12752043*119218851371^(1/2) 4324118771088092 a001 1597/228826127*20633239^(13/14) 4324118771088093 a001 1597/141422324*20633239^(9/10) 4324118771088098 a001 1597/33385282*817138163596^(1/2) 4324118771088098 a001 1597/33385282*87403803^(3/4) 4324118771088101 a001 1597/33385282*33385282^(19/24) 4324118771088101 a001 1597/87403803*5600748293801^(1/2) 4324118771088101 a001 1597/228826127*141422324^(5/6) 4324118771088102 a001 1597/228826127*2537720636^(13/18) 4324118771088102 a001 1597/228826127*312119004989^(13/22) 4324118771088102 a001 1597/228826127*3461452808002^(13/24) 4324118771088102 a001 1597/228826127*73681302247^(5/8) 4324118771088102 a001 1597/228826127*28143753123^(13/20) 4324118771088102 a001 1597/228826127*228826127^(13/16) 4324118771088102 a001 1597/599074578*4106118243^(3/4) 4324118771088102 a001 1597/10749957122*2537720636^(9/10) 4324118771088102 a001 1597/28143753123*2537720636^(17/18) 4324118771088102 a001 1597/4106118243*17393796001^(11/14) 4324118771088102 a001 1597/4106118243*14662949395604^(11/18) 4324118771088102 a001 1597/4106118243*505019158607^(11/16) 4324118771088102 a001 1597/10749957122*14662949395604^(9/14) 4324118771088102 a001 1597/10749957122*192900153618^(3/4) 4324118771088102 a001 1597/119218851371*17393796001^(13/14) 4324118771088102 a001 1597/28143753123*45537549124^(5/6) 4324118771088102 a001 1597/28143753123*312119004989^(17/22) 4324118771088102 a001 1597/28143753123*3461452808002^(17/24) 4324118771088102 a001 1597/28143753123*28143753123^(17/20) 4324118771088102 a001 1597/192900153618*9062201101803^(3/4) 4324118771088102 a001 1597/3461452808002*312119004989^(21/22) 4324118771088102 a001 1597/312119004989*312119004989^(19/22) 4324118771088102 a001 1597/817138163596*14662949395604^(11/14) 4324118771088102 a001 1597/3461452808002*505019158607^(15/16) 4324118771088102 a001 1597/312119004989*817138163596^(5/6) 4324118771088102 a001 1597/312119004989*3461452808002^(19/24) 4324118771088102 a001 1597/817138163596*192900153618^(11/12) 4324118771088102 a001 1597/119218851371*14662949395604^(13/18) 4324118771088102 a001 1597/119218851371*505019158607^(13/16) 4324118771088102 a001 1597/119218851371*73681302247^(7/8) 4324118771088102 a001 1597/45537549124*1322157322203^(3/4) 4324118771088102 a001 1597/312119004989*28143753123^(19/20) 4324118771088102 a001 1597/2537720636*2537720636^(5/6) 4324118771088102 a001 1597/2537720636*312119004989^(15/22) 4324118771088102 a001 1597/2537720636*3461452808002^(5/8) 4324118771088102 a001 1597/2537720636*28143753123^(3/4) 4324118771088102 a001 1597/4106118243*1568397607^(7/8) 4324118771088102 a001 1597/4106118243*599074578^(11/12) 4324118771088102 a001 1597/2537720636*228826127^(15/16) 4324118771088102 a001 1597/141422324*2537720636^(7/10) 4324118771088102 a001 1597/141422324*17393796001^(9/14) 4324118771088102 a001 1597/141422324*14662949395604^(1/2) 4324118771088102 a001 1597/141422324*505019158607^(9/16) 4324118771088102 a001 1597/141422324*192900153618^(7/12) 4324118771088102 a001 1597/141422324*599074578^(3/4) 4324118771088103 a001 1597/54018521*2139295485799^(1/2) 4324118771088104 a001 1597/20633239*20633239^(11/14) 4324118771088105 a001 1597/141422324*33385282^(7/8) 4324118771088105 a001 1597/599074578*33385282^(23/24) 4324118771088112 a001 1597/20633239*2537720636^(11/18) 4324118771088112 a001 1597/20633239*312119004989^(1/2) 4324118771088112 a001 1597/20633239*3461452808002^(11/24) 4324118771088112 a001 1597/20633239*28143753123^(11/20) 4324118771088112 a001 1597/20633239*1568397607^(5/8) 4324118771088112 a001 1597/20633239*228826127^(11/16) 4324118771088118 a001 1597/7881196*7881196^(17/22) 4324118771088171 a001 1597/7881196*45537549124^(1/2) 4324118771088174 a001 1597/7881196*33385282^(17/24) 4324118771088191 a001 1597/7881196*12752043^(3/4) 4324118771088579 a001 1597/3010349*6643838879^(1/2) 4324118771089233 a001 1597/7881196*1860498^(17/20) 4324118771089257 a001 1597/20633239*1860498^(11/12) 4324118771089285 a001 1597/33385282*1860498^(19/20) 4324118771091372 a001 1597/1149851*969323029^(1/2) 4324118771092101 a001 121393/3571*39603^(1/44) 4324118771094328 a001 1597/439204*439204^(13/18) 4324118771095411 a001 1597/4870847*710647^(7/8) 4324118771110477 a001 1597/439204*7881196^(13/22) 4324118771110518 a001 1597/439204*141422324^(1/2) 4324118771110518 a001 1597/439204*73681302247^(3/8) 4324118771110520 a001 1597/439204*33385282^(13/24) 4324118771111330 a001 1597/439204*1860498^(13/20) 4324118771134195 a001 1597/167761*167761^(7/10) 4324118771154533 a001 1597/439204*271443^(3/4) 4324118771240527 a001 75025/3571*439204^(1/18) 4324118771241741 a001 1597/167761*20633239^(1/2) 4324118771241746 a001 1597/167761*2537720636^(7/18) 4324118771241746 a001 1597/167761*17393796001^(5/14) 4324118771241746 a001 1597/167761*312119004989^(7/22) 4324118771241746 a001 1597/167761*14662949395604^(5/18) 4324118771241746 a001 1597/167761*505019158607^(5/16) 4324118771241746 a001 1597/167761*28143753123^(7/20) 4324118771241746 a001 1597/167761*599074578^(5/12) 4324118771241746 a001 1597/167761*228826127^(7/16) 4324118771241769 a001 75025/3571*7881196^(1/22) 4324118771241772 a001 75025/3571*33385282^(1/24) 4324118771241835 a001 75025/3571*1860498^(1/20) 4324118771242474 a001 1597/167761*1860498^(7/12) 4324118771247097 a001 1597/167761*710647^(5/8) 4324118771266913 a001 75025/3571*103682^(1/16) 4324118771429752 a001 75025/3571*39603^(3/44) 4324118771431501 a001 1597/64079*64079^(31/46) 4324118771437342 a001 1597/439204*103682^(13/16) 4324118771463957 a001 1597/1860498*103682^(15/16) 4324118771501866 a001 121393/3571*15127^(1/40) 4324118772140955 a001 1597/64079*3010349^(1/2) 4324118772141193 a001 1597/64079*9062201101803^(1/4) 4324118772141219 a001 28657/3571*20633239^(1/10) 4324118772141220 a001 28657/3571*17393796001^(1/14) 4324118772141220 a001 28657/3571*14662949395604^(1/18) 4324118772141220 a001 28657/3571*505019158607^(1/16) 4324118772141220 a001 28657/3571*599074578^(1/12) 4324118772142290 a001 28657/3571*710647^(1/8) 4324118772579838 a001 28657/3571*39603^(7/44) 4324118772582915 a001 17711/3571*15127^(9/40) 4324118772659044 a001 75025/3571*15127^(3/40) 4324118772753629 a001 1597/103682*39603^(3/4) 4324118773048003 a001 46368/3571*15127^(1/8) 4324118773347826 a001 1597/271443*39603^(37/44) 4324118773434837 a001 1597/167761*39603^(35/44) 4324118773554249 a001 1597/439204*39603^(39/44) 4324118773648590 a001 1597/710647*39603^(41/44) 4324118773665958 a001 1597/24476*24476^(9/14) 4324118773785742 a001 1597/1149851*39603^(43/44) 4324118774083646 a001 1597/64079*39603^(31/44) 4324118774627267 a001 121393/3571*5778^(1/36) 4324118774802439 a001 28657/15127*2207^(13/32) 4324118775448188 a001 28657/3571*15127^(7/40) 4324118776143832 k006 concat of cont frac of 4324118776415698 a001 10946/3571*24476^(11/42) 4324118777687980 a001 1597/24476*64079^(27/46) 4324118778294891 a001 1597/24476*439204^(1/2) 4324118778306071 a001 1597/24476*7881196^(9/22) 4324118778306099 a001 1597/24476*2537720636^(3/10) 4324118778306099 a001 1597/24476*14662949395604^(3/14) 4324118778306099 a001 1597/24476*192900153618^(1/4) 4324118778306101 a001 1597/24476*33385282^(3/8) 4324118778306114 a001 10946/3571*7881196^(1/6) 4324118778306126 a001 10946/3571*312119004989^(1/10) 4324118778306126 a001 10946/3571*1568397607^(1/8) 4324118778306661 a001 1597/24476*1860498^(9/20) 4324118778457739 m001 1/BesselJ(1,1)*Khintchine^2/ln(cos(1))^2 4324118778532362 a001 1597/24476*103682^(9/16) 4324118778995383 a001 10946/3571*39603^(1/4) 4324118779997913 a001 1597/24476*39603^(27/44) 4324118782031370 a001 1597/39603*15127^(29/40) 4324118782035248 a001 75025/3571*5778^(1/12) 4324118783502790 a001 10946/3571*15127^(11/40) 4324118786275851 a001 1597/103682*15127^(33/40) 4324118786786339 a001 1597/64079*15127^(31/40) 4324118787687611 a001 28657/9349*2207^(11/32) 4324118787776588 a001 1597/167761*15127^(7/8) 4324118788509105 a001 1597/271443*15127^(37/40) 4324118788675009 a001 46368/3571*5778^(5/36) 4324118789099039 r005 Im(z^2+c),c=7/36+10/21*I,n=11 4324118789535057 a001 1597/439204*15127^(39/40) 4324118790042925 a001 75025/39603*2207^(13/32) 4324118790616874 a001 1597/9349*9349^(23/38) 4324118791061549 a001 1597/24476*15127^(27/40) 4324118792266482 a001 98209/51841*2207^(13/32) 4324118792590894 a001 514229/271443*2207^(13/32) 4324118792638225 a001 1346269/710647*2207^(13/32) 4324118792649399 a001 2178309/1149851*2207^(13/32) 4324118792667478 a001 208010/109801*2207^(13/32) 4324118792770873 r002 16th iterates of z^2 + 4324118792791392 a001 317811/167761*2207^(13/32) 4324118793640715 a001 121393/64079*2207^(13/32) 4324118797325996 a001 28657/3571*5778^(7/36) 4324118798771782 a001 121393/3571*2207^(1/32) 4324118798962893 a001 6765/3571*5778^(13/36) 4324118799350299 r005 Im(z^2+c),c=3/56+17/33*I,n=22 4324118799462063 a001 11592/6119*2207^(13/32) 4324118800711525 a001 17711/3571*5778^(1/4) 4324118801032246 a001 4181/3571*9349^(15/38) 4324118803018080 m001 1/ln(GAMMA(11/24))^2*Catalan^2*sqrt(5) 4324118809141800 a001 87403803/4181*233^(2/15) 4324118814342110 k009 concat of cont frac of 4324118814738951 m001 GAMMA(23/24)/(TreeGrowth2nd-arctan(1/2)) 4324118816608280 a001 1597/9349*24476^(23/42) 4324118817882203 a001 10946/3571*5778^(11/36) 4324118817983162 a001 4181/3571*24476^(5/14) 4324118820034447 a001 1597/9349*64079^(1/2) 4324118820514926 a001 4181/3571*167761^(3/10) 4324118820554792 a001 4181/3571*439204^(5/18) 4324118820560993 a001 1597/9349*4106118243^(1/4) 4324118820561003 a001 4181/3571*7881196^(5/22) 4324118820561017 a001 4181/3571*20633239^(3/14) 4324118820561019 a001 4181/3571*2537720636^(1/6) 4324118820561019 a001 4181/3571*312119004989^(3/22) 4324118820561019 a001 4181/3571*28143753123^(3/20) 4324118820561019 a001 4181/3571*228826127^(3/16) 4324118820561020 a001 4181/3571*33385282^(5/24) 4324118820561331 a001 4181/3571*1860498^(1/4) 4324118820686720 a001 4181/3571*103682^(5/16) 4324118821500915 a001 4181/3571*39603^(15/44) 4324118821795453 a001 38/98209*4181^(11/38) 4324118822002167 a001 1597/9349*39603^(23/44) 4324118823566857 a001 4181/5778*2207^(17/32) 4324118826477000 a001 17711/15127*2207^(15/32) 4324118827647380 a001 4181/3571*15127^(3/8) 4324118831426746 a001 1597/9349*15127^(23/40) 4324118832304484 r009 Im(z^3+c),c=-9/86+32/63*I,n=11 4324118839362172 a001 17711/9349*2207^(13/32) 4324118842136769 a001 1597/15127*5778^(25/36) 4324118844971718 a001 15456/13201*2207^(15/32) 4324118847670061 a001 121393/103682*2207^(15/32) 4324118848063744 a001 105937/90481*2207^(15/32) 4324118848121181 a001 832040/710647*2207^(15/32) 4324118848129561 a001 726103/620166*2207^(15/32) 4324118848134740 a001 1346269/1149851*2207^(15/32) 4324118848156680 a001 514229/439204*2207^(15/32) 4324118848307053 a001 196418/167761*2207^(15/32) 4324118849002856 a007 Real Root Of 780*x^4+150*x^3-284*x^2-622*x-231 4324118849337728 a001 75025/64079*2207^(15/32) 4324118851396692 a001 228826127/10946*233^(2/15) 4324118854468796 a001 75025/3571*2207^(3/32) 4324118855444100 r009 Im(z^3+c),c=-3/52+25/49*I,n=7 4324118856402082 a001 28657/24476*2207^(15/32) 4324118857561598 a001 599074578/28657*233^(2/15) 4324118858461046 a001 1568397607/75025*233^(2/15) 4324118858592273 a001 4106118243/196418*233^(2/15) 4324118858611419 a001 10749957122/514229*233^(2/15) 4324118858614213 a001 28143753123/1346269*233^(2/15) 4324118858614620 a001 73681302247/3524578*233^(2/15) 4324118858614680 a001 192900153618/9227465*233^(2/15) 4324118858614688 a001 505019158607/24157817*233^(2/15) 4324118858614690 a001 1322157322203/63245986*233^(2/15) 4324118858614690 a001 3461452808002/165580141*233^(2/15) 4324118858614690 a001 9062201101803/433494437*233^(2/15) 4324118858614690 a001 23725150497407/1134903170*233^(2/15) 4324118858614690 a001 14662949395604/701408733*233^(2/15) 4324118858614690 a001 5600748293801/267914296*233^(2/15) 4324118858614690 a001 2139295485799/102334155*233^(2/15) 4324118858614690 a001 87403804/4181*233^(2/15) 4324118858614694 a001 312119004989/14930352*233^(2/15) 4324118858614716 a001 119218851371/5702887*233^(2/15) 4324118858614872 a001 45537549124/2178309*233^(2/15) 4324118858615939 a001 17393796001/832040*233^(2/15) 4324118858623252 a001 6643838879/317811*233^(2/15) 4324118858673377 a001 2537720636/121393*233^(2/15) 4324118859016935 a001 969323029/46368*233^(2/15) 4324118861371720 a001 370248451/17711*233^(2/15) 4324118864186730 m001 (Totient+ZetaQ(2))/(Pi+StolarskyHarborth) 4324118872668004 a001 1597/39603*5778^(29/36) 4324118874528398 a001 4181/3571*5778^(5/12) 4324118875447380 a001 1597/24476*5778^(3/4) 4324118877511653 a001 141422324/6765*233^(2/15) 4324118883673776 a001 1597/64079*5778^(31/36) 4324118884941899 m001 1/Conway/ln(Artin)^2/GAMMA(2/3)^2 4324118889266718 h001 (-7*exp(2)-1)/(-3*exp(6)-9) 4324118889414089 a001 1597/103682*5778^(11/12) 4324118891936710 a001 10946/15127*2207^(17/32) 4324118897165629 a001 1597/167761*5778^(35/36) 4324118901911738 a001 28657/39603*2207^(17/32) 4324118903310974 a001 1597/9349*5778^(23/36) 4324118903367075 a001 75025/103682*2207^(17/32) 4324118903579405 a001 196418/271443*2207^(17/32) 4324118903610384 a001 514229/710647*2207^(17/32) 4324118903614904 a001 1346269/1860498*2207^(17/32) 4324118903615971 a001 2178309/3010349*2207^(17/32) 4324118903617697 a001 832040/1149851*2207^(17/32) 4324118903629530 a001 317811/439204*2207^(17/32) 4324118903710633 a001 121393/167761*2207^(17/32) 4324118904266522 a001 46368/64079*2207^(17/32) 4324118904821882 a001 10946/9349*2207^(15/32) 4324118906112953 r002 13th iterates of z^2 + 4324118908076644 a001 17711/24476*2207^(17/32) 4324118909397590 a001 46368/3571*2207^(5/32) 4324118912181117 k008 concat of cont frac of 4324118915091923 r002 15th iterates of z^2 + 4324118919128539 a001 28657/1364*521^(3/26) 4324118920687626 a001 1597/3571*3571^(19/34) 4324118921306433 a001 6765/15127*2207^(19/32) 4324118921651048 a001 2584/15127*2207^(23/32) 4324118934191605 a001 6765/9349*2207^(17/32) 4324118934536220 a001 2584/9349*2207^(21/32) 4324118953586300 a001 17711/39603*2207^(19/32) 4324118954353954 a001 121393/5778*843^(3/28) 4324118958295869 a001 23184/51841*2207^(19/32) 4324118958982986 a001 121393/271443*2207^(19/32) 4324118959083235 a001 317811/710647*2207^(19/32) 4324118959097861 a001 416020/930249*2207^(19/32) 4324118959099995 a001 2178309/4870847*2207^(19/32) 4324118959101314 a001 1346269/3010349*2207^(19/32) 4324118959106901 a001 514229/1149851*2207^(19/32) 4324118959145192 a001 98209/219602*2207^(19/32) 4324118959407648 a001 75025/167761*2207^(19/32) 4324118961206543 a001 28657/64079*2207^(19/32) 4324118966337610 a001 28657/3571*2207^(7/32) 4324118973536355 a001 5473/12238*2207^(19/32) 4324118974311007 r005 Re(z^2+c),c=9/98+21/53*I,n=11 4324118976847303 p004 log(19991/12973) 4324118981427759 m006 (4/5*Pi^2-2)/(3/5*exp(Pi)-1/4) 4324118984356085 a001 3571*377^(1/31) 4324118988136404 a001 54018521/2584*233^(2/15) 4324118988342268 a001 121393/3571*843^(1/28) 4324118996590518 m001 (ln(3)+Zeta(1/2))/(gamma(1)-Trott) 4324119002906078 a001 6765/24476*2207^(21/32) 4324119003250694 a001 646/6119*2207^(25/32) 4324119005806090 m005 (1/2*Catalan-6)/(5/12*Catalan+9/10) 4324119007944020 r009 Im(z^3+c),c=-39/74+19/48*I,n=35 4324119012881106 a001 17711/64079*2207^(21/32) 4324119014336443 a001 46368/167761*2207^(21/32) 4324119014548774 a001 121393/439204*2207^(21/32) 4324119014579752 a001 317811/1149851*2207^(21/32) 4324119014584272 a001 832040/3010349*2207^(21/32) 4324119014585339 a001 1346269/4870847*2207^(21/32) 4324119014587065 a001 514229/1860498*2207^(21/32) 4324119014598898 a001 196418/710647*2207^(21/32) 4324119014680001 a001 75025/271443*2207^(21/32) 4324119015235891 a001 28657/103682*2207^(21/32) 4324119015514586 r005 Im(z^2+c),c=-139/110+27/61*I,n=4 4324119018012173 a001 17711/3571*2207^(9/32) 4324119019046012 a001 10946/39603*2207^(21/32) 4324119028355054 m001 exp(GAMMA(3/4))*GAMMA(1/4)^2*cos(Pi/12) 4324119030656277 r002 52th iterates of z^2 + 4324119045160973 a001 4181/15127*2207^(21/32) 4324119048415735 a001 2255/13201*2207^(23/32) 4324119048760351 a001 2584/39603*2207^(27/32) 4324119053225175 m001 FeigenbaumD^2/exp(RenyiParking)^2*GAMMA(1/3) 4324119058046146 a001 4181/9349*2207^(19/32) 4324119062673702 a001 17711/2207*843^(1/4) 4324119065028829 a001 317811/15127*843^(3/28) 4324119066910454 a001 17711/103682*2207^(23/32) 4324119069608797 a001 15456/90481*2207^(23/32) 4324119070002480 a001 121393/710647*2207^(23/32) 4324119070059918 a001 105937/620166*2207^(23/32) 4324119070068298 a001 832040/4870847*2207^(23/32) 4324119070073477 a001 514229/3010349*2207^(23/32) 4324119070095416 a001 196418/1149851*2207^(23/32) 4324119070245790 a001 75025/439204*2207^(23/32) 4324119071276465 a001 28657/167761*2207^(23/32) 4324119078340819 a001 10946/64079*2207^(23/32) 4324119079821644 r002 26th iterates of z^2 + 4324119081176076 a001 832040/39603*843^(3/28) 4324119082759880 l006 ln(4723/7278) 4324119083471886 a001 10946/3571*2207^(11/32) 4324119083531927 a001 46347/2206*843^(3/28) 4324119084987924 a001 1346269/64079*843^(3/28) 4324119085443917 a001 1597/3571*9349^(1/2) 4324119091155623 a001 514229/24476*843^(3/28) 4324119093601674 r009 Im(z^3+c),c=-39/82+17/39*I,n=6 4324119094859411 r002 7th iterates of z^2 + 4324119099924711 a007 Real Root Of 273*x^4-728*x^3+106*x^2-425*x-272 4324119106915079 a001 1597/3571*24476^(19/42) 4324119107710543 a001 6765/64079*2207^(25/32) 4324119108055158 a001 2584/64079*2207^(29/32) 4324119109745391 a001 1597/3571*64079^(19/46) 4324119110180364 a001 1597/3571*817138163596^(1/6) 4324119110180364 a001 1597/3571*87403803^(1/4) 4324119111222511 k008 concat of cont frac of 4324119111370900 a001 1597/3571*39603^(19/44) 4324119112841610 a001 6765/3571*2207^(13/32) 4324119113186226 a001 2584/3571*2207^(17/32) 4324119117133557 k006 concat of cont frac of 4324119119156422 a001 1597/3571*15127^(19/40) 4324119122951029 a001 17711/167761*2207^(25/32) 4324119125174586 a001 11592/109801*2207^(25/32) 4324119125498999 a001 121393/1149851*2207^(25/32) 4324119125546330 a001 317811/3010349*2207^(25/32) 4324119125557503 a001 514229/4870847*2207^(25/32) 4324119125575582 a001 98209/930249*2207^(25/32) 4324119125699497 a001 75025/710647*2207^(25/32) 4324119126548820 a001 28657/271443*2207^(25/32) 4324119126760621 a001 4181/24476*2207^(23/32) 4324119132370168 a001 5473/51841*2207^(25/32) 4324119133429666 a001 196418/9349*843^(3/28) 4324119137121410 k006 concat of cont frac of 4324119147121924 k008 concat of cont frac of 4324119157308883 m004 2+25*Pi-E^(Sqrt[5]*Pi)*Sin[Sqrt[5]*Pi]^2 4324119160051276 r009 Im(z^3+c),c=-31/82+39/58*I,n=38 4324119161739892 a001 6765/103682*2207^(27/32) 4324119162084508 a001 1292/51841*2207^(31/32) 4324119166282170 m003 -61/12+Sqrt[5]/2048+ProductLog[1/2+Sqrt[5]/2] 4324119169860879 m001 cosh(1)^2/exp(GaussKuzminWirsing)^2/sqrt(3)^2 4324119170674857 r009 Im(z^3+c),c=-21/46+20/51*I,n=24 4324119172270280 a001 4181/39603*2207^(25/32) 4324119178223385 a001 17711/271443*2207^(27/32) 4324119178539049 a001 1597/3571*5778^(19/36) 4324119180628294 a001 6624/101521*2207^(27/32) 4324119180979166 a001 121393/1860498*2207^(27/32) 4324119181030357 a001 317811/4870847*2207^(27/32) 4324119181061995 a001 196418/3010349*2207^(27/32) 4324119181196016 a001 75025/1149851*2207^(27/32) 4324119182114610 a001 28657/439204*2207^(27/32) 4324119184932598 r002 59th iterates of z^2 + 4324119188410744 a001 10946/167761*2207^(27/32) 4324119204943257 r002 58th iterates of z^2 + 4324119206621176 r002 57th iterates of z^2 + 4324119206621176 r002 57th iterates of z^2 + 4324119211312231 k007 concat of cont frac of 4324119217780468 a001 615/15251*2207^(29/32) 4324119218267591 m001 (5^(1/2)-Shi(1))/(-FeigenbaumD+Otter) 4324119224155577 a001 1597/5778*2207^(21/32) 4324119226991219 a001 377/3*39603^(16/29) 4324119227899343 b008 11+67*ArcCsch[2] 4324119231565089 a001 4181/64079*2207^(27/32) 4324119233789175 a001 17711/439204*2207^(29/32) 4324119234970976 a001 377/1364*843^(3/4) 4324119235418107 r005 Re(z^2+c),c=-55/82+7/29*I,n=44 4324119236124814 a001 46368/1149851*2207^(29/32) 4324119236465579 a001 121393/3010349*2207^(29/32) 4324119236546023 a001 196418/4870847*2207^(29/32) 4324119236676184 a001 75025/1860498*2207^(29/32) 4324119236696156 a001 4181/3571*2207^(15/32) 4324119237568319 a001 28657/710647*2207^(29/32) 4324119243683101 a001 10946/271443*2207^(29/32) 4324119255025294 m001 TreeGrowth2nd*exp(KhintchineLevy)^2*Catalan 4324119257964841 r005 Re(z^2+c),c=-13/62+43/62*I,n=33 4324119262831890 m001 (GaussAGM+ReciprocalLucas)/(Sarnak-ZetaP(4)) 4324119273052825 a001 2255/90481*2207^(31/32) 4324119279584119 h001 (8/11*exp(1)+5/12)/(7/11*exp(2)+5/6) 4324119281732824 r005 Im(z^2+c),c=-37/82+4/55*I,n=18 4324119282119098 a001 75025/2207*322^(1/24) 4324119283516362 m001 LambertW(1)^(PlouffeB/arctan(1/3)) 4324119285594440 a001 4181/103682*2207^(29/32) 4324119289242885 a001 17711/710647*2207^(31/32) 4324119289394233 a007 Real Root Of -833*x^4-554*x^3-956*x^2+127*x+218 4324119291604983 a001 2576/103361*2207^(31/32) 4324119291949608 a001 121393/4870847*2207^(31/32) 4324119292162598 a001 75025/3010349*2207^(31/32) 4324119293064839 a001 28657/1149851*2207^(31/32) 4324119299248892 a001 5473/219602*2207^(31/32) 4324119313394036 a001 610/3571*1364^(23/30) 4324119314627853 m001 1/exp(ErdosBorwein)*Artin/log(2+sqrt(3))^2 4324119314894333 l006 ln(5919/9121) 4324119333620446 a001 440719107401*7778742049^(10/11) 4324119333620446 a001 10749957122/3*1548008755920^(10/11) 4324119335766980 r009 Im(z^3+c),c=-31/60+9/38*I,n=20 4324119341635018 a001 4181/167761*2207^(31/32) 4324119363240104 r002 61th iterates of z^2 + 4324119369406915 h001 (-2*exp(4)-12)/(-7*exp(1)-9) 4324119378149693 p003 LerchPhi(1/12,1,391/159) 4324119387615798 r005 Im(z^2+c),c=29/118+11/29*I,n=30 4324119389191968 a001 75025/5778*843^(5/28) 4324119391546431 m001 (1+MadelungNaCl)/(-MasserGramain+Trott) 4324119398376613 m001 Champernowne*(TreeGrowth2nd-Weierstrass) 4324119398462454 r005 Im(z^2+c),c=-3/20+43/64*I,n=11 4324119402866625 m005 (-11/4+1/4*5^(1/2))/(-83/176+7/16*5^(1/2)) 4324119418397062 m005 (4*gamma-1/2)/(1/5*Catalan+4) 4324119423180286 a001 75025/3571*843^(3/28) 4324119430465526 a003 sin(Pi*14/93)*sin(Pi*45/113) 4324119431436649 r005 Im(z^2+c),c=1/34+35/59*I,n=29 4324119444658345 m001 log(1+sqrt(2))*MinimumGamma/ln(sin(1))^2 4324119445749713 a001 1597/15127*2207^(25/32) 4324119446108163 r009 Re(z^3+c),c=-37/78+27/55*I,n=7 4324119452417671 r005 Im(z^2+c),c=9/34+6/19*I,n=12 4324119458634887 a001 1597/9349*2207^(23/32) 4324119461927217 r005 Re(z^2+c),c=-8/17+21/44*I,n=29 4324119466067785 a007 Real Root Of 220*x^4+763*x^3-796*x^2+137*x+251 4324119480084176 a001 10946/521*199^(3/22) 4324119488317133 r005 Re(z^2+c),c=-17/30+33/86*I,n=64 4324119489275966 r005 Re(z^2+c),c=-59/102+25/51*I,n=17 4324119494103107 r009 Re(z^3+c),c=-31/70+5/37*I,n=35 4324119499685501 a001 196418/15127*843^(5/28) 4324119507274425 a001 10946/2207*843^(9/28) 4324119514440101 r002 59th iterates of z^2 + 4324119515675402 m001 Ei(1,1)^LandauRamanujan*Ei(1,1)^Mills 4324119515806291 a001 514229/39603*843^(5/28) 4324119518158283 a001 1346269/103682*843^(5/28) 4324119518713513 a001 2178309/167761*843^(5/28) 4324119519611894 a001 832040/64079*843^(5/28) 4324119525769487 a001 10959/844*843^(5/28) 4324119527349368 a001 1597/24476*2207^(27/32) 4324119546374210 r002 63th iterates of z^2 + 4324119546374210 r002 63th iterates of z^2 + 4324119550762070 r002 40th iterates of z^2 + 4324119565008809 s001 sum(exp(-2*Pi/5)^n*A103209[n],n=1..infinity) 4324119565008809 s002 sum(A103209[n]/(exp(2/5*pi*n)),n=1..infinity) 4324119567965074 a001 233/64079*2^(1/4) 4324119567974264 a001 121393/9349*843^(5/28) 4324119568811362 a007 Real Root Of 717*x^4-522*x^3+913*x^2-599*x-497 4324119568894276 a007 Real Root Of 241*x^4+94*x^3+207*x^2-829*x-398 4324119572859031 a001 1597/39603*2207^(29/32) 4324119577933231 m001 (-Riemann3rdZero+Salem)/(Psi(2,1/3)+gamma(3)) 4324119579291741 r005 Im(z^2+c),c=-7/40+34/55*I,n=57 4324119583011811 b008 -1+Log[(4*Pi)/3] 4324119584447811 a001 6765/322*123^(3/20) 4324119585438525 a001 1/281*47^(24/37) 4324119592966229 m001 2/3+2*log(gamma) 4324119607671250 r009 Im(z^3+c),c=-41/94+25/56*I,n=10 4324119611521032 k007 concat of cont frac of 4324119619135870 a007 Real Root Of 525*x^4-786*x^3+397*x^2-39*x-173 4324119619505836 a001 646/341*1364^(13/30) 4324119629285740 p003 LerchPhi(1/16,3,110/179) 4324119632153846 a001 1597/64079*2207^(31/32) 4324119634969273 a001 10946/199*123^(39/43) 4324119637284914 a001 1597/3571*2207^(19/32) 4324119651647103 q001 1142/2641 4324119653526754 m001 1/exp(GAMMA(1/24))*GolombDickman/cos(Pi/12)^2 4324119658973868 a001 610/2207*3571^(21/34) 4324119675261565 r005 Im(z^2+c),c=13/102+13/27*I,n=52 4324119693207034 r002 45th iterates of z^2 + 4324119698043771 m001 Landau/(TwinPrimes^ln(gamma)) 4324119698868149 a001 987/1364*3571^(1/2) 4324119726013193 m001 (ln(2)+Landau)/(MadelungNaCl-MinimumGamma) 4324119733039059 r005 Re(z^2+c),c=-7/10+30/103*I,n=37 4324119740260671 r002 20th iterates of z^2 + 4324119746369878 a001 20633239/987*233^(2/15) 4324119765789131 m005 (1/2*Catalan-6/7)/(1/12*gamma+7/8) 4324119779075710 r005 Im(z^2+c),c=-1/74+17/29*I,n=54 4324119783663169 r002 25th iterates of z^2 + 4324119787304117 r002 44th iterates of z^2 + 4324119787543692 a007 Real Root Of -140*x^4-489*x^3+477*x^2+79*x+832 4324119789607944 a007 Real Root Of 738*x^4-751*x^3-587*x^2-10*x+149 4324119791212812 r005 Re(z^2+c),c=-23/36+7/31*I,n=33 4324119799525321 r005 Re(z^2+c),c=11/122+9/13*I,n=3 4324119801553725 r005 Im(z^2+c),c=25/114+21/52*I,n=43 4324119812351627 r005 Re(z^2+c),c=-13/21+1/33*I,n=48 4324119814345489 r002 19th iterates of z^2 + 4324119823261805 a001 2576/321*843^(1/4) 4324119824967218 a007 Real Root Of 108*x^4+479*x^3-128*x^2-596*x+786 4324119840250118 r005 Im(z^2+c),c=1/60+32/57*I,n=60 4324119841072958 a001 610/2207*9349^(21/38) 4324119841363991 r005 Im(z^2+c),c=-2/15+11/18*I,n=52 4324119845321884 r005 Im(z^2+c),c=-5/6+3/104*I,n=9 4324119846281699 a001 987/1364*9349^(17/38) 4324119848392581 r002 29th iterates of z^2 + 4324119857250127 a001 46368/3571*843^(5/28) 4324119860172336 r009 Re(z^3+c),c=-13/28+9/58*I,n=39 4324119864804247 a001 610/2207*24476^(1/2) 4324119865492742 a001 987/1364*24476^(17/42) 4324119866194357 a007 Real Root Of -695*x^4-552*x^3-844*x^2+954*x+550 4324119867341616 r005 Im(z^2+c),c=7/24+1/45*I,n=27 4324119867932487 a001 610/2207*64079^(21/46) 4324119868025127 a001 987/1364*64079^(17/46) 4324119868404529 a001 610/2207*439204^(7/18) 4324119868413224 a001 610/2207*7881196^(7/22) 4324119868413243 a001 610/2207*20633239^(3/10) 4324119868413246 a001 610/2207*17393796001^(3/14) 4324119868413246 a001 610/2207*14662949395604^(1/6) 4324119868413246 a001 610/2207*599074578^(1/4) 4324119868413247 a001 610/2207*33385282^(7/24) 4324119868413683 a001 610/2207*1860498^(7/20) 4324119868414313 a001 987/1364*45537549124^(1/6) 4324119868414320 a001 987/1364*12752043^(1/4) 4324119868416457 a001 610/2207*710647^(3/8) 4324119868589229 a001 610/2207*103682^(7/16) 4324119869479529 a001 987/1364*39603^(17/44) 4324119869729102 a001 610/2207*39603^(21/44) 4324119876445524 a001 987/1364*15127^(17/40) 4324119878334154 a001 610/2207*15127^(21/40) 4324119879459690 m001 1/FeigenbaumKappa*ln(ErdosBorwein)/cos(Pi/5) 4324119891889866 h001 (-10*exp(4)+7)/(-9*exp(1)+12) 4324119896356460 m001 1/ArtinRank2^2/Backhouse^2*exp(RenyiParking)^2 4324119898939462 a001 377/3*2207^(22/29) 4324119904234773 a008 Real Root of x^4-x^3-14*x^2+33*x-26 4324119904304660 r002 55th iterates of z^2 + 4324119915589234 m001 BesselI(0,2)*ZetaQ(3)+ThueMorse 4324119915785196 a001 6765/2207*843^(11/28) 4324119925272502 r005 Re(z^2+c),c=3/16+22/63*I,n=43 4324119929577357 a001 987/1364*5778^(17/36) 4324119932467101 p001 sum((-1)^n/(259*n+219)/(8^n),n=0..infinity) 4324119933174950 a001 1597/1364*1364^(1/2) 4324119934230136 a001 121393/15127*843^(1/4) 4324119943967595 a001 610/2207*5778^(7/12) 4324119946575636 r002 17th iterates of z^2 + 4324119948182705 a003 sin(Pi*2/111)*sin(Pi*18/65) 4324119950420198 a001 105937/13201*843^(1/4) 4324119952782296 a001 416020/51841*843^(1/4) 4324119952947691 r005 Re(z^2+c),c=-21/34+5/63*I,n=50 4324119953126922 a001 726103/90481*843^(1/4) 4324119953177202 a001 5702887/710647*843^(1/4) 4324119953184538 a001 829464/103361*843^(1/4) 4324119953185608 a001 39088169/4870847*843^(1/4) 4324119953185764 a001 34111385/4250681*843^(1/4) 4324119953185787 a001 133957148/16692641*843^(1/4) 4324119953185790 a001 233802911/29134601*843^(1/4) 4324119953185791 a001 1836311903/228826127*843^(1/4) 4324119953185791 a001 267084832/33281921*843^(1/4) 4324119953185791 a001 12586269025/1568397607*843^(1/4) 4324119953185791 a001 10983760033/1368706081*843^(1/4) 4324119953185791 a001 43133785636/5374978561*843^(1/4) 4324119953185791 a001 75283811239/9381251041*843^(1/4) 4324119953185791 a001 591286729879/73681302247*843^(1/4) 4324119953185791 a001 86000486440/10716675201*843^(1/4) 4324119953185791 a001 4052739537881/505019158607*843^(1/4) 4324119953185791 a001 3536736619241/440719107401*843^(1/4) 4324119953185791 a001 3278735159921/408569081798*843^(1/4) 4324119953185791 a001 2504730781961/312119004989*843^(1/4) 4324119953185791 a001 956722026041/119218851371*843^(1/4) 4324119953185791 a001 182717648081/22768774562*843^(1/4) 4324119953185791 a001 139583862445/17393796001*843^(1/4) 4324119953185791 a001 53316291173/6643838879*843^(1/4) 4324119953185791 a001 10182505537/1268860318*843^(1/4) 4324119953185791 a001 7778742049/969323029*843^(1/4) 4324119953185791 a001 2971215073/370248451*843^(1/4) 4324119953185791 a001 567451585/70711162*843^(1/4) 4324119953185792 a001 433494437/54018521*843^(1/4) 4324119953185801 a001 165580141/20633239*843^(1/4) 4324119953185861 a001 31622993/3940598*843^(1/4) 4324119953186269 a001 24157817/3010349*843^(1/4) 4324119953189071 a001 9227465/1149851*843^(1/4) 4324119953208277 a001 1762289/219602*843^(1/4) 4324119953339912 a001 1346269/167761*843^(1/4) 4324119953445408 a001 4181/1364*1364^(11/30) 4324119954242153 a001 514229/64079*843^(1/4) 4324119955313371 r005 Im(z^2+c),c=1/58+19/34*I,n=55 4324119958659136 r002 18th iterates of z^2 + 4324119960247574 m001 BesselK(0,1)*ln(2)^gamma(1) 4324119960426206 a001 98209/12238*843^(1/4) 4324119979220448 r005 Re(z^2+c),c=-7/12+29/93*I,n=38 4324119981106892 r005 Re(z^2+c),c=-69/110+7/25*I,n=47 4324119983144681 r005 Re(z^2+c),c=-21/34+5/74*I,n=46 4324119986433538 m001 5^(1/2)*Sierpinski-Backhouse 4324119987656931 r002 45th iterates of z^2 + 4324119987656931 r002 45th iterates of z^2 + 4324119996658274 m001 (-GAMMA(11/12)+GAMMA(19/24))/(Chi(1)+Ei(1)) 4324120002812339 a001 75025/9349*843^(1/4) 4324120040020472 a001 615/124*1364^(3/10) 4324120040221227 a001 98209/2889*322^(1/24) 4324120044642892 r005 Im(z^2+c),c=-19/118+1/18*I,n=7 4324120047381613 r009 Im(z^3+c),c=-55/114+19/51*I,n=41 4324120049200407 a007 Real Root Of -361*x^4-965*x^3-818*x^2+378*x+251 4324120052521929 a007 Real Root Of 951*x^4-676*x^3-208*x^2-629*x-321 4324120067755250 m008 (1/6*Pi^3-2)/(3/4*Pi^4+1/5) 4324120068649699 h001 (5/8*exp(2)+5/11)/(1/8*exp(1)+5/6) 4324120074255520 r005 Re(z^2+c),c=-4/7+20/63*I,n=29 4324120086323714 m001 3^(1/2)*Champernowne-MasserGramain 4324120090719941 r009 Im(z^3+c),c=-7/74+30/59*I,n=17 4324120095634805 r002 12th iterates of z^2 + 4324120109784184 a007 Real Root Of -76*x^4-93*x^3+934*x^2-372*x-21 4324120114974885 r002 48th iterates of z^2 + 4324120122652794 m001 (FeigenbaumB-ZetaP(4))/MadelungNaCl 4324120143069297 a001 11592/341*521^(1/26) 4324120150826859 a001 514229/15127*322^(1/24) 4324120166964004 a001 1346269/39603*322^(1/24) 4324120168290117 r005 Im(z^2+c),c=9/29+4/13*I,n=52 4324120169318382 a001 1762289/51841*322^(1/24) 4324120169661881 a001 9227465/271443*322^(1/24) 4324120169711996 a001 24157817/710647*322^(1/24) 4324120169719308 a001 31622993/930249*322^(1/24) 4324120169720375 a001 165580141/4870847*322^(1/24) 4324120169720531 a001 433494437/12752043*322^(1/24) 4324120169720553 a001 567451585/16692641*322^(1/24) 4324120169720557 a001 2971215073/87403803*322^(1/24) 4324120169720557 a001 7778742049/228826127*322^(1/24) 4324120169720557 a001 10182505537/299537289*322^(1/24) 4324120169720557 a001 53316291173/1568397607*322^(1/24) 4324120169720557 a001 139583862445/4106118243*322^(1/24) 4324120169720557 a001 182717648081/5374978561*322^(1/24) 4324120169720557 a001 956722026041/28143753123*322^(1/24) 4324120169720557 a001 2504730781961/73681302247*322^(1/24) 4324120169720557 a001 3278735159921/96450076809*322^(1/24) 4324120169720557 a001 10610209857723/312119004989*322^(1/24) 4324120169720557 a001 4052739537881/119218851371*322^(1/24) 4324120169720557 a001 387002188980/11384387281*322^(1/24) 4324120169720557 a001 591286729879/17393796001*322^(1/24) 4324120169720557 a001 225851433717/6643838879*322^(1/24) 4324120169720557 a001 1135099622/33391061*322^(1/24) 4324120169720557 a001 32951280099/969323029*322^(1/24) 4324120169720557 a001 12586269025/370248451*322^(1/24) 4324120169720558 a001 1201881744/35355581*322^(1/24) 4324120169720559 a001 1836311903/54018521*322^(1/24) 4324120169720567 a001 701408733/20633239*322^(1/24) 4324120169720627 a001 66978574/1970299*322^(1/24) 4324120169721034 a001 102334155/3010349*322^(1/24) 4324120169723827 a001 39088169/1149851*322^(1/24) 4324120169742970 a001 196452/5779*322^(1/24) 4324120169874175 a001 5702887/167761*322^(1/24) 4324120170773467 a001 2178309/64079*322^(1/24) 4324120176937308 a001 208010/6119*322^(1/24) 4324120182141112 k007 concat of cont frac of 4324120198964126 r005 Re(z^2+c),c=-89/122+3/25*I,n=19 4324120204579097 m001 PrimesInBinary/(ArtinRank2+MertensB1) 4324120219184902 a001 317811/9349*322^(1/24) 4324120220509533 m001 1/ln((2^(1/3)))^2*FeigenbaumB^2*gamma^2 4324120221080381 a001 5473/682*1364^(7/30) 4324120225025025 r005 Im(z^2+c),c=15/58+23/63*I,n=61 4324120231592462 l006 ln(1196/1843) 4324120253250023 r005 Re(z^2+c),c=-21/34+1/62*I,n=35 4324120259342913 a001 28657/5778*843^(9/28) 4324120262603778 r009 Im(z^3+c),c=-7/26+9/19*I,n=13 4324120263264176 r002 34th iterates of z^2 + 4324120268200264 r002 13th iterates of z^2 + 4324120274126174 s001 sum(exp(-2*Pi/3)^n*A220531[n],n=1..infinity) 4324120276912153 h001 (-9*exp(2)-6)/(-5*exp(-2)-1) 4324120293331238 a001 28657/3571*843^(1/4) 4324120293611135 r005 Im(z^2+c),c=13/42+7/22*I,n=45 4324120296686687 r005 Re(z^2+c),c=-11/18+14/31*I,n=43 4324120308508787 m001 QuadraticClass/(3^(1/3)+Gompertz) 4324120327096016 m001 (-MertensB1+Niven)/(3^(1/2)+ErdosBorwein) 4324120340034253 a001 987/1364*2207^(17/32) 4324120344928851 m001 1/Sierpinski^2/ln(Cahen)*GAMMA(5/6)^2 4324120360260753 r009 Re(z^3+c),c=-101/122+33/53*I,n=2 4324120364919294 a007 Real Root Of -420*x^4+515*x^3+958*x^2+53*x-229 4324120366050297 a001 17711/1364*1364^(1/6) 4324120369068249 a001 75025/15127*843^(9/28) 4324120377314070 a001 305/2889*3571^(25/34) 4324120378207055 m001 (cos(1/12*Pi)+HardyLittlewoodC4)/(Otter-Trott) 4324120381766475 h001 (5/6*exp(2)+1/5)/(1/2*exp(1)+1/9) 4324120385076960 a001 196418/39603*843^(9/28) 4324120387412599 a001 514229/103682*843^(9/28) 4324120387753365 a001 1346269/271443*843^(9/28) 4324120387833808 a001 2178309/439204*843^(9/28) 4324120387963969 a001 75640/15251*843^(9/28) 4324120388856104 a001 317811/64079*843^(9/28) 4324120394970888 a001 121393/24476*843^(9/28) 4324120409573674 r002 16th iterates of z^2 + 4324120411354118 m001 ln(Paris)/Backhouse*exp(1) 4324120414044273 a007 Real Root Of 19*x^4+803*x^3-812*x^2-374*x-365 4324120418780854 a001 4181/2207*843^(13/28) 4324120421416740 r005 Re(z^2+c),c=-75/122+17/58*I,n=31 4324120424292353 a001 610/39603*3571^(33/34) 4324120436882238 a001 46368/9349*843^(9/28) 4324120447670094 m001 (BesselI(1,2)-GAMMA(13/24))/(Gompertz+Landau) 4324120448045635 a001 610/15127*3571^(29/34) 4324120451002591 a001 610/2207*2207^(21/32) 4324120454213995 a001 305/12238*3571^(31/34) 4324120455259035 m001 1/GAMMA(2/3)*CopelandErdos/ln(Zeta(9))^2 4324120461945246 r009 Im(z^3+c),c=-11/23+22/59*I,n=58 4324120475807568 r005 Im(z^2+c),c=-1/11+19/31*I,n=60 4324120481128224 r009 Im(z^3+c),c=-17/44+25/46*I,n=11 4324120482540898 a001 39603*3^(2/25) 4324120496994979 a001 646/341*3571^(13/34) 4324120508754243 a001 121393/3571*322^(1/24) 4324120517272111 r005 Re(z^2+c),c=-67/126+3/58*I,n=5 4324120524805372 a001 28657/1364*1364^(1/10) 4324120531287707 m001 1/BesselK(1,1)*ln(Rabbit)/log(2+sqrt(3)) 4324120536362126 a001 610/9349*3571^(27/34) 4324120546226321 r005 Re(z^2+c),c=-31/70+26/49*I,n=34 4324120549842717 r009 Im(z^3+c),c=-3/28+41/55*I,n=4 4324120566436355 m001 (ln(2)-gamma(1))/(Grothendieck-Trott) 4324120579275767 m001 (Stephens-Weierstrass)/(Zeta(3)-GAMMA(3/4)) 4324120579955686 m005 (1/3*3^(1/2)-3/8)/(1/4*exp(1)+4) 4324120594098737 a001 305/2889*9349^(25/38) 4324120600589676 a007 Real Root Of 379*x^4-897*x^3-439*x^2-353*x+294 4324120603015075 q001 1721/3980 4324120606035511 m001 exp(1/exp(1))*(Pi-ZetaR(2)) 4324120606662135 g001 Psi(10/11,11/97) 4324120609723007 a001 646/341*9349^(13/38) 4324120616085840 a001 167761/8*4807526976^(15/23) 4324120616339687 a001 228826127/8*75025^(15/23) 4324120622350277 a001 305/2889*24476^(25/42) 4324120624413808 a001 646/341*24476^(13/42) 4324120625500873 m002 6+Pi^2-Sinh[Pi]+Tanh[Pi]/Pi^5 4324120626074373 a001 305/2889*64079^(25/46) 4324120626569884 a001 305/2889*167761^(1/2) 4324120626646702 a001 305/2889*20633239^(5/14) 4324120626646706 a001 305/2889*2537720636^(5/18) 4324120626646706 a001 305/2889*312119004989^(5/22) 4324120626646706 a001 305/2889*3461452808002^(5/24) 4324120626646706 a001 305/2889*28143753123^(1/4) 4324120626646706 a001 305/2889*228826127^(5/16) 4324120626647226 a001 305/2889*1860498^(5/12) 4324120626647951 a001 646/341*141422324^(1/6) 4324120626647951 a001 646/341*73681302247^(1/8) 4324120626662623 a001 646/341*271443^(1/4) 4324120627462528 a001 646/341*39603^(13/44) 4324120628213200 a001 305/2889*39603^(25/44) 4324120632789467 a001 646/341*15127^(13/40) 4324120638457312 a001 305/2889*15127^(5/8) 4324120647512995 a001 615/124*3571^(9/34) 4324120658481162 m001 GAMMA(5/6)/gamma/ZetaP(2) 4324120661190974 a007 Real Root Of -328*x^4+970*x^3-474*x^2+323*x-118 4324120665073170 m001 (exp(-1/2*Pi)-gamma)/(Lehmer+MertensB1) 4324120669409729 a007 Real Root Of -115*x^4+414*x^3-871*x^2+94*x+241 4324120673364386 m005 (1/5*Pi-2/5)/(1/3*Catalan-5/6) 4324120673419699 a001 646/341*5778^(13/36) 4324120674412001 a001 2584/2207*843^(15/28) 4324120678294993 a001 11592/341*1364^(1/30) 4324120690158604 a001 17711/5778*843^(11/28) 4324120692511086 m001 (GAMMA(5/6)+Kac)/(LandauRamanujan-Sarnak) 4324120693574578 a001 5473/682*3571^(7/34) 4324120695267533 m005 (1/2*Pi-5/9)/(2/3*5^(1/2)+6/7) 4324120695936266 a001 4181/1364*3571^(11/34) 4324120699515855 a001 610/15127*9349^(29/38) 4324120703546158 a001 17711/1364*3571^(5/34) 4324120707595230 a001 305/51841*9349^(37/38) 4324120710448120 a001 610/39603*9349^(33/38) 4324120711654405 a001 610/64079*9349^(35/38) 4324120716592375 a001 305/2889*5778^(25/36) 4324120723026989 a001 305/12238*9349^(31/38) 4324120724146932 a001 17711/3571*843^(9/28) 4324120725555479 a001 615/124*9349^(9/38) 4324120727302893 a001 28657/1364*3571^(3/34) 4324120729906468 h001 (-7*exp(3)-1)/(-8*exp(1)-11) 4324120729907369 a007 Real Root Of 17*x^4-14*x^3-491*x^2-544*x-247 4324120732287641 a001 610/15127*24476^(29/42) 4324120735726033 a001 615/124*24476^(3/14) 4324120736607593 a001 610/15127*64079^(29/46) 4324120737269012 a001 615/124*439204^(1/6) 4324120737269864 a001 610/15127*1149851^(1/2) 4324120737271499 a001 610/15127*1322157322203^(1/4) 4324120737272738 a001 615/124*7881196^(3/22) 4324120737272748 a001 615/124*2537720636^(1/10) 4324120737272748 a001 615/124*14662949395604^(1/14) 4324120737272748 a001 615/124*192900153618^(1/12) 4324120737272748 a001 615/124*33385282^(1/8) 4324120737272935 a001 615/124*1860498^(3/20) 4324120737348169 a001 615/124*103682^(3/16) 4324120737836686 a001 615/124*39603^(9/44) 4324120739088633 a001 610/15127*39603^(29/44) 4324120741524566 a001 615/124*15127^(9/40) 4324120745794168 a001 11592/341*3571^(1/34) 4324120746903094 a001 17711/1364*9349^(5/38) 4324120747740153 a001 610/39603*24476^(11/14) 4324120749063640 a001 610/271443*24476^(41/42) 4324120749407510 a001 305/51841*24476^(37/42) 4324120749619685 a001 610/167761*24476^(13/14) 4324120750971803 a001 610/15127*15127^(29/40) 4324120751206561 a001 610/64079*24476^(5/6) 4324120752553402 a001 17711/1364*24476^(5/42) 4324120752655960 a001 610/39603*64079^(33/46) 4324120753317055 a001 28657/1364*9349^(3/38) 4324120753397324 a001 17711/1364*167761^(1/10) 4324120753397740 a001 610/39603*439204^(11/18) 4324120753411404 a001 610/39603*7881196^(1/2) 4324120753411439 a001 610/39603*312119004989^(3/10) 4324120753411439 a001 610/39603*1568397607^(3/8) 4324120753411441 a001 610/39603*33385282^(11/24) 4324120753412126 a001 610/39603*1860498^(11/20) 4324120753412688 a001 17711/1364*20633239^(1/14) 4324120753412688 a001 17711/1364*2537720636^(1/18) 4324120753412688 a001 17711/1364*312119004989^(1/22) 4324120753412688 a001 17711/1364*28143753123^(1/20) 4324120753412688 a001 17711/1364*228826127^(1/16) 4324120753412792 a001 17711/1364*1860498^(1/12) 4324120753687983 a001 610/39603*103682^(11/16) 4324120753725987 a001 17711/1364*39603^(5/44) 4324120754274289 a001 5473/682*9349^(7/38) 4324120754465555 a001 11592/341*9349^(1/38) 4324120754919172 a001 305/51841*64079^(37/46) 4324120755129709 a001 610/710647*64079^(45/46) 4324120755171158 a001 610/271443*64079^(41/46) 4324120755206474 a001 305/219602*64079^(43/46) 4324120755429275 a001 610/167761*64079^(39/46) 4324120755479212 a001 610/39603*39603^(3/4) 4324120755595617 a001 11592/341*24476^(1/42) 4324120755766224 a001 305/51841*54018521^(1/2) 4324120755774810 a001 17711/1364*15127^(1/8) 4324120755830134 a001 11592/341*39603^(1/44) 4324120755921118 a006 5^(1/2)*fibonacci(49/2)/Lucas(15)/sqrt(5) 4324120756021628 a001 610/710647*167761^(9/10) 4324120756109783 a001 610/271443*370248451^(1/2) 4324120756141227 a001 610/710647*439204^(5/6) 4324120756147776 a001 610/3010349*439204^(17/18) 4324120756159860 a001 610/710647*7881196^(15/22) 4324120756159901 a001 610/710647*20633239^(9/14) 4324120756159908 a001 610/710647*2537720636^(1/2) 4324120756159908 a001 610/710647*312119004989^(9/22) 4324120756159908 a001 610/710647*14662949395604^(5/14) 4324120756159908 a001 610/710647*192900153618^(5/12) 4324120756159908 a001 610/710647*28143753123^(9/20) 4324120756159908 a001 610/710647*228826127^(9/16) 4324120756159910 a001 610/710647*33385282^(5/8) 4324120756160845 a001 610/710647*1860498^(3/4) 4324120756167214 a001 305/930249*20633239^(7/10) 4324120756167221 a001 305/930249*17393796001^(1/2) 4324120756167221 a001 305/930249*14662949395604^(7/18) 4324120756167221 a001 305/930249*505019158607^(7/16) 4324120756167221 a001 305/930249*599074578^(7/12) 4324120756168288 a001 610/4870847*119218851371^(1/2) 4324120756168383 a001 610/12752043*7881196^(19/22) 4324120756168405 a001 610/54018521*7881196^(21/22) 4324120756168443 a001 610/12752043*817138163596^(1/2) 4324120756168444 a001 610/12752043*87403803^(3/4) 4324120756168446 a001 610/12752043*33385282^(19/24) 4324120756168460 a001 610/87403803*20633239^(13/14) 4324120756168462 a001 610/54018521*20633239^(9/10) 4324120756168466 a001 305/16692641*5600748293801^(1/2) 4324120756168469 a001 610/87403803*141422324^(5/6) 4324120756168469 a001 610/87403803*2537720636^(13/18) 4324120756168469 a001 610/87403803*312119004989^(13/22) 4324120756168469 a001 610/87403803*3461452808002^(13/24) 4324120756168469 a001 610/87403803*73681302247^(5/8) 4324120756168469 a001 610/87403803*28143753123^(13/20) 4324120756168469 a001 610/87403803*228826127^(13/16) 4324120756168470 a001 610/228826127*4106118243^(3/4) 4324120756168470 a001 610/1568397607*17393796001^(11/14) 4324120756168470 a001 610/1568397607*14662949395604^(11/18) 4324120756168470 a001 610/1568397607*505019158607^(11/16) 4324120756168470 a001 610/4106118243*2537720636^(9/10) 4324120756168470 a001 305/5374978561*2537720636^(17/18) 4324120756168470 a001 610/4106118243*14662949395604^(9/14) 4324120756168470 a001 610/4106118243*192900153618^(3/4) 4324120756168470 a001 610/1568397607*1568397607^(7/8) 4324120756168470 a001 305/5374978561*45537549124^(5/6) 4324120756168470 a001 305/5374978561*312119004989^(17/22) 4324120756168470 a001 305/5374978561*3461452808002^(17/24) 4324120756168470 a001 305/5374978561*28143753123^(17/20) 4324120756168470 a001 305/22768774562*17393796001^(13/14) 4324120756168470 a001 610/73681302247*9062201101803^(3/4) 4324120756168470 a001 610/1322157322203*312119004989^(21/22) 4324120756168470 a001 610/1322157322203*14662949395604^(5/6) 4324120756168470 a001 305/7331474697802*3461452808002^(23/24) 4324120756168470 a001 610/312119004989*312119004989^(9/10) 4324120756168470 a001 610/1322157322203*505019158607^(15/16) 4324120756168470 a001 610/312119004989*14662949395604^(11/14) 4324120756168470 a001 610/312119004989*192900153618^(11/12) 4324120756168470 a001 610/119218851371*312119004989^(19/22) 4324120756168470 a001 610/119218851371*817138163596^(5/6) 4324120756168470 a001 610/119218851371*3461452808002^(19/24) 4324120756168470 a001 305/22768774562*14662949395604^(13/18) 4324120756168470 a001 305/22768774562*505019158607^(13/16) 4324120756168470 a001 305/22768774562*73681302247^(7/8) 4324120756168470 a001 610/119218851371*28143753123^(19/20) 4324120756168470 a001 610/17393796001*1322157322203^(3/4) 4324120756168470 a001 610/969323029*2537720636^(5/6) 4324120756168470 a001 610/969323029*312119004989^(15/22) 4324120756168470 a001 610/969323029*3461452808002^(5/8) 4324120756168470 a001 610/969323029*28143753123^(3/4) 4324120756168470 a001 610/1568397607*599074578^(11/12) 4324120756168470 a001 610/969323029*228826127^(15/16) 4324120756168471 a001 610/54018521*2537720636^(7/10) 4324120756168471 a001 610/54018521*17393796001^(9/14) 4324120756168471 a001 610/54018521*14662949395604^(1/2) 4324120756168471 a001 610/54018521*505019158607^(9/16) 4324120756168471 a001 610/54018521*192900153618^(7/12) 4324120756168471 a001 610/54018521*599074578^(3/4) 4324120756168474 a001 610/228826127*33385282^(23/24) 4324120756168475 a001 610/54018521*33385282^(7/8) 4324120756168480 a001 610/20633239*2139295485799^(1/2) 4324120756168482 a001 305/3940598*7881196^(5/6) 4324120756168532 a001 305/3940598*20633239^(11/14) 4324120756168540 a001 305/3940598*2537720636^(11/18) 4324120756168540 a001 305/3940598*312119004989^(1/2) 4324120756168540 a001 305/3940598*3461452808002^(11/24) 4324120756168540 a001 305/3940598*28143753123^(11/20) 4324120756168540 a001 305/3940598*1568397607^(5/8) 4324120756168540 a001 305/3940598*228826127^(11/16) 4324120756168893 a001 610/3010349*7881196^(17/22) 4324120756168947 a001 610/3010349*45537549124^(1/2) 4324120756168950 a001 610/3010349*33385282^(17/24) 4324120756168967 a001 610/3010349*12752043^(3/4) 4324120756169630 a001 610/12752043*1860498^(19/20) 4324120756169685 a001 305/3940598*1860498^(11/12) 4324120756169719 a006 5^(1/2)*Fibonacci(49/2)/Lucas(15)/sqrt(5) 4324120756170009 a001 610/3010349*1860498^(17/20) 4324120756171740 a001 610/1149851*6643838879^(1/2) 4324120756174713 a001 305/930249*710647^(7/8) 4324120756190886 a001 305/219602*969323029^(1/2) 4324120756239898 a001 11592/341*15127^(1/40) 4324120756305924 a001 610/167761*439204^(13/18) 4324120756322073 a001 610/167761*7881196^(13/22) 4324120756322114 a001 610/167761*141422324^(1/2) 4324120756322114 a001 610/167761*73681302247^(3/8) 4324120756322116 a001 610/167761*33385282^(13/24) 4324120756322926 a001 610/167761*1860498^(13/20) 4324120756366129 a001 610/167761*271443^(3/4) 4324120756420296 a001 610/64079*64079^(35/46) 4324120756537013 a001 610/710647*103682^(15/16) 4324120756648938 a001 610/167761*103682^(13/16) 4324120756707240 a001 28657/1364*24476^(1/14) 4324120757114011 a001 610/64079*167761^(7/10) 4324120757221557 a001 610/64079*20633239^(1/2) 4324120757221562 a001 610/64079*2537720636^(7/18) 4324120757221562 a001 610/64079*17393796001^(5/14) 4324120757221562 a001 610/64079*312119004989^(7/22) 4324120757221562 a001 610/64079*14662949395604^(5/18) 4324120757221562 a001 610/64079*505019158607^(5/16) 4324120757221562 a001 610/64079*28143753123^(7/20) 4324120757221562 a001 610/64079*599074578^(5/12) 4324120757221562 a001 610/64079*228826127^(7/16) 4324120757221566 a001 28657/1364*439204^(1/18) 4324120757222291 a001 610/64079*1860498^(7/12) 4324120757222808 a001 28657/1364*7881196^(1/22) 4324120757222811 a001 28657/1364*33385282^(1/24) 4324120757222874 a001 28657/1364*1860498^(1/20) 4324120757226914 a001 610/64079*710647^(5/8) 4324120757247952 a001 28657/1364*103682^(1/16) 4324120757410791 a001 28657/1364*39603^(3/44) 4324120758058899 a001 305/12238*24476^(31/42) 4324120758084637 a001 305/51841*39603^(37/44) 4324120758640084 a001 28657/1364*15127^(3/40) 4324120758678835 a001 610/271443*39603^(41/44) 4324120758765437 r002 55th iterates of z^2 + 4324120758765437 r002 55th iterates of z^2 + 4324120758765846 a001 610/167761*39603^(39/44) 4324120758885258 a001 305/219602*39603^(43/44) 4324120759365301 a001 11592/341*5778^(1/36) 4324120759414655 a001 610/64079*39603^(35/44) 4324120762184720 a001 5473/682*24476^(1/6) 4324120762676778 a001 305/12238*64079^(31/46) 4324120763386232 a001 305/12238*3010349^(1/2) 4324120763386471 a001 305/12238*9062201101803^(1/4) 4324120763387719 a001 5473/682*20633239^(1/10) 4324120763387720 a001 5473/682*17393796001^(1/14) 4324120763387720 a001 5473/682*14662949395604^(1/18) 4324120763387720 a001 5473/682*505019158607^(1/16) 4324120763387720 a001 5473/682*599074578^(1/12) 4324120763388790 a001 5473/682*710647^(1/8) 4324120763826339 a001 5473/682*39603^(7/44) 4324120764380991 r005 Im(z^2+c),c=1/15+22/43*I,n=6 4324120765328924 a001 305/12238*39603^(31/44) 4324120766694690 a001 5473/682*15127^(7/40) 4324120768016292 a001 28657/1364*5778^(1/12) 4324120769001440 a001 610/39603*15127^(33/40) 4324120769653189 a001 615/124*5778^(1/4) 4324120770489577 a001 610/9349*9349^(27/38) 4324120771401822 a001 17711/1364*5778^(5/36) 4324120773245923 a001 305/51841*15127^(37/40) 4324120773756412 a001 610/64079*15127^(7/8) 4324120773899620 a003 cos(Pi*8/115)*sin(Pi*13/89) 4324120774746661 a001 610/167761*15127^(39/40) 4324120778031624 a001 305/12238*15127^(31/40) 4324120778682338 r005 Im(z^2+c),c=13/42+10/33*I,n=43 4324120783509827 a001 11592/341*2207^(1/32) 4324120783736112 r005 Re(z^2+c),c=-5/8+61/224*I,n=42 4324120785429958 a001 987/2207*843^(19/28) 4324120788572508 a001 5473/682*5778^(7/36) 4324120791321526 a001 4181/1364*9349^(11/38) 4324120794354614 m001 (TwinPrimes+ZetaP(2))/(exp(Pi)+Sierpinski) 4324120798919073 m001 (Catalan+(1+3^(1/2))^(1/2))/(-Bloch+ThueMorse) 4324120801001240 a001 610/9349*24476^(9/14) 4324120803138184 a001 6624/2161*843^(11/28) 4324120803752204 a001 4181/1364*24476^(11/42) 4324120805023264 a001 610/9349*64079^(27/46) 4324120805630176 a001 610/9349*439204^(1/2) 4324120805641355 a001 610/9349*7881196^(9/22) 4324120805641384 a001 610/9349*2537720636^(3/10) 4324120805641384 a001 610/9349*14662949395604^(3/14) 4324120805641384 a001 610/9349*192900153618^(1/4) 4324120805641385 a001 610/9349*33385282^(3/8) 4324120805641946 a001 610/9349*1860498^(9/20) 4324120805642621 a001 4181/1364*7881196^(1/6) 4324120805642632 a001 4181/1364*312119004989^(1/10) 4324120805642632 a001 4181/1364*1568397607^(1/8) 4324120805867647 a001 610/9349*103682^(9/16) 4324120806331890 a001 4181/1364*39603^(1/4) 4324120807333198 a001 610/9349*39603^(27/44) 4324120810839300 a001 4181/1364*15127^(11/40) 4324120818396839 a001 610/9349*15127^(27/40) 4324120819621684 a001 121393/39603*843^(11/28) 4324120822026594 a001 317811/103682*843^(11/28) 4324120822377465 a001 832040/271443*843^(11/28) 4324120822428657 a001 311187/101521*843^(11/28) 4324120822460295 a001 1346269/439204*843^(11/28) 4324120822594316 a001 514229/167761*843^(11/28) 4324120823512910 a001 196418/64079*843^(11/28) 4324120829809046 a001 75025/24476*843^(11/28) 4324120832000116 m001 Pi^GAMMA(11/24)*sqrt(5)^GAMMA(11/24) 4324120835584695 r005 Im(z^2+c),c=-1/50+23/38*I,n=58 4324120836052830 r002 11th iterates of z^2 + 4324120840449873 a001 28657/1364*2207^(3/32) 4324120841608478 a001 610/15127*5778^(29/36) 4324120845218728 a001 4181/1364*5778^(11/36) 4324120845466529 a007 Real Root Of 335*x^4-518*x^3+993*x^2+255*x-129 4324120860356924 m001 GAMMA(1/4)/ln(Riemann3rdZero)^2/cos(Pi/5) 4324120865874838 a001 610/3571*3571^(23/34) 4324120872139726 a001 610/39603*5778^(11/12) 4324120872963408 a001 28657/9349*843^(11/28) 4324120874919104 a001 305/12238*5778^(31/36) 4324120883145503 a001 610/64079*5778^(35/36) 4324120888604014 m005 (1/2*Zeta(3)-3/10)/(4/7*exp(1)-6/7) 4324120892124458 a001 17711/1364*2207^(5/32) 4324120902782711 a001 610/9349*5778^(3/4) 4324120903413316 r005 Im(z^2+c),c=5/32+19/41*I,n=31 4324120904088496 r005 Re(z^2+c),c=-13/21+1/29*I,n=37 4324120930209430 r002 32th iterates of z^2 + 4324120931770093 a008 Real Root of x^4-x^3-22*x^2+8*x+108 4324120938283750 a007 Real Root Of -613*x^4+81*x^3-249*x^2+933*x-342 4324120945662511 a001 1597/1364*3571^(15/34) 4324120957584200 a001 5473/682*2207^(7/32) 4324120961715360 m001 1/MertensB1^2*ErdosBorwein*ln(Zeta(3)) 4324120968675635 a001 55/5778*199^(31/43) 4324120972202972 a007 Real Root Of 233*x^4+908*x^3-684*x^2-978*x+514 4324120973080400 a001 11592/341*843^(1/28) 4324120986953936 a001 615/124*2207^(9/32) 4324120987298552 a001 646/341*2207^(13/32) 4324121001283431 a001 5/29*3461452808002^(10/11) 4324121018490919 r009 Im(z^3+c),c=-5/14+29/62*I,n=9 4324121027029431 a007 Real Root Of -14*x^4+807*x^3-105*x^2+860*x-417 4324121032351125 k006 concat of cont frac of 4324121043077733 a001 10946/843*322^(5/24) 4324121045814536 r001 2i'th iterates of 2*x^2-1 of 4324121055225580 r005 Re(z^2+c),c=-19/16+28/89*I,n=6 4324121065316754 a001 610/3571*9349^(23/38) 4324121075733328 a001 1597/1364*9349^(15/38) 4324121091308173 a001 610/3571*24476^(23/42) 4324121092684253 a001 1597/1364*24476^(5/14) 4324121094734342 a001 610/3571*64079^(1/2) 4324121094918711 a001 1597/1364*64079^(15/46) 4324121095216017 a001 1597/1364*167761^(3/10) 4324121095255884 a001 1597/1364*439204^(5/18) 4324121095260888 a001 610/3571*4106118243^(1/4) 4324121095262095 a001 1597/1364*7881196^(5/22) 4324121095262108 a001 1597/1364*20633239^(3/14) 4324121095262111 a001 1597/1364*2537720636^(1/6) 4324121095262111 a001 1597/1364*312119004989^(3/22) 4324121095262111 a001 1597/1364*28143753123^(3/20) 4324121095262111 a001 1597/1364*228826127^(3/16) 4324121095262111 a001 1597/1364*33385282^(5/24) 4324121095262423 a001 1597/1364*1860498^(1/4) 4324121095387812 a001 1597/1364*103682^(5/16) 4324121096202008 a001 1597/1364*39603^(15/44) 4324121096702063 a001 610/3571*39603^(23/44) 4324121101026892 a007 Real Root Of -409*x^4+107*x^3+299*x^2+807*x+316 4324121102348475 a001 1597/1364*15127^(3/8) 4324121106126647 a001 610/3571*15127^(23/40) 4324121106221416 k007 concat of cont frac of 4324121110808536 a001 4181/1364*2207^(11/32) 4324121111611132 k007 concat of cont frac of 4324121112324132 k006 concat of cont frac of 4324121112711413 k007 concat of cont frac of 4324121114117111 k006 concat of cont frac of 4324121120819743 b008 8/3+ArcCosh[E] 4324121121111425 k007 concat of cont frac of 4324121121142111 k007 concat of cont frac of 4324121121711621 k006 concat of cont frac of 4324121122118436 k008 concat of cont frac of 4324121122826311 k007 concat of cont frac of 4324121123111111 k009 concat of cont frac of 4324121125160346 m004 -3+25*Sqrt[5]*Pi-8*Sinh[Sqrt[5]*Pi] 4324121129777486 l006 ln(6041/9309) 4324121131111192 k007 concat of cont frac of 4324121131152517 k008 concat of cont frac of 4324121133293341 k006 concat of cont frac of 4324121134759494 a001 5473/2889*843^(13/28) 4324121142161911 k007 concat of cont frac of 4324121142316242 k008 concat of cont frac of 4324121146221171 k008 concat of cont frac of 4324121148085156 r005 Re(z^2+c),c=-61/102+8/37*I,n=34 4324121149229518 a001 1597/1364*5778^(5/12) 4324121151210647 m005 (2/3*gamma-5)/(4*exp(1)-1/5) 4324121161281671 k006 concat of cont frac of 4324121161371321 k009 concat of cont frac of 4324121164112125 k008 concat of cont frac of 4324121168747826 a001 10946/3571*843^(11/28) 4324121171115826 k006 concat of cont frac of 4324121171141211 k008 concat of cont frac of 4324121171296716 r002 5th iterates of z^2 + 4324121172019606 a001 5/199*39603^(2/39) 4324121172111211 k007 concat of cont frac of 4324121176761575 a007 Real Root Of 379*x^4+198*x^3+724*x^2+309*x+1 4324121178010913 a001 610/3571*5778^(23/36) 4324121207842834 a007 Real Root Of 14*x^4+590*x^3-669*x^2-191*x-628 4324121211021522 k008 concat of cont frac of 4324121211271451 k008 concat of cont frac of 4324121212121191 k008 concat of cont frac of 4324121214613215 k006 concat of cont frac of 4324121215213111 k007 concat of cont frac of 4324121219112112 k007 concat of cont frac of 4324121223112111 k006 concat of cont frac of 4324121224792450 m001 1/GAMMA(13/24)^2/CopelandErdos*exp(Zeta(7)) 4324121231701115 k006 concat of cont frac of 4324121239219391 a001 28657/15127*843^(13/28) 4324121242893020 m001 (Psi(2,1/3)+sin(1))/(-FeigenbaumC+Stephens) 4324121246023444 m001 ZetaQ(2)/(GaussAGM+HardyLittlewoodC5) 4324121254459885 a001 75025/39603*843^(13/28) 4324121256683443 a001 98209/51841*843^(13/28) 4324121257007856 a001 514229/271443*843^(13/28) 4324121257055187 a001 1346269/710647*843^(13/28) 4324121257066360 a001 2178309/1149851*843^(13/28) 4324121257084439 a001 208010/109801*843^(13/28) 4324121257208354 a001 317811/167761*843^(13/28) 4324121258057678 a001 121393/64079*843^(13/28) 4324121261216125 k007 concat of cont frac of 4324121263879028 a001 11592/6119*843^(13/28) 4324121269687246 m001 (Mills+Sarnak)/(Shi(1)-sin(1/5*Pi)) 4324121276646181 m002 1+Pi+Pi*Cosh[Pi]*ProductLog[Pi] 4324121280213211 k007 concat of cont frac of 4324121286359790 r005 Im(z^2+c),c=1/4+14/39*I,n=20 4324121295039815 m001 (Robbin-TravellingSalesman)/(GAMMA(5/6)+Paris) 4324121300587606 a007 Real Root Of -20*x^4-862*x^3+129*x^2+290*x-316 4324121303779160 a001 17711/9349*843^(13/28) 4324121309786464 m001 (Totient-Trott)/(GAMMA(13/24)-MertensB3) 4324121312318926 s001 sum(1/10^(n-1)*A261198[n],n=1..infinity) 4324121312318926 s001 sum(1/10^n*A261198[n],n=1..infinity) 4324121320205580 a001 305/2889*2207^(25/32) 4324121321322424 k006 concat of cont frac of 4324121322121181 k009 concat of cont frac of 4324121326858315 r004 Im(z^2+c),c=11/46+7/15*I,z(0)=I,n=9 4324121328245584 a007 Real Root Of 847*x^4-938*x^3-627*x^2-214*x+256 4324121339658224 r002 48th iterates of z^2 + 4324121345569920 m001 (GAMMA(2/3)-GolombDickman)/(Kac-Kolakoski) 4324121351110222 k007 concat of cont frac of 4324121351496625 l006 ln(4845/7466) 4324121354695402 r009 Re(z^3+c),c=-1/126+14/23*I,n=16 4324121357985000 r005 Re(z^2+c),c=-13/21+1/32*I,n=56 4324121358424086 m001 Zeta(1,-1)^PlouffeB+ZetaQ(2) 4324121366600147 a007 Real Root Of 344*x^4+415*x^3+763*x^2-187*x-202 4324121370570331 a007 Real Root Of 721*x^4+522*x^3+671*x^2-325*x-249 4324121380052204 r002 22th iterates of z^2 + 4324121381215211 k006 concat of cont frac of 4324121384012237 m001 1/OneNinth/ln(RenyiParking)*GAMMA(2/3) 4324121389535930 a007 Real Root Of -199*x^4-800*x^3+407*x^2+705*x+330 4324121409161624 a001 28657/1364*843^(3/28) 4324121411161412 k007 concat of cont frac of 4324121442121511 k006 concat of cont frac of 4324121443009067 m005 (4/5*exp(1)+2/3)/(1/2*Pi+5) 4324121446112442 k007 concat of cont frac of 4324121456527927 m001 (MasserGramain+Mills)/(5^(1/2)+BesselI(0,2)) 4324121459328152 a007 Real Root Of 203*x^4+877*x^3-28*x^2+123*x+991 4324121466083810 a001 28657/3*521^(7/29) 4324121481810614 m001 GAMMA(7/12)^Paris*PrimesInBinary 4324121488696376 m001 GAMMA(5/6)/(StronglyCareFree-Zeta(5)) 4324121489544617 r005 Re(z^2+c),c=-9/14+27/184*I,n=8 4324121507792325 a001 9/305*3^(8/23) 4324121510173505 r002 56th iterates of z^2 + 4324121511397467 a001 1597/1364*2207^(15/32) 4324121511824121 k007 concat of cont frac of 4324121513145246 k006 concat of cont frac of 4324121520111111 k008 concat of cont frac of 4324121521121112 k006 concat of cont frac of 4324121541799824 a001 610/15127*2207^(29/32) 4324121543270420 a001 2255/1926*843^(15/28) 4324121545580908 r005 Re(z^2+c),c=-37/60+6/61*I,n=60 4324121552903679 r002 37th iterates of z^2 + 4324121554685004 a001 610/9349*2207^(27/32) 4324121565893523 m005 (1/2*exp(1)+1/6)/(1/3*2^(1/2)-4) 4324121577258754 a001 6765/3571*843^(13/28) 4324121577652069 a001 1597/2207*843^(17/28) 4324121577846479 a003 -1/2+2*cos(7/27*Pi)-cos(10/21*Pi)-cos(8/21*Pi) 4324121582881007 r002 56th iterates of z^2 + 4324121584722163 m001 (1-exp(Pi)*PlouffeB)/exp(Pi) 4324121584722163 m001 PlouffeB-exp(-Pi) 4324121598935762 a003 sin(Pi*2/21)/cos(Pi*29/111) 4324121608365853 a001 305/682*1364^(19/30) 4324121623399519 a001 305/12238*2207^(31/32) 4324121630962271 a007 Real Root Of 127*x^4-730*x^3+837*x^2-939*x-626 4324121642695461 r002 32th iterates of z^2 + 4324121643424705 r005 Re(z^2+c),c=-75/122+1/8*I,n=54 4324121650403859 r005 Im(z^2+c),c=-19/34+46/95*I,n=33 4324121661127086 a001 119218851371/8*2178309^(3/13) 4324121661127128 a001 6643838879/8*591286729879^(3/13) 4324121661127128 a001 28143753123/8*1134903170^(3/13) 4324121662024239 r005 Re(z^2+c),c=47/114+12/31*I,n=2 4324121670035180 a001 17711/15127*843^(15/28) 4324121672543956 a001 505019158607/8*4181^(3/13) 4324121688529910 a001 15456/13201*843^(15/28) 4324121689975183 m001 (RenyiParking+2)/(GAMMA(2/3)+5) 4324121690959841 m001 GAMMA(11/12)*DuboisRaymond/exp(GAMMA(7/24))^2 4324121691228254 a001 121393/103682*843^(15/28) 4324121691621938 a001 105937/90481*843^(15/28) 4324121691679375 a001 832040/710647*843^(15/28) 4324121691687755 a001 726103/620166*843^(15/28) 4324121691692934 a001 1346269/1149851*843^(15/28) 4324121691714874 a001 514229/439204*843^(15/28) 4324121691865247 a001 196418/167761*843^(15/28) 4324121692895923 a001 75025/64079*843^(15/28) 4324121699749962 r005 Im(z^2+c),c=1/14+23/44*I,n=46 4324121699960281 a001 28657/24476*843^(15/28) 4324121702618112 m001 (GaussAGM-Riemann2ndZero)/(ln(3)+FeigenbaumMu) 4324121712724317 a007 Real Root Of -23*x^4-981*x^3+587*x^2+68*x+756 4324121718557540 l006 ln(3649/5623) 4324121721172111 k007 concat of cont frac of 4324121732013085 r005 Im(z^2+c),c=21/74+13/38*I,n=43 4324121733335118 a001 610/3571*2207^(23/32) 4324121742111131 k006 concat of cont frac of 4324121745089370 m001 (-FeigenbaumD+ZetaQ(3))/(Chi(1)-Ei(1,1)) 4324121748380114 a001 10946/9349*843^(15/28) 4324121749771648 a007 Real Root Of 37*x^4-882*x^3+887*x^2+119*x-187 4324121773375577 m001 PisotVijayaraghavan-sin(1)^TwinPrimes 4324121812254092 m005 (1/2*3^(1/2)-1/4)/(4/5*exp(1)-3/4) 4324121839977430 a001 17711/1364*843^(5/28) 4324121842470545 h001 (1/6*exp(1)+6/7)/(6/7*exp(1)+7/10) 4324121843603208 m006 (5/6*Pi^2+1/6)/(2*Pi^2-1/3) 4324121843603208 m008 (5/6*Pi^2+1/6)/(2*Pi^2-1/3) 4324121849100078 r009 Im(z^3+c),c=-51/122+25/61*I,n=34 4324121849668066 m005 (1/2*gamma-3/5)/(29/18+5/2*5^(1/2)) 4324121851343864 p001 sum((-1)^n/(463*n+218)/(5^n),n=0..infinity) 4324121864419451 m005 (1/2*Zeta(3)+8/11)/(3/10*5^(1/2)-4/11) 4324121866966651 a007 Real Root Of 319*x^4-782*x^3-382*x^2-688*x+421 4324121881607218 r005 Re(z^2+c),c=-71/118+4/17*I,n=47 4324121885881505 m004 -Pi+6*Cot[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 4324121894385341 m001 TreeGrowth2nd/(Zeta(5)^Weierstrass) 4324121895026170 m001 (ln(5)+exp(1/Pi))/(LaplaceLimit+Trott2nd) 4324121899716274 a007 Real Root Of 903*x^4+276*x^3+566*x^2-238*x-218 4324121900741981 m001 HardyLittlewoodC4+TravellingSalesman*ZetaP(3) 4324121908113182 r005 Im(z^2+c),c=3/17+32/63*I,n=26 4324121908744822 r002 62th iterates of z^2 + 4324121909028888 m005 (1/3*exp(1)+1/7)/(5/7*Pi+2/11) 4324121945133371 r005 Re(z^2+c),c=-39/62+7/41*I,n=26 4324121954428114 m005 (1/2*3^(1/2)-8/9)/(1/12*Zeta(3)+3/7) 4324121956441533 m001 sin(1)*exp(LambertW(1))^2*sqrt(1+sqrt(3)) 4324121977443732 r002 5th iterates of z^2 + 4324121980214098 r005 Re(z^2+c),c=-21/38+28/59*I,n=56 4324121996172909 m001 cos(1)^Thue*ArtinRank2^Thue 4324122004527849 h001 (-7*exp(2)+7)/(-5*exp(3)-3) 4324122006205751 r009 Im(z^3+c),c=-11/98+23/45*I,n=7 4324122006409935 m006 (2/5*Pi^2+1/4)/(1/2*Pi-3/5) 4324122006409935 m008 (2/5*Pi^2+1/4)/(1/2*Pi-3/5) 4324122010004619 l006 ln(6102/9403) 4324122024883997 m001 Kolakoski/(RenyiParking-Sierpinski) 4324122031166091 m002 -2+6*Log[Pi]-Pi^2/ProductLog[Pi] 4324122039747384 r005 Im(z^2+c),c=11/74+7/15*I,n=38 4324122041173935 r005 Re(z^2+c),c=-69/106+8/37*I,n=39 4324122045044310 m001 FeigenbaumDelta^(Kolakoski/Zeta(1/2)) 4324122046266267 a001 4181/5778*843^(17/28) 4324122065398507 r002 25th iterates of z^2 + 4324122072239808 r002 55th iterates of z^2 + 4324122076078068 h001 (-5*exp(2/3)-9)/(-9*exp(3/2)-3) 4324122080254606 a001 4181/3571*843^(15/28) 4324122095200074 r005 Im(z^2+c),c=-7/6+23/78*I,n=30 4324122096956827 m001 ln(5)*Khinchin+gamma(3) 4324122100425003 a007 Real Root Of 138*x^4+654*x^3+112*x^2-723*x-590 4324122111212312 k008 concat of cont frac of 4324122112231142 k008 concat of cont frac of 4324122114636171 a001 10946/15127*843^(17/28) 4324122116621112 k008 concat of cont frac of 4324122121034681 r005 Re(z^2+c),c=-47/64+19/39*I,n=2 4324122121352229 k008 concat of cont frac of 4324122122111322 k006 concat of cont frac of 4324122123208091 a007 Real Root Of 14*x^4-90*x^3-567*x^2-921*x-300 4324122123915188 k007 concat of cont frac of 4324122124611206 a001 28657/39603*843^(17/28) 4324122126066544 a001 75025/103682*843^(17/28) 4324122126278874 a001 196418/271443*843^(17/28) 4324122126309853 a001 514229/710647*843^(17/28) 4324122126314373 a001 1346269/1860498*843^(17/28) 4324122126315440 a001 2178309/3010349*843^(17/28) 4324122126317166 a001 832040/1149851*843^(17/28) 4324122126328999 a001 317811/439204*843^(17/28) 4324122126410102 a001 121393/167761*843^(17/28) 4324122126965992 a001 46368/64079*843^(17/28) 4324122130776116 a001 17711/24476*843^(17/28) 4324122131012017 k007 concat of cont frac of 4324122133221103 m001 ln(Catalan)^2/(2^(1/3))/sqrt(2) 4324122142222714 k006 concat of cont frac of 4324122142423010 a005 (1/cos(4/229*Pi))^972 4324122147407684 m001 ln(Niven)^2/MadelungNaCl^2*arctan(1/2) 4324122151111212 k006 concat of cont frac of 4324122156656688 a001 11/4181*121393^(11/46) 4324122156891097 a001 6765/9349*843^(17/28) 4324122157788788 m001 Trott^exp(Pi)/(Trott^ZetaQ(2)) 4324122162559645 r002 23th iterates of z^2 + 4324122181413122 k006 concat of cont frac of 4324122193133631 r005 Re(z^2+c),c=-35/52+9/53*I,n=36 4324122198013813 a001 233/322*322^(17/24) 4324122198970019 a007 Real Root Of -500*x^4+286*x^3+431*x^2+758*x-414 4324122211112122 k009 concat of cont frac of 4324122214236771 a007 Real Root Of -75*x^4-263*x^3+141*x^2-733*x-849 4324122221110111 k007 concat of cont frac of 4324122222173120 k007 concat of cont frac of 4324122223577334 r002 28th iterates of z^2 + 4324122224650951 m001 gamma+GAMMA(7/24)^GAMMA(19/24) 4324122232237482 s002 sum(A115370[n]/((exp(n)-1)/n),n=1..infinity) 4324122237355830 a007 Real Root Of 587*x^4-325*x^3+841*x^2+199*x-118 4324122242143113 k006 concat of cont frac of 4324122248196731 m005 (1/3*5^(1/2)+1/4)/(2/9*Pi-3) 4324122259107310 a007 Real Root Of 17*x^4-109*x^3+70*x^2-466*x-224 4324122261166176 r005 Re(z^2+c),c=-67/110+13/62*I,n=48 4324122284578438 a001 5473/682*843^(1/4) 4324122296814785 r002 39th iterates of z^2 + 4324122301897510 a001 1292/2889*843^(19/28) 4324122311113192 k006 concat of cont frac of 4324122313231116 k007 concat of cont frac of 4324122324733966 m005 (1/2*5^(1/2)+9/10)/(4/11*Catalan-5) 4324122332073409 r002 60th iterates of z^2 + 4324122334894548 m001 TreeGrowth2nd/(BesselK(0,1)+Gompertz) 4324122335885851 a001 2584/3571*843^(17/28) 4324122340815256 r009 Im(z^3+c),c=-7/25+26/53*I,n=5 4324122349198546 r004 Re(z^2+c),c=-5/9-1/6*I,z(0)=exp(1/8*I*Pi),n=11 4324122370080651 m001 Robbin/ln(Conway)/gamma 4324122370725452 m001 (ln(5)+GAMMA(23/24))/(PlouffeB-PrimesInBinary) 4324122377590409 m005 (1/3*3^(1/2)-1/7)/(7/10*Catalan+4/11) 4324122388788760 a003 sin(Pi*7/115)/cos(Pi*38/107) 4324122390494258 m005 (1/2*2^(1/2)-1/5)/(2/11*gamma-2/9) 4324122391513814 r004 Re(z^2+c),c=-21/34+3/16*I,z(0)=-1,n=17 4324122395186087 a007 Real Root Of -699*x^4-538*x^3-960*x^2+406*x+336 4324122399535996 r005 Im(z^2+c),c=-37/42+17/52*I,n=3 4324122410211611 k006 concat of cont frac of 4324122412915509 a001 329/1926*843^(23/28) 4324122414522231 r005 Re(z^2+c),c=-7/54+30/47*I,n=14 4324122417193117 k007 concat of cont frac of 4324122421856170 m001 (3^(1/2)+Zeta(1,-1))/(-Zeta(1,2)+Khinchin) 4324122432488298 a007 Real Root Of -73*x^4-330*x^3-69*x^2+16*x+200 4324122443551440 l006 ln(2453/3780) 4324122443811212 k009 concat of cont frac of 4324122444737614 p001 sum((-1)^n/(423*n+230)/(64^n),n=0..infinity) 4324122446903851 a001 987/3571*843^(3/4) 4324122459373660 m001 (LaplaceLimit+Salem)/(2^(1/3)-GaussAGM) 4324122473484909 r009 Im(z^3+c),c=-31/64+11/27*I,n=30 4324122479462285 q001 579/1339 4324122481399086 s002 sum(A161896[n]/(n*exp(n)-1),n=1..infinity) 4324122483589585 a007 Real Root Of 110*x^4+260*x^3-897*x^2+108*x-197 4324122487182880 m005 (1/3*Zeta(3)+1/8)/(3/4*3^(1/2)-1/12) 4324122490334646 m005 (1/2*2^(1/2)-10/11)/(1/7*5^(1/2)-3/11) 4324122493493072 a001 11592/341*322^(1/24) 4324122511231224 k007 concat of cont frac of 4324122512101211 k009 concat of cont frac of 4324122523147189 a001 6765/15127*843^(19/28) 4324122538774200 m001 (CopelandErdos-ln(Pi))/Riemann2ndZero 4324122551689689 r005 Re(z^2+c),c=7/36+14/31*I,n=49 4324122554754900 m005 (1/2*Zeta(3)-1/6)/(29/40+1/8*5^(1/2)) 4324122555427083 a001 17711/39603*843^(19/28) 4324122560136656 a001 23184/51841*843^(19/28) 4324122560823773 a001 121393/271443*843^(19/28) 4324122560924022 a001 317811/710647*843^(19/28) 4324122560938648 a001 416020/930249*843^(19/28) 4324122560940782 a001 2178309/4870847*843^(19/28) 4324122560942101 a001 1346269/3010349*843^(19/28) 4324122560947688 a001 514229/1149851*843^(19/28) 4324122560985980 a001 98209/219602*843^(19/28) 4324122561248435 a001 75025/167761*843^(19/28) 4324122563047332 a001 28657/64079*843^(19/28) 4324122569564159 r009 Im(z^3+c),c=-5/11+7/18*I,n=40 4324122575377154 a001 5473/12238*843^(19/28) 4324122589716791 r005 Re(z^2+c),c=-57/98+12/31*I,n=17 4324122594206085 a001 233/1364*521^(23/26) 4324122619743178 r009 Im(z^3+c),c=-9/44+18/37*I,n=2 4324122631318877 m008 (1/3*Pi^3+3)/(Pi^3-1/6) 4324122633353686 a001 1/377*55^(5/41) 4324122639487500 r005 Re(z^2+c),c=-45/62+7/39*I,n=42 4324122650415953 m005 (-1/4+1/4*5^(1/2))/(11/12*Catalan-1/8) 4324122658393720 a007 Real Root Of 342*x^4+577*x^3+989*x^2-610*x-414 4324122659887016 a001 4181/9349*843^(19/28) 4324122669735504 r009 Re(z^3+c),c=-47/98+9/53*I,n=33 4324122681151747 r002 21th iterates of z^2 + 4324122693089472 a001 615/124*843^(9/28) 4324122697692905 r002 24th iterates of z^2 + 4324122715464751 a008 Real Root of x^4-2*x^3-49*x^2-49*x+193 4324122719732186 m005 (1/2*5^(1/2)+5/7)/(7/8*2^(1/2)+3) 4324122728103059 a007 Real Root Of 174*x^4+551*x^3-825*x^2+5*x-836 4324122729644790 r005 Re(z^2+c),c=-5/8+21/197*I,n=29 4324122740099078 m005 (1/6*2^(1/2)-3/5)/(3*Pi-1) 4324122743667392 a007 Real Root Of 729*x^4+50*x^3+376*x^2-958*x-506 4324122750216007 a007 Real Root Of 527*x^4+981*x^3+714*x^2-882*x-454 4324122753756470 a007 Real Root Of -197*x^4+614*x^3+138*x^2+933*x-472 4324122755198487 r005 Re(z^2+c),c=-33/23+7/16*I,n=2 4324122757013919 a001 46368/2207*322^(1/8) 4324122762664315 r009 Im(z^3+c),c=-7/74+30/59*I,n=16 4324122764801618 r002 43th iterates of z^2 + 4324122767164042 b008 E+36*Coth[Sqrt[2]] 4324122781191121 m001 1/exp(BesselK(0,1))*ArtinRank2^2*GAMMA(2/3) 4324122801683282 r005 Re(z^2+c),c=-5/38+29/45*I,n=20 4324122813097972 m005 (19/20+1/4*5^(1/2))/(2/11*Pi-2/9) 4324122815131986 r005 Re(z^2+c),c=-21/34+8/105*I,n=55 4324122819350031 a001 439204/377*591286729879^(2/15) 4324122819369177 a001 1149851/377*433494437^(2/15) 4324122819370828 a001 3010349/377*317811^(2/15) 4324122820716007 a007 Real Root Of -253*x^4-969*x^3+405*x^2-747*x-696 4324122824678223 r005 Im(z^2+c),c=9/98+31/61*I,n=56 4324122827816590 h001 (1/11*exp(2)+2/5)/(7/8*exp(1)+1/10) 4324122843280667 r008 a(0)=4,K{-n^6,-69+90*n^3+74*n^2-98*n} 4324122872807093 l006 ln(6163/9497) 4324122872807093 p004 log(9497/6163) 4324122885185083 r002 18th iterates of z^2 + 4324122890850634 a001 305/682*3571^(19/34) 4324122905605313 r005 Re(z^2+c),c=-43/70+1/8*I,n=31 4324122909520328 m001 BesselJ(1,1)^2/Porter*ln(sqrt(Pi))^2 4324122915518295 a001 2584/9349*843^(3/4) 4324122925440416 m001 GAMMA(1/6)^2/ln(Kolakoski)^2/GAMMA(2/3) 4324122938051816 r005 Re(z^2+c),c=-5/8+53/218*I,n=26 4324122950221365 r002 55th iterates of z^2 + 4324122951685636 b008 -49+Csc[Pi/18] 4324122953134428 m008 (4*Pi^6-5/6)/(5/6*Pi^2+2/3) 4324122983888216 a001 6765/24476*843^(3/4) 4324122988484128 r002 34th iterates of z^2 + 4324122990295059 r005 Im(z^2+c),c=9/58+28/61*I,n=59 4324122993863253 a001 17711/64079*843^(3/4) 4324122995318591 a001 46368/167761*843^(3/4) 4324122995530922 a001 121393/439204*843^(3/4) 4324122995561901 a001 317811/1149851*843^(3/4) 4324122995566420 a001 832040/3010349*843^(3/4) 4324122995567080 a001 2178309/7881196*843^(3/4) 4324122995567176 a001 5702887/20633239*843^(3/4) 4324122995567190 a001 14930352/54018521*843^(3/4) 4324122995567192 a001 39088169/141422324*843^(3/4) 4324122995567192 a001 102334155/370248451*843^(3/4) 4324122995567192 a001 267914296/969323029*843^(3/4) 4324122995567192 a001 701408733/2537720636*843^(3/4) 4324122995567192 a001 1836311903/6643838879*843^(3/4) 4324122995567192 a001 4807526976/17393796001*843^(3/4) 4324122995567192 a001 12586269025/45537549124*843^(3/4) 4324122995567192 a001 32951280099/119218851371*843^(3/4) 4324122995567192 a001 86267571272/312119004989*843^(3/4) 4324122995567192 a001 225851433717/817138163596*843^(3/4) 4324122995567192 a001 1548008755920/5600748293801*843^(3/4) 4324122995567192 a001 139583862445/505019158607*843^(3/4) 4324122995567192 a001 53316291173/192900153618*843^(3/4) 4324122995567192 a001 20365011074/73681302247*843^(3/4) 4324122995567192 a001 7778742049/28143753123*843^(3/4) 4324122995567192 a001 2971215073/10749957122*843^(3/4) 4324122995567192 a001 1134903170/4106118243*843^(3/4) 4324122995567192 a001 433494437/1568397607*843^(3/4) 4324122995567192 a001 165580141/599074578*843^(3/4) 4324122995567193 a001 63245986/228826127*843^(3/4) 4324122995567193 a001 24157817/87403803*843^(3/4) 4324122995567199 a001 9227465/33385282*843^(3/4) 4324122995567235 a001 3524578/12752043*843^(3/4) 4324122995567487 a001 1346269/4870847*843^(3/4) 4324122995569214 a001 514229/1860498*843^(3/4) 4324122995581047 a001 196418/710647*843^(3/4) 4324122995662150 a001 75025/271443*843^(3/4) 4324122996218040 a001 28657/103682*843^(3/4) 4324122999008103 m005 (1/2*Pi+3/4)/(7/12*gamma+1/5) 4324123000028165 a001 10946/39603*843^(3/4) 4324123003108252 m005 (1/12+1/4*5^(1/2))/(7/9*Catalan-8/11) 4324123024902317 r005 Re(z^2+c),c=-65/106+3/20*I,n=55 4324123026143150 a001 4181/15127*843^(3/4) 4324123026536310 a001 987/9349*843^(25/28) 4324123037322410 m005 (1/4+1/6*5^(1/2))/(-161/264+5/24*5^(1/2)) 4324123048736549 r005 Re(z^2+c),c=-21/122+11/12*I,n=3 4324123051322125 s002 sum(A126989[n]/(n^2*pi^n-1),n=1..infinity) 4324123053716325 r009 Im(z^3+c),c=-11/94+46/61*I,n=49 4324123054293971 m001 (Otter+Totient)/(Chi(1)-FeigenbaumC) 4324123055607076 a001 305/682*9349^(1/2) 4324123059428276 m001 (Chi(1)+Ei(1,1))/(-Zeta(1,-1)+BesselI(0,2)) 4324123059428276 m001 Shi(1)/(BesselI(0,2)-Zeta(1,-1)) 4324123076017653 r002 15th iterates of z^2 + 4324123076296037 m001 (Zeta(1/2)-gamma)/(-Conway+FeigenbaumB) 4324123077078258 a001 305/682*24476^(19/42) 4324123079908573 a001 305/682*64079^(19/46) 4324123080343546 a001 305/682*817138163596^(1/6) 4324123080343546 a001 305/682*87403803^(1/4) 4324123081534083 a001 305/682*39603^(19/44) 4324123082400622 r002 48th iterates of z^2 + 4324123083194997 m001 Sierpinski/(Sarnak^BesselI(1,2)) 4324123087230144 a007 Real Root Of -20*x^4-860*x^3+226*x^2+774*x+976 4324123089319612 a001 305/682*15127^(19/40) 4324123092308647 a007 Real Root Of -939*x^4-96*x^3+711*x^2+609*x+25 4324123105394436 a007 Real Root Of -420*x^4+385*x^3-582*x^2+653*x+437 4324123113222414 k008 concat of cont frac of 4324123113615132 k007 concat of cont frac of 4324123117013331 a007 Real Root Of -247*x^4-950*x^3+352*x^2-801*x-500 4324123125487125 r005 Re(z^2+c),c=-13/22+25/78*I,n=62 4324123129407997 r002 17th iterates of z^2 + 4324123131795531 m005 (1/3*Pi+2/3)/(5/8*Pi+2) 4324123138008802 r002 51th iterates of z^2 + 4324123141125133 k006 concat of cont frac of 4324123148702293 a001 305/682*5778^(19/36) 4324123150487553 r005 Im(z^2+c),c=3/38+27/52*I,n=45 4324123156611211 k008 concat of cont frac of 4324123156624904 l006 ln(3710/5717) 4324123159921069 m001 BesselI(1,1)*ErdosBorwein-PlouffeB 4324123161521722 k007 concat of cont frac of 4324123185888126 h005 exp(cos(Pi*9/26)+sin(Pi*24/49)) 4324123188712468 r002 29th iterates of z^2 + 4324123193894415 m005 (1/2*Zeta(3)+2/5)/(11/12*3^(1/2)+8/11) 4324123196085453 a001 4181/1364*843^(11/28) 4324123203107506 r005 Im(z^2+c),c=13/98+21/44*I,n=56 4324123205137918 a001 1597/5778*843^(3/4) 4324123211241822 r005 Im(z^2+c),c=5/86+31/58*I,n=11 4324123214119672 r005 Im(z^2+c),c=-3/122+16/31*I,n=4 4324123214241322 k006 concat of cont frac of 4324123216701428 m001 Otter*FeigenbaumAlpha^PrimesInBinary 4324123239126266 a001 1597/3571*843^(19/28) 4324123241041999 r005 Re(z^2+c),c=-21/34+4/127*I,n=31 4324123242149513 r005 Im(z^2+c),c=13/64+23/55*I,n=64 4324123251969749 r005 Im(z^2+c),c=-23/20+3/55*I,n=19 4324123255867090 h001 (1/3*exp(2)+1/6)/(7/10*exp(2)+10/11) 4324123268131243 a007 Real Root Of 924*x^4-281*x^3-102*x^2-310*x-170 4324123274055770 r005 Re(z^2+c),c=-49/74+5/43*I,n=27 4324123277971112 r005 Im(z^2+c),c=-3/118+25/42*I,n=31 4324123281774451 a001 2584/15127*843^(23/28) 4324123309771738 a007 Real Root Of 174*x^4+638*x^3-601*x^2-414*x+198 4324123310804812 r002 4th iterates of z^2 + 4324123323539327 r002 28th iterates of z^2 + 4324123324664762 a007 Real Root Of -900*x^4+452*x^3+588*x^2+615*x+224 4324123326511798 m001 LaplaceLimit/(cos(1/5*Pi)+Sarnak) 4324123341453301 a001 75025/76*322^(36/55) 4324123342787232 m001 (gamma(2)+ArtinRank2)/BesselI(1,2) 4324123346507484 r009 Re(z^3+c),c=-69/118+11/46*I,n=39 4324123347751431 a007 Real Root Of 164*x^4+541*x^3-734*x^2-128*x-425 4324123350964661 m001 ZetaQ(4)^Zeta(1/2)*ReciprocalLucas^Zeta(1/2) 4324123355991907 r005 Re(z^2+c),c=-21/34+9/118*I,n=59 4324123377105191 m001 1/GAMMA(1/24)^2/ErdosBorwein/exp(GAMMA(1/6)) 4324123385848921 s002 sum(A128837[n]/(n*exp(pi*n)-1),n=1..infinity) 4324123386710036 m009 (6*Psi(1,2/3)+1/6)/(1/3*Pi^2+1) 4324123386803755 a001 11/5*21^(45/46) 4324123387432779 m001 OneNinth^Salem-Pi*csc(5/24*Pi)/GAMMA(19/24) 4324123390253212 r009 Im(z^3+c),c=-13/36+7/16*I,n=17 4324123392792475 a001 141/2161*843^(27/28) 4324123396559769 a007 Real Root Of 402*x^4-890*x^3+894*x^2-587*x-507 4324123398390107 m001 ln(CopelandErdos)/ErdosBorwein/(3^(1/3))^2 4324123401471694 p001 sum(1/(406*n+243)/(8^n),n=0..infinity) 4324123405563984 m005 (1/3*Catalan+1/2)/(-19/66+1/22*5^(1/2)) 4324123408539266 a001 2255/13201*843^(23/28) 4324123411211151 k007 concat of cont frac of 4324123427034003 a001 17711/103682*843^(23/28) 4324123429732349 a001 15456/90481*843^(23/28) 4324123430126033 a001 121393/710647*843^(23/28) 4324123430183470 a001 105937/620166*843^(23/28) 4324123430191850 a001 832040/4870847*843^(23/28) 4324123430197029 a001 514229/3010349*843^(23/28) 4324123430218969 a001 196418/1149851*843^(23/28) 4324123430369342 a001 75025/439204*843^(23/28) 4324123431400019 a001 28657/167761*843^(23/28) 4324123438464380 a001 10946/64079*843^(23/28) 4324123447772096 r005 Re(z^2+c),c=-11/10+109/148*I,n=2 4324123451716765 a001 646/341*843^(13/28) 4324123454275644 r005 Re(z^2+c),c=-21/34+19/93*I,n=37 4324123459017673 m005 (1/2*Pi+2/7)/(5/8*2^(1/2)-5/11) 4324123472409100 m001 (Gompertz-TwinPrimes)/(Cahen+FeigenbaumB) 4324123473927607 r005 Re(z^2+c),c=-9/14+23/106*I,n=37 4324123480056290 a003 cos(Pi*29/83)*sin(Pi*37/93) 4324123486884231 a001 4181/24476*843^(23/28) 4324123493873050 r005 Re(z^2+c),c=-53/40+1/38*I,n=22 4324123494028432 m001 ArtinRank2*Conway^2/exp(Zeta(7)) 4324123505015432 r005 Re(z^2+c),c=-19/90+33/64*I,n=2 4324123508782970 l006 ln(4967/7654) 4324123511292741 r005 Im(z^2+c),c=11/30+3/32*I,n=12 4324123515591444 a001 121393/5778*322^(1/8) 4324123520464222 m001 exp(GAMMA(1/12))*BesselJ(1,1)/Zeta(9)^2 4324123523426654 a003 cos(Pi*5/81)-cos(Pi*23/73) 4324123533465859 r009 Im(z^3+c),c=-39/106+17/39*I,n=21 4324123552157308 m001 ln(CareFree)/MertensB1/GAMMA(1/6)^2 4324123561219113 k007 concat of cont frac of 4324123562734793 a001 987/1364*843^(17/28) 4324123567101448 a007 Real Root Of 784*x^4+58*x^3+232*x^2-941*x-473 4324123571551351 r005 Re(z^2+c),c=19/122+31/50*I,n=32 4324123579751701 r002 34th iterates of z^2 + 4324123605628388 h001 (-8*exp(1)+12)/(-4*exp(4)-7) 4324123607448580 a001 305/682*2207^(19/32) 4324123608256674 a001 199/55*2^(9/35) 4324123614379370 m001 (Zeta(5)-sin(1/12*Pi))/(GAMMA(19/24)+Kac) 4324123615874232 r005 Re(z^2+c),c=-9/14+65/152*I,n=23 4324123620508886 m001 (arctan(1/2)+GolombDickman)/(Salem+Totient) 4324123621558084 r005 Im(z^2+c),c=43/126+9/31*I,n=52 4324123622965679 r009 Re(z^3+c),c=-15/29+8/51*I,n=34 4324123624528363 m001 1/GAMMA(5/12)*DuboisRaymond^2/exp(sqrt(2)) 4324123625662882 r005 Re(z^2+c),c=-5/8+25/116*I,n=35 4324123626266436 a001 317811/15127*322^(1/8) 4324123632560471 r002 22th iterates of z^2 + 4324123634056819 r009 Re(z^3+c),c=-17/38+9/64*I,n=20 4324123637361607 a001 1/29*521^(19/47) 4324123642413700 a001 832040/39603*322^(1/8) 4324123644769554 a001 46347/2206*322^(1/8) 4324123645113268 a001 5702887/271443*322^(1/8) 4324123645163416 a001 14930352/710647*322^(1/8) 4324123645170732 a001 39088169/1860498*322^(1/8) 4324123645171799 a001 102334155/4870847*322^(1/8) 4324123645171955 a001 267914296/12752043*322^(1/8) 4324123645171978 a001 701408733/33385282*322^(1/8) 4324123645171981 a001 1836311903/87403803*322^(1/8) 4324123645171982 a001 102287808/4868641*322^(1/8) 4324123645171982 a001 12586269025/599074578*322^(1/8) 4324123645171982 a001 32951280099/1568397607*322^(1/8) 4324123645171982 a001 86267571272/4106118243*322^(1/8) 4324123645171982 a001 225851433717/10749957122*322^(1/8) 4324123645171982 a001 591286729879/28143753123*322^(1/8) 4324123645171982 a001 1548008755920/73681302247*322^(1/8) 4324123645171982 a001 4052739537881/192900153618*322^(1/8) 4324123645171982 a001 225749145909/10745088481*322^(1/8) 4324123645171982 a001 6557470319842/312119004989*322^(1/8) 4324123645171982 a001 2504730781961/119218851371*322^(1/8) 4324123645171982 a001 956722026041/45537549124*322^(1/8) 4324123645171982 a001 365435296162/17393796001*322^(1/8) 4324123645171982 a001 139583862445/6643838879*322^(1/8) 4324123645171982 a001 53316291173/2537720636*322^(1/8) 4324123645171982 a001 20365011074/969323029*322^(1/8) 4324123645171982 a001 7778742049/370248451*322^(1/8) 4324123645171982 a001 2971215073/141422324*322^(1/8) 4324123645171983 a001 1134903170/54018521*322^(1/8) 4324123645171992 a001 433494437/20633239*322^(1/8) 4324123645172051 a001 165580141/7881196*322^(1/8) 4324123645172459 a001 63245986/3010349*322^(1/8) 4324123645175254 a001 24157817/1149851*322^(1/8) 4324123645194408 a001 9227465/439204*322^(1/8) 4324123645325696 a001 3524578/167761*322^(1/8) 4324123646225552 a001 1346269/64079*322^(1/8) 4324123652393258 a001 514229/24476*322^(1/8) 4324123665107235 a007 Real Root Of -592*x^4+811*x^3+627*x^2+252*x+78 4324123672842202 r009 Im(z^3+c),c=-15/34+23/58*I,n=45 4324123677588975 a007 Real Root Of -374*x^4+872*x^3+476*x^2+445*x+187 4324123680297942 h001 (1/2*exp(2)+5/6)/(1/11*exp(1)+4/5) 4324123685602572 h001 (1/4*exp(1)+2/5)/(6/7*exp(1)+1/6) 4324123694667345 a001 196418/9349*322^(1/8) 4324123712644866 m005 (1/2*3^(1/2)-8/9)/(7/8*Catalan-3/11) 4324123718697236 l006 ln(6224/9591) 4324123727045011 a007 Real Root Of 827*x^4+499*x^3-492*x^2-292*x+149 4324123742515559 a001 646/6119*843^(25/28) 4324123746220224 r005 Im(z^2+c),c=8/27+12/37*I,n=43 4324123759490699 a007 Real Root Of -899*x^4+873*x^3-875*x^2+61*x+292 4324123762006394 m001 Salem/(Zeta(1/2)-2^(1/3)) 4324123766416704 r008 a(0)=4,K{-n^6,4-27*n^3+51*n^2-32*n} 4324123766473022 r009 Im(z^3+c),c=-51/82+10/49*I,n=2 4324123766651362 m001 1/Catalan/exp(FeigenbaumC)^2*cosh(1) 4324123773706764 m001 Robbin/ln(2^(1/2)+1)*Stephens 4324123801191498 m001 (-exp(1/exp(1))+ErdosBorwein)/(Si(Pi)+Ei(1)) 4324123811151124 k007 concat of cont frac of 4324123818758831 a001 1597/9349*843^(23/28) 4324123843226211 m001 (Conway+KomornikLoreti)/TravellingSalesman 4324123845154086 r009 Im(z^3+c),c=-15/52+25/54*I,n=10 4324123846975523 a001 6765/64079*843^(25/28) 4324123849472798 r002 52th iterates of z^2 + 4324123849791165 r009 Im(z^3+c),c=-5/12+23/56*I,n=44 4324123855845736 r002 45th iterates of z^2 + 4324123862216026 a001 17711/167761*843^(25/28) 4324123862372926 r009 Re(z^3+c),c=-9/110+27/38*I,n=59 4324123864282553 a007 Real Root Of -565*x^4+199*x^3-595*x^2-583*x-105 4324123864439585 a001 11592/109801*843^(25/28) 4324123864763998 a001 121393/1149851*843^(25/28) 4324123864811330 a001 317811/3010349*843^(25/28) 4324123864822503 a001 514229/4870847*843^(25/28) 4324123864840582 a001 98209/930249*843^(25/28) 4324123864964497 a001 75025/710647*843^(25/28) 4324123865813821 a001 28657/271443*843^(25/28) 4324123871635175 a001 5473/51841*843^(25/28) 4324123872220523 r002 9th iterates of z^2 + 4324123881805358 m001 1/GAMMA(1/6)/TwinPrimes^2*exp(sinh(1))^2 4324123898619372 a005 (1/sin(107/235*Pi))^847 4324123905982385 m001 (HardyLittlewoodC4+ZetaP(3))/(Bloch+Cahen) 4324123907672080 a007 Real Root Of -491*x^4-530*x^3+668*x^2+997*x-496 4324123911535330 a001 4181/39603*843^(25/28) 4324123922815209 a007 Real Root Of 377*x^4+463*x^3+306*x^2-791*x-375 4324123925547170 r005 Re(z^2+c),c=-39/64+3/16*I,n=63 4324123935613969 a003 cos(Pi*3/95)/cos(Pi*49/115) 4324123948181595 r005 Re(z^2+c),c=-41/98+33/61*I,n=53 4324123958995617 s001 sum(exp(-2*Pi/3)^n*A202103[n],n=1..infinity) 4324123980029460 r009 Im(z^3+c),c=-13/62+41/46*I,n=10 4324123980184881 m001 (Robbin-ZetaQ(2))/(GolombDickman-Kac) 4324123984418271 a001 75025/3571*322^(1/8) 4324124012118213 k007 concat of cont frac of 4324124031013644 m001 exp(-1/2*Pi)^(BesselJ(0,1)*ArtinRank2) 4324124035168095 r002 46th iterates of z^2 + 4324124060252322 r005 Im(z^2+c),c=1/14+23/44*I,n=53 4324124068275939 m001 (Ei(1)+Zeta(1,-1))/(ln(2+3^(1/2))+FeigenbaumD) 4324124070537345 r005 Re(z^2+c),c=-1/19+31/42*I,n=7 4324124081417023 a007 Real Root Of 35*x^4-70*x^3-874*x^2+269*x-391 4324124086053500 m005 (1/3*2^(1/2)+1/10)/(1/5*exp(1)+7/9) 4324124090630061 a007 Real Root Of 566*x^4+130*x^3+696*x^2-524*x-366 4324124096053476 s002 sum(A094818[n]/(pi^n+1),n=1..infinity) 4324124097248144 a007 Real Root Of 944*x^4-568*x^3+115*x^2+75*x-68 4324124109627243 a007 Real Root Of -73*x^4-280*x^3+74*x^2-329*x+77 4324124112241812 k006 concat of cont frac of 4324124113116423 k009 concat of cont frac of 4324124126580861 a007 Real Root Of 491*x^4-568*x^3-825*x^2-851*x+551 4324124130931882 r005 Im(z^2+c),c=-59/94+34/59*I,n=7 4324124131511821 k006 concat of cont frac of 4324124131940989 m001 ln(gamma)*TwinPrimes^gamma 4324124131940989 m001 log(gamma)*TwinPrimes^gamma 4324124145212730 m001 RenyiParking/GlaisherKinkelin^2/exp(Salem)^2 4324124145452566 r005 Re(z^2+c),c=-5/8+1/115*I,n=30 4324124162336526 r005 Re(z^2+c),c=-37/60+3/52*I,n=36 4324124162806516 a005 (1/sin(22/141*Pi))^5 4324124162871985 r005 Re(z^2+c),c=-11/17+13/28*I,n=19 4324124167166684 a001 2584/39603*843^(27/28) 4324124185015064 a001 1597/15127*843^(25/28) 4324124190496148 m002 Pi/5+(Cosh[Pi]*Sinh[Pi])/Pi 4324124194412285 a001 4/225851433717*3^(13/16) 4324124212127131 k006 concat of cont frac of 4324124220496058 m001 1/GAMMA(3/4)*Kolakoski^2*exp(GAMMA(5/12)) 4324124237152122 k008 concat of cont frac of 4324124240014399 a001 15456/41*24476^(37/40) 4324124241814261 k008 concat of cont frac of 4324124243138971 m001 (-exp(1/Pi)+MadelungNaCl)/(cos(1)+arctan(1/3)) 4324124250335726 m001 (Pi+ln(2)/ln(10))/(ArtinRank2+Paris) 4324124254113321 a003 sin(Pi*18/59)/cos(Pi*41/83) 4324124280146359 a001 6765/103682*843^(27/28) 4324124296629871 a001 17711/271443*843^(27/28) 4324124299034783 a001 6624/101521*843^(27/28) 4324124299385655 a001 121393/1860498*843^(27/28) 4324124299419375 a001 11/34*610^(19/47) 4324124299436847 a001 317811/4870847*843^(27/28) 4324124299468485 a001 196418/3010349*843^(27/28) 4324124299602506 a001 75025/1149851*843^(27/28) 4324124300521101 a001 28657/439204*843^(27/28) 4324124302442352 s002 sum(A064055[n]/(n^2*10^n-1),n=1..infinity) 4324124306817242 a001 10946/167761*843^(27/28) 4324124316547027 m001 (1-2^(1/2))/(-ln(2^(1/2)+1)+Tribonacci) 4324124316789706 r002 39th iterates of z^2 + 4324124321657622 q001 1753/4054 4324124322005229 m006 (1/5*ln(Pi)-1/3)/(exp(Pi)+1) 4324124327117102 a008 Real Root of x^4-2*x^2-24*x-416 4324124328550826 m001 MinimumGamma^2/Backhouse*ln(GAMMA(1/6))^2 4324124334466265 a001 11/610*121393^(22/47) 4324124334779085 r005 Re(z^2+c),c=-21/34+4/53*I,n=48 4324124348685460 r009 Im(z^3+c),c=-73/122+13/22*I,n=12 4324124349971638 a001 4181/64079*843^(27/28) 4324124354957412 a001 1597/1364*843^(15/28) 4324124382049102 r009 Im(z^3+c),c=-10/21+22/59*I,n=39 4324124383462089 r005 Re(z^2+c),c=-67/118+12/43*I,n=12 4324124384511516 r009 Im(z^3+c),c=-23/56+17/41*I,n=25 4324124393374510 m001 DuboisRaymond^Trott2nd*ZetaP(2) 4324124400892617 m008 (1/2*Pi^4+3/5)/(3/4*Pi^2+4) 4324124419001685 a001 329*24476^(14/29) 4324124423817980 a007 Real Root Of -270*x^4+274*x^3-669*x^2+380*x+321 4324124424938838 a001 1/29*(1/2*5^(1/2)+1/2)^30*123^(7/8) 4324124431583447 m001 sin(1/5*Pi)*Khinchin*Trott2nd 4324124431986062 a001 610/2207*843^(3/4) 4324124442665174 m001 (-DuboisRaymond+Kac)/(Champernowne-Psi(1,1/3)) 4324124458443240 r009 Im(z^3+c),c=-9/17+7/53*I,n=10 4324124459913381 r009 Im(z^3+c),c=-35/86+5/12*I,n=25 4324124473505918 r002 39th iterates of z^2 + 4324124481131128 k007 concat of cont frac of 4324124492414865 a001 2255/281*322^(7/24) 4324124493564190 r005 Re(z^2+c),c=-11/18+6/79*I,n=20 4324124498844648 s002 sum(A124977[n]/(pi^n+1),n=1..infinity) 4324124511688876 r002 30th iterates of z^2 + 4324124512111112 k008 concat of cont frac of 4324124512496669 m001 (gamma+Artin)/(KomornikLoreti+ThueMorse) 4324124521311211 k006 concat of cont frac of 4324124522680157 r005 Re(z^2+c),c=-39/64+16/53*I,n=41 4324124523700655 r002 3th iterates of z^2 + 4324124525981015 r005 Im(z^2+c),c=11/126+35/61*I,n=52 4324124530654142 p001 sum(1/(325*n+277)/(3^n),n=0..infinity) 4324124533875512 r009 Im(z^3+c),c=-11/31+11/25*I,n=16 4324124548167484 l006 ln(1257/1937) 4324124557234435 r002 53th iterates of z^2 + 4324124557390120 r005 Re(z^2+c),c=-11/18+17/98*I,n=58 4324124559675446 r009 Re(z^3+c),c=-51/98+5/32*I,n=44 4324124567672805 s002 sum(A094776[n]/(n^2*pi^n-1),n=1..infinity) 4324124584293086 r005 Im(z^2+c),c=25/82+14/39*I,n=38 4324124587498026 a003 sin(Pi*9/109)/cos(Pi*14/47) 4324124599968531 r009 Re(z^3+c),c=-17/44+25/36*I,n=8 4324124603424717 r009 Re(z^3+c),c=-27/50+19/59*I,n=60 4324124610763817 m001 (Backhouse-BesselK(0,1))/(-FeigenbaumMu+Salem) 4324124641912111 k009 concat of cont frac of 4324124645756268 a001 1597/24476*843^(27/28) 4324124666333347 a001 17711/3*1364^(8/29) 4324124682155504 r002 16th iterates of z^2 + 4324124683289574 m004 -3-4*E^(Sqrt[5]*Pi)+25*Sqrt[5]*Pi 4324124687508339 r009 Re(z^3+c),c=-25/48+7/39*I,n=61 4324124691159861 r002 7th iterates of z^2 + 4324124692198802 r005 Re(z^2+c),c=35/94+11/39*I,n=49 4324124698935835 a007 Real Root Of 138*x^4+534*x^3-410*x^2-828*x-986 4324124699111587 a001 28657/7*2^(3/38) 4324124711688637 r009 Im(z^3+c),c=-37/102+31/46*I,n=23 4324124721110344 m001 (HardyLittlewoodC5+MertensB2)/(Mills-Totient) 4324124737820918 a007 Real Root Of 218*x^4+842*x^3-688*x^2-866*x+981 4324124758436911 a007 Real Root Of 538*x^4-153*x^3+881*x^2+460*x+3 4324124777325359 m001 (-TwinPrimes+ZetaP(4))/(cos(1)+cos(1/5*Pi)) 4324124805503628 s002 sum(A131192[n]/(pi^n),n=1..infinity) 4324124806004063 p004 log(21503/20593) 4324124806237508 s002 sum(A002259[n]/(2^n+1),n=1..infinity) 4324124812760446 r002 36th iterates of z^2 + 4324124823050092 r005 Im(z^2+c),c=21/110+3/7*I,n=43 4324124842737958 m001 (Ei(1)+Landau)/(StronglyCareFree-Totient) 4324124849589774 r005 Im(z^2+c),c=-19/32+17/40*I,n=15 4324124849647196 m001 Porter^ZetaQ(4)/exp(Pi) 4324124853266185 a007 Real Root Of -179*x^4-846*x^3-553*x^2-929*x+503 4324124858420545 r002 3th iterates of z^2 + 4324124867670636 r005 Re(z^2+c),c=-51/98+21/52*I,n=30 4324124881098552 r002 7th iterates of z^2 + 4324124884255913 m005 (1/2*Pi-4/11)/(7/10*exp(1)+8/9) 4324124907339824 r002 14th iterates of z^2 + 4324124912260047 a007 Real Root Of -385*x^4-248*x^3-448*x^2+698*x+379 4324124916607154 a007 Real Root Of -128*x^4-497*x^3+270*x^2+152*x+176 4324124921902021 r009 Im(z^3+c),c=-11/54+23/43*I,n=5 4324124929622684 r005 Re(z^2+c),c=6/19+28/57*I,n=51 4324124933638809 r005 Im(z^2+c),c=-1/8+40/63*I,n=62 4324124939601680 r005 Im(z^2+c),c=-27/106+14/23*I,n=37 4324124942385995 r009 Re(z^3+c),c=-11/58+19/26*I,n=8 4324124943386586 a001 7881196/377*233^(2/15) 4324124954219392 a001 123/89*121393^(11/16) 4324124965193775 a007 Real Root Of -615*x^4+353*x^3-343*x^2+735*x+432 4324124972619721 r005 Im(z^2+c),c=1/44+34/61*I,n=57 4324124984869971 r005 Re(z^2+c),c=-6/13+7/12*I,n=25 4324124984933785 m001 1/Zeta(3)*GolombDickman/ln(sqrt(2))^2 4324125006507318 r005 Re(z^2+c),c=-59/98+14/45*I,n=39 4324125009659692 h005 exp(cos(Pi*16/49)+sin(Pi*15/38)) 4324125018194444 r002 63th iterates of z^2 + 4324125029448161 r009 Im(z^3+c),c=-1/110+20/39*I,n=11 4324125033569167 m005 (1/36+1/4*5^(1/2))/(7/8*Catalan+5/9) 4324125035099822 r009 Im(z^3+c),c=-28/29+4/35*I,n=2 4324125049698127 m001 (ln(2)+Bloch)/(Khinchin+ZetaQ(3)) 4324125050181743 m005 (1/3*Catalan+2/11)/(4/11*gamma+11/12) 4324125051354409 r005 Im(z^2+c),c=29/94+14/45*I,n=61 4324125055479076 m002 3+Cosh[Pi]/(2*E^Pi)+ProductLog[Pi] 4324125074664933 r005 Im(z^2+c),c=3/14+20/49*I,n=63 4324125080756179 a007 Real Root Of -660*x^4+753*x^3+880*x^2-54*x-179 4324125090240745 a007 Real Root Of -186*x^4-820*x^3-279*x^2-868*x+193 4324125103343783 m003 6*E^(1/2+Sqrt[5]/2)+12*Coth[1/2+Sqrt[5]/2] 4324125103369616 m001 (1+GAMMA(23/24))/(PrimesInBinary+ZetaQ(2)) 4324125110500012 r009 Im(z^3+c),c=-23/34+1/18*I,n=3 4324125111114161 k009 concat of cont frac of 4324125118619151 a001 9349*4181^(9/49) 4324125133330469 r002 46th iterates of z^2 + 4324125133330469 r002 46th iterates of z^2 + 4324125141328756 p001 sum(1/(418*n+305)/(2^n),n=0..infinity) 4324125148241927 m005 (1/3*5^(1/2)-1/5)/(7/10*gamma+6/7) 4324125156687779 r005 Im(z^2+c),c=11/50+25/62*I,n=47 4324125161324983 r002 27th iterates of z^2 + 4324125172500625 r005 Im(z^2+c),c=21/106+19/45*I,n=47 4324125183053272 a007 Real Root Of -695*x^4+354*x^3+309*x^2+409*x+172 4324125189573835 r005 Im(z^2+c),c=-1/36+31/52*I,n=63 4324125192315553 r002 45th iterates of z^2 + 4324125199907823 a007 Real Root Of -882*x^4+959*x^3-36*x^2-139*x+55 4324125201159900 a007 Real Root Of 297*x^4-23*x^3-993*x^2-631*x+450 4324125209496240 r009 Im(z^3+c),c=-27/70+20/47*I,n=20 4324125211721273 k008 concat of cont frac of 4324125212106320 m005 (1/2*3^(1/2)+7/9)/(7/8*Catalan+3) 4324125217430421 a007 Real Root Of 465*x^4-172*x^3+135*x^2-43*x-74 4324125227793446 m005 (1/2*2^(1/2)+10/11)/(5/11*gamma-4) 4324125230202578 q001 1174/2715 4324125231262881 m001 (Chi(1)+LambertW(1))/(GAMMA(2/3)+Ei(1)) 4324125233677512 r005 Re(z^2+c),c=-15/52+61/63*I,n=4 4324125253522358 r002 27th iterates of z^2 + 4324125259853581 r005 Re(z^2+c),c=-73/118+2/39*I,n=25 4324125276253619 r002 3th iterates of z^2 + 4324125277612585 a007 Real Root Of 831*x^4-311*x^3+281*x^2-514*x-329 4324125307594343 r009 Im(z^3+c),c=-21/106+50/51*I,n=4 4324125310538830 a001 75025/3*39603^(3/58) 4324125311114114 k007 concat of cont frac of 4324125311211761 k007 concat of cont frac of 4324125311395269 a001 17711/3*15127^(6/29) 4324125317200763 m001 sqrt(1+sqrt(3))^2*GAMMA(13/24)^2*exp(sqrt(Pi)) 4324125318815478 m006 (2/3*Pi+1/6)/(1/5*ln(Pi)+5) 4324125321215121 k009 concat of cont frac of 4324125329321418 m005 (1/2*gamma-10/11)/(7/9*Zeta(3)+1/2) 4324125335590684 m005 (1/2*Zeta(3)+1/5)/(1/6*Zeta(3)-2/11) 4324125341678382 m001 (Artin-LambertW(1))/(Grothendieck+Khinchin) 4324125358517856 a007 Real Root Of 229*x^4+916*x^3-360*x^2-395*x-978 4324125361691342 l006 ln(6346/9779) 4324125366160157 a001 9349/55*987^(23/49) 4324125397648107 a007 Real Root Of -184*x^4-666*x^3+478*x^2-253*x+450 4324125400712281 a007 Real Root Of 207*x^4+852*x^3-388*x^2-878*x-26 4324125411077681 a001 4181/3*5778^(23/58) 4324125411266413 k006 concat of cont frac of 4324125418594471 r009 Im(z^3+c),c=-25/102+37/38*I,n=6 4324125419891428 r009 Im(z^3+c),c=-4/21+33/47*I,n=2 4324125426581925 m001 exp(Kolakoski)/Artin^2*sqrt(1+sqrt(3))^2 4324125434600596 a007 Real Root Of -370*x^4+723*x^3+448*x^2+892*x-515 4324125435512762 r005 Re(z^2+c),c=19/62+25/56*I,n=56 4324125459960695 r009 Im(z^3+c),c=-39/70+3/25*I,n=21 4324125461986575 m001 ArtinRank2/(Si(Pi)^StronglyCareFree) 4324125462512675 a003 cos(Pi*23/67)*sin(Pi*25/68) 4324125477760954 a007 Real Root Of -213*x^4+535*x^3-854*x^2+309*x+344 4324125483007922 r002 13th iterates of z^2 + 4324125488023003 b008 E^(-2)+(4*Pi)/3 4324125496146381 s001 sum(exp(-Pi/3)^n*A210759[n],n=1..infinity) 4324125499789883 m005 (2*gamma+1/4)/(3*Catalan+1/2) 4324125506426845 m001 (-Kac+ReciprocalLucas)/(exp(1)+Artin) 4324125509319253 a001 987/521*521^(1/2) 4324125513036152 r005 Im(z^2+c),c=-41/70+14/23*I,n=13 4324125518360751 a007 Real Root Of 999*x^4-8*x^3+729*x^2-886*x-555 4324125530021081 a007 Real Root Of -89*x^4-424*x^3-417*x^2-998*x+316 4324125531991328 r009 Im(z^3+c),c=-21/110+30/61*I,n=9 4324125533014388 r002 33th iterates of z^2 + 4324125537077687 a001 17711/3*2207^(15/58) 4324125547439346 m001 exp(ArtinRank2)*Conway*GAMMA(17/24)^2 4324125550239491 m005 (1/2*3^(1/2)-5/9)/(4/11*exp(1)-11/12) 4324125553806425 r002 38th iterates of z^2 + 4324125554987947 m001 MertensB1^2/exp(CopelandErdos)^2/Pi^2 4324125560734480 r005 Re(z^2+c),c=-5/8+23/133*I,n=32 4324125562634442 l006 ln(5089/7842) 4324125564843928 a007 Real Root Of -399*x^4-722*x^3-951*x^2+716*x+443 4324125577713314 r005 Re(z^2+c),c=-22/19+16/51*I,n=8 4324125597184411 m001 (HardyLittlewoodC5-MertensB1)/(Otter+PlouffeB) 4324125614306846 r004 Re(z^2+c),c=-8/11-1/18*I,z(0)=-1,n=60 4324125627164894 m005 (1/2*gamma-1/5)/(1/8*5^(1/2)-3/10) 4324125653322312 m005 (1/3*Zeta(3)+2/11)/(5/12*2^(1/2)-5/11) 4324125665224497 a001 7/317811*3^(35/57) 4324125672953127 m005 (1/2*Catalan-2)/(3*Catalan+9/11) 4324125676059379 a007 Real Root Of -266*x^4-940*x^3+801*x^2-270*x+852 4324125680147315 r005 Im(z^2+c),c=-1/114+17/26*I,n=45 4324125690613709 r005 Im(z^2+c),c=13/82+22/51*I,n=5 4324125690997009 r005 Im(z^2+c),c=1/102+31/54*I,n=52 4324125702737326 r005 Re(z^2+c),c=17/46+19/52*I,n=59 4324125713181372 m001 (1+BesselI(0,2))/(RenyiParking+Trott) 4324125738220033 a001 2207/8*3^(9/22) 4324125752876595 r005 Re(z^2+c),c=-9/14+16/137*I,n=10 4324125755018208 h001 (-3*exp(-2)+1)/(-6*exp(1/3)+7) 4324125760123257 r005 Re(z^2+c),c=-9/16+43/69*I,n=6 4324125769535702 r005 Im(z^2+c),c=-25/82+4/7*I,n=17 4324125784879495 r005 Im(z^2+c),c=-25/98+24/43*I,n=12 4324125798321923 m001 exp(gamma)^LandauRamanujan*exp(gamma)^sqrt(Pi) 4324125800879194 a007 Real Root Of 198*x^4+783*x^3-248*x^2+387*x+394 4324125801125450 s002 sum(A051057[n]/(n^2*10^n+1),n=1..infinity) 4324125810520318 r005 Re(z^2+c),c=-65/118+9/26*I,n=29 4324125811151280 r002 24th iterates of z^2 + 4324125819232336 r005 Re(z^2+c),c=-4/3+11/183*I,n=38 4324125821032213 k007 concat of cont frac of 4324125832892607 m001 KhintchineLevy*FransenRobinson/ln(Catalan)^2 4324125833601855 p001 sum((-1)^n/(533*n+206)/(2^n),n=0..infinity) 4324125840808755 r002 52th iterates of z^2 + 4324125857999151 r005 Re(z^2+c),c=-5/8+23/82*I,n=49 4324125866163019 a007 Real Root Of -439*x^4-990*x^3-634*x^2+597*x+312 4324125895407115 l006 ln(3832/5905) 4324125900691221 r005 Im(z^2+c),c=-7/54+33/52*I,n=20 4324125902324166 r002 24th iterates of z^2 + 4324125907198385 r005 Re(z^2+c),c=-9/14+49/240*I,n=30 4324125926801219 m006 (4*exp(Pi)+1/6)/(2/5*exp(2*Pi)+1/4) 4324125933466955 r002 27th iterates of z^2 + 4324125933598489 h001 (7/11*exp(2)+1/2)/(1/6*exp(1)+3/4) 4324125936032759 m001 (RenyiParking*Riemann3rdZero)^(1/2) 4324125939370977 r005 Im(z^2+c),c=-3/10+27/53*I,n=4 4324125939824741 a007 Real Root Of 737*x^4+144*x^3+37*x^2-770*x-354 4324125941958034 r005 Re(z^2+c),c=-13/21+2/63*I,n=58 4324125947989611 m001 1/(2^(1/3))/exp(GaussKuzminWirsing)^2 4324125948054486 r009 Im(z^3+c),c=-53/110+17/46*I,n=57 4324125961052121 r009 Im(z^3+c),c=-12/29+29/59*I,n=12 4324125964381574 m005 (3/5*Catalan-1/4)/(2/3*2^(1/2)-1/4) 4324125970401704 a001 28657/1364*322^(1/8) 4324125971456479 a007 Real Root Of -209*x^4-677*x^3+952*x^2-124*x-4 4324125978945237 r002 31th iterates of z^2 + 4324125981318320 r009 Im(z^3+c),c=-7/15+21/55*I,n=18 4324125989820469 r009 Im(z^3+c),c=-27/122+18/37*I,n=25 4324125990230988 r005 Re(z^2+c),c=-65/106+12/55*I,n=31 4324125993242945 r005 Re(z^2+c),c=-17/28+12/61*I,n=49 4324125993272833 r005 Re(z^2+c),c=-71/118+1/3*I,n=59 4324125993368113 m003 17/2+Sqrt[5]/8-5*Cosh[1/2+Sqrt[5]/2] 4324126010144897 r009 Im(z^3+c),c=-7/74+30/59*I,n=19 4324126015759619 p004 log(21683/14071) 4324126038714797 a003 sin(Pi*4/63)+sin(Pi*7/93) 4324126045200513 m001 BesselK(1,1)-LandauRamanujan2nd+ThueMorse 4324126055666748 a007 Real Root Of 603*x^4+115*x^3+303*x^2-332*x-212 4324126056460432 a007 Real Root Of -92*x^4+332*x^3-400*x^2+708*x+411 4324126059472985 a001 305/2889*843^(25/28) 4324126076079459 a007 Real Root Of 897*x^4-569*x^3-737*x^2-850*x+520 4324126077061029 m001 (Zeta(5)+ln(gamma))/(GAMMA(5/6)-ZetaQ(4)) 4324126085044073 s002 sum(A054780[n]/(n^3*10^n+1),n=1..infinity) 4324126085044073 s002 sum(A054780[n]/(n^3*10^n-1),n=1..infinity) 4324126089503799 a007 Real Root Of 947*x^4-631*x^3+969*x^2-700*x-568 4324126093461356 a001 610/3571*843^(23/28) 4324126099751345 a007 Real Root Of 721*x^4-719*x^3-131*x^2-746*x+380 4324126109141911 r005 Im(z^2+c),c=6/25+15/41*I,n=15 4324126111551323 k006 concat of cont frac of 4324126113542770 a003 cos(Pi*31/109)/cos(Pi*49/108) 4324126122698806 r002 56th iterates of z^2 + 4324126130530432 q001 1769/4091 4324126131710403 m005 (1/2*gamma+8/11)/(7/9*Zeta(3)-7/10) 4324126141928111 r005 Re(z^2+c),c=-3/5+9/52*I,n=27 4324126145132487 r005 Im(z^2+c),c=3/52+17/32*I,n=50 4324126152920511 a001 7/701408733*2584^(17/22) 4324126156257262 a007 Real Root Of 431*x^4-551*x^3+92*x^2-448*x+206 4324126157280254 r005 Re(z^2+c),c=-14/23+7/37*I,n=57 4324126159724280 l006 ln(6407/9873) 4324126173199306 r005 Re(z^2+c),c=-67/106+4/43*I,n=17 4324126175299882 m001 (Si(Pi)+Zeta(1,-1))/(-CopelandErdos+Kac) 4324126176459252 a007 Real Root Of 896*x^4+124*x^3-339*x^2-400*x+195 4324126186634312 m001 (ln(5)-GAMMA(11/12))/(sin(1/5*Pi)+ln(2)) 4324126194119437 r002 12th iterates of z^2 + 4324126202489584 r005 Im(z^2+c),c=-115/126+2/57*I,n=14 4324126204977602 a007 Real Root Of 209*x^4-309*x^3+138*x^2-645*x-337 4324126217350827 r005 Re(z^2+c),c=-13/21+1/39*I,n=43 4324126217779620 r009 Im(z^3+c),c=-12/29+28/57*I,n=12 4324126221132044 r002 46th iterates of z^2 + 4324126224081902 r005 Im(z^2+c),c=7/60+22/45*I,n=49 4324126226796345 a007 Real Root Of -462*x^4+91*x^3+235*x^2+961*x-42 4324126227110147 k006 concat of cont frac of 4324126231321115 k009 concat of cont frac of 4324126233922763 a001 28657/2207*322^(5/24) 4324126253005642 a001 7/2504730781961*102334155^(17/22) 4324126256434436 r005 Im(z^2+c),c=-55/78+9/32*I,n=20 4324126260688964 r002 24th iterates of z^2 + 4324126264142231 k007 concat of cont frac of 4324126284752642 r005 Re(z^2+c),c=-65/106+3/17*I,n=22 4324126302270491 m001 GAMMA(7/12)^2/exp(GAMMA(11/12))^2/cos(Pi/5)^2 4324126304438324 m005 (1/2*3^(1/2)-5)/(5*3^(1/2)+9/10) 4324126312747696 a007 Real Root Of 492*x^4+955*x^3+506*x^2-995*x+42 4324126313321124 k007 concat of cont frac of 4324126340406923 m001 1/Porter/ln(MertensB1)/sinh(1) 4324126354190683 l003 BesselI(2,29/50) 4324126360573487 r005 Re(z^2+c),c=-13/21+1/48*I,n=45 4324126361801665 m001 (Ei(1)-Niven)/(Paris+PolyaRandomWalk3D) 4324126363549525 a001 2/17*14930352^(7/11) 4324126364948133 r005 Re(z^2+c),c=11/34+23/43*I,n=3 4324126367241168 r002 45th iterates of z^2 + 4324126389366991 r009 Im(z^3+c),c=-59/122+13/35*I,n=41 4324126466997026 a007 Real Root Of 129*x^4+385*x^3-690*x^2+178*x-301 4324126471637196 a007 Real Root Of -640*x^4+57*x^3-164*x^2+17*x+65 4324126485982116 m001 CareFree^MertensB2/ln(5) 4324126502766712 r005 Re(z^2+c),c=-13/21+2/51*I,n=57 4324126503823834 a007 Real Root Of 914*x^4-990*x^3+773*x^2-637*x+179 4324126512333016 r009 Im(z^3+c),c=-1/78+24/43*I,n=4 4324126512611740 r002 55th iterates of z^2 + 4324126536884160 p001 sum((-1)^n/(568*n+231)/(256^n),n=0..infinity) 4324126538284364 m005 (1/2*gamma+6/7)/(8/9*Pi-1/7) 4324126539046054 r009 Im(z^3+c),c=-45/94+19/50*I,n=34 4324126542179007 a007 Real Root Of -995*x^4-132*x^3+418*x^2+532*x+176 4324126542359332 r005 Im(z^2+c),c=-65/106+21/55*I,n=5 4324126553069268 l006 ln(2575/3968) 4324126554161818 r005 Im(z^2+c),c=-1/82+13/23*I,n=30 4324126569310565 r009 Re(z^3+c),c=-29/66+7/53*I,n=26 4324126570543018 r005 Im(z^2+c),c=5/58+20/39*I,n=43 4324126572478950 r005 Re(z^2+c),c=-29/48+7/36*I,n=38 4324126585892509 m002 -(Pi^2*Log[Pi])+7*Tanh[Pi] 4324126591661344 s002 sum(A183765[n]/(n*pi^n-1),n=1..infinity) 4324126593462073 m001 1/ln(PisotVijayaraghavan)*MinimumGamma/Zeta(3) 4324126623848427 b008 -2/7+AiryBi[-6] 4324126623934524 m005 (1/3*5^(1/2)-1/5)/(4/11*exp(1)+3/11) 4324126638695104 a007 Real Root Of -151*x^4-617*x^3+52*x^2-311*x+589 4324126640542353 a001 28657/843*123^(1/20) 4324126650410428 a001 233/843*1364^(7/10) 4324126660070462 r002 11th iterates of z^2 + 4324126669079077 m001 Bloch-HardyLittlewoodC3^MinimumGamma 4324126673094303 a001 610/9349*843^(27/28) 4324126675123245 a001 28657/3*843^(13/58) 4324126708375134 r009 Re(z^3+c),c=-17/86+47/59*I,n=6 4324126726041242 a001 1/64079*47^(9/34) 4324126728441044 m001 (Robbin-Totient)/(exp(1/exp(1))+Champernowne) 4324126728855714 a007 Real Root Of 280*x^4+821*x^3+596*x^2-597*x-313 4324126736303056 a007 Real Root Of -928*x^4+555*x^3-153*x^2+354*x+259 4324126744301621 m005 (1/3*2^(1/2)-1/9)/(3/7*3^(1/2)+1/11) 4324126745995100 m001 1/ln(FeigenbaumB)/CareFree*RenyiParking^2 4324126746173596 r002 18th iterates of z^2 + 4324126759474288 r002 47th iterates of z^2 + 4324126766842627 r005 Re(z^2+c),c=-71/118+9/37*I,n=61 4324126767871545 a007 Real Root Of 252*x^4+884*x^3-685*x^2+656*x-985 4324126804247902 m001 GAMMA(2/3)/Sierpinski/ln(GAMMA(5/6)) 4324126819712728 a003 sin(Pi*3/68)-sin(Pi*23/119) 4324126828954800 m001 (Backhouse-Catalan)/(Trott+ZetaQ(4)) 4324126858552637 r005 Re(z^2+c),c=-23/82+31/50*I,n=52 4324126875520412 a005 (1/cos(4/61*Pi))^284 4324126882311411 k006 concat of cont frac of 4324126883813800 m001 (5^(1/2)-sin(1))/(-cos(1/12*Pi)+Cahen) 4324126886851898 m001 (5^(1/2)-GAMMA(17/24))/(ErdosBorwein+Lehmer) 4324126888114778 r005 Im(z^2+c),c=-7/8+47/146*I,n=4 4324126892419922 r002 48th iterates of z^2 + 4324126916716161 a007 Real Root Of 41*x^4-85*x^3-816*x^2-777*x+494 4324126923342133 m001 (-Salem+Sarnak)/(BesselK(0,1)+Kac) 4324126937574202 a007 Real Root Of -972*x^4+983*x^3-807*x^2+168*x+337 4324126942704587 l006 ln(6468/9967) 4324126949715838 m001 Zeta(1/2)+BesselI(1,2)*MasserGramain 4324126960350913 a001 377/521*1364^(17/30) 4324126966971554 r005 Re(z^2+c),c=29/126+15/31*I,n=8 4324126970583617 m001 (-ArtinRank2+Lehmer)/(3^(1/2)+ln(2)) 4324126983349487 s002 sum(A006569[n]/(n*exp(n)-1),n=1..infinity) 4324126990332597 m001 Paris*(MasserGramain-exp(-1/2*Pi)) 4324126991257889 a001 75025/5778*322^(5/24) 4324126994106988 m001 (ln(2)+OneNinth)/Si(Pi) 4324127002322563 p004 log(25933/16829) 4324127009830647 a007 Real Root Of -191*x^4-44*x^3-710*x^2+590*x+391 4324127034949319 a007 Real Root Of 275*x^4+957*x^3-806*x^2+747*x-468 4324127039233724 m001 1/ln(GAMMA(17/24))*Rabbit/cos(Pi/5)^2 4324127039456271 r005 Im(z^2+c),c=17/48+1/61*I,n=3 4324127046556186 m001 (Zeta(1/2)-ln(2+3^(1/2)))/(ArtinRank2-Totient) 4324127050233451 m001 (Kolakoski-ZetaQ(3))/(GAMMA(19/24)+Cahen) 4324127058016282 r002 49th iterates of z^2 + 4324127064674532 r002 36th iterates of z^2 + 4324127067288944 r005 Re(z^2+c),c=-37/62+11/38*I,n=49 4324127079285442 r005 Re(z^2+c),c=13/64+18/49*I,n=42 4324127089648438 m001 Pi+2^(1/3)/cos(1/5*Pi)/ln(2+3^(1/2)) 4324127091079017 a007 Real Root Of 327*x^4-716*x^3+719*x^2-962*x+328 4324127092686840 r002 38th iterates of z^2 + 4324127093168434 r005 Re(z^2+c),c=-21/34+5/63*I,n=62 4324127095420147 m001 FeigenbaumD/Landau*ZetaQ(3) 4324127101751617 a001 196418/15127*322^(5/24) 4324127104984032 m005 (1/3*exp(1)-1/2)/(1/9*gamma+7/8) 4324127114626112 k007 concat of cont frac of 4324127117872435 a001 514229/39603*322^(5/24) 4324127120224431 a001 1346269/103682*322^(5/24) 4324127120567582 a001 3524578/271443*322^(5/24) 4324127120617648 a001 9227465/710647*322^(5/24) 4324127120624952 a001 24157817/1860498*322^(5/24) 4324127120626018 a001 63245986/4870847*322^(5/24) 4324127120626173 a001 165580141/12752043*322^(5/24) 4324127120626196 a001 433494437/33385282*322^(5/24) 4324127120626199 a001 1134903170/87403803*322^(5/24) 4324127120626200 a001 2971215073/228826127*322^(5/24) 4324127120626200 a001 7778742049/599074578*322^(5/24) 4324127120626200 a001 20365011074/1568397607*322^(5/24) 4324127120626200 a001 53316291173/4106118243*322^(5/24) 4324127120626200 a001 139583862445/10749957122*322^(5/24) 4324127120626200 a001 365435296162/28143753123*322^(5/24) 4324127120626200 a001 956722026041/73681302247*322^(5/24) 4324127120626200 a001 2504730781961/192900153618*322^(5/24) 4324127120626200 a001 10610209857723/817138163596*322^(5/24) 4324127120626200 a001 4052739537881/312119004989*322^(5/24) 4324127120626200 a001 1548008755920/119218851371*322^(5/24) 4324127120626200 a001 591286729879/45537549124*322^(5/24) 4324127120626200 a001 7787980473/599786069*322^(5/24) 4324127120626200 a001 86267571272/6643838879*322^(5/24) 4324127120626200 a001 32951280099/2537720636*322^(5/24) 4324127120626200 a001 12586269025/969323029*322^(5/24) 4324127120626200 a001 4807526976/370248451*322^(5/24) 4324127120626200 a001 1836311903/141422324*322^(5/24) 4324127120626201 a001 701408733/54018521*322^(5/24) 4324127120626210 a001 9238424/711491*322^(5/24) 4324127120626269 a001 102334155/7881196*322^(5/24) 4324127120626676 a001 39088169/3010349*322^(5/24) 4324127120629466 a001 14930352/1149851*322^(5/24) 4324127120648590 a001 5702887/439204*322^(5/24) 4324127120779662 a001 2178309/167761*322^(5/24) 4324127121678044 a001 832040/64079*322^(5/24) 4324127122453606 r009 Im(z^3+c),c=-1/118+19/34*I,n=4 4324127127835649 a001 10959/844*322^(5/24) 4324127146924429 a007 Real Root Of 172*x^4+934*x^3+788*x^2-306*x-675 4324127159887208 r002 42th iterates of z^2 + 4324127161416727 r002 61th iterates of z^2 + 4324127162420687 a007 Real Root Of -186*x^4-692*x^3+690*x^2+808*x-329 4324127162961994 r002 50th iterates of z^2 + 4324127170040499 a001 121393/9349*322^(5/24) 4324127170459240 r005 Re(z^2+c),c=-3/5+11/45*I,n=52 4324127171114011 k007 concat of cont frac of 4324127188166700 r005 Im(z^2+c),c=3/40+29/54*I,n=20 4324127200426373 l006 ln(3893/5999) 4324127205407982 p001 sum((-1)^n/(149*n+23)/(24^n),n=0..infinity) 4324127205582193 m006 (4/5*ln(Pi)-4/5)/(5*exp(2*Pi)+1/6) 4324127206814685 m001 arctan(1/2)*GAMMA(23/24)-exp(-Pi) 4324127208995124 m005 (1/2*exp(1)-4/7)/(2/3*Pi-3/11) 4324127209293239 a001 305/682*843^(19/28) 4324127211165665 r005 Im(z^2+c),c=-47/36+2/41*I,n=13 4324127211463696 m001 (ln(2^(1/2)+1)+Ei(1))/(Cahen-HeathBrownMoroz) 4324127232248887 r005 Re(z^2+c),c=-21/34+15/113*I,n=38 4324127236217447 r005 Im(z^2+c),c=3/23+16/33*I,n=29 4324127236490721 p001 sum((-1)^n/(475*n+241)/n/(32^n),n=1..infinity) 4324127237894419 a007 Real Root Of -383*x^4-962*x^3-917*x^2+874*x+485 4324127245847713 m001 (ArtinRank2-Mills)/(Riemann1stZero-ZetaQ(2)) 4324127246957103 r002 16th iterates of z^2 + 4324127294447277 r005 Re(z^2+c),c=-103/110+8/59*I,n=18 4324127319132557 m005 (1/2*2^(1/2)-2/11)/(1/8*exp(1)+7/8) 4324127333278455 r002 37th iterates of z^2 + 4324127362024703 m002 2/Pi^5+(Cosh[Pi]*Sinh[Pi])/Pi^3 4324127383955503 m001 1/Zeta(1,2)^2/Khintchine^2*exp(Zeta(7)) 4324127412254518 a001 610/3*3571^(19/29) 4324127417685220 s002 sum(A023892[n]/(n^3*2^n+1),n=1..infinity) 4324127424777856 m001 (LaplaceLimit+Thue)/(GaussAGM-KhinchinLevy) 4324127430383095 a001 141/46*18^(5/42) 4324127431311110 k007 concat of cont frac of 4324127435313247 m005 (1/2*exp(1)+5/12)/(5/9*2^(1/2)-3/8) 4324127435491346 a008 Real Root of x^4-x^3-9*x^2-20*x-14 4324127455853688 m001 (gamma(3)-(1+3^(1/2))^(1/2))/(Kolakoski-Salem) 4324127459160345 a007 Real Root Of 81*x^4+265*x^3-275*x^2+389*x-69 4324127459316871 a001 46368/3571*322^(5/24) 4324127462329704 r009 Im(z^3+c),c=-13/62+20/27*I,n=56 4324127463616110 r002 37th iterates of z^2 + 4324127468632463 m001 (1-BesselI(1,2))/(-PlouffeB+Riemann1stZero) 4324127492093317 r005 Re(z^2+c),c=-17/54+27/58*I,n=2 4324127495854150 a001 610/521*521^(15/26) 4324127512509564 m008 (4/5*Pi^2+2)/(3/4*Pi^5-2/3) 4324127512630167 m005 (1/3*exp(1)-3/4)/(3/11*5^(1/2)+3) 4324127515837634 m001 sin(Pi/5)^2*exp(GAMMA(1/4))/sqrt(3)^2 4324127517278811 r005 Im(z^2+c),c=2/7+16/45*I,n=6 4324127520315927 l006 ln(5211/8030) 4324127524671577 m005 (1/2*3^(1/2)-1/7)/(9/11*Catalan-11/12) 4324127528970046 m005 (1/3*Zeta(3)-2/5)/(7/10*Zeta(3)-1) 4324127530552745 m004 -5+E^(Sqrt[5]*Pi)+5*Pi-100*Sqrt[5]*Pi 4324127537837354 m001 sin(1/12*Pi)*(GAMMA(17/24)-Otter) 4324127548329818 m001 exp(Zeta(1,2))*LandauRamanujan*Zeta(3)^2 4324127565083608 r002 53th iterates of z^2 + 4324127571304256 m005 (1/3*2^(1/2)+2/5)/(7/8*2^(1/2)+7/9) 4324127575622136 r005 Im(z^2+c),c=3/86+22/39*I,n=24 4324127593517896 s002 sum(A181932[n]/((exp(n)+1)/n),n=1..infinity) 4324127594835731 r005 Im(z^2+c),c=-7/34+3/52*I,n=5 4324127598135599 m001 sin(1/12*Pi)^exp(-1/2*Pi)-FellerTornier 4324127605417446 a001 610/3*9349^(17/29) 4324127626831983 a003 sin(Pi*9/118)/cos(Pi*23/73) 4324127630474914 a001 144/3571*29^(31/44) 4324127632036065 m005 (-11/42+1/6*5^(1/2))/(-32/9+4/9*5^(1/2)) 4324127637477334 r002 23th iterates of z^2 + 4324127640036730 r002 2th iterates of z^2 + 4324127648594948 r005 Im(z^2+c),c=-5/8+53/122*I,n=50 4324127679214159 m001 Paris^MasserGramain*Paris^Rabbit 4324127681263349 r009 Im(z^3+c),c=-25/54+18/47*I,n=57 4324127683728159 h001 (7/10*exp(2)+4/7)/(1/7*exp(2)+3/11) 4324127686530541 v002 sum(1/(5^n+(22*n^2-54*n+69)),n=1..infinity) 4324127693418670 r005 Im(z^2+c),c=-17/70+37/46*I,n=11 4324127695137519 r005 Im(z^2+c),c=21/64+15/52*I,n=57 4324127709859852 r005 Im(z^2+c),c=6/19+11/51*I,n=9 4324127711054172 l006 ln(6529/10061) 4324127711054172 p004 log(10061/6529) 4324127712111121 k007 concat of cont frac of 4324127726853529 m001 Riemann3rdZero*GlaisherKinkelin^2*exp(Salem)^2 4324127727775453 r009 Im(z^3+c),c=-41/90+19/40*I,n=15 4324127733690853 m001 BesselI(1,2)^Zeta(1,-1)*FeigenbaumDelta 4324127742362802 m001 (Robbin-ThueMorse)/(GAMMA(5/6)-Niven) 4324127753939600 r005 Im(z^2+c),c=11/90+15/31*I,n=32 4324127757232387 r005 Im(z^2+c),c=7/29+13/34*I,n=59 4324127775470613 m001 (-MinimumGamma+Totient)/(Si(Pi)+cos(1/12*Pi)) 4324127778625286 r002 12th iterates of z^2 + 4324127791216385 a007 Real Root Of -121*x^4-551*x^3-129*x^2-154*x-500 4324127791531715 m005 (1/2*exp(1)-5)/(5/8*5^(1/2)-5/9) 4324127792642193 m001 GAMMA(5/12)/Niven*ln(sqrt(2)) 4324127797455724 r009 Im(z^3+c),c=-5/16+11/24*I,n=26 4324127800015114 r005 Re(z^2+c),c=-53/86+5/51*I,n=51 4324127833344445 m005 (1/2*Catalan+2/7)/(6/11*gamma-1/7) 4324127835842045 r002 64th iterates of z^2 + 4324127841093986 a001 1/6624*5^(17/26) 4324127851458322 a007 Real Root Of -583*x^4+600*x^3+569*x^2+385*x-301 4324127854887292 r009 Im(z^3+c),c=-5/56+11/14*I,n=58 4324127871068898 m001 Otter*Tribonacci^GolombDickman 4324127886312247 r005 Re(z^2+c),c=-43/70+4/35*I,n=41 4324127897088905 r002 21th iterates of z^2 + 4324127904651969 m001 (Paris-ZetaQ(2))/(Artin+LaplaceLimit) 4324127906396844 r009 Re(z^3+c),c=-19/40+6/23*I,n=6 4324127906976744 q001 119/2752 4324127906976744 r002 2th iterates of z^2 + 4324127906976744 r002 2th iterates of z^2 + 4324127906976744 r002 2th iterates of z^2 + 4324127906976744 r005 Im(z^2+c),c=-49/64+35/43*I,n=2 4324127913950968 r002 35th iterates of z^2 + 4324127924281376 r009 Im(z^3+c),c=-15/38+25/59*I,n=15 4324127925940358 r005 Im(z^2+c),c=-5/14+31/49*I,n=55 4324127927692684 a007 Real Root Of 409*x^4-633*x^3+520*x^2-336*x-308 4324127955070133 r005 Re(z^2+c),c=-79/126+9/37*I,n=29 4324127955555128 r002 4th iterates of z^2 + 4324127959840852 m001 (5^(1/2)+GAMMA(3/4))/(Zeta(1,-1)+cos(1/12*Pi)) 4324127961566960 a001 1597/521*521^(11/26) 4324127969471053 r005 Re(z^2+c),c=-67/110+10/53*I,n=62 4324127976447571 r009 Re(z^3+c),c=-11/28+42/59*I,n=56 4324127978421753 r005 Re(z^2+c),c=-41/74+23/56*I,n=41 4324127982028030 a007 Real Root Of -365*x^4+662*x^3-580*x^2+885*x-315 4324127989944058 s002 sum(A096813[n]/(n^2*exp(n)+1),n=1..infinity) 4324128011566995 a007 Real Root Of -563*x^4+641*x^3-721*x^2-47*x+186 4324128015622596 m001 gamma(2)^(Pi*csc(5/12*Pi)/GAMMA(7/12))/Zeta(3) 4324128021770166 r009 Im(z^3+c),c=-33/64+8/59*I,n=51 4324128036239763 a001 4181/843*322^(3/8) 4324128041628358 m006 (1/5*Pi+1/3)/(1/5*Pi^2+1/4) 4324128041628358 m008 (1/5*Pi+1/3)/(1/5*Pi^2+1/4) 4324128056386029 m001 (HardHexagonsEntropy+Thue)/(gamma-ln(3)) 4324128057758880 r005 Im(z^2+c),c=-23/34+21/103*I,n=36 4324128064782272 r005 Re(z^2+c),c=-23/34+10/101*I,n=29 4324128067895282 a001 233/843*3571^(21/34) 4324128070177068 a007 Real Root Of 615*x^4+254*x^3-97*x^2-863*x-356 4324128075242890 m001 ln(2)/(exp(1)^Bloch) 4324128106915493 m001 GAMMA(17/24)*PlouffeB/Riemann1stZero 4324128107838699 a001 377/521*3571^(1/2) 4324128112318471 k007 concat of cont frac of 4324128124133190 p004 log(22247/14437) 4324128128077754 r004 Re(z^2+c),c=-21/38-7/19*I,z(0)=-1,n=54 4324128147215318 a007 Real Root Of -624*x^4-56*x^3-515*x^2+815*x+466 4324128152361912 k006 concat of cont frac of 4324128154192345 a007 Real Root Of -386*x^4-804*x^3-474*x^2+527*x+265 4324128155128114 k008 concat of cont frac of 4324128159702365 r005 Re(z^2+c),c=1/118+27/32*I,n=26 4324128164906690 h001 (1/8*exp(1)+3/10)/(1/4*exp(1)+4/5) 4324128177822802 r005 Im(z^2+c),c=-25/52+33/64*I,n=7 4324128181117628 k006 concat of cont frac of 4324128189815866 r005 Im(z^2+c),c=-7/6+1/179*I,n=43 4324128193777909 m001 (Sarnak+ZetaQ(3))/(polylog(4,1/2)+Salem) 4324128194105347 r002 23th iterates of z^2 + 4324128198152393 r005 Im(z^2+c),c=17/66+24/61*I,n=26 4324128210311360 a007 Real Root Of -815*x^4+938*x^3-681*x^2-397*x+60 4324128211118131 k006 concat of cont frac of 4324128236833752 a007 Real Root Of -94*x^4+669*x^3+334*x^2+640*x-390 4324128237493400 m001 ln(Robbin)^2*FeigenbaumB^2/sqrt(1+sqrt(3))^2 4324128241418802 m004 -3+25*Sqrt[5]*Pi-8*Cosh[Sqrt[5]*Pi] 4324128249994726 a001 233/843*9349^(21/38) 4324128255252535 a001 377/521*9349^(17/38) 4324128258558669 m001 Psi(1,1/3)*ln(2)/ln(10)+GAMMA(17/24) 4324128260041994 m001 (2*Pi/GAMMA(5/6)+Conway)/(Salem+ThueMorse) 4324128264841468 m001 (3^(1/2)+arctan(1/2))/(-Cahen+Lehmer) 4324128266189634 r009 Im(z^3+c),c=-43/114+25/58*I,n=25 4324128272307395 r009 Re(z^3+c),c=-5/12+35/58*I,n=25 4324128273726061 a001 233/843*24476^(1/2) 4324128274463616 a001 377/521*24476^(17/42) 4324128276854308 a001 233/843*64079^(21/46) 4324128276996006 a001 377/521*64079^(17/46) 4324128277326351 a001 233/843*439204^(7/18) 4324128277335046 a001 233/843*7881196^(7/22) 4324128277335065 a001 233/843*20633239^(3/10) 4324128277335068 a001 233/843*17393796001^(3/14) 4324128277335068 a001 233/843*14662949395604^(1/6) 4324128277335068 a001 233/843*599074578^(1/4) 4324128277335069 a001 233/843*33385282^(7/24) 4324128277335505 a001 233/843*1860498^(7/20) 4324128277338279 a001 233/843*710647^(3/8) 4324128277385193 a001 377/521*45537549124^(1/6) 4324128277385199 a001 377/521*12752043^(1/4) 4324128277511051 a001 233/843*103682^(7/16) 4324128278450411 a001 377/521*39603^(17/44) 4324128278650926 a001 233/843*39603^(21/44) 4324128283514061 r005 Im(z^2+c),c=4/19+19/46*I,n=34 4324128285416419 a001 377/521*15127^(17/40) 4324128286737684 r002 23th iterates of z^2 + 4324128287255995 a001 233/843*15127^(21/40) 4324128292084941 m001 (FeigenbaumKappa-Lehmer)/(ZetaP(3)+ZetaQ(4)) 4324128312307666 r005 Im(z^2+c),c=-43/64+1/31*I,n=9 4324128313048090 m001 Bloch/GaussAGM(1,1/sqrt(2))/ln(GAMMA(1/4)) 4324128338548356 a001 377/521*5778^(17/36) 4324128352889564 a001 233/843*5778^(7/12) 4324128353919048 m005 (1/2*Catalan+3/5)/(4/7*exp(1)-4) 4324128365568781 r008 a(0)=4,K{-n^6,-34+17*n^3-57*n^2+63*n} 4324128370413736 r002 7th iterates of z^2 + 4324128374224491 r005 Re(z^2+c),c=-21/34+5/83*I,n=44 4324128376269190 r002 13th iterates of z^2 + 4324128382665225 m005 (exp(1)-5/6)/(1/2*exp(1)+3) 4324128427257971 m001 (Rabbit+Weierstrass)/(MertensB2+Niven) 4324128432499874 r002 44th iterates of z^2 + 4324128434801176 r005 Re(z^2+c),c=-73/118+3/53*I,n=53 4324128435455503 a007 Real Root Of -115*x^4-420*x^3+584*x^2+928*x-659 4324128439820316 s001 sum(exp(-Pi/2)^(n-1)*A237802[n],n=1..infinity) 4324128450465929 r009 Im(z^3+c),c=-8/27+13/28*I,n=19 4324128465179321 l006 ln(1318/2031) 4324128465776047 m001 (ln(gamma)-GAMMA(7/12))/(Bloch+ZetaQ(3)) 4324128481656724 m001 (HeathBrownMoroz-Lehmer)/(Zeta(3)-Zeta(1,-1)) 4324128482192272 r005 Re(z^2+c),c=-31/94+7/11*I,n=12 4324128516542276 r005 Re(z^2+c),c=-17/28+2/55*I,n=19 4324128522083513 a007 Real Root Of 157*x^4+513*x^3-819*x^2-559*x-516 4324128529122063 a007 Real Root Of -492*x^4+426*x^3+252*x^2+607*x+267 4324128532198161 a007 Real Root Of 409*x^4+513*x^3+91*x^2-950*x+338 4324128542749719 r009 Re(z^3+c),c=-9/110+34/49*I,n=44 4324128551708578 a007 Real Root Of -780*x^4+19*x^3+345*x^2+332*x-15 4324128554031988 m005 (1/2*2^(1/2)-5/11)/(8/11*2^(1/2)-4/9) 4324128558670093 a007 Real Root Of 519*x^4+704*x^3-708*x^2-996*x+488 4324128567495500 m001 (2^(1/2)-Porter)/(RenyiParking+Weierstrass) 4324128578572447 m001 (Zeta(1,-1)+Gompertz*Rabbit)/Gompertz 4324128589129482 m001 (-BesselI(0,2)+GAMMA(13/24))/(2^(1/3)+Ei(1,1)) 4324128594075014 h001 (-2*exp(3/2)+3)/(-4*exp(2/3)-6) 4324128597876423 m001 KhintchineHarmonic^2*ln(Artin)^2*Porter 4324128604544718 s001 sum(exp(-Pi)^n*A055764[n],n=1..infinity) 4324128604544718 s002 sum(A055764[n]/(exp(pi*n)),n=1..infinity) 4324128614679171 r002 7th iterates of z^2 + 4324128618385872 r005 Re(z^2+c),c=-2/3+19/104*I,n=34 4324128621171552 k006 concat of cont frac of 4324128632160210 a007 Real Root Of 211*x^4+781*x^3-338*x^2+825*x-736 4324128656685835 r005 Im(z^2+c),c=17/60+8/19*I,n=48 4324128660892966 a007 Real Root Of -138*x^4-382*x^3+856*x^2-438*x-538 4324128668369325 a007 Real Root Of -101*x^4-521*x^3-256*x^2+630*x+698 4324128676661004 r005 Im(z^2+c),c=13/114+25/47*I,n=32 4324128677857613 r005 Im(z^2+c),c=8/25+17/57*I,n=56 4324128679582724 p001 sum(1/(516*n+461)/n/(24^n),n=1..infinity) 4324128684756060 r005 Re(z^2+c),c=17/82+29/56*I,n=35 4324128685871940 m001 (sin(1)+GAMMA(3/4))/(Zeta(1,-1)+Cahen) 4324128688551675 m001 1/ln(GAMMA(1/24))/MertensB1^2*cos(Pi/12)^2 4324128701358827 r005 Re(z^2+c),c=11/106+7/30*I,n=6 4324128718350581 a001 2584/521*521^(9/26) 4324128749006050 a001 377/521*2207^(17/32) 4324128749032675 m001 (ln(2)+ZetaQ(4))/(Shi(1)-ln(gamma)) 4324128750647932 r002 33th iterates of z^2 + 4324128750647932 r002 33th iterates of z^2 + 4324128752486231 r005 Im(z^2+c),c=11/40+17/49*I,n=39 4324128765378969 r005 Re(z^2+c),c=-37/110+33/58*I,n=12 4324128768201665 r005 Re(z^2+c),c=15/98+31/51*I,n=31 4324128776335350 r002 63th iterates of z^2 + 4324128778165294 b008 -5+Cos[1/2]^3 4324128780914206 m001 Ei(1,1)^MertensB1/(Ei(1,1)^FibonacciFactorial) 4324128795970509 r002 35th iterates of z^2 + 4324128801940206 a007 Real Root Of -278*x^4+645*x^3-866*x^2+574*x+472 4324128826896215 m001 exp(1)/ln(3)*ZetaP(3) 4324128827248110 r005 Re(z^2+c),c=-21/34+6/77*I,n=49 4324128828699036 a001 329*843^(21/29) 4324128837266713 r005 Im(z^2+c),c=-25/44+40/63*I,n=31 4324128843828864 m001 1/exp(Kolakoski)/Si(Pi)*sqrt(Pi) 4324128853861565 r005 Re(z^2+c),c=-19/31+9/62*I,n=46 4324128859171827 a007 Real Root Of 62*x^4-463*x^3+374*x^2-619*x+233 4324128859925546 a001 233/843*2207^(21/32) 4324128881327895 h001 (4/7*exp(1)+5/8)/(7/12*exp(2)+8/11) 4324128881607228 r005 Re(z^2+c),c=-67/110+13/58*I,n=46 4324128887384340 m001 (3^(1/2)-BesselI(0,1))/(-Paris+Salem) 4324128890903973 a007 Real Root Of 246*x^4+854*x^3-735*x^2+798*x+236 4324128898007007 r005 Im(z^2+c),c=5/29+25/56*I,n=39 4324128899600359 a007 Real Root Of 874*x^4+18*x^3-698*x^2-725*x+412 4324128910940231 r002 45th iterates of z^2 + 4324128934502205 a007 Real Root Of 335*x^4-786*x^3+338*x^2-140*x-199 4324128945970892 m005 (5/4+2*5^(1/2))/(4*Pi+2/3) 4324128962340579 r002 14th iterates of z^2 + 4324128994973312 r002 17th iterates of z^2 + 4324129008233400 r005 Im(z^2+c),c=-31/44+23/62*I,n=11 4324129016725629 s002 sum(A051057[n]/(n^2*10^n-1),n=1..infinity) 4324129032677960 r005 Im(z^2+c),c=-61/52+2/35*I,n=25 4324129047112598 r005 Re(z^2+c),c=-43/98+21/32*I,n=6 4324129050166863 r005 Im(z^2+c),c=11/36+11/30*I,n=37 4324129058360407 s002 sum(A225013[n]/(exp(pi*n)-1),n=1..infinity) 4324129063407811 r009 Im(z^3+c),c=-5/16+11/24*I,n=34 4324129101803956 m001 (BesselJ(0,1)-exp(1))/(FeigenbaumC+Khinchin) 4324129113133066 r005 Re(z^2+c),c=-25/38+9/38*I,n=28 4324129114698137 m001 arctan(1/3)/(Kolakoski^GAMMA(17/24)) 4324129117521324 r002 13th iterates of z^2 + 4324129119720826 r002 51th iterates of z^2 + 4324129124472699 m005 (1/2*Catalan+1/7)/(1/7*5^(1/2)-1/3) 4324129126899254 m001 (Kolakoski-Lehmer)/(ln(3)+FeigenbaumMu) 4324129134122843 r009 Re(z^3+c),c=-7/18+5/63*I,n=19 4324129137857935 m001 (GaussAGM+ZetaP(4))/(sin(1)+BesselI(0,1)) 4324129141080727 m001 (Trott+Thue)/(Catalan-TravellingSalesman) 4324129143369726 r005 Re(z^2+c),c=-2/21+45/46*I,n=9 4324129148579157 a001 144/521*322^(7/8) 4324129163368888 r005 Im(z^2+c),c=-4/7+68/121*I,n=34 4324129167481029 r005 Re(z^2+c),c=-19/31+2/9*I,n=28 4324129167968256 r005 Im(z^2+c),c=19/60+23/40*I,n=32 4324129188178405 a007 Real Root Of 773*x^4-982*x^3+968*x^2-783*x-626 4324129233473595 m001 CareFree^GolombDickman*ZetaQ(2) 4324129238539632 r005 Im(z^2+c),c=-11/18+33/80*I,n=33 4324129260943373 a007 Real Root Of -909*x^4+852*x^3+415*x^2+40*x-132 4324129266320505 r002 19th iterates of z^2 + 4324129266696841 m001 exp(-Pi)^GAMMA(7/24)/exp(1/exp(1)) 4324129282448579 m001 Zeta(3)^2*ln(GAMMA(13/24))/sqrt(1+sqrt(3)) 4324129292553072 m001 Trott^2*Riemann2ndZero^2/ln(sqrt(2))^2 4324129296181131 r005 Re(z^2+c),c=39/86+15/49*I,n=3 4324129302892504 a007 Real Root Of -806*x^4+983*x^3-276*x^2+861*x-372 4324129305719643 a007 Real Root Of 625*x^4-625*x^3+484*x^2+453*x+33 4324129320559854 r002 32th iterates of z^2 + 4324129340100209 r005 Re(z^2+c),c=-17/18+21/193*I,n=18 4324129346174714 m001 1/exp(GAMMA(19/24))*Artin^2 4324129365808479 m001 ln(Robbin)/Si(Pi)^2*Ei(1)^2 4324129366656045 m001 (Paris+Riemann1stZero)/(5^(1/2)+GAMMA(11/12)) 4324129377544051 a001 123/1346269*2584^(27/55) 4324129378110263 m008 (3/4*Pi+1/6)/(1/6*Pi^3+2/3) 4324129388427528 l006 ln(5333/8218) 4324129396306268 a001 17711/521*199^(1/22) 4324129401143979 m001 1/cosh(1)*ln(GAMMA(1/12))*sqrt(1+sqrt(3))^2 4324129412774783 r002 26th iterates of z^2 + 4324129415108385 a001 29/2*46368^(6/59) 4324129415713727 v003 sum((n^3+2*n^2-5*n+7)*n!/n^n,n=1..infinity) 4324129416870330 a003 cos(Pi*15/73)/cos(Pi*41/93) 4324129442047660 a001 17711/1364*322^(5/24) 4324129452351831 a001 17/219602*11^(33/46) 4324129469511122 r005 Im(z^2+c),c=-43/106+13/24*I,n=3 4324129475997134 a007 Real Root Of 206*x^4-52*x^3-402*x^2-328*x+214 4324129495553303 r009 Im(z^3+c),c=-3/34+28/55*I,n=16 4324129502091524 m001 Artin/BesselI(1,2)*Tribonacci 4324129515592098 r005 Re(z^2+c),c=-43/66+11/34*I,n=50 4324129525202058 m001 (GAMMA(5/6)+Porter)/(Salem-Stephens) 4324129531846155 a007 Real Root Of -18*x^4-762*x^3+727*x^2+873*x-196 4324129542537761 r005 Re(z^2+c),c=-5/8+63/211*I,n=56 4324129557042368 a007 Real Root Of -262*x^4+983*x^3-180*x^2-114*x+73 4324129564080735 r002 32th iterates of z^2 + 4324129564397940 r005 Re(z^2+c),c=-8/13+3/50*I,n=30 4324129584259776 a007 Real Root Of 47*x^4+54*x^3-793*x^2-554*x+366 4324129605292935 m001 Pi*Psi(2,1/3)*(Ei(1)+BesselK(1,1)) 4324129611319158 r002 59th iterates of z^2 + 4324129612017878 m001 1/Zeta(3)^2*ln(ArtinRank2)*log(2+sqrt(3))^2 4324129623006495 m001 ln(sinh(1))*sin(1)/sqrt(Pi)^2 4324129628351225 m005 (1/3*5^(1/2)+1/4)/(10/11*3^(1/2)+8/11) 4324129634566818 r009 Im(z^3+c),c=-49/110+13/33*I,n=51 4324129636839080 r005 Im(z^2+c),c=17/60+22/49*I,n=39 4324129637385735 r005 Im(z^2+c),c=-29/54+1/13*I,n=26 4324129640699665 m001 cos(1/5*Pi)^StolarskyHarborth*TreeGrowth2nd 4324129642164386 a007 Real Root Of 270*x^4+986*x^3-640*x^2+661*x+149 4324129652850273 r005 Re(z^2+c),c=-5/8+11/151*I,n=16 4324129667962220 a007 Real Root Of 709*x^4-85*x^3-210*x^2-827*x-350 4324129691501267 l006 ln(4015/6187) 4324129694554554 m001 Artin^(Cahen*PisotVijayaraghavan) 4324129704141681 a001 3/199*76^(31/40) 4324129705568930 a001 17711/2207*322^(7/24) 4324129708594286 m001 (DuboisRaymond+FeigenbaumB)/(1+exp(1/Pi)) 4324129708784663 a007 Real Root Of -329*x^4+897*x^3-145*x^2+953*x-446 4324129713896987 a007 Real Root Of -142*x^4-736*x^3-560*x^2-253*x-485 4324129724398098 r005 Im(z^2+c),c=31/118+25/54*I,n=5 4324129759936556 a007 Real Root Of 46*x^4+2*x^3-692*x^2+542*x-638 4324129773283999 r005 Im(z^2+c),c=-83/62+1/34*I,n=36 4324129777819614 m001 (Kolakoski-MadelungNaCl)/(Pi+Zeta(1,2)) 4324129797840934 r002 22th iterates of z^2 + 4324129806570720 r005 Re(z^2+c),c=-103/78+2/43*I,n=26 4324129819258474 a007 Real Root Of -90*x^4-252*x^3+548*x^2-161*x+148 4324129821053293 r005 Im(z^2+c),c=-5/24+28/39*I,n=59 4324129823006052 a007 Real Root Of 206*x^4-757*x^3+141*x^2-640*x-28 4324129831357436 a001 2/121393*4807526976^(20/23) 4324129840218255 r005 Im(z^2+c),c=7/82+19/37*I,n=53 4324129841347845 m001 FeigenbaumD^exp(1/Pi)+TreeGrowth2nd 4324129849504202 h001 (-2*exp(5)+6)/(-3*exp(3)-7) 4324129852023478 r009 Im(z^3+c),c=-15/82+10/19*I,n=5 4324129856047198 r005 Im(z^2+c),c=-3/118+31/52*I,n=31 4324129860556733 r005 Im(z^2+c),c=29/102+21/62*I,n=44 4324129877722991 a007 Real Root Of 212*x^4+855*x^3-247*x^2-122*x-899 4324129881968300 a008 Real Root of (4+8*x+x^2+9*x^3) 4324129882587643 r005 Im(z^2+c),c=5/36+9/19*I,n=41 4324129886628217 a007 Real Root Of 766*x^4-252*x^3-768*x^2-711*x-211 4324129890052202 r002 29th iterates of z^2 + 4324129898984200 a007 Real Root Of 113*x^4+644*x^3+770*x^2+275*x-646 4324129903426080 r005 Im(z^2+c),c=-71/74+14/55*I,n=18 4324129920209479 r005 Re(z^2+c),c=-36/31+11/40*I,n=16 4324129926307897 s002 sum(A187698[n]/(n*exp(pi*n)+1),n=1..infinity) 4324129941118045 r002 39th iterates of z^2 + 4324129943387890 r005 Re(z^2+c),c=-59/94+7/25*I,n=47 4324129945111141 m002 -Pi^4+Pi^6/E^Pi+ProductLog[Pi]+Sinh[Pi] 4324129972591671 m001 (2^(1/2)-GAMMA(2/3))/(-ln(2+3^(1/2))+gamma(1)) 4324129973243343 m001 (FeigenbaumKappa-Niven)/(Zeta(1,-1)-Cahen) 4324129987818494 m001 GAMMA(5/6)*GAMMA(17/24)^2*exp(sin(1)) 4324129989412940 r009 Im(z^3+c),c=-31/102+6/13*I,n=19 4324130011103241 a007 Real Root Of -171*x^4+808*x^3-937*x^2+742*x-205 4324130022038487 m005 (1/3*3^(1/2)-2/9)/(1/8*Pi+3/7) 4324130023262758 p001 sum(1/(256*n+233)/(64^n),n=0..infinity) 4324130032443758 a007 Real Root Of -439*x^4+789*x^3-949*x^2+963*x+673 4324130038017391 m002 E^Pi+(Pi^8*Sech[Pi])/2 4324130042182079 a007 Real Root Of -448*x^4+592*x^3-477*x^2+780*x+490 4324130050156606 r009 Im(z^3+c),c=-39/74+14/55*I,n=24 4324130057855275 m009 (3/10*Pi^2-1/3)/(4/5*Psi(1,1/3)-2) 4324130063536050 a001 1/29*9349^(13/47) 4324130066401134 m005 (1/2*Pi-1/6)/(4*Catalan-5/12) 4324130069300400 m001 (2^(1/3)-BesselI(0,1))/(-GAMMA(7/12)+OneNinth) 4324130085708417 v002 sum(1/(3^n*(26*n^2-76*n+60)),n=1..infinity) 4324130094630401 m001 (Artin+Bloch)/(MinimumGamma-Riemann2ndZero) 4324130102927339 a007 Real Root Of 138*x^4+355*x^3-987*x^2+119*x-575 4324130122744519 a001 4181/521*521^(7/26) 4324130131049638 a007 Real Root Of -200*x^4+435*x^3-633*x^2+459*x+359 4324130155756978 a001 3/377*28657^(27/44) 4324130158170742 r005 Re(z^2+c),c=11/90+4/9*I,n=61 4324130177133406 r002 58th iterates of z^2 + 4324130192769429 r009 Re(z^3+c),c=-8/25+41/58*I,n=28 4324130193113439 m009 (1/6*Psi(1,1/3)+3/4)/(3*Psi(1,3/4)-2) 4324130202261899 m001 KhintchineLevy^2*GlaisherKinkelin^2/exp(Pi)^2 4324130204634248 m001 GAMMA(2/3)*exp(KhintchineLevy)/GAMMA(23/24) 4324130213871293 r002 28th iterates of z^2 + 4324130232575208 r005 Im(z^2+c),c=-123/106+1/18*I,n=40 4324130238425925 r002 57th iterates of z^2 + 4324130244037502 r005 Im(z^2+c),c=27/86+16/53*I,n=64 4324130245662432 a007 Real Root Of -233*x^4-896*x^3+704*x^2+955*x-17 4324130268251373 r002 32th iterates of z^2 + 4324130276447218 r005 Im(z^2+c),c=7/46+8/17*I,n=26 4324130284554115 r005 Re(z^2+c),c=-9/86+13/16*I,n=54 4324130288376915 a007 Real Root Of 48*x^4-279*x^3+231*x^2-657*x+28 4324130290793880 l006 ln(2697/4156) 4324130291550194 a008 Real Root of x^5-2*x^4-20*x^3+42*x^2+35*x-40 4324130311500267 r009 Im(z^3+c),c=-1/20+31/57*I,n=4 4324130314917178 m001 (exp(Pi)-LandauRamanujan)/polylog(4,1/2) 4324130328252805 m001 1/FeigenbaumKappa/Backhouse^2*exp((2^(1/3)))^2 4324130360049927 m001 (1+exp(1))/(-MertensB2+ZetaP(3)) 4324130394594839 r005 Re(z^2+c),c=-71/110+15/56*I,n=27 4324130403017122 r005 Re(z^2+c),c=-81/122+2/17*I,n=10 4324130413412475 a007 Real Root Of 575*x^4+776*x^3+475*x^2-772*x-380 4324130422563268 m008 (4*Pi^2+3/5)/(3*Pi^3-1/3) 4324130436816804 a007 Real Root Of -901*x^4-589*x^3-344*x^2+543*x+283 4324130437840144 a007 Real Root Of 51*x^4+6*x^3-724*x^2+830*x-219 4324130455963084 m001 Riemann1stZero^2/exp(Lehmer)^2*sin(1)^2 4324130464769591 m001 ArtinRank2^TreeGrowth2nd-BesselK(0,1) 4324130466104718 r002 55th iterates of z^2 + 4324130466158906 a001 2576/321*322^(7/24) 4324130487984317 a007 Real Root Of 776*x^4-662*x^3-234*x^2-960*x+42 4324130512728576 q001 1206/2789 4324130521339297 a007 Real Root Of 18*x^4+770*x^3-359*x^2+66*x-481 4324130536003708 r009 Im(z^3+c),c=-10/27+23/53*I,n=10 4324130568977797 a007 Real Root Of 448*x^4-945*x^3+521*x^2+15*x-183 4324130577127510 a001 121393/15127*322^(7/24) 4324130593317611 a001 105937/13201*322^(7/24) 4324130593842865 m001 1/FeigenbaumD^2/Sierpinski/exp((2^(1/3)))^2 4324130595679715 a001 416020/51841*322^(7/24) 4324130596024342 a001 726103/90481*322^(7/24) 4324130596074622 a001 5702887/710647*322^(7/24) 4324130596081958 a001 829464/103361*322^(7/24) 4324130596083028 a001 39088169/4870847*322^(7/24) 4324130596083184 a001 34111385/4250681*322^(7/24) 4324130596083207 a001 133957148/16692641*322^(7/24) 4324130596083210 a001 233802911/29134601*322^(7/24) 4324130596083211 a001 1836311903/228826127*322^(7/24) 4324130596083211 a001 267084832/33281921*322^(7/24) 4324130596083211 a001 12586269025/1568397607*322^(7/24) 4324130596083211 a001 10983760033/1368706081*322^(7/24) 4324130596083211 a001 43133785636/5374978561*322^(7/24) 4324130596083211 a001 75283811239/9381251041*322^(7/24) 4324130596083211 a001 591286729879/73681302247*322^(7/24) 4324130596083211 a001 86000486440/10716675201*322^(7/24) 4324130596083211 a001 4052739537881/505019158607*322^(7/24) 4324130596083211 a001 3278735159921/408569081798*322^(7/24) 4324130596083211 a001 2504730781961/312119004989*322^(7/24) 4324130596083211 a001 956722026041/119218851371*322^(7/24) 4324130596083211 a001 182717648081/22768774562*322^(7/24) 4324130596083211 a001 139583862445/17393796001*322^(7/24) 4324130596083211 a001 53316291173/6643838879*322^(7/24) 4324130596083211 a001 10182505537/1268860318*322^(7/24) 4324130596083211 a001 7778742049/969323029*322^(7/24) 4324130596083211 a001 2971215073/370248451*322^(7/24) 4324130596083211 a001 567451585/70711162*322^(7/24) 4324130596083212 a001 433494437/54018521*322^(7/24) 4324130596083221 a001 165580141/20633239*322^(7/24) 4324130596083281 a001 31622993/3940598*322^(7/24) 4324130596083690 a001 24157817/3010349*322^(7/24) 4324130596086492 a001 9227465/1149851*322^(7/24) 4324130596105697 a001 1762289/219602*322^(7/24) 4324130596237333 a001 1346269/167761*322^(7/24) 4324130597139576 a001 514229/64079*322^(7/24) 4324130603323645 a001 98209/12238*322^(7/24) 4324130615497794 r009 Im(z^3+c),c=-19/60+17/39*I,n=5 4324130617953804 r009 Re(z^3+c),c=-11/50+35/46*I,n=5 4324130630147589 m005 (1/2*2^(1/2)-2)/(7/10*2^(1/2)+2) 4324130631109930 r002 14th iterates of z^2 + 4324130643308807 r005 Im(z^2+c),c=-61/110+10/21*I,n=35 4324130645709882 a001 75025/9349*322^(7/24) 4324130650442563 a007 Real Root Of 664*x^4+550*x^3+185*x^2-656*x-297 4324130663208023 a007 Real Root Of -36*x^4+598*x^3-738*x^2+707*x+32 4324130697476406 a005 (1/cos(7/201*Pi))^1396 4324130700652414 r005 Im(z^2+c),c=13/74+19/46*I,n=14 4324130719845427 r005 Im(z^2+c),c=-69/118+5/63*I,n=39 4324130731159545 a003 -1-2*cos(1/5*Pi)-cos(5/21*Pi)-cos(2/27*Pi) 4324130738454383 r002 61th iterates of z^2 + 4324130744137748 m001 (Paris+Riemann1stZero)/(Zeta(1/2)-FeigenbaumC) 4324130746001619 a007 Real Root Of 931*x^4-402*x^3-412*x^2-858*x+448 4324130750704706 r005 Re(z^2+c),c=-69/110+4/49*I,n=19 4324130759142689 a007 Real Root Of -398*x^4-32*x^3-770*x^2+293*x+282 4324130759834919 m001 Ei(1,1)^gamma/(Zeta(1,2)^gamma) 4324130770235710 r002 48th iterates of z^2 + 4324130779880982 r009 Re(z^3+c),c=-12/25+1/34*I,n=7 4324130785646353 a007 Real Root Of -85*x^4+944*x^3+712*x^2-126*x-152 4324130792555919 m001 1/Zeta(5)*ln(ArtinRank2)^2*sin(Pi/5)^2 4324130800992245 r005 Re(z^2+c),c=-29/52+2/11*I,n=8 4324130805229617 v002 sum(1/(2^n+(21*n^2-n+25)),n=1..infinity) 4324130816105847 m001 GAMMA(19/24)^2*ln(Khintchine)^2*LambertW(1)^2 4324130819210795 m001 (-sqrt(1+sqrt(3))+1/3)/(exp(1)+1/3) 4324130829338263 a007 Real Root Of 505*x^4-896*x^3-499*x^2-571*x+395 4324130861908699 r005 Re(z^2+c),c=-43/70+5/36*I,n=51 4324130875740836 r009 Im(z^3+c),c=-5/12+23/56*I,n=48 4324130881117653 l006 ln(4076/6281) 4324130889094142 r005 Im(z^2+c),c=-5/8+101/227*I,n=60 4324130903012472 a001 1568397607/610*2^(3/4) 4324130905769262 r005 Re(z^2+c),c=-43/70+7/53*I,n=62 4324130934831637 r005 Re(z^2+c),c=-43/70+7/51*I,n=49 4324130936229495 a001 28657/3571*322^(7/24) 4324130941889257 r002 35th iterates of z^2 + 4324130943198788 a003 cos(Pi*16/113)-sin(Pi*12/77) 4324130963629570 r005 Im(z^2+c),c=-25/26+24/71*I,n=3 4324130963974016 m001 Pi/ln(2)*ln(10)+Psi(2,1/3)+exp(1/exp(1)) 4324130968656559 r009 Re(z^3+c),c=-1/46+35/43*I,n=55 4324130982305104 a007 Real Root Of 220*x^4+825*x^3-458*x^2+320*x-265 4324130984802479 r002 58th iterates of z^2 + 4324130997259902 r005 Im(z^2+c),c=25/114+23/57*I,n=60 4324130999329448 r009 Im(z^3+c),c=-11/28+25/59*I,n=25 4324131010812990 a007 Real Root Of -159*x^4-720*x^3+66*x^2+780*x-486 4324131011009216 r005 Re(z^2+c),c=-3/5+27/64*I,n=3 4324131011065677 m001 1/Zeta(7)*exp(Zeta(1/2))^2*cos(Pi/5) 4324131021286380 s002 sum(A126561[n]/(n*exp(n)-1),n=1..infinity) 4324131025294841 m001 (sin(1)*GAMMA(1/4)+sin(Pi/5))/sin(1) 4324131044233998 r005 Re(z^2+c),c=17/90+20/57*I,n=40 4324131053115113 k007 concat of cont frac of 4324131056314962 r005 Re(z^2+c),c=3/16+22/63*I,n=46 4324131056910568 a007 Real Root Of -170*x^4-668*x^3+348*x^2+125*x-541 4324131057699867 r005 Re(z^2+c),c=-5/8+10/127*I,n=19 4324131058952316 r002 4th iterates of z^2 + 4324131059682580 r005 Im(z^2+c),c=-51/94+14/31*I,n=15 4324131073863391 r005 Re(z^2+c),c=-27/44+5/33*I,n=49 4324131079808440 a007 Real Root Of 170*x^4-555*x^3-701*x^2-699*x-222 4324131096493573 a001 21*29^(53/59) 4324131112419915 k007 concat of cont frac of 4324131112617240 k006 concat of cont frac of 4324131113964517 r005 Re(z^2+c),c=-23/38+13/60*I,n=56 4324131114243690 m005 (1/2*Catalan-1/7)/(1/10*3^(1/2)+5/9) 4324131122151285 k007 concat of cont frac of 4324131131024121 k006 concat of cont frac of 4324131131339891 k006 concat of cont frac of 4324131131412181 k007 concat of cont frac of 4324131134428015 r009 Im(z^3+c),c=-1/27+24/31*I,n=10 4324131135114112 k007 concat of cont frac of 4324131141223211 k007 concat of cont frac of 4324131145333116 k006 concat of cont frac of 4324131149724910 m001 Rabbit^2*ln(FibonacciFactorial)/cosh(1)^2 4324131163111313 k007 concat of cont frac of 4324131163411242 k007 concat of cont frac of 4324131163925786 r009 Im(z^3+c),c=-43/110+14/33*I,n=36 4324131165619456 r005 Re(z^2+c),c=-35/48+10/57*I,n=8 4324131172978908 l006 ln(5455/8406) 4324131184184308 r005 Re(z^2+c),c=-14/19+21/43*I,n=2 4324131184516574 r004 Im(z^2+c),c=1/6+9/20*I,z(0)=I,n=54 4324131185111211 k008 concat of cont frac of 4324131189978744 r002 14th iterates of z^2 + 4324131211813233 k006 concat of cont frac of 4324131211818144 k009 concat of cont frac of 4324131212291473 k007 concat of cont frac of 4324131216021142 r005 Im(z^2+c),c=9/122+27/52*I,n=13 4324131219457121 k007 concat of cont frac of 4324131221311326 k007 concat of cont frac of 4324131222315321 k008 concat of cont frac of 4324131222595258 r005 Im(z^2+c),c=7/40+15/32*I,n=20 4324131228217394 r005 Im(z^2+c),c=5/28+26/59*I,n=40 4324131236318998 r005 Im(z^2+c),c=-2/3+13/148*I,n=53 4324131254711251 k008 concat of cont frac of 4324131258108711 r002 13th iterates of z^2 + 4324131269062633 r009 Re(z^3+c),c=-53/102+25/58*I,n=31 4324131270695591 h001 (3/8*exp(1)+2/11)/(4/11*exp(2)+1/11) 4324131279773737 a001 6765/521*521^(5/26) 4324131280070189 m009 (1/5*Psi(1,2/3)+4)/(4*Psi(1,3/4)+1/2) 4324131290599573 r005 Re(z^2+c),c=-57/94+7/31*I,n=39 4324131295157813 r009 Im(z^3+c),c=-31/114+37/55*I,n=17 4324131314284212 k007 concat of cont frac of 4324131317111174 k007 concat of cont frac of 4324131321348358 a001 1/416020*3^(31/58) 4324131324812113 k006 concat of cont frac of 4324131326627220 r005 Im(z^2+c),c=21/62+13/48*I,n=64 4324131331113441 k006 concat of cont frac of 4324131332702385 a001 2584/843*322^(11/24) 4324131353341007 a007 Real Root Of 110*x^4+347*x^3-453*x^2+558*x+481 4324131359409327 r005 Im(z^2+c),c=1/23+19/34*I,n=40 4324131360074542 m001 (cos(1/12*Pi)-Kac)/(StronglyCareFree+Trott) 4324131368464593 a007 Real Root Of -890*x^4+884*x^3+237*x^2+924*x-4 4324131373185203 r005 Re(z^2+c),c=-13/21+1/31*I,n=60 4324131375652292 g001 GAMMA(5/8,55/78) 4324131413701563 m005 (1/3*gamma-1/5)/(4/5*2^(1/2)+5/8) 4324131418054969 m006 (2*Pi+2/3)/(3*exp(2*Pi)+3/4) 4324131421203419 k007 concat of cont frac of 4324131425212121 k006 concat of cont frac of 4324131461777585 a001 2/21*1597^(8/39) 4324131471264021 m005 (1/2*Pi+1/11)/(1/9*2^(1/2)-4) 4324131472331350 m001 (Psi(1,1/3)+ln(2))/(-Zeta(1/2)+MertensB2) 4324131483864351 r005 Re(z^2+c),c=-13/22+17/82*I,n=25 4324131491853517 r009 Im(z^3+c),c=-3/26+41/51*I,n=52 4324131496352083 a007 Real Root Of 961*x^4+460*x^3+462*x^2-389*x-251 4324131513221112 k006 concat of cont frac of 4324131526812280 h003 exp(Pi*(1/2*(4*2^(1/4)+8)*2^(3/4))) 4324131531211134 k009 concat of cont frac of 4324131537536403 a001 233/2207*1364^(5/6) 4324131552089071 a007 Real Root Of -84*x^4+520*x^3-189*x^2-232*x-20 4324131559855597 r002 62th iterates of z^2 + 4324131566692817 r005 Re(z^2+c),c=-11/18+18/113*I,n=48 4324131574109422 r005 Re(z^2+c),c=-75/122+3/23*I,n=55 4324131577948272 p004 log(31687/20563) 4324131589400277 a007 Real Root Of 439*x^4-910*x^3+96*x^2-516*x-330 4324131596301340 a001 21/439204*76^(30/59) 4324131596778757 b008 Csch[1/Sqrt[7*E]] 4324131611068428 a001 21/1364*3^(47/50) 4324131618536472 a007 Real Root Of -403*x^4-342*x^3+409*x^2+865*x+284 4324131621621251 k006 concat of cont frac of 4324131652265498 m001 (Niven+ZetaP(3))/(Ei(1)+Zeta(1/2)) 4324131657275264 r002 40th iterates of z^2 + 4324131665254229 r002 29th iterates of z^2 + 4324131672404197 r009 Im(z^3+c),c=-25/52+10/27*I,n=54 4324131693594175 a007 Real Root Of -104*x^4-314*x^3+470*x^2-677*x-743 4324131696469428 m002 E^Pi/(2*Pi^5)+Pi+Log[Pi] 4324131711342131 k007 concat of cont frac of 4324131725159917 q001 1/2312603 4324131732002829 m001 cos(1/5*Pi)/(ln(5)+MertensB1) 4324131741129727 r005 Re(z^2+c),c=-35/62+5/53*I,n=7 4324131757136207 m005 (1/2*exp(1)-4/5)/(3/8*5^(1/2)+5/11) 4324131766061027 r002 23th iterates of z^2 + 4324131783607666 r005 Re(z^2+c),c=-17/29+14/45*I,n=47 4324131788039452 m001 (Pi*exp(Pi)-GAMMA(3/4))/(1+3^(1/2))^(1/2) 4324131798926997 r005 Re(z^2+c),c=-53/54+9/59*I,n=36 4324131804187561 a001 22768774562/305*102334155^(2/21) 4324131804187561 a001 17393796001/610*2504730781961^(2/21) 4324131808899279 a001 119218851371/610*4181^(2/21) 4324131816162109 r005 Re(z^2+c),c=-17/50+19/32*I,n=3 4324131817870832 m005 (1/2*Pi-9/10)/(5/8*Zeta(3)+4/5) 4324131828407976 a007 Real Root Of 100*x^4+364*x^3-208*x^2+448*x+295 4324131836659576 a001 75025/2207*123^(1/20) 4324131843861945 r009 Im(z^3+c),c=-45/86+10/41*I,n=19 4324131855184125 r005 Im(z^2+c),c=4/29+17/31*I,n=43 4324131860682843 r005 Re(z^2+c),c=-55/102+1/10*I,n=5 4324131873814844 r002 44th iterates of z^2 + 4324131883145433 r002 13th iterates of z^2 + 4324131888678974 a007 Real Root Of -390*x^4-399*x^3+898*x^2+703*x-426 4324131891317198 m001 ln(Porter)*GolombDickman^2/sin(Pi/5)^2 4324131895581754 r009 Re(z^3+c),c=-59/90+17/35*I,n=4 4324131911174851 k006 concat of cont frac of 4324131912284130 r002 30th iterates of z^2 + 4324131925260551 a007 Real Root Of 208*x^4-716*x^3+396*x^2-950*x-550 4324131932167644 r005 Re(z^2+c),c=-2/25+28/31*I,n=9 4324131943075058 m001 (Chi(1)*ZetaR(2)+polylog(4,1/2))/ZetaR(2) 4324131943902650 a001 119218851371/21*433494437^(13/23) 4324131944111032 m001 Riemann1stZero/ln(CareFree)/cos(Pi/12)^2 4324131944398955 r002 9th iterates of z^2 + 4324131948799643 r005 Re(z^2+c),c=-97/70+9/64*I,n=7 4324131962267237 a001 29/13*144^(34/57) 4324131971712856 a001 377/521*843^(17/28) 4324131975747664 m001 (FeigenbaumC-MertensB2)/(ln(Pi)+ArtinRank2) 4324131983964372 m005 (1/3*5^(1/2)-1/8)/(4/5*Zeta(3)-9/11) 4324131985881166 a001 233/5778*1364^(29/30) 4324131986310619 k009 concat of cont frac of 4324132001816058 p001 sum((-1)^n/(273*n+227)/(24^n),n=0..infinity) 4324132010633945 b008 Pi*(-1/6+Cosh[1]) 4324132020178232 a007 Real Root Of 212*x^4+681*x^3-910*x^2+244*x-988 4324132035652153 l006 ln(1379/2125) 4324132039077526 m001 BesselJ(0,1)/(Si(Pi)^Psi(2,1/3)) 4324132057634118 r002 29th iterates of z^2 + 4324132076451377 a007 Real Root Of -147*x^4-464*x^3+777*x^2+50*x-434 4324132088977345 r009 Im(z^3+c),c=-5/16+11/24*I,n=36 4324132099916209 r009 Im(z^3+c),c=-23/44+4/27*I,n=54 4324132106174610 m001 PrimesInBinary/exp(Magata)^2*GAMMA(7/24)^2 4324132111137211 k006 concat of cont frac of 4324132111332414 k007 concat of cont frac of 4324132112415211 k008 concat of cont frac of 4324132114122117 k007 concat of cont frac of 4324132115220936 m002 -2-2*E^Pi+Pi^6/2 4324132122531113 k006 concat of cont frac of 4324132132133211 k009 concat of cont frac of 4324132146748644 r002 60th iterates of z^2 + 4324132163279868 m001 (ln(5)-Ei(1,1))/(MadelungNaCl+Porter) 4324132175004226 r005 Re(z^2+c),c=-21/34+6/109*I,n=42 4324132180849626 p003 LerchPhi(1/16,1,530/219) 4324132188442446 r002 12th iterates of z^2 + 4324132203325817 m008 (4/5*Pi^4+5)/(1/5*Pi^6-1/2) 4324132206069790 a007 Real Root Of 76*x^4-976*x^3+5*x^2-947*x-492 4324132208528963 r009 Re(z^3+c),c=-31/58+17/52*I,n=19 4324132211311314 k007 concat of cont frac of 4324132218186767 m001 GAMMA(5/24)/(Lehmer-ln(5)) 4324132218186767 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)/(Lehmer-ln(5)) 4324132221011383 k008 concat of cont frac of 4324132232221977 m001 (Zeta(1,-1)-gamma(1))/(Pi-1) 4324132250444254 m001 GolombDickman-KhinchinLevy^FellerTornier 4324132256971624 a007 Real Root Of -648*x^4-27*x^3+512*x^2+213*x-163 4324132276948637 m001 1/OneNinth^2*ln(Sierpinski)/Ei(1) 4324132282722888 m001 Totient/(ReciprocalFibonacci-MertensB1) 4324132287871363 s002 sum(A161534[n]/((exp(n)+1)/n),n=1..infinity) 4324132290808722 r005 Re(z^2+c),c=-7/12+30/79*I,n=60 4324132297585724 r002 42th iterates of z^2 + 4324132299243267 r009 Im(z^3+c),c=-45/106+13/32*I,n=40 4324132299407474 m006 (1/Pi-1/4)/(2/3*Pi^2-5) 4324132305883896 r005 Re(z^2+c),c=-119/90+1/26*I,n=46 4324132310101121 k007 concat of cont frac of 4324132311947503 a007 Real Root Of -236*x^4-982*x^3+122*x^2-41*x+654 4324132342693051 m001 (Zeta(5)-ln(gamma))/(AlladiGrinstead-Salem) 4324132366676589 p003 LerchPhi(1/1024,2,33/217) 4324132377247444 r002 59th iterates of z^2 + 4324132387035081 r009 Im(z^3+c),c=-3/11+17/33*I,n=5 4324132411347231 k006 concat of cont frac of 4324132412171312 k006 concat of cont frac of 4324132416379819 r002 10th iterates of z^2 + 4324132417319455 l006 ln(611/638) 4324132424240309 a007 Real Root Of 132*x^4+306*x^3-989*x^2+837*x+703 4324132429577479 m001 Niven^Zeta(5)+Sierpinski 4324132433618737 m001 LambertW(1)-LandauRamanujan^ZetaQ(4) 4324132434317705 m001 1/Zeta(1,2)^2/exp(GAMMA(5/6))*sinh(1) 4324132453790799 r002 49th iterates of z^2 + 4324132460179541 a007 Real Root Of -10*x^4+630*x^3-134*x^2+952*x+488 4324132467267106 a001 987/521*1364^(13/30) 4324132472629337 m005 (1/2*Catalan-2/7)/(8/11*gamma-9/11) 4324132487988602 p004 log(32063/20807) 4324132500806589 m001 OneNinth^AlladiGrinstead-exp(-1/2*Pi) 4324132508380507 m001 (BesselI(1,2)*Kolakoski-Stephens)/BesselI(1,2) 4324132510247527 m001 1/gamma/Khintchine^2*exp(sin(Pi/5)) 4324132514327289 m003 -53/12+Sqrt[5]/16+Cos[1/2+Sqrt[5]/2] 4324132514836924 m001 (2*Pi/GAMMA(5/6)-Trott2nd)/(sin(1/5*Pi)+ln(2)) 4324132515409767 m005 (1/3*Zeta(3)-3/4)/(5/11*gamma+6/11) 4324132527250870 m002 -(Pi*Log[Pi])+ProductLog[Pi]/4-Tanh[Pi] 4324132531288378 a001 10946/521*521^(3/26) 4324132531305897 m001 Psi(2,1/3)+BesselI(1,1)*Riemann2ndZero 4324132562288517 a007 Real Root Of -211*x^4-981*x^3-457*x^2-558*x+585 4324132562731402 b008 8/5+17*Sqrt[6] 4324132564030805 r009 Im(z^3+c),c=-41/86+29/62*I,n=12 4324132564872908 m001 1/ln(BesselJ(1,1))*ErdosBorwein/GAMMA(5/12)^2 4324132565950507 r009 Re(z^3+c),c=-17/48+1/50*I,n=11 4324132569713163 r005 Im(z^2+c),c=-51/74+19/55*I,n=39 4324132582456140 r005 Re(z^2+c),c=-57/94+4/19*I,n=56 4324132591665668 r005 Re(z^2+c),c=-13/21+3/34*I,n=15 4324132594763906 a001 98209/2889*123^(1/20) 4324132595905346 r005 Im(z^2+c),c=-37/78+15/26*I,n=64 4324132600012261 r001 25i'th iterates of 2*x^2-1 of 4324132601380572 a001 47/28657*987^(28/59) 4324132602414150 m001 sin(1)^2/GAMMA(7/24)/ln(sin(Pi/5)) 4324132605495457 m005 (-9/20+1/4*5^(1/2))/(4/7*2^(1/2)-5/6) 4324132609441964 a001 233/3571*1364^(9/10) 4324132622725731 r002 48th iterates of z^2 + 4324132625623099 r009 Im(z^3+c),c=-5/16+11/24*I,n=39 4324132629877522 r005 Re(z^2+c),c=-1/28+22/23*I,n=5 4324132631443464 r009 Im(z^3+c),c=-5/16+11/24*I,n=37 4324132631779112 p001 sum((-1)^n/(569*n+231)/(256^n),n=0..infinity) 4324132654968759 m005 (1/2*Zeta(3)+4/11)/(2/5*gamma+2) 4324132656254979 b008 Log[151/2] 4324132656254979 l006 ln(2/151) 4324132656254979 p004 log(151/2) 4324132666637340 a007 Real Root Of -103*x^4+820*x^3+272*x^2+770*x+352 4324132669646908 r005 Im(z^2+c),c=-17/50+4/61*I,n=9 4324132673321878 r005 Im(z^2+c),c=1/62+26/43*I,n=55 4324132675188927 r005 Im(z^2+c),c=-11/17+23/57*I,n=8 4324132679959209 r002 30th iterates of z^2 + 4324132686663460 a001 11/514229*317811^(27/28) 4324132688576497 m008 (2/5*Pi^2+1/3)/(1/3*Pi^5-3) 4324132695300601 a007 Real Root Of -110*x^4-534*x^3-93*x^2+853*x+710 4324132705369859 a001 514229/15127*123^(1/20) 4324132721507051 a001 1346269/39603*123^(1/20) 4324132723861435 a001 1762289/51841*123^(1/20) 4324132724204935 a001 9227465/271443*123^(1/20) 4324132724255051 a001 24157817/710647*123^(1/20) 4324132724262363 a001 31622993/930249*123^(1/20) 4324132724263430 a001 165580141/4870847*123^(1/20) 4324132724263586 a001 433494437/12752043*123^(1/20) 4324132724263608 a001 567451585/16692641*123^(1/20) 4324132724263612 a001 2971215073/87403803*123^(1/20) 4324132724263612 a001 7778742049/228826127*123^(1/20) 4324132724263612 a001 10182505537/299537289*123^(1/20) 4324132724263612 a001 53316291173/1568397607*123^(1/20) 4324132724263612 a001 139583862445/4106118243*123^(1/20) 4324132724263612 a001 182717648081/5374978561*123^(1/20) 4324132724263612 a001 956722026041/28143753123*123^(1/20) 4324132724263612 a001 2504730781961/73681302247*123^(1/20) 4324132724263612 a001 3278735159921/96450076809*123^(1/20) 4324132724263612 a001 10610209857723/312119004989*123^(1/20) 4324132724263612 a001 4052739537881/119218851371*123^(1/20) 4324132724263612 a001 387002188980/11384387281*123^(1/20) 4324132724263612 a001 591286729879/17393796001*123^(1/20) 4324132724263612 a001 225851433717/6643838879*123^(1/20) 4324132724263612 a001 1135099622/33391061*123^(1/20) 4324132724263612 a001 32951280099/969323029*123^(1/20) 4324132724263612 a001 12586269025/370248451*123^(1/20) 4324132724263612 a001 1201881744/35355581*123^(1/20) 4324132724263614 a001 1836311903/54018521*123^(1/20) 4324132724263622 a001 701408733/20633239*123^(1/20) 4324132724263682 a001 66978574/1970299*123^(1/20) 4324132724264089 a001 102334155/3010349*123^(1/20) 4324132724266882 a001 39088169/1149851*123^(1/20) 4324132724286025 a001 196452/5779*123^(1/20) 4324132724417230 a001 5702887/167761*123^(1/20) 4324132725316525 a001 2178309/64079*123^(1/20) 4324132729672943 a007 Real Root Of -987*x^4-482*x^3+463*x^2+939*x+315 4324132731480384 a001 208010/6119*123^(1/20) 4324132732741866 a007 Real Root Of 862*x^4+655*x^3-928*x^2-894*x+477 4324132742836225 s002 sum(A101470[n]/(n^2*exp(n)+1),n=1..infinity) 4324132771454864 r002 49th iterates of z^2 + 4324132773728101 a001 317811/9349*123^(1/20) 4324132773946873 r005 Re(z^2+c),c=-21/34+8/105*I,n=57 4324132776389466 m005 (2/5*Catalan+3)/(5/6*2^(1/2)-2/5) 4324132784836502 r009 Im(z^3+c),c=-1/58+27/53*I,n=7 4324132795000079 s002 sum(A247314[n]/(n^2*exp(n)-1),n=1..infinity) 4324132805329080 m001 1/ln(Magata)^2*CareFree/Trott 4324132807474663 m002 6+Pi^(-5)+Pi^2-Sinh[Pi] 4324132831421163 a001 9/5473*6765^(25/28) 4324132840916758 a001 233/843*843^(3/4) 4324132858863911 m001 (Si(Pi)*Cahen+BesselI(1,2))/Cahen 4324132875180989 m001 (1+arctan(1/2))/(-gamma(3)+PolyaRandomWalk3D) 4324132879453867 l006 ln(5577/8594) 4324132887279432 r005 Im(z^2+c),c=-4/3+8/247*I,n=30 4324132887432851 r005 Im(z^2+c),c=27/118+15/38*I,n=56 4324132888098410 a001 4106118243/1597*2^(3/4) 4324132899015078 a007 Real Root Of -838*x^4+96*x^3-519*x^2-250*x+26 4324132909380039 r005 Re(z^2+c),c=-43/70+3/23*I,n=52 4324132911124111 k006 concat of cont frac of 4324132923077886 r002 27th iterates of z^2 + 4324132924716237 r005 Re(z^2+c),c=-73/118+1/26*I,n=44 4324132927481597 a001 5473/682*322^(7/24) 4324132932077653 r005 Im(z^2+c),c=19/56+8/35*I,n=33 4324132935051483 p004 log(32251/20929) 4324132958246425 s002 sum(A135193[n]/((exp(n)+1)/n),n=1..infinity) 4324132966941964 m001 (ln(3)+Ei(1,1))/(OneNinth-ThueMorse) 4324132969088787 r009 Im(z^3+c),c=-43/126+21/47*I,n=22 4324132975168727 a007 Real Root Of -23*x^4-976*x^3+782*x^2-855*x+709 4324132980848847 r002 64th iterates of z^2 + 4324132998322797 m001 (ZetaP(3)-ZetaQ(4))/(Gompertz+Magata) 4324133022449835 m005 (11/10+3/2*5^(1/2))/(-1/12+1/12*5^(1/2)) 4324133025095663 a007 Real Root Of 255*x^4+973*x^3-384*x^2+632*x-570 4324133026168918 r009 Re(z^3+c),c=-35/78+1/40*I,n=10 4324133039630732 r005 Im(z^2+c),c=10/27+5/33*I,n=31 4324133044210842 r005 Re(z^2+c),c=-29/31+5/36*I,n=32 4324133046770179 r005 Re(z^2+c),c=-67/118+13/41*I,n=26 4324133050247699 q001 611/1413 4324133050478335 r005 Re(z^2+c),c=-2/3+41/199*I,n=19 4324133055352689 r009 Im(z^3+c),c=-5/16+11/24*I,n=42 4324133063298282 a001 121393/3571*123^(1/20) 4324133064489039 r008 a(0)=0,K{-n^6,9+31*n^3-63*n^2+5*n} 4324133073444886 m001 exp(1/Pi)*PisotVijayaraghavan+FeigenbaumAlpha 4324133101536433 m001 (Backhouse+Bloch)/(Pi+ln(2+3^(1/2))) 4324133111491112 k006 concat of cont frac of 4324133126119021 r009 Im(z^3+c),c=-55/106+10/33*I,n=11 4324133128611131 k007 concat of cont frac of 4324133147775082 m001 GAMMA(5/6)*CareFree^2/exp(sin(Pi/12)) 4324133154093212 m004 -5+30/Pi-Sin[Sqrt[5]*Pi]/3 4324133155224321 r009 Re(z^3+c),c=-49/122+12/17*I,n=32 4324133156634071 l006 ln(4198/6469) 4324133163417137 r009 Im(z^3+c),c=-27/122+18/37*I,n=28 4324133169410044 r005 Re(z^2+c),c=-39/86+7/12*I,n=6 4324133172119114 k009 concat of cont frac of 4324133177718697 a001 10749957122/4181*2^(3/4) 4324133183961029 s001 sum(exp(-2*Pi)^n*A139940[n],n=1..infinity) 4324133191003080 a001 10946/2207*322^(3/8) 4324133196224098 a001 2161/3*2178309^(7/57) 4324133200027954 r002 4th iterates of z^2 + 4324133202228667 r005 Re(z^2+c),c=-89/122+16/53*I,n=4 4324133206601230 m001 (-Bloch+MertensB2)/(Chi(1)+arctan(1/2)) 4324133210053939 a007 Real Root Of 207*x^4+903*x^3+10*x^2-96*x+37 4324133212781587 r009 Im(z^3+c),c=-5/16+11/24*I,n=33 4324133214897699 r002 56th iterates of z^2 + 4324133217615609 k007 concat of cont frac of 4324133219973731 a001 28143753123/10946*2^(3/4) 4324133225020332 a001 233/2207*3571^(25/34) 4324133226138658 a001 73681302247/28657*2^(3/4) 4324133227038108 a001 192900153618/75025*2^(3/4) 4324133227169336 a001 505019158607/196418*2^(3/4) 4324133227188482 a001 1322157322203/514229*2^(3/4) 4324133227191276 a001 3461452808002/1346269*2^(3/4) 4324133227191683 a001 9062201101803/3524578*2^(3/4) 4324133227191743 a001 23725150497407/9227465*2^(3/4) 4324133227191779 a001 14662949395604/5702887*2^(3/4) 4324133227191935 a001 5600748293801/2178309*2^(3/4) 4324133227193002 a001 2139295485799/832040*2^(3/4) 4324133227195023 a001 514229/2*2^(3/4) 4324133227200315 a001 817138163596/317811*2^(3/4) 4324133227250440 a001 312119004989/121393*2^(3/4) 4324133227593999 a001 119218851371/46368*2^(3/4) 4324133228752095 r005 Re(z^2+c),c=-9/14+58/255*I,n=28 4324133229948792 a001 45537549124/17711*2^(3/4) 4324133233491641 r005 Re(z^2+c),c=-7/10+6/83*I,n=16 4324133241366079 r005 Im(z^2+c),c=23/86+19/55*I,n=22 4324133245768626 r009 Im(z^3+c),c=-7/114+26/33*I,n=12 4324133246088779 a001 17393796001/6765*2^(3/4) 4324133247137231 r009 Im(z^3+c),c=-5/16+11/24*I,n=45 4324133249437236 m004 -36/5+5*ProductLog[Sqrt[5]*Pi] 4324133257960481 r005 Re(z^2+c),c=-13/20+2/41*I,n=18 4324133267550420 m001 FeigenbaumB^Bloch+Magata 4324133283777327 a008 Real Root of x^3-x^2-85*x-268 4324133287264933 a001 9349/233*89^(1/60) 4324133312241232 k007 concat of cont frac of 4324133312557335 r009 Im(z^3+c),c=-5/16+11/24*I,n=48 4324133316431864 r005 Re(z^2+c),c=-11/18+20/119*I,n=63 4324133322772128 m001 1/LambertW(1)^2*ln(MertensB1)*Zeta(5) 4324133323108284 r002 22th iterates of z^2 + 4324133324471569 r009 Im(z^3+c),c=-5/16+11/24*I,n=50 4324133326213753 a001 4/17711*317811^(24/25) 4324133326438568 r009 Im(z^3+c),c=-5/16+11/24*I,n=47 4324133328566072 r009 Im(z^3+c),c=-5/16+11/24*I,n=53 4324133329443825 m005 (1/3*2^(1/2)-1/4)/(1/10*Zeta(3)+5) 4324133330080169 r009 Im(z^3+c),c=-5/16+11/24*I,n=51 4324133331144189 r009 Im(z^3+c),c=-5/16+11/24*I,n=56 4324133331969785 r005 Re(z^2+c),c=27/62+13/38*I,n=26 4324133332202001 r009 Im(z^3+c),c=-5/16+11/24*I,n=59 4324133332540790 r009 Im(z^3+c),c=-5/16+11/24*I,n=62 4324133332569778 r009 Im(z^3+c),c=-5/16+11/24*I,n=61 4324133332580848 r009 Im(z^3+c),c=-5/16+11/24*I,n=64 4324133332740026 r009 Im(z^3+c),c=-5/16+11/24*I,n=63 4324133332773588 r009 Im(z^3+c),c=-5/16+11/24*I,n=58 4324133332937564 r009 Im(z^3+c),c=-5/16+11/24*I,n=60 4324133333279659 r009 Im(z^3+c),c=-5/16+11/24*I,n=57 4324133333283786 r009 Im(z^3+c),c=-5/16+11/24*I,n=54 4324133333990281 r009 Im(z^3+c),c=-5/16+11/24*I,n=55 4324133338708423 r009 Im(z^3+c),c=-5/16+11/24*I,n=52 4324133342952085 r009 Re(z^3+c),c=-11/23+11/60*I,n=16 4324133344758855 a001 987/521*3571^(13/34) 4324133351330751 m001 Psi(1,1/3)/(5^(1/2)+Paris) 4324133352318121 k006 concat of cont frac of 4324133352983902 r009 Im(z^3+c),c=-5/16+11/24*I,n=49 4324133356713898 a001 6643838879/2584*2^(3/4) 4324133365455443 a007 Real Root Of 707*x^4-460*x^3-996*x^2-262*x+312 4324133374649055 m001 (ln(5)+BesselJ(1,1))/(Magata+MertensB3) 4324133375786869 r009 Im(z^3+c),c=-5/16+11/24*I,n=44 4324133379548482 r009 Im(z^3+c),c=-5/16+11/24*I,n=40 4324133386398618 r009 Im(z^3+c),c=-5/16+11/24*I,n=46 4324133396321359 a007 Real Root Of -166*x^4-575*x^3+575*x^2-46*x+596 4324133405000163 m005 (1/3*3^(1/2)+1/12)/(2/11*Catalan-2/11) 4324133412014153 k007 concat of cont frac of 4324133412513125 k006 concat of cont frac of 4324133418085065 m001 Riemann3rdZero^Rabbit*BesselJ(1,1) 4324133434136167 r009 Im(z^3+c),c=-5/16+11/24*I,n=43 4324133441805643 a001 233/2207*9349^(25/38) 4324133443425739 m001 (BesselI(1,1)+Bloch)/(exp(Pi)+sin(1)) 4324133457487219 a001 987/521*9349^(13/38) 4324133463062636 s002 sum(A048959[n]/((exp(n)-1)/n),n=1..infinity) 4324133467191007 a007 Real Root Of 117*x^4+310*x^3-670*x^2+945*x+773 4324133470057267 a001 233/2207*24476^(25/42) 4324133471221195 m001 1/exp(1)^2/exp(Backhouse)^2*sin(Pi/5) 4324133472178063 a001 987/521*24476^(13/42) 4324133473781374 a001 233/2207*64079^(25/46) 4324133474114599 a001 987/521*64079^(13/46) 4324133474276886 a001 233/2207*167761^(1/2) 4324133474353705 a001 233/2207*20633239^(5/14) 4324133474353708 a001 233/2207*2537720636^(5/18) 4324133474353708 a001 233/2207*312119004989^(5/22) 4324133474353708 a001 233/2207*3461452808002^(5/24) 4324133474353708 a001 233/2207*28143753123^(1/4) 4324133474353708 a001 233/2207*228826127^(5/16) 4324133474354229 a001 233/2207*1860498^(5/12) 4324133474412213 a001 987/521*141422324^(1/6) 4324133474412213 a001 987/521*73681302247^(1/8) 4324133474426885 a001 987/521*271443^(1/4) 4324133475226793 a001 987/521*39603^(13/44) 4324133475920208 a001 233/2207*39603^(25/44) 4324133477999044 r009 Im(z^3+c),c=-71/114+13/25*I,n=10 4324133480553747 a001 987/521*15127^(13/40) 4324133486164350 a001 233/2207*15127^(5/8) 4324133490544499 r005 Re(z^2+c),c=-47/74+11/31*I,n=11 4324133521184100 a001 987/521*5778^(13/36) 4324133531507875 r005 Im(z^2+c),c=-37/30+4/87*I,n=39 4324133534198278 r005 Re(z^2+c),c=9/25+40/63*I,n=17 4324133535393785 a001 2584/521*1364^(3/10) 4324133551913915 m005 (1/2*Zeta(3)+1/7)/(4/9*gamma-3/7) 4324133564299645 a001 233/2207*5778^(25/36) 4324133570985188 a003 sin(Pi*13/45)/cos(Pi*53/120) 4324133585835642 r002 14th iterates of z^2 + 4324133590787746 r005 Im(z^2+c),c=6/29+22/53*I,n=50 4324133609472410 a007 Real Root Of 565*x^4-853*x^3+761*x^2-740*x-551 4324133618962218 r005 Re(z^2+c),c=-18/29+1/51*I,n=36 4324133626558216 r009 Im(z^3+c),c=-5/16+11/24*I,n=41 4324133641307919 s002 sum(A040881[n]/(2^n-1),n=1..infinity) 4324133649297173 r009 Re(z^3+c),c=-49/102+7/41*I,n=37 4324133656899163 r005 Im(z^2+c),c=-5/8+61/173*I,n=36 4324133660471634 m001 1/Si(Pi)^2/ln(TreeGrowth2nd)^2 4324133663928295 m001 (ZetaP(3)-ZetaQ(3))/(Pi+ArtinRank2) 4324133677643715 r005 Re(z^2+c),c=-9/14+13/204*I,n=16 4324133678037366 r005 Re(z^2+c),c=4/11+3/19*I,n=44 4324133686290952 h001 (1/8*exp(1)+3/8)/(5/9*exp(1)+1/7) 4324133687391560 r009 Re(z^3+c),c=-7/78+39/59*I,n=14 4324133687864428 m001 (Cahen+Champernowne)/(Grothendieck-ZetaQ(3)) 4324133689027198 r009 Im(z^3+c),c=-49/110+19/48*I,n=27 4324133696782787 m001 (Pi-Psi(2,1/3))/(exp(1/Pi)-Trott2nd) 4324133704996588 l006 ln(2819/4344) 4324133714135650 r004 Im(z^2+c),c=1/14+11/21*I,z(0)=I,n=59 4324133727858593 m005 (1/2*Zeta(3)+2/5)/(3*gamma+7/12) 4324133733223431 k006 concat of cont frac of 4324133735075458 m001 FeigenbaumDelta*(GaussAGM-Psi(1,1/3)) 4324133743116647 r005 Im(z^2+c),c=1/15+33/62*I,n=35 4324133746713268 a001 17711/521*521^(1/26) 4324133756427854 m001 (MasserGramain+ZetaP(4))/(ln(5)-3^(1/3)) 4324133757243608 r005 Im(z^2+c),c=-11/16+37/106*I,n=39 4324133778702209 r002 56th iterates of z^2 + 4324133789273912 a001 119218851371/1597*102334155^(2/21) 4324133789273912 a001 45537549124/1597*2504730781961^(2/21) 4324133793985633 a001 312119004989/1597*4181^(2/21) 4324133801390942 m001 Bloch^Kolakoski/(FeigenbaumKappa^Kolakoski) 4324133806214237 r005 Re(z^2+c),c=-31/50+1/53*I,n=40 4324133823164416 m005 (1/2*gamma+10/11)/(4/9*3^(1/2)+2) 4324133831111828 k006 concat of cont frac of 4324133833622252 r002 59th iterates of z^2 + 4324133835063886 a001 987/521*2207^(13/32) 4324133837504792 a007 Real Root Of 6*x^4+271*x^3+478*x^2-946*x-663 4324133840720140 a005 (1/sin(115/237*Pi))^1360 4324133849063908 a001 1597/521*1364^(11/30) 4324133858416400 r002 18th iterates of z^2 + 4324133862414624 r009 Re(z^3+c),c=-53/102+25/58*I,n=44 4324133869334431 a001 4181/521*1364^(7/30) 4324133869878827 m005 (1/3*3^(1/2)-1/11)/(6*3^(1/2)+6/7) 4324133875923872 r005 Im(z^2+c),c=-7/102+18/25*I,n=27 4324133880049723 r005 Re(z^2+c),c=-101/78+3/46*I,n=10 4324133884842467 a007 Real Root Of 991*x^4-803*x^3+288*x^2-931*x-556 4324133886654170 s002 sum(A192948[n]/(n^3*2^n+1),n=1..infinity) 4324133889550546 s002 sum(A192948[n]/(n^3*2^n-1),n=1..infinity) 4324133897316373 a008 Real Root of x^4-2*x^3-50*x^2+37*x+587 4324133908819922 r005 Re(z^2+c),c=-75/122+5/39*I,n=63 4324133908820772 a003 cos(Pi*30/101)-cos(Pi*43/96) 4324133912916687 r002 24th iterates of z^2 + 4324133915358386 m005 (1/2*2^(1/2)-2/3)/(11/12*Zeta(3)-1/6) 4324133922655310 r005 Im(z^2+c),c=-51/86+17/40*I,n=15 4324133934302927 r009 Im(z^3+c),c=-15/34+23/58*I,n=51 4324133943073948 a001 28657/5778*322^(3/8) 4324133943362787 a001 233/5778*3571^(29/34) 4324133945107638 a007 Real Root Of 21*x^4+899*x^3-404*x^2-510*x+164 4324133950651203 r009 Im(z^3+c),c=-9/56+22/29*I,n=9 4324133955909773 a001 6765/521*1364^(1/6) 4324133972935595 r005 Im(z^2+c),c=2/13+29/63*I,n=54 4324133992505094 r005 Im(z^2+c),c=1/5+8/19*I,n=44 4324134003178137 a007 Real Root Of 868*x^4-533*x^3-90*x^2-993*x-486 4324134014094575 a001 233/15127*3571^(33/34) 4324134026188140 m009 (1/2*Pi^2-5/6)/(24/5*Catalan+3/5*Pi^2-5/6) 4324134035164709 r005 Re(z^2+c),c=-27/46+17/48*I,n=49 4324134045540567 r005 Re(z^2+c),c=-13/22+22/91*I,n=32 4324134047437906 b008 -8+(2+E^2)^E 4324134052331545 r002 64th iterates of z^2 + 4324134052799631 a001 75025/15127*322^(3/8) 4324134061083196 r009 Im(z^3+c),c=-37/98+1/49*I,n=4 4324134064804355 m001 (ln(5)+GAMMA(13/24))/(OneNinth-Thue) 4324134065277243 a001 3571/8*17711^(13/56) 4324134068808392 a001 196418/39603*322^(3/8) 4324134069738563 r009 Re(z^3+c),c=-45/98+1/5*I,n=3 4324134071144039 a001 514229/103682*322^(3/8) 4324134071484806 a001 1346269/271443*322^(3/8) 4324134071534523 a001 3524578/710647*322^(3/8) 4324134071541776 a001 9227465/1860498*322^(3/8) 4324134071542835 a001 24157817/4870847*322^(3/8) 4324134071542989 a001 63245986/12752043*322^(3/8) 4324134071543012 a001 165580141/33385282*322^(3/8) 4324134071543015 a001 433494437/87403803*322^(3/8) 4324134071543015 a001 1134903170/228826127*322^(3/8) 4324134071543015 a001 2971215073/599074578*322^(3/8) 4324134071543015 a001 7778742049/1568397607*322^(3/8) 4324134071543015 a001 20365011074/4106118243*322^(3/8) 4324134071543015 a001 53316291173/10749957122*322^(3/8) 4324134071543015 a001 139583862445/28143753123*322^(3/8) 4324134071543015 a001 365435296162/73681302247*322^(3/8) 4324134071543015 a001 956722026041/192900153618*322^(3/8) 4324134071543015 a001 2504730781961/505019158607*322^(3/8) 4324134071543015 a001 10610209857723/2139295485799*322^(3/8) 4324134071543015 a001 4052739537881/817138163596*322^(3/8) 4324134071543015 a001 140728068720/28374454999*322^(3/8) 4324134071543015 a001 591286729879/119218851371*322^(3/8) 4324134071543015 a001 225851433717/45537549124*322^(3/8) 4324134071543015 a001 86267571272/17393796001*322^(3/8) 4324134071543015 a001 32951280099/6643838879*322^(3/8) 4324134071543015 a001 1144206275/230701876*322^(3/8) 4324134071543016 a001 4807526976/969323029*322^(3/8) 4324134071543016 a001 1836311903/370248451*322^(3/8) 4324134071543016 a001 701408733/141422324*322^(3/8) 4324134071543017 a001 267914296/54018521*322^(3/8) 4324134071543026 a001 9303105/1875749*322^(3/8) 4324134071543085 a001 39088169/7881196*322^(3/8) 4324134071543489 a001 14930352/3010349*322^(3/8) 4324134071546259 a001 5702887/1149851*322^(3/8) 4324134071565250 a001 2178309/439204*322^(3/8) 4324134071695411 a001 75640/15251*322^(3/8) 4324134072587549 a001 317811/64079*322^(3/8) 4324134078702351 a001 121393/24476*322^(3/8) 4324134078894260 a001 312119004989/4181*102334155^(2/21) 4324134078894260 a001 119218851371/4181*2504730781961^(2/21) 4324134083440284 m001 RenyiParking^2/exp(Khintchine)/log(1+sqrt(2)) 4324134083605981 a001 817138163596/4181*4181^(2/21) 4324134086246610 a007 Real Root Of 133*x^4+520*x^3-206*x^2+37*x-444 4324134089131861 r009 Re(z^3+c),c=-53/102+25/58*I,n=57 4324134094474053 a001 55/4*123^(5/21) 4324134102411343 a001 233/9349*3571^(31/34) 4324134103901155 m005 (1/36+1/4*5^(1/2))/(1/6*2^(1/2)-1/10) 4324134104211162 m003 15+Sqrt[5]/32-Tan[1/2+Sqrt[5]/2]^2 4324134114949901 a001 2537720636/987*2^(3/4) 4324134119137290 r005 Im(z^2+c),c=7/24+12/31*I,n=36 4324134120613835 a001 46368/9349*322^(3/8) 4324134121149303 a001 408569081798/5473*102334155^(2/21) 4324134121149303 a001 312119004989/10946*2504730781961^(2/21) 4324134125861023 a001 2139295485799/10946*4181^(2/21) 4324134127314230 a001 2139295485799/28657*102334155^(2/21) 4324134127314230 a001 817138163596/28657*2504730781961^(2/21) 4324134128213681 a001 5600748293801/75025*102334155^(2/21) 4324134128213681 a001 2139295485799/75025*2504730781961^(2/21) 4324134128344909 a001 7331474697802/98209*102334155^(2/21) 4324134128344909 a001 5600748293801/196418*2504730781961^(2/21) 4324134128364055 a001 14662949395604/514229*2504730781961^(2/21) 4324134128368575 a001 23725150497407/832040*2504730781961^(2/21) 4324134128375888 a001 23725150497407/317811*102334155^(2/21) 4324134128375888 a001 3020733700601/105937*2504730781961^(2/21) 4324134128426013 a001 9062201101803/121393*102334155^(2/21) 4324134128426013 a001 3461452808002/121393*2504730781961^(2/21) 4324134128769572 a001 10749853441/144*102334155^(2/21) 4324134128769572 a001 440719107401/15456*2504730781961^(2/21) 4324134130437960 a007 Real Root Of 109*x^4-982*x^3-755*x^2-63*x+244 4324134131124365 a001 1322157322203/17711*102334155^(2/21) 4324134131124365 a001 505019158607/17711*2504730781961^(2/21) 4324134132025951 a001 5600748293801/28657*4181^(2/21) 4324134132925402 a001 14662949395604/75025*4181^(2/21) 4324134133137733 a001 23725150497407/121393*4181^(2/21) 4324134133481293 a001 3020733700601/15456*4181^(2/21) 4324134135836086 a001 3461452808002/17711*4181^(2/21) 4324134136970265 a001 10946/521*1364^(1/10) 4324134142888204 a001 2584/521*3571^(9/34) 4324134145743479 m005 (1/2*gamma-7/8)/(3/7*2^(1/2)+3/4) 4324134147264356 a001 505019158607/6765*102334155^(2/21) 4324134147264356 a001 64300051206/2255*2504730781961^(2/21) 4324134151976076 a001 440719107401/2255*4181^(2/21) 4324134154477472 r002 40th iterates of z^2 + 4324134156496175 r005 Re(z^2+c),c=-25/42+14/51*I,n=57 4324134162087629 p003 LerchPhi(1/25,2,239/156) 4324134167914644 a001 233/2207*2207^(25/32) 4324134172887796 r009 Im(z^3+c),c=-13/34+27/62*I,n=4 4324134178090680 r005 Re(z^2+c),c=7/122+8/23*I,n=26 4324134186305351 r002 47th iterates of z^2 + 4324134186693718 r005 Re(z^2+c),c=-21/34+5/62*I,n=52 4324134194833792 a001 233/5778*9349^(29/38) 4324134207415990 m001 1/Champernowne/exp(Cahen)^2*GAMMA(5/24)^2 4324134210344143 r005 Re(z^2+c),c=-43/74+7/22*I,n=47 4324134210493736 r009 Re(z^3+c),c=-51/110+5/49*I,n=12 4324134211022220 k006 concat of cont frac of 4324134220930931 a001 2584/521*9349^(9/38) 4324134226221167 m001 GAMMA(5/6)+Cahen-Totient 4324134227605680 a001 233/5778*24476^(29/42) 4324134231101518 a001 2584/521*24476^(3/14) 4324134231925646 a001 233/5778*64079^(29/46) 4324134232587918 a001 233/5778*1149851^(1/2) 4324134232589554 a001 233/5778*1322157322203^(1/4) 4324134232644501 a001 2584/521*439204^(1/6) 4324134232648227 a001 2584/521*7881196^(3/22) 4324134232648237 a001 2584/521*2537720636^(1/10) 4324134232648237 a001 2584/521*14662949395604^(1/14) 4324134232648237 a001 2584/521*192900153618^(1/12) 4324134232648237 a001 2584/521*33385282^(1/8) 4324134232648424 a001 2584/521*1860498^(3/20) 4324134232723658 a001 2584/521*103682^(3/16) 4324134233212177 a001 2584/521*39603^(9/44) 4324134234406693 a001 233/5778*39603^(29/44) 4324134236900069 a001 2584/521*15127^(9/40) 4324134243123421 s001 sum(1/10^(n-1)*A184338[n],n=1..infinity) 4324134243123421 s001 sum(1/10^n*A184338[n],n=1..infinity) 4324134243123421 s003 concatenated sequence A184338 4324134245505092 l006 ln(4259/6563) 4324134245505092 p004 log(6563/4259) 4324134246289901 a001 233/5778*15127^(29/40) 4324134256840102 r005 Im(z^2+c),c=23/106+24/59*I,n=42 4324134257889498 a001 96450076809/1292*102334155^(2/21) 4324134257889498 a001 73681302247/2584*2504730781961^(2/21) 4324134259238591 r005 Re(z^2+c),c=-21/34+19/92*I,n=35 4324134260914963 r009 Im(z^3+c),c=-47/118+20/47*I,n=16 4324134262601219 a001 505019158607/2584*4181^(2/21) 4324134265028779 a001 2584/521*5778^(1/4) 4324134270232965 r005 Im(z^2+c),c=19/52+8/53*I,n=38 4324134281940648 a001 17711/521*1364^(1/30) 4324134293406695 a001 6765/521*3571^(5/34) 4324134300251240 a001 233/15127*9349^(33/38) 4324134311183540 a001 233/39603*9349^(37/38) 4324134313409866 m001 (cos(1/5*Pi)+gamma(2))/(FeigenbaumD-GaussAGM) 4324134315779365 h001 (-6*exp(1)+7)/(-9*exp(2/3)-4) 4324134323762449 a001 233/24476*9349^(35/38) 4324134336763767 a001 6765/521*9349^(5/38) 4324134336926858 a001 233/5778*5778^(29/36) 4324134337543391 a001 233/15127*24476^(11/14) 4324134339468424 a001 10946/521*3571^(3/34) 4324134341830119 a001 4181/521*3571^(7/34) 4324134342414093 a001 6765/521*24476^(5/42) 4324134342459213 a001 233/15127*64079^(33/46) 4324134343200996 a001 233/15127*439204^(11/18) 4324134343214660 a001 233/15127*7881196^(1/2) 4324134343214695 a001 233/15127*312119004989^(3/10) 4324134343214695 a001 233/15127*1568397607^(3/8) 4324134343214697 a001 233/15127*33385282^(11/24) 4324134343215382 a001 233/15127*1860498^(11/20) 4324134343258017 a001 6765/521*167761^(1/10) 4324134343273381 a001 6765/521*20633239^(1/14) 4324134343273382 a001 6765/521*2537720636^(1/18) 4324134343273382 a001 6765/521*312119004989^(1/22) 4324134343273382 a001 6765/521*28143753123^(1/20) 4324134343273382 a001 6765/521*228826127^(1/16) 4324134343273486 a001 6765/521*1860498^(1/12) 4324134343491239 a001 233/15127*103682^(11/16) 4324134343586682 a001 6765/521*39603^(5/44) 4324134345282475 a001 233/15127*39603^(3/4) 4324134345635511 a001 6765/521*15127^(1/8) 4324134349440036 a001 17711/521*3571^(1/34) 4324134352995951 a001 233/39603*24476^(37/42) 4324134354663313 a001 233/103682*24476^(41/42) 4324134356462371 a001 233/64079*24476^(13/14) 4324134358111450 a001 17711/521*9349^(1/38) 4324134358507631 a001 233/39603*64079^(37/46) 4324134358804745 a001 233/15127*15127^(33/40) 4324134359241515 a001 17711/521*24476^(1/42) 4324134359354685 a001 233/39603*54018521^(1/2) 4324134359476033 a001 17711/521*39603^(1/44) 4324134359885799 a001 17711/521*15127^(1/40) 4324134360466468 a006 5^(1/2)*fibonacci(45/2)/Lucas(13)/sqrt(5) 4324134360770850 a001 233/103682*64079^(41/46) 4324134361022836 a001 233/271443*64079^(45/46) 4324134361262573 a001 6765/521*5778^(5/36) 4324134361280955 a001 233/167761*64079^(43/46) 4324134361673106 a001 233/39603*39603^(37/44) 4324134361709479 a001 233/103682*370248451^(1/2) 4324134361914758 a001 233/271443*167761^(9/10) 4324134362034358 a001 233/271443*439204^(5/6) 4324134362052991 a001 233/271443*7881196^(15/22) 4324134362053032 a001 233/271443*20633239^(9/14) 4324134362053039 a001 233/271443*2537720636^(1/2) 4324134362053039 a001 233/271443*312119004989^(9/22) 4324134362053039 a001 233/271443*14662949395604^(5/14) 4324134362053039 a001 233/271443*192900153618^(5/12) 4324134362053039 a001 233/271443*28143753123^(9/20) 4324134362053039 a001 233/271443*228826127^(9/16) 4324134362053041 a001 233/271443*33385282^(5/8) 4324134362053975 a001 233/271443*1860498^(3/4) 4324134362093825 a001 233/1149851*439204^(17/18) 4324134362103156 a001 233/710647*20633239^(7/10) 4324134362103163 a001 233/710647*17393796001^(1/2) 4324134362103163 a001 233/710647*14662949395604^(7/18) 4324134362103163 a001 233/710647*505019158607^(7/16) 4324134362103163 a001 233/710647*599074578^(7/12) 4324134362110476 a001 233/1860498*119218851371^(1/2) 4324134362110655 a001 233/710647*710647^(7/8) 4324134362111483 a001 233/4870847*7881196^(19/22) 4324134362111543 a001 233/4870847*817138163596^(1/2) 4324134362111544 a001 233/4870847*87403803^(3/4) 4324134362111546 a001 233/4870847*33385282^(19/24) 4324134362111669 a001 233/20633239*7881196^(21/22) 4324134362111699 a001 233/12752043*5600748293801^(1/2) 4324134362111712 a001 233/33385282*20633239^(13/14) 4324134362111721 a001 233/33385282*141422324^(5/6) 4324134362111722 a001 233/33385282*2537720636^(13/18) 4324134362111722 a001 233/33385282*312119004989^(13/22) 4324134362111722 a001 233/33385282*3461452808002^(13/24) 4324134362111722 a001 233/33385282*73681302247^(5/8) 4324134362111722 a001 233/33385282*28143753123^(13/20) 4324134362111722 a001 233/33385282*228826127^(13/16) 4324134362111725 a001 233/87403803*4106118243^(3/4) 4324134362111726 a001 233/599074578*17393796001^(11/14) 4324134362111726 a001 233/599074578*14662949395604^(11/18) 4324134362111726 a001 233/599074578*505019158607^(11/16) 4324134362111726 a001 233/599074578*1568397607^(7/8) 4324134362111726 a001 233/1568397607*2537720636^(9/10) 4324134362111726 a001 233/1568397607*14662949395604^(9/14) 4324134362111726 a001 233/1568397607*192900153618^(3/4) 4324134362111726 a001 233/599074578*599074578^(11/12) 4324134362111726 a001 233/4106118243*2537720636^(17/18) 4324134362111726 a001 233/4106118243*45537549124^(5/6) 4324134362111726 a001 233/4106118243*312119004989^(17/22) 4324134362111726 a001 233/4106118243*3461452808002^(17/24) 4324134362111726 a001 233/4106118243*28143753123^(17/20) 4324134362111726 a001 233/28143753123*9062201101803^(3/4) 4324134362111726 a001 233/505019158607*312119004989^(21/22) 4324134362111726 a001 233/505019158607*14662949395604^(5/6) 4324134362111726 a001 233/505019158607*505019158607^(15/16) 4324134362111726 a001 233/14662949395604*14662949395604^(17/18) 4324134362111726 a001 233/5600748293801*3461452808002^(23/24) 4324134362111726 a001 233/119218851371*312119004989^(9/10) 4324134362111726 a001 233/119218851371*14662949395604^(11/14) 4324134362111726 a001 233/119218851371*192900153618^(11/12) 4324134362111726 a001 233/17393796001*17393796001^(13/14) 4324134362111726 a001 233/45537549124*312119004989^(19/22) 4324134362111726 a001 233/45537549124*3461452808002^(19/24) 4324134362111726 a001 233/45537549124*28143753123^(19/20) 4324134362111726 a001 233/17393796001*14662949395604^(13/18) 4324134362111726 a001 233/17393796001*505019158607^(13/16) 4324134362111726 a001 233/17393796001*73681302247^(7/8) 4324134362111726 a001 233/6643838879*1322157322203^(3/4) 4324134362111726 a001 233/370248451*2537720636^(5/6) 4324134362111726 a001 233/370248451*312119004989^(15/22) 4324134362111726 a001 233/370248451*3461452808002^(5/8) 4324134362111726 a001 233/370248451*28143753123^(3/4) 4324134362111726 a001 233/370248451*228826127^(15/16) 4324134362111727 a001 233/20633239*20633239^(9/10) 4324134362111729 a001 233/87403803*33385282^(23/24) 4324134362111736 a001 233/20633239*2537720636^(7/10) 4324134362111736 a001 233/20633239*17393796001^(9/14) 4324134362111736 a001 233/20633239*14662949395604^(1/2) 4324134362111736 a001 233/20633239*505019158607^(9/16) 4324134362111736 a001 233/20633239*192900153618^(7/12) 4324134362111736 a001 233/20633239*599074578^(3/4) 4324134362111739 a001 233/20633239*33385282^(7/8) 4324134362111795 a001 233/7881196*2139295485799^(1/2) 4324134362112145 a001 233/3010349*7881196^(5/6) 4324134362112195 a001 233/3010349*20633239^(11/14) 4324134362112203 a001 233/3010349*2537720636^(11/18) 4324134362112203 a001 233/3010349*312119004989^(1/2) 4324134362112203 a001 233/3010349*3461452808002^(11/24) 4324134362112203 a001 233/3010349*28143753123^(11/20) 4324134362112203 a001 233/3010349*1568397607^(5/8) 4324134362112203 a001 233/3010349*228826127^(11/16) 4324134362112730 a001 233/4870847*1860498^(19/20) 4324134362113348 a001 233/3010349*1860498^(11/12) 4324134362114942 a001 233/1149851*7881196^(17/22) 4324134362114996 a001 233/1149851*45537549124^(1/2) 4324134362114999 a001 233/1149851*33385282^(17/24) 4324134362115016 a001 233/1149851*12752043^(3/4) 4324134362116058 a001 233/1149851*1860498^(17/20) 4324134362134142 a001 233/439204*6643838879^(1/2) 4324134362170413 a006 5^(1/2)*Fibonacci(45/2)/Lucas(13)/sqrt(5) 4324134362265370 a001 233/167761*969323029^(1/2) 4324134362271979 a001 233/64079*64079^(39/46) 4324134362430145 a001 233/271443*103682^(15/16) 4324134363011211 a001 17711/521*5778^(1/36) 4324134363148631 a001 233/64079*439204^(13/18) 4324134363164780 a001 233/64079*7881196^(13/22) 4324134363164821 a001 233/64079*141422324^(1/2) 4324134363164821 a001 233/64079*73681302247^(3/8) 4324134363164823 a001 233/64079*33385282^(13/24) 4324134363165633 a001 233/64079*1860498^(13/20) 4324134363208836 a001 233/64079*271443^(3/4) 4324134363314729 a001 233/24476*24476^(5/6) 4324134363491646 a001 233/64079*103682^(13/16) 4324134364278539 a001 233/103682*39603^(41/44) 4324134364959750 a001 233/167761*39603^(43/44) 4324134365482667 a001 10946/521*9349^(3/38) 4324134365608561 a001 233/64079*39603^(39/44) 4324134368528481 a001 233/24476*64079^(35/46) 4324134368872863 a001 10946/521*24476^(1/14) 4324134369222198 a001 233/24476*167761^(7/10) 4324134369329744 a001 233/24476*20633239^(1/2) 4324134369329749 a001 233/24476*2537720636^(7/18) 4324134369329749 a001 233/24476*17393796001^(5/14) 4324134369329749 a001 233/24476*312119004989^(7/22) 4324134369329749 a001 233/24476*14662949395604^(5/18) 4324134369329749 a001 233/24476*505019158607^(5/16) 4324134369329749 a001 233/24476*28143753123^(7/20) 4324134369329749 a001 233/24476*599074578^(5/12) 4324134369329749 a001 233/24476*228826127^(7/16) 4324134369330478 a001 233/24476*1860498^(7/12) 4324134369335100 a001 233/24476*710647^(5/8) 4324134369387191 a001 10946/521*439204^(1/18) 4324134369388433 a001 10946/521*7881196^(1/22) 4324134369388436 a001 10946/521*33385282^(1/24) 4324134369388498 a001 10946/521*1860498^(1/20) 4324134369413576 a001 10946/521*103682^(1/16) 4324134369576416 a001 10946/521*39603^(3/44) 4324134370805713 a001 10946/521*15127^(3/40) 4324134371225186 a001 233/9349*9349^(31/38) 4324134371522849 a001 233/24476*39603^(35/44) 4324134376834439 a001 233/39603*15127^(37/40) 4324134380181951 a001 10946/521*5778^(1/12) 4324134381589426 a001 233/64079*15127^(39/40) 4324134385864651 a001 233/24476*15127^(7/8) 4324134387155814 a001 17711/521*2207^(1/32) 4324134390113016 r009 Re(z^3+c),c=-4/11+1/54*I,n=3 4324134402530021 a001 4181/521*9349^(7/38) 4324134404593691 s002 sum(A112323[n]/(n!^2),n=1..infinity) 4324134406257206 a001 233/9349*24476^(31/42) 4324134407879438 a001 17711/3571*322^(3/8) 4324134408567872 r009 Im(z^3+c),c=-5/26+28/37*I,n=20 4324134409600153 r005 Re(z^2+c),c=-18/29+1/40*I,n=34 4324134410440477 a001 4181/521*24476^(1/6) 4324134410875100 a001 233/9349*64079^(31/46) 4324134411584556 a001 233/9349*3010349^(1/2) 4324134411584795 a001 233/9349*9062201101803^(1/4) 4324134411643480 a001 4181/521*20633239^(1/10) 4324134411643481 a001 4181/521*17393796001^(1/14) 4324134411643481 a001 4181/521*14662949395604^(1/18) 4324134411643481 a001 4181/521*505019158607^(1/16) 4324134411643481 a001 4181/521*599074578^(1/12) 4324134411644552 a001 4181/521*710647^(1/8) 4324134412082101 a001 4181/521*39603^(7/44) 4324134413527255 a001 233/9349*39603^(31/44) 4324134414950462 a001 4181/521*15127^(7/40) 4324134415839051 m008 (4/5*Pi^6-5)/(2/3*Pi^3-3) 4324134418341313 a007 Real Root Of -312*x^4-10*x^3-528*x^2+789*x+450 4324134418575831 a007 Real Root Of -472*x^4+951*x^3+419*x^2+255*x-249 4324134426229994 a001 233/9349*15127^(31/40) 4324134427085651 a007 Real Root Of -742*x^4+576*x^3+60*x^2-151*x-4 4324134429589363 a003 sin(Pi*5/79)+sin(Pi*4/53) 4324134431925088 a001 233/3571*3571^(27/34) 4324134436828349 a001 4181/521*5778^(7/36) 4324134436840024 m001 FeigenbaumDelta^(Khinchin/ln(3)) 4324134448774695 r005 Im(z^2+c),c=13/86+29/54*I,n=40 4324134452615760 a001 10946/521*2207^(3/32) 4324134461366050 m005 (1/3*3^(1/2)-1/7)/(3/8*3^(1/2)-3/4) 4324134461943355 a001 233/15127*5778^(11/12) 4324134481518079 r009 Im(z^3+c),c=-47/90+10/33*I,n=48 4324134481985588 a001 6765/521*2207^(5/32) 4324134482330204 a001 2584/521*2207^(9/32) 4324134495254087 a001 233/24476*5778^(35/36) 4324134504597515 m001 (-Gompertz+Niven)/(exp(Pi)+FeigenbaumAlpha) 4324134512749887 a003 sin(Pi*11/116)/cos(Pi*21/80) 4324134512866631 l006 ln(5699/8782) 4324134516406126 r005 Re(z^2+c),c=4/11+6/31*I,n=15 4324134517629792 r005 Re(z^2+c),c=-57/94+17/54*I,n=39 4324134517931074 a003 sin(Pi*15/113)/sin(Pi*39/101) 4324134519210484 r005 Re(z^2+c),c=-21/34+9/73*I,n=36 4324134521730851 r002 42th iterates of z^2 + 4324134523117781 a001 233/9349*5778^(31/36) 4324134524668664 r005 Re(z^2+c),c=29/118+3/7*I,n=43 4324134528314252 r009 Re(z^3+c),c=-15/52+50/57*I,n=3 4324134529776968 r009 Im(z^3+c),c=-5/16+11/24*I,n=38 4324134533374510 r005 Im(z^2+c),c=13/42+13/45*I,n=29 4324134535151944 a007 Real Root Of 74*x^4+117*x^3-840*x^2+39*x-537 4324134537679126 m001 (ln(5)+GAMMA(19/24))/(LaplaceLimit-Mills) 4324134539117762 m005 (1/2*Zeta(3)+11/12)/(4/9*exp(1)-6/7) 4324134548732364 m001 (Chi(1)-Zeta(1/2))/(-GAMMA(19/24)+Niven) 4324134560668872 r005 Im(z^2+c),c=-1/12+14/23*I,n=45 4324134567878067 r009 Re(z^3+c),c=-3/40+18/29*I,n=17 4324134576726983 a001 17711/521*843^(1/28) 4324134582113823 m001 (2^(1/3)-MinimumGamma)/(-Rabbit+Salem) 4324134590383255 r005 Im(z^2+c),c=-103/126+10/51*I,n=29 4324134591557152 a001 1597/521*3571^(11/34) 4324134605840574 a001 4181/521*2207^(7/32) 4324134610793338 r002 38th iterates of z^2 + 4324134614629327 r005 Im(z^2+c),c=9/56+5/11*I,n=53 4324134625614821 r005 Im(z^2+c),c=11/86+25/52*I,n=64 4324134631362118 m001 (ln(5)+Sierpinski)/(5^(1/2)-BesselI(0,1)) 4324134652572634 r009 Im(z^3+c),c=-17/118+28/57*I,n=4 4324134654907211 m001 (ln(Pi)-KomornikLoreti)^Ei(1) 4324134658053375 g004 Re(GAMMA(-113/60+I*173/60)) 4324134659372783 m001 (GlaisherKinkelin+OneNinth)/(3^(1/3)+Pi^(1/2)) 4324134666053290 a001 233/3571*9349^(27/38) 4324134670727953 r009 Im(z^3+c),c=-41/102+18/43*I,n=44 4324134672074768 r009 Im(z^3+c),c=-39/74+5/33*I,n=28 4324134673569564 m001 (-Niven+Porter)/(Chi(1)+FeigenbaumDelta) 4324134686017381 r005 Im(z^2+c),c=-13/56+31/50*I,n=9 4324134686942718 a001 1597/521*9349^(11/38) 4324134696565052 a001 233/3571*24476^(9/14) 4324134696722119 m001 1/BesselK(1,1)^2/exp(Champernowne)*sqrt(Pi) 4324134699049838 m001 OneNinth/ln(Sierpinski)^2*BesselK(1,1)^2 4324134699373436 a001 1597/521*24476^(11/42) 4324134700587089 a001 233/3571*64079^(27/46) 4324134701012044 a001 1597/521*64079^(11/46) 4324134701194002 a001 233/3571*439204^(1/2) 4324134701205182 a001 233/3571*7881196^(9/22) 4324134701205210 a001 233/3571*2537720636^(3/10) 4324134701205210 a001 233/3571*14662949395604^(3/14) 4324134701205210 a001 233/3571*192900153618^(1/4) 4324134701205212 a001 233/3571*33385282^(3/8) 4324134701205773 a001 233/3571*1860498^(9/20) 4324134701263859 a001 1597/521*7881196^(1/6) 4324134701263871 a001 1597/521*312119004989^(1/10) 4324134701263871 a001 1597/521*1568397607^(1/8) 4324134701431474 a001 233/3571*103682^(9/16) 4324134701953131 a001 1597/521*39603^(1/4) 4324134702897030 a001 233/3571*39603^(27/44) 4324134706460555 a001 1597/521*15127^(11/40) 4324134710581206 r005 Re(z^2+c),c=3/20+21/53*I,n=39 4324134712565358 m001 ln(LandauRamanujan)*Artin^2*GAMMA(1/12) 4324134713960707 a001 233/3571*15127^(27/40) 4324134731255809 r009 Im(z^3+c),c=-23/90+21/44*I,n=18 4324134737224912 m005 (1/3*2^(1/2)+2/11)/(2/3*Catalan+9/10) 4324134738674139 r009 Im(z^3+c),c=-55/86+7/22*I,n=57 4324134740840094 a001 1597/521*5778^(11/36) 4324134750288890 r002 13th iterates of z^2 + 4324134751123225 r002 46th iterates of z^2 + 4324134762450344 r005 Re(z^2+c),c=-65/86+39/43*I,n=3 4324134768240371 m001 cos(Pi/12)^2*Artin^2/ln(sqrt(3))^2 4324134771220913 m001 1/GAMMA(11/12)^2/CareFree/exp(cos(1))^2 4324134771504098 m001 1/Niven/Khintchine^2/exp(Porter)^2 4324134774997654 m009 (1/4*Psi(1,2/3)-5)/(3*Psi(1,2/3)+3/5) 4324134775811268 a007 Real Root Of -947*x^4+444*x^3+319*x^2+501*x+226 4324134779071169 r002 63th iterates of z^2 + 4324134783917064 m001 Zeta(5)^2/TreeGrowth2nd/exp(sqrt(3)) 4324134798346850 a001 233/3571*5778^(3/4) 4324134799195138 a007 Real Root Of 877*x^4-909*x^3-26*x^2+77*x-66 4324134813704183 r009 Im(z^3+c),c=-19/60+30/61*I,n=6 4324134827007486 r009 Im(z^3+c),c=-8/17+17/44*I,n=13 4324134831926593 m001 (-GaussAGM+Lehmer)/(Psi(2,1/3)-sin(1)) 4324134832039048 m005 (1/3*Catalan-2/5)/(3/4*Pi-1/6) 4324134840694860 m005 (1/2*Catalan+3/10)/(4/11*3^(1/2)-5/11) 4324134848494596 r005 Im(z^2+c),c=-45/122+25/44*I,n=12 4324134873220472 m001 1/Trott*ln(Kolakoski)^2/GAMMA(5/6) 4324134890528390 r002 43th iterates of z^2 + 4324134893729970 r005 Re(z^2+c),c=-17/28+11/60*I,n=42 4324134903654422 r009 Im(z^3+c),c=-21/44+13/35*I,n=43 4324134904420838 a001 233/1364*1364^(23/30) 4324134913232309 m001 (arctan(1/3)-ln(2+3^(1/2)))/(Artin+Tetranacci) 4324134922260821 h001 (5/9*exp(1)+3/11)/(1/2*exp(2)+3/7) 4324134923993787 a007 Real Root Of -660*x^4+553*x^3-861*x^2-314*x+93 4324134925766748 r009 Im(z^3+c),c=-27/122+18/37*I,n=30 4324134942668995 r002 48th iterates of z^2 + 4324134950339259 r005 Re(z^2+c),c=-33/52+5/51*I,n=27 4324134966432413 k006 concat of cont frac of 4324134967565075 r005 Im(z^2+c),c=39/110+2/7*I,n=7 4324134988066350 m006 (3/4*exp(2*Pi)-1/2)/(4*exp(Pi)+1/5) 4324134990676691 a007 Real Root Of 119*x^4+384*x^3-750*x^2-606*x+846 4324135006430755 a001 1597/521*2207^(11/32) 4324135016125659 a001 10525900321/141*102334155^(2/21) 4324135016125659 a001 9381251041/329*2504730781961^(2/21) 4324135019800954 r002 56th iterates of z^2 + 4324135020837381 a001 64300051206/329*4181^(2/21) 4324135021329301 a001 10946/521*843^(3/28) 4324135022204521 r005 Im(z^2+c),c=4/15+20/59*I,n=13 4324135025443938 m001 (ln(5)+Champernowne)/(FeigenbaumDelta-Robbin) 4324135028925282 a003 cos(Pi*8/81)-cos(Pi*13/95) 4324135030903630 r005 Im(z^2+c),c=-7/62+39/64*I,n=47 4324135037120390 a001 233/5778*2207^(29/32) 4324135041564071 r009 Im(z^3+c),c=-3/13+25/51*I,n=8 4324135043717262 a001 322/89*6765^(32/59) 4324135048042874 a001 11592/341*123^(1/20) 4324135068193658 r002 50th iterates of z^2 + 4324135073608645 r002 59th iterates of z^2 + 4324135111760113 k008 concat of cont frac of 4324135119168382 m009 (1/6*Psi(1,3/4)+5)/(5*Psi(1,3/4)-1/6) 4324135119828412 m001 1/GAMMA(1/3)*GolombDickman/exp(Zeta(1/2))^2 4324135125723534 r005 Im(z^2+c),c=9/50+18/41*I,n=44 4324135134859109 m001 (Cahen+1/3)/(sin(Pi/12)+2) 4324135141115154 k007 concat of cont frac of 4324135160936494 m001 (gamma(2)+Pi^(1/2))/(FeigenbaumDelta-Lehmer) 4324135164629114 k007 concat of cont frac of 4324135170910646 h001 (10/11*exp(2)+2/7)/(3/7*exp(1)+5/11) 4324135182698811 a007 Real Root Of -222*x^4+779*x^3-809*x^2-673*x-69 4324135193082505 a001 3/89*144^(42/43) 4324135197353194 r009 Im(z^3+c),c=-5/62+28/55*I,n=10 4324135212423241 k008 concat of cont frac of 4324135214516906 m001 (polylog(4,1/2)+AlladiGrinstead)/(1-ln(2)) 4324135214770160 m001 BesselI(1,1)-GAMMA(17/24)^gamma(2) 4324135247399919 r005 Im(z^2+c),c=3/17+9/20*I,n=27 4324135263474646 r009 Im(z^3+c),c=-27/62+2/5*I,n=49 4324135271600558 a001 233/9349*2207^(31/32) 4324135276341500 m001 (3^(1/3)-Ei(1,1))/(GAMMA(11/12)+Pi^(1/2)) 4324135276778478 a001 1597/843*322^(13/24) 4324135284850607 r005 Im(z^2+c),c=15/106+29/62*I,n=36 4324135292589936 m001 GlaisherKinkelin^KhinchinHarmonic/FeigenbaumMu 4324135303625476 l006 ln(1440/2219) 4324135307248096 r002 25th iterates of z^2 + 4324135320920196 r001 3i'th iterates of 2*x^2-1 of 4324135353041376 r005 Re(z^2+c),c=-17/42+26/47*I,n=61 4324135361602571 m001 (1+cos(1/12*Pi))/(BesselI(1,2)+Otter) 4324135363085545 m005 (1/2*Pi+1)/(2/5*gamma+4/11) 4324135363782349 r005 Re(z^2+c),c=-14/23+11/54*I,n=46 4324135378289166 r005 Re(z^2+c),c=-21/34+17/128*I,n=38 4324135380405133 m001 (ZetaQ(2)+ZetaQ(4))/(gamma(1)+FeigenbaumKappa) 4324135385424442 r009 Im(z^3+c),c=-14/31+16/41*I,n=46 4324135391768345 r008 a(0)=4,K{-n^6,78+22*n^3-36*n^2-69*n} 4324135407139636 r005 Re(z^2+c),c=-67/110+5/46*I,n=11 4324135422368516 a007 Real Root Of 28*x^4+9*x^3-435*x^2+398*x+793 4324135429841538 a001 6765/521*843^(5/28) 4324135440650414 m002 -3+ProductLog[Pi]/E^Pi+4*Sinh[Pi] 4324135445598382 r002 37th iterates of z^2 + 4324135445802642 r009 Im(z^3+c),c=-31/118+28/59*I,n=10 4324135445920119 r009 Re(z^3+c),c=-53/126+39/56*I,n=4 4324135450251238 a001 233/3571*2207^(27/32) 4324135471744993 m001 ErdosBorwein^2/exp(Backhouse)^2*GAMMA(7/24) 4324135479723166 a003 sin(Pi*11/89)/cos(Pi*13/81) 4324135486960415 m001 Zeta(1/2)^Conway/(Weierstrass^Conway) 4324135495095686 g006 Psi(1,11/12)+Psi(1,5/6)+Psi(1,4/5)-Psi(1,7/8) 4324135496822432 r005 Re(z^2+c),c=-39/64+6/55*I,n=11 4324135514884197 r005 Im(z^2+c),c=27/110+14/37*I,n=56 4324135519549640 r005 Im(z^2+c),c=17/78+29/40*I,n=4 4324135520187558 r002 8th iterates of z^2 + 4324135522179531 q001 1238/2863 4324135524260202 a001 610/521*1364^(1/2) 4324135537572161 r009 Im(z^3+c),c=-27/122+18/37*I,n=33 4324135546427230 m009 (1/3*Psi(1,1/3)+1/3)/(5/6*Psi(1,2/3)+6) 4324135564656194 m005 (1/2*gamma+2/5)/(4/9*Zeta(3)-3/8) 4324135570144291 m009 (4*Psi(1,1/3)-2/5)/(5/6*Psi(1,1/3)+5/6) 4324135581220533 r009 Im(z^3+c),c=-13/56+31/64*I,n=13 4324135587141129 k007 concat of cont frac of 4324135595639419 m005 (1/2*Zeta(3)+3/11)/(1/4*Pi-7/12) 4324135598720821 r005 Im(z^2+c),c=-1/58+31/53*I,n=52 4324135601838086 r005 Im(z^2+c),c=-27/94+4/63*I,n=13 4324135613466036 a001 199/610*89^(19/33) 4324135630345931 r005 Im(z^2+c),c=9/29+13/40*I,n=40 4324135643341531 a007 Real Root Of -849*x^4+59*x^3-194*x^2-115*x+21 4324135673919219 r005 Im(z^2+c),c=-9/25+38/61*I,n=63 4324135676424587 m001 (Niven+Porter)/(MertensB2-ln(2)/ln(10)) 4324135678574777 r002 31th iterates of z^2 + 4324135682987967 r005 Re(z^2+c),c=-69/118+9/29*I,n=51 4324135704900800 m001 Pi-Psi(2,1/3)/(BesselK(0,1)-ln(5)) 4324135705631585 r009 Re(z^3+c),c=-13/34+2/29*I,n=9 4324135715402197 m008 (2/3*Pi^3+3/4)/(1/2*Pi^4+5/6) 4324135717131817 r009 Im(z^3+c),c=-27/122+18/37*I,n=35 4324135734128685 m001 1/ln(GAMMA(1/3))*Trott^2*GAMMA(1/4) 4324135763117999 r009 Re(z^3+c),c=-47/102+3/19*I,n=18 4324135768542431 r009 Im(z^3+c),c=-27/122+18/37*I,n=38 4324135771939164 r002 22th iterates of z^2 + 4324135783575661 r005 Im(z^2+c),c=-1/24+31/61*I,n=8 4324135786646524 r009 Im(z^3+c),c=-27/122+18/37*I,n=40 4324135787162423 r005 Im(z^2+c),c=3/62+23/42*I,n=21 4324135790887474 r009 Im(z^3+c),c=-27/122+18/37*I,n=43 4324135791410380 r002 49th iterates of z^2 + 4324135792696372 r009 Im(z^3+c),c=-27/122+18/37*I,n=45 4324135793037937 r009 Im(z^3+c),c=-27/122+18/37*I,n=48 4324135793217242 r009 Im(z^3+c),c=-27/122+18/37*I,n=50 4324135793243870 r009 Im(z^3+c),c=-27/122+18/37*I,n=53 4324135793253673 r009 Im(z^3+c),c=-27/122+18/37*I,n=46 4324135793260657 r009 Im(z^3+c),c=-27/122+18/37*I,n=51 4324135793261517 r009 Im(z^3+c),c=-27/122+18/37*I,n=55 4324135793263496 r009 Im(z^3+c),c=-27/122+18/37*I,n=58 4324135793264741 r009 Im(z^3+c),c=-27/122+18/37*I,n=56 4324135793265222 r009 Im(z^3+c),c=-27/122+18/37*I,n=60 4324135793265358 r009 Im(z^3+c),c=-27/122+18/37*I,n=63 4324135793265444 r009 Im(z^3+c),c=-27/122+18/37*I,n=61 4324135793265654 r009 Im(z^3+c),c=-27/122+18/37*I,n=64 4324135793265789 r009 Im(z^3+c),c=-27/122+18/37*I,n=62 4324135793266683 r009 Im(z^3+c),c=-27/122+18/37*I,n=59 4324135793267928 r009 Im(z^3+c),c=-27/122+18/37*I,n=57 4324135793278025 r009 Im(z^3+c),c=-27/122+18/37*I,n=54 4324135793289181 r009 Im(z^3+c),c=-27/122+18/37*I,n=52 4324135793402442 r009 Im(z^3+c),c=-27/122+18/37*I,n=49 4324135793498236 r009 Im(z^3+c),c=-27/122+18/37*I,n=47 4324135793569577 r009 Im(z^3+c),c=-27/122+18/37*I,n=41 4324135794760323 r009 Im(z^3+c),c=-27/122+18/37*I,n=44 4324135795530151 r009 Im(z^3+c),c=-27/122+18/37*I,n=42 4324135801087850 r009 Im(z^3+c),c=-27/122+18/37*I,n=36 4324135809365085 a007 Real Root Of 309*x^4+800*x^3+822*x^2-456*x-297 4324135809508647 r009 Im(z^3+c),c=-27/122+18/37*I,n=39 4324135810429142 r009 Im(z^3+c),c=-47/110+17/42*I,n=48 4324135813887137 s002 sum(A031485[n]/(pi^n),n=1..infinity) 4324135814996751 r009 Im(z^3+c),c=-27/122+18/37*I,n=37 4324135865132227 a007 Real Root Of 182*x^4+668*x^3-407*x^2+564*x+428 4324135865192463 r002 47th iterates of z^2 + 4324135868895043 m005 (1/3*2^(1/2)+1/12)/(7/11*Catalan+7/10) 4324135877963672 p001 sum(1/(351*n+232)/(125^n),n=0..infinity) 4324135884716330 r005 Re(z^2+c),c=-5/9-19/87*I,n=12 4324135887885657 a007 Real Root Of 246*x^4+866*x^3-662*x^2+918*x+360 4324135904808460 a007 Real Root Of -572*x^4+911*x^3-822*x^2+168*x+320 4324135905459313 g007 Psi(2,11/12)+Psi(2,5/8)+Psi(2,1/6)-Psi(2,6/11) 4324135912227703 r005 Im(z^2+c),c=9/122+11/21*I,n=34 4324135925173378 r009 Im(z^3+c),c=-27/122+18/37*I,n=31 4324135932839001 a001 4181/521*843^(1/4) 4324135961157414 r005 Re(z^2+c),c=5/58+26/37*I,n=3 4324135968949239 r009 Im(z^3+c),c=-27/122+18/37*I,n=34 4324135989333727 m001 (gamma+cos(1/5*Pi))/(-gamma(3)+FellerTornier) 4324135989736472 r005 Re(z^2+c),c=-1+17/56*I,n=50 4324135995923112 r005 Im(z^2+c),c=-7/10+53/144*I,n=22 4324135998186858 r009 Im(z^3+c),c=-27/122+18/37*I,n=32 4324136031665132 r009 Im(z^3+c),c=-11/29+20/29*I,n=13 4324136037710532 m001 1/Zeta(1,2)^2*ln(Ei(1))^2/Zeta(5)^2 4324136048850870 h001 (-8*exp(1/2)-2)/(-exp(1/2)+2) 4324136064898288 r002 31th iterates of z^2 + 4324136068235136 r005 Re(z^2+c),c=-65/122+11/28*I,n=30 4324136077811062 l006 ln(5821/8970) 4324136089252899 a007 Real Root Of -798*x^4-627*x^3+354*x^2+703*x+215 4324136091650632 r005 Im(z^2+c),c=-13/10+35/242*I,n=6 4324136093829166 r005 Re(z^2+c),c=-37/60+4/41*I,n=64 4324136097144438 a001 17711/521*322^(1/24) 4324136099625256 r005 Im(z^2+c),c=9/70+25/52*I,n=45 4324136104862413 m001 Sierpinski^2/Niven^2*ln(cosh(1))^2 4324136105521212 r005 Re(z^2+c),c=-45/34+1/30*I,n=58 4324136122927111 k008 concat of cont frac of 4324136149815973 a007 Real Root Of -519*x^4+904*x^3-363*x^2+157*x+227 4324136153504789 r005 Im(z^2+c),c=5/94+22/41*I,n=55 4324136164874211 r005 Re(z^2+c),c=-19/50+21/44*I,n=7 4324136168861626 a001 1/15124*(1/2*5^(1/2)+1/2)^7*76^(3/16) 4324136178863413 b008 Pi+3*InverseErfc[EulerGamma] 4324136188471065 a001 2584/521*843^(9/28) 4324136189347196 m001 MertensB1*(Kolakoski+Thue) 4324136191293119 k008 concat of cont frac of 4324136191356555 a007 Real Root Of -932*x^4+964*x^3+426*x^2+442*x+222 4324136192475011 m001 Otter*(HeathBrownMoroz+MinimumGamma) 4324136206463862 r002 28th iterates of z^2 + 4324136230568146 r005 Re(z^2+c),c=-9/44+32/49*I,n=52 4324136240960831 r005 Re(z^2+c),c=-21/34+13/126*I,n=12 4324136245102427 m001 exp(Sierpinski)*Porter^2/TwinPrimes 4324136250978802 r009 Im(z^3+c),c=-5/22+35/62*I,n=5 4324136261316813 k006 concat of cont frac of 4324136275902697 m001 GAMMA(7/24)^2/exp(BesselJ(1,1))/sqrt(2) 4324136297949659 r002 11th iterates of z^2 + 4324136299489420 a001 987/521*843^(13/28) 4324136310719231 r009 Im(z^3+c),c=-9/70+24/47*I,n=7 4324136316300805 r005 Re(z^2+c),c=-9/14+62/231*I,n=38 4324136332279720 l006 ln(4381/6751) 4324136335663715 b008 (7*ExpIntegralEi[Khinchin])/13 4324136335810749 r005 Re(z^2+c),c=-9/17+12/31*I,n=16 4324136358326191 a007 Real Root Of -131*x^4-452*x^3+482*x^2-241*x-800 4324136372076290 r005 Im(z^2+c),c=1/20+4/7*I,n=40 4324136373921318 h002 exp(18^(11/12)-3^(1/7)) 4324136373921318 h007 exp(18^(11/12)-3^(1/7)) 4324136376828209 a001 615/124*322^(3/8) 4324136386983060 r005 Im(z^2+c),c=5/16+19/55*I,n=39 4324136414108874 m001 (-ln(Pi)+gamma(3))/(gamma-sin(1)) 4324136417181133 m001 (FransenRobinson+Khinchin)/(gamma+ln(2)) 4324136422791751 r009 Im(z^3+c),c=-29/98+19/41*I,n=12 4324136435707330 r005 Re(z^2+c),c=-19/14+3/125*I,n=20 4324136436211121 k008 concat of cont frac of 4324136456907237 a001 233/1364*3571^(23/34) 4324136460349388 r005 Im(z^2+c),c=5/64+16/31*I,n=36 4324136463800484 m001 1/Riemann3rdZero/Conway*exp(GAMMA(1/4))^2 4324136465773055 r002 49th iterates of z^2 + 4324136482159462 r005 Re(z^2+c),c=-13/20+8/19*I,n=33 4324136483728336 r002 38th iterates of z^2 + 4324136488978945 m001 Pi+ln(2)/ln(10)+QuadraticClass 4324136497384177 m001 (Psi(1,1/3)-ln(2))/(GaussAGM+Totient) 4324136500254899 r005 Im(z^2+c),c=35/114+19/61*I,n=54 4324136506964004 m001 BesselK(1,1)/Zeta(1,-1)/sin(1) 4324136509981388 r002 23th iterates of z^2 + 4324136513577126 r005 Re(z^2+c),c=-21/38+18/53*I,n=17 4324136518354347 m001 (FeigenbaumD-ln(2)/ln(10))/(Paris+ZetaP(2)) 4324136532713272 a007 Real Root Of 583*x^4-909*x^3+796*x^2-706*x-548 4324136534338411 v002 sum(1/(5^n+(32*n^2-34*n+30)),n=1..infinity) 4324136535788727 a007 Real Root Of 264*x^4-807*x^3-81*x^2-471*x-263 4324136536751413 a001 610/521*3571^(15/34) 4324136538934307 r002 13th iterates of z^2 + 4324136561096911 r005 Im(z^2+c),c=9/86+17/32*I,n=32 4324136562730151 r005 Im(z^2+c),c=-35/26+8/103*I,n=3 4324136581041715 r009 Re(z^3+c),c=-3/40+13/21*I,n=22 4324136582835536 r005 Im(z^2+c),c=-5/7+5/79*I,n=42 4324136590736524 m001 RenyiParking*(Psi(2,1/3)-exp(1)) 4324136592515164 r005 Re(z^2+c),c=-14/25+8/19*I,n=54 4324136600246732 r005 Re(z^2+c),c=-55/94+19/60*I,n=56 4324136612077360 m001 ln(FeigenbaumC)*GolombDickman^2*GAMMA(2/3)^2 4324136612134763 r005 Im(z^2+c),c=-21/44+23/51*I,n=3 4324136615345422 a007 Real Root Of 137*x^4+529*x^3-99*x^2+631*x-547 4324136628885425 r005 Re(z^2+c),c=-73/122+14/55*I,n=52 4324136630521439 a003 sin(Pi*25/87)-sin(Pi*32/103) 4324136634627846 m001 FeigenbaumD^2/exp(Riemann2ndZero)^2/Catalan 4324136635533266 a007 Real Root Of 385*x^4-788*x^3-881*x^2-525*x+442 4324136640349902 a001 6765/2207*322^(11/24) 4324136656349872 a001 233/1364*9349^(23/38) 4324136661736614 a001 1/319*(1/2*5^(1/2)+1/2)^4*11^(7/24) 4324136662239290 r005 Re(z^2+c),c=-31/52+1/33*I,n=15 4324136666822699 a001 610/521*9349^(15/38) 4324136675575843 m001 BesselJ(1,1)^2*ln(Riemann1stZero)^2/Pi 4324136682341385 a001 233/1364*24476^(23/42) 4324136683773685 a001 610/521*24476^(5/14) 4324136685767566 a001 233/1364*64079^(1/2) 4324136686008151 a001 610/521*64079^(15/46) 4324136686294114 a001 233/1364*4106118243^(1/4) 4324136686305459 a001 610/521*167761^(3/10) 4324136686345326 a001 610/521*439204^(5/18) 4324136686351536 a001 610/521*7881196^(5/22) 4324136686351550 a001 610/521*20633239^(3/14) 4324136686351552 a001 610/521*2537720636^(1/6) 4324136686351552 a001 610/521*312119004989^(3/22) 4324136686351552 a001 610/521*28143753123^(3/20) 4324136686351552 a001 610/521*228826127^(3/16) 4324136686351553 a001 610/521*33385282^(5/24) 4324136686351865 a001 610/521*1860498^(1/4) 4324136686477254 a001 610/521*103682^(5/16) 4324136687291453 a001 610/521*39603^(15/44) 4324136687309858 m001 1/exp(GAMMA(5/6))^2*GAMMA(1/3)*cosh(1) 4324136687735295 a001 233/1364*39603^(23/44) 4324136692738797 s002 sum(A124010[n]/(n^2*exp(n)-1),n=1..infinity) 4324136693437943 a001 610/521*15127^(3/8) 4324136696075238 r002 15th iterates of z^2 + 4324136697159913 a001 233/1364*15127^(23/40) 4324136702890739 m005 (1/2*5^(1/2)-4/11)/(6/7*Zeta(3)+5/7) 4324136705200304 m001 BesselI(0,2)^Conway-ReciprocalFibonacci 4324136721729078 r009 Im(z^3+c),c=-49/106+23/60*I,n=62 4324136728304883 r005 Re(z^2+c),c=-69/110+10/39*I,n=40 4324136730416648 r005 Re(z^2+c),c=-7/10+64/239*I,n=7 4324136734373526 a007 Real Root Of -773*x^4+910*x^3-727*x^2-140*x+176 4324136740319154 a001 610/521*5778^(5/12) 4324136762125637 r002 32th iterates of z^2 + 4324136769044437 a001 233/1364*5778^(23/36) 4324136821479076 r005 Im(z^2+c),c=7/58+21/43*I,n=36 4324136835939019 l006 ln(2941/4532) 4324136894928538 m001 (5^(1/2))^GAMMA(13/24)+LandauRamanujan2nd 4324136899980295 r005 Re(z^2+c),c=-9/16+14/39*I,n=41 4324136911224468 a007 Real Root Of 71*x^4-427*x^3+757*x^2-600*x-438 4324136914357651 a007 Real Root Of -69*x^4+601*x^3+749*x^2+721*x-498 4324136920876154 m001 1/Niven/Cahen^2/ln(sqrt(Pi))^2 4324136925284049 r005 Im(z^2+c),c=13/110+22/45*I,n=47 4324136933071120 r002 4th iterates of z^2 + 4324136969413023 h002 exp(10^(5/3)-6^(7/10)) 4324136969413023 h007 exp(10^(5/3)-6^(7/10)) 4324136992912662 r009 Im(z^3+c),c=-5/66+25/49*I,n=19 4324137021271750 a003 cos(Pi*38/105)/sin(Pi*31/73) 4324137029933691 r005 Re(z^2+c),c=-37/60+2/15*I,n=40 4324137063564732 m005 (1/2*Catalan+8/11)/(2*Catalan+10/11) 4324137066420131 m001 1/Riemann3rdZero/MinimumGamma^2*ln((2^(1/3))) 4324137080542309 r009 Im(z^3+c),c=-43/110+19/35*I,n=11 4324137084218645 m005 (1/2*exp(1)-2)/(3^(1/2)-1/4) 4324137086454460 r005 Im(z^2+c),c=-85/126+4/9*I,n=20 4324137087560707 r002 31th iterates of z^2 + 4324137091714374 a001 1597/521*843^(11/28) 4324137094239586 r009 Im(z^3+c),c=-5/16+11/24*I,n=35 4324137100468393 r005 Re(z^2+c),c=-13/25+19/43*I,n=42 4324137102488409 a001 610/521*2207^(15/32) 4324137116227377 r005 Re(z^2+c),c=-11/19+17/52*I,n=42 4324137121376755 h001 (7/11*exp(1)+1/2)/(7/11*exp(2)+5/11) 4324137129278878 a007 Real Root Of -66*x^4-80*x^3-91*x^2+893*x+399 4324137129541715 r002 59th iterates of z^2 + 4324137147292493 r005 Re(z^2+c),c=7/27+1/39*I,n=8 4324137162285473 s002 sum(A118691[n]/(exp(n)-1),n=1..infinity) 4324137171911074 m001 BesselJ(1,1)-CareFree*Trott 4324137172232811 k007 concat of cont frac of 4324137184388886 r002 50th iterates of z^2 + 4324137225664228 m001 (Ei(1,1)+ThueMorse)/(BesselK(0,1)-LambertW(1)) 4324137228430398 m001 1/Rabbit/KhintchineLevy^2/exp(Pi) 4324137251513699 a007 Real Root Of 980*x^4+627*x^3+695*x^2-348*x-264 4324137251665226 s001 sum(1/10^(n-1)*A061614[n]/n^n,n=1..infinity) 4324137255092378 r005 Re(z^2+c),c=-43/82+10/43*I,n=3 4324137310629843 r005 Re(z^2+c),c=-79/118+5/48*I,n=19 4324137319504196 m001 (sin(1/12*Pi)-Magata)/(ln(5)-ln(2^(1/2)+1)) 4324137324370645 a001 233/1364*2207^(23/32) 4324137332681765 l006 ln(4442/6845) 4324137334601746 q001 1/23126 4324137344928384 r005 Re(z^2+c),c=-71/118+10/39*I,n=62 4324137357745096 a007 Real Root Of -572*x^4-128*x^3-996*x^2+960*x+611 4324137362665806 m001 (gamma(3)-GaussKuzminWirsing)/ArtinRank2 4324137373845091 r009 Re(z^3+c),c=-21/46+18/61*I,n=2 4324137374445126 a007 Real Root Of -114*x^4-399*x^3+571*x^2+507*x-888 4324137375148612 r005 Im(z^2+c),c=27/106+9/10*I,n=3 4324137393584854 r002 63th iterates of z^2 + 4324137396035218 r005 Re(z^2+c),c=-159/122+3/53*I,n=14 4324137399671245 r005 Re(z^2+c),c=-35/58+17/64*I,n=51 4324137414726305 a001 17711/5778*322^(11/24) 4324137416130105 r005 Re(z^2+c),c=-20/29+9/44*I,n=34 4324137428476923 m001 Riemann3rdZero^2*MertensB1^2*exp(Trott) 4324137429215086 m001 (CareFree+Trott2nd)/(GAMMA(23/24)-exp(1)) 4324137461439929 m002 -6+Pi^4/2+ProductLog[Pi]/2 4324137473521020 r005 Re(z^2+c),c=-43/74+20/61*I,n=56 4324137496633531 b008 5-Sqrt[37]/9 4324137498022372 r005 Re(z^2+c),c=-11/18+3/122*I,n=23 4324137511901694 h001 (3/4*exp(1)+3/11)/(5/8*exp(2)+8/11) 4324137520797437 r002 13th iterates of z^2 + 4324137525389238 a001 329/281*322^(5/8) 4324137527706322 a001 6624/2161*322^(11/24) 4324137529474055 p004 log(34319/22271) 4324137539223289 a007 Real Root Of 224*x^4+939*x^3-106*x^2+311*x+933 4324137544189885 a001 121393/39603*322^(11/24) 4324137545224020 b008 -5+AiryBi[E^(-2)] 4324137546594804 a001 317811/103682*322^(11/24) 4324137546945677 a001 832040/271443*322^(11/24) 4324137546996869 a001 311187/101521*322^(11/24) 4324137547004338 a001 5702887/1860498*322^(11/24) 4324137547005427 a001 14930352/4870847*322^(11/24) 4324137547005586 a001 39088169/12752043*322^(11/24) 4324137547005609 a001 14619165/4769326*322^(11/24) 4324137547005613 a001 267914296/87403803*322^(11/24) 4324137547005613 a001 701408733/228826127*322^(11/24) 4324137547005613 a001 1836311903/599074578*322^(11/24) 4324137547005613 a001 686789568/224056801*322^(11/24) 4324137547005613 a001 12586269025/4106118243*322^(11/24) 4324137547005613 a001 32951280099/10749957122*322^(11/24) 4324137547005613 a001 86267571272/28143753123*322^(11/24) 4324137547005613 a001 32264490531/10525900321*322^(11/24) 4324137547005613 a001 591286729879/192900153618*322^(11/24) 4324137547005613 a001 1548008755920/505019158607*322^(11/24) 4324137547005613 a001 1515744265389/494493258286*322^(11/24) 4324137547005613 a001 2504730781961/817138163596*322^(11/24) 4324137547005613 a001 956722026041/312119004989*322^(11/24) 4324137547005613 a001 365435296162/119218851371*322^(11/24) 4324137547005613 a001 139583862445/45537549124*322^(11/24) 4324137547005613 a001 53316291173/17393796001*322^(11/24) 4324137547005613 a001 20365011074/6643838879*322^(11/24) 4324137547005613 a001 7778742049/2537720636*322^(11/24) 4324137547005613 a001 2971215073/969323029*322^(11/24) 4324137547005613 a001 1134903170/370248451*322^(11/24) 4324137547005614 a001 433494437/141422324*322^(11/24) 4324137547005615 a001 165580141/54018521*322^(11/24) 4324137547005624 a001 63245986/20633239*322^(11/24) 4324137547005685 a001 24157817/7881196*322^(11/24) 4324137547006101 a001 9227465/3010349*322^(11/24) 4324137547008954 a001 3524578/1149851*322^(11/24) 4324137547028507 a001 1346269/439204*322^(11/24) 4324137547162529 a001 514229/167761*322^(11/24) 4324137548081126 a001 196418/64079*322^(11/24) 4324137553419504 a007 Real Root Of 462*x^4-966*x^3+782*x^2-917*x-637 4324137554377287 a001 75025/24476*322^(11/24) 4324137556101156 h001 (-9*exp(3/2)+3)/(-7*exp(2/3)+5) 4324137578211797 b008 -4+E^5/Pi 4324137578503801 l006 ln(5943/9158) 4324137579521430 m001 LandauRamanujan2nd^polylog(4,1/2)/MadelungNaCl 4324137592944177 a007 Real Root Of -661*x^4+907*x^3+185*x^2+782*x+400 4324137597531815 a001 28657/9349*322^(11/24) 4324137607231986 m001 ErdosBorwein-Niven^(ln(2)/ln(10)) 4324137625382308 r009 Re(z^3+c),c=-43/82+11/62*I,n=58 4324137628700229 a007 Real Root Of -903*x^4+209*x^3+495*x^2+997*x-509 4324137641985020 m001 (exp(1)+5^(1/2))/(-BesselI(1,2)+Niven) 4324137650427852 m006 (1/6*exp(Pi)-5)/(3/4*Pi-5) 4324137667705571 r005 Re(z^2+c),c=-79/114+6/41*I,n=27 4324137675105831 m001 (Zeta(1/2)-gamma(3))/(MertensB1+ZetaP(4)) 4324137682816767 r009 Im(z^3+c),c=-27/122+18/37*I,n=27 4324137684818596 r009 Im(z^3+c),c=-27/122+18/37*I,n=29 4324137686010484 m005 (1/3*2^(1/2)-1/11)/(1/6*Catalan+8/11) 4324137691668294 r005 Im(z^2+c),c=-37/118+37/63*I,n=25 4324137695773171 m001 exp(-Pi)+HardyLittlewoodC3^exp(Pi) 4324137696823462 r005 Im(z^2+c),c=25/94+11/31*I,n=31 4324137703458463 a007 Real Root Of 687*x^4-809*x^3+975*x^2-366*x-430 4324137703918977 r005 Im(z^2+c),c=9/110+33/64*I,n=63 4324137711003696 r009 Im(z^3+c),c=-27/122+18/37*I,n=26 4324137712345071 r002 51th iterates of z^2 + 4324137715665624 a007 Real Root Of -445*x^4-37*x^3-733*x^2+135*x+208 4324137721859764 r009 Im(z^3+c),c=-1/106+20/39*I,n=11 4324137723614416 m001 Tribonacci^2/MinimumGamma^2/ln((3^(1/3))) 4324137728734252 r005 Re(z^2+c),c=-21/34+2/31*I,n=20 4324137733229405 m001 (Zeta(5)-cos(1/12*Pi))/(Zeta(1,2)-CareFree) 4324137734056708 r005 Im(z^2+c),c=-49/36+5/37*I,n=7 4324137746389447 a007 Real Root Of -245*x^4-858*x^3+809*x^2-343*x-325 4324137747802335 r002 63th iterates of z^2 + 4324137762736624 b008 55*InverseGudermannian[Pi/40] 4324137771896975 r002 12th iterates of z^2 + 4324137785879714 m001 (sin(1/5*Pi)-Conway)/(Trott-Trott2nd) 4324137789494259 r005 Im(z^2+c),c=17/56+19/60*I,n=59 4324137790551487 a001 29/76*(1/2*5^(1/2)+1/2)^14*76^(3/5) 4324137791520882 r002 15th iterates of z^2 + 4324137796425828 r002 24th iterates of z^2 + 4324137797507499 a003 cos(Pi*20/99)-cos(Pi*14/37) 4324137801754726 m001 1/RenyiParking*MadelungNaCl/ln(GAMMA(11/12)) 4324137814672279 p001 sum(1/(575*n+234)/(25^n),n=0..infinity) 4324137814697065 m008 (1/4*Pi^3+2)/(3/4*Pi^5-4) 4324137828393323 r005 Im(z^2+c),c=1/32+31/56*I,n=44 4324137847245465 m001 exp(Robbin)*Backhouse^2*GAMMA(23/24)^2 4324137852401057 a007 Real Root Of -770*x^4+587*x^3+193*x^2+320*x-195 4324137860062631 p004 log(29881/19391) 4324137893317377 a001 10946/3571*322^(11/24) 4324137906791231 r005 Re(z^2+c),c=-5/8+2/229*I,n=30 4324137931034482 q001 627/1450 4324137954683106 h001 (3/10*exp(1)+4/9)/(3/4*exp(1)+7/8) 4324137956827608 r009 Im(z^3+c),c=-45/122+10/23*I,n=26 4324137964249994 r009 Re(z^3+c),c=-67/126+9/35*I,n=17 4324137965286844 a007 Real Root Of -165*x^4-734*x^3-243*x^2-678*x-47 4324137988426977 r009 Im(z^3+c),c=-67/126+23/55*I,n=33 4324137997593160 r002 62th iterates of z^2 + 4324138008684238 r002 28th iterates of z^2 + 4324138009003517 a007 Real Root Of 491*x^4-772*x^3+114*x^2-946*x+433 4324138021281853 a003 sin(Pi*12/83)-sin(Pi*34/101) 4324138027297091 r005 Re(z^2+c),c=-7/10+8/163*I,n=20 4324138044788442 m001 KhinchinLevy/(GlaisherKinkelin+MinimumGamma) 4324138055628978 r005 Im(z^2+c),c=3/122+4/7*I,n=46 4324138060555500 m001 (Lehmer+Sierpinski)/(ln(Pi)-HardyLittlewoodC5) 4324138061231756 s002 sum(A185681[n]/(n!^3),n=1..infinity) 4324138064135693 m001 (ln(2)+Lehmer)/(Rabbit-ThueMorse) 4324138073264377 r009 Im(z^3+c),c=-29/90+5/11*I,n=21 4324138140084226 r005 Re(z^2+c),c=-79/126+2/57*I,n=24 4324138162891631 m002 -4+4*Cosh[Pi]+Log[Pi]^(-1) 4324138170927619 m001 1/GAMMA(23/24)^2/FeigenbaumD^2*ln(sqrt(Pi))^2 4324138176527462 a007 Real Root Of 448*x^4+982*x^3+343*x^2-727*x-32 4324138177052831 m001 1/(2^(1/3))^2/FeigenbaumC/exp(Zeta(5))^2 4324138180729285 a007 Real Root Of -116*x^4-684*x^3-781*x^2-116*x-646 4324138193744491 r002 46th iterates of z^2 + 4324138194910988 r009 Im(z^3+c),c=-45/94+19/51*I,n=62 4324138195728501 r002 25th iterates of z^2 + 4324138217156468 a001 (5^(1/4)+1)^(572/49) 4324138228163427 r002 13th iterates of z^2 + 4324138252934724 r005 Re(z^2+c),c=-65/46+7/18*I,n=2 4324138255142382 r005 Re(z^2+c),c=7/30+2/5*I,n=59 4324138265915357 r005 Im(z^2+c),c=23/122+16/37*I,n=40 4324138266100705 m001 BesselJ(0,1)^2/ln(Lehmer)/sin(Pi/12) 4324138267147939 m004 (Sqrt[5]*Pi)/6-30*Csc[Sqrt[5]*Pi] 4324138275725195 r005 Re(z^2+c),c=-21/34+8/99*I,n=54 4324138281804397 m001 1/GAMMA(1/6)^2*exp(BesselK(0,1))^2*gamma 4324138305979772 l006 ln(1501/2313) 4324138326162759 r009 Im(z^3+c),c=-2/9+27/55*I,n=8 4324138328589023 a008 Real Root of (-3-5*x+3*x^2-2*x^3+2*x^4-3*x^5) 4324138339177451 a003 cos(Pi*32/97)-sin(Pi*34/87) 4324138346022737 r009 Im(z^3+c),c=-12/29+30/61*I,n=12 4324138381823551 r009 Im(z^3+c),c=-13/58+31/56*I,n=5 4324138386801076 r005 Re(z^2+c),c=-53/86+3/29*I,n=59 4324138400724489 r005 Re(z^2+c),c=-119/114+1/26*I,n=12 4324138461914591 r005 Im(z^2+c),c=-27/106+41/55*I,n=8 4324138474529298 m005 (1/2*Pi+5/6)/(3*3^(1/2)+4/11) 4324138481971685 p003 LerchPhi(1/10,5,58/49) 4324138502052799 r005 Im(z^2+c),c=-9/14+25/42*I,n=5 4324138518893780 r005 Re(z^2+c),c=-61/114+19/45*I,n=54 4324138522493434 r005 Im(z^2+c),c=9/118+13/25*I,n=56 4324138528345847 r005 Im(z^2+c),c=-1/44+11/19*I,n=53 4324138542058269 h001 (5/9*exp(1)+7/10)/(4/7*exp(2)+8/9) 4324138545355322 m001 OneNinth^2/LandauRamanujan^2*exp(GAMMA(7/24)) 4324138579051217 m001 1/exp(Zeta(3))*Si(Pi)*log(1+sqrt(2))^2 4324138600413918 r005 Im(z^2+c),c=1/94+9/16*I,n=57 4324138620030250 m001 (Pi-1/BesselK(0,1))/Pi^(1/2) 4324138623663150 m002 -Pi-Pi^3/5+5*Coth[Pi] 4324138627711056 a001 29/89*317811^(10/49) 4324138627950928 m001 (5^(1/2)-Bloch*PrimesInBinary)/Bloch 4324138636117117 s001 sum(exp(-2*Pi)^n*A052073[n],n=1..infinity) 4324138637288549 r005 Im(z^2+c),c=23/86+19/53*I,n=41 4324138637956135 a001 2/233*377^(37/56) 4324138645651924 s002 sum(A142446[n]/((10^n-1)/n),n=1..infinity) 4324138648653648 r005 Re(z^2+c),c=-13/21+3/56*I,n=47 4324138651014893 a001 233/521*521^(19/26) 4324138662638091 r005 Im(z^2+c),c=5/28+32/61*I,n=3 4324138678343717 a003 cos(Pi*36/115)-sin(Pi*30/67) 4324138687678328 m001 1/ln(BesselJ(1,1))*(2^(1/3))^2*sqrt(5) 4324138687955250 p004 log(34883/22637) 4324138707481882 r002 31th iterates of z^2 + 4324138711755162 r009 Re(z^3+c),c=-69/122+31/51*I,n=40 4324138716161204 m001 KhinchinHarmonic^(ln(2)/ln(10))+Pi 4324138719865662 a007 Real Root Of -176*x^4-869*x^3-528*x^2-322*x-248 4324138725314338 a007 Real Root Of -34*x^4+76*x^3+998*x^2+206*x+262 4324138727237797 r005 Im(z^2+c),c=3/22+17/36*I,n=35 4324138730816738 r005 Re(z^2+c),c=-35/24+1/54*I,n=4 4324138737036355 r009 Im(z^3+c),c=-17/110+1/2*I,n=11 4324138738719921 r005 Im(z^2+c),c=1/114+12/23*I,n=15 4324138746308641 a007 Real Root Of -79*x^4-263*x^3+178*x^2-902*x-873 4324138748299859 r005 Im(z^2+c),c=11/56+16/39*I,n=18 4324138756177289 r005 Im(z^2+c),c=17/58+9/31*I,n=14 4324138758357337 r005 Re(z^2+c),c=-19/34+27/107*I,n=12 4324138759080495 r009 Im(z^3+c),c=-25/48+19/62*I,n=26 4324138770486818 a007 Real Root Of -87*x^4-155*x^3-205*x^2+153*x+95 4324138781469639 a007 Real Root Of -310*x^4-129*x^3-697*x^2+255*x+241 4324138783410401 r002 31th iterates of z^2 + 4324138788222781 r005 Re(z^2+c),c=-14/23+1/38*I,n=21 4324138789188395 m001 1/MadelungNaCl^2/exp(CareFree)^2*cos(1) 4324138818336687 a007 Real Root Of 975*x^4-264*x^3-223*x^2-366*x-172 4324138829031997 a001 76*(1/2*5^(1/2)+1/2)^20*18^(11/24) 4324138835668707 m001 1/BesselJ(0,1)/Champernowne^2*exp(cos(Pi/5))^2 4324138842469608 a007 Real Root Of 178*x^4+976*x^3+683*x^2-998*x-406 4324138874161904 m001 2^(1/3)+Pi*csc(5/24*Pi)/GAMMA(19/24)-MertensB3 4324138878215571 r005 Im(z^2+c),c=-9/10+61/223*I,n=19 4324138881565837 r005 Im(z^2+c),c=-1/74+35/61*I,n=53 4324138891571353 m001 gamma^3*ln(ErdosBorwein)^2 4324138902367056 r005 Re(z^2+c),c=-41/66+11/41*I,n=42 4324138907196130 a001 233/2207*843^(25/28) 4324138909260054 r005 Re(z^2+c),c=-19/31+1/45*I,n=25 4324138909348817 a007 Real Root Of 264*x^4+985*x^3-757*x^2-210*x+587 4324138922615413 a007 Real Root Of 817*x^4-947*x^3-913*x^2-854*x+588 4324138952827618 m001 GAMMA(1/4)^2/OneNinth/ln(sin(Pi/5))^2 4324138961887680 r002 50th iterates of z^2 + 4324138967590191 r009 Re(z^3+c),c=-41/78+7/31*I,n=53 4324138972734477 a007 Real Root Of -758*x^4+590*x^3-807*x^2+978*x+648 4324138982450934 a003 cos(Pi*40/111)/sin(Pi*11/25) 4324138982535261 a007 Real Root Of -545*x^4+781*x^3-133*x^2+837*x+469 4324139005738750 r005 Im(z^2+c),c=29/114+25/53*I,n=61 4324139014737395 m001 (gamma+CopelandErdos)/(Niven+ZetaP(3)) 4324139015531711 r009 Im(z^3+c),c=-7/110+23/45*I,n=19 4324139018822209 l006 ln(6065/9346) 4324139020799546 r002 22th iterates of z^2 + 4324139043599547 a003 cos(Pi*25/76)-sin(Pi*35/89) 4324139045007939 s001 sum(exp(-Pi/2)^n*A251709[n],n=1..infinity) 4324139067654714 a007 Real Root Of -705*x^4+257*x^3-120*x^2+35*x+83 4324139079527660 r005 Re(z^2+c),c=-73/118+2/37*I,n=57 4324139088109377 r005 Re(z^2+c),c=-49/78+7/25*I,n=47 4324139093255054 r009 Im(z^3+c),c=-23/122+28/53*I,n=5 4324139110261705 a001 610/3*7^(19/49) 4324139113987226 m001 Si(Pi)/(KomornikLoreti^Zeta(1/2)) 4324139144331169 m001 (BesselI(0,1)-gamma(3))/(Backhouse+Porter) 4324139151161524 m001 (3^(1/3)+Ei(1,1))/(FeigenbaumAlpha+Totient) 4324139155007615 r005 Im(z^2+c),c=11/94+31/64*I,n=23 4324139156210908 m005 (1/2*gamma-4/7)/(7/10*gamma+1/4) 4324139169734125 a007 Real Root Of -358*x^4+744*x^3+888*x^2+542*x+141 4324139171018973 r005 Re(z^2+c),c=-13/10+8/177*I,n=48 4324139182951293 m001 ln(GAMMA(1/6))*Conway*GAMMA(11/24) 4324139202538740 r009 Im(z^3+c),c=-31/60+13/48*I,n=23 4324139221486219 k006 concat of cont frac of 4324139223547578 a003 cos(Pi*37/120)-sin(Pi*47/97) 4324139225635379 m001 1/ln(Tribonacci)/Porter^2*LambertW(1) 4324139225888552 a007 Real Root Of 61*x^4+84*x^3-928*x^2-616*x+153 4324139232129567 r005 Re(z^2+c),c=-37/54+3/16*I,n=43 4324139235316663 a001 28143753123/2*2178309^(1/13) 4324139235316677 a001 17393796001/2*1134903170^(1/13) 4324139235316677 a001 5374978561*591286729879^(1/13) 4324139239122302 a001 22768774562*4181^(1/13) 4324139253260519 l006 ln(4564/7033) 4324139266571344 r005 Im(z^2+c),c=-25/34+18/127*I,n=40 4324139266588437 r005 Re(z^2+c),c=-37/66+2/25*I,n=7 4324139269210854 r005 Im(z^2+c),c=15/74+22/31*I,n=4 4324139276170634 a007 Real Root Of 4*x^4+151*x^3-944*x^2+248*x-162 4324139279282536 a001 377/843*322^(19/24) 4324139290568932 p001 sum((-1)^n/(490*n+229)/(32^n),n=0..infinity) 4324139296376242 m001 TwinPrimes^GAMMA(1/4)*Zeta(3)^GAMMA(1/4) 4324139311983938 a001 969323029/377*2^(3/4) 4324139315363037 m001 StronglyCareFree*(BesselJ(0,1)-exp(-1/2*Pi)) 4324139327363123 a001 2/19*64079^(6/47) 4324139348484896 a001 2/987*7778742049^(16/19) 4324139359265294 p001 sum((-1)^n/(516*n+227)/(16^n),n=0..infinity) 4324139362323444 r002 37th iterates of z^2 + 4324139368269210 m001 (-Kac+ZetaP(3))/(Si(Pi)-cos(1/5*Pi)) 4324139374139946 m001 Zeta(1/2)^cos(1/5*Pi)/Pi 4324139374139946 m001 Zeta(1/2)^cos(Pi/5)/Pi 4324139375817680 m001 (exp(1/exp(1))*Bloch-Mills)/exp(1/exp(1)) 4324139385821664 r005 Im(z^2+c),c=-5/82+33/56*I,n=45 4324139393966308 m002 -5/Log[Pi]+(5*Sech[Pi])/Pi^2 4324139409695743 r009 Re(z^3+c),c=-23/48+9/55*I,n=19 4324139426721061 r005 Re(z^2+c),c=-59/98+5/22*I,n=41 4324139444638401 a007 Real Root Of 144*x^4-68*x^3-286*x^2-521*x-22 4324139474988599 m002 2+(5*Sinh[Pi])/(E^Pi*ProductLog[Pi]) 4324139496112356 a008 Real Root of x^4-x^3-23*x^2+41*x-16 4324139500202844 r009 Im(z^3+c),c=-13/36+25/57*I,n=24 4324139560265470 h001 (-2*exp(4)+8)/(-12*exp(3)+7) 4324139562608437 v002 sum(1/(5^n*(17*n^2-40*n+78)),n=1..infinity) 4324139565756108 r002 62th iterates of z^2 + 4324139575172243 r005 Im(z^2+c),c=-5/8+10/23*I,n=15 4324139582583739 a001 10946/521*322^(1/8) 4324139613068655 r005 Re(z^2+c),c=-11/18+7/43*I,n=50 4324139630625758 r005 Im(z^2+c),c=17/40+11/31*I,n=5 4324139688699078 a001 17711/3*322^(10/29) 4324139695609031 r005 Re(z^2+c),c=39/122+9/25*I,n=37 4324139707941993 r005 Im(z^2+c),c=7/30+16/41*I,n=55 4324139712218571 r005 Re(z^2+c),c=-7/13+9/14*I,n=13 4324139714054826 r005 Im(z^2+c),c=5/58+30/59*I,n=34 4324139714454636 r009 Re(z^3+c),c=-16/31+13/32*I,n=58 4324139717379484 r009 Re(z^3+c),c=-5/11+8/55*I,n=27 4324139717468258 l006 ln(3063/4720) 4324139722982674 m001 GAMMA(1/24)/KhintchineHarmonic^2/exp(gamma) 4324139735069652 r002 53th iterates of z^2 + 4324139741793858 r005 Re(z^2+c),c=-17/28+2/11*I,n=21 4324139760605855 a007 Real Root Of -528*x^4-823*x^3-472*x^2+587*x+294 4324139766779271 r009 Im(z^3+c),c=-35/114+31/50*I,n=10 4324139805916096 r005 Re(z^2+c),c=-59/106+4/25*I,n=5 4324139806484803 a007 Real Root Of 6*x^4+272*x^3+549*x^2+256*x-618 4324139809571203 p004 log(35447/23003) 4324139816010257 a007 Real Root Of -70*x^4-60*x^3+880*x^2-515*x+941 4324139828115952 r005 Im(z^2+c),c=-9/25+16/27*I,n=27 4324139831639156 r009 Im(z^3+c),c=-23/54+25/47*I,n=17 4324139833225790 r009 Im(z^3+c),c=-5/12+23/56*I,n=39 4324139844474621 a007 Real Root Of -51*x^4+433*x^3-110*x^2+535*x-244 4324139845366592 a003 cos(Pi*7/100)/sin(Pi*5/69) 4324139858833844 r005 Re(z^2+c),c=-21/34+9/119*I,n=48 4324139869478748 m001 (exp(1)-ln(5))/(Niven+Thue) 4324139891522866 m001 log(1+sqrt(2))*Conway^2/exp(sqrt(Pi))^2 4324139900350911 a007 Real Root Of -651*x^4+278*x^3-844*x^2-199*x+117 4324139900738165 a007 Real Root Of 713*x^4-607*x^3+584*x^2+685*x+113 4324139908624490 r005 Im(z^2+c),c=1/86+29/54*I,n=21 4324139920662846 a001 4181/1364*322^(11/24) 4324139931434004 p001 sum((-1)^n/(536*n+415)/n/(24^n),n=1..infinity) 4324139946058607 a001 610/521*843^(15/28) 4324139972855245 a007 Real Root Of 282*x^4+83*x^3-312*x^2-618*x+309 4324139974326444 r005 Im(z^2+c),c=-49/114+1/14*I,n=20 4324139980191956 a007 Real Root Of -822*x^4+308*x^3-736*x^2+936*x+596 4324139992353528 r005 Im(z^2+c),c=5/66+23/50*I,n=9 4324139997925133 r005 Re(z^2+c),c=-41/62+14/43*I,n=14 4324140015183611 r002 46th iterates of z^2 + 4324140018637164 r009 Re(z^3+c),c=-1/21+11/57*I,n=3 4324140027495447 m001 (HardyLittlewoodC5+Kac)/(RenyiParking-Sarnak) 4324140029849182 m001 (Lehmer-Magata)/(Robbin-Trott) 4324140030125631 a007 Real Root Of 73*x^4+337*x^3+153*x^2+335*x+313 4324140033238681 m001 Robbin^LandauRamanujan*Robbin^BesselI(0,1) 4324140052160279 a007 Real Root Of 19*x^4+829*x^3+334*x^2+573*x-343 4324140053848977 r009 Im(z^3+c),c=-31/70+25/64*I,n=19 4324140061774525 a001 76/377*317811^(25/59) 4324140077443108 r005 Re(z^2+c),c=-7/11+1/61*I,n=24 4324140079940963 a001 123/17711*377^(39/56) 4324140096027287 r002 47th iterates of z^2 + 4324140112244155 r005 Re(z^2+c),c=7/22+23/52*I,n=10 4324140115593789 r005 Re(z^2+c),c=-7/10+239/249*I,n=3 4324140117524500 r005 Re(z^2+c),c=-29/48+10/49*I,n=40 4324140157540110 r002 5th iterates of z^2 + 4324140158119800 r005 Re(z^2+c),c=-109/98+14/57*I,n=14 4324140175553451 l006 ln(4625/7127) 4324140184184755 a001 4181/2207*322^(13/24) 4324140191605309 a007 Real Root Of -90*x^4-123*x^3+975*x^2-695*x+285 4324140199517433 a007 Real Root Of 34*x^4-556*x^3-625*x^2-431*x+347 4324140213160779 a001 28143753123/377*102334155^(2/21) 4324140213160779 a001 10749957122/377*2504730781961^(2/21) 4324140213366234 r009 Im(z^3+c),c=-41/114+23/52*I,n=15 4324140217872506 a001 73681302247/377*4181^(2/21) 4324140224923071 a007 Real Root Of 745*x^4+462*x^3-901*x^2-837*x+467 4324140232120400 k007 concat of cont frac of 4324140234668807 r005 Re(z^2+c),c=-51/70+9/58*I,n=29 4324140279196458 q001 127/2937 4324140281469177 m001 (ln(Pi)-Stephens)^(2*Pi/GAMMA(5/6)) 4324140287536537 r009 Im(z^3+c),c=-3/122+19/37*I,n=10 4324140302726478 r002 55th iterates of z^2 + 4324140311905284 m001 (3^(1/3)-cos(1))/(FibonacciFactorial+Thue) 4324140315458419 r002 21th iterates of z^2 + 4324140322059218 r009 Im(z^3+c),c=-11/26+24/59*I,n=28 4324140331638031 r005 Im(z^2+c),c=-49/102+25/47*I,n=58 4324140379175178 r005 Re(z^2+c),c=-3/5+1/55*I,n=17 4324140384053869 r002 62th iterates of z^2 + 4324140391720381 r002 58th iterates of z^2 + 4324140392109381 m001 (GAMMA(7/12)-Backhouse)/(Zeta(1/2)-Ei(1,1)) 4324140393794300 m005 (1/2*Zeta(3)-5/8)/(1/5*exp(1)+5) 4324140393837363 r005 Re(z^2+c),c=-31/90+5/11*I,n=2 4324140402337821 l006 ln(6187/9534) 4324140434117811 m001 Pi^2*Catalan^2*exp(sqrt(1+sqrt(3))) 4324140443227900 a001 281/7*121393^(23/29) 4324140444079210 m001 TreeGrowth2nd/FeigenbaumC*exp(sin(Pi/5)) 4324140451507782 r005 Im(z^2+c),c=21/74+19/56*I,n=53 4324140459419048 m001 1/ln(Paris)/LaplaceLimit^2*TreeGrowth2nd 4324140459781683 r009 Im(z^3+c),c=-15/32+16/35*I,n=25 4324140469044459 m001 Zeta(3)*Zeta(1,2)/ln(sinh(1))^2 4324140473968891 a001 322/317811*10946^(28/43) 4324140501171868 r009 Im(z^3+c),c=-29/114+41/59*I,n=33 4324140519048990 r009 Im(z^3+c),c=-5/19+13/28*I,n=7 4324140524738769 a001 4/7*(1/2*5^(1/2)+1/2)^2*7^(6/11) 4324140547342853 r002 12th iterates of z^2 + 4324140547580422 m005 (1/2*Catalan+3/11)/(10/11*Catalan+6/7) 4324140553277496 m006 (2/3*ln(Pi)+1/6)/(2/5*exp(2*Pi)+5/6) 4324140562451176 m001 (Zeta(1/2)-Tetranacci)/(ZetaP(4)+ZetaQ(4)) 4324140564411838 m001 (2^(1/2)+1)/(-Ei(1)+Tribonacci) 4324140566400769 m001 ln((2^(1/3)))^2/RenyiParking/GAMMA(17/24)^2 4324140568676985 a001 233/3571*843^(27/28) 4324140569723645 m001 gamma(2)+gamma(3)+BesselJ(1,1) 4324140574693350 a007 Real Root Of -214*x^4-746*x^3+830*x^2+170*x-282 4324140593502459 r005 Re(z^2+c),c=-4/7+17/66*I,n=15 4324140606793243 r009 Im(z^3+c),c=-47/110+19/47*I,n=31 4324140609379489 m001 exp(Porter)/GlaisherKinkelin^2*GAMMA(13/24) 4324140612079716 r005 Im(z^2+c),c=-5/4+47/194*I,n=6 4324140620233052 a005 (1/sin(108/227*Pi))^1299 4324140629071447 a001 322/5*89^(14/33) 4324140641586107 a007 Real Root Of -859*x^4+682*x^3-644*x^2-191*x+123 4324140669873771 r005 Re(z^2+c),c=-21/34+12/91*I,n=32 4324140684885246 r002 60th iterates of z^2 + 4324140685311759 p003 LerchPhi(1/6,1,353/134) 4324140690364548 r005 Re(z^2+c),c=-71/126+23/63*I,n=50 4324140696944475 m001 Lehmer^Grothendieck*ln(3) 4324140701446624 r005 Re(z^2+c),c=-17/28+7/32*I,n=50 4324140716524287 p003 LerchPhi(1/8,6,559/225) 4324140724656855 r005 Re(z^2+c),c=-61/102+17/58*I,n=61 4324140744169440 r009 Im(z^3+c),c=-23/114+26/53*I,n=2 4324140747285320 m001 (Stephens-Totient)/(arctan(1/3)+exp(1/exp(1))) 4324140764301047 r005 Im(z^2+c),c=-13/106+37/60*I,n=61 4324140777017282 p004 log(21569/13997) 4324140785725395 r005 Im(z^2+c),c=31/122+19/53*I,n=25 4324140788872279 m001 Catalan^PrimesInBinary+ReciprocalFibonacci 4324140793405354 r005 Im(z^2+c),c=19/106+18/41*I,n=62 4324140803800971 r005 Im(z^2+c),c=-5/82+31/52*I,n=35 4324140809706706 m005 (1/2*Pi+4/5)/(6/11*exp(1)+4) 4324140810052643 r009 Im(z^3+c),c=-35/86+19/46*I,n=12 4324140817204960 m005 (1/2*Catalan-9/11)/(6/7*exp(1)+6) 4324140818637923 r001 14i'th iterates of 2*x^2-1 of 4324140831549294 a007 Real Root Of 176*x^4+970*x^3+967*x^2+360*x+370 4324140846645293 r002 18th iterates of z^2 + 4324140862521502 m001 1/ln(GAMMA(11/12))^2*BesselK(0,1)/gamma^2 4324140863985546 r005 Re(z^2+c),c=27/86+29/54*I,n=43 4324140877385724 m001 (Kolakoski-Trott)/(Kac+KhinchinLevy) 4324140880204274 r005 Re(z^2+c),c=29/98+3/53*I,n=3 4324140896054045 p004 log(36011/23369) 4324140900166668 a001 5473/2889*322^(13/24) 4324140922244588 r005 Im(z^2+c),c=9/110+28/53*I,n=35 4324140927803494 a007 Real Root Of -383*x^4+600*x^3+147*x^2+598*x+293 4324140930225741 m005 (1/2*Catalan-4)/(29/90+2/9*5^(1/2)) 4324140947258676 r004 Im(z^2+c),c=7/22+9/17*I,z(0)=exp(3/8*I*Pi),n=2 4324140954858396 g002 Psi(4/11)+Psi(5/7)+Psi(2/5)-Psi(4/9) 4324140956361720 r009 Im(z^3+c),c=-11/64+32/49*I,n=2 4324140972046172 r005 Im(z^2+c),c=4/15+5/14*I,n=60 4324140972567642 a007 Real Root Of 38*x^4-971*x^3-996*x^2-487*x+474 4324140995049377 r005 Im(z^2+c),c=-21/34+28/65*I,n=8 4324141000710965 s002 sum(A209730[n]/(n^3*2^n+1),n=1..infinity) 4324141004627042 a001 28657/15127*322^(13/24) 4324141006646484 m001 (GAMMA(2/3)+(1+3^(1/2))^(1/2))/(Pi-Psi(1,1/3)) 4324141012951310 r005 Im(z^2+c),c=-11/10+1/208*I,n=5 4324141018412109 a001 1/267084832*2178309^(22/23) 4324141019867606 a001 75025/39603*322^(13/24) 4324141022091174 a001 98209/51841*322^(13/24) 4324141022415588 a001 514229/271443*322^(13/24) 4324141022462920 a001 1346269/710647*322^(13/24) 4324141022469825 a001 1762289/930249*322^(13/24) 4324141022470833 a001 9227465/4870847*322^(13/24) 4324141022470980 a001 24157817/12752043*322^(13/24) 4324141022471001 a001 31622993/16692641*322^(13/24) 4324141022471004 a001 165580141/87403803*322^(13/24) 4324141022471005 a001 433494437/228826127*322^(13/24) 4324141022471005 a001 567451585/299537289*322^(13/24) 4324141022471005 a001 2971215073/1568397607*322^(13/24) 4324141022471005 a001 7778742049/4106118243*322^(13/24) 4324141022471005 a001 10182505537/5374978561*322^(13/24) 4324141022471005 a001 53316291173/28143753123*322^(13/24) 4324141022471005 a001 139583862445/73681302247*322^(13/24) 4324141022471005 a001 182717648081/96450076809*322^(13/24) 4324141022471005 a001 956722026041/505019158607*322^(13/24) 4324141022471005 a001 10610209857723/5600748293801*322^(13/24) 4324141022471005 a001 591286729879/312119004989*322^(13/24) 4324141022471005 a001 225851433717/119218851371*322^(13/24) 4324141022471005 a001 21566892818/11384387281*322^(13/24) 4324141022471005 a001 32951280099/17393796001*322^(13/24) 4324141022471005 a001 12586269025/6643838879*322^(13/24) 4324141022471005 a001 1201881744/634430159*322^(13/24) 4324141022471005 a001 1836311903/969323029*322^(13/24) 4324141022471005 a001 701408733/370248451*322^(13/24) 4324141022471005 a001 66978574/35355581*322^(13/24) 4324141022471006 a001 102334155/54018521*322^(13/24) 4324141022471014 a001 39088169/20633239*322^(13/24) 4324141022471070 a001 3732588/1970299*322^(13/24) 4324141022471455 a001 5702887/3010349*322^(13/24) 4324141022474093 a001 2178309/1149851*322^(13/24) 4324141022492172 a001 208010/109801*322^(13/24) 4324141022616087 a001 317811/167761*322^(13/24) 4324141023465415 a001 121393/64079*322^(13/24) 4324141025348320 r009 Im(z^3+c),c=-29/60+23/61*I,n=34 4324141029286792 a001 11592/6119*322^(13/24) 4324141061231855 m001 (Thue-ZetaQ(4))/(arctan(1/3)-Champernowne) 4324141065904151 r002 6th iterates of z^2 + 4324141069187106 a001 17711/9349*322^(13/24) 4324141073834406 l006 ln(1562/2407) 4324141086171294 m001 sin(1/12*Pi)/(ZetaR(2)^FeigenbaumD) 4324141093846478 m001 1/ln(PrimesInBinary)*MertensB1^2*GAMMA(1/6) 4324141102116232 k007 concat of cont frac of 4324141104947194 r002 27th iterates of z^2 + 4324141109792450 h005 exp(cos(Pi*9/41)+cos(Pi*10/39)) 4324141111222125 k007 concat of cont frac of 4324141111512611 k006 concat of cont frac of 4324141114118533 k007 concat of cont frac of 4324141115141141 k008 concat of cont frac of 4324141115516114 k009 concat of cont frac of 4324141116098139 m002 38+6/Log[Pi] 4324141117011420 m001 BesselK(0,1)/GAMMA(11/12)*Trott 4324141118597519 a007 Real Root Of -822*x^4+958*x^3+264*x^2+53*x-121 4324141121121366 k006 concat of cont frac of 4324141122914360 r005 Im(z^2+c),c=21/106+5/12*I,n=27 4324141123824114 k007 concat of cont frac of 4324141125211112 k007 concat of cont frac of 4324141138439973 a001 843/55*34^(5/17) 4324141165922191 m009 (1/5*Psi(1,3/4)+2/3)/(1/4*Pi^2+1/4) 4324141166909282 h001 (7/12*exp(2)+4/9)/(4/11*exp(1)+1/9) 4324141170764321 r002 37th iterates of z^2 + 4324141180315655 a007 Real Root Of -583*x^4-860*x^3+2*x^2+843*x+315 4324141182314124 a003 cos(Pi*13/42)-sin(Pi*8/17) 4324141211753368 s002 sum(A231761[n]/((3*n+1)!),n=1..infinity) 4324141212209722 s001 sum(exp(-2*Pi)^n*A213174[n],n=1..infinity) 4324141217335524 r005 Re(z^2+c),c=-13/21+1/22*I,n=51 4324141220724121 s002 sum(A166768[n]/(exp(n)),n=1..infinity) 4324141235214161 k006 concat of cont frac of 4324141235372224 b008 E^(1/20+Sqrt[2]) 4324141236728230 r004 Im(z^2+c),c=3/8-1/3*I,z(0)=exp(7/12*I*Pi),n=19 4324141251122714 k006 concat of cont frac of 4324141251142114 k009 concat of cont frac of 4324141263167252 r005 Re(z^2+c),c=-13/21+2/61*I,n=62 4324141266023078 m001 (Khinchin-MertensB3)/(FeigenbaumAlpha+Kac) 4324141269631131 k007 concat of cont frac of 4324141271096394 m005 (1/3*gamma+1/9)/(4*3^(1/2)+1/11) 4324141278181603 r002 20th iterates of z^2 + 4324141289024781 r005 Im(z^2+c),c=5/44+28/57*I,n=46 4324141297584089 r002 37th iterates of z^2 + 4324141302852165 r005 Im(z^2+c),c=1/60+26/47*I,n=41 4324141310971615 m005 (1/3*5^(1/2)-2/5)/(1/12*Catalan-7/8) 4324141312111128 k006 concat of cont frac of 4324141314121312 k006 concat of cont frac of 4324141316117115 k007 concat of cont frac of 4324141342667951 a001 6765/3571*322^(13/24) 4324141344231191 k007 concat of cont frac of 4324141359107503 v002 sum(1/(5^n+(35/2*n^2-9/2*n+17)),n=1..infinity) 4324141373434129 k007 concat of cont frac of 4324141378462675 m001 GAMMA(11/24)^2/Porter/exp(sqrt(Pi)) 4324141379940947 m001 exp(TwinPrimes)^2/FeigenbaumD*GAMMA(1/6)^2 4324141388834815 m001 (ln(Pi)-CareFree)/(Landau+Weierstrass) 4324141396320827 r005 Im(z^2+c),c=33/98+23/62*I,n=37 4324141410663620 a007 Real Root Of x^4-349*x^3+807*x^2-668*x-468 4324141420559101 r005 Re(z^2+c),c=-11/18+19/113*I,n=52 4324141427101011 k008 concat of cont frac of 4324141455842938 m001 1/Ei(1)^2/exp(Magata)^2*sqrt(2) 4324141476860447 m001 Riemann3rdZero^2*KhintchineLevy/exp(cos(1)) 4324141511118120 k008 concat of cont frac of 4324141519057476 r005 Im(z^2+c),c=7/74+30/61*I,n=23 4324141527116311 k008 concat of cont frac of 4324141535626743 m001 1/(3^(1/3))/Rabbit*exp(Ei(1))^2 4324141536418736 m001 1/ln(Porter)^2/PisotVijayaraghavan*sin(1) 4324141537441148 m005 (1/2*Zeta(3)+3/10)/(4/5*exp(1)-1/11) 4324141574807416 r005 Re(z^2+c),c=-73/126+1/43*I,n=11 4324141575374093 a007 Real Root Of 251*x^4+344*x^3-242*x^2-646*x+288 4324141582421226 a007 Real Root Of -486*x^4+63*x^3+975*x^2+228*x-269 4324141590784165 r005 Im(z^2+c),c=-15/26+25/97*I,n=6 4324141597041155 b008 1+3*SinIntegral[6/5] 4324141598977915 m001 (1+Catalan)/(KhinchinHarmonic+Khinchin) 4324141622950243 r002 36th iterates of z^2 + 4324141626902543 m005 (1/3*3^(1/2)+1/6)/(2/11*3^(1/2)-1/7) 4324141635564929 a001 377/2*76^(34/47) 4324141654927425 r005 Im(z^2+c),c=9/52+26/59*I,n=30 4324141659635884 r005 Re(z^2+c),c=-11/18+31/116*I,n=25 4324141665563206 m001 1/Niven^2/MertensB1/ln(FeigenbaumKappa) 4324141669548796 a007 Real Root Of 501*x^4-337*x^3-692*x^2-823*x+495 4324141669769481 a001 5702887/322*3^(13/16) 4324141674150318 r005 Re(z^2+c),c=-5/8+13/239*I,n=20 4324141680270531 a005 (1/cos(11/205*Pi))^909 4324141684512604 a001 233/1364*843^(23/28) 4324141691416192 r009 Re(z^3+c),c=-13/25+15/49*I,n=24 4324141697584536 m006 (2/3/Pi-2/3)/(1/5*exp(2*Pi)-2) 4324141715333685 r005 Im(z^2+c),c=-13/38+31/53*I,n=49 4324141725404519 r009 Re(z^3+c),c=-15/29+9/52*I,n=23 4324141732313714 k006 concat of cont frac of 4324141732345913 l006 ln(6309/9722) 4324141732946402 a007 Real Root Of 102*x^4+211*x^3-941*x^2+248*x+66 4324141735379549 m001 Zeta(7)^2*FeigenbaumAlpha/exp(sqrt(Pi)) 4324141754422311 m001 Zeta(5)/(polylog(4,1/2)+GAMMA(1/24)) 4324141767599103 r002 42th iterates of z^2 + 4324141782885243 a007 Real Root Of -511*x^4-59*x^3+354*x^2+822*x-399 4324141786766702 r005 Re(z^2+c),c=23/114+15/41*I,n=48 4324141787441461 a007 Real Root Of -783*x^4+815*x^3-681*x^2+623*x+490 4324141792444214 a007 Real Root Of 714*x^4-695*x^3+8*x^2-255*x+140 4324141792480004 m001 FeigenbaumDelta-HardyLittlewoodC3*Landau 4324141804101106 m003 11/12+Sqrt[5]/2+6*Sech[1/2+Sqrt[5]/2] 4324141804820503 a001 47/5*4807526976^(17/19) 4324141805160744 r009 Im(z^3+c),c=-12/29+27/55*I,n=12 4324141821782173 m001 BesselJ(1,1)*exp(DuboisRaymond)^2/GAMMA(3/4)^2 4324141828714045 r005 Im(z^2+c),c=-61/110+3/40*I,n=21 4324141831949836 r005 Re(z^2+c),c=-13/21+2/49*I,n=55 4324141849419490 m005 (1/2*3^(1/2)+3/4)/(3/7*Zeta(3)-8/9) 4324141849600752 m001 1/GAMMA(1/4)^2*exp(Catalan)/GAMMA(5/24) 4324141858131925 r005 Im(z^2+c),c=21/86+11/29*I,n=47 4324141877322297 a007 Real Root Of -528*x^4-119*x^3+704*x^2+765*x+208 4324141886706457 s002 sum(A209730[n]/(n^3*2^n-1),n=1..infinity) 4324141889195776 r002 16th iterates of z^2 + 4324141901953078 m001 (1+3^(1/2))/(-FeigenbaumKappa+Sarnak) 4324141929824486 r002 52th iterates of z^2 + 4324141949029066 l006 ln(4747/7315) 4324141949998694 r009 Im(z^3+c),c=-6/19+16/35*I,n=23 4324141963020187 m005 (1/3*3^(1/2)+2/3)/(4/5*Pi+4/11) 4324141975239395 m001 Pi*2^(1/3)*(2^(1/2)-arctan(1/3)) 4324141975287426 m001 (Otter-ZetaQ(2))/(ln(Pi)+2*Pi/GAMMA(5/6)) 4324141979933989 r009 Im(z^3+c),c=-21/40+5/32*I,n=43 4324141980388118 r005 Re(z^2+c),c=11/30+5/27*I,n=28 4324141981597688 r005 Re(z^2+c),c=9/44+18/59*I,n=3 4324141986509567 m005 (1/2*exp(1)-2/11)/(9/11*gamma-1/5) 4324141986641570 a007 Real Root Of -20*x^4+108*x^3+902*x^2+204*x-259 4324142004883808 a005 (1/cos(13/187*Pi))^1306 4324142015789605 r005 Re(z^2+c),c=-67/110+12/61*I,n=54 4324142026762317 r005 Re(z^2+c),c=-73/122+14/45*I,n=61 4324142048148344 r005 Im(z^2+c),c=1/24+25/42*I,n=63 4324142057222130 r002 30th iterates of z^2 + 4324142060513988 m001 (sin(1)+BesselI(0,1))/(Zeta(5)+ln(gamma)) 4324142061121615 k009 concat of cont frac of 4324142072744970 s002 sum(A249269[n]/((10^n+1)/n),n=1..infinity) 4324142094972380 r002 28th iterates of z^2 + 4324142100692874 r002 35th iterates of z^2 + 4324142101111122 k008 concat of cont frac of 4324142104735238 r009 Im(z^3+c),c=-53/118+20/53*I,n=15 4324142110887273 r009 Im(z^3+c),c=-3/50+23/45*I,n=10 4324142111608134 r005 Re(z^2+c),c=-67/110+11/62*I,n=46 4324142113223111 k007 concat of cont frac of 4324142113711818 k008 concat of cont frac of 4324142114942200 r009 Im(z^3+c),c=-13/126+43/58*I,n=4 4324142116688313 r005 Re(z^2+c),c=-43/70+14/57*I,n=42 4324142117275699 g002 Psi(7/8)+2*Psi(2/5)-Psi(7/12) 4324142125418791 r002 19th iterates of z^2 + 4324142127472971 g007 Psi(2,2/5)-Psi(2,5/11)-Psi(2,5/8)-Psi(2,1/6) 4324142128415222 k008 concat of cont frac of 4324142131484974 a007 Real Root Of -354*x^4+60*x^3+846*x^2+770*x+192 4324142135623730 b008 43+(1+Sqrt[2])/10 4324142161943539 r009 Im(z^3+c),c=-8/17+17/45*I,n=63 4324142166066721 m002 2+4/Log[Pi]-Sinh[Pi]/Pi^2 4324142174911366 r005 Im(z^2+c),c=-23/34+12/77*I,n=31 4324142189776110 s001 sum(exp(-Pi)^n*A001117[n],n=1..infinity) 4324142189776110 s002 sum(A001117[n]/(exp(pi*n)),n=1..infinity) 4324142193470007 r009 Im(z^3+c),c=-5/114+35/47*I,n=6 4324142199681108 r005 Re(z^2+c),c=-97/70+3/34*I,n=12 4324142205597059 r002 17th iterates of z^2 + 4324142224844137 r009 Re(z^3+c),c=-19/50+31/48*I,n=3 4324142227317174 k007 concat of cont frac of 4324142230125199 m001 BesselI(0,1)*Otter+LandauRamanujan2nd 4324142235099765 m009 (1/5*Pi^2+3/4)/(2*Catalan+1/4*Pi^2+2) 4324142246876947 s002 sum(A158478[n]/(n^3*2^n+1),n=1..infinity) 4324142268537627 a007 Real Root Of -431*x^4-777*x^3+202*x^2+738*x-279 4324142269734231 m001 1/exp(Niven)/Si(Pi)^2/GAMMA(3/4) 4324142285472711 m001 exp(sqrt(2))/(cos(Pi/12)^(3^(1/3))) 4324142286335752 a001 9*121393^(21/29) 4324142287752896 a007 Real Root Of -302*x^4+858*x^3-577*x^2-994*x-242 4324142294341359 m001 ln(Lehmer)^2/Artin^2/GAMMA(5/12)^2 4324142296792249 a007 Real Root Of -107*x^4-537*x^3-380*x^2-196*x+249 4324142311472647 a007 Real Root Of -225*x^4+709*x^3-681*x^2+718*x+503 4324142318560312 m001 (Zeta(5)-Gompertz)/(Landau+PlouffeB) 4324142320319977 m001 (MertensB1-Rabbit)/(FeigenbaumC-Kolakoski) 4324142328128728 b008 43+Pi*ArcCsch[13] 4324142336611671 m001 (OneNinth-Robbin)/(GAMMA(2/3)+gamma(1)) 4324142354617895 m005 (1/2*5^(1/2)-4/5)/(3*exp(1)-4/5) 4324142363720017 a007 Real Root Of -154*x^4-636*x^3-29*x^2-556*x+557 4324142378245383 l006 ln(3185/4908) 4324142380037277 m001 (Pi-cos(1/12*Pi))/(gamma(1)+Stephens) 4324142388933644 a008 Real Root of (2+5*x-3*x^2-x^3-4*x^4+x^5) 4324142401448538 r005 Re(z^2+c),c=8/29+1/46*I,n=4 4324142410151413 k006 concat of cont frac of 4324142415191113 k008 concat of cont frac of 4324142426354038 m001 Ei(1,1)*exp(1/Pi)/ArtinRank2 4324142435892289 a007 Real Root Of -264*x^4-41*x^3-976*x^2+228*x+287 4324142468861257 r005 Re(z^2+c),c=-15/29+31/63*I,n=40 4324142484842144 k006 concat of cont frac of 4324142503984309 r005 Im(z^2+c),c=-1/5+31/43*I,n=50 4324142505207127 m006 (1/4*Pi-5/6)/(3/4*ln(Pi)+1/4) 4324142517330413 r005 Im(z^2+c),c=-109/74+12/29*I,n=3 4324142518519461 m001 (Paris-Sarnak)/(sin(1/12*Pi)+KhinchinLevy) 4324142522979542 a005 (1/cos(11/148*Pi))^388 4324142545824242 m001 1/GAMMA(1/12)/DuboisRaymond^2*ln(cosh(1))^2 4324142548112531 a007 Real Root Of -91*x^4-162*x^3+998*x^2+63*x+329 4324142554237707 r005 Im(z^2+c),c=1/25+16/33*I,n=8 4324142564709332 m005 (1/2*Zeta(3)+1/10)/(80/99+4/11*5^(1/2)) 4324142568745484 m001 Lehmer+Niven*Riemann3rdZero 4324142568930733 q001 643/1487 4324142572113975 r009 Im(z^3+c),c=-5/16+11/24*I,n=32 4324142588916441 r009 Im(z^3+c),c=-5/21+27/56*I,n=23 4324142589421859 r005 Im(z^2+c),c=17/94+7/16*I,n=49 4324142591927916 a003 sin(Pi*4/65)/cos(Pi*41/116) 4324142598003509 r005 Re(z^2+c),c=-21/34+7/88*I,n=50 4324142614770656 r005 Im(z^2+c),c=-6/23+17/29*I,n=10 4324142619657490 r002 30th iterates of z^2 + 4324142637916418 r009 Im(z^3+c),c=-43/110+14/33*I,n=35 4324142651753575 a007 Real Root Of 235*x^4+970*x^3-55*x^2+700*x+322 4324142662571527 a007 Real Root Of x^4+432*x^3-179*x^2+56*x-960 4324142674194847 r005 Im(z^2+c),c=-15/98+29/51*I,n=16 4324142677827421 m001 ln(gamma)*FeigenbaumB^Mills 4324142682268362 r009 Im(z^3+c),c=-49/114+25/62*I,n=40 4324142687969801 m001 (Psi(2,1/3)+Chi(1))/(LaplaceLimit+Lehmer) 4324142689755521 m001 (ReciprocalLucas+TwinPrimes)/(ln(3)-Niven) 4324142691068602 m001 Artin+Lehmer*Paris 4324142695240280 m001 (Landau+MertensB2)/(cos(1/12*Pi)+FeigenbaumD) 4324142698981718 m001 (Sarnak+Tetranacci)/(cos(1)-gamma(1)) 4324142711556038 r009 Im(z^3+c),c=-19/66+29/61*I,n=5 4324142715397231 s002 sum(A165551[n]/(pi^n-1),n=1..infinity) 4324142715909390 a007 Real Root Of 637*x^4-976*x^3-707*x^2-821*x-324 4324142721137111 k006 concat of cont frac of 4324142732482499 a003 sin(Pi*5/89)*sin(Pi*8/101) 4324142741764228 a007 Real Root Of 669*x^4+254*x^3+842*x^2+299*x-31 4324142747528443 r009 Im(z^3+c),c=-19/48+27/64*I,n=31 4324142749400696 r005 Re(z^2+c),c=-3/5+13/128*I,n=16 4324142750963183 m001 1/MinimumGamma^2/MadelungNaCl*ln(sinh(1)) 4324142776173040 r005 Re(z^2+c),c=2/17+29/38*I,n=4 4324142776760887 a007 Real Root Of 332*x^4-600*x^3-671*x^2-236*x-9 4324142802016134 l006 ln(4808/7409) 4324142809770388 p001 sum(1/(337*n+232)/(128^n),n=0..infinity) 4324142830635665 a003 sin(Pi*11/109)/cos(Pi*29/119) 4324142838053790 r009 Re(z^3+c),c=-11/27+1/10*I,n=22 4324142844195699 m005 (1/12+1/6*5^(1/2))/(1/4*exp(1)+3/8) 4324142892046873 r002 28th iterates of z^2 + 4324142894909502 r005 Re(z^2+c),c=-7/90+37/56*I,n=50 4324142901926987 r002 31th iterates of z^2 + 4324142908940438 r002 40th iterates of z^2 + 4324142909430484 r005 Im(z^2+c),c=-101/102+2/47*I,n=10 4324142909779866 m001 1/ln(LambertW(1))*GAMMA(1/12)*Zeta(1/2)^2 4324142921196479 r005 Re(z^2+c),c=-49/82+9/34*I,n=52 4324142926393137 r005 Re(z^2+c),c=-43/70+4/63*I,n=26 4324142931272436 r002 45th iterates of z^2 + 4324142936988945 r002 38th iterates of z^2 + 4324142946295511 r005 Re(z^2+c),c=-113/110+7/48*I,n=22 4324142947855759 p003 LerchPhi(1/8,5,260/87) 4324142948881123 m001 (Zeta(5)+ln(3))/(BesselJ(1,1)+ZetaQ(2)) 4324142952009048 m001 1/Ei(1)^2*exp(PrimesInBinary)*GAMMA(23/24) 4324142965519059 r005 Re(z^2+c),c=-3/5+28/115*I,n=36 4324142994353892 s002 sum(A189118[n]/(n*exp(pi*n)-1),n=1..infinity) 4324143001155626 r002 25th iterates of z^2 + 4324143011891705 l006 ln(6431/9910) 4324143031935660 a001 6765/521*322^(5/24) 4324143047991010 m002 -2+3/Pi^2-Pi^6/E^Pi 4324143050398977 r005 Re(z^2+c),c=-5/8+14/129*I,n=13 4324143082650460 m001 arctan(1/2)^(GaussAGM/BesselJ(0,1)) 4324143105417376 m001 (1-GAMMA(2/3))/(-exp(1/exp(1))+Kac) 4324143111133438 r005 Re(z^2+c),c=-81/110+7/23*I,n=7 4324143111232115 k006 concat of cont frac of 4324143136650090 r005 Re(z^2+c),c=-75/122+6/61*I,n=34 4324143147940138 r009 Im(z^3+c),c=-8/23+4/9*I,n=21 4324143155798242 m005 (1/2*Catalan+8/9)/(-9/70+1/14*5^(1/2)) 4324143169418005 a007 Real Root Of 65*x^4+21*x^3-935*x^2+934*x+494 4324143178797376 r005 Im(z^2+c),c=-9/19+13/25*I,n=31 4324143198843092 r009 Re(z^3+c),c=-6/13+9/59*I,n=44 4324143205621430 m001 (Conway+Magata)/(cos(1/12*Pi)+Champernowne) 4324143217134529 a001 646/341*322^(13/24) 4324143227669052 a003 cos(Pi*1/117)/cos(Pi*43/101) 4324143228184846 p003 LerchPhi(1/100,5,211/71) 4324143234214312 s001 sum(1/10^(n-1)*A184412[n],n=1..infinity) 4324143234214312 s001 sum(1/10^n*A184412[n],n=1..infinity) 4324143234214312 s003 concatenated sequence A184412 4324143243160954 r005 Re(z^2+c),c=-103/90+16/53*I,n=12 4324143271169931 r005 Re(z^2+c),c=-7/10+28/255*I,n=19 4324143278035164 m004 (-125*Pi)/6+625*Sqrt[5]*Pi-Tan[Sqrt[5]*Pi] 4324143279180732 r005 Im(z^2+c),c=-29/114+14/23*I,n=57 4324143285504406 r005 Re(z^2+c),c=11/38+19/35*I,n=7 4324143289049368 r002 36th iterates of z^2 + 4324143294352890 a001 1/10959*5^(29/30) 4324143299340575 a001 89/4*7^(14/41) 4324143363966269 r002 12th iterates of z^2 + 4324143364080730 m001 (gamma(3)+OneNinth)/(ln(2)/ln(10)+5^(1/2)) 4324143364260453 m008 (5/6*Pi^4+2)/(1/6*Pi^4+3) 4324143372497187 r002 28th iterates of z^2 + 4324143381966477 m001 (CopelandErdos+PlouffeB)/(Shi(1)+sin(1/5*Pi)) 4324143395226474 r005 Im(z^2+c),c=25/122+5/12*I,n=62 4324143404661988 m001 5^(1/2)/Ei(1,1)/CopelandErdos 4324143411114492 k007 concat of cont frac of 4324143428031438 m001 1/GAMMA(11/24)*exp(Champernowne)/GAMMA(2/3) 4324143437759914 m005 (1/2*exp(1)+4/11)/(4/7*Catalan-1/8) 4324143453984445 a005 (1/cos(1/56*Pi))^930 4324143465323599 m001 (Catalan+sin(1))/(-ln(2^(1/2)+1)+Weierstrass) 4324143473518105 a007 Real Root Of 145*x^4+753*x^3+752*x^2+702*x-838 4324143475377604 r005 Re(z^2+c),c=-65/106+1/6*I,n=45 4324143477058105 r005 Re(z^2+c),c=-83/82+10/47*I,n=40 4324143480656639 a001 2584/2207*322^(5/8) 4324143491788748 r005 Im(z^2+c),c=-79/122+2/23*I,n=37 4324143499274176 r005 Re(z^2+c),c=-31/46+15/64*I,n=63 4324143499345265 a007 Real Root Of -164*x^4-466*x^3+926*x^2-564*x-93 4324143503036143 r005 Im(z^2+c),c=-1/58+17/30*I,n=37 4324143509473544 m001 1/GAMMA(13/24)/BesselK(0,1)^2/exp(Zeta(5))^2 4324143514763014 m006 (1/3*Pi^2-1/2)/(1/4*exp(Pi)+2/3) 4324143518928905 m005 (4*2^(1/2)+3/4)/(3*gamma-1/4) 4324143522664279 p003 LerchPhi(1/12,4,34/49) 4324143559008492 m001 1/GAMMA(1/4)^2*FeigenbaumD^2/ln(GAMMA(7/24))^2 4324143563295771 m005 (1/3*2^(1/2)+2/11)/(4/5*3^(1/2)+1/8) 4324143569150012 m005 (Catalan+3)/(2/3*Pi-3) 4324143588735896 m001 1/arctan(1/2)/ln(GAMMA(7/12))/sinh(1) 4324143603288036 a003 sin(Pi*17/100)*sin(Pi*21/65) 4324143617357743 h001 (-9*exp(-3)+8)/(-9*exp(1)+7) 4324143620309317 a007 Real Root Of -775*x^4+90*x^3-676*x^2+877*x+540 4324143633630278 l006 ln(1623/2501) 4324143641554317 r005 Re(z^2+c),c=5/34+28/59*I,n=44 4324143650199408 a007 Real Root Of -163*x^4-686*x^3-145*x^2-781*x+857 4324143679233770 r005 Im(z^2+c),c=3/32+23/45*I,n=39 4324143685769203 a007 Real Root Of -727*x^4-753*x^3-370*x^2+854*x+403 4324143700658325 m001 (Backhouse+CopelandErdos)/(Artin-BesselJ(0,1)) 4324143712338878 a008 Real Root of x^4-2*x^3+x^2-42*x-25 4324143722599843 a001 11/5*4181^(19/30) 4324143727728945 m001 (Zeta(3)-3^(1/3))/(gamma(2)+BesselI(1,1)) 4324143731415331 r005 Re(z^2+c),c=-1+59/253*I,n=20 4324143735469293 m005 (1/2*Pi+4/7)/(8/5+3/2*5^(1/2)) 4324143736420807 a007 Real Root Of -677*x^4-23*x^3-791*x^2+558*x+411 4324143742539399 m001 LambertW(1)-TravellingSalesman^HeathBrownMoroz 4324143746511943 r005 Im(z^2+c),c=-9/62+25/37*I,n=56 4324143753217963 m002 Pi+1/(5*ProductLog[Pi])+Tanh[Pi] 4324143758001130 r002 5th iterates of z^2 + 4324143761651342 r005 Re(z^2+c),c=-47/70+1/48*I,n=22 4324143778159544 a007 Real Root Of 688*x^4-78*x^3+625*x^2-462*x-347 4324143788752635 r009 Im(z^3+c),c=-37/98+39/58*I,n=48 4324143794922449 a007 Real Root Of 890*x^4-367*x^3-986*x^2-132*x+240 4324143801903020 h001 (7/8*exp(1)+2/7)/(4/5*exp(2)+1/4) 4324143812081013 a007 Real Root Of 74*x^4+376*x^3+259*x^2+296*x+966 4324143822826656 a008 Real Root of x^4-x^3-38*x^2+6*x+306 4324143846728674 r005 Re(z^2+c),c=-29/62+17/31*I,n=16 4324143850612928 a007 Real Root Of 177*x^4+975*x^3+791*x^2-311*x+814 4324143861809682 a007 Real Root Of -345*x^4+354*x^3-290*x^2+953*x+507 4324143877433485 a001 3/165580141*55^(19/24) 4324143888448504 r002 59th iterates of z^2 + 4324143914138140 r005 Re(z^2+c),c=-31/54+17/53*I,n=40 4324143935613795 a007 Real Root Of 163*x^4-932*x^3+205*x^2-420*x-301 4324143971972878 a007 Real Root Of 408*x^4+336*x^3-130*x^2-627*x+254 4324143972852732 b008 1+ArcSinh[4+Pi^2] 4324143977223858 m009 (2/3*Psi(1,2/3)-1/6)/(4*Psi(1,1/3)+3) 4324143979683795 m001 cosh(1)^Psi(2,1/3)*cosh(1)^OneNinth 4324144011581745 m005 (1/2*3^(1/2)-11/12)/(7/11*Catalan-7/10) 4324144042453299 a007 Real Root Of -872*x^4+418*x^3-224*x^2+328*x+248 4324144044722296 m005 (1/2*Catalan-3/10)/(5/6*Zeta(3)-7/11) 4324144045635154 m005 (1/2*2^(1/2)-1/4)/(6/11*2^(1/2)+2/7) 4324144050009495 r009 Im(z^3+c),c=-41/102+18/43*I,n=40 4324144054408974 a001 5/9349*29^(18/29) 4324144055266964 m001 (3^(1/3))/exp(Khintchine)*GAMMA(5/24) 4324144064084110 k002 Champernowne real with 1/2*n^2+393/2*n-154 4324144067016992 m001 (Conway+CopelandErdos)/(exp(1)+sin(1)) 4324144070277496 r009 Im(z^3+c),c=-23/82+23/49*I,n=18 4324144072406285 l006 ln(5769/5794) 4324144095659842 a007 Real Root Of 270*x^4-655*x^3-175*x^2-84*x-66 4324144098389678 r002 46th iterates of z^2 + 4324144122493826 m005 (1/3*Catalan-1/3)/(9/10*2^(1/2)-5/8) 4324144127409080 r005 Re(z^2+c),c=-73/118+1/25*I,n=34 4324144131111331 k007 concat of cont frac of 4324144136140741 r005 Re(z^2+c),c=5/22+24/47*I,n=4 4324144139233021 r005 Im(z^2+c),c=5/27+11/26*I,n=15 4324144144708181 r002 60th iterates of z^2 + 4324144148666549 s002 sum(A216139[n]/(n!^2),n=1..infinity) 4324144151112716 k007 concat of cont frac of 4324144155941122 s002 sum(A198689[n]/(n^3*exp(n)+1),n=1..infinity) 4324144162452214 k006 concat of cont frac of 4324144164384710 k002 Champernowne real with n^2+195*n-153 4324144167685737 r002 8th iterates of z^2 + 4324144172711131 k006 concat of cont frac of 4324144180575326 m001 DuboisRaymond^(exp(1/Pi)*HardHexagonsEntropy) 4324144187524432 a001 843/5*10946^(15/43) 4324144191074107 a007 Real Root Of -511*x^4-366*x^3-365*x^2+459*x+255 4324144197065448 m001 OrthogonalArrays*(exp(1/Pi)+Niven) 4324144204379236 h001 (5/7*exp(2)+4/5)/(1/10*exp(2)+2/3) 4324144212799542 a001 610/843*322^(17/24) 4324144231998031 m008 (2*Pi^3-1/4)/(1/5*Pi+4/5) 4324144239360154 a007 Real Root Of 154*x^4+665*x^3+46*x^2+106*x-476 4324144243489050 m009 (1/6*Pi^2+3/5)/(3*Psi(1,2/3)-4) 4324144243793641 l006 ln(6553/10098) 4324144264685310 k002 Champernowne real with 3/2*n^2+387/2*n-152 4324144283373388 r009 Re(z^3+c),c=-1/13+16/25*I,n=38 4324144286454565 m001 1/Lehmer*exp(FransenRobinson)^2*cos(Pi/12)^2 4324144315821576 m001 (OrthogonalArrays+Sarnak)/(ln(3)-BesselI(1,2)) 4324144321936159 r005 Im(z^2+c),c=25/82+7/22*I,n=50 4324144332695269 a008 Real Root of x^4-x^3+6*x^2-77*x-48 4324144337072586 r005 Re(z^2+c),c=-27/118+42/53*I,n=24 4324144342244891 m001 (FransenRobinson+Paris)/(2^(1/3)-sin(1/5*Pi)) 4324144349519639 a001 2255/1926*322^(5/8) 4324144349654664 r005 Im(z^2+c),c=1/17+29/56*I,n=26 4324144357480451 m005 (1/2*Pi-6)/(3*Pi+9/11) 4324144363670672 a001 3/10946*13^(8/45) 4324144364985910 k002 Champernowne real with 2*n^2+192*n-151 4324144368323948 a001 34/11*271443^(11/19) 4324144370176371 a001 34/11*39603^(13/19) 4324144370318450 r002 24th iterates of z^2 + 4324144381540524 m008 (1/5*Pi^5+2)/(1/5*Pi+5/6) 4324144396269024 r005 Im(z^2+c),c=1/118+26/45*I,n=43 4324144399704227 p001 sum(1/(497*n+232)/(100^n),n=0..infinity) 4324144403985922 r005 Re(z^2+c),c=-3/5+25/99*I,n=59 4324144406897997 r009 Im(z^3+c),c=-5/16+11/24*I,n=30 4324144419040641 m005 (1/2*Zeta(3)+3)/(4/5*Catalan+1/10) 4324144425888736 m001 (-Robbin+ZetaQ(4))/(ln(2)/ln(10)+GAMMA(3/4)) 4324144426067881 m001 (Zeta(1/2)+arctan(1/3))/(FellerTornier-Otter) 4324144426521311 k008 concat of cont frac of 4324144427781672 a007 Real Root Of 341*x^4-2*x^3+989*x^2-518*x-421 4324144444664858 l006 ln(4930/7597) 4324144456513269 a001 1/18*(1/2*5^(1/2)+1/2)^11*123^(16/21) 4324144463156002 h001 (-7*exp(4)+3)/(-8*exp(7)+4) 4324144465286510 k002 Champernowne real with 5/2*n^2+381/2*n-150 4324144467657001 r005 Re(z^2+c),c=-19/30+8/85*I,n=17 4324144476285068 a001 17711/15127*322^(5/8) 4324144488325563 m001 (GAMMA(23/24)+FeigenbaumB)/(Trott-ZetaQ(2)) 4324144494779896 a001 15456/13201*322^(5/8) 4324144497478255 a001 121393/103682*322^(5/8) 4324144497871940 a001 105937/90481*322^(5/8) 4324144497929378 a001 832040/710647*322^(5/8) 4324144497937758 a001 726103/620166*322^(5/8) 4324144497938980 a001 5702887/4870847*322^(5/8) 4324144497939159 a001 4976784/4250681*322^(5/8) 4324144497939185 a001 39088169/33385282*322^(5/8) 4324144497939189 a001 34111385/29134601*322^(5/8) 4324144497939189 a001 267914296/228826127*322^(5/8) 4324144497939189 a001 233802911/199691526*322^(5/8) 4324144497939189 a001 1836311903/1568397607*322^(5/8) 4324144497939189 a001 1602508992/1368706081*322^(5/8) 4324144497939189 a001 12586269025/10749957122*322^(5/8) 4324144497939189 a001 10983760033/9381251041*322^(5/8) 4324144497939189 a001 86267571272/73681302247*322^(5/8) 4324144497939189 a001 75283811239/64300051206*322^(5/8) 4324144497939189 a001 2504730781961/2139295485799*322^(5/8) 4324144497939189 a001 365435296162/312119004989*322^(5/8) 4324144497939189 a001 139583862445/119218851371*322^(5/8) 4324144497939189 a001 53316291173/45537549124*322^(5/8) 4324144497939189 a001 20365011074/17393796001*322^(5/8) 4324144497939189 a001 7778742049/6643838879*322^(5/8) 4324144497939189 a001 2971215073/2537720636*322^(5/8) 4324144497939189 a001 1134903170/969323029*322^(5/8) 4324144497939189 a001 433494437/370248451*322^(5/8) 4324144497939190 a001 165580141/141422324*322^(5/8) 4324144497939191 a001 63245986/54018521*322^(5/8) 4324144497939201 a001 24157817/20633239*322^(5/8) 4324144497939269 a001 9227465/7881196*322^(5/8) 4324144497939736 a001 3524578/3010349*322^(5/8) 4324144497942937 a001 1346269/1149851*322^(5/8) 4324144497964876 a001 514229/439204*322^(5/8) 4324144498115251 a001 196418/167761*322^(5/8) 4324144499145932 a001 75025/64079*322^(5/8) 4324144500843131 r005 Im(z^2+c),c=17/56+13/41*I,n=60 4324144506210328 a001 28657/24476*322^(5/8) 4324144507263654 m001 sqrt(Pi)^BesselJZeros(0,1)/Catalan 4324144534942346 r005 Im(z^2+c),c=13/102+27/56*I,n=40 4324144537500471 a007 Real Root Of -320*x^4+687*x^3+738*x^2+662*x+215 4324144554630415 a001 10946/9349*322^(5/8) 4324144558139092 r005 Im(z^2+c),c=3/23+27/56*I,n=37 4324144565587110 k002 Champernowne real with 3*n^2+189*n-149 4324144568550518 r005 Im(z^2+c),c=9/25+26/33*I,n=3 4324144582717711 m001 (Ei(1,1)-LambertW(1))/(exp(-1/2*Pi)+Gompertz) 4324144585854478 r005 Im(z^2+c),c=19/62+11/28*I,n=59 4324144595346336 r005 Im(z^2+c),c=13/114+28/57*I,n=30 4324144597479190 r002 50th iterates of z^2 + 4324144609767137 s002 sum(A100390[n]/(10^n+1),n=1..infinity) 4324144609767137 s002 sum(A199768[n]/(10^n+1),n=1..infinity) 4324144642209792 s002 sum(A097619[n]/(10^n+1),n=1..infinity) 4324144646631841 s002 sum(A113709[n]/(10^n+1),n=1..infinity) 4324144646631841 s002 sum(A076082[n]/(10^n+1),n=1..infinity) 4324144648430812 m005 (1/2*Pi+9/11)/(10/11*gamma+5) 4324144651353695 r005 Im(z^2+c),c=23/110+27/53*I,n=50 4324144665687310 k004 Champernowne real with floor(Pi*(n^2+60*n-47)) 4324144665887711 k002 Champernowne real with 7/2*n^2+375/2*n-148 4324144676347752 a007 Real Root Of -6*x^4-272*x^3-555*x^2-527*x+141 4324144677362526 a003 cos(Pi*38/113)*sin(Pi*27/79) 4324144678165619 m001 (exp(Pi)+GAMMA(7/12))/(Bloch+Paris) 4324144680159189 r002 30th iterates of z^2 + 4324144690726622 m001 1/RenyiParking^2*KhintchineLevy^2*exp(cos(1)) 4324144715379008 m001 (MinimumGamma+ZetaQ(3))/(Pi+sin(1/12*Pi)) 4324144721277184 r002 49th iterates of z^2 + 4324144735505081 m007 (-5*gamma-10*ln(2)+3/5)/(-3*gamma-2/5) 4324144739047432 m001 1/exp(GAMMA(2/3))*GAMMA(1/4)^2*GAMMA(5/6)^2 4324144749932076 r002 46th iterates of z^2 + 4324144753261509 a008 Real Root of (9+14*x-11*x^2+11*x^3) 4324144766188311 k002 Champernowne real with 4*n^2+186*n-147 4324144767987747 r002 10th iterates of z^2 + 4324144774562841 m001 (MertensB1+ZetaP(2))/(Backhouse+DuboisRaymond) 4324144774800202 m001 (gamma(1)*Trott2nd+KhinchinLevy)/Trott2nd 4324144775991740 p001 sum((-1)^n/(571*n+231)/(256^n),n=0..infinity) 4324144780836477 a003 cos(Pi*17/118)*sin(Pi*19/119) 4324144781021634 r002 5th iterates of z^2 + 4324144793969328 r005 Re(z^2+c),c=-83/122+8/49*I,n=38 4324144794642347 a007 Real Root Of 378*x^4-436*x^3+463*x^2-770*x-468 4324144802391232 q001 1302/3011 4324144815494225 r002 60th iterates of z^2 + 4324144826778670 m001 LambertW(1)/LandauRamanujan^2/exp(cos(Pi/5)) 4324144835501270 a007 Real Root Of -307*x^4+421*x^3+702*x^2+x-155 4324144838860925 r009 Re(z^3+c),c=-3/106+22/27*I,n=7 4324144840161408 m001 (1-2*Pi/GAMMA(5/6))/(Kolakoski+MertensB1) 4324144842702064 l006 ln(3307/5096) 4324144847649849 a007 Real Root Of -6*x^4-245*x^3+632*x^2+318*x+255 4324144855647878 r009 Im(z^3+c),c=-41/98+24/59*I,n=21 4324144863835851 r005 Im(z^2+c),c=7/90+32/55*I,n=58 4324144866488911 k002 Champernowne real with 9/2*n^2+369/2*n-146 4324144878660649 m001 (GAMMA(17/24)+MinimumGamma)/(2^(1/3)-Ei(1)) 4324144879475109 a008 Real Root of (-1+4*x^2+7*x^4+6*x^8) 4324144883280197 m005 (1/2*Pi-3/8)/(8/9*5^(1/2)+7/9) 4324144886506658 a001 4181/3571*322^(5/8) 4324144887991867 a007 Real Root Of 294*x^4-990*x^3+699*x^2-652*x+221 4324144891134299 a005 (1/cos(16/203*Pi))^1088 4324144915780821 r009 Re(z^3+c),c=-13/25+6/13*I,n=11 4324144916995340 r002 57th iterates of z^2 + 4324144930944104 m001 (1-Stephens)/(-ZetaP(3)+ZetaP(4)) 4324144962283771 m001 1/GAMMA(17/24)*Porter^2/exp(GAMMA(2/3)) 4324144964454912 m001 1/TwinPrimes^2/ln(Robbin)/GAMMA(17/24) 4324144966789511 k002 Champernowne real with 5*n^2+183*n-145 4324144970733538 m005 (1/2*gamma-7/8)/(3/4*Zeta(3)+5/11) 4324144971246388 r002 20th iterates of z^2 + 4324144974979937 h001 (3/8*exp(2)+2/11)/(10/11*exp(2)+1/9) 4324144978717694 a007 Real Root Of -881*x^4+132*x^3-283*x^2+679*x+388 4324144983782427 r002 29th iterates of z^2 + 4324144990401151 r002 19th iterates of z^2 + 4324144990969062 r005 Im(z^2+c),c=-29/98+33/56*I,n=34 4324144995155224 r005 Im(z^2+c),c=13/40+13/45*I,n=54 4324145002535035 r009 Re(z^3+c),c=-9/44+54/55*I,n=8 4324145051567147 m001 (Sierpinski+ZetaP(2))/(gamma(3)-CareFree) 4324145067090111 k002 Champernowne real with 11/2*n^2+363/2*n-144 4324145068541628 m001 (Pi-Shi(1))/(Zeta(1/2)-ReciprocalFibonacci) 4324145083437151 r002 24th iterates of z^2 + 4324145111373721 k009 concat of cont frac of 4324145115185414 a007 Real Root Of -123*x^4-410*x^3+652*x^2+733*x+832 4324145116276267 h001 (2/3*exp(1)+1/6)/(3/5*exp(2)+1/7) 4324145119106857 m001 (Pi+Ei(1,1))/(gamma(1)-CareFree) 4324145129990709 a007 Real Root Of 148*x^4+862*x^3+759*x^2-971*x-439 4324145148840467 m005 (1/2*2^(1/2)+5/8)/(1/2*Zeta(3)-10/11) 4324145148953617 r005 Re(z^2+c),c=-31/50+1/33*I,n=34 4324145151463827 k009 concat of cont frac of 4324145167390711 k002 Champernowne real with 6*n^2+180*n-143 4324145216756773 p001 sum((-1)^n/(39*n+5)/n/(5^n),n=0..infinity) 4324145217622151 k006 concat of cont frac of 4324145218380192 r002 54th iterates of z^2 + 4324145219037034 a007 Real Root Of -932*x^4+269*x^3+769*x^2+458*x-331 4324145224748372 a007 Real Root Of 191*x^4-672*x^3-11*x^2-495*x-273 4324145228056138 a003 sin(Pi*17/95)*sin(Pi*25/83) 4324145235007608 m005 (1/3*gamma+3/7)/(5^(1/2)-4/5) 4324145235874445 l006 ln(4991/7691) 4324145254742522 a007 Real Root Of 231*x^4-982*x^3+890*x^2+157*x-186 4324145255112551 r005 Re(z^2+c),c=-37/106+29/46*I,n=56 4324145267591111 k004 Champernowne real with floor(Pi*(2*n^2+57*n-45)) 4324145267691311 k002 Champernowne real with 13/2*n^2+357/2*n-142 4324145277851632 m004 -5-15*Pi+6*Csc[Sqrt[5]*Pi] 4324145279848625 a007 Real Root Of -17*x^4+954*x^3-458*x^2+583*x-243 4324145287098179 a007 Real Root Of 414*x^4-372*x^3+444*x^2-260*x-240 4324145300700522 b008 43+(1+Pi)^(-1) 4324145318641574 r009 Im(z^3+c),c=-11/31+15/34*I,n=31 4324145334009804 r009 Re(z^3+c),c=-7/31+34/35*I,n=8 4324145341587308 m001 (BesselI(0,1)-OneNinth)/GAMMA(1/3) 4324145342694901 a001 1/72*(1/2*5^(1/2)+1/2)^2*4^(1/8) 4324145345049699 a001 322/17711*8^(5/12) 4324145367991911 k002 Champernowne real with 7*n^2+177*n-141 4324145369549625 r009 Re(z^3+c),c=-35/78+9/64*I,n=32 4324145378089138 r005 Re(z^2+c),c=-11/18+21/124*I,n=53 4324145379622223 m003 -19/5-Cosh[1/2+Sqrt[5]/2]/5 4324145379767066 r005 Im(z^2+c),c=5/44+30/61*I,n=61 4324145381952965 m008 (3*Pi^5+1/6)/(1/6*Pi^4+5) 4324145388492179 r005 Im(z^2+c),c=-11/24+17/31*I,n=14 4324145398872926 m005 (1/3*2^(1/2)+1/5)/(1/4*5^(1/2)-5/7) 4324145410220896 r005 Re(z^2+c),c=-49/78+5/56*I,n=17 4324145411577711 r005 Re(z^2+c),c=-7/11+14/55*I,n=15 4324145415164203 k008 concat of cont frac of 4324145433090086 m001 (2^(1/2)+1)/(-cos(1)+ln(3)) 4324145453772655 a007 Real Root Of 98*x^4+298*x^3-486*x^2+470*x+951 4324145454411335 m001 (BesselI(1,2)-QuadraticClass)/GAMMA(13/24) 4324145459370272 m001 TreeGrowth2nd/(Artin+Cahen) 4324145459385388 r002 39th iterates of z^2 + 4324145461088835 r009 Im(z^3+c),c=-5/12+23/56*I,n=51 4324145462914305 r005 Im(z^2+c),c=-75/106+3/61*I,n=49 4324145468292511 k002 Champernowne real with 15/2*n^2+351/2*n-140 4324145498122429 p003 LerchPhi(1/32,1,428/181) 4324145518176431 r002 41th iterates of z^2 + 4324145537679580 r005 Im(z^2+c),c=-43/90+11/19*I,n=49 4324145565228427 r002 18th iterates of z^2 + 4324145568593111 k002 Champernowne real with 8*n^2+174*n-139 4324145578657225 r005 Re(z^2+c),c=-21/31+3/38*I,n=14 4324145596812704 r005 Re(z^2+c),c=-51/94+21/41*I,n=17 4324145610764475 m005 (1/5*Catalan-1/3)/(-1+2*5^(1/2)) 4324145612111152 k008 concat of cont frac of 4324145621074710 a008 Real Root of x^4-x^3-15*x^2-4*x+29 4324145625580040 m001 1/exp(BesselJ(1,1))/PrimesInBinary/Ei(1)^2 4324145630392792 m001 (QuadraticClass+Tribonacci)/(Chi(1)-Porter) 4324145630758108 r002 13th iterates of z^2 + 4324145668893712 k002 Champernowne real with 17/2*n^2+345/2*n-138 4324145670770748 m001 ln(OneNinth)^2*Si(Pi)/GAMMA(5/12) 4324145681165075 m001 Zeta(5)*FeigenbaumDelta-polylog(4,1/2) 4324145681165075 m001 polylog(4,1/2)-Zeta(5)*FeigenbaumDelta 4324145692801917 r005 Re(z^2+c),c=-65/106+8/51*I,n=43 4324145701492735 a007 Real Root Of -566*x^4-247*x^3-623*x^2+589*x+371 4324145723072765 m005 (1/2*Zeta(3)+2/9)/(5/7*3^(1/2)+2/3) 4324145733490265 m001 Catalan*MasserGramainDelta^Sierpinski 4324145769194312 k002 Champernowne real with 9*n^2+171*n-137 4324145776149807 r005 Re(z^2+c),c=-19/34+13/20*I,n=15 4324145779744328 r005 Re(z^2+c),c=-35/44+6/41*I,n=40 4324145807387957 g001 Re(GAMMA(43/15+I*61/15)) 4324145811221421 k008 concat of cont frac of 4324145811639731 r005 Im(z^2+c),c=17/74+18/47*I,n=24 4324145817604011 a007 Real Root Of -136*x^4-430*x^3+792*x^2+692*x+965 4324145825474328 r009 Re(z^3+c),c=-49/94+13/33*I,n=39 4324145845370227 m001 Totient/(exp(-Pi)-Pi) 4324145846336173 a003 sin(Pi*4/109)+sin(Pi*11/107) 4324145859160851 r005 Re(z^2+c),c=-75/118+2/25*I,n=14 4324145868112764 a003 cos(Pi*22/61)/sin(Pi*38/87) 4324145869494812 k004 Champernowne real with floor(Pi*(3*n^2+54*n-43)) 4324145869494912 k002 Champernowne real with 19/2*n^2+339/2*n-136 4324145880154615 r002 46th iterates of z^2 + 4324145882207680 r009 Re(z^3+c),c=-4/11+1/23*I,n=10 4324145886327784 r005 Im(z^2+c),c=4/29+26/55*I,n=54 4324145949533208 m001 1/Paris^2*Kolakoski^2/exp(GAMMA(2/3))^2 4324145951831039 r005 Re(z^2+c),c=-8/13+3/22*I,n=42 4324145969033095 m009 (5/6*Psi(1,3/4)-1/3)/(2*Psi(1,2/3)-2) 4324145969795512 k002 Champernowne real with 10*n^2+168*n-135 4324145973767963 r004 Im(z^2+c),c=1/14+12/23*I,z(0)=I,n=54 4324145979394710 m001 1/exp(GAMMA(11/12))/Trott^2*Zeta(1/2) 4324145994573813 m005 (1/2*3^(1/2)-1/7)/(5/6*Catalan+10/11) 4324146003035470 r005 Re(z^2+c),c=-65/106+15/56*I,n=36 4324146005731689 r005 Im(z^2+c),c=19/126+8/17*I,n=22 4324146007977169 l006 ln(1684/2595) 4324146010750886 m008 (3*Pi^6+4/5)/(3/5*Pi^2+3/4) 4324146012951886 r009 Re(z^3+c),c=-25/52+7/41*I,n=33 4324146026064138 r002 64th iterates of z^2 + 4324146029190061 a003 sin(Pi*26/111)-sin(Pi*19/75) 4324146045227489 r005 Im(z^2+c),c=7/54+23/48*I,n=25 4324146050622348 r005 Re(z^2+c),c=-16/25+4/37*I,n=15 4324146065078149 a001 832040/843*18^(23/45) 4324146070096112 k002 Champernowne real with 21/2*n^2+333/2*n-134 4324146070541769 r005 Re(z^2+c),c=-21/32+19/46*I,n=21 4324146078564940 m005 (1/2*3^(1/2)-3)/(3/10*gamma-2/3) 4324146092749939 a007 Real Root Of 144*x^4+528*x^3-431*x^2-80*x+58 4324146099577254 p003 LerchPhi(1/10,1,593/238) 4324146113087642 r002 63th iterates of z^2 + 4324146124430633 r002 59th iterates of z^2 + 4324146130035645 a007 Real Root Of 118*x^4-745*x^3+854*x^2-992*x-653 4324146139472212 m001 FeigenbaumD-FeigenbaumMu*ReciprocalLucas 4324146143349583 r004 Im(z^2+c),c=2/9+3/8*I,z(0)=exp(5/12*I*Pi),n=19 4324146170396712 k002 Champernowne real with 11*n^2+165*n-133 4324146172260715 s002 sum(A012276[n]/(exp(pi*n)+1),n=1..infinity) 4324146178425762 h001 (2/9*exp(2)+4/7)/(7/11*exp(2)+5/12) 4324146184237461 r005 Re(z^2+c),c=-31/50+1/7*I,n=34 4324146190913148 r002 45th iterates of z^2 + 4324146198189061 a001 3571/34*13^(16/29) 4324146210650249 r005 Im(z^2+c),c=-3/98+23/39*I,n=58 4324146226147726 m005 (1/2*Catalan-1/2)/(5/12*3^(1/2)+1/4) 4324146228709809 m001 BesselK(0,1)^(BesselI(0,1)/Mills) 4324146241512956 r002 43th iterates of z^2 + 4324146270697312 k002 Champernowne real with 23/2*n^2+327/2*n-132 4324146288389641 m001 (Thue+ZetaP(2))/(GAMMA(17/24)+MadelungNaCl) 4324146289010498 r005 Im(z^2+c),c=13/54+18/47*I,n=59 4324146304045565 p003 LerchPhi(1/25,3,232/175) 4324146306916873 r005 Im(z^2+c),c=-35/82+31/56*I,n=15 4324146311010161 k007 concat of cont frac of 4324146351499451 r005 Im(z^2+c),c=2/29+7/12*I,n=58 4324146364841047 r002 63th iterates of z^2 + 4324146366336394 a007 Real Root Of -186*x^4-659*x^3+417*x^2-849*x+279 4324146368587640 r005 Im(z^2+c),c=-11/86+39/61*I,n=35 4324146370997912 k002 Champernowne real with 12*n^2+162*n-131 4324146372837816 a001 1/76*(1/2*5^(1/2)+1/2)^9*29^(10/23) 4324146376974931 r005 Re(z^2+c),c=13/60+10/27*I,n=17 4324146379173191 p003 LerchPhi(1/25,1,495/208) 4324146384797893 m001 5^(1/2)+exp(1/exp(1))+Cahen 4324146384797893 m001 sqrt(5)+exp(1/exp(1))+Cahen 4324146403771157 r002 11th iterates of z^2 + 4324146419247327 m005 (1/3*2^(1/2)-3/7)/(-59/99+2/9*5^(1/2)) 4324146428994382 r005 Re(z^2+c),c=33/122+1/45*I,n=42 4324146441989202 r004 Im(z^2+c),c=1/6-1/7*I,z(0)=exp(11/24*I*Pi),n=8 4324146451545975 m001 (CareFree+FeigenbaumMu)/(Zeta(1/2)+Bloch) 4324146463949360 r005 Re(z^2+c),c=-35/62+17/49*I,n=3 4324146471298512 k002 Champernowne real with 25/2*n^2+321/2*n-130 4324146471398612 k004 Champernowne real with floor(Pi*(4*n^2+51*n-41)) 4324146494748410 a007 Real Root Of 63*x^4-737*x^3-144*x^2-768*x-33 4324146507075547 r009 Re(z^3+c),c=-51/110+2/13*I,n=22 4324146515965146 r005 Re(z^2+c),c=-39/62+7/25*I,n=47 4324146519987339 m001 1/Lehmer^2*ln(GaussAGM(1,1/sqrt(2)))*Catalan 4324146521111450 r005 Re(z^2+c),c=-33/70+29/62*I,n=24 4324146521186967 a007 Real Root Of 724*x^4-569*x^3-265*x^2-11*x+75 4324146561654424 r009 Im(z^3+c),c=-55/122+25/64*I,n=51 4324146568685435 r005 Re(z^2+c),c=-57/94+13/61*I,n=54 4324146569210143 r005 Re(z^2+c),c=-21/34+9/118*I,n=55 4324146571102836 m001 (MertensB3+StronglyCareFree)^ReciprocalLucas 4324146571599112 k002 Champernowne real with 13*n^2+159*n-129 4324146575775752 a001 4181/521*322^(7/24) 4324146585707871 r009 Im(z^3+c),c=-55/114+23/47*I,n=49 4324146589499046 r009 Im(z^3+c),c=-19/56+13/28*I,n=9 4324146590933465 r005 Im(z^2+c),c=-4/3+4/133*I,n=32 4324146611170752 a007 Real Root Of 31*x^4-605*x^3-262*x^2-641*x+374 4324146617065617 a007 Real Root Of 103*x^4+357*x^3-482*x^2-460*x-123 4324146625441775 m005 (1/2*Zeta(3)-2/9)/(5*3^(1/2)+1/10) 4324146629029640 m005 (1/2*Pi+5/8)/(1/11*2^(1/2)-7/11) 4324146634683923 a007 Real Root Of 19*x^4-191*x^3+532*x^2-815*x-468 4324146645236102 r005 Im(z^2+c),c=-1/44+36/61*I,n=60 4324146657563368 m001 (Zeta(1/2)-LandauRamanujan)^FeigenbaumC 4324146664967153 a007 Real Root Of -293*x^4-277*x^3-709*x^2+709*x+427 4324146671899713 k002 Champernowne real with 27/2*n^2+315/2*n-128 4324146681318318 r005 Re(z^2+c),c=-21/34+4/59*I,n=46 4324146700604168 r002 38th iterates of z^2 + 4324146707203942 m001 (Paris-Sarnak)/(GAMMA(13/24)-DuboisRaymond) 4324146712208208 m001 LaplaceLimit^BesselI(1,2)/Zeta(3) 4324146714196750 m001 (FeigenbaumB-MertensB3)/(ln(2)+arctan(1/2)) 4324146736139448 r005 Re(z^2+c),c=11/90+29/49*I,n=52 4324146738465918 a007 Real Root Of 692*x^4-573*x^3+752*x^2-452*x-21 4324146739420014 h001 (1/11*exp(2)+1/11)/(4/9*exp(1)+5/9) 4324146742640403 a005 (1/sin(71/187*Pi))^20 4324146743235910 r002 59th iterates of z^2 + 4324146761656888 l006 ln(5113/7879) 4324146761656888 p004 log(7879/5113) 4324146763171890 r002 22th iterates of z^2 + 4324146772110031 k002 Champernowne real with 14*n^2+156*n-127 4324146783888373 r005 Im(z^2+c),c=21/94+2/5*I,n=51 4324146787888379 m001 ZetaQ(4)-gamma(3)*Lehmer 4324146788259695 m001 (BesselI(1,2)-MertensB2)/(Rabbit+Stephens) 4324146794857951 a005 (1/sin(80/169*Pi))^418 4324146838045636 r005 Re(z^2+c),c=-67/94+5/62*I,n=29 4324146847013700 r009 Im(z^3+c),c=-5/66+25/49*I,n=22 4324146856678807 a007 Real Root Of -289*x^4+484*x^3+597*x^2+808*x+287 4324146867033996 r002 3th iterates of z^2 + 4324146872410091 k002 Champernowne real with 29/2*n^2+309/2*n-126 4324146875668068 r009 Im(z^3+c),c=-31/54+14/51*I,n=12 4324146879054080 a007 Real Root Of -930*x^4+351*x^3-534*x^2+773*x+495 4324146883848373 m005 (1/3*gamma-1/11)/(7/12*gamma-4/7) 4324146886096951 r005 Re(z^2+c),c=-15/38+19/34*I,n=35 4324146902605075 r005 Im(z^2+c),c=4/13+15/53*I,n=24 4324146911419423 m001 (GAMMA(11/24)+1)/(exp(gamma)+5) 4324146913631067 r002 8th iterates of z^2 + 4324146926288402 a007 Real Root Of 281*x^4-819*x^3+615*x^2-622*x-460 4324146928178786 r009 Im(z^3+c),c=-37/98+25/58*I,n=24 4324146935502786 a001 12238/305*89^(1/60) 4324146943751235 m001 (ErdosBorwein-Zeta(5))/HeathBrownMoroz 4324146965930773 a007 Real Root Of 243*x^4-251*x^3-354*x^2-216*x-56 4324146966568776 m001 (FellerTornier+RenyiParking)/(exp(Pi)+ln(5)) 4324146972710151 k002 Champernowne real with 15*n^2+153*n-125 4324146975748387 s002 sum(A141056[n]/(n^3*2^n+1),n=1..infinity) 4324146981627296 q001 659/1524 4324146986434819 p001 sum(1/(260*n+103)/n/(64^n),n=1..infinity) 4324146997074131 m001 1/Zeta(9)*Paris^2/exp(cos(Pi/5)) 4324147001360912 a007 Real Root Of 194*x^4-347*x^3-878*x^2-665*x+473 4324147008990535 r002 13th iterates of z^2 + 4324147012583959 m001 GAMMA(7/24)^MadelungNaCl/sqrt(1+sqrt(3)) 4324147022661653 m004 3+125*Pi+5*Sqrt[5]*Pi+(5*Tanh[Sqrt[5]*Pi])/Pi 4324147025020841 a007 Real Root Of 84*x^4-964*x^3+934*x^2-848*x+35 4324147035602224 r009 Im(z^3+c),c=-41/86+22/59*I,n=50 4324147038374190 a007 Real Root Of 520*x^4-2*x^3+271*x^2-814*x-421 4324147052328297 m001 Zeta(7)*ln(Porter)^2*cos(1)^2 4324147053859707 r005 Im(z^2+c),c=-2/11+44/49*I,n=10 4324147058416148 m001 (-gamma(2)+CopelandErdos)/(gamma-ln(Pi)) 4324147064149650 a007 Real Root Of -184*x^4+849*x^3-544*x^2+722*x+489 4324147073010211 k002 Champernowne real with 31/2*n^2+303/2*n-124 4324147091328799 m001 Bloch*DuboisRaymond^2/ln(Robbin) 4324147098466718 r005 Im(z^2+c),c=5/56+24/47*I,n=53 4324147103285292 a001 5/1860498*76^(34/53) 4324147103978040 a007 Real Root Of 58*x^4-3*x^3-153*x^2-757*x-301 4324147114059886 r005 Re(z^2+c),c=-79/106+1/63*I,n=62 4324147119316210 k006 concat of cont frac of 4324147120913927 a007 Real Root Of 264*x^4+934*x^3-943*x^2-414*x-941 4324147128036982 r005 Re(z^2+c),c=-75/58+3/44*I,n=10 4324147131792955 l006 ln(3429/5284) 4324147137890082 r005 Im(z^2+c),c=37/126+17/41*I,n=49 4324147145127337 r005 Im(z^2+c),c=29/60+7/61*I,n=3 4324147150332370 m001 DuboisRaymond-Landau^BesselJ(0,1) 4324147159351535 r005 Re(z^2+c),c=43/118+10/63*I,n=31 4324147161221462 a001 1597/1364*322^(5/8) 4324147161615824 r009 Im(z^3+c),c=-3/94+20/39*I,n=12 4324147162466183 m006 (5*Pi^2+2/3)/(4*Pi-1) 4324147162466183 m008 (5*Pi^2+2/3)/(4*Pi-1) 4324147173110241 k004 Champernowne real with floor(Pi*(5*n^2+48*n-39)) 4324147173283947 m009 (5/12*Pi^2+1/6)/(Psi(1,1/3)-1/5) 4324147173310271 k002 Champernowne real with 16*n^2+150*n-123 4324147178417420 r009 Re(z^3+c),c=-51/82+23/48*I,n=32 4324147180808130 r005 Im(z^2+c),c=-41/30+6/115*I,n=17 4324147186799474 r005 Re(z^2+c),c=-81/122+16/45*I,n=54 4324147206281276 r009 Im(z^3+c),c=-11/46+13/27*I,n=14 4324147214394762 m001 Gompertz-MertensB2^FeigenbaumB 4324147218270843 m001 Bloch*DuboisRaymond/exp(GAMMA(1/3))^2 4324147219602577 r005 Im(z^2+c),c=-11/86+44/59*I,n=9 4324147221787189 a007 Real Root Of -224*x^4-809*x^3+504*x^2-787*x+78 4324147245970238 r005 Re(z^2+c),c=5/22+13/33*I,n=56 4324147257086934 r002 22th iterates of z^2 + 4324147261119566 r009 Re(z^3+c),c=-6/13+4/37*I,n=12 4324147273610331 k002 Champernowne real with 33/2*n^2+297/2*n-122 4324147282454252 m001 exp(GAMMA(13/24))*Sierpinski/GAMMA(7/24) 4324147282720189 r009 Im(z^3+c),c=-23/94+12/25*I,n=14 4324147302480849 m001 (Mills+ZetaQ(2))/(Magata-MertensB1) 4324147303933169 a007 Real Root Of -894*x^4-324*x^3+840*x^2+993*x-529 4324147309962613 m008 (2/5*Pi-1/3)/(1/4*Pi^4-3) 4324147325459568 r005 Re(z^2+c),c=4/11+8/57*I,n=23 4324147328566617 m001 ZetaQ(2)^Weierstrass/gamma 4324147341795245 a007 Real Root Of -633*x^4+745*x^3-518*x^2+462*x+379 4324147350455710 a007 Real Root Of 700*x^4+123*x^3+984*x^2-991*x+41 4324147357964676 m001 (Psi(1,1/3)+ln(2^(1/2)+1))/(Ei(1)+Cahen) 4324147373910391 k002 Champernowne real with 17*n^2+147*n-121 4324147392956310 a007 Real Root Of -884*x^4+110*x^3-502*x^2+979*x+557 4324147397530741 a007 Real Root Of -673*x^4-13*x^3+565*x^2+578*x-331 4324147408128713 r009 Im(z^3+c),c=-31/106+27/58*I,n=25 4324147417968542 r005 Im(z^2+c),c=11/74+13/28*I,n=59 4324147423696974 r009 Im(z^3+c),c=-5/66+25/49*I,n=24 4324147424743812 a001 1597/2207*322^(17/24) 4324147468490325 a007 Real Root Of 145*x^4-716*x^3-870*x^2-577*x+465 4324147468823904 m002 Pi^2/(6*Log[Pi])+Sinh[Pi]/4 4324147474210451 k002 Champernowne real with 35/2*n^2+291/2*n-120 4324147497565210 l006 ln(5174/7973) 4324147503547175 r005 Re(z^2+c),c=-17/114+37/45*I,n=6 4324147505381357 a007 Real Root Of -969*x^4+788*x^3+63*x^2+49*x+107 4324147529834881 m005 (1/2*gamma+4/7)/(7/9*Pi-5/11) 4324147531730712 r005 Re(z^2+c),c=-5/8+52/207*I,n=15 4324147540839760 p001 sum((-1)^n/(61*n+40)/n/(2^n),n=0..infinity) 4324147541271049 r009 Im(z^3+c),c=-41/118+4/9*I,n=24 4324147544339522 p003 LerchPhi(1/1024,16,16/27) 4324147546050116 p003 LerchPhi(1/256,16,16/27) 4324147547636550 r005 Im(z^2+c),c=17/52+19/64*I,n=46 4324147549608166 p003 LerchPhi(1/100,16,16/27) 4324147552892536 p003 LerchPhi(1/64,16,16/27) 4324147554979822 m001 (ZetaP(4)+ZetaQ(4))/(Tribonacci-Trott2nd) 4324147555232210 r005 Re(z^2+c),c=-21/34+7/116*I,n=44 4324147559607617 b008 1/3+PolyGamma[0,E^4] 4324147560540132 r005 Im(z^2+c),c=9/106+23/45*I,n=40 4324147563855601 p001 sum(1/(315*n+242)/(10^n),n=0..infinity) 4324147567124981 p003 LerchPhi(1/25,16,16/27) 4324147568600538 h001 (1/3*exp(1)+1/4)/(11/12*exp(1)+2/11) 4324147568600538 m005 (1/3*exp(1)+1/4)/(11/12*exp(1)+2/11) 4324147571368363 a003 cos(Pi*32/91)*sin(Pi*47/114) 4324147574510511 k002 Champernowne real with 18*n^2+144*n-119 4324147580262875 p003 LerchPhi(1/16,16,16/27) 4324147602159906 p003 LerchPhi(1/10,16,16/27) 4324147614734310 a003 sin(Pi*36/97)/cos(Pi*19/44) 4324147616758302 p003 LerchPhi(1/8,16,16/27) 4324147624401304 r002 10th iterates of z^2 + 4324147626571544 r005 Im(z^2+c),c=-13/14+58/195*I,n=4 4324147654151615 r005 Im(z^2+c),c=13/98+29/60*I,n=23 4324147660555296 p003 LerchPhi(1/5,16,16/27) 4324147670929345 r005 Im(z^2+c),c=1/50+14/25*I,n=59 4324147674810571 k002 Champernowne real with 37/2*n^2+285/2*n-118 4324147675651692 r005 Re(z^2+c),c=-39/64+7/37*I,n=48 4324147676901087 a003 cos(Pi*15/43)-sin(Pi*37/106) 4324147689754796 p003 LerchPhi(1/4,16,16/27) 4324147707794727 m001 1/MadelungNaCl/FeigenbaumB*ln(GAMMA(17/24))^2 4324147713325491 a003 sin(Pi*6/55)/cos(Pi*13/60) 4324147728424712 r009 Im(z^3+c),c=-27/98+23/49*I,n=9 4324147738423308 p003 LerchPhi(1/3,16,16/27) 4324147768580743 r005 Re(z^2+c),c=-53/86+1/16*I,n=36 4324147768743736 m005 (1/3*5^(1/2)+2/9)/(8/9*5^(1/2)+1/4) 4324147771141222 m001 (2^(1/2)-cos(1/12*Pi))/(gamma(3)+MertensB2) 4324147771590777 m001 Trott^2*exp(Backhouse)^2*sqrt(2)^2 4324147775010611 k004 Champernowne real with floor(Pi*(6*n^2+45*n-37)) 4324147775110631 k002 Champernowne real with 19*n^2+141*n-117 4324147786879464 a007 Real Root Of -533*x^4+920*x^3-584*x^2+129*x+258 4324147787160502 a007 Real Root Of 867*x^4+750*x^3+885*x^2-927*x-536 4324147791815283 m001 RenyiParking^2/Magata*ln(Salem)^2 4324147793366322 a007 Real Root Of 286*x^4-775*x^3-435*x^2+134 4324147809929470 r002 33th iterates of z^2 + 4324147814315085 m005 (1/2*3^(1/2)-9/10)/(3/11*2^(1/2)+2/5) 4324147824480077 r002 38th iterates of z^2 + 4324147835770393 p003 LerchPhi(1/2,16,16/27) 4324147836617134 r005 Re(z^2+c),c=1/7+26/55*I,n=42 4324147837168969 r005 Re(z^2+c),c=-71/118+16/61*I,n=58 4324147852750338 a005 (1/cos(32/199*Pi))^80 4324147875410691 k002 Champernowne real with 39/2*n^2+279/2*n-116 4324147881983500 a007 Real Root Of 494*x^4-24*x^3-153*x^2-512*x-212 4324147893360811 a001 4181/5778*322^(17/24) 4324147910334360 a007 Real Root Of 400*x^4-332*x^3-972*x^2-623*x+464 4324147912667021 a007 Real Root Of 628*x^4+150*x^3-680*x^2-541*x+327 4324147917912081 r005 Im(z^2+c),c=29/98+14/43*I,n=53 4324147931433603 r005 Re(z^2+c),c=-41/66+14/47*I,n=54 4324147945569270 r005 Im(z^2+c),c=15/74+18/43*I,n=38 4324147948711464 m001 (cos(1/5*Pi)-exp(1/Pi))/(gamma(3)+Mills) 4324147961731123 a001 10946/15127*322^(17/24) 4324147962253135 a008 Real Root of (-3+6*x+x^2+4*x^3-3*x^4) 4324147963061051 m001 (2^(1/3)-LandauRamanujan2nd)/(MertensB1+Mills) 4324147971706218 a001 28657/39603*322^(17/24) 4324147973161564 a001 75025/103682*322^(17/24) 4324147973373897 a001 196418/271443*322^(17/24) 4324147973404876 a001 514229/710647*322^(17/24) 4324147973409395 a001 1346269/1860498*322^(17/24) 4324147973410055 a001 3524578/4870847*322^(17/24) 4324147973410151 a001 9227465/12752043*322^(17/24) 4324147973410165 a001 24157817/33385282*322^(17/24) 4324147973410167 a001 63245986/87403803*322^(17/24) 4324147973410167 a001 165580141/228826127*322^(17/24) 4324147973410167 a001 433494437/599074578*322^(17/24) 4324147973410167 a001 1134903170/1568397607*322^(17/24) 4324147973410167 a001 2971215073/4106118243*322^(17/24) 4324147973410167 a001 7778742049/10749957122*322^(17/24) 4324147973410167 a001 20365011074/28143753123*322^(17/24) 4324147973410167 a001 53316291173/73681302247*322^(17/24) 4324147973410167 a001 139583862445/192900153618*322^(17/24) 4324147973410167 a001 365435296162/505019158607*322^(17/24) 4324147973410167 a001 10610209857723/14662949395604*322^(17/24) 4324147973410167 a001 225851433717/312119004989*322^(17/24) 4324147973410167 a001 86267571272/119218851371*322^(17/24) 4324147973410167 a001 32951280099/45537549124*322^(17/24) 4324147973410167 a001 12586269025/17393796001*322^(17/24) 4324147973410167 a001 4807526976/6643838879*322^(17/24) 4324147973410167 a001 1836311903/2537720636*322^(17/24) 4324147973410167 a001 701408733/969323029*322^(17/24) 4324147973410167 a001 267914296/370248451*322^(17/24) 4324147973410167 a001 102334155/141422324*322^(17/24) 4324147973410168 a001 39088169/54018521*322^(17/24) 4324147973410174 a001 14930352/20633239*322^(17/24) 4324147973410210 a001 5702887/7881196*322^(17/24) 4324147973410462 a001 2178309/3010349*322^(17/24) 4324147973412189 a001 832040/1149851*322^(17/24) 4324147973424021 a001 317811/439204*322^(17/24) 4324147973505125 a001 121393/167761*322^(17/24) 4324147974061018 a001 46368/64079*322^(17/24) 4324147975710751 k002 Champernowne real with 20*n^2+138*n-115 4324147977352747 m001 (Pi-ln(2)/ln(10))/Shi(1)*ln(5) 4324147977871165 a001 17711/24476*322^(17/24) 4324148002308924 m001 (Lehmer-Mills)/(Backhouse+DuboisRaymond) 4324148003986302 a001 6765/9349*322^(17/24) 4324148018076952 r002 54th iterates of z^2 + 4324148033378013 r005 Re(z^2+c),c=-11/19+5/21*I,n=14 4324148033804860 p003 LerchPhi(1/3,5,70/59) 4324148037221782 a001 7/1597*1346269^(22/27) 4324148062134489 a007 Real Root Of -17*x^4+175*x^3+981*x^2-426*x-92 4324148072248204 m005 (1/2*exp(1)+2/3)/(3/8*Catalan+1/8) 4324148072839087 m001 1/Catalan*ln(Tribonacci)^2/Zeta(1,2) 4324148076010811 k002 Champernowne real with 41/2*n^2+273/2*n-114 4324148081668190 h001 (-9*exp(3)+9)/(-7*exp(2)+12) 4324148113638282 a007 Real Root Of -213*x^4-685*x^3+819*x^2-704*x+727 4324148117040981 m001 (-FeigenbaumB+Gompertz)/(Psi(2,1/3)+cos(1)) 4324148119375279 m001 (BesselI(1,1)+Robbin)/(Sarnak-TreeGrowth2nd) 4324148128096422 r005 Re(z^2+c),c=-21/44+16/37*I,n=14 4324148131190376 r005 Im(z^2+c),c=19/82+24/59*I,n=26 4324148156012020 r005 Re(z^2+c),c=-3/44+25/39*I,n=5 4324148176310871 k002 Champernowne real with 21*n^2+135*n-113 4324148181126131 k007 concat of cont frac of 4324148181239180 a001 7/832040*46368^(11/30) 4324148182982126 a001 2584/3571*322^(17/24) 4324148185082884 r002 61th iterates of z^2 + 4324148194726154 m005 (1/2*Pi+3/4)/(6*gamma-4) 4324148216323371 l006 ln(1745/2689) 4324148217763507 r002 27th iterates of z^2 + 4324148224764042 r009 Im(z^3+c),c=-5/66+25/49*I,n=26 4324148237408426 a001 4181/322*123^(1/4) 4324148243934460 a001 13/29*119218851371^(9/20) 4324148264493272 r002 34th iterates of z^2 + 4324148276610931 k002 Champernowne real with 43/2*n^2+267/2*n-112 4324148283776230 r009 Im(z^3+c),c=-5/16+11/24*I,n=29 4324148296507667 r005 Im(z^2+c),c=19/62+19/61*I,n=63 4324148302609775 r005 Im(z^2+c),c=13/50+4/11*I,n=24 4324148320657920 s001 sum(exp(-Pi/3)^n*A084515[n],n=1..infinity) 4324148328682353 m001 Zeta(9)^2/CareFree^2/exp(cosh(1)) 4324148334553209 r005 Re(z^2+c),c=-29/48+9/58*I,n=22 4324148355191801 r005 Re(z^2+c),c=-65/46+1/33*I,n=6 4324148355866735 s001 sum(exp(-Pi/3)^n*A084525[n],n=1..infinity) 4324148362191690 r005 Re(z^2+c),c=17/70+9/22*I,n=59 4324148362360812 a007 Real Root Of 186*x^4+279*x^3+828*x^2-544*x-374 4324148363161885 a007 Real Root Of 195*x^4+832*x^3-270*x^2-772*x+804 4324148376910991 k004 Champernowne real with floor(Pi*(7*n^2+42*n-35)) 4324148376910991 k002 Champernowne real with 22*n^2+132*n-111 4324148381148976 r009 Im(z^3+c),c=-1/30+13/25*I,n=6 4324148387219768 m004 3+Cos[Sqrt[5]*Pi]+(5*Cos[Sqrt[5]*Pi])/(2*Pi) 4324148403326158 r005 Re(z^2+c),c=-71/118+15/62*I,n=47 4324148407056354 r005 Re(z^2+c),c=-17/30+17/45*I,n=64 4324148408892729 m001 FeigenbaumC/(3^(1/2)+FeigenbaumAlpha) 4324148413154640 m001 exp(cos(Pi/12))/GAMMA(23/24)^2*sqrt(3) 4324148424154965 r002 25th iterates of z^2 + 4324148447483418 m005 (1/2*Catalan-10/11)/(4/11*gamma+5/6) 4324148477211051 k002 Champernowne real with 45/2*n^2+261/2*n-110 4324148482860676 r005 Re(z^2+c),c=-59/90+13/57*I,n=33 4324148482994353 r005 Im(z^2+c),c=-3/118+23/40*I,n=15 4324148489272502 r002 46th iterates of z^2 + 4324148498377554 m001 cos(1/12*Pi)^PrimesInBinary/BesselI(0,2) 4324148506520819 a007 Real Root Of 496*x^4+435*x^3-634*x^2-400*x+239 4324148506756525 m001 Pi+exp(Pi)/gamma-gamma(2) 4324148510690727 m003 (24*Csc[1/2+Sqrt[5]/2])/5-Log[1/2+Sqrt[5]/2] 4324148520547137 a001 53316291173/18*76^(13/21) 4324148531527632 r009 Re(z^3+c),c=-23/54+5/42*I,n=22 4324148538152493 m005 (1/3*exp(1)-1/5)/(7/12*gamma-1/2) 4324148542674576 r005 Re(z^2+c),c=-10/17+16/59*I,n=35 4324148542895022 m001 Pi-1+exp(gamma)*GAMMA(3/4) 4324148550588314 r005 Im(z^2+c),c=33/106+10/41*I,n=10 4324148551743148 m001 PisotVijayaraghavan^2/exp(Cahen)/Zeta(1/2)^2 4324148552423172 r005 Im(z^2+c),c=-89/114+1/60*I,n=45 4324148558935324 r009 Im(z^3+c),c=-47/98+23/48*I,n=18 4324148560855404 r009 Re(z^3+c),c=-15/32+10/63*I,n=36 4324148570665717 m005 (4/5*2^(1/2)-1/6)/(3/5*exp(1)+3/5) 4324148570961601 a001 7/514229*6765^(32/35) 4324148576090314 a007 Real Root Of -199*x^4-981*x^3-798*x^2-971*x+980 4324148577511111 k002 Champernowne real with 23*n^2+129*n-109 4324148578538852 a007 Real Root Of 110*x^4-441*x^3+518*x^2-464*x-337 4324148582299063 a008 Real Root of x^4-2*x^3+3*x^2+26*x-455 4324148585527549 m001 1/ln(KhintchineLevy)*Si(Pi)^2/arctan(1/2) 4324148596267187 a007 Real Root Of 331*x^4+625*x^3+243*x^2-917*x-403 4324148601669043 r002 35th iterates of z^2 + 4324148604002588 r005 Re(z^2+c),c=-17/28+12/53*I,n=48 4324148630716344 r009 Im(z^3+c),c=-5/66+25/49*I,n=28 4324148651733737 a001 17711/521*123^(1/20) 4324148651838966 a007 Real Root Of 122*x^4+341*x^3-776*x^2+309*x+763 4324148652438649 m001 (3^(1/2)+Otter)/Trott 4324148667030538 r002 53th iterates of z^2 + 4324148677811171 k002 Champernowne real with 47/2*n^2+255/2*n-108 4324148690609810 r005 Im(z^2+c),c=41/114+9/19*I,n=5 4324148692110316 m001 Magata*Artin/exp(cos(1))^2 4324148700786453 r002 24th iterates of z^2 + 4324148708166762 r005 Re(z^2+c),c=-7/10+47/163*I,n=37 4324148713702715 r002 4th iterates of z^2 + 4324148734350199 r002 6th iterates of z^2 + 4324148741391839 r002 42th iterates of z^2 + 4324148752402018 m006 (3/4*exp(2*Pi)-1/5)/(2*Pi+3) 4324148764501136 a007 Real Root Of -156*x^4-84*x^3+136*x^2+943*x+381 4324148777517319 r002 29th iterates of z^2 + 4324148778111231 k002 Champernowne real with 24*n^2+126*n-107 4324148781534079 a007 Real Root Of 132*x^4+372*x^3-760*x^2+605*x+754 4324148783105809 m005 (1/3*3^(1/2)-1/9)/(4*exp(1)-1/11) 4324148783463755 r009 Im(z^3+c),c=-5/66+25/49*I,n=30 4324148784435992 r009 Im(z^3+c),c=-5/24+23/47*I,n=14 4324148804093085 m001 (ln(5)*Totient+Zeta(1/2))/ln(5) 4324148808694295 m005 (1/2*Zeta(3)+11/12)/(2/5*2^(1/2)-11/12) 4324148819257151 r002 2th iterates of z^2 + 4324148820357976 a001 233/521*1364^(19/30) 4324148824308825 r002 12th iterates of z^2 + 4324148825204517 a008 Real Root of x^4-45*x^2-50*x+30 4324148830054512 r009 Im(z^3+c),c=-5/66+25/49*I,n=32 4324148841254144 r009 Im(z^3+c),c=-5/66+25/49*I,n=34 4324148841538315 r009 Im(z^3+c),c=-5/66+25/49*I,n=37 4324148841844486 r009 Im(z^3+c),c=-5/66+25/49*I,n=35 4324148841856284 r009 Im(z^3+c),c=-5/66+25/49*I,n=39 4324148842073127 r009 Im(z^3+c),c=-5/66+25/49*I,n=41 4324148842166163 r009 Im(z^3+c),c=-5/66+25/49*I,n=43 4324148842197708 r009 Im(z^3+c),c=-5/66+25/49*I,n=45 4324148842206371 r009 Im(z^3+c),c=-5/66+25/49*I,n=47 4324148842207753 r009 Im(z^3+c),c=-5/66+25/49*I,n=50 4324148842207820 r009 Im(z^3+c),c=-5/66+25/49*I,n=52 4324148842207924 r009 Im(z^3+c),c=-5/66+25/49*I,n=54 4324148842207977 r009 Im(z^3+c),c=-5/66+25/49*I,n=56 4324148842207998 r009 Im(z^3+c),c=-5/66+25/49*I,n=58 4324148842208004 r009 Im(z^3+c),c=-5/66+25/49*I,n=60 4324148842208005 r009 Im(z^3+c),c=-5/66+25/49*I,n=62 4324148842208005 r009 Im(z^3+c),c=-5/66+25/49*I,n=63 4324148842208005 r009 Im(z^3+c),c=-5/66+25/49*I,n=64 4324148842208006 r009 Im(z^3+c),c=-5/66+25/49*I,n=61 4324148842208009 r009 Im(z^3+c),c=-5/66+25/49*I,n=59 4324148842208021 r009 Im(z^3+c),c=-5/66+25/49*I,n=57 4324148842208054 r009 Im(z^3+c),c=-5/66+25/49*I,n=55 4324148842208127 r009 Im(z^3+c),c=-5/66+25/49*I,n=49 4324148842208133 r009 Im(z^3+c),c=-5/66+25/49*I,n=53 4324148842208246 r009 Im(z^3+c),c=-5/66+25/49*I,n=51 4324148842208372 r009 Im(z^3+c),c=-5/66+25/49*I,n=48 4324148842212480 r009 Im(z^3+c),c=-5/66+25/49*I,n=46 4324148842229490 r009 Im(z^3+c),c=-5/66+25/49*I,n=44 4324148842285067 r009 Im(z^3+c),c=-5/66+25/49*I,n=42 4324148842432220 r009 Im(z^3+c),c=-5/66+25/49*I,n=40 4324148842720596 r009 Im(z^3+c),c=-5/66+25/49*I,n=38 4324148842918460 r009 Im(z^3+c),c=-5/66+25/49*I,n=36 4324148845708532 r002 49th iterates of z^2 + 4324148846576217 s002 sum(A087132[n]/(n*pi^n+1),n=1..infinity) 4324148846609264 r009 Im(z^3+c),c=-5/66+25/49*I,n=33 4324148847132153 s002 sum(A087132[n]/(n*pi^n-1),n=1..infinity) 4324148866809993 r002 51th iterates of z^2 + 4324148870291074 r009 Im(z^3+c),c=-5/66+25/49*I,n=31 4324148873298726 r004 Im(z^2+c),c=-8/23*I,z(0)=exp(1/12*I*Pi),n=5 4324148873851828 m001 PlouffeB/(ln(3)+HeathBrownMoroz) 4324148878411291 k002 Champernowne real with 49/2*n^2+249/2*n-106 4324148884876469 r005 Re(z^2+c),c=-21/34+19/100*I,n=7 4324148891479404 r005 Re(z^2+c),c=-11/18+17/99*I,n=62 4324148901283222 g006 2*Psi(1,11/12)+Psi(1,3/4)-Psi(1,8/9) 4324148916058169 m008 (4/5*Pi^6+3/4)/(3/5*Pi^3-4/5) 4324148918523987 l006 ln(5296/8161) 4324148926761033 a001 64079/1597*89^(1/60) 4324148936723323 r005 Re(z^2+c),c=-5/8+75/247*I,n=56 4324148938301064 r005 Im(z^2+c),c=-27/22+8/77*I,n=36 4324148947482015 r005 Re(z^2+c),c=43/118+1/7*I,n=30 4324148956844459 r009 Im(z^3+c),c=-5/66+25/49*I,n=29 4324148961842379 m001 exp(RenyiParking)*Lehmer*sin(Pi/5)^2 4324148970154254 r002 2th iterates of z^2 + 4324148978711351 k002 Champernowne real with 25*n^2+123*n-105 4324148994370617 r005 Im(z^2+c),c=1/17+25/47*I,n=54 4324148997202884 r005 Im(z^2+c),c=-3/74+18/31*I,n=39 4324149005344266 m001 sin(1)*(1/3-GaussAGM(1,1/sqrt(2))) 4324149023097299 h001 (-5*exp(3)+7)/(-5*exp(-1)+4) 4324149033842565 m005 (1/2*2^(1/2)+3)/(2/9*2^(1/2)-2/5) 4324149037564817 a003 cos(Pi*19/120)-sin(Pi*31/83) 4324149049609491 b008 -17/5+LogIntegral[4] 4324149068862841 a007 Real Root Of -323*x^4+863*x^3-611*x^2-454*x-1 4324149069633473 s002 sum(A253648[n]/(exp(n)+1),n=1..infinity) 4324149078811371 k004 Champernowne real with floor(Pi*(8*n^2+39*n-33)) 4324149079011411 k002 Champernowne real with 51/2*n^2+243/2*n-104 4324149081313469 m001 (exp(-1/2*Pi)+Backhouse)/(Ei(1,1)-Zeta(1,-1)) 4324149092852568 r005 Im(z^2+c),c=-25/54+31/61*I,n=8 4324149108589951 q001 1334/3085 4324149121721052 m001 GAMMA(1/3)/GAMMA(1/24)^2/ln(GAMMA(7/24)) 4324149123505571 r002 5th iterates of z^2 + 4324149136112211 k007 concat of cont frac of 4324149147543944 m005 (5/66+1/6*5^(1/2))/(1/3*Zeta(3)+7/11) 4324149172263695 a007 Real Root Of -195*x^4-690*x^3+807*x^2+771*x+632 4324149173962627 r005 Re(z^2+c),c=-75/122+4/59*I,n=32 4324149179311471 k002 Champernowne real with 26*n^2+120*n-103 4324149188108966 l006 ln(9346/9759) 4324149212986585 r009 Im(z^3+c),c=-5/66+25/49*I,n=27 4324149215740578 r005 Re(z^2+c),c=-17/30+7/19*I,n=55 4324149222702880 a007 Real Root Of -145*x^4-648*x^3-172*x^2-149*x+874 4324149225024033 m002 3+6*E^Pi*Pi^3*Coth[Pi] 4324149226679788 r002 54th iterates of z^2 + 4324149235111539 r009 Im(z^3+c),c=-21/40+19/59*I,n=61 4324149243684746 m001 1/exp(CareFree)/GolombDickman/FeigenbaumC 4324149263592984 l006 ln(3551/5472) 4324149279611531 k002 Champernowne real with 53/2*n^2+237/2*n-102 4324149284503552 m001 exp(sqrt(2))^MadelungNaCl*exp(sqrt(2))^Catalan 4324149305493391 r002 62th iterates of z^2 + 4324149309684560 r005 Re(z^2+c),c=-11/17+57/62*I,n=3 4324149313732910 r009 Im(z^3+c),c=-1/18+22/43*I,n=19 4324149324014994 m005 (1/3*Pi-1/3)/(10/11*Catalan+9/11) 4324149333070772 r009 Im(z^3+c),c=-13/29+20/51*I,n=48 4324149337391386 r005 Im(z^2+c),c=-5/6+59/220*I,n=5 4324149339736784 r005 Re(z^2+c),c=-79/118+6/25*I,n=61 4324149347230145 r005 Im(z^2+c),c=-35/36+2/49*I,n=6 4324149355679582 a007 Real Root Of -505*x^4+457*x^3+380*x^2+711*x+291 4324149363933496 r008 a(0)=4,K{-n^6,9-8*n^3-4*n^2-n} 4324149371772178 m001 (GAMMA(17/24)-Lehmer)/(MertensB1+Totient) 4324149373463438 r005 Re(z^2+c),c=-1/34+6/7*I,n=10 4324149379002486 a005 (1/sin(91/209*Pi))^737 4324149379911591 k002 Champernowne real with 27*n^2+117*n-101 4324149387448917 r002 44th iterates of z^2 + 4324149392521932 a003 cos(Pi*11/43)-cos(Pi*37/89) 4324149392958436 m001 (-Landau+ThueMorse)/(1-ArtinRank2) 4324149408284023 r002 2th iterates of z^2 + 4324149408284023 r005 Re(z^2+c),c=3/8+15/52*I,n=2 4324149408580360 r005 Re(z^2+c),c=-1/27+13/19*I,n=23 4324149409838401 a001 987/1364*322^(17/24) 4324149418463755 r009 Im(z^3+c),c=-49/122+11/28*I,n=8 4324149433590982 r009 Im(z^3+c),c=-19/46+26/63*I,n=47 4324149435998161 r005 Re(z^2+c),c=-3/5+10/99*I,n=18 4324149451822250 m001 ln(sin(Pi/12))/FeigenbaumKappa^2*sin(Pi/5) 4324149461813851 r005 Re(z^2+c),c=-67/94+7/45*I,n=46 4324149470352754 g007 Psi(2,7/10)+Psi(2,1/8)-Psi(2,7/9)-Psi(2,1/9) 4324149480211651 k002 Champernowne real with 55/2*n^2+231/2*n-100 4324149492181443 m001 1/BesselK(0,1)^2/Tribonacci*exp(GAMMA(1/4))^2 4324149494889482 r005 Re(z^2+c),c=15/98+29/60*I,n=51 4324149496988925 m001 (Cahen-Porter)/(Ei(1)-gamma(2)) 4324149498020615 m004 -4+4*E^(Sqrt[5]*Pi)-24*Sqrt[5]*Pi 4324149502183807 m001 1/FeigenbaumB^2/Cahen^2*exp(OneNinth)^2 4324149504346251 b008 Pi+ArcSec[-1/2+Pi] 4324149512171808 r002 8th iterates of z^2 + 4324149517684195 a007 Real Root Of 112*x^4-826*x^3-695*x^2-678*x+486 4324149523015290 r005 Im(z^2+c),c=17/50+15/58*I,n=58 4324149523389456 r002 60th iterates of z^2 + 4324149526449763 m005 (1/2*exp(1)+3/8)/(7/12*3^(1/2)+3) 4324149526498218 r005 Im(z^2+c),c=25/106+19/49*I,n=59 4324149535359690 m001 (-KhinchinLevy+ZetaP(4))/(3^(1/2)+GaussAGM) 4324149546257301 r005 Im(z^2+c),c=-4/17+31/54*I,n=18 4324149546924565 r002 24th iterates of z^2 + 4324149554454404 m001 (Pi*csc(1/12*Pi)/GAMMA(11/12))^Robbin*Thue 4324149565892638 m001 (-Zeta(3)+Sierpinski)/(exp(Pi)+Psi(2,1/3)) 4324149571460196 p003 LerchPhi(1/2,6,484/193) 4324149580511711 k002 Champernowne real with 28*n^2+114*n-99 4324149581793064 r005 Re(z^2+c),c=-53/86+16/51*I,n=61 4324149585022647 r005 Im(z^2+c),c=-5/62+23/37*I,n=59 4324149591961035 r005 Re(z^2+c),c=1/48+9/32*I,n=8 4324149597559728 a007 Real Root Of -593*x^4+649*x^3-797*x^2+780*x-220 4324149601662256 r002 12th iterates of z^2 + 4324149604732680 l006 ln(5357/8255) 4324149659123648 r005 Im(z^2+c),c=19/62+5/16*I,n=64 4324149673360889 a001 987/2207*322^(19/24) 4324149680111753 r002 12th iterates of z^2 + 4324149680379956 r009 Im(z^3+c),c=-65/126+19/50*I,n=34 4324149680711741 k004 Champernowne real with floor(Pi*(9*n^2+36*n-31)) 4324149680811771 k002 Champernowne real with 57/2*n^2+225/2*n-98 4324149685500714 m001 FeigenbaumC^2/LandauRamanujan*ln(GAMMA(1/3)) 4324149690187295 r005 Im(z^2+c),c=17/98+17/39*I,n=17 4324149691662379 r002 21th iterates of z^2 + 4324149694979584 r005 Im(z^2+c),c=-31/26+8/115*I,n=22 4324149700291291 m001 1/GAMMA(1/3)/ln(MinimumGamma)*GAMMA(5/24) 4324149701679005 m001 (Zeta(1,2)-sin(1))/(FransenRobinson+Mills) 4324149704883020 m005 1/4*5^(1/2)/(10/11*Zeta(3)+1/5) 4324149709298235 m001 Robbin^2*ln(Artin)*Zeta(9)^2 4324149718858289 r005 Im(z^2+c),c=3/122+30/53*I,n=46 4324149722070388 r009 Im(z^3+c),c=-9/20+16/41*I,n=35 4324149727226041 g002 Psi(5/12)+Psi(7/11)+Psi(7/10)-Psi(9/10) 4324149733704602 m001 (FellerTornier+Kac)/(cos(1)+(1+3^(1/2))^(1/2)) 4324149760182652 a007 Real Root Of 51*x^4-109*x^3+887*x^2-998*x-608 4324149781111831 k002 Champernowne real with 29*n^2+111*n-97 4324149781539480 r002 36th iterates of z^2 + 4324149788385997 r009 Im(z^3+c),c=-41/102+18/43*I,n=47 4324149808674505 a007 Real Root Of -515*x^4+206*x^3+528*x^2+909*x+329 4324149812802565 r009 Im(z^3+c),c=-5/66+25/49*I,n=25 4324149818477039 r002 12th iterates of z^2 + 4324149819832999 a003 sin(Pi*7/93)/cos(Pi*34/107) 4324149826091119 m001 RenyiParking*GAMMA(1/3)^exp(gamma) 4324149843903531 m005 (1/3*2^(1/2)+2/7)/(11/12*2^(1/2)+5/11) 4324149849060170 r005 Im(z^2+c),c=17/90+13/30*I,n=36 4324149850403002 m001 (Artin+HeathBrownMoroz)/(Thue+ZetaQ(3)) 4324149855634813 b008 -61/11+Pi^2 4324149872252508 a001 2584/521*322^(3/8) 4324149881411891 k002 Champernowne real with 59/2*n^2+219/2*n-96 4324149915697803 a007 Real Root Of -786*x^4+12*x^3+978*x^2+427*x-341 4324149921919777 r009 Im(z^3+c),c=-5/66+25/49*I,n=21 4324149922443695 r009 Im(z^3+c),c=-19/94+45/62*I,n=2 4324149928906880 m001 arctan(1/2)*Catalan^Kolakoski 4324149931351466 m001 (Ei(1,1)-GAMMA(5/6))/(Riemann2ndZero+ZetaQ(3)) 4324149949462162 a007 Real Root Of 65*x^4+142*x^3-754*x^2-784*x-536 4324149949672470 r002 27th iterates of z^2 + 4324149971346020 r002 32th iterates of z^2 + 4324149981711951 k002 Champernowne real with 30*n^2+108*n-95 4324150028520144 a007 Real Root Of 147*x^4+617*x^3-226*x^2-558*x+305 4324150029603022 r005 Im(z^2+c),c=-3/25+41/57*I,n=12 4324150038635436 r005 Im(z^2+c),c=-7/10+68/247*I,n=9 4324150039857604 a007 Real Root Of 119*x^4-309*x^3+170*x^2-724*x-374 4324150046432067 a007 Real Root Of -395*x^4+478*x^3-748*x^2-158*x+124 4324150048077531 m001 (Shi(1)+gamma(3))/(-CopelandErdos+Khinchin) 4324150049365450 r002 19th iterates of z^2 + 4324150053588486 p004 log(24953/16193) 4324150060020967 m005 (1/3*Catalan+1/4)/(1/4*gamma-3/11) 4324150077532179 r005 Im(z^2+c),c=-8/17+27/41*I,n=5 4324150082012011 k002 Champernowne real with 61/2*n^2+213/2*n-94 4324150102850828 a001 233/521*3571^(19/34) 4324150108026439 m001 1/TwinPrimes^2/exp(Si(Pi))^2*BesselJ(0,1) 4324150150667963 a007 Real Root Of 169*x^4+692*x^3-345*x^2-624*x+617 4324150155343278 a003 cos(Pi*7/83)-sin(Pi*28/75) 4324150155780275 m001 1/Zeta(9)*GAMMA(3/4)^2/ln(sqrt(2)) 4324150157427223 a001 13201/329*89^(1/60) 4324150157827230 r005 Im(z^2+c),c=17/110+11/24*I,n=40 4324150182312071 k002 Champernowne real with 31*n^2+105*n-93 4324150193975650 a007 Real Root Of 524*x^4-520*x^3+175*x^2-312*x-228 4324150198914336 r005 Re(z^2+c),c=-1/32+26/41*I,n=2 4324150211121121 k007 concat of cont frac of 4324150211171060 a007 Real Root Of 595*x^4-527*x^3-722*x^2-339*x-75 4324150226185750 m003 55/8+Sqrt[5]/32-Cosh[1/2+Sqrt[5]/2] 4324150243494979 r002 7th iterates of z^2 + 4324150244987910 r009 Im(z^3+c),c=-11/25+31/41*I,n=3 4324150248284619 a007 Real Root Of 193*x^4+701*x^3-488*x^2+232*x-671 4324150253540830 r002 48th iterates of z^2 + 4324150260213415 r009 Re(z^3+c),c=-7/13+14/55*I,n=52 4324150267608307 a001 233/521*9349^(1/2) 4324150270057001 r002 40th iterates of z^2 + 4324150275489600 l006 ln(1806/2783) 4324150282612121 k004 Champernowne real with floor(Pi*(10*n^2+33*n-29)) 4324150282612131 k002 Champernowne real with 63/2*n^2+207/2*n-92 4324150289079624 a001 233/521*24476^(19/42) 4324150291909957 a001 233/521*64079^(19/46) 4324150292344933 a001 233/521*817138163596^(1/6) 4324150292344933 a001 233/521*87403803^(1/4) 4324150292495221 r005 Im(z^2+c),c=-9/82+28/45*I,n=49 4324150293535477 a001 233/521*39603^(19/44) 4324150301321055 a001 233/521*15127^(19/40) 4324150314795663 r009 Im(z^3+c),c=-19/46+26/63*I,n=45 4324150341308101 a007 Real Root Of -109*x^4+219*x^3-930*x^2+376*x+358 4324150344227253 h001 (7/9*exp(2)+4/7)/(2/9*exp(1)+6/7) 4324150344489274 a007 Real Root Of 753*x^4-359*x^3+590*x^2+138*x-106 4324150349470909 r005 Im(z^2+c),c=-1/20+10/17*I,n=45 4324150360704110 a001 233/521*5778^(19/36) 4324150361200148 l006 ln(8735/9121) 4324150361588212 r005 Re(z^2+c),c=-65/106+6/41*I,n=60 4324150361820570 m001 1/ln(FeigenbaumD)/Bloch^2/GAMMA(23/24)^2 4324150362238369 h001 (8/11*exp(1)+1/3)/(2/3*exp(2)+5/12) 4324150373845064 r005 Im(z^2+c),c=8/27+25/61*I,n=17 4324150375521840 r002 26th iterates of z^2 + 4324150377768175 r002 34th iterates of z^2 + 4324150378397092 a007 Real Root Of -219*x^4-881*x^3+294*x^2-16*x-231 4324150382189435 m001 1/GAMMA(19/24)^2*Tribonacci*exp(sinh(1)) 4324150382912191 k002 Champernowne real with 32*n^2+102*n-91 4324150390535179 r005 Im(z^2+c),c=-19/66+4/63*I,n=11 4324150398413805 m001 (Mills+Weierstrass)/(ln(gamma)-FeigenbaumMu) 4324150403634953 r005 Re(z^2+c),c=-75/122+7/59*I,n=47 4324150413325454 m001 (ln(5)-Lehmer)/(MasserGramain+Niven) 4324150445238188 r005 Im(z^2+c),c=21/110+21/40*I,n=45 4324150445707897 m005 (1/2*Catalan+5/11)/(7/11*Pi+1/9) 4324150452340358 r005 Im(z^2+c),c=35/118+23/61*I,n=37 4324150455810003 p004 log(30707/19927) 4324150460328697 a008 Real Root of x^4-2*x^3-32*x^2-120*x+58 4324150476568410 r005 Re(z^2+c),c=-23/38+13/61*I,n=51 4324150483212251 k002 Champernowne real with 65/2*n^2+201/2*n-90 4324150497919987 r009 Im(z^3+c),c=-37/110+22/49*I,n=25 4324150506937892 a007 Real Root Of -803*x^4+791*x^3-289*x^2+837*x+508 4324150507480290 m001 (exp(1)+MertensB1)/(Robbin+Trott2nd) 4324150528339740 r005 Re(z^2+c),c=-15/26+31/113*I,n=21 4324150530344227 m001 ln(GAMMA(2/3))^2/FibonacciFactorial*gamma 4324150549143745 r005 Re(z^2+c),c=-19/32+16/55*I,n=31 4324150557190070 a007 Real Root Of -719*x^4+189*x^3-942*x^2-591*x-39 4324150560117250 r002 13th iterates of z^2 + 4324150567935681 r005 Re(z^2+c),c=-2/3+37/228*I,n=32 4324150572154329 r002 4th iterates of z^2 + 4324150579773333 r005 Im(z^2+c),c=1/11+29/57*I,n=54 4324150581523049 a007 Real Root Of 116*x^4-64*x^3-405*x^2-910*x-327 4324150583512311 k002 Champernowne real with 33*n^2+99*n-89 4324150600249081 m001 GAMMA(17/24)^Paris-Lehmer 4324150602602019 a001 7/4*(1/2*5^(1/2)+1/2)^6*4^(3/13) 4324150603544361 r002 61th iterates of z^2 + 4324150603902941 a007 Real Root Of -327*x^4+479*x^3-523*x^2+458*x+346 4324150615549337 a007 Real Root Of 411*x^4-846*x^3+430*x^2+826*x+194 4324150630029637 m001 (3^(1/3))^2*FeigenbaumB^2/exp(BesselK(1,1))^2 4324150644807380 r009 Re(z^3+c),c=-8/19+5/42*I,n=10 4324150661526234 r005 Re(z^2+c),c=-25/34+9/101*I,n=27 4324150666359351 m001 exp(CareFree)*Artin^2*GAMMA(7/12) 4324150670742557 p004 log(14009/9091) 4324150674239910 r002 3th iterates of z^2 + 4324150683812371 k002 Champernowne real with 67/2*n^2+195/2*n-88 4324150684348639 p001 sum((-1)^n/(379*n+23)/(10^n),n=0..infinity) 4324150685509321 m001 1/ln(GAMMA(5/24))*GAMMA(13/24)^2*cosh(1)^2 4324150695948991 m001 (FeigenbaumC+ZetaP(3))/(Artin-Chi(1)) 4324150703953205 r009 Im(z^3+c),c=-5/66+25/49*I,n=23 4324150710075826 r005 Im(z^2+c),c=1/10+31/60*I,n=22 4324150711985031 r005 Im(z^2+c),c=9/28+15/56*I,n=24 4324150714975446 r005 Re(z^2+c),c=-43/106+17/33*I,n=22 4324150723548277 a007 Real Root Of -369*x^4+974*x^3+968*x^2+708*x-553 4324150728223662 m001 Grothendieck*(Zeta(1/2)-cos(1/12*Pi)) 4324150729722244 r005 Im(z^2+c),c=35/122+27/64*I,n=52 4324150742924367 m001 (gamma(2)-GAMMA(13/24))/(Otter+Thue) 4324150746859413 a007 Real Root Of -123*x^4+562*x^3+734*x^2+383*x-344 4324150767101403 h001 (-8*exp(3)-3)/(-8*exp(3/2)-2) 4324150777205034 a007 Real Root Of 786*x^4-148*x^3-102*x^2+209*x+70 4324150784112431 k002 Champernowne real with 34*n^2+96*n-87 4324150805068079 m005 (1/2*2^(1/2)-2/7)/(7/10*Catalan+1/3) 4324150819453283 a001 233/521*2207^(19/32) 4324150820412999 r005 Re(z^2+c),c=-5/8+7/96*I,n=29 4324150821453203 a005 (1/cos(29/226*Pi))^486 4324150824729378 m001 (cos(1/12*Pi)+Thue)/(2^(1/3)-Chi(1)) 4324150839138477 r002 46th iterates of z^2 + 4324150842267608 r009 Re(z^3+c),c=-9/22+26/41*I,n=3 4324150844806352 a007 Real Root Of -713*x^4-515*x^3-552*x^2+947*x+496 4324150848233126 s001 sum(exp(-Pi)^(n-1)*A191404[n],n=1..infinity) 4324150848245791 s001 sum(exp(-Pi)^(n-1)*A288374[n],n=1..infinity) 4324150850266996 r002 20th iterates of z^2 + 4324150861451677 h001 (1/4*exp(2)+4/5)/(7/9*exp(2)+3/8) 4324150875978856 r005 Re(z^2+c),c=-17/29+13/38*I,n=58 4324150876832512 r002 37th iterates of z^2 + 4324150884412491 k002 Champernowne real with 69/2*n^2+189/2*n-86 4324150884512501 k004 Champernowne real with floor(Pi*(11*n^2+30*n-27)) 4324150916049228 a007 Real Root Of -27*x^4-107*x^3-682*x^2+234*x+221 4324150917822598 m001 FeigenbaumDelta^ln(2)+2^(1/2) 4324150917822598 m001 FeigenbaumDelta^ln(2)+sqrt(2) 4324150921825899 r005 Im(z^2+c),c=-25/34+16/107*I,n=17 4324150927089112 r005 Re(z^2+c),c=-35/58+13/55*I,n=16 4324150931310841 l006 ln(5479/8443) 4324150931310841 p004 log(8443/5479) 4324150941797840 m001 cos(1)^GAMMA(2/3)-gamma(3) 4324150945137450 r002 54th iterates of z^2 + 4324150945977210 m001 1/Sierpinski^2/exp(Artin)/cosh(1)^2 4324150974546272 r005 Im(z^2+c),c=31/106+8/31*I,n=8 4324150984712551 k002 Champernowne real with 35*n^2+93*n-85 4324150985119075 m001 1/Rabbit*ln(ArtinRank2)/GAMMA(19/24) 4324150989900052 r002 52th iterates of z^2 + 4324150992289906 a007 Real Root Of -94*x^4-94*x^3-894*x^2+634*x+437 4324150995813165 m001 1/GAMMA(23/24)^2*ln(Tribonacci)^2*GAMMA(3/4) 4324150999366237 a001 24476/13*196418^(9/35) 4324151003451375 s002 sum(A118381[n]/(pi^n+1),n=1..infinity) 4324151063009686 r005 Re(z^2+c),c=-17/27+7/25*I,n=47 4324151081011921 k006 concat of cont frac of 4324151085012611 k002 Champernowne real with 71/2*n^2+183/2*n-84 4324151088127762 r005 Re(z^2+c),c=-27/44+7/58*I,n=41 4324151096068295 h001 (-11*exp(3)+5)/(-9*exp(4)-8) 4324151096479424 m001 FeigenbaumAlpha^ln(5)-ZetaQ(2) 4324151104441670 m001 (Si(Pi)-ln(2))/(KomornikLoreti+Riemann3rdZero) 4324151108820245 a001 19/208010*610^(8/33) 4324151111111121 k007 concat of cont frac of 4324151112112311 k006 concat of cont frac of 4324151113125113 k006 concat of cont frac of 4324151113557990 r005 Re(z^2+c),c=-163/126+3/47*I,n=50 4324151121121033 k006 concat of cont frac of 4324151121126133 k006 concat of cont frac of 4324151121821114 k008 concat of cont frac of 4324151122037627 m005 (-1/44+1/4*5^(1/2))/(5/9*2^(1/2)+5/11) 4324151130215084 r009 Im(z^3+c),c=-17/32+10/47*I,n=4 4324151131355111 k006 concat of cont frac of 4324151141116111 k007 concat of cont frac of 4324151145041530 a007 Real Root Of 225*x^4+238*x^3+325*x^2-827*x-407 4324151163736519 a001 377/1364*322^(7/8) 4324151182792446 r005 Re(z^2+c),c=-21/34+1/8*I,n=38 4324151185137732 q001 135/3122 4324151185312671 k002 Champernowne real with 36*n^2+90*n-83 4324151189838571 a001 1292/2889*322^(19/24) 4324151197254610 m005 (1/3*Zeta(3)+3/4)/(1/3*Catalan-4/7) 4324151217454914 k007 concat of cont frac of 4324151223625230 a007 Real Root Of -458*x^4+271*x^3-208*x^2+345*x+226 4324151227718114 k007 concat of cont frac of 4324151234438149 h001 (2/3*exp(1)+5/7)/(2/3*exp(2)+11/12) 4324151251151111 k009 concat of cont frac of 4324151253775613 l006 ln(3673/5660) 4324151262119235 a001 987*18^(23/45) 4324151262450321 k009 concat of cont frac of 4324151262902859 m001 (arctan(1/2)+gamma(1))/(Psi(1,1/3)-Shi(1)) 4324151265615085 m001 gamma(2)^MasserGramain+ZetaP(2) 4324151272085241 r005 Re(z^2+c),c=-65/106+9/61*I,n=64 4324151276399840 a007 Real Root Of -298*x^4+573*x^3-360*x^2+467*x+326 4324151282157262 k007 concat of cont frac of 4324151285612731 k002 Champernowne real with 73/2*n^2+177/2*n-82 4324151286107643 r005 Im(z^2+c),c=9/118+16/31*I,n=40 4324151293528806 b008 FresnelC[Pi+Sech[3]] 4324151298016718 m001 1/Pi*ln(Artin)*sinh(1)^2 4324151300750529 a008 Real Root of x^4-x^3-24*x^2+74*x-140 4324151314633632 a003 sin(Pi*19/118)-sin(Pi*41/111) 4324151318647634 m006 (5*exp(Pi)+1/3)/(1/2*exp(2*Pi)+3/5) 4324151319083266 r002 46th iterates of z^2 + 4324151319138863 r009 Im(z^3+c),c=-5/66+25/49*I,n=20 4324151343025240 r002 31th iterates of z^2 + 4324151350333984 r005 Im(z^2+c),c=5/52+28/55*I,n=36 4324151353400510 m001 FeigenbaumMu/(TwinPrimes-Zeta(1,-1)) 4324151356804549 r005 Im(z^2+c),c=11/82+14/29*I,n=12 4324151358832057 r005 Re(z^2+c),c=-73/118+1/19*I,n=61 4324151367232212 r005 Re(z^2+c),c=-17/28+1/5*I,n=32 4324151385912791 k002 Champernowne real with 37*n^2+87*n-81 4324151386280625 b008 -44+ArcCsch[6/5] 4324151397477747 m001 arctan(1/3)*(Gompertz+RenyiParking) 4324151411089728 a001 6765/15127*322^(19/24) 4324151421275786 m001 ln(Zeta(5))^2*Porter^2/cos(Pi/5)^2 4324151427259114 a001 377/2207*322^(23/24) 4324151437143630 m005 (1/2*3^(1/2)-2/9)/(4/5*5^(1/2)-3/10) 4324151443369838 a001 17711/39603*322^(19/24) 4324151447174849 r005 Re(z^2+c),c=-73/118+3/64*I,n=56 4324151448079442 a001 23184/51841*322^(19/24) 4324151448766564 a001 121393/271443*322^(19/24) 4324151448864223 r005 Im(z^2+c),c=9/34+16/45*I,n=34 4324151448866814 a001 317811/710647*322^(19/24) 4324151448881440 a001 416020/930249*322^(19/24) 4324151448883574 a001 2178309/4870847*322^(19/24) 4324151448883885 a001 5702887/12752043*322^(19/24) 4324151448883931 a001 7465176/16692641*322^(19/24) 4324151448883938 a001 39088169/87403803*322^(19/24) 4324151448883939 a001 102334155/228826127*322^(19/24) 4324151448883939 a001 133957148/299537289*322^(19/24) 4324151448883939 a001 701408733/1568397607*322^(19/24) 4324151448883939 a001 1836311903/4106118243*322^(19/24) 4324151448883939 a001 2403763488/5374978561*322^(19/24) 4324151448883939 a001 12586269025/28143753123*322^(19/24) 4324151448883939 a001 32951280099/73681302247*322^(19/24) 4324151448883939 a001 43133785636/96450076809*322^(19/24) 4324151448883939 a001 225851433717/505019158607*322^(19/24) 4324151448883939 a001 591286729879/1322157322203*322^(19/24) 4324151448883939 a001 10610209857723/23725150497407*322^(19/24) 4324151448883939 a001 182717648081/408569081798*322^(19/24) 4324151448883939 a001 139583862445/312119004989*322^(19/24) 4324151448883939 a001 53316291173/119218851371*322^(19/24) 4324151448883939 a001 10182505537/22768774562*322^(19/24) 4324151448883939 a001 7778742049/17393796001*322^(19/24) 4324151448883939 a001 2971215073/6643838879*322^(19/24) 4324151448883939 a001 567451585/1268860318*322^(19/24) 4324151448883939 a001 433494437/969323029*322^(19/24) 4324151448883939 a001 165580141/370248451*322^(19/24) 4324151448883939 a001 31622993/70711162*322^(19/24) 4324151448883942 a001 24157817/54018521*322^(19/24) 4324151448883959 a001 9227465/20633239*322^(19/24) 4324151448884078 a001 1762289/3940598*322^(19/24) 4324151448884893 a001 1346269/3010349*322^(19/24) 4324151448890480 a001 514229/1149851*322^(19/24) 4324151448928772 a001 98209/219602*322^(19/24) 4324151449191229 a001 75025/167761*322^(19/24) 4324151450990138 a001 28657/64079*322^(19/24) 4324151458913496 r005 Im(z^2+c),c=11/64+13/29*I,n=35 4324151463320043 a001 5473/12238*322^(19/24) 4324151477459263 m002 4+E^Pi/Pi^4+Csch[Pi] 4324151478980943 r005 Im(z^2+c),c=43/126+7/30*I,n=38 4324151482521112 k008 concat of cont frac of 4324151486212851 k002 Champernowne real with 75/2*n^2+171/2*n-80 4324151497526468 m001 Zeta(1,2)^2*GAMMA(3/4)^2*ln(sqrt(Pi))^2 4324151497552604 a007 Real Root Of 895*x^4-703*x^3+100*x^2-745*x+329 4324151508523183 m005 (1/2*Zeta(3)+7/10)/(6*gamma-5/11) 4324151509875924 a007 Real Root Of -149*x^4-492*x^3+705*x^2+402*x+870 4324151538750513 r009 Re(z^3+c),c=-73/126+21/46*I,n=23 4324151547830468 a001 4181/9349*322^(19/24) 4324151552880599 a007 Real Root Of 201*x^4+783*x^3-334*x^2+30*x-591 4324151552975956 h001 (3/8*exp(1)+2/11)/(2/7*exp(2)+2/3) 4324151565882724 m001 (ln(3)+Pi^(1/2))/(Gompertz-LaplaceLimit) 4324151565995902 b008 ArcTan[CosIntegral[(4*Pi)/9]] 4324151572689769 l006 ln(5540/8537) 4324151575313974 r002 28th iterates of z^2 + 4324151586312881 k004 Champernowne real with floor(Pi*(12*n^2+27*n-25)) 4324151586512911 k002 Champernowne real with 38*n^2+84*n-79 4324151599692054 m001 (ZetaP(4)+ZetaQ(3))/(2^(1/3)-Riemann2ndZero) 4324151602134685 r005 Re(z^2+c),c=15/98+13/34*I,n=55 4324151603695526 r005 Im(z^2+c),c=-13/10+6/143*I,n=29 4324151611582452 k006 concat of cont frac of 4324151615436547 m005 1/6*5^(1/2)/(8/11*2^(1/2)-1/6) 4324151634024009 a007 Real Root Of -747*x^4-134*x^3-820*x^2+808*x+518 4324151637702407 m001 1/GAMMA(1/6)^2/DuboisRaymond*ln(sinh(1))^2 4324151647734074 r005 Im(z^2+c),c=-31/58+2/25*I,n=18 4324151654180830 a001 55/1860498*18^(5/38) 4324151662173136 r005 Im(z^2+c),c=23/66+34/61*I,n=17 4324151682678010 a001 11/8*956722026041^(1/8) 4324151686812971 k002 Champernowne real with 77/2*n^2+165/2*n-78 4324151687576767 a007 Real Root Of -155*x^4+616*x^3+602*x^2+757*x+270 4324151700329209 r005 Re(z^2+c),c=-21/34+7/127*I,n=42 4324151701780312 r002 29th iterates of z^2 + 4324151710745944 l006 ln(8124/8483) 4324151713741048 g007 2*Psi(2,7/9)+Psi(2,3/8)-Psi(2,3/4) 4324151721568889 a007 Real Root Of -857*x^4+850*x^3+880*x^2+520*x+159 4324151736166276 r005 Im(z^2+c),c=3/52+33/62*I,n=63 4324151737277203 r005 Re(z^2+c),c=-53/86+5/52*I,n=47 4324151741354835 r005 Im(z^2+c),c=-27/22+3/32*I,n=8 4324151751669997 r005 Re(z^2+c),c=-45/74+10/51*I,n=62 4324151752565876 r005 Im(z^2+c),c=-13/114+43/56*I,n=6 4324151787113031 k002 Champernowne real with 39*n^2+81*n-77 4324151791759536 a007 Real Root Of -473*x^4+951*x^3+846*x^2+119*x-270 4324151806915403 r009 Im(z^3+c),c=-19/46+26/63*I,n=48 4324151810975010 a005 (1/cos(10/81*Pi))^914 4324151826964479 a007 Real Root Of -263*x^4-965*x^3+908*x^2+681*x-106 4324151829223851 m001 (BesselK(0,1)-cos(1))/(Zeta(1,2)+Robbin) 4324151837700557 m001 (cos(1)+sin(1/12*Pi))/(Tribonacci+ZetaQ(3)) 4324151845124774 r009 Im(z^3+c),c=-13/27+19/54*I,n=12 4324151848375996 r005 Re(z^2+c),c=-5/8+1/114*I,n=30 4324151867985864 a007 Real Root Of -999*x^4+422*x^3+168*x^2+660*x-316 4324151870359880 a007 Real Root Of 84*x^4-660*x^3-422*x^2-545*x+365 4324151884283972 a007 Real Root Of -769*x^4+396*x^3-978*x^2+988*x+669 4324151887413091 k002 Champernowne real with 79/2*n^2+159/2*n-76 4324151892317225 a001 41/48*121393^(25/47) 4324151893091998 r009 Im(z^3+c),c=-29/66+15/46*I,n=6 4324151903516429 r005 Re(z^2+c),c=-5/8+4/25*I,n=32 4324151914564387 m005 (1/3*Zeta(3)+1/5)/(5*exp(1)+3/10) 4324151927122373 a007 Real Root Of -253*x^4-954*x^3+565*x^2-83*x+397 4324151944828851 r009 Im(z^3+c),c=-1/102+20/39*I,n=11 4324151948579627 a007 Real Root Of 228*x^4-575*x^3+487*x^2-570*x-392 4324151949648866 r005 Im(z^2+c),c=-5/48+31/53*I,n=19 4324151952768064 r005 Im(z^2+c),c=-37/56+29/46*I,n=5 4324151977107795 r005 Im(z^2+c),c=27/94+16/43*I,n=13 4324151979490249 r009 Im(z^3+c),c=-29/56+15/49*I,n=37 4324151987713151 k002 Champernowne real with 40*n^2+78*n-75 4324151990681361 h001 (4/5*exp(1)+8/11)/(8/9*exp(2)+1/7) 4324152004767199 r005 Re(z^2+c),c=-13/28+6/13*I,n=21 4324152005760116 a007 Real Root Of 222*x^4+943*x^3-33*x^2-42*x-936 4324152016476952 r005 Re(z^2+c),c=-59/94+17/38*I,n=58 4324152026052164 r005 Im(z^2+c),c=19/118+5/11*I,n=47 4324152035462010 r009 Im(z^3+c),c=-5/62+26/51*I,n=17 4324152044398411 m001 Psi(2,1/3)^GAMMA(11/12)*Cahen^GAMMA(11/12) 4324152045625763 r005 Re(z^2+c),c=-83/70+17/64*I,n=10 4324152055698734 m005 (1/3*2^(1/2)+1/12)/(3/4*2^(1/2)+2/9) 4324152062408555 r005 Re(z^2+c),c=-57/94+9/43*I,n=62 4324152062688214 m001 1/BesselJ(1,1)^2/FeigenbaumC*exp(Zeta(1,2))^2 4324152084044607 a007 Real Root Of 402*x^4-5*x^3-446*x^2-810*x+420 4324152088013211 k002 Champernowne real with 81/2*n^2+153/2*n-74 4324152091121211 k007 concat of cont frac of 4324152095877567 m001 (-MasserGramain+MinimumGamma)/(2^(1/3)+Kac) 4324152101710151 k007 concat of cont frac of 4324152104345014 m001 (Si(Pi)+3^(1/3))/(gamma(1)+GaussAGM) 4324152111112322 k008 concat of cont frac of 4324152111815123 k009 concat of cont frac of 4324152114121183 k009 concat of cont frac of 4324152120365044 m001 (GolombDickman-Rabbit)/(3^(1/3)-GAMMA(13/24)) 4324152127073588 a001 1597/3571*322^(19/24) 4324152135575757 r005 Re(z^2+c),c=4/15+11/20*I,n=14 4324152141210063 a007 Real Root Of -983*x^4-418*x^3-215*x^2+914*x+436 4324152143689075 a007 Real Root Of 878*x^4-398*x^3+638*x^2-587*x-436 4324152162797430 r005 Re(z^2+c),c=-5/42+23/35*I,n=50 4324152180889065 r005 Re(z^2+c),c=-35/62+39/64*I,n=6 4324152186679919 m001 1/ln(Zeta(5))*GaussAGM(1,1/sqrt(2))/cos(1) 4324152188213251 k004 Champernowne real with floor(Pi*(13*n^2+24*n-23)) 4324152188313271 k002 Champernowne real with 41*n^2+75*n-73 4324152189288501 r002 2th iterates of z^2 + 4324152191221611 k008 concat of cont frac of 4324152200098252 l006 ln(1867/2877) 4324152209048565 a007 Real Root Of 803*x^4+730*x^3-303*x^2-970*x+389 4324152210541193 k006 concat of cont frac of 4324152231781504 a007 Real Root Of -51*x^4-134*x^3+209*x^2-597*x+507 4324152231895053 a007 Real Root Of -452*x^4+830*x^3-484*x^2+376*x+336 4324152242080522 r002 47th iterates of z^2 + 4324152256266664 r005 Re(z^2+c),c=-5/102+29/36*I,n=19 4324152269143489 m005 (1/3*gamma-1/11)/(5/7*5^(1/2)+3/4) 4324152288613331 k002 Champernowne real with 83/2*n^2+147/2*n-72 4324152292087572 m001 (Cahen+Mills)/(2*Pi/GAMMA(5/6)-Shi(1)) 4324152300138921 r005 Re(z^2+c),c=-21/34+5/66*I,n=48 4324152327332283 a007 Real Root Of 271*x^4+292*x^3+701*x^2+319*x+21 4324152330737077 r005 Im(z^2+c),c=1/10+27/46*I,n=41 4324152341576693 a001 41/105937*2^(4/25) 4324152360720558 r005 Re(z^2+c),c=-65/118+13/36*I,n=25 4324152367656366 m001 (2^(1/3))/RenyiParking*ln(GAMMA(19/24))^2 4324152388913391 k002 Champernowne real with 42*n^2+72*n-71 4324152388975859 r005 Re(z^2+c),c=-43/70+5/44*I,n=39 4324152407321520 a007 Real Root Of -588*x^4-52*x^3+745*x^2+697*x+3 4324152422656239 a007 Real Root Of 707*x^4+426*x^3+768*x^2-738*x-453 4324152439859012 m001 (-sqrt(1+sqrt(3))+2/3)/(-exp(Pi)+1/3) 4324152443710824 m001 exp(Khintchine)/Si(Pi)/FeigenbaumC 4324152455666878 r002 38th iterates of z^2 + 4324152489213451 k002 Champernowne real with 85/2*n^2+141/2*n-70 4324152492924546 r005 Re(z^2+c),c=-9/16+11/126*I,n=7 4324152512474254 r005 Im(z^2+c),c=3/98+31/53*I,n=53 4324152521278928 r005 Re(z^2+c),c=-59/86+7/57*I,n=10 4324152524255059 r009 Im(z^3+c),c=-67/126+7/27*I,n=32 4324152525053728 a007 Real Root Of -15*x^4-642*x^3+297*x^2+440*x-825 4324152526652665 m001 exp(1/2)/(GaussKuzminWirsing^cos(Pi/5)) 4324152528936055 a007 Real Root Of 764*x^4-977*x^3-762*x^2-433*x+382 4324152552903935 r005 Im(z^2+c),c=-15/58+9/16*I,n=9 4324152585811543 r005 Re(z^2+c),c=3/16+22/63*I,n=47 4324152588379191 b008 Log[9*(1+E^2)] 4324152589513511 k002 Champernowne real with 43*n^2+69*n-69 4324152600414836 a001 29/514229*8^(48/49) 4324152648081363 a007 Real Root Of -100*x^4-295*x^3+427*x^2-896*x-748 4324152654423285 m001 1/GAMMA(11/24)^2/exp(KhintchineLevy)^2/gamma 4324152659707231 r005 Im(z^2+c),c=19/56+13/59*I,n=28 4324152665181433 r009 Re(z^3+c),c=-39/56+31/37*I,n=2 4324152667133586 m001 (3^(1/3)+Pi^(1/2))/(Porter-Sarnak) 4324152670631272 r009 Im(z^3+c),c=-47/110+17/42*I,n=38 4324152685765241 r005 Im(z^2+c),c=-2/11+41/58*I,n=56 4324152689813571 k002 Champernowne real with 87/2*n^2+135/2*n-68 4324152700292679 r009 Im(z^3+c),c=-27/122+18/37*I,n=22 4324152702887843 r005 Im(z^2+c),c=11/50+16/39*I,n=29 4324152706297934 r005 Re(z^2+c),c=-5/48+44/53*I,n=21 4324152709003700 m003 -4-Cos[1/2+Sqrt[5]/2]/4+4/Log[1/2+Sqrt[5]/2] 4324152713672567 m001 (gamma+Riemann2ndZero)/(-Totient+Tribonacci) 4324152714541906 a007 Real Root Of -111*x^4+706*x^3-125*x^2+730*x+400 4324152719548814 r002 47th iterates of z^2 + 4324152720547848 m001 1/FeigenbaumKappa/Backhouse^2/ln(sqrt(5)) 4324152731364012 r005 Re(z^2+c),c=-8/13+1/57*I,n=29 4324152733382593 r009 Im(z^3+c),c=-6/29+25/51*I,n=12 4324152767619405 r005 Im(z^2+c),c=4/23+27/61*I,n=41 4324152768201677 m006 (1/3/Pi+1/5)/(2/5*ln(Pi)+1/4) 4324152787255811 r005 Re(z^2+c),c=-15/26+13/87*I,n=10 4324152790113631 k004 Champernowne real with floor(Pi*(14*n^2+21*n-21)) 4324152790113631 k002 Champernowne real with 44*n^2+66*n-67 4324152813987830 l006 ln(5662/8725) 4324152834327118 m001 HardHexagonsEntropy*exp(Conway)*sin(1) 4324152838818964 m001 MertensB1*ln(ArtinRank2)^2*GAMMA(5/6)^2 4324152842753075 r005 Re(z^2+c),c=-33/52+16/63*I,n=15 4324152864991450 m001 (Psi(1,1/3)-Shi(1))/(GAMMA(11/12)+MertensB2) 4324152871728162 m001 (ln(2)/ln(10))^FibonacciFactorial-Robbin 4324152886281872 r005 Im(z^2+c),c=-5/8+44/115*I,n=28 4324152890413691 k002 Champernowne real with 89/2*n^2+129/2*n-66 4324152899274249 m001 (FellerTornier+ZetaP(4))/(ln(gamma)-Artin) 4324152902039782 a007 Real Root Of -146*x^4-491*x^3+467*x^2-376*x+988 4324152903016500 a001 3/46*9349^(6/29) 4324152903780961 r002 41th iterates of z^2 + 4324152903909821 m005 (1/2*Zeta(3)+4/11)/(5/8*5^(1/2)+5/6) 4324152911382322 r005 Im(z^2+c),c=1/102+28/51*I,n=31 4324152926891946 m001 FeigenbaumDelta^CareFree*Zeta(1/2) 4324152934568295 r005 Im(z^2+c),c=2/17+1/2*I,n=26 4324152943864850 p001 sum(1/(541*n+396)/n/(25^n),n=1..infinity) 4324152950537710 r002 32th iterates of z^2 + 4324152951659273 m001 (Grothendieck+PlouffeB)/(Stephens-ZetaQ(2)) 4324152958515898 m001 FeigenbaumMu*GAMMA(17/24)^LandauRamanujan 4324152959912964 r005 Re(z^2+c),c=-23/38+7/22*I,n=21 4324152964078756 m001 1/cosh(1)/ln(BesselK(0,1))*gamma 4324152986366812 r005 Re(z^2+c),c=-19/42+17/37*I,n=11 4324152986639943 a007 Real Root Of -103*x^4-122*x^3+15*x^2+878*x-369 4324152990713751 k002 Champernowne real with 45*n^2+63*n-65 4324152993912755 m001 (DuboisRaymond+Thue)/(exp(Pi)+GAMMA(3/4)) 4324153005632759 m001 (Shi(1)+GAMMA(19/24))/(-Lehmer+ZetaP(4)) 4324153016498143 r005 Re(z^2+c),c=1/82+29/42*I,n=5 4324153033099458 a001 29/13*1548008755920^(16/21) 4324153033352602 r004 Im(z^2+c),c=1/16+9/17*I,z(0)=I,n=54 4324153037862957 r009 Im(z^3+c),c=-47/98+29/60*I,n=61 4324153044374412 r009 Im(z^3+c),c=-41/110+13/30*I,n=24 4324153054453809 a005 (1/sin(78/185*Pi))^1777 4324153081281072 r005 Re(z^2+c),c=-4/3+17/155*I,n=2 4324153087240279 m005 (1/2*Zeta(3)-1/7)/(73/90+1/9*5^(1/2)) 4324153091013811 k002 Champernowne real with 91/2*n^2+123/2*n-64 4324153096272147 b008 17*Sqrt[647] 4324153097964352 r005 Re(z^2+c),c=-51/46+29/39*I,n=2 4324153101225092 m001 1/(3^(1/3))*FeigenbaumC*exp(GAMMA(3/4)) 4324153111951878 a007 Real Root Of 885*x^4-975*x^3-919*x^2+78*x+186 4324153115998841 l006 ln(3795/5848) 4324153131294850 r005 Re(z^2+c),c=-17/30+44/123*I,n=50 4324153134481885 m001 (FeigenbaumC+GaussAGM)/(2^(1/3)-Cahen) 4324153141068213 m001 (Kac+LandauRamanujan)/(Pi-gamma(1)) 4324153147681403 s002 sum(A283075[n]/(exp(n)-1),n=1..infinity) 4324153149645269 p001 sum((-1)^n/(266*n+213)/(5^n),n=0..infinity) 4324153161701715 a001 1/72*377^(30/31) 4324153161710211 k006 concat of cont frac of 4324153162094106 a007 Real Root Of -189*x^4-899*x^3-298*x^2+14*x-976 4324153182879771 m001 ln(Paris)*FeigenbaumDelta/Riemann3rdZero 4324153191313871 k002 Champernowne real with 46*n^2+60*n-63 4324153213042101 q001 1366/3159 4324153233241851 a007 Real Root Of -719*x^4-759*x^3-616*x^2+310*x+213 4324153243476426 m001 (ThueMorse+ZetaQ(2))/(MertensB1-Totient) 4324153275407557 a007 Real Root Of 897*x^4-902*x^3-673*x^2-191*x+250 4324153275983815 a007 Real Root Of 126*x^4-486*x^3-849*x^2-986*x+620 4324153279797235 l006 ln(7513/7845) 4324153279875647 r005 Im(z^2+c),c=-25/86+23/38*I,n=59 4324153291613931 k002 Champernowne real with 93/2*n^2+117/2*n-62 4324153294354308 a007 Real Root Of 179*x^4+609*x^3-543*x^2+761*x+101 4324153297360575 r002 7th iterates of z^2 + 4324153298035488 r005 Im(z^2+c),c=7/40+27/61*I,n=54 4324153317371474 r005 Re(z^2+c),c=-73/122+12/43*I,n=52 4324153320056349 r005 Im(z^2+c),c=5/64+13/25*I,n=45 4324153329805552 m001 Robbin^2/ln(PrimesInBinary)^2*BesselJ(0,1) 4324153332700179 r009 Re(z^3+c),c=-35/64+7/46*I,n=5 4324153338748757 m001 (Chi(1)+Zeta(3))/(-GaussAGM+Mills) 4324153346374989 r009 Im(z^3+c),c=-51/98+15/47*I,n=44 4324153352553142 a003 cos(Pi*9/56)-cos(Pi*40/113) 4324153356491708 m001 sinh(1)^Psi(1,1/3)/(sinh(1)^GAMMA(23/24)) 4324153372356885 a007 Real Root Of -171*x^4+810*x^3+319*x^2+715*x+321 4324153378389098 m001 1/Salem*Lehmer^2/exp(GAMMA(11/24)) 4324153390077295 a007 Real Root Of 940*x^4+501*x^3-164*x^2-935*x-366 4324153391913991 k002 Champernowne real with 47*n^2+57*n-61 4324153405383504 m001 (FellerTornier+Sarnak)/(exp(Pi)+GAMMA(11/12)) 4324153414790785 l006 ln(5723/8819) 4324153426995062 r005 Re(z^2+c),c=15/106+9/23*I,n=7 4324153435531995 m001 BesselJ(0,1)^ZetaQ(4)-LambertW(1) 4324153435785351 m001 (exp(-1/2*Pi)+FeigenbaumB)/(exp(Pi)+Catalan) 4324153442448208 r002 44th iterates of z^2 + 4324153465078226 m001 ln(2+3^(1/2))*(exp(1)+BesselI(1,1)) 4324153465078226 m001 ln(2+sqrt(3))*(exp(1)+BesselI(1,1)) 4324153472473012 m005 (1/2*gamma-1/3)/(4/9*gamma+7/9) 4324153480933951 r005 Re(z^2+c),c=-21/34+2/125*I,n=35 4324153492014011 k004 Champernowne real with floor(Pi*(15*n^2+18*n-19)) 4324153492214051 k002 Champernowne real with 95/2*n^2+111/2*n-60 4324153498719412 m001 ((2^(1/3))-TwinPrimes)^GAMMA(13/24) 4324153498719412 m001 (2^(1/3)-TwinPrimes)^GAMMA(13/24) 4324153517405991 r002 53th iterates of z^2 + 4324153538365206 m009 (3/5*Psi(1,2/3)+2)/(4/5*Psi(1,1/3)+4/5) 4324153543196092 r005 Im(z^2+c),c=23/114+13/31*I,n=52 4324153544227266 r002 20th iterates of z^2 + 4324153546372267 r009 Re(z^3+c),c=-25/52+11/64*I,n=26 4324153556506295 m001 Zeta(1,2)*Sierpinski^2*exp(cos(Pi/12))^2 4324153563312642 a003 cos(Pi*23/58)+cos(Pi*45/97) 4324153570348178 r002 35th iterates of z^2 + 4324153592514111 k002 Champernowne real with 48*n^2+54*n-59 4324153595939622 k007 concat of cont frac of 4324153615386919 m009 (6*Psi(1,1/3)-1/3)/(20/3*Catalan+5/6*Pi^2-2/5) 4324153617293132 r002 56th iterates of z^2 + 4324153630913427 r009 Im(z^3+c),c=-29/60+21/55*I,n=28 4324153637598217 r005 Re(z^2+c),c=-31/50+2/7*I,n=45 4324153638069871 m001 (-TravellingSalesman+ZetaP(4))/(1+PlouffeB) 4324153640816630 r005 Im(z^2+c),c=-109/94+3/53*I,n=22 4324153644229004 r005 Re(z^2+c),c=17/44+13/54*I,n=3 4324153650645528 m005 (1/2*Catalan-3/7)/(5/12*2^(1/2)+1/11) 4324153655749188 r009 Im(z^3+c),c=-37/102+15/34*I,n=15 4324153672149043 m001 (ln(5)*GAMMA(19/24)-Sierpinski)/ln(5) 4324153680219359 r008 a(0)=5,K{-n^6,17+2*n^3+23*n^2-39*n} 4324153692814172 k002 Champernowne real with 97/2*n^2+105/2*n-58 4324153693382991 r005 Re(z^2+c),c=29/110+24/59*I,n=38 4324153697018580 a001 123/4181*987^(23/59) 4324153703171600 a007 Real Root Of 487*x^4+104*x^3-923*x^2-853*x+516 4324153707201932 h001 (7/9*exp(2)+7/10)/(2/7*exp(1)+5/7) 4324153709869338 r002 34th iterates of z^2 + 4324153723103090 a007 Real Root Of 436*x^4-991*x^3+38*x^2-954*x-515 4324153743058698 r005 Re(z^2+c),c=-53/82+12/49*I,n=37 4324153749875269 r002 3th iterates of z^2 + 4324153766936968 r005 Im(z^2+c),c=13/98+28/59*I,n=31 4324153768627294 r005 Re(z^2+c),c=-35/62+23/63*I,n=24 4324153769037020 m001 cos(1)/(ln(2+3^(1/2))^cos(1/5*Pi)) 4324153769037020 m001 cos(1)/(ln(2+sqrt(3))^cos(Pi/5)) 4324153780493266 a007 Real Root Of 434*x^4-858*x^3-220*x^2-302*x-174 4324153783036245 m001 1/Sierpinski/exp(Rabbit)/TreeGrowth2nd 4324153784493884 m001 3^(1/2)/cos(1/12*Pi)/PrimesInBinary 4324153793114232 k002 Champernowne real with 49*n^2+51*n-57 4324153794212676 r004 Im(z^2+c),c=-9/16+7/19*I,z(0)=-1,n=7 4324153812199038 r002 30th iterates of z^2 + 4324153816345511 a001 1597/521*322^(11/24) 4324153838739360 m001 1/Cahen^2/exp(Backhouse)^2/GaussKuzminWirsing 4324153850518287 r002 54th iterates of z^2 + 4324153855209988 h001 (4/11*exp(2)+3/10)/(5/6*exp(2)+3/4) 4324153866479013 r005 Re(z^2+c),c=-61/110+17/63*I,n=17 4324153891079062 a007 Real Root Of 910*x^4+72*x^3-631*x^2-481*x-116 4324153892534107 m004 -5+Csch[Sqrt[5]*Pi]/5+Sin[Sqrt[5]*Pi] 4324153892815650 m004 -5+2/(5*E^(Sqrt[5]*Pi))+Sin[Sqrt[5]*Pi] 4324153893097193 m004 -5+Sech[Sqrt[5]*Pi]/5+Sin[Sqrt[5]*Pi] 4324153893414292 k002 Champernowne real with 99/2*n^2+99/2*n-56 4324153912072204 a007 Real Root Of -563*x^4-122*x^3-885*x^2+145*x+238 4324153921358086 r002 8th iterates of z^2 + 4324153927169843 a007 Real Root Of 597*x^4-180*x^3+29*x^2-899*x+377 4324153935190891 r005 Im(z^2+c),c=-39/106+3/44*I,n=14 4324153938402189 r005 Im(z^2+c),c=31/110+17/50*I,n=55 4324153957793672 r005 Re(z^2+c),c=-1/74+5/26*I,n=6 4324153961309826 m001 (Zeta(1,2)+Backhouse)/(5^(1/2)-Zeta(5)) 4324153964048840 m001 Riemann3rdZero^2*ln(Bloch)^2*GAMMA(3/4) 4324153971069756 m005 (1/3*gamma-1/12)/(8/11*exp(1)+6/11) 4324153973086986 m001 exp(BesselJ(0,1))^2*TreeGrowth2nd*GAMMA(5/12) 4324153993714352 k002 Champernowne real with 50*n^2+48*n-55 4324154002921167 l006 ln(1928/2971) 4324154009426788 r009 Re(z^3+c),c=-5/64+40/61*I,n=44 4324154027803277 r005 Re(z^2+c),c=-45/94+13/45*I,n=6 4324154028581559 r005 Re(z^2+c),c=-5/8+32/185*I,n=32 4324154033489798 r005 Im(z^2+c),c=25/102+3/8*I,n=33 4324154037598300 r005 Re(z^2+c),c=-27/44+7/51*I,n=54 4324154041345586 r005 Im(z^2+c),c=17/114+35/57*I,n=17 4324154063807977 r002 27th iterates of z^2 + 4324154069410134 r002 46th iterates of z^2 + 4324154089216952 r002 44th iterates of z^2 + 4324154093893013 m001 (MertensB1-Otter)/(ReciprocalLucas-Totient) 4324154093914382 k004 Champernowne real with floor(Pi*(16*n^2+15*n-17)) 4324154094014412 k002 Champernowne real with 101/2*n^2+93/2*n-54 4324154099202606 a001 76/55*377^(5/26) 4324154108280664 m005 (3*exp(1)-1/6)/(1/6*Catalan-2) 4324154111245800 m001 Riemann2ndZero^(Zeta(5)*arctan(1/2)) 4324154127484643 m001 ln(CareFree)/FransenRobinson^2*Paris^2 4324154127694653 r002 47th iterates of z^2 + 4324154138740929 a007 Real Root Of -x^4-45*x^3-62*x^2+615*x+344 4324154146378253 m001 cos(Pi/5)/exp(GAMMA(1/3))^2/log(1+sqrt(2)) 4324154148801568 r009 Im(z^3+c),c=-33/122+26/55*I,n=21 4324154171861680 r005 Re(z^2+c),c=-21/34+11/123*I,n=14 4324154175962237 r005 Re(z^2+c),c=-73/118+1/28*I,n=33 4324154194314472 k002 Champernowne real with 51*n^2+45*n-53 4324154194390684 r002 45th iterates of z^2 + 4324154201042592 r005 Re(z^2+c),c=23/74+10/31*I,n=14 4324154203339958 m001 (GAMMA(17/24)-PrimesInBinary)/(Pi-GAMMA(5/6)) 4324154218544047 r009 Im(z^3+c),c=-55/126+8/15*I,n=17 4324154227295066 a007 Real Root Of -613*x^4-140*x^3+635*x^2+562*x-329 4324154228781666 a007 Real Root Of -131*x^4-336*x^3+877*x^2-477*x+173 4324154257418736 m001 GolombDickman^GAMMA(1/6)-GAMMA(5/24) 4324154258681699 r002 33th iterates of z^2 + 4324154269656302 r002 22th iterates of z^2 + 4324154279577976 m001 1/ln(OneNinth)/Khintchine*sin(Pi/12) 4324154285057652 m001 ln(Magata)/MertensB1/Trott 4324154294614532 k002 Champernowne real with 103/2*n^2+87/2*n-52 4324154297582813 m001 (1-Zeta(1,-1))/(-gamma(2)+Khinchin) 4324154304127900 m006 (3*exp(Pi)+3/4)/(2*ln(Pi)-2/3) 4324154322976620 m001 (Riemann3rdZero-sinh(1))/Psi(2,1/3) 4324154323034625 m001 (GAMMA(1/3)-Khinchin*BesselI(1,1))/Khinchin 4324154333479453 a007 Real Root Of -210*x^4-914*x^3+25*x^2+320*x+437 4324154335879727 s001 sum(exp(-Pi)^(n-1)*A092403[n],n=1..infinity) 4324154341606483 a003 sin(Pi*43/113)/cos(Pi*36/73) 4324154366015364 p003 LerchPhi(1/3,3,131/212) 4324154375693110 a001 987/3571*322^(7/8) 4324154387709013 r002 38th iterates of z^2 + 4324154389876842 s001 sum(exp(-Pi/3)^n*A142054[n],n=1..infinity) 4324154391135233 k007 concat of cont frac of 4324154394914592 k002 Champernowne real with 52*n^2+42*n-51 4324154401143595 h001 (4/5*exp(2)+1/6)/(1/10*exp(2)+2/3) 4324154401171966 a007 Real Root Of 207*x^4+760*x^3-629*x^2+16*x+907 4324154421320609 a001 233/521*843^(19/28) 4324154440260272 r009 Re(z^3+c),c=-27/98+41/57*I,n=33 4324154441778044 p001 sum((-1)^n/(463*n+450)/n/(25^n),n=1..infinity) 4324154450146961 r005 Im(z^2+c),c=1/32+29/53*I,n=39 4324154452751740 r009 Im(z^3+c),c=-47/98+13/35*I,n=60 4324154456793356 a007 Real Root Of -414*x^4+727*x^3+724*x^2+886*x+321 4324154459894444 r005 Re(z^2+c),c=31/118+13/24*I,n=19 4324154466912984 a007 Real Root Of 2*x^4-875*x^3-228*x^2-737*x+432 4324154472306143 r002 11th iterates of z^2 + 4324154474073513 a001 1346269/1364*18^(23/45) 4324154475209633 r005 Im(z^2+c),c=-11/18+36/89*I,n=59 4324154475436257 p001 sum(1/(502*n+265)/(3^n),n=0..infinity) 4324154475741554 p004 log(22259/21317) 4324154475981627 r005 Im(z^2+c),c=-7/24+36/61*I,n=17 4324154476879950 r005 Re(z^2+c),c=-13/22+21/52*I,n=3 4324154495214652 k002 Champernowne real with 105/2*n^2+81/2*n-50 4324154513205559 m001 ArtinRank2^Artin-Mills 4324154515286810 m005 (1/2*Zeta(3)-1/6)/(7/9*gamma+5/9) 4324154517325376 m001 BesselI(0,1)/(PlouffeB^((1+3^(1/2))^(1/2))) 4324154523697768 r005 Re(z^2+c),c=-25/38+31/61*I,n=7 4324154526393319 s001 sum(exp(-Pi)^(n-1)*A277869[n],n=1..infinity) 4324154527963029 r002 34th iterates of z^2 + 4324154528121889 r002 36th iterates of z^2 + 4324154572478178 s001 sum(exp(-3*Pi/5)^n*A076651[n],n=1..infinity) 4324154575547275 m006 (1/4/Pi+2)/(1/6*ln(Pi)-5) 4324154578347027 a007 Real Root Of 362*x^4-414*x^3-462*x^2-839*x+470 4324154578775740 l006 ln(5845/9007) 4324154595514712 k002 Champernowne real with 53*n^2+39*n-49 4324154605862533 m007 (-2*gamma-4*ln(2)+5/6)/(-1/5*gamma-3/5) 4324154635710553 a007 Real Root Of 219*x^4-840*x^3+438*x^2-806*x-506 4324154641291600 r002 23th iterates of z^2 + 4324154646795183 m001 (Ei(1,1)-Bloch)/(Lehmer-ZetaQ(3)) 4324154659754829 m005 (1/2*3^(1/2)-1/11)/(8/9*Pi-1) 4324154683131118 k006 concat of cont frac of 4324154695814762 k004 Champernowne real with floor(Pi*(17*n^2+12*n-15)) 4324154695814772 k002 Champernowne real with 107/2*n^2+75/2*n-48 4324154696587443 a007 Real Root Of 112*x^4+336*x^3-448*x^2+658*x-769 4324154713327036 m001 ln(1+sqrt(2))*(GAMMA(1/6)-TwinPrimes) 4324154713327036 m001 ln(2^(1/2)+1)*(2*Pi/GAMMA(5/6)-TwinPrimes) 4324154722927027 m001 GAMMA(1/24)/GAMMA(1/12)*ln(cos(Pi/5)) 4324154729525858 r005 Re(z^2+c),c=-21/34+5/62*I,n=56 4324154730563837 a007 Real Root Of 518*x^4-320*x^3+122*x^2-722*x-379 4324154731560436 m001 1/GAMMA(5/24)/ln(GAMMA(13/24))^2/arctan(1/2)^2 4324154732745264 r002 64th iterates of z^2 + 4324154734480502 r005 Im(z^2+c),c=-7/6+8/143*I,n=37 4324154753973226 m001 (GAMMA(3/4)+ln(3))/(GAMMA(17/24)-RenyiParking) 4324154758224174 r005 Im(z^2+c),c=19/106+1/41*I,n=5 4324154764129392 m009 (1/6*Psi(1,1/3)-4)/(24*Catalan+3*Pi^2+2) 4324154764892175 m001 1/Robbin^2/Riemann1stZero*ln(BesselJ(0,1)) 4324154766250967 r005 Re(z^2+c),c=11/27+19/63*I,n=9 4324154769427284 r005 Im(z^2+c),c=-13/14+9/245*I,n=15 4324154784459759 r005 Im(z^2+c),c=-59/82+2/31*I,n=54 4324154796114832 k002 Champernowne real with 54*n^2+36*n-47 4324154798370365 r009 Im(z^3+c),c=-5/24+31/63*I,n=8 4324154806488174 a007 Real Root Of -5*x^4-228*x^3-525*x^2-668*x-680 4324154808775948 m005 (1/3*Zeta(3)+1/2)/(8/9*exp(1)-1/3) 4324154813589150 a007 Real Root Of -80*x^4+365*x^3-575*x^2+789*x+481 4324154827186727 r005 Im(z^2+c),c=17/98+21/46*I,n=27 4324154828583506 m001 (Mills+Paris)/(GAMMA(2/3)+Ei(1)) 4324154840895002 m006 (5/6*Pi^2-3/5)/(4/5*Pi-3/4) 4324154840895002 m008 (5/6*Pi^2-3/5)/(4/5*Pi-3/4) 4324154844311015 a001 2584/9349*322^(7/8) 4324154846160907 s002 sum(A210333[n]/(n^2*10^n+1),n=1..infinity) 4324154846233976 m001 1/exp(GAMMA(13/24))/(3^(1/3))^2*arctan(1/2) 4324154847645360 s002 sum(A210333[n]/(n^2*10^n-1),n=1..infinity) 4324154850441957 m001 (sin(1)+Zeta(1/2))/(MertensB3+Paris) 4324154862219082 l006 ln(3917/6036) 4324154893975823 a005 (1/cos(10/53*Pi))^94 4324154896414892 k002 Champernowne real with 109/2*n^2+69/2*n-46 4324154904820350 r009 Re(z^3+c),c=-7/18+5/63*I,n=22 4324154912681441 a001 6765/24476*322^(7/8) 4324154922656551 a001 17711/64079*322^(7/8) 4324154923333280 r002 43th iterates of z^2 + 4324154924111900 a001 46368/167761*322^(7/8) 4324154924324233 a001 121393/439204*322^(7/8) 4324154924355212 a001 317811/1149851*322^(7/8) 4324154924359731 a001 832040/3010349*322^(7/8) 4324154924360391 a001 2178309/7881196*322^(7/8) 4324154924360487 a001 5702887/20633239*322^(7/8) 4324154924360501 a001 14930352/54018521*322^(7/8) 4324154924360503 a001 39088169/141422324*322^(7/8) 4324154924360503 a001 102334155/370248451*322^(7/8) 4324154924360503 a001 267914296/969323029*322^(7/8) 4324154924360503 a001 701408733/2537720636*322^(7/8) 4324154924360503 a001 1836311903/6643838879*322^(7/8) 4324154924360503 a001 4807526976/17393796001*322^(7/8) 4324154924360503 a001 12586269025/45537549124*322^(7/8) 4324154924360503 a001 32951280099/119218851371*322^(7/8) 4324154924360503 a001 86267571272/312119004989*322^(7/8) 4324154924360503 a001 225851433717/817138163596*322^(7/8) 4324154924360503 a001 1548008755920/5600748293801*322^(7/8) 4324154924360503 a001 139583862445/505019158607*322^(7/8) 4324154924360503 a001 53316291173/192900153618*322^(7/8) 4324154924360503 a001 20365011074/73681302247*322^(7/8) 4324154924360503 a001 7778742049/28143753123*322^(7/8) 4324154924360503 a001 2971215073/10749957122*322^(7/8) 4324154924360503 a001 1134903170/4106118243*322^(7/8) 4324154924360503 a001 433494437/1568397607*322^(7/8) 4324154924360503 a001 165580141/599074578*322^(7/8) 4324154924360504 a001 63245986/228826127*322^(7/8) 4324154924360504 a001 24157817/87403803*322^(7/8) 4324154924360510 a001 9227465/33385282*322^(7/8) 4324154924360546 a001 3524578/12752043*322^(7/8) 4324154924360798 a001 1346269/4870847*322^(7/8) 4324154924362525 a001 514229/1860498*322^(7/8) 4324154924374358 a001 196418/710647*322^(7/8) 4324154924455461 a001 75025/271443*322^(7/8) 4324154925011355 a001 28657/103682*322^(7/8) 4324154928821508 a001 10946/39603*322^(7/8) 4324154939031007 p001 sum(1/(452*n+37)/n/(5^n),n=1..infinity) 4324154954936687 a001 4181/15127*322^(7/8) 4324154964228077 a001 123*55^(16/51) 4324154969112881 m001 (ln(Pi)+5)/(BesselK(0,1)+1) 4324154971586606 r005 Im(z^2+c),c=7/36+23/54*I,n=64 4324154982925378 r009 Im(z^3+c),c=-11/29+23/55*I,n=11 4324154996714952 k002 Champernowne real with 55*n^2+33*n-45 4324155011232676 r002 3th iterates of z^2 + 4324155022955392 m001 Champernowne/cos(1/12*Pi)/Otter 4324155033842529 r005 Re(z^2+c),c=-63/94+6/47*I,n=27 4324155048114285 r009 Im(z^3+c),c=-5/12+23/56*I,n=54 4324155050346660 m001 BesselJ(0,1)-cos(1)^KomornikLoreti 4324155067974909 r009 Re(z^3+c),c=-13/25+15/38*I,n=31 4324155068861859 b008 (3*(4+EulerGamma))!! 4324155071103783 m005 (1/8+1/4*5^(1/2))/(9/10*Zeta(3)+1/2) 4324155071432919 r005 Im(z^2+c),c=1/62+30/53*I,n=56 4324155091682203 m005 (1/2*Zeta(3)+3)/(1/7*exp(1)+4/9) 4324155097015012 k002 Champernowne real with 111/2*n^2+63/2*n-44 4324155106891077 a008 Real Root of (5+6*x-12*x^2+2*x^3) 4324155109339475 a007 Real Root Of -568*x^4+644*x^3-267*x^2+930*x+524 4324155120628843 h001 (1/12*exp(1)+7/11)/(1/2*exp(1)+7/11) 4324155122541112 k006 concat of cont frac of 4324155126649231 l006 ln(6902/7207) 4324155133932776 a001 1597/5778*322^(7/8) 4324155142734877 l006 ln(5906/9101) 4324155144282641 a007 Real Root Of -144*x^4+660*x^3-223*x^2+616*x-273 4324155152748229 r002 23th iterates of z^2 + 4324155162995212 m001 LambertW(1)*ln(BesselK(0,1))*log(1+sqrt(2)) 4324155164227124 r002 48th iterates of z^2 + 4324155183569491 r005 Re(z^2+c),c=-21/34+9/118*I,n=57 4324155193992490 q001 691/1598 4324155195657232 a001 4/121393*377^(23/53) 4324155197315072 k002 Champernowne real with 56*n^2+30*n-43 4324155205763694 m005 (23/28+1/4*5^(1/2))/(1/3*gamma+3) 4324155206854432 r005 Im(z^2+c),c=13/82+8/17*I,n=27 4324155210312369 m001 Si(Pi)*exp(1/exp(1))+exp(1/2) 4324155221369141 a001 17711/843*123^(3/20) 4324155228548067 r002 50th iterates of z^2 + 4324155231093885 m005 (1/3*Catalan-1/2)/(3/8*gamma-2/3) 4324155252272250 r005 Re(z^2+c),c=-21/34+9/113*I,n=50 4324155256457521 r002 40th iterates of z^2 + 4324155257028997 r002 57th iterates of z^2 + 4324155262423274 r005 Re(z^2+c),c=-63/106+2/17*I,n=18 4324155269325440 p001 sum(1/(361*n+235)/(25^n),n=0..infinity) 4324155276670526 r005 Im(z^2+c),c=13/86+28/57*I,n=23 4324155282012155 m001 Trott/exp(ErdosBorwein)^2/Zeta(7) 4324155297615132 k002 Champernowne real with 113/2*n^2+57/2*n-42 4324155297715142 k004 Champernowne real with floor(Pi*(18*n^2+9*n-13)) 4324155299424893 r005 Im(z^2+c),c=15/82+31/59*I,n=41 4324155312385110 k007 concat of cont frac of 4324155315438552 r009 Im(z^3+c),c=-45/122+27/62*I,n=21 4324155345646863 m001 LandauRamanujan2nd^ErdosBorwein/gamma(2) 4324155348217854 r009 Im(z^3+c),c=-43/82+19/51*I,n=29 4324155348254476 m001 1/BesselJ(1,1)*ln(RenyiParking)/GAMMA(7/12) 4324155366227599 r002 8th iterates of z^2 + 4324155370620610 a001 15127/377*89^(1/60) 4324155372843199 a008 Real Root of x^4-x^3+9*x^2-139*x+164 4324155377226284 r005 Im(z^2+c),c=5/58+19/37*I,n=38 4324155389112025 a001 4181/3*123^(4/17) 4324155397915192 k002 Champernowne real with 57*n^2+27*n-41 4324155407349108 r009 Re(z^3+c),c=-3/86+47/53*I,n=25 4324155424831409 a007 Real Root Of -594*x^4+261*x^3+151*x^2+875*x+392 4324155429228047 m006 (1/4*ln(Pi)+1/4)/(4*Pi-1/6) 4324155431465792 m001 ZetaQ(4)^ReciprocalFibonacci/MertensB2 4324155439400795 r002 31th iterates of z^2 + 4324155445035888 m001 (KomornikLoreti+Niven)/(LambertW(1)-exp(1/Pi)) 4324155465986084 m001 (Salem-ThueMorse)/(arctan(1/3)+exp(1/exp(1))) 4324155471896321 r005 Re(z^2+c),c=-45/98+17/36*I,n=24 4324155472411142 a007 Real Root Of -254*x^4-880*x^3+755*x^2-636*x+786 4324155486422301 m001 (exp(1)+ln(3))/(ln(2^(1/2)+1)+HeathBrownMoroz) 4324155498215252 k002 Champernowne real with 115/2*n^2+51/2*n-40 4324155505685547 r005 Re(z^2+c),c=-27/110+38/61*I,n=41 4324155517096049 m001 (-Paris+TreeGrowth2nd)/(Catalan-Niven) 4324155521105981 r004 Re(z^2+c),c=-21/34+1/12*I,z(0)=-1,n=51 4324155540154871 m001 Sierpinski^2/Artin/ln(GAMMA(3/4))^2 4324155543332575 a008 Real Root of x^5-5*x^4-34*x^3+29*x^2+15*x-9 4324155544127411 r005 Im(z^2+c),c=-107/90+3/44*I,n=11 4324155594895360 m001 (HardyLittlewoodC5+Landau)/(exp(Pi)-ln(3)) 4324155598515312 k002 Champernowne real with 58*n^2+24*n-39 4324155610751110 a007 Real Root Of 370*x^4-982*x^3+537*x^2-921*x-591 4324155677966148 r002 33th iterates of z^2 + 4324155678068173 a007 Real Root Of 123*x^4+600*x^3+500*x^2+693*x-844 4324155680548056 a007 Real Root Of -138*x^4+298*x^3+496*x^2+809*x+286 4324155680996556 m009 (3*Psi(1,1/3)-5)/(1/2*Psi(1,1/3)+4/5) 4324155685103033 r005 Im(z^2+c),c=37/106+14/57*I,n=50 4324155694221958 h001 (3/5*exp(1)+3/8)/(4/7*exp(2)+5/12) 4324155695163395 l006 ln(1989/3065) 4324155697360940 m005 (1/3*gamma-1/4)/(2*Catalan-1/2) 4324155698815372 k002 Champernowne real with 117/2*n^2+45/2*n-38 4324155702747458 r002 40th iterates of z^2 + 4324155703100900 m004 -25*Pi+4*Sqrt[5]*Pi+Sinh[Sqrt[5]*Pi]/6 4324155717152191 a007 Real Root Of 382*x^4-438*x^3+112*x^2-490*x+213 4324155741724497 a007 Real Root Of 684*x^4-555*x^3+749*x^2-79*x-243 4324155743951572 a007 Real Root Of 313*x^4-423*x^3+958*x^2-263*x-338 4324155754429864 a007 Real Root Of -733*x^4+832*x^3-50*x^2+690*x+30 4324155786569010 m005 (1/2*Catalan+2/3)/(-73/132+4/11*5^(1/2)) 4324155796095698 r002 28th iterates of z^2 + 4324155799115432 k002 Champernowne real with 59*n^2+21*n-37 4324155807620214 r005 Re(z^2+c),c=-31/50+10/47*I,n=37 4324155810857537 r002 23th iterates of z^2 + 4324155812359633 r002 62th iterates of z^2 + 4324155820399353 r005 Re(z^2+c),c=-5/8+37/237*I,n=30 4324155845257514 r009 Re(z^3+c),c=-3/86+47/53*I,n=23 4324155848053266 m007 (-2/5*gamma-4/5*ln(2)+2)/(-4*gamma-1/2) 4324155859271934 a001 199/514229*5^(2/29) 4324155879317869 r002 5th iterates of z^2 + 4324155899415492 k002 Champernowne real with 119/2*n^2+39/2*n-36 4324155908041507 a007 Real Root Of 194*x^4+858*x^3-79*x^2-770*x-307 4324155923214704 m009 (5/12*Pi^2-1/4)/(4*Catalan+1/2*Pi^2+1/3) 4324155938496575 r005 Re(z^2+c),c=-27/44+1/7*I,n=45 4324155953997754 b008 CosIntegral[1/3+Sin[2]] 4324155957337241 m001 1/3*QuadraticClass*3^(2/3)/Riemann1stZero 4324155964743810 m001 1/GAMMA(1/24)^2*ln(BesselK(1,1))/Zeta(1/2)^2 4324155968362394 r009 Im(z^3+c),c=-45/94+22/59*I,n=55 4324155995458745 r009 Re(z^3+c),c=-3/86+47/53*I,n=27 4324155999515512 k004 Champernowne real with floor(Pi*(19*n^2+6*n-11)) 4324155999715552 k002 Champernowne real with 60*n^2+18*n-35 4324156004506971 r005 Re(z^2+c),c=-9/14+88/179*I,n=14 4324156004761458 m001 FeigenbaumKappa/ln(MertensB1)/GAMMA(7/12)^2 4324156005321705 a007 Real Root Of -271*x^4-247*x^3-675*x^2+952*x-256 4324156010001561 k002 Champernowne real with 121/2*n^2+33/2*n-34 4324156035382761 m001 1/ln(LaplaceLimit)/GolombDickman^2/(3^(1/3)) 4324156046020792 r004 Re(z^2+c),c=-13/20-1/11*I,z(0)=-1,n=24 4324156051303375 r009 Im(z^3+c),c=-61/126+23/47*I,n=43 4324156064965911 a001 987/521*322^(13/24) 4324156068516396 r009 Im(z^3+c),c=-27/122+18/37*I,n=24 4324156078850879 a007 Real Root Of -2*x^4-867*x^3-938*x^2-81*x-649 4324156084969574 r005 Im(z^2+c),c=11/48+7/18*I,n=23 4324156097267085 a001 305/682*322^(19/24) 4324156098265714 r002 2th iterates of z^2 + 4324156098734526 m005 (1/2*Catalan-11/12)/(3/8*5^(1/2)+2/9) 4324156101533906 r005 Re(z^2+c),c=-5/8+11/41*I,n=24 4324156104529460 m001 (TwinPrimes-cos(1/12*Pi))*2^(1/2) 4324156104529460 m001 sqrt(2)*(TwinPrimes-cos(Pi/12)) 4324156108013018 r005 Im(z^2+c),c=4/13+5/16*I,n=60 4324156110031567 k002 Champernowne real with 61*n^2+15*n-33 4324156110223807 a007 Real Root Of -8*x^4-330*x^3+701*x^2+528*x+292 4324156115476142 r005 Re(z^2+c),c=-4/7+33/92*I,n=59 4324156125407060 r005 Im(z^2+c),c=3/14+25/61*I,n=38 4324156156811211 k007 concat of cont frac of 4324156159892142 a007 Real Root Of 445*x^4-663*x^3-717*x^2-416*x+352 4324156159948724 m002 -Pi^5/2+(5*Pi^6)/ProductLog[Pi] 4324156161089673 m005 (1/2*3^(1/2)-4/9)/(7/9*2^(1/2)-1/8) 4324156161361798 a007 Real Root Of 911*x^4+105*x^3-770*x^2-875*x+482 4324156182118123 k009 concat of cont frac of 4324156192443258 r005 Im(z^2+c),c=9/110+17/33*I,n=55 4324156196468078 m005 (1/2*gamma+2)/(5/7*Catalan-1/8) 4324156204542355 r005 Im(z^2+c),c=-2/3+19/186*I,n=39 4324156210061573 k002 Champernowne real with 123/2*n^2+27/2*n-32 4324156222849405 b008 Pi^2*Cot[Pi/14] 4324156236411347 l006 ln(6028/9289) 4324156250635520 r005 Re(z^2+c),c=-5/8+35/176*I,n=30 4324156258946105 r002 30th iterates of z^2 + 4324156269780977 a007 Real Root Of 14*x^4+583*x^3-990*x^2-965*x-269 4324156280853992 r005 Re(z^2+c),c=-55/86+1/4*I,n=44 4324156296158879 r009 Re(z^3+c),c=-11/118+36/49*I,n=37 4324156298184708 r005 Im(z^2+c),c=23/58+10/37*I,n=15 4324156306420040 m009 (32*Catalan+4*Pi^2-1/6)/(Pi^2+6) 4324156308279434 m001 1/Kolakoski/exp(Khintchine)*Rabbit^2 4324156310091579 k002 Champernowne real with 62*n^2+12*n-31 4324156312781736 r005 Im(z^2+c),c=-1/86+28/47*I,n=64 4324156326762952 r005 Re(z^2+c),c=-3/5+29/114*I,n=46 4324156344505892 m001 1/exp(Paris)/GaussAGM(1,1/sqrt(2))^2/cos(1)^2 4324156347626112 a001 199/377*987^(36/37) 4324156350230593 a007 Real Root Of -461*x^4-957*x^3-268*x^2+819*x+343 4324156360789979 a001 610/2207*322^(7/8) 4324156360880670 r005 Im(z^2+c),c=-1/25+30/53*I,n=27 4324156363355069 a001 322/55*121393^(35/46) 4324156363753156 r005 Im(z^2+c),c=-2/3+13/168*I,n=42 4324156370824610 a007 Real Root Of 922*x^4-836*x^3-132*x^2-779*x-412 4324156391680913 r009 Re(z^3+c),c=-3/86+47/53*I,n=29 4324156396482895 r002 7th iterates of z^2 + 4324156396766764 r005 Re(z^2+c),c=43/118+12/19*I,n=17 4324156410121585 k002 Champernowne real with 125/2*n^2+21/2*n-30 4324156421085743 r002 61th iterates of z^2 + 4324156426847556 r009 Re(z^3+c),c=-55/122+31/56*I,n=4 4324156428008464 m005 (1/2*Zeta(3)+10/11)/(3/8*Zeta(3)-4/5) 4324156437014134 a007 Real Root Of -446*x^4+231*x^3-338*x^2+695*x+398 4324156470188848 r005 Im(z^2+c),c=-27/22+32/89*I,n=6 4324156483664910 m001 (KomornikLoreti-Landau)/(ln(2)-FeigenbaumMu) 4324156486562644 h001 (6/7*exp(1)+2/11)/(7/10*exp(2)+7/11) 4324156502948146 l006 ln(4039/6224) 4324156504181050 a007 Real Root Of -185*x^4-750*x^3+62*x^2-808*x-613 4324156508764279 a007 Real Root Of 147*x^4+457*x^3+948*x^2-998*x-577 4324156510141589 k004 Champernowne real with floor(Pi*(20*n^2+3*n-9)) 4324156510151591 k002 Champernowne real with 63*n^2+9*n-29 4324156518712945 a007 Real Root Of 251*x^4+920*x^3-597*x^2+458*x-227 4324156541817131 m001 (polylog(4,1/2)+Conway)/(Weierstrass-ZetaQ(2)) 4324156545128055 r009 Re(z^3+c),c=-31/58+8/57*I,n=39 4324156549676527 r002 58th iterates of z^2 + 4324156558241840 r009 Re(z^3+c),c=-3/86+47/53*I,n=31 4324156585668730 m005 (1/2*2^(1/2)-5/11)/(3/11*Pi-3/11) 4324156587036961 m001 1/ln(GAMMA(1/24))*Porter/Zeta(5)^2 4324156603368410 a007 Real Root Of -262*x^4+208*x^3-314*x^2+898*x+473 4324156610181597 k002 Champernowne real with 127/2*n^2+15/2*n-28 4324156611323601 r009 Re(z^3+c),c=-3/86+47/53*I,n=33 4324156620109496 m001 CareFree*ln(FeigenbaumDelta)^2*Sierpinski 4324156623338599 r009 Re(z^3+c),c=-3/86+47/53*I,n=49 4324156623339305 r009 Re(z^3+c),c=-3/86+47/53*I,n=51 4324156623340025 r009 Re(z^3+c),c=-3/86+47/53*I,n=53 4324156623340368 r009 Re(z^3+c),c=-3/86+47/53*I,n=55 4324156623340488 r009 Re(z^3+c),c=-3/86+47/53*I,n=57 4324156623340520 r009 Re(z^3+c),c=-3/86+47/53*I,n=59 4324156623340525 r009 Re(z^3+c),c=-3/86+47/53*I,n=63 4324156623340526 r009 Re(z^3+c),c=-3/86+47/53*I,n=61 4324156623341264 r009 Re(z^3+c),c=-3/86+47/53*I,n=47 4324156623361292 r009 Re(z^3+c),c=-3/86+47/53*I,n=45 4324156623441642 r009 Re(z^3+c),c=-3/86+47/53*I,n=43 4324156623661023 r009 Re(z^3+c),c=-3/86+47/53*I,n=35 4324156623681866 r009 Re(z^3+c),c=-3/86+47/53*I,n=41 4324156624219955 r009 Re(z^3+c),c=-3/86+47/53*I,n=39 4324156624895240 r009 Re(z^3+c),c=-3/86+47/53*I,n=37 4324156626666026 s001 sum(exp(-2*Pi/3)^n*A089106[n],n=1..infinity) 4324156629444661 r002 35th iterates of z^2 + 4324156632452128 a003 cos(Pi*4/69)/cos(Pi*38/89) 4324156651500186 r002 30th iterates of z^2 + 4324156656876380 h001 (-5*exp(2)+3)/(-9*exp(2)-12) 4324156660176082 r002 24th iterates of z^2 + 4324156665123952 r005 Im(z^2+c),c=3/32+31/61*I,n=46 4324156665850432 r005 Im(z^2+c),c=-23/78+29/46*I,n=43 4324156670014960 a007 Real Root Of 324*x^4+150*x^3+575*x^2-743*x-428 4324156675528007 m001 (LaplaceLimit+RenyiParking)/(exp(1)+Landau) 4324156703594862 m001 (MinimumGamma+Salem)/(exp(1/exp(1))-GaussAGM) 4324156705624295 r005 Im(z^2+c),c=-7/12+61/96*I,n=7 4324156707040018 r005 Re(z^2+c),c=19/52+4/25*I,n=57 4324156710211603 k002 Champernowne real with 64*n^2+6*n-27 4324156710435265 r002 41th iterates of z^2 + 4324156739708698 a007 Real Root Of -182*x^4-864*x^3-422*x^2-187*x+856 4324156741265471 r005 Re(z^2+c),c=13/122+11/46*I,n=6 4324156750775653 a007 Real Root Of 424*x^4+30*x^3+623*x^2-973*x+287 4324156766814755 l006 ln(6089/9383) 4324156778869121 m004 Tan[Sqrt[5]*Pi]/6+Tan[Sqrt[5]*Pi]^2/3 4324156787209408 m001 1/ln(CareFree)^2*GolombDickman/Salem 4324156788467862 r005 Re(z^2+c),c=-37/62+15/56*I,n=14 4324156796210375 r005 Re(z^2+c),c=-13/106+21/32*I,n=50 4324156810241609 k002 Champernowne real with 129/2*n^2+9/2*n-26 4324156812356939 r005 Re(z^2+c),c=-25/122+19/28*I,n=35 4324156815225820 r002 46th iterates of z^2 + 4324156884143634 m001 (arctan(1/3)+ArtinRank2)/CopelandErdos 4324156897011671 r005 Re(z^2+c),c=-4/7+5/99*I,n=9 4324156901283418 s002 sum(A196855[n]/(exp(n)+1),n=1..infinity) 4324156909367968 a007 Real Root Of 22*x^4-113*x^3-749*x^2-746*x+471 4324156910271615 k002 Champernowne real with 65*n^2+3*n-25 4324156913087968 m001 1/ln(Magata)^2*MertensB1^2/GAMMA(23/24)^2 4324156938504338 m001 1/BesselJ(1,1)^2*(3^(1/3))^2*ln(Zeta(9))^2 4324156938752853 a007 Real Root Of 630*x^4+177*x^3-59*x^2-454*x-193 4324156941705695 r005 Re(z^2+c),c=1/48+15/61*I,n=3 4324156942842604 r009 Im(z^3+c),c=-3/74+26/51*I,n=7 4324156945978271 m001 (Sarnak+ZetaP(3))/(ln(3)-Mills) 4324156955154793 r009 Im(z^3+c),c=-29/102+32/59*I,n=5 4324156959038000 r005 Re(z^2+c),c=27/94+32/59*I,n=15 4324156971741547 r005 Im(z^2+c),c=-25/42+5/63*I,n=44 4324156975653169 r005 Re(z^2+c),c=-15/58+28/47*I,n=16 4324156983740500 a007 Real Root Of -131*x^4-403*x^3+847*x^2+548*x-251 4324156984025532 a001 5/76*76^(10/23) 4324156985387461 m009 (8/3*Catalan+1/3*Pi^2+1)/(5*Psi(1,2/3)+1/4) 4324156995806320 a007 Real Root Of -154*x^4-498*x^3+562*x^2-838*x-555 4324156998267662 m001 (Ei(1,1)+Lehmer)/(2^(1/2)+arctan(1/2)) 4324157003905250 m001 (Psi(2,1/3)-sin(1))/(-Zeta(1,-1)+GAMMA(5/6)) 4324157004510401 a003 cos(Pi*19/98)*cos(Pi*32/99) 4324157010301621 k002 Champernowne real with 131/2*n^2+3/2*n-24 4324157015225993 a001 377/199*199^(13/22) 4324157015354273 p003 LerchPhi(1/10,4,89/72) 4324157025244588 r002 12th iterates of z^2 + 4324157027912304 r005 Re(z^2+c),c=-3/5+22/93*I,n=45 4324157034040962 r005 Im(z^2+c),c=7/36+20/47*I,n=47 4324157036681228 r005 Im(z^2+c),c=-17/14+36/221*I,n=9 4324157051827441 a003 cos(Pi*1/97)-sin(Pi*19/99) 4324157060014298 r005 Im(z^2+c),c=-55/86+19/56*I,n=5 4324157072132744 r009 Im(z^3+c),c=-13/42+17/37*I,n=25 4324157097874456 m005 (1/2*2^(1/2)+7/12)/(2/11*2^(1/2)-5/9) 4324157110331627 k004 Champernowne real with floor(Pi*(21*n^2-7)) 4324157110331627 k002 Champernowne real with 66*n^2-23 4324157111256113 k007 concat of cont frac of 4324157117792163 r005 Im(z^2+c),c=-27/46+5/63*I,n=31 4324157129600989 q001 1398/3233 4324157131558123 m001 (Conway+StronglyCareFree)^2 4324157132529843 r002 51th iterates of z^2 + 4324157142969464 a003 cos(Pi*8/47)-cos(Pi*37/103) 4324157151514432 r009 Re(z^3+c),c=-21/82+49/60*I,n=4 4324157156662129 r002 34th iterates of z^2 + 4324157164722297 r005 Im(z^2+c),c=-83/74+17/53*I,n=6 4324157179423607 r002 13th iterates of z^2 + 4324157183999596 m001 GAMMA(3/4)/(Khinchin+ZetaR(2)) 4324157194353368 a007 Real Root Of -903*x^4+414*x^3+759*x^2+715*x-453 4324157197630597 r005 Im(z^2+c),c=31/98+19/64*I,n=54 4324157199073272 r002 5th iterates of z^2 + 4324157200869042 m001 GolombDickman*ErdosBorwein/exp(sin(1)) 4324157204530564 r009 Im(z^3+c),c=-19/46+26/63*I,n=51 4324157210361633 k002 Champernowne real with 133/2*n^2-3/2*n-22 4324157251195511 a003 cos(Pi*11/75)-cos(Pi*26/75) 4324157255968834 r005 Re(z^2+c),c=-3/5+23/90*I,n=45 4324157256688275 m001 TwinPrimes^2/Tribonacci^2/ln(sin(1))^2 4324157281377504 r002 13th iterates of z^2 + 4324157283442038 g002 Psi(3/8)+Psi(4/7)+Psi(3/7)-Psi(5/12) 4324157284056128 g007 Psi(2,1/6)-Psi(13/10)-Psi(2,7/8)-Psi(2,3/5) 4324157286696313 l006 ln(2050/3159) 4324157294614121 r002 5th iterates of z^2 + 4324157300608389 m001 BesselK(0,1)^HardyLittlewoodC4/Pi^(1/2) 4324157309763028 r005 Re(z^2+c),c=-23/56+6/11*I,n=15 4324157310391639 k002 Champernowne real with 67*n^2-3*n-21 4324157325199091 r005 Re(z^2+c),c=-55/74+13/42*I,n=4 4324157332244330 l006 ln(6291/6569) 4324157343090351 m001 ZetaQ(3)^(ln(2)/ln(10)*sin(1/5*Pi)) 4324157378173936 r005 Re(z^2+c),c=-1/118+28/43*I,n=2 4324157382553862 a001 329/1926*322^(23/24) 4324157383912623 r009 Re(z^3+c),c=-59/114+8/49*I,n=50 4324157410421645 k002 Champernowne real with 135/2*n^2-9/2*n-20 4324157411748885 r005 Im(z^2+c),c=37/114+17/58*I,n=62 4324157417382306 r002 25th iterates of z^2 + 4324157421621738 r009 Im(z^3+c),c=-45/94+19/41*I,n=34 4324157428208000 m001 PrimesInBinary/ln(FransenRobinson)*OneNinth 4324157435852856 m001 HardyLittlewoodC3-Lehmer-Weierstrass 4324157444771956 r005 Re(z^2+c),c=-21/34+5/97*I,n=40 4324157493218112 m001 (Shi(1)+gamma(3))/(BesselI(1,2)+Thue) 4324157498589102 m001 1/ln(BesselK(1,1))^2*Salem/GAMMA(11/12) 4324157510451651 k002 Champernowne real with 68*n^2-6*n-19 4324157515866578 m001 (-GAMMA(7/12)+Paris)/(2^(1/3)-BesselI(1,2)) 4324157529144735 r005 Im(z^2+c),c=11/126+20/39*I,n=29 4324157550058456 r005 Im(z^2+c),c=19/70+19/54*I,n=57 4324157550670172 h001 (2/9*exp(1)+1/8)/(3/8*exp(1)+2/3) 4324157570684638 m005 (-9/2+1/2*5^(1/2))/(1/5*gamma+2/3) 4324157577531258 r002 42th iterates of z^2 + 4324157577531258 r002 42th iterates of z^2 + 4324157580028102 m005 (1/2*2^(1/2)+1/12)/(81/70+3/10*5^(1/2)) 4324157584171941 a001 23725150497407/2*7778742049^(3/19) 4324157585504946 p003 LerchPhi(1/2,2,24/157) 4324157596867288 m004 (5*Log[Sqrt[5]*Pi])/3+(5*Sin[Sqrt[5]*Pi])/Pi 4324157602265020 r005 Im(z^2+c),c=-37/70+25/52*I,n=47 4324157610481657 k002 Champernowne real with 137/2*n^2-15/2*n-18 4324157618512583 p001 sum(1/(311*n+183)/n/(5^n),n=1..infinity) 4324157629797100 m005 (1/2*Pi+3/8)/(2/5*5^(1/2)-4/9) 4324157631561240 r005 Re(z^2+c),c=-8/13+11/54*I,n=30 4324157635217834 m001 (FeigenbaumC+Weierstrass)/(exp(1/Pi)-sin(1)) 4324157658459996 a007 Real Root Of 961*x^4-732*x^3+964*x^2-585*x-526 4324157664929008 r005 Im(z^2+c),c=-59/90+1/62*I,n=32 4324157668539335 m001 3^(1/3)/FeigenbaumAlpha/MertensB3 4324157683022000 a001 123/9227465*6765^(11/12) 4324157685598810 r005 Re(z^2+c),c=-10/17+19/51*I,n=32 4324157689408405 m005 (1/3*Pi-3/4)/(5/11*3^(1/2)-1/10) 4324157693333951 r005 Re(z^2+c),c=-13/21+1/30*I,n=64 4324157700344215 a001 123/1836311903*2178309^(11/12) 4324157700344382 a001 123/365435296162*701408733^(11/12) 4324157704276408 m001 (-BesselI(1,1)+LandauRamanujan)/(1+Zeta(1/2)) 4324157710511663 k002 Champernowne real with 69*n^2-9*n-17 4324157719895486 m001 Porter*(Zeta(3)+KhinchinHarmonic) 4324157748012133 h001 (-8*exp(6)-3)/(-5*exp(5)-5) 4324157762113161 r005 Re(z^2+c),c=-73/118+1/22*I,n=54 4324157775112865 a001 199/4052739537881*17711^(13/14) 4324157778358530 r005 Im(z^2+c),c=1/102+5/9*I,n=38 4324157796366034 l006 ln(6211/9571) 4324157801534495 r005 Im(z^2+c),c=-23/94+30/47*I,n=61 4324157810521665 k004 Champernowne real with floor(Pi*(22*n^2-3*n-5)) 4324157810541669 k002 Champernowne real with 139/2*n^2-21/2*n-16 4324157818161045 m005 (1/2*Catalan+2/11)/(4/9*Pi+1/12) 4324157818866729 a001 377/521*322^(17/24) 4324157823351851 a001 1/271443*3^(7/48) 4324157837681050 r009 Re(z^3+c),c=-15/32+4/25*I,n=19 4324157839898361 a001 47/610*832040^(13/44) 4324157873892335 r005 Re(z^2+c),c=-49/94+16/23*I,n=11 4324157881458267 r005 Re(z^2+c),c=-37/60+7/60*I,n=44 4324157887940154 r002 38th iterates of z^2 + 4324157890492439 m001 ln(GAMMA(2/3))*FeigenbaumKappa*GAMMA(23/24)^2 4324157894034320 a007 Real Root Of 8*x^4-666*x^3+530*x^2-832*x-513 4324157906268472 r009 Im(z^3+c),c=-7/24+20/43*I,n=15 4324157908783931 m005 (1/3*exp(1)-1/10)/(7/9*5^(1/2)+1/8) 4324157910571675 k002 Champernowne real with 70*n^2-12*n-15 4324157915211335 m001 (BesselK(0,1)-exp(1))/(Cahen+FeigenbaumDelta) 4324157918405043 r009 Re(z^3+c),c=-1/42+51/64*I,n=11 4324157921109438 h001 (-4*exp(2/3)-2)/(-2*exp(-1)+3) 4324157930456931 m005 (1/2*5^(1/2)-2)/(5/11*3^(1/2)-7/12) 4324157936277732 r005 Re(z^2+c),c=10/27+13/60*I,n=14 4324157947969792 a007 Real Root Of -376*x^4+337*x^3+723*x^2+950*x+316 4324157953201995 r009 Im(z^3+c),c=-41/102+18/43*I,n=50 4324157955402222 m005 (1/2*Catalan-6)/(6*5^(1/2)-3/5) 4324157957479394 m001 (GAMMA(23/24)-Totient)^Sarnak 4324157962672779 r009 Im(z^3+c),c=-29/74+25/59*I,n=32 4324157969662628 m001 Zeta(1,2)-GAMMA(11/24)^Si(Pi) 4324157988444761 h005 exp(cos(Pi*6/47)+cos(Pi*13/41)) 4324158010601681 k002 Champernowne real with 141/2*n^2-27/2*n-14 4324158021906991 r005 Im(z^2+c),c=-3/86+29/50*I,n=40 4324158032269283 r005 Im(z^2+c),c=3/13+5/11*I,n=25 4324158045671921 m001 (gamma(1)+BesselK(1,1))^ln(2+3^(1/2)) 4324158046385946 a007 Real Root Of 852*x^4-43*x^3-371*x^2-139*x-24 4324158047465022 l006 ln(4161/6412) 4324158048068581 r005 Re(z^2+c),c=-7/12+7/20*I,n=26 4324158060894718 r009 Re(z^3+c),c=-39/110+1/47*I,n=13 4324158070460171 r005 Im(z^2+c),c=25/98+29/63*I,n=5 4324158070709776 m001 1/GAMMA(5/6)^2*ln(Lehmer)/GAMMA(7/24)^2 4324158076790189 m005 (1/2*Zeta(3)+9/11)/(2/7*3^(1/2)-1/6) 4324158110631687 k002 Champernowne real with 71*n^2-15*n-13 4324158120223710 r005 Im(z^2+c),c=-17/14+4/193*I,n=28 4324158136210138 r009 Re(z^3+c),c=-23/52+7/52*I,n=27 4324158136793297 m001 (BesselK(0,1)+Lehmer)/(exp(Pi)+ln(2)/ln(10)) 4324158152032283 r005 Re(z^2+c),c=-3/5+33/124*I,n=34 4324158153532500 m001 Riemann3rdZero^2/exp(Artin)^2*Zeta(1/2) 4324158161314605 a001 2/5*144^(49/52) 4324158166482624 r005 Re(z^2+c),c=-59/86+8/33*I,n=17 4324158178384690 b008 2/7-3*ExpIntegralEi[-2] 4324158187724011 m001 gamma(2)/(Otter-TravellingSalesman) 4324158192172707 a003 sin(Pi*5/81)-sin(Pi*23/107) 4324158192610964 r002 5th iterates of z^2 + 4324158198705748 r004 Im(z^2+c),c=2/5-9/23*I,z(0)=exp(7/24*I*Pi),n=3 4324158209806924 m001 1/Tribonacci*ln(Conway)*sqrt(3)^2 4324158210661693 k002 Champernowne real with 143/2*n^2-33/2*n-12 4324158220178566 m001 MasserGramain^(Si(Pi)*Zeta(5)) 4324158228522124 r002 49th iterates of z^2 + 4324158233743167 m001 (Porter-Trott2nd)/(FeigenbaumD+MasserGramain) 4324158241215211 k006 concat of cont frac of 4324158251419831 a001 2584/15127*322^(23/24) 4324158254210188 a001 322/121393*55^(5/41) 4324158264267091 m005 (1/2*Catalan-2/11)/(1/3*Catalan+1/3) 4324158275722366 m001 BesselI(0,1)-Magata^OrthogonalArrays 4324158287686644 a007 Real Root Of -120*x^4+561*x^3+620*x^2+756*x-484 4324158296121874 l006 ln(6272/9665) 4324158297457063 m001 arctan(1/3)^(LambertW(1)*Conway) 4324158297659969 r002 15th iterates of z^2 + 4324158310691699 k002 Champernowne real with 72*n^2-18*n-11 4324158316977776 r005 Im(z^2+c),c=-77/106+2/61*I,n=5 4324158332516982 m001 RenyiParking/(Niven^GAMMA(23/24)) 4324158332549702 r005 Im(z^2+c),c=3/34+24/47*I,n=59 4324158370924161 m001 Pi+2^(1/3)*GAMMA(2/3)*ln(2) 4324158374690501 r005 Re(z^2+c),c=-79/122+26/63*I,n=58 4324158378056056 r005 Re(z^2+c),c=-79/114+6/31*I,n=41 4324158378185671 a001 2255/13201*322^(23/24) 4324158387982003 a005 (1/cos(9/94*Pi))^82 4324158388143093 a007 Real Root Of 243*x^4+855*x^3-756*x^2+182*x-906 4324158388289767 r005 Im(z^2+c),c=-59/86+3/40*I,n=8 4324158388574166 a007 Real Root Of -663*x^4-540*x^3-111*x^2+226*x+98 4324158396680558 a001 17711/103682*322^(23/24) 4324158399378925 a001 15456/90481*322^(23/24) 4324158399772612 a001 121393/710647*322^(23/24) 4324158399830050 a001 105937/620166*322^(23/24) 4324158399838430 a001 832040/4870847*322^(23/24) 4324158399839653 a001 726103/4250681*322^(23/24) 4324158399839831 a001 5702887/33385282*322^(23/24) 4324158399839857 a001 4976784/29134601*322^(23/24) 4324158399839861 a001 39088169/228826127*322^(23/24) 4324158399839861 a001 34111385/199691526*322^(23/24) 4324158399839861 a001 267914296/1568397607*322^(23/24) 4324158399839861 a001 233802911/1368706081*322^(23/24) 4324158399839861 a001 1836311903/10749957122*322^(23/24) 4324158399839861 a001 1602508992/9381251041*322^(23/24) 4324158399839861 a001 12586269025/73681302247*322^(23/24) 4324158399839861 a001 10983760033/64300051206*322^(23/24) 4324158399839861 a001 86267571272/505019158607*322^(23/24) 4324158399839861 a001 75283811239/440719107401*322^(23/24) 4324158399839861 a001 2504730781961/14662949395604*322^(23/24) 4324158399839861 a001 139583862445/817138163596*322^(23/24) 4324158399839861 a001 53316291173/312119004989*322^(23/24) 4324158399839861 a001 20365011074/119218851371*322^(23/24) 4324158399839861 a001 7778742049/45537549124*322^(23/24) 4324158399839861 a001 2971215073/17393796001*322^(23/24) 4324158399839861 a001 1134903170/6643838879*322^(23/24) 4324158399839861 a001 433494437/2537720636*322^(23/24) 4324158399839862 a001 165580141/969323029*322^(23/24) 4324158399839862 a001 63245986/370248451*322^(23/24) 4324158399839863 a001 24157817/141422324*322^(23/24) 4324158399839873 a001 9227465/54018521*322^(23/24) 4324158399839941 a001 3524578/20633239*322^(23/24) 4324158399840408 a001 1346269/7881196*322^(23/24) 4324158399843609 a001 514229/3010349*322^(23/24) 4324158399865549 a001 196418/1149851*322^(23/24) 4324158400015923 a001 75025/439204*322^(23/24) 4324158400039912 m001 (Landau+Paris)/(Rabbit+Riemann1stZero) 4324158401046608 a001 28657/167761*322^(23/24) 4324158405033491 r005 Re(z^2+c),c=-17/28+12/61*I,n=51 4324158408111026 a001 10946/64079*322^(23/24) 4324158410306002 s002 sum(A276526[n]/(2^n+1),n=1..infinity) 4324158410711702 k004 Champernowne real with floor(Pi*(23*n^2-6*n-3)) 4324158410721705 k002 Champernowne real with 145/2*n^2-39/2*n-10 4324158415423511 r005 Im(z^2+c),c=11/114+31/61*I,n=35 4324158418860729 r005 Re(z^2+c),c=17/62+1/50*I,n=53 4324158434435167 r005 Re(z^2+c),c=-29/48+3/13*I,n=61 4324158440420398 a001 167761/144*591286729879^(2/15) 4324158440551627 a001 109801/36*433494437^(2/15) 4324158440569631 a001 1149851/144*317811^(2/15) 4324158442630584 a007 Real Root Of -913*x^4-384*x^3-291*x^2+892*x+441 4324158445708035 a003 cos(Pi*8/29)-cos(Pi*25/58) 4324158446200307 m001 (gamma(3)-GAMMA(7/12))/(Champernowne+Magata) 4324158449048450 r005 Re(z^2+c),c=-17/44+41/55*I,n=6 4324158456531269 a001 4181/24476*322^(23/24) 4324158479170937 m001 1/Trott^2*ln(PrimesInBinary)/sqrt(3) 4324158480549719 a007 Real Root Of -208*x^4-881*x^3+217*x^2+567*x-116 4324158497016657 a007 Real Root Of 182*x^4+755*x^3-251*x^2-633*x-631 4324158504750503 m001 Champernowne^Paris*ZetaQ(4)^Paris 4324158510751711 k002 Champernowne real with 73*n^2-21*n-9 4324158550171632 s002 sum(A221663[n]/(10^n-1),n=1..infinity) 4324158565941196 r009 Im(z^3+c),c=-37/90+23/55*I,n=19 4324158567958552 m001 Rabbit/HardHexagonsEntropy/Salem 4324158581469735 r005 Im(z^2+c),c=1/24+27/49*I,n=44 4324158583068041 r005 Im(z^2+c),c=-14/11+1/28*I,n=29 4324158589981449 r009 Im(z^3+c),c=-8/15+14/51*I,n=62 4324158595899859 r005 Im(z^2+c),c=13/46+16/47*I,n=53 4324158601775909 m001 (CareFree-Magata)/(Paris-Sarnak) 4324158607324076 r002 58th iterates of z^2 + 4324158610781717 k002 Champernowne real with 147/2*n^2-45/2*n-8 4324158622277364 s002 sum(A141315[n]/((2^n-1)/n),n=1..infinity) 4324158622379625 r009 Im(z^3+c),c=-21/40+9/43*I,n=25 4324158631385252 a007 Real Root Of 141*x^4+440*x^3-978*x^2-933*x+531 4324158636668464 r005 Re(z^2+c),c=17/64+1/55*I,n=38 4324158637522485 a007 Real Root Of -843*x^4+748*x^3-876*x^2-381*x+89 4324158666471958 m005 (1/6*Pi+4/5)/(1/3*exp(1)-3/5) 4324158679947028 r002 46th iterates of z^2 + 4324158699647628 m001 Riemann2ndZero^2*ln(Champernowne)^2*sqrt(5) 4324158701354845 m006 (1/4*exp(2*Pi)+3/4)/(4/5*Pi+3/5) 4324158710811723 k002 Champernowne real with 74*n^2-24*n-7 4324158716519414 r002 2th iterates of z^2 + 4324158723720888 r009 Im(z^3+c),c=-33/74+13/33*I,n=40 4324158740706686 r009 Im(z^3+c),c=-11/118+29/57*I,n=13 4324158744884043 m006 (4/5*Pi+1/4)/(5*ln(Pi)+2/3) 4324158749851005 m001 (ln(gamma)+gamma(2))/(GlaisherKinkelin+Trott) 4324158751911294 m001 (Chi(1)+Backhouse)/(-Mills+StronglyCareFree) 4324158762979538 r009 Re(z^3+c),c=-61/126+4/25*I,n=16 4324158764234973 a007 Real Root Of 943*x^4-226*x^3+491*x^2+125*x-89 4324158783508343 m001 (OneNinth-Robbin)/(ln(3)-FibonacciFactorial) 4324158786250308 l006 ln(2111/3253) 4324158786250308 p004 log(3253/2111) 4324158786787366 r002 34th iterates of z^2 + 4324158788408553 a001 1597/9349*322^(23/24) 4324158796000559 m005 (1/3*gamma+1/3)/(-7/24+1/8*5^(1/2)) 4324158806121851 a001 521/28657*55^(8/37) 4324158806917879 m001 FeigenbaumKappa/(GAMMA(5/6)-3^(1/3)) 4324158810841729 k002 Champernowne real with 149/2*n^2-51/2*n-6 4324158812139384 r002 15th iterates of z^2 + 4324158813487643 r005 Re(z^2+c),c=-69/122+25/57*I,n=34 4324158825289946 m001 Otter/(Zeta(1/2)+GAMMA(7/12)) 4324158847680153 r005 Im(z^2+c),c=-1/14+5/9*I,n=17 4324158858540293 r005 Re(z^2+c),c=-11/18+29/122*I,n=42 4324158861615250 m001 (BesselI(1,2)-GAMMA(23/24))/(Gompertz+Rabbit) 4324158865054327 r002 49th iterates of z^2 + 4324158871572638 m001 ZetaP(3)^gamma(3)/(ZetaP(3)^sin(1)) 4324158873144444 m001 (-gamma(1)+GAMMA(11/12))/(1+ln(5)) 4324158876449355 m001 1/Zeta(3)^2*exp((2^(1/3)))*sqrt(Pi) 4324158881528311 m001 (5^(1/2)+ln(gamma))/(-CopelandErdos+Kac) 4324158882729594 m001 1/RenyiParking/ln(Paris)^2*log(2+sqrt(3))^2 4324158901940822 r002 2th iterates of z^2 + 4324158902018209 a007 Real Root Of 257*x^4+885*x^3-954*x^2+157*x+219 4324158903696315 r009 Re(z^3+c),c=-5/78+21/46*I,n=8 4324158910871735 k002 Champernowne real with 75*n^2-27*n-5 4324158923998109 a001 89/3571*29^(9/55) 4324158938225432 r005 Re(z^2+c),c=-45/74+6/41*I,n=24 4324158944715065 a001 6/105937*46368^(7/37) 4324158955667972 r002 57th iterates of z^2 + 4324158960309430 a001 4/317811*28657^(33/58) 4324158962679814 h001 (2/9*exp(1)+3/5)/(6/7*exp(1)+5/11) 4324158972294541 r005 Im(z^2+c),c=-119/94+10/59*I,n=6 4324158974780048 r005 Re(z^2+c),c=-17/28+11/54*I,n=55 4324158975641397 m002 -E^Pi-2/Pi^4-Pi^3+Pi^4 4324158978490536 m001 (Zeta(1,2)-Niven)/(Paris-Rabbit) 4324158986588746 r005 Im(z^2+c),c=-21/40+24/49*I,n=28 4324159010901740 k004 Champernowne real with floor(Pi*(24*n^2-9*n-1)) 4324159010901741 k002 Champernowne real with 151/2*n^2-57/2*n-4 4324159020420488 r005 Im(z^2+c),c=-7/54+19/34*I,n=13 4324159021406727 q001 707/1635 4324159031547969 m001 (2^(1/2))^(GAMMA(23/24)/ZetaQ(3)) 4324159037698398 a007 Real Root Of 808*x^4-200*x^3+600*x^2-993*x-586 4324159048851138 r002 25th iterates of z^2 + 4324159053517650 r002 2th iterates of z^2 + 4324159075294704 r002 23th iterates of z^2 + 4324159077660267 r005 Re(z^2+c),c=-45/74+5/51*I,n=26 4324159078489180 r002 24th iterates of z^2 + 4324159081005024 r005 Im(z^2+c),c=27/122+23/51*I,n=17 4324159083317476 a001 121393/3*47^(1/58) 4324159086306272 m001 2^(1/3)/(GaussAGM-Landau) 4324159105585842 r005 Im(z^2+c),c=1/44+27/46*I,n=49 4324159110931747 k002 Champernowne real with 76*n^2-30*n-3 4324159127832116 m008 (1/3*Pi^2+2)/(4*Pi^5-3/4) 4324159130254707 h001 (-3*exp(2/3)+3)/(-7*exp(-1)-4) 4324159136425636 r002 36th iterates of z^2 + 4324159141046021 m001 Kolakoski^Tribonacci*TwinPrimes 4324159145425823 r009 Im(z^3+c),c=-37/78+9/25*I,n=20 4324159148580309 r005 Im(z^2+c),c=-1/29+23/40*I,n=23 4324159154294235 r002 47th iterates of z^2 + 4324159154294235 r002 47th iterates of z^2 + 4324159154628057 m001 (Catalan-ln(2+3^(1/2)))/(-Totient+ThueMorse) 4324159176248845 m001 (KomornikLoreti+Totient)/(GAMMA(5/6)-Si(Pi)) 4324159184128909 r005 Re(z^2+c),c=-11/38+23/42*I,n=7 4324159186722178 r005 Re(z^2+c),c=-13/21+3/61*I,n=49 4324159198122303 p001 sum(1/(617*n+240)/(8^n),n=0..infinity) 4324159210961753 k002 Champernowne real with 153/2*n^2-63/2*n-2 4324159240521947 r005 Re(z^2+c),c=-20/31+16/57*I,n=47 4324159243241592 k006 concat of cont frac of 4324159257824448 m001 Zeta(5)+KomornikLoreti*Tribonacci 4324159267026878 l006 ln(6394/9853) 4324159269828851 a007 Real Root Of -344*x^4+527*x^3+289*x^2+290*x+126 4324159274262254 a007 Real Root Of -156*x^4-819*x^3-469*x^2+501*x-742 4324159300868782 a007 Real Root Of 191*x^4+742*x^3-518*x^2-595*x+328 4324159303330690 r005 Re(z^2+c),c=-3/4+31/206*I,n=17 4324159310991759 k002 Champernowne real with 77*n^2-33*n-1 4324159314525234 a001 29/1597*17711^(31/39) 4324159321536463 r005 Im(z^2+c),c=-121/82+19/58*I,n=3 4324159322615893 r002 40th iterates of z^2 + 4324159324272280 m002 Pi^4+Pi^5+(Pi^3*Coth[Pi])/ProductLog[Pi] 4324159334563854 m001 exp(-1/2*Pi)*OneNinth*GAMMA(11/24) 4324159342022223 m001 exp(1/Pi)/(TreeGrowth2nd^HardHexagonsEntropy) 4324159354395270 r002 15th iterates of z^2 + 4324159356390270 r005 Im(z^2+c),c=15/58+19/51*I,n=32 4324159357218202 m001 Chi(1)^StolarskyHarborth/BesselI(0,2) 4324159373616796 a007 Real Root Of -135*x^4+180*x^3-180*x^2+724*x+366 4324159380116198 h002 exp(6^(7/12)-5^(1/5)) 4324159380116198 h007 exp(6^(7/12)-5^(1/5)) 4324159385448564 m001 (GAMMA(23/24)+ZetaP(3))/(ln(2^(1/2)+1)+Ei(1)) 4324159388576792 a001 1926/7*34^(5/39) 4324159391621119 a007 Real Root Of 36*x^4-179*x^3-297*x^2-506*x-179 4324159399634179 r009 Re(z^3+c),c=-47/90+10/31*I,n=6 4324159400663423 p003 LerchPhi(1/256,1,429/185) 4324159407453467 r005 Re(z^2+c),c=-21/34+3/61*I,n=38 4324159407807136 a007 Real Root Of 685*x^4+37*x^3-352*x^2-738*x+358 4324159411021765 k002 Champernowne real with 155/2*n^2-69/2*n 4324159422245336 a007 Real Root Of -232*x^4-879*x^3+668*x^2+478*x-381 4324159427362094 s001 sum(exp(-2*Pi/3)^n*A097670[n],n=1..infinity) 4324159451499016 r005 Im(z^2+c),c=15/82+23/51*I,n=19 4324159455062315 a003 cos(Pi*27/103)*cos(Pi*23/82) 4324159466562499 a007 Real Root Of -388*x^4+595*x^3-384*x^2+991*x+562 4324159475906828 m001 (Pi-Si(Pi))/(BesselK(1,1)-GaussKuzminWirsing) 4324159486607762 a007 Real Root Of -522*x^4+916*x^3-974*x^2+184*x+354 4324159491290883 r008 a(0)=0,K{-n^6,-28+4*n+14*n^2-14*n^3} 4324159503991459 l006 ln(4283/6600) 4324159511051771 k002 Champernowne real with 78*n^2-36*n+1 4324159523581224 r009 Im(z^3+c),c=-5/12+23/56*I,n=47 4324159524542902 a007 Real Root Of 147*x^4+75*x^3+952*x^2-164*x-248 4324159540329163 a007 Real Root Of 602*x^4-224*x^3+923*x^2-921*x-610 4324159546333809 m001 exp(GAMMA(1/6))^2*Cahen^2/cos(Pi/5)^2 4324159558786315 r005 Im(z^2+c),c=7/66+19/39*I,n=23 4324159579768614 m001 (exp(1/exp(1))+LandauRamanujan)/(ln(3)-ln(5)) 4324159611081777 k002 Champernowne real with 157/2*n^2-75/2*n+2 4324159613837203 r005 Re(z^2+c),c=-8/13+1/16*I,n=32 4324159634826824 r005 Im(z^2+c),c=-11/18+51/124*I,n=40 4324159635464485 r009 Im(z^3+c),c=-21/64+24/53*I,n=15 4324159638193249 m001 Psi(1,1/3)^(FellerTornier*ReciprocalLucas) 4324159640689647 m001 GAMMA(5/12)/exp(Magata)^2/cos(1) 4324159641459913 a007 Real Root Of -140*x^4+366*x^3+157*x^2+23*x-64 4324159644679924 r005 Im(z^2+c),c=-61/94+5/61*I,n=64 4324159645523192 m001 (Cahen-Mills)/(Zeta(1/2)+gamma(1)) 4324159651267031 r005 Im(z^2+c),c=-115/98+9/62*I,n=10 4324159656537136 a001 329*322^(49/58) 4324159669265351 m002 2-Log[Pi]+4*Pi^2*ProductLog[Pi] 4324159674335535 r005 Re(z^2+c),c=-27/44+8/57*I,n=60 4324159687290241 r005 Re(z^2+c),c=-27/58+23/49*I,n=24 4324159690779143 r005 Im(z^2+c),c=1/74+30/53*I,n=52 4324159694992748 r005 Im(z^2+c),c=-7/44+31/59*I,n=7 4324159711111783 k002 Champernowne real with 79*n^2-39*n+3 4324159716640346 r002 45th iterates of z^2 + 4324159719012091 r005 Re(z^2+c),c=-7/10+57/251*I,n=45 4324159735141424 m001 (ln(gamma)+ln(3))/(KhinchinHarmonic-PlouffeB) 4324159735963203 r004 Re(z^2+c),c=-1/30+2/17*I,z(0)=I,n=13 4324159738716710 l006 ln(6455/9947) 4324159751050268 r005 Im(z^2+c),c=5/82+21/37*I,n=41 4324159754989092 r005 Re(z^2+c),c=-7/12+12/35*I,n=50 4324159767292881 a007 Real Root Of 208*x^4-67*x^3-859*x^2-433*x+346 4324159770893881 m005 (1/2*Catalan-6/11)/(3/4*Pi-1/3) 4324159778760502 a005 (1/sin(51/133*Pi))^525 4324159784829549 m005 (1/2*3^(1/2)-2/5)/(4/5*Catalan-5/8) 4324159787970911 m005 (1/2*Pi+11/12)/(8/11*Catalan-1/11) 4324159788030223 r005 Im(z^2+c),c=5/28+10/23*I,n=9 4324159789526258 r002 22th iterates of z^2 + 4324159807425130 m005 (1/2*5^(1/2)+1/8)/(4/5*exp(1)+7/10) 4324159811141789 k002 Champernowne real with 159/2*n^2-81/2*n+4 4324159822130007 a007 Real Root Of 459*x^4-280*x^3+833*x^2-739*x-514 4324159872250281 r002 43th iterates of z^2 + 4324159889328778 m001 1/exp(Zeta(9))/FibonacciFactorial^2*sqrt(Pi) 4324159892574328 p003 LerchPhi(1/6,5,581/194) 4324159911171795 k002 Champernowne real with 80*n^2-42*n+5 4324159922910126 r002 3th iterates of z^2 + 4324159926454499 m001 (Zeta(5)+StolarskyHarborth)/(exp(Pi)+exp(1)) 4324159930766940 r005 Re(z^2+c),c=-21/34+8/99*I,n=52 4324159946112876 m001 (2^(1/3)+gamma)/(sin(1)+Magata) 4324159953545403 r009 Re(z^3+c),c=-13/25+9/61*I,n=50 4324159956448902 r005 Im(z^2+c),c=17/78+17/42*I,n=64 4324159958440242 r002 54th iterates of z^2 + 4324159962000777 r005 Re(z^2+c),c=15/86+1/3*I,n=22 4324159967484240 m001 GAMMA(5/12)*(sin(Pi/5)+exp(1/exp(1))) 4324159968591843 a001 55^(19/52) 4324159970295096 r005 Re(z^2+c),c=-19/32+13/49*I,n=4 4324159979253826 r005 Im(z^2+c),c=25/114+21/52*I,n=47 4324159984896642 r005 Re(z^2+c),c=-11/18+25/127*I,n=19 4324159985374424 r002 55th iterates of z^2 + 4324160003173407 r002 60th iterates of z^2 + 4324160006232463 a001 832040/3*3^(19/47) 4324160011201801 k002 Champernowne real with 161/2*n^2-87/2*n+6 4324160012215424 m001 Artin-sin(1/5*Pi)+MasserGramain 4324160012352956 l006 ln(5680/5931) 4324160019065279 h001 (9/10*exp(2)+8/11)/(1/3*exp(1)+4/5) 4324160029628542 a007 Real Root Of -534*x^4+900*x^3-268*x^2+637*x+417 4324160032078054 m006 (exp(2*Pi)-3/4)/(4*Pi-1/5) 4324160039808705 m001 1/ln(CareFree)^2/Artin/Rabbit^2 4324160039855228 a007 Real Root Of -80*x^4-279*x^3+297*x^2+82*x+213 4324160040106607 a007 Real Root Of -978*x^4+183*x^3-124*x^2+846*x+438 4324160059356265 m001 Grothendieck^FeigenbaumAlpha+ZetaP(4) 4324160065016875 m005 (1/3*exp(1)-1/12)/(7/9*3^(1/2)+5/9) 4324160105157291 r009 Re(z^3+c),c=-17/32+13/45*I,n=52 4324160111231807 k002 Champernowne real with 81*n^2-45*n+7 4324160116899548 r002 5th iterates of z^2 + 4324160164410229 a007 Real Root Of 242*x^4+894*x^3-633*x^2+148*x+150 4324160176078339 m005 (1/2*5^(1/2)-7/9)/(1/10*Zeta(3)+2/3) 4324160196783725 a007 Real Root Of -194*x^4-673*x^3+799*x^2+519*x+717 4324160201575005 l006 ln(2172/3347) 4324160208862675 m001 (Catalan-Shi(1))/(Tetranacci+Totient) 4324160211261813 k002 Champernowne real with 163/2*n^2-93/2*n+8 4324160228970265 m001 (GaussAGM+Paris)/(Catalan+Zeta(1,2)) 4324160270044011 m001 (ln(2^(1/2)+1)-3^(1/3))/(CareFree+Lehmer) 4324160273660466 a007 Real Root Of 111*x^4-649*x^3-880*x^2-261*x+326 4324160292811902 r005 Im(z^2+c),c=11/60+10/23*I,n=21 4324160303753822 m001 (BesselJ(0,1)+KhinchinHarmonic)^BesselI(1,2) 4324160307487695 a007 Real Root Of -641*x^4+548*x^3-38*x^2+863*x+447 4324160311291819 k002 Champernowne real with 82*n^2-48*n+9 4324160316735113 m001 (GAMMA(3/4)-Conway)/(MertensB3+Weierstrass) 4324160319660796 r002 4th iterates of z^2 + 4324160327371444 m001 Pi/Psi(1,1/3)*Chi(1)-ln(2) 4324160328308006 r002 30th iterates of z^2 + 4324160335344291 a007 Real Root Of -971*x^4-896*x^3-801*x^2+411*x+289 4324160342542605 a007 Real Root Of -440*x^4-659*x^3-79*x^2+442*x+168 4324160346927794 a001 1/39603*18^(57/58) 4324160354437116 m002 4+(Sinh[Pi]*Tanh[Pi])/(Pi^3*Log[Pi]) 4324160366193506 r009 Im(z^3+c),c=-7/110+23/45*I,n=21 4324160401830123 m005 (1/2*2^(1/2)-1/6)/(3/7*5^(1/2)-5/6) 4324160411321825 k002 Champernowne real with 165/2*n^2-99/2*n+10 4324160412730908 m001 3/2*Pi-3/2*sin(Pi/12) 4324160420774972 a001 46368/2207*123^(3/20) 4324160420930746 m001 GAMMA(19/24)^2/ErdosBorwein*exp(cos(Pi/5))^2 4324160432897289 a001 123/34*233^(43/49) 4324160442809299 m008 (4*Pi^6-4/5)/(5/6*Pi^2+2/3) 4324160445421515 r005 Re(z^2+c),c=-31/54+9/59*I,n=10 4324160452386765 m001 arctan(1/3)+ln(2+3^(1/2))+Khinchin 4324160453188445 a007 Real Root Of -452*x^4+830*x^3-735*x^2-350*x+69 4324160453789908 m001 1/ln(cos(Pi/5))/TwinPrimes/sqrt(1+sqrt(3)) 4324160459451171 m001 (OneNinth-PrimesInBinary)/(Gompertz-Mills) 4324160462292153 r009 Re(z^3+c),c=-47/114+29/43*I,n=6 4324160464562222 a007 Real Root Of -868*x^4-880*x^3-426*x^2+782*x+377 4324160465084507 r002 5th iterates of z^2 + 4324160498345142 m001 exp(Salem)*Conway^2/GAMMA(5/6)^2 4324160501461659 a007 Real Root Of -84*x^4-605*x^3-855*x^2+997*x+750 4324160502971664 a007 Real Root Of 674*x^4-965*x^3+568*x^2-603*x+209 4324160511351831 k002 Champernowne real with 83*n^2-51*n+11 4324160513250534 r005 Im(z^2+c),c=4/25+30/59*I,n=23 4324160538672490 r009 Im(z^3+c),c=-5/12+23/56*I,n=57 4324160557508761 m002 3/5+Pi^3+Cosh[Pi]*Coth[Pi] 4324160563264774 r005 Im(z^2+c),c=19/106+15/34*I,n=36 4324160564605272 a001 3010349/144*233^(2/15) 4324160573521207 m001 (5^(1/2)-CareFree)/(-FeigenbaumB+KhinchinLevy) 4324160583431012 m001 (Landau+Magata)/(ln(2)-ErdosBorwein) 4324160585831110 m008 (1/4*Pi^5+2/3)/(5/6*Pi-5/6) 4324160593969367 r002 46th iterates of z^2 + 4324160594598171 a007 Real Root Of 234*x^4+896*x^3-585*x^2-556*x-833 4324160594959923 a007 Real Root Of 186*x^4+740*x^3-344*x^2-61*x+970 4324160611381837 k002 Champernowne real with 167/2*n^2-105/2*n+12 4324160628630799 r005 Re(z^2+c),c=-79/114+11/63*I,n=47 4324160631174050 m001 1/Lehmer^2*Khintchine^2/exp(GAMMA(7/24))^2 4324160646347057 a001 3*(1/2*5^(1/2)+1/2)^30*18^(17/24) 4324160665125007 h001 (-6*exp(5)-8)/(-2*exp(2)-6) 4324160700292971 r009 Im(z^3+c),c=-7/16+13/29*I,n=7 4324160711411843 k002 Champernowne real with 84*n^2-54*n+13 4324160715228763 a007 Real Root Of -276*x^4-601*x^3-954*x^2+369*x+299 4324160730335028 r002 59th iterates of z^2 + 4324160740955143 m005 (1/3*2^(1/2)+1/12)/(5/7*2^(1/2)+3/11) 4324160750160209 p001 sum((-1)^n/(474*n+23)/(8^n),n=0..infinity) 4324160752485333 m005 (2/5*Pi-5)/(4*2^(1/2)+3) 4324160756829635 r005 Re(z^2+c),c=17/82+16/43*I,n=46 4324160758357553 r009 Im(z^3+c),c=-59/122+31/63*I,n=64 4324160772659343 r005 Re(z^2+c),c=-11/18+11/54*I,n=41 4324160782109193 a007 Real Root Of -344*x^4+986*x^3-850*x^2+639*x+527 4324160811441849 k002 Champernowne real with 169/2*n^2-111/2*n+14 4324160817208122 a007 Real Root Of 679*x^4-296*x^3+355*x^2+125*x-60 4324160822653967 r009 Re(z^3+c),c=-25/86+25/27*I,n=2 4324160832490624 r005 Re(z^2+c),c=-13/21+1/49*I,n=45 4324160833786904 r005 Im(z^2+c),c=23/94+20/53*I,n=34 4324160835399221 m001 (gamma(3)-FeigenbaumD)/(Lehmer+Trott2nd) 4324160852835727 r005 Im(z^2+c),c=-29/98+4/7*I,n=20 4324160860507543 m001 GAMMA(5/24)/exp(GAMMA(11/24))^2/Zeta(1/2)^2 4324160870879951 q001 143/3307 4324160879838370 l006 ln(4405/6788) 4324160887671052 a007 Real Root Of -918*x^4-71*x^3+402*x^2+397*x-209 4324160889150403 m006 (5/6/Pi-4/5)/(4*Pi-1/5) 4324160890611283 a007 Real Root Of 269*x^4-122*x^3+835*x^2+290*x-50 4324160891203119 m001 (BesselI(1,2)-LambertW(1))/(Niven+Robbin) 4324160895361233 a001 5/1364*123^(20/39) 4324160903541100 r002 58th iterates of z^2 + 4324160904447038 m001 (2^(1/2)-BesselJ(0,1))/(DuboisRaymond+Mills) 4324160907833278 m001 (2^(1/3)-BesselI(1,1))/(RenyiParking+Thue) 4324160911471855 k002 Champernowne real with 85*n^2-57*n+15 4324160919363026 a003 sin(Pi*24/109)*sin(Pi*23/97) 4324160936184775 m001 (LambertW(1)-Zeta(1/2))/(-Pi^(1/2)+Conway) 4324160941254288 r005 Im(z^2+c),c=-8/25+37/63*I,n=39 4324160944058274 r002 11th iterates of z^2 + 4324160948526098 m001 Shi(1)+BesselK(1,1)-FibonacciFactorial 4324160954043174 p004 log(30593/19853) 4324160960935566 r009 Im(z^3+c),c=-15/31+3/8*I,n=34 4324160964902590 a007 Real Root Of -119*x^4-771*x^3-976*x^2+375*x-862 4324160966354105 a001 196418/3*76^(17/39) 4324160968228827 r005 Im(z^2+c),c=-91/114+4/15*I,n=5 4324160981356102 m001 arctan(1/2)^Catalan*arctan(1/2)^ZetaP(3) 4324161002238672 p001 sum(1/(428*n+247)/(6^n),n=0..infinity) 4324161011501861 k002 Champernowne real with 171/2*n^2-117/2*n+16 4324161044683668 g006 Psi(1,7/10)+Psi(1,8/9)-Psi(1,7/11)-Psi(1,5/11) 4324161061478083 m001 (Mills-RenyiParking)/(sin(1/5*Pi)+CareFree) 4324161063129473 a001 610/3571*322^(23/24) 4324161066678916 r005 Re(z^2+c),c=-13/21+1/26*I,n=59 4324161068103053 r005 Re(z^2+c),c=-73/118+8/57*I,n=36 4324161069675653 m005 (1/2*Pi+1/10)/(4*Catalan+1/5) 4324161072677643 a007 Real Root Of -203*x^4+608*x^3-900*x^2+119*x+276 4324161082453514 r005 Im(z^2+c),c=25/122+27/53*I,n=50 4324161098838501 r005 Re(z^2+c),c=-31/52+9/61*I,n=20 4324161108820049 g002 -ln(2)+1/2*Pi+Psi(3/7)-Psi(2/11) 4324161109047532 h001 (3/10*exp(2)+8/11)/(10/11*exp(2)+1/11) 4324161111531867 k002 Champernowne real with 86*n^2-60*n+17 4324161111751137 k008 concat of cont frac of 4324161114117112 k007 concat of cont frac of 4324161114332834 m001 (-Zeta(1,2)+FeigenbaumB)/(exp(1)+exp(1/Pi)) 4324161115553306 a007 Real Root Of 7*x^4+281*x^3-924*x^2+591*x-558 4324161121077276 m001 (ln(2)-Grothendieck)/(Riemann3rdZero+ZetaP(3)) 4324161123161152 k009 concat of cont frac of 4324161131121118 k006 concat of cont frac of 4324161134217615 k006 concat of cont frac of 4324161136511023 h001 (1/6*exp(1)+1/12)/(2/9*exp(1)+7/11) 4324161138520592 r009 Im(z^3+c),c=-12/29+34/59*I,n=47 4324161145542359 r005 Re(z^2+c),c=7/32+5/13*I,n=41 4324161150042919 r009 Im(z^3+c),c=-12/29+31/63*I,n=12 4324161157166863 m001 (Conway-HeathBrownMoroz)/(Mills+Niven) 4324161167641117 m001 (exp(Pi)+cos(1)*ThueMorse)/cos(1) 4324161169394007 m005 (1/2*Zeta(3)-2/9)/(6/7*Catalan+1/11) 4324161172566764 m001 (Si(Pi)-ErdosBorwein)/LambertW(1) 4324161179359104 a001 121393/5778*123^(3/20) 4324161197993159 r005 Im(z^2+c),c=-5/8+77/173*I,n=15 4324161207807711 m005 (1/2*3^(1/2)+4/7)/(11/12*Pi+4/9) 4324161211561873 k002 Champernowne real with 173/2*n^2-123/2*n+18 4324161212573334 a007 Real Root Of 36*x^4+195*x^3+4*x^2-846*x-553 4324161214202219 m001 (Chi(1)-ln(3))/(arctan(1/2)+2*Pi/GAMMA(5/6)) 4324161216161323 k007 concat of cont frac of 4324161221701112 k006 concat of cont frac of 4324161229269015 m001 Trott^2*ln(Magata)/gamma^2 4324161231823111 k007 concat of cont frac of 4324161241388692 r009 Im(z^3+c),c=-23/78+23/50*I,n=10 4324161245945824 b008 (13*(1/5)!!)/3 4324161263408778 a007 Real Root Of -768*x^4+402*x^3-409*x^2+692*x+3 4324161270626633 m001 cos(1)^2*arctan(1/2)*exp(sqrt(3))^2 4324161275496034 r002 48th iterates of z^2 + 4324161278029391 m005 (1/3*exp(1)-3/5)/(19/3+1/3*5^(1/2)) 4324161281117171 k006 concat of cont frac of 4324161288249942 r002 57th iterates of z^2 + 4324161290035059 a001 317811/15127*123^(3/20) 4324161306182464 a001 832040/39603*123^(3/20) 4324161308538339 a001 46347/2206*123^(3/20) 4324161308882056 a001 5702887/271443*123^(3/20) 4324161308932204 a001 14930352/710647*123^(3/20) 4324161308939520 a001 39088169/1860498*123^(3/20) 4324161308940588 a001 102334155/4870847*123^(3/20) 4324161308940744 a001 267914296/12752043*123^(3/20) 4324161308940766 a001 701408733/33385282*123^(3/20) 4324161308940770 a001 1836311903/87403803*123^(3/20) 4324161308940770 a001 102287808/4868641*123^(3/20) 4324161308940770 a001 12586269025/599074578*123^(3/20) 4324161308940770 a001 32951280099/1568397607*123^(3/20) 4324161308940770 a001 86267571272/4106118243*123^(3/20) 4324161308940770 a001 225851433717/10749957122*123^(3/20) 4324161308940770 a001 591286729879/28143753123*123^(3/20) 4324161308940770 a001 1548008755920/73681302247*123^(3/20) 4324161308940770 a001 4052739537881/192900153618*123^(3/20) 4324161308940770 a001 225749145909/10745088481*123^(3/20) 4324161308940770 a001 6557470319842/312119004989*123^(3/20) 4324161308940770 a001 2504730781961/119218851371*123^(3/20) 4324161308940770 a001 956722026041/45537549124*123^(3/20) 4324161308940770 a001 365435296162/17393796001*123^(3/20) 4324161308940770 a001 139583862445/6643838879*123^(3/20) 4324161308940770 a001 53316291173/2537720636*123^(3/20) 4324161308940770 a001 20365011074/969323029*123^(3/20) 4324161308940770 a001 7778742049/370248451*123^(3/20) 4324161308940770 a001 2971215073/141422324*123^(3/20) 4324161308940772 a001 1134903170/54018521*123^(3/20) 4324161308940780 a001 433494437/20633239*123^(3/20) 4324161308940840 a001 165580141/7881196*123^(3/20) 4324161308941248 a001 63245986/3010349*123^(3/20) 4324161308944042 a001 24157817/1149851*123^(3/20) 4324161308963197 a001 9227465/439204*123^(3/20) 4324161309094485 a001 3524578/167761*123^(3/20) 4324161309994349 a001 1346269/64079*123^(3/20) 4324161311591879 k002 Champernowne real with 87*n^2-63*n+19 4324161316086837 m008 (2/3*Pi^2+3/5)/(3/5*Pi^3-2) 4324161316162109 a001 514229/24476*123^(3/20) 4324161329410725 a001 76/4181*5^(7/13) 4324161329809437 m001 MertensB3*(MasserGramain-arctan(1/3)) 4324161334474454 m001 (5^(1/2)-Rabbit)/(-ReciprocalLucas+Tetranacci) 4324161337449224 r005 Im(z^2+c),c=15/122+16/33*I,n=47 4324161337949723 r005 Im(z^2+c),c=19/90+7/17*I,n=41 4324161353052121 k008 concat of cont frac of 4324161354865222 r009 Im(z^3+c),c=-61/118+13/54*I,n=15 4324161358436564 a001 196418/9349*123^(3/20) 4324161369414096 m001 (-MinimumGamma+Paris)/(5^(1/2)+Catalan) 4324161375791635 r002 17th iterates of z^2 + 4324161377672985 a007 Real Root Of 167*x^4+747*x^3+303*x^2+747*x-425 4324161395283307 m001 1/GAMMA(13/24)^2/exp(Trott)^2/sin(1) 4324161396951688 m001 Ei(1)-cos(1)-KomornikLoreti 4324161411522121 k007 concat of cont frac of 4324161411621885 k002 Champernowne real with 175/2*n^2-129/2*n+20 4324161422711210 k007 concat of cont frac of 4324161445404272 r005 Re(z^2+c),c=-13/21+2/63*I,n=42 4324161451876617 a007 Real Root Of 471*x^4-144*x^3+96*x^2-430*x-232 4324161456500084 m008 (1/4*Pi-5/6)/(1/3*Pi^3+3/4) 4324161467057725 m006 (2/5*Pi^2-3)/(2/5*exp(2*Pi)+5) 4324161469984829 r005 Re(z^2+c),c=-49/78+5/23*I,n=35 4324161480177180 r005 Im(z^2+c),c=17/66+23/52*I,n=34 4324161493808104 m001 Mills+(Pi*csc(1/12*Pi)/GAMMA(11/12))^ZetaP(2) 4324161496719768 m001 (Conway-Landau)/(MertensB2+Sarnak) 4324161497864768 h001 (1/2*exp(1)+8/9)/(2/3*exp(2)+3/11) 4324161502302087 m001 GAMMA(23/24)^RenyiParking/CopelandErdos 4324161510620557 m001 1/BesselJ(1,1)^2/exp(Backhouse)*Ei(1)^2 4324161511651891 k002 Champernowne real with 88*n^2-66*n+21 4324161535134536 m001 (Bloch+ErdosBorwein)/(Totient-Thue) 4324161539132997 r002 57th iterates of z^2 + 4324161539573225 l006 ln(2233/3441) 4324161541691311 m001 Khintchine/ln(CareFree)/BesselK(0,1)^2 4324161547406784 r005 Im(z^2+c),c=5/74+21/40*I,n=57 4324161553381424 m001 (Stephens-ZetaQ(3))/(BesselK(1,1)+Rabbit) 4324161557531214 m005 (1/2*Catalan-1/9)/(1/8*Catalan-11/12) 4324161558905194 m001 (ln(gamma)+ln(5))/(ln(Pi)+Mills) 4324161573047859 r005 Re(z^2+c),c=13/44+1/25*I,n=43 4324161583184904 r002 9th iterates of z^2 + 4324161588893118 m005 (1/2*Catalan-1/8)/(2/11*gamma-7/8) 4324161589444353 a001 1/305*21^(1/11) 4324161596115968 r002 50th iterates of z^2 + 4324161602506767 a001 21/521*199^(13/29) 4324161602814651 r005 Re(z^2+c),c=-37/60+17/64*I,n=42 4324161605978712 r009 Im(z^3+c),c=-27/122+18/37*I,n=21 4324161609855933 r005 Im(z^2+c),c=1/42+51/58*I,n=6 4324161611681897 k002 Champernowne real with 177/2*n^2-135/2*n+22 4324161634848237 a005 (1/cos(25/232*Pi))^892 4324161639088828 r005 Im(z^2+c),c=-7/6+12/199*I,n=11 4324161639095560 m005 (1/4+5/12*5^(1/2))/(4/5*Catalan+2) 4324161640002417 r002 22th iterates of z^2 + 4324161641151492 r002 11th iterates of z^2 + 4324161645883450 m001 (5^(1/2)+GAMMA(3/4))/(Kac+ZetaP(3)) 4324161648190014 a001 75025/3571*123^(3/20) 4324161660476804 r005 Im(z^2+c),c=4/15+20/47*I,n=18 4324161667924421 r002 55th iterates of z^2 + 4324161674271754 r002 20th iterates of z^2 + 4324161676663300 a001 18/1346269*317811^(26/57) 4324161695870908 a007 Real Root Of -369*x^4+447*x^3+618*x^2+796*x-483 4324161701833078 v002 sum(1/(5^n*(2*n^2+57*n-8)),n=1..infinity) 4324161711711903 k002 Champernowne real with 89*n^2-69*n+23 4324161714277624 r005 Re(z^2+c),c=-13/21+3/46*I,n=43 4324161716965553 r005 Im(z^2+c),c=5/78+29/55*I,n=53 4324161723134281 r005 Im(z^2+c),c=17/126+31/64*I,n=30 4324161732920314 r009 Im(z^3+c),c=-55/126+27/43*I,n=8 4324161734276169 m001 (FeigenbaumC+FransenRobinson)/(1-gamma(1)) 4324161743588531 a007 Real Root Of -204*x^4-776*x^3+408*x^2-207*x+57 4324161746930793 m001 ln(log(1+sqrt(2)))/LandauRamanujan^2*sqrt(2)^2 4324161755494114 r005 Re(z^2+c),c=-25/42+8/43*I,n=25 4324161755707865 m001 FellerTornier^Pi/Robbin 4324161761154152 k009 concat of cont frac of 4324161796515570 m001 (arctan(1/2)+GAMMA(13/24))/(PlouffeB+Trott) 4324161806706495 m005 (1/6*Catalan-1/5)/(2/3*2^(1/2)-5/6) 4324161811741909 k002 Champernowne real with 179/2*n^2-141/2*n+24 4324161829519833 b008 19*ArcCosh[59]^2 4324161830531238 m001 1/2*(Zeta(1/2)+Conway)/Pi*2^(1/2)*GAMMA(3/4) 4324161846361590 r005 Re(z^2+c),c=-65/106+5/39*I,n=31 4324161854563851 m005 (1/2*exp(1)-10/11)/(1/16+7/16*5^(1/2)) 4324161855936149 m003 3/8+Sqrt[5]/4-2*Tan[1/2+Sqrt[5]/2] 4324161873610990 r002 48th iterates of z^2 + 4324161876094928 r005 Im(z^2+c),c=-31/114+19/30*I,n=56 4324161882585105 a001 4181/29*47^(53/60) 4324161885073199 r002 7th iterates of z^2 + 4324161890558732 r009 Re(z^3+c),c=-17/32+17/46*I,n=30 4324161902369863 r005 Re(z^2+c),c=-21/34+5/63*I,n=47 4324161905349955 r005 Re(z^2+c),c=-41/31+3/61*I,n=42 4324161908378216 m001 ZetaQ(4)-ReciprocalFibonacci-cos(1/12*Pi) 4324161908861959 r005 Re(z^2+c),c=-5/7+3/115*I,n=28 4324161909335719 a001 24476*102334155^(19/21) 4324161910106196 m001 (ReciprocalFibonacci+Sierpinski)/exp(1/Pi) 4324161911143323 a007 Real Root Of 121*x^4+644*x^3+281*x^2-824*x+948 4324161911668933 r005 Im(z^2+c),c=-41/42+14/41*I,n=3 4324161911771915 k002 Champernowne real with 90*n^2-72*n+25 4324161926645427 r005 Re(z^2+c),c=-53/86+5/48*I,n=61 4324161930543850 m001 (Ei(1)-Artin)/(FeigenbaumB+Khinchin) 4324161952779646 m001 Pi/(Psi(2,1/3)-2^(1/2))/GAMMA(17/24) 4324161961315422 a001 228826127*4181^(19/21) 4324161972908053 r004 Im(z^2+c),c=-13/42+1/16*I,z(0)=-1,n=9 4324161975657858 r002 19i'th iterates of 2*x/(1-x^2) of 4324161985645965 a005 (1/sin(99/211*Pi))^1294 4324161995774701 r005 Im(z^2+c),c=39/118+11/40*I,n=52 4324161998856437 r002 33th iterates of z^2 + 4324161999350458 r002 32th iterates of z^2 + 4324161999595340 r009 Im(z^3+c),c=-19/46+26/63*I,n=54 4324162006925308 r002 63th iterates of z^2 + 4324162007496190 m005 (25/42+1/6*5^(1/2))/(5/6*5^(1/2)+3/8) 4324162011801921 k002 Champernowne real with 181/2*n^2-147/2*n+26 4324162015476338 r002 42th iterates of z^2 + 4324162016631530 a003 sin(Pi*16/99)-sin(Pi*43/116) 4324162025423645 r002 61th iterates of z^2 + 4324162028783385 p001 sum(1/(395*n+234)/(32^n),n=0..infinity) 4324162031355167 r002 18th iterates of z^2 + 4324162033131819 s002 sum(A094735[n]/(pi^n+1),n=1..infinity) 4324162035265837 a007 Real Root Of 392*x^4-987*x^3-39*x^2-753*x+399 4324162040488506 a007 Real Root Of 821*x^4+239*x^3+203*x^2-841*x-411 4324162042725732 s002 sum(A234206[n]/((10^n-1)/n),n=1..infinity) 4324162044260169 r005 Re(z^2+c),c=-19/31+7/48*I,n=54 4324162044926795 a007 Real Root Of 87*x^4+237*x^3-590*x^2+278*x+979 4324162050557349 s002 sum(A094735[n]/(pi^n),n=1..infinity) 4324162053361548 p003 LerchPhi(1/6,4,134/193) 4324162054525269 p004 log(17393/11287) 4324162067912558 r005 Im(z^2+c),c=17/86+11/26*I,n=62 4324162069933422 r005 Im(z^2+c),c=-2/3+1/216*I,n=30 4324162070177102 s002 sum(A094735[n]/(pi^n-1),n=1..infinity) 4324162081317201 a007 Real Root Of -518*x^4+820*x^3-262*x^2+691*x-298 4324162091933923 r005 Im(z^2+c),c=5/36+17/36*I,n=57 4324162091951314 m005 (1/2*gamma+1/3)/(3/10*Zeta(3)-3/8) 4324162094763631 r005 Re(z^2+c),c=-71/126+22/63*I,n=34 4324162101101171 k008 concat of cont frac of 4324162111112116 k008 concat of cont frac of 4324162111831927 k002 Champernowne real with 91*n^2-75*n+27 4324162113821341 k007 concat of cont frac of 4324162114312154 k006 concat of cont frac of 4324162122183256 a007 Real Root Of 196*x^4-764*x^3+670*x^2-805*x-542 4324162129297733 r009 Im(z^3+c),c=-41/102+18/43*I,n=53 4324162152598745 m001 (GAMMA(13/24)+Robbin)/(Psi(2,1/3)+Ei(1)) 4324162161551295 k007 concat of cont frac of 4324162164212131 k008 concat of cont frac of 4324162171112128 k007 concat of cont frac of 4324162181464687 r005 Im(z^2+c),c=6/25+24/59*I,n=18 4324162181528569 l006 ln(4527/6976) 4324162200020722 r005 Im(z^2+c),c=1/12+17/33*I,n=45 4324162211861933 k002 Champernowne real with 183/2*n^2-153/2*n+28 4324162211951687 r005 Im(z^2+c),c=-9/14+52/155*I,n=5 4324162227182017 r009 Re(z^3+c),c=-11/27+5/48*I,n=10 4324162252283770 r005 Re(z^2+c),c=-33/58+5/14*I,n=3 4324162256487068 r005 Re(z^2+c),c=-89/66+12/55*I,n=6 4324162262283876 r005 Re(z^2+c),c=-59/98+3/40*I,n=13 4324162267888710 r002 39th iterates of z^2 + 4324162272594642 a007 Real Root Of -799*x^4-387*x^3+571*x^2+738*x+209 4324162273246855 r005 Im(z^2+c),c=9/62+7/15*I,n=47 4324162283996994 r009 Re(z^3+c),c=-93/110+19/30*I,n=2 4324162293496605 m005 (1/2*Zeta(3)-1/8)/(5/12*Zeta(3)+3/5) 4324162300584935 s002 sum(A101576[n]/((pi^n-1)/n),n=1..infinity) 4324162311891939 k002 Champernowne real with 92*n^2-78*n+29 4324162318560858 m001 (BesselI(1,1)+GAMMA(11/12))/(1-exp(1/Pi)) 4324162319951031 r009 Im(z^3+c),c=-1/74+29/60*I,n=3 4324162329794428 r009 Im(z^3+c),c=-3/14+26/53*I,n=10 4324162339662049 a007 Real Root Of 596*x^4-972*x^3+402*x^2-105*x-220 4324162340317158 a007 Real Root Of -129*x^4-592*x^3-94*x^2+158*x-323 4324162347761882 p003 LerchPhi(1/25,3,53/186) 4324162347973636 m005 (27/44+1/4*5^(1/2))/(4/7*Pi+11/12) 4324162351484046 r005 Im(z^2+c),c=-5/24+23/37*I,n=35 4324162372206628 a007 Real Root Of 227*x^4-968*x^3-747*x^2-481*x+418 4324162390646492 m001 1/BesselK(0,1)^2/ln(Kolakoski)/LambertW(1) 4324162409627871 a007 Real Root Of -663*x^4+629*x^3-641*x^2+176*x+270 4324162411921945 k002 Champernowne real with 185/2*n^2-159/2*n+30 4324162414827506 m001 ln(GAMMA(11/12))*Cahen^2*GAMMA(11/24) 4324162418311211 k006 concat of cont frac of 4324162420083100 r005 Im(z^2+c),c=1/40+35/64*I,n=38 4324162437121949 m001 (Ei(1)+Backhouse)/(RenyiParking+Trott2nd) 4324162439725994 r005 Re(z^2+c),c=-67/122+17/52*I,n=17 4324162456152079 a007 Real Root Of -235*x^4-929*x^3+176*x^2-851*x+78 4324162480706298 a007 Real Root Of -738*x^4+987*x^3-150*x^2+431*x+19 4324162482862503 m001 (OneNinth-TwinPrimes)/(Zeta(1/2)+MertensB3) 4324162486081474 a007 Real Root Of 19*x^4+831*x^3+403*x^2-181*x-598 4324162509778217 a001 29/11*(1/2*5^(1/2)+1/2)^13*11^(11/23) 4324162511951951 k002 Champernowne real with 93*n^2-81*n+31 4324162524384661 r002 5th iterates of z^2 + 4324162532849818 r005 Re(z^2+c),c=-29/46+7/25*I,n=47 4324162539118262 m001 1/Sierpinski*exp(CareFree)^2*sqrt(1+sqrt(3))^2 4324162558000684 r002 44th iterates of z^2 + 4324162564081715 m001 Porter*Khintchine^2/ln(GAMMA(13/24))^2 4324162565248797 r005 Im(z^2+c),c=7/38+10/23*I,n=57 4324162581703358 m001 1/ln(LambertW(1))^2/Paris^2/exp(1)^2 4324162584523199 r005 Im(z^2+c),c=19/62+5/16*I,n=59 4324162598577939 m001 (-Kolakoski+TwinPrimes)/(3^(1/2)+exp(1/Pi)) 4324162604467377 r002 13th iterates of z^2 + 4324162607697669 a007 Real Root Of 716*x^4-191*x^3+430*x^2-923*x-520 4324162609476156 r005 Re(z^2+c),c=-47/78+10/49*I,n=18 4324162611981957 k002 Champernowne real with 187/2*n^2-165/2*n+32 4324162618624259 r002 22th iterates of z^2 + 4324162622151943 r005 Im(z^2+c),c=5/18+15/34*I,n=64 4324162632354421 r005 Re(z^2+c),c=11/26+12/43*I,n=3 4324162632694592 a007 Real Root Of 676*x^4+305*x^3-806*x^2-487*x+313 4324162665200922 m001 (-ln(gamma)+PlouffeB)/(exp(Pi)+LambertW(1)) 4324162679425837 q001 723/1672 4324162685403641 m001 1/Zeta(5)*Riemann1stZero*exp(gamma)^2 4324162689613717 a007 Real Root Of 587*x^4+540*x^3-782*x^2-585*x+335 4324162697597213 r005 Im(z^2+c),c=39/106+7/27*I,n=13 4324162712011963 k002 Champernowne real with 94*n^2-84*n+33 4324162715571750 a001 4/51841*7^(31/35) 4324162722827845 a007 Real Root Of -245*x^4+455*x^3-14*x^2+660*x-311 4324162727882751 r002 13th iterates of z^2 + 4324162745419743 r005 Re(z^2+c),c=-7/12+3/62*I,n=11 4324162752404887 a001 610/521*322^(5/8) 4324162756029212 r002 60th iterates of z^2 + 4324162784901196 m001 (BesselI(0,1)-sin(1))/(arctan(1/3)+TwinPrimes) 4324162785087505 r005 Re(z^2+c),c=-5/7+11/114*I,n=23 4324162791157250 m001 exp(-1/2*Pi)/ln(2+3^(1/2))*Trott2nd 4324162791747432 r005 Im(z^2+c),c=23/110+22/45*I,n=31 4324162799793723 r009 Re(z^3+c),c=-53/126+11/16*I,n=4 4324162805849039 a003 sin(Pi*37/112)/cos(Pi*41/94) 4324162806413571 l006 ln(2294/3535) 4324162812041969 k002 Champernowne real with 189/2*n^2-171/2*n+34 4324162826018578 a007 Real Root Of -20*x^4-857*x^3+357*x^2+792*x+16 4324162850981878 a007 Real Root Of 739*x^4+943*x^3-471*x^2-784*x+325 4324162889925681 m001 1/PrimesInBinary^2/DuboisRaymond/ln(Zeta(7))^2 4324162893019221 m001 cos(1/5*Pi)*cos(1/5*Pi)^Otter 4324162906568833 a007 Real Root Of 836*x^4-823*x^3+319*x^2-931*x-558 4324162912071975 k002 Champernowne real with 95*n^2-87*n+35 4324162925268349 r005 Im(z^2+c),c=-1/82+15/23*I,n=45 4324162931010944 r005 Re(z^2+c),c=-73/118+9/64*I,n=36 4324162945965401 r002 23th iterates of z^2 + 4324162951389338 r009 Re(z^3+c),c=-23/62+1/18*I,n=17 4324162952850407 r009 Im(z^3+c),c=-11/34+27/47*I,n=8 4324162962093815 a001 377/9349*29^(31/44) 4324162969801105 r005 Im(z^2+c),c=-71/114+4/49*I,n=47 4324162977067790 r005 Re(z^2+c),c=-31/23+1/21*I,n=22 4324162977355579 r002 57th iterates of z^2 + 4324162990055713 r009 Im(z^3+c),c=-43/106+5/12*I,n=44 4324162999992988 m005 (1/2*Pi+1/12)/(5/8*3^(1/2)-7/10) 4324163005041421 r005 Im(z^2+c),c=7/32+19/47*I,n=51 4324163012101981 k002 Champernowne real with 191/2*n^2-177/2*n+36 4324163064828399 a007 Real Root Of -675*x^4-82*x^3+290*x^2+921*x+361 4324163103537451 a007 Real Root Of -983*x^4+223*x^3+416*x^2+924*x-461 4324163107196132 m001 BesselI(0,2)-Zeta(5)+GAMMA(7/24) 4324163112131987 k002 Champernowne real with 96*n^2-90*n+37 4324163118348448 r009 Im(z^3+c),c=-43/90+29/61*I,n=16 4324163138551219 r005 Re(z^2+c),c=13/90+17/57*I,n=10 4324163145671787 a001 76/377*233^(7/50) 4324163152564638 a001 2207/13*2178309^(29/34) 4324163161038460 r005 Re(z^2+c),c=-37/94+29/53*I,n=33 4324163168232762 m001 (ln(gamma)+ln(2^(1/2)+1))/(Lehmer+ZetaP(3)) 4324163175016858 r002 52th iterates of z^2 + 4324163183581907 r005 Re(z^2+c),c=-25/74+35/61*I,n=26 4324163192691865 r009 Im(z^3+c),c=-15/46+5/11*I,n=14 4324163212161993 k002 Champernowne real with 193/2*n^2-183/2*n+38 4324163212212217 k008 concat of cont frac of 4324163219686748 r005 Re(z^2+c),c=-11/18+21/121*I,n=58 4324163222900390 r005 Re(z^2+c),c=-9/25+21/32*I,n=3 4324163228801547 r005 Im(z^2+c),c=25/106+19/49*I,n=55 4324163230648199 r002 55th iterates of z^2 + 4324163236623933 r005 Re(z^2+c),c=-37/58+7/53*I,n=25 4324163240786572 m001 (sin(1/5*Pi)-BesselI(0,2))/(Cahen-MertensB2) 4324163241716211 k007 concat of cont frac of 4324163249824685 m001 1/exp(exp(1))^3*FibonacciFactorial^2 4324163264270106 a007 Real Root Of 42*x^4-41*x^3-952*x^2-69*x-497 4324163268134440 r005 Im(z^2+c),c=-53/110+2/27*I,n=34 4324163278398217 a001 8/3*3^(11/25) 4324163288815869 r009 Re(z^3+c),c=-3/86+47/53*I,n=21 4324163302507667 r002 23th iterates of z^2 + 4324163306043545 r005 Im(z^2+c),c=5/66+13/24*I,n=20 4324163312191999 k002 Champernowne real with 97*n^2-93*n+39 4324163328485338 a007 Real Root Of 332*x^4-319*x^3+354*x^2+117*x-53 4324163328857992 r005 Im(z^2+c),c=1/11+30/59*I,n=52 4324163333194784 r005 Re(z^2+c),c=43/122+25/47*I,n=3 4324163338563819 l006 ln(5069/5293) 4324163351151379 a007 Real Root Of 617*x^4-694*x^3+813*x^2-40*x-247 4324163351284181 l005 ln(tanh(191/92*Pi)) 4324163352236422 b008 -5+Gudermannian[1]^E 4324163353175736 a007 Real Root Of 838*x^4+78*x^3-566*x^2-684*x+366 4324163358221030 r005 Im(z^2+c),c=-3/118+28/47*I,n=31 4324163361753710 m005 (1/2*Catalan-1)/(25/36+1/4*5^(1/2)) 4324163364227139 r009 Im(z^3+c),c=-5/12+23/56*I,n=60 4324163366009622 r009 Im(z^3+c),c=-13/36+7/16*I,n=16 4324163367148979 m005 (1/3*Catalan+3/7)/(5/7*5^(1/2)+1/10) 4324163367381970 r005 Re(z^2+c),c=-73/54+3/59*I,n=28 4324163368526193 m002 -4-5*Csch[Pi]+ProductLog[Pi]/Pi^2 4324163411307857 a007 Real Root Of -147*x^4-398*x^3+886*x^2-412*x+867 4324163412222005 k002 Champernowne real with 195/2*n^2-189/2*n+40 4324163413212121 k007 concat of cont frac of 4324163414900176 l006 ln(4649/7164) 4324163438139831 r005 Im(z^2+c),c=27/110+11/23*I,n=25 4324163456782428 m001 FeigenbaumDelta*HeathBrownMoroz^MadelungNaCl 4324163459555075 r005 Re(z^2+c),c=-73/118+7/50*I,n=36 4324163465868939 r005 Re(z^2+c),c=23/74+3/44*I,n=16 4324163475148769 r009 Re(z^3+c),c=-19/122+41/56*I,n=63 4324163495986911 r005 Im(z^2+c),c=1/21+7/13*I,n=56 4324163502199179 r005 Re(z^2+c),c=-13/21+1/27*I,n=63 4324163505736506 h001 (7/10*exp(1)+9/11)/(7/9*exp(2)+6/11) 4324163512252011 k002 Champernowne real with 98*n^2-96*n+41 4324163519294766 r009 Im(z^3+c),c=-29/86+13/29*I,n=11 4324163543667898 r005 Re(z^2+c),c=-67/110+5/27*I,n=57 4324163568874437 a007 Real Root Of -322*x^4+984*x^3-237*x^2+932*x-427 4324163569329151 r005 Im(z^2+c),c=23/110+12/29*I,n=41 4324163594476124 a005 (1/sin(82/199*Pi))^1110 4324163594699867 r005 Re(z^2+c),c=-11/18+33/76*I,n=9 4324163596600368 r009 Im(z^3+c),c=-21/46+12/31*I,n=60 4324163598360976 r005 Re(z^2+c),c=-69/118+20/63*I,n=56 4324163600005925 r005 Im(z^2+c),c=23/64+11/42*I,n=46 4324163600013488 r005 Re(z^2+c),c=-7/12+9/98*I,n=9 4324163601174340 r002 32th iterates of z^2 + 4324163607785833 a007 Real Root Of 812*x^4-724*x^3+39*x^2-314*x-230 4324163607887803 r005 Im(z^2+c),c=-31/54*I,n=48 4324163609877176 m002 20+E^Pi+Tanh[Pi]/Pi^2 4324163612282017 k002 Champernowne real with 197/2*n^2-195/2*n+42 4324163633453948 a007 Real Root Of 120*x^4+249*x^3-986*x^2+753*x-130 4324163634190745 a001 28657/1364*123^(3/20) 4324163634898146 r002 32th iterates of z^2 + 4324163647800539 m006 (2*exp(Pi)+5/6)/(4/5*Pi^2+3) 4324163656162594 m001 1/Trott*FeigenbaumD/ln(sqrt(Pi)) 4324163668387014 a001 1/8*89^(15/19) 4324163691831159 h001 (-exp(2)-9)/(-11*exp(1)-8) 4324163712312023 k002 Champernowne real with 99*n^2-99*n+43 4324163714007413 r005 Re(z^2+c),c=-9/14+11/117*I,n=25 4324163729540593 a003 cos(Pi*32/101)-sin(Pi*25/58) 4324163741978677 m001 Pi-(ln(2)/ln(10)-BesselI(0,1))*GAMMA(3/4) 4324163769161766 a007 Real Root Of -715*x^4+374*x^3-282*x^2-326*x-33 4324163772209393 r005 Re(z^2+c),c=-8/13+8/57*I,n=28 4324163773512401 r005 Re(z^2+c),c=37/122+1/30*I,n=15 4324163773749143 m001 2^(1/3)-LandauRamanujan*Niven 4324163791654655 m001 (exp(Pi)+Zeta(1/2))/(ErdosBorwein+Magata) 4324163809470198 a001 2584/843*18^(5/42) 4324163812235522 k008 concat of cont frac of 4324163812342029 k002 Champernowne real with 199/2*n^2-201/2*n+44 4324163823614344 r002 28th iterates of z^2 + 4324163826284083 m001 GAMMA(1/12)/(Ei(1)+LandauRamanujan) 4324163831456883 a007 Real Root Of -146*x^4-699*x^3-228*x^2+285*x+24 4324163840840989 m001 KhinchinHarmonic*Riemann3rdZero-ThueMorse 4324163847733258 r009 Re(z^3+c),c=-13/25+7/20*I,n=26 4324163851970971 m001 1/BesselJ(0,1)/Robbin^2/exp(cos(Pi/12))^2 4324163863852393 a007 Real Root Of 110*x^4+389*x^3-248*x^2+597*x+212 4324163878023839 a003 sin(Pi*17/87)*sin(Pi*10/37) 4324163884976658 r005 Re(z^2+c),c=-5/8+29/132*I,n=17 4324163898507098 a007 Real Root Of -362*x^4-362*x^3-183*x^2+660*x+303 4324163899377832 a007 Real Root Of 180*x^4+991*x^3+718*x^2-757*x+495 4324163900193088 m004 5/6-Cos[Sqrt[5]*Pi]^3 4324163912372035 k002 Champernowne real with 100*n^2-102*n+45 4324163917230381 m001 (sin(1/5*Pi)-ln(2))/(GAMMA(7/12)-GAMMA(17/24)) 4324163918759480 m001 exp(Zeta(9))*LandauRamanujan^2*exp(1) 4324163932733649 a007 Real Root Of 31*x^4-127*x^3-965*x^2+565*x-620 4324163953199531 m005 (1/2*3^(1/2)-10/11)/(74/99+1/9*5^(1/2)) 4324163958331309 r002 40th iterates of z^2 + 4324163964363382 m001 (Zeta(3)-(3^(1/3)))^sin(Pi/5) 4324163964363382 m001 (Zeta(3)-3^(1/3))^sin(1/5*Pi) 4324163974093595 r002 42th iterates of z^2 + 4324163984922906 r002 63th iterates of z^2 + 4324163992553275 a007 Real Root Of -915*x^4+389*x^3+981*x^2+777*x+216 4324163996808678 r005 Re(z^2+c),c=-9/14+17/179*I,n=19 4324164007625522 l006 ln(2355/3629) 4324164009490619 b008 19*E^(1/4)*Sqrt[Pi] 4324164012402041 k002 Champernowne real with 201/2*n^2-207/2*n+46 4324164015618811 r005 Im(z^2+c),c=17/64+17/41*I,n=30 4324164029938471 r005 Im(z^2+c),c=11/38+5/14*I,n=33 4324164030303208 b008 EllipticPi[3,Pi/4,-28] 4324164036270342 r005 Re(z^2+c),c=-47/82+4/15*I,n=4 4324164039866979 r002 63th iterates of z^2 + 4324164060520828 r005 Im(z^2+c),c=19/56+8/23*I,n=43 4324164066868444 r009 Im(z^3+c),c=-41/110+36/53*I,n=33 4324164071562665 r005 Re(z^2+c),c=-71/114+5/32*I,n=23 4324164104993287 r009 Im(z^3+c),c=-25/64+17/40*I,n=18 4324164112432047 k002 Champernowne real with 101*n^2-105*n+47 4324164127183164 r005 Im(z^2+c),c=1/20+26/47*I,n=31 4324164127562629 r002 64th iterates of z^2 + 4324164128934653 m001 Zeta(9)*GAMMA(1/6)^2*exp(log(2+sqrt(3)))^2 4324164137403060 r005 Im(z^2+c),c=-19/30+10/87*I,n=18 4324164139713096 h001 (7/12*exp(1)+5/11)/(5/8*exp(2)+1/10) 4324164144187417 a007 Real Root Of 128*x^4+719*x^3+645*x^2-190*x+500 4324164147076081 h001 (1/5*exp(1)+3/8)/(5/11*exp(1)+8/9) 4324164149687935 m001 (arctan(1/2)-cos(1))/(Champernowne+ZetaQ(2)) 4324164155700783 r009 Re(z^3+c),c=-49/114+35/57*I,n=43 4324164167956489 r009 Im(z^3+c),c=-41/102+18/43*I,n=56 4324164170633300 m001 Tribonacci^2*exp(Riemann1stZero)/OneNinth 4324164172107282 r005 Im(z^2+c),c=-57/86+3/32*I,n=35 4324164177648392 r005 Im(z^2+c),c=1/70+29/52*I,n=48 4324164185202010 a001 89/76*4^(49/52) 4324164200465806 m001 (Catalan*Ei(1)-Totient)/Catalan 4324164201862704 m001 1/ln(Si(Pi))/DuboisRaymond^2*Zeta(7) 4324164202240298 r005 Im(z^2+c),c=1/56+5/11*I,n=5 4324164202603940 m001 GAMMA(7/12)-Shi(1)*Zeta(5) 4324164212462053 k002 Champernowne real with 203/2*n^2-213/2*n+48 4324164217400865 r002 51th iterates of z^2 + 4324164218192900 m001 (Porter+PrimesInBinary)/(5^(1/2)-BesselI(0,2)) 4324164221026699 a007 Real Root Of 343*x^4+818*x^3+613*x^2-917*x-457 4324164221332850 m001 (Grothendieck-gamma)/(Tetranacci+Thue) 4324164234032586 r005 Im(z^2+c),c=7/90+29/56*I,n=50 4324164253935177 a007 Real Root Of -169*x^4-839*x^3-523*x^2-97*x+610 4324164263906364 r002 52th iterates of z^2 + 4324164301575643 r005 Im(z^2+c),c=21/110+3/7*I,n=46 4324164312492059 k002 Champernowne real with 102*n^2-108*n+49 4324164318171328 r009 Im(z^3+c),c=-19/46+26/63*I,n=50 4324164334727247 m005 (1/3*Catalan+1/11)/(4/5*gamma+5/11) 4324164350761678 r005 Re(z^2+c),c=-3/28+35/43*I,n=27 4324164364322551 m006 (exp(2*Pi)+4/5)/(3/4*Pi^2+5) 4324164368365650 a007 Real Root Of 128*x^4+444*x^3-253*x^2+797*x-676 4324164387791120 r005 Re(z^2+c),c=-7/54+36/55*I,n=56 4324164389722063 r005 Im(z^2+c),c=13/46+31/53*I,n=32 4324164396236029 m001 (-LaplaceLimit+Niven)/(BesselI(0,1)+ln(Pi)) 4324164412522065 k002 Champernowne real with 205/2*n^2-219/2*n+50 4324164424196173 m001 (Artin+Kolakoski)/(2^(1/3)+3^(1/3)) 4324164434749828 r002 54th iterates of z^2 + 4324164435516488 a001 11/46368*121393^(2/39) 4324164444602396 r002 23th iterates of z^2 + 4324164448388050 q001 1462/3381 4324164454982334 m001 (Kac+MertensB2)/(ln(Pi)-GAMMA(7/12)) 4324164468599717 r005 Im(z^2+c),c=-17/56+17/27*I,n=39 4324164481033187 m001 Zeta(1,2)/(LandauRamanujan+OrthogonalArrays) 4324164481562640 r009 Im(z^3+c),c=-11/30+17/39*I,n=36 4324164483740430 a007 Real Root Of -110*x^4-250*x^3+875*x^2-239*x+851 4324164496164418 r002 50th iterates of z^2 + 4324164501669354 m001 ln(RenyiParking)^2/MinimumGamma^2/Catalan 4324164503803087 r009 Re(z^3+c),c=-27/70+4/55*I,n=9 4324164507753594 r005 Re(z^2+c),c=9/110+12/31*I,n=31 4324164512552071 k002 Champernowne real with 103*n^2-111*n+51 4324164513649225 r005 Re(z^2+c),c=-19/34+13/75*I,n=10 4324164536362435 m001 (Artin+Bloch)/(GAMMA(2/3)+BesselK(1,1)) 4324164537146514 a001 3/832040*317811^(12/13) 4324164537153168 a001 3/86267571272*86267571272^(12/13) 4324164537153168 a001 3/267914296*165580141^(12/13) 4324164540578872 r005 Re(z^2+c),c=-17/58+28/59*I,n=2 4324164546509545 a007 Real Root Of 200*x^4-974*x^3+617*x^2-790*x+298 4324164547220524 r002 56th iterates of z^2 + 4324164547947380 m001 Sierpinski^2/exp(MertensB1)^2/Catalan 4324164565449451 r005 Re(z^2+c),c=-37/66+25/62*I,n=63 4324164574757831 m002 Sinh[Pi]/4+(4*Sinh[Pi])/Log[Pi] 4324164585152545 b008 Sqrt[6]+8*Sqrt[26] 4324164585194159 l006 ln(4771/7352) 4324164587559783 r009 Re(z^3+c),c=-53/102+23/62*I,n=11 4324164593738717 g005 GAMMA(1/9)^2/GAMMA(8/9)/GAMMA(4/7) 4324164608738731 a007 Real Root Of -841*x^4-355*x^3+410*x^2+970*x-438 4324164608920104 r002 24th iterates of z^2 + 4324164610426343 h001 (-2*exp(1)+2)/(-7*exp(-2)-7) 4324164612582077 k002 Champernowne real with 207/2*n^2-225/2*n+52 4324164635444267 r009 Im(z^3+c),c=-16/31+9/29*I,n=40 4324164640134136 m006 (3/4*exp(2*Pi)+4/5)/(4*exp(Pi)+1/2) 4324164659214540 b008 (21*Sqrt[106])/5 4324164674377028 r009 Im(z^3+c),c=-5/12+23/56*I,n=63 4324164676922241 r009 Im(z^3+c),c=-5/12+23/56*I,n=61 4324164700995765 r009 Im(z^3+c),c=-5/12+23/56*I,n=64 4324164705190156 a003 cos(Pi*39/115)-sin(Pi*31/84) 4324164709093866 m001 Magata-Landau-Zeta(1/2) 4324164712612083 k002 Champernowne real with 104*n^2-114*n+53 4324164714208358 a001 13201/7*13^(11/34) 4324164715796880 r009 Im(z^3+c),c=-47/70+17/33*I,n=11 4324164728642783 r009 Re(z^3+c),c=-55/118+10/61*I,n=18 4324164746362079 a007 Real Root Of -555*x^4+725*x^3-890*x^2+480*x+452 4324164758938748 m006 (4*Pi^2-3/4)/(4*exp(Pi)-3) 4324164759221199 a007 Real Root Of 19*x^4+844*x^3+981*x^2+504*x-665 4324164769782766 a001 233/843*322^(7/8) 4324164773710768 r009 Im(z^3+c),c=-55/114+19/59*I,n=13 4324164778993361 m001 1/Riemann1stZero^2/exp(Paris)^2*GAMMA(23/24)^2 4324164797111379 r009 Im(z^3+c),c=-41/102+18/43*I,n=43 4324164811291034 m001 (Pi*ln(2)/ln(10)-cos(1))/Zeta(1,2) 4324164812642089 k002 Champernowne real with 209/2*n^2-231/2*n+54 4324164838722599 m001 (exp(Pi)+2^(1/3))/(-Psi(2,1/3)+Mills) 4324164874405203 r002 15th iterates of z^2 + 4324164887399757 m005 (1/2*Catalan+10/11)/(3/8*5^(1/2)-4) 4324164897751153 r005 Im(z^2+c),c=1/62+31/55*I,n=50 4324164898332490 m001 1/exp(Zeta(9))/Zeta(1,2)^2/cos(Pi/12) 4324164903205058 m001 (ErdosBorwein-Stephens)/(ln(3)+GAMMA(17/24)) 4324164906423497 r005 Re(z^2+c),c=-19/31+5/33*I,n=57 4324164912672095 k002 Champernowne real with 105*n^2-117*n+55 4324164914810334 r002 32th iterates of z^2 + 4324164915530040 r005 Im(z^2+c),c=11/50+21/52*I,n=18 4324164917926828 a007 Real Root Of 426*x^4+447*x^3-798*x^2-920*x+496 4324164934274270 m001 ln(GAMMA(5/12))/Champernowne/sqrt(2) 4324164937504709 r002 52th iterates of z^2 + 4324164941112943 m001 FransenRobinson/(Trott-TwinPrimes) 4324164964775522 a007 Real Root Of -219*x^4-754*x^3+771*x^2-83*x+829 4324164966158849 r002 44th iterates of z^2 + 4324164977253311 r002 6th iterates of z^2 + 4324164990807479 r005 Re(z^2+c),c=19/106+30/61*I,n=29 4324165012702101 k002 Champernowne real with 211/2*n^2-237/2*n+56 4324165021543582 r002 42th iterates of z^2 + 4324165024303992 p004 log(33413/21683) 4324165028769664 a003 sin(Pi*12/73)*sin(Pi*18/53) 4324165041844389 r009 Re(z^3+c),c=-25/102+34/45*I,n=9 4324165045247033 r005 Re(z^2+c),c=39/94+23/64*I,n=7 4324165047835965 r005 Re(z^2+c),c=-9/14+6/155*I,n=20 4324165048849724 r002 32th iterates of z^2 + 4324165059286379 a001 1/89*13^(31/59) 4324165062791931 m001 (-StronglyCareFree+Totient)/(2^(1/2)-exp(1)) 4324165097222461 a007 Real Root Of -689*x^4+783*x^3-648*x^2-184*x+129 4324165103480664 r002 24th iterates of z^2 + 4324165112732107 k002 Champernowne real with 106*n^2-120*n+57 4324165117205637 a007 Real Root Of -929*x^4+356*x^3-434*x^2+672*x+433 4324165120372115 r009 Im(z^3+c),c=-41/102+18/43*I,n=59 4324165123118313 k007 concat of cont frac of 4324165132875335 r004 Re(z^2+c),c=-3/5+5/22*I,z(0)=-1,n=35 4324165148180113 l006 ln(2416/3723) 4324165181656203 r002 37th iterates of z^2 + 4324165182674736 p003 LerchPhi(1/5,3,402/137) 4324165205956551 r009 Im(z^3+c),c=-41/114+18/41*I,n=28 4324165208456390 s002 sum(A095369[n]/((2^n-1)/n),n=1..infinity) 4324165209156887 a003 sin(Pi*12/85)/sin(Pi*41/89) 4324165212472841 m001 ln(GAMMA(11/24))*Trott/GAMMA(17/24)^2 4324165212762113 k002 Champernowne real with 213/2*n^2-243/2*n+58 4324165222995403 r009 Im(z^3+c),c=-5/13+3/7*I,n=18 4324165226706696 r009 Im(z^3+c),c=-23/110+43/48*I,n=10 4324165242606234 r009 Im(z^3+c),c=-19/46+26/63*I,n=57 4324165244205370 r005 Re(z^2+c),c=-65/126+41/61*I,n=21 4324165287964081 r005 Im(z^2+c),c=1/66+27/46*I,n=42 4324165312792119 k002 Champernowne real with 107*n^2-123*n+59 4324165317818890 m001 ln(cosh(1))^2/Paris^2*sqrt(5) 4324165321651590 l006 ln(9527/9948) 4324165331470295 a007 Real Root Of 344*x^4-182*x^3+49*x^2-792*x+336 4324165341309625 r009 Im(z^3+c),c=-5/12+23/56*I,n=58 4324165346374117 r005 Re(z^2+c),c=-5/8+5/222*I,n=28 4324165355099517 a007 Real Root Of -120*x^4-513*x^3+195*x^2+710*x-99 4324165371211389 m005 (1/2*Pi-1/11)/(4/5*Pi+10/11) 4324165381882289 r005 Im(z^2+c),c=35/102+9/44*I,n=28 4324165386843590 m001 (Otter+QuadraticClass)/(ThueMorse+Weierstrass) 4324165391241602 r005 Re(z^2+c),c=-53/86+24/53*I,n=3 4324165397143949 a007 Real Root Of 827*x^4-951*x^3-297*x^2-189*x-132 4324165406714237 a008 Real Root of (-4+4*x-2*x^2+5*x^3-3*x^4-x^5) 4324165412822125 k002 Champernowne real with 215/2*n^2-249/2*n+60 4324165421936271 g002 Psi(2/7)-Psi(5/12)-Psi(2/9)-Psi(7/8) 4324165424381279 r009 Im(z^3+c),c=-7/62+23/45*I,n=7 4324165429049910 m005 (1/3*3^(1/2)+1/7)/(2/7*exp(1)+8/9) 4324165442477202 a007 Real Root Of -653*x^4+614*x^3+4*x^2-115*x+22 4324165452734594 m001 ThueMorse*Si(Pi)^ZetaP(4) 4324165461762636 r005 Im(z^2+c),c=-89/98+15/59*I,n=26 4324165461953837 m001 (Backhouse-Riemann1stZero)/(Zeta(5)+Ei(1)) 4324165465700032 m008 (Pi^4+1/3)/(3/5*Pi^3+4) 4324165468165791 a007 Real Root Of -190*x^4-955*x^3-658*x^2-567*x-935 4324165484247807 r005 Im(z^2+c),c=-3/19+23/38*I,n=34 4324165506285835 m005 (5/6*Pi+4/5)/(5*2^(1/2)+5/6) 4324165512852131 k002 Champernowne real with 108*n^2-126*n+61 4324165538388692 m001 (Zeta(3)+OrthogonalArrays)^GAMMA(7/12) 4324165545592364 r009 Im(z^3+c),c=-41/102+18/43*I,n=62 4324165548333401 r009 Im(z^3+c),c=-1/16+23/45*I,n=14 4324165550519122 r005 Re(z^2+c),c=-69/118+12/55*I,n=23 4324165552807945 m001 (Bloch-cos(1))/(Sarnak+Thue) 4324165554158220 r002 21th iterates of z^2 + 4324165560902890 h001 (5/12*exp(1)+7/12)/(1/10*exp(1)+1/8) 4324165562841148 r005 Re(z^2+c),c=-11/18+3/77*I,n=21 4324165570503283 r005 Re(z^2+c),c=-59/98+14/45*I,n=59 4324165582458814 r005 Re(z^2+c),c=33/122+23/54*I,n=41 4324165612882137 k002 Champernowne real with 217/2*n^2-255/2*n+62 4324165616930790 r002 17th iterates of z^2 + 4324165623826930 r009 Im(z^3+c),c=-35/106+24/53*I,n=11 4324165626147705 a005 (1/cos(12/121*Pi))^543 4324165632785920 m001 1/GAMMA(5/6)^2*exp(FeigenbaumC)^2*sqrt(2) 4324165633025443 r009 Im(z^3+c),c=-23/110+18/37*I,n=9 4324165634026770 m001 (-FeigenbaumC+Khinchin)/(Si(Pi)+Champernowne) 4324165646705563 a007 Real Root Of -901*x^4+383*x^3-157*x^2+937*x+497 4324165671043079 a007 Real Root Of -10*x^4-449*x^3-731*x^2-608*x-291 4324165674573743 m005 (1/2*Pi+3/7)/(5/11*gamma+1/5) 4324165677752559 r005 Re(z^2+c),c=-21/34+7/103*I,n=46 4324165685194899 m009 (6*Psi(1,1/3)+1/5)/(3/2*Pi^2-3/4) 4324165697128781 l006 ln(4893/7540) 4324165710265270 a007 Real Root Of 187*x^4-275*x^3+629*x^2-494*x-360 4324165712912143 k002 Champernowne real with 109*n^2-129*n+63 4324165714303295 m001 PisotVijayaraghavan^Gompertz+Pi 4324165714858645 m008 (3/4*Pi^6-1/6)/(2/3*Pi^3-4) 4324165732241731 r009 Im(z^3+c),c=-41/102+18/43*I,n=63 4324165734265901 a007 Real Root Of 878*x^4+232*x^3-855*x^2-635*x+385 4324165738677394 b008 79/2+Sqrt[14] 4324165745162185 r002 63th iterates of z^2 + 4324165751875625 m001 (MadelungNaCl+Totient)/(TwinPrimes+ZetaQ(2)) 4324165756719472 r009 Im(z^3+c),c=-41/102+18/43*I,n=60 4324165764145054 m001 (ArtinRank2-Kolakoski)/(ln(3)+ln(Pi)) 4324165766899580 m005 (1/10+1/2*5^(1/2))/(1/5*Catalan-3) 4324165784830015 r009 Im(z^3+c),c=-7/110+23/45*I,n=23 4324165788786124 r005 Im(z^2+c),c=1/19+33/59*I,n=4 4324165791957781 m001 Riemann2ndZero^2/Lehmer/ln(TwinPrimes)^2 4324165807091056 a005 (1/cos(21/146*Pi))^188 4324165808222739 a007 Real Root Of 194*x^4+911*x^3+460*x^2+582*x-254 4324165812942149 k002 Champernowne real with 219/2*n^2-261/2*n+64 4324165827067095 m008 (5/6*Pi^3+4/5)/(1/5*Pi^5+2/5) 4324165827289103 r005 Im(z^2+c),c=-19/40+35/62*I,n=19 4324165833231246 r002 13th iterates of z^2 + 4324165835416066 m001 (Cahen+DuboisRaymond)/(cos(1/5*Pi)+GAMMA(5/6)) 4324165838348948 m005 (1/2*Zeta(3)+9/11)/(-37/99+2/11*5^(1/2)) 4324165846103423 r009 Re(z^3+c),c=-15/32+7/44*I,n=51 4324165847096514 r009 Im(z^3+c),c=-11/24+22/57*I,n=57 4324165851495831 m001 Backhouse+GAMMA(5/24)-GAMMA(7/12) 4324165855374828 a007 Real Root Of -691*x^4+36*x^3+36*x^2+915*x+416 4324165872905969 m001 (-BesselI(1,2)+Backhouse)/(2^(1/3)+Si(Pi)) 4324165877844050 m001 Porter^2/exp(LaplaceLimit)^2/GAMMA(1/12)^2 4324165883661568 a007 Real Root Of 582*x^4-659*x^3-200*x^2-471*x+274 4324165889510411 r005 Im(z^2+c),c=35/122+25/64*I,n=32 4324165898804061 a007 Real Root Of 432*x^4-987*x^3-975*x^2-592*x+503 4324165902706427 r005 Im(z^2+c),c=-3/28+36/61*I,n=22 4324165908757812 r005 Re(z^2+c),c=-57/94+13/60*I,n=55 4324165908921697 a007 Real Root Of 401*x^4-184*x^3+173*x^2-159*x-130 4324165912972155 k002 Champernowne real with 110*n^2-132*n+65 4324165914953368 r002 26th iterates of z^2 + 4324165933954210 a007 Real Root Of 232*x^4+823*x^3-705*x^2+303*x-78 4324165944469795 m001 Pi*(1+Ei(1,1))*GAMMA(5/6) 4324165953202370 m001 (1+Grothendieck)/Cahen 4324165956226941 r005 Im(z^2+c),c=-23/94+22/37*I,n=32 4324165963234617 r009 Im(z^3+c),c=-41/102+18/43*I,n=57 4324165971261832 r005 Re(z^2+c),c=-31/52+3/50*I,n=13 4324165973362870 r005 Re(z^2+c),c=-5/8+2/227*I,n=30 4324166003527035 r005 Im(z^2+c),c=5/56+29/57*I,n=40 4324166007321659 m005 (27/28+1/4*5^(1/2))/(1/11*5^(1/2)-5/9) 4324166013002161 k002 Champernowne real with 221/2*n^2-267/2*n+66 4324166024131985 r005 Im(z^2+c),c=7/58+9/16*I,n=53 4324166033784974 m005 (1/2*Pi-4/5)/(5/8*3^(1/2)+7/10) 4324166035275982 r009 Im(z^3+c),c=-9/29+17/37*I,n=12 4324166059633130 s002 sum(A226980[n]/(exp(n)+1),n=1..infinity) 4324166065745011 b008 -1/2+5^(-1/23) 4324166069940787 r009 Re(z^3+c),c=-39/56+29/54*I,n=11 4324166071597561 r009 Im(z^3+c),c=-41/102+18/43*I,n=64 4324166072002055 m009 (3*Pi^2+3/5)/(1/2*Psi(1,2/3)-5/6) 4324166072396611 a007 Real Root Of 163*x^4+720*x^3+35*x^2-248*x-501 4324166076088508 r005 Re(z^2+c),c=-61/90+7/30*I,n=20 4324166081837718 p003 LerchPhi(1/100,1,524/225) 4324166103219971 m006 (4*exp(2*Pi)+1/5)/(5/6*ln(Pi)+4) 4324166112916112 k006 concat of cont frac of 4324166113032167 k002 Champernowne real with 111*n^2-135*n+67 4324166117631682 a007 Real Root Of -159*x^4+171*x^3+140*x^2+792*x+34 4324166124474561 p001 sum((-1)^n/(605*n+208)/(2^n),n=0..infinity) 4324166128961592 r009 Im(z^3+c),c=-13/29+24/61*I,n=33 4324166149877374 r005 Im(z^2+c),c=-7/10+33/113*I,n=5 4324166152812023 r009 Re(z^3+c),c=-13/28+5/34*I,n=15 4324166157502738 m001 1/3*(Pi+Psi(2,1/3)/sin(1))*3^(2/3) 4324166166967174 r002 57th iterates of z^2 + 4324166168250503 r002 50th iterates of z^2 + 4324166179052077 q001 739/1709 4324166185253678 r009 Im(z^3+c),c=-7/34+25/51*I,n=20 4324166188476585 a001 3*12586269025^(7/17) 4324166190040623 m001 1/ln((2^(1/3)))^2/Riemann3rdZero/sqrt(3) 4324166190576287 r002 14th iterates of z^2 + 4324166195169338 r002 3th iterates of z^2 + 4324166197133658 r005 Re(z^2+c),c=-67/102+15/61*I,n=48 4324166210321395 r009 Im(z^3+c),c=-19/46+26/63*I,n=42 4324166213062173 k002 Champernowne real with 223/2*n^2-273/2*n+68 4324166222504970 r005 Re(z^2+c),c=-19/31+25/57*I,n=9 4324166225854519 a001 24476/89*1597^(24/35) 4324166226962647 a007 Real Root Of 100*x^4+355*x^3-421*x^2-381*x-35 4324166228430285 m005 (1/2*3^(1/2)+2/7)/(5/8*Pi+7/10) 4324166230163857 a007 Real Root Of -210*x^4-736*x^3+616*x^2-447*x+462 4324166232558701 l006 ln(2477/3817) 4324166234321705 r009 Re(z^3+c),c=-10/31+28/41*I,n=28 4324166244432063 m001 (Gompertz-TreeGrowth2nd)/(ln(3)+Zeta(1/2)) 4324166252965607 r002 19th iterates of z^2 + 4324166259088735 r005 Im(z^2+c),c=-7/10+5/159*I,n=33 4324166272353161 h001 (1/3*exp(2)+1/3)/(4/5*exp(2)+5/9) 4324166277037922 h001 (5/7*exp(2)+11/12)/(1/5*exp(1)+8/9) 4324166292119587 m005 (17/20+1/4*5^(1/2))/(43/18+7/18*5^(1/2)) 4324166298713567 a007 Real Root Of 576*x^4-499*x^3+359*x^2-76*x-4 4324166303831041 a007 Real Root Of 903*x^4+113*x^3+895*x^2-130*x-246 4324166313092179 k002 Champernowne real with 112*n^2-138*n+69 4324166313476306 r009 Im(z^3+c),c=-41/102+18/43*I,n=61 4324166316831433 r005 Re(z^2+c),c=-17/13+5/22*I,n=4 4324166323846557 a007 Real Root Of -88*x^4+711*x^3+774*x^2+113*x-248 4324166351606805 r005 Re(z^2+c),c=-34/25+11/46*I,n=2 4324166357458506 r005 Im(z^2+c),c=7/50+26/55*I,n=41 4324166357539861 a007 Real Root Of 898*x^4+635*x^3+669*x^2-705*x-410 4324166362633002 r005 Re(z^2+c),c=-5/8+32/145*I,n=33 4324166371562559 r002 63th iterates of z^2 + 4324166381408082 r002 42th iterates of z^2 + 4324166383811389 m009 (32/5*Catalan+4/5*Pi^2+3/4)/(1/6*Pi^2-5) 4324166384317179 r005 Re(z^2+c),c=13/50+1/61*I,n=59 4324166397426350 r009 Im(z^3+c),c=-53/122+17/40*I,n=16 4324166398458837 a007 Real Root Of -665*x^4+513*x^3-680*x^2-860*x-180 4324166408971753 m001 (GAMMA(13/24)+Robbin)/(GAMMA(3/4)-ln(2)) 4324166412531114 k006 concat of cont frac of 4324166413122185 k002 Champernowne real with 225/2*n^2-279/2*n+70 4324166416267256 m001 (ln(2)+HardyLittlewoodC4)/exp(Pi) 4324166417139238 r005 Re(z^2+c),c=21/82+19/45*I,n=62 4324166419046629 a007 Real Root Of 651*x^4-547*x^3+578*x^2-726*x-489 4324166438993723 m001 (Zeta(3)+Grothendieck)/(LaplaceLimit+Trott2nd) 4324166463239804 m001 Ei(1)^ThueMorse/ln(2)*ln(10) 4324166479063088 r005 Re(z^2+c),c=-8/13+5/42*I,n=55 4324166481950611 r005 Re(z^2+c),c=11/46+12/19*I,n=4 4324166486485676 r005 Im(z^2+c),c=1/50+28/51*I,n=9 4324166503390117 a007 Real Root Of -182*x^4-409*x^3+178*x^2+782*x-332 4324166506401336 m001 (Grothendieck+Otter)/(exp(-1/2*Pi)-Conway) 4324166513152191 k002 Champernowne real with 113*n^2-141*n+71 4324166514573142 r009 Im(z^3+c),c=-65/126+5/12*I,n=57 4324166515344308 m001 Magata^2*DuboisRaymond/exp(sqrt(1+sqrt(3))) 4324166524644999 m001 Gompertz^Zeta(1,-1)*Gompertz^KomornikLoreti 4324166552142499 m001 1/exp(Rabbit)^2*Conway^2*GAMMA(23/24)^2 4324166555145985 r002 62th iterates of z^2 + 4324166561719616 r005 Re(z^2+c),c=-5/8+33/128*I,n=27 4324166566717558 r002 51th iterates of z^2 + 4324166575491291 a001 3/46*322^(19/58) 4324166576081592 r009 Re(z^3+c),c=-1/13+16/25*I,n=46 4324166576144638 r009 Im(z^3+c),c=-7/110+23/45*I,n=26 4324166586553867 b008 1-85*Sqrt[26] 4324166598873463 m006 (1/4*Pi^2-5/6)/(4*ln(Pi)-4/5) 4324166600495404 r005 Im(z^2+c),c=21/82+18/49*I,n=52 4324166606143390 r002 8th iterates of z^2 + 4324166613182197 k002 Champernowne real with 227/2*n^2-285/2*n+72 4324166620526056 r009 Im(z^3+c),c=-7/110+23/45*I,n=28 4324166622681142 s002 sum(A225512[n]/(10^n+1),n=1..infinity) 4324166643635477 m001 (Champernowne+FeigenbaumMu)/(Mills-ZetaP(2)) 4324166663757146 m001 (FeigenbaumD-TravellingSalesman)/(ln(3)-Cahen) 4324166663766579 a001 6/105937*2584^(49/58) 4324166664707196 a007 Real Root Of 741*x^4-978*x^3+947*x^2-245*x-388 4324166683388344 r009 Im(z^3+c),c=-7/110+23/45*I,n=30 4324166693239735 r005 Re(z^2+c),c=-53/86+4/39*I,n=57 4324166695835320 m006 (3/4*ln(Pi)-1/3)/(1/4*Pi-2) 4324166706294996 r009 Im(z^3+c),c=-41/102+18/43*I,n=54 4324166713212203 k002 Champernowne real with 114*n^2-144*n+73 4324166716285458 r009 Im(z^3+c),c=-7/110+23/45*I,n=32 4324166716719197 m005 (1/2*Zeta(3)-1/12)/(1/5*5^(1/2)+3/4) 4324166716980412 r005 Re(z^2+c),c=-11/18+18/107*I,n=52 4324166719299992 m001 1/FeigenbaumD^2/CareFree*ln(GAMMA(5/24))^2 4324166723174115 r005 Im(z^2+c),c=11/60+24/55*I,n=31 4324166723192086 m001 LandauRamanujan*(Psi(2,1/3)+Zeta(1/2)) 4324166729434825 r009 Im(z^3+c),c=-7/110+23/45*I,n=34 4324166733893618 r009 Im(z^3+c),c=-7/110+23/45*I,n=36 4324166735200939 r009 Im(z^3+c),c=-7/110+23/45*I,n=38 4324166735522344 r009 Im(z^3+c),c=-7/110+23/45*I,n=40 4324166735558398 r009 Im(z^3+c),c=-7/110+23/45*I,n=43 4324166735562703 r009 Im(z^3+c),c=-7/110+23/45*I,n=45 4324166735567074 r009 Im(z^3+c),c=-7/110+23/45*I,n=47 4324166735569236 r009 Im(z^3+c),c=-7/110+23/45*I,n=49 4324166735570076 r009 Im(z^3+c),c=-7/110+23/45*I,n=51 4324166735570354 r009 Im(z^3+c),c=-7/110+23/45*I,n=53 4324166735570434 r009 Im(z^3+c),c=-7/110+23/45*I,n=55 4324166735570453 r009 Im(z^3+c),c=-7/110+23/45*I,n=57 4324166735570454 r009 Im(z^3+c),c=-7/110+23/45*I,n=60 4324166735570454 r009 Im(z^3+c),c=-7/110+23/45*I,n=62 4324166735570455 r009 Im(z^3+c),c=-7/110+23/45*I,n=64 4324166735570455 r009 Im(z^3+c),c=-7/110+23/45*I,n=58 4324166735570455 r009 Im(z^3+c),c=-7/110+23/45*I,n=63 4324166735570456 r009 Im(z^3+c),c=-7/110+23/45*I,n=61 4324166735570456 r009 Im(z^3+c),c=-7/110+23/45*I,n=59 4324166735570463 r009 Im(z^3+c),c=-7/110+23/45*I,n=56 4324166735570503 r009 Im(z^3+c),c=-7/110+23/45*I,n=54 4324166735570655 r009 Im(z^3+c),c=-7/110+23/45*I,n=52 4324166735571147 r009 Im(z^3+c),c=-7/110+23/45*I,n=50 4324166735572525 r009 Im(z^3+c),c=-7/110+23/45*I,n=48 4324166735575729 r009 Im(z^3+c),c=-7/110+23/45*I,n=46 4324166735575997 r009 Im(z^3+c),c=-7/110+23/45*I,n=41 4324166735579702 r009 Im(z^3+c),c=-7/110+23/45*I,n=42 4324166735580900 r009 Im(z^3+c),c=-7/110+23/45*I,n=44 4324166735720166 r009 Im(z^3+c),c=-7/110+23/45*I,n=39 4324166736385811 r009 Im(z^3+c),c=-7/110+23/45*I,n=37 4324166738845958 r009 Im(z^3+c),c=-7/110+23/45*I,n=35 4324166744621567 m001 1/(2^(1/3))*Bloch^2/ln(Ei(1))^2 4324166746643803 r009 Im(z^3+c),c=-7/110+23/45*I,n=33 4324166748533026 r002 13th iterates of z^2 + 4324166751476672 r009 Im(z^3+c),c=-41/102+18/43*I,n=58 4324166754963180 l006 ln(5015/7728) 4324166767946089 r009 Im(z^3+c),c=-7/110+23/45*I,n=31 4324166772373248 m005 (1/3*Zeta(3)+1/3)/(1/11*gamma-2/9) 4324166777281187 m001 (gamma(1)-Champernowne)/(ZetaP(2)+ZetaQ(4)) 4324166779305923 m001 1/cos(1)^2/exp(Zeta(3))/cosh(1)^2 4324166781270037 m009 (3*Psi(1,1/3)+6)/(3*Psi(1,2/3)-4/5) 4324166791677290 r005 Im(z^2+c),c=-53/86+3/8*I,n=5 4324166794099756 m001 (cos(1/5*Pi)-KhinchinHarmonic)/(Mills+Thue) 4324166800116585 r005 Im(z^2+c),c=-19/34+53/116*I,n=44 4324166802684605 a007 Real Root Of -795*x^4+181*x^3+730*x^2+841*x-487 4324166806357036 r009 Re(z^3+c),c=-31/70+5/37*I,n=40 4324166812089218 a001 3/2584*610^(12/13) 4324166813242209 k002 Champernowne real with 229/2*n^2-291/2*n+74 4324166815002947 r005 Re(z^2+c),c=-73/122+17/59*I,n=63 4324166815640351 r009 Im(z^3+c),c=-7/110+23/45*I,n=29 4324166822607250 r009 Im(z^3+c),c=-7/110+23/45*I,n=25 4324166834960203 m001 1/ln(BesselJ(0,1))^2/FeigenbaumC*LambertW(1) 4324166841818259 m001 (ErdosBorwein-GaussAGM)/(Tribonacci-ZetaQ(2)) 4324166848101142 h005 exp(sin(Pi*9/53)/cos(Pi*12/31)) 4324166853020491 m001 (BesselI(0,2)+GaussAGM)/(MertensB3-Totient) 4324166855077699 a007 Real Root Of -520*x^4+547*x^3-746*x^2+435*x+390 4324166870342715 a001 48/90481*11^(7/8) 4324166880195173 r005 Im(z^2+c),c=-23/78+29/46*I,n=54 4324166882396824 a003 cos(Pi*9/44)-cos(Pi*19/50) 4324166884960259 r009 Im(z^3+c),c=-7/110+23/45*I,n=27 4324166894030911 r005 Im(z^2+c),c=-7/11+5/62*I,n=52 4324166901352966 p004 log(33223/31817) 4324166902179584 m005 (1/2*Pi+5/9)/(1/10*Catalan-7/12) 4324166905633407 r005 Im(z^2+c),c=-1/23+29/49*I,n=61 4324166913272215 k002 Champernowne real with 115*n^2-147*n+75 4324166918225389 r002 44th iterates of z^2 + 4324166931166016 r009 Im(z^3+c),c=-7/110+23/45*I,n=24 4324166936966515 a007 Real Root Of -434*x^4+260*x^3-891*x^2+981*x+627 4324166941842055 r002 53th iterates of z^2 + 4324166945195176 r009 Im(z^3+c),c=-29/122+27/56*I,n=17 4324166971787527 r005 Im(z^2+c),c=-7/94+29/50*I,n=29 4324166977545565 a007 Real Root Of 430*x^4+717*x^3+994*x^2-280*x-264 4324167005529242 r005 Re(z^2+c),c=11/29+8/35*I,n=53 4324167013302221 k002 Champernowne real with 231/2*n^2-297/2*n+76 4324167026922780 m001 1/ln(log(2+sqrt(3)))*cosh(1)^2*sqrt(5)^2 4324167034520283 r002 5th iterates of z^2 + 4324167035480779 r005 Im(z^2+c),c=5/27+23/53*I,n=61 4324167037804042 r005 Im(z^2+c),c=-31/114+37/62*I,n=10 4324167042272135 r009 Im(z^3+c),c=-5/12+23/56*I,n=62 4324167064152054 r005 Im(z^2+c),c=-2/3+25/209*I,n=31 4324167064470601 m001 exp(Robbin)^2*Magata^2/Zeta(7) 4324167065453249 a007 Real Root Of -857*x^4+261*x^3-734*x^2+996*x+619 4324167066659991 m001 (BesselI(0,1)-exp(1/Pi))/(ZetaP(3)+ZetaP(4)) 4324167083477780 r005 Im(z^2+c),c=-17/14+1/95*I,n=4 4324167085123495 r002 56th iterates of z^2 + 4324167089979859 m001 GAMMA(5/24)/Lehmer*exp(log(1+sqrt(2)))^2 4324167094612055 r002 16th iterates of z^2 + 4324167103651849 r005 Im(z^2+c),c=-39/110+35/57*I,n=63 4324167113332227 k002 Champernowne real with 116*n^2-150*n+77 4324167119965262 r009 Im(z^3+c),c=-4/9+21/53*I,n=27 4324167131380170 r005 Im(z^2+c),c=-39/70+26/57*I,n=34 4324167146097491 r005 Re(z^2+c),c=-37/62+7/37*I,n=27 4324167150147352 r009 Im(z^3+c),c=-19/46+26/63*I,n=60 4324167151926666 r005 Im(z^2+c),c=31/114+13/37*I,n=57 4324167158884867 r002 37th iterates of z^2 + 4324167161588894 p003 LerchPhi(1/4,4,66/95) 4324167166432193 a001 199/1346269*514229^(19/44) 4324167168709691 r005 Im(z^2+c),c=-9/19+28/57*I,n=8 4324167183123901 m001 3^(1/2)*ln(3)/BesselJ(1,1) 4324167183123901 m001 sqrt(3)*ln(3)/BesselJ(1,1) 4324167187981160 r005 Re(z^2+c),c=-5/8+17/245*I,n=27 4324167200334445 m008 (1/6*Pi^5+2)/(2/5*Pi^5+1/6) 4324167200771995 r005 Im(z^2+c),c=-5/8+53/122*I,n=43 4324167213362233 k002 Champernowne real with 233/2*n^2-303/2*n+78 4324167224010426 r005 Re(z^2+c),c=-14/25+6/35*I,n=10 4324167231337932 m001 1/FeigenbaumC^2*Lehmer/ln(Ei(1))^2 4324167237001817 a001 76/317811*1346269^(8/39) 4324167239733283 a001 1/2255*10946^(37/50) 4324167240213385 m004 -1+(78125*Sech[Sqrt[5]*Pi])/Pi 4324167247412585 m001 Zeta(1/2)*polylog(4,1/2)/ZetaP(3) 4324167251427506 r002 23th iterates of z^2 + 4324167264811811 l006 ln(2538/3911) 4324167266875154 m001 (Cahen-MertensB2)/(exp(1/Pi)-BesselI(0,2)) 4324167268235011 r005 Im(z^2+c),c=23/122+25/58*I,n=55 4324167276996524 r009 Im(z^3+c),c=-47/118+21/50*I,n=23 4324167277732340 r002 6th iterates of z^2 + 4324167283683966 a007 Real Root Of x^4+434*x^3+684*x^2-276*x-960 4324167287069222 m001 (ln(Pi)-exp(-1/2*Pi))/(Cahen+Riemann2ndZero) 4324167313392239 k002 Champernowne real with 117*n^2-153*n+79 4324167313992253 a001 1/4870004*(1/2*5^(1/2)+1/2)^2*64079^(13/16) 4324167314953182 m006 (4*exp(Pi)-1/5)/(2/5*exp(2*Pi)-3/5) 4324167321378711 r005 Re(z^2+c),c=-27/44+5/34*I,n=42 4324167326532047 m001 (GAMMA(5/6)+Lehmer)/(1-BesselK(1,1)) 4324167327038487 r009 Re(z^3+c),c=-39/94+33/46*I,n=15 4324167334153490 a007 Real Root Of 346*x^4-393*x^3+96*x^2-826*x-419 4324167335439429 a001 1/710524*(1/2*5^(1/2)+1/2)^6*9349^(9/16) 4324167335563308 r005 Re(z^2+c),c=-18/29+2/35*I,n=35 4324167337192015 s002 sum(A025016[n]/(n*2^n-1),n=1..infinity) 4324167345895300 m005 (1/2*3^(1/2)+2/5)/(10/11*Zeta(3)-4/5) 4324167354380693 r005 Im(z^2+c),c=-19/34+35/81*I,n=8 4324167361562968 s002 sum(A196855[n]/(exp(n)),n=1..infinity) 4324167362146178 m001 (Trott+Thue)/(LambertW(1)+exp(1/exp(1))) 4324167371397077 r002 3th iterates of z^2 + 4324167374017611 a001 4/3*(1/2*5^(1/2)+1/2)^25*3^(3/5) 4324167398466805 m004 (-78125*Sech[Sqrt[5]*Pi])/Pi+Tanh[Sqrt[5]*Pi] 4324167413422245 k002 Champernowne real with 235/2*n^2-309/2*n+80 4324167419762315 a001 1/271396*(1/2*5^(1/2)+1/2)^3*3571^(11/16) 4324167427629681 m001 ln(Robbin)^2*FeigenbaumAlpha/Pi^2 4324167429191716 r005 Re(z^2+c),c=11/34+5/52*I,n=12 4324167448875469 s002 sum(A141271[n]/(pi^n+1),n=1..infinity) 4324167474421088 r005 Im(z^2+c),c=1/32+18/31*I,n=37 4324167475461573 r002 16th iterates of z^2 + 4324167483114088 r009 Im(z^3+c),c=-41/102+18/43*I,n=55 4324167487922664 r002 30th iterates of z^2 + 4324167513452251 k002 Champernowne real with 118*n^2-156*n+81 4324167513526531 r002 54th iterates of z^2 + 4324167514113215 k006 concat of cont frac of 4324167514347864 a007 Real Root Of 354*x^4-607*x^3-955*x^2-115*x+265 4324167514630921 m008 (2/5*Pi^2-1/4)/(1/4*Pi^3+4/5) 4324167540111916 m001 3^(1/3)+KomornikLoreti^MasserGramainDelta 4324167558343686 r009 Im(z^3+c),c=-35/106+14/31*I,n=23 4324167566779747 r002 15th iterates of z^2 + 4324167572684245 a007 Real Root Of -168*x^4-838*x^3-449*x^2+330*x+804 4324167575907516 m005 (1/2*gamma+1/10)/(7/12*Catalan-4/9) 4324167576535327 l006 ln(4458/4655) 4324167599135765 r005 Re(z^2+c),c=-71/122+4/29*I,n=7 4324167605241532 p001 sum((-1)^n/(271*n+223)/(12^n),n=0..infinity) 4324167613482257 k002 Champernowne real with 237/2*n^2-315/2*n+82 4324167618862256 h001 (6/11*exp(1)+7/12)/(4/7*exp(2)+5/9) 4324167630145127 a007 Real Root Of -559*x^4+648*x^3+277*x^2+557*x+261 4324167653314971 r005 Re(z^2+c),c=-53/86+1/14*I,n=38 4324167654921160 r002 45th iterates of z^2 + 4324167657646613 m001 1/FeigenbaumD*LandauRamanujan/ln(GAMMA(11/24)) 4324167671280486 r005 Im(z^2+c),c=-11/25+27/49*I,n=54 4324167681737914 a007 Real Root Of -149*x^4+730*x^3-373*x^2+377*x+297 4324167684052584 a003 cos(Pi*16/75)*cos(Pi*27/86) 4324167688141073 a003 cos(Pi*53/109)/sin(Pi*24/49) 4324167696827024 a001 55/15127*29^(25/34) 4324167699582052 r002 41th iterates of z^2 + 4324167706528115 r009 Re(z^3+c),c=-9/17+20/63*I,n=50 4324167709710749 r005 Re(z^2+c),c=-71/52+15/62*I,n=4 4324167713512263 k002 Champernowne real with 119*n^2-159*n+83 4324167717980117 r005 Re(z^2+c),c=-53/86+5/51*I,n=41 4324167719376275 r005 Re(z^2+c),c=-23/34+3/80*I,n=20 4324167723454996 r005 Im(z^2+c),c=-13/60+29/37*I,n=20 4324167733779412 m001 1/exp(Riemann2ndZero)/LaplaceLimit/sin(Pi/12) 4324167745318856 a007 Real Root Of -152*x^4+39*x^3-195*x^2+687*x+342 4324167746512364 a007 Real Root Of -566*x^4+445*x^3+904*x^2+573*x-433 4324167760338049 s002 sum(A154216[n]/(pi^n-1),n=1..infinity) 4324167762551884 l006 ln(5137/7916) 4324167762855906 m001 (exp(1)+Pi*2^(1/2)/GAMMA(3/4))/Porter 4324167767636606 r009 Im(z^3+c),c=-9/31+13/33*I,n=2 4324167778788390 r005 Re(z^2+c),c=-43/70+5/36*I,n=44 4324167781834082 p003 LerchPhi(1/8,1,567/223) 4324167794769769 r002 36th iterates of z^2 + 4324167809462970 a008 Real Root of x^4-x^3-49*x^2+44*x+676 4324167810290430 m001 (2^(1/3)-BesselI(1,1))/ErdosBorwein 4324167813542269 k002 Champernowne real with 239/2*n^2-321/2*n+84 4324167814318121 r002 64th iterates of z^2 + 4324167823661175 m001 (Zeta(5)+GAMMA(2/3))/(gamma(2)-Landau) 4324167825268082 a001 9/17*2178309^(17/37) 4324167831457505 r005 Re(z^2+c),c=-8/13+3/44*I,n=20 4324167854994716 s001 sum(1/10^(n-1)*A186674[n]/n!,n=1..infinity) 4324167859962364 a001 123/377*3^(10/39) 4324167872648335 q001 1494/3455 4324167888710083 r005 Re(z^2+c),c=9/32+1/53*I,n=46 4324167893327973 r005 Re(z^2+c),c=-2/3+23/241*I,n=25 4324167908829526 m001 KhinchinLevy-exp(Pi)^Landau 4324167913572275 k002 Champernowne real with 120*n^2-162*n+85 4324167917297302 r009 Im(z^3+c),c=-5/12+23/56*I,n=55 4324167924097214 m008 (5*Pi^5+3/5)/(1/3*Pi^2+1/4) 4324167937683185 r009 Re(z^3+c),c=-11/23+4/33*I,n=17 4324167947813175 a007 Real Root Of -527*x^4+851*x^3-78*x^2+870*x-412 4324167955096496 r009 Im(z^3+c),c=-1/98+20/39*I,n=11 4324167962560367 a007 Real Root Of 23*x^4+975*x^3-836*x^2+407*x-628 4324167971727186 r005 Re(z^2+c),c=-63/118+14/31*I,n=49 4324167979858433 r002 11th iterates of z^2 + 4324167982721472 r002 25th iterates of z^2 + 4324168011906178 r002 4th iterates of z^2 + 4324168018092483 a007 Real Root Of 986*x^4-652*x^3+731*x^2+971*x+196 4324168020352549 p003 LerchPhi(1/5,2,19/12) 4324168044513836 r005 Im(z^2+c),c=9/32+16/37*I,n=52 4324168047312572 r009 Re(z^3+c),c=-19/36+9/35*I,n=51 4324168048822272 m001 Khintchine^2*ln(Si(Pi))*Paris^2 4324168067156096 a007 Real Root Of -670*x^4-62*x^3-928*x^2+946*x+601 4324168069106458 a007 Real Root Of 884*x^4+137*x^3+829*x^2-153*x-241 4324168071903930 r002 11th iterates of z^2 + 4324168080183094 a001 514229/521*18^(23/45) 4324168081124594 m005 (1/2*Catalan+3/11)/(2*Zeta(3)-5/7) 4324168097541492 m005 (1/4*gamma-1/6)/(1/5*2^(1/2)-4/5) 4324168102678801 r002 55th iterates of z^2 + 4324168105590448 r005 Re(z^2+c),c=-2/3+4/115*I,n=20 4324168109697811 r002 19th iterates of z^2 + 4324168114370478 m001 1/ln(sin(Pi/5))^2/FeigenbaumC*sqrt(5) 4324168116907146 a001 987/24476*29^(31/44) 4324168127847430 a007 Real Root Of -97*x^4+757*x^3+237*x^2+844*x-37 4324168137724002 a003 cos(Pi*20/93)*cos(Pi*36/115) 4324168145490150 a008 Real Root of x^4-x^3-20*x^2-21*x+196 4324168147437767 r002 4th iterates of z^2 + 4324168161233135 a001 5/322*7^(10/19) 4324168166657058 r009 Im(z^3+c),c=-19/46+26/63*I,n=63 4324168201746714 r005 Re(z^2+c),c=-19/32+18/61*I,n=57 4324168204610075 r002 18th iterates of z^2 + 4324168217463805 a007 Real Root Of 418*x^4-123*x^3-426*x^2-805*x-293 4324168227683046 r009 Im(z^3+c),c=-15/74+27/55*I,n=22 4324168230036438 a007 Real Root Of -839*x^4-875*x^3+889*x^2+742*x-387 4324168231405213 m005 (1/2*5^(1/2)+7/11)/(2/3*2^(1/2)-5) 4324168240193255 r005 Im(z^2+c),c=-41/62+5/64*I,n=50 4324168243880581 r005 Re(z^2+c),c=-49/106+28/57*I,n=12 4324168248609693 l006 ln(2599/4005) 4324168262274368 r009 Im(z^3+c),c=-7/90+25/49*I,n=13 4324168263414648 r008 a(0)=4,K{-n^6,-6+3*n^3-n^2+6*n} 4324168275018274 r005 Im(z^2+c),c=5/28+29/56*I,n=22 4324168278238858 r005 Re(z^2+c),c=-11/18+38/111*I,n=59 4324168297596346 r005 Re(z^2+c),c=-13/22+25/84*I,n=60 4324168309548250 r009 Re(z^3+c),c=-9/22+6/59*I,n=20 4324168317324532 r005 Im(z^2+c),c=-125/106+1/17*I,n=15 4324168330405899 a007 Real Root Of -98*x^4-335*x^3+587*x^2+736*x-616 4324168338192006 r001 12i'th iterates of 2*x^2-1 of 4324168348431995 a007 Real Root Of -182*x^4+703*x^3-13*x^2+875*x+444 4324168350571555 a007 Real Root Of -333*x^4+441*x^3+752*x^2+320*x-303 4324168352157573 r005 Re(z^2+c),c=27/74+40/63*I,n=13 4324168357018695 a007 Real Root Of -651*x^4+895*x^3-333*x^2+915*x-383 4324168360773043 r002 4th iterates of z^2 + 4324168372733792 m001 (CopelandErdos+Trott)/(Ei(1)-Psi(2,1/3)) 4324168372979313 r005 Re(z^2+c),c=-5/98+47/62*I,n=4 4324168379736532 r005 Im(z^2+c),c=1/32+19/35*I,n=29 4324168385601419 m005 (1/4*5^(1/2)+3/4)/(3/7*2^(1/2)-7/11) 4324168393880080 r005 Re(z^2+c),c=-73/122+19/52*I,n=26 4324168398090441 r005 Im(z^2+c),c=-5/58+23/40*I,n=13 4324168399289078 a007 Real Root Of 644*x^4-269*x^3-461*x^2-800*x-304 4324168411927102 r009 Im(z^3+c),c=-5/12+23/56*I,n=59 4324168415286663 a007 Real Root Of 651*x^4-797*x^3-341*x^2-628*x+377 4324168415718342 m008 (3*Pi^2+5)/(5/6*Pi^6-4/5) 4324168427420178 r005 Re(z^2+c),c=-23/40+19/55*I,n=54 4324168433585520 r005 Re(z^2+c),c=-11/19+19/59*I,n=47 4324168437284199 m001 sin(1/5*Pi)^Catalan*sin(1/5*Pi)^Robbin 4324168449573489 r005 Re(z^2+c),c=-14/23+8/41*I,n=63 4324168455217116 r002 34th iterates of z^2 + 4324168455329897 r005 Im(z^2+c),c=11/46+5/13*I,n=63 4324168468662562 r005 Re(z^2+c),c=-13/21+2/63*I,n=39 4324168501052977 g003 Re(GAMMA(-149/30+I*(-5/6))) 4324168506496664 r002 48th iterates of z^2 + 4324168528997621 a007 Real Root Of 220*x^4+906*x^3-118*x^2+505*x+726 4324168531309649 p003 LerchPhi(1/512,1,31/134) 4324168533718426 m004 1+130*Pi+(5*Sqrt[5]*Pi)/ProductLog[Sqrt[5]*Pi] 4324168535736623 r005 Im(z^2+c),c=15/46+18/59*I,n=37 4324168543287996 r005 Re(z^2+c),c=23/118+46/63*I,n=5 4324168554249938 m005 (1/2*3^(1/2)+3/4)/(1/4*2^(1/2)-8/11) 4324168554279575 r009 Im(z^3+c),c=-41/102+18/43*I,n=52 4324168569891144 r005 Re(z^2+c),c=-21/34+8/101*I,n=64 4324168572635315 s002 sum(A103801[n]/(exp(n)-1),n=1..infinity) 4324168577598121 r005 Re(z^2+c),c=-67/122+16/35*I,n=50 4324168579186308 r002 60th iterates of z^2 + 4324168600175636 r005 Re(z^2+c),c=-73/118+3/61*I,n=60 4324168622754127 a005 (1/sin(95/213*Pi))^1535 4324168643945187 a007 Real Root Of -413*x^4-38*x^3-41*x^2+678*x-268 4324168649125636 r002 27i'th iterates of 2*x/(1-x^2) of 4324168651247468 r009 Im(z^3+c),c=-13/54+19/43*I,n=2 4324168661566233 r009 Im(z^3+c),c=-1/36+31/42*I,n=6 4324168664174651 m001 (ArtinRank2-sin(1))/(-FeigenbaumDelta+Totient) 4324168665039529 m001 (MertensB1+Sarnak)/(BesselJ(1,1)-exp(1)) 4324168705421216 m001 (ln(2)/ln(10)+Chi(1))/(Kolakoski+Tribonacci) 4324168716557687 m001 FeigenbaumMu^CopelandErdos-Grothendieck 4324168716665875 r009 Re(z^3+c),c=-31/70+9/55*I,n=7 4324168719716645 r002 29th iterates of z^2 + 4324168723391751 l006 ln(5259/8104) 4324168741263311 a001 843/233*196418^(25/43) 4324168742585283 r005 Im(z^2+c),c=53/118+11/31*I,n=6 4324168748216356 m001 (CareFree+Totient)/(GAMMA(2/3)-ln(2^(1/2)+1)) 4324168749293028 p003 LerchPhi(1/12,1,541/220) 4324168750431330 h001 (-4*exp(-3)-3)/(-8*exp(-3)-7) 4324168756582689 a001 1/710647*7^(15/26) 4324168778373873 r009 Re(z^3+c),c=-15/38+5/58*I,n=20 4324168778605404 a007 Real Root Of 178*x^4+783*x^3-97*x^2-623*x+195 4324168783235242 r002 3th iterates of z^2 + 4324168793488948 r009 Re(z^3+c),c=-55/114+5/31*I,n=16 4324168795617563 r005 Re(z^2+c),c=-57/46+10/57*I,n=16 4324168801812970 a003 sin(Pi*14/71)*sin(Pi*23/86) 4324168804090322 r005 Im(z^2+c),c=5/102+22/41*I,n=49 4324168806038590 r005 Re(z^2+c),c=-131/126+1/4*I,n=54 4324168830081083 a007 Real Root Of 21*x^4+913*x^3+223*x^2+418*x-725 4324168835231681 r009 Im(z^3+c),c=-33/122+36/53*I,n=19 4324168837279469 m005 (-21/8+3/8*5^(1/2))/(4/5*2^(1/2)+3) 4324168853456217 r009 Im(z^3+c),c=-41/102+18/43*I,n=51 4324168859052143 m001 MasserGramain^Rabbit*Weierstrass^Rabbit 4324168860298063 m005 (3/4*exp(1)+5)/(11/15+2/5*5^(1/2)) 4324168862504156 r008 a(0)=0,K{-n^6,69-63*n^3-54*n^2+71*n} 4324168868984267 a001 2584/64079*29^(31/44) 4324168870658553 a007 Real Root Of 425*x^4+302*x^3+773*x^2-451*x-330 4324168879214270 p004 log(12203/7919) 4324168881216951 p001 sum(1/(515*n+462)/n/(24^n),n=1..infinity) 4324168883690394 p001 sum((-1)^n/(575*n+231)/(256^n),n=0..infinity) 4324168890045199 a007 Real Root Of 922*x^4-185*x^3-567*x^2-810*x+439 4324168897832858 m001 MertensB2/(cos(1)-ln(2)/ln(10)) 4324168901840036 m005 (1/2*3^(1/2)+1/6)/(1/8*gamma+1/6) 4324168911335911 r005 Im(z^2+c),c=-22/27+16/49*I,n=3 4324168911606015 a001 6119/2*21^(5/44) 4324168911682231 a001 1/103664*(1/2*5^(1/2)+1/2)^8*1364^(5/16) 4324168917534262 m001 (Stephens+ZetaP(3))/(ln(gamma)-KhinchinLevy) 4324168922700265 a003 cos(Pi*7/87)*sin(Pi*14/95) 4324168943151486 m001 (MertensB2+Trott2nd)/(1+Backhouse) 4324168943933030 m006 (1/6*Pi+1)/(1/6*exp(Pi)-1/3) 4324168947686197 m005 (1/2*5^(1/2)+8/9)/(7/10*Catalan+4) 4324168951961948 r009 Im(z^3+c),c=-19/46+26/63*I,n=64 4324168953437762 m005 (1/2*Zeta(3)+6)/(3/4*Zeta(3)+5/8) 4324168966834907 a007 Real Root Of 789*x^4+450*x^3+872*x^2-529*x-383 4324168971998478 r005 Re(z^2+c),c=-41/31+1/26*I,n=30 4324168978710840 a001 615/15251*29^(31/44) 4324168987341641 a007 Real Root Of 514*x^4-549*x^3+399*x^2+363*x+20 4324168988611237 m001 (Landau-Lehmer)/(polylog(4,1/2)+GolombDickman) 4324168992449261 m001 (Zeta(5)+Kolakoski)/(MadelungNaCl-Niven) 4324168992907032 a001 3/514229*2178309^(7/51) 4324168994719731 a001 17711/439204*29^(31/44) 4324168997055397 a001 46368/1149851*29^(31/44) 4324168997156846 m005 (1/3*2^(1/2)+1/2)/(9/10*exp(1)-1/5) 4324168997396166 a001 121393/3010349*29^(31/44) 4324168997476611 a001 196418/4870847*29^(31/44) 4324168997606773 a001 75025/1860498*29^(31/44) 4324168997705497 r005 Re(z^2+c),c=-2/3+69/208*I,n=50 4324168998498918 a001 28657/710647*29^(31/44) 4324169004613770 a001 10946/271443*29^(31/44) 4324169021037900 a001 3/610*17711^(27/59) 4324169027555653 a007 Real Root Of 21*x^4-814*x^3-415*x^2-306*x+275 4324169038970420 a007 Real Root Of 911*x^4-385*x^3+663*x^2-347*x-337 4324169046525592 a001 4181/103682*29^(31/44) 4324169069826862 m001 BesselK(0,1)+Landau+ReciprocalFibonacci 4324169083756353 m001 (Psi(2,1/3)+exp(1/Pi))/(-Niven+Riemann1stZero) 4324169084144272 a007 Real Root Of -360*x^4+815*x^3+698*x^2+937*x-589 4324169102816886 r005 Im(z^2+c),c=19/64+11/32*I,n=34 4324169104020985 a001 233/199*199^(15/22) 4324169113437961 m001 exp(GAMMA(5/12))^2*Backhouse^2/sin(Pi/5)^2 4324169117157578 a001 6765/2207*18^(5/42) 4324169119357933 r008 a(0)=0,K{-n^6,65-67*n^3-44*n^2+69*n} 4324169120840148 a007 Real Root Of -737*x^4+180*x^3-961*x^2+888*x+604 4324169131605721 r002 41th iterates of z^2 + 4324169154185619 a007 Real Root Of 187*x^4+550*x^3-902*x^2+718*x-940 4324169164484785 r005 Im(z^2+c),c=-3/4+3/61*I,n=60 4324169171267157 r002 33th iterates of z^2 + 4324169175103734 a001 710647/3*89^(11/17) 4324169187285928 l006 ln(2660/4099) 4324169215515292 m001 (ln(2)-ln(2+3^(1/2)))/(exp(1/exp(1))-gamma(3)) 4324169216214417 r001 32i'th iterates of 2*x^2-1 of 4324169219565028 m005 (1/3*5^(1/2)+1/10)/(6/7*exp(1)-3/8) 4324169220312455 m001 ln(GAMMA(1/3))^2*Bloch^2*sqrt(2)^2 4324169221169318 p003 LerchPhi(1/256,3,291/220) 4324169222900424 a007 Real Root Of -803*x^4-187*x^3-267*x^2+997*x+494 4324169235828110 s002 sum(A269135[n]/(2^n+1),n=1..infinity) 4324169239329615 m001 GAMMA(1/3)^2/ln((2^(1/3)))^2*LambertW(1)^2 4324169245768640 m001 Rabbit^2*Lehmer/exp(GAMMA(11/24)) 4324169249450141 a001 1/9*123^(35/46) 4324169259703622 p004 log(13327/12763) 4324169268492720 a007 Real Root Of 954*x^4-216*x^3-259*x^2-790*x-344 4324169270039341 r005 Re(z^2+c),c=5/19+1/55*I,n=55 4324169272316396 m006 (5/6*exp(2*Pi)-5/6)/(1/5/Pi-1/6) 4324169281555286 m005 (1/3*exp(1)-1/6)/(2*gamma+5/9) 4324169290991376 m005 (29/30+1/6*5^(1/2))/(1/6*Pi-5/6) 4324169292383084 r005 Re(z^2+c),c=-119/90+1/23*I,n=26 4324169305308394 a007 Real Root Of 43*x^4-26*x^3+39*x^2-589*x+248 4324169322553415 a007 Real Root Of 423*x^4-441*x^3+245*x^2-936*x-501 4324169324076355 r009 Re(z^3+c),c=-31/66+27/49*I,n=11 4324169324230604 r002 26th iterates of z^2 + 4324169333793489 a001 1597/39603*29^(31/44) 4324169336479251 r009 Re(z^3+c),c=-10/23+30/49*I,n=22 4324169337665791 r009 Im(z^3+c),c=-19/46+26/63*I,n=61 4324169340880955 m001 (Champernowne+FeigenbaumMu)/(Lehmer+MertensB1) 4324169348775707 r005 Im(z^2+c),c=5/56+25/49*I,n=56 4324169362986226 a008 Real Root of (2+3*x-5*x^2-3*x^3+x^4+3*x^5) 4324169370452250 r002 54th iterates of z^2 + 4324169386446819 r008 a(0)=0,K{-n^6,89-76*n^3-5*n^2+15*n} 4324169402725810 r009 Im(z^3+c),c=-19/46+26/63*I,n=53 4324169416442668 r005 Re(z^2+c),c=-89/122+5/56*I,n=62 4324169417527237 p001 sum(1/(319*n+240)/(12^n),n=0..infinity) 4324169425393790 r009 Im(z^3+c),c=-7/110+23/45*I,n=22 4324169445880674 r002 7th iterates of z^2 + 4324169456540279 m001 (Cahen-FeigenbaumC)/(TreeGrowth2nd-ThueMorse) 4324169458349745 r005 Re(z^2+c),c=-21/34+7/88*I,n=62 4324169460204669 r009 Im(z^3+c),c=-7/74+31/61*I,n=12 4324169462858924 h001 (7/11*exp(2)+2/3)/(3/8*exp(1)+2/9) 4324169472871035 m001 (Mills+MinimumGamma)/(3^(1/2)+FeigenbaumDelta) 4324169492131525 r002 59th iterates of z^2 + 4324169500644128 r005 Im(z^2+c),c=-1/25+33/56*I,n=58 4324169519306583 m001 Shi(1)-ZetaP(2)^Lehmer 4324169521352970 s002 sum(A062554[n]/(10^n+1),n=1..infinity) 4324169522729356 r005 Im(z^2+c),c=-5/8+53/122*I,n=64 4324169530355097 q001 151/3492 4324169542875175 a003 cos(Pi*1/118)/cos(Pi*43/101) 4324169550363659 r005 Im(z^2+c),c=-7/10+50/107*I,n=9 4324169557145838 m001 ln(GAMMA(1/12))^2/BesselK(0,1)^2*GAMMA(17/24) 4324169573678975 m005 (1/2*5^(1/2)+3/11)/(8/9*exp(1)+4/5) 4324169596424044 r005 Re(z^2+c),c=-7/23+13/20*I,n=18 4324169596483489 m001 Weierstrass^Trott2nd*Weierstrass^ln(3) 4324169603190642 r005 Re(z^2+c),c=-61/98+10/61*I,n=26 4324169613556937 r005 Re(z^2+c),c=5/32+21/38*I,n=34 4324169613941031 r005 Re(z^2+c),c=11/56+4/9*I,n=15 4324169635689456 r009 Re(z^3+c),c=-14/25+5/16*I,n=8 4324169637592895 m001 (MinimumGamma+Stephens)/(Conway-FeigenbaumB) 4324169640662505 l006 ln(5381/8292) 4324169645986524 m008 (4/5*Pi-2/5)/(1/2*Pi^4+1/6) 4324169646707129 a007 Real Root Of 233*x^4+994*x^3-97*x^2+35*x+871 4324169650826667 r005 Im(z^2+c),c=15/94+6/13*I,n=31 4324169658080802 r005 Re(z^2+c),c=-75/122+2/33*I,n=19 4324169665388999 r005 Re(z^2+c),c=-3/5+23/85*I,n=60 4324169669134777 r009 Im(z^3+c),c=-23/110+22/25*I,n=20 4324169678725733 r002 63th iterates of z^2 + 4324169697523723 s001 sum(exp(-2*Pi)^n*A256376[n],n=1..infinity) 4324169704532373 r005 Im(z^2+c),c=41/126+14/61*I,n=16 4324169714339040 a007 Real Root Of -479*x^4+623*x^3+145*x^2+481*x+248 4324169720844920 r009 Im(z^3+c),c=-41/102+18/43*I,n=49 4324169731306896 r009 Im(z^3+c),c=-13/29+13/33*I,n=24 4324169750684120 m004 (10*Sqrt[5])/Pi+5*Sqrt[5]*Pi+Tanh[Sqrt[5]*Pi] 4324169763275526 a008 Real Root of x^4-x^3-65*x^2-46*x+586 4324169770466793 r002 30th iterates of z^2 + 4324169771831399 r009 Im(z^3+c),c=-41/102+18/43*I,n=46 4324169796453316 m005 (1/3*5^(1/2)+1/10)/(6*Pi+7/10) 4324169826785077 r005 Im(z^2+c),c=-21/31+2/19*I,n=31 4324169839798067 r008 a(0)=0,K{-n^6,-23-52*n+59*n^2-6*n^3} 4324169840786765 a007 Real Root Of 267*x^4-630*x^3-735*x^2-659*x+464 4324169855825441 m005 (19/20+1/4*5^(1/2))/(2/5*5^(1/2)-6/11) 4324169863251276 l006 ln(6692/6721) 4324169891539797 a001 17711/5778*18^(5/42) 4324169897098311 r002 29th iterates of z^2 + 4324169899474103 m001 (gamma+gamma(3))/(CareFree+HardyLittlewoodC3) 4324169899794513 r002 38i'th iterates of 2*x/(1-x^2) of 4324169913139808 r008 a(0)=0,K{-n^6,-45+79*n^3+18*n^2-75*n} 4324169939178850 r009 Im(z^3+c),c=-19/46+26/63*I,n=62 4324169941170460 m005 (1/2*Zeta(3)+5/12)/(8/11*5^(1/2)+8/11) 4324169942388511 m001 (exp(1)-gamma(1))/(gamma(3)+Cahen) 4324169956821134 m001 (GAMMA(2/3)-Landau)/(Rabbit-Sierpinski) 4324169958177649 r009 Im(z^3+c),c=-11/38+26/55*I,n=5 4324169983232360 m007 (-4/5*gamma-8/5*ln(2)-3/4)/(-3/5*gamma+2/5) 4324169999089071 a007 Real Root Of 396*x^4-183*x^3+967*x^2+230*x-110 4324170004520663 a001 6624/2161*18^(5/42) 4324170012148588 m006 (3*exp(2*Pi)-2/3)/(1/3*exp(Pi)-4) 4324170021004350 a001 121393/39603*18^(5/42) 4324170023409287 a001 317811/103682*18^(5/42) 4324170023760163 a001 832040/271443*18^(5/42) 4324170023811355 a001 311187/101521*18^(5/42) 4324170023842993 a001 1346269/439204*18^(5/42) 4324170023977016 a001 514229/167761*18^(5/42) 4324170024895620 a001 196418/64079*18^(5/42) 4324170025856106 m001 (Paris+PrimesInBinary)/(2^(1/3)+gamma(1)) 4324170030822739 a001 48/281*47^(47/56) 4324170031191828 a001 75025/24476*18^(5/42) 4324170042347213 m001 1/Zeta(1,2)^2/MinimumGamma/exp(sin(Pi/5)) 4324170043923171 m001 Zeta(1,2)+Rabbit+TwinPrimes 4324170049026645 m001 (1-Zeta(1/2))/(2*Pi/GAMMA(5/6)+Champernowne) 4324170057015386 r005 Re(z^2+c),c=-14/23+8/37*I,n=48 4324170062328205 m001 (Landau+MinimumGamma)/arctan(1/2) 4324170067191210 m004 (10*Sqrt[5])/Pi+5*Sqrt[5]*Pi+Coth[Sqrt[5]*Pi] 4324170074346681 a001 28657/9349*18^(5/42) 4324170081352521 r005 Im(z^2+c),c=-5/32+21/34*I,n=45 4324170081675208 b008 E^4/ArcTan[Pi] 4324170083875163 l006 ln(2721/4193) 4324170088350626 r005 Im(z^2+c),c=-11/32+1/15*I,n=13 4324170091456032 r005 Re(z^2+c),c=-5/8+41/237*I,n=32 4324170091797527 m001 Artin*Si(Pi)^CopelandErdos 4324170107198072 r002 50th iterates of z^2 + 4324170112619635 a007 Real Root Of -856*x^4-633*x^3+964*x^2+520*x-324 4324170117010878 a001 3/196418*165580141^(13/24) 4324170121181148 k008 concat of cont frac of 4324170136486610 a007 Real Root Of -70*x^4-280*x^3-18*x^2-473*x+126 4324170138360988 r002 6th iterates of z^2 + 4324170163203219 l006 ln(8305/8672) 4324170203711037 r005 Im(z^2+c),c=37/98+6/61*I,n=4 4324170215301896 r005 Im(z^2+c),c=7/64+23/47*I,n=31 4324170218872430 a003 sin(Pi*1/16)+sin(Pi*9/118) 4324170236792162 h001 (1/11*exp(2)+5/12)/(2/9*exp(2)+7/8) 4324170241321470 r009 Im(z^3+c),c=-5/12+23/56*I,n=56 4324170244733115 r009 Im(z^3+c),c=-3/64+21/41*I,n=10 4324170249175540 m001 (Niven-Trott2nd)/(ln(gamma)-Zeta(1,2)) 4324170254735653 r009 Im(z^3+c),c=-31/64+27/59*I,n=44 4324170268014979 r002 37th iterates of z^2 + 4324170270769968 r009 Im(z^3+c),c=-19/32+7/16*I,n=4 4324170272485825 m001 (2^(1/3)+gamma)/(-Trott2nd+ZetaP(2)) 4324170287337714 m001 (Shi(1)+GAMMA(13/24))/(Gompertz+Trott2nd) 4324170288683113 m001 1/GAMMA(7/12)^2*ArtinRank2/exp(cos(Pi/12))^2 4324170293305602 r002 13th iterates of z^2 + 4324170293905428 a007 Real Root Of -713*x^4+560*x^3+130*x^2+509*x+266 4324170298898736 a003 sin(Pi*13/71)*sin(Pi*31/106) 4324170311116609 r005 Re(z^2+c),c=-61/94+5/22*I,n=33 4324170315119343 h001 (3/4*exp(2)+2/11)/(1/8*exp(2)+2/5) 4324170317900878 r009 Im(z^3+c),c=-11/54+43/59*I,n=2 4324170318924046 r005 Im(z^2+c),c=15/62+21/55*I,n=59 4324170324718787 m001 (-Pi^(1/2)+OneNinth)/(3^(1/3)-Shi(1)) 4324170336584842 r008 a(0)=4,K{-n^6,-69+91*n^3+73*n^2-98*n} 4324170338582295 r002 57th iterates of z^2 + 4324170342478898 a007 Real Root Of 92*x^4+258*x^3-487*x^2+618*x+473 4324170352708698 r002 59th iterates of z^2 + 4324170356084511 m001 arctan(1/2)^2/exp((3^(1/3)))/sinh(1) 4324170360414893 m001 Conway/exp(Cahen)*Kolakoski^2 4324170370134465 a001 10946/3571*18^(5/42) 4324170373176537 r005 Im(z^2+c),c=-1/25+20/33*I,n=56 4324170386810792 r009 Im(z^3+c),c=-19/46+26/63*I,n=59 4324170390163207 r002 62th iterates of z^2 + 4324170420705024 s002 sum(A268259[n]/(n^3*10^n+1),n=1..infinity) 4324170421063613 a007 Real Root Of -184*x^4-193*x^3-223*x^2+792*x+375 4324170431771799 r002 42th iterates of z^2 + 4324170432151765 r005 Re(z^2+c),c=-75/118+7/40*I,n=26 4324170442852076 r002 34th iterates of z^2 + 4324170447654813 r009 Im(z^3+c),c=-5/12+23/56*I,n=50 4324170450228589 a007 Real Root Of 639*x^4-527*x^3+641*x^2+99*x-142 4324170457864651 m001 LambertW(1)/Paris^2*exp(Zeta(9))^2 4324170472383503 m001 CareFree^2*exp(ErdosBorwein)*MadelungNaCl 4324170485085459 r009 Im(z^3+c),c=-19/46+26/63*I,n=58 4324170494387892 m001 (Trott2nd+ZetaP(2))/(ReciprocalLucas-Si(Pi)) 4324170504597602 a001 55/7881196*29^(13/24) 4324170517261899 l006 ln(5503/8480) 4324170518557136 m001 (3^(1/2)+cos(1))/(Ei(1)+ReciprocalFibonacci) 4324170521313117 r009 Im(z^3+c),c=-3/46+17/35*I,n=3 4324170523519536 m005 (1/2*Catalan-6)/(4*Pi+1/4) 4324170528639351 m004 -25*Pi+4*Sqrt[5]*Pi+Cosh[Sqrt[5]*Pi]/6 4324170530375828 r005 Re(z^2+c),c=-13/21+1/19*I,n=25 4324170536855240 r005 Re(z^2+c),c=-5/8+24/91*I,n=38 4324170554083631 r009 Im(z^3+c),c=-19/46+26/63*I,n=56 4324170568289797 m001 Riemann1stZero/(Zeta(1/2)+KomornikLoreti) 4324170581500548 r002 13th iterates of z^2 + 4324170586226423 r002 13th iterates of z^2 + 4324170613976815 r005 Re(z^2+c),c=-9/14+15/98*I,n=23 4324170634544231 r005 Re(z^2+c),c=-11/18+23/99*I,n=37 4324170636209250 g007 Psi(2,1/8)+Psi(2,3/4)-Psi(2,1/9)-Psi(2,6/7) 4324170639010930 r005 Re(z^2+c),c=-73/126+12/41*I,n=35 4324170641226995 r002 23th iterates of z^2 + 4324170650404343 r005 Re(z^2+c),c=-37/66+21/62*I,n=27 4324170658681704 r005 Re(z^2+c),c=-1/29+30/47*I,n=12 4324170672122111 r005 Im(z^2+c),c=8/23+3/11*I,n=61 4324170675709585 g006 -2*Psi(1,8/9)-Psi(1,7/8)-Psi(1,1/6) 4324170676254039 a007 Real Root Of -196*x^4+801*x^3+922*x^2+959*x-645 4324170677082938 r005 Re(z^2+c),c=-11/18+19/113*I,n=63 4324170694794197 r005 Im(z^2+c),c=-19/74+11/18*I,n=60 4324170708465920 a007 Real Root Of -223*x^4-998*x^3+68*x^2+969*x+193 4324170725826569 r005 Re(z^2+c),c=-13/21+2/59*I,n=38 4324170755226957 r005 Re(z^2+c),c=-39/64+7/38*I,n=59 4324170775123973 m001 (TravellingSalesman+Trott)/(Cahen+MertensB2) 4324170788112731 m001 GolombDickman*exp(ErdosBorwein)/FeigenbaumD^2 4324170788597932 r008 a(0)=4,K{-n^6,-5-6*n^3+n^2+5*n} 4324170791723950 r005 Im(z^2+c),c=9/46+25/48*I,n=16 4324170820443907 h001 (9/10*exp(2)+8/9)/(2/11*exp(2)+2/5) 4324170823300691 m005 (1/2*2^(1/2)-3/5)/(8/11*exp(1)+1/2) 4324170833125730 r009 Im(z^3+c),c=-3/98+48/61*I,n=18 4324170834872976 r002 48th iterates of z^2 + 4324170846879511 r005 Re(z^2+c),c=-29/94+46/63*I,n=6 4324170849346777 m005 (1/2*exp(1)-11/12)/(7/10*Zeta(3)+2/11) 4324170853648053 r005 Im(z^2+c),c=-7/60+56/59*I,n=6 4324170854983827 m001 (2^(1/3)-Zeta(1/2))/(Zeta(1,-1)+Kolakoski) 4324170858831862 r002 52th iterates of z^2 + 4324170861869158 r002 50th iterates of z^2 + 4324170862867701 m001 1/GAMMA(2/3)^2*ln(BesselJ(1,1))*cos(Pi/12) 4324170867834225 m001 (exp(1/Pi)+GAMMA(5/6))/(1-BesselK(0,1)) 4324170888200213 r005 Re(z^2+c),c=-3/5+13/51*I,n=57 4324170889118724 r009 Im(z^3+c),c=-1/18+22/43*I,n=21 4324170894488050 r005 Re(z^2+c),c=7/27+1/63*I,n=43 4324170896747498 a007 Real Root Of 130*x^4+511*x^3-22*x^2+900*x+168 4324170906440884 l003 AiryBi(2,54/107) 4324170926422461 r009 Re(z^3+c),c=-31/70+5/37*I,n=39 4324170927703978 a003 -3/2+cos(8/27*Pi)+cos(7/18*Pi)+cos(1/27*Pi) 4324170934059307 p003 LerchPhi(1/3,4,130/187) 4324170938691101 m005 (1/2*2^(1/2)+1/9)/(4*gamma-5/12) 4324170940244862 r005 Re(z^2+c),c=-5/66+20/23*I,n=15 4324170941145888 l006 ln(2782/4287) 4324170956964975 a007 Real Root Of -730*x^4+483*x^3-758*x^2-898*x-182 4324170973814650 m001 (GAMMA(11/12)-Conway)/(Paris+Weierstrass) 4324170979495397 r005 Re(z^2+c),c=13/48+29/50*I,n=11 4324170992296338 m001 (GAMMA(2/3)+Backhouse)/(Si(Pi)-Zeta(3)) 4324171000567324 r005 Re(z^2+c),c=-21/34+6/79*I,n=48 4324171007384629 r002 17th iterates of z^2 + 4324171010491014 r005 Im(z^2+c),c=-19/18+53/195*I,n=12 4324171024704874 r009 Im(z^3+c),c=-19/37*I,n=12 4324171027587309 a001 18/4181*377^(7/18) 4324171029256782 r005 Im(z^2+c),c=-7/10+35/81*I,n=6 4324171030477493 r009 Im(z^3+c),c=-9/122+26/51*I,n=10 4324171049764829 m005 (1/2*2^(1/2)+7/12)/(-1/154+3/22*5^(1/2)) 4324171067216711 a007 Real Root Of 456*x^4+740*x^3-501*x^2-731*x+334 4324171095247336 b008 Coth[2]/E^(7/8) 4324171096667184 r005 Im(z^2+c),c=-13/98+37/44*I,n=44 4324171111811011 k006 concat of cont frac of 4324171119412325 a005 (1/cos(20/111*Pi))^158 4324171124051267 a007 Real Root Of -110*x^4+936*x^3-138*x^2+397*x+277 4324171132925726 a007 Real Root Of 321*x^4-419*x^3+437*x^2-197*x-212 4324171136207277 v002 sum(1/(5^n*(17*n^2-22*n+58)),n=1..infinity) 4324171153301218 q001 1526/3529 4324171159763516 a007 Real Root Of -299*x^4+508*x^3+424*x^2+657*x-394 4324171161466095 a001 1/98209*21^(19/40) 4324171168335749 r009 Im(z^3+c),c=-73/98+10/61*I,n=2 4324171172622471 r009 Im(z^3+c),c=-55/114+7/19*I,n=44 4324171180950250 a007 Real Root Of 288*x^4-525*x^3+233*x^2-312*x-231 4324171190658771 m005 (1/6*exp(1)+5)/(2/3*Pi-5/6) 4324171191111163 k006 concat of cont frac of 4324171195090994 r002 46th iterates of z^2 + 4324171202186445 r005 Re(z^2+c),c=33/106+7/13*I,n=63 4324171211280410 m005 (9/8+1/4*5^(1/2))/(2/5*5^(1/2)+3) 4324171211312012 k006 concat of cont frac of 4324171212231391 k008 concat of cont frac of 4324171212426202 k008 concat of cont frac of 4324171219183897 r005 Re(z^2+c),c=-27/44+1/14*I,n=30 4324171225801278 a001 4/4052739537881*89^(16/19) 4324171226228399 a007 Real Root Of -135*x^4-371*x^3+743*x^2-901*x-586 4324171228229282 m001 1/Salem^2/Porter*ln(Catalan) 4324171236045217 r005 Im(z^2+c),c=-31/28+1/4*I,n=54 4324171270070701 r002 41th iterates of z^2 + 4324171272906240 r004 Im(z^2+c),c=-1/12-11/18*I,z(0)=I,n=60 4324171278749239 r005 Re(z^2+c),c=-75/122+3/23*I,n=53 4324171281131156 k006 concat of cont frac of 4324171281711123 k007 concat of cont frac of 4324171298472322 s002 sum(A136020[n]/(n^3*exp(n)-1),n=1..infinity) 4324171302756940 a001 610/15127*29^(31/44) 4324171302774996 r005 Re(z^2+c),c=-13/21+2/53*I,n=61 4324171305372200 a003 sin(Pi*13/95)/sin(Pi*41/99) 4324171306265842 a007 Real Root Of 231*x^4+738*x^3-926*x^2+867*x-30 4324171307801936 m001 (-Gompertz+OneNinth)/(3^(1/2)-BesselK(1,1)) 4324171311015975 r005 Re(z^2+c),c=-14/23+7/31*I,n=29 4324171321876049 g002 2*Psi(5/8)+Psi(2/7)-Psi(4/9) 4324171324231131 k007 concat of cont frac of 4324171328210121 r005 Im(z^2+c),c=-7/6+107/245*I,n=3 4324171334778431 m001 ln(GAMMA(5/6))/GAMMA(2/3)^2*cos(Pi/5)^2 4324171336985080 r009 Re(z^3+c),c=-43/82+7/25*I,n=33 4324171340340488 r002 33th iterates of z^2 + 4324171355836287 l006 ln(5625/8668) 4324171360013687 a007 Real Root Of 660*x^4-498*x^3+935*x^2-661*x-524 4324171367260594 r005 Im(z^2+c),c=-11/14+4/235*I,n=55 4324171381973838 r009 Re(z^3+c),c=-1/94+23/32*I,n=50 4324171382232736 h001 (-8*exp(2)-9)/(-7*exp(-1)+1) 4324171386002520 a001 15127/3*75025^(23/58) 4324171389992008 m005 (1/2*Zeta(3)+7/9)/(5/6*Catalan-4/9) 4324171392870830 r002 33th iterates of z^2 + 4324171398934038 m005 (1/3*3^(1/2)-1/5)/(69/22+5/2*5^(1/2)) 4324171400488287 m001 (-GAMMA(5/6)+4)/(GAMMA(13/24)+5) 4324171404332599 r002 22th iterates of z^2 + 4324171413121541 k006 concat of cont frac of 4324171441608801 m005 (1/2*gamma+11/12)/(5/11*3^(1/2)+2) 4324171462306141 a007 Real Root Of 167*x^4-673*x^3+443*x^2-497*x-358 4324171464892457 m005 (1/3*5^(1/2)-2/3)/(6/11*3^(1/2)+7/8) 4324171468617074 r002 3th iterates of z^2 + 4324171476847053 a007 Real Root Of -219*x^4-751*x^3+974*x^2+636*x+385 4324171482856234 r005 Re(z^2+c),c=-19/30+28/97*I,n=45 4324171483378613 a007 Real Root Of 646*x^4-112*x^3+349*x^2-509*x-317 4324171485990425 r002 12th iterates of z^2 + 4324171486477797 a001 1597/18*7^(35/43) 4324171502001056 a007 Real Root Of 788*x^4-635*x^3-703*x^2+63*x+128 4324171517111111 k007 concat of cont frac of 4324171518667369 r005 Re(z^2+c),c=-61/106+21/62*I,n=26 4324171521171511 k007 concat of cont frac of 4324171529085621 r005 Re(z^2+c),c=5/74+19/24*I,n=3 4324171539547728 a007 Real Root Of 900*x^4-305*x^3-880*x^2-699*x+460 4324171547720332 r009 Im(z^3+c),c=-1/60+27/53*I,n=7 4324171561420312 m001 FeigenbaumC*(Zeta(3)-cos(1/12*Pi)) 4324171570186861 r005 Re(z^2+c),c=-61/102+15/58*I,n=46 4324171597500440 a001 1/7*47^(31/35) 4324171615024846 a005 (1/cos(9/154*Pi))^1309 4324171617987184 h001 (2/7*exp(1)+3/8)/(6/7*exp(1)+1/3) 4324171626529266 a001 47/10946*701408733^(19/24) 4324171657154867 r002 52th iterates of z^2 + 4324171670409151 r002 42th iterates of z^2 + 4324171675323504 r002 29th iterates of z^2 + 4324171681898933 m001 (Pi+3^(1/2))/(KomornikLoreti-TwinPrimes) 4324171683655857 r009 Im(z^3+c),c=-37/70+11/28*I,n=25 4324171717324511 k006 concat of cont frac of 4324171718908986 s002 sum(A007849[n]/(n^2*10^n-1),n=1..infinity) 4324171725360265 m001 HeathBrownMoroz/(2^(1/3)+KomornikLoreti) 4324171738683526 r005 Im(z^2+c),c=1/12+28/57*I,n=8 4324171742061060 r005 Re(z^2+c),c=-15/82+41/64*I,n=20 4324171742380164 a007 Real Root Of -211*x^4+837*x^3-753*x^2+967*x+634 4324171758154474 a007 Real Root Of 238*x^4+768*x^3-988*x^2+779*x+727 4324171761628986 l006 ln(2843/4381) 4324171761984716 m001 (-cos(1)+2)/(-GolombDickman+4) 4324171762827850 h005 exp(cos(Pi*12/55)+sin(Pi*8/33)) 4324171767021763 a003 sin(Pi*23/93)-sin(Pi*31/116) 4324171768314795 a001 47/196418*17711^(23/30) 4324171778961990 r009 Im(z^3+c),c=-5/12+23/56*I,n=53 4324171780211741 r005 Re(z^2+c),c=-5/8+53/209*I,n=42 4324171784544588 a007 Real Root Of 711*x^4+111*x^3-462*x^2-822*x+408 4324171791298191 m001 BesselI(0,1)^exp(Pi)/Landau 4324171800734088 s002 sum(A018714[n]/(n^2*exp(n)+1),n=1..infinity) 4324171809849214 h002 exp(17^(9/10)-17^(6/7)) 4324171809849214 h007 exp(17^(9/10)-17^(6/7)) 4324171810879514 r005 Re(z^2+c),c=-53/86+1/63*I,n=31 4324171819516295 a005 (1/sin(103/231*Pi))^418 4324171833571309 r005 Im(z^2+c),c=-17/58+32/63*I,n=4 4324171835499413 m005 (1/2*gamma+6)/(4/9*gamma-1/9) 4324171842116875 r009 Im(z^3+c),c=-3/86+18/35*I,n=8 4324171848537601 r002 7th iterates of z^2 + 4324171853698368 r009 Im(z^3+c),c=-7/78+19/24*I,n=50 4324171880726720 s002 sum(A021953[n]/((exp(n)-1)/n),n=1..infinity) 4324171883280682 a007 Real Root Of 385*x^4+443*x^3+751*x^2-874*x-496 4324171884588853 m005 (1/3*Catalan-2/9)/(5/11*gamma-5/11) 4324171900589633 r002 27th iterates of z^2 + 4324171905688189 r009 Re(z^3+c),c=-9/23+5/61*I,n=10 4324171905976671 r002 29th iterates of z^2 + 4324171908483748 a007 Real Root Of 109*x^4-684*x^3-74*x^2-434*x+253 4324171923299440 r005 Re(z^2+c),c=-25/44+9/26*I,n=43 4324171937164903 r009 Re(z^3+c),c=-2/27+29/48*I,n=22 4324171942189992 a001 105937/41*29^(41/49) 4324171946847418 r002 41th iterates of z^2 + 4324171969455947 r004 Re(z^2+c),c=7/30+2/5*I,z(0)=exp(5/8*I*Pi),n=27 4324171976658295 a007 Real Root Of 298*x^4-875*x^3+786*x^2-150*x-293 4324171981339667 m001 BesselI(1,2)*HeathBrownMoroz^BesselI(0,2) 4324171981418441 p002 log(12^(7/4)-2^(9/10)) 4324171985816949 a007 Real Root Of 14*x^4+625*x^3+865*x^2+734*x+375 4324171988482733 a007 Real Root Of 624*x^4-538*x^3+29*x^2-662*x-357 4324171989462159 m001 (gamma+BesselI(0,1))/(-2*Pi/GAMMA(5/6)+Conway) 4324171989933880 r009 Re(z^3+c),c=-55/114+5/46*I,n=17 4324171993955617 r009 Re(z^3+c),c=-2/23+12/19*I,n=12 4324171997448067 r009 Re(z^3+c),c=-25/48+14/61*I,n=49 4324172006135899 h001 (-7*exp(1/2)-4)/(-3*exp(-2)+4) 4324172027691446 m001 (Psi(2,1/3)-Zeta(1,2))/(Landau+Rabbit) 4324172037798209 r002 40th iterates of z^2 + 4324172046430357 b008 -6+EulerGamma+Log[3] 4324172061066614 a007 Real Root Of 189*x^4-656*x^3-814*x^2-739*x-227 4324172079938226 r004 Im(z^2+c),c=-43/38-1/15*I,z(0)=-1,n=3 4324172085920582 m001 (Shi(1)+Artin)/(GolombDickman+Khinchin) 4324172092563934 m001 (Ei(1)*OneNinth+MertensB1)/OneNinth 4324172096867292 m001 ln(Riemann1stZero)^2/Backhouse^2/BesselJ(0,1) 4324172099788890 r005 Re(z^2+c),c=-1/10+37/57*I,n=57 4324172111356322 m001 (Sarnak+Trott2nd)/(2^(1/2)+FellerTornier) 4324172111402500 a001 10749957122/21*4052739537881^(13/15) 4324172111402500 a001 5600748293801/21*2971215073^(13/15) 4324172116045529 a003 sin(Pi*4/113)+sin(Pi*5/48) 4324172121198322 a007 Real Root Of -944*x^4-41*x^3+994*x^2+119*x-201 4324172122533364 m001 (exp(1)+gamma(2))/(gamma(3)+GolombDickman) 4324172123911211 k007 concat of cont frac of 4324172126273801 r002 29th iterates of z^2 + 4324172127439799 a001 7/365435296162*55^(7/9) 4324172129066377 m001 (Conway-Thue)/(gamma(3)+GAMMA(23/24)) 4324172138470462 a007 Real Root Of -272*x^4-976*x^3+639*x^2-885*x+410 4324172143656224 m001 ln(GAMMA(23/24))*Magata^2*Zeta(1/2) 4324172143962935 r005 Im(z^2+c),c=13/48+6/17*I,n=56 4324172150902736 m001 (ThueMorse-exp(-Pi))^sin(1) 4324172156103532 r002 4th iterates of z^2 + 4324172158807312 l006 ln(5747/8856) 4324172159813367 r005 Im(z^2+c),c=5/66+23/47*I,n=16 4324172164151341 g006 Psi(1,8/9)+Psi(1,2/9)-Psi(1,9/10)-Psi(1,1/4) 4324172172363215 a007 Real Root Of -990*x^4-238*x^3-336*x^2+506*x+297 4324172182121911 k009 concat of cont frac of 4324172200144549 r002 13th iterates of z^2 + 4324172213878408 a007 Real Root Of 502*x^4-593*x^3+878*x^2+286*x-106 4324172214594056 r005 Im(z^2+c),c=13/42+7/25*I,n=24 4324172221316211 k009 concat of cont frac of 4324172231129349 k006 concat of cont frac of 4324172233022200 m005 (1/2*exp(1)-7/8)/(3/10*3^(1/2)+3/5) 4324172236046032 m005 (1/3*exp(1)+1/9)/(10/11*3^(1/2)+7/9) 4324172240096143 r005 Re(z^2+c),c=-15/26+32/115*I,n=28 4324172261608426 r005 Re(z^2+c),c=-19/34+25/96*I,n=17 4324172265245690 r005 Im(z^2+c),c=-7/6+53/233*I,n=48 4324172298895385 m001 1/Bloch^2/Backhouse^2/exp(Kolakoski)^2 4324172316299267 a007 Real Root Of 555*x^4+502*x^3+893*x^2-574*x-394 4324172330686843 r005 Re(z^2+c),c=-39/56+7/24*I,n=64 4324172343125305 a007 Real Root Of -19*x^4+550*x^3+497*x^2+514*x-359 4324172354962556 r005 Im(z^2+c),c=-93/74+29/56*I,n=3 4324172376545349 m001 GAMMA(5/24)/exp(Rabbit)*sqrt(2)^2 4324172382548666 r005 Re(z^2+c),c=-5/54+27/41*I,n=29 4324172394634504 a001 47/123*(1/2*5^(1/2)+1/2)^21*123^(7/22) 4324172397495160 a001 4181/1364*18^(5/42) 4324172404728555 h001 (4/7*exp(2)+7/10)/(1/7*exp(1)+3/4) 4324172407444964 a007 Real Root Of 711*x^4+384*x^3-909*x^2-504*x+332 4324172409804275 a007 Real Root Of -380*x^4+795*x^3+703*x^2+776*x-518 4324172413141728 a001 1364/75025*55^(8/37) 4324172438150975 r002 36th iterates of z^2 + 4324172438683503 r005 Im(z^2+c),c=-11/114+33/62*I,n=7 4324172445171305 r002 53th iterates of z^2 + 4324172457904660 m001 (-ln(2^(1/2)+1)+Pi^(1/2))/(Catalan+ln(Pi)) 4324172469219003 r009 Im(z^3+c),c=-13/28+21/55*I,n=43 4324172489061168 r009 Im(z^3+c),c=-9/32+26/57*I,n=7 4324172502055791 r005 Im(z^2+c),c=23/114+13/31*I,n=44 4324172506512224 r002 7th iterates of z^2 + 4324172509794508 r005 Im(z^2+c),c=5/17+11/34*I,n=36 4324172532487897 a007 Real Root Of 497*x^4+569*x^3+169*x^2-965*x-42 4324172542121583 m001 (ArtinRank2+Landau)/(2^(1/3)+ln(5)) 4324172547642690 l006 ln(2904/4475) 4324172558401324 m005 (1/2*Zeta(3)-1/8)/(4/7*3^(1/2)+1/9) 4324172558874066 p003 LerchPhi(1/1024,1,523/226) 4324172566133721 a007 Real Root Of -90*x^4-469*x^3-488*x^2-770*x-659 4324172602527053 h001 (3/4*exp(1)+8/9)/(1/9*exp(1)+3/8) 4324172614561483 a008 Real Root of (2+3*x-2*x^2-2*x^3+4*x^4+x^5) 4324172620496652 m005 (1/2*5^(1/2)-10/11)/(-13/24+11/24*5^(1/2)) 4324172625508725 a005 (1/sin(52/159*Pi))^424 4324172642544250 r002 36th iterates of z^2 + 4324172647412277 a007 Real Root Of 160*x^4+594*x^3-429*x^2+20*x+195 4324172653197968 a007 Real Root Of 40*x^4-353*x^3+681*x^2-448*x-351 4324172655731853 m005 (1/3*Catalan+1/11)/(1/7*2^(1/2)+5/7) 4324172674925165 r009 Re(z^3+c),c=-23/52+7/52*I,n=40 4324172678755710 m001 (-3^(1/2)+3)/(GAMMA(11/24)+1) 4324172679353790 m001 exp(Pi)^(Pi^(1/2))/(exp(Pi)^Mills) 4324172683863837 a007 Real Root Of 206*x^4+993*x^3+313*x^2-751*x-835 4324172685571691 r005 Im(z^2+c),c=-85/126+13/59*I,n=21 4324172696048752 m001 (ArtinRank2-Zeta(1,-1)*OneNinth)/Zeta(1,-1) 4324172702224528 m001 Chi(1)^BesselI(1,2)/KhinchinHarmonic 4324172708507880 r005 Re(z^2+c),c=2/21+19/31*I,n=26 4324172716596541 r009 Im(z^3+c),c=-59/122+3/7*I,n=19 4324172722911373 k007 concat of cont frac of 4324172728385348 r009 Im(z^3+c),c=-27/62+2/5*I,n=45 4324172738316039 v002 sum(1/(3^n+(15*n^2-n+29)),n=1..infinity) 4324172742568704 q001 771/1783 4324172759119436 r009 Im(z^3+c),c=-10/27+31/51*I,n=5 4324172760560004 m001 (BesselJ(0,1)-CareFree)/(Mills+Paris) 4324172769826640 m001 1/Tribonacci^2/ln(Paris)^2/GAMMA(5/6)^2 4324172781191736 r002 39th iterates of z^2 + 4324172783958592 h001 (4/11*exp(2)+3/8)/(10/11*exp(2)+4/11) 4324172788963493 m005 (1/2*2^(1/2)+2)/(2/9*exp(1)-2/3) 4324172791811447 r005 Im(z^2+c),c=3/74+29/50*I,n=47 4324172794619084 r002 50th iterates of z^2 + 4324172797647905 r002 6th iterates of z^2 + 4324172800578590 a007 Real Root Of 678*x^4-182*x^3+139*x^2-413*x-243 4324172801042537 r002 53th iterates of z^2 + 4324172801223421 k007 concat of cont frac of 4324172801505801 h003 exp(Pi*(19^(2/7)+2^(6/7))) 4324172801505801 h008 exp(Pi*(19^(2/7)+2^(6/7))) 4324172810408876 r002 31th iterates of z^2 + 4324172811129146 r005 Im(z^2+c),c=7/46+6/13*I,n=62 4324172833049961 m005 (1/2*Zeta(3)+8/9)/(exp(1)+8/11) 4324172843092449 r005 Re(z^2+c),c=-7/13+13/27*I,n=42 4324172845228374 m001 Pi/(ln(2)/ln(10)/cos(1/5*Pi)-ln(3)) 4324172860679570 r009 Im(z^3+c),c=-23/50+17/47*I,n=3 4324172864849709 m008 (1/3*Pi^3-2/5)/(3/4*Pi^5+1/4) 4324172870349574 a007 Real Root Of 92*x^4+167*x^3-979*x^2-134*x-937 4324172872043463 a007 Real Root Of -963*x^4+26*x^3+562*x^2+713*x+239 4324172889627500 r005 Re(z^2+c),c=-21/34+1/13*I,n=63 4324172890365770 r009 Im(z^3+c),c=-7/122+25/49*I,n=7 4324172892030167 m009 (3/4*Psi(1,3/4)+2/5)/(2*Psi(1,3/4)+1/4) 4324172901648369 m001 (Kolakoski-Salem)/(Zeta(1,2)+GAMMA(23/24)) 4324172917214804 a007 Real Root Of -558*x^4-442*x^3-969*x^2+902*x+555 4324172917595017 m001 (2^(1/3)+GaussAGM)/(PlouffeB+ZetaQ(3)) 4324172928395259 l006 ln(5869/9044) 4324172938134971 a003 cos(Pi*7/69)*cos(Pi*36/103) 4324172944600439 m001 (MadelungNaCl+MertensB2)/Cahen 4324172963204638 r002 57th iterates of z^2 + 4324172967726119 m001 (cos(1)-exp(Pi))/(-ln(3)+Stephens) 4324172997004892 r005 Re(z^2+c),c=-65/106+7/51*I,n=43 4324173032538826 r002 48th iterates of z^2 + 4324173045561242 a001 89/322*521^(21/26) 4324173066065054 m001 Grothendieck^Totient*ZetaQ(2)^Totient 4324173067757108 m001 (GAMMA(2/3)-Shi(1))/(-ln(Pi)+FeigenbaumC) 4324173072700527 m001 (GAMMA(3/4)-ln(5))/(PlouffeB+ThueMorse) 4324173094011734 r002 30th iterates of z^2 + 4324173094195457 a007 Real Root Of 24*x^4-5*x^3-418*x^2+236*x+41 4324173107298719 m001 1/exp(FeigenbaumC)^2*Paris/BesselJ(0,1)^2 4324173121453949 m005 (1/2*3^(1/2)-4/5)/(79/144+7/16*5^(1/2)) 4324173136121111 k006 concat of cont frac of 4324173137795146 r005 Re(z^2+c),c=-29/102+34/57*I,n=18 4324173149394537 m005 (1/2*exp(1)+4)/(13/15+1/6*5^(1/2)) 4324173160698707 l006 ln(3847/4017) 4324173161380430 r009 Im(z^3+c),c=-33/64+15/43*I,n=37 4324173169968072 r005 Im(z^2+c),c=3/46+29/55*I,n=63 4324173169986417 a001 21/29*6643838879^(19/24) 4324173170249865 r009 Re(z^3+c),c=-15/38+4/47*I,n=6 4324173170317970 r005 Im(z^2+c),c=-29/34+25/103*I,n=13 4324173178300426 r005 Re(z^2+c),c=-157/118+3/58*I,n=14 4324173182542971 r005 Re(z^2+c),c=-51/106+31/50*I,n=63 4324173192731449 a007 Real Root Of -245*x^4-925*x^3+507*x^2-292*x+126 4324173192910959 m001 Zeta(1,-1)*(2^(1/3)+GAMMA(2/3)) 4324173204376998 r002 32th iterates of z^2 + 4324173225744755 m001 exp(1)^KomornikLoreti-exp(1/2) 4324173235036899 m005 (1/2*Zeta(3)-3)/(31/72+1/18*5^(1/2)) 4324173276734896 r005 Re(z^2+c),c=-1/86+10/11*I,n=7 4324173281230444 r005 Re(z^2+c),c=-23/38+6/35*I,n=23 4324173301314456 l006 ln(2965/4569) 4324173307299936 r005 Re(z^2+c),c=-41/64+15/56*I,n=16 4324173311683323 r005 Im(z^2+c),c=1/122+25/42*I,n=62 4324173316182246 a007 Real Root Of 739*x^4-725*x^3-998*x^2-975*x+641 4324173329688180 m005 (1/2*Catalan+3/8)/(8/11*3^(1/2)+2/3) 4324173339901851 r009 Im(z^3+c),c=-19/46+26/63*I,n=55 4324173342190326 r009 Im(z^3+c),c=-8/17+17/45*I,n=60 4324173346306524 r005 Im(z^2+c),c=-121/122+15/47*I,n=6 4324173357423192 r002 64th iterates of z^2 + 4324173358869628 m001 (-sin(Pi/12)+1/2)/(-3^(1/3)+2) 4324173367426880 a007 Real Root Of 196*x^4-9*x^3+335*x^2-277*x-190 4324173380107581 m001 (MertensB2+ZetaQ(3))/(Kac+KomornikLoreti) 4324173381270999 m005 (1/3*gamma-1/9)/(7/11*3^(1/2)+7/9) 4324173412114044 r002 61th iterates of z^2 + 4324173419107083 r009 Im(z^3+c),c=-3/34+50/63*I,n=10 4324173434803416 m005 (1/3*Zeta(3)+3/7)/(4*Zeta(3)-5) 4324173443388495 a001 9/1762289*12586269025^(7/18) 4324173443447181 a001 18/121393*2178309^(7/18) 4324173449680960 m001 LandauRamanujan*(HeathBrownMoroz-LambertW(1)) 4324173452397133 m001 1/ln(Riemann2ndZero)*log(2+sqrt(3)) 4324173471645118 r005 Im(z^2+c),c=-1/11+34/59*I,n=23 4324173480774025 r005 Im(z^2+c),c=27/86+18/59*I,n=32 4324173490550007 r009 Im(z^3+c),c=-15/86+2/51*I,n=3 4324173508612043 a007 Real Root Of -212*x^4+252*x^3-999*x^2-598*x-44 4324173512963016 a005 (1/cos(5/212*Pi))^1371 4324173524807149 m001 (MadelungNaCl-Sarnak)/(Zeta(3)-FeigenbaumMu) 4324173526466179 a001 7/55*1346269^(37/41) 4324173531857097 r002 56th iterates of z^2 + 4324173534852984 p003 LerchPhi(1/2,2,313/182) 4324173551653449 h001 (3/4*exp(2)+7/10)/(2/11*exp(2)+1/10) 4324173554876394 b008 19*AiryBi[9/2] 4324173561123997 m001 GAMMA(23/24)+FeigenbaumC+Porter 4324173562647779 a007 Real Root Of -82*x^4-368*x^3-175*x^2-655*x-645 4324173581721702 m005 (1/2*gamma-1/3)/(7/12*Catalan+1/2) 4324173587051642 a007 Real Root Of 246*x^4-661*x^3+310*x^2-777*x-456 4324173589915060 r005 Im(z^2+c),c=-7/6+9/131*I,n=7 4324173598216320 m001 Ei(1)^2*FeigenbaumB/ln(Zeta(7))^2 4324173605238707 r005 Re(z^2+c),c=8/23+7/37*I,n=3 4324173613133418 r009 Im(z^3+c),c=-37/90+12/29*I,n=38 4324173615619356 a001 11/233*17711^(12/53) 4324173616240870 m005 (3/5*gamma-1/6)/(3*exp(1)-4) 4324173621111586 m001 (1+Zeta(1,-1))/(-GAMMA(13/24)+FeigenbaumMu) 4324173637339763 a005 (1/sin(40/121*Pi))^381 4324173661944551 a007 Real Root Of -289*x^4+121*x^3+673*x^2+422*x-308 4324173662185719 a001 3*(1/2*5^(1/2)+1/2)^32*4^(18/23) 4324173666639558 l006 ln(5991/9232) 4324173669455828 a007 Real Root Of 845*x^4-337*x^3+877*x^2+388*x-53 4324173670494414 m005 (13/12+1/3*5^(1/2))/(1/4*Catalan+4) 4324173679578137 m001 (ArtinRank2-Porter)/(Totient+TreeGrowth2nd) 4324173689046444 r005 Im(z^2+c),c=23/122+25/58*I,n=62 4324173705845219 r005 Im(z^2+c),c=-2/3+54/155*I,n=52 4324173706945522 r005 Im(z^2+c),c=3/34+17/33*I,n=39 4324173724597808 r009 Im(z^3+c),c=-1/8+37/46*I,n=8 4324173729588179 r009 Im(z^3+c),c=-13/34+3/7*I,n=28 4324173734051387 r002 23th iterates of z^2 + 4324173742749548 g002 Psi(7/12)+Psi(4/11)+Psi(7/9)-Psi(8/11) 4324173744623159 r005 Re(z^2+c),c=-41/70+13/61*I,n=23 4324173759073498 a007 Real Root Of 784*x^4+265*x^3-47*x^2-469*x-200 4324173762498502 m002 -(E^Pi/Pi)+6*Pi^4*Csch[Pi] 4324173766512288 m009 (3/8*Pi^2-4)/(32*Catalan+4*Pi^2+1/3) 4324173768150052 r002 12th iterates of z^2 + 4324173774308115 a007 Real Root Of 64*x^4+320*x^3+140*x^2-97*x+460 4324173786408360 a007 Real Root Of -222*x^4+768*x^3+128*x^2+391*x+215 4324173791948376 r005 Im(z^2+c),c=41/118+4/23*I,n=25 4324173795275670 m001 3^(1/2)-Backhouse^ArtinRank2 4324173811450513 r002 17th iterates of z^2 + 4324173817109078 r005 Im(z^2+c),c=-12/19+3/62*I,n=16 4324173835419313 a007 Real Root Of 723*x^4-339*x^3-595*x^2-605*x+375 4324173836235920 r009 Re(z^3+c),c=-3/40+21/34*I,n=24 4324173837814639 m005 (1/2*Zeta(3)+1/2)/(2*Catalan+5/7) 4324173846056804 r005 Re(z^2+c),c=-27/56+15/53*I,n=6 4324173851569752 a001 76/4181*233^(25/43) 4324173888427642 r002 37th iterates of z^2 + 4324173892966662 a007 Real Root Of 289*x^4-350*x^3+180*x^2-467*x-274 4324173894795368 m001 Tribonacci/Sarnak/sin(1/5*Pi) 4324173911323720 m001 MertensB1^2/ln(FeigenbaumDelta)^2*GAMMA(3/4)^2 4324173915003460 a007 Real Root Of -544*x^4-298*x^3+751*x^2+885*x-480 4324173951078565 r005 Im(z^2+c),c=-10/13+13/57*I,n=7 4324173956543839 m001 Grothendieck^(ln(5)/HardyLittlewoodC3) 4324173968370735 a007 Real Root Of -404*x^4-269*x^3+862*x^2+552*x-364 4324173969226631 m001 CopelandErdos/(GAMMA(2/3)-cos(1/5*Pi)) 4324173970472816 r005 Im(z^2+c),c=-15/26+7/89*I,n=44 4324173972605277 r002 22th iterates of z^2 + 4324173984274344 r005 Re(z^2+c),c=-43/70+8/59*I,n=59 4324173984429968 a007 Real Root Of -225*x^4-154*x^3-666*x^2+964*x-272 4324173991168825 a007 Real Root Of -828*x^4+575*x^3+662*x^2+490*x+20 4324173991498311 a007 Real Root Of -927*x^4-260*x^3+253*x^2+590*x-249 4324173995872044 r005 Im(z^2+c),c=3/26+24/49*I,n=46 4324174000112817 r005 Im(z^2+c),c=-39/106+39/56*I,n=3 4324174003887286 b008 27*Sqrt[Log[13]] 4324174010477075 r005 Re(z^2+c),c=-75/122+9/64*I,n=42 4324174017281770 r009 Im(z^3+c),c=-61/126+22/59*I,n=34 4324174024600196 l006 ln(3026/4663) 4324174029874168 s001 sum(1/10^(n-1)*A029647[n]/n!,n=1..infinity) 4324174035510860 a005 (1/cos(39/175*Pi))^160 4324174039639292 a007 Real Root Of -162*x^4-735*x^3-196*x^2-215*x-53 4324174046451227 r005 Im(z^2+c),c=23/64+10/59*I,n=52 4324174060612899 a007 Real Root Of 208*x^4-476*x^3-606*x^2-940*x+551 4324174069588377 r005 Re(z^2+c),c=-21/34+6/127*I,n=34 4324174078065942 r002 16th iterates of z^2 + 4324174080998855 a007 Real Root Of 181*x^4+561*x^3-747*x^2+919*x+18 4324174087356688 r002 50th iterates of z^2 + 4324174093428900 r005 Re(z^2+c),c=-11/18+3/22*I,n=37 4324174096081151 m001 FeigenbaumMu*(KomornikLoreti-Stephens) 4324174123432475 r005 Im(z^2+c),c=-137/118+1/18*I,n=46 4324174126805289 h001 (2/9*exp(2)+2/3)/(7/10*exp(2)+1/6) 4324174127605224 r002 8i'th iterates of 2*x/(1-x^2) of 4324174131436532 s001 sum(exp(-3*Pi/5)^n*A088528[n],n=1..infinity) 4324174149008920 h001 (1/6*exp(1)+1/11)/(1/5*exp(1)+5/7) 4324174152343672 r008 a(0)=5,K{-n^6,1+61*n^2-60*n} 4324174169538953 r009 Re(z^3+c),c=-19/36+13/54*I,n=28 4324174181201212 s002 sum(A241968[n]/(2^n-1),n=1..infinity) 4324174181543603 m001 BesselK(0,1)/ln(MertensB1)*GAMMA(19/24)^2 4324174199051255 h001 (1/3*exp(2)+3/5)/(6/7*exp(2)+3/4) 4324174204231341 m001 (ln(2)+gamma(2))/(Conway-MinimumGamma) 4324174204741065 r002 44th iterates of z^2 + 4324174220067239 a007 Real Root Of -151*x^4+340*x^3-754*x^2+587*x-24 4324174222638600 m001 Rabbit^2/GaussKuzminWirsing*ln(sinh(1))^2 4324174238505823 a007 Real Root Of -936*x^4+420*x^3-194*x^2+939*x+509 4324174241620423 m004 -1+(78125*Csch[Sqrt[5]*Pi])/Pi 4324174259324624 m005 (-18/5+2/5*5^(1/2))/(4*2^(1/2)+3/5) 4324174264135381 r002 11th iterates of z^2 + 4324174280827950 r009 Re(z^3+c),c=-1/126+12/17*I,n=59 4324174288086466 m001 cos(1)/(sin(1/5*Pi)+Robbin) 4324174294321308 b008 Sech[4*Gudermannian[4]] 4324174299195115 q001 1558/3603 4324174312637393 r004 Im(z^2+c),c=-15/16-3/8*I,z(0)=-1,n=14 4324174331614677 m001 (2^(1/2)+Ei(1,1))/(exp(-1/2*Pi)+FeigenbaumMu) 4324174360290052 r009 Im(z^3+c),c=-5/21+27/56*I,n=26 4324174371029364 r009 Re(z^3+c),c=-33/62+21/53*I,n=64 4324174371473452 r005 Im(z^2+c),c=25/102+11/29*I,n=48 4324174375416833 l006 ln(6113/9420) 4324174383561306 a001 119218851371/55*2584^(8/21) 4324174390272551 r002 41th iterates of z^2 + 4324174398379174 a001 3571/196418*55^(8/37) 4324174399873842 m004 (-78125*Csch[Sqrt[5]*Pi])/Pi+Tanh[Sqrt[5]*Pi] 4324174407627571 r009 Im(z^3+c),c=-41/102+18/43*I,n=48 4324174409730622 r002 3th iterates of z^2 + 4324174432903544 a001 54018521/55*1548008755920^(8/21) 4324174432903545 a001 230701876/5*63245986^(8/21) 4324174433486051 r005 Im(z^2+c),c=1/26+18/31*I,n=50 4324174436611400 r005 Im(z^2+c),c=-30/29+13/50*I,n=20 4324174444435510 m001 (FeigenbaumMu-ThueMorse)/(Zeta(3)-Bloch) 4324174444576409 m005 (1/3*Zeta(3)-1/5)/(2*3^(1/2)-3) 4324174456098717 m001 (MinimumGamma-ZetaP(3))/(ln(Pi)+FeigenbaumC) 4324174465702672 a008 Real Root of x^4+22*x^2-761 4324174498110502 m009 (1/5*Pi^2+5)/(1/5*Psi(1,2/3)+1) 4324174502558858 h001 (8/9*exp(2)+9/11)/(4/9*exp(1)+1/2) 4324174512341869 r002 11th iterates of z^2 + 4324174517124011 a007 Real Root Of -587*x^4+732*x^3+739*x^2+449*x-371 4324174562437298 a001 11/701408733*2178309^(5/22) 4324174562437339 a001 11/7778742049*86267571272^(5/22) 4324174574170464 a007 Real Root Of -436*x^4-139*x^3+903*x^2+871*x-519 4324174599982260 r009 Re(z^3+c),c=-3/94+32/39*I,n=4 4324174610380275 r009 Im(z^3+c),c=-19/46+26/63*I,n=31 4324174616382516 r005 Im(z^2+c),c=13/106+12/25*I,n=27 4324174617589958 m001 1/Rabbit^2/Backhouse*exp(gamma)^2 4324174627149292 r005 Re(z^2+c),c=-13/21+8/47*I,n=24 4324174636038485 m001 GAMMA(1/12)^2/ln(FeigenbaumD)/GAMMA(1/6)^2 4324174657461879 m001 (exp(Pi)+gamma(1))/(Magata+Tetranacci) 4324174669141908 r005 Re(z^2+c),c=-2/3+31/119*I,n=48 4324174680462768 a003 cos(Pi*36/113)/cos(Pi*52/113) 4324174688021414 a001 9349/514229*55^(8/37) 4324174711868681 m001 ThueMorse/(GAMMA(19/24)-GAMMA(5/12)) 4324174716805035 m001 Zeta(5)^ln(Pi)*arctan(1/2)^ln(Pi) 4324174719301221 l006 ln(3087/4757) 4324174727051461 m001 1/GAMMA(1/12)/ln(LaplaceLimit)^2*sin(1) 4324174729939194 r005 Im(z^2+c),c=1/32+31/53*I,n=53 4324174730279647 a001 24476/1346269*55^(8/37) 4324174737403687 r005 Im(z^2+c),c=19/122+21/46*I,n=32 4324174740255463 a001 13201/726103*55^(8/37) 4324174756396672 a001 15127/832040*55^(8/37) 4324174775185641 r005 Re(z^2+c),c=-73/118+6/43*I,n=36 4324174795383361 a007 Real Root Of -221*x^4-895*x^3+226*x^2-353*x-849 4324174806425545 r005 Im(z^2+c),c=-9/14+89/209*I,n=8 4324174830800455 a007 Real Root Of -410*x^4+470*x^3-687*x^2+796*x+525 4324174831901770 r002 13th iterates of z^2 + 4324174842035509 m001 ZetaQ(4)/(Si(Pi)+ReciprocalLucas) 4324174867030163 a001 1926/105937*55^(8/37) 4324174871538550 r005 Re(z^2+c),c=-7/13+19/49*I,n=16 4324174879300216 m005 (1/2*exp(1)+3/8)/(4/11*gamma-1/4) 4324174880995214 a007 Real Root Of -58*x^4-140*x^3+392*x^2-383*x-27 4324174888584119 r002 18th iterates of z^2 + 4324174908101432 m005 (1/2*Catalan-4/9)/(1/7*Catalan+3) 4324174919263437 m001 (-Porter+Sarnak)/(Chi(1)+ln(2^(1/2)+1)) 4324174923494983 r005 Im(z^2+c),c=5/58+21/41*I,n=59 4324174926393158 m001 (-Zeta(3)+ln(3))/(Si(Pi)+cos(1)) 4324174933321396 a001 370248451/144*2^(3/4) 4324174941394390 a007 Real Root Of -656*x^4+777*x^3-610*x^2+715*x+509 4324174953620250 m001 FellerTornier-cos(1/5*Pi)*ZetaP(2) 4324174961612835 a007 Real Root Of 259*x^4-313*x^3+848*x^2-898*x+246 4324174968032419 r005 Re(z^2+c),c=-21/34+9/112*I,n=58 4324174970696598 r002 49i'th iterates of 2*x/(1-x^2) of 4324174973151301 m005 (1/3*gamma-1/11)/(5^(1/2)+1/9) 4324174973523343 r009 Im(z^3+c),c=-5/12+23/56*I,n=52 4324174975628840 m002 -E^Pi/5+3/Pi^2 4324174987228834 r005 Im(z^2+c),c=6/29+17/41*I,n=52 4324174995366429 m001 (Zeta(5)+Ei(1,1))/(BesselI(0,2)+Kac) 4324174995994122 m009 (3/5*Psi(1,1/3)+3)/(2/3*Psi(1,3/4)+2/5) 4324175002159941 m005 (1/3*Pi-2/7)/(2/3*2^(1/2)+9/11) 4324175011581402 r009 Re(z^3+c),c=-67/122+14/31*I,n=5 4324175028202581 r005 Im(z^2+c),c=17/90+21/50*I,n=22 4324175031673540 m001 1/ln(Niven)^2/KhintchineHarmonic*arctan(1/2)^2 4324175051392976 r005 Re(z^2+c),c=-9/14+41/137*I,n=13 4324175051639996 r009 Re(z^3+c),c=-11/23+7/58*I,n=17 4324175056456826 l006 ln(6235/9608) 4324175075220555 r002 26th iterates of z^2 + 4324175102593134 a007 Real Root Of -371*x^4-36*x^3-962*x^2-393*x+20 4324175103414680 m001 (Si(Pi)+GAMMA(3/4))/(gamma(1)+ZetaQ(4)) 4324175117188239 r005 Im(z^2+c),c=-7/44+20/29*I,n=23 4324175118363578 a003 sin(Pi*13/99)/sin(Pi*17/45) 4324175124710129 r002 64th iterates of z^2 + 4324175133148975 m006 (Pi+1/5)/(1/3/Pi+2/3) 4324175136797417 r005 Im(z^2+c),c=25/94+23/64*I,n=22 4324175143284128 m001 (OneNinth-Riemann1stZero)/(ln(5)-GAMMA(17/24)) 4324175146310995 r005 Re(z^2+c),c=-16/27+17/54*I,n=46 4324175156374985 m001 GAMMA(3/4)^ZetaP(2)-GAMMA(7/12) 4324175168689808 m001 1/exp(Zeta(7))/MinimumGamma/gamma 4324175175566555 m001 cos(1/5*Pi)/(Paris^Sarnak) 4324175186814885 r005 Im(z^2+c),c=-5/28+31/44*I,n=53 4324175196903499 m001 Rabbit/DuboisRaymond^2/ln(cosh(1)) 4324175199947139 m001 Zeta(3)*Backhouse^Magata 4324175201059022 r005 Im(z^2+c),c=21/74+21/50*I,n=48 4324175258168977 r005 Re(z^2+c),c=23/86+26/61*I,n=30 4324175259401537 r009 Im(z^3+c),c=-43/110+23/54*I,n=19 4324175259800256 r005 Re(z^2+c),c=-35/54+17/50*I,n=29 4324175262668486 r002 31th iterates of z^2 + 4324175265496399 m005 (1/2*3^(1/2)+6)/(5/11*5^(1/2)+4/7) 4324175266648269 r009 Re(z^3+c),c=-31/60+3/29*I,n=13 4324175269082345 r005 Re(z^2+c),c=-23/38+7/31*I,n=40 4324175291622897 r005 Im(z^2+c),c=23/98+31/56*I,n=17 4324175303865842 r002 20th iterates of z^2 + 4324175306124870 m001 cos(1/5*Pi)*ln(Pi)*FeigenbaumDelta 4324175306124870 m001 cos(Pi/5)*ln(Pi)*FeigenbaumDelta 4324175306124870 m001 ln(Pi)*FeigenbaumDelta*cos(Pi/5) 4324175311329722 m001 (HeathBrownMoroz-Kac)/(ln(5)+Zeta(1,-1)) 4324175325846798 m001 2^(1/3)*(FransenRobinson+GolombDickman) 4324175350550848 a001 610/199*199^(1/2) 4324175377209619 m001 MertensB1*GolombDickman*ln(Riemann1stZero) 4324175387079226 l006 ln(3148/4851) 4324175398553298 r005 Re(z^2+c),c=-57/56+2/11*I,n=32 4324175411883948 r005 Im(z^2+c),c=-73/126+16/35*I,n=31 4324175429354147 m001 1/GAMMA(7/12)^2*Si(Pi)^2*exp(cos(1))^2 4324175430406840 r002 39th iterates of z^2 + 4324175446553478 r002 40th iterates of z^2 + 4324175451079721 a001 1/9*(1/2*5^(1/2)+1/2)^7*3^(4/15) 4324175458142065 r005 Im(z^2+c),c=-7/36+21/34*I,n=45 4324175477643644 m001 (-HardHexagonsEntropy+Mills)/(Catalan+ln(Pi)) 4324175494224307 m005 (1/2*5^(1/2)-5/11)/(7/9*Pi-10/11) 4324175497097325 r005 Im(z^2+c),c=5/34+22/41*I,n=40 4324175498739271 a001 144/199*521^(17/26) 4324175516259752 r005 Im(z^2+c),c=-11/25+6/11*I,n=9 4324175530247123 a007 Real Root Of -208*x^4-970*x^3-364*x^2-238*x+71 4324175532662792 m001 (2^(1/2)-gamma(2))/(FeigenbaumC+MinimumGamma) 4324175593522565 r005 Re(z^2+c),c=-17/28+13/59*I,n=42 4324175609906829 m001 ln(Magata)*CopelandErdos/Sierpinski^2 4324175617985838 a001 11/21*832040^(49/59) 4324175625323391 a001 2207/121393*55^(8/37) 4324175645865436 r005 Re(z^2+c),c=-17/82+7/8*I,n=7 4324175648784476 a001 2/98209*144^(5/33) 4324175658478531 a003 sin(Pi*9/119)-sin(Pi*27/116) 4324175663300564 r009 Im(z^3+c),c=-9/19+10/27*I,n=29 4324175668907990 h001 (-3*exp(5)-2)/(-5*exp(3)-3) 4324175684913028 m001 (Psi(1,1/3)-Zeta(3))/(-Zeta(1/2)+Gompertz) 4324175696795941 m005 (1/2*Zeta(3)+2/5)/(9/11*exp(1)+1/11) 4324175701410044 m001 PlouffeB-Thue^HardyLittlewoodC3 4324175704780153 s002 sum(A013997[n]/((10^n+1)/n),n=1..infinity) 4324175704869576 s002 sum(A013997[n]/((10^n-1)/n),n=1..infinity) 4324175711356495 l006 ln(6357/9796) 4324175716884439 m005 (1/2*Catalan-9/10)/(3/8*Zeta(3)+4/7) 4324175720814002 r005 Re(z^2+c),c=-5/8+8/255*I,n=26 4324175731277188 a007 Real Root Of -181*x^4+505*x^3-982*x^2-277*x+111 4324175741725637 m001 (KomornikLoreti-Trott)/(ThueMorse-ZetaQ(4)) 4324175745100359 a001 11/21*4807526976^(11/18) 4324175751963371 p004 log(34807/461) 4324175753461529 a007 Real Root Of -98*x^4-290*x^3+530*x^2-169*x+175 4324175754826873 r005 Im(z^2+c),c=-15/16+23/78*I,n=4 4324175757093565 m004 (-25*Pi)/2-Sqrt[5]*Pi+2*ProductLog[Sqrt[5]*Pi] 4324175765284901 m001 (BesselK(1,1)+Robbin)/(Pi-Ei(1,1)) 4324175794389535 m005 (1/3*5^(1/2)-1/2)/(1/3*gamma+3/8) 4324175797022997 m001 1/ln((3^(1/3)))*MertensB1/GAMMA(17/24)^2 4324175801521664 r005 Im(z^2+c),c=-11/16+3/79*I,n=31 4324175811669639 r005 Im(z^2+c),c=-2/3+43/157*I,n=13 4324175815984653 v002 sum(1/(3^n+(11*n^2+n+36)),n=1..infinity) 4324175817855910 a007 Real Root Of -886*x^4+657*x^3+86*x^2+610*x-302 4324175818261918 m001 Zeta(1,2)*ln(Artin)/Zeta(1/2)^2 4324175824175824 q001 787/1820 4324175828015201 b008 4+37*E^(1/17) 4324175834505661 a001 5374978561/72*102334155^(2/21) 4324175834505661 a001 1368706081/48*2504730781961^(2/21) 4324175835181368 r002 15th iterates of z^2 + 4324175839217427 a001 9381251041/48*4181^(2/21) 4324175850037966 m001 (Zeta(1,2)+GaussAGM)/(2^(1/2)+cos(1/12*Pi)) 4324175855777496 m001 (Cahen+Mills)/(2^(1/3)-cos(1/5*Pi)) 4324175856121825 r005 Im(z^2+c),c=-21/122+23/38*I,n=33 4324175877131085 r005 Re(z^2+c),c=53/110+26/49*I,n=2 4324175888376986 a007 Real Root Of 807*x^4-807*x^3-67*x^2+541*x+153 4324175902379187 r005 Im(z^2+c),c=-45/74+25/59*I,n=40 4324175939171343 m005 (1/2*3^(1/2)-6/7)/(5/9*Catalan-5/7) 4324175941123261 k009 concat of cont frac of 4324175957630699 r009 Im(z^3+c),c=-41/94+37/64*I,n=28 4324175959200415 r009 Re(z^3+c),c=-15/82+18/25*I,n=40 4324175975256264 m005 (1/2*Zeta(3)-1)/(1/4*5^(1/2)+4/11) 4324175982645456 m006 (2*Pi^2-1/4)/(3/Pi-1) 4324175989224862 r009 Im(z^3+c),c=-12/29+26/53*I,n=12 4324175999551945 b008 -2+SinIntegral[(11*Pi)/18] 4324176002746982 a003 cos(Pi*6/43)-sin(Pi*33/83) 4324176014064882 a007 Real Root Of -752*x^4+876*x^3+779*x^2+617*x-457 4324176029469556 l006 ln(3209/4945) 4324176043973474 r005 Im(z^2+c),c=-41/62+17/61*I,n=24 4324176052268430 r002 6th iterates of z^2 + 4324176058153391 m003 1+(9*Sqrt[5])/256+3*Coth[1/2+Sqrt[5]/2] 4324176075197102 r005 Re(z^2+c),c=-47/78+7/29*I,n=59 4324176095226503 a003 cos(Pi*39/109)/sin(Pi*18/37) 4324176113151711 k009 concat of cont frac of 4324176113748531 a007 Real Root Of 47*x^4-329*x^3+24*x^2-181*x-111 4324176114127226 k009 concat of cont frac of 4324176119374770 m001 (Bloch-Kolakoski)/(Ei(1)+2*Pi/GAMMA(5/6)) 4324176139859704 a001 11592*11^(28/51) 4324176148933891 m005 (1/2*Zeta(3)-5/6)/(10/11*Zeta(3)-5/9) 4324176166506566 r005 Re(z^2+c),c=-125/122+23/34*I,n=2 4324176167670401 m001 (gamma(2)+CareFree)/(sin(1)+BesselJ(0,1)) 4324176169685709 r005 Im(z^2+c),c=31/114+20/57*I,n=54 4324176171546557 h001 (5/8*exp(1)+9/10)/(8/11*exp(2)+7/11) 4324176174066469 s001 sum(exp(-2*Pi)^n*A128825[n],n=1..infinity) 4324176176463492 m001 (FeigenbaumC-ZetaP(4))/(Pi+Catalan) 4324176201447481 m001 (GAMMA(2/3)-gamma)/(-Zeta(1,2)+Thue) 4324176208016186 r005 Im(z^2+c),c=1/25+13/24*I,n=36 4324176208780717 a003 cos(Pi*11/101)-cos(Pi*31/94) 4324176221462760 m001 (MertensB2+Riemann3rdZero)/(gamma(2)-Lehmer) 4324176237294734 m001 (BesselJ(1,1)+HardyLittlewoodC5)/(Kac+Totient) 4324176247187315 m005 (1/3*2^(1/2)+2/3)/(-13/180+3/20*5^(1/2)) 4324176256955684 r005 Im(z^2+c),c=-43/70+5/62*I,n=53 4324176273752991 r005 Im(z^2+c),c=7/82+32/61*I,n=35 4324176274612039 a001 1/39596*(1/2*5^(1/2)+1/2)^5*521^(7/16) 4324176282421758 r005 Re(z^2+c),c=-31/52+13/43*I,n=63 4324176292609812 a007 Real Root Of -7*x^4-295*x^3+336*x^2+156*x+445 4324176306367016 r002 63th iterates of z^2 + 4324176312745328 s002 sum(A178620[n]/(n^3*2^n+1),n=1..infinity) 4324176325655978 r005 Re(z^2+c),c=-9/10+65/146*I,n=4 4324176334318037 r005 Re(z^2+c),c=-35/64+23/56*I,n=63 4324176340925969 r005 Re(z^2+c),c=-39/58+1/6*I,n=36 4324176341540567 r005 Re(z^2+c),c=11/40+1/47*I,n=31 4324176341592516 l006 ln(6479/9984) 4324176353232841 a007 Real Root Of 114*x^4+582*x^3+316*x^2-367*x-296 4324176384655251 a007 Real Root Of -111*x^4+869*x^3+795*x^2+585*x-468 4324176385554787 a001 3/377*1597^(13/24) 4324176388343358 r002 13th iterates of z^2 + 4324176406434822 r005 Re(z^2+c),c=-7/25+43/58*I,n=6 4324176415394922 m005 (1/2*3^(1/2)+4/9)/(5/7*Zeta(3)-5/9) 4324176416229678 r005 Re(z^2+c),c=-77/122+9/44*I,n=7 4324176418458589 r005 Re(z^2+c),c=-13/22+11/82*I,n=18 4324176429718822 m004 Sec[Sqrt[5]*Pi]/5+6*Sin[Sqrt[5]*Pi] 4324176434545591 m001 (-Salem+Stephens)/(Si(Pi)-arctan(1/2)) 4324176439899116 r005 Im(z^2+c),c=-7/18+32/57*I,n=35 4324176442427846 r005 Re(z^2+c),c=-45/82+19/49*I,n=46 4324176456736213 m001 (BesselK(1,1)-Gompertz)/(Rabbit+Stephens) 4324176491078602 m001 (2^(1/3))-exp(1/Pi)*BesselK(1,1) 4324176491078602 m001 2^(1/3)-exp(1/Pi)*BesselK(1,1) 4324176492330771 r002 49th iterates of z^2 + 4324176513123982 a007 Real Root Of -404*x^4+289*x^3-782*x^2+817*x+537 4324176513854668 m001 (Pi^(1/2)+AlladiGrinstead)/(Landau+ZetaQ(2)) 4324176516140425 m001 BesselK(0,1)^exp(1/exp(1))/LaplaceLimit 4324176520946996 m001 BesselI(1,2)^(2*GAMMA(1/12)) 4324176535014978 m005 (1/2*2^(1/2)+2/7)/(103/77+3/7*5^(1/2)) 4324176544422626 m001 (sin(1/12*Pi)-GAMMA(5/6)*Robbin)/GAMMA(5/6) 4324176552436242 m001 1/Khintchine^2/CareFree^2*exp(GAMMA(1/24)) 4324176573564524 m005 (1/2*Pi+3/11)/(6*gamma+4/5) 4324176581258397 m005 (1/2*3^(1/2)-1/12)/(5/8*exp(1)+1/9) 4324176607288815 r002 58th iterates of z^2 + 4324176621875748 r002 43th iterates of z^2 + 4324176622281634 r009 Im(z^3+c),c=-3/46+24/47*I,n=10 4324176643191134 a001 1292/161*123^(7/20) 4324176647892990 l006 ln(3270/5039) 4324176653670505 a007 Real Root Of 599*x^4-300*x^3-739*x^2-614*x+407 4324176654306808 a001 233/1364*322^(23/24) 4324176661077613 r005 Re(z^2+c),c=-75/122+3/23*I,n=29 4324176664347367 m005 (1/4*Pi-2)/(4*gamma+1/2) 4324176669218211 r005 Im(z^2+c),c=-3/28+35/38*I,n=12 4324176675339285 l006 ln(7083/7396) 4324176675534058 a007 Real Root Of -253*x^4-887*x^3+900*x^2+198*x+766 4324176678812446 r009 Im(z^3+c),c=-25/82+6/13*I,n=17 4324176681580899 r002 49th iterates of z^2 + 4324176683724237 m001 (Weierstrass+ZetaP(3))/(Cahen+Thue) 4324176689243775 m001 1/ln(GAMMA(3/4))*Conway^2/GAMMA(5/24)^2 4324176689608206 h001 (6/11*exp(1)+5/11)/(5/9*exp(2)+3/8) 4324176690763037 r009 Im(z^3+c),c=-4/11+17/38*I,n=12 4324176694133523 r005 Im(z^2+c),c=13/64+27/61*I,n=9 4324176702367741 r005 Re(z^2+c),c=-8/29+35/61*I,n=7 4324176703549570 r005 Re(z^2+c),c=-35/58+14/59*I,n=59 4324176710040120 r005 Im(z^2+c),c=13/110+21/43*I,n=54 4324176726374430 m001 Trott^2*exp(GolombDickman)^2*GAMMA(11/12) 4324176733001244 r005 Im(z^2+c),c=-7/54+29/51*I,n=16 4324176748073960 a007 Real Root Of 227*x^4+867*x^3-551*x^2-24*x+934 4324176790517404 m001 (Trott-Thue)/(arctan(1/3)+GAMMA(13/24)) 4324176791993146 r005 Im(z^2+c),c=-1/30+33/56*I,n=58 4324176794735979 m005 (1/3*Catalan+1/11)/(5/8*gamma+5/9) 4324176799958758 r002 35th iterates of z^2 + 4324176808762466 m006 (2/3*Pi+2/3)/(1/4*exp(Pi)+3/5) 4324176832395701 a007 Real Root Of 61*x^4-994*x^3+434*x^2-349*x+148 4324176834058497 h001 (3/8*exp(2)+7/10)/(1/11*exp(1)+5/9) 4324176840314311 r005 Im(z^2+c),c=3/26+28/57*I,n=47 4324176840715204 m001 sqrt(1+sqrt(3))*(LandauRamanujan-GAMMA(23/24)) 4324176840923834 r004 Im(z^2+c),c=5/24+5/7*I,z(0)=exp(7/12*I*Pi),n=2 4324176852264572 m005 (1/2*gamma+3/11)/(2/9*Pi+3/5) 4324176874545931 r005 Re(z^2+c),c=-63/110+9/32*I,n=24 4324176888093251 r005 Re(z^2+c),c=-8/15+13/33*I,n=27 4324176891537144 r005 Im(z^2+c),c=-75/106+14/45*I,n=10 4324176895654187 a007 Real Root Of 106*x^4+242*x^3-806*x^2+602*x+180 4324176934537487 a007 Real Root Of 321*x^4-525*x^3+516*x^2-810*x+285 4324176936330361 m001 (Kac+PlouffeB)/(ln(5)-Zeta(1,2)) 4324176947282691 m005 (1/2*Catalan-5/8)/(5/12*5^(1/2)-6/11) 4324176972168346 m006 (1/6*ln(Pi)+2)/(2/5*Pi-3/4) 4324176990584541 r005 Im(z^2+c),c=1/56+19/34*I,n=64 4324177006318129 m001 ((1+3^(1/2))^(1/2)-Tetranacci)/(2^(1/3)-Ei(1)) 4324177010756787 m005 (-5/44+1/4*5^(1/2))/(3*Pi+7/8) 4324177019629082 a007 Real Root Of -384*x^4-321*x^3-268*x^2+891*x-38 4324177034799941 r005 Re(z^2+c),c=-55/74+3/62*I,n=32 4324177057719688 m001 (Shi(1)-ln(2))/(-Stephens+TwinPrimes) 4324177074813199 s001 sum(1/10^(n-1)*A083674[n],n=1..infinity) 4324177083448249 m001 (exp(1)+2^(1/2))/(-Zeta(5)+StolarskyHarborth) 4324177093333556 s002 sum(A011232[n]/(n^3*2^n+1),n=1..infinity) 4324177118780560 h001 (1/11*exp(1)+9/10)/(7/10*exp(1)+3/4) 4324177118887663 m001 1/ln(GAMMA(11/12))*CopelandErdos/Zeta(7) 4324177150280174 a001 2207/610*196418^(25/43) 4324177153646239 m001 1/Pi^2*Porter^2/exp(cos(Pi/5))^2 4324177153915315 r002 56th iterates of z^2 + 4324177162958777 r005 Re(z^2+c),c=-37/60+5/56*I,n=40 4324177172665786 m005 (1/2*Catalan+1/11)/(3/8*exp(1)+1/4) 4324177195512865 m001 (Pi-ln(Pi))/(ArtinRank2-CopelandErdos) 4324177224724805 m001 FeigenbaumKappa/exp(Niven)^2*cos(Pi/12) 4324177227012947 r009 Re(z^3+c),c=-55/106+4/21*I,n=22 4324177227608691 m005 (2/3*Catalan-1/4)/(11/4+5/2*5^(1/2)) 4324177228873716 a007 Real Root Of -833*x^4+693*x^3-302*x^2+443*x-162 4324177241115446 k009 concat of cont frac of 4324177243666235 l006 ln(3331/5133) 4324177246491345 a001 10946/521*123^(3/20) 4324177248762650 r005 Re(z^2+c),c=-71/98+8/45*I,n=25 4324177259612736 m004 -50/Pi-5*Sqrt[5]*Pi+4*Log[Sqrt[5]*Pi] 4324177271492256 r005 Im(z^2+c),c=1/22+21/43*I,n=9 4324177275372449 r002 61i'th iterates of 2*x/(1-x^2) of 4324177280171815 m005 (1/2*Catalan+2/7)/(6*exp(1)+8/9) 4324177290663231 m001 Shi(1)*TravellingSalesman/ZetaP(3) 4324177290732697 a001 4976784/281*3^(13/16) 4324177292990712 r005 Re(z^2+c),c=-13/54+26/41*I,n=41 4324177297217597 m009 (Psi(1,1/3)+5/6)/(5/2*Pi^2+3/5) 4324177302942238 r002 38th iterates of z^2 + 4324177308577911 h001 (-7*exp(1)-9)/(-exp(3/2)-2) 4324177318466140 q001 159/3677 4324177321877633 r002 11th iterates of z^2 + 4324177329984629 r002 31th iterates of z^2 + 4324177341204092 m005 (1/3*2^(1/2)-1/6)/(-37/176+1/16*5^(1/2)) 4324177360441311 r005 Im(z^2+c),c=3/52+29/47*I,n=26 4324177375217952 r005 Im(z^2+c),c=-71/98+9/32*I,n=5 4324177375365984 m001 gamma(3)^Ei(1)/(ThueMorse^Ei(1)) 4324177381200229 r005 Re(z^2+c),c=-5/8+9/122*I,n=21 4324177382239981 r002 57th iterates of z^2 + 4324177382239981 r002 57th iterates of z^2 + 4324177383531059 r005 Im(z^2+c),c=23/122+20/43*I,n=11 4324177400817075 m001 BesselI(1,1)*FeigenbaumD+FransenRobinson 4324177422982269 m005 (1/2*Catalan-8/9)/(4/7*gamma+2/3) 4324177452610450 m005 (1/2*Catalan+1/10)/(1/4*exp(1)-2/3) 4324177452802059 m005 (1/2*Zeta(3)+3/5)/(11/12*exp(1)+2/7) 4324177457172423 m008 (5/6*Pi^3+1/4)/(2*Pi-1/4) 4324177460595490 a007 Real Root Of 14*x^4+587*x^3-798*x^2-112*x+779 4324177491786284 r005 Re(z^2+c),c=15/98+13/34*I,n=56 4324177496452903 h001 (6/7*exp(1)+4/7)/(1/12*exp(1)+4/9) 4324177498042738 m006 (3/4*exp(Pi)+2/5)/(1/3/Pi+4) 4324177505345530 r005 Im(z^2+c),c=1/98+23/41*I,n=48 4324177519553447 r009 Im(z^3+c),c=-10/27+14/33*I,n=11 4324177556042390 r009 Re(z^3+c),c=-3/16+41/48*I,n=12 4324177569091365 r005 Re(z^2+c),c=-11/18+3/19*I,n=46 4324177571307699 r009 Im(z^3+c),c=-19/60+1/38*I,n=10 4324177574412539 p004 log(36307/23561) 4324177578252704 m005 (1/3*2^(1/2)+3/4)/(1/7*gamma+1/5) 4324177579480251 m001 1/GAMMA(1/24)^2*exp(Paris)/arctan(1/2) 4324177579583125 m001 1/BesselK(0,1)*Riemann1stZero*ln(GAMMA(1/4)) 4324177586658825 a008 Real Root of (17+6*x+15*x^2-4*x^3) 4324177594939330 r009 Im(z^3+c),c=-1/18+22/43*I,n=23 4324177602513051 r005 Im(z^2+c),c=1/36+16/29*I,n=58 4324177609214440 a005 (1/cos(13/123*Pi))^518 4324177612172034 r009 Im(z^3+c),c=-21/106+28/39*I,n=2 4324177613061898 a001 4052739537881/2*439204^(17/18) 4324177613072554 m005 (1/2*exp(1)-9/10)/(1/12*Pi+4/5) 4324177613074507 a001 317811/2*14662949395604^(17/18) 4324177613081820 a001 416020*3461452808002^(23/24) 4324177613083003 a001 225851433717/2*7881196^(21/22) 4324177613083009 a001 956722026041/2*7881196^(19/22) 4324177613083011 a001 774004377960*7881196^(5/6) 4324177613083015 a001 4052739537881/2*7881196^(17/22) 4324177613083060 a001 139583862445/2*20633239^(13/14) 4324177613083060 a001 225851433717/2*20633239^(9/10) 4324177613083061 a001 774004377960*20633239^(11/14) 4324177613083062 a001 3278735159921*20633239^(7/10) 4324177613083069 a001 39088169/2*312119004989^(9/10) 4324177613083069 a001 39088169/2*14662949395604^(11/14) 4324177613083069 a001 39088169/2*192900153618^(11/12) 4324177613083069 a001 139583862445/2*141422324^(5/6) 4324177613083069 a001 102334155/2*312119004989^(19/22) 4324177613083069 a001 102334155/2*817138163596^(5/6) 4324177613083069 a001 102334155/2*3461452808002^(19/24) 4324177613083069 a001 102334155/2*28143753123^(19/20) 4324177613083069 a001 133957148*17393796001^(13/14) 4324177613083069 a001 133957148*14662949395604^(13/18) 4324177613083069 a001 133957148*505019158607^(13/16) 4324177613083069 a001 133957148*73681302247^(7/8) 4324177613083069 a001 701408733/2*1322157322203^(3/4) 4324177613083069 a001 12586269025/2*2537720636^(5/6) 4324177613083069 a001 2971215073/2*2537720636^(9/10) 4324177613083069 a001 139583862445/2*2537720636^(13/18) 4324177613083069 a001 225851433717/2*2537720636^(7/10) 4324177613083069 a001 774004377960*2537720636^(11/18) 4324177613083069 a001 10610209857723/2*6643838879^(1/2) 4324177613083069 a001 225851433717/2*17393796001^(9/14) 4324177613083069 a001 3278735159921*17393796001^(1/2) 4324177613083069 a001 12586269025/2*312119004989^(15/22) 4324177613083069 a001 12586269025/2*3461452808002^(5/8) 4324177613083069 a001 12586269025/2*28143753123^(3/4) 4324177613083069 a001 4052739537881/2*45537549124^(1/2) 4324177613083069 a001 2504730781961/2*119218851371^(1/2) 4324177613083069 a001 774004377960*312119004989^(1/2) 4324177613083069 a001 225851433717/2*14662949395604^(1/2) 4324177613083069 a001 225851433717/2*505019158607^(9/16) 4324177613083069 a001 182717648081*5600748293801^(1/2) 4324177613083069 a001 139583862445/2*312119004989^(13/22) 4324177613083069 a001 139583862445/2*3461452808002^(13/24) 4324177613083069 a001 139583862445/2*73681302247^(5/8) 4324177613083069 a001 774004377960*28143753123^(11/20) 4324177613083069 a001 7778742049/2*17393796001^(11/14) 4324177613083069 a001 139583862445/2*28143753123^(13/20) 4324177613083069 a001 7778742049/2*14662949395604^(11/18) 4324177613083069 a001 7778742049/2*505019158607^(11/16) 4324177613083069 a001 567451585*2537720636^(17/18) 4324177613083069 a001 2971215073/2*14662949395604^(9/14) 4324177613083069 a001 2971215073/2*192900153618^(3/4) 4324177613083069 a001 53316291173/2*4106118243^(3/4) 4324177613083069 a001 567451585*45537549124^(5/6) 4324177613083069 a001 567451585*312119004989^(17/22) 4324177613083069 a001 567451585*3461452808002^(17/24) 4324177613083069 a001 567451585*28143753123^(17/20) 4324177613083069 a001 774004377960*1568397607^(5/8) 4324177613083069 a001 7778742049/2*1568397607^(7/8) 4324177613083069 a001 3278735159921*599074578^(7/12) 4324177613083069 a001 225851433717/2*599074578^(3/4) 4324177613083069 a001 7778742049/2*599074578^(11/12) 4324177613083069 a001 165580141/2*9062201101803^(3/4) 4324177613083069 a001 774004377960*228826127^(11/16) 4324177613083069 a001 139583862445/2*228826127^(13/16) 4324177613083069 a001 12586269025/2*228826127^(15/16) 4324177613083070 a001 956722026041/2*87403803^(3/4) 4324177613083072 a001 4052739537881/2*33385282^(17/24) 4324177613083072 a001 956722026041/2*33385282^(19/24) 4324177613083073 a001 225851433717/2*33385282^(7/8) 4324177613083073 a001 53316291173/2*33385282^(23/24) 4324177613083079 a001 9227465/2*312119004989^(21/22) 4324177613083079 a001 9227465/2*14662949395604^(5/6) 4324177613083079 a001 9227465/2*505019158607^(15/16) 4324177613083089 a001 4052739537881/2*12752043^(3/4) 4324177613084131 a001 4052739537881/2*1860498^(17/20) 4324177613084214 a001 774004377960*1860498^(11/12) 4324177613084256 a001 956722026041/2*1860498^(19/20) 4324177613086340 a001 514229/2*14662949395604^(13/14) 4324177613090561 a001 3278735159921*710647^(7/8) 4324177618166521 m005 (1/3*2^(1/2)-2/5)/(5/8*Zeta(3)+9/10) 4324177621799870 r002 30th iterates of z^2 + 4324177625558896 r005 Re(z^2+c),c=-21/34+1/27*I,n=29 4324177642393067 r002 54th iterates of z^2 + 4324177645034138 r002 45th iterates of z^2 + 4324177657585505 m005 (1/2*gamma+5/6)/(4*gamma+2/7) 4324177664911909 r005 Im(z^2+c),c=-37/28+3/53*I,n=9 4324177712537162 a007 Real Root Of -878*x^4-683*x^3-259*x^2+731*x+340 4324177714278920 r005 Im(z^2+c),c=4/13+18/59*I,n=43 4324177714401872 r002 26th iterates of z^2 + 4324177722537894 r009 Im(z^3+c),c=-57/122+19/50*I,n=52 4324177726903318 g002 Psi(10/11)+2*Psi(3/7)-Psi(8/11) 4324177726993709 m001 Zeta(1,-1)^Champernowne/Si(Pi) 4324177739611159 m001 Pi^Zeta(1/2)*BesselI(1,1)^Zeta(1/2) 4324177764193149 r005 Im(z^2+c),c=-14/23+26/61*I,n=22 4324177771365763 m001 GAMMA(17/24)/ln(GAMMA(1/6))^2/Zeta(7) 4324177779393488 m001 exp(Magata)/KhintchineHarmonic*Riemann3rdZero 4324177791831641 r005 Re(z^2+c),c=-67/126+8/31*I,n=3 4324177799775976 m001 Cahen^polylog(4,1/2)*Landau 4324177807284711 a007 Real Root Of 43*x^4+28*x^3+710*x^2+74*x-100 4324177818011281 l006 ln(3392/5227) 4324177821900960 s002 sum(A196855[n]/(exp(n)-1),n=1..infinity) 4324177822152231 r002 7th iterates of z^2 + 4324177827789125 r005 Im(z^2+c),c=23/98+24/59*I,n=26 4324177830848180 l004 Ci(269/40) 4324177838401155 r002 12th iterates of z^2 + 4324177846821937 a001 6119/2*28657^(8/31) 4324177847310838 r002 28th iterates of z^2 + 4324177850294164 m001 (Zeta(1,-1)+ln(2+3^(1/2)))/(Artin-OneNinth) 4324177863495063 r002 6th iterates of z^2 + 4324177873489708 m001 exp(Pi)^2*Rabbit/Zeta(1,2)^2 4324177876010173 r002 46th iterates of z^2 + 4324177881188218 r005 Re(z^2+c),c=-57/94+8/27*I,n=54 4324177881229726 a005 (1/cos(39/163*Pi))^34 4324177894574920 m001 GAMMA(1/6)^2*Artin*exp(log(2+sqrt(3))) 4324177912549089 r005 Re(z^2+c),c=-14/23+27/62*I,n=17 4324177917240158 m001 (Psi(1,1/3)+Zeta(5))/(-Trott2nd+ZetaQ(4)) 4324177930964299 h001 (2/5*exp(2)+5/8)/(1/6*exp(1)+3/8) 4324177942232728 m001 Mills+Riemann2ndZero^FibonacciFactorial 4324177982357524 r002 35th iterates of z^2 + 4324177990214914 r002 16th iterates of z^2 + 4324177990511251 m001 1/RenyiParking^2*Cahen*exp(Robbin)^2 4324177991647378 a005 (1/cos(19/225*Pi))^1399 4324177999966981 a007 Real Root Of 205*x^4+761*x^3-640*x^2-272*x+647 4324178015478074 m001 (polylog(4,1/2)-Kac)/(Stephens+Tetranacci) 4324178023424921 a007 Real Root Of -71*x^4+655*x^3-893*x^2+947*x-293 4324178033764709 m001 (-GAMMA(19/24)+Khinchin)/(2^(1/3)+5^(1/2)) 4324178057817031 r002 34th iterates of z^2 + 4324178064670475 h001 (3/10*exp(2)+2/3)/(8/9*exp(2)+1/10) 4324178065652150 r002 19th iterates of z^2 + 4324178066510465 r002 25th iterates of z^2 + 4324178071536049 p001 sum(1/(237*n+236)/(25^n),n=0..infinity) 4324178102914037 r005 Im(z^2+c),c=5/126+25/46*I,n=26 4324178129485601 m001 ErdosBorwein*Bloch^MadelungNaCl 4324178131531229 a007 Real Root Of 603*x^4+557*x^3+350*x^2-318*x-179 4324178136440449 m001 gamma(3)^OneNinth-StolarskyHarborth 4324178141618146 r009 Im(z^3+c),c=-31/66+15/32*I,n=25 4324178146218556 m001 (Zeta(1,-1)+Kac)/(Psi(1,1/3)-ln(gamma)) 4324178151991754 r005 Re(z^2+c),c=-55/86+6/43*I,n=11 4324178173317678 r001 29i'th iterates of 2*x^2-1 of 4324178174936627 r002 21th iterates of z^2 + 4324178194410200 r005 Im(z^2+c),c=3/22+27/61*I,n=13 4324178203016406 a007 Real Root Of -988*x^4+67*x^3-756*x^2-158*x+113 4324178203417737 a007 Real Root Of 833*x^4-183*x^3+771*x^2-386*x-355 4324178205036595 m001 (Niven+TwinPrimes)/(Psi(2,1/3)+BesselK(0,1)) 4324178215117549 r005 Im(z^2+c),c=17/126+29/61*I,n=60 4324178227116251 r005 Im(z^2+c),c=-19/15+2/59*I,n=9 4324178245796075 r005 Im(z^2+c),c=19/56+23/62*I,n=39 4324178248434241 m001 KhintchineLevy^2*GolombDickman/ln(GAMMA(3/4)) 4324178248657832 r005 Re(z^2+c),c=7/27+1/63*I,n=54 4324178257549478 r002 55th iterates of z^2 + 4324178272972781 a007 Real Root Of -419*x^4-151*x^3-229*x^2+846*x+37 4324178273519211 h001 (5/11*exp(1)+1/8)/(9/10*exp(1)+7/10) 4324178277925152 r002 4th iterates of z^2 + 4324178295026283 r005 Im(z^2+c),c=-9/52+25/38*I,n=58 4324178304192132 g002 -2*ln(2)+2/3*Pi*3^(1/2)+Psi(7/12)-Psi(2/7) 4324178320049249 a001 11/233*225851433717^(6/23) 4324178332641221 r009 Im(z^3+c),c=-17/38+11/28*I,n=39 4324178348561315 m006 (4/5*exp(Pi)+1)/(5/6*exp(2*Pi)+5) 4324178351893280 m001 Zeta(1,2)*exp(1)^GAMMA(7/12) 4324178351893280 m001 Zeta(1,2)*exp(GAMMA(7/12)) 4324178357277117 r009 Im(z^3+c),c=-47/110+17/42*I,n=52 4324178363956306 a001 6/329*610^(7/52) 4324178366753659 r005 Re(z^2+c),c=-33/62+23/59*I,n=32 4324178372063769 l006 ln(3453/5321) 4324178377143624 a001 5778/1597*196418^(25/43) 4324178388998920 h001 (-4*exp(5)-7)/(-exp(2)+6) 4324178402882806 h001 (11/12*exp(2)+1/3)/(2/11*exp(2)+3/10) 4324178417051888 m001 Sierpinski^2/Porter^2*exp(log(2+sqrt(3)))^2 4324178425497274 r002 29th iterates of z^2 + 4324178431254749 h001 (7/12*exp(2)+3/11)/(1/12*exp(1)+5/6) 4324178434242598 r005 Im(z^2+c),c=3/23+26/41*I,n=32 4324178439288131 r005 Re(z^2+c),c=-17/18+65/181*I,n=6 4324178445444031 r002 58th iterates of z^2 + 4324178453472969 a005 (1/cos(8/113*Pi))^428 4324178453651027 r005 Re(z^2+c),c=-11/16+9/73*I,n=10 4324178457708294 m001 (AlladiGrinstead+Artin)/(sin(1)+Ei(1)) 4324178462568263 p001 sum((-1)^n/(315*n+23)/(12^n),n=0..infinity) 4324178473126451 r002 7th iterates of z^2 + 4324178476131266 r005 Im(z^2+c),c=19/66+17/41*I,n=39 4324178516563165 m001 (polylog(4,1/2)+TreeGrowth2nd)/(1-exp(Pi)) 4324178537160043 a007 Real Root Of -23*x^4+87*x^3+830*x^2+30*x-314 4324178538688897 p004 log(32693/433) 4324178555580763 p001 sum((-1)^n/(233*n+23)/(16^n),n=0..infinity) 4324178556140683 a001 15127/4181*196418^(25/43) 4324178575333022 r005 Im(z^2+c),c=9/56+5/11*I,n=59 4324178576430743 r005 Re(z^2+c),c=1/18+17/49*I,n=12 4324178582256004 a001 39603/10946*196418^(25/43) 4324178585206355 m001 (Gompertz+KomornikLoreti)/Psi(2,1/3) 4324178591391999 a001 281/7*6765^(19/24) 4324178596206603 a007 Real Root Of 405*x^4-535*x^3-798*x^2-996*x+609 4324178598396160 a001 24476/6765*196418^(25/43) 4324178612649160 a007 Real Root Of 202*x^4+936*x^3+450*x^2+958*x+783 4324178641190076 a007 Real Root Of 356*x^4-272*x^3+710*x^2-691*x-466 4324178654119881 a001 2584/3*29^(23/48) 4324178666766961 a001 9349/2584*196418^(25/43) 4324178697007183 r002 31th iterates of z^2 + 4324178701804274 r002 51th iterates of z^2 + 4324178730605119 r009 Im(z^3+c),c=-2/27+24/47*I,n=7 4324178744248198 a007 Real Root Of -259*x^4-994*x^3+560*x^2+248*x+786 4324178744655966 r005 Re(z^2+c),c=-65/114+13/54*I,n=19 4324178754547172 r002 14th iterates of z^2 + 4324178755925671 m006 (1/6/Pi+2)/(2/5*Pi^2+4/5) 4324178757551843 r005 Im(z^2+c),c=-7/8+5/18*I,n=5 4324178782826230 r005 Re(z^2+c),c=-41/110+35/57*I,n=61 4324178782983306 q001 803/1857 4324178784084699 r005 Re(z^2+c),c=-9/17+21/41*I,n=18 4324178786042016 a007 Real Root Of -212*x^4+561*x^3-595*x^2+104*x+209 4324178801407752 p004 log(26981/17509) 4324178808447319 r009 Re(z^3+c),c=-23/62+1/18*I,n=15 4324178809173001 r005 Re(z^2+c),c=17/126+18/29*I,n=3 4324178818345359 p001 sum(1/(259*n+104)/n/(64^n),n=1..infinity) 4324178818865847 r002 57th iterates of z^2 + 4324178819899844 m001 (MertensB3+Tribonacci)/(2^(1/3)-KhinchinLevy) 4324178838676011 r005 Re(z^2+c),c=-17/22+83/114*I,n=3 4324178840417013 r005 Re(z^2+c),c=-19/34+6/83*I,n=7 4324178844629021 r005 Re(z^2+c),c=-9/17+1/59*I,n=5 4324178866200816 a007 Real Root Of -104*x^4-461*x^3+46*x^2+187*x-964 4324178869182502 m001 1/FeigenbaumD^2*Riemann2ndZero*ln(GAMMA(5/24)) 4324178880358142 r005 Re(z^2+c),c=-49/74+15/52*I,n=44 4324178883779395 r005 Re(z^2+c),c=31/98+9/16*I,n=44 4324178884332821 r005 Im(z^2+c),c=-15/22+17/47*I,n=23 4324178884490375 m001 Lehmer^2/ln(CareFree)^2/Robbin 4324178894147116 a001 7/7778742049*53316291173^(1/4) 4324178894147116 a001 7/20365011074*2504730781961^(1/4) 4324178894147116 a001 7/12586269025*365435296162^(1/4) 4324178894147116 a001 1/686789568*7778742049^(1/4) 4324178894147116 a001 7/2971215073*1134903170^(1/4) 4324178894147116 a001 7/1836311903*165580141^(1/4) 4324178894147116 a001 7/1134903170*24157817^(1/4) 4324178894147133 a001 7/701408733*3524578^(1/4) 4324178894147933 a001 7/433494437*514229^(1/4) 4324178894185527 a001 7/267914296*75025^(1/4) 4324178895951640 a001 7/165580141*10946^(1/4) 4324178899404066 b008 -2+Pi^(Pi/8) 4324178903718944 r002 8th iterates of z^2 + 4324178906880484 l006 ln(3514/5415) 4324178914109218 m001 (GAMMA(2/3)+ln(3))/(gamma(3)+BesselI(1,1)) 4324178914662901 a001 521/5*10946^(35/54) 4324178941529280 m001 FibonacciFactorial*RenyiParking+Magata 4324178941577347 a001 521*121393^(37/48) 4324178966070137 r009 Im(z^3+c),c=-25/54+18/47*I,n=48 4324178973004098 r002 57th iterates of z^2 + 4324178978921351 a001 1/14619165*1597^(1/4) 4324178982678227 r005 Im(z^2+c),c=-2/3+73/233*I,n=5 4324178998366029 m001 (-BesselK(0,1)+Porter)/(Si(Pi)+LambertW(1)) 4324179010641524 r005 Re(z^2+c),c=-25/18+214/217*I,n=2 4324179017441535 r002 56th iterates of z^2 + 4324179022087780 m005 (1/3*Pi+1/10)/(10/11*exp(1)+2/11) 4324179029305402 b008 Pi^2*Log[ArcCoth[Glaisher]] 4324179045305719 r005 Re(z^2+c),c=-1/17+23/33*I,n=19 4324179063036549 r005 Re(z^2+c),c=-11/18+4/23*I,n=56 4324179081684123 r002 13th iterates of z^2 + 4324179099078588 h001 (6/7*exp(2)+11/12)/(2/7*exp(1)+9/10) 4324179111022631 k008 concat of cont frac of 4324179112458898 m005 (1/2*exp(1)-2/5)/(5/12*Pi+10/11) 4324179120107553 r005 Re(z^2+c),c=-17/28+1/11*I,n=24 4324179122115111 k008 concat of cont frac of 4324179122936391 r002 48th iterates of z^2 + 4324179124035563 r005 Re(z^2+c),c=-8/13+4/37*I,n=47 4324179135387498 a001 3571/987*196418^(25/43) 4324179139394951 a007 Real Root Of 936*x^4+371*x^3+140*x^2-990*x-457 4324179142073510 m001 (-Khinchin+Niven)/(Bloch-exp(Pi)) 4324179162239526 r005 Im(z^2+c),c=1/5+8/19*I,n=54 4324179164470614 r005 Re(z^2+c),c=-23/40+10/41*I,n=21 4324179183328192 h001 (10/11*exp(1)+4/11)/(6/7*exp(2)+2/9) 4324179200032779 m001 ZetaQ(4)^(QuadraticClass*ZetaR(2)) 4324179220805662 r005 Re(z^2+c),c=-27/22+18/115*I,n=8 4324179231954323 m002 -5+E^Pi/Pi+Pi^2+Pi^3 4324179234070199 a007 Real Root Of 679*x^4-691*x^3+472*x^2-257*x-279 4324179241493935 r002 22th iterates of z^2 + 4324179243200186 r005 Im(z^2+c),c=-9/8+5/94*I,n=22 4324179270199000 r005 Im(z^2+c),c=-1/56+35/62*I,n=30 4324179270685868 r002 32th iterates of z^2 + 4324179279335575 r005 Im(z^2+c),c=23/86+7/19*I,n=32 4324179280553781 a003 cos(Pi*37/89)+cos(Pi*53/119) 4324179281898930 r005 Re(z^2+c),c=-17/28+7/26*I,n=47 4324179291685008 r005 Im(z^2+c),c=33/122+6/17*I,n=64 4324179292646668 r005 Im(z^2+c),c=2/17+27/55*I,n=37 4324179301185480 m001 ln(PisotVijayaraghavan)^2*Bloch*OneNinth^2 4324179305997226 a003 sin(Pi*1/110)*sin(Pi*3/62) 4324179310491968 a001 73681302247*317811^(13/15) 4324179310499389 a001 141422324*433494437^(13/15) 4324179310558077 a001 271443*591286729879^(13/15) 4324179318376619 m001 (Gompertz+TwinPrimes)/(3^(1/2)+GAMMA(19/24)) 4324179331166306 r002 22th iterates of z^2 + 4324179335800532 r005 Im(z^2+c),c=23/78+13/40*I,n=56 4324179338525613 r005 Re(z^2+c),c=-19/26+27/94*I,n=27 4324179345664767 a007 Real Root Of 212*x^4+847*x^3-334*x^2-267*x-547 4324179369916280 r002 62th iterates of z^2 + 4324179371232355 a007 Real Root Of -9*x^4-374*x^3+660*x^2+177*x+630 4324179388193082 r009 Re(z^3+c),c=-5/12+10/47*I,n=2 4324179390215590 r009 Re(z^3+c),c=-25/118+39/44*I,n=13 4324179397348370 a007 Real Root Of 53*x^4-235*x^3-885*x^2-579*x+433 4324179400424199 r005 Re(z^2+c),c=-5/118+41/64*I,n=24 4324179414707353 a003 sin(Pi*20/81)/cos(Pi*48/97) 4324179423446085 l006 ln(3575/5509) 4324179426166506 a007 Real Root Of -206*x^4-350*x^3-907*x^2+836*x+510 4324179436894943 m001 (Zeta(3)-cos(1))/(GAMMA(7/12)+ZetaQ(4)) 4324179448654442 r009 Im(z^3+c),c=-1/18+22/43*I,n=25 4324179464038175 v002 sum(1/(3^n+(18*n^2+2*n+19)),n=1..infinity) 4324179469310660 r005 Re(z^2+c),c=-9/26+7/15*I,n=4 4324179494415586 r005 Im(z^2+c),c=-9/8+35/86*I,n=3 4324179495190907 a007 Real Root Of -252*x^4+940*x^3-341*x^2+667*x+437 4324179509287522 r002 9th iterates of z^2 + 4324179510182113 m001 BesselI(0,2)^(Khinchin*Robbin) 4324179510623421 s002 sum(A126830[n]/(exp(2*pi*n)+1),n=1..infinity) 4324179517256644 m001 Psi(1,1/3)/KhinchinHarmonic*RenyiParking 4324179524616699 m008 (1/3*Pi^4-3/4)/(1/3*Pi^3-3) 4324179532734959 a007 Real Root Of -658*x^4+963*x^3+837*x^2+834*x+305 4324179537676728 m004 -125/Pi-125*Pi+(25*Pi)/E^(Sqrt[5]*Pi) 4324179550114591 r009 Re(z^3+c),c=-59/122+5/29*I,n=54 4324179556384775 r005 Re(z^2+c),c=23/78+29/60*I,n=56 4324179573965853 m001 1/exp(FeigenbaumKappa)*Conway^2*Pi^2 4324179576224752 r009 Im(z^3+c),c=-25/58+7/16*I,n=13 4324179585478591 a008 Real Root of x^4-2*x^3+15*x^2+92*x-394 4324179591990365 r009 Im(z^3+c),c=-13/42+17/37*I,n=23 4324179592166447 r005 Im(z^2+c),c=29/110+22/53*I,n=30 4324179594301243 a001 39603/34*2584^(23/50) 4324179608000008 a007 Real Root Of -325*x^4-354*x^3-895*x^2+756*x+477 4324179613843752 r005 Re(z^2+c),c=-71/110+10/41*I,n=37 4324179618276764 r005 Re(z^2+c),c=-73/118+2/49*I,n=48 4324179626031461 m001 (KomornikLoreti+Stephens)/(Ei(1)+FeigenbaumMu) 4324179635829589 r005 Re(z^2+c),c=-14/23+5/27*I,n=46 4324179639933023 r002 40th iterates of z^2 + 4324179642813697 s002 sum(A020225[n]/(10^n+1),n=1..infinity) 4324179646323106 a007 Real Root Of -163*x^4+478*x^3-632*x^2+644*x+441 4324179651162496 m001 GAMMA(13/24)^2/GAMMA(1/3)/exp(Zeta(1/2)) 4324179651786101 m001 ln(Kolakoski)^2/Cahen^2*Tribonacci^2 4324179656511429 p001 sum((-1)^n/(488*n+217)/n/(3^n),n=1..infinity) 4324179660902553 a001 1/167732*(1/2*5^(1/2)+1/2)^2*76^(4/17) 4324179686105094 b008 -45+SinIntegral[4] 4324179689584804 m005 (1/2*Pi-1/9)/(7/12*Zeta(3)-4/11) 4324179690747769 r009 Im(z^3+c),c=-19/46+26/63*I,n=52 4324179702417295 r009 Im(z^3+c),c=-37/70+13/47*I,n=46 4324179704399285 m001 1/LambertW(1)/exp(Tribonacci)*cosh(1) 4324179706895533 a007 Real Root Of -127*x^4+977*x^3+29*x^2+962*x+494 4324179721049952 m005 (1/2*5^(1/2)-5/6)/(1/6*5^(1/2)+2/7) 4324179742406201 a001 11/514229*377^(7/59) 4324179742729878 r005 Im(z^2+c),c=9/74+35/62*I,n=17 4324179753695472 r002 7th iterates of z^2 + 4324179757119494 m005 (1/2*Zeta(3)-6/11)/(8/11*2^(1/2)-9/10) 4324179817622787 a007 Real Root Of -194*x^4+266*x^3-739*x^2+917*x+563 4324179848384862 r005 Im(z^2+c),c=-79/118+8/51*I,n=29 4324179851025066 r002 64th iterates of z^2 + 4324179873936328 a001 2/305*46368^(29/48) 4324179877837169 r002 36th iterates of z^2 + 4324179880974083 r005 Im(z^2+c),c=1/11+28/55*I,n=57 4324179881203671 m005 (1/2*3^(1/2)+1/10)/(221/180+9/20*5^(1/2)) 4324179885631765 r009 Im(z^3+c),c=-1/18+22/43*I,n=27 4324179899839416 h001 (1/5*exp(1)+5/9)/(2/9*exp(2)+9/10) 4324179900227448 b008 -21/4+Sqrt[6/7] 4324179922679150 l006 ln(3636/5603) 4324179924462193 m001 exp(-1/2*Pi)^polylog(4,1/2)/GAMMA(23/24) 4324179930696158 r009 Im(z^3+c),c=-1/18+22/43*I,n=30 4324179935452813 a007 Real Root Of -219*x^4-709*x^3+831*x^2-783*x+319 4324179936760936 r009 Im(z^3+c),c=-1/18+22/43*I,n=32 4324179942252621 r009 Im(z^3+c),c=-59/106+4/35*I,n=3 4324179942702272 r009 Im(z^3+c),c=-1/18+22/43*I,n=34 4324179945672367 r009 Im(z^3+c),c=-1/18+22/43*I,n=36 4324179946861131 r009 Im(z^3+c),c=-1/18+22/43*I,n=38 4324179947276691 r009 Im(z^3+c),c=-1/18+22/43*I,n=40 4324179947406648 r009 Im(z^3+c),c=-1/18+22/43*I,n=42 4324179947442834 r009 Im(z^3+c),c=-1/18+22/43*I,n=44 4324179947451460 r009 Im(z^3+c),c=-1/18+22/43*I,n=46 4324179947452460 r009 Im(z^3+c),c=-1/18+22/43*I,n=49 4324179947452563 r009 Im(z^3+c),c=-1/18+22/43*I,n=51 4324179947452673 r009 Im(z^3+c),c=-1/18+22/43*I,n=53 4324179947452729 r009 Im(z^3+c),c=-1/18+22/43*I,n=55 4324179947452752 r009 Im(z^3+c),c=-1/18+22/43*I,n=57 4324179947452760 r009 Im(z^3+c),c=-1/18+22/43*I,n=59 4324179947452763 r009 Im(z^3+c),c=-1/18+22/43*I,n=61 4324179947452763 r009 Im(z^3+c),c=-1/18+22/43*I,n=63 4324179947452764 r009 Im(z^3+c),c=-1/18+22/43*I,n=64 4324179947452764 r009 Im(z^3+c),c=-1/18+22/43*I,n=62 4324179947452765 r009 Im(z^3+c),c=-1/18+22/43*I,n=60 4324179947452770 r009 Im(z^3+c),c=-1/18+22/43*I,n=58 4324179947452784 r009 Im(z^3+c),c=-1/18+22/43*I,n=56 4324179947452820 r009 Im(z^3+c),c=-1/18+22/43*I,n=54 4324179947452902 r009 Im(z^3+c),c=-1/18+22/43*I,n=52 4324179947452936 r009 Im(z^3+c),c=-1/18+22/43*I,n=47 4324179947452987 r009 Im(z^3+c),c=-1/18+22/43*I,n=48 4324179947453031 r009 Im(z^3+c),c=-1/18+22/43*I,n=50 4324179947456776 r009 Im(z^3+c),c=-1/18+22/43*I,n=45 4324179947474875 r009 Im(z^3+c),c=-1/18+22/43*I,n=43 4324179947544548 r009 Im(z^3+c),c=-1/18+22/43*I,n=41 4324179947780124 r009 Im(z^3+c),c=-1/18+22/43*I,n=39 4324179948493329 r009 Im(z^3+c),c=-1/18+22/43*I,n=37 4324179950410314 r009 Im(z^3+c),c=-1/18+22/43*I,n=35 4324179953105031 r009 Im(z^3+c),c=-1/18+22/43*I,n=28 4324179954776395 r009 Im(z^3+c),c=-1/18+22/43*I,n=33 4324179957042035 a007 Real Root Of 212*x^4+855*x^3-26*x^2+937*x-453 4324179957048472 h001 (5/7*exp(2)+1/11)/(3/8*exp(1)+2/9) 4324179960872660 r009 Im(z^3+c),c=-1/18+22/43*I,n=29 4324179961844277 r009 Im(z^3+c),c=-1/18+22/43*I,n=31 4324179967215432 a007 Real Root Of -83*x^4-152*x^3+822*x^2-535*x-954 4324179974330261 r009 Re(z^3+c),c=-2/29+33/62*I,n=16 4324179978528099 a007 Real Root Of 895*x^4-896*x^3+648*x^2-953*x-637 4324180002039079 a007 Real Root Of 19*x^4+808*x^3-610*x^2-944*x+620 4324180022756187 m001 Rabbit^2/KhintchineHarmonic^2*exp(GAMMA(1/6)) 4324180047332563 r002 51th iterates of z^2 + 4324180053218241 r005 Im(z^2+c),c=-13/22+52/107*I,n=15 4324180057232331 m001 FeigenbaumD/(ArtinRank2^PisotVijayaraghavan) 4324180077883944 s002 sum(A018427[n]/(n*2^n-1),n=1..infinity) 4324180089607339 r005 Im(z^2+c),c=-113/106+15/59*I,n=6 4324180093671337 r002 28th iterates of z^2 + 4324180095681436 r002 46th iterates of z^2 + 4324180099346063 h001 (1/7*exp(2)+1/8)/(4/5*exp(1)+5/9) 4324180111430341 r009 Im(z^3+c),c=-9/46+3/4*I,n=34 4324180122581513 a007 Real Root Of 154*x^4+496*x^3-574*x^2+834*x+600 4324180125317351 m001 (StronglyCareFree+Thue)/(Artin+Magata) 4324180129365427 r009 Re(z^3+c),c=-59/106+1/6*I,n=21 4324180130679152 a007 Real Root Of 966*x^4+486*x^3+814*x^2-639*x-423 4324180130775887 a007 Real Root Of -19*x^4-844*x^3-959*x^2+443*x+708 4324180141548247 r002 31th iterates of z^2 + 4324180145708266 r009 Im(z^3+c),c=-1/18+22/43*I,n=26 4324180152419275 r002 57th iterates of z^2 + 4324180171232413 a007 Real Root Of 541*x^4+235*x^3+864*x^2-695*x-462 4324180175215356 r002 24th iterates of z^2 + 4324180183215595 a007 Real Root Of -202*x^4-705*x^3+537*x^2-783*x+196 4324180194460166 m001 BesselI(0,2)*(exp(1/exp(1))+ZetaP(2)) 4324180200636123 r009 Im(z^3+c),c=-21/50+9/22*I,n=25 4324180201108136 r005 Im(z^2+c),c=1/56+39/62*I,n=56 4324180214581623 r002 61th iterates of z^2 + 4324180218608371 q001 1622/3751 4324180226108162 r005 Re(z^2+c),c=-11/18+19/110*I,n=60 4324180232056735 m005 (1/2*5^(1/2)+1/8)/(6/7*Pi+2/11) 4324180241203007 a007 Real Root Of -80*x^4-234*x^3+281*x^2-991*x-489 4324180264534057 r005 Im(z^2+c),c=9/40+17/43*I,n=27 4324180269692917 m001 (1-Ei(1))/(-arctan(1/3)+Riemann2ndZero) 4324180271704426 m001 Trott^2/GlaisherKinkelin/ln(cos(Pi/5)) 4324180284977116 r005 Re(z^2+c),c=-5/8+1/113*I,n=30 4324180287956882 m001 (5^(1/2)+ln(2))/(-Ei(1)+ReciprocalLucas) 4324180291686470 m001 1/Paris/Bloch^2*ln(Sierpinski) 4324180303469418 r009 Re(z^3+c),c=-31/78+5/56*I,n=18 4324180320354257 a007 Real Root Of 516*x^4-914*x^3+799*x^2+461*x-42 4324180324269159 r005 Re(z^2+c),c=-1/15+50/53*I,n=5 4324180329378317 m001 LambertW(1)^2*exp(ArtinRank2)^2*gamma^2 4324180360654493 g004 Re(GAMMA(2/5+I*149/60)) 4324180363525114 m005 (1/24+1/6*5^(1/2))/(-23/40+3/10*5^(1/2)) 4324180368887256 v002 sum(1/(5^n+(20*n^2-44*n+60)),n=1..infinity) 4324180384841145 r005 Im(z^2+c),c=1/30+29/54*I,n=28 4324180389868095 r005 Re(z^2+c),c=7/23+34/63*I,n=23 4324180391918347 m001 (Si(Pi)+Catalan)/(-DuboisRaymond+GaussAGM) 4324180405437636 l006 ln(3697/5697) 4324180408274866 m001 1/ln(Khintchine)/Conway^2/GAMMA(19/24)^2 4324180413729543 b008 4+Tan[10]/2 4324180419146497 a001 1/439128*(1/2*5^(1/2)+1/2)^4*76^(4/17) 4324180423391081 a001 76/1346269*233^(39/49) 4324180433094005 r002 44th iterates of z^2 + 4324180442110639 a001 14662949395604/5*32951280099^(1/9) 4324180442110639 a001 9062201101803/5*2504730781961^(1/9) 4324180442110639 a001 23725150497407/5*433494437^(1/9) 4324180443781017 a007 Real Root Of -325*x^4+443*x^3+988*x^2+580*x-460 4324180448904889 r009 Im(z^3+c),c=-7/110+23/45*I,n=20 4324180449539993 m002 -6*E^Pi-Pi^5+Cosh[Pi]*ProductLog[Pi] 4324180453405781 a003 sin(Pi*16/111)*sin(Pi*51/113) 4324180479353443 r005 Re(z^2+c),c=-31/52+20/53*I,n=40 4324180488017016 r002 37th iterates of z^2 + 4324180502872508 r005 Re(z^2+c),c=-25/46+7/18*I,n=30 4324180527901392 a007 Real Root Of -459*x^4-679*x^3-322*x^2+353*x+174 4324180529772819 a001 1/1149652*(1/2*5^(1/2)+1/2)^6*76^(4/17) 4324180539202585 m001 (5^(1/2)+arctan(1/2))/GolombDickman 4324180539202585 m001 (sqrt(5)+arctan(1/2))/GolombDickman 4324180540106503 a007 Real Root Of 20*x^4+865*x^3+5*x^2-109*x-811 4324180545912983 a001 1/3009828*(1/2*5^(1/2)+1/2)^8*76^(4/17) 4324180549628038 r009 Im(z^3+c),c=-15/34+23/58*I,n=48 4324180549723159 a001 1/4870004*(1/2*5^(1/2)+1/2)^9*76^(4/17) 4324180555888152 a001 1/1860176*(1/2*5^(1/2)+1/2)^7*76^(4/17) 4324180556742505 h001 (1/9*exp(1)+3/8)/(2/11*exp(2)+2/9) 4324180563167062 a007 Real Root Of -839*x^4+130*x^3+852*x^2+133*x-198 4324180570959311 r005 Re(z^2+c),c=-23/122+21/31*I,n=54 4324180589207735 r005 Re(z^2+c),c=37/118+4/33*I,n=3 4324180598143650 a001 1/710524*(1/2*5^(1/2)+1/2)^5*76^(4/17) 4324180598153036 r009 Im(z^3+c),c=-9/38+19/42*I,n=4 4324180599312668 r009 Im(z^3+c),c=-47/110+17/42*I,n=49 4324180613530983 a007 Real Root Of 847*x^4-830*x^3+951*x^2-489*x-486 4324180630637328 r005 Im(z^2+c),c=9/56+5/11*I,n=63 4324180636821905 r005 Im(z^2+c),c=-21/122+47/48*I,n=4 4324180653959879 m001 (MadelungNaCl+Totient)/(Bloch-Landau) 4324180656991719 m005 (1/6*Pi-3/4)/(1/6*2^(1/2)+5) 4324180668973147 r009 Re(z^3+c),c=-27/58+31/59*I,n=7 4324180685104420 m001 (BesselK(0,1)-Shi(1))/(-gamma(2)+MinimumGamma) 4324180699630364 m002 Pi^2+Log[Pi]/5-Sinh[Pi]/2 4324180710945437 m009 (1/6*Pi^2+1/6)/(8/5*Catalan+1/5*Pi^2+3/4) 4324180711169192 b008 1/11+7*Sqrt[38] 4324180716323268 r002 64th iterates of z^2 + 4324180716388652 a007 Real Root Of 198*x^4-796*x^3-844*x^2-621*x-182 4324180736130236 a007 Real Root Of 94*x^4+333*x^3-269*x^2+348*x+594 4324180738237248 m005 (1/3*Zeta(3)+2/3)/(1/9*2^(1/2)-2/11) 4324180747895988 m001 HardyLittlewoodC5*Riemann1stZero/Totient 4324180750311464 m001 (FeigenbaumB-Psi(1,1/3))/(-Khinchin+Landau) 4324180756090547 r005 Im(z^2+c),c=-37/86+1/14*I,n=25 4324180762344698 a007 Real Root Of 733*x^4+132*x^3+763*x^2-246*x-264 4324180775369646 r005 Re(z^2+c),c=-31/52+17/61*I,n=62 4324180797681962 m001 exp(GolombDickman)^2*Backhouse/GAMMA(19/24) 4324180803588633 r002 28th iterates of z^2 + 4324180807727411 r002 64th iterates of z^2 + 4324180811706550 m001 exp(Pi)*Backhouse^2*log(1+sqrt(2)) 4324180822742501 a001 281/15456*55^(8/37) 4324180828886837 r005 Re(z^2+c),c=3/25+11/31*I,n=9 4324180836081626 r002 11th iterates of z^2 + 4324180848070642 p001 sum((-1)^n/(577*n+231)/(256^n),n=0..infinity) 4324180848901961 r009 Im(z^3+c),c=-17/118+27/53*I,n=7 4324180853590763 l006 ln(3236/3379) 4324180856273917 m001 Paris/(Niven+Stephens) 4324180857839633 m001 (MertensB2+ZetaQ(4))/(arctan(1/3)-exp(1)) 4324180860907884 a007 Real Root Of 471*x^4+208*x^3-250*x^2-244*x+11 4324180864509443 r002 57th iterates of z^2 + 4324180872523791 l006 ln(3758/5791) 4324180878364958 a001 4250681/7*1836311903^(11/21) 4324180878445413 a001 2537720636/21*75025^(11/21) 4324180887767159 a001 1/271396*(1/2*5^(1/2)+1/2)^3*76^(4/17) 4324180888681020 r002 26th iterates of z^2 + 4324180890757291 m005 (1/3*2^(1/2)+3/4)/(1/11*3^(1/2)+1/8) 4324180894570949 r002 39th iterates of z^2 + 4324180906644117 r005 Im(z^2+c),c=1/27+28/51*I,n=54 4324180915036200 a007 Real Root Of -992*x^4+609*x^3-877*x^2-534*x+17 4324180924699287 a005 (1/cos(3/46*Pi))^505 4324180924872347 r005 Im(z^2+c),c=23/126+23/45*I,n=38 4324180927250048 a003 cos(Pi*24/89)-cos(Pi*26/61) 4324180931186289 m001 exp(sqrt(1+sqrt(3)))/BesselK(1,1)^2*sqrt(3)^2 4324180953454936 r005 Re(z^2+c),c=-3/5+29/118*I,n=37 4324180962215192 r002 61th iterates of z^2 + 4324180972695396 a003 cos(Pi*25/112)-cos(Pi*31/79) 4324180973746989 h001 (-3*exp(5)-1)/(-2*exp(4)+6) 4324180989871339 a007 Real Root Of -840*x^4+995*x^3+595*x^2+620*x-28 4324180992300705 r005 Re(z^2+c),c=-37/60+5/51*I,n=62 4324180998516386 r005 Re(z^2+c),c=7/110+39/59*I,n=27 4324181002707157 m002 -4+E^Pi+6*E^Pi*Pi^3 4324181008317003 r002 20th iterates of z^2 + 4324181035341760 r002 55th iterates of z^2 + 4324181039638662 m001 (Riemann1stZero+Weierstrass)/(ln(2)+Khinchin) 4324181045054241 a008 Real Root of (2+4*x+2*x^2+5*x^3-6*x^4+2*x^5) 4324181055202405 a008 Real Root of x^4-x^3-14*x^2-7 4324181059678901 r002 40th iterates of z^2 + 4324181060406587 m001 Pi^(3^(1/2)/GAMMA(2/3)) 4324181060406587 m001 Pi^(sqrt(3)/GAMMA(2/3)) 4324181060674870 s002 sum(A248030[n]/((10^n+1)/n),n=1..infinity) 4324181068468832 r009 Im(z^3+c),c=-1/18+22/43*I,n=24 4324181081691820 r009 Im(z^3+c),c=-5/21+27/56*I,n=28 4324181082198806 r005 Im(z^2+c),c=-6/31+28/53*I,n=7 4324181101707418 m005 (1/2*5^(1/2)+4/9)/(5*gamma+8/11) 4324181105808046 r002 19th iterates of z^2 + 4324181109221131 k006 concat of cont frac of 4324181111181341 k006 concat of cont frac of 4324181117638481 r002 64th iterates of z^2 + 4324181131511611 k008 concat of cont frac of 4324181133054233 m001 (Kac-Totient)/(Zeta(3)-Zeta(5)) 4324181147293040 m005 (1/2*Pi+7/11)/(9/10*Zeta(3)-4/7) 4324181185329417 m001 (Zeta(1,2)+ZetaP(3))/(3^(1/3)+arctan(1/3)) 4324181189609997 a007 Real Root Of 843*x^4-307*x^3-655*x^2-752*x-257 4324181197996220 a007 Real Root Of -129*x^4+340*x^3-795*x^2+424*x+364 4324181201112183 k006 concat of cont frac of 4324181203250374 g006 Psi(1,7/10)+Psi(1,1/3)-Psi(1,5/11)-Psi(1,1/7) 4324181211111311 k007 concat of cont frac of 4324181218132235 k009 concat of cont frac of 4324181227112791 k007 concat of cont frac of 4324181230991268 p004 log(30881/409) 4324181231721144 a001 76/89*34^(23/50) 4324181247939639 a007 Real Root Of -276*x^4+904*x^3-409*x^2+314*x+295 4324181260393625 m001 (Cahen+Stephens)/(cos(1)+BesselI(0,2)) 4324181269221122 k009 concat of cont frac of 4324181274641504 a007 Real Root Of -272*x^4-231*x^3+361*x^2+933*x-41 4324181274962494 r009 Im(z^3+c),c=-13/27+10/27*I,n=39 4324181277413500 a007 Real Root Of 208*x^4-559*x^3+677*x^2-878*x+291 4324181299621401 r005 Re(z^2+c),c=-3/5+20/73*I,n=51 4324181324688608 l006 ln(3819/5885) 4324181336021018 a003 sin(Pi*3/101)+sin(Pi*13/118) 4324181344067188 a007 Real Root Of -259*x^4+491*x^3+851*x^2+877*x-569 4324181352818361 a001 3/20365011074*34^(23/24) 4324181371338694 m005 (1/2*Catalan-2/3)/(3*2^(1/2)+7/12) 4324181384152301 r002 38th iterates of z^2 + 4324181404079287 r002 34th iterates of z^2 + 4324181404572379 m005 (5/6*2^(1/2)+1)/(1/6*gamma-3/5) 4324181410677908 m001 Gompertz/(Zeta(1/2)+StolarskyHarborth) 4324181426630312 r002 55th iterates of z^2 + 4324181429576585 s002 sum(A122065[n]/((exp(n)-1)/n),n=1..infinity) 4324181432009102 m001 exp(GAMMA(7/12))*GAMMA(11/12)^2*sin(1) 4324181465288843 r002 64th iterates of z^2 + 4324181468606115 r002 7th iterates of z^2 + 4324181481121857 a007 Real Root Of 602*x^4-422*x^3+794*x^2-986*x-630 4324181485197251 v002 sum(1/(3^n+(17/2*n^2+1/2*n+44)),n=1..infinity) 4324181504936901 r005 Re(z^2+c),c=-29/46+3/62*I,n=20 4324181511947715 m001 (5^(1/2)-exp(1))/(-cos(1/5*Pi)+ArtinRank2) 4324181530951917 r005 Im(z^2+c),c=1/17+31/59*I,n=33 4324181560010313 r005 Im(z^2+c),c=-77/118+5/56*I,n=39 4324181566042832 r009 Im(z^3+c),c=-17/38+11/28*I,n=50 4324181572450041 r009 Im(z^3+c),c=-10/29+20/27*I,n=8 4324181600652808 a007 Real Root Of -754*x^4-454*x^3+356*x^2+423*x+106 4324181609158974 b008 E^(9/19)+E 4324181618793291 r002 25th iterates of z^2 + 4324181618896767 a007 Real Root Of -87*x^4-456*x^3-179*x^2+697*x-91 4324181623792230 r005 Im(z^2+c),c=33/98+4/37*I,n=22 4324181626187961 q001 819/1894 4324181652301739 m001 (-ln(2)+ZetaP(2))/(Psi(2,1/3)-sin(1/5*Pi)) 4324181665244397 a007 Real Root Of 104*x^4+559*x^3+513*x^2+327*x+658 4324181681930253 r009 Im(z^3+c),c=-1/22+21/41*I,n=15 4324181695320049 r002 18th iterates of z^2 + 4324181705266460 r004 Re(z^2+c),c=-21/34+1/19*I,z(0)=-1,n=37 4324181708571164 m001 ln(TwinPrimes)^2*MinimumGamma^2*GAMMA(19/24) 4324181716444928 a007 Real Root Of 21*x^4+905*x^3-117*x^2+705*x+371 4324181722568460 a007 Real Root Of -196*x^4-982*x^3-734*x^2-530*x+561 4324181729329491 r002 57th iterates of z^2 + 4324181738857560 r005 Im(z^2+c),c=25/114+23/57*I,n=58 4324181762635852 l006 ln(3880/5979) 4324181768796730 b008 Pi*Sqrt[ArcCosh[17/5]] 4324181772444017 r005 Re(z^2+c),c=-8/13+1/9*I,n=49 4324181773019367 r005 Re(z^2+c),c=-13/21+1/32*I,n=54 4324181777804997 r002 17th iterates of z^2 + 4324181783801109 a007 Real Root Of -698*x^4+927*x^3-307*x^2+821*x-35 4324181800076483 a007 Real Root Of 201*x^4+987*x^3+600*x^2+170*x-956 4324181816803473 a007 Real Root Of 41*x^4-173*x^3+774*x^2-927*x-561 4324181817134674 r005 Im(z^2+c),c=-53/118+3/20*I,n=4 4324181819052802 m001 1/ln(HardHexagonsEntropy)/FeigenbaumDelta^2*Pi 4324181820866840 a007 Real Root Of 266*x^4+902*x^3-942*x^2+398*x-736 4324181829331488 r005 Im(z^2+c),c=31/110+19/58*I,n=27 4324181845475883 r009 Im(z^3+c),c=-5/66+25/49*I,n=18 4324181847969357 r005 Im(z^2+c),c=5/22+23/58*I,n=42 4324181851879692 r005 Im(z^2+c),c=29/106+22/63*I,n=53 4324181864034329 a001 5/199*11^(12/53) 4324181865002738 m001 (FeigenbaumMu+Robbin)/(3^(1/3)-arctan(1/2)) 4324181912271660 m005 (1/2*gamma-7/12)/(1/6*gamma-7/9) 4324181924239342 r005 Im(z^2+c),c=-17/110+34/55*I,n=51 4324181929034726 r005 Im(z^2+c),c=-13/10+1/43*I,n=40 4324181934082789 r009 Im(z^3+c),c=-11/56+28/57*I,n=11 4324181935335849 r005 Im(z^2+c),c=-12/23+27/55*I,n=51 4324181935710119 m001 (KhinchinHarmonic-Thue)/(ln(3)-Conway) 4324181937407252 r005 Re(z^2+c),c=-55/98+11/32*I,n=36 4324181938928717 a007 Real Root Of -167*x^4-884*x^3-841*x^2-509*x+437 4324181979737480 r002 32th iterates of z^2 + 4324181983163815 a008 Real Root of x^3-x^2+139*x-60 4324181989758740 m001 TwinPrimes^2*ln(Khintchine)^2*Zeta(7)^2 4324181999100642 r005 Im(z^2+c),c=-7/118+38/63*I,n=52 4324182003033091 m001 Zeta(1,2)/exp(Robbin)^2/gamma 4324182024675700 a007 Real Root Of -593*x^4-704*x^3-573*x^2+532*x+301 4324182036615057 r002 9th iterates of z^2 + 4324182044429637 r005 Im(z^2+c),c=11/78+8/17*I,n=60 4324182045899713 m002 -6*E^Pi+5*Pi*Cosh[Pi] 4324182048335525 r005 Im(z^2+c),c=-77/60+2/53*I,n=57 4324182064900813 a001 987/199*199^(9/22) 4324182070564280 r005 Re(z^2+c),c=-29/22+2/43*I,n=38 4324182084824030 s002 sum(A264472[n]/(pi^n-1),n=1..infinity) 4324182088161629 r009 Re(z^3+c),c=-1/74+27/34*I,n=54 4324182090393795 m001 exp(MinimumGamma)^2/Lehmer*GAMMA(19/24)^2 4324182093127744 r002 24th iterates of z^2 + 4324182098069120 r002 28th iterates of z^2 + 4324182129492166 a007 Real Root Of 121*x^4+410*x^3-595*x^2-440*x+68 4324182149007413 r009 Re(z^3+c),c=-41/78+22/63*I,n=41 4324182160091053 a007 Real Root Of -991*x^4+551*x^3-978*x^2-613*x-3 4324182168812722 a007 Real Root Of -693*x^4+475*x^3+281*x^2+867*x+385 4324182173119141 k006 concat of cont frac of 4324182174742916 r005 Re(z^2+c),c=-11/18+11/60*I,n=34 4324182183638642 m001 PrimesInBinary*(LambertW(1)+PlouffeB) 4324182186543834 a007 Real Root Of 213*x^4+915*x^3-100*x^2-261*x+252 4324182187025716 l006 ln(3941/6073) 4324182192286457 a007 Real Root Of 146*x^4-898*x^3-913*x^2-388*x+406 4324182204272048 r005 Im(z^2+c),c=-21/94+34/59*I,n=18 4324182205753644 r002 29th iterates of z^2 + 4324182208720807 m001 1/Zeta(1,2)/ln(GAMMA(17/24))*Zeta(7)^2 4324182223114328 m005 (1/2*gamma-1/9)/(4/9*5^(1/2)-7/12) 4324182224009299 m001 Trott2nd/(HardyLittlewoodC3-ZetaQ(4)) 4324182244607311 r002 36th iterates of z^2 + 4324182249883792 r009 Im(z^3+c),c=-19/54+23/52*I,n=17 4324182265950275 m005 (1/3*5^(1/2)-1/3)/(3/11*Zeta(3)+5/8) 4324182267276153 m005 (1/2*5^(1/2)+1)/(11/12*Zeta(3)-6) 4324182276416921 m001 KhinchinHarmonic^BesselI(1,1)+Zeta(1,2) 4324182291993490 m001 GAMMA(3/4)*(FeigenbaumAlpha+GAMMA(23/24)) 4324182291993490 m001 GAMMA(3/4)*(GAMMA(23/24)+FeigenbaumAlpha) 4324182308775337 r002 50th iterates of z^2 + 4324182323318100 r005 Re(z^2+c),c=-37/56+1/9*I,n=27 4324182332577464 r005 Re(z^2+c),c=-41/70+3/22*I,n=16 4324182337761971 r009 Im(z^3+c),c=-5/52+32/63*I,n=5 4324182342191439 k007 concat of cont frac of 4324182342492495 r005 Im(z^2+c),c=5/78+21/41*I,n=22 4324182347364866 a001 1364/377*196418^(25/43) 4324182348584635 m005 (1/2*2^(1/2)-1/6)/(3/11*Catalan+1) 4324182369188133 a007 Real Root Of -462*x^4+187*x^3+987*x^2+570*x-430 4324182372836032 r005 Re(z^2+c),c=-47/70+5/19*I,n=59 4324182381511902 a007 Real Root Of 706*x^4-966*x^3+23*x^2-971*x+469 4324182384640431 m005 (1/3*2^(1/2)+1)/(5^(1/2)+7/6) 4324182388627169 a001 1268860318/17*2971215073^(7/24) 4324182388857333 r002 13th iterates of z^2 + 4324182388934326 a001 73681302247/34*28657^(7/24) 4324182395997016 m009 (8/3*Catalan+1/3*Pi^2+1/2)/(5/6*Psi(1,1/3)+6) 4324182400796561 r005 Im(z^2+c),c=-45/122+23/38*I,n=11 4324182405800316 p001 sum(1/(495*n+232)/(100^n),n=0..infinity) 4324182422911297 m009 (3/5*Psi(1,1/3)+2)/(6*Psi(1,2/3)+1/4) 4324182430197132 a007 Real Root Of -242*x^4-859*x^3+784*x^2-114*x+4 4324182435836951 m001 Ei(1)+MasserGramainDelta*MertensB3 4324182438630526 r005 Im(z^2+c),c=-15/16+29/106*I,n=14 4324182448372897 l006 ln(133/10042) 4324182483203565 m001 MertensB3*ReciprocalLucas^KhinchinHarmonic 4324182487810248 a001 39088169/2207*3^(13/16) 4324182494310855 r005 Im(z^2+c),c=37/122+13/41*I,n=59 4324182498776096 m001 (Lehmer+Porter)/(3^(1/3)-cos(1/12*Pi)) 4324182502299901 r002 37th iterates of z^2 + 4324182512313690 r005 Im(z^2+c),c=-47/106+32/57*I,n=4 4324182519996801 r009 Im(z^3+c),c=-47/90+7/44*I,n=33 4324182525553335 m001 exp(sqrt(1+sqrt(3)))*BesselJ(0,1)^2*sqrt(2) 4324182539173467 m001 (Psi(1,1/3)-gamma(1))/(-GAMMA(11/12)+Magata) 4324182552106599 r002 45th iterates of z^2 + 4324182552106599 r002 45th iterates of z^2 + 4324182569825792 r009 Im(z^3+c),c=-55/114+1/8*I,n=4 4324182584685034 a007 Real Root Of 377*x^4-641*x^3-131*x^2-520*x+288 4324182590889058 m001 (LambertW(1)+FeigenbaumKappa)/(-Landau+Paris) 4324182598478140 l006 ln(4002/6167) 4324182604207705 a007 Real Root Of 637*x^4+500*x^3-759*x^2-425*x+263 4324182608424797 r009 Im(z^3+c),c=-25/44+21/58*I,n=8 4324182612201738 r009 Im(z^3+c),c=-33/98+22/49*I,n=23 4324182618188851 m005 (43/44+1/4*5^(1/2))/(1/5*5^(1/2)-4) 4324182635983033 a008 Real Root of x^4-x^3-11*x^2+21*x-134 4324182650820037 r009 Re(z^3+c),c=-25/48+6/25*I,n=32 4324182652798393 m005 (1/2*Zeta(3)+3/4)/(7/10*3^(1/2)-9/10) 4324182660841080 s002 sum(A110609[n]/(2^n+1),n=1..infinity) 4324182663107430 r009 Re(z^3+c),c=-1/6+9/13*I,n=8 4324182669115922 m001 (Zeta(5)*FeigenbaumC+Sierpinski)/Zeta(5) 4324182682474522 r005 Re(z^2+c),c=-37/64+23/63*I,n=62 4324182689441681 a007 Real Root Of 48*x^4+54*x^3-828*x^2-827*x-510 4324182689572232 r002 27th iterates of z^2 + 4324182695676012 r002 53th iterates of z^2 + 4324182696350036 a007 Real Root Of 359*x^4+379*x^3-292*x^2-737*x-246 4324182737245499 m002 5/E^Pi+(4*Sinh[Pi])/ProductLog[Pi] 4324182742788571 r009 Im(z^3+c),c=-15/46+29/64*I,n=27 4324182743061007 a007 Real Root Of 917*x^4-91*x^3+334*x^2-553*x-341 4324182755931629 r005 Re(z^2+c),c=-131/106+4/33*I,n=26 4324182756021163 r002 42th iterates of z^2 + 4324182772454129 r005 Re(z^2+c),c=7/122+8/23*I,n=30 4324182776630819 r005 Re(z^2+c),c=-11/19+1/54*I,n=11 4324182795590718 s001 sum(exp(-2*Pi)^n*A167573[n],n=1..infinity) 4324182811685865 r002 20th iterates of z^2 + 4324182840834721 a007 Real Root Of -875*x^4+609*x^3+349*x^2+630*x+287 4324182856366607 m005 (3*Pi+1/3)/(2/5*Pi+1) 4324182856366607 m006 (3*Pi+1/3)/(2/5*Pi+1) 4324182856366607 m008 (3*Pi+1/3)/(2/5*Pi+1) 4324182872877266 a001 1/103664*(1/2*5^(1/2)+1/2)*76^(4/17) 4324182876726258 a001 7/63245986*233^(1/4) 4324182883783414 m005 (1/2*gamma-2/5)/(3/8*2^(1/2)-3/11) 4324182884977671 m001 (-BesselJ(1,1)+GAMMA(7/12))/(Shi(1)-Zeta(1/2)) 4324182890776387 r002 8th iterates of z^2 + 4324182898742448 r005 Re(z^2+c),c=-9/16+15/46*I,n=31 4324182941397131 r005 Im(z^2+c),c=-1/21+31/45*I,n=24 4324182946752872 m001 ln(GAMMA(17/24))^2/BesselK(0,1)/sin(Pi/5)^2 4324182947570499 r005 Im(z^2+c),c=-55/64+11/42*I,n=10 4324182948143196 m001 GAMMA(19/24)*Lehmer^2*exp(sinh(1))^2 4324182956062087 a007 Real Root Of 904*x^4+504*x^3+505*x^2-929*x-487 4324182973039196 m005 (1/3*Pi+2/7)/(1/7*gamma+3) 4324182975527009 a007 Real Root Of 126*x^4-481*x^3-768*x^2-719*x+489 4324182990345745 r005 Im(z^2+c),c=19/126+17/36*I,n=27 4324182997575836 l006 ln(4063/6261) 4324183006535947 q001 1654/3825 4324183027350346 a007 Real Root Of -188*x^4-941*x^3-693*x^2-488*x+494 4324183035038115 a007 Real Root Of 3*x^4+116*x^3-593*x^2+44*x+939 4324183050256333 m001 FeigenbaumC^2*Lehmer^2/exp(Zeta(9)) 4324183067192473 p001 sum((-1)^n/(413*n+288)/n/(3^n),n=1..infinity) 4324183090099688 a007 Real Root Of -599*x^4-259*x^3+199*x^2+537*x+195 4324183108984381 m001 Chi(1)-QuadraticClass^MasserGramainDelta 4324183109746395 m001 (gamma+gamma(2))/(GAMMA(17/24)+Trott2nd) 4324183113184249 r005 Re(z^2+c),c=-53/102+25/56*I,n=50 4324183115733453 a007 Real Root Of -867*x^4+456*x^3-914*x^2+534*x+469 4324183116024280 m005 (3/5*Pi+1/3)/(3/5*gamma+1/6) 4324183135890398 m005 (1/2*Zeta(3)+8/11)/(2/5*3^(1/2)-1) 4324183155807332 m001 (2^(1/2)-cos(1/12*Pi))/(Artin+LaplaceLimit) 4324183159668193 r002 55th iterates of z^2 + 4324183168893242 r009 Im(z^3+c),c=-43/102+9/22*I,n=26 4324183171378545 a001 8/167761*76^(28/55) 4324183180533853 r005 Im(z^2+c),c=15/56+16/45*I,n=45 4324183196656091 a007 Real Root Of 189*x^4+740*x^3-437*x^2-640*x-844 4324183201087313 a001 10946/47*11^(8/31) 4324183205735551 m002 -2+E^Pi/6+Pi^2/4 4324183208538689 l006 ln(131/9891) 4324183214892971 a007 Real Root Of 81*x^4-271*x^3-415*x^2-232*x+197 4324183232229543 a001 89/3461452808002*2^(3/4) 4324183236094592 m001 (-KomornikLoreti+Landau)/(3^(1/2)+ln(Pi)) 4324183246054688 a001 34111385/1926*3^(13/16) 4324183247295916 a007 Real Root Of 329*x^4-231*x^3-126*x^2-366*x+189 4324183254156669 m001 ln(2)^FeigenbaumD*GAMMA(11/12)^FeigenbaumD 4324183269488953 a007 Real Root Of -508*x^4-701*x^2+42*x+167 4324183269931229 m001 (Zeta(1,-1)-gamma(2))/(MertensB1+Paris) 4324183276111192 r005 Re(z^2+c),c=-23/48+16/43*I,n=11 4324183289349609 r005 Re(z^2+c),c=-13/22+19/111*I,n=18 4324183289364640 r009 Im(z^3+c),c=-5/21+27/56*I,n=31 4324183294782668 m001 1/3*(3^(1/2)*FeigenbaumMu+Mills)*3^(1/2) 4324183308948044 r005 Re(z^2+c),c=-10/29+7/12*I,n=28 4324183309476249 a001 233/521*322^(19/24) 4324183317095156 a001 64079*21^(37/59) 4324183317369819 s001 sum(exp(-2*Pi/5)^n*A100014[n],n=1..infinity) 4324183317369819 s002 sum(A100014[n]/(exp(2/5*pi*n)),n=1..infinity) 4324183320712054 r002 11i'th iterates of 2*x/(1-x^2) of 4324183332309345 r005 Re(z^2+c),c=-7/13+25/63*I,n=39 4324183334487647 m001 (2^(1/2)-Bloch)/(-DuboisRaymond+ThueMorse) 4324183354720457 m005 (1/2*5^(1/2)-3)/(11/12*Zeta(3)-2/3) 4324183354917963 s002 sum(A131311[n]/((2*n)!),n=1..infinity) 4324183356681083 a001 267914296/15127*3^(13/16) 4324183361944269 m001 (-FeigenbaumB+Gompertz)/(BesselJ(0,1)-Ei(1,1)) 4324183368923405 r005 Re(z^2+c),c=-5/8+58/191*I,n=56 4324183372821257 a001 17711*3^(13/16) 4324183373158633 h001 (9/10*exp(2)+3/5)/(2/7*exp(1)+9/10) 4324183375176077 a001 1836311903/103682*3^(13/16) 4324183375519640 a001 1602508992/90481*3^(13/16) 4324183375569766 a001 12586269025/710647*3^(13/16) 4324183375577079 a001 10983760033/620166*3^(13/16) 4324183375578146 a001 86267571272/4870847*3^(13/16) 4324183375578301 a001 75283811239/4250681*3^(13/16) 4324183375578324 a001 591286729879/33385282*3^(13/16) 4324183375578328 a001 516002918640/29134601*3^(13/16) 4324183375578328 a001 4052739537881/228826127*3^(13/16) 4324183375578328 a001 3536736619241/199691526*3^(13/16) 4324183375578328 a001 6557470319842/370248451*3^(13/16) 4324183375578328 a001 2504730781961/141422324*3^(13/16) 4324183375578330 a001 956722026041/54018521*3^(13/16) 4324183375578338 a001 365435296162/20633239*3^(13/16) 4324183375578398 a001 139583862445/7881196*3^(13/16) 4324183375578805 a001 53316291173/3010349*3^(13/16) 4324183375581599 a001 20365011074/1149851*3^(13/16) 4324183375600745 a001 7778742049/439204*3^(13/16) 4324183375731974 a001 2971215073/167761*3^(13/16) 4324183376037271 m001 (Ei(1)+gamma(1))/(Backhouse-MertensB2) 4324183376631435 a001 1134903170/64079*3^(13/16) 4324183382796433 a001 433494437/24476*3^(13/16) 4324183384867038 l006 ln(4124/6355) 4324183389480642 r005 Re(z^2+c),c=-5/8+64/235*I,n=42 4324183396912568 m001 (5^(1/2)-PrimesInBinary)/(ThueMorse+ZetaQ(3)) 4324183402857545 s002 sum(A052207[n]/((2^n+1)/n),n=1..infinity) 4324183410802864 p001 sum(1/(349*n+232)/(125^n),n=0..infinity) 4324183416203756 r002 12th iterates of z^2 + 4324183418523205 r005 Im(z^2+c),c=-1/74+27/47*I,n=44 4324183425051958 a001 165580141/9349*3^(13/16) 4324183426196537 m002 -(Cosh[Pi]/Pi^3)+(4*Cosh[Pi])/Pi^2 4324183431475598 m005 (1/2*Zeta(3)-6/11)/(9/10*5^(1/2)-8/11) 4324183433817768 m001 (Zeta(5)+exp(1/Pi)*FeigenbaumMu)/exp(1/Pi) 4324183435730243 h005 exp(cos(Pi*15/58)+sin(Pi*15/53)) 4324183442156168 r005 Im(z^2+c),c=-17/36+32/63*I,n=16 4324183445116901 r005 Im(z^2+c),c=-2/3+23/70*I,n=52 4324183458455825 r005 Re(z^2+c),c=-3/5+17/57*I,n=50 4324183465492717 r005 Im(z^2+c),c=-9/10+35/152*I,n=54 4324183465705017 r002 62th iterates of z^2 + 4324183469677046 r005 Re(z^2+c),c=3/13+17/45*I,n=13 4324183470175677 m001 (Trott+ZetaP(4))/(Chi(1)+KhinchinLevy) 4324183496540115 r009 Im(z^3+c),c=-47/110+17/42*I,n=51 4324183508507160 r002 63th iterates of z^2 + 4324183509320596 m001 (GAMMA(11/12)-FeigenbaumB)/(Salem-TwinPrimes) 4324183521073971 r002 19th iterates of z^2 + 4324183529252182 r005 Im(z^2+c),c=-2/31+31/57*I,n=7 4324183530135657 m005 (1/2*5^(1/2)-6)/(1/4*Catalan+9/10) 4324183547010140 r002 18th iterates of z^2 + 4324183553389346 m001 1/exp(FeigenbaumD)*Robbin^2*Zeta(3)^2 4324183561880049 m001 ReciprocalFibonacci^ln(2^(1/2)+1)+2^(1/2) 4324183566921445 m001 ZetaP(2)/(gamma(2)+GAMMA(11/12)) 4324183569911473 a003 cos(Pi*17/78)*cos(Pi*19/61) 4324183578004036 m001 1/(3^(1/3))^2/Bloch*ln(GAMMA(7/12)) 4324183593170360 m005 (1/3*3^(1/2)-3/7)/(8/9*gamma-6/7) 4324183594707193 r005 Im(z^2+c),c=-157/114+1/42*I,n=26 4324183600504073 a007 Real Root Of -117*x^4+971*x^3-329*x^2+731*x-329 4324183604212566 m001 FeigenbaumAlpha/exp(ErdosBorwein)/Magata^2 4324183608737796 a007 Real Root Of -112*x^4-538*x^3-247*x^2-7*x+247 4324183609396447 a001 13/3571*76^(4/7) 4324183609722158 r009 Re(z^3+c),c=-11/30+1/20*I,n=8 4324183646995165 m001 (gamma(1)+PisotVijayaraghavan)/(1+Ei(1)) 4324183653470338 m001 (Ei(1)+Porter)/(StronglyCareFree+ZetaQ(4)) 4324183653707582 m005 (1/2*Catalan+4/11)/(7/9*2^(1/2)-3) 4324183670035655 m001 GAMMA(2/3)^MertensB2+Otter 4324183671541038 r009 Re(z^3+c),c=-23/52+7/52*I,n=39 4324183711958032 r005 Im(z^2+c),c=25/114+19/48*I,n=24 4324183713540132 r005 Im(z^2+c),c=17/86+11/26*I,n=58 4324183714675657 a001 63245986/3571*3^(13/16) 4324183718947751 a001 38/17*987^(42/55) 4324183719602819 m001 (-Champernowne+Robbin)/(cos(1)+CareFree) 4324183727815138 r005 Re(z^2+c),c=-13/22+46/123*I,n=32 4324183738791817 a007 Real Root Of -552*x^4+604*x^3+302*x^2+564*x-25 4324183750261594 m005 (1/3*Catalan+3/4)/(3/5*Pi+5/9) 4324183760868016 l006 ln(4185/6449) 4324183766386131 m001 (Thue+ZetaP(2))/(ln(Pi)-sin(1)) 4324183775213815 r005 Im(z^2+c),c=19/54+11/46*I,n=54 4324183778662812 r002 60th iterates of z^2 + 4324183797406178 a007 Real Root Of 177*x^4+806*x^3+208*x^2+3*x-592 4324183816170193 a001 10946/843*123^(1/4) 4324183824295760 m001 1/FeigenbaumD/exp(Robbin)^2*TwinPrimes^2 4324183835804613 r002 24th iterates of z^2 + 4324183837714302 r002 27th iterates of z^2 + 4324183842002061 r005 Re(z^2+c),c=-73/118+1/20*I,n=62 4324183842431506 r005 Re(z^2+c),c=-65/106+9/62*I,n=58 4324183847717065 a003 sin(Pi*18/103)-sin(Pi*48/119) 4324183855804787 r005 Re(z^2+c),c=-43/78+11/25*I,n=33 4324183863447327 m001 (-Artin+Kolakoski)/(2^(1/2)-ln(2+3^(1/2))) 4324183871442564 a007 Real Root Of 795*x^4-654*x^3+371*x^2+458*x+48 4324183877845478 r009 Re(z^3+c),c=-31/110+21/25*I,n=3 4324183903256132 m004 -5/18+(Sqrt[5]*Pi)/ProductLog[Sqrt[5]*Pi] 4324183914973637 r009 Im(z^3+c),c=-21/46+25/63*I,n=23 4324183918200938 r005 Re(z^2+c),c=-19/31+5/33*I,n=64 4324183936191552 m007 (-1/6*gamma-1/3*ln(2)+3/4)/(-1/4*gamma-5/6) 4324183939118405 a007 Real Root Of -567*x^4-961*x^3-736*x^2+958*x+494 4324183939371999 r009 Im(z^3+c),c=-4/13+20/29*I,n=21 4324183940021276 r005 Re(z^2+c),c=-14/23+12/59*I,n=46 4324183940198211 r002 23th iterates of z^2 + 4324183962598629 r005 Re(z^2+c),c=-67/114+19/61*I,n=60 4324183968681263 r005 Re(z^2+c),c=-25/42+2/35*I,n=13 4324183987561462 r009 Im(z^3+c),c=-43/106+5/12*I,n=37 4324183988410178 r009 Re(z^3+c),c=-23/60+5/63*I,n=2 4324183992274908 l006 ln(129/9740) 4324183998992120 m001 (Zeta(5)*ln(2^(1/2)+1)+FeigenbaumMu)/Zeta(5) 4324183999044693 r005 Im(z^2+c),c=-71/106+3/56*I,n=31 4324184003646449 m001 Salem/Paris*ln(Zeta(5)) 4324184021879517 r005 Im(z^2+c),c=-71/118+2/25*I,n=51 4324184022824743 a007 Real Root Of -707*x^4+11*x^3+758*x^2+953*x-530 4324184022861400 m001 1/ln(LambertW(1))*Salem^2*sqrt(Pi) 4324184041158969 a005 (1/cos(3/205*Pi))^1385 4324184044983656 m001 (Champernowne+Magata)/(Ei(1,1)-ln(2)/ln(10)) 4324184049843494 m001 (-Gompertz+Paris)/(Psi(1,1/3)+2^(1/2)) 4324184053455763 a007 Real Root Of -7*x^4+207*x^3-13*x^2+541*x-248 4324184053867777 p004 log(32621/21169) 4324184056513940 r005 Re(z^2+c),c=-77/122+7/25*I,n=47 4324184080516307 q001 4/92503 4324184092113557 m001 (HeathBrownMoroz-Kolakoski)/(Zeta(1/2)-Artin) 4324184096192367 m001 (MasserGramain+Riemann3rdZero)/(Ei(1,1)+Artin) 4324184106812058 l006 ln(9097/9499) 4324184109385488 h001 (5/7*exp(2)+6/11)/(5/11*exp(1)+1/9) 4324184116202632 p003 LerchPhi(1/16,5,226/191) 4324184118237311 m001 Pi*2^(1/3)+2^(1/2)*sin(1/12*Pi) 4324184126065373 l006 ln(4246/6543) 4324184133455027 r005 Im(z^2+c),c=11/126+13/21*I,n=20 4324184134823141 r005 Im(z^2+c),c=-35/66+31/64*I,n=54 4324184146364119 m005 (1/3*Zeta(3)-3/7)/(1/7*Pi+6) 4324184151256946 r005 Im(z^2+c),c=19/74+11/30*I,n=52 4324184156426470 a007 Real Root Of 253*x^4-502*x^3+267*x^2-567*x+227 4324184170402204 r005 Im(z^2+c),c=19/64+4/13*I,n=28 4324184176591908 a007 Real Root Of -755*x^4-235*x^3-701*x^2+991*x+567 4324184178185681 r005 Re(z^2+c),c=9/106+9/23*I,n=21 4324184199458351 m001 1/exp(BesselJ(1,1))*LaplaceLimit^2*GAMMA(7/12) 4324184227520738 m001 (exp(1)+exp(-1/2*Pi))/(-PlouffeB+Weierstrass) 4324184236161301 m001 GAMMA(7/12)^2*ln(Ei(1))/sin(Pi/5)^2 4324184243190270 r009 Im(z^3+c),c=-5/21+27/56*I,n=33 4324184253696451 m002 Pi^4/Log[Pi]^2+Pi^3*Sinh[Pi] 4324184259459668 r005 Re(z^2+c),c=-5/9+9/40*I,n=12 4324184267770347 r002 27th iterates of z^2 + 4324184283665978 r009 Re(z^3+c),c=-3/74+57/61*I,n=3 4324184284551411 m001 (Landau+LandauRamanujan)/(2^(1/2)+ln(5)) 4324184285452286 a001 89/322*1364^(7/10) 4324184294047200 m005 (1/3*5^(1/2)+1/9)/(3/8*exp(1)-3) 4324184322208996 p001 sum((-1)^n/(502*n+499)/n/(2^n),n=1..infinity) 4324184322307499 m001 (Ei(1)-Psi(2,1/3))/(-arctan(1/2)+Grothendieck) 4324184329384617 a007 Real Root Of 530*x^4+549*x^3+842*x^2-685*x+28 4324184344021338 r009 Im(z^3+c),c=-5/21+27/56*I,n=36 4324184344770246 a001 843/2*1597^(47/50) 4324184349496323 m005 (1/4*exp(1)+2/3)/(4/5*Pi+3/5) 4324184360435007 q001 167/3862 4324184378224796 r005 Im(z^2+c),c=13/90+29/62*I,n=63 4324184383276472 m001 1/GAMMA(7/12)^2/FeigenbaumDelta/ln(cos(Pi/5)) 4324184387510070 r005 Re(z^2+c),c=-21/34+7/92*I,n=48 4324184391861233 r002 12th iterates of z^2 + 4324184397913789 r002 60th iterates of z^2 + 4324184403326144 r009 Im(z^3+c),c=-5/21+27/56*I,n=34 4324184409837683 a007 Real Root Of 668*x^4-480*x^3-429*x^2-273*x-100 4324184418480628 r005 Im(z^2+c),c=-2/3+49/152*I,n=41 4324184431120682 m001 1/exp(FeigenbaumAlpha)^2/Conway*sin(1) 4324184453284622 r009 Im(z^3+c),c=-5/21+27/56*I,n=39 4324184456681037 r009 Im(z^3+c),c=-5/21+27/56*I,n=41 4324184459884211 r009 Im(z^3+c),c=-5/21+27/56*I,n=38 4324184466403100 r009 Im(z^3+c),c=-5/21+27/56*I,n=44 4324184467674738 r009 Im(z^3+c),c=-5/21+27/56*I,n=46 4324184468435090 r009 Im(z^3+c),c=-5/21+27/56*I,n=49 4324184468646988 r009 Im(z^3+c),c=-5/21+27/56*I,n=51 4324184468694310 r009 Im(z^3+c),c=-5/21+27/56*I,n=54 4324184468722336 r009 Im(z^3+c),c=-5/21+27/56*I,n=56 4324184468723679 r009 Im(z^3+c),c=-5/21+27/56*I,n=59 4324184468724310 r009 Im(z^3+c),c=-5/21+27/56*I,n=57 4324184468724582 r009 Im(z^3+c),c=-5/21+27/56*I,n=52 4324184468726517 r009 Im(z^3+c),c=-5/21+27/56*I,n=62 4324184468726707 r009 Im(z^3+c),c=-5/21+27/56*I,n=64 4324184468726934 r009 Im(z^3+c),c=-5/21+27/56*I,n=61 4324184468727541 r009 Im(z^3+c),c=-5/21+27/56*I,n=63 4324184468728471 r009 Im(z^3+c),c=-5/21+27/56*I,n=60 4324184468731541 r009 Im(z^3+c),c=-5/21+27/56*I,n=58 4324184468745204 r009 Im(z^3+c),c=-5/21+27/56*I,n=55 4324184468761461 r009 Im(z^3+c),c=-5/21+27/56*I,n=53 4324184468928448 r009 Im(z^3+c),c=-5/21+27/56*I,n=50 4324184468936821 r009 Im(z^3+c),c=-5/21+27/56*I,n=48 4324184468943567 r009 Im(z^3+c),c=-5/21+27/56*I,n=47 4324184469337425 r009 Im(z^3+c),c=-5/21+27/56*I,n=43 4324184470755091 r009 Im(z^3+c),c=-5/21+27/56*I,n=45 4324184473037717 r009 Im(z^3+c),c=-5/21+27/56*I,n=42 4324184478599028 m001 1/Riemann1stZero*exp(ArtinRank2)^2/TwinPrimes 4324184480918143 l006 ln(4307/6637) 4324184487371205 r009 Im(z^3+c),c=-5/21+27/56*I,n=40 4324184499062560 r005 Im(z^2+c),c=-23/48+31/54*I,n=9 4324184501141853 a007 Real Root Of -803*x^4-768*x^3-674*x^2+481*x+300 4324184506780755 r009 Re(z^3+c),c=-2/25+15/22*I,n=55 4324184507635458 m001 (BesselJ(0,1)+GAMMA(2/3))/(LambertW(1)-Shi(1)) 4324184513859610 s002 sum(A070568[n]/(n^2*10^n-1),n=1..infinity) 4324184522680375 a007 Real Root Of 661*x^4-423*x^3+409*x^2-463*x-334 4324184528857694 r009 Im(z^3+c),c=-5/21+27/56*I,n=37 4324184547259636 a007 Real Root Of 803*x^4-588*x^3-648*x^2-605*x-25 4324184566866957 a008 Real Root of (-3+4*x+6*x^2+4*x^4+7*x^8) 4324184575279085 a007 Real Root Of 92*x^4+138*x^3-950*x^2+570*x-780 4324184579236479 r009 Re(z^3+c),c=-2/27+35/58*I,n=17 4324184592720923 r009 Im(z^3+c),c=-37/98+20/47*I,n=14 4324184597701597 a001 144/199*1364^(17/30) 4324184620810640 a007 Real Root Of -775*x^4+363*x^3-154*x^2+11*x+90 4324184622564362 r005 Im(z^2+c),c=4/19+8/19*I,n=29 4324184623040455 r009 Im(z^3+c),c=-5/21+27/56*I,n=35 4324184623666977 a001 1/686789568*1548008755920^(16/17) 4324184623667159 a001 1/311187*433494437^(16/17) 4324184644000026 r005 Im(z^2+c),c=7/94+25/48*I,n=53 4324184650368618 m001 (Pi-GaussAGM)/(StolarskyHarborth+ZetaP(2)) 4324184651502970 r009 Im(z^3+c),c=-1/18+22/43*I,n=22 4324184665098899 r004 Im(z^2+c),c=7/38+10/23*I,z(0)=I,n=51 4324184690189230 m001 (Ei(1)-GAMMA(11/12))/(Cahen-Sierpinski) 4324184715857281 s002 sum(A110609[n]/(2^n-1),n=1..infinity) 4324184716394514 r002 48th iterates of z^2 + 4324184725270378 r009 Im(z^3+c),c=-15/34+20/43*I,n=12 4324184734374950 r009 Im(z^3+c),c=-5/21+27/56*I,n=29 4324184738935270 a007 Real Root Of 241*x^4+978*x^3-167*x^2+344*x-575 4324184741031764 a001 89/123*123^(17/20) 4324184751379686 a007 Real Root Of -34*x^4+155*x^3-458*x^2+686*x+396 4324184758325707 a007 Real Root Of 957*x^4-872*x^3-717*x^2-435*x-158 4324184762171995 m001 1/sin(Pi/5)*ln(Zeta(3))*sinh(1)^2 4324184763582455 r005 Im(z^2+c),c=-51/74+11/40*I,n=7 4324184765997746 a007 Real Root Of -154*x^4-484*x^3+778*x^2-50*x-54 4324184787095011 r005 Re(z^2+c),c=-9/16+79/127*I,n=6 4324184798232807 a001 233/5778*29^(31/44) 4324184800695089 l006 ln(127/9589) 4324184812464465 m001 (2/3)^GAMMA(7/12)/(GAMMA(1/24)^GAMMA(7/12)) 4324184817677312 h001 (7/12*exp(2)+7/9)/(2/7*exp(1)+2/5) 4324184825859721 l006 ln(4368/6731) 4324184850829177 r005 Re(z^2+c),c=-39/64+9/64*I,n=31 4324184853221698 r005 Im(z^2+c),c=-9/14+59/138*I,n=57 4324184854108248 r005 Re(z^2+c),c=-39/64+7/36*I,n=54 4324184874607951 m005 (11/10+1/10*5^(1/2))/(1/3*exp(1)-3/5) 4324184901606463 r005 Re(z^2+c),c=-77/118+11/61*I,n=26 4324184923700792 r005 Im(z^2+c),c=-33/25+6/43*I,n=6 4324184930623408 m005 (1/2*3^(1/2)+8/9)/(5/7*exp(1)-6) 4324184977372425 a007 Real Root Of -750*x^4+34*x^3+957*x^2+880*x-536 4324184978859492 m001 (GAMMA(1/4)*cos(Pi/5)+BesselI(1,1))/cos(Pi/5) 4324184980307979 r002 33th iterates of z^2 + 4324184980465106 r005 Re(z^2+c),c=-39/106+7/13*I,n=20 4324184982635640 r005 Re(z^2+c),c=-31/46+27/59*I,n=13 4324184994667438 h001 (1/9*exp(1)+9/10)/(9/10*exp(1)+1/3) 4324184996417259 m005 (3/5*2^(1/2)-1/4)/(5*exp(1)+1/4) 4324184997413498 r009 Re(z^3+c),c=-12/23+15/58*I,n=13 4324185006050192 m005 (1/2*3^(1/2)+1)/(1/6*3^(1/2)+1/7) 4324185009858323 r005 Re(z^2+c),c=17/90+9/26*I,n=16 4324185010153995 m001 (Mills+Trott)/(FeigenbaumAlpha+Landau) 4324185034590245 r002 11th iterates of z^2 + 4324185043010788 m001 (-Paris+Trott)/(BesselK(0,1)+ln(5)) 4324185043540169 r005 Im(z^2+c),c=-53/118+3/44*I,n=11 4324185060486992 m001 (polylog(4,1/2)-Kac)/(Otter-ZetaP(2)) 4324185076314466 m001 (Sarnak+ThueMorse)/(ln(3)+GAMMA(7/12)) 4324185080636783 r009 Im(z^3+c),c=-63/118+5/31*I,n=40 4324185082401628 a007 Real Root Of 414*x^4+258*x^3-646*x^2-752*x-198 4324185082965777 r005 Im(z^2+c),c=23/98+7/18*I,n=59 4324185091283656 r005 Re(z^2+c),c=-5/8+26/211*I,n=27 4324185100068979 r005 Re(z^2+c),c=-8/13+9/29*I,n=50 4324185108841714 r005 Im(z^2+c),c=-37/34+3/59*I,n=7 4324185121120263 m004 (3*Pi)/(5*Sqrt[5]*Log[Sqrt[5]*Pi]) 4324185151516655 m001 (Pi^(1/2)+Porter)/(BesselI(1,2)-sin(1)) 4324185155227842 a007 Real Root Of -792*x^4+218*x^3-117*x^2+432*x+254 4324185159428388 r005 Im(z^2+c),c=-25/28+10/41*I,n=37 4324185161299622 l006 ln(4429/6825) 4324185161499270 a001 843*46368^(7/46) 4324185162732312 a007 Real Root Of -10*x^4-429*x^3+168*x^2+869*x-151 4324185179926405 a007 Real Root Of 180*x^4+906*x^3+398*x^2-731*x-282 4324185182504829 r009 Im(z^3+c),c=-5/21+27/56*I,n=32 4324185196934625 r005 Im(z^2+c),c=39/122+14/43*I,n=26 4324185200796766 r002 50th iterates of z^2 + 4324185224532462 s002 sum(A245205[n]/(n^2*2^n+1),n=1..infinity) 4324185226462196 r005 Im(z^2+c),c=-29/94+23/36*I,n=23 4324185241746428 a007 Real Root Of -772*x^4-507*x^3-977*x^2+528*x+397 4324185243090546 h001 (9/10*exp(1)+3/8)/(7/9*exp(2)+7/9) 4324185253056476 r002 33th iterates of z^2 + 4324185257747400 r002 38th iterates of z^2 + 4324185279065664 r005 Re(z^2+c),c=-16/27+9/29*I,n=64 4324185281401105 r005 Im(z^2+c),c=21/58+13/59*I,n=50 4324185281710148 m001 (exp(-1/2*Pi)+CopelandErdos)/GAMMA(23/24) 4324185284293828 r009 Im(z^3+c),c=-5/21+27/56*I,n=20 4324185298513125 m001 (Kolakoski-Stephens)/(GAMMA(2/3)-Conway) 4324185308350934 s001 sum(exp(-Pi)^n*A191419[n],n=1..infinity) 4324185308350934 s002 sum(A191419[n]/(exp(pi*n)),n=1..infinity) 4324185332431720 r002 42th iterates of z^2 + 4324185353495345 r005 Im(z^2+c),c=-3/110+35/61*I,n=40 4324185354480126 a007 Real Root Of -697*x^4+672*x^3+725*x^2+372*x+104 4324185356411181 r002 13th iterates of z^2 + 4324185393897873 m001 (-sin(1)+Pi^(1/2))/(ln(2)/ln(10)+Si(Pi)) 4324185396906720 m002 Pi^3+(3*Log[Pi])/5+Sinh[Pi] 4324185400787532 r002 14th iterates of z^2 + 4324185400787532 r002 14th iterates of z^2 + 4324185407691705 r002 40th iterates of z^2 + 4324185417331229 r009 Im(z^3+c),c=-9/14+31/61*I,n=7 4324185419038016 h001 (-9*exp(1)+3)/(-9*exp(4)-5) 4324185420904010 m003 -72*Cos[1/2+Sqrt[5]/2]+Tanh[1/2+Sqrt[5]/2] 4324185430119864 a007 Real Root Of -955*x^4+635*x^3-126*x^2-225*x+11 4324185433922251 r005 Re(z^2+c),c=-49/78+17/42*I,n=30 4324185439752830 m001 (Bloch-FeigenbaumD)/(Lehmer-StolarskyHarborth) 4324185455819954 r005 Re(z^2+c),c=-31/52+9/46*I,n=27 4324185460753762 r009 Im(z^3+c),c=-27/74+27/62*I,n=17 4324185460929806 m009 (6*Catalan+3/4*Pi^2-1/6)/(3*Pi^2-1/6) 4324185461154295 a007 Real Root Of -419*x^4+103*x^3-624*x^2+609*x+403 4324185475841840 r002 40th iterates of z^2 + 4324185487625110 l006 ln(4490/6919) 4324185498878255 a007 Real Root Of 265*x^4+969*x^3-571*x^2+951*x+485 4324185503694053 m001 Kolakoski*LandauRamanujan-ZetaP(3) 4324185511380442 a001 1/141*121393^(16/17) 4324185523972263 m001 1/ln(Riemann1stZero)^2/Niven/GAMMA(5/24)^2 4324185544280133 r009 Im(z^3+c),c=-1/10+30/59*I,n=11 4324185546799306 m001 (3^(1/2)-Shi(1))/(Artin+KhinchinLevy) 4324185548572999 r005 Re(z^2+c),c=-27/46+11/32*I,n=58 4324185549249393 m008 (2/5*Pi^3+3)/(3/4*Pi-2) 4324185565883216 r009 Im(z^3+c),c=-5/21+27/56*I,n=30 4324185577137264 m001 (1-2^(1/3))/(-GAMMA(3/4)+GolombDickman) 4324185579046920 a003 -1/2+cos(4/9*Pi)+2*cos(7/18*Pi)+cos(10/21*Pi) 4324185581652852 a007 Real Root Of -251*x^4+894*x^3+806*x^2+277*x-334 4324185592387529 r009 Re(z^3+c),c=-31/78+5/56*I,n=19 4324185595924386 s002 sum(A119064[n]/(pi^n),n=1..infinity) 4324185597799106 r005 Re(z^2+c),c=-29/60+11/28*I,n=9 4324185598383688 h001 (3/8*exp(1)+1/12)/(3/10*exp(2)+1/3) 4324185599295358 m001 Catalan^2/exp(GolombDickman)^2/GAMMA(1/6) 4324185634984031 l006 ln(125/9438) 4324185642565435 a007 Real Root Of 594*x^4+754*x^3-9*x^2-860*x-330 4324185659865702 r002 2th iterates of z^2 + 4324185684929253 r005 Im(z^2+c),c=-17/14+16/219*I,n=21 4324185688638112 q001 1686/3899 4324185689186062 l003 BesselK(1,25/114) 4324185696206781 r009 Im(z^3+c),c=-47/110+17/42*I,n=55 4324185696249441 r005 Re(z^2+c),c=-49/78+20/57*I,n=11 4324185699787063 a001 24157817/1364*3^(13/16) 4324185702956033 a001 89/322*3571^(21/34) 4324185704988566 r002 31th iterates of z^2 + 4324185721990876 a007 Real Root Of 635*x^4-831*x^3-449*x^2-14*x+135 4324185723807680 a007 Real Root Of 752*x^4-384*x^3-903*x^2-697*x+475 4324185745204678 a001 144/199*3571^(1/2) 4324185757113733 m005 (1/2*Pi-3)/(8/9*exp(1)+8/9) 4324185761753057 b008 3^(1/3)*ArcSinh[10] 4324185770469587 a001 2207/3*75025^(45/46) 4324185781207348 b008 42+2^(5/16) 4324185784483901 p001 sum(1/(431*n+269)/(3^n),n=0..infinity) 4324185798484004 m001 (Zeta(3)*(1+3^(1/2))^(1/2)-Porter)/Zeta(3) 4324185805202685 l006 ln(4551/7013) 4324185812300342 r004 Re(z^2+c),c=-21/34+1/13*I,z(0)=-1,n=60 4324185830279906 a007 Real Root Of -351*x^4+984*x^3+580*x^2+884*x-558 4324185849956465 r005 Re(z^2+c),c=-53/94+8/45*I,n=5 4324185861557762 a007 Real Root Of 183*x^4+848*x^3+108*x^2-438*x+669 4324185870650686 a007 Real Root Of 27*x^4-209*x^3-99*x^2-508*x-219 4324185870876299 b008 CosIntegral[3/E^6] 4324185877907134 m009 (1/12*Pi^2+5)/(16/3*Catalan+2/3*Pi^2+2) 4324185885057904 a001 89/322*9349^(21/38) 4324185892620479 a001 144/199*9349^(17/38) 4324185902994253 l006 ln(5861/6120) 4324185908038674 r009 Re(z^3+c),c=-21/40+3/7*I,n=44 4324185908789556 a001 89/322*24476^(1/2) 4324185911831816 a001 144/199*24476^(17/42) 4324185911917844 a001 89/322*64079^(21/46) 4324185912389893 a001 89/322*439204^(7/18) 4324185912398588 a001 89/322*7881196^(7/22) 4324185912398607 a001 89/322*20633239^(3/10) 4324185912398610 a001 89/322*17393796001^(3/14) 4324185912398610 a001 89/322*14662949395604^(1/6) 4324185912398610 a001 89/322*599074578^(1/4) 4324185912398612 a001 89/322*33385282^(7/24) 4324185912399048 a001 89/322*1860498^(7/20) 4324185912401821 a001 89/322*710647^(3/8) 4324185912574595 a001 89/322*103682^(7/16) 4324185913714486 a001 89/322*39603^(21/44) 4324185914364239 a001 144/199*64079^(17/46) 4324185914753431 a001 144/199*45537549124^(1/6) 4324185914753438 a001 144/199*12752043^(1/4) 4324185915818664 a001 144/199*39603^(17/44) 4324185919044718 p004 log(28163/373) 4324185922319670 a001 89/322*15127^(21/40) 4324185922784765 a001 144/199*15127^(17/40) 4324185941257797 r009 Re(z^3+c),c=-1/52+8/11*I,n=28 4324185956871862 r005 Re(z^2+c),c=-21/34+1/63*I,n=35 4324185968312779 r005 Im(z^2+c),c=17/66+11/46*I,n=3 4324185973676137 r002 63th iterates of z^2 + 4324185975917410 a001 144/199*5778^(17/36) 4324185981901816 m005 (1/2*5^(1/2)+9/11)/(1/8*5^(1/2)-8/11) 4324185987954113 a001 89/322*5778^(7/12) 4324185989863631 r005 Im(z^2+c),c=1/66+35/57*I,n=43 4324185993374681 a007 Real Root Of -642*x^4-950*x^3-874*x^2+356*x+263 4324186015967863 r005 Im(z^2+c),c=15/56+21/59*I,n=56 4324186016905001 r002 24th iterates of z^2 + 4324186018686498 m001 (MinimumGamma-ZetaQ(3))/ReciprocalFibonacci 4324186021581721 a001 6765/199*76^(1/18) 4324186040989201 a001 89/39603*3^(28/47) 4324186043674751 m001 (GAMMA(7/12)-cos(1))/(ZetaP(3)+ZetaQ(2)) 4324186044038934 r002 12th iterates of z^2 + 4324186051655555 r009 Im(z^3+c),c=-21/118+43/64*I,n=2 4324186056395165 r009 Im(z^3+c),c=-49/110+13/33*I,n=42 4324186065673255 r009 Im(z^3+c),c=-1/94+20/39*I,n=11 4324186086743185 m009 (6*Psi(1,3/4)-2/3)/(16*Catalan+2*Pi^2-2/3) 4324186088866057 m001 BesselK(0,1)*Khintchine/exp(GAMMA(1/6)) 4324186091638344 r005 Re(z^2+c),c=25/58+13/57*I,n=29 4324186114038344 r005 Re(z^2+c),c=-21/34+10/123*I,n=45 4324186114379455 l006 ln(4612/7107) 4324186116325141 r005 Im(z^2+c),c=-1+29/101*I,n=4 4324186118621186 m001 (-PlouffeB+ZetaP(2))/(Psi(2,1/3)+Shi(1)) 4324186122232140 m005 (15/28+1/4*5^(1/2))/(3*gamma+4/5) 4324186124430687 m001 GolombDickman/HardyLittlewoodC3*TreeGrowth2nd 4324186130043813 m001 Totient^PisotVijayaraghavan/Magata 4324186139267149 a007 Real Root Of 940*x^4-711*x^3+835*x^2-96*x-288 4324186141174213 m001 1/exp(Sierpinski)*GlaisherKinkelin/sqrt(5) 4324186151709452 r005 Re(z^2+c),c=-39/64+11/58*I,n=48 4324186152418461 r002 59th iterates of z^2 + 4324186152418461 r002 59th iterates of z^2 + 4324186175609979 a005 (1/cos(8/175*Pi))^364 4324186177265137 a007 Real Root Of 865*x^4-572*x^3+490*x^2-601*x-428 4324186186958746 m001 gamma(1)^(Lehmer/Si(Pi)) 4324186187726455 r005 Im(z^2+c),c=1/44+19/42*I,n=5 4324186216621067 m009 (1/3*Psi(1,2/3)+2)/(1/10*Pi^2+6) 4324186231435618 k008 concat of cont frac of 4324186256940635 a001 2255/6*3^(6/47) 4324186258274606 r005 Im(z^2+c),c=15/118+1/2*I,n=19 4324186266140760 r005 Re(z^2+c),c=-27/40+1/44*I,n=22 4324186274333585 m001 (Mills-Tetranacci)/(BesselK(1,1)+GaussAGM) 4324186293282189 a001 1597/521*18^(5/42) 4324186296109160 a007 Real Root Of 755*x^4-844*x^3-245*x^2-572*x+335 4324186300453235 r002 13th iterates of z^2 + 4324186301751915 a001 29*2584^(3/59) 4324186311631398 r005 Im(z^2+c),c=23/94+11/29*I,n=61 4324186314820610 r009 Im(z^3+c),c=-35/74+21/55*I,n=18 4324186317572688 r002 20th iterates of z^2 + 4324186323410695 r005 Im(z^2+c),c=-157/118+2/63*I,n=18 4324186324484792 m007 (-1/3*gamma-ln(2)+1/6*Pi+1)/(-4*gamma+5/6) 4324186330958696 r005 Im(z^2+c),c=-2/11+36/59*I,n=45 4324186353573813 a007 Real Root Of 241*x^4+835*x^3-828*x^2+158*x-582 4324186354406849 r005 Re(z^2+c),c=-53/86+5/46*I,n=52 4324186359388265 r002 35th iterates of z^2 + 4324186363051781 r005 Im(z^2+c),c=-11/54+21/29*I,n=53 4324186384048876 r002 21th iterates of z^2 + 4324186386380575 a001 144/199*2207^(17/32) 4324186397935519 s002 sum(A000281[n]/(n^3*2^n+1),n=1..infinity) 4324186398551641 r009 Im(z^3+c),c=-25/98+41/47*I,n=4 4324186402606741 r005 Re(z^2+c),c=-37/60+11/59*I,n=32 4324186412115116 k007 concat of cont frac of 4324186415484406 l006 ln(4673/7201) 4324186424812144 m001 (gamma(1)+TwinPrimes)/(ln(2)/ln(10)+Shi(1)) 4324186431332276 r009 Re(z^3+c),c=-7/15+6/25*I,n=6 4324186433757738 a007 Real Root Of -756*x^4-376*x^3+63*x^2+529*x+213 4324186443128085 a007 Real Root Of -453*x^4-940*x^3-828*x^2+683*x+390 4324186446620576 a007 Real Root Of 71*x^4+307*x^3+45*x^2+55*x-605 4324186447345747 m001 BesselJ(1,1)^Artin*sin(Pi/5) 4324186447345747 m001 sin(1/5*Pi)*BesselJ(1,1)^Artin 4324186464204551 r005 Re(z^2+c),c=-21/34+2/25*I,n=60 4324186467163272 a003 cos(Pi*33/91)+cos(Pi*55/111) 4324186483378480 r009 Im(z^3+c),c=-41/98+25/61*I,n=38 4324186487308410 r009 Im(z^3+c),c=-21/40+13/41*I,n=54 4324186494996854 a001 89/322*2207^(21/32) 4324186496403590 l006 ln(123/9287) 4324186504505367 a007 Real Root Of -759*x^4+434*x^3-503*x^2+528*x+384 4324186526989052 a007 Real Root Of 172*x^4-339*x^3+549*x^2+132*x-79 4324186529516827 m001 (exp(1)+gamma(2))/(2*Pi/GAMMA(5/6)+ArtinRank2) 4324186538783025 m005 (1/3*Zeta(3)+3/5)/(1/10*Pi+2) 4324186542749106 m001 (gamma(2)+FellerTornier)/(BesselK(0,1)-ln(Pi)) 4324186551713229 m001 (1-GaussAGM)^KhinchinHarmonic 4324186576041167 m001 gamma*exp(GAMMA(1/12))/log(2+sqrt(3)) 4324186590990887 s002 sum(A000281[n]/(n^3*2^n-1),n=1..infinity) 4324186598478165 m001 (-GaussAGM+Weierstrass)/(sin(1)+gamma(2)) 4324186610637885 r005 Im(z^2+c),c=3/50+33/62*I,n=30 4324186613105843 m001 ln(Robbin)^2*FeigenbaumC^2/GAMMA(1/12)^2 4324186619231120 a001 55/1149851*29^(17/26) 4324186624037091 b008 3/16+Tanh[1/4] 4324186627854315 r005 Re(z^2+c),c=-3/5+13/49*I,n=53 4324186642361747 a001 18/377*89^(27/55) 4324186654350580 r009 Im(z^3+c),c=-43/106+5/12*I,n=47 4324186659421887 a001 843/34*514229^(5/23) 4324186678114456 m001 (exp(1/exp(1))-Gompertz)/(Khinchin-Sarnak) 4324186687573973 a003 cos(Pi*8/21)+cos(Pi*56/117) 4324186690915901 a007 Real Root Of 649*x^4-502*x^3-760*x^2-555*x+400 4324186696340441 r005 Re(z^2+c),c=-18/25+1/52*I,n=32 4324186701453393 r005 Re(z^2+c),c=-31/52+9/40*I,n=34 4324186701967725 a001 1/55*956722026041^(18/23) 4324186708829567 l006 ln(4734/7295) 4324186709398433 m005 (1/2*3^(1/2)-4)/(1/10*2^(1/2)+7/12) 4324186715581704 r005 Im(z^2+c),c=-1/90+29/50*I,n=54 4324186731465517 r002 5th iterates of z^2 + 4324186744758011 r009 Im(z^3+c),c=-59/114+5/27*I,n=18 4324186744799622 r002 44th iterates of z^2 + 4324186758021002 r009 Im(z^3+c),c=-23/60+29/59*I,n=9 4324186760290606 a007 Real Root Of 146*x^4-526*x^3+409*x^2-305*x-256 4324186775030530 r005 Im(z^2+c),c=-83/62+13/58*I,n=4 4324186782618372 r002 15th iterates of z^2 + 4324186789168926 a007 Real Root Of 256*x^4-28*x^3+408*x^2-457*x+19 4324186792170837 r005 Im(z^2+c),c=13/54+23/60*I,n=49 4324186794314495 r009 Im(z^3+c),c=-11/30+17/39*I,n=39 4324186803350710 m001 TreeGrowth2nd/(StolarskyHarborth-ln(3)) 4324186808086933 p001 sum((-1)^n/(578*n+231)/(256^n),n=0..infinity) 4324186809318713 s001 sum(exp(-2*Pi/5)^n*A073023[n],n=1..infinity) 4324186809318713 s002 sum(A073023[n]/(exp(2/5*pi*n)),n=1..infinity) 4324186811317102 p001 sum(1/(131*n+101)/n/(100^n),n=0..infinity) 4324186812662909 m005 (1/2*exp(1)+5)/(2/5*3^(1/2)+7/9) 4324186821706942 b008 11/4+SinIntegral[8] 4324186831491465 a001 5778/55*14930352^(18/23) 4324186843035633 a007 Real Root Of -384*x^4-346*x^3-874*x^2+775*x+484 4324186844992786 m001 GAMMA(17/24)^(exp(Pi)*Tribonacci) 4324186852220410 m001 (GlaisherKinkelin+TreeGrowth2nd)/(Pi+sin(1)) 4324186857175764 r009 Im(z^3+c),c=-11/32+24/41*I,n=5 4324186858447336 r002 29th iterates of z^2 + 4324186878067841 m001 (MertensB2-Riemann3rdZero)^ReciprocalFibonacci 4324186906384379 a007 Real Root Of 161*x^4+905*x^3+699*x^2-845*x+159 4324186920765695 a007 Real Root Of 283*x^4+982*x^3-913*x^2+755*x+790 4324186927006943 r005 Re(z^2+c),c=-4/7+16/91*I,n=14 4324186927248452 r005 Im(z^2+c),c=-3/86+23/38*I,n=10 4324186929150260 r005 Im(z^2+c),c=7/44+9/22*I,n=10 4324186948083705 p001 sum(1/(348*n+275)/(3^n),n=0..infinity) 4324186948659659 s001 sum(exp(-2*Pi/3)^n*A144809[n],n=1..infinity) 4324186953580246 r002 27th iterates of z^2 + 4324186977343093 m001 Trott^2/FeigenbaumAlpha^2/ln(GAMMA(11/24))^2 4324186981107991 r009 Re(z^3+c),c=-41/86+14/41*I,n=5 4324186991869918 q001 851/1968 4324186991869918 r002 2th iterates of z^2 + 4324186994711090 l006 ln(4795/7389) 4324186998707368 a007 Real Root Of -719*x^4+987*x^3-412*x^2+673*x+473 4324186999640492 m005 (1/2*2^(1/2)-2/7)/(5/6*5^(1/2)-8/9) 4324187003485419 r005 Im(z^2+c),c=-4/21+34/57*I,n=30 4324187010213780 m001 1/exp(GAMMA(11/12))*FeigenbaumB/sin(Pi/12)^2 4324187011630103 r009 Im(z^3+c),c=-14/29+17/46*I,n=63 4324187013573703 r005 Im(z^2+c),c=21/94+21/52*I,n=34 4324187028017265 m009 (1/12*Pi^2+1/5)/(1/4*Psi(1,3/4)-3) 4324187029839846 a005 (1/sin(60/133*Pi))^1875 4324187038476398 m005 (1/3*gamma+2/9)/(11/12*gamma-5/8) 4324187059892634 m001 (Grothendieck+ZetaQ(2))/(BesselI(0,1)-sin(1)) 4324187061624463 r005 Im(z^2+c),c=3/46+22/47*I,n=9 4324187065638233 r005 Re(z^2+c),c=-63/94+11/45*I,n=28 4324187090179797 b008 1/5-5/E^(1/10) 4324187124023634 m005 (1/2*Catalan-1/12)/(2/5*gamma-2/9) 4324187125879522 a007 Real Root Of -830*x^4-546*x^3-935*x^2+114*x+209 4324187144183268 m001 ln(sqrt(1+sqrt(3)))*ErdosBorwein^2/sqrt(3)^2 4324187146136565 m001 (Bloch+FransenRobinson)/(RenyiParking+Trott) 4324187147717453 r005 Re(z^2+c),c=-45/74+10/51*I,n=57 4324187153815701 r005 Re(z^2+c),c=-5/7+9/65*I,n=61 4324187155616421 m001 cosh(1)*Zeta(5)^2*ln(sinh(1))^2 4324187159826651 s002 sum(A055495[n]/((10^n-1)/n),n=1..infinity) 4324187159826651 s002 sum(A063992[n]/((10^n-1)/n),n=1..infinity) 4324187164194264 m001 (LaplaceLimit-Totient)/(3^(1/3)+Champernowne) 4324187172669901 m008 (5/6*Pi^3-4)/(1/6*Pi^5-1/2) 4324187178979363 m005 (1/2*3^(1/2)+5/12)/(6/7*exp(1)+7/11) 4324187184132610 r009 Im(z^3+c),c=-49/106+22/57*I,n=23 4324187187423760 a003 cos(Pi*34/95)/sin(Pi*41/85) 4324187196567063 r005 Re(z^2+c),c=-19/32+5/16*I,n=54 4324187212812522 a007 Real Root Of 410*x^4-61*x^3-497*x^2-804*x-274 4324187215867164 r005 Re(z^2+c),c=-73/118+4/59*I,n=45 4324187221897878 m001 TwinPrimes/ln(PrimesInBinary)/log(2+sqrt(3))^2 4324187223358599 m001 GAMMA(13/24)/FeigenbaumB^2*ln(sin(Pi/12))^2 4324187226693020 m001 1/GAMMA(11/24)^2/Riemann2ndZero/exp(cos(1))^2 4324187241569965 a003 sin(Pi*12/91)/sin(Pi*8/21) 4324187251442901 r005 Re(z^2+c),c=-19/30+11/72*I,n=23 4324187261061237 s002 sum(A175968[n]/((10^n-1)/n),n=1..infinity) 4324187261061387 s002 sum(A152012[n]/((10^n-1)/n),n=1..infinity) 4324187261062955 s002 sum(A231711[n]/((10^n-1)/n),n=1..infinity) 4324187262202346 r005 Im(z^2+c),c=-39/106+34/53*I,n=45 4324187263694432 s002 sum(A278637[n]/((10^n-1)/n),n=1..infinity) 4324187271747912 m001 (-LaplaceLimit+Paris)/(cos(1)+LandauRamanujan) 4324187272541754 r009 Re(z^3+c),c=-11/23+10/61*I,n=21 4324187273410243 l006 ln(4856/7483) 4324187273965939 m001 (Zeta(3)+BesselI(0,2))/(ArtinRank2+OneNinth) 4324187276516634 m005 (1/2*2^(1/2)+2/5)/(8/11*exp(1)+7/12) 4324187277107844 a007 Real Root Of -219*x^4-845*x^3+506*x^2+467*x+805 4324187284766531 s002 sum(A072225[n]/((10^n-1)/n),n=1..infinity) 4324187287799071 a007 Real Root Of 717*x^4-449*x^3-289*x^2-300*x+195 4324187291643473 r009 Im(z^3+c),c=-23/74+25/54*I,n=11 4324187328909593 r008 a(0)=5,K{-n^6,-2-6*n^3+2*n^2+5*n} 4324187348589575 r005 Im(z^2+c),c=7/94+25/48*I,n=62 4324187348701797 r005 Re(z^2+c),c=-69/118+6/19*I,n=44 4324187358448729 r005 Re(z^2+c),c=-19/30+16/61*I,n=27 4324187364760466 p004 log(22543/14629) 4324187379943972 m005 (17/66+1/6*5^(1/2))/(3/7*Pi+1/9) 4324187382973146 r009 Im(z^3+c),c=-12/31+26/61*I,n=31 4324187386299050 l006 ln(121/9136) 4324187414314329 m005 (1/3*2^(1/2)+2/9)/(2/9*exp(1)+1) 4324187424849450 r009 Im(z^3+c),c=-51/110+21/55*I,n=42 4324187428094595 r005 Im(z^2+c),c=19/126+25/54*I,n=49 4324187430422954 r002 41th iterates of z^2 + 4324187455633722 m001 (ln(2)+GAMMA(5/6))/(Cahen+FeigenbaumMu) 4324187458733085 r005 Re(z^2+c),c=-53/86+5/53*I,n=38 4324187465239933 a001 75025/29*29^(46/55) 4324187470983822 s002 sum(A137689[n]/((10^n-1)/n),n=1..infinity) 4324187480758778 m005 (1/2*Zeta(3)+3/11)/(3*Catalan-8/11) 4324187485477085 a001 3/832040*17711^(23/47) 4324187495638056 m001 (ln(2+3^(1/2))-BesselK(1,1))/(Kolakoski+Thue) 4324187516240698 r005 Re(z^2+c),c=-35/48+1/58*I,n=38 4324187517325070 m001 (BesselI(0,1)-GaussKuzminWirsing)/(Pi-Catalan) 4324187526662281 m001 (Bloch+Cahen)/(HardyLittlewoodC5-ThueMorse) 4324187527253876 r005 Im(z^2+c),c=-89/90+10/29*I,n=3 4324187529364730 a001 3/1346269*987^(5/52) 4324187533387923 r002 46th iterates of z^2 + 4324187537737944 m001 (ErdosBorwein+PlouffeB)/(gamma(2)-Bloch) 4324187542754498 a007 Real Root Of -243*x^4+936*x^3+32*x^2+358*x+233 4324187545194340 l006 ln(4917/7577) 4324187554492057 r002 35th iterates of z^2 + 4324187571128447 r005 Re(z^2+c),c=-7/26+39/64*I,n=35 4324187603347800 r002 9th iterates of z^2 + 4324187610636272 r002 53th iterates of z^2 + 4324187623401311 m001 (-GAMMA(3/4)+Niven)/(Psi(1,1/3)+1) 4324187625223544 r005 Re(z^2+c),c=-65/106+9/37*I,n=42 4324187656986707 m008 (2/5*Pi^4+1)/(3*Pi^3-3/5) 4324187673720015 r002 25th iterates of z^2 + 4324187677572740 h001 (3/5*exp(2)+8/11)/(1/10*exp(2)+5/11) 4324187691287065 m001 (5^(1/2)+Pi^(1/2))/(-MertensB2+OneNinth) 4324187697554472 m001 BesselI(0,2)^Totient/ArtinRank2 4324187705976429 a007 Real Root Of -67*x^4+328*x^3+681*x^2+163*x-222 4324187707303474 r009 Re(z^3+c),c=-4/11+31/44*I,n=24 4324187713016043 m001 BesselJ(0,1)-Ei(1)+ArtinRank2 4324187713165600 r005 Im(z^2+c),c=-155/126+1/29*I,n=21 4324187716704121 a003 cos(Pi*40/117)*sin(Pi*38/105) 4324187733214812 m001 MertensB3/(AlladiGrinstead^(2*Pi/GAMMA(5/6))) 4324187740312626 m001 Salem/exp(FeigenbaumC)/TwinPrimes^2 4324187741588726 m001 (Zeta(1/2)+exp(1/exp(1)))/(Bloch-GaussAGM) 4324187747219303 r005 Re(z^2+c),c=-21/34+2/23*I,n=41 4324187762152342 r005 Im(z^2+c),c=31/126+10/21*I,n=40 4324187766301597 m003 -44+ProductLog[1/2+Sqrt[5]/2] 4324187768547165 r005 Re(z^2+c),c=-11/18+18/103*I,n=36 4324187774570922 r005 Re(z^2+c),c=-13/21+2/63*I,n=56 4324187774604458 r009 Im(z^3+c),c=-41/102+18/43*I,n=45 4324187794373332 m001 Tribonacci*Salem^2/exp(sqrt(Pi)) 4324187798715760 r005 Re(z^2+c),c=-17/30+28/71*I,n=50 4324187810317589 l006 ln(4978/7671) 4324187820233134 q001 1/2312573 4324187828503224 l006 ln(8486/8861) 4324187837797784 r002 63th iterates of z^2 + 4324187838866044 r004 Re(z^2+c),c=-29/46-1/5*I,z(0)=-1,n=32 4324187847124577 a007 Real Root Of 142*x^4+404*x^3-688*x^2+731*x-957 4324187852821832 r005 Re(z^2+c),c=15/52+30/53*I,n=20 4324187854055818 r002 33th iterates of z^2 + 4324187860036456 b008 LogIntegral[6*Cosh[4]] 4324187867222712 m001 GaussAGM/exp(1/Pi)/OrthogonalArrays 4324187872138490 r005 Re(z^2+c),c=-71/118+15/46*I,n=46 4324187877129654 r009 Im(z^3+c),c=-1/5+29/59*I,n=20 4324187880587766 r002 13th iterates of z^2 + 4324187883107618 m005 (1/3*2^(1/2)-2/5)/(6/7*3^(1/2)+1/6) 4324187883776431 r009 Im(z^3+c),c=-39/86+7/18*I,n=48 4324187889736402 r005 Re(z^2+c),c=-3/5+29/115*I,n=61 4324187901645181 r002 52th iterates of z^2 + 4324187908435768 p003 LerchPhi(1/32,4,163/235) 4324187913976231 a007 Real Root Of -273*x^4+492*x^3+337*x^2+529*x-322 4324187914231029 h001 (5/11*exp(2)+3/11)/(1/8*exp(1)+1/2) 4324187917599710 r009 Im(z^3+c),c=-57/118+22/51*I,n=20 4324187926260005 r002 14th iterates of z^2 + 4324187932000451 a005 (1/sin(76/207*Pi))^786 4324187938617956 r009 Re(z^3+c),c=-55/126+4/31*I,n=29 4324187955350643 a001 6/726103*832040^(9/31) 4324187964956622 r002 35th iterates of z^2 + 4324187972195765 r009 Re(z^3+c),c=-41/90+1/7*I,n=17 4324187972522040 r005 Re(z^2+c),c=-21/34+8/99*I,n=56 4324187977763460 r002 16th iterates of z^2 + 4324187980187577 a007 Real Root Of 132*x^4-955*x^3+12*x^2-538*x+303 4324187987348869 m005 (1/2*exp(1)+2/7)/(3/10*3^(1/2)-9/10) 4324187990819876 m001 1/GAMMA(13/24)^2/ln(Lehmer)^2/Pi 4324188015285502 r005 Re(z^2+c),c=23/126+25/43*I,n=3 4324188016997672 r009 Re(z^3+c),c=-31/60+4/27*I,n=45 4324188021757906 r005 Im(z^2+c),c=-35/34+5/109*I,n=10 4324188024482506 r009 Im(z^3+c),c=-9/32+23/49*I,n=19 4324188026740965 r009 Re(z^3+c),c=-8/25+31/44*I,n=18 4324188048476803 m001 GAMMA(2/3)*PisotVijayaraghavan^2/ln(gamma) 4324188049935394 m001 GAMMA(5/24)^2*Champernowne^2*ln(GAMMA(5/6))^2 4324188062626356 s002 sum(A241687[n]/((10^n-1)/n),n=1..infinity) 4324188064822382 r005 Im(z^2+c),c=19/60+16/53*I,n=40 4324188065679662 r005 Im(z^2+c),c=-33/40+2/11*I,n=58 4324188067332659 r002 54th iterates of z^2 + 4324188069021893 l006 ln(5039/7765) 4324188084005923 r002 22th iterates of z^2 + 4324188086608152 m001 Khintchine^2/ln(ArtinRank2)^2/GAMMA(17/24) 4324188104938268 a001 7/39088169*4052739537881^(14/17) 4324188105340519 a001 1/6624*1134903170^(14/17) 4324188116438923 m001 (Trott2nd+ZetaQ(3))/(Catalan-FeigenbaumB) 4324188121406887 m001 GAMMA(7/12)*ln(FeigenbaumKappa)/Zeta(5)^2 4324188121637821 h001 (8/9*exp(1)+1/12)/(1/6*exp(1)+1/8) 4324188122220010 m001 LambertW(1)^2*exp(Paris)^3 4324188124838852 m005 (1/5*Catalan-5)/(5*gamma-4) 4324188126676009 r008 a(0)=0,K{-n^6,-9+3*n^3-5*n^2+4*n} 4324188126676009 r008 a(0)=0,K{-n^6,9-3*n^3+5*n^2-4*n} 4324188134038624 b008 Sqrt[2*E]+2*Tanh[Pi] 4324188150108816 s002 sum(A169757[n]/((10^n-1)/n),n=1..infinity) 4324188162999249 a007 Real Root Of 562*x^4-731*x^3+78*x^2-479*x+232 4324188204396232 r009 Im(z^3+c),c=-49/94+16/37*I,n=40 4324188205090622 a007 Real Root Of -244*x^4-861*x^3+612*x^2-968*x+65 4324188215063650 a003 cos(Pi*14/107)-sin(Pi*14/87) 4324188220786951 a007 Real Root Of 629*x^4+994*x^3+809*x^2-65*x-121 4324188221031550 r005 Re(z^2+c),c=-8/13+4/31*I,n=29 4324188224000312 a003 sin(Pi*3/118)-sin(Pi*19/111) 4324188229509910 m005 (7/18+1/6*5^(1/2))/(5/8*5^(1/2)+4/11) 4324188248349121 a005 (1/cos(35/208*Pi))^261 4324188264921563 m001 ArtinRank2^2/exp(Bloch)^2/Robbin^2 4324188270828089 q001 1718/3973 4324188272821482 m001 FransenRobinson*(BesselI(0,1)+Riemann1stZero) 4324188276468702 a001 41/726103*832040^(33/40) 4324188278776825 m005 (1/2*Zeta(3)+4/7)/(1/2*gamma-3) 4324188288547367 a003 cos(Pi*31/115)-cos(Pi*23/80) 4324188292875501 a007 Real Root Of -729*x^4-917*x^3-778*x^2+567*x+342 4324188301428849 r005 Re(z^2+c),c=-5/8+18/247*I,n=29 4324188306106130 l006 ln(119/8985) 4324188314821458 r005 Re(z^2+c),c=-33/52+5/48*I,n=15 4324188317768701 r005 Im(z^2+c),c=-1/78+21/37*I,n=40 4324188318717519 r009 Im(z^3+c),c=-37/94+11/26*I,n=18 4324188321537577 l006 ln(5100/7859) 4324188352586676 r002 13th iterates of z^2 + 4324188358370174 m009 (3*Psi(1,1/3)+1/6)/(2/3*Psi(1,2/3)+5) 4324188368924773 r002 59th iterates of z^2 + 4324188374022519 r005 Re(z^2+c),c=-37/56+7/64*I,n=27 4324188378337423 r002 58th iterates of z^2 + 4324188399208204 h001 (2/9*exp(2)+10/11)/(7/10*exp(2)+8/11) 4324188399957196 m005 (1/2*3^(1/2)-5/8)/(1/11*Zeta(3)-2/3) 4324188404372452 p004 log(23671/15361) 4324188411722214 r002 6th iterates of z^2 + 4324188415714168 m001 CareFree/(GAMMA(13/24)-Trott) 4324188438675121 r005 Im(z^2+c),c=-75/64+2/35*I,n=30 4324188445437480 a003 cos(Pi*26/79)/cos(Pi*49/106) 4324188456532985 m001 GAMMA(17/24)^Lehmer/FeigenbaumD 4324188462454572 m001 (Bloch-FeigenbaumKappa)/(Landau-RenyiParking) 4324188487921223 m001 (-ln(3)+3^(1/3))/(Shi(1)-Si(Pi)) 4324188505952894 r002 53th iterates of z^2 + 4324188507552215 m001 (ln(2)/ln(10))^cos(1/5*Pi)+ZetaQ(2) 4324188513883187 m008 (2/3*Pi^5+4)/(1/2*Pi^4-3/5) 4324188519209011 r002 51th iterates of z^2 + 4324188521333775 r005 Re(z^2+c),c=29/110+1/57*I,n=40 4324188542027109 m005 (1/2*3^(1/2)-6/7)/(2*Catalan+2/9) 4324188568084080 l006 ln(5161/7953) 4324188584117790 a007 Real Root Of 571*x^4+100*x^3+240*x^2-450*x+19 4324188584157144 r009 Im(z^3+c),c=-15/74+27/55*I,n=25 4324188594035097 r009 Re(z^3+c),c=-31/86+2/49*I,n=5 4324188594469167 r002 22th iterates of z^2 + 4324188605327332 m005 (1/2*Pi+5/12)/(3*3^(1/2)-3/5) 4324188606848077 r005 Re(z^2+c),c=-21/34+3/37*I,n=54 4324188621091502 r002 43th iterates of z^2 + 4324188637474750 a007 Real Root Of 183*x^4+636*x^3-542*x^2+421*x-604 4324188642425952 m001 BesselI(1,2)/(HardyLittlewoodC5^Zeta(1/2)) 4324188658919504 r009 Im(z^3+c),c=-13/50+10/21*I,n=16 4324188659427778 m009 (1/4*Psi(1,2/3)-4)/(16/5*Catalan+2/5*Pi^2+3/5) 4324188664220088 r002 30th iterates of z^2 + 4324188674181375 r005 Im(z^2+c),c=-1/118+31/54*I,n=56 4324188679077030 r005 Re(z^2+c),c=-17/56+35/61*I,n=18 4324188688874673 r005 Im(z^2+c),c=-5/8+9/155*I,n=14 4324188691870190 r002 2th iterates of z^2 + 4324188691870190 r002 2th iterates of z^2 + 4324188705308903 a007 Real Root Of 468*x^4+611*x^3+436*x^2+52*x-26 4324188709435468 m001 1/KhintchineLevy^2/ln(Conway)^2/GAMMA(7/12)^2 4324188710993918 m005 (1/3*exp(1)+1/7)/(3/11*gamma-2/5) 4324188720640445 m005 (1/2*5^(1/2)-3)/(6*gamma+8/9) 4324188738139666 r009 Im(z^3+c),c=-4/9+15/38*I,n=39 4324188739919071 a001 8/39603*4^(28/51) 4324188743354289 a007 Real Root Of -5*x^4+94*x^3+346*x^2-660*x+25 4324188781712222 r009 Im(z^3+c),c=-23/86+9/19*I,n=21 4324188784530492 r005 Im(z^2+c),c=11/48+17/43*I,n=43 4324188792879604 m001 (ArtinRank2+LaplaceLimit)/(Mills+Tribonacci) 4324188793756000 m001 (ln(2^(1/2)+1)-Ei(1))/(GAMMA(13/24)+CareFree) 4324188795590547 m001 1/BesselK(0,1)^2/ln(TwinPrimes)/Pi 4324188801276720 a007 Real Root Of 55*x^4+7*x^3-977*x^2+304*x+919 4324188808870586 l006 ln(5222/8047) 4324188855600265 m002 5*Sech[Pi]+Tanh[Pi]/(3*Pi^5) 4324188869029216 r002 10th iterates of z^2 + 4324188870589728 b008 158/3-3*Pi 4324188893604938 h001 (-2*exp(8)+4)/(-2*exp(2)+1) 4324188908226335 r009 Im(z^3+c),c=-17/94+29/55*I,n=2 4324188914864428 a001 55/843*521^(13/43) 4324188919599800 r002 48th iterates of z^2 + 4324188922231660 g005 GAMMA(8/11)*GAMMA(9/10)/GAMMA(4/9)/GAMMA(4/7) 4324188924166128 m001 ln(5)*(HeathBrownMoroz+Khinchin) 4324188926956256 m001 ln(Trott)*Riemann3rdZero^2/cos(Pi/5)^2 4324188938596137 r005 Im(z^2+c),c=1/74+32/55*I,n=42 4324188962506123 m001 BesselJ(1,1)^Rabbit*ArtinRank2^Rabbit 4324188964878466 r005 Re(z^2+c),c=-11/18+23/119*I,n=43 4324188974502493 a003 cos(Pi*8/113)-cos(Pi*33/104) 4324188987836438 m001 exp((3^(1/3)))^2*FeigenbaumDelta/GAMMA(11/24) 4324188997684172 a003 cos(Pi*30/119)*cos(Pi*49/102) 4324188999837567 r005 Im(z^2+c),c=15/98+22/47*I,n=26 4324189007090578 a001 28657/2207*123^(1/4) 4324189019027796 r002 60th iterates of z^2 + 4324189027123498 r002 29th iterates of z^2 + 4324189029837547 a008 Real Root of 1/146*x^3-6/73*x^2+27/146*x+7/73 4324189041725372 m001 (cos(1)-ln(2))/(ReciprocalFibonacci+ZetaP(3)) 4324189044096618 l006 ln(5283/8141) 4324189051883504 r005 Re(z^2+c),c=-5/8+54/235*I,n=31 4324189074775758 r005 Im(z^2+c),c=-9/86+23/39*I,n=26 4324189078746261 m001 LandauRamanujan^arctan(1/3)+Magata 4324189094539975 a007 Real Root Of -417*x^4-781*x^3-682*x^2+717*x+389 4324189120770804 r002 18th iterates of z^2 + 4324189122638402 r005 Im(z^2+c),c=-13/10+2/87*I,n=16 4324189123341403 r005 Re(z^2+c),c=-57/94+13/60*I,n=41 4324189132635652 r005 Im(z^2+c),c=37/114+11/37*I,n=57 4324189143563243 r009 Im(z^3+c),c=-8/17+3/8*I,n=36 4324189146454738 m001 sqrt(5)^BesselK(0,1)*GAMMA(7/24) 4324189163818590 m002 2+25*Csch[Pi]*ProductLog[Pi] 4324189167648503 m001 (-Cahen+Niven)/(exp(Pi)+2^(1/2)) 4324189170312599 a001 1/15127*47^(20/41) 4324189174465393 a007 Real Root Of 77*x^4+134*x^3-719*x^2+793*x+786 4324189176282016 g002 Psi(2/5)-Psi(3/10)-Psi(7/9)-Psi(3/7) 4324189188142922 r002 19th iterates of z^2 + 4324189197919211 p004 log(24611/15971) 4324189202966515 m001 1/GAMMA(11/24)/ln(BesselJ(0,1))*sqrt(5) 4324189204639469 m005 (1/2*5^(1/2)-4)/(3/11*Catalan+5/12) 4324189216668442 a005 (1/cos(14/129*Pi))^918 4324189217001971 r005 Im(z^2+c),c=-29/74+2/19*I,n=4 4324189238072122 r005 Re(z^2+c),c=-19/31+1/14*I,n=28 4324189257358715 l006 ln(117/8834) 4324189259923621 m001 Pi^(1/2)+FeigenbaumMu*TravellingSalesman 4324189262183861 r005 Re(z^2+c),c=-59/94+2/9*I,n=33 4324189269208386 a005 (1/cos(1/36*Pi))^988 4324189269799756 r002 17th iterates of z^2 + 4324189273952590 l006 ln(5344/8235) 4324189278709544 m001 (Paris-Salem)/(arctan(1/2)-Otter) 4324189282514070 r004 Re(z^2+c),c=-31/34+4/19*I,z(0)=-1,n=43 4324189282698902 r005 Re(z^2+c),c=-67/110+11/49*I,n=46 4324189307884828 r009 Re(z^3+c),c=-31/50+12/47*I,n=4 4324189339232171 a005 (1/cos(7/155*Pi))^373 4324189347191048 r002 55th iterates of z^2 + 4324189371693351 m005 (1/2*exp(1)+1/10)/(7/8*2^(1/2)-9/10) 4324189374011684 a007 Real Root Of 896*x^4-520*x^3+427*x^2+19*x-145 4324189374979498 m001 1/exp(GAMMA(1/3))^2/GAMMA(1/12)*GAMMA(11/12) 4324189394938986 v002 sum(1/(2^n*(5/6*n^3-5/6*n+18)),n=1..infinity) 4324189398366706 m001 1/KhintchineHarmonic^2/Si(Pi)^2/exp(Kolakoski) 4324189401975028 l006 ln(7615/7648) 4324189403737758 m001 (Porter-ZetaQ(4))/(ErdosBorwein+Grothendieck) 4324189424112094 r005 Im(z^2+c),c=1/20+14/23*I,n=36 4324189447016310 m001 1/2*(Magata-Tribonacci)/Pi*2^(1/2)*GAMMA(3/4) 4324189472211651 m001 (exp(Pi)-ln(5))/(-Rabbit+TravellingSalesman) 4324189484219293 a008 Real Root of x^4-2*x^3+2*x^2+64*x-272 4324189491159425 r002 33th iterates of z^2 + 4324189498620318 l006 ln(5405/8329) 4324189503698207 m005 (1/3*3^(1/2)-2/11)/(1/2*exp(1)-4/9) 4324189526184538 q001 867/2005 4324189531013362 r005 Im(z^2+c),c=19/122+7/17*I,n=10 4324189536932838 m001 BesselJ(0,1)^2/exp(Niven)^2*sqrt(5) 4324189553982010 r002 21th iterates of z^2 + 4324189558262375 r002 44th iterates of z^2 + 4324189570841155 r002 33th iterates of z^2 + 4324189607534923 r005 Re(z^2+c),c=-59/114+15/62*I,n=8 4324189609130338 a001 144/199*843^(17/28) 4324189611142642 a003 sin(Pi*38/83)-sin(Pi*47/100) 4324189645042650 a007 Real Root Of 892*x^4-771*x^3-947*x^2-906*x+600 4324189655592410 m001 1/exp(Champernowne)/Artin^2/MinimumGamma 4324189662120940 m006 (4/5/Pi+1/4)/(5*exp(Pi)+1) 4324189662336621 b008 EllipticPi[2,(2*Pi)/15,-4] 4324189663504694 r005 Im(z^2+c),c=11/94+6/11*I,n=29 4324189668563273 r002 41th iterates of z^2 + 4324189677237460 r005 Re(z^2+c),c=-35/52+2/55*I,n=20 4324189679036813 m003 -6+(17*Sqrt[5])/64+Coth[1/2+Sqrt[5]/2] 4324189680115622 a007 Real Root Of -311*x^4+515*x^3+576*x^2+880*x-519 4324189682507204 m001 (ln(2)+polylog(4,1/2))/(MertensB3+Porter) 4324189687591176 r005 Im(z^2+c),c=1/26+28/51*I,n=50 4324189703800066 m001 (HardHexagonsEntropy+Lehmer)/(Pi+Backhouse) 4324189704876907 a001 505019158607/5*121393^(5/7) 4324189704918350 a001 3010349/5*2504730781961^(5/7) 4324189704918827 a001 4106118243/5*102334155^(5/7) 4324189704918827 a001 370248451/5*2971215073^(5/7) 4324189704918831 a001 33385282/5*86267571272^(5/7) 4324189704918877 a001 45537549124/5*3524578^(5/7) 4324189705948788 r005 Im(z^2+c),c=23/86+16/45*I,n=29 4324189716203366 m009 (1/2*Psi(1,2/3)-1/4)/(3/4*Psi(1,2/3)+2/3) 4324189718273503 l006 ln(5466/8423) 4324189740257185 a001 5600748293801/5*4181^(5/7) 4324189748460745 r002 59th iterates of z^2 + 4324189751660962 r005 Re(z^2+c),c=-73/126+19/49*I,n=45 4324189752638791 r005 Re(z^2+c),c=-29/31+7/30*I,n=16 4324189764436698 a001 75025/5778*123^(1/4) 4324189774912004 a001 9349/21*13^(39/44) 4324189776126226 r005 Re(z^2+c),c=-4/9+26/49*I,n=62 4324189779785389 a007 Real Root Of 814*x^4-183*x^3-476*x^2-640*x-231 4324189786426779 r005 Im(z^2+c),c=27/74+13/35*I,n=9 4324189794251756 r005 Re(z^2+c),c=13/56+29/60*I,n=49 4324189803286939 r005 Im(z^2+c),c=2/25+15/29*I,n=53 4324189822485740 r005 Re(z^2+c),c=-31/50+5/57*I,n=35 4324189823509234 a001 4/377*377^(9/38) 4324189826190232 r002 17th iterates of z^2 + 4324189874932030 a001 196418/15127*123^(1/4) 4324189882421738 m008 (3*Pi^4-1/2)/(2/3*Pi^2+1/6) 4324189886856441 r005 Im(z^2+c),c=3/26+26/53*I,n=62 4324189891053083 a001 514229/39603*123^(1/4) 4324189893405112 a001 1346269/103682*123^(1/4) 4324189893748269 a001 3524578/271443*123^(1/4) 4324189893798335 a001 9227465/710647*123^(1/4) 4324189893805639 a001 24157817/1860498*123^(1/4) 4324189893806705 a001 63245986/4870847*123^(1/4) 4324189893806860 a001 165580141/12752043*123^(1/4) 4324189893806883 a001 433494437/33385282*123^(1/4) 4324189893806886 a001 1134903170/87403803*123^(1/4) 4324189893806887 a001 2971215073/228826127*123^(1/4) 4324189893806887 a001 7778742049/599074578*123^(1/4) 4324189893806887 a001 20365011074/1568397607*123^(1/4) 4324189893806887 a001 53316291173/4106118243*123^(1/4) 4324189893806887 a001 139583862445/10749957122*123^(1/4) 4324189893806887 a001 365435296162/28143753123*123^(1/4) 4324189893806887 a001 956722026041/73681302247*123^(1/4) 4324189893806887 a001 2504730781961/192900153618*123^(1/4) 4324189893806887 a001 10610209857723/817138163596*123^(1/4) 4324189893806887 a001 4052739537881/312119004989*123^(1/4) 4324189893806887 a001 1548008755920/119218851371*123^(1/4) 4324189893806887 a001 591286729879/45537549124*123^(1/4) 4324189893806887 a001 7787980473/599786069*123^(1/4) 4324189893806887 a001 86267571272/6643838879*123^(1/4) 4324189893806887 a001 32951280099/2537720636*123^(1/4) 4324189893806887 a001 12586269025/969323029*123^(1/4) 4324189893806887 a001 4807526976/370248451*123^(1/4) 4324189893806887 a001 1836311903/141422324*123^(1/4) 4324189893806888 a001 701408733/54018521*123^(1/4) 4324189893806897 a001 9238424/711491*123^(1/4) 4324189893806957 a001 102334155/7881196*123^(1/4) 4324189893807364 a001 39088169/3010349*123^(1/4) 4324189893810154 a001 14930352/1149851*123^(1/4) 4324189893829277 a001 5702887/439204*123^(1/4) 4324189893960351 a001 2178309/167761*123^(1/4) 4324189894858747 a001 832040/64079*123^(1/4) 4324189901016441 a001 10959/844*123^(1/4) 4324189902265961 r004 Re(z^2+c),c=-33/34+2/7*I,z(0)=-1,n=3 4324189914435555 m005 (1/2*3^(1/2)-1/9)/(3/5*Catalan-3/8) 4324189916077773 r005 Re(z^2+c),c=-2/3+19/117*I,n=34 4324189917290003 a003 sin(Pi*15/109)/sin(Pi*37/88) 4324189918618664 m001 (ln(3)+Artin)/(Magata-ZetaQ(4)) 4324189925819618 a001 29/5*8^(57/59) 4324189927107401 m002 -2+Cosh[Pi]+3*Sinh[Pi]-Tanh[Pi] 4324189928281837 m001 1/GAMMA(19/24)*Tribonacci^2*exp(GAMMA(2/3))^2 4324189933078179 l006 ln(5527/8517) 4324189940778502 r005 Re(z^2+c),c=-75/98+5/48*I,n=30 4324189943221904 a001 121393/9349*123^(1/4) 4324189963331772 m005 (1/2*3^(1/2)-5)/(1/6*5^(1/2)+7/12) 4324189974578080 m001 Shi(1)^GAMMA(17/24)*Otter^GAMMA(17/24) 4324189975485396 a007 Real Root Of -840*x^4-656*x^3+876*x^2+753*x-407 4324189977746883 r009 Im(z^3+c),c=-43/110+14/33*I,n=33 4324189982822302 a007 Real Root Of 103*x^4-952*x^3-193*x^2-214*x+202 4324190003831902 a005 (1/sin(61/143*Pi))^1770 4324190008691802 r005 Re(z^2+c),c=-33/56+11/35*I,n=37 4324190011878166 r009 Im(z^3+c),c=-1/11+19/24*I,n=28 4324190012051273 a007 Real Root Of -219*x^4-941*x^3+103*x^2+108*x-974 4324190023245930 r005 Im(z^2+c),c=-25/48+33/53*I,n=15 4324190026286094 r005 Re(z^2+c),c=-13/21+1/31*I,n=58 4324190050739882 r005 Im(z^2+c),c=-45/74+35/57*I,n=9 4324190057610668 r002 57th iterates of z^2 + 4324190063532960 m001 (exp(Pi)+arctan(1/2))/(FeigenbaumAlpha+Otter) 4324190088603862 a007 Real Root Of 242*x^4+831*x^3-699*x^2+930*x-329 4324190089621484 r005 Im(z^2+c),c=-75/94+19/58*I,n=3 4324190096838335 m001 (-Trott+Trott2nd)/(BesselK(0,1)+Magata) 4324190104809202 a007 Real Root Of -236*x^4-971*x^3+193*x^2+30*x+524 4324190105987227 r005 Im(z^2+c),c=23/78+15/47*I,n=37 4324190114779635 r005 Im(z^2+c),c=17/60+16/47*I,n=42 4324190119303185 r002 31th iterates of z^2 + 4324190123461341 s002 sum(A132413[n]/(exp(n)),n=1..infinity) 4324190130380945 r005 Re(z^2+c),c=-14/27+25/57*I,n=45 4324190138401301 r005 Re(z^2+c),c=5/122+4/13*I,n=6 4324190140157471 r009 Re(z^3+c),c=-31/56+14/41*I,n=19 4324190143193127 l006 ln(5588/8611) 4324190155879562 v002 sum(1/(2^n+(4*n^2+45*n+10)),n=1..infinity) 4324190161558580 r009 Im(z^3+c),c=-5/21+27/56*I,n=25 4324190172451423 r009 Im(z^3+c),c=-37/110+15/34*I,n=8 4324190190222010 p003 LerchPhi(1/8,6,79/148) 4324190191061783 m001 GAMMA(11/12)^2/DuboisRaymond*ln(GAMMA(5/12)) 4324190203192166 r005 Im(z^2+c),c=-49/78+26/59*I,n=8 4324190206239562 b008 7*3^ArcCosh[E] 4324190214705614 h001 (1/5*exp(2)+9/10)/(8/11*exp(2)+1/8) 4324190217721522 m001 Artin^(sin(1/12*Pi)/GaussKuzminWirsing) 4324190217721522 m001 Artin^(sin(Pi/12)/GaussKuzminWirsing) 4324190219878081 b008 -2+ArcSinh[3+Pi]^2 4324190229383257 r002 32th iterates of z^2 + 4324190230598331 r008 a(0)=3,K{-n^6,-2+4*n^3+7*n^2-8*n} 4324190232502475 a001 46368/3571*123^(1/4) 4324190241697395 l006 ln(115/8683) 4324190255273426 r005 Im(z^2+c),c=33/98+10/59*I,n=18 4324190262206922 r002 17th iterates of z^2 + 4324190269531392 m006 (2*exp(2*Pi)+2/3)/(1/6*Pi^2+5/6) 4324190296700215 r002 63th iterates of z^2 + 4324190297533389 r005 Re(z^2+c),c=27/118+23/58*I,n=44 4324190309727040 r002 5th iterates of z^2 + 4324190311851657 m002 -5/Pi^3+Log[Pi]^(-1)-Log[Pi] 4324190316691632 r009 Im(z^3+c),c=-37/70+9/35*I,n=36 4324190318928533 r009 Im(z^3+c),c=-3/7+7/20*I,n=6 4324190321810266 r009 Im(z^3+c),c=-27/86+13/21*I,n=10 4324190324189457 a003 sin(Pi*3/58)-sin(Pi*16/79) 4324190326210695 m001 (3^(1/2)-Champernowne)/(LandauRamanujan+Otter) 4324190329035500 m001 (Chi(1)-exp(Pi))/(-exp(-1/2*Pi)+Sarnak) 4324190330018970 a008 Real Root of x^4-76*x-21 4324190348770273 l006 ln(5649/8705) 4324190361391308 m001 1/(3^(1/3))^2/ln(Salem)*Zeta(1/2) 4324190381986658 m001 (2^(1/2)-GAMMA(7/12))/(Porter+Riemann3rdZero) 4324190382550464 r002 43th iterates of z^2 + 4324190419452318 r005 Im(z^2+c),c=-41/70+5/63*I,n=41 4324190424513580 r005 Im(z^2+c),c=-9/86+21/37*I,n=8 4324190437496587 m001 (GaussAGM+ZetaP(2))/(ln(Pi)+FeigenbaumC) 4324190452643176 m003 -11/2+(5*Sqrt[5])/64+Csc[1/2+Sqrt[5]/2] 4324190474541704 r002 60th iterates of z^2 + 4324190476041128 a001 89/322*843^(3/4) 4324190483269916 m001 (-ZetaQ(2)+ZetaQ(4))/(2^(1/2)-exp(-1/2*Pi)) 4324190488027525 r009 Im(z^3+c),c=-9/32+32/47*I,n=10 4324190488403051 m001 (FeigenbaumB-PrimesInBinary)/cos(1/12*Pi) 4324190491557991 a001 29/8*4181^(11/37) 4324190499585206 r005 Im(z^2+c),c=-45/44+13/50*I,n=51 4324190501884918 s002 sum(A022130[n]/(exp(n)),n=1..infinity) 4324190513996159 m001 exp(GolombDickman)^2*Si(Pi)*sin(Pi/12)^2 4324190538544597 m001 MinimumGamma^2/Conway/ln(cos(1))^2 4324190540931605 a007 Real Root Of -103*x^4+995*x^3+800*x^2+554*x-466 4324190544710091 m005 (17/66+1/6*5^(1/2))/(1/2*gamma-1/7) 4324190547372017 h001 (3/11*exp(2)+5/12)/(8/11*exp(2)+1/4) 4324190549955048 l006 ln(5710/8799) 4324190554017478 a007 Real Root Of -194*x^4-123*x^3+549*x^2+613*x-351 4324190557458522 r005 Im(z^2+c),c=5/27+23/53*I,n=57 4324190560291426 a007 Real Root Of 11*x^4-514*x^3+707*x^2-668*x-463 4324190567110754 a007 Real Root Of 742*x^4-436*x^3+673*x^2-844*x-552 4324190572591890 r005 Re(z^2+c),c=-51/86+17/62*I,n=48 4324190588197266 r005 Re(z^2+c),c=-5/7+9/106*I,n=27 4324190588594103 m001 ln(Pi)*TwinPrimes/ZetaP(3) 4324190598097709 r002 40th iterates of z^2 + 4324190608521765 m001 (5^(1/2)-ln(gamma))/(-gamma(3)+MasserGramain) 4324190616180982 m001 (Pi+1)/(QuadraticClass-Tribonacci) 4324190618601525 m001 (3^(1/2))^(exp(Pi)*Zeta(3)) 4324190618601525 m001 sqrt(3)^(Zeta(3)/exp(-Pi)) 4324190618601525 m001 sqrt(3)^(exp(Pi)*Zeta(3)) 4324190619895359 r005 Re(z^2+c),c=41/98+21/61*I,n=24 4324190627784594 r002 43th iterates of z^2 + 4324190640425339 a007 Real Root Of 12*x^4-353*x^3-554*x^2-780*x+469 4324190643689380 m005 (31/6+1/6*5^(1/2))/(5/6*gamma+4/5) 4324190646727064 r009 Im(z^3+c),c=-49/122+27/64*I,n=19 4324190646826131 m001 (5^(1/2)-Zeta(3))/(-ln(3)+Riemann3rdZero) 4324190656953481 m001 (ln(2)*RenyiParking-sin(1))/RenyiParking 4324190668514325 p001 sum(1/(540*n+397)/n/(25^n),n=1..infinity) 4324190668914159 r002 59th iterates of z^2 + 4324190668914159 r002 59th iterates of z^2 + 4324190672340480 m001 (Shi(1)-gamma)/(HardyLittlewoodC3+Weierstrass) 4324190692308641 r005 Re(z^2+c),c=-23/38+9/37*I,n=26 4324190695153346 a007 Real Root Of -706*x^4+618*x^3+887*x^2+483*x-400 4324190697655573 r005 Im(z^2+c),c=-65/106+4/35*I,n=16 4324190736669548 r005 Im(z^2+c),c=31/114+20/57*I,n=53 4324190746886736 l006 ln(5771/8893) 4324190748632675 a007 Real Root Of -7*x^4+150*x^3-350*x^2-495*x-996 4324190758586607 q001 175/4047 4324190758586607 q001 7/16188 4324190769261669 m001 (Psi(2,1/3)+gamma(2))/(BesselI(1,1)+Rabbit) 4324190769626097 r009 Im(z^3+c),c=-67/118+14/23*I,n=27 4324190770147965 a007 Real Root Of 111*x^4+262*x^3-752*x^2+605*x-948 4324190776355337 r002 36i'th iterates of 2*x/(1-x^2) of 4324190780403421 m005 (1/2*Catalan-4)/(5/11*Zeta(3)+3/11) 4324190782326324 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)/(ln(2)^Mills) 4324190789302024 r009 Im(z^3+c),c=-31/70+17/38*I,n=9 4324190802273199 r002 57th iterates of z^2 + 4324190805111845 g005 1/2*GAMMA(5/6)^2/GAMMA(2/7)/Pi/GAMMA(3/5) 4324190823797221 r009 Im(z^3+c),c=-45/86+11/64*I,n=42 4324190837321975 m005 (1/2*gamma-2)/(1/12*Pi-2/9) 4324190843881588 b008 1/14+LogIntegral[EulerGamma] 4324190869378463 r005 Im(z^2+c),c=6/23+21/58*I,n=48 4324190872152173 m005 (1/3*5^(1/2)+2/5)/(3^(1/2)+11/12) 4324190872806799 a007 Real Root Of -124*x^4+685*x^3-55*x^2+481*x+278 4324190874658842 r005 Re(z^2+c),c=-3/5+27/110*I,n=26 4324190883591885 r002 4th iterates of z^2 + 4324190886284895 a007 Real Root Of -977*x^4+555*x^3+860*x^2+795*x+262 4324190886872819 r009 Im(z^3+c),c=-1/5+29/59*I,n=13 4324190888793345 r002 32th iterates of z^2 + 4324190891561867 r002 5th iterates of z^2 + 4324190899966501 a001 3/29*11^(34/57) 4324190908899891 r005 Re(z^2+c),c=-21/34+3/44*I,n=46 4324190916537943 r005 Im(z^2+c),c=3/28+28/57*I,n=31 4324190939698793 l006 ln(5832/8987) 4324190948627184 r002 41th iterates of z^2 + 4324190957707517 r005 Re(z^2+c),c=-7/102+45/64*I,n=7 4324190970225872 a001 1/4*514229^(1/24) 4324190974631402 r005 Re(z^2+c),c=-57/46+35/41*I,n=2 4324190998675962 a007 Real Root Of -146*x^4-535*x^3+538*x^2+422*x-446 4324191008503244 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)*(gamma+Zeta(5)) 4324191008503244 m001 GAMMA(1/3)*(gamma+Zeta(5)) 4324191009915585 m001 1/Paris^2*ln(sinh(1))^3 4324191021552843 r009 Im(z^3+c),c=-15/62+20/23*I,n=18 4324191026683655 p001 sum((-1)^n/(215*n+211)/(5^n),n=0..infinity) 4324191027253272 r005 Re(z^2+c),c=-79/126+9/61*I,n=8 4324191102716950 a001 321/8*89^(1/60) 4324191111213612 k007 concat of cont frac of 4324191111343473 k008 concat of cont frac of 4324191111612541 k006 concat of cont frac of 4324191120190648 r005 Im(z^2+c),c=-67/82+1/44*I,n=44 4324191128519149 l006 ln(5893/9081) 4324191131154212 k006 concat of cont frac of 4324191162092316 r002 45th iterates of z^2 + 4324191181067534 a007 Real Root Of -12*x^4-517*x^3+92*x^2+398*x-952 4324191181157605 m001 1/3/(FeigenbaumAlpha-sqrt(3)) 4324191188099588 m001 1/GAMMA(5/6)/Robbin^2/exp(cosh(1)) 4324191208030024 r002 64th iterates of z^2 + 4324191213719319 k007 concat of cont frac of 4324191216188589 m001 (GAMMA(3/4)+ln(gamma))/(MertensB3-Salem) 4324191235355420 m001 (1+3^(1/2))^(1/2)-ln(2+3^(1/2))^Sarnak 4324191260878900 l006 ln(113/8532) 4324191289303618 r002 12th iterates of z^2 + 4324191295976284 a003 cos(Pi*21/103)*cos(Pi*29/91) 4324191307774075 m002 6/E^Pi+(5*ProductLog[Pi])/Pi^3 4324191313470493 l006 ln(5954/9175) 4324191348986012 r002 6th iterates of z^2 + 4324191351342134 k007 concat of cont frac of 4324191361092953 r002 2th iterates of z^2 + 4324191377051400 r009 Im(z^3+c),c=-5/12+23/56*I,n=49 4324191388812156 m005 (1/2*Pi+9/10)/(6/11*2^(1/2)-1/5) 4324191421174111 k007 concat of cont frac of 4324191421695008 m001 (Khinchin-Totient)/(BesselI(0,2)+FeigenbaumB) 4324191451651631 r005 Re(z^2+c),c=-11/18+20/117*I,n=64 4324191457861974 r005 Re(z^2+c),c=-47/106+20/61*I,n=4 4324191475692992 m001 1/Porter^2*ln(KhintchineHarmonic)^2*sqrt(3)^2 4324191491860931 m005 (1/3*5^(1/2)+2/5)/(-3/14+3/14*5^(1/2)) 4324191494670534 l006 ln(6015/9269) 4324191498277163 r005 Re(z^2+c),c=-65/94+1/12*I,n=14 4324191503818771 r002 55th iterates of z^2 + 4324191504076973 m001 (Salem-ZetaQ(3))/(FellerTornier-Lehmer) 4324191521551671 r005 Re(z^2+c),c=-5/8+58/211*I,n=36 4324191522111131 k007 concat of cont frac of 4324191534769138 r005 Re(z^2+c),c=-3/56+29/40*I,n=61 4324191536056963 r005 Im(z^2+c),c=-9/14+19/232*I,n=63 4324191541532389 p001 sum(1/(335*n+232)/(128^n),n=0..infinity) 4324191547069717 r009 Re(z^3+c),c=-7/110+8/13*I,n=11 4324191561060439 m001 Otter/(Sarnak^Salem) 4324191571406090 m001 1/Magata^2*CopelandErdos^2/exp(Zeta(3))^2 4324191586614612 a001 1/6624*956722026041^(12/17) 4324191605165893 r005 Im(z^2+c),c=8/29+17/49*I,n=63 4324191615621221 k008 concat of cont frac of 4324191616616330 m001 ReciprocalFibonacci^Totient-RenyiParking 4324191623540389 r005 Re(z^2+c),c=9/34+1/33*I,n=6 4324191632723590 m001 1/Zeta(1,2)^2*HardHexagonsEntropy*exp(Zeta(9)) 4324191638929865 r009 Re(z^3+c),c=-15/29+7/33*I,n=60 4324191640534035 m005 (1/2*gamma+3/10)/(1/5*5^(1/2)-7/12) 4324191642345480 r002 27th iterates of z^2 + 4324191646281963 r002 53th iterates of z^2 + 4324191660275624 m001 Psi(2,1/3)^Artin/(ln(3)^Artin) 4324191661035525 r005 Re(z^2+c),c=-5/9+14/33*I,n=47 4324191672232256 l006 ln(6076/9363) 4324191673185500 r009 Re(z^3+c),c=-61/118+17/43*I,n=32 4324191684680255 m001 (-MinimumGamma+Robbin)/(Si(Pi)-gamma(3)) 4324191688054677 r005 Im(z^2+c),c=23/90+7/19*I,n=53 4324191688830092 g004 Re(GAMMA(11/6+I*57/20)) 4324191696546438 r005 Re(z^2+c),c=-53/86+5/29*I,n=34 4324191698352713 m003 -7/2+(5*Sqrt[5])/64-Sin[1/2+Sqrt[5]/2] 4324191702690476 r009 Re(z^3+c),c=-6/25+11/15*I,n=61 4324191715904983 a001 39088169/47*11^(11/16) 4324191720046891 m001 Zeta(5)^Conway*ThueMorse 4324191728354239 a007 Real Root Of -995*x^4+828*x^3+124*x^2+859*x+450 4324191730629858 p004 log(28183/18289) 4324191739206818 r005 Re(z^2+c),c=3/16+22/63*I,n=51 4324191739630874 r005 Im(z^2+c),c=17/58+16/55*I,n=14 4324191742467309 r009 Re(z^3+c),c=-37/66+11/46*I,n=51 4324191743111011 k008 concat of cont frac of 4324191748341712 r005 Im(z^2+c),c=-5/31+19/31*I,n=45 4324191776518314 a007 Real Root Of -231*x^4-776*x^3+834*x^2-368*x+836 4324191779451506 r005 Im(z^2+c),c=-3/94+13/25*I,n=11 4324191794091258 r005 Im(z^2+c),c=13/102+20/41*I,n=33 4324191818828313 a005 (1/cos(2/55*Pi))^576 4324191824654792 r002 28th iterates of z^2 + 4324191831964255 a007 Real Root Of 881*x^4-827*x^3+328*x^2-292*x+101 4324191835202152 m001 (sin(1)+Ei(1))/(-3^(1/3)+AlladiGrinstead) 4324191837980337 a007 Real Root Of -793*x^4+721*x^3-361*x^2+940*x+560 4324191844752448 a007 Real Root Of 13*x^4+551*x^3-494*x^2-537*x-649 4324191846264151 l006 ln(6137/9457) 4324191848987060 h001 (1/10*exp(2)+5/11)/(7/10*exp(1)+6/7) 4324191863022286 r002 13th iterates of z^2 + 4324191876453093 g004 Re(GAMMA(-149/60+I*19/15)) 4324191878113968 r002 35th iterates of z^2 + 4324191879085839 a007 Real Root Of -194*x^4-693*x^3+474*x^2-482*x+849 4324191893323204 r002 43th iterates of z^2 + 4324191902723258 m008 (5*Pi^3+2/3)/(Pi^3+5) 4324191907059668 r005 Im(z^2+c),c=-109/78+2/35*I,n=10 4324191923453193 m009 (4/3*Catalan+1/6*Pi^2+5)/(2*Psi(1,1/3)-2) 4324191926076970 a007 Real Root Of 21*x^4+143*x^3+240*x^2-140*x-873 4324191931940839 r005 Re(z^2+c),c=-65/98+9/53*I,n=34 4324191932328293 p003 LerchPhi(1/512,6,238/141) 4324191936115159 m001 Salem^2*Riemann1stZero^2/ln(Ei(1)) 4324191939237560 a007 Real Root Of 753*x^4-794*x^3+149*x^2-790*x-460 4324191940659233 a007 Real Root Of -893*x^4+586*x^3+593*x^2+857*x+36 4324191944572262 a001 46/311187*55^(15/56) 4324191948394030 a007 Real Root Of -370*x^4-302*x^3-355*x^2+472*x+259 4324191957154286 m001 Landau-MertensB1^GAMMA(13/24) 4324191958246703 m001 1/GAMMA(1/3)^2*TwinPrimes/exp(GAMMA(7/12))^2 4324191968658178 q001 883/2042 4324191972536949 r002 22th iterates of z^2 + 4324192001824864 m001 (1+Sierpinski)/(StolarskyHarborth+ZetaQ(4)) 4324192011706111 h001 (3/5*exp(2)+8/9)/(1/6*exp(1)+7/9) 4324192016870440 l006 ln(6198/9551) 4324192029533826 m001 Salem*Robbin/exp(sin(Pi/5)) 4324192034023771 b008 Sech[1/14+Cosh[2]] 4324192041371731 m001 (ln(3)+3^(1/3))/(Gompertz-ZetaQ(3)) 4324192045669176 a007 Real Root Of -220*x^4+461*x^3+334*x^2+696*x-393 4324192053545025 m001 ln(2)-ln(gamma)+Pi*csc(7/24*Pi)/GAMMA(17/24) 4324192053545025 m001 ln(2)-log(gamma)+GAMMA(7/24) 4324192065986010 r002 48th iterates of z^2 + 4324192070815682 r005 Re(z^2+c),c=-73/118+3/62*I,n=58 4324192073339136 r009 Im(z^3+c),c=-5/21+27/56*I,n=27 4324192081878722 a005 (1/sin(41/107*Pi))^1057 4324192086232604 a007 Real Root Of 672*x^4+x^3+565*x^2-615*x-395 4324192087357114 a001 38/17*86267571272^(2/17) 4324192087754369 r009 Im(z^3+c),c=-37/58+13/49*I,n=6 4324192092520456 r005 Im(z^2+c),c=25/98+12/31*I,n=27 4324192095378405 h001 (4/9*exp(2)+4/5)/(1/11*exp(2)+3/11) 4324192121441131 k006 concat of cont frac of 4324192127706167 l006 ln(2625/2741) 4324192131081458 r005 Im(z^2+c),c=-1/86+31/53*I,n=64 4324192133369370 m001 Si(Pi)^GAMMA(5/6)/arctan(1/2) 4324192149938299 r009 Re(z^3+c),c=-13/122+41/59*I,n=23 4324192150473336 s001 sum(1/10^(n-1)*A259552[n]/n!,n=1..infinity) 4324192176638500 m001 (Landau-Niven)/(Zeta(1/2)-FibonacciFactorial) 4324192184151279 l006 ln(6259/9645) 4324192184497441 a007 Real Root Of 10*x^4-884*x^3+468*x^2-915*x-555 4324192214215864 r005 Im(z^2+c),c=-107/126+13/57*I,n=15 4324192215262047 a001 17711/1364*123^(1/4) 4324192249713128 m006 (1/4*ln(Pi)+5)/(5/6*Pi^2+4) 4324192251756503 r002 19th iterates of z^2 + 4324192261796649 g007 Psi(2,4/11)-Psi(2,2/11)-Psi(2,4/7)-Psi(2,1/4) 4324192266872310 a003 cos(Pi*29/120)*cos(Pi*27/91) 4324192270526795 r005 Im(z^2+c),c=-1/22+4/7*I,n=30 4324192282516343 a007 Real Root Of -135*x^4-730*x^3-472*x^2+815*x+526 4324192289764940 m005 (1/3*Pi+3/7)/(2/55+3/22*5^(1/2)) 4324192293872072 p004 log(29123/18899) 4324192298498515 a007 Real Root Of -101*x^4+45*x^3-409*x^2+616*x-190 4324192300505695 m001 Pi*2^(1/2)/GAMMA(3/4)*ln(Pi)^Conway 4324192310731396 a007 Real Root Of 461*x^4+67*x^3+509*x^2-923*x-505 4324192315071418 r005 Im(z^2+c),c=15/98+11/24*I,n=33 4324192316786572 l006 ln(111/8381) 4324192318584200 m001 FeigenbaumB/ln(2+3^(1/2))/MinimumGamma 4324192320512693 m003 -9/2+(5*Sqrt[5])/64+Cos[1/2+Sqrt[5]/2]^2/2 4324192325034272 m005 (1/2*2^(1/2)+3/7)/(2*Zeta(3)+2/9) 4324192325089429 m001 1/exp(PisotVijayaraghavan)/Artin^2/GAMMA(5/24) 4324192335820935 r004 Re(z^2+c),c=-21/46+4/11*I,z(0)=-1,n=4 4324192348202961 l006 ln(6320/9739) 4324192371628291 m001 exp(TreeGrowth2nd)^2/FransenRobinson^2*sqrt(2) 4324192388883260 m001 exp(1)^GaussKuzminWirsing-KomornikLoreti 4324192394134303 m001 (OneNinth+Robbin)/(KhinchinLevy+Lehmer) 4324192404832392 s002 sum(A198049[n]/((2^n+1)/n),n=1..infinity) 4324192431325685 a007 Real Root Of 200*x^4+749*x^3-284*x^2+888*x-216 4324192437542520 m001 1/Zeta(3)^3*ln(Bloch) 4324192442985860 r005 Im(z^2+c),c=-4/27+36/53*I,n=32 4324192459852367 r002 4th iterates of z^2 + 4324192472027395 m001 (GAMMA(19/24)-Trott)/(ln(3)+BesselI(1,2)) 4324192486903688 m001 BesselK(1,1)-GAMMA(11/12)^GolombDickman 4324192487696038 r005 Im(z^2+c),c=1/28+6/11*I,n=49 4324192488954376 r009 Im(z^3+c),c=-15/74+27/55*I,n=27 4324192506559388 m005 (1/2*Pi-6/11)/(6/7*5^(1/2)+5/11) 4324192509118093 l006 ln(6381/9833) 4324192512930706 a005 (1/cos(11/140*Pi))^272 4324192514582563 r002 55th iterates of z^2 + 4324192518790698 r005 Re(z^2+c),c=-1/50+3/17*I,n=4 4324192524785280 r005 Re(z^2+c),c=-5/8+17/110*I,n=9 4324192538085719 a007 Real Root Of 741*x^4-847*x^3+910*x^2-822*x-620 4324192565091328 r005 Re(z^2+c),c=-61/102+2/11*I,n=23 4324192568729154 m001 CareFree^2*ln(Artin)/GAMMA(5/6) 4324192578516183 m001 1/ln(ArtinRank2)^2/Champernowne*FeigenbaumB^2 4324192608378801 r009 Im(z^3+c),c=-19/46+26/63*I,n=49 4324192612807542 r005 Re(z^2+c),c=-59/98+14/59*I,n=56 4324192622755310 a001 21/24476*1364^(25/29) 4324192666985777 l006 ln(6442/9927) 4324192671529249 r005 Im(z^2+c),c=27/86+11/36*I,n=61 4324192678449444 a007 Real Root Of -820*x^4-278*x^3+960*x^2+538*x-361 4324192678870992 a001 843/233*6765^(32/59) 4324192689344103 r009 Im(z^3+c),c=-39/82+7/26*I,n=2 4324192703459838 s002 sum(A249442[n]/(pi^n-1),n=1..infinity) 4324192717210040 r009 Im(z^3+c),c=-7/30+29/60*I,n=17 4324192736966968 r005 Re(z^2+c),c=15/58+1/62*I,n=34 4324192741936731 a001 55/521*47^(27/28) 4324192774855047 a003 cos(Pi*43/120)/sin(Pi*55/117) 4324192779084524 r005 Re(z^2+c),c=-75/118+5/16*I,n=32 4324192786242174 r009 Re(z^3+c),c=-5/19+41/57*I,n=61 4324192800710008 m001 Zeta(5)/GAMMA(7/24)^2/ln(sqrt(1+sqrt(3)))^2 4324192805793920 r005 Re(z^2+c),c=-11/18+2/27*I,n=22 4324192806491424 a007 Real Root Of 522*x^4+905*x^3+238*x^2-852*x-358 4324192812102348 m001 (3^(1/3)-LambertW(1))/(-Khinchin+Robbin) 4324192821891770 l006 ln(6503/10021) 4324192839424780 r002 14th iterates of z^2 + 4324192850085127 r005 Re(z^2+c),c=-31/52+21/50*I,n=9 4324192877603876 r005 Re(z^2+c),c=-39/58+7/43*I,n=36 4324192877633093 m001 (Shi(1)*BesselI(0,1)-ln(2^(1/2)+1))/Shi(1) 4324192878480425 m001 (Cahen-Grothendieck)/(ln(Pi)-ln(2^(1/2)+1)) 4324192887141347 r005 Im(z^2+c),c=17/56+27/55*I,n=49 4324192900089698 r005 Re(z^2+c),c=-83/114+1/49*I,n=36 4324192906136740 r009 Re(z^3+c),c=-5/62+35/51*I,n=50 4324192912189895 m001 Pi*(Psi(1,1/3)-3^(1/3))*BesselI(1,2) 4324192913074779 m001 Ei(1)^2*Kolakoski*exp(exp(1)) 4324192918378256 r009 Im(z^3+c),c=-13/56+15/31*I,n=15 4324192940115395 m001 ZetaP(2)/(FibonacciFactorial^Ei(1,1)) 4324192951272796 r002 29th iterates of z^2 + 4324192957350371 p001 sum(1/(386*n+235)/(24^n),n=0..infinity) 4324192963106943 m005 (1/3*Catalan+2/3)/(5/9*gamma-6/11) 4324192963306181 r002 3th iterates of z^2 + 4324192973725269 r002 45th iterates of z^2 + 4324192974833270 m005 (1/3*Zeta(3)-2/3)/(2/9*3^(1/2)-1) 4324192975894217 m005 (1/2*Pi+1)/(1/8*gamma-2/3) 4324192975926466 r005 Im(z^2+c),c=-7/10+107/229*I,n=14 4324192984780916 r005 Im(z^2+c),c=21/86+17/45*I,n=38 4324192987508523 a007 Real Root Of -40*x^4+382*x^3+454*x^2+161*x-184 4324193008936218 r002 10th iterates of z^2 + 4324193019454933 r009 Im(z^3+c),c=-10/29+17/38*I,n=15 4324193035764945 m005 (11/12+1/6*5^(1/2))/(1/3*gamma-2/9) 4324193039528527 r002 24th iterates of z^2 + 4324193054180483 r005 Re(z^2+c),c=-29/22+4/99*I,n=10 4324193057572104 r001 58i'th iterates of 2*x^2-1 of 4324193067734706 m001 ln(Bloch)^2/FransenRobinson*Porter^2 4324193076495756 r002 45th iterates of z^2 + 4324193084156984 r005 Im(z^2+c),c=7/118+25/47*I,n=62 4324193085267521 a008 Real Root of x^4-15*x^2-19*x+13 4324193089441070 r005 Re(z^2+c),c=-51/82+1/15*I,n=33 4324193090650495 r005 Re(z^2+c),c=-53/86+3/41*I,n=17 4324193092021837 m001 (CareFree-Magata)/(Totient-TravellingSalesman) 4324193101879994 m001 (FeigenbaumB+Kac)/(3^(1/2)+GAMMA(13/24)) 4324193102337228 m004 -625*Sqrt[5]*Pi+(125*Pi*Sin[Sqrt[5]*Pi])/4 4324193112443129 s002 sum(A119543[n]/(2^n+1),n=1..infinity) 4324193117444274 r009 Im(z^3+c),c=-29/106+27/53*I,n=5 4324193124315393 r005 Re(z^2+c),c=-33/56+12/53*I,n=5 4324193127450900 m001 (gamma+exp(1/exp(1)))/(-Champernowne+ZetaP(4)) 4324193139099218 m001 GAMMA(1/3)^2/ln(KhintchineLevy)^2/LambertW(1) 4324193146147623 r005 Re(z^2+c),c=-21/34+9/113*I,n=62 4324193155538348 m001 (Pi-2^(1/2))/(3^(1/2)-MertensB3) 4324193163568344 a001 47/28657*121393^(20/23) 4324193164672487 a001 47/433494437*7778742049^(20/23) 4324193181381881 r005 Im(z^2+c),c=8/29+6/17*I,n=37 4324193202364780 a007 Real Root Of -803*x^4+76*x^3+468*x^2+669*x+236 4324193205755922 m001 1/exp(GAMMA(1/24))/FeigenbaumC*GAMMA(3/4) 4324193218109883 a001 1597/199*199^(7/22) 4324193224352154 a007 Real Root Of -414*x^4+410*x^3-627*x^2+146*x+228 4324193242609099 m001 ZetaP(2)^(2/3*exp(Pi)*Pi*3^(1/2)/GAMMA(2/3)) 4324193291129353 m005 (1/2*3^(1/2)+5)/(7/8*5^(1/2)-3/5) 4324193299014698 a007 Real Root Of -199*x^4-769*x^3+373*x^2+31*x+559 4324193315228328 m001 ln(arctan(1/2))*Backhouse/sin(Pi/12) 4324193332170048 s002 sum(A160081[n]/(n*2^n+1),n=1..infinity) 4324193334609504 m001 (Zeta(3)+BesselI(0,2))^GAMMA(19/24) 4324193343583998 a001 1/726103*89^(13/51) 4324193354973707 p001 sum(floor(nd*n)/(282*n+5)/(2^n),n=0..infinity) 4324193364254053 r002 11th iterates of z^2 + 4324193365802141 r002 31th iterates of z^2 + 4324193371264865 a007 Real Root Of -129*x^4+947*x^3+860*x^2+331*x-376 4324193392724925 a007 Real Root Of 601*x^4-639*x^3+385*x^2+397*x+27 4324193392986958 r005 Im(z^2+c),c=-7/10+8/117*I,n=52 4324193394903622 h001 (7/10*exp(2)+11/12)/(4/9*exp(1)+1/5) 4324193403163131 r002 8i'th iterates of 2*x/(1-x^2) of 4324193411441971 l006 ln(109/8230) 4324193412680235 m002 Pi^2-Log[Pi]+3*Sinh[Pi]*Tanh[Pi] 4324193425692258 r002 32th iterates of z^2 + 4324193430349000 a007 Real Root Of 908*x^4-209*x^3-421*x^2-627*x+335 4324193432311888 r002 63th iterates of z^2 + 4324193447071976 m001 Pi+GAMMA(5/6)+ZetaQ(2) 4324193447287853 r005 Re(z^2+c),c=-53/86+5/44*I,n=48 4324193455535147 a007 Real Root Of 270*x^4-188*x^3+445*x^2-859*x+294 4324193458328904 r005 Im(z^2+c),c=11/70+1/36*I,n=4 4324193486562569 m001 FransenRobinson*Niven-arctan(1/2) 4324193486734415 a007 Real Root Of 138*x^4+441*x^3-781*x^2-531*x-285 4324193490134923 r005 Re(z^2+c),c=-43/78+21/43*I,n=48 4324193500022956 r002 56th iterates of z^2 + 4324193502735567 r009 Re(z^3+c),c=-39/82+7/52*I,n=16 4324193503682913 m001 (OrthogonalArrays-ZetaQ(3))/(Bloch-Kolakoski) 4324193535795031 r005 Im(z^2+c),c=-39/62+23/62*I,n=19 4324193539466565 a005 (1/cos(7/226*Pi))^1280 4324193551660353 m004 -150*Pi+125*Pi*Cot[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi] 4324193562736700 a007 Real Root Of 140*x^4+441*x^3-834*x^2-595*x-270 4324193577794038 r002 50th iterates of z^2 + 4324193584065843 m001 (GAMMA(5/6)-Cahen)/(Salem-ZetaQ(2)) 4324193587904184 r009 Im(z^3+c),c=-47/110+17/42*I,n=58 4324193593013649 r009 Re(z^3+c),c=-14/29+27/56*I,n=10 4324193598483929 r002 58th iterates of z^2 + 4324193611313155 k008 concat of cont frac of 4324193618830429 m001 (Conway-ZetaP(2))/(BesselJ(1,1)+GAMMA(7/12)) 4324193682965032 r009 Re(z^3+c),c=-1/23+59/60*I,n=5 4324193686562019 a001 29/21*2971215073^(3/19) 4324193694207995 m001 (ln(5)*ZetaP(3)+PrimesInBinary)/ln(5) 4324193699413254 r005 Re(z^2+c),c=-13/21+1/50*I,n=45 4324193701257330 m001 1/GAMMA(1/6)^2*ln(Trott)^2*cos(Pi/5)^2 4324193709023339 b008 Pi*(1+7*ArcSec[-4]) 4324193709487204 a001 55/141422324*18^(5/6) 4324193717359961 b008 ArcTan[ArcCoth[2+Pi^(-1)]] 4324193721672135 m005 (3/4*gamma+1)/(4/5*2^(1/2)-4/5) 4324193731036085 a001 21/2207*64079^(10/29) 4324193738892979 a001 21/2207*15127^(23/58) 4324193742979252 r005 Im(z^2+c),c=-11/26+24/47*I,n=11 4324193750364802 h001 (-6*exp(3)-8)/(-exp(8)+9) 4324193756997487 r005 Re(z^2+c),c=-73/118+5/52*I,n=35 4324193766976694 m001 FeigenbaumMu^GAMMA(17/24)/KhinchinLevy 4324193775625412 m001 (ReciprocalFibonacci-TwinPrimes)/GolombDickman 4324193779916405 r005 Im(z^2+c),c=-37/98+23/37*I,n=3 4324193781121146 k008 concat of cont frac of 4324193785718662 a007 Real Root Of 667*x^4+332*x^3-585*x^2-425*x+243 4324193792668865 m008 (2/5*Pi^3+5/6)/(3*Pi^2+1) 4324193802148104 s002 sum(A162294[n]/(10^n+1),n=1..infinity) 4324193814882079 r009 Re(z^3+c),c=-2/29+17/32*I,n=14 4324193816681416 a007 Real Root Of -949*x^4-83*x^3+732*x^2+710*x-404 4324193820953210 p001 sum(1/(257*n+236)/(24^n),n=0..infinity) 4324193825758293 a007 Real Root Of -218*x^4+235*x^3+487*x^2+702*x-406 4324193827676854 m001 (Kac-Khinchin)/(3^(1/3)-cos(1/12*Pi)) 4324193841834303 a003 cos(Pi*4/69)-sin(Pi*44/113) 4324193851002259 m001 (1-ErdosBorwein)/(-GlaisherKinkelin+Khinchin) 4324193854178611 r002 37th iterates of z^2 + 4324193868308524 r009 Im(z^3+c),c=-13/54+13/27*I,n=15 4324193879072100 m005 (1/2*Zeta(3)+2/3)/(27/176+1/16*5^(1/2)) 4324193884382419 r005 Re(z^2+c),c=45/122+7/26*I,n=2 4324193886469192 r005 Im(z^2+c),c=3/64+33/61*I,n=58 4324193889603014 r009 Im(z^3+c),c=-2/13+32/33*I,n=4 4324193907152670 r005 Re(z^2+c),c=-31/56+3/8*I,n=39 4324193918941154 m001 (ln(gamma)+4)/(-Zeta(3)+2) 4324193938268177 r005 Im(z^2+c),c=3/20+25/54*I,n=47 4324193977336597 m005 (21/4+1/4*5^(1/2))/(5/6*3^(1/2)-1/10) 4324194020909364 r002 4th iterates of z^2 + 4324194025833326 r002 39th iterates of z^2 + 4324194041397880 m001 1/Ei(1)*ln(FeigenbaumKappa)^2/GAMMA(5/6) 4324194045482598 v002 sum(1/(5^n+(12*n^2-31*n+59)),n=1..infinity) 4324194049920486 a003 sin(Pi*14/99)/sin(Pi*53/114) 4324194060010204 m001 DuboisRaymond^(TreeGrowth2nd/Thue) 4324194065915710 a007 Real Root Of 980*x^4-297*x^3+474*x^2-187*x-9 4324194084953943 a007 Real Root Of 239*x^4-609*x^3-838*x^2-879*x-281 4324194087746840 r005 Re(z^2+c),c=-71/114+17/56*I,n=52 4324194091800658 m005 (1/3*Catalan+1/6)/(1/8*3^(1/2)+7/8) 4324194117309337 r002 38th iterates of z^2 + 4324194122411842 r002 9th iterates of z^2 + 4324194127629942 r002 45th iterates of z^2 + 4324194137321221 k007 concat of cont frac of 4324194141230914 a007 Real Root Of 481*x^4-894*x^3+781*x^2-372*x-396 4324194152984263 m001 (Bloch+HardyLittlewoodC4)/(Catalan-exp(1)) 4324194159001527 m001 (Psi(1,1/3)+BesselI(1,2))/(MertensB1+ZetaQ(3)) 4324194170710847 r005 Re(z^2+c),c=-53/86+3/29*I,n=37 4324194220972012 m009 (1/3*Psi(1,1/3)+5/6)/(5*Psi(1,3/4)-3) 4324194222131878 m001 (BesselK(0,1)+ArtinRank2)/(-GaussAGM+Stephens) 4324194231770596 r005 Re(z^2+c),c=25/126+22/61*I,n=25 4324194238141574 r005 Im(z^2+c),c=29/98+9/26*I,n=33 4324194238200092 r005 Re(z^2+c),c=-13/21+2/61*I,n=60 4324194248891301 r005 Re(z^2+c),c=-61/110+7/19*I,n=41 4324194255714316 r002 43th iterates of z^2 + 4324194262408526 r002 16th iterates of z^2 + 4324194278107960 b008 3*(-4+Sqrt[3]*Pi) 4324194286949900 a008 Real Root of x^4-4*x^2-56*x-517 4324194293156836 r005 Im(z^2+c),c=-37/94+25/44*I,n=3 4324194322742885 m001 (exp(1/Pi)-Paris)/(PrimesInBinary-Rabbit) 4324194324194324 q001 899/2079 4324194324194324 r002 2th iterates of z^2 + 4324194367631209 r005 Re(z^2+c),c=-51/82+4/47*I,n=33 4324194371595208 r005 Im(z^2+c),c=-7/20+29/55*I,n=9 4324194379257735 a007 Real Root Of -129*x^4+59*x^3+851*x^2+568*x-405 4324194395159441 r005 Im(z^2+c),c=-16/21+24/55*I,n=6 4324194418969485 r002 56th iterates of z^2 + 4324194420684460 m001 (sin(1/5*Pi)-GAMMA(2/3))/(GAMMA(5/6)+Cahen) 4324194430174877 s001 sum(exp(-Pi/2)^(n-1)*A059184[n],n=1..infinity) 4324194438749660 a007 Real Root Of -304*x^4+919*x^3+965*x^2+934*x-648 4324194442870973 r005 Im(z^2+c),c=-11/8+10/83*I,n=8 4324194444500651 r005 Re(z^2+c),c=-21/34+8/105*I,n=48 4324194452559084 a007 Real Root Of -545*x^4+686*x^3-25*x^2+654*x+362 4324194468619952 a007 Real Root Of -459*x^4+346*x^3-797*x^2+728*x+33 4324194484464740 a001 18/139583862445*832040^(14/15) 4324194485100146 r009 Re(z^3+c),c=-31/66+4/25*I,n=48 4324194534663669 p001 sum((-1)^n/(477*n+239)/n/(32^n),n=1..infinity) 4324194535115277 m006 (2/5*exp(Pi)-3/4)/(2/Pi-5/6) 4324194542177232 r005 Re(z^2+c),c=25/66+13/41*I,n=52 4324194547017802 l006 ln(107/8079) 4324194547202994 m001 BesselJ(0,1)*exp(PrimesInBinary)/GAMMA(1/3) 4324194561107142 a001 7/1926*5778^(16/29) 4324194574318816 g001 Psi(7/10,1/18) 4324194579992033 a007 Real Root Of 494*x^4-304*x^3+634*x^2+253*x-51 4324194594884941 s001 sum(exp(-Pi)^(n-1)*A219051[n],n=1..infinity) 4324194597998242 a007 Real Root Of -351*x^4-316*x^3-484*x^2+536*x+309 4324194600429892 r005 Im(z^2+c),c=23/66+3/20*I,n=33 4324194603676874 r005 Re(z^2+c),c=-7/10+15/187*I,n=33 4324194613291544 a001 21/103682*24476^(22/29) 4324194616745832 m001 HeathBrownMoroz^(MertensB3/HardyLittlewoodC5) 4324194620306847 r009 Re(z^3+c),c=-6/13+9/59*I,n=45 4324194620763867 a001 21/103682*39603^(21/29) 4324194636053328 a001 7/90481*15127^(26/29) 4324194637042704 m001 (cos(1)-exp(1/exp(1)))/(GolombDickman+Porter) 4324194655300352 s002 sum(A161542[n]/(n^3*2^n-1),n=1..infinity) 4324194659446379 a007 Real Root Of 15*x^4+657*x^3+344*x^2-777*x+2 4324194667454345 p003 LerchPhi(1/10,4,25/114) 4324194667657308 r005 Im(z^2+c),c=-39/110+17/25*I,n=12 4324194680159330 r002 46th iterates of z^2 + 4324194680996305 r005 Re(z^2+c),c=-43/70+11/58*I,n=32 4324194691410341 r009 Im(z^3+c),c=-15/74+27/55*I,n=30 4324194699786921 r009 Re(z^3+c),c=-7/27+49/51*I,n=34 4324194701029222 a008 Real Root of x^4-22*x^2-7*x+92 4324194708188555 m005 (1/2*5^(1/2)-1/8)/(11/12*Pi-7/12) 4324194708861592 m005 (1/3*Catalan-2/11)/(9/11*Pi+2/7) 4324194748463805 r005 Re(z^2+c),c=-53/40+1/38*I,n=26 4324194748858175 a007 Real Root Of -913*x^4+109*x^3-758*x^2+917*x+579 4324194758566450 m001 1/exp(TreeGrowth2nd)^2/Salem^2*(3^(1/3)) 4324194785860236 r005 Re(z^2+c),c=33/122+37/42*I,n=2 4324194786515074 r005 Re(z^2+c),c=-5/8+2/225*I,n=30 4324194800764135 m001 Zeta(5)/ln(Paris)*cos(Pi/12) 4324194803568895 m001 GolombDickman^2*exp(Bloch)/Zeta(3)^2 4324194809998867 r005 Im(z^2+c),c=-11/18+58/85*I,n=4 4324194825478828 a007 Real Root Of -964*x^4-101*x^3-777*x^2-809*x-179 4324194826968762 m001 1/exp(GAMMA(1/24))^2/Magata^2*Zeta(3) 4324194832392257 r005 Im(z^2+c),c=3/14+19/47*I,n=24 4324194843448088 r005 Im(z^2+c),c=3/26+10/19*I,n=29 4324194847129988 r005 Im(z^2+c),c=17/54+3/64*I,n=41 4324194855588223 m003 -11/2+Sqrt[5]/2+Tanh[1/2+Sqrt[5]/2]/16 4324194877198042 m001 (Grothendieck+HeathBrownMoroz)/ThueMorse 4324194884723339 a007 Real Root Of -20*x^4-871*x^3-250*x^2+691*x-813 4324194901299234 r009 Im(z^3+c),c=-5/16+11/24*I,n=27 4324194910617753 r002 33th iterates of z^2 + 4324194913241253 r009 Im(z^3+c),c=-15/74+27/55*I,n=32 4324194925039984 m001 1/Tribonacci*Paris/exp(OneNinth)^2 4324194934592649 r005 Im(z^2+c),c=17/86+11/26*I,n=56 4324194949951067 r005 Re(z^2+c),c=-11/18+17/101*I,n=52 4324194955542704 m001 (Psi(2,1/3)-cos(1/12*Pi))/(CareFree+Lehmer) 4324194958001011 r009 Re(z^3+c),c=-29/102+29/43*I,n=26 4324194960927525 s002 sum(A024355[n]/((10^n-1)/n),n=1..infinity) 4324194961391477 a007 Real Root Of 205*x^4+744*x^3-365*x^2+931*x-668 4324194968462761 s002 sum(A057178[n]/(n^2*exp(n)+1),n=1..infinity) 4324194973919391 m005 (7/44+1/4*5^(1/2))/(5/9*2^(1/2)+7/8) 4324195022793996 r002 27th iterates of z^2 + 4324195026252599 r005 Re(z^2+c),c=-9/122+41/54*I,n=9 4324195030237638 r005 Re(z^2+c),c=39/106+18/49*I,n=18 4324195034260522 a001 521/20365011074*46368^(5/19) 4324195034366378 a001 521/2504730781961*4052739537881^(5/19) 4324195034366378 a001 521/225851433717*433494437^(5/19) 4324195039854339 m005 (1/2*Pi+2)/(3/8*Zeta(3)+3/8) 4324195040675609 a001 7/1926*2207^(18/29) 4324195045406793 a007 Real Root Of 226*x^4+287*x^3-499*x^2-728*x+377 4324195053620846 m001 (PlouffeB+Riemann1stZero)/(Zeta(5)-exp(1/Pi)) 4324195058568344 a007 Real Root Of -82*x^4-390*x^3-220*x^2-173*x+502 4324195061196497 s002 sum(A183574[n]/((10^n-1)/n),n=1..infinity) 4324195062296831 s002 sum(A137905[n]/((10^n-1)/n),n=1..infinity) 4324195062431081 s002 sum(A179779[n]/((10^n-1)/n),n=1..infinity) 4324195062962366 a007 Real Root Of -130*x^4-330*x^3+861*x^2-589*x+124 4324195078918391 r005 Re(z^2+c),c=-49/82+17/63*I,n=52 4324195088432549 m001 (-FeigenbaumAlpha+Totient)/(Si(Pi)+Chi(1)) 4324195089081257 a007 Real Root Of 717*x^4+461*x^3+602*x^2-686*x-397 4324195095668577 r005 Im(z^2+c),c=-9/14+82/193*I,n=57 4324195123526920 r002 40th iterates of z^2 + 4324195133335768 r009 Re(z^3+c),c=-11/90+36/49*I,n=64 4324195134711741 r009 Im(z^3+c),c=-15/74+27/55*I,n=35 4324195138169153 r002 24th iterates of z^2 + 4324195139108803 a007 Real Root Of -67*x^4+677*x^3+629*x^2+658*x+224 4324195143195151 r009 Im(z^3+c),c=-15/74+27/55*I,n=37 4324195160529234 r009 Im(z^3+c),c=-15/74+27/55*I,n=34 4324195163947036 r009 Im(z^3+c),c=-15/74+27/55*I,n=39 4324195164090372 r009 Im(z^3+c),c=-15/74+27/55*I,n=42 4324195164306348 r009 Im(z^3+c),c=-15/74+27/55*I,n=40 4324195165763516 r009 Im(z^3+c),c=-15/74+27/55*I,n=44 4324195165917008 r009 Im(z^3+c),c=-15/74+27/55*I,n=47 4324195166016838 r009 Im(z^3+c),c=-15/74+27/55*I,n=45 4324195166045840 r009 Im(z^3+c),c=-15/74+27/55*I,n=49 4324195166070780 r009 Im(z^3+c),c=-15/74+27/55*I,n=52 4324195166080139 r009 Im(z^3+c),c=-15/74+27/55*I,n=54 4324195166083221 r009 Im(z^3+c),c=-15/74+27/55*I,n=57 4324195166083847 r009 Im(z^3+c),c=-15/74+27/55*I,n=59 4324195166084183 r009 Im(z^3+c),c=-15/74+27/55*I,n=62 4324195166084220 r009 Im(z^3+c),c=-15/74+27/55*I,n=64 4324195166084287 r009 Im(z^3+c),c=-15/74+27/55*I,n=61 4324195166084325 r009 Im(z^3+c),c=-15/74+27/55*I,n=63 4324195166084383 r009 Im(z^3+c),c=-15/74+27/55*I,n=60 4324195166084978 r009 Im(z^3+c),c=-15/74+27/55*I,n=56 4324195166085045 r009 Im(z^3+c),c=-15/74+27/55*I,n=58 4324195166085071 r009 Im(z^3+c),c=-15/74+27/55*I,n=55 4324195166086087 r009 Im(z^3+c),c=-15/74+27/55*I,n=50 4324195166093271 r009 Im(z^3+c),c=-15/74+27/55*I,n=53 4324195166096819 r009 Im(z^3+c),c=-15/74+27/55*I,n=51 4324195166183625 r009 Im(z^3+c),c=-15/74+27/55*I,n=48 4324195166273326 r009 Im(z^3+c),c=-15/74+27/55*I,n=46 4324195166285342 s002 sum(A094388[n]/(n^2*exp(n)+1),n=1..infinity) 4324195167134084 r009 Im(z^3+c),c=-15/74+27/55*I,n=43 4324195168697284 r009 Im(z^3+c),c=-15/74+27/55*I,n=41 4324195173015023 m005 (1/2*gamma-1/8)/(3/8*gamma-4) 4324195176619105 r009 Im(z^3+c),c=-15/74+27/55*I,n=38 4324195185894604 m001 (Zeta(5)-cos(1/12*Pi))/(gamma(3)+GAMMA(13/24)) 4324195188812549 r009 Im(z^3+c),c=-11/94+30/61*I,n=3 4324195191943038 r005 Re(z^2+c),c=-73/118+1/45*I,n=39 4324195196581414 a007 Real Root Of -545*x^4+106*x^3-981*x^2+467*x+413 4324195197515503 a003 cos(Pi*1/119)/cos(Pi*43/101) 4324195197831925 r002 33th iterates of z^2 + 4324195200121458 r009 Im(z^3+c),c=-15/74+27/55*I,n=36 4324195214213302 a001 8/321*29^(50/59) 4324195220374710 m001 Ei(1)^BesselI(0,2)*Ei(1)^Trott 4324195221555956 m005 (1/2*exp(1)+6/11)/(33/8+1/8*5^(1/2)) 4324195228092814 m005 (5/4+1/4*5^(1/2))/(5/12*Catalan-4/5) 4324195258517624 r005 Im(z^2+c),c=41/102+9/16*I,n=9 4324195261334801 r005 Im(z^2+c),c=15/44+9/53*I,n=17 4324195264730451 r009 Im(z^3+c),c=-15/74+27/55*I,n=33 4324195288924548 r005 Im(z^2+c),c=-7/22+4/61*I,n=10 4324195291009764 r009 Im(z^3+c),c=-53/102+29/62*I,n=46 4324195294135331 a007 Real Root Of -274*x^4+699*x^3+497*x^2+479*x-347 4324195301475385 a007 Real Root Of 609*x^4-281*x^3+748*x^2-240*x+9 4324195303471365 m005 (1/2*3^(1/2)-2/11)/(10/11*exp(1)-8/9) 4324195308767442 a007 Real Root Of -195*x^4-809*x^3-59*x^2-768*x+549 4324195313789984 a007 Real Root Of 233*x^4-906*x^3+6*x^2-866*x-457 4324195319467470 r005 Re(z^2+c),c=-69/118+8/57*I,n=16 4324195323030653 a007 Real Root Of 4*x^4-356*x^3+353*x^2-946*x-504 4324195326531687 r009 Im(z^3+c),c=-15/74+27/55*I,n=29 4324195330229979 m005 (1/2*Zeta(3)-4/7)/(23/63+1/7*5^(1/2)) 4324195339675078 m001 Lehmer*StronglyCareFree-Trott2nd 4324195340556487 m001 (ln(gamma)-Ei(1,1))/(BesselK(1,1)+Salem) 4324195342004252 m001 (GAMMA(2/3)-Zeta(1/2))/(Robbin-Trott) 4324195353235337 r005 Re(z^2+c),c=17/56+23/57*I,n=21 4324195353639123 a007 Real Root Of -224*x^4-769*x^3+988*x^2+727*x+810 4324195363901386 r009 Re(z^3+c),c=-57/122+8/51*I,n=31 4324195382807703 r002 4th iterates of z^2 + 4324195390443144 r005 Im(z^2+c),c=3/22+15/32*I,n=25 4324195391712467 g002 -3/2*ln(3)+1/2*Pi*3^(1/2)-Psi(7/12)-Psi(4/7) 4324195409102616 r005 Re(z^2+c),c=-29/54+4/45*I,n=5 4324195410745521 g005 1/Pi^(1/2)/csc(3/10*Pi)/GAMMA(11/12) 4324195410745521 m001 cos(1/5*Pi)/GAMMA(11/12)/Pi^(1/2) 4324195410745521 m001 cos(Pi/5)/GAMMA(11/12)/sqrt(Pi) 4324195412843958 r005 Re(z^2+c),c=-37/64+17/44*I,n=45 4324195413307208 r009 Im(z^3+c),c=-29/118+10/21*I,n=9 4324195424964754 r005 Re(z^2+c),c=-21/34+2/33*I,n=44 4324195438569113 p001 sum((-1)^n/(464*n+449)/n/(25^n),n=1..infinity) 4324195442593389 m001 PrimesInBinary/CopelandErdos^2/ln(sin(1)) 4324195444299441 a003 sin(Pi*5/36)/sin(Pi*35/81) 4324195473513414 r005 Re(z^2+c),c=7/27+22/43*I,n=24 4324195478025214 m003 -6+Sqrt[5]/2+(Sqrt[5]*Sin[1/2+Sqrt[5]/2]^2)/4 4324195483184114 m001 1/GAMMA(11/24)/ln(GAMMA(1/24))^2/Zeta(3) 4324195499538710 r005 Im(z^2+c),c=11/48+25/64*I,n=32 4324195507637752 r008 a(0)=4,K{-n^6,-4+2*n^3-8*n^2+7*n} 4324195510784100 r005 Re(z^2+c),c=-8/13+3/25*I,n=59 4324195513910900 m001 GAMMA(23/24)^2/GAMMA(1/12)^2/ln(Zeta(3)) 4324195550616723 r005 Re(z^2+c),c=-19/31+9/46*I,n=41 4324195555381791 a007 Real Root Of 405*x^4-25*x^3+323*x^2-852*x-445 4324195563775415 h001 (3/8*exp(1)+2/11)/(7/10*exp(1)+7/8) 4324195564054694 r002 44th iterates of z^2 + 4324195564463807 r002 59th iterates of z^2 + 4324195568537735 a001 47/10946*21^(22/29) 4324195589295693 r009 Im(z^3+c),c=-15/74+27/55*I,n=31 4324195594487100 a008 Real Root of x^4-28*x^2-28*x+295 4324195601355898 r002 24th iterates of z^2 + 4324195612088942 a001 13/47*521^(1/14) 4324195618205649 a007 Real Root Of -509*x^4+171*x^3-977*x^2+922*x+613 4324195646635004 r002 3th iterates of z^2 + 4324195674849225 m001 (Shi(1)-arctan(1/2))/(-exp(1/Pi)+gamma(3)) 4324195687524480 r009 Im(z^3+c),c=-13/31+9/22*I,n=34 4324195706473164 r005 Re(z^2+c),c=-65/94+1/11*I,n=33 4324195719479562 a007 Real Root Of 709*x^4-769*x^3+303*x^2-283*x-266 4324195725852300 l006 ln(105/7928) 4324195731019501 r005 Re(z^2+c),c=-11/18+13/98*I,n=35 4324195738466485 m001 (Landau-Paris)/(Stephens+ZetaP(2)) 4324195750984232 r005 Im(z^2+c),c=1/18+27/50*I,n=38 4324195771328706 s001 sum(exp(-Pi)^(n-1)*A021365[n],n=1..infinity) 4324195785392647 r002 22th iterates of z^2 + 4324195786963976 r005 Re(z^2+c),c=-9/14+41/239*I,n=28 4324195796575002 a007 Real Root Of -9*x^4-398*x^3-375*x^2+266*x-646 4324195797531518 r009 Im(z^3+c),c=-11/30+17/39*I,n=42 4324195804281204 r009 Im(z^3+c),c=-5/21+27/56*I,n=24 4324195812288371 s002 sum(A221700[n]/((2*n+1)!),n=1..infinity) 4324195827326278 a007 Real Root Of -736*x^4+25*x^3+768*x^2+139*x-180 4324195840783132 r002 32th iterates of z^2 + 4324195840980061 r005 Re(z^2+c),c=-19/30+10/91*I,n=27 4324195849618821 r002 59th iterates of z^2 + 4324195894172186 a001 199/89*34^(21/25) 4324195895817354 p004 log(37019/24023) 4324195897998684 m001 (MertensB1+ThueMorse)/(cos(1/12*Pi)+Lehmer) 4324195902284795 r005 Re(z^2+c),c=-59/98+22/57*I,n=47 4324195911211982 a007 Real Root Of -323*x^4+679*x^3+750*x^2+819*x-538 4324195917732835 r005 Im(z^2+c),c=-75/56+11/29*I,n=4 4324195923776247 r005 Re(z^2+c),c=-12/23+10/43*I,n=8 4324195928055680 m001 exp(GAMMA(1/3))/DuboisRaymond/sqrt(3) 4324195943830200 a003 cos(Pi*6/113)-cos(Pi*4/37) 4324195944363601 r005 Re(z^2+c),c=-79/118+12/41*I,n=36 4324195971359076 m001 Otter+ReciprocalFibonacci^sin(1/12*Pi) 4324195972560274 m008 (3*Pi^6+5/6)/(3/5*Pi^2+3/4) 4324195982792367 m001 (GAMMA(2/3)-MinimumGamma)/(Paris-Sierpinski) 4324195984510987 r009 Im(z^3+c),c=-14/31+25/64*I,n=34 4324195995272477 r009 Im(z^3+c),c=-15/74+27/55*I,n=28 4324195999344882 r005 Im(z^2+c),c=5/106+20/37*I,n=57 4324196007672861 r005 Im(z^2+c),c=31/126+9/28*I,n=8 4324196024860999 a003 cos(Pi*6/37)*sin(Pi*16/97) 4324196051003954 r002 53th iterates of z^2 + 4324196052199225 m005 (-23/36+1/4*5^(1/2))/(7/10*2^(1/2)+6/7) 4324196072579203 r002 57th iterates of z^2 + 4324196088862468 a007 Real Root Of -889*x^4+145*x^3-170*x^2+31*x+88 4324196088969557 a007 Real Root Of -237*x^4-946*x^3+554*x^2+974*x+227 4324196093260134 r005 Im(z^2+c),c=-19/78+52/61*I,n=7 4324196096270668 r009 Im(z^3+c),c=-11/23+19/51*I,n=63 4324196099081039 r009 Re(z^3+c),c=-7/40+14/19*I,n=39 4324196108779309 r005 Im(z^2+c),c=15/46+17/61*I,n=45 4324196127824115 r002 30th iterates of z^2 + 4324196128840132 p004 log(23633/313) 4324196140635569 r005 Re(z^2+c),c=-65/106+5/32*I,n=43 4324196144124938 a007 Real Root Of 585*x^4-143*x^3-338*x^2-996*x+485 4324196152548982 a007 Real Root Of -782*x^4+977*x^3-783*x^2-566*x+8 4324196160056047 r005 Re(z^2+c),c=-3/5+22/83*I,n=62 4324196160388461 m001 (gamma(3)-GAMMA(19/24))/(ArtinRank2-Magata) 4324196164572067 a003 cos(Pi*4/81)-cos(Pi*5/16) 4324196164672239 a001 3571/8*55^(17/30) 4324196166149660 s002 sum(A196036[n]/((10^n-1)/n),n=1..infinity) 4324196166846930 r005 Re(z^2+c),c=-49/82+13/51*I,n=50 4324196171413133 r002 24th iterates of z^2 + 4324196173621217 m003 -6+Sqrt[5]/4+(Sqrt[5]*Sin[1/2+Sqrt[5]/2])/2 4324196185179146 r004 Re(z^2+c),c=-21/34+2/11*I,z(0)=-1,n=40 4324196188254267 r009 Im(z^3+c),c=-7/25+28/43*I,n=10 4324196196881640 m001 HardHexagonsEntropy+MinimumGamma+Porter 4324196204112233 m001 (cos(1)-gamma)/(-FellerTornier+Salem) 4324196204473862 m001 Zeta(3)/BesselI(1,2)/ZetaP(3) 4324196205219719 r002 17th iterates of z^2 + 4324196226355674 r009 Im(z^3+c),c=-13/56+29/60*I,n=14 4324196228546706 m001 BesselK(1,1)-Salem^exp(-1/2*Pi) 4324196248657892 a007 Real Root Of -114*x^4-142*x^3-473*x^2+236*x+183 4324196253540181 h002 exp(11^(5/3)+19^(2/7)) 4324196253540181 h007 exp(11^(5/3)+19^(2/7)) 4324196259788544 r005 Im(z^2+c),c=-117/98+3/52*I,n=62 4324196260211826 a008 Real Root of x^4-23*x^2-26*x-32 4324196263497975 r005 Re(z^2+c),c=-11/40+35/47*I,n=6 4324196266614999 m004 -4-(25*Pi)/2+5*Pi*Csch[Sqrt[5]*Pi] 4324196271037470 m004 -4-(25*Pi)/2+5*Pi*Sech[Sqrt[5]*Pi] 4324196274268407 m005 (1/4*Catalan-3/5)/(1/2*Catalan+2/5) 4324196275762918 a007 Real Root Of 375*x^4-576*x^3+25*x^2-649*x-345 4324196276834061 h001 (1/12*exp(1)+1/10)/(11/12*exp(2)+7/9) 4324196287475444 a007 Real Root Of -533*x^4+617*x^3-424*x^2+896*x-38 4324196293576832 r002 13th iterates of z^2 + 4324196304754063 a003 sin(Pi*4/63)/cos(Pi*23/66) 4324196305975748 m001 FibonacciFactorial/(Khinchin^GAMMA(11/12)) 4324196309035854 r005 Re(z^2+c),c=-31/24+5/58*I,n=27 4324196311895809 r005 Im(z^2+c),c=-2/3+39/86*I,n=64 4324196324942020 m005 (1/2*Pi+8/11)/(2/11*Zeta(3)-3/4) 4324196355092717 a007 Real Root Of -127*x^4+269*x^3-836*x^2-133*x+125 4324196362067246 r002 42th iterates of z^2 + 4324196363233434 s002 sum(A226980[n]/(exp(n)),n=1..infinity) 4324196376641071 a007 Real Root Of -558*x^4-697*x^3-718*x^2+302*x+228 4324196381822021 m001 BesselJ(0,1)^2*exp(Tribonacci)*GAMMA(19/24) 4324196391609497 b008 Sqrt[2]+2*E^(3/8) 4324196394374050 p001 sum(1/(255*n+233)/(64^n),n=0..infinity) 4324196395004084 a007 Real Root Of 285*x^4+977*x^3-953*x^2+841*x+806 4324196406551210 r009 Im(z^3+c),c=-15/44+17/38*I,n=20 4324196407255342 r002 33th iterates of z^2 + 4324196428945108 r005 Im(z^2+c),c=-13/38+34/61*I,n=12 4324196436053421 a003 cos(Pi*43/119)/sin(Pi*49/114) 4324196458905998 m001 1/exp(Zeta(1,2))^2/GAMMA(5/12)^2/gamma^2 4324196463973238 r005 Re(z^2+c),c=-5/8+23/95*I,n=29 4324196480510375 b008 E+(1+Pi)^(1/3) 4324196491548772 b008 Pi+(5*SinIntegral[1])/4 4324196511837498 m001 Zeta(5)/Cahen*FeigenbaumD 4324196521172266 r009 Im(z^3+c),c=-45/98+15/38*I,n=11 4324196527157789 r002 6th iterates of z^2 + 4324196528250665 m001 (AlladiGrinstead-FeigenbaumC)/(Lehmer-Otter) 4324196539233239 m001 Catalan*ln(Magata)^2*Pi 4324196553848952 r005 Re(z^2+c),c=-23/40+5/34*I,n=12 4324196596344033 r005 Im(z^2+c),c=-73/114+1/12*I,n=49 4324196597353497 q001 915/2116 4324196597353497 r002 2th iterates of z^2 + 4324196597353497 r004 Re(z^2+c),c=1/46+17/23*I,z(0)=I,n=2 4324196597353497 r005 Im(z^2+c),c=-19/23+15/46*I,n=3 4324196597353497 r009 Im(z^3+c),c=-9/46+1/2*I,n=2 4324196647147112 r005 Re(z^2+c),c=-5/38+35/54*I,n=26 4324196653731759 a001 18/165580141*610^(14/15) 4324196658691704 a001 3/13*7778742049^(15/16) 4324196662571196 a007 Real Root Of 276*x^4-810*x^3-883*x^2-569*x+467 4324196675095339 a001 8/2207*123^(17/33) 4324196675400691 r005 Re(z^2+c),c=-65/122+16/45*I,n=18 4324196677398778 r005 Re(z^2+c),c=-2/3+4/83*I,n=18 4324196680318499 r002 58th iterates of z^2 + 4324196695062170 s002 sum(A258952[n]/(n*10^n-1),n=1..infinity) 4324196717420903 r005 Re(z^2+c),c=-21/34+11/82*I,n=27 4324196730039395 a007 Real Root Of 187*x^4+670*x^3-537*x^2+48*x-960 4324196740335054 a005 (1/sin(79/169*Pi))^1599 4324196772134600 a001 1/233*4181^(26/47) 4324196773189489 m005 (1/3*3^(1/2)-1/11)/(7/9*3^(1/2)-2/9) 4324196785147320 a007 Real Root Of 87*x^4-532*x^3+557*x^2-900*x+325 4324196793162568 m001 Paris/sin(1/12*Pi)/ln(2^(1/2)+1) 4324196806022267 r005 Re(z^2+c),c=-67/126+26/63*I,n=42 4324196818193328 a003 cos(Pi*11/39)-cos(Pi*17/39) 4324196828077726 m001 (gamma(2)-Conway)/(Otter+StolarskyHarborth) 4324196832198811 r005 Re(z^2+c),c=-19/29+1/56*I,n=22 4324196845113067 r009 Im(z^3+c),c=-1/18+22/43*I,n=20 4324196855186093 a001 2/55*514229^(7/13) 4324196868926988 a008 Real Root of x^4-2*x^3-4*x^2-22*x-18 4324196873536077 r009 Im(z^3+c),c=-1/70+36/49*I,n=6 4324196879977393 r002 27th iterates of z^2 + 4324196903796702 m001 FeigenbaumD/(LambertW(1)^sin(1)) 4324196911643755 r005 Im(z^2+c),c=5/64+10/23*I,n=5 4324196926128413 r002 26th iterates of z^2 + 4324196930145619 m001 (Robbin+Salem)/(FeigenbaumAlpha+MadelungNaCl) 4324196950465307 l006 ln(103/7777) 4324196953302376 a007 Real Root Of -24*x^4+84*x^3+920*x^2+353*x-493 4324196958325944 m001 exp(FeigenbaumD)/FibonacciFactorial*GAMMA(1/4) 4324196970264592 m004 -6+125*Pi*Cot[Sqrt[5]*Pi]+5*Log[Sqrt[5]*Pi] 4324196972913859 a007 Real Root Of 476*x^4-742*x^3-624*x^2-437*x+349 4324196982830394 r009 Re(z^3+c),c=-29/54+17/41*I,n=62 4324196994472184 s001 sum(exp(-Pi/2)^(n-1)*A225901[n],n=1..infinity) 4324197007623814 r002 55th iterates of z^2 + 4324197008090312 m008 (3/5*Pi-5)/(3/4*Pi^6-2/3) 4324197038515905 r005 Re(z^2+c),c=-5/8+32/205*I,n=30 4324197054250740 a001 9/416020*10946^(19/59) 4324197055093297 r002 50th iterates of z^2 + 4324197057295563 r002 5th iterates of z^2 + 4324197059041532 a007 Real Root Of -184*x^4-969*x^3-995*x^2+808*x-33 4324197070946422 a007 Real Root Of 842*x^4-979*x^3-442*x^2-347*x-176 4324197096820117 a007 Real Root Of 150*x^4+687*x^3+20*x^2-671*x-173 4324197096851818 r002 50th iterates of z^2 + 4324197100287808 s002 sum(A001620[n]/((exp(n)+1)/n),n=1..infinity) 4324197102361672 r009 Im(z^3+c),c=-41/78+7/30*I,n=33 4324197117163137 r005 Im(z^2+c),c=-55/102+1/13*I,n=49 4324197125144909 r002 39th iterates of z^2 + 4324197135108556 a007 Real Root Of 62*x^4-949*x^3-745*x^2-442*x+405 4324197136163555 r009 Re(z^3+c),c=-23/44+22/59*I,n=33 4324197142571163 r005 Im(z^2+c),c=1/44+21/38*I,n=24 4324197146706028 r002 38th iterates of z^2 + 4324197150150340 l006 ln(7264/7585) 4324197155818021 r002 55th iterates of z^2 + 4324197170043707 r002 36th iterates of z^2 + 4324197191919006 a003 cos(Pi*17/54)-sin(Pi*29/66) 4324197216793206 a003 cos(Pi*14/69)*cos(Pi*15/47) 4324197228532276 m005 (1/2*2^(1/2)+4/11)/(7/8*Pi-3/11) 4324197236923913 r005 Re(z^2+c),c=-57/94+13/59*I,n=57 4324197250370204 m006 (1/4*exp(Pi)-5)/(1/3*ln(Pi)-1/5) 4324197256488989 m005 (1/2*3^(1/2)+6)/(5/8*exp(1)-1/9) 4324197267840321 a001 89/3*1568397607^(4/17) 4324197269137770 a001 89/3*39603^(8/17) 4324197276859332 h001 (1/2*exp(1)+4/5)/(5/8*exp(2)+3/8) 4324197290058068 a007 Real Root Of -925*x^4-774*x^3-367*x^2+346*x+188 4324197290875793 m001 1/Khintchine/CopelandErdos*ln(Lehmer)^2 4324197304845734 r002 55th iterates of z^2 + 4324197332605060 r005 Im(z^2+c),c=23/126+24/55*I,n=56 4324197346502157 a007 Real Root Of -856*x^4+994*x^3-14*x^2-16*x+106 4324197383593419 r005 Re(z^2+c),c=-15/23+12/49*I,n=18 4324197388499629 s002 sum(A201983[n]/(pi^n-1),n=1..infinity) 4324197403012324 r005 Re(z^2+c),c=-21/34+7/87*I,n=58 4324197403715396 a007 Real Root Of -213*x^4-754*x^3+601*x^2-378*x+635 4324197415295681 m001 (Ei(1,1)+Stephens)/Tribonacci 4324197426752638 a007 Real Root Of -252*x^4-977*x^3+377*x^2-404*x+316 4324197435469666 a007 Real Root Of -357*x^4-404*x^3+921*x^2+985*x-553 4324197452235231 m001 MertensB3/(Ei(1)+KhinchinLevy) 4324197494374193 a001 521/317811*701408733^(1/21) 4324197494393362 a001 521/196418*28657^(1/21) 4324197497875661 r005 Re(z^2+c),c=-57/94+7/46*I,n=29 4324197515114852 m009 (3/4*Psi(1,1/3)-1/3)/(2*Pi^2-3) 4324197517427266 m001 1/GAMMA(5/24)^2/exp(GAMMA(11/24))*gamma 4324197524302597 m001 Rabbit*(DuboisRaymond+PrimesInBinary) 4324197538703464 r009 Im(z^3+c),c=-15/82+26/55*I,n=4 4324197544003316 m009 (1/5*Psi(1,3/4)+1/2)/(1/2*Psi(1,2/3)+4/5) 4324197555992644 m001 GAMMA(1/6)^2/exp(Khintchine)^2/gamma^2 4324197559198817 a007 Real Root Of 223*x^4-978*x^3-282*x^2-888*x+508 4324197578879020 r009 Im(z^3+c),c=-31/106+27/58*I,n=27 4324197603917750 p003 LerchPhi(1/16,2,69/143) 4324197616909426 m001 exp(1)^(Chi(1)*MadelungNaCl) 4324197616909426 m001 exp(Chi(1)*MadelungNaCl) 4324197641893294 a001 2/13*2178309^(17/44) 4324197658220586 r009 Im(z^3+c),c=-27/62+2/5*I,n=52 4324197670156843 r002 7th iterates of z^2 + 4324197676184174 r005 Im(z^2+c),c=-143/98+6/59*I,n=4 4324197678922312 m001 Paris/Cahen*exp(Zeta(5)) 4324197680328224 m001 ThueMorse^exp(1)*exp(gamma)^exp(1) 4324197686302974 r005 Re(z^2+c),c=-21/34+5/84*I,n=21 4324197690114631 r005 Re(z^2+c),c=-57/94+9/52*I,n=33 4324197692027598 h001 (3/5*exp(2)+2/9)/(2/7*exp(1)+3/10) 4324197714352484 r002 30th iterates of z^2 + 4324197727971394 r002 5th iterates of z^2 + 4324197733692307 r005 Im(z^2+c),c=-17/98+41/64*I,n=40 4324197745204052 m001 (GAMMA(2/3)+Grothendieck)/(Sarnak+ZetaQ(4)) 4324197753014083 s002 sum(A101560[n]/(n*exp(pi*n)-1),n=1..infinity) 4324197755532791 m001 (LandauRamanujan-Lehmer)^PlouffeB 4324197783339740 r002 52th iterates of z^2 + 4324197786916826 r005 Re(z^2+c),c=-5/7+15/91*I,n=44 4324197788656417 r005 Re(z^2+c),c=-5/8+26/147*I,n=24 4324197797568473 r005 Re(z^2+c),c=-35/64+7/20*I,n=27 4324197798602682 a007 Real Root Of -114*x^4-619*x^3-625*x^2-507*x-697 4324197806809863 r005 Im(z^2+c),c=25/118+16/39*I,n=47 4324197816477679 r005 Im(z^2+c),c=23/114+19/46*I,n=22 4324197818284653 r005 Re(z^2+c),c=-5/56+41/64*I,n=31 4324197828907667 r005 Im(z^2+c),c=21/62+9/31*I,n=63 4324197834456985 m001 ln(Riemann1stZero)^2/Backhouse/GAMMA(11/12)^2 4324197835343661 a003 sin(Pi*7/64)/cos(Pi*11/51) 4324197837608111 r005 Re(z^2+c),c=-5/8+7/179*I,n=24 4324197839322426 m005 (17/36+1/4*5^(1/2))/(2/3*gamma+2) 4324197842280433 a001 89/3*2207^(11/17) 4324197844184935 r005 Re(z^2+c),c=-11/15+1/31*I,n=34 4324197850778632 m005 (1/2*exp(1)-5/6)/(Catalan+3/10) 4324197854393723 m009 (6*Catalan+3/4*Pi^2+1/6)/(1/3*Psi(1,2/3)+2) 4324197862456803 r005 Re(z^2+c),c=-17/31+23/59*I,n=16 4324197865118952 a007 Real Root Of -6*x^4-260*x^3-28*x^2-196*x-439 4324197894670979 a007 Real Root Of 557*x^4-272*x^3+359*x^2-901*x+325 4324197900822856 p004 log(14533/9431) 4324197906358814 r002 34th iterates of z^2 + 4324197914986563 a007 Real Root Of 275*x^4+965*x^3-826*x^2+624*x+19 4324197918822083 a007 Real Root Of 600*x^4-570*x^3+513*x^2+703*x+141 4324197924409611 r005 Re(z^2+c),c=-73/118+1/17*I,n=51 4324197925306810 r005 Im(z^2+c),c=-5/4+6/221*I,n=21 4324197933604109 m001 OrthogonalArrays^(exp(Pi)*(1+3^(1/2))^(1/2)) 4324197946687968 r005 Im(z^2+c),c=5/17+11/35*I,n=9 4324197991960943 r009 Im(z^3+c),c=-9/52+23/35*I,n=2 4324197995246681 r005 Im(z^2+c),c=-19/50+35/61*I,n=12 4324198000008757 r009 Im(z^3+c),c=-5/17+44/45*I,n=39 4324198009257140 a001 55/2207*1364^(17/43) 4324198013402697 r009 Re(z^3+c),c=-3/86+47/53*I,n=19 4324198024700489 m001 (Ei(1)+Trott)/(Pi+BesselI(0,1)) 4324198031567253 m001 (FellerTornier-sin(1))/(RenyiParking+ZetaP(2)) 4324198040532016 m001 (cos(1)+gamma(2))/(-Backhouse+FeigenbaumD) 4324198041860843 r005 Re(z^2+c),c=-21/34+1/21*I,n=25 4324198042739816 a007 Real Root Of -80*x^4+398*x^3-186*x^2+771*x-328 4324198043010873 a007 Real Root Of 155*x^4-601*x^3+731*x^2+71*x-160 4324198045343868 a007 Real Root Of -124*x^4-705*x^3-495*x^2+795*x-955 4324198059611335 r009 Im(z^3+c),c=-19/40+3/8*I,n=62 4324198062020389 r005 Re(z^2+c),c=-5/8+8/75*I,n=29 4324198063425775 r002 46th iterates of z^2 + 4324198089167491 a007 Real Root Of -590*x^4+110*x^3-518*x^2+309*x+260 4324198092245208 r005 Re(z^2+c),c=-67/102+1/57*I,n=22 4324198093162842 a001 3/89*121393^(1/47) 4324198100705416 a007 Real Root Of -116*x^4-382*x^3+366*x^2-877*x-965 4324198125705979 a007 Real Root Of -237*x^4-999*x^3-24*x^2-653*x-286 4324198131033699 r009 Re(z^3+c),c=-27/74+1/22*I,n=15 4324198142880378 m001 1/(2^(1/3))^2*ln(PrimesInBinary)^2/GAMMA(5/6) 4324198148226428 m001 (Si(Pi)-sin(1))/(-ln(gamma)+KomornikLoreti) 4324198148825354 a003 cos(Pi*5/113)-sin(Pi*13/69) 4324198150924074 r005 Re(z^2+c),c=-61/102+10/31*I,n=55 4324198155777608 a007 Real Root Of -164*x^4-461*x^3+904*x^2-711*x+88 4324198160105525 h001 (1/10*exp(2)+5/8)/(5/6*exp(1)+8/9) 4324198163909214 r005 Re(z^2+c),c=-29/52+21/53*I,n=55 4324198164607628 r005 Im(z^2+c),c=-5/86+27/49*I,n=17 4324198169098659 r005 Im(z^2+c),c=1/58+14/25*I,n=42 4324198174755578 m005 (1/2*gamma+4/5)/(2/7*gamma-5/12) 4324198175295757 r002 55th iterates of z^2 + 4324198177230294 a007 Real Root Of 860*x^4-285*x^3-993*x^2-350*x+330 4324198186068008 r005 Im(z^2+c),c=-5/82+21/37*I,n=23 4324198189783113 m001 GAMMA(5/24)/FeigenbaumB^2/ln(GAMMA(5/6))^2 4324198213124875 s002 sum(A151499[n]/(n^2*2^n-1),n=1..infinity) 4324198223576249 l006 ln(101/7626) 4324198254278866 r002 10th iterates of z^2 + 4324198256646132 s001 sum(exp(-2*Pi/5)^n*A156792[n],n=1..infinity) 4324198256646132 s002 sum(A156792[n]/(exp(2/5*pi*n)),n=1..infinity) 4324198263304651 r005 Re(z^2+c),c=-47/74+5/59*I,n=23 4324198273317522 r009 Im(z^3+c),c=-11/24+17/37*I,n=10 4324198281416156 r005 Im(z^2+c),c=23/78+11/34*I,n=47 4324198285487396 r005 Re(z^2+c),c=-65/126+17/50*I,n=11 4324198292463550 r005 Im(z^2+c),c=31/102+20/63*I,n=49 4324198308764300 r005 Im(z^2+c),c=9/44+3/8*I,n=11 4324198315590474 r005 Re(z^2+c),c=-5/9+5/14*I,n=36 4324198316292222 r009 Im(z^3+c),c=-5/34+28/55*I,n=7 4324198316369141 a007 Real Root Of -348*x^4-378*x^3-898*x^2+910*x+41 4324198324497702 r005 Im(z^2+c),c=-17/15+2/37*I,n=18 4324198325674793 a007 Real Root Of -793*x^4-546*x^3-961*x^2+226*x+261 4324198326814869 m001 Chi(1)*Magata/TwinPrimes 4324198329399403 a007 Real Root Of 64*x^4+330*x^3+262*x^2+x-589 4324198352920186 p001 sum((-1)^n/(491*n+229)/(32^n),n=0..infinity) 4324198353595394 m005 (1/2*exp(1)+5/11)/(-19/40+2/5*5^(1/2)) 4324198361781414 r005 Im(z^2+c),c=-1+51/176*I,n=20 4324198362373160 r005 Im(z^2+c),c=9/106+20/39*I,n=54 4324198368761518 m005 (1/2*3^(1/2)+3/4)/(2/7*2^(1/2)-7/9) 4324198381443977 m001 (5^(1/2)+Kac)/(TwinPrimes+ZetaQ(4)) 4324198390585007 a007 Real Root Of -501*x^4-122*x^3-419*x^2+86 4324198406227368 a001 4/1597*5^(19/56) 4324198408291050 r002 27th iterates of z^2 + 4324198414900889 r002 16th iterates of z^2 + 4324198417220927 m001 -1/5*(FeigenbaumDelta+5)*5^(1/2) 4324198439891755 r009 Re(z^3+c),c=-15/32+7/44*I,n=52 4324198449307947 m001 (Pi+ln(2)/ln(10))/(BesselI(1,2)-Kolakoski) 4324198450085054 a005 (1/sin(87/239*Pi))^40 4324198476931820 m001 StronglyCareFree/GAMMA(19/24)/GAMMA(7/12) 4324198477853194 r002 12th iterates of z^2 + 4324198497617680 r002 11th iterates of z^2 + 4324198508732714 r009 Re(z^3+c),c=-35/94+4/59*I,n=5 4324198525853244 r009 Im(z^3+c),c=-43/106+5/12*I,n=50 4324198526390228 r009 Re(z^3+c),c=-21/44+1/6*I,n=39 4324198529417329 a003 cos(Pi*1/50)-cos(Pi*25/81) 4324198537972426 r002 61th iterates of z^2 + 4324198552438019 m001 Backhouse^DuboisRaymond-Cahen 4324198561052686 m001 Catalan*Riemann2ndZero*exp(cos(Pi/5)) 4324198570141578 r005 Im(z^2+c),c=25/56+17/44*I,n=17 4324198580263922 m001 (Porter-Thue)/(gamma(3)+OrthogonalArrays) 4324198587721944 m002 5+E^Pi/(5*Pi^2)-Log[Pi] 4324198593020315 m001 (1-Zeta(5))/(-ln(2^(1/2)+1)+Trott2nd) 4324198625351181 m001 BesselI(0,2)/(gamma(2)-polylog(4,1/2)) 4324198631343376 r005 Re(z^2+c),c=-19/98+39/62*I,n=31 4324198636057809 s002 sum(A210996[n]/((10^n-1)/n),n=1..infinity) 4324198647678232 r009 Im(z^3+c),c=-1/11+16/21*I,n=17 4324198648430478 m001 (ln(2+3^(1/2))+Magata)/(2^(1/2)-arctan(1/3)) 4324198655549218 r009 Im(z^3+c),c=-43/90+6/17*I,n=10 4324198668813660 r009 Im(z^3+c),c=-29/126+5/11*I,n=4 4324198672579490 a007 Real Root Of -164*x^4-547*x^3+532*x^2-576*x+674 4324198674727792 m001 (sin(1)+AlladiGrinstead)/(-Kolakoski+Salem) 4324198684045121 p001 sum((-1)^n/(580*n+231)/(256^n),n=0..infinity) 4324198697288573 m001 1/exp(BesselJ(0,1))^2/Riemann2ndZero/cosh(1)^2 4324198707797311 m001 (-PisotVijayaraghavan+Trott)/(3^(1/2)+Mills) 4324198713286674 p004 log(15661/10163) 4324198717934823 m001 FellerTornier*Tribonacci-GAMMA(23/24) 4324198726171146 m001 1/ln(GAMMA(11/12))^2*Trott^2*Zeta(5)^2 4324198729190365 r005 Im(z^2+c),c=-25/114+9/14*I,n=34 4324198735094907 r005 Re(z^2+c),c=-3/5+40/127*I,n=57 4324198741746345 a001 199/89*13^(9/35) 4324198765828466 r002 5th iterates of z^2 + 4324198777092211 r002 45th iterates of z^2 + 4324198778093651 a007 Real Root Of -136*x^4-417*x^3-912*x^2+186*x+222 4324198779077689 a007 Real Root Of 619*x^4-728*x^3+462*x^2-213*x-259 4324198780206878 b008 EllipticPi[2*Pi,Pi/6,-2] 4324198780823211 a007 Real Root Of 128*x^4+390*x^3-479*x^2+852*x-579 4324198781717104 r009 Im(z^3+c),c=-61/118+23/61*I,n=63 4324198784799664 r002 13th iterates of z^2 + 4324198792382721 q001 931/2153 4324198795714159 r005 Im(z^2+c),c=1/36+29/52*I,n=46 4324198809843136 a001 55/2207*3571^(15/43) 4324198816951941 m006 (1/6*exp(Pi)-2)/(4/5*exp(2*Pi)+1) 4324198817243475 a007 Real Root Of 101*x^4-964*x^3+448*x^2-344*x-314 4324198830201491 r005 Im(z^2+c),c=27/110+14/37*I,n=60 4324198836201589 a001 21/4*123^(11/12) 4324198838771563 r005 Im(z^2+c),c=-7/10+1/167*I,n=12 4324198839994561 a001 21/3571*843^(37/58) 4324198853779072 a007 Real Root Of 111*x^4+291*x^3-925*x^2-350*x+502 4324198863813670 m001 GAMMA(1/3)^2/FeigenbaumD^2*ln(cosh(1)) 4324198867631454 r002 39th iterates of z^2 + 4324198879827886 a003 cos(Pi*28/95)/cos(Pi*56/113) 4324198899357873 m005 (1/2*gamma+5/9)/(-23/72+1/18*5^(1/2)) 4324198908769090 a001 47/2*55^(7/46) 4324198931771180 m001 (ln(5)*Weierstrass+Zeta(1/2))/ln(5) 4324198975629368 m004 -5+(125*Pi)/E^(2*Sqrt[5]*Pi)+Sin[Sqrt[5]*Pi] 4324198980553893 m005 (1/4*gamma-1)/(2/3*exp(1)+1/6) 4324199005427932 m001 (Champernowne-Stephens)^Shi(1) 4324199006316153 m001 (BesselJ(1,1)-Grothendieck)/(Salem+Tetranacci) 4324199009709341 m001 (ln(2+3^(1/2))+exp(1/Pi))/(Chi(1)+Zeta(1/2)) 4324199023316548 r005 Re(z^2+c),c=13/56+25/63*I,n=37 4324199032302475 r002 59th iterates of z^2 + 4324199033628205 r009 Re(z^3+c),c=-47/126+1/17*I,n=8 4324199053708038 m005 (1/3*3^(1/2)-3/4)/(3*2^(1/2)-1/4) 4324199078348800 m001 (1-HeathBrownMoroz)/(-MasserGramain+Otter) 4324199083618648 r002 58th iterates of z^2 + 4324199096401576 m001 (gamma(2)+GAMMA(19/24))/(FeigenbaumD+ZetaQ(3)) 4324199099876716 a001 8/47*3010349^(1/16) 4324199107484729 a005 (1/cos(8/155*Pi))^1506 4324199114065678 m001 (gamma+Backhouse)/(-Bloch+ZetaQ(4)) 4324199122638959 r005 Im(z^2+c),c=-5/74+22/41*I,n=11 4324199128509270 m001 1/BesselK(0,1)/TwinPrimes*ln(cos(Pi/12))^2 4324199138211715 m001 (Gompertz-Zeta(1/2))/PlouffeB 4324199140878657 r005 Re(z^2+c),c=-17/30+27/76*I,n=45 4324199160677036 a007 Real Root Of 972*x^4-814*x^3-986*x^2-987*x+643 4324199161520295 a001 5473/161*47^(1/16) 4324199169206742 a001 33385282/55*233^(18/23) 4324199174141392 k006 concat of cont frac of 4324199175586126 a001 55/29*29^(13/14) 4324199176192718 r009 Im(z^3+c),c=-1/30+16/21*I,n=8 4324199186873712 m005 (1/2*5^(1/2)-3/10)/(11/12*exp(1)-3/5) 4324199188450961 r002 63th iterates of z^2 + 4324199191149844 r009 Im(z^3+c),c=-15/56+9/19*I,n=14 4324199201333275 m001 FeigenbaumB^FeigenbaumD/Riemann1stZero 4324199205612253 r002 15th iterates of z^2 + 4324199221670549 m001 (BesselJ(1,1)-FeigenbaumC)/(MertensB1+Otter) 4324199222231797 r009 Im(z^3+c),c=-2/19+17/23*I,n=15 4324199228639454 h001 (5/11*exp(2)+7/8)/(2/9*exp(1)+3/8) 4324199229157396 a007 Real Root Of 134*x^4-954*x^3-364*x^2-163*x+211 4324199238205953 m001 (Zeta(5)+GAMMA(19/24))/(Magata+Niven) 4324199242948687 a007 Real Root Of -124*x^4-9*x^3-666*x^2+483*x+337 4324199251496135 a001 521/34*196418^(25/54) 4324199256604660 a007 Real Root Of 158*x^4-242*x^3-699*x^2-753*x-220 4324199263321879 r005 Im(z^2+c),c=-49/86+11/34*I,n=4 4324199267400939 r009 Im(z^3+c),c=-49/102+19/51*I,n=48 4324199281103436 r009 Im(z^3+c),c=-47/110+17/42*I,n=61 4324199297024608 r005 Im(z^2+c),c=-13/32+20/37*I,n=3 4324199299313479 m005 (1/3*exp(1)+3/4)/(5*Catalan-3/4) 4324199303402061 m005 (1/3*Catalan+1/9)/(11/12*2^(1/2)-1/3) 4324199305992112 a001 9227465/521*3^(13/16) 4324199313231206 r005 Im(z^2+c),c=13/114+15/31*I,n=27 4324199337058294 h001 (1/2*exp(1)+3/11)/(2/5*exp(2)+9/11) 4324199353220521 r002 20th iterates of z^2 + 4324199355809570 m003 1/2+Sqrt[5]/256-Sech[1/2+Sqrt[5]/2]/5 4324199381883343 m003 (33*Cosh[1/2+Sqrt[5]/2])/2 4324199395648851 r005 Im(z^2+c),c=17/106+29/64*I,n=37 4324199399127094 m001 (ln(2+3^(1/2))-CareFree)/(Totient+ZetaP(4)) 4324199417650746 r005 Re(z^2+c),c=-37/62+7/45*I,n=8 4324199418531847 r009 Im(z^3+c),c=-11/30+17/39*I,n=45 4324199433714311 r005 Im(z^2+c),c=2/25+16/31*I,n=54 4324199439816322 r005 Im(z^2+c),c=-17/26+5/57*I,n=45 4324199444128040 r005 Im(z^2+c),c=29/122+22/57*I,n=51 4324199446577057 r005 Re(z^2+c),c=-39/64+13/59*I,n=39 4324199447314925 r005 Re(z^2+c),c=-17/30+45/122*I,n=31 4324199470768334 m005 (1/2*exp(1)-6/11)/(2*gamma+8/11) 4324199478354715 r002 43th iterates of z^2 + 4324199482943477 a005 (1/cos(25/222*Pi))^239 4324199493296163 r005 Im(z^2+c),c=-7/6+11/200*I,n=20 4324199514587470 m001 BesselJ(1,1)-PisotVijayaraghavan+ZetaP(2) 4324199518708674 m001 (Zeta(1,-1)-GolombDickman)/(Khinchin-Thue) 4324199526611578 m005 (3/4*Pi+1)/(2/3*2^(1/2)-1/6) 4324199546384124 m001 (Tribonacci-Thue)/(GAMMA(5/6)-FeigenbaumKappa) 4324199547586854 m001 (3^(1/2)+ln(2+3^(1/2))*Stephens)/Stephens 4324199548124297 l006 ln(99/7475) 4324199550734607 g005 GAMMA(3/5)*GAMMA(3/4)/GAMMA(3/11)/GAMMA(5/7) 4324199558863509 r009 Im(z^3+c),c=-15/74+27/55*I,n=24 4324199568788126 m001 (Robbin-ZetaP(4))/(Khinchin-MertensB3) 4324199578299272 m001 (GAMMA(5/6)+Thue)/(Zeta(5)-gamma) 4324199596642973 b008 -43+KelvinKei[1,1] 4324199599547976 m001 cos(1/12*Pi)/(ln(5)+GolombDickman) 4324199599547976 m001 cos(Pi/12)/(ln(5)+GolombDickman) 4324199599797943 r002 51i'th iterates of 2*x/(1-x^2) of 4324199617590397 r005 Re(z^2+c),c=-5/8+3/133*I,n=28 4324199633882545 a003 cos(Pi*4/21)*cos(Pi*29/60) 4324199636355799 a007 Real Root Of 112*x^4-603*x^3+644*x^2-904*x-564 4324199637812371 m005 (1/2*Zeta(3)+1/12)/(Catalan+2/3) 4324199643441005 a008 Real Root of (-5+8*x+8*x^2+x^4+8*x^8) 4324199645628759 r005 Re(z^2+c),c=-17/28+12/59*I,n=62 4324199662712426 q001 3/69377 4324199662949655 r002 5th iterates of z^2 + 4324199667394971 r002 31th iterates of z^2 + 4324199681530575 m001 FeigenbaumDelta^GAMMA(11/12)/Salem 4324199686582350 r002 30th iterates of z^2 + 4324199696544508 m001 (MertensB1+MertensB2)/(Sierpinski+ThueMorse) 4324199713130274 r005 Im(z^2+c),c=9/74+17/35*I,n=63 4324199720260360 m001 exp(Rabbit)*Backhouse*Zeta(1/2) 4324199735194295 r009 Re(z^3+c),c=-49/118+4/37*I,n=21 4324199739165785 a001 2584/123*47^(3/16) 4324199765178976 r005 Re(z^2+c),c=-7/12+14/95*I,n=16 4324199779341935 r005 Re(z^2+c),c=-59/98+11/48*I,n=47 4324199782082739 a001 55/39603*9349^(27/43) 4324199790413471 m001 (Si(Pi)+Zeta(3))/(ArtinRank2+ZetaQ(3)) 4324199809329752 m005 (1/2*exp(1)+11/12)/(9/10*Zeta(3)-5/9) 4324199814900464 a001 55/4870847*64079^(41/43) 4324199818280419 a001 55/1149851*39603^(37/43) 4324199819508416 m001 (ln(5)+MasserGramain)/(ZetaQ(2)-ZetaQ(4)) 4324199822359454 m005 (1/2*Pi+1/2)/(4/5*5^(1/2)+3) 4324199850568637 r002 28th iterates of z^2 + 4324199852604954 a007 Real Root Of 522*x^4-973*x^3+134*x^2-673*x-413 4324199858648718 r002 21th iterates of z^2 + 4324199884591747 m006 (3*exp(2*Pi)+3/4)/(1/5*Pi-1) 4324199890151986 m001 1/GAMMA(5/6)*KhintchineLevy^2*ln(cos(Pi/12)) 4324199895499265 r005 Im(z^2+c),c=17/90+23/54*I,n=23 4324199902706385 r002 11th iterates of z^2 + 4324199940507976 m002 -3+Pi^3/3-3*Coth[Pi] 4324199941466755 h001 (1/2*exp(1)+7/12)/(7/12*exp(2)+2/11) 4324199944669348 m001 (gamma+Trott2nd)/(5^(1/2)-Chi(1)) 4324199965208594 r005 Re(z^2+c),c=7/122+8/23*I,n=31 4324199968143811 r005 Re(z^2+c),c=-21/34+2/25*I,n=50 4324199971308263 m001 (GAMMA(2/3)+ln(Pi))/(Zeta(1,-1)-ThueMorse) 4324199980894736 m001 (GAMMA(19/24)-cos(1))/(Backhouse+ZetaQ(3)) 4324199981073259 a007 Real Root Of 124*x^4+315*x^3-956*x^2-72*x-321 4324199987866803 r009 Re(z^3+c),c=-31/74+12/19*I,n=3 4324199992123919 l006 ln(4639/4844)