4334900002209762 r005 Re(z^2+c),c=-1/118+5/24*I,n=14 4334900004094949 m009 (5/6*Psi(1,3/4)+1/6)/(1/2*Psi(1,3/4)+4) 4334900005409048 a001 1364/75025*233^(32/55) 4334900014900933 m005 (1/2*Zeta(3)-1/9)/(4*exp(1)+3/7) 4334900030099970 m001 (MertensB2-Paris)/(2*Pi/GAMMA(5/6)-Magata) 4334900047081287 m001 Sarnak^(OrthogonalArrays/Landau) 4334900075840273 m005 (51/44+1/4*5^(1/2))/(1/12*gamma-4/9) 4334900078189990 r005 Re(z^2+c),c=-27/56+17/46*I,n=11 4334900079324487 m001 Zeta(3)^MasserGramainDelta/FellerTornier 4334900086646791 r002 20th iterates of z^2 + 4334900101169409 m001 (BesselK(1,1)*Stephens-Gompertz)/Stephens 4334900102774451 a007 Real Root Of 790*x^4+457*x^3+848*x^2-722*x-463 4334900103500709 a001 53316291173/322*521^(2/13) 4334900108427510 r001 21i'th iterates of 2*x^2-1 of 4334900108805552 r005 Re(z^2+c),c=-13/21+5/58*I,n=49 4334900121968409 m005 (-1/44+1/4*5^(1/2))/(5/8*Zeta(3)-7/8) 4334900127254776 m005 (1/2*5^(1/2)+2/7)/(6/7*Pi+6/11) 4334900154684438 r005 Im(z^2+c),c=9/98+22/43*I,n=43 4334900165980760 r009 Re(z^3+c),c=-43/82+11/45*I,n=40 4334900170227404 k002 Champernowne real with 118*n^2-24*n-90 4334900170364117 a007 Real Root Of 61*x^4-706*x^3-778*x^2-909*x-38 4334900191874417 a007 Real Root Of 996*x^4+133*x^3+534*x^2-965*x-543 4334900200133293 l006 ln(4187/6459) 4334900216121751 a001 843/196418*233^(14/33) 4334900221169930 r009 Re(z^3+c),c=-2/25+19/28*I,n=58 4334900230032786 a001 132214457016/305 4334900230745416 m009 (1/4*Pi^2+4)/(5*Psi(1,2/3)-2/5) 4334900231135486 a001 38/17*28657^(13/45) 4334900231299026 a003 sin(Pi*9/73)/cos(Pi*8/49) 4334900237513761 r005 Im(z^2+c),c=3/46+19/36*I,n=46 4334900239690233 r009 Re(z^3+c),c=-19/40+8/49*I,n=49 4334900241618023 a007 Real Root Of -245*x^4-994*x^3+517*x^2+952*x-45 4334900246182639 r002 53th iterates of z^2 + 4334900247907373 r005 Re(z^2+c),c=-39/74+8/23*I,n=15 4334900255678242 a007 Real Root Of 581*x^4-55*x^3-714*x^2-205*x+207 4334900257637822 m001 (sin(1/12*Pi)+gamma(1))/(TreeGrowth2nd-Trott) 4334900266969545 a007 Real Root Of -293*x^4+330*x^3-813*x^2+842*x+555 4334900274031661 r005 Re(z^2+c),c=-16/27+10/49*I,n=25 4334900304527396 r005 Re(z^2+c),c=-53/94+17/62*I,n=19 4334900320948661 a003 sin(Pi*11/70)-sin(Pi*38/105) 4334900324463251 r005 Im(z^2+c),c=17/78+24/59*I,n=55 4334900330598011 r002 15th iterates of z^2 + 4334900334694858 r009 Im(z^3+c),c=-21/44+20/53*I,n=35 4334900346875148 r005 Re(z^2+c),c=-5/86+43/60*I,n=64 4334900350477701 s002 sum(A250398[n]/(pi^n-1),n=1..infinity) 4334900350477879 s002 sum(A112774[n]/(pi^n-1),n=1..infinity) 4334900363285191 r002 46th iterates of z^2 + 4334900365832541 r005 Im(z^2+c),c=-1/114+34/63*I,n=15 4334900384463385 r009 Re(z^3+c),c=-17/60+17/20*I,n=3 4334900385766006 a001 165580141/322*1364^(14/15) 4334900391004355 a007 Real Root Of 241*x^4-21*x^3+186*x^2-966*x+377 4334900405254472 r005 Im(z^2+c),c=-137/126+18/59*I,n=4 4334900423408447 a001 39603/55*75025^(50/51) 4334900441159002 m001 (-exp(1/exp(1))+2)/(-exp(gamma)+1/2) 4334900443997259 m001 (LandauRamanujan-Magata)/(Artin+CopelandErdos) 4334900444140742 l006 ln(6345/9788) 4334900462287078 a005 (1/cos(15/188*Pi))^989 4334900462965922 r005 Re(z^2+c),c=-77/118+2/53*I,n=20 4334900467628930 a007 Real Root Of -274*x^4-983*x^3+957*x^2+190*x-480 4334900471741755 r009 Im(z^3+c),c=-9/94+28/55*I,n=10 4334900489975472 m001 (ThueMorse+Weierstrass)/(BesselK(0,1)-Kac) 4334900490367283 r009 Re(z^3+c),c=-9/19+9/56*I,n=31 4334900492348130 p004 log(32693/21193) 4334900499123288 r005 Im(z^2+c),c=39/118+17/59*I,n=59 4334900505025166 l006 ln(4221/4408) 4334900511532523 s002 sum(A238281[n]/(n^3*2^n-1),n=1..infinity) 4334900523768453 r009 Re(z^3+c),c=-35/74+5/31*I,n=46 4334900534417549 s002 sum(A243875[n]/(n!^2),n=1..infinity) 4334900534768192 r005 Im(z^2+c),c=-11/58+22/37*I,n=24 4334900538486227 r005 Re(z^2+c),c=-67/110+13/31*I,n=59 4334900541097236 a001 133957148/161*1364^(13/15) 4334900542662934 a001 439204/233*2504730781961^(4/21) 4334900542684927 a001 3010349/233*102334155^(4/21) 4334900552132300 a001 20633239/233*4181^(4/21) 4334900560900566 r005 Re(z^2+c),c=-47/78+13/57*I,n=43 4334900569852888 r009 Im(z^3+c),c=-10/21+23/61*I,n=45 4334900571109307 m001 GAMMA(7/12)^2*FeigenbaumD*ln(Zeta(7))^2 4334900571117438 r002 4th iterates of z^2 + 4334900575902729 l003 KelvinKer(0,41/50) 4334900582651309 r005 Im(z^2+c),c=-2/3+51/158*I,n=32 4334900599923297 m005 (1/2*Pi+1/3)/(3/7*Catalan+4) 4334900606441569 r005 Im(z^2+c),c=-9/14+79/211*I,n=42 4334900608489014 r005 Im(z^2+c),c=-29/48+33/62*I,n=7 4334900611191155 a007 Real Root Of 387*x^4-477*x^3-330*x^2-627*x+359 4334900621042236 r009 Re(z^3+c),c=-13/34+4/57*I,n=25 4334900622154495 m006 (4/5*exp(Pi)-2)/(1/6*ln(Pi)-4) 4334900624282480 r005 Re(z^2+c),c=31/118+9/26*I,n=9 4334900625925630 r005 Re(z^2+c),c=-27/46+21/62*I,n=19 4334900629368815 r009 Im(z^3+c),c=-9/22+5/12*I,n=42 4334900634040537 a001 12586269025/521*199^(6/11) 4334900641156897 r002 18th iterates of z^2 + 4334900644189177 m001 (3^(1/2)-BesselK(1,1))/(Pi^(1/2)+GaussAGM) 4334900647974036 a007 Real Root Of -313*x^4+512*x^3-673*x^2+477*x+386 4334900662299465 r009 Re(z^3+c),c=-17/36+9/56*I,n=57 4334900671515058 r005 Im(z^2+c),c=-5/8+41/108*I,n=26 4334900676335065 m005 (1/2*3^(1/2)+4/9)/(8/11*exp(1)-5) 4334900684662448 m002 (3*Pi^5)/E^Pi+Sinh[Pi]/Pi 4334900693377741 r009 Re(z^3+c),c=-9/118+27/43*I,n=31 4334900693748648 m001 TwinPrimes^2*ln(LaplaceLimit)^2*sin(Pi/5) 4334900696428471 a001 433494437/322*1364^(4/5) 4334900726825423 r005 Re(z^2+c),c=-41/66+2/63*I,n=53 4334900730537655 r002 51th iterates of z^2 + 4334900730537655 r002 51th iterates of z^2 + 4334900732582213 m001 1/LambertW(1)*Rabbit*exp(sqrt(Pi))^2 4334900739325195 a003 sin(Pi*16/109)-sin(Pi*19/117) 4334900743536468 a003 cos(Pi*15/103)-cos(Pi*35/101) 4334900745040722 m001 Sierpinski^FibonacciFactorial+GAMMA(5/6) 4334900755135820 a001 1/15129*(1/2*5^(1/2)+1/2)^13*123^(10/19) 4334900756587860 r009 Re(z^3+c),c=-7/106+29/48*I,n=11 4334900766688308 b008 11/6+SinhIntegral[2] 4334900787540444 a007 Real Root Of 81*x^4+381*x^3+20*x^2-590*x-500 4334900794679484 r002 20th iterates of z^2 + 4334900797162166 p001 sum((-1)^n/(335*n+24)/n/(64^n),n=1..infinity) 4334900803209136 b008 E^(-8+Sqrt[2])*Pi 4334900829540262 r002 6th iterates of z^2 + 4334900839451538 r005 Im(z^2+c),c=-13/44+17/29*I,n=31 4334900841563024 m008 (1/2*Pi-3)/(1/3*Pi^4+1/2) 4334900848175652 r002 57th iterates of z^2 + 4334900851759711 a001 701408733/322*1364^(11/15) 4334900852205214 m001 (-GAMMA(11/12)+OneNinth)/(gamma+ln(5)) 4334900861567340 r005 Re(z^2+c),c=-21/32+7/62*I,n=27 4334900863964506 h001 (9/11*exp(2)+11/12)/(1/3*exp(1)+7/10) 4334900867507734 r009 Re(z^3+c),c=-39/106+21/32*I,n=43 4334900869638154 a007 Real Root Of -670*x^4+953*x^3-63*x^2+641*x-320 4334900870686454 r009 Re(z^3+c),c=-59/122+25/52*I,n=10 4334900873092454 a007 Real Root Of -342*x^4-55*x^3-336*x^2+838*x+434 4334900877257411 m005 (1/2*exp(1)-1/5)/(4/11*Pi-7/8) 4334900881442857 r005 Im(z^2+c),c=3/110+27/47*I,n=46 4334900885199511 m001 exp(ArtinRank2)/FransenRobinson^2/sin(Pi/5) 4334900898168493 r005 Im(z^2+c),c=-35/26+5/106*I,n=45 4334900917569449 l006 ln(2158/3329) 4334900919493295 r005 Re(z^2+c),c=-19/28+6/61*I,n=12 4334900945698309 r005 Im(z^2+c),c=-1/24+28/55*I,n=8 4334900946145406 m001 (Riemann2ndZero-ZetaQ(3))/(sin(1/5*Pi)-Lehmer) 4334900954844645 r005 Re(z^2+c),c=5/78+7/51*I,n=5 4334900956866114 a001 199/514229*2584^(42/47) 4334900966130753 r009 Im(z^3+c),c=-7/86+23/45*I,n=12 4334900971335166 r005 Im(z^2+c),c=5/16+17/49*I,n=39 4334900978786038 r009 Im(z^3+c),c=-25/64+41/58*I,n=3 4334900987238708 r009 Im(z^3+c),c=-8/25+16/35*I,n=21 4334900997927181 m009 (1/2*Psi(1,3/4)-1/6)/(5/2*Pi^2+4/5) 4334901007090958 a001 567451585/161*1364^(2/3) 4334901011338192 a001 233/10749957122*4^(1/2) 4334901011918914 r009 Im(z^3+c),c=-5/14+19/43*I,n=20 4334901017654661 a001 3571/55*121393^(5/9) 4334901019470118 r002 49i'th iterates of 2*x/(1-x^2) of 4334901032497681 a007 Real Root Of -567*x^4+876*x^3+560*x^2+843*x-522 4334901033241267 r005 Re(z^2+c),c=11/102+4/17*I,n=24 4334901047986567 r009 Im(z^3+c),c=-9/25+25/57*I,n=13 4334901048888975 r009 Im(z^3+c),c=-43/102+25/61*I,n=46 4334901054951029 r005 Re(z^2+c),c=-47/64+1/26*I,n=32 4334901061457404 s002 sum(A029030[n]/(n^2*2^n+1),n=1..infinity) 4334901065899493 m001 ArtinRank2/exp(Conway)^2/KhintchineLevy 4334901066216370 a007 Real Root Of -964*x^4+449*x^3+940*x^2+807*x-529 4334901070554381 r005 Im(z^2+c),c=-8/23+29/48*I,n=23 4334901090311403 a007 Real Root Of 258*x^4+882*x^3-771*x^2+890*x-911 4334901104183315 h001 (5/7*exp(2)+7/12)/(4/11*exp(1)+4/11) 4334901105211515 r005 Re(z^2+c),c=-69/98+21/62*I,n=57 4334901109549245 m003 2+Sqrt[5]/16+6*Cosh[1/2+Sqrt[5]/2]^2 4334901115808306 m001 exp(Lehmer)*CopelandErdos*Zeta(7)^2 4334901136765066 m001 Pi+2^(1/3)*gamma(1)+GAMMA(17/24) 4334901139151677 r005 Im(z^2+c),c=5/32+23/50*I,n=56 4334901145904058 b008 1/2+E*(1+Sin[E]) 4334901160290337 r005 Re(z^2+c),c=-19/31+11/64*I,n=52 4334901162422210 a001 1836311903/322*1364^(3/5) 4334901162445430 m006 (3*ln(Pi)+2/3)/(3/4/Pi-1/3) 4334901163303339 r005 Im(z^2+c),c=7/66+35/64*I,n=35 4334901170527464 k002 Champernowne real with 237/2*n^2-51/2*n-89 4334901184268698 p001 sum(1/(433*n+231)/(256^n),n=0..infinity) 4334901186354367 a007 Real Root Of 247*x^4+833*x^3-849*x^2+560*x-983 4334901186499659 m005 (1/2*5^(1/2)-5/9)/(2/3*3^(1/2)+1/7) 4334901209989514 m001 (Pi-Pi^(1/2))/(Landau-Thue) 4334901210884783 m001 Psi(1,1/3)*PrimesInBinary+ZetaR(2) 4334901212292113 m001 (MertensB3+TwinPrimes)/(1-cos(1)) 4334901219079613 r005 Re(z^2+c),c=-35/54+13/62*I,n=30 4334901220231573 r002 41th iterates of z^2 + 4334901241410314 m001 (-LaplaceLimit+RenyiParking)/(2^(1/2)+Landau) 4334901242544797 a007 Real Root Of 342*x^4+369*x^3+185*x^2-538*x-250 4334901248801364 r002 10th iterates of z^2 + 4334901295282703 m008 (5/6*Pi^4+4)/(1/5*Pi^4+1/6) 4334901301688473 a007 Real Root Of 689*x^4+222*x^3+413*x^2-930*x-487 4334901317753467 a001 2971215073/322*1364^(8/15) 4334901319137861 r002 35th iterates of z^2 + 4334901320296814 m001 FeigenbaumC^GAMMA(3/4)+5^(1/2) 4334901321619818 m004 -75*Pi-Cosh[Sqrt[5]*Pi]+25*Pi*Cosh[Sqrt[5]*Pi] 4334901321744554 a007 Real Root Of 81*x^4+302*x^3-171*x^2+106*x-329 4334901324936544 m001 1/GAMMA(1/6)^2/exp(Si(Pi))^2/GAMMA(2/3)^2 4334901329899185 a007 Real Root Of -142*x^4-666*x^3-314*x^2-458*x-194 4334901331952044 a001 43133785636/161*521^(1/13) 4334901337625338 a001 123/28657*4052739537881^(5/9) 4334901348863724 r009 Im(z^3+c),c=-25/64+26/61*I,n=43 4334901353575517 r005 Im(z^2+c),c=-11/10+9/175*I,n=29 4334901359599960 m001 3^(1/2)*Sarnak+Pi*csc(7/24*Pi)/GAMMA(17/24) 4334901370920858 r002 9th iterates of z^2 + 4334901374049585 r005 Im(z^2+c),c=1/60+33/58*I,n=53 4334901376751613 r002 43th iterates of z^2 + 4334901377899238 r005 Re(z^2+c),c=11/102+4/17*I,n=23 4334901380845709 r002 12th iterates of z^2 + 4334901386703678 r009 Re(z^3+c),c=-5/62+43/60*I,n=57 4334901393318110 m001 (Zeta(3)-Zeta(1/2))/(FeigenbaumMu-Otter) 4334901410573049 m004 -75*Pi+25*Pi*Cosh[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi] 4334901427785813 m001 ErdosBorwein/ln(Backhouse)/Paris 4334901437481995 r005 Im(z^2+c),c=29/90+5/17*I,n=61 4334901441975614 m001 (sin(1/5*Pi)-Conway)/(Salem+Weierstrass) 4334901448309372 r005 Im(z^2+c),c=-15/44+24/41*I,n=30 4334901453753875 a007 Real Root Of 634*x^4-444*x^3+796*x^2-205*x-297 4334901464754880 m001 (1+LandauRamanujan)/(LaplaceLimit+Magata) 4334901468525742 a001 123/2584*53316291173^(5/9) 4334901473084730 a001 14930208*1364^(7/15) 4334901490184566 m005 (1/2*gamma+6)/(3/7*exp(1)+2/7) 4334901492405668 r005 Re(z^2+c),c=-13/22+17/56*I,n=60 4334901513614821 r002 18th iterates of z^2 + 4334901525842518 r002 37th iterates of z^2 + 4334901539724278 r005 Im(z^2+c),c=-23/18+8/169*I,n=25 4334901542252610 r005 Im(z^2+c),c=-19/16+7/111*I,n=16 4334901542624084 a001 3571/610*832040^(6/19) 4334901549243371 a001 39603/55*1597^(5/9) 4334901550531412 r005 Im(z^2+c),c=21/110+24/55*I,n=17 4334901561220170 r002 4th iterates of z^2 + 4334901561220170 r002 4th iterates of z^2 + 4334901577225361 a001 34/123*2^(37/57) 4334901583040839 r009 Im(z^3+c),c=-23/60+43/62*I,n=40 4334901585695463 r002 15i'th iterates of 2*x/(1-x^2) of 4334901589820286 r005 Im(z^2+c),c=25/82+17/43*I,n=37 4334901593363594 l006 ln(4445/6857) 4334901620783922 r005 Re(z^2+c),c=-5/7+8/77*I,n=21 4334901628415998 a001 7778742049/322*1364^(2/5) 4334901639455280 m001 BesselI(0,2)^(2^(1/2)/Kolakoski) 4334901668917209 r002 28th iterates of z^2 + 4334901669807453 a003 cos(Pi*19/71)-cos(Pi*17/40) 4334901670031717 a001 144/2207*(1/2+1/2*5^(1/2))^47 4334901670434782 a001 141/46*2537720636^(13/15) 4334901670434782 a001 141/46*45537549124^(13/17) 4334901670434782 a001 141/46*14662949395604^(13/21) 4334901670434782 a001 141/46*(1/2+1/2*5^(1/2))^39 4334901670434782 a001 141/46*192900153618^(13/18) 4334901670434782 a001 141/46*73681302247^(3/4) 4334901670434782 a001 141/46*10749957122^(13/16) 4334901670434782 a001 141/46*599074578^(13/14) 4334901679365433 r005 Re(z^2+c),c=-29/46+2/59*I,n=24 4334901691352666 r005 Re(z^2+c),c=-19/31+9/41*I,n=39 4334901693278528 a001 11/34*28657^(25/27) 4334901701078411 r009 Im(z^3+c),c=-2/17+37/49*I,n=4 4334901732725721 m001 Kolakoski^MertensB2/(Grothendieck^MertensB2) 4334901739372277 r005 Re(z^2+c),c=-5/11+27/56*I,n=11 4334901739779176 a001 377/3571*47^(55/57) 4334901747588932 r002 14th iterates of z^2 + 4334901749823510 l006 ln(63/4808) 4334901749880266 r005 Im(z^2+c),c=25/98+21/50*I,n=30 4334901756633966 m001 HardyLittlewoodC4/(sin(1/5*Pi)^MasserGramain) 4334901763666942 r009 Re(z^3+c),c=-9/22+33/52*I,n=3 4334901769541283 r002 26th iterates of z^2 + 4334901773123321 h001 (5/6*exp(2)+3/8)/(1/8*exp(2)+7/12) 4334901775664943 s002 sum(A031356[n]/(n*2^n-1),n=1..infinity) 4334901776784214 r002 20th iterates of z^2 + 4334901783747272 a001 12586269025/322*1364^(1/3) 4334901799043353 r005 Re(z^2+c),c=-2/3+8/59*I,n=13 4334901808994999 r005 Im(z^2+c),c=41/126+10/33*I,n=51 4334901817910775 r002 59th iterates of z^2 + 4334901823643102 m002 4+6/E^Pi+E^Pi/Pi^5 4334901832964800 a001 1364/4181*7778742049^(6/19) 4334901856024247 r002 33th iterates of z^2 + 4334901856868828 m002 Pi^3+6*E^Pi*Pi^3-Log[Pi] 4334901861238398 r005 Im(z^2+c),c=35/114+5/16*I,n=57 4334901866527671 r009 Im(z^3+c),c=-37/82+9/29*I,n=6 4334901868990748 a007 Real Root Of 373*x^4-761*x^3-341*x^2-535*x-243 4334901891258533 m001 RenyiParking/(BesselK(0,1)+Conway) 4334901915208278 r005 Re(z^2+c),c=-41/66+3/61*I,n=47 4334901916061042 m001 BesselI(1,2)^GAMMA(3/4)-MertensB3 4334901926136577 r005 Re(z^2+c),c=-21/34+31/96*I,n=57 4334901927197794 r005 Re(z^2+c),c=-23/38+13/60*I,n=45 4334901932791617 r009 Im(z^3+c),c=-9/86+28/55*I,n=24 4334901934182913 r005 Re(z^2+c),c=-55/74+18/43*I,n=5 4334901939078552 a001 10182505537/161*1364^(4/15) 4334901958318164 a001 75025/29*2^(35/47) 4334901965713272 r002 18th iterates of z^2 + 4334901967039535 p003 LerchPhi(1/32,1,55/237) 4334901973828667 m001 PrimesInBinary*(BesselK(0,1)+GolombDickman) 4334901995571556 a001 3571/196418*233^(32/55) 4334901998491779 m001 1/ln(Rabbit)/FibonacciFactorial^2*sqrt(5) 4334902001315142 m005 (5/6*Catalan+1/4)/(3/4*gamma-2/3) 4334902002870515 r009 Re(z^3+c),c=-1/42+41/44*I,n=22 4334902003767369 r009 Re(z^3+c),c=-1/42+41/44*I,n=24 4334902004010712 r009 Re(z^3+c),c=-1/42+41/44*I,n=26 4334902004049920 r009 Re(z^3+c),c=-1/42+41/44*I,n=28 4334902004054222 r009 Re(z^3+c),c=-1/42+41/44*I,n=30 4334902004054386 r009 Re(z^3+c),c=-1/42+41/44*I,n=42 4334902004054386 r009 Re(z^3+c),c=-1/42+41/44*I,n=44 4334902004054386 r009 Re(z^3+c),c=-1/42+41/44*I,n=46 4334902004054386 r009 Re(z^3+c),c=-1/42+41/44*I,n=48 4334902004054386 r009 Re(z^3+c),c=-1/42+41/44*I,n=50 4334902004054386 r009 Re(z^3+c),c=-1/42+41/44*I,n=64 4334902004054386 r009 Re(z^3+c),c=-1/42+41/44*I,n=62 4334902004054386 r009 Re(z^3+c),c=-1/42+41/44*I,n=60 4334902004054386 r009 Re(z^3+c),c=-1/42+41/44*I,n=58 4334902004054386 r009 Re(z^3+c),c=-1/42+41/44*I,n=56 4334902004054386 r009 Re(z^3+c),c=-1/42+41/44*I,n=54 4334902004054386 r009 Re(z^3+c),c=-1/42+41/44*I,n=52 4334902004054386 r009 Re(z^3+c),c=-1/42+41/44*I,n=40 4334902004054387 r009 Re(z^3+c),c=-1/42+41/44*I,n=38 4334902004054389 r009 Re(z^3+c),c=-1/42+41/44*I,n=36 4334902004054402 r009 Re(z^3+c),c=-1/42+41/44*I,n=34 4334902004054438 r009 Re(z^3+c),c=-1/42+41/44*I,n=32 4334902004411432 r009 Re(z^3+c),c=-1/42+41/44*I,n=20 4334902004896841 r005 Re(z^2+c),c=-71/110+13/29*I,n=30 4334902035236830 r009 Im(z^3+c),c=-55/122+11/28*I,n=43 4334902038986752 r005 Im(z^2+c),c=27/98+20/47*I,n=43 4334902066239612 r009 Re(z^3+c),c=-1/42+41/44*I,n=18 4334902069845918 m005 (1/3*Zeta(3)+1/2)/(4/7*5^(1/2)+4/5) 4334902082323260 r002 15th iterates of z^2 + 4334902094409837 a001 32951280099/322*1364^(1/5) 4334902105576696 r005 Im(z^2+c),c=-61/94+5/57*I,n=41 4334902106397737 p004 log(35081/22741) 4334902122253350 r005 Re(z^2+c),c=-19/32+15/53*I,n=48 4334902124689576 m001 (Magata+ThueMorse)/(Ei(1,1)-HardyLittlewoodC4) 4334902140539676 m001 FeigenbaumKappa^2*Cahen/exp(sqrt(1+sqrt(3)))^2 4334902155065642 q001 175/4037 4334902155065642 q001 7/16148 4334902162628453 m001 Zeta(7)^2*ln(GaussKuzminWirsing)^2/gamma^2 4334902170827524 k002 Champernowne real with 119*n^2-27*n-88 4334902184038166 s002 sum(A071208[n]/(n*exp(pi*n)+1),n=1..infinity) 4334902184622911 s002 sum(A231536[n]/(n*exp(pi*n)+1),n=1..infinity) 4334902186961911 s002 sum(A216242[n]/(n*exp(pi*n)+1),n=1..infinity) 4334902194232376 r005 Re(z^2+c),c=-18/29+1/25*I,n=31 4334902204160423 m006 (1/3/Pi+1)/(3/5*Pi+2/3) 4334902209050455 r009 Re(z^3+c),c=-5/64+17/26*I,n=39 4334902214876840 r005 Re(z^2+c),c=-1/118+5/24*I,n=18 4334902217673442 r005 Im(z^2+c),c=-55/82+1/31*I,n=11 4334902220062617 a001 692283884544/1597 4334902231039007 l006 ln(2287/3528) 4334902231984788 r005 Im(z^2+c),c=-23/30+5/87*I,n=4 4334902240462184 a001 31622993/161*3571^(16/17) 4334902249741128 a001 53316291173/322*1364^(2/15) 4334902252359393 a001 47/5*2178309^(42/47) 4334902255358607 m001 Kolakoski/(KhinchinLevy+MasserGramain) 4334902260458530 a001 14619165/46*3571^(15/17) 4334902262786546 r005 Re(z^2+c),c=33/122+15/38*I,n=30 4334902265117030 r005 Re(z^2+c),c=29/70+29/48*I,n=9 4334902271057148 m001 ln(Pi)*GAMMA(19/24)*FellerTornier 4334902279237524 m001 (Niven-ZetaP(3))/(Champernowne+Magata) 4334902280454876 a001 165580141/322*3571^(14/17) 4334902285932352 a001 9349/514229*233^(32/55) 4334902300451221 a001 133957148/161*3571^(13/17) 4334902316353428 r005 Re(z^2+c),c=-71/118+11/52*I,n=36 4334902318595329 a007 Real Root Of -637*x^4+624*x^3-870*x^2+794*x+581 4334902318652874 m001 (ln(gamma)+MertensB3)/(cos(1)+BesselI(0,1)) 4334902320447567 a001 433494437/322*3571^(12/17) 4334902327206328 m001 exp(1/Pi)*(MertensB1+ZetaQ(2)) 4334902327966511 r002 47th iterates of z^2 + 4334902328295422 a001 24476/1346269*233^(32/55) 4334902328755765 a007 Real Root Of -833*x^4-85*x^3+282*x^2+857*x+341 4334902338295986 a001 13201/726103*233^(32/55) 4334902340443914 a001 701408733/322*3571^(11/17) 4334902353760485 m001 (Backhouse-Lehmer)/(Ei(1,1)+Pi^(1/2)) 4334902354477238 a001 15127/832040*233^(32/55) 4334902358832404 p003 LerchPhi(1/10,2,11/229) 4334902359141561 r009 Im(z^3+c),c=-57/122+3/8*I,n=23 4334902360440260 a001 567451585/161*3571^(10/17) 4334902365246147 m005 (1/2*5^(1/2)-3/4)/(2/9*3^(1/2)-3/10) 4334902374450761 m001 LaplaceLimit/exp(FransenRobinson)^2/GAMMA(1/6) 4334902375887431 r005 Im(z^2+c),c=-2/3+25/191*I,n=31 4334902380436606 a001 1836311903/322*3571^(9/17) 4334902380458731 a007 Real Root Of 885*x^4-659*x^3+28*x^2-890*x-476 4334902386780300 r005 Re(z^2+c),c=-57/122+32/63*I,n=64 4334902400432952 a001 2971215073/322*3571^(8/17) 4334902402431025 r005 Re(z^2+c),c=-47/90+11/28*I,n=23 4334902403569061 r005 Re(z^2+c),c=-42/31+5/23*I,n=2 4334902403597362 a007 Real Root Of 132*x^4+523*x^3+737*x^2-527*x-329 4334902404793877 a007 Real Root Of -137*x^4-635*x^3-185*x^2-182*x-662 4334902405072424 a001 43133785636/161*1364^(1/15) 4334902420429299 a001 14930208*3571^(7/17) 4334902430155763 a001 8/321*14662949395604^(7/9) 4334902430155763 a001 8/321*(1/2+1/2*5^(1/2))^49 4334902430155763 a001 8/321*505019158607^(7/8) 4334902430559007 a001 1292/161*(1/2+1/2*5^(1/2))^37 4334902440425645 a001 7778742049/322*3571^(6/17) 4334902459681935 m005 (1/2*Pi-1/8)/(3/11*Catalan-7/12) 4334902460421992 a001 12586269025/322*3571^(5/17) 4334902465385194 a001 1926/105937*233^(32/55) 4334902466541181 r002 59th iterates of z^2 + 4334902477939574 m001 FeigenbaumB^2/exp(FransenRobinson)*Zeta(5) 4334902480418338 a001 10182505537/161*3571^(4/17) 4334902484466052 a007 Real Root Of 802*x^4+659*x^3-268*x^2-682*x+264 4334902493761354 r002 62th iterates of z^2 + 4334902500414685 a001 32951280099/322*3571^(3/17) 4334902502180113 r002 16th iterates of z^2 + 4334902509901441 s002 sum(A260687[n]/(n*exp(pi*n)+1),n=1..infinity) 4334902510404209 a001 1812422739600/4181 4334902513417788 a001 24157817/322*9349^(18/19) 4334902516028116 a001 39088169/322*9349^(17/19) 4334902516254224 r004 Im(z^2+c),c=1/20+13/24*I,z(0)=I,n=48 4334902518638447 a001 31622993/161*9349^(16/19) 4334902520411032 a001 53316291173/322*3571^(2/17) 4334902521248777 a001 14619165/46*9349^(15/19) 4334902523859107 a001 165580141/322*9349^(14/19) 4334902525500773 m004 5+(Cosh[Sqrt[5]*Pi]*Cot[Sqrt[5]*Pi])/16 4334902526469437 a001 133957148/161*9349^(13/19) 4334902529079767 a001 433494437/322*9349^(12/19) 4334902529612526 m001 1/ln(GolombDickman)*Artin/FeigenbaumC 4334902530158344 a007 Real Root Of 979*x^4-966*x^3+787*x^2+727*x+54 4334902531690096 a001 701408733/322*9349^(11/19) 4334902534300426 a001 567451585/161*9349^(10/19) 4334902536910756 a001 1836311903/322*9349^(9/19) 4334902539521086 a001 2971215073/322*9349^(8/19) 4334902539773583 b008 7/8+Pi^(-1)+Pi 4334902540407379 a001 43133785636/161*3571^(1/17) 4334902541056389 a001 144/15127*14662949395604^(17/21) 4334902541056389 a001 144/15127*(1/2+1/2*5^(1/2))^51 4334902541056389 a001 144/15127*192900153618^(17/18) 4334902541459637 a001 6765/322*2537720636^(7/9) 4334902541459637 a001 6765/322*17393796001^(5/7) 4334902541459637 a001 6765/322*312119004989^(7/11) 4334902541459637 a001 6765/322*14662949395604^(5/9) 4334902541459637 a001 6765/322*(1/2+1/2*5^(1/2))^35 4334902541459637 a001 6765/322*505019158607^(5/8) 4334902541459637 a001 6765/322*28143753123^(7/10) 4334902541459637 a001 6765/322*599074578^(5/6) 4334902541459637 a001 6765/322*228826127^(7/8) 4334902542131416 a001 14930208*9349^(7/19) 4334902544741746 a001 7778742049/322*9349^(6/19) 4334902547352076 a001 12586269025/322*9349^(5/19) 4334902549962406 a001 10182505537/161*9349^(4/19) 4334902552572736 a001 32951280099/322*9349^(3/19) 4334902552764480 a001 2372492167128/5473 4334902553512310 a001 9227465/322*24476^(20/21) 4334902553856867 a001 7465176/161*24476^(19/21) 4334902554201444 a001 24157817/322*24476^(6/7) 4334902554546013 a001 39088169/322*24476^(17/21) 4334902554890585 a001 31622993/161*24476^(16/21) 4334902555183066 a001 53316291173/322*9349^(2/19) 4334902555235156 a001 14619165/46*24476^(5/7) 4334902555579727 a001 165580141/322*24476^(2/3) 4334902555924299 a001 133957148/161*24476^(13/21) 4334902556268870 a001 433494437/322*24476^(4/7) 4334902556613441 a001 701408733/322*24476^(11/21) 4334902556958013 a001 567451585/161*24476^(10/21) 4334902557236572 a001 48/13201*(1/2+1/2*5^(1/2))^53 4334902557302584 a001 1836311903/322*24476^(3/7) 4334902557639821 a001 17711/322*141422324^(11/13) 4334902557639821 a001 17711/322*2537720636^(11/15) 4334902557639821 a001 17711/322*45537549124^(11/17) 4334902557639821 a001 17711/322*312119004989^(3/5) 4334902557639821 a001 17711/322*14662949395604^(11/21) 4334902557639821 a001 17711/322*(1/2+1/2*5^(1/2))^33 4334902557639821 a001 17711/322*192900153618^(11/18) 4334902557639821 a001 17711/322*10749957122^(11/16) 4334902557639821 a001 17711/322*1568397607^(3/4) 4334902557639821 a001 17711/322*599074578^(11/14) 4334902557639824 a001 17711/322*33385282^(11/12) 4334902557647155 a001 2971215073/322*24476^(8/21) 4334902557793396 a001 43133785636/161*9349^(1/19) 4334902557991727 a001 14930208*24476^(1/3) 4334902558336298 a001 7778742049/322*24476^(2/7) 4334902558680869 a001 12586269025/322*24476^(5/21) 4334902558944760 a001 12422530263168/28657 4334902559025441 a001 10182505537/161*24476^(4/21) 4334902559370012 a001 32951280099/322*24476^(1/7) 4334902559393979 a001 1762289/161*64079^(22/23) 4334902559439783 a001 5702887/322*64079^(21/23) 4334902559485721 a001 9227465/322*64079^(20/23) 4334902559531608 a001 7465176/161*64079^(19/23) 4334902559577514 a001 24157817/322*64079^(18/23) 4334902559597229 a001 72/51841*(1/2+1/2*5^(1/2))^55 4334902559597229 a001 72/51841*3461452808002^(11/12) 4334902559623412 a001 39088169/322*64079^(17/23) 4334902559669314 a001 31622993/161*64079^(16/23) 4334902559714584 a001 53316291173/322*24476^(2/21) 4334902559715214 a001 14619165/46*64079^(15/23) 4334902559761115 a001 165580141/322*64079^(14/23) 4334902559807016 a001 133957148/161*64079^(13/23) 4334902559846451 a001 32522606455248/75025 4334902559852917 a001 433494437/322*64079^(12/23) 4334902559898818 a001 701408733/322*64079^(11/23) 4334902559941645 a001 48/90481*14662949395604^(19/21) 4334902559941645 a001 48/90481*(1/2+1/2*5^(1/2))^57 4334902559944718 a001 567451585/161*64079^(10/23) 4334902559978006 a001 42572644551288/98209 4334902559990619 a001 1836311903/322*64079^(9/23) 4334902559991894 a001 144/710647*(1/2+1/2*5^(1/2))^59 4334902559997199 a001 222913260852480/514229 4334902559999226 a001 8/103361*(1/2+1/2*5^(1/2))^61 4334902560000295 a001 144/4870847*(1/2+1/2*5^(1/2))^63 4334902560000408 a001 763935109756056/1762289 4334902560000478 a001 144*(1/2+1/2*5^(1/2))^31 4334902560000478 a001 144*9062201101803^(1/2) 4334902560000548 a001 36/1970299*(1/2+1/2*5^(1/2))^64 4334902560000661 a001 314758575352416/726103 4334902560000956 a001 144/3010349*(1/2+1/2*5^(1/2))^62 4334902560001730 a001 45085154075298/104005 4334902560003757 a001 144/1149851*14662949395604^(20/21) 4334902560003757 a001 144/1149851*(1/2+1/2*5^(1/2))^60 4334902560009061 a001 45922657249968/105937 4334902560022950 a001 36/109801*(1/2+1/2*5^(1/2))^58 4334902560036520 a001 2971215073/322*64079^(8/23) 4334902560059155 a001 43133785636/161*24476^(1/21) 4334902560059311 a001 52622682647328/121393 4334902560082421 a001 14930208*64079^(7/23) 4334902560128322 a001 7778742049/322*64079^(6/23) 4334902560154505 a001 144/167761*14662949395604^(8/9) 4334902560154505 a001 144/167761*(1/2+1/2*5^(1/2))^56 4334902560174222 a001 12586269025/322*64079^(5/23) 4334902560220123 a001 10182505537/161*64079^(4/23) 4334902560266024 a001 32951280099/322*64079^(3/23) 4334902560280515 a001 9227465/322*167761^(4/5) 4334902560311310 a001 14619165/46*167761^(3/5) 4334902560311925 a001 53316291173/322*64079^(2/23) 4334902560342115 a001 567451585/161*167761^(2/5) 4334902560344893 a001 121393/322*(1/2+1/2*5^(1/2))^29 4334902560344893 a001 121393/322*1322157322203^(1/2) 4334902560357825 a001 43133785636/161*64079^(1/23) 4334902560372921 a001 12586269025/322*167761^(1/5) 4334902560384229 a001 1346269/322*439204^(8/9) 4334902560386221 a001 5702887/322*439204^(7/9) 4334902560388746 a001 24157817/322*439204^(2/3) 4334902560391242 a001 14619165/46*439204^(5/9) 4334902560393739 a001 433494437/322*439204^(4/9) 4334902560395085 a001 317811/322*7881196^(9/11) 4334902560395142 a001 317811/322*141422324^(9/13) 4334902560395143 a001 317811/322*2537720636^(3/5) 4334902560395143 a001 317811/322*45537549124^(9/17) 4334902560395143 a001 317811/322*817138163596^(9/19) 4334902560395143 a001 317811/322*14662949395604^(3/7) 4334902560395143 a001 317811/322*(1/2+1/2*5^(1/2))^27 4334902560395143 a001 317811/322*192900153618^(1/2) 4334902560395143 a001 317811/322*10749957122^(9/16) 4334902560395143 a001 317811/322*599074578^(9/14) 4334902560395145 a001 317811/322*33385282^(3/4) 4334902560396235 a001 1836311903/322*439204^(1/3) 4334902560396270 a001 317811/322*1860498^(9/10) 4334902560398732 a001 7778742049/322*439204^(2/9) 4334902560401229 a001 32951280099/322*439204^(1/9) 4334902560402467 a001 416020/161*20633239^(5/7) 4334902560402474 a001 416020/161*2537720636^(5/9) 4334902560402474 a001 416020/161*312119004989^(5/11) 4334902560402474 a001 416020/161*(1/2+1/2*5^(1/2))^25 4334902560402474 a001 416020/161*3461452808002^(5/12) 4334902560402474 a001 416020/161*28143753123^(1/2) 4334902560402474 a001 416020/161*228826127^(5/8) 4334902560403517 a001 416020/161*1860498^(5/6) 4334902560403543 a001 311187/46*(1/2+1/2*5^(1/2))^23 4334902560403543 a001 311187/46*4106118243^(1/2) 4334902560403655 a001 5702887/322*7881196^(7/11) 4334902560403690 a001 24157817/322*7881196^(6/11) 4334902560403693 a001 5702887/322*20633239^(3/5) 4334902560403694 a001 14619165/46*7881196^(5/11) 4334902560403699 a001 5702887/322*141422324^(7/13) 4334902560403700 a001 5702887/322*2537720636^(7/15) 4334902560403700 a001 5702887/322*17393796001^(3/7) 4334902560403700 a001 5702887/322*45537549124^(7/17) 4334902560403700 a001 5702887/322*14662949395604^(1/3) 4334902560403700 a001 5702887/322*(1/2+1/2*5^(1/2))^21 4334902560403700 a001 5702887/322*192900153618^(7/18) 4334902560403700 a001 5702887/322*10749957122^(7/16) 4334902560403700 a001 5702887/322*599074578^(1/2) 4334902560403701 a001 433494437/322*7881196^(4/11) 4334902560403702 a001 5702887/322*33385282^(7/12) 4334902560403703 a001 701408733/322*7881196^(1/3) 4334902560403707 a001 1836311903/322*7881196^(3/11) 4334902560403714 a001 7778742049/322*7881196^(2/11) 4334902560403720 a001 32951280099/322*7881196^(1/11) 4334902560403722 a001 14619165/46*20633239^(3/7) 4334902560403722 a001 165580141/322*20633239^(2/5) 4334902560403722 a001 7465176/161*817138163596^(1/3) 4334902560403722 a001 7465176/161*(1/2+1/2*5^(1/2))^19 4334902560403723 a001 7465176/161*87403803^(1/2) 4334902560403723 a001 567451585/161*20633239^(2/7) 4334902560403724 a001 14930208*20633239^(1/5) 4334902560403725 a001 12586269025/322*20633239^(1/7) 4334902560403726 a001 39088169/322*45537549124^(1/3) 4334902560403726 a001 39088169/322*(1/2+1/2*5^(1/2))^17 4334902560403726 a001 14619165/46*141422324^(5/13) 4334902560403726 a001 133957148/161*141422324^(1/3) 4334902560403726 a001 14619165/46*2537720636^(1/3) 4334902560403726 a001 14619165/46*45537549124^(5/17) 4334902560403726 a001 14619165/46*312119004989^(3/11) 4334902560403726 a001 14619165/46*14662949395604^(5/21) 4334902560403726 a001 14619165/46*(1/2+1/2*5^(1/2))^15 4334902560403726 a001 14619165/46*192900153618^(5/18) 4334902560403726 a001 14619165/46*28143753123^(3/10) 4334902560403726 a001 14619165/46*10749957122^(5/16) 4334902560403726 a001 14619165/46*599074578^(5/14) 4334902560403726 a001 433494437/322*141422324^(4/13) 4334902560403726 a001 14619165/46*228826127^(3/8) 4334902560403726 a001 1836311903/322*141422324^(3/13) 4334902560403726 a001 7778742049/322*141422324^(2/13) 4334902560403726 a001 32951280099/322*141422324^(1/13) 4334902560403726 a001 133957148/161*(1/2+1/2*5^(1/2))^13 4334902560403726 a001 133957148/161*73681302247^(1/4) 4334902560403726 a001 701408733/322*312119004989^(1/5) 4334902560403726 a001 701408733/322*(1/2+1/2*5^(1/2))^11 4334902560403726 a001 701408733/322*1568397607^(1/4) 4334902560403726 a001 1836311903/322*2537720636^(1/5) 4334902560403726 a001 1836311903/322*45537549124^(3/17) 4334902560403726 a001 1836311903/322*14662949395604^(1/7) 4334902560403726 a001 1836311903/322*(1/2+1/2*5^(1/2))^9 4334902560403726 a001 1836311903/322*192900153618^(1/6) 4334902560403726 a001 1836311903/322*10749957122^(3/16) 4334902560403726 a001 12586269025/322*2537720636^(1/9) 4334902560403726 a001 7778742049/322*2537720636^(2/15) 4334902560403726 a001 32951280099/322*2537720636^(1/15) 4334902560403726 a001 14930208*17393796001^(1/7) 4334902560403726 a001 14930208*14662949395604^(1/9) 4334902560403726 a001 14930208*(1/2+1/2*5^(1/2))^7 4334902560403726 a001 12586269025/322*312119004989^(1/11) 4334902560403726 a001 12586269025/322*(1/2+1/2*5^(1/2))^5 4334902560403726 a001 12586269025/322*28143753123^(1/10) 4334902560403726 a001 32951280099/322*45537549124^(1/17) 4334902560403726 a001 32951280099/322*14662949395604^(1/21) 4334902560403726 a001 32951280099/322*(1/2+1/2*5^(1/2))^3 4334902560403726 a001 32951280099/322*192900153618^(1/18) 4334902560403726 a001 21566892818/161+21566892818/161*5^(1/2) 4334902560403726 a001 139583862445/322 4334902560403726 a001 53316291173/322*(1/2+1/2*5^(1/2))^2 4334902560403726 a001 32951280099/322*10749957122^(1/16) 4334902560403726 a001 53316291173/322*10749957122^(1/24) 4334902560403726 a001 10182505537/161*(1/2+1/2*5^(1/2))^4 4334902560403726 a001 10182505537/161*23725150497407^(1/16) 4334902560403726 a001 10182505537/161*73681302247^(1/13) 4334902560403726 a001 10182505537/161*10749957122^(1/12) 4334902560403726 a001 53316291173/322*4106118243^(1/23) 4334902560403726 a001 7778742049/322*45537549124^(2/17) 4334902560403726 a001 7778742049/322*14662949395604^(2/21) 4334902560403726 a001 7778742049/322*(1/2+1/2*5^(1/2))^6 4334902560403726 a001 7778742049/322*10749957122^(1/8) 4334902560403726 a001 10182505537/161*4106118243^(2/23) 4334902560403726 a001 7778742049/322*4106118243^(3/23) 4334902560403726 a001 53316291173/322*1568397607^(1/22) 4334902560403726 a001 2971215073/322*(1/2+1/2*5^(1/2))^8 4334902560403726 a001 2971215073/322*23725150497407^(1/8) 4334902560403726 a001 2971215073/322*505019158607^(1/7) 4334902560403726 a001 2971215073/322*73681302247^(2/13) 4334902560403726 a001 2971215073/322*10749957122^(1/6) 4334902560403726 a001 2971215073/322*4106118243^(4/23) 4334902560403726 a001 10182505537/161*1568397607^(1/11) 4334902560403726 a001 7778742049/322*1568397607^(3/22) 4334902560403726 a001 2971215073/322*1568397607^(2/11) 4334902560403726 a001 567451585/161*2537720636^(2/9) 4334902560403726 a001 53316291173/322*599074578^(1/21) 4334902560403726 a001 567451585/161*312119004989^(2/11) 4334902560403726 a001 567451585/161*(1/2+1/2*5^(1/2))^10 4334902560403726 a001 567451585/161*28143753123^(1/5) 4334902560403726 a001 567451585/161*10749957122^(5/24) 4334902560403726 a001 567451585/161*4106118243^(5/23) 4334902560403726 a001 32951280099/322*599074578^(1/14) 4334902560403726 a001 567451585/161*1568397607^(5/22) 4334902560403726 a001 10182505537/161*599074578^(2/21) 4334902560403726 a001 7778742049/322*599074578^(1/7) 4334902560403726 a001 14930208*599074578^(1/6) 4334902560403726 a001 1836311903/322*599074578^(3/14) 4334902560403726 a001 2971215073/322*599074578^(4/21) 4334902560403726 a001 567451585/161*599074578^(5/21) 4334902560403726 a001 53316291173/322*228826127^(1/20) 4334902560403726 a001 433494437/322*2537720636^(4/15) 4334902560403726 a001 433494437/322*45537549124^(4/17) 4334902560403726 a001 433494437/322*817138163596^(4/19) 4334902560403726 a001 433494437/322*14662949395604^(4/21) 4334902560403726 a001 433494437/322*(1/2+1/2*5^(1/2))^12 4334902560403726 a001 433494437/322*192900153618^(2/9) 4334902560403726 a001 433494437/322*73681302247^(3/13) 4334902560403726 a001 433494437/322*10749957122^(1/4) 4334902560403726 a001 433494437/322*4106118243^(6/23) 4334902560403726 a001 433494437/322*1568397607^(3/11) 4334902560403726 a001 433494437/322*599074578^(2/7) 4334902560403726 a001 10182505537/161*228826127^(1/10) 4334902560403726 a001 12586269025/322*228826127^(1/8) 4334902560403726 a001 7778742049/322*228826127^(3/20) 4334902560403726 a001 2971215073/322*228826127^(1/5) 4334902560403726 a001 567451585/161*228826127^(1/4) 4334902560403726 a001 433494437/322*228826127^(3/10) 4334902560403726 a001 53316291173/322*87403803^(1/19) 4334902560403726 a001 165580141/322*17393796001^(2/7) 4334902560403726 a001 165580141/322*14662949395604^(2/9) 4334902560403726 a001 165580141/322*(1/2+1/2*5^(1/2))^14 4334902560403726 a001 165580141/322*505019158607^(1/4) 4334902560403726 a001 165580141/322*10749957122^(7/24) 4334902560403726 a001 165580141/322*4106118243^(7/23) 4334902560403726 a001 165580141/322*1568397607^(7/22) 4334902560403726 a001 165580141/322*599074578^(1/3) 4334902560403726 a001 10182505537/161*87403803^(2/19) 4334902560403726 a001 165580141/322*228826127^(7/20) 4334902560403726 a001 7778742049/322*87403803^(3/19) 4334902560403726 a001 2971215073/322*87403803^(4/19) 4334902560403726 a001 567451585/161*87403803^(5/19) 4334902560403726 a001 433494437/322*87403803^(6/19) 4334902560403726 a001 53316291173/322*33385282^(1/18) 4334902560403726 a001 31622993/161*(1/2+1/2*5^(1/2))^16 4334902560403726 a001 31622993/161*23725150497407^(1/4) 4334902560403726 a001 31622993/161*73681302247^(4/13) 4334902560403726 a001 31622993/161*10749957122^(1/3) 4334902560403726 a001 31622993/161*4106118243^(8/23) 4334902560403726 a001 31622993/161*1568397607^(4/11) 4334902560403726 a001 31622993/161*599074578^(8/21) 4334902560403726 a001 165580141/322*87403803^(7/19) 4334902560403726 a001 31622993/161*228826127^(2/5) 4334902560403727 a001 32951280099/322*33385282^(1/12) 4334902560403727 a001 10182505537/161*33385282^(1/9) 4334902560403727 a001 31622993/161*87403803^(8/19) 4334902560403727 a001 7778742049/322*33385282^(1/6) 4334902560403727 a001 2971215073/322*33385282^(2/9) 4334902560403727 a001 1836311903/322*33385282^(1/4) 4334902560403727 a001 567451585/161*33385282^(5/18) 4334902560403728 a001 433494437/322*33385282^(1/3) 4334902560403728 a001 24157817/322*141422324^(6/13) 4334902560403728 a001 24157817/322*2537720636^(2/5) 4334902560403728 a001 24157817/322*45537549124^(6/17) 4334902560403728 a001 24157817/322*14662949395604^(2/7) 4334902560403728 a001 24157817/322*(1/2+1/2*5^(1/2))^18 4334902560403728 a001 24157817/322*192900153618^(1/3) 4334902560403728 a001 24157817/322*10749957122^(3/8) 4334902560403728 a001 24157817/322*4106118243^(9/23) 4334902560403728 a001 24157817/322*1568397607^(9/22) 4334902560403728 a001 24157817/322*599074578^(3/7) 4334902560403728 a001 24157817/322*228826127^(9/20) 4334902560403728 a001 14619165/46*33385282^(5/12) 4334902560403728 a001 165580141/322*33385282^(7/18) 4334902560403728 a001 53316291173/322*12752043^(1/17) 4334902560403728 a001 24157817/322*87403803^(9/19) 4334902560403728 a001 31622993/161*33385282^(4/9) 4334902560403729 a001 10182505537/161*12752043^(2/17) 4334902560403730 a001 24157817/322*33385282^(1/2) 4334902560403731 a001 9227465/322*20633239^(4/7) 4334902560403731 a001 7778742049/322*12752043^(3/17) 4334902560403732 a001 2971215073/322*12752043^(4/17) 4334902560403734 a001 567451585/161*12752043^(5/17) 4334902560403736 a001 433494437/322*12752043^(6/17) 4334902560403736 a001 9227465/322*2537720636^(4/9) 4334902560403736 a001 9227465/322*(1/2+1/2*5^(1/2))^20 4334902560403736 a001 9227465/322*23725150497407^(5/16) 4334902560403736 a001 9227465/322*505019158607^(5/14) 4334902560403736 a001 9227465/322*73681302247^(5/13) 4334902560403736 a001 9227465/322*28143753123^(2/5) 4334902560403736 a001 9227465/322*10749957122^(5/12) 4334902560403736 a001 9227465/322*4106118243^(10/23) 4334902560403736 a001 9227465/322*1568397607^(5/11) 4334902560403736 a001 9227465/322*599074578^(10/21) 4334902560403736 a001 9227465/322*228826127^(1/2) 4334902560403737 a001 9227465/322*87403803^(10/19) 4334902560403737 a001 165580141/322*12752043^(7/17) 4334902560403738 a001 53316291173/322*4870847^(1/16) 4334902560403739 a001 9227465/322*33385282^(5/9) 4334902560403739 a001 39088169/322*12752043^(1/2) 4334902560403739 a001 31622993/161*12752043^(8/17) 4334902560403742 a001 24157817/322*12752043^(9/17) 4334902560403749 a001 10182505537/161*4870847^(1/8) 4334902560403749 a001 1762289/161*7881196^(2/3) 4334902560403752 a001 9227465/322*12752043^(10/17) 4334902560403760 a001 7778742049/322*4870847^(3/16) 4334902560403772 a001 2971215073/322*4870847^(1/4) 4334902560403783 a001 567451585/161*4870847^(5/16) 4334902560403795 a001 433494437/322*4870847^(3/8) 4334902560403796 a001 1762289/161*312119004989^(2/5) 4334902560403796 a001 1762289/161*(1/2+1/2*5^(1/2))^22 4334902560403796 a001 1762289/161*10749957122^(11/24) 4334902560403796 a001 1762289/161*4106118243^(11/23) 4334902560403796 a001 1762289/161*1568397607^(1/2) 4334902560403796 a001 1762289/161*599074578^(11/21) 4334902560403796 a001 1762289/161*228826127^(11/20) 4334902560403796 a001 1762289/161*87403803^(11/19) 4334902560403798 a001 1762289/161*33385282^(11/18) 4334902560403806 a001 165580141/322*4870847^(7/16) 4334902560403810 a001 53316291173/322*1860498^(1/15) 4334902560403813 a001 1762289/161*12752043^(11/17) 4334902560403818 a001 31622993/161*4870847^(1/2) 4334902560403830 a001 24157817/322*4870847^(9/16) 4334902560403851 a001 9227465/322*4870847^(5/8) 4334902560403851 a001 32951280099/322*1860498^(1/10) 4334902560403893 a001 10182505537/161*1860498^(2/15) 4334902560403922 a001 1762289/161*4870847^(11/16) 4334902560403935 a001 12586269025/322*1860498^(1/6) 4334902560403977 a001 7778742049/322*1860498^(1/5) 4334902560404060 a001 2971215073/322*1860498^(4/15) 4334902560404102 a001 1836311903/322*1860498^(3/10) 4334902560404144 a001 567451585/161*1860498^(1/3) 4334902560404154 a001 1346269/322*7881196^(8/11) 4334902560404204 a001 1346269/322*141422324^(8/13) 4334902560404205 a001 1346269/322*2537720636^(8/15) 4334902560404205 a001 1346269/322*45537549124^(8/17) 4334902560404205 a001 1346269/322*14662949395604^(8/21) 4334902560404205 a001 1346269/322*(1/2+1/2*5^(1/2))^24 4334902560404205 a001 1346269/322*192900153618^(4/9) 4334902560404205 a001 1346269/322*73681302247^(6/13) 4334902560404205 a001 1346269/322*10749957122^(1/2) 4334902560404205 a001 1346269/322*4106118243^(12/23) 4334902560404205 a001 1346269/322*1568397607^(6/11) 4334902560404205 a001 1346269/322*599074578^(4/7) 4334902560404205 a001 1346269/322*228826127^(3/5) 4334902560404205 a001 1346269/322*87403803^(12/19) 4334902560404207 a001 1346269/322*33385282^(2/3) 4334902560404223 a001 1346269/322*12752043^(12/17) 4334902560404227 a001 433494437/322*1860498^(2/5) 4334902560404311 a001 165580141/322*1860498^(7/15) 4334902560404339 a001 53316291173/322*710647^(1/14) 4334902560404342 a001 1346269/322*4870847^(3/4) 4334902560404352 a001 14619165/46*1860498^(1/2) 4334902560404394 a001 31622993/161*1860498^(8/15) 4334902560404479 a001 24157817/322*1860498^(3/5) 4334902560404571 a001 9227465/322*1860498^(2/3) 4334902560404576 a001 5702887/322*1860498^(7/10) 4334902560404714 a001 1762289/161*1860498^(11/15) 4334902560404952 a001 10182505537/161*710647^(1/7) 4334902560405206 a001 1346269/322*1860498^(4/5) 4334902560405566 a001 7778742049/322*710647^(3/14) 4334902560405872 a001 14930208*710647^(1/4) 4334902560406179 a001 2971215073/322*710647^(2/7) 4334902560406792 a001 567451585/161*710647^(5/14) 4334902560407005 a001 514229/322*141422324^(2/3) 4334902560407005 a001 514229/322*(1/2+1/2*5^(1/2))^26 4334902560407005 a001 514229/322*73681302247^(1/2) 4334902560407005 a001 514229/322*10749957122^(13/24) 4334902560407005 a001 514229/322*4106118243^(13/23) 4334902560407005 a001 514229/322*1568397607^(13/22) 4334902560407005 a001 514229/322*599074578^(13/21) 4334902560407005 a001 514229/322*228826127^(13/20) 4334902560407005 a001 514229/322*87403803^(13/19) 4334902560407008 a001 514229/322*33385282^(13/18) 4334902560407025 a001 514229/322*12752043^(13/17) 4334902560407153 a001 514229/322*4870847^(13/16) 4334902560407405 a001 433494437/322*710647^(3/7) 4334902560408018 a001 165580141/322*710647^(1/2) 4334902560408090 a001 514229/322*1860498^(13/15) 4334902560408252 a001 53316291173/322*271443^(1/13) 4334902560408631 a001 31622993/161*710647^(4/7) 4334902560409246 a001 24157817/322*710647^(9/14) 4334902560409868 a001 9227465/322*710647^(5/7) 4334902560410137 a001 5702887/322*710647^(3/4) 4334902560410540 a001 1762289/161*710647^(11/14) 4334902560411562 a001 1346269/322*710647^(6/7) 4334902560412777 a001 10182505537/161*271443^(2/13) 4334902560414975 a001 514229/322*710647^(13/14) 4334902560417303 a001 7778742049/322*271443^(3/13) 4334902560420528 a001 43133785636/161*103682^(1/24) 4334902560421829 a001 2971215073/322*271443^(4/13) 4334902560426190 a001 98209/161*20633239^(4/5) 4334902560426198 a001 98209/161*17393796001^(4/7) 4334902560426198 a001 98209/161*14662949395604^(4/9) 4334902560426198 a001 98209/161*(1/2+1/2*5^(1/2))^28 4334902560426198 a001 98209/161*505019158607^(1/2) 4334902560426198 a001 98209/161*73681302247^(7/13) 4334902560426198 a001 98209/161*10749957122^(7/12) 4334902560426198 a001 98209/161*4106118243^(14/23) 4334902560426198 a001 98209/161*1568397607^(7/11) 4334902560426198 a001 98209/161*599074578^(2/3) 4334902560426199 a001 98209/161*228826127^(7/10) 4334902560426199 a001 98209/161*87403803^(14/19) 4334902560426201 a001 98209/161*33385282^(7/9) 4334902560426220 a001 98209/161*12752043^(14/17) 4334902560426354 a001 567451585/161*271443^(5/13) 4334902560426358 a001 98209/161*4870847^(7/8) 4334902560427367 a001 98209/161*1860498^(14/15) 4334902560430880 a001 433494437/322*271443^(6/13) 4334902560433143 a001 133957148/161*271443^(1/2) 4334902560435406 a001 165580141/322*271443^(7/13) 4334902560437330 a001 53316291173/322*103682^(1/12) 4334902560439931 a001 31622993/161*271443^(8/13) 4334902560444458 a001 24157817/322*271443^(9/13) 4334902560448993 a001 9227465/322*271443^(10/13) 4334902560453578 a001 1762289/161*271443^(11/13) 4334902560454132 a001 32951280099/322*103682^(1/8) 4334902560458512 a001 1346269/322*271443^(12/13) 4334902560470934 a001 10182505537/161*103682^(1/6) 4334902560487736 a001 12586269025/322*103682^(5/24) 4334902560504538 a001 7778742049/322*103682^(1/4) 4334902560521340 a001 14930208*103682^(7/24) 4334902560529358 a001 43133785636/161*39603^(1/22) 4334902560538142 a001 2971215073/322*103682^(1/3) 4334902560554944 a001 1836311903/322*103682^(3/8) 4334902560557690 a001 75025/322*7881196^(10/11) 4334902560557745 a001 75025/322*20633239^(6/7) 4334902560557753 a001 75025/322*141422324^(10/13) 4334902560557753 a001 75025/322*2537720636^(2/3) 4334902560557753 a001 75025/322*45537549124^(10/17) 4334902560557753 a001 75025/322*312119004989^(6/11) 4334902560557753 a001 75025/322*14662949395604^(10/21) 4334902560557753 a001 75025/322*(1/2+1/2*5^(1/2))^30 4334902560557753 a001 75025/322*192900153618^(5/9) 4334902560557753 a001 75025/322*28143753123^(3/5) 4334902560557753 a001 75025/322*10749957122^(5/8) 4334902560557753 a001 75025/322*4106118243^(15/23) 4334902560557753 a001 75025/322*1568397607^(15/22) 4334902560557753 a001 75025/322*599074578^(5/7) 4334902560557753 a001 75025/322*228826127^(3/4) 4334902560557754 a001 75025/322*87403803^(15/19) 4334902560557757 a001 75025/322*33385282^(5/6) 4334902560557777 a001 75025/322*12752043^(15/17) 4334902560557925 a001 75025/322*4870847^(15/16) 4334902560571746 a001 567451585/161*103682^(5/12) 4334902560588548 a001 701408733/322*103682^(11/24) 4334902560605350 a001 433494437/322*103682^(1/2) 4334902560622152 a001 133957148/161*103682^(13/24) 4334902560638954 a001 165580141/322*103682^(7/12) 4334902560654990 a001 53316291173/322*39603^(1/11) 4334902560655756 a001 14619165/46*103682^(5/8) 4334902560672559 a001 31622993/161*103682^(2/3) 4334902560689360 a001 39088169/322*103682^(17/24) 4334902560697798 r009 Re(z^3+c),c=-19/30+27/55*I,n=14 4334902560706164 a001 24157817/322*103682^(3/4) 4334902560722961 a001 7465176/161*103682^(19/24) 4334902560739777 a001 9227465/322*103682^(5/6) 4334902560756542 a001 5702887/322*103682^(7/8) 4334902560773440 a001 1762289/161*103682^(11/12) 4334902560780622 a001 32951280099/322*39603^(3/22) 4334902560789990 a001 311187/46*103682^(23/24) 4334902560906254 a001 10182505537/161*39603^(2/11) 4334902561031887 a001 12586269025/322*39603^(5/22) 4334902561056196 a001 144/64079*14662949395604^(6/7) 4334902561056196 a001 144/64079*(1/2+1/2*5^(1/2))^54 4334902561157519 a001 7778742049/322*39603^(3/11) 4334902561283151 a001 14930208*39603^(7/22) 4334902561350931 a001 43133785636/161*15127^(1/20) 4334902561408783 a001 2971215073/322*39603^(4/11) 4334902561459444 a001 28657/322*(1/2+1/2*5^(1/2))^32 4334902561459444 a001 28657/322*23725150497407^(1/2) 4334902561459444 a001 28657/322*73681302247^(8/13) 4334902561459444 a001 28657/322*10749957122^(2/3) 4334902561459444 a001 28657/322*4106118243^(16/23) 4334902561459444 a001 28657/322*1568397607^(8/11) 4334902561459444 a001 28657/322*599074578^(16/21) 4334902561459444 a001 28657/322*228826127^(4/5) 4334902561459445 a001 28657/322*87403803^(16/19) 4334902561459448 a001 28657/322*33385282^(8/9) 4334902561459469 a001 28657/322*12752043^(16/17) 4334902561534415 a001 1836311903/322*39603^(9/22) 4334902561660047 a001 567451585/161*39603^(5/11) 4334902561785679 a001 701408733/322*39603^(1/2) 4334902561911311 a001 433494437/322*39603^(6/11) 4334902562036943 a001 133957148/161*39603^(13/22) 4334902562162575 a001 165580141/322*39603^(7/11) 4334902562288207 a001 14619165/46*39603^(15/22) 4334902562298135 a001 53316291173/322*15127^(1/10) 4334902562413839 a001 31622993/161*39603^(8/11) 4334902562539471 a001 39088169/322*39603^(17/22) 4334902562665105 a001 24157817/322*39603^(9/11) 4334902562764383 a001 7677545928912/17711 4334902562790731 a001 7465176/161*39603^(19/22) 4334902562916378 a001 9227465/322*39603^(10/11) 4334902563041973 a001 5702887/322*39603^(21/22) 4334902563245340 a001 32951280099/322*15127^(3/20) 4334902564192544 a001 10182505537/161*15127^(1/5) 4334902565139748 a001 12586269025/322*15127^(1/4) 4334902566086953 a001 7778742049/322*15127^(3/10) 4334902567034157 a001 14930208*15127^(7/20) 4334902567236476 a001 36/6119*(1/2+1/2*5^(1/2))^52 4334902567236476 a001 36/6119*23725150497407^(13/16) 4334902567236476 a001 36/6119*505019158607^(13/14) 4334902567617322 a001 43133785636/161*5778^(1/18) 4334902567639724 a001 5473/161*45537549124^(2/3) 4334902567639724 a001 5473/161*(1/2+1/2*5^(1/2))^34 4334902567639724 a001 5473/161*10749957122^(17/24) 4334902567639724 a001 5473/161*4106118243^(17/23) 4334902567639724 a001 5473/161*1568397607^(17/22) 4334902567639724 a001 5473/161*599074578^(17/21) 4334902567639724 a001 5473/161*228826127^(17/20) 4334902567639725 a001 5473/161*87403803^(17/19) 4334902567639728 a001 5473/161*33385282^(17/18) 4334902567981362 a001 2971215073/322*15127^(2/5) 4334902568928566 a001 1836311903/322*15127^(9/20) 4334902569875771 a001 567451585/161*15127^(1/2) 4334902570822975 a001 701408733/322*15127^(11/20) 4334902571770180 a001 433494437/322*15127^(3/5) 4334902572717384 a001 133957148/161*15127^(13/20) 4334902573278992 m001 ThueMorse/Pi/csc(5/12*Pi)*GAMMA(7/12)*5^(1/2) 4334902573278992 m001 sqrt(5)/GAMMA(5/12)*ThueMorse 4334902573664589 a001 165580141/322*15127^(7/10) 4334902574611793 a001 14619165/46*15127^(3/4) 4334902574830917 a001 53316291173/322*5778^(1/9) 4334902575558998 a001 31622993/161*15127^(4/5) 4334902575871790 a007 Real Root Of -639*x^4+657*x^3+428*x^2+968*x-531 4334902576506201 a001 39088169/322*15127^(17/20) 4334902576822084 r002 11th iterates of z^2 + 4334902577453408 a001 24157817/322*15127^(9/10) 4334902578400607 a001 7465176/161*15127^(19/20) 4334902578944567 a001 977520531552/2255 4334902582044512 a001 32951280099/322*5778^(1/6) 4334902588065294 r005 Re(z^2+c),c=-1/118+5/24*I,n=19 4334902589258108 a001 10182505537/161*5778^(2/9) 4334902591723863 r009 Im(z^3+c),c=-9/86+28/55*I,n=27 4334902595491643 a007 Real Root Of -71*x^4-347*x^3-267*x^2-634*x-926 4334902596471703 a001 12586269025/322*5778^(5/18) 4334902603685299 a001 7778742049/322*5778^(1/3) 4334902609596748 a001 144/9349*312119004989^(10/11) 4334902609596748 a001 144/9349*(1/2+1/2*5^(1/2))^50 4334902609596748 a001 144/9349*3461452808002^(5/6) 4334902609999995 a001 4181/322*141422324^(12/13) 4334902609999996 a001 4181/322*2537720636^(4/5) 4334902609999996 a001 4181/322*45537549124^(12/17) 4334902609999996 a001 4181/322*14662949395604^(4/7) 4334902609999996 a001 4181/322*(1/2+1/2*5^(1/2))^36 4334902609999996 a001 4181/322*505019158607^(9/14) 4334902609999996 a001 4181/322*192900153618^(2/3) 4334902609999996 a001 4181/322*73681302247^(9/13) 4334902609999996 a001 4181/322*10749957122^(3/4) 4334902609999996 a001 4181/322*4106118243^(18/23) 4334902609999996 a001 4181/322*1568397607^(9/11) 4334902609999996 a001 4181/322*599074578^(6/7) 4334902609999996 a001 4181/322*228826127^(9/10) 4334902609999996 a001 4181/322*87403803^(18/19) 4334902610898894 a001 14930208*5778^(7/18) 4334902616026780 a001 43133785636/161*2207^(1/16) 4334902618112490 a001 2971215073/322*5778^(4/9) 4334902625326085 a001 1836311903/322*5778^(1/2) 4334902630237429 p001 sum(1/(478*n+9)/n/(5^n),n=1..infinity) 4334902632539681 a001 567451585/161*5778^(5/9) 4334902633190675 r002 17th iterates of z^2 + 4334902636777693 r005 Re(z^2+c),c=-53/118+19/39*I,n=6 4334902637803543 r005 Im(z^2+c),c=-23/42+33/52*I,n=6 4334902639753276 a001 701408733/322*5778^(11/18) 4334902643846045 r005 Re(z^2+c),c=-1/118+5/24*I,n=22 4334902646966872 a001 433494437/322*5778^(2/3) 4334902647351263 r005 Re(z^2+c),c=-14/23+11/51*I,n=61 4334902652184554 r005 Re(z^2+c),c=-1/118+5/24*I,n=21 4334902654180467 a001 133957148/161*5778^(13/18) 4334902654955557 r005 Re(z^2+c),c=-1/118+5/24*I,n=25 4334902655487226 r005 Re(z^2+c),c=-1/118+5/24*I,n=26 4334902655572016 r005 Re(z^2+c),c=-1/118+5/24*I,n=29 4334902655584838 r005 Re(z^2+c),c=-1/118+5/24*I,n=28 4334902655588221 r005 Re(z^2+c),c=-1/118+5/24*I,n=32 4334902655588978 r005 Re(z^2+c),c=-1/118+5/24*I,n=33 4334902655589106 r005 Re(z^2+c),c=-1/118+5/24*I,n=36 4334902655589126 r005 Re(z^2+c),c=-1/118+5/24*I,n=35 4334902655589130 r005 Re(z^2+c),c=-1/118+5/24*I,n=39 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=40 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=43 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=42 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=46 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=47 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=50 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=49 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=53 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=54 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=57 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=56 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=60 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=61 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=64 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=63 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=62 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=59 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=58 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=55 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=52 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=51 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=48 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=45 4334902655589131 r005 Re(z^2+c),c=-1/118+5/24*I,n=44 4334902655589132 r005 Re(z^2+c),c=-1/118+5/24*I,n=41 4334902655589134 r005 Re(z^2+c),c=-1/118+5/24*I,n=38 4334902655589137 r005 Re(z^2+c),c=-1/118+5/24*I,n=37 4334902655589299 r005 Re(z^2+c),c=-1/118+5/24*I,n=34 4334902655591147 r005 Re(z^2+c),c=-1/118+5/24*I,n=31 4334902655592763 r005 Re(z^2+c),c=-1/118+5/24*I,n=30 4334902655704708 r005 Re(z^2+c),c=-1/118+5/24*I,n=27 4334902656959505 r005 Re(z^2+c),c=-1/118+5/24*I,n=24 4334902658151449 r005 Re(z^2+c),c=-1/118+5/24*I,n=23 4334902661394063 a001 165580141/322*5778^(7/9) 4334902668607658 a001 14619165/46*5778^(5/6) 4334902671649834 a001 53316291173/322*2207^(1/8) 4334902675821254 a001 31622993/161*5778^(8/9) 4334902683034849 a001 39088169/322*5778^(17/18) 4334902689845201 a001 140017356882/323 4334902698342595 r005 Im(z^2+c),c=9/98+25/49*I,n=64 4334902700313759 l006 ln(9898/9941) 4334902707018191 r009 Re(z^3+c),c=-1/42+41/44*I,n=16 4334902723183039 r005 Re(z^2+c),c=-55/94+20/41*I,n=22 4334902727272889 a001 32951280099/322*2207^(3/16) 4334902735401171 r005 Re(z^2+c),c=-1/118+5/24*I,n=20 4334902735541929 p004 log(16103/211) 4334902736600618 r009 Im(z^3+c),c=-9/86+28/55*I,n=29 4334902762057938 a005 (1/cos(30/209*Pi))^320 4334902770253457 a007 Real Root Of 166*x^4+627*x^3-186*x^2+885*x-211 4334902774389175 m001 (1+sin(1/12*Pi))/(BesselI(0,2)+GolombDickman) 4334902782895945 a001 10182505537/161*2207^(1/4) 4334902784977273 b008 25/6+ArcCoth[6] 4334902785498364 r005 Im(z^2+c),c=-19/14+15/82*I,n=4 4334902795150590 a007 Real Root Of -976*x^4+661*x^3-194*x^2+19*x+133 4334902796140560 a007 Real Root Of -161*x^4-575*x^3+371*x^2-804*x-444 4334902812722844 a001 843/28657*28657^(18/37) 4334902832771630 r005 Re(z^2+c),c=-14/23+12/53*I,n=28 4334902833098191 a007 Real Root Of 787*x^4-889*x^3+215*x^2-370*x-301 4334902833732402 l006 ln(4703/7255) 4334902836663783 m001 Lehmer^GAMMA(19/24)-OneNinth 4334902838519002 a001 12586269025/322*2207^(5/16) 4334902845951119 m002 5*Csch[Pi]+Tanh[Pi]/(6*Pi^5) 4334902846167295 a001 2584/3*11^(31/46) 4334902856190641 r009 Im(z^3+c),c=-9/86+28/55*I,n=31 4334902866841024 r009 Re(z^3+c),c=-63/118+16/57*I,n=34 4334902883640321 r002 61th iterates of z^2 + 4334902884049440 q001 1473/3398 4334902889968816 r005 Im(z^2+c),c=-5/24+13/18*I,n=56 4334902894142059 a001 7778742049/322*2207^(3/8) 4334902894647423 m001 BesselK(1,1)^2*PrimesInBinary/ln(sqrt(2)) 4334902899938392 a001 144/3571*45537549124^(16/17) 4334902899938392 a001 144/3571*14662949395604^(16/21) 4334902899938392 a001 144/3571*(1/2+1/2*5^(1/2))^48 4334902899938392 a001 144/3571*192900153618^(8/9) 4334902899938392 a001 144/3571*73681302247^(12/13) 4334902900341614 a001 1597/322*817138163596^(2/3) 4334902900341614 a001 1597/322*(1/2+1/2*5^(1/2))^38 4334902900341614 a001 1597/322*10749957122^(19/24) 4334902900341614 a001 1597/322*4106118243^(19/23) 4334902900341614 a001 1597/322*1568397607^(19/22) 4334902900341614 a001 1597/322*599074578^(19/21) 4334902900341614 a001 1597/322*228826127^(19/20) 4334902904739123 r005 Im(z^2+c),c=1/28+32/57*I,n=34 4334902905226901 r009 Im(z^3+c),c=-9/86+28/55*I,n=33 4334902906184761 m001 GAMMA(1/3)/Backhouse/ln(GAMMA(7/12)) 4334902906463739 m001 1/FeigenbaumDelta/Backhouse*ln(GAMMA(1/6))^2 4334902918284768 r009 Im(z^3+c),c=-9/86+28/55*I,n=38 4334902918417948 r009 Im(z^3+c),c=-9/86+28/55*I,n=36 4334902918650688 r009 Im(z^3+c),c=-9/86+28/55*I,n=35 4334902918851781 r009 Im(z^3+c),c=-9/86+28/55*I,n=40 4334902919175338 r009 Im(z^3+c),c=-9/86+28/55*I,n=42 4334902919288572 r009 Im(z^3+c),c=-9/86+28/55*I,n=44 4334902919307466 r009 Im(z^3+c),c=-9/86+28/55*I,n=47 4334902919308913 r009 Im(z^3+c),c=-9/86+28/55*I,n=49 4334902919310712 r009 Im(z^3+c),c=-9/86+28/55*I,n=51 4334902919311531 r009 Im(z^3+c),c=-9/86+28/55*I,n=53 4334902919311777 r009 Im(z^3+c),c=-9/86+28/55*I,n=55 4334902919311790 r009 Im(z^3+c),c=-9/86+28/55*I,n=58 4334902919311797 r009 Im(z^3+c),c=-9/86+28/55*I,n=60 4334902919311800 r009 Im(z^3+c),c=-9/86+28/55*I,n=56 4334902919311803 r009 Im(z^3+c),c=-9/86+28/55*I,n=62 4334902919311804 r009 Im(z^3+c),c=-9/86+28/55*I,n=64 4334902919311806 r009 Im(z^3+c),c=-9/86+28/55*I,n=63 4334902919311809 r009 Im(z^3+c),c=-9/86+28/55*I,n=61 4334902919311816 r009 Im(z^3+c),c=-9/86+28/55*I,n=59 4334902919311820 r009 Im(z^3+c),c=-9/86+28/55*I,n=57 4334902919311913 r009 Im(z^3+c),c=-9/86+28/55*I,n=54 4334902919312385 r009 Im(z^3+c),c=-9/86+28/55*I,n=52 4334902919313674 r009 Im(z^3+c),c=-9/86+28/55*I,n=50 4334902919314306 r009 Im(z^3+c),c=-9/86+28/55*I,n=46 4334902919315747 r009 Im(z^3+c),c=-9/86+28/55*I,n=48 4334902919316567 r009 Im(z^3+c),c=-9/86+28/55*I,n=45 4334902919374241 r009 Im(z^3+c),c=-9/86+28/55*I,n=43 4334902919575113 r009 Im(z^3+c),c=-9/86+28/55*I,n=41 4334902920040828 r009 Im(z^3+c),c=-9/86+28/55*I,n=39 4334902920515754 r009 Im(z^3+c),c=-9/86+28/55*I,n=37 4334902924177561 r009 Im(z^3+c),c=-9/86+28/55*I,n=34 4334902927784041 a001 843/13*121393^(14/39) 4334902935386902 m005 (1/2*gamma+7/10)/(4/7*exp(1)+8/11) 4334902937214758 a007 Real Root Of -385*x^4+983*x^3+710*x^2+863*x-574 4334902942061432 a001 4181/11*2^(11/58) 4334902949765117 a001 14930208*2207^(7/16) 4334902951224414 r009 Im(z^3+c),c=-9/86+28/55*I,n=32 4334902958236986 r009 Im(z^3+c),c=-9/86+28/55*I,n=25 4334902961484298 m005 (1/2*3^(1/2)-2/9)/(8/9*Zeta(3)+5/12) 4334902974787347 m001 (ZetaP(4)+ZetaQ(4))/(sin(1)+cos(1/12*Pi)) 4334902984925211 r009 Re(z^3+c),c=-1/16+25/57*I,n=10 4334902987021112 s001 sum(1/10^(n-1)*A268996[n]/n!^2,n=1..infinity) 4334902996113291 a001 43133785636/161*843^(1/14) 4334903004031229 a007 Real Root Of 627*x^4-955*x^3-569*x^2-782*x-332 4334903005388175 a001 2971215073/322*2207^(1/2) 4334903022549120 r002 50th iterates of z^2 + 4334903025690854 a007 Real Root Of 628*x^4-274*x^3+146*x^2-653*x-355 4334903026118980 r005 Re(z^2+c),c=-51/82+2/39*I,n=39 4334903027671076 r005 Im(z^2+c),c=-89/70+1/46*I,n=12 4334903031996934 r009 Im(z^3+c),c=-9/86+28/55*I,n=30 4334903033426829 r005 Re(z^2+c),c=-49/82+16/57*I,n=62 4334903035371409 a007 Real Root Of 551*x^4+408*x^3+15*x^2-917*x+342 4334903037235056 r005 Re(z^2+c),c=-21/34+34/123*I,n=47 4334903057539135 m001 (KomornikLoreti+Porter)/(Stephens+ZetaP(3)) 4334903061011235 a001 1836311903/322*2207^(9/16) 4334903062635357 s002 sum(A172738[n]/((exp(n)+1)/n),n=1..infinity) 4334903071463759 m001 (3^(1/3)-LambertW(1))/(-Kolakoski+Lehmer) 4334903074417788 m001 (BesselJ(1,1)+Paris)/(ln(gamma)-ln(2)) 4334903087794914 m001 (Psi(1,1/3)+Artin)/(-Riemann3rdZero+Thue) 4334903088952702 r005 Im(z^2+c),c=5/38+23/41*I,n=46 4334903090050933 r002 31th iterates of z^2 + 4334903099083887 m001 ln(Trott)/DuboisRaymond^2*GAMMA(1/4) 4334903109702302 r009 Re(z^3+c),c=-13/42+23/33*I,n=8 4334903110171777 m001 (gamma(1)+BesselI(0,2))/(Conway-Kolakoski) 4334903114026870 m001 (gamma(1)-gamma(2))/(Kolakoski+Robbin) 4334903114574574 r002 31th iterates of z^2 + 4334903116634295 a001 567451585/161*2207^(5/8) 4334903142935063 l006 ln(8600/8981) 4334903162587612 a007 Real Root Of 868*x^4+92*x^3+702*x^2-392*x-325 4334903165459049 r005 Re(z^2+c),c=-13/21+3/50*I,n=40 4334903171127584 k002 Champernowne real with 239/2*n^2-57/2*n-87 4334903172257355 a001 701408733/322*2207^(11/16) 4334903181418190 r005 Im(z^2+c),c=1/78+34/59*I,n=32 4334903183177863 m001 1/exp((3^(1/3)))*Porter^2/GAMMA(19/24) 4334903184539704 r009 Im(z^3+c),c=-9/86+28/55*I,n=28 4334903194362379 m001 Lehmer^2/Conway^2/exp(GAMMA(11/24))^2 4334903204988017 a007 Real Root Of 627*x^4-476*x^3-50*x^2-940*x-459 4334903205209452 r009 Im(z^3+c),c=-9/86+28/55*I,n=26 4334903225559629 a001 2207/121393*233^(32/55) 4334903226572739 m001 1/cos(Pi/5)^2*exp(cos(1))*sqrt(1+sqrt(3)) 4334903227880417 a001 433494437/322*2207^(3/4) 4334903235526069 m001 1/GAMMA(3/4)*Backhouse/exp(Zeta(7)) 4334903256409375 r005 Re(z^2+c),c=-5/8+33/137*I,n=29 4334903276559763 a001 10983760033/41*47^(1/8) 4334903283503479 a001 133957148/161*2207^(13/16) 4334903290527674 a007 Real Root Of 195*x^4+761*x^3-332*x^2+47*x-425 4334903294502995 m001 1/TwinPrimes/MertensB1*ln(BesselK(0,1))^2 4334903296463478 r009 Im(z^3+c),c=-23/54+11/27*I,n=48 4334903299758482 s001 sum(exp(-Pi/4)^(n-1)*A060232[n],n=1..infinity) 4334903302544691 a007 Real Root Of 139*x^4-892*x^3-977*x^2-971*x+44 4334903339126542 a001 165580141/322*2207^(7/8) 4334903350202988 m001 (Ei(1,1)+ZetaQ(3))/(3^(1/3)-Catalan) 4334903355355618 r005 Re(z^2+c),c=-53/86+4/31*I,n=47 4334903359216306 r005 Im(z^2+c),c=15/46+13/43*I,n=30 4334903376575246 r005 Re(z^2+c),c=-21/34+11/95*I,n=63 4334903381344867 a007 Real Root Of 113*x^4+259*x^3-991*x^2+18*x-104 4334903383487407 m001 exp(1/Pi)+PlouffeB^Zeta(1/2) 4334903394749606 a001 14619165/46*2207^(15/16) 4334903404245528 l006 ln(2416/3727) 4334903413112266 m001 (-Thue+ThueMorse)/(Psi(1,1/3)+exp(-1/2*Pi)) 4334903423730948 r009 Im(z^3+c),c=-2/9+33/59*I,n=5 4334903429163614 m001 polylog(4,1/2)^(Zeta(3)*GAMMA(11/12)) 4334903431822899 a001 53316291173/322*843^(1/7) 4334903441181590 g005 GAMMA(2/11)*GAMMA(7/8)*GAMMA(6/7)/GAMMA(7/11) 4334903448369521 r002 52th iterates of z^2 + 4334903449969604 a001 142618323504/329 4334903460582974 r005 Re(z^2+c),c=-41/78+1/2*I,n=5 4334903494036386 r002 31th iterates of z^2 + 4334903503226681 r005 Im(z^2+c),c=-43/82+29/61*I,n=19 4334903505438735 m001 1/GAMMA(19/24)^2*ln(GAMMA(1/4))*arctan(1/2) 4334903517664598 m001 GAMMA(5/24)-ThueMorse^Pi 4334903517664598 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)-ThueMorse^Pi 4334903521161810 s002 sum(A014431[n]/(n*exp(pi*n)+1),n=1..infinity) 4334903526785711 r005 Im(z^2+c),c=23/64+11/62*I,n=51 4334903530757627 a007 Real Root Of 183*x^4+602*x^3-993*x^2-722*x-52 4334903553778079 m001 (ln(gamma)-Zeta(1/2))/(Riemann2ndZero-Trott) 4334903556184323 m001 (Bloch+Paris)/(Shi(1)+sin(1/12*Pi)) 4334903556619288 a007 Real Root Of -175*x^4+276*x^3-502*x^2+669*x+413 4334903568255894 r005 Im(z^2+c),c=1/118+25/44*I,n=63 4334903574214320 a001 123/63245986*13^(5/16) 4334903578537874 a007 Real Root Of 109*x^4+512*x^3+374*x^2+671*x-902 4334903578544761 r009 Im(z^3+c),c=-17/46+24/55*I,n=36 4334903582352753 h001 (7/12*exp(1)+1/9)/(5/11*exp(2)+5/9) 4334903587063892 r005 Re(z^2+c),c=-1/118+5/24*I,n=17 4334903588282608 r005 Im(z^2+c),c=3/62+13/24*I,n=57 4334903603620334 a007 Real Root Of 23*x^4+974*x^3-979*x^2+830*x-164 4334903622668380 r002 13th iterates of z^2 + 4334903655092181 m005 (1/3*2^(1/2)+1/12)/(2/3*3^(1/2)+1/8) 4334903660422494 r005 Re(z^2+c),c=-41/66+1/47*I,n=51 4334903661334566 r002 64th iterates of z^2 + 4334903674221414 m005 (1/2*5^(1/2)-5/6)/(3/10*Pi-2/7) 4334903676074731 a001 139583862445/2207*199^(4/11) 4334903687348601 r004 Re(z^2+c),c=5/34+5/9*I,z(0)=I,n=9 4334903689399080 r005 Re(z^2+c),c=-67/110+1/58*I,n=21 4334903702405660 r009 Re(z^3+c),c=-7/90+17/23*I,n=47 4334903735282893 m001 (Conway+Niven)/(ArtinRank2-CareFree) 4334903744357676 s002 sum(A049079[n]/((2^n+1)/n),n=1..infinity) 4334903794227736 r005 Im(z^2+c),c=13/90+12/23*I,n=33 4334903796428548 a007 Real Root Of -716*x^4+247*x^3+469*x^2+816*x+311 4334903816908296 r002 35th iterates of z^2 + 4334903822652470 m005 (1/2*2^(1/2)-3/7)/(1/4*Pi-1/7) 4334903822996223 a001 9349/1597*832040^(6/19) 4334903838495325 r002 31th iterates of z^2 + 4334903842010415 r002 13th iterates of z^2 + 4334903865356876 a001 3571/10946*7778742049^(6/19) 4334903867532551 a001 32951280099/322*843^(3/14) 4334903883064501 m001 1/exp(CareFree)^2/ArtinRank2^2/OneNinth^2 4334903899486525 m003 3+6*Cot[1/2+Sqrt[5]/2]+Tan[1/2+Sqrt[5]/2]/3 4334903919307757 r002 54th iterates of z^2 + 4334903924213604 r002 63th iterates of z^2 + 4334903925412421 a008 Real Root of x^3-6423*x-196972 4334903939978021 r009 Re(z^3+c),c=-11/118+13/18*I,n=35 4334903945088721 l006 ln(4961/7653) 4334903950706777 q001 1196/2759 4334903953673766 a007 Real Root Of -208*x^4-736*x^3+856*x^2+606*x+36 4334903953800842 m001 exp(Salem)/PisotVijayaraghavan^2*GAMMA(1/24) 4334903970695981 a001 2/233*514229^(14/17) 4334903999873929 r005 Im(z^2+c),c=23/102+9/20*I,n=5 4334904017392778 m001 ln(3)^ErdosBorwein/FeigenbaumD 4334904023358039 r005 Im(z^2+c),c=-87/64+3/46*I,n=3 4334904035329860 m001 1/GAMMA(11/12)/exp(BesselJ(0,1))/Zeta(7)^2 4334904057442085 a007 Real Root Of 171*x^4+585*x^3-709*x^2+22*x+689 4334904064320429 a007 Real Root Of 897*x^4+256*x^3-454*x^2-797*x-271 4334904072305877 r005 Im(z^2+c),c=-1/44+18/31*I,n=56 4334904080047200 m005 (1/2*Pi-3/7)/(exp(1)-1/12) 4334904091796040 m001 (RenyiParking-Robbin)/(Tetranacci+ZetaQ(2)) 4334904097063250 m001 (exp(Pi)*ln(gamma)+Khinchin)/exp(Pi) 4334904097063250 m001 (exp(Pi)*log(gamma)+Khinchin)/exp(Pi) 4334904097063250 m001 log(gamma)+Khinchin*exp(-Pi) 4334904102030613 r002 59th iterates of z^2 + 4334904112746311 r005 Re(z^2+c),c=-10/21+13/44*I,n=6 4334904118791305 b008 ArcCsch[1+EulerGamma*(-1+Pi)] 4334904146483399 m001 (-gamma(3)+PlouffeB)/(2^(1/2)-arctan(1/3)) 4334904150698979 r009 Re(z^3+c),c=-13/34+19/30*I,n=45 4334904155698209 a001 24476/4181*832040^(6/19) 4334904161878887 a001 9349/28657*7778742049^(6/19) 4334904171427644 k002 Champernowne real with 120*n^2-30*n-86 4334904171895995 r005 Im(z^2+c),c=-79/90+17/53*I,n=4 4334904182518963 a007 Real Root Of -816*x^4+148*x^3-385*x^2+740*x+434 4334904192526003 b008 Cos[1+CosIntegral[8]] 4334904192974647 a007 Real Root Of 186*x^4+748*x^3-338*x^2-472*x-443 4334904196722738 l006 ln(85/6487) 4334904198766431 r009 Im(z^3+c),c=-3/14+35/64*I,n=5 4334904202548390 r005 Re(z^2+c),c=-31/54+15/38*I,n=37 4334904204238779 a001 64079/10946*832040^(6/19) 4334904205140865 a001 24476/75025*7778742049^(6/19) 4334904208197762 s002 sum(A119595[n]/(n*pi^n-1),n=1..infinity) 4334904211320752 a001 167761/28657*832040^(6/19) 4334904211452703 a001 64079/196418*7778742049^(6/19) 4334904212081933 m005 (1/2*Pi+2/3)/(1/9*exp(1)-9/11) 4334904212353998 a001 439204/75025*832040^(6/19) 4334904212373588 a001 167761/514229*7778742049^(6/19) 4334904212504747 a001 1149851/196418*832040^(6/19) 4334904212507943 a001 439204/1346269*7778742049^(6/19) 4334904212526741 a001 3010349/514229*832040^(6/19) 4334904212527545 a001 1149851/3524578*7778742049^(6/19) 4334904212529950 a001 7881196/1346269*832040^(6/19) 4334904212530405 a001 3010349/9227465*7778742049^(6/19) 4334904212530418 a001 20633239/3524578*832040^(6/19) 4334904212530486 a001 54018521/9227465*832040^(6/19) 4334904212530496 a001 141422324/24157817*832040^(6/19) 4334904212530498 a001 370248451/63245986*832040^(6/19) 4334904212530498 a001 969323029/165580141*832040^(6/19) 4334904212530498 a001 2537720636/433494437*832040^(6/19) 4334904212530498 a001 6643838879/1134903170*832040^(6/19) 4334904212530498 a001 17393796001/2971215073*832040^(6/19) 4334904212530498 a001 45537549124/7778742049*832040^(6/19) 4334904212530498 a001 119218851371/20365011074*832040^(6/19) 4334904212530498 a001 312119004989/53316291173*832040^(6/19) 4334904212530498 a001 817138163596/139583862445*832040^(6/19) 4334904212530498 a001 14662949395604/2504730781961*832040^(6/19) 4334904212530498 a001 440719107401/75283811239*832040^(6/19) 4334904212530498 a001 505019158607/86267571272*832040^(6/19) 4334904212530498 a001 64300051206/10983760033*832040^(6/19) 4334904212530498 a001 73681302247/12586269025*832040^(6/19) 4334904212530498 a001 9381251041/1602508992*832040^(6/19) 4334904212530498 a001 10749957122/1836311903*832040^(6/19) 4334904212530498 a001 1368706081/233802911*832040^(6/19) 4334904212530498 a001 1568397607/267914296*832040^(6/19) 4334904212530498 a001 199691526/34111385*832040^(6/19) 4334904212530499 a001 228826127/39088169*832040^(6/19) 4334904212530502 a001 29134601/4976784*832040^(6/19) 4334904212530529 a001 33385282/5702887*832040^(6/19) 4334904212530707 a001 4250681/726103*832040^(6/19) 4334904212530822 a001 7881196/24157817*7778742049^(6/19) 4334904212530883 a001 20633239/63245986*7778742049^(6/19) 4334904212530892 a001 54018521/165580141*7778742049^(6/19) 4334904212530893 a001 141422324/433494437*7778742049^(6/19) 4334904212530893 a001 370248451/1134903170*7778742049^(6/19) 4334904212530893 a001 969323029/2971215073*7778742049^(6/19) 4334904212530893 a001 2537720636/7778742049*7778742049^(6/19) 4334904212530893 a001 6643838879/20365011074*7778742049^(6/19) 4334904212530893 a001 17393796001/53316291173*7778742049^(6/19) 4334904212530893 a001 45537549124/139583862445*7778742049^(6/19) 4334904212530893 a001 119218851371/365435296162*7778742049^(6/19) 4334904212530893 a001 312119004989/956722026041*7778742049^(6/19) 4334904212530893 a001 817138163596/2504730781961*7778742049^(6/19) 4334904212530893 a001 1322157322203/4052739537881*7778742049^(6/19) 4334904212530893 a001 505019158607/1548008755920*7778742049^(6/19) 4334904212530893 a001 192900153618/591286729879*7778742049^(6/19) 4334904212530893 a001 10525900321/32264490531*7778742049^(6/19) 4334904212530893 a001 28143753123/86267571272*7778742049^(6/19) 4334904212530893 a001 10749957122/32951280099*7778742049^(6/19) 4334904212530893 a001 4106118243/12586269025*7778742049^(6/19) 4334904212530893 a001 224056801/686789568*7778742049^(6/19) 4334904212530893 a001 599074578/1836311903*7778742049^(6/19) 4334904212530894 a001 228826127/701408733*7778742049^(6/19) 4334904212530894 a001 87403803/267914296*7778742049^(6/19) 4334904212530897 a001 4769326/14619165*7778742049^(6/19) 4334904212530921 a001 12752043/39088169*7778742049^(6/19) 4334904212531080 a001 4870847/14930352*7778742049^(6/19) 4334904212531933 a001 4870847/832040*832040^(6/19) 4334904212532172 a001 1860498/5702887*7778742049^(6/19) 4334904212539660 a001 101521/311187*7778742049^(6/19) 4334904212540334 a001 620166/105937*832040^(6/19) 4334904212590979 a001 271443/832040*7778742049^(6/19) 4334904212597915 a001 710647/121393*832040^(6/19) 4334904212942726 a001 103682/317811*7778742049^(6/19) 4334904212992580 a001 90481/15456*832040^(6/19) 4334904215353633 a001 39603/121393*7778742049^(6/19) 4334904215697653 a001 103682/17711*832040^(6/19) 4334904221447086 r005 Re(z^2+c),c=-41/66+1/24*I,n=49 4334904227779499 m001 MinimumGamma^2/Magata*ln(Zeta(7))^2 4334904231878238 a001 2161/6624*7778742049^(6/19) 4334904234238501 a001 13201/2255*832040^(6/19) 4334904246022240 r009 Im(z^3+c),c=-25/66+13/30*I,n=13 4334904247322212 m001 (Psi(1,1/3)+sin(1))/(Ei(1,1)+Riemann3rdZero) 4334904257782259 b008 21*PolyLog[2,-2]^2 4334904267329095 a007 Real Root Of -467*x^4-23*x^3-290*x^2+924*x-4 4334904290259029 r002 28th iterates of z^2 + 4334904303242247 a001 10182505537/161*843^(2/7) 4334904311739549 r009 Re(z^3+c),c=-29/56+17/47*I,n=9 4334904316709390 m001 (-GAMMA(5/12)+4)/(-ln(3)+2/3) 4334904319979800 m005 (1/3*3^(1/2)-2/11)/(7/10*3^(1/2)-3/10) 4334904325415365 m005 (-9/28+1/4*5^(1/2))/(2/5*Zeta(3)+5) 4334904334558682 a007 Real Root Of 971*x^4-314*x^3+846*x^2+897*x+170 4334904343975810 a007 Real Root Of 168*x^4+602*x^3-607*x^2-460*x-873 4334904345139568 a001 5778/17711*7778742049^(6/19) 4334904349364185 m001 (Pi+Psi(2,1/3))*Ei(1)*BesselJ(1,1) 4334904353716887 m001 FeigenbaumB-ReciprocalFibonacci^DuboisRaymond 4334904355200505 r002 34th iterates of z^2 + 4334904361319367 a001 15127/2584*832040^(6/19) 4334904363617646 r005 Im(z^2+c),c=-29/26+26/83*I,n=7 4334904396308260 r005 Im(z^2+c),c=19/64+18/59*I,n=17 4334904401265274 a007 Real Root Of 16*x^4-894*x^3+453*x^2-970*x-579 4334904414939086 r005 Im(z^2+c),c=-13/10+9/212*I,n=49 4334904418463853 m001 1/TreeGrowth2nd^2/Robbin/ln(GAMMA(7/12))^2 4334904435426829 r002 33th iterates of z^2 + 4334904436199129 a001 182717648081/2889*199^(4/11) 4334904437870056 r005 Re(z^2+c),c=-4/7+31/88*I,n=52 4334904446233975 a001 23725150497407/3*8^(9/11) 4334904458517832 l006 ln(2545/3926) 4334904462335540 r005 Re(z^2+c),c=-1/118+5/24*I,n=16 4334904475001713 m006 (2/3*exp(Pi)+2)/(3/4*exp(2*Pi)+2/5) 4334904478460073 r002 52th iterates of z^2 + 4334904488053644 r005 Im(z^2+c),c=1/26+31/48*I,n=10 4334904492260495 a007 Real Root Of 186*x^4+764*x^3-184*x^2-130*x-551 4334904496703862 r002 38th iterates of z^2 + 4334904499257326 r009 Im(z^3+c),c=-3/94+44/57*I,n=10 4334904503538156 a007 Real Root Of -770*x^4+639*x^3+234*x^2+613*x+301 4334904506522783 m008 (2/5*Pi^3+5)/(4*Pi^2+2/3) 4334904510835993 a007 Real Root Of -239*x^4-986*x^3+233*x^2+9*x-263 4334904514629460 m001 1/FeigenbaumC/DuboisRaymond/ln(sqrt(5))^2 4334904517795611 r005 Re(z^2+c),c=-11/18+17/89*I,n=63 4334904521775921 m001 (RenyiParking+TreeGrowth2nd)/Trott2nd 4334904544846296 m005 (1/2*5^(1/2)+3/11)/(1/12*gamma+3/11) 4334904547099806 a001 956722026041/15127*199^(4/11) 4334904563279997 a001 2504730781961/39603*199^(4/11) 4334904565640656 a001 3278735159921/51841*199^(4/11) 4334904566197931 a001 10610209857723/167761*199^(4/11) 4334904567099623 a001 4052739537881/64079*199^(4/11) 4334904569318375 m005 (1/2*exp(1)-1/2)/(7/10*5^(1/2)+5/12) 4334904573279906 a001 387002188980/6119*199^(4/11) 4334904580336578 m007 (-1/3*gamma-2/3)/(-1/2*gamma-ln(2)-1) 4334904580846978 r005 Im(z^2+c),c=9/58+25/54*I,n=35 4334904610731805 m001 1/Rabbit/exp(Cahen)*BesselJ(0,1)^2 4334904615640197 a001 591286729879/9349*199^(4/11) 4334904618187401 m002 2-Sinh[Pi]/6-Sinh[Pi]/Pi^4 4334904619432459 r005 Re(z^2+c),c=9/26+3/28*I,n=21 4334904624898395 r005 Re(z^2+c),c=-141/106+1/20*I,n=14 4334904632350870 a007 Real Root Of 209*x^4+697*x^3-995*x^2-379*x+30 4334904634537750 r009 Im(z^3+c),c=-45/82+9/35*I,n=58 4334904654437125 m001 1/exp(1)*ln(Riemann3rdZero)/sqrt(1+sqrt(3))^2 4334904656510131 a007 Real Root Of 113*x^4-792*x^3+556*x^2-90*x-212 4334904661155519 s002 sum(A097065[n]/(pi^n-1),n=1..infinity) 4334904672170307 m001 (exp(1/2)+LandauRamanujan)/GAMMA(1/6) 4334904675825122 r005 Re(z^2+c),c=-11/19+14/47*I,n=12 4334904678656527 r005 Re(z^2+c),c=-11/18+25/128*I,n=45 4334904689341448 r005 Re(z^2+c),c=-61/106+7/25*I,n=24 4334904720487925 m001 (Otter+Trott2nd)/(ln(2)-GolombDickman) 4334904738951987 a001 12586269025/322*843^(5/14) 4334904740206191 m001 (exp(1)-sin(1/5*Pi))/(-FeigenbaumC+Totient) 4334904744265794 m001 (3^(1/2)+Si(Pi))/(-exp(-1/2*Pi)+MertensB2) 4334904767903017 r001 6i'th iterates of 2*x^2-1 of 4334904774615037 r005 Re(z^2+c),c=-81/110+3/31*I,n=47 4334904783188177 m005 (1/2*gamma+8/11)/(5/9*exp(1)+5/6) 4334904786195035 a007 Real Root Of 487*x^4-864*x^3-26*x^2-266*x-198 4334904803553182 r005 Im(z^2+c),c=13/110+25/51*I,n=61 4334904829467839 r002 31th iterates of z^2 + 4334904841945245 r005 Im(z^2+c),c=3/122+5/9*I,n=52 4334904855018483 r002 17th iterates of z^2 + 4334904858086228 a007 Real Root Of 262*x^4-2*x^3-472*x^2-806*x+429 4334904882377680 a007 Real Root Of 324*x^4-985*x^3+878*x^2-213*x-349 4334904889970674 a001 36/341*(1/2+1/2*5^(1/2))^46 4334904889970674 a001 36/341*10749957122^(23/24) 4334904890372670 a001 305/161*2537720636^(8/9) 4334904890372670 a001 305/161*312119004989^(8/11) 4334904890372670 a001 305/161*(1/2+1/2*5^(1/2))^40 4334904890372670 a001 305/161*23725150497407^(5/8) 4334904890372670 a001 305/161*73681302247^(10/13) 4334904890372670 a001 305/161*28143753123^(4/5) 4334904890372670 a001 305/161*10749957122^(5/6) 4334904890372670 a001 305/161*4106118243^(20/23) 4334904890372670 a001 305/161*1568397607^(10/11) 4334904890372670 a001 305/161*599074578^(20/21) 4334904890513287 p003 LerchPhi(1/125,6,161/65) 4334904896505691 r005 Re(z^2+c),c=-59/98+7/30*I,n=45 4334904898388998 a003 cos(Pi*7/111)-cos(Pi*6/19) 4334904905431518 a007 Real Root Of -100*x^4-251*x^3+798*x^2-176*x-893 4334904905981976 a001 225851433717/3571*199^(4/11) 4334904915274762 r002 40th iterates of z^2 + 4334904924968442 m001 (MadelungNaCl+Niven)/(ln(3)-Ei(1)) 4334904927673558 a007 Real Root Of -6*x^4+642*x^3+213*x^2+994*x-523 4334904946565675 l006 ln(5219/8051) 4334904955205938 r009 Im(z^3+c),c=-25/66+23/41*I,n=6 4334904966481291 r002 34th iterates of z^2 + 4334904969650173 h001 (1/7*exp(1)+1/2)/(1/5*exp(2)+4/7) 4334904977049691 r005 Re(z^2+c),c=-37/60+7/53*I,n=57 4334904983206283 r002 25th iterates of z^2 + 4334904987702036 m001 (FellerTornier+PlouffeB)/(1+sin(1)) 4334904991096044 r005 Im(z^2+c),c=9/44+18/43*I,n=48 4334904993760542 m005 (1/2*exp(1)+5/6)/(1/10*gamma+5) 4334904995604293 p001 sum((-1)^n/(596*n+23)/(12^n),n=0..infinity) 4334905011093593 a007 Real Root Of 85*x^4+300*x^3-56*x^2-738*x+303 4334905016627660 r002 2th iterates of z^2 + 4334905053966734 m001 (-KomornikLoreti+Thue)/(exp(1)-gamma) 4334905057211352 a003 cos(Pi*8/81)*sin(Pi*17/113) 4334905062244528 r002 24th iterates of z^2 + 4334905069843095 m005 (1/2*2^(1/2)-3/7)/(1/11*3^(1/2)-4/5) 4334905072211096 a007 Real Root Of -854*x^4-856*x^3+161*x^2+807*x+280 4334905080128877 b008 -5+InverseGudermannian[1]^(-2) 4334905080758303 r009 Im(z^3+c),c=-3/29+26/51*I,n=11 4334905108400552 r002 28th iterates of z^2 + 4334905118183519 a001 233/64079*3^(4/25) 4334905121444277 a001 2207/6765*7778742049^(6/19) 4334905142316820 h001 (7/12*exp(1)+5/9)/(6/11*exp(2)+10/11) 4334905144589860 r001 5i'th iterates of 2*x^2-1 of 4334905148623992 a003 sin(Pi*8/117)/cos(Pi*37/110) 4334905174661770 a001 7778742049/322*843^(3/7) 4334905175906261 s001 sum(exp(-Pi/2)^n*A168233[n],n=1..infinity) 4334905181652589 p004 log(16301/10567) 4334905184294719 r005 Re(z^2+c),c=-4/3+7/134*I,n=26 4334905186535122 r005 Re(z^2+c),c=-65/106+6/35*I,n=54 4334905194769809 r005 Im(z^2+c),c=-3/25+11/18*I,n=23 4334905198212825 r002 52th iterates of z^2 + 4334905201972055 r009 Re(z^3+c),c=-14/29+7/43*I,n=16 4334905206233856 a007 Real Root Of -6*x^4+133*x^3+547*x^2-749*x-573 4334905212273321 r002 35th iterates of z^2 + 4334905213153968 s002 sum(A233147[n]/(n*exp(pi*n)+1),n=1..infinity) 4334905228877088 r005 Re(z^2+c),c=1/114+16/23*I,n=6 4334905232344759 a001 1926/329*832040^(6/19) 4334905240500796 a007 Real Root Of -212*x^4-684*x^3+910*x^2-426*x+196 4334905244144456 p003 LerchPhi(1/125,2,289/190) 4334905261899808 r009 Re(z^3+c),c=-11/31+1/49*I,n=15 4334905269541990 r002 49th iterates of z^2 + 4334905279655121 m001 (ln(Pi)+Khinchin)/(2^(1/3)-Psi(1,1/3)) 4334905282968668 r005 Im(z^2+c),c=41/126+18/59*I,n=42 4334905292777080 m001 (Porter+Sierpinski)/(exp(1/Pi)-BesselJ(1,1)) 4334905307808315 r002 50th iterates of z^2 + 4334905312278630 r009 Im(z^3+c),c=-47/110+24/59*I,n=35 4334905318406755 s002 sum(A255491[n]/(2^n-1),n=1..infinity) 4334905322092321 r002 8th iterates of z^2 + 4334905323526740 m004 -4+15*Pi+Sin[Sqrt[5]*Pi]/3 4334905327368285 r002 44th iterates of z^2 + 4334905349144176 r005 Re(z^2+c),c=-67/106+3/13*I,n=37 4334905359407181 r005 Re(z^2+c),c=-55/94+9/37*I,n=23 4334905359481630 r005 Im(z^2+c),c=35/106+19/61*I,n=40 4334905397783148 m001 (Artin-Psi(2,1/3))/(-MertensB3+Riemann1stZero) 4334905411068928 l006 ln(2674/4125) 4334905416943708 r004 Im(z^2+c),c=5/38-6/19*I,z(0)=exp(1/8*I*Pi),n=5 4334905423997991 r002 4th iterates of z^2 + 4334905433506166 b008 5*ArcCsc[Sinh[Pi]] 4334905444555323 r005 Re(z^2+c),c=-18/29+1/26*I,n=36 4334905466036597 k005 Champernowne real with floor(Pi*(18*n+120)) 4334905469936611 m001 Gompertz^(3^(1/3))*Gompertz^ZetaP(3) 4334905473219064 r005 Im(z^2+c),c=2/19+23/44*I,n=32 4334905476046617 k001 Champernowne real with 57*n+376 4334905476046617 k005 Champernowne real with floor(sqrt(3)*(33*n+217)) 4334905481720533 a007 Real Root Of 884*x^4-522*x^3+689*x^2+275*x-84 4334905484860806 m005 (1/2*Pi+2/7)/(2/9*gamma+3/10) 4334905485808954 a007 Real Root Of 534*x^4-525*x^3+228*x^2-858*x+353 4334905491988014 a001 7/17711*233^(1/59) 4334905493147316 m001 (5^(1/2)-sin(1))/(-Zeta(1,2)+BesselI(0,2)) 4334905494729147 r002 49th iterates of z^2 + 4334905513134827 a007 Real Root Of 465*x^4-176*x^3+145*x^2-609*x-322 4334905523714363 p004 log(33199/21521) 4334905525903106 m001 (-gamma(3)+GAMMA(5/6))/(1-2^(1/3)) 4334905529276301 m005 (1/2*3^(1/2)+7/12)/(7/9*Pi+9/10) 4334905544549487 a001 3010349/233*4807526976^(6/23) 4334905544590145 a001 54018521/233*75025^(6/23) 4334905545744407 r002 30th iterates of z^2 + 4334905549096644 r002 55th iterates of z^2 + 4334905551342961 r009 Im(z^3+c),c=-5/24+29/59*I,n=15 4334905561561345 r005 Im(z^2+c),c=9/86+16/31*I,n=29 4334905565208407 a001 105937/41*76^(28/43) 4334905565835474 r009 Re(z^3+c),c=-1/42+55/59*I,n=12 4334905566076030 a007 Real Root Of 893*x^4-977*x^3+800*x^2-954*x-675 4334905587452901 b008 -1+ExpIntegralEi[1/51] 4334905609248582 m001 (CareFree+Kac)/(1-ln(2)) 4334905610371597 a001 14930208*843^(1/2) 4334905618963716 r005 Re(z^2+c),c=-11/18+21/100*I,n=46 4334905621843545 r005 Re(z^2+c),c=-23/18+13/217*I,n=44 4334905625706510 r002 59th iterates of z^2 + 4334905637417614 l006 ln(107/8166) 4334905657763418 a007 Real Root Of 211*x^4+769*x^3-615*x^2+9*x-270 4334905660377358 q001 919/2120 4334905667757139 r005 Im(z^2+c),c=33/106+11/36*I,n=53 4334905670158469 r005 Im(z^2+c),c=1/24+35/64*I,n=43 4334905675970706 a007 Real Root Of 408*x^4-920*x^3-683*x^2-695*x-3 4334905685665683 l006 ln(4379/4573) 4334905686631194 m005 (1/2*Catalan+7/9)/(5/7*exp(1)+10/11) 4334905694255645 m001 (Magata-Riemann2ndZero)/(Ei(1,1)-Kac) 4334905706257822 a007 Real Root Of 560*x^4+961*x^3+688*x^2-568*x-317 4334905708470922 r005 Re(z^2+c),c=31/82+12/47*I,n=20 4334905711473696 s002 sum(A189985[n]/(16^n-1),n=1..infinity) 4334905725361901 r005 Re(z^2+c),c=-61/94+11/51*I,n=39 4334905726536504 a007 Real Root Of 262*x^4+986*x^3-478*x^2+937*x+846 4334905741023324 a003 cos(Pi*1/45)/cos(Pi*49/115) 4334905741592420 m001 Rabbit*ln(GlaisherKinkelin)^2*Pi^2 4334905760880704 r002 46th iterates of z^2 + 4334905761839656 r005 Re(z^2+c),c=-23/110+51/52*I,n=5 4334905772457967 r009 Im(z^3+c),c=-43/94+22/57*I,n=32 4334905777275081 r009 Re(z^3+c),c=-13/34+4/57*I,n=21 4334905809212834 m001 exp(BesselK(0,1))*BesselJ(0,1)/GAMMA(13/24)^2 4334905811000293 s002 sum(A203815[n]/(exp(2*pi*n)-1),n=1..infinity) 4334905820230533 r005 Im(z^2+c),c=9/110+15/29*I,n=62 4334905828927739 m002 -6+5*Pi^2+Tanh[Pi]/Pi^6 4334905830335280 r005 Im(z^2+c),c=-1/29+32/47*I,n=15 4334905832770682 r005 Re(z^2+c),c=-21/34+13/123*I,n=49 4334905834464123 r002 39th iterates of z^2 + 4334905834809592 m005 (1/2*Pi+5/8)/(1/10*3^(1/2)+1/3) 4334905836756145 h001 (1/8*exp(1)+9/11)/(3/10*exp(2)+5/11) 4334905844567097 r002 24th iterates of z^2 + 4334905853691234 l006 ln(5477/8449) 4334905853895334 r005 Im(z^2+c),c=1/32+31/53*I,n=37 4334905892380129 a007 Real Root Of -249*x^4-916*x^3+642*x^2-187*x+435 4334905897298995 a005 (1/sin(55/147*Pi))^850 4334905903056306 m001 1/exp(Zeta(1,2))^2*Ei(1)^2/cos(1) 4334905907223251 m001 GAMMA(11/12)^2*Khintchine/exp(cos(Pi/12))^2 4334905911099151 r002 5th iterates of z^2 + 4334905925304704 r002 49th iterates of z^2 + 4334905927991677 r005 Re(z^2+c),c=-47/118+10/19*I,n=22 4334905938015432 r002 62th iterates of z^2 + 4334905939533667 m001 (-Zeta(1/2)+QuadraticClass)/(Psi(2,1/3)+ln(3)) 4334905964072026 r005 Re(z^2+c),c=-14/27+17/43*I,n=25 4334905970735655 m008 (Pi^6-1/6)/(1/4*Pi^2-1/4) 4334905991938985 m001 1/exp(TreeGrowth2nd)^2*Lehmer/LambertW(1) 4334906017531046 m006 (4/5*Pi^2-1/6)/(1/3*exp(2*Pi)-1/5) 4334906023387836 r002 44th iterates of z^2 + 4334906030990738 a007 Real Root Of -440*x^4-32*x^3+992*x^2+846*x-535 4334906044521347 a001 43133785636/161*322^(1/12) 4334906046081468 a001 2971215073/322*843^(4/7) 4334906048824287 r005 Im(z^2+c),c=41/122+7/26*I,n=51 4334906060434052 r009 Im(z^3+c),c=-9/86+28/55*I,n=23 4334906074183949 m001 KhinchinHarmonic*(Riemann3rdZero-ZetaP(3)) 4334906118154655 r002 36th iterates of z^2 + 4334906127308713 m001 (3^(1/2)-GAMMA(23/24))/(GaussAGM+Kolakoski) 4334906136602875 r002 35th iterates of z^2 + 4334906153041455 m001 1/Catalan^2*Khintchine^2*exp(cos(Pi/5))^2 4334906165253858 m001 ZetaQ(3)^Artin*ZetaQ(3)^exp(1) 4334906188113861 r005 Im(z^2+c),c=6/23+23/62*I,n=28 4334906189650305 r009 Im(z^3+c),c=-9/94+24/47*I,n=11 4334906201497175 r005 Im(z^2+c),c=-49/106+14/29*I,n=6 4334906209330337 m001 1/FeigenbaumB*Artin/ln(Riemann3rdZero)^2 4334906216692008 m002 -6+Pi^(-6)+5*Pi^2 4334906225332138 r005 Re(z^2+c),c=-27/62+28/53*I,n=50 4334906226168246 m001 1/Catalan/exp(MertensB1)^2*sin(Pi/12)^2 4334906249243553 r005 Im(z^2+c),c=7/94+27/52*I,n=13 4334906257533323 r005 Im(z^2+c),c=6/17+7/31*I,n=63 4334906266777639 r002 28th iterates of z^2 + 4334906275943106 l006 ln(2803/4324) 4334906288104363 r005 Re(z^2+c),c=-14/23+19/64*I,n=52 4334906304217532 b008 1/2+E+Sqrt[ArcSec[Pi]] 4334906314485355 a007 Real Root Of -893*x^4+578*x^3+209*x^2+907*x-448 4334906318239792 r005 Re(z^2+c),c=-9/11+43/53*I,n=3 4334906329530285 r009 Im(z^3+c),c=-27/38+1/58*I,n=2 4334906339705057 m001 1/ln(Riemann2ndZero)^2*Artin*Zeta(5)^2 4334906341940812 m005 (1/3*Zeta(3)+1/5)/(3/11*2^(1/2)+1) 4334906346156921 m001 (Lehmer+Riemann2ndZero)/(ln(2)-DuboisRaymond) 4334906348428151 r002 39th iterates of z^2 + 4334906351442806 m001 (OneNinth+Tetranacci)/(BesselI(1,1)-MertensB2) 4334906360130057 r002 54th iterates of z^2 + 4334906374745479 m001 (Robbin+ZetaQ(2))/(Backhouse+DuboisRaymond) 4334906390461658 m008 (2/3*Pi^3-4)/(4*Pi^6+1/6) 4334906411454849 a003 cos(Pi*31/99)-sin(Pi*40/89) 4334906418460557 r005 Im(z^2+c),c=2/29+11/21*I,n=43 4334906470173126 r005 Re(z^2+c),c=-19/62+25/41*I,n=45 4334906472662275 a007 Real Root Of 204*x^4+992*x^3+288*x^2-745*x+130 4334906481791383 a001 1836311903/322*843^(9/14) 4334906493756060 a007 Real Root Of 207*x^4-967*x^3+986*x^2+829*x+88 4334906497531418 h001 (3/8*exp(2)+4/9)/(10/11*exp(2)+7/10) 4334906498928958 m001 arctan(1/3)^(Gompertz/cos(1/5*Pi)) 4334906523404704 m006 (2/3*exp(Pi)+4/5)/(2/5*Pi-5) 4334906523473794 m002 -3/Pi^4+Log[Pi]+3*ProductLog[Pi] 4334906523788176 r009 Re(z^3+c),c=-37/78+13/25*I,n=13 4334906526591083 m001 1/GAMMA(1/4)*KhintchineLevy/ln(GAMMA(5/12)) 4334906534345961 r005 Im(z^2+c),c=-1/122+29/52*I,n=17 4334906548691421 a007 Real Root Of -537*x^4+68*x^3-972*x^2+927*x+609 4334906559717846 r005 Re(z^2+c),c=-14/25+23/53*I,n=15 4334906561480365 r005 Im(z^2+c),c=-25/122+5/8*I,n=61 4334906564898062 r005 Re(z^2+c),c=25/126+19/34*I,n=48 4334906586711553 l006 ln(129/9845) 4334906623765426 r005 Im(z^2+c),c=7/24+26/61*I,n=27 4334906623906932 a007 Real Root Of -7*x^4+136*x^3+488*x^2-872*x+600 4334906634803953 r002 48th iterates of z^2 + 4334906642010608 r005 Im(z^2+c),c=7/66+32/61*I,n=32 4334906653140686 a007 Real Root Of -142*x^4-663*x^3-121*x^2+585*x+945 4334906655457752 r002 6th iterates of z^2 + 4334906659412549 a001 987/9349*47^(55/57) 4334906677022311 m001 (sin(1/12*Pi)-gamma(2))/(Robbin-Sarnak) 4334906679199148 l006 ln(5735/8847) 4334906700483820 r005 Re(z^2+c),c=-79/126+17/63*I,n=24 4334906727392252 m001 1/exp(sinh(1))^2/GolombDickman^2*sqrt(Pi) 4334906728051113 m005 (1/2*gamma+2)/(3*3^(1/2)+1/12) 4334906746275027 a007 Real Root Of 20*x^4-787*x^3+705*x^2-916*x+328 4334906749942627 m005 (1/2*Pi+1/4)/(4/11*Zeta(3)-6/7) 4334906767493491 r005 Re(z^2+c),c=-39/64+11/58*I,n=44 4334906770778523 a005 (1/cos(9/163*Pi))^97 4334906776313775 r005 Im(z^2+c),c=-105/94+11/39*I,n=18 4334906779413188 r002 41th iterates of z^2 + 4334906780250611 m001 (GAMMA(5/6)-Paris)/(Pi-BesselJ(0,1)) 4334906790314975 r005 Re(z^2+c),c=-7/10+17/213*I,n=35 4334906793640086 a007 Real Root Of 543*x^4+140*x^3+538*x^2-840*x-473 4334906820998137 r002 39th iterates of z^2 + 4334906841550853 m001 1/ln(Zeta(3))*Salem^2/log(2+sqrt(3))^2 4334906844991673 r005 Re(z^2+c),c=-65/102+20/49*I,n=44 4334906847219949 a007 Real Root Of 26*x^4+248*x^3+932*x^2-727*x-471 4334906876065046 m001 (ln(3)+Ei(1))/(2*Pi/GAMMA(5/6)+Totient) 4334906877273483 a007 Real Root Of -350*x^4+319*x^3+431*x^2+949*x-506 4334906896015178 a001 21566892818/341*199^(4/11) 4334906896508605 r005 Im(z^2+c),c=7/25+11/32*I,n=44 4334906896627346 r002 35th iterates of z^2 + 4334906903812997 r002 51th iterates of z^2 + 4334906917501342 a001 567451585/161*843^(5/7) 4334906921452505 r005 Re(z^2+c),c=13/82+5/16*I,n=27 4334906931551125 r005 Re(z^2+c),c=-19/26+1/84*I,n=42 4334906948425505 p001 sum((-1)^n/(215*n+23)/(32^n),n=0..infinity) 4334906952913011 r005 Re(z^2+c),c=-5/8+27/97*I,n=47 4334906970286031 q001 1561/3601 4334906996964518 r002 50th iterates of z^2 + 4334907001927022 m001 (-Otter+ZetaP(4))/(BesselI(0,1)-BesselK(1,1)) 4334907010855487 r005 Re(z^2+c),c=-41/66+1/35*I,n=59 4334907053514824 r009 Im(z^3+c),c=-31/106+24/61*I,n=2 4334907055832915 r005 Im(z^2+c),c=-3/70+33/58*I,n=27 4334907063999724 a003 cos(Pi*17/42)+cos(Pi*36/79) 4334907064713010 l006 ln(2932/4523) 4334907077131414 m005 (1/2*5^(1/2)+3/7)/(6/7*Pi+7/8) 4334907099393381 r009 Re(z^3+c),c=-1/42+41/44*I,n=14 4334907101967160 r005 Im(z^2+c),c=-1/106+20/37*I,n=15 4334907106387668 a007 Real Root Of 239*x^4-326*x^3-886*x^2-827*x-227 4334907110540191 r002 28th iterates of z^2 + 4334907120705356 v002 sum(1/(3^n+(15/2*n^2+67/2*n)),n=1..infinity) 4334907130939223 a007 Real Root Of -84*x^4-424*x^3-418*x^2-660*x+117 4334907139334629 m001 (StronglyCareFree+TwinPrimes)^exp(Pi) 4334907147347607 m008 (1/2*Pi^2+5)/(3/4*Pi^5-1/3) 4334907165184694 m005 (4/5*gamma-1/5)/(3/4*exp(1)+4) 4334907166172067 r005 Re(z^2+c),c=-71/118+12/47*I,n=45 4334907167493418 b008 Log[8*(1+E*Pi)] 4334907203561753 r002 57th iterates of z^2 + 4334907214168627 r005 Im(z^2+c),c=2/23+23/53*I,n=5 4334907220373965 r005 Re(z^2+c),c=-67/110+11/54*I,n=55 4334907224060276 r005 Im(z^2+c),c=-5/48+16/29*I,n=10 4334907225897980 r009 Im(z^3+c),c=-11/98+31/61*I,n=19 4334907248065237 r002 46th iterates of z^2 + 4334907252916813 m001 Rabbit/Champernowne/exp(Sierpinski) 4334907269637380 r005 Re(z^2+c),c=-5/8+55/179*I,n=56 4334907271771057 r009 Im(z^3+c),c=-37/78+20/53*I,n=52 4334907295439399 m001 (1+FeigenbaumC)/(Kac+Trott2nd) 4334907298704873 a007 Real Root Of 600*x^4-415*x^3+456*x^2-965*x-559 4334907302684998 r005 Re(z^2+c),c=-3/5+35/128*I,n=33 4334907304515848 r005 Re(z^2+c),c=-65/64+31/63*I,n=4 4334907319349260 a007 Real Root Of -165*x^4+285*x^3+241*x^2+995*x-494 4334907321403697 a007 Real Root Of 445*x^4-977*x^3-668*x^2-645*x+469 4334907337688813 m001 (Si(Pi)-Zeta(5))/(Pi^(1/2)+OneNinth) 4334907338859961 b008 -1+CosIntegral[1/50] 4334907340554186 r005 Re(z^2+c),c=39/122+16/41*I,n=54 4334907351245998 a001 55/18*47^(31/45) 4334907353211344 a001 701408733/322*843^(11/14) 4334907356456797 r005 Re(z^2+c),c=-49/78+14/55*I,n=35 4334907360145764 m005 (13/12+1/4*5^(1/2))/(2/11*5^(1/2)-4/9) 4334907374600656 p001 sum(1/(281*n+235)/(25^n),n=0..infinity) 4334907377177330 a001 646/6119*47^(55/57) 4334907382295744 a001 29/8*1346269^(20/59) 4334907391675350 a007 Real Root Of 203*x^4-411*x^3-827*x^2-319*x+320 4334907391696924 m001 ln(GAMMA(11/24))^2/BesselJ(1,1)*GAMMA(5/24) 4334907405568176 m005 (1/2*Pi+7/11)/(1/10*Catalan+5) 4334907407784457 r005 Im(z^2+c),c=-79/122+5/54*I,n=26 4334907414501657 m001 1/GAMMA(5/24)*TwinPrimes/exp(sqrt(Pi))^2 4334907423915595 r005 Re(z^2+c),c=-73/118+4/57*I,n=40 4334907432121195 r002 21th iterates of z^2 + 4334907433548767 m001 1/sin(Pi/12)^2*cosh(1)/ln(sin(Pi/5)) 4334907433630399 l006 ln(5993/9245) 4334907436765607 s002 sum(A235321[n]/(n^2*pi^n+1),n=1..infinity) 4334907436993432 s002 sum(A235321[n]/(n^2*pi^n-1),n=1..infinity) 4334907438930652 a001 34/4870847*199^(39/50) 4334907444361914 r005 Im(z^2+c),c=-5/9-6/77*I,n=45 4334907446344451 r005 Im(z^2+c),c=5/26+20/47*I,n=30 4334907451375581 r002 25th iterates of z^2 + 4334907462303027 r005 Im(z^2+c),c=-25/32+1/51*I,n=25 4334907463865990 r005 Re(z^2+c),c=-21/34+3/26*I,n=54 4334907479457125 r005 Re(z^2+c),c=-35/58+4/17*I,n=47 4334907481897799 a001 6765/64079*47^(55/57) 4334907497176310 a001 17711/167761*47^(55/57) 4334907499405415 a001 11592/109801*47^(55/57) 4334907499730636 a001 121393/1149851*47^(55/57) 4334907499778086 a001 317811/3010349*47^(55/57) 4334907499789287 a001 514229/4870847*47^(55/57) 4334907499807411 a001 98209/930249*47^(55/57) 4334907499931635 a001 75025/710647*47^(55/57) 4334907500783077 a001 28657/271443*47^(55/57) 4334907506618949 a001 5473/51841*47^(55/57) 4334907520203694 m001 -GAMMA(1/24)/(ThueMorse+5) 4334907520251844 r002 31th iterates of z^2 + 4334907546618608 a001 4181/39603*47^(55/57) 4334907556040722 r002 27th iterates of z^2 + 4334907564278437 a001 726103/41*3^(22/27) 4334907580395012 r005 Im(z^2+c),c=-11/70+17/27*I,n=36 4334907598159081 m001 exp(GAMMA(23/24))*GAMMA(1/12)^2*sinh(1) 4334907609267579 a007 Real Root Of 577*x^4-827*x^3+282*x^2-635*x-416 4334907612337681 m004 -25*Pi+5*Sqrt[5]*Pi+Tanh[Sqrt[5]*Pi]/15 4334907614437133 b008 7^(1+Pi^(-1))/3 4334907645864477 m005 (1/6*gamma+5/6)/(1/4*gamma+2) 4334907645864477 m007 (-1/6*gamma-5/6)/(-1/4*gamma-2) 4334907647955904 m001 BesselJ(1,1)^2/Khintchine^2*ln(sinh(1)) 4334907650966333 m002 -3+Pi^3/E^Pi-Pi^3*Sech[Pi] 4334907661865294 r005 Im(z^2+c),c=27/82+19/62*I,n=37 4334907672401017 a007 Real Root Of 319*x^4-926*x^3+554*x^2-452*x+156 4334907678039167 a007 Real Root Of 227*x^4+788*x^3-838*x^2+38*x-56 4334907693041190 m005 (3/5*Pi+2)/(1/6*gamma+4/5) 4334907720010810 m008 (4/5*Pi^5-5/6)/(1/5*Pi+5) 4334907723598836 a007 Real Root Of -135*x^4-339*x^3+928*x^2-725*x-525 4334907724226317 r005 Re(z^2+c),c=-27/44+5/54*I,n=30 4334907740930728 m001 1/FeigenbaumB*Lehmer^2/exp(GAMMA(1/12))^2 4334907748409076 r009 Im(z^3+c),c=-55/114+15/37*I,n=27 4334907763236611 a007 Real Root Of -7*x^4-327*x^3-999*x^2+969*x+381 4334907772372214 r002 13th iterates of z^2 + 4334907774691860 m005 (1/2*Pi+5/11)/(5/8*2^(1/2)-5/12) 4334907784824024 r002 55th iterates of z^2 + 4334907785882164 r002 9th iterates of z^2 + 4334907787000457 l006 ln(3061/4722) 4334907787962597 r005 Re(z^2+c),c=-7/66+31/33*I,n=5 4334907788921391 a001 433494437/322*843^(6/7) 4334907799319006 m001 BesselI(0,1)+Ei(1)+GAMMA(19/24) 4334907820780354 a001 1597/15127*47^(55/57) 4334907823162456 r005 Re(z^2+c),c=-13/21+3/34*I,n=59 4334907831946258 m001 1/exp(GAMMA(1/12))/Trott*arctan(1/2) 4334907835064910 m005 (1/3*gamma+3/5)/(81/70+3/10*5^(1/2)) 4334907852408498 a007 Real Root Of 15*x^4+647*x^3-155*x^2-633*x+211 4334907852433663 h001 (7/10*exp(2)+2/11)/(1/4*exp(1)+5/9) 4334907855860718 r005 Im(z^2+c),c=-6/31+40/51*I,n=30 4334907860045680 r005 Re(z^2+c),c=-19/30+6/61*I,n=12 4334907860687055 m001 (Pi+arctan(1/3))/(CopelandErdos-MertensB2) 4334907867280241 m005 (1/3*Catalan-3/4)/(1/2*exp(1)-1/3) 4334907873721435 h001 (9/10*exp(1)+9/10)/(1/12*exp(1)+6/11) 4334907874013864 r002 38th iterates of z^2 + 4334907876873429 r002 40th iterates of z^2 + 4334907880125623 a001 29*(1/2*5^(1/2)+1/2)*18^(10/13) 4334907888084573 m001 LambertW(1)^sin(1/5*Pi)/(1+3^(1/2))^(1/2) 4334907888084573 m001 LambertW(1)^sin(Pi/5)/sqrt(1+sqrt(3)) 4334907890317458 r005 Re(z^2+c),c=-18/29+3/49*I,n=49 4334907899386552 a007 Real Root Of -805*x^4+661*x^3-736*x^2+580*x+472 4334907904682752 m005 (4/5*2^(1/2)+3)/(1/6*exp(1)+1/2) 4334907905522031 r005 Im(z^2+c),c=3/22+10/21*I,n=53 4334907906243898 r002 39th iterates of z^2 + 4334907926215630 m001 (3^(1/2)-Shi(1))/(-GAMMA(5/6)+Khinchin) 4334907936418523 r005 Re(z^2+c),c=-63/106+17/58*I,n=60 4334907947433338 r005 Re(z^2+c),c=-11/18+37/128*I,n=43 4334907958159165 p004 log(19087/12373) 4334907958289962 r005 Im(z^2+c),c=-5/23+11/19*I,n=18 4334907976303543 b008 11*InverseErf[2/45] 4334907987038852 m005 (1/2*Pi+4/5)/(7/10*gamma+1/7) 4334907987663707 r005 Re(z^2+c),c=-23/78+20/37*I,n=7 4334908025391876 m001 (HardyLittlewoodC4-Trott)/(Thue-ZetaP(3)) 4334908057056970 a008 Real Root of x^4-5*x^2-102*x+183 4334908070934969 r002 45th iterates of z^2 + 4334908079173351 a001 76/3*89^(31/49) 4334908102168507 m001 GAMMA(11/12)*exp(Riemann3rdZero)/sqrt(Pi) 4334908120583327 m001 arctan(1/3)/(Stephens^cos(1)) 4334908125785720 l006 ln(6251/9643) 4334908130157548 m001 (polylog(4,1/2)-FeigenbaumDelta)/(Paris+Thue) 4334908135867565 m005 (1/2*Zeta(3)-6/7)/(2*Pi-3/8) 4334908138277031 l006 ln(8916/9311) 4334908139139165 m005 (1/3*gamma-3/4)/(1/4*5^(1/2)+8/11) 4334908143097879 m001 (Grothendieck+Kac)/(2^(1/3)-CareFree) 4334908167900513 m002 9-Log[Pi]+Pi^3*Log[Pi] 4334908171965126 r002 54th iterates of z^2 + 4334908174856823 m001 MasserGramainDelta-exp(1/Pi)-QuadraticClass 4334908176027485 r005 Re(z^2+c),c=17/90+27/61*I,n=38 4334908184573078 r009 Im(z^3+c),c=-35/82+25/44*I,n=45 4334908185406776 a007 Real Root Of 92*x^4-982*x^3+805*x^2-767*x-567 4334908199406721 r005 Re(z^2+c),c=-67/94+6/29*I,n=21 4334908215259290 m001 (exp(1/2)+1/2)/(-exp(-Pi)+5) 4334908220590750 r005 Im(z^2+c),c=27/74+3/20*I,n=41 4334908224631481 a001 133957148/161*843^(13/14) 4334908233848480 m006 (2/5*exp(2*Pi)-1)/(5*Pi^2-1/6) 4334908268903837 r009 Im(z^3+c),c=-1/86+9/16*I,n=4 4334908272646508 r002 45th iterates of z^2 + 4334908275878568 r009 Re(z^3+c),c=-29/56+5/27*I,n=29 4334908281148281 a007 Real Root Of 207*x^4+891*x^3-32*x^2-9*x+47 4334908298382571 r005 Re(z^2+c),c=-7/12+8/31*I,n=28 4334908300729728 s002 sum(A185200[n]/(16^n-1),n=1..infinity) 4334908317501847 m005 (1/2*Pi+2/11)/(5/7*Zeta(3)-9/11) 4334908343390932 a007 Real Root Of -15*x^4-649*x^3+32*x^2-935*x+40 4334908349279798 r009 Im(z^3+c),c=-5/98+19/37*I,n=14 4334908350853810 r005 Re(z^2+c),c=13/70+29/50*I,n=3 4334908354038422 a007 Real Root Of -997*x^4+933*x^3-678*x^2+340*x+386 4334908360911412 r005 Re(z^2+c),c=5/64+19/42*I,n=4 4334908361801304 m001 (MasserGramain+TreeGrowth2nd)/(Zeta(3)+Conway) 4334908366525051 h001 (-8*exp(3)+5)/(-5*exp(1)+10) 4334908375352062 m001 (Lehmer-OneNinth)/(BesselI(1,2)-Bloch) 4334908384286984 h001 (-6*exp(2)-8)/(-6*exp(-1)+1) 4334908394905911 m001 1/Khintchine*FeigenbaumAlpha^2/exp(sin(1))^2 4334908405686988 r009 Re(z^3+c),c=-49/106+2/13*I,n=23 4334908407875350 a007 Real Root Of -228*x^4-895*x^3+598*x^2+840*x+9 4334908417052534 a001 86267571272/843*199^(3/11) 4334908429020286 r005 Re(z^2+c),c=27/64+16/47*I,n=36 4334908434622144 m001 (Magata-Sierpinski)/(Ei(1)+HeathBrownMoroz) 4334908435872719 a001 281/15456*233^(32/55) 4334908450870879 l006 ln(3190/4921) 4334908451245351 r005 Im(z^2+c),c=-1/48+35/59*I,n=39 4334908464456733 r002 50th iterates of z^2 + 4334908466552899 m005 (1/2*Pi-3/8)/(6/7*exp(1)+3/7) 4334908469420003 a005 (1/sin(73/181*Pi))^277 4334908473835944 r005 Im(z^2+c),c=-91/110+1/41*I,n=56 4334908474726127 r002 45th iterates of z^2 + 4334908475242222 a007 Real Root Of x^4-460*x^3+66*x^2-367*x-209 4334908475886213 a001 2584/843*2^(1/2) 4334908484152253 r005 Re(z^2+c),c=-41/70+1/7*I,n=7 4334908486056948 r002 35th iterates of z^2 + 4334908493365818 m001 (1-GAMMA(11/12))/(GAMMA(19/24)+OneNinth) 4334908515537365 r005 Im(z^2+c),c=21/62+16/43*I,n=6 4334908527044668 r005 Im(z^2+c),c=11/56+17/40*I,n=38 4334908527921812 m001 BesselJ(0,1)*(GAMMA(7/12)-Psi(2,1/3)) 4334908548869439 m001 (FibonacciFactorial-ln(3))/Otter 4334908568641768 m001 Shi(1)/Si(Pi)/ln(2+3^(1/2)) 4334908593439478 r005 Re(z^2+c),c=-41/66+1/33*I,n=55 4334908594202052 m001 (GAMMA(7/12)-ReciprocalLucas)/(Salem-ZetaP(3)) 4334908595402368 a007 Real Root Of 73*x^4+148*x^3-876*x^2-617*x+65 4334908600128133 r002 59i'th iterates of 2*x/(1-x^2) of 4334908614470996 a007 Real Root Of 184*x^4+952*x^3+741*x^2+454*x+619 4334908615565226 h001 (-10*exp(4)-4)/(-4*exp(1)+11) 4334908635675534 a007 Real Root Of 825*x^4+644*x^3+156*x^2-293*x-133 4334908659785402 r005 Im(z^2+c),c=-1/90+15/26*I,n=33 4334908659946949 a001 163426056480/377 4334908666424779 a003 cos(Pi*40/119)/cos(Pi*32/69) 4334908677210599 h005 exp(cos(Pi*5/42)+cos(Pi*8/25)) 4334908684184370 g007 Psi(2,3/8)+Psi(2,3/4)-Psi(2,3/11)-Psi(13/10) 4334908691783630 a005 (1/sin(59/155*Pi))^500 4334908696173095 r005 Im(z^2+c),c=-19/30+9/113*I,n=40 4334908702074815 r002 54th iterates of z^2 + 4334908706832742 r005 Re(z^2+c),c=-23/40+13/43*I,n=33 4334908720772732 m005 (1/3*5^(1/2)-2/3)/(7/10*5^(1/2)+1/4) 4334908723406423 r005 Im(z^2+c),c=-37/56+1/12*I,n=63 4334908736802990 m001 1/Pi^2/ln(Riemann1stZero)^2/gamma^2 4334908738292194 r002 56th iterates of z^2 + 4334908749930692 r005 Im(z^2+c),c=19/58+9/32*I,n=50 4334908750461957 r009 Im(z^3+c),c=-9/94+25/49*I,n=13 4334908757130784 r005 Re(z^2+c),c=-91/114+17/61*I,n=6 4334908758539840 r002 52th iterates of z^2 + 4334908762368423 a007 Real Root Of 358*x^4-163*x^3+768*x^2-184*x-250 4334908763070489 l006 ln(6509/10041) 4334908765967003 r009 Im(z^3+c),c=-59/122+13/35*I,n=59 4334908787565773 r002 23th iterates of z^2 + 4334908788079468 a007 Real Root Of 273*x^4-677*x^3+196*x^2-513*x-324 4334908788927335 r005 Re(z^2+c),c=-39/34+97/125*I,n=2 4334908796377389 m005 (1/2*Zeta(3)+5/6)/(4*gamma+1) 4334908801559279 r009 Im(z^3+c),c=-21/50+23/56*I,n=36 4334908808811840 r002 12th iterates of z^2 + 4334908808811840 r002 12th iterates of z^2 + 4334908814231027 r005 Re(z^2+c),c=25/56+19/52*I,n=23 4334908817620031 b008 Cot[Sqrt[2+EulerGamma^2]] 4334908817663292 a003 cos(Pi*19/108)*cos(Pi*32/97) 4334908825698316 r005 Re(z^2+c),c=-5/4+17/146*I,n=44 4334908827503072 r005 Re(z^2+c),c=-7/10+15/166*I,n=37 4334908831778081 r005 Re(z^2+c),c=-29/48+10/57*I,n=23 4334908845374746 q001 642/1481 4334908851706243 g006 Psi(1,9/10)+Psi(1,3/10)-Psi(1,5/12)-Psi(1,2/3) 4334908864028687 r002 60th iterates of z^2 + 4334908870559813 a001 4/2178309*28657^(28/37) 4334908875457069 a007 Real Root Of -794*x^4-88*x^3-401*x^2+913*x+492 4334908875523339 r002 30th iterates of z^2 + 4334908875575844 m001 (ln(5)+Zeta(1/2))/(FeigenbaumB-Salem) 4334908876823175 r005 Re(z^2+c),c=-4/7+36/113*I,n=20 4334908919222084 r005 Im(z^2+c),c=-83/122+1/7*I,n=23 4334908924398564 r009 Re(z^3+c),c=-41/86+5/49*I,n=18 4334908939136706 a007 Real Root Of -913*x^4+761*x^3+721*x^2+823*x-522 4334908954151666 b008 2/7-5*ArcCoth[7] 4334908962528903 a007 Real Root Of -209*x^4-555*x^3-356*x^2+524*x-22 4334908983521420 r005 Re(z^2+c),c=-41/34+90/109*I,n=2 4334908987808412 r005 Re(z^2+c),c=-75/122+7/46*I,n=59 4334908995539136 r002 27th iterates of z^2 + 4334909021059632 r004 Im(z^2+c),c=-5/9+1/8*I,z(0)=exp(1/24*I*Pi),n=6 4334909028247281 r005 Im(z^2+c),c=-23/44+34/49*I,n=11 4334909033316918 m001 (-Zeta(1,2)+ZetaP(2))/(Si(Pi)+GAMMA(2/3)) 4334909063135788 l006 ln(3319/5120) 4334909066443236 a007 Real Root Of 163*x^4-472*x^3-856*x^2-121*x+246 4334909094610571 r005 Re(z^2+c),c=-77/58+1/60*I,n=10 4334909124859206 a001 47/5*53316291173^(10/23) 4334909128226928 m001 OneNinth/(DuboisRaymond+ZetaQ(2)) 4334909144587278 m008 (3*Pi^4+3/5)/(3/5*Pi^2+5/6) 4334909148417878 a007 Real Root Of -130*x^4-477*x^3+249*x^2-589*x-183 4334909154997112 r005 Re(z^2+c),c=-45/74+7/46*I,n=29 4334909169502736 r005 Im(z^2+c),c=-11/9+3/92*I,n=28 4334909172914688 r009 Re(z^3+c),c=-1/14+31/55*I,n=24 4334909178026846 a007 Real Root Of 837*x^4-151*x^3-935*x^2-142*x+220 4334909183900751 r002 7th iterates of z^2 + 4334909190862813 r002 6th iterates of z^2 + 4334909195160522 m001 (1-ln(5))/(Champernowne+GlaisherKinkelin) 4334909199180594 a007 Real Root Of -180*x^4-708*x^3+135*x^2-628*x+629 4334909202093454 r005 Im(z^2+c),c=-8/25+44/61*I,n=5 4334909207176271 m001 GaussKuzminWirsing/Artin*ln((2^(1/3)))^2 4334909226647478 r009 Re(z^3+c),c=-1/17+5/13*I,n=8 4334909228665186 r005 Im(z^2+c),c=-75/118+3/37*I,n=54 4334909232952655 a001 322/701408733*2178309^(2/13) 4334909232952684 a001 1/14930208*591286729879^(2/13) 4334909232952684 a001 322/1836311903*1134903170^(2/13) 4334909237412122 r004 Re(z^2+c),c=-21/34+1/6*I,z(0)=-1,n=18 4334909240582891 a001 161/133957148*4181^(2/13) 4334909251181101 r005 Im(z^2+c),c=35/106+17/54*I,n=45 4334909251753487 g002 Psi(11/12)+Psi(7/12)+Psi(4/11)-Psi(6/7) 4334909256193379 m005 (1/2*5^(1/2)-1/8)/(5/9*Pi+6/11) 4334909261179879 m001 Otter/HeathBrownMoroz/polylog(4,1/2) 4334909276984003 p001 sum(1/(488*n+265)/(3^n),n=0..infinity) 4334909277337407 r005 Im(z^2+c),c=-31/26+6/101*I,n=21 4334909280221050 r005 Re(z^2+c),c=-5/42+23/29*I,n=48 4334909289729706 r005 Re(z^2+c),c=11/40+1/42*I,n=58 4334909296004948 r002 40th iterates of z^2 + 4334909299897102 m005 (1/2*5^(1/2)+1/11)/(4/5*5^(1/2)+1) 4334909307937285 r005 Im(z^2+c),c=-10/31+26/49*I,n=6 4334909327090178 r005 Im(z^2+c),c=-1/78+12/23*I,n=4 4334909357967431 m005 (1/3*2^(1/2)-2/5)/(1/3*Pi+3/5) 4334909379673058 r009 Im(z^3+c),c=-15/64+16/33*I,n=24 4334909385477114 r005 Re(z^2+c),c=-25/56+29/53*I,n=34 4334909387442600 a005 (1/sin(59/131*Pi))^1064 4334909394678198 a007 Real Root Of 97*x^4+436*x^3+157*x^2+327*x-269 4334909400733479 m005 (1/3*Catalan-2/11)/(9/11*exp(1)+5/8) 4334909403742144 r002 16th iterates of z^2 + 4334909404006663 r005 Re(z^2+c),c=-3/5+9/34*I,n=61 4334909432750434 r005 Re(z^2+c),c=-75/118+1/40*I,n=24 4334909443856682 m005 (1/2*Pi+5/11)/(3/11*Zeta(3)-5) 4334909457227237 r005 Im(z^2+c),c=-77/118+14/37*I,n=60 4334909459995082 m005 (1/2*gamma-2/11)/(10/11*3^(1/2)+8/9) 4334909477777422 m001 exp(Riemann1stZero)/Rabbit*sqrt(5) 4334909493326105 m002 -Pi^3-Cosh[Pi]-2/Log[Pi]+Tanh[Pi] 4334909496655545 r002 41th iterates of z^2 + 4334909499955951 m001 FeigenbaumDelta^(polylog(4,1/2)*Tribonacci) 4334909508347074 m004 (75*Pi*Cot[Sqrt[5]*Pi])/2-Sinh[Sqrt[5]*Pi] 4334909509918257 a007 Real Root Of -652*x^4-648*x^3-803*x^2+2*x+122 4334909511350610 r001 40i'th iterates of 2*x^2-1 of 4334909521124228 r005 Im(z^2+c),c=-3/50+29/41*I,n=60 4334909524686641 a007 Real Root Of -101*x^4-327*x^3+523*x^2+299*x+496 4334909525331388 m001 1/exp(BesselK(1,1))*ArtinRank2/log(1+sqrt(2)) 4334909528641769 a001 53316291173/322*322^(1/6) 4334909529912072 b008 -8+Pi+ArcTan[EulerGamma] 4334909543274340 b008 Gamma[Sqrt[26]*E] 4334909544565295 s001 sum(exp(-Pi/4)^(n-1)*A024201[n],n=1..infinity) 4334909562403263 r002 42th iterates of z^2 + 4334909566359058 r002 58th iterates of z^2 + 4334909566566541 m005 (1/3*Pi-2/9)/(2/3*exp(1)+1/11) 4334909571736455 m001 Riemann3rdZero^PlouffeB*Zeta(1,2) 4334909575322386 a007 Real Root Of -653*x^4-79*x^3-640*x^2+284*x+260 4334909588369763 r005 Re(z^2+c),c=-41/66+1/34*I,n=42 4334909596985295 m001 GAMMA(1/4)+BesselI(1,1)^BesselK(1,1) 4334909616257608 m001 (-Lehmer+Totient)/(2^(1/3)+arctan(1/2)) 4334909625777848 m001 ln(GAMMA(11/24))^2/Riemann1stZero/sin(1)^2 4334909629587338 l006 ln(3448/5319) 4334909639379060 p001 sum((-1)^n/(446*n+23)/(16^n),n=0..infinity) 4334909662226377 m009 (Pi^2-1/6)/(6*Psi(1,2/3)+4) 4334909685664902 r005 Re(z^2+c),c=-7/90+15/22*I,n=52 4334909691256016 s002 sum(A088813[n]/((2^n-1)/n),n=1..infinity) 4334909699553020 a001 4/121393*233^(26/55) 4334909699912857 a001 305/2889*47^(55/57) 4334909703478131 m005 (-23/4+1/4*5^(1/2))/(29/168+11/24*5^(1/2)) 4334909710424093 m001 (GaussKuzminWirsing+GAMMA(1/6))/GAMMA(2/3) 4334909725357695 m001 (Ei(1,1)+Porter)/(ReciprocalLucas+Tetranacci) 4334909745700664 m001 GaussKuzminWirsing^ZetaR(2)-Kolakoski 4334909747622842 a008 Real Root of x^3-x^2-159*x-589 4334909756822081 a007 Real Root Of 278*x^4+973*x^3-905*x^2+313*x-544 4334909778116769 r009 Re(z^3+c),c=-43/118+1/23*I,n=17 4334909786073506 r005 Im(z^2+c),c=-11/10+9/175*I,n=25 4334909804626969 r005 Im(z^2+c),c=39/98+29/54*I,n=4 4334909806237252 h001 (1/3*exp(2)+5/8)/(8/9*exp(2)+5/9) 4334909808329535 r002 39th iterates of z^2 + 4334909808430089 m001 FeigenbaumC^ErdosBorwein*GAMMA(13/24) 4334909811197251 r005 Im(z^2+c),c=11/94+1/2*I,n=21 4334909819954918 m006 (5/6*exp(Pi)-5/6)/(2/5*exp(Pi)-5) 4334909832973179 m001 (GAMMA(2/3)-GAMMA(5/6))/(Pi+Psi(2,1/3)) 4334909852966902 a001 2889/305*4181^(36/49) 4334909864228275 r005 Im(z^2+c),c=1/13+23/44*I,n=39 4334909869693512 r005 Re(z^2+c),c=17/54+20/41*I,n=11 4334909873388605 m001 1/Trott^2*ln(ArtinRank2)*sqrt(2) 4334909874948943 r005 Re(z^2+c),c=-31/52+1/49*I,n=15 4334909889514655 r005 Re(z^2+c),c=-27/50+11/29*I,n=32 4334909908629821 a001 144/2207*18^(19/29) 4334909925416446 r005 Im(z^2+c),c=23/102+23/60*I,n=16 4334909927660207 r009 Im(z^3+c),c=-17/62+17/30*I,n=3 4334909939021838 s002 sum(A016953[n]/((pi^n+1)/n),n=1..infinity) 4334909960828420 r005 Im(z^2+c),c=-49/52+5/17*I,n=4 4334909975267369 m005 (1/2*gamma+8/11)/(3/8*Catalan+2) 4334909982826916 r005 Im(z^2+c),c=-35/74+3/38*I,n=12 4334909985525970 m001 sin(1/5*Pi)^GAMMA(19/24)*GaussAGM^GAMMA(19/24) 4334909991580374 a007 Real Root Of -214*x^4+983*x^3-97*x^2+261*x+219 4334910001470402 a007 Real Root Of -145*x^4-702*x^3-300*x^2-144*x-969 4334910002541018 r002 34th iterates of z^2 + 4334910003937228 a001 29/55*46368^(10/51) 4334910013178162 a007 Real Root Of 872*x^4-502*x^3-331*x^2-308*x-143 4334910014159761 r009 Im(z^3+c),c=-41/90+16/47*I,n=9 4334910066532527 m001 ln(2)*ReciprocalLucas^exp(1) 4334910074825625 a007 Real Root Of -433*x^4+8*x^3-87*x^2+696*x+334 4334910081262488 r005 Re(z^2+c),c=-23/38+10/39*I,n=47 4334910094442955 a003 sin(Pi*2/51)*sin(Pi*7/61) 4334910099676992 r002 43th iterates of z^2 + 4334910121715207 m005 (1/2*Catalan+3/11)/(4/5*3^(1/2)+3/10) 4334910144184849 m001 (cos(1)-sin(1))/(gamma(2)+CareFree) 4334910155182136 l006 ln(3577/5518) 4334910157616479 a007 Real Root Of -637*x^4+259*x^3+909*x^2+728*x-485 4334910164301539 m001 (exp(1/exp(1))+GAMMA(11/12))^exp(sqrt(2)) 4334910170144899 r005 Re(z^2+c),c=-73/118+1/10*I,n=58 4334910170358393 r005 Re(z^2+c),c=-9/14+100/179*I,n=5 4334910172952418 r005 Re(z^2+c),c=19/64+1/31*I,n=55 4334910186321245 r005 Re(z^2+c),c=-41/66+19/61*I,n=47 4334910187014989 r005 Re(z^2+c),c=-151/114+1/31*I,n=62 4334910202521281 m001 Champernowne^sin(1/12*Pi)-ZetaR(2) 4334910211550055 r005 Re(z^2+c),c=-49/82+8/41*I,n=27 4334910213854755 g002 Psi(10/11)+Psi(1/8)-Psi(9/11)-Psi(3/11) 4334910215318869 r002 2th iterates of z^2 + 4334910224621117 h001 (7/8*exp(1)+8/11)/(2/11*exp(1)+2/9) 4334910228843957 m001 (Paris-ThueMorse)/(FeigenbaumD-Magata) 4334910230084837 m001 (Kac+MadelungNaCl)/(ln(gamma)+gamma(3)) 4334910247478205 a001 1/5473*34^(44/49) 4334910276549434 a003 sin(Pi*17/105)*sin(Pi*29/83) 4334910280710349 p004 log(22271/14437) 4334910284436232 h001 (3/11*exp(1)+2/7)/(2/9*exp(2)+8/11) 4334910297812674 a007 Real Root Of -233*x^4+291*x^3+71*x^2+937*x-435 4334910314417586 a003 sin(Pi*25/69)/cos(Pi*29/67) 4334910318427168 a007 Real Root Of 778*x^4+470*x^3-201*x^2-840*x-36 4334910330901036 r002 59th iterates of z^2 + 4334910337231290 r004 Re(z^2+c),c=-43/46+6/19*I,z(0)=-1,n=19 4334910337231290 r004 Re(z^2+c),c=-43/46-6/19*I,z(0)=-1,n=19 4334910342725467 a007 Real Root Of 259*x^4+971*x^3-623*x^2+20*x-567 4334910350895316 m005 (1/2*Catalan+7/12)/(4/5*Pi-1/9) 4334910351479482 r002 57th iterates of z^2 + 4334910351956223 r002 48th iterates of z^2 + 4334910355123433 r005 Im(z^2+c),c=8/27+19/58*I,n=43 4334910361003942 r005 Im(z^2+c),c=41/122+9/52*I,n=12 4334910368245044 r005 Re(z^2+c),c=3/20+20/31*I,n=42 4334910373609947 m002 -2-4*Cosh[Pi]+5*Coth[Pi] 4334910384115778 r005 Im(z^2+c),c=9/44+19/46*I,n=22 4334910392233770 m001 (1-HardyLittlewoodC5)/(KhinchinLevy+ZetaP(3)) 4334910399319699 m001 (BesselK(0,1)+gamma(2)*Paris)/gamma(2) 4334910404315074 m001 (Zeta(3)+ln(2^(1/2)+1))/(Bloch+ZetaQ(3)) 4334910404420672 m001 (Niven-Rabbit)/(GaussAGM+MinimumGamma) 4334910442316062 a001 843/2584*7778742049^(6/19) 4334910456182185 a007 Real Root Of 733*x^4+968*x^3-342*x^2-979*x+43 4334910473596535 m001 (gamma(2)+CopelandErdos)/(gamma-ln(3)) 4334910474582125 r009 Im(z^3+c),c=-25/66+18/29*I,n=45 4334910492782304 r005 Re(z^2+c),c=31/114+9/16*I,n=18 4334910498895528 a007 Real Root Of 350*x^4+226*x^3-138*x^2-867*x+371 4334910505476687 l006 ln(4537/4738) 4334910506991452 h001 (7/12*exp(2)+3/4)/(1/6*exp(1)+5/7) 4334910509697346 a007 Real Root Of -405*x^4+201*x^3-434*x^2+447*x+306 4334910514423386 r005 Im(z^2+c),c=-8/9+21/64*I,n=3 4334910526220194 r005 Re(z^2+c),c=-23/38+4/43*I,n=18 4334910529744336 b008 (3*Sin[Pi^(-2)])/7 4334910537589094 m005 (1/3*Zeta(3)-1/12)/(7/10*Catalan+1/11) 4334910554291081 m005 (1/2*2^(1/2)-1/7)/(6*5^(1/2)-2/5) 4334910554740896 b008 (3*PolyGamma[1,Sqrt[2]])/7 4334910554740896 b008 (3*Zeta[2,Sqrt[2]])/7 4334910561855867 a007 Real Root Of -967*x^4+170*x^3+366*x^2+943*x+388 4334910565129422 r005 Im(z^2+c),c=-41/60+1/11*I,n=4 4334910566273229 r009 Re(z^3+c),c=-53/102+17/60*I,n=25 4334910584986271 a001 20365011074/521*199^(5/11) 4334910597188564 r005 Im(z^2+c),c=7/36+26/59*I,n=28 4334910597405322 p003 LerchPhi(1/512,6,582/235) 4334910604812243 r002 23th iterates of z^2 + 4334910609796703 r005 Im(z^2+c),c=3/40+10/19*I,n=42 4334910617692633 a007 Real Root Of -11*x^4-484*x^3-304*x^2+265*x-487 4334910620399579 q001 1649/3804 4334910635815002 m001 (exp(-Pi)+Bloch)^(2^(1/3)) 4334910644186661 l006 ln(3706/5717) 4334910649459464 a001 7/6*47^(15/44) 4334910657114717 a001 4*(1/2*5^(1/2)+1/2)^13*3^(2/3) 4334910659301932 a007 Real Root Of 657*x^4+867*x^3-270*x^2-817*x-256 4334910660876814 m002 3-E^Pi+(5*Pi^4)/ProductLog[Pi] 4334910661888846 r009 Im(z^3+c),c=-4/9+23/58*I,n=49 4334910679849926 m001 (BesselI(0,2)-Totient)/(Zeta(3)+cos(1/12*Pi)) 4334910682818960 r005 Re(z^2+c),c=-9/14+13/135*I,n=12 4334910684863866 a007 Real Root Of 300*x^4-217*x^3+444*x^2+27*x-100 4334910690943718 m001 Psi(2,1/3)/(GlaisherKinkelin-Trott) 4334910694092990 m001 1/Paris^2*ln(Kolakoski)*GAMMA(2/3)^2 4334910709835738 m001 (-Porter+ZetaP(4))/(Si(Pi)+FeigenbaumKappa) 4334910711187268 m001 1/GAMMA(5/6)^2/Bloch*ln(sinh(1))^2 4334910712569214 r005 Im(z^2+c),c=15/56+19/42*I,n=16 4334910715240884 r005 Im(z^2+c),c=-17/28+9/62*I,n=12 4334910722503326 m001 gamma^MinimumGamma-ln(2^(1/2)+1) 4334910740722107 m001 (MinimumGamma+Totient)/MasserGramain 4334910747685660 m001 FeigenbaumC^TreeGrowth2nd/ln(2)*ln(10) 4334910757688810 r005 Im(z^2+c),c=-1/102+37/62*I,n=36 4334910760498365 m005 (1/2*Pi+7/8)/(5/8*5^(1/2)-5/6) 4334910764483064 r009 Re(z^3+c),c=-1/126+19/28*I,n=49 4334910766730762 m001 1/Zeta(9)^2/LaplaceLimit/ln(cos(Pi/12)) 4334910773445332 a007 Real Root Of -117*x^4+232*x^3-250*x^2+579*x+321 4334910800348890 m001 CareFree/exp(Bloch)*Paris 4334910803475282 r005 Re(z^2+c),c=-49/78+3/14*I,n=35 4334910819209678 m009 (5/12*Pi^2+1/3)/(4*Psi(1,2/3)-2) 4334910819290029 m001 (GAMMA(1/4)+1/2)/(-GAMMA(17/24)+1/3) 4334910868654289 g007 Psi(2,7/12)+Psi(2,3/11)+Psi(2,2/11)-Psi(2,4/7) 4334910876141193 p004 log(11633/7541) 4334910901585402 a007 Real Root Of 277*x^4-207*x^3-300*x^2-285*x+187 4334910902883095 m001 ln(Sierpinski)*CopelandErdos*BesselJ(1,1)^2 4334910906314530 r002 25th iterates of z^2 + 4334910908234811 s002 sum(A216971[n]/(n*exp(pi*n)+1),n=1..infinity) 4334910911743331 s002 sum(A019575[n]/(n*exp(pi*n)+1),n=1..infinity) 4334910920366422 r005 Im(z^2+c),c=-39/58+17/54*I,n=23 4334910922208295 r009 Im(z^3+c),c=-31/90+17/38*I,n=25 4334910927320892 r009 Im(z^3+c),c=-15/52+15/32*I,n=19 4334910929169686 s002 sum(A216275[n]/(16^n-1),n=1..infinity) 4334910952043460 r005 Re(z^2+c),c=-18/29+12/59*I,n=37 4334910956083663 a007 Real Root Of -872*x^4+622*x^3+3*x^2+660*x+367 4334910956980851 m001 1/exp(GAMMA(1/4))*FeigenbaumKappa^2/GAMMA(5/6) 4334910962221211 r005 Im(z^2+c),c=1/66+35/64*I,n=22 4334910963479368 a001 2/514229*13^(47/50) 4334910968706958 a001 54018521*144^(15/17) 4334910976931270 m001 ln(Zeta(3))/BesselK(0,1)/Zeta(7) 4334910982119370 m001 (-Kac+PlouffeB)/(5^(1/2)+FibonacciFactorial) 4334911004473007 b008 3*(4+Sqrt[2]*E^2) 4334911011988567 r002 36th iterates of z^2 + 4334911016530089 m001 (Zeta(3)-Zeta(5))/(FeigenbaumAlpha+Mills) 4334911032666411 r002 60th iterates of z^2 + 4334911033304132 m001 (KhinchinLevy+Landau)/(gamma(1)+Bloch) 4334911068757536 r002 48th iterates of z^2 + 4334911073879892 r005 Re(z^2+c),c=-5/8+31/106*I,n=49 4334911077463028 m001 HardyLittlewoodC5/(Chi(1)+OneNinth) 4334911088821331 r002 21th iterates of z^2 + 4334911100293338 l006 ln(3835/5916) 4334911101656826 m001 FeigenbaumKappa^Magata*HeathBrownMoroz^Magata 4334911111231511 k008 concat of cont frac of 4334911132017046 r005 Im(z^2+c),c=-3/122+10/17*I,n=39 4334911136371975 p003 LerchPhi(1/2,5,158/133) 4334911155868065 r002 27th iterates of z^2 + 4334911166259203 m001 Grothendieck^MertensB1/FeigenbaumD 4334911182041664 r005 Im(z^2+c),c=15/46+9/41*I,n=15 4334911202449830 a001 2207/377*832040^(6/19) 4334911203719224 l006 ln(22/1679) 4334911224764686 s002 sum(A178882[n]/(n*exp(pi*n)+1),n=1..infinity) 4334911228250125 a001 377/18*521^(5/43) 4334911235898294 a007 Real Root Of 192*x^4+580*x^3+795*x^2-683*x-405 4334911247525159 m001 (ln(5)+2*Pi/GAMMA(5/6))/(Trott-Trott2nd) 4334911248353357 r009 Re(z^3+c),c=-33/70+4/25*I,n=61 4334911255566766 r005 Im(z^2+c),c=-19/30+1/12*I,n=30 4334911260741176 r009 Im(z^3+c),c=-13/46+8/17*I,n=22 4334911260892428 r005 Re(z^2+c),c=-13/22+23/80*I,n=42 4334911269435296 r005 Im(z^2+c),c=-137/106+2/53*I,n=9 4334911272329655 m001 (StolarskyHarborth+Totient)/(ln(2)+Sierpinski) 4334911273360249 r009 Im(z^3+c),c=-7/64+28/55*I,n=11 4334911276046433 m005 (1/2*Catalan+1/8)/(5*exp(1)-1/7) 4334911277505931 r005 Im(z^2+c),c=-13/110+31/35*I,n=12 4334911289137651 r002 29th iterates of z^2 + 4334911297617720 g002 Psi(1/8)-Psi(7/12)-Psi(5/9)-Psi(1/9) 4334911300189563 m001 (Lehmer+MadelungNaCl)/(ln(gamma)-gamma(2)) 4334911302646839 m001 (GAMMA(2/3)-sin(1))/(GAMMA(5/6)+ZetaQ(2)) 4334911308560865 r005 Re(z^2+c),c=-57/94+8/35*I,n=62 4334911313896679 r004 Im(z^2+c),c=-17/42+10/17*I,z(0)=-1,n=3 4334911353564202 r009 Re(z^3+c),c=-37/98+3/46*I,n=7 4334911354147832 r009 Im(z^3+c),c=-6/17+27/61*I,n=14 4334911355177510 m005 (1/2*Catalan-3/5)/(6/7*Pi+7/12) 4334911364442914 m001 (-GAMMA(11/12)+Gompertz)/(Shi(1)+gamma(3)) 4334911374526769 r005 Re(z^2+c),c=-27/44+9/55*I,n=54 4334911375404552 m005 (1/2*5^(1/2)+1/5)/(7/10*gamma-1/10) 4334911385733077 m005 (1/3*exp(1)-2/5)/(3/10*3^(1/2)-7/11) 4334911398353431 r009 Im(z^3+c),c=-29/66+2/5*I,n=36 4334911404962057 m001 (1+Backhouse)/(-FibonacciFactorial+TwinPrimes) 4334911414428373 r009 Im(z^3+c),c=-17/38+15/38*I,n=56 4334911414634444 a007 Real Root Of -80*x^4-330*x^3-175*x^2-915*x+690 4334911422450895 r005 Re(z^2+c),c=-21/34+11/95*I,n=59 4334911425153648 a007 Real Root Of 385*x^4+47*x^3-674*x^2-650*x+391 4334911427079990 m005 (1/2*2^(1/2)-1/11)/(6/7*Catalan+7/11) 4334911430797133 r002 51th iterates of z^2 + 4334911433805729 m001 (2^(1/2)+cos(1/5*Pi))/(-gamma(1)+BesselJ(1,1)) 4334911447255689 m001 (Ei(1)-(1+3^(1/2))^(1/2))/(Mills-RenyiParking) 4334911457162669 r009 Im(z^3+c),c=-25/118+25/51*I,n=14 4334911467836052 a003 cos(Pi*3/109)-cos(Pi*35/113) 4334911474131044 a007 Real Root Of 981*x^4-359*x^3-918*x^2-765*x-223 4334911475148537 r002 34th iterates of z^2 + 4334911475408360 r002 34th iterates of z^2 + 4334911480914850 r005 Re(z^2+c),c=-21/34+9/77*I,n=52 4334911493085288 a001 9/98209*34^(26/59) 4334911501874986 r005 Im(z^2+c),c=-27/122+7/9*I,n=56 4334911509921546 r002 23th iterates of z^2 + 4334911526713941 l006 ln(3964/6115) 4334911538367464 b008 ArcSinh[E^(1/2+Pi)] 4334911558366061 s002 sum(A256215[n]/(n*exp(pi*n)+1),n=1..infinity) 4334911560941546 a007 Real Root Of 710*x^4-707*x^3+564*x^2+509*x+32 4334911575785179 r005 Im(z^2+c),c=3/64+16/29*I,n=44 4334911588264941 r009 Re(z^3+c),c=-11/90+25/37*I,n=2 4334911600900550 r005 Re(z^2+c),c=-14/27+7/16*I,n=25 4334911605559740 r005 Re(z^2+c),c=-11/17+8/59*I,n=25 4334911611221321 k007 concat of cont frac of 4334911615861908 a007 Real Root Of 718*x^4-871*x^3+176*x^2-562*x-373 4334911620826942 m005 (1/3*3^(1/2)+1/3)/(2/7*gamma-3/8) 4334911633341338 r009 Im(z^3+c),c=-3/40+23/45*I,n=8 4334911633410685 m005 (1/3*gamma+1/10)/(1/3*5^(1/2)+6) 4334911649667958 a007 Real Root Of -958*x^4-460*x^3-977*x^2-106*x+134 4334911651765871 m003 159/40+Sqrt[5]/2-ProductLog[1/2+Sqrt[5]/2] 4334911651961449 s001 sum(exp(-2*Pi/3)^n*A267610[n],n=1..infinity) 4334911661730208 r009 Im(z^3+c),c=-3/64+35/51*I,n=4 4334911676175465 m001 (PolyaRandomWalk3D-Salem)/(Backhouse+Bloch) 4334911682069116 r005 Re(z^2+c),c=-21/34+21/95*I,n=18 4334911691054175 m001 (BesselI(0,1)-FransenRobinson)^Psi(2,1/3) 4334911694188807 m005 (1/3*gamma-1/12)/(4/5*5^(1/2)+8/11) 4334911702397151 m001 (ln(Pi)-Pi^(1/2))/(KhinchinLevy+MertensB1) 4334911707006879 m005 (1/2*Zeta(3)-3/11)/(6/7*3^(1/2)-8/11) 4334911710884523 r005 Re(z^2+c),c=-21/34+7/118*I,n=32 4334911714361431 r005 Re(z^2+c),c=-21/34+13/127*I,n=45 4334911724493920 a007 Real Root Of 472*x^4-244*x^3-118*x^2-848*x+37 4334911730078414 m006 (1/Pi+2/5)/(1/2*exp(Pi)+5) 4334911731245385 a001 76/21*89^(26/47) 4334911732100286 a001 15127/1597*4181^(36/49) 4334911732607614 r005 Re(z^2+c),c=11/90+31/47*I,n=22 4334911749500443 m001 LaplaceLimit^2/ln(Backhouse)^2/GAMMA(1/3)^2 4334911750553350 m005 (1/2*gamma+5/7)/(3/5*Pi+3/7) 4334911752044769 q001 1007/2323 4334911756853535 r005 Re(z^2+c),c=7/50+22/47*I,n=50 4334911759074460 r005 Im(z^2+c),c=-7/94+32/53*I,n=16 4334911768551754 m002 -4*Cosh[Pi]+4*Coth[Pi]-Tanh[Pi] 4334911770863810 m001 Si(Pi)^GAMMA(3/4)*KomornikLoreti^GAMMA(3/4) 4334911789726990 m001 (ln(Pi)+arctan(1/3))/(ArtinRank2+Khinchin) 4334911791732397 a007 Real Root Of -203*x^4+693*x^3-336*x^2+49*x+148 4334911799481995 h001 (1/9*exp(1)+9/11)/(3/4*exp(1)+6/11) 4334911803151230 m001 (GAMMA(7/12)+MertensB3)/(Robbin-ZetaQ(4)) 4334911809726316 r005 Im(z^2+c),c=-1/98+4/7*I,n=47 4334911820201527 r005 Re(z^2+c),c=-5/8+8/253*I,n=28 4334911855490957 a007 Real Root Of -141*x^4-687*x^3-129*x^2+853*x-51 4334911866037472 m001 (MasserGramainDelta+PlouffeB)/(Ei(1)+Magata) 4334911868100828 r005 Im(z^2+c),c=1/118+30/53*I,n=22 4334911877694327 m001 cosh(1)^2/exp(arctan(1/2))/sin(Pi/5)^2 4334911877723895 m005 (1/4*exp(1)-1/6)/(1/5*Catalan+1) 4334911884279688 s002 sum(A253284[n]/(n*exp(pi*n)+1),n=1..infinity) 4334911885366268 m001 (CopelandErdos-Khinchin)/(Stephens-Trott) 4334911890770844 r005 Im(z^2+c),c=-5/42+8/13*I,n=38 4334911891973085 a007 Real Root Of -160*x^4-637*x^3+224*x^2-314*x-961 4334911904690037 m005 (1/2*2^(1/2)-3/10)/(1/9*gamma+7/8) 4334911911335494 r002 7th iterates of z^2 + 4334911926255339 l006 ln(4093/6314) 4334911927024962 m001 (Si(Pi)-Zeta(5))/(-ln(5)+BesselI(1,2)) 4334911935050421 m001 ln(Porter)^2/Magata^2/cos(1)^2 4334911975333356 m001 1/cos(Pi/12)*LaplaceLimit^2/exp(sinh(1))^2 4334911981328587 m005 (1/3*gamma+1/6)/(5/7*Catalan-4/7) 4334911991966483 a001 24476/3*233^(43/59) 4334912002808378 r009 Re(z^3+c),c=-43/122+39/59*I,n=53 4334912004087611 r005 Re(z^2+c),c=-79/118+11/40*I,n=49 4334912006262296 a001 39603/4181*4181^(36/49) 4334912021927534 m001 HeathBrownMoroz*(MasserGramainDelta+Porter) 4334912022172481 r009 Re(z^3+c),c=-35/86+6/61*I,n=26 4334912023197190 s002 sum(A152259[n]/((pi^n-1)/n),n=1..infinity) 4334912027672525 r005 Re(z^2+c),c=-8/13+5/41*I,n=41 4334912042538991 a007 Real Root Of 838*x^4-940*x^3+96*x^2+46*x+9 4334912069942080 a007 Real Root Of -179*x^4-578*x^3+808*x^2-410*x-836 4334912090880469 r002 41th iterates of z^2 + 4334912092562149 m001 1/5*5^(1/2)*cos(1/5*Pi)/GaussAGM 4334912112633567 a007 Real Root Of -264*x^4-888*x^3+924*x^2-780*x+143 4334912121847647 r002 26th iterates of z^2 + 4334912148656194 r005 Im(z^2+c),c=9/50+16/37*I,n=26 4334912149346452 v002 sum(1/(2^n+(41/2*n^2+1/2*n+24)),n=1..infinity) 4334912157130447 a003 sin(Pi*18/119)-sin(Pi*7/20) 4334912157733943 m001 (Zeta(5)+GlaisherKinkelin)/(Rabbit-ZetaP(3)) 4334912175703755 a001 6119/646*4181^(36/49) 4334912202762419 r005 Im(z^2+c),c=2/23+20/39*I,n=47 4334912202966704 r005 Re(z^2+c),c=-11/18+17/64*I,n=24 4334912208629228 m009 (1/3*Pi^2+3/4)/(5*Psi(1,2/3)-6) 4334912238639674 r005 Im(z^2+c),c=2/7+20/59*I,n=57 4334912247239735 r002 60th iterates of z^2 + 4334912247581110 m005 (1/2*5^(1/2)+4/11)/(5/6*Pi+4/5) 4334912250971177 m001 ln(GAMMA(5/6))^2/TwinPrimes^2/log(1+sqrt(2))^2 4334912261266848 a003 cos(Pi*10/31)-sin(Pi*33/80) 4334912264507632 r005 Re(z^2+c),c=-13/18+3/125*I,n=32 4334912268835014 r005 Re(z^2+c),c=-81/62+2/61*I,n=12 4334912275496019 r005 Re(z^2+c),c=-51/82+1/59*I,n=42 4334912278861149 a007 Real Root Of -140*x^4-711*x^3-506*x^2-145*x+399 4334912283402069 m001 (Sarnak-Tetranacci)/(exp(1/exp(1))+MertensB3) 4334912291346130 r005 Re(z^2+c),c=-19/52+19/31*I,n=45 4334912294307637 r005 Im(z^2+c),c=2/25+27/52*I,n=53 4334912296671253 r005 Re(z^2+c),c=-41/66+1/48*I,n=51 4334912300963125 m001 (arctan(1/2)+GAMMA(11/12))/(ln(5)+Ei(1)) 4334912301381356 l006 ln(4222/6513) 4334912309362436 m001 (gamma+Ei(1,1))/(-Tribonacci+ZetaQ(4)) 4334912315730731 r005 Re(z^2+c),c=-19/30+3/104*I,n=24 4334912317427233 m001 TreeGrowth2nd*(FellerTornier+LaplaceLimit) 4334912319214649 r005 Im(z^2+c),c=11/48+21/53*I,n=60 4334912326106906 a001 9349/610*8^(1/2) 4334912336493970 m005 (1/3*Zeta(3)-1/7)/(5/11*gamma-6/7) 4334912377576892 r005 Im(z^2+c),c=3/32+33/64*I,n=35 4334912386312416 a007 Real Root Of -248*x^4-975*x^3+570*x^2+709*x+513 4334912387166010 m001 (Trott2nd-ZetaP(3))/(arctan(1/3)-Robbin) 4334912409136978 r009 Re(z^3+c),c=-15/31+11/59*I,n=8 4334912412308420 r005 Re(z^2+c),c=-39/64+6/19*I,n=61 4334912413278179 m001 (exp(1)-ln(gamma))/(-GAMMA(19/24)+Tetranacci) 4334912417969302 l003 KelvinKer(2,63/71) 4334912438498401 a007 Real Root Of 81*x^4+326*x^3+3*x^2+598*x+489 4334912439512341 a007 Real Root Of -20*x^4-858*x^3+383*x^2-268*x+377 4334912446580598 r005 Im(z^2+c),c=5/32+13/28*I,n=26 4334912472637561 m009 (8/3*Catalan+1/3*Pi^2+4/5)/(5*Psi(1,2/3)-1/4) 4334912477894016 a007 Real Root Of 233*x^4+823*x^3-693*x^2+359*x-657 4334912483826496 m006 (3*ln(Pi)+3/5)/(4*exp(Pi)+1/2) 4334912487559135 r005 Im(z^2+c),c=11/122+18/35*I,n=29 4334912524935850 r005 Re(z^2+c),c=-79/122+1/8*I,n=13 4334912525205488 m005 (1/2*2^(1/2)+7/9)/(10/11*3^(1/2)-5) 4334912536443148 r005 Im(z^2+c),c=-13/28+13/28*I,n=3 4334912536443148 r009 Re(z^3+c),c=-39/70+37/56*I,n=2 4334912548171175 p004 log(33809/443) 4334912556169990 a007 Real Root Of 517*x^4+158*x^3+578*x^2-842*x-479 4334912579097227 r002 11th iterates of z^2 + 4334912591019721 m005 (1/2*Catalan+1/10)/(5/7*Zeta(3)+3/7) 4334912606867675 h001 (-9*exp(2/3)+2)/(-4*exp(1/3)+2) 4334912606988420 a007 Real Root Of -712*x^4+134*x^3-869*x^2+915*x+596 4334912618583979 r005 Im(z^2+c),c=-19/110+3/56*I,n=3 4334912618747958 r005 Re(z^2+c),c=-29/46+17/52*I,n=57 4334912621110361 r009 Im(z^3+c),c=-3/98+37/47*I,n=34 4334912626735803 m001 ln(GAMMA(5/24))*Cahen^2/sqrt(2) 4334912626827713 r005 Im(z^2+c),c=17/58+3/7*I,n=14 4334912654263619 l006 ln(4351/6712) 4334912654291988 a001 1/2529*(1/2*5^(1/2)+1/2)^9*3^(1/3) 4334912655214396 m009 (48*Catalan+6*Pi^2-1)/(1/4*Psi(1,1/3)-1/6) 4334912660732104 a007 Real Root Of 20*x^4+855*x^3-536*x^2-705*x+572 4334912715157175 r005 Re(z^2+c),c=-18/29+1/27*I,n=42 4334912724615174 r002 29th iterates of z^2 + 4334912729489036 a001 29/832040*121393^(14/23) 4334912729523595 a001 29/701408733*7778742049^(14/23) 4334912755476135 a007 Real Root Of -173*x^4-650*x^3+547*x^2+564*x+307 4334912763758249 m001 (-GlaisherKinkelin+Trott)/(BesselJ(0,1)-Bloch) 4334912782779208 h001 (1/3*exp(1)+4/7)/(11/12*exp(1)+11/12) 4334912791649958 l006 ln(9232/9641) 4334912796284583 m002 -1-E^Pi+4*Pi^2*Cosh[Pi] 4334912812807004 r005 Im(z^2+c),c=-7/34+5/8*I,n=62 4334912813319761 m001 Psi(2,1/3)/(LambertW(1)+CareFree) 4334912813615761 m001 1/ln(GAMMA(23/24))/HardHexagonsEntropy*cosh(1) 4334912876887132 b008 -2/3+ArcCsch[17/4] 4334912877437906 r005 Re(z^2+c),c=-7/12+14/57*I,n=14 4334912881797652 b008 Log[76+Pi^(-1)] 4334912882687339 m008 (1/3*Pi^3+4)/(1/3*Pi^4+3/5) 4334912884777586 r005 Im(z^2+c),c=31/102+16/47*I,n=11 4334912893469449 a001 9349/987*4181^(36/49) 4334912911382628 r009 Im(z^3+c),c=-21/46+21/47*I,n=19 4334912913704038 m001 Pi+(3^(1/2))^arctan(1/3) 4334912913967517 r005 Re(z^2+c),c=-33/52+2/29*I,n=16 4334912919907469 m001 BesselJ(0,1)/GAMMA(2/3)/Conway 4334912922961937 r002 34th iterates of z^2 + 4334912925935751 a008 Real Root of (2+6*x+3*x^2-3*x^3-5*x^4+2*x^5) 4334912931097691 m001 FeigenbaumC^GAMMA(11/12)+Zeta(1/2) 4334912942636971 a001 7/317811*17711^(27/50) 4334912960723876 a001 1/5*514229^(1/17) 4334912966477001 m001 1/exp(GAMMA(19/24))*Salem^2/Pi^2 4334912975522586 h001 (8/11*exp(2)+2/7)/(1/7*exp(2)+1/4) 4334912980379261 r002 33th iterates of z^2 + 4334912986823634 l006 ln(4480/6911) 4334912999342212 r002 35th iterates of z^2 + 4334913012764990 a001 32951280099/322*322^(1/4) 4334913015813915 m001 Pi+(2^(1/3)-Zeta(1/2))/BesselI(0,2) 4334913017461989 r005 Im(z^2+c),c=3/29+13/22*I,n=48 4334913058217322 r005 Re(z^2+c),c=-16/27+10/51*I,n=6 4334913068333904 r005 Im(z^2+c),c=-31/56+7/57*I,n=10 4334913069992159 a007 Real Root Of 264*x^4+945*x^3-940*x^2-163*x+713 4334913088148306 r005 Im(z^2+c),c=-47/86+7/15*I,n=10 4334913102781663 r005 Re(z^2+c),c=-27/44+7/44*I,n=52 4334913112164296 q001 1372/3165 4334913114734829 r002 57th iterates of z^2 + 4334913156783136 r005 Im(z^2+c),c=15/74+19/45*I,n=32 4334913157165823 m001 (gamma(1)+Lehmer)/(5^(1/2)-Zeta(5)) 4334913164463300 r009 Re(z^3+c),c=-7/90+38/59*I,n=19 4334913196136140 a003 sin(Pi*14/89)*sin(Pi*40/109) 4334913197857454 r005 Im(z^2+c),c=-11/54+22/31*I,n=15 4334913225408885 r009 Re(z^3+c),c=-43/78+5/26*I,n=17 4334913258184749 r005 Im(z^2+c),c=1/9+14/23*I,n=60 4334913259553571 a003 cos(Pi*37/101)/sin(Pi*30/77) 4334913278245125 r005 Im(z^2+c),c=13/58+23/56*I,n=16 4334913287957287 v002 sum(1/(3^n+(14*n^2-13*n+48)),n=1..infinity) 4334913290963373 a007 Real Root Of -707*x^4+147*x^3-886*x^2+638*x+480 4334913296740738 m001 (Stephens-TreeGrowth2nd)/(ln(5)+GAMMA(7/12)) 4334913300334258 r005 Re(z^2+c),c=-13/118+49/60*I,n=6 4334913300767782 l006 ln(4609/7110) 4334913303733515 r005 Im(z^2+c),c=-17/22+33/104*I,n=6 4334913320319504 m005 (2/3*Catalan+3/4)/(-2/15+1/5*5^(1/2)) 4334913320350441 r005 Re(z^2+c),c=-37/64+4/11*I,n=54 4334913321530853 p001 sum((-1)^n/(145*n+79)/n/(10^n),n=0..infinity) 4334913323127388 r005 Im(z^2+c),c=29/110+20/63*I,n=12 4334913339294778 m001 (GAMMA(11/12)+Rabbit)/(exp(1)+GAMMA(2/3)) 4334913340545292 m001 (FeigenbaumD-TreeGrowth2nd)/polylog(4,1/2) 4334913351133240 r005 Re(z^2+c),c=-23/34+15/124*I,n=10 4334913354842671 r002 33th iterates of z^2 + 4334913376029505 r005 Im(z^2+c),c=-3/58+49/53*I,n=9 4334913387504511 r002 26th iterates of z^2 + 4334913391118768 m001 (LambertW(1)-gamma(3))/Conway 4334913391164528 m001 (Psi(1,1/3)-Zeta(3))/(-FeigenbaumKappa+Magata) 4334913398462517 r009 Im(z^3+c),c=-39/82+23/64*I,n=23 4334913399627290 r009 Re(z^3+c),c=-41/122+17/25*I,n=3 4334913400825300 r005 Im(z^2+c),c=-7/8+69/248*I,n=5 4334913403472917 r005 Re(z^2+c),c=-31/54+22/51*I,n=22 4334913408105595 r009 Im(z^3+c),c=-10/23+13/28*I,n=12 4334913417526876 r005 Im(z^2+c),c=-11/114+32/53*I,n=50 4334913433220049 r002 34th iterates of z^2 + 4334913436192682 a003 sin(Pi*11/95)/cos(Pi*6/31) 4334913449194443 r002 26th iterates of z^2 + 4334913467207820 m005 (25/4+1/4*5^(1/2))/(6/11*Pi-1/7) 4334913468740970 m001 1/GAMMA(2/3)/Magata^2/ln(GAMMA(5/6))^2 4334913469519202 r005 Re(z^2+c),c=-41/86+7/11*I,n=14 4334913476265959 r005 Re(z^2+c),c=-39/64+13/63*I,n=57 4334913479491554 a001 2/2207*7^(37/46) 4334913494768664 r005 Re(z^2+c),c=2/29+5/33*I,n=7 4334913500526471 p001 sum(1/(501*n+434)/n/(25^n),n=1..infinity) 4334913506461902 a007 Real Root Of -218*x^4+828*x^3-374*x^2+465*x+347 4334913508159576 a007 Real Root Of 684*x^4-689*x^3-368*x^2-265*x+216 4334913511321821 m001 (Zeta(5)+GAMMA(11/12))/(Bloch+Trott) 4334913534259944 m005 (1/3*exp(1)-2/11)/(1/2*Pi+1/10) 4334913537141482 r005 Re(z^2+c),c=-59/106+26/57*I,n=14 4334913546977471 m001 (Artin+Porter)/(exp(1)+GAMMA(7/12)) 4334913548481333 r005 Re(z^2+c),c=-45/74+3/59*I,n=17 4334913556031504 a007 Real Root Of -552*x^4+290*x^3-606*x^2+263*x+271 4334913561922400 r005 Re(z^2+c),c=11/42+1/55*I,n=17 4334913570440821 a007 Real Root Of 256*x^4+195*x^3+15*x^2-906*x+365 4334913580472264 r005 Im(z^2+c),c=-91/110+1/41*I,n=51 4334913581354272 r009 Re(z^3+c),c=-15/32+1/25*I,n=41 4334913584035780 a007 Real Root Of -407*x^4+661*x^3+357*x^2+264*x-221 4334913589729666 r005 Re(z^2+c),c=11/102+4/17*I,n=20 4334913597616609 l006 ln(4738/7309) 4334913599772237 r005 Im(z^2+c),c=-75/106+11/43*I,n=18 4334913604540374 r005 Re(z^2+c),c=-101/74+16/63*I,n=2 4334913610912621 r002 8th iterates of z^2 + 4334913627027448 a001 225851433717/2207*199^(3/11) 4334913629246297 r002 42th iterates of z^2 + 4334913632622531 a003 cos(Pi*41/109)+cos(Pi*14/29) 4334913646091153 r002 28th iterates of z^2 + 4334913655140709 r009 Im(z^3+c),c=-17/31+11/24*I,n=4 4334913675110940 a001 7/281*47^(23/31) 4334913698370635 q001 1/2306851 4334913713960364 m005 (1/2*3^(1/2)+6)/(9/10*5^(1/2)-3/7) 4334913726164312 g007 Psi(2,7/12)-Psi(2,8/9)-Psi(2,1/6)-Psi(2,2/3) 4334913733984818 m001 (1-KhinchinHarmonic)/(Landau+Salem) 4334913738766585 s001 sum(exp(-4*Pi/5)^n*A118073[n],n=1..infinity) 4334913746478152 a007 Real Root Of 667*x^4-57*x^3+213*x^2-71*x-99 4334913753924975 a001 11/377*17711^(8/29) 4334913755177841 r002 52th iterates of z^2 + 4334913779510584 a001 15456*47^(15/56) 4334913783260585 r005 Re(z^2+c),c=-65/98+11/53*I,n=22 4334913787854134 m002 -E^Pi+2/Pi^5-E^Pi/Log[Pi] 4334913796762115 a001 6765/2207*2^(1/2) 4334913837766632 r002 43th iterates of z^2 + 4334913838081310 r009 Re(z^3+c),c=-7/90+24/37*I,n=42 4334913854568614 m001 1/GAMMA(2/3)/exp(Robbin)/Zeta(1,2)^2 4334913873622683 p003 LerchPhi(1/512,1,231/100) 4334913878333650 m002 -6+5*Pi^2+ProductLog[Pi]/Pi^6 4334913878729451 l006 ln(4867/7508) 4334913881641024 a007 Real Root Of -16*x^4-705*x^3-488*x^2+289*x-208 4334913888436972 a001 199/63245986*3^(7/24) 4334913889322287 m001 GolombDickman/(MertensB3+OneNinth) 4334913893218401 a005 (1/cos(29/221*Pi))^701 4334913900673820 q001 1737/4007 4334913905153361 m008 (5/6*Pi^3-5)/(5*Pi^6+1/5) 4334913932626323 r005 Im(z^2+c),c=2/27+15/28*I,n=27 4334913956008610 m004 -5*E^(Sqrt[5]*Pi)+375*Pi*Cot[Sqrt[5]*Pi] 4334913965305997 r009 Im(z^3+c),c=-47/110+19/53*I,n=6 4334913974657995 r009 Re(z^3+c),c=-10/31+43/62*I,n=23 4334913994296507 r002 25th iterates of z^2 + 4334913994778386 r009 Re(z^3+c),c=-55/114+9/56*I,n=25 4334913996692814 a007 Real Root Of -151*x^4-541*x^3+687*x^2+780*x-277 4334914026974175 a007 Real Root Of 445*x^4-329*x^3-293*x^2-285*x-111 4334914030143496 m001 (Pi-5^(1/2))/(GaussAGM-Kac) 4334914030376019 r009 Re(z^3+c),c=-11/24+5/33*I,n=19 4334914035892569 m001 MadelungNaCl^(3^(1/2))+Niven 4334914046150024 r009 Im(z^3+c),c=-57/98+31/60*I,n=12 4334914072592067 r005 Re(z^2+c),c=-11/26+35/57*I,n=14 4334914088057345 a007 Real Root Of 473*x^4-442*x^3-363*x^2-534*x+319 4334914123360594 r005 Re(z^2+c),c=-71/122+16/51*I,n=29 4334914128447605 r005 Re(z^2+c),c=-39/64+22/59*I,n=48 4334914131425646 r002 23th iterates of z^2 + 4334914132219133 k007 concat of cont frac of 4334914145245763 r002 4th iterates of z^2 + 4334914145325249 l006 ln(4996/7707) 4334914161310601 m001 ln(cos(1))^2*Riemann2ndZero^2*sin(Pi/12) 4334914165274822 m001 (Mills+Totient)/(ln(2)-Conway) 4334914167930314 r005 Im(z^2+c),c=-67/110+19/46*I,n=12 4334914172940781 m001 (GaussAGM*Sierpinski-Zeta(5))/Sierpinski 4334914179600606 r009 Im(z^3+c),c=-21/44+3/8*I,n=57 4334914182544224 a001 1149851/610*2504730781961^(4/21) 4334914182547432 a001 3940598/305*102334155^(4/21) 4334914186677473 a007 Real Root Of 210*x^4+739*x^3-877*x^2-539*x+187 4334914191994434 a001 54018521/610*4181^(4/21) 4334914196793830 a007 Real Root Of -149*x^4-606*x^3+177*x^2+8*x-41 4334914197824546 a007 Real Root Of 818*x^4+811*x^3+162*x^2-440*x-184 4334914223161085 r009 Im(z^3+c),c=-7/78+62/63*I,n=20 4334914264652277 a003 cos(Pi*29/110)*cos(Pi*22/79) 4334914266722264 m001 (-LambertW(1)+ZetaQ(4))/(Psi(1,1/3)-exp(Pi)) 4334914269149916 s002 sum(A233113[n]/(n*exp(pi*n)+1),n=1..infinity) 4334914281815458 r002 14th iterates of z^2 + 4334914283170707 r005 Re(z^2+c),c=-41/66+1/34*I,n=57 4334914296961126 r005 Im(z^2+c),c=-17/28+20/47*I,n=57 4334914321930381 m005 (1/2*Pi-4/11)/(1/7*Pi-8/11) 4334914328947633 r009 Im(z^3+c),c=-25/64+26/61*I,n=46 4334914332970808 r005 Im(z^2+c),c=-19/14+3/185*I,n=12 4334914335644435 m005 (1/2*3^(1/2)-8/9)/(5/8*gamma+1/6) 4334914358502676 a001 24476/1597*8^(1/2) 4334914361134230 a001 9/416020*3^(31/49) 4334914361698443 a005 (1/sin(15/149*Pi))^19 4334914368361011 r005 Re(z^2+c),c=-29/48+9/44*I,n=38 4334914368971896 m001 Mills^Psi(2,1/3)*Mills^(ln(2)/ln(10)) 4334914370965477 a007 Real Root Of 228*x^4+856*x^3-386*x^2+739*x-325 4334914387153590 a001 591286729879/5778*199^(3/11) 4334914398500218 l006 ln(5125/7906) 4334914408371329 r009 Im(z^3+c),c=-7/44+1/25*I,n=4 4334914414267639 r005 Re(z^2+c),c=-41/64+1/61*I,n=24 4334914435406464 a007 Real Root Of 611*x^4-514*x^3+444*x^2+295*x-19 4334914458887670 m005 (1/2*2^(1/2)-1/5)/(7/12*Zeta(3)-9/11) 4334914465404497 r002 3th iterates of z^2 + 4334914498054522 a001 1548008755920/15127*199^(3/11) 4334914505868712 a007 Real Root Of 73*x^4+227*x^3-345*x^2+34*x-656 4334914512050917 r009 Re(z^3+c),c=-57/118+9/56*I,n=25 4334914514234751 a001 4052739537881/39603*199^(3/11) 4334914514680175 a001 1/233*377^(23/59) 4334914516595414 a001 225749145909/2206*199^(3/11) 4334914517749464 r009 Re(z^3+c),c=-9/19+7/36*I,n=11 4334914518054384 a001 6557470319842/64079*199^(3/11) 4334914524234682 a001 2504730781961/24476*199^(3/11) 4334914530000531 a001 28657/18*3^(31/34) 4334914530980397 r009 Im(z^3+c),c=-29/56+8/27*I,n=29 4334914533309463 r009 Re(z^3+c),c=-41/86+18/59*I,n=5 4334914547204867 a007 Real Root Of 168*x^4+702*x^3-264*x^2-864*x-924 4334914552705374 r002 5th iterates of z^2 + 4334914563967198 a007 Real Root Of -17*x^4-736*x^3+57*x^2+722*x+390 4334914566595070 a001 956722026041/9349*199^(3/11) 4334914573068516 a001 17711/5778*2^(1/2) 4334914574757017 r005 Re(z^2+c),c=-21/34+14/123*I,n=55 4334914588567543 r005 Re(z^2+c),c=-79/114+8/59*I,n=42 4334914623009113 a007 Real Root Of 225*x^4+885*x^3-329*x^2+382*x+478 4334914625370826 r005 Re(z^2+c),c=-9/14+32/237*I,n=25 4334914634795008 r005 Re(z^2+c),c=-49/106+16/49*I,n=6 4334914639242913 l006 ln(5254/8105) 4334914647299566 r005 Re(z^2+c),c=-7/12+11/124*I,n=9 4334914655025379 a001 64079/4181*8^(1/2) 4334914665663370 a001 3/199*4^(16/21) 4334914677760563 m001 (Thue-ZetaP(2))/(cos(1/5*Pi)-MadelungNaCl) 4334914677925229 r005 Re(z^2+c),c=-15/22+5/121*I,n=20 4334914685731740 s002 sum(A114715[n]/(n*exp(pi*n)+1),n=1..infinity) 4334914686330116 a001 6624/2161*2^(1/2) 4334914698287462 a001 167761/10946*8^(1/2) 4334914702854761 a001 121393/39603*2^(1/2) 4334914704599314 a001 439204/28657*8^(1/2) 4334914705265674 a001 317811/103682*2^(1/2) 4334914705520201 a001 1149851/75025*8^(1/2) 4334914705617422 a001 832040/271443*2^(1/2) 4334914705654557 a001 3010349/196418*8^(1/2) 4334914705668741 a001 311187/101521*2^(1/2) 4334914705674159 a001 7881196/514229*8^(1/2) 4334914705676229 a001 5702887/1860498*2^(1/2) 4334914705677019 a001 20633239/1346269*8^(1/2) 4334914705677321 a001 14930352/4870847*2^(1/2) 4334914705677436 a001 54018521/3524578*8^(1/2) 4334914705677480 a001 39088169/12752043*2^(1/2) 4334914705677497 a001 141422324/9227465*8^(1/2) 4334914705677504 a001 14619165/4769326*2^(1/2) 4334914705677506 a001 370248451/24157817*8^(1/2) 4334914705677507 a001 267914296/87403803*2^(1/2) 4334914705677507 a001 969323029/63245986*8^(1/2) 4334914705677508 a001 701408733/228826127*2^(1/2) 4334914705677508 a001 2537720636/165580141*8^(1/2) 4334914705677508 a001 1836311903/599074578*2^(1/2) 4334914705677508 a001 6643838879/433494437*8^(1/2) 4334914705677508 a001 686789568/224056801*2^(1/2) 4334914705677508 a001 17393796001/1134903170*8^(1/2) 4334914705677508 a001 12586269025/4106118243*2^(1/2) 4334914705677508 a001 45537549124/2971215073*8^(1/2) 4334914705677508 a001 32951280099/10749957122*2^(1/2) 4334914705677508 a001 119218851371/7778742049*8^(1/2) 4334914705677508 a001 86267571272/28143753123*2^(1/2) 4334914705677508 a001 312119004989/20365011074*8^(1/2) 4334914705677508 a001 32264490531/10525900321*2^(1/2) 4334914705677508 a001 817138163596/53316291173*8^(1/2) 4334914705677508 a001 591286729879/192900153618*2^(1/2) 4334914705677508 a001 2139295485799/139583862445*8^(1/2) 4334914705677508 a001 1548008755920/505019158607*2^(1/2) 4334914705677508 a001 14662949395604/956722026041*8^(1/2) 4334914705677508 a001 1515744265389/494493258286*2^(1/2) 4334914705677508 a001 2504730781961/817138163596*2^(1/2) 4334914705677508 a001 494493258286/32264490531*8^(1/2) 4334914705677508 a001 956722026041/312119004989*2^(1/2) 4334914705677508 a001 1322157322203/86267571272*8^(1/2) 4334914705677508 a001 365435296162/119218851371*2^(1/2) 4334914705677508 a001 505019158607/32951280099*8^(1/2) 4334914705677508 a001 139583862445/45537549124*2^(1/2) 4334914705677508 a001 192900153618/12586269025*8^(1/2) 4334914705677508 a001 53316291173/17393796001*2^(1/2) 4334914705677508 a001 10525900321/686789568*8^(1/2) 4334914705677508 a001 20365011074/6643838879*2^(1/2) 4334914705677508 a001 28143753123/1836311903*8^(1/2) 4334914705677508 a001 7778742049/2537720636*2^(1/2) 4334914705677508 a001 10749957122/701408733*8^(1/2) 4334914705677508 a001 2971215073/969323029*2^(1/2) 4334914705677508 a001 4106118243/267914296*8^(1/2) 4334914705677508 a001 1134903170/370248451*2^(1/2) 4334914705677508 a001 224056801/14619165*8^(1/2) 4334914705677508 a001 433494437/141422324*2^(1/2) 4334914705677508 a001 599074578/39088169*8^(1/2) 4334914705677509 a001 165580141/54018521*2^(1/2) 4334914705677512 a001 228826127/14930352*8^(1/2) 4334914705677518 a001 63245986/20633239*2^(1/2) 4334914705677535 a001 87403803/5702887*8^(1/2) 4334914705677579 a001 24157817/7881196*2^(1/2) 4334914705677694 a001 4769326/311187*8^(1/2) 4334914705677996 a001 9227465/3010349*2^(1/2) 4334914705678787 a001 12752043/832040*8^(1/2) 4334914705680856 a001 3524578/1149851*2^(1/2) 4334914705686274 a001 4870847/317811*8^(1/2) 4334914705700458 a001 1346269/439204*2^(1/2) 4334914705737593 a001 1860498/121393*8^(1/2) 4334914705834814 a001 514229/167761*2^(1/2) 4334914706089341 a001 101521/6624*8^(1/2) 4334914706755701 a001 196418/64079*2^(1/2) 4334914708500254 a001 271443/17711*8^(1/2) 4334914713067554 a001 75025/24476*2^(1/2) 4334914718467208 r005 Im(z^2+c),c=7/82+16/31*I,n=49 4334914721402779 m008 (1/6*Pi^3+1/5)/(4*Pi^3-1/5) 4334914721643843 r005 Re(z^2+c),c=-47/98+15/38*I,n=9 4334914725024899 a001 103682/6765*8^(1/2) 4334914746866623 r002 61th iterates of z^2 + 4334914752854281 r005 Re(z^2+c),c=-19/30+31/102*I,n=31 4334914756329637 a001 28657/9349*2^(1/2) 4334914757312335 a007 Real Root Of -72*x^4+807*x^3-451*x^2+865*x+528 4334914763273164 m001 Trott^2*ln(Champernowne)/LambertW(1) 4334914777310566 m001 (Landau-ThueMorse)/(ln(3)-GAMMA(5/6)) 4334914787668458 a001 17/2889*18^(38/55) 4334914819067870 m001 gamma(2)^exp(-1/2*Pi)/(cos(1)^exp(-1/2*Pi)) 4334914837673182 s002 sum(A088182[n]/(10^n+1),n=1..infinity) 4334914838286507 a001 39603/2584*8^(1/2) 4334914847737835 m001 (-Artin+GaussAGM)/(GAMMA(13/24)-gamma) 4334914856937516 a001 365435296162/3571*199^(3/11) 4334914859355208 h002 exp(1/3*(18-3*3^(1/4))*3^(3/4)) 4334914868447125 l006 ln(5383/8304) 4334914879113439 r005 Im(z^2+c),c=3/94+5/9*I,n=44 4334914880416313 r009 Im(z^3+c),c=-47/98+19/51*I,n=50 4334914899996009 a007 Real Root Of 56*x^4+296*x^3+121*x^2-330*x+633 4334914900677760 g007 2*Psi(2,9/11)+Psi(2,1/6)-Psi(2,7/11) 4334914901425486 m001 (FeigenbaumB+GaussAGM)/(5^(1/2)+ln(5)) 4334914913217676 m001 (MertensB1-Salem)/(ArtinRank2-FransenRobinson) 4334914916019900 m005 (1/2*3^(1/2)-6)/(2/7*5^(1/2)+6/11) 4334914941208751 r002 61th iterates of z^2 + 4334914947969134 m005 (-5/44+1/4*5^(1/2))/(5/8*gamma+2/3) 4334914956405011 a007 Real Root Of 35*x^4-993*x^3-91*x^2-53*x-88 4334914968614938 g002 2*Psi(5/12)+Psi(5/9)-Psi(4/9) 4334914987698368 a007 Real Root Of 786*x^4-285*x^3-420*x^2-938*x+481 4334914991056336 r005 Re(z^2+c),c=5/42+29/47*I,n=7 4334914992981524 m001 (DuboisRaymond-Totient)/(Trott2nd-ZetaQ(2)) 4334914995756188 r005 Im(z^2+c),c=4/25+11/24*I,n=39 4334915000886996 l006 ln(4695/4903) 4334915012837090 r005 Re(z^2+c),c=-39/110+19/42*I,n=2 4334915022619567 r009 Im(z^3+c),c=-23/60+25/46*I,n=11 4334915052852393 a001 10946/3571*2^(1/2) 4334915083529168 a007 Real Root Of 94*x^4+457*x^3+262*x^2+417*x+918 4334915086922980 l006 ln(5512/8503) 4334915091337364 r002 62th iterates of z^2 + 4334915091423358 m001 (cos(1/12*Pi)-gamma(3))/(Niven-Tetranacci) 4334915102882771 m001 1/ln(Magata)^2/Backhouse^2*sinh(1)^2 4334915106945193 a003 1/2+cos(1/10*Pi)+2*cos(1/24*Pi)+cos(1/7*Pi) 4334915121357868 a007 Real Root Of -144*x^4+767*x^3+129*x^2+829*x-441 4334915129080521 r009 Re(z^3+c),c=-2/7+14/19*I,n=30 4334915154683832 r009 Im(z^3+c),c=-12/31+3/7*I,n=22 4334915162872388 a007 Real Root Of 34*x^4+180*x^3+98*x^2-251*x-273 4334915174926601 m006 (3/4*exp(2*Pi)+1/2)/(4*exp(Pi)+1/5) 4334915181254676 b008 ArcTan[Sin[ArcCsch[2]]] 4334915183171983 p004 log(34267/449) 4334915197171266 a007 Real Root Of 387*x^4-521*x^3+540*x^2-839*x+291 4334915216613340 g007 Psi(2,4/5)-Psi(2,5/12)-Psi(2,6/11)-Psi(2,5/7) 4334915226493720 m005 (1/3*5^(1/2)+2/11)/(6/7*5^(1/2)+2/9) 4334915227520454 r002 12th iterates of z^2 + 4334915241814429 a007 Real Root Of -760*x^4-798*x^3+61*x^2+650*x+28 4334915251317340 r009 Re(z^3+c),c=-11/94+41/54*I,n=59 4334915256063343 m001 1/BesselJ(1,1)/MadelungNaCl^2/exp(cos(1)) 4334915257824190 p001 sum(1/(95*n+52)/n/(16^n),n=0..infinity) 4334915265284337 m001 3^(1/3)-exp(1/Pi)^Trott2nd 4334915269739607 r009 Im(z^3+c),c=-59/126+23/56*I,n=16 4334915281193528 r005 Re(z^2+c),c=-41/66+1/40*I,n=54 4334915287222254 m001 ZetaQ(3)-gamma(2)*FeigenbaumMu 4334915295406493 l006 ln(5641/8702) 4334915304662187 r005 Re(z^2+c),c=-65/102+8/59*I,n=25 4334915305406273 s002 sum(A227088[n]/(n*pi^n-1),n=1..infinity) 4334915318734026 r005 Re(z^2+c),c=-11/18+13/71*I,n=53 4334915319528546 r002 2th iterates of z^2 + 4334915321863610 m005 (1/2*5^(1/2)-6/11)/(9/11*Catalan+4/7) 4334915322353335 m001 1/(2^(1/3))*ln(LaplaceLimit)^2/GAMMA(1/6)^2 4334915328236152 a007 Real Root Of -197*x^4+864*x^3+384*x^2+138*x+65 4334915343291142 r005 Im(z^2+c),c=1/90+41/55*I,n=17 4334915354756996 m001 (ln(3)+FeigenbaumC)/(GAMMA(3/4)+ln(gamma)) 4334915377868514 m001 (-Stephens+ZetaQ(3))/(BesselJ(0,1)+Landau) 4334915381852373 a008 Real Root of x^4+19*x^2-36*x+12 4334915381895405 m005 (1/2*2^(1/2)-5/9)/(exp(1)+7/9) 4334915382214533 m001 (exp(Pi)+Gompertz)/(OneNinth+TreeGrowth2nd) 4334915395567261 r002 44th iterates of z^2 + 4334915406908727 r009 Re(z^3+c),c=-45/98+7/47*I,n=40 4334915407720357 m001 ln(GAMMA(19/24))^2/GAMMA(1/24)^2/Zeta(5)^2 4334915420103141 a008 Real Root of x^5-2*x^4-10*x^3+11*x^2+18*x-9 4334915421793352 a001 28657/199*29^(18/55) 4334915467115258 r002 58th iterates of z^2 + 4334915469055307 r005 Re(z^2+c),c=-19/32+17/46*I,n=25 4334915469628787 r005 Re(z^2+c),c=-13/22+15/121*I,n=16 4334915473812030 r004 Re(z^2+c),c=-5/9+3/8*I,z(0)=exp(7/8*I*Pi),n=42 4334915487001797 r005 Re(z^2+c),c=-73/106+15/64*I,n=46 4334915494567862 l006 ln(5770/8901) 4334915496076657 k001 Champernowne real with 58*n+375 4334915503612412 r005 Im(z^2+c),c=-29/38+27/55*I,n=4 4334915504375684 m005 (1/3*Pi+1/11)/(-71/198+5/18*5^(1/2)) 4334915506096687 k005 Champernowne real with floor(sqrt(3)*(34*n+216)) 4334915508725167 r005 Im(z^2+c),c=17/122+10/21*I,n=37 4334915510425706 r002 35th iterates of z^2 + 4334915512228248 h001 (7/9*exp(2)+7/12)/(1/5*exp(1)+11/12) 4334915515847036 m001 1/exp(Riemann1stZero)^2*Magata^2/sqrt(2) 4334915530591702 r005 Im(z^2+c),c=31/94+15/62*I,n=26 4334915542974483 p004 log(35803/23209) 4334915543145278 r009 Re(z^3+c),c=-33/70+4/25*I,n=62 4334915556269521 h001 (2/3*exp(1)+8/11)/(7/9*exp(2)+1/9) 4334915564114234 r009 Im(z^3+c),c=-6/31+12/17*I,n=2 4334915564625020 r005 Im(z^2+c),c=7/102+10/19*I,n=53 4334915570202417 m005 (1/2*3^(1/2)-4/5)/(5/9*Pi-2/9) 4334915570397285 a007 Real Root Of -124*x^4-624*x^3-268*x^2+247*x-937 4334915577519127 q001 2/46137 4334915605648318 a007 Real Root Of 165*x^4+817*x^3+199*x^2-905*x+625 4334915608697525 r009 Im(z^3+c),c=-5/21+15/31*I,n=21 4334915609008604 m001 (3^(1/2)-KomornikLoreti)/(-Porter+Totient) 4334915614552375 r002 57th iterates of z^2 + 4334915614593274 a001 2161/141*8^(1/2) 4334915617127520 m002 4/3+5*Pi^4*Sech[Pi] 4334915620458798 m001 BesselI(1,1)-sin(1)+Rabbit 4334915625538887 r005 Im(z^2+c),c=1/54+19/37*I,n=12 4334915638298222 a007 Real Root Of -194*x^4+917*x^3+629*x^2+339*x-333 4334915639815436 m001 1/3*FransenRobinson/Artin*3^(1/2) 4334915649699140 r009 Re(z^3+c),c=-17/36+9/56*I,n=61 4334915651010701 r002 2th iterates of z^2 + 4334915661080469 r005 Im(z^2+c),c=1/16+26/49*I,n=60 4334915670079750 a007 Real Root Of -78*x^4+207*x^3-882*x^2-363*x+28 4334915685018661 l006 ln(5899/9100) 4334915692257112 s001 sum(exp(-2*Pi/3)^n*A072141[n],n=1..infinity) 4334915706760099 m005 (2/5*Catalan-1)/(1/5*Pi+5/6) 4334915714041893 a001 233802911/41*123^(9/10) 4334915718561448 r005 Im(z^2+c),c=-11/10+9/175*I,n=23 4334915733961531 m005 (1/2*Zeta(3)+6)/(3/7*2^(1/2)+11/12) 4334915739952980 a001 4/51841*76^(40/43) 4334915743236181 a007 Real Root Of 208*x^4+696*x^3-954*x^2-367*x-417 4334915747388182 r005 Re(z^2+c),c=-1/90+19/29*I,n=52 4334915763590875 a008 Real Root of x^4-3*x^2-50*x-80 4334915764161515 m001 FeigenbaumDelta^FeigenbaumB*Zeta(3) 4334915767325633 r009 Re(z^3+c),c=-55/114+11/40*I,n=5 4334915772233470 a007 Real Root Of 739*x^4+435*x^3+752*x^2-383*x-298 4334915782811840 r005 Re(z^2+c),c=23/70+1/18*I,n=22 4334915789079201 r005 Im(z^2+c),c=-2/13+29/45*I,n=42 4334915790079885 m001 (Ei(1)-exp(1/Pi))/(GolombDickman+Stephens) 4334915808887207 a007 Real Root Of -453*x^4+975*x^3-108*x^2+641*x-321 4334915814047231 r002 34i'th iterates of 2*x/(1-x^2) of 4334915815195212 r009 Im(z^3+c),c=-43/126+31/45*I,n=40 4334915820081259 r005 Re(z^2+c),c=-19/32+4/17*I,n=25 4334915823490841 g002 2*Psi(9/10)-Psi(11/12)-Psi(7/10) 4334915830189923 m001 (Psi(1,1/3)+Cahen)/(-OneNinth+Sierpinski) 4334915833191996 a008 Real Root of x^4-x^3-10*x^2-50*x+133 4334915834507182 m001 ArtinRank2^exp(-1/2*Pi)+Magata 4334915850555926 m008 (3*Pi^3+1/5)/(2/3*Pi^3+5/6) 4334915864399823 m006 (1/3*Pi+3)/(4*exp(Pi)+4/5) 4334915867318112 l006 ln(6028/9299) 4334915879388262 m008 (3/4*Pi^5+1/4)/(1/6*Pi^5+2) 4334915879413329 m001 1/Conway^2*Artin/ln(BesselK(1,1)) 4334915881234317 r002 50th iterates of z^2 + 4334915899807925 h001 (2/3*exp(2)+7/12)/(1/5*exp(1)+8/11) 4334915921063147 a007 Real Root Of -401*x^4-232*x^3+488*x^2+566*x-304 4334915923485932 r002 27th iterates of z^2 + 4334915928028304 r002 26th iterates of z^2 + 4334915933702473 r002 61th iterates of z^2 + 4334915947932438 r009 Re(z^3+c),c=-13/34+4/57*I,n=24 4334915956620238 a007 Real Root Of 756*x^4-969*x^3-564*x^2-972*x-421 4334915958248845 m001 1/ln(Bloch)/Champernowne^2*CareFree^2 4334915968396548 a001 387002188980/19*3^(11/16) 4334916016491738 r002 60th iterates of z^2 + 4334916037694651 a007 Real Root Of -552*x^4+539*x^3+387*x^2+995*x+422 4334916041978570 l006 ln(6157/9498) 4334916061058684 m001 1/ln(RenyiParking)*ErdosBorwein/GAMMA(5/6)^2 4334916078271430 m005 (1/3*gamma+3/7)/(4/7*Catalan+10/11) 4334916082925158 a007 Real Root Of 145*x^4+459*x^3-503*x^2+879*x-550 4334916084919330 r002 18th iterates of z^2 + 4334916087130115 r002 64th iterates of z^2 + 4334916091325116 h001 (5/7*exp(1)+7/11)/(7/9*exp(2)+1/5) 4334916092019360 r005 Im(z^2+c),c=11/32+16/61*I,n=54 4334916110110689 m002 -Pi^5+Pi^7*Csch[Pi]+Log[Pi] 4334916112256518 b008 AiryBiPrime[-1/3]/11 4334916115970577 m001 BesselI(1,2)^(Psi(1,1/3)*KomornikLoreti) 4334916119471865 m001 exp(Pi)/PrimesInBinary*log(1+sqrt(2))^2 4334916133862368 a007 Real Root Of -966*x^4+172*x^3-619*x^2+578*x+415 4334916136640627 m005 (1/2*2^(1/2)-2/9)/(2/11*Zeta(3)+9/10) 4334916170959250 r005 Im(z^2+c),c=17/48+17/64*I,n=62 4334916172583260 a001 3010349/1597*2504730781961^(4/21) 4334916172583728 a001 20633239/1597*102334155^(4/21) 4334916173914083 r005 Im(z^2+c),c=25/78+14/43*I,n=45 4334916182030676 a001 141422324/1597*4181^(4/21) 4334916193676615 m002 -1-Pi^3-Cosh[Pi]+Tanh[Pi]/4 4334916196255054 r009 Im(z^3+c),c=-17/32+14/55*I,n=52 4334916196501928 r005 Re(z^2+c),c=-11/18+21/97*I,n=48 4334916209470333 l006 ln(6286/9697) 4334916219042653 r005 Im(z^2+c),c=11/118+18/35*I,n=29 4334916230245725 p004 log(34651/33181) 4334916233411026 r005 Re(z^2+c),c=-3/23+20/31*I,n=20 4334916261637843 r005 Re(z^2+c),c=-21/34+11/97*I,n=60 4334916269434244 r005 Im(z^2+c),c=3/118+29/55*I,n=9 4334916269509066 m006 (1/2*Pi+5)/(4/5*ln(Pi)+3/5) 4334916276975678 r002 61th iterates of z^2 + 4334916280647124 m001 (GlaisherKinkelin-Mills)/(OneNinth-TwinPrimes) 4334916291380978 m001 (arctan(1/3)+Weierstrass)/(1+Chi(1)) 4334916294441987 r005 Re(z^2+c),c=19/106+20/59*I,n=34 4334916297280145 r005 Re(z^2+c),c=-65/106+9/64*I,n=26 4334916297966790 m001 (Lehmer+ZetaQ(3))/(Ei(1,1)-ErdosBorwein) 4334916313385437 b008 13/3+Sech[4+Pi] 4334916315368776 b008 13/3+Csch[4+Pi] 4334916357084528 a007 Real Root Of -623*x^4-214*x^3+564*x^2+933*x-471 4334916359029433 a007 Real Root Of 31*x^4-345*x^3+290*x^2+170*x-10 4334916361010377 m001 Pi/Ei(1)*MertensB1 4334916365392157 a007 Real Root Of -811*x^4-191*x^3+235*x^2+510*x+190 4334916370225870 l006 ln(6415/9896) 4334916379489339 r002 53th iterates of z^2 + 4334916384214026 m001 ln(2+3^(1/2))*(FeigenbaumC-Zeta(1/2)) 4334916384378268 r005 Re(z^2+c),c=-41/66+1/28*I,n=51 4334916386223879 r005 Im(z^2+c),c=37/126+17/54*I,n=27 4334916388131706 a007 Real Root Of -271*x^4+527*x^3-654*x^2+864*x-285 4334916394827917 m005 (1/3*2^(1/2)+1/11)/(7/11*Catalan+5/7) 4334916411758776 r005 Re(z^2+c),c=-13/21+13/55*I,n=29 4334916423958278 a001 305/9*199^(2/43) 4334916431629866 a007 Real Root Of -206*x^4-993*x^3-244*x^2+897*x+327 4334916431977284 a008 Real Root of (7+17*x+5*x^2+7*x^3) 4334916435644307 m005 (1/2*exp(1)-6/7)/(5*5^(1/2)+2/5) 4334916439681912 a007 Real Root Of 423*x^4-768*x^3+685*x^2-507*x-426 4334916441905178 r005 Re(z^2+c),c=-47/70+9/38*I,n=59 4334916443399099 a001 1/5473*514229^(16/17) 4334916445140450 m001 (Artin-Backhouse)/(MertensB2+MinimumGamma) 4334916448203283 p004 log(19991/12959) 4334916450632033 a001 2/24157817*1836311903^(16/17) 4334916450632035 a001 2/53316291173*6557470319842^(16/17) 4334916462926195 a001 7881196/4181*2504730781961^(4/21) 4334916462926263 a001 54018521/4181*102334155^(4/21) 4334916469748338 r002 6th iterates of z^2 + 4334916472373203 a001 370248451/4181*4181^(4/21) 4334916474436437 l006 ln(113/8624) 4334916488004610 r009 Im(z^3+c),c=-29/54+8/61*I,n=49 4334916491034364 r009 Im(z^3+c),c=-25/42+33/53*I,n=9 4334916493030956 m001 (Artin-ArtinRank2)/(HardyLittlewoodC3-Rabbit) 4334916496283067 r002 55th iterates of z^2 + 4334916496891012 a001 10182505537/161*322^(1/3) 4334916505059692 a007 Real Root Of 269*x^4+973*x^3-984*x^2-799*x-702 4334916505286661 a001 20633239/10946*2504730781961^(4/21) 4334916505286671 a001 70711162/5473*102334155^(4/21) 4334916511466970 a001 54018521/28657*2504730781961^(4/21) 4334916511466972 a001 370248451/28657*102334155^(4/21) 4334916512368665 a001 141422324/75025*2504730781961^(4/21) 4334916512368665 a001 969323029/75025*102334155^(4/21) 4334916512500221 a001 370248451/196418*2504730781961^(4/21) 4334916512500221 a001 1268860318/98209*102334155^(4/21) 4334916512519414 a001 6643838879/514229*102334155^(4/21) 4334916512519414 a001 969323029/514229*2504730781961^(4/21) 4334916512522215 a001 17393796001/1346269*102334155^(4/21) 4334916512522215 a001 2537720636/1346269*2504730781961^(4/21) 4334916512522623 a001 22768774562/1762289*102334155^(4/21) 4334916512522623 a001 6643838879/3524578*2504730781961^(4/21) 4334916512522683 a001 119218851371/9227465*102334155^(4/21) 4334916512522683 a001 17393796001/9227465*2504730781961^(4/21) 4334916512522692 a001 312119004989/24157817*102334155^(4/21) 4334916512522692 a001 45537549124/24157817*2504730781961^(4/21) 4334916512522693 a001 408569081798/31622993*102334155^(4/21) 4334916512522693 a001 119218851371/63245986*2504730781961^(4/21) 4334916512522693 a001 2139295485799/165580141*102334155^(4/21) 4334916512522693 a001 312119004989/165580141*2504730781961^(4/21) 4334916512522693 a001 5600748293801/433494437*102334155^(4/21) 4334916512522693 a001 7331474697802/567451585*102334155^(4/21) 4334916512522693 a001 23725150497407/1836311903*102334155^(4/21) 4334916512522693 a001 3020733700601/233802911*102334155^(4/21) 4334916512522693 a001 817138163596/433494437*2504730781961^(4/21) 4334916512522693 a001 1730726404001/133957148*102334155^(4/21) 4334916512522693 a001 2139295485799/1134903170*2504730781961^(4/21) 4334916512522693 a001 5600748293801/2971215073*2504730781961^(4/21) 4334916512522693 a001 14662949395604/7778742049*2504730781961^(4/21) 4334916512522693 a001 3020733700601/1602508992*2504730781961^(4/21) 4334916512522693 a001 3461452808002/1836311903*2504730781961^(4/21) 4334916512522693 a001 440719107401/233802911*2504730781961^(4/21) 4334916512522693 a001 505019158607/267914296*2504730781961^(4/21) 4334916512522693 a001 440719107401/34111385*102334155^(4/21) 4334916512522693 a001 64300051206/34111385*2504730781961^(4/21) 4334916512522694 a001 505019158607/39088169*102334155^(4/21) 4334916512522694 a001 73681302247/39088169*2504730781961^(4/21) 4334916512522697 a001 33385281/2584*102334155^(4/21) 4334916512522697 a001 9381251041/4976784*2504730781961^(4/21) 4334916512522720 a001 73681302247/5702887*102334155^(4/21) 4334916512522720 a001 10749957122/5702887*2504730781961^(4/21) 4334916512522876 a001 9381251041/726103*102334155^(4/21) 4334916512522876 a001 1368706081/726103*2504730781961^(4/21) 4334916512523945 a001 5374978561/416020*102334155^(4/21) 4334916512523945 a001 1568397607/832040*2504730781961^(4/21) 4334916512531277 a001 1368706081/105937*102334155^(4/21) 4334916512531277 a001 710646/377*2504730781961^(4/21) 4334916512581526 a001 1568397607/121393*102334155^(4/21) 4334916512581526 a001 228826127/121393*2504730781961^(4/21) 4334916512925943 a001 33281921/2576*102334155^(4/21) 4334916512925943 a001 29134601/15456*2504730781961^(4/21) 4334916514733610 a001 969323029/10946*4181^(4/21) 4334916515286607 a001 228826127/17711*102334155^(4/21) 4334916515286611 a001 33385282/17711*2504730781961^(4/21) 4334916520913911 a001 2537720636/28657*4181^(4/21) 4334916521815604 a001 6643838879/75025*4181^(4/21) 4334916521947159 a001 17393796001/196418*4181^(4/21) 4334916521966353 a001 45537549124/514229*4181^(4/21) 4334916521969153 a001 119218851371/1346269*4181^(4/21) 4334916521969562 a001 312119004989/3524578*4181^(4/21) 4334916521969622 a001 817138163596/9227465*4181^(4/21) 4334916521969630 a001 2139295485799/24157817*4181^(4/21) 4334916521969632 a001 5600748293801/63245986*4181^(4/21) 4334916521969632 a001 14662949395604/165580141*4181^(4/21) 4334916521969632 a001 23725150497407/267914296*4181^(4/21) 4334916521969632 a001 3020733700601/34111385*4181^(4/21) 4334916521969632 a001 3461452808002/39088169*4181^(4/21) 4334916521969636 a001 440719107401/4976784*4181^(4/21) 4334916521969658 a001 505019158607/5702887*4181^(4/21) 4334916521969815 a001 64300051206/726103*4181^(4/21) 4334916521970884 a001 73681302247/832040*4181^(4/21) 4334916521978215 a001 9381251041/105937*4181^(4/21) 4334916522028465 a001 10749957122/121393*4181^(4/21) 4334916522372881 a001 1368706081/15456*4181^(4/21) 4334916524643548 l006 ln(6544/10095) 4334916524733546 a001 1568397607/17711*4181^(4/21) 4334916526277742 m001 Sierpinski^2*FransenRobinson*ln((2^(1/3))) 4334916531466844 a001 29134601/2255*102334155^(4/21) 4334916531466870 a001 4250681/2255*2504730781961^(4/21) 4334916540913782 a001 199691526/2255*4181^(4/21) 4334916550587107 h001 (4/5*exp(2)+7/8)/(3/10*exp(1)+3/4) 4334916551281361 a007 Real Root Of 86*x^4-841*x^3+331*x^2-816*x+357 4334916560273297 p001 sum((-1)^(n+1)/(97*n+23)/(64^n),n=0..infinity) 4334916570777226 b008 -16*E+Sinh[1/7] 4334916599591676 p004 log(20389/13217) 4334916609675684 r005 Re(z^2+c),c=-31/50+8/63*I,n=38 4334916612784232 a007 Real Root Of -68*x^4-226*x^3+546*x^2+946*x-557 4334916613697001 a007 Real Root Of 167*x^4+684*x^3-327*x^2-875*x-901 4334916616443180 r005 Re(z^2+c),c=-41/66+2/57*I,n=39 4334916628751484 a007 Real Root Of -461*x^4-3*x^3-607*x^2+580*x-24 4334916632518562 m001 (Stephens-Thue)/(GAMMA(5/6)-PlouffeB) 4334916642367838 a001 16692641/1292*102334155^(4/21) 4334916642368017 a001 4870847/2584*2504730781961^(4/21) 4334916642628929 r005 Re(z^2+c),c=-29/50+16/49*I,n=42 4334916651814773 a001 228826127/2584*4181^(4/21) 4334916673379121 h001 (9/11*exp(1)+1/10)/(5/7*exp(2)+1/12) 4334916688771325 r005 Re(z^2+c),c=-3/5+11/120*I,n=11 4334916707849768 r002 24th iterates of z^2 + 4334916714131596 a005 (1/cos(4/201*Pi))^750 4334916719862319 r002 2th iterates of z^2 + 4334916721601473 r005 Re(z^2+c),c=-21/34+8/69*I,n=61 4334916733015660 r009 Im(z^3+c),c=-29/66+19/58*I,n=6 4334916764921215 r009 Re(z^3+c),c=-65/122+17/44*I,n=58 4334916767847997 m001 Gompertz^Pi*(2*Pi/GAMMA(5/6))^Pi 4334916770672988 r002 26th iterates of z^2 + 4334916770739181 a007 Real Root Of 712*x^4-545*x^3+175*x^2+144*x-40 4334916783119671 m001 (GAMMA(17/24)-Gompertz)/(Salem+ThueMorse) 4334916826098489 m001 (Zeta(1,2)+ZetaQ(4))/(ln(gamma)-ln(5)) 4334916844664024 a007 Real Root Of 128*x^4-725*x^3+50*x^2-784*x+385 4334916846975287 a001 139583862445/1364*199^(3/11) 4334916853234459 r008 a(0)=5,K{-n^6,-43-21*n^3+19*n^2+45*n} 4334916855262538 r002 61th iterates of z^2 + 4334916862156164 r005 Re(z^2+c),c=-3/5+26/121*I,n=34 4334916864608076 q001 365/842 4334916870167144 m001 OneNinth^2*exp(FeigenbaumKappa)/Zeta(5) 4334916870746991 m005 (1/6+1/4*5^(1/2))/(7/12*Pi-2) 4334916909430901 m001 (5^(1/2)-Kac)/(KomornikLoreti+Tetranacci) 4334916909522270 m001 (Zeta(1,2)+polylog(4,1/2))/gamma(2) 4334916910270396 s002 sum(A020937[n]/(pi^n-1),n=1..infinity) 4334916913058375 a001 1364*233^(7/33) 4334916923742125 r009 Re(z^3+c),c=-53/110+6/41*I,n=4 4334916933926618 m005 (1/2*5^(1/2)-1/8)/(21/16+7/16*5^(1/2)) 4334916942287369 m001 exp((2^(1/3)))/FeigenbaumB^2/GAMMA(19/24) 4334916957124493 r005 Re(z^2+c),c=-5/8+75/253*I,n=43 4334916958465570 r005 Im(z^2+c),c=5/27+24/55*I,n=27 4334916984746130 r005 Im(z^2+c),c=5/16+11/25*I,n=27 4334916985559223 m001 1/FeigenbaumAlpha^2*ln(Backhouse)/Salem^2 4334916990791452 r002 21th iterates of z^2 + 4334916995614493 m001 CopelandErdos^cos(1)-PrimesInBinary 4334917010486834 r002 27th iterates of z^2 + 4334917023264246 r002 6th iterates of z^2 + 4334917023650974 m001 (TwinPrimes+Weierstrass)/(3^(1/3)+Salem) 4334917034716670 r005 Re(z^2+c),c=-53/98+15/41*I,n=22 4334917051328813 r009 Re(z^3+c),c=-41/86+14/43*I,n=2 4334917058500923 b008 18/5+ArcCosh[Glaisher] 4334917060355319 r005 Re(z^2+c),c=-41/66+1/36*I,n=63 4334917085250667 a001 4181/1364*2^(1/2) 4334917086430664 m001 GAMMA(2/3)/BesselK(1,1)^2*exp(GAMMA(3/4))^2 4334917107969909 m001 (Porter+ZetaQ(3))/(Zeta(1,-1)+FeigenbaumMu) 4334917113201743 m001 (-Zeta(1,-1)+ErdosBorwein)/(5^(1/2)+Si(Pi)) 4334917123801164 m005 (1/2*Zeta(3)-5/7)/(10/11*Catalan-4/7) 4334917125513838 m001 (Psi(2,1/3)+HeathBrownMoroz)/(Thue+ThueMorse) 4334917137007220 l006 ln(9548/9971) 4334917158390650 a007 Real Root Of -647*x^4-949*x^3-917*x^2+464*x+319 4334917159348010 m001 (-Rabbit+Trott2nd)/(BesselJ(0,1)+cos(1/5*Pi)) 4334917174961186 r009 Im(z^3+c),c=-9/70+34/47*I,n=13 4334917177016476 m001 (Tetranacci-Trott)/(ln(Pi)-2*Pi/GAMMA(5/6)) 4334917195597414 m001 GolombDickman/(MertensB1^exp(1/exp(1))) 4334917204521608 r005 Im(z^2+c),c=-7/6+12/211*I,n=15 4334917216095562 m001 (Niven+Otter)/(BesselJ(1,1)+HardyLittlewoodC3) 4334917227693612 r005 Re(z^2+c),c=-11/18+40/91*I,n=10 4334917231352883 r009 Re(z^3+c),c=-59/114+4/19*I,n=55 4334917235004434 r005 Re(z^2+c),c=-75/118+7/27*I,n=44 4334917256042956 r009 Im(z^3+c),c=-5/11+16/41*I,n=64 4334917260435120 r009 Im(z^3+c),c=-47/114+17/41*I,n=30 4334917269956824 r009 Re(z^3+c),c=-37/70+10/41*I,n=60 4334917270352561 s002 sum(A171694[n]/(n*exp(pi*n)+1),n=1..infinity) 4334917281874714 a005 (1/cos(19/216*Pi))^1169 4334917284436143 m001 (FeigenbaumAlpha-Totient)/FeigenbaumD 4334917323270274 a007 Real Root Of -413*x^4-37*x^3+514*x^2+902*x-470 4334917343986085 m001 (BesselJ(0,1)-MinimumGamma)/(-Niven+Paris) 4334917347520854 a007 Real Root Of -483*x^4-544*x^3+968*x^2+850*x-489 4334917350244831 m005 (-2/3+1/4*5^(1/2))/(3/11*gamma+1/11) 4334917355371900 r005 Re(z^2+c),c=-49/110+19/44*I,n=2 4334917398385614 r002 62th iterates of z^2 + 4334917402494711 a001 4250681/329*102334155^(4/21) 4334917402495936 a001 620166/329*2504730781961^(4/21) 4334917403599099 m005 (1/2*Zeta(3)-3/10)/(-1/5+2/5*5^(1/2)) 4334917407677380 h001 (2/7*exp(2)+9/11)/(5/6*exp(2)+3/5) 4334917411941625 a001 29134601/329*4181^(4/21) 4334917416782694 m006 (4/Pi-3/4)/(1/2*exp(Pi)+1/2) 4334917426296443 r009 Im(z^3+c),c=-33/86+39/62*I,n=32 4334917436368771 a007 Real Root Of -581*x^4+753*x^3+19*x^2-116*x+28 4334917461994789 r002 52th iterates of z^2 + 4334917467668437 m001 (Bloch+Robbin)/MertensB1 4334917479090860 r002 25th iterates of z^2 + 4334917480619818 r005 Im(z^2+c),c=19/66+1/3*I,n=46 4334917503961290 r005 Im(z^2+c),c=-33/62+10/19*I,n=60 4334917516800311 m001 GAMMA(11/12)+MadelungNaCl^GAMMA(5/12) 4334917540150439 m007 (-2/5*gamma-1/3)/(-3*gamma-9*ln(2)-3/2*Pi-1/3) 4334917547393165 r005 Re(z^2+c),c=-25/38+17/39*I,n=56 4334917563706621 h001 (2/5*exp(2)+7/12)/(1/5*exp(1)+3/11) 4334917582499803 r009 Re(z^3+c),c=-2/23+35/48*I,n=58 4334917583208161 r002 58th iterates of z^2 + 4334917590987156 r005 Re(z^2+c),c=-41/66+1/38*I,n=49 4334917618769307 a007 Real Root Of -194*x^4-609*x^3+782*x^2-775*x+842 4334917623510102 m001 (BesselI(0,2)-Catalan)/(Mills+Tribonacci) 4334917650003135 a001 843/2*89^(27/52) 4334917657965346 m001 (gamma(3)+Lehmer)/(exp(1/exp(1))+gamma(1)) 4334917664759862 r009 Im(z^3+c),c=-21/50+23/56*I,n=46 4334917679947148 r002 49th iterates of z^2 + 4334917680069826 r002 13th iterates of z^2 + 4334917703785215 r002 8th iterates of z^2 + 4334917719572035 r002 57th iterates of z^2 + 4334917733002491 p001 sum((-1)^n/(293*n+23)/(24^n),n=0..infinity) 4334917733419261 r005 Im(z^2+c),c=-91/110+1/41*I,n=45 4334917739328148 m001 (BesselK(0,1)+Cahen)/(exp(Pi)+2^(1/2)) 4334917740297709 a005 (1/sin(111/239*Pi))^1707 4334917748671594 l006 ln(91/6945) 4334917762422359 b008 ArcSinh[21+(1+Pi)^2] 4334917765132008 m001 ln(2+3^(1/2))*(5^(1/2)+GAMMA(11/12)) 4334917765132008 m001 ln(2+sqrt(3))*(sqrt(5)+GAMMA(11/12)) 4334917765963647 m001 (Shi(1)-exp(1))/(Bloch+ReciprocalFibonacci) 4334917767323331 m005 (1/2*Zeta(3)+2/9)/(7/10*Pi-3/10) 4334917773027512 r005 Re(z^2+c),c=-21/34+6/109*I,n=21 4334917796254296 r002 38th iterates of z^2 + 4334917808928522 r005 Re(z^2+c),c=-41/66+1/31*I,n=53 4334917813115481 a001 3571/377*4181^(36/49) 4334917814360811 r005 Re(z^2+c),c=-29/22+5/101*I,n=54 4334917830904420 r009 Re(z^3+c),c=-17/42+3/31*I,n=9 4334917833123713 r005 Im(z^2+c),c=-117/98+17/37*I,n=3 4334917837717503 a001 1346269/47*199^(55/58) 4334917844615651 r009 Im(z^3+c),c=-27/106+13/29*I,n=4 4334917848367865 r005 Im(z^2+c),c=17/70+18/47*I,n=62 4334917848705856 h001 (1/8*exp(2)+6/11)/(3/7*exp(2)+2/9) 4334917864271994 a001 1/6621*(1/2*5^(1/2)+1/2)^11*3^(1/3) 4334917870499847 h001 (5/9*exp(2)+7/8)/(3/10*exp(1)+1/3) 4334917885748115 r005 Re(z^2+c),c=-16/25+9/44*I,n=30 4334917900694918 r002 48th iterates of z^2 + 4334917904702197 a007 Real Root Of -927*x^4+60*x^3+934*x^2+994*x+293 4334917923302794 m001 (2*Pi/GAMMA(5/6)+Conway)/(ln(Pi)+BesselJ(1,1)) 4334917933211937 r005 Im(z^2+c),c=21/106+19/45*I,n=35 4334917960445453 r005 Re(z^2+c),c=-67/54+3/32*I,n=44 4334917967642201 m004 -125*Pi-6*Sqrt[5]*Pi+Sec[Sqrt[5]*Pi] 4334917973402905 r009 Im(z^3+c),c=-9/86+28/55*I,n=21 4334918005169279 r005 Re(z^2+c),c=-29/70+31/58*I,n=40 4334918005287230 h001 (-8*exp(3)-6)/(-3*exp(1)+12) 4334918012185005 m001 Lehmer^2/Artin^2*ln(sin(1)) 4334918017643230 m001 (sin(1)-GAMMA(1/3)*RenyiParking)/GAMMA(1/3) 4334918018719209 r005 Im(z^2+c),c=7/102+29/55*I,n=62 4334918037493616 a007 Real Root Of 655*x^4+20*x^3+983*x^2-710*x-514 4334918040628993 m001 (sin(1/5*Pi)-Landau)/(Porter-TreeGrowth2nd) 4334918065865882 a007 Real Root Of 162*x^4-362*x^3+686*x^2-92*x-204 4334918075822729 a007 Real Root Of 35*x^4-370*x^3-947*x^2-464*x+408 4334918078071417 h001 (3/8*exp(1)+5/11)/(2/5*exp(2)+4/9) 4334918106231232 r005 Re(z^2+c),c=-57/98+13/37*I,n=63 4334918112621084 a007 Real Root Of -139*x^4-460*x^3+444*x^2-803*x-212 4334918123436088 m004 -5*Pi-4*Sqrt[5]*Pi+Tan[Sqrt[5]*Pi]/2 4334918141712568 m005 (1/2*Pi+11/12)/(1/12*Pi-6) 4334918152653085 a007 Real Root Of -425*x^4+180*x^3-862*x^2-336*x+46 4334918172197665 p003 LerchPhi(1/16,5,91/122) 4334918183595442 m001 (gamma+OrthogonalArrays)/(exp(1)+Si(Pi)) 4334918183928029 r005 Im(z^2+c),c=19/78+21/55*I,n=50 4334918186066444 m006 (1/4*ln(Pi)+3/4)/(1/2*ln(Pi)-1/3) 4334918191414154 a007 Real Root Of 52*x^4+110*x^3-404*x^2+394*x-102 4334918192777430 a003 sin(Pi*15/112)-sin(Pi*36/113) 4334918193095203 r002 18th iterates of z^2 + 4334918195381845 m001 (sin(1/12*Pi)-FeigenbaumMu)/(Salem-ThueMorse) 4334918195694224 a005 (1/sin(71/159*Pi))^1241 4334918204188404 m001 (sin(1)*FransenRobinson+GAMMA(17/24))/sin(1) 4334918207953149 s002 sum(A176754[n]/(n*exp(pi*n)+1),n=1..infinity) 4334918219741363 r002 57th iterates of z^2 + 4334918221344438 a001 46368/11*521^(19/51) 4334918233493343 a007 Real Root Of -255*x^4-964*x^3+872*x^2+924*x-862 4334918235787802 r002 35th iterates of z^2 + 4334918247934572 m001 (exp(-1/2*Pi)-ArtinRank2)/(Rabbit-Tribonacci) 4334918278593994 m005 (9/4+1/4*5^(1/2))/(3/11*gamma-2/9) 4334918281845582 m005 (1/3*3^(1/2)+2/9)/(3/4*3^(1/2)+6/11) 4334918283516057 r009 Im(z^3+c),c=-7/38+20/23*I,n=40 4334918286655833 m005 (1/3*Catalan+1/11)/(3/7*gamma+2/3) 4334918291130649 a007 Real Root Of 130*x^4+583*x^3-68*x^2-681*x-89 4334918292277183 a007 Real Root Of -118*x^4-433*x^3+172*x^2-696*x+147 4334918293383024 r002 39th iterates of z^2 + 4334918296593225 a007 Real Root Of -156*x^4-573*x^3+455*x^2-10*x-183 4334918323985718 r009 Re(z^3+c),c=-67/126+9/23*I,n=36 4334918333687375 r002 3th iterates of z^2 + 4334918343371791 a007 Real Root Of -94*x^4-283*x^3+351*x^2-927*x-474 4334918357745458 s001 sum(exp(-3*Pi/4)^n*A092961[n],n=1..infinity) 4334918363746686 m001 Psi(1,1/3)*Salem/Trott2nd 4334918367346938 r002 2th iterates of z^2 + 4334918368016134 a001 139583862445/843*199^(2/11) 4334918375239747 b008 Log[ArcTan[71/2]] 4334918392894818 a007 Real Root Of 937*x^4+999*x^3+404*x^2-561*x-25 4334918398818446 r005 Re(z^2+c),c=-49/78+1/50*I,n=28 4334918403670145 m004 -Cosh[Sqrt[5]*Pi]+(75*Pi*Cot[Sqrt[5]*Pi])/2 4334918407529376 m005 (1/2*Zeta(3)+10/11)/(-7/12+5/12*5^(1/2)) 4334918416364375 r005 Re(z^2+c),c=-8/13+9/62*I,n=61 4334918430464452 b008 4*Pi^2+ArcCosh[24] 4334918442694628 a007 Real Root Of 422*x^4+184*x^3+958*x^2+16*x-173 4334918445988531 a007 Real Root Of -793*x^4+834*x^3+639*x^2+870*x+353 4334918458728633 r005 Im(z^2+c),c=-1/102+15/26*I,n=57 4334918459644844 a007 Real Root Of -73*x^4+366*x^3-783*x^2+444*x+372 4334918467022278 a007 Real Root Of 760*x^4+994*x^3+920*x^2+94*x-78 4334918473119863 r005 Im(z^2+c),c=3/22+25/53*I,n=32 4334918473268929 m006 (1/2/Pi+3/5)/(4/5*exp(Pi)-1) 4334918482032189 r002 43th iterates of z^2 + 4334918482032189 r002 43th iterates of z^2 + 4334918485051723 a007 Real Root Of 777*x^4-318*x^3+495*x^2-885*x-530 4334918485540160 r009 Re(z^3+c),c=-27/56+9/53*I,n=41 4334918485667589 m001 GAMMA(17/24)^LandauRamanujan2nd-Sarnak 4334918499519230 r009 Im(z^3+c),c=-7/17+22/53*I,n=33 4334918502022792 r005 Re(z^2+c),c=-45/74+5/58*I,n=20 4334918511940042 r002 48th iterates of z^2 + 4334918512281200 m001 1/GAMMA(1/24)^2*ln(Ei(1))/GAMMA(1/3) 4334918513593964 r005 Re(z^2+c),c=-13/21+11/41*I,n=5 4334918525338897 r005 Im(z^2+c),c=-43/62+17/52*I,n=47 4334918526033595 r005 Re(z^2+c),c=-21/34+16/123*I,n=44 4334918529904030 a001 144/521*312119004989^(4/5) 4334918529904030 a001 144/521*(1/2+1/2*5^(1/2))^44 4334918529904030 a001 144/521*23725150497407^(11/16) 4334918529904030 a001 144/521*73681302247^(11/13) 4334918529904030 a001 144/521*10749957122^(11/12) 4334918529904030 a001 144/521*4106118243^(22/23) 4334918530248447 a001 233/322*2537720636^(14/15) 4334918530248447 a001 233/322*17393796001^(6/7) 4334918530248447 a001 233/322*45537549124^(14/17) 4334918530248447 a001 233/322*817138163596^(14/19) 4334918530248447 a001 233/322*14662949395604^(2/3) 4334918530248447 a001 233/322*(1/2+1/2*5^(1/2))^42 4334918530248447 a001 233/322*505019158607^(3/4) 4334918530248447 a001 233/322*192900153618^(7/9) 4334918530248447 a001 233/322*10749957122^(7/8) 4334918530248447 a001 233/322*4106118243^(21/23) 4334918530248447 a001 233/322*1568397607^(21/22) 4334918564061043 a007 Real Root Of -155*x^4+924*x^3+93*x^2+4*x+65 4334918586439165 r005 Re(z^2+c),c=-8/11+5/42*I,n=37 4334918588194688 r005 Im(z^2+c),c=4/17+19/49*I,n=37 4334918598679440 m002 (4*Pi^3)/3+2*Coth[Pi] 4334918599981976 r009 Im(z^3+c),c=-7/78+62/63*I,n=24 4334918607028629 m003 3/4+(3*Sqrt[5])/4+5*Sech[1/2+Sqrt[5]/2] 4334918612101135 k007 concat of cont frac of 4334918615423361 a007 Real Root Of -535*x^4+507*x^3-384*x^2+306*x+265 4334918621429126 r002 57th iterates of z^2 + 4334918624398880 a001 1/17334*(1/2*5^(1/2)+1/2)^13*3^(1/3) 4334918659204757 m005 (2*Pi+1/4)/(1/2*2^(1/2)+4/5) 4334918670067447 r005 Im(z^2+c),c=7/78+10/19*I,n=32 4334918673148012 a007 Real Root Of -598*x^4-509*x^3+672*x^2+845*x-430 4334918697255178 r005 Im(z^2+c),c=1/86+32/57*I,n=48 4334918708571980 r005 Re(z^2+c),c=-65/106+10/53*I,n=35 4334918712091857 a007 Real Root Of -129*x^4-612*x^3-194*x^2+305*x+667 4334918713893215 r002 8th iterates of z^2 + 4334918721933910 a007 Real Root Of 233*x^4+302*x^3+940*x^2-207*x-250 4334918730594311 r002 32th iterates of z^2 + 4334918735299920 a001 1/45381*(1/2*5^(1/2)+1/2)^15*3^(1/3) 4334918746372146 m002 5+Cosh[Pi]/6+Pi*Cosh[Pi] 4334918751480164 a001 1/118809*(1/2*5^(1/2)+1/2)^17*3^(1/3) 4334918755299802 a001 1/192237*(1/2*5^(1/2)+1/2)^18*3^(1/3) 4334918755640476 m002 Pi^4/4+(Pi^2*Sinh[Pi])/6 4334918755905823 m001 FeigenbaumB^Zeta(1/2)*BesselJ(1,1)^Zeta(1/2) 4334918761480105 a001 1/73428*(1/2*5^(1/2)+1/2)^16*3^(1/3) 4334918769464308 m001 BesselK(0,1)^2/exp(FeigenbaumKappa)^2/exp(1) 4334918787956407 r005 Im(z^2+c),c=-5/82+27/44*I,n=52 4334918799767628 a007 Real Root Of 169*x^4+825*x^3+474*x^2+467*x+644 4334918803840535 a001 1/28047*(1/2*5^(1/2)+1/2)^14*3^(1/3) 4334918825570936 a007 Real Root Of -629*x^4-672*x^3-57*x^2+747*x+302 4334918833962609 r005 Im(z^2+c),c=7/86+31/60*I,n=41 4334918835209177 r009 Im(z^3+c),c=-7/78+62/63*I,n=30 4334918840285059 r009 Im(z^3+c),c=-7/78+62/63*I,n=34 4334918840401618 r009 Im(z^3+c),c=-7/78+62/63*I,n=36 4334918840418696 r009 Im(z^3+c),c=-7/78+62/63*I,n=40 4334918840423838 r009 Im(z^3+c),c=-7/78+62/63*I,n=46 4334918840423857 r009 Im(z^3+c),c=-7/78+62/63*I,n=44 4334918840423880 r009 Im(z^3+c),c=-7/78+62/63*I,n=50 4334918840423885 r009 Im(z^3+c),c=-7/78+62/63*I,n=56 4334918840423885 r009 Im(z^3+c),c=-7/78+62/63*I,n=60 4334918840423885 r009 Im(z^3+c),c=-7/78+62/63*I,n=62 4334918840423885 r009 Im(z^3+c),c=-7/78+62/63*I,n=64 4334918840423885 r009 Im(z^3+c),c=-7/78+62/63*I,n=58 4334918840423885 r009 Im(z^3+c),c=-7/78+62/63*I,n=54 4334918840423885 r009 Im(z^3+c),c=-7/78+62/63*I,n=52 4334918840423904 r009 Im(z^3+c),c=-7/78+62/63*I,n=48 4334918840424802 r009 Im(z^3+c),c=-7/78+62/63*I,n=42 4334918840441058 r009 Im(z^3+c),c=-7/78+62/63*I,n=38 4334918840602067 r002 63th iterates of z^2 + 4334918841050829 r005 Re(z^2+c),c=-13/21+3/29*I,n=40 4334918841634755 r009 Im(z^3+c),c=-7/78+62/63*I,n=32 4334918846589026 r009 Im(z^3+c),c=-7/78+62/63*I,n=26 4334918849249280 m005 (1/2*exp(1)-6/11)/(3/4*5^(1/2)+1/5) 4334918853039985 r009 Im(z^3+c),c=-7/78+62/63*I,n=28 4334918883584600 a007 Real Root Of -983*x^4-483*x^3+484*x^2+760*x+32 4334918885913251 l006 ln(6215/6242) 4334918898085362 m001 (exp(1/exp(1))+gamma(3))/(Ei(1)+3^(1/3)) 4334918904110657 r005 Re(z^2+c),c=25/64+21/64*I,n=32 4334918904520117 r005 Re(z^2+c),c=-29/48+8/29*I,n=56 4334918909925230 r002 36th iterates of z^2 + 4334918921063150 m005 (1/24+3/8*5^(1/2))/(1/6*exp(1)-1/4) 4334918921364404 r002 42th iterates of z^2 + 4334918935188720 r005 Im(z^2+c),c=-3/46+22/37*I,n=30 4334918944568942 a001 38/305*89^(5/18) 4334918954469978 m001 Khintchine/ln(ArtinRank2)/PrimesInBinary^2 4334918980833449 a007 Real Root Of 122*x^4+578*x^3+85*x^2-405*x+650 4334918987885223 m001 BesselJ(1,1)*FeigenbaumD/exp(Zeta(9)) 4334918991568327 a007 Real Root Of -363*x^4-581*x^3-263*x^2+976*x+438 4334918993040166 m001 gamma+(Pi*csc(7/24*Pi)/GAMMA(17/24))^Salem 4334919006212121 p004 log(17477/229) 4334919006385868 r009 Im(z^3+c),c=-11/50+22/47*I,n=2 4334919008458521 p001 sum(1/(431*n+231)/(256^n),n=0..infinity) 4334919009390887 m001 (Zeta(5)-KhinchinLevy)^BesselJ(1,1) 4334919013239798 m001 (MertensB1*Weierstrass-Trott)/MertensB1 4334919015194579 r005 Re(z^2+c),c=-65/106+6/35*I,n=62 4334919033625647 m001 (1-Pi^(1/2))/(-GAMMA(23/24)+FransenRobinson) 4334919034925544 a001 317811/7*123^(18/19) 4334919039059957 r002 48th iterates of z^2 + 4334919043538920 a007 Real Root Of -618*x^4+351*x^3-673*x^2+953*x+590 4334919054596016 r009 Im(z^3+c),c=-1/78+33/64*I,n=10 4334919067712225 r005 Im(z^2+c),c=19/86+21/52*I,n=58 4334919075616122 r009 Im(z^3+c),c=-19/42+11/28*I,n=26 4334919085436851 m001 (ln(2+3^(1/2))-exp(1/exp(1)))/(gamma(2)+Otter) 4334919094183264 a001 1/10713*(1/2*5^(1/2)+1/2)^12*3^(1/3) 4334919101149672 r005 Re(z^2+c),c=-45/64+5/42*I,n=33 4334919105398487 a007 Real Root Of 329*x^4-988*x^3+97*x^2-456*x-308 4334919106698177 r005 Re(z^2+c),c=-5/8+17/182*I,n=15 4334919109170101 r005 Re(z^2+c),c=-31/50+6/47*I,n=34 4334919113139059 h001 (5/6*exp(1)+5/7)/(11/12*exp(2)+1/10) 4334919116046041 r009 Im(z^3+c),c=-21/44+3/8*I,n=60 4334919123404085 a003 cos(Pi*13/53)-cos(Pi*49/120) 4334919125952272 m001 (2^(1/3))/Paris/exp(cos(1))^2 4334919126179825 a007 Real Root Of -147*x^4+409*x^3-295*x^2+360*x+250 4334919135091160 m001 (-GAMMA(11/12)+Trott2nd)/(exp(Pi)+gamma) 4334919139976301 r002 11th iterates of z^2 + 4334919141903219 m001 Sierpinski/exp(Paris)/cos(1) 4334919175657081 r005 Re(z^2+c),c=-11/18+19/121*I,n=25 4334919179152529 a001 41/233802911*102334155^(4/23) 4334919179152529 a001 41/1602508992*6557470319842^(4/23) 4334919184427730 a001 3940598/305*4807526976^(6/23) 4334919184467981 a001 70711162/305*75025^(6/23) 4334919203207570 m001 arctan(1/3)/(OrthogonalArrays-Robbin) 4334919203581348 l006 ln(4853/5068) 4334919209653670 a003 sin(Pi*5/58)/cos(Pi*32/111) 4334919213530943 r009 Im(z^3+c),c=-1/19+19/37*I,n=15 4334919222972377 m001 arctan(1/3)^MertensB1*arctan(1/3)^PlouffeB 4334919238272387 a001 1/831985*1597^(4/23) 4334919242602074 m001 Zeta(1,-1)*(ln(2+3^(1/2))+Conway) 4334919254973157 a001 199/6765*3^(6/17) 4334919263587530 r005 Im(z^2+c),c=-19/122+11/16*I,n=17 4334919282600968 a007 Real Root Of 221*x^4-964*x^3+543*x^2-825*x-546 4334919288675170 r005 Im(z^2+c),c=-65/94+26/57*I,n=9 4334919293665150 b008 E+ProductLog[5+Pi] 4334919303057124 r005 Im(z^2+c),c=19/58+8/31*I,n=31 4334919320205608 m001 Kolakoski^Bloch-arctan(1/2) 4334919323387630 a007 Real Root Of -90*x^4+674*x^3-142*x^2+425*x+269 4334919325877726 m001 1/LaplaceLimit^2*CareFree^2/ln(sinh(1))^2 4334919369719569 r002 52th iterates of z^2 + 4334919377429753 a001 969323029*144^(13/17) 4334919386628149 r005 Im(z^2+c),c=5/27+17/39*I,n=64 4334919393689088 r002 62th iterates of z^2 + 4334919414433656 h001 (5/11*exp(1)+7/8)/(7/11*exp(2)+1/6) 4334919424814255 r002 60th iterates of z^2 + 4334919439180227 m001 (BesselI(1,2)+CareFree)/(PlouffeB+ZetaQ(2)) 4334919446830273 r002 43th iterates of z^2 + 4334919472722852 m001 FeigenbaumDelta^ReciprocalLucas/Weierstrass 4334919485145228 r009 Re(z^3+c),c=-1/42+55/59*I,n=10 4334919486993413 a001 322/1346269*233^(6/55) 4334919489671281 a003 cos(Pi*13/42)-sin(Pi*28/59) 4334919509262575 m001 OneNinth-Psi(1,1/3)*BesselJ(1,1) 4334919512377043 a007 Real Root Of -x^4-35*x^3+376*x^2+610*x+5 4334919515882896 m001 (GAMMA(19/24)+ThueMorse)/(Pi+polylog(4,1/2)) 4334919526354030 r002 55th iterates of z^2 + 4334919538368011 r002 49th iterates of z^2 + 4334919539978158 a005 (1/sin(48/107*Pi))^112 4334919545073413 m001 Paris^2/LaplaceLimit/ln(Zeta(3))^2 4334919557095877 r005 Re(z^2+c),c=-43/70+3/20*I,n=41 4334919559213129 m001 exp(Pi)/(Rabbit^FeigenbaumC) 4334919560170969 a007 Real Root Of 302*x^4-597*x^3+931*x^2-962*x+40 4334919566253182 a007 Real Root Of 287*x^4+111*x^3+761*x^2-445*x-337 4334919566926348 m001 (2^(1/2)+sin(1/12*Pi))/(FeigenbaumD+Salem) 4334919568865177 a001 322/89*2178309^(17/35) 4334919569377108 r009 Re(z^3+c),c=-55/106+19/56*I,n=19 4334919580128268 r005 Im(z^2+c),c=-1/6+16/23*I,n=47 4334919600213237 r005 Im(z^2+c),c=-11/10+9/175*I,n=30 4334919609556085 r005 Re(z^2+c),c=-18/29+3/56*I,n=57 4334919618095875 m001 FeigenbaumDelta^Backhouse/(Niven^Backhouse) 4334919639007029 r009 Im(z^3+c),c=-45/86+23/62*I,n=24 4334919645731733 r005 Im(z^2+c),c=-83/64+1/35*I,n=4 4334919668198949 r009 Im(z^3+c),c=-11/30+7/16*I,n=23 4334919675511633 a007 Real Root Of 373*x^4-700*x^3+985*x^2+146*x-192 4334919686051214 p004 log(34319/22247) 4334919702141222 r005 Re(z^2+c),c=37/98+5/58*I,n=27 4334919703669299 r009 Re(z^3+c),c=-23/58+23/36*I,n=3 4334919709193596 r002 36th iterates of z^2 + 4334919711613537 r009 Re(z^3+c),c=-3/40+28/61*I,n=4 4334919726211303 m005 (1/2*exp(1)-4/7)/(9/11*3^(1/2)+2/5) 4334919733002493 r009 Re(z^3+c),c=-7/17+2/13*I,n=3 4334919742750666 r009 Im(z^3+c),c=-1/11+23/45*I,n=11 4334919744122672 r005 Im(z^2+c),c=7/44+26/57*I,n=32 4334919749835856 a007 Real Root Of 22*x^4+951*x^3-97*x^2+843*x+318 4334919754559779 m001 (Zeta(5)+Kac)/(PlouffeB+ReciprocalFibonacci) 4334919776551555 m005 (1/2*Catalan+2/3)/(2/3*Pi+1/2) 4334919785607319 r005 Im(z^2+c),c=2/13+7/15*I,n=31 4334919799864241 a007 Real Root Of 200*x^4+624*x^3-943*x^2+424*x-235 4334919806399677 m005 (1/2*3^(1/2)-2/5)/(9/10*gamma+5/9) 4334919815709863 m001 (exp(1)-gamma(2))/(BesselK(1,1)+Trott2nd) 4334919816492546 r009 Re(z^3+c),c=-49/90+13/30*I,n=9 4334919835458995 l006 ln(69/5266) 4334919839353821 m001 Kolakoski^2*GlaisherKinkelin*exp(Pi)^2 4334919868171150 a007 Real Root Of -905*x^4+501*x^3-866*x^2+188*x+317 4334919876605280 r005 Re(z^2+c),c=-75/122+1/42*I,n=25 4334919878252194 m001 (arctan(1/2)+Stephens)/(exp(Pi)+sin(1)) 4334919886323582 p004 log(35911/23279) 4334919895117459 r005 Re(z^2+c),c=11/42+1/61*I,n=45 4334919895502216 m001 (arctan(1/2)+BesselI(1,1))/(Kac+MadelungNaCl) 4334919902864646 r009 Re(z^3+c),c=-7/44+40/53*I,n=64 4334919924145225 m001 (Si(Pi)+Zeta(1,2))/(-PlouffeB+Sierpinski) 4334919929490174 m001 (ArtinRank2+FeigenbaumMu)/(Shi(1)+gamma(1)) 4334919930531458 m001 (GAMMA(5/6)-Psi(2,1/3))/(-Mills+ZetaQ(3)) 4334919934732203 r009 Im(z^3+c),c=-59/126+13/34*I,n=44 4334919935547700 r002 59th iterates of z^2 + 4334919940520724 a001 1/98209*1836311903^(14/17) 4334919940543197 a001 2/165580141*6557470319842^(14/17) 4334919940823905 m005 (1/2*Catalan+8/9)/(1/3*5^(1/2)-5/7) 4334919945189885 a007 Real Root Of -682*x^4+296*x^3-257*x^2+278*x+217 4334919951509734 m001 (gamma(1)*GaussAGM-ln(2)/ln(10))/GaussAGM 4334919965921069 m001 1/BesselJ(1,1)^2*exp(GAMMA(5/12)) 4334919981019834 a001 12586269025/322*322^(5/12) 4334919987729203 a007 Real Root Of 555*x^4-222*x^3-355*x^2-657*x+350 4334919993840989 m001 1/exp(1)/cos(Pi/5)/exp(sinh(1))^2 4334920017860292 r002 32th iterates of z^2 + 4334920037409065 m001 Khintchine/GolombDickman^2*exp(Tribonacci) 4334920052163766 r002 9th iterates of z^2 + 4334920055877626 a007 Real Root Of -85*x^4+78*x^3+984*x^2+876*x-568 4334920100890321 r005 Re(z^2+c),c=23/62+4/21*I,n=27 4334920102920566 m001 (BesselI(0,1)-Psi(2,1/3))/(CareFree+Gompertz) 4334920103802329 a007 Real Root Of -209*x^4-845*x^3+279*x^2-45*x-469 4334920113253458 r009 Im(z^3+c),c=-9/22+25/58*I,n=13 4334920117003109 m008 (1/4*Pi^3+5)/(Pi-1/5) 4334920129725064 m001 cos(1/12*Pi)^2/Porter^2 4334920129725064 m001 cos(Pi/12)^2/Porter^2 4334920138866886 m002 -2+Pi^3+3/ProductLog[Pi]+Sinh[Pi] 4334920145086456 r002 40th iterates of z^2 + 4334920145865151 r009 Im(z^3+c),c=-25/64+26/61*I,n=49 4334920163555826 r005 Re(z^2+c),c=-18/29+2/39*I,n=63 4334920170542641 r009 Im(z^3+c),c=-27/110+13/27*I,n=14 4334920186618528 r005 Im(z^2+c),c=15/52+13/43*I,n=9 4334920190422850 q001 1548/3571 4334920198240585 r005 Im(z^2+c),c=-39/106+46/59*I,n=3 4334920200364446 m001 1/GAMMA(5/6)/GAMMA(11/24)^2*ln(sin(Pi/12))^2 4334920200395842 a005 (1/cos(14/209*Pi))^1614 4334920200787958 r005 Re(z^2+c),c=-18/29+2/31*I,n=47 4334920201919664 a001 3571*28657^(9/37) 4334920216467513 m009 (5/6*Psi(1,1/3)-2/3)/(1/10*Pi^2+4/5) 4334920219491254 r009 Im(z^3+c),c=-7/78+62/63*I,n=22 4334920228509927 a007 Real Root Of -799*x^4+554*x^3-867*x^2+846*x+603 4334920229084790 r002 58th iterates of z^2 + 4334920229621192 s002 sum(A190358[n]/(n^2*pi^n+1),n=1..infinity) 4334920256710725 p001 sum((-1)^n/(569*n+228)/(24^n),n=0..infinity) 4334920273575359 r005 Re(z^2+c),c=-73/118+2/21*I,n=57 4334920291878705 v002 sum(1/(5^n*(17/2*n^2+67/2*n+9)),n=1..infinity) 4334920292643475 r009 Im(z^3+c),c=-47/126+37/60*I,n=24 4334920302015092 r005 Im(z^2+c),c=31/122+16/43*I,n=50 4334920302110181 r005 Im(z^2+c),c=5/106+28/51*I,n=41 4334920303218784 r009 Im(z^3+c),c=-39/70+11/64*I,n=39 4334920304891461 r005 Re(z^2+c),c=-61/110+2/51*I,n=7 4334920308314485 r002 41th iterates of z^2 + 4334920309151600 b008 3*ArcTan[5*Sqrt[5/2]] 4334920312996729 r005 Re(z^2+c),c=-35/58+12/59*I,n=36 4334920314353850 m008 (1/3*Pi^4+1/3)/(1/4*Pi^5-5/6) 4334920319415201 m002 -ProductLog[Pi]+6*E^Pi*Pi*Tanh[Pi] 4334920328722766 m004 4+Cos[Sqrt[5]*Pi]+6*Sqrt[5]*Pi*Tan[Sqrt[5]*Pi] 4334920344031328 r002 41th iterates of z^2 + 4334920382103062 r002 11th iterates of z^2 + 4334920410454777 r009 Re(z^3+c),c=-27/110+11/15*I,n=34 4334920421912195 r005 Im(z^2+c),c=-51/122+23/43*I,n=19 4334920478759779 r005 Re(z^2+c),c=-3/5+24/103*I,n=28 4334920484678144 m001 (Riemann2ndZero+Stephens)^FibonacciFactorial 4334920535954847 a001 63246219*199^(4/11) 4334920564272630 r005 Im(z^2+c),c=-59/110+17/36*I,n=32 4334920579008795 m005 (1/2*5^(1/2)-7/11)/(2/5*2^(1/2)+6/11) 4334920582772434 r009 Im(z^3+c),c=-43/98+2/5*I,n=42 4334920584838225 a007 Real Root Of -851*x^4+794*x^3-808*x^2+841*x-35 4334920611744883 m005 (7/10+1/5*5^(1/2))/(1/4*2^(1/2)-3) 4334920612619884 r005 Re(z^2+c),c=-13/21+4/43*I,n=42 4334920634483964 r005 Re(z^2+c),c=-5/8+67/250*I,n=4 4334920662252761 r005 Re(z^2+c),c=-65/106+9/50*I,n=47 4334920696472258 a007 Real Root Of -163*x^4-882*x^3-874*x^2-696*x-882 4334920710650776 r002 40th iterates of z^2 + 4334920735018482 r005 Im(z^2+c),c=25/74+5/52*I,n=31 4334920740025324 r005 Im(z^2+c),c=9/29+5/13*I,n=50 4334920757591758 r009 Im(z^3+c),c=-29/78+27/62*I,n=4 4334920763332539 m001 (-Kac+Landau)/(BesselJ(1,1)-BesselK(0,1)) 4334920783647197 r005 Re(z^2+c),c=-79/126+3/44*I,n=25 4334920799821664 r005 Re(z^2+c),c=-41/66+1/49*I,n=51 4334920806769028 m006 (5*exp(Pi)+1/3)/(5*exp(2*Pi)-2/3) 4334920807706409 m001 (cos(1)+BesselJ(0,1))/(Mills+Niven) 4334920824400678 r002 5th iterates of z^2 + 4334920829310455 m001 (Ei(1)-gamma(3))/(Pi+GAMMA(3/4)) 4334920837835939 r005 Re(z^2+c),c=-45/74+13/62*I,n=53 4334920841625814 r005 Re(z^2+c),c=-33/62+10/39*I,n=3 4334920853197194 m001 (Ei(1,1)-sin(1))/(Stephens+Thue) 4334920861468648 r005 Re(z^2+c),c=-55/42+3/46*I,n=22 4334920878397858 m001 (Lehmer-OrthogonalArrays)/(Zeta(5)+GaussAGM) 4334920902100092 r009 Re(z^3+c),c=-16/31+23/61*I,n=2 4334920904425388 a007 Real Root Of -561*x^4+237*x^3+40*x^2+633*x+306 4334920906847059 b008 3+(6*Tan[1])/7 4334920907181428 a003 cos(Pi*1/74)-cos(Pi*25/81) 4334920911546980 r005 Im(z^2+c),c=5/19+23/63*I,n=31 4334920916986803 m006 (3/4*exp(2*Pi)+4/5)/(2*Pi+3) 4334920934985772 r005 Re(z^2+c),c=-27/44+2/13*I,n=48 4334920935486335 a001 5778/377*8^(1/2) 4334920935841470 r002 27th iterates of z^2 + 4334920950244237 m001 LaplaceLimit*GolombDickman^2*exp(sin(Pi/12))^2 4334920952623396 m001 (Bloch+Landau)/(ln(2^(1/2)+1)-Zeta(1/2)) 4334920959681309 m001 Niven/ln(GolombDickman)^2/BesselK(0,1)^2 4334920965533686 m005 (1/3*3^(1/2)+2/11)/(5/8*Zeta(3)+1) 4334920966277934 a003 cos(Pi*33/104)-sin(Pi*28/65) 4334920971706706 m001 (BesselI(1,1)+Backhouse)/(ThueMorse+ZetaQ(2)) 4334920986416655 a007 Real Root Of -221*x^4+856*x^3-74*x^2+172*x+166 4334920994248735 a007 Real Root Of 127*x^4-507*x^3+93*x^2-876*x-443 4334921009699142 a007 Real Root Of 337*x^4+167*x^3+659*x^2-844*x-488 4334921022263838 s001 sum(exp(-Pi/3)^n*A081886[n],n=1..infinity) 4334921049866948 a007 Real Root Of 144*x^4+536*x^3-128*x^2+907*x-850 4334921069653078 m001 (Chi(1)-ln(5))/(ln(Pi)+HardyLittlewoodC3) 4334921074923920 r002 42th iterates of z^2 + 4334921075998046 a003 sin(Pi*17/104)*sin(Pi*32/93) 4334921078736689 m001 1/sin(Pi/12)^2*GAMMA(11/12)^2*ln(sinh(1))^2 4334921081831221 r005 Im(z^2+c),c=11/52+19/46*I,n=26 4334921084222980 a001 1/4092*(1/2*5^(1/2)+1/2)^10*3^(1/3) 4334921087596625 m005 (1/2*5^(1/2)-1/7)/(8/9*exp(1)-1/6) 4334921092028369 m001 (FeigenbaumC-TwinPrimes)/(Pi-BesselJ(1,1)) 4334921100584659 a003 sin(Pi*21/103)*sin(Pi*31/120) 4334921118931608 m005 (1/3*gamma+2/7)/(3/10*3^(1/2)+7/12) 4334921133328028 m001 Rabbit^2/FeigenbaumC^2/ln(sqrt(2)) 4334921138697077 m001 Gompertz-MertensB1+Paris 4334921140073939 r005 Re(z^2+c),c=39/106+5/23*I,n=3 4334921152161647 r005 Re(z^2+c),c=-45/58+32/55*I,n=5 4334921153262491 a007 Real Root Of -282*x^4+451*x^3-59*x^2+944*x+467 4334921165507022 a007 Real Root Of 348*x^4+93*x^3-604*x^2-190*x+176 4334921168889723 a003 cos(Pi*26/71)/sin(Pi*41/105) 4334921173257558 r002 16th iterates of z^2 + 4334921174466322 a001 20633239/1597*4807526976^(6/23) 4334921174506513 a001 370248451/1597*75025^(6/23) 4334921181783315 m001 GAMMA(11/12)^2*MadelungNaCl/ln(cos(Pi/5))^2 4334921185713669 r002 60th iterates of z^2 + 4334921198761021 r002 39th iterates of z^2 + 4334921199983948 r005 Re(z^2+c),c=-41/66+1/40*I,n=64 4334921207334391 m005 (1/2*5^(1/2)+1/3)/(8/9*Pi+5/9) 4334921212121189 k009 concat of cont frac of 4334921216457163 k007 concat of cont frac of 4334921216562843 q001 1183/2729 4334921221897332 m001 (gamma(3)+GAMMA(11/12))/(Si(Pi)+sin(1/5*Pi)) 4334921237258004 m001 (sin(1/5*Pi)-BesselJ(1,1))/(Otter+ZetaP(2)) 4334921258119553 m001 Riemann3rdZero^2*FeigenbaumB/ln(sqrt(2))^2 4334921270937138 m002 -6+5*Pi^2+Log[Pi]/Pi^6 4334921272968924 h001 (6/7*exp(1)+4/7)/(8/9*exp(2)+1/8) 4334921329362712 m001 (DuboisRaymond+MasserGramain)/(Pi-Zeta(3)) 4334921340130760 r005 Re(z^2+c),c=-8/13+13/63*I,n=33 4334921350844447 m001 1/5*5^(1/2)*(1+3^(1/2))^(1/2)/Niven 4334921354485216 a007 Real Root Of -946*x^4+213*x^3-682*x^2-302*x+48 4334921364263138 r005 Re(z^2+c),c=-16/27+19/54*I,n=42 4334921371221495 r002 19th iterates of z^2 + 4334921384411979 r005 Re(z^2+c),c=-61/110+12/35*I,n=17 4334921394742927 m005 (1/3*gamma-1/10)/(3*gamma+2/5) 4334921407196853 r009 Im(z^3+c),c=-5/36+39/40*I,n=4 4334921410544975 m001 (ln(Pi)+Zeta(1,-1))/(exp(Pi)+ln(gamma)) 4334921412174261 m001 1/ln(GAMMA(5/24))*Rabbit^2*GAMMA(5/6)^2 4334921416274058 m001 1/PrimesInBinary/GlaisherKinkelin/ln(cosh(1)) 4334921416758981 r002 13th iterates of z^2 + 4334921427541251 p001 sum((-1)^n/(256*n+229)/(64^n),n=0..infinity) 4334921430350048 a007 Real Root Of -502*x^4-539*x^3-545*x^2+417*x+257 4334921433077137 r009 Re(z^3+c),c=-33/64+11/56*I,n=54 4334921451588948 r005 Im(z^2+c),c=-1/19+37/61*I,n=57 4334921453318697 m001 (5^(1/2)-sin(1))/(exp(1/exp(1))+Pi^(1/2)) 4334921454931619 r009 Re(z^3+c),c=-13/25+25/58*I,n=57 4334921460746662 m001 (-Salem+ZetaP(2))/(Chi(1)+FeigenbaumB) 4334921464809192 a001 54018521/4181*4807526976^(6/23) 4334921464849375 a001 969323029/4181*75025^(6/23) 4334921468989187 a003 cos(Pi*12/35)*sin(Pi*25/68) 4334921472122111 k007 concat of cont frac of 4334921472504684 l006 ln(116/8853) 4334921507169649 a001 70711162/5473*4807526976^(6/23) 4334921507209831 a001 1268860318/5473*75025^(6/23) 4334921513349957 a001 370248451/28657*4807526976^(6/23) 4334921513390138 a001 6643838879/28657*75025^(6/23) 4334921513846196 a003 sin(Pi*7/103)-sin(Pi*23/103) 4334921514251651 a001 969323029/75025*4807526976^(6/23) 4334921514291833 a001 17393796001/75025*75025^(6/23) 4334921514383207 a001 1268860318/98209*4807526976^(6/23) 4334921514402401 a001 6643838879/514229*4807526976^(6/23) 4334921514405201 a001 17393796001/1346269*4807526976^(6/23) 4334921514405609 a001 22768774562/1762289*4807526976^(6/23) 4334921514405669 a001 119218851371/9227465*4807526976^(6/23) 4334921514405678 a001 312119004989/24157817*4807526976^(6/23) 4334921514405679 a001 408569081798/31622993*4807526976^(6/23) 4334921514405679 a001 2139295485799/165580141*4807526976^(6/23) 4334921514405679 a001 5600748293801/433494437*4807526976^(6/23) 4334921514405679 a001 7331474697802/567451585*4807526976^(6/23) 4334921514405679 a001 23725150497407/1836311903*4807526976^(6/23) 4334921514405679 a001 3020733700601/233802911*4807526976^(6/23) 4334921514405679 a001 1730726404001/133957148*4807526976^(6/23) 4334921514405679 a001 440719107401/34111385*4807526976^(6/23) 4334921514405680 a001 505019158607/39088169*4807526976^(6/23) 4334921514405683 a001 33385281/2584*4807526976^(6/23) 4334921514405706 a001 73681302247/5702887*4807526976^(6/23) 4334921514405862 a001 9381251041/726103*4807526976^(6/23) 4334921514406932 a001 5374978561/416020*4807526976^(6/23) 4334921514414263 a001 1368706081/105937*4807526976^(6/23) 4334921514423388 a001 22768774562/98209*75025^(6/23) 4334921514442582 a001 119218851371/514229*75025^(6/23) 4334921514445382 a001 312119004989/1346269*75025^(6/23) 4334921514445791 a001 408569081798/1762289*75025^(6/23) 4334921514445850 a001 2139295485799/9227465*75025^(6/23) 4334921514445859 a001 5600748293801/24157817*75025^(6/23) 4334921514445860 a001 7331474697802/31622993*75025^(6/23) 4334921514445860 a001 23725150497407/102334155*75025^(6/23) 4334921514445861 a001 9062201101803/39088169*75025^(6/23) 4334921514445864 a001 1730726404001/7465176*75025^(6/23) 4334921514445887 a001 1322157322203/5702887*75025^(6/23) 4334921514446043 a001 10745088481/46347*75025^(6/23) 4334921514447113 a001 96450076809/416020*75025^(6/23) 4334921514454444 a001 73681302247/317811*75025^(6/23) 4334921514464513 a001 1568397607/121393*4807526976^(6/23) 4334921514504694 a001 28143753123/121393*75025^(6/23) 4334921514808929 a001 33281921/2576*4807526976^(6/23) 4334921514849110 a001 5374978561/23184*75025^(6/23) 4334921515219784 a001 305/9*39603^(1/43) 4334921517169597 a001 228826127/17711*4807526976^(6/23) 4334921517209778 a001 4106118243/17711*75025^(6/23) 4334921533349852 a001 29134601/2255*4807526976^(6/23) 4334921533390032 a001 1568397607/6765*75025^(6/23) 4334921534607264 r005 Re(z^2+c),c=-31/50+1/61*I,n=37 4334921540523983 h001 (4/5*exp(1)+1/5)/(5/7*exp(2)+1/5) 4334921557045807 a007 Real Root Of 225*x^4+991*x^3+288*x^2+871*x-362 4334921560022772 m001 ErdosBorwein/(Trott2nd^Catalan) 4334921571621816 r005 Re(z^2+c),c=-2/3+23/238*I,n=27 4334921575596310 r009 Re(z^3+c),c=-23/48+5/62*I,n=33 4334921592979900 a007 Real Root Of -845*x^4+745*x^3-709*x^2+891*x+610 4334921602927175 a007 Real Root Of -122*x^4-702*x^3-826*x^2-140*x+811 4334921644250974 a001 16692641/1292*4807526976^(6/23) 4334921644291151 a001 299537289/1292*75025^(6/23) 4334921660879138 r005 Re(z^2+c),c=-37/60+3/20*I,n=25 4334921684801201 m001 GAMMA(17/24)/(LaplaceLimit^Otter) 4334921686524901 r005 Re(z^2+c),c=21/106+30/47*I,n=6 4334921687567056 m001 (AlladiGrinstead+Rabbit)/(ln(5)+Ei(1)) 4334921695254730 r002 11th iterates of z^2 + 4334921700517077 a007 Real Root Of -94*x^4+397*x^3+66*x^2+64*x+51 4334921704207844 a007 Real Root Of 98*x^4+543*x^3+850*x^2-67*x-148 4334921706774596 s002 sum(A256817[n]/(n^2*pi^n-1),n=1..infinity) 4334921706993554 a007 Real Root Of 19*x^4+820*x^3-154*x^2+146*x-398 4334921722982516 r005 Im(z^2+c),c=-143/122+12/53*I,n=30 4334921723174794 m005 (1/2*exp(1)-3/7)/(6/11*Catalan-5/7) 4334921728095829 m001 sin(Pi/12)^sqrt(Pi)/(sin(Pi/12)^log(gamma)) 4334921735002745 a007 Real Root Of 67*x^4+251*x^3-186*x^2+124*x+820 4334921738959001 a001 76/24157817*34^(1/11) 4334921743412212 r005 Re(z^2+c),c=-5/8+14/211*I,n=23 4334921754631233 a001 2/55*17711^(21/29) 4334921760225552 r005 Re(z^2+c),c=-13/9+3/67*I,n=8 4334921763576651 r002 50th iterates of z^2 + 4334921771974343 m001 FeigenbaumDelta-GAMMA(5/6)+Kolakoski 4334921779440881 r005 Im(z^2+c),c=-91/74+5/34*I,n=8 4334921780286344 r002 4th iterates of z^2 + 4334921785871952 a007 Real Root Of 39*x^4-906*x^3+749*x^2-450*x-411 4334921788114708 m001 1/Magata^2*ln(Champernowne)^2*GAMMA(1/12) 4334921804361018 r005 Im(z^2+c),c=4/21+7/15*I,n=19 4334921820296867 a007 Real Root Of -262*x^4+729*x^3+842*x^2+585*x-27 4334921825409365 r005 Im(z^2+c),c=1/50+33/64*I,n=15 4334921839597902 a007 Real Root Of 630*x^4-760*x^3-542*x^2-128*x+197 4334921853338247 r005 Im(z^2+c),c=9/94+29/57*I,n=46 4334921855093068 r005 Re(z^2+c),c=-17/26+7/74*I,n=21 4334921862532290 a007 Real Root Of -118*x^4-13*x^3-467*x^2+434*x+279 4334921875925549 r005 Im(z^2+c),c=-22/27+9/44*I,n=11 4334921881557929 r002 60th iterates of z^2 + 4334921881557929 r002 60th iterates of z^2 + 4334921901370840 r005 Re(z^2+c),c=-45/34+4/109*I,n=58 4334921902455743 g005 GAMMA(7/12)^2*GAMMA(7/9)*GAMMA(4/7) 4334921903199721 m001 (Conway+ThueMorse)/(Backhouse-Si(Pi)) 4334921906230126 m005 (-7/4+1/4*5^(1/2))/(10/11*gamma-1/4) 4334921911453198 m001 (-FeigenbaumC+Robbin)/(3^(1/2)+cos(1/12*Pi)) 4334921921650430 s001 sum(exp(-Pi/4)^(n-1)*A235716[n],n=1..infinity) 4334921922375483 m005 (1/2*2^(1/2)-1/9)/(-8/15+3/10*5^(1/2)) 4334921926904794 b008 1/3+ArcSinh[82/3] 4334921957006243 a007 Real Root Of -304*x^4+721*x^3+782*x^2+330*x-338 4334921959742115 p003 LerchPhi(1/512,1,3/13) 4334921964712092 a007 Real Root Of -105*x^4-393*x^3+439*x^2+664*x-307 4334921967863297 m001 RenyiParking^2/ln(Paris)/GAMMA(1/6) 4334921969074015 a007 Real Root Of -905*x^4+790*x^3-847*x^2-474*x+50 4334921978145035 m001 (2^(1/3)-CareFree)/(-Conway+Sierpinski) 4334921987029927 r005 Re(z^2+c),c=-41/70+19/63*I,n=44 4334921990918308 r002 9th iterates of z^2 + 4334921992253977 r001 35i'th iterates of 2*x^2-1 of 4334921995715201 m005 (1/2*gamma+2)/(1/12*5^(1/2)-5/7) 4334922019210330 r005 Re(z^2+c),c=-85/126+2/39*I,n=18 4334922042127085 m001 (-BesselJ(1,1)+GAMMA(13/24))/(Si(Pi)+Catalan) 4334922045802007 r002 7th iterates of z^2 + 4334922058752491 a003 cos(Pi*19/56)*sin(Pi*29/82) 4334922084726851 a003 sin(Pi*2/63)/cos(Pi*26/61) 4334922091214076 r002 29th iterates of z^2 + 4334922096600008 m001 (Riemann2ndZero-Zeta(3)*Bloch)/Bloch 4334922115740411 r005 Re(z^2+c),c=-9/14+89/238*I,n=60 4334922137273261 r005 Re(z^2+c),c=-39/64+4/39*I,n=26 4334922138239743 m001 (CareFree-Zeta(5))/ZetaP(4) 4334922138387124 r005 Im(z^2+c),c=29/98+37/61*I,n=8 4334922140531073 m001 (Porter+ZetaQ(3))/(cos(1/12*Pi)-Mills) 4334922143942794 a007 Real Root Of 143*x^4+781*x^3+772*x^2+243*x-330 4334922146575543 p001 sum(1/(351*n+274)/(3^n),n=0..infinity) 4334922172001402 a007 Real Root Of 282*x^4-675*x^3-822*x^2-248*x+307 4334922190752173 r005 Re(z^2+c),c=-13/22+13/44*I,n=53 4334922196741615 h001 (9/10*exp(2)+3/4)/(2/11*exp(2)+4/11) 4334922219409602 a007 Real Root Of -866*x^4+242*x^3+265*x^2+654*x+284 4334922223440292 r009 Im(z^3+c),c=-1/110+17/33*I,n=12 4334922224148634 r009 Im(z^3+c),c=-7/78+24/47*I,n=16 4334922229318306 a007 Real Root Of -250*x^4+416*x^3-887*x^2+442*x+401 4334922229888571 r005 Re(z^2+c),c=-23/30+18/113*I,n=12 4334922244055429 m001 (GAMMA(7/12)*ZetaQ(4)+TwinPrimes)/GAMMA(7/12) 4334922273462554 r009 Im(z^3+c),c=-53/118+14/37*I,n=15 4334922276046972 m005 (1/2*exp(1)-8/9)/(47/66+1/6*5^(1/2)) 4334922278702024 r005 Re(z^2+c),c=-51/82+3/44*I,n=39 4334922279759762 h001 (2/5*exp(1)+2/9)/(3/8*exp(2)+1/4) 4334922290481054 a007 Real Root Of -138*x^4-523*x^3+105*x^2-992*x-146 4334922300085836 a001 101003689592/233 4334922302130611 r005 Re(z^2+c),c=-18/31+1/42*I,n=11 4334922310907982 r005 Re(z^2+c),c=-33/26+13/106*I,n=15 4334922321055085 p001 sum(1/(443*n+285)/n/(32^n),n=1..infinity) 4334922324128161 r005 Im(z^2+c),c=13/86+19/41*I,n=44 4334922331187866 m006 (1/2*Pi^2+3/4)/(ln(Pi)+1/6) 4334922337166643 r002 13th iterates of z^2 + 4334922339124083 m001 (ln(gamma)-sin(1))/(Zeta(1/2)+FeigenbaumDelta) 4334922346561216 a007 Real Root Of -960*x^4+454*x^3-804*x^2+210*x+313 4334922371292545 r002 64th iterates of z^2 + 4334922373437222 a007 Real Root Of -857*x^4+380*x^3-238*x^2+999*x+539 4334922403505480 r009 Im(z^3+c),c=-21/44+22/59*I,n=40 4334922403876773 m001 (-GAMMA(1/6)+4)/(-exp(sqrt(2))+1/2) 4334922404378724 a001 4250681/329*4807526976^(6/23) 4334922404418878 a001 4868641/21*75025^(6/23) 4334922416408847 a003 cos(Pi*6/65)*sin(Pi*13/87) 4334922432338772 m001 1/Zeta(3)/exp(TwinPrimes)*Zeta(7) 4334922435141937 r005 Im(z^2+c),c=-65/82+13/57*I,n=8 4334922439870267 r004 Im(z^2+c),c=9/34-2/15*I,z(0)=exp(5/8*I*Pi),n=3 4334922440226719 r005 Re(z^2+c),c=-29/48+2/21*I,n=18 4334922450890327 r005 Re(z^2+c),c=-71/118+13/55*I,n=45 4334922458028830 a007 Real Root Of -192*x^4-797*x^3+288*x^2+639*x+234 4334922462608964 v003 sum((n^3-3*n^2+11*n+1)*n!/n^n,n=1..infinity) 4334922465004985 a007 Real Root Of -537*x^4-225*x^3-599*x^2+657*x+398 4334922467131472 r005 Re(z^2+c),c=-41/66+6/43*I,n=36 4334922473142277 a007 Real Root Of 606*x^4-481*x^3+806*x^2-369*x-372 4334922475263683 r009 Re(z^3+c),c=-55/118+9/58*I,n=48 4334922531479994 a007 Real Root Of -877*x^4+746*x^3-549*x^2+397*x+367 4334922561423259 r002 4th iterates of z^2 + 4334922572184061 m001 CopelandErdos^(AlladiGrinstead*FeigenbaumD) 4334922579676054 a001 233/2207*47^(55/57) 4334922579992268 m001 2*Zeta(1/2)-sqrt(2) 4334922581706986 m001 BesselK(0,1)*exp(Kolakoski)/arctan(1/2)^2 4334922588635393 r005 Re(z^2+c),c=-75/122+5/47*I,n=12 4334922598691485 r001 64i'th iterates of 2*x^2-1 of 4334922608322134 m007 (-gamma-3*ln(2)-1/2*Pi+1/3)/(-3*gamma+5/6) 4334922612488981 a001 4870847/377*102334155^(4/21) 4334922612497382 a001 710647/377*2504730781961^(4/21) 4334922615498731 r005 Re(z^2+c),c=-9/14+33/136*I,n=37 4334922620457519 r009 Im(z^3+c),c=-7/17+19/46*I,n=17 4334922621935754 a001 33385282/377*4181^(4/21) 4334922622272830 r005 Re(z^2+c),c=-71/126+5/12*I,n=35 4334922623392340 m001 1/GAMMA(7/24)*GAMMA(11/24)*ln(Zeta(7))^2 4334922635373922 r002 11th iterates of z^2 + 4334922637291007 r009 Im(z^3+c),c=-51/118+19/39*I,n=15 4334922658250740 a007 Real Root Of -211*x^4+223*x^3-321*x^2+878*x-331 4334922665566352 a003 sin(Pi*10/79)-sin(Pi*19/62) 4334922686590822 a007 Real Root Of -190*x^4-601*x^3+998*x^2+281*x+600 4334922688322797 a001 1/76*(1/2*5^(1/2)+1/2)^11*4^(4/11) 4334922706552456 a007 Real Root Of 166*x^4+646*x^3-115*x^2+750*x-583 4334922718839832 m005 (1/3*3^(1/2)+1/2)/(6*2^(1/2)-6) 4334922719126653 r009 Im(z^3+c),c=-25/64+26/61*I,n=52 4334922729969955 r005 Re(z^2+c),c=-31/42+5/51*I,n=16 4334922752199820 r005 Re(z^2+c),c=-67/118+18/59*I,n=19 4334922784271231 r005 Im(z^2+c),c=-4/25+32/51*I,n=33 4334922801072479 a001 24476/233*89^(6/19) 4334922809476808 m001 GaussKuzminWirsing+OneNinth^Catalan 4334922822644308 r002 56th iterates of z^2 + 4334922822790142 r005 Re(z^2+c),c=-20/31+9/34*I,n=53 4334922834748491 m001 (Shi(1)-gamma)/(ln(3)+ZetaQ(3)) 4334922839919470 r002 50th iterates of z^2 + 4334922850405412 r005 Im(z^2+c),c=-7/10+61/226*I,n=9 4334922858731006 m001 (1+BesselK(0,1))/(Khinchin+Lehmer) 4334922858918527 h001 (5/12*exp(2)+3/8)/(1/11*exp(2)+1/8) 4334922865796596 r005 Im(z^2+c),c=-19/30+1/124*I,n=61 4334922879641913 r005 Im(z^2+c),c=31/106+1/3*I,n=48 4334922883275857 r005 Im(z^2+c),c=-77/118+1/19*I,n=25 4334922895437788 a001 29/2*6765^(49/54) 4334922908821834 a007 Real Root Of -214*x^4-742*x^3+762*x^2-286*x-434 4334922927976269 a003 cos(Pi*4/51)-sin(Pi*20/111) 4334922939609500 r005 Re(z^2+c),c=-13/14+63/253*I,n=50 4334922944569715 m001 (exp(1/exp(1))+Champernowne)/(ln(3)+Zeta(1/2)) 4334922959888415 m001 (ln(5)-Zeta(1/2))/(Rabbit-ZetaQ(4)) 4334922983788186 m005 (31/44+1/4*5^(1/2))/(1/8*gamma-4/11) 4334922988756923 r002 10th iterates of z^2 + 4334923006455083 r005 Re(z^2+c),c=-65/106+16/55*I,n=40 4334923007554222 s002 sum(A010456[n]/(n^2*pi^n+1),n=1..infinity) 4334923014219071 a007 Real Root Of 625*x^4+40*x^3+41*x^2-252*x-11 4334923080576706 r002 6th iterates of z^2 + 4334923090517671 a001 2/1597*1836311903^(12/17) 4334923096560079 r002 16th iterates of z^2 + 4334923096843386 m001 (exp(1/exp(1))-gamma)/(ArtinRank2+Conway) 4334923112330775 s002 sum(A110106[n]/(exp(pi*n)+1),n=1..infinity) 4334923112333056 s002 sum(A110106[n]/(exp(pi*n)),n=1..infinity) 4334923112335336 s002 sum(A110106[n]/(exp(pi*n)-1),n=1..infinity) 4334923114082993 a001 123/55*21^(5/23) 4334923116850211 r002 5th iterates of z^2 + 4334923120447028 r005 Im(z^2+c),c=-1/58+25/43*I,n=63 4334923125271237 m001 Bloch*FeigenbaumAlpha^2*exp(Khintchine) 4334923141248316 l006 ln(5011/5233) 4334923141248316 p004 log(5233/5011) 4334923149240769 m002 1/(6*Pi^5)+5*Csch[Pi] 4334923158452570 q001 818/1887 4334923166539668 a007 Real Root Of -570*x^4-599*x^3-995*x^2+779*x+496 4334923171244486 a007 Real Root Of -550*x^4+429*x^3-899*x^2-236*x+121 4334923177077730 r005 Re(z^2+c),c=-19/34+41/103*I,n=29 4334923201298088 r005 Re(z^2+c),c=-18/29+2/41*I,n=64 4334923204435458 m001 ln(GAMMA(5/6))*GAMMA(1/4)*Pi^2 4334923209529386 r009 Im(z^3+c),c=-9/86+28/55*I,n=15 4334923227027399 h001 (5/9*exp(1)+4/9)/(1/8*exp(1)+1/9) 4334923237836263 r005 Im(z^2+c),c=-1/23+19/33*I,n=21 4334923271147166 r005 Re(z^2+c),c=-18/29+8/53*I,n=36 4334923272711535 a007 Real Root Of -937*x^4+197*x^3+255*x^2+943*x+410 4334923281723509 r002 15th iterates of z^2 + 4334923295801877 m001 (-Landau+Mills)/(LambertW(1)+ln(gamma)) 4334923296439122 m001 (LambertW(1)-ln(Pi))/(-BesselJ(1,1)+Pi^(1/2)) 4334923300685195 r002 13th iterates of z^2 + 4334923310891371 r002 39th iterates of z^2 + 4334923314190305 a007 Real Root Of 196*x^4+799*x^3-264*x^2-273*x-348 4334923324999547 m008 (2/5*Pi^5-1/4)/(5/6*Pi+1/5) 4334923386193078 a003 cos(Pi*17/81)*cos(Pi*29/92) 4334923393161882 a007 Real Root Of 806*x^4-857*x^3+104*x^2+311*x+17 4334923394135446 a007 Real Root Of 245*x^4+834*x^3-997*x^2-250*x-926 4334923394629862 m001 (ln(5)-Cahen)/(PrimesInBinary-ThueMorse) 4334923394956270 r002 53th iterates of z^2 + 4334923403052643 a003 cos(Pi*3/25)/cos(Pi*47/109) 4334923416095039 m001 1/GAMMA(5/12)^2/exp(Porter)/sinh(1) 4334923423858695 r005 Im(z^2+c),c=-43/74+25/57*I,n=24 4334923426599803 r005 Re(z^2+c),c=-29/52+4/25*I,n=5 4334923430453890 a001 2/514229*6557470319842^(12/17) 4334923431200485 m001 (exp(Pi)+Conway)/(FeigenbaumD+Otter) 4334923431450762 a003 sin(Pi*12/71)*sin(Pi*35/107) 4334923440436168 r009 Im(z^3+c),c=-23/42+8/23*I,n=5 4334923445160344 r008 a(0)=0,K{-n^6,11-2*n^3+36*n^2-71*n} 4334923447713545 a001 46/311187*317811^(4/15) 4334923447715651 a001 46/14619165*591286729879^(4/15) 4334923447715655 a001 161/7465176*433494437^(4/15) 4334923450049346 a007 Real Root Of 36*x^4+47*x^3-407*x^2+190*x-412 4334923454793210 a003 -1+cos(1/8*Pi)-2*cos(10/21*Pi)-cos(13/30*Pi) 4334923464516641 r005 Re(z^2+c),c=-49/86+12/49*I,n=19 4334923465151457 a001 7778742049/322*322^(1/2) 4334923469728151 m001 (-GaussAGM+MadelungNaCl)/(3^(1/2)+Artin) 4334923486827469 r009 Im(z^3+c),c=-47/102+22/57*I,n=38 4334923490131738 r002 44th iterates of z^2 + 4334923494707756 r005 Im(z^2+c),c=-1/20+28/47*I,n=46 4334923501841005 p001 sum((-1)^n/(387*n+230)/(125^n),n=0..infinity) 4334923515036895 a007 Real Root Of -20*x^4-861*x^3+249*x^2-435*x+747 4334923517911670 m001 (3^(1/2)-exp(Pi))/(BesselJ(1,1)+ZetaQ(2)) 4334923524733709 a007 Real Root Of 17*x^4-89*x^3-893*x^2-737*x+333 4334923528493211 a001 1134903170/843*521^(12/13) 4334923535426931 a001 3/199*2139295485799^(11/21) 4334923576638419 r002 19th iterates of z^2 + 4334923578003007 a001 365435296162/2207*199^(2/11) 4334923578620971 r009 Im(z^3+c),c=-11/29+16/37*I,n=21 4334923583976701 r005 Re(z^2+c),c=-9/16+40/111*I,n=41 4334923606193455 r009 Im(z^3+c),c=-3/38+22/43*I,n=19 4334923615237599 r008 a(0)=4,K{-n^6,1-3*n^3-5*n^2+2*n} 4334923615394386 r002 58th iterates of z^2 + 4334923615592022 r005 Re(z^2+c),c=27/98+19/48*I,n=25 4334923622816747 r009 Im(z^3+c),c=-8/27+13/22*I,n=3 4334923623965750 m001 (FeigenbaumMu+ZetaP(2))/(gamma(2)-Zeta(1,2)) 4334923633923062 r002 13th iterates of z^2 + 4334923664096949 m001 1/ln(BesselK(1,1))/MinimumGamma*LambertW(1)^2 4334923664886081 r005 Re(z^2+c),c=-16/27+4/23*I,n=18 4334923666665446 r002 63th iterates of z^2 + 4334923691776743 r002 42th iterates of z^2 + 4334923700971499 r005 Re(z^2+c),c=-73/118+3/53*I,n=36 4334923708662413 m004 8+5*Sqrt[5]*Pi+Sin[Sqrt[5]*Pi]/3 4334923711650471 h001 (8/11*exp(2)+6/7)/(2/9*exp(1)+5/6) 4334923714829629 a007 Real Root Of 336*x^4-915*x^3+549*x^2-x-190 4334923743526749 m001 (ThueMorse+2)/(BesselI(1,1)+5) 4334923744289231 a001 3/2*4181^(7/55) 4334923746754016 a007 Real Root Of -2*x^4+176*x^3-762*x^2+288*x-560 4334923769384925 a007 Real Root Of -152*x^4-497*x^3+783*x^2+253*x-428 4334923773941676 m009 (5/12*Pi^2-1/4)/(4/5*Psi(1,1/3)+5/6) 4334923796822764 a007 Real Root Of -642*x^4-875*x^3-195*x^2+399*x+161 4334923806007239 m005 (1/3*exp(1)-1/5)/(6/7*2^(1/2)+5/12) 4334923806541445 r005 Im(z^2+c),c=13/70+27/62*I,n=43 4334923809966915 r009 Re(z^3+c),c=-47/98+6/41*I,n=4 4334923811525015 h001 (6/7*exp(1)+5/7)/(8/9*exp(2)+5/11) 4334923813689948 a007 Real Root Of -53*x^4+533*x^3-198*x^2+857*x+454 4334923814888995 p003 LerchPhi(1/8,3,397/137) 4334923828774266 s002 sum(A040960[n]/(2^n-1),n=1..infinity) 4334923842065703 r009 Im(z^3+c),c=-25/64+26/61*I,n=55 4334923843896573 r005 Im(z^2+c),c=9/29+4/13*I,n=37 4334923849145620 r002 21th iterates of z^2 + 4334923853715780 m001 Porter^2*exp(Niven)/sqrt(1+sqrt(3))^2 4334923858471514 a007 Real Root Of -761*x^4+447*x^3+573*x^2+740*x-438 4334923871203056 r009 Re(z^3+c),c=-11/21+10/41*I,n=40 4334923872395870 r002 36th iterates of z^2 + 4334923875822223 l006 ln(47/3587) 4334923877153100 r009 Re(z^3+c),c=-11/21+18/47*I,n=28 4334923877306151 p002 log(1/14*(17-3^(1/2))^(1/2)*14^(1/2)) 4334923893368205 m001 GAMMA(7/12)*GlaisherKinkelin/ZetaP(2) 4334923897988701 m001 (ln(3)+LandauRamanujan)/(Trott-ZetaQ(2)) 4334923919526643 a007 Real Root Of -412*x^4+490*x^3-240*x^2+437*x+289 4334923972263009 a007 Real Root Of -991*x^4+867*x^3+346*x^2+942*x-509 4334923992855584 m004 -15/Pi+15*Pi+Tanh[Sqrt[5]*Pi] 4334924007882537 a007 Real Root Of 205*x^4+937*x^3+265*x^2+382*x+614 4334924008386670 a007 Real Root Of -261*x^4-923*x^3+919*x^2-33*x-435 4334924023166242 r005 Re(z^2+c),c=-17/28+11/42*I,n=25 4334924032048588 m001 Riemann2ndZero^FeigenbaumC*GAMMA(13/24) 4334924052891707 r002 23th iterates of z^2 + 4334924064355648 r005 Re(z^2+c),c=-5/8+17/114*I,n=32 4334924080783607 r005 Im(z^2+c),c=31/118+13/45*I,n=8 4334924081791562 r009 Im(z^3+c),c=-4/11+18/41*I,n=28 4334924090391022 h001 (5/7*exp(2)+1/9)/(1/11*exp(2)+4/7) 4334924098596174 r005 Im(z^2+c),c=4/25+15/28*I,n=48 4334924110569227 r002 36th iterates of z^2 + 4334924117508182 m001 Si(Pi)+MasserGramainDelta+TwinPrimes 4334924129377287 a007 Real Root Of -195*x^4-949*x^3-307*x^2+772*x+669 4334924144002132 a003 sin(Pi*9/56)-sin(Pi*17/46) 4334924150855396 m001 gamma(3)*BesselI(1,2)^ln(5) 4334924158288718 a001 46368/11*9349^(13/51) 4334924158419454 m001 (ln(2)+Ei(1))/(Landau+ZetaQ(2)) 4334924167547310 m005 (3*2^(1/2)-5/6)/(-13/8+3/8*5^(1/2)) 4334924178092911 m001 (gamma+gamma(1))/(Sarnak+TreeGrowth2nd) 4334924185999344 a001 10946/11*15127^(20/51) 4334924189482358 m005 (-13/28+1/4*5^(1/2))/(2/3*Pi+1/11) 4334924203628202 l006 ln(129/199) 4334924206881208 a007 Real Root Of -10*x^4-429*x^3+198*x^2+127*x-615 4334924214439063 r009 Re(z^3+c),c=-17/40+1/32*I,n=10 4334924216537175 m009 (3*Psi(1,1/3)+5/6)/(32*Catalan+4*Pi^2+3) 4334924225457065 r005 Re(z^2+c),c=1/5+4/11*I,n=55 4334924226847942 r002 14th iterates of z^2 + 4334924239889916 m001 (2^(1/2)-BesselI(1,2))/(LaplaceLimit+Magata) 4334924240491749 m005 (3/5*2^(1/2)-1/4)/(1/3*2^(1/2)-1/3) 4334924241612816 r002 23th iterates of z^2 + 4334924247183975 r002 15th iterates of z^2 + 4334924254412402 m001 Ei(1,1)*OneNinth+HardyLittlewoodC5 4334924265358289 r002 64th iterates of z^2 + 4334924276612727 a007 Real Root Of 875*x^4+810*x^3+784*x^2-996*x-544 4334924283528745 r005 Re(z^2+c),c=-19/14+31/137*I,n=2 4334924287950545 m001 GaussAGM/Zeta(3)*GolombDickman 4334924294133570 a007 Real Root Of -242*x^4-996*x^3+153*x^2-512*x-773 4334924295802559 m001 (Pi-2^(1/2))/(BesselI(0,2)+Niven) 4334924296281813 r002 32th iterates of z^2 + 4334924316403852 r005 Re(z^2+c),c=-57/44+2/41*I,n=36 4334924322107359 g007 Psi(2,7/10)-Psi(2,7/9)-Psi(2,2/9)-Psi(2,1/5) 4334924324931509 r009 Im(z^3+c),c=-25/64+26/61*I,n=58 4334924328759885 a007 Real Root Of 591*x^4+300*x^3+103*x^2-711*x-324 4334924337421535 m001 (gamma+BesselK(1,1))/(-CopelandErdos+Otter) 4334924338130895 a001 956722026041/5778*199^(2/11) 4334924342000045 m001 (Cahen-Magata)/(cos(1/5*Pi)+2*Pi/GAMMA(5/6)) 4334924342673385 r005 Re(z^2+c),c=-51/70+3/38*I,n=18 4334924369888938 m008 (Pi^3+3/4)/(3/4*Pi^4+1/5) 4334924389355186 a007 Real Root Of -363*x^4+904*x^3-850*x^2+881*x-283 4334924396086787 a007 Real Root Of 83*x^4+209*x^3+852*x^2-985*x-573 4334924409451698 a007 Real Root Of -199*x^4-942*x^3-150*x^2+705*x-589 4334924436114852 l004 Pi/cosh(96/113*Pi) 4334924449032081 a001 2504730781961/15127*199^(2/11) 4334924453184856 r005 Re(z^2+c),c=-29/28+13/54*I,n=44 4334924465212347 a001 6557470319842/39603*199^(2/11) 4334924468431256 m004 2+10*Pi+(Sqrt[5]*Sinh[Sqrt[5]*Pi])/Pi 4334924469031989 a001 10610209857723/64079*199^(2/11) 4334924475212301 a001 4052739537881/24476*199^(2/11) 4334924475678267 r002 5th iterates of z^2 + 4334924503990329 s002 sum(A245340[n]/(n^2*pi^n-1),n=1..infinity) 4334924509616100 r005 Re(z^2+c),c=-5/8+24/169*I,n=25 4334924517572787 a001 1548008755920/9349*199^(2/11) 4334924522006987 s002 sum(A285830[n]/(2^n-1),n=1..infinity) 4334924529181869 r009 Im(z^3+c),c=-25/64+26/61*I,n=61 4334924538400875 m001 (Pi-exp(Pi)/exp(gamma))*BesselJ(1,1) 4334924546848838 r002 17th iterates of z^2 + 4334924550930998 r009 Im(z^3+c),c=-1/30+19/37*I,n=9 4334924554183813 r009 Im(z^3+c),c=-7/10+8/45*I,n=2 4334924556792692 m001 (arctan(1/3)-sin(1/12*Pi))/(Lehmer+Thue) 4334924563505552 r005 Re(z^2+c),c=-11/18+20/107*I,n=59 4334924571543080 r002 10th iterates of z^2 + 4334924578994865 r009 Im(z^3+c),c=-33/70+15/34*I,n=22 4334924586798787 r009 Im(z^3+c),c=-25/64+26/61*I,n=56 4334924590658666 a001 89/29*29^(4/39) 4334924593576089 r009 Im(z^3+c),c=-25/64+26/61*I,n=59 4334924609188496 a007 Real Root Of 172*x^4+976*x^3+878*x^2-307*x+938 4334924613959441 r009 Im(z^3+c),c=-25/64+26/61*I,n=64 4334924614831692 a001 10946/11*2207^(25/51) 4334924618117584 r009 Im(z^3+c),c=-25/64+26/61*I,n=62 4334924627223117 r009 Im(z^3+c),c=-9/28+11/24*I,n=12 4334924633508480 a007 Real Root Of -140*x^4+808*x^3+911*x^2+625*x-503 4334924636100882 r005 Im(z^2+c),c=11/114+29/57*I,n=43 4334924637947448 m005 (1/2*gamma-3/4)/(5/11*Pi-4/11) 4334924655169398 a001 21/64079*18^(3/31) 4334924664109859 r005 Re(z^2+c),c=-45/34+1/27*I,n=30 4334924667009183 r009 Re(z^3+c),c=-47/74+25/51*I,n=2 4334924669308596 r005 Re(z^2+c),c=-18/29+1/53*I,n=41 4334924671611301 a007 Real Root Of -993*x^4+743*x^3-986*x^2+577*x+531 4334924676323651 r009 Im(z^3+c),c=-25/64+26/61*I,n=53 4334924681622279 b008 ArcCsch[ArcCosh[3+Sqrt[3]]] 4334924687855472 r005 Im(z^2+c),c=1/25+11/21*I,n=11 4334924691454058 a007 Real Root Of -782*x^4+284*x^3-313*x^2+x+110 4334924698511181 r002 33th iterates of z^2 + 4334924700701314 r005 Re(z^2+c),c=-23/34+27/112*I,n=57 4334924715837207 r005 Re(z^2+c),c=-71/122+17/62*I,n=24 4334924722284075 r005 Im(z^2+c),c=-15/118+29/46*I,n=23 4334924742005977 a007 Real Root Of 121*x^4+401*x^3-676*x^2-635*x-112 4334924754138518 m005 (1/2*Pi-5)/(2/3*3^(1/2)-4/11) 4334924756951184 a001 1836311903/843*521^(11/13) 4334924760560408 r005 Re(z^2+c),c=-4/7+41/125*I,n=26 4334924788458248 m001 (1-3^(1/3))/(Artin+MasserGramain) 4334924789683899 r009 Im(z^3+c),c=-25/64+26/61*I,n=63 4334924803182548 m001 (Si(Pi)+Shi(1))/(ln(Pi)+2*Pi/GAMMA(5/6)) 4334924807444752 a007 Real Root Of -93*x^4+669*x^3-946*x^2-518*x+11 4334924807915898 a001 591286729879/3571*199^(2/11) 4334924837312396 a007 Real Root Of 80*x^4+381*x^3+258*x^2+504*x+123 4334924838292526 r009 Im(z^3+c),c=-7/58+41/54*I,n=49 4334924847848830 a007 Real Root Of -272*x^4+550*x^3-779*x^2+245*x+307 4334924866252510 r005 Im(z^2+c),c=15/106+32/53*I,n=43 4334924911961823 m001 1/BesselK(0,1)^2/ln(Porter)^2*GAMMA(5/6) 4334924919651905 r009 Im(z^3+c),c=-41/86+2/7*I,n=6 4334924927911213 r009 Im(z^3+c),c=-25/64+26/61*I,n=60 4334924930652565 m001 ln(Khintchine)*FransenRobinson^2*GAMMA(1/6) 4334924942311672 a001 24476/55*2971215073^(8/19) 4334924949540815 a001 1149851/55*317811^(8/19) 4334924958766417 a007 Real Root Of -237*x^4-947*x^3+537*x^2+969*x+657 4334924964915491 m001 (-gamma(1)+Riemann3rdZero)/(2^(1/3)-Zeta(3)) 4334924965604512 r005 Im(z^2+c),c=3/16+23/53*I,n=41 4334924965893587 q001 1271/2932 4334924972796035 a007 Real Root Of 247*x^4-581*x^3-620*x^2-122*x+208 4334924976196317 r005 Im(z^2+c),c=3/74+23/39*I,n=60 4334924983827520 a007 Real Root Of 708*x^4-587*x^3-429*x^2-638*x+380 4334924990745290 m009 (8*Catalan+Pi^2+1)/(2/5*Pi^2+1/4) 4334924992161100 r005 Re(z^2+c),c=-31/44+7/45*I,n=61 4334925009638707 r002 4th iterates of z^2 + 4334925009986512 r002 17th iterates of z^2 + 4334925010043183 m001 Lehmer^(Pi^(1/2))/(Lehmer^ZetaP(3)) 4334925014290449 r002 31th iterates of z^2 + 4334925027461968 r005 Re(z^2+c),c=-7/10+18/211*I,n=37 4334925029491932 r005 Im(z^2+c),c=19/122+27/58*I,n=26 4334925036715453 m001 (GAMMA(2/3)+gamma(1))/Otter 4334925045614114 m005 (1/2*5^(1/2)+1/9)/(2/11*exp(1)-7/9) 4334925047929083 r005 Im(z^2+c),c=-25/46+29/57*I,n=20 4334925050830694 a007 Real Root Of -107*x^4-395*x^3+294*x^2+162*x+785 4334925056266371 r009 Im(z^3+c),c=-25/82+25/54*I,n=19 4334925062760576 m006 (2/5*exp(Pi)+2/3)/(exp(Pi)-1/4) 4334925065608196 r005 Im(z^2+c),c=25/122+23/55*I,n=40 4334925074904195 r005 Im(z^2+c),c=-13/18+13/106*I,n=52 4334925083245015 m001 (exp(-1/2*Pi)-Cahen)/(Khinchin-Sierpinski) 4334925083595315 r009 Im(z^3+c),c=-7/78+62/63*I,n=18 4334925084696576 s001 sum(exp(-Pi)^n*A269433[n],n=1..infinity) 4334925084696576 s002 sum(A269433[n]/(exp(pi*n)),n=1..infinity) 4334925094383653 m001 (CopelandErdos-FeigenbaumB)/(gamma(1)-Conway) 4334925101389913 r009 Im(z^3+c),c=-25/64+26/61*I,n=50 4334925114756985 a007 Real Root Of -229*x^4+789*x^3+574*x^2+451*x+160 4334925126249334 r009 Im(z^3+c),c=-7/90+22/43*I,n=14 4334925142082525 m005 (1/2*gamma-7/9)/(4/5*gamma+2/3) 4334925146894445 s002 sum(A136825[n]/(pi^n+1),n=1..infinity) 4334925153943684 r002 40th iterates of z^2 + 4334925155006192 r005 Re(z^2+c),c=-7/10+37/241*I,n=44 4334925167479531 a007 Real Root Of -492*x^4+770*x^3+903*x^2+805*x-564 4334925167956825 m001 Trott/(FeigenbaumAlpha-gamma(3)) 4334925168629079 r009 Im(z^3+c),c=-13/28+8/37*I,n=3 4334925173581566 r005 Re(z^2+c),c=-69/74+9/61*I,n=64 4334925177707056 r005 Re(z^2+c),c=-1/27+31/48*I,n=24 4334925186037475 m001 exp(RenyiParking)^2/Si(Pi)^2/sqrt(3)^2 4334925187888934 m001 (FeigenbaumAlpha-Stephens)/(Pi+Conway) 4334925217893836 r009 Im(z^3+c),c=-25/64+26/61*I,n=57 4334925232796790 a008 Real Root of x^4-x^3-25*x^2+80*x+382 4334925256535128 r005 Re(z^2+c),c=-35/58+12/47*I,n=64 4334925262395258 r005 Re(z^2+c),c=-19/36+14/37*I,n=25 4334925262975911 m002 5/Log[Pi]-(Log[Pi]*Sech[Pi])/3 4334925296571857 r002 61th iterates of z^2 + 4334925298854212 m001 (FeigenbaumD-Mills*PlouffeB)/PlouffeB 4334925299122289 r009 Im(z^3+c),c=-9/19+22/59*I,n=33 4334925313339044 a007 Real Root Of 46*x^4+141*x^3-277*x^2-291*x-814 4334925314880913 r005 Im(z^2+c),c=17/106+26/57*I,n=26 4334925316243727 m001 (5^(1/2))^GAMMA(5/6)*GAMMA(13/24)^GAMMA(5/6) 4334925316243727 m001 sqrt(5)^GAMMA(5/6)*GAMMA(13/24)^GAMMA(5/6) 4334925344490111 r005 Re(z^2+c),c=-19/30+1/12*I,n=27 4334925364946210 m005 (-1/20+1/4*5^(1/2))/(8/11*Zeta(3)+3/10) 4334925385856573 r005 Re(z^2+c),c=1/58+16/59*I,n=10 4334925385887550 a007 Real Root Of 149*x^4+660*x^3-177*x^2-867*x+716 4334925387566028 m001 1/BesselJ(1,1)^2/ln(PrimesInBinary)*exp(1)^2 4334925393599527 m001 1/Robbin*exp(Kolakoski)^2*BesselJ(0,1)^2 4334925401047836 a003 cos(Pi*31/105)-cos(Pi*21/47) 4334925403752252 a007 Real Root Of -188*x^4-673*x^3+705*x^2+315*x-318 4334925418607593 a007 Real Root Of -581*x^4-561*x^3+110*x^2+754*x+281 4334925435472376 r009 Im(z^3+c),c=-12/29+25/61*I,n=18 4334925448833106 r002 9th iterates of z^2 + 4334925453292835 r005 Im(z^2+c),c=-23/18+7/180*I,n=29 4334925457019453 m001 ThueMorse/(MertensB2^Zeta(1/2)) 4334925460452221 r005 Re(z^2+c),c=23/62+8/61*I,n=15 4334925464556783 m005 (1/3*Zeta(3)-1/11)/(4/9*2^(1/2)-7/10) 4334925466640897 r005 Re(z^2+c),c=35/86+8/23*I,n=24 4334925468099585 a001 11/987*1597^(38/47) 4334925479962821 m001 (exp(1/2)+sqrt(Pi)*Cahen)/Cahen 4334925493170907 m001 (Pi-2^(1/3))/sin(1/5*Pi)*GAMMA(2/3) 4334925500867367 m001 (5^(1/2)+3)/(exp(-1/2*Pi)+1) 4334925505135588 a007 Real Root Of 838*x^4-249*x^3-568*x^2-871*x+475 4334925516106697 k001 Champernowne real with 59*n+374 4334925526203312 b008 21/5+ArcCsch[E^2] 4334925587559238 r009 Re(z^3+c),c=-33/70+4/25*I,n=50 4334925590976202 m001 (exp(1)+HardyLittlewoodC5)/(-Khinchin+Magata) 4334925591807367 a007 Real Root Of 203*x^4-525*x^3+565*x^2-791*x-499 4334925593256996 r002 54th iterates of z^2 + 4334925595638301 r002 12th iterates of z^2 + 4334925599489060 m001 GAMMA(7/12)*ln(DuboisRaymond)*sqrt(3) 4334925602190945 a007 Real Root Of -3*x^4-121*x^3+384*x^2-362*x-257 4334925605709374 r002 55th iterates of z^2 + 4334925609447033 r005 Re(z^2+c),c=-29/44+9/43*I,n=41 4334925617013844 m003 1/2+Sqrt[5]/4+(5*Cosh[1/2+Sqrt[5]/2])/4 4334925624950466 m001 BesselI(1,1)^gamma/(BesselJZeros(0,1)^gamma) 4334925631341491 h001 (4/7*exp(2)+3/10)/(1/9*exp(2)+2/9) 4334925668568653 m001 exp(1/2)/(FeigenbaumAlpha^Backhouse) 4334925671092408 a007 Real Root Of 958*x^4-389*x^3+182*x^2-725*x-414 4334925688668761 r005 Im(z^2+c),c=13/38+15/62*I,n=33 4334925702080815 a007 Real Root Of 79*x^4+270*x^3-206*x^2+500*x+136 4334925707401768 a007 Real Root Of 170*x^4+861*x^3+772*x^2+803*x-920 4334925712756912 r005 Re(z^2+c),c=-3/26+58/61*I,n=8 4334925717050079 r005 Re(z^2+c),c=-29/48+7/30*I,n=54 4334925722682542 h001 (-8*exp(-3)-6)/(-7*exp(3)-7) 4334925722787140 m001 (Chi(1)-exp(1/Pi))/(-FeigenbaumC+Lehmer) 4334925728024992 m005 (1/2*Pi+2/7)/(2/5*Zeta(3)-10/11) 4334925756274860 r002 9th iterates of z^2 + 4334925758905322 r005 Im(z^2+c),c=11/34+28/59*I,n=5 4334925759937085 r005 Im(z^2+c),c=7/36+22/43*I,n=46 4334925765721937 m001 Cahen^2/exp(Backhouse)/Bloch^2 4334925785709993 r005 Re(z^2+c),c=-4/3+9/86*I,n=2 4334925786644753 r002 5th iterates of z^2 + 4334925787325928 a008 Real Root of x^4-11*x^2-52*x+79 4334925809045579 a007 Real Root Of 139*x^4+481*x^3-410*x^2+404*x-446 4334925816657638 r009 Im(z^3+c),c=-25/64+26/61*I,n=54 4334925819872510 p001 sum((-1)^n/(597*n+23)/(12^n),n=0..infinity) 4334925823485038 q001 1724/3977 4334925827870103 r002 31th iterates of z^2 + 4334925829380642 h001 (-7*exp(1/3)+9)/(-8*exp(1)+4) 4334925832548457 a001 1/322*(1/2*5^(1/2)+1/2)^6*76^(9/19) 4334925832833149 r002 22th iterates of z^2 + 4334925840022277 m001 (ln(2)-ln(5))/(OrthogonalArrays+Rabbit) 4334925845988493 a001 75025/11*843^(14/51) 4334925864517738 r005 Im(z^2+c),c=15/58+9/25*I,n=30 4334925865579266 a007 Real Root Of 58*x^4+298*x^3+193*x^2+101*x+605 4334925868004682 r009 Im(z^3+c),c=-11/34+27/58*I,n=9 4334925868283045 p001 sum((-1)^n/(336*n+23)/n/(64^n),n=1..infinity) 4334925929683456 m007 (-gamma-1/2)/(-2/3*gamma-2*ln(2)-1/3*Pi+1/3) 4334925948630001 a007 Real Root Of -179*x^4-704*x^3+438*x^2+533*x-59 4334925949947319 m001 exp(BesselK(1,1))/Magata*cos(Pi/5) 4334925970562242 m001 (Shi(1)-exp(1/exp(1)))/(Zeta(1,2)+FeigenbaumC) 4334925985409505 a001 2971215073/843*521^(10/13) 4334925993823876 r005 Re(z^2+c),c=-21/34+33/122*I,n=42 4334926004024625 a007 Real Root Of 94*x^4+191*x^3-961*x^2+15*x+489 4334926004352755 r005 Re(z^2+c),c=-53/74+32/51*I,n=3 4334926012318705 a001 21/3571*322^(35/47) 4334926021417074 m001 (BesselI(0,1)-gamma(1))/(Grothendieck+Mills) 4334926031426657 r005 Re(z^2+c),c=-73/118+7/55*I,n=42 4334926033950859 a007 Real Root Of 2*x^4+866*x^3-428*x^2-397*x+813 4334926042100868 r002 54th iterates of z^2 + 4334926103657035 m001 1/Riemann2ndZero^2/Backhouse*exp(GAMMA(23/24)) 4334926108397046 r005 Re(z^2+c),c=-17/28+7/23*I,n=50 4334926109815190 p001 sum(1/(118*n+67)/n/(125^n),n=0..infinity) 4334926128045918 a007 Real Root Of 170*x^4-379*x^3-773*x^2-235*x+272 4334926142267902 h001 (3/11*exp(1)+5/9)/(11/12*exp(1)+1/2) 4334926147691504 r009 Im(z^3+c),c=-59/114+16/47*I,n=52 4334926150374432 r005 Im(z^2+c),c=-11/52+33/62*I,n=7 4334926157140419 a001 4/6765*233^(26/33) 4334926167443477 r005 Im(z^2+c),c=-89/122+9/52*I,n=34 4334926167556164 r005 Im(z^2+c),c=-31/26+11/57*I,n=27 4334926177247519 r005 Im(z^2+c),c=-24/23+18/53*I,n=27 4334926187141165 r009 Re(z^3+c),c=-43/110+43/59*I,n=5 4334926212716630 r002 28th iterates of z^2 + 4334926218546367 l006 ln(119/9082) 4334926229528922 r005 Re(z^2+c),c=-83/122+3/19*I,n=32 4334926231245849 r005 Re(z^2+c),c=-5/8+33/145*I,n=37 4334926234236672 b008 3+22*E^(1/Sqrt[E]) 4334926239430086 a007 Real Root Of 94*x^4+462*x^3+46*x^2-760*x+282 4334926258575503 m001 ThueMorse-HardHexagonsEntropy-ln(gamma) 4334926266778118 a007 Real Root Of -307*x^4+847*x^3+885*x^2+661*x-511 4334926266831322 m001 FeigenbaumDelta^MinimumGamma/Ei(1,1) 4334926266872978 h001 (4/5*exp(1)+3/7)/(5/7*exp(2)+8/11) 4334926269557357 m001 (-Zeta(1,2)+2)/(-GAMMA(11/24)+2) 4334926271163241 r009 Re(z^3+c),c=-47/86+30/47*I,n=3 4334926280893740 m005 (1/2*5^(1/2)-4/7)/(3/4*exp(1)-7/9) 4334926282897847 r009 Im(z^3+c),c=-9/34+28/59*I,n=12 4334926297881152 m001 (-Zeta(1/2)+GolombDickman)/(2^(1/2)-Ei(1)) 4334926302399165 a007 Real Root Of 837*x^4-448*x^3-921*x^2-962*x-310 4334926319948389 m001 ln(GAMMA(7/24))^2/Lehmer^2*Zeta(3) 4334926330997048 r005 Im(z^2+c),c=-17/110+9/11*I,n=15 4334926332269407 m005 (1/2*Pi+3/4)/(1/4*2^(1/2)+2/11) 4334926334195961 r005 Re(z^2+c),c=-15/26+45/127*I,n=40 4334926339905180 m001 (cos(1/5*Pi)-Ei(1,1))/(Mills+ZetaQ(2)) 4334926358319968 r005 Im(z^2+c),c=-23/48+11/21*I,n=46 4334926362905109 r005 Re(z^2+c),c=-3/4+17/215*I,n=40 4334926382484978 a007 Real Root Of 182*x^4+711*x^3-555*x^2-821*x+520 4334926409433618 r005 Re(z^2+c),c=-37/60+8/61*I,n=29 4334926420379202 a007 Real Root Of 143*x^4+633*x^3+4*x^2-49*x+780 4334926428294226 p003 LerchPhi(1/125,1,515/222) 4334926432965902 m003 -6+5*Csc[1/2+Sqrt[5]/2]+2*Sec[1/2+Sqrt[5]/2] 4334926433781518 m005 (1/2*3^(1/2)+7/12)/(2/7*Zeta(3)+3) 4334926485280074 r009 Im(z^3+c),c=-59/106+31/56*I,n=9 4334926494231371 r005 Im(z^2+c),c=35/114+15/47*I,n=39 4334926524844595 r002 44th iterates of z^2 + 4334926528433451 r009 Im(z^3+c),c=-25/64+26/61*I,n=47 4334926544002152 m001 1/GAMMA(1/24)/exp(KhintchineLevy)*gamma^2 4334926558660364 r002 24th iterates of z^2 + 4334926559553606 m001 (Champernowne+Lehmer)/(PlouffeB+Salem) 4334926569684981 r009 Re(z^3+c),c=-1/42+41/44*I,n=12 4334926573380606 r005 Im(z^2+c),c=-79/126+5/62*I,n=50 4334926580434178 a001 2/1597*6557470319842^(10/17) 4334926583153369 r002 44th iterates of z^2 + 4334926587302650 m001 (3^(1/3))^2/ln(OneNinth)^2/cos(Pi/12) 4334926613448491 r008 a(0)=9,K{-n^6,-31-5*n+45*n^2-8*n^3} 4334926614989335 r002 48th iterates of z^2 + 4334926624422514 r005 Re(z^2+c),c=-19/27+10/61*I,n=59 4334926628975757 a005 (1/cos(11/153*Pi))^594 4334926631746716 r005 Re(z^2+c),c=13/66+9/25*I,n=33 4334926647771568 a005 (1/sin(59/125*Pi))^973 4334926648549280 m001 Lehmer^2*exp(MertensB1)/GAMMA(23/24)^2 4334926669175532 r009 Re(z^3+c),c=-4/19+25/26*I,n=26 4334926672632042 a007 Real Root Of 137*x^4+501*x^3-494*x^2-181*x+932 4334926692123910 r002 52th iterates of z^2 + 4334926709147302 r009 Im(z^3+c),c=-19/58+17/27*I,n=8 4334926710370037 a007 Real Root Of 154*x^4+571*x^3-275*x^2+605*x-77 4334926713760786 s002 sum(A156525[n]/(exp(n)),n=1..infinity) 4334926714511706 r002 63th iterates of z^2 + 4334926716658749 a007 Real Root Of -518*x^4-280*x^3-756*x^2+121*x+190 4334926728261421 m005 (1/3*Pi+3/7)/(-53/90+1/9*5^(1/2)) 4334926744293601 m001 (PolyaRandomWalk3D+TwinPrimes)/(ln(3)-Magata) 4334926749580670 m001 Catalan^2*KhintchineLevy/exp(exp(1))^2 4334926760807633 r005 Re(z^2+c),c=-43/62+4/47*I,n=33 4334926770713097 r009 Im(z^3+c),c=-47/102+21/58*I,n=16 4334926771072540 r005 Re(z^2+c),c=-53/86+7/52*I,n=63 4334926772048104 r005 Im(z^2+c),c=-8/7+47/112*I,n=3 4334926776018278 p003 LerchPhi(1/2,4,256/205) 4334926779404700 m001 (Pi+Zeta(5))/(GAMMA(3/4)-MertensB1) 4334926780248829 r005 Re(z^2+c),c=-65/106+9/61*I,n=39 4334926780502095 r002 6th iterates of z^2 + 4334926780866384 r002 3th iterates of z^2 + 4334926794858490 m001 (ln(Pi)+ErdosBorwein)/(FeigenbaumB-Porter) 4334926797958238 a001 225851433717/1364*199^(2/11) 4334926799059998 m005 (1/2*Pi+1)/(3*5^(1/2)-7/9) 4334926807814008 a001 123/11*(1/2*5^(1/2)+1/2)^24*11^(11/20) 4334926813168142 a007 Real Root Of -668*x^4+959*x^3-89*x^2-x+118 4334926829364574 m001 (gamma+KhinchinLevy)/(Magata+Robbin) 4334926838191065 l006 ln(5169/5398) 4334926850534944 r005 Re(z^2+c),c=-5/8+23/140*I,n=26 4334926850985317 a001 322/2971215073*8^(2/3) 4334926851071702 r009 Im(z^3+c),c=-7/90+21/41*I,n=11 4334926851332239 a007 Real Root Of 50*x^4+63*x^3-519*x^2+440*x-864 4334926851918976 a007 Real Root Of 355*x^4+427*x^3+537*x^2-649*x-360 4334926867431973 r005 Re(z^2+c),c=-2/3+29/193*I,n=8 4334926872673731 m001 (CareFree+ZetaP(3))/(5^(1/2)-exp(-1/2*Pi)) 4334926873222202 m005 (3/5*Pi+1/6)/(4/5*Catalan+4) 4334926878800924 r009 Im(z^3+c),c=-7/19+10/21*I,n=9 4334926881763770 r009 Im(z^3+c),c=-3/44+20/39*I,n=11 4334926886865851 m006 (2*exp(2*Pi)+3/5)/(1/3*Pi-4/5) 4334926889446587 r002 41th iterates of z^2 + 4334926890668469 r002 55th iterates of z^2 + 4334926894637830 r002 22th iterates of z^2 + 4334926902683316 r002 61th iterates of z^2 + 4334926936574827 r002 18th iterates of z^2 + 4334926949285880 a001 14930208*322^(7/12) 4334926955890906 a007 Real Root Of -12*x^4-534*x^3-598*x^2+18*x-347 4334926961900342 r002 24th iterates of z^2 + 4334926961936737 r009 Im(z^3+c),c=-33/98+5/12*I,n=5 4334926967648983 a007 Real Root Of 694*x^4-780*x^3-407*x^2-331*x+259 4334926969085563 m001 1/Khintchine^2/FransenRobinson*ln(Catalan) 4334926976716557 m001 1/exp(MadelungNaCl)^2/Backhouse*(3^(1/3))^2 4334926985147286 m001 (Niven+RenyiParking)/(Psi(2,1/3)+Zeta(1/2)) 4334927008174793 m001 StronglyCareFree/(Zeta(3)+sin(1/5*Pi)) 4334927028077333 r005 Im(z^2+c),c=-19/106+34/39*I,n=8 4334927030815744 r009 Im(z^3+c),c=-25/64+26/61*I,n=51 4334927033878369 m001 (Totient-Thue)/(Gompertz-Niven) 4334927055820671 m003 -4-2*Sec[1/2+Sqrt[5]/2]+5*Sin[1/2+Sqrt[5]/2] 4334927056750227 m001 Zeta(1,2)-gamma(2)-Magata 4334927079257255 m001 (BesselI(1,2)-ErdosBorwein)^ln(2+3^(1/2)) 4334927104485793 r009 Re(z^3+c),c=-37/110+29/39*I,n=14 4334927109211810 a007 Real Root Of -815*x^4-867*x^3-254*x^2+517*x+230 4334927113133550 m005 (1/3*3^(1/2)+2/9)/(4/9*exp(1)+7/11) 4334927122336356 m001 Riemann1stZero/exp(Backhouse)^2/sqrt(Pi) 4334927124715159 a001 98209/38*11^(11/51) 4334927127408307 r005 Re(z^2+c),c=-21/34+14/115*I,n=48 4334927138969850 a003 cos(Pi*15/64)*cos(Pi*28/93) 4334927155358904 m005 (1/3*2^(1/2)+2/11)/(1/12*Pi-1/9) 4334927165376254 r002 10th iterates of z^2 + 4334927176979973 a008 Real Root of (-3-5*x+2*x^2-5*x^3+4*x^4+6*x^5) 4334927192029835 r005 Re(z^2+c),c=-69/118+11/48*I,n=23 4334927198102655 r005 Re(z^2+c),c=-5/8+53/192*I,n=5 4334927200295413 r005 Re(z^2+c),c=-27/94+37/63*I,n=21 4334927204854973 a001 2/5600748293801*3^(3/17) 4334927213868174 a001 1602508992/281*521^(9/13) 4334927219815715 m001 exp(1/exp(1))*GAMMA(7/12)*ReciprocalLucas 4334927226643220 r005 Re(z^2+c),c=-7/18+16/29*I,n=28 4334927242497460 r009 Im(z^3+c),c=-37/110+11/19*I,n=5 4334927248835712 r005 Im(z^2+c),c=29/122+25/52*I,n=48 4334927276743275 m001 (Pi^(1/2)-ErdosBorwein)/(GaussAGM-ZetaP(2)) 4334927277791613 r002 29th iterates of z^2 + 4334927289466248 a007 Real Root Of 292*x^4-435*x^3-184*x^2-206*x+149 4334927300040968 m005 (1/3*5^(1/2)-1/4)/(7/8*Zeta(3)+1/11) 4334927303518635 r009 Im(z^3+c),c=-3/38+22/43*I,n=22 4334927325184312 m001 (-Zeta(3)+Rabbit)/(Psi(1,1/3)+2^(1/3)) 4334927365716307 r009 Im(z^3+c),c=-5/16+29/59*I,n=6 4334927375241550 r005 Re(z^2+c),c=-25/26+45/86*I,n=4 4334927380247441 s002 sum(A074253[n]/(64^n),n=1..infinity) 4334927391902341 r005 Im(z^2+c),c=25/98+16/43*I,n=45 4334927397714178 r009 Re(z^3+c),c=-27/52+7/18*I,n=49 4334927398142512 m001 2^(1/2)-2^(1/3)-sin(1/5*Pi) 4334927398142512 m001 sin(Pi/5)-sqrt(2)+(2^(1/3)) 4334927417263956 r002 3th iterates of z^2 + 4334927438550046 a001 3/433494437*8^(15/17) 4334927446832404 r005 Im(z^2+c),c=-79/90+1/32*I,n=17 4334927491095145 r005 Im(z^2+c),c=-39/122+1/15*I,n=8 4334927495986273 r002 22th iterates of z^2 + 4334927508485684 m005 (1/2*exp(1)+1/6)/(8/9*Pi+8/11) 4334927510085836 a001 101003810985/233 4334927513897161 a001 47/832040*8^(49/50) 4334927516017843 m001 Salem^2*ln(ErdosBorwein)^2/GAMMA(1/3)^2 4334927534669926 r009 Re(z^3+c),c=-45/94+7/41*I,n=27 4334927552875998 m002 -Pi^3+Pi*Csch[Pi]+Pi^5*Sech[Pi] 4334927560993379 r005 Im(z^2+c),c=1/32+16/29*I,n=62 4334927562317256 r005 Im(z^2+c),c=7/50+16/35*I,n=14 4334927565071924 r005 Re(z^2+c),c=-5/8+4/247*I,n=32 4334927577216613 r005 Im(z^2+c),c=3/52+25/44*I,n=44 4334927589059007 m001 (Sierpinski+Thue)/(Bloch+FellerTornier) 4334927612473317 m001 Pi+(1-Ei(1,1))*GAMMA(7/12) 4334927612865188 m001 (Stephens+ThueMorse)/(Chi(1)+3^(1/3)) 4334927613925437 m001 (Mills+ZetaP(3))/(gamma(2)-Magata) 4334927614379005 a001 4870847/377*4807526976^(6/23) 4334927614419004 a001 87403803/377*75025^(6/23) 4334927617880466 r002 64th iterates of z^2 + 4334927629525602 m001 1/ln(BesselJ(0,1))^2*OneNinth^2*GAMMA(1/3) 4334927636972802 r005 Re(z^2+c),c=-17/36+20/39*I,n=32 4334927651224553 r005 Im(z^2+c),c=-61/114+8/13*I,n=39 4334927665959387 m001 (Artin+Kolakoski)/(GAMMA(11/12)+GAMMA(13/24)) 4334927676481584 a001 7/10946*17711^(25/58) 4334927692467526 g006 Psi(1,1/7)+Psi(1,2/3)-Psi(1,5/12)-Psi(1,7/11) 4334927698033494 m001 (cos(1)+gamma(2))/(-BesselI(0,2)+GAMMA(11/12)) 4334927701023011 r002 3th iterates of z^2 + 4334927706364261 a001 322/317811*233^(4/15) 4334927717384222 a005 (1/cos(85/223*Pi))^22 4334927717970597 m005 (1/2*gamma+3/4)/(8/11*Pi+1/9) 4334927734446505 a007 Real Root Of -845*x^4-441*x^3-776*x^2+808*x+490 4334927737772558 r005 Im(z^2+c),c=-5/114+21/40*I,n=11 4334927742723386 r009 Re(z^3+c),c=-21/34+5/6*I,n=2 4334927746730686 r009 Im(z^3+c),c=-29/66+2/5*I,n=27 4334927747821666 l006 ln(72/5495) 4334927757615035 r002 25th iterates of z^2 + 4334927761400426 a005 (1/cos(13/88*Pi))^631 4334927767998367 r005 Im(z^2+c),c=13/82+11/24*I,n=57 4334927772311281 m008 (5/6*Pi^6-2/3)/(4/5*Pi-2/3) 4334927773868250 r002 11th iterates of z^2 + 4334927783946192 r009 Im(z^3+c),c=-9/106+23/45*I,n=17 4334927786168857 a001 17393796001*144^(11/17) 4334927786934384 r002 16th iterates of z^2 + 4334927788608282 r005 Re(z^2+c),c=-23/34+12/127*I,n=23 4334927807002906 r005 Im(z^2+c),c=3/38+27/52*I,n=57 4334927817264421 r009 Re(z^3+c),c=-3/46+19/40*I,n=10 4334927834759674 a003 cos(Pi*14/109)-sin(Pi*16/99) 4334927838282667 r005 Re(z^2+c),c=-47/82+6/35*I,n=14 4334927845481791 r005 Im(z^2+c),c=1/3+18/61*I,n=48 4334927858287558 r005 Re(z^2+c),c=-19/30+7/88*I,n=25 4334927860033579 m006 (5*Pi-1/5)/(2/3*exp(2*Pi)+3/4) 4334927860965295 s002 sum(A022996[n]/(n^2*2^n-1),n=1..infinity) 4334927860965295 s002 sum(A023482[n]/(n^2*2^n-1),n=1..infinity) 4334927860966250 s002 sum(A273770[n]/(n^2*2^n-1),n=1..infinity) 4334927898407920 m001 (ThueMorse+1/3)/(-BesselI(0,2)+4) 4334927903291979 a007 Real Root Of 30*x^4-29*x^3-550*x^2+644*x+171 4334927923200779 m001 GAMMA(11/12)^2*ln(KhintchineLevy)/GAMMA(5/24) 4334927924879720 r009 Re(z^3+c),c=-2/19+47/63*I,n=50 4334927949541215 a007 Real Root Of 850*x^4-973*x^3+202*x^2+222*x-51 4334927951547735 r005 Im(z^2+c),c=3/98+24/47*I,n=15 4334927951859584 m005 (-23/4+1/4*5^(1/2))/(5/8*Catalan+5/8) 4334927952053740 a003 cos(Pi*1/74)*cos(Pi*5/14) 4334927961026235 p001 sum(1/(430*n+231)/(256^n),n=0..infinity) 4334927966077792 r005 Re(z^2+c),c=-29/106+40/63*I,n=17 4334927990044861 r005 Im(z^2+c),c=-29/50+5/63*I,n=35 4334927994902021 r009 Im(z^3+c),c=-35/78+5/11*I,n=10 4334928025379881 a007 Real Root Of 165*x^4+561*x^3-542*x^2+583*x+146 4334928030508839 a003 sin(Pi*1/81)/cos(Pi*9/61) 4334928054979106 m001 (Kac+ZetaP(4))/(Catalan+CareFree) 4334928055677990 a003 cos(Pi*11/90)-sin(Pi*30/71) 4334928055792780 r002 29th iterates of z^2 + 4334928057063703 r005 Im(z^2+c),c=-75/118+21/52*I,n=45 4334928067110796 r005 Re(z^2+c),c=19/126+31/61*I,n=38 4334928077475932 r005 Re(z^2+c),c=-18/29+1/19*I,n=59 4334928080875887 r005 Im(z^2+c),c=-9/14+37/104*I,n=37 4334928084055561 a007 Real Root Of -9*x^4+886*x^3+292*x^2+919*x+416 4334928087493132 s002 sum(A277021[n]/((2^n-1)/n),n=1..infinity) 4334928087774875 m001 1/Tribonacci^2/ln(Robbin)/GAMMA(17/24)^2 4334928108060296 r002 21th iterates of z^2 + 4334928122324999 r005 Im(z^2+c),c=-5/8+85/222*I,n=28 4334928150900094 r009 Im(z^3+c),c=-8/27+20/43*I,n=13 4334928154593566 a001 1364/317811*377^(23/59) 4334928166934873 a007 Real Root Of 733*x^4-922*x^3+379*x^2-770*x-506 4334928173463580 a003 -1+2*cos(5/18*Pi)-cos(5/12*Pi)+cos(11/30*Pi) 4334928190897948 m005 (1/2*Pi+5)/(43/80+7/16*5^(1/2)) 4334928199567828 m005 (1/2*gamma+3/7)/(5/9*Pi-1/11) 4334928203358368 m001 (HeathBrownMoroz+ZetaP(2))^Shi(1) 4334928204240264 a001 13/11*4^(15/16) 4334928204627385 r005 Re(z^2+c),c=-37/60+5/38*I,n=51 4334928207541381 r005 Im(z^2+c),c=5/18+27/62*I,n=18 4334928228213300 r009 Im(z^3+c),c=-27/118+24/35*I,n=14 4334928229665071 q001 453/1045 4334928229665071 r002 2th iterates of z^2 + 4334928233302945 r005 Im(z^2+c),c=-3/16+29/47*I,n=59 4334928234867843 m006 (2/5*Pi^2-1/5)/(4/5*Pi^2+3/4) 4334928234867843 m008 (2/5*Pi^2-1/5)/(4/5*Pi^2+3/4) 4334928254783899 a003 cos(Pi*16/93)/cos(Pi*31/71) 4334928261583435 m006 (2/5*exp(2*Pi)+1/4)/(1/6/Pi-5) 4334928270214592 a001 101003828696/233 4334928277651407 m006 (1/3/Pi-2/5)/(2/3*Pi^2+1/5) 4334928292513692 a007 Real Root Of -246*x^4-804*x^3+974*x^2-748*x-171 4334928317851644 m004 (600*Sqrt[5])/Pi+Sqrt[5]*Pi*Tan[Sqrt[5]*Pi] 4334928319002576 a001 267913919*199^(1/11) 4334928328342402 m001 GAMMA(3/4)-Grothendieck*Riemann3rdZero 4334928381115879 a001 101003831280/233 4334928382092161 m001 (exp(gamma)-exp(sqrt(2)))^sqrt(3) 4334928397296137 a001 101003831657/233 4334928399656652 a001 101003831712/233 4334928400042918 a001 101003831721/233 4334928400060085 a001 2/233*(1/2+1/2*5^(1/2))^56 4334928400060085 a001 505019158607/233*8^(1/3) 4334928400085836 a001 101003831722/233 4334928400214592 a001 101003831725/233 4334928401115879 a001 101003831746/233 4334928403112626 r009 Im(z^3+c),c=-45/118+25/58*I,n=24 4334928407296137 a001 101003831890/233 4334928411757114 b008 5*ArcCoth[ArcTan[7]] 4334928419522559 r005 Im(z^2+c),c=-27/86+3/46*I,n=16 4334928421545625 m005 (1/2*5^(1/2)+3/4)/(4/11*2^(1/2)-1/12) 4334928435486176 r005 Im(z^2+c),c=-13/10+33/152*I,n=5 4334928440367758 m001 (Salem+ZetaQ(4))/(BesselJ(0,1)-Zeta(5)) 4334928442040802 r005 Re(z^2+c),c=-33/64+11/27*I,n=25 4334928442327192 a001 7778742049/843*521^(8/13) 4334928443577248 m001 (-Artin+StronglyCareFree)/(1+gamma(1)) 4334928449656652 a001 101003832877/233 4334928449991467 r005 Re(z^2+c),c=-13/21+5/54*I,n=60 4334928450778368 r009 Im(z^3+c),c=-43/102+29/62*I,n=12 4334928453516747 r005 Re(z^2+c),c=-31/48+9/50*I,n=32 4334928461136501 r005 Im(z^2+c),c=-69/62+11/39*I,n=8 4334928466059831 a007 Real Root Of 413*x^4-954*x^3-458*x^2-11*x-11 4334928468332745 r002 13th iterates of z^2 + 4334928473680184 r009 Im(z^3+c),c=-17/98+32/49*I,n=2 4334928486736486 r002 23th iterates of z^2 + 4334928490088913 m001 1/Porter^2*ln(Kolakoski)^2/LambertW(1) 4334928492497280 m001 cos(1)^(Pi^(1/2))/(cos(1)^PrimesInBinary) 4334928492709375 a007 Real Root Of 158*x^4+832*x^3+426*x^2-872*x+196 4334928502474767 r009 Im(z^3+c),c=-57/118+13/35*I,n=56 4334928511479410 h001 (-2*exp(5)+3)/(-2*exp(2)+8) 4334928519272198 r009 Re(z^3+c),c=-11/20+17/48*I,n=60 4334928532632589 a007 Real Root Of 126*x^4+607*x^3+139*x^2-420*x+520 4334928534855328 a007 Real Root Of -311*x^4+958*x^3-752*x^2-213*x+138 4334928541694458 a005 (1/cos(46/211*Pi))^240 4334928542273224 a007 Real Root Of -845*x^4-35*x^3-281*x^2+884*x+463 4334928545919193 r005 Im(z^2+c),c=15/52+22/53*I,n=48 4334928555018947 a007 Real Root Of 182*x^4+675*x^3-328*x^2+828*x+470 4334928556314950 r005 Re(z^2+c),c=-27/38+13/59*I,n=9 4334928586307025 r005 Re(z^2+c),c=-11/18+8/41*I,n=33 4334928618604887 r009 Re(z^3+c),c=-7/27+43/45*I,n=2 4334928625554153 r009 Re(z^3+c),c=-13/60+27/28*I,n=50 4334928629167297 r005 Im(z^2+c),c=-5/8+80/183*I,n=15 4334928651368641 m008 (3/5*Pi^4-1/4)/(3*Pi+4) 4334928655658661 r005 Re(z^2+c),c=-25/48+9/38*I,n=8 4334928658731002 r005 Re(z^2+c),c=-11/8+189/194*I,n=2 4334928664016594 m005 (1/2*Zeta(3)+4/11)/(7/9*exp(1)+1/9) 4334928673113345 m001 GAMMA(23/24)/ln(Kolakoski)^2*sqrt(5) 4334928693182643 r002 56th iterates of z^2 + 4334928694607750 r005 Re(z^2+c),c=-9/14+3/245*I,n=24 4334928698042369 r002 32th iterates of z^2 + 4334928704982384 m001 BesselI(0,1)+gamma(3)-GaussAGM 4334928713008540 r009 Re(z^3+c),c=-31/64+11/63*I,n=32 4334928738486287 a001 2971215073/2207*521^(12/13) 4334928743273819 r005 Re(z^2+c),c=-17/28+1/35*I,n=19 4334928744233271 m001 1/Sierpinski^2*FeigenbaumB/exp(GAMMA(11/12)) 4334928755234706 r002 7th iterates of z^2 + 4334928797341883 m001 (GAMMA(2/3)+ln(gamma))/(Trott+ZetaP(3)) 4334928798867993 p004 log(33739/21871) 4334928815102193 m001 1/exp(GAMMA(7/24))*LandauRamanujan/cos(Pi/5) 4334928818298847 m005 (1/3*gamma+1/10)/(5/9*Pi+5) 4334928818837267 m001 (cos(1)+2*Pi/GAMMA(5/6))/(-Salem+Sierpinski) 4334928820492853 a007 Real Root Of 9*x^4+376*x^3-602*x^2+482*x+8 4334928825277718 r009 Im(z^3+c),c=-3/7+25/57*I,n=9 4334928842887359 m001 1/exp(GAMMA(1/24))*FransenRobinson^2/sinh(1) 4334928857429225 r009 Im(z^3+c),c=-57/118+21/61*I,n=17 4334928861064846 m001 1/GAMMA(5/12)*exp(GAMMA(2/3))*cosh(1)^2 4334928877045796 r009 Im(z^3+c),c=-3/38+22/43*I,n=24 4334928879811488 r005 Re(z^2+c),c=5/46+28/45*I,n=17 4334928888799680 r005 Im(z^2+c),c=3/14+8/19*I,n=29 4334928900327822 r005 Re(z^2+c),c=-69/74+9/61*I,n=62 4334928906420212 a001 87403803/13*514229^(16/19) 4334928907711273 a001 7/514229*55^(19/22) 4334928909181373 a001 39603/13*4807526976^(16/19) 4334928927700015 m001 1/GAMMA(5/6)^2/exp(BesselK(1,1))*Zeta(7) 4334928945203031 a001 29/121393*3^(32/59) 4334928946223335 r002 9th iterates of z^2 + 4334928947019313 a001 9*13^(19/31) 4334928955844021 m001 (Sarnak-cos(1)*ZetaR(2))/ZetaR(2) 4334928975088517 a007 Real Root Of 194*x^4+991*x^3+616*x^2-219*x-304 4334928977313481 r005 Re(z^2+c),c=-12/17+16/43*I,n=5 4334928981203243 m001 (MertensB2+Thue)/(BesselJ(0,1)-Zeta(3)) 4334929000836120 r005 Im(z^2+c),c=-23/62+27/46*I,n=48 4334929025834654 m002 2+E^Pi+(Pi*Cosh[Pi])/2 4334929027811176 r005 Re(z^2+c),c=-63/64+17/61*I,n=28 4334929042977711 r009 Re(z^3+c),c=-37/78+6/37*I,n=6 4334929057691698 r002 11th iterates of z^2 + 4334929062516134 r002 32th iterates of z^2 + 4334929079077390 r005 Re(z^2+c),c=-39/64+5/19*I,n=49 4334929080923155 m001 GAMMA(5/12)^2/exp(ErdosBorwein)^2*cosh(1)^2 4334929091857551 m007 (-gamma-4/5)/(-2*gamma-4*ln(2)+3/4) 4334929105470054 r005 Im(z^2+c),c=29/110+26/61*I,n=34 4334929111042172 r009 Re(z^3+c),c=-39/86+6/11*I,n=64 4334929139545990 h001 (7/9*exp(1)+1/10)/(2/3*exp(2)+2/11) 4334929139769444 m001 ln(LaplaceLimit)*FeigenbaumAlpha*BesselK(0,1) 4334929142551639 r005 Re(z^2+c),c=-7/10+7/55*I,n=44 4334929144574869 r005 Re(z^2+c),c=-41/66+1/50*I,n=51 4334929159968212 r005 Re(z^2+c),c=5/74+9/61*I,n=13 4334929162227886 a007 Real Root Of 172*x^4-327*x^3-354*x^2-505*x+306 4334929166670836 m005 (1/3*5^(1/2)+2/9)/(3^(1/2)+1/2) 4334929166910816 s002 sum(A271217[n]/(n*exp(pi*n)+1),n=1..infinity) 4334929190381835 a007 Real Root Of -786*x^4-972*x^3+30*x^2+593*x+200 4334929207400056 r002 52th iterates of z^2 + 4334929212619830 r005 Re(z^2+c),c=-35/58+8/19*I,n=16 4334929220540379 r005 Im(z^2+c),c=-9/25+24/37*I,n=32 4334929220591880 s002 sum(A208142[n]/((exp(n)-1)/n),n=1..infinity) 4334929240766854 r002 19th iterates of z^2 + 4334929254805964 a007 Real Root Of 257*x^4+908*x^3-711*x^2+989*x+861 4334929260437065 a007 Real Root Of -95*x^4-261*x^3+797*x^2+550*x-307 4334929265817837 a007 Real Root Of -735*x^4+789*x^3-808*x^2+858*x+614 4334929269630677 m005 (1/3*3^(1/2)-1/10)/(1/7+3/7*5^(1/2)) 4334929282224058 r009 Re(z^3+c),c=-39/94+5/49*I,n=8 4334929299863141 a007 Real Root Of -636*x^4+901*x^3+889*x^2+854*x+299 4334929306262833 s002 sum(A141902[n]/(n*exp(pi*n)+1),n=1..infinity) 4334929307792901 r002 41th iterates of z^2 + 4334929310870523 s002 sum(A188958[n]/(n*exp(pi*n)+1),n=1..infinity) 4334929333090234 r005 Re(z^2+c),c=-53/86+4/57*I,n=32 4334929348611082 r005 Re(z^2+c),c=1/90+39/58*I,n=6 4334929368651401 a005 (1/sin(67/155*Pi))^367 4334929392749751 m001 (MertensB2+ZetaQ(4))/(exp(Pi)+BesselJ(0,1)) 4334929395657622 r005 Re(z^2+c),c=4/27+17/32*I,n=45 4334929407600448 s002 sum(A188962[n]/(n*exp(pi*n)+1),n=1..infinity) 4334929409753089 m001 (Champernowne-Rabbit)/(ln(Pi)+exp(-1/2*Pi)) 4334929411188779 s002 sum(A222686[n]/((10^n+1)/n),n=1..infinity) 4334929412567367 a001 29/514229*2584^(21/38) 4334929418600152 r005 Im(z^2+c),c=-5/8+25/196*I,n=10 4334929429300745 r005 Re(z^2+c),c=2/29+36/61*I,n=24 4334929434562645 r005 Im(z^2+c),c=-17/14+11/62*I,n=16 4334929435302069 m001 (ln(gamma)-Conway)/(FransenRobinson+Porter) 4334929440664442 r009 Im(z^3+c),c=-25/64+26/61*I,n=48 4334929448101712 r005 Re(z^2+c),c=-79/126+5/59*I,n=31 4334929448396828 r005 Im(z^2+c),c=9/26+26/61*I,n=15 4334929498615079 a001 7778742049/5778*521^(12/13) 4334929504260045 a007 Real Root Of 651*x^4-898*x^3-982*x^2-439*x+425 4334929514119652 m001 (Ei(1)+Gompertz)^ErdosBorwein 4334929541547275 a007 Real Root Of -433*x^4+798*x^3-384*x^2+488*x+364 4334929555117098 a007 Real Root Of 160*x^4-788*x^3-123*x^2-912*x+477 4334929573503955 r005 Im(z^2+c),c=-5/8+57/200*I,n=15 4334929601150638 a003 cos(Pi*14/69)-cos(Pi*11/29) 4334929609516398 a001 20365011074/15127*521^(12/13) 4334929614108149 r005 Re(z^2+c),c=-2/3+37/231*I,n=34 4334929621115039 m009 (5/6*Psi(1,3/4)+1/5)/(5*Psi(1,1/3)+3) 4334929623939715 l006 ln(97/7403) 4334929623945240 m001 Psi(1,1/3)/ln(2)/ReciprocalFibonacci 4334929625696683 a001 53316291173/39603*521^(12/13) 4334929628057354 a001 139583862445/103682*521^(12/13) 4334929628401772 a001 365435296162/271443*521^(12/13) 4334929628452022 a001 956722026041/710647*521^(12/13) 4334929628459353 a001 2504730781961/1860498*521^(12/13) 4334929628460422 a001 6557470319842/4870847*521^(12/13) 4334929628460675 a001 10610209857723/7881196*521^(12/13) 4334929628461084 a001 1346269*521^(12/13) 4334929628463884 a001 1548008755920/1149851*521^(12/13) 4334929628483078 a001 591286729879/439204*521^(12/13) 4334929628614633 a001 225851433717/167761*521^(12/13) 4334929629516330 a001 86267571272/64079*521^(12/13) 4334929633777789 r002 5th iterates of z^2 + 4334929634497690 m005 (1/2*Catalan-4/11)/(3/5*exp(1)+6/11) 4334929635696649 a001 32951280099/24476*521^(12/13) 4334929643364584 a007 Real Root Of 853*x^4+105*x^3-800*x^2-823*x-228 4334929658029484 r004 Im(z^2+c),c=1/7-19/23*I,z(0)=exp(3/8*I*Pi),n=4 4334929663602196 m001 (3^(1/3))/Si(Pi)*GAMMA(1/6) 4334929663602196 m001 2*3^(1/3)/Si(Pi)*Pi/GAMMA(5/6) 4334929670786557 a001 12586269025/843*521^(7/13) 4334929671099633 r005 Im(z^2+c),c=3/38+11/21*I,n=42 4334929678057185 a001 12586269025/9349*521^(12/13) 4334929689391345 a007 Real Root Of 123*x^4-891*x^3+719*x^2-399*x-385 4334929708573163 m001 (LambertW(1)-gamma(3))/(Cahen+TwinPrimes) 4334929733546540 m006 (4*Pi+1/4)/(1/3*Pi^2-1/3) 4334929733546540 m008 (4*Pi+1/4)/(1/3*Pi^2-1/3) 4334929734224503 b008 1/10+AiryAi[1/12] 4334929734260808 a003 sin(Pi*3/76)-sin(Pi*19/101) 4334929736842773 m005 (1/2*Catalan-5/12)/(5/8*5^(1/2)-4/9) 4334929741944568 m005 (1/2*gamma+2/7)/(61/176+7/16*5^(1/2)) 4334929754182159 h001 (2/7*exp(2)+11/12)/(8/9*exp(2)+5/12) 4334929768362026 r002 56th iterates of z^2 + 4334929774194842 r005 Im(z^2+c),c=-29/48+27/62*I,n=36 4334929783235418 a007 Real Root Of 280*x^4-905*x^3+436*x^2-790*x-508 4334929799973814 m001 (-ln(Pi)+Pi^(1/2))/(Shi(1)-Zeta(3)) 4334929801992786 r005 Re(z^2+c),c=-29/56+17/43*I,n=23 4334929809005538 a007 Real Root Of 408*x^4-776*x^3-961*x^2-878*x+610 4334929823723489 r005 Im(z^2+c),c=-17/106+37/50*I,n=24 4334929828209105 r002 6th iterates of z^2 + 4334929831794690 a003 sin(Pi*9/50)*sin(Pi*3/10) 4334929834552223 r005 Im(z^2+c),c=-15/52+4/63*I,n=9 4334929838116114 r009 Im(z^3+c),c=-3/38+22/43*I,n=20 4334929842871716 s002 sum(A233690[n]/(n!^2),n=1..infinity) 4334929853482627 m005 (1/2*Pi+2/3)/(3/8*5^(1/2)-6) 4334929862996401 r002 7th iterates of z^2 + 4334929869571779 m004 -20/Pi+125*Pi+Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 4334929870762097 r005 Im(z^2+c),c=2/23+19/37*I,n=61 4334929880085150 a007 Real Root Of -224*x^4-884*x^3+272*x^2-444*x+53 4334929886437141 a001 521/21*2584^(23/35) 4334929894973771 m001 (-Khinchin+Tetranacci)/(Catalan+FeigenbaumB) 4334929913405843 r005 Im(z^2+c),c=31/94+13/46*I,n=57 4334929914734617 a007 Real Root Of -191*x^4-864*x^3-194*x^2-14*x+650 4334929924241557 a007 Real Root Of -778*x^4+848*x^3+855*x^2+583*x-455 4334929929401520 m005 (1/2*Zeta(3)-1/9)/(5/8*Pi-5/6) 4334929936049402 r005 Re(z^2+c),c=-53/86+5/36*I,n=49 4334929937757199 a007 Real Root Of -345*x^4+888*x^3-419*x^2+728*x-297 4334929951264109 r005 Im(z^2+c),c=13/122+23/47*I,n=27 4334929958931269 s002 sum(A037106[n]/(2^n+1),n=1..infinity) 4334929966945736 a001 4807526976/2207*521^(11/13) 4334929968400642 a001 4807526976/3571*521^(12/13) 4334929969785885 p001 sum((-1)^n/(549*n+206)/(2^n),n=0..infinity) 4334929976818196 m001 CareFree/ln(ErdosBorwein)^2*Salem^2 4334929992129353 r009 Im(z^3+c),c=-5/34+23/45*I,n=7 4334929992432193 r002 33th iterates of z^2 + 4334929996613400 m001 (1-Si(Pi))/(Conway+Robbin) 4334930040742196 m006 (4*exp(Pi)+1/3)/(4*exp(2*Pi)+1) 4334930044097580 m006 (5*ln(Pi)-4)/(3/4*exp(2*Pi)-4) 4334930048559154 a007 Real Root Of -39*x^4-2*x^3+568*x^2-613*x+278 4334930052629001 r009 Re(z^3+c),c=-19/36+8/31*I,n=47 4334930057254051 r005 Im(z^2+c),c=3/20+19/34*I,n=55 4334930065966749 r009 Im(z^3+c),c=-3/38+22/43*I,n=26 4334930085769240 a001 322/1597*377^(4/31) 4334930088166718 m001 BesselJ(1,1)/exp(Pi)*BesselI(0,2) 4334930088166718 m001 exp(-Pi)*BesselJ(1,1)*BesselI(0,2) 4334930089145222 p001 sum(1/(467*n+239)/(10^n),n=0..infinity) 4334930090361780 m005 (1/2*exp(1)+2)/(3/5*gamma+3/7) 4334930094872344 m001 OneNinth*Tribonacci*exp(cosh(1))^2 4334930095386112 a003 sin(Pi*16/111)-sin(Pi*35/104) 4334930096915620 a007 Real Root Of -72*x^4-180*x^3+512*x^2-98*x+716 4334930103609334 r009 Re(z^3+c),c=-5/8+27/50*I,n=5 4334930126705364 m001 (Rabbit+Riemann2ndZero)/(ln(Pi)-Cahen) 4334930131258631 a007 Real Root Of -163*x^4-625*x^3+148*x^2-930*x-166 4334930144630111 a001 3571/832040*377^(23/59) 4334930147866289 r005 Im(z^2+c),c=1/4+11/29*I,n=36 4334930159067195 s002 sum(A230035[n]/((10^n-1)/n),n=1..infinity) 4334930159070138 s002 sum(A051267[n]/((10^n-1)/n),n=1..infinity) 4334930172636490 a007 Real Root Of 651*x^4-135*x^3+41*x^2-809*x+331 4334930176764590 r009 Re(z^3+c),c=-11/24+11/56*I,n=7 4334930177814235 r005 Re(z^2+c),c=-37/56+4/37*I,n=17 4334930179267036 a007 Real Root Of -438*x^4+732*x^3+549*x^2+659*x-433 4334930201712938 r005 Re(z^2+c),c=-21/118+59/61*I,n=5 4334930206860837 r002 8th iterates of z^2 + 4334930209352871 m005 (1/2*5^(1/2)-1/7)/(7/12*2^(1/2)-3/5) 4334930223547324 m004 5+5*Sqrt[5]*Pi+(15*Sin[Sqrt[5]*Pi])/Pi 4334930238506323 m001 (BesselK(0,1)+gamma(1))/(Kolakoski+ZetaQ(3)) 4334930247250319 m001 (Pi+1)*(BesselI(0,1)-Ei(1,1)) 4334930249805966 m008 (Pi^3-3)/(2/3*Pi^4-1/3) 4334930254477551 r005 Re(z^2+c),c=-17/26+35/124*I,n=44 4334930257878272 a007 Real Root Of 544*x^4+131*x^3+884*x^2+772*x+160 4334930265774845 a007 Real Root Of 845*x^4-391*x^3+574*x^2-497*x-385 4334930279534580 a007 Real Root Of 408*x^4-727*x^3+178*x^2-971*x-528 4334930279771922 r005 Re(z^2+c),c=-7/10+2/19*I,n=35 4334930283380560 m001 sin(Pi/5)/sin(1)^2*exp(sqrt(1+sqrt(3))) 4334930288668173 m001 (ErdosBorwein-gamma)/(Grothendieck+Lehmer) 4334930299462814 a001 17/408569081798*47^(14/23) 4334930304907270 r005 Im(z^2+c),c=17/60+17/38*I,n=46 4334930308524725 b008 -1+2*Sqrt[3]+Sqrt[7/2] 4334930315003342 m001 (Pi-exp(1))/(FeigenbaumC-FransenRobinson) 4334930315829407 l006 ln(5327/5563) 4334930320868717 m001 Robbin-gamma(1)-ln(2)/ln(10) 4334930321615468 r002 40th iterates of z^2 + 4334930332407494 r009 Re(z^3+c),c=-25/54+3/38*I,n=13 4334930333979867 h001 (9/11*exp(1)+8/11)/(10/11*exp(2)+1/11) 4334930346531865 a007 Real Root Of 306*x^4-324*x^3+967*x^2-540*x-453 4334930346640934 m001 CareFree*ln(Cahen)*HardHexagonsEntropy 4334930358242878 r005 Re(z^2+c),c=-73/122+14/51*I,n=53 4334930369938935 r002 39th iterates of z^2 + 4334930380188848 a007 Real Root Of -20*x^4-848*x^3+828*x^2+196*x-837 4334930387725433 a008 Real Root of (1-3*x^2+3*x^3-5*x^4+x^5) 4334930387987616 r009 Im(z^3+c),c=-33/70+11/29*I,n=35 4334930390326440 r005 Re(z^2+c),c=-47/74+8/49*I,n=30 4334930404807466 r002 55th iterates of z^2 + 4334930433423103 a001 2971215073/322*322^(2/3) 4334930434972530 a001 9349/2178309*377^(23/59) 4334930439652416 m002 -4+Pi+(Pi^2*Tanh[Pi])/E^Pi 4334930447686134 m005 (1/2*gamma+7/12)/(3/8*Pi+5/6) 4334930470016548 m005 1/6*5^(1/2)/(17/90+3/10*5^(1/2)) 4334930470869356 r005 Re(z^2+c),c=7/18+16/61*I,n=46 4334930477376179 a001 377/76*18^(3/4) 4334930486946266 a001 53316291173/521*199^(3/11) 4334930499947065 r002 11th iterates of z^2 + 4334930501702977 a007 Real Root Of -685*x^4+540*x^3+527*x^2+847*x-486 4334930510599195 r005 Im(z^2+c),c=-3/98+27/46*I,n=34 4334930530408188 a001 7/196418*365435296162^(11/14) 4334930545603349 r009 Im(z^3+c),c=-9/86+28/57*I,n=3 4334930551103752 m001 (-GolombDickman+MertensB1)/(2^(1/2)-gamma) 4334930564890830 a007 Real Root Of -258*x^4+446*x^3-620*x^2+939*x+569 4334930581315125 r005 Re(z^2+c),c=-75/122+3/17*I,n=45 4334930592348431 r009 Im(z^3+c),c=-3/38+22/43*I,n=28 4334930602513430 r009 Im(z^3+c),c=-10/19+9/22*I,n=3 4334930614414013 a001 5778/1346269*377^(23/59) 4334930619896306 a007 Real Root Of 668*x^4-493*x^3-985*x^2-822*x+558 4334930623289180 m001 (5^(1/2))^Psi(1,1/3)/(GAMMA(3/4)^Psi(1,1/3)) 4334930626476527 r009 Im(z^3+c),c=-5/11+16/41*I,n=59 4334930633260739 r005 Re(z^2+c),c=-69/118+6/41*I,n=16 4334930638168775 a007 Real Root Of -365*x^4+43*x^3+36*x^2+968*x-417 4334930645111905 m005 (1/2*Zeta(3)-7/11)/(83/132+1/12*5^(1/2)) 4334930681819797 r009 Im(z^3+c),c=-35/118+20/43*I,n=15 4334930684993168 r005 Re(z^2+c),c=-3/5+25/84*I,n=56 4334930690813207 r005 Im(z^2+c),c=-7/10+62/229*I,n=9 4334930709903998 m001 (-GaussAGM+Rabbit)/(5^(1/2)+Cahen) 4334930714519816 r009 Im(z^3+c),c=-25/64+26/61*I,n=44 4334930717388353 m001 ln(GAMMA(1/6))^2/LaplaceLimit/GAMMA(23/24) 4334930718590589 r005 Re(z^2+c),c=-21/34+9/91*I,n=36 4334930721657609 a007 Real Root Of -642*x^4-75*x^3-530*x^2+897*x+505 4334930722624725 m001 (ln(5)+Grothendieck)/(Thue-ZetaP(4)) 4334930727074744 a001 12586269025/5778*521^(11/13) 4334930727238016 r009 Re(z^3+c),c=-39/86+6/11*I,n=44 4334930730042918 a001 101003886010/233 4334930731155273 l006 ln(122/9311) 4334930747679899 r002 47th iterates of z^2 + 4334930756476160 r005 Im(z^2+c),c=-67/118+23/51*I,n=51 4334930757339830 m001 PrimesInBinary^2*exp(Artin)*log(2+sqrt(3))^2 4334930766869637 r005 Im(z^2+c),c=-5/8+53/119*I,n=29 4334930772915609 r009 Im(z^3+c),c=-3/38+22/43*I,n=30 4334930774892975 r005 Re(z^2+c),c=-79/110+12/43*I,n=16 4334930776499376 r005 Im(z^2+c),c=15/94+11/21*I,n=33 4334930792631918 r005 Im(z^2+c),c=-55/74+7/60*I,n=50 4334930794100846 m001 (Shi(1)-ln(2))/(-arctan(1/2)+Conway) 4334930794206412 a007 Real Root Of -158*x^4-604*x^3+318*x^2-185*x-186 4334930794561254 m001 cos(1)/ln(TwinPrimes)*gamma^2 4334930799789030 m004 2+10*Pi+(Sqrt[5]*Cosh[Sqrt[5]*Pi])/Pi 4334930801841636 r005 Re(z^2+c),c=-9/10+49/235*I,n=18 4334930811941584 r005 Re(z^2+c),c=-11/18+37/112*I,n=55 4334930822218098 r009 Im(z^3+c),c=-3/38+22/43*I,n=32 4334930828508980 r009 Im(z^3+c),c=-3/38+22/43*I,n=35 4334930829169383 r009 Im(z^3+c),c=-3/38+22/43*I,n=37 4334930829883069 r009 Im(z^3+c),c=-3/38+22/43*I,n=39 4334930830229341 r009 Im(z^3+c),c=-3/38+22/43*I,n=41 4334930830355420 r009 Im(z^3+c),c=-3/38+22/43*I,n=43 4334930830392112 r009 Im(z^3+c),c=-3/38+22/43*I,n=45 4334930830398987 r009 Im(z^3+c),c=-3/38+22/43*I,n=48 4334930830399140 r009 Im(z^3+c),c=-3/38+22/43*I,n=50 4334930830399551 r009 Im(z^3+c),c=-3/38+22/43*I,n=52 4334930830399774 r009 Im(z^3+c),c=-3/38+22/43*I,n=54 4334930830399861 r009 Im(z^3+c),c=-3/38+22/43*I,n=56 4334930830399888 r009 Im(z^3+c),c=-3/38+22/43*I,n=58 4334930830399894 r009 Im(z^3+c),c=-3/38+22/43*I,n=63 4334930830399894 r009 Im(z^3+c),c=-3/38+22/43*I,n=60 4334930830399894 r009 Im(z^3+c),c=-3/38+22/43*I,n=61 4334930830399895 r009 Im(z^3+c),c=-3/38+22/43*I,n=64 4334930830399895 r009 Im(z^3+c),c=-3/38+22/43*I,n=62 4334930830399897 r009 Im(z^3+c),c=-3/38+22/43*I,n=59 4334930830399911 r009 Im(z^3+c),c=-3/38+22/43*I,n=57 4334930830399960 r009 Im(z^3+c),c=-3/38+22/43*I,n=55 4334930830400092 r009 Im(z^3+c),c=-3/38+22/43*I,n=47 4334930830400104 r009 Im(z^3+c),c=-3/38+22/43*I,n=53 4334930830400425 r009 Im(z^3+c),c=-3/38+22/43*I,n=51 4334930830400840 r009 Im(z^3+c),c=-3/38+22/43*I,n=49 4334930830402002 r009 Im(z^3+c),c=-3/38+22/43*I,n=46 4334930830419950 r009 Im(z^3+c),c=-3/38+22/43*I,n=44 4334930830489958 r009 Im(z^3+c),c=-3/38+22/43*I,n=42 4334930830704986 r009 Im(z^3+c),c=-3/38+22/43*I,n=40 4334930831225872 r009 Im(z^3+c),c=-3/38+22/43*I,n=38 4334930831586494 r009 Im(z^3+c),c=-3/38+22/43*I,n=33 4334930831751743 r009 Im(z^3+c),c=-3/38+22/43*I,n=34 4334930832061476 r009 Im(z^3+c),c=-3/38+22/43*I,n=36 4334930833831822 r009 Im(z^3+c),c=-35/82+22/57*I,n=12 4334930834454412 r005 Re(z^2+c),c=-77/122+13/41*I,n=59 4334930836705618 m001 GAMMA(1/24)^2*exp(GAMMA(1/12))^2*cos(Pi/5) 4334930837976094 a001 32951280099/15127*521^(11/13) 4334930846471925 r005 Im(z^2+c),c=-47/122+3/43*I,n=12 4334930846833452 h001 (1/8*exp(2)+3/11)/(5/7*exp(1)+9/11) 4334930852076074 a007 Real Root Of -800*x^4+702*x^3-470*x^2+485*x+384 4334930853182287 r005 Im(z^2+c),c=19/110+25/56*I,n=56 4334930854156383 a001 86267571272/39603*521^(11/13) 4334930854633611 r009 Im(z^3+c),c=-3/38+22/43*I,n=31 4334930856517056 a001 225851433717/103682*521^(11/13) 4334930856861473 a001 591286729879/271443*521^(11/13) 4334930856911723 a001 1548008755920/710647*521^(11/13) 4334930856919054 a001 4052739537881/1860498*521^(11/13) 4334930856920124 a001 2178309*521^(11/13) 4334930856920785 a001 6557470319842/3010349*521^(11/13) 4334930856923585 a001 2504730781961/1149851*521^(11/13) 4334930856942779 a001 956722026041/439204*521^(11/13) 4334930857074335 a001 365435296162/167761*521^(11/13) 4334930857976031 a001 139583862445/64079*521^(11/13) 4334930863891157 r005 Im(z^2+c),c=1/106+11/17*I,n=46 4334930864156352 a001 53316291173/24476*521^(11/13) 4334930879120684 r009 Im(z^3+c),c=-49/110+24/61*I,n=21 4334930887106412 m005 (1/2*3^(1/2)+6)/(5/8*2^(1/2)+7/10) 4334930899246270 a001 20365011074/843*521^(6/13) 4334930906516900 a001 20365011074/9349*521^(11/13) 4334930917380950 r004 Im(z^2+c),c=-3/22-7/19*I,z(0)=I,n=4 4334930921427866 m001 GAMMA(1/12)/CopelandErdos/ln(GAMMA(7/24)) 4334930949515064 m001 2*Pi/GAMMA(5/6)/(ErdosBorwein-FellerTornier) 4334930951977555 r009 Im(z^3+c),c=-3/38+22/43*I,n=29 4334930954770146 a007 Real Root Of 103*x^4+383*x^3-523*x^2-912*x+702 4334930958825834 m001 GAMMA(1/6)*exp((2^(1/3)))/GAMMA(5/12)^2 4334930965861427 a007 Real Root Of -165*x^4-797*x^3-220*x^2+702*x+519 4334930967359172 a007 Real Root Of -219*x^4-909*x^3+327*x^2+591*x-296 4334930972688196 h001 (-2*exp(3/2)+9)/(-9*exp(-3)-8) 4334931013265972 m001 Riemann3rdZero^2/Paris^2*ln(TreeGrowth2nd)^2 4334931015565897 a001 1597/521*2^(1/2) 4334931026545770 b008 Pi+Sec[EulerGamma] 4334931027680895 a007 Real Root Of -179*x^4+339*x^3-936*x^2+674*x+502 4334931030741660 r009 Im(z^3+c),c=-8/29+26/55*I,n=23 4334931032760466 s002 sum(A182205[n]/(10^n+1),n=1..infinity) 4334931038974282 r009 Re(z^3+c),c=-17/36+9/56*I,n=62 4334931045083338 r009 Re(z^3+c),c=-41/78+7/48*I,n=49 4334931048480526 a007 Real Root Of -239*x^4+255*x^3-760*x^2+865*x+547 4334931050006521 r005 Im(z^2+c),c=3/17+21/47*I,n=32 4334931058424197 b008 E^ArcCsch[1]+Coth[EulerGamma] 4334931079407843 r009 Im(z^3+c),c=-13/62+28/57*I,n=12 4334931094601863 a007 Real Root Of -273*x^4-947*x^3+996*x^2-247*x-527 4334931096464949 q001 1447/3338 4334931102144193 m001 GolombDickman*(Ei(1,1)+Weierstrass) 4334931105128552 m001 exp(cosh(1))^2/ArtinRank2*sinh(1)^2 4334931111519545 a007 Real Root Of -840*x^4-327*x^3-131*x^2+363*x+185 4334931112225111 k006 concat of cont frac of 4334931114340538 r002 49th iterates of z^2 + 4334931124464129 r002 55th iterates of z^2 + 4334931131341159 r002 53th iterates of z^2 + 4334931169338013 r005 Re(z^2+c),c=-73/122+2/57*I,n=15 4334931176741942 a007 Real Root Of -683*x^4+297*x^3-249*x^2-21*x+86 4334931188724196 r005 Re(z^2+c),c=11/98+24/49*I,n=4 4334931191177222 a007 Real Root Of 144*x^4+551*x^3-190*x^2+591*x+167 4334931195405534 a001 7778742049/2207*521^(10/13) 4334931196860440 a001 7778742049/3571*521^(11/13) 4334931203319819 a003 cos(Pi*1/60)-cos(Pi*21/68) 4334931203839588 a007 Real Root Of -226*x^4-845*x^3+532*x^2-75*x+650 4334931208506997 r009 Im(z^3+c),c=-2/27+21/41*I,n=13 4334931209844534 a001 2/233*21^(25/47) 4334931216274880 a001 43133785636/161*123^(1/10) 4334931244828516 r005 Im(z^2+c),c=-3/22+34/55*I,n=5 4334931254993572 m005 (1/2*exp(1)-7/11)/(6*exp(1)+4/11) 4334931265707300 b008 ExpIntegralEi[3*(-3+E^2)] 4334931265889596 a007 Real Root Of -609*x^4+798*x^3+370*x^2+323*x+157 4334931268877707 r009 Im(z^3+c),c=-3/38+22/43*I,n=27 4334931270428042 m001 (Chi(1)-cos(1/12*Pi))/(-Otter+ZetaQ(4)) 4334931277422605 b008 -6+Sqrt[1+Sqrt[Pi]] 4334931286181447 m001 (Salem+Trott)/(Backhouse+GlaisherKinkelin) 4334931296658227 m001 (arctan(1/2)+OneNinth)/(Ei(1)-gamma) 4334931302133857 r002 16th iterates of z^2 + 4334931306898262 r005 Re(z^2+c),c=-35/58+11/45*I,n=61 4334931321192732 a001 47/225851433717*377^(9/10) 4334931354922720 a003 cos(Pi*4/69)*sin(Pi*17/117) 4334931367866641 r002 50th iterates of z^2 + 4334931374540334 a001 2207/514229*377^(23/59) 4334931420405529 a001 1/141*433494437^(11/14) 4334931427433613 a007 Real Root Of -762*x^4-544*x^3-632*x^2+479*x+309 4334931434305121 a007 Real Root Of -841*x^4-369*x^3-473*x^2+271*x+206 4334931448094155 p004 log(21401/13873) 4334931455253553 m005 (1/2*2^(1/2)+7/8)/(8/9*Pi+6/7) 4334931498705940 b008 7+(E^Pi*Pi)/2 4334931498705940 m002 7+(E^Pi*Pi)/2 4334931511343114 k007 concat of cont frac of 4334931524705515 m001 Zeta(5)/Zeta(3)*ln(sqrt(1+sqrt(3))) 4334931533253305 r005 Re(z^2+c),c=-14/23+10/33*I,n=47 4334931533885207 m001 (ln(5)-Zeta(1,2))/(GAMMA(17/24)-ArtinRank2) 4334931535718952 r002 59th iterates of z^2 + 4334931548100029 a007 Real Root Of 485*x^4-546*x^3+408*x^2+462*x+62 4334931559512103 m001 (ln(3)-BesselJ(1,1))/(AlladiGrinstead+Rabbit) 4334931568765129 r005 Re(z^2+c),c=-18/29+1/23*I,n=54 4334931579555098 r005 Re(z^2+c),c=-85/118+2/59*I,n=28 4334931588094302 m001 GAMMA(2/3)^2/Rabbit*exp(sin(Pi/12))^2 4334931602334440 p001 sum((-1)^n/(541*n+230)/(100^n),n=0..infinity) 4334931611811180 r005 Im(z^2+c),c=-2/13+21/32*I,n=5 4334931627156962 a007 Real Root Of 495*x^4+49*x^3+652*x^2+60*x-110 4334931640002684 s002 sum(A037828[n]/(pi^n-1),n=1..infinity) 4334931643192990 r002 55th iterates of z^2 + 4334931665381854 r009 Im(z^3+c),c=-19/126+24/47*I,n=7 4334931686468185 r005 Im(z^2+c),c=3/122+31/58*I,n=22 4334931689175036 a007 Real Root Of 715*x^4+334*x^3+790*x^2-451*x-342 4334931720804069 m003 4+Sqrt[5]/8+(Sqrt[5]*E^(-1/2-Sqrt[5]/2))/8 4334931725098153 r009 Im(z^3+c),c=-29/78+37/61*I,n=29 4334931739318374 b008 45+BesselY[2,1] 4334931744603633 h001 (1/9*exp(1)+8/9)/(1/4*exp(2)+9/10) 4334931771582499 m001 (Tribonacci-ZetaP(3))/(ln(Pi)-GAMMA(7/12)) 4334931777863465 p003 LerchPhi(1/5,3,129/44) 4334931795486732 r005 Re(z^2+c),c=-73/98+5/61*I,n=59 4334931800246518 r005 Re(z^2+c),c=-39/64+12/41*I,n=54 4334931801894196 a001 1/76*(1/2*5^(1/2)+1/2)^25*199^(9/16) 4334931816671817 a007 Real Root Of 142*x^4+580*x^3-186*x^2-303*x-715 4334931817138832 a007 Real Root Of -5*x^4+169*x^3-492*x^2-441*x-844 4334931818899461 r005 Im(z^2+c),c=7/60+28/57*I,n=60 4334931820078528 r002 5th iterates of z^2 + 4334931823567076 r009 Im(z^3+c),c=-17/46+24/55*I,n=39 4334931830075556 m001 (ln(5)+Ei(1))/(Paris+Rabbit) 4334931832716756 m001 ln(Paris)/MinimumGamma^2/Riemann3rdZero 4334931834014282 h001 (-6*exp(2/3)-8)/(-4*exp(-2)-4) 4334931839825010 m001 KhinchinHarmonic^FeigenbaumDelta*arctan(1/3) 4334931850129739 m001 (-Pi^(1/2)+TreeGrowth2nd)/(5^(1/2)+Chi(1)) 4334931852965008 m001 (Tribonacci-TwinPrimes)/(CopelandErdos-Otter) 4334931854480179 r005 Re(z^2+c),c=-43/118+11/17*I,n=21 4334931871826831 r009 Re(z^3+c),c=-19/54+41/62*I,n=63 4334931880904992 l005 sech(734/87) 4334931883170998 a007 Real Root Of -730*x^4+812*x^3+715*x^2+868*x-551 4334931900321363 r005 Im(z^2+c),c=35/106+15/43*I,n=11 4334931925013162 r005 Im(z^2+c),c=25/122+19/45*I,n=28 4334931926226701 r009 Re(z^3+c),c=-53/118+6/43*I,n=33 4334931928398733 m001 (exp(1/Pi)+Bloch)/(CopelandErdos-Robbin) 4334931931485982 a007 Real Root Of 441*x^4-428*x^3+19*x^2-782*x-393 4334931941264253 a007 Real Root Of -128*x^4+58*x^3+893*x^2+955*x-582 4334931946146626 r002 25th iterates of z^2 + 4334931952469654 l006 ln(6485/10004) 4334931954257421 h001 (8/9*exp(2)+2/11)/(1/10*exp(2)+9/11) 4334931955534757 a001 10182505537/2889*521^(10/13) 4334931958445350 a001 1836311903/1364*521^(12/13) 4334931972435218 m002 -5+2*E^Pi+Pi-ProductLog[Pi] 4334931975765952 m001 (gamma+LambertW(1))/(-ln(3)+GaussAGM) 4334931978474820 m005 (1/2*5^(1/2)+2/9)/(11/12*exp(1)+3/5) 4334931985478302 r001 3i'th iterates of 2*x^2-1 of 4334931988117021 a007 Real Root Of -95*x^4-631*x^3-796*x^2+718*x+216 4334931991169570 a007 Real Root Of 653*x^4-627*x^3+910*x^2-175*x-321 4334931993117844 m005 (1/3*Pi-3/4)/(3/7*5^(1/2)-3/11) 4334931994991999 r005 Im(z^2+c),c=3/34+20/39*I,n=63 4334932021017785 m001 OrthogonalArrays^FeigenbaumDelta-cos(1) 4334932025149220 m001 (Pi*exp(Pi)-ln(5))/GAMMA(13/24) 4334932038244106 m001 1/RenyiParking^2/Magata/ln(GAMMA(5/6)) 4334932044378599 r002 22th iterates of z^2 + 4334932049796569 m001 (arctan(1/2)+Cahen)/(Pi-sin(1/5*Pi)) 4334932050766260 m005 (1/3*Zeta(3)+1/4)/(1/2*Zeta(3)+9/10) 4334932061072652 r005 Re(z^2+c),c=-41/66+5/41*I,n=29 4334932066436138 a001 53316291173/15127*521^(10/13) 4334932070632648 s002 sum(A181390[n]/((exp(n)+1)/n),n=1..infinity) 4334932071932085 a007 Real Root Of 644*x^4-33*x^3+991*x^2+133*x-154 4334932076887530 m001 ErdosBorwein+FeigenbaumMu*LandauRamanujan 4334932080442985 m001 (GAMMA(11/12)+Otter)/(ln(Pi)-Ei(1,1)) 4334932082616432 a001 139583862445/39603*521^(10/13) 4334932084011246 r009 Re(z^3+c),c=-15/38+7/55*I,n=3 4334932084977105 a001 182717648081/51841*521^(10/13) 4334932085321523 a001 956722026041/271443*521^(10/13) 4334932085371773 a001 2504730781961/710647*521^(10/13) 4334932085379104 a001 3278735159921/930249*521^(10/13) 4334932085380835 a001 10610209857723/3010349*521^(10/13) 4334932085383635 a001 4052739537881/1149851*521^(10/13) 4334932085402829 a001 387002188980/109801*521^(10/13) 4334932085534385 a001 591286729879/167761*521^(10/13) 4334932086436081 a001 225851433717/64079*521^(10/13) 4334932091235957 r009 Im(z^3+c),c=-3/38+22/43*I,n=25 4334932092616404 a001 21566892818/6119*521^(10/13) 4334932106382697 a007 Real Root Of -197*x^4-736*x^3+572*x^2+403*x+609 4334932109738400 l006 ln(6356/9805) 4334932113291416 m006 (4/5*exp(Pi)-1)/(1/3*Pi^2+3/4) 4334932119435326 m005 (1/2*gamma+2/5)/(8/11*Zeta(3)+5/7) 4334932120604279 r005 Im(z^2+c),c=-2/3+7/171*I,n=23 4334932127706332 a001 10983760033/281*521^(5/13) 4334932134976964 a001 32951280099/9349*521^(10/13) 4334932144231189 r005 Re(z^2+c),c=-23/36+3/31*I,n=17 4334932145111588 m001 Pi*(ln(2)/ln(10)-exp(1/Pi))*GAMMA(17/24) 4334932169463440 r005 Im(z^2+c),c=-7/10+44/163*I,n=9 4334932170023724 a001 377/843*(1/2+1/2*5^(1/2))^43 4334932174300222 m005 (-11/4+1/4*5^(1/2))/(31/110+1/10*5^(1/2)) 4334932185430387 r005 Re(z^2+c),c=-18/31+15/53*I,n=21 4334932187940776 r009 Im(z^3+c),c=-31/94+33/59*I,n=8 4334932200528201 m001 (ln(Pi)+HardHexagonsEntropy)/(Pi+exp(1)) 4334932202309646 a007 Real Root Of 166*x^4+498*x^3-863*x^2+431*x+34 4334932218584283 p001 sum((-1)^n/(373*n+230)/(128^n),n=0..infinity) 4334932239940608 a001 7/3*2^(42/47) 4334932246190544 r009 Im(z^3+c),c=-13/32+23/55*I,n=42 4334932248146860 r005 Re(z^2+c),c=5/74+9/61*I,n=14 4334932254119386 m001 (-Grothendieck+Trott2nd)/(5^(1/2)-FeigenbaumC) 4334932273523177 l006 ln(6227/9606) 4334932279821488 r002 13th iterates of z^2 + 4334932285424500 m004 36+Sqrt[5]*Pi-Sin[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 4334932299957386 a007 Real Root Of 238*x^4+390*x^3+154*x^2-580*x-257 4334932305353107 r002 4th iterates of z^2 + 4334932311831066 m001 1-BesselI(1,2)^StronglyCareFree 4334932327326284 a007 Real Root Of 93*x^4+201*x^3-820*x^2+409*x+715 4334932332172397 p001 sum(1/(412*n+77)/n/(5^n),n=1..infinity) 4334932378309918 a007 Real Root Of 258*x^4+976*x^3-512*x^2+423*x-146 4334932391771458 m008 (2/5*Pi^6-3)/(3*Pi^3-5) 4334932397533749 r005 Im(z^2+c),c=-12/19+5/62*I,n=34 4334932402965547 q001 994/2293 4334932404468111 r005 Im(z^2+c),c=-63/122+18/37*I,n=35 4334932410791747 r002 63th iterates of z^2 + 4334932412619195 m001 arctan(1/3)/(Thue^ReciprocalLucas) 4334932419588950 r005 Re(z^2+c),c=-41/66+1/40*I,n=62 4334932423865679 a001 12586269025/2207*521^(9/13) 4334932425320586 a001 12586269025/3571*521^(10/13) 4334932431627848 r005 Re(z^2+c),c=25/62+7/29*I,n=16 4334932441283503 r005 Re(z^2+c),c=-23/102+29/57*I,n=2 4334932443677920 m004 37+Sqrt[5]*Pi-Sin[Sqrt[5]*Pi] 4334932444237513 l006 ln(6098/9407) 4334932455013042 m001 exp(FeigenbaumD)*Magata/GAMMA(1/12) 4334932456897371 r002 57th iterates of z^2 + 4334932468590397 r005 Re(z^2+c),c=-51/82+25/56*I,n=23 4334932491431949 h001 (-3*exp(2)-9)/(-8*exp(1/2)+6) 4334932493834849 m005 (13/12+1/12*5^(1/2))/(1/2*2^(1/2)-1) 4334932496238148 r005 Re(z^2+c),c=-19/31+10/51*I,n=43 4334932500617167 a007 Real Root Of -604*x^4-87*x^3+747*x^2+473*x-317 4334932501768032 r005 Re(z^2+c),c=-73/122+24/59*I,n=17 4334932508457671 r009 Im(z^3+c),c=-27/106+23/48*I,n=20 4334932512601170 r002 38th iterates of z^2 + 4334932532636840 a005 (1/cos(13/128*Pi))^384 4334932534214000 a007 Real Root Of 210*x^4-813*x^3+524*x^2+487*x+39 4334932535401909 r005 Re(z^2+c),c=-18/25+3/64*I,n=24 4334932577375310 m001 (GolombDickman+Kac)/(Zeta(1,-1)-exp(1)) 4334932578181102 a001 76*196418^(1/7) 4334932584562222 a001 4/377*75025^(20/27) 4334932584574046 r009 Im(z^3+c),c=-29/60+22/49*I,n=38 4334932607247778 m001 (-Kolakoski+Totient)/(2^(1/3)-gamma(3)) 4334932615688855 r005 Re(z^2+c),c=-5/8+8/53*I,n=30 4334932617419938 a007 Real Root Of -228*x^4-857*x^3+418*x^2-702*x-197 4334932622330687 l006 ln(5969/9208) 4334932637713113 a007 Real Root Of 713*x^4+615*x^3+248*x^2-732*x-339 4334932644450411 m001 (arctan(1/2)+FeigenbaumAlpha)/(Thue-ZetaP(3)) 4334932669175144 a007 Real Root Of 707*x^4-918*x^3-792*x^2-972*x+620 4334932673844158 r002 26th iterates of z^2 + 4334932678099462 r009 Im(z^3+c),c=-17/56+19/41*I,n=22 4334932683558429 a007 Real Root Of -130*x^4-294*x^3-923*x^2-134*x+96 4334932689760740 r005 Im(z^2+c),c=-9/98+31/53*I,n=29 4334932690454035 r008 a(0)=4,K{-n^6,4-6*n^3+6*n^2-9*n} 4334932699397195 a001 11/10946*2584^(8/43) 4334932712367898 r002 30th iterates of z^2 + 4334932712705535 a007 Real Root Of -706*x^4+839*x^3-446*x^2+708*x+484 4334932733595451 m001 1/LambertW(1)*exp(GAMMA(23/24))*log(1+sqrt(2)) 4334932757604519 r005 Re(z^2+c),c=-21/34+11/104*I,n=49 4334932778416330 a007 Real Root Of 186*x^4-772*x^3-496*x^2-880*x+531 4334932784194886 m001 1/Rabbit/ln(FibonacciFactorial)^2*GAMMA(17/24) 4334932790402461 r004 Im(z^2+c),c=1/7+8/21*I,z(0)=exp(5/8*I*Pi),n=15 4334932791690941 m001 (LaplaceLimit+Lehmer)/(cos(1/5*Pi)-ln(3)) 4334932803872938 m001 TravellingSalesman/BesselK(1,1)/Trott2nd 4334932806156538 r009 Im(z^3+c),c=-25/82+25/54*I,n=20 4334932808291672 l006 ln(5840/9009) 4334932813235251 r005 Im(z^2+c),c=-41/70+23/47*I,n=18 4334932816145562 r009 Re(z^3+c),c=-11/24+4/27*I,n=40 4334932829467923 m005 (1/2*gamma+1)/(1/5*gamma+2/11) 4334932831416184 k008 concat of cont frac of 4334932842743496 m001 (3^(1/2))^(2^(1/3)/Bloch) 4334932844957878 r009 Im(z^3+c),c=-13/34+14/33*I,n=14 4334932846851775 r005 Re(z^2+c),c=-53/94+22/61*I,n=31 4334932879274551 m001 1/Khintchine/Bloch*ln(sqrt(3)) 4334932884829632 m001 (Landau+Otter)/(sin(1/5*Pi)+Ei(1,1)) 4334932887882162 m001 ZetaP(2)-ZetaP(3)^BesselI(0,2) 4334932894593491 a005 (1/cos(3/76*Pi))^1385 4334932906405693 a005 (1/cos(4/75*Pi))^104 4334932907893965 r002 28th iterates of z^2 + 4334932910588695 r005 Im(z^2+c),c=39/118+9/26*I,n=43 4334932917531362 a007 Real Root Of -343*x^4+269*x^3-935*x^2+665*x+498 4334932950767362 m001 (sin(1/12*Pi)-FeigenbaumMu)/(Stephens-Totient) 4334932993350393 r005 Re(z^2+c),c=10/23+11/47*I,n=15 4334932993554259 m001 1/GolombDickman/exp(Backhouse)*Magata^2 4334933002653622 l006 ln(5711/8810) 4334933023081423 m001 (Zeta(1,2)-exp(1/exp(1)))/ln(gamma) 4334933023081423 m001 (Zeta(1,2)-exp(1/exp(1)))/log(gamma) 4334933043286518 r009 Im(z^3+c),c=-5/24+25/34*I,n=2 4334933067991474 r009 Re(z^3+c),c=-3/20+27/47*I,n=4 4334933068219729 r002 8th iterates of z^2 + 4334933070485716 m009 (Psi(1,3/4)-4/5)/(4*Psi(1,1/3)-1/5) 4334933086535454 a007 Real Root Of -248*x^4-925*x^3+812*x^2+566*x-581 4334933097022742 r005 Im(z^2+c),c=21/86+21/55*I,n=57 4334933098435766 r005 Re(z^2+c),c=-33/56+16/57*I,n=33 4334933113761828 a007 Real Root Of 675*x^4-868*x^3+620*x^2+533*x+20 4334933130404048 m001 1/arctan(1/2)^2/ln(Riemann3rdZero)*sqrt(3)^2 4334933133666227 r005 Im(z^2+c),c=15/98+17/35*I,n=22 4334933137830604 m005 (1/2*exp(1)+8/9)/(11/12*2^(1/2)-7/9) 4334933137844970 a007 Real Root Of 91*x^4+435*x^3+307*x^2+729*x+692 4334933143469644 a001 34/123*521^(11/25) 4334933160268682 r005 Im(z^2+c),c=4/17+24/61*I,n=34 4334933177830086 r005 Re(z^2+c),c=-11/18+17/97*I,n=46 4334933183995118 a001 10983760033/1926*521^(9/13) 4334933186905712 a001 2971215073/1364*521^(11/13) 4334933195498840 r005 Re(z^2+c),c=-59/98+19/58*I,n=12 4334933199660891 m001 GAMMA(3/4)^2/exp(Kolakoski)^2*sqrt(2) 4334933202891690 r009 Re(z^3+c),c=-11/23+10/61*I,n=26 4334933205998977 l006 ln(5582/8611) 4334933207301268 r009 Im(z^3+c),c=-29/62+17/37*I,n=25 4334933209587456 r009 Im(z^3+c),c=-37/82+20/53*I,n=15 4334933220685352 a007 Real Root Of -166*x^4-881*x^3-467*x^2+908*x-436 4334933222246745 a007 Real Root Of 127*x^4+673*x^3+754*x^2+809*x-686 4334933228574485 m001 (Pi-Psi(1,1/3)-BesselK(0,1))*sin(1/5*Pi) 4334933244221992 m001 (Sierpinski+Totient)/(exp(-1/2*Pi)+ArtinRank2) 4334933244636909 r005 Im(z^2+c),c=7/50+25/53*I,n=39 4334933246173150 a007 Real Root Of 990*x^4+815*x^3+652*x^2-475*x-297 4334933260184878 s001 sum(exp(-Pi/4)^(n-1)*A086346[n],n=1..infinity) 4334933294896531 a001 86267571272/15127*521^(9/13) 4334933311076829 a001 75283811239/13201*521^(9/13) 4334933313329080 r009 Re(z^3+c),c=-13/34+4/57*I,n=23 4334933313437503 a001 591286729879/103682*521^(9/13) 4334933313781920 a001 516002918640/90481*521^(9/13) 4334933313832170 a001 4052739537881/710647*521^(9/13) 4334933313839502 a001 3536736619241/620166*521^(9/13) 4334933313844033 a001 6557470319842/1149851*521^(9/13) 4334933313863226 a001 2504730781961/439204*521^(9/13) 4334933313994782 a001 956722026041/167761*521^(9/13) 4334933314757498 r002 46th iterates of z^2 + 4334933314896479 a001 365435296162/64079*521^(9/13) 4334933321076804 a001 139583862445/24476*521^(9/13) 4334933341826642 r009 Im(z^3+c),c=-17/60+15/32*I,n=12 4334933354996072 s002 sum(A213581[n]/((10^n+1)/n),n=1..infinity) 4334933356166742 a001 53316291173/843*521^(4/13) 4334933363437376 a001 53316291173/9349*521^(9/13) 4334933364613419 r005 Re(z^2+c),c=-69/118+16/57*I,n=35 4334933372424855 g005 1/4*GAMMA(8/11)*GAMMA(9/10)/Pi^2*GAMMA(5/6)^2 4334933378777084 m001 1/Trott/Tribonacci^2/ln(GAMMA(17/24))^2 4334933386647163 m001 (sin(1/12*Pi)+Zeta(1,2))/(Paris+Porter) 4334933418965288 l006 ln(5453/8412) 4334933421767893 m001 ReciprocalLucas/(1+3^(1/2))^(1/2)/Trott2nd 4334933436062530 r009 Re(z^3+c),c=-29/64+3/16*I,n=7 4334933449187764 r005 Re(z^2+c),c=-57/82+1/12*I,n=33 4334933449795422 r005 Im(z^2+c),c=7/26+21/59*I,n=29 4334933450868104 r002 42th iterates of z^2 + 4334933451505868 r009 Im(z^3+c),c=-45/94+3/8*I,n=44 4334933478587359 r005 Im(z^2+c),c=3/34+20/39*I,n=64 4334933481330387 r009 Im(z^3+c),c=-4/25+12/23*I,n=5 4334933481685770 m001 (2*Pi/GAMMA(5/6)+LandauRamanujan)/Zeta(1/2) 4334933481685770 m001 (LandauRamanujan+GAMMA(1/6))/Zeta(1/2) 4334933529001409 a001 591286729879/2207*199^(1/11) 4334933539932690 r005 Re(z^2+c),c=-41/60+19/64*I,n=24 4334933559519346 r005 Im(z^2+c),c=-9/14+51/152*I,n=45 4334933561524501 r002 50th iterates of z^2 + 4334933572792155 m001 (Cahen-KhinchinLevy)/(Salem+ZetaP(4)) 4334933578472034 a005 (1/cos(6/97*Pi))^1289 4334933581291234 a007 Real Root Of -228*x^4-14*x^3+805*x^2+535*x-374 4334933588443372 r005 Re(z^2+c),c=-29/30+21/95*I,n=24 4334933593115092 l006 ln(5485/5728) 4334933595707038 m004 -125/Pi-5*Pi+(25*ProductLog[Sqrt[5]*Pi])/Pi 4334933601648244 r005 Im(z^2+c),c=-3/56+22/37*I,n=55 4334933622240653 r009 Im(z^3+c),c=-3/38+22/43*I,n=23 4334933634566506 q001 1535/3541 4334933642251900 l006 ln(5324/8213) 4334933643587292 r005 Im(z^2+c),c=-35/64+3/35*I,n=16 4334933652326173 a001 20365011074/2207*521^(8/13) 4334933652590554 r005 Re(z^2+c),c=-21/34+11/97*I,n=64 4334933653781080 a001 20365011074/3571*521^(9/13) 4334933656017450 r005 Re(z^2+c),c=5/74+9/61*I,n=18 4334933664139148 m005 (1/2*gamma+6/11)/(9/11*exp(1)-3/10) 4334933673251327 r005 Re(z^2+c),c=5/74+9/61*I,n=19 4334933677670294 r005 Re(z^2+c),c=5/74+9/61*I,n=23 4334933677719630 r005 Re(z^2+c),c=5/74+9/61*I,n=22 4334933677755639 r005 Re(z^2+c),c=5/74+9/61*I,n=24 4334933677766612 r005 Re(z^2+c),c=5/74+9/61*I,n=27 4334933677766711 r005 Re(z^2+c),c=5/74+9/61*I,n=28 4334933677767100 r005 Re(z^2+c),c=5/74+9/61*I,n=29 4334933677767110 r005 Re(z^2+c),c=5/74+9/61*I,n=32 4334933677767112 r005 Re(z^2+c),c=5/74+9/61*I,n=33 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=37 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=38 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=42 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=43 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=47 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=46 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=48 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=51 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=52 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=53 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=56 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=57 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=61 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=62 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=64 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=63 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=60 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=58 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=59 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=55 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=54 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=50 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=49 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=45 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=44 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=41 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=40 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=39 4334933677767113 r005 Re(z^2+c),c=5/74+9/61*I,n=36 4334933677767114 r005 Re(z^2+c),c=5/74+9/61*I,n=34 4334933677767114 r005 Re(z^2+c),c=5/74+9/61*I,n=35 4334933677767122 r005 Re(z^2+c),c=5/74+9/61*I,n=31 4334933677767156 r005 Re(z^2+c),c=5/74+9/61*I,n=30 4334933677769931 r005 Re(z^2+c),c=5/74+9/61*I,n=26 4334933677775958 r005 Re(z^2+c),c=5/74+9/61*I,n=25 4334933678558719 r005 Re(z^2+c),c=5/74+9/61*I,n=21 4334933679418011 r005 Re(z^2+c),c=5/74+9/61*I,n=20 4334933684419580 r005 Re(z^2+c),c=5/74+9/61*I,n=17 4334933695025285 r005 Im(z^2+c),c=-21/44+11/19*I,n=49 4334933698410345 r009 Im(z^3+c),c=-5/46+44/59*I,n=4 4334933698669938 r005 Re(z^2+c),c=-17/22+65/128*I,n=2 4334933731078778 r005 Im(z^2+c),c=29/90+27/41*I,n=4 4334933742009834 r005 Im(z^2+c),c=-3/52+16/29*I,n=17 4334933753335541 a008 Real Root of x^4-2*x^3-4*x^2-24*x-11 4334933769586727 r009 Im(z^3+c),c=-43/126+31/45*I,n=60 4334933781761159 a007 Real Root Of -20*x^4-861*x^3+261*x^2+76*x+517 4334933786253344 h001 (7/8*exp(2)+7/8)/(2/7*exp(1)+11/12) 4334933806045223 r009 Im(z^3+c),c=-43/126+31/45*I,n=55 4334933825924533 r005 Re(z^2+c),c=-37/26+4/99*I,n=6 4334933833349185 a007 Real Root Of -949*x^4-19*x^3-77*x^2-x+46 4334933834529872 r005 Re(z^2+c),c=-51/82+8/35*I,n=37 4334933872692445 a007 Real Root Of -970*x^4+748*x^3+780*x^2+703*x-478 4334933876627620 l006 ln(5195/8014) 4334933882431149 r005 Re(z^2+c),c=5/74+9/61*I,n=16 4334933886001973 r005 Re(z^2+c),c=-151/114+1/30*I,n=10 4334933896488445 a007 Real Root Of 511*x^4+279*x^3+918*x^2-471*x-372 4334933903127851 a007 Real Root Of 369*x^4-387*x^3+884*x^2-999*x-45 4334933905105441 r005 Re(z^2+c),c=-77/122+4/51*I,n=27 4334933910099695 m005 (1/2*Pi+2/7)/(13/14+3/2*5^(1/2)) 4334933917563127 a001 1836311903/322*322^(3/4) 4334933935444748 r005 Re(z^2+c),c=5/74+9/61*I,n=15 4334933944883606 m001 (-GAMMA(23/24)+ZetaQ(3))/(exp(Pi)+arctan(1/3)) 4334933947744132 r005 Im(z^2+c),c=19/58+42/59*I,n=4 4334933976642403 r002 4th iterates of z^2 + 4334933977739233 s001 sum(1/10^(n-1)*A088182[n],n=1..infinity) 4334933977739233 s001 sum(1/10^n*A088182[n],n=1..infinity) 4334934001424568 a007 Real Root Of -160*x^4+655*x^3-932*x^2-697*x-68 4334934007005344 h001 (4/5*exp(2)+2/11)/(1/10*exp(2)+2/3) 4334934015589915 m001 (Backhouse+Niven)/(Artin-ln(2)/ln(10)) 4334934017630269 a001 4/1597*233^(52/55) 4334934025391831 a007 Real Root Of -200*x^4-986*x^3-389*x^2+373*x-768 4334934040574911 r005 Im(z^2+c),c=-45/118+22/39*I,n=30 4334934050513808 r005 Im(z^2+c),c=29/82+5/57*I,n=23 4334934055856511 m001 (Pi-Psi(1,1/3))/(arctan(1/3)+GlaisherKinkelin) 4334934058645791 a001 2/13*987^(9/11) 4334934072687084 m005 (1/6+1/4*5^(1/2))/(7/11*Zeta(3)+10/11) 4334934076475633 r005 Re(z^2+c),c=-77/114+8/53*I,n=25 4334934090264410 a007 Real Root Of -462*x^4+548*x^3+835*x^2+701*x-32 4334934094031923 a007 Real Root Of -418*x^4+703*x^3-598*x^2+615*x+451 4334934098689217 r009 Im(z^3+c),c=-25/64+26/61*I,n=45 4334934098777149 r005 Im(z^2+c),c=11/30+10/41*I,n=5 4334934098918746 s002 sum(A270754[n]/(n*exp(pi*n)-1),n=1..infinity) 4334934102378611 m005 (1/2*5^(1/2)+1/9)/(3/8*gamma-1/2) 4334934122939564 l006 ln(5066/7815) 4334934166208960 r005 Re(z^2+c),c=-3/5+31/123*I,n=50 4334934176547032 m001 TreeGrowth2nd*Kolakoski*exp(OneNinth)^2 4334934207473445 r005 Im(z^2+c),c=11/98+29/59*I,n=34 4334934212524530 r005 Re(z^2+c),c=-37/64+17/52*I,n=47 4334934220277590 m001 (arctan(1/2)*MasserGramain-Paris)/arctan(1/2) 4334934225383248 r002 7th iterates of z^2 + 4334934225383248 r002 7th iterates of z^2 + 4334934232412851 r005 Re(z^2+c),c=-2/3+90/197*I,n=12 4334934249420423 a007 Real Root Of 4*x^4-522*x^3+567*x^2-131*x-206 4334934262464525 r005 Re(z^2+c),c=-9/16+21/122*I,n=5 4334934283993909 r009 Re(z^3+c),c=-29/60+6/35*I,n=42 4334934289131042 a001 86000486440/321*199^(1/11) 4334934292991195 r009 Im(z^3+c),c=-3/38+22/43*I,n=21 4334934299175027 m005 (1/2*2^(1/2)-7/11)/(2*Catalan-1/5) 4334934304851215 r005 Im(z^2+c),c=-9/122+37/62*I,n=42 4334934315059356 r002 43th iterates of z^2 + 4334934315746542 b008 13+8*E^(4/3) 4334934319191694 a003 cos(Pi*16/43)*cos(Pi*46/99) 4334934321841342 a007 Real Root Of -455*x^4+806*x^3+673*x^2+888*x-561 4334934337609964 r002 46th iterates of z^2 + 4334934347541121 r005 Im(z^2+c),c=3/11+19/46*I,n=31 4334934355955494 a005 (1/cos(3/232*Pi))^1777 4334934357035074 r002 40th iterates of z^2 + 4334934367021343 r005 Re(z^2+c),c=-79/94+9/44*I,n=38 4334934372673986 r005 Re(z^2+c),c=-11/18+7/38*I,n=51 4334934382123383 l006 ln(4937/7616) 4334934384558639 s002 sum(A072496[n]/(n^2*pi^n+1),n=1..infinity) 4334934387881788 a007 Real Root Of -279*x^4+239*x^3+920*x^2+624*x-453 4334934392274379 m001 (Pi-Shi(1))/(Zeta(1,-1)+MasserGramain) 4334934397720740 r005 Re(z^2+c),c=-7/122+28/39*I,n=34 4334934400032483 a001 4052739537881/15127*199^(1/11) 4334934406460718 b008 48+PolyLog[2,-12] 4334934407071572 m001 (PlouffeB+TwinPrimes)/(Chi(1)+Grothendieck) 4334934410384021 r005 Im(z^2+c),c=11/90+19/39*I,n=63 4334934412455827 a001 53316291173/5778*521^(8/13) 4334934415366422 a001 1201881744/341*521^(10/13) 4334934416212786 a001 3536736619241/13201*199^(1/11) 4334934426212763 a001 3278735159921/12238*199^(1/11) 4334934438054812 a007 Real Root Of 27*x^4-59*x^3+487*x^2-989*x-526 4334934438799389 r002 64th iterates of z^2 + 4334934439313430 m001 CopelandErdos*MertensB3-RenyiParking 4334934468573346 a001 2504730781961/9349*199^(1/11) 4334934475081289 m005 (35/44+1/4*5^(1/2))/(5/8*2^(1/2)-4/7) 4334934477536844 r009 Im(z^3+c),c=-17/46+23/42*I,n=6 4334934484105459 m001 ZetaP(2)/RenyiParking/HardHexagonsEntropy 4334934506436763 m005 (1/3*gamma-2/7)/(4/5*5^(1/2)+4/11) 4334934516081006 b008 3/2+ArcSinh[6*Sqrt[2]] 4334934517727336 m001 MertensB2/((1+3^(1/2))^(1/2)-2^(1/2)) 4334934522444735 p001 sum((-1)^n/(281*n+23)/(25^n),n=0..infinity) 4334934523357271 a001 139583862445/15127*521^(8/13) 4334934525334959 r005 Im(z^2+c),c=19/122+17/37*I,n=24 4334934539537574 a001 365435296162/39603*521^(8/13) 4334934541898249 a001 956722026041/103682*521^(8/13) 4334934542242666 a001 2504730781961/271443*521^(8/13) 4334934542292916 a001 6557470319842/710647*521^(8/13) 4334934542304779 a001 10610209857723/1149851*521^(8/13) 4334934542323972 a001 4052739537881/439204*521^(8/13) 4334934542455528 a001 140728068720/15251*521^(8/13) 4334934543357226 a001 591286729879/64079*521^(8/13) 4334934544665859 a008 Real Root of x^4-2*x^3+5*x^2+28*x+11 4334934549537551 a001 7787980473/844*521^(8/13) 4334934549646570 m005 (1/2*3^(1/2)-5/6)/(3/10*5^(1/2)+1/12) 4334934551614351 r002 4i'th iterates of 2*x/(1-x^2) of 4334934583146778 a007 Real Root Of 910*x^4-98*x^3+393*x^2-819*x-469 4334934584627500 a001 86267571272/843*521^(3/13) 4334934591898136 a001 86267571272/9349*521^(8/13) 4334934598761560 r005 Im(z^2+c),c=23/86+22/63*I,n=25 4334934617543256 p001 sum(1/(506*n+233)/(32^n),n=0..infinity) 4334934625515542 r005 Im(z^2+c),c=9/26+13/61*I,n=27 4334934627759129 m001 1/arctan(1/2)/ln(ArtinRank2)/sinh(1)^2 4334934639121550 r005 Im(z^2+c),c=5/94+10/19*I,n=25 4334934649608114 a003 sin(Pi*17/91)-sin(Pi*53/118) 4334934655215145 l006 ln(4808/7417) 4334934655332561 r002 26th iterates of z^2 + 4334934664746654 r005 Re(z^2+c),c=-73/118+3/29*I,n=38 4334934666840336 m001 1/CopelandErdos^2/ln(Champernowne)*Rabbit^2 4334934673570025 a008 Real Root of x^4-5*x^2-105*x+196 4334934679556274 a007 Real Root Of -133*x^4-518*x^3+475*x^2+928*x-134 4334934686825624 r002 48th iterates of z^2 + 4334934687131524 a007 Real Root Of -865*x^4+891*x^3-363*x^2+163*x+242 4334934688033703 r005 Im(z^2+c),c=-4/7+44/113*I,n=3 4334934698141660 m001 1/Trott*ErdosBorwein^2/ln(sqrt(3)) 4334934702343437 m001 1/KhintchineLevy*ln(Kolakoski)*sqrt(5) 4334934712468719 m001 (Magata*ZetaP(3)+QuadraticClass)/Magata 4334934714997432 r009 Im(z^3+c),c=-43/126+31/45*I,n=50 4334934724207292 a001 1/1563*(1/2*5^(1/2)+1/2)^8*3^(1/3) 4334934729327056 a007 Real Root Of 332*x^4-395*x^3-982*x^2-496*x+420 4334934737993249 a001 13/439204*7^(10/51) 4334934741381474 m001 (gamma(3)-Cahen)/(Magata-Tetranacci) 4334934744356694 a007 Real Root Of 412*x^4+89*x^3+610*x^2-450*x-317 4334934747542919 r009 Im(z^3+c),c=-43/126+31/45*I,n=45 4334934751299288 r005 Im(z^2+c),c=31/102+6/17*I,n=38 4334934758917124 a001 956722026041/3571*199^(1/11) 4334934760114191 m001 GAMMA(13/24)/Niven^2*ln(arctan(1/2)) 4334934768864706 m001 (-Rabbit+ZetaQ(4))/(2^(1/2)+Ei(1,1)) 4334934775406268 g007 Psi(2,1/11)+Psi(2,1/10)+Psi(2,7/8)-Psi(2,2/11) 4334934779631498 a003 cos(Pi*1/61)-sin(Pi*36/89) 4334934797948088 m001 GAMMA(1/6)/BesselJ(0,1)^2/ln(GAMMA(5/24))^2 4334934803616553 a008 Real Root of x^4-14*x^2-27*x+27 4334934803722236 r002 42th iterates of z^2 + 4334934826845429 m005 (1/2*gamma+1/4)/(4/5*2^(1/2)+1/9) 4334934830213132 r009 Im(z^3+c),c=-31/114+28/59*I,n=13 4334934834793180 h001 (-6*exp(6)+5)/(-7*exp(2)-4) 4334934838655897 m001 1/Ei(1)^2/ln(GolombDickman)^2*sin(Pi/5)^2 4334934841257482 a007 Real Root Of 155*x^4-171*x^3+346*x^2-901*x-475 4334934864625060 r005 Im(z^2+c),c=25/74+5/63*I,n=61 4334934869330113 r005 Im(z^2+c),c=19/60+11/36*I,n=42 4334934880787015 a001 32951280099/2207*521^(7/13) 4334934882241922 a001 32951280099/3571*521^(8/13) 4334934890299286 a007 Real Root Of 900*x^4-524*x^3-424*x^2-478*x-202 4334934903721056 r002 28i'th iterates of 2*x/(1-x^2) of 4334934921892833 m001 (gamma(2)+BesselK(1,1))/(CareFree+Robbin) 4334934929877688 m006 (3*ln(Pi)+2/5)/(1/6*exp(2*Pi)-4/5) 4334934937673704 r005 Im(z^2+c),c=7/122+25/49*I,n=16 4334934943365175 l006 ln(4679/7218) 4334934943713798 r005 Re(z^2+c),c=-22/31+7/33*I,n=49 4334934969852731 m001 (Trott2nd-Weierstrass)/(FellerTornier+Rabbit) 4334934973783118 r005 Re(z^2+c),c=-37/118+26/43*I,n=51 4334934979367380 s002 sum(A162995[n]/(n*pi^n+1),n=1..infinity) 4334934985142997 r005 Im(z^2+c),c=-19/110+31/47*I,n=47 4334934993681808 r002 44th iterates of z^2 + 4334935021354455 r005 Im(z^2+c),c=-4/3+5/204*I,n=19 4334935026378296 a007 Real Root Of 580*x^4-189*x^3-548*x^2-630*x-206 4334935027140031 l006 ln(25/1908) 4334935030521038 r005 Im(z^2+c),c=29/106+13/37*I,n=62 4334935032213943 r005 Re(z^2+c),c=11/42+23/42*I,n=3 4334935035422804 m001 (Paris-TwinPrimes)/(HardyLittlewoodC5-Niven) 4334935041503165 r005 Im(z^2+c),c=19/94+8/19*I,n=61 4334935049039316 m005 (1/2*3^(1/2)-5/8)/(9/11*gamma-5/12) 4334935058427584 m001 Niven/GaussKuzminWirsing/exp(sin(Pi/12)) 4334935059305767 m001 (Zeta(1,2)+Lehmer)/(sin(1/5*Pi)+exp(-1/2*Pi)) 4334935068252076 m001 (1/2)^gamma/(GAMMA(5/12)^gamma) 4334935068991337 r002 18th iterates of z^2 + 4334935080799691 m001 (LambertW(1)-Riemann2ndZero)/Bloch 4334935081405416 r009 Re(z^3+c),c=-39/64+25/53*I,n=12 4334935082841989 r002 32th iterates of z^2 + 4334935097669143 m001 (arctan(1/2)-exp(1))/(OneNinth+ThueMorse) 4334935097950842 h001 (7/8*exp(1)+5/9)/(4/5*exp(2)+6/7) 4334935107434543 m001 (3^(1/2)-BesselI(0,1))/(-Pi^(1/2)+ArtinRank2) 4334935132379509 m005 (1/2*exp(1)+6)/(6*exp(1)+2/3) 4334935159451363 r002 15th iterates of z^2 + 4334935170215577 r002 61th iterates of z^2 + 4334935171786719 a007 Real Root Of -435*x^4+760*x^3-757*x^2-774*x-116 4334935173201597 a001 233/18*5778^(6/43) 4334935197421474 a005 (1/sin(25/209*Pi))^52 4334935215029807 m004 2*Csc[Sqrt[5]*Pi]+(3*Tan[Sqrt[5]*Pi])/2 4334935227802665 r005 Re(z^2+c),c=-73/122+1/16*I,n=13 4334935229674964 m002 1-Sinh[Pi]^2/25 4334935234185949 m001 TreeGrowth2nd/LaplaceLimit^2/ln((2^(1/3))) 4334935245849605 r002 35th iterates of z^2 + 4334935247854253 l006 ln(4550/7019) 4334935251000031 m005 (1/2*Pi-1/11)/(4*Catalan-1/4) 4334935262874629 r005 Im(z^2+c),c=7/25+15/32*I,n=30 4334935276909491 r009 Im(z^3+c),c=-37/110+41/63*I,n=13 4334935321720523 r005 Re(z^2+c),c=-41/66+1/35*I,n=47 4334935337575639 a007 Real Root Of -968*x^4+65*x^3-123*x^2+54*x+86 4334935339075791 r009 Re(z^3+c),c=-39/94+2/19*I,n=14 4334935339119204 r009 Re(z^3+c),c=-43/82+9/38*I,n=48 4334935353473658 m001 1/exp(Riemann1stZero)*CareFree^2*Zeta(3) 4334935361936950 r005 Re(z^2+c),c=-5/12+7/12*I,n=35 4334935364194877 a001 76/13*701408733^(7/16) 4334935372435773 m001 (Chi(1)-exp(1/exp(1)))/(GAMMA(23/24)+Artin) 4334935374274641 a001 3571/34*377^(37/59) 4334935381957787 r005 Re(z^2+c),c=-29/60+19/44*I,n=21 4334935385098852 m001 Zeta(9)^2/TwinPrimes^2*ln(cosh(1))^2 4334935390668479 m001 (CareFree+Champernowne)/(1-cos(1/5*Pi)) 4334935412350580 r005 Im(z^2+c),c=-20/27+3/23*I,n=19 4334935428020122 r009 Im(z^3+c),c=-4/17+32/45*I,n=58 4334935436845882 p003 LerchPhi(1/1024,3,242/85) 4334935463917446 r005 Re(z^2+c),c=-37/60+7/60*I,n=11 4334935465294618 a007 Real Root Of 142*x^4+604*x^3-211*x^2-804*x-462 4334935480197527 m005 (1/3*Catalan-2/7)/(1/11*2^(1/2)-1/12) 4334935485181991 m001 Pi*2^(1/2)/GAMMA(3/4)*Zeta(1/2)^Bloch 4334935491152747 r005 Im(z^2+c),c=3/13+38/61*I,n=3 4334935493393951 r009 Re(z^3+c),c=-41/86+2/13*I,n=21 4334935514828290 r005 Im(z^2+c),c=-67/106+5/62*I,n=50 4334935518008476 r005 Re(z^2+c),c=-4/7+20/127*I,n=10 4334935522890946 m001 (Catalan+Champernowne)/(Otter+Riemann2ndZero) 4334935526126727 k005 Champernowne real with floor(Pi*(19*n+119)) 4334935536136737 k001 Champernowne real with 60*n+373 4334935539386651 r009 Re(z^3+c),c=-61/126+9/59*I,n=20 4334935546146757 k005 Champernowne real with floor(sqrt(3)*(35*n+215)) 4334935547507645 r009 Re(z^3+c),c=-55/118+9/58*I,n=53 4334935548711806 m001 (MertensB2+Tribonacci)/(Zeta(5)-Artin) 4334935554956337 m001 arctan(1/2)/(exp(1)-exp(1/2)) 4334935559848496 r005 Im(z^2+c),c=-4/29+35/57*I,n=55 4334935570112645 l006 ln(4421/6820) 4334935571978665 r009 Im(z^3+c),c=-27/74+27/62*I,n=7 4334935593545285 a001 29/196418*3^(50/51) 4334935611867310 r005 Re(z^2+c),c=-51/74+11/54*I,n=6 4334935615883484 r005 Re(z^2+c),c=-39/86+33/62*I,n=49 4334935616202321 r009 Re(z^3+c),c=-9/23+25/39*I,n=3 4334935616483864 m004 -5+125*Pi+30*ProductLog[Sqrt[5]*Pi] 4334935626519981 a007 Real Root Of 461*x^4-572*x^3-960*x^2-522*x+437 4334935632519574 a007 Real Root Of -992*x^4+417*x^3+237*x^2+571*x-291 4334935633484379 r009 Re(z^3+c),c=-47/98+33/64*I,n=25 4334935636309284 p003 LerchPhi(1/12,5,138/185) 4334935638402260 r005 Im(z^2+c),c=-49/122+23/42*I,n=24 4334935640916884 a001 43133785636/2889*521^(7/13) 4334935643827480 a001 7778742049/1364*521^(9/13) 4334935652795145 m001 (MasserGramain+ThueMorse)/(1+3^(1/3)) 4334935656697930 r005 Im(z^2+c),c=-5/4+111/217*I,n=3 4334935663785684 p003 LerchPhi(1/16,1,449/186) 4334935673716828 r005 Im(z^2+c),c=5/24+17/41*I,n=40 4334935674538463 a001 24476*233^(29/55) 4334935674753294 r005 Re(z^2+c),c=-19/30+18/83*I,n=37 4334935682223809 r002 50th iterates of z^2 + 4334935684217224 r002 32th iterates of z^2 + 4334935706254740 r005 Re(z^2+c),c=-75/122+2/43*I,n=21 4334935710673010 m005 (1/2*gamma+1/11)/(3*exp(1)+3/5) 4334935714298437 m005 (1/3*Catalan+3/5)/(8/11*Catalan-7/8) 4334935716488616 a007 Real Root Of -96*x^4-194*x^3-44*x^2+697*x+298 4334935727069538 r005 Im(z^2+c),c=1/25+23/42*I,n=60 4334935735696136 m001 (1+BesselJ(1,1))/(-GAMMA(13/24)+ErdosBorwein) 4334935738398614 p004 log(13441/8713) 4334935740888850 r002 4th iterates of z^2 + 4334935743724142 r005 Im(z^2+c),c=-11/10+9/175*I,n=24 4334935751228628 m001 (Pi+exp(Pi))*Zeta(5)*BesselI(1,2) 4334935751818360 a001 32264490531/2161*521^(7/13) 4334935759707471 m001 ln(GAMMA(1/6))^2/Riemann3rdZero/exp(1) 4334935767998667 a001 591286729879/39603*521^(7/13) 4334935770359342 a001 774004377960/51841*521^(7/13) 4334935770703760 a001 4052739537881/271443*521^(7/13) 4334935770754010 a001 1515744265389/101521*521^(7/13) 4334935770785066 a001 3278735159921/219602*521^(7/13) 4334935770916622 a001 2504730781961/167761*521^(7/13) 4334935771818320 a001 956722026041/64079*521^(7/13) 4334935777998648 a001 182717648081/12238*521^(7/13) 4334935799644285 m001 (BesselJ(0,1)+GAMMA(19/24))/(-Mills+Thue) 4334935812750750 r002 15th iterates of z^2 + 4334935813088606 a001 139583862445/843*521^(2/13) 4334935820359244 a001 139583862445/9349*521^(7/13) 4334935820756670 r005 Im(z^2+c),c=-71/66+15/52*I,n=9 4334935823315378 m005 (7/44+1/4*5^(1/2))/(7/8*5^(1/2)-3/10) 4334935849497833 a007 Real Root Of -163*x^4-524*x^3+673*x^2-509*x+21 4334935886909751 a008 Real Root of x^4-2*x^3-46*x^2-22*x+253 4334935895835222 a007 Real Root Of -192*x^4+126*x^3-848*x^2+848*x+544 4334935897435897 q001 541/1248 4334935898739034 r005 Im(z^2+c),c=19/52+8/29*I,n=45 4334935900302227 m009 (8/5*Catalan+1/5*Pi^2+6)/(1/12*Pi^2-3) 4334935909017005 a007 Real Root Of 770*x^4+427*x^3-806*x^2-917*x+487 4334935911742570 l006 ln(4292/6621) 4334935921217865 a007 Real Root Of 455*x^4-419*x^3-683*x^2-758*x+475 4334935925579019 a001 322/75025*233^(14/33) 4334935925757556 a007 Real Root Of -115*x^4-239*x^3+981*x^2-534*x+391 4334935927002091 r009 Re(z^3+c),c=-65/126+11/56*I,n=54 4334935936296989 a007 Real Root Of 161*x^4+887*x^3+845*x^2+56*x-234 4334935940016393 a001 264431092341/610 4334935957970173 m001 1/Kolakoski*ln(Si(Pi))*RenyiParking^2 4334935962415359 a007 Real Root Of -23*x^4-990*x^3+317*x^2+535*x+594 4334935963359227 m005 (1/3*Catalan-1/5)/(9/11*Pi-5) 4334935969734725 r002 6th iterates of z^2 + 4334935974530274 r005 Im(z^2+c),c=-89/126+19/56*I,n=64 4334935978689251 m009 (Psi(1,1/3)+1/4)/(5/6*Psi(1,2/3)-1/6) 4334935998428743 m001 (cos(1)+ln(gamma))/(Ei(1)+CopelandErdos) 4334936008520679 r005 Im(z^2+c),c=10/29+18/53*I,n=19 4334936026360719 r009 Im(z^3+c),c=-41/56*I,n=6 4334936039157365 r002 21th iterates of z^2 + 4334936055101304 m005 (1/2*gamma-3)/(2*exp(1)+9/11) 4334936089809204 r005 Im(z^2+c),c=-25/36+16/59*I,n=18 4334936095356228 a001 433494437/843*1364^(14/15) 4334936099412622 r009 Im(z^3+c),c=-15/46+27/58*I,n=9 4334936109248204 a001 53316291173/2207*521^(6/13) 4334936110703113 a001 53316291173/3571*521^(7/13) 4334936118371434 m004 -20/Pi+125*Pi+Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 4334936124675024 m001 (BesselI(0,2)-LambertW(1))/(Landau+Magata) 4334936133018000 r005 Re(z^2+c),c=-13/14+37/234*I,n=46 4334936156521441 a007 Real Root Of -730*x^4-136*x^3+968*x^2+542*x-380 4334936158299446 m001 (Psi(2,1/3)+2^(1/2))/(-Grothendieck+Landau) 4334936168151091 m005 (5/6*Pi+2/5)/(1/6*gamma+3/5) 4334936194924271 a001 312119004989*144^(9/17) 4334936199706070 m001 (-GAMMA(7/12)+Totient)/(exp(1)+GAMMA(13/24)) 4334936202839825 a005 (1/sin(41/112*Pi))^117 4334936222866368 a007 Real Root Of -179*x^4-842*x^3-234*x^2+376*x+647 4334936226474827 b008 36+7*ProductLog[3] 4334936237972234 a005 (1/sin(78/211*Pi))^17 4334936250688737 a001 233802911/281*1364^(13/15) 4334936260074105 r005 Im(z^2+c),c=9/62+23/49*I,n=53 4334936262019543 a001 47*(1/2*5^(1/2)+1/2)^31*64079^(14/15) 4334936265131393 a001 76/123*(1/2*5^(1/2)+1/2)^3*123^(7/12) 4334936274544838 l006 ln(4163/6422) 4334936292617377 m001 FellerTornier*(3^(1/3)-Paris) 4334936309710768 r005 Re(z^2+c),c=-3/5+15/43*I,n=35 4334936314856511 m001 (BesselI(1,1)+Salem)/(LambertW(1)+Zeta(1,-1)) 4334936321094982 m001 Salem/(cos(1/12*Pi)+MadelungNaCl) 4334936326630445 m001 BesselK(1,1)^2*ln(CareFree)^2/GAMMA(23/24) 4334936339964378 a007 Real Root Of 852*x^4+808*x^3+188*x^2-866*x-375 4334936347073791 a007 Real Root Of -825*x^4+240*x^3+738*x^2+415*x-309 4334936348419160 a003 cos(Pi*37/120)-sin(Pi*55/111) 4334936373152471 m005 (1/2*3^(1/2)-1)/(5/11*gamma-4/7) 4334936375192972 m001 exp(FeigenbaumD)^2*Lehmer^2/log(2+sqrt(3))^2 4334936379101912 a007 Real Root Of 13*x^4+572*x^3+364*x^2-134*x-809 4334936385348235 r005 Re(z^2+c),c=-23/38+14/45*I,n=54 4334936389242164 r009 Im(z^3+c),c=-15/31+19/51*I,n=32 4334936398953705 m001 exp(GAMMA(19/24))^2/ErdosBorwein/GAMMA(3/4)^2 4334936401402899 m001 1/ln(Bloch)^2/DuboisRaymond/Riemann2ndZero 4334936406021252 a001 1134903170/843*1364^(4/5) 4334936411321777 r009 Im(z^3+c),c=-11/24+25/52*I,n=18 4334936430280642 m001 MertensB1^2*FibonacciFactorial/exp(TwinPrimes) 4334936431395073 r005 Re(z^2+c),c=-59/98+9/25*I,n=42 4334936433524416 r005 Re(z^2+c),c=-21/34+14/99*I,n=28 4334936445978405 a007 Real Root Of 433*x^4-840*x^3-970*x^2-525*x+463 4334936447184940 a001 64079/610*89^(6/19) 4334936452623419 a007 Real Root Of 254*x^4+906*x^3-834*x^2+166*x+501 4334936468784101 r005 Im(z^2+c),c=-39/118+32/55*I,n=33 4334936487415261 r005 Im(z^2+c),c=25/126+14/33*I,n=63 4334936490538903 r004 Im(z^2+c),c=1/10+5/8*I,z(0)=exp(7/12*I*Pi),n=2 4334936511588121 m001 1/exp(GAMMA(1/6))/PrimesInBinary/GAMMA(5/12) 4334936511993920 m005 (1/2*3^(1/2)+3/5)/(1/11*gamma+2/7) 4334936514078713 r009 Re(z^3+c),c=-63/122+20/53*I,n=2 4334936524505378 r002 11th iterates of z^2 + 4334936534337430 r005 Re(z^2+c),c=-27/23+10/43*I,n=10 4334936536940559 m005 (1/2*3^(1/2)-2/5)/(5/8*gamma+5/7) 4334936561353772 a001 1836311903/843*1364^(11/15) 4334936562000666 m001 2^(1/2)*ZetaR(2)-Cahen 4334936578994228 r005 Im(z^2+c),c=9/50+26/59*I,n=47 4334936584523645 a001 843/196418*377^(23/59) 4334936594228882 p003 LerchPhi(1/16,2,272/177) 4334936596897646 r005 Im(z^2+c),c=23/94+3/8*I,n=21 4334936603334520 m001 (GAMMA(5/6)-Pi^(1/2))/(Kac+Thue) 4334936605271867 a007 Real Root Of 647*x^4-765*x^3-505*x^2-207*x-80 4334936622830600 m001 (exp(1/Pi)-sin(1))/(GAMMA(11/12)+ZetaP(3)) 4334936630336509 r009 Re(z^3+c),c=-19/44+7/57*I,n=19 4334936644268797 m001 Porter^2*ln(CopelandErdos)^2/Zeta(5) 4334936657339109 r005 Im(z^2+c),c=-3/40+32/53*I,n=44 4334936660550608 l006 ln(4034/6223) 4334936661781319 m001 (Ei(1,1)+Gompertz)/(Porter+PrimesInBinary) 4334936678083998 a007 Real Root Of -871*x^4+590*x^3+20*x^2+452*x+271 4334936679769979 m001 1/GAMMA(3/4)*exp(Robbin)^2*sqrt(2) 4334936686877326 l006 ln(5643/5893) 4334936692158143 b008 21*ArcSinh[47]^2 4334936703463570 m001 (MertensB3-Stephens)/KhinchinHarmonic 4334936703625900 r005 Re(z^2+c),c=-39/64+16/57*I,n=14 4334936704170188 m001 (exp(Pi)-GAMMA(1/12))/Khinchin 4334936705815744 r005 Im(z^2+c),c=31/126+11/29*I,n=51 4334936713243145 r005 Re(z^2+c),c=-9/14+5/46*I,n=15 4334936716686298 a001 2971215073/843*1364^(2/3) 4334936723821221 m002 Pi+(Pi^6*Coth[Pi])/24 4334936745786393 h001 (1/11*exp(2)+3/10)/(5/7*exp(1)+3/10) 4334936748964031 a001 182717648081/682*199^(1/11) 4334936758213101 a007 Real Root Of -240*x^4+9*x^3-656*x^2-301*x+2 4334936762740720 r005 Im(z^2+c),c=1/8+14/29*I,n=32 4334936763589771 r005 Re(z^2+c),c=-41/66+2/61*I,n=53 4334936774189294 a007 Real Root Of 256*x^4-233*x^3+49*x^2-447*x-231 4334936778658336 m001 Niven/(ZetaQ(2)^FeigenbaumD) 4334936780819522 r009 Re(z^3+c),c=-1/42+41/44*I,n=10 4334936786231209 r005 Im(z^2+c),c=-6/17+35/57*I,n=7 4334936788760648 r002 6th iterates of z^2 + 4334936797802066 m008 (1/6*Pi^5-1/4)/(5*Pi-4) 4334936805430655 a007 Real Root Of -635*x^4+357*x^3+143*x^2+626*x+296 4334936830322874 r002 8th iterates of z^2 + 4334936842417307 m004 6+(3*Sqrt[5])/Pi-Log[Sqrt[5]*Pi]^2 4334936843836430 a007 Real Root Of -x^4-433*x^3+214*x^2-4*x-31 4334936850689783 a001 4/233*3^(43/51) 4334936855824465 m005 (1/2*gamma+7/11)/(-17/88+2/11*5^(1/2)) 4334936858835921 r005 Re(z^2+c),c=-9/14+19/96*I,n=19 4334936869378289 a001 139583862445/5778*521^(6/13) 4334936872018829 a001 1602508992/281*1364^(3/5) 4334936872288886 a001 1144206275/124*521^(8/13) 4334936875620476 m001 (FeigenbaumMu-FellerTornier)/(ln(2)-3^(1/3)) 4334936877737835 a007 Real Root Of -345*x^4-140*x^3+469*x^2+963*x-482 4334936893351198 r009 Im(z^3+c),c=-4/19+31/63*I,n=7 4334936898668021 m005 (1/36+1/4*5^(1/2))/(3/4*Catalan+2/3) 4334936903747225 m001 (LaplaceLimit+ThueMorse)/(GAMMA(11/12)-Conway) 4334936909137144 r005 Im(z^2+c),c=37/110+15/61*I,n=16 4334936918177789 m002 -5-Pi+ProductLog[Pi]-Pi*Sinh[Pi] 4334936932254299 r005 Re(z^2+c),c=-31/50+5/37*I,n=38 4334936950509465 m001 (BesselI(0,2)+GAMMA(11/12))/(OneNinth+Robbin) 4334936959020047 r005 Im(z^2+c),c=15/44+11/42*I,n=63 4334936971761792 r005 Im(z^2+c),c=43/126+19/54*I,n=9 4334936973479316 m001 (Zeta(1,2)-MadelungNaCl)/(Robbin-Sarnak) 4334936974842998 r005 Re(z^2+c),c=-17/29+9/35*I,n=30 4334936977702524 a007 Real Root Of 276*x^4+959*x^3-816*x^2+774*x-653 4334936980279796 a001 365435296162/15127*521^(6/13) 4334936984630423 r002 14th iterates of z^2 + 4334936988102214 r009 Re(z^3+c),c=-29/60+3/20*I,n=21 4334936991706716 m005 (1/3*gamma-1/8)/(9/11*Zeta(3)+4/7) 4334936996460109 a001 956722026041/39603*521^(6/13) 4334936998820784 a001 2504730781961/103682*521^(6/13) 4334936999165202 a001 6557470319842/271443*521^(6/13) 4334936999246508 a001 10610209857723/439204*521^(6/13) 4334936999378064 a001 4052739537881/167761*521^(6/13) 4334937000279762 a001 1548008755920/64079*521^(6/13) 4334937006460092 a001 591286729879/24476*521^(6/13) 4334937007793499 r005 Im(z^2+c),c=25/106+23/59*I,n=57 4334937010052941 m001 MinimumGamma^2/exp(Backhouse)^2/GAMMA(1/3) 4334937012978503 m001 1/GAMMA(5/12)*MadelungNaCl^2*ln(gamma)^2 4334937027351366 a001 7778742049/843*1364^(8/15) 4334937041550060 a001 267913919*521^(1/13) 4334937041867231 m001 (-GAMMA(7/12)+Cahen)/(exp(1)-exp(Pi)) 4334937042879472 v002 sum(1/(5^n*(17*n^2-41*n+79)),n=1..infinity) 4334937048081550 b008 LogBarnesG[1+Sqrt[ArcCosh[3]]] 4334937048820700 a001 225851433717/9349*521^(6/13) 4334937061065858 a007 Real Root Of -686*x^4-613*x^3+747*x^2+537*x-299 4334937063247342 r002 58th iterates of z^2 + 4334937068604645 r008 a(0)=0,K{-n^6,25-52*n-5*n^2+8*n^3} 4334937070715379 m001 1/Robbin^2*LaplaceLimit^2/exp(Pi) 4334937072059431 l006 ln(3905/6024) 4334937078139220 m001 ln(GAMMA(17/24))^2/Niven*sinh(1) 4334937099622183 p001 sum((-1)^n/(447*n+23)/(16^n),n=0..infinity) 4334937108650644 r002 24th iterates of z^2 + 4334937109198179 r005 Re(z^2+c),c=13/102+15/43*I,n=17 4334937112253579 m001 Zeta(5)^FeigenbaumC-HardyLittlewoodC3 4334937124124199 r005 Im(z^2+c),c=5/36+28/59*I,n=49 4334937125094349 r002 43th iterates of z^2 + 4334937128968023 r005 Im(z^2+c),c=27/98+7/20*I,n=56 4334937131018664 r009 Re(z^3+c),c=-7/86+16/23*I,n=40 4334937145964117 r005 Im(z^2+c),c=9/86+28/55*I,n=28 4334937182683909 a001 12586269025/843*1364^(7/15) 4334937201342657 l006 ln(8747/8785) 4334937204946959 p001 sum((-1)^n/(494*n+417)/n/(25^n),n=1..infinity) 4334937208119057 b008 -1+Tanh[3/2+E] 4334937231391686 b008 37+11*EulerGamma 4334937236016015 a007 Real Root Of -294*x^4-360*x^3+927*x^2+887*x-519 4334937241309490 r002 22th iterates of z^2 + 4334937244317719 a005 (1/cos(37/87*Pi))^31 4334937262271969 r005 Re(z^2+c),c=-8/13+9/56*I,n=43 4334937263768572 m001 exp(BesselK(1,1))*FeigenbaumC^2*sin(1)^2 4334937264544596 r002 4th iterates of z^2 + 4334937268387334 r002 64th iterates of z^2 + 4334937270115569 r002 20th iterates of z^2 + 4334937279758308 m001 (BesselI(1,1)+Bloch)/(Si(Pi)+cos(1)) 4334937281437838 g007 Psi(2,8/11)+Psi(2,3/4)-Psi(2,5/11)-Psi(2,2/5) 4334937286674603 a001 15127/55*17711^(2/43) 4334937293860643 r002 31th iterates of z^2 + 4334937299537456 m001 (LaplaceLimit+Magata)^Khinchin 4334937305811707 r005 Re(z^2+c),c=-18/29+3/53*I,n=53 4334937307331429 r005 Im(z^2+c),c=31/110+12/35*I,n=61 4334937311932657 r005 Re(z^2+c),c=-41/66+1/51*I,n=51 4334937319817520 r005 Im(z^2+c),c=8/23+12/49*I,n=42 4334937321107159 a007 Real Root Of 337*x^4-927*x^3+547*x^2-800*x-537 4334937325838745 r005 Re(z^2+c),c=-5/8+25/118*I,n=35 4334937333573831 r009 Re(z^3+c),c=-3/62+8/39*I,n=5 4334937337709743 a001 86267571272/2207*521^(5/13) 4334937338016457 a001 20365011074/843*1364^(2/5) 4334937339164651 a001 86267571272/3571*521^(6/13) 4334937350999857 m001 gamma(3)*(ln(Pi)+cos(1/12*Pi)) 4334937353876829 r005 Im(z^2+c),c=13/40+13/44*I,n=58 4334937361180631 r005 Re(z^2+c),c=-10/17+7/24*I,n=42 4334937379469330 r009 Im(z^3+c),c=-16/31+14/47*I,n=25 4334937380027186 a001 377/2207*45537549124^(15/17) 4334937380027186 a001 377/2207*312119004989^(9/11) 4334937380027186 a001 377/2207*14662949395604^(5/7) 4334937380027186 a001 377/2207*(1/2+1/2*5^(1/2))^45 4334937380027186 a001 377/2207*192900153618^(5/6) 4334937380027186 a001 377/2207*28143753123^(9/10) 4334937380027186 a001 377/2207*10749957122^(15/16) 4334937380035587 a001 329/281*(1/2+1/2*5^(1/2))^41 4334937382909450 m001 Tribonacci/exp(ErdosBorwein)*sinh(1) 4334937386512139 r005 Im(z^2+c),c=-20/31+1/46*I,n=12 4334937388461552 r005 Re(z^2+c),c=-65/106+5/33*I,n=39 4334937396351116 a007 Real Root Of -952*x^4-12*x^3-567*x^2+484*x+349 4334937396703820 a003 sin(Pi*1/73)/sin(Pi*53/115) 4334937401705951 a001 567451585/161*322^(5/6) 4334937404367257 a007 Real Root Of 109*x^4+529*x^3+199*x^2-201*x-9 4334937407116194 m001 (ln(2^(1/2)+1)-Magata)/(Pi-Psi(2,1/3)) 4334937428994417 r005 Re(z^2+c),c=-71/58+8/39*I,n=8 4334937432244930 r002 38th iterates of z^2 + 4334937442474064 m005 (1/2*2^(1/2)+5/6)/(9/10*exp(1)-6) 4334937448750843 a007 Real Root Of 286*x^4+997*x^3-819*x^2+817*x-846 4334937454169169 m001 (-FeigenbaumB+Kac)/(2^(1/2)+Zeta(1,2)) 4334937460373675 r005 Im(z^2+c),c=1/54+13/24*I,n=22 4334937471265676 r005 Im(z^2+c),c=33/106+15/49*I,n=54 4334937491173653 r002 37th iterates of z^2 + 4334937493349010 a001 10983760033/281*1364^(1/3) 4334937500378799 a007 Real Root Of -961*x^4+809*x^3+717*x^2+815*x-520 4334937504844389 m001 1/ln(GAMMA(7/24))/Niven/Zeta(3) 4334937507963717 h005 exp(sin(Pi*15/49)/cos(Pi*14/45)) 4334937511685100 l006 ln(3776/5825) 4334937512851609 r002 34th iterates of z^2 + 4334937531482695 r002 62th iterates of z^2 + 4334937551125502 r005 Im(z^2+c),c=17/60+6/17*I,n=29 4334937572566717 a007 Real Root Of 856*x^4+62*x^3+986*x^2-22*x-220 4334937575095200 r005 Im(z^2+c),c=-111/110+7/27*I,n=8 4334937575297632 a001 161/17*196418^(16/51) 4334937575759918 r005 Re(z^2+c),c=-35/58+17/46*I,n=26 4334937584535827 a007 Real Root Of 967*x^4-623*x^3+634*x^2-602*x-465 4334937585267802 a007 Real Root Of 606*x^4-862*x^3+144*x^2+283*x+4 4334937589343746 h001 (3/10*exp(2)+7/8)/(7/8*exp(2)+2/3) 4334937596237979 r005 Re(z^2+c),c=29/86+21/50*I,n=8 4334937597809123 m005 (1/2*Pi+5/11)/(2*5^(1/2)+1/5) 4334937610831830 m001 1/BesselK(1,1)^2/RenyiParking^2*ln(Catalan) 4334937613271216 m001 MasserGramain*TwinPrimes^exp(Pi) 4334937643618751 r002 24th iterates of z^2 + 4334937644921586 a007 Real Root Of -480*x^4+708*x^3+948*x^2+607*x-482 4334937648681569 a001 53316291173/843*1364^(4/15) 4334937667458588 a008 Real Root of x^4-x^3+15*x^2-130*x+10 4334937705111639 m001 ln(Ei(1))/GlaisherKinkelin/GAMMA(1/12) 4334937717993246 a007 Real Root Of -63*x^4+673*x^3+602*x^2+56*x-190 4334937724669760 m001 (ln(5)+ln(Pi))/(CareFree-Totient) 4334937728979525 a007 Real Root Of -693*x^4-542*x^3-36*x^2+876*x+38 4334937738057673 r008 a(0)=5,K{-n^6,29+15*n-39*n^2-4*n^3} 4334937761647347 m001 TwinPrimes/Backhouse/exp(GAMMA(19/24))^2 4334937761740010 r002 33th iterates of z^2 + 4334937777650320 p003 LerchPhi(1/1024,1,247/107) 4334937785681405 m001 (FransenRobinson+Paris)/(Robbin+ZetaQ(3)) 4334937793893823 m001 (1+ln(2)/ln(10))/(5^(1/2)+BesselJ(0,1)) 4334937804014134 a001 86267571272/843*1364^(1/5) 4334937811541005 p003 LerchPhi(1/10,2,370/239) 4334937850150762 r002 47th iterates of z^2 + 4334937853814632 r009 Re(z^3+c),c=-13/34+4/57*I,n=22 4334937862072184 m005 (1/3*exp(1)+1/4)/(4/11*Catalan-3) 4334937868885143 h001 (-2*exp(8)+3)/(-8*exp(1)+8) 4334937874605406 r005 Re(z^2+c),c=-41/70+7/32*I,n=5 4334937877300765 m001 Lehmer/(Riemann1stZero-arctan(1/2)) 4334937900495742 r005 Re(z^2+c),c=-23/38+7/40*I,n=31 4334937911405797 r002 32th iterates of z^2 + 4334937920722634 a007 Real Root Of -37*x^4-172*x^3+47*x^2+259*x-706 4334937923661536 r005 Re(z^2+c),c=-83/110+4/59*I,n=32 4334937927539903 q001 1711/3947 4334937930062617 a001 692289587431/1597 4334937945944630 m005 (1/2*3^(1/2)-3/5)/(3*5^(1/2)-4/7) 4334937950067684 a001 165580141/843*3571^(16/17) 4334937959346705 a001 139583862445/843*1364^(2/15) 4334937963254009 a008 Real Root of (12+18*x-18*x^2+10*x^3) 4334937966498616 m001 ln(GAMMA(1/12))^2/Conway/GAMMA(11/12) 4334937969774408 r009 Re(z^3+c),c=-14/29+9/56*I,n=25 4334937970064195 a001 267914296/843*3571^(15/17) 4334937972354468 a007 Real Root Of 861*x^4-972*x^3-754*x^2-863*x-342 4334937976107784 m001 (1+cos(1))/(-BesselJ(0,1)+HardyLittlewoodC5) 4334937978936330 s002 sum(A255425[n]/((exp(n)-1)/n),n=1..infinity) 4334937982411219 l006 ln(3647/5626) 4334937989303154 r005 Re(z^2+c),c=-5/9+12/31*I,n=53 4334937990060705 a001 433494437/843*3571^(14/17) 4334937996586376 r005 Re(z^2+c),c=-5/8+3/121*I,n=30 4334937999252842 r005 Re(z^2+c),c=-69/74+9/61*I,n=56 4334938005517263 m001 Pi^(1/2)/(exp(1/Pi)-cos(1/12*Pi)) 4334938005517263 m001 sqrt(Pi)/(exp(1/Pi)-cos(Pi/12)) 4334938008900691 r005 Re(z^2+c),c=-2/3+8/21*I,n=11 4334938010057216 a001 233802911/281*3571^(13/17) 4334938030053726 a001 1134903170/843*3571^(12/17) 4334938037943824 r002 49th iterates of z^2 + 4334938049247155 b008 ArcCosh[229/6] 4334938050050237 a001 1836311903/843*3571^(11/17) 4334938054276281 m001 ln(LaplaceLimit)/KhintchineHarmonic*Tribonacci 4334938070046748 a001 2971215073/843*3571^(10/17) 4334938090043259 a001 1602508992/281*3571^(9/17) 4334938090489463 r009 Re(z^3+c),c=-47/122+21/34*I,n=6 4334938097840043 a001 75283811239/1926*521^(5/13) 4334938100750641 a001 10182505537/682*521^(7/13) 4334938107419824 a007 Real Root Of -91*x^4-197*x^3+658*x^2-767*x+397 4334938110039770 a001 7778742049/843*3571^(8/17) 4334938114679280 a001 267913919*1364^(1/15) 4334938117026865 r005 Re(z^2+c),c=-39/64+5/43*I,n=26 4334938126433867 a001 1364/89*514229^(21/22) 4334938129741050 h001 (-3*exp(3)-12)/(-8*exp(3)-6) 4334938130036281 a001 12586269025/843*3571^(7/17) 4334938140157493 a001 377/5778*(1/2+1/2*5^(1/2))^47 4334938140166073 a001 2584/843*2537720636^(13/15) 4334938140166073 a001 2584/843*45537549124^(13/17) 4334938140166073 a001 2584/843*14662949395604^(13/21) 4334938140166073 a001 2584/843*(1/2+1/2*5^(1/2))^39 4334938140166073 a001 2584/843*192900153618^(13/18) 4334938140166073 a001 2584/843*73681302247^(3/4) 4334938140166073 a001 2584/843*10749957122^(13/16) 4334938140166073 a001 2584/843*599074578^(13/14) 4334938140988768 r009 Re(z^3+c),c=-7/106+23/47*I,n=18 4334938146959587 r005 Im(z^2+c),c=-1/18+42/61*I,n=12 4334938150032793 a001 20365011074/843*3571^(6/17) 4334938152236482 m001 (gamma-sin(1/12*Pi))/(Sarnak+Trott) 4334938159752163 r005 Im(z^2+c),c=-4/25+20/29*I,n=32 4334938161670860 m001 GAMMA(1/4)*ln(GlaisherKinkelin)^2*GAMMA(11/24) 4334938170029304 a001 10983760033/281*3571^(5/17) 4334938190025815 a001 53316291173/843*3571^(4/17) 4334938198378367 a001 5600748293801/34*6557470319842^(11/19) 4334938208741581 a001 591286729879/15127*521^(5/13) 4334938210022327 a001 86267571272/843*3571^(3/17) 4334938220406601 a001 1812437669952/4181 4334938223025536 a001 63245986/843*9349^(18/19) 4334938224921898 a001 516002918640/13201*521^(5/13) 4334938225635887 a001 34111385/281*9349^(17/19) 4334938227282575 a001 4052739537881/103682*521^(5/13) 4334938227626993 a001 3536736619241/90481*521^(5/13) 4334938227839855 a001 6557470319842/167761*521^(5/13) 4334938228246238 a001 165580141/843*9349^(16/19) 4334938228741553 a001 2504730781961/64079*521^(5/13) 4334938230018838 a001 139583862445/843*3571^(2/17) 4334938230856590 a001 267914296/843*9349^(15/19) 4334938233466941 a001 433494437/843*9349^(14/19) 4334938234771790 m001 (GaussAGM+ZetaQ(2))/(ln(5)+BesselJ(1,1)) 4334938234921884 a001 956722026041/24476*521^(5/13) 4334938236077293 a001 233802911/281*9349^(13/19) 4334938236791010 r002 27th iterates of z^2 + 4334938236818140 m001 (1-ln(2^(1/2)+1))/(MertensB3+OrthogonalArrays) 4334938238687644 a001 1134903170/843*9349^(12/19) 4334938241297996 a001 1836311903/843*9349^(11/19) 4334938243908347 a001 2971215073/843*9349^(10/19) 4334938246518699 a001 1602508992/281*9349^(9/19) 4334938249129050 a001 7778742049/843*9349^(8/19) 4334938249995604 r005 Re(z^2+c),c=-41/66+1/40*I,n=56 4334938250015350 a001 267913919*3571^(1/17) 4334938251059033 a001 377/15127*14662949395604^(7/9) 4334938251059033 a001 377/15127*(1/2+1/2*5^(1/2))^49 4334938251059033 a001 377/15127*505019158607^(7/8) 4334938251067617 a001 2255/281*(1/2+1/2*5^(1/2))^37 4334938251739402 a001 12586269025/843*9349^(7/19) 4334938254349753 a001 20365011074/843*9349^(6/19) 4334938256960104 a001 10983760033/281*9349^(5/19) 4334938259570456 a001 53316291173/843*9349^(4/19) 4334938262180807 a001 86267571272/843*9349^(3/19) 4334938262767220 a001 365001801725/842 4334938263120380 a001 24157817/843*24476^(20/21) 4334938263464952 a001 39088169/843*24476^(19/21) 4334938263809527 a001 63245986/843*24476^(6/7) 4334938264154101 a001 34111385/281*24476^(17/21) 4334938264498675 a001 165580141/843*24476^(16/21) 4334938264791159 a001 139583862445/843*9349^(2/19) 4334938264843249 a001 267914296/843*24476^(5/7) 4334938265187823 a001 433494437/843*24476^(2/3) 4334938265532398 a001 233802911/281*24476^(13/21) 4334938265876972 a001 1134903170/843*24476^(4/7) 4334938266221546 a001 1836311903/843*24476^(11/21) 4334938266566120 a001 2971215073/843*24476^(10/21) 4334938266910694 a001 1602508992/281*24476^(3/7) 4334938267239350 a001 377/39603*817138163596^(17/19) 4334938267239350 a001 377/39603*14662949395604^(17/21) 4334938267239350 a001 377/39603*(1/2+1/2*5^(1/2))^51 4334938267239350 a001 377/39603*192900153618^(17/18) 4334938267247934 a001 17711/843*2537720636^(7/9) 4334938267247934 a001 17711/843*17393796001^(5/7) 4334938267247934 a001 17711/843*312119004989^(7/11) 4334938267247934 a001 17711/843*14662949395604^(5/9) 4334938267247934 a001 17711/843*(1/2+1/2*5^(1/2))^35 4334938267247934 a001 17711/843*505019158607^(5/8) 4334938267247934 a001 17711/843*28143753123^(7/10) 4334938267247934 a001 17711/843*599074578^(5/6) 4334938267247934 a001 17711/843*228826127^(7/8) 4334938267255268 a001 7778742049/843*24476^(8/21) 4334938267401510 a001 267913919*9349^(1/19) 4334938267470678 a001 228826127/233*34^(8/19) 4334938267599843 a001 12586269025/843*24476^(1/3) 4334938267944417 a001 20365011074/843*24476^(2/7) 4334938268288991 a001 10983760033/281*24476^(5/21) 4334938268633565 a001 53316291173/843*24476^(4/21) 4334938268947552 a001 12422632597323/28657 4334938268978139 a001 86267571272/843*24476^(1/7) 4334938269002047 a001 9227465/843*64079^(22/23) 4334938269047934 a001 4976784/281*64079^(21/23) 4334938269093840 a001 24157817/843*64079^(20/23) 4334938269139739 a001 39088169/843*64079^(19/23) 4334938269185641 a001 63245986/843*64079^(18/23) 4334938269231542 a001 34111385/281*64079^(17/23) 4334938269277443 a001 165580141/843*64079^(16/23) 4334938269322714 a001 139583862445/843*24476^(2/21) 4334938269323345 a001 267914296/843*64079^(15/23) 4334938269369246 a001 433494437/843*64079^(14/23) 4334938269415147 a001 233802911/281*64079^(13/23) 4334938269461048 a001 1134903170/843*64079^(12/23) 4334938269506949 a001 1836311903/843*64079^(11/23) 4334938269552850 a001 2971215073/843*64079^(10/23) 4334938269598751 a001 1602508992/281*64079^(9/23) 4334938269600027 a001 377/103682*(1/2+1/2*5^(1/2))^53 4334938269608610 a001 15456/281*141422324^(11/13) 4334938269608610 a001 15456/281*2537720636^(11/15) 4334938269608610 a001 15456/281*45537549124^(11/17) 4334938269608610 a001 15456/281*312119004989^(3/5) 4334938269608610 a001 15456/281*14662949395604^(11/21) 4334938269608610 a001 15456/281*(1/2+1/2*5^(1/2))^33 4334938269608610 a001 15456/281*192900153618^(11/18) 4334938269608610 a001 15456/281*10749957122^(11/16) 4334938269608610 a001 15456/281*1568397607^(3/4) 4334938269608610 a001 15456/281*599074578^(11/14) 4334938269608614 a001 15456/281*33385282^(11/12) 4334938269644653 a001 7778742049/843*64079^(8/23) 4334938269667288 a001 267913919*24476^(1/21) 4334938269690554 a001 12586269025/843*64079^(7/23) 4334938269736455 a001 20365011074/843*64079^(6/23) 4334938269763128 r005 Im(z^2+c),c=17/70+16/41*I,n=31 4334938269782356 a001 10983760033/281*64079^(5/23) 4334938269828257 a001 53316291173/843*64079^(4/23) 4334938269849250 a001 32522874369544/75025 4334938269874158 a001 86267571272/843*64079^(3/23) 4334938269888641 a001 24157817/843*167761^(4/5) 4334938269919445 a001 267914296/843*167761^(3/5) 4334938269920060 a001 139583862445/843*64079^(2/23) 4334938269944445 a001 377/271443*(1/2+1/2*5^(1/2))^55 4334938269944445 a001 377/271443*3461452808002^(11/12) 4334938269950251 a001 2971215073/843*167761^(2/5) 4334938269953028 a001 121393/843*(1/2+1/2*5^(1/2))^31 4334938269953028 a001 121393/843*9062201101803^(1/2) 4334938269965961 a001 267913919*64079^(1/23) 4334938269980806 a001 85145990511309/196418 4334938269981056 a001 10983760033/281*167761^(1/5) 4334938269991956 a001 3524578/843*439204^(8/9) 4334938269994379 a001 4976784/281*439204^(7/9) 4334938269994694 a001 377/710647*14662949395604^(19/21) 4334938269994694 a001 377/710647*(1/2+1/2*5^(1/2))^57 4334938269996880 a001 63245986/843*439204^(2/3) 4334938269999377 a001 267914296/843*439204^(5/9) 4334938270001874 a001 1134903170/843*439204^(4/9) 4334938270002026 a001 377/1860498*(1/2+1/2*5^(1/2))^59 4334938270002800 a001 583599300981840/1346269 4334938270003095 a001 377/4870847*(1/2+1/2*5^(1/2))^61 4334938270003208 a001 1527882805781137/3524578 4334938270003252 a001 377/12752043*(1/2+1/2*5^(1/2))^63 4334938270003268 a001 307696085873967/709805 4334938270003278 a001 377*(1/2+1/2*5^(1/2))^29 4334938270003278 a001 377*1322157322203^(1/2) 4334938270003288 a001 13/711491*(1/2+1/2*5^(1/2))^64 4334938270003305 a001 2472166310580434/5702887 4334938270003348 a001 377/7881196*(1/2+1/2*5^(1/2))^62 4334938270003461 a001 944283504799297/2178309 4334938270003757 a001 377/3010349*14662949395604^(20/21) 4334938270003757 a001 377/3010349*(1/2+1/2*5^(1/2))^60 4334938270004371 a001 1602508992/281*439204^(1/3) 4334938270004531 a001 360684203817457/832040 4334938270006557 a001 377/1149851*(1/2+1/2*5^(1/2))^58 4334938270006868 a001 20365011074/843*439204^(2/9) 4334938270009365 a001 86267571272/843*439204^(1/9) 4334938270010552 a001 832040/843*7881196^(9/11) 4334938270010609 a001 832040/843*141422324^(9/13) 4334938270010610 a001 832040/843*2537720636^(3/5) 4334938270010610 a001 832040/843*45537549124^(9/17) 4334938270010610 a001 832040/843*817138163596^(9/19) 4334938270010610 a001 832040/843*14662949395604^(3/7) 4334938270010610 a001 832040/843*(1/2+1/2*5^(1/2))^27 4334938270010610 a001 832040/843*192900153618^(1/2) 4334938270010610 a001 832040/843*10749957122^(9/16) 4334938270010610 a001 832040/843*599074578^(9/14) 4334938270010612 a001 832040/843*33385282^(3/4) 4334938270011672 a001 726103/281*20633239^(5/7) 4334938270011679 a001 726103/281*2537720636^(5/9) 4334938270011679 a001 726103/281*312119004989^(5/11) 4334938270011679 a001 726103/281*(1/2+1/2*5^(1/2))^25 4334938270011679 a001 726103/281*3461452808002^(5/12) 4334938270011679 a001 726103/281*28143753123^(1/2) 4334938270011679 a001 726103/281*228826127^(5/8) 4334938270011737 a001 832040/843*1860498^(9/10) 4334938270011814 a001 4976784/281*7881196^(7/11) 4334938270011824 a001 63245986/843*7881196^(6/11) 4334938270011826 a001 9227465/843*7881196^(2/3) 4334938270011830 a001 267914296/843*7881196^(5/11) 4334938270011835 a001 5702887/843*(1/2+1/2*5^(1/2))^23 4334938270011835 a001 5702887/843*4106118243^(1/2) 4334938270011837 a001 1134903170/843*7881196^(4/11) 4334938270011839 a001 1836311903/843*7881196^(1/3) 4334938270011843 a001 1602508992/281*7881196^(3/11) 4334938270011849 a001 20365011074/843*7881196^(2/11) 4334938270011852 a001 4976784/281*20633239^(3/5) 4334938270011856 a001 86267571272/843*7881196^(1/11) 4334938270011858 a001 267914296/843*20633239^(3/7) 4334938270011858 a001 24157817/843*20633239^(4/7) 4334938270011858 a001 433494437/843*20633239^(2/5) 4334938270011858 a001 4976784/281*141422324^(7/13) 4334938270011858 a001 4976784/281*2537720636^(7/15) 4334938270011858 a001 4976784/281*17393796001^(3/7) 4334938270011858 a001 4976784/281*45537549124^(7/17) 4334938270011858 a001 4976784/281*14662949395604^(1/3) 4334938270011858 a001 4976784/281*(1/2+1/2*5^(1/2))^21 4334938270011858 a001 4976784/281*192900153618^(7/18) 4334938270011858 a001 4976784/281*10749957122^(7/16) 4334938270011858 a001 4976784/281*599074578^(1/2) 4334938270011859 a001 2971215073/843*20633239^(2/7) 4334938270011860 a001 12586269025/843*20633239^(1/5) 4334938270011860 a001 4976784/281*33385282^(7/12) 4334938270011860 a001 10983760033/281*20633239^(1/7) 4334938270011861 a001 39088169/843*817138163596^(1/3) 4334938270011861 a001 39088169/843*(1/2+1/2*5^(1/2))^19 4334938270011862 a001 39088169/843*87403803^(1/2) 4334938270011862 a001 267914296/843*141422324^(5/13) 4334938270011862 a001 34111385/281*45537549124^(1/3) 4334938270011862 a001 34111385/281*(1/2+1/2*5^(1/2))^17 4334938270011862 a001 233802911/281*141422324^(1/3) 4334938270011862 a001 1134903170/843*141422324^(4/13) 4334938270011862 a001 1602508992/281*141422324^(3/13) 4334938270011862 a001 20365011074/843*141422324^(2/13) 4334938270011862 a001 86267571272/843*141422324^(1/13) 4334938270011862 a001 267914296/843*2537720636^(1/3) 4334938270011862 a001 267914296/843*45537549124^(5/17) 4334938270011862 a001 267914296/843*312119004989^(3/11) 4334938270011862 a001 267914296/843*14662949395604^(5/21) 4334938270011862 a001 267914296/843*(1/2+1/2*5^(1/2))^15 4334938270011862 a001 267914296/843*192900153618^(5/18) 4334938270011862 a001 267914296/843*28143753123^(3/10) 4334938270011862 a001 267914296/843*10749957122^(5/16) 4334938270011862 a001 267914296/843*599074578^(5/14) 4334938270011862 a001 233802911/281*(1/2+1/2*5^(1/2))^13 4334938270011862 a001 233802911/281*73681302247^(1/4) 4334938270011862 a001 1836311903/843*312119004989^(1/5) 4334938270011862 a001 1836311903/843*(1/2+1/2*5^(1/2))^11 4334938270011862 a001 1602508992/281*2537720636^(1/5) 4334938270011862 a001 20365011074/843*2537720636^(2/15) 4334938270011862 a001 10983760033/281*2537720636^(1/9) 4334938270011862 a001 2971215073/843*2537720636^(2/9) 4334938270011862 a001 86267571272/843*2537720636^(1/15) 4334938270011862 a001 1602508992/281*45537549124^(3/17) 4334938270011862 a001 1602508992/281*817138163596^(3/19) 4334938270011862 a001 1602508992/281*14662949395604^(1/7) 4334938270011862 a001 1602508992/281*(1/2+1/2*5^(1/2))^9 4334938270011862 a001 1602508992/281*192900153618^(1/6) 4334938270011862 a001 1602508992/281*10749957122^(3/16) 4334938270011862 a001 12586269025/843*17393796001^(1/7) 4334938270011862 a001 12586269025/843*14662949395604^(1/9) 4334938270011862 a001 12586269025/843*(1/2+1/2*5^(1/2))^7 4334938270011862 a001 10983760033/281*312119004989^(1/11) 4334938270011862 a001 10983760033/281*(1/2+1/2*5^(1/2))^5 4334938270011862 a001 10983760033/281*28143753123^(1/10) 4334938270011862 a001 86267571272/843*45537549124^(1/17) 4334938270011862 a001 86267571272/843*14662949395604^(1/21) 4334938270011862 a001 86267571272/843*(1/2+1/2*5^(1/2))^3 4334938270011862 a001 86267571272/843*192900153618^(1/18) 4334938270011862 a001 267913919/2+267913919/2*5^(1/2) 4334938270011862 a001 365435296162/843 4334938270011862 a001 139583862445/843*(1/2+1/2*5^(1/2))^2 4334938270011862 a001 53316291173/843*(1/2+1/2*5^(1/2))^4 4334938270011862 a001 53316291173/843*23725150497407^(1/16) 4334938270011862 a001 53316291173/843*73681302247^(1/13) 4334938270011862 a001 139583862445/843*10749957122^(1/24) 4334938270011862 a001 20365011074/843*45537549124^(2/17) 4334938270011862 a001 20365011074/843*14662949395604^(2/21) 4334938270011862 a001 20365011074/843*(1/2+1/2*5^(1/2))^6 4334938270011862 a001 86267571272/843*10749957122^(1/16) 4334938270011862 a001 53316291173/843*10749957122^(1/12) 4334938270011862 a001 20365011074/843*10749957122^(1/8) 4334938270011862 a001 139583862445/843*4106118243^(1/23) 4334938270011862 a001 7778742049/843*(1/2+1/2*5^(1/2))^8 4334938270011862 a001 7778742049/843*23725150497407^(1/8) 4334938270011862 a001 7778742049/843*505019158607^(1/7) 4334938270011862 a001 7778742049/843*73681302247^(2/13) 4334938270011862 a001 7778742049/843*10749957122^(1/6) 4334938270011862 a001 53316291173/843*4106118243^(2/23) 4334938270011862 a001 20365011074/843*4106118243^(3/23) 4334938270011862 a001 7778742049/843*4106118243^(4/23) 4334938270011862 a001 139583862445/843*1568397607^(1/22) 4334938270011862 a001 2971215073/843*312119004989^(2/11) 4334938270011862 a001 2971215073/843*(1/2+1/2*5^(1/2))^10 4334938270011862 a001 2971215073/843*28143753123^(1/5) 4334938270011862 a001 2971215073/843*10749957122^(5/24) 4334938270011862 a001 2971215073/843*4106118243^(5/23) 4334938270011862 a001 53316291173/843*1568397607^(1/11) 4334938270011862 a001 1836311903/843*1568397607^(1/4) 4334938270011862 a001 20365011074/843*1568397607^(3/22) 4334938270011862 a001 7778742049/843*1568397607^(2/11) 4334938270011862 a001 1134903170/843*2537720636^(4/15) 4334938270011862 a001 2971215073/843*1568397607^(5/22) 4334938270011862 a001 139583862445/843*599074578^(1/21) 4334938270011862 a001 1134903170/843*45537549124^(4/17) 4334938270011862 a001 1134903170/843*817138163596^(4/19) 4334938270011862 a001 1134903170/843*14662949395604^(4/21) 4334938270011862 a001 1134903170/843*(1/2+1/2*5^(1/2))^12 4334938270011862 a001 1134903170/843*192900153618^(2/9) 4334938270011862 a001 1134903170/843*73681302247^(3/13) 4334938270011862 a001 1134903170/843*10749957122^(1/4) 4334938270011862 a001 1134903170/843*4106118243^(6/23) 4334938270011862 a001 86267571272/843*599074578^(1/14) 4334938270011862 a001 53316291173/843*599074578^(2/21) 4334938270011862 a001 1134903170/843*1568397607^(3/11) 4334938270011862 a001 20365011074/843*599074578^(1/7) 4334938270011862 a001 12586269025/843*599074578^(1/6) 4334938270011862 a001 7778742049/843*599074578^(4/21) 4334938270011862 a001 1602508992/281*599074578^(3/14) 4334938270011862 a001 2971215073/843*599074578^(5/21) 4334938270011862 a001 1134903170/843*599074578^(2/7) 4334938270011862 a001 139583862445/843*228826127^(1/20) 4334938270011862 a001 433494437/843*17393796001^(2/7) 4334938270011862 a001 433494437/843*14662949395604^(2/9) 4334938270011862 a001 433494437/843*(1/2+1/2*5^(1/2))^14 4334938270011862 a001 433494437/843*505019158607^(1/4) 4334938270011862 a001 433494437/843*10749957122^(7/24) 4334938270011862 a001 433494437/843*4106118243^(7/23) 4334938270011862 a001 433494437/843*1568397607^(7/22) 4334938270011862 a001 53316291173/843*228826127^(1/10) 4334938270011862 a001 433494437/843*599074578^(1/3) 4334938270011862 a001 10983760033/281*228826127^(1/8) 4334938270011862 a001 20365011074/843*228826127^(3/20) 4334938270011862 a001 7778742049/843*228826127^(1/5) 4334938270011862 a001 267914296/843*228826127^(3/8) 4334938270011862 a001 2971215073/843*228826127^(1/4) 4334938270011862 a001 1134903170/843*228826127^(3/10) 4334938270011862 a001 139583862445/843*87403803^(1/19) 4334938270011862 a001 165580141/843*(1/2+1/2*5^(1/2))^16 4334938270011862 a001 165580141/843*23725150497407^(1/4) 4334938270011862 a001 165580141/843*73681302247^(4/13) 4334938270011862 a001 165580141/843*10749957122^(1/3) 4334938270011862 a001 165580141/843*4106118243^(8/23) 4334938270011862 a001 165580141/843*1568397607^(4/11) 4334938270011862 a001 433494437/843*228826127^(7/20) 4334938270011862 a001 165580141/843*599074578^(8/21) 4334938270011862 a001 53316291173/843*87403803^(2/19) 4334938270011862 a001 165580141/843*228826127^(2/5) 4334938270011862 a001 20365011074/843*87403803^(3/19) 4334938270011862 a001 63245986/843*141422324^(6/13) 4334938270011862 a001 7778742049/843*87403803^(4/19) 4334938270011862 a001 2971215073/843*87403803^(5/19) 4334938270011862 a001 1134903170/843*87403803^(6/19) 4334938270011862 a001 433494437/843*87403803^(7/19) 4334938270011862 a001 139583862445/843*33385282^(1/18) 4334938270011862 a001 63245986/843*2537720636^(2/5) 4334938270011862 a001 63245986/843*45537549124^(6/17) 4334938270011862 a001 63245986/843*14662949395604^(2/7) 4334938270011862 a001 63245986/843*(1/2+1/2*5^(1/2))^18 4334938270011862 a001 63245986/843*192900153618^(1/3) 4334938270011862 a001 63245986/843*10749957122^(3/8) 4334938270011862 a001 63245986/843*4106118243^(9/23) 4334938270011862 a001 63245986/843*1568397607^(9/22) 4334938270011862 a001 63245986/843*599074578^(3/7) 4334938270011862 a001 63245986/843*228826127^(9/20) 4334938270011862 a001 165580141/843*87403803^(8/19) 4334938270011862 a001 86267571272/843*33385282^(1/12) 4334938270011862 a001 53316291173/843*33385282^(1/9) 4334938270011862 a001 63245986/843*87403803^(9/19) 4334938270011863 a001 20365011074/843*33385282^(1/6) 4334938270011863 a001 7778742049/843*33385282^(2/9) 4334938270011863 a001 1602508992/281*33385282^(1/4) 4334938270011863 a001 2971215073/843*33385282^(5/18) 4334938270011863 a001 1134903170/843*33385282^(1/3) 4334938270011863 a001 24157817/843*2537720636^(4/9) 4334938270011863 a001 24157817/843*(1/2+1/2*5^(1/2))^20 4334938270011863 a001 24157817/843*23725150497407^(5/16) 4334938270011863 a001 24157817/843*505019158607^(5/14) 4334938270011863 a001 24157817/843*73681302247^(5/13) 4334938270011863 a001 24157817/843*28143753123^(2/5) 4334938270011863 a001 24157817/843*10749957122^(5/12) 4334938270011863 a001 24157817/843*4106118243^(10/23) 4334938270011863 a001 24157817/843*1568397607^(5/11) 4334938270011863 a001 24157817/843*599074578^(10/21) 4334938270011863 a001 433494437/843*33385282^(7/18) 4334938270011863 a001 24157817/843*228826127^(1/2) 4334938270011863 a001 139583862445/843*12752043^(1/17) 4334938270011864 a001 267914296/843*33385282^(5/12) 4334938270011864 a001 165580141/843*33385282^(4/9) 4334938270011864 a001 24157817/843*87403803^(10/19) 4334938270011864 a001 63245986/843*33385282^(1/2) 4334938270011865 a001 53316291173/843*12752043^(2/17) 4334938270011866 a001 24157817/843*33385282^(5/9) 4334938270011867 a001 20365011074/843*12752043^(3/17) 4334938270011868 a001 7778742049/843*12752043^(4/17) 4334938270011870 a001 2971215073/843*12752043^(5/17) 4334938270011871 a001 1134903170/843*12752043^(6/17) 4334938270011872 a001 9227465/843*312119004989^(2/5) 4334938270011872 a001 9227465/843*(1/2+1/2*5^(1/2))^22 4334938270011872 a001 9227465/843*10749957122^(11/24) 4334938270011872 a001 9227465/843*4106118243^(11/23) 4334938270011872 a001 9227465/843*1568397607^(1/2) 4334938270011872 a001 9227465/843*599074578^(11/21) 4334938270011872 a001 9227465/843*228826127^(11/20) 4334938270011872 a001 9227465/843*87403803^(11/19) 4334938270011873 a001 433494437/843*12752043^(7/17) 4334938270011873 a001 139583862445/843*4870847^(1/16) 4334938270011874 a001 9227465/843*33385282^(11/18) 4334938270011874 a001 165580141/843*12752043^(8/17) 4334938270011875 a001 34111385/281*12752043^(1/2) 4334938270011876 a001 63245986/843*12752043^(9/17) 4334938270011879 a001 24157817/843*12752043^(10/17) 4334938270011881 a001 3524578/843*7881196^(8/11) 4334938270011885 a001 53316291173/843*4870847^(1/8) 4334938270011889 a001 9227465/843*12752043^(11/17) 4334938270011896 a001 20365011074/843*4870847^(3/16) 4334938270011908 a001 7778742049/843*4870847^(1/4) 4334938270011919 a001 2971215073/843*4870847^(5/16) 4334938270011930 a001 1134903170/843*4870847^(3/8) 4334938270011932 a001 3524578/843*141422324^(8/13) 4334938270011932 a001 3524578/843*2537720636^(8/15) 4334938270011932 a001 3524578/843*45537549124^(8/17) 4334938270011932 a001 3524578/843*14662949395604^(8/21) 4334938270011932 a001 3524578/843*(1/2+1/2*5^(1/2))^24 4334938270011932 a001 3524578/843*192900153618^(4/9) 4334938270011932 a001 3524578/843*73681302247^(6/13) 4334938270011932 a001 3524578/843*10749957122^(1/2) 4334938270011932 a001 3524578/843*4106118243^(12/23) 4334938270011932 a001 3524578/843*1568397607^(6/11) 4334938270011932 a001 3524578/843*599074578^(4/7) 4334938270011932 a001 3524578/843*228826127^(3/5) 4334938270011932 a001 3524578/843*87403803^(12/19) 4334938270011934 a001 3524578/843*33385282^(2/3) 4334938270011942 a001 433494437/843*4870847^(7/16) 4334938270011945 a001 139583862445/843*1860498^(1/15) 4334938270011951 a001 3524578/843*12752043^(12/17) 4334938270011953 a001 165580141/843*4870847^(1/2) 4334938270011965 a001 63245986/843*4870847^(9/16) 4334938270011978 a001 24157817/843*4870847^(5/8) 4334938270011987 a001 86267571272/843*1860498^(1/10) 4334938270011998 a001 9227465/843*4870847^(11/16) 4334938270012029 a001 53316291173/843*1860498^(2/15) 4334938270012069 a001 3524578/843*4870847^(3/4) 4334938270012071 a001 10983760033/281*1860498^(1/6) 4334938270012112 a001 20365011074/843*1860498^(1/5) 4334938270012196 a001 7778742049/843*1860498^(4/15) 4334938270012238 a001 1602508992/281*1860498^(3/10) 4334938270012279 a001 2971215073/843*1860498^(1/3) 4334938270012340 a001 1346269/843*141422324^(2/3) 4334938270012340 a001 1346269/843*(1/2+1/2*5^(1/2))^26 4334938270012340 a001 1346269/843*73681302247^(1/2) 4334938270012340 a001 1346269/843*10749957122^(13/24) 4334938270012340 a001 1346269/843*4106118243^(13/23) 4334938270012340 a001 1346269/843*1568397607^(13/22) 4334938270012340 a001 1346269/843*599074578^(13/21) 4334938270012340 a001 1346269/843*228826127^(13/20) 4334938270012341 a001 1346269/843*87403803^(13/19) 4334938270012343 a001 1346269/843*33385282^(13/18) 4334938270012361 a001 1346269/843*12752043^(13/17) 4334938270012363 a001 1134903170/843*1860498^(2/5) 4334938270012446 a001 433494437/843*1860498^(7/15) 4334938270012475 a001 139583862445/843*710647^(1/14) 4334938270012488 a001 267914296/843*1860498^(1/2) 4334938270012489 a001 1346269/843*4870847^(13/16) 4334938270012530 a001 165580141/843*1860498^(8/15) 4334938270012614 a001 63245986/843*1860498^(3/5) 4334938270012698 a001 24157817/843*1860498^(2/3) 4334938270012723 a001 726103/281*1860498^(5/6) 4334938270012735 a001 4976784/281*1860498^(7/10) 4334938270012790 a001 9227465/843*1860498^(11/15) 4334938270012934 a001 3524578/843*1860498^(4/5) 4334938270013088 a001 53316291173/843*710647^(1/7) 4334938270013426 a001 1346269/843*1860498^(13/15) 4334938270013701 a001 20365011074/843*710647^(3/14) 4334938270014008 a001 12586269025/843*710647^(1/4) 4334938270014314 a001 7778742049/843*710647^(2/7) 4334938270014928 a001 2971215073/843*710647^(5/14) 4334938270015132 a001 514229/843*20633239^(4/5) 4334938270015141 a001 514229/843*17393796001^(4/7) 4334938270015141 a001 514229/843*14662949395604^(4/9) 4334938270015141 a001 514229/843*(1/2+1/2*5^(1/2))^28 4334938270015141 a001 514229/843*73681302247^(7/13) 4334938270015141 a001 514229/843*10749957122^(7/12) 4334938270015141 a001 514229/843*4106118243^(14/23) 4334938270015141 a001 514229/843*1568397607^(7/11) 4334938270015141 a001 514229/843*599074578^(2/3) 4334938270015141 a001 514229/843*228826127^(7/10) 4334938270015141 a001 514229/843*87403803^(14/19) 4334938270015144 a001 514229/843*33385282^(7/9) 4334938270015163 a001 514229/843*12752043^(14/17) 4334938270015300 a001 514229/843*4870847^(7/8) 4334938270015541 a001 1134903170/843*710647^(3/7) 4334938270016154 a001 433494437/843*710647^(1/2) 4334938270016309 a001 514229/843*1860498^(14/15) 4334938270016388 a001 139583862445/843*271443^(1/13) 4334938270016767 a001 165580141/843*710647^(4/7) 4334938270017380 a001 63245986/843*710647^(9/14) 4334938270017995 a001 24157817/843*710647^(5/7) 4334938270018296 a001 4976784/281*710647^(3/4) 4334938270018616 a001 9227465/843*710647^(11/14) 4334938270019289 a001 3524578/843*710647^(6/7) 4334938270020311 a001 1346269/843*710647^(13/14) 4334938270020913 a001 53316291173/843*271443^(2/13) 4334938270025439 a001 20365011074/843*271443^(3/13) 4334938270025751 a001 377/439204*14662949395604^(8/9) 4334938270025751 a001 377/439204*(1/2+1/2*5^(1/2))^56 4334938270028664 a001 267913919*103682^(1/24) 4334938270029965 a001 7778742049/843*271443^(4/13) 4334938270034271 a001 196418/843*7881196^(10/11) 4334938270034326 a001 196418/843*20633239^(6/7) 4334938270034334 a001 196418/843*141422324^(10/13) 4334938270034334 a001 196418/843*2537720636^(2/3) 4334938270034334 a001 196418/843*45537549124^(10/17) 4334938270034334 a001 196418/843*312119004989^(6/11) 4334938270034334 a001 196418/843*14662949395604^(10/21) 4334938270034334 a001 196418/843*(1/2+1/2*5^(1/2))^30 4334938270034334 a001 196418/843*192900153618^(5/9) 4334938270034334 a001 196418/843*28143753123^(3/5) 4334938270034334 a001 196418/843*10749957122^(5/8) 4334938270034334 a001 196418/843*4106118243^(15/23) 4334938270034334 a001 196418/843*1568397607^(15/22) 4334938270034334 a001 196418/843*599074578^(5/7) 4334938270034334 a001 196418/843*228826127^(3/4) 4334938270034335 a001 196418/843*87403803^(15/19) 4334938270034338 a001 196418/843*33385282^(5/6) 4334938270034358 a001 196418/843*12752043^(15/17) 4334938270034490 a001 2971215073/843*271443^(5/13) 4334938270034506 a001 196418/843*4870847^(15/16) 4334938270039016 a001 1134903170/843*271443^(6/13) 4334938270041279 a001 233802911/281*271443^(1/2) 4334938270043542 a001 433494437/843*271443^(7/13) 4334938270045466 a001 139583862445/843*103682^(1/12) 4334938270048067 a001 165580141/843*271443^(8/13) 4334938270052593 a001 63245986/843*271443^(9/13) 4334938270057120 a001 24157817/843*271443^(10/13) 4334938270061654 a001 9227465/843*271443^(11/13) 4334938270062112 a001 52623116141765/121393 4334938270062268 a001 86267571272/843*103682^(1/8) 4334938270066240 a001 3524578/843*271443^(12/13) 4334938270079071 a001 53316291173/843*103682^(1/6) 4334938270095873 a001 10983760033/281*103682^(5/24) 4334938270112675 a001 20365011074/843*103682^(1/4) 4334938270129477 a001 12586269025/843*103682^(7/24) 4334938270137495 a001 267913919*39603^(1/22) 4334938270146279 a001 7778742049/843*103682^(1/3) 4334938270157307 a001 377/167761*14662949395604^(6/7) 4334938270157307 a001 377/167761*(1/2+1/2*5^(1/2))^54 4334938270163081 a001 1602508992/281*103682^(3/8) 4334938270165890 a001 75025/843*(1/2+1/2*5^(1/2))^32 4334938270165890 a001 75025/843*23725150497407^(1/2) 4334938270165890 a001 75025/843*505019158607^(4/7) 4334938270165890 a001 75025/843*73681302247^(8/13) 4334938270165890 a001 75025/843*10749957122^(2/3) 4334938270165890 a001 75025/843*4106118243^(16/23) 4334938270165890 a001 75025/843*1568397607^(8/11) 4334938270165890 a001 75025/843*599074578^(16/21) 4334938270165890 a001 75025/843*228826127^(4/5) 4334938270165891 a001 75025/843*87403803^(16/19) 4334938270165894 a001 75025/843*33385282^(8/9) 4334938270165915 a001 75025/843*12752043^(16/17) 4334938270179883 a001 2971215073/843*103682^(5/12) 4334938270196686 a001 1836311903/843*103682^(11/24) 4334938270213488 a001 1134903170/843*103682^(1/2) 4334938270230290 a001 233802911/281*103682^(13/24) 4334938270247092 a001 433494437/843*103682^(7/12) 4334938270263128 a001 139583862445/843*39603^(1/11) 4334938270263894 a001 267914296/843*103682^(5/8) 4334938270280696 a001 165580141/843*103682^(2/3) 4334938270297498 a001 34111385/281*103682^(17/24) 4334938270314301 a001 63245986/843*103682^(3/4) 4334938270331102 a001 39088169/843*103682^(19/24) 4334938270347906 a001 24157817/843*103682^(5/6) 4334938270364703 a001 4976784/281*103682^(7/8) 4334938270381519 a001 9227465/843*103682^(11/12) 4334938270388761 a001 86267571272/843*39603^(3/22) 4334938270398285 a001 5702887/843*103682^(23/24) 4334938270406530 a001 20100241772221/46368 4334938270514394 a001 53316291173/843*39603^(2/11) 4334938270640027 a001 10983760033/281*39603^(5/22) 4334938270765660 a001 20365011074/843*39603^(3/11) 4334938270891294 a001 12586269025/843*39603^(7/22) 4334938270959074 a001 267913919*15127^(1/20) 4334938271016927 a001 7778742049/843*39603^(4/11) 4334938271059005 a001 377/64079*(1/2+1/2*5^(1/2))^52 4334938271059005 a001 377/64079*23725150497407^(13/16) 4334938271059005 a001 377/64079*505019158607^(13/14) 4334938271067589 a001 28657/843*45537549124^(2/3) 4334938271067589 a001 28657/843*(1/2+1/2*5^(1/2))^34 4334938271067589 a001 28657/843*10749957122^(17/24) 4334938271067589 a001 28657/843*4106118243^(17/23) 4334938271067589 a001 28657/843*1568397607^(17/22) 4334938271067589 a001 28657/843*599074578^(17/21) 4334938271067589 a001 28657/843*228826127^(17/20) 4334938271067589 a001 28657/843*87403803^(17/19) 4334938271067592 a001 28657/843*33385282^(17/18) 4334938271142560 a001 1602508992/281*39603^(9/22) 4334938271268193 a001 2971215073/843*39603^(5/11) 4334938271393826 a001 1836311903/843*39603^(1/2) 4334938271519459 a001 1134903170/843*39603^(6/11) 4334938271645092 a001 233802911/281*39603^(13/22) 4334938271770725 a001 433494437/843*39603^(7/11) 4334938271896358 a001 267914296/843*39603^(15/22) 4334938271906286 a001 139583862445/843*15127^(1/10) 4334938272021991 a001 165580141/843*39603^(8/11) 4334938272147624 a001 34111385/281*39603^(17/22) 4334938272273258 a001 63245986/843*39603^(9/11) 4334938272398890 a001 39088169/843*39603^(19/22) 4334938272524525 a001 24157817/843*39603^(10/11) 4334938272650153 a001 4976784/281*39603^(21/22) 4334938272767206 a001 7677609174898/17711 4334938272853499 a001 86267571272/843*15127^(3/20) 4334938273800711 a001 53316291173/843*15127^(1/5) 4334938274747923 a001 10983760033/281*15127^(1/4) 4334938275695135 a001 20365011074/843*15127^(3/10) 4334938276642348 a001 12586269025/843*15127^(7/20) 4334938277225517 a001 267913919*5778^(1/18) 4334938277239336 a001 13/844*312119004989^(10/11) 4334938277239336 a001 13/844*(1/2+1/2*5^(1/2))^50 4334938277239336 a001 13/844*3461452808002^(5/6) 4334938277247919 a001 10946/843*141422324^(12/13) 4334938277247920 a001 10946/843*2537720636^(4/5) 4334938277247920 a001 10946/843*45537549124^(12/17) 4334938277247920 a001 10946/843*14662949395604^(4/7) 4334938277247920 a001 10946/843*(1/2+1/2*5^(1/2))^36 4334938277247920 a001 10946/843*505019158607^(9/14) 4334938277247920 a001 10946/843*192900153618^(2/3) 4334938277247920 a001 10946/843*73681302247^(9/13) 4334938277247920 a001 10946/843*10749957122^(3/4) 4334938277247920 a001 10946/843*4106118243^(18/23) 4334938277247920 a001 10946/843*1568397607^(9/11) 4334938277247920 a001 10946/843*599074578^(6/7) 4334938277247920 a001 10946/843*228826127^(9/10) 4334938277247920 a001 10946/843*87403803^(18/19) 4334938277282504 a001 365435296162/9349*521^(5/13) 4334938277589560 a001 7778742049/843*15127^(2/5) 4334938278536772 a001 1602508992/281*15127^(9/20) 4334938279483985 a001 2971215073/843*15127^(1/2) 4334938280431197 a001 1836311903/843*15127^(11/20) 4334938280785246 r002 2th iterates of z^2 + 4334938280785246 r005 Re(z^2+c),c=-11/8+47/164*I,n=2 4334938281378409 a001 1134903170/843*15127^(3/5) 4334938282325621 a001 233802911/281*15127^(13/20) 4334938283272834 a001 433494437/843*15127^(7/10) 4334938284220046 a001 267914296/843*15127^(3/4) 4334938284439172 a001 139583862445/843*5778^(1/9) 4334938285167258 a001 165580141/843*15127^(4/5) 4334938286114470 a001 34111385/281*15127^(17/20) 4334938287061683 a001 63245986/843*15127^(9/10) 4334938287525486 r005 Im(z^2+c),c=3/34+19/37*I,n=38 4334938288008894 a001 39088169/843*15127^(19/20) 4334938288947524 a001 2932585752473/6765 4334938291652826 a001 86267571272/843*5778^(1/6) 4334938298866481 a001 53316291173/843*5778^(2/9) 4334938305650160 a007 Real Root Of -660*x^4+613*x^3+870*x^2+934*x-595 4334938306080136 a001 10983760033/281*5778^(5/18) 4334938313293791 a001 20365011074/843*5778^(1/3) 4334938319599957 a001 377/9349*45537549124^(16/17) 4334938319599957 a001 377/9349*14662949395604^(16/21) 4334938319599957 a001 377/9349*(1/2+1/2*5^(1/2))^48 4334938319599957 a001 377/9349*192900153618^(8/9) 4334938319599957 a001 377/9349*73681302247^(12/13) 4334938319608540 a001 4181/843*817138163596^(2/3) 4334938319608540 a001 4181/843*(1/2+1/2*5^(1/2))^38 4334938319608540 a001 4181/843*10749957122^(19/24) 4334938319608540 a001 4181/843*4106118243^(19/23) 4334938319608540 a001 4181/843*1568397607^(19/22) 4334938319608540 a001 4181/843*599074578^(19/21) 4334938319608540 a001 4181/843*228826127^(19/20) 4334938320507446 a001 12586269025/843*5778^(7/18) 4334938323293659 m009 (1/6*Psi(1,1/3)-5/6)/(2*Psi(1,1/3)-3/5) 4334938325635374 a001 267913919*2207^(1/16) 4334938327721101 a001 7778742049/843*5778^(4/9) 4334938328416322 r005 Re(z^2+c),c=-41/66+2/55*I,n=51 4334938329833279 r002 4th iterates of z^2 + 4334938330904474 m001 (LambertW(1)+HeathBrownMoroz)/(Thue+ZetaP(2)) 4334938331255169 r005 Im(z^2+c),c=-1/66+23/40*I,n=50 4334938334934756 a001 1602508992/281*5778^(1/2) 4334938336934832 r005 Re(z^2+c),c=-13/10+6/103*I,n=24 4334938342148411 a001 2971215073/843*5778^(5/9) 4334938347536168 a007 Real Root Of 104*x^4+42*x^3+262*x^2-714*x-359 4334938349362066 a001 1836311903/843*5778^(11/18) 4334938355875423 m001 1/ln(Zeta(3))*Zeta(1,2)/sinh(1) 4334938356384486 m001 (arctan(1/2)-MertensB2)/(Mills+Trott) 4334938356575721 a001 1134903170/843*5778^(2/3) 4334938363789376 a001 233802911/281*5778^(13/18) 4334938371003031 a001 433494437/843*5778^(7/9) 4334938371493585 m001 (ln(Pi)+gamma(1))/(GAMMA(5/6)-QuadraticClass) 4334938374970830 m001 Catalan*GolombDickman*ln(log(2+sqrt(3)))^2 4334938378216685 a001 267914296/843*5778^(5/6) 4334938379540495 a007 Real Root Of 82*x^4+464*x^3+340*x^2-735*x-734 4334938381258886 a001 139583862445/843*2207^(1/8) 4334938385430341 a001 165580141/843*5778^(8/9) 4334938388893256 r005 Im(z^2+c),c=15/98+19/41*I,n=46 4334938389532433 r005 Re(z^2+c),c=-27/46+4/41*I,n=9 4334938392643995 a001 34111385/281*5778^(17/18) 4334938399849071 a001 1120148082521/2584 4334938402552792 r005 Re(z^2+c),c=-43/78+8/23*I,n=29 4334938409300822 r005 Re(z^2+c),c=-35/82+28/53*I,n=40 4334938409385546 r004 Im(z^2+c),c=1/4+3/8*I,z(0)=exp(5/8*I*Pi),n=56 4334938436882400 a001 86267571272/843*2207^(3/16) 4334938438133095 a001 167761/1597*89^(6/19) 4334938438974127 a007 Real Root Of 206*x^4+988*x^3+611*x^2+868*x+20 4334938441397913 m001 (Artin+MertensB1)/(BesselJ(1,1)+GAMMA(23/24)) 4334938441415621 a007 Real Root Of -280*x^4-989*x^3+799*x^2-682*x+340 4334938453282691 r005 Re(z^2+c),c=-61/98+2/37*I,n=27 4334938458344528 r005 Im(z^2+c),c=-63/110+3/38*I,n=33 4334938459467393 r009 Im(z^3+c),c=-8/19+24/61*I,n=12 4334938487659013 l006 ln(3518/5427) 4334938492505914 a001 53316291173/843*2207^(1/4) 4334938510778660 a007 Real Root Of -720*x^4-93*x^3-334*x^2+746*x+404 4334938514622019 a007 Real Root Of 132*x^4+435*x^3-741*x^2-571*x+272 4334938516152727 a001 161/5473*28657^(18/37) 4334938525605478 r002 4th iterates of z^2 + 4334938532108017 a007 Real Root Of -133*x^4-695*x^3-408*x^2+592*x+584 4334938534304342 m005 (27/28+1/4*5^(1/2))/(1/6*Pi-7/8) 4334938544026982 r005 Im(z^2+c),c=-23/18+5/141*I,n=41 4334938544821412 r008 a(0)=4,K{-n^6,46+25*n^3-60*n^2-16*n} 4334938547409188 a007 Real Root Of -965*x^4+933*x^3+732*x^2+947*x-590 4334938548129428 a001 10983760033/281*2207^(5/16) 4334938549784143 m001 ln(GAMMA(7/12))/Robbin^2/sqrt(5) 4334938549823509 r005 Re(z^2+c),c=-13/22+11/69*I,n=18 4334938556885067 m001 (-ln(gamma)+2)/(ln(1+sqrt(2))+5) 4334938562842586 m005 (1/12+1/4*5^(1/2))/(3/11*Pi+5/8) 4334938566171629 a001 139583862445/2207*521^(4/13) 4334938567626538 a001 139583862445/3571*521^(5/13) 4334938584290557 r005 Re(z^2+c),c=-4/7+49/114*I,n=28 4334938590596649 r005 Re(z^2+c),c=-11/18+18/95*I,n=61 4334938591220169 m005 (23/44+1/4*5^(1/2))/(7/11*2^(1/2)-7/8) 4334938598480071 m005 (1/3*exp(1)+1/12)/(7/10*Pi+1/12) 4334938603752944 a001 20365011074/843*2207^(3/8) 4334938605872007 r002 3th iterates of z^2 + 4334938607395031 r002 7th iterates of z^2 + 4334938608432791 m001 (Ei(1,1)-Psi(1,1/3))/(-GAMMA(5/6)+Magata) 4334938609943993 a001 377/3571*(1/2+1/2*5^(1/2))^46 4334938609943993 a001 377/3571*10749957122^(23/24) 4334938609952550 a001 1597/843*2537720636^(8/9) 4334938609952550 a001 1597/843*312119004989^(8/11) 4334938609952550 a001 1597/843*(1/2+1/2*5^(1/2))^40 4334938609952550 a001 1597/843*23725150497407^(5/8) 4334938609952550 a001 1597/843*73681302247^(10/13) 4334938609952550 a001 1597/843*28143753123^(4/5) 4334938609952550 a001 1597/843*10749957122^(5/6) 4334938609952550 a001 1597/843*4106118243^(20/23) 4334938609952550 a001 1597/843*1568397607^(10/11) 4334938609952550 a001 1597/843*599074578^(20/21) 4334938616091104 r005 Im(z^2+c),c=-7/10+49/181*I,n=9 4334938616460317 r002 53th iterates of z^2 + 4334938624512686 r002 3th iterates of z^2 + 4334938635417325 m005 (1/3*5^(1/2)+1/11)/(9/10*5^(1/2)-1/12) 4334938648744961 r005 Im(z^2+c),c=-7/10+5/74*I,n=54 4334938658550403 m005 (1/2*5^(1/2)-4/5)/(3/8*Pi-4/9) 4334938659376460 a001 12586269025/843*2207^(7/16) 4334938659795607 r002 12th iterates of z^2 + 4334938688863277 m005 (1/2*exp(1)-2/9)/(6/11*Pi+10/11) 4334938697862382 a001 1970299/2*2504730781961^(7/9) 4334938697862431 a001 96450076809/4*5702887^(7/9) 4334938697862451 a001 6643838879/8*433494437^(7/9) 4334938697862452 a001 228826127/8*32951280099^(7/9) 4334938697982251 a001 5600748293801/8*75025^(7/9) 4334938701885560 r002 22th iterates of z^2 + 4334938705725016 a001 267913919*843^(1/14) 4334938713058096 a007 Real Root Of 972*x^4-240*x^3+556*x^2-479*x-366 4334938714716844 m001 (GAMMA(7/12)+Magata)/(Zeta(1/2)+arctan(1/3)) 4334938714999977 a001 7778742049/843*2207^(1/2) 4334938719314933 a007 Real Root Of 716*x^4-36*x^3-295*x^2-741*x-294 4334938728608669 a001 439204/4181*89^(6/19) 4334938740239175 r005 Re(z^2+c),c=-12/17+7/38*I,n=23 4334938740492039 r005 Re(z^2+c),c=-19/31+9/37*I,n=26 4334938762473421 a001 710647/3*3524578^(22/23) 4334938770623494 a001 1602508992/281*2207^(9/16) 4334938770988488 a001 1149851/10946*89^(6/19) 4334938777171620 a001 3010349/28657*89^(6/19) 4334938778073727 a001 7881196/75025*89^(6/19) 4334938778205342 a001 20633239/196418*89^(6/19) 4334938778224545 a001 54018521/514229*89^(6/19) 4334938778227346 a001 141422324/1346269*89^(6/19) 4334938778227755 a001 370248451/3524578*89^(6/19) 4334938778227815 a001 969323029/9227465*89^(6/19) 4334938778227823 a001 2537720636/24157817*89^(6/19) 4334938778227825 a001 6643838879/63245986*89^(6/19) 4334938778227825 a001 17393796001/165580141*89^(6/19) 4334938778227825 a001 45537549124/433494437*89^(6/19) 4334938778227825 a001 119218851371/1134903170*89^(6/19) 4334938778227825 a001 312119004989/2971215073*89^(6/19) 4334938778227825 a001 817138163596/7778742049*89^(6/19) 4334938778227825 a001 2139295485799/20365011074*89^(6/19) 4334938778227825 a001 5600748293801/53316291173*89^(6/19) 4334938778227825 a001 14662949395604/139583862445*89^(6/19) 4334938778227825 a001 23725150497407/225851433717*89^(6/19) 4334938778227825 a001 9062201101803/86267571272*89^(6/19) 4334938778227825 a001 3461452808002/32951280099*89^(6/19) 4334938778227825 a001 1322157322203/12586269025*89^(6/19) 4334938778227825 a001 10745088481/102287808*89^(6/19) 4334938778227825 a001 192900153618/1836311903*89^(6/19) 4334938778227825 a001 73681302247/701408733*89^(6/19) 4334938778227825 a001 28143753123/267914296*89^(6/19) 4334938778227825 a001 10749957122/102334155*89^(6/19) 4334938778227826 a001 4106118243/39088169*89^(6/19) 4334938778227829 a001 1568397607/14930352*89^(6/19) 4334938778227852 a001 599074578/5702887*89^(6/19) 4334938778228008 a001 4868641/46347*89^(6/19) 4334938778229078 a001 87403803/832040*89^(6/19) 4334938778236413 a001 33385282/317811*89^(6/19) 4334938778286685 a001 12752043/121393*89^(6/19) 4334938778631259 a001 4870847/46368*89^(6/19) 4334938780993006 a001 1860498/17711*89^(6/19) 4334938786851039 r005 Im(z^2+c),c=-19/14+41/102*I,n=3 4334938787922922 m001 1/FeigenbaumD^2*Porter*exp(GAMMA(7/12))^2 4334938788626485 m001 (Trott-ZetaP(3))/(sin(1/5*Pi)-cos(1/12*Pi)) 4334938797180656 a001 710647/6765*89^(6/19) 4334938806209084 m009 (2/5*Pi^2+1/5)/(24/5*Catalan+3/5*Pi^2-3/4) 4334938811571372 m006 (5/6*ln(Pi)+4/5)/(5/6*ln(Pi)-5) 4334938813542317 r002 27th iterates of z^2 + 4334938826247012 a001 2971215073/843*2207^(5/8) 4334938830833626 r009 Im(z^3+c),c=-13/28+13/33*I,n=23 4334938841950927 h001 (6/7*exp(2)+3/7)/(4/11*exp(1)+4/7) 4334938842048019 r005 Re(z^2+c),c=-3/5+12/67*I,n=27 4334938847105883 a008 Real Root of (-2+4*x+x^2+2*x^4+6*x^8) 4334938849229480 r002 20th iterates of z^2 + 4334938866246758 q001 117/2699 4334938874505073 r008 a(0)=4,K{-n^6,-1+6*n^3-9*n^2-4*n} 4334938881870531 a001 1836311903/843*2207^(11/16) 4334938889667575 a001 47/8*9227465^(7/17) 4334938891554156 m001 GAMMA(2/3)^Kolakoski*Magata 4334938908132466 a001 271443/2584*89^(6/19) 4334938911102573 r009 Re(z^3+c),c=-11/29+1/54*I,n=2 4334938937494051 a001 1134903170/843*2207^(3/4) 4334938947207759 m009 (3/2*Pi^2-4)/(5/2*Pi^2+1/4) 4334938951124197 r009 Re(z^3+c),c=-21/44+7/45*I,n=9 4334938956823510 a001 5/2207*2^(44/47) 4334938976023659 m001 (PlouffeB-Robbin)/(ln(5)+FeigenbaumD) 4334938985179963 m001 Backhouse*Champernowne/PrimesInBinary 4334938987993966 m005 (1/3*5^(1/2)-3/7)/(3/11*3^(1/2)-6/11) 4334938988229404 m001 1/Salem^2*ln(Artin)/GAMMA(13/24) 4334938993117572 a001 233802911/281*2207^(13/16) 4334939002413019 m001 (Salem-Thue)/(GAMMA(11/12)-KomornikLoreti) 4334939015179175 m001 (Ei(1)+Trott2nd)/(ZetaP(2)-ZetaQ(3)) 4334939026418780 r005 Re(z^2+c),c=-79/126+4/47*I,n=31 4334939027752232 a007 Real Root Of 92*x^4+140*x^3-886*x^2+913*x-476 4334939031370612 l006 ln(3389/5228) 4334939031559060 r005 Im(z^2+c),c=5/94+7/13*I,n=61 4334939048741093 a001 433494437/843*2207^(7/8) 4334939061778897 m005 (1/2*5^(1/2)-1/12)/(10/7+3/7*5^(1/2)) 4334939077798879 m005 (1/2*3^(1/2)+1/7)/(5/7*Pi+1/12) 4334939077907868 a007 Real Root Of -441*x^4+805*x^3-687*x^2-921*x-189 4334939079288508 r002 22th iterates of z^2 + 4334939083897473 m001 1/BesselJ(0,1)*exp(CareFree)*GAMMA(13/24) 4334939098673738 h001 (8/11*exp(1)+3/5)/(5/7*exp(2)+2/3) 4334939104364615 a001 267914296/843*2207^(15/16) 4334939107221735 a007 Real Root Of 419*x^4-116*x^3+864*x^2+36*x-171 4334939121733325 l006 ln(128/9769) 4334939125297358 m008 (4*Pi^2+1/3)/(3*Pi^5+1/3) 4334939127093756 a007 Real Root Of 426*x^4+780*x^3-4*x^2-921*x-350 4334939127302076 r005 Re(z^2+c),c=-25/34+5/113*I,n=61 4334939130021261 a007 Real Root Of -191*x^4-571*x^3+973*x^2-385*x+980 4334939134186207 r002 45th iterates of z^2 + 4334939141438213 a001 139583862445/843*843^(1/7) 4334939143852687 r009 Im(z^3+c),c=-13/64+15/29*I,n=3 4334939159979736 a001 427858495090/987 4334939161552974 a007 Real Root Of 23*x^4-37*x^3-459*x^2+584*x+21 4334939164548053 m001 (FeigenbaumC-GlaisherKinkelin)/BesselI(0,1) 4334939179333420 m001 ln(Pi)^ln(gamma)*FeigenbaumDelta 4334939179333420 m001 ln(Pi)^log(gamma)*FeigenbaumDelta 4334939183214939 r005 Im(z^2+c),c=10/29+3/23*I,n=27 4334939183459899 m003 -35/6+(9*Sqrt[5])/16+Log[1/2+Sqrt[5]/2]/2 4334939183689239 m001 (-GaussKuzminWirsing+Mills)/(exp(Pi)+gamma(2)) 4334939184034625 r005 Re(z^2+c),c=-19/48+31/55*I,n=54 4334939187309837 r009 Re(z^3+c),c=-29/62+8/51*I,n=39 4334939191922190 m001 (ln(Pi)*cos(Pi/12)+GAMMA(7/24))/cos(Pi/12) 4334939199711038 a007 Real Root Of -267*x^4-425*x^3-474*x^2+953*x+477 4334939200435634 r009 Re(z^3+c),c=-5/94+13/44*I,n=6 4334939203725193 h001 (1/11*exp(2)+1/12)/(1/8*exp(2)+9/11) 4334939208680629 m001 (Cahen+Riemann2ndZero)/(exp(1)+BesselI(0,2)) 4334939216870368 m001 1/GAMMA(19/24)*ln(Backhouse)*GAMMA(2/3) 4334939218180042 r002 18th iterates of z^2 + 4334939218989706 r005 Im(z^2+c),c=3/70+7/13*I,n=26 4334939237033406 a007 Real Root Of 590*x^4-725*x^3-639*x^2-531*x-190 4334939247823769 r009 Im(z^3+c),c=-11/29+19/44*I,n=30 4334939250643653 m001 FeigenbaumD*(GAMMA(2/3)+MertensB1) 4334939257906935 r002 26th iterates of z^2 + 4334939269492553 b008 -6/7+ArcCoth[5/2] 4334939273397929 a001 13/599074578*47^(7/9) 4334939279081167 s001 sum(exp(-3*Pi)^n*A236879[n],n=1..infinity) 4334939280665284 r005 Im(z^2+c),c=-55/122+31/57*I,n=41 4334939283802989 r005 Im(z^2+c),c=19/90+7/17*I,n=39 4334939284607333 r009 Re(z^3+c),c=-31/60+13/60*I,n=41 4334939290173334 r005 Im(z^2+c),c=-29/52+7/16*I,n=15 4334939299183050 a007 Real Root Of -253*x^4-987*x^3+503*x^2+44*x-322 4334939305297161 m002 -1+2*E^Pi-Cosh[Pi]/6 4334939326302144 a001 182717648081/2889*521^(4/13) 4334939329212743 a001 32951280099/1364*521^(6/13) 4334939330478227 r005 Im(z^2+c),c=-6/5+20/89*I,n=8 4334939331879247 r005 Re(z^2+c),c=-5/42+23/29*I,n=54 4334939342413694 b008 13*ArcCoth[30] 4334939350495729 a007 Real Root Of 87*x^4+338*x^3-214*x^2-42*x+651 4334939354932045 r009 Im(z^3+c),c=-17/27+23/45*I,n=9 4334939357658359 p003 LerchPhi(1/25,1,254/107) 4334939396557360 r005 Re(z^2+c),c=-18/29+5/64*I,n=41 4334939416277694 h001 (3/10*exp(1)+1/12)/(1/2*exp(1)+5/7) 4334939429254733 s002 sum(A049324[n]/(n^3*2^n+1),n=1..infinity) 4334939431451851 m001 GAMMA(19/24)*GlaisherKinkelin^2*exp(cos(Pi/5)) 4334939434120644 r009 Im(z^3+c),c=-39/94+27/47*I,n=55 4334939437203714 a001 956722026041/15127*521^(4/13) 4334939452651450 r005 Re(z^2+c),c=5/74+9/61*I,n=12 4334939453384036 a001 2504730781961/39603*521^(4/13) 4334939455744713 a001 3278735159921/51841*521^(4/13) 4334939456301993 a001 10610209857723/167761*521^(4/13) 4334939457203692 a001 4052739537881/64079*521^(4/13) 4334939463384024 a001 387002188980/6119*521^(4/13) 4334939478324649 m001 (BesselK(0,1)-ln(2))/(-CareFree+ZetaP(4)) 4334939483400292 r005 Re(z^2+c),c=-49/114+21/37*I,n=19 4334939504164139 a001 199*(1/2*5^(1/2)+1/2)^9*3^(23/24) 4334939505744657 a001 591286729879/9349*521^(4/13) 4334939515554273 r005 Im(z^2+c),c=11/58+16/37*I,n=48 4334939523405896 r002 14th iterates of z^2 + 4334939523405896 r002 14th iterates of z^2 + 4334939545296463 r005 Im(z^2+c),c=5/26+30/59*I,n=38 4334939565566164 r008 a(0)=0,K{-n^6,-44+24*n^3-41*n^2+39*n} 4334939569832578 a007 Real Root Of 232*x^4+880*x^3-770*x^2-927*x+211 4334939577151454 a001 86267571272/843*843^(3/14) 4334939580015627 r005 Im(z^2+c),c=-19/29+24/61*I,n=8 4334939593617856 r005 Re(z^2+c),c=-11/18+22/113*I,n=56 4334939596026426 a007 Real Root Of -96*x^4+713*x^3+192*x^2+675*x+318 4334939603532828 r009 Im(z^3+c),c=-6/31+8/15*I,n=5 4334939605283292 r005 Im(z^2+c),c=19/60+16/63*I,n=10 4334939609385590 s002 sum(A124839[n]/(n*exp(pi*n)-1),n=1..infinity) 4334939609403645 h001 (-exp(2/3)+9)/(-8*exp(3)-2) 4334939609958457 r005 Re(z^2+c),c=-31/50+17/60*I,n=49 4334939612111828 l006 ln(5801/6058) 4334939616168210 r005 Im(z^2+c),c=37/126+18/55*I,n=47 4334939618112114 l006 ln(3260/5029) 4334939648243479 m001 HardyLittlewoodC4^Khinchin-PlouffeB 4334939651019941 a008 Real Root of (-5+9*x+7*x^2-6*x^4-4*x^8) 4334939654186906 a001 3571/5*55^(9/20) 4334939668189740 r005 Im(z^2+c),c=31/106+22/57*I,n=36 4334939668607639 a001 2206/21*89^(6/19) 4334939671593682 r002 58th iterates of z^2 + 4334939672602917 s002 sum(A228039[n]/((exp(n)+1)/n),n=1..infinity) 4334939676476392 m001 (Zeta(5)-CopelandErdos)/(KhinchinLevy+Robbin) 4334939697416357 r005 Re(z^2+c),c=-17/82+25/38*I,n=16 4334939706391364 r005 Im(z^2+c),c=9/98+26/51*I,n=62 4334939726541953 m001 (Psi(2,1/3)*PrimesInBinary-Zeta(5))/Psi(2,1/3) 4334939727317958 s001 sum(exp(-Pi/2)^(n-1)*A190136[n],n=1..infinity) 4334939735442958 m001 (Thue-ZetaP(3))/(QuadraticClass-Sarnak) 4334939738316717 r002 34th iterates of z^2 + 4334939747697807 m001 ln(Salem)*Robbin^2/GAMMA(13/24) 4334939749080166 m009 (1/3*Psi(1,2/3)-1/5)/(2/3*Psi(1,3/4)+1/5) 4334939750620781 r005 Im(z^2+c),c=-3/106+43/62*I,n=27 4334939759149280 r005 Im(z^2+c),c=-155/122+1/61*I,n=62 4334939775204615 r005 Im(z^2+c),c=-67/60+1/19*I,n=30 4334939794633863 a001 225851433717/2207*521^(3/13) 4334939796088772 a001 225851433717/3571*521^(4/13) 4334939813776997 a007 Real Root Of 707*x^4+726*x^3+14*x^2-894*x-356 4334939816587142 m001 (Sierpinski-ZetaQ(3))/(gamma(3)-Gompertz) 4334939835668152 r005 Im(z^2+c),c=1/20+5/9*I,n=31 4334939851021563 a007 Real Root Of 703*x^4-685*x^3-46*x^2-323*x-212 4334939866015209 a007 Real Root Of -744*x^4+503*x^3+137*x^2+954*x-454 4334939869358810 a003 cos(Pi*11/97)*cos(Pi*17/49) 4334939881365408 r005 Re(z^2+c),c=-69/52+1/57*I,n=2 4334939886944448 r009 Re(z^3+c),c=-19/40+8/49*I,n=53 4334939891935667 r005 Re(z^2+c),c=-43/82+5/11*I,n=55 4334939895242510 m001 HardyLittlewoodC5/(CopelandErdos+Rabbit) 4334939901617931 m001 Zeta(1,-1)*Artin+Pi*csc(5/24*Pi)/GAMMA(19/24) 4334939902620760 r002 16th iterates of z^2 + 4334939920084429 r002 55th iterates of z^2 + 4334939929247595 l006 ln(6391/9859) 4334939932268110 r005 Im(z^2+c),c=17/82+12/29*I,n=35 4334939943047070 m001 (sin(1/12*Pi)-MasserGramain)^QuadraticClass 4334939956471282 m001 Si(Pi)^Zeta(1,2)*ln(2+3^(1/2))^Zeta(1,2) 4334939956471282 m001 Si(Pi)^Zeta(1,2)*ln(2+sqrt(3))^Zeta(1,2) 4334939959576557 a007 Real Root Of 203*x^4+892*x^3+216*x^2+555*x-675 4334940006861384 a001 2/2178309*21^(26/51) 4334940009616747 r002 35th iterates of z^2 + 4334940012864740 a001 53316291173/843*843^(2/7) 4334940037668558 r005 Re(z^2+c),c=-11/18+17/90*I,n=62 4334940043865566 a007 Real Root Of 159*x^4+854*x^3+742*x^2-80*x-870 4334940060367422 m001 ln(cos(1))^2*MadelungNaCl*cos(Pi/5)^2 4334940061301000 r002 5th iterates of z^2 + 4334940077862534 r005 Im(z^2+c),c=-1/15+28/39*I,n=45 4334940078133755 r005 Im(z^2+c),c=11/118+30/59*I,n=40 4334940081431546 r002 60th iterates of z^2 + 4334940093682764 p003 LerchPhi(1/3,2,361/221) 4334940103917902 r002 7th iterates of z^2 + 4334940109999440 r005 Re(z^2+c),c=-5/8+3/185*I,n=32 4334940115564120 l006 ln(103/7861) 4334940141467250 r002 43th iterates of z^2 + 4334940151842595 r002 39th iterates of z^2 + 4334940154684691 m001 GAMMA(17/24)-Khinchin^MadelungNaCl 4334940154684691 m001 Khinchin^MadelungNaCl-GAMMA(17/24) 4334940154900204 a008 Real Root of x^4-x^3-16*x^2+29 4334940160019818 r002 52th iterates of z^2 + 4334940162785420 r002 36th iterates of z^2 + 4334940166375592 r009 Im(z^3+c),c=-7/30+25/52*I,n=7 4334940170988155 a001 34/123*39603^(13/50) 4334940179953246 m001 (Catalan-Si(Pi))/(ArtinRank2+MinimumGamma) 4334940179992130 a007 Real Root Of -144*x^4-763*x^3-742*x^2-556*x+229 4334940185358655 r005 Im(z^2+c),c=9/62+19/41*I,n=28 4334940205167178 a007 Real Root Of 834*x^4+678*x^3+643*x^2-512*x-317 4334940213313749 b008 2^(6/Pi)+EulerGamma 4334940229944263 r005 Re(z^2+c),c=15/98+18/59*I,n=26 4334940237921388 v002 sum(1/(3^n+(7*n^2+26*n+11)),n=1..infinity) 4334940247275179 a007 Real Root Of 483*x^4+130*x^3+82*x^2-983*x-448 4334940249828144 r009 Im(z^3+c),c=-1/102+49/62*I,n=38 4334940253202126 l006 ln(3131/4830) 4334940256436578 r004 Im(z^2+c),c=1/10-8/15*I,z(0)=I,n=42 4334940260814901 m001 1/arctan(1/2)^2/exp(KhintchineLevy)^2 4334940261674288 r008 a(0)=4,K{-n^6,31+8*n^3-7*n^2-26*n} 4334940269004602 m001 (Cahen+ReciprocalFibonacci)/(ln(gamma)-Artin) 4334940269672056 r002 31th iterates of z^2 + 4334940277690936 m001 (CopelandErdos-Porter)/(Pi-ln(2)/ln(10)) 4334940313502908 m001 BesselJ(0,1)*BesselI(1,2)/FransenRobinson 4334940320620115 r005 Im(z^2+c),c=11/62+15/34*I,n=38 4334940323141150 a007 Real Root Of 192*x^4+721*x^3-321*x^2+514*x-807 4334940338722183 r005 Re(z^2+c),c=-49/74+2/11*I,n=21 4334940369895773 a007 Real Root Of 587*x^4-989*x^3-878*x^2-929*x+42 4334940383132525 a008 Real Root of x^4-2*x^3-119*x^2-387*x+17 4334940390251940 a003 cos(Pi*33/91)/sin(Pi*27/65) 4334940391285958 h001 (-4*exp(-2)-1)/(-4*exp(2)-6) 4334940391938730 r005 Im(z^2+c),c=-1/21+26/51*I,n=4 4334940411403435 m001 BesselK(1,1)/Kolakoski/ZetaP(3) 4334940418725869 m001 (Kac+MadelungNaCl)/(Psi(2,1/3)+Artin) 4334940418733532 r005 Re(z^2+c),c=-5/38+33/53*I,n=8 4334940435241413 a007 Real Root Of -456*x^4+955*x^3-598*x^2+380*x+371 4334940437960528 a001 86267571272/521*199^(2/11) 4334940443204648 m005 (1/2*exp(1)-1)/(8/11*Pi+6) 4334940448578069 a001 10983760033/281*843^(5/14) 4334940453664704 a001 199/317811*20365011074^(21/22) 4334940455543993 r005 Re(z^2+c),c=-27/31+17/30*I,n=2 4334940457098764 r005 Im(z^2+c),c=9/40+2/5*I,n=61 4334940459812486 m001 (GAMMA(19/24)+ZetaQ(3))/(ln(2)-cos(1/12*Pi)) 4334940460089138 m005 (1/3*Pi-1/2)/(33/35+1/7*5^(1/2)) 4334940462320852 b008 48/E^(1/6)+E 4334940475908681 r005 Im(z^2+c),c=-5/11+4/55*I,n=19 4334940488628562 r009 Im(z^3+c),c=-25/48+3/11*I,n=27 4334940495149499 a007 Real Root Of 749*x^4-22*x^3-880*x^2-146*x+204 4334940496828163 m001 (Landau-PlouffeB)/(Porter+Riemann1stZero) 4334940497596785 r005 Re(z^2+c),c=-61/98+3/58*I,n=35 4334940508231201 r009 Im(z^3+c),c=-25/48+14/37*I,n=10 4334940513544029 s002 sum(A142195[n]/(10^n-1),n=1..infinity) 4334940515841018 m001 Si(Pi)^2*exp(Artin)/GAMMA(1/12) 4334940517285786 r009 Im(z^3+c),c=-29/62+13/33*I,n=24 4334940521186421 m001 1/GAMMA(5/24)/ln(GAMMA(1/3))^2/cos(1) 4334940554764594 a001 591286729879/5778*521^(3/13) 4334940557675193 a001 53316291173/1364*521^(5/13) 4334940559688819 m001 OneNinth^exp(Pi)*HardyLittlewoodC5^exp(Pi) 4334940562211955 r005 Im(z^2+c),c=17/94+10/23*I,n=30 4334940582083870 m001 1/BesselK(0,1)^2/Artin*exp(GAMMA(11/12)) 4334940588501688 m001 BesselJZeros(0,1)*MadelungNaCl^GAMMA(11/12) 4334940590784605 l006 ln(6133/9461) 4334940590784605 p004 log(9461/6133) 4334940599992668 a001 377/1364*312119004989^(4/5) 4334940599992668 a001 377/1364*(1/2+1/2*5^(1/2))^44 4334940599992668 a001 377/1364*23725150497407^(11/16) 4334940599992668 a001 377/1364*73681302247^(11/13) 4334940599992668 a001 377/1364*10749957122^(11/12) 4334940599992668 a001 377/1364*4106118243^(22/23) 4334940599999999 a001 610/843*2537720636^(14/15) 4334940599999999 a001 610/843*17393796001^(6/7) 4334940599999999 a001 610/843*45537549124^(14/17) 4334940599999999 a001 610/843*817138163596^(14/19) 4334940599999999 a001 610/843*14662949395604^(2/3) 4334940599999999 a001 610/843*(1/2+1/2*5^(1/2))^42 4334940599999999 a001 610/843*505019158607^(3/4) 4334940599999999 a001 610/843*192900153618^(7/9) 4334940599999999 a001 610/843*10749957122^(7/8) 4334940599999999 a001 610/843*4106118243^(21/23) 4334940599999999 a001 610/843*1568397607^(21/22) 4334940615070404 m005 (1/2*Zeta(3)+1/2)/(7/8*5^(1/2)+7/12) 4334940617830365 a007 Real Root Of 916*x^4-680*x^3+598*x^2-325*x-341 4334940618328983 m001 Artin^HardyLittlewoodC5*Artin^TreeGrowth2nd 4334940623808793 a007 Real Root Of 113*x^4+451*x^3-241*x^2-529*x-929 4334940636749274 r005 Im(z^2+c),c=-31/58+1/13*I,n=35 4334940638510874 r002 60th iterates of z^2 + 4334940652838196 r002 36th iterates of z^2 + 4334940658866565 a005 (1/sin(88/223*Pi))^1181 4334940660629319 r009 Im(z^3+c),c=-6/25+29/60*I,n=22 4334940662945567 m001 ln(Magata)^2/Champernowne^2*GAMMA(5/24) 4334940665666195 a001 1548008755920/15127*521^(3/13) 4334940673721504 m001 (KomornikLoreti+ZetaQ(2))/(exp(1)+GAMMA(7/12)) 4334940681846522 a001 4052739537881/39603*521^(3/13) 4334940684207199 a001 225749145909/2206*521^(3/13) 4334940685666178 a001 6557470319842/64079*521^(3/13) 4334940687074861 m005 (1/3*Catalan-1/11)/(3*3^(1/2)-1/4) 4334940691846513 a001 2504730781961/24476*521^(3/13) 4334940710533805 r005 Re(z^2+c),c=-41/66+1/39*I,n=49 4334940711913204 r005 Re(z^2+c),c=-21/34+9/79*I,n=55 4334940722981810 r005 Re(z^2+c),c=-41/66+1/35*I,n=61 4334940723705511 a007 Real Root Of 133*x^4+511*x^3-89*x^2+872*x+113 4334940734207157 a001 956722026041/9349*521^(3/13) 4334940751378212 r002 60th iterates of z^2 + 4334940753187486 a007 Real Root Of 534*x^4-264*x^3+359*x^2-674*x-400 4334940760110118 b008 1+Pi*Cosh[Pi/9] 4334940765372239 r002 31th iterates of z^2 + 4334940771387884 a007 Real Root Of -366*x^4+975*x^3+284*x^2+404*x-295 4334940773821679 m001 HardyLittlewoodC3^FeigenbaumC-gamma(3) 4334940788402884 r005 Im(z^2+c),c=21/106+25/59*I,n=38 4334940788881772 r005 Im(z^2+c),c=-41/70+5/63*I,n=53 4334940793561650 a007 Real Root Of 174*x^4+635*x^3-727*x^2-997*x-377 4334940817055422 r005 Im(z^2+c),c=11/50+8/11*I,n=4 4334940827746137 r002 49th iterates of z^2 + 4334940829797509 r005 Im(z^2+c),c=-1/94+32/55*I,n=54 4334940830725701 r009 Im(z^3+c),c=-9/20+11/28*I,n=41 4334940839003887 m001 Paris*Khintchine^2*ln(Tribonacci) 4334940843964316 m005 (1/2*Zeta(3)-1)/(39/176+5/16*5^(1/2)) 4334940844398567 m001 TwinPrimes*Champernowne^2/exp(BesselK(0,1))^2 4334940864257709 m001 ln(Pi)*GAMMA(7/12)+Sierpinski 4334940871565650 r005 Im(z^2+c),c=1/4+3/8*I,n=47 4334940877756769 m001 (FellerTornier+Salem)/(Ei(1,1)-BesselI(1,1)) 4334940884291441 a001 20365011074/843*843^(3/7) 4334940885851575 a001 701408733/322*322^(11/12) 4334940899608471 r005 Im(z^2+c),c=2/27+10/19*I,n=34 4334940901387380 a007 Real Root Of 106*x^4+372*x^3+972*x^2-445*x-349 4334940902731993 r005 Re(z^2+c),c=-127/118+10/41*I,n=16 4334940914900020 r005 Im(z^2+c),c=2/27+9/17*I,n=13 4334940918361953 a008 Real Root of x^4-2*x^3-28*x^2-24*x+440 4334940927073050 a007 Real Root Of -152*x^4-73*x^3-352*x^2+587*x-177 4334940934584338 a007 Real Root Of -512*x^4+821*x^3+327*x^2+970*x+444 4334940942873446 l006 ln(3002/4631) 4334940961627416 m002 -4+6/Pi^3+Pi*ProductLog[Pi] 4334940969781986 a001 199/1346269*4181^(4/31) 4334940974713865 m001 TreeGrowth2nd/(GAMMA(23/24)^gamma) 4334940987323501 m001 (2^(1/2)-Totient)^arctan(1/3) 4334940988074911 a005 (1/sin(47/171*Pi))^232 4334940996096216 a008 Real Root of (2+2*x-2*x^2+6*x^3-5*x^4+6*x^5) 4334940999512194 s002 sum(A028506[n]/(n*pi^n+1),n=1..infinity) 4334941007653061 r005 Re(z^2+c),c=-35/32+41/56*I,n=2 4334941017220856 r005 Re(z^2+c),c=-73/122+7/24*I,n=40 4334941018238286 r005 Re(z^2+c),c=-17/30+7/20*I,n=43 4334941019115935 r005 Re(z^2+c),c=-5/8+43/203*I,n=37 4334941023096445 a001 365435296162/2207*521^(2/13) 4334941024551355 a001 365435296162/3571*521^(3/13) 4334941030172974 m001 (arctan(1/3)-ln(2)/ln(10))/(Zeta(1,-1)+Cahen) 4334941038147578 m001 (GaussAGM+OneNinth)/(Si(Pi)+arctan(1/3)) 4334941062264992 m005 (1/2*Catalan-1/4)/(4/11*5^(1/2)-1/3) 4334941067912193 r002 53th iterates of z^2 + 4334941073545927 a007 Real Root Of 964*x^4+952*x^3-319*x^2-963*x-314 4334941074593613 m001 (2*Pi/GAMMA(5/6))^FibonacciFactorial/Ei(1) 4334941075524727 r005 Re(z^2+c),c=-51/82+5/63*I,n=17 4334941076921715 a007 Real Root Of -838*x^4+902*x^3+447*x^2+595*x+277 4334941079168026 a007 Real Root Of -230*x^4+266*x^3-822*x^2+673*x+476 4334941082853023 r009 Re(z^3+c),c=-57/118+11/64*I,n=31 4334941085156190 a007 Real Root Of 100*x^4+336*x^3-321*x^2+513*x+314 4334941095728516 m005 (1/3*Pi+2/11)/(9/11*Catalan-7/9) 4334941104739140 r005 Re(z^2+c),c=-1/122+22/35*I,n=15 4334941111611211 k008 concat of cont frac of 4334941118433403 m001 Niven^Conway*Niven^exp(1/exp(1)) 4334941122739837 m001 (ThueMorse+1/2)/(-Ei(1)+4) 4334941144311147 a007 Real Root Of -565*x^4+169*x^3+538*x^2+946*x-505 4334941150032786 a001 132215705076/305 4334941156533417 a007 Real Root Of 968*x^4-993*x^3-675*x^2-853*x-358 4334941168182831 r005 Im(z^2+c),c=13/106+17/30*I,n=42 4334941170822207 r004 Re(z^2+c),c=-5/8+4/21*I,z(0)=-1,n=29 4334941182975559 r009 Re(z^3+c),c=-23/114+34/37*I,n=10 4334941184730733 r005 Re(z^2+c),c=-41/66+1/40*I,n=60 4334941191948740 m001 Si(Pi)/(Zeta(1,-1)+Lehmer) 4334941197004289 r002 17th iterates of z^2 + 4334941217031574 p004 log(36451/23629) 4334941220171913 a007 Real Root Of -109*x^4-538*x^3-59*x^2+798*x-767 4334941227993414 m006 (1/2*exp(Pi)+1/4)/(4/Pi-4) 4334941250348848 r005 Im(z^2+c),c=-31/82+31/47*I,n=12 4334941250921875 m005 (1/2*2^(1/2)-1/8)/(4/9*2^(1/2)+5/7) 4334941259711427 m005 (1/2*5^(1/2)+3)/(59/88+1/8*5^(1/2)) 4334941261166567 r005 Re(z^2+c),c=-43/82+33/56*I,n=10 4334941280094520 r005 Re(z^2+c),c=-9/14+19/191*I,n=17 4334941281552217 m001 (LambertW(1)+Zeta(1,-1))/(Zeta(1,2)+Trott) 4334941305364407 a001 1134903170/2207*1364^(14/15) 4334941310424219 l006 ln(5875/9063) 4334941320004858 a001 12586269025/843*843^(1/2) 4334941339490104 s002 sum(A248814[n]/(n*2^n+1),n=1..infinity) 4334941351395120 r002 57i'th iterates of 2*x/(1-x^2) of 4334941368885118 r005 Im(z^2+c),c=7/102+27/50*I,n=38 4334941370708677 m001 (cos(1/12*Pi)-Grothendieck)/(Landau+Totient) 4334941376050122 m005 (1/3*2^(1/2)+1/8)/(5*exp(1)+1/6) 4334941379116831 r005 Re(z^2+c),c=-7/13+11/48*I,n=10 4334941383234387 r005 Im(z^2+c),c=-9/74+28/53*I,n=7 4334941401117379 r008 a(0)=1,K{-n^6,-18+55*n-53*n^2+12*n^3} 4334941419710544 q001 629/1451 4334941424463046 a007 Real Root Of 147*x^4-318*x^3+264*x^2-379*x-245 4334941429619379 m001 ln(MinimumGamma)^2*MertensB1^2*BesselJ(1,1) 4334941437991652 r002 64th iterates of z^2 + 4334941450515445 r005 Re(z^2+c),c=-3/5+37/122*I,n=47 4334941452736522 a007 Real Root Of -98*x^4+339*x^3+454*x^2+861*x+319 4334941460697103 a001 1836311903/2207*1364^(13/15) 4334941464938850 m005 (1/2*Zeta(3)+3/10)/(8/9*5^(1/2)+1/11) 4334941490205739 a007 Real Root Of 136*x^4+475*x^3-282*x^2+783*x-638 4334941511804146 r002 38th iterates of z^2 + 4334941516939847 a001 843/8*55^(6/17) 4334941518310306 r005 Re(z^2+c),c=-7/15+28/57*I,n=31 4334941541614631 r005 Im(z^2+c),c=-103/114+17/64*I,n=48 4334941543360816 a008 Real Root of x^4-6*x^2-28*x-119 4334941549137573 a001 1149851/89*63245986^(17/24) 4334941554040810 r002 37th iterates of z^2 + 4334941554040810 r002 37th iterates of z^2 + 4334941569768766 r005 Im(z^2+c),c=29/122+11/23*I,n=44 4334941572441788 m001 1/GAMMA(5/6)^2/FransenRobinson^2/exp(exp(1))^2 4334941577068718 m005 (-7/30+1/6*5^(1/2))/(2/11*3^(1/2)-7/11) 4334941591361753 r005 Im(z^2+c),c=17/66+18/49*I,n=47 4334941595151198 m005 (1/3*gamma-1/10)/(2/5*Pi+7/8) 4334941595930429 b008 EulerGamma^ArcTan[E^3] 4334941616029804 a001 2971215073/2207*1364^(4/5) 4334941621557645 r002 27th iterates of z^2 + 4334941643764672 r002 30th iterates of z^2 + 4334941659537025 m001 cos(1)^FeigenbaumB*Sarnak 4334941661528845 r009 Im(z^3+c),c=-23/98+16/33*I,n=18 4334941675038514 a007 Real Root Of -206*x^4+918*x^3-505*x^2-542*x-58 4334941694478301 l006 ln(2873/4432) 4334941699076860 a007 Real Root Of 596*x^4-427*x^3-596*x^2-605*x+388 4334941708614586 m001 (-Backhouse+FeigenbaumD)/(3^(1/2)+ln(3)) 4334941709388688 a003 sin(Pi*1/106)/cos(Pi*25/96) 4334941724157106 a001 1/322*18^(3/26) 4334941733536969 m001 (KhinchinLevy-Shi(1))/(Otter+Trott2nd) 4334941746463798 l006 ln(78/5953) 4334941749423609 r002 49th iterates of z^2 + 4334941754158184 a001 267913919*322^(1/12) 4334941754967037 m001 gamma(3)*(GAMMA(7/12)+LandauRamanujan2nd) 4334941755718318 a001 7778742049/843*843^(4/7) 4334941761815519 r005 Im(z^2+c),c=33/118+11/32*I,n=50 4334941766528740 r005 Im(z^2+c),c=-1/18+34/57*I,n=61 4334941771362511 a001 4807526976/2207*1364^(11/15) 4334941771938755 r005 Im(z^2+c),c=-59/94+23/63*I,n=3 4334941772210586 r005 Re(z^2+c),c=2/11+13/38*I,n=30 4334941779516958 r002 20th iterates of z^2 + 4334941781905134 r002 3th iterates of z^2 + 4334941783227392 a001 956722026041/5778*521^(2/13) 4334941786137992 a001 21566892818/341*521^(4/13) 4334941797343772 r004 Im(z^2+c),c=3/10-4/21*I,z(0)=exp(3/8*I*Pi),n=3 4334941803253623 r005 Im(z^2+c),c=21/64+14/45*I,n=40 4334941814362458 r005 Im(z^2+c),c=5/86+8/15*I,n=49 4334941826787077 r002 17th iterates of z^2 + 4334941830628658 s001 sum(exp(-3*Pi/5)^n*A252315[n],n=1..infinity) 4334941832582229 r005 Im(z^2+c),c=29/90+19/58*I,n=24 4334941861112883 m001 ArtinRank2/(exp(1)^PlouffeB) 4334941863011823 r005 Im(z^2+c),c=15/122+18/37*I,n=64 4334941867354758 a001 89/3*2^(29/53) 4334941878838428 a007 Real Root Of -930*x^4-641*x^3-705*x^2+791*x+456 4334941883014263 r005 Re(z^2+c),c=-59/98+15/49*I,n=59 4334941886991948 m001 (Shi(1)+ln(3))/(Zeta(1,-1)+LaplaceLimit) 4334941894129025 a001 2504730781961/15127*521^(2/13) 4334941897373633 r005 Im(z^2+c),c=23/94+13/33*I,n=21 4334941910163934 a001 26443145652/61 4334941910309355 a001 6557470319842/39603*521^(2/13) 4334941914129013 a001 10610209857723/64079*521^(2/13) 4334941915081570 a007 Real Root Of 521*x^4-878*x^3-774*x^2-377*x+362 4334941920309350 a001 4052739537881/24476*521^(2/13) 4334941926695224 a001 7778742049/2207*1364^(2/3) 4334941952882142 h001 (5/8*exp(1)+3/10)/(1/2*exp(2)+11/12) 4334941953989573 s002 sum(A241407[n]/(64^n),n=1..infinity) 4334941962670006 a001 1548008755920/9349*521^(2/13) 4334941975695317 r009 Im(z^3+c),c=-21/64+5/11*I,n=15 4334941978882659 r005 Re(z^2+c),c=-21/34+40/127*I,n=59 4334942002026286 r009 Im(z^3+c),c=-29/56+10/33*I,n=37 4334942021016074 r005 Im(z^2+c),c=2/21+32/63*I,n=57 4334942021065573 a001 52886292657/122 4334942025091297 m001 (Thue+ZetaQ(3))/(2^(1/2)+sin(1/5*Pi)) 4334942037245901 a001 132215732136/305 4334942038010100 m003 -1/2+Sqrt[5]/256+Tanh[1/2+Sqrt[5]/2]/16 4334942039250856 r002 26th iterates of z^2 + 4334942039606557 a001 132215732208/305 4334942039950819 a001 264431464437/610 4334942040009836 a001 1/305*(1/2+1/2*5^(1/2))^58 4334942040009836 a001 1322157322203/610*8^(1/3) 4334942040016393 a001 264431464441/610 4334942040032786 a001 132215732221/305 4334942040163934 a001 26443146445/61 4334942041065573 a001 52886292901/122 4334942046497936 a007 Real Root Of -215*x^4+833*x^3+332*x^2+912*x-518 4334942047245901 a001 132215732441/305 4334942058518332 r005 Re(z^2+c),c=-5/8+43/112*I,n=48 4334942063203283 r005 Re(z^2+c),c=-11/18+17/81*I,n=46 4334942065495403 a001 2971215073/5778*1364^(14/15) 4334942067930774 m001 (-Ei(1,1)+2*Pi/GAMMA(5/6))/(cos(1)+ln(2)) 4334942069448609 r005 Im(z^2+c),c=7/22+21/61*I,n=11 4334942069560739 m001 Porter*exp(Bloch)^2*GAMMA(1/12) 4334942075934443 r005 Re(z^2+c),c=-13/22+25/88*I,n=39 4334942076443785 m005 (1/2*Zeta(3)-7/12)/(7/9*gamma-6/7) 4334942082027942 a001 12586269025/2207*1364^(3/5) 4334942089606557 a001 132215733733/305 4334942096172737 l006 ln(5617/8665) 4334942103478169 s001 sum(exp(-Pi)^(n-1)*A252441[n],n=1..infinity) 4334942115383733 m009 (2/5*Psi(1,2/3)-5/6)/(1/2*Psi(1,1/3)+4) 4334942118844324 r009 Im(z^3+c),c=-25/64+26/61*I,n=41 4334942124305303 m005 (1/2*Pi+1/5)/(1/8*3^(1/2)-5/8) 4334942127864838 r002 36th iterates of z^2 + 4334942129032413 g004 abs(GAMMA(-47/15+I*(-11/6))) 4334942129954272 m003 36+Cosh[1/2+Sqrt[5]/2]^2+Log[1/2+Sqrt[5]/2] 4334942141853836 r005 Re(z^2+c),c=-4/7+55/126*I,n=60 4334942146078981 m001 1/GAMMA(5/24)/MertensB1/ln(Zeta(9)) 4334942150323940 r009 Re(z^3+c),c=-69/110+15/31*I,n=2 4334942155096733 m001 1/GAMMA(1/12)^3*exp(GAMMA(5/24))^2 4334942169962242 r005 Re(z^2+c),c=-41/66+1/33*I,n=45 4334942176397043 a001 7778742049/15127*1364^(14/15) 4334942191431822 a001 1602508992/281*843^(9/14) 4334942192577375 a001 20365011074/39603*1364^(14/15) 4334942194938053 a001 53316291173/103682*1364^(14/15) 4334942195282472 a001 139583862445/271443*1364^(14/15) 4334942195332722 a001 365435296162/710647*1364^(14/15) 4334942195340053 a001 956722026041/1860498*1364^(14/15) 4334942195341123 a001 2504730781961/4870847*1364^(14/15) 4334942195341279 a001 6557470319842/12752043*1364^(14/15) 4334942195341316 a001 10610209857723/20633239*1364^(14/15) 4334942195341375 a001 4052739537881/7881196*1364^(14/15) 4334942195341784 a001 1548008755920/3010349*1364^(14/15) 4334942195344584 a001 514229*1364^(14/15) 4334942195363778 a001 225851433717/439204*1364^(14/15) 4334942195495334 a001 86267571272/167761*1364^(14/15) 4334942196397033 a001 32951280099/64079*1364^(14/15) 4334942202577370 a001 12586269025/24476*1364^(14/15) 4334942219197872 r005 Im(z^2+c),c=1/12+31/60*I,n=52 4334942220828126 a001 267084832/321*1364^(13/15) 4334942223484661 m001 (Ei(1)-LambertW(1))/(OneNinth+Otter) 4334942228253280 g005 GAMMA(6/11)*GAMMA(1/7)/GAMMA(7/9)/GAMMA(3/7) 4334942231767441 s002 sum(A063220[n]/(n!^3),n=1..infinity) 4334942231767441 s002 sum(A063234[n]/(n!^3),n=1..infinity) 4334942234304914 r002 43th iterates of z^2 + 4334942234304914 r002 43th iterates of z^2 + 4334942236927111 m005 (1/2*exp(1)+1/7)/(3*2^(1/2)-7/9) 4334942237360665 a001 20365011074/2207*1364^(8/15) 4334942244858295 m005 (1/2*Pi-3/4)/(8/9*2^(1/2)+7/11) 4334942244938029 a001 4807526976/9349*1364^(14/15) 4334942247434289 a007 Real Root Of 45*x^4+127*x^3-285*x^2-37*x-350 4334942251559376 a001 591286729879/2207*521^(1/13) 4334942253014286 a001 591286729879/3571*521^(2/13) 4334942253060709 v002 sum(1/(3^n+(20*n^2-23*n+47)),n=1..infinity) 4334942259467534 m001 (FeigenbaumC-MertensB2)/(Tribonacci-ZetaQ(4)) 4334942267735256 b008 ArcSec[2^(4+Pi)^(-1)] 4334942276733363 a007 Real Root Of -484*x^4+85*x^3-722*x^2+672*x+451 4334942282116394 m005 (4/5*2^(1/2)+1/2)/(5/6*Catalan+3) 4334942284961432 a007 Real Root Of 8*x^4+332*x^3-636*x^2+245*x+527 4334942299147795 a003 cos(Pi*19/96)-cos(Pi*41/109) 4334942303004832 a007 Real Root Of 124*x^4+502*x^3-142*x^2-134*x-807 4334942315941480 a007 Real Root Of -107*x^4+348*x^3-880*x^2+451*x+393 4334942323486328 s002 sum(A065705[n]/(n*pi^n+1),n=1..infinity) 4334942331729770 a001 12586269025/15127*1364^(13/15) 4334942345095544 s002 sum(A065705[n]/(n*pi^n-1),n=1..infinity) 4334942347910102 a001 10983760033/13201*1364^(13/15) 4334942350270781 a001 43133785636/51841*1364^(13/15) 4334942350615199 a001 75283811239/90481*1364^(13/15) 4334942350665449 a001 591286729879/710647*1364^(13/15) 4334942350672781 a001 832040*1364^(13/15) 4334942350673850 a001 4052739537881/4870847*1364^(13/15) 4334942350674006 a001 3536736619241/4250681*1364^(13/15) 4334942350674103 a001 3278735159921/3940598*1364^(13/15) 4334942350674511 a001 2504730781961/3010349*1364^(13/15) 4334942350677312 a001 956722026041/1149851*1364^(13/15) 4334942350696505 a001 182717648081/219602*1364^(13/15) 4334942350828062 a001 139583862445/167761*1364^(13/15) 4334942351729761 a001 53316291173/64079*1364^(13/15) 4334942353962116 r005 Re(z^2+c),c=-22/23+1/24*I,n=8 4334942357910098 a001 10182505537/12238*1364^(13/15) 4334942361936576 r005 Im(z^2+c),c=-5/8+17/205*I,n=39 4334942376160855 a001 7778742049/5778*1364^(4/5) 4334942379950819 a001 264431485177/610 4334942382223898 l006 ln(5959/6223) 4334942383533439 r009 Re(z^3+c),c=-47/126+2/35*I,n=12 4334942384720389 r009 Im(z^3+c),c=-29/94+6/13*I,n=24 4334942384912144 r009 Re(z^3+c),c=-21/44+32/51*I,n=3 4334942392182520 r005 Re(z^2+c),c=-25/42+2/7*I,n=13 4334942392693394 a001 32951280099/2207*1364^(7/15) 4334942400270758 a001 7778742049/9349*1364^(13/15) 4334942409431852 m001 1/Robbin^2/GolombDickman^2/ln(sin(Pi/12)) 4334942413293228 r005 Re(z^2+c),c=-10/17+23/52*I,n=55 4334942413495829 r005 Re(z^2+c),c=-9/122+11/16*I,n=55 4334942416757868 r009 Re(z^3+c),c=-19/42+33/59*I,n=7 4334942419809121 r005 Im(z^2+c),c=33/118+12/37*I,n=18 4334942425811911 r002 33th iterates of z^2 + 4334942429414137 r005 Re(z^2+c),c=-19/31+8/37*I,n=18 4334942441195746 m005 (1/2*Catalan+2)/(4/7*gamma-6) 4334942457701665 a007 Real Root Of 60*x^4+176*x^3-485*x^2-452*x+304 4334942458625641 b008 ExpIntegralEi[9*Sech[1/2]] 4334942471996825 r002 32th iterates of z^2 + 4334942486307351 r005 Im(z^2+c),c=25/86+14/45*I,n=23 4334942487062503 a001 20365011074/15127*1364^(4/5) 4334942503242835 a001 53316291173/39603*1364^(4/5) 4334942505603514 a001 139583862445/103682*1364^(4/5) 4334942505947933 a001 365435296162/271443*1364^(4/5) 4334942505998183 a001 956722026041/710647*1364^(4/5) 4334942506005514 a001 2504730781961/1860498*1364^(4/5) 4334942506006584 a001 6557470319842/4870847*1364^(4/5) 4334942506006836 a001 10610209857723/7881196*1364^(4/5) 4334942506007245 a001 1346269*1364^(4/5) 4334942506010045 a001 1548008755920/1149851*1364^(4/5) 4334942506029239 a001 591286729879/439204*1364^(4/5) 4334942506160795 a001 225851433717/167761*1364^(4/5) 4334942507062494 a001 86267571272/64079*1364^(4/5) 4334942513242831 a001 32951280099/24476*1364^(4/5) 4334942516751478 l006 ln(2744/4233) 4334942518798697 h001 (5/11*exp(1)+7/12)/(5/9*exp(2)+1/11) 4334942518879570 m001 (ln(2^(1/2)+1)-3^(1/3))/(ArtinRank2+Gompertz) 4334942531493589 a001 12586269025/5778*1364^(11/15) 4334942535053650 r005 Im(z^2+c),c=-13/74+35/54*I,n=59 4334942535282328 a001 1836311903/3571*1364^(14/15) 4334942540483491 m006 (1/3*exp(2*Pi)-1/2)/(1/3/Pi+4) 4334942541874177 m001 (Gompertz+Lehmer)/(Zeta(1/2)-GlaisherKinkelin) 4334942544778209 r005 Im(z^2+c),c=-35/31+3/56*I,n=21 4334942547244559 r005 Im(z^2+c),c=-15/26+29/75*I,n=3 4334942548026129 a001 53316291173/2207*1364^(2/5) 4334942551216398 r004 Im(z^2+c),c=3/16+9/20*I,z(0)=I,n=27 4334942553133478 r009 Im(z^3+c),c=-11/52+26/53*I,n=21 4334942555603493 a001 12586269025/9349*1364^(4/5) 4334942557434125 g005 GAMMA(1/7)/GAMMA(7/9)/GAMMA(1/9)/GAMMA(3/5) 4334942571621501 a001 2207/233*28657^(19/51) 4334942576867910 r005 Re(z^2+c),c=-41/31+1/25*I,n=46 4334942578703307 m001 1/ln(Salem)^2*Si(Pi)^2*gamma^2 4334942581122862 a007 Real Root Of 963*x^4+342*x^3+867*x^2-595*x-427 4334942582623313 a001 843/5*377^(29/31) 4334942590045310 a001 987/2207*(1/2+1/2*5^(1/2))^43 4334942602827810 r005 Im(z^2+c),c=5/21+29/62*I,n=29 4334942627145370 a001 2971215073/843*843^(5/7) 4334942627259785 r002 6th iterates of z^2 + 4334942630210648 a001 47/13*2178309^(8/47) 4334942636268241 r005 Re(z^2+c),c=-43/64+10/41*I,n=31 4334942637503238 r005 Im(z^2+c),c=3/25+6/13*I,n=10 4334942642395241 a001 32951280099/15127*1364^(11/15) 4334942648492215 r005 Im(z^2+c),c=-25/114+29/39*I,n=26 4334942658575574 a001 86267571272/39603*1364^(11/15) 4334942660936253 a001 225851433717/103682*1364^(11/15) 4334942661280671 a001 591286729879/271443*1364^(11/15) 4334942661330921 a001 1548008755920/710647*1364^(11/15) 4334942661338253 a001 4052739537881/1860498*1364^(11/15) 4334942661339322 a001 2178309*1364^(11/15) 4334942661339983 a001 6557470319842/3010349*1364^(11/15) 4334942661342784 a001 2504730781961/1149851*1364^(11/15) 4334942661361978 a001 956722026041/439204*1364^(11/15) 4334942661493534 a001 365435296162/167761*1364^(11/15) 4334942662395233 a001 139583862445/64079*1364^(11/15) 4334942662404310 m001 Magata+PlouffeB+ZetaP(2) 4334942668575570 a001 53316291173/24476*1364^(11/15) 4334942669100906 a001 21/2*18^(26/53) 4334942686826329 a001 10182505537/2889*1364^(2/3) 4334942690615068 a001 2971215073/3571*1364^(13/15) 4334942697630776 r002 8th iterates of z^2 + 4334942703358870 a001 86267571272/2207*1364^(1/3) 4334942706169614 r005 Re(z^2+c),c=-57/94+10/43*I,n=64 4334942710936234 a001 20365011074/9349*1364^(11/15) 4334942712084052 r005 Im(z^2+c),c=25/82+12/31*I,n=50 4334942718012868 r002 31th iterates of z^2 + 4334942737508668 a007 Real Root Of -744*x^4+392*x^3+812*x^2+911*x+38 4334942741021671 r005 Re(z^2+c),c=-11/20+34/59*I,n=48 4334942754690328 h001 (2/3*exp(2)+1/12)/(1/7*exp(2)+1/10) 4334942755555026 a005 (1/cos(3/47*Pi))^1210 4334942796290408 r009 Im(z^3+c),c=-25/64+26/61*I,n=42 4334942796835191 a007 Real Root Of 70*x^4+141*x^3-611*x^2+380*x-104 4334942797727984 a001 53316291173/15127*1364^(2/3) 4334942804603675 a007 Real Root Of -35*x^4-195*x^3-344*x^2-806*x-555 4334942806942238 a001 199/3*591286729879^(11/19) 4334942813797858 m005 (1/2*exp(1)+11/12)/(2*5^(1/2)+7/9) 4334942813908318 a001 139583862445/39603*1364^(2/3) 4334942816268997 a001 182717648081/51841*1364^(2/3) 4334942816613416 a001 956722026041/271443*1364^(2/3) 4334942816663666 a001 2504730781961/710647*1364^(2/3) 4334942816670997 a001 3278735159921/930249*1364^(2/3) 4334942816672728 a001 10610209857723/3010349*1364^(2/3) 4334942816675528 a001 4052739537881/1149851*1364^(2/3) 4334942816694722 a001 387002188980/109801*1364^(2/3) 4334942816826278 a001 591286729879/167761*1364^(2/3) 4334942817727977 a001 225851433717/64079*1364^(2/3) 4334942818155493 m001 1/Robbin*RenyiParking/ln(sinh(1))^2 4334942823908315 a001 21566892818/6119*1364^(2/3) 4334942829994477 m001 GAMMA(17/24)^Shi(1)/(Riemann3rdZero^Shi(1)) 4334942842159074 a001 10983760033/1926*1364^(3/5) 4334942842637795 m001 (-ln(2)+gamma(2))/(1-Chi(1)) 4334942845947813 a001 4807526976/3571*1364^(4/5) 4334942849372430 g001 Psi(9/10,49/107) 4334942855132993 m001 Tribonacci*(3^(1/3)-Riemann3rdZero) 4334942858691615 a001 139583862445/2207*1364^(4/15) 4334942859764393 r005 Im(z^2+c),c=5/102+20/37*I,n=50 4334942866268980 a001 32951280099/9349*1364^(2/3) 4334942871020044 r005 Re(z^2+c),c=-3/4+11/215*I,n=59 4334942877068062 m001 (ArtinRank2+Stephens)/(exp(1)+Ei(1,1)) 4334942884079762 m005 (1/2*Pi-2/9)/(2/5*5^(1/2)-7/12) 4334942895464332 h001 (5/9*exp(2)+2/11)/(1/10*exp(2)+1/4) 4334942913348444 a007 Real Root Of -217*x^4+528*x^3+840*x^2+627*x-465 4334942914434107 r005 Re(z^2+c),c=11/122+43/62*I,n=3 4334942933835869 m001 (Pi+Catalan)/(MertensB2-Paris) 4334942940576857 m001 (3^(1/2)-exp(1))/(MasserGramainDelta+ZetaP(2)) 4334942941561589 r005 Re(z^2+c),c=-11/18+19/101*I,n=64 4334942953060734 a001 86267571272/15127*1364^(3/5) 4334942955248136 r005 Re(z^2+c),c=-39/64+3/28*I,n=11 4334942957578253 l006 ln(5359/8267) 4334942962373883 m001 GAMMA(3/4)^RenyiParking/Khinchin 4334942969241068 a001 75283811239/13201*1364^(3/5) 4334942971601747 a001 591286729879/103682*1364^(3/5) 4334942971946166 a001 516002918640/90481*1364^(3/5) 4334942971996416 a001 4052739537881/710647*1364^(3/5) 4334942972003747 a001 3536736619241/620166*1364^(3/5) 4334942972008278 a001 6557470319842/1149851*1364^(3/5) 4334942972027472 a001 2504730781961/439204*1364^(3/5) 4334942972159028 a001 956722026041/167761*1364^(3/5) 4334942973060727 a001 365435296162/64079*1364^(3/5) 4334942979241065 a001 139583862445/24476*1364^(3/5) 4334942985364916 r002 16th iterates of z^2 + 4334942997491825 a001 53316291173/5778*1364^(8/15) 4334943001280564 a001 7778742049/3571*1364^(11/15) 4334943011690538 a001 86000486440/321*521^(1/13) 4334943013934932 r009 Re(z^3+c),c=-47/90+9/50*I,n=34 4334943014024367 a001 225851433717/2207*1364^(1/5) 4334943014601139 a001 139583862445/1364*521^(3/13) 4334943018421562 p003 LerchPhi(1/2,6,246/145) 4334943021601732 a001 53316291173/9349*1364^(3/5) 4334943028772364 l006 ln(131/9998) 4334943061565339 a005 (1/cos(1/82*Pi))^1998 4334943062858962 a001 1836311903/843*843^(11/14) 4334943063853900 r009 Im(z^3+c),c=-11/98+25/49*I,n=9 4334943075212997 a005 (1/sin(56/193*Pi))^300 4334943105036949 r002 61th iterates of z^2 + 4334943107302575 m009 (1/2*Psi(1,1/3)+2/3)/(5/6*Psi(1,3/4)-4/5) 4334943108393489 a001 139583862445/15127*1364^(8/15) 4334943122592202 a001 4052739537881/15127*521^(1/13) 4334943124573824 a001 365435296162/39603*1364^(8/15) 4334943126934503 a001 956722026041/103682*1364^(8/15) 4334943127278921 a001 2504730781961/271443*1364^(8/15) 4334943127329171 a001 6557470319842/710647*1364^(8/15) 4334943127341034 a001 10610209857723/1149851*1364^(8/15) 4334943127360227 a001 4052739537881/439204*1364^(8/15) 4334943127491784 a001 140728068720/15251*1364^(8/15) 4334943128393483 a001 591286729879/64079*1364^(8/15) 4334943129262879 r005 Re(z^2+c),c=-11/18+53/120*I,n=3 4334943132943235 m001 Rabbit^2*ln(FibonacciFactorial)*BesselK(0,1) 4334943134573821 a001 7787980473/844*1364^(8/15) 4334943138772537 a001 3536736619241/13201*521^(1/13) 4334943140081402 a001 692290419471/1597 4334943142115329 r009 Im(z^3+c),c=-13/62+27/55*I,n=16 4334943148772535 a001 3278735159921/12238*521^(1/13) 4334943152824581 a001 43133785636/2889*1364^(7/15) 4334943156613321 a001 12586269025/3571*1364^(2/3) 4334943160078093 a001 433494437/2207*3571^(16/17) 4334943167209818 a001 322/55*9227465^(5/9) 4334943169252954 m001 sin(1/5*Pi)^Pi*(ln(2)/ln(10))^Pi 4334943169357124 a001 365435296162/2207*1364^(2/15) 4334943172650768 a003 sin(Pi*5/24)*sin(Pi*28/111) 4334943176903063 a007 Real Root Of 416*x^4-13*x^3-962*x^2-754*x+494 4334943176934489 a001 86267571272/9349*1364^(8/15) 4334943178660091 r002 38th iterates of z^2 + 4334943180074627 a001 701408733/2207*3571^(15/17) 4334943191133203 a001 2504730781961/9349*521^(1/13) 4334943191648737 m001 Sarnak^GAMMA(7/12)*Sarnak^GAMMA(11/12) 4334943194893857 r005 Re(z^2+c),c=-11/18+18/89*I,n=43 4334943199550234 a001 4106118243/89*610^(17/24) 4334943200071162 a001 1134903170/2207*3571^(14/17) 4334943220067696 a001 1836311903/2207*3571^(13/17) 4334943236232045 s001 sum(exp(-2*Pi/5)^n*A286437[n],n=1..infinity) 4334943236232045 s002 sum(A286437[n]/(exp(2/5*pi*n)),n=1..infinity) 4334943240064231 a001 2971215073/2207*3571^(12/17) 4334943243698767 m002 -E^Pi+6/Pi^6-E^Pi/Log[Pi] 4334943245118584 r005 Im(z^2+c),c=-9/16+7/82*I,n=18 4334943260060766 a001 4807526976/2207*3571^(11/17) 4334943263726249 a001 32264490531/2161*1364^(7/15) 4334943279906585 a001 591286729879/39603*1364^(7/15) 4334943280057301 a001 7778742049/2207*3571^(10/17) 4334943282267264 a001 774004377960/51841*1364^(7/15) 4334943282611682 a001 4052739537881/271443*1364^(7/15) 4334943282661932 a001 1515744265389/101521*1364^(7/15) 4334943282692989 a001 3278735159921/219602*1364^(7/15) 4334943282824545 a001 2504730781961/167761*1364^(7/15) 4334943283726244 a001 956722026041/64079*1364^(7/15) 4334943289906582 a001 182717648081/12238*1364^(7/15) 4334943289981640 r009 Im(z^3+c),c=-17/90+35/48*I,n=45 4334943294396445 r002 33th iterates of z^2 + 4334943300053836 a001 12586269025/2207*3571^(9/17) 4334943308157343 a001 139583862445/5778*1364^(2/5) 4334943311946083 a001 20365011074/3571*1364^(3/5) 4334943313471296 r002 48th iterates of z^2 + 4334943320050371 a001 20365011074/2207*3571^(8/17) 4334943324689887 a001 591286729879/2207*1364^(1/15) 4334943332267252 a001 139583862445/9349*1364^(7/15) 4334943336882513 r005 Im(z^2+c),c=-1/66+31/51*I,n=57 4334943340046906 a001 32951280099/2207*3571^(7/17) 4334943340355215 r002 40th iterates of z^2 + 4334943350176531 a001 329/1926*45537549124^(15/17) 4334943350176531 a001 329/1926*312119004989^(9/11) 4334943350176531 a001 329/1926*14662949395604^(5/7) 4334943350176531 a001 329/1926*(1/2+1/2*5^(1/2))^45 4334943350176531 a001 329/1926*192900153618^(5/6) 4334943350176531 a001 329/1926*28143753123^(9/10) 4334943350176531 a001 329/1926*10749957122^(15/16) 4334943350176710 a001 2584/2207*(1/2+1/2*5^(1/2))^41 4334943358380614 r009 Im(z^3+c),c=-11/34+22/49*I,n=10 4334943360043441 a001 53316291173/2207*3571^(6/17) 4334943377757683 a007 Real Root Of 148*x^4-697*x^3+397*x^2-921*x-4 4334943380039976 a001 86267571272/2207*3571^(5/17) 4334943393459973 r005 Re(z^2+c),c=-13/22+5/34*I,n=18 4334943398762937 m001 (Ei(1)-gamma(1))/(Kolakoski-PolyaRandomWalk3D) 4334943400036512 a001 139583862445/2207*3571^(4/17) 4334943419059015 a001 365435296162/15127*1364^(2/5) 4334943419387700 m005 (2/3*gamma-1)/(5*exp(1)+3/5) 4334943420033047 a001 225851433717/2207*3571^(3/17) 4334943420151338 l006 ln(2615/4034) 4334943425173597 m001 (Ei(1)-Grothendieck)/(KhinchinHarmonic+Thue) 4334943430425735 a001 1812439848261/4181 4334943433036272 a001 165580141/2207*9349^(18/19) 4334943435239351 a001 956722026041/39603*1364^(2/5) 4334943435646626 a001 267914296/2207*9349^(17/19) 4334943437600031 a001 2504730781961/103682*1364^(2/5) 4334943437944449 a001 6557470319842/271443*1364^(2/5) 4334943438025755 a001 10610209857723/439204*1364^(2/5) 4334943438157311 a001 4052739537881/167761*1364^(2/5) 4334943438256981 a001 433494437/2207*9349^(16/19) 4334943439059011 a001 1548008755920/64079*1364^(2/5) 4334943440029583 a001 365435296162/2207*3571^(2/17) 4334943440867336 a001 701408733/2207*9349^(15/19) 4334943441528935 m005 (1/2*Zeta(3)-5/6)/(3/10*Pi-8/9) 4334943443477690 a001 1134903170/2207*9349^(14/19) 4334943443533928 r005 Re(z^2+c),c=-19/29+13/54*I,n=48 4334943445239349 a001 591286729879/24476*1364^(2/5) 4334943446088045 a001 1836311903/2207*9349^(13/19) 4334943448698399 a001 2971215073/2207*9349^(12/19) 4334943451308754 a001 4807526976/2207*9349^(11/19) 4334943451692354 r002 49th iterates of z^2 + 4334943453919109 a001 7778742049/2207*9349^(10/19) 4334943456529463 a001 12586269025/2207*9349^(9/19) 4334943459139818 a001 20365011074/2207*9349^(8/19) 4334943460026119 a001 591286729879/2207*3571^(1/17) 4334943461078204 a001 141/2161*(1/2+1/2*5^(1/2))^47 4334943461078387 a001 6765/2207*2537720636^(13/15) 4334943461078387 a001 6765/2207*45537549124^(13/17) 4334943461078387 a001 6765/2207*14662949395604^(13/21) 4334943461078387 a001 6765/2207*(1/2+1/2*5^(1/2))^39 4334943461078387 a001 6765/2207*192900153618^(13/18) 4334943461078387 a001 6765/2207*73681302247^(3/4) 4334943461078387 a001 6765/2207*10749957122^(13/16) 4334943461078387 a001 6765/2207*599074578^(13/14) 4334943461750172 a001 32951280099/2207*9349^(7/19) 4334943463490111 a001 75283811239/1926*1364^(1/3) 4334943464360527 a001 53316291173/2207*9349^(6/19) 4334943466970882 a001 86267571272/2207*9349^(5/19) 4334943467278850 a001 32951280099/3571*1364^(8/15) 4334943467926463 r005 Im(z^2+c),c=-25/22+11/109*I,n=4 4334943469581236 a001 139583862445/2207*9349^(4/19) 4334943472191591 a001 225851433717/2207*9349^(3/19) 4334943472626181 r005 Im(z^2+c),c=15/46+2/7*I,n=61 4334943472786405 a001 2372514562656/5473 4334943473131163 a001 63245986/2207*24476^(20/21) 4334943473475737 a001 102334155/2207*24476^(19/21) 4334943473820312 a001 165580141/2207*24476^(6/7) 4334943474164887 a001 267914296/2207*24476^(17/21) 4334943474509461 a001 433494437/2207*24476^(16/21) 4334943474801945 a001 365435296162/2207*9349^(2/19) 4334943474854036 a001 701408733/2207*24476^(5/7) 4334943475198610 a001 1134903170/2207*24476^(2/3) 4334943475543185 a001 1836311903/2207*24476^(13/21) 4334943475887760 a001 2971215073/2207*24476^(4/7) 4334943476232334 a001 4807526976/2207*24476^(11/21) 4334943476576909 a001 7778742049/2207*24476^(10/21) 4334943476921483 a001 12586269025/2207*24476^(3/7) 4334943477258541 a001 329/13201*14662949395604^(7/9) 4334943477258541 a001 329/13201*(1/2+1/2*5^(1/2))^49 4334943477258541 a001 329/13201*505019158607^(7/8) 4334943477258723 a001 17711/2207*(1/2+1/2*5^(1/2))^37 4334943477266058 a001 20365011074/2207*24476^(8/21) 4334943477412300 a001 591286729879/2207*9349^(1/19) 4334943477610633 a001 32951280099/2207*24476^(1/3) 4334943477955207 a001 53316291173/2207*24476^(2/7) 4334943478299782 a001 86267571272/2207*24476^(5/21) 4334943478644356 a001 139583862445/2207*24476^(4/21) 4334943478966744 a001 12422647527675/28657 4334943478988931 a001 225851433717/2207*24476^(1/7) 4334943479012830 a001 24157817/2207*64079^(22/23) 4334943479058729 a001 39088169/2207*64079^(21/23) 4334943479104631 a001 63245986/2207*64079^(20/23) 4334943479150532 a001 102334155/2207*64079^(19/23) 4334943479196433 a001 165580141/2207*64079^(18/23) 4334943479242334 a001 267914296/2207*64079^(17/23) 4334943479288235 a001 433494437/2207*64079^(16/23) 4334943479333505 a001 365435296162/2207*24476^(2/21) 4334943479334137 a001 701408733/2207*64079^(15/23) 4334943479380038 a001 1134903170/2207*64079^(14/23) 4334943479425939 a001 1836311903/2207*64079^(13/23) 4334943479471840 a001 2971215073/2207*64079^(12/23) 4334943479517741 a001 4807526976/2207*64079^(11/23) 4334943479563643 a001 7778742049/2207*64079^(10/23) 4334943479609544 a001 12586269025/2207*64079^(9/23) 4334943479619220 a001 21/2206*817138163596^(17/19) 4334943479619220 a001 21/2206*14662949395604^(17/21) 4334943479619220 a001 21/2206*(1/2+1/2*5^(1/2))^51 4334943479619220 a001 21/2206*192900153618^(17/18) 4334943479619403 a001 46368/2207*2537720636^(7/9) 4334943479619403 a001 46368/2207*17393796001^(5/7) 4334943479619403 a001 46368/2207*312119004989^(7/11) 4334943479619403 a001 46368/2207*14662949395604^(5/9) 4334943479619403 a001 46368/2207*(1/2+1/2*5^(1/2))^35 4334943479619403 a001 46368/2207*505019158607^(5/8) 4334943479619403 a001 46368/2207*28143753123^(7/10) 4334943479619403 a001 46368/2207*599074578^(5/6) 4334943479619403 a001 46368/2207*228826127^(7/8) 4334943479655445 a001 20365011074/2207*64079^(8/23) 4334943479678080 a001 591286729879/2207*24476^(1/21) 4334943479701346 a001 32951280099/2207*64079^(7/23) 4334943479747247 a001 53316291173/2207*64079^(6/23) 4334943479793149 a001 86267571272/2207*64079^(5/23) 4334943479839050 a001 139583862445/2207*64079^(4/23) 4334943479868443 a001 32522913457713/75025 4334943479884951 a001 225851433717/2207*64079^(3/23) 4334943479899432 a001 63245986/2207*167761^(4/5) 4334943479930238 a001 701408733/2207*167761^(3/5) 4334943479930852 a001 365435296162/2207*64079^(2/23) 4334943479961043 a001 7778742049/2207*167761^(2/5) 4334943479963638 a001 329/90481*(1/2+1/2*5^(1/2))^53 4334943479963821 a001 121393/2207*141422324^(11/13) 4334943479963821 a001 121393/2207*2537720636^(11/15) 4334943479963821 a001 121393/2207*45537549124^(11/17) 4334943479963821 a001 121393/2207*312119004989^(3/5) 4334943479963821 a001 121393/2207*817138163596^(11/19) 4334943479963821 a001 121393/2207*14662949395604^(11/21) 4334943479963821 a001 121393/2207*(1/2+1/2*5^(1/2))^33 4334943479963821 a001 121393/2207*192900153618^(11/18) 4334943479963821 a001 121393/2207*10749957122^(11/16) 4334943479963821 a001 121393/2207*1568397607^(3/4) 4334943479963821 a001 121393/2207*599074578^(11/14) 4334943479963825 a001 121393/2207*33385282^(11/12) 4334943479976753 a001 591286729879/2207*64079^(1/23) 4334943479991849 a001 86267571272/2207*167761^(1/5) 4334943480002689 a001 9227465/2207*439204^(8/9) 4334943480005176 a001 39088169/2207*439204^(7/9) 4334943480007673 a001 165580141/2207*439204^(2/3) 4334943480010170 a001 701408733/2207*439204^(5/9) 4334943480012667 a001 2971215073/2207*439204^(4/9) 4334943480013888 a001 141/101521*(1/2+1/2*5^(1/2))^55 4334943480013888 a001 141/101521*3461452808002^(11/12) 4334943480014071 a001 317811/2207*(1/2+1/2*5^(1/2))^31 4334943480014071 a001 317811/2207*9062201101803^(1/2) 4334943480015164 a001 12586269025/2207*439204^(1/3) 4334943480017661 a001 53316291173/2207*439204^(2/9) 4334943480019193 a001 222915365078679/514229 4334943480020158 a001 225851433717/2207*439204^(1/9) 4334943480021220 a001 329/620166*14662949395604^(19/21) 4334943480021220 a001 329/620166*(1/2+1/2*5^(1/2))^57 4334943480021402 a001 832040/2207*(1/2+1/2*5^(1/2))^29 4334943480021402 a001 832040/2207*1322157322203^(1/2) 4334943480021994 a001 583600002390573/1346269 4334943480022289 a001 987/4870847*(1/2+1/2*5^(1/2))^59 4334943480022402 a001 763942321046520/1762289 4334943480022415 a001 987*7881196^(9/11) 4334943480022445 a001 329/4250681*(1/2+1/2*5^(1/2))^61 4334943480022462 a001 4000053923888547/9227465 4334943480022468 a001 141/4769326*(1/2+1/2*5^(1/2))^63 4334943480022470 a001 10472277129572601/24157817 4334943480022472 a001 987*141422324^(9/13) 4334943480022472 a001 987*2537720636^(3/5) 4334943480022472 a001 987*45537549124^(9/17) 4334943480022472 a001 987*817138163596^(9/19) 4334943480022472 a001 987*14662949395604^(3/7) 4334943480022472 a001 987*(1/2+1/2*5^(1/2))^27 4334943480022472 a001 987*192900153618^(1/2) 4334943480022472 a001 987*10749957122^(9/16) 4334943480022472 a001 987*599074578^(9/14) 4334943480022475 a001 987*33385282^(3/4) 4334943480022476 a001 63453168683177/146376 4334943480022482 a001 987/20633239*(1/2+1/2*5^(1/2))^62 4334943480022499 a001 2472169281795507/5702887 4334943480022542 a001 987/7881196*14662949395604^(20/21) 4334943480022542 a001 987/7881196*(1/2+1/2*5^(1/2))^60 4334943480022610 a001 24157817/2207*7881196^(2/3) 4334943480022610 a001 39088169/2207*7881196^(7/11) 4334943480022614 a001 9227465/2207*7881196^(8/11) 4334943480022617 a001 165580141/2207*7881196^(6/11) 4334943480022621 a001 5702887/2207*20633239^(5/7) 4334943480022623 a001 701408733/2207*7881196^(5/11) 4334943480022628 a001 5702887/2207*2537720636^(5/9) 4334943480022628 a001 5702887/2207*312119004989^(5/11) 4334943480022628 a001 5702887/2207*(1/2+1/2*5^(1/2))^25 4334943480022628 a001 5702887/2207*3461452808002^(5/12) 4334943480022628 a001 5702887/2207*28143753123^(1/2) 4334943480022628 a001 5702887/2207*228826127^(5/8) 4334943480022629 a001 2971215073/2207*7881196^(4/11) 4334943480022631 a001 4807526976/2207*7881196^(1/3) 4334943480022636 a001 12586269025/2207*7881196^(3/11) 4334943480022642 a001 53316291173/2207*7881196^(2/11) 4334943480022648 a001 39088169/2207*20633239^(3/5) 4334943480022648 a001 225851433717/2207*7881196^(1/11) 4334943480022649 a001 63245986/2207*20633239^(4/7) 4334943480022650 a001 701408733/2207*20633239^(3/7) 4334943480022651 a001 1134903170/2207*20633239^(2/5) 4334943480022651 a001 14930352/2207*(1/2+1/2*5^(1/2))^23 4334943480022651 a001 14930352/2207*4106118243^(1/2) 4334943480022652 a001 7778742049/2207*20633239^(2/7) 4334943480022653 a001 32951280099/2207*20633239^(1/5) 4334943480022653 a001 86267571272/2207*20633239^(1/7) 4334943480022654 a001 39088169/2207*141422324^(7/13) 4334943480022654 a001 39088169/2207*2537720636^(7/15) 4334943480022654 a001 39088169/2207*17393796001^(3/7) 4334943480022654 a001 39088169/2207*45537549124^(7/17) 4334943480022654 a001 39088169/2207*14662949395604^(1/3) 4334943480022654 a001 39088169/2207*(1/2+1/2*5^(1/2))^21 4334943480022654 a001 39088169/2207*192900153618^(7/18) 4334943480022654 a001 39088169/2207*10749957122^(7/16) 4334943480022654 a001 39088169/2207*599074578^(1/2) 4334943480022655 a001 701408733/2207*141422324^(5/13) 4334943480022655 a001 102334155/2207*817138163596^(1/3) 4334943480022655 a001 102334155/2207*(1/2+1/2*5^(1/2))^19 4334943480022655 a001 1836311903/2207*141422324^(1/3) 4334943480022655 a001 165580141/2207*141422324^(6/13) 4334943480022655 a001 2971215073/2207*141422324^(4/13) 4334943480022655 a001 12586269025/2207*141422324^(3/13) 4334943480022655 a001 53316291173/2207*141422324^(2/13) 4334943480022655 a001 225851433717/2207*141422324^(1/13) 4334943480022655 a001 267914296/2207*45537549124^(1/3) 4334943480022655 a001 267914296/2207*(1/2+1/2*5^(1/2))^17 4334943480022655 a001 701408733/2207*2537720636^(1/3) 4334943480022655 a001 701408733/2207*45537549124^(5/17) 4334943480022655 a001 701408733/2207*312119004989^(3/11) 4334943480022655 a001 701408733/2207*14662949395604^(5/21) 4334943480022655 a001 701408733/2207*(1/2+1/2*5^(1/2))^15 4334943480022655 a001 701408733/2207*192900153618^(5/18) 4334943480022655 a001 701408733/2207*28143753123^(3/10) 4334943480022655 a001 701408733/2207*10749957122^(5/16) 4334943480022655 a001 1836311903/2207*(1/2+1/2*5^(1/2))^13 4334943480022655 a001 1836311903/2207*73681302247^(1/4) 4334943480022655 a001 12586269025/2207*2537720636^(1/5) 4334943480022655 a001 7778742049/2207*2537720636^(2/9) 4334943480022655 a001 53316291173/2207*2537720636^(2/15) 4334943480022655 a001 2971215073/2207*2537720636^(4/15) 4334943480022655 a001 86267571272/2207*2537720636^(1/9) 4334943480022655 a001 225851433717/2207*2537720636^(1/15) 4334943480022655 a001 4807526976/2207*312119004989^(1/5) 4334943480022655 a001 4807526976/2207*(1/2+1/2*5^(1/2))^11 4334943480022655 a001 12586269025/2207*45537549124^(3/17) 4334943480022655 a001 12586269025/2207*817138163596^(3/19) 4334943480022655 a001 12586269025/2207*14662949395604^(1/7) 4334943480022655 a001 12586269025/2207*(1/2+1/2*5^(1/2))^9 4334943480022655 a001 12586269025/2207*192900153618^(1/6) 4334943480022655 a001 32951280099/2207*17393796001^(1/7) 4334943480022655 a001 32951280099/2207*14662949395604^(1/9) 4334943480022655 a001 32951280099/2207*(1/2+1/2*5^(1/2))^7 4334943480022655 a001 225851433717/2207*45537549124^(1/17) 4334943480022655 a001 86267571272/2207*312119004989^(1/11) 4334943480022655 a001 86267571272/2207*(1/2+1/2*5^(1/2))^5 4334943480022655 a001 225851433717/2207*14662949395604^(1/21) 4334943480022655 a001 225851433717/2207*(1/2+1/2*5^(1/2))^3 4334943480022655 a001 591286729879/4414+591286729879/4414*5^(1/2) 4334943480022655 a001 956722026041/2207 4334943480022655 a001 139583862445/2207*(1/2+1/2*5^(1/2))^4 4334943480022655 a001 139583862445/2207*23725150497407^(1/16) 4334943480022655 a001 53316291173/2207*45537549124^(2/17) 4334943480022655 a001 139583862445/2207*73681302247^(1/13) 4334943480022655 a001 53316291173/2207*14662949395604^(2/21) 4334943480022655 a001 53316291173/2207*(1/2+1/2*5^(1/2))^6 4334943480022655 a001 86267571272/2207*28143753123^(1/10) 4334943480022655 a001 12586269025/2207*10749957122^(3/16) 4334943480022655 a001 365435296162/2207*10749957122^(1/24) 4334943480022655 a001 20365011074/2207*(1/2+1/2*5^(1/2))^8 4334943480022655 a001 20365011074/2207*23725150497407^(1/8) 4334943480022655 a001 20365011074/2207*505019158607^(1/7) 4334943480022655 a001 20365011074/2207*73681302247^(2/13) 4334943480022655 a001 225851433717/2207*10749957122^(1/16) 4334943480022655 a001 139583862445/2207*10749957122^(1/12) 4334943480022655 a001 53316291173/2207*10749957122^(1/8) 4334943480022655 a001 20365011074/2207*10749957122^(1/6) 4334943480022655 a001 365435296162/2207*4106118243^(1/23) 4334943480022655 a001 7778742049/2207*312119004989^(2/11) 4334943480022655 a001 7778742049/2207*(1/2+1/2*5^(1/2))^10 4334943480022655 a001 7778742049/2207*28143753123^(1/5) 4334943480022655 a001 7778742049/2207*10749957122^(5/24) 4334943480022655 a001 139583862445/2207*4106118243^(2/23) 4334943480022655 a001 53316291173/2207*4106118243^(3/23) 4334943480022655 a001 20365011074/2207*4106118243^(4/23) 4334943480022655 a001 7778742049/2207*4106118243^(5/23) 4334943480022655 a001 365435296162/2207*1568397607^(1/22) 4334943480022655 a001 2971215073/2207*45537549124^(4/17) 4334943480022655 a001 2971215073/2207*817138163596^(4/19) 4334943480022655 a001 2971215073/2207*14662949395604^(4/21) 4334943480022655 a001 2971215073/2207*(1/2+1/2*5^(1/2))^12 4334943480022655 a001 2971215073/2207*192900153618^(2/9) 4334943480022655 a001 2971215073/2207*73681302247^(3/13) 4334943480022655 a001 2971215073/2207*10749957122^(1/4) 4334943480022655 a001 139583862445/2207*1568397607^(1/11) 4334943480022655 a001 2971215073/2207*4106118243^(6/23) 4334943480022655 a001 53316291173/2207*1568397607^(3/22) 4334943480022655 a001 20365011074/2207*1568397607^(2/11) 4334943480022655 a001 4807526976/2207*1568397607^(1/4) 4334943480022655 a001 7778742049/2207*1568397607^(5/22) 4334943480022655 a001 365435296162/2207*599074578^(1/21) 4334943480022655 a001 2971215073/2207*1568397607^(3/11) 4334943480022655 a001 1134903170/2207*17393796001^(2/7) 4334943480022655 a001 1134903170/2207*14662949395604^(2/9) 4334943480022655 a001 1134903170/2207*(1/2+1/2*5^(1/2))^14 4334943480022655 a001 1134903170/2207*505019158607^(1/4) 4334943480022655 a001 1134903170/2207*10749957122^(7/24) 4334943480022655 a001 1134903170/2207*4106118243^(7/23) 4334943480022655 a001 225851433717/2207*599074578^(1/14) 4334943480022655 a001 139583862445/2207*599074578^(2/21) 4334943480022655 a001 1134903170/2207*1568397607^(7/22) 4334943480022655 a001 53316291173/2207*599074578^(1/7) 4334943480022655 a001 32951280099/2207*599074578^(1/6) 4334943480022655 a001 20365011074/2207*599074578^(4/21) 4334943480022655 a001 701408733/2207*599074578^(5/14) 4334943480022655 a001 12586269025/2207*599074578^(3/14) 4334943480022655 a001 7778742049/2207*599074578^(5/21) 4334943480022655 a001 2971215073/2207*599074578^(2/7) 4334943480022655 a001 365435296162/2207*228826127^(1/20) 4334943480022655 a001 433494437/2207*(1/2+1/2*5^(1/2))^16 4334943480022655 a001 433494437/2207*23725150497407^(1/4) 4334943480022655 a001 433494437/2207*73681302247^(4/13) 4334943480022655 a001 433494437/2207*10749957122^(1/3) 4334943480022655 a001 1134903170/2207*599074578^(1/3) 4334943480022655 a001 433494437/2207*4106118243^(8/23) 4334943480022655 a001 433494437/2207*1568397607^(4/11) 4334943480022655 a001 139583862445/2207*228826127^(1/10) 4334943480022655 a001 433494437/2207*599074578^(8/21) 4334943480022655 a001 86267571272/2207*228826127^(1/8) 4334943480022655 a001 53316291173/2207*228826127^(3/20) 4334943480022655 a001 20365011074/2207*228826127^(1/5) 4334943480022655 a001 7778742049/2207*228826127^(1/4) 4334943480022655 a001 2971215073/2207*228826127^(3/10) 4334943480022655 a001 701408733/2207*228826127^(3/8) 4334943480022655 a001 1134903170/2207*228826127^(7/20) 4334943480022655 a001 365435296162/2207*87403803^(1/19) 4334943480022655 a001 165580141/2207*2537720636^(2/5) 4334943480022655 a001 165580141/2207*45537549124^(6/17) 4334943480022655 a001 165580141/2207*14662949395604^(2/7) 4334943480022655 a001 165580141/2207*(1/2+1/2*5^(1/2))^18 4334943480022655 a001 165580141/2207*192900153618^(1/3) 4334943480022655 a001 165580141/2207*10749957122^(3/8) 4334943480022655 a001 165580141/2207*4106118243^(9/23) 4334943480022655 a001 165580141/2207*1568397607^(9/22) 4334943480022655 a001 165580141/2207*599074578^(3/7) 4334943480022655 a001 433494437/2207*228826127^(2/5) 4334943480022655 a001 139583862445/2207*87403803^(2/19) 4334943480022655 a001 165580141/2207*228826127^(9/20) 4334943480022655 a001 53316291173/2207*87403803^(3/19) 4334943480022655 a001 20365011074/2207*87403803^(4/19) 4334943480022655 a001 7778742049/2207*87403803^(5/19) 4334943480022655 a001 2971215073/2207*87403803^(6/19) 4334943480022655 a001 102334155/2207*87403803^(1/2) 4334943480022655 a001 1134903170/2207*87403803^(7/19) 4334943480022655 a001 365435296162/2207*33385282^(1/18) 4334943480022655 a001 63245986/2207*2537720636^(4/9) 4334943480022655 a001 63245986/2207*(1/2+1/2*5^(1/2))^20 4334943480022655 a001 63245986/2207*23725150497407^(5/16) 4334943480022655 a001 63245986/2207*505019158607^(5/14) 4334943480022655 a001 63245986/2207*73681302247^(5/13) 4334943480022655 a001 63245986/2207*28143753123^(2/5) 4334943480022655 a001 63245986/2207*10749957122^(5/12) 4334943480022655 a001 63245986/2207*4106118243^(10/23) 4334943480022655 a001 63245986/2207*1568397607^(5/11) 4334943480022655 a001 63245986/2207*599074578^(10/21) 4334943480022655 a001 433494437/2207*87403803^(8/19) 4334943480022655 a001 63245986/2207*228826127^(1/2) 4334943480022655 a001 165580141/2207*87403803^(9/19) 4334943480022655 a001 225851433717/2207*33385282^(1/12) 4334943480022655 a001 139583862445/2207*33385282^(1/9) 4334943480022655 a001 63245986/2207*87403803^(10/19) 4334943480022655 a001 53316291173/2207*33385282^(1/6) 4334943480022656 a001 20365011074/2207*33385282^(2/9) 4334943480022656 a001 12586269025/2207*33385282^(1/4) 4334943480022656 a001 7778742049/2207*33385282^(5/18) 4334943480022656 a001 2971215073/2207*33385282^(1/3) 4334943480022656 a001 24157817/2207*312119004989^(2/5) 4334943480022656 a001 24157817/2207*(1/2+1/2*5^(1/2))^22 4334943480022656 a001 24157817/2207*10749957122^(11/24) 4334943480022656 a001 24157817/2207*4106118243^(11/23) 4334943480022656 a001 24157817/2207*1568397607^(1/2) 4334943480022656 a001 24157817/2207*599074578^(11/21) 4334943480022656 a001 1134903170/2207*33385282^(7/18) 4334943480022656 a001 24157817/2207*228826127^(11/20) 4334943480022656 a001 365435296162/2207*12752043^(1/17) 4334943480022656 a001 701408733/2207*33385282^(5/12) 4334943480022656 a001 39088169/2207*33385282^(7/12) 4334943480022656 a001 433494437/2207*33385282^(4/9) 4334943480022657 a001 24157817/2207*87403803^(11/19) 4334943480022657 a001 165580141/2207*33385282^(1/2) 4334943480022657 a001 63245986/2207*33385282^(5/9) 4334943480022658 a001 139583862445/2207*12752043^(2/17) 4334943480022659 a001 24157817/2207*33385282^(11/18) 4334943480022659 a001 53316291173/2207*12752043^(3/17) 4334943480022661 a001 20365011074/2207*12752043^(4/17) 4334943480022663 a001 7778742049/2207*12752043^(5/17) 4334943480022664 a001 2971215073/2207*12752043^(6/17) 4334943480022665 a001 9227465/2207*141422324^(8/13) 4334943480022665 a001 9227465/2207*2537720636^(8/15) 4334943480022665 a001 9227465/2207*45537549124^(8/17) 4334943480022665 a001 9227465/2207*14662949395604^(8/21) 4334943480022665 a001 9227465/2207*(1/2+1/2*5^(1/2))^24 4334943480022665 a001 9227465/2207*192900153618^(4/9) 4334943480022665 a001 9227465/2207*73681302247^(6/13) 4334943480022665 a001 9227465/2207*10749957122^(1/2) 4334943480022665 a001 9227465/2207*4106118243^(12/23) 4334943480022665 a001 9227465/2207*1568397607^(6/11) 4334943480022665 a001 9227465/2207*599074578^(4/7) 4334943480022665 a001 9227465/2207*228826127^(3/5) 4334943480022665 a001 9227465/2207*87403803^(12/19) 4334943480022666 a001 1134903170/2207*12752043^(7/17) 4334943480022666 a001 365435296162/2207*4870847^(1/16) 4334943480022667 a001 433494437/2207*12752043^(8/17) 4334943480022667 a001 9227465/2207*33385282^(2/3) 4334943480022668 a001 267914296/2207*12752043^(1/2) 4334943480022669 a001 165580141/2207*12752043^(9/17) 4334943480022671 a001 63245986/2207*12752043^(10/17) 4334943480022673 a001 24157817/2207*12752043^(11/17) 4334943480022678 a001 139583862445/2207*4870847^(1/8) 4334943480022684 a001 9227465/2207*12752043^(12/17) 4334943480022689 a001 53316291173/2207*4870847^(3/16) 4334943480022700 a001 20365011074/2207*4870847^(1/4) 4334943480022712 a001 7778742049/2207*4870847^(5/16) 4334943480022723 a001 2971215073/2207*4870847^(3/8) 4334943480022724 a001 3524578/2207*141422324^(2/3) 4334943480022724 a001 3524578/2207*(1/2+1/2*5^(1/2))^26 4334943480022724 a001 3524578/2207*73681302247^(1/2) 4334943480022724 a001 3524578/2207*10749957122^(13/24) 4334943480022724 a001 3524578/2207*4106118243^(13/23) 4334943480022724 a001 3524578/2207*1568397607^(13/22) 4334943480022724 a001 3524578/2207*599074578^(13/21) 4334943480022725 a001 3524578/2207*228826127^(13/20) 4334943480022725 a001 3524578/2207*87403803^(13/19) 4334943480022727 a001 3524578/2207*33385282^(13/18) 4334943480022735 a001 1134903170/2207*4870847^(7/16) 4334943480022738 a001 365435296162/2207*1860498^(1/15) 4334943480022745 a001 3524578/2207*12752043^(13/17) 4334943480022746 a001 433494437/2207*4870847^(1/2) 4334943480022757 a001 165580141/2207*4870847^(9/16) 4334943480022769 a001 63245986/2207*4870847^(5/8) 4334943480022780 a001 225851433717/2207*1860498^(1/10) 4334943480022782 a001 24157817/2207*4870847^(11/16) 4334943480022802 a001 9227465/2207*4870847^(3/4) 4334943480022822 a001 139583862445/2207*1860498^(2/15) 4334943480022863 a001 86267571272/2207*1860498^(1/6) 4334943480022873 a001 3524578/2207*4870847^(13/16) 4334943480022905 a001 53316291173/2207*1860498^(1/5) 4334943480022950 a001 987/3010349*(1/2+1/2*5^(1/2))^58 4334943480022989 a001 20365011074/2207*1860498^(4/15) 4334943480023030 a001 12586269025/2207*1860498^(3/10) 4334943480023072 a001 7778742049/2207*1860498^(1/3) 4334943480023125 a001 1346269/2207*20633239^(4/5) 4334943480023133 a001 1346269/2207*17393796001^(4/7) 4334943480023133 a001 1346269/2207*14662949395604^(4/9) 4334943480023133 a001 1346269/2207*(1/2+1/2*5^(1/2))^28 4334943480023133 a001 1346269/2207*505019158607^(1/2) 4334943480023133 a001 1346269/2207*73681302247^(7/13) 4334943480023133 a001 1346269/2207*10749957122^(7/12) 4334943480023133 a001 1346269/2207*4106118243^(14/23) 4334943480023133 a001 1346269/2207*1568397607^(7/11) 4334943480023133 a001 1346269/2207*599074578^(2/3) 4334943480023133 a001 1346269/2207*228826127^(7/10) 4334943480023133 a001 1346269/2207*87403803^(14/19) 4334943480023136 a001 1346269/2207*33385282^(7/9) 4334943480023155 a001 1346269/2207*12752043^(14/17) 4334943480023156 a001 2971215073/2207*1860498^(2/5) 4334943480023239 a001 1134903170/2207*1860498^(7/15) 4334943480023268 a001 365435296162/2207*710647^(1/14) 4334943480023281 a001 701408733/2207*1860498^(1/2) 4334943480023293 a001 1346269/2207*4870847^(7/8) 4334943480023323 a001 433494437/2207*1860498^(8/15) 4334943480023406 a001 165580141/2207*1860498^(3/5) 4334943480023490 a001 63245986/2207*1860498^(2/3) 4334943480023531 a001 39088169/2207*1860498^(7/10) 4334943480023575 a001 24157817/2207*1860498^(11/15) 4334943480023599 a001 987*1860498^(9/10) 4334943480023667 a001 9227465/2207*1860498^(4/5) 4334943480023672 a001 5702887/2207*1860498^(5/6) 4334943480023724 a001 180342318655947/416020 4334943480023810 a001 3524578/2207*1860498^(13/15) 4334943480023881 a001 139583862445/2207*710647^(1/7) 4334943480024302 a001 1346269/2207*1860498^(14/15) 4334943480024494 a001 53316291173/2207*710647^(3/14) 4334943480024801 a001 32951280099/2207*710647^(1/4) 4334943480025107 a001 20365011074/2207*710647^(2/7) 4334943480025720 a001 7778742049/2207*710647^(5/14) 4334943480025751 a001 987/1149851*14662949395604^(8/9) 4334943480025751 a001 987/1149851*(1/2+1/2*5^(1/2))^56 4334943480025870 a001 514229/2207*7881196^(10/11) 4334943480025925 a001 514229/2207*20633239^(6/7) 4334943480025933 a001 514229/2207*141422324^(10/13) 4334943480025933 a001 514229/2207*2537720636^(2/3) 4334943480025933 a001 514229/2207*45537549124^(10/17) 4334943480025933 a001 514229/2207*312119004989^(6/11) 4334943480025933 a001 514229/2207*14662949395604^(10/21) 4334943480025933 a001 514229/2207*(1/2+1/2*5^(1/2))^30 4334943480025933 a001 514229/2207*192900153618^(5/9) 4334943480025933 a001 514229/2207*28143753123^(3/5) 4334943480025933 a001 514229/2207*10749957122^(5/8) 4334943480025933 a001 514229/2207*4106118243^(15/23) 4334943480025933 a001 514229/2207*1568397607^(15/22) 4334943480025933 a001 514229/2207*599074578^(5/7) 4334943480025933 a001 514229/2207*228826127^(3/4) 4334943480025934 a001 514229/2207*87403803^(15/19) 4334943480025937 a001 514229/2207*33385282^(5/6) 4334943480025957 a001 514229/2207*12752043^(15/17) 4334943480026105 a001 514229/2207*4870847^(15/16) 4334943480026333 a001 2971215073/2207*710647^(3/7) 4334943480026947 a001 1134903170/2207*710647^(1/2) 4334943480027180 a001 365435296162/2207*271443^(1/13) 4334943480027560 a001 433494437/2207*710647^(4/7) 4334943480028173 a001 165580141/2207*710647^(9/14) 4334943480028786 a001 63245986/2207*710647^(5/7) 4334943480029092 a001 39088169/2207*710647^(3/4) 4334943480029401 a001 24157817/2207*710647^(11/14) 4334943480030022 a001 9227465/2207*710647^(6/7) 4334943480030695 a001 3524578/2207*710647^(13/14) 4334943480031056 a001 45923090744405/105937 4334943480031706 a001 139583862445/2207*271443^(2/13) 4334943480036232 a001 53316291173/2207*271443^(3/13) 4334943480039457 a001 591286729879/2207*103682^(1/24) 4334943480040757 a001 20365011074/2207*271443^(4/13) 4334943480044944 a001 987/439204*14662949395604^(6/7) 4334943480044944 a001 987/439204*(1/2+1/2*5^(1/2))^54 4334943480045127 a001 196418/2207*(1/2+1/2*5^(1/2))^32 4334943480045127 a001 196418/2207*23725150497407^(1/2) 4334943480045127 a001 196418/2207*73681302247^(8/13) 4334943480045127 a001 196418/2207*10749957122^(2/3) 4334943480045127 a001 196418/2207*4106118243^(16/23) 4334943480045127 a001 196418/2207*1568397607^(8/11) 4334943480045127 a001 196418/2207*599074578^(16/21) 4334943480045127 a001 196418/2207*228826127^(4/5) 4334943480045128 a001 196418/2207*87403803^(16/19) 4334943480045131 a001 196418/2207*33385282^(8/9) 4334943480045152 a001 196418/2207*12752043^(16/17) 4334943480045283 a001 7778742049/2207*271443^(5/13) 4334943480049809 a001 2971215073/2207*271443^(6/13) 4334943480052072 a001 1836311903/2207*271443^(1/2) 4334943480054334 a001 1134903170/2207*271443^(7/13) 4334943480056259 a001 365435296162/2207*103682^(1/12) 4334943480058860 a001 433494437/2207*271443^(8/13) 4334943480063386 a001 165580141/2207*271443^(9/13) 4334943480067912 a001 63245986/2207*271443^(10/13) 4334943480072439 a001 24157817/2207*271443^(11/13) 4334943480073061 a001 225851433717/2207*103682^(1/8) 4334943480076973 a001 9227465/2207*271443^(12/13) 4334943480081306 a001 52623179387751/121393 4334943480089863 a001 139583862445/2207*103682^(1/6) 4334943480106666 a001 86267571272/2207*103682^(5/24) 4334943480123468 a001 53316291173/2207*103682^(1/4) 4334943480140270 a001 32951280099/2207*103682^(7/24) 4334943480148288 a001 591286729879/2207*39603^(1/22) 4334943480157072 a001 20365011074/2207*103682^(1/3) 4334943480173874 a001 12586269025/2207*103682^(3/8) 4334943480176501 a001 987/167761*(1/2+1/2*5^(1/2))^52 4334943480176501 a001 987/167761*23725150497407^(13/16) 4334943480176501 a001 987/167761*505019158607^(13/14) 4334943480176683 a001 75025/2207*45537549124^(2/3) 4334943480176683 a001 75025/2207*(1/2+1/2*5^(1/2))^34 4334943480176683 a001 75025/2207*10749957122^(17/24) 4334943480176683 a001 75025/2207*4106118243^(17/23) 4334943480176683 a001 75025/2207*1568397607^(17/22) 4334943480176683 a001 75025/2207*599074578^(17/21) 4334943480176683 a001 75025/2207*228826127^(17/20) 4334943480176684 a001 75025/2207*87403803^(17/19) 4334943480176687 a001 75025/2207*33385282^(17/18) 4334943480190676 a001 7778742049/2207*103682^(5/12) 4334943480207479 a001 4807526976/2207*103682^(11/24) 4334943480224281 a001 2971215073/2207*103682^(1/2) 4334943480241083 a001 1836311903/2207*103682^(13/24) 4334943480257885 a001 1134903170/2207*103682^(7/12) 4334943480273921 a001 365435296162/2207*39603^(1/11) 4334943480274687 a001 701408733/2207*103682^(5/8) 4334943480291489 a001 433494437/2207*103682^(2/3) 4334943480308292 a001 267914296/2207*103682^(17/24) 4334943480325094 a001 165580141/2207*103682^(3/4) 4334943480341896 a001 102334155/2207*103682^(19/24) 4334943480358698 a001 63245986/2207*103682^(5/6) 4334943480375500 a001 39088169/2207*103682^(7/8) 4334943480392304 a001 24157817/2207*103682^(11/12) 4334943480399554 a001 225851433717/2207*39603^(3/22) 4334943480409101 a001 14930352/2207*103682^(23/24) 4334943480425724 a001 478577760239/1104 4334943480525188 a001 139583862445/2207*39603^(2/11) 4334943480609801 r005 Im(z^2+c),c=1/34+37/43*I,n=3 4334943480650821 a001 86267571272/2207*39603^(5/22) 4334943480776454 a001 53316291173/2207*39603^(3/11) 4334943480902087 a001 32951280099/2207*39603^(7/22) 4334943480969868 a001 591286729879/2207*15127^(1/20) 4334943481027721 a001 20365011074/2207*39603^(4/11) 4334943481078200 a001 987/64079*312119004989^(10/11) 4334943481078200 a001 987/64079*(1/2+1/2*5^(1/2))^50 4334943481078200 a001 987/64079*3461452808002^(5/6) 4334943481078382 a001 28657/2207*141422324^(12/13) 4334943481078383 a001 28657/2207*2537720636^(4/5) 4334943481078383 a001 28657/2207*45537549124^(12/17) 4334943481078383 a001 28657/2207*14662949395604^(4/7) 4334943481078383 a001 28657/2207*(1/2+1/2*5^(1/2))^36 4334943481078383 a001 28657/2207*505019158607^(9/14) 4334943481078383 a001 28657/2207*192900153618^(2/3) 4334943481078383 a001 28657/2207*73681302247^(9/13) 4334943481078383 a001 28657/2207*10749957122^(3/4) 4334943481078383 a001 28657/2207*4106118243^(18/23) 4334943481078383 a001 28657/2207*1568397607^(9/11) 4334943481078383 a001 28657/2207*599074578^(6/7) 4334943481078383 a001 28657/2207*228826127^(9/10) 4334943481078383 a001 28657/2207*87403803^(18/19) 4334943481153354 a001 12586269025/2207*39603^(9/22) 4334943481278987 a001 7778742049/2207*39603^(5/11) 4334943481404620 a001 4807526976/2207*39603^(1/2) 4334943481477565 a001 956722026041/3571*521^(1/13) 4334943481530254 a001 2971215073/2207*39603^(6/11) 4334943481655887 a001 1836311903/2207*39603^(13/22) 4334943481781520 a001 1134903170/2207*39603^(7/11) 4334943481907153 a001 701408733/2207*39603^(15/22) 4334943481917081 a001 365435296162/2207*15127^(1/10) 4334943482032787 a001 433494437/2207*39603^(8/11) 4334943482158420 a001 267914296/2207*39603^(17/22) 4334943482284053 a001 165580141/2207*39603^(9/11) 4334943482409686 a001 102334155/2207*39603^(19/22) 4334943482535320 a001 63245986/2207*39603^(10/11) 4334943482660952 a001 39088169/2207*39603^(21/22) 4334943482786403 a001 7677618402363/17711 4334943482864295 a001 225851433717/2207*15127^(3/20) 4334943483811508 a001 139583862445/2207*15127^(1/5) 4334943484758722 a001 86267571272/2207*15127^(1/4) 4334943485705935 a001 53316291173/2207*15127^(3/10) 4334943486653148 a001 32951280099/2207*15127^(7/20) 4334943487236318 a001 591286729879/2207*5778^(1/18) 4334943487258538 a001 987/24476*45537549124^(16/17) 4334943487258538 a001 987/24476*14662949395604^(16/21) 4334943487258538 a001 987/24476*(1/2+1/2*5^(1/2))^48 4334943487258538 a001 987/24476*192900153618^(8/9) 4334943487258538 a001 987/24476*73681302247^(12/13) 4334943487258721 a001 10946/2207*817138163596^(2/3) 4334943487258721 a001 10946/2207*(1/2+1/2*5^(1/2))^38 4334943487258721 a001 10946/2207*10749957122^(19/24) 4334943487258721 a001 10946/2207*4106118243^(19/23) 4334943487258721 a001 10946/2207*1568397607^(19/22) 4334943487258721 a001 10946/2207*599074578^(19/21) 4334943487258721 a001 10946/2207*228826127^(19/20) 4334943487600020 a001 225851433717/9349*1364^(2/5) 4334943487600362 a001 20365011074/2207*15127^(2/5) 4334943488547575 a001 12586269025/2207*15127^(9/20) 4334943489494789 a001 7778742049/2207*15127^(1/2) 4334943490442002 a001 4807526976/2207*15127^(11/20) 4334943491389215 a001 2971215073/2207*15127^(3/5) 4334943492336429 a001 1836311903/2207*15127^(13/20) 4334943493283642 a001 1134903170/2207*15127^(7/10) 4334943494230856 a001 701408733/2207*15127^(3/4) 4334943494449982 a001 365435296162/2207*5778^(1/9) 4334943495178069 a001 433494437/2207*15127^(4/5) 4334943496125282 a001 267914296/2207*15127^(17/20) 4334943497072496 a001 165580141/2207*15127^(9/10) 4334943498019709 a001 102334155/2207*15127^(19/20) 4334943498572597 a001 1134903170/843*843^(6/7) 4334943498966740 a001 977529759017/2255 4334943501663645 a001 225851433717/2207*5778^(1/6) 4334943505088889 a007 Real Root Of -272*x^4+936*x^3-733*x^2+24*x+234 4334943508877309 a001 139583862445/2207*5778^(2/9) 4334943509295475 r005 Re(z^2+c),c=-9/25+23/34*I,n=55 4334943511251738 r005 Re(z^2+c),c=-11/23+36/59*I,n=37 4334943516090972 a001 86267571272/2207*5778^(5/18) 4334943520748536 r002 61th iterates of z^2 + 4334943523304636 a001 53316291173/2207*5778^(1/3) 4334943529619210 a001 987/9349*(1/2+1/2*5^(1/2))^46 4334943529619210 a001 987/9349*10749957122^(23/24) 4334943529619392 a001 4181/2207*2537720636^(8/9) 4334943529619392 a001 4181/2207*312119004989^(8/11) 4334943529619392 a001 4181/2207*(1/2+1/2*5^(1/2))^40 4334943529619392 a001 4181/2207*23725150497407^(5/8) 4334943529619392 a001 4181/2207*73681302247^(10/13) 4334943529619392 a001 4181/2207*28143753123^(4/5) 4334943529619392 a001 4181/2207*10749957122^(5/6) 4334943529619392 a001 4181/2207*4106118243^(20/23) 4334943529619392 a001 4181/2207*1568397607^(10/11) 4334943529619392 a001 4181/2207*599074578^(20/21) 4334943529838153 s002 sum(A198880[n]/(n*exp(pi*n)+1),n=1..infinity) 4334943530518299 a001 32951280099/2207*5778^(7/18) 4334943532275432 r002 33th iterates of z^2 + 4334943535646233 a001 591286729879/2207*2207^(1/16) 4334943536936549 r009 Im(z^3+c),c=-17/46+24/55*I,n=42 4334943537731963 a001 20365011074/2207*5778^(4/9) 4334943538359025 r005 Im(z^2+c),c=-5/8+76/193*I,n=38 4334943541222042 m005 (1/3*3^(1/2)+2/3)/(3/4*Catalan-2/5) 4334943544945627 a001 12586269025/2207*5778^(1/2) 4334943552159290 a001 7778742049/2207*5778^(5/9) 4334943559372954 a001 4807526976/2207*5778^(11/18) 4334943565015611 a007 Real Root Of 69*x^4-410*x^3-448*x^2-521*x+341 4334943566586617 a001 2971215073/2207*5778^(2/3) 4334943571482776 m001 (Riemann1stZero+ZetaQ(3))/(gamma+Khinchin) 4334943573800281 a001 1836311903/2207*5778^(13/18) 4334943574391786 a001 591286729879/15127*1364^(1/3) 4334943577709114 a007 Real Root Of 578*x^4-916*x^3-703*x^2-683*x-259 4334943581013945 a001 1134903170/2207*5778^(7/9) 4334943588227608 a001 701408733/2207*5778^(5/6) 4334943588441663 a001 55/7*9349^(29/42) 4334943590572123 a001 516002918640/13201*1364^(1/3) 4334943591269813 a001 365435296162/2207*2207^(1/8) 4334943592932803 a001 4052739537881/103682*1364^(1/3) 4334943593277221 a001 3536736619241/90481*1364^(1/3) 4334943593490084 a001 6557470319842/167761*1364^(1/3) 4334943594391783 a001 2504730781961/64079*1364^(1/3) 4334943595441272 a001 433494437/2207*5778^(8/9) 4334943600572122 a001 956722026041/24476*1364^(1/3) 4334943602654936 a001 267914296/2207*5778^(17/18) 4334943603676645 m005 (1/2*2^(1/2)-1/8)/(5/11*2^(1/2)+7/10) 4334943618822884 a001 182717648081/2889*1364^(4/15) 4334943622161524 r005 Im(z^2+c),c=-32/29+2/41*I,n=5 4334943622611624 a001 53316291173/3571*1364^(7/15) 4334943637691656 r005 Re(z^2+c),c=-17/28+2/31*I,n=15 4334943639291465 q001 1346/3105 4334943642932794 a001 365435296162/9349*1364^(1/3) 4334943643775254 r005 Im(z^2+c),c=11/86+24/41*I,n=36 4334943646893393 a001 225851433717/2207*2207^(3/16) 4334943648890324 a007 Real Root Of 553*x^4+777*x^3+979*x^2-597*x-399 4334943649070512 r002 57th iterates of z^2 + 4334943649070512 r002 57th iterates of z^2 + 4334943660101882 p004 log(15937/10331) 4334943672158737 r005 Im(z^2+c),c=31/106+39/61*I,n=5 4334943677806651 r002 36th iterates of z^2 + 4334943681183526 a007 Real Root Of 907*x^4-158*x^3-452*x^2-741*x+387 4334943693705076 m006 (5/6*exp(Pi)-4/5)/(4/5*exp(2*Pi)-2) 4334943702516974 a001 139583862445/2207*2207^(1/4) 4334943705588031 a007 Real Root Of -850*x^4-907*x^3-937*x^2+770*x+466 4334943707776829 r005 Im(z^2+c),c=-167/126+1/20*I,n=49 4334943717933392 a007 Real Root Of 287*x^4-733*x^3-941*x^2-788*x+568 4334943718119207 r002 46th iterates of z^2 + 4334943726565548 a007 Real Root Of 785*x^4+212*x^3-892*x^2-423*x+306 4334943729724564 a001 956722026041/15127*1364^(4/15) 4334943739554370 r009 Re(z^3+c),c=-67/126+6/17*I,n=4 4334943740915504 a007 Real Root Of -980*x^4+978*x^3+759*x^2+333*x+116 4334943745904901 a001 2504730781961/39603*1364^(4/15) 4334943748265581 a001 3278735159921/51841*1364^(4/15) 4334943748822861 a001 10610209857723/167761*1364^(4/15) 4334943749724561 a001 4052739537881/64079*1364^(4/15) 4334943755904900 a001 387002188980/6119*1364^(4/15) 4334943758140555 a001 86267571272/2207*2207^(5/16) 4334943764121108 r009 Re(z^3+c),c=-59/110+5/36*I,n=59 4334943774155663 a001 591286729879/5778*1364^(1/5) 4334943777944403 a001 86267571272/3571*1364^(2/5) 4334943798265574 a001 591286729879/9349*1364^(4/15) 4334943804539741 a007 Real Root Of 900*x^4-751*x^3+5*x^2-630*x-367 4334943813764138 a001 53316291173/2207*2207^(3/8) 4334943819963595 a001 987/3571*312119004989^(4/5) 4334943819963595 a001 987/3571*(1/2+1/2*5^(1/2))^44 4334943819963595 a001 987/3571*23725150497407^(11/16) 4334943819963595 a001 987/3571*73681302247^(11/13) 4334943819963595 a001 987/3571*10749957122^(11/12) 4334943819963595 a001 987/3571*4106118243^(22/23) 4334943819963751 a001 1597/2207*2537720636^(14/15) 4334943819963751 a001 1597/2207*17393796001^(6/7) 4334943819963751 a001 1597/2207*45537549124^(14/17) 4334943819963751 a001 1597/2207*817138163596^(14/19) 4334943819963751 a001 1597/2207*14662949395604^(2/3) 4334943819963751 a001 1597/2207*(1/2+1/2*5^(1/2))^42 4334943819963751 a001 1597/2207*505019158607^(3/4) 4334943819963751 a001 1597/2207*192900153618^(7/9) 4334943819963751 a001 1597/2207*10749957122^(7/8) 4334943819963751 a001 1597/2207*4106118243^(21/23) 4334943819963751 a001 1597/2207*1568397607^(21/22) 4334943833696330 r005 Re(z^2+c),c=15/44+5/53*I,n=54 4334943833819541 r005 Re(z^2+c),c=-77/122+4/23*I,n=32 4334943860458571 r005 Re(z^2+c),c=-75/122+2/13*I,n=64 4334943863853676 m001 (Zeta(1,-1)-CopelandErdos)/(ln(Pi)-Ei(1,1)) 4334943866249786 a007 Real Root Of 531*x^4+767*x^3+749*x^2-286*x-221 4334943869387721 a001 32951280099/2207*2207^(7/16) 4334943872560329 r005 Re(z^2+c),c=-59/58+2/11*I,n=56 4334943874627797 a007 Real Root Of 728*x^4-218*x^3+548*x^2-548*x-384 4334943885057346 a001 1548008755920/15127*1364^(1/5) 4334943885529422 r005 Im(z^2+c),c=-17/94+23/38*I,n=39 4334943885584058 m001 (Zeta(1,-1)+Sierpinski)/(Psi(2,1/3)-ln(2)) 4334943885754434 a007 Real Root Of -152*x^4-400*x^3-760*x^2-209*x+25 4334943895675444 r005 Re(z^2+c),c=-35/64+14/33*I,n=58 4334943900212899 a001 692290540864/1597 4334943901237684 a001 4052739537881/39603*1364^(1/5) 4334943903598364 a001 225749145909/2206*1364^(1/5) 4334943905057344 a001 6557470319842/64079*1364^(1/5) 4334943905933524 a007 Real Root Of -432*x^4+484*x^3+972*x^2+35*x-222 4334943905961756 a001 233/18*322^(9/43) 4334943906120568 l006 ln(5101/7869) 4334943911237683 a001 2504730781961/24476*1364^(1/5) 4334943914936710 r009 Re(z^3+c),c=-12/25+8/51*I,n=21 4334943915736332 a001 591286729879/2207*843^(1/14) 4334943920209414 a001 567451585/2889*3571^(16/17) 4334943922990967 a008 Real Root of x^4-17*x^2-2*x-25 4334943925011304 a001 20365011074/2207*2207^(1/2) 4334943929488447 a001 956722026041/5778*1364^(2/15) 4334943933277187 a001 139583862445/3571*1364^(1/3) 4334943934286276 a001 233802911/281*843^(13/14) 4334943940205952 a001 1836311903/5778*3571^(15/17) 4334943940551349 m001 RenyiParking-exp(1/Pi)*Thue 4334943940576380 m001 (1+GAMMA(7/12))/(-Cahen+FibonacciFactorial) 4334943944186784 r002 22th iterates of z^2 + 4334943953598359 a001 956722026041/9349*1364^(1/5) 4334943958827268 m005 (1/2*3^(1/2)+3/10)/(2*Zeta(3)+2/7) 4334943960202490 a001 2971215073/5778*3571^(14/17) 4334943963734235 a007 Real Root Of -194*x^4-752*x^3+168*x^2-825*x+515 4334943964180714 m008 (5/6*Pi^3-5)/(5*Pi^6+1/6) 4334943980199028 a001 267084832/321*3571^(13/17) 4334943980634889 a001 12586269025/2207*2207^(9/16) 4334943984605658 a007 Real Root Of 887*x^4-982*x^3-113*x^2-164*x+141 4334943988071887 m001 OneNinth^cos(1/5*Pi)/(OneNinth^Porter) 4334943999246221 a007 Real Root Of -740*x^4-638*x^3+261*x^2+563*x-215 4334944000195566 a001 7778742049/5778*3571^(12/17) 4334944011114589 a001 692290558575/1597 4334944011658843 m001 Salem/Riemann3rdZero^2/ln(cosh(1)) 4334944016696524 a007 Real Root Of 202*x^4+906*x^3+182*x^2+285*x+287 4334944020192104 a001 12586269025/5778*3571^(11/17) 4334944027294927 a001 692290561159/1597 4334944029655604 a001 692290561536/1597 4334944030050093 a001 692290561599/1597 4334944030056355 a001 692290561600/1597 4334944030058860 a001 2/1597*(1/2+1/2*5^(1/2))^60 4334944030058860 a001 3461452808002/1597*8^(1/3) 4334944030062617 a001 692290561601/1597 4334944030081402 a001 692290561604/1597 4334944030212899 a001 692290561625/1597 4334944031111101 a001 2971215073/15127*3571^(16/17) 4334944031114589 a001 692290561769/1597 4334944036258474 a001 7778742049/2207*2207^(5/8) 4334944037294927 a001 692290562756/1597 4334944040188643 a001 10182505537/2889*3571^(10/17) 4334944040390134 a001 2504730781961/15127*1364^(2/15) 4334944043904778 r002 26th iterates of z^2 + 4334944047291440 a001 7778742049/39603*3571^(16/17) 4334944049652119 a001 10182505537/51841*3571^(16/17) 4334944049996538 a001 53316291173/271443*3571^(16/17) 4334944050046788 a001 139583862445/710647*3571^(16/17) 4334944050054119 a001 182717648081/930249*3571^(16/17) 4334944050055189 a001 956722026041/4870847*3571^(16/17) 4334944050055345 a001 2504730781961/12752043*3571^(16/17) 4334944050055368 a001 3278735159921/16692641*3571^(16/17) 4334944050055373 a001 10610209857723/54018521*3571^(16/17) 4334944050055382 a001 4052739537881/20633239*3571^(16/17) 4334944050055441 a001 387002188980/1970299*3571^(16/17) 4334944050055850 a001 591286729879/3010349*3571^(16/17) 4334944050058650 a001 225851433717/1149851*3571^(16/17) 4334944050077844 a001 196418*3571^(16/17) 4334944050209400 a001 32951280099/167761*3571^(16/17) 4334944051107640 a001 686789568/2161*3571^(15/17) 4334944051111100 a001 12586269025/64079*3571^(16/17) 4334944056570473 a001 6557470319842/39603*1364^(2/15) 4334944057291439 a001 1201881744/6119*3571^(16/17) 4334944059113884 r005 Re(z^2+c),c=-73/118+4/39*I,n=54 4334944060185181 a001 10983760033/1926*3571^(9/17) 4334944060390133 a001 10610209857723/64079*1364^(2/15) 4334944066570472 a001 4052739537881/24476*1364^(2/15) 4334944067287978 a001 12586269025/39603*3571^(15/17) 4334944069648658 a001 32951280099/103682*3571^(15/17) 4334944069993077 a001 86267571272/271443*3571^(15/17) 4334944070043326 a001 317811*3571^(15/17) 4334944070050658 a001 591286729879/1860498*3571^(15/17) 4334944070051727 a001 1548008755920/4870847*3571^(15/17) 4334944070051884 a001 4052739537881/12752043*3571^(15/17) 4334944070051906 a001 1515744265389/4769326*3571^(15/17) 4334944070051920 a001 6557470319842/20633239*3571^(15/17) 4334944070051980 a001 2504730781961/7881196*3571^(15/17) 4334944070052389 a001 956722026041/3010349*3571^(15/17) 4334944070055189 a001 365435296162/1149851*3571^(15/17) 4334944070074383 a001 139583862445/439204*3571^(15/17) 4334944070205939 a001 53316291173/167761*3571^(15/17) 4334944070427584 m001 (Catalan-MasserGramain)/(-MertensB2+ThueMorse) 4334944070753891 r005 Im(z^2+c),c=-11/10+9/175*I,n=26 4334944071104178 a001 7778742049/15127*3571^(14/17) 4334944071107638 a001 20365011074/64079*3571^(15/17) 4334944077287978 a001 7778742049/24476*3571^(15/17) 4334944079655604 a001 692290569521/1597 4334944080181720 a001 53316291173/5778*3571^(8/17) 4334944084821237 a001 86000486440/321*1364^(1/15) 4334944087284517 a001 20365011074/39603*3571^(14/17) 4334944088609977 a001 225851433717/3571*1364^(4/15) 4334944089645197 a001 53316291173/103682*3571^(14/17) 4334944089989615 a001 139583862445/271443*3571^(14/17) 4334944090039865 a001 365435296162/710647*3571^(14/17) 4334944090047197 a001 956722026041/1860498*3571^(14/17) 4334944090048266 a001 2504730781961/4870847*3571^(14/17) 4334944090048422 a001 6557470319842/12752043*3571^(14/17) 4334944090048459 a001 10610209857723/20633239*3571^(14/17) 4334944090048519 a001 4052739537881/7881196*3571^(14/17) 4334944090048927 a001 1548008755920/3010349*3571^(14/17) 4334944090051728 a001 514229*3571^(14/17) 4334944090070921 a001 225851433717/439204*3571^(14/17) 4334944090202477 a001 86267571272/167761*3571^(14/17) 4334944091100717 a001 12586269025/15127*3571^(13/17) 4334944091104177 a001 32951280099/64079*3571^(14/17) 4334944091405257 m001 1/exp(Niven)^2/MertensB1^2/GAMMA(11/12)^2 4334944091882060 a001 4807526976/2207*2207^(11/16) 4334944095493544 s002 sum(A262467[n]/((10^n+1)/n),n=1..infinity) 4334944097284516 a001 12586269025/24476*3571^(14/17) 4334944098698357 m001 1/Riemann2ndZero*ln(PrimesInBinary)/cos(Pi/12) 4334944099652116 a001 1836311903/9349*3571^(16/17) 4334944100178259 a001 43133785636/2889*3571^(7/17) 4334944100868244 r005 Re(z^2+c),c=-20/31+5/23*I,n=7 4334944107281056 a001 10983760033/13201*3571^(13/17) 4334944108931150 a001 1548008755920/9349*1364^(2/15) 4334944109641735 a001 43133785636/51841*3571^(13/17) 4334944109986154 a001 75283811239/90481*3571^(13/17) 4334944110036404 a001 591286729879/710647*3571^(13/17) 4334944110043735 a001 832040*3571^(13/17) 4334944110044805 a001 4052739537881/4870847*3571^(13/17) 4334944110044961 a001 3536736619241/4250681*3571^(13/17) 4334944110045057 a001 3278735159921/3940598*3571^(13/17) 4334944110045466 a001 2504730781961/3010349*3571^(13/17) 4334944110048266 a001 956722026041/1149851*3571^(13/17) 4334944110067460 a001 182717648081/219602*3571^(13/17) 4334944110199016 a001 139583862445/167761*3571^(13/17) 4334944110308065 a001 1292/2889*(1/2+1/2*5^(1/2))^43 4334944111097256 a001 20365011074/15127*3571^(12/17) 4334944111099437 r005 Re(z^2+c),c=-41/66+13/59*I,n=17 4334944111100716 a001 53316291173/64079*3571^(13/17) 4334944117281055 a001 10182505537/12238*3571^(13/17) 4334944119648655 a001 2971215073/9349*3571^(15/17) 4334944120174797 a001 139583862445/5778*3571^(6/17) 4334944127277595 a001 53316291173/39603*3571^(12/17) 4334944129638274 a001 139583862445/103682*3571^(12/17) 4334944129982693 a001 365435296162/271443*3571^(12/17) 4334944130032943 a001 956722026041/710647*3571^(12/17) 4334944130040274 a001 2504730781961/1860498*3571^(12/17) 4334944130041344 a001 6557470319842/4870847*3571^(12/17) 4334944130041596 a001 10610209857723/7881196*3571^(12/17) 4334944130042005 a001 1346269*3571^(12/17) 4334944130044805 a001 1548008755920/1149851*3571^(12/17) 4334944130063999 a001 591286729879/439204*3571^(12/17) 4334944130195555 a001 225851433717/167761*3571^(12/17) 4334944131093794 a001 32951280099/15127*3571^(11/17) 4334944131097254 a001 86267571272/64079*3571^(12/17) 4334944135110421 a007 Real Root Of -6*x^4-259*x^3+52*x^2+197*x+157 4334944137277594 a001 32951280099/24476*3571^(12/17) 4334944139645194 a001 4807526976/9349*3571^(14/17) 4334944140171336 a001 75283811239/1926*3571^(5/17) 4334944145224555 m001 (Tetranacci+Totient)/(FeigenbaumC-Sierpinski) 4334944147274133 a001 86267571272/39603*3571^(11/17) 4334944147505646 a001 2971215073/2207*2207^(3/4) 4334944147889934 a001 322/17711*233^(32/55) 4334944149634813 a001 225851433717/103682*3571^(11/17) 4334944149872845 a007 Real Root Of 678*x^4-409*x^3-319*x^2-283*x+192 4334944149979232 a001 591286729879/271443*3571^(11/17) 4334944150029482 a001 1548008755920/710647*3571^(11/17) 4334944150036813 a001 4052739537881/1860498*3571^(11/17) 4334944150037883 a001 2178309*3571^(11/17) 4334944150038544 a001 6557470319842/3010349*3571^(11/17) 4334944150041344 a001 2504730781961/1149851*3571^(11/17) 4334944150060538 a001 956722026041/439204*3571^(11/17) 4334944150192094 a001 365435296162/167761*3571^(11/17) 4334944151090333 a001 53316291173/15127*3571^(10/17) 4334944151093793 a001 139583862445/64079*3571^(11/17) 4334944157274133 a001 53316291173/24476*3571^(11/17) 4334944158402402 a007 Real Root Of -78*x^4-264*x^3+66*x^2-893*x+927 4334944159641733 a001 7778742049/9349*3571^(13/17) 4334944160167875 a001 182717648081/2889*3571^(4/17) 4334944167270672 a001 139583862445/39603*3571^(10/17) 4334944167361739 a007 Real Root Of 807*x^4+323*x^3-158*x^2-654*x-256 4334944169631352 a001 182717648081/51841*3571^(10/17) 4334944169975771 a001 956722026041/271443*3571^(10/17) 4334944170026021 a001 2504730781961/710647*3571^(10/17) 4334944170033352 a001 3278735159921/930249*3571^(10/17) 4334944170035083 a001 10610209857723/3010349*3571^(10/17) 4334944170037883 a001 4052739537881/1149851*3571^(10/17) 4334944170057077 a001 387002188980/109801*3571^(10/17) 4334944170188633 a001 591286729879/167761*3571^(10/17) 4334944170738666 m001 (TwinPrimes+ZetaQ(3))/(ln(2^(1/2)+1)+Robbin) 4334944171086872 a001 86267571272/15127*3571^(9/17) 4334944171090332 a001 225851433717/64079*3571^(10/17) 4334944177270672 a001 21566892818/6119*3571^(10/17) 4334944179638272 a001 12586269025/9349*3571^(12/17) 4334944180164414 a001 591286729879/5778*3571^(3/17) 4334944180566559 a007 Real Root Of -241*x^4-789*x^3+891*x^2-991*x-208 4334944183490305 a001 271443*34^(11/14) 4334944184339289 a007 Real Root Of -9*x^4-381*x^3+393*x^2-137*x+506 4334944186674121 r005 Im(z^2+c),c=21/118+23/52*I,n=51 4334944187267212 a001 75283811239/13201*3571^(9/17) 4334944189627891 a001 591286729879/103682*3571^(9/17) 4334944189972310 a001 516002918640/90481*3571^(9/17) 4334944190022560 a001 4052739537881/710647*3571^(9/17) 4334944190029891 a001 3536736619241/620166*3571^(9/17) 4334944190034422 a001 6557470319842/1149851*3571^(9/17) 4334944190053616 a001 2504730781961/439204*3571^(9/17) 4334944190185172 a001 956722026041/167761*3571^(9/17) 4334944190557282 a001 1812440166072/4181 4334944191083411 a001 139583862445/15127*3571^(8/17) 4334944191086871 a001 365435296162/64079*3571^(9/17) 4334944193167641 a001 433494437/5778*9349^(18/19) 4334944195722928 a001 4052739537881/15127*1364^(1/15) 4334944195777996 a001 233802911/1926*9349^(17/19) 4334944196495731 m002 -E^Pi+Pi^2-Pi^3+Tanh[Pi]/ProductLog[Pi] 4334944197267211 a001 139583862445/24476*3571^(9/17) 4334944198388351 a001 567451585/2889*9349^(16/19) 4334944199634811 a001 20365011074/9349*3571^(11/17) 4334944200160953 a001 956722026041/5778*3571^(2/17) 4334944200998706 a001 1836311903/5778*9349^(15/19) 4334944203129233 a001 1836311903/2207*2207^(13/16) 4334944203609061 a001 2971215073/5778*9349^(14/19) 4334944206219416 a001 267084832/321*9349^(13/19) 4334944207263751 a001 365435296162/39603*3571^(8/17) 4334944208829771 a001 7778742049/5778*9349^(12/19) 4334944209624430 a001 956722026041/103682*3571^(8/17) 4334944209968849 a001 2504730781961/271443*3571^(8/17) 4334944210019099 a001 6557470319842/710647*3571^(8/17) 4334944210030961 a001 10610209857723/1149851*3571^(8/17) 4334944210050155 a001 4052739537881/439204*3571^(8/17) 4334944210181711 a001 140728068720/15251*3571^(8/17) 4334944211079951 a001 32264490531/2161*3571^(7/17) 4334944211083411 a001 591286729879/64079*3571^(8/17) 4334944211440126 a001 12586269025/5778*9349^(11/19) 4334944211903268 a001 3536736619241/13201*1364^(1/15) 4334944212226244 m004 -150*Pi+5*Sqrt[5]*Pi+4/ProductLog[Sqrt[5]*Pi] 4334944214050481 a001 10182505537/2889*9349^(10/19) 4334944216660836 a001 10983760033/1926*9349^(9/19) 4334944217263750 a001 7787980473/844*3571^(8/17) 4334944219271191 a001 53316291173/5778*9349^(8/19) 4334944219631350 a001 32951280099/9349*3571^(10/17) 4334944220157493 a001 86000486440/321*3571^(1/17) 4334944221209757 a001 2584/15127*45537549124^(15/17) 4334944221209757 a001 2584/15127*312119004989^(9/11) 4334944221209757 a001 2584/15127*14662949395604^(5/7) 4334944221209757 a001 2584/15127*(1/2+1/2*5^(1/2))^45 4334944221209757 a001 2584/15127*192900153618^(5/6) 4334944221209757 a001 2584/15127*28143753123^(9/10) 4334944221209757 a001 2584/15127*10749957122^(15/16) 4334944221209761 a001 2255/1926*(1/2+1/2*5^(1/2))^41 4334944221881547 a001 43133785636/2889*9349^(7/19) 4334944221903267 a001 3278735159921/12238*1364^(1/15) 4334944223684361 m005 (1/2*Zeta(3)-4/7)/(4*3^(1/2)-1/10) 4334944224491902 a001 139583862445/5778*9349^(6/19) 4334944225604740 r005 Im(z^2+c),c=-43/52+1/32*I,n=10 4334944227102257 a001 75283811239/1926*9349^(5/19) 4334944227260290 a001 591286729879/39603*3571^(7/17) 4334944229620970 a001 774004377960/51841*3571^(7/17) 4334944229712612 a001 182717648081/2889*9349^(4/19) 4334944229965388 a001 4052739537881/271443*3571^(7/17) 4334944230015638 a001 1515744265389/101521*3571^(7/17) 4334944230046694 a001 3278735159921/219602*3571^(7/17) 4334944230178251 a001 2504730781961/167761*3571^(7/17) 4334944231076490 a001 365435296162/15127*3571^(6/17) 4334944231079950 a001 956722026041/64079*3571^(7/17) 4334944232322967 a001 591286729879/5778*9349^(3/19) 4334944232917960 a001 2372514978676/5473 4334944233262539 a001 165580141/5778*24476^(20/21) 4334944233607114 a001 133957148/2889*24476^(19/21) 4334944233616733 m001 FeigenbaumKappa/exp(Salem)*Zeta(5) 4334944233951688 a001 433494437/5778*24476^(6/7) 4334944234296263 a001 233802911/1926*24476^(17/21) 4334944234640838 a001 567451585/2889*24476^(16/21) 4334944234933322 a001 956722026041/5778*9349^(2/19) 4334944234985412 a001 1836311903/5778*24476^(5/7) 4334944235329987 a001 2971215073/5778*24476^(2/3) 4334944235337870 r005 Re(z^2+c),c=-75/122+5/33*I,n=61 4334944235674562 a001 267084832/321*24476^(13/21) 4334944236019136 a001 7778742049/5778*24476^(4/7) 4334944236363711 a001 12586269025/5778*24476^(11/21) 4334944236708285 a001 10182505537/2889*24476^(10/21) 4334944237052860 a001 10983760033/1926*24476^(3/7) 4334944237260290 a001 182717648081/12238*3571^(7/17) 4334944237390096 a001 2584/39603*(1/2+1/2*5^(1/2))^47 4334944237390100 a001 17711/5778*2537720636^(13/15) 4334944237390100 a001 17711/5778*45537549124^(13/17) 4334944237390100 a001 17711/5778*14662949395604^(13/21) 4334944237390100 a001 17711/5778*(1/2+1/2*5^(1/2))^39 4334944237390100 a001 17711/5778*192900153618^(13/18) 4334944237390100 a001 17711/5778*73681302247^(3/4) 4334944237390100 a001 17711/5778*10749957122^(13/16) 4334944237390100 a001 17711/5778*599074578^(13/14) 4334944237397435 a001 53316291173/5778*24476^(8/21) 4334944237543677 a001 86000486440/321*9349^(1/19) 4334944237742009 a001 43133785636/2889*24476^(1/3) 4334944238086584 a001 139583862445/5778*24476^(2/7) 4334944238431159 a001 75283811239/1926*24476^(5/21) 4334944238775733 a001 182717648081/2889*24476^(4/21) 4334944239098300 a001 12422649705984/28657 4334944239120308 a001 591286729879/5778*24476^(1/7) 4334944239144205 a001 31622993/2889*64079^(22/23) 4334944239190106 a001 34111385/1926*64079^(21/23) 4334944239236008 a001 165580141/5778*64079^(20/23) 4334944239281909 a001 133957148/2889*64079^(19/23) 4334944239327810 a001 433494437/5778*64079^(18/23) 4334944239373711 a001 233802911/1926*64079^(17/23) 4334944239419613 a001 567451585/2889*64079^(16/23) 4334944239464883 a001 956722026041/5778*24476^(2/21) 4334944239465514 a001 1836311903/5778*64079^(15/23) 4334944239511415 a001 2971215073/5778*64079^(14/23) 4334944239557316 a001 267084832/321*64079^(13/23) 4334944239603217 a001 7778742049/5778*64079^(12/23) 4334944239627890 a001 53316291173/9349*3571^(9/17) 4334944239649119 a001 12586269025/5778*64079^(11/23) 4334944239695020 a001 10182505537/2889*64079^(10/23) 4334944239740921 a001 10983760033/1926*64079^(9/23) 4334944239750776 a001 1292/51841*14662949395604^(7/9) 4334944239750776 a001 1292/51841*(1/2+1/2*5^(1/2))^49 4334944239750776 a001 1292/51841*505019158607^(7/8) 4334944239750780 a001 2576/321*(1/2+1/2*5^(1/2))^37 4334944239786822 a001 53316291173/5778*64079^(8/23) 4334944239809457 a001 86000486440/321*24476^(1/21) 4334944239832723 a001 43133785636/2889*64079^(7/23) 4334944239878625 a001 139583862445/5778*64079^(6/23) 4334944239924526 a001 75283811239/1926*64079^(5/23) 4334944239970427 a001 182717648081/2889*64079^(4/23) 4334944240016328 a001 591286729879/5778*64079^(3/23) 4334944240030809 a001 165580141/5778*167761^(4/5) 4334944240061615 a001 1836311903/5778*167761^(3/5) 4334944240062230 a001 956722026041/5778*64079^(2/23) 4334944240092421 a001 10182505537/2889*167761^(2/5) 4334944240095194 a001 2584/271443*817138163596^(17/19) 4334944240095194 a001 2584/271443*14662949395604^(17/21) 4334944240095194 a001 2584/271443*(1/2+1/2*5^(1/2))^51 4334944240095194 a001 2584/271443*192900153618^(17/18) 4334944240095198 a001 121393/5778*2537720636^(7/9) 4334944240095198 a001 121393/5778*17393796001^(5/7) 4334944240095198 a001 121393/5778*312119004989^(7/11) 4334944240095198 a001 121393/5778*14662949395604^(5/9) 4334944240095198 a001 121393/5778*(1/2+1/2*5^(1/2))^35 4334944240095198 a001 121393/5778*505019158607^(5/8) 4334944240095198 a001 121393/5778*28143753123^(7/10) 4334944240095198 a001 121393/5778*599074578^(5/6) 4334944240095198 a001 121393/5778*228826127^(7/8) 4334944240108131 a001 86000486440/321*64079^(1/23) 4334944240123226 a001 75283811239/1926*167761^(1/5) 4334944240131556 a001 2504297287524/5777 4334944240134058 a001 24157817/5778*439204^(8/9) 4334944240136553 a001 34111385/1926*439204^(7/9) 4334944240139050 a001 433494437/5778*439204^(2/3) 4334944240141547 a001 1836311903/5778*439204^(5/9) 4334944240144044 a001 7778742049/5778*439204^(4/9) 4334944240145444 a001 2584/710647*(1/2+1/2*5^(1/2))^53 4334944240145448 a001 105937/1926*141422324^(11/13) 4334944240145448 a001 105937/1926*2537720636^(11/15) 4334944240145448 a001 105937/1926*45537549124^(11/17) 4334944240145448 a001 105937/1926*312119004989^(3/5) 4334944240145448 a001 105937/1926*817138163596^(11/19) 4334944240145448 a001 105937/1926*14662949395604^(11/21) 4334944240145448 a001 105937/1926*(1/2+1/2*5^(1/2))^33 4334944240145448 a001 105937/1926*192900153618^(11/18) 4334944240145448 a001 105937/1926*10749957122^(11/16) 4334944240145448 a001 105937/1926*1568397607^(3/4) 4334944240145448 a001 105937/1926*599074578^(11/14) 4334944240145452 a001 105937/1926*33385282^(11/12) 4334944240146541 a001 10983760033/1926*439204^(1/3) 4334944240149038 a001 139583862445/5778*439204^(2/9) 4334944240150749 a001 222915404166848/514229 4334944240151535 a001 591286729879/5778*439204^(1/9) 4334944240152776 a001 1292/930249*(1/2+1/2*5^(1/2))^55 4334944240152776 a001 1292/930249*3461452808002^(11/12) 4334944240152780 a001 416020/2889*(1/2+1/2*5^(1/2))^31 4334944240152780 a001 416020/2889*9062201101803^(1/2) 4334944240153550 a001 583600104724728/1346269 4334944240153845 a001 2584/4870847*14662949395604^(19/21) 4334944240153845 a001 2584/4870847*(1/2+1/2*5^(1/2))^57 4334944240153849 a001 726103/1926*(1/2+1/2*5^(1/2))^29 4334944240153849 a001 726103/1926*1322157322203^(1/2) 4334944240153948 a001 5702887/5778*7881196^(9/11) 4334944240153958 a001 763942455003668/1762289 4334944240153983 a001 24157817/5778*7881196^(8/11) 4334944240153986 a001 31622993/2889*7881196^(2/3) 4334944240153988 a001 34111385/1926*7881196^(7/11) 4334944240153994 a001 433494437/5778*7881196^(6/11) 4334944240154000 a001 1836311903/5778*7881196^(5/11) 4334944240154001 a001 2584/12752043*(1/2+1/2*5^(1/2))^59 4334944240154005 a001 5702887/5778*141422324^(9/13) 4334944240154005 a001 5702887/5778*2537720636^(3/5) 4334944240154005 a001 5702887/5778*45537549124^(9/17) 4334944240154005 a001 5702887/5778*817138163596^(9/19) 4334944240154005 a001 5702887/5778*14662949395604^(3/7) 4334944240154005 a001 5702887/5778*(1/2+1/2*5^(1/2))^27 4334944240154005 a001 5702887/5778*192900153618^(1/2) 4334944240154005 a001 5702887/5778*10749957122^(9/16) 4334944240154005 a001 5702887/5778*599074578^(9/14) 4334944240154007 a001 7778742049/5778*7881196^(4/11) 4334944240154008 a001 5702887/5778*33385282^(3/4) 4334944240154009 a001 12586269025/5778*7881196^(1/3) 4334944240154013 a001 10983760033/1926*7881196^(3/11) 4334944240154018 a001 800010925059456/1845493 4334944240154019 a001 139583862445/5778*7881196^(2/11) 4334944240154021 a001 2584*20633239^(5/7) 4334944240154024 a001 1292/16692641*(1/2+1/2*5^(1/2))^61 4334944240154026 a001 591286729879/5778*7881196^(1/11) 4334944240154026 a001 34111385/1926*20633239^(3/5) 4334944240154026 a001 165580141/5778*20633239^(4/7) 4334944240154027 a001 10472278965884504/24157817 4334944240154028 a001 1836311903/5778*20633239^(3/7) 4334944240154028 a001 13708391136178116/31622993 4334944240154028 a001 2971215073/5778*20633239^(2/5) 4334944240154028 a001 2584*2537720636^(5/9) 4334944240154028 a001 2584*312119004989^(5/11) 4334944240154028 a001 2584*(1/2+1/2*5^(1/2))^25 4334944240154028 a001 2584*3461452808002^(5/12) 4334944240154028 a001 2584*28143753123^(1/2) 4334944240154028 a001 2584*228826127^(5/8) 4334944240154029 a001 16944503306471728/39088169 4334944240154029 a001 10182505537/2889*20633239^(2/7) 4334944240154030 a001 43133785636/2889*20633239^(1/5) 4334944240154031 a001 75283811239/1926*20633239^(1/7) 4334944240154031 a001 39088169/5778*(1/2+1/2*5^(1/2))^23 4334944240154031 a001 39088169/5778*4106118243^(1/2) 4334944240154032 a001 34111385/1926*141422324^(7/13) 4334944240154032 a001 433494437/5778*141422324^(6/13) 4334944240154032 a001 1836311903/5778*141422324^(5/13) 4334944240154032 a001 34111385/1926*2537720636^(7/15) 4334944240154032 a001 34111385/1926*17393796001^(3/7) 4334944240154032 a001 34111385/1926*45537549124^(7/17) 4334944240154032 a001 34111385/1926*14662949395604^(1/3) 4334944240154032 a001 34111385/1926*(1/2+1/2*5^(1/2))^21 4334944240154032 a001 34111385/1926*192900153618^(7/18) 4334944240154032 a001 34111385/1926*10749957122^(7/16) 4334944240154032 a001 34111385/1926*599074578^(1/2) 4334944240154032 a001 267084832/321*141422324^(1/3) 4334944240154032 a001 7778742049/5778*141422324^(4/13) 4334944240154032 a001 10983760033/1926*141422324^(3/13) 4334944240154032 a001 139583862445/5778*141422324^(2/13) 4334944240154032 a001 591286729879/5778*141422324^(1/13) 4334944240154032 a001 133957148/2889*817138163596^(1/3) 4334944240154032 a001 133957148/2889*(1/2+1/2*5^(1/2))^19 4334944240154032 a001 233802911/1926*45537549124^(1/3) 4334944240154032 a001 233802911/1926*(1/2+1/2*5^(1/2))^17 4334944240154032 a001 1836311903/5778*2537720636^(1/3) 4334944240154032 a001 1836311903/5778*45537549124^(5/17) 4334944240154032 a001 1836311903/5778*312119004989^(3/11) 4334944240154032 a001 1836311903/5778*14662949395604^(5/21) 4334944240154032 a001 1836311903/5778*(1/2+1/2*5^(1/2))^15 4334944240154032 a001 1836311903/5778*192900153618^(5/18) 4334944240154032 a001 1836311903/5778*28143753123^(3/10) 4334944240154032 a001 1836311903/5778*10749957122^(5/16) 4334944240154032 a001 7778742049/5778*2537720636^(4/15) 4334944240154032 a001 10182505537/2889*2537720636^(2/9) 4334944240154032 a001 10983760033/1926*2537720636^(1/5) 4334944240154032 a001 139583862445/5778*2537720636^(2/15) 4334944240154032 a001 75283811239/1926*2537720636^(1/9) 4334944240154032 a001 591286729879/5778*2537720636^(1/15) 4334944240154032 a001 267084832/321*(1/2+1/2*5^(1/2))^13 4334944240154032 a001 267084832/321*73681302247^(1/4) 4334944240154032 a001 12586269025/5778*312119004989^(1/5) 4334944240154032 a001 12586269025/5778*(1/2+1/2*5^(1/2))^11 4334944240154032 a001 43133785636/2889*17393796001^(1/7) 4334944240154032 a001 10983760033/1926*45537549124^(3/17) 4334944240154032 a001 10983760033/1926*817138163596^(3/19) 4334944240154032 a001 10983760033/1926*14662949395604^(1/7) 4334944240154032 a001 10983760033/1926*(1/2+1/2*5^(1/2))^9 4334944240154032 a001 10983760033/1926*192900153618^(1/6) 4334944240154032 a001 139583862445/5778*45537549124^(2/17) 4334944240154032 a001 43133785636/2889*14662949395604^(1/9) 4334944240154032 a001 43133785636/2889*(1/2+1/2*5^(1/2))^7 4334944240154032 a001 75283811239/1926*312119004989^(1/11) 4334944240154032 a001 75283811239/1926*(1/2+1/2*5^(1/2))^5 4334944240154032 a001 591286729879/5778*14662949395604^(1/21) 4334944240154032 a001 591286729879/5778*(1/2+1/2*5^(1/2))^3 4334944240154032 a001 43000243220/321+43000243220/321*5^(1/2) 4334944240154032 a001 591286729879/5778*192900153618^(1/18) 4334944240154032 a001 182717648081/2889*23725150497407^(1/16) 4334944240154032 a001 139583862445/5778*14662949395604^(2/21) 4334944240154032 a001 139583862445/5778*(1/2+1/2*5^(1/2))^6 4334944240154032 a001 182717648081/2889*73681302247^(1/13) 4334944240154032 a001 53316291173/5778*(1/2+1/2*5^(1/2))^8 4334944240154032 a001 53316291173/5778*23725150497407^(1/8) 4334944240154032 a001 53316291173/5778*505019158607^(1/7) 4334944240154032 a001 53316291173/5778*73681302247^(2/13) 4334944240154032 a001 75283811239/1926*28143753123^(1/10) 4334944240154032 a001 956722026041/5778*10749957122^(1/24) 4334944240154032 a001 10182505537/2889*312119004989^(2/11) 4334944240154032 a001 10182505537/2889*(1/2+1/2*5^(1/2))^10 4334944240154032 a001 591286729879/5778*10749957122^(1/16) 4334944240154032 a001 182717648081/2889*10749957122^(1/12) 4334944240154032 a001 10182505537/2889*28143753123^(1/5) 4334944240154032 a001 139583862445/5778*10749957122^(1/8) 4334944240154032 a001 10983760033/1926*10749957122^(3/16) 4334944240154032 a001 53316291173/5778*10749957122^(1/6) 4334944240154032 a001 10182505537/2889*10749957122^(5/24) 4334944240154032 a001 956722026041/5778*4106118243^(1/23) 4334944240154032 a001 7778742049/5778*45537549124^(4/17) 4334944240154032 a001 7778742049/5778*817138163596^(4/19) 4334944240154032 a001 7778742049/5778*14662949395604^(4/21) 4334944240154032 a001 7778742049/5778*(1/2+1/2*5^(1/2))^12 4334944240154032 a001 7778742049/5778*192900153618^(2/9) 4334944240154032 a001 7778742049/5778*73681302247^(3/13) 4334944240154032 a001 182717648081/2889*4106118243^(2/23) 4334944240154032 a001 7778742049/5778*10749957122^(1/4) 4334944240154032 a001 139583862445/5778*4106118243^(3/23) 4334944240154032 a001 53316291173/5778*4106118243^(4/23) 4334944240154032 a001 10182505537/2889*4106118243^(5/23) 4334944240154032 a001 956722026041/5778*1568397607^(1/22) 4334944240154032 a001 7778742049/5778*4106118243^(6/23) 4334944240154032 a001 2971215073/5778*17393796001^(2/7) 4334944240154032 a001 2971215073/5778*14662949395604^(2/9) 4334944240154032 a001 2971215073/5778*(1/2+1/2*5^(1/2))^14 4334944240154032 a001 2971215073/5778*10749957122^(7/24) 4334944240154032 a001 182717648081/2889*1568397607^(1/11) 4334944240154032 a001 2971215073/5778*4106118243^(7/23) 4334944240154032 a001 139583862445/5778*1568397607^(3/22) 4334944240154032 a001 53316291173/5778*1568397607^(2/11) 4334944240154032 a001 10182505537/2889*1568397607^(5/22) 4334944240154032 a001 12586269025/5778*1568397607^(1/4) 4334944240154032 a001 7778742049/5778*1568397607^(3/11) 4334944240154032 a001 956722026041/5778*599074578^(1/21) 4334944240154032 a001 2971215073/5778*1568397607^(7/22) 4334944240154032 a001 567451585/2889*(1/2+1/2*5^(1/2))^16 4334944240154032 a001 567451585/2889*23725150497407^(1/4) 4334944240154032 a001 567451585/2889*73681302247^(4/13) 4334944240154032 a001 567451585/2889*10749957122^(1/3) 4334944240154032 a001 567451585/2889*4106118243^(8/23) 4334944240154032 a001 591286729879/5778*599074578^(1/14) 4334944240154032 a001 182717648081/2889*599074578^(2/21) 4334944240154032 a001 567451585/2889*1568397607^(4/11) 4334944240154032 a001 139583862445/5778*599074578^(1/7) 4334944240154032 a001 43133785636/2889*599074578^(1/6) 4334944240154032 a001 53316291173/5778*599074578^(4/21) 4334944240154032 a001 10983760033/1926*599074578^(3/14) 4334944240154032 a001 10182505537/2889*599074578^(5/21) 4334944240154032 a001 7778742049/5778*599074578^(2/7) 4334944240154032 a001 1836311903/5778*599074578^(5/14) 4334944240154032 a001 2971215073/5778*599074578^(1/3) 4334944240154032 a001 956722026041/5778*228826127^(1/20) 4334944240154032 a001 433494437/5778*2537720636^(2/5) 4334944240154032 a001 433494437/5778*45537549124^(6/17) 4334944240154032 a001 433494437/5778*14662949395604^(2/7) 4334944240154032 a001 433494437/5778*(1/2+1/2*5^(1/2))^18 4334944240154032 a001 433494437/5778*192900153618^(1/3) 4334944240154032 a001 433494437/5778*10749957122^(3/8) 4334944240154032 a001 433494437/5778*4106118243^(9/23) 4334944240154032 a001 567451585/2889*599074578^(8/21) 4334944240154032 a001 433494437/5778*1568397607^(9/22) 4334944240154032 a001 182717648081/2889*228826127^(1/10) 4334944240154032 a001 433494437/5778*599074578^(3/7) 4334944240154032 a001 75283811239/1926*228826127^(1/8) 4334944240154032 a001 139583862445/5778*228826127^(3/20) 4334944240154032 a001 53316291173/5778*228826127^(1/5) 4334944240154032 a001 10182505537/2889*228826127^(1/4) 4334944240154032 a001 7778742049/5778*228826127^(3/10) 4334944240154032 a001 2971215073/5778*228826127^(7/20) 4334944240154032 a001 956722026041/5778*87403803^(1/19) 4334944240154032 a001 1836311903/5778*228826127^(3/8) 4334944240154032 a001 165580141/5778*2537720636^(4/9) 4334944240154032 a001 165580141/5778*(1/2+1/2*5^(1/2))^20 4334944240154032 a001 165580141/5778*23725150497407^(5/16) 4334944240154032 a001 165580141/5778*505019158607^(5/14) 4334944240154032 a001 165580141/5778*73681302247^(5/13) 4334944240154032 a001 165580141/5778*28143753123^(2/5) 4334944240154032 a001 165580141/5778*10749957122^(5/12) 4334944240154032 a001 165580141/5778*4106118243^(10/23) 4334944240154032 a001 165580141/5778*1568397607^(5/11) 4334944240154032 a001 567451585/2889*228826127^(2/5) 4334944240154032 a001 165580141/5778*599074578^(10/21) 4334944240154032 a001 433494437/5778*228826127^(9/20) 4334944240154032 a001 182717648081/2889*87403803^(2/19) 4334944240154032 a001 165580141/5778*228826127^(1/2) 4334944240154032 a001 139583862445/5778*87403803^(3/19) 4334944240154032 a001 53316291173/5778*87403803^(4/19) 4334944240154032 a001 10182505537/2889*87403803^(5/19) 4334944240154032 a001 7778742049/5778*87403803^(6/19) 4334944240154032 a001 2971215073/5778*87403803^(7/19) 4334944240154032 a001 956722026041/5778*33385282^(1/18) 4334944240154032 a001 31622993/2889*312119004989^(2/5) 4334944240154032 a001 31622993/2889*(1/2+1/2*5^(1/2))^22 4334944240154032 a001 31622993/2889*10749957122^(11/24) 4334944240154032 a001 31622993/2889*4106118243^(11/23) 4334944240154032 a001 31622993/2889*1568397607^(1/2) 4334944240154032 a001 31622993/2889*599074578^(11/21) 4334944240154032 a001 567451585/2889*87403803^(8/19) 4334944240154032 a001 31622993/2889*228826127^(11/20) 4334944240154032 a001 133957148/2889*87403803^(1/2) 4334944240154032 a001 433494437/5778*87403803^(9/19) 4334944240154032 a001 591286729879/5778*33385282^(1/12) 4334944240154032 a001 165580141/5778*87403803^(10/19) 4334944240154032 a001 182717648081/2889*33385282^(1/9) 4334944240154033 a001 31622993/2889*87403803^(11/19) 4334944240154033 a001 139583862445/5778*33385282^(1/6) 4334944240154033 a001 53316291173/5778*33385282^(2/9) 4334944240154033 a001 10983760033/1926*33385282^(1/4) 4334944240154033 a001 10182505537/2889*33385282^(5/18) 4334944240154033 a001 7778742049/5778*33385282^(1/3) 4334944240154033 a001 24157817/5778*141422324^(8/13) 4334944240154034 a001 24157817/5778*2537720636^(8/15) 4334944240154034 a001 24157817/5778*45537549124^(8/17) 4334944240154034 a001 24157817/5778*14662949395604^(8/21) 4334944240154034 a001 24157817/5778*(1/2+1/2*5^(1/2))^24 4334944240154034 a001 24157817/5778*192900153618^(4/9) 4334944240154034 a001 24157817/5778*73681302247^(6/13) 4334944240154034 a001 24157817/5778*10749957122^(1/2) 4334944240154034 a001 24157817/5778*4106118243^(12/23) 4334944240154034 a001 24157817/5778*1568397607^(6/11) 4334944240154034 a001 24157817/5778*599074578^(4/7) 4334944240154034 a001 2971215073/5778*33385282^(7/18) 4334944240154034 a001 24157817/5778*228826127^(3/5) 4334944240154034 a001 956722026041/5778*12752043^(1/17) 4334944240154034 a001 1836311903/5778*33385282^(5/12) 4334944240154034 a001 567451585/2889*33385282^(4/9) 4334944240154034 a001 24157817/5778*87403803^(12/19) 4334944240154034 a001 433494437/5778*33385282^(1/2) 4334944240154034 a001 34111385/1926*33385282^(7/12) 4334944240154034 a001 165580141/5778*33385282^(5/9) 4334944240154035 a001 31622993/2889*33385282^(11/18) 4334944240154035 a001 182717648081/2889*12752043^(2/17) 4334944240154036 a001 24157817/5778*33385282^(2/3) 4334944240154037 a001 139583862445/5778*12752043^(3/17) 4334944240154038 a001 53316291173/5778*12752043^(4/17) 4334944240154038 a001 2584/20633239*14662949395604^(20/21) 4334944240154038 a001 2584/20633239*(1/2+1/2*5^(1/2))^60 4334944240154040 a001 10182505537/2889*12752043^(5/17) 4334944240154041 a001 7778742049/5778*12752043^(6/17) 4334944240154042 a001 9227465/5778*141422324^(2/3) 4334944240154042 a001 9227465/5778*(1/2+1/2*5^(1/2))^26 4334944240154042 a001 9227465/5778*73681302247^(1/2) 4334944240154042 a001 9227465/5778*10749957122^(13/24) 4334944240154042 a001 9227465/5778*4106118243^(13/23) 4334944240154042 a001 9227465/5778*1568397607^(13/22) 4334944240154042 a001 9227465/5778*599074578^(13/21) 4334944240154042 a001 9227465/5778*228826127^(13/20) 4334944240154043 a001 9227465/5778*87403803^(13/19) 4334944240154043 a001 2971215073/5778*12752043^(7/17) 4334944240154043 a001 956722026041/5778*4870847^(1/16) 4334944240154045 a001 567451585/2889*12752043^(8/17) 4334944240154045 a001 9227465/5778*33385282^(13/18) 4334944240154045 a001 233802911/1926*12752043^(1/2) 4334944240154046 a001 433494437/5778*12752043^(9/17) 4334944240154048 a001 165580141/5778*12752043^(10/17) 4334944240154050 a001 31622993/2889*12752043^(11/17) 4334944240154052 a001 24157817/5778*12752043^(12/17) 4334944240154055 a001 2472169715289944/5702887 4334944240154055 a001 182717648081/2889*4870847^(1/8) 4334944240154063 a001 9227465/5778*12752043^(13/17) 4334944240154066 a001 139583862445/5778*4870847^(3/16) 4334944240154078 a001 53316291173/5778*4870847^(1/4) 4334944240154089 a001 10182505537/2889*4870847^(5/16) 4334944240154094 a001 1762289/2889*20633239^(4/5) 4334944240154098 a001 646/1970299*(1/2+1/2*5^(1/2))^58 4334944240154101 a001 7778742049/5778*4870847^(3/8) 4334944240154102 a001 1762289/2889*17393796001^(4/7) 4334944240154102 a001 1762289/2889*14662949395604^(4/9) 4334944240154102 a001 1762289/2889*(1/2+1/2*5^(1/2))^28 4334944240154102 a001 1762289/2889*505019158607^(1/2) 4334944240154102 a001 1762289/2889*73681302247^(7/13) 4334944240154102 a001 1762289/2889*10749957122^(7/12) 4334944240154102 a001 1762289/2889*4106118243^(14/23) 4334944240154102 a001 1762289/2889*1568397607^(7/11) 4334944240154102 a001 1762289/2889*599074578^(2/3) 4334944240154102 a001 1762289/2889*228826127^(7/10) 4334944240154102 a001 1762289/2889*87403803^(14/19) 4334944240154105 a001 1762289/2889*33385282^(7/9) 4334944240154112 a001 2971215073/5778*4870847^(7/16) 4334944240154116 a001 956722026041/5778*1860498^(1/15) 4334944240154123 a001 567451585/2889*4870847^(1/2) 4334944240154124 a001 1762289/2889*12752043^(14/17) 4334944240154135 a001 433494437/5778*4870847^(9/16) 4334944240154146 a001 165580141/5778*4870847^(5/8) 4334944240154157 a001 591286729879/5778*1860498^(1/10) 4334944240154158 a001 31622993/2889*4870847^(11/16) 4334944240154171 a001 24157817/5778*4870847^(3/4) 4334944240154191 a001 9227465/5778*4870847^(13/16) 4334944240154199 a001 182717648081/2889*1860498^(2/15) 4334944240154211 a001 944284805282608/2178309 4334944240154241 a001 75283811239/1926*1860498^(1/6) 4334944240154262 a001 1762289/2889*4870847^(7/8) 4334944240154283 a001 139583862445/5778*1860498^(1/5) 4334944240154366 a001 53316291173/5778*1860498^(4/15) 4334944240154408 a001 10983760033/1926*1860498^(3/10) 4334944240154447 a001 1346269/5778*7881196^(10/11) 4334944240154449 a001 10182505537/2889*1860498^(1/3) 4334944240154502 a001 1346269/5778*20633239^(6/7) 4334944240154507 a001 2584/3010349*14662949395604^(8/9) 4334944240154507 a001 2584/3010349*(1/2+1/2*5^(1/2))^56 4334944240154510 a001 1346269/5778*141422324^(10/13) 4334944240154510 a001 1346269/5778*2537720636^(2/3) 4334944240154510 a001 1346269/5778*45537549124^(10/17) 4334944240154510 a001 1346269/5778*312119004989^(6/11) 4334944240154510 a001 1346269/5778*14662949395604^(10/21) 4334944240154510 a001 1346269/5778*(1/2+1/2*5^(1/2))^30 4334944240154510 a001 1346269/5778*192900153618^(5/9) 4334944240154510 a001 1346269/5778*28143753123^(3/5) 4334944240154510 a001 1346269/5778*10749957122^(5/8) 4334944240154510 a001 1346269/5778*4106118243^(15/23) 4334944240154510 a001 1346269/5778*1568397607^(15/22) 4334944240154510 a001 1346269/5778*599074578^(5/7) 4334944240154510 a001 1346269/5778*228826127^(3/4) 4334944240154511 a001 1346269/5778*87403803^(15/19) 4334944240154514 a001 1346269/5778*33385282^(5/6) 4334944240154533 a001 7778742049/5778*1860498^(2/5) 4334944240154534 a001 1346269/5778*12752043^(15/17) 4334944240154616 a001 2971215073/5778*1860498^(7/15) 4334944240154645 a001 956722026041/5778*710647^(1/14) 4334944240154658 a001 1836311903/5778*1860498^(1/2) 4334944240154682 a001 1346269/5778*4870847^(15/16) 4334944240154700 a001 567451585/2889*1860498^(8/15) 4334944240154783 a001 433494437/5778*1860498^(3/5) 4334944240154867 a001 165580141/5778*1860498^(2/3) 4334944240154909 a001 34111385/1926*1860498^(7/10) 4334944240154951 a001 31622993/2889*1860498^(11/15) 4334944240155035 a001 24157817/5778*1860498^(4/5) 4334944240155072 a001 2584*1860498^(5/6) 4334944240155128 a001 9227465/5778*1860498^(13/15) 4334944240155132 a001 5702887/5778*1860498^(9/10) 4334944240155258 a001 182717648081/2889*710647^(1/7) 4334944240155271 a001 1762289/2889*1860498^(14/15) 4334944240155280 a001 9017117513947/20801 4334944240155871 a001 139583862445/5778*710647^(3/14) 4334944240156178 a001 43133785636/2889*710647^(1/4) 4334944240156485 a001 53316291173/5778*710647^(2/7) 4334944240157098 a001 10182505537/2889*710647^(5/14) 4334944240157307 a001 2584/1149851*14662949395604^(6/7) 4334944240157307 a001 2584/1149851*(1/2+1/2*5^(1/2))^54 4334944240157311 a001 514229/5778*(1/2+1/2*5^(1/2))^32 4334944240157311 a001 514229/5778*23725150497407^(1/2) 4334944240157311 a001 514229/5778*505019158607^(4/7) 4334944240157311 a001 514229/5778*73681302247^(8/13) 4334944240157311 a001 514229/5778*10749957122^(2/3) 4334944240157311 a001 514229/5778*4106118243^(16/23) 4334944240157311 a001 514229/5778*1568397607^(8/11) 4334944240157311 a001 514229/5778*599074578^(16/21) 4334944240157311 a001 514229/5778*228826127^(4/5) 4334944240157311 a001 514229/5778*87403803^(16/19) 4334944240157314 a001 514229/5778*33385282^(8/9) 4334944240157336 a001 514229/5778*12752043^(16/17) 4334944240157711 a001 7778742049/5778*710647^(3/7) 4334944240158324 a001 2971215073/5778*710647^(1/2) 4334944240158558 a001 956722026041/5778*271443^(1/13) 4334944240158937 a001 567451585/2889*710647^(4/7) 4334944240159550 a001 433494437/5778*710647^(9/14) 4334944240160163 a001 165580141/5778*710647^(5/7) 4334944240160470 a001 34111385/1926*710647^(3/4) 4334944240160777 a001 31622993/2889*710647^(11/14) 4334944240161391 a001 24157817/5778*710647^(6/7) 4334944240162013 a001 9227465/5778*710647^(13/14) 4334944240162612 a001 137769296391032/317811 4334944240163083 a001 182717648081/2889*271443^(2/13) 4334944240167609 a001 139583862445/5778*271443^(3/13) 4334944240170834 a001 86000486440/321*103682^(1/24) 4334944240172135 a001 53316291173/5778*271443^(4/13) 4334944240176501 a001 34/5779*(1/2+1/2*5^(1/2))^52 4334944240176501 a001 34/5779*23725150497407^(13/16) 4334944240176501 a001 34/5779*505019158607^(13/14) 4334944240176505 a001 98209/2889*45537549124^(2/3) 4334944240176505 a001 98209/2889*(1/2+1/2*5^(1/2))^34 4334944240176505 a001 98209/2889*10749957122^(17/24) 4334944240176505 a001 98209/2889*4106118243^(17/23) 4334944240176505 a001 98209/2889*1568397607^(17/22) 4334944240176505 a001 98209/2889*599074578^(17/21) 4334944240176505 a001 98209/2889*228826127^(17/20) 4334944240176505 a001 98209/2889*87403803^(17/19) 4334944240176508 a001 98209/2889*33385282^(17/18) 4334944240176660 a001 10182505537/2889*271443^(5/13) 4334944240181186 a001 7778742049/5778*271443^(6/13) 4334944240183449 a001 267084832/321*271443^(1/2) 4334944240185712 a001 2971215073/5778*271443^(7/13) 4334944240187636 a001 956722026041/5778*103682^(1/12) 4334944240190237 a001 567451585/2889*271443^(8/13) 4334944240194763 a001 433494437/5778*271443^(9/13) 4334944240199289 a001 165580141/5778*271443^(10/13) 4334944240203815 a001 31622993/2889*271443^(11/13) 4334944240204439 a001 591286729879/5778*103682^(1/8) 4334944240208342 a001 24157817/5778*271443^(12/13) 4334944240212862 a001 52623188615216/121393 4334944240221241 a001 182717648081/2889*103682^(1/6) 4334944240238043 a001 75283811239/1926*103682^(5/24) 4334944240254845 a001 139583862445/5778*103682^(1/4) 4334944240271647 a001 43133785636/2889*103682^(7/24) 4334944240279665 a001 86000486440/321*39603^(1/22) 4334944240288449 a001 53316291173/5778*103682^(1/3) 4334944240305252 a001 10983760033/1926*103682^(3/8) 4334944240308057 a001 2584/167761*312119004989^(10/11) 4334944240308057 a001 2584/167761*(1/2+1/2*5^(1/2))^50 4334944240308057 a001 2584/167761*3461452808002^(5/6) 4334944240308060 a001 75025/5778*141422324^(12/13) 4334944240308061 a001 75025/5778*2537720636^(4/5) 4334944240308061 a001 75025/5778*45537549124^(12/17) 4334944240308061 a001 75025/5778*14662949395604^(4/7) 4334944240308061 a001 75025/5778*(1/2+1/2*5^(1/2))^36 4334944240308061 a001 75025/5778*505019158607^(9/14) 4334944240308061 a001 75025/5778*192900153618^(2/3) 4334944240308061 a001 75025/5778*73681302247^(9/13) 4334944240308061 a001 75025/5778*10749957122^(3/4) 4334944240308061 a001 75025/5778*4106118243^(18/23) 4334944240308061 a001 75025/5778*1568397607^(9/11) 4334944240308061 a001 75025/5778*599074578^(6/7) 4334944240308061 a001 75025/5778*228826127^(9/10) 4334944240308061 a001 75025/5778*87403803^(18/19) 4334944240322054 a001 10182505537/2889*103682^(5/12) 4334944240338856 a001 12586269025/5778*103682^(11/24) 4334944240355658 a001 7778742049/5778*103682^(1/2) 4334944240372460 a001 267084832/321*103682^(13/24) 4334944240389263 a001 2971215073/5778*103682^(7/12) 4334944240405299 a001 956722026041/5778*39603^(1/11) 4334944240406065 a001 1836311903/5778*103682^(5/8) 4334944240422867 a001 567451585/2889*103682^(2/3) 4334944240439669 a001 233802911/1926*103682^(17/24) 4334944240456471 a001 433494437/5778*103682^(3/4) 4334944240473273 a001 133957148/2889*103682^(19/24) 4334944240490076 a001 165580141/5778*103682^(5/6) 4334944240506878 a001 34111385/1926*103682^(7/8) 4334944240523680 a001 31622993/2889*103682^(11/12) 4334944240530932 a001 591286729879/5778*39603^(3/22) 4334944240540482 a001 39088169/5778*103682^(23/24) 4334944240557280 a001 2512533681827/5796 4334944240656565 a001 182717648081/2889*39603^(2/11) 4334944240782198 a001 75283811239/1926*39603^(5/22) 4334944240907832 a001 139583862445/5778*39603^(3/11) 4334944241033465 a001 43133785636/2889*39603^(7/22) 4334944241101246 a001 86000486440/321*15127^(1/20) 4334944241159098 a001 53316291173/5778*39603^(4/11) 4334944241209756 a001 2584/64079*45537549124^(16/17) 4334944241209756 a001 2584/64079*14662949395604^(16/21) 4334944241209756 a001 2584/64079*(1/2+1/2*5^(1/2))^48 4334944241209756 a001 2584/64079*192900153618^(8/9) 4334944241209756 a001 2584/64079*73681302247^(12/13) 4334944241209760 a001 28657/5778*817138163596^(2/3) 4334944241209760 a001 28657/5778*(1/2+1/2*5^(1/2))^38 4334944241209760 a001 28657/5778*10749957122^(19/24) 4334944241209760 a001 28657/5778*4106118243^(19/23) 4334944241209760 a001 28657/5778*1568397607^(19/22) 4334944241209760 a001 28657/5778*599074578^(19/21) 4334944241209760 a001 28657/5778*228826127^(19/20) 4334944241284731 a001 10983760033/1926*39603^(9/22) 4334944241410365 a001 10182505537/2889*39603^(5/11) 4334944241535998 a001 12586269025/5778*39603^(1/2) 4334944241661631 a001 7778742049/5778*39603^(6/11) 4334944241787265 a001 267084832/321*39603^(13/22) 4334944241912898 a001 2971215073/5778*39603^(7/11) 4334944242038531 a001 1836311903/5778*39603^(15/22) 4334944242048459 a001 956722026041/5778*15127^(1/10) 4334944242164164 a001 567451585/2889*39603^(8/11) 4334944242289798 a001 233802911/1926*39603^(17/22) 4334944242415431 a001 433494437/5778*39603^(9/11) 4334944242541064 a001 133957148/2889*39603^(19/22) 4334944242666697 a001 165580141/5778*39603^(10/11) 4334944242792331 a001 34111385/1926*39603^(21/22) 4334944242917960 a001 7677619748632/17711 4334944242995673 a001 591286729879/5778*15127^(3/20) 4334944243064634 a001 225851433717/1364*521^(2/13) 4334944243942772 a001 365435296162/3571*1364^(1/5) 4334944243942886 a001 182717648081/2889*15127^(1/5) 4334944244890100 a001 75283811239/1926*15127^(1/4) 4334944245741003 a008 Real Root of x^4-x^3-18*x^2-29*x+16 4334944245837313 a001 139583862445/5778*15127^(3/10) 4334944246784527 a001 43133785636/2889*15127^(7/20) 4334944247256829 a001 956722026041/39603*3571^(6/17) 4334944247367697 a001 86000486440/321*5778^(1/18) 4334944247390096 a001 646/6119*(1/2+1/2*5^(1/2))^46 4334944247390096 a001 646/6119*10749957122^(23/24) 4334944247390100 a001 5473/2889*2537720636^(8/9) 4334944247390100 a001 5473/2889*312119004989^(8/11) 4334944247390100 a001 5473/2889*(1/2+1/2*5^(1/2))^40 4334944247390100 a001 5473/2889*23725150497407^(5/8) 4334944247390100 a001 5473/2889*73681302247^(10/13) 4334944247390100 a001 5473/2889*28143753123^(4/5) 4334944247390100 a001 5473/2889*10749957122^(5/6) 4334944247390100 a001 5473/2889*4106118243^(20/23) 4334944247390100 a001 5473/2889*1568397607^(10/11) 4334944247390100 a001 5473/2889*599074578^(20/21) 4334944247731741 a001 53316291173/5778*15127^(2/5) 4334944248678954 a001 10983760033/1926*15127^(9/20) 4334944249617509 a001 2504730781961/103682*3571^(6/17) 4334944249626168 a001 10182505537/2889*15127^(1/2) 4334944249961928 a001 6557470319842/271443*3571^(6/17) 4334944250043234 a001 10610209857723/439204*3571^(6/17) 4334944250174790 a001 4052739537881/167761*3571^(6/17) 4334944250573381 a001 12586269025/5778*15127^(11/20) 4334944250833325 a003 sin(Pi*2/35)/cos(Pi*27/74) 4334944251073029 a001 591286729879/15127*3571^(5/17) 4334944251076489 a001 1548008755920/64079*3571^(6/17) 4334944251520595 a001 7778742049/5778*15127^(3/5) 4334944252467808 a001 267084832/321*15127^(13/20) 4334944253415022 a001 2971215073/5778*15127^(7/10) 4334944254362236 a001 1836311903/5778*15127^(3/4) 4334944254581362 a001 956722026041/5778*5778^(1/9) 4334944255309449 a001 567451585/2889*15127^(4/5) 4334944256256663 a001 233802911/1926*15127^(17/20) 4334944257203876 a001 433494437/5778*15127^(9/10) 4334944257256829 a001 591286729879/24476*3571^(6/17) 4334944258151090 a001 133957148/2889*15127^(19/20) 4334944258752821 a001 1134903170/2207*2207^(7/8) 4334944259098300 a001 586517958256/1353 4334944259624429 a001 86267571272/9349*3571^(8/17) 4334944261216483 r005 Re(z^2+c),c=-67/114+10/39*I,n=23 4334944261795026 a001 591286729879/5778*5778^(1/6) 4334944264263946 a001 2504730781961/9349*1364^(1/15) 4334944267253369 a001 516002918640/13201*3571^(5/17) 4334944269008691 a001 182717648081/2889*5778^(2/9) 4334944269614049 a001 4052739537881/103682*3571^(5/17) 4334944269958467 a001 3536736619241/90481*3571^(5/17) 4334944270171329 a001 6557470319842/167761*3571^(5/17) 4334944271069569 a001 956722026041/15127*3571^(4/17) 4334944271073029 a001 2504730781961/64079*3571^(5/17) 4334944276222356 a001 75283811239/1926*5778^(5/18) 4334944277253369 a001 956722026041/24476*3571^(5/17) 4334944279620969 a001 139583862445/9349*3571^(7/17) 4334944283436021 a001 139583862445/5778*5778^(1/3) 4334944287249908 a001 2504730781961/39603*3571^(4/17) 4334944289610588 a001 3278735159921/51841*3571^(4/17) 4334944289750775 a001 2584/9349*312119004989^(4/5) 4334944289750775 a001 2584/9349*(1/2+1/2*5^(1/2))^44 4334944289750775 a001 2584/9349*23725150497407^(11/16) 4334944289750775 a001 2584/9349*73681302247^(11/13) 4334944289750775 a001 2584/9349*10749957122^(11/12) 4334944289750775 a001 2584/9349*4106118243^(22/23) 4334944289750778 a001 4181/5778*2537720636^(14/15) 4334944289750778 a001 4181/5778*17393796001^(6/7) 4334944289750778 a001 4181/5778*45537549124^(14/17) 4334944289750778 a001 4181/5778*817138163596^(14/19) 4334944289750778 a001 4181/5778*14662949395604^(2/3) 4334944289750778 a001 4181/5778*(1/2+1/2*5^(1/2))^42 4334944289750778 a001 4181/5778*505019158607^(3/4) 4334944289750778 a001 4181/5778*192900153618^(7/9) 4334944289750778 a001 4181/5778*10749957122^(7/8) 4334944289750778 a001 4181/5778*4106118243^(21/23) 4334944289750778 a001 4181/5778*1568397607^(21/22) 4334944290167869 a001 10610209857723/167761*3571^(4/17) 4334944290649686 a001 43133785636/2889*5778^(7/18) 4334944291066108 a001 1548008755920/15127*3571^(3/17) 4334944291069568 a001 4052739537881/64079*3571^(4/17) 4334944292080863 m001 (GAMMA(5/6)-exp(Pi))/(-Cahen+Lehmer) 4334944295777620 a001 86000486440/321*2207^(1/16) 4334944297249908 a001 387002188980/6119*3571^(4/17) 4334944297863350 a001 53316291173/5778*5778^(4/9) 4334944298013216 r005 Im(z^2+c),c=-5/4+22/163*I,n=12 4334944299617508 a001 225851433717/9349*3571^(6/17) 4334944301458981 a001 1812440212440/4181 4334944304069335 a001 1134903170/15127*9349^(18/19) 4334944305077015 a001 10983760033/1926*5778^(1/2) 4334944306679690 a001 1836311903/15127*9349^(17/19) 4334944307246448 a001 4052739537881/39603*3571^(3/17) 4334944309290045 a001 2971215073/15127*9349^(16/19) 4334944309607128 a001 225749145909/2206*3571^(3/17) 4334944311062648 a001 2504730781961/15127*3571^(2/17) 4334944311066108 a001 6557470319842/64079*3571^(3/17) 4334944311900401 a001 686789568/2161*9349^(15/19) 4334944312290680 a001 10182505537/2889*5778^(5/9) 4334944312607693 a001 199/10946*987^(23/50) 4334944314376410 a001 701408733/2207*2207^(15/16) 4334944314510756 a001 7778742049/15127*9349^(14/19) 4334944315828782 b008 9*ArcCos[Sqrt[Pi]/2] 4334944315918728 r002 14th iterates of z^2 + 4334944317121111 a001 12586269025/15127*9349^(13/19) 4334944317246448 a001 2504730781961/24476*3571^(3/17) 4334944317639320 a001 1812440219205/4181 4334944319504345 a001 12586269025/5778*5778^(11/18) 4334944319614048 a001 365435296162/9349*3571^(5/17) 4334944319731466 a001 20365011074/15127*9349^(12/19) 4334944320249675 a001 2971215073/39603*9349^(18/19) 4334944320344415 a001 1812440220336/4181 4334944320394642 a001 1812440220357/4181 4334944320401817 a001 1812440220360/4181 4334944320403252 a001 2/4181*(1/2+1/2*5^(1/2))^62 4334944320403252 a001 9062201101803/4181*8^(1/3) 4334944320404209 a001 1812440220361/4181 4334944320406601 a001 1812440220362/4181 4334944320425735 a001 1812440220370/4181 4334944320557282 a001 1812440220425/4181 4334944321458981 a001 1812440220802/4181 4334944322341821 a001 32951280099/15127*9349^(11/19) 4334944322610355 a001 7778742049/103682*9349^(18/19) 4334944322860030 a001 1602508992/13201*9349^(17/19) 4334944322954773 a001 20365011074/271443*9349^(18/19) 4334944323005023 a001 53316291173/710647*9349^(18/19) 4334944323012355 a001 139583862445/1860498*9349^(18/19) 4334944323013424 a001 365435296162/4870847*9349^(18/19) 4334944323013580 a001 956722026041/12752043*9349^(18/19) 4334944323013603 a001 2504730781961/33385282*9349^(18/19) 4334944323013606 a001 6557470319842/87403803*9349^(18/19) 4334944323013607 a001 10610209857723/141422324*9349^(18/19) 4334944323013608 a001 4052739537881/54018521*9349^(18/19) 4334944323013617 a001 140728068720/1875749*9349^(18/19) 4334944323013677 a001 591286729879/7881196*9349^(18/19) 4334944323014085 a001 225851433717/3010349*9349^(18/19) 4334944323016886 a001 86267571272/1149851*9349^(18/19) 4334944323036079 a001 32951280099/439204*9349^(18/19) 4334944323167636 a001 75025*9349^(18/19) 4334944324069335 a001 4807526976/64079*9349^(18/19) 4334944324952176 a001 53316291173/15127*9349^(10/19) 4334944325220710 a001 12586269025/103682*9349^(17/19) 4334944325470385 a001 7778742049/39603*9349^(16/19) 4334944325565128 a001 121393*9349^(17/19) 4334944325615378 a001 86267571272/710647*9349^(17/19) 4334944325622710 a001 75283811239/620166*9349^(17/19) 4334944325623779 a001 591286729879/4870847*9349^(17/19) 4334944325623935 a001 516002918640/4250681*9349^(17/19) 4334944325623958 a001 4052739537881/33385282*9349^(17/19) 4334944325623961 a001 3536736619241/29134601*9349^(17/19) 4334944325623963 a001 6557470319842/54018521*9349^(17/19) 4334944325623972 a001 2504730781961/20633239*9349^(17/19) 4334944325624032 a001 956722026041/7881196*9349^(17/19) 4334944325624440 a001 365435296162/3010349*9349^(17/19) 4334944325627241 a001 139583862445/1149851*9349^(17/19) 4334944325646434 a001 53316291173/439204*9349^(17/19) 4334944325777991 a001 20365011074/167761*9349^(17/19) 4334944326679690 a001 7778742049/64079*9349^(17/19) 4334944326718010 a001 7778742049/5778*5778^(2/3) 4334944327242988 a001 6557470319842/39603*3571^(2/17) 4334944327562531 a001 86267571272/15127*9349^(9/19) 4334944327639320 a001 1812440223386/4181 4334944327831065 a001 10182505537/51841*9349^(16/19) 4334944328080740 a001 12586269025/39603*9349^(15/19) 4334944328175483 a001 53316291173/271443*9349^(16/19) 4334944328225733 a001 139583862445/710647*9349^(16/19) 4334944328233065 a001 182717648081/930249*9349^(16/19) 4334944328234134 a001 956722026041/4870847*9349^(16/19) 4334944328234290 a001 2504730781961/12752043*9349^(16/19) 4334944328234313 a001 3278735159921/16692641*9349^(16/19) 4334944328234319 a001 10610209857723/54018521*9349^(16/19) 4334944328234327 a001 4052739537881/20633239*9349^(16/19) 4334944328234387 a001 387002188980/1970299*9349^(16/19) 4334944328234795 a001 591286729879/3010349*9349^(16/19) 4334944328237596 a001 225851433717/1149851*9349^(16/19) 4334944328256790 a001 196418*9349^(16/19) 4334944328388346 a001 32951280099/167761*9349^(16/19) 4334944329290045 a001 12586269025/64079*9349^(16/19) 4334944329926668 m001 Pi^Bloch/(Pi^Zeta(3)) 4334944330172887 a001 139583862445/15127*9349^(8/19) 4334944330249675 a001 1836311903/24476*9349^(18/19) 4334944330441420 a001 32951280099/103682*9349^(15/19) 4334944330691095 a001 20365011074/39603*9349^(14/19) 4334944330785839 a001 86267571272/271443*9349^(15/19) 4334944330836089 a001 317811*9349^(15/19) 4334944330843420 a001 591286729879/1860498*9349^(15/19) 4334944330844490 a001 1548008755920/4870847*9349^(15/19) 4334944330844646 a001 4052739537881/12752043*9349^(15/19) 4334944330844668 a001 1515744265389/4769326*9349^(15/19) 4334944330844682 a001 6557470319842/20633239*9349^(15/19) 4334944330844742 a001 2504730781961/7881196*9349^(15/19) 4334944330845151 a001 956722026041/3010349*9349^(15/19) 4334944330847951 a001 365435296162/1149851*9349^(15/19) 4334944330867145 a001 139583862445/439204*9349^(15/19) 4334944330998701 a001 53316291173/167761*9349^(15/19) 4334944331059188 a001 4052739537881/15127*3571^(1/17) 4334944331062648 a001 10610209857723/64079*3571^(2/17) 4334944331900400 a001 20365011074/64079*9349^(15/19) 4334944332111456 a001 6765/15127*(1/2+1/2*5^(1/2))^43 4334944332783242 a001 32264490531/2161*9349^(7/19) 4334944332860030 a001 2971215073/24476*9349^(17/19) 4334944333051775 a001 53316291173/103682*9349^(14/19) 4334944333301451 a001 10983760033/13201*9349^(13/19) 4334944333396194 a001 139583862445/271443*9349^(14/19) 4334944333446444 a001 365435296162/710647*9349^(14/19) 4334944333453775 a001 956722026041/1860498*9349^(14/19) 4334944333454845 a001 2504730781961/4870847*9349^(14/19) 4334944333455001 a001 6557470319842/12752043*9349^(14/19) 4334944333455038 a001 10610209857723/20633239*9349^(14/19) 4334944333455097 a001 4052739537881/7881196*9349^(14/19) 4334944333455506 a001 1548008755920/3010349*9349^(14/19) 4334944333458306 a001 514229*9349^(14/19) 4334944333477500 a001 225851433717/439204*9349^(14/19) 4334944333609056 a001 86267571272/167761*9349^(14/19) 4334944333931675 a001 267084832/321*5778^(13/18) 4334944334510755 a001 32951280099/64079*9349^(14/19) 4334944335393597 a001 365435296162/15127*9349^(6/19) 4334944335470385 a001 1201881744/6119*9349^(16/19) 4334944335662130 a001 43133785636/51841*9349^(13/19) 4334944335911806 a001 53316291173/39603*9349^(12/19) 4334944336006549 a001 75283811239/90481*9349^(13/19) 4334944336056799 a001 591286729879/710647*9349^(13/19) 4334944336064130 a001 832040*9349^(13/19) 4334944336065200 a001 4052739537881/4870847*9349^(13/19) 4334944336065356 a001 3536736619241/4250681*9349^(13/19) 4334944336065452 a001 3278735159921/3940598*9349^(13/19) 4334944336065861 a001 2504730781961/3010349*9349^(13/19) 4334944336068661 a001 956722026041/1149851*9349^(13/19) 4334944336087855 a001 182717648081/219602*9349^(13/19) 4334944336219411 a001 139583862445/167761*9349^(13/19) 4334944337121111 a001 53316291173/64079*9349^(13/19) 4334944337242988 a001 4052739537881/24476*3571^(2/17) 4334944338003952 a001 591286729879/15127*9349^(5/19) 4334944338080740 a001 7778742049/24476*9349^(15/19) 4334944338272485 a001 139583862445/103682*9349^(12/19) 4334944338522161 a001 86267571272/39603*9349^(11/19) 4334944338616904 a001 365435296162/271443*9349^(12/19) 4334944338667154 a001 956722026041/710647*9349^(12/19) 4334944338674485 a001 2504730781961/1860498*9349^(12/19) 4334944338675555 a001 6557470319842/4870847*9349^(12/19) 4334944338675807 a001 10610209857723/7881196*9349^(12/19) 4334944338676216 a001 1346269*9349^(12/19) 4334944338679016 a001 1548008755920/1149851*9349^(12/19) 4334944338698210 a001 591286729879/439204*9349^(12/19) 4334944338829766 a001 225851433717/167761*9349^(12/19) 4334944339610588 a001 591286729879/9349*3571^(4/17) 4334944339731466 a001 86267571272/64079*9349^(12/19) 4334944340614307 a001 956722026041/15127*9349^(4/19) 4334944340691095 a001 12586269025/24476*9349^(14/19) 4334944340882841 a001 225851433717/103682*9349^(11/19) 4334944341132516 a001 139583862445/39603*9349^(10/19) 4334944341145340 a001 2971215073/5778*5778^(7/9) 4334944341227259 a001 591286729879/271443*9349^(11/19) 4334944341277509 a001 1548008755920/710647*9349^(11/19) 4334944341284840 a001 4052739537881/1860498*9349^(11/19) 4334944341285910 a001 2178309*9349^(11/19) 4334944341286571 a001 6557470319842/3010349*9349^(11/19) 4334944341289372 a001 2504730781961/1149851*9349^(11/19) 4334944341308565 a001 956722026041/439204*9349^(11/19) 4334944341440121 a001 365435296162/167761*9349^(11/19) 4334944342341821 a001 139583862445/64079*9349^(11/19) 4334944343224662 a001 1548008755920/15127*9349^(3/19) 4334944343301450 a001 10182505537/12238*9349^(13/19) 4334944343493196 a001 182717648081/51841*9349^(10/19) 4334944343742871 a001 75283811239/13201*9349^(9/19) 4334944343819660 a001 4745030078745/10946 4334944343837614 a001 956722026041/271443*9349^(10/19) 4334944343887864 a001 2504730781961/710647*9349^(10/19) 4334944343895196 a001 3278735159921/930249*9349^(10/19) 4334944343896926 a001 10610209857723/3010349*9349^(10/19) 4334944343899727 a001 4052739537881/1149851*9349^(10/19) 4334944343918920 a001 387002188980/109801*9349^(10/19) 4334944344050477 a001 591286729879/167761*9349^(10/19) 4334944344164234 a001 433494437/15127*24476^(20/21) 4334944344508809 a001 701408733/15127*24476^(19/21) 4334944344853384 a001 1134903170/15127*24476^(6/7) 4334944344952176 a001 225851433717/64079*9349^(10/19) 4334944345197958 a001 1836311903/15127*24476^(17/21) 4334944345542533 a001 2971215073/15127*24476^(16/21) 4334944345835017 a001 2504730781961/15127*9349^(2/19) 4334944345887108 a001 686789568/2161*24476^(5/7) 4334944345911806 a001 32951280099/24476*9349^(12/19) 4334944346103551 a001 591286729879/103682*9349^(9/19) 4334944346231682 a001 7778742049/15127*24476^(2/3) 4334944346353226 a001 365435296162/39603*9349^(8/19) 4334944346447969 a001 516002918640/90481*9349^(9/19) 4334944346498219 a001 4052739537881/710647*9349^(9/19) 4334944346505551 a001 3536736619241/620166*9349^(9/19) 4334944346510082 a001 6557470319842/1149851*9349^(9/19) 4334944346529276 a001 2504730781961/439204*9349^(9/19) 4334944346576257 a001 12586269025/15127*24476^(13/21) 4334944346660832 a001 956722026041/167761*9349^(9/19) 4334944346920832 a001 20365011074/15127*24476^(4/7) 4334944347239528 a001 3536736619241/13201*3571^(1/17) 4334944347265406 a001 32951280099/15127*24476^(11/21) 4334944347562531 a001 365435296162/64079*9349^(9/19) 4334944347609981 a001 53316291173/15127*24476^(10/21) 4334944347954556 a001 86267571272/15127*24476^(3/7) 4334944348291796 a001 2255/13201*45537549124^(15/17) 4334944348291796 a001 2255/13201*312119004989^(9/11) 4334944348291796 a001 2255/13201*14662949395604^(5/7) 4334944348291796 a001 2255/13201*(1/2+1/2*5^(1/2))^45 4334944348291796 a001 2255/13201*192900153618^(5/6) 4334944348291796 a001 2255/13201*28143753123^(9/10) 4334944348291796 a001 2255/13201*10749957122^(15/16) 4334944348291796 a001 17711/15127*(1/2+1/2*5^(1/2))^41 4334944348299130 a001 139583862445/15127*24476^(8/21) 4334944348359005 a001 1836311903/5778*5778^(5/6) 4334944348445373 a001 4052739537881/15127*9349^(1/19) 4334944348522161 a001 53316291173/24476*9349^(11/19) 4334944348585242 r005 Re(z^2+c),c=-73/122+5/18*I,n=23 4334944348643705 a001 32264490531/2161*24476^(1/3) 4334944348713906 a001 956722026041/103682*9349^(8/19) 4334944348963581 a001 591286729879/39603*9349^(7/19) 4334944348988280 a001 365435296162/15127*24476^(2/7) 4334944349058325 a001 2504730781961/271443*9349^(8/19) 4334944349108575 a001 6557470319842/710647*9349^(8/19) 4334944349120437 a001 10610209857723/1149851*9349^(8/19) 4334944349139631 a001 4052739537881/439204*9349^(8/19) 4334944349271187 a001 140728068720/15251*9349^(8/19) 4334944349332854 a001 591286729879/15127*24476^(5/21) 4334944349677429 a001 956722026041/15127*24476^(4/21) 4334944350022004 a001 1548008755920/15127*24476^(1/7) 4334944350045901 a001 165580141/15127*64079^(22/23) 4334944350091802 a001 267914296/15127*64079^(21/23) 4334944350137703 a001 433494437/15127*64079^(20/23) 4334944350172886 a001 591286729879/64079*9349^(8/19) 4334944350183604 a001 701408733/15127*64079^(19/23) 4334944350229506 a001 1134903170/15127*64079^(18/23) 4334944350275407 a001 1836311903/15127*64079^(17/23) 4334944350321308 a001 2971215073/15127*64079^(16/23) 4334944350366578 a001 2504730781961/15127*24476^(2/21) 4334944350367209 a001 686789568/2161*64079^(15/23) 4334944350413111 a001 7778742049/15127*64079^(14/23) 4334944350459012 a001 12586269025/15127*64079^(13/23) 4334944350504913 a001 20365011074/15127*64079^(12/23) 4334944350550814 a001 32951280099/15127*64079^(11/23) 4334944350596715 a001 53316291173/15127*64079^(10/23) 4334944350642617 a001 86267571272/15127*64079^(9/23) 4334944350652475 a001 6765/103682*(1/2+1/2*5^(1/2))^47 4334944350652475 a001 6624/2161*2537720636^(13/15) 4334944350652475 a001 6624/2161*45537549124^(13/17) 4334944350652475 a001 6624/2161*14662949395604^(13/21) 4334944350652475 a001 6624/2161*(1/2+1/2*5^(1/2))^39 4334944350652475 a001 6624/2161*192900153618^(13/18) 4334944350652475 a001 6624/2161*73681302247^(3/4) 4334944350652475 a001 6624/2161*10749957122^(13/16) 4334944350652475 a001 6624/2161*599074578^(13/14) 4334944350688518 a001 139583862445/15127*64079^(8/23) 4334944350711153 a001 4052739537881/15127*24476^(1/21) 4334944350734419 a001 32264490531/2161*64079^(7/23) 4334944350780320 a001 365435296162/15127*64079^(6/23) 4334944350826222 a001 591286729879/15127*64079^(5/23) 4334944350872123 a001 956722026041/15127*64079^(4/23) 4334944350901699 a001 6504583998528/15005 4334944350918024 a001 1548008755920/15127*64079^(3/23) 4334944350932505 a001 433494437/15127*167761^(4/5) 4334944350963310 a001 686789568/2161*167761^(3/5) 4334944350963925 a001 2504730781961/15127*64079^(2/23) 4334944350994116 a001 53316291173/15127*167761^(2/5) 4334944350996894 a001 2255/90481*14662949395604^(7/9) 4334944350996894 a001 2255/90481*(1/2+1/2*5^(1/2))^49 4334944350996894 a001 2255/90481*505019158607^(7/8) 4334944350996894 a001 121393/15127*(1/2+1/2*5^(1/2))^37 4334944351009826 a001 4052739537881/15127*64079^(1/23) 4334944351024922 a001 591286729879/15127*167761^(1/5) 4334944351033255 a001 85146109954125/196418 4334944351035752 a001 63245986/15127*439204^(8/9) 4334944351038249 a001 267914296/15127*439204^(7/9) 4334944351040746 a001 1134903170/15127*439204^(2/3) 4334944351043243 a001 686789568/2161*439204^(5/9) 4334944351045740 a001 20365011074/15127*439204^(4/9) 4334944351047144 a001 6765/710647*817138163596^(17/19) 4334944351047144 a001 6765/710647*14662949395604^(17/21) 4334944351047144 a001 6765/710647*(1/2+1/2*5^(1/2))^51 4334944351047144 a001 6765/710647*192900153618^(17/18) 4334944351047144 a001 317811/15127*2537720636^(7/9) 4334944351047144 a001 317811/15127*17393796001^(5/7) 4334944351047144 a001 317811/15127*312119004989^(7/11) 4334944351047144 a001 317811/15127*14662949395604^(5/9) 4334944351047144 a001 317811/15127*(1/2+1/2*5^(1/2))^35 4334944351047144 a001 317811/15127*505019158607^(5/8) 4334944351047144 a001 317811/15127*28143753123^(7/10) 4334944351047144 a001 317811/15127*599074578^(5/6) 4334944351047144 a001 317811/15127*228826127^(7/8) 4334944351048237 a001 86267571272/15127*439204^(1/3) 4334944351050734 a001 365435296162/15127*439204^(2/9) 4334944351052449 a001 222915409869735/514229 4334944351053231 a001 1548008755920/15127*439204^(1/9) 4334944351054475 a001 832040/15127*141422324^(11/13) 4334944351054475 a001 55/15126*(1/2+1/2*5^(1/2))^53 4334944351054475 a001 832040/15127*2537720636^(11/15) 4334944351054475 a001 832040/15127*45537549124^(11/17) 4334944351054475 a001 832040/15127*312119004989^(3/5) 4334944351054475 a001 832040/15127*817138163596^(11/19) 4334944351054475 a001 832040/15127*14662949395604^(11/21) 4334944351054475 a001 832040/15127*(1/2+1/2*5^(1/2))^33 4334944351054475 a001 832040/15127*192900153618^(11/18) 4334944351054475 a001 832040/15127*10749957122^(11/16) 4334944351054475 a001 832040/15127*1568397607^(3/4) 4334944351054475 a001 832040/15127*599074578^(11/14) 4334944351054479 a001 832040/15127*33385282^(11/12) 4334944351055249 a001 583600119655080/1346269 4334944351055545 a001 6765/4870847*(1/2+1/2*5^(1/2))^55 4334944351055545 a001 6765/4870847*3461452808002^(11/12) 4334944351055545 a001 311187/2161*(1/2+1/2*5^(1/2))^31 4334944351055545 a001 311187/2161*9062201101803^(1/2) 4334944351055658 a001 1527884949095505/3524578 4334944351055667 a001 14930352/15127*7881196^(9/11) 4334944351055677 a001 63245986/15127*7881196^(8/11) 4334944351055681 a001 165580141/15127*7881196^(2/3) 4334944351055683 a001 267914296/15127*7881196^(7/11) 4334944351055690 a001 1134903170/15127*7881196^(6/11) 4334944351055696 a001 686789568/2161*7881196^(5/11) 4334944351055701 a001 2255/4250681*14662949395604^(19/21) 4334944351055701 a001 2255/4250681*(1/2+1/2*5^(1/2))^57 4334944351055701 a001 5702887/15127*(1/2+1/2*5^(1/2))^29 4334944351055701 a001 5702887/15127*1322157322203^(1/2) 4334944351055702 a001 20365011074/15127*7881196^(4/11) 4334944351055704 a001 32951280099/15127*7881196^(1/3) 4334944351055709 a001 86267571272/15127*7881196^(3/11) 4334944351055715 a001 365435296162/15127*7881196^(2/11) 4334944351055717 a001 800010945526287/1845493 4334944351055720 a001 39088169/15127*20633239^(5/7) 4334944351055721 a001 1548008755920/15127*7881196^(1/11) 4334944351055722 a001 267914296/15127*20633239^(3/5) 4334944351055722 a001 433494437/15127*20633239^(4/7) 4334944351055723 a001 686789568/2161*20633239^(3/7) 4334944351055724 a001 7778742049/15127*20633239^(2/5) 4334944351055724 a001 14930352/15127*141422324^(9/13) 4334944351055724 a001 6765/33385282*(1/2+1/2*5^(1/2))^59 4334944351055724 a001 14930352/15127*2537720636^(3/5) 4334944351055724 a001 14930352/15127*45537549124^(9/17) 4334944351055724 a001 14930352/15127*817138163596^(9/19) 4334944351055724 a001 14930352/15127*14662949395604^(3/7) 4334944351055724 a001 14930352/15127*(1/2+1/2*5^(1/2))^27 4334944351055724 a001 14930352/15127*192900153618^(1/2) 4334944351055724 a001 14930352/15127*10749957122^(9/16) 4334944351055724 a001 14930352/15127*599074578^(9/14) 4334944351055725 a001 53316291173/15127*20633239^(2/7) 4334944351055726 a001 32264490531/2161*20633239^(1/5) 4334944351055726 a001 10472279233798800/24157817 4334944351055726 a001 591286729879/15127*20633239^(1/7) 4334944351055727 a001 14930352/15127*33385282^(3/4) 4334944351055727 a001 39088169/15127*2537720636^(5/9) 4334944351055727 a001 39088169/15127*312119004989^(5/11) 4334944351055727 a001 39088169/15127*(1/2+1/2*5^(1/2))^25 4334944351055727 a001 39088169/15127*3461452808002^(5/12) 4334944351055727 a001 39088169/15127*28143753123^(1/2) 4334944351055727 a001 39088169/15127*228826127^(5/8) 4334944351055727 a001 27416782973764965/63245986 4334944351055728 a001 267914296/15127*141422324^(7/13) 4334944351055728 a001 71778069687496095/165580141 4334944351055728 a001 1134903170/15127*141422324^(6/13) 4334944351055728 a001 686789568/2161*141422324^(5/13) 4334944351055728 a001 6765*(1/2+1/2*5^(1/2))^23 4334944351055728 a001 6765*4106118243^(1/2) 4334944351055728 a001 12586269025/15127*141422324^(1/3) 4334944351055728 a001 20365011074/15127*141422324^(4/13) 4334944351055728 a001 86267571272/15127*141422324^(3/13) 4334944351055728 a001 365435296162/15127*141422324^(2/13) 4334944351055728 a001 1548008755920/15127*141422324^(1/13) 4334944351055728 a001 267914296/15127*2537720636^(7/15) 4334944351055728 a001 267914296/15127*17393796001^(3/7) 4334944351055728 a001 267914296/15127*45537549124^(7/17) 4334944351055728 a001 267914296/15127*14662949395604^(1/3) 4334944351055728 a001 267914296/15127*(1/2+1/2*5^(1/2))^21 4334944351055728 a001 267914296/15127*192900153618^(7/18) 4334944351055728 a001 267914296/15127*10749957122^(7/16) 4334944351055728 a001 267914296/15127*599074578^(1/2) 4334944351055728 a001 701408733/15127*817138163596^(1/3) 4334944351055728 a001 701408733/15127*(1/2+1/2*5^(1/2))^19 4334944351055728 a001 686789568/2161*2537720636^(1/3) 4334944351055728 a001 1836311903/15127*45537549124^(1/3) 4334944351055728 a001 1836311903/15127*(1/2+1/2*5^(1/2))^17 4334944351055728 a001 20365011074/15127*2537720636^(4/15) 4334944351055728 a001 53316291173/15127*2537720636^(2/9) 4334944351055728 a001 86267571272/15127*2537720636^(1/5) 4334944351055728 a001 365435296162/15127*2537720636^(2/15) 4334944351055728 a001 591286729879/15127*2537720636^(1/9) 4334944351055728 a001 1548008755920/15127*2537720636^(1/15) 4334944351055728 a001 686789568/2161*45537549124^(5/17) 4334944351055728 a001 686789568/2161*312119004989^(3/11) 4334944351055728 a001 686789568/2161*14662949395604^(5/21) 4334944351055728 a001 686789568/2161*(1/2+1/2*5^(1/2))^15 4334944351055728 a001 686789568/2161*192900153618^(5/18) 4334944351055728 a001 686789568/2161*28143753123^(3/10) 4334944351055728 a001 686789568/2161*10749957122^(5/16) 4334944351055728 a001 12586269025/15127*(1/2+1/2*5^(1/2))^13 4334944351055728 a001 12586269025/15127*73681302247^(1/4) 4334944351055728 a001 32264490531/2161*17393796001^(1/7) 4334944351055728 a001 32951280099/15127*312119004989^(1/5) 4334944351055728 a001 32951280099/15127*(1/2+1/2*5^(1/2))^11 4334944351055728 a001 86267571272/15127*45537549124^(3/17) 4334944351055728 a001 365435296162/15127*45537549124^(2/17) 4334944351055728 a001 1548008755920/15127*45537549124^(1/17) 4334944351055728 a001 86267571272/15127*14662949395604^(1/7) 4334944351055728 a001 86267571272/15127*(1/2+1/2*5^(1/2))^9 4334944351055728 a001 86267571272/15127*192900153618^(1/6) 4334944351055728 a001 32264490531/2161*(1/2+1/2*5^(1/2))^7 4334944351055728 a001 591286729879/15127*(1/2+1/2*5^(1/2))^5 4334944351055728 a001 1548008755920/15127*14662949395604^(1/21) 4334944351055728 a001 1548008755920/15127*(1/2+1/2*5^(1/2))^3 4334944351055728 a001 6557470319842/15127 4334944351055728 a001 956722026041/15127*(1/2+1/2*5^(1/2))^4 4334944351055728 a001 1548008755920/15127*192900153618^(1/18) 4334944351055728 a001 365435296162/15127*14662949395604^(2/21) 4334944351055728 a001 139583862445/15127*(1/2+1/2*5^(1/2))^8 4334944351055728 a001 139583862445/15127*23725150497407^(1/8) 4334944351055728 a001 139583862445/15127*505019158607^(1/7) 4334944351055728 a001 956722026041/15127*73681302247^(1/13) 4334944351055728 a001 139583862445/15127*73681302247^(2/13) 4334944351055728 a001 53316291173/15127*312119004989^(2/11) 4334944351055728 a001 53316291173/15127*(1/2+1/2*5^(1/2))^10 4334944351055728 a001 591286729879/15127*28143753123^(1/10) 4334944351055728 a001 53316291173/15127*28143753123^(1/5) 4334944351055728 a001 2504730781961/15127*10749957122^(1/24) 4334944351055728 a001 20365011074/15127*45537549124^(4/17) 4334944351055728 a001 20365011074/15127*817138163596^(4/19) 4334944351055728 a001 20365011074/15127*14662949395604^(4/21) 4334944351055728 a001 20365011074/15127*(1/2+1/2*5^(1/2))^12 4334944351055728 a001 20365011074/15127*192900153618^(2/9) 4334944351055728 a001 20365011074/15127*73681302247^(3/13) 4334944351055728 a001 1548008755920/15127*10749957122^(1/16) 4334944351055728 a001 956722026041/15127*10749957122^(1/12) 4334944351055728 a001 365435296162/15127*10749957122^(1/8) 4334944351055728 a001 139583862445/15127*10749957122^(1/6) 4334944351055728 a001 86267571272/15127*10749957122^(3/16) 4334944351055728 a001 53316291173/15127*10749957122^(5/24) 4334944351055728 a001 7778742049/15127*17393796001^(2/7) 4334944351055728 a001 2504730781961/15127*4106118243^(1/23) 4334944351055728 a001 20365011074/15127*10749957122^(1/4) 4334944351055728 a001 7778742049/15127*14662949395604^(2/9) 4334944351055728 a001 7778742049/15127*(1/2+1/2*5^(1/2))^14 4334944351055728 a001 7778742049/15127*505019158607^(1/4) 4334944351055728 a001 956722026041/15127*4106118243^(2/23) 4334944351055728 a001 7778742049/15127*10749957122^(7/24) 4334944351055728 a001 365435296162/15127*4106118243^(3/23) 4334944351055728 a001 139583862445/15127*4106118243^(4/23) 4334944351055728 a001 53316291173/15127*4106118243^(5/23) 4334944351055728 a001 20365011074/15127*4106118243^(6/23) 4334944351055728 a001 2504730781961/15127*1568397607^(1/22) 4334944351055728 a001 7778742049/15127*4106118243^(7/23) 4334944351055728 a001 2971215073/15127*(1/2+1/2*5^(1/2))^16 4334944351055728 a001 2971215073/15127*23725150497407^(1/4) 4334944351055728 a001 2971215073/15127*73681302247^(4/13) 4334944351055728 a001 2971215073/15127*10749957122^(1/3) 4334944351055728 a001 956722026041/15127*1568397607^(1/11) 4334944351055728 a001 2971215073/15127*4106118243^(8/23) 4334944351055728 a001 365435296162/15127*1568397607^(3/22) 4334944351055728 a001 139583862445/15127*1568397607^(2/11) 4334944351055728 a001 53316291173/15127*1568397607^(5/22) 4334944351055728 a001 1134903170/15127*2537720636^(2/5) 4334944351055728 a001 32951280099/15127*1568397607^(1/4) 4334944351055728 a001 20365011074/15127*1568397607^(3/11) 4334944351055728 a001 7778742049/15127*1568397607^(7/22) 4334944351055728 a001 2504730781961/15127*599074578^(1/21) 4334944351055728 a001 1134903170/15127*45537549124^(6/17) 4334944351055728 a001 1134903170/15127*14662949395604^(2/7) 4334944351055728 a001 1134903170/15127*(1/2+1/2*5^(1/2))^18 4334944351055728 a001 1134903170/15127*192900153618^(1/3) 4334944351055728 a001 1134903170/15127*10749957122^(3/8) 4334944351055728 a001 2971215073/15127*1568397607^(4/11) 4334944351055728 a001 1134903170/15127*4106118243^(9/23) 4334944351055728 a001 1548008755920/15127*599074578^(1/14) 4334944351055728 a001 956722026041/15127*599074578^(2/21) 4334944351055728 a001 1134903170/15127*1568397607^(9/22) 4334944351055728 a001 365435296162/15127*599074578^(1/7) 4334944351055728 a001 32264490531/2161*599074578^(1/6) 4334944351055728 a001 139583862445/15127*599074578^(4/21) 4334944351055728 a001 86267571272/15127*599074578^(3/14) 4334944351055728 a001 53316291173/15127*599074578^(5/21) 4334944351055728 a001 20365011074/15127*599074578^(2/7) 4334944351055728 a001 7778742049/15127*599074578^(1/3) 4334944351055728 a001 2504730781961/15127*228826127^(1/20) 4334944351055728 a001 686789568/2161*599074578^(5/14) 4334944351055728 a001 433494437/15127*2537720636^(4/9) 4334944351055728 a001 433494437/15127*(1/2+1/2*5^(1/2))^20 4334944351055728 a001 433494437/15127*23725150497407^(5/16) 4334944351055728 a001 433494437/15127*505019158607^(5/14) 4334944351055728 a001 433494437/15127*73681302247^(5/13) 4334944351055728 a001 433494437/15127*28143753123^(2/5) 4334944351055728 a001 433494437/15127*10749957122^(5/12) 4334944351055728 a001 2971215073/15127*599074578^(8/21) 4334944351055728 a001 433494437/15127*4106118243^(10/23) 4334944351055728 a001 433494437/15127*1568397607^(5/11) 4334944351055728 a001 1134903170/15127*599074578^(3/7) 4334944351055728 a001 956722026041/15127*228826127^(1/10) 4334944351055728 a001 591286729879/15127*228826127^(1/8) 4334944351055728 a001 433494437/15127*599074578^(10/21) 4334944351055728 a001 365435296162/15127*228826127^(3/20) 4334944351055728 a001 139583862445/15127*228826127^(1/5) 4334944351055728 a001 53316291173/15127*228826127^(1/4) 4334944351055728 a001 20365011074/15127*228826127^(3/10) 4334944351055728 a001 7778742049/15127*228826127^(7/20) 4334944351055728 a001 2504730781961/15127*87403803^(1/19) 4334944351055728 a001 686789568/2161*228826127^(3/8) 4334944351055728 a001 165580141/15127*312119004989^(2/5) 4334944351055728 a001 165580141/15127*(1/2+1/2*5^(1/2))^22 4334944351055728 a001 165580141/15127*10749957122^(11/24) 4334944351055728 a001 165580141/15127*4106118243^(11/23) 4334944351055728 a001 165580141/15127*1568397607^(1/2) 4334944351055728 a001 2971215073/15127*228826127^(2/5) 4334944351055728 a001 1134903170/15127*228826127^(9/20) 4334944351055728 a001 165580141/15127*599074578^(11/21) 4334944351055728 a001 433494437/15127*228826127^(1/2) 4334944351055728 a001 956722026041/15127*87403803^(2/19) 4334944351055728 a001 165580141/15127*228826127^(11/20) 4334944351055728 a001 63245986/15127*141422324^(8/13) 4334944351055728 a001 365435296162/15127*87403803^(3/19) 4334944351055728 a001 139583862445/15127*87403803^(4/19) 4334944351055728 a001 53316291173/15127*87403803^(5/19) 4334944351055728 a001 20365011074/15127*87403803^(6/19) 4334944351055728 a001 7778742049/15127*87403803^(7/19) 4334944351055728 a001 2504730781961/15127*33385282^(1/18) 4334944351055728 a001 63245986/15127*2537720636^(8/15) 4334944351055728 a001 63245986/15127*45537549124^(8/17) 4334944351055728 a001 63245986/15127*14662949395604^(8/21) 4334944351055728 a001 63245986/15127*(1/2+1/2*5^(1/2))^24 4334944351055728 a001 63245986/15127*192900153618^(4/9) 4334944351055728 a001 63245986/15127*73681302247^(6/13) 4334944351055728 a001 63245986/15127*10749957122^(1/2) 4334944351055728 a001 63245986/15127*4106118243^(12/23) 4334944351055728 a001 63245986/15127*1568397607^(6/11) 4334944351055728 a001 63245986/15127*599074578^(4/7) 4334944351055728 a001 2971215073/15127*87403803^(8/19) 4334944351055728 a001 63245986/15127*228826127^(3/5) 4334944351055728 a001 1134903170/15127*87403803^(9/19) 4334944351055728 a001 701408733/15127*87403803^(1/2) 4334944351055728 a001 433494437/15127*87403803^(10/19) 4334944351055728 a001 1548008755920/15127*33385282^(1/12) 4334944351055728 a001 165580141/15127*87403803^(11/19) 4334944351055728 a001 956722026041/15127*33385282^(1/9) 4334944351055728 a001 16944503739966165/39088169 4334944351055728 a001 63245986/15127*87403803^(12/19) 4334944351055728 a001 365435296162/15127*33385282^(1/6) 4334944351055729 a001 139583862445/15127*33385282^(2/9) 4334944351055729 a001 86267571272/15127*33385282^(1/4) 4334944351055729 a001 53316291173/15127*33385282^(5/18) 4334944351055729 a001 20365011074/15127*33385282^(1/3) 4334944351055729 a001 24157817/15127*141422324^(2/3) 4334944351055729 a001 6765/54018521*14662949395604^(20/21) 4334944351055729 a001 24157817/15127*(1/2+1/2*5^(1/2))^26 4334944351055729 a001 24157817/15127*73681302247^(1/2) 4334944351055729 a001 24157817/15127*10749957122^(13/24) 4334944351055729 a001 24157817/15127*4106118243^(13/23) 4334944351055729 a001 24157817/15127*1568397607^(13/22) 4334944351055729 a001 24157817/15127*599074578^(13/21) 4334944351055729 a001 7778742049/15127*33385282^(7/18) 4334944351055729 a001 24157817/15127*228826127^(13/20) 4334944351055729 a001 2504730781961/15127*12752043^(1/17) 4334944351055729 a001 686789568/2161*33385282^(5/12) 4334944351055729 a001 2971215073/15127*33385282^(4/9) 4334944351055730 a001 24157817/15127*87403803^(13/19) 4334944351055730 a001 1134903170/15127*33385282^(1/2) 4334944351055730 a001 9227465/15127*20633239^(4/5) 4334944351055730 a001 433494437/15127*33385282^(5/9) 4334944351055730 a001 267914296/15127*33385282^(7/12) 4334944351055730 a001 165580141/15127*33385282^(11/18) 4334944351055730 a001 63245986/15127*33385282^(2/3) 4334944351055731 a001 956722026041/15127*12752043^(2/17) 4334944351055731 a001 2157408168722455/4976784 4334944351055732 a001 24157817/15127*33385282^(13/18) 4334944351055732 a001 365435296162/15127*12752043^(3/17) 4334944351055734 a001 139583862445/15127*12752043^(4/17) 4334944351055734 a001 3524578/15127*7881196^(10/11) 4334944351055736 a001 53316291173/15127*12752043^(5/17) 4334944351055737 a001 20365011074/15127*12752043^(6/17) 4334944351055738 a001 615/1875749*(1/2+1/2*5^(1/2))^58 4334944351055738 a001 9227465/15127*17393796001^(4/7) 4334944351055738 a001 9227465/15127*14662949395604^(4/9) 4334944351055738 a001 9227465/15127*(1/2+1/2*5^(1/2))^28 4334944351055738 a001 9227465/15127*73681302247^(7/13) 4334944351055738 a001 9227465/15127*10749957122^(7/12) 4334944351055738 a001 9227465/15127*4106118243^(14/23) 4334944351055738 a001 9227465/15127*1568397607^(7/11) 4334944351055738 a001 9227465/15127*599074578^(2/3) 4334944351055738 a001 9227465/15127*228826127^(7/10) 4334944351055738 a001 9227465/15127*87403803^(14/19) 4334944351055739 a001 7778742049/15127*12752043^(7/17) 4334944351055739 a001 2504730781961/15127*4870847^(1/16) 4334944351055740 a001 2971215073/15127*12752043^(8/17) 4334944351055741 a001 9227465/15127*33385282^(7/9) 4334944351055741 a001 1836311903/15127*12752043^(1/2) 4334944351055742 a001 1134903170/15127*12752043^(9/17) 4334944351055743 a001 433494437/15127*12752043^(10/17) 4334944351055745 a001 165580141/15127*12752043^(11/17) 4334944351055747 a001 63245986/15127*12752043^(12/17) 4334944351055750 a001 24157817/15127*12752043^(13/17) 4334944351055751 a001 956722026041/15127*4870847^(1/8) 4334944351055754 a001 2472169778535930/5702887 4334944351055760 a001 9227465/15127*12752043^(14/17) 4334944351055762 a001 365435296162/15127*4870847^(3/16) 4334944351055773 a001 139583862445/15127*4870847^(1/4) 4334944351055785 a001 53316291173/15127*4870847^(5/16) 4334944351055789 a001 3524578/15127*20633239^(6/7) 4334944351055796 a001 20365011074/15127*4870847^(3/8) 4334944351055797 a001 3524578/15127*141422324^(10/13) 4334944351055797 a001 6765/7881196*14662949395604^(8/9) 4334944351055797 a001 6765/7881196*(1/2+1/2*5^(1/2))^56 4334944351055797 a001 3524578/15127*2537720636^(2/3) 4334944351055797 a001 3524578/15127*45537549124^(10/17) 4334944351055797 a001 3524578/15127*312119004989^(6/11) 4334944351055797 a001 3524578/15127*14662949395604^(10/21) 4334944351055797 a001 3524578/15127*(1/2+1/2*5^(1/2))^30 4334944351055797 a001 3524578/15127*192900153618^(5/9) 4334944351055797 a001 3524578/15127*28143753123^(3/5) 4334944351055797 a001 3524578/15127*10749957122^(5/8) 4334944351055797 a001 3524578/15127*4106118243^(15/23) 4334944351055797 a001 3524578/15127*1568397607^(15/22) 4334944351055797 a001 3524578/15127*599074578^(5/7) 4334944351055798 a001 3524578/15127*228826127^(3/4) 4334944351055798 a001 3524578/15127*87403803^(15/19) 4334944351055801 a001 3524578/15127*33385282^(5/6) 4334944351055808 a001 7778742049/15127*4870847^(7/16) 4334944351055811 a001 2504730781961/15127*1860498^(1/15) 4334944351055819 a001 2971215073/15127*4870847^(1/2) 4334944351055821 a001 3524578/15127*12752043^(15/17) 4334944351055830 a001 1134903170/15127*4870847^(9/16) 4334944351055842 a001 433494437/15127*4870847^(5/8) 4334944351055853 a001 1548008755920/15127*1860498^(1/10) 4334944351055853 a001 165580141/15127*4870847^(11/16) 4334944351055865 a001 63245986/15127*4870847^(3/4) 4334944351055878 a001 24157817/15127*4870847^(13/16) 4334944351055895 a001 956722026041/15127*1860498^(2/15) 4334944351055898 a001 9227465/15127*4870847^(7/8) 4334944351055910 a001 314761609813475/726103 4334944351055936 a001 591286729879/15127*1860498^(1/6) 4334944351055969 a001 3524578/15127*4870847^(15/16) 4334944351055978 a001 365435296162/15127*1860498^(1/5) 4334944351056062 a001 139583862445/15127*1860498^(4/15) 4334944351056103 a001 86267571272/15127*1860498^(3/10) 4334944351056145 a001 53316291173/15127*1860498^(1/3) 4334944351056206 a001 6765/3010349*14662949395604^(6/7) 4334944351056206 a001 6765/3010349*(1/2+1/2*5^(1/2))^54 4334944351056206 a001 1346269/15127*(1/2+1/2*5^(1/2))^32 4334944351056206 a001 1346269/15127*23725150497407^(1/2) 4334944351056206 a001 1346269/15127*505019158607^(4/7) 4334944351056206 a001 1346269/15127*73681302247^(8/13) 4334944351056206 a001 1346269/15127*10749957122^(2/3) 4334944351056206 a001 1346269/15127*4106118243^(16/23) 4334944351056206 a001 1346269/15127*1568397607^(8/11) 4334944351056206 a001 1346269/15127*599074578^(16/21) 4334944351056206 a001 1346269/15127*228826127^(4/5) 4334944351056207 a001 1346269/15127*87403803^(16/19) 4334944351056209 a001 1346269/15127*33385282^(8/9) 4334944351056229 a001 20365011074/15127*1860498^(2/5) 4334944351056231 a001 1346269/15127*12752043^(16/17) 4334944351056312 a001 7778742049/15127*1860498^(7/15) 4334944351056341 a001 2504730781961/15127*710647^(1/14) 4334944351056354 a001 686789568/2161*1860498^(1/2) 4334944351056396 a001 2971215073/15127*1860498^(8/15) 4334944351056479 a001 1134903170/15127*1860498^(3/5) 4334944351056563 a001 433494437/15127*1860498^(2/3) 4334944351056604 a001 267914296/15127*1860498^(7/10) 4334944351056646 a001 165580141/15127*1860498^(11/15) 4334944351056730 a001 63245986/15127*1860498^(4/5) 4334944351056771 a001 39088169/15127*1860498^(5/6) 4334944351056815 a001 24157817/15127*1860498^(13/15) 4334944351056851 a001 14930352/15127*1860498^(9/10) 4334944351056907 a001 9227465/15127*1860498^(14/15) 4334944351056954 a001 956722026041/15127*710647^(1/7) 4334944351056980 a001 6557903814279/15128 4334944351057567 a001 365435296162/15127*710647^(3/14) 4334944351057874 a001 32264490531/2161*710647^(1/4) 4334944351058180 a001 139583862445/15127*710647^(2/7) 4334944351058793 a001 53316291173/15127*710647^(5/14) 4334944351059006 a001 6765/1149851*(1/2+1/2*5^(1/2))^52 4334944351059006 a001 6765/1149851*23725150497407^(13/16) 4334944351059006 a001 6765/1149851*505019158607^(13/14) 4334944351059006 a001 514229/15127*45537549124^(2/3) 4334944351059006 a001 514229/15127*(1/2+1/2*5^(1/2))^34 4334944351059006 a001 514229/15127*10749957122^(17/24) 4334944351059006 a001 514229/15127*4106118243^(17/23) 4334944351059006 a001 514229/15127*1568397607^(17/22) 4334944351059006 a001 514229/15127*599074578^(17/21) 4334944351059006 a001 514229/15127*228826127^(17/20) 4334944351059007 a001 514229/15127*87403803^(17/19) 4334944351059010 a001 514229/15127*33385282^(17/18) 4334944351059406 a001 20365011074/15127*710647^(3/7) 4334944351060020 a001 7778742049/15127*710647^(1/2) 4334944351060253 a001 2504730781961/15127*271443^(1/13) 4334944351060633 a001 2971215073/15127*710647^(4/7) 4334944351061246 a001 1134903170/15127*710647^(9/14) 4334944351061859 a001 433494437/15127*710647^(5/7) 4334944351062165 a001 267914296/15127*710647^(3/4) 4334944351062472 a001 165580141/15127*710647^(11/14) 4334944351063085 a001 63245986/15127*710647^(6/7) 4334944351063700 a001 24157817/15127*710647^(13/14) 4334944351064311 a001 45923099971870/105937 4334944351064779 a001 956722026041/15127*271443^(2/13) 4334944351069305 a001 365435296162/15127*271443^(3/13) 4334944351072530 a001 4052739537881/15127*103682^(1/24) 4334944351073830 a001 139583862445/15127*271443^(4/13) 4334944351078200 a001 196418/15127*141422324^(12/13) 4334944351078200 a001 6765/439204*312119004989^(10/11) 4334944351078200 a001 6765/439204*(1/2+1/2*5^(1/2))^50 4334944351078200 a001 6765/439204*3461452808002^(5/6) 4334944351078200 a001 196418/15127*2537720636^(4/5) 4334944351078200 a001 196418/15127*45537549124^(12/17) 4334944351078200 a001 196418/15127*14662949395604^(4/7) 4334944351078200 a001 196418/15127*(1/2+1/2*5^(1/2))^36 4334944351078200 a001 196418/15127*505019158607^(9/14) 4334944351078200 a001 196418/15127*192900153618^(2/3) 4334944351078200 a001 196418/15127*73681302247^(9/13) 4334944351078200 a001 196418/15127*10749957122^(3/4) 4334944351078200 a001 196418/15127*4106118243^(18/23) 4334944351078200 a001 196418/15127*1568397607^(9/11) 4334944351078200 a001 196418/15127*599074578^(6/7) 4334944351078200 a001 196418/15127*228826127^(9/10) 4334944351078201 a001 196418/15127*87403803^(18/19) 4334944351078356 a001 53316291173/15127*271443^(5/13) 4334944351082882 a001 20365011074/15127*271443^(6/13) 4334944351085145 a001 12586269025/15127*271443^(1/2) 4334944351087407 a001 7778742049/15127*271443^(7/13) 4334944351089332 a001 2504730781961/15127*103682^(1/12) 4334944351091933 a001 2971215073/15127*271443^(8/13) 4334944351096459 a001 1134903170/15127*271443^(9/13) 4334944351100984 a001 433494437/15127*271443^(10/13) 4334944351105510 a001 165580141/15127*271443^(11/13) 4334944351106134 a001 1548008755920/15127*103682^(1/8) 4334944351110036 a001 63245986/15127*271443^(12/13) 4334944351114561 a001 52623189961485/121393 4334944351122936 a001 956722026041/15127*103682^(1/6) 4334944351132516 a001 21566892818/6119*9349^(10/19) 4334944351139739 a001 591286729879/15127*103682^(5/24) 4334944351156541 a001 365435296162/15127*103682^(1/4) 4334944351173343 a001 32264490531/2161*103682^(7/24) 4334944351181361 a001 4052739537881/15127*39603^(1/22) 4334944351190145 a001 139583862445/15127*103682^(1/3) 4334944351206947 a001 86267571272/15127*103682^(3/8) 4334944351209756 a001 615/15251*45537549124^(16/17) 4334944351209756 a001 615/15251*14662949395604^(16/21) 4334944351209756 a001 615/15251*(1/2+1/2*5^(1/2))^48 4334944351209756 a001 615/15251*192900153618^(8/9) 4334944351209756 a001 615/15251*73681302247^(12/13) 4334944351209756 a001 75025/15127*817138163596^(2/3) 4334944351209756 a001 75025/15127*(1/2+1/2*5^(1/2))^38 4334944351209756 a001 75025/15127*10749957122^(19/24) 4334944351209756 a001 75025/15127*4106118243^(19/23) 4334944351209756 a001 75025/15127*1568397607^(19/22) 4334944351209756 a001 75025/15127*599074578^(19/21) 4334944351209756 a001 75025/15127*228826127^(19/20) 4334944351223749 a001 53316291173/15127*103682^(5/12) 4334944351240552 a001 32951280099/15127*103682^(11/24) 4334944351257354 a001 20365011074/15127*103682^(1/2) 4334944351274156 a001 12586269025/15127*103682^(13/24) 4334944351290958 a001 7778742049/15127*103682^(7/12) 4334944351306994 a001 2504730781961/15127*39603^(1/11) 4334944351307760 a001 686789568/2161*103682^(5/8) 4334944351324261 a001 774004377960/51841*9349^(7/19) 4334944351324562 a001 2971215073/15127*103682^(2/3) 4334944351341365 a001 1836311903/15127*103682^(17/24) 4334944351358167 a001 1134903170/15127*103682^(3/4) 4334944351374969 a001 701408733/15127*103682^(19/24) 4334944351391771 a001 433494437/15127*103682^(5/6) 4334944351401210 a001 956722026041/5778*2207^(1/8) 4334944351408573 a001 267914296/15127*103682^(7/8) 4334944351425376 a001 165580141/15127*103682^(11/12) 4334944351432627 a001 1548008755920/15127*39603^(3/22) 4334944351442178 a001 6765*103682^(23/24) 4334944351450053 a001 365435296162/2207*843^(1/7) 4334944351458980 a001 6700089989615/15456 4334944351558261 a001 956722026041/15127*39603^(2/11) 4334944351573937 a001 956722026041/39603*9349^(6/19) 4334944351668680 a001 4052739537881/271443*9349^(7/19) 4334944351683894 a001 591286729879/15127*39603^(5/22) 4334944351718930 a001 1515744265389/101521*9349^(7/19) 4334944351749986 a001 3278735159921/219602*9349^(7/19) 4334944351809527 a001 365435296162/15127*39603^(3/11) 4334944351881542 a001 2504730781961/167761*9349^(7/19) 4334944351935161 a001 32264490531/2161*39603^(7/22) 4334944352002941 a001 4052739537881/15127*15127^(1/20) 4334944352060794 a001 139583862445/15127*39603^(4/11) 4334944352111456 a001 6765/64079*(1/2+1/2*5^(1/2))^46 4334944352111456 a001 6765/64079*10749957122^(23/24) 4334944352111456 a001 28657/15127*2537720636^(8/9) 4334944352111456 a001 28657/15127*312119004989^(8/11) 4334944352111456 a001 28657/15127*(1/2+1/2*5^(1/2))^40 4334944352111456 a001 28657/15127*23725150497407^(5/8) 4334944352111456 a001 28657/15127*73681302247^(10/13) 4334944352111456 a001 28657/15127*28143753123^(4/5) 4334944352111456 a001 28657/15127*10749957122^(5/6) 4334944352111456 a001 28657/15127*4106118243^(20/23) 4334944352111456 a001 28657/15127*1568397607^(10/11) 4334944352111456 a001 28657/15127*599074578^(20/21) 4334944352186427 a001 86267571272/15127*39603^(9/22) 4334944352312060 a001 53316291173/15127*39603^(5/11) 4334944352437694 a001 32951280099/15127*39603^(1/2) 4334944352563327 a001 20365011074/15127*39603^(6/11) 4334944352688960 a001 12586269025/15127*39603^(13/22) 4334944352783242 a001 956722026041/64079*9349^(7/19) 4334944352814593 a001 7778742049/15127*39603^(7/11) 4334944352940227 a001 686789568/2161*39603^(15/22) 4334944352950155 a001 2504730781961/15127*15127^(1/10) 4334944353065860 a001 2971215073/15127*39603^(8/11) 4334944353191493 a001 1836311903/15127*39603^(17/22) 4334944353317127 a001 1134903170/15127*39603^(9/11) 4334944353442760 a001 701408733/15127*39603^(19/22) 4334944353568393 a001 433494437/15127*39603^(10/11) 4334944353694026 a001 267914296/15127*39603^(21/22) 4334944353742871 a001 139583862445/24476*9349^(9/19) 4334944353819660 a001 7677619945050/17711 4334944353897368 a001 1548008755920/15127*15127^(3/20) 4334944353934616 a001 2504730781961/103682*9349^(6/19) 4334944354184292 a001 516002918640/13201*9349^(5/19) 4334944354279035 a001 6557470319842/271443*9349^(6/19) 4334944354360341 a001 10610209857723/439204*9349^(6/19) 4334944354491897 a001 4052739537881/167761*9349^(6/19) 4334944354844582 a001 956722026041/15127*15127^(1/5) 4334944355393597 a001 1548008755920/64079*9349^(6/19) 4334944355572670 a001 567451585/2889*5778^(8/9) 4334944355791796 a001 591286729879/15127*15127^(1/4) 4334944356353226 a001 7787980473/844*9349^(8/19) 4334944356544971 a001 4052739537881/103682*9349^(5/19) 4334944356739009 a001 365435296162/15127*15127^(3/10) 4334944356794647 a001 2504730781961/39603*9349^(4/19) 4334944356889390 a001 3536736619241/90481*9349^(5/19) 4334944357102252 a001 6557470319842/167761*9349^(5/19) 4334944357239528 a001 3278735159921/12238*3571^(1/17) 4334944357686223 a001 32264490531/2161*15127^(7/20) 4334944358003952 a001 2504730781961/64079*9349^(5/19) 4334944358269393 a001 4052739537881/15127*5778^(1/18) 4334944358291796 a001 6765/24476*312119004989^(4/5) 4334944358291796 a001 6765/24476*(1/2+1/2*5^(1/2))^44 4334944358291796 a001 6765/24476*23725150497407^(11/16) 4334944358291796 a001 6765/24476*73681302247^(11/13) 4334944358291796 a001 6765/24476*10749957122^(11/12) 4334944358291796 a001 6765/24476*4106118243^(22/23) 4334944358291796 a001 10946/15127*2537720636^(14/15) 4334944358291796 a001 10946/15127*17393796001^(6/7) 4334944358291796 a001 10946/15127*45537549124^(14/17) 4334944358291796 a001 10946/15127*817138163596^(14/19) 4334944358291796 a001 10946/15127*14662949395604^(2/3) 4334944358291796 a001 10946/15127*(1/2+1/2*5^(1/2))^42 4334944358291796 a001 10946/15127*505019158607^(3/4) 4334944358291796 a001 10946/15127*192900153618^(7/9) 4334944358291796 a001 10946/15127*10749957122^(7/8) 4334944358291796 a001 10946/15127*4106118243^(21/23) 4334944358291796 a001 10946/15127*1568397607^(21/22) 4334944358633436 a001 139583862445/15127*15127^(2/5) 4334944358963581 a001 182717648081/12238*9349^(7/19) 4334944359155327 a001 3278735159921/51841*9349^(4/19) 4334944359405002 a001 4052739537881/39603*9349^(3/19) 4334944359580650 a001 86267571272/15127*15127^(9/20) 4334944359607128 a001 956722026041/9349*3571^(3/17) 4334944359712608 a001 10610209857723/167761*9349^(4/19) 4334944360344574 a001 1134903170/39603*24476^(20/21) 4334944360527864 a001 53316291173/15127*15127^(1/2) 4334944360614307 a001 4052739537881/64079*9349^(4/19) 4334944360689149 a001 1836311903/39603*24476^(19/21) 4334944361033723 a001 2971215073/39603*24476^(6/7) 4334944361378298 a001 1602508992/13201*24476^(17/21) 4334944361475077 a001 32951280099/15127*15127^(11/20) 4334944361573937 a001 591286729879/24476*9349^(6/19) 4334944361722873 a001 7778742049/39603*24476^(16/21) 4334944361765682 a001 225749145909/2206*9349^(3/19) 4334944362015357 a001 6557470319842/39603*9349^(2/19) 4334944362067447 a001 12586269025/39603*24476^(5/7) 4334944362360679 a001 2372515049520/5473 4334944362412022 a001 20365011074/39603*24476^(2/3) 4334944362422291 a001 20365011074/15127*15127^(3/5) 4334944362705097 a001 4745030099417/10946 4334944362705254 a001 2971215073/103682*24476^(20/21) 4334944362755344 a001 182501157672/421 4334944362756597 a001 10983760033/13201*24476^(13/21) 4334944362762653 a001 2372515049740/5473 4334944362763566 a001 4745030099481/10946 4334944362763932 a001 1/5473*(1/2+1/2*5^(1/2))^64 4334944362763932 a001 23725150497407/10946*8^(1/3) 4334944362764480 a001 2372515049741/5473 4334944362767220 a001 365002315345/842 4334944362786335 a001 233802911/1926*5778^(17/18) 4334944362786405 a001 2372515049753/5473 4334944362917960 a001 2372515049825/5473 4334944363049672 a001 7778742049/271443*24476^(20/21) 4334944363049829 a001 46368*24476^(19/21) 4334944363099922 a001 20365011074/710647*24476^(20/21) 4334944363101171 a001 53316291173/39603*24476^(4/7) 4334944363107254 a001 53316291173/1860498*24476^(20/21) 4334944363108323 a001 139583862445/4870847*24476^(20/21) 4334944363108480 a001 365435296162/12752043*24476^(20/21) 4334944363108502 a001 956722026041/33385282*24476^(20/21) 4334944363108506 a001 2504730781961/87403803*24476^(20/21) 4334944363108506 a001 6557470319842/228826127*24476^(20/21) 4334944363108506 a001 10610209857723/370248451*24476^(20/21) 4334944363108506 a001 4052739537881/141422324*24476^(20/21) 4334944363108508 a001 1548008755920/54018521*24476^(20/21) 4334944363108516 a001 591286729879/20633239*24476^(20/21) 4334944363108576 a001 225851433717/7881196*24476^(20/21) 4334944363108985 a001 86267571272/3010349*24476^(20/21) 4334944363111785 a001 32951280099/1149851*24476^(20/21) 4334944363130979 a001 12586269025/439204*24476^(20/21) 4334944363139517 r005 Re(z^2+c),c=-73/118+6/61*I,n=64 4334944363224662 a001 6557470319842/64079*9349^(3/19) 4334944363262535 a001 4807526976/167761*24476^(20/21) 4334944363369504 a001 12586269025/15127*15127^(13/20) 4334944363394247 a001 12586269025/271443*24476^(19/21) 4334944363394403 a001 7778742049/103682*24476^(6/7) 4334944363444497 a001 32951280099/710647*24476^(19/21) 4334944363445746 a001 86267571272/39603*24476^(11/21) 4334944363451829 a001 43133785636/930249*24476^(19/21) 4334944363452898 a001 225851433717/4870847*24476^(19/21) 4334944363453054 a001 591286729879/12752043*24476^(19/21) 4334944363453077 a001 774004377960/16692641*24476^(19/21) 4334944363453080 a001 4052739537881/87403803*24476^(19/21) 4334944363453081 a001 225749145909/4868641*24476^(19/21) 4334944363453081 a001 3278735159921/70711162*24476^(19/21) 4334944363453082 a001 2504730781961/54018521*24476^(19/21) 4334944363453091 a001 956722026041/20633239*24476^(19/21) 4334944363453151 a001 182717648081/3940598*24476^(19/21) 4334944363453559 a001 139583862445/3010349*24476^(19/21) 4334944363456360 a001 53316291173/1149851*24476^(19/21) 4334944363475553 a001 10182505537/219602*24476^(19/21) 4334944363607110 a001 7778742049/167761*24476^(19/21) 4334944363738822 a001 20365011074/271443*24476^(6/7) 4334944363738978 a001 12586269025/103682*24476^(17/21) 4334944363789072 a001 53316291173/710647*24476^(6/7) 4334944363790321 a001 139583862445/39603*24476^(10/21) 4334944363796403 a001 139583862445/1860498*24476^(6/7) 4334944363797473 a001 365435296162/4870847*24476^(6/7) 4334944363797629 a001 956722026041/12752043*24476^(6/7) 4334944363797652 a001 2504730781961/33385282*24476^(6/7) 4334944363797655 a001 6557470319842/87403803*24476^(6/7) 4334944363797656 a001 10610209857723/141422324*24476^(6/7) 4334944363797657 a001 4052739537881/54018521*24476^(6/7) 4334944363797666 a001 140728068720/1875749*24476^(6/7) 4334944363797725 a001 591286729879/7881196*24476^(6/7) 4334944363798134 a001 225851433717/3010349*24476^(6/7) 4334944363800934 a001 86267571272/1149851*24476^(6/7) 4334944363819660 a001 4745030100637/10946 4334944363820128 a001 32951280099/439204*24476^(6/7) 4334944363951684 a001 75025*24476^(6/7) 4334944364083396 a001 121393*24476^(17/21) 4334944364083553 a001 10182505537/51841*24476^(16/21) 4334944364133646 a001 86267571272/710647*24476^(17/21) 4334944364134895 a001 75283811239/13201*24476^(3/7) 4334944364140978 a001 75283811239/620166*24476^(17/21) 4334944364142047 a001 591286729879/4870847*24476^(17/21) 4334944364142204 a001 516002918640/4250681*24476^(17/21) 4334944364142226 a001 4052739537881/33385282*24476^(17/21) 4334944364142230 a001 3536736619241/29134601*24476^(17/21) 4334944364142232 a001 6557470319842/54018521*24476^(17/21) 4334944364142240 a001 2504730781961/20633239*24476^(17/21) 4334944364142300 a001 956722026041/7881196*24476^(17/21) 4334944364142709 a001 365435296162/3010349*24476^(17/21) 4334944364145509 a001 139583862445/1149851*24476^(17/21) 4334944364164234 a001 28657*24476^(20/21) 4334944364164703 a001 53316291173/439204*24476^(17/21) 4334944364184292 a001 956722026041/24476*9349^(5/19) 4334944364296259 a001 20365011074/167761*24476^(17/21) 4334944364316718 a001 7778742049/15127*15127^(7/10) 4334944364427971 a001 53316291173/271443*24476^(16/21) 4334944364428127 a001 32951280099/103682*24476^(5/7) 4334944364472135 a001 17711/39603*(1/2+1/2*5^(1/2))^43 4334944364478221 a001 139583862445/710647*24476^(16/21) 4334944364479470 a001 365435296162/39603*24476^(8/21) 4334944364485552 a001 182717648081/930249*24476^(16/21) 4334944364486622 a001 956722026041/4870847*24476^(16/21) 4334944364486778 a001 2504730781961/12752043*24476^(16/21) 4334944364486801 a001 3278735159921/16692641*24476^(16/21) 4334944364486806 a001 10610209857723/54018521*24476^(16/21) 4334944364486815 a001 4052739537881/20633239*24476^(16/21) 4334944364486875 a001 387002188980/1970299*24476^(16/21) 4334944364487283 a001 591286729879/3010349*24476^(16/21) 4334944364490084 a001 225851433717/1149851*24476^(16/21) 4334944364508809 a001 2971215073/64079*24476^(19/21) 4334944364509277 a001 196418*24476^(16/21) 4334944364625712 a001 3536736619241/13201*9349^(1/19) 4334944364640833 a001 32951280099/167761*24476^(16/21) 4334944364772546 a001 86267571272/271443*24476^(5/7) 4334944364772702 a001 53316291173/103682*24476^(2/3) 4334944364822796 a001 317811*24476^(5/7) 4334944364824045 a001 591286729879/39603*24476^(1/3) 4334944364830127 a001 591286729879/1860498*24476^(5/7) 4334944364831197 a001 1548008755920/4870847*24476^(5/7) 4334944364831353 a001 4052739537881/12752043*24476^(5/7) 4334944364831376 a001 1515744265389/4769326*24476^(5/7) 4334944364831390 a001 6557470319842/20633239*24476^(5/7) 4334944364831449 a001 2504730781961/7881196*24476^(5/7) 4334944364831858 a001 956722026041/3010349*24476^(5/7) 4334944364834658 a001 365435296162/1149851*24476^(5/7) 4334944364853384 a001 4807526976/64079*24476^(6/7) 4334944364853852 a001 139583862445/439204*24476^(5/7) 4334944364985408 a001 53316291173/167761*24476^(5/7) 4334944365117120 a001 139583862445/271443*24476^(2/3) 4334944365117277 a001 43133785636/51841*24476^(13/21) 4334944365167370 a001 365435296162/710647*24476^(2/3) 4334944365168619 a001 956722026041/39603*24476^(2/7) 4334944365174702 a001 956722026041/1860498*24476^(2/3) 4334944365175771 a001 2504730781961/4870847*24476^(2/3) 4334944365175928 a001 6557470319842/12752043*24476^(2/3) 4334944365175964 a001 10610209857723/20633239*24476^(2/3) 4334944365176024 a001 4052739537881/7881196*24476^(2/3) 4334944365176433 a001 1548008755920/3010349*24476^(2/3) 4334944365179233 a001 514229*24476^(2/3) 4334944365197958 a001 7778742049/64079*24476^(17/21) 4334944365198427 a001 225851433717/439204*24476^(2/3) 4334944365263932 a001 686789568/2161*15127^(3/4) 4334944365329983 a001 86267571272/167761*24476^(2/3) 4334944365461695 a001 75283811239/90481*24476^(13/21) 4334944365461851 a001 139583862445/103682*24476^(4/7) 4334944365483058 a001 2504730781961/15127*5778^(1/9) 4334944365511945 a001 591286729879/710647*24476^(13/21) 4334944365513194 a001 516002918640/13201*24476^(5/21) 4334944365519276 a001 832040*24476^(13/21) 4334944365520346 a001 4052739537881/4870847*24476^(13/21) 4334944365520502 a001 3536736619241/4250681*24476^(13/21) 4334944365520599 a001 3278735159921/3940598*24476^(13/21) 4334944365521007 a001 2504730781961/3010349*24476^(13/21) 4334944365523808 a001 956722026041/1149851*24476^(13/21) 4334944365542533 a001 12586269025/64079*24476^(16/21) 4334944365543001 a001 182717648081/219602*24476^(13/21) 4334944365674557 a001 139583862445/167761*24476^(13/21) 4334944365806270 a001 365435296162/271443*24476^(4/7) 4334944365806426 a001 225851433717/103682*24476^(11/21) 4334944365835017 a001 10610209857723/64079*9349^(2/19) 4334944365856520 a001 956722026041/710647*24476^(4/7) 4334944365857769 a001 2504730781961/39603*24476^(4/21) 4334944365863851 a001 2504730781961/1860498*24476^(4/7) 4334944365864921 a001 6557470319842/4870847*24476^(4/7) 4334944365865173 a001 10610209857723/7881196*24476^(4/7) 4334944365865582 a001 1346269*24476^(4/7) 4334944365868382 a001 1548008755920/1149851*24476^(4/7) 4334944365887108 a001 20365011074/64079*24476^(5/7) 4334944365887576 a001 591286729879/439204*24476^(4/7) 4334944366019132 a001 225851433717/167761*24476^(4/7) 4334944366150844 a001 591286729879/271443*24476^(11/21) 4334944366151001 a001 182717648081/51841*24476^(10/21) 4334944366180339 a001 12422650070163/28657 4334944366201094 a001 1548008755920/710647*24476^(11/21) 4334944366202343 a001 4052739537881/39603*24476^(1/7) 4334944366208426 a001 4052739537881/1860498*24476^(11/21) 4334944366209495 a001 2178309*24476^(11/21) 4334944366210157 a001 6557470319842/3010349*24476^(11/21) 4334944366211145 a001 2971215073/15127*15127^(4/5) 4334944366212957 a001 2504730781961/1149851*24476^(11/21) 4334944366226241 a001 433494437/39603*64079^(22/23) 4334944366231682 a001 32951280099/64079*24476^(2/3) 4334944366232151 a001 956722026041/439204*24476^(11/21) 4334944366272142 a001 17711*64079^(21/23) 4334944366318043 a001 1134903170/39603*64079^(20/23) 4334944366363707 a001 365435296162/167761*24476^(11/21) 4334944366363944 a001 1836311903/39603*64079^(19/23) 4334944366409845 a001 2971215073/39603*64079^(18/23) 4334944366455747 a001 1602508992/13201*64079^(17/23) 4334944366495419 a001 956722026041/271443*24476^(10/21) 4334944366495575 a001 591286729879/103682*24476^(3/7) 4334944366501648 a001 7778742049/39603*64079^(16/23) 4334944366545669 a001 2504730781961/710647*24476^(10/21) 4334944366546918 a001 6557470319842/39603*24476^(2/21) 4334944366547549 a001 12586269025/39603*64079^(15/23) 4334944366553000 a001 3278735159921/930249*24476^(10/21) 4334944366554731 a001 10610209857723/3010349*24476^(10/21) 4334944366557532 a001 4052739537881/1149851*24476^(10/21) 4334944366576257 a001 53316291173/64079*24476^(13/21) 4334944366576725 a001 387002188980/109801*24476^(10/21) 4334944366593450 a001 20365011074/39603*64079^(14/23) 4334944366639352 a001 10983760033/13201*64079^(13/23) 4334944366685253 a001 53316291173/39603*64079^(12/23) 4334944366708281 a001 591286729879/167761*24476^(10/21) 4334944366731154 a001 86267571272/39603*64079^(11/23) 4334944366777055 a001 139583862445/39603*64079^(10/23) 4334944366794647 a001 387002188980/6119*9349^(4/19) 4334944366822956 a001 75283811239/13201*64079^(9/23) 4334944366832815 a001 17711/103682*45537549124^(15/17) 4334944366832815 a001 17711/103682*312119004989^(9/11) 4334944366832815 a001 17711/103682*14662949395604^(5/7) 4334944366832815 a001 17711/103682*(1/2+1/2*5^(1/2))^45 4334944366832815 a001 17711/103682*192900153618^(5/6) 4334944366832815 a001 17711/103682*28143753123^(9/10) 4334944366832815 a001 17711/103682*10749957122^(15/16) 4334944366832815 a001 15456/13201*(1/2+1/2*5^(1/2))^41 4334944366839994 a001 516002918640/90481*24476^(3/7) 4334944366840150 a001 956722026041/103682*24476^(8/21) 4334944366868858 a001 365435296162/39603*64079^(8/23) 4334944366890244 a001 4052739537881/710647*24476^(3/7) 4334944366891493 a001 3536736619241/13201*24476^(1/21) 4334944366897575 a001 3536736619241/620166*24476^(3/7) 4334944366902106 a001 6557470319842/1149851*24476^(3/7) 4334944366914759 a001 591286729879/39603*64079^(7/23) 4334944366920832 a001 86267571272/64079*24476^(4/7) 4334944366921300 a001 2504730781961/439204*24476^(3/7) 4334944366960660 a001 956722026041/39603*64079^(6/23) 4334944367006561 a001 516002918640/13201*64079^(5/23) 4334944367052463 a001 2504730781961/39603*64079^(4/23) 4334944367052856 a001 956722026041/167761*24476^(3/7) 4334944367082039 a001 32522920114033/75025 4334944367098364 a001 4052739537881/39603*64079^(3/23) 4334944367112845 a001 1134903170/39603*167761^(4/5) 4334944367143650 a001 12586269025/39603*167761^(3/5) 4334944367144265 a001 6557470319842/39603*64079^(2/23) 4334944367158359 a001 1836311903/15127*15127^(17/20) 4334944367174456 a001 139583862445/39603*167761^(2/5) 4334944367177234 a001 17711/271443*(1/2+1/2*5^(1/2))^47 4334944367177234 a001 121393/39603*2537720636^(13/15) 4334944367177234 a001 121393/39603*45537549124^(13/17) 4334944367177234 a001 121393/39603*14662949395604^(13/21) 4334944367177234 a001 121393/39603*(1/2+1/2*5^(1/2))^39 4334944367177234 a001 121393/39603*192900153618^(13/18) 4334944367177234 a001 121393/39603*73681302247^(3/4) 4334944367177234 a001 121393/39603*10749957122^(13/16) 4334944367177234 a001 121393/39603*599074578^(13/14) 4334944367184568 a001 2504730781961/271443*24476^(8/21) 4334944367184725 a001 774004377960/51841*24476^(1/3) 4334944367190166 a001 3536736619241/13201*64079^(1/23) 4334944367205262 a001 516002918640/13201*167761^(1/5) 4334944367213595 a001 42573055135968/98209 4334944367216092 a001 165580141/39603*439204^(8/9) 4334944367218589 a001 17711*439204^(7/9) 4334944367221086 a001 2971215073/39603*439204^(2/3) 4334944367223583 a001 12586269025/39603*439204^(5/9) 4334944367226080 a001 53316291173/39603*439204^(4/9) 4334944367227484 a001 17711/710647*14662949395604^(7/9) 4334944367227484 a001 17711/710647*(1/2+1/2*5^(1/2))^49 4334944367227484 a001 17711/710647*505019158607^(7/8) 4334944367227484 a001 105937/13201*(1/2+1/2*5^(1/2))^37 4334944367228577 a001 75283811239/13201*439204^(1/3) 4334944367231074 a001 956722026041/39603*439204^(2/9) 4334944367232789 a001 222915410701775/514229 4334944367233571 a001 4052739537881/39603*439204^(1/9) 4334944367234815 a001 17711/1860498*817138163596^(17/19) 4334944367234815 a001 17711/1860498*14662949395604^(17/21) 4334944367234815 a001 17711/1860498*(1/2+1/2*5^(1/2))^51 4334944367234815 a001 17711/1860498*192900153618^(17/18) 4334944367234815 a001 832040/39603*2537720636^(7/9) 4334944367234815 a001 832040/39603*17393796001^(5/7) 4334944367234815 a001 832040/39603*312119004989^(7/11) 4334944367234815 a001 832040/39603*14662949395604^(5/9) 4334944367234815 a001 832040/39603*(1/2+1/2*5^(1/2))^35 4334944367234815 a001 832040/39603*505019158607^(5/8) 4334944367234815 a001 832040/39603*28143753123^(7/10) 4334944367234815 a001 832040/39603*599074578^(5/6) 4334944367234815 a001 832040/39603*228826127^(7/8) 4334944367234818 a001 6557470319842/710647*24476^(8/21) 4334944367235589 a001 583600121833389/1346269 4334944367235885 a001 726103/13201*141422324^(11/13) 4334944367235885 a001 17711/4870847*(1/2+1/2*5^(1/2))^53 4334944367235885 a001 726103/13201*2537720636^(11/15) 4334944367235885 a001 726103/13201*45537549124^(11/17) 4334944367235885 a001 726103/13201*312119004989^(3/5) 4334944367235885 a001 726103/13201*14662949395604^(11/21) 4334944367235885 a001 726103/13201*(1/2+1/2*5^(1/2))^33 4334944367235885 a001 726103/13201*192900153618^(11/18) 4334944367235885 a001 726103/13201*10749957122^(11/16) 4334944367235885 a001 726103/13201*1568397607^(3/4) 4334944367235885 a001 726103/13201*599074578^(11/14) 4334944367235888 a001 726103/13201*33385282^(11/12) 4334944367235998 a001 8583623341564/19801 4334944367236010 a001 39088169/39603*7881196^(9/11) 4334944367236014 a001 9227465/39603*7881196^(10/11) 4334944367236017 a001 165580141/39603*7881196^(8/11) 4334944367236021 a001 433494437/39603*7881196^(2/3) 4334944367236023 a001 17711*7881196^(7/11) 4334944367236029 a001 2971215073/39603*7881196^(6/11) 4334944367236036 a001 12586269025/39603*7881196^(5/11) 4334944367236041 a001 17711/12752043*(1/2+1/2*5^(1/2))^55 4334944367236041 a001 17711/12752043*3461452808002^(11/12) 4334944367236041 a001 5702887/39603*(1/2+1/2*5^(1/2))^31 4334944367236041 a001 5702887/39603*9062201101803^(1/2) 4334944367236042 a001 53316291173/39603*7881196^(4/11) 4334944367236044 a001 86267571272/39603*7881196^(1/3) 4334944367236048 a001 75283811239/13201*7881196^(3/11) 4334944367236055 a001 956722026041/39603*7881196^(2/11) 4334944367236057 a001 307696518658599/709805 4334944367236060 a001 34111385/13201*20633239^(5/7) 4334944367236061 a001 24157817/39603*20633239^(4/5) 4334944367236061 a001 4052739537881/39603*7881196^(1/11) 4334944367236061 a001 17711*20633239^(3/5) 4334944367236062 a001 1134903170/39603*20633239^(4/7) 4334944367236063 a001 12586269025/39603*20633239^(3/7) 4334944367236063 a001 20365011074/39603*20633239^(2/5) 4334944367236064 a001 17711/33385282*14662949395604^(19/21) 4334944367236064 a001 17711/33385282*(1/2+1/2*5^(1/2))^57 4334944367236064 a001 4976784/13201*(1/2+1/2*5^(1/2))^29 4334944367236064 a001 4976784/13201*1322157322203^(1/2) 4334944367236065 a001 139583862445/39603*20633239^(2/7) 4334944367236065 a001 591286729879/39603*20633239^(1/5) 4334944367236066 a001 10472279272886969/24157817 4334944367236066 a001 516002918640/13201*20633239^(1/7) 4334944367236067 a001 39088169/39603*141422324^(9/13) 4334944367236067 a001 39088169/39603*2537720636^(3/5) 4334944367236067 a001 39088169/39603*45537549124^(9/17) 4334944367236067 a001 39088169/39603*817138163596^(9/19) 4334944367236067 a001 39088169/39603*14662949395604^(3/7) 4334944367236067 a001 39088169/39603*(1/2+1/2*5^(1/2))^27 4334944367236067 a001 39088169/39603*192900153618^(1/2) 4334944367236067 a001 39088169/39603*10749957122^(9/16) 4334944367236067 a001 39088169/39603*599074578^(9/14) 4334944367236067 a001 13708391538049560/31622993 4334944367236067 a001 17711*141422324^(7/13) 4334944367236067 a001 165580141/39603*141422324^(8/13) 4334944367236067 a001 2971215073/39603*141422324^(6/13) 4334944367236067 a001 12586269025/39603*141422324^(5/13) 4334944367236067 a001 34111385/13201*2537720636^(5/9) 4334944367236067 a001 34111385/13201*312119004989^(5/11) 4334944367236067 a001 34111385/13201*(1/2+1/2*5^(1/2))^25 4334944367236067 a001 34111385/13201*3461452808002^(5/12) 4334944367236067 a001 34111385/13201*28143753123^(1/2) 4334944367236067 a001 10983760033/13201*141422324^(1/3) 4334944367236067 a001 53316291173/39603*141422324^(4/13) 4334944367236067 a001 75283811239/13201*141422324^(3/13) 4334944367236067 a001 71778069955410391/165580141 4334944367236067 a001 956722026041/39603*141422324^(2/13) 4334944367236067 a001 34111385/13201*228826127^(5/8) 4334944367236067 a001 4052739537881/39603*141422324^(1/13) 4334944367236067 a001 267914296/39603*(1/2+1/2*5^(1/2))^23 4334944367236067 a001 267914296/39603*4106118243^(1/2) 4334944367236067 a001 187917426790132053/433494437 4334944367236067 a001 17711*2537720636^(7/15) 4334944367236067 a001 17711*17393796001^(3/7) 4334944367236067 a001 17711*45537549124^(7/17) 4334944367236067 a001 17711*14662949395604^(1/3) 4334944367236067 a001 17711*(1/2+1/2*5^(1/2))^21 4334944367236067 a001 17711*192900153618^(7/18) 4334944367236067 a001 17711*10749957122^(7/16) 4334944367236067 a001 1836311903/39603*817138163596^(1/3) 4334944367236067 a001 1836311903/39603*(1/2+1/2*5^(1/2))^19 4334944367236067 a001 12586269025/39603*2537720636^(1/3) 4334944367236067 a001 53316291173/39603*2537720636^(4/15) 4334944367236067 a001 2971215073/39603*2537720636^(2/5) 4334944367236067 a001 139583862445/39603*2537720636^(2/9) 4334944367236067 a001 75283811239/13201*2537720636^(1/5) 4334944367236067 a001 956722026041/39603*2537720636^(2/15) 4334944367236067 a001 516002918640/13201*2537720636^(1/9) 4334944367236067 a001 4052739537881/39603*2537720636^(1/15) 4334944367236067 a001 1602508992/13201*45537549124^(1/3) 4334944367236067 a001 1602508992/13201*(1/2+1/2*5^(1/2))^17 4334944367236067 a001 12586269025/39603*45537549124^(5/17) 4334944367236067 a001 12586269025/39603*312119004989^(3/11) 4334944367236067 a001 12586269025/39603*14662949395604^(5/21) 4334944367236067 a001 12586269025/39603*(1/2+1/2*5^(1/2))^15 4334944367236067 a001 12586269025/39603*192900153618^(5/18) 4334944367236067 a001 12586269025/39603*28143753123^(3/10) 4334944367236067 a001 591286729879/39603*17393796001^(1/7) 4334944367236067 a001 20365011074/39603*17393796001^(2/7) 4334944367236067 a001 10983760033/13201*(1/2+1/2*5^(1/2))^13 4334944367236067 a001 10983760033/13201*73681302247^(1/4) 4334944367236067 a001 75283811239/13201*45537549124^(3/17) 4334944367236067 a001 956722026041/39603*45537549124^(2/17) 4334944367236067 a001 53316291173/39603*45537549124^(4/17) 4334944367236067 a001 86267571272/39603*312119004989^(1/5) 4334944367236067 a001 4052739537881/39603*45537549124^(1/17) 4334944367236067 a001 86267571272/39603*(1/2+1/2*5^(1/2))^11 4334944367236067 a001 591286729879/39603*(1/2+1/2*5^(1/2))^7 4334944367236067 a001 516002918640/13201*(1/2+1/2*5^(1/2))^5 4334944367236067 a001 4052739537881/39603*14662949395604^(1/21) 4334944367236067 a001 4052739537881/39603*(1/2+1/2*5^(1/2))^3 4334944367236067 a001 2504730781961/39603*(1/2+1/2*5^(1/2))^4 4334944367236067 a001 2504730781961/39603*23725150497407^(1/16) 4334944367236067 a001 365435296162/39603*23725150497407^(1/8) 4334944367236067 a001 365435296162/39603*505019158607^(1/7) 4334944367236067 a001 139583862445/39603*312119004989^(2/11) 4334944367236067 a001 139583862445/39603*(1/2+1/2*5^(1/2))^10 4334944367236067 a001 2504730781961/39603*73681302247^(1/13) 4334944367236067 a001 365435296162/39603*73681302247^(2/13) 4334944367236067 a001 53316291173/39603*817138163596^(4/19) 4334944367236067 a001 53316291173/39603*14662949395604^(4/21) 4334944367236067 a001 53316291173/39603*(1/2+1/2*5^(1/2))^12 4334944367236067 a001 53316291173/39603*192900153618^(2/9) 4334944367236067 a001 53316291173/39603*73681302247^(3/13) 4334944367236067 a001 516002918640/13201*28143753123^(1/10) 4334944367236067 a001 139583862445/39603*28143753123^(1/5) 4334944367236067 a001 6557470319842/39603*10749957122^(1/24) 4334944367236067 a001 20365011074/39603*14662949395604^(2/9) 4334944367236067 a001 20365011074/39603*(1/2+1/2*5^(1/2))^14 4334944367236067 a001 4052739537881/39603*10749957122^(1/16) 4334944367236067 a001 2504730781961/39603*10749957122^(1/12) 4334944367236067 a001 956722026041/39603*10749957122^(1/8) 4334944367236067 a001 12586269025/39603*10749957122^(5/16) 4334944367236067 a001 365435296162/39603*10749957122^(1/6) 4334944367236067 a001 75283811239/13201*10749957122^(3/16) 4334944367236067 a001 139583862445/39603*10749957122^(5/24) 4334944367236067 a001 53316291173/39603*10749957122^(1/4) 4334944367236067 a001 6557470319842/39603*4106118243^(1/23) 4334944367236067 a001 20365011074/39603*10749957122^(7/24) 4334944367236067 a001 7778742049/39603*(1/2+1/2*5^(1/2))^16 4334944367236067 a001 7778742049/39603*23725150497407^(1/4) 4334944367236067 a001 7778742049/39603*73681302247^(4/13) 4334944367236067 a001 2504730781961/39603*4106118243^(2/23) 4334944367236067 a001 7778742049/39603*10749957122^(1/3) 4334944367236067 a001 956722026041/39603*4106118243^(3/23) 4334944367236067 a001 365435296162/39603*4106118243^(4/23) 4334944367236067 a001 139583862445/39603*4106118243^(5/23) 4334944367236067 a001 53316291173/39603*4106118243^(6/23) 4334944367236067 a001 6557470319842/39603*1568397607^(1/22) 4334944367236067 a001 20365011074/39603*4106118243^(7/23) 4334944367236067 a001 2971215073/39603*45537549124^(6/17) 4334944367236067 a001 2971215073/39603*14662949395604^(2/7) 4334944367236067 a001 2971215073/39603*(1/2+1/2*5^(1/2))^18 4334944367236067 a001 2971215073/39603*192900153618^(1/3) 4334944367236067 a001 7778742049/39603*4106118243^(8/23) 4334944367236067 a001 2971215073/39603*10749957122^(3/8) 4334944367236067 a001 2504730781961/39603*1568397607^(1/11) 4334944367236067 a001 2971215073/39603*4106118243^(9/23) 4334944367236067 a001 956722026041/39603*1568397607^(3/22) 4334944367236067 a001 365435296162/39603*1568397607^(2/11) 4334944367236067 a001 1134903170/39603*2537720636^(4/9) 4334944367236067 a001 139583862445/39603*1568397607^(5/22) 4334944367236067 a001 86267571272/39603*1568397607^(1/4) 4334944367236067 a001 53316291173/39603*1568397607^(3/11) 4334944367236067 a001 20365011074/39603*1568397607^(7/22) 4334944367236067 a001 6557470319842/39603*599074578^(1/21) 4334944367236067 a001 7778742049/39603*1568397607^(4/11) 4334944367236067 a001 1134903170/39603*(1/2+1/2*5^(1/2))^20 4334944367236067 a001 1134903170/39603*23725150497407^(5/16) 4334944367236067 a001 1134903170/39603*505019158607^(5/14) 4334944367236067 a001 1134903170/39603*73681302247^(5/13) 4334944367236067 a001 1134903170/39603*28143753123^(2/5) 4334944367236067 a001 1134903170/39603*10749957122^(5/12) 4334944367236067 a001 1134903170/39603*4106118243^(10/23) 4334944367236067 a001 2971215073/39603*1568397607^(9/22) 4334944367236067 a001 4052739537881/39603*599074578^(1/14) 4334944367236067 a001 2504730781961/39603*599074578^(2/21) 4334944367236067 a001 1134903170/39603*1568397607^(5/11) 4334944367236067 a001 956722026041/39603*599074578^(1/7) 4334944367236067 a001 591286729879/39603*599074578^(1/6) 4334944367236067 a001 365435296162/39603*599074578^(4/21) 4334944367236067 a001 75283811239/13201*599074578^(3/14) 4334944367236067 a001 139583862445/39603*599074578^(5/21) 4334944367236067 a001 53316291173/39603*599074578^(2/7) 4334944367236067 a001 20365011074/39603*599074578^(1/3) 4334944367236067 a001 6557470319842/39603*228826127^(1/20) 4334944367236067 a001 17711*599074578^(1/2) 4334944367236067 a001 12586269025/39603*599074578^(5/14) 4334944367236067 a001 433494437/39603*312119004989^(2/5) 4334944367236067 a001 433494437/39603*(1/2+1/2*5^(1/2))^22 4334944367236067 a001 7778742049/39603*599074578^(8/21) 4334944367236067 a001 433494437/39603*10749957122^(11/24) 4334944367236067 a001 433494437/39603*4106118243^(11/23) 4334944367236067 a001 2971215073/39603*599074578^(3/7) 4334944367236067 a001 433494437/39603*1568397607^(1/2) 4334944367236067 a001 1134903170/39603*599074578^(10/21) 4334944367236067 a001 2504730781961/39603*228826127^(1/10) 4334944367236067 a001 10610209833247/24476 4334944367236067 a001 516002918640/13201*228826127^(1/8) 4334944367236067 a001 433494437/39603*599074578^(11/21) 4334944367236067 a001 956722026041/39603*228826127^(3/20) 4334944367236067 a001 365435296162/39603*228826127^(1/5) 4334944367236067 a001 139583862445/39603*228826127^(1/4) 4334944367236067 a001 53316291173/39603*228826127^(3/10) 4334944367236068 a001 20365011074/39603*228826127^(7/20) 4334944367236068 a001 6557470319842/39603*87403803^(1/19) 4334944367236068 a001 12586269025/39603*228826127^(3/8) 4334944367236068 a001 165580141/39603*2537720636^(8/15) 4334944367236068 a001 165580141/39603*45537549124^(8/17) 4334944367236068 a001 165580141/39603*14662949395604^(8/21) 4334944367236068 a001 165580141/39603*(1/2+1/2*5^(1/2))^24 4334944367236068 a001 165580141/39603*192900153618^(4/9) 4334944367236068 a001 165580141/39603*73681302247^(6/13) 4334944367236068 a001 165580141/39603*10749957122^(1/2) 4334944367236068 a001 165580141/39603*4106118243^(12/23) 4334944367236068 a001 165580141/39603*1568397607^(6/11) 4334944367236068 a001 7778742049/39603*228826127^(2/5) 4334944367236068 a001 2971215073/39603*228826127^(9/20) 4334944367236068 a001 165580141/39603*599074578^(4/7) 4334944367236068 a001 1134903170/39603*228826127^(1/2) 4334944367236068 a001 433494437/39603*228826127^(11/20) 4334944367236068 a001 2504730781961/39603*87403803^(2/19) 4334944367236068 a001 63245986/39603*141422324^(2/3) 4334944367236068 a001 44361286879311271/102334155 4334944367236068 a001 165580141/39603*228826127^(3/5) 4334944367236068 a001 956722026041/39603*87403803^(3/19) 4334944367236068 a001 365435296162/39603*87403803^(4/19) 4334944367236068 a001 139583862445/39603*87403803^(5/19) 4334944367236068 a001 53316291173/39603*87403803^(6/19) 4334944367236068 a001 20365011074/39603*87403803^(7/19) 4334944367236068 a001 17711/141422324*14662949395604^(20/21) 4334944367236068 a001 6557470319842/39603*33385282^(1/18) 4334944367236068 a001 63245986/39603*(1/2+1/2*5^(1/2))^26 4334944367236068 a001 63245986/39603*73681302247^(1/2) 4334944367236068 a001 63245986/39603*10749957122^(13/24) 4334944367236068 a001 63245986/39603*4106118243^(13/23) 4334944367236068 a001 63245986/39603*1568397607^(13/22) 4334944367236068 a001 63245986/39603*599074578^(13/21) 4334944367236068 a001 7778742049/39603*87403803^(8/19) 4334944367236068 a001 2971215073/39603*87403803^(9/19) 4334944367236068 a001 63245986/39603*228826127^(13/20) 4334944367236068 a001 1836311903/39603*87403803^(1/2) 4334944367236068 a001 1134903170/39603*87403803^(10/19) 4334944367236068 a001 4052739537881/39603*33385282^(1/12) 4334944367236068 a001 433494437/39603*87403803^(11/19) 4334944367236068 a001 165580141/39603*87403803^(12/19) 4334944367236068 a001 2504730781961/39603*33385282^(1/9) 4334944367236068 a001 16944503803212151/39088169 4334944367236068 a001 63245986/39603*87403803^(13/19) 4334944367236068 a001 956722026041/39603*33385282^(1/6) 4334944367236068 a001 365435296162/39603*33385282^(2/9) 4334944367236068 a001 75283811239/13201*33385282^(1/4) 4334944367236069 a001 139583862445/39603*33385282^(5/18) 4334944367236069 a001 53316291173/39603*33385282^(1/3) 4334944367236069 a001 9227465/39603*20633239^(6/7) 4334944367236069 a001 24157817/39603*17393796001^(4/7) 4334944367236069 a001 24157817/39603*14662949395604^(4/9) 4334944367236069 a001 24157817/39603*(1/2+1/2*5^(1/2))^28 4334944367236069 a001 24157817/39603*73681302247^(7/13) 4334944367236069 a001 24157817/39603*10749957122^(7/12) 4334944367236069 a001 24157817/39603*4106118243^(14/23) 4334944367236069 a001 24157817/39603*1568397607^(7/11) 4334944367236069 a001 24157817/39603*599074578^(2/3) 4334944367236069 a001 20365011074/39603*33385282^(7/18) 4334944367236069 a001 24157817/39603*228826127^(7/10) 4334944367236069 a001 6557470319842/39603*12752043^(1/17) 4334944367236069 a001 12586269025/39603*33385282^(5/12) 4334944367236069 a001 7778742049/39603*33385282^(4/9) 4334944367236069 a001 24157817/39603*87403803^(14/19) 4334944367236069 a001 2971215073/39603*33385282^(1/2) 4334944367236070 a001 1134903170/39603*33385282^(5/9) 4334944367236070 a001 17711*33385282^(7/12) 4334944367236070 a001 39088169/39603*33385282^(3/4) 4334944367236070 a001 433494437/39603*33385282^(11/18) 4334944367236070 a001 165580141/39603*33385282^(2/3) 4334944367236071 a001 63245986/39603*33385282^(13/18) 4334944367236071 a001 2504730781961/39603*12752043^(2/17) 4334944367236071 a001 3236112265162591/7465176 4334944367236072 a001 24157817/39603*33385282^(7/9) 4334944367236072 a001 956722026041/39603*12752043^(3/17) 4334944367236074 a001 365435296162/39603*12752043^(4/17) 4334944367236075 a001 139583862445/39603*12752043^(5/17) 4334944367236077 a001 53316291173/39603*12752043^(6/17) 4334944367236077 a001 9227465/39603*141422324^(10/13) 4334944367236078 a001 17711/20633239*14662949395604^(8/9) 4334944367236078 a001 17711/20633239*(1/2+1/2*5^(1/2))^56 4334944367236078 a001 9227465/39603*2537720636^(2/3) 4334944367236078 a001 9227465/39603*45537549124^(10/17) 4334944367236078 a001 9227465/39603*312119004989^(6/11) 4334944367236078 a001 9227465/39603*14662949395604^(10/21) 4334944367236078 a001 9227465/39603*(1/2+1/2*5^(1/2))^30 4334944367236078 a001 9227465/39603*192900153618^(5/9) 4334944367236078 a001 9227465/39603*28143753123^(3/5) 4334944367236078 a001 9227465/39603*10749957122^(5/8) 4334944367236078 a001 9227465/39603*4106118243^(15/23) 4334944367236078 a001 9227465/39603*1568397607^(15/22) 4334944367236078 a001 9227465/39603*599074578^(5/7) 4334944367236078 a001 9227465/39603*228826127^(3/4) 4334944367236078 a001 9227465/39603*87403803^(15/19) 4334944367236078 a001 20365011074/39603*12752043^(7/17) 4334944367236079 a001 6557470319842/39603*4870847^(1/16) 4334944367236080 a001 7778742049/39603*12752043^(8/17) 4334944367236081 a001 1602508992/13201*12752043^(1/2) 4334944367236081 a001 9227465/39603*33385282^(5/6) 4334944367236082 a001 2971215073/39603*12752043^(9/17) 4334944367236083 a001 1134903170/39603*12752043^(10/17) 4334944367236085 a001 433494437/39603*12752043^(11/17) 4334944367236086 a001 165580141/39603*12752043^(12/17) 4334944367236088 a001 63245986/39603*12752043^(13/17) 4334944367236090 a001 2504730781961/39603*4870847^(1/8) 4334944367236091 a001 24157817/39603*12752043^(14/17) 4334944367236094 a001 2472169787763395/5702887 4334944367236101 a001 9227465/39603*12752043^(15/17) 4334944367236102 a001 956722026041/39603*4870847^(3/16) 4334944367236113 a001 365435296162/39603*4870847^(1/4) 4334944367236125 a001 139583862445/39603*4870847^(5/16) 4334944367236136 a001 53316291173/39603*4870847^(3/8) 4334944367236137 a001 89/39604*14662949395604^(6/7) 4334944367236137 a001 89/39604*(1/2+1/2*5^(1/2))^54 4334944367236137 a001 3524578/39603*(1/2+1/2*5^(1/2))^32 4334944367236137 a001 3524578/39603*23725150497407^(1/2) 4334944367236137 a001 3524578/39603*505019158607^(4/7) 4334944367236137 a001 3524578/39603*73681302247^(8/13) 4334944367236137 a001 3524578/39603*10749957122^(2/3) 4334944367236137 a001 3524578/39603*4106118243^(16/23) 4334944367236137 a001 3524578/39603*1568397607^(8/11) 4334944367236137 a001 3524578/39603*599074578^(16/21) 4334944367236137 a001 3524578/39603*228826127^(4/5) 4334944367236138 a001 3524578/39603*87403803^(16/19) 4334944367236141 a001 3524578/39603*33385282^(8/9) 4334944367236147 a001 20365011074/39603*4870847^(7/16) 4334944367236151 a001 6557470319842/39603*1860498^(1/15) 4334944367236159 a001 7778742049/39603*4870847^(1/2) 4334944367236162 a001 3524578/39603*12752043^(16/17) 4334944367236170 a001 2971215073/39603*4870847^(9/16) 4334944367236182 a001 1134903170/39603*4870847^(5/8) 4334944367236193 a001 4052739537881/39603*1860498^(1/10) 4334944367236193 a001 433494437/39603*4870847^(11/16) 4334944367236205 a001 165580141/39603*4870847^(3/4) 4334944367236216 a001 63245986/39603*4870847^(13/16) 4334944367236229 a001 24157817/39603*4870847^(7/8) 4334944367236234 a001 2504730781961/39603*1860498^(2/15) 4334944367236249 a001 9227465/39603*4870847^(15/16) 4334944367236250 a001 944284832965003/2178309 4334944367236276 a001 516002918640/13201*1860498^(1/6) 4334944367236318 a001 956722026041/39603*1860498^(1/5) 4334944367236401 a001 365435296162/39603*1860498^(4/15) 4334944367236443 a001 75283811239/13201*1860498^(3/10) 4334944367236485 a001 139583862445/39603*1860498^(1/3) 4334944367236546 a001 17711/3010349*(1/2+1/2*5^(1/2))^52 4334944367236546 a001 17711/3010349*23725150497407^(13/16) 4334944367236546 a001 17711/3010349*505019158607^(13/14) 4334944367236546 a001 1346269/39603*45537549124^(2/3) 4334944367236546 a001 1346269/39603*(1/2+1/2*5^(1/2))^34 4334944367236546 a001 1346269/39603*10749957122^(17/24) 4334944367236546 a001 1346269/39603*4106118243^(17/23) 4334944367236546 a001 1346269/39603*1568397607^(17/22) 4334944367236546 a001 1346269/39603*599074578^(17/21) 4334944367236546 a001 1346269/39603*228826127^(17/20) 4334944367236546 a001 1346269/39603*87403803^(17/19) 4334944367236550 a001 1346269/39603*33385282^(17/18) 4334944367236568 a001 53316291173/39603*1860498^(2/5) 4334944367236652 a001 20365011074/39603*1860498^(7/15) 4334944367236681 a001 6557470319842/39603*710647^(1/14) 4334944367236694 a001 12586269025/39603*1860498^(1/2) 4334944367236735 a001 7778742049/39603*1860498^(8/15) 4334944367236819 a001 2971215073/39603*1860498^(3/5) 4334944367236902 a001 1134903170/39603*1860498^(2/3) 4334944367236944 a001 17711*1860498^(7/10) 4334944367236986 a001 433494437/39603*1860498^(11/15) 4334944367237069 a001 165580141/39603*1860498^(4/5) 4334944367237111 a001 34111385/13201*1860498^(5/6) 4334944367237153 a001 63245986/39603*1860498^(13/15) 4334944367237194 a001 39088169/39603*1860498^(9/10) 4334944367237238 a001 24157817/39603*1860498^(14/15) 4334944367237294 a001 2504730781961/39603*710647^(1/7) 4334944367237320 a001 180342355565807/416020 4334944367237907 a001 956722026041/39603*710647^(3/14) 4334944367238213 a001 591286729879/39603*710647^(1/4) 4334944367238520 a001 365435296162/39603*710647^(2/7) 4334944367239133 a001 139583862445/39603*710647^(5/14) 4334944367239346 a001 514229/39603*141422324^(12/13) 4334944367239346 a001 17711/1149851*312119004989^(10/11) 4334944367239346 a001 17711/1149851*(1/2+1/2*5^(1/2))^50 4334944367239346 a001 17711/1149851*3461452808002^(5/6) 4334944367239346 a001 514229/39603*2537720636^(4/5) 4334944367239346 a001 514229/39603*45537549124^(12/17) 4334944367239346 a001 514229/39603*14662949395604^(4/7) 4334944367239346 a001 514229/39603*(1/2+1/2*5^(1/2))^36 4334944367239346 a001 514229/39603*505019158607^(9/14) 4334944367239346 a001 514229/39603*192900153618^(2/3) 4334944367239346 a001 514229/39603*73681302247^(9/13) 4334944367239346 a001 514229/39603*10749957122^(3/4) 4334944367239346 a001 514229/39603*4106118243^(18/23) 4334944367239346 a001 514229/39603*1568397607^(9/11) 4334944367239346 a001 514229/39603*599074578^(6/7) 4334944367239346 a001 514229/39603*228826127^(9/10) 4334944367239347 a001 514229/39603*87403803^(18/19) 4334944367239746 a001 53316291173/39603*710647^(3/7) 4334944367240359 a001 20365011074/39603*710647^(1/2) 4334944367240593 a001 6557470319842/39603*271443^(1/13) 4334944367240972 a001 7778742049/39603*710647^(4/7) 4334944367241586 a001 2971215073/39603*710647^(9/14) 4334944367242199 a001 1134903170/39603*710647^(5/7) 4334944367242505 a001 17711*710647^(3/4) 4334944367242812 a001 433494437/39603*710647^(11/14) 4334944367243425 a001 165580141/39603*710647^(6/7) 4334944367244038 a001 63245986/39603*710647^(13/14) 4334944367244651 a001 10597638494603/24447 4334944367245119 a001 2504730781961/39603*271443^(2/13) 4334944367246681 a001 10610209857723/1149851*24476^(8/21) 4334944367249644 a001 956722026041/39603*271443^(3/13) 4334944367252870 a001 3536736619241/13201*103682^(1/24) 4334944367254170 a001 365435296162/39603*271443^(4/13) 4334944367258540 a001 17711/439204*45537549124^(16/17) 4334944367258540 a001 17711/439204*14662949395604^(16/21) 4334944367258540 a001 17711/439204*(1/2+1/2*5^(1/2))^48 4334944367258540 a001 17711/439204*192900153618^(8/9) 4334944367258540 a001 17711/439204*73681302247^(12/13) 4334944367258540 a001 196418/39603*817138163596^(2/3) 4334944367258540 a001 196418/39603*(1/2+1/2*5^(1/2))^38 4334944367258540 a001 196418/39603*10749957122^(19/24) 4334944367258540 a001 196418/39603*4106118243^(19/23) 4334944367258540 a001 196418/39603*1568397607^(19/22) 4334944367258540 a001 196418/39603*599074578^(19/21) 4334944367258540 a001 196418/39603*228826127^(19/20) 4334944367258696 a001 139583862445/39603*271443^(5/13) 4334944367263221 a001 53316291173/39603*271443^(6/13) 4334944367265406 a001 139583862445/64079*24476^(11/21) 4334944367265484 a001 10983760033/13201*271443^(1/2) 4334944367265875 a001 4052739537881/439204*24476^(8/21) 4334944367267747 a001 20365011074/39603*271443^(7/13) 4334944367269672 a001 6557470319842/39603*103682^(1/12) 4334944367272273 a001 7778742049/39603*271443^(8/13) 4334944367276799 a001 2971215073/39603*271443^(9/13) 4334944367281324 a001 1134903170/39603*271443^(10/13) 4334944367285850 a001 433494437/39603*271443^(11/13) 4334944367286474 a001 4052739537881/39603*103682^(1/8) 4334944367290376 a001 165580141/39603*271443^(12/13) 4334944367294901 a001 52623190157903/121393 4334944367303276 a001 2504730781961/39603*103682^(1/6) 4334944367320078 a001 516002918640/13201*103682^(5/24) 4334944367336881 a001 956722026041/39603*103682^(1/4) 4334944367353683 a001 591286729879/39603*103682^(7/24) 4334944367361701 a001 3536736619241/13201*39603^(1/22) 4334944367370485 a001 365435296162/39603*103682^(1/3) 4334944367387287 a001 75283811239/13201*103682^(3/8) 4334944367390096 a001 17711/167761*(1/2+1/2*5^(1/2))^46 4334944367390096 a001 17711/167761*10749957122^(23/24) 4334944367390096 a001 75025/39603*2537720636^(8/9) 4334944367390096 a001 75025/39603*312119004989^(8/11) 4334944367390096 a001 75025/39603*(1/2+1/2*5^(1/2))^40 4334944367390096 a001 75025/39603*23725150497407^(5/8) 4334944367390096 a001 75025/39603*73681302247^(10/13) 4334944367390096 a001 75025/39603*28143753123^(4/5) 4334944367390096 a001 75025/39603*10749957122^(5/6) 4334944367390096 a001 75025/39603*4106118243^(20/23) 4334944367390096 a001 75025/39603*1568397607^(10/11) 4334944367390096 a001 75025/39603*599074578^(20/21) 4334944367397431 a001 140728068720/15251*24476^(8/21) 4334944367404089 a001 139583862445/39603*103682^(5/12) 4334944367420891 a001 86267571272/39603*103682^(11/24) 4334944367437694 a001 53316291173/39603*103682^(1/2) 4334944367454496 a001 10983760033/13201*103682^(13/24) 4334944367471298 a001 20365011074/39603*103682^(7/12) 4334944367487334 a001 6557470319842/39603*39603^(1/11) 4334944367488100 a001 12586269025/39603*103682^(5/8) 4334944367504902 a001 7778742049/39603*103682^(2/3) 4334944367521704 a001 1602508992/13201*103682^(17/24) 4334944367529143 a001 4052739537881/271443*24476^(1/3) 4334944367529299 a001 2504730781961/103682*24476^(2/7) 4334944367538507 a001 2971215073/39603*103682^(3/4) 4334944367555309 a001 1836311903/39603*103682^(19/24) 4334944367572111 a001 1134903170/39603*103682^(5/6) 4334944367579393 a001 1515744265389/101521*24476^(1/3) 4334944367588913 a001 17711*103682^(7/8) 4334944367605715 a001 433494437/39603*103682^(11/12) 4334944367609981 a001 225851433717/64079*24476^(10/21) 4334944367610449 a001 3278735159921/219602*24476^(1/3) 4334944367612967 a001 4052739537881/39603*39603^(3/22) 4334944367622518 a001 267914296/39603*103682^(23/24) 4334944367639320 a001 10050135021935/23184 4334944367738601 a001 2504730781961/39603*39603^(2/11) 4334944367742005 a001 2504730781961/167761*24476^(1/3) 4334944367864234 a001 516002918640/13201*39603^(5/22) 4334944367873718 a001 6557470319842/271443*24476^(2/7) 4334944367873874 a001 4052739537881/103682*24476^(5/21) 4334944367954556 a001 365435296162/64079*24476^(3/7) 4334944367955024 a001 10610209857723/439204*24476^(2/7) 4334944367980762 m004 -80+5*Sqrt[5]*Pi+ProductLog[Sqrt[5]*Pi] 4334944367989867 a001 956722026041/39603*39603^(3/11) 4334944368086580 a001 4052739537881/167761*24476^(2/7) 4334944368105572 a001 1134903170/15127*15127^(9/10) 4334944368115500 a001 591286729879/39603*39603^(7/22) 4334944368183281 a001 3536736619241/13201*15127^(1/20) 4334944368218292 a001 3536736619241/90481*24476^(5/21) 4334944368218449 a001 3278735159921/51841*24476^(4/21) 4334944368241134 a001 365435296162/39603*39603^(4/11) 4334944368291796 a001 17711/64079*312119004989^(4/5) 4334944368291796 a001 17711/64079*(1/2+1/2*5^(1/2))^44 4334944368291796 a001 17711/64079*23725150497407^(11/16) 4334944368291796 a001 17711/64079*73681302247^(11/13) 4334944368291796 a001 17711/64079*10749957122^(11/12) 4334944368291796 a001 17711/64079*4106118243^(22/23) 4334944368291796 a001 28657/39603*2537720636^(14/15) 4334944368291796 a001 28657/39603*17393796001^(6/7) 4334944368291796 a001 28657/39603*45537549124^(14/17) 4334944368291796 a001 28657/39603*817138163596^(14/19) 4334944368291796 a001 28657/39603*14662949395604^(2/3) 4334944368291796 a001 28657/39603*(1/2+1/2*5^(1/2))^42 4334944368291796 a001 28657/39603*505019158607^(3/4) 4334944368291796 a001 28657/39603*192900153618^(7/9) 4334944368291796 a001 28657/39603*10749957122^(7/8) 4334944368291796 a001 28657/39603*4106118243^(21/23) 4334944368291796 a001 28657/39603*1568397607^(21/22) 4334944368299130 a001 591286729879/64079*24476^(8/21) 4334944368366767 a001 75283811239/13201*39603^(9/22) 4334944368431155 a001 6557470319842/167761*24476^(5/21) 4334944368492400 a001 139583862445/39603*39603^(5/11) 4334944368541019 a001 12422650076928/28657 4334944368563023 a001 225749145909/2206*24476^(1/7) 4334944368586920 a001 567451585/51841*64079^(22/23) 4334944368618033 a001 86267571272/39603*39603^(1/2) 4334944368632822 a001 1836311903/103682*64079^(21/23) 4334944368643705 a001 956722026041/64079*24476^(1/3) 4334944368678723 a001 2971215073/103682*64079^(20/23) 4334944368724624 a001 46368*64079^(19/23) 4334944368743667 a001 53316291173/39603*39603^(6/11) 4334944368770525 a001 7778742049/103682*64079^(18/23) 4334944368775729 a001 10610209857723/167761*24476^(4/21) 4334944368816426 a001 12586269025/103682*64079^(17/23) 4334944368862328 a001 10182505537/51841*64079^(16/23) 4334944368869300 a001 10983760033/13201*39603^(13/22) 4334944368885438 a001 12422650077915/28657 4334944368908229 a001 32951280099/103682*64079^(15/23) 4334944368931339 a001 2971215073/271443*64079^(22/23) 4334944368935687 a001 12422650078059/28657 4334944368943015 a001 12422650078080/28657 4334944368944062 a001 12422650078083/28657 4334944368944411 a001 12422650078084/28657 4334944368944760 a001 12422650078085/28657 4334944368947552 a001 12422650078093/28657 4334944368954130 a001 53316291173/103682*64079^(14/23) 4334944368966744 a001 12422650078148/28657 4334944368977240 a001 1602508992/90481*64079^(21/23) 4334944368981589 a001 7778742049/710647*64079^(22/23) 4334944368988280 a001 1548008755920/64079*24476^(2/7) 4334944368988920 a001 10182505537/930249*64079^(22/23) 4334944368989990 a001 53316291173/4870847*64079^(22/23) 4334944368990146 a001 139583862445/12752043*64079^(22/23) 4334944368990169 a001 182717648081/16692641*64079^(22/23) 4334944368990172 a001 956722026041/87403803*64079^(22/23) 4334944368990173 a001 2504730781961/228826127*64079^(22/23) 4334944368990173 a001 3278735159921/299537289*64079^(22/23) 4334944368990173 a001 10610209857723/969323029*64079^(22/23) 4334944368990173 a001 4052739537881/370248451*64079^(22/23) 4334944368990173 a001 387002188980/35355581*64079^(22/23) 4334944368990174 a001 591286729879/54018521*64079^(22/23) 4334944368990183 a001 7787980473/711491*64079^(22/23) 4334944368990242 a001 21566892818/1970299*64079^(22/23) 4334944368990651 a001 32951280099/3010349*64079^(22/23) 4334944368993451 a001 12586269025/1149851*64079^(22/23) 4334944368994933 a001 20365011074/39603*39603^(7/11) 4334944369000031 a001 43133785636/51841*64079^(13/23) 4334944369012645 a001 1201881744/109801*64079^(22/23) 4334944369023141 a001 7778742049/271443*64079^(20/23) 4334944369027490 a001 12586269025/710647*64079^(21/23) 4334944369034821 a001 10983760033/620166*64079^(21/23) 4334944369035891 a001 86267571272/4870847*64079^(21/23) 4334944369036047 a001 75283811239/4250681*64079^(21/23) 4334944369036070 a001 591286729879/33385282*64079^(21/23) 4334944369036073 a001 516002918640/29134601*64079^(21/23) 4334944369036074 a001 4052739537881/228826127*64079^(21/23) 4334944369036074 a001 3536736619241/199691526*64079^(21/23) 4334944369036074 a001 6557470319842/370248451*64079^(21/23) 4334944369036074 a001 2504730781961/141422324*64079^(21/23) 4334944369036075 a001 956722026041/54018521*64079^(21/23) 4334944369036084 a001 365435296162/20633239*64079^(21/23) 4334944369036144 a001 139583862445/7881196*64079^(21/23) 4334944369036552 a001 53316291173/3010349*64079^(21/23) 4334944369039353 a001 20365011074/1149851*64079^(21/23) 4334944369045933 a001 139583862445/103682*64079^(12/23) 4334944369052786 a001 701408733/15127*15127^(19/20) 4334944369058546 a001 7778742049/439204*64079^(21/23) 4334944369069043 a001 12586269025/271443*64079^(19/23) 4334944369073391 a001 20365011074/710647*64079^(20/23) 4334944369080723 a001 53316291173/1860498*64079^(20/23) 4334944369081792 a001 139583862445/4870847*64079^(20/23) 4334944369081948 a001 365435296162/12752043*64079^(20/23) 4334944369081971 a001 956722026041/33385282*64079^(20/23) 4334944369081975 a001 2504730781961/87403803*64079^(20/23) 4334944369081975 a001 6557470319842/228826127*64079^(20/23) 4334944369081975 a001 10610209857723/370248451*64079^(20/23) 4334944369081975 a001 4052739537881/141422324*64079^(20/23) 4334944369081977 a001 1548008755920/54018521*64079^(20/23) 4334944369081985 a001 591286729879/20633239*64079^(20/23) 4334944369082045 a001 225851433717/7881196*64079^(20/23) 4334944369082453 a001 86267571272/3010349*64079^(20/23) 4334944369085254 a001 32951280099/1149851*64079^(20/23) 4334944369091834 a001 225851433717/103682*64079^(11/23) 4334944369098300 a001 12422650078525/28657 4334944369104448 a001 12586269025/439204*64079^(20/23) 4334944369114944 a001 20365011074/271443*64079^(18/23) 4334944369119293 a001 32951280099/710647*64079^(19/23) 4334944369120567 a001 12586269025/39603*39603^(15/22) 4334944369126624 a001 43133785636/930249*64079^(19/23) 4334944369127694 a001 225851433717/4870847*64079^(19/23) 4334944369127850 a001 591286729879/12752043*64079^(19/23) 4334944369127872 a001 774004377960/16692641*64079^(19/23) 4334944369127876 a001 4052739537881/87403803*64079^(19/23) 4334944369127876 a001 225749145909/4868641*64079^(19/23) 4334944369127877 a001 3278735159921/70711162*64079^(19/23) 4334944369127878 a001 2504730781961/54018521*64079^(19/23) 4334944369127886 a001 956722026041/20633239*64079^(19/23) 4334944369127946 a001 182717648081/3940598*64079^(19/23) 4334944369128355 a001 139583862445/3010349*64079^(19/23) 4334944369130495 a001 6557470319842/39603*15127^(1/10) 4334944369131155 a001 53316291173/1149851*64079^(19/23) 4334944369137735 a001 182717648081/51841*64079^(10/23) 4334944369144201 a001 1836311903/167761*64079^(22/23) 4334944369150349 a001 10182505537/219602*64079^(19/23) 4334944369160845 a001 121393*64079^(17/23) 4334944369165194 a001 53316291173/710647*64079^(18/23) 4334944369172525 a001 139583862445/1860498*64079^(18/23) 4334944369173595 a001 365435296162/4870847*64079^(18/23) 4334944369173751 a001 956722026041/12752043*64079^(18/23) 4334944369173774 a001 2504730781961/33385282*64079^(18/23) 4334944369173777 a001 6557470319842/87403803*64079^(18/23) 4334944369173778 a001 10610209857723/141422324*64079^(18/23) 4334944369173779 a001 4052739537881/54018521*64079^(18/23) 4334944369173788 a001 140728068720/1875749*64079^(18/23) 4334944369173847 a001 591286729879/7881196*64079^(18/23) 4334944369174256 a001 225851433717/3010349*64079^(18/23) 4334944369177056 a001 86267571272/1149851*64079^(18/23) 4334944369183636 a001 591286729879/103682*64079^(9/23) 4334944369190103 a001 2971215073/167761*64079^(21/23) 4334944369193495 a001 23184/51841*(1/2+1/2*5^(1/2))^43 4334944369196250 a001 32951280099/439204*64079^(18/23) 4334944369206746 a001 53316291173/271443*64079^(16/23) 4334944369211095 a001 86267571272/710647*64079^(17/23) 4334944369218426 a001 75283811239/620166*64079^(17/23) 4334944369219496 a001 591286729879/4870847*64079^(17/23) 4334944369219652 a001 516002918640/4250681*64079^(17/23) 4334944369219675 a001 4052739537881/33385282*64079^(17/23) 4334944369219678 a001 3536736619241/29134601*64079^(17/23) 4334944369219680 a001 6557470319842/54018521*64079^(17/23) 4334944369219689 a001 2504730781961/20633239*64079^(17/23) 4334944369219749 a001 956722026041/7881196*64079^(17/23) 4334944369220157 a001 365435296162/3010349*64079^(17/23) 4334944369222957 a001 139583862445/1149851*64079^(17/23) 4334944369229537 a001 956722026041/103682*64079^(8/23) 4334944369236004 a001 4807526976/167761*64079^(20/23) 4334944369242151 a001 53316291173/439204*64079^(17/23) 4334944369246200 a001 7778742049/39603*39603^(8/11) 4334944369252647 a001 86267571272/271443*64079^(15/23) 4334944369256996 a001 139583862445/710647*64079^(16/23) 4334944369264328 a001 182717648081/930249*64079^(16/23) 4334944369265397 a001 956722026041/4870847*64079^(16/23) 4334944369265553 a001 2504730781961/12752043*64079^(16/23) 4334944369265576 a001 3278735159921/16692641*64079^(16/23) 4334944369265581 a001 10610209857723/54018521*64079^(16/23) 4334944369265590 a001 4052739537881/20633239*64079^(16/23) 4334944369265650 a001 387002188980/1970299*64079^(16/23) 4334944369266058 a001 591286729879/3010349*64079^(16/23) 4334944369268859 a001 225851433717/1149851*64079^(16/23) 4334944369275439 a001 774004377960/51841*64079^(7/23) 4334944369281905 a001 7778742049/167761*64079^(19/23) 4334944369288052 a001 196418*64079^(16/23) 4334944369298549 a001 139583862445/271443*64079^(14/23) 4334944369302897 a001 317811*64079^(15/23) 4334944369310229 a001 591286729879/1860498*64079^(15/23) 4334944369311298 a001 1548008755920/4870847*64079^(15/23) 4334944369311455 a001 4052739537881/12752043*64079^(15/23) 4334944369311477 a001 1515744265389/4769326*64079^(15/23) 4334944369311491 a001 6557470319842/20633239*64079^(15/23) 4334944369311551 a001 2504730781961/7881196*64079^(15/23) 4334944369311960 a001 956722026041/3010349*64079^(15/23) 4334944369314760 a001 365435296162/1149851*64079^(15/23) 4334944369321340 a001 2504730781961/103682*64079^(6/23) 4334944369327806 a001 75025*64079^(18/23) 4334944369332854 a001 2504730781961/64079*24476^(5/21) 4334944369333954 a001 139583862445/439204*64079^(15/23) 4334944369344450 a001 75283811239/90481*64079^(13/23) 4334944369348799 a001 365435296162/710647*64079^(14/23) 4334944369356130 a001 956722026041/1860498*64079^(14/23) 4334944369357200 a001 2504730781961/4870847*64079^(14/23) 4334944369357356 a001 6557470319842/12752043*64079^(14/23) 4334944369357393 a001 10610209857723/20633239*64079^(14/23) 4334944369357452 a001 4052739537881/7881196*64079^(14/23) 4334944369357861 a001 1548008755920/3010349*64079^(14/23) 4334944369360661 a001 514229*64079^(14/23) 4334944369367241 a001 4052739537881/103682*64079^(5/23) 4334944369371833 a001 1602508992/13201*39603^(17/22) 4334944369373707 a001 20365011074/167761*64079^(17/23) 4334944369379855 a001 225851433717/439204*64079^(14/23) 4334944369390351 a001 365435296162/271443*64079^(12/23) 4334944369394700 a001 591286729879/710647*64079^(13/23) 4334944369402031 a001 832040*64079^(13/23) 4334944369403101 a001 4052739537881/4870847*64079^(13/23) 4334944369403257 a001 3536736619241/4250681*64079^(13/23) 4334944369403353 a001 3278735159921/3940598*64079^(13/23) 4334944369403762 a001 2504730781961/3010349*64079^(13/23) 4334944369405002 a001 2504730781961/24476*9349^(3/19) 4334944369406562 a001 956722026041/1149851*64079^(13/23) 4334944369413142 a001 3278735159921/51841*64079^(4/23) 4334944369419609 a001 32951280099/167761*64079^(16/23) 4334944369425756 a001 182717648081/219602*64079^(13/23) 4334944369436252 a001 591286729879/271443*64079^(11/23) 4334944369440601 a001 956722026041/710647*64079^(12/23) 4334944369442719 a001 32522920131744/75025 4334944369447932 a001 2504730781961/1860498*64079^(12/23) 4334944369449002 a001 6557470319842/4870847*64079^(12/23) 4334944369449255 a001 10610209857723/7881196*64079^(12/23) 4334944369449663 a001 1346269*64079^(12/23) 4334944369452464 a001 1548008755920/1149851*64079^(12/23) 4334944369459044 a001 225749145909/2206*64079^(3/23) 4334944369465510 a001 53316291173/167761*64079^(15/23) 4334944369471657 a001 591286729879/439204*64079^(12/23) 4334944369473524 a001 2971215073/103682*167761^(4/5) 4334944369482154 a001 956722026041/271443*64079^(10/23) 4334944369486502 a001 1548008755920/710647*64079^(11/23) 4334944369493834 a001 4052739537881/1860498*64079^(11/23) 4334944369494903 a001 2178309*64079^(11/23) 4334944369495564 a001 6557470319842/3010349*64079^(11/23) 4334944369497466 a001 2971215073/39603*39603^(9/11) 4334944369498365 a001 2504730781961/1149851*64079^(11/23) 4334944369504330 a001 32951280099/103682*167761^(3/5) 4334944369511411 a001 86267571272/167761*64079^(14/23) 4334944369517559 a001 956722026041/439204*64079^(11/23) 4334944369528055 a001 516002918640/90481*64079^(9/23) 4334944369532404 a001 2504730781961/710647*64079^(10/23) 4334944369535136 a001 182717648081/51841*167761^(2/5) 4334944369537914 a001 15456/90481*45537549124^(15/17) 4334944369537914 a001 15456/90481*312119004989^(9/11) 4334944369537914 a001 15456/90481*14662949395604^(5/7) 4334944369537914 a001 15456/90481*(1/2+1/2*5^(1/2))^45 4334944369537914 a001 15456/90481*192900153618^(5/6) 4334944369537914 a001 15456/90481*28143753123^(9/10) 4334944369537914 a001 15456/90481*10749957122^(15/16) 4334944369537914 a001 121393/103682*(1/2+1/2*5^(1/2))^41 4334944369539735 a001 3278735159921/930249*64079^(10/23) 4334944369541466 a001 10610209857723/3010349*64079^(10/23) 4334944369544266 a001 4052739537881/1149851*64079^(10/23) 4334944369557312 a001 139583862445/167761*64079^(13/23) 4334944369563460 a001 387002188980/109801*64079^(10/23) 4334944369565942 a001 4052739537881/103682*167761^(1/5) 4334944369573956 a001 2504730781961/271443*64079^(8/23) 4334944369574275 a001 42573055159152/98209 4334944369576772 a001 433494437/103682*439204^(8/9) 4334944369578305 a001 4052739537881/710647*64079^(9/23) 4334944369579269 a001 1836311903/103682*439204^(7/9) 4334944369581766 a001 7778742049/103682*439204^(2/3) 4334944369584263 a001 32951280099/103682*439204^(5/9) 4334944369585636 a001 3536736619241/620166*64079^(9/23) 4334944369586759 a001 139583862445/103682*439204^(4/9) 4334944369588164 a001 317811/103682*2537720636^(13/15) 4334944369588164 a001 6624/101521*(1/2+1/2*5^(1/2))^47 4334944369588164 a001 317811/103682*45537549124^(13/17) 4334944369588164 a001 317811/103682*14662949395604^(13/21) 4334944369588164 a001 317811/103682*(1/2+1/2*5^(1/2))^39 4334944369588164 a001 317811/103682*192900153618^(13/18) 4334944369588164 a001 317811/103682*73681302247^(3/4) 4334944369588164 a001 317811/103682*10749957122^(13/16) 4334944369588164 a001 317811/103682*599074578^(13/14) 4334944369589256 a001 591286729879/103682*439204^(1/3) 4334944369590167 a001 6557470319842/1149851*64079^(9/23) 4334944369591753 a001 2504730781961/103682*439204^(2/9) 4334944369593469 a001 222915410823168/514229 4334944369594250 a001 225749145909/2206*439204^(1/9) 4334944369595495 a001 2576/103361*14662949395604^(7/9) 4334944369595495 a001 2576/103361*(1/2+1/2*5^(1/2))^49 4334944369595495 a001 2576/103361*505019158607^(7/8) 4334944369595495 a001 416020/51841*(1/2+1/2*5^(1/2))^37 4334944369596269 a001 583600122151200/1346269 4334944369596565 a001 46347/2206*2537720636^(7/9) 4334944369596565 a001 46368/4870847*817138163596^(17/19) 4334944369596565 a001 46368/4870847*14662949395604^(17/21) 4334944369596565 a001 46368/4870847*(1/2+1/2*5^(1/2))^51 4334944369596565 a001 46368/4870847*192900153618^(17/18) 4334944369596565 a001 46347/2206*17393796001^(5/7) 4334944369596565 a001 46347/2206*312119004989^(7/11) 4334944369596565 a001 46347/2206*14662949395604^(5/9) 4334944369596565 a001 46347/2206*(1/2+1/2*5^(1/2))^35 4334944369596565 a001 46347/2206*505019158607^(5/8) 4334944369596565 a001 46347/2206*28143753123^(7/10) 4334944369596565 a001 46347/2206*599074578^(5/6) 4334944369596565 a001 46347/2206*228826127^(7/8) 4334944369596677 a001 763942477815216/1762289 4334944369596685 a001 24157817/103682*7881196^(10/11) 4334944369596690 a001 102334155/103682*7881196^(9/11) 4334944369596696 a001 433494437/103682*7881196^(8/11) 4334944369596701 a001 567451585/51841*7881196^(2/3) 4334944369596703 a001 1836311903/103682*7881196^(7/11) 4334944369596709 a001 7778742049/103682*7881196^(6/11) 4334944369596716 a001 32951280099/103682*7881196^(5/11) 4334944369596720 a001 5702887/103682*141422324^(11/13) 4334944369596721 a001 5702887/103682*2537720636^(11/15) 4334944369596721 a001 15456/4250681*(1/2+1/2*5^(1/2))^53 4334944369596721 a001 5702887/103682*45537549124^(11/17) 4334944369596721 a001 5702887/103682*312119004989^(3/5) 4334944369596721 a001 5702887/103682*14662949395604^(11/21) 4334944369596721 a001 5702887/103682*(1/2+1/2*5^(1/2))^33 4334944369596721 a001 5702887/103682*192900153618^(11/18) 4334944369596721 a001 5702887/103682*10749957122^(11/16) 4334944369596721 a001 5702887/103682*1568397607^(3/4) 4334944369596721 a001 5702887/103682*599074578^(11/14) 4334944369596722 a001 139583862445/103682*7881196^(4/11) 4334944369596724 a001 225851433717/103682*7881196^(1/3) 4334944369596724 a001 5702887/103682*33385282^(11/12) 4334944369596728 a001 591286729879/103682*7881196^(3/11) 4334944369596735 a001 2504730781961/103682*7881196^(2/11) 4334944369596737 a001 4000054744740096/9227465 4334944369596739 a001 31622993/51841*20633239^(4/5) 4334944369596740 a001 133957148/51841*20633239^(5/7) 4334944369596740 a001 24157817/103682*20633239^(6/7) 4334944369596741 a001 225749145909/2206*7881196^(1/11) 4334944369596741 a001 1836311903/103682*20633239^(3/5) 4334944369596741 a001 2971215073/103682*20633239^(4/7) 4334944369596743 a001 32951280099/103682*20633239^(3/7) 4334944369596743 a001 53316291173/103682*20633239^(2/5) 4334944369596743 a001 144/103681*(1/2+1/2*5^(1/2))^55 4334944369596743 a001 144/103681*3461452808002^(11/12) 4334944369596743 a001 7465176/51841*(1/2+1/2*5^(1/2))^31 4334944369596743 a001 7465176/51841*9062201101803^(1/2) 4334944369596744 a001 182717648081/51841*20633239^(2/7) 4334944369596745 a001 774004377960/51841*20633239^(1/5) 4334944369596746 a001 10472279278589856/24157817 4334944369596746 a001 4052739537881/103682*20633239^(1/7) 4334944369596747 a001 15456/29134601*14662949395604^(19/21) 4334944369596747 a001 39088169/103682*(1/2+1/2*5^(1/2))^29 4334944369596747 a001 39088169/103682*1322157322203^(1/2) 4334944369596747 a001 102334155/103682*141422324^(9/13) 4334944369596747 a001 13708391545514736/31622993 4334944369596747 a001 433494437/103682*141422324^(8/13) 4334944369596747 a001 1836311903/103682*141422324^(7/13) 4334944369596747 a001 165580141/103682*141422324^(2/3) 4334944369596747 a001 7778742049/103682*141422324^(6/13) 4334944369596747 a001 32951280099/103682*141422324^(5/13) 4334944369596747 a001 102334155/103682*2537720636^(3/5) 4334944369596747 a001 102334155/103682*45537549124^(9/17) 4334944369596747 a001 102334155/103682*817138163596^(9/19) 4334944369596747 a001 102334155/103682*14662949395604^(3/7) 4334944369596747 a001 102334155/103682*(1/2+1/2*5^(1/2))^27 4334944369596747 a001 102334155/103682*192900153618^(1/2) 4334944369596747 a001 102334155/103682*10749957122^(9/16) 4334944369596747 a001 102334155/103682*599074578^(9/14) 4334944369596747 a001 43133785636/51841*141422324^(1/3) 4334944369596747 a001 139583862445/103682*141422324^(4/13) 4334944369596747 a001 591286729879/103682*141422324^(3/13) 4334944369596747 a001 2504730781961/103682*141422324^(2/13) 4334944369596747 a001 71778069994498560/165580141 4334944369596747 a001 225749145909/2206*141422324^(1/13) 4334944369596747 a001 133957148/51841*2537720636^(5/9) 4334944369596747 a001 133957148/51841*312119004989^(5/11) 4334944369596747 a001 133957148/51841*(1/2+1/2*5^(1/2))^25 4334944369596747 a001 133957148/51841*3461452808002^(5/12) 4334944369596747 a001 133957148/51841*28143753123^(1/2) 4334944369596747 a001 187917426892466208/433494437 4334944369596747 a001 701408733/103682*(1/2+1/2*5^(1/2))^23 4334944369596747 a001 701408733/103682*4106118243^(1/2) 4334944369596747 a001 245987105341450032/567451585 4334944369596747 a001 1836311903/103682*2537720636^(7/15) 4334944369596747 a001 1836311903/103682*17393796001^(3/7) 4334944369596747 a001 1836311903/103682*45537549124^(7/17) 4334944369596747 a001 1836311903/103682*14662949395604^(1/3) 4334944369596747 a001 1836311903/103682*(1/2+1/2*5^(1/2))^21 4334944369596747 a001 1836311903/103682*192900153618^(7/18) 4334944369596747 a001 7778742049/103682*2537720636^(2/5) 4334944369596747 a001 1836311903/103682*10749957122^(7/16) 4334944369596747 a001 32951280099/103682*2537720636^(1/3) 4334944369596747 a001 2971215073/103682*2537720636^(4/9) 4334944369596747 a001 139583862445/103682*2537720636^(4/15) 4334944369596747 a001 182717648081/51841*2537720636^(2/9) 4334944369596747 a001 591286729879/103682*2537720636^(1/5) 4334944369596747 a001 2504730781961/103682*2537720636^(2/15) 4334944369596747 a001 4052739537881/103682*2537720636^(1/9) 4334944369596747 a001 225749145909/2206*2537720636^(1/15) 4334944369596747 a001 46368*817138163596^(1/3) 4334944369596747 a001 46368*(1/2+1/2*5^(1/2))^19 4334944369596747 a001 12586269025/103682*45537549124^(1/3) 4334944369596747 a001 12586269025/103682*(1/2+1/2*5^(1/2))^17 4334944369596747 a001 53316291173/103682*17393796001^(2/7) 4334944369596747 a001 774004377960/51841*17393796001^(1/7) 4334944369596747 a001 32951280099/103682*45537549124^(5/17) 4334944369596747 a001 32951280099/103682*312119004989^(3/11) 4334944369596747 a001 32951280099/103682*14662949395604^(5/21) 4334944369596747 a001 32951280099/103682*(1/2+1/2*5^(1/2))^15 4334944369596747 a001 32951280099/103682*192900153618^(5/18) 4334944369596747 a001 139583862445/103682*45537549124^(4/17) 4334944369596747 a001 591286729879/103682*45537549124^(3/17) 4334944369596747 a001 2504730781961/103682*45537549124^(2/17) 4334944369596747 a001 225749145909/2206*45537549124^(1/17) 4334944369596747 a001 43133785636/51841*(1/2+1/2*5^(1/2))^13 4334944369596747 a001 225851433717/103682*312119004989^(1/5) 4334944369596747 a001 225851433717/103682*(1/2+1/2*5^(1/2))^11 4334944369596747 a001 591286729879/103682*(1/2+1/2*5^(1/2))^9 4334944369596747 a001 182717648081/51841*312119004989^(2/11) 4334944369596747 a001 774004377960/51841*(1/2+1/2*5^(1/2))^7 4334944369596747 a001 4052739537881/103682*(1/2+1/2*5^(1/2))^5 4334944369596747 a001 225749145909/2206*14662949395604^(1/21) 4334944369596747 a001 225749145909/2206*(1/2+1/2*5^(1/2))^3 4334944369596747 a001 3278735159921/51841*(1/2+1/2*5^(1/2))^4 4334944369596747 a001 3278735159921/51841*23725150497407^(1/16) 4334944369596747 a001 2504730781961/103682*(1/2+1/2*5^(1/2))^6 4334944369596747 a001 956722026041/103682*(1/2+1/2*5^(1/2))^8 4334944369596747 a001 225749145909/2206*192900153618^(1/18) 4334944369596747 a001 182717648081/51841*(1/2+1/2*5^(1/2))^10 4334944369596747 a001 139583862445/103682*817138163596^(4/19) 4334944369596747 a001 139583862445/103682*14662949395604^(4/21) 4334944369596747 a001 139583862445/103682*(1/2+1/2*5^(1/2))^12 4334944369596747 a001 139583862445/103682*192900153618^(2/9) 4334944369596747 a001 43133785636/51841*73681302247^(1/4) 4334944369596747 a001 956722026041/103682*73681302247^(2/13) 4334944369596747 a001 139583862445/103682*73681302247^(3/13) 4334944369596747 a001 53316291173/103682*14662949395604^(2/9) 4334944369596747 a001 4052739537881/103682*28143753123^(1/10) 4334944369596747 a001 32951280099/103682*28143753123^(3/10) 4334944369596747 a001 182717648081/51841*28143753123^(1/5) 4334944369596747 a001 10182505537/51841*(1/2+1/2*5^(1/2))^16 4334944369596747 a001 10182505537/51841*23725150497407^(1/4) 4334944369596747 a001 10182505537/51841*73681302247^(4/13) 4334944369596747 a001 225749145909/2206*10749957122^(1/16) 4334944369596747 a001 3278735159921/51841*10749957122^(1/12) 4334944369596747 a001 2504730781961/103682*10749957122^(1/8) 4334944369596747 a001 956722026041/103682*10749957122^(1/6) 4334944369596747 a001 591286729879/103682*10749957122^(3/16) 4334944369596747 a001 182717648081/51841*10749957122^(5/24) 4334944369596747 a001 139583862445/103682*10749957122^(1/4) 4334944369596747 a001 32951280099/103682*10749957122^(5/16) 4334944369596747 a001 53316291173/103682*10749957122^(7/24) 4334944369596747 a001 7778742049/103682*45537549124^(6/17) 4334944369596747 a001 7778742049/103682*14662949395604^(2/7) 4334944369596747 a001 7778742049/103682*(1/2+1/2*5^(1/2))^18 4334944369596747 a001 7778742049/103682*192900153618^(1/3) 4334944369596747 a001 10182505537/51841*10749957122^(1/3) 4334944369596747 a001 3278735159921/51841*4106118243^(2/23) 4334944369596747 a001 7778742049/103682*10749957122^(3/8) 4334944369596747 a001 2504730781961/103682*4106118243^(3/23) 4334944369596747 a001 956722026041/103682*4106118243^(4/23) 4334944369596747 a001 182717648081/51841*4106118243^(5/23) 4334944369596747 a001 139583862445/103682*4106118243^(6/23) 4334944369596747 a001 53316291173/103682*4106118243^(7/23) 4334944369596747 a001 10182505537/51841*4106118243^(8/23) 4334944369596747 a001 2971215073/103682*(1/2+1/2*5^(1/2))^20 4334944369596747 a001 2971215073/103682*23725150497407^(5/16) 4334944369596747 a001 2971215073/103682*505019158607^(5/14) 4334944369596747 a001 2971215073/103682*73681302247^(5/13) 4334944369596747 a001 2971215073/103682*28143753123^(2/5) 4334944369596747 a001 2971215073/103682*10749957122^(5/12) 4334944369596747 a001 7778742049/103682*4106118243^(9/23) 4334944369596747 a001 3278735159921/51841*1568397607^(1/11) 4334944369596747 a001 2971215073/103682*4106118243^(10/23) 4334944369596747 a001 2504730781961/103682*1568397607^(3/22) 4334944369596747 a001 956722026041/103682*1568397607^(2/11) 4334944369596747 a001 182717648081/51841*1568397607^(5/22) 4334944369596747 a001 225851433717/103682*1568397607^(1/4) 4334944369596747 a001 139583862445/103682*1568397607^(3/11) 4334944369596747 a001 53316291173/103682*1568397607^(7/22) 4334944369596747 a001 10182505537/51841*1568397607^(4/11) 4334944369596747 a001 567451585/51841*312119004989^(2/5) 4334944369596747 a001 567451585/51841*(1/2+1/2*5^(1/2))^22 4334944369596747 a001 567451585/51841*10749957122^(11/24) 4334944369596747 a001 7778742049/103682*1568397607^(9/22) 4334944369596747 a001 567451585/51841*4106118243^(11/23) 4334944369596747 a001 225749145909/2206*599074578^(1/14) 4334944369596747 a001 2971215073/103682*1568397607^(5/11) 4334944369596747 a001 3278735159921/51841*599074578^(2/21) 4334944369596747 a001 567451585/51841*1568397607^(1/2) 4334944369596747 a001 101352261263477952/233802911 4334944369596747 a001 2504730781961/103682*599074578^(1/7) 4334944369596747 a001 774004377960/51841*599074578^(1/6) 4334944369596747 a001 956722026041/103682*599074578^(4/21) 4334944369596747 a001 591286729879/103682*599074578^(3/14) 4334944369596747 a001 182717648081/51841*599074578^(5/21) 4334944369596747 a001 139583862445/103682*599074578^(2/7) 4334944369596747 a001 53316291173/103682*599074578^(1/3) 4334944369596747 a001 433494437/103682*2537720636^(8/15) 4334944369596747 a001 32951280099/103682*599074578^(5/14) 4334944369596747 a001 10182505537/51841*599074578^(8/21) 4334944369596747 a001 433494437/103682*45537549124^(8/17) 4334944369596747 a001 433494437/103682*14662949395604^(8/21) 4334944369596747 a001 433494437/103682*(1/2+1/2*5^(1/2))^24 4334944369596747 a001 433494437/103682*192900153618^(4/9) 4334944369596747 a001 433494437/103682*73681302247^(6/13) 4334944369596747 a001 433494437/103682*10749957122^(1/2) 4334944369596747 a001 433494437/103682*4106118243^(12/23) 4334944369596747 a001 7778742049/103682*599074578^(3/7) 4334944369596747 a001 433494437/103682*1568397607^(6/11) 4334944369596747 a001 1836311903/103682*599074578^(1/2) 4334944369596747 a001 2971215073/103682*599074578^(10/21) 4334944369596747 a001 567451585/51841*599074578^(11/21) 4334944369596747 a001 3278735159921/51841*228826127^(1/10) 4334944369596747 a001 4052739537881/103682*228826127^(1/8) 4334944369596747 a001 433494437/103682*599074578^(4/7) 4334944369596747 a001 14517419612245956/33489287 4334944369596747 a001 2504730781961/103682*228826127^(3/20) 4334944369596747 a001 956722026041/103682*228826127^(1/5) 4334944369596747 a001 182717648081/51841*228826127^(1/4) 4334944369596747 a001 139583862445/103682*228826127^(3/10) 4334944369596747 a001 53316291173/103682*228826127^(7/20) 4334944369596747 a001 32951280099/103682*228826127^(3/8) 4334944369596747 a001 46368/370248451*14662949395604^(20/21) 4334944369596747 a001 165580141/103682*(1/2+1/2*5^(1/2))^26 4334944369596747 a001 165580141/103682*73681302247^(1/2) 4334944369596747 a001 165580141/103682*10749957122^(13/24) 4334944369596747 a001 165580141/103682*4106118243^(13/23) 4334944369596747 a001 165580141/103682*1568397607^(13/22) 4334944369596747 a001 10182505537/51841*228826127^(2/5) 4334944369596747 a001 7778742049/103682*228826127^(9/20) 4334944369596747 a001 165580141/103682*599074578^(13/21) 4334944369596747 a001 133957148/51841*228826127^(5/8) 4334944369596747 a001 2971215073/103682*228826127^(1/2) 4334944369596747 a001 567451585/51841*228826127^(11/20) 4334944369596747 a001 433494437/103682*228826127^(3/5) 4334944369596747 a001 3278735159921/51841*87403803^(2/19) 4334944369596747 a001 2112442233498528/4873055 4334944369596747 a001 165580141/103682*228826127^(13/20) 4334944369596747 a001 2504730781961/103682*87403803^(3/19) 4334944369596747 a001 956722026041/103682*87403803^(4/19) 4334944369596747 a001 182717648081/51841*87403803^(5/19) 4334944369596747 a001 139583862445/103682*87403803^(6/19) 4334944369596747 a001 53316291173/103682*87403803^(7/19) 4334944369596747 a001 31622993/51841*17393796001^(4/7) 4334944369596747 a001 31622993/51841*14662949395604^(4/9) 4334944369596747 a001 31622993/51841*(1/2+1/2*5^(1/2))^28 4334944369596747 a001 31622993/51841*505019158607^(1/2) 4334944369596747 a001 31622993/51841*73681302247^(7/13) 4334944369596747 a001 31622993/51841*10749957122^(7/12) 4334944369596747 a001 31622993/51841*4106118243^(14/23) 4334944369596747 a001 31622993/51841*1568397607^(7/11) 4334944369596747 a001 31622993/51841*599074578^(2/3) 4334944369596747 a001 10182505537/51841*87403803^(8/19) 4334944369596748 a001 7778742049/103682*87403803^(9/19) 4334944369596748 a001 31622993/51841*228826127^(7/10) 4334944369596748 a001 46368*87403803^(1/2) 4334944369596748 a001 2971215073/103682*87403803^(10/19) 4334944369596748 a001 225749145909/2206*33385282^(1/12) 4334944369596748 a001 567451585/51841*87403803^(11/19) 4334944369596748 a001 433494437/103682*87403803^(12/19) 4334944369596748 a001 165580141/103682*87403803^(13/19) 4334944369596748 a001 3278735159921/51841*33385282^(1/9) 4334944369596748 a001 4052739491136/9349 4334944369596748 a001 31622993/51841*87403803^(14/19) 4334944369596748 a001 2504730781961/103682*33385282^(1/6) 4334944369596748 a001 956722026041/103682*33385282^(2/9) 4334944369596748 a001 591286729879/103682*33385282^(1/4) 4334944369596748 a001 182717648081/51841*33385282^(5/18) 4334944369596749 a001 139583862445/103682*33385282^(1/3) 4334944369596749 a001 24157817/103682*141422324^(10/13) 4334944369596749 a001 24157817/103682*2537720636^(2/3) 4334944369596749 a001 46368/54018521*14662949395604^(8/9) 4334944369596749 a001 24157817/103682*45537549124^(10/17) 4334944369596749 a001 24157817/103682*312119004989^(6/11) 4334944369596749 a001 24157817/103682*14662949395604^(10/21) 4334944369596749 a001 24157817/103682*(1/2+1/2*5^(1/2))^30 4334944369596749 a001 24157817/103682*192900153618^(5/9) 4334944369596749 a001 24157817/103682*28143753123^(3/5) 4334944369596749 a001 24157817/103682*10749957122^(5/8) 4334944369596749 a001 24157817/103682*4106118243^(15/23) 4334944369596749 a001 24157817/103682*1568397607^(15/22) 4334944369596749 a001 24157817/103682*599074578^(5/7) 4334944369596749 a001 53316291173/103682*33385282^(7/18) 4334944369596749 a001 24157817/103682*228826127^(3/4) 4334944369596749 a001 32951280099/103682*33385282^(5/12) 4334944369596749 a001 10182505537/51841*33385282^(4/9) 4334944369596749 a001 24157817/103682*87403803^(15/19) 4334944369596749 a001 7778742049/103682*33385282^(1/2) 4334944369596749 a001 2971215073/103682*33385282^(5/9) 4334944369596750 a001 1836311903/103682*33385282^(7/12) 4334944369596750 a001 567451585/51841*33385282^(11/18) 4334944369596750 a001 433494437/103682*33385282^(2/3) 4334944369596750 a001 102334155/103682*33385282^(3/4) 4334944369596750 a001 165580141/103682*33385282^(13/18) 4334944369596750 a001 3278735159921/51841*12752043^(2/17) 4334944369596750 a001 31622993/51841*33385282^(7/9) 4334944369596751 a001 44946003707290/103683 4334944369596752 a001 2504730781961/103682*12752043^(3/17) 4334944369596752 a001 24157817/103682*33385282^(5/6) 4334944369596754 a001 956722026041/103682*12752043^(4/17) 4334944369596755 a001 182717648081/51841*12752043^(5/17) 4334944369596757 a001 139583862445/103682*12752043^(6/17) 4334944369596757 a001 46368/20633239*14662949395604^(6/7) 4334944369596757 a001 46368/20633239*(1/2+1/2*5^(1/2))^54 4334944369596757 a001 9227465/103682*(1/2+1/2*5^(1/2))^32 4334944369596757 a001 9227465/103682*23725150497407^(1/2) 4334944369596757 a001 9227465/103682*505019158607^(4/7) 4334944369596757 a001 9227465/103682*73681302247^(8/13) 4334944369596757 a001 9227465/103682*10749957122^(2/3) 4334944369596757 a001 9227465/103682*4106118243^(16/23) 4334944369596757 a001 9227465/103682*1568397607^(8/11) 4334944369596757 a001 9227465/103682*599074578^(16/21) 4334944369596757 a001 9227465/103682*228826127^(4/5) 4334944369596758 a001 9227465/103682*87403803^(16/19) 4334944369596758 a001 53316291173/103682*12752043^(7/17) 4334944369596760 a001 10182505537/51841*12752043^(8/17) 4334944369596761 a001 12586269025/103682*12752043^(1/2) 4334944369596761 a001 9227465/103682*33385282^(8/9) 4334944369596761 a001 7778742049/103682*12752043^(9/17) 4334944369596763 a001 2971215073/103682*12752043^(10/17) 4334944369596764 a001 567451585/51841*12752043^(11/17) 4334944369596766 a001 433494437/103682*12752043^(12/17) 4334944369596768 a001 165580141/103682*12752043^(13/17) 4334944369596769 a001 31622993/51841*12752043^(14/17) 4334944369596770 a001 3278735159921/51841*4870847^(1/8) 4334944369596772 a001 24157817/103682*12752043^(15/17) 4334944369596774 a001 2472169789109664/5702887 4334944369596782 a001 2504730781961/103682*4870847^(3/16) 4334944369596783 a001 9227465/103682*12752043^(16/17) 4334944369596793 a001 956722026041/103682*4870847^(1/4) 4334944369596804 a001 182717648081/51841*4870847^(5/16) 4334944369596816 a001 139583862445/103682*4870847^(3/8) 4334944369596817 a001 11592/1970299*(1/2+1/2*5^(1/2))^52 4334944369596817 a001 11592/1970299*23725150497407^(13/16) 4334944369596817 a001 11592/1970299*505019158607^(13/14) 4334944369596817 a001 1762289/51841*45537549124^(2/3) 4334944369596817 a001 1762289/51841*(1/2+1/2*5^(1/2))^34 4334944369596817 a001 1762289/51841*10749957122^(17/24) 4334944369596817 a001 1762289/51841*4106118243^(17/23) 4334944369596817 a001 1762289/51841*1568397607^(17/22) 4334944369596817 a001 1762289/51841*599074578^(17/21) 4334944369596817 a001 1762289/51841*228826127^(17/20) 4334944369596818 a001 1762289/51841*87403803^(17/19) 4334944369596821 a001 1762289/51841*33385282^(17/18) 4334944369596827 a001 53316291173/103682*4870847^(7/16) 4334944369596839 a001 10182505537/51841*4870847^(1/2) 4334944369596850 a001 7778742049/103682*4870847^(9/16) 4334944369596861 a001 2971215073/103682*4870847^(5/8) 4334944369596872 a001 225749145909/2206*1860498^(1/10) 4334944369596873 a001 567451585/51841*4870847^(11/16) 4334944369596884 a001 433494437/103682*4870847^(3/4) 4334944369596896 a001 165580141/103682*4870847^(13/16) 4334944369596907 a001 31622993/51841*4870847^(7/8) 4334944369596914 a001 3278735159921/51841*1860498^(2/15) 4334944369596920 a001 24157817/103682*4870847^(15/16) 4334944369596930 a001 44965944451392/103729 4334944369596956 a001 4052739537881/103682*1860498^(1/6) 4334944369596998 a001 2504730781961/103682*1860498^(1/5) 4334944369597081 a001 956722026041/103682*1860498^(4/15) 4334944369597123 a001 591286729879/103682*1860498^(3/10) 4334944369597165 a001 182717648081/51841*1860498^(1/3) 4334944369597225 a001 1346269/103682*141422324^(12/13) 4334944369597226 a001 1346269/103682*2537720636^(4/5) 4334944369597226 a001 46368/3010349*312119004989^(10/11) 4334944369597226 a001 46368/3010349*(1/2+1/2*5^(1/2))^50 4334944369597226 a001 46368/3010349*3461452808002^(5/6) 4334944369597226 a001 1346269/103682*45537549124^(12/17) 4334944369597226 a001 1346269/103682*14662949395604^(4/7) 4334944369597226 a001 1346269/103682*(1/2+1/2*5^(1/2))^36 4334944369597226 a001 1346269/103682*505019158607^(9/14) 4334944369597226 a001 1346269/103682*192900153618^(2/3) 4334944369597226 a001 1346269/103682*73681302247^(9/13) 4334944369597226 a001 1346269/103682*10749957122^(3/4) 4334944369597226 a001 1346269/103682*4106118243^(18/23) 4334944369597226 a001 1346269/103682*1568397607^(9/11) 4334944369597226 a001 1346269/103682*599074578^(6/7) 4334944369597226 a001 1346269/103682*228826127^(9/10) 4334944369597226 a001 1346269/103682*87403803^(18/19) 4334944369597248 a001 139583862445/103682*1860498^(2/5) 4334944369597332 a001 53316291173/103682*1860498^(7/15) 4334944369597373 a001 32951280099/103682*1860498^(1/2) 4334944369597415 a001 10182505537/51841*1860498^(8/15) 4334944369597499 a001 7778742049/103682*1860498^(3/5) 4334944369597582 a001 2971215073/103682*1860498^(2/3) 4334944369597624 a001 1836311903/103682*1860498^(7/10) 4334944369597666 a001 567451585/51841*1860498^(11/15) 4334944369597749 a001 433494437/103682*1860498^(4/5) 4334944369597791 a001 133957148/51841*1860498^(5/6) 4334944369597833 a001 165580141/103682*1860498^(13/15) 4334944369597874 a001 102334155/103682*1860498^(9/10) 4334944369597916 a001 31622993/51841*1860498^(14/15) 4334944369597973 a001 3278735159921/51841*710647^(1/7) 4334944369598000 a001 45085588916004/104005 4334944369598587 a001 2504730781961/103682*710647^(3/14) 4334944369598893 a001 774004377960/51841*710647^(1/4) 4334944369599200 a001 956722026041/103682*710647^(2/7) 4334944369599813 a001 182717648081/51841*710647^(5/14) 4334944369600026 a001 46368/1149851*45537549124^(16/17) 4334944369600026 a001 46368/1149851*14662949395604^(16/21) 4334944369600026 a001 46368/1149851*(1/2+1/2*5^(1/2))^48 4334944369600026 a001 46368/1149851*192900153618^(8/9) 4334944369600026 a001 46368/1149851*73681302247^(12/13) 4334944369600026 a001 514229/103682*817138163596^(2/3) 4334944369600026 a001 514229/103682*(1/2+1/2*5^(1/2))^38 4334944369600026 a001 514229/103682*10749957122^(19/24) 4334944369600026 a001 514229/103682*4106118243^(19/23) 4334944369600026 a001 514229/103682*1568397607^(19/22) 4334944369600026 a001 514229/103682*599074578^(19/21) 4334944369600026 a001 514229/103682*228826127^(19/20) 4334944369600426 a001 139583862445/103682*710647^(3/7) 4334944369601039 a001 53316291173/103682*710647^(1/2) 4334944369601652 a001 10182505537/51841*710647^(4/7) 4334944369602265 a001 7778742049/103682*710647^(9/14) 4334944369602878 a001 2971215073/103682*710647^(5/7) 4334944369603185 a001 1836311903/103682*710647^(3/4) 4334944369603213 a001 225851433717/167761*64079^(12/23) 4334944369603492 a001 567451585/51841*710647^(11/14) 4334944369604105 a001 433494437/103682*710647^(6/7) 4334944369604718 a001 165580141/103682*710647^(13/14) 4334944369605331 a001 45923100168288/105937 4334944369605799 a001 3278735159921/51841*271443^(2/13) 4334944369609361 a001 2504730781961/439204*64079^(9/23) 4334944369610324 a001 2504730781961/103682*271443^(3/13) 4334944369614850 a001 956722026041/103682*271443^(4/13) 4334944369619220 a001 98209/51841*2537720636^(8/9) 4334944369619220 a001 11592/109801*(1/2+1/2*5^(1/2))^46 4334944369619220 a001 11592/109801*10749957122^(23/24) 4334944369619220 a001 98209/51841*312119004989^(8/11) 4334944369619220 a001 98209/51841*(1/2+1/2*5^(1/2))^40 4334944369619220 a001 98209/51841*23725150497407^(5/8) 4334944369619220 a001 98209/51841*73681302247^(10/13) 4334944369619220 a001 98209/51841*28143753123^(4/5) 4334944369619220 a001 98209/51841*10749957122^(5/6) 4334944369619220 a001 98209/51841*4106118243^(20/23) 4334944369619220 a001 98209/51841*1568397607^(10/11) 4334944369619220 a001 98209/51841*599074578^(20/21) 4334944369619376 a001 182717648081/51841*271443^(5/13) 4334944369619857 a001 4052739537881/271443*64079^(7/23) 4334944369623100 a001 1836311903/39603*39603^(19/22) 4334944369623901 a001 139583862445/103682*271443^(6/13) 4334944369624206 a001 6557470319842/710647*64079^(8/23) 4334944369626164 a001 43133785636/51841*271443^(1/2) 4334944369628427 a001 53316291173/103682*271443^(7/13) 4334944369632953 a001 10182505537/51841*271443^(8/13) 4334944369636068 a001 10610209857723/1149851*64079^(8/23) 4334944369637478 a001 7778742049/103682*271443^(9/13) 4334944369642004 a001 2971215073/103682*271443^(10/13) 4334944369646530 a001 567451585/51841*271443^(11/13) 4334944369647154 a001 225749145909/2206*103682^(1/8) 4334944369649115 a001 365435296162/167761*64079^(11/23) 4334944369651055 a001 433494437/103682*271443^(12/13) 4334944369655262 a001 4052739537881/439204*64079^(8/23) 4334944369655581 a001 52623190186560/121393 4334944369663956 a001 3278735159921/51841*103682^(1/6) 4334944369665758 a001 6557470319842/271443*64079^(6/23) 4334944369670107 a001 1515744265389/101521*64079^(7/23) 4334944369677429 a001 4052739537881/64079*24476^(4/21) 4334944369680758 a001 4052739537881/103682*103682^(5/24) 4334944369695016 a001 591286729879/167761*64079^(10/23) 4334944369697560 a001 2504730781961/103682*103682^(1/4) 4334944369701163 a001 3278735159921/219602*64079^(7/23) 4334944369711660 a001 3536736619241/90481*64079^(5/23) 4334944369714362 a001 774004377960/51841*103682^(7/24) 4334944369731165 a001 956722026041/103682*103682^(1/3) 4334944369740917 a001 956722026041/167761*64079^(9/23) 4334944369747065 a001 10610209857723/439204*64079^(6/23) 4334944369747967 a001 591286729879/103682*103682^(3/8) 4334944369748733 a001 1134903170/39603*39603^(10/11) 4334944369750776 a001 75025/103682*2537720636^(14/15) 4334944369750776 a001 46368/167761*312119004989^(4/5) 4334944369750776 a001 46368/167761*(1/2+1/2*5^(1/2))^44 4334944369750776 a001 46368/167761*23725150497407^(11/16) 4334944369750776 a001 46368/167761*73681302247^(11/13) 4334944369750776 a001 75025/103682*17393796001^(6/7) 4334944369750776 a001 75025/103682*45537549124^(14/17) 4334944369750776 a001 75025/103682*817138163596^(14/19) 4334944369750776 a001 75025/103682*14662949395604^(2/3) 4334944369750776 a001 75025/103682*(1/2+1/2*5^(1/2))^42 4334944369750776 a001 75025/103682*505019158607^(3/4) 4334944369750776 a001 75025/103682*192900153618^(7/9) 4334944369750776 a001 46368/167761*10749957122^(11/12) 4334944369750776 a001 75025/103682*10749957122^(7/8) 4334944369750776 a001 46368/167761*4106118243^(22/23) 4334944369750776 a001 75025/103682*4106118243^(21/23) 4334944369750776 a001 75025/103682*1568397607^(21/22) 4334944369764769 a001 182717648081/51841*103682^(5/12) 4334944369781571 a001 225851433717/103682*103682^(11/24) 4334944369786818 a001 140728068720/15251*64079^(8/23) 4334944369787137 a001 32522920134328/75025 4334944369798373 a001 139583862445/103682*103682^(1/2) 4334944369815176 a001 43133785636/51841*103682^(13/24) 4334944369817943 a001 7778742049/271443*167761^(4/5) 4334944369831978 a001 53316291173/103682*103682^(7/12) 4334944369832720 a001 2504730781961/167761*64079^(7/23) 4334944369837387 a001 6504584026941/15005 4334944369844718 a001 6504584026952/15005 4334944369845784 a001 32522920134768/75025 4334944369845918 a001 32522920134769/75025 4334944369846051 a001 6504584026954/15005 4334944369846451 a001 32522920134773/75025 4334944369848749 a001 86267571272/271443*167761^(3/5) 4334944369848780 a001 32951280099/103682*103682^(5/8) 4334944369849250 a001 32522920134794/75025 4334944369865582 a001 10182505537/51841*103682^(2/3) 4334944369868193 a001 20365011074/710647*167761^(4/5) 4334944369868443 a001 32522920134938/75025 4334944369874366 a001 17711*39603^(21/22) 4334944369875524 a001 53316291173/1860498*167761^(4/5) 4334944369876594 a001 139583862445/4870847*167761^(4/5) 4334944369876750 a001 365435296162/12752043*167761^(4/5) 4334944369876773 a001 956722026041/33385282*167761^(4/5) 4334944369876776 a001 2504730781961/87403803*167761^(4/5) 4334944369876776 a001 6557470319842/228826127*167761^(4/5) 4334944369876777 a001 10610209857723/370248451*167761^(4/5) 4334944369876777 a001 4052739537881/141422324*167761^(4/5) 4334944369876778 a001 1548008755920/54018521*167761^(4/5) 4334944369876787 a001 591286729879/20633239*167761^(4/5) 4334944369876846 a001 225851433717/7881196*167761^(4/5) 4334944369877255 a001 86267571272/3010349*167761^(4/5) 4334944369878621 a001 4052739537881/167761*64079^(6/23) 4334944369879554 a001 956722026041/271443*167761^(2/5) 4334944369880055 a001 32951280099/1149851*167761^(4/5) 4334944369882332 a001 121393/271443*(1/2+1/2*5^(1/2))^43 4334944369882384 a001 12586269025/103682*103682^(17/24) 4334944369898999 a001 317811*167761^(3/5) 4334944369899186 a001 7778742049/103682*103682^(3/4) 4334944369899249 a001 12586269025/439204*167761^(4/5) 4334944369906330 a001 591286729879/1860498*167761^(3/5) 4334944369907400 a001 1548008755920/4870847*167761^(3/5) 4334944369907556 a001 4052739537881/12752043*167761^(3/5) 4334944369907578 a001 1515744265389/4769326*167761^(3/5) 4334944369907592 a001 6557470319842/20633239*167761^(3/5) 4334944369907652 a001 2504730781961/7881196*167761^(3/5) 4334944369908061 a001 956722026041/3010349*167761^(3/5) 4334944369910360 a001 3536736619241/90481*167761^(1/5) 4334944369910861 a001 365435296162/1149851*167761^(3/5) 4334944369915989 a001 46368*103682^(19/24) 4334944369918693 a001 85146110325069/196418 4334944369921190 a001 1134903170/271443*439204^(8/9) 4334944369923687 a001 1602508992/90481*439204^(7/9) 4334944369924522 a001 6557470319842/167761*64079^(5/23) 4334944369926184 a001 20365011074/271443*439204^(2/3) 4334944369928681 a001 86267571272/271443*439204^(5/9) 4334944369929804 a001 2504730781961/710647*167761^(2/5) 4334944369930055 a001 139583862445/439204*167761^(3/5) 4334944369931178 a001 365435296162/271443*439204^(4/9) 4334944369932582 a001 121393/710647*45537549124^(15/17) 4334944369932582 a001 121393/710647*312119004989^(9/11) 4334944369932582 a001 121393/710647*14662949395604^(5/7) 4334944369932582 a001 121393/710647*(1/2+1/2*5^(1/2))^45 4334944369932582 a001 121393/710647*192900153618^(5/6) 4334944369932582 a001 105937/90481*(1/2+1/2*5^(1/2))^41 4334944369932582 a001 121393/710647*28143753123^(9/10) 4334944369932582 a001 121393/710647*10749957122^(15/16) 4334944369932791 a001 2971215073/103682*103682^(5/6) 4334944369933675 a001 516002918640/90481*439204^(1/3) 4334944369936172 a001 6557470319842/271443*439204^(2/9) 4334944369937136 a001 3278735159921/930249*167761^(2/5) 4334944369937887 a001 222915410840879/514229 4334944369938866 a001 10610209857723/3010349*167761^(2/5) 4334944369939913 a001 832040/271443*2537720636^(13/15) 4334944369939913 a001 832040/271443*45537549124^(13/17) 4334944369939913 a001 121393/1860498*(1/2+1/2*5^(1/2))^47 4334944369939913 a001 832040/271443*14662949395604^(13/21) 4334944369939913 a001 832040/271443*(1/2+1/2*5^(1/2))^39 4334944369939913 a001 832040/271443*192900153618^(13/18) 4334944369939913 a001 832040/271443*73681302247^(3/4) 4334944369939913 a001 832040/271443*10749957122^(13/16) 4334944369939913 a001 832040/271443*599074578^(13/14) 4334944369940687 a001 583600122197568/1346269 4334944369940983 a001 121393/4870847*14662949395604^(7/9) 4334944369940983 a001 121393/4870847*(1/2+1/2*5^(1/2))^49 4334944369940983 a001 121393/4870847*505019158607^(7/8) 4334944369940983 a001 726103/90481*(1/2+1/2*5^(1/2))^37 4334944369941096 a001 1527884955751825/3524578 4334944369941103 a001 63245986/271443*7881196^(10/11) 4334944369941109 a001 267914296/271443*7881196^(9/11) 4334944369941115 a001 1134903170/271443*7881196^(8/11) 4334944369941119 a001 2971215073/271443*7881196^(2/3) 4334944369941121 a001 1602508992/90481*7881196^(7/11) 4334944369941128 a001 20365011074/271443*7881196^(6/11) 4334944369941134 a001 86267571272/271443*7881196^(5/11) 4334944369941139 a001 5702887/271443*2537720636^(7/9) 4334944369941139 a001 5702887/271443*17393796001^(5/7) 4334944369941139 a001 121393/12752043*817138163596^(17/19) 4334944369941139 a001 121393/12752043*14662949395604^(17/21) 4334944369941139 a001 121393/12752043*(1/2+1/2*5^(1/2))^51 4334944369941139 a001 121393/12752043*192900153618^(17/18) 4334944369941139 a001 5702887/271443*312119004989^(7/11) 4334944369941139 a001 5702887/271443*14662949395604^(5/9) 4334944369941139 a001 5702887/271443*(1/2+1/2*5^(1/2))^35 4334944369941139 a001 5702887/271443*505019158607^(5/8) 4334944369941139 a001 5702887/271443*28143753123^(7/10) 4334944369941139 a001 5702887/271443*599074578^(5/6) 4334944369941139 a001 5702887/271443*228826127^(7/8) 4334944369941140 a001 365435296162/271443*7881196^(4/11) 4334944369941143 a001 591286729879/271443*7881196^(1/3) 4334944369941147 a001 516002918640/90481*7881196^(3/11) 4334944369941153 a001 6557470319842/271443*7881196^(2/11) 4334944369941156 a001 4000054745057907/9227465 4334944369941157 a001 63245986/271443*20633239^(6/7) 4334944369941158 a001 165580141/271443*20633239^(4/5) 4334944369941159 a001 233802911/90481*20633239^(5/7) 4334944369941160 a001 1602508992/90481*20633239^(3/5) 4334944369941160 a001 7778742049/271443*20633239^(4/7) 4334944369941161 a001 86267571272/271443*20633239^(3/7) 4334944369941162 a001 139583862445/271443*20633239^(2/5) 4334944369941162 a001 4976784/90481*141422324^(11/13) 4334944369941162 a001 4976784/90481*2537720636^(11/15) 4334944369941162 a001 4976784/90481*45537549124^(11/17) 4334944369941162 a001 121393/33385282*(1/2+1/2*5^(1/2))^53 4334944369941162 a001 4976784/90481*312119004989^(3/5) 4334944369941162 a001 4976784/90481*817138163596^(11/19) 4334944369941162 a001 4976784/90481*14662949395604^(11/21) 4334944369941162 a001 4976784/90481*(1/2+1/2*5^(1/2))^33 4334944369941162 a001 4976784/90481*192900153618^(11/18) 4334944369941162 a001 4976784/90481*10749957122^(11/16) 4334944369941162 a001 4976784/90481*1568397607^(3/4) 4334944369941162 a001 4976784/90481*599074578^(11/14) 4334944369941163 a001 956722026041/271443*20633239^(2/7) 4334944369941164 a001 4052739537881/271443*20633239^(1/5) 4334944369941164 a001 10472279279421896/24157817 4334944369941164 a001 3536736619241/90481*20633239^(1/7) 4334944369941165 a001 121393/87403803*3461452808002^(11/12) 4334944369941165 a001 39088169/271443*(1/2+1/2*5^(1/2))^31 4334944369941165 a001 39088169/271443*9062201101803^(1/2) 4334944369941165 a001 4976784/90481*33385282^(11/12) 4334944369941166 a001 117668596966557/271442 4334944369941166 a001 267914296/271443*141422324^(9/13) 4334944369941166 a001 433494437/271443*141422324^(2/3) 4334944369941166 a001 1134903170/271443*141422324^(8/13) 4334944369941166 a001 1602508992/90481*141422324^(7/13) 4334944369941166 a001 20365011074/271443*141422324^(6/13) 4334944369941166 a001 86267571272/271443*141422324^(5/13) 4334944369941166 a001 121393/228826127*14662949395604^(19/21) 4334944369941166 a001 34111385/90481*(1/2+1/2*5^(1/2))^29 4334944369941166 a001 34111385/90481*1322157322203^(1/2) 4334944369941166 a001 75283811239/90481*141422324^(1/3) 4334944369941166 a001 365435296162/271443*141422324^(4/13) 4334944369941166 a001 516002918640/90481*141422324^(3/13) 4334944369941166 a001 6557470319842/271443*141422324^(2/13) 4334944369941166 a001 71778070000201447/165580141 4334944369941166 a001 267914296/271443*2537720636^(3/5) 4334944369941166 a001 267914296/271443*45537549124^(9/17) 4334944369941166 a001 267914296/271443*817138163596^(9/19) 4334944369941166 a001 267914296/271443*14662949395604^(3/7) 4334944369941166 a001 267914296/271443*(1/2+1/2*5^(1/2))^27 4334944369941166 a001 267914296/271443*192900153618^(1/2) 4334944369941166 a001 267914296/271443*10749957122^(9/16) 4334944369941166 a001 187917426907396560/433494437 4334944369941166 a001 267914296/271443*599074578^(9/14) 4334944369941166 a001 233802911/90481*2537720636^(5/9) 4334944369941166 a001 233802911/90481*312119004989^(5/11) 4334944369941166 a001 233802911/90481*(1/2+1/2*5^(1/2))^25 4334944369941166 a001 233802911/90481*3461452808002^(5/12) 4334944369941166 a001 233802911/90481*28143753123^(1/2) 4334944369941166 a001 491974210721988233/1134903170 4334944369941166 a001 1602508992/90481*2537720636^(7/15) 4334944369941166 a001 7778742049/271443*2537720636^(4/9) 4334944369941166 a001 20365011074/271443*2537720636^(2/5) 4334944369941166 a001 1836311903/271443*(1/2+1/2*5^(1/2))^23 4334944369941166 a001 86267571272/271443*2537720636^(1/3) 4334944369941166 a001 365435296162/271443*2537720636^(4/15) 4334944369941166 a001 956722026041/271443*2537720636^(2/9) 4334944369941166 a001 516002918640/90481*2537720636^(1/5) 4334944369941166 a001 1836311903/271443*4106118243^(1/2) 4334944369941166 a001 1288005205258568139/2971215073 4334944369941166 a001 6557470319842/271443*2537720636^(2/15) 4334944369941166 a001 3536736619241/90481*2537720636^(1/9) 4334944369941166 a001 1602508992/90481*17393796001^(3/7) 4334944369941166 a001 1602508992/90481*45537549124^(7/17) 4334944369941166 a001 1602508992/90481*14662949395604^(1/3) 4334944369941166 a001 1602508992/90481*(1/2+1/2*5^(1/2))^21 4334944369941166 a001 1602508992/90481*192900153618^(7/18) 4334944369941166 a001 1602508992/90481*10749957122^(7/16) 4334944369941166 a001 12586269025/271443*817138163596^(1/3) 4334944369941166 a001 12586269025/271443*(1/2+1/2*5^(1/2))^19 4334944369941166 a001 139583862445/271443*17393796001^(2/7) 4334944369941166 a001 4052739537881/271443*17393796001^(1/7) 4334944369941166 a001 121393*45537549124^(1/3) 4334944369941166 a001 121393*(1/2+1/2*5^(1/2))^17 4334944369941166 a001 86267571272/271443*45537549124^(5/17) 4334944369941166 a001 365435296162/271443*45537549124^(4/17) 4334944369941166 a001 516002918640/90481*45537549124^(3/17) 4334944369941166 a001 6557470319842/271443*45537549124^(2/17) 4334944369941166 a001 86267571272/271443*14662949395604^(5/21) 4334944369941166 a001 86267571272/271443*(1/2+1/2*5^(1/2))^15 4334944369941166 a001 86267571272/271443*192900153618^(5/18) 4334944369941166 a001 75283811239/90481*(1/2+1/2*5^(1/2))^13 4334944369941166 a001 3536736619241/90481*312119004989^(1/11) 4334944369941166 a001 4052739537881/271443*(1/2+1/2*5^(1/2))^7 4334944369941166 a001 3536736619241/90481*(1/2+1/2*5^(1/2))^5 4334944369941166 a001 2504730781961/271443*(1/2+1/2*5^(1/2))^8 4334944369941166 a001 2504730781961/271443*23725150497407^(1/8) 4334944369941166 a001 956722026041/271443*(1/2+1/2*5^(1/2))^10 4334944369941166 a001 2504730781961/271443*505019158607^(1/7) 4334944369941166 a001 365435296162/271443*817138163596^(4/19) 4334944369941166 a001 365435296162/271443*14662949395604^(4/21) 4334944369941166 a001 365435296162/271443*192900153618^(2/9) 4334944369941166 a001 139583862445/271443*14662949395604^(2/9) 4334944369941166 a001 139583862445/271443*(1/2+1/2*5^(1/2))^14 4334944369941166 a001 139583862445/271443*505019158607^(1/4) 4334944369941166 a001 2504730781961/271443*73681302247^(2/13) 4334944369941166 a001 75283811239/90481*73681302247^(1/4) 4334944369941166 a001 365435296162/271443*73681302247^(3/13) 4334944369941166 a001 53316291173/271443*23725150497407^(1/4) 4334944369941166 a001 3536736619241/90481*28143753123^(1/10) 4334944369941166 a001 956722026041/271443*28143753123^(1/5) 4334944369941166 a001 20365011074/271443*45537549124^(6/17) 4334944369941166 a001 86267571272/271443*28143753123^(3/10) 4334944369941166 a001 20365011074/271443*14662949395604^(2/7) 4334944369941166 a001 20365011074/271443*(1/2+1/2*5^(1/2))^18 4334944369941166 a001 20365011074/271443*192900153618^(1/3) 4334944369941166 a001 6557470319842/271443*10749957122^(1/8) 4334944369941166 a001 2504730781961/271443*10749957122^(1/6) 4334944369941166 a001 516002918640/90481*10749957122^(3/16) 4334944369941166 a001 956722026041/271443*10749957122^(5/24) 4334944369941166 a001 365435296162/271443*10749957122^(1/4) 4334944369941166 a001 139583862445/271443*10749957122^(7/24) 4334944369941166 a001 86267571272/271443*10749957122^(5/16) 4334944369941166 a001 53316291173/271443*10749957122^(1/3) 4334944369941166 a001 7778742049/271443*(1/2+1/2*5^(1/2))^20 4334944369941166 a001 7778742049/271443*23725150497407^(5/16) 4334944369941166 a001 7778742049/271443*505019158607^(5/14) 4334944369941166 a001 7778742049/271443*73681302247^(5/13) 4334944369941166 a001 20365011074/271443*10749957122^(3/8) 4334944369941166 a001 7778742049/271443*28143753123^(2/5) 4334944369941166 a001 7778742049/271443*10749957122^(5/12) 4334944369941166 a001 6557470319842/271443*4106118243^(3/23) 4334944369941166 a001 2504730781961/271443*4106118243^(4/23) 4334944369941166 a001 956722026041/271443*4106118243^(5/23) 4334944369941166 a001 365435296162/271443*4106118243^(6/23) 4334944369941166 a001 139583862445/271443*4106118243^(7/23) 4334944369941166 a001 53316291173/271443*4106118243^(8/23) 4334944369941166 a001 2971215073/271443*312119004989^(2/5) 4334944369941166 a001 2971215073/271443*(1/2+1/2*5^(1/2))^22 4334944369941166 a001 20365011074/271443*4106118243^(9/23) 4334944369941166 a001 2971215073/271443*10749957122^(11/24) 4334944369941166 a001 7778742049/271443*4106118243^(10/23) 4334944369941166 a001 2971215073/271443*4106118243^(11/23) 4334944369941166 a001 6557470319842/271443*1568397607^(3/22) 4334944369941166 a001 796030994536579906/1836311903 4334944369941166 a001 1134903170/271443*2537720636^(8/15) 4334944369941166 a001 2504730781961/271443*1568397607^(2/11) 4334944369941166 a001 956722026041/271443*1568397607^(5/22) 4334944369941166 a001 591286729879/271443*1568397607^(1/4) 4334944369941166 a001 365435296162/271443*1568397607^(3/11) 4334944369941166 a001 139583862445/271443*1568397607^(7/22) 4334944369941166 a001 53316291173/271443*1568397607^(4/11) 4334944369941166 a001 1134903170/271443*45537549124^(8/17) 4334944369941166 a001 1134903170/271443*14662949395604^(8/21) 4334944369941166 a001 1134903170/271443*(1/2+1/2*5^(1/2))^24 4334944369941166 a001 1134903170/271443*192900153618^(4/9) 4334944369941166 a001 1134903170/271443*73681302247^(6/13) 4334944369941166 a001 1134903170/271443*10749957122^(1/2) 4334944369941166 a001 20365011074/271443*1568397607^(9/22) 4334944369941166 a001 1134903170/271443*4106118243^(12/23) 4334944369941166 a001 7778742049/271443*1568397607^(5/11) 4334944369941166 a001 2971215073/271443*1568397607^(1/2) 4334944369941166 a001 1134903170/271443*1568397607^(6/11) 4334944369941166 a001 6557470319842/271443*599074578^(1/7) 4334944369941166 a001 304056783814591673/701408733 4334944369941166 a001 4052739537881/271443*599074578^(1/6) 4334944369941166 a001 2504730781961/271443*599074578^(4/21) 4334944369941166 a001 516002918640/90481*599074578^(3/14) 4334944369941166 a001 956722026041/271443*599074578^(5/21) 4334944369941166 a001 365435296162/271443*599074578^(2/7) 4334944369941166 a001 139583862445/271443*599074578^(1/3) 4334944369941166 a001 86267571272/271443*599074578^(5/14) 4334944369941166 a001 53316291173/271443*599074578^(8/21) 4334944369941166 a001 121393/969323029*14662949395604^(20/21) 4334944369941166 a001 433494437/271443*(1/2+1/2*5^(1/2))^26 4334944369941166 a001 433494437/271443*73681302247^(1/2) 4334944369941166 a001 433494437/271443*10749957122^(13/24) 4334944369941166 a001 433494437/271443*4106118243^(13/23) 4334944369941166 a001 20365011074/271443*599074578^(3/7) 4334944369941166 a001 433494437/271443*1568397607^(13/22) 4334944369941166 a001 7778742049/271443*599074578^(10/21) 4334944369941166 a001 1602508992/90481*599074578^(1/2) 4334944369941166 a001 2971215073/271443*599074578^(11/21) 4334944369941166 a001 1134903170/271443*599074578^(4/7) 4334944369941166 a001 3536736619241/90481*228826127^(1/8) 4334944369941166 a001 116139356907195113/267914296 4334944369941166 a001 433494437/271443*599074578^(13/21) 4334944369941166 a001 6557470319842/271443*228826127^(3/20) 4334944369941166 a001 2504730781961/271443*228826127^(1/5) 4334944369941166 a001 956722026041/271443*228826127^(1/4) 4334944369941166 a001 365435296162/271443*228826127^(3/10) 4334944369941166 a001 139583862445/271443*228826127^(7/20) 4334944369941166 a001 86267571272/271443*228826127^(3/8) 4334944369941166 a001 165580141/271443*17393796001^(4/7) 4334944369941166 a001 165580141/271443*14662949395604^(4/9) 4334944369941166 a001 165580141/271443*(1/2+1/2*5^(1/2))^28 4334944369941166 a001 165580141/271443*73681302247^(7/13) 4334944369941166 a001 165580141/271443*10749957122^(7/12) 4334944369941166 a001 165580141/271443*4106118243^(14/23) 4334944369941166 a001 165580141/271443*1568397607^(7/11) 4334944369941166 a001 53316291173/271443*228826127^(2/5) 4334944369941166 a001 20365011074/271443*228826127^(9/20) 4334944369941166 a001 165580141/271443*599074578^(2/3) 4334944369941166 a001 7778742049/271443*228826127^(1/2) 4334944369941166 a001 2971215073/271443*228826127^(11/20) 4334944369941166 a001 233802911/90481*228826127^(5/8) 4334944369941166 a001 63245986/271443*141422324^(10/13) 4334944369941166 a001 1134903170/271443*228826127^(3/5) 4334944369941166 a001 433494437/271443*228826127^(13/20) 4334944369941166 a001 44361286906993666/102334155 4334944369941166 a001 165580141/271443*228826127^(7/10) 4334944369941166 a001 6557470319842/271443*87403803^(3/19) 4334944369941166 a001 2504730781961/271443*87403803^(4/19) 4334944369941166 a001 956722026041/271443*87403803^(5/19) 4334944369941166 a001 365435296162/271443*87403803^(6/19) 4334944369941166 a001 139583862445/271443*87403803^(7/19) 4334944369941166 a001 63245986/271443*2537720636^(2/3) 4334944369941166 a001 63245986/271443*45537549124^(10/17) 4334944369941166 a001 233/271444*14662949395604^(8/9) 4334944369941166 a001 63245986/271443*312119004989^(6/11) 4334944369941166 a001 63245986/271443*14662949395604^(10/21) 4334944369941166 a001 63245986/271443*(1/2+1/2*5^(1/2))^30 4334944369941166 a001 63245986/271443*192900153618^(5/9) 4334944369941166 a001 63245986/271443*28143753123^(3/5) 4334944369941166 a001 63245986/271443*10749957122^(5/8) 4334944369941166 a001 63245986/271443*4106118243^(15/23) 4334944369941166 a001 63245986/271443*1568397607^(15/22) 4334944369941166 a001 63245986/271443*599074578^(5/7) 4334944369941166 a001 53316291173/271443*87403803^(8/19) 4334944369941166 a001 20365011074/271443*87403803^(9/19) 4334944369941166 a001 63245986/271443*228826127^(3/4) 4334944369941166 a001 12586269025/271443*87403803^(1/2) 4334944369941166 a001 7778742049/271443*87403803^(10/19) 4334944369941166 a001 2971215073/271443*87403803^(11/19) 4334944369941166 a001 1134903170/271443*87403803^(12/19) 4334944369941166 a001 433494437/271443*87403803^(13/19) 4334944369941166 a001 165580141/271443*87403803^(14/19) 4334944369941166 a001 16944503813785885/39088169 4334944369941166 a001 6557470319842/271443*33385282^(1/6) 4334944369941166 a001 63245986/271443*87403803^(15/19) 4334944369941167 a001 2504730781961/271443*33385282^(2/9) 4334944369941167 a001 516002918640/90481*33385282^(1/4) 4334944369941167 a001 956722026041/271443*33385282^(5/18) 4334944369941167 a001 365435296162/271443*33385282^(1/3) 4334944369941167 a001 121393/54018521*14662949395604^(6/7) 4334944369941167 a001 24157817/271443*(1/2+1/2*5^(1/2))^32 4334944369941167 a001 24157817/271443*23725150497407^(1/2) 4334944369941167 a001 24157817/271443*505019158607^(4/7) 4334944369941167 a001 24157817/271443*73681302247^(8/13) 4334944369941167 a001 24157817/271443*10749957122^(2/3) 4334944369941167 a001 24157817/271443*4106118243^(16/23) 4334944369941167 a001 24157817/271443*1568397607^(8/11) 4334944369941167 a001 24157817/271443*599074578^(16/21) 4334944369941167 a001 139583862445/271443*33385282^(7/18) 4334944369941167 a001 24157817/271443*228826127^(4/5) 4334944369941167 a001 86267571272/271443*33385282^(5/12) 4334944369941168 a001 53316291173/271443*33385282^(4/9) 4334944369941168 a001 20365011074/271443*33385282^(1/2) 4334944369941168 a001 24157817/271443*87403803^(16/19) 4334944369941168 a001 7778742049/271443*33385282^(5/9) 4334944369941168 a001 1602508992/90481*33385282^(7/12) 4334944369941168 a001 2971215073/271443*33385282^(11/18) 4334944369941168 a001 1134903170/271443*33385282^(2/3) 4334944369941169 a001 433494437/271443*33385282^(13/18) 4334944369941169 a001 267914296/271443*33385282^(3/4) 4334944369941169 a001 165580141/271443*33385282^(7/9) 4334944369941169 a001 63245986/271443*33385282^(5/6) 4334944369941170 a001 6472224534363989/14930352 4334944369941170 a001 6557470319842/271443*12752043^(3/17) 4334944369941171 a001 24157817/271443*33385282^(8/9) 4334944369941172 a001 2504730781961/271443*12752043^(4/17) 4334944369941174 a001 956722026041/271443*12752043^(5/17) 4334944369941175 a001 365435296162/271443*12752043^(6/17) 4334944369941176 a001 9227465/271443*45537549124^(2/3) 4334944369941176 a001 121393/20633239*(1/2+1/2*5^(1/2))^52 4334944369941176 a001 121393/20633239*23725150497407^(13/16) 4334944369941176 a001 121393/20633239*505019158607^(13/14) 4334944369941176 a001 9227465/271443*(1/2+1/2*5^(1/2))^34 4334944369941176 a001 9227465/271443*10749957122^(17/24) 4334944369941176 a001 9227465/271443*4106118243^(17/23) 4334944369941176 a001 9227465/271443*1568397607^(17/22) 4334944369941176 a001 9227465/271443*599074578^(17/21) 4334944369941176 a001 9227465/271443*228826127^(17/20) 4334944369941176 a001 9227465/271443*87403803^(17/19) 4334944369941177 a001 139583862445/271443*12752043^(7/17) 4334944369941178 a001 53316291173/271443*12752043^(8/17) 4334944369941179 a001 121393*12752043^(1/2) 4334944369941180 a001 9227465/271443*33385282^(17/18) 4334944369941180 a001 20365011074/271443*12752043^(9/17) 4334944369941181 a001 7778742049/271443*12752043^(10/17) 4334944369941183 a001 2971215073/271443*12752043^(11/17) 4334944369941185 a001 1134903170/271443*12752043^(12/17) 4334944369941186 a001 433494437/271443*12752043^(13/17) 4334944369941188 a001 165580141/271443*12752043^(14/17) 4334944369941190 a001 63245986/271443*12752043^(15/17) 4334944369941192 a001 24157817/271443*12752043^(16/17) 4334944369941192 a001 1548008634506/3571 4334944369941200 a001 6557470319842/271443*4870847^(3/16) 4334944369941211 a001 2504730781961/271443*4870847^(1/4) 4334944369941223 a001 956722026041/271443*4870847^(5/16) 4334944369941234 a001 365435296162/271443*4870847^(3/8) 4334944369941235 a001 3524578/271443*141422324^(12/13) 4334944369941236 a001 3524578/271443*2537720636^(4/5) 4334944369941236 a001 3524578/271443*45537549124^(12/17) 4334944369941236 a001 121393/7881196*312119004989^(10/11) 4334944369941236 a001 121393/7881196*(1/2+1/2*5^(1/2))^50 4334944369941236 a001 121393/7881196*3461452808002^(5/6) 4334944369941236 a001 3524578/271443*14662949395604^(4/7) 4334944369941236 a001 3524578/271443*(1/2+1/2*5^(1/2))^36 4334944369941236 a001 3524578/271443*505019158607^(9/14) 4334944369941236 a001 3524578/271443*192900153618^(2/3) 4334944369941236 a001 3524578/271443*73681302247^(9/13) 4334944369941236 a001 3524578/271443*10749957122^(3/4) 4334944369941236 a001 3524578/271443*4106118243^(18/23) 4334944369941236 a001 3524578/271443*1568397607^(9/11) 4334944369941236 a001 3524578/271443*599074578^(6/7) 4334944369941236 a001 3524578/271443*228826127^(9/10) 4334944369941236 a001 3524578/271443*87403803^(18/19) 4334944369941246 a001 139583862445/271443*4870847^(7/16) 4334944369941257 a001 53316291173/271443*4870847^(1/2) 4334944369941269 a001 20365011074/271443*4870847^(9/16) 4334944369941280 a001 7778742049/271443*4870847^(5/8) 4334944369941291 a001 2971215073/271443*4870847^(11/16) 4334944369941303 a001 1134903170/271443*4870847^(3/4) 4334944369941314 a001 433494437/271443*4870847^(13/16) 4334944369941326 a001 165580141/271443*4870847^(7/8) 4334944369941337 a001 63245986/271443*4870847^(15/16) 4334944369941349 a001 944284833554257/2178309 4334944369941375 a001 3536736619241/90481*1860498^(1/6) 4334944369941416 a001 6557470319842/271443*1860498^(1/5) 4334944369941500 a001 2504730781961/271443*1860498^(4/15) 4334944369941541 a001 516002918640/90481*1860498^(3/10) 4334944369941583 a001 956722026041/271443*1860498^(1/3) 4334944369941644 a001 121393/3010349*45537549124^(16/17) 4334944369941644 a001 121393/3010349*14662949395604^(16/21) 4334944369941644 a001 121393/3010349*(1/2+1/2*5^(1/2))^48 4334944369941644 a001 121393/3010349*192900153618^(8/9) 4334944369941644 a001 121393/3010349*73681302247^(12/13) 4334944369941644 a001 1346269/271443*817138163596^(2/3) 4334944369941644 a001 1346269/271443*(1/2+1/2*5^(1/2))^38 4334944369941644 a001 1346269/271443*10749957122^(19/24) 4334944369941644 a001 1346269/271443*4106118243^(19/23) 4334944369941644 a001 1346269/271443*1568397607^(19/22) 4334944369941644 a001 1346269/271443*599074578^(19/21) 4334944369941644 a001 1346269/271443*228826127^(19/20) 4334944369941667 a001 4052739537881/1149851*167761^(2/5) 4334944369941667 a001 365435296162/271443*1860498^(2/5) 4334944369941750 a001 139583862445/271443*1860498^(7/15) 4334944369941792 a001 86267571272/271443*1860498^(1/2) 4334944369941834 a001 53316291173/271443*1860498^(8/15) 4334944369941917 a001 20365011074/271443*1860498^(3/5) 4334944369942001 a001 7778742049/271443*1860498^(2/3) 4334944369942042 a001 1602508992/90481*1860498^(7/10) 4334944369942084 a001 2971215073/271443*1860498^(11/15) 4334944369942168 a001 1134903170/271443*1860498^(4/5) 4334944369942209 a001 233802911/90481*1860498^(5/6) 4334944369942251 a001 433494437/271443*1860498^(13/15) 4334944369942293 a001 267914296/271443*1860498^(9/10) 4334944369942335 a001 165580141/271443*1860498^(14/15) 4334944369942418 a001 360684711356689/832040 4334944369943005 a001 6557470319842/271443*710647^(3/14) 4334944369943312 a001 4052739537881/271443*710647^(1/4) 4334944369943618 a001 2504730781961/271443*710647^(2/7) 4334944369944231 a001 956722026041/271443*710647^(5/14) 4334944369944444 a001 514229/271443*2537720636^(8/9) 4334944369944444 a001 121393/1149851*(1/2+1/2*5^(1/2))^46 4334944369944444 a001 514229/271443*312119004989^(8/11) 4334944369944444 a001 514229/271443*(1/2+1/2*5^(1/2))^40 4334944369944444 a001 514229/271443*23725150497407^(5/8) 4334944369944444 a001 514229/271443*73681302247^(10/13) 4334944369944444 a001 514229/271443*28143753123^(4/5) 4334944369944444 a001 514229/271443*10749957122^(5/6) 4334944369944444 a001 121393/1149851*10749957122^(23/24) 4334944369944444 a001 514229/271443*4106118243^(20/23) 4334944369944444 a001 514229/271443*1568397607^(10/11) 4334944369944444 a001 514229/271443*599074578^(20/21) 4334944369944845 a001 365435296162/271443*710647^(3/7) 4334944369945458 a001 139583862445/271443*710647^(1/2) 4334944369946071 a001 53316291173/271443*710647^(4/7) 4334944369946684 a001 20365011074/271443*710647^(9/14) 4334944369947297 a001 7778742049/271443*710647^(5/7) 4334944369947604 a001 1602508992/90481*710647^(3/4) 4334944369947910 a001 2971215073/271443*710647^(11/14) 4334944369948523 a001 1134903170/271443*710647^(6/7) 4334944369949136 a001 433494437/271443*710647^(13/14) 4334944369949593 a001 1836311903/103682*103682^(7/8) 4334944369949750 a001 137769300515810/317811 4334944369954743 a001 6557470319842/271443*271443^(3/13) 4334944369959268 a001 2504730781961/271443*271443^(4/13) 4334944369960861 a001 387002188980/109801*167761^(2/5) 4334944369963638 a001 196418/271443*2537720636^(14/15) 4334944369963638 a001 196418/271443*17393796001^(6/7) 4334944369963638 a001 196418/271443*45537549124^(14/17) 4334944369963638 a001 121393/439204*312119004989^(4/5) 4334944369963638 a001 121393/439204*(1/2+1/2*5^(1/2))^44 4334944369963638 a001 121393/439204*23725150497407^(11/16) 4334944369963638 a001 121393/439204*73681302247^(11/13) 4334944369963638 a001 196418/271443*(1/2+1/2*5^(1/2))^42 4334944369963638 a001 196418/271443*505019158607^(3/4) 4334944369963638 a001 196418/271443*192900153618^(7/9) 4334944369963638 a001 196418/271443*10749957122^(7/8) 4334944369963638 a001 121393/439204*10749957122^(11/12) 4334944369963638 a001 196418/271443*4106118243^(21/23) 4334944369963638 a001 121393/439204*4106118243^(22/23) 4334944369963638 a001 196418/271443*1568397607^(21/22) 4334944369963794 a001 956722026041/271443*271443^(5/13) 4334944369966395 a001 567451585/51841*103682^(11/12) 4334944369968320 a001 365435296162/271443*271443^(6/13) 4334944369968943 a001 42573055163028/98209 4334944369970423 a001 10610209857723/167761*64079^(4/23) 4334944369970583 a001 75283811239/90481*271443^(1/2) 4334944369971440 a001 2971215073/710647*439204^(8/9) 4334944369972845 a001 139583862445/271443*271443^(7/13) 4334944369973647 a001 225749145909/2206*39603^(3/22) 4334944369973937 a001 12586269025/710647*439204^(7/9) 4334944369976275 a001 42573055163100/98209 4334944369976434 a001 53316291173/710647*439204^(2/3) 4334944369977344 a001 85146110326221/196418 4334944369977371 a001 53316291173/271443*271443^(8/13) 4334944369977496 a001 2504297362536/5777 4334944369977547 a001 85146110326225/196418 4334944369977598 a001 42573055163113/98209 4334944369978006 a001 42573055163117/98209 4334944369978772 a001 7778742049/1860498*439204^(8/9) 4334944369978931 a001 317811*439204^(5/9) 4334944369979841 a001 20365011074/4870847*439204^(8/9) 4334944369979997 a001 53316291173/12752043*439204^(8/9) 4334944369980020 a001 139583862445/33385282*439204^(8/9) 4334944369980023 a001 365435296162/87403803*439204^(8/9) 4334944369980024 a001 956722026041/228826127*439204^(8/9) 4334944369980024 a001 2504730781961/599074578*439204^(8/9) 4334944369980024 a001 6557470319842/1568397607*439204^(8/9) 4334944369980024 a001 10610209857723/2537720636*439204^(8/9) 4334944369980024 a001 4052739537881/969323029*439204^(8/9) 4334944369980024 a001 1548008755920/370248451*439204^(8/9) 4334944369980024 a001 591286729879/141422324*439204^(8/9) 4334944369980025 a001 225851433717/54018521*439204^(8/9) 4334944369980034 a001 86267571272/20633239*439204^(8/9) 4334944369980094 a001 32951280099/7881196*439204^(8/9) 4334944369980502 a001 12586269025/3010349*439204^(8/9) 4334944369980806 a001 85146110326289/196418 4334944369981269 a001 10983760033/620166*439204^(7/9) 4334944369981428 a001 956722026041/710647*439204^(4/9) 4334944369981897 a001 20365011074/271443*271443^(9/13) 4334944369982338 a001 86267571272/4870847*439204^(7/9) 4334944369982494 a001 75283811239/4250681*439204^(7/9) 4334944369982517 a001 591286729879/33385282*439204^(7/9) 4334944369982520 a001 516002918640/29134601*439204^(7/9) 4334944369982521 a001 4052739537881/228826127*439204^(7/9) 4334944369982521 a001 3536736619241/199691526*439204^(7/9) 4334944369982521 a001 6557470319842/370248451*439204^(7/9) 4334944369982521 a001 2504730781961/141422324*439204^(7/9) 4334944369982522 a001 956722026041/54018521*439204^(7/9) 4334944369982531 a001 365435296162/20633239*439204^(7/9) 4334944369982591 a001 139583862445/7881196*439204^(7/9) 4334944369982832 a001 317811/710647*(1/2+1/2*5^(1/2))^43 4334944369982999 a001 53316291173/3010349*439204^(7/9) 4334944369983197 a001 701408733/103682*103682^(23/24) 4334944369983303 a001 4807526976/1149851*439204^(8/9) 4334944369983765 a001 139583862445/1860498*439204^(2/3) 4334944369983925 a001 4052739537881/710647*439204^(1/3) 4334944369984835 a001 365435296162/4870847*439204^(2/3) 4334944369984991 a001 956722026041/12752043*439204^(2/3) 4334944369985014 a001 2504730781961/33385282*439204^(2/3) 4334944369985017 a001 6557470319842/87403803*439204^(2/3) 4334944369985018 a001 10610209857723/141422324*439204^(2/3) 4334944369985019 a001 4052739537881/54018521*439204^(2/3) 4334944369985028 a001 140728068720/1875749*439204^(2/3) 4334944369985088 a001 591286729879/7881196*439204^(2/3) 4334944369985496 a001 225851433717/3010349*439204^(2/3) 4334944369985800 a001 20365011074/1149851*439204^(7/9) 4334944369986262 a001 591286729879/1860498*439204^(5/9) 4334944369986422 a001 7778742049/271443*271443^(10/13) 4334944369987332 a001 1548008755920/4870847*439204^(5/9) 4334944369987488 a001 4052739537881/12752043*439204^(5/9) 4334944369987511 a001 1515744265389/4769326*439204^(5/9) 4334944369987525 a001 6557470319842/20633239*439204^(5/9) 4334944369987585 a001 2504730781961/7881196*439204^(5/9) 4334944369987993 a001 956722026041/3010349*439204^(5/9) 4334944369988137 a001 222915410843463/514229 4334944369988297 a001 86267571272/1149851*439204^(2/3) 4334944369988759 a001 2504730781961/1860498*439204^(4/9) 4334944369989829 a001 6557470319842/4870847*439204^(4/9) 4334944369990082 a001 10610209857723/7881196*439204^(4/9) 4334944369990163 a001 105937/620166*45537549124^(15/17) 4334944369990163 a001 105937/620166*312119004989^(9/11) 4334944369990163 a001 105937/620166*14662949395604^(5/7) 4334944369990163 a001 105937/620166*(1/2+1/2*5^(1/2))^45 4334944369990163 a001 832040/710647*(1/2+1/2*5^(1/2))^41 4334944369990163 a001 105937/620166*192900153618^(5/6) 4334944369990163 a001 105937/620166*28143753123^(9/10) 4334944369990163 a001 105937/620166*10749957122^(15/16) 4334944369990490 a001 1346269*439204^(4/9) 4334944369990793 a001 365435296162/1149851*439204^(5/9) 4334944369990937 a001 583600122204333/1346269 4334944369990948 a001 2971215073/271443*271443^(11/13) 4334944369991233 a001 311187/101521*2537720636^(13/15) 4334944369991233 a001 311187/101521*45537549124^(13/17) 4334944369991233 a001 317811/4870847*(1/2+1/2*5^(1/2))^47 4334944369991233 a001 311187/101521*14662949395604^(13/21) 4334944369991233 a001 311187/101521*(1/2+1/2*5^(1/2))^39 4334944369991233 a001 311187/101521*192900153618^(13/18) 4334944369991233 a001 311187/101521*73681302247^(3/4) 4334944369991233 a001 311187/101521*10749957122^(13/16) 4334944369991233 a001 311187/101521*599074578^(13/14) 4334944369991256 a001 3536736619241/620166*439204^(1/3) 4334944369991346 a001 763942477884768/1762289 4334944369991352 a001 165580141/710647*7881196^(10/11) 4334944369991359 a001 701408733/710647*7881196^(9/11) 4334944369991365 a001 2971215073/710647*7881196^(8/11) 4334944369991369 a001 7778742049/710647*7881196^(2/3) 4334944369991371 a001 12586269025/710647*7881196^(7/11) 4334944369991378 a001 53316291173/710647*7881196^(6/11) 4334944369991384 a001 317811*7881196^(5/11) 4334944369991389 a001 105937/4250681*14662949395604^(7/9) 4334944369991389 a001 105937/4250681*(1/2+1/2*5^(1/2))^49 4334944369991389 a001 105937/4250681*505019158607^(7/8) 4334944369991389 a001 5702887/710647*(1/2+1/2*5^(1/2))^37 4334944369991390 a001 956722026041/710647*7881196^(4/11) 4334944369991393 a001 1548008755920/710647*7881196^(1/3) 4334944369991397 a001 4052739537881/710647*7881196^(3/11) 4334944369991406 a001 61539303770835/141961 4334944369991407 a001 165580141/710647*20633239^(6/7) 4334944369991408 a001 433494437/710647*20633239^(4/5) 4334944369991408 a001 1836311903/710647*20633239^(5/7) 4334944369991410 a001 12586269025/710647*20633239^(3/5) 4334944369991410 a001 20365011074/710647*20633239^(4/7) 4334944369991411 a001 317811*20633239^(3/7) 4334944369991412 a001 365435296162/710647*20633239^(2/5) 4334944369991412 a001 14930352/710647*2537720636^(7/9) 4334944369991412 a001 14930352/710647*17393796001^(5/7) 4334944369991412 a001 14930352/710647*312119004989^(7/11) 4334944369991412 a001 317811/33385282*14662949395604^(17/21) 4334944369991412 a001 317811/33385282*(1/2+1/2*5^(1/2))^51 4334944369991412 a001 14930352/710647*14662949395604^(5/9) 4334944369991412 a001 14930352/710647*(1/2+1/2*5^(1/2))^35 4334944369991412 a001 14930352/710647*505019158607^(5/8) 4334944369991412 a001 317811/33385282*192900153618^(17/18) 4334944369991412 a001 14930352/710647*28143753123^(7/10) 4334944369991412 a001 14930352/710647*599074578^(5/6) 4334944369991412 a001 14930352/710647*228826127^(7/8) 4334944369991413 a001 2504730781961/710647*20633239^(2/7) 4334944369991414 a001 1515744265389/101521*20633239^(1/5) 4334944369991414 a001 10472279279543289/24157817 4334944369991415 a001 39088169/710647*141422324^(11/13) 4334944369991415 a001 39088169/710647*2537720636^(11/15) 4334944369991415 a001 39088169/710647*45537549124^(11/17) 4334944369991415 a001 39088169/710647*312119004989^(3/5) 4334944369991415 a001 39088169/710647*14662949395604^(11/21) 4334944369991415 a001 39088169/710647*(1/2+1/2*5^(1/2))^33 4334944369991415 a001 39088169/710647*192900153618^(11/18) 4334944369991415 a001 39088169/710647*10749957122^(11/16) 4334944369991415 a001 39088169/710647*1568397607^(3/4) 4334944369991415 a001 39088169/710647*599074578^(11/14) 4334944369991416 a001 13708391546762796/31622993 4334944369991416 a001 701408733/710647*141422324^(9/13) 4334944369991416 a001 1134903170/710647*141422324^(2/3) 4334944369991416 a001 165580141/710647*141422324^(10/13) 4334944369991416 a001 2971215073/710647*141422324^(8/13) 4334944369991416 a001 12586269025/710647*141422324^(7/13) 4334944369991416 a001 53316291173/710647*141422324^(6/13) 4334944369991416 a001 317811*141422324^(5/13) 4334944369991416 a001 317811/228826127*3461452808002^(11/12) 4334944369991416 a001 14619165/101521*(1/2+1/2*5^(1/2))^31 4334944369991416 a001 14619165/101521*9062201101803^(1/2) 4334944369991416 a001 591286729879/710647*141422324^(1/3) 4334944369991416 a001 956722026041/710647*141422324^(4/13) 4334944369991416 a001 4052739537881/710647*141422324^(3/13) 4334944369991416 a001 71778070001033487/165580141 4334944369991416 a001 377/710646*14662949395604^(19/21) 4334944369991416 a001 267914296/710647*(1/2+1/2*5^(1/2))^29 4334944369991416 a001 267914296/710647*1322157322203^(1/2) 4334944369991416 a001 187917426909574869/433494437 4334944369991416 a001 701408733/710647*2537720636^(3/5) 4334944369991416 a001 701408733/710647*45537549124^(9/17) 4334944369991416 a001 701408733/710647*817138163596^(9/19) 4334944369991416 a001 701408733/710647*14662949395604^(3/7) 4334944369991416 a001 701408733/710647*(1/2+1/2*5^(1/2))^27 4334944369991416 a001 701408733/710647*192900153618^(1/2) 4334944369991416 a001 701408733/710647*10749957122^(9/16) 4334944369991416 a001 806515099553592/1860497 4334944369991416 a001 1836311903/710647*2537720636^(5/9) 4334944369991416 a001 12586269025/710647*2537720636^(7/15) 4334944369991416 a001 20365011074/710647*2537720636^(4/9) 4334944369991416 a001 53316291173/710647*2537720636^(2/5) 4334944369991416 a001 2971215073/710647*2537720636^(8/15) 4334944369991416 a001 1836311903/710647*312119004989^(5/11) 4334944369991416 a001 1836311903/710647*(1/2+1/2*5^(1/2))^25 4334944369991416 a001 1836311903/710647*3461452808002^(5/12) 4334944369991416 a001 1836311903/710647*28143753123^(1/2) 4334944369991416 a001 317811*2537720636^(1/3) 4334944369991416 a001 956722026041/710647*2537720636^(4/15) 4334944369991416 a001 2504730781961/710647*2537720636^(2/9) 4334944369991416 a001 4052739537881/710647*2537720636^(1/5) 4334944369991416 a001 1288005205273498491/2971215073 4334944369991416 a001 686789568/101521*(1/2+1/2*5^(1/2))^23 4334944369991416 a001 259387800391754181/598364773 4334944369991416 a001 12586269025/710647*17393796001^(3/7) 4334944369991416 a001 12586269025/710647*45537549124^(7/17) 4334944369991416 a001 12586269025/710647*14662949395604^(1/3) 4334944369991416 a001 12586269025/710647*(1/2+1/2*5^(1/2))^21 4334944369991416 a001 12586269025/710647*192900153618^(7/18) 4334944369991416 a001 365435296162/710647*17393796001^(2/7) 4334944369991416 a001 1515744265389/101521*17393796001^(1/7) 4334944369991416 a001 86267571272/710647*45537549124^(1/3) 4334944369991416 a001 32951280099/710647*817138163596^(1/3) 4334944369991416 a001 32951280099/710647*(1/2+1/2*5^(1/2))^19 4334944369991416 a001 317811*45537549124^(5/17) 4334944369991416 a001 956722026041/710647*45537549124^(4/17) 4334944369991416 a001 53316291173/710647*45537549124^(6/17) 4334944369991416 a001 4052739537881/710647*45537549124^(3/17) 4334944369991416 a001 86267571272/710647*(1/2+1/2*5^(1/2))^17 4334944369991416 a001 317811*312119004989^(3/11) 4334944369991416 a001 317811*(1/2+1/2*5^(1/2))^15 4334944369991416 a001 1548008755920/710647*312119004989^(1/5) 4334944369991416 a001 4052739537881/710647*817138163596^(3/19) 4334944369991416 a001 1548008755920/710647*(1/2+1/2*5^(1/2))^11 4334944369991416 a001 4052739537881/710647*(1/2+1/2*5^(1/2))^9 4334944369991416 a001 1515744265389/101521*14662949395604^(1/9) 4334944369991416 a001 1515744265389/101521*(1/2+1/2*5^(1/2))^7 4334944369991416 a001 6557470319842/710647*(1/2+1/2*5^(1/2))^8 4334944369991416 a001 2504730781961/710647*(1/2+1/2*5^(1/2))^10 4334944369991416 a001 956722026041/710647*(1/2+1/2*5^(1/2))^12 4334944369991416 a001 365435296162/710647*(1/2+1/2*5^(1/2))^14 4334944369991416 a001 317811*192900153618^(5/18) 4334944369991416 a001 139583862445/710647*(1/2+1/2*5^(1/2))^16 4334944369991416 a001 139583862445/710647*23725150497407^(1/4) 4334944369991416 a001 6557470319842/710647*73681302247^(2/13) 4334944369991416 a001 956722026041/710647*73681302247^(3/13) 4334944369991416 a001 591286729879/710647*73681302247^(1/4) 4334944369991416 a001 139583862445/710647*73681302247^(4/13) 4334944369991416 a001 53316291173/710647*14662949395604^(2/7) 4334944369991416 a001 53316291173/710647*(1/2+1/2*5^(1/2))^18 4334944369991416 a001 53316291173/710647*192900153618^(1/3) 4334944369991416 a001 2504730781961/710647*28143753123^(1/5) 4334944369991416 a001 317811*28143753123^(3/10) 4334944369991416 a001 20365011074/710647*(1/2+1/2*5^(1/2))^20 4334944369991416 a001 20365011074/710647*23725150497407^(5/16) 4334944369991416 a001 20365011074/710647*505019158607^(5/14) 4334944369991416 a001 20365011074/710647*73681302247^(5/13) 4334944369991416 a001 20365011074/710647*28143753123^(2/5) 4334944369991416 a001 6557470319842/710647*10749957122^(1/6) 4334944369991416 a001 4052739537881/710647*10749957122^(3/16) 4334944369991416 a001 2504730781961/710647*10749957122^(5/24) 4334944369991416 a001 956722026041/710647*10749957122^(1/4) 4334944369991416 a001 12586269025/710647*10749957122^(7/16) 4334944369991416 a001 365435296162/710647*10749957122^(7/24) 4334944369991416 a001 317811*10749957122^(5/16) 4334944369991416 a001 139583862445/710647*10749957122^(1/3) 4334944369991416 a001 7778742049/710647*312119004989^(2/5) 4334944369991416 a001 7778742049/710647*(1/2+1/2*5^(1/2))^22 4334944369991416 a001 53316291173/710647*10749957122^(3/8) 4334944369991416 a001 20365011074/710647*10749957122^(5/12) 4334944369991416 a001 7778742049/710647*10749957122^(11/24) 4334944369991416 a001 347339366636550977/801254496 4334944369991416 a001 6557470319842/710647*4106118243^(4/23) 4334944369991416 a001 2504730781961/710647*4106118243^(5/23) 4334944369991416 a001 956722026041/710647*4106118243^(6/23) 4334944369991416 a001 365435296162/710647*4106118243^(7/23) 4334944369991416 a001 139583862445/710647*4106118243^(8/23) 4334944369991416 a001 686789568/101521*4106118243^(1/2) 4334944369991416 a001 2971215073/710647*45537549124^(8/17) 4334944369991416 a001 2971215073/710647*14662949395604^(8/21) 4334944369991416 a001 2971215073/710647*(1/2+1/2*5^(1/2))^24 4334944369991416 a001 2971215073/710647*192900153618^(4/9) 4334944369991416 a001 2971215073/710647*73681302247^(6/13) 4334944369991416 a001 53316291173/710647*4106118243^(9/23) 4334944369991416 a001 20365011074/710647*4106118243^(10/23) 4334944369991416 a001 2971215073/710647*10749957122^(1/2) 4334944369991416 a001 7778742049/710647*4106118243^(11/23) 4334944369991416 a001 2971215073/710647*4106118243^(12/23) 4334944369991416 a001 796030994545807371/1836311903 4334944369991416 a001 6557470319842/710647*1568397607^(2/11) 4334944369991416 a001 2504730781961/710647*1568397607^(5/22) 4334944369991416 a001 1548008755920/710647*1568397607^(1/4) 4334944369991416 a001 956722026041/710647*1568397607^(3/11) 4334944369991416 a001 365435296162/710647*1568397607^(7/22) 4334944369991416 a001 139583862445/710647*1568397607^(4/11) 4334944369991416 a001 317811/2537720636*14662949395604^(20/21) 4334944369991416 a001 1134903170/710647*(1/2+1/2*5^(1/2))^26 4334944369991416 a001 1134903170/710647*73681302247^(1/2) 4334944369991416 a001 1134903170/710647*10749957122^(13/24) 4334944369991416 a001 53316291173/710647*1568397607^(9/22) 4334944369991416 a001 20365011074/710647*1568397607^(5/11) 4334944369991416 a001 1134903170/710647*4106118243^(13/23) 4334944369991416 a001 7778742049/710647*1568397607^(1/2) 4334944369991416 a001 2971215073/710647*1568397607^(6/11) 4334944369991416 a001 1134903170/710647*1568397607^(13/22) 4334944369991416 a001 101352261272705417/233802911 4334944369991416 a001 1515744265389/101521*599074578^(1/6) 4334944369991416 a001 6557470319842/710647*599074578^(4/21) 4334944369991416 a001 4052739537881/710647*599074578^(3/14) 4334944369991416 a001 2504730781961/710647*599074578^(5/21) 4334944369991416 a001 956722026041/710647*599074578^(2/7) 4334944369991416 a001 365435296162/710647*599074578^(1/3) 4334944369991416 a001 317811*599074578^(5/14) 4334944369991416 a001 139583862445/710647*599074578^(8/21) 4334944369991416 a001 433494437/710647*17393796001^(4/7) 4334944369991416 a001 433494437/710647*14662949395604^(4/9) 4334944369991416 a001 433494437/710647*(1/2+1/2*5^(1/2))^28 4334944369991416 a001 433494437/710647*73681302247^(7/13) 4334944369991416 a001 433494437/710647*10749957122^(7/12) 4334944369991416 a001 433494437/710647*4106118243^(14/23) 4334944369991416 a001 53316291173/710647*599074578^(3/7) 4334944369991416 a001 433494437/710647*1568397607^(7/11) 4334944369991416 a001 20365011074/710647*599074578^(10/21) 4334944369991416 a001 701408733/710647*599074578^(9/14) 4334944369991416 a001 12586269025/710647*599074578^(1/2) 4334944369991416 a001 7778742049/710647*599074578^(11/21) 4334944369991416 a001 2971215073/710647*599074578^(4/7) 4334944369991416 a001 1134903170/710647*599074578^(13/21) 4334944369991416 a001 154030977332283/355324 4334944369991416 a001 433494437/710647*599074578^(2/3) 4334944369991416 a001 6557470319842/710647*228826127^(1/5) 4334944369991416 a001 2504730781961/710647*228826127^(1/4) 4334944369991416 a001 956722026041/710647*228826127^(3/10) 4334944369991416 a001 365435296162/710647*228826127^(7/20) 4334944369991416 a001 317811*228826127^(3/8) 4334944369991416 a001 165580141/710647*2537720636^(2/3) 4334944369991416 a001 165580141/710647*45537549124^(10/17) 4334944369991416 a001 165580141/710647*312119004989^(6/11) 4334944369991416 a001 317811/370248451*14662949395604^(8/9) 4334944369991416 a001 165580141/710647*14662949395604^(10/21) 4334944369991416 a001 165580141/710647*(1/2+1/2*5^(1/2))^30 4334944369991416 a001 165580141/710647*192900153618^(5/9) 4334944369991416 a001 165580141/710647*28143753123^(3/5) 4334944369991416 a001 165580141/710647*10749957122^(5/8) 4334944369991416 a001 165580141/710647*4106118243^(15/23) 4334944369991416 a001 165580141/710647*1568397607^(15/22) 4334944369991416 a001 139583862445/710647*228826127^(2/5) 4334944369991416 a001 53316291173/710647*228826127^(9/20) 4334944369991416 a001 165580141/710647*599074578^(5/7) 4334944369991416 a001 20365011074/710647*228826127^(1/2) 4334944369991416 a001 7778742049/710647*228826127^(11/20) 4334944369991416 a001 2971215073/710647*228826127^(3/5) 4334944369991416 a001 1836311903/710647*228826127^(5/8) 4334944369991416 a001 1134903170/710647*228826127^(13/20) 4334944369991416 a001 433494437/710647*228826127^(7/10) 4334944369991416 a001 2957419127167193/6822277 4334944369991416 a001 165580141/710647*228826127^(3/4) 4334944369991416 a001 6557470319842/710647*87403803^(4/19) 4334944369991416 a001 2504730781961/710647*87403803^(5/19) 4334944369991416 a001 956722026041/710647*87403803^(6/19) 4334944369991416 a001 365435296162/710647*87403803^(7/19) 4334944369991416 a001 317811/141422324*14662949395604^(6/7) 4334944369991416 a001 63245986/710647*(1/2+1/2*5^(1/2))^32 4334944369991416 a001 63245986/710647*23725150497407^(1/2) 4334944369991416 a001 63245986/710647*505019158607^(4/7) 4334944369991416 a001 63245986/710647*73681302247^(8/13) 4334944369991416 a001 63245986/710647*10749957122^(2/3) 4334944369991416 a001 63245986/710647*4106118243^(16/23) 4334944369991416 a001 63245986/710647*1568397607^(8/11) 4334944369991416 a001 63245986/710647*599074578^(16/21) 4334944369991416 a001 139583862445/710647*87403803^(8/19) 4334944369991416 a001 53316291173/710647*87403803^(9/19) 4334944369991416 a001 63245986/710647*228826127^(4/5) 4334944369991416 a001 32951280099/710647*87403803^(1/2) 4334944369991416 a001 20365011074/710647*87403803^(10/19) 4334944369991416 a001 7778742049/710647*87403803^(11/19) 4334944369991416 a001 2971215073/710647*87403803^(12/19) 4334944369991416 a001 1134903170/710647*87403803^(13/19) 4334944369991416 a001 433494437/710647*87403803^(14/19) 4334944369991416 a001 165580141/710647*87403803^(15/19) 4334944369991416 a001 16944503813982303/39088169 4334944369991416 a001 63245986/710647*87403803^(16/19) 4334944369991417 a001 6557470319842/710647*33385282^(2/9) 4334944369991417 a001 4052739537881/710647*33385282^(1/4) 4334944369991417 a001 2504730781961/710647*33385282^(5/18) 4334944369991417 a001 956722026041/710647*33385282^(1/3) 4334944369991417 a001 24157817/710647*45537549124^(2/3) 4334944369991417 a001 317811/54018521*23725150497407^(13/16) 4334944369991417 a001 317811/54018521*505019158607^(13/14) 4334944369991417 a001 24157817/710647*(1/2+1/2*5^(1/2))^34 4334944369991417 a001 24157817/710647*10749957122^(17/24) 4334944369991417 a001 24157817/710647*4106118243^(17/23) 4334944369991417 a001 24157817/710647*1568397607^(17/22) 4334944369991417 a001 24157817/710647*599074578^(17/21) 4334944369991417 a001 365435296162/710647*33385282^(7/18) 4334944369991417 a001 24157817/710647*228826127^(17/20) 4334944369991417 a001 317811*33385282^(5/12) 4334944369991418 a001 139583862445/710647*33385282^(4/9) 4334944369991418 a001 53316291173/710647*33385282^(1/2) 4334944369991418 a001 24157817/710647*87403803^(17/19) 4334944369991418 a001 20365011074/710647*33385282^(5/9) 4334944369991418 a001 12586269025/710647*33385282^(7/12) 4334944369991418 a001 7778742049/710647*33385282^(11/18) 4334944369991418 a001 2971215073/710647*33385282^(2/3) 4334944369991419 a001 1134903170/710647*33385282^(13/18) 4334944369991419 a001 701408733/710647*33385282^(3/4) 4334944369991419 a001 39088169/710647*33385282^(11/12) 4334944369991419 a001 433494437/710647*33385282^(7/9) 4334944369991419 a001 165580141/710647*33385282^(5/6) 4334944369991419 a001 63245986/710647*33385282^(8/9) 4334944369991420 a001 1078704089073169/2488392 4334944369991421 a001 24157817/710647*33385282^(17/18) 4334944369991422 a001 6557470319842/710647*12752043^(4/17) 4334944369991424 a001 2504730781961/710647*12752043^(5/17) 4334944369991425 a001 956722026041/710647*12752043^(6/17) 4334944369991426 a001 9227465/710647*141422324^(12/13) 4334944369991426 a001 9227465/710647*2537720636^(4/5) 4334944369991426 a001 9227465/710647*45537549124^(12/17) 4334944369991426 a001 10959/711491*312119004989^(10/11) 4334944369991426 a001 10959/711491*(1/2+1/2*5^(1/2))^50 4334944369991426 a001 10959/711491*3461452808002^(5/6) 4334944369991426 a001 9227465/710647*(1/2+1/2*5^(1/2))^36 4334944369991426 a001 9227465/710647*505019158607^(9/14) 4334944369991426 a001 9227465/710647*192900153618^(2/3) 4334944369991426 a001 9227465/710647*73681302247^(9/13) 4334944369991426 a001 9227465/710647*10749957122^(3/4) 4334944369991426 a001 9227465/710647*4106118243^(18/23) 4334944369991426 a001 9227465/710647*1568397607^(9/11) 4334944369991426 a001 9227465/710647*599074578^(6/7) 4334944369991426 a001 9227465/710647*228826127^(9/10) 4334944369991426 a001 9227465/710647*87403803^(18/19) 4334944369991427 a001 365435296162/710647*12752043^(7/17) 4334944369991428 a001 139583862445/710647*12752043^(8/17) 4334944369991429 a001 86267571272/710647*12752043^(1/2) 4334944369991430 a001 53316291173/710647*12752043^(9/17) 4334944369991431 a001 20365011074/710647*12752043^(10/17) 4334944369991433 a001 7778742049/710647*12752043^(11/17) 4334944369991435 a001 2971215073/710647*12752043^(12/17) 4334944369991436 a001 1134903170/710647*12752043^(13/17) 4334944369991438 a001 433494437/710647*12752043^(14/17) 4334944369991439 a001 165580141/710647*12752043^(15/17) 4334944369991441 a001 63245986/710647*12752043^(16/17) 4334944369991442 a001 2472169789334739/5702887 4334944369991461 a001 6557470319842/710647*4870847^(1/4) 4334944369991473 a001 2504730781961/710647*4870847^(5/16) 4334944369991484 a001 956722026041/710647*4870847^(3/8) 4334944369991486 a001 317811/7881196*45537549124^(16/17) 4334944369991486 a001 317811/7881196*14662949395604^(16/21) 4334944369991486 a001 317811/7881196*(1/2+1/2*5^(1/2))^48 4334944369991486 a001 3524578/710647*817138163596^(2/3) 4334944369991486 a001 3524578/710647*(1/2+1/2*5^(1/2))^38 4334944369991486 a001 317811/7881196*192900153618^(8/9) 4334944369991486 a001 317811/7881196*73681302247^(12/13) 4334944369991486 a001 3524578/710647*10749957122^(19/24) 4334944369991486 a001 3524578/710647*4106118243^(19/23) 4334944369991486 a001 3524578/710647*1568397607^(19/22) 4334944369991486 a001 3524578/710647*599074578^(19/21) 4334944369991486 a001 3524578/710647*228826127^(19/20) 4334944369991496 a001 365435296162/710647*4870847^(7/16) 4334944369991507 a001 139583862445/710647*4870847^(1/2) 4334944369991519 a001 53316291173/710647*4870847^(9/16) 4334944369991530 a001 20365011074/710647*4870847^(5/8) 4334944369991541 a001 7778742049/710647*4870847^(11/16) 4334944369991553 a001 2971215073/710647*4870847^(3/4) 4334944369991564 a001 1134903170/710647*4870847^(13/16) 4334944369991576 a001 433494437/710647*4870847^(7/8) 4334944369991587 a001 165580141/710647*4870847^(15/16) 4334944369991598 a001 314761611188401/726103 4334944369991750 a001 6557470319842/710647*1860498^(4/15) 4334944369991791 a001 4052739537881/710647*1860498^(3/10) 4334944369991833 a001 2504730781961/710647*1860498^(1/3) 4334944369991894 a001 1346269/710647*2537720636^(8/9) 4334944369991894 a001 1346269/710647*312119004989^(8/11) 4334944369991894 a001 317811/3010349*(1/2+1/2*5^(1/2))^46 4334944369991894 a001 1346269/710647*(1/2+1/2*5^(1/2))^40 4334944369991894 a001 1346269/710647*23725150497407^(5/8) 4334944369991894 a001 1346269/710647*73681302247^(10/13) 4334944369991894 a001 1346269/710647*28143753123^(4/5) 4334944369991894 a001 1346269/710647*10749957122^(5/6) 4334944369991894 a001 317811/3010349*10749957122^(23/24) 4334944369991894 a001 1346269/710647*4106118243^(20/23) 4334944369991894 a001 1346269/710647*1568397607^(10/11) 4334944369991894 a001 1346269/710647*599074578^(20/21) 4334944369991917 a001 956722026041/710647*1860498^(2/5) 4334944369992000 a001 365435296162/710647*1860498^(7/15) 4334944369992042 a001 317811*1860498^(1/2) 4334944369992084 a001 139583862445/710647*1860498^(8/15) 4334944369992167 a001 53316291173/710647*1860498^(3/5) 4334944369992251 a001 20365011074/710647*1860498^(2/3) 4334944369992292 a001 12586269025/710647*1860498^(7/10) 4334944369992334 a001 7778742049/710647*1860498^(11/15) 4334944369992418 a001 2971215073/710647*1860498^(4/5) 4334944369992459 a001 1836311903/710647*1860498^(5/6) 4334944369992501 a001 1134903170/710647*1860498^(13/15) 4334944369992543 a001 701408733/710647*1860498^(9/10) 4334944369992585 a001 433494437/710647*1860498^(14/15) 4334944369992668 a001 591286412067/1364 4334944369993290 a001 1548008755920/1149851*439204^(4/9) 4334944369993562 a001 1515744265389/101521*710647^(1/4) 4334944369993868 a001 6557470319842/710647*710647^(2/7) 4334944369994481 a001 2504730781961/710647*710647^(5/14) 4334944369994694 a001 514229/710647*2537720636^(14/15) 4334944369994694 a001 514229/710647*17393796001^(6/7) 4334944369994694 a001 514229/710647*45537549124^(14/17) 4334944369994694 a001 317811/1149851*312119004989^(4/5) 4334944369994694 a001 317811/1149851*(1/2+1/2*5^(1/2))^44 4334944369994694 a001 317811/1149851*23725150497407^(11/16) 4334944369994694 a001 514229/710647*14662949395604^(2/3) 4334944369994694 a001 514229/710647*(1/2+1/2*5^(1/2))^42 4334944369994694 a001 514229/710647*505019158607^(3/4) 4334944369994694 a001 514229/710647*192900153618^(7/9) 4334944369994694 a001 317811/1149851*73681302247^(11/13) 4334944369994694 a001 514229/710647*10749957122^(7/8) 4334944369994694 a001 317811/1149851*10749957122^(11/12) 4334944369994694 a001 514229/710647*4106118243^(21/23) 4334944369994694 a001 317811/1149851*4106118243^(22/23) 4334944369994694 a001 514229/710647*1568397607^(21/22) 4334944369995095 a001 956722026041/710647*710647^(3/7) 4334944369995468 a001 222915410843840/514229 4334944369995474 a001 1134903170/271443*271443^(12/13) 4334944369995708 a001 365435296162/710647*710647^(1/2) 4334944369995787 a001 6557470319842/1149851*439204^(1/3) 4334944369996321 a001 139583862445/710647*710647^(4/7) 4334944369996538 a001 222915410843895/514229 4334944369996694 a001 222915410843903/514229 4334944369996713 a001 222915410843904/514229 4334944369996732 a001 222915410843905/514229 4334944369996791 a001 222915410843908/514229 4334944369996934 a001 53316291173/710647*710647^(9/14) 4334944369997199 a001 222915410843929/514229 4334944369997495 a001 416020/930249*(1/2+1/2*5^(1/2))^43 4334944369997547 a001 20365011074/710647*710647^(5/7) 4334944369997854 a001 12586269025/710647*710647^(3/4) 4334944369998160 a001 7778742049/710647*710647^(11/14) 4334944369998269 a001 583600122205320/1346269 4334944369998564 a001 832040/4870847*45537549124^(15/17) 4334944369998564 a001 832040/4870847*312119004989^(9/11) 4334944369998564 a001 832040/4870847*14662949395604^(5/7) 4334944369998564 a001 832040/4870847*(1/2+1/2*5^(1/2))^45 4334944369998564 a001 726103/620166*(1/2+1/2*5^(1/2))^41 4334944369998564 a001 832040/4870847*192900153618^(5/6) 4334944369998564 a001 832040/4870847*28143753123^(9/10) 4334944369998564 a001 832040/4870847*10749957122^(15/16) 4334944369998677 a001 763942477886060/1762289 4334944369998684 a001 433494437/1860498*7881196^(10/11) 4334944369998690 a001 1836311903/1860498*7881196^(9/11) 4334944369998696 a001 7778742049/1860498*7881196^(8/11) 4334944369998701 a001 10182505537/930249*7881196^(2/3) 4334944369998703 a001 10983760033/620166*7881196^(7/11) 4334944369998709 a001 139583862445/1860498*7881196^(6/11) 4334944369998715 a001 591286729879/1860498*7881196^(5/11) 4334944369998720 a001 5702887/1860498*2537720636^(13/15) 4334944369998720 a001 5702887/1860498*45537549124^(13/17) 4334944369998720 a001 832040/12752043*(1/2+1/2*5^(1/2))^47 4334944369998720 a001 5702887/1860498*14662949395604^(13/21) 4334944369998720 a001 5702887/1860498*(1/2+1/2*5^(1/2))^39 4334944369998720 a001 5702887/1860498*192900153618^(13/18) 4334944369998720 a001 5702887/1860498*73681302247^(3/4) 4334944369998720 a001 5702887/1860498*10749957122^(13/16) 4334944369998721 a001 5702887/1860498*599074578^(13/14) 4334944369998722 a001 2504730781961/1860498*7881196^(4/11) 4334944369998724 a001 4052739537881/1860498*7881196^(1/3) 4334944369998728 a001 3536736619241/620166*7881196^(3/11) 4334944369998737 a001 800010949022208/1845493 4334944369998738 a001 433494437/1860498*20633239^(6/7) 4334944369998739 a001 567451585/930249*20633239^(4/5) 4334944369998740 a001 267084832/103361*20633239^(5/7) 4334944369998741 a001 10983760033/620166*20633239^(3/5) 4334944369998741 a001 53316291173/1860498*20633239^(4/7) 4334944369998743 a001 591286729879/1860498*20633239^(3/7) 4334944369998743 a001 956722026041/1860498*20633239^(2/5) 4334944369998743 a001 416020/16692641*14662949395604^(7/9) 4334944369998743 a001 416020/16692641*(1/2+1/2*5^(1/2))^49 4334944369998743 a001 829464/103361*(1/2+1/2*5^(1/2))^37 4334944369998743 a001 416020/16692641*505019158607^(7/8) 4334944369998744 a001 3278735159921/930249*20633239^(2/7) 4334944369998746 a001 10472279279561000/24157817 4334944369998747 a001 39088169/1860498*2537720636^(7/9) 4334944369998747 a001 39088169/1860498*17393796001^(5/7) 4334944369998747 a001 39088169/1860498*312119004989^(7/11) 4334944369998747 a001 832040/87403803*817138163596^(17/19) 4334944369998747 a001 39088169/1860498*14662949395604^(5/9) 4334944369998747 a001 39088169/1860498*(1/2+1/2*5^(1/2))^35 4334944369998747 a001 39088169/1860498*505019158607^(5/8) 4334944369998747 a001 832040/87403803*192900153618^(17/18) 4334944369998747 a001 39088169/1860498*28143753123^(7/10) 4334944369998747 a001 39088169/1860498*599074578^(5/6) 4334944369998747 a001 39088169/1860498*228826127^(7/8) 4334944369998747 a001 831985/15126*141422324^(11/13) 4334944369998747 a001 58834298484060/135721 4334944369998747 a001 433494437/1860498*141422324^(10/13) 4334944369998747 a001 1836311903/1860498*141422324^(9/13) 4334944369998747 a001 2971215073/1860498*141422324^(2/3) 4334944369998747 a001 7778742049/1860498*141422324^(8/13) 4334944369998747 a001 10983760033/620166*141422324^(7/13) 4334944369998747 a001 139583862445/1860498*141422324^(6/13) 4334944369998747 a001 591286729879/1860498*141422324^(5/13) 4334944369998747 a001 831985/15126*2537720636^(11/15) 4334944369998747 a001 831985/15126*45537549124^(11/17) 4334944369998747 a001 831985/15126*312119004989^(3/5) 4334944369998747 a001 831985/15126*817138163596^(11/19) 4334944369998747 a001 831985/15126*14662949395604^(11/21) 4334944369998747 a001 831985/15126*(1/2+1/2*5^(1/2))^33 4334944369998747 a001 831985/15126*192900153618^(11/18) 4334944369998747 a001 831985/15126*10749957122^(11/16) 4334944369998747 a001 831985/15126*1568397607^(3/4) 4334944369998747 a001 831985/15126*599074578^(11/14) 4334944369998747 a001 832040*141422324^(1/3) 4334944369998747 a001 2504730781961/1860498*141422324^(4/13) 4334944369998747 a001 3536736619241/620166*141422324^(3/13) 4334944369998747 a001 71778070001154880/165580141 4334944369998747 a001 416020/299537289*3461452808002^(11/12) 4334944369998747 a001 133957148/930249*(1/2+1/2*5^(1/2))^31 4334944369998747 a001 133957148/930249*9062201101803^(1/2) 4334944369998747 a001 187917426909892680/433494437 4334944369998747 a001 832040/1568397607*14662949395604^(19/21) 4334944369998747 a001 233802911/620166*(1/2+1/2*5^(1/2))^29 4334944369998747 a001 233802911/620166*1322157322203^(1/2) 4334944369998747 a001 806515099554956/1860497 4334944369998747 a001 1836311903/1860498*2537720636^(3/5) 4334944369998747 a001 267084832/103361*2537720636^(5/9) 4334944369998747 a001 7778742049/1860498*2537720636^(8/15) 4334944369998747 a001 10983760033/620166*2537720636^(7/15) 4334944369998747 a001 53316291173/1860498*2537720636^(4/9) 4334944369998747 a001 139583862445/1860498*2537720636^(2/5) 4334944369998747 a001 1836311903/1860498*45537549124^(9/17) 4334944369998747 a001 1836311903/1860498*817138163596^(9/19) 4334944369998747 a001 1836311903/1860498*14662949395604^(3/7) 4334944369998747 a001 1836311903/1860498*(1/2+1/2*5^(1/2))^27 4334944369998747 a001 1836311903/1860498*192900153618^(1/2) 4334944369998747 a001 1836311903/1860498*10749957122^(9/16) 4334944369998747 a001 591286729879/1860498*2537720636^(1/3) 4334944369998747 a001 2504730781961/1860498*2537720636^(4/15) 4334944369998747 a001 3278735159921/930249*2537720636^(2/9) 4334944369998747 a001 3536736619241/620166*2537720636^(1/5) 4334944369998747 a001 1288005205275676800/2971215073 4334944369998747 a001 267084832/103361*312119004989^(5/11) 4334944369998747 a001 267084832/103361*(1/2+1/2*5^(1/2))^25 4334944369998747 a001 267084832/103361*3461452808002^(5/12) 4334944369998747 a001 267084832/103361*28143753123^(1/2) 4334944369998747 a001 3372041405098507240/7778742049 4334944369998747 a001 10983760033/620166*17393796001^(3/7) 4334944369998747 a001 12586269025/1860498*(1/2+1/2*5^(1/2))^23 4334944369998747 a001 956722026041/1860498*17393796001^(2/7) 4334944369998747 a001 4414059505009922460/10182505537 4334944369998747 a001 10983760033/620166*45537549124^(7/17) 4334944369998747 a001 10983760033/620166*14662949395604^(1/3) 4334944369998747 a001 10983760033/620166*(1/2+1/2*5^(1/2))^21 4334944369998747 a001 10983760033/620166*192900153618^(7/18) 4334944369998747 a001 75283811239/620166*45537549124^(1/3) 4334944369998747 a001 139583862445/1860498*45537549124^(6/17) 4334944369998747 a001 591286729879/1860498*45537549124^(5/17) 4334944369998747 a001 2504730781961/1860498*45537549124^(4/17) 4334944369998747 a001 3536736619241/620166*45537549124^(3/17) 4334944369998747 a001 43133785636/930249*817138163596^(1/3) 4334944369998747 a001 43133785636/930249*(1/2+1/2*5^(1/2))^19 4334944369998747 a001 75283811239/620166*(1/2+1/2*5^(1/2))^17 4334944369998747 a001 591286729879/1860498*312119004989^(3/11) 4334944369998747 a001 591286729879/1860498*(1/2+1/2*5^(1/2))^15 4334944369998747 a001 2504730781961/1860498*817138163596^(4/19) 4334944369998747 a001 832040*(1/2+1/2*5^(1/2))^13 4334944369998747 a001 4052739537881/1860498*(1/2+1/2*5^(1/2))^11 4334944369998747 a001 3536736619241/620166*(1/2+1/2*5^(1/2))^9 4334944369998747 a001 3278735159921/930249*(1/2+1/2*5^(1/2))^10 4334944369998747 a001 2504730781961/1860498*14662949395604^(4/21) 4334944369998747 a001 2504730781961/1860498*(1/2+1/2*5^(1/2))^12 4334944369998747 a001 956722026041/1860498*(1/2+1/2*5^(1/2))^14 4334944369998747 a001 182717648081/930249*23725150497407^(1/4) 4334944369998747 a001 2504730781961/1860498*192900153618^(2/9) 4334944369998747 a001 591286729879/1860498*192900153618^(5/18) 4334944369998747 a001 139583862445/1860498*14662949395604^(2/7) 4334944369998747 a001 139583862445/1860498*(1/2+1/2*5^(1/2))^18 4334944369998747 a001 139583862445/1860498*192900153618^(1/3) 4334944369998747 a001 2504730781961/1860498*73681302247^(3/13) 4334944369998747 a001 832040*73681302247^(1/4) 4334944369998747 a001 182717648081/930249*73681302247^(4/13) 4334944369998747 a001 53316291173/1860498*(1/2+1/2*5^(1/2))^20 4334944369998747 a001 53316291173/1860498*23725150497407^(5/16) 4334944369998747 a001 53316291173/1860498*505019158607^(5/14) 4334944369998747 a001 53316291173/1860498*73681302247^(5/13) 4334944369998747 a001 3278735159921/930249*28143753123^(1/5) 4334944369998747 a001 591286729879/1860498*28143753123^(3/10) 4334944369998747 a001 10182505537/930249*312119004989^(2/5) 4334944369998747 a001 10182505537/930249*(1/2+1/2*5^(1/2))^22 4334944369998747 a001 53316291173/1860498*28143753123^(2/5) 4334944369998747 a001 99201410998569776/228841255 4334944369998747 a001 3536736619241/620166*10749957122^(3/16) 4334944369998747 a001 3278735159921/930249*10749957122^(5/24) 4334944369998747 a001 2504730781961/1860498*10749957122^(1/4) 4334944369998747 a001 956722026041/1860498*10749957122^(7/24) 4334944369998747 a001 591286729879/1860498*10749957122^(5/16) 4334944369998747 a001 182717648081/930249*10749957122^(1/3) 4334944369998747 a001 7778742049/1860498*45537549124^(8/17) 4334944369998747 a001 139583862445/1860498*10749957122^(3/8) 4334944369998747 a001 7778742049/1860498*14662949395604^(8/21) 4334944369998747 a001 7778742049/1860498*(1/2+1/2*5^(1/2))^24 4334944369998747 a001 7778742049/1860498*192900153618^(4/9) 4334944369998747 a001 7778742049/1860498*73681302247^(6/13) 4334944369998747 a001 10983760033/620166*10749957122^(7/16) 4334944369998747 a001 53316291173/1860498*10749957122^(5/12) 4334944369998747 a001 10182505537/930249*10749957122^(11/24) 4334944369998747 a001 7778742049/1860498*10749957122^(1/2) 4334944369998747 a001 260504524977853805/600940872 4334944369998747 a001 3278735159921/930249*4106118243^(5/23) 4334944369998747 a001 2504730781961/1860498*4106118243^(6/23) 4334944369998747 a001 956722026041/1860498*4106118243^(7/23) 4334944369998747 a001 182717648081/930249*4106118243^(8/23) 4334944369998747 a001 832040/6643838879*14662949395604^(20/21) 4334944369998747 a001 2971215073/1860498*(1/2+1/2*5^(1/2))^26 4334944369998747 a001 2971215073/1860498*73681302247^(1/2) 4334944369998747 a001 139583862445/1860498*4106118243^(9/23) 4334944369998747 a001 53316291173/1860498*4106118243^(10/23) 4334944369998747 a001 2971215073/1860498*10749957122^(13/24) 4334944369998747 a001 12586269025/1860498*4106118243^(1/2) 4334944369998747 a001 10182505537/930249*4106118243^(11/23) 4334944369998747 a001 7778742049/1860498*4106118243^(12/23) 4334944369998747 a001 2971215073/1860498*4106118243^(13/23) 4334944369998747 a001 796030994547153640/1836311903 4334944369998747 a001 3278735159921/930249*1568397607^(5/22) 4334944369998747 a001 4052739537881/1860498*1568397607^(1/4) 4334944369998747 a001 2504730781961/1860498*1568397607^(3/11) 4334944369998747 a001 956722026041/1860498*1568397607^(7/22) 4334944369998747 a001 182717648081/930249*1568397607^(4/11) 4334944369998747 a001 567451585/930249*17393796001^(4/7) 4334944369998747 a001 567451585/930249*14662949395604^(4/9) 4334944369998747 a001 567451585/930249*(1/2+1/2*5^(1/2))^28 4334944369998747 a001 567451585/930249*505019158607^(1/2) 4334944369998747 a001 567451585/930249*73681302247^(7/13) 4334944369998747 a001 567451585/930249*10749957122^(7/12) 4334944369998747 a001 139583862445/1860498*1568397607^(9/22) 4334944369998747 a001 53316291173/1860498*1568397607^(5/11) 4334944369998747 a001 567451585/930249*4106118243^(14/23) 4334944369998747 a001 10182505537/930249*1568397607^(1/2) 4334944369998747 a001 7778742049/1860498*1568397607^(6/11) 4334944369998747 a001 2971215073/1860498*1568397607^(13/22) 4334944369998747 a001 304056783818630480/701408733 4334944369998747 a001 567451585/930249*1568397607^(7/11) 4334944369998747 a001 3536736619241/620166*599074578^(3/14) 4334944369998747 a001 3278735159921/930249*599074578^(5/21) 4334944369998747 a001 2504730781961/1860498*599074578^(2/7) 4334944369998747 a001 956722026041/1860498*599074578^(1/3) 4334944369998747 a001 433494437/1860498*2537720636^(2/3) 4334944369998747 a001 591286729879/1860498*599074578^(5/14) 4334944369998747 a001 182717648081/930249*599074578^(8/21) 4334944369998747 a001 433494437/1860498*45537549124^(10/17) 4334944369998747 a001 433494437/1860498*312119004989^(6/11) 4334944369998747 a001 832040/969323029*14662949395604^(8/9) 4334944369998747 a001 433494437/1860498*14662949395604^(10/21) 4334944369998747 a001 433494437/1860498*(1/2+1/2*5^(1/2))^30 4334944369998747 a001 433494437/1860498*192900153618^(5/9) 4334944369998747 a001 433494437/1860498*28143753123^(3/5) 4334944369998747 a001 433494437/1860498*10749957122^(5/8) 4334944369998747 a001 433494437/1860498*4106118243^(15/23) 4334944369998747 a001 139583862445/1860498*599074578^(3/7) 4334944369998747 a001 53316291173/1860498*599074578^(10/21) 4334944369998747 a001 433494437/1860498*1568397607^(15/22) 4334944369998747 a001 10983760033/620166*599074578^(1/2) 4334944369998747 a001 10182505537/930249*599074578^(11/21) 4334944369998747 a001 7778742049/1860498*599074578^(4/7) 4334944369998747 a001 1836311903/1860498*599074578^(9/14) 4334944369998747 a001 2971215073/1860498*599074578^(13/21) 4334944369998747 a001 567451585/930249*599074578^(2/3) 4334944369998747 a001 14517419613592225/33489287 4334944369998747 a001 433494437/1860498*599074578^(5/7) 4334944369998747 a001 3278735159921/930249*228826127^(1/4) 4334944369998747 a001 2504730781961/1860498*228826127^(3/10) 4334944369998747 a001 956722026041/1860498*228826127^(7/20) 4334944369998747 a001 591286729879/1860498*228826127^(3/8) 4334944369998747 a001 165580141/1860498*(1/2+1/2*5^(1/2))^32 4334944369998747 a001 165580141/1860498*23725150497407^(1/2) 4334944369998747 a001 165580141/1860498*505019158607^(4/7) 4334944369998747 a001 165580141/1860498*73681302247^(8/13) 4334944369998747 a001 165580141/1860498*10749957122^(2/3) 4334944369998747 a001 165580141/1860498*4106118243^(16/23) 4334944369998747 a001 165580141/1860498*1568397607^(8/11) 4334944369998747 a001 182717648081/930249*228826127^(2/5) 4334944369998747 a001 139583862445/1860498*228826127^(9/20) 4334944369998747 a001 165580141/1860498*599074578^(16/21) 4334944369998747 a001 53316291173/1860498*228826127^(1/2) 4334944369998747 a001 10182505537/930249*228826127^(11/20) 4334944369998747 a001 7778742049/1860498*228826127^(3/5) 4334944369998747 a001 267084832/103361*228826127^(5/8) 4334944369998747 a001 2971215073/1860498*228826127^(13/20) 4334944369998747 a001 567451585/930249*228826127^(7/10) 4334944369998747 a001 433494437/1860498*228826127^(3/4) 4334944369998747 a001 806568852865144/1860621 4334944369998747 a001 165580141/1860498*228826127^(4/5) 4334944369998747 a001 3278735159921/930249*87403803^(5/19) 4334944369998747 a001 2504730781961/1860498*87403803^(6/19) 4334944369998747 a001 956722026041/1860498*87403803^(7/19) 4334944369998747 a001 31622993/930249*45537549124^(2/3) 4334944369998747 a001 208010/35355581*23725150497407^(13/16) 4334944369998747 a001 31622993/930249*(1/2+1/2*5^(1/2))^34 4334944369998747 a001 208010/35355581*505019158607^(13/14) 4334944369998747 a001 31622993/930249*10749957122^(17/24) 4334944369998747 a001 31622993/930249*4106118243^(17/23) 4334944369998747 a001 31622993/930249*1568397607^(17/22) 4334944369998747 a001 31622993/930249*599074578^(17/21) 4334944369998747 a001 182717648081/930249*87403803^(8/19) 4334944369998747 a001 139583862445/1860498*87403803^(9/19) 4334944369998747 a001 43133785636/930249*87403803^(1/2) 4334944369998747 a001 31622993/930249*228826127^(17/20) 4334944369998747 a001 53316291173/1860498*87403803^(10/19) 4334944369998747 a001 10182505537/930249*87403803^(11/19) 4334944369998748 a001 7778742049/1860498*87403803^(12/19) 4334944369998748 a001 2971215073/1860498*87403803^(13/19) 4334944369998748 a001 567451585/930249*87403803^(14/19) 4334944369998748 a001 433494437/1860498*87403803^(15/19) 4334944369998748 a001 165580141/1860498*87403803^(16/19) 4334944369998748 a001 16944503814010960/39088169 4334944369998748 a001 31622993/930249*87403803^(17/19) 4334944369998748 a001 3536736619241/620166*33385282^(1/4) 4334944369998748 a001 3278735159921/930249*33385282^(5/18) 4334944369998748 a001 24157817/1860498*141422324^(12/13) 4334944369998748 a001 2504730781961/1860498*33385282^(1/3) 4334944369998749 a001 24157817/1860498*2537720636^(4/5) 4334944369998749 a001 24157817/1860498*45537549124^(12/17) 4334944369998749 a001 832040/54018521*312119004989^(10/11) 4334944369998749 a001 24157817/1860498*14662949395604^(4/7) 4334944369998749 a001 24157817/1860498*(1/2+1/2*5^(1/2))^36 4334944369998749 a001 24157817/1860498*505019158607^(9/14) 4334944369998749 a001 24157817/1860498*192900153618^(2/3) 4334944369998749 a001 24157817/1860498*73681302247^(9/13) 4334944369998749 a001 24157817/1860498*10749957122^(3/4) 4334944369998749 a001 24157817/1860498*4106118243^(18/23) 4334944369998749 a001 24157817/1860498*1568397607^(9/11) 4334944369998749 a001 24157817/1860498*599074578^(6/7) 4334944369998749 a001 956722026041/1860498*33385282^(7/18) 4334944369998749 a001 24157817/1860498*228826127^(9/10) 4334944369998749 a001 591286729879/1860498*33385282^(5/12) 4334944369998749 a001 182717648081/930249*33385282^(4/9) 4334944369998749 a001 139583862445/1860498*33385282^(1/2) 4334944369998749 a001 24157817/1860498*87403803^(18/19) 4334944369998749 a001 53316291173/1860498*33385282^(5/9) 4334944369998749 a001 10983760033/620166*33385282^(7/12) 4334944369998750 a001 10182505537/930249*33385282^(11/18) 4334944369998750 a001 7778742049/1860498*33385282^(2/3) 4334944369998750 a001 2971215073/1860498*33385282^(13/18) 4334944369998750 a001 1836311903/1860498*33385282^(3/4) 4334944369998750 a001 567451585/930249*33385282^(7/9) 4334944369998750 a001 433494437/1860498*33385282^(5/6) 4334944369998751 a001 831985/15126*33385282^(11/12) 4334944369998751 a001 165580141/1860498*33385282^(8/9) 4334944369998751 a001 809028066806245/1866294 4334944369998751 a001 31622993/930249*33385282^(17/18) 4334944369998755 a001 3278735159921/930249*12752043^(5/17) 4334944369998757 a001 2504730781961/1860498*12752043^(6/17) 4334944369998757 a001 75640/1875749*45537549124^(16/17) 4334944369998757 a001 9227465/1860498*817138163596^(2/3) 4334944369998757 a001 75640/1875749*14662949395604^(16/21) 4334944369998757 a001 75640/1875749*(1/2+1/2*5^(1/2))^48 4334944369998757 a001 9227465/1860498*(1/2+1/2*5^(1/2))^38 4334944369998757 a001 75640/1875749*192900153618^(8/9) 4334944369998757 a001 75640/1875749*73681302247^(12/13) 4334944369998757 a001 9227465/1860498*10749957122^(19/24) 4334944369998757 a001 9227465/1860498*4106118243^(19/23) 4334944369998757 a001 9227465/1860498*1568397607^(19/22) 4334944369998757 a001 9227465/1860498*599074578^(19/21) 4334944369998757 a001 9227465/1860498*228826127^(19/20) 4334944369998758 a001 956722026041/1860498*12752043^(7/17) 4334944369998760 a001 182717648081/930249*12752043^(8/17) 4334944369998760 a001 75283811239/620166*12752043^(1/2) 4334944369998761 a001 139583862445/1860498*12752043^(9/17) 4334944369998763 a001 53316291173/1860498*12752043^(10/17) 4334944369998764 a001 10182505537/930249*12752043^(11/17) 4334944369998766 a001 7778742049/1860498*12752043^(12/17) 4334944369998768 a001 2971215073/1860498*12752043^(13/17) 4334944369998769 a001 567451585/930249*12752043^(14/17) 4334944369998771 a001 433494437/1860498*12752043^(15/17) 4334944369998772 a001 165580141/1860498*12752043^(16/17) 4334944369998773 a001 2971215073/710647*710647^(6/7) 4334944369998774 a001 2472169789338920/5702887 4334944369998804 a001 3278735159921/930249*4870847^(5/16) 4334944369998816 a001 2504730781961/1860498*4870847^(3/8) 4334944369998817 a001 1762289/930249*2537720636^(8/9) 4334944369998817 a001 1762289/930249*312119004989^(8/11) 4334944369998817 a001 208010/1970299*(1/2+1/2*5^(1/2))^46 4334944369998817 a001 1762289/930249*(1/2+1/2*5^(1/2))^40 4334944369998817 a001 1762289/930249*23725150497407^(5/8) 4334944369998817 a001 1762289/930249*73681302247^(10/13) 4334944369998817 a001 1762289/930249*28143753123^(4/5) 4334944369998817 a001 1762289/930249*10749957122^(5/6) 4334944369998817 a001 208010/1970299*10749957122^(23/24) 4334944369998817 a001 1762289/930249*4106118243^(20/23) 4334944369998817 a001 1762289/930249*1568397607^(10/11) 4334944369998817 a001 1762289/930249*599074578^(20/21) 4334944369998827 a001 956722026041/1860498*4870847^(7/16) 4334944369998839 a001 182717648081/930249*4870847^(1/2) 4334944369998850 a001 139583862445/1860498*4870847^(9/16) 4334944369998861 a001 53316291173/1860498*4870847^(5/8) 4334944369998873 a001 10182505537/930249*4870847^(11/16) 4334944369998884 a001 7778742049/1860498*4870847^(3/4) 4334944369998896 a001 2971215073/1860498*4870847^(13/16) 4334944369998907 a001 567451585/930249*4870847^(7/8) 4334944369998918 a001 433494437/1860498*4870847^(15/16) 4334944369998930 a001 944284833566800/2178309 4334944369999123 a001 3536736619241/620166*1860498^(3/10) 4334944369999165 a001 3278735159921/930249*1860498^(1/3) 4334944369999226 a001 1346269/1860498*2537720636^(14/15) 4334944369999226 a001 1346269/1860498*17393796001^(6/7) 4334944369999226 a001 1346269/1860498*45537549124^(14/17) 4334944369999226 a001 832040/3010349*312119004989^(4/5) 4334944369999226 a001 832040/3010349*(1/2+1/2*5^(1/2))^44 4334944369999226 a001 1346269/1860498*14662949395604^(2/3) 4334944369999226 a001 1346269/1860498*(1/2+1/2*5^(1/2))^42 4334944369999226 a001 1346269/1860498*505019158607^(3/4) 4334944369999226 a001 1346269/1860498*192900153618^(7/9) 4334944369999226 a001 832040/3010349*73681302247^(11/13) 4334944369999226 a001 1346269/1860498*10749957122^(7/8) 4334944369999226 a001 832040/3010349*10749957122^(11/12) 4334944369999226 a001 1346269/1860498*4106118243^(21/23) 4334944369999226 a001 832040/3010349*4106118243^(22/23) 4334944369999226 a001 1346269/1860498*1568397607^(21/22) 4334944369999248 a001 2504730781961/1860498*1860498^(2/5) 4334944369999332 a001 956722026041/1860498*1860498^(7/15) 4334944369999338 a001 583600122205464/1346269 4334944369999373 a001 591286729879/1860498*1860498^(1/2) 4334944369999386 a001 1134903170/710647*710647^(13/14) 4334944369999415 a001 182717648081/930249*1860498^(8/15) 4334944369999494 a001 583600122205485/1346269 4334944369999499 a001 139583862445/1860498*1860498^(3/5) 4334944369999517 a001 583600122205488/1346269 4334944369999524 a001 583600122205489/1346269 4334944369999532 a001 583600122205490/1346269 4334944369999582 a001 53316291173/1860498*1860498^(2/3) 4334944369999591 a001 583600122205498/1346269 4334944369999624 a001 10983760033/620166*1860498^(7/10) 4334944369999634 a001 2178309/4870847*(1/2+1/2*5^(1/2))^43 4334944369999666 a001 10182505537/930249*1860498^(11/15) 4334944369999747 a001 17167246694073/39602 4334944369999749 a001 7778742049/1860498*1860498^(4/5) 4334944369999753 a001 1134903170/4870847*7881196^(10/11) 4334944369999760 a001 4807526976/4870847*7881196^(9/11) 4334944369999766 a001 20365011074/4870847*7881196^(8/11) 4334944369999770 a001 53316291173/4870847*7881196^(2/3) 4334944369999772 a001 86267571272/4870847*7881196^(7/11) 4334944369999779 a001 365435296162/4870847*7881196^(6/11) 4334944369999785 a001 1548008755920/4870847*7881196^(5/11) 4334944369999790 a001 726103/4250681*45537549124^(15/17) 4334944369999790 a001 726103/4250681*312119004989^(9/11) 4334944369999790 a001 726103/4250681*14662949395604^(5/7) 4334944369999790 a001 726103/4250681*(1/2+1/2*5^(1/2))^45 4334944369999790 a001 5702887/4870847*(1/2+1/2*5^(1/2))^41 4334944369999790 a001 726103/4250681*192900153618^(5/6) 4334944369999790 a001 726103/4250681*28143753123^(9/10) 4334944369999790 a001 726103/4250681*10749957122^(15/16) 4334944369999791 a001 267084832/103361*1860498^(5/6) 4334944369999791 a001 6557470319842/4870847*7881196^(4/11) 4334944369999794 a001 2178309*7881196^(1/3) 4334944369999807 a001 4000054745112027/9227465 4334944369999808 a001 1134903170/4870847*20633239^(6/7) 4334944369999809 a001 2971215073/4870847*20633239^(4/5) 4334944369999810 a001 12586269025/4870847*20633239^(5/7) 4334944369999811 a001 86267571272/4870847*20633239^(3/5) 4334944369999811 a001 139583862445/4870847*20633239^(4/7) 4334944369999812 a001 1548008755920/4870847*20633239^(3/7) 4334944369999813 a001 2504730781961/4870847*20633239^(2/5) 4334944369999813 a001 14930352/4870847*2537720636^(13/15) 4334944369999813 a001 14930352/4870847*45537549124^(13/17) 4334944369999813 a001 14930352/4870847*14662949395604^(13/21) 4334944369999813 a001 311187/4769326*(1/2+1/2*5^(1/2))^47 4334944369999813 a001 14930352/4870847*(1/2+1/2*5^(1/2))^39 4334944369999813 a001 14930352/4870847*192900153618^(13/18) 4334944369999813 a001 14930352/4870847*73681302247^(3/4) 4334944369999813 a001 14930352/4870847*10749957122^(13/16) 4334944369999813 a001 14930352/4870847*599074578^(13/14) 4334944369999815 a001 10472279279563584/24157817 4334944369999816 a001 726103/29134601*14662949395604^(7/9) 4334944369999816 a001 39088169/4870847*(1/2+1/2*5^(1/2))^37 4334944369999816 a001 726103/29134601*505019158607^(7/8) 4334944369999817 a001 27416783093578725/63245986 4334944369999817 a001 267914296/4870847*141422324^(11/13) 4334944369999817 a001 1134903170/4870847*141422324^(10/13) 4334944369999817 a001 4807526976/4870847*141422324^(9/13) 4334944369999817 a001 7778742049/4870847*141422324^(2/3) 4334944369999817 a001 20365011074/4870847*141422324^(8/13) 4334944369999817 a001 86267571272/4870847*141422324^(7/13) 4334944369999817 a001 365435296162/4870847*141422324^(6/13) 4334944369999817 a001 1548008755920/4870847*141422324^(5/13) 4334944369999817 a001 102334155/4870847*2537720636^(7/9) 4334944369999817 a001 102334155/4870847*17393796001^(5/7) 4334944369999817 a001 102334155/4870847*312119004989^(7/11) 4334944369999817 a001 46347/4868641*14662949395604^(17/21) 4334944369999817 a001 102334155/4870847*14662949395604^(5/9) 4334944369999817 a001 102334155/4870847*(1/2+1/2*5^(1/2))^35 4334944369999817 a001 102334155/4870847*505019158607^(5/8) 4334944369999817 a001 46347/4868641*192900153618^(17/18) 4334944369999817 a001 102334155/4870847*28143753123^(7/10) 4334944369999817 a001 102334155/4870847*599074578^(5/6) 4334944369999817 a001 4052739537881/4870847*141422324^(1/3) 4334944369999817 a001 6557470319842/4870847*141422324^(4/13) 4334944369999817 a001 71778070001172591/165580141 4334944369999817 a001 267914296/4870847*2537720636^(11/15) 4334944369999817 a001 267914296/4870847*45537549124^(11/17) 4334944369999817 a001 267914296/4870847*312119004989^(3/5) 4334944369999817 a001 267914296/4870847*14662949395604^(11/21) 4334944369999817 a001 267914296/4870847*(1/2+1/2*5^(1/2))^33 4334944369999817 a001 267914296/4870847*192900153618^(11/18) 4334944369999817 a001 267914296/4870847*10749957122^(11/16) 4334944369999817 a001 267914296/4870847*1568397607^(3/4) 4334944369999817 a001 102334155/4870847*228826127^(7/8) 4334944369999817 a001 187917426909939048/433494437 4334944369999817 a001 267914296/4870847*599074578^(11/14) 4334944369999817 a001 701408733/4870847*(1/2+1/2*5^(1/2))^31 4334944369999817 a001 701408733/4870847*9062201101803^(1/2) 4334944369999817 a001 311187/224056801*3461452808002^(11/12) 4334944369999817 a001 491974210728644553/1134903170 4334944369999817 a001 4807526976/4870847*2537720636^(3/5) 4334944369999817 a001 12586269025/4870847*2537720636^(5/9) 4334944369999817 a001 20365011074/4870847*2537720636^(8/15) 4334944369999817 a001 86267571272/4870847*2537720636^(7/15) 4334944369999817 a001 139583862445/4870847*2537720636^(4/9) 4334944369999817 a001 365435296162/4870847*2537720636^(2/5) 4334944369999817 a001 726103/1368706081*14662949395604^(19/21) 4334944369999817 a001 1836311903/4870847*(1/2+1/2*5^(1/2))^29 4334944369999817 a001 1836311903/4870847*1322157322203^(1/2) 4334944369999817 a001 1548008755920/4870847*2537720636^(1/3) 4334944369999817 a001 6557470319842/4870847*2537720636^(4/15) 4334944369999817 a001 1288005205275994611/2971215073 4334944369999817 a001 4807526976/4870847*45537549124^(9/17) 4334944369999817 a001 4807526976/4870847*817138163596^(9/19) 4334944369999817 a001 4807526976/4870847*14662949395604^(3/7) 4334944369999817 a001 4807526976/4870847*(1/2+1/2*5^(1/2))^27 4334944369999817 a001 4807526976/4870847*192900153618^(1/2) 4334944369999817 a001 4807526976/4870847*10749957122^(9/16) 4334944369999817 a001 3372041405099339280/7778742049 4334944369999817 a001 86267571272/4870847*17393796001^(3/7) 4334944369999817 a001 12586269025/4870847*312119004989^(5/11) 4334944369999817 a001 12586269025/4870847*(1/2+1/2*5^(1/2))^25 4334944369999817 a001 12586269025/4870847*3461452808002^(5/12) 4334944369999817 a001 2504730781961/4870847*17393796001^(2/7) 4334944369999817 a001 12586269025/4870847*28143753123^(1/2) 4334944369999817 a001 8828119010022023229/20365011074 4334944369999817 a001 86267571272/4870847*45537549124^(7/17) 4334944369999817 a001 32951280099/4870847*(1/2+1/2*5^(1/2))^23 4334944369999817 a001 365435296162/4870847*45537549124^(6/17) 4334944369999817 a001 591286729879/4870847*45537549124^(1/3) 4334944369999817 a001 1548008755920/4870847*45537549124^(5/17) 4334944369999817 a001 6557470319842/4870847*45537549124^(4/17) 4334944369999817 a001 86267571272/4870847*14662949395604^(1/3) 4334944369999817 a001 86267571272/4870847*(1/2+1/2*5^(1/2))^21 4334944369999817 a001 86267571272/4870847*192900153618^(7/18) 4334944369999817 a001 225851433717/4870847*(1/2+1/2*5^(1/2))^19 4334944369999817 a001 1548008755920/4870847*312119004989^(3/11) 4334944369999817 a001 2178309*312119004989^(1/5) 4334944369999817 a001 1548008755920/4870847*14662949395604^(5/21) 4334944369999817 a001 1548008755920/4870847*(1/2+1/2*5^(1/2))^15 4334944369999817 a001 4052739537881/4870847*(1/2+1/2*5^(1/2))^13 4334944369999817 a001 2178309*(1/2+1/2*5^(1/2))^11 4334944369999817 a001 6557470319842/4870847*14662949395604^(4/21) 4334944369999817 a001 6557470319842/4870847*(1/2+1/2*5^(1/2))^12 4334944369999817 a001 2504730781961/4870847*14662949395604^(2/9) 4334944369999817 a001 2504730781961/4870847*(1/2+1/2*5^(1/2))^14 4334944369999817 a001 365435296162/4870847*(1/2+1/2*5^(1/2))^18 4334944369999817 a001 1548008755920/4870847*192900153618^(5/18) 4334944369999817 a001 139583862445/4870847*(1/2+1/2*5^(1/2))^20 4334944369999817 a001 139583862445/4870847*23725150497407^(5/16) 4334944369999817 a001 139583862445/4870847*505019158607^(5/14) 4334944369999817 a001 4052739537881/4870847*73681302247^(1/4) 4334944369999817 a001 956722026041/4870847*73681302247^(4/13) 4334944369999817 a001 53316291173/4870847*312119004989^(2/5) 4334944369999817 a001 53316291173/4870847*(1/2+1/2*5^(1/2))^22 4334944369999817 a001 139583862445/4870847*73681302247^(5/13) 4334944369999817 a001 4761398871648235726/10983760033 4334944369999817 a001 20365011074/4870847*45537549124^(8/17) 4334944369999817 a001 1548008755920/4870847*28143753123^(3/10) 4334944369999817 a001 20365011074/4870847*14662949395604^(8/21) 4334944369999817 a001 20365011074/4870847*(1/2+1/2*5^(1/2))^24 4334944369999817 a001 20365011074/4870847*192900153618^(4/9) 4334944369999817 a001 139583862445/4870847*28143753123^(2/5) 4334944369999817 a001 20365011074/4870847*73681302247^(6/13) 4334944369999817 a001 5456077604922683949/12586269025 4334944369999817 a001 6557470319842/4870847*10749957122^(1/4) 4334944369999817 a001 2504730781961/4870847*10749957122^(7/24) 4334944369999817 a001 1548008755920/4870847*10749957122^(5/16) 4334944369999817 a001 956722026041/4870847*10749957122^(1/3) 4334944369999817 a001 365435296162/4870847*10749957122^(3/8) 4334944369999817 a001 2178309/17393796001*14662949395604^(20/21) 4334944369999817 a001 7778742049/4870847*(1/2+1/2*5^(1/2))^26 4334944369999817 a001 7778742049/4870847*73681302247^(1/2) 4334944369999817 a001 139583862445/4870847*10749957122^(5/12) 4334944369999817 a001 86267571272/4870847*10749957122^(7/16) 4334944369999817 a001 53316291173/4870847*10749957122^(11/24) 4334944369999817 a001 20365011074/4870847*10749957122^(1/2) 4334944369999817 a001 7778742049/4870847*10749957122^(13/24) 4334944369999817 a001 2111485511472487/4870848 4334944369999817 a001 6557470319842/4870847*4106118243^(6/23) 4334944369999817 a001 2504730781961/4870847*4106118243^(7/23) 4334944369999817 a001 956722026041/4870847*4106118243^(8/23) 4334944369999817 a001 2971215073/4870847*17393796001^(4/7) 4334944369999817 a001 2971215073/4870847*14662949395604^(4/9) 4334944369999817 a001 2971215073/4870847*(1/2+1/2*5^(1/2))^28 4334944369999817 a001 2971215073/4870847*73681302247^(7/13) 4334944369999817 a001 365435296162/4870847*4106118243^(9/23) 4334944369999817 a001 139583862445/4870847*4106118243^(10/23) 4334944369999817 a001 2971215073/4870847*10749957122^(7/12) 4334944369999817 a001 53316291173/4870847*4106118243^(11/23) 4334944369999817 a001 32951280099/4870847*4106118243^(1/2) 4334944369999817 a001 20365011074/4870847*4106118243^(12/23) 4334944369999817 a001 7778742049/4870847*4106118243^(13/23) 4334944369999817 a001 1134903170/4870847*2537720636^(2/3) 4334944369999817 a001 2971215073/4870847*4106118243^(14/23) 4334944369999817 a001 796030994547350058/1836311903 4334944369999817 a001 2178309*1568397607^(1/4) 4334944369999817 a001 6557470319842/4870847*1568397607^(3/11) 4334944369999817 a001 2504730781961/4870847*1568397607^(7/22) 4334944369999817 a001 956722026041/4870847*1568397607^(4/11) 4334944369999817 a001 1134903170/4870847*45537549124^(10/17) 4334944369999817 a001 1134903170/4870847*312119004989^(6/11) 4334944369999817 a001 1134903170/4870847*14662949395604^(10/21) 4334944369999817 a001 1134903170/4870847*(1/2+1/2*5^(1/2))^30 4334944369999817 a001 1134903170/4870847*192900153618^(5/9) 4334944369999817 a001 1134903170/4870847*28143753123^(3/5) 4334944369999817 a001 1134903170/4870847*10749957122^(5/8) 4334944369999817 a001 365435296162/4870847*1568397607^(9/22) 4334944369999817 a001 139583862445/4870847*1568397607^(5/11) 4334944369999817 a001 1134903170/4870847*4106118243^(15/23) 4334944369999817 a001 53316291173/4870847*1568397607^(1/2) 4334944369999817 a001 20365011074/4870847*1568397607^(6/11) 4334944369999817 a001 7778742049/4870847*1568397607^(13/22) 4334944369999817 a001 2971215073/4870847*1568397607^(7/11) 4334944369999817 a001 1138789452504515/2626999 4334944369999817 a001 1134903170/4870847*1568397607^(15/22) 4334944369999817 a001 6557470319842/4870847*599074578^(2/7) 4334944369999817 a001 2504730781961/4870847*599074578^(1/3) 4334944369999817 a001 1548008755920/4870847*599074578^(5/14) 4334944369999817 a001 956722026041/4870847*599074578^(8/21) 4334944369999817 a001 2178309/969323029*14662949395604^(6/7) 4334944369999817 a001 433494437/4870847*(1/2+1/2*5^(1/2))^32 4334944369999817 a001 433494437/4870847*23725150497407^(1/2) 4334944369999817 a001 433494437/4870847*73681302247^(8/13) 4334944369999817 a001 433494437/4870847*10749957122^(2/3) 4334944369999817 a001 433494437/4870847*4106118243^(16/23) 4334944369999817 a001 365435296162/4870847*599074578^(3/7) 4334944369999817 a001 139583862445/4870847*599074578^(10/21) 4334944369999817 a001 433494437/4870847*1568397607^(8/11) 4334944369999817 a001 86267571272/4870847*599074578^(1/2) 4334944369999817 a001 53316291173/4870847*599074578^(11/21) 4334944369999817 a001 20365011074/4870847*599074578^(4/7) 4334944369999817 a001 7778742049/4870847*599074578^(13/21) 4334944369999817 a001 4807526976/4870847*599074578^(9/14) 4334944369999817 a001 2971215073/4870847*599074578^(2/3) 4334944369999817 a001 1134903170/4870847*599074578^(5/7) 4334944369999817 a001 116139356908766457/267914296 4334944369999817 a001 433494437/4870847*599074578^(16/21) 4334944369999817 a001 63245986/4870847*141422324^(12/13) 4334944369999817 a001 6557470319842/4870847*228826127^(3/10) 4334944369999817 a001 2504730781961/4870847*228826127^(7/20) 4334944369999817 a001 1548008755920/4870847*228826127^(3/8) 4334944369999817 a001 165580141/4870847*45537549124^(2/3) 4334944369999817 a001 2178309/370248451*23725150497407^(13/16) 4334944369999817 a001 165580141/4870847*(1/2+1/2*5^(1/2))^34 4334944369999817 a001 2178309/370248451*505019158607^(13/14) 4334944369999817 a001 165580141/4870847*10749957122^(17/24) 4334944369999817 a001 165580141/4870847*4106118243^(17/23) 4334944369999817 a001 165580141/4870847*1568397607^(17/22) 4334944369999817 a001 956722026041/4870847*228826127^(2/5) 4334944369999817 a001 365435296162/4870847*228826127^(9/20) 4334944369999817 a001 139583862445/4870847*228826127^(1/2) 4334944369999817 a001 165580141/4870847*599074578^(17/21) 4334944369999817 a001 53316291173/4870847*228826127^(11/20) 4334944369999817 a001 20365011074/4870847*228826127^(3/5) 4334944369999817 a001 12586269025/4870847*228826127^(5/8) 4334944369999817 a001 7778742049/4870847*228826127^(13/20) 4334944369999817 a001 2971215073/4870847*228826127^(7/10) 4334944369999817 a001 1134903170/4870847*228826127^(3/4) 4334944369999817 a001 433494437/4870847*228826127^(4/5) 4334944369999817 a001 2112442233694946/4873055 4334944369999817 a001 165580141/4870847*228826127^(17/20) 4334944369999817 a001 6557470319842/4870847*87403803^(6/19) 4334944369999817 a001 2504730781961/4870847*87403803^(7/19) 4334944369999817 a001 63245986/4870847*2537720636^(4/5) 4334944369999817 a001 63245986/4870847*45537549124^(12/17) 4334944369999817 a001 2178309/141422324*312119004989^(10/11) 4334944369999817 a001 63245986/4870847*14662949395604^(4/7) 4334944369999817 a001 63245986/4870847*(1/2+1/2*5^(1/2))^36 4334944369999817 a001 2178309/141422324*3461452808002^(5/6) 4334944369999817 a001 63245986/4870847*505019158607^(9/14) 4334944369999817 a001 63245986/4870847*192900153618^(2/3) 4334944369999817 a001 63245986/4870847*73681302247^(9/13) 4334944369999817 a001 63245986/4870847*10749957122^(3/4) 4334944369999817 a001 63245986/4870847*4106118243^(18/23) 4334944369999817 a001 63245986/4870847*1568397607^(9/11) 4334944369999817 a001 63245986/4870847*599074578^(6/7) 4334944369999817 a001 956722026041/4870847*87403803^(8/19) 4334944369999817 a001 365435296162/4870847*87403803^(9/19) 4334944369999817 a001 225851433717/4870847*87403803^(1/2) 4334944369999817 a001 63245986/4870847*228826127^(9/10) 4334944369999817 a001 139583862445/4870847*87403803^(10/19) 4334944369999817 a001 53316291173/4870847*87403803^(11/19) 4334944369999817 a001 20365011074/4870847*87403803^(12/19) 4334944369999817 a001 7778742049/4870847*87403803^(13/19) 4334944369999817 a001 2971215073/4870847*87403803^(14/19) 4334944369999817 a001 1134903170/4870847*87403803^(15/19) 4334944369999817 a001 433494437/4870847*87403803^(16/19) 4334944369999817 a001 165580141/4870847*87403803^(17/19) 4334944369999817 a001 16944503814015141/39088169 4334944369999818 a001 63245986/4870847*87403803^(18/19) 4334944369999818 a001 6557470319842/4870847*33385282^(1/3) 4334944369999818 a001 2178309/54018521*45537549124^(16/17) 4334944369999818 a001 24157817/4870847*817138163596^(2/3) 4334944369999818 a001 2178309/54018521*14662949395604^(16/21) 4334944369999818 a001 24157817/4870847*(1/2+1/2*5^(1/2))^38 4334944369999818 a001 2178309/54018521*192900153618^(8/9) 4334944369999818 a001 2178309/54018521*73681302247^(12/13) 4334944369999818 a001 24157817/4870847*10749957122^(19/24) 4334944369999818 a001 24157817/4870847*4106118243^(19/23) 4334944369999818 a001 24157817/4870847*1568397607^(19/22) 4334944369999818 a001 24157817/4870847*599074578^(19/21) 4334944369999818 a001 2504730781961/4870847*33385282^(7/18) 4334944369999818 a001 24157817/4870847*228826127^(19/20) 4334944369999818 a001 1548008755920/4870847*33385282^(5/12) 4334944369999819 a001 956722026041/4870847*33385282^(4/9) 4334944369999819 a001 365435296162/4870847*33385282^(1/2) 4334944369999819 a001 139583862445/4870847*33385282^(5/9) 4334944369999819 a001 86267571272/4870847*33385282^(7/12) 4334944369999819 a001 53316291173/4870847*33385282^(11/18) 4334944369999819 a001 20365011074/4870847*33385282^(2/3) 4334944369999820 a001 7778742049/4870847*33385282^(13/18) 4334944369999820 a001 4807526976/4870847*33385282^(3/4) 4334944369999820 a001 2971215073/4870847*33385282^(7/9) 4334944369999820 a001 1134903170/4870847*33385282^(5/6) 4334944369999820 a001 433494437/4870847*33385282^(8/9) 4334944369999820 a001 267914296/4870847*33385282^(11/12) 4334944369999820 a001 165580141/4870847*33385282^(17/18) 4334944369999821 a001 2157408178150519/4976784 4334944369999826 a001 6557470319842/4870847*12752043^(6/17) 4334944369999827 a001 9227465/4870847*2537720636^(8/9) 4334944369999827 a001 9227465/4870847*312119004989^(8/11) 4334944369999827 a001 2178309/20633239*(1/2+1/2*5^(1/2))^46 4334944369999827 a001 9227465/4870847*(1/2+1/2*5^(1/2))^40 4334944369999827 a001 9227465/4870847*23725150497407^(5/8) 4334944369999827 a001 9227465/4870847*73681302247^(10/13) 4334944369999827 a001 9227465/4870847*28143753123^(4/5) 4334944369999827 a001 9227465/4870847*10749957122^(5/6) 4334944369999827 a001 2178309/20633239*10749957122^(23/24) 4334944369999827 a001 9227465/4870847*4106118243^(20/23) 4334944369999827 a001 9227465/4870847*1568397607^(10/11) 4334944369999827 a001 9227465/4870847*599074578^(20/21) 4334944369999828 a001 2504730781961/4870847*12752043^(7/17) 4334944369999829 a001 956722026041/4870847*12752043^(8/17) 4334944369999830 a001 591286729879/4870847*12752043^(1/2) 4334944369999831 a001 365435296162/4870847*12752043^(9/17) 4334944369999832 a001 139583862445/4870847*12752043^(10/17) 4334944369999833 a001 2971215073/1860498*1860498^(13/15) 4334944369999834 a001 53316291173/4870847*12752043^(11/17) 4334944369999836 a001 20365011074/4870847*12752043^(12/17) 4334944369999837 a001 7778742049/4870847*12752043^(13/17) 4334944369999839 a001 2971215073/4870847*12752043^(14/17) 4334944369999840 a001 1134903170/4870847*12752043^(15/17) 4334944369999842 a001 433494437/4870847*12752043^(16/17) 4334944369999843 a001 2472169789339530/5702887 4334944369999874 a001 1836311903/1860498*1860498^(9/10) 4334944369999885 a001 6557470319842/4870847*4870847^(3/8) 4334944369999887 a001 3524578/4870847*2537720636^(14/15) 4334944369999887 a001 3524578/4870847*17393796001^(6/7) 4334944369999887 a001 3524578/4870847*45537549124^(14/17) 4334944369999887 a001 2178309/7881196*312119004989^(4/5) 4334944369999887 a001 3524578/4870847*14662949395604^(2/3) 4334944369999887 a001 2178309/7881196*(1/2+1/2*5^(1/2))^44 4334944369999887 a001 2178309/7881196*23725150497407^(11/16) 4334944369999887 a001 3524578/4870847*(1/2+1/2*5^(1/2))^42 4334944369999887 a001 3524578/4870847*192900153618^(7/9) 4334944369999887 a001 2178309/7881196*73681302247^(11/13) 4334944369999887 a001 3524578/4870847*10749957122^(7/8) 4334944369999887 a001 2178309/7881196*10749957122^(11/12) 4334944369999887 a001 3524578/4870847*4106118243^(21/23) 4334944369999887 a001 2178309/7881196*4106118243^(22/23) 4334944369999887 a001 3524578/4870847*1568397607^(21/22) 4334944369999897 a001 2504730781961/4870847*4870847^(7/16) 4334944369999903 a001 763942477886276/1762289 4334944369999908 a001 956722026041/4870847*4870847^(1/2) 4334944369999909 a001 2971215073/12752043*7881196^(10/11) 4334944369999916 a001 12586269025/12752043*7881196^(9/11) 4334944369999916 a001 567451585/930249*1860498^(14/15) 4334944369999920 a001 365435296162/4870847*4870847^(9/16) 4334944369999922 a001 53316291173/12752043*7881196^(8/11) 4334944369999926 a001 763942477886280/1762289 4334944369999926 a001 139583862445/12752043*7881196^(2/3) 4334944369999928 a001 75283811239/4250681*7881196^(7/11) 4334944369999929 a001 1527884955772561/3524578 4334944369999931 a001 139583862445/4870847*4870847^(5/8) 4334944369999931 a001 763942477886281/1762289 4334944369999932 a001 7778742049/33385282*7881196^(10/11) 4334944369999935 a001 956722026041/12752043*7881196^(6/11) 4334944369999935 a001 20365011074/87403803*7881196^(10/11) 4334944369999936 a001 53316291173/228826127*7881196^(10/11) 4334944369999936 a001 139583862445/599074578*7881196^(10/11) 4334944369999936 a001 365435296162/1568397607*7881196^(10/11) 4334944369999936 a001 956722026041/4106118243*7881196^(10/11) 4334944369999936 a001 2504730781961/10749957122*7881196^(10/11) 4334944369999936 a001 6557470319842/28143753123*7881196^(10/11) 4334944369999936 a001 10610209857723/45537549124*7881196^(10/11) 4334944369999936 a001 4052739537881/17393796001*7881196^(10/11) 4334944369999936 a001 1548008755920/6643838879*7881196^(10/11) 4334944369999936 a001 591286729879/2537720636*7881196^(10/11) 4334944369999936 a001 225851433717/969323029*7881196^(10/11) 4334944369999936 a001 86267571272/370248451*7881196^(10/11) 4334944369999936 a001 63246219/271444*7881196^(10/11) 4334944369999938 a001 12586269025/54018521*7881196^(10/11) 4334944369999939 a001 32951280099/33385282*7881196^(9/11) 4334944369999940 a001 1527884955772565/3524578 4334944369999941 a001 4052739537881/12752043*7881196^(5/11) 4334944369999942 a001 86267571272/87403803*7881196^(9/11) 4334944369999942 a001 225851433717/228826127*7881196^(9/11) 4334944369999942 a001 591286729879/599074578*7881196^(9/11) 4334944369999942 a001 1548008755920/1568397607*7881196^(9/11) 4334944369999942 a001 4052739537881/4106118243*7881196^(9/11) 4334944369999942 a001 4807525989/4870846*7881196^(9/11) 4334944369999942 a001 6557470319842/6643838879*7881196^(9/11) 4334944369999942 a001 2504730781961/2537720636*7881196^(9/11) 4334944369999942 a001 53316291173/4870847*4870847^(11/16) 4334944369999942 a001 956722026041/969323029*7881196^(9/11) 4334944369999942 a001 365435296162/370248451*7881196^(9/11) 4334944369999943 a001 139583862445/141422324*7881196^(9/11) 4334944369999944 a001 53316291173/54018521*7881196^(9/11) 4334944369999945 a001 139583862445/33385282*7881196^(8/11) 4334944369999946 a001 5702887/12752043*(1/2+1/2*5^(1/2))^43 4334944369999946 a001 4807526976/20633239*7881196^(10/11) 4334944369999948 a001 365435296162/87403803*7881196^(8/11) 4334944369999949 a001 956722026041/228826127*7881196^(8/11) 4334944369999949 a001 2504730781961/599074578*7881196^(8/11) 4334944369999949 a001 6557470319842/1568397607*7881196^(8/11) 4334944369999949 a001 10610209857723/2537720636*7881196^(8/11) 4334944369999949 a001 4052739537881/969323029*7881196^(8/11) 4334944369999949 a001 1548008755920/370248451*7881196^(8/11) 4334944369999949 a001 591286729879/141422324*7881196^(8/11) 4334944369999949 a001 182717648081/16692641*7881196^(2/3) 4334944369999950 a001 225851433717/54018521*7881196^(8/11) 4334944369999951 a001 591286729879/33385282*7881196^(7/11) 4334944369999952 a001 956722026041/87403803*7881196^(2/3) 4334944369999953 a001 20365011074/20633239*7881196^(9/11) 4334944369999953 a001 2504730781961/228826127*7881196^(2/3) 4334944369999953 a001 3278735159921/299537289*7881196^(2/3) 4334944369999953 a001 10610209857723/969323029*7881196^(2/3) 4334944369999953 a001 4052739537881/370248451*7881196^(2/3) 4334944369999953 a001 387002188980/35355581*7881196^(2/3) 4334944369999954 a001 20365011074/4870847*4870847^(3/4) 4334944369999954 a001 591286729879/54018521*7881196^(2/3) 4334944369999955 a001 516002918640/29134601*7881196^(7/11) 4334944369999955 a001 4052739537881/228826127*7881196^(7/11) 4334944369999955 a001 3536736619241/199691526*7881196^(7/11) 4334944369999955 a001 6557470319842/370248451*7881196^(7/11) 4334944369999955 a001 2504730781961/141422324*7881196^(7/11) 4334944369999957 a001 956722026041/54018521*7881196^(7/11) 4334944369999958 a001 2504730781961/33385282*7881196^(6/11) 4334944369999959 a001 86267571272/20633239*7881196^(8/11) 4334944369999961 a001 6557470319842/87403803*7881196^(6/11) 4334944369999962 a001 10610209857723/141422324*7881196^(6/11) 4334944369999963 a001 4000054745112171/9227465 4334944369999963 a001 4052739537881/54018521*7881196^(6/11) 4334944369999963 a001 7787980473/711491*7881196^(2/3) 4334944369999964 a001 1515744265389/4769326*7881196^(5/11) 4334944369999964 a001 2971215073/12752043*20633239^(6/7) 4334944369999965 a001 7778742049/12752043*20633239^(4/5) 4334944369999965 a001 7778742049/4870847*4870847^(13/16) 4334944369999965 a001 365435296162/20633239*7881196^(7/11) 4334944369999966 a001 10983760033/4250681*20633239^(5/7) 4334944369999967 a001 75283811239/4250681*20633239^(3/5) 4334944369999967 a001 365435296162/12752043*20633239^(4/7) 4334944369999968 a001 4052739537881/12752043*20633239^(3/7) 4334944369999969 a001 6557470319842/12752043*20633239^(2/5) 4334944369999969 a001 5702887/33385282*45537549124^(15/17) 4334944369999969 a001 5702887/33385282*312119004989^(9/11) 4334944369999969 a001 5702887/33385282*14662949395604^(5/7) 4334944369999969 a001 5702887/33385282*(1/2+1/2*5^(1/2))^45 4334944369999969 a001 4976784/4250681*(1/2+1/2*5^(1/2))^41 4334944369999969 a001 5702887/33385282*192900153618^(5/6) 4334944369999969 a001 5702887/33385282*28143753123^(9/10) 4334944369999969 a001 5702887/33385282*10749957122^(15/16) 4334944369999971 a001 10472279279563961/24157817 4334944369999972 a001 140728068720/1875749*7881196^(6/11) 4334944369999972 a001 39088169/12752043*2537720636^(13/15) 4334944369999972 a001 39088169/12752043*45537549124^(13/17) 4334944369999972 a001 39088169/12752043*14662949395604^(13/21) 4334944369999972 a001 39088169/12752043*(1/2+1/2*5^(1/2))^39 4334944369999972 a001 39088169/12752043*192900153618^(13/18) 4334944369999972 a001 39088169/12752043*73681302247^(3/4) 4334944369999972 a001 39088169/12752043*10749957122^(13/16) 4334944369999972 a001 39088169/12752043*599074578^(13/14) 4334944369999973 a001 13708391546789856/31622993 4334944369999973 a001 233802911/4250681*141422324^(11/13) 4334944369999973 a001 165580141/12752043*141422324^(12/13) 4334944369999973 a001 2971215073/12752043*141422324^(10/13) 4334944369999973 a001 12586269025/12752043*141422324^(9/13) 4334944369999973 a001 20365011074/12752043*141422324^(2/3) 4334944369999973 a001 53316291173/12752043*141422324^(8/13) 4334944369999973 a001 75283811239/4250681*141422324^(7/13) 4334944369999973 a001 956722026041/12752043*141422324^(6/13) 4334944369999973 a001 4052739537881/12752043*141422324^(5/13) 4334944369999973 a001 5702887/228826127*14662949395604^(7/9) 4334944369999973 a001 34111385/4250681*(1/2+1/2*5^(1/2))^37 4334944369999973 a001 5702887/228826127*505019158607^(7/8) 4334944369999973 a001 3536736619241/4250681*141422324^(1/3) 4334944369999973 a001 71778070001175175/165580141 4334944369999973 a001 267914296/12752043*2537720636^(7/9) 4334944369999973 a001 267914296/12752043*17393796001^(5/7) 4334944369999973 a001 267914296/12752043*312119004989^(7/11) 4334944369999973 a001 5702887/599074578*14662949395604^(17/21) 4334944369999973 a001 267914296/12752043*14662949395604^(5/9) 4334944369999973 a001 267914296/12752043*(1/2+1/2*5^(1/2))^35 4334944369999973 a001 267914296/12752043*505019158607^(5/8) 4334944369999973 a001 5702887/599074578*192900153618^(17/18) 4334944369999973 a001 267914296/12752043*28143753123^(7/10) 4334944369999973 a001 187917426909945813/433494437 4334944369999973 a001 233802911/4250681*2537720636^(11/15) 4334944369999973 a001 267914296/12752043*599074578^(5/6) 4334944369999973 a001 233802911/4250681*45537549124^(11/17) 4334944369999973 a001 233802911/4250681*312119004989^(3/5) 4334944369999973 a001 233802911/4250681*817138163596^(11/19) 4334944369999973 a001 233802911/4250681*14662949395604^(11/21) 4334944369999973 a001 233802911/4250681*(1/2+1/2*5^(1/2))^33 4334944369999973 a001 233802911/4250681*192900153618^(11/18) 4334944369999973 a001 233802911/4250681*10749957122^(11/16) 4334944369999973 a001 14469829727313596/33379505 4334944369999973 a001 233802911/4250681*1568397607^(3/4) 4334944369999973 a001 12586269025/12752043*2537720636^(3/5) 4334944369999973 a001 10983760033/4250681*2537720636^(5/9) 4334944369999973 a001 53316291173/12752043*2537720636^(8/15) 4334944369999973 a001 2971215073/12752043*2537720636^(2/3) 4334944369999973 a001 75283811239/4250681*2537720636^(7/15) 4334944369999973 a001 365435296162/12752043*2537720636^(4/9) 4334944369999973 a001 956722026041/12752043*2537720636^(2/5) 4334944369999973 a001 1836311903/12752043*(1/2+1/2*5^(1/2))^31 4334944369999973 a001 1836311903/12752043*9062201101803^(1/2) 4334944369999973 a001 5702887/4106118243*3461452808002^(11/12) 4334944369999973 a001 4052739537881/12752043*2537720636^(1/3) 4334944369999973 a001 1288005205276040979/2971215073 4334944369999973 a001 5702887/10749957122*14662949395604^(19/21) 4334944369999973 a001 1602508992/4250681*(1/2+1/2*5^(1/2))^29 4334944369999973 a001 1602508992/4250681*1322157322203^(1/2) 4334944369999973 a001 3372041405099460673/7778742049 4334944369999973 a001 12586269025/12752043*45537549124^(9/17) 4334944369999973 a001 75283811239/4250681*17393796001^(3/7) 4334944369999973 a001 12586269025/12752043*817138163596^(9/19) 4334944369999973 a001 12586269025/12752043*14662949395604^(3/7) 4334944369999973 a001 12586269025/12752043*(1/2+1/2*5^(1/2))^27 4334944369999973 a001 12586269025/12752043*192900153618^(1/2) 4334944369999973 a001 6557470319842/12752043*17393796001^(2/7) 4334944369999973 a001 2763969633695160/6376021 4334944369999973 a001 75283811239/4250681*45537549124^(7/17) 4334944369999973 a001 10983760033/4250681*312119004989^(5/11) 4334944369999973 a001 10983760033/4250681*(1/2+1/2*5^(1/2))^25 4334944369999973 a001 10983760033/4250681*3461452808002^(5/12) 4334944369999973 a001 956722026041/12752043*45537549124^(6/17) 4334944369999973 a001 516002918640/4250681*45537549124^(1/3) 4334944369999973 a001 53316291173/12752043*45537549124^(8/17) 4334944369999973 a001 4052739537881/12752043*45537549124^(5/17) 4334944369999973 a001 23112315624967562447/53316291173 4334944369999973 a001 86267571272/12752043*(1/2+1/2*5^(1/2))^23 4334944369999973 a001 60508827864880346301/139583862445 4334944369999973 a001 75283811239/4250681*14662949395604^(1/3) 4334944369999973 a001 75283811239/4250681*(1/2+1/2*5^(1/2))^21 4334944369999973 a001 4052739537881/12752043*312119004989^(3/11) 4334944369999973 a001 4052739537881/12752043*(1/2+1/2*5^(1/2))^15 4334944369999973 a001 3536736619241/4250681*(1/2+1/2*5^(1/2))^13 4334944369999973 a001 5702887*(1/2+1/2*5^(1/2))^9 4334944369999973 a001 6557470319842/12752043*(1/2+1/2*5^(1/2))^14 4334944369999973 a001 2504730781961/12752043*(1/2+1/2*5^(1/2))^16 4334944369999973 a001 2504730781961/12752043*23725150497407^(1/4) 4334944369999973 a001 956722026041/12752043*(1/2+1/2*5^(1/2))^18 4334944369999973 a001 365435296162/12752043*(1/2+1/2*5^(1/2))^20 4334944369999973 a001 365435296162/12752043*23725150497407^(5/16) 4334944369999973 a001 365435296162/12752043*505019158607^(5/14) 4334944369999973 a001 139583862445/12752043*312119004989^(2/5) 4334944369999973 a001 139583862445/12752043*(1/2+1/2*5^(1/2))^22 4334944369999973 a001 1099897418820964231/2537281508 4334944369999973 a001 3536736619241/4250681*73681302247^(1/4) 4334944369999973 a001 2504730781961/12752043*73681302247^(4/13) 4334944369999973 a001 53316291173/12752043*14662949395604^(8/21) 4334944369999973 a001 53316291173/12752043*(1/2+1/2*5^(1/2))^24 4334944369999973 a001 365435296162/12752043*73681302247^(5/13) 4334944369999973 a001 53316291173/12752043*192900153618^(4/9) 4334944369999973 a001 53316291173/12752043*73681302247^(6/13) 4334944369999973 a001 14284196614945221407/32951280099 4334944369999973 a001 10983760033/4250681*28143753123^(1/2) 4334944369999973 a001 1597/12752044*14662949395604^(20/21) 4334944369999973 a001 20365011074/12752043*(1/2+1/2*5^(1/2))^26 4334944369999973 a001 365435296162/12752043*28143753123^(2/5) 4334944369999973 a001 20365011074/12752043*73681302247^(1/2) 4334944369999973 a001 5456077604922880367/12586269025 4334944369999973 a001 7778742049/12752043*17393796001^(4/7) 4334944369999973 a001 6557470319842/12752043*10749957122^(7/24) 4334944369999973 a001 4052739537881/12752043*10749957122^(5/16) 4334944369999973 a001 2504730781961/12752043*10749957122^(1/3) 4334944369999973 a001 956722026041/12752043*10749957122^(3/8) 4334944369999973 a001 7778742049/12752043*14662949395604^(4/9) 4334944369999973 a001 7778742049/12752043*(1/2+1/2*5^(1/2))^28 4334944369999973 a001 7778742049/12752043*505019158607^(1/2) 4334944369999973 a001 7778742049/12752043*73681302247^(7/13) 4334944369999973 a001 12586269025/12752043*10749957122^(9/16) 4334944369999973 a001 365435296162/12752043*10749957122^(5/12) 4334944369999973 a001 75283811239/4250681*10749957122^(7/16) 4334944369999973 a001 139583862445/12752043*10749957122^(11/24) 4334944369999973 a001 53316291173/12752043*10749957122^(1/2) 4334944369999973 a001 20365011074/12752043*10749957122^(13/24) 4334944369999973 a001 7778742049/12752043*10749957122^(7/12) 4334944369999973 a001 1042018099911709847/2403763488 4334944369999973 a001 6557470319842/12752043*4106118243^(7/23) 4334944369999973 a001 2504730781961/12752043*4106118243^(8/23) 4334944369999973 a001 2971215073/12752043*45537549124^(10/17) 4334944369999973 a001 2971215073/12752043*312119004989^(6/11) 4334944369999973 a001 5702887/6643838879*14662949395604^(8/9) 4334944369999973 a001 2971215073/12752043*14662949395604^(10/21) 4334944369999973 a001 2971215073/12752043*(1/2+1/2*5^(1/2))^30 4334944369999973 a001 2971215073/12752043*192900153618^(5/9) 4334944369999973 a001 956722026041/12752043*4106118243^(9/23) 4334944369999973 a001 2971215073/12752043*28143753123^(3/5) 4334944369999973 a001 365435296162/12752043*4106118243^(10/23) 4334944369999973 a001 2971215073/12752043*10749957122^(5/8) 4334944369999973 a001 139583862445/12752043*4106118243^(11/23) 4334944369999973 a001 86267571272/12752043*4106118243^(1/2) 4334944369999973 a001 53316291173/12752043*4106118243^(12/23) 4334944369999973 a001 20365011074/12752043*4106118243^(13/23) 4334944369999973 a001 7778742049/12752043*4106118243^(14/23) 4334944369999973 a001 796030994547378715/1836311903 4334944369999973 a001 2971215073/12752043*4106118243^(15/23) 4334944369999973 a001 6557470319842/12752043*1568397607^(7/22) 4334944369999973 a001 2504730781961/12752043*1568397607^(4/11) 4334944369999973 a001 1134903170/12752043*(1/2+1/2*5^(1/2))^32 4334944369999973 a001 1134903170/12752043*23725150497407^(1/2) 4334944369999973 a001 1134903170/12752043*505019158607^(4/7) 4334944369999973 a001 1134903170/12752043*73681302247^(8/13) 4334944369999973 a001 1134903170/12752043*10749957122^(2/3) 4334944369999973 a001 956722026041/12752043*1568397607^(9/22) 4334944369999973 a001 365435296162/12752043*1568397607^(5/11) 4334944369999973 a001 1134903170/12752043*4106118243^(16/23) 4334944369999973 a001 139583862445/12752043*1568397607^(1/2) 4334944369999973 a001 53316291173/12752043*1568397607^(6/11) 4334944369999973 a001 20365011074/12752043*1568397607^(13/22) 4334944369999973 a001 7778742049/12752043*1568397607^(7/11) 4334944369999973 a001 2971215073/12752043*1568397607^(15/22) 4334944369999973 a001 304056783818716451/701408733 4334944369999973 a001 1134903170/12752043*1568397607^(8/11) 4334944369999973 a001 6557470319842/12752043*599074578^(1/3) 4334944369999973 a001 4052739537881/12752043*599074578^(5/14) 4334944369999973 a001 2504730781961/12752043*599074578^(8/21) 4334944369999973 a001 433494437/12752043*45537549124^(2/3) 4334944369999973 a001 433494437/12752043*(1/2+1/2*5^(1/2))^34 4334944369999973 a001 5702887/969323029*23725150497407^(13/16) 4334944369999973 a001 5702887/969323029*505019158607^(13/14) 4334944369999973 a001 433494437/12752043*10749957122^(17/24) 4334944369999973 a001 433494437/12752043*4106118243^(17/23) 4334944369999973 a001 956722026041/12752043*599074578^(3/7) 4334944369999973 a001 365435296162/12752043*599074578^(10/21) 4334944369999973 a001 433494437/12752043*1568397607^(17/22) 4334944369999973 a001 75283811239/4250681*599074578^(1/2) 4334944369999973 a001 139583862445/12752043*599074578^(11/21) 4334944369999973 a001 53316291173/12752043*599074578^(4/7) 4334944369999973 a001 20365011074/12752043*599074578^(13/21) 4334944369999973 a001 233802911/4250681*599074578^(11/14) 4334944369999973 a001 12586269025/12752043*599074578^(9/14) 4334944369999973 a001 7778742049/12752043*599074578^(2/3) 4334944369999973 a001 2971215073/12752043*599074578^(5/7) 4334944369999973 a001 1134903170/12752043*599074578^(16/21) 4334944369999973 a001 58069678454385319/133957148 4334944369999973 a001 433494437/12752043*599074578^(17/21) 4334944369999973 a001 6557470319842/12752043*228826127^(7/20) 4334944369999973 a001 4052739537881/12752043*228826127^(3/8) 4334944369999973 a001 165580141/12752043*2537720636^(4/5) 4334944369999973 a001 165580141/12752043*45537549124^(12/17) 4334944369999973 a001 5702887/370248451*312119004989^(10/11) 4334944369999973 a001 165580141/12752043*14662949395604^(4/7) 4334944369999973 a001 165580141/12752043*(1/2+1/2*5^(1/2))^36 4334944369999973 a001 5702887/370248451*3461452808002^(5/6) 4334944369999973 a001 165580141/12752043*505019158607^(9/14) 4334944369999973 a001 165580141/12752043*192900153618^(2/3) 4334944369999973 a001 165580141/12752043*73681302247^(9/13) 4334944369999973 a001 165580141/12752043*10749957122^(3/4) 4334944369999973 a001 165580141/12752043*4106118243^(18/23) 4334944369999973 a001 165580141/12752043*1568397607^(9/11) 4334944369999973 a001 2504730781961/12752043*228826127^(2/5) 4334944369999973 a001 956722026041/12752043*228826127^(9/20) 4334944369999973 a001 365435296162/12752043*228826127^(1/2) 4334944369999973 a001 165580141/12752043*599074578^(6/7) 4334944369999973 a001 139583862445/12752043*228826127^(11/20) 4334944369999973 a001 53316291173/12752043*228826127^(3/5) 4334944369999973 a001 10983760033/4250681*228826127^(5/8) 4334944369999973 a001 20365011074/12752043*228826127^(13/20) 4334944369999973 a001 7778742049/12752043*228826127^(7/10) 4334944369999973 a001 267914296/12752043*228826127^(7/8) 4334944369999973 a001 2971215073/12752043*228826127^(3/4) 4334944369999973 a001 1134903170/12752043*228826127^(4/5) 4334944369999973 a001 433494437/12752043*228826127^(17/20) 4334944369999973 a001 44361286907595463/102334155 4334944369999973 a001 165580141/12752043*228826127^(9/10) 4334944369999973 a001 6557470319842/12752043*87403803^(7/19) 4334944369999973 a001 5702887/141422324*45537549124^(16/17) 4334944369999973 a001 63245986/12752043*817138163596^(2/3) 4334944369999973 a001 5702887/141422324*14662949395604^(16/21) 4334944369999973 a001 63245986/12752043*(1/2+1/2*5^(1/2))^38 4334944369999973 a001 5702887/141422324*192900153618^(8/9) 4334944369999973 a001 5702887/141422324*73681302247^(12/13) 4334944369999973 a001 63245986/12752043*10749957122^(19/24) 4334944369999973 a001 63245986/12752043*4106118243^(19/23) 4334944369999973 a001 63245986/12752043*1568397607^(19/22) 4334944369999973 a001 63245986/12752043*599074578^(19/21) 4334944369999973 a001 2504730781961/12752043*87403803^(8/19) 4334944369999973 a001 956722026041/12752043*87403803^(9/19) 4334944369999973 a001 591286729879/12752043*87403803^(1/2) 4334944369999973 a001 63245986/12752043*228826127^(19/20) 4334944369999973 a001 365435296162/12752043*87403803^(10/19) 4334944369999973 a001 139583862445/12752043*87403803^(11/19) 4334944369999973 a001 53316291173/12752043*87403803^(12/19) 4334944369999973 a001 20365011074/12752043*87403803^(13/19) 4334944369999973 a001 7778742049/12752043*87403803^(14/19) 4334944369999973 a001 2971215073/12752043*87403803^(15/19) 4334944369999973 a001 1134903170/12752043*87403803^(16/19) 4334944369999973 a001 433494437/12752043*87403803^(17/19) 4334944369999973 a001 16944503814015751/39088169 4334944369999973 a001 165580141/12752043*87403803^(18/19) 4334944369999974 a001 24157817/12752043*2537720636^(8/9) 4334944369999974 a001 24157817/12752043*312119004989^(8/11) 4334944369999974 a001 24157817/12752043*(1/2+1/2*5^(1/2))^40 4334944369999974 a001 24157817/12752043*23725150497407^(5/8) 4334944369999974 a001 24157817/12752043*73681302247^(10/13) 4334944369999974 a001 24157817/12752043*28143753123^(4/5) 4334944369999974 a001 24157817/12752043*10749957122^(5/6) 4334944369999974 a001 5702887/54018521*10749957122^(23/24) 4334944369999974 a001 24157817/12752043*4106118243^(20/23) 4334944369999974 a001 24157817/12752043*1568397607^(10/11) 4334944369999974 a001 24157817/12752043*599074578^(20/21) 4334944369999974 a001 6557470319842/12752043*33385282^(7/18) 4334944369999974 a001 4052739537881/12752043*33385282^(5/12) 4334944369999975 a001 2504730781961/12752043*33385282^(4/9) 4334944369999975 a001 956722026041/12752043*33385282^(1/2) 4334944369999975 a001 365435296162/12752043*33385282^(5/9) 4334944369999975 a001 75283811239/4250681*33385282^(7/12) 4334944369999975 a001 139583862445/12752043*33385282^(11/18) 4334944369999975 a001 53316291173/12752043*33385282^(2/3) 4334944369999976 a001 20365011074/12752043*33385282^(13/18) 4334944369999976 a001 12586269025/12752043*33385282^(3/4) 4334944369999976 a001 7778742049/12752043*33385282^(7/9) 4334944369999976 a001 2971215073/12752043*33385282^(5/6) 4334944369999976 a001 1134903170/12752043*33385282^(8/9) 4334944369999976 a001 233802911/4250681*33385282^(11/12) 4334944369999977 a001 433494437/12752043*33385282^(17/18) 4334944369999977 a001 2971215073/4870847*4870847^(7/8) 4334944369999977 a001 190359545130935/439128 4334944369999978 a001 6557470319842/20633239*7881196^(5/11) 4334944369999983 a001 9227465/12752043*2537720636^(14/15) 4334944369999983 a001 9227465/12752043*17393796001^(6/7) 4334944369999983 a001 9227465/12752043*45537549124^(14/17) 4334944369999983 a001 5702887/20633239*312119004989^(4/5) 4334944369999983 a001 9227465/12752043*817138163596^(14/19) 4334944369999983 a001 9227465/12752043*14662949395604^(2/3) 4334944369999983 a001 5702887/20633239*(1/2+1/2*5^(1/2))^44 4334944369999983 a001 9227465/12752043*(1/2+1/2*5^(1/2))^42 4334944369999983 a001 5702887/20633239*23725150497407^(11/16) 4334944369999983 a001 9227465/12752043*192900153618^(7/9) 4334944369999983 a001 5702887/20633239*73681302247^(11/13) 4334944369999983 a001 9227465/12752043*10749957122^(7/8) 4334944369999983 a001 5702887/20633239*10749957122^(11/12) 4334944369999983 a001 9227465/12752043*4106118243^(21/23) 4334944369999983 a001 5702887/20633239*4106118243^(22/23) 4334944369999983 a001 9227465/12752043*1568397607^(21/22) 4334944369999984 a001 6557470319842/12752043*12752043^(7/17) 4334944369999985 a001 2504730781961/12752043*12752043^(8/17) 4334944369999985 a001 307696518854784/709805 4334944369999986 a001 516002918640/4250681*12752043^(1/2) 4334944369999987 a001 7778742049/33385282*20633239^(6/7) 4334944369999987 a001 956722026041/12752043*12752043^(9/17) 4334944369999987 a001 10182505537/16692641*20633239^(4/5) 4334944369999988 a001 1134903170/4870847*4870847^(15/16) 4334944369999988 a001 43133785636/16692641*20633239^(5/7) 4334944369999989 a001 365435296162/12752043*12752043^(10/17) 4334944369999989 a001 800010949022439/1845493 4334944369999989 a001 591286729879/33385282*20633239^(3/5) 4334944369999990 a001 4000054745112196/9227465 4334944369999990 a001 956722026041/33385282*20633239^(4/7) 4334944369999990 a001 139583862445/12752043*12752043^(11/17) 4334944369999990 a001 20365011074/87403803*20633239^(6/7) 4334944369999991 a001 53316291173/228826127*20633239^(6/7) 4334944369999991 a001 139583862445/599074578*20633239^(6/7) 4334944369999991 a001 365435296162/1568397607*20633239^(6/7) 4334944369999991 a001 956722026041/4106118243*20633239^(6/7) 4334944369999991 a001 2504730781961/10749957122*20633239^(6/7) 4334944369999991 a001 6557470319842/28143753123*20633239^(6/7) 4334944369999991 a001 10610209857723/45537549124*20633239^(6/7) 4334944369999991 a001 4052739537881/17393796001*20633239^(6/7) 4334944369999991 a001 1548008755920/6643838879*20633239^(6/7) 4334944369999991 a001 591286729879/2537720636*20633239^(6/7) 4334944369999991 a001 225851433717/969323029*20633239^(6/7) 4334944369999991 a001 53316291173/87403803*20633239^(4/5) 4334944369999991 a001 86267571272/370248451*20633239^(6/7) 4334944369999991 a001 4000054745112197/9227465 4334944369999991 a001 63246219/271444*20633239^(6/7) 4334944369999991 a001 1515744265389/4769326*20633239^(3/7) 4334944369999991 a001 139583862445/228826127*20633239^(4/5) 4334944369999991 a001 182717648081/299537289*20633239^(4/5) 4334944369999991 a001 956722026041/1568397607*20633239^(4/5) 4334944369999991 a001 2504730781961/4106118243*20633239^(4/5) 4334944369999991 a001 3278735159921/5374978561*20633239^(4/5) 4334944369999991 a001 10610209857723/17393796001*20633239^(4/5) 4334944369999991 a001 4052739537881/6643838879*20633239^(4/5) 4334944369999991 a001 1134903780/1860499*20633239^(4/5) 4334944369999991 a001 591286729879/969323029*20633239^(4/5) 4334944369999991 a001 225851433717/370248451*20633239^(4/5) 4334944369999992 a001 21566892818/35355581*20633239^(4/5) 4334944369999992 a001 75283811239/29134601*20633239^(5/7) 4334944369999992 a001 53316291173/12752043*12752043^(12/17) 4334944369999992 a001 7465176/16692641*(1/2+1/2*5^(1/2))^43 4334944369999992 a001 591286729879/228826127*20633239^(5/7) 4334944369999992 a001 86000486440/33281921*20633239^(5/7) 4334944369999992 a001 4052739537881/1568397607*20633239^(5/7) 4334944369999992 a001 3536736619241/1368706081*20633239^(5/7) 4334944369999992 a001 3278735159921/1268860318*20633239^(5/7) 4334944369999992 a001 2504730781961/969323029*20633239^(5/7) 4334944369999992 a001 12586269025/54018521*20633239^(6/7) 4334944369999992 a001 956722026041/370248451*20633239^(5/7) 4334944369999992 a001 182717648081/70711162*20633239^(5/7) 4334944369999993 a001 516002918640/29134601*20633239^(3/5) 4334944369999993 a001 32951280099/54018521*20633239^(4/5) 4334944369999993 a001 2504730781961/87403803*20633239^(4/7) 4334944369999993 a001 20365011074/12752043*12752043^(13/17) 4334944369999993 a001 4052739537881/228826127*20633239^(3/5) 4334944369999993 a001 3536736619241/199691526*20633239^(3/5) 4334944369999993 a001 6557470319842/370248451*20633239^(3/5) 4334944369999994 a001 6557470319842/228826127*20633239^(4/7) 4334944369999994 a001 2504730781961/141422324*20633239^(3/5) 4334944369999994 a001 139583862445/54018521*20633239^(5/7) 4334944369999994 a001 10610209857723/370248451*20633239^(4/7) 4334944369999994 a001 4052739537881/141422324*20633239^(4/7) 4334944369999994 a001 10472279279564016/24157817 4334944369999995 a001 7778742049/12752043*12752043^(14/17) 4334944369999995 a001 956722026041/54018521*20633239^(3/5) 4334944369999995 a001 4976784/29134601*45537549124^(15/17) 4334944369999995 a001 4976784/29134601*312119004989^(9/11) 4334944369999995 a001 4976784/29134601*14662949395604^(5/7) 4334944369999995 a001 39088169/33385282*(1/2+1/2*5^(1/2))^41 4334944369999995 a001 4976784/29134601*192900153618^(5/6) 4334944369999995 a001 4976784/29134601*28143753123^(9/10) 4334944369999995 a001 4976784/29134601*10749957122^(15/16) 4334944369999995 a001 1548008755920/54018521*20633239^(4/7) 4334944369999995 a001 13708391546789928/31622993 4334944369999995 a001 433494437/33385282*141422324^(12/13) 4334944369999995 a001 1836311903/33385282*141422324^(11/13) 4334944369999995 a001 7778742049/33385282*141422324^(10/13) 4334944369999995 a001 32951280099/33385282*141422324^(9/13) 4334944369999995 a001 53316291173/33385282*141422324^(2/3) 4334944369999995 a001 139583862445/33385282*141422324^(8/13) 4334944369999995 a001 591286729879/33385282*141422324^(7/13) 4334944369999996 a001 2504730781961/33385282*141422324^(6/13) 4334944369999996 a001 14619165/4769326*2537720636^(13/15) 4334944369999996 a001 1515744265389/4769326*141422324^(5/13) 4334944369999996 a001 14619165/4769326*45537549124^(13/17) 4334944369999996 a001 14619165/4769326*14662949395604^(13/21) 4334944369999996 a001 14619165/4769326*(1/2+1/2*5^(1/2))^39 4334944369999996 a001 14619165/4769326*192900153618^(13/18) 4334944369999996 a001 14619165/4769326*73681302247^(3/4) 4334944369999996 a001 14619165/4769326*10749957122^(13/16) 4334944369999996 a001 14619165/4769326*599074578^(13/14) 4334944369999996 a001 71778070001175552/165580141 4334944369999996 a001 829464/33281921*14662949395604^(7/9) 4334944369999996 a001 133957148/16692641*(1/2+1/2*5^(1/2))^37 4334944369999996 a001 829464/33281921*505019158607^(7/8) 4334944369999996 a001 187917426909946800/433494437 4334944369999996 a001 701408733/33385282*2537720636^(7/9) 4334944369999996 a001 701408733/33385282*17393796001^(5/7) 4334944369999996 a001 701408733/33385282*312119004989^(7/11) 4334944369999996 a001 14930352/1568397607*817138163596^(17/19) 4334944369999996 a001 14930352/1568397607*14662949395604^(17/21) 4334944369999996 a001 701408733/33385282*(1/2+1/2*5^(1/2))^35 4334944369999996 a001 701408733/33385282*505019158607^(5/8) 4334944369999996 a001 14930352/1568397607*192900153618^(17/18) 4334944369999996 a001 701408733/33385282*28143753123^(7/10) 4334944369999996 a001 1836311903/33385282*2537720636^(11/15) 4334944369999996 a001 14469829727313672/33379505 4334944369999996 a001 7778742049/33385282*2537720636^(2/3) 4334944369999996 a001 32951280099/33385282*2537720636^(3/5) 4334944369999996 a001 43133785636/16692641*2537720636^(5/9) 4334944369999996 a001 139583862445/33385282*2537720636^(8/15) 4334944369999996 a001 591286729879/33385282*2537720636^(7/15) 4334944369999996 a001 956722026041/33385282*2537720636^(4/9) 4334944369999996 a001 2504730781961/33385282*2537720636^(2/5) 4334944369999996 a001 1836311903/33385282*45537549124^(11/17) 4334944369999996 a001 1836311903/33385282*312119004989^(3/5) 4334944369999996 a001 1836311903/33385282*817138163596^(11/19) 4334944369999996 a001 1836311903/33385282*14662949395604^(11/21) 4334944369999996 a001 1836311903/33385282*(1/2+1/2*5^(1/2))^33 4334944369999996 a001 1836311903/33385282*192900153618^(11/18) 4334944369999996 a001 1836311903/33385282*10749957122^(11/16) 4334944369999996 a001 1515744265389/4769326*2537720636^(1/3) 4334944369999996 a001 1288005205276047744/2971215073 4334944369999996 a001 14930208/103681*(1/2+1/2*5^(1/2))^31 4334944369999996 a001 14930208/103681*9062201101803^(1/2) 4334944369999996 a001 7465176/5374978561*3461452808002^(11/12) 4334944369999996 a001 259387800392267568/598364773 4334944369999996 a001 591286729879/33385282*17393796001^(3/7) 4334944369999996 a001 10182505537/16692641*17393796001^(4/7) 4334944369999996 a001 4976784/9381251041*14662949395604^(19/21) 4334944369999996 a001 12586269025/33385282*(1/2+1/2*5^(1/2))^29 4334944369999996 a001 12586269025/33385282*1322157322203^(1/2) 4334944369999996 a001 4414059505011193704/10182505537 4334944369999996 a001 32951280099/33385282*45537549124^(9/17) 4334944369999996 a001 139583862445/33385282*45537549124^(8/17) 4334944369999996 a001 591286729879/33385282*45537549124^(7/17) 4334944369999996 a001 32951280099/33385282*817138163596^(9/19) 4334944369999996 a001 32951280099/33385282*14662949395604^(3/7) 4334944369999996 a001 32951280099/33385282*(1/2+1/2*5^(1/2))^27 4334944369999996 a001 32951280099/33385282*192900153618^(1/2) 4334944369999996 a001 2504730781961/33385282*45537549124^(6/17) 4334944369999996 a001 4052739537881/33385282*45537549124^(1/3) 4334944369999996 a001 1515744265389/4769326*45537549124^(5/17) 4334944369999996 a001 23112315624967683840/53316291173 4334944369999996 a001 43133785636/16692641*312119004989^(5/11) 4334944369999996 a001 43133785636/16692641*(1/2+1/2*5^(1/2))^25 4334944369999996 a001 43133785636/16692641*3461452808002^(5/12) 4334944369999996 a001 60508827864880664112/139583862445 4334944369999996 a001 32264490531/4769326*(1/2+1/2*5^(1/2))^23 4334944369999996 a001 1515744265389/4769326*312119004989^(3/11) 4334944369999996 a001 774004377960/16692641*817138163596^(1/3) 4334944369999996 a001 774004377960/16692641*(1/2+1/2*5^(1/2))^19 4334944369999996 a001 1515744265389/4769326*14662949395604^(5/21) 4334944369999996 a001 1515744265389/4769326*(1/2+1/2*5^(1/2))^15 4334944369999996 a001 14930352*(1/2+1/2*5^(1/2))^7 4334944369999996 a001 3278735159921/16692641*(1/2+1/2*5^(1/2))^16 4334944369999996 a001 2504730781961/33385282*14662949395604^(2/7) 4334944369999996 a001 2504730781961/33385282*(1/2+1/2*5^(1/2))^18 4334944369999996 a001 1515744265389/4769326*192900153618^(5/18) 4334944369999996 a001 139583862445/33385282*14662949395604^(8/21) 4334944369999996 a001 139583862445/33385282*(1/2+1/2*5^(1/2))^24 4334944369999996 a001 139583862445/33385282*192900153618^(4/9) 4334944369999996 a001 3278735159921/16692641*73681302247^(4/13) 4334944369999996 a001 14930352/119218851371*14662949395604^(20/21) 4334944369999996 a001 139583862445/33385282*73681302247^(6/13) 4334944369999996 a001 53316291173/33385282*73681302247^(1/2) 4334944369999996 a001 4761398871648432144/10983760033 4334944369999996 a001 1515744265389/4769326*28143753123^(3/10) 4334944369999996 a001 10182505537/16692641*14662949395604^(4/9) 4334944369999996 a001 10182505537/16692641*(1/2+1/2*5^(1/2))^28 4334944369999996 a001 10182505537/16692641*505019158607^(1/2) 4334944369999996 a001 956722026041/33385282*28143753123^(2/5) 4334944369999996 a001 10182505537/16692641*73681302247^(7/13) 4334944369999996 a001 43133785636/16692641*28143753123^(1/2) 4334944369999996 a001 5456077604922909024/12586269025 4334944369999996 a001 1515744265389/4769326*10749957122^(5/16) 4334944369999996 a001 3278735159921/16692641*10749957122^(1/3) 4334944369999996 a001 7778742049/33385282*45537549124^(10/17) 4334944369999996 a001 2504730781961/33385282*10749957122^(3/8) 4334944369999996 a001 7778742049/33385282*312119004989^(6/11) 4334944369999996 a001 14930352/17393796001*14662949395604^(8/9) 4334944369999996 a001 7778742049/33385282*(1/2+1/2*5^(1/2))^30 4334944369999996 a001 7778742049/33385282*192900153618^(5/9) 4334944369999996 a001 956722026041/33385282*10749957122^(5/12) 4334944369999996 a001 591286729879/33385282*10749957122^(7/16) 4334944369999996 a001 182717648081/16692641*10749957122^(11/24) 4334944369999996 a001 7778742049/33385282*28143753123^(3/5) 4334944369999996 a001 139583862445/33385282*10749957122^(1/2) 4334944369999996 a001 32951280099/33385282*10749957122^(9/16) 4334944369999996 a001 53316291173/33385282*10749957122^(13/24) 4334944369999996 a001 10182505537/16692641*10749957122^(7/12) 4334944369999996 a001 14472473609884935/33385604 4334944369999996 a001 7778742049/33385282*10749957122^(5/8) 4334944369999996 a001 3278735159921/16692641*4106118243^(8/23) 4334944369999996 a001 14930352/6643838879*14662949395604^(6/7) 4334944369999996 a001 2971215073/33385282*(1/2+1/2*5^(1/2))^32 4334944369999996 a001 2971215073/33385282*505019158607^(4/7) 4334944369999996 a001 2971215073/33385282*73681302247^(8/13) 4334944369999996 a001 2504730781961/33385282*4106118243^(9/23) 4334944369999996 a001 956722026041/33385282*4106118243^(10/23) 4334944369999996 a001 182717648081/16692641*4106118243^(11/23) 4334944369999996 a001 2971215073/33385282*10749957122^(2/3) 4334944369999996 a001 32264490531/4769326*4106118243^(1/2) 4334944369999996 a001 139583862445/33385282*4106118243^(12/23) 4334944369999996 a001 53316291173/33385282*4106118243^(13/23) 4334944369999996 a001 10182505537/16692641*4106118243^(14/23) 4334944369999996 a001 7778742049/33385282*4106118243^(15/23) 4334944369999996 a001 796030994547382896/1836311903 4334944369999996 a001 2971215073/33385282*4106118243^(16/23) 4334944369999996 a001 3278735159921/16692641*1568397607^(4/11) 4334944369999996 a001 567451585/16692641*45537549124^(2/3) 4334944369999996 a001 567451585/16692641*(1/2+1/2*5^(1/2))^34 4334944369999996 a001 196452/33391061*23725150497407^(13/16) 4334944369999996 a001 196452/33391061*505019158607^(13/14) 4334944369999996 a001 567451585/16692641*10749957122^(17/24) 4334944369999996 a001 2504730781961/33385282*1568397607^(9/22) 4334944369999996 a001 956722026041/33385282*1568397607^(5/11) 4334944369999996 a001 567451585/16692641*4106118243^(17/23) 4334944369999996 a001 182717648081/16692641*1568397607^(1/2) 4334944369999996 a001 139583862445/33385282*1568397607^(6/11) 4334944369999996 a001 53316291173/33385282*1568397607^(13/22) 4334944369999996 a001 1836311903/33385282*1568397607^(3/4) 4334944369999996 a001 10182505537/16692641*1568397607^(7/11) 4334944369999996 a001 7778742049/33385282*1568397607^(15/22) 4334944369999996 a001 2971215073/33385282*1568397607^(8/11) 4334944369999996 a001 101352261272906016/233802911 4334944369999996 a001 567451585/16692641*1568397607^(17/22) 4334944369999996 a001 433494437/33385282*2537720636^(4/5) 4334944369999996 a001 1515744265389/4769326*599074578^(5/14) 4334944369999996 a001 3278735159921/16692641*599074578^(8/21) 4334944369999996 a001 433494437/33385282*45537549124^(12/17) 4334944369999996 a001 14930352/969323029*312119004989^(10/11) 4334944369999996 a001 433494437/33385282*14662949395604^(4/7) 4334944369999996 a001 433494437/33385282*(1/2+1/2*5^(1/2))^36 4334944369999996 a001 14930352/969323029*3461452808002^(5/6) 4334944369999996 a001 433494437/33385282*505019158607^(9/14) 4334944369999996 a001 433494437/33385282*192900153618^(2/3) 4334944369999996 a001 433494437/33385282*73681302247^(9/13) 4334944369999996 a001 433494437/33385282*10749957122^(3/4) 4334944369999996 a001 433494437/33385282*4106118243^(18/23) 4334944369999996 a001 2504730781961/33385282*599074578^(3/7) 4334944369999996 a001 956722026041/33385282*599074578^(10/21) 4334944369999996 a001 591286729879/33385282*599074578^(1/2) 4334944369999996 a001 433494437/33385282*1568397607^(9/11) 4334944369999996 a001 182717648081/16692641*599074578^(11/21) 4334944369999996 a001 139583862445/33385282*599074578^(4/7) 4334944369999996 a001 53316291173/33385282*599074578^(13/21) 4334944369999996 a001 32951280099/33385282*599074578^(9/14) 4334944369999996 a001 10182505537/16692641*599074578^(2/3) 4334944369999996 a001 701408733/33385282*599074578^(5/6) 4334944369999996 a001 7778742049/33385282*599074578^(5/7) 4334944369999996 a001 1836311903/33385282*599074578^(11/14) 4334944369999996 a001 2971215073/33385282*599074578^(16/21) 4334944369999996 a001 567451585/16692641*599074578^(17/21) 4334944369999996 a001 1116724585661262/2576099 4334944369999996 a001 433494437/33385282*599074578^(6/7) 4334944369999996 a001 1515744265389/4769326*228826127^(3/8) 4334944369999996 a001 14930352/370248451*45537549124^(16/17) 4334944369999996 a001 165580141/33385282*817138163596^(2/3) 4334944369999996 a001 14930352/370248451*14662949395604^(16/21) 4334944369999996 a001 165580141/33385282*(1/2+1/2*5^(1/2))^38 4334944369999996 a001 14930352/370248451*192900153618^(8/9) 4334944369999996 a001 14930352/370248451*73681302247^(12/13) 4334944369999996 a001 165580141/33385282*10749957122^(19/24) 4334944369999996 a001 165580141/33385282*4106118243^(19/23) 4334944369999996 a001 3278735159921/16692641*228826127^(2/5) 4334944369999996 a001 165580141/33385282*1568397607^(19/22) 4334944369999996 a001 2504730781961/33385282*228826127^(9/20) 4334944369999996 a001 956722026041/33385282*228826127^(1/2) 4334944369999996 a001 165580141/33385282*599074578^(19/21) 4334944369999996 a001 182717648081/16692641*228826127^(11/20) 4334944369999996 a001 139583862445/33385282*228826127^(3/5) 4334944369999996 a001 43133785636/16692641*228826127^(5/8) 4334944369999996 a001 53316291173/33385282*228826127^(13/20) 4334944369999996 a001 10182505537/16692641*228826127^(7/10) 4334944369999996 a001 7778742049/33385282*228826127^(3/4) 4334944369999996 a001 2971215073/33385282*228826127^(4/5) 4334944369999996 a001 701408733/33385282*228826127^(7/8) 4334944369999996 a001 567451585/16692641*228826127^(17/20) 4334944369999996 a001 433494437/33385282*228826127^(9/10) 4334944369999996 a001 14787095635865232/34111385 4334944369999996 a001 165580141/33385282*228826127^(19/20) 4334944369999996 a001 31622993/16692641*2537720636^(8/9) 4334944369999996 a001 31622993/16692641*312119004989^(8/11) 4334944369999996 a001 31622993/16692641*(1/2+1/2*5^(1/2))^40 4334944369999996 a001 31622993/16692641*23725150497407^(5/8) 4334944369999996 a001 31622993/16692641*73681302247^(10/13) 4334944369999996 a001 31622993/16692641*28143753123^(4/5) 4334944369999996 a001 31622993/16692641*10749957122^(5/6) 4334944369999996 a001 3732588/35355581*10749957122^(23/24) 4334944369999996 a001 31622993/16692641*4106118243^(20/23) 4334944369999996 a001 31622993/16692641*1568397607^(10/11) 4334944369999996 a001 31622993/16692641*599074578^(20/21) 4334944369999996 a001 3278735159921/16692641*87403803^(8/19) 4334944369999996 a001 2504730781961/33385282*87403803^(9/19) 4334944369999996 a001 774004377960/16692641*87403803^(1/2) 4334944369999996 a001 956722026041/33385282*87403803^(10/19) 4334944369999996 a001 182717648081/16692641*87403803^(11/19) 4334944369999996 a001 139583862445/33385282*87403803^(12/19) 4334944369999996 a001 53316291173/33385282*87403803^(13/19) 4334944369999996 a001 10182505537/16692641*87403803^(14/19) 4334944369999996 a001 7778742049/33385282*87403803^(15/19) 4334944369999996 a001 2971215073/33385282*87403803^(16/19) 4334944369999996 a001 567451585/16692641*87403803^(17/19) 4334944369999996 a001 433494437/33385282*87403803^(18/19) 4334944369999996 a001 16944503814015840/39088169 4334944369999996 a001 2971215073/12752043*12752043^(15/17) 4334944369999997 a001 24157817/33385282*2537720636^(14/15) 4334944369999997 a001 24157817/33385282*17393796001^(6/7) 4334944369999997 a001 24157817/33385282*45537549124^(14/17) 4334944369999997 a001 14930352/54018521*312119004989^(4/5) 4334944369999997 a001 24157817/33385282*14662949395604^(2/3) 4334944369999997 a001 24157817/33385282*(1/2+1/2*5^(1/2))^42 4334944369999997 a001 14930352/54018521*23725150497407^(11/16) 4334944369999997 a001 24157817/33385282*505019158607^(3/4) 4334944369999997 a001 24157817/33385282*192900153618^(7/9) 4334944369999997 a001 14930352/54018521*73681302247^(11/13) 4334944369999997 a001 24157817/33385282*10749957122^(7/8) 4334944369999997 a001 14930352/54018521*10749957122^(11/12) 4334944369999997 a001 24157817/33385282*4106118243^(21/23) 4334944369999997 a001 14930352/54018521*4106118243^(22/23) 4334944369999997 a001 24157817/33385282*1568397607^(21/22) 4334944369999997 a001 1515744265389/4769326*33385282^(5/12) 4334944369999997 a001 3278735159921/16692641*33385282^(4/9) 4334944369999997 a001 10472279279564024/24157817 4334944369999998 a001 2504730781961/33385282*33385282^(1/2) 4334944369999998 a001 956722026041/33385282*33385282^(5/9) 4334944369999998 a001 10472279279564025/24157817 4334944369999998 a001 591286729879/33385282*33385282^(7/12) 4334944369999998 a001 1134903170/12752043*12752043^(16/17) 4334944369999998 a001 182717648081/16692641*33385282^(11/18) 4334944369999998 a001 139583862445/33385282*33385282^(2/3) 4334944369999998 a001 10472279279564026/24157817 4334944369999998 a001 53316291173/33385282*33385282^(13/18) 4334944369999999 a001 32951280099/33385282*33385282^(3/4) 4334944369999999 a001 10182505537/16692641*33385282^(7/9) 4334944369999999 a001 27416783093579877/63245986 4334944369999999 a001 1134903170/87403803*141422324^(12/13) 4334944369999999 a001 1602508992/29134601*141422324^(11/13) 4334944369999999 a001 20365011074/87403803*141422324^(10/13) 4334944369999999 a001 86267571272/87403803*141422324^(9/13) 4334944369999999 a001 139583862445/87403803*141422324^(2/3) 4334944369999999 a001 365435296162/87403803*141422324^(8/13) 4334944369999999 a001 516002918640/29134601*141422324^(7/13) 4334944369999999 a001 6557470319842/87403803*141422324^(6/13) 4334944369999999 a001 39088169/228826127*45537549124^(15/17) 4334944369999999 a001 39088169/228826127*312119004989^(9/11) 4334944369999999 a001 39088169/228826127*14662949395604^(5/7) 4334944369999999 a001 39088169/228826127*192900153618^(5/6) 4334944369999999 a001 39088169/228826127*28143753123^(9/10) 4334944369999999 a001 39088169/228826127*10749957122^(15/16) 4334944369999999 a001 7778742049/33385282*33385282^(5/6) 4334944369999999 a001 71778070001175607/165580141 4334944369999999 a001 267914296/87403803*2537720636^(13/15) 4334944369999999 a001 267914296/87403803*45537549124^(13/17) 4334944369999999 a001 267914296/87403803*14662949395604^(13/21) 4334944369999999 a001 267914296/87403803*192900153618^(13/18) 4334944369999999 a001 267914296/87403803*73681302247^(3/4) 4334944369999999 a001 267914296/87403803*10749957122^(13/16) 4334944369999999 a001 187917426909946944/433494437 4334944369999999 a001 39088169/1568397607*14662949395604^(7/9) 4334944369999999 a001 39088169/1568397607*505019158607^(7/8) 4334944369999999 a001 267914296/87403803*599074578^(13/14) 4334944369999999 a001 1836311903/87403803*2537720636^(7/9) 4334944369999999 a001 98394842145733045/226980634 4334944369999999 a001 1602508992/29134601*2537720636^(11/15) 4334944369999999 a001 20365011074/87403803*2537720636^(2/3) 4334944369999999 a001 86267571272/87403803*2537720636^(3/5) 4334944369999999 a001 75283811239/29134601*2537720636^(5/9) 4334944369999999 a001 365435296162/87403803*2537720636^(8/15) 4334944369999999 a001 516002918640/29134601*2537720636^(7/15) 4334944369999999 a001 2504730781961/87403803*2537720636^(4/9) 4334944369999999 a001 6557470319842/87403803*2537720636^(2/5) 4334944369999999 a001 1836311903/87403803*17393796001^(5/7) 4334944369999999 a001 1836311903/87403803*312119004989^(7/11) 4334944369999999 a001 1836311903/87403803*14662949395604^(5/9) 4334944369999999 a001 1836311903/87403803*505019158607^(5/8) 4334944369999999 a001 39088169/4106118243*192900153618^(17/18) 4334944369999999 a001 1836311903/87403803*28143753123^(7/10) 4334944369999999 a001 1288005205276048731/2971215073 4334944369999999 a001 1602508992/29134601*45537549124^(11/17) 4334944369999999 a001 1602508992/29134601*312119004989^(3/5) 4334944369999999 a001 1602508992/29134601*14662949395604^(11/21) 4334944369999999 a001 1602508992/29134601*192900153618^(11/18) 4334944369999999 a001 3372041405099480968/7778742049 4334944369999999 a001 1602508992/29134601*10749957122^(11/16) 4334944369999999 a001 53316291173/87403803*17393796001^(4/7) 4334944369999999 a001 516002918640/29134601*17393796001^(3/7) 4334944369999999 a001 12586269025/87403803*9062201101803^(1/2) 4334944369999999 a001 39088169/28143753123*3461452808002^(11/12) 4334944369999999 a001 8828119010022394173/20365011074 4334944369999999 a001 86267571272/87403803*45537549124^(9/17) 4334944369999999 a001 365435296162/87403803*45537549124^(8/17) 4334944369999999 a001 516002918640/29134601*45537549124^(7/17) 4334944369999999 a001 39088169/73681302247*14662949395604^(19/21) 4334944369999999 a001 10983760033/29134601*1322157322203^(1/2) 4334944369999999 a001 6557470319842/87403803*45537549124^(6/17) 4334944369999999 a001 3536736619241/29134601*45537549124^(1/3) 4334944369999999 a001 23112315624967701551/53316291173 4334944369999999 a001 86267571272/87403803*817138163596^(9/19) 4334944369999999 a001 86267571272/87403803*14662949395604^(3/7) 4334944369999999 a001 86267571272/87403803*192900153618^(1/2) 4334944369999999 a001 12101765572976142096/27916772489 4334944369999999 a001 75283811239/29134601*3461452808002^(5/12) 4334944369999999 a001 516002918640/29134601*14662949395604^(1/3) 4334944369999999 a001 39088169*(1/2+1/2*5^(1/2))^5 4334944369999999 a001 2504730781961/87403803*23725150497407^(5/16) 4334944369999999 a001 2504730781961/87403803*505019158607^(5/14) 4334944369999999 a001 365435296162/87403803*14662949395604^(8/21) 4334944369999999 a001 6557470319842/87403803*192900153618^(1/3) 4334944369999999 a001 39088169/312119004989*14662949395604^(20/21) 4334944369999999 a001 516002918640/29134601*192900153618^(7/18) 4334944369999999 a001 365435296162/87403803*192900153618^(4/9) 4334944369999999 a001 37396512239913008929/86267571272 4334944369999999 a001 2504730781961/87403803*73681302247^(5/13) 4334944369999999 a001 365435296162/87403803*73681302247^(6/13) 4334944369999999 a001 139583862445/87403803*73681302247^(1/2) 4334944369999999 a001 53316291173/87403803*73681302247^(7/13) 4334944369999999 a001 14284196614945307378/32951280099 4334944369999999 a001 20365011074/87403803*45537549124^(10/17) 4334944369999999 a001 20365011074/87403803*312119004989^(6/11) 4334944369999999 a001 39088169/45537549124*14662949395604^(8/9) 4334944369999999 a001 20365011074/87403803*14662949395604^(10/21) 4334944369999999 a001 20365011074/87403803*192900153618^(5/9) 4334944369999999 a001 2504730781961/87403803*28143753123^(2/5) 4334944369999999 a001 75283811239/29134601*28143753123^(1/2) 4334944369999999 a001 20365011074/87403803*28143753123^(3/5) 4334944369999999 a001 1091215520984582641/2517253805 4334944369999999 a001 6557470319842/87403803*10749957122^(3/8) 4334944369999999 a001 39088169/17393796001*14662949395604^(6/7) 4334944369999999 a001 7778742049/87403803*73681302247^(8/13) 4334944369999999 a001 2504730781961/87403803*10749957122^(5/12) 4334944369999999 a001 516002918640/29134601*10749957122^(7/16) 4334944369999999 a001 956722026041/87403803*10749957122^(11/24) 4334944369999999 a001 365435296162/87403803*10749957122^(1/2) 4334944369999999 a001 139583862445/87403803*10749957122^(13/24) 4334944369999999 a001 86267571272/87403803*10749957122^(9/16) 4334944369999999 a001 53316291173/87403803*10749957122^(7/12) 4334944369999999 a001 20365011074/87403803*10749957122^(5/8) 4334944369999999 a001 2084036199823432237/4807526976 4334944369999999 a001 7778742049/87403803*10749957122^(2/3) 4334944369999999 a001 2971215073/87403803*45537549124^(2/3) 4334944369999999 a001 39088169/6643838879*23725150497407^(13/16) 4334944369999999 a001 39088169/6643838879*505019158607^(13/14) 4334944369999999 a001 6557470319842/87403803*4106118243^(9/23) 4334944369999999 a001 2504730781961/87403803*4106118243^(10/23) 4334944369999999 a001 956722026041/87403803*4106118243^(11/23) 4334944369999999 a001 2971215073/87403803*10749957122^(17/24) 4334944369999999 a001 591286729879/87403803*4106118243^(1/2) 4334944369999999 a001 365435296162/87403803*4106118243^(12/23) 4334944369999999 a001 1134903170/87403803*2537720636^(4/5) 4334944369999999 a001 139583862445/87403803*4106118243^(13/23) 4334944369999999 a001 53316291173/87403803*4106118243^(14/23) 4334944369999999 a001 20365011074/87403803*4106118243^(15/23) 4334944369999999 a001 7778742049/87403803*4106118243^(16/23) 4334944369999999 a001 796030994547383506/1836311903 4334944369999999 a001 2971215073/87403803*4106118243^(17/23) 4334944369999999 a001 1134903170/87403803*45537549124^(12/17) 4334944369999999 a001 39088169/2537720636*312119004989^(10/11) 4334944369999999 a001 1134903170/87403803*14662949395604^(4/7) 4334944369999999 a001 1134903170/87403803*505019158607^(9/14) 4334944369999999 a001 1134903170/87403803*192900153618^(2/3) 4334944369999999 a001 1134903170/87403803*73681302247^(9/13) 4334944369999999 a001 1134903170/87403803*10749957122^(3/4) 4334944369999999 a001 6557470319842/87403803*1568397607^(9/22) 4334944369999999 a001 2504730781961/87403803*1568397607^(5/11) 4334944369999999 a001 1134903170/87403803*4106118243^(18/23) 4334944369999999 a001 956722026041/87403803*1568397607^(1/2) 4334944369999999 a001 365435296162/87403803*1568397607^(6/11) 4334944369999999 a001 139583862445/87403803*1568397607^(13/22) 4334944369999999 a001 53316291173/87403803*1568397607^(7/11) 4334944369999999 a001 20365011074/87403803*1568397607^(15/22) 4334944369999999 a001 1602508992/29134601*1568397607^(3/4) 4334944369999999 a001 7778742049/87403803*1568397607^(8/11) 4334944369999999 a001 2971215073/87403803*1568397607^(17/22) 4334944369999999 a001 304056783818718281/701408733 4334944369999999 a001 1134903170/87403803*1568397607^(9/11) 4334944369999999 a001 39088169/969323029*45537549124^(16/17) 4334944369999999 a001 433494437/87403803*817138163596^(2/3) 4334944369999999 a001 39088169/969323029*14662949395604^(16/21) 4334944369999999 a001 39088169/969323029*192900153618^(8/9) 4334944369999999 a001 39088169/969323029*73681302247^(12/13) 4334944369999999 a001 433494437/87403803*10749957122^(19/24) 4334944369999999 a001 433494437/87403803*4106118243^(19/23) 4334944369999999 a001 6557470319842/87403803*599074578^(3/7) 4334944369999999 a001 2504730781961/87403803*599074578^(10/21) 4334944369999999 a001 516002918640/29134601*599074578^(1/2) 4334944369999999 a001 433494437/87403803*1568397607^(19/22) 4334944369999999 a001 956722026041/87403803*599074578^(11/21) 4334944369999999 a001 365435296162/87403803*599074578^(4/7) 4334944369999999 a001 139583862445/87403803*599074578^(13/21) 4334944369999999 a001 86267571272/87403803*599074578^(9/14) 4334944369999999 a001 53316291173/87403803*599074578^(2/3) 4334944369999999 a001 20365011074/87403803*599074578^(5/7) 4334944369999999 a001 7778742049/87403803*599074578^(16/21) 4334944369999999 a001 1602508992/29134601*599074578^(11/14) 4334944369999999 a001 1836311903/87403803*599074578^(5/6) 4334944369999999 a001 2971215073/87403803*599074578^(17/21) 4334944369999999 a001 1134903170/87403803*599074578^(6/7) 4334944369999999 a001 116139356908771337/267914296 4334944369999999 a001 433494437/87403803*599074578^(19/21) 4334944369999999 a001 165580141/87403803*2537720636^(8/9) 4334944369999999 a001 165580141/87403803*312119004989^(8/11) 4334944369999999 a001 165580141/87403803*23725150497407^(5/8) 4334944369999999 a001 165580141/87403803*73681302247^(10/13) 4334944369999999 a001 165580141/87403803*28143753123^(4/5) 4334944369999999 a001 165580141/87403803*10749957122^(5/6) 4334944369999999 a001 39088169/370248451*10749957122^(23/24) 4334944369999999 a001 165580141/87403803*4106118243^(20/23) 4334944369999999 a001 165580141/87403803*1568397607^(10/11) 4334944369999999 a001 6557470319842/87403803*228826127^(9/20) 4334944369999999 a001 2504730781961/87403803*228826127^(1/2) 4334944369999999 a001 165580141/87403803*599074578^(20/21) 4334944369999999 a001 956722026041/87403803*228826127^(11/20) 4334944369999999 a001 365435296162/87403803*228826127^(3/5) 4334944369999999 a001 75283811239/29134601*228826127^(5/8) 4334944369999999 a001 139583862445/87403803*228826127^(13/20) 4334944369999999 a001 53316291173/87403803*228826127^(7/10) 4334944369999999 a001 20365011074/87403803*228826127^(3/4) 4334944369999999 a001 7778742049/87403803*228826127^(4/5) 4334944369999999 a001 2971215073/87403803*228826127^(17/20) 4334944369999999 a001 1836311903/87403803*228826127^(7/8) 4334944369999999 a001 1134903170/87403803*228826127^(9/10) 4334944369999999 a001 433494437/87403803*228826127^(19/20) 4334944369999999 a001 8872257381519146/20466831 4334944369999999 a001 2971215073/33385282*33385282^(8/9) 4334944369999999 a001 63245986/87403803*2537720636^(14/15) 4334944369999999 a001 63245986/87403803*17393796001^(6/7) 4334944369999999 a001 63245986/87403803*45537549124^(14/17) 4334944369999999 a001 39088169/141422324*312119004989^(4/5) 4334944369999999 a001 63245986/87403803*817138163596^(14/19) 4334944369999999 a001 63245986/87403803*14662949395604^(2/3) 4334944369999999 a001 39088169/141422324*23725150497407^(11/16) 4334944369999999 a001 63245986/87403803*192900153618^(7/9) 4334944369999999 a001 39088169/141422324*73681302247^(11/13) 4334944369999999 a001 63245986/87403803*10749957122^(7/8) 4334944369999999 a001 39088169/141422324*10749957122^(11/12) 4334944369999999 a001 63245986/87403803*4106118243^(21/23) 4334944369999999 a001 39088169/141422324*4106118243^(22/23) 4334944369999999 a001 63245986/87403803*1568397607^(21/22) 4334944369999999 a001 1836311903/33385282*33385282^(11/12) 4334944369999999 a001 13708391546789940/31622993 4334944369999999 a001 6557470319842/87403803*87403803^(9/19) 4334944369999999 a001 4052739537881/87403803*87403803^(1/2) 4334944369999999 a001 2971215073/228826127*141422324^(12/13) 4334944369999999 a001 2504730781961/87403803*87403803^(10/19) 4334944369999999 a001 12586269025/228826127*141422324^(11/13) 4334944369999999 a001 53316291173/228826127*141422324^(10/13) 4334944369999999 a001 956722026041/87403803*87403803^(11/19) 4334944369999999 a001 225851433717/228826127*141422324^(9/13) 4334944369999999 a001 365435296162/228826127*141422324^(2/3) 4334944369999999 a001 956722026041/228826127*141422324^(8/13) 4334944369999999 a001 567451585/16692641*33385282^(17/18) 4334944369999999 a001 7778742049/599074578*141422324^(12/13) 4334944369999999 a001 365435296162/87403803*87403803^(12/19) 4334944369999999 a001 20365011074/1568397607*141422324^(12/13) 4334944369999999 a001 53316291173/4106118243*141422324^(12/13) 4334944369999999 a001 139583862445/10749957122*141422324^(12/13) 4334944369999999 a001 365435296162/28143753123*141422324^(12/13) 4334944369999999 a001 956722026041/73681302247*141422324^(12/13) 4334944369999999 a001 2504730781961/192900153618*141422324^(12/13) 4334944369999999 a001 10610209857723/817138163596*141422324^(12/13) 4334944369999999 a001 4052739537881/312119004989*141422324^(12/13) 4334944369999999 a001 1548008755920/119218851371*141422324^(12/13) 4334944369999999 a001 591286729879/45537549124*141422324^(12/13) 4334944369999999 a001 7787980473/599786069*141422324^(12/13) 4334944369999999 a001 86267571272/6643838879*141422324^(12/13) 4334944369999999 a001 4052739537881/228826127*141422324^(7/13) 4334944369999999 a001 32951280099/2537720636*141422324^(12/13) 4334944369999999 a001 10983760033/199691526*141422324^(11/13) 4334944369999999 a001 12586269025/969323029*141422324^(12/13) 4334944369999999 a001 86267571272/1568397607*141422324^(11/13) 4334944369999999 a001 75283811239/1368706081*141422324^(11/13) 4334944369999999 a001 591286729879/10749957122*141422324^(11/13) 4334944369999999 a001 12585437040/228811001*141422324^(11/13) 4334944369999999 a001 4052739537881/73681302247*141422324^(11/13) 4334944369999999 a001 3536736619241/64300051206*141422324^(11/13) 4334944369999999 a001 6557470319842/119218851371*141422324^(11/13) 4334944369999999 a001 2504730781961/45537549124*141422324^(11/13) 4334944369999999 a001 956722026041/17393796001*141422324^(11/13) 4334944369999999 a001 365435296162/6643838879*141422324^(11/13) 4334944369999999 a001 139583862445/2537720636*141422324^(11/13) 4334944369999999 a001 139583862445/87403803*87403803^(13/19) 4334944369999999 a001 139583862445/599074578*141422324^(10/13) 4334944369999999 a001 53316291173/969323029*141422324^(11/13) 4334944369999999 a001 365435296162/1568397607*141422324^(10/13) 4334944369999999 a001 4807526976/370248451*141422324^(12/13) 4334944369999999 a001 956722026041/4106118243*141422324^(10/13) 4334944369999999 a001 2504730781961/10749957122*141422324^(10/13) 4334944369999999 a001 6557470319842/28143753123*141422324^(10/13) 4334944369999999 a001 10610209857723/45537549124*141422324^(10/13) 4334944369999999 a001 4052739537881/17393796001*141422324^(10/13) 4334944369999999 a001 1548008755920/6643838879*141422324^(10/13) 4334944369999999 a001 591286729879/2537720636*141422324^(10/13) 4334944369999999 a001 591286729879/599074578*141422324^(9/13) 4334944369999999 a001 225851433717/969323029*141422324^(10/13) 4334944369999999 a001 956722026041/599074578*141422324^(2/3) 4334944369999999 a001 27416783093579881/63245986 4334944369999999 a001 1548008755920/1568397607*141422324^(9/13) 4334944369999999 a001 20365011074/370248451*141422324^(11/13) 4334944369999999 a001 4052739537881/4106118243*141422324^(9/13) 4334944369999999 a001 4807525989/4870846*141422324^(9/13) 4334944369999999 a001 6557470319842/6643838879*141422324^(9/13) 4334944369999999 a001 2504730781961/2537720636*141422324^(9/13) 4334944369999999 a001 53316291173/87403803*87403803^(14/19) 4334944369999999 a001 2504730781961/1568397607*141422324^(2/3) 4334944369999999 a001 2504730781961/599074578*141422324^(8/13) 4334944369999999 a001 956722026041/969323029*141422324^(9/13) 4334944369999999 a001 6557470319842/4106118243*141422324^(2/3) 4334944369999999 a001 10610209857723/6643838879*141422324^(2/3) 4334944369999999 a001 4052739537881/2537720636*141422324^(2/3) 4334944369999999 a001 1548008755920/969323029*141422324^(2/3) 4334944369999999 a001 6557470319842/1568397607*141422324^(8/13) 4334944369999999 a001 86267571272/370248451*141422324^(10/13) 4334944369999999 a001 10610209857723/2537720636*141422324^(8/13) 4334944369999999 a001 3536736619241/199691526*141422324^(7/13) 4334944369999999 a001 4052739537881/969323029*141422324^(8/13) 4334944369999999 a001 20365011074/87403803*87403803^(15/19) 4334944369999999 a001 365435296162/370248451*141422324^(9/13) 4334944369999999 a001 71778070001175615/165580141 4334944369999999 a001 591286729879/370248451*141422324^(2/3) 4334944369999999 a001 1548008755920/370248451*141422324^(8/13) 4334944369999999 a001 34111385/199691526*45537549124^(15/17) 4334944369999999 a001 34111385/199691526*312119004989^(9/11) 4334944369999999 a001 34111385/199691526*14662949395604^(5/7) 4334944369999999 a001 34111385/199691526*192900153618^(5/6) 4334944369999999 a001 34111385/199691526*28143753123^(9/10) 4334944369999999 a001 34111385/199691526*10749957122^(15/16) 4334944369999999 a001 7778742049/87403803*87403803^(16/19) 4334944369999999 a001 187917426909946965/433494437 4334944369999999 a001 701408733/228826127*2537720636^(13/15) 4334944369999999 a001 6557470319842/370248451*141422324^(7/13) 4334944369999999 a001 701408733/228826127*45537549124^(13/17) 4334944369999999 a001 701408733/228826127*14662949395604^(13/21) 4334944369999999 a001 701408733/228826127*192900153618^(13/18) 4334944369999999 a001 701408733/228826127*73681302247^(3/4) 4334944369999999 a001 701408733/228826127*10749957122^(13/16) 4334944369999999 a001 49197421072866528/113490317 4334944369999999 a001 102287808/4868641*2537720636^(7/9) 4334944369999999 a001 12586269025/228826127*2537720636^(11/15) 4334944369999999 a001 53316291173/228826127*2537720636^(2/3) 4334944369999999 a001 2971215073/228826127*2537720636^(4/5) 4334944369999999 a001 225851433717/228826127*2537720636^(3/5) 4334944369999999 a001 591286729879/228826127*2537720636^(5/9) 4334944369999999 a001 956722026041/228826127*2537720636^(8/15) 4334944369999999 a001 4052739537881/228826127*2537720636^(7/15) 4334944369999999 a001 6557470319842/228826127*2537720636^(4/9) 4334944369999999 a001 34111385/1368706081*14662949395604^(7/9) 4334944369999999 a001 34111385/1368706081*505019158607^(7/8) 4334944369999999 a001 1288005205276048875/2971215073 4334944369999999 a001 102287808/4868641*17393796001^(5/7) 4334944369999999 a001 102287808/4868641*312119004989^(7/11) 4334944369999999 a001 102334155/10749957122*817138163596^(17/19) 4334944369999999 a001 102287808/4868641*14662949395604^(5/9) 4334944369999999 a001 102287808/4868641*505019158607^(5/8) 4334944369999999 a001 102334155/10749957122*192900153618^(17/18) 4334944369999999 a001 102287808/4868641*28143753123^(7/10) 4334944369999999 a001 3372041405099481345/7778742049 4334944369999999 a001 139583862445/228826127*17393796001^(4/7) 4334944369999999 a001 12586269025/228826127*45537549124^(11/17) 4334944369999999 a001 4052739537881/228826127*17393796001^(3/7) 4334944369999999 a001 12586269025/228826127*312119004989^(3/5) 4334944369999999 a001 12586269025/228826127*14662949395604^(11/21) 4334944369999999 a001 12586269025/228826127*192900153618^(11/18) 4334944369999999 a001 4414059505011197580/10182505537 4334944369999999 a001 225851433717/228826127*45537549124^(9/17) 4334944369999999 a001 956722026041/228826127*45537549124^(8/17) 4334944369999999 a001 53316291173/228826127*45537549124^(10/17) 4334944369999999 a001 4052739537881/228826127*45537549124^(7/17) 4334944369999999 a001 14619165/10525900321*3461452808002^(11/12) 4334944369999999 a001 23112315624967704135/53316291173 4334944369999999 a001 34111385/64300051206*14662949395604^(19/21) 4334944369999999 a001 86267571272/228826127*1322157322203^(1/2) 4334944369999999 a001 12101765572976143449/27916772489 4334944369999999 a001 225851433717/228826127*817138163596^(9/19) 4334944369999999 a001 2504730781961/228826127*312119004989^(2/5) 4334944369999999 a001 225851433717/228826127*14662949395604^(3/7) 4334944369999999 a001 1085786860162753429065/2504730781961 4334944369999999 a001 102334155*(1/2+1/2*5^(1/2))^3 4334944369999999 a001 102334155/817138163596*14662949395604^(20/21) 4334944369999999 a001 225851433717/228826127*192900153618^(1/2) 4334944369999999 a001 139583862445/228826127*14662949395604^(4/9) 4334944369999999 a001 4052739537881/228826127*192900153618^(7/18) 4334944369999999 a001 956722026041/228826127*192900153618^(4/9) 4334944369999999 a001 18698256119956506555/43133785636 4334944369999999 a001 53316291173/228826127*312119004989^(6/11) 4334944369999999 a001 102334155/119218851371*14662949395604^(8/9) 4334944369999999 a001 6557470319842/228826127*73681302247^(5/13) 4334944369999999 a001 956722026041/228826127*73681302247^(6/13) 4334944369999999 a001 53316291173/228826127*192900153618^(5/9) 4334944369999999 a001 365435296162/228826127*73681302247^(1/2) 4334944369999999 a001 139583862445/228826127*73681302247^(7/13) 4334944369999999 a001 4761398871648436325/10983760033 4334944369999999 a001 102334155/45537549124*14662949395604^(6/7) 4334944369999999 a001 20365011074/228826127*505019158607^(4/7) 4334944369999999 a001 6557470319842/228826127*28143753123^(2/5) 4334944369999999 a001 20365011074/228826127*73681302247^(8/13) 4334944369999999 a001 591286729879/228826127*28143753123^(1/2) 4334944369999999 a001 53316291173/228826127*28143753123^(3/5) 4334944369999999 a001 99201410998598433/228841255 4334944369999999 a001 7778742049/228826127*45537549124^(2/3) 4334944369999999 a001 102334155/17393796001*23725150497407^(13/16) 4334944369999999 a001 102334155/17393796001*505019158607^(13/14) 4334944369999999 a001 6557470319842/228826127*10749957122^(5/12) 4334944369999999 a001 4052739537881/228826127*10749957122^(7/16) 4334944369999999 a001 2504730781961/228826127*10749957122^(11/24) 4334944369999999 a001 956722026041/228826127*10749957122^(1/2) 4334944369999999 a001 12586269025/228826127*10749957122^(11/16) 4334944369999999 a001 365435296162/228826127*10749957122^(13/24) 4334944369999999 a001 225851433717/228826127*10749957122^(9/16) 4334944369999999 a001 139583862445/228826127*10749957122^(7/12) 4334944369999999 a001 53316291173/228826127*10749957122^(5/8) 4334944369999999 a001 20365011074/228826127*10749957122^(2/3) 4334944369999999 a001 49619909519605535/114464928 4334944369999999 a001 7778742049/228826127*10749957122^(17/24) 4334944369999999 a001 2971215073/228826127*45537549124^(12/17) 4334944369999999 a001 102334155/6643838879*312119004989^(10/11) 4334944369999999 a001 2971215073/228826127*14662949395604^(4/7) 4334944369999999 a001 102334155/6643838879*3461452808002^(5/6) 4334944369999999 a001 2971215073/228826127*505019158607^(9/14) 4334944369999999 a001 2971215073/228826127*192900153618^(2/3) 4334944369999999 a001 2971215073/228826127*73681302247^(9/13) 4334944369999999 a001 6557470319842/228826127*4106118243^(10/23) 4334944369999999 a001 2504730781961/228826127*4106118243^(11/23) 4334944369999999 a001 2971215073/228826127*10749957122^(3/4) 4334944369999999 a001 1548008755920/228826127*4106118243^(1/2) 4334944369999999 a001 956722026041/228826127*4106118243^(12/23) 4334944369999999 a001 365435296162/228826127*4106118243^(13/23) 4334944369999999 a001 139583862445/228826127*4106118243^(14/23) 4334944369999999 a001 53316291173/228826127*4106118243^(15/23) 4334944369999999 a001 20365011074/228826127*4106118243^(16/23) 4334944369999999 a001 7778742049/228826127*4106118243^(17/23) 4334944369999999 a001 796030994547383595/1836311903 4334944369999999 a001 2971215073/228826127*4106118243^(18/23) 4334944369999999 a001 9303105/230701876*45537549124^(16/17) 4334944369999999 a001 1134903170/228826127*817138163596^(2/3) 4334944369999999 a001 9303105/230701876*14662949395604^(16/21) 4334944369999999 a001 9303105/230701876*192900153618^(8/9) 4334944369999999 a001 9303105/230701876*73681302247^(12/13) 4334944369999999 a001 1134903170/228826127*10749957122^(19/24) 4334944369999999 a001 6557470319842/228826127*1568397607^(5/11) 4334944369999999 a001 2504730781961/228826127*1568397607^(1/2) 4334944369999999 a001 1134903170/228826127*4106118243^(19/23) 4334944369999999 a001 956722026041/228826127*1568397607^(6/11) 4334944369999999 a001 365435296162/228826127*1568397607^(13/22) 4334944369999999 a001 139583862445/228826127*1568397607^(7/11) 4334944369999999 a001 53316291173/228826127*1568397607^(15/22) 4334944369999999 a001 20365011074/228826127*1568397607^(8/11) 4334944369999999 a001 12586269025/228826127*1568397607^(3/4) 4334944369999999 a001 7778742049/228826127*1568397607^(17/22) 4334944369999999 a001 2971215073/228826127*1568397607^(9/11) 4334944369999999 a001 101352261272906105/233802911 4334944369999999 a001 1134903170/228826127*1568397607^(19/22) 4334944369999999 a001 433494437/228826127*2537720636^(8/9) 4334944369999999 a001 433494437/228826127*312119004989^(8/11) 4334944369999999 a001 433494437/228826127*23725150497407^(5/8) 4334944369999999 a001 433494437/228826127*73681302247^(10/13) 4334944369999999 a001 433494437/228826127*28143753123^(4/5) 4334944369999999 a001 433494437/228826127*10749957122^(5/6) 4334944369999999 a001 102334155/969323029*10749957122^(23/24) 4334944369999999 a001 433494437/228826127*4106118243^(20/23) 4334944369999999 a001 6557470319842/228826127*599074578^(10/21) 4334944369999999 a001 4052739537881/228826127*599074578^(1/2) 4334944369999999 a001 433494437/228826127*1568397607^(10/11) 4334944369999999 a001 2504730781961/228826127*599074578^(11/21) 4334944369999999 a001 956722026041/228826127*599074578^(4/7) 4334944369999999 a001 365435296162/228826127*599074578^(13/21) 4334944369999999 a001 225851433717/228826127*599074578^(9/14) 4334944369999999 a001 139583862445/228826127*599074578^(2/3) 4334944369999999 a001 53316291173/228826127*599074578^(5/7) 4334944369999999 a001 20365011074/228826127*599074578^(16/21) 4334944369999999 a001 701408733/228826127*599074578^(13/14) 4334944369999999 a001 12586269025/228826127*599074578^(11/14) 4334944369999999 a001 7778742049/228826127*599074578^(17/21) 4334944369999999 a001 102287808/4868641*599074578^(5/6) 4334944369999999 a001 2971215073/228826127*599074578^(6/7) 4334944369999999 a001 1134903170/228826127*599074578^(19/21) 4334944369999999 a001 58069678454385675/133957148 4334944369999999 a001 433494437/228826127*599074578^(20/21) 4334944369999999 a001 2971215073/87403803*87403803^(17/19) 4334944369999999 a001 71778070001175616/165580141 4334944369999999 a001 165580141/228826127*2537720636^(14/15) 4334944369999999 a001 165580141/228826127*17393796001^(6/7) 4334944369999999 a001 165580141/228826127*45537549124^(14/17) 4334944369999999 a001 102334155/370248451*312119004989^(4/5) 4334944369999999 a001 165580141/228826127*817138163596^(14/19) 4334944369999999 a001 102334155/370248451*23725150497407^(11/16) 4334944369999999 a001 165580141/228826127*505019158607^(3/4) 4334944369999999 a001 165580141/228826127*192900153618^(7/9) 4334944369999999 a001 102334155/370248451*73681302247^(11/13) 4334944369999999 a001 165580141/228826127*10749957122^(7/8) 4334944369999999 a001 102334155/370248451*10749957122^(11/12) 4334944369999999 a001 165580141/228826127*4106118243^(21/23) 4334944369999999 a001 102334155/370248451*4106118243^(22/23) 4334944369999999 a001 165580141/228826127*1568397607^(21/22) 4334944369999999 a001 6557470319842/228826127*228826127^(1/2) 4334944369999999 a001 2504730781961/228826127*228826127^(11/20) 4334944369999999 a001 956722026041/228826127*228826127^(3/5) 4334944369999999 a001 591286729879/228826127*228826127^(5/8) 4334944369999999 a001 1134903170/87403803*87403803^(18/19) 4334944369999999 a001 365435296162/228826127*228826127^(13/20) 4334944369999999 a001 139583862445/228826127*228826127^(7/10) 4334944369999999 a001 53316291173/228826127*228826127^(3/4) 4334944369999999 a001 187917426909946968/433494437 4334944369999999 a001 20365011074/228826127*228826127^(4/5) 4334944369999999 a001 267914296/1568397607*45537549124^(15/17) 4334944369999999 a001 267914296/1568397607*312119004989^(9/11) 4334944369999999 a001 267914296/1568397607*14662949395604^(5/7) 4334944369999999 a001 267914296/1568397607*192900153618^(5/6) 4334944369999999 a001 267914296/1568397607*28143753123^(9/10) 4334944369999999 a001 267914296/1568397607*10749957122^(15/16) 4334944369999999 a001 245987105364332644/567451585 4334944369999999 a001 1836311903/599074578*2537720636^(13/15) 4334944369999999 a001 12586269025/599074578*2537720636^(7/9) 4334944369999999 a001 7778742049/599074578*2537720636^(4/5) 4334944369999999 a001 10983760033/199691526*2537720636^(11/15) 4334944369999999 a001 139583862445/599074578*2537720636^(2/3) 4334944369999999 a001 591286729879/599074578*2537720636^(3/5) 4334944369999999 a001 86000486440/33281921*2537720636^(5/9) 4334944369999999 a001 2504730781961/599074578*2537720636^(8/15) 4334944369999999 a001 7778742049/228826127*228826127^(17/20) 4334944369999999 a001 3536736619241/199691526*2537720636^(7/15) 4334944369999999 a001 1836311903/599074578*45537549124^(13/17) 4334944369999999 a001 1836311903/599074578*14662949395604^(13/21) 4334944369999999 a001 1836311903/599074578*192900153618^(13/18) 4334944369999999 a001 1836311903/599074578*73681302247^(3/4) 4334944369999999 a001 1836311903/599074578*10749957122^(13/16) 4334944369999999 a001 1288005205276048896/2971215073 4334944369999999 a001 133957148/5374978561*14662949395604^(7/9) 4334944369999999 a001 133957148/5374978561*505019158607^(7/8) 4334944369999999 a001 259387800392267800/598364773 4334944369999999 a001 12586269025/599074578*17393796001^(5/7) 4334944369999999 a001 182717648081/299537289*17393796001^(4/7) 4334944369999999 a001 3536736619241/199691526*17393796001^(3/7) 4334944369999999 a001 12586269025/599074578*312119004989^(7/11) 4334944369999999 a001 267914296/28143753123*14662949395604^(17/21) 4334944369999999 a001 12586269025/599074578*14662949395604^(5/9) 4334944369999999 a001 12586269025/599074578*505019158607^(5/8) 4334944369999999 a001 267914296/28143753123*192900153618^(17/18) 4334944369999999 a001 4414059505011197652/10182505537 4334944369999999 a001 10983760033/199691526*45537549124^(11/17) 4334944369999999 a001 12586269025/599074578*28143753123^(7/10) 4334944369999999 a001 139583862445/599074578*45537549124^(10/17) 4334944369999999 a001 591286729879/599074578*45537549124^(9/17) 4334944369999999 a001 2504730781961/599074578*45537549124^(8/17) 4334944369999999 a001 3536736619241/199691526*45537549124^(7/17) 4334944369999999 a001 10983760033/199691526*312119004989^(3/5) 4334944369999999 a001 10983760033/199691526*817138163596^(11/19) 4334944369999999 a001 10983760033/199691526*14662949395604^(11/21) 4334944369999999 a001 10983760033/199691526*192900153618^(11/18) 4334944369999999 a001 23112315624967704512/53316291173 4334944369999999 a001 133957148/96450076809*3461452808002^(11/12) 4334944369999999 a001 60508827864880718232/139583862445 4334944369999999 a001 3278735159921/299537289*312119004989^(2/5) 4334944369999999 a001 1085786860162753446776/2504730781961 4334944369999999 a001 133957148+133957148*5^(1/2) 4334944369999999 a001 2504730781961/599074578*14662949395604^(8/21) 4334944369999999 a001 182717648081/299537289*14662949395604^(4/9) 4334944369999999 a001 267914296/312119004989*14662949395604^(8/9) 4334944369999999 a001 139583862445/599074578*14662949395604^(10/21) 4334944369999999 a001 3536736619241/199691526*192900153618^(7/18) 4334944369999999 a001 2504730781961/599074578*192900153618^(4/9) 4334944369999999 a001 139583862445/599074578*192900153618^(5/9) 4334944369999999 a001 4674564029989126715/10783446409 4334944369999999 a001 267914296/119218851371*14662949395604^(6/7) 4334944369999999 a001 53316291173/599074578*23725150497407^(1/2) 4334944369999999 a001 53316291173/599074578*505019158607^(4/7) 4334944369999999 a001 2504730781961/599074578*73681302247^(6/13) 4334944369999999 a001 956722026041/599074578*73681302247^(1/2) 4334944369999999 a001 182717648081/299537289*73681302247^(7/13) 4334944369999999 a001 10182505537/299537289*45537549124^(2/3) 4334944369999999 a001 53316291173/599074578*73681302247^(8/13) 4334944369999999 a001 14284196614945309208/32951280099 4334944369999999 a001 66978574/11384387281*23725150497407^(13/16) 4334944369999999 a001 66978574/11384387281*505019158607^(13/14) 4334944369999999 a001 86000486440/33281921*28143753123^(1/2) 4334944369999999 a001 139583862445/599074578*28143753123^(3/5) 4334944369999999 a001 5456077604922913904/12586269025 4334944369999999 a001 7778742049/599074578*45537549124^(12/17) 4334944369999999 a001 9238424/599786069*312119004989^(10/11) 4334944369999999 a001 7778742049/599074578*14662949395604^(4/7) 4334944369999999 a001 9238424/599786069*3461452808002^(5/6) 4334944369999999 a001 7778742049/599074578*505019158607^(9/14) 4334944369999999 a001 7778742049/599074578*192900153618^(2/3) 4334944369999999 a001 7778742049/599074578*73681302247^(9/13) 4334944369999999 a001 3536736619241/199691526*10749957122^(7/16) 4334944369999999 a001 3278735159921/299537289*10749957122^(11/24) 4334944369999999 a001 2504730781961/599074578*10749957122^(1/2) 4334944369999999 a001 956722026041/599074578*10749957122^(13/24) 4334944369999999 a001 591286729879/599074578*10749957122^(9/16) 4334944369999999 a001 182717648081/299537289*10749957122^(7/12) 4334944369999999 a001 139583862445/599074578*10749957122^(5/8) 4334944369999999 a001 10983760033/199691526*10749957122^(11/16) 4334944369999999 a001 53316291173/599074578*10749957122^(2/3) 4334944369999999 a001 10182505537/299537289*10749957122^(17/24) 4334944369999999 a001 7778742049/599074578*10749957122^(3/4) 4334944369999999 a001 260504524977929063/600940872 4334944369999999 a001 567451585/299537289*2537720636^(8/9) 4334944369999999 a001 267914296/6643838879*45537549124^(16/17) 4334944369999999 a001 2971215073/599074578*817138163596^(2/3) 4334944369999999 a001 267914296/6643838879*14662949395604^(16/21) 4334944369999999 a001 267914296/6643838879*192900153618^(8/9) 4334944369999999 a001 267914296/6643838879*73681302247^(12/13) 4334944369999999 a001 3278735159921/299537289*4106118243^(11/23) 4334944369999999 a001 2971215073/599074578*10749957122^(19/24) 4334944369999999 a001 4052739537881/599074578*4106118243^(1/2) 4334944369999999 a001 2504730781961/599074578*4106118243^(12/23) 4334944369999999 a001 956722026041/599074578*4106118243^(13/23) 4334944369999999 a001 182717648081/299537289*4106118243^(14/23) 4334944369999999 a001 139583862445/599074578*4106118243^(15/23) 4334944369999999 a001 53316291173/599074578*4106118243^(16/23) 4334944369999999 a001 10182505537/299537289*4106118243^(17/23) 4334944369999999 a001 7778742049/599074578*4106118243^(18/23) 4334944369999999 a001 2971215073/599074578*4106118243^(19/23) 4334944369999999 a001 796030994547383608/1836311903 4334944369999999 a001 567451585/299537289*312119004989^(8/11) 4334944369999999 a001 567451585/299537289*23725150497407^(5/8) 4334944369999999 a001 567451585/299537289*73681302247^(10/13) 4334944369999999 a001 567451585/299537289*28143753123^(4/5) 4334944369999999 a001 567451585/299537289*10749957122^(5/6) 4334944369999999 a001 66978574/634430159*10749957122^(23/24) 4334944369999999 a001 3278735159921/299537289*1568397607^(1/2) 4334944369999999 a001 567451585/299537289*4106118243^(20/23) 4334944369999999 a001 2504730781961/599074578*1568397607^(6/11) 4334944369999999 a001 956722026041/599074578*1568397607^(13/22) 4334944369999999 a001 182717648081/299537289*1568397607^(7/11) 4334944369999999 a001 139583862445/599074578*1568397607^(15/22) 4334944369999999 a001 53316291173/599074578*1568397607^(8/11) 4334944369999999 a001 10983760033/199691526*1568397607^(3/4) 4334944369999999 a001 10182505537/299537289*1568397607^(17/22) 4334944369999999 a001 7778742049/599074578*1568397607^(9/11) 4334944369999999 a001 2971215073/599074578*1568397607^(19/22) 4334944369999999 a001 102287808/4868641*228826127^(7/8) 4334944369999999 a001 567451585/299537289*1568397607^(10/11) 4334944369999999 a001 304056783818718320/701408733 4334944369999999 a001 2971215073/228826127*228826127^(9/10) 4334944369999999 a001 433494437/599074578*2537720636^(14/15) 4334944369999999 a001 433494437/599074578*17393796001^(6/7) 4334944369999999 a001 433494437/599074578*45537549124^(14/17) 4334944369999999 a001 267914296/969323029*312119004989^(4/5) 4334944369999999 a001 433494437/599074578*817138163596^(14/19) 4334944369999999 a001 267914296/969323029*23725150497407^(11/16) 4334944369999999 a001 433494437/599074578*505019158607^(3/4) 4334944369999999 a001 433494437/599074578*192900153618^(7/9) 4334944369999999 a001 267914296/969323029*73681302247^(11/13) 4334944369999999 a001 433494437/599074578*10749957122^(7/8) 4334944369999999 a001 267914296/969323029*10749957122^(11/12) 4334944369999999 a001 433494437/599074578*4106118243^(21/23) 4334944369999999 a001 267914296/969323029*4106118243^(22/23) 4334944369999999 a001 3536736619241/199691526*599074578^(1/2) 4334944369999999 a001 433494437/599074578*1568397607^(21/22) 4334944369999999 a001 3278735159921/299537289*599074578^(11/21) 4334944369999999 a001 2504730781961/599074578*599074578^(4/7) 4334944369999999 a001 969323029/5*5^(1/2) 4334944369999999 a001 956722026041/599074578*599074578^(13/21) 4334944369999999 a001 591286729879/599074578*599074578^(9/14) 4334944369999999 a001 491974210728665289/1134903170 4334944369999999 a001 182717648081/299537289*599074578^(2/3) 4334944369999999 a001 1134903170/228826127*228826127^(19/20) 4334944369999999 a001 139583862445/599074578*599074578^(5/7) 4334944369999999 a001 53316291173/599074578*599074578^(16/21) 4334944369999999 a001 10983760033/199691526*599074578^(11/14) 4334944369999999 a001 686789568/224056801*2537720636^(13/15) 4334944369999999 a001 20365011074/1568397607*2537720636^(4/5) 4334944369999999 a001 10182505537/299537289*599074578^(17/21) 4334944369999999 a001 32951280099/1568397607*2537720636^(7/9) 4334944369999999 a001 2971215073/1568397607*2537720636^(8/9) 4334944369999999 a001 86267571272/1568397607*2537720636^(11/15) 4334944369999999 a001 365435296162/1568397607*2537720636^(2/3) 4334944369999999 a001 1548008755920/1568397607*2537720636^(3/5) 4334944369999999 a001 4052739537881/1568397607*2537720636^(5/9) 4334944369999999 a001 6557470319842/1568397607*2537720636^(8/15) 4334944369999999 a001 1288005205276048899/2971215073 4334944369999999 a001 233802911/1368706081*45537549124^(15/17) 4334944369999999 a001 233802911/1368706081*312119004989^(9/11) 4334944369999999 a001 233802911/1368706081*14662949395604^(5/7) 4334944369999999 a001 233802911/1368706081*192900153618^(5/6) 4334944369999999 a001 12586269025/599074578*599074578^(5/6) 4334944369999999 a001 233802911/1368706081*28143753123^(9/10) 4334944369999999 a001 233802911/1368706081*10749957122^(15/16) 4334944369999999 a001 3372041405099481408/7778742049 4334944369999999 a001 686789568/224056801*45537549124^(13/17) 4334944369999999 a001 686789568/224056801*14662949395604^(13/21) 4334944369999999 a001 686789568/224056801*192900153618^(13/18) 4334944369999999 a001 686789568/224056801*73681302247^(3/4) 4334944369999999 a001 32951280099/1568397607*17393796001^(5/7) 4334944369999999 a001 956722026041/1568397607*17393796001^(4/7) 4334944369999999 a001 8828119010022395325/20365011074 4334944369999999 a001 686789568/224056801*10749957122^(13/16) 4334944369999999 a001 233802911/9381251041*14662949395604^(7/9) 4334944369999999 a001 233802911/9381251041*505019158607^(7/8) 4334944369999999 a001 86267571272/1568397607*45537549124^(11/17) 4334944369999999 a001 365435296162/1568397607*45537549124^(10/17) 4334944369999999 a001 1548008755920/1568397607*45537549124^(9/17) 4334944369999999 a001 53316291173/1568397607*45537549124^(2/3) 4334944369999999 a001 6557470319842/1568397607*45537549124^(8/17) 4334944369999999 a001 32951280099/1568397607*312119004989^(7/11) 4334944369999999 a001 701408733/73681302247*817138163596^(17/19) 4334944369999999 a001 32951280099/1568397607*14662949395604^(5/9) 4334944369999999 a001 32951280099/1568397607*505019158607^(5/8) 4334944369999999 a001 701408733/73681302247*192900153618^(17/18) 4334944369999999 a001 679874470391918184/1568358005 4334944369999999 a001 86267571272/1568397607*312119004989^(3/5) 4334944369999999 a001 86267571272/1568397607*14662949395604^(11/21) 4334944369999999 a001 86267571272/1568397607*192900153618^(11/18) 4334944369999999 a001 158414167969674450561/365435296162 4334944369999999 a001 365435296162/1568397607*312119004989^(6/11) 4334944369999999 a001 1548008755920/1568397607*817138163596^(9/19) 4334944369999999 a001 591286729879/1568397607*1322157322203^(1/2) 4334944369999999 a001 1085786860162753449360/2504730781961 4334944369999999 a001 6557470319842/1568397607*14662949395604^(8/21) 4334944369999999 a001 139583862445/1568397607*23725150497407^(1/2) 4334944369999999 a001 139583862445/1568397607*505019158607^(4/7) 4334944369999999 a001 32635113368264577395/75283811239 4334944369999999 a001 701408733/119218851371*23725150497407^(13/16) 4334944369999999 a001 701408733/119218851371*505019158607^(13/14) 4334944369999999 a001 6557470319842/1568397607*73681302247^(6/13) 4334944369999999 a001 2504730781961/1568397607*73681302247^(1/2) 4334944369999999 a001 37396512239913013809/86267571272 4334944369999999 a001 139583862445/1568397607*73681302247^(8/13) 4334944369999999 a001 20365011074/1568397607*45537549124^(12/17) 4334944369999999 a001 701408733/45537549124*312119004989^(10/11) 4334944369999999 a001 20365011074/1568397607*14662949395604^(4/7) 4334944369999999 a001 20365011074/1568397607*505019158607^(9/14) 4334944369999999 a001 20365011074/1568397607*192900153618^(2/3) 4334944369999999 a001 20365011074/1568397607*73681302247^(9/13) 4334944369999999 a001 4052739537881/1568397607*28143753123^(1/2) 4334944369999999 a001 4761398871648436414/10983760033 4334944369999999 a001 32951280099/1568397607*28143753123^(7/10) 4334944369999999 a001 365435296162/1568397607*28143753123^(3/5) 4334944369999999 a001 701408733/17393796001*45537549124^(16/17) 4334944369999999 a001 7778742049/1568397607*817138163596^(2/3) 4334944369999999 a001 701408733/17393796001*14662949395604^(16/21) 4334944369999999 a001 701408733/17393796001*192900153618^(8/9) 4334944369999999 a001 701408733/17393796001*73681302247^(12/13) 4334944369999999 a001 6557470319842/1568397607*10749957122^(1/2) 4334944369999999 a001 5456077604922913917/12586269025 4334944369999999 a001 2504730781961/1568397607*10749957122^(13/24) 4334944369999999 a001 1548008755920/1568397607*10749957122^(9/16) 4334944369999999 a001 956722026041/1568397607*10749957122^(7/12) 4334944369999999 a001 365435296162/1568397607*10749957122^(5/8) 4334944369999999 a001 139583862445/1568397607*10749957122^(2/3) 4334944369999999 a001 86267571272/1568397607*10749957122^(11/16) 4334944369999999 a001 53316291173/1568397607*10749957122^(17/24) 4334944369999999 a001 20365011074/1568397607*10749957122^(3/4) 4334944369999999 a001 7778742049/1568397607*10749957122^(19/24) 4334944369999999 a001 1134903170/1568397607*2537720636^(14/15) 4334944369999999 a001 7778742049/599074578*599074578^(6/7) 4334944369999999 a001 2971215073/1568397607*312119004989^(8/11) 4334944369999999 a001 2971215073/1568397607*23725150497407^(5/8) 4334944369999999 a001 2971215073/1568397607*73681302247^(10/13) 4334944369999999 a001 2971215073/1568397607*28143753123^(4/5) 4334944369999999 a001 1515744265389/224056801*4106118243^(1/2) 4334944369999999 a001 2971215073/1568397607*10749957122^(5/6) 4334944369999999 a001 6557470319842/1568397607*4106118243^(12/23) 4334944369999999 a001 701408733/6643838879*10749957122^(23/24) 4334944369999999 a001 694678733274477503/1602508992 4334944369999999 a001 2504730781961/1568397607*4106118243^(13/23) 4334944369999999 a001 956722026041/1568397607*4106118243^(14/23) 4334944369999999 a001 365435296162/1568397607*4106118243^(15/23) 4334944369999999 a001 139583862445/1568397607*4106118243^(16/23) 4334944369999999 a001 53316291173/1568397607*4106118243^(17/23) 4334944369999999 a001 20365011074/1568397607*4106118243^(18/23) 4334944369999999 a001 7778742049/1568397607*4106118243^(19/23) 4334944369999999 a001 2971215073/1568397607*4106118243^(20/23) 4334944369999999 a001 1836311903/599074578*599074578^(13/14) 4334944369999999 a001 1134903170/1568397607*17393796001^(6/7) 4334944369999999 a001 1134903170/1568397607*45537549124^(14/17) 4334944369999999 a001 701408733/2537720636*312119004989^(4/5) 4334944369999999 a001 1134903170/1568397607*14662949395604^(2/3) 4334944369999999 a001 701408733/2537720636*23725150497407^(11/16) 4334944369999999 a001 1134903170/1568397607*505019158607^(3/4) 4334944369999999 a001 1134903170/1568397607*192900153618^(7/9) 4334944369999999 a001 701408733/2537720636*73681302247^(11/13) 4334944369999999 a001 1134903170/1568397607*10749957122^(7/8) 4334944369999999 a001 701408733/2537720636*10749957122^(11/12) 4334944369999999 a001 2971215073/599074578*599074578^(19/21) 4334944369999999 a001 1134903170/1568397607*4106118243^(21/23) 4334944369999999 a001 12586269025/4106118243*2537720636^(13/15) 4334944369999999 a001 701408733/2537720636*4106118243^(22/23) 4334944369999999 a001 7778742049/4106118243*2537720636^(8/9) 4334944369999999 a001 796030994547383610/1836311903 4334944369999999 a001 6557470319842/1568397607*1568397607^(6/11) 4334944369999999 a001 53316291173/4106118243*2537720636^(4/5) 4334944369999999 a001 2971215073/4106118243*2537720636^(14/15) 4334944369999999 a001 86267571272/4106118243*2537720636^(7/9) 4334944369999999 a001 75283811239/1368706081*2537720636^(11/15) 4334944369999999 a001 2504730781961/1568397607*1568397607^(13/22) 4334944369999999 a001 956722026041/4106118243*2537720636^(2/3) 4334944369999999 a001 4052739537881/4106118243*2537720636^(3/5) 4334944369999999 a001 7778742049/10749957122*2537720636^(14/15) 4334944369999999 a001 956722026041/1568397607*1568397607^(7/11) 4334944369999999 a001 10182505537/5374978561*2537720636^(8/9) 4334944369999999 a001 20365011074/28143753123*2537720636^(14/15) 4334944369999999 a001 3536736619241/1368706081*2537720636^(5/9) 4334944369999999 a001 53316291173/73681302247*2537720636^(14/15) 4334944369999999 a001 139583862445/192900153618*2537720636^(14/15) 4334944369999999 a001 365435296162/505019158607*2537720636^(14/15) 4334944369999999 a001 591286729879/817138163596*2537720636^(14/15) 4334944369999999 a001 225851433717/312119004989*2537720636^(14/15) 4334944369999999 a001 86267571272/119218851371*2537720636^(14/15) 4334944369999999 a001 32951280099/45537549124*2537720636^(14/15) 4334944369999999 a001 32951280099/10749957122*2537720636^(13/15) 4334944369999999 a001 12586269025/17393796001*2537720636^(14/15) 4334944369999999 a001 53316291173/28143753123*2537720636^(8/9) 4334944369999999 a001 139583862445/73681302247*2537720636^(8/9) 4334944369999999 a001 182717648081/96450076809*2537720636^(8/9) 4334944369999999 a001 956722026041/505019158607*2537720636^(8/9) 4334944369999999 a001 10610209857723/5600748293801*2537720636^(8/9) 4334944369999999 a001 591286729879/312119004989*2537720636^(8/9) 4334944369999999 a001 225851433717/119218851371*2537720636^(8/9) 4334944369999999 a001 21566892818/11384387281*2537720636^(8/9) 4334944369999999 a001 86267571272/28143753123*2537720636^(13/15) 4334944369999999 a001 32951280099/17393796001*2537720636^(8/9) 4334944369999999 a001 32264490531/10525900321*2537720636^(13/15) 4334944369999999 a001 591286729879/192900153618*2537720636^(13/15) 4334944369999999 a001 1548008755920/505019158607*2537720636^(13/15) 4334944369999999 a001 1515744265389/494493258286*2537720636^(13/15) 4334944369999999 a001 2504730781961/817138163596*2537720636^(13/15) 4334944369999999 a001 956722026041/312119004989*2537720636^(13/15) 4334944369999999 a001 365435296162/119218851371*2537720636^(13/15) 4334944369999999 a001 139583862445/45537549124*2537720636^(13/15) 4334944369999999 a001 139583862445/10749957122*2537720636^(4/5) 4334944369999999 a001 53316291173/17393796001*2537720636^(13/15) 4334944369999999 a001 4807526976/6643838879*2537720636^(14/15) 4334944369999999 a001 225851433717/10749957122*2537720636^(7/9) 4334944369999999 a001 365435296162/1568397607*1568397607^(15/22) 4334944369999999 a001 365435296162/28143753123*2537720636^(4/5) 4334944369999999 a001 956722026041/73681302247*2537720636^(4/5) 4334944369999999 a001 2504730781961/192900153618*2537720636^(4/5) 4334944369999999 a001 10610209857723/817138163596*2537720636^(4/5) 4334944369999999 a001 4052739537881/312119004989*2537720636^(4/5) 4334944369999999 a001 1548008755920/119218851371*2537720636^(4/5) 4334944369999999 a001 591286729879/45537549124*2537720636^(4/5) 4334944369999999 a001 591286729879/10749957122*2537720636^(11/15) 4334944369999999 a001 591286729879/28143753123*2537720636^(7/9) 4334944369999999 a001 3372041405099481409/7778742049 4334944369999999 a001 1548008755920/73681302247*2537720636^(7/9) 4334944369999999 a001 7787980473/599786069*2537720636^(4/5) 4334944369999999 a001 4052739537881/192900153618*2537720636^(7/9) 4334944369999999 a001 225749145909/10745088481*2537720636^(7/9) 4334944369999999 a001 6557470319842/312119004989*2537720636^(7/9) 4334944369999999 a001 2504730781961/119218851371*2537720636^(7/9) 4334944369999999 a001 956722026041/45537549124*2537720636^(7/9) 4334944369999999 a001 365435296162/17393796001*2537720636^(7/9) 4334944369999999 a001 12586269025/6643838879*2537720636^(8/9) 4334944369999999 a001 12585437040/228811001*2537720636^(11/15) 4334944369999999 a001 4052739537881/73681302247*2537720636^(11/15) 4334944369999999 a001 3536736619241/64300051206*2537720636^(11/15) 4334944369999999 a001 6557470319842/119218851371*2537720636^(11/15) 4334944369999999 a001 2504730781961/45537549124*2537720636^(11/15) 4334944369999999 a001 2504730781961/10749957122*2537720636^(2/3) 4334944369999999 a001 20365011074/6643838879*2537720636^(13/15) 4334944369999999 a001 139583862445/1568397607*1568397607^(8/11) 4334944369999999 a001 956722026041/17393796001*2537720636^(11/15) 4334944369999999 a001 6557470319842/28143753123*2537720636^(2/3) 4334944369999999 a001 10610209857723/45537549124*2537720636^(2/3) 4334944369999999 a001 4807525989/4870846*2537720636^(3/5) 4334944369999999 a001 86267571272/1568397607*1568397607^(3/4) 4334944369999999 a001 86267571272/6643838879*2537720636^(4/5) 4334944369999999 a001 4052739537881/17393796001*2537720636^(2/3) 4334944369999999 a001 139583862445/6643838879*2537720636^(7/9) 4334944369999999 a001 53316291173/1568397607*1568397607^(17/22) 4334944369999999 a001 365435296162/6643838879*2537720636^(11/15) 4334944369999999 a001 1548008755920/6643838879*2537720636^(2/3) 4334944369999999 a001 20365011074/1568397607*1568397607^(9/11) 4334944369999999 a001 6557470319842/6643838879*2537720636^(3/5) 4334944369999999 a001 4414059505011197664/10182505537 4334944369999999 a001 1836311903/10749957122*45537549124^(15/17) 4334944369999999 a001 1836311903/10749957122*312119004989^(9/11) 4334944369999999 a001 1836311903/10749957122*14662949395604^(5/7) 4334944369999999 a001 1836311903/10749957122*192900153618^(5/6) 4334944369999999 a001 1836311903/10749957122*28143753123^(9/10) 4334944369999999 a001 86267571272/4106118243*17393796001^(5/7) 4334944369999999 a001 2504730781961/4106118243*17393796001^(4/7) 4334944369999999 a001 12586269025/4106118243*45537549124^(13/17) 4334944369999999 a001 23112315624967704575/53316291173 4334944369999999 a001 12586269025/4106118243*14662949395604^(13/21) 4334944369999999 a001 12586269025/4106118243*192900153618^(13/18) 4334944369999999 a001 12586269025/4106118243*73681302247^(3/4) 4334944369999999 a001 1836311903/10749957122*10749957122^(15/16) 4334944369999999 a001 75283811239/1368706081*45537549124^(11/17) 4334944369999999 a001 139583862445/4106118243*45537549124^(2/3) 4334944369999999 a001 956722026041/4106118243*45537549124^(10/17) 4334944369999999 a001 53316291173/4106118243*45537549124^(12/17) 4334944369999999 a001 4052739537881/4106118243*45537549124^(9/17) 4334944369999999 a001 60508827864880718397/139583862445 4334944369999999 a001 1836311903/73681302247*14662949395604^(7/9) 4334944369999999 a001 1836311903/73681302247*505019158607^(7/8) 4334944369999999 a001 86267571272/4106118243*312119004989^(7/11) 4334944369999999 a001 1836311903/192900153618*817138163596^(17/19) 4334944369999999 a001 1836311903/192900153618*14662949395604^(17/21) 4334944369999999 a001 86267571272/4106118243*505019158607^(5/8) 4334944369999999 a001 75283811239/1368706081*312119004989^(3/5) 4334944369999999 a001 3536736619241/1368706081*312119004989^(5/11) 4334944369999999 a001 414733676044142633451/956722026041 4334944369999999 a001 1085786860162753449737/2504730781961 4334944369999999 a001 1836311903/1322157322203*3461452808002^(11/12) 4334944369999999 a001 365435296162/4106118243*505019158607^(4/7) 4334944369999999 a001 1836311903/312119004989*23725150497407^(13/16) 4334944369999999 a001 256319508074468182835/591286729879 4334944369999999 a001 1836311903/312119004989*505019158607^(13/14) 4334944369999999 a001 956722026041/4106118243*192900153618^(5/9) 4334944369999999 a001 1836311903/45537549124*45537549124^(16/17) 4334944369999999 a001 1836311903/119218851371*312119004989^(10/11) 4334944369999999 a001 53316291173/4106118243*14662949395604^(4/7) 4334944369999999 a001 1836311903/119218851371*3461452808002^(5/6) 4334944369999999 a001 53316291173/4106118243*505019158607^(9/14) 4334944369999999 a001 53316291173/4106118243*192900153618^(2/3) 4334944369999999 a001 6557470319842/4106118243*73681302247^(1/2) 4334944369999999 a001 2504730781961/4106118243*73681302247^(7/13) 4334944369999999 a001 365435296162/4106118243*73681302247^(8/13) 4334944369999999 a001 53316291173/4106118243*73681302247^(9/13) 4334944369999999 a001 20365011074/4106118243*817138163596^(2/3) 4334944369999999 a001 1836311903/45537549124*14662949395604^(16/21) 4334944369999999 a001 1836311903/45537549124*192900153618^(8/9) 4334944369999999 a001 18698256119956506911/43133785636 4334944369999999 a001 3536736619241/1368706081*28143753123^(1/2) 4334944369999999 a001 1836311903/45537549124*73681302247^(12/13) 4334944369999999 a001 956722026041/4106118243*28143753123^(3/5) 4334944369999999 a001 86267571272/4106118243*28143753123^(7/10) 4334944369999999 a001 7778742049/4106118243*312119004989^(8/11) 4334944369999999 a001 7778742049/4106118243*23725150497407^(5/8) 4334944369999999 a001 7778742049/4106118243*73681302247^(10/13) 4334944369999999 a001 14284196614945309247/32951280099 4334944369999999 a001 7778742049/4106118243*28143753123^(4/5) 4334944369999999 a001 6557470319842/4106118243*10749957122^(13/24) 4334944369999999 a001 4052739537881/4106118243*10749957122^(9/16) 4334944369999999 a001 2504730781961/4106118243*10749957122^(7/12) 4334944369999999 a001 956722026041/4106118243*10749957122^(5/8) 4334944369999999 a001 12586269025/4106118243*10749957122^(13/16) 4334944369999999 a001 365435296162/4106118243*10749957122^(2/3) 4334944369999999 a001 75283811239/1368706081*10749957122^(11/16) 4334944369999999 a001 139583862445/4106118243*10749957122^(17/24) 4334944369999999 a001 53316291173/4106118243*10749957122^(3/4) 4334944369999999 a001 7778742049/1568397607*1568397607^(19/22) 4334944369999999 a001 20365011074/4106118243*10749957122^(19/24) 4334944369999999 a001 1836311903/2537720636*2537720636^(14/15) 4334944369999999 a001 7778742049/4106118243*10749957122^(5/6) 4334944369999999 a001 1836311903/17393796001*10749957122^(23/24) 4334944369999999 a001 2971215073/4106118243*17393796001^(6/7) 4334944369999999 a001 2971215073/4106118243*45537549124^(14/17) 4334944369999999 a001 1836311903/6643838879*312119004989^(4/5) 4334944369999999 a001 2971215073/4106118243*817138163596^(14/19) 4334944369999999 a001 2971215073/4106118243*14662949395604^(2/3) 4334944369999999 a001 1836311903/6643838879*23725150497407^(11/16) 4334944369999999 a001 2971215073/4106118243*505019158607^(3/4) 4334944369999999 a001 2971215073/4106118243*192900153618^(7/9) 4334944369999999 a001 1836311903/6643838879*73681302247^(11/13) 4334944369999999 a001 5456077604922913919/12586269025 4334944369999999 a001 2971215073/4106118243*10749957122^(7/8) 4334944369999999 a001 1836311903/6643838879*10749957122^(11/12) 4334944369999999 a001 6557470319842/4106118243*4106118243^(13/23) 4334944369999999 a001 2504730781961/4106118243*4106118243^(14/23) 4334944369999999 a001 956722026041/4106118243*4106118243^(15/23) 4334944369999999 a001 365435296162/4106118243*4106118243^(16/23) 4334944369999999 a001 23112315624967704576/53316291173 4334944369999999 a001 139583862445/4106118243*4106118243^(17/23) 4334944369999999 a001 2971215073/1568397607*1568397607^(10/11) 4334944369999999 a001 53316291173/4106118243*4106118243^(18/23) 4334944369999999 a001 225851433717/10749957122*17393796001^(5/7) 4334944369999999 a001 3278735159921/5374978561*17393796001^(4/7) 4334944369999999 a001 1602508992/9381251041*45537549124^(15/17) 4334944369999999 a001 12101765572976143680/27916772489 4334944369999999 a001 1602508992/9381251041*14662949395604^(5/7) 4334944369999999 a001 1602508992/9381251041*192900153618^(5/6) 4334944369999999 a001 20365011074/4106118243*4106118243^(19/23) 4334944369999999 a001 32951280099/10749957122*45537549124^(13/17) 4334944369999999 a001 4807526976/119218851371*45537549124^(16/17) 4334944369999999 a001 139583862445/10749957122*45537549124^(12/17) 4334944369999999 a001 182717648081/5374978561*45537549124^(2/3) 4334944369999999 a001 591286729879/10749957122*45537549124^(11/17) 4334944369999999 a001 2504730781961/10749957122*45537549124^(10/17) 4334944369999999 a001 4807525989/4870846*45537549124^(9/17) 4334944369999999 a001 79207083984837225312/182717648081 4334944369999999 a001 32951280099/10749957122*14662949395604^(13/21) 4334944369999999 a001 32951280099/10749957122*192900153618^(13/18) 4334944369999999 a001 1602508992/9381251041*28143753123^(9/10) 4334944369999999 a001 32951280099/10749957122*73681302247^(3/4) 4334944369999999 a001 414733676044142633472/956722026041 4334944369999999 a001 267084832/10716675201*14662949395604^(7/9) 4334944369999999 a001 267084832/10716675201*505019158607^(7/8) 4334944369999999 a001 225851433717/10749957122*312119004989^(7/11) 4334944369999999 a001 102287808/10745088481*817138163596^(17/19) 4334944369999999 a001 102287808/10745088481*14662949395604^(17/21) 4334944369999999 a001 225851433717/10749957122*14662949395604^(5/9) 4334944369999999 a001 1421313452222058857952/3278735159921 4334944369999999 a001 1201881744/204284540899*23725150497407^(13/16) 4334944369999999 a001 1201881744/204284540899*505019158607^(13/14) 4334944369999999 a001 139583862445/10749957122*14662949395604^(4/7) 4334944369999999 a001 139583862445/10749957122*505019158607^(9/14) 4334944369999999 a001 4807525989/4870846*192900153618^(1/2) 4334944369999999 a001 591286729879/10749957122*192900153618^(11/18) 4334944369999999 a001 102287808/10745088481*192900153618^(17/18) 4334944369999999 a001 139583862445/10749957122*192900153618^(2/3) 4334944369999999 a001 53316291173/10749957122*817138163596^(2/3) 4334944369999999 a001 4807526976/119218851371*14662949395604^(16/21) 4334944369999999 a001 256319508074468182848/591286729879 4334944369999999 a001 4807526976/119218851371*192900153618^(8/9) 4334944369999999 a001 3278735159921/5374978561*73681302247^(7/13) 4334944369999999 a001 956722026041/10749957122*73681302247^(8/13) 4334944369999999 a001 139583862445/10749957122*73681302247^(9/13) 4334944369999999 a001 4807526976/119218851371*73681302247^(12/13) 4334944369999999 a001 7778742049/10749957122*17393796001^(6/7) 4334944369999999 a001 10182505537/5374978561*312119004989^(8/11) 4334944369999999 a001 10182505537/5374978561*23725150497407^(5/8) 4334944369999999 a001 4662159052609225344/10754830177 4334944369999999 a001 10182505537/5374978561*73681302247^(10/13) 4334944369999999 a001 2504730781961/10749957122*28143753123^(3/5) 4334944369999999 a001 225851433717/10749957122*28143753123^(7/10) 4334944369999999 a001 10182505537/5374978561*28143753123^(4/5) 4334944369999999 a001 7778742049/10749957122*45537549124^(14/17) 4334944369999999 a001 4807526976/17393796001*312119004989^(4/5) 4334944369999999 a001 7778742049/10749957122*817138163596^(14/19) 4334944369999999 a001 4807526976/17393796001*23725150497407^(11/16) 4334944369999999 a001 7778742049/10749957122*505019158607^(3/4) 4334944369999999 a001 7778742049/10749957122*192900153618^(7/9) 4334944369999999 a001 4674564029989126728/10783446409 4334944369999999 a001 4807526976/17393796001*73681302247^(11/13) 4334944369999999 a001 7778742049/4106118243*4106118243^(20/23) 4334944369999999 a001 4807525989/4870846*10749957122^(9/16) 4334944369999999 a001 591286729879/28143753123*17393796001^(5/7) 4334944369999999 a001 20365011074/28143753123*17393796001^(6/7) 4334944369999999 a001 3278735159921/5374978561*10749957122^(7/12) 4334944369999999 a001 2504730781961/10749957122*10749957122^(5/8) 4334944369999999 a001 53316291173/73681302247*17393796001^(6/7) 4334944369999999 a001 956722026041/10749957122*10749957122^(2/3) 4334944369999999 a001 139583862445/192900153618*17393796001^(6/7) 4334944369999999 a001 365435296162/505019158607*17393796001^(6/7) 4334944369999999 a001 591286729879/817138163596*17393796001^(6/7) 4334944369999999 a001 225851433717/312119004989*17393796001^(6/7) 4334944369999999 a001 86267571272/119218851371*17393796001^(6/7) 4334944369999999 a001 591286729879/10749957122*10749957122^(11/16) 4334944369999999 a001 1548008755920/73681302247*17393796001^(5/7) 4334944369999999 a001 32951280099/45537549124*17393796001^(6/7) 4334944369999999 a001 158414167969674450625/365435296162 4334944369999999 a001 182717648081/5374978561*10749957122^(17/24) 4334944369999999 a001 4052739537881/192900153618*17393796001^(5/7) 4334944369999999 a001 225749145909/10745088481*17393796001^(5/7) 4334944369999999 a001 6557470319842/312119004989*17393796001^(5/7) 4334944369999999 a001 2504730781961/119218851371*17393796001^(5/7) 4334944369999999 a001 139583862445/10749957122*10749957122^(3/4) 4334944369999999 a001 956722026041/45537549124*17393796001^(5/7) 4334944369999999 a001 12586269025/73681302247*45537549124^(15/17) 4334944369999999 a001 1602508992/9381251041*10749957122^(15/16) 4334944369999999 a001 53316291173/10749957122*10749957122^(19/24) 4334944369999999 a001 1144206275/28374454999*45537549124^(16/17) 4334944369999999 a001 86267571272/28143753123*45537549124^(13/17) 4334944369999999 a001 365435296162/28143753123*45537549124^(12/17) 4334944369999999 a001 956722026041/28143753123*45537549124^(2/3) 4334944369999999 a001 12585437040/228811001*45537549124^(11/17) 4334944369999999 a001 6557470319842/28143753123*45537549124^(10/17) 4334944369999999 a001 12586269025/73681302247*312119004989^(9/11) 4334944369999999 a001 414733676044142633475/956722026041 4334944369999999 a001 12586269025/73681302247*14662949395604^(5/7) 4334944369999999 a001 12586269025/73681302247*192900153618^(5/6) 4334944369999999 a001 1085786860162753449800/2504730781961 4334944369999999 a001 86267571272/28143753123*14662949395604^(13/21) 4334944369999999 a001 12586269025/817138163596*312119004989^(10/11) 4334944369999999 a001 86267571272/28143753123*192900153618^(13/18) 4334944369999999 a001 12585437040/228811001*312119004989^(3/5) 4334944369999999 a001 12586269025/505019158607*14662949395604^(7/9) 4334944369999999 a001 12585437040/228811001*817138163596^(11/19) 4334944369999999 a001 12585437040/228811001*14662949395604^(11/21) 4334944369999999 a001 12586269025/2139295485799*505019158607^(13/14) 4334944369999999 a001 139583862445/28143753123*817138163596^(2/3) 4334944369999999 a001 1144206275/28374454999*14662949395604^(16/21) 4334944369999999 a001 12585437040/228811001*192900153618^(11/18) 4334944369999999 a001 12586269025/1322157322203*192900153618^(17/18) 4334944369999999 a001 1144206275/28374454999*192900153618^(8/9) 4334944369999999 a001 53316291173/28143753123*312119004989^(8/11) 4334944369999999 a001 53316291173/28143753123*23725150497407^(5/8) 4334944369999999 a001 12200966983974742115/28145613744 4334944369999999 a001 20365011074/28143753123*45537549124^(14/17) 4334944369999999 a001 86267571272/28143753123*73681302247^(3/4) 4334944369999999 a001 2504730781961/28143753123*73681302247^(8/13) 4334944369999999 a001 365435296162/28143753123*73681302247^(9/13) 4334944369999999 a001 1144206275/28374454999*73681302247^(12/13) 4334944369999999 a001 53316291173/28143753123*73681302247^(10/13) 4334944369999999 a001 10182505537/5374978561*10749957122^(5/6) 4334944369999999 a001 12586269025/17393796001*17393796001^(6/7) 4334944369999999 a001 12586269025/45537549124*312119004989^(4/5) 4334944369999999 a001 20365011074/28143753123*817138163596^(14/19) 4334944369999999 a001 20365011074/28143753123*14662949395604^(2/3) 4334944369999999 a001 12586269025/45537549124*23725150497407^(11/16) 4334944369999999 a001 20365011074/28143753123*505019158607^(3/4) 4334944369999999 a001 20365011074/28143753123*192900153618^(7/9) 4334944369999999 a001 10983760033/64300051206*45537549124^(15/17) 4334944369999999 a001 32951280099/817138163596*45537549124^(16/17) 4334944369999999 a001 12586269025/45537549124*73681302247^(11/13) 4334944369999999 a001 32264490531/10525900321*45537549124^(13/17) 4334944369999999 a001 956722026041/73681302247*45537549124^(12/17) 4334944369999999 a001 53316291173/73681302247*45537549124^(14/17) 4334944369999999 a001 2504730781961/73681302247*45537549124^(2/3) 4334944369999999 a001 4052739537881/73681302247*45537549124^(11/17) 4334944369999999 a001 86267571272/2139295485799*45537549124^(16/17) 4334944369999999 a001 225851433717/5600748293801*45537549124^(16/17) 4334944369999999 a001 365435296162/9062201101803*45537549124^(16/17) 4334944369999999 a001 139583862445/3461452808002*45537549124^(16/17) 4334944369999999 a001 75283811239/440719107401*45537549124^(15/17) 4334944369999999 a001 139583862445/192900153618*45537549124^(14/17) 4334944369999999 a001 139583862445/817138163596*45537549124^(15/17) 4334944369999999 a001 365435296162/505019158607*45537549124^(14/17) 4334944369999999 a001 225851433717/312119004989*45537549124^(14/17) 4334944369999999 a001 53316291173/1322157322203*45537549124^(16/17) 4334944369999999 a001 591286729879/28143753123*28143753123^(7/10) 4334944369999999 a001 1548008755920/505019158607*45537549124^(13/17) 4334944369999999 a001 1515744265389/494493258286*45537549124^(13/17) 4334944369999999 a001 1085786860162753449801/2504730781961 4334944369999999 a001 2504730781961/192900153618*45537549124^(12/17) 4334944369999999 a001 2504730781961/817138163596*45537549124^(13/17) 4334944369999999 a001 86267571272/119218851371*45537549124^(14/17) 4334944369999999 a001 3278735159921/96450076809*45537549124^(2/3) 4334944369999999 a001 53316291173/312119004989*45537549124^(15/17) 4334944369999999 a001 3536736619241/64300051206*45537549124^(11/17) 4334944369999999 a001 4052739537881/312119004989*45537549124^(12/17) 4334944369999999 a001 10610209857723/312119004989*45537549124^(2/3) 4334944369999999 a001 12586269025/73681302247*28143753123^(9/10) 4334944369999999 a001 365435296162/119218851371*45537549124^(13/17) 4334944369999999 a001 1548008755920/119218851371*45537549124^(12/17) 4334944369999999 a001 4052739537881/119218851371*45537549124^(2/3) 4334944369999999 a001 6557470319842/119218851371*45537549124^(11/17) 4334944369999999 a001 10983760033/64300051206*312119004989^(9/11) 4334944369999999 a001 83606673660121109292/192866774113 4334944369999999 a001 10983760033/64300051206*14662949395604^(5/7) 4334944369999999 a001 32951280099/2139295485799*312119004989^(10/11) 4334944369999999 a001 1548008755920/73681302247*312119004989^(7/11) 4334944369999999 a001 10983760033/64300051206*192900153618^(5/6) 4334944369999999 a001 32264490531/10525900321*14662949395604^(13/21) 4334944369999999 a001 10983760033/440719107401*14662949395604^(7/9) 4334944369999999 a001 956722026041/73681302247*14662949395604^(4/7) 4334944369999999 a001 1548008755920/73681302247*505019158607^(5/8) 4334944369999999 a001 139583862445/73681302247*312119004989^(8/11) 4334944369999999 a001 10983760033/440719107401*505019158607^(7/8) 4334944369999999 a001 139583862445/73681302247*23725150497407^(5/8) 4334944369999999 a001 32264490531/10525900321*192900153618^(13/18) 4334944369999999 a001 4052739537881/73681302247*192900153618^(11/18) 4334944369999999 a001 956722026041/73681302247*192900153618^(2/3) 4334944369999999 a001 32951280099/3461452808002*192900153618^(17/18) 4334944369999999 a001 32951280099/817138163596*192900153618^(8/9) 4334944369999999 a001 32951280099/119218851371*312119004989^(4/5) 4334944369999999 a001 53316291173/73681302247*817138163596^(14/19) 4334944369999999 a001 1756840044281364266127/4052739537881 4334944369999999 a001 53316291173/73681302247*505019158607^(3/4) 4334944369999999 a001 32951280099/45537549124*45537549124^(14/17) 4334944369999999 a001 53316291173/73681302247*192900153618^(7/9) 4334944369999999 a001 6557470319842/73681302247*73681302247^(8/13) 4334944369999999 a001 956722026041/73681302247*73681302247^(9/13) 4334944369999999 a001 32264490531/10525900321*73681302247^(3/4) 4334944369999999 a001 86267571272/505019158607*312119004989^(9/11) 4334944369999999 a001 4052739537881/192900153618*312119004989^(7/11) 4334944369999999 a001 139583862445/73681302247*73681302247^(10/13) 4334944369999999 a001 1135099622/192933544679*23725150497407^(13/16) 4334944369999999 a001 182717648081/96450076809*23725150497407^(5/8) 4334944369999999 a001 2504730781961/192900153618*505019158607^(9/14) 4334944369999999 a001 1135099622/192933544679*505019158607^(13/14) 4334944369999999 a001 139583862445/192900153618*817138163596^(14/19) 4334944369999999 a001 139583862445/192900153618*14662949395604^(2/3) 4334944369999999 a001 139583862445/192900153618*505019158607^(3/4) 4334944369999999 a001 225749145909/10745088481*312119004989^(7/11) 4334944369999999 a001 1548008755920/5600748293801*312119004989^(4/5) 4334944369999999 a001 139583862445/505019158607*312119004989^(4/5) 4334944369999999 a001 139583862445/192900153618*192900153618^(7/9) 4334944369999999 a001 139583862445/5600748293801*505019158607^(7/8) 4334944369999999 a001 10610209857723/817138163596*192900153618^(2/3) 4334944369999999 a001 20365011074/505019158607*45537549124^(16/17) 4334944369999999 a001 225851433717/312119004989*192900153618^(7/9) 4334944369999999 a001 4052739537881/312119004989*192900153618^(2/3) 4334944369999999 a001 139583862445/3461452808002*192900153618^(8/9) 4334944369999999 a001 32951280099/119218851371*73681302247^(11/13) 4334944369999999 a001 4599466948725481982056/10610209857723 4334944369999999 a001 86267571272/119218851371*505019158607^(3/4) 4334944369999999 a001 225851433717/119218851371*312119004989^(8/11) 4334944369999999 a001 53316291173/3461452808002*312119004989^(10/11) 4334944369999999 a001 2504730781961/119218851371*312119004989^(7/11) 4334944369999999 a001 10610209857723/119218851371*505019158607^(4/7) 4334944369999999 a001 53316291173/2139295485799*505019158607^(7/8) 4334944369999999 a001 53316291173/312119004989*14662949395604^(5/7) 4334944369999999 a001 1548008755920/119218851371*192900153618^(2/3) 4334944369999999 a001 365435296162/119218851371*192900153618^(13/18) 4334944369999999 a001 53316291173/1322157322203*192900153618^(8/9) 4334944369999999 a001 53316291173/5600748293801*192900153618^(17/18) 4334944369999999 a001 2504730781961/192900153618*73681302247^(9/13) 4334944369999999 a001 591286729879/192900153618*73681302247^(3/4) 4334944369999999 a001 182717648081/96450076809*73681302247^(10/13) 4334944369999999 a001 1201881744/11384387281*10749957122^(23/24) 4334944369999999 a001 10610209857723/817138163596*73681302247^(9/13) 4334944369999999 a001 1548008755920/505019158607*73681302247^(3/4) 4334944369999999 a001 956722026041/505019158607*73681302247^(10/13) 4334944369999999 a001 1515744265389/494493258286*73681302247^(3/4) 4334944369999999 a001 591286729879/45537549124*45537549124^(12/17) 4334944369999999 a001 86267571272/2139295485799*73681302247^(12/13) 4334944369999999 a001 956722026041/312119004989*73681302247^(3/4) 4334944369999999 a001 225851433717/817138163596*73681302247^(11/13) 4334944369999999 a001 139583862445/505019158607*73681302247^(11/13) 4334944369999999 a001 225851433717/5600748293801*73681302247^(12/13) 4334944369999999 a001 2504730781961/45537549124*45537549124^(11/17) 4334944369999999 a001 139583862445/3461452808002*73681302247^(12/13) 4334944369999999 a001 10610209857723/119218851371*73681302247^(8/13) 4334944369999999 a001 1548008755920/119218851371*73681302247^(9/13) 4334944369999999 a001 10610209857723/45537549124*45537549124^(10/17) 4334944369999999 a001 53316291173/192900153618*73681302247^(11/13) 4334944369999999 a001 225851433717/119218851371*73681302247^(10/13) 4334944369999999 a001 53316291173/1322157322203*73681302247^(12/13) 4334944369999999 a001 20365011074/73681302247*312119004989^(4/5) 4334944369999999 a001 20365011074/73681302247*23725150497407^(11/16) 4334944369999999 a001 111842197353101802721/258001459320 4334944369999999 a001 32951280099/45537549124*505019158607^(3/4) 4334944369999999 a001 32951280099/45537549124*192900153618^(7/9) 4334944369999999 a001 21566892818/11384387281*312119004989^(8/11) 4334944369999999 a001 21566892818/11384387281*23725150497407^(5/8) 4334944369999999 a001 1756840044281364266128/4052739537881 4334944369999999 a001 10610209857723/45537549124*312119004989^(6/11) 4334944369999999 a001 225851433717/45537549124*817138163596^(2/3) 4334944369999999 a001 219022235653594380098/505248088463 4334944369999999 a001 10182505537/408569081798*14662949395604^(7/9) 4334944369999999 a001 10182505537/1730726404001*505019158607^(13/14) 4334944369999999 a001 10182505537/408569081798*505019158607^(7/8) 4334944369999999 a001 10610209857723/45537549124*192900153618^(5/9) 4334944369999999 a001 20365011074/505019158607*192900153618^(8/9) 4334944369999999 a001 20365011074/2139295485799*192900153618^(17/18) 4334944369999999 a001 139583862445/45537549124*192900153618^(13/18) 4334944369999999 a001 20365011074/119218851371*312119004989^(9/11) 4334944369999999 a001 1085786860162753449802/2504730781961 4334944369999999 a001 20365011074/119218851371*14662949395604^(5/7) 4334944369999999 a001 20365011074/119218851371*192900153618^(5/6) 4334944369999999 a001 4052739537881/45537549124*73681302247^(8/13) 4334944369999999 a001 21566892818/11384387281*73681302247^(10/13) 4334944369999999 a001 591286729879/45537549124*73681302247^(9/13) 4334944369999999 a001 139583862445/45537549124*73681302247^(3/4) 4334944369999999 a001 20365011074/505019158607*73681302247^(12/13) 4334944369999999 a001 1548008755920/73681302247*28143753123^(7/10) 4334944369999999 a001 139583862445/73681302247*28143753123^(4/5) 4334944369999999 a001 4052739537881/192900153618*28143753123^(7/10) 4334944369999999 a001 225749145909/10745088481*28143753123^(7/10) 4334944369999999 a001 6557470319842/312119004989*28143753123^(7/10) 4334944369999999 a001 10983760033/64300051206*28143753123^(9/10) 4334944369999999 a001 365435296162/17393796001*17393796001^(5/7) 4334944369999999 a001 2504730781961/119218851371*28143753123^(7/10) 4334944369999999 a001 414733676044142633476/956722026041 4334944369999999 a001 182717648081/96450076809*28143753123^(4/5) 4334944369999999 a001 956722026041/505019158607*28143753123^(4/5) 4334944369999999 a001 10610209857723/5600748293801*28143753123^(4/5) 4334944369999999 a001 591286729879/312119004989*28143753123^(4/5) 4334944369999999 a001 225851433717/119218851371*28143753123^(4/5) 4334944369999999 a001 86267571272/505019158607*28143753123^(9/10) 4334944369999999 a001 75283811239/440719107401*28143753123^(9/10) 4334944369999999 a001 139583862445/817138163596*28143753123^(9/10) 4334944369999999 a001 53316291173/312119004989*28143753123^(9/10) 4334944369999999 a001 10610209857723/45537549124*28143753123^(3/5) 4334944369999999 a001 956722026041/45537549124*28143753123^(7/10) 4334944369999999 a001 10610209857723/17393796001*17393796001^(4/7) 4334944369999999 a001 21566892818/11384387281*28143753123^(4/5) 4334944369999999 a001 12586269025/17393796001*45537549124^(14/17) 4334944369999999 a001 20365011074/119218851371*28143753123^(9/10) 4334944369999999 a001 7778742049/28143753123*312119004989^(4/5) 4334944369999999 a001 12586269025/17393796001*817138163596^(14/19) 4334944369999999 a001 12586269025/17393796001*14662949395604^(2/3) 4334944369999999 a001 12586269025/17393796001*505019158607^(3/4) 4334944369999999 a001 7531180008061056325/17373187209 4334944369999999 a001 12586269025/17393796001*192900153618^(7/9) 4334944369999999 a001 7778742049/28143753123*73681302247^(11/13) 4334944369999999 a001 7778742049/10749957122*10749957122^(7/8) 4334944369999999 a001 4807526976/17393796001*10749957122^(11/12) 4334944369999999 a001 7778742049/192900153618*45537549124^(16/17) 4334944369999999 a001 7787980473/599786069*45537549124^(12/17) 4334944369999999 a001 591286729879/17393796001*45537549124^(2/3) 4334944369999999 a001 956722026041/17393796001*45537549124^(11/17) 4334944369999999 a001 53316291173/17393796001*45537549124^(13/17) 4334944369999999 a001 4052739537881/17393796001*45537549124^(10/17) 4334944369999999 a001 32951280099/17393796001*312119004989^(8/11) 4334944369999999 a001 256319508074468182851/591286729879 4334944369999999 a001 32951280099/17393796001*73681302247^(10/13) 4334944369999999 a001 86267571272/17393796001*817138163596^(2/3) 4334944369999999 a001 7778742049/192900153618*14662949395604^(16/21) 4334944369999999 a001 83881648014826352041/193501094490 4334944369999999 a001 7778742049/505019158607*312119004989^(10/11) 4334944369999999 a001 4052739537881/17393796001*312119004989^(6/11) 4334944369999999 a001 1756840044281364266133/4052739537881 4334944369999999 a001 2504730781961/17393796001*9062201101803^(1/2) 4334944369999999 a001 10610209857723/17393796001*505019158607^(1/2) 4334944369999999 a001 365435296162/17393796001*505019158607^(5/8) 4334944369999999 a001 1085786860162753449805/2504730781961 4334944369999999 a001 4052739537881/17393796001*192900153618^(5/9) 4334944369999999 a001 956722026041/17393796001*192900153618^(11/18) 4334944369999999 a001 7778742049/817138163596*192900153618^(17/18) 4334944369999999 a001 7778742049/45537549124*45537549124^(15/17) 4334944369999999 a001 414733676044142633477/956722026041 4334944369999999 a001 53316291173/17393796001*14662949395604^(13/21) 4334944369999999 a001 53316291173/17393796001*192900153618^(13/18) 4334944369999999 a001 10610209857723/17393796001*73681302247^(7/13) 4334944369999999 a001 1548008755920/17393796001*73681302247^(8/13) 4334944369999999 a001 7787980473/599786069*73681302247^(9/13) 4334944369999999 a001 7778742049/192900153618*73681302247^(12/13) 4334944369999999 a001 53316291173/17393796001*73681302247^(3/4) 4334944369999999 a001 7778742049/45537549124*312119004989^(9/11) 4334944369999999 a001 7778742049/45537549124*14662949395604^(5/7) 4334944369999999 a001 7778742049/45537549124*192900153618^(5/6) 4334944369999999 a001 4052739537881/17393796001*28143753123^(3/5) 4334944369999999 a001 32951280099/17393796001*28143753123^(4/5) 4334944369999999 a001 6557470319842/28143753123*10749957122^(5/8) 4334944369999999 a001 365435296162/17393796001*28143753123^(7/10) 4334944369999999 a001 2504730781961/28143753123*10749957122^(2/3) 4334944369999999 a001 12585437040/228811001*10749957122^(11/16) 4334944369999999 a001 956722026041/28143753123*10749957122^(17/24) 4334944369999999 a001 7778742049/45537549124*28143753123^(9/10) 4334944369999999 a001 365435296162/28143753123*10749957122^(3/4) 4334944369999999 a001 6557470319842/73681302247*10749957122^(2/3) 4334944369999999 a001 139583862445/28143753123*10749957122^(19/24) 4334944369999999 a001 86267571272/28143753123*10749957122^(13/16) 4334944369999999 a001 4052739537881/73681302247*10749957122^(11/16) 4334944369999999 a001 10610209857723/119218851371*10749957122^(2/3) 4334944369999999 a001 10610209857723/45537549124*10749957122^(5/8) 4334944369999999 a001 3536736619241/64300051206*10749957122^(11/16) 4334944369999999 a001 2504730781961/73681302247*10749957122^(17/24) 4334944369999999 a001 53316291173/28143753123*10749957122^(5/6) 4334944369999999 a001 3278735159921/96450076809*10749957122^(17/24) 4334944369999999 a001 4052739537881/119218851371*10749957122^(17/24) 4334944369999999 a001 4052739537881/45537549124*10749957122^(2/3) 4334944369999999 a001 956722026041/73681302247*10749957122^(3/4) 4334944369999999 a001 2504730781961/45537549124*10749957122^(11/16) 4334944369999999 a001 2504730781961/192900153618*10749957122^(3/4) 4334944369999999 a001 10610209857723/817138163596*10749957122^(3/4) 4334944369999999 a001 4052739537881/312119004989*10749957122^(3/4) 4334944369999999 a001 1548008755920/119218851371*10749957122^(3/4) 4334944369999999 a001 60508827864880718401/139583862445 4334944369999999 a001 387002188980/11384387281*10749957122^(17/24) 4334944369999999 a001 12586269025/73681302247*10749957122^(15/16) 4334944369999999 a001 365435296162/73681302247*10749957122^(19/24) 4334944369999999 a001 20365011074/28143753123*10749957122^(7/8) 4334944369999999 a001 956722026041/192900153618*10749957122^(19/24) 4334944369999999 a001 32264490531/10525900321*10749957122^(13/16) 4334944369999999 a001 2504730781961/505019158607*10749957122^(19/24) 4334944369999999 a001 4052739537881/817138163596*10749957122^(19/24) 4334944369999999 a001 140728068720/28374454999*10749957122^(19/24) 4334944369999999 a001 591286729879/119218851371*10749957122^(19/24) 4334944369999999 a001 591286729879/45537549124*10749957122^(3/4) 4334944369999999 a001 591286729879/192900153618*10749957122^(13/16) 4334944369999999 a001 1548008755920/505019158607*10749957122^(13/16) 4334944369999999 a001 1515744265389/494493258286*10749957122^(13/16) 4334944369999999 a001 2504730781961/817138163596*10749957122^(13/16) 4334944369999999 a001 139583862445/73681302247*10749957122^(5/6) 4334944369999999 a001 956722026041/312119004989*10749957122^(13/16) 4334944369999999 a001 12586269025/119218851371*10749957122^(23/24) 4334944369999999 a001 365435296162/119218851371*10749957122^(13/16) 4334944369999999 a001 12586269025/45537549124*10749957122^(11/12) 4334944369999999 a001 182717648081/96450076809*10749957122^(5/6) 4334944369999999 a001 956722026041/505019158607*10749957122^(5/6) 4334944369999999 a001 10610209857723/5600748293801*10749957122^(5/6) 4334944369999999 a001 591286729879/312119004989*10749957122^(5/6) 4334944369999999 a001 225851433717/119218851371*10749957122^(5/6) 4334944369999999 a001 225851433717/45537549124*10749957122^(19/24) 4334944369999999 a001 53316291173/73681302247*10749957122^(7/8) 4334944369999999 a001 139583862445/45537549124*10749957122^(13/16) 4334944369999999 a001 139583862445/192900153618*10749957122^(7/8) 4334944369999999 a001 591286729879/817138163596*10749957122^(7/8) 4334944369999999 a001 225851433717/312119004989*10749957122^(7/8) 4334944369999999 a001 86267571272/119218851371*10749957122^(7/8) 4334944369999999 a001 21566892818/11384387281*10749957122^(5/6) 4334944369999999 a001 32951280099/119218851371*10749957122^(11/12) 4334944369999999 a001 32951280099/45537549124*10749957122^(7/8) 4334944369999999 a001 10983760033/64300051206*10749957122^(15/16) 4334944369999999 a001 86267571272/312119004989*10749957122^(11/12) 4334944369999999 a001 225851433717/817138163596*10749957122^(11/12) 4334944369999999 a001 139583862445/505019158607*10749957122^(11/12) 4334944369999999 a001 53316291173/192900153618*10749957122^(11/12) 4334944369999999 a001 86267571272/505019158607*10749957122^(15/16) 4334944369999999 a001 75283811239/440719107401*10749957122^(15/16) 4334944369999999 a001 32951280099/312119004989*10749957122^(23/24) 4334944369999999 a001 139583862445/817138163596*10749957122^(15/16) 4334944369999999 a001 53316291173/312119004989*10749957122^(15/16) 4334944369999999 a001 20365011074/73681302247*10749957122^(11/12) 4334944369999999 a001 21566892818/204284540899*10749957122^(23/24) 4334944369999999 a001 225851433717/2139295485799*10749957122^(23/24) 4334944369999999 a001 182717648081/1730726404001*10749957122^(23/24) 4334944369999999 a001 139583862445/1322157322203*10749957122^(23/24) 4334944369999999 a001 10610209857723/17393796001*10749957122^(7/12) 4334944369999999 a001 53316291173/505019158607*10749957122^(23/24) 4334944369999999 a001 1201881744/634430159*2537720636^(8/9) 4334944369999999 a001 20365011074/119218851371*10749957122^(15/16) 4334944369999999 a001 4052739537881/17393796001*10749957122^(5/8) 4334944369999999 a001 10182505537/96450076809*10749957122^(23/24) 4334944369999999 a001 1548008755920/17393796001*10749957122^(2/3) 4334944369999999 a001 956722026041/17393796001*10749957122^(11/16) 4334944369999999 a001 591286729879/17393796001*10749957122^(17/24) 4334944369999999 a001 12586269025/17393796001*10749957122^(7/8) 4334944369999999 a001 7787980473/599786069*10749957122^(3/4) 4334944369999999 a001 7778742049/28143753123*10749957122^(11/12) 4334944369999999 a001 86267571272/17393796001*10749957122^(19/24) 4334944369999999 a001 32951280099/17393796001*10749957122^(5/6) 4334944369999999 a001 53316291173/17393796001*10749957122^(13/16) 4334944369999999 a001 4807526976/6643838879*17393796001^(6/7) 4334944369999999 a001 7778742049/73681302247*10749957122^(23/24) 4334944369999999 a001 7778742049/45537549124*10749957122^(15/16) 4334944369999999 a001 4807526976/6643838879*45537549124^(14/17) 4334944369999999 a001 2971215073/10749957122*312119004989^(4/5) 4334944369999999 a001 4807526976/6643838879*817138163596^(14/19) 4334944369999999 a001 4807526976/6643838879*14662949395604^(2/3) 4334944369999999 a001 2971215073/10749957122*23725150497407^(11/16) 4334944369999999 a001 4807526976/6643838879*192900153618^(7/9) 4334944369999999 a001 2971215073/10749957122*73681302247^(11/13) 4334944369999999 a001 4761398871648436416/10983760033 4334944369999999 a001 2971215073/4106118243*4106118243^(21/23) 4334944369999999 a001 1836311903/6643838879*4106118243^(22/23) 4334944369999999 a001 139583862445/6643838879*17393796001^(5/7) 4334944369999999 a001 4052739537881/6643838879*17393796001^(4/7) 4334944369999999 a001 12586269025/6643838879*312119004989^(8/11) 4334944369999999 a001 12586269025/6643838879*23725150497407^(5/8) 4334944369999999 a001 37396512239913013825/86267571272 4334944369999999 a001 12586269025/6643838879*73681302247^(10/13) 4334944369999999 a001 4807526976/6643838879*10749957122^(7/8) 4334944369999999 a001 2971215073/10749957122*10749957122^(11/12) 4334944369999999 a001 2971215073/73681302247*45537549124^(16/17) 4334944369999999 a001 86267571272/6643838879*45537549124^(12/17) 4334944369999999 a001 225851433717/6643838879*45537549124^(2/3) 4334944369999999 a001 365435296162/6643838879*45537549124^(11/17) 4334944369999999 a001 1548008755920/6643838879*45537549124^(10/17) 4334944369999999 a001 6557470319842/6643838879*45537549124^(9/17) 4334944369999999 a001 12586269025/6643838879*28143753123^(4/5) 4334944369999999 a001 32951280099/6643838879*817138163596^(2/3) 4334944369999999 a001 2971215073/73681302247*14662949395604^(16/21) 4334944369999999 a001 32635113368264577409/75283811239 4334944369999999 a001 2971215073/73681302247*192900153618^(8/9) 4334944369999999 a001 567451585/299537289*599074578^(20/21) 4334944369999999 a001 2971215073/192900153618*312119004989^(10/11) 4334944369999999 a001 86267571272/6643838879*14662949395604^(4/7) 4334944369999999 a001 2971215073/192900153618*3461452808002^(5/6) 4334944369999999 a001 256319508074468182856/591286729879 4334944369999999 a001 2971215073/73681302247*73681302247^(12/13) 4334944369999999 a001 86267571272/6643838879*192900153618^(2/3) 4334944369999999 a001 1548008755920/6643838879*312119004989^(6/11) 4334944369999999 a001 1085786860162753449826/2504730781961 4334944369999999 a001 139583862445/6643838879*312119004989^(7/11) 4334944369999999 a001 2971215073/312119004989*14662949395604^(17/21) 4334944369999999 a001 139583862445/6643838879*14662949395604^(5/9) 4334944369999999 a001 139583862445/6643838879*505019158607^(5/8) 4334944369999999 a001 1548008755920/6643838879*192900153618^(5/9) 4334944369999999 a001 365435296162/6643838879*192900153618^(11/18) 4334944369999999 a001 2971215073/312119004989*192900153618^(17/18) 4334944369999999 a001 158414167969674450629/365435296162 4334944369999999 a001 2971215073/119218851371*14662949395604^(7/9) 4334944369999999 a001 2971215073/119218851371*505019158607^(7/8) 4334944369999999 a001 10610209857723/6643838879*73681302247^(1/2) 4334944369999999 a001 4052739537881/6643838879*73681302247^(7/13) 4334944369999999 a001 591286729879/6643838879*73681302247^(8/13) 4334944369999999 a001 20365011074/6643838879*45537549124^(13/17) 4334944369999999 a001 60508827864880718402/139583862445 4334944369999999 a001 20365011074/6643838879*14662949395604^(13/21) 4334944369999999 a001 20365011074/6643838879*192900153618^(13/18) 4334944369999999 a001 20365011074/6643838879*73681302247^(3/4) 4334944369999999 a001 1548008755920/6643838879*28143753123^(3/5) 4334944369999999 a001 139583862445/6643838879*28143753123^(7/10) 4334944369999999 a001 7778742049/2537720636*2537720636^(13/15) 4334944369999999 a001 2971215073/17393796001*45537549124^(15/17) 4334944369999999 a001 23112315624967704577/53316291173 4334944369999999 a001 2971215073/17393796001*312119004989^(9/11) 4334944369999999 a001 2971215073/17393796001*14662949395604^(5/7) 4334944369999999 a001 2971215073/17393796001*192900153618^(5/6) 4334944369999999 a001 2971215073/17393796001*28143753123^(9/10) 4334944369999999 a001 10610209857723/6643838879*10749957122^(13/24) 4334944369999999 a001 3278735159921/5374978561*4106118243^(14/23) 4334944369999999 a001 6557470319842/6643838879*10749957122^(9/16) 4334944369999999 a001 4052739537881/6643838879*10749957122^(7/12) 4334944369999999 a001 1548008755920/6643838879*10749957122^(5/8) 4334944369999999 a001 591286729879/6643838879*10749957122^(2/3) 4334944369999999 a001 12586269025/6643838879*10749957122^(5/6) 4334944369999999 a001 365435296162/6643838879*10749957122^(11/16) 4334944369999999 a001 225851433717/6643838879*10749957122^(17/24) 4334944369999999 a001 86267571272/6643838879*10749957122^(3/4) 4334944369999999 a001 32951280099/6643838879*10749957122^(19/24) 4334944369999999 a001 2971215073/28143753123*10749957122^(23/24) 4334944369999999 a001 2504730781961/10749957122*4106118243^(15/23) 4334944369999999 a001 20365011074/6643838879*10749957122^(13/16) 4334944369999999 a001 32951280099/2537720636*2537720636^(4/5) 4334944369999999 a001 956722026041/10749957122*4106118243^(16/23) 4334944369999999 a001 2971215073/17393796001*10749957122^(15/16) 4334944369999999 a001 53316291173/2537720636*2537720636^(7/9) 4334944369999999 a001 182717648081/5374978561*4106118243^(17/23) 4334944369999999 a001 6557470319842/28143753123*4106118243^(15/23) 4334944369999999 a001 139583862445/10749957122*4106118243^(18/23) 4334944369999999 a001 10610209857723/45537549124*4106118243^(15/23) 4334944369999999 a001 10610209857723/17393796001*4106118243^(14/23) 4334944369999999 a001 2504730781961/28143753123*4106118243^(16/23) 4334944369999999 a001 53316291173/10749957122*4106118243^(19/23) 4334944369999999 a001 6557470319842/73681302247*4106118243^(16/23) 4334944369999999 a001 10610209857723/119218851371*4106118243^(16/23) 4334944369999999 a001 139583862445/2537720636*2537720636^(11/15) 4334944369999999 a001 4052739537881/45537549124*4106118243^(16/23) 4334944369999999 a001 4052739537881/17393796001*4106118243^(15/23) 4334944369999999 a001 956722026041/28143753123*4106118243^(17/23) 4334944369999999 a001 10182505537/5374978561*4106118243^(20/23) 4334944369999999 a001 2504730781961/73681302247*4106118243^(17/23) 4334944369999999 a001 3278735159921/96450076809*4106118243^(17/23) 4334944369999999 a001 10610209857723/312119004989*4106118243^(17/23) 4334944369999999 a001 4052739537881/119218851371*4106118243^(17/23) 4334944369999999 a001 387002188980/11384387281*4106118243^(17/23) 4334944369999999 a001 1548008755920/17393796001*4106118243^(16/23) 4334944369999999 a001 8828119010022395329/20365011074 4334944369999999 a001 365435296162/28143753123*4106118243^(18/23) 4334944369999999 a001 956722026041/73681302247*4106118243^(18/23) 4334944369999999 a001 2504730781961/192900153618*4106118243^(18/23) 4334944369999999 a001 10610209857723/817138163596*4106118243^(18/23) 4334944369999999 a001 4052739537881/312119004989*4106118243^(18/23) 4334944369999999 a001 1548008755920/119218851371*4106118243^(18/23) 4334944369999999 a001 591286729879/45537549124*4106118243^(18/23) 4334944369999999 a001 591286729879/17393796001*4106118243^(17/23) 4334944369999999 a001 139583862445/28143753123*4106118243^(19/23) 4334944369999999 a001 7778742049/10749957122*4106118243^(21/23) 4334944369999999 a001 365435296162/73681302247*4106118243^(19/23) 4334944369999999 a001 956722026041/192900153618*4106118243^(19/23) 4334944369999999 a001 2504730781961/505019158607*4106118243^(19/23) 4334944369999999 a001 140728068720/28374454999*4106118243^(19/23) 4334944369999999 a001 591286729879/119218851371*4106118243^(19/23) 4334944369999999 a001 225851433717/45537549124*4106118243^(19/23) 4334944369999999 a001 7787980473/599786069*4106118243^(18/23) 4334944369999999 a001 53316291173/28143753123*4106118243^(20/23) 4334944369999999 a001 4807526976/17393796001*4106118243^(22/23) 4334944369999999 a001 139583862445/73681302247*4106118243^(20/23) 4334944369999999 a001 182717648081/96450076809*4106118243^(20/23) 4334944369999999 a001 956722026041/505019158607*4106118243^(20/23) 4334944369999999 a001 591286729879/312119004989*4106118243^(20/23) 4334944369999999 a001 225851433717/119218851371*4106118243^(20/23) 4334944369999999 a001 591286729879/2537720636*2537720636^(2/3) 4334944369999999 a001 21566892818/11384387281*4106118243^(20/23) 4334944369999999 a001 86267571272/17393796001*4106118243^(19/23) 4334944369999999 a001 20365011074/28143753123*4106118243^(21/23) 4334944369999999 a001 53316291173/73681302247*4106118243^(21/23) 4334944369999999 a001 139583862445/192900153618*4106118243^(21/23) 4334944369999999 a001 591286729879/817138163596*4106118243^(21/23) 4334944369999999 a001 225851433717/312119004989*4106118243^(21/23) 4334944369999999 a001 86267571272/119218851371*4106118243^(21/23) 4334944369999999 a001 32951280099/45537549124*4106118243^(21/23) 4334944369999999 a001 32951280099/17393796001*4106118243^(20/23) 4334944369999999 a001 12586269025/45537549124*4106118243^(22/23) 4334944369999999 a001 10610209857723/6643838879*4106118243^(13/23) 4334944369999999 a001 12586269025/17393796001*4106118243^(21/23) 4334944369999999 a001 32951280099/119218851371*4106118243^(22/23) 4334944369999999 a001 86267571272/312119004989*4106118243^(22/23) 4334944369999999 a001 225851433717/817138163596*4106118243^(22/23) 4334944369999999 a001 1548008755920/5600748293801*4106118243^(22/23) 4334944369999999 a001 139583862445/505019158607*4106118243^(22/23) 4334944369999999 a001 53316291173/192900153618*4106118243^(22/23) 4334944369999999 a001 20365011074/73681302247*4106118243^(22/23) 4334944369999999 a001 4052739537881/6643838879*4106118243^(14/23) 4334944369999999 a001 7778742049/28143753123*4106118243^(22/23) 4334944369999999 a001 1548008755920/6643838879*4106118243^(15/23) 4334944369999999 a001 2504730781961/2537720636*2537720636^(3/5) 4334944369999999 a001 591286729879/6643838879*4106118243^(16/23) 4334944369999999 a001 225851433717/6643838879*4106118243^(17/23) 4334944369999999 a001 4807526976/6643838879*4106118243^(21/23) 4334944369999999 a001 3278735159921/1268860318*2537720636^(5/9) 4334944369999999 a001 86267571272/6643838879*4106118243^(18/23) 4334944369999999 a001 2971215073/10749957122*4106118243^(22/23) 4334944369999999 a001 32951280099/6643838879*4106118243^(19/23) 4334944369999999 a001 10610209857723/2537720636*2537720636^(8/15) 4334944369999999 a001 12586269025/6643838879*4106118243^(20/23) 4334944369999999 a001 1836311903/2537720636*17393796001^(6/7) 4334944369999999 a001 1836311903/2537720636*45537549124^(14/17) 4334944369999999 a001 1134903170/4106118243*312119004989^(4/5) 4334944369999999 a001 1836311903/2537720636*817138163596^(14/19) 4334944369999999 a001 1134903170/4106118243*23725150497407^(11/16) 4334944369999999 a001 1836311903/2537720636*505019158607^(3/4) 4334944369999999 a001 1836311903/2537720636*192900153618^(7/9) 4334944369999999 a001 1134903170/4106118243*73681302247^(11/13) 4334944369999999 a001 1836311903/2537720636*10749957122^(7/8) 4334944369999999 a001 1134903170/4106118243*10749957122^(11/12) 4334944369999999 a001 1042018099911716255/2403763488 4334944369999999 a001 1134903170/1568397607*1568397607^(21/22) 4334944369999999 a001 1201881744/634430159*312119004989^(8/11) 4334944369999999 a001 1201881744/634430159*23725150497407^(5/8) 4334944369999999 a001 1201881744/634430159*73681302247^(10/13) 4334944369999999 a001 1201881744/634430159*28143753123^(4/5) 4334944369999999 a001 1091215520984582784/2517253805 4334944369999999 a001 1836311903/2537720636*4106118243^(21/23) 4334944369999999 a001 1134903170/4106118243*4106118243^(22/23) 4334944369999999 a001 53316291173/2537720636*17393796001^(5/7) 4334944369999999 a001 1134903780/1860499*17393796001^(4/7) 4334944369999999 a001 1134903170/28143753123*45537549124^(16/17) 4334944369999999 a001 1201881744/634430159*10749957122^(5/6) 4334944369999999 a001 1144206275/230701876*817138163596^(2/3) 4334944369999999 a001 1134903170/28143753123*14662949395604^(16/21) 4334944369999999 a001 1134903170/28143753123*192900153618^(8/9) 4334944369999999 a001 1134903170/28143753123*73681302247^(12/13) 4334944369999999 a001 14284196614945309250/32951280099 4334944369999999 a001 32951280099/2537720636*45537549124^(12/17) 4334944369999999 a001 567451585/5374978561*10749957122^(23/24) 4334944369999999 a001 1135099622/33391061*45537549124^(2/3) 4334944369999999 a001 139583862445/2537720636*45537549124^(11/17) 4334944369999999 a001 591286729879/2537720636*45537549124^(10/17) 4334944369999999 a001 2504730781961/2537720636*45537549124^(9/17) 4334944369999999 a001 10610209857723/2537720636*45537549124^(8/17) 4334944369999999 a001 1134903170/73681302247*312119004989^(10/11) 4334944369999999 a001 32951280099/2537720636*14662949395604^(4/7) 4334944369999999 a001 1134903170/73681302247*3461452808002^(5/6) 4334944369999999 a001 32951280099/2537720636*505019158607^(9/14) 4334944369999999 a001 32951280099/2537720636*192900153618^(2/3) 4334944369999999 a001 1099897418820970995/2537281508 4334944369999999 a001 32951280099/2537720636*73681302247^(9/13) 4334944369999999 a001 567451585/96450076809*23725150497407^(13/16) 4334944369999999 a001 567451585/96450076809*505019158607^(13/14) 4334944369999999 a001 97905340104793732240/225851433717 4334944369999999 a001 591286729879/2537720636*312119004989^(6/11) 4334944369999999 a001 3278735159921/1268860318*312119004989^(5/11) 4334944369999999 a001 1134903170/505019158607*14662949395604^(6/7) 4334944369999999 a001 1085786860162753449970/2504730781961 4334944369999999 a001 139583862445/2537720636*312119004989^(3/5) 4334944369999999 a001 79207083984837225325/182717648081 4334944369999999 a001 139583862445/2537720636*14662949395604^(11/21) 4334944369999999 a001 10610209857723/2537720636*192900153618^(4/9) 4334944369999999 a001 2504730781961/2537720636*192900153618^(1/2) 4334944369999999 a001 591286729879/2537720636*192900153618^(5/9) 4334944369999999 a001 139583862445/2537720636*192900153618^(11/18) 4334944369999999 a001 12101765572976143682/27916772489 4334944369999999 a001 53316291173/2537720636*312119004989^(7/11) 4334944369999999 a001 1134903170/119218851371*817138163596^(17/19) 4334944369999999 a001 1134903170/119218851371*14662949395604^(17/21) 4334944369999999 a001 53316291173/2537720636*14662949395604^(5/9) 4334944369999999 a001 10610209857723/2537720636*73681302247^(6/13) 4334944369999999 a001 4052739537881/2537720636*73681302247^(1/2) 4334944369999999 a001 1134903170/119218851371*192900153618^(17/18) 4334944369999999 a001 1134903780/1860499*73681302247^(7/13) 4334944369999999 a001 225851433717/2537720636*73681302247^(8/13) 4334944369999999 a001 23112315624967704580/53316291173 4334944369999999 a001 567451585/22768774562*14662949395604^(7/9) 4334944369999999 a001 567451585/22768774562*505019158607^(7/8) 4334944369999999 a001 3278735159921/1268860318*28143753123^(1/2) 4334944369999999 a001 591286729879/2537720636*28143753123^(3/5) 4334944369999999 a001 53316291173/2537720636*28143753123^(7/10) 4334944369999999 a001 4414059505011197665/10182505537 4334944369999999 a001 7778742049/2537720636*45537549124^(13/17) 4334944369999999 a001 7778742049/2537720636*14662949395604^(13/21) 4334944369999999 a001 7778742049/2537720636*192900153618^(13/18) 4334944369999999 a001 7778742049/2537720636*73681302247^(3/4) 4334944369999999 a001 10610209857723/2537720636*10749957122^(1/2) 4334944369999999 a001 4052739537881/2537720636*10749957122^(13/24) 4334944369999999 a001 2504730781961/2537720636*10749957122^(9/16) 4334944369999999 a001 1134903780/1860499*10749957122^(7/12) 4334944369999999 a001 591286729879/2537720636*10749957122^(5/8) 4334944369999999 a001 1144206275/230701876*10749957122^(19/24) 4334944369999999 a001 225851433717/2537720636*10749957122^(2/3) 4334944369999999 a001 139583862445/2537720636*10749957122^(11/16) 4334944369999999 a001 1135099622/33391061*10749957122^(17/24) 4334944369999999 a001 32951280099/2537720636*10749957122^(3/4) 4334944369999999 a001 7778742049/2537720636*10749957122^(13/16) 4334944369999999 a001 3372041405099481410/7778742049 4334944369999999 a001 1134903170/6643838879*45537549124^(15/17) 4334944369999999 a001 1134903170/6643838879*312119004989^(9/11) 4334944369999999 a001 1134903170/6643838879*14662949395604^(5/7) 4334944369999999 a001 1134903170/6643838879*192900153618^(5/6) 4334944369999999 a001 1134903170/6643838879*28143753123^(9/10) 4334944369999999 a001 6557470319842/4106118243*1568397607^(13/22) 4334944369999999 a001 1134903170/6643838879*10749957122^(15/16) 4334944369999999 a001 10610209857723/2537720636*4106118243^(12/23) 4334944369999999 a001 4052739537881/2537720636*4106118243^(13/23) 4334944369999999 a001 1134903780/1860499*4106118243^(14/23) 4334944369999999 a001 591286729879/2537720636*4106118243^(15/23) 4334944369999999 a001 225851433717/2537720636*4106118243^(16/23) 4334944369999999 a001 1201881744/634430159*4106118243^(20/23) 4334944369999999 a001 1135099622/33391061*4106118243^(17/23) 4334944369999999 a001 2504730781961/4106118243*1568397607^(7/11) 4334944369999999 a001 32951280099/2537720636*4106118243^(18/23) 4334944369999999 a001 1144206275/230701876*4106118243^(19/23) 4334944369999999 a001 956722026041/4106118243*1568397607^(15/22) 4334944369999999 a001 365435296162/4106118243*1568397607^(8/11) 4334944369999999 a001 75283811239/1368706081*1568397607^(3/4) 4334944369999999 a001 3278735159921/5374978561*1568397607^(7/11) 4334944369999999 a001 139583862445/4106118243*1568397607^(17/22) 4334944369999999 a001 10610209857723/17393796001*1568397607^(7/11) 4334944369999999 a001 10610209857723/6643838879*1568397607^(13/22) 4334944369999999 a001 2504730781961/10749957122*1568397607^(15/22) 4334944369999999 a001 53316291173/4106118243*1568397607^(9/11) 4334944369999999 a001 6557470319842/28143753123*1568397607^(15/22) 4334944369999999 a001 10610209857723/45537549124*1568397607^(15/22) 4334944369999999 a001 4052739537881/17393796001*1568397607^(15/22) 4334944369999999 a001 4052739537881/6643838879*1568397607^(7/11) 4334944369999999 a001 956722026041/10749957122*1568397607^(8/11) 4334944369999999 a001 1288005205276048900/2971215073 4334944369999999 a001 20365011074/4106118243*1568397607^(19/22) 4334944369999999 a001 2504730781961/28143753123*1568397607^(8/11) 4334944369999999 a001 6557470319842/73681302247*1568397607^(8/11) 4334944369999999 a001 10610209857723/119218851371*1568397607^(8/11) 4334944369999999 a001 4052739537881/45537549124*1568397607^(8/11) 4334944369999999 a001 591286729879/10749957122*1568397607^(3/4) 4334944369999999 a001 1548008755920/17393796001*1568397607^(8/11) 4334944369999999 a001 1548008755920/6643838879*1568397607^(15/22) 4334944369999999 a001 12585437040/228811001*1568397607^(3/4) 4334944369999999 a001 4052739537881/73681302247*1568397607^(3/4) 4334944369999999 a001 3536736619241/64300051206*1568397607^(3/4) 4334944369999999 a001 6557470319842/119218851371*1568397607^(3/4) 4334944369999999 a001 2504730781961/45537549124*1568397607^(3/4) 4334944369999999 a001 182717648081/5374978561*1568397607^(17/22) 4334944369999999 a001 956722026041/17393796001*1568397607^(3/4) 4334944369999999 a001 956722026041/28143753123*1568397607^(17/22) 4334944369999999 a001 7778742049/4106118243*1568397607^(10/11) 4334944369999999 a001 2504730781961/73681302247*1568397607^(17/22) 4334944369999999 a001 3278735159921/96450076809*1568397607^(17/22) 4334944369999999 a001 10610209857723/312119004989*1568397607^(17/22) 4334944369999999 a001 4052739537881/119218851371*1568397607^(17/22) 4334944369999999 a001 387002188980/11384387281*1568397607^(17/22) 4334944369999999 a001 591286729879/17393796001*1568397607^(17/22) 4334944369999999 a001 591286729879/6643838879*1568397607^(8/11) 4334944369999999 a001 139583862445/10749957122*1568397607^(9/11) 4334944369999999 a001 365435296162/6643838879*1568397607^(3/4) 4334944369999999 a001 365435296162/28143753123*1568397607^(9/11) 4334944369999999 a001 956722026041/73681302247*1568397607^(9/11) 4334944369999999 a001 2504730781961/192900153618*1568397607^(9/11) 4334944369999999 a001 10610209857723/817138163596*1568397607^(9/11) 4334944369999999 a001 4052739537881/312119004989*1568397607^(9/11) 4334944369999999 a001 1548008755920/119218851371*1568397607^(9/11) 4334944369999999 a001 591286729879/45537549124*1568397607^(9/11) 4334944369999999 a001 7787980473/599786069*1568397607^(9/11) 4334944369999999 a001 225851433717/6643838879*1568397607^(17/22) 4334944369999999 a001 53316291173/10749957122*1568397607^(19/22) 4334944369999999 a001 139583862445/28143753123*1568397607^(19/22) 4334944369999999 a001 365435296162/73681302247*1568397607^(19/22) 4334944369999999 a001 956722026041/192900153618*1568397607^(19/22) 4334944369999999 a001 2504730781961/505019158607*1568397607^(19/22) 4334944369999999 a001 4052739537881/817138163596*1568397607^(19/22) 4334944369999999 a001 140728068720/28374454999*1568397607^(19/22) 4334944369999999 a001 591286729879/119218851371*1568397607^(19/22) 4334944369999999 a001 2971215073/4106118243*1568397607^(21/22) 4334944369999999 a001 225851433717/45537549124*1568397607^(19/22) 4334944369999999 a001 86267571272/17393796001*1568397607^(19/22) 4334944369999999 a001 86267571272/6643838879*1568397607^(9/11) 4334944369999999 a001 10182505537/5374978561*1568397607^(10/11) 4334944369999999 a001 53316291173/28143753123*1568397607^(10/11) 4334944369999999 a001 139583862445/73681302247*1568397607^(10/11) 4334944369999999 a001 182717648081/96450076809*1568397607^(10/11) 4334944369999999 a001 956722026041/505019158607*1568397607^(10/11) 4334944369999999 a001 591286729879/312119004989*1568397607^(10/11) 4334944369999999 a001 225851433717/119218851371*1568397607^(10/11) 4334944369999999 a001 21566892818/11384387281*1568397607^(10/11) 4334944369999999 a001 32951280099/17393796001*1568397607^(10/11) 4334944369999999 a001 32951280099/6643838879*1568397607^(19/22) 4334944369999999 a001 10610209857723/2537720636*1568397607^(6/11) 4334944369999999 a001 7778742049/10749957122*1568397607^(21/22) 4334944369999999 a001 20365011074/28143753123*1568397607^(21/22) 4334944369999999 a001 53316291173/73681302247*1568397607^(21/22) 4334944369999999 a001 139583862445/192900153618*1568397607^(21/22) 4334944369999999 a001 591286729879/817138163596*1568397607^(21/22) 4334944369999999 a001 225851433717/312119004989*1568397607^(21/22) 4334944369999999 a001 86267571272/119218851371*1568397607^(21/22) 4334944369999999 a001 32951280099/45537549124*1568397607^(21/22) 4334944369999999 a001 12586269025/17393796001*1568397607^(21/22) 4334944369999999 a001 12586269025/6643838879*1568397607^(10/11) 4334944369999999 a001 4052739537881/2537720636*1568397607^(13/22) 4334944369999999 a001 4807526976/6643838879*1568397607^(21/22) 4334944369999999 a001 1134903780/1860499*1568397607^(7/11) 4334944369999999 a001 591286729879/2537720636*1568397607^(15/22) 4334944369999999 a001 225851433717/2537720636*1568397607^(8/11) 4334944369999999 a001 139583862445/2537720636*1568397607^(3/4) 4334944369999999 a001 1135099622/33391061*1568397607^(17/22) 4334944369999999 a001 1836311903/2537720636*1568397607^(21/22) 4334944369999999 a001 32951280099/2537720636*1568397607^(9/11) 4334944369999999 a001 1144206275/230701876*1568397607^(19/22) 4334944369999999 a001 701408733/969323029*2537720636^(14/15) 4334944369999999 a001 1201881744/634430159*1568397607^(10/11) 4334944369999999 a001 701408733/969323029*17393796001^(6/7) 4334944369999999 a001 701408733/969323029*45537549124^(14/17) 4334944369999999 a001 433494437/1568397607*312119004989^(4/5) 4334944369999999 a001 701408733/969323029*817138163596^(14/19) 4334944369999999 a001 433494437/1568397607*23725150497407^(11/16) 4334944369999999 a001 701408733/969323029*505019158607^(3/4) 4334944369999999 a001 701408733/969323029*192900153618^(7/9) 4334944369999999 a001 433494437/1568397607*73681302247^(11/13) 4334944369999999 a001 701408733/969323029*10749957122^(7/8) 4334944369999999 a001 433494437/1568397607*10749957122^(11/12) 4334944369999999 a001 701408733/969323029*4106118243^(21/23) 4334944369999999 a001 433494437/1568397607*4106118243^(22/23) 4334944369999999 a001 1836311903/969323029*2537720636^(8/9) 4334944369999999 a001 12586269025/969323029*2537720636^(4/5) 4334944369999999 a001 20365011074/969323029*2537720636^(7/9) 4334944369999999 a001 53316291173/969323029*2537720636^(11/15) 4334944369999999 a001 2971215073/969323029*2537720636^(13/15) 4334944369999999 a001 225851433717/969323029*2537720636^(2/3) 4334944369999999 a001 956722026041/969323029*2537720636^(3/5) 4334944369999999 a001 2504730781961/969323029*2537720636^(5/9) 4334944369999999 a001 4052739537881/969323029*2537720636^(8/15) 4334944369999999 a001 1836311903/969323029*312119004989^(8/11) 4334944369999999 a001 1836311903/969323029*23725150497407^(5/8) 4334944369999999 a001 1836311903/969323029*73681302247^(10/13) 4334944369999999 a001 1836311903/969323029*28143753123^(4/5) 4334944369999999 a001 1836311903/969323029*10749957122^(5/6) 4334944369999999 a001 433494437/4106118243*10749957122^(23/24) 4334944369999999 a001 701408733/969323029*1568397607^(21/22) 4334944369999999 a001 433494437/10749957122*45537549124^(16/17) 4334944369999999 a001 4807526976/969323029*817138163596^(2/3) 4334944369999999 a001 433494437/10749957122*14662949395604^(16/21) 4334944369999999 a001 433494437/10749957122*192900153618^(8/9) 4334944369999999 a001 433494437/10749957122*73681302247^(12/13) 4334944369999999 a001 1836311903/969323029*4106118243^(20/23) 4334944369999999 a001 591286729879/969323029*17393796001^(4/7) 4334944369999999 a001 20365011074/969323029*17393796001^(5/7) 4334944369999999 a001 4807526976/969323029*10749957122^(19/24) 4334944369999999 a001 12586269025/969323029*45537549124^(12/17) 4334944369999999 a001 433494437/28143753123*312119004989^(10/11) 4334944369999999 a001 12586269025/969323029*14662949395604^(4/7) 4334944369999999 a001 433494437/28143753123*3461452808002^(5/6) 4334944369999999 a001 12586269025/969323029*505019158607^(9/14) 4334944369999999 a001 12586269025/969323029*192900153618^(2/3) 4334944369999999 a001 12586269025/969323029*73681302247^(9/13) 4334944369999999 a001 32951280099/969323029*45537549124^(2/3) 4334944369999999 a001 225851433717/969323029*45537549124^(10/17) 4334944369999999 a001 956722026041/969323029*45537549124^(9/17) 4334944369999999 a001 53316291173/969323029*45537549124^(11/17) 4334944369999999 a001 4052739537881/969323029*45537549124^(8/17) 4334944369999999 a001 433494437/73681302247*23725150497407^(13/16) 4334944369999999 a001 433494437/73681302247*505019158607^(13/14) 4334944369999999 a001 433494437/192900153618*14662949395604^(6/7) 4334944369999999 a001 86267571272/969323029*23725150497407^(1/2) 4334944369999999 a001 86267571272/969323029*505019158607^(4/7) 4334944369999999 a001 225851433717/969323029*312119004989^(6/11) 4334944369999999 a001 2504730781961/969323029*312119004989^(5/11) 4334944369999999 a001 10610209857723/969323029*312119004989^(2/5) 4334944369999999 a001 225851433717/969323029*14662949395604^(10/21) 4334944369999999 a001 4052739537881/969323029*14662949395604^(8/21) 4334944370000000 a001 433494437/817138163596*14662949395604^(19/21) 4334944370000000 a001 365435296162/969323029*1322157322203^(1/2) 4334944370000000 a001 139583862445/969323029*9062201101803^(1/2) 4334944370000000 a001 4052739537881/969323029*192900153618^(4/9) 4334944370000000 a001 956722026041/969323029*192900153618^(1/2) 4334944370000000 a001 53316291173/969323029*312119004989^(3/5) 4334944370000000 a001 53316291173/969323029*817138163596^(11/19) 4334944370000000 a001 53316291173/969323029*14662949395604^(11/21) 4334944370000000 a001 4052739537881/969323029*73681302247^(6/13) 4334944370000000 a001 53316291173/969323029*192900153618^(11/18) 4334944370000000 a001 1548008755920/969323029*73681302247^(1/2) 4334944370000000 a001 591286729879/969323029*73681302247^(7/13) 4334944370000000 a001 20365011074/969323029*312119004989^(7/11) 4334944370000000 a001 433494437/45537549124*817138163596^(17/19) 4334944370000000 a001 20365011074/969323029*14662949395604^(5/9) 4334944370000000 a001 20365011074/969323029*505019158607^(5/8) 4334944370000000 a001 433494437/45537549124*192900153618^(17/18) 4334944370000000 a001 2504730781961/969323029*28143753123^(1/2) 4334944370000000 a001 225851433717/969323029*28143753123^(3/5) 4334944370000000 a001 20365011074/969323029*28143753123^(7/10) 4334944370000000 a001 433494437/17393796001*14662949395604^(7/9) 4334944370000000 a001 433494437/17393796001*505019158607^(7/8) 4334944370000000 a001 10610209857723/969323029*10749957122^(11/24) 4334944370000000 a001 4052739537881/969323029*10749957122^(1/2) 4334944370000000 a001 1548008755920/969323029*10749957122^(13/24) 4334944370000000 a001 956722026041/969323029*10749957122^(9/16) 4334944370000000 a001 591286729879/969323029*10749957122^(7/12) 4334944370000000 a001 12586269025/969323029*10749957122^(3/4) 4334944370000000 a001 225851433717/969323029*10749957122^(5/8) 4334944370000000 a001 86267571272/969323029*10749957122^(2/3) 4334944370000000 a001 32951280099/969323029*10749957122^(17/24) 4334944370000000 a001 53316291173/969323029*10749957122^(11/16) 4334944370000000 a001 2971215073/969323029*45537549124^(13/17) 4334944370000000 a001 2971215073/969323029*14662949395604^(13/21) 4334944370000000 a001 2971215073/969323029*192900153618^(13/18) 4334944370000000 a001 2971215073/969323029*73681302247^(3/4) 4334944370000000 a001 10610209857723/969323029*4106118243^(11/23) 4334944370000000 a001 6557470319842/969323029*4106118243^(1/2) 4334944370000000 a001 2971215073/969323029*10749957122^(13/16) 4334944370000000 a001 4052739537881/969323029*4106118243^(12/23) 4334944370000000 a001 1548008755920/969323029*4106118243^(13/23) 4334944370000000 a001 591286729879/969323029*4106118243^(14/23) 4334944370000000 a001 225851433717/969323029*4106118243^(15/23) 4334944370000000 a001 4807526976/969323029*4106118243^(19/23) 4334944370000000 a001 86267571272/969323029*4106118243^(16/23) 4334944370000000 a001 32951280099/969323029*4106118243^(17/23) 4334944370000000 a001 12586269025/969323029*4106118243^(18/23) 4334944370000000 a001 6557470319842/1568397607*599074578^(4/7) 4334944370000000 a001 433494437/2537720636*45537549124^(15/17) 4334944370000000 a001 433494437/2537720636*312119004989^(9/11) 4334944370000000 a001 433494437/2537720636*14662949395604^(5/7) 4334944370000000 a001 433494437/2537720636*192900153618^(5/6) 4334944370000000 a001 433494437/2537720636*28143753123^(9/10) 4334944370000000 a001 433494437/2537720636*10749957122^(15/16) 4334944370000000 a001 10610209857723/969323029*1568397607^(1/2) 4334944370000000 a001 4052739537881/969323029*1568397607^(6/11) 4334944370000000 a001 1548008755920/969323029*1568397607^(13/22) 4334944370000000 a001 2504730781961/1568397607*599074578^(13/21) 4334944370000000 a001 591286729879/969323029*1568397607^(7/11) 4334944370000000 a001 225851433717/969323029*1568397607^(15/22) 4334944370000000 a001 86267571272/969323029*1568397607^(8/11) 4334944370000000 a001 53316291173/969323029*1568397607^(3/4) 4334944370000000 a001 1836311903/969323029*1568397607^(10/11) 4334944370000000 a001 32951280099/969323029*1568397607^(17/22) 4334944370000000 a001 1548008755920/1568397607*599074578^(9/14) 4334944370000000 a001 12586269025/969323029*1568397607^(9/11) 4334944370000000 a001 4807526976/969323029*1568397607^(19/22) 4334944370000000 a001 956722026041/1568397607*599074578^(2/3) 4334944370000000 a001 365435296162/1568397607*599074578^(5/7) 4334944370000000 a001 6557470319842/4106118243*599074578^(13/21) 4334944370000000 a001 139583862445/1568397607*599074578^(16/21) 4334944370000000 a001 4052739537881/4106118243*599074578^(9/14) 4334944370000000 a001 10610209857723/2537720636*599074578^(4/7) 4334944370000000 a001 10610209857723/6643838879*599074578^(13/21) 4334944370000000 a001 4807525989/4870846*599074578^(9/14) 4334944370000000 a001 86267571272/1568397607*599074578^(11/14) 4334944370000000 a001 2504730781961/4106118243*599074578^(2/3) 4334944370000000 a001 6557470319842/6643838879*599074578^(9/14) 4334944370000000 a001 3278735159921/5374978561*599074578^(2/3) 4334944370000000 a001 53316291173/1568397607*599074578^(17/21) 4334944370000000 a001 10610209857723/17393796001*599074578^(2/3) 4334944370000000 a001 4052739537881/2537720636*599074578^(13/21) 4334944370000000 a001 4052739537881/6643838879*599074578^(2/3) 4334944370000000 a001 32951280099/1568397607*599074578^(5/6) 4334944370000000 a001 956722026041/4106118243*599074578^(5/7) 4334944370000000 a001 2504730781961/2537720636*599074578^(9/14) 4334944370000000 a001 2504730781961/10749957122*599074578^(5/7) 4334944370000000 a001 20365011074/1568397607*599074578^(6/7) 4334944370000000 a001 6557470319842/28143753123*599074578^(5/7) 4334944370000000 a001 10610209857723/45537549124*599074578^(5/7) 4334944370000000 a001 4052739537881/17393796001*599074578^(5/7) 4334944370000000 a001 1134903780/1860499*599074578^(2/3) 4334944370000000 a001 1548008755920/6643838879*599074578^(5/7) 4334944370000000 a001 365435296162/4106118243*599074578^(16/21) 4334944370000000 a001 956722026041/10749957122*599074578^(16/21) 4334944370000000 a001 7778742049/1568397607*599074578^(19/21) 4334944370000000 a001 2504730781961/28143753123*599074578^(16/21) 4334944370000000 a001 6557470319842/73681302247*599074578^(16/21) 4334944370000000 a001 10610209857723/119218851371*599074578^(16/21) 4334944370000000 a001 4052739537881/45537549124*599074578^(16/21) 4334944370000000 a001 1548008755920/17393796001*599074578^(16/21) 4334944370000000 a001 75283811239/1368706081*599074578^(11/14) 4334944370000000 a001 591286729879/2537720636*599074578^(5/7) 4334944370000000 a001 591286729879/6643838879*599074578^(16/21) 4334944370000000 a001 686789568/224056801*599074578^(13/14) 4334944370000000 a001 591286729879/10749957122*599074578^(11/14) 4334944370000000 a001 12585437040/228811001*599074578^(11/14) 4334944370000000 a001 4052739537881/73681302247*599074578^(11/14) 4334944370000000 a001 3536736619241/64300051206*599074578^(11/14) 4334944370000000 a001 6557470319842/119218851371*599074578^(11/14) 4334944370000000 a001 2504730781961/45537549124*599074578^(11/14) 4334944370000000 a001 956722026041/17393796001*599074578^(11/14) 4334944370000000 a001 139583862445/4106118243*599074578^(17/21) 4334944370000000 a001 365435296162/6643838879*599074578^(11/14) 4334944370000000 a001 182717648081/5374978561*599074578^(17/21) 4334944370000000 a001 956722026041/28143753123*599074578^(17/21) 4334944370000000 a001 2504730781961/73681302247*599074578^(17/21) 4334944370000000 a001 3278735159921/96450076809*599074578^(17/21) 4334944370000000 a001 10610209857723/312119004989*599074578^(17/21) 4334944370000000 a001 4052739537881/119218851371*599074578^(17/21) 4334944370000000 a001 387002188980/11384387281*599074578^(17/21) 4334944370000000 a001 591286729879/17393796001*599074578^(17/21) 4334944370000000 a001 86267571272/4106118243*599074578^(5/6) 4334944370000000 a001 2971215073/1568397607*599074578^(20/21) 4334944370000000 a001 225851433717/2537720636*599074578^(16/21) 4334944370000000 a001 225851433717/6643838879*599074578^(17/21) 4334944370000000 a001 225851433717/10749957122*599074578^(5/6) 4334944370000000 a001 591286729879/28143753123*599074578^(5/6) 4334944370000000 a001 1548008755920/73681302247*599074578^(5/6) 4334944370000000 a001 4052739537881/192900153618*599074578^(5/6) 4334944370000000 a001 225749145909/10745088481*599074578^(5/6) 4334944370000000 a001 6557470319842/312119004989*599074578^(5/6) 4334944370000000 a001 2504730781961/119218851371*599074578^(5/6) 4334944370000000 a001 956722026041/45537549124*599074578^(5/6) 4334944370000000 a001 365435296162/17393796001*599074578^(5/6) 4334944370000000 a001 53316291173/4106118243*599074578^(6/7) 4334944370000000 a001 139583862445/2537720636*599074578^(11/14) 4334944370000000 a001 139583862445/6643838879*599074578^(5/6) 4334944370000000 a001 139583862445/10749957122*599074578^(6/7) 4334944370000000 a001 365435296162/28143753123*599074578^(6/7) 4334944370000000 a001 956722026041/73681302247*599074578^(6/7) 4334944370000000 a001 2504730781961/192900153618*599074578^(6/7) 4334944370000000 a001 10610209857723/817138163596*599074578^(6/7) 4334944370000000 a001 4052739537881/312119004989*599074578^(6/7) 4334944370000000 a001 1548008755920/119218851371*599074578^(6/7) 4334944370000000 a001 591286729879/45537549124*599074578^(6/7) 4334944370000000 a001 7787980473/599786069*599074578^(6/7) 4334944370000000 a001 1135099622/33391061*599074578^(17/21) 4334944370000000 a001 86267571272/6643838879*599074578^(6/7) 4334944370000000 a001 20365011074/4106118243*599074578^(19/21) 4334944370000000 a001 53316291173/2537720636*599074578^(5/6) 4334944370000000 a001 53316291173/10749957122*599074578^(19/21) 4334944370000000 a001 139583862445/28143753123*599074578^(19/21) 4334944370000000 a001 365435296162/73681302247*599074578^(19/21) 4334944370000000 a001 956722026041/192900153618*599074578^(19/21) 4334944370000000 a001 2504730781961/505019158607*599074578^(19/21) 4334944370000000 a001 10610209857723/2139295485799*599074578^(19/21) 4334944370000000 a001 4052739537881/817138163596*599074578^(19/21) 4334944370000000 a001 140728068720/28374454999*599074578^(19/21) 4334944370000000 a001 591286729879/119218851371*599074578^(19/21) 4334944370000000 a001 225851433717/45537549124*599074578^(19/21) 4334944370000000 a001 10610209857723/969323029*599074578^(11/21) 4334944370000000 a001 86267571272/17393796001*599074578^(19/21) 4334944370000000 a001 12586269025/4106118243*599074578^(13/14) 4334944370000000 a001 32951280099/2537720636*599074578^(6/7) 4334944370000000 a001 32951280099/6643838879*599074578^(19/21) 4334944370000000 a001 32951280099/10749957122*599074578^(13/14) 4334944370000000 a001 86267571272/28143753123*599074578^(13/14) 4334944370000000 a001 32264490531/10525900321*599074578^(13/14) 4334944370000000 a001 591286729879/192900153618*599074578^(13/14) 4334944370000000 a001 1548008755920/505019158607*599074578^(13/14) 4334944370000000 a001 1515744265389/494493258286*599074578^(13/14) 4334944370000000 a001 2504730781961/817138163596*599074578^(13/14) 4334944370000000 a001 956722026041/312119004989*599074578^(13/14) 4334944370000000 a001 365435296162/119218851371*599074578^(13/14) 4334944370000000 a001 139583862445/45537549124*599074578^(13/14) 4334944370000000 a001 53316291173/17393796001*599074578^(13/14) 4334944370000000 a001 7778742049/4106118243*599074578^(20/21) 4334944370000000 a001 20365011074/6643838879*599074578^(13/14) 4334944370000000 a001 10182505537/5374978561*599074578^(20/21) 4334944370000000 a001 53316291173/28143753123*599074578^(20/21) 4334944370000000 a001 139583862445/73681302247*599074578^(20/21) 4334944370000000 a001 182717648081/96450076809*599074578^(20/21) 4334944370000000 a001 956722026041/505019158607*599074578^(20/21) 4334944370000000 a001 10610209857723/5600748293801*599074578^(20/21) 4334944370000000 a001 591286729879/312119004989*599074578^(20/21) 4334944370000000 a001 225851433717/119218851371*599074578^(20/21) 4334944370000000 a001 21566892818/11384387281*599074578^(20/21) 4334944370000000 a001 4052739537881/969323029*599074578^(4/7) 4334944370000000 a001 32951280099/17393796001*599074578^(20/21) 4334944370000000 a001 1144206275/230701876*599074578^(19/21) 4334944370000000 a001 12586269025/6643838879*599074578^(20/21) 4334944370000000 a001 7778742049/2537720636*599074578^(13/14) 4334944370000000 a001 1548008755920/969323029*599074578^(13/21) 4334944370000000 a001 1201881744/634430159*599074578^(20/21) 4334944370000000 a001 956722026041/969323029*599074578^(9/14) 4334944370000000 a001 591286729879/969323029*599074578^(2/3) 4334944370000000 a001 225851433717/969323029*599074578^(5/7) 4334944370000000 a001 86267571272/969323029*599074578^(16/21) 4334944370000000 a001 53316291173/969323029*599074578^(11/14) 4334944370000000 a001 32951280099/969323029*599074578^(17/21) 4334944370000000 a001 20365011074/969323029*599074578^(5/6) 4334944370000000 a001 12586269025/969323029*599074578^(6/7) 4334944370000000 a001 4807526976/969323029*599074578^(19/21) 4334944370000000 a001 1836311903/969323029*599074578^(20/21) 4334944370000000 a001 2971215073/969323029*599074578^(13/14) 4334944370000000 a001 1836311903/141422324*141422324^(12/13) 4334944370000000 a001 267914296/370248451*2537720636^(14/15) 4334944370000000 a001 267914296/370248451*17393796001^(6/7) 4334944370000000 a001 267914296/370248451*45537549124^(14/17) 4334944370000000 a001 165580141/599074578*312119004989^(4/5) 4334944370000000 a001 267914296/370248451*817138163596^(14/19) 4334944370000000 a001 267914296/370248451*14662949395604^(2/3) 4334944370000000 a001 165580141/599074578*23725150497407^(11/16) 4334944370000000 a001 267914296/370248451*192900153618^(7/9) 4334944370000000 a001 165580141/599074578*73681302247^(11/13) 4334944370000000 a001 267914296/370248451*10749957122^(7/8) 4334944370000000 a001 165580141/599074578*10749957122^(11/12) 4334944370000000 a001 267914296/370248451*4106118243^(21/23) 4334944370000000 a001 165580141/599074578*4106118243^(22/23) 4334944370000000 a001 267914296/370248451*1568397607^(21/22) 4334944370000000 a001 187917426909946970/433494437 4334944370000000 a001 701408733/370248451*2537720636^(8/9) 4334944370000000 a001 701408733/370248451*312119004989^(8/11) 4334944370000000 a001 701408733/370248451*23725150497407^(5/8) 4334944370000000 a001 701408733/370248451*73681302247^(10/13) 4334944370000000 a001 701408733/370248451*28143753123^(4/5) 4334944370000000 a001 701408733/370248451*10749957122^(5/6) 4334944370000000 a001 165580141/1568397607*10749957122^(23/24) 4334944370000000 a001 701408733/370248451*4106118243^(20/23) 4334944370000000 a001 4807526976/370248451*2537720636^(4/5) 4334944370000000 a001 491974210728665293/1134903170 4334944370000000 a001 7778742049/370248451*2537720636^(7/9) 4334944370000000 a001 20365011074/370248451*2537720636^(11/15) 4334944370000000 a001 86267571272/370248451*2537720636^(2/3) 4334944370000000 a001 365435296162/370248451*2537720636^(3/5) 4334944370000000 a001 956722026041/370248451*2537720636^(5/9) 4334944370000000 a001 1548008755920/370248451*2537720636^(8/15) 4334944370000000 a001 6557470319842/370248451*2537720636^(7/15) 4334944370000000 a001 10610209857723/370248451*2537720636^(4/9) 4334944370000000 a001 165580141/4106118243*45537549124^(16/17) 4334944370000000 a001 1836311903/370248451*817138163596^(2/3) 4334944370000000 a001 165580141/4106118243*14662949395604^(16/21) 4334944370000000 a001 165580141/4106118243*192900153618^(8/9) 4334944370000000 a001 165580141/4106118243*73681302247^(12/13) 4334944370000000 a001 1836311903/370248451*10749957122^(19/24) 4334944370000000 a001 701408733/370248451*1568397607^(10/11) 4334944370000000 a001 1288005205276048909/2971215073 4334944370000000 a001 1836311903/370248451*4106118243^(19/23) 4334944370000000 a001 4807526976/370248451*45537549124^(12/17) 4334944370000000 a001 165580141/10749957122*312119004989^(10/11) 4334944370000000 a001 4807526976/370248451*14662949395604^(4/7) 4334944370000000 a001 165580141/10749957122*3461452808002^(5/6) 4334944370000000 a001 4807526976/370248451*192900153618^(2/3) 4334944370000000 a001 4807526976/370248451*73681302247^(9/13) 4334944370000000 a001 3372041405099481434/7778742049 4334944370000000 a001 4807526976/370248451*10749957122^(3/4) 4334944370000000 a001 225851433717/370248451*17393796001^(4/7) 4334944370000000 a001 12586269025/370248451*45537549124^(2/3) 4334944370000000 a001 6557470319842/370248451*17393796001^(3/7) 4334944370000000 a001 165580141/28143753123*23725150497407^(13/16) 4334944370000000 a001 165580141/28143753123*505019158607^(13/14) 4334944370000000 a001 8828119010022395393/20365011074 4334944370000000 a001 86267571272/370248451*45537549124^(10/17) 4334944370000000 a001 365435296162/370248451*45537549124^(9/17) 4334944370000000 a001 1548008755920/370248451*45537549124^(8/17) 4334944370000000 a001 6557470319842/370248451*45537549124^(7/17) 4334944370000000 a001 165580141/73681302247*14662949395604^(6/7) 4334944370000000 a001 32951280099/370248451*23725150497407^(1/2) 4334944370000000 a001 32951280099/370248451*505019158607^(4/7) 4334944370000000 a001 32951280099/370248451*73681302247^(8/13) 4334944370000000 a001 23112315624967704745/53316291173 4334944370000000 a001 86267571272/370248451*312119004989^(6/11) 4334944370000000 a001 165580141/192900153618*14662949395604^(8/9) 4334944370000000 a001 86267571272/370248451*14662949395604^(10/21) 4334944370000000 a001 86267571272/370248451*192900153618^(5/9) 4334944370000000 a001 956722026041/370248451*312119004989^(5/11) 4334944370000000 a001 1548008755920/370248451*14662949395604^(8/21) 4334944370000000 a001 10610209857723/370248451*23725150497407^(5/16) 4334944370000000 a001 165580141*(1/2+1/2*5^(1/2))^2 4334944370000000 a001 10610209857723/370248451*505019158607^(5/14) 4334944370000000 a001 365435296162/370248451*14662949395604^(3/7) 4334944370000000 a001 165580141/312119004989*14662949395604^(19/21) 4334944370000000 a001 139583862445/370248451*1322157322203^(1/2) 4334944370000000 a001 1548008755920/370248451*192900153618^(4/9) 4334944370000000 a001 365435296162/370248451*192900153618^(1/2) 4334944370000000 a001 37396512239913014097/86267571272 4334944370000000 a001 165580141/119218851371*3461452808002^(11/12) 4334944370000000 a001 10610209857723/370248451*73681302247^(5/13) 4334944370000000 a001 1548008755920/370248451*73681302247^(6/13) 4334944370000000 a001 591286729879/370248451*73681302247^(1/2) 4334944370000000 a001 225851433717/370248451*73681302247^(7/13) 4334944370000000 a001 14284196614945309352/32951280099 4334944370000000 a001 20365011074/370248451*45537549124^(11/17) 4334944370000000 a001 20365011074/370248451*312119004989^(3/5) 4334944370000000 a001 20365011074/370248451*14662949395604^(11/21) 4334944370000000 a001 20365011074/370248451*192900153618^(11/18) 4334944370000000 a001 10610209857723/370248451*28143753123^(2/5) 4334944370000000 a001 956722026041/370248451*28143753123^(1/2) 4334944370000000 a001 86267571272/370248451*28143753123^(3/5) 4334944370000000 a001 7778742049/370248451*17393796001^(5/7) 4334944370000000 a001 5456077604922913959/12586269025 4334944370000000 a001 7778742049/370248451*312119004989^(7/11) 4334944370000000 a001 165580141/17393796001*817138163596^(17/19) 4334944370000000 a001 165580141/17393796001*14662949395604^(17/21) 4334944370000000 a001 7778742049/370248451*14662949395604^(5/9) 4334944370000000 a001 165580141/17393796001*192900153618^(17/18) 4334944370000000 a001 10610209857723/370248451*10749957122^(5/12) 4334944370000000 a001 6557470319842/370248451*10749957122^(7/16) 4334944370000000 a001 4052739537881/370248451*10749957122^(11/24) 4334944370000000 a001 7778742049/370248451*28143753123^(7/10) 4334944370000000 a001 1548008755920/370248451*10749957122^(1/2) 4334944370000000 a001 591286729879/370248451*10749957122^(13/24) 4334944370000000 a001 12586269025/370248451*10749957122^(17/24) 4334944370000000 a001 225851433717/370248451*10749957122^(7/12) 4334944370000000 a001 86267571272/370248451*10749957122^(5/8) 4334944370000000 a001 32951280099/370248451*10749957122^(2/3) 4334944370000000 a001 20365011074/370248451*10749957122^(11/16) 4334944370000000 a001 2084036199823432525/4807526976 4334944370000000 a001 1134903170/370248451*2537720636^(13/15) 4334944370000000 a001 165580141/6643838879*14662949395604^(7/9) 4334944370000000 a001 165580141/6643838879*505019158607^(7/8) 4334944370000000 a001 10610209857723/370248451*4106118243^(10/23) 4334944370000000 a001 4052739537881/370248451*4106118243^(11/23) 4334944370000000 a001 2504730781961/370248451*4106118243^(1/2) 4334944370000000 a001 1548008755920/370248451*4106118243^(12/23) 4334944370000000 a001 591286729879/370248451*4106118243^(13/23) 4334944370000000 a001 225851433717/370248451*4106118243^(14/23) 4334944370000000 a001 4807526976/370248451*4106118243^(18/23) 4334944370000000 a001 86267571272/370248451*4106118243^(15/23) 4334944370000000 a001 32951280099/370248451*4106118243^(16/23) 4334944370000000 a001 12586269025/370248451*4106118243^(17/23) 4334944370000000 a001 796030994547383616/1836311903 4334944370000000 a001 1134903170/370248451*45537549124^(13/17) 4334944370000000 a001 1134903170/370248451*14662949395604^(13/21) 4334944370000000 a001 1134903170/370248451*192900153618^(13/18) 4334944370000000 a001 1134903170/370248451*73681302247^(3/4) 4334944370000000 a001 1134903170/370248451*10749957122^(13/16) 4334944370000000 a001 10610209857723/370248451*1568397607^(5/11) 4334944370000000 a001 4052739537881/370248451*1568397607^(1/2) 4334944370000000 a001 1548008755920/370248451*1568397607^(6/11) 4334944370000000 a001 591286729879/370248451*1568397607^(13/22) 4334944370000000 a001 225851433717/370248451*1568397607^(7/11) 4334944370000000 a001 86267571272/370248451*1568397607^(15/22) 4334944370000000 a001 1836311903/370248451*1568397607^(19/22) 4334944370000000 a001 32951280099/370248451*1568397607^(8/11) 4334944370000000 a001 20365011074/370248451*1568397607^(3/4) 4334944370000000 a001 12586269025/370248451*1568397607^(17/22) 4334944370000000 a001 4807526976/370248451*1568397607^(9/11) 4334944370000000 a001 304056783818718323/701408733 4334944370000000 a001 7778742049/141422324*141422324^(11/13) 4334944370000000 a001 3278735159921/299537289*228826127^(11/20) 4334944370000000 a001 165580141/969323029*45537549124^(15/17) 4334944370000000 a001 165580141/969323029*312119004989^(9/11) 4334944370000000 a001 165580141/969323029*14662949395604^(5/7) 4334944370000000 a001 165580141/969323029*192900153618^(5/6) 4334944370000000 a001 165580141/969323029*28143753123^(9/10) 4334944370000000 a001 165580141/969323029*10749957122^(15/16) 4334944370000000 a001 10610209857723/370248451*599074578^(10/21) 4334944370000000 a001 2504730781961/599074578*228826127^(3/5) 4334944370000000 a001 6557470319842/370248451*599074578^(1/2) 4334944370000000 a001 4052739537881/370248451*599074578^(11/21) 4334944370000000 a001 1548008755920/370248451*599074578^(4/7) 4334944370000000 a001 591286729879/370248451*599074578^(13/21) 4334944370000000 a001 365435296162/370248451*599074578^(9/14) 4334944370000000 a001 86000486440/33281921*228826127^(5/8) 4334944370000000 a001 225851433717/370248451*599074578^(2/3) 4334944370000000 a001 86267571272/370248451*599074578^(5/7) 4334944370000000 a001 32951280099/370248451*599074578^(16/21) 4334944370000000 a001 20365011074/370248451*599074578^(11/14) 4334944370000000 a001 701408733/370248451*599074578^(20/21) 4334944370000000 a001 12586269025/370248451*599074578^(17/21) 4334944370000000 a001 7778742049/370248451*599074578^(5/6) 4334944370000000 a001 956722026041/599074578*228826127^(13/20) 4334944370000000 a001 4807526976/370248451*599074578^(6/7) 4334944370000000 a001 116139356908771353/267914296 4334944370000000 a001 1836311903/370248451*599074578^(19/21) 4334944370000000 a001 1134903170/370248451*599074578^(13/14) 4334944370000000 a001 182717648081/299537289*228826127^(7/10) 4334944370000000 a001 6557470319842/1568397607*228826127^(3/5) 4334944370000000 a001 4052739537881/1568397607*228826127^(5/8) 4334944370000000 a001 139583862445/599074578*228826127^(3/4) 4334944370000000 a001 63246219/271444*141422324^(10/13) 4334944370000000 a001 10610209857723/969323029*228826127^(11/20) 4334944370000000 a001 10610209857723/2537720636*228826127^(3/5) 4334944370000000 a001 3536736619241/1368706081*228826127^(5/8) 4334944370000000 a001 2504730781961/1568397607*228826127^(13/20) 4334944370000000 a001 3278735159921/1268860318*228826127^(5/8) 4334944370000000 a001 6557470319842/4106118243*228826127^(13/20) 4334944370000000 a001 10610209857723/6643838879*228826127^(13/20) 4334944370000000 a001 53316291173/599074578*228826127^(4/5) 4334944370000000 a001 4052739537881/969323029*228826127^(3/5) 4334944370000000 a001 4052739537881/2537720636*228826127^(13/20) 4334944370000000 a001 956722026041/1568397607*228826127^(7/10) 4334944370000000 a001 2504730781961/969323029*228826127^(5/8) 4334944370000000 a001 2504730781961/4106118243*228826127^(7/10) 4334944370000000 a001 3278735159921/5374978561*228826127^(7/10) 4334944370000000 a001 10610209857723/17393796001*228826127^(7/10) 4334944370000000 a001 4052739537881/6643838879*228826127^(7/10) 4334944370000000 a001 10182505537/299537289*228826127^(17/20) 4334944370000000 a001 1548008755920/969323029*228826127^(13/20) 4334944370000000 a001 1134903780/1860499*228826127^(7/10) 4334944370000000 a001 365435296162/1568397607*228826127^(3/4) 4334944370000000 a001 12586269025/599074578*228826127^(7/8) 4334944370000000 a001 956722026041/4106118243*228826127^(3/4) 4334944370000000 a001 2504730781961/10749957122*228826127^(3/4) 4334944370000000 a001 6557470319842/28143753123*228826127^(3/4) 4334944370000000 a001 10610209857723/45537549124*228826127^(3/4) 4334944370000000 a001 4052739537881/17393796001*228826127^(3/4) 4334944370000000 a001 1548008755920/6643838879*228826127^(3/4) 4334944370000000 a001 7778742049/599074578*228826127^(9/10) 4334944370000000 a001 591286729879/969323029*228826127^(7/10) 4334944370000000 a001 591286729879/2537720636*228826127^(3/4) 4334944370000000 a001 139583862445/1568397607*228826127^(4/5) 4334944370000000 a001 365435296162/4106118243*228826127^(4/5) 4334944370000000 a001 956722026041/10749957122*228826127^(4/5) 4334944370000000 a001 2504730781961/28143753123*228826127^(4/5) 4334944370000000 a001 6557470319842/73681302247*228826127^(4/5) 4334944370000000 a001 10610209857723/119218851371*228826127^(4/5) 4334944370000000 a001 4052739537881/45537549124*228826127^(4/5) 4334944370000000 a001 1548008755920/17393796001*228826127^(4/5) 4334944370000000 a001 591286729879/6643838879*228826127^(4/5) 4334944370000000 a001 2971215073/599074578*228826127^(19/20) 4334944370000000 a001 139583862445/141422324*141422324^(9/13) 4334944370000000 a001 225851433717/969323029*228826127^(3/4) 4334944370000000 a001 225851433717/2537720636*228826127^(4/5) 4334944370000000 a001 53316291173/1568397607*228826127^(17/20) 4334944370000000 a001 139583862445/4106118243*228826127^(17/20) 4334944370000000 a001 182717648081/5374978561*228826127^(17/20) 4334944370000000 a001 956722026041/28143753123*228826127^(17/20) 4334944370000000 a001 2504730781961/73681302247*228826127^(17/20) 4334944370000000 a001 3278735159921/96450076809*228826127^(17/20) 4334944370000000 a001 10610209857723/312119004989*228826127^(17/20) 4334944370000000 a001 4052739537881/119218851371*228826127^(17/20) 4334944370000000 a001 387002188980/11384387281*228826127^(17/20) 4334944370000000 a001 591286729879/17393796001*228826127^(17/20) 4334944370000000 a001 225851433717/6643838879*228826127^(17/20) 4334944370000000 a001 32951280099/1568397607*228826127^(7/8) 4334944370000000 a001 86267571272/969323029*228826127^(4/5) 4334944370000000 a001 1135099622/33391061*228826127^(17/20) 4334944370000000 a001 86267571272/4106118243*228826127^(7/8) 4334944370000000 a001 225851433717/141422324*141422324^(2/3) 4334944370000000 a001 225851433717/10749957122*228826127^(7/8) 4334944370000000 a001 591286729879/28143753123*228826127^(7/8) 4334944370000000 a001 1548008755920/73681302247*228826127^(7/8) 4334944370000000 a001 4052739537881/192900153618*228826127^(7/8) 4334944370000000 a001 225749145909/10745088481*228826127^(7/8) 4334944370000000 a001 6557470319842/312119004989*228826127^(7/8) 4334944370000000 a001 2504730781961/119218851371*228826127^(7/8) 4334944370000000 a001 956722026041/45537549124*228826127^(7/8) 4334944370000000 a001 365435296162/17393796001*228826127^(7/8) 4334944370000000 a001 139583862445/6643838879*228826127^(7/8) 4334944370000000 a001 20365011074/1568397607*228826127^(9/10) 4334944370000000 a001 10610209857723/370248451*228826127^(1/2) 4334944370000000 a001 53316291173/2537720636*228826127^(7/8) 4334944370000000 a001 53316291173/4106118243*228826127^(9/10) 4334944370000000 a001 139583862445/10749957122*228826127^(9/10) 4334944370000000 a001 365435296162/28143753123*228826127^(9/10) 4334944370000000 a001 956722026041/73681302247*228826127^(9/10) 4334944370000000 a001 2504730781961/192900153618*228826127^(9/10) 4334944370000000 a001 10610209857723/817138163596*228826127^(9/10) 4334944370000000 a001 4052739537881/312119004989*228826127^(9/10) 4334944370000000 a001 1548008755920/119218851371*228826127^(9/10) 4334944370000000 a001 591286729879/45537549124*228826127^(9/10) 4334944370000000 a001 7787980473/599786069*228826127^(9/10) 4334944370000000 a001 86267571272/6643838879*228826127^(9/10) 4334944370000000 a001 32951280099/969323029*228826127^(17/20) 4334944370000000 a001 32951280099/2537720636*228826127^(9/10) 4334944370000000 a001 7778742049/1568397607*228826127^(19/20) 4334944370000000 a001 20365011074/969323029*228826127^(7/8) 4334944370000000 a001 4052739537881/370248451*228826127^(11/20) 4334944370000000 a001 20365011074/4106118243*228826127^(19/20) 4334944370000000 a001 53316291173/10749957122*228826127^(19/20) 4334944370000000 a001 139583862445/28143753123*228826127^(19/20) 4334944370000000 a001 365435296162/73681302247*228826127^(19/20) 4334944370000000 a001 956722026041/192900153618*228826127^(19/20) 4334944370000000 a001 2504730781961/505019158607*228826127^(19/20) 4334944370000000 a001 10610209857723/2139295485799*228826127^(19/20) 4334944370000000 a001 4052739537881/817138163596*228826127^(19/20) 4334944370000000 a001 140728068720/28374454999*228826127^(19/20) 4334944370000000 a001 591286729879/119218851371*228826127^(19/20) 4334944370000000 a001 225851433717/45537549124*228826127^(19/20) 4334944370000000 a001 86267571272/17393796001*228826127^(19/20) 4334944370000000 a001 32951280099/6643838879*228826127^(19/20) 4334944370000000 a001 12586269025/969323029*228826127^(9/10) 4334944370000000 a001 1144206275/230701876*228826127^(19/20) 4334944370000000 a001 1548008755920/370248451*228826127^(3/5) 4334944370000000 a001 4807526976/969323029*228826127^(19/20) 4334944370000000 a001 591286729879/141422324*141422324^(8/13) 4334944370000000 a001 956722026041/370248451*228826127^(5/8) 4334944370000000 a001 591286729879/370248451*228826127^(13/20) 4334944370000000 a001 225851433717/370248451*228826127^(7/10) 4334944370000000 a001 86267571272/370248451*228826127^(3/4) 4334944370000000 a001 32951280099/370248451*228826127^(4/5) 4334944370000000 a001 2504730781961/141422324*141422324^(7/13) 4334944370000000 a001 12586269025/370248451*228826127^(17/20) 4334944370000000 a001 44361286907595736/102334155 4334944370000000 a001 7778742049/370248451*228826127^(7/8) 4334944370000000 a001 4807526976/370248451*228826127^(9/10) 4334944370000000 a001 1836311903/370248451*228826127^(19/20) 4334944370000000 a001 10610209857723/141422324*141422324^(6/13) 4334944370000000 a001 102334155/141422324*2537720636^(14/15) 4334944370000000 a001 102334155/141422324*17393796001^(6/7) 4334944370000000 a001 102334155/141422324*45537549124^(14/17) 4334944370000000 a001 63245986/228826127*312119004989^(4/5) 4334944370000000 a001 102334155/141422324*817138163596^(14/19) 4334944370000000 a001 102334155/141422324*14662949395604^(2/3) 4334944370000000 a001 102334155/141422324*505019158607^(3/4) 4334944370000000 a001 102334155/141422324*192900153618^(7/9) 4334944370000000 a001 63245986/228826127*73681302247^(11/13) 4334944370000000 a001 102334155/141422324*10749957122^(7/8) 4334944370000000 a001 63245986/228826127*10749957122^(11/12) 4334944370000000 a001 102334155/141422324*4106118243^(21/23) 4334944370000000 a001 63245986/228826127*4106118243^(22/23) 4334944370000000 a001 102334155/141422324*1568397607^(21/22) 4334944370000000 a001 71778070001175620/165580141 4334944370000000 a001 225749145909/4868641*87403803^(1/2) 4334944370000000 a001 66978574/35355581*2537720636^(8/9) 4334944370000000 a001 66978574/35355581*312119004989^(8/11) 4334944370000000 a001 66978574/35355581*23725150497407^(5/8) 4334944370000000 a001 66978574/35355581*73681302247^(10/13) 4334944370000000 a001 66978574/35355581*28143753123^(4/5) 4334944370000000 a001 66978574/35355581*10749957122^(5/6) 4334944370000000 a001 31622993/299537289*10749957122^(23/24) 4334944370000000 a001 66978574/35355581*4106118243^(20/23) 4334944370000000 a001 66978574/35355581*1568397607^(10/11) 4334944370000000 a001 187917426909946978/433494437 4334944370000000 a001 63245986/1568397607*45537549124^(16/17) 4334944370000000 a001 701408733/141422324*817138163596^(2/3) 4334944370000000 a001 63245986/1568397607*14662949395604^(16/21) 4334944370000000 a001 63245986/1568397607*192900153618^(8/9) 4334944370000000 a001 63245986/1568397607*73681302247^(12/13) 4334944370000000 a001 701408733/141422324*10749957122^(19/24) 4334944370000000 a001 701408733/141422324*4106118243^(19/23) 4334944370000000 a001 6557470319842/228826127*87403803^(10/19) 4334944370000000 a001 1836311903/141422324*2537720636^(4/5) 4334944370000000 a001 245987105364332657/567451585 4334944370000000 a001 66978574/35355581*599074578^(20/21) 4334944370000000 a001 7778742049/141422324*2537720636^(11/15) 4334944370000000 a001 63246219/271444*2537720636^(2/3) 4334944370000000 a001 2971215073/141422324*2537720636^(7/9) 4334944370000000 a001 139583862445/141422324*2537720636^(3/5) 4334944370000000 a001 182717648081/70711162*2537720636^(5/9) 4334944370000000 a001 591286729879/141422324*2537720636^(8/15) 4334944370000000 a001 2504730781961/141422324*2537720636^(7/15) 4334944370000000 a001 4052739537881/141422324*2537720636^(4/9) 4334944370000000 a001 10610209857723/141422324*2537720636^(2/5) 4334944370000000 a001 1836311903/141422324*45537549124^(12/17) 4334944370000000 a001 63245986/4106118243*312119004989^(10/11) 4334944370000000 a001 1836311903/141422324*14662949395604^(4/7) 4334944370000000 a001 63245986/4106118243*3461452808002^(5/6) 4334944370000000 a001 1836311903/141422324*505019158607^(9/14) 4334944370000000 a001 1836311903/141422324*192900153618^(2/3) 4334944370000000 a001 1836311903/141422324*73681302247^(9/13) 4334944370000000 a001 701408733/141422324*1568397607^(19/22) 4334944370000000 a001 1836311903/141422324*10749957122^(3/4) 4334944370000000 a001 1288005205276048964/2971215073 4334944370000000 a001 1836311903/141422324*4106118243^(18/23) 4334944370000000 a001 1201881744/35355581*45537549124^(2/3) 4334944370000000 a001 31622993/5374978561*23725150497407^(13/16) 4334944370000000 a001 31622993/5374978561*505019158607^(13/14) 4334944370000000 a001 3372041405099481578/7778742049 4334944370000000 a001 1201881744/35355581*10749957122^(17/24) 4334944370000000 a001 21566892818/35355581*17393796001^(4/7) 4334944370000000 a001 2504730781961/141422324*17393796001^(3/7) 4334944370000000 a001 63245986/28143753123*14662949395604^(6/7) 4334944370000000 a001 12586269025/141422324*23725150497407^(1/2) 4334944370000000 a001 12586269025/141422324*505019158607^(4/7) 4334944370000000 a001 12586269025/141422324*73681302247^(8/13) 4334944370000000 a001 4414059505011197885/10182505537 4334944370000000 a001 63246219/271444*45537549124^(10/17) 4334944370000000 a001 139583862445/141422324*45537549124^(9/17) 4334944370000000 a001 591286729879/141422324*45537549124^(8/17) 4334944370000000 a001 2504730781961/141422324*45537549124^(7/17) 4334944370000000 a001 63246219/271444*312119004989^(6/11) 4334944370000000 a001 63245986/73681302247*14662949395604^(8/9) 4334944370000000 a001 63246219/271444*14662949395604^(10/21) 4334944370000000 a001 10610209857723/141422324*45537549124^(6/17) 4334944370000000 a001 23112315624967705732/53316291173 4334944370000000 a001 21566892818/35355581*14662949395604^(4/9) 4334944370000000 a001 60508827864880721426/139583862445 4334944370000000 a001 182717648081/70711162*312119004989^(5/11) 4334944370000000 a001 10610209857723/141422324*14662949395604^(2/7) 4334944370000000 a001 63245986*(1/2+1/2*5^(1/2))^4 4334944370000000 a001 2504730781961/141422324*14662949395604^(1/3) 4334944370000000 a001 182717648081/70711162*3461452808002^(5/12) 4334944370000000 a001 32635113368264579040/75283811239 4334944370000000 a001 10610209857723/141422324*192900153618^(1/3) 4334944370000000 a001 139583862445/141422324*14662949395604^(3/7) 4334944370000000 a001 591286729879/141422324*192900153618^(4/9) 4334944370000000 a001 139583862445/141422324*192900153618^(1/2) 4334944370000000 a001 18698256119956507847/43133785636 4334944370000000 a001 53316291173/141422324*1322157322203^(1/2) 4334944370000000 a001 4052739537881/141422324*73681302247^(5/13) 4334944370000000 a001 21566892818/35355581*73681302247^(7/13) 4334944370000000 a001 591286729879/141422324*73681302247^(6/13) 4334944370000000 a001 225851433717/141422324*73681302247^(1/2) 4334944370000000 a001 20435188290336638/47140601 4334944370000000 a001 10182505537/70711162*9062201101803^(1/2) 4334944370000000 a001 4052739537881/141422324*28143753123^(2/5) 4334944370000000 a001 63246219/271444*28143753123^(3/5) 4334944370000000 a001 182717648081/70711162*28143753123^(1/2) 4334944370000000 a001 5456077604922914192/12586269025 4334944370000000 a001 7778742049/141422324*45537549124^(11/17) 4334944370000000 a001 10610209857723/141422324*10749957122^(3/8) 4334944370000000 a001 7778742049/141422324*312119004989^(3/5) 4334944370000000 a001 7778742049/141422324*14662949395604^(11/21) 4334944370000000 a001 7778742049/141422324*192900153618^(11/18) 4334944370000000 a001 4052739537881/141422324*10749957122^(5/12) 4334944370000000 a001 2504730781961/141422324*10749957122^(7/16) 4334944370000000 a001 387002188980/35355581*10749957122^(11/24) 4334944370000000 a001 591286729879/141422324*10749957122^(1/2) 4334944370000000 a001 12586269025/141422324*10749957122^(2/3) 4334944370000000 a001 225851433717/141422324*10749957122^(13/24) 4334944370000000 a001 139583862445/141422324*10749957122^(9/16) 4334944370000000 a001 21566892818/35355581*10749957122^(7/12) 4334944370000000 a001 63246219/271444*10749957122^(5/8) 4334944370000000 a001 347339366637238769/801254496 4334944370000000 a001 7778742049/141422324*10749957122^(11/16) 4334944370000000 a001 2971215073/141422324*17393796001^(5/7) 4334944370000000 a001 2971215073/141422324*312119004989^(7/11) 4334944370000000 a001 63245986/6643838879*817138163596^(17/19) 4334944370000000 a001 2971215073/141422324*14662949395604^(5/9) 4334944370000000 a001 2971215073/141422324*505019158607^(5/8) 4334944370000000 a001 63245986/6643838879*192900153618^(17/18) 4334944370000000 a001 10610209857723/141422324*4106118243^(9/23) 4334944370000000 a001 2971215073/141422324*28143753123^(7/10) 4334944370000000 a001 4052739537881/141422324*4106118243^(10/23) 4334944370000000 a001 387002188980/35355581*4106118243^(11/23) 4334944370000000 a001 956722026041/141422324*4106118243^(1/2) 4334944370000000 a001 591286729879/141422324*4106118243^(12/23) 4334944370000000 a001 225851433717/141422324*4106118243^(13/23) 4334944370000000 a001 1201881744/35355581*4106118243^(17/23) 4334944370000000 a001 21566892818/35355581*4106118243^(14/23) 4334944370000000 a001 63246219/271444*4106118243^(15/23) 4334944370000000 a001 12586269025/141422324*4106118243^(16/23) 4334944370000000 a001 796030994547383650/1836311903 4334944370000000 a001 31622993/1268860318*14662949395604^(7/9) 4334944370000000 a001 31622993/1268860318*505019158607^(7/8) 4334944370000000 a001 10610209857723/141422324*1568397607^(9/22) 4334944370000000 a001 4052739537881/141422324*1568397607^(5/11) 4334944370000000 a001 387002188980/35355581*1568397607^(1/2) 4334944370000000 a001 591286729879/141422324*1568397607^(6/11) 4334944370000000 a001 225851433717/141422324*1568397607^(13/22) 4334944370000000 a001 21566892818/35355581*1568397607^(7/11) 4334944370000000 a001 1836311903/141422324*1568397607^(9/11) 4334944370000000 a001 63246219/271444*1568397607^(15/22) 4334944370000000 a001 12586269025/141422324*1568397607^(8/11) 4334944370000000 a001 1201881744/35355581*1568397607^(17/22) 4334944370000000 a001 7778742049/141422324*1568397607^(3/4) 4334944370000000 a001 101352261272906112/233802911 4334944370000000 a001 433494437/141422324*2537720636^(13/15) 4334944370000000 a001 433494437/141422324*45537549124^(13/17) 4334944370000000 a001 433494437/141422324*14662949395604^(13/21) 4334944370000000 a001 433494437/141422324*192900153618^(13/18) 4334944370000000 a001 433494437/141422324*73681302247^(3/4) 4334944370000000 a001 433494437/141422324*10749957122^(13/16) 4334944370000000 a001 10610209857723/141422324*599074578^(3/7) 4334944370000000 a001 4052739537881/141422324*599074578^(10/21) 4334944370000000 a001 2504730781961/141422324*599074578^(1/2) 4334944370000000 a001 387002188980/35355581*599074578^(11/21) 4334944370000000 a001 591286729879/141422324*599074578^(4/7) 4334944370000000 a001 225851433717/141422324*599074578^(13/21) 4334944370000000 a001 139583862445/141422324*599074578^(9/14) 4334944370000000 a001 21566892818/35355581*599074578^(2/3) 4334944370000000 a001 63246219/271444*599074578^(5/7) 4334944370000000 a001 701408733/141422324*599074578^(19/21) 4334944370000000 a001 12586269025/141422324*599074578^(16/21) 4334944370000000 a001 7778742049/141422324*599074578^(11/14) 4334944370000000 a001 1201881744/35355581*599074578^(17/21) 4334944370000000 a001 1836311903/141422324*599074578^(6/7) 4334944370000000 a001 2971215073/141422324*599074578^(5/6) 4334944370000000 a001 58069678454385679/133957148 4334944370000000 a001 433494437/141422324*599074578^(13/14) 4334944370000000 a001 2504730781961/228826127*87403803^(11/19) 4334944370000000 a001 63245986/370248451*45537549124^(15/17) 4334944370000000 a001 63245986/370248451*312119004989^(9/11) 4334944370000000 a001 63245986/370248451*14662949395604^(5/7) 4334944370000000 a001 63245986/370248451*192900153618^(5/6) 4334944370000000 a001 63245986/370248451*28143753123^(9/10) 4334944370000000 a001 63245986/370248451*10749957122^(15/16) 4334944370000000 a001 10610209857723/141422324*228826127^(9/20) 4334944370000000 a001 4052739537881/141422324*228826127^(1/2) 4334944370000000 a001 387002188980/35355581*228826127^(11/20) 4334944370000000 a001 591286729879/141422324*228826127^(3/5) 4334944370000000 a001 182717648081/70711162*228826127^(5/8) 4334944370000000 a001 225851433717/141422324*228826127^(13/20) 4334944370000000 a001 21566892818/35355581*228826127^(7/10) 4334944370000000 a001 956722026041/228826127*87403803^(12/19) 4334944370000000 a001 63246219/271444*228826127^(3/4) 4334944370000000 a001 12586269025/141422324*228826127^(4/5) 4334944370000000 a001 1201881744/35355581*228826127^(17/20) 4334944370000000 a001 2971215073/141422324*228826127^(7/8) 4334944370000000 a001 1836311903/141422324*228826127^(9/10) 4334944370000000 a001 701408733/141422324*228826127^(19/20) 4334944370000000 a001 14787095635865246/34111385 4334944370000000 a001 365435296162/228826127*87403803^(13/19) 4334944370000000 a001 3278735159921/299537289*87403803^(11/19) 4334944370000000 a001 10610209857723/370248451*87403803^(10/19) 4334944370000000 a001 10610209857723/969323029*87403803^(11/19) 4334944370000000 a001 139583862445/228826127*87403803^(14/19) 4334944370000000 a001 2504730781961/599074578*87403803^(12/19) 4334944370000000 a001 6557470319842/1568397607*87403803^(12/19) 4334944370000000 a001 10610209857723/2537720636*87403803^(12/19) 4334944370000000 a001 4052739537881/370248451*87403803^(11/19) 4334944370000000 a001 4052739537881/969323029*87403803^(12/19) 4334944370000000 a001 53316291173/228826127*87403803^(15/19) 4334944370000000 a001 956722026041/599074578*87403803^(13/19) 4334944370000000 a001 2504730781961/1568397607*87403803^(13/19) 4334944370000000 a001 6557470319842/4106118243*87403803^(13/19) 4334944370000000 a001 10610209857723/6643838879*87403803^(13/19) 4334944370000000 a001 4052739537881/2537720636*87403803^(13/19) 4334944370000000 a001 1548008755920/370248451*87403803^(12/19) 4334944370000000 a001 1548008755920/969323029*87403803^(13/19) 4334944370000000 a001 20365011074/228826127*87403803^(16/19) 4334944370000000 a001 182717648081/299537289*87403803^(14/19) 4334944370000000 a001 956722026041/1568397607*87403803^(14/19) 4334944370000000 a001 2504730781961/4106118243*87403803^(14/19) 4334944370000000 a001 3278735159921/5374978561*87403803^(14/19) 4334944370000000 a001 10610209857723/17393796001*87403803^(14/19) 4334944370000000 a001 4052739537881/6643838879*87403803^(14/19) 4334944370000000 a001 1134903780/1860499*87403803^(14/19) 4334944370000000 a001 591286729879/370248451*87403803^(13/19) 4334944370000000 a001 591286729879/969323029*87403803^(14/19) 4334944370000000 a001 7778742049/228826127*87403803^(17/19) 4334944370000000 a001 139583862445/599074578*87403803^(15/19) 4334944370000000 a001 365435296162/1568397607*87403803^(15/19) 4334944370000000 a001 956722026041/4106118243*87403803^(15/19) 4334944370000000 a001 2504730781961/10749957122*87403803^(15/19) 4334944370000000 a001 6557470319842/28143753123*87403803^(15/19) 4334944370000000 a001 10610209857723/45537549124*87403803^(15/19) 4334944370000000 a001 4052739537881/17393796001*87403803^(15/19) 4334944370000000 a001 1548008755920/6643838879*87403803^(15/19) 4334944370000000 a001 591286729879/2537720636*87403803^(15/19) 4334944370000000 a001 225851433717/370248451*87403803^(14/19) 4334944370000000 a001 225851433717/969323029*87403803^(15/19) 4334944370000000 a001 2971215073/228826127*87403803^(18/19) 4334944370000000 a001 53316291173/599074578*87403803^(16/19) 4334944370000000 a001 139583862445/1568397607*87403803^(16/19) 4334944370000000 a001 365435296162/4106118243*87403803^(16/19) 4334944370000000 a001 956722026041/10749957122*87403803^(16/19) 4334944370000000 a001 2504730781961/28143753123*87403803^(16/19) 4334944370000000 a001 6557470319842/73681302247*87403803^(16/19) 4334944370000000 a001 10610209857723/119218851371*87403803^(16/19) 4334944370000000 a001 4052739537881/45537549124*87403803^(16/19) 4334944370000000 a001 1548008755920/17393796001*87403803^(16/19) 4334944370000000 a001 591286729879/6643838879*87403803^(16/19) 4334944370000000 a001 225851433717/2537720636*87403803^(16/19) 4334944370000000 a001 86267571272/370248451*87403803^(15/19) 4334944370000000 a001 86267571272/969323029*87403803^(16/19) 4334944370000000 a001 10610209857723/141422324*87403803^(9/19) 4334944370000000 a001 10182505537/299537289*87403803^(17/19) 4334944370000000 a001 3278735159921/70711162*87403803^(1/2) 4334944370000000 a001 53316291173/1568397607*87403803^(17/19) 4334944370000000 a001 139583862445/4106118243*87403803^(17/19) 4334944370000000 a001 182717648081/5374978561*87403803^(17/19) 4334944370000000 a001 956722026041/28143753123*87403803^(17/19) 4334944370000000 a001 2504730781961/73681302247*87403803^(17/19) 4334944370000000 a001 3278735159921/96450076809*87403803^(17/19) 4334944370000000 a001 10610209857723/312119004989*87403803^(17/19) 4334944370000000 a001 4052739537881/119218851371*87403803^(17/19) 4334944370000000 a001 387002188980/11384387281*87403803^(17/19) 4334944370000000 a001 591286729879/17393796001*87403803^(17/19) 4334944370000000 a001 225851433717/6643838879*87403803^(17/19) 4334944370000000 a001 1135099622/33391061*87403803^(17/19) 4334944370000000 a001 32951280099/370248451*87403803^(16/19) 4334944370000000 a001 32951280099/969323029*87403803^(17/19) 4334944370000000 a001 4052739537881/141422324*87403803^(10/19) 4334944370000000 a001 16944503814015855/39088169 4334944370000000 a001 7778742049/599074578*87403803^(18/19) 4334944370000000 a001 20365011074/1568397607*87403803^(18/19) 4334944370000000 a001 53316291173/4106118243*87403803^(18/19) 4334944370000000 a001 139583862445/10749957122*87403803^(18/19) 4334944370000000 a001 365435296162/28143753123*87403803^(18/19) 4334944370000000 a001 956722026041/73681302247*87403803^(18/19) 4334944370000000 a001 2504730781961/192900153618*87403803^(18/19) 4334944370000000 a001 10610209857723/817138163596*87403803^(18/19) 4334944370000000 a001 4052739537881/312119004989*87403803^(18/19) 4334944370000000 a001 1548008755920/119218851371*87403803^(18/19) 4334944370000000 a001 591286729879/45537549124*87403803^(18/19) 4334944370000000 a001 7787980473/599786069*87403803^(18/19) 4334944370000000 a001 86267571272/6643838879*87403803^(18/19) 4334944370000000 a001 32951280099/2537720636*87403803^(18/19) 4334944370000000 a001 12586269025/370248451*87403803^(17/19) 4334944370000000 a001 12586269025/969323029*87403803^(18/19) 4334944370000000 a001 387002188980/35355581*87403803^(11/19) 4334944370000000 a001 4807526976/370248451*87403803^(18/19) 4334944370000000 a001 591286729879/141422324*87403803^(12/19) 4334944370000000 a001 225851433717/141422324*87403803^(13/19) 4334944370000000 a001 21566892818/35355581*87403803^(14/19) 4334944370000000 a001 63246219/271444*87403803^(15/19) 4334944370000000 a001 12586269025/141422324*87403803^(16/19) 4334944370000000 a001 1201881744/35355581*87403803^(17/19) 4334944370000000 a001 1836311903/141422324*87403803^(18/19) 4334944370000000 a001 16944503814015856/39088169 4334944370000000 a001 39088169/54018521*2537720636^(14/15) 4334944370000000 a001 39088169/54018521*17393796001^(6/7) 4334944370000000 a001 39088169/54018521*45537549124^(14/17) 4334944370000000 a001 24157817/87403803*312119004989^(4/5) 4334944370000000 a001 39088169/54018521*817138163596^(14/19) 4334944370000000 a001 24157817/87403803*23725150497407^(11/16) 4334944370000000 a001 39088169/54018521*505019158607^(3/4) 4334944370000000 a001 39088169/54018521*192900153618^(7/9) 4334944370000000 a001 24157817/87403803*73681302247^(11/13) 4334944370000000 a001 39088169/54018521*10749957122^(7/8) 4334944370000000 a001 24157817/87403803*10749957122^(11/12) 4334944370000000 a001 39088169/54018521*4106118243^(21/23) 4334944370000000 a001 24157817/87403803*4106118243^(22/23) 4334944370000000 a001 39088169/54018521*1568397607^(21/22) 4334944370000001 a001 13708391546789945/31622993 4334944370000001 a001 701408733/54018521*141422324^(12/13) 4334944370000001 a001 2971215073/54018521*141422324^(11/13) 4334944370000001 a001 12586269025/54018521*141422324^(10/13) 4334944370000001 a001 53316291173/54018521*141422324^(9/13) 4334944370000001 a001 86267571272/54018521*141422324^(2/3) 4334944370000001 a001 225851433717/54018521*141422324^(8/13) 4334944370000001 a001 956722026041/54018521*141422324^(7/13) 4334944370000001 a001 6557470319842/87403803*33385282^(1/2) 4334944370000001 a001 4052739537881/54018521*141422324^(6/13) 4334944370000001 a001 102334155/54018521*2537720636^(8/9) 4334944370000001 a001 102334155/54018521*312119004989^(8/11) 4334944370000001 a001 102334155/54018521*23725150497407^(5/8) 4334944370000001 a001 102334155/54018521*73681302247^(10/13) 4334944370000001 a001 102334155/54018521*28143753123^(4/5) 4334944370000001 a001 102334155/54018521*10749957122^(5/6) 4334944370000001 a001 24157817/228826127*10749957122^(23/24) 4334944370000001 a001 102334155/54018521*4106118243^(20/23) 4334944370000001 a001 102334155/54018521*1568397607^(10/11) 4334944370000001 a001 102334155/54018521*599074578^(20/21) 4334944370000001 a001 71778070001175641/165580141 4334944370000001 a001 4807526976/20633239*20633239^(6/7) 4334944370000001 a001 24157817/599074578*45537549124^(16/17) 4334944370000001 a001 267914296/54018521*817138163596^(2/3) 4334944370000001 a001 24157817/599074578*14662949395604^(16/21) 4334944370000001 a001 24157817/599074578*192900153618^(8/9) 4334944370000001 a001 24157817/599074578*73681302247^(12/13) 4334944370000001 a001 267914296/54018521*10749957122^(19/24) 4334944370000001 a001 267914296/54018521*4106118243^(19/23) 4334944370000001 a001 267914296/54018521*1568397607^(19/22) 4334944370000001 a001 187917426909947033/433494437 4334944370000001 a001 701408733/54018521*2537720636^(4/5) 4334944370000001 a001 701408733/54018521*45537549124^(12/17) 4334944370000001 a001 24157817/1568397607*312119004989^(10/11) 4334944370000001 a001 24157817/1568397607*3461452808002^(5/6) 4334944370000001 a001 701408733/54018521*505019158607^(9/14) 4334944370000001 a001 701408733/54018521*192900153618^(2/3) 4334944370000001 a001 701408733/54018521*73681302247^(9/13) 4334944370000001 a001 701408733/54018521*10749957122^(3/4) 4334944370000001 a001 701408733/54018521*4106118243^(18/23) 4334944370000001 a001 267914296/54018521*599074578^(19/21) 4334944370000001 a001 245987105364332729/567451585 4334944370000001 a001 12586269025/54018521*2537720636^(2/3) 4334944370000001 a001 53316291173/54018521*2537720636^(3/5) 4334944370000001 a001 2971215073/54018521*2537720636^(11/15) 4334944370000001 a001 139583862445/54018521*2537720636^(5/9) 4334944370000001 a001 225851433717/54018521*2537720636^(8/15) 4334944370000001 a001 701408733/54018521*1568397607^(9/11) 4334944370000001 a001 956722026041/54018521*2537720636^(7/15) 4334944370000001 a001 1548008755920/54018521*2537720636^(4/9) 4334944370000001 a001 4052739537881/54018521*2537720636^(2/5) 4334944370000001 a001 1836311903/54018521*45537549124^(2/3) 4334944370000001 a001 24157817/4106118243*23725150497407^(13/16) 4334944370000001 a001 24157817/4106118243*505019158607^(13/14) 4334944370000001 a001 1836311903/54018521*10749957122^(17/24) 4334944370000001 a001 1288005205276049341/2971215073 4334944370000001 a001 1836311903/54018521*4106118243^(17/23) 4334944370000001 a001 24157817/10749957122*14662949395604^(6/7) 4334944370000001 a001 4807526976/54018521*505019158607^(4/7) 4334944370000001 a001 4807526976/54018521*73681302247^(8/13) 4334944370000001 a001 3372041405099482565/7778742049 4334944370000001 a001 4807526976/54018521*10749957122^(2/3) 4334944370000001 a001 32951280099/54018521*17393796001^(4/7) 4334944370000001 a001 12586269025/54018521*45537549124^(10/17) 4334944370000001 a001 956722026041/54018521*17393796001^(3/7) 4334944370000001 a001 12586269025/54018521*312119004989^(6/11) 4334944370000001 a001 12586269025/54018521*14662949395604^(10/21) 4334944370000001 a001 12586269025/54018521*192900153618^(5/9) 4334944370000001 a001 12586269025/54018521*28143753123^(3/5) 4334944370000001 a001 4414059505011199177/10182505537 4334944370000001 a001 225851433717/54018521*45537549124^(8/17) 4334944370000001 a001 956722026041/54018521*45537549124^(7/17) 4334944370000001 a001 32951280099/54018521*14662949395604^(4/9) 4334944370000001 a001 32951280099/54018521*505019158607^(1/2) 4334944370000001 a001 4052739537881/54018521*45537549124^(6/17) 4334944370000001 a001 6557470319842/54018521*45537549124^(1/3) 4334944370000001 a001 32951280099/54018521*73681302247^(7/13) 4334944370000001 a001 23112315624967712497/53316291173 4334944370000001 a001 24157817/192900153618*14662949395604^(20/21) 4334944370000001 a001 60508827864880739137/139583862445 4334944370000001 a001 591286729879/54018521*312119004989^(2/5) 4334944370000001 a001 225851433717/54018521*14662949395604^(8/21) 4334944370000001 a001 2504730781961/54018521*817138163596^(1/3) 4334944370000001 a001 1548008755920/54018521*23725150497407^(5/16) 4334944370000001 a001 10610209857723/54018521*23725150497407^(1/4) 4334944370000001 a001 24157817*(1/2+1/2*5^(1/2))^6 4334944370000001 a001 139583862445/54018521*312119004989^(5/11) 4334944370000001 a001 225851433717/54018521*192900153618^(4/9) 4334944370000001 a001 4052739537881/54018521*192900153618^(1/3) 4334944370000001 a001 139583862445/54018521*3461452808002^(5/12) 4334944370000001 a001 4674564029989128330/10783446409 4334944370000001 a001 10610209857723/54018521*73681302247^(4/13) 4334944370000001 a001 86267571272/54018521*73681302247^(1/2) 4334944370000001 a001 53316291173/54018521*817138163596^(9/19) 4334944370000001 a001 1548008755920/54018521*73681302247^(5/13) 4334944370000001 a001 225851433717/54018521*73681302247^(6/13) 4334944370000001 a001 53316291173/54018521*192900153618^(1/2) 4334944370000001 a001 14284196614945314143/32951280099 4334944370000001 a001 24157817/45537549124*14662949395604^(19/21) 4334944370000001 a001 20365011074/54018521*1322157322203^(1/2) 4334944370000001 a001 1548008755920/54018521*28143753123^(2/5) 4334944370000001 a001 139583862445/54018521*28143753123^(1/2) 4334944370000001 a001 5456077604922915789/12586269025 4334944370000001 a001 10610209857723/54018521*10749957122^(1/3) 4334944370000001 a001 4052739537881/54018521*10749957122^(3/8) 4334944370000001 a001 7778742049/54018521*9062201101803^(1/2) 4334944370000001 a001 24157817/17393796001*3461452808002^(11/12) 4334944370000001 a001 1548008755920/54018521*10749957122^(5/12) 4334944370000001 a001 956722026041/54018521*10749957122^(7/16) 4334944370000001 a001 591286729879/54018521*10749957122^(11/24) 4334944370000001 a001 12586269025/54018521*10749957122^(5/8) 4334944370000001 a001 225851433717/54018521*10749957122^(1/2) 4334944370000001 a001 86267571272/54018521*10749957122^(13/24) 4334944370000001 a001 32951280099/54018521*10749957122^(7/12) 4334944370000001 a001 53316291173/54018521*10749957122^(9/16) 4334944370000001 a001 260504524977929153/600940872 4334944370000001 a001 10610209857723/54018521*4106118243^(8/23) 4334944370000001 a001 2971215073/54018521*45537549124^(11/17) 4334944370000001 a001 2971215073/54018521*312119004989^(3/5) 4334944370000001 a001 2971215073/54018521*817138163596^(11/19) 4334944370000001 a001 2971215073/54018521*14662949395604^(11/21) 4334944370000001 a001 2971215073/54018521*192900153618^(11/18) 4334944370000001 a001 4052739537881/54018521*4106118243^(9/23) 4334944370000001 a001 1548008755920/54018521*4106118243^(10/23) 4334944370000001 a001 591286729879/54018521*4106118243^(11/23) 4334944370000001 a001 2971215073/54018521*10749957122^(11/16) 4334944370000001 a001 365435296162/54018521*4106118243^(1/2) 4334944370000001 a001 225851433717/54018521*4106118243^(12/23) 4334944370000001 a001 4807526976/54018521*4106118243^(16/23) 4334944370000001 a001 86267571272/54018521*4106118243^(13/23) 4334944370000001 a001 1134903170/54018521*2537720636^(7/9) 4334944370000001 a001 32951280099/54018521*4106118243^(14/23) 4334944370000001 a001 12586269025/54018521*4106118243^(15/23) 4334944370000001 a001 796030994547383883/1836311903 4334944370000001 a001 10610209857723/54018521*1568397607^(4/11) 4334944370000001 a001 1134903170/54018521*17393796001^(5/7) 4334944370000001 a001 1134903170/54018521*312119004989^(7/11) 4334944370000001 a001 24157817/2537720636*817138163596^(17/19) 4334944370000001 a001 1134903170/54018521*14662949395604^(5/9) 4334944370000001 a001 1134903170/54018521*505019158607^(5/8) 4334944370000001 a001 24157817/2537720636*192900153618^(17/18) 4334944370000001 a001 1134903170/54018521*28143753123^(7/10) 4334944370000001 a001 4052739537881/54018521*1568397607^(9/22) 4334944370000001 a001 1548008755920/54018521*1568397607^(5/11) 4334944370000001 a001 591286729879/54018521*1568397607^(1/2) 4334944370000001 a001 225851433717/54018521*1568397607^(6/11) 4334944370000001 a001 86267571272/54018521*1568397607^(13/22) 4334944370000001 a001 1836311903/54018521*1568397607^(17/22) 4334944370000001 a001 32951280099/54018521*1568397607^(7/11) 4334944370000001 a001 12586269025/54018521*1568397607^(15/22) 4334944370000001 a001 4807526976/54018521*1568397607^(8/11) 4334944370000001 a001 2971215073/54018521*1568397607^(3/4) 4334944370000001 a001 304056783818718425/701408733 4334944370000001 a001 10610209857723/54018521*599074578^(8/21) 4334944370000001 a001 24157817/969323029*14662949395604^(7/9) 4334944370000001 a001 24157817/969323029*505019158607^(7/8) 4334944370000001 a001 4052739537881/54018521*599074578^(3/7) 4334944370000001 a001 1548008755920/54018521*599074578^(10/21) 4334944370000001 a001 956722026041/54018521*599074578^(1/2) 4334944370000001 a001 591286729879/54018521*599074578^(11/21) 4334944370000001 a001 225851433717/54018521*599074578^(4/7) 4334944370000001 a001 86267571272/54018521*599074578^(13/21) 4334944370000001 a001 53316291173/54018521*599074578^(9/14) 4334944370000001 a001 32951280099/54018521*599074578^(2/3) 4334944370000001 a001 701408733/54018521*599074578^(6/7) 4334944370000001 a001 12586269025/54018521*599074578^(5/7) 4334944370000001 a001 4807526976/54018521*599074578^(16/21) 4334944370000001 a001 1836311903/54018521*599074578^(17/21) 4334944370000001 a001 2971215073/54018521*599074578^(11/14) 4334944370000001 a001 1134903170/54018521*599074578^(5/6) 4334944370000001 a001 14517419613596424/33489287 4334944370000001 a001 165580141/54018521*2537720636^(13/15) 4334944370000001 a001 165580141/54018521*45537549124^(13/17) 4334944370000001 a001 165580141/54018521*14662949395604^(13/21) 4334944370000001 a001 165580141/54018521*192900153618^(13/18) 4334944370000001 a001 165580141/54018521*73681302247^(3/4) 4334944370000001 a001 165580141/54018521*10749957122^(13/16) 4334944370000001 a001 10610209857723/54018521*228826127^(2/5) 4334944370000001 a001 4052739537881/54018521*228826127^(9/20) 4334944370000001 a001 1548008755920/54018521*228826127^(1/2) 4334944370000001 a001 165580141/54018521*599074578^(13/14) 4334944370000001 a001 591286729879/54018521*228826127^(11/20) 4334944370000001 a001 225851433717/54018521*228826127^(3/5) 4334944370000001 a001 139583862445/54018521*228826127^(5/8) 4334944370000001 a001 86267571272/54018521*228826127^(13/20) 4334944370000001 a001 32951280099/54018521*228826127^(7/10) 4334944370000001 a001 12586269025/54018521*228826127^(3/4) 4334944370000001 a001 4807526976/54018521*228826127^(4/5) 4334944370000001 a001 267914296/54018521*228826127^(19/20) 4334944370000001 a001 1836311903/54018521*228826127^(17/20) 4334944370000001 a001 701408733/54018521*228826127^(9/10) 4334944370000001 a001 1134903170/54018521*228826127^(7/8) 4334944370000001 a001 44361286907595751/102334155 4334944370000001 a001 2504730781961/87403803*33385282^(5/9) 4334944370000001 a001 516002918640/29134601*33385282^(7/12) 4334944370000001 a001 24157817/141422324*45537549124^(15/17) 4334944370000001 a001 24157817/141422324*312119004989^(9/11) 4334944370000001 a001 24157817/141422324*14662949395604^(5/7) 4334944370000001 a001 24157817/141422324*192900153618^(5/6) 4334944370000001 a001 24157817/141422324*28143753123^(9/10) 4334944370000001 a001 24157817/141422324*10749957122^(15/16) 4334944370000001 a001 10610209857723/54018521*87403803^(8/19) 4334944370000001 a001 4052739537881/54018521*87403803^(9/19) 4334944370000001 a001 2504730781961/54018521*87403803^(1/2) 4334944370000001 a001 1548008755920/54018521*87403803^(10/19) 4334944370000001 a001 956722026041/87403803*33385282^(11/18) 4334944370000001 a001 591286729879/54018521*87403803^(11/19) 4334944370000001 a001 225851433717/54018521*87403803^(12/19) 4334944370000001 a001 86267571272/54018521*87403803^(13/19) 4334944370000001 a001 32951280099/54018521*87403803^(14/19) 4334944370000001 a001 12586269025/54018521*87403803^(15/19) 4334944370000001 a001 4807526976/54018521*87403803^(16/19) 4334944370000001 a001 1836311903/54018521*87403803^(17/19) 4334944370000002 a001 701408733/54018521*87403803^(18/19) 4334944370000002 a001 365435296162/87403803*33385282^(2/3) 4334944370000002 a001 1144206275/1875749*20633239^(4/5) 4334944370000002 a001 16944503814015861/39088169 4334944370000002 a001 6557470319842/228826127*33385282^(5/9) 4334944370000002 a001 10610209857723/141422324*33385282^(1/2) 4334944370000002 a001 4052739537881/228826127*33385282^(7/12) 4334944370000002 a001 10610209857723/370248451*33385282^(5/9) 4334944370000002 a001 139583862445/87403803*33385282^(13/18) 4334944370000002 a001 3536736619241/199691526*33385282^(7/12) 4334944370000002 a001 2504730781961/228826127*33385282^(11/18) 4334944370000002 a001 6557470319842/370248451*33385282^(7/12) 4334944370000002 a001 86267571272/87403803*33385282^(3/4) 4334944370000002 a001 3278735159921/299537289*33385282^(11/18) 4334944370000002 a001 4052739537881/141422324*33385282^(5/9) 4334944370000002 a001 10610209857723/969323029*33385282^(11/18) 4334944370000002 a001 4052739537881/370248451*33385282^(11/18) 4334944370000002 a001 53316291173/87403803*33385282^(7/9) 4334944370000002 a001 2504730781961/141422324*33385282^(7/12) 4334944370000002 a001 956722026041/228826127*33385282^(2/3) 4334944370000002 a001 2504730781961/599074578*33385282^(2/3) 4334944370000002 a001 6557470319842/1568397607*33385282^(2/3) 4334944370000002 a001 387002188980/35355581*33385282^(11/18) 4334944370000002 a001 10610209857723/2537720636*33385282^(2/3) 4334944370000002 a001 4052739537881/969323029*33385282^(2/3) 4334944370000002 a001 1548008755920/370248451*33385282^(2/3) 4334944370000002 a001 20365011074/87403803*33385282^(5/6) 4334944370000002 a001 365435296162/228826127*33385282^(13/18) 4334944370000002 a001 956722026041/599074578*33385282^(13/18) 4334944370000002 a001 2504730781961/1568397607*33385282^(13/18) 4334944370000002 a001 6557470319842/4106118243*33385282^(13/18) 4334944370000002 a001 10610209857723/6643838879*33385282^(13/18) 4334944370000002 a001 591286729879/141422324*33385282^(2/3) 4334944370000002 a001 4052739537881/2537720636*33385282^(13/18) 4334944370000002 a001 1548008755920/969323029*33385282^(13/18) 4334944370000002 a001 225851433717/228826127*33385282^(3/4) 4334944370000002 a001 591286729879/370248451*33385282^(13/18) 4334944370000002 a001 7778742049/87403803*33385282^(8/9) 4334944370000002 a001 591286729879/599074578*33385282^(3/4) 4334944370000002 a001 53316291173/20633239*20633239^(5/7) 4334944370000002 a001 1548008755920/1568397607*33385282^(3/4) 4334944370000002 a001 4052739537881/4106118243*33385282^(3/4) 4334944370000002 a001 4807525989/4870846*33385282^(3/4) 4334944370000002 a001 6557470319842/6643838879*33385282^(3/4) 4334944370000002 a001 2504730781961/2537720636*33385282^(3/4) 4334944370000002 a001 956722026041/969323029*33385282^(3/4) 4334944370000002 a001 139583862445/228826127*33385282^(7/9) 4334944370000002 a001 365435296162/370248451*33385282^(3/4) 4334944370000002 a001 1602508992/29134601*33385282^(11/12) 4334944370000003 a001 182717648081/299537289*33385282^(7/9) 4334944370000003 a001 956722026041/1568397607*33385282^(7/9) 4334944370000003 a001 2504730781961/4106118243*33385282^(7/9) 4334944370000003 a001 3278735159921/5374978561*33385282^(7/9) 4334944370000003 a001 10610209857723/17393796001*33385282^(7/9) 4334944370000003 a001 4052739537881/6643838879*33385282^(7/9) 4334944370000003 a001 225851433717/141422324*33385282^(13/18) 4334944370000003 a001 1134903780/1860499*33385282^(7/9) 4334944370000003 a001 591286729879/969323029*33385282^(7/9) 4334944370000003 a001 225851433717/370248451*33385282^(7/9) 4334944370000003 a001 2971215073/87403803*33385282^(17/18) 4334944370000003 a001 139583862445/141422324*33385282^(3/4) 4334944370000003 a001 53316291173/228826127*33385282^(5/6) 4334944370000003 a001 10610209857723/54018521*33385282^(4/9) 4334944370000003 a001 139583862445/599074578*33385282^(5/6) 4334944370000003 a001 365435296162/1568397607*33385282^(5/6) 4334944370000003 a001 956722026041/4106118243*33385282^(5/6) 4334944370000003 a001 2504730781961/10749957122*33385282^(5/6) 4334944370000003 a001 6557470319842/28143753123*33385282^(5/6) 4334944370000003 a001 10610209857723/45537549124*33385282^(5/6) 4334944370000003 a001 4052739537881/17393796001*33385282^(5/6) 4334944370000003 a001 1548008755920/6643838879*33385282^(5/6) 4334944370000003 a001 21566892818/35355581*33385282^(7/9) 4334944370000003 a001 591286729879/2537720636*33385282^(5/6) 4334944370000003 a001 225851433717/969323029*33385282^(5/6) 4334944370000003 a001 86267571272/370248451*33385282^(5/6) 4334944370000003 a001 6472224534451829/14930352 4334944370000003 a001 20365011074/228826127*33385282^(8/9) 4334944370000003 a001 4052739537881/54018521*33385282^(1/2) 4334944370000003 a001 53316291173/599074578*33385282^(8/9) 4334944370000003 a001 139583862445/1568397607*33385282^(8/9) 4334944370000003 a001 365435296162/4106118243*33385282^(8/9) 4334944370000003 a001 956722026041/10749957122*33385282^(8/9) 4334944370000003 a001 2504730781961/28143753123*33385282^(8/9) 4334944370000003 a001 6557470319842/73681302247*33385282^(8/9) 4334944370000003 a001 10610209857723/119218851371*33385282^(8/9) 4334944370000003 a001 4052739537881/45537549124*33385282^(8/9) 4334944370000003 a001 1548008755920/17393796001*33385282^(8/9) 4334944370000003 a001 591286729879/6643838879*33385282^(8/9) 4334944370000003 a001 63246219/271444*33385282^(5/6) 4334944370000003 a001 225851433717/2537720636*33385282^(8/9) 4334944370000003 a001 86267571272/969323029*33385282^(8/9) 4334944370000003 a001 12586269025/228826127*33385282^(11/12) 4334944370000003 a001 32951280099/370248451*33385282^(8/9) 4334944370000003 a001 10983760033/199691526*33385282^(11/12) 4334944370000003 a001 86267571272/1568397607*33385282^(11/12) 4334944370000003 a001 75283811239/1368706081*33385282^(11/12) 4334944370000003 a001 591286729879/10749957122*33385282^(11/12) 4334944370000003 a001 12585437040/228811001*33385282^(11/12) 4334944370000003 a001 4052739537881/73681302247*33385282^(11/12) 4334944370000003 a001 3536736619241/64300051206*33385282^(11/12) 4334944370000003 a001 6557470319842/119218851371*33385282^(11/12) 4334944370000003 a001 2504730781961/45537549124*33385282^(11/12) 4334944370000003 a001 956722026041/17393796001*33385282^(11/12) 4334944370000003 a001 365435296162/6643838879*33385282^(11/12) 4334944370000003 a001 139583862445/2537720636*33385282^(11/12) 4334944370000003 a001 53316291173/969323029*33385282^(11/12) 4334944370000003 a001 7778742049/228826127*33385282^(17/18) 4334944370000003 a001 20365011074/370248451*33385282^(11/12) 4334944370000003 a001 1548008755920/54018521*33385282^(5/9) 4334944370000003 a001 10182505537/299537289*33385282^(17/18) 4334944370000003 a001 53316291173/1568397607*33385282^(17/18) 4334944370000003 a001 139583862445/4106118243*33385282^(17/18) 4334944370000003 a001 182717648081/5374978561*33385282^(17/18) 4334944370000003 a001 956722026041/28143753123*33385282^(17/18) 4334944370000003 a001 2504730781961/73681302247*33385282^(17/18) 4334944370000003 a001 3278735159921/96450076809*33385282^(17/18) 4334944370000003 a001 10610209857723/312119004989*33385282^(17/18) 4334944370000003 a001 4052739537881/119218851371*33385282^(17/18) 4334944370000003 a001 387002188980/11384387281*33385282^(17/18) 4334944370000003 a001 591286729879/17393796001*33385282^(17/18) 4334944370000003 a001 225851433717/6643838879*33385282^(17/18) 4334944370000003 a001 12586269025/141422324*33385282^(8/9) 4334944370000003 a001 1135099622/33391061*33385282^(17/18) 4334944370000003 a001 32951280099/969323029*33385282^(17/18) 4334944370000003 a001 12586269025/370248451*33385282^(17/18) 4334944370000003 a001 956722026041/54018521*33385282^(7/12) 4334944370000003 a001 7778742049/141422324*33385282^(11/12) 4334944370000003 a001 591286729879/54018521*33385282^(11/18) 4334944370000003 a001 1201881744/35355581*33385282^(17/18) 4334944370000004 a001 1078704089075305/2488392 4334944370000004 a001 365435296162/20633239*20633239^(3/5) 4334944370000004 a001 225851433717/54018521*33385282^(2/3) 4334944370000004 a001 86267571272/54018521*33385282^(13/18) 4334944370000004 a001 591286729879/20633239*20633239^(4/7) 4334944370000004 a001 53316291173/54018521*33385282^(3/4) 4334944370000004 a001 32951280099/54018521*33385282^(7/9) 4334944370000004 a001 12586269025/54018521*33385282^(5/6) 4334944370000004 a001 4807526976/54018521*33385282^(8/9) 4334944370000005 a001 2971215073/54018521*33385282^(11/12) 4334944370000005 a001 1836311903/54018521*33385282^(17/18) 4334944370000005 a001 809028066806479/1866294 4334944370000005 a001 6557470319842/20633239*20633239^(3/7) 4334944370000006 a001 10610209857723/20633239*20633239^(2/5) 4334944370000006 a001 14930352/20633239*2537720636^(14/15) 4334944370000006 a001 14930352/20633239*17393796001^(6/7) 4334944370000006 a001 14930352/20633239*45537549124^(14/17) 4334944370000006 a001 9227465/33385282*312119004989^(4/5) 4334944370000006 a001 14930352/20633239*817138163596^(14/19) 4334944370000006 a001 14930352/20633239*14662949395604^(2/3) 4334944370000006 a001 9227465/33385282*(1/2+1/2*5^(1/2))^44 4334944370000006 a001 14930352/20633239*(1/2+1/2*5^(1/2))^42 4334944370000006 a001 14930352/20633239*505019158607^(3/4) 4334944370000006 a001 14930352/20633239*192900153618^(7/9) 4334944370000006 a001 9227465/33385282*73681302247^(11/13) 4334944370000006 a001 14930352/20633239*10749957122^(7/8) 4334944370000006 a001 9227465/33385282*10749957122^(11/12) 4334944370000006 a001 14930352/20633239*4106118243^(21/23) 4334944370000006 a001 9227465/33385282*4106118243^(22/23) 4334944370000006 a001 14930352/20633239*1568397607^(21/22) 4334944370000006 a001 1836311903/7881196*7881196^(10/11) 4334944370000008 a001 3278735159921/16692641*12752043^(8/17) 4334944370000008 a001 10472279279564050/24157817 4334944370000009 a001 4052739537881/33385282*12752043^(1/2) 4334944370000009 a001 39088169/20633239*2537720636^(8/9) 4334944370000009 a001 39088169/20633239*312119004989^(8/11) 4334944370000009 a001 39088169/20633239*(1/2+1/2*5^(1/2))^40 4334944370000009 a001 39088169/20633239*23725150497407^(5/8) 4334944370000009 a001 39088169/20633239*73681302247^(10/13) 4334944370000009 a001 39088169/20633239*28143753123^(4/5) 4334944370000009 a001 39088169/20633239*10749957122^(5/6) 4334944370000009 a001 9227465/87403803*10749957122^(23/24) 4334944370000009 a001 39088169/20633239*4106118243^(20/23) 4334944370000009 a001 39088169/20633239*1568397607^(10/11) 4334944370000009 a001 39088169/20633239*599074578^(20/21) 4334944370000009 a001 27416783093579945/63245986 4334944370000009 a001 9238424/711491*141422324^(12/13) 4334944370000009 a001 1134903170/20633239*141422324^(11/13) 4334944370000010 a001 4807526976/20633239*141422324^(10/13) 4334944370000010 a001 20365011074/20633239*141422324^(9/13) 4334944370000010 a001 32951280099/20633239*141422324^(2/3) 4334944370000010 a001 86267571272/20633239*141422324^(8/13) 4334944370000010 a001 365435296162/20633239*141422324^(7/13) 4334944370000010 a001 140728068720/1875749*141422324^(6/13) 4334944370000010 a001 6557470319842/20633239*141422324^(5/13) 4334944370000010 a001 9227465/228826127*45537549124^(16/17) 4334944370000010 a001 9303105/1875749*817138163596^(2/3) 4334944370000010 a001 9227465/228826127*14662949395604^(16/21) 4334944370000010 a001 9303105/1875749*(1/2+1/2*5^(1/2))^38 4334944370000010 a001 9227465/228826127*192900153618^(8/9) 4334944370000010 a001 9227465/228826127*73681302247^(12/13) 4334944370000010 a001 9303105/1875749*10749957122^(19/24) 4334944370000010 a001 9303105/1875749*4106118243^(19/23) 4334944370000010 a001 9303105/1875749*1568397607^(19/22) 4334944370000010 a001 9303105/1875749*599074578^(19/21) 4334944370000010 a001 71778070001175785/165580141 4334944370000010 a001 9238424/711491*2537720636^(4/5) 4334944370000010 a001 9238424/711491*45537549124^(12/17) 4334944370000010 a001 9227465/599074578*312119004989^(10/11) 4334944370000010 a001 9238424/711491*14662949395604^(4/7) 4334944370000010 a001 9238424/711491*(1/2+1/2*5^(1/2))^36 4334944370000010 a001 9227465/599074578*3461452808002^(5/6) 4334944370000010 a001 9238424/711491*505019158607^(9/14) 4334944370000010 a001 9238424/711491*192900153618^(2/3) 4334944370000010 a001 9238424/711491*73681302247^(9/13) 4334944370000010 a001 9238424/711491*10749957122^(3/4) 4334944370000010 a001 9238424/711491*4106118243^(18/23) 4334944370000010 a001 9238424/711491*1568397607^(9/11) 4334944370000010 a001 187917426909947410/433494437 4334944370000010 a001 9303105/1875749*228826127^(19/20) 4334944370000010 a001 701408733/20633239*45537549124^(2/3) 4334944370000010 a001 701408733/20633239*(1/2+1/2*5^(1/2))^34 4334944370000010 a001 9227465/1568397607*23725150497407^(13/16) 4334944370000010 a001 9227465/1568397607*505019158607^(13/14) 4334944370000010 a001 701408733/20633239*10749957122^(17/24) 4334944370000010 a001 9238424/711491*599074578^(6/7) 4334944370000010 a001 701408733/20633239*4106118243^(17/23) 4334944370000010 a001 98394842145733289/226980634 4334944370000010 a001 4807526976/20633239*2537720636^(2/3) 4334944370000010 a001 20365011074/20633239*2537720636^(3/5) 4334944370000010 a001 701408733/20633239*1568397607^(17/22) 4334944370000010 a001 53316291173/20633239*2537720636^(5/9) 4334944370000010 a001 86267571272/20633239*2537720636^(8/15) 4334944370000010 a001 365435296162/20633239*2537720636^(7/15) 4334944370000010 a001 591286729879/20633239*2537720636^(4/9) 4334944370000010 a001 140728068720/1875749*2537720636^(2/5) 4334944370000010 a001 1836311903/20633239*(1/2+1/2*5^(1/2))^32 4334944370000010 a001 1836311903/20633239*23725150497407^(1/2) 4334944370000010 a001 1836311903/20633239*505019158607^(4/7) 4334944370000010 a001 1836311903/20633239*73681302247^(8/13) 4334944370000010 a001 1836311903/20633239*10749957122^(2/3) 4334944370000010 a001 6557470319842/20633239*2537720636^(1/3) 4334944370000010 a001 1288005205276051925/2971215073 4334944370000010 a001 1836311903/20633239*4106118243^(16/23) 4334944370000010 a001 4807526976/20633239*45537549124^(10/17) 4334944370000010 a001 4807526976/20633239*312119004989^(6/11) 4334944370000010 a001 9227465/10749957122*14662949395604^(8/9) 4334944370000010 a001 4807526976/20633239*14662949395604^(10/21) 4334944370000010 a001 4807526976/20633239*(1/2+1/2*5^(1/2))^30 4334944370000010 a001 4807526976/20633239*192900153618^(5/9) 4334944370000010 a001 4807526976/20633239*28143753123^(3/5) 4334944370000010 a001 259387800392268410/598364773 4334944370000010 a001 4807526976/20633239*10749957122^(5/8) 4334944370000010 a001 1144206275/1875749*17393796001^(4/7) 4334944370000010 a001 365435296162/20633239*17393796001^(3/7) 4334944370000010 a001 1144206275/1875749*14662949395604^(4/9) 4334944370000010 a001 1144206275/1875749*(1/2+1/2*5^(1/2))^28 4334944370000010 a001 1144206275/1875749*73681302247^(7/13) 4334944370000010 a001 10610209857723/20633239*17393796001^(2/7) 4334944370000010 a001 8828119010022416065/20365011074 4334944370000010 a001 86267571272/20633239*45537549124^(8/17) 4334944370000010 a001 365435296162/20633239*45537549124^(7/17) 4334944370000010 a001 9227465/73681302247*14662949395604^(20/21) 4334944370000010 a001 32951280099/20633239*(1/2+1/2*5^(1/2))^26 4334944370000010 a001 140728068720/1875749*45537549124^(6/17) 4334944370000010 a001 2504730781961/20633239*45537549124^(1/3) 4334944370000010 a001 6557470319842/20633239*45537549124^(5/17) 4334944370000010 a001 32951280099/20633239*73681302247^(1/2) 4334944370000010 a001 23112315624967758865/53316291173 4334944370000010 a001 86267571272/20633239*14662949395604^(8/21) 4334944370000010 a001 86267571272/20633239*(1/2+1/2*5^(1/2))^24 4334944370000010 a001 12101765572976172106/27916772489 4334944370000010 a001 7787980473/711491*312119004989^(2/5) 4334944370000010 a001 7787980473/711491*(1/2+1/2*5^(1/2))^22 4334944370000010 a001 6557470319842/20633239*312119004989^(3/11) 4334944370000010 a001 591286729879/20633239*(1/2+1/2*5^(1/2))^20 4334944370000010 a001 140728068720/1875749*14662949395604^(2/7) 4334944370000010 a001 140728068720/1875749*(1/2+1/2*5^(1/2))^18 4334944370000010 a001 4052739537881/20633239*(1/2+1/2*5^(1/2))^16 4334944370000010 a001 10610209857723/20633239*14662949395604^(2/9) 4334944370000010 a001 10610209857723/20633239*(1/2+1/2*5^(1/2))^14 4334944370000010 a001 9227465*(1/2+1/2*5^(1/2))^8 4334944370000010 a001 6557470319842/20633239*(1/2+1/2*5^(1/2))^15 4334944370000010 a001 358627619431479715/827294629 4334944370000010 a001 6557470319842/20633239*192900153618^(5/18) 4334944370000010 a001 140728068720/1875749*192900153618^(1/3) 4334944370000010 a001 139583862445/20633239*(1/2+1/2*5^(1/2))^23 4334944370000010 a001 365435296162/20633239*192900153618^(7/18) 4334944370000010 a001 37396512239913101665/86267571272 4334944370000010 a001 4052739537881/20633239*73681302247^(4/13) 4334944370000010 a001 53316291173/20633239*312119004989^(5/11) 4334944370000010 a001 591286729879/20633239*73681302247^(5/13) 4334944370000010 a001 53316291173/20633239*(1/2+1/2*5^(1/2))^25 4334944370000010 a001 53316291173/20633239*3461452808002^(5/12) 4334944370000010 a001 4761398871648447600/10983760033 4334944370000010 a001 20365011074/20633239*45537549124^(9/17) 4334944370000010 a001 6557470319842/20633239*28143753123^(3/10) 4334944370000010 a001 20365011074/20633239*817138163596^(9/19) 4334944370000010 a001 20365011074/20633239*14662949395604^(3/7) 4334944370000010 a001 20365011074/20633239*(1/2+1/2*5^(1/2))^27 4334944370000010 a001 20365011074/20633239*192900153618^(1/2) 4334944370000010 a001 591286729879/20633239*28143753123^(2/5) 4334944370000010 a001 53316291173/20633239*28143753123^(1/2) 4334944370000010 a001 1091215520984585347/2517253805 4334944370000010 a001 10610209857723/20633239*10749957122^(7/24) 4334944370000010 a001 6557470319842/20633239*10749957122^(5/16) 4334944370000010 a001 4052739537881/20633239*10749957122^(1/3) 4334944370000010 a001 140728068720/1875749*10749957122^(3/8) 4334944370000010 a001 9227465/17393796001*14662949395604^(19/21) 4334944370000010 a001 7778742049/20633239*(1/2+1/2*5^(1/2))^29 4334944370000010 a001 7778742049/20633239*1322157322203^(1/2) 4334944370000010 a001 591286729879/20633239*10749957122^(5/12) 4334944370000010 a001 1144206275/1875749*10749957122^(7/12) 4334944370000010 a001 365435296162/20633239*10749957122^(7/16) 4334944370000010 a001 7787980473/711491*10749957122^(11/24) 4334944370000010 a001 86267571272/20633239*10749957122^(1/2) 4334944370000010 a001 32951280099/20633239*10749957122^(13/24) 4334944370000010 a001 20365011074/20633239*10749957122^(9/16) 4334944370000010 a001 99239819039211305/228929856 4334944370000010 a001 10610209857723/20633239*4106118243^(7/23) 4334944370000010 a001 4052739537881/20633239*4106118243^(8/23) 4334944370000010 a001 2971215073/20633239*(1/2+1/2*5^(1/2))^31 4334944370000010 a001 2971215073/20633239*9062201101803^(1/2) 4334944370000010 a001 9227465/6643838879*3461452808002^(11/12) 4334944370000010 a001 140728068720/1875749*4106118243^(9/23) 4334944370000010 a001 591286729879/20633239*4106118243^(10/23) 4334944370000010 a001 7787980473/711491*4106118243^(11/23) 4334944370000010 a001 139583862445/20633239*4106118243^(1/2) 4334944370000010 a001 4807526976/20633239*4106118243^(15/23) 4334944370000010 a001 86267571272/20633239*4106118243^(12/23) 4334944370000010 a001 32951280099/20633239*4106118243^(13/23) 4334944370000010 a001 1144206275/1875749*4106118243^(14/23) 4334944370000010 a001 1134903170/20633239*2537720636^(11/15) 4334944370000010 a001 796030994547385480/1836311903 4334944370000010 a001 10610209857723/20633239*1568397607^(7/22) 4334944370000010 a001 4052739537881/20633239*1568397607^(4/11) 4334944370000010 a001 1134903170/20633239*45537549124^(11/17) 4334944370000010 a001 1134903170/20633239*312119004989^(3/5) 4334944370000010 a001 1134903170/20633239*817138163596^(11/19) 4334944370000010 a001 1134903170/20633239*14662949395604^(11/21) 4334944370000010 a001 1134903170/20633239*(1/2+1/2*5^(1/2))^33 4334944370000010 a001 1134903170/20633239*192900153618^(11/18) 4334944370000010 a001 1134903170/20633239*10749957122^(11/16) 4334944370000010 a001 140728068720/1875749*1568397607^(9/22) 4334944370000010 a001 591286729879/20633239*1568397607^(5/11) 4334944370000010 a001 7787980473/711491*1568397607^(1/2) 4334944370000010 a001 86267571272/20633239*1568397607^(6/11) 4334944370000010 a001 1836311903/20633239*1568397607^(8/11) 4334944370000010 a001 32951280099/20633239*1568397607^(13/22) 4334944370000010 a001 1144206275/1875749*1568397607^(7/11) 4334944370000010 a001 4807526976/20633239*1568397607^(15/22) 4334944370000010 a001 101352261272906345/233802911 4334944370000010 a001 1134903170/20633239*1568397607^(3/4) 4334944370000010 a001 10610209857723/20633239*599074578^(1/3) 4334944370000010 a001 433494437/20633239*2537720636^(7/9) 4334944370000010 a001 6557470319842/20633239*599074578^(5/14) 4334944370000010 a001 4052739537881/20633239*599074578^(8/21) 4334944370000010 a001 433494437/20633239*17393796001^(5/7) 4334944370000010 a001 433494437/20633239*312119004989^(7/11) 4334944370000010 a001 9227465/969323029*14662949395604^(17/21) 4334944370000010 a001 433494437/20633239*14662949395604^(5/9) 4334944370000010 a001 433494437/20633239*(1/2+1/2*5^(1/2))^35 4334944370000010 a001 433494437/20633239*505019158607^(5/8) 4334944370000010 a001 9227465/969323029*192900153618^(17/18) 4334944370000010 a001 433494437/20633239*28143753123^(7/10) 4334944370000010 a001 140728068720/1875749*599074578^(3/7) 4334944370000010 a001 591286729879/20633239*599074578^(10/21) 4334944370000010 a001 365435296162/20633239*599074578^(1/2) 4334944370000010 a001 7787980473/711491*599074578^(11/21) 4334944370000010 a001 86267571272/20633239*599074578^(4/7) 4334944370000010 a001 32951280099/20633239*599074578^(13/21) 4334944370000010 a001 20365011074/20633239*599074578^(9/14) 4334944370000010 a001 701408733/20633239*599074578^(17/21) 4334944370000010 a001 1144206275/1875749*599074578^(2/3) 4334944370000010 a001 4807526976/20633239*599074578^(5/7) 4334944370000010 a001 1836311903/20633239*599074578^(16/21) 4334944370000010 a001 1134903170/20633239*599074578^(11/14) 4334944370000010 a001 8933796685290125/20608792 4334944370000010 a001 433494437/20633239*599074578^(5/6) 4334944370000010 a001 10610209857723/20633239*228826127^(7/20) 4334944370000010 a001 6557470319842/20633239*228826127^(3/8) 4334944370000010 a001 9227465/370248451*14662949395604^(7/9) 4334944370000010 a001 165580141/20633239*(1/2+1/2*5^(1/2))^37 4334944370000010 a001 9227465/370248451*505019158607^(7/8) 4334944370000010 a001 4052739537881/20633239*228826127^(2/5) 4334944370000010 a001 140728068720/1875749*228826127^(9/20) 4334944370000010 a001 2504730781961/33385282*12752043^(9/17) 4334944370000010 a001 591286729879/20633239*228826127^(1/2) 4334944370000010 a001 7787980473/711491*228826127^(11/20) 4334944370000010 a001 86267571272/20633239*228826127^(3/5) 4334944370000010 a001 53316291173/20633239*228826127^(5/8) 4334944370000010 a001 32951280099/20633239*228826127^(13/20) 4334944370000010 a001 1144206275/1875749*228826127^(7/10) 4334944370000010 a001 4807526976/20633239*228826127^(3/4) 4334944370000010 a001 9238424/711491*228826127^(9/10) 4334944370000010 a001 1836311903/20633239*228826127^(4/5) 4334944370000010 a001 701408733/20633239*228826127^(17/20) 4334944370000010 a001 433494437/20633239*228826127^(7/8) 4334944370000010 a001 422488446739008/974611 4334944370000010 a001 10610209857723/20633239*87403803^(7/19) 4334944370000010 a001 63245986/20633239*2537720636^(13/15) 4334944370000010 a001 63245986/20633239*45537549124^(13/17) 4334944370000010 a001 63245986/20633239*14662949395604^(13/21) 4334944370000010 a001 63245986/20633239*(1/2+1/2*5^(1/2))^39 4334944370000010 a001 63245986/20633239*192900153618^(13/18) 4334944370000010 a001 63245986/20633239*73681302247^(3/4) 4334944370000010 a001 63245986/20633239*10749957122^(13/16) 4334944370000010 a001 63245986/20633239*599074578^(13/14) 4334944370000010 a001 4052739537881/20633239*87403803^(8/19) 4334944370000010 a001 140728068720/1875749*87403803^(9/19) 4334944370000010 a001 956722026041/20633239*87403803^(1/2) 4334944370000010 a001 591286729879/20633239*87403803^(10/19) 4334944370000010 a001 7787980473/711491*87403803^(11/19) 4334944370000010 a001 86267571272/20633239*87403803^(12/19) 4334944370000010 a001 32951280099/20633239*87403803^(13/19) 4334944370000010 a001 1144206275/1875749*87403803^(14/19) 4334944370000010 a001 4807526976/20633239*87403803^(15/19) 4334944370000010 a001 1836311903/20633239*87403803^(16/19) 4334944370000010 a001 701408733/20633239*87403803^(17/19) 4334944370000010 a001 9238424/711491*87403803^(18/19) 4334944370000010 a001 16944503814015895/39088169 4334944370000011 a001 9227465/54018521*45537549124^(15/17) 4334944370000011 a001 9227465/54018521*312119004989^(9/11) 4334944370000011 a001 9227465/54018521*14662949395604^(5/7) 4334944370000011 a001 24157817/20633239*(1/2+1/2*5^(1/2))^41 4334944370000011 a001 9227465/54018521*192900153618^(5/6) 4334944370000011 a001 9227465/54018521*28143753123^(9/10) 4334944370000011 a001 9227465/54018521*10749957122^(15/16) 4334944370000011 a001 10610209857723/20633239*33385282^(7/18) 4334944370000011 a001 956722026041/33385282*12752043^(10/17) 4334944370000011 a001 6557470319842/20633239*33385282^(5/12) 4334944370000011 a001 4052739537881/20633239*33385282^(4/9) 4334944370000012 a001 140728068720/1875749*33385282^(1/2) 4334944370000012 a001 591286729879/20633239*33385282^(5/9) 4334944370000012 a001 365435296162/20633239*33385282^(7/12) 4334944370000012 a001 7787980473/711491*33385282^(11/18) 4334944370000012 a001 7778742049/7881196*7881196^(9/11) 4334944370000012 a001 3536736619241/29134601*12752043^(1/2) 4334944370000012 a001 86267571272/20633239*33385282^(2/3) 4334944370000012 a001 32951280099/20633239*33385282^(13/18) 4334944370000013 a001 20365011074/20633239*33385282^(3/4) 4334944370000013 a001 1144206275/1875749*33385282^(7/9) 4334944370000013 a001 182717648081/16692641*12752043^(11/17) 4334944370000013 a001 4807526976/20633239*33385282^(5/6) 4334944370000013 a001 6557470319842/87403803*12752043^(9/17) 4334944370000013 a001 1836311903/20633239*33385282^(8/9) 4334944370000013 a001 1134903170/20633239*33385282^(11/12) 4334944370000013 a001 701408733/20633239*33385282^(17/18) 4334944370000014 a001 10610209857723/54018521*12752043^(8/17) 4334944370000014 a001 2157408178150615/4976784 4334944370000014 a001 10610209857723/141422324*12752043^(9/17) 4334944370000014 a001 6557470319842/54018521*12752043^(1/2) 4334944370000014 a001 139583862445/33385282*12752043^(12/17) 4334944370000015 a001 2504730781961/87403803*12752043^(10/17) 4334944370000015 a001 6557470319842/228826127*12752043^(10/17) 4334944370000015 a001 4052739537881/54018521*12752043^(9/17) 4334944370000015 a001 10610209857723/370248451*12752043^(10/17) 4334944370000015 a001 4052739537881/141422324*12752043^(10/17) 4334944370000016 a001 53316291173/33385282*12752043^(13/17) 4334944370000016 a001 956722026041/87403803*12752043^(11/17) 4334944370000017 a001 2504730781961/228826127*12752043^(11/17) 4334944370000017 a001 1548008755920/54018521*12752043^(10/17) 4334944370000017 a001 3278735159921/299537289*12752043^(11/17) 4334944370000017 a001 10610209857723/969323029*12752043^(11/17) 4334944370000017 a001 4052739537881/370248451*12752043^(11/17) 4334944370000017 a001 387002188980/35355581*12752043^(11/17) 4334944370000018 a001 10182505537/16692641*12752043^(14/17) 4334944370000018 a001 365435296162/87403803*12752043^(12/17) 4334944370000018 a001 956722026041/228826127*12752043^(12/17) 4334944370000018 a001 591286729879/54018521*12752043^(11/17) 4334944370000018 a001 2504730781961/599074578*12752043^(12/17) 4334944370000018 a001 6557470319842/1568397607*12752043^(12/17) 4334944370000018 a001 10610209857723/2537720636*12752043^(12/17) 4334944370000018 a001 4052739537881/969323029*12752043^(12/17) 4334944370000018 a001 1548008755920/370248451*12752043^(12/17) 4334944370000019 a001 32951280099/7881196*7881196^(8/11) 4334944370000019 a001 591286729879/141422324*12752043^(12/17) 4334944370000019 a001 7778742049/33385282*12752043^(15/17) 4334944370000019 a001 139583862445/87403803*12752043^(13/17) 4334944370000020 a001 365435296162/228826127*12752043^(13/17) 4334944370000020 a001 225851433717/54018521*12752043^(12/17) 4334944370000020 a001 9227465/20633239*(1/2+1/2*5^(1/2))^43 4334944370000020 a001 956722026041/599074578*12752043^(13/17) 4334944370000020 a001 2504730781961/1568397607*12752043^(13/17) 4334944370000020 a001 6557470319842/4106118243*12752043^(13/17) 4334944370000020 a001 10610209857723/6643838879*12752043^(13/17) 4334944370000020 a001 4052739537881/2537720636*12752043^(13/17) 4334944370000020 a001 1548008755920/969323029*12752043^(13/17) 4334944370000020 a001 591286729879/370248451*12752043^(13/17) 4334944370000020 a001 225851433717/141422324*12752043^(13/17) 4334944370000021 a001 10610209857723/20633239*12752043^(7/17) 4334944370000021 a001 2971215073/33385282*12752043^(16/17) 4334944370000021 a001 53316291173/87403803*12752043^(14/17) 4334944370000021 a001 139583862445/228826127*12752043^(14/17) 4334944370000021 a001 86267571272/54018521*12752043^(13/17) 4334944370000021 a001 182717648081/299537289*12752043^(14/17) 4334944370000021 a001 956722026041/1568397607*12752043^(14/17) 4334944370000021 a001 2504730781961/4106118243*12752043^(14/17) 4334944370000021 a001 3278735159921/5374978561*12752043^(14/17) 4334944370000021 a001 10610209857723/17393796001*12752043^(14/17) 4334944370000021 a001 4052739537881/6643838879*12752043^(14/17) 4334944370000021 a001 1134903780/1860499*12752043^(14/17) 4334944370000021 a001 591286729879/969323029*12752043^(14/17) 4334944370000021 a001 225851433717/370248451*12752043^(14/17) 4334944370000022 a001 21566892818/35355581*12752043^(14/17) 4334944370000022 a001 4052739537881/20633239*12752043^(8/17) 4334944370000022 a001 2472169789339632/5702887 4334944370000022 a001 20365011074/87403803*12752043^(15/17) 4334944370000023 a001 21566892818/1970299*7881196^(2/3) 4334944370000023 a001 53316291173/228826127*12752043^(15/17) 4334944370000023 a001 32951280099/54018521*12752043^(14/17) 4334944370000023 a001 139583862445/599074578*12752043^(15/17) 4334944370000023 a001 2504730781961/20633239*12752043^(1/2) 4334944370000023 a001 365435296162/1568397607*12752043^(15/17) 4334944370000023 a001 956722026041/4106118243*12752043^(15/17) 4334944370000023 a001 2504730781961/10749957122*12752043^(15/17) 4334944370000023 a001 6557470319842/28143753123*12752043^(15/17) 4334944370000023 a001 10610209857723/45537549124*12752043^(15/17) 4334944370000023 a001 4052739537881/17393796001*12752043^(15/17) 4334944370000023 a001 1548008755920/6643838879*12752043^(15/17) 4334944370000023 a001 591286729879/2537720636*12752043^(15/17) 4334944370000023 a001 225851433717/969323029*12752043^(15/17) 4334944370000023 a001 86267571272/370248451*12752043^(15/17) 4334944370000023 a001 63246219/271444*12752043^(15/17) 4334944370000024 a001 140728068720/1875749*12752043^(9/17) 4334944370000024 a001 7778742049/87403803*12752043^(16/17) 4334944370000025 a001 20365011074/228826127*12752043^(16/17) 4334944370000025 a001 12586269025/54018521*12752043^(15/17) 4334944370000025 a001 53316291173/599074578*12752043^(16/17) 4334944370000025 a001 139583862445/1568397607*12752043^(16/17) 4334944370000025 a001 365435296162/4106118243*12752043^(16/17) 4334944370000025 a001 956722026041/10749957122*12752043^(16/17) 4334944370000025 a001 2504730781961/28143753123*12752043^(16/17) 4334944370000025 a001 6557470319842/73681302247*12752043^(16/17) 4334944370000025 a001 10610209857723/119218851371*12752043^(16/17) 4334944370000025 a001 4052739537881/45537549124*12752043^(16/17) 4334944370000025 a001 1548008755920/17393796001*12752043^(16/17) 4334944370000025 a001 591286729879/6643838879*12752043^(16/17) 4334944370000025 a001 225851433717/2537720636*12752043^(16/17) 4334944370000025 a001 86267571272/969323029*12752043^(16/17) 4334944370000025 a001 32951280099/370248451*12752043^(16/17) 4334944370000025 a001 12586269025/141422324*12752043^(16/17) 4334944370000025 a001 139583862445/7881196*7881196^(7/11) 4334944370000025 a001 591286729879/20633239*12752043^(10/17) 4334944370000026 a001 2472169789339634/5702887 4334944370000026 a001 4807526976/54018521*12752043^(16/17) 4334944370000027 a001 7787980473/711491*12752043^(11/17) 4334944370000028 a001 2472169789339635/5702887 4334944370000028 a001 86267571272/20633239*12752043^(12/17) 4334944370000030 a001 32951280099/20633239*12752043^(13/17) 4334944370000031 a001 591286729879/7881196*7881196^(6/11) 4334944370000032 a001 1144206275/1875749*12752043^(14/17) 4334944370000033 a001 4807526976/20633239*12752043^(15/17) 4334944370000035 a001 1836311903/20633239*12752043^(16/17) 4334944370000036 a001 2472169789339640/5702887 4334944370000038 a001 2504730781961/7881196*7881196^(5/11) 4334944370000043 a001 5702887/7881196*2537720636^(14/15) 4334944370000043 a001 5702887/7881196*17393796001^(6/7) 4334944370000043 a001 5702887/7881196*45537549124^(14/17) 4334944370000043 a001 3524578/12752043*312119004989^(4/5) 4334944370000043 a001 5702887/7881196*14662949395604^(2/3) 4334944370000043 a001 3524578/12752043*(1/2+1/2*5^(1/2))^44 4334944370000043 a001 5702887/7881196*(1/2+1/2*5^(1/2))^42 4334944370000043 a001 3524578/12752043*23725150497407^(11/16) 4334944370000043 a001 5702887/7881196*192900153618^(7/9) 4334944370000043 a001 3524578/12752043*73681302247^(11/13) 4334944370000043 a001 5702887/7881196*10749957122^(7/8) 4334944370000043 a001 3524578/12752043*10749957122^(11/12) 4334944370000043 a001 5702887/7881196*4106118243^(21/23) 4334944370000043 a001 3524578/12752043*4106118243^(22/23) 4334944370000043 a001 5702887/7881196*1568397607^(21/22) 4334944370000044 a001 10610209857723/7881196*7881196^(4/11) 4334944370000053 a001 6557470319842/12752043*4870847^(7/16) 4334944370000059 a001 800010949022452/1845493 4334944370000061 a001 1836311903/7881196*20633239^(6/7) 4334944370000061 a001 1201881744/1970299*20633239^(4/5) 4334944370000062 a001 10182505537/3940598*20633239^(5/7) 4334944370000063 a001 139583862445/7881196*20633239^(3/5) 4334944370000063 a001 225851433717/7881196*20633239^(4/7) 4334944370000064 a001 2504730781961/12752043*4870847^(1/2) 4334944370000065 a001 2504730781961/7881196*20633239^(3/7) 4334944370000065 a001 4052739537881/7881196*20633239^(2/5) 4334944370000065 a001 3732588/1970299*2537720636^(8/9) 4334944370000065 a001 3732588/1970299*312119004989^(8/11) 4334944370000065 a001 1762289/16692641*(1/2+1/2*5^(1/2))^46 4334944370000065 a001 3732588/1970299*(1/2+1/2*5^(1/2))^40 4334944370000065 a001 3732588/1970299*23725150497407^(5/8) 4334944370000065 a001 3732588/1970299*73681302247^(10/13) 4334944370000065 a001 3732588/1970299*28143753123^(4/5) 4334944370000065 a001 3732588/1970299*10749957122^(5/6) 4334944370000065 a001 1762289/16692641*10749957122^(23/24) 4334944370000065 a001 3732588/1970299*4106118243^(20/23) 4334944370000065 a001 3732588/1970299*1568397607^(10/11) 4334944370000065 a001 3732588/1970299*599074578^(20/21) 4334944370000068 a001 10472279279564194/24157817 4334944370000069 a001 3524578/87403803*45537549124^(16/17) 4334944370000069 a001 39088169/7881196*817138163596^(2/3) 4334944370000069 a001 3524578/87403803*14662949395604^(16/21) 4334944370000069 a001 39088169/7881196*(1/2+1/2*5^(1/2))^38 4334944370000069 a001 3524578/87403803*192900153618^(8/9) 4334944370000069 a001 3524578/87403803*73681302247^(12/13) 4334944370000069 a001 39088169/7881196*10749957122^(19/24) 4334944370000069 a001 39088169/7881196*4106118243^(19/23) 4334944370000069 a001 39088169/7881196*1568397607^(19/22) 4334944370000069 a001 39088169/7881196*599074578^(19/21) 4334944370000069 a001 39088169/7881196*228826127^(19/20) 4334944370000069 a001 102334155/7881196*141422324^(12/13) 4334944370000069 a001 13708391546790161/31622993 4334944370000069 a001 433494437/7881196*141422324^(11/13) 4334944370000069 a001 1836311903/7881196*141422324^(10/13) 4334944370000069 a001 7778742049/7881196*141422324^(9/13) 4334944370000069 a001 12586269025/7881196*141422324^(2/3) 4334944370000069 a001 32951280099/7881196*141422324^(8/13) 4334944370000069 a001 139583862445/7881196*141422324^(7/13) 4334944370000069 a001 591286729879/7881196*141422324^(6/13) 4334944370000069 a001 2504730781961/7881196*141422324^(5/13) 4334944370000069 a001 102334155/7881196*2537720636^(4/5) 4334944370000069 a001 102334155/7881196*45537549124^(12/17) 4334944370000069 a001 3524578/228826127*312119004989^(10/11) 4334944370000069 a001 102334155/7881196*14662949395604^(4/7) 4334944370000069 a001 102334155/7881196*(1/2+1/2*5^(1/2))^36 4334944370000069 a001 102334155/7881196*505019158607^(9/14) 4334944370000069 a001 102334155/7881196*192900153618^(2/3) 4334944370000069 a001 102334155/7881196*73681302247^(9/13) 4334944370000069 a001 102334155/7881196*10749957122^(3/4) 4334944370000069 a001 102334155/7881196*4106118243^(18/23) 4334944370000069 a001 102334155/7881196*1568397607^(9/11) 4334944370000069 a001 102334155/7881196*599074578^(6/7) 4334944370000069 a001 3278735159921/3940598*141422324^(1/3) 4334944370000069 a001 10610209857723/7881196*141422324^(4/13) 4334944370000069 a001 71778070001176772/165580141 4334944370000069 a001 66978574/1970299*45537549124^(2/3) 4334944370000069 a001 66978574/1970299*(1/2+1/2*5^(1/2))^34 4334944370000069 a001 1762289/299537289*23725150497407^(13/16) 4334944370000069 a001 1762289/299537289*505019158607^(13/14) 4334944370000069 a001 66978574/1970299*10749957122^(17/24) 4334944370000069 a001 66978574/1970299*4106118243^(17/23) 4334944370000069 a001 66978574/1970299*1568397607^(17/22) 4334944370000069 a001 102334155/7881196*228826127^(9/10) 4334944370000069 a001 187917426909949994/433494437 4334944370000069 a001 66978574/1970299*599074578^(17/21) 4334944370000069 a001 3524578/1568397607*14662949395604^(6/7) 4334944370000069 a001 3524667/39604*(1/2+1/2*5^(1/2))^32 4334944370000069 a001 3524667/39604*23725150497407^(1/2) 4334944370000069 a001 3524667/39604*73681302247^(8/13) 4334944370000069 a001 3524667/39604*10749957122^(2/3) 4334944370000069 a001 3524667/39604*4106118243^(16/23) 4334944370000069 a001 1836311903/7881196*2537720636^(2/3) 4334944370000069 a001 49197421072867321/113490317 4334944370000069 a001 3524667/39604*1568397607^(8/11) 4334944370000069 a001 7778742049/7881196*2537720636^(3/5) 4334944370000069 a001 10182505537/3940598*2537720636^(5/9) 4334944370000069 a001 32951280099/7881196*2537720636^(8/15) 4334944370000069 a001 139583862445/7881196*2537720636^(7/15) 4334944370000069 a001 225851433717/7881196*2537720636^(4/9) 4334944370000069 a001 591286729879/7881196*2537720636^(2/5) 4334944370000069 a001 1836311903/7881196*45537549124^(10/17) 4334944370000069 a001 1836311903/7881196*312119004989^(6/11) 4334944370000069 a001 3524578/4106118243*14662949395604^(8/9) 4334944370000069 a001 1836311903/7881196*14662949395604^(10/21) 4334944370000069 a001 1836311903/7881196*(1/2+1/2*5^(1/2))^30 4334944370000069 a001 1836311903/7881196*192900153618^(5/9) 4334944370000069 a001 1836311903/7881196*28143753123^(3/5) 4334944370000069 a001 1836311903/7881196*10749957122^(5/8) 4334944370000069 a001 2504730781961/7881196*2537720636^(1/3) 4334944370000069 a001 10610209857723/7881196*2537720636^(4/15) 4334944370000069 a001 1288005205276069636/2971215073 4334944370000069 a001 1836311903/7881196*4106118243^(15/23) 4334944370000069 a001 1201881744/1970299*17393796001^(4/7) 4334944370000069 a001 1201881744/1970299*14662949395604^(4/9) 4334944370000069 a001 1201881744/1970299*(1/2+1/2*5^(1/2))^28 4334944370000069 a001 1201881744/1970299*505019158607^(1/2) 4334944370000069 a001 1201881744/1970299*73681302247^(7/13) 4334944370000069 a001 1201881744/1970299*10749957122^(7/12) 4334944370000069 a001 3372041405099535698/7778742049 4334944370000069 a001 139583862445/7881196*17393796001^(3/7) 4334944370000069 a001 3524578/28143753123*14662949395604^(20/21) 4334944370000069 a001 12586269025/7881196*(1/2+1/2*5^(1/2))^26 4334944370000069 a001 12586269025/7881196*73681302247^(1/2) 4334944370000069 a001 4052739537881/7881196*17393796001^(2/7) 4334944370000069 a001 4414059505011268729/10182505537 4334944370000069 a001 32951280099/7881196*45537549124^(8/17) 4334944370000069 a001 139583862445/7881196*45537549124^(7/17) 4334944370000069 a001 32951280099/7881196*14662949395604^(8/21) 4334944370000069 a001 32951280099/7881196*(1/2+1/2*5^(1/2))^24 4334944370000069 a001 32951280099/7881196*192900153618^(4/9) 4334944370000069 a001 591286729879/7881196*45537549124^(6/17) 4334944370000069 a001 956722026041/7881196*45537549124^(1/3) 4334944370000069 a001 2504730781961/7881196*45537549124^(5/17) 4334944370000069 a001 10610209857723/7881196*45537549124^(4/17) 4334944370000069 a001 32951280099/7881196*73681302247^(6/13) 4334944370000069 a001 23112315624968076676/53316291173 4334944370000069 a001 21566892818/1970299*312119004989^(2/5) 4334944370000069 a001 21566892818/1970299*(1/2+1/2*5^(1/2))^22 4334944370000069 a001 225851433717/7881196*(1/2+1/2*5^(1/2))^20 4334944370000069 a001 225851433717/7881196*23725150497407^(5/16) 4334944370000069 a001 2504730781961/7881196*312119004989^(3/11) 4334944370000069 a001 591286729879/7881196*(1/2+1/2*5^(1/2))^18 4334944370000069 a001 10610209857723/7881196*817138163596^(4/19) 4334944370000069 a001 387002188980/1970299*(1/2+1/2*5^(1/2))^16 4334944370000069 a001 4052739537881/7881196*(1/2+1/2*5^(1/2))^14 4334944370000069 a001 10610209857723/7881196*14662949395604^(4/21) 4334944370000069 a001 10610209857723/7881196*(1/2+1/2*5^(1/2))^12 4334944370000069 a001 3524578*(1/2+1/2*5^(1/2))^10 4334944370000069 a001 3278735159921/3940598*(1/2+1/2*5^(1/2))^13 4334944370000069 a001 2504730781961/7881196*(1/2+1/2*5^(1/2))^15 4334944370000069 a001 10610209857723/7881196*192900153618^(2/9) 4334944370000069 a001 139583862445/7881196*14662949395604^(1/3) 4334944370000069 a001 139583862445/7881196*(1/2+1/2*5^(1/2))^21 4334944370000069 a001 139583862445/7881196*192900153618^(7/18) 4334944370000069 a001 18698256119956807947/43133785636 4334944370000069 a001 10610209857723/7881196*73681302247^(3/13) 4334944370000069 a001 3278735159921/3940598*73681302247^(1/4) 4334944370000069 a001 387002188980/1970299*73681302247^(4/13) 4334944370000069 a001 225851433717/7881196*73681302247^(5/13) 4334944370000069 a001 53316291173/7881196*(1/2+1/2*5^(1/2))^23 4334944370000069 a001 14284196614945539218/32951280099 4334944370000069 a001 10182505537/3940598*312119004989^(5/11) 4334944370000069 a001 10182505537/3940598*(1/2+1/2*5^(1/2))^25 4334944370000069 a001 10182505537/3940598*3461452808002^(5/12) 4334944370000069 a001 225851433717/7881196*28143753123^(2/5) 4334944370000069 a001 10182505537/3940598*28143753123^(1/2) 4334944370000069 a001 99201410998600032/228841255 4334944370000069 a001 10610209857723/7881196*10749957122^(1/4) 4334944370000069 a001 4052739537881/7881196*10749957122^(7/24) 4334944370000069 a001 2504730781961/7881196*10749957122^(5/16) 4334944370000069 a001 387002188980/1970299*10749957122^(1/3) 4334944370000069 a001 7778742049/7881196*45537549124^(9/17) 4334944370000069 a001 591286729879/7881196*10749957122^(3/8) 4334944370000069 a001 7778742049/7881196*817138163596^(9/19) 4334944370000069 a001 7778742049/7881196*14662949395604^(3/7) 4334944370000069 a001 7778742049/7881196*(1/2+1/2*5^(1/2))^27 4334944370000069 a001 7778742049/7881196*192900153618^(1/2) 4334944370000069 a001 12586269025/7881196*10749957122^(13/24) 4334944370000069 a001 225851433717/7881196*10749957122^(5/12) 4334944370000069 a001 139583862445/7881196*10749957122^(7/16) 4334944370000069 a001 21566892818/1970299*10749957122^(11/24) 4334944370000069 a001 32951280099/7881196*10749957122^(1/2) 4334944370000069 a001 7778742049/7881196*10749957122^(9/16) 4334944370000069 a001 1042018099911733031/2403763488 4334944370000069 a001 10610209857723/7881196*4106118243^(6/23) 4334944370000069 a001 4052739537881/7881196*4106118243^(7/23) 4334944370000069 a001 387002188980/1970299*4106118243^(8/23) 4334944370000069 a001 3524578/6643838879*14662949395604^(19/21) 4334944370000069 a001 2971215073/7881196*(1/2+1/2*5^(1/2))^29 4334944370000069 a001 2971215073/7881196*1322157322203^(1/2) 4334944370000069 a001 591286729879/7881196*4106118243^(9/23) 4334944370000069 a001 225851433717/7881196*4106118243^(10/23) 4334944370000069 a001 1201881744/1970299*4106118243^(14/23) 4334944370000069 a001 21566892818/1970299*4106118243^(11/23) 4334944370000069 a001 53316291173/7881196*4106118243^(1/2) 4334944370000069 a001 32951280099/7881196*4106118243^(12/23) 4334944370000069 a001 12586269025/7881196*4106118243^(13/23) 4334944370000069 a001 796030994547396426/1836311903 4334944370000069 a001 10610209857723/7881196*1568397607^(3/11) 4334944370000069 a001 4052739537881/7881196*1568397607^(7/22) 4334944370000069 a001 387002188980/1970299*1568397607^(4/11) 4334944370000069 a001 567451585/3940598*(1/2+1/2*5^(1/2))^31 4334944370000069 a001 1762289/1268860318*3461452808002^(11/12) 4334944370000069 a001 591286729879/7881196*1568397607^(9/22) 4334944370000069 a001 225851433717/7881196*1568397607^(5/11) 4334944370000069 a001 21566892818/1970299*1568397607^(1/2) 4334944370000069 a001 1836311903/7881196*1568397607^(15/22) 4334944370000069 a001 32951280099/7881196*1568397607^(6/11) 4334944370000069 a001 12586269025/7881196*1568397607^(13/22) 4334944370000069 a001 1201881744/1970299*1568397607^(7/11) 4334944370000069 a001 3416368357513744/7880997 4334944370000069 a001 10610209857723/7881196*599074578^(2/7) 4334944370000069 a001 4052739537881/7881196*599074578^(1/3) 4334944370000069 a001 433494437/7881196*2537720636^(11/15) 4334944370000069 a001 2504730781961/7881196*599074578^(5/14) 4334944370000069 a001 387002188980/1970299*599074578^(8/21) 4334944370000069 a001 433494437/7881196*45537549124^(11/17) 4334944370000069 a001 433494437/7881196*312119004989^(3/5) 4334944370000069 a001 433494437/7881196*817138163596^(11/19) 4334944370000069 a001 433494437/7881196*14662949395604^(11/21) 4334944370000069 a001 433494437/7881196*(1/2+1/2*5^(1/2))^33 4334944370000069 a001 433494437/7881196*192900153618^(11/18) 4334944370000069 a001 433494437/7881196*10749957122^(11/16) 4334944370000069 a001 591286729879/7881196*599074578^(3/7) 4334944370000069 a001 225851433717/7881196*599074578^(10/21) 4334944370000069 a001 433494437/7881196*1568397607^(3/4) 4334944370000069 a001 139583862445/7881196*599074578^(1/2) 4334944370000069 a001 21566892818/1970299*599074578^(11/21) 4334944370000069 a001 32951280099/7881196*599074578^(4/7) 4334944370000069 a001 3524667/39604*599074578^(16/21) 4334944370000069 a001 12586269025/7881196*599074578^(13/21) 4334944370000069 a001 7778742049/7881196*599074578^(9/14) 4334944370000069 a001 1201881744/1970299*599074578^(2/3) 4334944370000069 a001 1836311903/7881196*599074578^(5/7) 4334944370000069 a001 58069678454386611/133957148 4334944370000069 a001 433494437/7881196*599074578^(11/14) 4334944370000069 a001 10610209857723/7881196*228826127^(3/10) 4334944370000069 a001 4052739537881/7881196*228826127^(7/20) 4334944370000069 a001 2504730781961/7881196*228826127^(3/8) 4334944370000069 a001 165580141/7881196*2537720636^(7/9) 4334944370000069 a001 165580141/7881196*17393796001^(5/7) 4334944370000069 a001 165580141/7881196*312119004989^(7/11) 4334944370000069 a001 3524578/370248451*817138163596^(17/19) 4334944370000069 a001 165580141/7881196*14662949395604^(5/9) 4334944370000069 a001 165580141/7881196*(1/2+1/2*5^(1/2))^35 4334944370000069 a001 165580141/7881196*505019158607^(5/8) 4334944370000069 a001 3524578/370248451*192900153618^(17/18) 4334944370000069 a001 165580141/7881196*28143753123^(7/10) 4334944370000069 a001 387002188980/1970299*228826127^(2/5) 4334944370000069 a001 591286729879/7881196*228826127^(9/20) 4334944370000069 a001 225851433717/7881196*228826127^(1/2) 4334944370000069 a001 165580141/7881196*599074578^(5/6) 4334944370000069 a001 21566892818/1970299*228826127^(11/20) 4334944370000069 a001 32951280099/7881196*228826127^(3/5) 4334944370000069 a001 10182505537/3940598*228826127^(5/8) 4334944370000069 a001 12586269025/7881196*228826127^(13/20) 4334944370000069 a001 1201881744/1970299*228826127^(7/10) 4334944370000069 a001 66978574/1970299*228826127^(17/20) 4334944370000069 a001 1836311903/7881196*228826127^(3/4) 4334944370000069 a001 3524667/39604*228826127^(4/5) 4334944370000069 a001 806568852865390/1860621 4334944370000069 a001 165580141/7881196*228826127^(7/8) 4334944370000069 a001 10610209857723/7881196*87403803^(6/19) 4334944370000069 a001 4052739537881/7881196*87403803^(7/19) 4334944370000070 a001 1762289/70711162*14662949395604^(7/9) 4334944370000070 a001 31622993/3940598*(1/2+1/2*5^(1/2))^37 4334944370000070 a001 1762289/70711162*505019158607^(7/8) 4334944370000070 a001 387002188980/1970299*87403803^(8/19) 4334944370000070 a001 591286729879/7881196*87403803^(9/19) 4334944370000070 a001 182717648081/3940598*87403803^(1/2) 4334944370000070 a001 225851433717/7881196*87403803^(10/19) 4334944370000070 a001 21566892818/1970299*87403803^(11/19) 4334944370000070 a001 32951280099/7881196*87403803^(12/19) 4334944370000070 a001 12586269025/7881196*87403803^(13/19) 4334944370000070 a001 1201881744/1970299*87403803^(14/19) 4334944370000070 a001 1836311903/7881196*87403803^(15/19) 4334944370000070 a001 102334155/7881196*87403803^(18/19) 4334944370000070 a001 3524667/39604*87403803^(16/19) 4334944370000070 a001 66978574/1970299*87403803^(17/19) 4334944370000070 a001 16944503814016128/39088169 4334944370000071 a001 10610209857723/7881196*33385282^(1/3) 4334944370000071 a001 24157817/7881196*2537720636^(13/15) 4334944370000071 a001 24157817/7881196*45537549124^(13/17) 4334944370000071 a001 24157817/7881196*14662949395604^(13/21) 4334944370000071 a001 24157817/7881196*(1/2+1/2*5^(1/2))^39 4334944370000071 a001 24157817/7881196*192900153618^(13/18) 4334944370000071 a001 24157817/7881196*73681302247^(3/4) 4334944370000071 a001 24157817/7881196*10749957122^(13/16) 4334944370000071 a001 24157817/7881196*599074578^(13/14) 4334944370000071 a001 4052739537881/7881196*33385282^(7/18) 4334944370000071 a001 2504730781961/7881196*33385282^(5/12) 4334944370000071 a001 387002188980/1970299*33385282^(4/9) 4334944370000071 a001 591286729879/7881196*33385282^(1/2) 4334944370000071 a001 225851433717/7881196*33385282^(5/9) 4334944370000072 a001 139583862445/7881196*33385282^(7/12) 4334944370000072 a001 21566892818/1970299*33385282^(11/18) 4334944370000072 a001 32951280099/7881196*33385282^(2/3) 4334944370000072 a001 12586269025/7881196*33385282^(13/18) 4334944370000072 a001 7778742049/7881196*33385282^(3/4) 4334944370000072 a001 1201881744/1970299*33385282^(7/9) 4334944370000073 a001 1836311903/7881196*33385282^(5/6) 4334944370000073 a001 3524667/39604*33385282^(8/9) 4334944370000073 a001 433494437/7881196*33385282^(11/12) 4334944370000073 a001 66978574/1970299*33385282^(17/18) 4334944370000073 a001 3236112267225967/7465176 4334944370000076 a001 956722026041/12752043*4870847^(9/16) 4334944370000079 a001 10610209857723/7881196*12752043^(6/17) 4334944370000079 a001 3524578/20633239*45537549124^(15/17) 4334944370000079 a001 3524578/20633239*312119004989^(9/11) 4334944370000079 a001 3524578/20633239*14662949395604^(5/7) 4334944370000079 a001 3524578/20633239*(1/2+1/2*5^(1/2))^45 4334944370000079 a001 9227465/7881196*(1/2+1/2*5^(1/2))^41 4334944370000079 a001 3524578/20633239*192900153618^(5/6) 4334944370000079 a001 3524578/20633239*28143753123^(9/10) 4334944370000079 a001 3524578/20633239*10749957122^(15/16) 4334944370000080 a001 4052739537881/7881196*12752043^(7/17) 4334944370000082 a001 387002188980/1970299*12752043^(8/17) 4334944370000083 a001 956722026041/7881196*12752043^(1/2) 4334944370000083 a001 591286729879/7881196*12752043^(9/17) 4334944370000085 a001 225851433717/7881196*12752043^(10/17) 4334944370000087 a001 21566892818/1970299*12752043^(11/17) 4334944370000087 a001 3278735159921/16692641*4870847^(1/2) 4334944370000087 a001 365435296162/12752043*4870847^(5/8) 4334944370000088 a001 32951280099/7881196*12752043^(12/17) 4334944370000090 a001 10610209857723/20633239*4870847^(7/16) 4334944370000090 a001 12586269025/7881196*12752043^(13/17) 4334944370000091 a001 1201881744/1970299*12752043^(14/17) 4334944370000092 a001 10610209857723/54018521*4870847^(1/2) 4334944370000093 a001 1836311903/7881196*12752043^(15/17) 4334944370000094 a001 3524667/39604*12752043^(16/17) 4334944370000096 a001 2472169789339674/5702887 4334944370000098 a001 2504730781961/33385282*4870847^(9/16) 4334944370000098 a001 139583862445/12752043*4870847^(11/16) 4334944370000101 a001 4052739537881/20633239*4870847^(1/2) 4334944370000102 a001 6557470319842/87403803*4870847^(9/16) 4334944370000102 a001 10610209857723/141422324*4870847^(9/16) 4334944370000104 a001 4052739537881/54018521*4870847^(9/16) 4334944370000110 a001 956722026041/33385282*4870847^(5/8) 4334944370000110 a001 53316291173/12752043*4870847^(3/4) 4334944370000112 a001 140728068720/1875749*4870847^(9/16) 4334944370000113 a001 2504730781961/87403803*4870847^(5/8) 4334944370000114 a001 6557470319842/228826127*4870847^(5/8) 4334944370000114 a001 10610209857723/370248451*4870847^(5/8) 4334944370000114 a001 4052739537881/141422324*4870847^(5/8) 4334944370000115 a001 1548008755920/54018521*4870847^(5/8) 4334944370000121 a001 182717648081/16692641*4870847^(11/16) 4334944370000121 a001 20365011074/12752043*4870847^(13/16) 4334944370000124 a001 591286729879/20633239*4870847^(5/8) 4334944370000125 a001 956722026041/87403803*4870847^(11/16) 4334944370000125 a001 2504730781961/228826127*4870847^(11/16) 4334944370000125 a001 3278735159921/299537289*4870847^(11/16) 4334944370000125 a001 10610209857723/969323029*4870847^(11/16) 4334944370000125 a001 4052739537881/370248451*4870847^(11/16) 4334944370000125 a001 387002188980/35355581*4870847^(11/16) 4334944370000127 a001 591286729879/54018521*4870847^(11/16) 4334944370000133 a001 139583862445/33385282*4870847^(3/4) 4334944370000133 a001 7778742049/12752043*4870847^(7/8) 4334944370000135 a001 7787980473/711491*4870847^(11/16) 4334944370000136 a001 365435296162/87403803*4870847^(3/4) 4334944370000136 a001 956722026041/228826127*4870847^(3/4) 4334944370000137 a001 2504730781961/599074578*4870847^(3/4) 4334944370000137 a001 6557470319842/1568397607*4870847^(3/4) 4334944370000137 a001 10610209857723/2537720636*4870847^(3/4) 4334944370000137 a001 4052739537881/969323029*4870847^(3/4) 4334944370000137 a001 1548008755920/370248451*4870847^(3/4) 4334944370000137 a001 591286729879/141422324*4870847^(3/4) 4334944370000138 a001 10610209857723/7881196*4870847^(3/8) 4334944370000138 a001 225851433717/54018521*4870847^(3/4) 4334944370000139 a001 1762289/3940598*(1/2+1/2*5^(1/2))^43 4334944370000144 a001 53316291173/33385282*4870847^(13/16) 4334944370000144 a001 2971215073/12752043*4870847^(15/16) 4334944370000147 a001 86267571272/20633239*4870847^(3/4) 4334944370000147 a001 139583862445/87403803*4870847^(13/16) 4334944370000148 a001 365435296162/228826127*4870847^(13/16) 4334944370000148 a001 956722026041/599074578*4870847^(13/16) 4334944370000148 a001 2504730781961/1568397607*4870847^(13/16) 4334944370000148 a001 6557470319842/4106118243*4870847^(13/16) 4334944370000148 a001 10610209857723/6643838879*4870847^(13/16) 4334944370000148 a001 4052739537881/2537720636*4870847^(13/16) 4334944370000148 a001 1548008755920/969323029*4870847^(13/16) 4334944370000148 a001 591286729879/370248451*4870847^(13/16) 4334944370000148 a001 225851433717/141422324*4870847^(13/16) 4334944370000149 a001 4052739537881/7881196*4870847^(7/16) 4334944370000149 a001 86267571272/54018521*4870847^(13/16) 4334944370000155 a001 10182505537/16692641*4870847^(7/8) 4334944370000156 a001 944284833567067/2178309 4334944370000158 a001 32951280099/20633239*4870847^(13/16) 4334944370000159 a001 53316291173/87403803*4870847^(7/8) 4334944370000159 a001 139583862445/228826127*4870847^(7/8) 4334944370000159 a001 182717648081/299537289*4870847^(7/8) 4334944370000159 a001 956722026041/1568397607*4870847^(7/8) 4334944370000159 a001 2504730781961/4106118243*4870847^(7/8) 4334944370000159 a001 3278735159921/5374978561*4870847^(7/8) 4334944370000159 a001 10610209857723/17393796001*4870847^(7/8) 4334944370000159 a001 4052739537881/6643838879*4870847^(7/8) 4334944370000159 a001 1134903780/1860499*4870847^(7/8) 4334944370000159 a001 591286729879/969323029*4870847^(7/8) 4334944370000159 a001 225851433717/370248451*4870847^(7/8) 4334944370000160 a001 21566892818/35355581*4870847^(7/8) 4334944370000161 a001 387002188980/1970299*4870847^(1/2) 4334944370000161 a001 32951280099/54018521*4870847^(7/8) 4334944370000167 a001 7778742049/33385282*4870847^(15/16) 4334944370000170 a001 1144206275/1875749*4870847^(7/8) 4334944370000170 a001 20365011074/87403803*4870847^(15/16) 4334944370000171 a001 53316291173/228826127*4870847^(15/16) 4334944370000171 a001 139583862445/599074578*4870847^(15/16) 4334944370000171 a001 365435296162/1568397607*4870847^(15/16) 4334944370000171 a001 956722026041/4106118243*4870847^(15/16) 4334944370000171 a001 2504730781961/10749957122*4870847^(15/16) 4334944370000171 a001 6557470319842/28143753123*4870847^(15/16) 4334944370000171 a001 10610209857723/45537549124*4870847^(15/16) 4334944370000171 a001 4052739537881/17393796001*4870847^(15/16) 4334944370000171 a001 1548008755920/6643838879*4870847^(15/16) 4334944370000171 a001 591286729879/2537720636*4870847^(15/16) 4334944370000171 a001 225851433717/969323029*4870847^(15/16) 4334944370000171 a001 86267571272/370248451*4870847^(15/16) 4334944370000171 a001 63246219/271444*4870847^(15/16) 4334944370000172 a001 591286729879/7881196*4870847^(9/16) 4334944370000172 a001 12586269025/54018521*4870847^(15/16) 4334944370000179 a001 314761611189024/726103 4334944370000181 a001 4807526976/20633239*4870847^(15/16) 4334944370000183 a001 944284833567073/2178309 4334944370000183 a001 225851433717/7881196*4870847^(5/8) 4334944370000192 a001 44965944455575/103729 4334944370000195 a001 21566892818/1970299*4870847^(11/16) 4334944370000206 a001 32951280099/7881196*4870847^(3/4) 4334944370000218 a001 12586269025/7881196*4870847^(13/16) 4334944370000229 a001 1201881744/1970299*4870847^(7/8) 4334944370000241 a001 1836311903/7881196*4870847^(15/16) 4334944370000252 a001 944284833567088/2178309 4334944370000295 a001 2178309/3010349*2537720636^(14/15) 4334944370000295 a001 2178309/3010349*17393796001^(6/7) 4334944370000295 a001 2178309/3010349*45537549124^(14/17) 4334944370000295 a001 1346269/4870847*312119004989^(4/5) 4334944370000295 a001 2178309/3010349*817138163596^(14/19) 4334944370000295 a001 1346269/4870847*(1/2+1/2*5^(1/2))^44 4334944370000295 a001 1346269/4870847*23725150497407^(11/16) 4334944370000295 a001 2178309/3010349*14662949395604^(2/3) 4334944370000295 a001 2178309/3010349*(1/2+1/2*5^(1/2))^42 4334944370000295 a001 2178309/3010349*192900153618^(7/9) 4334944370000295 a001 1346269/4870847*73681302247^(11/13) 4334944370000295 a001 2178309/3010349*10749957122^(7/8) 4334944370000295 a001 1346269/4870847*10749957122^(11/12) 4334944370000295 a001 2178309/3010349*4106118243^(21/23) 4334944370000295 a001 1346269/4870847*4106118243^(22/23) 4334944370000295 a001 2178309/3010349*1568397607^(21/22) 4334944370000318 a001 6557470319842/4870847*1860498^(2/5) 4334944370000401 a001 2504730781961/4870847*1860498^(7/15) 4334944370000408 a001 763942477886365/1762289 4334944370000414 a001 701408733/3010349*7881196^(10/11) 4334944370000421 a001 2971215073/3010349*7881196^(9/11) 4334944370000427 a001 12586269025/3010349*7881196^(8/11) 4334944370000431 a001 32951280099/3010349*7881196^(2/3) 4334944370000433 a001 53316291173/3010349*7881196^(7/11) 4334944370000440 a001 225851433717/3010349*7881196^(6/11) 4334944370000443 a001 1548008755920/4870847*1860498^(1/2) 4334944370000446 a001 956722026041/3010349*7881196^(5/11) 4334944370000451 a001 5702887/3010349*2537720636^(8/9) 4334944370000451 a001 5702887/3010349*312119004989^(8/11) 4334944370000451 a001 1346269/12752043*(1/2+1/2*5^(1/2))^46 4334944370000451 a001 5702887/3010349*(1/2+1/2*5^(1/2))^40 4334944370000451 a001 5702887/3010349*23725150497407^(5/8) 4334944370000451 a001 5702887/3010349*73681302247^(10/13) 4334944370000451 a001 5702887/3010349*28143753123^(4/5) 4334944370000451 a001 5702887/3010349*10749957122^(5/6) 4334944370000451 a001 1346269/12752043*10749957122^(23/24) 4334944370000451 a001 5702887/3010349*4106118243^(20/23) 4334944370000451 a001 5702887/3010349*1568397607^(10/11) 4334944370000451 a001 5702887/3010349*599074578^(20/21) 4334944370000452 a001 1346269*7881196^(4/11) 4334944370000455 a001 6557470319842/3010349*7881196^(1/3) 4334944370000468 a001 4000054745112637/9227465 4334944370000469 a001 701408733/3010349*20633239^(6/7) 4334944370000470 a001 1836311903/3010349*20633239^(4/5) 4334944370000471 a001 7778742049/3010349*20633239^(5/7) 4334944370000472 a001 53316291173/3010349*20633239^(3/5) 4334944370000472 a001 86267571272/3010349*20633239^(4/7) 4334944370000473 a001 956722026041/3010349*20633239^(3/7) 4334944370000474 a001 1548008755920/3010349*20633239^(2/5) 4334944370000474 a001 1346269/33385282*45537549124^(16/17) 4334944370000474 a001 14930352/3010349*817138163596^(2/3) 4334944370000474 a001 1346269/33385282*14662949395604^(16/21) 4334944370000474 a001 1346269/33385282*(1/2+1/2*5^(1/2))^48 4334944370000474 a001 14930352/3010349*(1/2+1/2*5^(1/2))^38 4334944370000474 a001 1346269/33385282*192900153618^(8/9) 4334944370000474 a001 1346269/33385282*73681302247^(12/13) 4334944370000474 a001 14930352/3010349*10749957122^(19/24) 4334944370000474 a001 14930352/3010349*4106118243^(19/23) 4334944370000474 a001 14930352/3010349*1568397607^(19/22) 4334944370000474 a001 14930352/3010349*599074578^(19/21) 4334944370000474 a001 14930352/3010349*228826127^(19/20) 4334944370000475 a001 10610209857723/3010349*20633239^(2/7) 4334944370000476 a001 10472279279565181/24157817 4334944370000477 a001 39088169/3010349*141422324^(12/13) 4334944370000477 a001 39088169/3010349*2537720636^(4/5) 4334944370000477 a001 39088169/3010349*45537549124^(12/17) 4334944370000477 a001 1346269/87403803*312119004989^(10/11) 4334944370000477 a001 39088169/3010349*14662949395604^(4/7) 4334944370000477 a001 39088169/3010349*(1/2+1/2*5^(1/2))^36 4334944370000477 a001 1346269/87403803*3461452808002^(5/6) 4334944370000477 a001 39088169/3010349*505019158607^(9/14) 4334944370000477 a001 39088169/3010349*192900153618^(2/3) 4334944370000477 a001 39088169/3010349*73681302247^(9/13) 4334944370000477 a001 39088169/3010349*10749957122^(3/4) 4334944370000477 a001 39088169/3010349*4106118243^(18/23) 4334944370000477 a001 39088169/3010349*1568397607^(9/11) 4334944370000477 a001 39088169/3010349*599074578^(6/7) 4334944370000477 a001 39088169/3010349*228826127^(9/10) 4334944370000478 a001 13708391546791453/31622993 4334944370000478 a001 701408733/3010349*141422324^(10/13) 4334944370000478 a001 165580141/3010349*141422324^(11/13) 4334944370000478 a001 2971215073/3010349*141422324^(9/13) 4334944370000478 a001 4807526976/3010349*141422324^(2/3) 4334944370000478 a001 12586269025/3010349*141422324^(8/13) 4334944370000478 a001 53316291173/3010349*141422324^(7/13) 4334944370000478 a001 225851433717/3010349*141422324^(6/13) 4334944370000478 a001 956722026041/3010349*141422324^(5/13) 4334944370000478 a001 102334155/3010349*45537549124^(2/3) 4334944370000478 a001 1346269/228826127*23725150497407^(13/16) 4334944370000478 a001 102334155/3010349*(1/2+1/2*5^(1/2))^34 4334944370000478 a001 1346269/228826127*505019158607^(13/14) 4334944370000478 a001 102334155/3010349*10749957122^(17/24) 4334944370000478 a001 102334155/3010349*4106118243^(17/23) 4334944370000478 a001 102334155/3010349*1568397607^(17/22) 4334944370000478 a001 102334155/3010349*599074578^(17/21) 4334944370000478 a001 2504730781961/3010349*141422324^(1/3) 4334944370000478 a001 1346269*141422324^(4/13) 4334944370000478 a001 71778070001183537/165580141 4334944370000478 a001 39088169/3010349*87403803^(18/19) 4334944370000478 a001 102334155/3010349*228826127^(17/20) 4334944370000478 a001 1346269/599074578*14662949395604^(6/7) 4334944370000478 a001 267914296/3010349*(1/2+1/2*5^(1/2))^32 4334944370000478 a001 267914296/3010349*505019158607^(4/7) 4334944370000478 a001 267914296/3010349*73681302247^(8/13) 4334944370000478 a001 267914296/3010349*10749957122^(2/3) 4334944370000478 a001 267914296/3010349*4106118243^(16/23) 4334944370000478 a001 267914296/3010349*1568397607^(8/11) 4334944370000478 a001 187917426909967705/433494437 4334944370000478 a001 267914296/3010349*599074578^(16/21) 4334944370000478 a001 701408733/3010349*2537720636^(2/3) 4334944370000478 a001 701408733/3010349*45537549124^(10/17) 4334944370000478 a001 701408733/3010349*312119004989^(6/11) 4334944370000478 a001 1346269/1568397607*14662949395604^(8/9) 4334944370000478 a001 701408733/3010349*(1/2+1/2*5^(1/2))^30 4334944370000478 a001 701408733/3010349*192900153618^(5/9) 4334944370000478 a001 701408733/3010349*28143753123^(3/5) 4334944370000478 a001 701408733/3010349*10749957122^(5/8) 4334944370000478 a001 701408733/3010349*4106118243^(15/23) 4334944370000478 a001 245987105364359789/567451585 4334944370000478 a001 701408733/3010349*1568397607^(15/22) 4334944370000478 a001 12586269025/3010349*2537720636^(8/15) 4334944370000478 a001 7778742049/3010349*2537720636^(5/9) 4334944370000478 a001 53316291173/3010349*2537720636^(7/15) 4334944370000478 a001 2971215073/3010349*2537720636^(3/5) 4334944370000478 a001 86267571272/3010349*2537720636^(4/9) 4334944370000478 a001 225851433717/3010349*2537720636^(2/5) 4334944370000478 a001 1836311903/3010349*17393796001^(4/7) 4334944370000478 a001 1836311903/3010349*14662949395604^(4/9) 4334944370000478 a001 1836311903/3010349*(1/2+1/2*5^(1/2))^28 4334944370000478 a001 1836311903/3010349*73681302247^(7/13) 4334944370000478 a001 1836311903/3010349*10749957122^(7/12) 4334944370000478 a001 956722026041/3010349*2537720636^(1/3) 4334944370000478 a001 1346269*2537720636^(4/15) 4334944370000478 a001 10610209857723/3010349*2537720636^(2/9) 4334944370000478 a001 1836311903/3010349*4106118243^(14/23) 4334944370000478 a001 1288005205276191029/2971215073 4334944370000478 a001 1346269/10749957122*14662949395604^(20/21) 4334944370000478 a001 4807526976/3010349*(1/2+1/2*5^(1/2))^26 4334944370000478 a001 4807526976/3010349*73681302247^(1/2) 4334944370000478 a001 4807526976/3010349*10749957122^(13/24) 4334944370000478 a001 3372041405099853509/7778742049 4334944370000478 a001 12586269025/3010349*45537549124^(8/17) 4334944370000478 a001 53316291173/3010349*17393796001^(3/7) 4334944370000478 a001 12586269025/3010349*14662949395604^(8/21) 4334944370000478 a001 12586269025/3010349*(1/2+1/2*5^(1/2))^24 4334944370000478 a001 12586269025/3010349*192900153618^(4/9) 4334944370000478 a001 12586269025/3010349*73681302247^(6/13) 4334944370000478 a001 1548008755920/3010349*17393796001^(2/7) 4334944370000478 a001 4414059505011684749/10182505537 4334944370000478 a001 32951280099/3010349*312119004989^(2/5) 4334944370000478 a001 32951280099/3010349*(1/2+1/2*5^(1/2))^22 4334944370000478 a001 225851433717/3010349*45537549124^(6/17) 4334944370000478 a001 365435296162/3010349*45537549124^(1/3) 4334944370000478 a001 956722026041/3010349*45537549124^(5/17) 4334944370000478 a001 53316291173/3010349*45537549124^(7/17) 4334944370000478 a001 1346269*45537549124^(4/17) 4334944370000478 a001 86267571272/3010349*(1/2+1/2*5^(1/2))^20 4334944370000478 a001 86267571272/3010349*23725150497407^(5/16) 4334944370000478 a001 86267571272/3010349*505019158607^(5/14) 4334944370000478 a001 225851433717/3010349*14662949395604^(2/7) 4334944370000478 a001 225851433717/3010349*(1/2+1/2*5^(1/2))^18 4334944370000478 a001 10610209857723/3010349*312119004989^(2/11) 4334944370000478 a001 1548008755920/3010349*14662949395604^(2/9) 4334944370000478 a001 1548008755920/3010349*(1/2+1/2*5^(1/2))^14 4334944370000478 a001 1346269*14662949395604^(4/21) 4334944370000478 a001 1346269*(1/2+1/2*5^(1/2))^12 4334944370000478 a001 10610209857723/3010349*(1/2+1/2*5^(1/2))^10 4334944370000478 a001 1346269*192900153618^(2/9) 4334944370000478 a001 139583862445/3010349*817138163596^(1/3) 4334944370000478 a001 139583862445/3010349*(1/2+1/2*5^(1/2))^19 4334944370000478 a001 1346269*73681302247^(3/13) 4334944370000478 a001 2504730781961/3010349*73681302247^(1/4) 4334944370000478 a001 591286729879/3010349*73681302247^(4/13) 4334944370000478 a001 53316291173/3010349*14662949395604^(1/3) 4334944370000478 a001 53316291173/3010349*(1/2+1/2*5^(1/2))^21 4334944370000478 a001 53316291173/3010349*192900153618^(7/18) 4334944370000478 a001 4761398871648961829/10983760033 4334944370000478 a001 10610209857723/3010349*28143753123^(1/5) 4334944370000478 a001 956722026041/3010349*28143753123^(3/10) 4334944370000478 a001 86267571272/3010349*28143753123^(2/5) 4334944370000478 a001 20365011074/3010349*(1/2+1/2*5^(1/2))^23 4334944370000478 a001 5456077604923515989/12586269025 4334944370000478 a001 10610209857723/3010349*10749957122^(5/24) 4334944370000478 a001 1346269*10749957122^(1/4) 4334944370000478 a001 1548008755920/3010349*10749957122^(7/24) 4334944370000478 a001 956722026041/3010349*10749957122^(5/16) 4334944370000478 a001 591286729879/3010349*10749957122^(1/3) 4334944370000478 a001 12586269025/3010349*10749957122^(1/2) 4334944370000478 a001 225851433717/3010349*10749957122^(3/8) 4334944370000478 a001 7778742049/3010349*312119004989^(5/11) 4334944370000478 a001 7778742049/3010349*(1/2+1/2*5^(1/2))^25 4334944370000478 a001 7778742049/3010349*3461452808002^(5/12) 4334944370000478 a001 86267571272/3010349*10749957122^(5/12) 4334944370000478 a001 32951280099/3010349*10749957122^(11/24) 4334944370000478 a001 53316291173/3010349*10749957122^(7/16) 4334944370000478 a001 7778742049/3010349*28143753123^(1/2) 4334944370000478 a001 14472473609886545/33385604 4334944370000478 a001 10610209857723/3010349*4106118243^(5/23) 4334944370000478 a001 1346269*4106118243^(6/23) 4334944370000478 a001 1548008755920/3010349*4106118243^(7/23) 4334944370000478 a001 591286729879/3010349*4106118243^(8/23) 4334944370000478 a001 2971215073/3010349*45537549124^(9/17) 4334944370000478 a001 2971215073/3010349*817138163596^(9/19) 4334944370000478 a001 2971215073/3010349*14662949395604^(3/7) 4334944370000478 a001 2971215073/3010349*(1/2+1/2*5^(1/2))^27 4334944370000478 a001 2971215073/3010349*192900153618^(1/2) 4334944370000478 a001 225851433717/3010349*4106118243^(9/23) 4334944370000478 a001 4807526976/3010349*4106118243^(13/23) 4334944370000478 a001 86267571272/3010349*4106118243^(10/23) 4334944370000478 a001 2971215073/3010349*10749957122^(9/16) 4334944370000478 a001 32951280099/3010349*4106118243^(11/23) 4334944370000478 a001 12586269025/3010349*4106118243^(12/23) 4334944370000478 a001 20365011074/3010349*4106118243^(1/2) 4334944370000478 a001 796030994547471451/1836311903 4334944370000478 a001 10610209857723/3010349*1568397607^(5/22) 4334944370000478 a001 6557470319842/3010349*1568397607^(1/4) 4334944370000478 a001 1346269*1568397607^(3/11) 4334944370000478 a001 1548008755920/3010349*1568397607^(7/22) 4334944370000478 a001 591286729879/3010349*1568397607^(4/11) 4334944370000478 a001 1346269/2537720636*14662949395604^(19/21) 4334944370000478 a001 1134903170/3010349*(1/2+1/2*5^(1/2))^29 4334944370000478 a001 1134903170/3010349*1322157322203^(1/2) 4334944370000478 a001 225851433717/3010349*1568397607^(9/22) 4334944370000478 a001 86267571272/3010349*1568397607^(5/11) 4334944370000478 a001 1836311903/3010349*1568397607^(7/11) 4334944370000478 a001 32951280099/3010349*1568397607^(1/2) 4334944370000478 a001 12586269025/3010349*1568397607^(6/11) 4334944370000478 a001 4807526976/3010349*1568397607^(13/22) 4334944370000478 a001 101352261272917291/233802911 4334944370000478 a001 10610209857723/3010349*599074578^(5/21) 4334944370000478 a001 1346269*599074578^(2/7) 4334944370000478 a001 1548008755920/3010349*599074578^(1/3) 4334944370000478 a001 956722026041/3010349*599074578^(5/14) 4334944370000478 a001 591286729879/3010349*599074578^(8/21) 4334944370000478 a001 433494437/3010349*(1/2+1/2*5^(1/2))^31 4334944370000478 a001 433494437/3010349*9062201101803^(1/2) 4334944370000478 a001 1346269/969323029*3461452808002^(11/12) 4334944370000478 a001 225851433717/3010349*599074578^(3/7) 4334944370000478 a001 86267571272/3010349*599074578^(10/21) 4334944370000478 a001 53316291173/3010349*599074578^(1/2) 4334944370000478 a001 32951280099/3010349*599074578^(11/21) 4334944370000478 a001 701408733/3010349*599074578^(5/7) 4334944370000478 a001 12586269025/3010349*599074578^(4/7) 4334944370000478 a001 4807526976/3010349*599074578^(13/21) 4334944370000478 a001 1836311903/3010349*599074578^(2/3) 4334944370000478 a001 2971215073/3010349*599074578^(9/14) 4334944370000478 a001 14517419613598021/33489287 4334944370000478 a001 10610209857723/3010349*228826127^(1/4) 4334944370000478 a001 1346269*228826127^(3/10) 4334944370000478 a001 1548008755920/3010349*228826127^(7/20) 4334944370000478 a001 956722026041/3010349*228826127^(3/8) 4334944370000478 a001 165580141/3010349*2537720636^(11/15) 4334944370000478 a001 165580141/3010349*45537549124^(11/17) 4334944370000478 a001 165580141/3010349*312119004989^(3/5) 4334944370000478 a001 165580141/3010349*14662949395604^(11/21) 4334944370000478 a001 165580141/3010349*(1/2+1/2*5^(1/2))^33 4334944370000478 a001 165580141/3010349*192900153618^(11/18) 4334944370000478 a001 165580141/3010349*10749957122^(11/16) 4334944370000478 a001 165580141/3010349*1568397607^(3/4) 4334944370000478 a001 591286729879/3010349*228826127^(2/5) 4334944370000478 a001 225851433717/3010349*228826127^(9/20) 4334944370000478 a001 165580141/3010349*599074578^(11/14) 4334944370000478 a001 86267571272/3010349*228826127^(1/2) 4334944370000478 a001 32951280099/3010349*228826127^(11/20) 4334944370000478 a001 12586269025/3010349*228826127^(3/5) 4334944370000478 a001 7778742049/3010349*228826127^(5/8) 4334944370000478 a001 4807526976/3010349*228826127^(13/20) 4334944370000478 a001 267914296/3010349*228826127^(4/5) 4334944370000478 a001 1836311903/3010349*228826127^(7/10) 4334944370000478 a001 701408733/3010349*228826127^(3/4) 4334944370000478 a001 14787095635866877/34111385 4334944370000478 a001 10610209857723/3010349*87403803^(5/19) 4334944370000478 a001 1346269*87403803^(6/19) 4334944370000478 a001 1548008755920/3010349*87403803^(7/19) 4334944370000478 a001 63245986/3010349*2537720636^(7/9) 4334944370000478 a001 63245986/3010349*17393796001^(5/7) 4334944370000478 a001 63245986/3010349*312119004989^(7/11) 4334944370000478 a001 1346269/141422324*817138163596^(17/19) 4334944370000478 a001 1346269/141422324*14662949395604^(17/21) 4334944370000478 a001 63245986/3010349*(1/2+1/2*5^(1/2))^35 4334944370000478 a001 63245986/3010349*505019158607^(5/8) 4334944370000478 a001 1346269/141422324*192900153618^(17/18) 4334944370000478 a001 63245986/3010349*28143753123^(7/10) 4334944370000478 a001 63245986/3010349*599074578^(5/6) 4334944370000478 a001 591286729879/3010349*87403803^(8/19) 4334944370000478 a001 225851433717/3010349*87403803^(9/19) 4334944370000478 a001 139583862445/3010349*87403803^(1/2) 4334944370000478 a001 63245986/3010349*228826127^(7/8) 4334944370000478 a001 86267571272/3010349*87403803^(10/19) 4334944370000478 a001 32951280099/3010349*87403803^(11/19) 4334944370000478 a001 12586269025/3010349*87403803^(12/19) 4334944370000478 a001 4807526976/3010349*87403803^(13/19) 4334944370000478 a001 1836311903/3010349*87403803^(14/19) 4334944370000478 a001 102334155/3010349*87403803^(17/19) 4334944370000478 a001 701408733/3010349*87403803^(15/19) 4334944370000478 a001 267914296/3010349*87403803^(16/19) 4334944370000478 a001 16944503814017725/39088169 4334944370000479 a001 10610209857723/3010349*33385282^(5/18) 4334944370000479 a001 1346269*33385282^(1/3) 4334944370000479 a001 1346269/54018521*14662949395604^(7/9) 4334944370000479 a001 24157817/3010349*(1/2+1/2*5^(1/2))^37 4334944370000479 a001 1346269/54018521*505019158607^(7/8) 4334944370000479 a001 1548008755920/3010349*33385282^(7/18) 4334944370000479 a001 956722026041/3010349*33385282^(5/12) 4334944370000480 a001 591286729879/3010349*33385282^(4/9) 4334944370000480 a001 225851433717/3010349*33385282^(1/2) 4334944370000480 a001 86267571272/3010349*33385282^(5/9) 4334944370000480 a001 53316291173/3010349*33385282^(7/12) 4334944370000480 a001 32951280099/3010349*33385282^(11/18) 4334944370000480 a001 12586269025/3010349*33385282^(2/3) 4334944370000481 a001 4807526976/3010349*33385282^(13/18) 4334944370000481 a001 2971215073/3010349*33385282^(3/4) 4334944370000481 a001 1836311903/3010349*33385282^(7/9) 4334944370000481 a001 701408733/3010349*33385282^(5/6) 4334944370000481 a001 267914296/3010349*33385282^(8/9) 4334944370000481 a001 102334155/3010349*33385282^(17/18) 4334944370000481 a001 165580141/3010349*33385282^(11/12) 4334944370000482 a001 44946003711476/103683 4334944370000485 a001 956722026041/4870847*1860498^(8/15) 4334944370000486 a001 10610209857723/3010349*12752043^(5/17) 4334944370000487 a001 1346269*12752043^(6/17) 4334944370000488 a001 9227465/3010349*2537720636^(13/15) 4334944370000488 a001 9227465/3010349*45537549124^(13/17) 4334944370000488 a001 1346269/20633239*(1/2+1/2*5^(1/2))^47 4334944370000488 a001 9227465/3010349*14662949395604^(13/21) 4334944370000488 a001 9227465/3010349*(1/2+1/2*5^(1/2))^39 4334944370000488 a001 9227465/3010349*192900153618^(13/18) 4334944370000488 a001 9227465/3010349*73681302247^(3/4) 4334944370000488 a001 9227465/3010349*10749957122^(13/16) 4334944370000488 a001 9227465/3010349*599074578^(13/14) 4334944370000489 a001 1548008755920/3010349*12752043^(7/17) 4334944370000490 a001 591286729879/3010349*12752043^(8/17) 4334944370000491 a001 365435296162/3010349*12752043^(1/2) 4334944370000492 a001 225851433717/3010349*12752043^(9/17) 4334944370000494 a001 86267571272/3010349*12752043^(10/17) 4334944370000495 a001 32951280099/3010349*12752043^(11/17) 4334944370000497 a001 12586269025/3010349*12752043^(12/17) 4334944370000498 a001 4807526976/3010349*12752043^(13/17) 4334944370000500 a001 1836311903/3010349*12752043^(14/17) 4334944370000501 a001 701408733/3010349*12752043^(15/17) 4334944370000503 a001 267914296/3010349*12752043^(16/17) 4334944370000505 a001 2472169789339907/5702887 4334944370000535 a001 10610209857723/3010349*4870847^(5/16) 4334944370000546 a001 1346269*4870847^(3/8) 4334944370000548 a001 1346269/7881196*45537549124^(15/17) 4334944370000548 a001 1346269/7881196*312119004989^(9/11) 4334944370000548 a001 1346269/7881196*14662949395604^(5/7) 4334944370000548 a001 1346269/7881196*(1/2+1/2*5^(1/2))^45 4334944370000548 a001 3524578/3010349*(1/2+1/2*5^(1/2))^41 4334944370000548 a001 1346269/7881196*192900153618^(5/6) 4334944370000548 a001 1346269/7881196*28143753123^(9/10) 4334944370000548 a001 1346269/7881196*10749957122^(15/16) 4334944370000557 a001 6557470319842/12752043*1860498^(7/15) 4334944370000558 a001 1548008755920/3010349*4870847^(7/16) 4334944370000568 a001 365435296162/4870847*1860498^(3/5) 4334944370000569 a001 591286729879/3010349*4870847^(1/2) 4334944370000570 a001 10610209857723/7881196*1860498^(2/5) 4334944370000581 a001 225851433717/3010349*4870847^(9/16) 4334944370000592 a001 86267571272/3010349*4870847^(5/8) 4334944370000594 a001 10610209857723/20633239*1860498^(7/15) 4334944370000599 a001 4052739537881/12752043*1860498^(1/2) 4334944370000603 a001 32951280099/3010349*4870847^(11/16) 4334944370000615 a001 12586269025/3010349*4870847^(3/4) 4334944370000622 a001 1515744265389/4769326*1860498^(1/2) 4334944370000626 a001 4807526976/3010349*4870847^(13/16) 4334944370000636 a001 6557470319842/20633239*1860498^(1/2) 4334944370000638 a001 1836311903/3010349*4870847^(7/8) 4334944370000641 a001 2504730781961/12752043*1860498^(8/15) 4334944370000649 a001 701408733/3010349*4870847^(15/16) 4334944370000652 a001 139583862445/4870847*1860498^(2/3) 4334944370000654 a001 4052739537881/7881196*1860498^(7/15) 4334944370000661 a001 314761611189059/726103 4334944370000664 a001 3278735159921/16692641*1860498^(8/15) 4334944370000669 a001 10610209857723/54018521*1860498^(8/15) 4334944370000678 a001 4052739537881/20633239*1860498^(8/15) 4334944370000693 a001 86267571272/4870847*1860498^(7/10) 4334944370000695 a001 2504730781961/7881196*1860498^(1/2) 4334944370000724 a001 956722026041/12752043*1860498^(3/5) 4334944370000735 a001 53316291173/4870847*1860498^(11/15) 4334944370000737 a001 387002188980/1970299*1860498^(8/15) 4334944370000747 a001 2504730781961/33385282*1860498^(3/5) 4334944370000750 a001 6557470319842/87403803*1860498^(3/5) 4334944370000751 a001 10610209857723/141422324*1860498^(3/5) 4334944370000752 a001 4052739537881/54018521*1860498^(3/5) 4334944370000761 a001 140728068720/1875749*1860498^(3/5) 4334944370000808 a001 365435296162/12752043*1860498^(2/3) 4334944370000819 a001 20365011074/4870847*1860498^(4/5) 4334944370000821 a001 591286729879/7881196*1860498^(3/5) 4334944370000831 a001 956722026041/33385282*1860498^(2/3) 4334944370000834 a001 2504730781961/87403803*1860498^(2/3) 4334944370000834 a001 6557470319842/228826127*1860498^(2/3) 4334944370000834 a001 10610209857723/370248451*1860498^(2/3) 4334944370000835 a001 4052739537881/141422324*1860498^(2/3) 4334944370000836 a001 1548008755920/54018521*1860498^(2/3) 4334944370000845 a001 591286729879/20633239*1860498^(2/3) 4334944370000849 a001 75283811239/4250681*1860498^(7/10) 4334944370000860 a001 12586269025/4870847*1860498^(5/6) 4334944370000872 a001 591286729879/33385282*1860498^(7/10) 4334944370000876 a001 516002918640/29134601*1860498^(7/10) 4334944370000876 a001 4052739537881/228826127*1860498^(7/10) 4334944370000876 a001 3536736619241/199691526*1860498^(7/10) 4334944370000876 a001 6557470319842/370248451*1860498^(7/10) 4334944370000876 a001 2504730781961/141422324*1860498^(7/10) 4334944370000878 a001 956722026041/54018521*1860498^(7/10) 4334944370000886 a001 365435296162/20633239*1860498^(7/10) 4334944370000891 a001 139583862445/12752043*1860498^(11/15) 4334944370000895 a001 10610209857723/3010349*1860498^(1/3) 4334944370000902 a001 7778742049/4870847*1860498^(13/15) 4334944370000904 a001 225851433717/7881196*1860498^(2/3) 4334944370000914 a001 182717648081/16692641*1860498^(11/15) 4334944370000917 a001 956722026041/87403803*1860498^(11/15) 4334944370000918 a001 2504730781961/228826127*1860498^(11/15) 4334944370000918 a001 3278735159921/299537289*1860498^(11/15) 4334944370000918 a001 10610209857723/969323029*1860498^(11/15) 4334944370000918 a001 4052739537881/370248451*1860498^(11/15) 4334944370000918 a001 387002188980/35355581*1860498^(11/15) 4334944370000919 a001 591286729879/54018521*1860498^(11/15) 4334944370000928 a001 7787980473/711491*1860498^(11/15) 4334944370000944 a001 4807526976/4870847*1860498^(9/10) 4334944370000946 a001 139583862445/7881196*1860498^(7/10) 4334944370000956 a001 1346269/3010349*(1/2+1/2*5^(1/2))^43 4334944370000975 a001 53316291173/12752043*1860498^(4/5) 4334944370000979 a001 1346269*1860498^(2/5) 4334944370000986 a001 2971215073/4870847*1860498^(14/15) 4334944370000988 a001 21566892818/1970299*1860498^(11/15) 4334944370000997 a001 139583862445/33385282*1860498^(4/5) 4334944370001001 a001 365435296162/87403803*1860498^(4/5) 4334944370001001 a001 956722026041/228826127*1860498^(4/5) 4334944370001001 a001 2504730781961/599074578*1860498^(4/5) 4334944370001001 a001 6557470319842/1568397607*1860498^(4/5) 4334944370001001 a001 10610209857723/2537720636*1860498^(4/5) 4334944370001001 a001 4052739537881/969323029*1860498^(4/5) 4334944370001001 a001 1548008755920/370248451*1860498^(4/5) 4334944370001002 a001 591286729879/141422324*1860498^(4/5) 4334944370001003 a001 225851433717/54018521*1860498^(4/5) 4334944370001012 a001 86267571272/20633239*1860498^(4/5) 4334944370001016 a001 10983760033/4250681*1860498^(5/6) 4334944370001039 a001 43133785636/16692641*1860498^(5/6) 4334944370001043 a001 75283811239/29134601*1860498^(5/6) 4334944370001043 a001 591286729879/228826127*1860498^(5/6) 4334944370001043 a001 86000486440/33281921*1860498^(5/6) 4334944370001043 a001 4052739537881/1568397607*1860498^(5/6) 4334944370001043 a001 3536736619241/1368706081*1860498^(5/6) 4334944370001043 a001 3278735159921/1268860318*1860498^(5/6) 4334944370001043 a001 2504730781961/969323029*1860498^(5/6) 4334944370001043 a001 956722026041/370248451*1860498^(5/6) 4334944370001043 a001 182717648081/70711162*1860498^(5/6) 4334944370001045 a001 139583862445/54018521*1860498^(5/6) 4334944370001053 a001 53316291173/20633239*1860498^(5/6) 4334944370001058 a001 20365011074/12752043*1860498^(13/15) 4334944370001062 a001 1548008755920/3010349*1860498^(7/15) 4334944370001069 a001 360684711361569/832040 4334944370001071 a001 32951280099/7881196*1860498^(4/5) 4334944370001081 a001 53316291173/33385282*1860498^(13/15) 4334944370001084 a001 139583862445/87403803*1860498^(13/15) 4334944370001085 a001 365435296162/228826127*1860498^(13/15) 4334944370001085 a001 956722026041/599074578*1860498^(13/15) 4334944370001085 a001 2504730781961/1568397607*1860498^(13/15) 4334944370001085 a001 6557470319842/4106118243*1860498^(13/15) 4334944370001085 a001 10610209857723/6643838879*1860498^(13/15) 4334944370001085 a001 4052739537881/2537720636*1860498^(13/15) 4334944370001085 a001 1548008755920/969323029*1860498^(13/15) 4334944370001085 a001 591286729879/370248451*1860498^(13/15) 4334944370001085 a001 225851433717/141422324*1860498^(13/15) 4334944370001086 a001 86267571272/54018521*1860498^(13/15) 4334944370001095 a001 32951280099/20633239*1860498^(13/15) 4334944370001100 a001 12586269025/12752043*1860498^(9/10) 4334944370001104 a001 956722026041/3010349*1860498^(1/2) 4334944370001113 a001 10182505537/3940598*1860498^(5/6) 4334944370001123 a001 32951280099/33385282*1860498^(9/10) 4334944370001126 a001 86267571272/87403803*1860498^(9/10) 4334944370001127 a001 225851433717/228826127*1860498^(9/10) 4334944370001127 a001 591286729879/599074578*1860498^(9/10) 4334944370001127 a001 1548008755920/1568397607*1860498^(9/10) 4334944370001127 a001 4052739537881/4106118243*1860498^(9/10) 4334944370001127 a001 4807525989/4870846*1860498^(9/10) 4334944370001127 a001 6557470319842/6643838879*1860498^(9/10) 4334944370001127 a001 2504730781961/2537720636*1860498^(9/10) 4334944370001127 a001 956722026041/969323029*1860498^(9/10) 4334944370001127 a001 365435296162/370248451*1860498^(9/10) 4334944370001127 a001 139583862445/141422324*1860498^(9/10) 4334944370001128 a001 53316291173/54018521*1860498^(9/10) 4334944370001137 a001 20365011074/20633239*1860498^(9/10) 4334944370001142 a001 7778742049/12752043*1860498^(14/15) 4334944370001146 a001 591286729879/3010349*1860498^(8/15) 4334944370001155 a001 12586269025/7881196*1860498^(13/15) 4334944370001164 a001 10182505537/16692641*1860498^(14/15) 4334944370001168 a001 53316291173/87403803*1860498^(14/15) 4334944370001168 a001 139583862445/228826127*1860498^(14/15) 4334944370001168 a001 182717648081/299537289*1860498^(14/15) 4334944370001168 a001 956722026041/1568397607*1860498^(14/15) 4334944370001168 a001 2504730781961/4106118243*1860498^(14/15) 4334944370001168 a001 3278735159921/5374978561*1860498^(14/15) 4334944370001168 a001 10610209857723/17393796001*1860498^(14/15) 4334944370001168 a001 4052739537881/6643838879*1860498^(14/15) 4334944370001168 a001 1134903780/1860499*1860498^(14/15) 4334944370001168 a001 591286729879/969323029*1860498^(14/15) 4334944370001168 a001 225851433717/370248451*1860498^(14/15) 4334944370001169 a001 21566892818/35355581*1860498^(14/15) 4334944370001170 a001 32951280099/54018521*1860498^(14/15) 4334944370001179 a001 1144206275/1875749*1860498^(14/15) 4334944370001196 a001 7778742049/7881196*1860498^(9/10) 4334944370001225 a001 180342355680791/416020 4334944370001229 a001 225851433717/3010349*1860498^(3/5) 4334944370001238 a001 1201881744/1970299*1860498^(14/15) 4334944370001249 a001 45085588920198/104005 4334944370001261 a001 72136942272317/166408 4334944370001313 a001 86267571272/3010349*1860498^(2/3) 4334944370001322 a001 3278951921469/7564 4334944370001354 a001 53316291173/3010349*1860498^(7/10) 4334944370001396 a001 32951280099/3010349*1860498^(11/15) 4334944370001480 a001 12586269025/3010349*1860498^(4/5) 4334944370001521 a001 7778742049/3010349*1860498^(5/6) 4334944370001563 a001 4807526976/3010349*1860498^(13/15) 4334944370001605 a001 2971215073/3010349*1860498^(9/10) 4334944370001647 a001 1836311903/3010349*1860498^(14/15) 4334944370001730 a001 45085588920203/104005 4334944370001813 a001 3278735159921/930249*710647^(5/14) 4334944370002026 a001 832040/1149851*2537720636^(14/15) 4334944370002026 a001 832040/1149851*17393796001^(6/7) 4334944370002026 a001 832040/1149851*45537549124^(14/17) 4334944370002026 a001 514229/1860498*312119004989^(4/5) 4334944370002026 a001 832040/1149851*817138163596^(14/19) 4334944370002026 a001 514229/1860498*(1/2+1/2*5^(1/2))^44 4334944370002026 a001 514229/1860498*23725150497407^(11/16) 4334944370002026 a001 832040/1149851*14662949395604^(2/3) 4334944370002026 a001 832040/1149851*(1/2+1/2*5^(1/2))^42 4334944370002026 a001 832040/1149851*192900153618^(7/9) 4334944370002026 a001 514229/1860498*73681302247^(11/13) 4334944370002026 a001 832040/1149851*10749957122^(7/8) 4334944370002026 a001 514229/1860498*10749957122^(11/12) 4334944370002026 a001 832040/1149851*4106118243^(21/23) 4334944370002026 a001 514229/1860498*4106118243^(22/23) 4334944370002026 a001 832040/1149851*1568397607^(21/22) 4334944370002426 a001 2504730781961/1860498*710647^(3/7) 4334944370002496 a001 1836311903/439204*439204^(8/9) 4334944370002800 a001 583600122205930/1346269 4334944370003039 a001 956722026041/1860498*710647^(1/2) 4334944370003095 a001 2178309/1149851*2537720636^(8/9) 4334944370003095 a001 2178309/1149851*312119004989^(8/11) 4334944370003095 a001 514229/4870847*(1/2+1/2*5^(1/2))^46 4334944370003095 a001 2178309/1149851*(1/2+1/2*5^(1/2))^40 4334944370003095 a001 2178309/1149851*23725150497407^(5/8) 4334944370003095 a001 2178309/1149851*73681302247^(10/13) 4334944370003095 a001 2178309/1149851*28143753123^(4/5) 4334944370003095 a001 2178309/1149851*10749957122^(5/6) 4334944370003095 a001 514229/4870847*10749957122^(23/24) 4334944370003095 a001 2178309/1149851*4106118243^(20/23) 4334944370003095 a001 2178309/1149851*1568397607^(10/11) 4334944370003095 a001 2178309/1149851*599074578^(20/21) 4334944370003208 a001 1527884955773717/3524578 4334944370003215 a001 267914296/1149851*7881196^(10/11) 4334944370003221 a001 1134903170/1149851*7881196^(9/11) 4334944370003227 a001 4807526976/1149851*7881196^(8/11) 4334944370003232 a001 12586269025/1149851*7881196^(2/3) 4334944370003234 a001 20365011074/1149851*7881196^(7/11) 4334944370003240 a001 86267571272/1149851*7881196^(6/11) 4334944370003246 a001 365435296162/1149851*7881196^(5/11) 4334944370003252 a001 514229/12752043*45537549124^(16/17) 4334944370003252 a001 5702887/1149851*817138163596^(2/3) 4334944370003252 a001 514229/12752043*14662949395604^(16/21) 4334944370003252 a001 514229/12752043*(1/2+1/2*5^(1/2))^48 4334944370003252 a001 5702887/1149851*(1/2+1/2*5^(1/2))^38 4334944370003252 a001 514229/12752043*192900153618^(8/9) 4334944370003252 a001 514229/12752043*73681302247^(12/13) 4334944370003252 a001 5702887/1149851*10749957122^(19/24) 4334944370003252 a001 5702887/1149851*4106118243^(19/23) 4334944370003252 a001 5702887/1149851*1568397607^(19/22) 4334944370003252 a001 5702887/1149851*599074578^(19/21) 4334944370003252 a001 5702887/1149851*228826127^(19/20) 4334944370003253 a001 1548008755920/1149851*7881196^(4/11) 4334944370003255 a001 2504730781961/1149851*7881196^(1/3) 4334944370003259 a001 6557470319842/1149851*7881196^(3/11) 4334944370003268 a001 307696518855017/709805 4334944370003269 a001 267914296/1149851*20633239^(6/7) 4334944370003270 a001 701408733/1149851*20633239^(4/5) 4334944370003271 a001 2971215073/1149851*20633239^(5/7) 4334944370003272 a001 20365011074/1149851*20633239^(3/5) 4334944370003272 a001 32951280099/1149851*20633239^(4/7) 4334944370003274 a001 365435296162/1149851*20633239^(3/7) 4334944370003274 a001 14930352/1149851*141422324^(12/13) 4334944370003274 a001 514229*20633239^(2/5) 4334944370003274 a001 14930352/1149851*2537720636^(4/5) 4334944370003274 a001 14930352/1149851*45537549124^(12/17) 4334944370003274 a001 514229/33385282*312119004989^(10/11) 4334944370003274 a001 514229/33385282*(1/2+1/2*5^(1/2))^50 4334944370003274 a001 14930352/1149851*14662949395604^(4/7) 4334944370003274 a001 14930352/1149851*(1/2+1/2*5^(1/2))^36 4334944370003274 a001 14930352/1149851*505019158607^(9/14) 4334944370003274 a001 14930352/1149851*192900153618^(2/3) 4334944370003274 a001 14930352/1149851*73681302247^(9/13) 4334944370003274 a001 14930352/1149851*10749957122^(3/4) 4334944370003274 a001 14930352/1149851*4106118243^(18/23) 4334944370003274 a001 14930352/1149851*1568397607^(9/11) 4334944370003274 a001 14930352/1149851*599074578^(6/7) 4334944370003274 a001 14930352/1149851*228826127^(9/10) 4334944370003275 a001 14930352/1149851*87403803^(18/19) 4334944370003275 a001 4052739537881/1149851*20633239^(2/7) 4334944370003277 a001 10472279279571946/24157817 4334944370003278 a001 39088169/1149851*45537549124^(2/3) 4334944370003278 a001 514229/87403803*23725150497407^(13/16) 4334944370003278 a001 39088169/1149851*(1/2+1/2*5^(1/2))^34 4334944370003278 a001 514229/87403803*505019158607^(13/14) 4334944370003278 a001 39088169/1149851*10749957122^(17/24) 4334944370003278 a001 39088169/1149851*4106118243^(17/23) 4334944370003278 a001 39088169/1149851*1568397607^(17/22) 4334944370003278 a001 39088169/1149851*599074578^(17/21) 4334944370003278 a001 39088169/1149851*228826127^(17/20) 4334944370003278 a001 27416783093600617/63245986 4334944370003278 a001 267914296/1149851*141422324^(10/13) 4334944370003278 a001 1134903170/1149851*141422324^(9/13) 4334944370003278 a001 1836311903/1149851*141422324^(2/3) 4334944370003278 a001 4807526976/1149851*141422324^(8/13) 4334944370003278 a001 20365011074/1149851*141422324^(7/13) 4334944370003278 a001 86267571272/1149851*141422324^(6/13) 4334944370003278 a001 365435296162/1149851*141422324^(5/13) 4334944370003278 a001 102334155/1149851*(1/2+1/2*5^(1/2))^32 4334944370003278 a001 102334155/1149851*23725150497407^(1/2) 4334944370003278 a001 102334155/1149851*505019158607^(4/7) 4334944370003278 a001 102334155/1149851*73681302247^(8/13) 4334944370003278 a001 102334155/1149851*10749957122^(2/3) 4334944370003278 a001 102334155/1149851*4106118243^(16/23) 4334944370003278 a001 102334155/1149851*1568397607^(8/11) 4334944370003278 a001 102334155/1149851*599074578^(16/21) 4334944370003278 a001 956722026041/1149851*141422324^(1/3) 4334944370003278 a001 1548008755920/1149851*141422324^(4/13) 4334944370003278 a001 39088169/1149851*87403803^(17/19) 4334944370003278 a001 6557470319842/1149851*141422324^(3/13) 4334944370003278 a001 71778070001229905/165580141 4334944370003278 a001 102334155/1149851*228826127^(4/5) 4334944370003278 a001 267914296/1149851*2537720636^(2/3) 4334944370003278 a001 267914296/1149851*45537549124^(10/17) 4334944370003278 a001 267914296/1149851*312119004989^(6/11) 4334944370003278 a001 514229/599074578*14662949395604^(8/9) 4334944370003278 a001 267914296/1149851*14662949395604^(10/21) 4334944370003278 a001 267914296/1149851*(1/2+1/2*5^(1/2))^30 4334944370003278 a001 267914296/1149851*192900153618^(5/9) 4334944370003278 a001 267914296/1149851*28143753123^(3/5) 4334944370003278 a001 267914296/1149851*10749957122^(5/8) 4334944370003278 a001 267914296/1149851*4106118243^(15/23) 4334944370003278 a001 267914296/1149851*1568397607^(15/22) 4334944370003278 a001 187917426910089098/433494437 4334944370003278 a001 267914296/1149851*599074578^(5/7) 4334944370003278 a001 701408733/1149851*17393796001^(4/7) 4334944370003278 a001 701408733/1149851*14662949395604^(4/9) 4334944370003278 a001 701408733/1149851*(1/2+1/2*5^(1/2))^28 4334944370003278 a001 701408733/1149851*505019158607^(1/2) 4334944370003278 a001 701408733/1149851*73681302247^(7/13) 4334944370003278 a001 701408733/1149851*10749957122^(7/12) 4334944370003278 a001 701408733/1149851*4106118243^(14/23) 4334944370003278 a001 491974210729037389/1134903170 4334944370003278 a001 701408733/1149851*1568397607^(7/11) 4334944370003278 a001 4807526976/1149851*2537720636^(8/15) 4334944370003278 a001 20365011074/1149851*2537720636^(7/15) 4334944370003278 a001 32951280099/1149851*2537720636^(4/9) 4334944370003278 a001 2971215073/1149851*2537720636^(5/9) 4334944370003278 a001 86267571272/1149851*2537720636^(2/5) 4334944370003278 a001 514229/4106118243*14662949395604^(20/21) 4334944370003278 a001 1836311903/1149851*(1/2+1/2*5^(1/2))^26 4334944370003278 a001 1836311903/1149851*73681302247^(1/2) 4334944370003278 a001 1836311903/1149851*10749957122^(13/24) 4334944370003278 a001 365435296162/1149851*2537720636^(1/3) 4334944370003278 a001 1548008755920/1149851*2537720636^(4/15) 4334944370003278 a001 4052739537881/1149851*2537720636^(2/9) 4334944370003278 a001 6557470319842/1149851*2537720636^(1/5) 4334944370003278 a001 1836311903/1149851*4106118243^(13/23) 4334944370003278 a001 1288005205277023069/2971215073 4334944370003278 a001 4807526976/1149851*45537549124^(8/17) 4334944370003278 a001 4807526976/1149851*14662949395604^(8/21) 4334944370003278 a001 4807526976/1149851*(1/2+1/2*5^(1/2))^24 4334944370003278 a001 4807526976/1149851*192900153618^(4/9) 4334944370003278 a001 4807526976/1149851*73681302247^(6/13) 4334944370003278 a001 4807526976/1149851*10749957122^(1/2) 4334944370003278 a001 259387800392463986/598364773 4334944370003278 a001 12586269025/1149851*312119004989^(2/5) 4334944370003278 a001 12586269025/1149851*(1/2+1/2*5^(1/2))^22 4334944370003278 a001 514229*17393796001^(2/7) 4334944370003278 a001 20365011074/1149851*17393796001^(3/7) 4334944370003278 a001 86267571272/1149851*45537549124^(6/17) 4334944370003278 a001 32951280099/1149851*(1/2+1/2*5^(1/2))^20 4334944370003278 a001 32951280099/1149851*23725150497407^(5/16) 4334944370003278 a001 32951280099/1149851*505019158607^(5/14) 4334944370003278 a001 139583862445/1149851*45537549124^(1/3) 4334944370003278 a001 365435296162/1149851*45537549124^(5/17) 4334944370003278 a001 1548008755920/1149851*45537549124^(4/17) 4334944370003278 a001 6557470319842/1149851*45537549124^(3/17) 4334944370003278 a001 86267571272/1149851*14662949395604^(2/7) 4334944370003278 a001 86267571272/1149851*(1/2+1/2*5^(1/2))^18 4334944370003278 a001 86267571272/1149851*192900153618^(1/3) 4334944370003278 a001 225851433717/1149851*(1/2+1/2*5^(1/2))^16 4334944370003278 a001 225851433717/1149851*23725150497407^(1/4) 4334944370003278 a001 2504730781961/1149851*312119004989^(1/5) 4334944370003278 a001 514229*(1/2+1/2*5^(1/2))^14 4334944370003278 a001 1548008755920/1149851*(1/2+1/2*5^(1/2))^12 4334944370003278 a001 4052739537881/1149851*(1/2+1/2*5^(1/2))^10 4334944370003278 a001 10610209857723/1149851*(1/2+1/2*5^(1/2))^8 4334944370003278 a001 10610209857723/1149851*23725150497407^(1/8) 4334944370003278 a001 6557470319842/1149851*(1/2+1/2*5^(1/2))^9 4334944370003278 a001 2504730781961/1149851*(1/2+1/2*5^(1/2))^11 4334944370003278 a001 956722026041/1149851*(1/2+1/2*5^(1/2))^13 4334944370003278 a001 10610209857723/1149851*505019158607^(1/7) 4334944370003278 a001 6557470319842/1149851*192900153618^(1/6) 4334944370003278 a001 1548008755920/1149851*192900153618^(2/9) 4334944370003278 a001 365435296162/1149851*192900153618^(5/18) 4334944370003278 a001 139583862445/1149851*(1/2+1/2*5^(1/2))^17 4334944370003278 a001 10610209857723/1149851*73681302247^(2/13) 4334944370003278 a001 1548008755920/1149851*73681302247^(3/13) 4334944370003278 a001 956722026041/1149851*73681302247^(1/4) 4334944370003278 a001 225851433717/1149851*73681302247^(4/13) 4334944370003278 a001 53316291173/1149851*817138163596^(1/3) 4334944370003278 a001 53316291173/1149851*(1/2+1/2*5^(1/2))^19 4334944370003278 a001 4052739537881/1149851*28143753123^(1/5) 4334944370003278 a001 20365011074/1149851*45537549124^(7/17) 4334944370003278 a001 32951280099/1149851*28143753123^(2/5) 4334944370003278 a001 365435296162/1149851*28143753123^(3/10) 4334944370003278 a001 20365011074/1149851*14662949395604^(1/3) 4334944370003278 a001 20365011074/1149851*(1/2+1/2*5^(1/2))^21 4334944370003278 a001 20365011074/1149851*192900153618^(7/18) 4334944370003278 a001 5456077604927040567/12586269025 4334944370003278 a001 10610209857723/1149851*10749957122^(1/6) 4334944370003278 a001 6557470319842/1149851*10749957122^(3/16) 4334944370003278 a001 4052739537881/1149851*10749957122^(5/24) 4334944370003278 a001 1548008755920/1149851*10749957122^(1/4) 4334944370003278 a001 514229*10749957122^(7/24) 4334944370003278 a001 12586269025/1149851*10749957122^(11/24) 4334944370003278 a001 365435296162/1149851*10749957122^(5/16) 4334944370003278 a001 225851433717/1149851*10749957122^(1/3) 4334944370003278 a001 86267571272/1149851*10749957122^(3/8) 4334944370003278 a001 7778742049/1149851*(1/2+1/2*5^(1/2))^23 4334944370003278 a001 32951280099/1149851*10749957122^(5/12) 4334944370003278 a001 20365011074/1149851*10749957122^(7/16) 4334944370003278 a001 2084036199825008749/4807526976 4334944370003278 a001 10610209857723/1149851*4106118243^(4/23) 4334944370003278 a001 4052739537881/1149851*4106118243^(5/23) 4334944370003278 a001 1548008755920/1149851*4106118243^(6/23) 4334944370003278 a001 514229*4106118243^(7/23) 4334944370003278 a001 225851433717/1149851*4106118243^(8/23) 4334944370003278 a001 4807526976/1149851*4106118243^(12/23) 4334944370003278 a001 2971215073/1149851*312119004989^(5/11) 4334944370003278 a001 2971215073/1149851*(1/2+1/2*5^(1/2))^25 4334944370003278 a001 2971215073/1149851*3461452808002^(5/12) 4334944370003278 a001 86267571272/1149851*4106118243^(9/23) 4334944370003278 a001 2971215073/1149851*28143753123^(1/2) 4334944370003278 a001 32951280099/1149851*4106118243^(10/23) 4334944370003278 a001 12586269025/1149851*4106118243^(11/23) 4334944370003278 a001 7778742049/1149851*4106118243^(1/2) 4334944370003278 a001 796030994547985680/1836311903 4334944370003278 a001 1134903170/1149851*2537720636^(3/5) 4334944370003278 a001 10610209857723/1149851*1568397607^(2/11) 4334944370003278 a001 4052739537881/1149851*1568397607^(5/22) 4334944370003278 a001 2504730781961/1149851*1568397607^(1/4) 4334944370003278 a001 1548008755920/1149851*1568397607^(3/11) 4334944370003278 a001 514229*1568397607^(7/22) 4334944370003278 a001 225851433717/1149851*1568397607^(4/11) 4334944370003278 a001 1134903170/1149851*45537549124^(9/17) 4334944370003278 a001 1134903170/1149851*817138163596^(9/19) 4334944370003278 a001 1134903170/1149851*14662949395604^(3/7) 4334944370003278 a001 1134903170/1149851*(1/2+1/2*5^(1/2))^27 4334944370003278 a001 1134903170/1149851*192900153618^(1/2) 4334944370003278 a001 1134903170/1149851*10749957122^(9/16) 4334944370003278 a001 86267571272/1149851*1568397607^(9/22) 4334944370003278 a001 1836311903/1149851*1568397607^(13/22) 4334944370003278 a001 32951280099/1149851*1568397607^(5/11) 4334944370003278 a001 12586269025/1149851*1568397607^(1/2) 4334944370003278 a001 4807526976/1149851*1568397607^(6/11) 4334944370003278 a001 304056783818948291/701408733 4334944370003278 a001 10610209857723/1149851*599074578^(4/21) 4334944370003278 a001 6557470319842/1149851*599074578^(3/14) 4334944370003278 a001 4052739537881/1149851*599074578^(5/21) 4334944370003278 a001 1548008755920/1149851*599074578^(2/7) 4334944370003278 a001 514229*599074578^(1/3) 4334944370003278 a001 365435296162/1149851*599074578^(5/14) 4334944370003278 a001 225851433717/1149851*599074578^(8/21) 4334944370003278 a001 514229/969323029*14662949395604^(19/21) 4334944370003278 a001 433494437/1149851*(1/2+1/2*5^(1/2))^29 4334944370003278 a001 433494437/1149851*1322157322203^(1/2) 4334944370003278 a001 86267571272/1149851*599074578^(3/7) 4334944370003278 a001 32951280099/1149851*599074578^(10/21) 4334944370003278 a001 20365011074/1149851*599074578^(1/2) 4334944370003278 a001 701408733/1149851*599074578^(2/3) 4334944370003278 a001 12586269025/1149851*599074578^(11/21) 4334944370003278 a001 4807526976/1149851*599074578^(4/7) 4334944370003278 a001 1836311903/1149851*599074578^(13/21) 4334944370003278 a001 1134903170/1149851*599074578^(9/14) 4334944370003278 a001 308061954665409/710648 4334944370003278 a001 10610209857723/1149851*228826127^(1/5) 4334944370003278 a001 4052739537881/1149851*228826127^(1/4) 4334944370003278 a001 1548008755920/1149851*228826127^(3/10) 4334944370003278 a001 514229*228826127^(7/20) 4334944370003278 a001 365435296162/1149851*228826127^(3/8) 4334944370003278 a001 514229/370248451*3461452808002^(11/12) 4334944370003278 a001 165580141/1149851*(1/2+1/2*5^(1/2))^31 4334944370003278 a001 165580141/1149851*9062201101803^(1/2) 4334944370003278 a001 225851433717/1149851*228826127^(2/5) 4334944370003278 a001 63245986/1149851*141422324^(11/13) 4334944370003278 a001 86267571272/1149851*228826127^(9/20) 4334944370003278 a001 32951280099/1149851*228826127^(1/2) 4334944370003278 a001 12586269025/1149851*228826127^(11/20) 4334944370003278 a001 4807526976/1149851*228826127^(3/5) 4334944370003278 a001 267914296/1149851*228826127^(3/4) 4334944370003278 a001 2971215073/1149851*228826127^(5/8) 4334944370003278 a001 1836311903/1149851*228826127^(13/20) 4334944370003278 a001 701408733/1149851*228826127^(7/10) 4334944370003278 a001 44361286907629288/102334155 4334944370003278 a001 10610209857723/1149851*87403803^(4/19) 4334944370003278 a001 4052739537881/1149851*87403803^(5/19) 4334944370003278 a001 1548008755920/1149851*87403803^(6/19) 4334944370003278 a001 514229*87403803^(7/19) 4334944370003278 a001 63245986/1149851*2537720636^(11/15) 4334944370003278 a001 63245986/1149851*45537549124^(11/17) 4334944370003278 a001 63245986/1149851*312119004989^(3/5) 4334944370003278 a001 63245986/1149851*14662949395604^(11/21) 4334944370003278 a001 63245986/1149851*(1/2+1/2*5^(1/2))^33 4334944370003278 a001 63245986/1149851*192900153618^(11/18) 4334944370003278 a001 63245986/1149851*10749957122^(11/16) 4334944370003278 a001 63245986/1149851*1568397607^(3/4) 4334944370003278 a001 63245986/1149851*599074578^(11/14) 4334944370003278 a001 225851433717/1149851*87403803^(8/19) 4334944370003278 a001 86267571272/1149851*87403803^(9/19) 4334944370003278 a001 53316291173/1149851*87403803^(1/2) 4334944370003278 a001 32951280099/1149851*87403803^(10/19) 4334944370003279 a001 12586269025/1149851*87403803^(11/19) 4334944370003279 a001 4807526976/1149851*87403803^(12/19) 4334944370003279 a001 1836311903/1149851*87403803^(13/19) 4334944370003279 a001 102334155/1149851*87403803^(16/19) 4334944370003279 a001 701408733/1149851*87403803^(14/19) 4334944370003279 a001 267914296/1149851*87403803^(15/19) 4334944370003279 a001 16944503814028671/39088169 4334944370003279 a001 10610209857723/1149851*33385282^(2/9) 4334944370003279 a001 6557470319842/1149851*33385282^(1/4) 4334944370003279 a001 4052739537881/1149851*33385282^(5/18) 4334944370003279 a001 1548008755920/1149851*33385282^(1/3) 4334944370003280 a001 24157817/1149851*2537720636^(7/9) 4334944370003280 a001 24157817/1149851*17393796001^(5/7) 4334944370003280 a001 24157817/1149851*312119004989^(7/11) 4334944370003280 a001 514229/54018521*817138163596^(17/19) 4334944370003280 a001 24157817/1149851*14662949395604^(5/9) 4334944370003280 a001 24157817/1149851*(1/2+1/2*5^(1/2))^35 4334944370003280 a001 24157817/1149851*505019158607^(5/8) 4334944370003280 a001 514229/54018521*192900153618^(17/18) 4334944370003280 a001 24157817/1149851*28143753123^(7/10) 4334944370003280 a001 24157817/1149851*599074578^(5/6) 4334944370003280 a001 514229*33385282^(7/18) 4334944370003280 a001 24157817/1149851*228826127^(7/8) 4334944370003280 a001 365435296162/1149851*33385282^(5/12) 4334944370003280 a001 225851433717/1149851*33385282^(4/9) 4334944370003280 a001 86267571272/1149851*33385282^(1/2) 4334944370003280 a001 32951280099/1149851*33385282^(5/9) 4334944370003280 a001 20365011074/1149851*33385282^(7/12) 4334944370003281 a001 12586269025/1149851*33385282^(11/18) 4334944370003281 a001 4807526976/1149851*33385282^(2/3) 4334944370003281 a001 1836311903/1149851*33385282^(13/18) 4334944370003281 a001 1134903170/1149851*33385282^(3/4) 4334944370003281 a001 701408733/1149851*33385282^(7/9) 4334944370003281 a001 39088169/1149851*33385282^(17/18) 4334944370003281 a001 267914296/1149851*33385282^(5/6) 4334944370003282 a001 102334155/1149851*33385282^(8/9) 4334944370003282 a001 63245986/1149851*33385282^(11/12) 4334944370003282 a001 6472224534456725/14930352 4334944370003284 a001 10610209857723/1149851*12752043^(4/17) 4334944370003286 a001 4052739537881/1149851*12752043^(5/17) 4334944370003288 a001 1548008755920/1149851*12752043^(6/17) 4334944370003288 a001 514229/20633239*14662949395604^(7/9) 4334944370003288 a001 514229/20633239*(1/2+1/2*5^(1/2))^49 4334944370003288 a001 9227465/1149851*(1/2+1/2*5^(1/2))^37 4334944370003288 a001 514229/20633239*505019158607^(7/8) 4334944370003289 a001 514229*12752043^(7/17) 4334944370003291 a001 225851433717/1149851*12752043^(8/17) 4334944370003292 a001 139583862445/1149851*12752043^(1/2) 4334944370003292 a001 86267571272/1149851*12752043^(9/17) 4334944370003294 a001 32951280099/1149851*12752043^(10/17) 4334944370003295 a001 12586269025/1149851*12752043^(11/17) 4334944370003297 a001 4807526976/1149851*12752043^(12/17) 4334944370003299 a001 1836311903/1149851*12752043^(13/17) 4334944370003300 a001 701408733/1149851*12752043^(14/17) 4334944370003302 a001 267914296/1149851*12752043^(15/17) 4334944370003303 a001 102334155/1149851*12752043^(16/17) 4334944370003305 a001 2472169789341504/5702887 4334944370003324 a001 10610209857723/1149851*4870847^(1/4) 4334944370003335 a001 4052739537881/1149851*4870847^(5/16) 4334944370003347 a001 1548008755920/1149851*4870847^(3/8) 4334944370003348 a001 3524578/1149851*2537720636^(13/15) 4334944370003348 a001 3524578/1149851*45537549124^(13/17) 4334944370003348 a001 514229/7881196*(1/2+1/2*5^(1/2))^47 4334944370003348 a001 3524578/1149851*14662949395604^(13/21) 4334944370003348 a001 3524578/1149851*(1/2+1/2*5^(1/2))^39 4334944370003348 a001 3524578/1149851*192900153618^(13/18) 4334944370003348 a001 3524578/1149851*73681302247^(3/4) 4334944370003348 a001 3524578/1149851*10749957122^(13/16) 4334944370003348 a001 3524578/1149851*599074578^(13/14) 4334944370003358 a001 514229*4870847^(7/16) 4334944370003370 a001 225851433717/1149851*4870847^(1/2) 4334944370003381 a001 86267571272/1149851*4870847^(9/16) 4334944370003392 a001 32951280099/1149851*4870847^(5/8) 4334944370003404 a001 12586269025/1149851*4870847^(11/16) 4334944370003415 a001 4807526976/1149851*4870847^(3/4) 4334944370003427 a001 1836311903/1149851*4870847^(13/16) 4334944370003438 a001 701408733/1149851*4870847^(7/8) 4334944370003449 a001 267914296/1149851*4870847^(15/16) 4334944370003461 a001 944284833567787/2178309 4334944370003496 a001 6557470319842/4870847*710647^(3/7) 4334944370003543 a001 10610209857723/3010349*710647^(5/14) 4334944370003612 a001 10610209857723/1149851*1860498^(4/15) 4334944370003652 a001 182717648081/930249*710647^(4/7) 4334944370003654 a001 6557470319842/1149851*1860498^(3/10) 4334944370003696 a001 4052739537881/1149851*1860498^(1/3) 4334944370003748 a001 10610209857723/7881196*710647^(3/7) 4334944370003757 a001 514229/3010349*45537549124^(15/17) 4334944370003757 a001 514229/3010349*312119004989^(9/11) 4334944370003757 a001 514229/3010349*14662949395604^(5/7) 4334944370003757 a001 514229/3010349*(1/2+1/2*5^(1/2))^45 4334944370003757 a001 1346269/1149851*(1/2+1/2*5^(1/2))^41 4334944370003757 a001 514229/3010349*192900153618^(5/6) 4334944370003757 a001 514229/3010349*28143753123^(9/10) 4334944370003757 a001 514229/3010349*10749957122^(15/16) 4334944370003779 a001 1548008755920/1149851*1860498^(2/5) 4334944370003863 a001 514229*1860498^(7/15) 4334944370003904 a001 365435296162/1149851*1860498^(1/2) 4334944370003946 a001 225851433717/1149851*1860498^(8/15) 4334944370004030 a001 86267571272/1149851*1860498^(3/5) 4334944370004109 a001 2504730781961/4870847*710647^(1/2) 4334944370004113 a001 32951280099/1149851*1860498^(2/3) 4334944370004155 a001 20365011074/1149851*1860498^(7/10) 4334944370004157 a001 1346269*710647^(3/7) 4334944370004197 a001 12586269025/1149851*1860498^(11/15) 4334944370004265 a001 6557470319842/12752043*710647^(1/2) 4334944370004265 a001 139583862445/1860498*710647^(9/14) 4334944370004280 a001 4807526976/1149851*1860498^(4/5) 4334944370004302 a001 10610209857723/20633239*710647^(1/2) 4334944370004322 a001 2971215073/1149851*1860498^(5/6) 4334944370004361 a001 4052739537881/7881196*710647^(1/2) 4334944370004364 a001 1836311903/1149851*1860498^(13/15) 4334944370004405 a001 1134903170/1149851*1860498^(9/10) 4334944370004447 a001 701408733/1149851*1860498^(14/15) 4334944370004531 a001 360684711361857/832040 4334944370004722 a001 956722026041/4870847*710647^(4/7) 4334944370004770 a001 1548008755920/3010349*710647^(1/2) 4334944370004878 a001 2504730781961/12752043*710647^(4/7) 4334944370004878 a001 53316291173/1860498*710647^(5/7) 4334944370004901 a001 3278735159921/16692641*710647^(4/7) 4334944370004906 a001 10610209857723/54018521*710647^(4/7) 4334944370004915 a001 4052739537881/20633239*710647^(4/7) 4334944370004974 a001 387002188980/1970299*710647^(4/7) 4334944370004993 a001 7778742049/439204*439204^(7/9) 4334944370005185 a001 10983760033/620166*710647^(3/4) 4334944370005335 a001 365435296162/4870847*710647^(9/14) 4334944370005383 a001 591286729879/3010349*710647^(4/7) 4334944370005491 a001 956722026041/12752043*710647^(9/14) 4334944370005492 a001 10182505537/930249*710647^(11/14) 4334944370005514 a001 2504730781961/33385282*710647^(9/14) 4334944370005517 a001 6557470319842/87403803*710647^(9/14) 4334944370005518 a001 10610209857723/141422324*710647^(9/14) 4334944370005519 a001 4052739537881/54018521*710647^(9/14) 4334944370005528 a001 140728068720/1875749*710647^(9/14) 4334944370005587 a001 591286729879/7881196*710647^(9/14) 4334944370005731 a001 10610209857723/1149851*710647^(2/7) 4334944370005948 a001 139583862445/4870847*710647^(5/7) 4334944370005996 a001 225851433717/3010349*710647^(9/14) 4334944370006104 a001 365435296162/12752043*710647^(5/7) 4334944370006105 a001 7778742049/1860498*710647^(6/7) 4334944370006127 a001 956722026041/33385282*710647^(5/7) 4334944370006130 a001 2504730781961/87403803*710647^(5/7) 4334944370006131 a001 6557470319842/228826127*710647^(5/7) 4334944370006131 a001 10610209857723/370248451*710647^(5/7) 4334944370006131 a001 4052739537881/141422324*710647^(5/7) 4334944370006132 a001 1548008755920/54018521*710647^(5/7) 4334944370006141 a001 591286729879/20633239*710647^(5/7) 4334944370006201 a001 225851433717/7881196*710647^(5/7) 4334944370006255 a001 86267571272/4870847*710647^(3/4) 4334944370006344 a001 4052739537881/1149851*710647^(5/14) 4334944370006411 a001 75283811239/4250681*710647^(3/4) 4334944370006433 a001 591286729879/33385282*710647^(3/4) 4334944370006437 a001 516002918640/29134601*710647^(3/4) 4334944370006437 a001 4052739537881/228826127*710647^(3/4) 4334944370006437 a001 3536736619241/199691526*710647^(3/4) 4334944370006437 a001 6557470319842/370248451*710647^(3/4) 4334944370006438 a001 2504730781961/141422324*710647^(3/4) 4334944370006439 a001 956722026041/54018521*710647^(3/4) 4334944370006447 a001 365435296162/20633239*710647^(3/4) 4334944370006507 a001 139583862445/7881196*710647^(3/4) 4334944370006557 a001 514229/1149851*(1/2+1/2*5^(1/2))^43 4334944370006561 a001 53316291173/4870847*710647^(11/14) 4334944370006609 a001 86267571272/3010349*710647^(5/7) 4334944370006717 a001 139583862445/12752043*710647^(11/14) 4334944370006718 a001 2971215073/1860498*710647^(13/14) 4334944370006740 a001 182717648081/16692641*710647^(11/14) 4334944370006743 a001 956722026041/87403803*710647^(11/14) 4334944370006744 a001 2504730781961/228826127*710647^(11/14) 4334944370006744 a001 3278735159921/299537289*710647^(11/14) 4334944370006744 a001 10610209857723/969323029*710647^(11/14) 4334944370006744 a001 4052739537881/370248451*710647^(11/14) 4334944370006744 a001 387002188980/35355581*710647^(11/14) 4334944370006745 a001 591286729879/54018521*710647^(11/14) 4334944370006754 a001 7787980473/711491*710647^(11/14) 4334944370006814 a001 21566892818/1970299*710647^(11/14) 4334944370006916 a001 53316291173/3010349*710647^(3/4) 4334944370006957 a001 1548008755920/1149851*710647^(3/7) 4334944370007174 a001 20365011074/4870847*710647^(6/7) 4334944370007222 a001 32951280099/3010349*710647^(11/14) 4334944370007330 a001 53316291173/12752043*710647^(6/7) 4334944370007331 a001 137769300517640/317811 4334944370007353 a001 139583862445/33385282*710647^(6/7) 4334944370007356 a001 365435296162/87403803*710647^(6/7) 4334944370007357 a001 956722026041/228826127*710647^(6/7) 4334944370007357 a001 2504730781961/599074578*710647^(6/7) 4334944370007357 a001 6557470319842/1568397607*710647^(6/7) 4334944370007357 a001 10610209857723/2537720636*710647^(6/7) 4334944370007357 a001 4052739537881/969323029*710647^(6/7) 4334944370007357 a001 1548008755920/370248451*710647^(6/7) 4334944370007357 a001 591286729879/141422324*710647^(6/7) 4334944370007358 a001 225851433717/54018521*710647^(6/7) 4334944370007367 a001 86267571272/20633239*710647^(6/7) 4334944370007427 a001 32951280099/7881196*710647^(6/7) 4334944370007490 a001 32951280099/439204*439204^(2/3) 4334944370007570 a001 514229*710647^(1/2) 4334944370007787 a001 7778742049/4870847*710647^(13/14) 4334944370007835 a001 12586269025/3010349*710647^(6/7) 4334944370007943 a001 20365011074/12752043*710647^(13/14) 4334944370007966 a001 53316291173/33385282*710647^(13/14) 4334944370007970 a001 139583862445/87403803*710647^(13/14) 4334944370007970 a001 365435296162/228826127*710647^(13/14) 4334944370007970 a001 956722026041/599074578*710647^(13/14) 4334944370007970 a001 2504730781961/1568397607*710647^(13/14) 4334944370007970 a001 6557470319842/4106118243*710647^(13/14) 4334944370007970 a001 10610209857723/6643838879*710647^(13/14) 4334944370007970 a001 4052739537881/2537720636*710647^(13/14) 4334944370007970 a001 1548008755920/969323029*710647^(13/14) 4334944370007970 a001 591286729879/370248451*710647^(13/14) 4334944370007970 a001 225851433717/141422324*710647^(13/14) 4334944370007972 a001 86267571272/54018521*710647^(13/14) 4334944370007980 a001 32951280099/20633239*710647^(13/14) 4334944370008040 a001 12586269025/7881196*710647^(13/14) 4334944370008183 a001 225851433717/1149851*710647^(4/7) 4334944370008401 a001 45923100172558/105937 4334944370008448 a001 4807526976/3010349*710647^(13/14) 4334944370008558 a001 137769300517679/317811 4334944370008590 a001 3532546167120/8149 4334944370008652 a001 137769300517682/317811 4334944370008796 a001 86267571272/1149851*710647^(9/14) 4334944370009061 a001 45923100172565/105937 4334944370009409 a001 32951280099/1149851*710647^(5/7) 4334944370009518 a001 6557470319842/710647*271443^(4/13) 4334944370009716 a001 20365011074/1149851*710647^(3/4) 4334944370009987 a001 139583862445/439204*439204^(5/9) 4334944370010023 a001 12586269025/1149851*710647^(11/14) 4334944370010636 a001 4807526976/1149851*710647^(6/7) 4334944370011249 a001 1836311903/1149851*710647^(13/14) 4334944370011862 a001 365435810392/843 4334944370012484 a001 591286729879/439204*439204^(4/9) 4334944370013888 a001 317811/439204*2537720636^(14/15) 4334944370013888 a001 317811/439204*17393796001^(6/7) 4334944370013888 a001 317811/439204*45537549124^(14/17) 4334944370013888 a001 196418/710647*312119004989^(4/5) 4334944370013888 a001 196418/710647*(1/2+1/2*5^(1/2))^44 4334944370013888 a001 196418/710647*23725150497407^(11/16) 4334944370013888 a001 317811/439204*817138163596^(14/19) 4334944370013888 a001 317811/439204*14662949395604^(2/3) 4334944370013888 a001 317811/439204*(1/2+1/2*5^(1/2))^42 4334944370013888 a001 317811/439204*505019158607^(3/4) 4334944370013888 a001 317811/439204*192900153618^(7/9) 4334944370013888 a001 196418/710647*73681302247^(11/13) 4334944370013888 a001 317811/439204*10749957122^(7/8) 4334944370013888 a001 196418/710647*10749957122^(11/12) 4334944370013888 a001 317811/439204*4106118243^(21/23) 4334944370013888 a001 196418/710647*4106118243^(22/23) 4334944370013888 a001 317811/439204*1568397607^(21/22) 4334944370014044 a001 2504730781961/710647*271443^(5/13) 4334944370014981 a001 2504730781961/439204*439204^(1/3) 4334944370017478 a001 10610209857723/439204*439204^(2/9) 4334944370018570 a001 956722026041/710647*271443^(6/13) 4334944370019193 a001 222915410845060/514229 4334944370020833 a001 591286729879/710647*271443^(1/2) 4334944370021220 a001 208010/109801*2537720636^(8/9) 4334944370021220 a001 98209/930249*(1/2+1/2*5^(1/2))^46 4334944370021220 a001 208010/109801*312119004989^(8/11) 4334944370021220 a001 208010/109801*(1/2+1/2*5^(1/2))^40 4334944370021220 a001 208010/109801*23725150497407^(5/8) 4334944370021220 a001 208010/109801*73681302247^(10/13) 4334944370021220 a001 208010/109801*28143753123^(4/5) 4334944370021220 a001 208010/109801*10749957122^(5/6) 4334944370021220 a001 98209/930249*10749957122^(23/24) 4334944370021220 a001 208010/109801*4106118243^(20/23) 4334944370021220 a001 208010/109801*1568397607^(10/11) 4334944370021220 a001 208010/109801*599074578^(20/21) 4334944370021375 a001 3278735159921/930249*271443^(5/13) 4334944370021381 a001 10610209857723/1149851*271443^(4/13) 4334944370021994 a001 583600122208514/1346269 4334944370022004 a001 6557470319842/64079*24476^(1/7) 4334944370022289 a001 196418/4870847*45537549124^(16/17) 4334944370022289 a001 196418/4870847*14662949395604^(16/21) 4334944370022289 a001 196418/4870847*(1/2+1/2*5^(1/2))^48 4334944370022289 a001 196418/4870847*192900153618^(8/9) 4334944370022289 a001 2178309/439204*817138163596^(2/3) 4334944370022289 a001 2178309/439204*(1/2+1/2*5^(1/2))^38 4334944370022289 a001 196418/4870847*73681302247^(12/13) 4334944370022289 a001 2178309/439204*10749957122^(19/24) 4334944370022289 a001 2178309/439204*4106118243^(19/23) 4334944370022289 a001 2178309/439204*1568397607^(19/22) 4334944370022289 a001 2178309/439204*599074578^(19/21) 4334944370022289 a001 2178309/439204*228826127^(19/20) 4334944370022402 a001 763942477890241/1762289 4334944370022408 a001 102334155/439204*7881196^(10/11) 4334944370022415 a001 433494437/439204*7881196^(9/11) 4334944370022421 a001 1836311903/439204*7881196^(8/11) 4334944370022425 a001 1201881744/109801*7881196^(2/3) 4334944370022428 a001 7778742049/439204*7881196^(7/11) 4334944370022434 a001 32951280099/439204*7881196^(6/11) 4334944370022440 a001 139583862445/439204*7881196^(5/11) 4334944370022445 a001 5702887/439204*141422324^(12/13) 4334944370022445 a001 5702887/439204*2537720636^(4/5) 4334944370022445 a001 5702887/439204*45537549124^(12/17) 4334944370022445 a001 196418/12752043*312119004989^(10/11) 4334944370022445 a001 196418/12752043*(1/2+1/2*5^(1/2))^50 4334944370022445 a001 196418/12752043*3461452808002^(5/6) 4334944370022445 a001 5702887/439204*14662949395604^(4/7) 4334944370022445 a001 5702887/439204*(1/2+1/2*5^(1/2))^36 4334944370022445 a001 5702887/439204*505019158607^(9/14) 4334944370022445 a001 5702887/439204*192900153618^(2/3) 4334944370022445 a001 5702887/439204*73681302247^(9/13) 4334944370022445 a001 5702887/439204*10749957122^(3/4) 4334944370022445 a001 5702887/439204*4106118243^(18/23) 4334944370022445 a001 5702887/439204*1568397607^(9/11) 4334944370022445 a001 5702887/439204*599074578^(6/7) 4334944370022445 a001 5702887/439204*228826127^(9/10) 4334944370022446 a001 5702887/439204*87403803^(18/19) 4334944370022447 a001 591286729879/439204*7881196^(4/11) 4334944370022449 a001 956722026041/439204*7881196^(1/3) 4334944370022453 a001 2504730781961/439204*7881196^(3/11) 4334944370022459 a001 10610209857723/439204*7881196^(2/11) 4334944370022462 a001 4000054745132932/9227465 4334944370022463 a001 102334155/439204*20633239^(6/7) 4334944370022464 a001 66978574/109801*20633239^(4/5) 4334944370022465 a001 567451585/219602*20633239^(5/7) 4334944370022466 a001 7778742049/439204*20633239^(3/5) 4334944370022466 a001 12586269025/439204*20633239^(4/7) 4334944370022468 a001 139583862445/439204*20633239^(3/7) 4334944370022468 a001 225851433717/439204*20633239^(2/5) 4334944370022468 a001 196452/5779*45537549124^(2/3) 4334944370022468 a001 98209/16692641*(1/2+1/2*5^(1/2))^52 4334944370022468 a001 98209/16692641*23725150497407^(13/16) 4334944370022468 a001 98209/16692641*505019158607^(13/14) 4334944370022468 a001 196452/5779*(1/2+1/2*5^(1/2))^34 4334944370022468 a001 196452/5779*10749957122^(17/24) 4334944370022468 a001 196452/5779*4106118243^(17/23) 4334944370022468 a001 196452/5779*1568397607^(17/22) 4334944370022468 a001 196452/5779*599074578^(17/21) 4334944370022468 a001 196452/5779*228826127^(17/20) 4334944370022469 a001 196452/5779*87403803^(17/19) 4334944370022469 a001 387002188980/109801*20633239^(2/7) 4334944370022470 a001 3278735159921/219602*20633239^(1/5) 4334944370022470 a001 10472279279618314/24157817 4334944370022471 a001 196418/87403803*14662949395604^(6/7) 4334944370022471 a001 39088169/439204*(1/2+1/2*5^(1/2))^32 4334944370022471 a001 39088169/439204*23725150497407^(1/2) 4334944370022471 a001 39088169/439204*505019158607^(4/7) 4334944370022471 a001 39088169/439204*73681302247^(8/13) 4334944370022471 a001 39088169/439204*10749957122^(2/3) 4334944370022471 a001 39088169/439204*4106118243^(16/23) 4334944370022471 a001 39088169/439204*1568397607^(8/11) 4334944370022471 a001 39088169/439204*599074578^(16/21) 4334944370022471 a001 39088169/439204*228826127^(4/5) 4334944370022472 a001 102334155/439204*141422324^(10/13) 4334944370022472 a001 13708391546861005/31622993 4334944370022472 a001 196452/5779*33385282^(17/18) 4334944370022472 a001 701408733/439204*141422324^(2/3) 4334944370022472 a001 433494437/439204*141422324^(9/13) 4334944370022472 a001 1836311903/439204*141422324^(8/13) 4334944370022472 a001 7778742049/439204*141422324^(7/13) 4334944370022472 a001 32951280099/439204*141422324^(6/13) 4334944370022472 a001 39088169/439204*87403803^(16/19) 4334944370022472 a001 139583862445/439204*141422324^(5/13) 4334944370022472 a001 102334155/439204*2537720636^(2/3) 4334944370022472 a001 102334155/439204*45537549124^(10/17) 4334944370022472 a001 196418/228826127*14662949395604^(8/9) 4334944370022472 a001 102334155/439204*312119004989^(6/11) 4334944370022472 a001 102334155/439204*14662949395604^(10/21) 4334944370022472 a001 102334155/439204*(1/2+1/2*5^(1/2))^30 4334944370022472 a001 102334155/439204*192900153618^(5/9) 4334944370022472 a001 102334155/439204*28143753123^(3/5) 4334944370022472 a001 102334155/439204*10749957122^(5/8) 4334944370022472 a001 102334155/439204*4106118243^(15/23) 4334944370022472 a001 102334155/439204*1568397607^(15/22) 4334944370022472 a001 102334155/439204*599074578^(5/7) 4334944370022472 a001 182717648081/219602*141422324^(1/3) 4334944370022472 a001 591286729879/439204*141422324^(4/13) 4334944370022472 a001 2504730781961/439204*141422324^(3/13) 4334944370022472 a001 10610209857723/439204*141422324^(2/13) 4334944370022472 a001 71778070001547716/165580141 4334944370022472 a001 102334155/439204*228826127^(3/4) 4334944370022472 a001 66978574/109801*17393796001^(4/7) 4334944370022472 a001 66978574/109801*14662949395604^(4/9) 4334944370022472 a001 66978574/109801*(1/2+1/2*5^(1/2))^28 4334944370022472 a001 66978574/109801*73681302247^(7/13) 4334944370022472 a001 66978574/109801*10749957122^(7/12) 4334944370022472 a001 66978574/109801*4106118243^(14/23) 4334944370022472 a001 66978574/109801*1568397607^(7/11) 4334944370022472 a001 187917426910921138/433494437 4334944370022472 a001 66978574/109801*599074578^(2/3) 4334944370022472 a001 196418/1568397607*14662949395604^(20/21) 4334944370022472 a001 701408733/439204*(1/2+1/2*5^(1/2))^26 4334944370022472 a001 701408733/439204*73681302247^(1/2) 4334944370022472 a001 701408733/439204*10749957122^(13/24) 4334944370022472 a001 701408733/439204*4106118243^(13/23) 4334944370022472 a001 701408733/439204*1568397607^(13/22) 4334944370022472 a001 14469829727388697/33379505 4334944370022472 a001 1836311903/439204*2537720636^(8/15) 4334944370022472 a001 12586269025/439204*2537720636^(4/9) 4334944370022472 a001 7778742049/439204*2537720636^(7/15) 4334944370022472 a001 32951280099/439204*2537720636^(2/5) 4334944370022472 a001 1836311903/439204*45537549124^(8/17) 4334944370022472 a001 1836311903/439204*14662949395604^(8/21) 4334944370022472 a001 1836311903/439204*(1/2+1/2*5^(1/2))^24 4334944370022472 a001 1836311903/439204*192900153618^(4/9) 4334944370022472 a001 1836311903/439204*73681302247^(6/13) 4334944370022472 a001 1836311903/439204*10749957122^(1/2) 4334944370022472 a001 139583862445/439204*2537720636^(1/3) 4334944370022472 a001 591286729879/439204*2537720636^(4/15) 4334944370022472 a001 387002188980/109801*2537720636^(2/9) 4334944370022472 a001 2504730781961/439204*2537720636^(1/5) 4334944370022472 a001 1836311903/439204*4106118243^(12/23) 4334944370022472 a001 1288005205282725956/2971215073 4334944370022472 a001 10610209857723/439204*2537720636^(2/15) 4334944370022472 a001 1201881744/109801*312119004989^(2/5) 4334944370022472 a001 1201881744/109801*(1/2+1/2*5^(1/2))^22 4334944370022472 a001 1201881744/109801*10749957122^(11/24) 4334944370022472 a001 12586269025/439204*(1/2+1/2*5^(1/2))^20 4334944370022472 a001 12586269025/439204*23725150497407^(5/16) 4334944370022472 a001 12586269025/439204*505019158607^(5/14) 4334944370022472 a001 12586269025/439204*73681302247^(5/13) 4334944370022472 a001 225851433717/439204*17393796001^(2/7) 4334944370022472 a001 12586269025/439204*28143753123^(2/5) 4334944370022472 a001 3278735159921/219602*17393796001^(1/7) 4334944370022472 a001 32951280099/439204*45537549124^(6/17) 4334944370022472 a001 32951280099/439204*14662949395604^(2/7) 4334944370022472 a001 32951280099/439204*(1/2+1/2*5^(1/2))^18 4334944370022472 a001 32951280099/439204*192900153618^(1/3) 4334944370022472 a001 139583862445/439204*45537549124^(5/17) 4334944370022472 a001 591286729879/439204*45537549124^(4/17) 4334944370022472 a001 2504730781961/439204*45537549124^(3/17) 4334944370022472 a001 10610209857723/439204*45537549124^(2/17) 4334944370022472 a001 196418*(1/2+1/2*5^(1/2))^16 4334944370022472 a001 196418*23725150497407^(1/4) 4334944370022472 a001 225851433717/439204*14662949395604^(2/9) 4334944370022472 a001 225851433717/439204*(1/2+1/2*5^(1/2))^14 4334944370022472 a001 2504730781961/439204*817138163596^(3/19) 4334944370022472 a001 387002188980/109801*(1/2+1/2*5^(1/2))^10 4334944370022472 a001 10610209857723/439204*14662949395604^(2/21) 4334944370022472 a001 10610209857723/439204*(1/2+1/2*5^(1/2))^6 4334944370022472 a001 2504730781961/439204*(1/2+1/2*5^(1/2))^9 4334944370022472 a001 956722026041/439204*(1/2+1/2*5^(1/2))^11 4334944370022472 a001 139583862445/439204*312119004989^(3/11) 4334944370022472 a001 139583862445/439204*14662949395604^(5/21) 4334944370022472 a001 139583862445/439204*(1/2+1/2*5^(1/2))^15 4334944370022472 a001 139583862445/439204*192900153618^(5/18) 4334944370022472 a001 4052739537881/439204*73681302247^(2/13) 4334944370022472 a001 196418*73681302247^(4/13) 4334944370022472 a001 591286729879/439204*73681302247^(3/13) 4334944370022472 a001 182717648081/219602*73681302247^(1/4) 4334944370022472 a001 387002188980/109801*28143753123^(1/5) 4334944370022472 a001 139583862445/439204*28143753123^(3/10) 4334944370022472 a001 10182505537/219602*817138163596^(1/3) 4334944370022472 a001 10182505537/219602*(1/2+1/2*5^(1/2))^19 4334944370022472 a001 10610209857723/439204*10749957122^(1/8) 4334944370022472 a001 4052739537881/439204*10749957122^(1/6) 4334944370022472 a001 2504730781961/439204*10749957122^(3/16) 4334944370022472 a001 387002188980/109801*10749957122^(5/24) 4334944370022472 a001 7778742049/439204*17393796001^(3/7) 4334944370022472 a001 591286729879/439204*10749957122^(1/4) 4334944370022472 a001 12586269025/439204*10749957122^(5/12) 4334944370022472 a001 225851433717/439204*10749957122^(7/24) 4334944370022472 a001 139583862445/439204*10749957122^(5/16) 4334944370022472 a001 196418*10749957122^(1/3) 4334944370022472 a001 32951280099/439204*10749957122^(3/8) 4334944370022472 a001 7778742049/439204*45537549124^(7/17) 4334944370022472 a001 7778742049/439204*14662949395604^(1/3) 4334944370022472 a001 7778742049/439204*(1/2+1/2*5^(1/2))^21 4334944370022472 a001 7778742049/439204*192900153618^(7/18) 4334944370022472 a001 7778742049/439204*10749957122^(7/16) 4334944370022472 a001 10610209857723/439204*4106118243^(3/23) 4334944370022472 a001 1055742755741761/2435424 4334944370022472 a001 4052739537881/439204*4106118243^(4/23) 4334944370022472 a001 387002188980/109801*4106118243^(5/23) 4334944370022472 a001 591286729879/439204*4106118243^(6/23) 4334944370022472 a001 225851433717/439204*4106118243^(7/23) 4334944370022472 a001 1201881744/109801*4106118243^(11/23) 4334944370022472 a001 196418*4106118243^(8/23) 4334944370022472 a001 2971215073/439204*(1/2+1/2*5^(1/2))^23 4334944370022472 a001 32951280099/439204*4106118243^(9/23) 4334944370022472 a001 12586269025/439204*4106118243^(10/23) 4334944370022472 a001 2971215073/439204*4106118243^(1/2) 4334944370022472 a001 10610209857723/439204*1568397607^(3/22) 4334944370022472 a001 796030994551510258/1836311903 4334944370022472 a001 567451585/219602*2537720636^(5/9) 4334944370022472 a001 4052739537881/439204*1568397607^(2/11) 4334944370022472 a001 387002188980/109801*1568397607^(5/22) 4334944370022472 a001 956722026041/439204*1568397607^(1/4) 4334944370022472 a001 591286729879/439204*1568397607^(3/11) 4334944370022472 a001 225851433717/439204*1568397607^(7/22) 4334944370022472 a001 196418*1568397607^(4/11) 4334944370022472 a001 567451585/219602*312119004989^(5/11) 4334944370022472 a001 567451585/219602*(1/2+1/2*5^(1/2))^25 4334944370022472 a001 567451585/219602*3461452808002^(5/12) 4334944370022472 a001 567451585/219602*28143753123^(1/2) 4334944370022472 a001 1836311903/439204*1568397607^(6/11) 4334944370022472 a001 32951280099/439204*1568397607^(9/22) 4334944370022472 a001 12586269025/439204*1568397607^(5/11) 4334944370022472 a001 1201881744/109801*1568397607^(1/2) 4334944370022472 a001 10610209857723/439204*599074578^(1/7) 4334944370022472 a001 101352261273431520/233802911 4334944370022472 a001 3278735159921/219602*599074578^(1/6) 4334944370022472 a001 4052739537881/439204*599074578^(4/21) 4334944370022472 a001 2504730781961/439204*599074578^(3/14) 4334944370022472 a001 387002188980/109801*599074578^(5/21) 4334944370022472 a001 591286729879/439204*599074578^(2/7) 4334944370022472 a001 225851433717/439204*599074578^(1/3) 4334944370022472 a001 433494437/439204*2537720636^(3/5) 4334944370022472 a001 139583862445/439204*599074578^(5/14) 4334944370022472 a001 196418*599074578^(8/21) 4334944370022472 a001 433494437/439204*45537549124^(9/17) 4334944370022472 a001 433494437/439204*817138163596^(9/19) 4334944370022472 a001 433494437/439204*14662949395604^(3/7) 4334944370022472 a001 433494437/439204*(1/2+1/2*5^(1/2))^27 4334944370022472 a001 433494437/439204*192900153618^(1/2) 4334944370022472 a001 433494437/439204*10749957122^(9/16) 4334944370022472 a001 32951280099/439204*599074578^(3/7) 4334944370022472 a001 701408733/439204*599074578^(13/21) 4334944370022472 a001 12586269025/439204*599074578^(10/21) 4334944370022472 a001 7778742049/439204*599074578^(1/2) 4334944370022472 a001 1201881744/109801*599074578^(11/21) 4334944370022472 a001 1836311903/439204*599074578^(4/7) 4334944370022472 a001 58069678454686711/133957148 4334944370022472 a001 433494437/439204*599074578^(9/14) 4334944370022472 a001 10610209857723/439204*228826127^(3/20) 4334944370022472 a001 4052739537881/439204*228826127^(1/5) 4334944370022472 a001 387002188980/109801*228826127^(1/4) 4334944370022472 a001 591286729879/439204*228826127^(3/10) 4334944370022472 a001 225851433717/439204*228826127^(7/20) 4334944370022472 a001 139583862445/439204*228826127^(3/8) 4334944370022472 a001 196418/370248451*14662949395604^(19/21) 4334944370022472 a001 165580141/439204*(1/2+1/2*5^(1/2))^29 4334944370022472 a001 165580141/439204*1322157322203^(1/2) 4334944370022472 a001 196418*228826127^(2/5) 4334944370022472 a001 32951280099/439204*228826127^(9/20) 4334944370022472 a001 12586269025/439204*228826127^(1/2) 4334944370022472 a001 1201881744/109801*228826127^(11/20) 4334944370022472 a001 66978574/109801*228826127^(7/10) 4334944370022472 a001 1836311903/439204*228826127^(3/5) 4334944370022472 a001 701408733/439204*228826127^(13/20) 4334944370022472 a001 567451585/219602*228826127^(5/8) 4334944370022472 a001 2112442233705986/4873055 4334944370022472 a001 10610209857723/439204*87403803^(3/19) 4334944370022472 a001 4052739537881/439204*87403803^(4/19) 4334944370022472 a001 387002188980/109801*87403803^(5/19) 4334944370022472 a001 591286729879/439204*87403803^(6/19) 4334944370022472 a001 225851433717/439204*87403803^(7/19) 4334944370022472 a001 98209/70711162*3461452808002^(11/12) 4334944370022472 a001 31622993/219602*(1/2+1/2*5^(1/2))^31 4334944370022472 a001 31622993/219602*9062201101803^(1/2) 4334944370022472 a001 196418*87403803^(8/19) 4334944370022472 a001 32951280099/439204*87403803^(9/19) 4334944370022472 a001 10182505537/219602*87403803^(1/2) 4334944370022472 a001 12586269025/439204*87403803^(10/19) 4334944370022472 a001 1201881744/109801*87403803^(11/19) 4334944370022472 a001 1836311903/439204*87403803^(12/19) 4334944370022472 a001 102334155/439204*87403803^(15/19) 4334944370022472 a001 701408733/439204*87403803^(13/19) 4334944370022472 a001 66978574/109801*87403803^(14/19) 4334944370022473 a001 16944503814103696/39088169 4334944370022473 a001 10610209857723/439204*33385282^(1/6) 4334944370022473 a001 4052739537881/439204*33385282^(2/9) 4334944370022473 a001 2504730781961/439204*33385282^(1/4) 4334944370022473 a001 387002188980/109801*33385282^(5/18) 4334944370022473 a001 591286729879/439204*33385282^(1/3) 4334944370022473 a001 24157817/439204*141422324^(11/13) 4334944370022473 a001 24157817/439204*2537720636^(11/15) 4334944370022473 a001 24157817/439204*45537549124^(11/17) 4334944370022473 a001 24157817/439204*312119004989^(3/5) 4334944370022473 a001 24157817/439204*14662949395604^(11/21) 4334944370022473 a001 24157817/439204*(1/2+1/2*5^(1/2))^33 4334944370022473 a001 24157817/439204*192900153618^(11/18) 4334944370022473 a001 24157817/439204*10749957122^(11/16) 4334944370022473 a001 24157817/439204*1568397607^(3/4) 4334944370022473 a001 24157817/439204*599074578^(11/14) 4334944370022473 a001 225851433717/439204*33385282^(7/18) 4334944370022474 a001 139583862445/439204*33385282^(5/12) 4334944370022474 a001 196418*33385282^(4/9) 4334944370022474 a001 32951280099/439204*33385282^(1/2) 4334944370022474 a001 12586269025/439204*33385282^(5/9) 4334944370022474 a001 7778742049/439204*33385282^(7/12) 4334944370022474 a001 1201881744/109801*33385282^(11/18) 4334944370022475 a001 1836311903/439204*33385282^(2/3) 4334944370022475 a001 701408733/439204*33385282^(13/18) 4334944370022475 a001 39088169/439204*33385282^(8/9) 4334944370022475 a001 433494437/439204*33385282^(3/4) 4334944370022475 a001 66978574/109801*33385282^(7/9) 4334944370022475 a001 102334155/439204*33385282^(5/6) 4334944370022476 a001 63453181710641/146376 4334944370022477 a001 10610209857723/439204*12752043^(3/17) 4334944370022477 a001 24157817/439204*33385282^(11/12) 4334944370022478 a001 4052739537881/439204*12752043^(4/17) 4334944370022480 a001 387002188980/109801*12752043^(5/17) 4334944370022481 a001 591286729879/439204*12752043^(6/17) 4334944370022482 a001 9227465/439204*2537720636^(7/9) 4334944370022482 a001 9227465/439204*17393796001^(5/7) 4334944370022482 a001 196418/20633239*817138163596^(17/19) 4334944370022482 a001 196418/20633239*14662949395604^(17/21) 4334944370022482 a001 196418/20633239*(1/2+1/2*5^(1/2))^51 4334944370022482 a001 9227465/439204*312119004989^(7/11) 4334944370022482 a001 196418/20633239*192900153618^(17/18) 4334944370022482 a001 9227465/439204*(1/2+1/2*5^(1/2))^35 4334944370022482 a001 9227465/439204*505019158607^(5/8) 4334944370022482 a001 9227465/439204*28143753123^(7/10) 4334944370022482 a001 9227465/439204*599074578^(5/6) 4334944370022482 a001 9227465/439204*228826127^(7/8) 4334944370022483 a001 225851433717/439204*12752043^(7/17) 4334944370022485 a001 196418*12752043^(8/17) 4334944370022485 a001 53316291173/439204*12752043^(1/2) 4334944370022486 a001 32951280099/439204*12752043^(9/17) 4334944370022488 a001 12586269025/439204*12752043^(10/17) 4334944370022489 a001 1201881744/109801*12752043^(11/17) 4334944370022491 a001 1836311903/439204*12752043^(12/17) 4334944370022492 a001 701408733/439204*12752043^(13/17) 4334944370022494 a001 66978574/109801*12752043^(14/17) 4334944370022495 a001 102334155/439204*12752043^(15/17) 4334944370022496 a001 39088169/439204*12752043^(16/17) 4334944370022499 a001 2472169789352450/5702887 4334944370022506 a001 10610209857723/439204*4870847^(3/16) 4334944370022518 a001 4052739537881/439204*4870847^(1/4) 4334944370022529 a001 387002188980/109801*4870847^(5/16) 4334944370022540 a001 591286729879/439204*4870847^(3/8) 4334944370022542 a001 98209/3940598*14662949395604^(7/9) 4334944370022542 a001 98209/3940598*(1/2+1/2*5^(1/2))^49 4334944370022542 a001 98209/3940598*505019158607^(7/8) 4334944370022542 a001 1762289/219602*(1/2+1/2*5^(1/2))^37 4334944370022552 a001 225851433717/439204*4870847^(7/16) 4334944370022563 a001 196418*4870847^(1/2) 4334944370022575 a001 32951280099/439204*4870847^(9/16) 4334944370022586 a001 12586269025/439204*4870847^(5/8) 4334944370022598 a001 1201881744/109801*4870847^(11/16) 4334944370022609 a001 1836311903/439204*4870847^(3/4) 4334944370022620 a001 701408733/439204*4870847^(13/16) 4334944370022632 a001 66978574/109801*4870847^(7/8) 4334944370022643 a001 102334155/439204*4870847^(15/16) 4334944370022655 a001 956722222464/2207 4334944370022722 a001 10610209857723/439204*1860498^(1/5) 4334944370022806 a001 4052739537881/439204*1860498^(4/15) 4334944370022848 a001 2504730781961/439204*1860498^(3/10) 4334944370022889 a001 387002188980/109801*1860498^(1/3) 4334944370022950 a001 1346269/439204*2537720636^(13/15) 4334944370022950 a001 1346269/439204*45537549124^(13/17) 4334944370022950 a001 196418/3010349*(1/2+1/2*5^(1/2))^47 4334944370022950 a001 1346269/439204*14662949395604^(13/21) 4334944370022950 a001 1346269/439204*(1/2+1/2*5^(1/2))^39 4334944370022950 a001 1346269/439204*192900153618^(13/18) 4334944370022950 a001 1346269/439204*73681302247^(3/4) 4334944370022950 a001 1346269/439204*10749957122^(13/16) 4334944370022950 a001 1346269/439204*599074578^(13/14) 4334944370022973 a001 591286729879/439204*1860498^(2/5) 4334944370023056 a001 225851433717/439204*1860498^(7/15) 4334944370023095 a001 365435296162/710647*271443^(7/13) 4334944370023098 a001 139583862445/439204*1860498^(1/2) 4334944370023106 a001 10610209857723/3010349*271443^(5/13) 4334944370023140 a001 196418*1860498^(8/15) 4334944370023223 a001 32951280099/439204*1860498^(3/5) 4334944370023307 a001 12586269025/439204*1860498^(2/3) 4334944370023349 a001 7778742049/439204*1860498^(7/10) 4334944370023390 a001 1201881744/109801*1860498^(11/15) 4334944370023474 a001 1836311903/439204*1860498^(4/5) 4334944370023516 a001 567451585/219602*1860498^(5/6) 4334944370023557 a001 701408733/439204*1860498^(13/15) 4334944370023599 a001 433494437/439204*1860498^(9/10) 4334944370023641 a001 66978574/109801*1860498^(14/15) 4334944370023724 a001 180342355681727/416020 4334944370024311 a001 10610209857723/439204*710647^(3/14) 4334944370024618 a001 3278735159921/219602*710647^(1/4) 4334944370024924 a001 4052739537881/439204*710647^(2/7) 4334944370025177 a001 3536736619241/90481*103682^(5/24) 4334944370025538 a001 387002188980/109801*710647^(5/14) 4334944370025751 a001 196418/1149851*45537549124^(15/17) 4334944370025751 a001 196418/1149851*312119004989^(9/11) 4334944370025751 a001 196418/1149851*14662949395604^(5/7) 4334944370025751 a001 196418/1149851*(1/2+1/2*5^(1/2))^45 4334944370025751 a001 196418/1149851*192900153618^(5/6) 4334944370025751 a001 514229/439204*(1/2+1/2*5^(1/2))^41 4334944370025751 a001 196418/1149851*28143753123^(9/10) 4334944370025751 a001 196418/1149851*10749957122^(15/16) 4334944370025901 a001 2504730781961/1860498*271443^(6/13) 4334944370025907 a001 4052739537881/1149851*271443^(5/13) 4334944370026151 a001 591286729879/439204*710647^(3/7) 4334944370026764 a001 225851433717/439204*710647^(1/2) 4334944370026971 a001 6557470319842/4870847*271443^(6/13) 4334944370027223 a001 10610209857723/7881196*271443^(6/13) 4334944370027377 a001 196418*710647^(4/7) 4334944370027621 a001 139583862445/710647*271443^(8/13) 4334944370027632 a001 1346269*271443^(6/13) 4334944370027990 a001 32951280099/439204*710647^(9/14) 4334944370028164 a001 832040*271443^(1/2) 4334944370028603 a001 12586269025/439204*710647^(5/7) 4334944370028910 a001 7778742049/439204*710647^(3/4) 4334944370029216 a001 1201881744/109801*710647^(11/14) 4334944370029234 a001 4052739537881/4870847*271443^(1/2) 4334944370029390 a001 3536736619241/4250681*271443^(1/2) 4334944370029486 a001 3278735159921/3940598*271443^(1/2) 4334944370029829 a001 1836311903/439204*710647^(6/7) 4334944370029895 a001 2504730781961/3010349*271443^(1/2) 4334944370030427 a001 956722026041/1860498*271443^(7/13) 4334944370030432 a001 1548008755920/1149851*271443^(6/13) 4334944370030443 a001 701408733/439204*710647^(13/14) 4334944370030805 a001 4807526976/167761*167761^(4/5) 4334944370031056 a001 45923100172798/105937 4334944370031496 a001 2504730781961/4870847*271443^(7/13) 4334944370031653 a001 6557470319842/12752043*271443^(7/13) 4334944370031689 a001 10610209857723/20633239*271443^(7/13) 4334944370031749 a001 4052739537881/7881196*271443^(7/13) 4334944370032147 a001 53316291173/710647*271443^(9/13) 4334944370032158 a001 1548008755920/3010349*271443^(7/13) 4334944370032695 a001 956722026041/1149851*271443^(1/2) 4334944370034953 a001 182717648081/930249*271443^(8/13) 4334944370034958 a001 514229*271443^(7/13) 4334944370036022 a001 956722026041/4870847*271443^(8/13) 4334944370036049 a001 10610209857723/439204*271443^(3/13) 4334944370036178 a001 2504730781961/12752043*271443^(8/13) 4334944370036201 a001 3278735159921/16692641*271443^(8/13) 4334944370036206 a001 10610209857723/54018521*271443^(8/13) 4334944370036215 a001 4052739537881/20633239*271443^(8/13) 4334944370036275 a001 387002188980/1970299*271443^(8/13) 4334944370036672 a001 20365011074/710647*271443^(10/13) 4334944370036683 a001 591286729879/3010349*271443^(8/13) 4334944370039478 a001 139583862445/1860498*271443^(9/13) 4334944370039484 a001 225851433717/1149851*271443^(8/13) 4334944370040548 a001 365435296162/4870847*271443^(9/13) 4334944370040575 a001 4052739537881/439204*271443^(4/13) 4334944370040704 a001 956722026041/12752043*271443^(9/13) 4334944370040727 a001 2504730781961/33385282*271443^(9/13) 4334944370040730 a001 6557470319842/87403803*271443^(9/13) 4334944370040731 a001 10610209857723/141422324*271443^(9/13) 4334944370040732 a001 4052739537881/54018521*271443^(9/13) 4334944370040741 a001 140728068720/1875749*271443^(9/13) 4334944370040800 a001 591286729879/7881196*271443^(9/13) 4334944370041198 a001 7778742049/710647*271443^(11/13) 4334944370041209 a001 225851433717/3010349*271443^(9/13) 4334944370041979 a001 6557470319842/271443*103682^(1/4) 4334944370044004 a001 53316291173/1860498*271443^(10/13) 4334944370044009 a001 86267571272/1149851*271443^(9/13) 4334944370044944 a001 98209/219602*(1/2+1/2*5^(1/2))^43 4334944370045073 a001 139583862445/4870847*271443^(10/13) 4334944370045100 a001 387002188980/109801*271443^(5/13) 4334944370045230 a001 365435296162/12752043*271443^(10/13) 4334944370045252 a001 956722026041/33385282*271443^(10/13) 4334944370045256 a001 2504730781961/87403803*271443^(10/13) 4334944370045256 a001 6557470319842/228826127*271443^(10/13) 4334944370045256 a001 10610209857723/370248451*271443^(10/13) 4334944370045256 a001 4052739537881/141422324*271443^(10/13) 4334944370045258 a001 1548008755920/54018521*271443^(10/13) 4334944370045266 a001 591286729879/20633239*271443^(10/13) 4334944370045326 a001 225851433717/7881196*271443^(10/13) 4334944370045724 a001 2971215073/710647*271443^(12/13) 4334944370045735 a001 86267571272/3010349*271443^(10/13) 4334944370045901 a001 701408733/64079*64079^(22/23) 4334944370048530 a001 10182505537/930249*271443^(11/13) 4334944370048535 a001 32951280099/1149851*271443^(10/13) 4334944370049599 a001 53316291173/4870847*271443^(11/13) 4334944370049626 a001 591286729879/439204*271443^(6/13) 4334944370049755 a001 139583862445/12752043*271443^(11/13) 4334944370049778 a001 182717648081/16692641*271443^(11/13) 4334944370049781 a001 956722026041/87403803*271443^(11/13) 4334944370049782 a001 2504730781961/228826127*271443^(11/13) 4334944370049782 a001 3278735159921/299537289*271443^(11/13) 4334944370049782 a001 10610209857723/969323029*271443^(11/13) 4334944370049782 a001 4052739537881/370248451*271443^(11/13) 4334944370049782 a001 387002188980/35355581*271443^(11/13) 4334944370049783 a001 591286729879/54018521*271443^(11/13) 4334944370049792 a001 7787980473/711491*271443^(11/13) 4334944370049852 a001 21566892818/1970299*271443^(11/13) 4334944370050250 a001 52623190191351/121393 4334944370050260 a001 32951280099/3010349*271443^(11/13) 4334944370051889 a001 182717648081/219602*271443^(1/2) 4334944370053055 a001 7778742049/1860498*271443^(12/13) 4334944370053061 a001 12586269025/1149851*271443^(11/13) 4334944370054125 a001 20365011074/4870847*271443^(12/13) 4334944370054152 a001 225851433717/439204*271443^(7/13) 4334944370054281 a001 53316291173/12752043*271443^(12/13) 4334944370054304 a001 139583862445/33385282*271443^(12/13) 4334944370054307 a001 365435296162/87403803*271443^(12/13) 4334944370054307 a001 956722026041/228826127*271443^(12/13) 4334944370054308 a001 2504730781961/599074578*271443^(12/13) 4334944370054308 a001 6557470319842/1568397607*271443^(12/13) 4334944370054308 a001 10610209857723/2537720636*271443^(12/13) 4334944370054308 a001 4052739537881/969323029*271443^(12/13) 4334944370054308 a001 1548008755920/370248451*271443^(12/13) 4334944370054308 a001 591286729879/141422324*271443^(12/13) 4334944370054309 a001 225851433717/54018521*271443^(12/13) 4334944370054318 a001 86267571272/20633239*271443^(12/13) 4334944370054377 a001 32951280099/7881196*271443^(12/13) 4334944370054786 a001 12586269025/3010349*271443^(12/13) 4334944370057581 a001 225850601680/521 4334944370057586 a001 4807526976/1149851*271443^(12/13) 4334944370058652 a001 52623190191453/121393 4334944370058677 a001 196418*271443^(8/13) 4334944370058781 a001 4052739537881/271443*103682^(7/24) 4334944370058817 a001 52623190191455/121393 4334944370058899 a001 52623190191456/121393 4334944370059311 a001 52623190191461/121393 4334944370061611 a001 53316291173/167761*167761^(3/5) 4334944370062112 a001 52623190191495/121393 4334944370063203 a001 32951280099/439204*271443^(9/13) 4334944370067729 a001 12586269025/439204*271443^(10/13) 4334944370072254 a001 1201881744/109801*271443^(11/13) 4334944370075583 a001 2504730781961/271443*103682^(1/3) 4334944370076780 a001 1836311903/439204*271443^(12/13) 4334944370077708 a001 4052739537881/39603*15127^(3/20) 4334944370081306 a001 52623190191728/121393 4334944370091802 a001 1134903170/64079*64079^(21/23) 4334944370092385 a001 516002918640/90481*103682^(3/8) 4334944370092417 a001 591286729879/167761*167761^(2/5) 4334944370095194 a001 121393/167761*2537720636^(14/15) 4334944370095194 a001 121393/167761*17393796001^(6/7) 4334944370095194 a001 75025/271443*312119004989^(4/5) 4334944370095194 a001 75025/271443*(1/2+1/2*5^(1/2))^44 4334944370095194 a001 75025/271443*23725150497407^(11/16) 4334944370095194 a001 75025/271443*73681302247^(11/13) 4334944370095194 a001 121393/167761*45537549124^(14/17) 4334944370095194 a001 121393/167761*817138163596^(14/19) 4334944370095194 a001 121393/167761*14662949395604^(2/3) 4334944370095194 a001 121393/167761*(1/2+1/2*5^(1/2))^42 4334944370095194 a001 121393/167761*505019158607^(3/4) 4334944370095194 a001 121393/167761*192900153618^(7/9) 4334944370095194 a001 75025/271443*10749957122^(11/12) 4334944370095194 a001 121393/167761*10749957122^(7/8) 4334944370095194 a001 121393/167761*4106118243^(21/23) 4334944370095194 a001 75025/271443*4106118243^(22/23) 4334944370095194 a001 121393/167761*1568397607^(21/22) 4334944370099280 a001 3278735159921/51841*39603^(2/11) 4334944370109031 a001 1515744265389/101521*103682^(7/24) 4334944370109188 a001 956722026041/271443*103682^(5/12) 4334944370123222 a001 6557470319842/167761*167761^(1/5) 4334944370123285 a001 10610209857723/439204*103682^(1/4) 4334944370125833 a001 6557470319842/710647*103682^(1/3) 4334944370125990 a001 591286729879/271443*103682^(11/24) 4334944370131556 a001 2504297362625/5777 4334944370134053 a001 701408733/167761*439204^(8/9) 4334944370136550 a001 2971215073/167761*439204^(7/9) 4334944370137696 a001 10610209857723/1149851*103682^(1/3) 4334944370137703 a001 28657*64079^(20/23) 4334944370139046 a001 75025*439204^(2/3) 4334944370140087 a001 3278735159921/219602*103682^(7/24) 4334944370141543 a001 53316291173/167761*439204^(5/9) 4334944370142635 a001 4052739537881/710647*103682^(3/8) 4334944370142792 a001 365435296162/271443*103682^(1/2) 4334944370144040 a001 225851433717/167761*439204^(4/9) 4334944370145444 a001 317811/167761*2537720636^(8/9) 4334944370145444 a001 75025/710647*(1/2+1/2*5^(1/2))^46 4334944370145444 a001 317811/167761*312119004989^(8/11) 4334944370145444 a001 317811/167761*(1/2+1/2*5^(1/2))^40 4334944370145444 a001 317811/167761*23725150497407^(5/8) 4334944370145444 a001 317811/167761*73681302247^(10/13) 4334944370145444 a001 317811/167761*28143753123^(4/5) 4334944370145444 a001 75025/710647*10749957122^(23/24) 4334944370145444 a001 317811/167761*10749957122^(5/6) 4334944370145444 a001 317811/167761*4106118243^(20/23) 4334944370145444 a001 317811/167761*1568397607^(10/11) 4334944370145444 a001 317811/167761*599074578^(20/21) 4334944370146537 a001 956722026041/167761*439204^(1/3) 4334944370149034 a001 4052739537881/167761*439204^(2/9) 4334944370149967 a001 3536736619241/620166*103682^(3/8) 4334944370150749 a001 222915410851825/514229 4334944370152776 a001 75025/1860498*45537549124^(16/17) 4334944370152776 a001 75025/1860498*14662949395604^(16/21) 4334944370152776 a001 75025/1860498*(1/2+1/2*5^(1/2))^48 4334944370152776 a001 75025/1860498*192900153618^(8/9) 4334944370152776 a001 75025/1860498*73681302247^(12/13) 4334944370152776 a001 75640/15251*817138163596^(2/3) 4334944370152776 a001 75640/15251*(1/2+1/2*5^(1/2))^38 4334944370152776 a001 75640/15251*10749957122^(19/24) 4334944370152776 a001 75640/15251*4106118243^(19/23) 4334944370152776 a001 75640/15251*1568397607^(19/22) 4334944370152776 a001 75640/15251*599074578^(19/21) 4334944370152776 a001 75640/15251*228826127^(19/20) 4334944370153550 a001 583600122226225/1346269 4334944370153845 a001 2178309/167761*141422324^(12/13) 4334944370153845 a001 2178309/167761*2537720636^(4/5) 4334944370153845 a001 75025/4870847*312119004989^(10/11) 4334944370153845 a001 75025/4870847*(1/2+1/2*5^(1/2))^50 4334944370153845 a001 75025/4870847*3461452808002^(5/6) 4334944370153845 a001 2178309/167761*45537549124^(12/17) 4334944370153845 a001 2178309/167761*14662949395604^(4/7) 4334944370153845 a001 2178309/167761*(1/2+1/2*5^(1/2))^36 4334944370153845 a001 2178309/167761*505019158607^(9/14) 4334944370153845 a001 2178309/167761*192900153618^(2/3) 4334944370153845 a001 2178309/167761*73681302247^(9/13) 4334944370153845 a001 2178309/167761*10749957122^(3/4) 4334944370153845 a001 2178309/167761*4106118243^(18/23) 4334944370153845 a001 2178309/167761*1568397607^(9/11) 4334944370153845 a001 2178309/167761*599074578^(6/7) 4334944370153846 a001 2178309/167761*228826127^(9/10) 4334944370153846 a001 2178309/167761*87403803^(18/19) 4334944370153958 a001 763942477913425/1762289 4334944370153964 a001 39088169/167761*7881196^(10/11) 4334944370153971 a001 165580141/167761*7881196^(9/11) 4334944370153977 a001 701408733/167761*7881196^(8/11) 4334944370153982 a001 1836311903/167761*7881196^(2/3) 4334944370153984 a001 2971215073/167761*7881196^(7/11) 4334944370153990 a001 75025*7881196^(6/11) 4334944370153996 a001 53316291173/167761*7881196^(5/11) 4334944370154001 a001 75025/12752043*(1/2+1/2*5^(1/2))^52 4334944370154001 a001 75025/12752043*23725150497407^(13/16) 4334944370154001 a001 75025/12752043*505019158607^(13/14) 4334944370154001 a001 5702887/167761*45537549124^(2/3) 4334944370154001 a001 5702887/167761*(1/2+1/2*5^(1/2))^34 4334944370154001 a001 5702887/167761*10749957122^(17/24) 4334944370154001 a001 5702887/167761*4106118243^(17/23) 4334944370154001 a001 5702887/167761*1568397607^(17/22) 4334944370154001 a001 5702887/167761*599074578^(17/21) 4334944370154002 a001 5702887/167761*228826127^(17/20) 4334944370154002 a001 5702887/167761*87403803^(17/19) 4334944370154003 a001 225851433717/167761*7881196^(4/11) 4334944370154005 a001 365435296162/167761*7881196^(1/3) 4334944370154005 a001 5702887/167761*33385282^(17/18) 4334944370154009 a001 956722026041/167761*7881196^(3/11) 4334944370154015 a001 4052739537881/167761*7881196^(2/11) 4334944370154018 a001 800010949050865/1845493 4334944370154019 a001 39088169/167761*20633239^(6/7) 4334944370154020 a001 9303105/15251*20633239^(4/5) 4334944370154021 a001 433494437/167761*20633239^(5/7) 4334944370154022 a001 2971215073/167761*20633239^(3/5) 4334944370154022 a001 4807526976/167761*20633239^(4/7) 4334944370154024 a001 53316291173/167761*20633239^(3/7) 4334944370154024 a001 86267571272/167761*20633239^(2/5) 4334944370154024 a001 75025/33385282*14662949395604^(6/7) 4334944370154024 a001 75025/33385282*(1/2+1/2*5^(1/2))^54 4334944370154024 a001 14930352/167761*(1/2+1/2*5^(1/2))^32 4334944370154024 a001 14930352/167761*23725150497407^(1/2) 4334944370154024 a001 14930352/167761*505019158607^(4/7) 4334944370154024 a001 14930352/167761*73681302247^(8/13) 4334944370154024 a001 14930352/167761*10749957122^(2/3) 4334944370154024 a001 14930352/167761*4106118243^(16/23) 4334944370154024 a001 14930352/167761*1568397607^(8/11) 4334944370154024 a001 14930352/167761*599074578^(16/21) 4334944370154024 a001 14930352/167761*228826127^(4/5) 4334944370154025 a001 14930352/167761*87403803^(16/19) 4334944370154025 a001 591286729879/167761*20633239^(2/7) 4334944370154026 a001 2504730781961/167761*20633239^(1/5) 4334944370154027 a001 10472279279936125/24157817 4334944370154027 a001 6557470319842/167761*20633239^(1/7) 4334944370154027 a001 39088169/167761*141422324^(10/13) 4334944370154028 a001 39088169/167761*2537720636^(2/3) 4334944370154028 a001 75025/87403803*14662949395604^(8/9) 4334944370154028 a001 39088169/167761*45537549124^(10/17) 4334944370154028 a001 39088169/167761*312119004989^(6/11) 4334944370154028 a001 39088169/167761*14662949395604^(10/21) 4334944370154028 a001 39088169/167761*(1/2+1/2*5^(1/2))^30 4334944370154028 a001 39088169/167761*192900153618^(5/9) 4334944370154028 a001 39088169/167761*28143753123^(3/5) 4334944370154028 a001 39088169/167761*10749957122^(5/8) 4334944370154028 a001 39088169/167761*4106118243^(15/23) 4334944370154028 a001 39088169/167761*1568397607^(15/22) 4334944370154028 a001 39088169/167761*599074578^(5/7) 4334944370154028 a001 39088169/167761*228826127^(3/4) 4334944370154028 a001 14930352/167761*33385282^(8/9) 4334944370154028 a001 13708391547277025/31622993 4334944370154028 a001 267914296/167761*141422324^(2/3) 4334944370154028 a001 701408733/167761*141422324^(8/13) 4334944370154028 a001 39088169/167761*87403803^(15/19) 4334944370154028 a001 165580141/167761*141422324^(9/13) 4334944370154028 a001 2971215073/167761*141422324^(7/13) 4334944370154028 a001 75025*141422324^(6/13) 4334944370154028 a001 53316291173/167761*141422324^(5/13) 4334944370154028 a001 9303105/15251*17393796001^(4/7) 4334944370154028 a001 9303105/15251*14662949395604^(4/9) 4334944370154028 a001 9303105/15251*(1/2+1/2*5^(1/2))^28 4334944370154028 a001 9303105/15251*73681302247^(7/13) 4334944370154028 a001 9303105/15251*10749957122^(7/12) 4334944370154028 a001 9303105/15251*4106118243^(14/23) 4334944370154028 a001 9303105/15251*1568397607^(7/11) 4334944370154028 a001 9303105/15251*599074578^(2/3) 4334944370154028 a001 139583862445/167761*141422324^(1/3) 4334944370154028 a001 225851433717/167761*141422324^(4/13) 4334944370154028 a001 956722026041/167761*141422324^(3/13) 4334944370154028 a001 4052739537881/167761*141422324^(2/13) 4334944370154028 a001 71778070003726025/165580141 4334944370154028 a001 9303105/15251*228826127^(7/10) 4334944370154028 a001 75025/599074578*14662949395604^(20/21) 4334944370154028 a001 267914296/167761*(1/2+1/2*5^(1/2))^26 4334944370154028 a001 267914296/167761*73681302247^(1/2) 4334944370154028 a001 267914296/167761*10749957122^(13/24) 4334944370154028 a001 267914296/167761*4106118243^(13/23) 4334944370154028 a001 267914296/167761*1568397607^(13/22) 4334944370154028 a001 187917426916624025/433494437 4334944370154028 a001 267914296/167761*599074578^(13/21) 4334944370154028 a001 701408733/167761*2537720636^(8/15) 4334944370154028 a001 701408733/167761*45537549124^(8/17) 4334944370154028 a001 701408733/167761*14662949395604^(8/21) 4334944370154028 a001 701408733/167761*(1/2+1/2*5^(1/2))^24 4334944370154028 a001 701408733/167761*192900153618^(4/9) 4334944370154028 a001 701408733/167761*73681302247^(6/13) 4334944370154028 a001 701408733/167761*10749957122^(1/2) 4334944370154028 a001 701408733/167761*4106118243^(12/23) 4334944370154028 a001 701408733/167761*1568397607^(6/11) 4334944370154028 a001 2893965945565565/6675901 4334944370154028 a001 4807526976/167761*2537720636^(4/9) 4334944370154028 a001 75025*2537720636^(2/5) 4334944370154028 a001 1836311903/167761*312119004989^(2/5) 4334944370154028 a001 1836311903/167761*(1/2+1/2*5^(1/2))^22 4334944370154028 a001 1836311903/167761*10749957122^(11/24) 4334944370154028 a001 53316291173/167761*2537720636^(1/3) 4334944370154028 a001 2971215073/167761*2537720636^(7/15) 4334944370154028 a001 225851433717/167761*2537720636^(4/15) 4334944370154028 a001 591286729879/167761*2537720636^(2/9) 4334944370154028 a001 956722026041/167761*2537720636^(1/5) 4334944370154028 a001 1836311903/167761*4106118243^(11/23) 4334944370154028 a001 4052739537881/167761*2537720636^(2/15) 4334944370154028 a001 6557470319842/167761*2537720636^(1/9) 4334944370154028 a001 4807526976/167761*(1/2+1/2*5^(1/2))^20 4334944370154028 a001 4807526976/167761*23725150497407^(5/16) 4334944370154028 a001 4807526976/167761*505019158607^(5/14) 4334944370154028 a001 4807526976/167761*73681302247^(5/13) 4334944370154028 a001 4807526976/167761*28143753123^(2/5) 4334944370154028 a001 4807526976/167761*10749957122^(5/12) 4334944370154028 a001 75025*45537549124^(6/17) 4334944370154028 a001 75025*14662949395604^(2/7) 4334944370154028 a001 75025*(1/2+1/2*5^(1/2))^18 4334944370154028 a001 75025*192900153618^(1/3) 4334944370154028 a001 86267571272/167761*17393796001^(2/7) 4334944370154028 a001 2504730781961/167761*17393796001^(1/7) 4334944370154028 a001 32951280099/167761*(1/2+1/2*5^(1/2))^16 4334944370154028 a001 32951280099/167761*23725150497407^(1/4) 4334944370154028 a001 32951280099/167761*73681302247^(4/13) 4334944370154028 a001 225851433717/167761*45537549124^(4/17) 4334944370154028 a001 53316291173/167761*45537549124^(5/17) 4334944370154028 a001 4052739537881/167761*45537549124^(2/17) 4334944370154028 a001 86267571272/167761*14662949395604^(2/9) 4334944370154028 a001 86267571272/167761*(1/2+1/2*5^(1/2))^14 4334944370154028 a001 225851433717/167761*817138163596^(4/19) 4334944370154028 a001 225851433717/167761*(1/2+1/2*5^(1/2))^12 4334944370154028 a001 140728068720/15251*(1/2+1/2*5^(1/2))^8 4334944370154028 a001 10610209857723/167761*(1/2+1/2*5^(1/2))^4 4334944370154028 a001 10610209857723/167761*23725150497407^(1/16) 4334944370154028 a001 6557470319842/167761*(1/2+1/2*5^(1/2))^5 4334944370154028 a001 2504730781961/167761*(1/2+1/2*5^(1/2))^7 4334944370154028 a001 956722026041/167761*(1/2+1/2*5^(1/2))^9 4334944370154028 a001 140728068720/15251*505019158607^(1/7) 4334944370154028 a001 956722026041/167761*192900153618^(1/6) 4334944370154028 a001 139583862445/167761*(1/2+1/2*5^(1/2))^13 4334944370154028 a001 10610209857723/167761*73681302247^(1/13) 4334944370154028 a001 140728068720/15251*73681302247^(2/13) 4334944370154028 a001 225851433717/167761*73681302247^(3/13) 4334944370154028 a001 139583862445/167761*73681302247^(1/4) 4334944370154028 a001 53316291173/167761*312119004989^(3/11) 4334944370154028 a001 53316291173/167761*14662949395604^(5/21) 4334944370154028 a001 53316291173/167761*(1/2+1/2*5^(1/2))^15 4334944370154028 a001 53316291173/167761*192900153618^(5/18) 4334944370154028 a001 6557470319842/167761*28143753123^(1/10) 4334944370154028 a001 591286729879/167761*28143753123^(1/5) 4334944370154028 a001 20365011074/167761*45537549124^(1/3) 4334944370154028 a001 53316291173/167761*28143753123^(3/10) 4334944370154028 a001 20365011074/167761*(1/2+1/2*5^(1/2))^17 4334944370154028 a001 10610209857723/167761*10749957122^(1/12) 4334944370154028 a001 4052739537881/167761*10749957122^(1/8) 4334944370154028 a001 140728068720/15251*10749957122^(1/6) 4334944370154028 a001 956722026041/167761*10749957122^(3/16) 4334944370154028 a001 591286729879/167761*10749957122^(5/24) 4334944370154028 a001 75025*10749957122^(3/8) 4334944370154028 a001 225851433717/167761*10749957122^(1/4) 4334944370154028 a001 86267571272/167761*10749957122^(7/24) 4334944370154028 a001 32951280099/167761*10749957122^(1/3) 4334944370154028 a001 53316291173/167761*10749957122^(5/16) 4334944370154028 a001 7778742049/167761*817138163596^(1/3) 4334944370154028 a001 7778742049/167761*(1/2+1/2*5^(1/2))^19 4334944370154028 a001 10610209857723/167761*4106118243^(2/23) 4334944370154028 a001 4052739537881/167761*4106118243^(3/23) 4334944370154028 a001 140728068720/15251*4106118243^(4/23) 4334944370154028 a001 591286729879/167761*4106118243^(5/23) 4334944370154028 a001 225851433717/167761*4106118243^(6/23) 4334944370154028 a001 4807526976/167761*4106118243^(10/23) 4334944370154028 a001 86267571272/167761*4106118243^(7/23) 4334944370154028 a001 32951280099/167761*4106118243^(8/23) 4334944370154028 a001 2971215073/167761*17393796001^(3/7) 4334944370154028 a001 75025*4106118243^(9/23) 4334944370154028 a001 2971215073/167761*45537549124^(7/17) 4334944370154028 a001 2971215073/167761*14662949395604^(1/3) 4334944370154028 a001 2971215073/167761*(1/2+1/2*5^(1/2))^21 4334944370154028 a001 2971215073/167761*192900153618^(7/18) 4334944370154028 a001 2971215073/167761*10749957122^(7/16) 4334944370154028 a001 10610209857723/167761*1568397607^(1/11) 4334944370154028 a001 4052739537881/167761*1568397607^(3/22) 4334944370154028 a001 796030994575668075/1836311903 4334944370154028 a001 140728068720/15251*1568397607^(2/11) 4334944370154028 a001 591286729879/167761*1568397607^(5/22) 4334944370154028 a001 365435296162/167761*1568397607^(1/4) 4334944370154028 a001 225851433717/167761*1568397607^(3/11) 4334944370154028 a001 86267571272/167761*1568397607^(7/22) 4334944370154028 a001 1836311903/167761*1568397607^(1/2) 4334944370154028 a001 32951280099/167761*1568397607^(4/11) 4334944370154028 a001 1134903170/167761*(1/2+1/2*5^(1/2))^23 4334944370154028 a001 75025*1568397607^(9/22) 4334944370154028 a001 4807526976/167761*1568397607^(5/11) 4334944370154028 a001 1134903170/167761*4106118243^(1/2) 4334944370154028 a001 10610209857723/167761*599074578^(2/21) 4334944370154028 a001 4052739537881/167761*599074578^(1/7) 4334944370154028 a001 304056783829522025/701408733 4334944370154028 a001 2504730781961/167761*599074578^(1/6) 4334944370154028 a001 140728068720/15251*599074578^(4/21) 4334944370154028 a001 956722026041/167761*599074578^(3/14) 4334944370154028 a001 591286729879/167761*599074578^(5/21) 4334944370154028 a001 225851433717/167761*599074578^(2/7) 4334944370154028 a001 86267571272/167761*599074578^(1/3) 4334944370154028 a001 433494437/167761*2537720636^(5/9) 4334944370154028 a001 53316291173/167761*599074578^(5/14) 4334944370154028 a001 32951280099/167761*599074578^(8/21) 4334944370154028 a001 433494437/167761*312119004989^(5/11) 4334944370154028 a001 433494437/167761*(1/2+1/2*5^(1/2))^25 4334944370154028 a001 433494437/167761*3461452808002^(5/12) 4334944370154028 a001 433494437/167761*28143753123^(1/2) 4334944370154028 a001 701408733/167761*599074578^(4/7) 4334944370154028 a001 75025*599074578^(3/7) 4334944370154028 a001 4807526976/167761*599074578^(10/21) 4334944370154028 a001 1836311903/167761*599074578^(11/21) 4334944370154028 a001 2971215073/167761*599074578^(1/2) 4334944370154028 a001 10610209857723/167761*228826127^(1/10) 4334944370154028 a001 6557470319842/167761*228826127^(1/8) 4334944370154028 a001 14517419614112250/33489287 4334944370154028 a001 4052739537881/167761*228826127^(3/20) 4334944370154028 a001 140728068720/15251*228826127^(1/5) 4334944370154028 a001 591286729879/167761*228826127^(1/4) 4334944370154028 a001 225851433717/167761*228826127^(3/10) 4334944370154028 a001 86267571272/167761*228826127^(7/20) 4334944370154028 a001 53316291173/167761*228826127^(3/8) 4334944370154028 a001 165580141/167761*2537720636^(3/5) 4334944370154028 a001 165580141/167761*45537549124^(9/17) 4334944370154028 a001 165580141/167761*817138163596^(9/19) 4334944370154028 a001 165580141/167761*14662949395604^(3/7) 4334944370154028 a001 165580141/167761*(1/2+1/2*5^(1/2))^27 4334944370154028 a001 165580141/167761*192900153618^(1/2) 4334944370154028 a001 165580141/167761*10749957122^(9/16) 4334944370154028 a001 32951280099/167761*228826127^(2/5) 4334944370154028 a001 75025*228826127^(9/20) 4334944370154028 a001 165580141/167761*599074578^(9/14) 4334944370154028 a001 4807526976/167761*228826127^(1/2) 4334944370154028 a001 267914296/167761*228826127^(13/20) 4334944370154028 a001 1836311903/167761*228826127^(11/20) 4334944370154028 a001 701408733/167761*228826127^(3/5) 4334944370154028 a001 433494437/167761*228826127^(5/8) 4334944370154028 a001 10610209857723/167761*87403803^(2/19) 4334944370154028 a001 8872257381834395/20466831 4334944370154028 a001 4052739537881/167761*87403803^(3/19) 4334944370154028 a001 140728068720/15251*87403803^(4/19) 4334944370154028 a001 591286729879/167761*87403803^(5/19) 4334944370154028 a001 225851433717/167761*87403803^(6/19) 4334944370154028 a001 86267571272/167761*87403803^(7/19) 4334944370154028 a001 75025/141422324*14662949395604^(19/21) 4334944370154028 a001 63245986/167761*(1/2+1/2*5^(1/2))^29 4334944370154028 a001 63245986/167761*1322157322203^(1/2) 4334944370154028 a001 32951280099/167761*87403803^(8/19) 4334944370154028 a001 75025*87403803^(9/19) 4334944370154028 a001 7778742049/167761*87403803^(1/2) 4334944370154028 a001 4807526976/167761*87403803^(10/19) 4334944370154028 a001 1836311903/167761*87403803^(11/19) 4334944370154028 a001 9303105/15251*87403803^(14/19) 4334944370154029 a001 701408733/167761*87403803^(12/19) 4334944370154029 a001 267914296/167761*87403803^(13/19) 4334944370154029 a001 10610209857723/167761*33385282^(1/9) 4334944370154029 a001 16944503814617925/39088169 4334944370154029 a001 4052739537881/167761*33385282^(1/6) 4334944370154029 a001 140728068720/15251*33385282^(2/9) 4334944370154029 a001 956722026041/167761*33385282^(1/4) 4334944370154029 a001 591286729879/167761*33385282^(5/18) 4334944370154029 a001 225851433717/167761*33385282^(1/3) 4334944370154030 a001 75025/54018521*3461452808002^(11/12) 4334944370154030 a001 24157817/167761*(1/2+1/2*5^(1/2))^31 4334944370154030 a001 24157817/167761*9062201101803^(1/2) 4334944370154030 a001 86267571272/167761*33385282^(7/18) 4334944370154030 a001 53316291173/167761*33385282^(5/12) 4334944370154030 a001 32951280099/167761*33385282^(4/9) 4334944370154030 a001 75025*33385282^(1/2) 4334944370154030 a001 4807526976/167761*33385282^(5/9) 4334944370154030 a001 2971215073/167761*33385282^(7/12) 4334944370154031 a001 1836311903/167761*33385282^(11/18) 4334944370154031 a001 701408733/167761*33385282^(2/3) 4334944370154031 a001 39088169/167761*33385282^(5/6) 4334944370154031 a001 267914296/167761*33385282^(13/18) 4334944370154031 a001 9303105/15251*33385282^(7/9) 4334944370154031 a001 165580141/167761*33385282^(3/4) 4334944370154031 a001 10610209857723/167761*12752043^(2/17) 4334944370154032 a001 2504730857075/5778 4334944370154033 a001 4052739537881/167761*12752043^(3/17) 4334944370154034 a001 140728068720/15251*12752043^(4/17) 4334944370154036 a001 591286729879/167761*12752043^(5/17) 4334944370154038 a001 225851433717/167761*12752043^(6/17) 4334944370154038 a001 9227465/167761*141422324^(11/13) 4334944370154038 a001 9227465/167761*2537720636^(11/15) 4334944370154038 a001 75025/20633239*(1/2+1/2*5^(1/2))^53 4334944370154038 a001 9227465/167761*45537549124^(11/17) 4334944370154038 a001 9227465/167761*312119004989^(3/5) 4334944370154038 a001 9227465/167761*14662949395604^(11/21) 4334944370154038 a001 9227465/167761*(1/2+1/2*5^(1/2))^33 4334944370154038 a001 9227465/167761*192900153618^(11/18) 4334944370154038 a001 9227465/167761*10749957122^(11/16) 4334944370154038 a001 9227465/167761*1568397607^(3/4) 4334944370154038 a001 9227465/167761*599074578^(11/14) 4334944370154039 a001 86267571272/167761*12752043^(7/17) 4334944370154041 a001 32951280099/167761*12752043^(8/17) 4334944370154041 a001 20365011074/167761*12752043^(1/2) 4334944370154042 a001 9227465/167761*33385282^(11/12) 4334944370154042 a001 75025*12752043^(9/17) 4334944370154044 a001 4807526976/167761*12752043^(10/17) 4334944370154045 a001 1836311903/167761*12752043^(11/17) 4334944370154047 a001 701408733/167761*12752043^(12/17) 4334944370154049 a001 267914296/167761*12752043^(13/17) 4334944370154049 a001 14930352/167761*12752043^(16/17) 4334944370154050 a001 9303105/15251*12752043^(14/17) 4334944370154051 a001 10610209857723/167761*4870847^(1/8) 4334944370154051 a001 39088169/167761*12752043^(15/17) 4334944370154055 a001 2472169789427475/5702887 4334944370154062 a001 4052739537881/167761*4870847^(3/16) 4334944370154074 a001 140728068720/15251*4870847^(1/4) 4334944370154085 a001 591286729879/167761*4870847^(5/16) 4334944370154097 a001 225851433717/167761*4870847^(3/8) 4334944370154098 a001 3524578/167761*2537720636^(7/9) 4334944370154098 a001 3524578/167761*17393796001^(5/7) 4334944370154098 a001 75025/7881196*817138163596^(17/19) 4334944370154098 a001 75025/7881196*14662949395604^(17/21) 4334944370154098 a001 75025/7881196*(1/2+1/2*5^(1/2))^51 4334944370154098 a001 75025/7881196*192900153618^(17/18) 4334944370154098 a001 3524578/167761*312119004989^(7/11) 4334944370154098 a001 3524578/167761*14662949395604^(5/9) 4334944370154098 a001 3524578/167761*(1/2+1/2*5^(1/2))^35 4334944370154098 a001 3524578/167761*505019158607^(5/8) 4334944370154098 a001 3524578/167761*28143753123^(7/10) 4334944370154098 a001 3524578/167761*599074578^(5/6) 4334944370154098 a001 3524578/167761*228826127^(7/8) 4334944370154108 a001 86267571272/167761*4870847^(7/16) 4334944370154120 a001 32951280099/167761*4870847^(1/2) 4334944370154131 a001 75025*4870847^(9/16) 4334944370154142 a001 4807526976/167761*4870847^(5/8) 4334944370154154 a001 1836311903/167761*4870847^(11/16) 4334944370154165 a001 701408733/167761*4870847^(3/4) 4334944370154177 a001 267914296/167761*4870847^(13/16) 4334944370154188 a001 9303105/15251*4870847^(7/8) 4334944370154195 a001 10610209857723/167761*1860498^(2/15) 4334944370154199 a001 39088169/167761*4870847^(15/16) 4334944370154211 a001 944284833600625/2178309 4334944370154237 a001 6557470319842/167761*1860498^(1/6) 4334944370154279 a001 4052739537881/167761*1860498^(1/5) 4334944370154362 a001 140728068720/15251*1860498^(4/15) 4334944370154404 a001 956722026041/167761*1860498^(3/10) 4334944370154446 a001 591286729879/167761*1860498^(1/3) 4334944370154498 a001 6557470319842/1149851*103682^(3/8) 4334944370154507 a001 75025/3010349*14662949395604^(7/9) 4334944370154507 a001 75025/3010349*(1/2+1/2*5^(1/2))^49 4334944370154507 a001 75025/3010349*505019158607^(7/8) 4334944370154507 a001 1346269/167761*(1/2+1/2*5^(1/2))^37 4334944370154529 a001 225851433717/167761*1860498^(2/5) 4334944370154613 a001 86267571272/167761*1860498^(7/15) 4334944370154654 a001 53316291173/167761*1860498^(1/2) 4334944370154696 a001 32951280099/167761*1860498^(8/15) 4334944370154780 a001 75025*1860498^(3/5) 4334944370154863 a001 4807526976/167761*1860498^(2/3) 4334944370154905 a001 2971215073/167761*1860498^(7/10) 4334944370154947 a001 1836311903/167761*1860498^(11/15) 4334944370155030 a001 701408733/167761*1860498^(4/5) 4334944370155072 a001 433494437/167761*1860498^(5/6) 4334944370155114 a001 267914296/167761*1860498^(13/15) 4334944370155155 a001 165580141/167761*1860498^(9/10) 4334944370155197 a001 9303105/15251*1860498^(14/15) 4334944370155254 a001 10610209857723/167761*710647^(1/7) 4334944370155280 a001 9017117784360/20801 4334944370155868 a001 4052739537881/167761*710647^(3/14) 4334944370156174 a001 2504730781961/167761*710647^(1/4) 4334944370156481 a001 140728068720/15251*710647^(2/7) 4334944370156889 a001 4052739537881/439204*103682^(1/3) 4334944370157094 a001 591286729879/167761*710647^(5/14) 4334944370157307 a001 514229/167761*2537720636^(13/15) 4334944370157307 a001 75025/1149851*(1/2+1/2*5^(1/2))^47 4334944370157307 a001 514229/167761*45537549124^(13/17) 4334944370157307 a001 514229/167761*14662949395604^(13/21) 4334944370157307 a001 514229/167761*(1/2+1/2*5^(1/2))^39 4334944370157307 a001 514229/167761*192900153618^(13/18) 4334944370157307 a001 514229/167761*73681302247^(3/4) 4334944370157307 a001 514229/167761*10749957122^(13/16) 4334944370157307 a001 514229/167761*599074578^(13/14) 4334944370157707 a001 225851433717/167761*710647^(3/7) 4334944370158320 a001 86267571272/167761*710647^(1/2) 4334944370158933 a001 32951280099/167761*710647^(4/7) 4334944370159438 a001 2504730781961/710647*103682^(5/12) 4334944370159546 a001 75025*710647^(9/14) 4334944370159594 a001 75283811239/90481*103682^(13/24) 4334944370160159 a001 4807526976/167761*710647^(5/7) 4334944370160466 a001 2971215073/167761*710647^(3/4) 4334944370160773 a001 1836311903/167761*710647^(11/14) 4334944370161386 a001 701408733/167761*710647^(6/7) 4334944370161999 a001 267914296/167761*710647^(13/14) 4334944370162612 a001 137769300522575/317811 4334944370163079 a001 10610209857723/167761*271443^(2/13) 4334944370166769 a001 3278735159921/930249*103682^(5/12) 4334944370167605 a001 4052739537881/167761*271443^(3/13) 4334944370168500 a001 10610209857723/3010349*103682^(5/12) 4334944370171300 a001 4052739537881/1149851*103682^(5/12) 4334944370172131 a001 140728068720/15251*271443^(4/13) 4334944370173692 a001 2504730781961/439204*103682^(3/8) 4334944370176240 a001 1548008755920/710647*103682^(11/24) 4334944370176396 a001 139583862445/271443*103682^(7/12) 4334944370176501 a001 75025/439204*45537549124^(15/17) 4334944370176501 a001 75025/439204*312119004989^(9/11) 4334944370176501 a001 75025/439204*14662949395604^(5/7) 4334944370176501 a001 75025/439204*(1/2+1/2*5^(1/2))^45 4334944370176501 a001 75025/439204*192900153618^(5/6) 4334944370176501 a001 75025/439204*28143753123^(9/10) 4334944370176501 a001 196418/167761*(1/2+1/2*5^(1/2))^41 4334944370176501 a001 75025/439204*10749957122^(15/16) 4334944370176656 a001 591286729879/167761*271443^(5/13) 4334944370181182 a001 225851433717/167761*271443^(6/13) 4334944370183445 a001 139583862445/167761*271443^(1/2) 4334944370183571 a001 4052739537881/1860498*103682^(11/24) 4334944370183604 a001 2971215073/64079*64079^(19/23) 4334944370184641 a001 2178309*103682^(11/24) 4334944370185302 a001 6557470319842/3010349*103682^(11/24) 4334944370185708 a001 86267571272/167761*271443^(7/13) 4334944370188102 a001 2504730781961/1149851*103682^(11/24) 4334944370190234 a001 32951280099/167761*271443^(8/13) 4334944370190494 a001 387002188980/109801*103682^(5/12) 4334944370193042 a001 956722026041/710647*103682^(1/2) 4334944370193198 a001 86267571272/271443*103682^(5/8) 4334944370194759 a001 75025*271443^(9/13) 4334944370199285 a001 4807526976/167761*271443^(10/13) 4334944370200373 a001 2504730781961/1860498*103682^(1/2) 4334944370201443 a001 6557470319842/4870847*103682^(1/2) 4334944370201695 a001 10610209857723/7881196*103682^(1/2) 4334944370202104 a001 1346269*103682^(1/2) 4334944370203811 a001 1836311903/167761*271443^(11/13) 4334944370204904 a001 1548008755920/1149851*103682^(1/2) 4334944370207296 a001 956722026041/439204*103682^(11/24) 4334944370208336 a001 701408733/167761*271443^(12/13) 4334944370209844 a001 591286729879/710647*103682^(13/24) 4334944370210001 a001 53316291173/271443*103682^(2/3) 4334944370212862 a001 52623190193325/121393 4334944370217175 a001 832040*103682^(13/24) 4334944370218245 a001 4052739537881/4870847*103682^(13/24) 4334944370218401 a001 3536736619241/4250681*103682^(13/24) 4334944370218498 a001 3278735159921/3940598*103682^(13/24) 4334944370218906 a001 2504730781961/3010349*103682^(13/24) 4334944370221237 a001 10610209857723/167761*103682^(1/6) 4334944370221706 a001 956722026041/1149851*103682^(13/24) 4334944370224098 a001 591286729879/439204*103682^(1/2) 4334944370224914 a001 4052739537881/103682*39603^(5/22) 4334944370226646 a001 365435296162/710647*103682^(7/12) 4334944370226803 a001 121393*103682^(17/24) 4334944370229506 a001 4807526976/64079*64079^(18/23) 4334944370233978 a001 956722026041/1860498*103682^(7/12) 4334944370235047 a001 2504730781961/4870847*103682^(7/12) 4334944370235203 a001 6557470319842/12752043*103682^(7/12) 4334944370235240 a001 10610209857723/20633239*103682^(7/12) 4334944370235300 a001 4052739537881/7881196*103682^(7/12) 4334944370235708 a001 1548008755920/3010349*103682^(7/12) 4334944370238039 a001 6557470319842/167761*103682^(5/24) 4334944370238509 a001 514229*103682^(7/12) 4334944370240900 a001 182717648081/219602*103682^(13/24) 4334944370243448 a001 317811*103682^(5/8) 4334944370243605 a001 20365011074/271443*103682^(3/4) 4334944370250780 a001 591286729879/1860498*103682^(5/8) 4334944370251849 a001 1548008755920/4870847*103682^(5/8) 4334944370252005 a001 4052739537881/12752043*103682^(5/8) 4334944370252028 a001 1515744265389/4769326*103682^(5/8) 4334944370252042 a001 6557470319842/20633239*103682^(5/8) 4334944370252102 a001 2504730781961/7881196*103682^(5/8) 4334944370252511 a001 956722026041/3010349*103682^(5/8) 4334944370254841 a001 4052739537881/167761*103682^(1/4) 4334944370255311 a001 365435296162/1149851*103682^(5/8) 4334944370257702 a001 225851433717/439204*103682^(7/12) 4334944370260251 a001 139583862445/710647*103682^(2/3) 4334944370260407 a001 12586269025/271443*103682^(19/24) 4334944370267582 a001 182717648081/930249*103682^(2/3) 4334944370268652 a001 956722026041/4870847*103682^(2/3) 4334944370268808 a001 2504730781961/12752043*103682^(2/3) 4334944370268830 a001 3278735159921/16692641*103682^(2/3) 4334944370268836 a001 10610209857723/54018521*103682^(2/3) 4334944370268845 a001 4052739537881/20633239*103682^(2/3) 4334944370268904 a001 387002188980/1970299*103682^(2/3) 4334944370269313 a001 591286729879/3010349*103682^(2/3) 4334944370271643 a001 2504730781961/167761*103682^(7/24) 4334944370272113 a001 225851433717/1149851*103682^(2/3) 4334944370274505 a001 139583862445/439204*103682^(5/8) 4334944370275407 a001 7778742049/64079*64079^(17/23) 4334944370277053 a001 86267571272/710647*103682^(17/24) 4334944370277209 a001 7778742049/271443*103682^(5/6) 4334944370284384 a001 75283811239/620166*103682^(17/24) 4334944370285454 a001 591286729879/4870847*103682^(17/24) 4334944370285610 a001 516002918640/4250681*103682^(17/24) 4334944370285633 a001 4052739537881/33385282*103682^(17/24) 4334944370285636 a001 3536736619241/29134601*103682^(17/24) 4334944370285638 a001 6557470319842/54018521*103682^(17/24) 4334944370285647 a001 2504730781961/20633239*103682^(17/24) 4334944370285706 a001 956722026041/7881196*103682^(17/24) 4334944370286115 a001 365435296162/3010349*103682^(17/24) 4334944370288446 a001 140728068720/15251*103682^(1/3) 4334944370288915 a001 139583862445/1149851*103682^(17/24) 4334944370291307 a001 196418*103682^(2/3) 4334944370293855 a001 53316291173/710647*103682^(3/4) 4334944370294012 a001 1602508992/90481*103682^(7/8) 4334944370301186 a001 139583862445/1860498*103682^(3/4) 4334944370302256 a001 365435296162/4870847*103682^(3/4) 4334944370302412 a001 956722026041/12752043*103682^(3/4) 4334944370302435 a001 2504730781961/33385282*103682^(3/4) 4334944370302438 a001 6557470319842/87403803*103682^(3/4) 4334944370302439 a001 10610209857723/141422324*103682^(3/4) 4334944370302440 a001 4052739537881/54018521*103682^(3/4) 4334944370302449 a001 140728068720/1875749*103682^(3/4) 4334944370302508 a001 591286729879/7881196*103682^(3/4) 4334944370302917 a001 225851433717/3010349*103682^(3/4) 4334944370305248 a001 956722026041/167761*103682^(3/8) 4334944370305717 a001 86267571272/1149851*103682^(3/4) 4334944370308057 a001 75025/167761*(1/2+1/2*5^(1/2))^43 4334944370308109 a001 53316291173/439204*103682^(17/24) 4334944370310657 a001 32951280099/710647*103682^(19/24) 4334944370310814 a001 2971215073/271443*103682^(11/12) 4334944370317989 a001 43133785636/930249*103682^(19/24) 4334944370319058 a001 225851433717/4870847*103682^(19/24) 4334944370319214 a001 591286729879/12752043*103682^(19/24) 4334944370319237 a001 774004377960/16692641*103682^(19/24) 4334944370319240 a001 4052739537881/87403803*103682^(19/24) 4334944370319241 a001 225749145909/4868641*103682^(19/24) 4334944370319241 a001 3278735159921/70711162*103682^(19/24) 4334944370319242 a001 2504730781961/54018521*103682^(19/24) 4334944370319251 a001 956722026041/20633239*103682^(19/24) 4334944370319311 a001 182717648081/3940598*103682^(19/24) 4334944370319719 a001 139583862445/3010349*103682^(19/24) 4334944370321308 a001 12586269025/64079*64079^(16/23) 4334944370322050 a001 591286729879/167761*103682^(5/12) 4334944370322520 a001 53316291173/1149851*103682^(19/24) 4334944370324911 a001 32951280099/439204*103682^(3/4) 4334944370327459 a001 20365011074/710647*103682^(5/6) 4334944370327616 a001 1836311903/271443*103682^(23/24) 4334944370334791 a001 53316291173/1860498*103682^(5/6) 4334944370335860 a001 139583862445/4870847*103682^(5/6) 4334944370336016 a001 365435296162/12752043*103682^(5/6) 4334944370336039 a001 956722026041/33385282*103682^(5/6) 4334944370336042 a001 2504730781961/87403803*103682^(5/6) 4334944370336043 a001 6557470319842/228826127*103682^(5/6) 4334944370336043 a001 10610209857723/370248451*103682^(5/6) 4334944370336043 a001 4052739537881/141422324*103682^(5/6) 4334944370336045 a001 1548008755920/54018521*103682^(5/6) 4334944370336053 a001 591286729879/20633239*103682^(5/6) 4334944370336113 a001 225851433717/7881196*103682^(5/6) 4334944370336521 a001 86267571272/3010349*103682^(5/6) 4334944370338852 a001 365435296162/167761*103682^(11/24) 4334944370339322 a001 32951280099/1149851*103682^(5/6) 4334944370341713 a001 10182505537/219602*103682^(19/24) 4334944370344261 a001 12586269025/710647*103682^(7/8) 4334944370344418 a001 20100270056413/46368 4334944370344574 a001 701408733/24476*24476^(20/21) 4334944370350547 a001 2504730781961/103682*39603^(3/11) 4334944370351593 a001 10983760033/620166*103682^(7/8) 4334944370352662 a001 86267571272/4870847*103682^(7/8) 4334944370352819 a001 75283811239/4250681*103682^(7/8) 4334944370352841 a001 591286729879/33385282*103682^(7/8) 4334944370352845 a001 516002918640/29134601*103682^(7/8) 4334944370352845 a001 4052739537881/228826127*103682^(7/8) 4334944370352845 a001 3536736619241/199691526*103682^(7/8) 4334944370352845 a001 6557470319842/370248451*103682^(7/8) 4334944370352845 a001 2504730781961/141422324*103682^(7/8) 4334944370352847 a001 956722026041/54018521*103682^(7/8) 4334944370352855 a001 365435296162/20633239*103682^(7/8) 4334944370352915 a001 139583862445/7881196*103682^(7/8) 4334944370353324 a001 53316291173/3010349*103682^(7/8) 4334944370355654 a001 225851433717/167761*103682^(1/2) 4334944370356124 a001 20365011074/1149851*103682^(7/8) 4334944370358516 a001 12586269025/439204*103682^(5/6) 4334944370361064 a001 7778742049/710647*103682^(11/12) 4334944370366578 a001 10610209857723/64079*24476^(2/21) 4334944370367209 a001 20365011074/64079*64079^(15/23) 4334944370368395 a001 10182505537/930249*103682^(11/12) 4334944370369465 a001 53316291173/4870847*103682^(11/12) 4334944370369621 a001 139583862445/12752043*103682^(11/12) 4334944370369643 a001 182717648081/16692641*103682^(11/12) 4334944370369647 a001 956722026041/87403803*103682^(11/12) 4334944370369647 a001 2504730781961/228826127*103682^(11/12) 4334944370369647 a001 3278735159921/299537289*103682^(11/12) 4334944370369647 a001 10610209857723/969323029*103682^(11/12) 4334944370369647 a001 4052739537881/370248451*103682^(11/12) 4334944370369648 a001 387002188980/35355581*103682^(11/12) 4334944370369649 a001 591286729879/54018521*103682^(11/12) 4334944370369658 a001 7787980473/711491*103682^(11/12) 4334944370369717 a001 21566892818/1970299*103682^(11/12) 4334944370370126 a001 32951280099/3010349*103682^(11/12) 4334944370372456 a001 139583862445/167761*103682^(13/24) 4334944370372926 a001 12586269025/1149851*103682^(11/12) 4334944370375318 a001 7778742049/439204*103682^(7/8) 4334944370377866 a001 686789568/101521*103682^(23/24) 4334944370385197 a001 12586269025/1860498*103682^(23/24) 4334944370386267 a001 32951280099/4870847*103682^(23/24) 4334944370386423 a001 86267571272/12752043*103682^(23/24) 4334944370386446 a001 32264490531/4769326*103682^(23/24) 4334944370386449 a001 591286729879/87403803*103682^(23/24) 4334944370386449 a001 1548008755920/228826127*103682^(23/24) 4334944370386450 a001 4052739537881/599074578*103682^(23/24) 4334944370386450 a001 1515744265389/224056801*103682^(23/24) 4334944370386450 a001 6557470319842/969323029*103682^(23/24) 4334944370386450 a001 2504730781961/370248451*103682^(23/24) 4334944370386450 a001 956722026041/141422324*103682^(23/24) 4334944370386451 a001 365435296162/54018521*103682^(23/24) 4334944370386460 a001 139583862445/20633239*103682^(23/24) 4334944370386519 a001 53316291173/7881196*103682^(23/24) 4334944370386928 a001 20365011074/3010349*103682^(23/24) 4334944370389259 a001 86267571272/167761*103682^(7/12) 4334944370389728 a001 7778742049/1149851*103682^(23/24) 4334944370392120 a001 1201881744/109801*103682^(11/12) 4334944370394668 a001 3350045009441/7728 4334944370402001 a001 2512533757085/5796 4334944370403079 a001 957155716985/2208 4334944370403295 a001 10050135028343/23184 4334944370403726 a001 139585208727/322 4334944370406061 a001 53316291173/167761*103682^(5/8) 4334944370406530 a001 20100270056701/46368 4334944370408922 a001 2971215073/439204*103682^(23/24) 4334944370413110 a001 32951280099/64079*64079^(14/23) 4334944370422863 a001 32951280099/167761*103682^(2/3) 4334944370425724 a001 478577858495/1104 4334944370439665 a001 20365011074/167761*103682^(17/24) 4334944370456467 a001 75025*103682^(3/4) 4334944370459012 a001 53316291173/64079*64079^(13/23) 4334944370473270 a001 7778742049/167761*103682^(19/24) 4334944370476180 a001 774004377960/51841*39603^(7/22) 4334944370490072 a001 4807526976/167761*103682^(5/6) 4334944370504913 a001 86267571272/64079*64079^(12/23) 4334944370506874 a001 2971215073/167761*103682^(7/8) 4334944370523676 a001 1836311903/167761*103682^(11/12) 4334944370540478 a001 1134903170/167761*103682^(23/24) 4334944370550814 a001 139583862445/64079*64079^(11/23) 4334944370557280 a001 2512533757175/5796 4334944370569332 a001 3536736619241/90481*39603^(5/22) 4334944370596715 a001 225851433717/64079*64079^(10/23) 4334944370601813 a001 956722026041/103682*39603^(4/11) 4334944370642617 a001 365435296162/64079*64079^(9/23) 4334944370652475 a001 46368/64079*2537720636^(14/15) 4334944370652475 a001 28657/103682*312119004989^(4/5) 4334944370652475 a001 28657/103682*(1/2+1/2*5^(1/2))^44 4334944370652475 a001 28657/103682*23725150497407^(11/16) 4334944370652475 a001 28657/103682*73681302247^(11/13) 4334944370652475 a001 28657/103682*10749957122^(11/12) 4334944370652475 a001 46368/64079*17393796001^(6/7) 4334944370652475 a001 46368/64079*45537549124^(14/17) 4334944370652475 a001 46368/64079*817138163596^(14/19) 4334944370652475 a001 46368/64079*14662949395604^(2/3) 4334944370652475 a001 46368/64079*(1/2+1/2*5^(1/2))^42 4334944370652475 a001 46368/64079*505019158607^(3/4) 4334944370652475 a001 46368/64079*192900153618^(7/9) 4334944370652475 a001 28657/103682*4106118243^(22/23) 4334944370652475 a001 46368/64079*10749957122^(7/8) 4334944370652475 a001 46368/64079*4106118243^(21/23) 4334944370652475 a001 46368/64079*1568397607^(21/22) 4334944370656561 a001 10610209857723/167761*39603^(2/11) 4334944370688518 a001 591286729879/64079*64079^(8/23) 4334944370689149 a001 567451585/12238*24476^(19/21) 4334944370694965 a001 6557470319842/271443*39603^(3/11) 4334944370727447 a001 591286729879/103682*39603^(9/22) 4334944370734419 a001 956722026041/64079*64079^(7/23) 4334944370776272 a001 10610209857723/439204*39603^(3/11) 4334944370780320 a001 1548008755920/64079*64079^(6/23) 4334944370782195 a001 6557470319842/167761*39603^(5/22) 4334944370820599 a001 4052739537881/271443*39603^(7/22) 4334944370826221 a001 2504730781961/64079*64079^(5/23) 4334944370853080 a001 182717648081/51841*39603^(5/11) 4334944370870849 a001 1515744265389/101521*39603^(7/22) 4334944370872123 a001 4052739537881/64079*64079^(4/23) 4334944370901699 a001 6504584028538/15005 4334944370901905 a001 3278735159921/219602*39603^(7/22) 4334944370907828 a001 4052739537881/167761*39603^(3/11) 4334944370918024 a001 6557470319842/64079*64079^(3/23) 4334944370932505 a001 28657*167761^(4/5) 4334944370946232 a001 2504730781961/271443*39603^(4/11) 4334944370963310 a001 20365011074/64079*167761^(3/5) 4334944370963925 a001 10610209857723/64079*64079^(2/23) 4334944370978713 a001 225851433717/103682*39603^(1/2) 4334944370994116 a001 225851433717/64079*167761^(2/5) 4334944370996482 a001 6557470319842/710647*39603^(4/11) 4334944370996894 a001 121393/64079*2537720636^(8/9) 4334944370996894 a001 28657/271443*(1/2+1/2*5^(1/2))^46 4334944370996894 a001 28657/271443*10749957122^(23/24) 4334944370996894 a001 121393/64079*312119004989^(8/11) 4334944370996894 a001 121393/64079*(1/2+1/2*5^(1/2))^40 4334944370996894 a001 121393/64079*23725150497407^(5/8) 4334944370996894 a001 121393/64079*73681302247^(10/13) 4334944370996894 a001 121393/64079*28143753123^(4/5) 4334944370996894 a001 121393/64079*10749957122^(5/6) 4334944370996894 a001 121393/64079*4106118243^(20/23) 4334944370996894 a001 121393/64079*1568397607^(10/11) 4334944370996894 a001 121393/64079*599074578^(20/21) 4334944371008344 a001 10610209857723/1149851*39603^(4/11) 4334944371024922 a001 2504730781961/39603*15127^(1/5) 4334944371024922 a001 2504730781961/64079*167761^(1/5) 4334944371027538 a001 4052739537881/439204*39603^(4/11) 4334944371033255 a001 85146110346961/196418 4334944371033461 a001 2504730781961/167761*39603^(7/22) 4334944371033723 a001 1836311903/24476*24476^(6/7) 4334944371035752 a001 267914296/64079*439204^(8/9) 4334944371038249 a001 1134903170/64079*439204^(7/9) 4334944371040746 a001 4807526976/64079*439204^(2/3) 4334944371043243 a001 20365011074/64079*439204^(5/9) 4334944371045740 a001 86267571272/64079*439204^(4/9) 4334944371047144 a001 28657/710647*45537549124^(16/17) 4334944371047144 a001 28657/710647*14662949395604^(16/21) 4334944371047144 a001 28657/710647*(1/2+1/2*5^(1/2))^48 4334944371047144 a001 28657/710647*192900153618^(8/9) 4334944371047144 a001 28657/710647*73681302247^(12/13) 4334944371047144 a001 317811/64079*817138163596^(2/3) 4334944371047144 a001 317811/64079*(1/2+1/2*5^(1/2))^38 4334944371047144 a001 317811/64079*10749957122^(19/24) 4334944371047144 a001 317811/64079*4106118243^(19/23) 4334944371047144 a001 317811/64079*1568397607^(19/22) 4334944371047144 a001 317811/64079*599074578^(19/21) 4334944371047144 a001 317811/64079*228826127^(19/20) 4334944371048237 a001 365435296162/64079*439204^(1/3) 4334944371050734 a001 1548008755920/64079*439204^(2/9) 4334944371052449 a001 222915410898193/514229 4334944371053231 a001 6557470319842/64079*439204^(1/9) 4334944371054475 a001 832040/64079*141422324^(12/13) 4334944371054475 a001 832040/64079*2537720636^(4/5) 4334944371054475 a001 28657/1860498*312119004989^(10/11) 4334944371054475 a001 28657/1860498*(1/2+1/2*5^(1/2))^50 4334944371054475 a001 28657/1860498*3461452808002^(5/6) 4334944371054475 a001 832040/64079*45537549124^(12/17) 4334944371054475 a001 832040/64079*14662949395604^(4/7) 4334944371054475 a001 832040/64079*(1/2+1/2*5^(1/2))^36 4334944371054475 a001 832040/64079*505019158607^(9/14) 4334944371054475 a001 832040/64079*192900153618^(2/3) 4334944371054475 a001 832040/64079*73681302247^(9/13) 4334944371054475 a001 832040/64079*10749957122^(3/4) 4334944371054475 a001 832040/64079*4106118243^(18/23) 4334944371054475 a001 832040/64079*1568397607^(9/11) 4334944371054475 a001 832040/64079*599074578^(6/7) 4334944371054475 a001 832040/64079*228826127^(9/10) 4334944371054476 a001 832040/64079*87403803^(18/19) 4334944371055249 a001 583600122347618/1346269 4334944371055545 a001 28657/4870847*(1/2+1/2*5^(1/2))^52 4334944371055545 a001 28657/4870847*23725150497407^(13/16) 4334944371055545 a001 28657/4870847*505019158607^(13/14) 4334944371055545 a001 2178309/64079*45537549124^(2/3) 4334944371055545 a001 2178309/64079*(1/2+1/2*5^(1/2))^34 4334944371055545 a001 2178309/64079*10749957122^(17/24) 4334944371055545 a001 2178309/64079*4106118243^(17/23) 4334944371055545 a001 2178309/64079*1568397607^(17/22) 4334944371055545 a001 2178309/64079*599074578^(17/21) 4334944371055545 a001 2178309/64079*228826127^(17/20) 4334944371055545 a001 2178309/64079*87403803^(17/19) 4334944371055549 a001 2178309/64079*33385282^(17/18) 4334944371055658 a001 1527884956144661/3524578 4334944371055660 a001 14930352/64079*7881196^(10/11) 4334944371055671 a001 63245986/64079*7881196^(9/11) 4334944371055677 a001 267914296/64079*7881196^(8/11) 4334944371055681 a001 701408733/64079*7881196^(2/3) 4334944371055683 a001 1134903170/64079*7881196^(7/11) 4334944371055690 a001 4807526976/64079*7881196^(6/11) 4334944371055696 a001 20365011074/64079*7881196^(5/11) 4334944371055701 a001 28657/12752043*14662949395604^(6/7) 4334944371055701 a001 28657/12752043*(1/2+1/2*5^(1/2))^54 4334944371055701 a001 5702887/64079*(1/2+1/2*5^(1/2))^32 4334944371055701 a001 5702887/64079*23725150497407^(1/2) 4334944371055701 a001 5702887/64079*505019158607^(4/7) 4334944371055701 a001 5702887/64079*73681302247^(8/13) 4334944371055701 a001 5702887/64079*10749957122^(2/3) 4334944371055701 a001 5702887/64079*4106118243^(16/23) 4334944371055701 a001 5702887/64079*1568397607^(8/11) 4334944371055701 a001 5702887/64079*599074578^(16/21) 4334944371055701 a001 5702887/64079*228826127^(4/5) 4334944371055701 a001 5702887/64079*87403803^(16/19) 4334944371055702 a001 86267571272/64079*7881196^(4/11) 4334944371055704 a001 139583862445/64079*7881196^(1/3) 4334944371055704 a001 5702887/64079*33385282^(8/9) 4334944371055709 a001 365435296162/64079*7881196^(3/11) 4334944371055715 a001 1548008755920/64079*7881196^(2/11) 4334944371055715 a001 14930352/64079*20633239^(6/7) 4334944371055717 a001 800010949217273/1845493 4334944371055719 a001 39088169/64079*20633239^(4/5) 4334944371055720 a001 165580141/64079*20633239^(5/7) 4334944371055721 a001 6557470319842/64079*7881196^(1/11) 4334944371055721 a001 1134903170/64079*20633239^(3/5) 4334944371055722 a001 28657*20633239^(4/7) 4334944371055723 a001 20365011074/64079*20633239^(3/7) 4334944371055724 a001 32951280099/64079*20633239^(2/5) 4334944371055724 a001 14930352/64079*141422324^(10/13) 4334944371055724 a001 14930352/64079*2537720636^(2/3) 4334944371055724 a001 28657/33385282*14662949395604^(8/9) 4334944371055724 a001 28657/33385282*(1/2+1/2*5^(1/2))^56 4334944371055724 a001 14930352/64079*45537549124^(10/17) 4334944371055724 a001 14930352/64079*312119004989^(6/11) 4334944371055724 a001 14930352/64079*14662949395604^(10/21) 4334944371055724 a001 14930352/64079*(1/2+1/2*5^(1/2))^30 4334944371055724 a001 14930352/64079*192900153618^(5/9) 4334944371055724 a001 14930352/64079*28143753123^(3/5) 4334944371055724 a001 14930352/64079*10749957122^(5/8) 4334944371055724 a001 14930352/64079*4106118243^(15/23) 4334944371055724 a001 14930352/64079*1568397607^(15/22) 4334944371055724 a001 14930352/64079*599074578^(5/7) 4334944371055724 a001 14930352/64079*228826127^(3/4) 4334944371055724 a001 14930352/64079*87403803^(15/19) 4334944371055725 a001 225851433717/64079*20633239^(2/7) 4334944371055726 a001 956722026041/64079*20633239^(1/5) 4334944371055726 a001 5702887/64079*12752043^(16/17) 4334944371055726 a001 10472279282114434/24157817 4334944371055726 a001 2504730781961/64079*20633239^(1/7) 4334944371055727 a001 14930352/64079*33385282^(5/6) 4334944371055727 a001 39088169/64079*17393796001^(4/7) 4334944371055727 a001 39088169/64079*14662949395604^(4/9) 4334944371055727 a001 39088169/64079*(1/2+1/2*5^(1/2))^28 4334944371055727 a001 39088169/64079*73681302247^(7/13) 4334944371055727 a001 39088169/64079*10749957122^(7/12) 4334944371055727 a001 39088169/64079*4106118243^(14/23) 4334944371055727 a001 39088169/64079*1568397607^(7/11) 4334944371055727 a001 39088169/64079*599074578^(2/3) 4334944371055727 a001 39088169/64079*228826127^(7/10) 4334944371055727 a001 102334155/64079*141422324^(2/3) 4334944371055727 a001 27416783100256937/63245986 4334944371055727 a001 39088169/64079*87403803^(14/19) 4334944371055727 a001 267914296/64079*141422324^(8/13) 4334944371055727 a001 1134903170/64079*141422324^(7/13) 4334944371055727 a001 4807526976/64079*141422324^(6/13) 4334944371055728 a001 20365011074/64079*141422324^(5/13) 4334944371055728 a001 28657/228826127*14662949395604^(20/21) 4334944371055728 a001 102334155/64079*(1/2+1/2*5^(1/2))^26 4334944371055728 a001 102334155/64079*73681302247^(1/2) 4334944371055728 a001 102334155/64079*10749957122^(13/24) 4334944371055728 a001 102334155/64079*4106118243^(13/23) 4334944371055728 a001 102334155/64079*1568397607^(13/22) 4334944371055728 a001 102334155/64079*599074578^(13/21) 4334944371055728 a001 53316291173/64079*141422324^(1/3) 4334944371055728 a001 86267571272/64079*141422324^(4/13) 4334944371055728 a001 365435296162/64079*141422324^(3/13) 4334944371055728 a001 1548008755920/64079*141422324^(2/13) 4334944371055728 a001 71778070018656377/165580141 4334944371055728 a001 102334155/64079*228826127^(13/20) 4334944371055728 a001 6557470319842/64079*141422324^(1/13) 4334944371055728 a001 267914296/64079*2537720636^(8/15) 4334944371055728 a001 267914296/64079*45537549124^(8/17) 4334944371055728 a001 267914296/64079*14662949395604^(8/21) 4334944371055728 a001 267914296/64079*(1/2+1/2*5^(1/2))^24 4334944371055728 a001 267914296/64079*192900153618^(4/9) 4334944371055728 a001 267914296/64079*73681302247^(6/13) 4334944371055728 a001 267914296/64079*10749957122^(1/2) 4334944371055728 a001 267914296/64079*4106118243^(12/23) 4334944371055728 a001 267914296/64079*1568397607^(6/11) 4334944371055728 a001 267914296/64079*599074578^(4/7) 4334944371055728 a001 187917426955712194/433494437 4334944371055728 a001 701408733/64079*312119004989^(2/5) 4334944371055728 a001 701408733/64079*(1/2+1/2*5^(1/2))^22 4334944371055728 a001 701408733/64079*10749957122^(11/24) 4334944371055728 a001 701408733/64079*4106118243^(11/23) 4334944371055728 a001 701408733/64079*1568397607^(1/2) 4334944371055728 a001 28657*2537720636^(4/9) 4334944371055728 a001 4807526976/64079*2537720636^(2/5) 4334944371055728 a001 28657*(1/2+1/2*5^(1/2))^20 4334944371055728 a001 28657*23725150497407^(5/16) 4334944371055728 a001 28657*505019158607^(5/14) 4334944371055728 a001 28657*73681302247^(5/13) 4334944371055728 a001 28657*28143753123^(2/5) 4334944371055728 a001 28657*10749957122^(5/12) 4334944371055728 a001 20365011074/64079*2537720636^(1/3) 4334944371055728 a001 86267571272/64079*2537720636^(4/15) 4334944371055728 a001 225851433717/64079*2537720636^(2/9) 4334944371055728 a001 28657*4106118243^(10/23) 4334944371055728 a001 365435296162/64079*2537720636^(1/5) 4334944371055728 a001 1548008755920/64079*2537720636^(2/15) 4334944371055728 a001 2504730781961/64079*2537720636^(1/9) 4334944371055728 a001 6557470319842/64079*2537720636^(1/15) 4334944371055728 a001 4807526976/64079*45537549124^(6/17) 4334944371055728 a001 4807526976/64079*14662949395604^(2/7) 4334944371055728 a001 4807526976/64079*(1/2+1/2*5^(1/2))^18 4334944371055728 a001 4807526976/64079*192900153618^(1/3) 4334944371055728 a001 4807526976/64079*10749957122^(3/8) 4334944371055728 a001 12586269025/64079*(1/2+1/2*5^(1/2))^16 4334944371055728 a001 12586269025/64079*23725150497407^(1/4) 4334944371055728 a001 12586269025/64079*73681302247^(4/13) 4334944371055728 a001 32951280099/64079*17393796001^(2/7) 4334944371055728 a001 956722026041/64079*17393796001^(1/7) 4334944371055728 a001 32951280099/64079*14662949395604^(2/9) 4334944371055728 a001 32951280099/64079*(1/2+1/2*5^(1/2))^14 4334944371055728 a001 86267571272/64079*45537549124^(4/17) 4334944371055728 a001 365435296162/64079*45537549124^(3/17) 4334944371055728 a001 1548008755920/64079*45537549124^(2/17) 4334944371055728 a001 6557470319842/64079*45537549124^(1/17) 4334944371055728 a001 86267571272/64079*14662949395604^(4/21) 4334944371055728 a001 86267571272/64079*(1/2+1/2*5^(1/2))^12 4334944371055728 a001 225851433717/64079*312119004989^(2/11) 4334944371055728 a001 225851433717/64079*(1/2+1/2*5^(1/2))^10 4334944371055728 a001 2504730781961/64079*312119004989^(1/11) 4334944371055728 a001 591286729879/64079*23725150497407^(1/8) 4334944371055728 a001 1548008755920/64079*14662949395604^(2/21) 4334944371055728 a001 1548008755920/64079*(1/2+1/2*5^(1/2))^6 4334944371055728 a001 4052739537881/64079*(1/2+1/2*5^(1/2))^4 4334944371055728 a001 10610209857723/64079*(1/2+1/2*5^(1/2))^2 4334944371055728 a001 6557470319842/64079*(1/2+1/2*5^(1/2))^3 4334944371055728 a001 2504730781961/64079*(1/2+1/2*5^(1/2))^5 4334944371055728 a001 6557470319842/64079*192900153618^(1/18) 4334944371055728 a001 365435296162/64079*192900153618^(1/6) 4334944371055728 a001 139583862445/64079*312119004989^(1/5) 4334944371055728 a001 139583862445/64079*(1/2+1/2*5^(1/2))^11 4334944371055728 a001 4052739537881/64079*73681302247^(1/13) 4334944371055728 a001 591286729879/64079*73681302247^(2/13) 4334944371055728 a001 53316291173/64079*73681302247^(1/4) 4334944371055728 a001 2504730781961/64079*28143753123^(1/10) 4334944371055728 a001 225851433717/64079*28143753123^(1/5) 4334944371055728 a001 20365011074/64079*45537549124^(5/17) 4334944371055728 a001 10610209857723/64079*10749957122^(1/24) 4334944371055728 a001 20365011074/64079*312119004989^(3/11) 4334944371055728 a001 20365011074/64079*14662949395604^(5/21) 4334944371055728 a001 20365011074/64079*(1/2+1/2*5^(1/2))^15 4334944371055728 a001 20365011074/64079*192900153618^(5/18) 4334944371055728 a001 6557470319842/64079*10749957122^(1/16) 4334944371055728 a001 4052739537881/64079*10749957122^(1/12) 4334944371055728 a001 20365011074/64079*28143753123^(3/10) 4334944371055728 a001 1548008755920/64079*10749957122^(1/8) 4334944371055728 a001 591286729879/64079*10749957122^(1/6) 4334944371055728 a001 12586269025/64079*10749957122^(1/3) 4334944371055728 a001 365435296162/64079*10749957122^(3/16) 4334944371055728 a001 225851433717/64079*10749957122^(5/24) 4334944371055728 a001 86267571272/64079*10749957122^(1/4) 4334944371055728 a001 32951280099/64079*10749957122^(7/24) 4334944371055728 a001 10610209857723/64079*4106118243^(1/23) 4334944371055728 a001 7778742049/64079*45537549124^(1/3) 4334944371055728 a001 20365011074/64079*10749957122^(5/16) 4334944371055728 a001 7778742049/64079*(1/2+1/2*5^(1/2))^17 4334944371055728 a001 4052739537881/64079*4106118243^(2/23) 4334944371055728 a001 1548008755920/64079*4106118243^(3/23) 4334944371055728 a001 591286729879/64079*4106118243^(4/23) 4334944371055728 a001 225851433717/64079*4106118243^(5/23) 4334944371055728 a001 4807526976/64079*4106118243^(9/23) 4334944371055728 a001 86267571272/64079*4106118243^(6/23) 4334944371055728 a001 32951280099/64079*4106118243^(7/23) 4334944371055728 a001 10610209857723/64079*1568397607^(1/22) 4334944371055728 a001 12586269025/64079*4106118243^(8/23) 4334944371055728 a001 2971215073/64079*817138163596^(1/3) 4334944371055728 a001 2971215073/64079*(1/2+1/2*5^(1/2))^19 4334944371055728 a001 4052739537881/64079*1568397607^(1/11) 4334944371055728 a001 1548008755920/64079*1568397607^(3/22) 4334944371055728 a001 591286729879/64079*1568397607^(2/11) 4334944371055728 a001 1134903170/64079*2537720636^(7/15) 4334944371055728 a001 225851433717/64079*1568397607^(5/22) 4334944371055728 a001 139583862445/64079*1568397607^(1/4) 4334944371055728 a001 86267571272/64079*1568397607^(3/11) 4334944371055728 a001 28657*1568397607^(5/11) 4334944371055728 a001 32951280099/64079*1568397607^(7/22) 4334944371055728 a001 10610209857723/64079*599074578^(1/21) 4334944371055728 a001 12586269025/64079*1568397607^(4/11) 4334944371055728 a001 1134903170/64079*17393796001^(3/7) 4334944371055728 a001 1134903170/64079*45537549124^(7/17) 4334944371055728 a001 1134903170/64079*14662949395604^(1/3) 4334944371055728 a001 1134903170/64079*(1/2+1/2*5^(1/2))^21 4334944371055728 a001 1134903170/64079*192900153618^(7/18) 4334944371055728 a001 4807526976/64079*1568397607^(9/22) 4334944371055728 a001 1134903170/64079*10749957122^(7/16) 4334944371055728 a001 6557470319842/64079*599074578^(1/14) 4334944371055728 a001 4052739537881/64079*599074578^(2/21) 4334944371055728 a001 101352261297589337/233802911 4334944371055728 a001 1548008755920/64079*599074578^(1/7) 4334944371055728 a001 956722026041/64079*599074578^(1/6) 4334944371055728 a001 591286729879/64079*599074578^(4/21) 4334944371055728 a001 365435296162/64079*599074578^(3/14) 4334944371055728 a001 225851433717/64079*599074578^(5/21) 4334944371055728 a001 86267571272/64079*599074578^(2/7) 4334944371055728 a001 32951280099/64079*599074578^(1/3) 4334944371055728 a001 10610209857723/64079*228826127^(1/20) 4334944371055728 a001 20365011074/64079*599074578^(5/14) 4334944371055728 a001 701408733/64079*599074578^(11/21) 4334944371055728 a001 12586269025/64079*599074578^(8/21) 4334944371055728 a001 433494437/64079*(1/2+1/2*5^(1/2))^23 4334944371055728 a001 433494437/64079*4106118243^(1/2) 4334944371055728 a001 4807526976/64079*599074578^(3/7) 4334944371055728 a001 28657*599074578^(10/21) 4334944371055728 a001 1134903170/64079*599074578^(1/2) 4334944371055728 a001 4052739537881/64079*228826127^(1/10) 4334944371055728 a001 2504730781961/64079*228826127^(1/8) 4334944371055728 a001 116139356937055817/267914296 4334944371055728 a001 1548008755920/64079*228826127^(3/20) 4334944371055728 a001 591286729879/64079*228826127^(1/5) 4334944371055728 a001 225851433717/64079*228826127^(1/4) 4334944371055728 a001 86267571272/64079*228826127^(3/10) 4334944371055728 a001 32951280099/64079*228826127^(7/20) 4334944371055728 a001 10610209857723/64079*87403803^(1/19) 4334944371055728 a001 20365011074/64079*228826127^(3/8) 4334944371055728 a001 165580141/64079*2537720636^(5/9) 4334944371055728 a001 165580141/64079*312119004989^(5/11) 4334944371055728 a001 165580141/64079*(1/2+1/2*5^(1/2))^25 4334944371055728 a001 165580141/64079*3461452808002^(5/12) 4334944371055728 a001 165580141/64079*28143753123^(1/2) 4334944371055728 a001 12586269025/64079*228826127^(2/5) 4334944371055728 a001 4807526976/64079*228826127^(9/20) 4334944371055728 a001 267914296/64079*228826127^(3/5) 4334944371055728 a001 28657*228826127^(1/2) 4334944371055728 a001 701408733/64079*228826127^(11/20) 4334944371055728 a001 4052739537881/64079*87403803^(2/19) 4334944371055728 a001 63245986/64079*141422324^(9/13) 4334944371055728 a001 6557470350096/15127 4334944371055728 a001 165580141/64079*228826127^(5/8) 4334944371055728 a001 1548008755920/64079*87403803^(3/19) 4334944371055728 a001 591286729879/64079*87403803^(4/19) 4334944371055728 a001 225851433717/64079*87403803^(5/19) 4334944371055728 a001 86267571272/64079*87403803^(6/19) 4334944371055728 a001 32951280099/64079*87403803^(7/19) 4334944371055728 a001 10610209857723/64079*33385282^(1/18) 4334944371055728 a001 63245986/64079*2537720636^(3/5) 4334944371055728 a001 63245986/64079*45537549124^(9/17) 4334944371055728 a001 63245986/64079*817138163596^(9/19) 4334944371055728 a001 63245986/64079*14662949395604^(3/7) 4334944371055728 a001 63245986/64079*(1/2+1/2*5^(1/2))^27 4334944371055728 a001 63245986/64079*192900153618^(1/2) 4334944371055728 a001 63245986/64079*10749957122^(9/16) 4334944371055728 a001 63245986/64079*599074578^(9/14) 4334944371055728 a001 12586269025/64079*87403803^(8/19) 4334944371055728 a001 4807526976/64079*87403803^(9/19) 4334944371055728 a001 2971215073/64079*87403803^(1/2) 4334944371055728 a001 28657*87403803^(10/19) 4334944371055728 a001 102334155/64079*87403803^(13/19) 4334944371055728 a001 6557470319842/64079*33385282^(1/12) 4334944371055728 a001 701408733/64079*87403803^(11/19) 4334944371055728 a001 267914296/64079*87403803^(12/19) 4334944371055728 a001 4052739537881/64079*33385282^(1/9) 4334944371055728 a001 16944503818142503/39088169 4334944371055728 a001 1548008755920/64079*33385282^(1/6) 4334944371055728 a001 591286729879/64079*33385282^(2/9) 4334944371055729 a001 365435296162/64079*33385282^(1/4) 4334944371055729 a001 225851433717/64079*33385282^(5/18) 4334944371055729 a001 86267571272/64079*33385282^(1/3) 4334944371055729 a001 28657/54018521*14662949395604^(19/21) 4334944371055729 a001 24157817/64079*(1/2+1/2*5^(1/2))^29 4334944371055729 a001 24157817/64079*1322157322203^(1/2) 4334944371055729 a001 32951280099/64079*33385282^(7/18) 4334944371055729 a001 10610209857723/64079*12752043^(1/17) 4334944371055729 a001 20365011074/64079*33385282^(5/12) 4334944371055729 a001 12586269025/64079*33385282^(4/9) 4334944371055730 a001 4807526976/64079*33385282^(1/2) 4334944371055730 a001 28657*33385282^(5/9) 4334944371055730 a001 1134903170/64079*33385282^(7/12) 4334944371055730 a001 701408733/64079*33385282^(11/18) 4334944371055730 a001 39088169/64079*33385282^(7/9) 4334944371055730 a001 267914296/64079*33385282^(2/3) 4334944371055730 a001 102334155/64079*33385282^(13/18) 4334944371055731 a001 63245986/64079*33385282^(3/4) 4334944371055731 a001 4052739537881/64079*12752043^(2/17) 4334944371055731 a001 2157408178676023/4976784 4334944371055732 a001 1548008755920/64079*12752043^(3/17) 4334944371055734 a001 591286729879/64079*12752043^(4/17) 4334944371055735 a001 225851433717/64079*12752043^(5/17) 4334944371055737 a001 86267571272/64079*12752043^(6/17) 4334944371055738 a001 28657/20633239*(1/2+1/2*5^(1/2))^55 4334944371055738 a001 28657/20633239*3461452808002^(11/12) 4334944371055738 a001 9227465/64079*(1/2+1/2*5^(1/2))^31 4334944371055738 a001 9227465/64079*9062201101803^(1/2) 4334944371055739 a001 32951280099/64079*12752043^(7/17) 4334944371055739 a001 10610209857723/64079*4870847^(1/16) 4334944371055740 a001 12586269025/64079*12752043^(8/17) 4334944371055741 a001 7778742049/64079*12752043^(1/2) 4334944371055742 a001 4807526976/64079*12752043^(9/17) 4334944371055743 a001 28657*12752043^(10/17) 4334944371055745 a001 701408733/64079*12752043^(11/17) 4334944371055746 a001 267914296/64079*12752043^(12/17) 4334944371055747 a001 14930352/64079*12752043^(15/17) 4334944371055748 a001 102334155/64079*12752043^(13/17) 4334944371055749 a001 39088169/64079*12752043^(14/17) 4334944371055750 a001 4052739537881/64079*4870847^(1/8) 4334944371055754 a001 2472169789941704/5702887 4334944371055762 a001 1548008755920/64079*4870847^(3/16) 4334944371055773 a001 591286729879/64079*4870847^(1/4) 4334944371055785 a001 225851433717/64079*4870847^(5/16) 4334944371055796 a001 86267571272/64079*4870847^(3/8) 4334944371055797 a001 3524578/64079*141422324^(11/13) 4334944371055797 a001 3524578/64079*2537720636^(11/15) 4334944371055797 a001 28657/7881196*(1/2+1/2*5^(1/2))^53 4334944371055797 a001 3524578/64079*45537549124^(11/17) 4334944371055797 a001 3524578/64079*312119004989^(3/5) 4334944371055797 a001 3524578/64079*817138163596^(11/19) 4334944371055797 a001 3524578/64079*14662949395604^(11/21) 4334944371055797 a001 3524578/64079*(1/2+1/2*5^(1/2))^33 4334944371055797 a001 3524578/64079*192900153618^(11/18) 4334944371055797 a001 3524578/64079*10749957122^(11/16) 4334944371055797 a001 3524578/64079*1568397607^(3/4) 4334944371055797 a001 3524578/64079*599074578^(11/14) 4334944371055801 a001 3524578/64079*33385282^(11/12) 4334944371055808 a001 32951280099/64079*4870847^(7/16) 4334944371055811 a001 10610209857723/64079*1860498^(1/15) 4334944371055819 a001 12586269025/64079*4870847^(1/2) 4334944371055830 a001 4807526976/64079*4870847^(9/16) 4334944371055842 a001 28657*4870847^(5/8) 4334944371055853 a001 6557470319842/64079*1860498^(1/10) 4334944371055853 a001 701408733/64079*4870847^(11/16) 4334944371055865 a001 267914296/64079*4870847^(3/4) 4334944371055876 a001 102334155/64079*4870847^(13/16) 4334944371055887 a001 39088169/64079*4870847^(7/8) 4334944371055895 a001 4052739537881/64079*1860498^(2/15) 4334944371055895 a001 14930352/64079*4870847^(15/16) 4334944371055910 a001 314761611265681/726103 4334944371055936 a001 2504730781961/64079*1860498^(1/6) 4334944371055978 a001 1548008755920/64079*1860498^(1/5) 4334944371056062 a001 591286729879/64079*1860498^(4/15) 4334944371056103 a001 365435296162/64079*1860498^(3/10) 4334944371056145 a001 225851433717/64079*1860498^(1/3) 4334944371056206 a001 1346269/64079*2537720636^(7/9) 4334944371056206 a001 28657/3010349*817138163596^(17/19) 4334944371056206 a001 28657/3010349*14662949395604^(17/21) 4334944371056206 a001 28657/3010349*(1/2+1/2*5^(1/2))^51 4334944371056206 a001 28657/3010349*192900153618^(17/18) 4334944371056206 a001 1346269/64079*17393796001^(5/7) 4334944371056206 a001 1346269/64079*312119004989^(7/11) 4334944371056206 a001 1346269/64079*14662949395604^(5/9) 4334944371056206 a001 1346269/64079*(1/2+1/2*5^(1/2))^35 4334944371056206 a001 1346269/64079*505019158607^(5/8) 4334944371056206 a001 1346269/64079*28143753123^(7/10) 4334944371056206 a001 1346269/64079*599074578^(5/6) 4334944371056206 a001 1346269/64079*228826127^(7/8) 4334944371056229 a001 86267571272/64079*1860498^(2/5) 4334944371056312 a001 32951280099/64079*1860498^(7/15) 4334944371056341 a001 10610209857723/64079*710647^(1/14) 4334944371056354 a001 20365011074/64079*1860498^(1/2) 4334944371056396 a001 12586269025/64079*1860498^(8/15) 4334944371056479 a001 4807526976/64079*1860498^(3/5) 4334944371056562 a001 28657*1860498^(2/3) 4334944371056604 a001 1134903170/64079*1860498^(7/10) 4334944371056646 a001 701408733/64079*1860498^(11/15) 4334944371056729 a001 267914296/64079*1860498^(4/5) 4334944371056771 a001 165580141/64079*1860498^(5/6) 4334944371056813 a001 102334155/64079*1860498^(13/15) 4334944371056855 a001 63245986/64079*1860498^(9/10) 4334944371056896 a001 39088169/64079*1860498^(14/15) 4334944371056954 a001 4052739537881/64079*710647^(1/7) 4334944371056980 a001 6557903844535/15128 4334944371057567 a001 1548008755920/64079*710647^(3/14) 4334944371057874 a001 956722026041/64079*710647^(1/4) 4334944371058180 a001 591286729879/64079*710647^(2/7) 4334944371058793 a001 225851433717/64079*710647^(5/14) 4334944371059006 a001 28657/1149851*14662949395604^(7/9) 4334944371059006 a001 28657/1149851*(1/2+1/2*5^(1/2))^49 4334944371059006 a001 28657/1149851*505019158607^(7/8) 4334944371059006 a001 514229/64079*(1/2+1/2*5^(1/2))^37 4334944371059406 a001 86267571272/64079*710647^(3/7) 4334944371060019 a001 32951280099/64079*710647^(1/2) 4334944371060253 a001 10610209857723/64079*271443^(1/13) 4334944371060633 a001 12586269025/64079*710647^(4/7) 4334944371061246 a001 4807526976/64079*710647^(9/14) 4334944371061859 a001 28657*710647^(5/7) 4334944371062165 a001 1134903170/64079*710647^(3/4) 4334944371062472 a001 701408733/64079*710647^(11/14) 4334944371063085 a001 267914296/64079*710647^(6/7) 4334944371063698 a001 102334155/64079*710647^(13/14) 4334944371064311 a001 45923100183744/105937 4334944371064779 a001 4052739537881/64079*271443^(2/13) 4334944371069305 a001 1548008755920/64079*271443^(3/13) 4334944371071865 a001 516002918640/90481*39603^(9/22) 4334944371073830 a001 591286729879/64079*271443^(4/13) 4334944371078200 a001 196418/64079*2537720636^(13/15) 4334944371078200 a001 28657/439204*(1/2+1/2*5^(1/2))^47 4334944371078200 a001 196418/64079*45537549124^(13/17) 4334944371078200 a001 196418/64079*14662949395604^(13/21) 4334944371078200 a001 196418/64079*(1/2+1/2*5^(1/2))^39 4334944371078200 a001 196418/64079*192900153618^(13/18) 4334944371078200 a001 196418/64079*73681302247^(3/4) 4334944371078200 a001 196418/64079*10749957122^(13/16) 4334944371078200 a001 196418/64079*599074578^(13/14) 4334944371078356 a001 225851433717/64079*271443^(5/13) 4334944371082882 a001 86267571272/64079*271443^(6/13) 4334944371085144 a001 53316291173/64079*271443^(1/2) 4334944371087407 a001 32951280099/64079*271443^(7/13) 4334944371089332 a001 10610209857723/64079*103682^(1/12) 4334944371091933 a001 12586269025/64079*271443^(8/13) 4334944371096459 a001 4807526976/64079*271443^(9/13) 4334944371100984 a001 28657*271443^(10/13) 4334944371104347 a001 139583862445/103682*39603^(6/11) 4334944371105510 a001 701408733/64079*271443^(11/13) 4334944371106134 a001 6557470319842/64079*103682^(1/8) 4334944371110036 a001 267914296/64079*271443^(12/13) 4334944371114561 a001 52623190204271/121393 4334944371122115 a001 4052739537881/710647*39603^(9/22) 4334944371122936 a001 4052739537881/64079*103682^(1/6) 4334944371129447 a001 3536736619241/620166*39603^(9/22) 4334944371133978 a001 6557470319842/1149851*39603^(9/22) 4334944371139738 a001 2504730781961/64079*103682^(5/24) 4334944371153171 a001 2504730781961/439204*39603^(9/22) 4334944371156541 a001 1548008755920/64079*103682^(1/4) 4334944371159094 a001 140728068720/15251*39603^(4/11) 4334944371173343 a001 956722026041/64079*103682^(7/24) 4334944371190145 a001 591286729879/64079*103682^(1/3) 4334944371197499 a001 956722026041/271443*39603^(5/11) 4334944371206947 a001 365435296162/64079*103682^(3/8) 4334944371209756 a001 28657/167761*45537549124^(15/17) 4334944371209756 a001 28657/167761*312119004989^(9/11) 4334944371209756 a001 28657/167761*14662949395604^(5/7) 4334944371209756 a001 28657/167761*(1/2+1/2*5^(1/2))^45 4334944371209756 a001 28657/167761*192900153618^(5/6) 4334944371209756 a001 28657/167761*28143753123^(9/10) 4334944371209756 a001 28657/167761*10749957122^(15/16) 4334944371209756 a001 75025/64079*(1/2+1/2*5^(1/2))^41 4334944371223749 a001 225851433717/64079*103682^(5/12) 4334944371229980 a001 43133785636/51841*39603^(13/22) 4334944371240552 a001 139583862445/64079*103682^(11/24) 4334944371247749 a001 2504730781961/710647*39603^(5/11) 4334944371255080 a001 3278735159921/930249*39603^(5/11) 4334944371256811 a001 10610209857723/3010349*39603^(5/11) 4334944371257354 a001 86267571272/64079*103682^(1/2) 4334944371259611 a001 4052739537881/1149851*39603^(5/11) 4334944371274156 a001 53316291173/64079*103682^(13/24) 4334944371278805 a001 387002188980/109801*39603^(5/11) 4334944371284728 a001 956722026041/167761*39603^(9/22) 4334944371290958 a001 32951280099/64079*103682^(7/12) 4334944371306994 a001 10610209857723/64079*39603^(1/11) 4334944371307760 a001 20365011074/64079*103682^(5/8) 4334944371323132 a001 591286729879/271443*39603^(1/2) 4334944371324562 a001 12586269025/64079*103682^(2/3) 4334944371341365 a001 7778742049/64079*103682^(17/24) 4334944371355613 a001 53316291173/103682*39603^(7/11) 4334944371358167 a001 4807526976/64079*103682^(3/4) 4334944371373382 a001 1548008755920/710647*39603^(1/2) 4334944371374969 a001 2971215073/64079*103682^(19/24) 4334944371378298 a001 2971215073/24476*24476^(17/21) 4334944371380713 a001 4052739537881/1860498*39603^(1/2) 4334944371381783 a001 2178309*39603^(1/2) 4334944371382444 a001 6557470319842/3010349*39603^(1/2) 4334944371385244 a001 2504730781961/1149851*39603^(1/2) 4334944371391771 a001 28657*103682^(5/6) 4334944371404438 a001 956722026041/439204*39603^(1/2) 4334944371408573 a001 1134903170/64079*103682^(7/8) 4334944371410361 a001 591286729879/167761*39603^(5/11) 4334944371425375 a001 701408733/64079*103682^(11/12) 4334944371432627 a001 6557470319842/64079*39603^(3/22) 4334944371442178 a001 433494437/64079*103682^(23/24) 4334944371448765 a001 365435296162/271443*39603^(6/11) 4334944371458980 a001 6700090020527/15456 4334944371481246 a001 32951280099/103682*39603^(15/22) 4334944371499015 a001 956722026041/710647*39603^(6/11) 4334944371506346 a001 2504730781961/1860498*39603^(6/11) 4334944371507416 a001 6557470319842/4870847*39603^(6/11) 4334944371507669 a001 10610209857723/7881196*39603^(6/11) 4334944371508077 a001 1346269*39603^(6/11) 4334944371510877 a001 1548008755920/1149851*39603^(6/11) 4334944371530071 a001 591286729879/439204*39603^(6/11) 4334944371535994 a001 365435296162/167761*39603^(1/2) 4334944371558261 a001 4052739537881/64079*39603^(2/11) 4334944371574398 a001 75283811239/90481*39603^(13/22) 4334944371606880 a001 10182505537/51841*39603^(8/11) 4334944371624648 a001 591286729879/710647*39603^(13/22) 4334944371631980 a001 832040*39603^(13/22) 4334944371633049 a001 4052739537881/4870847*39603^(13/22) 4334944371633205 a001 3536736619241/4250681*39603^(13/22) 4334944371633302 a001 3278735159921/3940598*39603^(13/22) 4334944371633710 a001 2504730781961/3010349*39603^(13/22) 4334944371636511 a001 956722026041/1149851*39603^(13/22) 4334944371655705 a001 182717648081/219602*39603^(13/22) 4334944371661627 a001 225851433717/167761*39603^(6/11) 4334944371683894 a001 2504730781961/64079*39603^(5/22) 4334944371700032 a001 139583862445/271443*39603^(7/11) 4334944371722873 a001 1201881744/6119*24476^(16/21) 4334944371732513 a001 12586269025/103682*39603^(17/22) 4334944371750282 a001 365435296162/710647*39603^(7/11) 4334944371757613 a001 956722026041/1860498*39603^(7/11) 4334944371758683 a001 2504730781961/4870847*39603^(7/11) 4334944371758839 a001 6557470319842/12752043*39603^(7/11) 4334944371758876 a001 10610209857723/20633239*39603^(7/11) 4334944371758935 a001 4052739537881/7881196*39603^(7/11) 4334944371759344 a001 1548008755920/3010349*39603^(7/11) 4334944371762144 a001 514229*39603^(7/11) 4334944371781338 a001 225851433717/439204*39603^(7/11) 4334944371787261 a001 139583862445/167761*39603^(13/22) 4334944371809527 a001 1548008755920/64079*39603^(3/11) 4334944371825665 a001 86267571272/271443*39603^(15/22) 4334944371858146 a001 7778742049/103682*39603^(9/11) 4334944371875915 a001 317811*39603^(15/22) 4334944371883246 a001 591286729879/1860498*39603^(15/22) 4334944371884316 a001 1548008755920/4870847*39603^(15/22) 4334944371884472 a001 4052739537881/12752043*39603^(15/22) 4334944371884495 a001 1515744265389/4769326*39603^(15/22) 4334944371884509 a001 6557470319842/20633239*39603^(15/22) 4334944371884568 a001 2504730781961/7881196*39603^(15/22) 4334944371884977 a001 956722026041/3010349*39603^(15/22) 4334944371887777 a001 365435296162/1149851*39603^(15/22) 4334944371906971 a001 139583862445/439204*39603^(15/22) 4334944371912894 a001 86267571272/167761*39603^(7/11) 4334944371935161 a001 956722026041/64079*39603^(7/22) 4334944371951298 a001 53316291173/271443*39603^(8/11) 4334944371972135 a001 516002918640/13201*15127^(1/4) 4334944371983779 a001 46368*39603^(19/22) 4334944372001548 a001 139583862445/710647*39603^(8/11) 4334944372008880 a001 182717648081/930249*39603^(8/11) 4334944372009949 a001 956722026041/4870847*39603^(8/11) 4334944372010105 a001 2504730781961/12752043*39603^(8/11) 4334944372010128 a001 3278735159921/16692641*39603^(8/11) 4334944372010133 a001 10610209857723/54018521*39603^(8/11) 4334944372010142 a001 4052739537881/20633239*39603^(8/11) 4334944372010202 a001 387002188980/1970299*39603^(8/11) 4334944372010610 a001 591286729879/3010349*39603^(8/11) 4334944372013411 a001 225851433717/1149851*39603^(8/11) 4334944372015357 a001 4052739537881/24476*9349^(2/19) 4334944372032604 a001 196418*39603^(8/11) 4334944372038527 a001 53316291173/167761*39603^(15/22) 4334944372060794 a001 591286729879/64079*39603^(4/11) 4334944372067447 a001 7778742049/24476*24476^(5/7) 4334944372076931 a001 121393*39603^(17/22) 4334944372109413 a001 2971215073/103682*39603^(10/11) 4334944372111456 a001 28657/64079*(1/2+1/2*5^(1/2))^43 4334944372127181 a001 86267571272/710647*39603^(17/22) 4334944372134513 a001 75283811239/620166*39603^(17/22) 4334944372135582 a001 591286729879/4870847*39603^(17/22) 4334944372135738 a001 516002918640/4250681*39603^(17/22) 4334944372135761 a001 4052739537881/33385282*39603^(17/22) 4334944372135765 a001 3536736619241/29134601*39603^(17/22) 4334944372135767 a001 6557470319842/54018521*39603^(17/22) 4334944372135775 a001 2504730781961/20633239*39603^(17/22) 4334944372135835 a001 956722026041/7881196*39603^(17/22) 4334944372136244 a001 365435296162/3010349*39603^(17/22) 4334944372139044 a001 139583862445/1149851*39603^(17/22) 4334944372158238 a001 53316291173/439204*39603^(17/22) 4334944372164161 a001 32951280099/167761*39603^(8/11) 4334944372186427 a001 365435296162/64079*39603^(9/22) 4334944372202565 a001 20365011074/271443*39603^(9/11) 4334944372235046 a001 1836311903/103682*39603^(21/22) 4334944372252815 a001 53316291173/710647*39603^(9/11) 4334944372260146 a001 139583862445/1860498*39603^(9/11) 4334944372261216 a001 365435296162/4870847*39603^(9/11) 4334944372261372 a001 956722026041/12752043*39603^(9/11) 4334944372261395 a001 2504730781961/33385282*39603^(9/11) 4334944372261398 a001 6557470319842/87403803*39603^(9/11) 4334944372261399 a001 10610209857723/141422324*39603^(9/11) 4334944372261400 a001 4052739537881/54018521*39603^(9/11) 4334944372261409 a001 140728068720/1875749*39603^(9/11) 4334944372261468 a001 591286729879/7881196*39603^(9/11) 4334944372261877 a001 225851433717/3010349*39603^(9/11) 4334944372264677 a001 86267571272/1149851*39603^(9/11) 4334944372283871 a001 32951280099/439204*39603^(9/11) 4334944372289794 a001 20365011074/167761*39603^(17/22) 4334944372312060 a001 225851433717/64079*39603^(5/11) 4334944372328198 a001 12586269025/271443*39603^(19/22) 4334944372360679 a001 7677619977888/17711 4334944372378448 a001 32951280099/710647*39603^(19/22) 4334944372385779 a001 43133785636/930249*39603^(19/22) 4334944372386849 a001 225851433717/4870847*39603^(19/22) 4334944372387005 a001 591286729879/12752043*39603^(19/22) 4334944372387028 a001 774004377960/16692641*39603^(19/22) 4334944372387031 a001 4052739537881/87403803*39603^(19/22) 4334944372387032 a001 225749145909/4868641*39603^(19/22) 4334944372387032 a001 3278735159921/70711162*39603^(19/22) 4334944372387033 a001 2504730781961/54018521*39603^(19/22) 4334944372387042 a001 956722026041/20633239*39603^(19/22) 4334944372387101 a001 182717648081/3940598*39603^(19/22) 4334944372387510 a001 139583862445/3010349*39603^(19/22) 4334944372390310 a001 53316291173/1149851*39603^(19/22) 4334944372409504 a001 10182505537/219602*39603^(19/22) 4334944372412022 a001 12586269025/24476*24476^(2/3) 4334944372415427 a001 75025*39603^(9/11) 4334944372437694 a001 139583862445/64079*39603^(1/2) 4334944372438388 a001 225749145909/2206*15127^(3/20) 4334944372453831 a001 7778742049/271443*39603^(10/11) 4334944372504081 a001 20365011074/710647*39603^(10/11) 4334944372511413 a001 53316291173/1860498*39603^(10/11) 4334944372512482 a001 139583862445/4870847*39603^(10/11) 4334944372512638 a001 365435296162/12752043*39603^(10/11) 4334944372512661 a001 956722026041/33385282*39603^(10/11) 4334944372512664 a001 2504730781961/87403803*39603^(10/11) 4334944372512665 a001 6557470319842/228826127*39603^(10/11) 4334944372512665 a001 10610209857723/370248451*39603^(10/11) 4334944372512665 a001 4052739537881/141422324*39603^(10/11) 4334944372512666 a001 1548008755920/54018521*39603^(10/11) 4334944372512675 a001 591286729879/20633239*39603^(10/11) 4334944372512735 a001 225851433717/7881196*39603^(10/11) 4334944372513143 a001 86267571272/3010349*39603^(10/11) 4334944372515944 a001 32951280099/1149851*39603^(10/11) 4334944372535137 a001 12586269025/439204*39603^(10/11) 4334944372541060 a001 7778742049/167761*39603^(19/22) 4334944372563327 a001 86267571272/64079*39603^(6/11) 4334944372579465 a001 1602508992/90481*39603^(21/22) 4334944372610355 a001 701408733/9349*9349^(18/19) 4334944372629715 a001 12586269025/710647*39603^(21/22) 4334944372637046 a001 10983760033/620166*39603^(21/22) 4334944372638116 a001 86267571272/4870847*39603^(21/22) 4334944372638272 a001 75283811239/4250681*39603^(21/22) 4334944372638294 a001 591286729879/33385282*39603^(21/22) 4334944372638298 a001 516002918640/29134601*39603^(21/22) 4334944372638298 a001 4052739537881/228826127*39603^(21/22) 4334944372638298 a001 3536736619241/199691526*39603^(21/22) 4334944372638298 a001 6557470319842/370248451*39603^(21/22) 4334944372638298 a001 2504730781961/141422324*39603^(21/22) 4334944372638300 a001 956722026041/54018521*39603^(21/22) 4334944372638308 a001 365435296162/20633239*39603^(21/22) 4334944372638368 a001 139583862445/7881196*39603^(21/22) 4334944372638777 a001 53316291173/3010349*39603^(21/22) 4334944372641577 a001 20365011074/1149851*39603^(21/22) 4334944372660771 a001 7778742049/439204*39603^(21/22) 4334944372666694 a001 4807526976/167761*39603^(10/11) 4334944372688960 a001 53316291173/64079*39603^(13/22) 4334944372696723 a001 1548008755920/15127*5778^(1/6) 4334944372705098 a001 7677619978498/17711 4334944372755349 a001 7677619978587/17711 4334944372756597 a001 10182505537/12238*24476^(13/21) 4334944372762689 a001 7677619978600/17711 4334944372763819 a001 86265393018/199 4334944372764383 a001 7677619978603/17711 4334944372767206 a001 7677619978608/17711 4334944372786403 a001 7677619978642/17711 4334944372792327 a001 2971215073/167761*39603^(21/22) 4334944372814593 a001 32951280099/64079*39603^(7/11) 4334944372917960 a001 7677619978875/17711 4334944372919349 a001 956722026041/39603*15127^(3/10) 4334944372940227 a001 20365011074/64079*39603^(15/22) 4334944372950155 a001 10610209857723/64079*15127^(1/10) 4334944373065860 a001 12586269025/64079*39603^(8/11) 4334944373101171 a001 32951280099/24476*24476^(4/7) 4334944373191493 a001 7778742049/64079*39603^(17/22) 4334944373317127 a001 4807526976/64079*39603^(9/11) 4334944373385602 a001 3278735159921/51841*15127^(1/5) 4334944373442760 a001 2971215073/64079*39603^(19/22) 4334944373445746 a001 53316291173/24476*24476^(11/21) 4334944373568393 a001 28657*39603^(10/11) 4334944373694026 a001 1134903170/64079*39603^(21/22) 4334944373790321 a001 21566892818/6119*24476^(10/21) 4334944373819660 a001 7677619980472/17711 4334944373866563 a001 591286729879/39603*15127^(7/20) 4334944373897368 a001 6557470319842/64079*15127^(3/20) 4334944373942883 a001 10610209857723/167761*15127^(1/5) 4334944374134895 a001 139583862445/24476*24476^(3/7) 4334944374332815 a001 4052739537881/103682*15127^(1/4) 4334944374449732 a001 3536736619241/13201*5778^(1/18) 4334944374472135 a001 10946/39603*312119004989^(4/5) 4334944374472135 a001 10946/39603*(1/2+1/2*5^(1/2))^44 4334944374472135 a001 10946/39603*23725150497407^(11/16) 4334944374472135 a001 10946/39603*73681302247^(11/13) 4334944374472135 a001 10946/39603*10749957122^(11/12) 4334944374472135 a001 10946/39603*4106118243^(22/23) 4334944374472135 a001 17711/24476*2537720636^(14/15) 4334944374472135 a001 17711/24476*17393796001^(6/7) 4334944374472135 a001 17711/24476*45537549124^(14/17) 4334944374472135 a001 17711/24476*14662949395604^(2/3) 4334944374472135 a001 17711/24476*(1/2+1/2*5^(1/2))^42 4334944374472135 a001 17711/24476*505019158607^(3/4) 4334944374472135 a001 17711/24476*192900153618^(7/9) 4334944374472135 a001 17711/24476*10749957122^(7/8) 4334944374472135 a001 17711/24476*4106118243^(21/23) 4334944374472135 a001 17711/24476*1568397607^(21/22) 4334944374479470 a001 7787980473/844*24476^(8/21) 4334944374625712 a001 3278735159921/12238*9349^(1/19) 4334944374677234 a001 3536736619241/90481*15127^(1/4) 4334944374813776 a001 365435296162/39603*15127^(2/5) 4334944374824045 a001 182717648081/12238*24476^(1/3) 4334944374844582 a001 4052739537881/64079*15127^(1/5) 4334944374890096 a001 6557470319842/167761*15127^(1/4) 4334944375168619 a001 591286729879/24476*24476^(2/7) 4334944375220710 a001 1134903170/9349*9349^(17/19) 4334944375280029 a001 2504730781961/103682*15127^(3/10) 4334944375513194 a001 956722026041/24476*24476^(5/21) 4334944375624447 a001 6557470319842/271443*15127^(3/10) 4334944375705754 a001 10610209857723/439204*15127^(3/10) 4334944375760990 a001 75283811239/13201*15127^(9/20) 4334944375791796 a001 2504730781961/64079*15127^(1/4) 4334944375837310 a001 4052739537881/167761*15127^(3/10) 4334944375857769 a001 387002188980/6119*24476^(4/21) 4334944376180339 a001 12422650098820/28657 4334944376202343 a001 2504730781961/24476*24476^(1/7) 4334944376226241 a001 10946*64079^(22/23) 4334944376227242 a001 774004377960/51841*15127^(7/20) 4334944376272142 a001 433494437/24476*64079^(21/23) 4334944376318043 a001 701408733/24476*64079^(20/23) 4334944376363944 a001 567451585/12238*64079^(19/23) 4334944376409845 a001 1836311903/24476*64079^(18/23) 4334944376455747 a001 2971215073/24476*64079^(17/23) 4334944376501648 a001 1201881744/6119*64079^(16/23) 4334944376546918 a001 4052739537881/24476*24476^(2/21) 4334944376547549 a001 7778742049/24476*64079^(15/23) 4334944376571661 a001 4052739537881/271443*15127^(7/20) 4334944376593450 a001 12586269025/24476*64079^(14/23) 4334944376621911 a001 1515744265389/101521*15127^(7/20) 4334944376639352 a001 10182505537/12238*64079^(13/23) 4334944376652967 a001 3278735159921/219602*15127^(7/20) 4334944376685253 a001 32951280099/24476*64079^(12/23) 4334944376708203 a001 139583862445/39603*15127^(1/2) 4334944376731154 a001 53316291173/24476*64079^(11/23) 4334944376739009 a001 1548008755920/64079*15127^(3/10) 4334944376777055 a001 21566892818/6119*64079^(10/23) 4334944376784523 a001 2504730781961/167761*15127^(7/20) 4334944376822956 a001 139583862445/24476*64079^(9/23) 4334944376832815 a001 5473/51841*(1/2+1/2*5^(1/2))^46 4334944376832815 a001 5473/51841*10749957122^(23/24) 4334944376832815 a001 11592/6119*2537720636^(8/9) 4334944376832815 a001 11592/6119*312119004989^(8/11) 4334944376832815 a001 11592/6119*(1/2+1/2*5^(1/2))^40 4334944376832815 a001 11592/6119*23725150497407^(5/8) 4334944376832815 a001 11592/6119*73681302247^(10/13) 4334944376832815 a001 11592/6119*28143753123^(4/5) 4334944376832815 a001 11592/6119*10749957122^(5/6) 4334944376832815 a001 11592/6119*4106118243^(20/23) 4334944376832815 a001 11592/6119*1568397607^(10/11) 4334944376832815 a001 11592/6119*599074578^(20/21) 4334944376868858 a001 7787980473/844*64079^(8/23) 4334944376891493 a001 3278735159921/12238*24476^(1/21) 4334944376914759 a001 182717648081/12238*64079^(7/23) 4334944376960660 a001 591286729879/24476*64079^(6/23) 4334944377006561 a001 956722026041/24476*64079^(5/23) 4334944377052463 a001 387002188980/6119*64079^(4/23) 4334944377082039 a001 32522920189058/75025 4334944377098364 a001 2504730781961/24476*64079^(3/23) 4334944377112845 a001 701408733/24476*167761^(4/5) 4334944377143650 a001 7778742049/24476*167761^(3/5) 4334944377144265 a001 4052739537881/24476*64079^(2/23) 4334944377174456 a001 956722026041/103682*15127^(2/5) 4334944377174456 a001 21566892818/6119*167761^(2/5) 4334944377177234 a001 10946/271443*45537549124^(16/17) 4334944377177234 a001 10946/271443*14662949395604^(16/21) 4334944377177234 a001 10946/271443*(1/2+1/2*5^(1/2))^48 4334944377177234 a001 10946/271443*192900153618^(8/9) 4334944377177234 a001 10946/271443*73681302247^(12/13) 4334944377177234 a001 121393/24476*817138163596^(2/3) 4334944377177234 a001 121393/24476*(1/2+1/2*5^(1/2))^38 4334944377177234 a001 121393/24476*10749957122^(19/24) 4334944377177234 a001 121393/24476*4106118243^(19/23) 4334944377177234 a001 121393/24476*1568397607^(19/22) 4334944377177234 a001 121393/24476*599074578^(19/21) 4334944377177234 a001 121393/24476*228826127^(19/20) 4334944377190166 a001 3278735159921/12238*64079^(1/23) 4334944377205262 a001 956722026041/24476*167761^(1/5) 4334944377213595 a001 42573055234177/98209 4334944377216092 a001 102334155/24476*439204^(8/9) 4334944377218589 a001 433494437/24476*439204^(7/9) 4334944377221086 a001 1836311903/24476*439204^(2/3) 4334944377223583 a001 7778742049/24476*439204^(5/9) 4334944377226080 a001 32951280099/24476*439204^(4/9) 4334944377227484 a001 10959/844*141422324^(12/13) 4334944377227484 a001 10946/710647*312119004989^(10/11) 4334944377227484 a001 10946/710647*(1/2+1/2*5^(1/2))^50 4334944377227484 a001 10946/710647*3461452808002^(5/6) 4334944377227484 a001 10959/844*2537720636^(4/5) 4334944377227484 a001 10959/844*45537549124^(12/17) 4334944377227484 a001 10959/844*14662949395604^(4/7) 4334944377227484 a001 10959/844*(1/2+1/2*5^(1/2))^36 4334944377227484 a001 10959/844*505019158607^(9/14) 4334944377227484 a001 10959/844*192900153618^(2/3) 4334944377227484 a001 10959/844*73681302247^(9/13) 4334944377227484 a001 10959/844*10749957122^(3/4) 4334944377227484 a001 10959/844*4106118243^(18/23) 4334944377227484 a001 10959/844*1568397607^(9/11) 4334944377227484 a001 10959/844*599074578^(6/7) 4334944377227484 a001 10959/844*228826127^(9/10) 4334944377227484 a001 10959/844*87403803^(18/19) 4334944377228577 a001 139583862445/24476*439204^(1/3) 4334944377231074 a001 591286729879/24476*439204^(2/9) 4334944377232789 a001 222915411216004/514229 4334944377233571 a001 2504730781961/24476*439204^(1/9) 4334944377234815 a001 5473/930249*(1/2+1/2*5^(1/2))^52 4334944377234815 a001 5473/930249*23725150497407^(13/16) 4334944377234815 a001 5473/930249*505019158607^(13/14) 4334944377234815 a001 208010/6119*45537549124^(2/3) 4334944377234815 a001 208010/6119*(1/2+1/2*5^(1/2))^34 4334944377234815 a001 208010/6119*10749957122^(17/24) 4334944377234815 a001 208010/6119*4106118243^(17/23) 4334944377234815 a001 208010/6119*1568397607^(17/22) 4334944377234815 a001 208010/6119*599074578^(17/21) 4334944377234815 a001 208010/6119*228826127^(17/20) 4334944377234816 a001 208010/6119*87403803^(17/19) 4334944377234819 a001 208010/6119*33385282^(17/18) 4334944377235589 a001 583600123179658/1346269 4334944377235885 a001 10946/4870847*14662949395604^(6/7) 4334944377235885 a001 10946/4870847*(1/2+1/2*5^(1/2))^54 4334944377235885 a001 2178309/24476*(1/2+1/2*5^(1/2))^32 4334944377235885 a001 2178309/24476*23725150497407^(1/2) 4334944377235885 a001 2178309/24476*505019158607^(4/7) 4334944377235885 a001 2178309/24476*73681302247^(8/13) 4334944377235885 a001 2178309/24476*10749957122^(2/3) 4334944377235885 a001 2178309/24476*4106118243^(16/23) 4334944377235885 a001 2178309/24476*1568397607^(8/11) 4334944377235885 a001 2178309/24476*599074578^(16/21) 4334944377235885 a001 2178309/24476*228826127^(4/5) 4334944377235885 a001 2178309/24476*87403803^(16/19) 4334944377235888 a001 2178309/24476*33385282^(8/9) 4334944377235910 a001 2178309/24476*12752043^(16/17) 4334944377235977 a001 5702887/24476*7881196^(10/11) 4334944377235998 a001 8583623361365/19801 4334944377236012 a001 24157817/24476*7881196^(9/11) 4334944377236017 a001 102334155/24476*7881196^(8/11) 4334944377236021 a001 10946*7881196^(2/3) 4334944377236023 a001 433494437/24476*7881196^(7/11) 4334944377236029 a001 1836311903/24476*7881196^(6/11) 4334944377236032 a001 5702887/24476*20633239^(6/7) 4334944377236036 a001 7778742049/24476*7881196^(5/11) 4334944377236041 a001 5702887/24476*141422324^(10/13) 4334944377236041 a001 10946/12752043*14662949395604^(8/9) 4334944377236041 a001 10946/12752043*(1/2+1/2*5^(1/2))^56 4334944377236041 a001 5702887/24476*2537720636^(2/3) 4334944377236041 a001 5702887/24476*45537549124^(10/17) 4334944377236041 a001 5702887/24476*312119004989^(6/11) 4334944377236041 a001 5702887/24476*14662949395604^(10/21) 4334944377236041 a001 5702887/24476*(1/2+1/2*5^(1/2))^30 4334944377236041 a001 5702887/24476*192900153618^(5/9) 4334944377236041 a001 5702887/24476*28143753123^(3/5) 4334944377236041 a001 5702887/24476*10749957122^(5/8) 4334944377236041 a001 5702887/24476*4106118243^(15/23) 4334944377236041 a001 5702887/24476*1568397607^(15/22) 4334944377236041 a001 5702887/24476*599074578^(5/7) 4334944377236041 a001 5702887/24476*228826127^(3/4) 4334944377236041 a001 5702887/24476*87403803^(15/19) 4334944377236042 a001 32951280099/24476*7881196^(4/11) 4334944377236044 a001 5702887/24476*33385282^(5/6) 4334944377236044 a001 53316291173/24476*7881196^(1/3) 4334944377236048 a001 139583862445/24476*7881196^(3/11) 4334944377236055 a001 591286729879/24476*7881196^(2/11) 4334944377236055 a001 3732588/6119*20633239^(4/5) 4334944377236057 a001 307696519368404/709805 4334944377236060 a001 31622993/12238*20633239^(5/7) 4334944377236061 a001 2504730781961/24476*7881196^(1/11) 4334944377236061 a001 433494437/24476*20633239^(3/5) 4334944377236062 a001 701408733/24476*20633239^(4/7) 4334944377236063 a001 7778742049/24476*20633239^(3/7) 4334944377236063 a001 12586269025/24476*20633239^(2/5) 4334944377236064 a001 5473/16692641*(1/2+1/2*5^(1/2))^58 4334944377236064 a001 3732588/6119*17393796001^(4/7) 4334944377236064 a001 3732588/6119*14662949395604^(4/9) 4334944377236064 a001 3732588/6119*(1/2+1/2*5^(1/2))^28 4334944377236064 a001 3732588/6119*505019158607^(1/2) 4334944377236064 a001 3732588/6119*73681302247^(7/13) 4334944377236064 a001 3732588/6119*10749957122^(7/12) 4334944377236064 a001 3732588/6119*4106118243^(14/23) 4334944377236064 a001 3732588/6119*1568397607^(7/11) 4334944377236064 a001 3732588/6119*599074578^(2/3) 4334944377236064 a001 3732588/6119*228826127^(7/10) 4334944377236064 a001 3732588/6119*87403803^(14/19) 4334944377236064 a001 5702887/24476*12752043^(15/17) 4334944377236065 a001 21566892818/6119*20633239^(2/7) 4334944377236065 a001 182717648081/12238*20633239^(1/5) 4334944377236066 a001 10472279297044786/24157817 4334944377236066 a001 956722026041/24476*20633239^(1/7) 4334944377236067 a001 3732588/6119*33385282^(7/9) 4334944377236067 a001 39088169/24476*141422324^(2/3) 4334944377236067 a001 10946/87403803*14662949395604^(20/21) 4334944377236067 a001 39088169/24476*(1/2+1/2*5^(1/2))^26 4334944377236067 a001 39088169/24476*73681302247^(1/2) 4334944377236067 a001 39088169/24476*10749957122^(13/24) 4334944377236067 a001 39088169/24476*4106118243^(13/23) 4334944377236067 a001 39088169/24476*1568397607^(13/22) 4334944377236067 a001 39088169/24476*599074578^(13/21) 4334944377236067 a001 39088169/24476*228826127^(13/20) 4334944377236067 a001 13708391569672553/31622993 4334944377236067 a001 102334155/24476*141422324^(8/13) 4334944377236067 a001 39088169/24476*87403803^(13/19) 4334944377236067 a001 433494437/24476*141422324^(7/13) 4334944377236067 a001 1836311903/24476*141422324^(6/13) 4334944377236067 a001 7778742049/24476*141422324^(5/13) 4334944377236067 a001 102334155/24476*2537720636^(8/15) 4334944377236067 a001 102334155/24476*45537549124^(8/17) 4334944377236067 a001 102334155/24476*14662949395604^(8/21) 4334944377236067 a001 102334155/24476*(1/2+1/2*5^(1/2))^24 4334944377236067 a001 102334155/24476*192900153618^(4/9) 4334944377236067 a001 102334155/24476*73681302247^(6/13) 4334944377236067 a001 102334155/24476*10749957122^(1/2) 4334944377236067 a001 102334155/24476*4106118243^(12/23) 4334944377236067 a001 102334155/24476*1568397607^(6/11) 4334944377236067 a001 102334155/24476*599074578^(4/7) 4334944377236067 a001 10182505537/12238*141422324^(1/3) 4334944377236067 a001 32951280099/24476*141422324^(4/13) 4334944377236067 a001 139583862445/24476*141422324^(3/13) 4334944377236067 a001 71778070120990532/165580141 4334944377236067 a001 591286729879/24476*141422324^(2/13) 4334944377236067 a001 102334155/24476*228826127^(3/5) 4334944377236067 a001 2504730781961/24476*141422324^(1/13) 4334944377236067 a001 10946*312119004989^(2/5) 4334944377236067 a001 10946*(1/2+1/2*5^(1/2))^22 4334944377236067 a001 10946*10749957122^(11/24) 4334944377236067 a001 10946*4106118243^(11/23) 4334944377236067 a001 10946*1568397607^(1/2) 4334944377236067 a001 10946*599074578^(11/21) 4334944377236067 a001 701408733/24476*2537720636^(4/9) 4334944377236067 a001 701408733/24476*(1/2+1/2*5^(1/2))^20 4334944377236067 a001 701408733/24476*23725150497407^(5/16) 4334944377236067 a001 701408733/24476*505019158607^(5/14) 4334944377236067 a001 701408733/24476*73681302247^(5/13) 4334944377236067 a001 701408733/24476*28143753123^(2/5) 4334944377236067 a001 701408733/24476*10749957122^(5/12) 4334944377236067 a001 701408733/24476*4106118243^(10/23) 4334944377236067 a001 701408733/24476*1568397607^(5/11) 4334944377236067 a001 1836311903/24476*2537720636^(2/5) 4334944377236067 a001 1836311903/24476*45537549124^(6/17) 4334944377236067 a001 1836311903/24476*14662949395604^(2/7) 4334944377236067 a001 1836311903/24476*(1/2+1/2*5^(1/2))^18 4334944377236067 a001 1836311903/24476*192900153618^(1/3) 4334944377236067 a001 1836311903/24476*10749957122^(3/8) 4334944377236067 a001 7778742049/24476*2537720636^(1/3) 4334944377236067 a001 32951280099/24476*2537720636^(4/15) 4334944377236067 a001 1836311903/24476*4106118243^(9/23) 4334944377236067 a001 21566892818/6119*2537720636^(2/9) 4334944377236067 a001 139583862445/24476*2537720636^(1/5) 4334944377236067 a001 591286729879/24476*2537720636^(2/15) 4334944377236067 a001 956722026041/24476*2537720636^(1/9) 4334944377236067 a001 2504730781961/24476*2537720636^(1/15) 4334944377236067 a001 1201881744/6119*(1/2+1/2*5^(1/2))^16 4334944377236067 a001 1201881744/6119*23725150497407^(1/4) 4334944377236067 a001 1201881744/6119*73681302247^(4/13) 4334944377236067 a001 1201881744/6119*10749957122^(1/3) 4334944377236067 a001 12586269025/24476*17393796001^(2/7) 4334944377236067 a001 12586269025/24476*14662949395604^(2/9) 4334944377236067 a001 12586269025/24476*(1/2+1/2*5^(1/2))^14 4334944377236067 a001 12586269025/24476*505019158607^(1/4) 4334944377236067 a001 182717648081/12238*17393796001^(1/7) 4334944377236067 a001 32951280099/24476*45537549124^(4/17) 4334944377236067 a001 32951280099/24476*817138163596^(4/19) 4334944377236067 a001 32951280099/24476*14662949395604^(4/21) 4334944377236067 a001 32951280099/24476*(1/2+1/2*5^(1/2))^12 4334944377236067 a001 32951280099/24476*192900153618^(2/9) 4334944377236067 a001 32951280099/24476*73681302247^(3/13) 4334944377236067 a001 139583862445/24476*45537549124^(3/17) 4334944377236067 a001 591286729879/24476*45537549124^(2/17) 4334944377236067 a001 2504730781961/24476*45537549124^(1/17) 4334944377236067 a001 21566892818/6119*(1/2+1/2*5^(1/2))^10 4334944377236067 a001 7787980473/844*(1/2+1/2*5^(1/2))^8 4334944377236067 a001 7787980473/844*23725150497407^(1/8) 4334944377236067 a001 7787980473/844*505019158607^(1/7) 4334944377236067 a001 387002188980/6119*(1/2+1/2*5^(1/2))^4 4334944377236067 a001 10610209857723/24476 4334944377236067 a001 2504730781961/24476*(1/2+1/2*5^(1/2))^3 4334944377236067 a001 182717648081/12238*14662949395604^(1/9) 4334944377236067 a001 139583862445/24476*14662949395604^(1/7) 4334944377236067 a001 139583862445/24476*(1/2+1/2*5^(1/2))^9 4334944377236067 a001 139583862445/24476*192900153618^(1/6) 4334944377236067 a001 7787980473/844*73681302247^(2/13) 4334944377236067 a001 53316291173/24476*312119004989^(1/5) 4334944377236067 a001 53316291173/24476*(1/2+1/2*5^(1/2))^11 4334944377236067 a001 956722026041/24476*28143753123^(1/10) 4334944377236067 a001 21566892818/6119*28143753123^(1/5) 4334944377236067 a001 4052739537881/24476*10749957122^(1/24) 4334944377236067 a001 10182505537/12238*(1/2+1/2*5^(1/2))^13 4334944377236067 a001 10182505537/12238*73681302247^(1/4) 4334944377236067 a001 2504730781961/24476*10749957122^(1/16) 4334944377236067 a001 387002188980/6119*10749957122^(1/12) 4334944377236067 a001 591286729879/24476*10749957122^(1/8) 4334944377236067 a001 12586269025/24476*10749957122^(7/24) 4334944377236067 a001 7787980473/844*10749957122^(1/6) 4334944377236067 a001 139583862445/24476*10749957122^(3/16) 4334944377236067 a001 21566892818/6119*10749957122^(5/24) 4334944377236067 a001 32951280099/24476*10749957122^(1/4) 4334944377236067 a001 4052739537881/24476*4106118243^(1/23) 4334944377236067 a001 7778742049/24476*45537549124^(5/17) 4334944377236067 a001 7778742049/24476*312119004989^(3/11) 4334944377236067 a001 7778742049/24476*14662949395604^(5/21) 4334944377236067 a001 7778742049/24476*(1/2+1/2*5^(1/2))^15 4334944377236067 a001 7778742049/24476*192900153618^(5/18) 4334944377236067 a001 7778742049/24476*28143753123^(3/10) 4334944377236067 a001 387002188980/6119*4106118243^(2/23) 4334944377236067 a001 7778742049/24476*10749957122^(5/16) 4334944377236067 a001 591286729879/24476*4106118243^(3/23) 4334944377236067 a001 7787980473/844*4106118243^(4/23) 4334944377236067 a001 1201881744/6119*4106118243^(8/23) 4334944377236067 a001 21566892818/6119*4106118243^(5/23) 4334944377236067 a001 32951280099/24476*4106118243^(6/23) 4334944377236067 a001 12586269025/24476*4106118243^(7/23) 4334944377236067 a001 4052739537881/24476*1568397607^(1/22) 4334944377236067 a001 2971215073/24476*45537549124^(1/3) 4334944377236067 a001 2971215073/24476*(1/2+1/2*5^(1/2))^17 4334944377236067 a001 387002188980/6119*1568397607^(1/11) 4334944377236067 a001 591286729879/24476*1568397607^(3/22) 4334944377236067 a001 7787980473/844*1568397607^(2/11) 4334944377236067 a001 21566892818/6119*1568397607^(5/22) 4334944377236067 a001 53316291173/24476*1568397607^(1/4) 4334944377236067 a001 1836311903/24476*1568397607^(9/22) 4334944377236067 a001 32951280099/24476*1568397607^(3/11) 4334944377236067 a001 12586269025/24476*1568397607^(7/22) 4334944377236067 a001 4052739537881/24476*599074578^(1/21) 4334944377236067 a001 1201881744/6119*1568397607^(4/11) 4334944377236067 a001 567451585/12238*817138163596^(1/3) 4334944377236067 a001 567451585/12238*(1/2+1/2*5^(1/2))^19 4334944377236067 a001 2504730781961/24476*599074578^(1/14) 4334944377236067 a001 387002188980/6119*599074578^(2/21) 4334944377236067 a001 591286729879/24476*599074578^(1/7) 4334944377236067 a001 182717648081/12238*599074578^(1/6) 4334944377236067 a001 7787980473/844*599074578^(4/21) 4334944377236067 a001 139583862445/24476*599074578^(3/14) 4334944377236067 a001 21566892818/6119*599074578^(5/21) 4334944377236067 a001 32951280099/24476*599074578^(2/7) 4334944377236067 a001 701408733/24476*599074578^(10/21) 4334944377236067 a001 12586269025/24476*599074578^(1/3) 4334944377236067 a001 4052739537881/24476*228826127^(1/20) 4334944377236067 a001 433494437/24476*2537720636^(7/15) 4334944377236067 a001 7778742049/24476*599074578^(5/14) 4334944377236067 a001 1201881744/6119*599074578^(8/21) 4334944377236067 a001 433494437/24476*17393796001^(3/7) 4334944377236067 a001 433494437/24476*45537549124^(7/17) 4334944377236067 a001 433494437/24476*14662949395604^(1/3) 4334944377236067 a001 433494437/24476*(1/2+1/2*5^(1/2))^21 4334944377236067 a001 433494437/24476*192900153618^(7/18) 4334944377236067 a001 433494437/24476*10749957122^(7/16) 4334944377236067 a001 1836311903/24476*599074578^(3/7) 4334944377236067 a001 387002188980/6119*228826127^(1/10) 4334944377236067 a001 956722026041/24476*228826127^(1/8) 4334944377236067 a001 433494437/24476*599074578^(1/2) 4334944377236067 a001 591286729879/24476*228826127^(3/20) 4334944377236068 a001 7787980473/844*228826127^(1/5) 4334944377236068 a001 21566892818/6119*228826127^(1/4) 4334944377236068 a001 32951280099/24476*228826127^(3/10) 4334944377236068 a001 12586269025/24476*228826127^(7/20) 4334944377236068 a001 4052739537881/24476*87403803^(1/19) 4334944377236068 a001 7778742049/24476*228826127^(3/8) 4334944377236068 a001 165580141/24476*(1/2+1/2*5^(1/2))^23 4334944377236068 a001 165580141/24476*4106118243^(1/2) 4334944377236068 a001 1201881744/6119*228826127^(2/5) 4334944377236068 a001 10946*228826127^(11/20) 4334944377236068 a001 1836311903/24476*228826127^(9/20) 4334944377236068 a001 701408733/24476*228826127^(1/2) 4334944377236068 a001 387002188980/6119*87403803^(2/19) 4334944377236068 a001 44361286981645426/102334155 4334944377236068 a001 591286729879/24476*87403803^(3/19) 4334944377236068 a001 7787980473/844*87403803^(4/19) 4334944377236068 a001 21566892818/6119*87403803^(5/19) 4334944377236068 a001 32951280099/24476*87403803^(6/19) 4334944377236068 a001 12586269025/24476*87403803^(7/19) 4334944377236068 a001 4052739537881/24476*33385282^(1/18) 4334944377236068 a001 31622993/12238*2537720636^(5/9) 4334944377236068 a001 31622993/12238*312119004989^(5/11) 4334944377236068 a001 31622993/12238*(1/2+1/2*5^(1/2))^25 4334944377236068 a001 31622993/12238*3461452808002^(5/12) 4334944377236068 a001 31622993/12238*28143753123^(1/2) 4334944377236068 a001 1201881744/6119*87403803^(8/19) 4334944377236068 a001 31622993/12238*228826127^(5/8) 4334944377236068 a001 1836311903/24476*87403803^(9/19) 4334944377236068 a001 102334155/24476*87403803^(12/19) 4334944377236068 a001 567451585/12238*87403803^(1/2) 4334944377236068 a001 701408733/24476*87403803^(10/19) 4334944377236068 a001 10946*87403803^(11/19) 4334944377236068 a001 2504730781961/24476*33385282^(1/12) 4334944377236068 a001 387002188980/6119*33385282^(1/9) 4334944377236068 a001 16944503842300320/39088169 4334944377236068 a001 591286729879/24476*33385282^(1/6) 4334944377236068 a001 7787980473/844*33385282^(2/9) 4334944377236068 a001 139583862445/24476*33385282^(1/4) 4334944377236069 a001 21566892818/6119*33385282^(5/18) 4334944377236069 a001 32951280099/24476*33385282^(1/3) 4334944377236069 a001 24157817/24476*141422324^(9/13) 4334944377236069 a001 24157817/24476*2537720636^(3/5) 4334944377236069 a001 24157817/24476*45537549124^(9/17) 4334944377236069 a001 24157817/24476*817138163596^(9/19) 4334944377236069 a001 24157817/24476*14662949395604^(3/7) 4334944377236069 a001 24157817/24476*(1/2+1/2*5^(1/2))^27 4334944377236069 a001 24157817/24476*192900153618^(1/2) 4334944377236069 a001 24157817/24476*10749957122^(9/16) 4334944377236069 a001 24157817/24476*599074578^(9/14) 4334944377236069 a001 12586269025/24476*33385282^(7/18) 4334944377236069 a001 4052739537881/24476*12752043^(1/17) 4334944377236069 a001 7778742049/24476*33385282^(5/12) 4334944377236069 a001 1201881744/6119*33385282^(4/9) 4334944377236069 a001 1836311903/24476*33385282^(1/2) 4334944377236070 a001 701408733/24476*33385282^(5/9) 4334944377236070 a001 39088169/24476*33385282^(13/18) 4334944377236070 a001 433494437/24476*33385282^(7/12) 4334944377236070 a001 10946*33385282^(11/18) 4334944377236070 a001 102334155/24476*33385282^(2/3) 4334944377236071 a001 387002188980/6119*12752043^(2/17) 4334944377236071 a001 3236112272627767/7465176 4334944377236072 a001 24157817/24476*33385282^(3/4) 4334944377236072 a001 591286729879/24476*12752043^(3/17) 4334944377236074 a001 7787980473/844*12752043^(4/17) 4334944377236075 a001 21566892818/6119*12752043^(5/17) 4334944377236077 a001 32951280099/24476*12752043^(6/17) 4334944377236078 a001 10946/20633239*14662949395604^(19/21) 4334944377236078 a001 10946/20633239*(1/2+1/2*5^(1/2))^57 4334944377236078 a001 9227465/24476*(1/2+1/2*5^(1/2))^29 4334944377236078 a001 9227465/24476*1322157322203^(1/2) 4334944377236078 a001 12586269025/24476*12752043^(7/17) 4334944377236079 a001 4052739537881/24476*4870847^(1/16) 4334944377236080 a001 1201881744/6119*12752043^(8/17) 4334944377236081 a001 2971215073/24476*12752043^(1/2) 4334944377236082 a001 1836311903/24476*12752043^(9/17) 4334944377236083 a001 701408733/24476*12752043^(10/17) 4334944377236085 a001 10946*12752043^(11/17) 4334944377236086 a001 3732588/6119*12752043^(14/17) 4334944377236086 a001 102334155/24476*12752043^(12/17) 4334944377236087 a001 39088169/24476*12752043^(13/17) 4334944377236090 a001 387002188980/6119*4870847^(1/8) 4334944377236094 a001 2472169793466282/5702887 4334944377236102 a001 591286729879/24476*4870847^(3/16) 4334944377236113 a001 7787980473/844*4870847^(1/4) 4334944377236125 a001 21566892818/6119*4870847^(5/16) 4334944377236136 a001 32951280099/24476*4870847^(3/8) 4334944377236137 a001 5473/3940598*(1/2+1/2*5^(1/2))^55 4334944377236137 a001 5473/3940598*3461452808002^(11/12) 4334944377236137 a001 1762289/12238*(1/2+1/2*5^(1/2))^31 4334944377236137 a001 1762289/12238*9062201101803^(1/2) 4334944377236147 a001 12586269025/24476*4870847^(7/16) 4334944377236151 a001 4052739537881/24476*1860498^(1/15) 4334944377236159 a001 1201881744/6119*4870847^(1/2) 4334944377236170 a001 1836311903/24476*4870847^(9/16) 4334944377236182 a001 701408733/24476*4870847^(5/8) 4334944377236193 a001 2504730781961/24476*1860498^(1/10) 4334944377236193 a001 10946*4870847^(11/16) 4334944377236204 a001 102334155/24476*4870847^(3/4) 4334944377236212 a001 5702887/24476*4870847^(15/16) 4334944377236215 a001 39088169/24476*4870847^(13/16) 4334944377236223 a001 3732588/6119*4870847^(7/8) 4334944377236234 a001 387002188980/6119*1860498^(2/15) 4334944377236250 a001 944284835143312/2178309 4334944377236276 a001 956722026041/24476*1860498^(1/6) 4334944377236318 a001 591286729879/24476*1860498^(1/5) 4334944377236401 a001 7787980473/844*1860498^(4/15) 4334944377236443 a001 139583862445/24476*1860498^(3/10) 4334944377236485 a001 21566892818/6119*1860498^(1/3) 4334944377236546 a001 1346269/24476*141422324^(11/13) 4334944377236546 a001 10946/3010349*(1/2+1/2*5^(1/2))^53 4334944377236546 a001 1346269/24476*2537720636^(11/15) 4334944377236546 a001 1346269/24476*45537549124^(11/17) 4334944377236546 a001 1346269/24476*312119004989^(3/5) 4334944377236546 a001 1346269/24476*817138163596^(11/19) 4334944377236546 a001 1346269/24476*14662949395604^(11/21) 4334944377236546 a001 1346269/24476*(1/2+1/2*5^(1/2))^33 4334944377236546 a001 1346269/24476*192900153618^(11/18) 4334944377236546 a001 1346269/24476*10749957122^(11/16) 4334944377236546 a001 1346269/24476*1568397607^(3/4) 4334944377236546 a001 1346269/24476*599074578^(11/14) 4334944377236549 a001 1346269/24476*33385282^(11/12) 4334944377236568 a001 32951280099/24476*1860498^(2/5) 4334944377236652 a001 12586269025/24476*1860498^(7/15) 4334944377236681 a001 4052739537881/24476*710647^(1/14) 4334944377236694 a001 7778742049/24476*1860498^(1/2) 4334944377236735 a001 1201881744/6119*1860498^(8/15) 4334944377236819 a001 1836311903/24476*1860498^(3/5) 4334944377236902 a001 701408733/24476*1860498^(2/3) 4334944377236944 a001 433494437/24476*1860498^(7/10) 4334944377236986 a001 10946*1860498^(11/15) 4334944377237069 a001 102334155/24476*1860498^(4/5) 4334944377237111 a001 31622993/12238*1860498^(5/6) 4334944377237152 a001 39088169/24476*1860498^(13/15) 4334944377237196 a001 24157817/24476*1860498^(9/10) 4334944377237232 a001 3732588/6119*1860498^(14/15) 4334944377237294 a001 387002188980/6119*710647^(1/7) 4334944377237320 a001 180342355981827/416020 4334944377237907 a001 591286729879/24476*710647^(3/14) 4334944377238213 a001 182717648081/12238*710647^(1/4) 4334944377238520 a001 7787980473/844*710647^(2/7) 4334944377239133 a001 21566892818/6119*710647^(5/14) 4334944377239346 a001 10946/1149851*14662949395604^(17/21) 4334944377239346 a001 10946/1149851*(1/2+1/2*5^(1/2))^51 4334944377239346 a001 10946/1149851*192900153618^(17/18) 4334944377239346 a001 514229/24476*2537720636^(7/9) 4334944377239346 a001 514229/24476*17393796001^(5/7) 4334944377239346 a001 514229/24476*312119004989^(7/11) 4334944377239346 a001 514229/24476*14662949395604^(5/9) 4334944377239346 a001 514229/24476*(1/2+1/2*5^(1/2))^35 4334944377239346 a001 514229/24476*505019158607^(5/8) 4334944377239346 a001 514229/24476*28143753123^(7/10) 4334944377239346 a001 514229/24476*599074578^(5/6) 4334944377239346 a001 514229/24476*228826127^(7/8) 4334944377239746 a001 32951280099/24476*710647^(3/7) 4334944377240359 a001 12586269025/24476*710647^(1/2) 4334944377240593 a001 4052739537881/24476*271443^(1/13) 4334944377240972 a001 1201881744/6119*710647^(4/7) 4334944377241586 a001 1836311903/24476*710647^(9/14) 4334944377242199 a001 701408733/24476*710647^(5/7) 4334944377242505 a001 433494437/24476*710647^(3/4) 4334944377242812 a001 10946*710647^(11/14) 4334944377243425 a001 102334155/24476*710647^(6/7) 4334944377244038 a001 39088169/24476*710647^(13/14) 4334944377244651 a001 10597638519050/24447 4334944377245119 a001 387002188980/6119*271443^(2/13) 4334944377249644 a001 591286729879/24476*271443^(3/13) 4334944377252870 a001 3278735159921/12238*103682^(1/24) 4334944377254170 a001 7787980473/844*271443^(4/13) 4334944377258540 a001 5473/219602*14662949395604^(7/9) 4334944377258540 a001 5473/219602*(1/2+1/2*5^(1/2))^49 4334944377258540 a001 5473/219602*505019158607^(7/8) 4334944377258540 a001 98209/12238*(1/2+1/2*5^(1/2))^37 4334944377258696 a001 21566892818/6119*271443^(5/13) 4334944377263222 a001 32951280099/24476*271443^(6/13) 4334944377265484 a001 10182505537/12238*271443^(1/2) 4334944377267747 a001 12586269025/24476*271443^(7/13) 4334944377269672 a001 4052739537881/24476*103682^(1/12) 4334944377272273 a001 1201881744/6119*271443^(8/13) 4334944377276799 a001 1836311903/24476*271443^(9/13) 4334944377281324 a001 701408733/24476*271443^(10/13) 4334944377285850 a001 10946*271443^(11/13) 4334944377286474 a001 2504730781961/24476*103682^(1/8) 4334944377290375 a001 102334155/24476*271443^(12/13) 4334944377294901 a001 52623190279296/121393 4334944377303276 a001 387002188980/6119*103682^(1/6) 4334944377320078 a001 956722026041/24476*103682^(5/24) 4334944377336881 a001 591286729879/24476*103682^(1/4) 4334944377353683 a001 182717648081/12238*103682^(7/24) 4334944377361701 a001 3278735159921/12238*39603^(1/22) 4334944377370485 a001 7787980473/844*103682^(1/3) 4334944377387287 a001 139583862445/24476*103682^(3/8) 4334944377390096 a001 10946/167761*(1/2+1/2*5^(1/2))^47 4334944377390096 a001 75025/24476*2537720636^(13/15) 4334944377390096 a001 75025/24476*45537549124^(13/17) 4334944377390096 a001 75025/24476*14662949395604^(13/21) 4334944377390096 a001 75025/24476*(1/2+1/2*5^(1/2))^39 4334944377390096 a001 75025/24476*192900153618^(13/18) 4334944377390096 a001 75025/24476*73681302247^(3/4) 4334944377390096 a001 75025/24476*10749957122^(13/16) 4334944377390096 a001 75025/24476*599074578^(13/14) 4334944377404089 a001 21566892818/6119*103682^(5/12) 4334944377420891 a001 53316291173/24476*103682^(11/24) 4334944377437694 a001 32951280099/24476*103682^(1/2) 4334944377454496 a001 10182505537/12238*103682^(13/24) 4334944377471298 a001 12586269025/24476*103682^(7/12) 4334944377487334 a001 4052739537881/24476*39603^(1/11) 4334944377488100 a001 7778742049/24476*103682^(5/8) 4334944377504902 a001 1201881744/6119*103682^(2/3) 4334944377518875 a001 2504730781961/271443*15127^(2/5) 4334944377521704 a001 2971215073/24476*103682^(17/24) 4334944377538507 a001 1836311903/24476*103682^(3/4) 4334944377555309 a001 567451585/12238*103682^(19/24) 4334944377569125 a001 6557470319842/710647*15127^(2/5) 4334944377572111 a001 701408733/24476*103682^(5/6) 4334944377580987 a001 10610209857723/1149851*15127^(2/5) 4334944377588913 a001 433494437/24476*103682^(7/8) 4334944377600181 a001 4052739537881/439204*15127^(2/5) 4334944377605715 a001 10946*103682^(11/12) 4334944377612967 a001 2504730781961/24476*39603^(3/22) 4334944377622518 a001 165580141/24476*103682^(23/24) 4334944377639320 a001 10050135045119/23184 4334944377655417 a001 86267571272/39603*15127^(11/20) 4334944377686223 a001 956722026041/64079*15127^(7/20) 4334944377731737 a001 140728068720/15251*15127^(2/5) 4334944377738601 a001 387002188980/6119*39603^(2/11) 4334944377831065 a001 1836311903/9349*9349^(16/19) 4334944377864234 a001 956722026041/24476*39603^(5/22) 4334944377989867 a001 591286729879/24476*39603^(3/11) 4334944378115500 a001 182717648081/12238*39603^(7/22) 4334944378121670 a001 591286729879/103682*15127^(9/20) 4334944378183281 a001 3278735159921/12238*15127^(1/20) 4334944378241134 a001 7787980473/844*39603^(4/11) 4334944378291796 a001 10946/64079*45537549124^(15/17) 4334944378291796 a001 10946/64079*312119004989^(9/11) 4334944378291796 a001 10946/64079*14662949395604^(5/7) 4334944378291796 a001 10946/64079*(1/2+1/2*5^(1/2))^45 4334944378291796 a001 10946/64079*192900153618^(5/6) 4334944378291796 a001 10946/64079*28143753123^(9/10) 4334944378291796 a001 10946/64079*10749957122^(15/16) 4334944378291796 a001 28657/24476*(1/2+1/2*5^(1/2))^41 4334944378366767 a001 139583862445/24476*39603^(9/22) 4334944378466088 a001 516002918640/90481*15127^(9/20) 4334944378492400 a001 21566892818/6119*39603^(5/11) 4334944378516338 a001 4052739537881/710647*15127^(9/20) 4334944378523669 a001 3536736619241/620166*15127^(9/20) 4334944378528201 a001 6557470319842/1149851*15127^(9/20) 4334944378547394 a001 2504730781961/439204*15127^(9/20) 4334944378602631 a001 53316291173/39603*15127^(3/5) 4334944378618033 a001 53316291173/24476*39603^(1/2) 4334944378633436 a001 591286729879/64079*15127^(2/5) 4334944378678950 a001 956722026041/167761*15127^(9/20) 4334944378743667 a001 32951280099/24476*39603^(6/11) 4334944378869300 a001 10182505537/12238*39603^(13/22) 4334944378994933 a001 12586269025/24476*39603^(7/11) 4334944379068883 a001 182717648081/51841*15127^(1/2) 4334944379120567 a001 7778742049/24476*39603^(15/22) 4334944379130495 a001 4052739537881/24476*15127^(1/10) 4334944379246200 a001 1201881744/6119*39603^(8/11) 4334944379271229 r004 Re(z^2+c),c=5/14+2/19*I,z(0)=exp(5/8*I*Pi),n=5 4334944379371833 a001 2971215073/24476*39603^(17/22) 4334944379413302 a001 956722026041/271443*15127^(1/2) 4334944379463552 a001 2504730781961/710647*15127^(1/2) 4334944379470883 a001 3278735159921/930249*15127^(1/2) 4334944379472614 a001 10610209857723/3010349*15127^(1/2) 4334944379475414 a001 4052739537881/1149851*15127^(1/2) 4334944379494608 a001 387002188980/109801*15127^(1/2) 4334944379497466 a001 1836311903/24476*39603^(9/11) 4334944379549844 a001 10983760033/13201*15127^(13/20) 4334944379580650 a001 365435296162/64079*15127^(9/20) 4334944379603668 a001 1548008755920/9349*3571^(2/17) 4334944379623100 a001 567451585/12238*39603^(19/22) 4334944379626164 a001 591286729879/167761*15127^(1/2) 4334944379748733 a001 701408733/24476*39603^(10/11) 4334944379874366 a001 433494437/24476*39603^(21/22) 4334944379910388 a001 956722026041/15127*5778^(2/9) 4334944380016097 a001 225851433717/103682*15127^(11/20) 4334944380077708 a001 2504730781961/24476*15127^(3/20) 4334944380360515 a001 591286729879/271443*15127^(11/20) 4334944380410765 a001 1548008755920/710647*15127^(11/20) 4334944380418097 a001 4052739537881/1860498*15127^(11/20) 4334944380419166 a001 2178309*15127^(11/20) 4334944380419827 a001 6557470319842/3010349*15127^(11/20) 4334944380422628 a001 2504730781961/1149851*15127^(11/20) 4334944380441420 a001 2971215073/9349*9349^(15/19) 4334944380441822 a001 956722026041/439204*15127^(11/20) 4334944380497058 a001 20365011074/39603*15127^(7/10) 4334944380527864 a001 225851433717/64079*15127^(1/2) 4334944380573378 a001 365435296162/167761*15127^(11/20) 4334944380963310 a001 139583862445/103682*15127^(3/5) 4334944381024922 a001 387002188980/6119*15127^(1/5) 4334944381307729 a001 365435296162/271443*15127^(3/5) 4334944381357979 a001 956722026041/710647*15127^(3/5) 4334944381365310 a001 2504730781961/1860498*15127^(3/5) 4334944381366380 a001 6557470319842/4870847*15127^(3/5) 4334944381366632 a001 10610209857723/7881196*15127^(3/5) 4334944381367041 a001 1346269*15127^(3/5) 4334944381369841 a001 1548008755920/1149851*15127^(3/5) 4334944381389035 a001 591286729879/439204*15127^(3/5) 4334944381444271 a001 12586269025/39603*15127^(3/4) 4334944381475077 a001 139583862445/64079*15127^(11/20) 4334944381520591 a001 225851433717/167761*15127^(3/5) 4334944381663397 a001 6557470319842/39603*5778^(1/9) 4334944381910524 a001 43133785636/51841*15127^(13/20) 4334944381972135 a001 956722026041/24476*15127^(1/4) 4334944382254943 a001 75283811239/90481*15127^(13/20) 4334944382305193 a001 591286729879/710647*15127^(13/20) 4334944382312524 a001 832040*15127^(13/20) 4334944382313594 a001 4052739537881/4870847*15127^(13/20) 4334944382313750 a001 3536736619241/4250681*15127^(13/20) 4334944382313846 a001 3278735159921/3940598*15127^(13/20) 4334944382314255 a001 2504730781961/3010349*15127^(13/20) 4334944382317055 a001 956722026041/1149851*15127^(13/20) 4334944382336249 a001 182717648081/219602*15127^(13/20) 4334944382391485 a001 7778742049/39603*15127^(4/5) 4334944382422291 a001 86267571272/64079*15127^(3/5) 4334944382467805 a001 139583862445/167761*15127^(13/20) 4334944382857738 a001 53316291173/103682*15127^(7/10) 4334944382919349 a001 591286729879/24476*15127^(3/10) 4334944383051775 a001 4807526976/9349*9349^(14/19) 4334944383202156 a001 139583862445/271443*15127^(7/10) 4334944383252406 a001 365435296162/710647*15127^(7/10) 4334944383259737 a001 956722026041/1860498*15127^(7/10) 4334944383260807 a001 2504730781961/4870847*15127^(7/10) 4334944383260963 a001 6557470319842/12752043*15127^(7/10) 4334944383261000 a001 10610209857723/20633239*15127^(7/10) 4334944383261060 a001 4052739537881/7881196*15127^(7/10) 4334944383261468 a001 1548008755920/3010349*15127^(7/10) 4334944383264269 a001 514229*15127^(7/10) 4334944383283462 a001 225851433717/439204*15127^(7/10) 4334944383338699 a001 1602508992/13201*15127^(17/20) 4334944383369504 a001 53316291173/64079*15127^(13/20) 4334944383415018 a001 86267571272/167761*15127^(7/10) 4334944383804951 a001 32951280099/103682*15127^(3/4) 4334944383866563 a001 182717648081/12238*15127^(7/20) 4334944384149370 a001 86267571272/271443*15127^(3/4) 4334944384199620 a001 317811*15127^(3/4) 4334944384206951 a001 591286729879/1860498*15127^(3/4) 4334944384208021 a001 1548008755920/4870847*15127^(3/4) 4334944384208177 a001 4052739537881/12752043*15127^(3/4) 4334944384208200 a001 1515744265389/4769326*15127^(3/4) 4334944384208214 a001 6557470319842/20633239*15127^(3/4) 4334944384208273 a001 2504730781961/7881196*15127^(3/4) 4334944384208682 a001 956722026041/3010349*15127^(3/4) 4334944384211482 a001 365435296162/1149851*15127^(3/4) 4334944384230676 a001 139583862445/439204*15127^(3/4) 4334944384285912 a001 2971215073/39603*15127^(9/10) 4334944384316718 a001 32951280099/64079*15127^(7/10) 4334944384362232 a001 53316291173/167761*15127^(3/4) 4334944384449732 a001 3278735159921/12238*5778^(1/18) 4334944384472135 a001 5473/12238*(1/2+1/2*5^(1/2))^43 4334944384752165 a001 10182505537/51841*15127^(4/5) 4334944384813776 a001 7787980473/844*15127^(2/5) 4334944385096583 a001 53316291173/271443*15127^(4/5) 4334944385146833 a001 139583862445/710647*15127^(4/5) 4334944385154165 a001 182717648081/930249*15127^(4/5) 4334944385155234 a001 956722026041/4870847*15127^(4/5) 4334944385155390 a001 2504730781961/12752043*15127^(4/5) 4334944385155413 a001 3278735159921/16692641*15127^(4/5) 4334944385155419 a001 10610209857723/54018521*15127^(4/5) 4334944385155427 a001 4052739537881/20633239*15127^(4/5) 4334944385155487 a001 387002188980/1970299*15127^(4/5) 4334944385155895 a001 591286729879/3010349*15127^(4/5) 4334944385158696 a001 225851433717/1149851*15127^(4/5) 4334944385177889 a001 196418*15127^(4/5) 4334944385233126 a001 1836311903/39603*15127^(19/20) 4334944385263932 a001 20365011074/64079*15127^(3/4) 4334944385309446 a001 32951280099/167761*15127^(4/5) 4334944385483058 a001 10610209857723/64079*5778^(1/9) 4334944385662130 a001 7778742049/9349*9349^(13/19) 4334944385699378 a001 12586269025/103682*15127^(17/20) 4334944385760990 a001 139583862445/24476*15127^(9/20) 4334944386043797 a001 121393*15127^(17/20) 4334944386094047 a001 86267571272/710647*15127^(17/20) 4334944386101378 a001 75283811239/620166*15127^(17/20) 4334944386102448 a001 591286729879/4870847*15127^(17/20) 4334944386102604 a001 516002918640/4250681*15127^(17/20) 4334944386102627 a001 4052739537881/33385282*15127^(17/20) 4334944386102630 a001 3536736619241/29134601*15127^(17/20) 4334944386102632 a001 6557470319842/54018521*15127^(17/20) 4334944386102641 a001 2504730781961/20633239*15127^(17/20) 4334944386102700 a001 956722026041/7881196*15127^(17/20) 4334944386103109 a001 365435296162/3010349*15127^(17/20) 4334944386105909 a001 139583862445/1149851*15127^(17/20) 4334944386125103 a001 53316291173/439204*15127^(17/20) 4334944386180339 a001 2932589877251/6765 4334944386211145 a001 12586269025/64079*15127^(4/5) 4334944386256659 a001 20365011074/167761*15127^(17/20) 4334944386646592 a001 7778742049/103682*15127^(9/10) 4334944386708203 a001 21566892818/6119*15127^(1/2) 4334944386991011 a001 20365011074/271443*15127^(9/10) 4334944387041260 a001 53316291173/710647*15127^(9/10) 4334944387048592 a001 139583862445/1860498*15127^(9/10) 4334944387049661 a001 365435296162/4870847*15127^(9/10) 4334944387049818 a001 956722026041/12752043*15127^(9/10) 4334944387049840 a001 2504730781961/33385282*15127^(9/10) 4334944387049844 a001 6557470319842/87403803*15127^(9/10) 4334944387049844 a001 10610209857723/141422324*15127^(9/10) 4334944387049846 a001 4052739537881/54018521*15127^(9/10) 4334944387049854 a001 140728068720/1875749*15127^(9/10) 4334944387049914 a001 591286729879/7881196*15127^(9/10) 4334944387050323 a001 225851433717/3010349*15127^(9/10) 4334944387053123 a001 86267571272/1149851*15127^(9/10) 4334944387072317 a001 32951280099/439204*15127^(9/10) 4334944387124052 a001 591286729879/15127*5778^(5/18) 4334944387158359 a001 7778742049/64079*15127^(17/20) 4334944387203873 a001 75025*15127^(9/10) 4334944387593806 a001 46368*15127^(19/20) 4334944387655417 a001 53316291173/24476*15127^(11/20) 4334944387938224 a001 12586269025/271443*15127^(19/20) 4334944387988474 a001 32951280099/710647*15127^(19/20) 4334944387995805 a001 43133785636/930249*15127^(19/20) 4334944387996875 a001 225851433717/4870847*15127^(19/20) 4334944387997031 a001 591286729879/12752043*15127^(19/20) 4334944387997054 a001 774004377960/16692641*15127^(19/20) 4334944387997057 a001 4052739537881/87403803*15127^(19/20) 4334944387997058 a001 225749145909/4868641*15127^(19/20) 4334944387997058 a001 3278735159921/70711162*15127^(19/20) 4334944387997059 a001 2504730781961/54018521*15127^(19/20) 4334944387997068 a001 956722026041/20633239*15127^(19/20) 4334944387997128 a001 182717648081/3940598*15127^(19/20) 4334944387997536 a001 139583862445/3010349*15127^(19/20) 4334944388000336 a001 53316291173/1149851*15127^(19/20) 4334944388019530 a001 10182505537/219602*15127^(19/20) 4334944388105572 a001 4807526976/64079*15127^(9/10) 4334944388151086 a001 7778742049/167761*15127^(19/20) 4334944388272486 a001 12586269025/9349*9349^(12/19) 4334944388541019 a001 977529959616/2255 4334944388602631 a001 32951280099/24476*15127^(3/5) 4334944388877062 a001 4052739537881/39603*5778^(1/6) 4334944388885439 a001 2932589879081/6765 4334944388935698 a001 195505991941/451 4334944388943089 a001 53319815984/123 4334944388944271 a001 14662949395604/6765*8^(1/3) 4334944388944271 a001 2/6765*(1/2+1/2*5^(1/2))^63 4334944388944567 a001 977529959707/2255 4334944388947524 a001 2932589879123/6765 4334944388966740 a001 977529959712/2255 4334944389052786 a001 2971215073/64079*15127^(19/20) 4334944389098300 a001 586517975845/1353 4334944389549844 a001 10182505537/12238*15127^(13/20) 4334944389996540 a001 701408733/3571*3571^(16/17) 4334944390497058 a001 12586269025/24476*15127^(7/10) 4334944390882841 a001 20365011074/9349*9349^(11/19) 4334944391237742 a001 225749145909/2206*5778^(1/6) 4334944391444271 a001 7778742049/24476*15127^(3/4) 4334944391612140 s002 sum(A110607[n]/(10^n+1),n=1..infinity) 4334944391663397 a001 4052739537881/24476*5778^(1/9) 4334944392391485 a001 1201881744/6119*15127^(4/5) 4334944392696723 a001 6557470319842/64079*5778^(1/6) 4334944393338699 a001 2971215073/24476*15127^(17/20) 4334944393493196 a001 32951280099/9349*9349^(10/19) 4334944394285912 a001 1836311903/24476*15127^(9/10) 4334944394337717 a001 365435296162/15127*5778^(1/3) 4334944395233126 a001 567451585/12238*15127^(19/20) 4334944396090727 a001 2504730781961/39603*5778^(2/9) 4334944396103551 a001 53316291173/9349*9349^(9/19) 4334944396180339 a001 2932589884016/6765 4334944398451407 a001 3278735159921/51841*5778^(2/9) 4334944398713906 a001 86267571272/9349*9349^(8/19) 4334944398877062 a001 2504730781961/24476*5778^(1/6) 4334944399008688 a001 10610209857723/167761*5778^(2/9) 4334944399275574 a001 591286729879/3571*1364^(2/15) 4334944399600208 a001 2504730781961/9349*3571^(1/17) 4334944399910388 a001 4052739537881/64079*5778^(2/9) 4334944400652475 a001 4181/15127*312119004989^(4/5) 4334944400652475 a001 4181/15127*(1/2+1/2*5^(1/2))^44 4334944400652475 a001 4181/15127*23725150497407^(11/16) 4334944400652475 a001 4181/15127*73681302247^(11/13) 4334944400652475 a001 4181/15127*10749957122^(11/12) 4334944400652475 a001 4181/15127*4106118243^(22/23) 4334944400652476 a001 6765/9349*2537720636^(14/15) 4334944400652476 a001 6765/9349*17393796001^(6/7) 4334944400652476 a001 6765/9349*45537549124^(14/17) 4334944400652476 a001 6765/9349*817138163596^(14/19) 4334944400652476 a001 6765/9349*14662949395604^(2/3) 4334944400652476 a001 6765/9349*(1/2+1/2*5^(1/2))^42 4334944400652476 a001 6765/9349*505019158607^(3/4) 4334944400652476 a001 6765/9349*192900153618^(7/9) 4334944400652476 a001 6765/9349*10749957122^(7/8) 4334944400652476 a001 6765/9349*4106118243^(21/23) 4334944400652476 a001 6765/9349*1568397607^(21/22) 4334944401324262 a001 139583862445/9349*9349^(7/19) 4334944401551383 a001 32264490531/2161*5778^(7/18) 4334944403304392 a001 516002918640/13201*5778^(5/18) 4334944403934617 a001 225851433717/9349*9349^(6/19) 4334944405665072 a001 4052739537881/103682*5778^(5/18) 4334944406009491 a001 3536736619241/90481*5778^(5/18) 4334944406090727 a001 387002188980/6119*5778^(2/9) 4334944406222353 a001 6557470319842/167761*5778^(5/18) 4334944406544972 a001 365435296162/9349*9349^(5/19) 4334944406679318 a001 4052739537881/15127*2207^(1/16) 4334944407024800 a001 591286729879/5778*2207^(3/16) 4334944407124053 a001 2504730781961/64079*5778^(5/18) 4334944408765048 a001 139583862445/15127*5778^(4/9) 4334944409155327 a001 591286729879/9349*9349^(4/19) 4334944409988315 h001 (6/11*exp(1)+5/6)/(2/3*exp(2)+5/12) 4334944409993080 a001 1134903170/3571*3571^(15/17) 4334944410518057 a001 956722026041/39603*5778^(1/3) 4334944411765682 a001 956722026041/9349*9349^(3/19) 4334944412360679 a001 2372515076885/5473 4334944412705254 a001 267914296/9349*24476^(20/21) 4334944412878737 a001 2504730781961/103682*5778^(1/3) 4334944413049829 a001 433494437/9349*24476^(19/21) 4334944413223156 a001 6557470319842/271443*5778^(1/3) 4334944413304393 a001 956722026041/24476*5778^(5/18) 4334944413304462 a001 10610209857723/439204*5778^(1/3) 4334944413394404 a001 701408733/9349*24476^(6/7) 4334944413436018 a001 4052739537881/167761*5778^(1/3) 4334944413738978 a001 1134903170/9349*24476^(17/21) 4334944414083553 a001 1836311903/9349*24476^(16/21) 4334944414337718 a001 1548008755920/64079*5778^(1/3) 4334944414376037 a001 1548008755920/9349*9349^(2/19) 4334944414428128 a001 2971215073/9349*24476^(5/7) 4334944414772702 a001 4807526976/9349*24476^(2/3) 4334944415117277 a001 7778742049/9349*24476^(13/21) 4334944415461852 a001 12586269025/9349*24476^(4/7) 4334944415806426 a001 20365011074/9349*24476^(11/21) 4334944415978713 a001 86267571272/15127*5778^(1/2) 4334944416151001 a001 32951280099/9349*24476^(10/21) 4334944416495576 a001 53316291173/9349*24476^(3/7) 4334944416832815 a001 4181/39603*(1/2+1/2*5^(1/2))^46 4334944416832815 a001 4181/39603*10749957122^(23/24) 4334944416832816 a001 17711/9349*2537720636^(8/9) 4334944416832816 a001 17711/9349*312119004989^(8/11) 4334944416832816 a001 17711/9349*(1/2+1/2*5^(1/2))^40 4334944416832816 a001 17711/9349*23725150497407^(5/8) 4334944416832816 a001 17711/9349*73681302247^(10/13) 4334944416832816 a001 17711/9349*28143753123^(4/5) 4334944416832816 a001 17711/9349*10749957122^(5/6) 4334944416832816 a001 17711/9349*4106118243^(20/23) 4334944416832816 a001 17711/9349*1568397607^(10/11) 4334944416832816 a001 17711/9349*599074578^(20/21) 4334944416840150 a001 86267571272/9349*24476^(8/21) 4334944416986393 a001 2504730781961/9349*9349^(1/19) 4334944417184725 a001 139583862445/9349*24476^(1/3) 4334944417307001 l006 ln(2486/3835) 4334944417529300 a001 225851433717/9349*24476^(2/7) 4334944417731723 a001 591286729879/39603*5778^(7/18) 4334944417873874 a001 365435296162/9349*24476^(5/21) 4334944418218449 a001 591286729879/9349*24476^(4/21) 4334944418541019 a001 12422650220213/28657 4334944418563024 a001 956722026041/9349*24476^(1/7) 4334944418586921 a001 102334155/9349*64079^(22/23) 4334944418632822 a001 165580141/9349*64079^(21/23) 4334944418678723 a001 267914296/9349*64079^(20/23) 4334944418724625 a001 433494437/9349*64079^(19/23) 4334944418770526 a001 701408733/9349*64079^(18/23) 4334944418816427 a001 1134903170/9349*64079^(17/23) 4334944418862328 a001 1836311903/9349*64079^(16/23) 4334944418907598 a001 1548008755920/9349*24476^(2/21) 4334944418908229 a001 2971215073/9349*64079^(15/23) 4334944418954131 a001 4807526976/9349*64079^(14/23) 4334944419000032 a001 7778742049/9349*64079^(13/23) 4334944419045933 a001 12586269025/9349*64079^(12/23) 4334944419091834 a001 20365011074/9349*64079^(11/23) 4334944419137736 a001 32951280099/9349*64079^(10/23) 4334944419183637 a001 53316291173/9349*64079^(9/23) 4334944419193495 a001 4181/103682*45537549124^(16/17) 4334944419193495 a001 4181/103682*14662949395604^(16/21) 4334944419193495 a001 4181/103682*(1/2+1/2*5^(1/2))^48 4334944419193495 a001 4181/103682*192900153618^(8/9) 4334944419193495 a001 4181/103682*73681302247^(12/13) 4334944419193496 a001 46368/9349*817138163596^(2/3) 4334944419193496 a001 46368/9349*(1/2+1/2*5^(1/2))^38 4334944419193496 a001 46368/9349*10749957122^(19/24) 4334944419193496 a001 46368/9349*4106118243^(19/23) 4334944419193496 a001 46368/9349*1568397607^(19/22) 4334944419193496 a001 46368/9349*599074578^(19/21) 4334944419193496 a001 46368/9349*228826127^(19/20) 4334944419229538 a001 86267571272/9349*64079^(8/23) 4334944419252173 a001 2504730781961/9349*24476^(1/21) 4334944419275439 a001 139583862445/9349*64079^(7/23) 4334944419321340 a001 225851433717/9349*64079^(6/23) 4334944419367242 a001 365435296162/9349*64079^(5/23) 4334944419413143 a001 591286729879/9349*64079^(4/23) 4334944419442719 a001 32522920506869/75025 4334944419459044 a001 956722026041/9349*64079^(3/23) 4334944419473525 a001 267914296/9349*167761^(4/5) 4334944419504331 a001 2971215073/9349*167761^(3/5) 4334944419504945 a001 1548008755920/9349*64079^(2/23) 4334944419535136 a001 32951280099/9349*167761^(2/5) 4334944419537914 a001 4181/271443*312119004989^(10/11) 4334944419537914 a001 4181/271443*(1/2+1/2*5^(1/2))^50 4334944419537914 a001 4181/271443*3461452808002^(5/6) 4334944419537914 a001 121393/9349*141422324^(12/13) 4334944419537914 a001 121393/9349*2537720636^(4/5) 4334944419537914 a001 121393/9349*45537549124^(12/17) 4334944419537914 a001 121393/9349*14662949395604^(4/7) 4334944419537914 a001 121393/9349*(1/2+1/2*5^(1/2))^36 4334944419537914 a001 121393/9349*505019158607^(9/14) 4334944419537914 a001 121393/9349*192900153618^(2/3) 4334944419537914 a001 121393/9349*73681302247^(9/13) 4334944419537914 a001 121393/9349*10749957122^(3/4) 4334944419537914 a001 121393/9349*4106118243^(18/23) 4334944419537914 a001 121393/9349*1568397607^(9/11) 4334944419537914 a001 121393/9349*599074578^(6/7) 4334944419537914 a001 121393/9349*228826127^(9/10) 4334944419537915 a001 121393/9349*87403803^(18/19) 4334944419550847 a001 2504730781961/9349*64079^(1/23) 4334944419565942 a001 365435296162/9349*167761^(1/5) 4334944419574275 a001 42573055650197/98209 4334944419576772 a001 4181*439204^(8/9) 4334944419579269 a001 165580141/9349*439204^(7/9) 4334944419581766 a001 701408733/9349*439204^(2/3) 4334944419584263 a001 2971215073/9349*439204^(5/9) 4334944419586760 a001 12586269025/9349*439204^(4/9) 4334944419588164 a001 4181/710647*(1/2+1/2*5^(1/2))^52 4334944419588164 a001 4181/710647*23725150497407^(13/16) 4334944419588164 a001 4181/710647*505019158607^(13/14) 4334944419588164 a001 317811/9349*45537549124^(2/3) 4334944419588164 a001 317811/9349*(1/2+1/2*5^(1/2))^34 4334944419588164 a001 317811/9349*10749957122^(17/24) 4334944419588164 a001 317811/9349*4106118243^(17/23) 4334944419588164 a001 317811/9349*1568397607^(17/22) 4334944419588164 a001 317811/9349*599074578^(17/21) 4334944419588164 a001 317811/9349*228826127^(17/20) 4334944419588165 a001 317811/9349*87403803^(17/19) 4334944419588168 a001 317811/9349*33385282^(17/18) 4334944419589257 a001 53316291173/9349*439204^(1/3) 4334944419591754 a001 225851433717/9349*439204^(2/9) 4334944419593469 a001 222915413394313/514229 4334944419594251 a001 956722026041/9349*439204^(1/9) 4334944419595495 a001 4181/1860498*14662949395604^(6/7) 4334944419595495 a001 4181/1860498*(1/2+1/2*5^(1/2))^54 4334944419595495 a001 832040/9349*(1/2+1/2*5^(1/2))^32 4334944419595495 a001 832040/9349*23725150497407^(1/2) 4334944419595495 a001 832040/9349*505019158607^(4/7) 4334944419595495 a001 832040/9349*73681302247^(8/13) 4334944419595495 a001 832040/9349*10749957122^(2/3) 4334944419595495 a001 832040/9349*4106118243^(16/23) 4334944419595495 a001 832040/9349*1568397607^(8/11) 4334944419595495 a001 832040/9349*599074578^(16/21) 4334944419595496 a001 832040/9349*228826127^(4/5) 4334944419595496 a001 832040/9349*87403803^(16/19) 4334944419595499 a001 832040/9349*33385282^(8/9) 4334944419595521 a001 832040/9349*12752043^(16/17) 4334944419596269 a001 583600128882545/1346269 4334944419596502 a001 2178309/9349*7881196^(10/11) 4334944419596556 a001 2178309/9349*20633239^(6/7) 4334944419596565 a001 4181/4870847*14662949395604^(8/9) 4334944419596565 a001 4181/4870847*(1/2+1/2*5^(1/2))^56 4334944419596565 a001 2178309/9349*141422324^(10/13) 4334944419596565 a001 2178309/9349*2537720636^(2/3) 4334944419596565 a001 2178309/9349*45537549124^(10/17) 4334944419596565 a001 2178309/9349*312119004989^(6/11) 4334944419596565 a001 2178309/9349*14662949395604^(10/21) 4334944419596565 a001 2178309/9349*(1/2+1/2*5^(1/2))^30 4334944419596565 a001 2178309/9349*192900153618^(5/9) 4334944419596565 a001 2178309/9349*28143753123^(3/5) 4334944419596565 a001 2178309/9349*10749957122^(5/8) 4334944419596565 a001 2178309/9349*4106118243^(15/23) 4334944419596565 a001 2178309/9349*1568397607^(15/22) 4334944419596565 a001 2178309/9349*599074578^(5/7) 4334944419596565 a001 2178309/9349*228826127^(3/4) 4334944419596566 a001 2178309/9349*87403803^(15/19) 4334944419596568 a001 2178309/9349*33385282^(5/6) 4334944419596589 a001 2178309/9349*12752043^(15/17) 4334944419596677 a001 763942486626661/1762289 4334944419596696 a001 4181*7881196^(8/11) 4334944419596701 a001 9227465/9349*7881196^(9/11) 4334944419596701 a001 102334155/9349*7881196^(2/3) 4334944419596703 a001 165580141/9349*7881196^(7/11) 4334944419596710 a001 701408733/9349*7881196^(6/11) 4334944419596713 a001 5702887/9349*20633239^(4/5) 4334944419596716 a001 2971215073/9349*7881196^(5/11) 4334944419596721 a001 4181/12752043*(1/2+1/2*5^(1/2))^58 4334944419596721 a001 5702887/9349*17393796001^(4/7) 4334944419596721 a001 5702887/9349*14662949395604^(4/9) 4334944419596721 a001 5702887/9349*(1/2+1/2*5^(1/2))^28 4334944419596721 a001 5702887/9349*505019158607^(1/2) 4334944419596721 a001 5702887/9349*73681302247^(7/13) 4334944419596721 a001 5702887/9349*10749957122^(7/12) 4334944419596721 a001 5702887/9349*4106118243^(14/23) 4334944419596721 a001 5702887/9349*1568397607^(7/11) 4334944419596721 a001 5702887/9349*599074578^(2/3) 4334944419596721 a001 5702887/9349*228826127^(7/10) 4334944419596722 a001 5702887/9349*87403803^(14/19) 4334944419596722 a001 12586269025/9349*7881196^(4/11) 4334944419596724 a001 5702887/9349*33385282^(7/9) 4334944419596725 a001 20365011074/9349*7881196^(1/3) 4334944419596729 a001 53316291173/9349*7881196^(3/11) 4334944419596735 a001 225851433717/9349*7881196^(2/11) 4334944419596736 a001 2178309/9349*4870847^(15/16) 4334944419596737 a001 4000054790877421/9227465 4334944419596741 a001 956722026041/9349*7881196^(1/11) 4334944419596742 a001 165580141/9349*20633239^(3/5) 4334944419596742 a001 267914296/9349*20633239^(4/7) 4334944419596742 a001 24157817/9349*20633239^(5/7) 4334944419596743 a001 5702887/9349*12752043^(14/17) 4334944419596743 a001 4181/33385282*14662949395604^(20/21) 4334944419596743 a001 4181/33385282*(1/2+1/2*5^(1/2))^60 4334944419596743 a001 2971215073/9349*20633239^(3/7) 4334944419596744 a001 4807526976/9349*20633239^(2/5) 4334944419596744 a001 14930352/9349*141422324^(2/3) 4334944419596744 a001 14930352/9349*(1/2+1/2*5^(1/2))^26 4334944419596744 a001 14930352/9349*73681302247^(1/2) 4334944419596744 a001 14930352/9349*10749957122^(13/24) 4334944419596744 a001 14930352/9349*4106118243^(13/23) 4334944419596744 a001 14930352/9349*1568397607^(13/22) 4334944419596744 a001 14930352/9349*599074578^(13/21) 4334944419596744 a001 14930352/9349*228826127^(13/20) 4334944419596744 a001 14930352/9349*87403803^(13/19) 4334944419596745 a001 32951280099/9349*20633239^(2/7) 4334944419596746 a001 10472279399378941/24157817 4334944419596746 a001 139583862445/9349*20633239^(1/5) 4334944419596746 a001 365435296162/9349*20633239^(1/7) 4334944419596747 a001 14930352/9349*33385282^(13/18) 4334944419596747 a001 13708391703629701/31622993 4334944419596747 a001 4181*141422324^(8/13) 4334944419596747 a001 4181*2537720636^(8/15) 4334944419596747 a001 4181*45537549124^(8/17) 4334944419596747 a001 4181*14662949395604^(8/21) 4334944419596747 a001 4181*(1/2+1/2*5^(1/2))^24 4334944419596747 a001 4181*192900153618^(4/9) 4334944419596747 a001 4181*73681302247^(6/13) 4334944419596747 a001 4181*10749957122^(1/2) 4334944419596747 a001 4181*4106118243^(12/23) 4334944419596747 a001 4181*1568397607^(6/11) 4334944419596747 a001 4181*599074578^(4/7) 4334944419596747 a001 4181*228826127^(3/5) 4334944419596747 a001 2112442257863803/4873055 4334944419596748 a001 4181*87403803^(12/19) 4334944419596748 a001 701408733/9349*141422324^(6/13) 4334944419596748 a001 165580141/9349*141422324^(7/13) 4334944419596748 a001 2971215073/9349*141422324^(5/13) 4334944419596748 a001 102334155/9349*312119004989^(2/5) 4334944419596748 a001 102334155/9349*(1/2+1/2*5^(1/2))^22 4334944419596748 a001 102334155/9349*10749957122^(11/24) 4334944419596748 a001 102334155/9349*4106118243^(11/23) 4334944419596748 a001 102334155/9349*1568397607^(1/2) 4334944419596748 a001 102334155/9349*599074578^(11/21) 4334944419596748 a001 7778742049/9349*141422324^(1/3) 4334944419596748 a001 12586269025/9349*141422324^(4/13) 4334944419596748 a001 53316291173/9349*141422324^(3/13) 4334944419596748 a001 102334155/9349*228826127^(11/20) 4334944419596748 a001 225851433717/9349*141422324^(2/13) 4334944419596748 a001 956722026041/9349*141422324^(1/13) 4334944419596748 a001 267914296/9349*2537720636^(4/9) 4334944419596748 a001 267914296/9349*(1/2+1/2*5^(1/2))^20 4334944419596748 a001 267914296/9349*23725150497407^(5/16) 4334944419596748 a001 267914296/9349*505019158607^(5/14) 4334944419596748 a001 267914296/9349*73681302247^(5/13) 4334944419596748 a001 267914296/9349*28143753123^(2/5) 4334944419596748 a001 267914296/9349*10749957122^(5/12) 4334944419596748 a001 267914296/9349*4106118243^(10/23) 4334944419596748 a001 267914296/9349*1568397607^(5/11) 4334944419596748 a001 267914296/9349*599074578^(10/21) 4334944419596748 a001 701408733/9349*2537720636^(2/5) 4334944419596748 a001 701408733/9349*45537549124^(6/17) 4334944419596748 a001 701408733/9349*14662949395604^(2/7) 4334944419596748 a001 701408733/9349*(1/2+1/2*5^(1/2))^18 4334944419596748 a001 701408733/9349*192900153618^(1/3) 4334944419596748 a001 701408733/9349*10749957122^(3/8) 4334944419596748 a001 701408733/9349*4106118243^(9/23) 4334944419596748 a001 701408733/9349*1568397607^(9/22) 4334944419596748 a001 1836311903/9349*(1/2+1/2*5^(1/2))^16 4334944419596748 a001 1836311903/9349*23725150497407^(1/4) 4334944419596748 a001 1836311903/9349*73681302247^(4/13) 4334944419596748 a001 1836311903/9349*10749957122^(1/3) 4334944419596748 a001 12586269025/9349*2537720636^(4/15) 4334944419596748 a001 1836311903/9349*4106118243^(8/23) 4334944419596748 a001 32951280099/9349*2537720636^(2/9) 4334944419596748 a001 53316291173/9349*2537720636^(1/5) 4334944419596748 a001 2971215073/9349*2537720636^(1/3) 4334944419596748 a001 225851433717/9349*2537720636^(2/15) 4334944419596748 a001 365435296162/9349*2537720636^(1/9) 4334944419596748 a001 956722026041/9349*2537720636^(1/15) 4334944419596748 a001 4807526976/9349*17393796001^(2/7) 4334944419596748 a001 4807526976/9349*14662949395604^(2/9) 4334944419596748 a001 4807526976/9349*(1/2+1/2*5^(1/2))^14 4334944419596748 a001 4807526976/9349*10749957122^(7/24) 4334944419596748 a001 12586269025/9349*45537549124^(4/17) 4334944419596748 a001 12586269025/9349*817138163596^(4/19) 4334944419596748 a001 12586269025/9349*14662949395604^(4/21) 4334944419596748 a001 12586269025/9349*(1/2+1/2*5^(1/2))^12 4334944419596748 a001 12586269025/9349*192900153618^(2/9) 4334944419596748 a001 12586269025/9349*73681302247^(3/13) 4334944419596748 a001 139583862445/9349*17393796001^(1/7) 4334944419596748 a001 32951280099/9349*312119004989^(2/11) 4334944419596748 a001 32951280099/9349*(1/2+1/2*5^(1/2))^10 4334944419596748 a001 225851433717/9349*45537549124^(2/17) 4334944419596748 a001 956722026041/9349*45537549124^(1/17) 4334944419596748 a001 86267571272/9349*(1/2+1/2*5^(1/2))^8 4334944419596748 a001 86267571272/9349*23725150497407^(1/8) 4334944419596748 a001 86267571272/9349*505019158607^(1/7) 4334944419596748 a001 53316291173/9349*45537549124^(3/17) 4334944419596748 a001 225851433717/9349*14662949395604^(2/21) 4334944419596748 a001 225851433717/9349*(1/2+1/2*5^(1/2))^6 4334944419596748 a001 1548008755920/9349*(1/2+1/2*5^(1/2))^2 4334944419596748 a001 956722026041/9349*14662949395604^(1/21) 4334944419596748 a001 956722026041/9349*(1/2+1/2*5^(1/2))^3 4334944419596748 a001 365435296162/9349*312119004989^(1/11) 4334944419596748 a001 86267571272/9349*73681302247^(2/13) 4334944419596748 a001 365435296162/9349*(1/2+1/2*5^(1/2))^5 4334944419596748 a001 139583862445/9349*14662949395604^(1/9) 4334944419596748 a001 139583862445/9349*(1/2+1/2*5^(1/2))^7 4334944419596748 a001 591286729879/9349*73681302247^(1/13) 4334944419596748 a001 32951280099/9349*28143753123^(1/5) 4334944419596748 a001 53316291173/9349*817138163596^(3/19) 4334944419596748 a001 53316291173/9349*14662949395604^(1/7) 4334944419596748 a001 53316291173/9349*(1/2+1/2*5^(1/2))^9 4334944419596748 a001 53316291173/9349*192900153618^(1/6) 4334944419596748 a001 365435296162/9349*28143753123^(1/10) 4334944419596748 a001 1548008755920/9349*10749957122^(1/24) 4334944419596748 a001 20365011074/9349*312119004989^(1/5) 4334944419596748 a001 20365011074/9349*(1/2+1/2*5^(1/2))^11 4334944419596748 a001 956722026041/9349*10749957122^(1/16) 4334944419596748 a001 591286729879/9349*10749957122^(1/12) 4334944419596748 a001 12586269025/9349*10749957122^(1/4) 4334944419596748 a001 225851433717/9349*10749957122^(1/8) 4334944419596748 a001 86267571272/9349*10749957122^(1/6) 4334944419596748 a001 32951280099/9349*10749957122^(5/24) 4334944419596748 a001 53316291173/9349*10749957122^(3/16) 4334944419596748 a001 1548008755920/9349*4106118243^(1/23) 4334944419596748 a001 7778742049/9349*(1/2+1/2*5^(1/2))^13 4334944419596748 a001 7778742049/9349*73681302247^(1/4) 4334944419596748 a001 591286729879/9349*4106118243^(2/23) 4334944419596748 a001 225851433717/9349*4106118243^(3/23) 4334944419596748 a001 4807526976/9349*4106118243^(7/23) 4334944419596748 a001 86267571272/9349*4106118243^(4/23) 4334944419596748 a001 32951280099/9349*4106118243^(5/23) 4334944419596748 a001 12586269025/9349*4106118243^(6/23) 4334944419596748 a001 1548008755920/9349*1568397607^(1/22) 4334944419596748 a001 2971215073/9349*45537549124^(5/17) 4334944419596748 a001 2971215073/9349*312119004989^(3/11) 4334944419596748 a001 2971215073/9349*14662949395604^(5/21) 4334944419596748 a001 2971215073/9349*(1/2+1/2*5^(1/2))^15 4334944419596748 a001 2971215073/9349*192900153618^(5/18) 4334944419596748 a001 2971215073/9349*28143753123^(3/10) 4334944419596748 a001 2971215073/9349*10749957122^(5/16) 4334944419596748 a001 591286729879/9349*1568397607^(1/11) 4334944419596748 a001 225851433717/9349*1568397607^(3/22) 4334944419596748 a001 86267571272/9349*1568397607^(2/11) 4334944419596748 a001 1836311903/9349*1568397607^(4/11) 4334944419596748 a001 32951280099/9349*1568397607^(5/22) 4334944419596748 a001 20365011074/9349*1568397607^(1/4) 4334944419596748 a001 12586269025/9349*1568397607^(3/11) 4334944419596748 a001 4807526976/9349*1568397607^(7/22) 4334944419596748 a001 1548008755920/9349*599074578^(1/21) 4334944419596748 a001 1134903170/9349*45537549124^(1/3) 4334944419596748 a001 1134903170/9349*(1/2+1/2*5^(1/2))^17 4334944419596748 a001 956722026041/9349*599074578^(1/14) 4334944419596748 a001 591286729879/9349*599074578^(2/21) 4334944419596748 a001 225851433717/9349*599074578^(1/7) 4334944419596748 a001 139583862445/9349*599074578^(1/6) 4334944419596748 a001 86267571272/9349*599074578^(4/21) 4334944419596748 a001 53316291173/9349*599074578^(3/14) 4334944419596748 a001 32951280099/9349*599074578^(5/21) 4334944419596748 a001 701408733/9349*599074578^(3/7) 4334944419596748 a001 12586269025/9349*599074578^(2/7) 4334944419596748 a001 4807526976/9349*599074578^(1/3) 4334944419596748 a001 1548008755920/9349*228826127^(1/20) 4334944419596748 a001 1836311903/9349*599074578^(8/21) 4334944419596748 a001 2971215073/9349*599074578^(5/14) 4334944419596748 a001 433494437/9349*817138163596^(1/3) 4334944419596748 a001 433494437/9349*(1/2+1/2*5^(1/2))^19 4334944419596748 a001 591286729879/9349*228826127^(1/10) 4334944419596748 a001 365435296162/9349*228826127^(1/8) 4334944419596748 a001 225851433717/9349*228826127^(3/20) 4334944419596748 a001 86267571272/9349*228826127^(1/5) 4334944419596748 a001 32951280099/9349*228826127^(1/4) 4334944419596748 a001 12586269025/9349*228826127^(3/10) 4334944419596748 a001 4807526976/9349*228826127^(7/20) 4334944419596748 a001 267914296/9349*228826127^(1/2) 4334944419596748 a001 1548008755920/9349*87403803^(1/19) 4334944419596748 a001 2971215073/9349*228826127^(3/8) 4334944419596748 a001 165580141/9349*2537720636^(7/15) 4334944419596748 a001 165580141/9349*17393796001^(3/7) 4334944419596748 a001 165580141/9349*45537549124^(7/17) 4334944419596748 a001 165580141/9349*14662949395604^(1/3) 4334944419596748 a001 165580141/9349*(1/2+1/2*5^(1/2))^21 4334944419596748 a001 165580141/9349*192900153618^(7/18) 4334944419596748 a001 165580141/9349*10749957122^(7/16) 4334944419596748 a001 1836311903/9349*228826127^(2/5) 4334944419596748 a001 701408733/9349*228826127^(9/20) 4334944419596748 a001 165580141/9349*599074578^(1/2) 4334944419596748 a001 591286729879/9349*87403803^(2/19) 4334944419596748 a001 225851433717/9349*87403803^(3/19) 4334944419596748 a001 86267571272/9349*87403803^(4/19) 4334944419596748 a001 32951280099/9349*87403803^(5/19) 4334944419596748 a001 12586269025/9349*87403803^(6/19) 4334944419596748 a001 4807526976/9349*87403803^(7/19) 4334944419596748 a001 1548008755920/9349*33385282^(1/18) 4334944419596748 a001 63245986/9349*(1/2+1/2*5^(1/2))^23 4334944419596748 a001 63245986/9349*4106118243^(1/2) 4334944419596748 a001 1836311903/9349*87403803^(8/19) 4334944419596748 a001 102334155/9349*87403803^(11/19) 4334944419596748 a001 701408733/9349*87403803^(9/19) 4334944419596748 a001 267914296/9349*87403803^(10/19) 4334944419596748 a001 433494437/9349*87403803^(1/2) 4334944419596748 a001 956722026041/9349*33385282^(1/12) 4334944419596748 a001 591286729879/9349*33385282^(1/9) 4334944419596748 a001 225851433717/9349*33385282^(1/6) 4334944419596749 a001 86267571272/9349*33385282^(2/9) 4334944419596749 a001 53316291173/9349*33385282^(1/4) 4334944419596749 a001 32951280099/9349*33385282^(5/18) 4334944419596749 a001 12586269025/9349*33385282^(1/3) 4334944419596749 a001 24157817/9349*2537720636^(5/9) 4334944419596749 a001 24157817/9349*312119004989^(5/11) 4334944419596749 a001 24157817/9349*(1/2+1/2*5^(1/2))^25 4334944419596749 a001 24157817/9349*3461452808002^(5/12) 4334944419596749 a001 24157817/9349*28143753123^(1/2) 4334944419596749 a001 4807526976/9349*33385282^(7/18) 4334944419596749 a001 24157817/9349*228826127^(5/8) 4334944419596749 a001 1548008755920/9349*12752043^(1/17) 4334944419596749 a001 2971215073/9349*33385282^(5/12) 4334944419596750 a001 1836311903/9349*33385282^(4/9) 4334944419596750 a001 701408733/9349*33385282^(1/2) 4334944419596750 a001 4181*33385282^(2/3) 4334944419596750 a001 267914296/9349*33385282^(5/9) 4334944419596750 a001 102334155/9349*33385282^(11/18) 4334944419596750 a001 165580141/9349*33385282^(7/12) 4334944419596751 a001 591286729879/9349*12752043^(2/17) 4334944419596751 a001 44946004225705/103683 4334944419596753 a001 225851433717/9349*12752043^(3/17) 4334944419596754 a001 86267571272/9349*12752043^(4/17) 4334944419596756 a001 32951280099/9349*12752043^(5/17) 4334944419596757 a001 12586269025/9349*12752043^(6/17) 4334944419596757 a001 4181/20633239*(1/2+1/2*5^(1/2))^59 4334944419596758 a001 9227465/9349*141422324^(9/13) 4334944419596758 a001 9227465/9349*2537720636^(3/5) 4334944419596758 a001 9227465/9349*45537549124^(9/17) 4334944419596758 a001 9227465/9349*817138163596^(9/19) 4334944419596758 a001 9227465/9349*14662949395604^(3/7) 4334944419596758 a001 9227465/9349*(1/2+1/2*5^(1/2))^27 4334944419596758 a001 9227465/9349*192900153618^(1/2) 4334944419596758 a001 9227465/9349*10749957122^(9/16) 4334944419596758 a001 9227465/9349*599074578^(9/14) 4334944419596759 a001 4807526976/9349*12752043^(7/17) 4334944419596759 a001 1548008755920/9349*4870847^(1/16) 4334944419596760 a001 1836311903/9349*12752043^(8/17) 4334944419596761 a001 9227465/9349*33385282^(3/4) 4334944419596761 a001 1134903170/9349*12752043^(1/2) 4334944419596762 a001 701408733/9349*12752043^(9/17) 4334944419596763 a001 267914296/9349*12752043^(10/17) 4334944419596764 a001 14930352/9349*12752043^(13/17) 4334944419596765 a001 102334155/9349*12752043^(11/17) 4334944419596766 a001 4181*12752043^(12/17) 4334944419596771 a001 591286729879/9349*4870847^(1/8) 4334944419596774 a001 2472169817624099/5702887 4334944419596782 a001 225851433717/9349*4870847^(3/16) 4334944419596793 a001 86267571272/9349*4870847^(1/4) 4334944419596805 a001 32951280099/9349*4870847^(5/16) 4334944419596816 a001 12586269025/9349*4870847^(3/8) 4334944419596817 a001 4181/7881196*14662949395604^(19/21) 4334944419596817 a001 4181/7881196*(1/2+1/2*5^(1/2))^57 4334944419596818 a001 3524578/9349*(1/2+1/2*5^(1/2))^29 4334944419596818 a001 3524578/9349*1322157322203^(1/2) 4334944419596828 a001 4807526976/9349*4870847^(7/16) 4334944419596831 a001 1548008755920/9349*1860498^(1/15) 4334944419596839 a001 1836311903/9349*4870847^(1/2) 4334944419596851 a001 701408733/9349*4870847^(9/16) 4334944419596862 a001 267914296/9349*4870847^(5/8) 4334944419596873 a001 956722026041/9349*1860498^(1/10) 4334944419596873 a001 102334155/9349*4870847^(11/16) 4334944419596881 a001 5702887/9349*4870847^(7/8) 4334944419596884 a001 4181*4870847^(3/4) 4334944419596892 a001 14930352/9349*4870847^(13/16) 4334944419596915 a001 591286729879/9349*1860498^(2/15) 4334944419596930 a001 44965944970037/103729 4334944419596957 a001 365435296162/9349*1860498^(1/6) 4334944419596998 a001 225851433717/9349*1860498^(1/5) 4334944419597082 a001 86267571272/9349*1860498^(4/15) 4334944419597124 a001 53316291173/9349*1860498^(3/10) 4334944419597165 a001 32951280099/9349*1860498^(1/3) 4334944419597226 a001 4181/3010349*(1/2+1/2*5^(1/2))^55 4334944419597226 a001 4181/3010349*3461452808002^(11/12) 4334944419597226 a001 1346269/9349*(1/2+1/2*5^(1/2))^31 4334944419597226 a001 1346269/9349*9062201101803^(1/2) 4334944419597249 a001 12586269025/9349*1860498^(2/5) 4334944419597332 a001 4807526976/9349*1860498^(7/15) 4334944419597361 a001 1548008755920/9349*710647^(1/14) 4334944419597374 a001 2971215073/9349*1860498^(1/2) 4334944419597416 a001 1836311903/9349*1860498^(8/15) 4334944419597499 a001 701408733/9349*1860498^(3/5) 4334944419597583 a001 267914296/9349*1860498^(2/3) 4334944419597624 a001 165580141/9349*1860498^(7/10) 4334944419597666 a001 102334155/9349*1860498^(11/15) 4334944419597749 a001 4181*1860498^(4/5) 4334944419597793 a001 24157817/9349*1860498^(5/6) 4334944419597829 a001 14930352/9349*1860498^(13/15) 4334944419597885 a001 9227465/9349*1860498^(9/10) 4334944419597890 a001 5702887/9349*1860498^(14/15) 4334944419597974 a001 591286729879/9349*710647^(1/7) 4334944419598000 a001 45085589436029/104005 4334944419598587 a001 225851433717/9349*710647^(3/14) 4334944419598894 a001 139583862445/9349*710647^(1/4) 4334944419599200 a001 86267571272/9349*710647^(2/7) 4334944419599813 a001 32951280099/9349*710647^(5/14) 4334944419600026 a001 4181/1149851*(1/2+1/2*5^(1/2))^53 4334944419600026 a001 514229/9349*141422324^(11/13) 4334944419600027 a001 514229/9349*2537720636^(11/15) 4334944419600027 a001 514229/9349*45537549124^(11/17) 4334944419600027 a001 514229/9349*312119004989^(3/5) 4334944419600027 a001 514229/9349*14662949395604^(11/21) 4334944419600027 a001 514229/9349*(1/2+1/2*5^(1/2))^33 4334944419600027 a001 514229/9349*192900153618^(11/18) 4334944419600027 a001 514229/9349*10749957122^(11/16) 4334944419600027 a001 514229/9349*1568397607^(3/4) 4334944419600027 a001 514229/9349*599074578^(11/14) 4334944419600030 a001 514229/9349*33385282^(11/12) 4334944419600427 a001 12586269025/9349*710647^(3/7) 4334944419601040 a001 4807526976/9349*710647^(1/2) 4334944419601273 a001 1548008755920/9349*271443^(1/13) 4334944419601653 a001 1836311903/9349*710647^(4/7) 4334944419602266 a001 701408733/9349*710647^(9/14) 4334944419602879 a001 267914296/9349*710647^(5/7) 4334944419603186 a001 165580141/9349*710647^(3/4) 4334944419603492 a001 102334155/9349*710647^(11/14) 4334944419604105 a001 4181*710647^(6/7) 4334944419604715 a001 14930352/9349*710647^(13/14) 4334944419605331 a001 45923100697973/105937 4334944419605799 a001 591286729879/9349*271443^(2/13) 4334944419610325 a001 225851433717/9349*271443^(3/13) 4334944419613550 a001 2504730781961/9349*103682^(1/24) 4334944419614850 a001 86267571272/9349*271443^(4/13) 4334944419619220 a001 4181/439204*817138163596^(17/19) 4334944419619220 a001 4181/439204*14662949395604^(17/21) 4334944419619220 a001 4181/439204*(1/2+1/2*5^(1/2))^51 4334944419619220 a001 4181/439204*192900153618^(17/18) 4334944419619220 a001 196418/9349*2537720636^(7/9) 4334944419619220 a001 196418/9349*17393796001^(5/7) 4334944419619220 a001 196418/9349*312119004989^(7/11) 4334944419619220 a001 196418/9349*14662949395604^(5/9) 4334944419619220 a001 196418/9349*(1/2+1/2*5^(1/2))^35 4334944419619220 a001 196418/9349*505019158607^(5/8) 4334944419619220 a001 196418/9349*28143753123^(7/10) 4334944419619220 a001 196418/9349*599074578^(5/6) 4334944419619220 a001 196418/9349*228826127^(7/8) 4334944419619376 a001 32951280099/9349*271443^(5/13) 4334944419623902 a001 12586269025/9349*271443^(6/13) 4334944419626165 a001 7778742049/9349*271443^(1/2) 4334944419628428 a001 4807526976/9349*271443^(7/13) 4334944419630352 a001 1548008755920/9349*103682^(1/12) 4334944419632953 a001 1836311903/9349*271443^(8/13) 4334944419637479 a001 701408733/9349*271443^(9/13) 4334944419642005 a001 267914296/9349*271443^(10/13) 4334944419646530 a001 102334155/9349*271443^(11/13) 4334944419647154 a001 956722026041/9349*103682^(1/8) 4334944419651055 a001 4181*271443^(12/13) 4334944419655581 a001 52623190793525/121393 4334944419663957 a001 591286729879/9349*103682^(1/6) 4334944419680759 a001 365435296162/9349*103682^(5/24) 4334944419697561 a001 225851433717/9349*103682^(1/4) 4334944419714363 a001 139583862445/9349*103682^(7/24) 4334944419722381 a001 2504730781961/9349*39603^(1/22) 4334944419731165 a001 86267571272/9349*103682^(1/3) 4334944419747967 a001 53316291173/9349*103682^(3/8) 4334944419750776 a001 4181/167761*14662949395604^(7/9) 4334944419750776 a001 4181/167761*(1/2+1/2*5^(1/2))^49 4334944419750776 a001 4181/167761*505019158607^(7/8) 4334944419750776 a001 75025/9349*(1/2+1/2*5^(1/2))^37 4334944419764770 a001 32951280099/9349*103682^(5/12) 4334944419781572 a001 20365011074/9349*103682^(11/24) 4334944419798374 a001 12586269025/9349*103682^(1/2) 4334944419815176 a001 7778742049/9349*103682^(13/24) 4334944419831978 a001 4807526976/9349*103682^(7/12) 4334944419848014 a001 1548008755920/9349*39603^(1/11) 4334944419848780 a001 2971215073/9349*103682^(5/8) 4334944419865583 a001 1836311903/9349*103682^(2/3) 4334944419882385 a001 1134903170/9349*103682^(17/24) 4334944419899187 a001 701408733/9349*103682^(3/4) 4334944419915989 a001 433494437/9349*103682^(19/24) 4334944419932791 a001 267914296/9349*103682^(5/6) 4334944419949594 a001 165580141/9349*103682^(7/8) 4334944419966396 a001 102334155/9349*103682^(11/12) 4334944419973648 a001 956722026041/9349*39603^(3/22) 4334944419983198 a001 63245986/9349*103682^(23/24) 4334944420092402 a001 774004377960/51841*5778^(7/18) 4334944420099281 a001 591286729879/9349*39603^(2/11) 4334944420224914 a001 365435296162/9349*39603^(5/22) 4334944420350547 a001 225851433717/9349*39603^(3/11) 4334944420436821 a001 4052739537881/271443*5778^(7/18) 4334944420476181 a001 139583862445/9349*39603^(7/22) 4334944420487071 a001 1515744265389/101521*5778^(7/18) 4334944420518058 a001 591286729879/24476*5778^(1/3) 4334944420518127 a001 3278735159921/219602*5778^(7/18) 4334944420543961 a001 2504730781961/9349*15127^(1/20) 4334944420601814 a001 86267571272/9349*39603^(4/11) 4334944420649683 a001 2504730781961/167761*5778^(7/18) 4334944420652475 a001 4181/64079*(1/2+1/2*5^(1/2))^47 4334944420652476 a001 28657/9349*2537720636^(13/15) 4334944420652476 a001 28657/9349*45537549124^(13/17) 4334944420652476 a001 28657/9349*14662949395604^(13/21) 4334944420652476 a001 28657/9349*(1/2+1/2*5^(1/2))^39 4334944420652476 a001 28657/9349*192900153618^(13/18) 4334944420652476 a001 28657/9349*73681302247^(3/4) 4334944420652476 a001 28657/9349*10749957122^(13/16) 4334944420652476 a001 28657/9349*599074578^(13/14) 4334944420727447 a001 53316291173/9349*39603^(9/22) 4334944420853081 a001 32951280099/9349*39603^(5/11) 4334944420978714 a001 20365011074/9349*39603^(1/2) 4334944421104347 a001 12586269025/9349*39603^(6/11) 4334944421229980 a001 7778742049/9349*39603^(13/22) 4334944421355614 a001 4807526976/9349*39603^(7/11) 4334944421481247 a001 2971215073/9349*39603^(15/22) 4334944421491175 a001 1548008755920/9349*15127^(1/10) 4334944421551383 a001 956722026041/64079*5778^(7/18) 4334944421606880 a001 1836311903/9349*39603^(8/11) 4334944421732513 a001 1134903170/9349*39603^(17/22) 4334944421858147 a001 701408733/9349*39603^(9/11) 4334944421983780 a001 433494437/9349*39603^(19/22) 4334944422109413 a001 267914296/9349*39603^(10/11) 4334944422235047 a001 165580141/9349*39603^(21/22) 4334944422360679 a001 7677620066443/17711 4334944422438389 a001 956722026041/9349*15127^(3/20) 4334944422859658 a001 3536736619241/13201*2207^(1/16) 4334944423192378 a001 53316291173/15127*5778^(5/9) 4334944423385602 a001 591286729879/9349*15127^(1/5) 4334944424332816 a001 365435296162/9349*15127^(1/4) 4334944424832704 r005 Re(z^2+c),c=-13/31+31/51*I,n=33 4334944424945388 a001 365435296162/39603*5778^(4/9) 4334944425280029 a001 225851433717/9349*15127^(3/10) 4334944426227243 a001 139583862445/9349*15127^(7/20) 4334944426810413 a001 2504730781961/9349*5778^(1/18) 4334944426832815 a001 4181/24476*45537549124^(15/17) 4334944426832815 a001 4181/24476*312119004989^(9/11) 4334944426832815 a001 4181/24476*14662949395604^(5/7) 4334944426832815 a001 4181/24476*(1/2+1/2*5^(1/2))^45 4334944426832815 a001 4181/24476*192900153618^(5/6) 4334944426832815 a001 4181/24476*28143753123^(9/10) 4334944426832815 a001 4181/24476*10749957122^(15/16) 4334944426832816 a001 10946/9349*(1/2+1/2*5^(1/2))^41 4334944427174457 a001 86267571272/9349*15127^(2/5) 4334944427306067 a001 956722026041/103682*5778^(4/9) 4334944427650486 a001 2504730781961/271443*5778^(4/9) 4334944427700736 a001 6557470319842/710647*5778^(4/9) 4334944427712598 a001 10610209857723/1149851*5778^(4/9) 4334944427731723 a001 182717648081/12238*5778^(7/18) 4334944427731792 a001 4052739537881/439204*5778^(4/9) 4334944427863348 a001 140728068720/15251*5778^(4/9) 4334944428121670 a001 53316291173/9349*15127^(9/20) 4334944428765048 a001 591286729879/64079*5778^(4/9) 4334944429068884 a001 32951280099/9349*15127^(1/2) 4334944429989620 a001 1836311903/3571*3571^(14/17) 4334944430016097 a001 20365011074/9349*15127^(11/20) 4334944430406043 a001 32951280099/15127*5778^(11/18) 4334944430963311 a001 12586269025/9349*15127^(3/5) 4334944431910525 a001 7778742049/9349*15127^(13/20) 4334944432159053 a001 75283811239/13201*5778^(1/2) 4334944432857738 a001 4807526976/9349*15127^(7/10) 4334944432859658 a001 3278735159921/12238*2207^(1/16) 4334944433804952 a001 2971215073/9349*15127^(3/4) 4334944434024078 a001 1548008755920/9349*5778^(1/9) 4334944434519732 a001 591286729879/103682*5778^(1/2) 4334944434752166 a001 1836311903/9349*15127^(4/5) 4334944434864151 a001 516002918640/90481*5778^(1/2) 4334944434914401 a001 4052739537881/710647*5778^(1/2) 4334944434921732 a001 3536736619241/620166*5778^(1/2) 4334944434926263 a001 6557470319842/1149851*5778^(1/2) 4334944434945388 a001 7787980473/844*5778^(4/9) 4334944434945457 a001 2504730781961/439204*5778^(1/2) 4334944435077013 a001 956722026041/167761*5778^(1/2) 4334944435699379 a001 1134903170/9349*15127^(17/20) 4334944435978713 a001 365435296162/64079*5778^(1/2) 4334944436646593 a001 701408733/9349*15127^(9/10) 4334944437593806 a001 433494437/9349*15127^(19/20) 4334944437619708 a001 20365011074/15127*5778^(2/3) 4334944438541019 a001 977529970891/2255 4334944439372718 a001 139583862445/39603*5778^(5/9) 4334944441237743 a001 956722026041/9349*5778^(1/6) 4334944441733398 a001 182717648081/51841*5778^(5/9) 4334944442077816 a001 956722026041/271443*5778^(5/9) 4334944442128066 a001 2504730781961/710647*5778^(5/9) 4334944442135397 a001 3278735159921/930249*5778^(5/9) 4334944442137128 a001 10610209857723/3010349*5778^(5/9) 4334944442139928 a001 4052739537881/1149851*5778^(5/9) 4334944442159053 a001 139583862445/24476*5778^(1/2) 4334944442159122 a001 387002188980/109801*5778^(5/9) 4334944442290678 a001 591286729879/167761*5778^(5/9) 4334944443192378 a001 225851433717/64079*5778^(5/9) 4334944444833373 a001 12586269025/15127*5778^(13/18) 4334944446586383 a001 86267571272/39603*5778^(11/18) 4334944448451408 a001 591286729879/9349*5778^(2/9) 4334944448947063 a001 225851433717/103682*5778^(11/18) 4334944449291481 a001 591286729879/271443*5778^(11/18) 4334944449341731 a001 1548008755920/710647*5778^(11/18) 4334944449349063 a001 4052739537881/1860498*5778^(11/18) 4334944449350132 a001 2178309*5778^(11/18) 4334944449350793 a001 6557470319842/3010349*5778^(11/18) 4334944449353594 a001 2504730781961/1149851*5778^(11/18) 4334944449372718 a001 21566892818/6119*5778^(5/9) 4334944449372787 a001 956722026041/439204*5778^(11/18) 4334944449504344 a001 365435296162/167761*5778^(11/18) 4334944449986160 a001 2971215073/3571*3571^(13/17) 4334944450406043 a001 139583862445/64079*5778^(11/18) 4334944452047038 a001 7778742049/15127*5778^(7/9) 4334944453800048 a001 53316291173/39603*5778^(2/3) 4334944455392874 r005 Im(z^2+c),c=-13/60+28/47*I,n=12 4334944455665073 a001 365435296162/9349*5778^(5/18) 4334944456160728 a001 139583862445/103682*5778^(2/3) 4334944456505146 a001 365435296162/271443*5778^(2/3) 4334944456555396 a001 956722026041/710647*5778^(2/3) 4334944456562728 a001 2504730781961/1860498*5778^(2/3) 4334944456563797 a001 6557470319842/4870847*5778^(2/3) 4334944456564050 a001 10610209857723/7881196*5778^(2/3) 4334944456564458 a001 1346269*5778^(2/3) 4334944456567259 a001 1548008755920/1149851*5778^(2/3) 4334944456586383 a001 53316291173/24476*5778^(11/18) 4334944456586452 a001 591286729879/439204*5778^(2/3) 4334944456718009 a001 225851433717/167761*5778^(2/3) 4334944457619708 a001 86267571272/64079*5778^(2/3) 4334944459260703 a001 686789568/2161*5778^(5/6) 4334944461013713 a001 10983760033/13201*5778^(13/18) 4334944461561914 a007 Real Root Of -353*x^4+923*x^3-508*x^2+934*x+588 4334944462302908 a001 2504730781961/15127*2207^(1/8) 4334944462648390 a001 182717648081/2889*2207^(1/4) 4334944462878738 a001 225851433717/9349*5778^(1/3) 4334944463374393 a001 43133785636/51841*5778^(13/18) 4334944463718811 a001 75283811239/90481*5778^(13/18) 4334944463769061 a001 591286729879/710647*5778^(13/18) 4334944463776393 a001 832040*5778^(13/18) 4334944463777462 a001 4052739537881/4870847*5778^(13/18) 4334944463777618 a001 3536736619241/4250681*5778^(13/18) 4334944463777715 a001 3278735159921/3940598*5778^(13/18) 4334944463778123 a001 2504730781961/3010349*5778^(13/18) 4334944463780924 a001 956722026041/1149851*5778^(13/18) 4334944463800048 a001 32951280099/24476*5778^(2/3) 4334944463800118 a001 182717648081/219602*5778^(13/18) 4334944463931674 a001 139583862445/167761*5778^(13/18) 4334944464833373 a001 53316291173/64079*5778^(13/18) 4334944466474368 a001 2971215073/15127*5778^(8/9) 4334944468227378 a001 20365011074/39603*5778^(7/9) 4334944469193496 a001 4181/9349*(1/2+1/2*5^(1/2))^43 4334944469982701 a001 4807526976/3571*3571^(12/17) 4334944470092403 a001 139583862445/9349*5778^(7/18) 4334944470588058 a001 53316291173/103682*5778^(7/9) 4334944470631045 r005 Re(z^2+c),c=-5/27+25/39*I,n=46 4334944470932476 a001 139583862445/271443*5778^(7/9) 4334944470982726 a001 365435296162/710647*5778^(7/9) 4334944470990058 a001 956722026041/1860498*5778^(7/9) 4334944470991127 a001 2504730781961/4870847*5778^(7/9) 4334944470991284 a001 6557470319842/12752043*5778^(7/9) 4334944470991320 a001 10610209857723/20633239*5778^(7/9) 4334944470991380 a001 4052739537881/7881196*5778^(7/9) 4334944470991789 a001 1548008755920/3010349*5778^(7/9) 4334944470994589 a001 514229*5778^(7/9) 4334944471013713 a001 10182505537/12238*5778^(13/18) 4334944471013783 a001 225851433717/439204*5778^(7/9) 4334944471145339 a001 86267571272/167761*5778^(7/9) 4334944472047038 a001 32951280099/64079*5778^(7/9) 4334944473688033 a001 1836311903/15127*5778^(17/18) 4334944475220339 a001 2504730781961/9349*2207^(1/16) 4334944475441043 a001 12586269025/39603*5778^(5/6) 4334944477306069 a001 86267571272/9349*5778^(4/9) 4334944477801723 a001 32951280099/103682*5778^(5/6) 4334944478146142 a001 86267571272/271443*5778^(5/6) 4334944478196392 a001 317811*5778^(5/6) 4334944478203723 a001 591286729879/1860498*5778^(5/6) 4334944478204793 a001 1548008755920/4870847*5778^(5/6) 4334944478204949 a001 4052739537881/12752043*5778^(5/6) 4334944478204971 a001 1515744265389/4769326*5778^(5/6) 4334944478204986 a001 6557470319842/20633239*5778^(5/6) 4334944478205045 a001 2504730781961/7881196*5778^(5/6) 4334944478205454 a001 956722026041/3010349*5778^(5/6) 4334944478208254 a001 365435296162/1149851*5778^(5/6) 4334944478227378 a001 12586269025/24476*5778^(7/9) 4334944478227448 a001 139583862445/439204*5778^(5/6) 4334944478359004 a001 53316291173/167761*5778^(5/6) 4334944478483248 a001 6557470319842/39603*2207^(1/8) 4334944479260703 a001 20365011074/64079*5778^(5/6) 4334944480901702 a001 1120149653865/2584 4334944481261091 r005 Im(z^2+c),c=5/32+29/63*I,n=54 4334944482302909 a001 10610209857723/64079*2207^(1/8) 4334944482654708 a001 7778742049/39603*5778^(8/9) 4334944484519734 a001 53316291173/9349*5778^(1/2) 4334944485015388 a001 10182505537/51841*5778^(8/9) 4334944485359807 a001 53316291173/271443*5778^(8/9) 4334944485410057 a001 139583862445/710647*5778^(8/9) 4334944485417388 a001 182717648081/930249*5778^(8/9) 4334944485418458 a001 956722026041/4870847*5778^(8/9) 4334944485418614 a001 2504730781961/12752043*5778^(8/9) 4334944485418637 a001 3278735159921/16692641*5778^(8/9) 4334944485418642 a001 10610209857723/54018521*5778^(8/9) 4334944485418651 a001 4052739537881/20633239*5778^(8/9) 4334944485418710 a001 387002188980/1970299*5778^(8/9) 4334944485419119 a001 591286729879/3010349*5778^(8/9) 4334944485421919 a001 225851433717/1149851*5778^(8/9) 4334944485441044 a001 7778742049/24476*5778^(5/6) 4334944485441113 a001 196418*5778^(8/9) 4334944485572669 a001 32951280099/167761*5778^(8/9) 4334944486474369 a001 12586269025/64079*5778^(8/9) 4334944488483249 a001 4052739537881/24476*2207^(1/8) 4334944489868374 a001 1602508992/13201*5778^(17/18) 4334944489979241 a001 7778742049/3571*3571^(11/17) 4334944491733399 a001 32951280099/9349*5778^(5/9) 4334944492229053 a001 12586269025/103682*5778^(17/18) 4334944492573472 a001 121393*5778^(17/18) 4334944492623722 a001 86267571272/710647*5778^(17/18) 4334944492631053 a001 75283811239/620166*5778^(17/18) 4334944492632123 a001 591286729879/4870847*5778^(17/18) 4334944492632279 a001 516002918640/4250681*5778^(17/18) 4334944492632302 a001 4052739537881/33385282*5778^(17/18) 4334944492632305 a001 3536736619241/29134601*5778^(17/18) 4334944492632307 a001 6557470319842/54018521*5778^(17/18) 4334944492632316 a001 2504730781961/20633239*5778^(17/18) 4334944492632375 a001 956722026041/7881196*5778^(17/18) 4334944492632784 a001 365435296162/3010349*5778^(17/18) 4334944492635584 a001 139583862445/1149851*5778^(17/18) 4334944492654709 a001 1201881744/6119*5778^(8/9) 4334944492654778 a001 53316291173/439204*5778^(17/18) 4334944492786334 a001 20365011074/167761*5778^(17/18) 4334944493688034 a001 7778742049/64079*5778^(17/18) 4334944496754487 a007 Real Root Of -107*x^4-341*x^3+259*x^2-963*x+965 4334944497082043 a001 560074829023/1292 4334944498947064 a001 20365011074/9349*5778^(11/18) 4334944499442724 a001 140018707332/323 4334944499787151 a001 1120149658745/2584 4334944499837461 a001 560074829379/1292 4334944499845201 a001 140018707345/323 4334944499845975 a001 5600748293801/2584*8^(1/3) 4334944499845975 a001 1/1292*(1/2+1/2*5^(1/2))^61 4334944499849071 a001 1120149658761/2584 4334944499868374 a001 2971215073/24476*5778^(17/18) 4334944500901702 a001 1120149659033/2584 4334944501025203 r005 Im(z^2+c),c=7/102+26/49*I,n=45 4334944506160729 a001 12586269025/9349*5778^(2/3) 4334944507082043 a001 560074830315/1292 4334944509975782 a001 12586269025/3571*3571^(10/17) 4334944513374394 a001 7778742049/9349*5778^(13/18) 4334944516187049 m001 (Kolakoski+Sarnak)/(5^(1/2)+BesselI(0,1)) 4334944517926499 a001 1548008755920/15127*2207^(3/16) 4334944518271981 a001 75283811239/1926*2207^(5/16) 4334944520588060 a001 4807526976/9349*5778^(7/9) 4334944521057234 m001 PisotVijayaraghavan^QuadraticClass/Otter 4334944525332805 a001 701408733/1364*1364^(14/15) 4334944525383810 r009 Im(z^3+c),c=-15/44+22/49*I,n=26 4334944527801725 a001 2971215073/9349*5778^(5/6) 4334944529972322 a001 20365011074/3571*3571^(9/17) 4334944530339408 a003 sin(Pi*10/61)-sin(Pi*26/69) 4334944530843930 a001 1548008755920/9349*2207^(1/8) 4334944534106840 a001 4052739537881/39603*2207^(3/16) 4334944535015390 a001 1836311903/9349*5778^(8/9) 4334944536467520 a001 225749145909/2206*2207^(3/16) 4334944537926500 a001 6557470319842/64079*2207^(3/16) 4334944539085742 a007 Real Root Of 728*x^4-872*x^3-816*x^2-619*x+467 4334944542229055 a001 1134903170/9349*5778^(17/18) 4334944544106840 a001 2504730781961/24476*2207^(3/16) 4334944545857482 r002 21th iterates of z^2 + 4334944549442724 a001 140018708947/323 4334944549968863 a001 32951280099/3571*3571^(8/17) 4334944553697847 r005 Re(z^2+c),c=-5/8+3/46*I,n=31 4334944554608380 a001 956722026041/3571*1364^(1/15) 4334944559992069 r005 Re(z^2+c),c=-3/52+38/53*I,n=46 4334944566603613 a007 Real Root Of -493*x^4+449*x^3-654*x^2+517*x+401 4334944567887320 r005 Im(z^2+c),c=19/58+8/29*I,n=46 4334944569965404 a001 53316291173/3571*3571^(7/17) 4334944573550091 a001 956722026041/15127*2207^(1/4) 4334944573895573 a001 139583862445/5778*2207^(3/8) 4334944578210808 r002 13th iterates of z^2 + 4334944579199287 m001 1/FeigenbaumKappa/FeigenbaumD^2*exp((3^(1/3))) 4334944580095188 a001 1597/5778*312119004989^(4/5) 4334944580095188 a001 1597/5778*(1/2+1/2*5^(1/2))^44 4334944580095188 a001 1597/5778*23725150497407^(11/16) 4334944580095188 a001 1597/5778*73681302247^(11/13) 4334944580095188 a001 1597/5778*10749957122^(11/12) 4334944580095188 a001 1597/5778*4106118243^(22/23) 4334944580095211 a001 2584/3571*2537720636^(14/15) 4334944580095211 a001 2584/3571*17393796001^(6/7) 4334944580095211 a001 2584/3571*45537549124^(14/17) 4334944580095211 a001 2584/3571*14662949395604^(2/3) 4334944580095211 a001 2584/3571*(1/2+1/2*5^(1/2))^42 4334944580095211 a001 2584/3571*505019158607^(3/4) 4334944580095211 a001 2584/3571*192900153618^(7/9) 4334944580095211 a001 2584/3571*10749957122^(7/8) 4334944580095211 a001 2584/3571*4106118243^(21/23) 4334944580095211 a001 2584/3571*1568397607^(21/22) 4334944581481421 g002 Psi(7/11)-Psi(8/11)-Psi(6/11)-Psi(4/11) 4334944586467522 a001 956722026041/9349*2207^(3/16) 4334944589730432 a001 2504730781961/39603*2207^(1/4) 4334944589961945 a001 86267571272/3571*3571^(6/17) 4334944592091112 a001 3278735159921/51841*2207^(1/4) 4334944592648393 a001 10610209857723/167761*2207^(1/4) 4334944593550092 a001 4052739537881/64079*2207^(1/4) 4334944599730433 a001 387002188980/6119*2207^(1/4) 4334944603695997 a001 5600748293801*144^(7/17) 4334944609958486 a001 139583862445/3571*3571^(5/17) 4334944619938590 r005 Re(z^2+c),c=-41/66+1/40*I,n=58 4334944626132937 r005 Im(z^2+c),c=9/32+9/23*I,n=31 4334944629173684 a001 591286729879/15127*2207^(5/16) 4334944629519166 a001 43133785636/2889*2207^(7/16) 4334944629955027 a001 225851433717/3571*3571^(4/17) 4334944635876205 m001 (Magata+Otter)/(2^(1/3)+exp(-1/2*Pi)) 4334944642091115 a001 591286729879/9349*2207^(1/4) 4334944645354025 a001 516002918640/13201*2207^(5/16) 4334944647714705 a001 4052739537881/103682*2207^(5/16) 4334944648059124 a001 3536736619241/90481*2207^(5/16) 4334944648271986 a001 6557470319842/167761*2207^(5/16) 4334944649173685 a001 2504730781961/64079*2207^(5/16) 4334944649951568 a001 365435296162/3571*3571^(3/17) 4334944655354026 a001 956722026041/24476*2207^(5/16) 4334944656973882 m001 Ei(1)+GAMMA(11/24)^GAMMA(2/3) 4334944658460902 r009 Im(z^3+c),c=-5/14+19/43*I,n=25 4334944660344415 a001 1812440362490/4181 4334944662954796 a001 267914296/3571*9349^(18/19) 4334944665565151 a001 433494437/3571*9349^(17/19) 4334944668175507 a001 701408733/3571*9349^(16/19) 4334944668201687 r005 Re(z^2+c),c=-67/114+10/31*I,n=44 4334944669948110 a001 591286729879/3571*3571^(2/17) 4334944670785862 a001 1134903170/3571*9349^(15/19) 4334944673396217 a001 1836311903/3571*9349^(14/19) 4334944675867786 a001 86000486440/321*843^(1/14) 4334944676006573 a001 2971215073/3571*9349^(13/19) 4334944676979418 r009 Im(z^3+c),c=-5/21+15/31*I,n=23 4334944678616928 a001 4807526976/3571*9349^(12/19) 4334944680665616 a001 567451585/682*1364^(13/15) 4334944681227284 a001 7778742049/3571*9349^(11/19) 4334944683837639 a001 12586269025/3571*9349^(10/19) 4334944684797278 a001 365435296162/15127*2207^(3/8) 4334944684839658 m004 12+Sqrt[5]*Pi+Cos[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi] 4334944685142760 a001 53316291173/5778*2207^(1/2) 4334944686447994 a001 20365011074/3571*9349^(9/19) 4334944689058350 a001 32951280099/3571*9349^(8/19) 4334944689944651 a001 956722026041/3571*3571^(1/17) 4334944690996892 a001 1597/15127*(1/2+1/2*5^(1/2))^46 4334944690996892 a001 1597/15127*10749957122^(23/24) 4334944690996919 a001 6765/3571*2537720636^(8/9) 4334944690996919 a001 6765/3571*312119004989^(8/11) 4334944690996919 a001 6765/3571*(1/2+1/2*5^(1/2))^40 4334944690996919 a001 6765/3571*23725150497407^(5/8) 4334944690996919 a001 6765/3571*73681302247^(10/13) 4334944690996919 a001 6765/3571*28143753123^(4/5) 4334944690996919 a001 6765/3571*10749957122^(5/6) 4334944690996919 a001 6765/3571*4106118243^(20/23) 4334944690996919 a001 6765/3571*1568397607^(10/11) 4334944690996919 a001 6765/3571*599074578^(20/21) 4334944691668705 a001 53316291173/3571*9349^(7/19) 4334944693996594 a003 cos(Pi*1/94)-cos(Pi*29/94) 4334944694279060 a001 86267571272/3571*9349^(6/19) 4334944696889416 a001 139583862445/3571*9349^(5/19) 4334944697714709 a001 365435296162/9349*2207^(5/16) 4334944699499771 a001 225851433717/3571*9349^(4/19) 4334944700977619 a001 956722026041/39603*2207^(3/8) 4334944701339678 m005 (1/3*Pi-2/3)/(8/11*gamma-3/7) 4334944702110126 a001 365435296162/3571*9349^(3/19) 4334944702705097 a001 4745030471581/10946 4334944703049699 a001 102334155/3571*24476^(20/21) 4334944703338299 a001 2504730781961/103682*2207^(3/8) 4334944703394273 a001 165580141/3571*24476^(19/21) 4334944703682717 a001 6557470319842/271443*2207^(3/8) 4334944703738848 a001 267914296/3571*24476^(6/7) 4334944703764023 a001 10610209857723/439204*2207^(3/8) 4334944703895580 a001 4052739537881/167761*2207^(3/8) 4334944704083423 a001 433494437/3571*24476^(17/21) 4334944704427997 a001 701408733/3571*24476^(16/21) 4334944704720482 a001 591286729879/3571*9349^(2/19) 4334944704772572 a001 1134903170/3571*24476^(5/7) 4334944704797279 a001 1548008755920/64079*2207^(3/8) 4334944705059601 r005 Re(z^2+c),c=-41/66+7/51*I,n=32 4334944705117147 a001 1836311903/3571*24476^(2/3) 4334944705461721 a001 2971215073/3571*24476^(13/21) 4334944705806296 a001 4807526976/3571*24476^(4/7) 4334944706150871 a001 7778742049/3571*24476^(11/21) 4334944706495446 a001 12586269025/3571*24476^(10/21) 4334944706705651 r005 Im(z^2+c),c=-11/118+4/7*I,n=13 4334944706840020 a001 20365011074/3571*24476^(3/7) 4334944707177234 a001 1597/39603*45537549124^(16/17) 4334944707177234 a001 1597/39603*14662949395604^(16/21) 4334944707177234 a001 1597/39603*(1/2+1/2*5^(1/2))^48 4334944707177234 a001 1597/39603*192900153618^(8/9) 4334944707177234 a001 1597/39603*73681302247^(12/13) 4334944707177260 a001 17711/3571*817138163596^(2/3) 4334944707177260 a001 17711/3571*(1/2+1/2*5^(1/2))^38 4334944707177260 a001 17711/3571*10749957122^(19/24) 4334944707177260 a001 17711/3571*4106118243^(19/23) 4334944707177260 a001 17711/3571*1568397607^(19/22) 4334944707177260 a001 17711/3571*599074578^(19/21) 4334944707177260 a001 17711/3571*228826127^(19/20) 4334944707184595 a001 32951280099/3571*24476^(8/21) 4334944707330837 a001 956722026041/3571*9349^(1/19) 4334944707529170 a001 53316291173/3571*24476^(1/3) 4334944707873744 a001 86267571272/3571*24476^(2/7) 4334944708218319 a001 139583862445/3571*24476^(5/21) 4334944708562894 a001 225851433717/3571*24476^(4/21) 4334944708885438 a001 12422651052253/28657 4334944708907468 a001 365435296162/3571*24476^(1/7) 4334944708931365 a001 39088169/3571*64079^(22/23) 4334944708977267 a001 63245986/3571*64079^(21/23) 4334944709023168 a001 102334155/3571*64079^(20/23) 4334944709069069 a001 165580141/3571*64079^(19/23) 4334944709114970 a001 267914296/3571*64079^(18/23) 4334944709160872 a001 433494437/3571*64079^(17/23) 4334944709206773 a001 701408733/3571*64079^(16/23) 4334944709252043 a001 591286729879/3571*24476^(2/21) 4334944709252674 a001 1134903170/3571*64079^(15/23) 4334944709298575 a001 1836311903/3571*64079^(14/23) 4334944709344477 a001 2971215073/3571*64079^(13/23) 4334944709390378 a001 4807526976/3571*64079^(12/23) 4334944709436279 a001 7778742049/3571*64079^(11/23) 4334944709482180 a001 12586269025/3571*64079^(10/23) 4334944709528081 a001 20365011074/3571*64079^(9/23) 4334944709537914 a001 1597/103682*312119004989^(10/11) 4334944709537914 a001 1597/103682*(1/2+1/2*5^(1/2))^50 4334944709537914 a001 1597/103682*3461452808002^(5/6) 4334944709537940 a001 46368/3571*141422324^(12/13) 4334944709537940 a001 46368/3571*2537720636^(4/5) 4334944709537940 a001 46368/3571*45537549124^(12/17) 4334944709537940 a001 46368/3571*14662949395604^(4/7) 4334944709537940 a001 46368/3571*(1/2+1/2*5^(1/2))^36 4334944709537940 a001 46368/3571*505019158607^(9/14) 4334944709537940 a001 46368/3571*192900153618^(2/3) 4334944709537940 a001 46368/3571*73681302247^(9/13) 4334944709537940 a001 46368/3571*10749957122^(3/4) 4334944709537940 a001 46368/3571*4106118243^(18/23) 4334944709537940 a001 46368/3571*1568397607^(9/11) 4334944709537940 a001 46368/3571*599074578^(6/7) 4334944709537940 a001 46368/3571*228826127^(9/10) 4334944709537941 a001 46368/3571*87403803^(18/19) 4334944709573983 a001 32951280099/3571*64079^(8/23) 4334944709596618 a001 956722026041/3571*24476^(1/21) 4334944709619884 a001 53316291173/3571*64079^(7/23) 4334944709665785 a001 86267571272/3571*64079^(6/23) 4334944709711686 a001 139583862445/3571*64079^(5/23) 4334944709757588 a001 225851433717/3571*64079^(4/23) 4334944709787137 a001 32522922685178/75025 4334944709803489 a001 365435296162/3571*64079^(3/23) 4334944709817969 a001 102334155/3571*167761^(4/5) 4334944709848775 a001 1134903170/3571*167761^(3/5) 4334944709849390 a001 591286729879/3571*64079^(2/23) 4334944709879581 a001 12586269025/3571*167761^(2/5) 4334944709882332 a001 1597/271443*(1/2+1/2*5^(1/2))^52 4334944709882332 a001 1597/271443*23725150497407^(13/16) 4334944709882332 a001 1597/271443*505019158607^(13/14) 4334944709882359 a001 121393/3571*45537549124^(2/3) 4334944709882359 a001 121393/3571*(1/2+1/2*5^(1/2))^34 4334944709882359 a001 121393/3571*10749957122^(17/24) 4334944709882359 a001 121393/3571*4106118243^(17/23) 4334944709882359 a001 121393/3571*1568397607^(17/22) 4334944709882359 a001 121393/3571*599074578^(17/21) 4334944709882359 a001 121393/3571*228826127^(17/20) 4334944709882359 a001 121393/3571*87403803^(17/19) 4334944709882362 a001 121393/3571*33385282^(17/18) 4334944709895291 a001 956722026041/3571*64079^(1/23) 4334944709910387 a001 139583862445/3571*167761^(1/5) 4334944709918693 a001 85146117003281/196418 4334944709921213 a001 14930352/3571*439204^(8/9) 4334944709923714 a001 63245986/3571*439204^(7/9) 4334944709926211 a001 267914296/3571*439204^(2/3) 4334944709928708 a001 1134903170/3571*439204^(5/9) 4334944709931205 a001 4807526976/3571*439204^(4/9) 4334944709932582 a001 1597/710647*14662949395604^(6/7) 4334944709932582 a001 1597/710647*(1/2+1/2*5^(1/2))^54 4334944709932609 a001 317811/3571*(1/2+1/2*5^(1/2))^32 4334944709932609 a001 317811/3571*23725150497407^(1/2) 4334944709932609 a001 317811/3571*505019158607^(4/7) 4334944709932609 a001 317811/3571*73681302247^(8/13) 4334944709932609 a001 317811/3571*10749957122^(2/3) 4334944709932609 a001 317811/3571*4106118243^(16/23) 4334944709932609 a001 317811/3571*1568397607^(8/11) 4334944709932609 a001 317811/3571*599074578^(16/21) 4334944709932609 a001 317811/3571*228826127^(4/5) 4334944709932609 a001 317811/3571*87403803^(16/19) 4334944709932612 a001 317811/3571*33385282^(8/9) 4334944709932634 a001 317811/3571*12752043^(16/17) 4334944709933702 a001 20365011074/3571*439204^(1/3) 4334944709936199 a001 86267571272/3571*439204^(2/9) 4334944709937887 a001 222915428324665/514229 4334944709938696 a001 365435296162/3571*439204^(1/9) 4334944709939877 a001 832040/3571*7881196^(10/11) 4334944709939913 a001 1597/1860498*14662949395604^(8/9) 4334944709939913 a001 1597/1860498*(1/2+1/2*5^(1/2))^56 4334944709939931 a001 832040/3571*20633239^(6/7) 4334944709939940 a001 832040/3571*141422324^(10/13) 4334944709939940 a001 832040/3571*2537720636^(2/3) 4334944709939940 a001 832040/3571*45537549124^(10/17) 4334944709939940 a001 832040/3571*312119004989^(6/11) 4334944709939940 a001 832040/3571*14662949395604^(10/21) 4334944709939940 a001 832040/3571*(1/2+1/2*5^(1/2))^30 4334944709939940 a001 832040/3571*192900153618^(5/9) 4334944709939940 a001 832040/3571*28143753123^(3/5) 4334944709939940 a001 832040/3571*10749957122^(5/8) 4334944709939940 a001 832040/3571*4106118243^(15/23) 4334944709939940 a001 832040/3571*1568397607^(15/22) 4334944709939940 a001 832040/3571*599074578^(5/7) 4334944709939940 a001 832040/3571*228826127^(3/4) 4334944709939941 a001 832040/3571*87403803^(15/19) 4334944709939943 a001 832040/3571*33385282^(5/6) 4334944709939964 a001 832040/3571*12752043^(15/17) 4334944709940111 a001 832040/3571*4870847^(15/16) 4334944709940687 a001 583600167970714/1346269 4334944709940983 a001 1597/4870847*(1/2+1/2*5^(1/2))^58 4334944709941002 a001 2178309/3571*20633239^(4/5) 4334944709941010 a001 2178309/3571*17393796001^(4/7) 4334944709941010 a001 2178309/3571*14662949395604^(4/9) 4334944709941010 a001 2178309/3571*(1/2+1/2*5^(1/2))^28 4334944709941010 a001 2178309/3571*505019158607^(1/2) 4334944709941010 a001 2178309/3571*73681302247^(7/13) 4334944709941010 a001 2178309/3571*10749957122^(7/12) 4334944709941010 a001 2178309/3571*4106118243^(14/23) 4334944709941010 a001 2178309/3571*1568397607^(7/11) 4334944709941010 a001 2178309/3571*599074578^(2/3) 4334944709941010 a001 2178309/3571*228826127^(7/10) 4334944709941010 a001 2178309/3571*87403803^(14/19) 4334944709941013 a001 2178309/3571*33385282^(7/9) 4334944709941032 a001 2178309/3571*12752043^(14/17) 4334944709941096 a001 1527885075587477/3524578 4334944709941138 a001 14930352/3571*7881196^(8/11) 4334944709941139 a001 1597/12752043*14662949395604^(20/21) 4334944709941139 a001 1597/12752043*(1/2+1/2*5^(1/2))^60 4334944709941145 a001 39088169/3571*7881196^(2/3) 4334944709941148 a001 63245986/3571*7881196^(7/11) 4334944709941154 a001 267914296/3571*7881196^(6/11) 4334944709941156 a001 4000055058791717/9227465 4334944709941161 a001 1134903170/3571*7881196^(5/11) 4334944709941162 a001 1597/33385282*(1/2+1/2*5^(1/2))^62 4334944709941164 a001 10472280100787674/24157817 4334944709941166 a001 1597*141422324^(2/3) 4334944709941166 a001 1597*(1/2+1/2*5^(1/2))^26 4334944709941166 a001 1597*73681302247^(1/2) 4334944709941166 a001 1597*10749957122^(13/24) 4334944709941166 a001 1597*4106118243^(13/23) 4334944709941166 a001 1597*1568397607^(13/22) 4334944709941166 a001 1597*599074578^(13/21) 4334944709941166 a001 1597*228826127^(13/20) 4334944709941166 a001 1597*87403803^(13/19) 4334944709941166 a001 16944505142783631/39088169 4334944709941167 a001 4807526976/3571*7881196^(4/11) 4334944709941169 a001 1597*33385282^(13/18) 4334944709941169 a001 7778742049/3571*7881196^(1/3) 4334944709941170 a001 2178309/3571*4870847^(7/8) 4334944709941170 a001 6472225041995957/14930352 4334944709941173 a001 20365011074/3571*7881196^(3/11) 4334944709941176 a001 1597/20633239*(1/2+1/2*5^(1/2))^61 4334944709941180 a001 86267571272/3571*7881196^(2/11) 4334944709941186 a001 365435296162/3571*7881196^(1/11) 4334944709941186 a001 1597*12752043^(13/17) 4334944709941187 a001 102334155/3571*20633239^(4/7) 4334944709941187 a001 63245986/3571*20633239^(3/5) 4334944709941188 a001 1134903170/3571*20633239^(3/7) 4334944709941188 a001 1836311903/3571*20633239^(2/5) 4334944709941188 a001 14930352/3571*141422324^(8/13) 4334944709941189 a001 14930352/3571*2537720636^(8/15) 4334944709941189 a001 14930352/3571*45537549124^(8/17) 4334944709941189 a001 14930352/3571*14662949395604^(8/21) 4334944709941189 a001 14930352/3571*(1/2+1/2*5^(1/2))^24 4334944709941189 a001 14930352/3571*192900153618^(4/9) 4334944709941189 a001 14930352/3571*73681302247^(6/13) 4334944709941189 a001 14930352/3571*10749957122^(1/2) 4334944709941189 a001 14930352/3571*4106118243^(12/23) 4334944709941189 a001 14930352/3571*1568397607^(6/11) 4334944709941189 a001 14930352/3571*599074578^(4/7) 4334944709941189 a001 14930352/3571*228826127^(3/5) 4334944709941189 a001 14930352/3571*87403803^(12/19) 4334944709941190 a001 12586269025/3571*20633239^(2/7) 4334944709941190 a001 53316291173/3571*20633239^(1/5) 4334944709941191 a001 139583862445/3571*20633239^(1/7) 4334944709941191 a001 14930352/3571*33385282^(2/3) 4334944709941192 a001 39088169/3571*312119004989^(2/5) 4334944709941192 a001 39088169/3571*(1/2+1/2*5^(1/2))^22 4334944709941192 a001 39088169/3571*10749957122^(11/24) 4334944709941192 a001 39088169/3571*4106118243^(11/23) 4334944709941192 a001 39088169/3571*1568397607^(1/2) 4334944709941192 a001 39088169/3571*599074578^(11/21) 4334944709941192 a001 39088169/3571*228826127^(11/20) 4334944709941192 a001 39088169/3571*87403803^(11/19) 4334944709941192 a001 267914296/3571*141422324^(6/13) 4334944709941192 a001 102334155/3571*2537720636^(4/9) 4334944709941192 a001 102334155/3571*(1/2+1/2*5^(1/2))^20 4334944709941192 a001 102334155/3571*23725150497407^(5/16) 4334944709941192 a001 102334155/3571*505019158607^(5/14) 4334944709941192 a001 102334155/3571*73681302247^(5/13) 4334944709941192 a001 102334155/3571*28143753123^(2/5) 4334944709941192 a001 102334155/3571*10749957122^(5/12) 4334944709941192 a001 1134903170/3571*141422324^(5/13) 4334944709941192 a001 102334155/3571*4106118243^(10/23) 4334944709941192 a001 102334155/3571*1568397607^(5/11) 4334944709941192 a001 102334155/3571*599074578^(10/21) 4334944709941192 a001 2971215073/3571*141422324^(1/3) 4334944709941192 a001 4807526976/3571*141422324^(4/13) 4334944709941192 a001 20365011074/3571*141422324^(3/13) 4334944709941192 a001 102334155/3571*228826127^(1/2) 4334944709941192 a001 86267571272/3571*141422324^(2/13) 4334944709941192 a001 365435296162/3571*141422324^(1/13) 4334944709941192 a001 267914296/3571*2537720636^(2/5) 4334944709941192 a001 267914296/3571*45537549124^(6/17) 4334944709941192 a001 267914296/3571*14662949395604^(2/7) 4334944709941192 a001 267914296/3571*(1/2+1/2*5^(1/2))^18 4334944709941192 a001 267914296/3571*192900153618^(1/3) 4334944709941192 a001 267914296/3571*10749957122^(3/8) 4334944709941192 a001 267914296/3571*4106118243^(9/23) 4334944709941192 a001 267914296/3571*1568397607^(9/22) 4334944709941192 a001 267914296/3571*599074578^(3/7) 4334944709941192 a001 701408733/3571*(1/2+1/2*5^(1/2))^16 4334944709941192 a001 701408733/3571*23725150497407^(1/4) 4334944709941192 a001 701408733/3571*73681302247^(4/13) 4334944709941192 a001 701408733/3571*10749957122^(1/3) 4334944709941192 a001 701408733/3571*4106118243^(8/23) 4334944709941192 a001 701408733/3571*1568397607^(4/11) 4334944709941192 a001 1836311903/3571*17393796001^(2/7) 4334944709941192 a001 1836311903/3571*14662949395604^(2/9) 4334944709941192 a001 1836311903/3571*(1/2+1/2*5^(1/2))^14 4334944709941192 a001 1836311903/3571*505019158607^(1/4) 4334944709941192 a001 1836311903/3571*10749957122^(7/24) 4334944709941192 a001 4807526976/3571*2537720636^(4/15) 4334944709941192 a001 1836311903/3571*4106118243^(7/23) 4334944709941192 a001 12586269025/3571*2537720636^(2/9) 4334944709941192 a001 20365011074/3571*2537720636^(1/5) 4334944709941192 a001 86267571272/3571*2537720636^(2/15) 4334944709941192 a001 139583862445/3571*2537720636^(1/9) 4334944709941192 a001 365435296162/3571*2537720636^(1/15) 4334944709941192 a001 4807526976/3571*45537549124^(4/17) 4334944709941192 a001 4807526976/3571*817138163596^(4/19) 4334944709941192 a001 4807526976/3571*14662949395604^(4/21) 4334944709941192 a001 4807526976/3571*(1/2+1/2*5^(1/2))^12 4334944709941192 a001 4807526976/3571*192900153618^(2/9) 4334944709941192 a001 4807526976/3571*73681302247^(3/13) 4334944709941192 a001 4807526976/3571*10749957122^(1/4) 4334944709941192 a001 12586269025/3571*312119004989^(2/11) 4334944709941192 a001 12586269025/3571*(1/2+1/2*5^(1/2))^10 4334944709941192 a001 12586269025/3571*28143753123^(1/5) 4334944709941192 a001 53316291173/3571*17393796001^(1/7) 4334944709941192 a001 32951280099/3571*(1/2+1/2*5^(1/2))^8 4334944709941192 a001 32951280099/3571*23725150497407^(1/8) 4334944709941192 a001 32951280099/3571*505019158607^(1/7) 4334944709941192 a001 32951280099/3571*73681302247^(2/13) 4334944709941192 a001 86267571272/3571*45537549124^(2/17) 4334944709941192 a001 86267571272/3571*14662949395604^(2/21) 4334944709941192 a001 86267571272/3571*(1/2+1/2*5^(1/2))^6 4334944709941192 a001 365435296162/3571*45537549124^(1/17) 4334944709941192 a001 225851433717/3571*(1/2+1/2*5^(1/2))^4 4334944709941192 a001 225851433717/3571*23725150497407^(1/16) 4334944709941192 a001 1548008755920/3571 4334944709941192 a001 956722026041/7142+956722026041/7142*5^(1/2) 4334944709941192 a001 365435296162/3571*192900153618^(1/18) 4334944709941192 a001 139583862445/3571*312119004989^(1/11) 4334944709941192 a001 225851433717/3571*73681302247^(1/13) 4334944709941192 a001 139583862445/3571*(1/2+1/2*5^(1/2))^5 4334944709941192 a001 53316291173/3571*14662949395604^(1/9) 4334944709941192 a001 53316291173/3571*(1/2+1/2*5^(1/2))^7 4334944709941192 a001 139583862445/3571*28143753123^(1/10) 4334944709941192 a001 591286729879/3571*10749957122^(1/24) 4334944709941192 a001 20365011074/3571*45537549124^(3/17) 4334944709941192 a001 20365011074/3571*817138163596^(3/19) 4334944709941192 a001 20365011074/3571*14662949395604^(1/7) 4334944709941192 a001 20365011074/3571*(1/2+1/2*5^(1/2))^9 4334944709941192 a001 20365011074/3571*192900153618^(1/6) 4334944709941192 a001 12586269025/3571*10749957122^(5/24) 4334944709941192 a001 225851433717/3571*10749957122^(1/12) 4334944709941192 a001 86267571272/3571*10749957122^(1/8) 4334944709941192 a001 32951280099/3571*10749957122^(1/6) 4334944709941192 a001 20365011074/3571*10749957122^(3/16) 4334944709941192 a001 591286729879/3571*4106118243^(1/23) 4334944709941192 a001 7778742049/3571*312119004989^(1/5) 4334944709941192 a001 7778742049/3571*(1/2+1/2*5^(1/2))^11 4334944709941192 a001 225851433717/3571*4106118243^(2/23) 4334944709941192 a001 4807526976/3571*4106118243^(6/23) 4334944709941192 a001 86267571272/3571*4106118243^(3/23) 4334944709941192 a001 32951280099/3571*4106118243^(4/23) 4334944709941192 a001 12586269025/3571*4106118243^(5/23) 4334944709941192 a001 591286729879/3571*1568397607^(1/22) 4334944709941192 a001 2971215073/3571*(1/2+1/2*5^(1/2))^13 4334944709941192 a001 2971215073/3571*73681302247^(1/4) 4334944709941192 a001 225851433717/3571*1568397607^(1/11) 4334944709941192 a001 86267571272/3571*1568397607^(3/22) 4334944709941192 a001 1836311903/3571*1568397607^(7/22) 4334944709941192 a001 32951280099/3571*1568397607^(2/11) 4334944709941192 a001 12586269025/3571*1568397607^(5/22) 4334944709941192 a001 4807526976/3571*1568397607^(3/11) 4334944709941192 a001 1134903170/3571*2537720636^(1/3) 4334944709941192 a001 7778742049/3571*1568397607^(1/4) 4334944709941192 a001 591286729879/3571*599074578^(1/21) 4334944709941192 a001 1134903170/3571*45537549124^(5/17) 4334944709941192 a001 1134903170/3571*312119004989^(3/11) 4334944709941192 a001 1134903170/3571*14662949395604^(5/21) 4334944709941192 a001 1134903170/3571*(1/2+1/2*5^(1/2))^15 4334944709941192 a001 1134903170/3571*192900153618^(5/18) 4334944709941192 a001 1134903170/3571*28143753123^(3/10) 4334944709941192 a001 1134903170/3571*10749957122^(5/16) 4334944709941192 a001 365435296162/3571*599074578^(1/14) 4334944709941192 a001 225851433717/3571*599074578^(2/21) 4334944709941192 a001 86267571272/3571*599074578^(1/7) 4334944709941192 a001 53316291173/3571*599074578^(1/6) 4334944709941192 a001 32951280099/3571*599074578^(4/21) 4334944709941192 a001 20365011074/3571*599074578^(3/14) 4334944709941192 a001 701408733/3571*599074578^(8/21) 4334944709941192 a001 12586269025/3571*599074578^(5/21) 4334944709941192 a001 4807526976/3571*599074578^(2/7) 4334944709941192 a001 1836311903/3571*599074578^(1/3) 4334944709941192 a001 591286729879/3571*228826127^(1/20) 4334944709941192 a001 433494437/3571*45537549124^(1/3) 4334944709941192 a001 433494437/3571*(1/2+1/2*5^(1/2))^17 4334944709941192 a001 1134903170/3571*599074578^(5/14) 4334944709941192 a001 225851433717/3571*228826127^(1/10) 4334944709941192 a001 139583862445/3571*228826127^(1/8) 4334944709941192 a001 86267571272/3571*228826127^(3/20) 4334944709941192 a001 32951280099/3571*228826127^(1/5) 4334944709941192 a001 12586269025/3571*228826127^(1/4) 4334944709941192 a001 4807526976/3571*228826127^(3/10) 4334944709941192 a001 267914296/3571*228826127^(9/20) 4334944709941192 a001 1836311903/3571*228826127^(7/20) 4334944709941192 a001 591286729879/3571*87403803^(1/19) 4334944709941192 a001 701408733/3571*228826127^(2/5) 4334944709941192 a001 165580141/3571*817138163596^(1/3) 4334944709941192 a001 165580141/3571*(1/2+1/2*5^(1/2))^19 4334944709941192 a001 1134903170/3571*228826127^(3/8) 4334944709941193 a001 225851433717/3571*87403803^(2/19) 4334944709941193 a001 86267571272/3571*87403803^(3/19) 4334944709941193 a001 63245986/3571*141422324^(7/13) 4334944709941193 a001 32951280099/3571*87403803^(4/19) 4334944709941193 a001 12586269025/3571*87403803^(5/19) 4334944709941193 a001 4807526976/3571*87403803^(6/19) 4334944709941193 a001 1836311903/3571*87403803^(7/19) 4334944709941193 a001 102334155/3571*87403803^(10/19) 4334944709941193 a001 591286729879/3571*33385282^(1/18) 4334944709941193 a001 63245986/3571*2537720636^(7/15) 4334944709941193 a001 63245986/3571*17393796001^(3/7) 4334944709941193 a001 63245986/3571*45537549124^(7/17) 4334944709941193 a001 63245986/3571*14662949395604^(1/3) 4334944709941193 a001 63245986/3571*(1/2+1/2*5^(1/2))^21 4334944709941193 a001 63245986/3571*192900153618^(7/18) 4334944709941193 a001 63245986/3571*10749957122^(7/16) 4334944709941193 a001 63245986/3571*599074578^(1/2) 4334944709941193 a001 701408733/3571*87403803^(8/19) 4334944709941193 a001 267914296/3571*87403803^(9/19) 4334944709941193 a001 165580141/3571*87403803^(1/2) 4334944709941193 a001 365435296162/3571*33385282^(1/12) 4334944709941193 a001 225851433717/3571*33385282^(1/9) 4334944709941193 a001 86267571272/3571*33385282^(1/6) 4334944709941193 a001 32951280099/3571*33385282^(2/9) 4334944709941193 a001 20365011074/3571*33385282^(1/4) 4334944709941194 a001 12586269025/3571*33385282^(5/18) 4334944709941194 a001 4807526976/3571*33385282^(1/3) 4334944709941194 a001 24157817/3571*(1/2+1/2*5^(1/2))^23 4334944709941194 a001 24157817/3571*4106118243^(1/2) 4334944709941194 a001 1836311903/3571*33385282^(7/18) 4334944709941194 a001 591286729879/3571*12752043^(1/17) 4334944709941194 a001 1134903170/3571*33385282^(5/12) 4334944709941194 a001 701408733/3571*33385282^(4/9) 4334944709941194 a001 39088169/3571*33385282^(11/18) 4334944709941194 a001 267914296/3571*33385282^(1/2) 4334944709941195 a001 102334155/3571*33385282^(5/9) 4334944709941195 a001 63245986/3571*33385282^(7/12) 4334944709941195 a001 9227465/3571*20633239^(5/7) 4334944709941196 a001 225851433717/3571*12752043^(2/17) 4334944709941197 a001 86267571272/3571*12752043^(3/17) 4334944709941199 a001 32951280099/3571*12752043^(4/17) 4334944709941200 a001 12586269025/3571*12752043^(5/17) 4334944709941202 a001 4807526976/3571*12752043^(6/17) 4334944709941203 a001 9227465/3571*2537720636^(5/9) 4334944709941203 a001 9227465/3571*312119004989^(5/11) 4334944709941203 a001 9227465/3571*(1/2+1/2*5^(1/2))^25 4334944709941203 a001 9227465/3571*3461452808002^(5/12) 4334944709941203 a001 9227465/3571*28143753123^(1/2) 4334944709941203 a001 9227465/3571*228826127^(5/8) 4334944709941203 a001 1836311903/3571*12752043^(7/17) 4334944709941204 a001 591286729879/3571*4870847^(1/16) 4334944709941205 a001 701408733/3571*12752043^(8/17) 4334944709941205 a001 3524578/3571*7881196^(9/11) 4334944709941206 a001 433494437/3571*12752043^(1/2) 4334944709941207 a001 267914296/3571*12752043^(9/17) 4334944709941207 a001 14930352/3571*12752043^(12/17) 4334944709941208 a001 102334155/3571*12752043^(10/17) 4334944709941209 a001 39088169/3571*12752043^(11/17) 4334944709941215 a001 225851433717/3571*4870847^(1/8) 4334944709941227 a001 86267571272/3571*4870847^(3/16) 4334944709941236 a001 1597/7881196*(1/2+1/2*5^(1/2))^59 4334944709941238 a001 32951280099/3571*4870847^(1/4) 4334944709941250 a001 12586269025/3571*4870847^(5/16) 4334944709941261 a001 4807526976/3571*4870847^(3/8) 4334944709941262 a001 3524578/3571*141422324^(9/13) 4334944709941262 a001 3524578/3571*2537720636^(3/5) 4334944709941262 a001 3524578/3571*45537549124^(9/17) 4334944709941262 a001 3524578/3571*817138163596^(9/19) 4334944709941262 a001 3524578/3571*14662949395604^(3/7) 4334944709941262 a001 3524578/3571*(1/2+1/2*5^(1/2))^27 4334944709941262 a001 3524578/3571*192900153618^(1/2) 4334944709941262 a001 3524578/3571*10749957122^(9/16) 4334944709941262 a001 3524578/3571*599074578^(9/14) 4334944709941265 a001 3524578/3571*33385282^(3/4) 4334944709941272 a001 1836311903/3571*4870847^(7/16) 4334944709941276 a001 591286729879/3571*1860498^(1/15) 4334944709941284 a001 701408733/3571*4870847^(1/2) 4334944709941295 a001 267914296/3571*4870847^(9/16) 4334944709941307 a001 102334155/3571*4870847^(5/8) 4334944709941314 a001 1597*4870847^(13/16) 4334944709941317 a001 39088169/3571*4870847^(11/16) 4334944709941318 a001 365435296162/3571*1860498^(1/10) 4334944709941326 a001 14930352/3571*4870847^(3/4) 4334944709941349 a001 944284907616763/2178309 4334944709941359 a001 225851433717/3571*1860498^(2/15) 4334944709941401 a001 139583862445/3571*1860498^(1/6) 4334944709941443 a001 86267571272/3571*1860498^(1/5) 4334944709941526 a001 32951280099/3571*1860498^(4/15) 4334944709941568 a001 20365011074/3571*1860498^(3/10) 4334944709941610 a001 12586269025/3571*1860498^(1/3) 4334944709941644 a001 1597/3010349*14662949395604^(19/21) 4334944709941644 a001 1597/3010349*(1/2+1/2*5^(1/2))^57 4334944709941671 a001 1346269/3571*(1/2+1/2*5^(1/2))^29 4334944709941671 a001 1346269/3571*1322157322203^(1/2) 4334944709941693 a001 4807526976/3571*1860498^(2/5) 4334944709941777 a001 1836311903/3571*1860498^(7/15) 4334944709941806 a001 591286729879/3571*710647^(1/14) 4334944709941819 a001 1134903170/3571*1860498^(1/2) 4334944709941860 a001 701408733/3571*1860498^(8/15) 4334944709941944 a001 267914296/3571*1860498^(3/5) 4334944709942027 a001 102334155/3571*1860498^(2/3) 4334944709942069 a001 63245986/3571*1860498^(7/10) 4334944709942110 a001 39088169/3571*1860498^(11/15) 4334944709942179 a001 2178309/3571*1860498^(14/15) 4334944709942190 a001 14930352/3571*1860498^(4/5) 4334944709942246 a001 9227465/3571*1860498^(5/6) 4334944709942251 a001 1597*1860498^(13/15) 4334944709942389 a001 3524578/3571*1860498^(9/10) 4334944709942418 a001 360684739646049/832040 4334944709942419 a001 225851433717/3571*710647^(1/7) 4334944709943032 a001 86267571272/3571*710647^(3/14) 4334944709943338 a001 53316291173/3571*710647^(1/4) 4334944709943645 a001 32951280099/3571*710647^(2/7) 4334944709944258 a001 12586269025/3571*710647^(5/14) 4334944709944444 a001 1597/1149851*(1/2+1/2*5^(1/2))^55 4334944709944444 a001 1597/1149851*3461452808002^(11/12) 4334944709944471 a001 514229/3571*(1/2+1/2*5^(1/2))^31 4334944709944471 a001 514229/3571*9062201101803^(1/2) 4334944709944871 a001 4807526976/3571*710647^(3/7) 4334944709945484 a001 1836311903/3571*710647^(1/2) 4334944709945718 a001 591286729879/3571*271443^(1/13) 4334944709946097 a001 701408733/3571*710647^(4/7) 4334944709946711 a001 267914296/3571*710647^(9/14) 4334944709947324 a001 102334155/3571*710647^(5/7) 4334944709947630 a001 63245986/3571*710647^(3/4) 4334944709947936 a001 39088169/3571*710647^(11/14) 4334944709948546 a001 14930352/3571*710647^(6/7) 4334944709949136 a001 1597*710647^(13/14) 4334944709949750 a001 137769311321384/317811 4334944709950244 a001 225851433717/3571*271443^(2/13) 4334944709954769 a001 86267571272/3571*271443^(3/13) 4334944709957995 a001 956722026041/3571*103682^(1/24) 4334944709959295 a001 32951280099/3571*271443^(4/13) 4334944709963638 a001 1597/439204*(1/2+1/2*5^(1/2))^53 4334944709963665 a001 196418/3571*141422324^(11/13) 4334944709963665 a001 196418/3571*2537720636^(11/15) 4334944709963665 a001 196418/3571*45537549124^(11/17) 4334944709963665 a001 196418/3571*312119004989^(3/5) 4334944709963665 a001 196418/3571*817138163596^(11/19) 4334944709963665 a001 196418/3571*14662949395604^(11/21) 4334944709963665 a001 196418/3571*(1/2+1/2*5^(1/2))^33 4334944709963665 a001 196418/3571*192900153618^(11/18) 4334944709963665 a001 196418/3571*10749957122^(11/16) 4334944709963665 a001 196418/3571*1568397607^(3/4) 4334944709963665 a001 196418/3571*599074578^(11/14) 4334944709963668 a001 196418/3571*33385282^(11/12) 4334944709963821 a001 12586269025/3571*271443^(5/13) 4334944709968346 a001 4807526976/3571*271443^(6/13) 4334944709970609 a001 2971215073/3571*271443^(1/2) 4334944709972872 a001 1836311903/3571*271443^(7/13) 4334944709974797 a001 591286729879/3571*103682^(1/12) 4334944709977398 a001 701408733/3571*271443^(8/13) 4334944709981923 a001 267914296/3571*271443^(9/13) 4334944709986449 a001 102334155/3571*271443^(10/13) 4334944709990974 a001 39088169/3571*271443^(11/13) 4334944709991599 a001 365435296162/3571*103682^(1/8) 4334944709995497 a001 14930352/3571*271443^(12/13) 4334944710008401 a001 225851433717/3571*103682^(1/6) 4334944710025203 a001 139583862445/3571*103682^(5/24) 4334944710042006 a001 86267571272/3571*103682^(1/4) 4334944710058808 a001 53316291173/3571*103682^(7/24) 4334944710066826 a001 956722026041/3571*39603^(1/22) 4334944710075610 a001 32951280099/3571*103682^(1/3) 4334944710092412 a001 20365011074/3571*103682^(3/8) 4334944710095194 a001 1597/167761*817138163596^(17/19) 4334944710095194 a001 1597/167761*14662949395604^(17/21) 4334944710095194 a001 1597/167761*(1/2+1/2*5^(1/2))^51 4334944710095194 a001 1597/167761*192900153618^(17/18) 4334944710095221 a001 75025/3571*2537720636^(7/9) 4334944710095221 a001 75025/3571*17393796001^(5/7) 4334944710095221 a001 75025/3571*312119004989^(7/11) 4334944710095221 a001 75025/3571*14662949395604^(5/9) 4334944710095221 a001 75025/3571*(1/2+1/2*5^(1/2))^35 4334944710095221 a001 75025/3571*505019158607^(5/8) 4334944710095221 a001 75025/3571*28143753123^(7/10) 4334944710095221 a001 75025/3571*599074578^(5/6) 4334944710095221 a001 75025/3571*228826127^(7/8) 4334944710109214 a001 12586269025/3571*103682^(5/12) 4334944710126016 a001 7778742049/3571*103682^(11/24) 4334944710142819 a001 4807526976/3571*103682^(1/2) 4334944710159621 a001 2971215073/3571*103682^(13/24) 4334944710176423 a001 1836311903/3571*103682^(7/12) 4334944710192459 a001 591286729879/3571*39603^(1/11) 4334944710193225 a001 1134903170/3571*103682^(5/8) 4334944710210027 a001 701408733/3571*103682^(2/3) 4334944710226829 a001 433494437/3571*103682^(17/24) 4334944710243632 a001 267914296/3571*103682^(3/4) 4334944710260434 a001 165580141/3571*103682^(19/24) 4334944710277236 a001 102334155/3571*103682^(5/6) 4334944710294038 a001 63245986/3571*103682^(7/8) 4334944710310840 a001 39088169/3571*103682^(11/12) 4334944710318092 a001 365435296162/3571*39603^(3/22) 4334944710327644 a001 24157817/3571*103682^(23/24) 4334944710344418 a001 20100271632925/46368 4334944710443726 a001 225851433717/3571*39603^(2/11) 4334944710569359 a001 139583862445/3571*39603^(5/22) 4334944710694992 a001 86267571272/3571*39603^(3/11) 4334944710820625 a001 53316291173/3571*39603^(7/22) 4334944710888406 a001 956722026041/3571*15127^(1/20) 4334944710946259 a001 32951280099/3571*39603^(4/11) 4334944710977619 a001 591286729879/24476*2207^(3/8) 4334944710996894 a001 1597/64079*14662949395604^(7/9) 4334944710996894 a001 1597/64079*(1/2+1/2*5^(1/2))^49 4334944710996894 a001 1597/64079*505019158607^(7/8) 4334944710996921 a001 28657/3571*(1/2+1/2*5^(1/2))^37 4334944711071892 a001 20365011074/3571*39603^(9/22) 4334944711197525 a001 12586269025/3571*39603^(5/11) 4334944711323159 a001 7778742049/3571*39603^(1/2) 4334944711448792 a001 4807526976/3571*39603^(6/11) 4334944711574425 a001 2971215073/3571*39603^(13/22) 4334944711700058 a001 1836311903/3571*39603^(7/11) 4334944711825692 a001 1134903170/3571*39603^(15/22) 4334944711835620 a001 591286729879/3571*15127^(1/10) 4334944711951325 a001 701408733/3571*39603^(8/11) 4334944712076958 a001 433494437/3571*39603^(17/22) 4334944712202592 a001 267914296/3571*39603^(9/11) 4334944712328225 a001 165580141/3571*39603^(19/22) 4334944712453858 a001 102334155/3571*39603^(10/11) 4334944712579492 a001 63245986/3571*39603^(21/22) 4334944712705098 a001 7677620580672/17711 4334944712782833 a001 365435296162/3571*15127^(3/20) 4334944713730047 a001 225851433717/3571*15127^(1/5) 4334944714677261 a001 139583862445/3571*15127^(1/4) 4334944715624474 a001 86267571272/3571*15127^(3/10) 4334944716571688 a001 53316291173/3571*15127^(7/20) 4334944717154858 a001 956722026041/3571*5778^(1/18) 4334944717177234 a001 1597/24476*(1/2+1/2*5^(1/2))^47 4334944717177261 a001 10946/3571*2537720636^(13/15) 4334944717177261 a001 10946/3571*45537549124^(13/17) 4334944717177261 a001 10946/3571*14662949395604^(13/21) 4334944717177261 a001 10946/3571*(1/2+1/2*5^(1/2))^39 4334944717177261 a001 10946/3571*192900153618^(13/18) 4334944717177261 a001 10946/3571*73681302247^(3/4) 4334944717177261 a001 10946/3571*10749957122^(13/16) 4334944717177261 a001 10946/3571*599074578^(13/14) 4334944717518902 a001 32951280099/3571*15127^(2/5) 4334944718466115 a001 20365011074/3571*15127^(9/20) 4334944719413329 a001 12586269025/3571*15127^(1/2) 4334944719498653 r002 13th iterates of z^2 + 4334944720360543 a001 7778742049/3571*15127^(11/20) 4334944721307756 a001 4807526976/3571*15127^(3/5) 4334944722254970 a001 2971215073/3571*15127^(13/20) 4334944723202184 a001 1836311903/3571*15127^(7/10) 4334944723871086 a001 1/322*(1/2*5^(1/2)+1/2)^29*3^(3/17) 4334944724149397 a001 1134903170/3571*15127^(3/4) 4334944724368524 a001 591286729879/3571*5778^(1/9) 4334944725096611 a001 701408733/3571*15127^(4/5) 4334944726043825 a001 433494437/3571*15127^(17/20) 4334944726991038 a001 267914296/3571*15127^(9/10) 4334944727938252 a001 165580141/3571*15127^(19/20) 4334944728084104 m001 sinh(1)^2/GAMMA(1/6)/ln(sqrt(Pi)) 4334944728885439 a001 2932590109091/6765 4334944731582189 a001 365435296162/3571*5778^(1/6) 4334944738282175 r005 Im(z^2+c),c=-17/74+46/55*I,n=17 4334944738795855 a001 225851433717/3571*5778^(2/9) 4334944740420872 a001 32264490531/2161*2207^(7/16) 4334944740766354 a001 10983760033/1926*2207^(9/16) 4334944746009520 a001 139583862445/3571*5778^(5/18) 4334944753223186 a001 86267571272/3571*5778^(1/3) 4334944753338303 a001 225851433717/9349*2207^(3/8) 4334944756601213 a001 591286729879/39603*2207^(7/16) 4334944758334473 a007 Real Root Of -449*x^4+488*x^3+95*x^2+891*x+424 4334944758961893 a001 774004377960/51841*2207^(7/16) 4334944759306312 a001 4052739537881/271443*2207^(7/16) 4334944759356562 a001 1515744265389/101521*2207^(7/16) 4334944759387618 a001 3278735159921/219602*2207^(7/16) 4334944759519174 a001 2504730781961/167761*2207^(7/16) 4334944759537918 a001 1597/9349*45537549124^(15/17) 4334944759537918 a001 1597/9349*312119004989^(9/11) 4334944759537918 a001 1597/9349*14662949395604^(5/7) 4334944759537918 a001 1597/9349*(1/2+1/2*5^(1/2))^45 4334944759537918 a001 1597/9349*192900153618^(5/6) 4334944759537918 a001 1597/9349*28143753123^(9/10) 4334944759537918 a001 1597/9349*10749957122^(15/16) 4334944759537944 a001 4181/3571*(1/2+1/2*5^(1/2))^41 4334944760420873 a001 956722026041/64079*2207^(7/16) 4334944760436851 a001 53316291173/3571*5778^(7/18) 4334944765564787 a001 956722026041/3571*2207^(1/16) 4334944766601214 a001 182717648081/12238*2207^(7/16) 4334944766737700 r005 Re(z^2+c),c=-11/24+29/62*I,n=16 4334944767650517 a001 32951280099/3571*5778^(4/9) 4334944769019060 a007 Real Root Of -895*x^4-924*x^3+836*x^2+680*x-345 4334944770070684 r009 Re(z^3+c),c=-5/11+25/47*I,n=24 4334944774864183 a001 20365011074/3571*5778^(1/2) 4334944782077848 a001 12586269025/3571*5778^(5/9) 4334944782105059 m001 1/sin(Pi/5)/exp(GAMMA(7/12))*sinh(1) 4334944782244492 m005 (1/2*Pi+3/11)/(1/10*Pi+1/9) 4334944782830383 m004 -1+Sqrt[5]*Pi-2*Sqrt[5]*Pi*Cos[Sqrt[5]*Pi] 4334944786769493 a001 4052739537881/15127*843^(1/14) 4334944786919472 a007 Real Root Of 33*x^4+169*x^3+40*x^2-200*x+495 4334944787163818 a001 225851433717/2207*843^(3/14) 4334944789291514 a001 7778742049/3571*5778^(11/18) 4334944796044467 a001 139583862445/15127*2207^(1/2) 4334944796389949 a001 10182505537/2889*2207^(5/8) 4334944796505180 a001 4807526976/3571*5778^(2/3) 4334944796900493 g007 14*Zeta(3)-Psi(13/10)-Psi(2,5/9)-Psi(2,3/7) 4334944798253481 r002 44th iterates of z^2 + 4334944802949834 a001 3536736619241/13201*843^(1/14) 4334944803718845 a001 2971215073/3571*5778^(13/18) 4334944808961898 a001 139583862445/9349*2207^(7/16) 4334944810932511 a001 1836311903/3571*5778^(7/9) 4334944812224808 a001 365435296162/39603*2207^(1/2) 4334944812949835 a001 3278735159921/12238*843^(1/14) 4334944814585488 a001 956722026041/103682*2207^(1/2) 4334944814929907 a001 2504730781961/271443*2207^(1/2) 4334944814980157 a001 6557470319842/710647*2207^(1/2) 4334944814992019 a001 10610209857723/1149851*2207^(1/2) 4334944815011213 a001 4052739537881/439204*2207^(1/2) 4334944815142769 a001 140728068720/15251*2207^(1/2) 4334944816044469 a001 591286729879/64079*2207^(1/2) 4334944818146177 a001 1134903170/3571*5778^(5/6) 4334944821188382 a001 591286729879/3571*2207^(1/8) 4334944822224809 a001 7787980473/844*2207^(1/2) 4334944825359842 a001 701408733/3571*5778^(8/9) 4334944828269843 r002 3th iterates of z^2 + 4334944832573508 a001 433494437/3571*5778^(17/18) 4334944835998433 a001 1836311903/1364*1364^(4/5) 4334944839787151 a001 1120149746601/2584 4334944844132679 a007 Real Root Of -351*x^4-6*x^3-751*x^2+835*x+515 4334944846165306 m001 GAMMA(17/24)^2/MinimumGamma/ln(sinh(1))^2 4334944849496954 m001 (GAMMA(23/24)-KhinchinLevy)/(Otter-Sierpinski) 4334944851448334 m001 (ZetaP(2)-ZetaP(4))/(BesselJ(1,1)-Mills) 4334944851668062 a001 86267571272/15127*2207^(9/16) 4334944852013544 a001 12586269025/5778*2207^(11/16) 4334944855310520 a001 2504730781961/9349*843^(1/14) 4334944863895938 a003 sin(Pi*1/93)-sin(Pi*13/84) 4334944864585494 a001 86267571272/9349*2207^(1/2) 4334944867848404 a001 75283811239/13201*2207^(9/16) 4334944869373112 r009 Re(z^3+c),c=-25/46+19/30*I,n=15 4334944870209084 a001 591286729879/103682*2207^(9/16) 4334944870553503 a001 516002918640/90481*2207^(9/16) 4334944870603753 a001 4052739537881/710647*2207^(9/16) 4334944870611084 a001 3536736619241/620166*2207^(9/16) 4334944870615615 a001 6557470319842/1149851*2207^(9/16) 4334944870634809 a001 2504730781961/439204*2207^(9/16) 4334944870766365 a001 956722026041/167761*2207^(9/16) 4334944871668064 a001 365435296162/64079*2207^(9/16) 4334944875744378 m001 1-3^(1/3)+ZetaQ(3) 4334944876811978 a001 365435296162/3571*2207^(3/16) 4334944877848405 a001 139583862445/24476*2207^(9/16) 4334944880989194 a001 39603/377*89^(6/19) 4334944890994065 r002 58th iterates of z^2 + 4334944894373905 m001 Catalan*FeigenbaumDelta/exp(GAMMA(1/12)) 4334944897891932 r005 Re(z^2+c),c=27/94+26/47*I,n=20 4334944898814876 r005 Im(z^2+c),c=19/66+17/46*I,n=32 4334944907291659 a001 53316291173/15127*2207^(5/8) 4334944907637141 a001 7778742049/5778*2207^(3/4) 4334944915940470 l006 ln(53/4045) 4334944920209090 a001 53316291173/9349*2207^(9/16) 4334944923472000 a001 139583862445/39603*2207^(5/8) 4334944925832680 a001 182717648081/51841*2207^(5/8) 4334944926177099 a001 956722026041/271443*2207^(5/8) 4334944926227349 a001 2504730781961/710647*2207^(5/8) 4334944926234680 a001 3278735159921/930249*2207^(5/8) 4334944926236411 a001 10610209857723/3010349*2207^(5/8) 4334944926239211 a001 4052739537881/1149851*2207^(5/8) 4334944926258405 a001 387002188980/109801*2207^(5/8) 4334944926389961 a001 591286729879/167761*2207^(5/8) 4334944927291661 a001 225851433717/64079*2207^(5/8) 4334944932435575 a001 225851433717/3571*2207^(1/4) 4334944933472002 a001 21566892818/6119*2207^(5/8) 4334944946538942 a003 cos(Pi*23/71)-sin(Pi*49/120) 4334944946876468 m001 (5^(1/2)-GAMMA(17/24))/Ei(1,1) 4334944948975563 m001 (exp(1)+Grothendieck)/(Kac+ThueMorse) 4334944951128167 a003 sin(Pi*18/119)*sin(Pi*44/111) 4334944952043399 m006 (3/4*Pi-1/2)/(4/5*exp(2*Pi)-1/5) 4334944955725721 l006 ln(4843/7471) 4334944956020134 m001 exp(1/Pi)*MertensB3+FeigenbaumAlpha 4334944957710706 r005 Re(z^2+c),c=-39/64+3/55*I,n=17 4334944962915256 a001 32951280099/15127*2207^(11/16) 4334944963260738 a001 267084832/321*2207^(13/16) 4334944975832687 a001 32951280099/9349*2207^(5/8) 4334944976368263 m008 (3/5*Pi^4-1/6)/(2/3*Pi-3/4) 4334944979095598 a001 86267571272/39603*2207^(11/16) 4334944981456278 a001 225851433717/103682*2207^(11/16) 4334944981800696 a001 591286729879/271443*2207^(11/16) 4334944981850946 a001 1548008755920/710647*2207^(11/16) 4334944981858278 a001 4052739537881/1860498*2207^(11/16) 4334944981859347 a001 2178309*2207^(11/16) 4334944981860008 a001 6557470319842/3010349*2207^(11/16) 4334944981862809 a001 2504730781961/1149851*2207^(11/16) 4334944981882003 a001 956722026041/439204*2207^(11/16) 4334944982013559 a001 365435296162/167761*2207^(11/16) 4334944982915258 a001 139583862445/64079*2207^(11/16) 4334944988059172 a001 139583862445/3571*2207^(5/16) 4334944989095599 a001 53316291173/24476*2207^(11/16) 4334944991331255 a001 2971215073/1364*1364^(11/15) 4334944993061530 a007 Real Root Of -155*x^4-755*x^3-438*x^2-229*x+470 4334944993542301 a007 Real Root Of 880*x^4-508*x^3+694*x^2-171*x-277 4334945001824268 s001 sum(exp(-2*Pi/5)^n*A134785[n],n=1..infinity) 4334945001824268 s002 sum(A134785[n]/(exp(2/5*pi*n)),n=1..infinity) 4334945009233818 l006 ln(6117/6388) 4334945011249568 a007 Real Root Of -17*x^4-753*x^3-687*x^2+388*x-401 4334945018077451 r002 34th iterates of z^2 + 4334945018538853 a001 20365011074/15127*2207^(3/4) 4334945018884335 a001 2971215073/5778*2207^(7/8) 4334945020563657 r005 Im(z^2+c),c=15/52+19/51*I,n=13 4334945022145841 a007 Real Root Of -138*x^4-475*x^3+333*x^2-947*x-325 4334945031456285 a001 20365011074/9349*2207^(11/16) 4334945034719196 a001 53316291173/39603*2207^(3/4) 4334945037079876 a001 139583862445/103682*2207^(3/4) 4334945037424294 a001 365435296162/271443*2207^(3/4) 4334945037474544 a001 956722026041/710647*2207^(3/4) 4334945037481876 a001 2504730781961/1860498*2207^(3/4) 4334945037482945 a001 6557470319842/4870847*2207^(3/4) 4334945037483198 a001 10610209857723/7881196*2207^(3/4) 4334945037483606 a001 1346269*2207^(3/4) 4334945037486407 a001 1548008755920/1149851*2207^(3/4) 4334945037505600 a001 591286729879/439204*2207^(3/4) 4334945037572471 r005 Im(z^2+c),c=7/90+17/36*I,n=6 4334945037637157 a001 225851433717/167761*2207^(3/4) 4334945038538856 a001 86267571272/64079*2207^(3/4) 4334945039183288 m001 Psi(2,1/3)*AlladiGrinstead+BesselI(0,1) 4334945043682770 a001 86267571272/3571*2207^(3/8) 4334945044719197 a001 32951280099/24476*2207^(3/4) 4334945049882385 a001 1597/3571*(1/2+1/2*5^(1/2))^43 4334945050530761 g006 Psi(1,1/8)-Psi(1,4/5)-Psi(1,3/4)-Psi(1,1/4) 4334945053259090 a005 (1/sin(63/157*Pi))^30 4334945070728067 r009 Im(z^3+c),c=-59/110+7/20*I,n=30 4334945074162452 a001 12586269025/15127*2207^(13/16) 4334945074507934 a001 1836311903/5778*2207^(15/16) 4334945074635825 r009 Re(z^3+c),c=-55/118+9/58*I,n=57 4334945087079884 a001 12586269025/9349*2207^(3/4) 4334945090342794 a001 10983760033/13201*2207^(13/16) 4334945092703474 a001 43133785636/51841*2207^(13/16) 4334945093047893 a001 75283811239/90481*2207^(13/16) 4334945093098143 a001 591286729879/710647*2207^(13/16) 4334945093105474 a001 832040*2207^(13/16) 4334945093106544 a001 4052739537881/4870847*2207^(13/16) 4334945093106700 a001 3536736619241/4250681*2207^(13/16) 4334945093106796 a001 3278735159921/3940598*2207^(13/16) 4334945093107205 a001 2504730781961/3010349*2207^(13/16) 4334945093110005 a001 956722026041/1149851*2207^(13/16) 4334945093129199 a001 182717648081/219602*2207^(13/16) 4334945093260755 a001 139583862445/167761*2207^(13/16) 4334945094162455 a001 53316291173/64079*2207^(13/16) 4334945098413166 r005 Im(z^2+c),c=-7/90+23/39*I,n=35 4334945099306369 a001 53316291173/3571*2207^(7/16) 4334945100342796 a001 10182505537/12238*2207^(13/16) 4334945101418852 r009 Im(z^3+c),c=-29/62+22/59*I,n=26 4334945107643317 v002 sum(1/(5^n+(10*n^2-19*n+47)),n=1..infinity) 4334945111581583 a001 956722026041/5778*843^(1/7) 4334945119362114 r005 Im(z^2+c),c=-39/106+30/47*I,n=47 4334945129786051 a001 7778742049/15127*2207^(7/8) 4334945130131712 a001 427859084344/987 4334945140988177 r005 Re(z^2+c),c=15/98+24/53*I,n=18 4334945142703483 a001 7778742049/9349*2207^(13/16) 4334945143855890 a007 Real Root Of 93*x^4+306*x^3-639*x^2-815*x+561 4334945145654993 a001 956722026041/3571*843^(1/14) 4334945145966394 a001 20365011074/39603*2207^(7/8) 4334945146664083 a001 1201881744/341*1364^(2/3) 4334945148327074 a001 53316291173/103682*2207^(7/8) 4334945148671492 a001 139583862445/271443*2207^(7/8) 4334945148721742 a001 365435296162/710647*2207^(7/8) 4334945148729074 a001 956722026041/1860498*2207^(7/8) 4334945148730143 a001 2504730781961/4870847*2207^(7/8) 4334945148730299 a001 6557470319842/12752043*2207^(7/8) 4334945148730336 a001 10610209857723/20633239*2207^(7/8) 4334945148730396 a001 4052739537881/7881196*2207^(7/8) 4334945148730804 a001 1548008755920/3010349*2207^(7/8) 4334945148733605 a001 514229*2207^(7/8) 4334945148752799 a001 225851433717/439204*2207^(7/8) 4334945148884355 a001 86267571272/167761*2207^(7/8) 4334945149786054 a001 32951280099/64079*2207^(7/8) 4334945152269469 r005 Re(z^2+c),c=-25/42+5/21*I,n=28 4334945154929968 a001 32951280099/3571*2207^(1/2) 4334945155966395 a001 12586269025/24476*2207^(7/8) 4334945159184642 m001 (Gompertz-Paris)/(Pi^(1/2)-GolombDickman) 4334945159857123 r009 Im(z^3+c),c=-15/34+17/42*I,n=23 4334945163946574 a001 24476/233*2178309^(13/51) 4334945167255963 m001 (Psi(1,1/3)+ln(gamma))/(GAMMA(23/24)+Salem) 4334945169728823 r005 Re(z^2+c),c=-19/29+3/28*I,n=27 4334945181771883 m001 (Landau-ZetaP(2))/(Backhouse+Cahen) 4334945185409651 a001 686789568/2161*2207^(15/16) 4334945191525937 r005 Im(z^2+c),c=-65/102+12/35*I,n=5 4334945197315646 a007 Real Root Of -550*x^4+760*x^3+790*x^2+766*x-523 4334945198327083 a001 4807526976/9349*2207^(7/8) 4334945201589994 a001 12586269025/39603*2207^(15/16) 4334945203950674 a001 32951280099/103682*2207^(15/16) 4334945204295092 a001 86267571272/271443*2207^(15/16) 4334945204345342 a001 317811*2207^(15/16) 4334945204352674 a001 591286729879/1860498*2207^(15/16) 4334945204353743 a001 1548008755920/4870847*2207^(15/16) 4334945204353900 a001 4052739537881/12752043*2207^(15/16) 4334945204353922 a001 1515744265389/4769326*2207^(15/16) 4334945204353936 a001 6557470319842/20633239*2207^(15/16) 4334945204353996 a001 2504730781961/7881196*2207^(15/16) 4334945204354405 a001 956722026041/3010349*2207^(15/16) 4334945204357205 a001 365435296162/1149851*2207^(15/16) 4334945204376399 a001 139583862445/439204*2207^(15/16) 4334945204507955 a001 53316291173/167761*2207^(15/16) 4334945205409654 a001 20365011074/64079*2207^(15/16) 4334945210553568 a001 20365011074/3571*2207^(9/16) 4334945211589996 a001 7778742049/24476*2207^(15/16) 4334945215937312 m001 (exp(1)+Salem)/(Sarnak+ZetaP(3)) 4334945218006537 r005 Re(z^2+c),c=-11/18+12/65*I,n=57 4334945220497527 m001 (Salem-Totient)/(AlladiGrinstead-KhinchinLevy) 4334945222483301 a001 2504730781961/15127*843^(1/7) 4334945222877627 a001 139583862445/2207*843^(2/7) 4334945238307306 a001 139583862445/843*322^(1/6) 4334945238663644 a001 6557470319842/39603*843^(1/7) 4334945241033434 a001 142619698430/329 4334945242483305 a001 10610209857723/64079*843^(1/7) 4334945248663646 a001 4052739537881/24476*843^(1/7) 4334945251200215 r005 Re(z^2+c),c=-27/40+4/19*I,n=32 4334945251507696 a007 Real Root Of 208*x^4+962*x^3+368*x^2+432*x-128 4334945253294877 a007 Real Root Of 264*x^4+992*x^3-791*x^2-727*x-704 4334945253950684 a001 2971215073/9349*2207^(15/16) 4334945255929923 r001 23i'th iterates of 2*x^2-1 of 4334945257213779 a001 427859096887/987 4334945259918946 a001 427859097154/987 4334945259969604 a001 142619699053/329 4334945259977710 a001 2139295485799/987*8^(1/3) 4334945259977710 a001 2/987*(1/2+1/2*5^(1/2))^59 4334945259979736 a001 427859097160/987 4334945260131712 a001 427859097175/987 4334945261033434 a001 142619699088/329 4334945263571135 r005 Re(z^2+c),c=-51/82+1/18*I,n=25 4334945266177169 a001 12586269025/3571*2207^(5/8) 4334945267213779 a001 427859097874/987 4334945288009178 r005 Re(z^2+c),c=-41/66+1/52*I,n=51 4334945291024335 a001 1548008755920/9349*843^(1/7) 4334945294877411 m001 (Kolakoski-RenyiParking)/(Artin-Backhouse) 4334945301996917 a001 7778742049/1364*1364^(3/5) 4334945305687899 m001 (gamma(1)+ThueMorse)/(ZetaP(4)+ZetaQ(4)) 4334945306414193 m005 (1/2*Zeta(3)+1/5)/(25/22+7/22*5^(1/2)) 4334945314406433 r005 Im(z^2+c),c=-12/23+31/64*I,n=23 4334945321011384 r002 39th iterates of z^2 + 4334945321800771 a001 7778742049/3571*2207^(11/16) 4334945322762672 r005 Re(z^2+c),c=-61/90+11/58*I,n=43 4334945323531349 r009 Im(z^3+c),c=-5/11+21/52*I,n=16 4334945337397701 a007 Real Root Of -174*x^4-572*x^3+756*x^2-347*x-862 4334945339144207 r005 Re(z^2+c),c=3/23+18/31*I,n=50 4334945343476010 r005 Re(z^2+c),c=-5/8+5/158*I,n=28 4334945346729649 r001 41i'th iterates of 2*x^2-1 of 4334945356149507 r005 Re(z^2+c),c=-37/60+17/54*I,n=59 4334945358745605 r005 Re(z^2+c),c=-2/9+29/46*I,n=59 4334945377424373 a001 4807526976/3571*2207^(3/4) 4334945382053748 r009 Im(z^3+c),c=-17/106+28/55*I,n=7 4334945387304224 m001 Pi/(FeigenbaumB-OneNinth) 4334945404728885 r005 Re(z^2+c),c=-73/118+1/43*I,n=31 4334945410797313 m001 (Chi(1)-Zeta(3))/(-DuboisRaymond+MertensB2) 4334945411617208 r002 15th iterates of z^2 + 4334945412059363 m001 (-RenyiParking+Robbin)/(2^(1/2)+LambertW(1)) 4334945423278647 r005 Im(z^2+c),c=-1/52+11/19*I,n=56 4334945425998937 m005 (1/2*2^(1/2)-7/9)/(6/11*Pi-1/12) 4334945428323862 r002 11th iterates of z^2 + 4334945428709699 a007 Real Root Of -627*x^4+423*x^3+998*x^2+464*x-401 4334945433047976 a001 2971215073/3571*2207^(13/16) 4334945456334167 r002 57th iterates of z^2 + 4334945457329756 a001 1144206275/124*1364^(8/15) 4334945462898762 m001 (Shi(1)-Si(Pi))/(LambertW(1)+BesselI(0,1)) 4334945464652633 r005 Re(z^2+c),c=-17/28+13/60*I,n=58 4334945469450118 m001 (Catalan-ln(3))/(Cahen+FeigenbaumMu) 4334945471528477 a001 182717648081/682*521^(1/13) 4334945479602877 m009 (5/12*Pi^2+1/5)/(2/5*Pi^2+6) 4334945487963855 g007 Psi(2,2/9)+Psi(2,6/7)+Psi(2,1/5)-Psi(2,3/4) 4334945488671580 a001 1836311903/3571*2207^(7/8) 4334945492602533 m001 (MertensB1+Stephens)/(Artin-LambertW(1)) 4334945494619952 r005 Re(z^2+c),c=-25/34+37/121*I,n=4 4334945508927518 a007 Real Root Of -x^4+107*x^3-382*x^2-65*x-903 4334945519423970 r005 Im(z^2+c),c=1/14+31/58*I,n=35 4334945523612383 l006 ln(2357/3636) 4334945544295185 a001 1134903170/3571*2207^(15/16) 4334945544850014 s002 sum(A248370[n]/((2^n-1)/n),n=1..infinity) 4334945547295425 a001 591286729879/5778*843^(3/14) 4334945552164529 r002 8th iterates of z^2 + 4334945552887728 r005 Im(z^2+c),c=-51/106+12/19*I,n=24 4334945556166777 k001 Champernowne real with 61*n+372 4334945581368838 a001 591286729879/3571*843^(1/7) 4334945586457073 q001 717/1654 4334945591556582 r005 Re(z^2+c),c=-7/5+1/77*I,n=6 4334945598463879 a001 701408733/521*521^(12/13) 4334945599918946 a001 427859130712/987 4334945609317340 r005 Im(z^2+c),c=7/78+20/39*I,n=43 4334945612662600 a001 10182505537/682*1364^(7/15) 4334945615796506 a007 Real Root Of -5*x^4-43*x^3-913*x^2+357*x+323 4334945619038267 m006 (4/5*ln(Pi)-1/2)/(3*Pi+1/6) 4334945641700399 m001 (GAMMA(2/3)-FeigenbaumC)/(Kac+Weierstrass) 4334945643320437 r002 63th iterates of z^2 + 4334945658197154 a001 1548008755920/15127*843^(3/14) 4334945658591480 a001 86267571272/2207*843^(5/14) 4334945662543893 m001 CopelandErdos-Zeta(1,-1)-GaussAGM 4334945665807790 r002 4th iterates of z^2 + 4334945673342611 r005 Re(z^2+c),c=-71/122+25/59*I,n=42 4334945674377499 a001 4052739537881/39603*843^(3/14) 4334945676738179 a001 225749145909/2206*843^(3/14) 4334945678197160 a001 6557470319842/64079*843^(3/14) 4334945680278861 r005 Im(z^2+c),c=27/98+11/32*I,n=30 4334945683666561 m001 Trott/FransenRobinson^2/exp(gamma)^2 4334945684377502 a001 2504730781961/24476*843^(3/14) 4334945685820963 r005 Im(z^2+c),c=5/26+25/58*I,n=40 4334945689283435 b008 CosIntegral[-1/3+5*E] 4334945696077723 r002 13th iterates of z^2 + 4334945698490801 a003 cos(Pi*27/86)-cos(Pi*49/106) 4334945720378623 a007 Real Root Of 676*x^4+116*x^3+530*x^2-277*x+11 4334945726738195 a001 956722026041/9349*843^(3/14) 4334945731726074 a007 Real Root Of -639*x^4-796*x^3-949*x^2+482*x+345 4334945751254430 r005 Re(z^2+c),c=-27/44+7/39*I,n=21 4334945755066375 m001 PrimesInBinary^MertensB1*Paris^MertensB1 4334945761038385 m001 (Totient+Tribonacci)/(Bloch+MertensB1) 4334945767124085 r005 Re(z^2+c),c=37/114+31/56*I,n=39 4334945767995450 a001 32951280099/1364*1364^(2/5) 4334945772528351 m005 (1/3*2^(1/2)-1/12)/(3/8*Zeta(3)+4/9) 4334945782901954 a007 Real Root Of 395*x^4-362*x^3-644*x^2-873*x+515 4334945789467527 r002 58th iterates of z^2 + 4334945810013593 a001 610/2207*312119004989^(4/5) 4334945810013593 a001 610/2207*(1/2+1/2*5^(1/2))^44 4334945810013593 a001 610/2207*23725150497407^(11/16) 4334945810013593 a001 610/2207*73681302247^(11/13) 4334945810013593 a001 610/2207*10749957122^(11/12) 4334945810013593 a001 610/2207*4106118243^(22/23) 4334945810014662 a001 987/1364*2537720636^(14/15) 4334945810014662 a001 987/1364*17393796001^(6/7) 4334945810014662 a001 987/1364*45537549124^(14/17) 4334945810014662 a001 987/1364*817138163596^(14/19) 4334945810014662 a001 987/1364*14662949395604^(2/3) 4334945810014662 a001 987/1364*(1/2+1/2*5^(1/2))^42 4334945810014662 a001 987/1364*505019158607^(3/4) 4334945810014662 a001 987/1364*192900153618^(7/9) 4334945810014662 a001 987/1364*10749957122^(7/8) 4334945810014662 a001 987/1364*4106118243^(21/23) 4334945810014662 a001 987/1364*1568397607^(21/22) 4334945815268076 r009 Im(z^3+c),c=-7/74+41/54*I,n=61 4334945823574452 r009 Im(z^3+c),c=-35/78+13/33*I,n=50 4334945825539604 r002 20th iterates of z^2 + 4334945827762656 m001 Sierpinski*RenyiParking^2/exp(BesselK(1,1))^2 4334945833034311 h001 (10/11*exp(2)+2/7)/(3/10*exp(1)+4/5) 4334945842979014 r005 Im(z^2+c),c=31/110+12/35*I,n=62 4334945860749350 a007 Real Root Of -743*x^4+259*x^3+820*x^2+763*x+224 4334945886917540 r005 Re(z^2+c),c=-19/31+6/19*I,n=54 4334945908064069 r009 Im(z^3+c),c=-47/118+27/64*I,n=21 4334945913856630 a003 sin(Pi*3/25)/sin(Pi*31/96) 4334945923328306 a001 53316291173/1364*1364^(1/3) 4334945938276784 r002 47th iterates of z^2 + 4334945947721874 p001 sum(1/(428*n+231)/(256^n),n=0..infinity) 4334945960707465 r005 Im(z^2+c),c=17/74+17/43*I,n=50 4334945968443787 a007 Real Root Of 807*x^4-593*x^3+792*x^2+216*x-132 4334945974142529 r002 30th iterates of z^2 + 4334945976493393 m005 (1/3*Zeta(3)-2/5)/(3/7*exp(1)+5/12) 4334945983009310 a001 182717648081/2889*843^(2/7) 4334945990929394 a007 Real Root Of 98*x^4-948*x^3-584*x^2-361*x+340 4334945994940510 a007 Real Root Of 157*x^4-526*x^3-349*x^2-561*x-226 4334945999403431 r005 Re(z^2+c),c=-11/18+38/125*I,n=47 4334946017082727 a001 365435296162/3571*843^(3/14) 4334946019891038 a007 Real Root Of -236*x^4-749*x^3+998*x^2-657*x+722 4334946025743336 m001 1/ln(GAMMA(5/12))^2*GAMMA(1/24)/GAMMA(7/24)^2 4334946025778841 r005 Re(z^2+c),c=-75/122+4/23*I,n=39 4334946030717916 r002 23th iterates of z^2 + 4334946043218864 r002 20th iterates of z^2 + 4334946063506474 r005 Im(z^2+c),c=-21/110+3/52*I,n=10 4334946072207532 m005 (1/2*3^(1/2)-5/7)/(6/11*Catalan-4) 4334946078661167 a001 21566892818/341*1364^(4/15) 4334946088015244 a007 Real Root Of -201*x^4-853*x^3-44*x^2-339*x+850 4334946089781803 m005 (1/2*3^(1/2)+1/5)/(7/8*Catalan-5/9) 4334946093911050 a001 956722026041/15127*843^(2/7) 4334946094305376 a001 53316291173/2207*843^(3/7) 4334946110091397 a001 2504730781961/39603*843^(2/7) 4334946112452077 a001 3278735159921/51841*843^(2/7) 4334946113009358 a001 10610209857723/167761*843^(2/7) 4334946113911058 a001 4052739537881/64079*843^(2/7) 4334946114352869 a007 Real Root Of 845*x^4-410*x^3-964*x^2-958*x+600 4334946120091401 a001 387002188980/6119*843^(2/7) 4334946123454247 l006 ln(4585/7073) 4334946132070039 r005 Re(z^2+c),c=-38/63*I,n=17 4334946153931180 r005 Im(z^2+c),c=-5/86+32/59*I,n=14 4334946162452098 a001 591286729879/9349*843^(2/7) 4334946166038002 m001 1/exp(Zeta(7))^2/BesselK(0,1)^2/sqrt(3) 4334946219099179 r005 Re(z^2+c),c=-39/70+3/52*I,n=7 4334946233994034 a001 139583862445/1364*1364^(1/5) 4334946304904932 g001 GAMMA(7/12,77/111) 4334946308992364 m001 exp(1)^(BesselI(0,2)*Cahen) 4334946308992364 m001 exp(BesselI(0,2)*Cahen) 4334946316483143 m006 (1/4*Pi+2)/(1/6*ln(Pi)-5/6) 4334946344151703 m001 1/BesselJ(0,1)/LaplaceLimit^2*exp(GAMMA(1/3)) 4334946345899364 a007 Real Root Of 548*x^4+713*x^3-316*x^2-939*x+389 4334946359943510 m001 (2^(1/3)-arctan(1/2))/(-DuboisRaymond+Trott) 4334946360050093 a001 692290933700/1597 4334946375163575 r005 Im(z^2+c),c=7/118+9/17*I,n=39 4334946377169881 r005 Im(z^2+c),c=1/12+31/59*I,n=32 4334946378257113 m001 gamma(3)^BesselI(1,2)/GAMMA(3/4) 4334946378824910 a001 377/5778*18^(19/29) 4334946380047868 a001 66978574/341*3571^(16/17) 4334946389326907 a001 225851433717/1364*1364^(2/15) 4334946400044418 a001 433494437/1364*3571^(15/17) 4334946400690935 m004 -6+(6*Log[Sqrt[5]*Pi])/(Sqrt[5]*Pi) 4334946408093026 r002 57th iterates of z^2 + 4334946414223388 r009 Im(z^3+c),c=-5/14+34/57*I,n=13 4334946418723239 a001 75283811239/1926*843^(5/14) 4334946420040967 a001 701408733/1364*3571^(14/17) 4334946420938770 m005 (1/2*5^(1/2)-11/12)/(2/9*Catalan-1/4) 4334946435662464 a007 Real Root Of 461*x^4-163*x^3-854*x^2-821*x-34 4334946440037516 a001 567451585/682*3571^(13/17) 4334946449639371 m001 ln(Riemann2ndZero)^2*Khintchine^2/cosh(1) 4334946452796659 a001 225851433717/3571*843^(2/7) 4334946454463828 r005 Im(z^2+c),c=1/16+19/36*I,n=43 4334946459579738 a001 521/21*1346269^(15/41) 4334946460034066 a001 1836311903/1364*3571^(12/17) 4334946479338856 a007 Real Root Of 587*x^4+300*x^3+924*x^2-44*x-189 4334946480030616 a001 2971215073/1364*3571^(11/17) 4334946481282335 r002 46th iterates of z^2 + 4334946500027165 a001 1201881744/341*3571^(10/17) 4334946501986528 a007 Real Root Of 143*x^4+555*x^3-19*x^2+978*x-690 4334946507750050 m001 BesselK(1,1)^(Shi(1)/Paris) 4334946514638856 r009 Im(z^3+c),c=-11/32+9/14*I,n=43 4334946520023715 a001 7778742049/1364*3571^(9/17) 4334946529624990 a001 591286729879/15127*843^(5/14) 4334946530019316 a001 32951280099/2207*843^(1/2) 4334946538239430 m001 (PlouffeB+Trott2nd)/(Zeta(5)+Champernowne) 4334946540020265 a001 1144206275/124*3571^(8/17) 4334946543062211 r002 16th iterates of z^2 + 4334946544659785 a001 182717648081/682*1364^(1/15) 4334946545805338 a001 516002918640/13201*843^(5/14) 4334946548166019 a001 4052739537881/103682*843^(5/14) 4334946548510438 a001 3536736619241/90481*843^(5/14) 4334946548723300 a001 6557470319842/167761*843^(5/14) 4334946549625000 a001 2504730781961/64079*843^(5/14) 4334946555805343 a001 956722026041/24476*843^(5/14) 4334946560016815 a001 10182505537/682*3571^(7/17) 4334946561064733 a003 cos(Pi*9/89)-sin(Pi*44/95) 4334946566316183 m001 1/Zeta(3)*ln(Lehmer)/Zeta(9)^2 4334946570145379 a001 305/2889*(1/2+1/2*5^(1/2))^46 4334946570145379 a001 305/2889*10749957122^(23/24) 4334946570146627 a001 646/341*2537720636^(8/9) 4334946570146627 a001 646/341*312119004989^(8/11) 4334946570146627 a001 646/341*(1/2+1/2*5^(1/2))^40 4334946570146627 a001 646/341*23725150497407^(5/8) 4334946570146627 a001 646/341*73681302247^(10/13) 4334946570146627 a001 646/341*28143753123^(4/5) 4334946570146627 a001 646/341*10749957122^(5/6) 4334946570146627 a001 646/341*4106118243^(20/23) 4334946570146627 a001 646/341*1568397607^(10/11) 4334946570146627 a001 646/341*599074578^(20/21) 4334946580013365 a001 32951280099/1364*3571^(6/17) 4334946585031470 m005 (1/6*gamma-2/3)/(Catalan+2/5) 4334946589170077 r009 Im(z^3+c),c=-11/30+50/51*I,n=2 4334946590701429 m001 BesselI(1,1)^BesselK(0,1)*Psi(2,1/3) 4334946598166045 a001 365435296162/9349*843^(5/14) 4334946600009916 a001 53316291173/1364*3571^(5/17) 4334946611306246 r009 Re(z^3+c),c=-19/52+3/62*I,n=7 4334946618876539 r005 Re(z^2+c),c=10/27+11/58*I,n=40 4334946620006466 a001 21566892818/341*3571^(4/17) 4334946620332171 r005 Re(z^2+c),c=-49/78+17/61*I,n=47 4334946625354282 a007 Real Root Of -208*x^4-776*x^3+712*x^2+569*x-676 4334946637182230 a001 2/98209*2584^(5/52) 4334946639734609 m005 (1/2*2^(1/2)+4/7)/(2/9*gamma+1/6) 4334946640003016 a001 139583862445/1364*3571^(3/17) 4334946650394642 a001 1812441194530/4181 4334946652630118 r009 Im(z^3+c),c=-41/106+19/44*I,n=13 4334946652840508 m002 -5+4/Pi^2+3*Csch[Pi] 4334946653006250 a001 9303105/124*9349^(18/19) 4334946655616607 a001 165580141/1364*9349^(17/19) 4334946658226963 a001 66978574/341*9349^(16/19) 4334946659999567 a001 225851433717/1364*3571^(2/17) 4334946660837320 a001 433494437/1364*9349^(15/19) 4334946663447676 a001 701408733/1364*9349^(14/19) 4334946666058033 a001 567451585/682*9349^(13/19) 4334946668668389 a001 1836311903/1364*9349^(12/19) 4334946671278746 a001 2971215073/1364*9349^(11/19) 4334946671481959 r009 Re(z^3+c),c=-47/98+25/53*I,n=7 4334946673889103 a001 1201881744/341*9349^(10/19) 4334946676499459 a001 7778742049/1364*9349^(9/19) 4334946679109816 a001 1144206275/124*9349^(8/19) 4334946679996117 a001 182717648081/682*3571^(1/17) 4334946681047134 a001 610/15127*45537549124^(16/17) 4334946681047134 a001 610/15127*14662949395604^(16/21) 4334946681047134 a001 610/15127*(1/2+1/2*5^(1/2))^48 4334946681047134 a001 610/15127*192900153618^(8/9) 4334946681047134 a001 610/15127*73681302247^(12/13) 4334946681048386 a001 615/124*817138163596^(2/3) 4334946681048386 a001 615/124*(1/2+1/2*5^(1/2))^38 4334946681048386 a001 615/124*10749957122^(19/24) 4334946681048386 a001 615/124*4106118243^(19/23) 4334946681048386 a001 615/124*1568397607^(19/22) 4334946681048386 a001 615/124*599074578^(19/21) 4334946681048386 a001 615/124*228826127^(19/20) 4334946681720172 a001 10182505537/682*9349^(7/19) 4334946684330529 a001 32951280099/1364*9349^(6/19) 4334946686940885 a001 53316291173/1364*9349^(5/19) 4334946689551242 a001 21566892818/341*9349^(4/19) 4334946690030067 m009 (3*Psi(1,1/3)+2/5)/(32*Catalan+4*Pi^2+2) 4334946690487804 r005 Re(z^2+c),c=-73/118+1/11*I,n=40 4334946692161598 a001 139583862445/1364*9349^(3/19) 4334946692755344 a001 182501255765/421 4334946693101171 a001 39088169/1364*24476^(20/21) 4334946693445746 a001 31622993/682*24476^(19/21) 4334946693790321 a001 9303105/124*24476^(6/7) 4334946694134896 a001 165580141/1364*24476^(17/21) 4334946694479470 a001 66978574/341*24476^(16/21) 4334946694771955 a001 225851433717/1364*9349^(2/19) 4334946694824045 a001 433494437/1364*24476^(5/7) 4334946695168620 a001 701408733/1364*24476^(2/3) 4334946695513195 a001 567451585/682*24476^(13/21) 4334946695857770 a001 1836311903/1364*24476^(4/7) 4334946696202345 a001 2971215073/1364*24476^(11/21) 4334946696466785 r009 Re(z^3+c),c=-53/102+14/51*I,n=21 4334946696546920 a001 1201881744/341*24476^(10/21) 4334946696891494 a001 7778742049/1364*24476^(3/7) 4334946697227482 a001 610/39603*312119004989^(10/11) 4334946697227482 a001 610/39603*(1/2+1/2*5^(1/2))^50 4334946697227482 a001 610/39603*3461452808002^(5/6) 4334946697228734 a001 17711/1364*141422324^(12/13) 4334946697228735 a001 17711/1364*2537720636^(4/5) 4334946697228735 a001 17711/1364*45537549124^(12/17) 4334946697228735 a001 17711/1364*14662949395604^(4/7) 4334946697228735 a001 17711/1364*(1/2+1/2*5^(1/2))^36 4334946697228735 a001 17711/1364*505019158607^(9/14) 4334946697228735 a001 17711/1364*192900153618^(2/3) 4334946697228735 a001 17711/1364*73681302247^(9/13) 4334946697228735 a001 17711/1364*10749957122^(3/4) 4334946697228735 a001 17711/1364*4106118243^(18/23) 4334946697228735 a001 17711/1364*1568397607^(9/11) 4334946697228735 a001 17711/1364*599074578^(6/7) 4334946697228735 a001 17711/1364*228826127^(9/10) 4334946697228735 a001 17711/1364*87403803^(18/19) 4334946697236069 a001 1144206275/124*24476^(8/21) 4334946697382312 a001 182717648081/682*9349^(1/19) 4334946697580644 a001 10182505537/682*24476^(1/3) 4334946697925219 a001 32951280099/1364*24476^(2/7) 4334946698269794 a001 53316291173/1364*24476^(5/21) 4334946698614369 a001 21566892818/341*24476^(4/21) 4334946698935687 a001 12422656755140/28657 4334946698947564 m005 (1/3*exp(1)-1/7)/(3/4*2^(1/2)+7/10) 4334946698958944 a001 139583862445/1364*24476^(1/7) 4334946698982837 a001 3732588/341*64079^(22/23) 4334946699028743 a001 24157817/1364*64079^(21/23) 4334946699074643 a001 39088169/1364*64079^(20/23) 4334946699120545 a001 31622993/682*64079^(19/23) 4334946699166446 a001 9303105/124*64079^(18/23) 4334946699212347 a001 165580141/1364*64079^(17/23) 4334946699258248 a001 66978574/341*64079^(16/23) 4334946699303518 a001 225851433717/1364*24476^(2/21) 4334946699304149 a001 433494437/1364*64079^(15/23) 4334946699350051 a001 701408733/1364*64079^(14/23) 4334946699395952 a001 567451585/682*64079^(13/23) 4334946699441853 a001 1836311903/1364*64079^(12/23) 4334946699487754 a001 2971215073/1364*64079^(11/23) 4334946699533656 a001 1201881744/341*64079^(10/23) 4334946699579557 a001 7778742049/1364*64079^(9/23) 4334946699588163 a001 305/51841*(1/2+1/2*5^(1/2))^52 4334946699588163 a001 305/51841*23725150497407^(13/16) 4334946699588163 a001 305/51841*505019158607^(13/14) 4334946699589416 a001 11592/341*45537549124^(2/3) 4334946699589416 a001 11592/341*(1/2+1/2*5^(1/2))^34 4334946699589416 a001 11592/341*10749957122^(17/24) 4334946699589416 a001 11592/341*4106118243^(17/23) 4334946699589416 a001 11592/341*1568397607^(17/22) 4334946699589416 a001 11592/341*599074578^(17/21) 4334946699589416 a001 11592/341*228826127^(17/20) 4334946699589416 a001 11592/341*87403803^(17/19) 4334946699589419 a001 11592/341*33385282^(17/18) 4334946699625458 a001 1144206275/124*64079^(8/23) 4334946699648093 a001 182717648081/682*24476^(1/21) 4334946699671359 a001 10182505537/682*64079^(7/23) 4334946699717261 a001 32951280099/1364*64079^(6/23) 4334946699763162 a001 53316291173/1364*64079^(5/23) 4334946699809063 a001 21566892818/341*64079^(4/23) 4334946699837387 a001 6504587523106/15005 4334946699854964 a001 139583862445/1364*64079^(3/23) 4334946699869445 a001 39088169/1364*167761^(4/5) 4334946699900251 a001 433494437/1364*167761^(3/5) 4334946699900866 a001 225851433717/1364*64079^(2/23) 4334946699931057 a001 1201881744/341*167761^(2/5) 4334946699932582 a001 610/271443*14662949395604^(6/7) 4334946699932582 a001 610/271443*(1/2+1/2*5^(1/2))^54 4334946699933834 a001 121393/1364*(1/2+1/2*5^(1/2))^32 4334946699933834 a001 121393/1364*23725150497407^(1/2) 4334946699933834 a001 121393/1364*505019158607^(4/7) 4334946699933834 a001 121393/1364*73681302247^(8/13) 4334946699933834 a001 121393/1364*10749957122^(2/3) 4334946699933834 a001 121393/1364*4106118243^(16/23) 4334946699933834 a001 121393/1364*1568397607^(8/11) 4334946699933834 a001 121393/1364*599074578^(16/21) 4334946699933834 a001 121393/1364*228826127^(4/5) 4334946699933835 a001 121393/1364*87403803^(16/19) 4334946699933838 a001 121393/1364*33385282^(8/9) 4334946699933859 a001 121393/1364*12752043^(16/17) 4334946699946767 a001 182717648081/682*64079^(1/23) 4334946699961862 a001 53316291173/1364*167761^(1/5) 4334946699968943 a001 42573078045725/98209 4334946699972666 a001 5702887/1364*439204^(8/9) 4334946699975191 a001 24157817/1364*439204^(7/9) 4334946699977686 a001 9303105/124*439204^(2/3) 4334946699980183 a001 433494437/1364*439204^(5/9) 4334946699982680 a001 1836311903/1364*439204^(4/9) 4334946699982832 a001 610/710647*14662949395604^(8/9) 4334946699982832 a001 610/710647*(1/2+1/2*5^(1/2))^56 4334946699984021 a001 317811/1364*7881196^(10/11) 4334946699984076 a001 317811/1364*20633239^(6/7) 4334946699984084 a001 317811/1364*141422324^(10/13) 4334946699984084 a001 317811/1364*2537720636^(2/3) 4334946699984084 a001 317811/1364*45537549124^(10/17) 4334946699984084 a001 317811/1364*312119004989^(6/11) 4334946699984084 a001 317811/1364*14662949395604^(10/21) 4334946699984084 a001 317811/1364*(1/2+1/2*5^(1/2))^30 4334946699984084 a001 317811/1364*192900153618^(5/9) 4334946699984084 a001 317811/1364*28143753123^(3/5) 4334946699984084 a001 317811/1364*10749957122^(5/8) 4334946699984084 a001 317811/1364*4106118243^(15/23) 4334946699984084 a001 317811/1364*1568397607^(15/22) 4334946699984084 a001 317811/1364*599074578^(5/7) 4334946699984084 a001 317811/1364*228826127^(3/4) 4334946699984085 a001 317811/1364*87403803^(15/19) 4334946699984088 a001 317811/1364*33385282^(5/6) 4334946699984108 a001 317811/1364*12752043^(15/17) 4334946699984256 a001 317811/1364*4870847^(15/16) 4334946699985177 a001 7778742049/1364*439204^(1/3) 4334946699987674 a001 32951280099/1364*439204^(2/9) 4334946699988137 a001 222915530658820/514229 4334946699990163 a001 305/930249*(1/2+1/2*5^(1/2))^58 4334946699990171 a001 139583862445/1364*439204^(1/9) 4334946699990937 a001 583600435885010/1346269 4334946699991233 a001 610/4870847*14662949395604^(20/21) 4334946699991233 a001 610/4870847*(1/2+1/2*5^(1/2))^60 4334946699991346 a001 763942888498105/1762289 4334946699991389 a001 610/12752043*(1/2+1/2*5^(1/2))^62 4334946699991406 a001 61539336847748/141961 4334946699991408 a001 610*20633239^(4/5) 4334946699991412 a001 305/16692641*(1/2+1/2*5^(1/2))^64 4334946699991416 a001 610*17393796001^(4/7) 4334946699991416 a001 610*14662949395604^(4/9) 4334946699991416 a001 610*(1/2+1/2*5^(1/2))^28 4334946699991416 a001 610*505019158607^(1/2) 4334946699991416 a001 610*73681302247^(7/13) 4334946699991416 a001 610*10749957122^(7/12) 4334946699991416 a001 610*4106118243^(14/23) 4334946699991416 a001 610*1568397607^(7/11) 4334946699991416 a001 610*599074578^(2/3) 4334946699991416 a001 610*228826127^(7/10) 4334946699991416 a001 610*87403803^(14/19) 4334946699991419 a001 610*33385282^(7/9) 4334946699991420 a001 1078704668868505/2488392 4334946699991426 a001 610/20633239*(1/2+1/2*5^(1/2))^63 4334946699991438 a001 610*12752043^(14/17) 4334946699991442 a001 2472171118107410/5702887 4334946699991486 a001 305/3940598*(1/2+1/2*5^(1/2))^61 4334946699991576 a001 610*4870847^(7/8) 4334946699991598 a001 314761780370400/726103 4334946699991894 a001 610/3010349*(1/2+1/2*5^(1/2))^59 4334946699992485 a001 2178309/1364*141422324^(2/3) 4334946699992485 a001 2178309/1364*(1/2+1/2*5^(1/2))^26 4334946699992485 a001 2178309/1364*73681302247^(1/2) 4334946699992485 a001 2178309/1364*10749957122^(13/24) 4334946699992485 a001 2178309/1364*4106118243^(13/23) 4334946699992485 a001 2178309/1364*1568397607^(13/22) 4334946699992485 a001 2178309/1364*599074578^(13/21) 4334946699992485 a001 2178309/1364*228826127^(13/20) 4334946699992486 a001 2178309/1364*87403803^(13/19) 4334946699992488 a001 2178309/1364*33385282^(13/18) 4334946699992506 a001 2178309/1364*12752043^(13/17) 4334946699992585 a001 610*1860498^(14/15) 4334946699992591 a001 5702887/1364*7881196^(8/11) 4334946699992618 a001 3732588/341*7881196^(2/3) 4334946699992625 a001 24157817/1364*7881196^(7/11) 4334946699992630 a001 9303105/124*7881196^(6/11) 4334946699992634 a001 2178309/1364*4870847^(13/16) 4334946699992636 a001 433494437/1364*7881196^(5/11) 4334946699992641 a001 5702887/1364*141422324^(8/13) 4334946699992641 a001 5702887/1364*2537720636^(8/15) 4334946699992641 a001 5702887/1364*45537549124^(8/17) 4334946699992641 a001 5702887/1364*14662949395604^(8/21) 4334946699992641 a001 5702887/1364*(1/2+1/2*5^(1/2))^24 4334946699992641 a001 5702887/1364*192900153618^(4/9) 4334946699992641 a001 5702887/1364*73681302247^(6/13) 4334946699992641 a001 5702887/1364*10749957122^(1/2) 4334946699992641 a001 5702887/1364*4106118243^(12/23) 4334946699992641 a001 5702887/1364*1568397607^(6/11) 4334946699992641 a001 5702887/1364*599074578^(4/7) 4334946699992642 a001 5702887/1364*228826127^(3/5) 4334946699992642 a001 5702887/1364*87403803^(12/19) 4334946699992643 a001 1836311903/1364*7881196^(4/11) 4334946699992644 a001 5702887/1364*33385282^(2/3) 4334946699992645 a001 2971215073/1364*7881196^(1/3) 4334946699992649 a001 7778742049/1364*7881196^(3/11) 4334946699992655 a001 32951280099/1364*7881196^(2/11) 4334946699992660 a001 5702887/1364*12752043^(12/17) 4334946699992662 a001 39088169/1364*20633239^(4/7) 4334946699992662 a001 139583862445/1364*7881196^(1/11) 4334946699992663 a001 24157817/1364*20633239^(3/5) 4334946699992664 a001 433494437/1364*20633239^(3/7) 4334946699992664 a001 701408733/1364*20633239^(2/5) 4334946699992664 a001 3732588/341*312119004989^(2/5) 4334946699992664 a001 3732588/341*(1/2+1/2*5^(1/2))^22 4334946699992664 a001 3732588/341*10749957122^(11/24) 4334946699992664 a001 3732588/341*4106118243^(11/23) 4334946699992664 a001 3732588/341*1568397607^(1/2) 4334946699992664 a001 3732588/341*599074578^(11/21) 4334946699992664 a001 3732588/341*228826127^(11/20) 4334946699992665 a001 3732588/341*87403803^(11/19) 4334946699992665 a001 1201881744/341*20633239^(2/7) 4334946699992666 a001 10182505537/682*20633239^(1/5) 4334946699992667 a001 3732588/341*33385282^(11/18) 4334946699992667 a001 53316291173/1364*20633239^(1/7) 4334946699992668 a001 39088169/1364*2537720636^(4/9) 4334946699992668 a001 39088169/1364*(1/2+1/2*5^(1/2))^20 4334946699992668 a001 39088169/1364*23725150497407^(5/16) 4334946699992668 a001 39088169/1364*505019158607^(5/14) 4334946699992668 a001 39088169/1364*73681302247^(5/13) 4334946699992668 a001 39088169/1364*28143753123^(2/5) 4334946699992668 a001 39088169/1364*10749957122^(5/12) 4334946699992668 a001 39088169/1364*4106118243^(10/23) 4334946699992668 a001 39088169/1364*1568397607^(5/11) 4334946699992668 a001 39088169/1364*599074578^(10/21) 4334946699992668 a001 39088169/1364*228826127^(1/2) 4334946699992668 a001 39088169/1364*87403803^(10/19) 4334946699992668 a001 9303105/124*141422324^(6/13) 4334946699992668 a001 9303105/124*2537720636^(2/5) 4334946699992668 a001 9303105/124*45537549124^(6/17) 4334946699992668 a001 9303105/124*14662949395604^(2/7) 4334946699992668 a001 9303105/124*(1/2+1/2*5^(1/2))^18 4334946699992668 a001 9303105/124*192900153618^(1/3) 4334946699992668 a001 9303105/124*10749957122^(3/8) 4334946699992668 a001 9303105/124*4106118243^(9/23) 4334946699992668 a001 9303105/124*1568397607^(9/22) 4334946699992668 a001 433494437/1364*141422324^(5/13) 4334946699992668 a001 9303105/124*599074578^(3/7) 4334946699992668 a001 567451585/682*141422324^(1/3) 4334946699992668 a001 1836311903/1364*141422324^(4/13) 4334946699992668 a001 7778742049/1364*141422324^(3/13) 4334946699992668 a001 9303105/124*228826127^(9/20) 4334946699992668 a001 32951280099/1364*141422324^(2/13) 4334946699992668 a001 139583862445/1364*141422324^(1/13) 4334946699992668 a001 66978574/341*(1/2+1/2*5^(1/2))^16 4334946699992668 a001 66978574/341*23725150497407^(1/4) 4334946699992668 a001 66978574/341*73681302247^(4/13) 4334946699992668 a001 66978574/341*10749957122^(1/3) 4334946699992668 a001 66978574/341*4106118243^(8/23) 4334946699992668 a001 66978574/341*1568397607^(4/11) 4334946699992668 a001 66978574/341*599074578^(8/21) 4334946699992668 a001 701408733/1364*17393796001^(2/7) 4334946699992668 a001 701408733/1364*14662949395604^(2/9) 4334946699992668 a001 701408733/1364*(1/2+1/2*5^(1/2))^14 4334946699992668 a001 701408733/1364*10749957122^(7/24) 4334946699992668 a001 701408733/1364*4106118243^(7/23) 4334946699992668 a001 701408733/1364*1568397607^(7/22) 4334946699992668 a001 1836311903/1364*2537720636^(4/15) 4334946699992668 a001 1836311903/1364*45537549124^(4/17) 4334946699992668 a001 1836311903/1364*817138163596^(4/19) 4334946699992668 a001 1836311903/1364*14662949395604^(4/21) 4334946699992668 a001 1836311903/1364*(1/2+1/2*5^(1/2))^12 4334946699992668 a001 1836311903/1364*192900153618^(2/9) 4334946699992668 a001 1836311903/1364*73681302247^(3/13) 4334946699992668 a001 1836311903/1364*10749957122^(1/4) 4334946699992668 a001 1836311903/1364*4106118243^(6/23) 4334946699992668 a001 1201881744/341*2537720636^(2/9) 4334946699992668 a001 7778742049/1364*2537720636^(1/5) 4334946699992668 a001 32951280099/1364*2537720636^(2/15) 4334946699992668 a001 53316291173/1364*2537720636^(1/9) 4334946699992668 a001 139583862445/1364*2537720636^(1/15) 4334946699992668 a001 1201881744/341*312119004989^(2/11) 4334946699992668 a001 1201881744/341*(1/2+1/2*5^(1/2))^10 4334946699992668 a001 1201881744/341*28143753123^(1/5) 4334946699992668 a001 1201881744/341*10749957122^(5/24) 4334946699992668 a001 1144206275/124*(1/2+1/2*5^(1/2))^8 4334946699992668 a001 1144206275/124*23725150497407^(1/8) 4334946699992668 a001 1144206275/124*505019158607^(1/7) 4334946699992668 a001 1144206275/124*73681302247^(2/13) 4334946699992668 a001 32951280099/1364*45537549124^(2/17) 4334946699992668 a001 32951280099/1364*14662949395604^(2/21) 4334946699992668 a001 32951280099/1364*(1/2+1/2*5^(1/2))^6 4334946699992668 a001 21566892818/341*(1/2+1/2*5^(1/2))^4 4334946699992668 a001 21566892818/341*23725150497407^(1/16) 4334946699992668 a001 139583862445/1364*45537549124^(1/17) 4334946699992668 a001 21566892818/341*73681302247^(1/13) 4334946699992668 a001 225851433717/1364*(1/2+1/2*5^(1/2))^2 4334946699992668 a001 591286729879/1364 4334946699992668 a001 10182505537/682*17393796001^(1/7) 4334946699992668 a001 139583862445/1364*(1/2+1/2*5^(1/2))^3 4334946699992668 a001 139583862445/1364*192900153618^(1/18) 4334946699992668 a001 53316291173/1364*312119004989^(1/11) 4334946699992668 a001 53316291173/1364*(1/2+1/2*5^(1/2))^5 4334946699992668 a001 1144206275/124*10749957122^(1/6) 4334946699992668 a001 53316291173/1364*28143753123^(1/10) 4334946699992668 a001 225851433717/1364*10749957122^(1/24) 4334946699992668 a001 10182505537/682*14662949395604^(1/9) 4334946699992668 a001 10182505537/682*(1/2+1/2*5^(1/2))^7 4334946699992668 a001 139583862445/1364*10749957122^(1/16) 4334946699992668 a001 21566892818/341*10749957122^(1/12) 4334946699992668 a001 32951280099/1364*10749957122^(1/8) 4334946699992668 a001 225851433717/1364*4106118243^(1/23) 4334946699992668 a001 7778742049/1364*45537549124^(3/17) 4334946699992668 a001 7778742049/1364*14662949395604^(1/7) 4334946699992668 a001 7778742049/1364*(1/2+1/2*5^(1/2))^9 4334946699992668 a001 7778742049/1364*192900153618^(1/6) 4334946699992668 a001 1201881744/341*4106118243^(5/23) 4334946699992668 a001 7778742049/1364*10749957122^(3/16) 4334946699992668 a001 21566892818/341*4106118243^(2/23) 4334946699992668 a001 32951280099/1364*4106118243^(3/23) 4334946699992668 a001 1144206275/124*4106118243^(4/23) 4334946699992668 a001 225851433717/1364*1568397607^(1/22) 4334946699992668 a001 2971215073/1364*312119004989^(1/5) 4334946699992668 a001 2971215073/1364*(1/2+1/2*5^(1/2))^11 4334946699992668 a001 21566892818/341*1568397607^(1/11) 4334946699992668 a001 1836311903/1364*1568397607^(3/11) 4334946699992668 a001 32951280099/1364*1568397607^(3/22) 4334946699992668 a001 1144206275/124*1568397607^(2/11) 4334946699992668 a001 1201881744/341*1568397607^(5/22) 4334946699992668 a001 2971215073/1364*1568397607^(1/4) 4334946699992668 a001 225851433717/1364*599074578^(1/21) 4334946699992668 a001 567451585/682*(1/2+1/2*5^(1/2))^13 4334946699992668 a001 567451585/682*73681302247^(1/4) 4334946699992668 a001 139583862445/1364*599074578^(1/14) 4334946699992668 a001 21566892818/341*599074578^(2/21) 4334946699992668 a001 32951280099/1364*599074578^(1/7) 4334946699992668 a001 10182505537/682*599074578^(1/6) 4334946699992668 a001 701408733/1364*599074578^(1/3) 4334946699992668 a001 1144206275/124*599074578^(4/21) 4334946699992668 a001 7778742049/1364*599074578^(3/14) 4334946699992668 a001 1201881744/341*599074578^(5/21) 4334946699992668 a001 1836311903/1364*599074578^(2/7) 4334946699992668 a001 225851433717/1364*228826127^(1/20) 4334946699992668 a001 433494437/1364*2537720636^(1/3) 4334946699992668 a001 433494437/1364*45537549124^(5/17) 4334946699992668 a001 433494437/1364*312119004989^(3/11) 4334946699992668 a001 433494437/1364*14662949395604^(5/21) 4334946699992668 a001 433494437/1364*(1/2+1/2*5^(1/2))^15 4334946699992668 a001 433494437/1364*192900153618^(5/18) 4334946699992668 a001 433494437/1364*28143753123^(3/10) 4334946699992668 a001 433494437/1364*10749957122^(5/16) 4334946699992668 a001 21566892818/341*228826127^(1/10) 4334946699992668 a001 433494437/1364*599074578^(5/14) 4334946699992668 a001 53316291173/1364*228826127^(1/8) 4334946699992668 a001 32951280099/1364*228826127^(3/20) 4334946699992668 a001 1144206275/124*228826127^(1/5) 4334946699992668 a001 1201881744/341*228826127^(1/4) 4334946699992668 a001 66978574/341*228826127^(2/5) 4334946699992668 a001 1836311903/1364*228826127^(3/10) 4334946699992668 a001 701408733/1364*228826127^(7/20) 4334946699992668 a001 225851433717/1364*87403803^(1/19) 4334946699992668 a001 165580141/1364*45537549124^(1/3) 4334946699992668 a001 165580141/1364*(1/2+1/2*5^(1/2))^17 4334946699992668 a001 433494437/1364*228826127^(3/8) 4334946699992668 a001 21566892818/341*87403803^(2/19) 4334946699992668 a001 32951280099/1364*87403803^(3/19) 4334946699992668 a001 1144206275/124*87403803^(4/19) 4334946699992668 a001 1201881744/341*87403803^(5/19) 4334946699992668 a001 1836311903/1364*87403803^(6/19) 4334946699992668 a001 9303105/124*87403803^(9/19) 4334946699992668 a001 701408733/1364*87403803^(7/19) 4334946699992668 a001 225851433717/1364*33385282^(1/18) 4334946699992668 a001 31622993/682*817138163596^(1/3) 4334946699992668 a001 31622993/682*(1/2+1/2*5^(1/2))^19 4334946699992668 a001 66978574/341*87403803^(8/19) 4334946699992668 a001 139583862445/1364*33385282^(1/12) 4334946699992669 a001 21566892818/341*33385282^(1/9) 4334946699992669 a001 31622993/682*87403803^(1/2) 4334946699992669 a001 32951280099/1364*33385282^(1/6) 4334946699992669 a001 1144206275/124*33385282^(2/9) 4334946699992669 a001 7778742049/1364*33385282^(1/4) 4334946699992669 a001 1201881744/341*33385282^(5/18) 4334946699992669 a001 1836311903/1364*33385282^(1/3) 4334946699992669 a001 24157817/1364*141422324^(7/13) 4334946699992670 a001 24157817/1364*2537720636^(7/15) 4334946699992670 a001 24157817/1364*17393796001^(3/7) 4334946699992670 a001 24157817/1364*45537549124^(7/17) 4334946699992670 a001 24157817/1364*14662949395604^(1/3) 4334946699992670 a001 24157817/1364*(1/2+1/2*5^(1/2))^21 4334946699992670 a001 24157817/1364*192900153618^(7/18) 4334946699992670 a001 24157817/1364*10749957122^(7/16) 4334946699992670 a001 24157817/1364*599074578^(1/2) 4334946699992670 a001 701408733/1364*33385282^(7/18) 4334946699992670 a001 225851433717/1364*12752043^(1/17) 4334946699992670 a001 39088169/1364*33385282^(5/9) 4334946699992670 a001 433494437/1364*33385282^(5/12) 4334946699992670 a001 66978574/341*33385282^(4/9) 4334946699992670 a001 9303105/124*33385282^(1/2) 4334946699992671 a001 21566892818/341*12752043^(2/17) 4334946699992672 a001 24157817/1364*33385282^(7/12) 4334946699992673 a001 32951280099/1364*12752043^(3/17) 4334946699992674 a001 1144206275/124*12752043^(4/17) 4334946699992676 a001 1201881744/341*12752043^(5/17) 4334946699992678 a001 1836311903/1364*12752043^(6/17) 4334946699992678 a001 9227465/1364*(1/2+1/2*5^(1/2))^23 4334946699992678 a001 9227465/1364*4106118243^(1/2) 4334946699992679 a001 701408733/1364*12752043^(7/17) 4334946699992680 a001 225851433717/1364*4870847^(1/16) 4334946699992681 a001 66978574/341*12752043^(8/17) 4334946699992681 a001 3732588/341*12752043^(11/17) 4334946699992681 a001 165580141/1364*12752043^(1/2) 4334946699992682 a001 9303105/124*12752043^(9/17) 4334946699992683 a001 39088169/1364*12752043^(10/17) 4334946699992691 a001 21566892818/341*4870847^(1/8) 4334946699992702 a001 32951280099/1364*4870847^(3/16) 4334946699992714 a001 1144206275/124*4870847^(1/4) 4334946699992725 a001 1201881744/341*4870847^(5/16) 4334946699992731 a001 1762289/682*20633239^(5/7) 4334946699992737 a001 1836311903/1364*4870847^(3/8) 4334946699992738 a001 1762289/682*2537720636^(5/9) 4334946699992738 a001 1762289/682*312119004989^(5/11) 4334946699992738 a001 1762289/682*(1/2+1/2*5^(1/2))^25 4334946699992738 a001 1762289/682*3461452808002^(5/12) 4334946699992738 a001 1762289/682*28143753123^(1/2) 4334946699992738 a001 1762289/682*228826127^(5/8) 4334946699992748 a001 701408733/1364*4870847^(7/16) 4334946699992752 a001 225851433717/1364*1860498^(1/15) 4334946699992759 a001 66978574/341*4870847^(1/2) 4334946699992771 a001 9303105/124*4870847^(9/16) 4334946699992779 a001 5702887/1364*4870847^(3/4) 4334946699992782 a001 39088169/1364*4870847^(5/8) 4334946699992790 a001 3732588/341*4870847^(11/16) 4334946699992793 a001 139583862445/1364*1860498^(1/10) 4334946699992835 a001 21566892818/341*1860498^(2/15) 4334946699992877 a001 53316291173/1364*1860498^(1/6) 4334946699992919 a001 32951280099/1364*1860498^(1/5) 4334946699993002 a001 1144206275/124*1860498^(4/15) 4334946699993044 a001 7778742049/1364*1860498^(3/10) 4334946699993086 a001 1201881744/341*1860498^(1/3) 4334946699993089 a001 1346269/1364*7881196^(9/11) 4334946699993146 a001 1346269/1364*141422324^(9/13) 4334946699993146 a001 1346269/1364*2537720636^(3/5) 4334946699993146 a001 1346269/1364*45537549124^(9/17) 4334946699993146 a001 1346269/1364*817138163596^(9/19) 4334946699993146 a001 1346269/1364*14662949395604^(3/7) 4334946699993146 a001 1346269/1364*(1/2+1/2*5^(1/2))^27 4334946699993146 a001 1346269/1364*192900153618^(1/2) 4334946699993146 a001 1346269/1364*10749957122^(9/16) 4334946699993146 a001 1346269/1364*599074578^(9/14) 4334946699993149 a001 1346269/1364*33385282^(3/4) 4334946699993169 a001 1836311903/1364*1860498^(2/5) 4334946699993253 a001 701408733/1364*1860498^(7/15) 4334946699993281 a001 225851433717/1364*710647^(1/14) 4334946699993294 a001 433494437/1364*1860498^(1/2) 4334946699993336 a001 66978574/341*1860498^(8/15) 4334946699993419 a001 9303105/124*1860498^(3/5) 4334946699993502 a001 39088169/1364*1860498^(2/3) 4334946699993546 a001 24157817/1364*1860498^(7/10) 4334946699993571 a001 2178309/1364*1860498^(13/15) 4334946699993583 a001 3732588/341*1860498^(11/15) 4334946699993643 a001 5702887/1364*1860498^(4/5) 4334946699993782 a001 1762289/682*1860498^(5/6) 4334946699993894 a001 21566892818/341*710647^(1/7) 4334946699994274 a001 1346269/1364*1860498^(9/10) 4334946699994507 a001 32951280099/1364*710647^(3/14) 4334946699994694 a001 610/1149851*14662949395604^(19/21) 4334946699994694 a001 610/1149851*(1/2+1/2*5^(1/2))^57 4334946699994814 a001 10182505537/682*710647^(1/4) 4334946699995121 a001 1144206275/124*710647^(2/7) 4334946699995734 a001 1201881744/341*710647^(5/14) 4334946699995947 a001 514229/1364*(1/2+1/2*5^(1/2))^29 4334946699995947 a001 514229/1364*1322157322203^(1/2) 4334946699996347 a001 1836311903/1364*710647^(3/7) 4334946699996960 a001 701408733/1364*710647^(1/2) 4334946699997194 a001 225851433717/1364*271443^(1/13) 4334946699997573 a001 66978574/341*710647^(4/7) 4334946699998186 a001 9303105/124*710647^(9/14) 4334946699998799 a001 39088169/1364*710647^(5/7) 4334946699999107 a001 24157817/1364*710647^(3/4) 4334946699999409 a001 3732588/341*710647^(11/14) 4334946699999999 a001 5702887/1364*710647^(6/7) 4334946700000456 a001 2178309/1364*710647^(13/14) 4334946700001719 a001 21566892818/341*271443^(2/13) 4334946700006245 a001 32951280099/1364*271443^(3/13) 4334946700009470 a001 182717648081/682*103682^(1/24) 4334946700010771 a001 1144206275/124*271443^(4/13) 4334946700013888 a001 305/219602*(1/2+1/2*5^(1/2))^55 4334946700013888 a001 305/219602*3461452808002^(11/12) 4334946700015141 a001 98209/682*(1/2+1/2*5^(1/2))^31 4334946700015141 a001 98209/682*9062201101803^(1/2) 4334946700015296 a001 1201881744/341*271443^(5/13) 4334946700019822 a001 1836311903/1364*271443^(6/13) 4334946700022085 a001 567451585/682*271443^(1/2) 4334946700024348 a001 701408733/1364*271443^(7/13) 4334946700026272 a001 225851433717/1364*103682^(1/12) 4334946700028873 a001 66978574/341*271443^(8/13) 4334946700033399 a001 9303105/124*271443^(9/13) 4334946700037924 a001 39088169/1364*271443^(10/13) 4334946700042447 a001 3732588/341*271443^(11/13) 4334946700043075 a001 139583862445/1364*103682^(1/8) 4334946700046950 a001 5702887/1364*271443^(12/13) 4334946700050250 a001 52623218475920/121393 4334946700059877 a001 21566892818/341*103682^(1/6) 4334946700076679 a001 53316291173/1364*103682^(5/24) 4334946700093481 a001 32951280099/1364*103682^(1/4) 4334946700110283 a001 10182505537/682*103682^(7/24) 4334946700118301 a001 182717648081/682*39603^(1/22) 4334946700127086 a001 1144206275/124*103682^(1/3) 4334946700143888 a001 7778742049/1364*103682^(3/8) 4334946700145445 a001 610/167761*(1/2+1/2*5^(1/2))^53 4334946700146697 a001 75025/1364*141422324^(11/13) 4334946700146697 a001 75025/1364*2537720636^(11/15) 4334946700146697 a001 75025/1364*45537549124^(11/17) 4334946700146697 a001 75025/1364*312119004989^(3/5) 4334946700146697 a001 75025/1364*817138163596^(11/19) 4334946700146697 a001 75025/1364*14662949395604^(11/21) 4334946700146697 a001 75025/1364*(1/2+1/2*5^(1/2))^33 4334946700146697 a001 75025/1364*192900153618^(11/18) 4334946700146697 a001 75025/1364*10749957122^(11/16) 4334946700146697 a001 75025/1364*1568397607^(3/4) 4334946700146697 a001 75025/1364*599074578^(11/14) 4334946700146700 a001 75025/1364*33385282^(11/12) 4334946700160690 a001 1201881744/341*103682^(5/12) 4334946700177492 a001 2971215073/1364*103682^(11/24) 4334946700194294 a001 1836311903/1364*103682^(1/2) 4334946700211097 a001 567451585/682*103682^(13/24) 4334946700227899 a001 701408733/1364*103682^(7/12) 4334946700243935 a001 225851433717/1364*39603^(1/11) 4334946700244701 a001 433494437/1364*103682^(5/8) 4334946700261503 a001 66978574/341*103682^(2/3) 4334946700278305 a001 165580141/1364*103682^(17/24) 4334946700295107 a001 9303105/124*103682^(3/4) 4334946700311910 a001 31622993/682*103682^(19/24) 4334946700328711 a001 39088169/1364*103682^(5/6) 4334946700345516 a001 24157817/1364*103682^(7/8) 4334946700362312 a001 3732588/341*103682^(11/12) 4334946700369568 a001 139583862445/1364*39603^(3/22) 4334946700379129 a001 9227465/1364*103682^(23/24) 4334946700394668 a001 3350046810065/7728 4334946700495201 a001 21566892818/341*39603^(2/11) 4334946700620835 a001 53316291173/1364*39603^(5/22) 4334946700746468 a001 32951280099/1364*39603^(3/11) 4334946700872102 a001 10182505537/682*39603^(7/22) 4334946700939882 a001 182717648081/682*15127^(1/20) 4334946700997735 a001 1144206275/124*39603^(4/11) 4334946701047144 a001 610/64079*817138163596^(17/19) 4334946701047144 a001 610/64079*14662949395604^(17/21) 4334946701047144 a001 610/64079*(1/2+1/2*5^(1/2))^51 4334946701047144 a001 610/64079*192900153618^(17/18) 4334946701048397 a001 28657/1364*2537720636^(7/9) 4334946701048397 a001 28657/1364*17393796001^(5/7) 4334946701048397 a001 28657/1364*312119004989^(7/11) 4334946701048397 a001 28657/1364*14662949395604^(5/9) 4334946701048397 a001 28657/1364*(1/2+1/2*5^(1/2))^35 4334946701048397 a001 28657/1364*505019158607^(5/8) 4334946701048397 a001 28657/1364*28143753123^(7/10) 4334946701048397 a001 28657/1364*599074578^(5/6) 4334946701048397 a001 28657/1364*228826127^(7/8) 4334946701123368 a001 7778742049/1364*39603^(9/22) 4334946701249002 a001 1201881744/341*39603^(5/11) 4334946701374635 a001 2971215073/1364*39603^(1/2) 4334946701500268 a001 1836311903/1364*39603^(6/11) 4334946701625902 a001 567451585/682*39603^(13/22) 4334946701751535 a001 701408733/1364*39603^(7/11) 4334946701877168 a001 433494437/1364*39603^(15/22) 4334946701887096 a001 225851433717/1364*15127^(1/10) 4334946702002802 a001 66978574/341*39603^(8/11) 4334946702128435 a001 165580141/1364*39603^(17/22) 4334946702254068 a001 9303105/124*39603^(9/11) 4334946702379702 a001 31622993/682*39603^(19/22) 4334946702505334 a001 39088169/1364*39603^(10/11) 4334946702630970 a001 24157817/1364*39603^(21/22) 4334946702755349 a001 7677624105250/17711 4334946702834310 a001 139583862445/1364*15127^(3/20) 4334946703781525 a001 21566892818/341*15127^(1/5) 4334946704728739 a001 53316291173/1364*15127^(1/4) 4334946705675953 a001 32951280099/1364*15127^(3/10) 4334946706623167 a001 10182505537/682*15127^(7/20) 4334946707206337 a001 182717648081/682*5778^(1/18) 4334946707227488 a001 305/12238*14662949395604^(7/9) 4334946707227488 a001 305/12238*(1/2+1/2*5^(1/2))^49 4334946707227488 a001 305/12238*505019158607^(7/8) 4334946707228740 a001 5473/682*(1/2+1/2*5^(1/2))^37 4334946707570381 a001 1144206275/124*15127^(2/5) 4334946708517595 a001 7778742049/1364*15127^(9/20) 4334946709464809 a001 1201881744/341*15127^(1/2) 4334946710412023 a001 2971215073/1364*15127^(11/20) 4334946711359237 a001 1836311903/1364*15127^(3/5) 4334946712124662 r009 Re(z^3+c),c=-57/118+11/64*I,n=37 4334946712306451 a001 567451585/682*15127^(13/20) 4334946713253666 a001 701408733/1364*15127^(7/10) 4334946714200880 a001 433494437/1364*15127^(3/4) 4334946714420006 a001 225851433717/1364*5778^(1/9) 4334946715148094 a001 66978574/341*15127^(4/5) 4334946716095308 a001 165580141/1364*15127^(17/20) 4334946716918849 m001 (Zeta(1,2)+Landau)/(1-Psi(1,1/3)) 4334946717042522 a001 9303105/124*15127^(9/10) 4334946717989736 a001 31622993/682*15127^(19/20) 4334946718935698 a001 195506097024/451 4334946720617921 m001 (ln(5)+GAMMA(7/12))/(FeigenbaumD-Magata) 4334946721633675 a001 139583862445/1364*5778^(1/6) 4334946726559063 r005 Im(z^2+c),c=31/122+23/63*I,n=17 4334946727669141 h001 (1/8*exp(1)+1/2)/(6/11*exp(1)+5/11) 4334946728847344 a001 21566892818/341*5778^(2/9) 4334946736061012 a001 53316291173/1364*5778^(5/18) 4334946737821471 r005 Im(z^2+c),c=-7/40+29/48*I,n=30 4334946738828032 m001 (Ei(1,1)+MasserGramain)/(Pi-ln(Pi)) 4334946740080787 r002 57th iterates of z^2 + 4334946743274681 a001 32951280099/1364*5778^(1/3) 4334946745477279 r005 Im(z^2+c),c=-1/46+33/59*I,n=27 4334946749588191 a001 610/9349*(1/2+1/2*5^(1/2))^47 4334946749589443 a001 4181/1364*2537720636^(13/15) 4334946749589443 a001 4181/1364*45537549124^(13/17) 4334946749589443 a001 4181/1364*14662949395604^(13/21) 4334946749589443 a001 4181/1364*(1/2+1/2*5^(1/2))^39 4334946749589443 a001 4181/1364*192900153618^(13/18) 4334946749589443 a001 4181/1364*73681302247^(3/4) 4334946749589443 a001 4181/1364*10749957122^(13/16) 4334946749589443 a001 4181/1364*599074578^(13/14) 4334946750488350 a001 10182505537/682*5778^(7/18) 4334946755616288 a001 182717648081/682*2207^(1/16) 4334946757702019 a001 1144206275/124*5778^(4/9) 4334946758026592 l006 ln(2228/3437) 4334946764915688 a001 7778742049/1364*5778^(1/2) 4334946772129357 a001 1201881744/341*5778^(5/9) 4334946779343026 a001 2971215073/1364*5778^(11/18) 4334946785129740 r009 Im(z^3+c),c=-9/32+23/49*I,n=12 4334946786556695 a001 1836311903/1364*5778^(2/3) 4334946789289181 r002 45th iterates of z^2 + 4334946793770364 a001 567451585/682*5778^(13/18) 4334946800984033 a001 701408733/1364*5778^(7/9) 4334946801726428 m005 (11/12+5/12*5^(1/2))/(4*Catalan+3/5) 4334946808197702 a001 433494437/1364*5778^(5/6) 4334946811239909 a001 225851433717/1364*2207^(1/8) 4334946815263702 r002 34th iterates of z^2 + 4334946815411371 a001 66978574/341*5778^(8/9) 4334946822625040 a001 165580141/1364*5778^(17/18) 4334946826928106 a001 1134903170/521*521^(11/13) 4334946829837461 a001 560075130415/1292 4334946836006543 m005 (1/2*Catalan+7/10)/(7/9*gamma-2/11) 4334946854437212 a001 139583862445/5778*843^(3/7) 4334946861984432 r005 Re(z^2+c),c=13/30+11/49*I,n=8 4334946864511245 r005 Im(z^2+c),c=-2/7+11/19*I,n=6 4334946866863530 a001 139583862445/1364*2207^(3/16) 4334946870461246 r005 Re(z^2+c),c=-61/98+5/48*I,n=13 4334946871584949 m001 Lehmer/(BesselJ(0,1)+BesselK(1,1)) 4334946874389076 r005 Re(z^2+c),c=-5/42+23/29*I,n=60 4334946888510636 a001 139583862445/3571*843^(5/14) 4334946896900512 q001 3/69205 4334946900589922 s002 sum(A235865[n]/(n^3*2^n-1),n=1..infinity) 4334946901342184 m001 (exp(Pi)+exp(1/exp(1)))/LambertW(1) 4334946909104417 r002 54th iterates of z^2 + 4334946912121151 a001 46/141*7778742049^(6/19) 4334946920675107 m001 (Pi^(1/2)+Magata)/(2^(1/2)-Ei(1,1)) 4334946922487152 a001 21566892818/341*2207^(1/4) 4334946933057035 s002 sum(A128802[n]/(n^2*exp(n)+1),n=1..infinity) 4334946940319242 s002 sum(A128802[n]/(n^2*exp(n)-1),n=1..infinity) 4334946957628823 r005 Re(z^2+c),c=29/78+11/63*I,n=30 4334946959271715 r005 Re(z^2+c),c=-17/25+10/53*I,n=43 4334946964173164 a001 591286729879/2207*322^(1/12) 4334946964784932 l006 ln(6919/6922) 4334946965338974 a001 365435296162/15127*843^(3/7) 4334946965733300 a001 20365011074/2207*843^(4/7) 4334946969217102 r009 Im(z^3+c),c=-57/110+10/61*I,n=23 4334946969607153 m008 (4/5*Pi^4-1/2)/(3/5*Pi^5-5) 4334946970020766 r002 59th iterates of z^2 + 4334946970972988 a007 Real Root Of -524*x^4+888*x^3+9*x^2+927*x+491 4334946978110775 a001 53316291173/1364*2207^(5/16) 4334946980435217 m005 (1/2*exp(1)+7/9)/(2/9*exp(1)-1/9) 4334946981519324 a001 956722026041/39603*843^(3/7) 4334946983880005 a001 2504730781961/103682*843^(3/7) 4334946984224424 a001 6557470319842/271443*843^(3/7) 4334946984305730 a001 10610209857723/439204*843^(3/7) 4334946984437286 a001 4052739537881/167761*843^(3/7) 4334946985338986 a001 1548008755920/64079*843^(3/7) 4334946986673634 a007 Real Root Of -532*x^4+329*x^3+411*x^2+733*x-403 4334946991519330 a001 591286729879/24476*843^(3/7) 4334946997766968 a007 Real Root Of 302*x^4-958*x^3+621*x^2-818*x-560 4334947010311327 r002 16th iterates of z^2 + 4334947012880674 r005 Im(z^2+c),c=-133/106+1/52*I,n=49 4334947015863363 r005 Im(z^2+c),c=-59/110+1/13*I,n=34 4334947031526026 m001 1/TwinPrimes^2*Porter^2*ln(Catalan) 4334947033734399 a001 32951280099/1364*2207^(3/8) 4334947033880036 a001 225851433717/9349*843^(3/7) 4334947039932791 a001 610/3571*45537549124^(15/17) 4334947039932791 a001 610/3571*312119004989^(9/11) 4334947039932791 a001 610/3571*14662949395604^(5/7) 4334947039932791 a001 610/3571*(1/2+1/2*5^(1/2))^45 4334947039932791 a001 610/3571*192900153618^(5/6) 4334947039932791 a001 610/3571*28143753123^(9/10) 4334947039932791 a001 610/3571*10749957122^(15/16) 4334947039934017 a001 1597/1364*(1/2+1/2*5^(1/2))^41 4334947046902376 r005 Re(z^2+c),c=-33/50+7/59*I,n=27 4334947054401695 m005 (1/3*Catalan-3/7)/(1/10*3^(1/2)+1/9) 4334947059941528 r002 24th iterates of z^2 + 4334947066647326 r002 17th iterates of z^2 + 4334947081414519 a007 Real Root Of -270*x^4+399*x^3+527*x^2+406*x-298 4334947087164315 r005 Re(z^2+c),c=-11/18+47/124*I,n=55 4334947089358023 a001 10182505537/682*2207^(7/16) 4334947092959925 a007 Real Root Of 544*x^4-639*x^3+731*x^2-977*x+319 4334947101326615 m005 (7/44+1/4*5^(1/2))/(2/7*Zeta(3)-2) 4334947103368142 a007 Real Root Of 163*x^4+543*x^3-867*x^2-838*x-667 4334947108815952 r005 Re(z^2+c),c=-11/18+18/91*I,n=32 4334947127679299 a007 Real Root Of 282*x^4-896*x^3-855*x^2-409*x+401 4334947135706669 a001 182717648081/682*843^(1/14) 4334947136106276 r002 11th iterates of z^2 + 4334947138113100 s002 sum(A101072[n]/((3*n+1)!),n=1..infinity) 4334947144981648 a001 1144206275/124*2207^(1/2) 4334947156717596 p004 log(33773/21893) 4334947165300307 r005 Re(z^2+c),c=-9/10+40/171*I,n=42 4334947166816905 m001 (Zeta(5)-Ei(1))/(ln(2+3^(1/2))+LaplaceLimit) 4334947197226096 m002 5/(4*Pi^3)+4*ProductLog[Pi] 4334947200605274 a001 7778742049/1364*2207^(9/16) 4334947201228952 m003 (5*E^(-1/2-Sqrt[5]/2))/3+4*Csc[1/2+Sqrt[5]/2] 4334947216731258 r005 Re(z^2+c),c=-43/102+27/62*I,n=2 4334947221697740 m005 (1/6*exp(1)+3/5)/(1/2*Pi-4) 4334947230673564 r005 Re(z^2+c),c=-15/28+19/47*I,n=27 4334947240188393 r005 Im(z^2+c),c=-19/110+47/48*I,n=4 4334947243812137 r009 Im(z^3+c),c=-19/40+35/61*I,n=60 4334947249549144 r005 Re(z^2+c),c=-73/118+19/59*I,n=48 4334947256228900 a001 1201881744/341*2207^(5/8) 4334947259869965 s002 sum(A133135[n]/(n*exp(pi*n)-1),n=1..infinity) 4334947268145030 r005 Re(z^2+c),c=-35/58+13/54*I,n=47 4334947279249963 s002 sum(A019807[n]/(n*exp(pi*n)+1),n=1..infinity) 4334947290151228 a001 43133785636/2889*843^(1/2) 4334947294583009 r005 Im(z^2+c),c=-1/26+33/58*I,n=30 4334947308459128 q001 1522/3511 4334947311852528 a001 2971215073/1364*2207^(11/16) 4334947324224656 a001 86267571272/3571*843^(3/7) 4334947332115542 a007 Real Root Of -275*x^4-962*x^3+795*x^2-817*x+264 4334947332998990 m001 ln(FeigenbaumKappa)^2*LaplaceLimit/sqrt(2) 4334947348347969 b008 Sinh[Csch[8/5]] 4334947363064075 m001 (Mills-Tetranacci)/(exp(1/Pi)-FransenRobinson) 4334947367476155 a001 1836311903/1364*2207^(3/4) 4334947372241146 a007 Real Root Of -447*x^4+777*x^3-716*x^2-389*x+45 4334947385949972 r005 Im(z^2+c),c=-5/4+17/219*I,n=31 4334947387753014 a003 cos(Pi*9/83)-cos(Pi*33/100) 4334947401053002 a001 32264490531/2161*843^(1/2) 4334947401447328 a001 12586269025/2207*843^(9/14) 4334947409649792 r005 Re(z^2+c),c=-8/13+6/59*I,n=32 4334947412894969 m005 (1/2*gamma+1/4)/(3/4*2^(1/2)+2/11) 4334947416801985 m001 (ArtinRank2+TwinPrimes)/(Pi+gamma(2)) 4334947417233353 a001 591286729879/39603*843^(1/2) 4334947419594035 a001 774004377960/51841*843^(1/2) 4334947419938453 a001 4052739537881/271443*843^(1/2) 4334947419988703 a001 1515744265389/101521*843^(1/2) 4334947420019760 a001 3278735159921/219602*843^(1/2) 4334947420151316 a001 2504730781961/167761*843^(1/2) 4334947421053016 a001 956722026041/64079*843^(1/2) 4334947423099784 a001 567451585/682*2207^(13/16) 4334947427233360 a001 182717648081/12238*843^(1/2) 4334947430435654 l006 ln(4327/6675) 4334947439142717 m001 (-GAMMA(19/24)+Kolakoski)/(Shi(1)-ln(Pi)) 4334947445745312 h001 (3/7*exp(1)+7/11)/(6/11*exp(2)+1/8) 4334947469594070 a001 139583862445/9349*843^(1/2) 4334947476721568 r009 Im(z^3+c),c=-3/110+31/60*I,n=8 4334947478723413 a001 701408733/1364*2207^(7/8) 4334947503951223 l006 ln(6275/6553) 4334947510704486 r005 Re(z^2+c),c=-16/27+17/58*I,n=39 4334947533158682 a007 Real Root Of -215*x^4-726*x^3+866*x^2-91*x+114 4334947534347043 a001 433494437/1364*2207^(15/16) 4334947542678859 m001 exp(GAMMA(19/24))^2/Conway*cos(1) 4334947566738395 r009 Re(z^3+c),c=-55/114+6/35*I,n=28 4334947570706089 r005 Im(z^2+c),c=-9/19+20/37*I,n=64 4334947571420714 a001 225851433717/1364*843^(1/7) 4334947589969604 a001 142619775710/329 4334947603896589 a001 15127/3*514229^(31/45) 4334947619700836 r005 Re(z^2+c),c=-1/22+13/19*I,n=31 4334947628578871 r005 Re(z^2+c),c=-1/102+12/59*I,n=6 4334947629256190 g006 Psi(1,1/8)+Psi(1,3/7)+Psi(1,2/3)-Psi(1,2/11) 4334947629633259 r002 54th iterates of z^2 + 4334947636184552 r009 Re(z^3+c),c=-8/17+6/59*I,n=5 4334947645479916 a003 cos(Pi*24/67)/sin(Pi*53/114) 4334947646871149 r002 42th iterates of z^2 + 4334947662688413 h001 (8/11*exp(1)+3/11)/(5/8*exp(2)+4/7) 4334947663570937 l006 ln(6426/9913) 4334947679259829 m001 FeigenbaumDelta-LambertW(1)^GAMMA(11/24) 4334947696161390 r005 Im(z^2+c),c=-35/118+27/53*I,n=4 4334947704604678 a001 11/8*89^(11/43) 4334947716473667 a007 Real Root Of -805*x^4+650*x^3-536*x^2+821*x+538 4334947717734370 m001 exp(Backhouse)*Artin^2/Salem^2 4334947718463328 m001 (1-Zeta(1,-1))/(-FeigenbaumMu+QuadraticClass) 4334947721231640 a007 Real Root Of -212*x^4+976*x^3-875*x^2+698*x+554 4334947724305153 a001 86000486440/321*322^(1/12) 4334947725865289 a001 53316291173/5778*843^(4/7) 4334947732413984 r005 Re(z^2+c),c=-69/74+9/61*I,n=60 4334947733277952 a007 Real Root Of -935*x^4-793*x^3+274*x^2+590*x+25 4334947733379730 r009 Im(z^3+c),c=-51/110+19/64*I,n=6 4334947751387053 r009 Re(z^3+c),c=-31/82+2/31*I,n=19 4334947753246841 m005 (1/2*Catalan-1/4)/(16/45+1/18*5^(1/2)) 4334947759490280 r002 61th iterates of z^2 + 4334947759938719 a001 53316291173/3571*843^(1/2) 4334947770793996 r002 45th iterates of z^2 + 4334947771548270 r005 Im(z^2+c),c=-91/110+1/41*I,n=49 4334947773279796 a001 2/5*317811^(11/15) 4334947775981040 r005 Re(z^2+c),c=-63/106+13/49*I,n=35 4334947784793861 m005 (1/2*Catalan+3/8)/(9/10*5^(1/2)-1/11) 4334947799872321 r002 5th iterates of z^2 + 4334947833838109 m001 Pi*csc(11/24*Pi)/GAMMA(13/24)+ArtinRank2+Niven 4334947835206937 a001 4052739537881/15127*322^(1/12) 4334947836767074 a001 139583862445/15127*843^(4/7) 4334947837161399 a001 7778742049/2207*843^(5/7) 4334947839046199 r002 2th iterates of z^2 + 4334947840626667 r009 Im(z^3+c),c=-51/106+17/46*I,n=37 4334947846168244 m001 (Pi-Psi(2,1/3))/(ln(gamma)-Kolakoski) 4334947850490444 m001 ln(2^(1/2)+1)^Cahen-FeigenbaumKappa 4334947851190748 r005 Im(z^2+c),c=-4/19+28/39*I,n=62 4334947851387290 a001 3536736619241/13201*322^(1/12) 4334947852947426 a001 365435296162/39603*843^(4/7) 4334947854293440 a007 Real Root Of -348*x^4+666*x^3+413*x^2+420*x+171 4334947855308108 a001 956722026041/103682*843^(4/7) 4334947855652527 a001 2504730781961/271443*843^(4/7) 4334947855702777 a001 6557470319842/710647*843^(4/7) 4334947855714639 a001 10610209857723/1149851*843^(4/7) 4334947855733833 a001 4052739537881/439204*843^(4/7) 4334947855865389 a001 140728068720/15251*843^(4/7) 4334947856767090 a001 591286729879/64079*843^(4/7) 4334947861387298 a001 3278735159921/12238*322^(1/12) 4334947862700466 a001 39603*514229^(15/17) 4334947862947434 a001 7787980473/844*843^(4/7) 4334947867632022 r005 Re(z^2+c),c=-11/18+16/77*I,n=50 4334947871044216 r005 Re(z^2+c),c=-7/5+10/39*I,n=4 4334947881745481 s002 sum(A200514[n]/(n^3*pi^n-1),n=1..infinity) 4334947891010446 m005 (-1/66+1/6*5^(1/2))/(1/9*gamma-8/9) 4334947894732757 r005 Re(z^2+c),c=-19/30+26/123*I,n=20 4334947896612746 r005 Im(z^2+c),c=-33/58+25/64*I,n=3 4334947902822934 r005 Im(z^2+c),c=27/110+16/39*I,n=18 4334947903454624 a007 Real Root Of -229*x^4-740*x^3+976*x^2-680*x-703 4334947903748013 a001 2504730781961/9349*322^(1/12) 4334947905308149 a001 86267571272/9349*843^(4/7) 4334947906047113 a007 Real Root Of -195*x^4+569*x^3-48*x^2+751*x-356 4334947914633793 m001 (Porter-sin(1))/(-TravellingSalesman+Thue) 4334947939113957 m001 (PolyaRandomWalk3D+ZetaP(2))/(ln(5)+Ei(1,1)) 4334947953579983 r002 30th iterates of z^2 + 4334947955093019 a007 Real Root Of 927*x^4-714*x^3+943*x^2-588*x-523 4334947962129820 m005 (1/3*3^(1/2)-3/4)/(3/8*gamma+2/11) 4334947968019622 l006 ln(81/6182) 4334947981337364 r005 Re(z^2+c),c=-13/46+27/44*I,n=49 4334947999650432 a007 Real Root Of 786*x^4-171*x^3+510*x^2-677*x-431 4334948007134803 a001 139583862445/1364*843^(3/14) 4334948042248756 a007 Real Root Of 806*x^4-642*x^3+251*x^2-653*x-411 4334948053211799 g001 Psi(11/12,13/111) 4334948055392681 a001 1836311903/521*521^(10/13) 4334948061306095 r005 Re(z^2+c),c=-14/23+4/19*I,n=55 4334948063955966 r002 35th iterates of z^2 + 4334948071628622 m005 (1/3*exp(1)-1/7)/(3/10*Pi+9/11) 4334948073634215 a005 (1/cos(2/159*Pi))^1878 4334948080477805 m001 Grothendieck*arctan(1/2)^Tribonacci 4334948085075836 m001 1/(3^(1/3))^2*ln(FeigenbaumB)^2/GAMMA(11/24)^2 4334948092287075 m001 1/ln(BesselK(0,1))^2*Trott^2/BesselK(1,1)^2 4334948095353831 r005 Im(z^2+c),c=6/29+5/12*I,n=64 4334948111464907 r005 Re(z^2+c),c=-27/82+29/56*I,n=4 4334948134158723 r005 Re(z^2+c),c=-43/74+11/32*I,n=56 4334948144169474 l006 ln(2099/3238) 4334948144681842 a007 Real Root Of 82*x^4+527*x^3+844*x^2+522*x+376 4334948156554421 a007 Real Root Of 300*x^4+744*x^3+767*x^2-498*x-310 4334948161492535 a007 Real Root Of 651*x^4-783*x^3-148*x^2-240*x-163 4334948161579393 a001 10983760033/1926*843^(9/14) 4334948181477289 r005 Im(z^2+c),c=15/52+33/47*I,n=3 4334948194092691 a001 956722026041/3571*322^(1/12) 4334948195652827 a001 32951280099/3571*843^(4/7) 4334948204469955 r002 29th iterates of z^2 + 4334948209476712 r009 Im(z^3+c),c=-19/60+1/36*I,n=4 4334948210021007 p001 sum((-1)^n/(231*n+214)/(6^n),n=0..infinity) 4334948210373859 m001 1/LandauRamanujan^2/exp(GAMMA(3/4))^3 4334948210753779 a007 Real Root Of -389*x^4+520*x^3+874*x^2+434*x-381 4334948227767021 s002 sum(A229789[n]/((pi^n-1)/n),n=1..infinity) 4334948232619048 m001 (-MertensB1+ZetaQ(2))/(Chi(1)-ln(2+3^(1/2))) 4334948252116279 a007 Real Root Of 785*x^4-575*x^3+467*x^2-855*x+302 4334948257094004 r005 Im(z^2+c),c=13/60+20/49*I,n=50 4334948262933745 h001 (-2*exp(1/2)+9)/(-3*exp(1)-5) 4334948264063915 m001 1/Zeta(9)^2/Trott/ln(cos(Pi/5)) 4334948265790400 r005 Im(z^2+c),c=-7/10+91/243*I,n=12 4334948266851394 m001 (Bloch-CareFree)/(HardyLittlewoodC3-Paris) 4334948272481189 a001 86267571272/15127*843^(9/14) 4334948272875515 a001 4807526976/2207*843^(11/14) 4334948288661543 a001 75283811239/13201*843^(9/14) 4334948290530750 r002 24th iterates of z^2 + 4334948291022225 a001 591286729879/103682*843^(9/14) 4334948291366644 a001 516002918640/90481*843^(9/14) 4334948291416894 a001 4052739537881/710647*843^(9/14) 4334948291424225 a001 3536736619241/620166*843^(9/14) 4334948291428757 a001 6557470319842/1149851*843^(9/14) 4334948291447950 a001 2504730781961/439204*843^(9/14) 4334948291579507 a001 956722026041/167761*843^(9/14) 4334948292481207 a001 365435296162/64079*843^(9/14) 4334948298661552 a001 139583862445/24476*843^(9/14) 4334948301513425 r009 Re(z^3+c),c=-5/14+1/36*I,n=12 4334948339481163 r005 Im(z^2+c),c=23/98+19/49*I,n=23 4334948340570862 r005 Re(z^2+c),c=-41/66+2/47*I,n=49 4334948341022271 a001 53316291173/9349*843^(9/14) 4334948375074962 m001 (Pi*ArtinRank2+FeigenbaumB)/ArtinRank2 4334948384103991 r009 Im(z^3+c),c=-17/46+24/55*I,n=45 4334948389680847 a007 Real Root Of 133*x^4+549*x^3-264*x^2-776*x-647 4334948402337475 m001 (-arctan(1/2)+Ei(1,1))/(GAMMA(3/4)-Psi(2,1/3)) 4334948409984728 m001 1/gamma^2*ln(Artin)^2/sin(Pi/12)^2 4334948429391648 m001 1/Zeta(1,2)^2*Champernowne/exp(sin(Pi/5))^2 4334948431503676 r005 Im(z^2+c),c=-2/3+80/179*I,n=15 4334948439228515 r005 Im(z^2+c),c=-1/94+17/30*I,n=30 4334948442848935 a001 21566892818/341*843^(2/7) 4334948443426931 r002 44th iterates of z^2 + 4334948449850523 m001 Magata^2/CopelandErdos*ln(PrimesInBinary) 4334948449862847 g003 Im(GAMMA(287/60+I*(-29/12))) 4334948450373920 r005 Re(z^2+c),c=-25/56+25/54*I,n=6 4334948452701353 r008 a(0)=0,K{-n^6,22+26*n^3-72*n^2} 4334948458813143 r009 Im(z^3+c),c=-9/86+28/55*I,n=19 4334948467316223 a007 Real Root Of 403*x^4+800*x^3+634*x^2+12*x-63 4334948467746769 a007 Real Root Of 99*x^4+238*x^3-874*x^2-328*x-570 4334948469034186 r005 Re(z^2+c),c=-39/62+17/44*I,n=58 4334948472205875 r009 Re(z^3+c),c=-7/23+27/40*I,n=31 4334948478438884 m001 (GAMMA(1/4)+FeigenbaumAlpha)^cos(Pi/5) 4334948497661572 a003 sin(Pi*24/109)/cos(Pi*53/117) 4334948506317733 r002 51th iterates of z^2 + 4334948517542155 a007 Real Root Of -818*x^4+142*x^3-901*x^2+768*x+35 4334948523110641 m001 (-LandauRamanujan+Trott)/(BesselI(0,1)+Bloch) 4334948525510420 r002 21th iterates of z^2 + 4334948542406718 m001 1/exp(Rabbit)^2*MadelungNaCl*GAMMA(23/24) 4334948560240264 r009 Im(z^3+c),c=-59/114+15/47*I,n=39 4334948560421600 m005 (1/3*Catalan-5/6)/(1/10+1/2*5^(1/2)) 4334948570191087 a007 Real Root Of -174*x^4-726*x^3+109*x^2+97*x+676 4334948571992532 r009 Re(z^3+c),c=-5/11+4/29*I,n=16 4334948574201367 r005 Im(z^2+c),c=9/70+27/56*I,n=58 4334948576756464 r005 Re(z^2+c),c=-23/38+11/45*I,n=62 4334948582249522 m001 1/GAMMA(1/12)/exp(Artin)^2/GAMMA(7/24)^2 4334948597293541 a001 10182505537/2889*843^(5/7) 4334948598974207 r005 Im(z^2+c),c=-11/18+44/95*I,n=17 4334948622237265 r005 Re(z^2+c),c=-53/86+9/64*I,n=51 4334948625267693 r005 Re(z^2+c),c=-73/118+4/43*I,n=53 4334948627130526 a001 843/8*5^(29/33) 4334948627353040 a007 Real Root Of 134*x^4+596*x^3+297*x^2+856*x-639 4334948630150314 r002 17th iterates of z^2 + 4334948631366978 a001 20365011074/3571*843^(9/14) 4334948635314536 r009 Re(z^3+c),c=-23/70+43/63*I,n=38 4334948644870844 l006 ln(6168/9515) 4334948650232244 r009 Im(z^3+c),c=-29/56+7/44*I,n=13 4334948657340966 r005 Re(z^2+c),c=-85/64+8/31*I,n=6 4334948683448594 m001 (-FeigenbaumC+ReciprocalLucas)/(1-Conway) 4334948688123806 r005 Re(z^2+c),c=-7/12+17/48*I,n=64 4334948688582517 l003 AiryAi(2,13/96) 4334948708195348 a001 53316291173/15127*843^(5/7) 4334948708589674 a001 2971215073/2207*843^(6/7) 4334948709394568 a007 Real Root Of 232*x^4+919*x^3-613*x^2-824*x+884 4334948722459229 a001 86267571272/843*322^(1/4) 4334948722970784 a003 cos(Pi*41/111)/sin(Pi*16/43) 4334948724375704 a001 139583862445/39603*843^(5/7) 4334948726736386 a001 182717648081/51841*843^(5/7) 4334948727080805 a001 956722026041/271443*843^(5/7) 4334948727131055 a001 2504730781961/710647*843^(5/7) 4334948727138386 a001 3278735159921/930249*843^(5/7) 4334948727140117 a001 10610209857723/3010349*843^(5/7) 4334948727142918 a001 4052739537881/1149851*843^(5/7) 4334948727162111 a001 387002188980/109801*843^(5/7) 4334948727293668 a001 591286729879/167761*843^(5/7) 4334948728195368 a001 225851433717/64079*843^(5/7) 4334948729545954 r005 Im(z^2+c),c=13/50+25/64*I,n=27 4334948734375714 a001 21566892818/6119*843^(5/7) 4334948747321118 m005 (1/3*Catalan-2/3)/(1/9*Zeta(3)+7/10) 4334948749250019 a005 (1/sin(69/149*Pi))^901 4334948755601666 p001 sum((-1)^n/(373*n+228)/(32^n),n=0..infinity) 4334948760274729 r005 Im(z^2+c),c=5/34+24/49*I,n=23 4334948763246284 r002 64th iterates of z^2 + 4334948776736437 a001 32951280099/9349*843^(5/7) 4334948796070927 r005 Im(z^2+c),c=-3/14+26/33*I,n=20 4334948809212620 m009 (3*Pi^2+1/2)/(32*Catalan+4*Pi^2+2/3) 4334948819118108 m001 1/cos(Pi/12)/Salem^2/ln(sin(1)) 4334948833326651 r002 50th iterates of z^2 + 4334948834448677 r002 3th iterates of z^2 + 4334948842218632 q001 161/3714 4334948852487143 r005 Re(z^2+c),c=-14/25+21/55*I,n=43 4334948853760234 a007 Real Root Of 194*x^4+608*x^3-950*x^2+223*x-160 4334948854628124 r005 Re(z^2+c),c=-27/40+17/48*I,n=41 4334948862736765 r005 Re(z^2+c),c=-57/98+17/49*I,n=26 4334948863843793 a003 sin(Pi*5/78)-sin(Pi*19/87) 4334948867766680 r005 Im(z^2+c),c=-41/110+30/49*I,n=11 4334948878563111 a001 53316291173/1364*843^(5/14) 4334948897321009 a007 Real Root Of 338*x^4-435*x^3+955*x^2-208*x-317 4334948903158417 l006 ln(4069/6277) 4334948911680554 a007 Real Root Of -204*x^4+902*x^3+121*x^2+955*x-503 4334948912048484 m008 (5/6*Pi^5+4/5)/(2*Pi^3-3) 4334948914188686 r005 Im(z^2+c),c=-81/122+21/61*I,n=30 4334948928038817 r005 Re(z^2+c),c=-13/21+10/49*I,n=35 4334948932499185 r002 18th iterates of z^2 + 4334948947178535 r002 22th iterates of z^2 + 4334948955098919 r002 30th iterates of z^2 + 4334948964539911 m001 (-Thue+ZetaP(4))/(3^(1/2)-gamma(1)) 4334948980591923 r009 Im(z^3+c),c=-2/21+20/39*I,n=7 4334948988717066 r002 41th iterates of z^2 + 4334949014029108 a007 Real Root Of 769*x^4-390*x^3-79*x^2-535*x-276 4334949024710453 r001 45i'th iterates of 2*x^2-1 of 4334949025606633 r005 Re(z^2+c),c=-81/118+1/54*I,n=24 4334949028117447 m001 CareFree*ln(2)^PisotVijayaraghavan 4334949029985337 a001 305/682*(1/2+1/2*5^(1/2))^43 4334949031108939 r002 58th iterates of z^2 + 4334949033007733 a001 12586269025/5778*843^(11/14) 4334949035374243 r009 Re(z^3+c),c=-39/106+3/61*I,n=3 4334949036444296 m009 (4*Catalan+1/2*Pi^2+2)/(1/6*Pi^2+4/5) 4334949049256514 r005 Im(z^2+c),c=-11/17+2/57*I,n=7 4334949054065492 m001 2*Pi/GAMMA(5/6)+CopelandErdos-Porter 4334949056872699 r005 Im(z^2+c),c=-9/14+94/223*I,n=43 4334949066360663 s002 sum(A012901[n]/(n^3*pi^n-1),n=1..infinity) 4334949067081173 a001 12586269025/3571*843^(5/7) 4334949067813250 s002 sum(A227008[n]/(2^n+1),n=1..infinity) 4334949080304179 a007 Real Root Of -178*x^4-638*x^3+451*x^2-737*x-785 4334949100813483 m005 (1/3*3^(1/2)-1/6)/(3/7*gamma+7/10) 4334949103396525 m001 (GAMMA(7/12)+Bloch)/(Salem-TravellingSalesman) 4334949112376591 r005 Re(z^2+c),c=-13/22+32/105*I,n=58 4334949115036580 r005 Re(z^2+c),c=-13/21+2/23*I,n=55 4334949127266235 r005 Im(z^2+c),c=-23/42+25/56*I,n=15 4334949143909551 a001 32951280099/15127*843^(11/14) 4334949144303877 a001 1836311903/2207*843^(13/14) 4334949160089909 a001 86267571272/39603*843^(11/14) 4334949162450591 a001 225851433717/103682*843^(11/14) 4334949162795010 a001 591286729879/271443*843^(11/14) 4334949162845260 a001 1548008755920/710647*843^(11/14) 4334949162852591 a001 4052739537881/1860498*843^(11/14) 4334949162853661 a001 2178309*843^(11/14) 4334949162854322 a001 6557470319842/3010349*843^(11/14) 4334949162857122 a001 2504730781961/1149851*843^(11/14) 4334949162876316 a001 956722026041/439204*843^(11/14) 4334949163007872 a001 365435296162/167761*843^(11/14) 4334949163909573 a001 139583862445/64079*843^(11/14) 4334949166963304 l006 ln(6039/9316) 4334949170089920 a001 53316291173/24476*843^(11/14) 4334949188711976 a007 Real Root Of 204*x^4+782*x^3-549*x^2-271*x+806 4334949199080690 r005 Re(z^2+c),c=-65/106+11/59*I,n=45 4334949212450647 a001 20365011074/9349*843^(11/14) 4334949233083693 m001 1/exp(Khintchine)/Champernowne/GAMMA(5/6)^2 4334949248059624 a007 Real Root Of -196*x^4-711*x^3+588*x^2-245*x-817 4334949269980360 r005 Re(z^2+c),c=-37/62+4/47*I,n=11 4334949275656083 r002 64th iterates of z^2 + 4334949282617808 r002 59th iterates of z^2 + 4334949283857604 a001 2971215073/521*521^(9/13) 4334949288124846 m001 (ln(5)-gamma(2))/(2*Pi/GAMMA(5/6)-FeigenbaumC) 4334949300537738 p003 LerchPhi(1/12,2,341/221) 4334949300701043 p003 LerchPhi(1/64,2,230/151) 4334949303720654 a001 20633239*34^(4/19) 4334949314277331 a001 32951280099/1364*843^(3/7) 4334949314472704 a003 cos(Pi*20/83)*cos(Pi*35/118) 4334949319164021 r005 Re(z^2+c),c=1/114+41/59*I,n=6 4334949319503184 r002 16th iterates of z^2 + 4334949332832172 a007 Real Root Of 649*x^4-673*x^3-204*x^2-991*x-469 4334949345061734 m002 4-E^(2*Pi)+Pi^6*Coth[Pi] 4334949345412626 a007 Real Root Of -238*x^4-966*x^3+264*x^2+136*x+982 4334949353470123 m001 Cahen^2/Artin*exp(Zeta(1,2)) 4334949358060111 m005 (1/2*gamma+1/4)/(3/10*Pi+3/10) 4334949358929814 r005 Re(z^2+c),c=-73/122+8/39*I,n=19 4334949364723942 r005 Im(z^2+c),c=-63/110+24/55*I,n=29 4334949372810991 r009 Im(z^3+c),c=-41/106+3/7*I,n=21 4334949374775977 s002 sum(A144158[n]/(n!^3),n=1..infinity) 4334949416551707 a007 Real Root Of 205*x^4+730*x^3-760*x^2-438*x-542 4334949418308659 r005 Re(z^2+c),c=-75/118+4/49*I,n=14 4334949422006051 r002 54th iterates of z^2 + 4334949451807524 r005 Re(z^2+c),c=-11/21+19/60*I,n=13 4334949452054744 l006 ln(109/8319) 4334949462774209 a007 Real Root Of 609*x^4-11*x^3+114*x^2-674*x-336 4334949468721968 a001 7778742049/5778*843^(6/7) 4334949475597753 r009 Im(z^3+c),c=-23/58+11/26*I,n=27 4334949476851713 m001 (-MertensB2+ZetaQ(3))/(Chi(1)+GAMMA(7/12)) 4334949489300555 r009 Re(z^3+c),c=-1/42+14/15*I,n=20 4334949489586873 r009 Re(z^3+c),c=-1/42+14/15*I,n=22 4334949490362055 r009 Re(z^3+c),c=-1/42+14/15*I,n=24 4334949490531804 r009 Re(z^3+c),c=-1/42+14/15*I,n=26 4334949490555433 r009 Re(z^3+c),c=-1/42+14/15*I,n=28 4334949490557532 r009 Re(z^3+c),c=-1/42+14/15*I,n=42 4334949490557532 r009 Re(z^3+c),c=-1/42+14/15*I,n=44 4334949490557532 r009 Re(z^3+c),c=-1/42+14/15*I,n=46 4334949490557532 r009 Re(z^3+c),c=-1/42+14/15*I,n=48 4334949490557532 r009 Re(z^3+c),c=-1/42+14/15*I,n=50 4334949490557532 r009 Re(z^3+c),c=-1/42+14/15*I,n=62 4334949490557532 r009 Re(z^3+c),c=-1/42+14/15*I,n=64 4334949490557532 r009 Re(z^3+c),c=-1/42+14/15*I,n=60 4334949490557532 r009 Re(z^3+c),c=-1/42+14/15*I,n=58 4334949490557532 r009 Re(z^3+c),c=-1/42+14/15*I,n=56 4334949490557532 r009 Re(z^3+c),c=-1/42+14/15*I,n=54 4334949490557532 r009 Re(z^3+c),c=-1/42+14/15*I,n=52 4334949490557532 r009 Re(z^3+c),c=-1/42+14/15*I,n=40 4334949490557532 r009 Re(z^3+c),c=-1/42+14/15*I,n=38 4334949490557533 r009 Re(z^3+c),c=-1/42+14/15*I,n=36 4334949490557541 r009 Re(z^3+c),c=-1/42+14/15*I,n=34 4334949490557546 r009 Re(z^3+c),c=-1/42+14/15*I,n=30 4334949490557575 r009 Re(z^3+c),c=-1/42+14/15*I,n=32 4334949501544423 m001 (BesselK(1,1)+FeigenbaumB)/(Sarnak+Sierpinski) 4334949502795412 a001 7778742049/3571*843^(11/14) 4334949517069399 s002 sum(A012901[n]/(n^3*pi^n+1),n=1..infinity) 4334949526677650 r009 Re(z^3+c),c=-1/42+14/15*I,n=18 4334949535553635 a007 Real Root Of 792*x^4-933*x^3+197*x^2-466*x-343 4334949562053764 r002 51th iterates of z^2 + 4334949563730084 r005 Re(z^2+c),c=-13/21+1/19*I,n=36 4334949574203744 s002 sum(A121708[n]/(n*exp(pi*n)+1),n=1..infinity) 4334949579623798 a001 20365011074/15127*843^(6/7) 4334949580026525 a001 163427599167/377 4334949595804157 a001 53316291173/39603*843^(6/7) 4334949598164839 a001 139583862445/103682*843^(6/7) 4334949598509258 a001 365435296162/271443*843^(6/7) 4334949598559508 a001 956722026041/710647*843^(6/7) 4334949598566840 a001 2504730781961/1860498*843^(6/7) 4334949598567910 a001 6557470319842/4870847*843^(6/7) 4334949598568162 a001 10610209857723/7881196*843^(6/7) 4334949598568571 a001 1346269*843^(6/7) 4334949598571371 a001 1548008755920/1149851*843^(6/7) 4334949598590565 a001 591286729879/439204*843^(6/7) 4334949598722121 a001 225851433717/167761*843^(6/7) 4334949599623822 a001 86267571272/64079*843^(6/7) 4334949605804169 a001 32951280099/24476*843^(6/7) 4334949622196509 r002 3th iterates of z^2 + 4334949622564355 a007 Real Root Of -608*x^4+168*x^3+894*x^2+740*x-481 4334949622682198 r005 Re(z^2+c),c=-33/64+15/53*I,n=4 4334949625984386 m001 (arctan(1/3)+CopelandErdos)/(Totient-ZetaQ(2)) 4334949628116186 a001 1/7787980473*987^(3/17) 4334949637699360 m005 (1/2*2^(1/2)-1/2)/(2/5*5^(1/2)-5/12) 4334949641679975 b008 Sqrt[2]+(2*E^(1+Pi))/3 4334949647996911 r005 Im(z^2+c),c=33/106+7/22*I,n=36 4334949648164900 a001 12586269025/9349*843^(6/7) 4334949648272311 a001 47/1597*514229^(9/44) 4334949649185085 m001 (ln(2^(1/2)+1)-Ei(1))/(arctan(1/2)-ArtinRank2) 4334949657100499 a007 Real Root Of -385*x^4+878*x^3+292*x^2+621*x-382 4334949664923731 a007 Real Root Of -260*x^4-995*x^3+676*x^2+365*x-361 4334949694612478 m001 (Psi(1,1/3)+cos(1))/(-PlouffeB+Riemann3rdZero) 4334949699997263 b008 -1/2+Sqrt[2]*Pi^3 4334949700442625 m009 (3*Psi(1,1/3)-5/6)/(2*Psi(1,2/3)+2/3) 4334949703016012 m005 (1/2*exp(1)+5/6)/(2/11*exp(1)-1) 4334949706744361 r009 Im(z^3+c),c=-8/15+7/52*I,n=60 4334949711847588 l006 ln(1970/3039) 4334949732543074 r005 Re(z^2+c),c=-47/54+19/46*I,n=4 4334949738874512 r005 Im(z^2+c),c=-3/5+37/72*I,n=9 4334949749991595 a001 10182505537/682*843^(1/2) 4334949752614386 a001 3/11*29^(23/28) 4334949754961933 r005 Re(z^2+c),c=11/78+34/63*I,n=27 4334949761174716 m005 (1/2*gamma-7/11)/(7/11*3^(1/2)-3/10) 4334949762756985 a007 Real Root Of 194*x^4+587*x^3-980*x^2+608*x+362 4334949765590675 r005 Re(z^2+c),c=-91/122+1/55*I,n=62 4334949765768233 m005 (1/2*3^(1/2)+1/4)/(2/11*Catalan+1/11) 4334949774726256 r005 Re(z^2+c),c=-11/31+27/46*I,n=42 4334949785171253 a001 29/4052739537881*12586269025^(3/17) 4334949785171266 a001 29/956722026041*3524578^(3/17) 4334949788281801 s002 sum(A208475[n]/(n*exp(pi*n)+1),n=1..infinity) 4334949799704865 r002 11th iterates of z^2 + 4334949815746364 r002 55th iterates of z^2 + 4334949828374611 r005 Im(z^2+c),c=7/29+18/47*I,n=38 4334949837334932 m005 (1/2*Zeta(3)+5/12)/(1/12*exp(1)-1/4) 4334949842034635 m001 1/Porter^2*exp(Niven)^2*GAMMA(7/24) 4334949843811772 r002 52th iterates of z^2 + 4334949855355150 m001 1/GAMMA(1/12)/TreeGrowth2nd*ln(GAMMA(5/24))^2 4334949866649782 v003 sum((24+15/2*n^2-39/2*n)*n!/n^n,n=1..infinity) 4334949876123770 l006 ln(6433/6718) 4334949886538757 r009 Re(z^3+c),c=-1/36+16/21*I,n=7 4334949894250861 r005 Re(z^2+c),c=-59/106+14/43*I,n=3 4334949903683083 a007 Real Root Of 255*x^4-961*x^3+117*x^2+56*x-85 4334949904436247 a001 267084832/321*843^(13/14) 4334949905393816 a007 Real Root Of 684*x^4+831*x^3-417*x^2-814*x+36 4334949910419286 r005 Im(z^2+c),c=-1/22+23/37*I,n=62 4334949917212663 a007 Real Root Of 225*x^4-691*x^3-349*x^2-653*x+397 4334949929281614 m001 ZetaQ(2)/(exp(1/exp(1))^sin(1/5*Pi)) 4334949933354738 a001 13201/7*610^(39/46) 4334949938509695 a001 4807526976/3571*843^(6/7) 4334949942877505 a007 Real Root Of 294*x^4-347*x^3-200*x^2-429*x+19 4334949954912367 r002 30th iterates of z^2 + 4334949956574532 m001 (Si(Pi)+ln(3))/(-Kac+Mills) 4334949959377417 m001 TreeGrowth2nd/(Porter-ZetaP(2)) 4334949961931033 m001 Otter^MertensB2+BesselI(0,1) 4334949967798062 m005 (1/2*gamma-4)/(1/6*gamma-2/11) 4334949969056324 r005 Re(z^2+c),c=-49/82+9/43*I,n=27 4334949970821331 r005 Im(z^2+c),c=-9/14+89/215*I,n=8 4334949984418535 r005 Im(z^2+c),c=-1/5+21/34*I,n=41 4334949985154684 r002 6th iterates of z^2 + 4334949986139802 r009 Re(z^3+c),c=-1/42+14/15*I,n=16 4334949988703084 a007 Real Root Of 229*x^4+851*x^3-509*x^2+634*x+770 4334949996119533 r005 Re(z^2+c),c=-17/30+47/120*I,n=58 4334950014251763 s002 sum(A058250[n]/(n*exp(pi*n)+1),n=1..infinity) 4334950015338088 a001 12586269025/15127*843^(13/14) 4334950030187873 r005 Re(z^2+c),c=-8/15+22/51*I,n=59 4334950030633237 b008 -8/3+PolyLog[3,-2] 4334950031518449 a001 10983760033/13201*843^(13/14) 4334950033879132 a001 43133785636/51841*843^(13/14) 4334950034223551 a001 75283811239/90481*843^(13/14) 4334950034273801 a001 591286729879/710647*843^(13/14) 4334950034281132 a001 832040*843^(13/14) 4334950034282202 a001 4052739537881/4870847*843^(13/14) 4334950034282358 a001 3536736619241/4250681*843^(13/14) 4334950034282454 a001 3278735159921/3940598*843^(13/14) 4334950034282863 a001 2504730781961/3010349*843^(13/14) 4334950034285663 a001 956722026041/1149851*843^(13/14) 4334950034304857 a001 182717648081/219602*843^(13/14) 4334950034436413 a001 139583862445/167761*843^(13/14) 4334950035338114 a001 53316291173/64079*843^(13/14) 4334950039465441 m001 DuboisRaymond*HardyLittlewoodC5/Tribonacci 4334950041518462 a001 10182505537/12238*843^(13/14) 4334950042141527 r005 Re(z^2+c),c=-5/8+8/211*I,n=26 4334950052489683 m001 (-gamma(3)+ZetaP(4))/(gamma+ln(Pi)) 4334950054041099 a003 sin(Pi*6/107)/cos(Pi*43/117) 4334950062465316 m001 (GAMMA(3/4)-arctan(1/3))/(exp(1/Pi)+Rabbit) 4334950065412151 r002 13th iterates of z^2 + 4334950075522376 m002 -E^Pi+4*Pi^2*Cosh[Pi]-Tanh[Pi] 4334950079766064 p004 log(29231/383) 4334950081564492 r002 36th iterates of z^2 + 4334950081729530 m001 LambertW(1)^(Psi(2,1/3)*Rabbit) 4334950083879198 a001 7778742049/9349*843^(13/14) 4334950089775794 r005 Re(z^2+c),c=-63/110+2/13*I,n=12 4334950107822942 m001 sin(1)*(2*Pi/GAMMA(5/6)-PrimesInBinary) 4334950109476435 b008 1/4+(1+E)*Log[3] 4334950114776808 r005 Im(z^2+c),c=17/48+7/41*I,n=3 4334950129173434 a007 Real Root Of 224*x^4+451*x^3+619*x^2+158*x-19 4334950131713532 a003 cos(Pi*37/90)+cos(Pi*49/109) 4334950136469952 a007 Real Root Of 796*x^4+200*x^3+885*x^2-468*x-381 4334950140277116 r005 Im(z^2+c),c=33/122+37/62*I,n=9 4334950164716508 r005 Re(z^2+c),c=-43/70+2/59*I,n=23 4334950184145766 a001 182717648081/682*322^(1/12) 4334950184972311 r002 7th iterates of z^2 + 4334950185705903 a001 1144206275/124*843^(4/7) 4334950191545134 m001 ln(2)/ln(10)+Ei(1,1)^MertensB3 4334950191777809 a007 Real Root Of -728*x^4-443*x^3-810*x^2+614*x+408 4334950198882082 r005 Im(z^2+c),c=7/23+7/22*I,n=60 4334950202907104 r005 Im(z^2+c),c=-23/18+11/211*I,n=51 4334950217002808 q001 1698/3917 4334950245436909 r009 Im(z^3+c),c=-25/86+31/64*I,n=6 4334950250262710 m001 FeigenbaumB*Thue/ZetaQ(4) 4334950264010473 s002 sum(A228441[n]/(n*exp(pi*n)-1),n=1..infinity) 4334950281049458 l006 ln(5781/8918) 4334950287062805 r009 Im(z^3+c),c=-1/106+17/33*I,n=12 4334950290022616 r002 60th iterates of z^2 + 4334950302993508 r002 32th iterates of z^2 + 4334950319808680 r004 Re(z^2+c),c=-21/34+2/17*I,z(0)=-1,n=58 4334950321957776 r005 Re(z^2+c),c=-13/18+1/100*I,n=36 4334950323343710 r005 Im(z^2+c),c=19/90+26/63*I,n=47 4334950323376147 r005 Re(z^2+c),c=-21/34+14/123*I,n=58 4334950324578838 a001 123/8*2178309^(33/47) 4334950326192255 r005 Re(z^2+c),c=-41/66+1/32*I,n=55 4334950328450130 m001 1/GAMMA(2/3)^2/exp(Bloch)*GAMMA(5/6)^2 4334950331746756 a007 Real Root Of -151*x^4-522*x^3+674*x^2+644*x+926 4334950340159151 a001 163427627824/377 4334950346054927 m005 (1/2*Pi-4/5)/(3/8*Pi+3/5) 4334950373735068 m001 (cos(1/12*Pi)-gamma(2))/(Backhouse+Kolakoski) 4334950374224022 a001 2971215073/3571*843^(13/14) 4334950385628225 r009 Im(z^3+c),c=-17/46+24/55*I,n=48 4334950388997633 a001 139583862445/521*199^(1/11) 4334950389867525 a008 Real Root of (16+5*x+11*x^2-3*x^3) 4334950411736745 r002 2th iterates of z^2 + 4334950419507362 a007 Real Root Of 933*x^4-131*x^3+493*x^2-440*x-327 4334950421954519 r005 Re(z^2+c),c=-7/10+74/203*I,n=32 4334950433650189 r005 Im(z^2+c),c=17/74+17/43*I,n=29 4334950448326474 a001 365435296162/2207*322^(1/6) 4334950451061007 a001 163427632005/377 4334950451524919 r005 Re(z^2+c),c=19/64+1/22*I,n=29 4334950469602122 a001 163427632704/377 4334950469946949 a001 163427632717/377 4334950470005305 a001 817138163596/377*8^(1/3) 4334950470005305 a001 2/377*(1/2+1/2*5^(1/2))^57 4334950470026525 a001 163427632720/377 4334950470159151 a001 163427632725/377 4334950471061007 a001 163427632759/377 4334950475094646 m006 (1/5*exp(2*Pi)+1/3)/(1/6*Pi^2+5/6) 4334950476761297 s002 sum(A131714[n]/(n*exp(pi*n)-1),n=1..infinity) 4334950489776854 r005 Re(z^2+c),c=-8/15+8/19*I,n=44 4334950503941813 m001 RenyiParking*Paris^2/exp(sin(Pi/12))^2 4334950505934296 a007 Real Root Of 232*x^4+906*x^3-343*x^2+507*x+521 4334950511455637 r005 Im(z^2+c),c=1/118+27/47*I,n=59 4334950512322876 a001 4807526976/521*521^(8/13) 4334950519602122 a001 163427634589/377 4334950545960234 m005 (1/2*Pi-1/12)/(7/12*Catalan-1/2) 4334950562634086 s002 sum(A089588[n]/(n*exp(pi*n)+1),n=1..infinity) 4334950567353023 r004 Re(z^2+c),c=1/9+1/5*I,z(0)=exp(7/12*I*Pi),n=7 4334950573598846 m005 (1/2*5^(1/2)+3/10)/(10/11*exp(1)+4/5) 4334950575283947 l006 ln(3811/5879) 4334950600691126 a007 Real Root Of 775*x^4-911*x^3-334*x^2-979*x+534 4334950619956602 a007 Real Root Of 107*x^4+284*x^3-962*x^2-841*x-218 4334950621420254 a001 7778742049/1364*843^(9/14) 4334950628438342 r002 45th iterates of z^2 + 4334950636703674 r005 Re(z^2+c),c=-5/42+23/29*I,n=63 4334950650780119 r005 Im(z^2+c),c=2/13+17/33*I,n=30 4334950674113935 m001 ErdosBorwein/GAMMA(7/12)*ThueMorse 4334950692342032 m001 (ArtinRank2+MertensB3)/(OneNinth-Stephens) 4334950708532707 r005 Im(z^2+c),c=-8/19+21/37*I,n=54 4334950719662777 r005 Re(z^2+c),c=-69/98+5/41*I,n=46 4334950739684179 r005 Re(z^2+c),c=-16/25+1/23*I,n=20 4334950771975076 m001 1/exp(GaussKuzminWirsing)*Artin^2/cosh(1)^2 4334950778675187 m001 (5^(1/2)+arctan(1/2))/(-MertensB3+Rabbit) 4334950779836071 a007 Real Root Of -249*x^4-31*x^3-700*x^2+967*x+557 4334950786106702 r005 Im(z^2+c),c=-41/98+36/61*I,n=55 4334950788401837 r005 Re(z^2+c),c=-43/70+10/63*I,n=58 4334950797986586 r005 Re(z^2+c),c=-5/8+43/176*I,n=26 4334950806943348 r005 Re(z^2+c),c=-39/86+17/29*I,n=6 4334950809946949 a001 163427645535/377 4334950823281392 m001 1/MadelungNaCl^2*exp(CareFree)*cos(Pi/5)^2 4334950827987936 r002 49th iterates of z^2 + 4334950830960748 m001 exp(GAMMA(7/24))/CopelandErdos/Zeta(1/2)^2 4334950845015229 m001 (Si(Pi)-exp(1))/(-Zeta(5)+Riemann2ndZero) 4334950847593470 a003 cos(Pi*1/44)-cos(Pi*30/97) 4334950850596206 r002 46th iterates of z^2 + 4334950867596302 p001 sum((-1)^n/(337*n+22)/n/(64^n),n=1..infinity) 4334950872123006 m001 (-FeigenbaumB+Riemann1stZero)/(Chi(1)-ln(Pi)) 4334950876233969 l006 ln(5652/8719) 4334950877957155 r005 Re(z^2+c),c=-29/40+17/43*I,n=5 4334950885827426 m001 (cos(1/12*Pi)-DuboisRaymond)/(Otter-Salem) 4334950892080426 r009 Im(z^3+c),c=-23/56+17/41*I,n=24 4334950911087690 a007 Real Root Of -221*x^4+613*x^3-49*x^2+939*x+474 4334950929794196 b008 1/4+LogGamma[1/60] 4334950948389847 m002 Cosh[Pi]/4+Pi^2/(6*Log[Pi]) 4334950957246800 a007 Real Root Of -188*x^4-656*x^3+629*x^2-388*x-552 4334950958466688 a007 Real Root Of -28*x^4+92*x^3-294*x^2+673*x-243 4334950962857082 r005 Re(z^2+c),c=-7/12+29/74*I,n=52 4334950973701488 r009 Im(z^3+c),c=-11/28+25/58*I,n=13 4334950988583950 r005 Im(z^2+c),c=5/36+17/37*I,n=21 4334950990712816 a001 2/1346269*514229^(43/55) 4334950993249070 r005 Im(z^2+c),c=-7/10+27/100*I,n=9 4334950997854590 m001 arctan(1/3)*(Riemann1stZero-Robbin) 4334950999664360 r005 Re(z^2+c),c=-35/52+6/55*I,n=29 4334951006730861 a007 Real Root Of 759*x^4-148*x^3+472*x^2+142*x-66 4334951009928373 a001 3571*1836311903^(13/17) 4334951036211513 m001 Zeta(3)^2*exp(Paris)*exp(1) 4334951043262098 m001 GAMMA(3/4)^2*Artin/exp(sin(Pi/12)) 4334951050073891 m001 ln(Khintchine)^2/Conway^2/PisotVijayaraghavan 4334951057134649 a001 1201881744/341*843^(5/7) 4334951060878147 r005 Im(z^2+c),c=1/24+6/11*I,n=63 4334951068057823 m006 (5/6*exp(2*Pi)-1/5)/(1/5*ln(Pi)+4/5) 4334951077704261 a007 Real Root Of -412*x^4-160*x^3-853*x^2+561*x+405 4334951080561899 r005 Im(z^2+c),c=-13/22+45/104*I,n=27 4334951089919339 m001 (BesselI(1,2)-Cahen)/(Conway+QuadraticClass) 4334951109825044 r005 Im(z^2+c),c=-7/10+36/133*I,n=9 4334951112243361 a005 (1/cos(18/109*Pi))^92 4334951113133187 a007 Real Root Of 388*x^4-28*x^3+596*x^2-526*x-356 4334951119342566 m001 Robbin/(ln(2)/ln(10)+GAMMA(3/4)) 4334951123454586 m005 (1/2*3^(1/2)-4/11)/(5/9*5^(1/2)-1/12) 4334951128676731 r001 21i'th iterates of 2*x^2-1 of 4334951138830470 m004 -2+4*ProductLog[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]/4 4334951167452505 r002 11th iterates of z^2 + 4334951175060263 a007 Real Root Of 198*x^4+841*x^3+46*x^2+637*x+486 4334951176964865 a007 Real Root Of 79*x^4+135*x^3-869*x^2+18*x-492 4334951185505792 r005 Im(z^2+c),c=3/32+29/57*I,n=54 4334951201899069 r005 Re(z^2+c),c=-63/106+13/42*I,n=64 4334951202509327 m005 (1/3*Catalan-1/3)/(4/5*gamma+6) 4334951205213192 r005 Im(z^2+c),c=29/90+8/33*I,n=8 4334951207727952 a005 (1/cos(38/131*Pi))^50 4334951208459073 a001 956722026041/5778*322^(1/6) 4334951210330325 r009 Im(z^3+c),c=-17/46+24/55*I,n=51 4334951211728842 h001 (11/12*exp(1)+9/10)/(1/12*exp(2)+1/6) 4334951243974051 m004 12+Sqrt[5]*Pi+Cos[Sqrt[5]*Pi]*Cosh[Sqrt[5]*Pi] 4334951277771868 r005 Re(z^2+c),c=8/17+30/59*I,n=2 4334951310703737 r005 Re(z^2+c),c=-29/54+17/50*I,n=20 4334951319360947 a001 2504730781961/15127*322^(1/6) 4334951324560108 a008 Real Root of x^4-x^3-32*x^2+21*x+15 4334951335541313 a001 6557470319842/39603*322^(1/6) 4334951339360979 a001 10610209857723/64079*322^(1/6) 4334951344581477 r009 Im(z^3+c),c=-47/126+32/47*I,n=48 4334951345541329 a001 4052739537881/24476*322^(1/6) 4334951349873847 a001 1860498*514229^(13/17) 4334951359199094 h001 (5/9*exp(1)+3/7)/(4/7*exp(2)+1/4) 4334951368409324 r005 Im(z^2+c),c=15/94+27/59*I,n=54 4334951387902078 a001 1548008755920/9349*322^(1/6) 4334951393298922 m001 (3^(1/3)-Riemann1stZero)^gamma 4334951416109144 r005 Im(z^2+c),c=39/118+17/52*I,n=55 4334951419266019 m001 gamma(1)/(Ei(1,1)-Zeta(1/2)) 4334951433158359 m001 1/ln(FeigenbaumD)^2/Conway*GAMMA(1/24)^2 4334951454958795 m001 GlaisherKinkelin/ln(Champernowne)/sqrt(2) 4334951456310679 q001 893/2060 4334951492849088 a001 2971215073/1364*843^(11/14) 4334951499221738 l006 ln(1841/2840) 4334951510985082 a005 (1/cos(19/239*Pi))^631 4334951533189326 a001 341/36*4181^(36/49) 4334951535201491 r005 Im(z^2+c),c=-19/48+3/43*I,n=19 4334951548160436 r002 17th iterates of z^2 + 4334951549400517 r009 Im(z^3+c),c=-17/46+24/55*I,n=54 4334951570757559 m001 1/ln(GAMMA(1/24))*GlaisherKinkelin/Zeta(1,2) 4334951570807274 r005 Im(z^2+c),c=23/126+28/61*I,n=24 4334951575472271 r005 Re(z^2+c),c=-31/50+3/26*I,n=31 4334951577042208 a007 Real Root Of 71*x^4+459*x^3+868*x^2+698*x-967 4334951582328608 r002 53th iterates of z^2 + 4334951597854516 m001 (Mills+ReciprocalFibonacci*Totient)/Totient 4334951603479187 r005 Re(z^2+c),c=-29/50+9/32*I,n=21 4334951612214787 r009 Im(z^3+c),c=-23/94+27/56*I,n=18 4334951612982226 m005 (-1/4+1/4*5^(1/2))/(1/10*2^(1/2)+4/7) 4334951619836248 p001 sum(1/(329*n+163)/n/(5^n),n=1..infinity) 4334951636786490 r005 Im(z^2+c),c=11/58+29/59*I,n=31 4334951642443875 r005 Re(z^2+c),c=-37/60+1/10*I,n=34 4334951655813101 m001 (Pi*2^(1/2)+BesselI(0,1))/ln(2+3^(1/2)) 4334951659217378 m001 (Shi(1)-gamma(3))/(Pi^(1/2)+Robbin) 4334951660646691 a007 Real Root Of -346*x^4-452*x^3+803*x^2+870*x-479 4334951678246989 a001 591286729879/3571*322^(1/6) 4334951688500505 r009 Im(z^3+c),c=-17/46+24/55*I,n=57 4334951689918649 a007 Real Root Of -626*x^4-768*x^3+314*x^2+703*x-31 4334951692832292 r005 Re(z^2+c),c=-13/18+10/81*I,n=35 4334951696082242 a003 sin(Pi*13/116)/cos(Pi*23/111) 4334951699755733 a001 141/2161*18^(19/29) 4334951708137577 a007 Real Root Of 2*x^4+869*x^3+870*x^2-509*x+568 4334951733269132 r005 Re(z^2+c),c=-31/50+1/14*I,n=60 4334951740137544 m001 (ln(Pi)-GAMMA(13/24))/(MertensB2+OneNinth) 4334951740788496 a001 7778742049/521*521^(7/13) 4334951744378842 r005 Im(z^2+c),c=9/50+27/61*I,n=36 4334951745437411 r009 Im(z^3+c),c=-17/46+24/55*I,n=60 4334951768689908 r009 Im(z^3+c),c=-17/46+24/55*I,n=63 4334951782918999 a007 Real Root Of -123*x^4-396*x^3+465*x^2-574*x-50 4334951788528880 r009 Im(z^3+c),c=-17/46+24/55*I,n=62 4334951794663883 r009 Im(z^3+c),c=-17/46+24/55*I,n=64 4334951796576072 r009 Im(z^3+c),c=-17/46+24/55*I,n=59 4334951800417238 m001 (Si(Pi)+4)/(GAMMA(1/12)+2) 4334951806164426 h001 (1/9*exp(1)+4/11)/(5/11*exp(1)+3/10) 4334951807982810 r009 Im(z^3+c),c=-17/46+24/55*I,n=61 4334951813820350 m001 1/Sierpinski*ln(Backhouse)^2/(2^(1/3)) 4334951818399389 r005 Im(z^2+c),c=13/82+11/24*I,n=53 4334951819547641 r009 Im(z^3+c),c=-17/46+24/55*I,n=56 4334951821367819 r002 35th iterates of z^2 + 4334951825699199 r009 Re(z^3+c),c=-51/98+19/53*I,n=22 4334951826325472 m001 (GAMMA(2/3)-Bloch)/(OneNinth+Tetranacci) 4334951828330567 a001 123/196418*514229^(39/58) 4334951838782528 r009 Im(z^3+c),c=-17/46+24/55*I,n=58 4334951858782433 m001 Pi+1+ln(2^(1/2)+1)*Ei(1,1) 4334951880243922 r005 Re(z^2+c),c=17/106+7/17*I,n=12 4334951882322582 r009 Im(z^3+c),c=-53/122+13/32*I,n=19 4334951883468255 r009 Im(z^3+c),c=-17/46+24/55*I,n=53 4334951893667961 a007 Real Root Of 231*x^4+982*x^3+153*x^2+849*x-773 4334951900328047 m001 (-GAMMA(17/24)+MadelungNaCl)/(Shi(1)-gamma(2)) 4334951906526377 s002 sum(A010740[n]/(exp(pi*n)+1),n=1..infinity) 4334951907136861 m001 (Si(Pi)-ln(Pi))/(-exp(-1/2*Pi)+Tribonacci) 4334951907451476 a001 299537289/305*34^(8/19) 4334951909698198 r009 Im(z^3+c),c=-17/46+24/55*I,n=55 4334951928563571 a001 1836311903/1364*843^(6/7) 4334951951789035 m005 (1/2*5^(1/2)-5/9)/(5/8*5^(1/2)-1/10) 4334951960299951 m009 (3/4*Psi(1,2/3)-1/3)/(1/2*Psi(1,2/3)+3) 4334951966618658 r002 11th iterates of z^2 + 4334951966807741 r005 Re(z^2+c),c=-8/27+37/56*I,n=15 4334951997300000 a007 Real Root Of -16*x^4-678*x^3+681*x^2+209*x-487 4334952013855809 r009 Im(z^3+c),c=-9/29+25/56*I,n=7 4334952035721479 r009 Im(z^3+c),c=-11/28+23/53*I,n=10 4334952047231842 r005 Re(z^2+c),c=1/3+4/43*I,n=14 4334952057945844 r009 Im(z^3+c),c=-17/46+24/55*I,n=50 4334952072201379 r009 Im(z^3+c),c=-17/46+24/55*I,n=52 4334952094988897 a007 Real Root Of -676*x^4-240*x^3-348*x^2+928*x+472 4334952111793596 p001 sum(1/(324*n+319)/(2^n),n=0..infinity) 4334952120824369 m001 (gamma(2)+MertensB3)/(ln(5)+3^(1/3)) 4334952122545005 a001 281/48*832040^(6/19) 4334952125363811 r002 19th iterates of z^2 + 4334952126513844 m005 (1/3*Pi+1/7)/(1/5*exp(1)-9/11) 4334952134564429 l006 ln(6591/6883) 4334952152007546 l006 ln(5394/8321) 4334952152675841 b008 14*Pi+Zeta[1/8] 4334952160996261 a001 7/4181*514229^(17/22) 4334952168206369 m001 (ln(gamma)+ln(5))/(Zeta(1,-1)-BesselI(0,2)) 4334952203569467 m001 (Zeta(3)+cos(1/5*Pi))/(GAMMA(19/24)-Rabbit) 4334952206613952 a001 53316291173/843*322^(1/3) 4334952209063613 r002 44th iterates of z^2 + 4334952210590568 a001 7/14930352*20365011074^(17/22) 4334952213206818 r002 11th iterates of z^2 + 4334952227384690 a007 Real Root Of -176*x^4-825*x^3-256*x^2-87*x-621 4334952233500137 a007 Real Root Of -161*x^4-481*x^3+713*x^2-835*x+653 4334952234230397 r002 45th iterates of z^2 + 4334952235807743 p004 log(22123/14341) 4334952239370223 m001 Riemann2ndZero^(Mills/GAMMA(11/12)) 4334952271434981 m005 (4*2^(1/2)+2/5)/(19/20+1/5*5^(1/2)) 4334952284011758 r002 6th iterates of z^2 + 4334952293612076 a001 11/1836311903*75025^(19/24) 4334952294413260 r002 49th iterates of z^2 + 4334952300041823 m001 MinimumGamma*exp(GolombDickman)^2/Trott^2 4334952300302226 r009 Im(z^3+c),c=-25/98+12/25*I,n=13 4334952320479543 m001 (LambertW(1)-sin(1))^MasserGramain 4334952326390025 m001 (FellerTornier+Salem)/(DuboisRaymond-cos(1)) 4334952327675724 m001 Rabbit^GaussKuzminWirsing/exp(-1/2*Pi) 4334952333981216 r002 46th iterates of z^2 + 4334952340709046 m001 BesselI(1,1)*ln(2)^Sarnak 4334952364278098 a001 567451585/682*843^(13/14) 4334952365582256 m001 (-Zeta(5)+5)/(-2^(1/2)+1/2) 4334952372726443 m001 Backhouse^BesselI(0,2)/Landau 4334952378896932 a001 5/3571*39603^(42/43) 4334952389187561 m001 1/Robbin*exp(Niven)^2/GAMMA(11/12) 4334952390416314 r005 Im(z^2+c),c=1/22+17/31*I,n=16 4334952399191225 r005 Re(z^2+c),c=17/114+8/15*I,n=37 4334952410584975 m009 (2/3*Psi(1,2/3)+4/5)/(3/5*Psi(1,1/3)+1/2) 4334952418865022 r005 Re(z^2+c),c=-29/50+12/41*I,n=22 4334952442600344 r009 Im(z^3+c),c=-17/46+24/55*I,n=49 4334952454757732 m001 (2^(1/3)+Cahen)/(Khinchin+Niven) 4334952458267066 r002 31th iterates of z^2 + 4334952463802169 a007 Real Root Of 179*x^4+946*x^3+828*x^2+166*x-988 4334952476069101 a001 2584/39603*18^(19/29) 4334952486594674 m003 11/10+Sqrt[5]+Sin[1/2+Sqrt[5]/2] 4334952487375754 a007 Real Root Of 203*x^4+776*x^3-536*x^2-483*x-493 4334952490250893 l006 ln(3553/5481) 4334952505550992 r005 Im(z^2+c),c=-7/32+35/47*I,n=26 4334952509055870 r005 Im(z^2+c),c=19/54+1/4*I,n=64 4334952527082182 r009 Im(z^3+c),c=-17/46+24/55*I,n=47 4334952547547751 r005 Im(z^2+c),c=13/66+7/16*I,n=17 4334952549579537 m001 GAMMA(11/24)^2*Sierpinski*ln(cos(Pi/5))^2 4334952554072625 r009 Im(z^3+c),c=-47/102+17/44*I,n=54 4334952569869535 a005 (1/cos(7/164*Pi))^418 4334952582037472 m006 (1/3*exp(Pi)+1/2)/(ln(Pi)+3/4) 4334952583501674 r009 Re(z^3+c),c=-31/64+5/29*I,n=42 4334952587684319 r005 Re(z^2+c),c=-57/98+2/9*I,n=19 4334952589331695 a001 6765/103682*18^(19/29) 4334952605856485 a001 17711/271443*18^(19/29) 4334952606728383 r002 18th iterates of z^2 + 4334952607002303 r005 Im(z^2+c),c=25/106+22/39*I,n=22 4334952608267419 a001 6624/101521*18^(19/29) 4334952608619170 a001 121393/1860498*18^(19/29) 4334952608670489 a001 317811/4870847*18^(19/29) 4334952608702207 a001 196418/3010349*18^(19/29) 4334952608836563 a001 75025/1149851*18^(19/29) 4334952609757458 a001 28657/439204*18^(19/29) 4334952610193378 a007 Real Root Of -73*x^4+310*x^3-880*x^2+830*x+553 4334952615744177 l003 KelvinHer(0,25/53) 4334952616069366 a001 10946/167761*18^(19/29) 4334952633267124 a007 Real Root Of 4*x^4+173*x^3-9*x^2+371*x+565 4334952638959051 m005 (1/2*Zeta(3)+2)/(2/11*2^(1/2)-6/7) 4334952645849708 a001 121393/4*18^(23/25) 4334952650374677 p001 sum((-1)^n/(53*n+37)/n/(256^n),n=0..infinity) 4334952654434697 a001 41/15456*1346269^(13/36) 4334952659331828 a001 4181/64079*18^(19/29) 4334952684927327 r009 Re(z^3+c),c=-25/56+7/51*I,n=24 4334952693393322 r005 Im(z^2+c),c=-101/110+2/7*I,n=39 4334952698770011 a007 Real Root Of -173*x^4-529*x^3+750*x^2-922*x-92 4334952700969255 m001 (exp(1)+gamma)/(-sin(1)+StolarskyHarborth) 4334952708244968 r002 6th iterates of z^2 + 4334952739723541 a007 Real Root Of -135*x^4-451*x^3+398*x^2-736*x+264 4334952741237671 r005 Im(z^2+c),c=-19/18+59/201*I,n=9 4334952747625796 r005 Im(z^2+c),c=27/110+13/34*I,n=36 4334952766013396 r002 51th iterates of z^2 + 4334952785437317 r002 15th iterates of z^2 + 4334952796137282 h001 (1/5*exp(2)+4/5)/(5/8*exp(2)+7/11) 4334952799088003 m009 (24/5*Catalan+3/5*Pi^2+2/3)/(5/2*Pi^2+2/3) 4334952824319073 r005 Im(z^2+c),c=3/94+29/53*I,n=31 4334952828060675 r005 Im(z^2+c),c=-115/98+3/53*I,n=48 4334952833368448 a001 322*233^(3/55) 4334952836781672 l006 ln(5265/8122) 4334952839904010 m005 (1/2*exp(1)-4/11)/(11/12*Pi-7/12) 4334952845527322 m001 (ln(gamma)+arctan(1/2))/(Tetranacci+ZetaQ(2)) 4334952854179414 s002 sum(A232094[n]/(n^3*2^n-1),n=1..infinity) 4334952855657533 r005 Im(z^2+c),c=-91/110+1/41*I,n=46 4334952860488258 v002 sum(1/(3^n+(37/2*n^2-1/2*n+21)),n=1..infinity) 4334952864289031 a007 Real Root Of -2*x^4-868*x^3-436*x^2+685*x-325 4334952868325543 r009 Im(z^3+c),c=-23/54+11/27*I,n=51 4334952870526730 p003 LerchPhi(1/12,1,53/226) 4334952871016485 s002 sum(A262157[n]/(n*exp(pi*n)-1),n=1..infinity) 4334952876474839 h001 (9/11*exp(1)+2/11)/(1/7*exp(1)+1/6) 4334952880310454 m005 (1/3*Catalan+3/4)/(2/7*Zeta(3)-1/10) 4334952895643323 r005 Re(z^2+c),c=-7/86+29/45*I,n=30 4334952934707522 a007 Real Root Of -228*x^4-814*x^3+680*x^2-394*x-282 4334952935564603 r009 Im(z^3+c),c=-25/74+19/43*I,n=8 4334952936616501 m001 (Psi(1,1/3)+Catalan)/(-Zeta(3)+Backhouse) 4334952937003361 r005 Re(z^2+c),c=-47/58+5/14*I,n=4 4334952943073404 r005 Im(z^2+c),c=19/86+21/52*I,n=56 4334952951890916 r005 Im(z^2+c),c=27/86+3/49*I,n=7 4334952954629794 m001 (-Niven+ZetaP(4))/(1-GolombDickman) 4334952955857150 a001 1597/24476*18^(19/29) 4334952962591628 r009 Im(z^3+c),c=-3/110+18/35*I,n=11 4334952962758612 r005 Im(z^2+c),c=21/86+17/44*I,n=30 4334952969254463 a001 12586269025/521*521^(6/13) 4334952977661008 a007 Real Root Of -927*x^4+873*x^3+126*x^2+574*x+329 4334952988777665 r005 Re(z^2+c),c=-29/56+11/25*I,n=26 4334952992480691 a001 9349/13*55^(13/29) 4334953000751779 r005 Re(z^2+c),c=23/102+23/60*I,n=25 4334953001448236 r005 Im(z^2+c),c=3/64+31/57*I,n=33 4334953017937917 a007 Real Root Of 432*x^4-155*x^3-795*x+342 4334953029917867 r002 31th iterates of z^2 + 4334953030887076 m001 (3^(1/2)+polylog(4,1/2))/(Grothendieck+Magata) 4334953033365072 r009 Im(z^3+c),c=-3/40+20/41*I,n=3 4334953043493494 r009 Re(z^3+c),c=-47/90+17/60*I,n=29 4334953049646098 m001 (gamma*FransenRobinson+QuadraticClass)/gamma 4334953051156438 r009 Re(z^3+c),c=-25/66+4/61*I,n=16 4334953063061525 r005 Re(z^2+c),c=-41/66+1/53*I,n=51 4334953064484859 m001 (Landau+Stephens)/(Pi^(1/2)+AlladiGrinstead) 4334953080523599 m001 (GAMMA(5/6)-Grothendieck)/(MertensB3+ZetaP(3)) 4334953093483309 m005 (1/2*Catalan+1/11)/(4/11*3^(1/2)+7/11) 4334953098556791 m001 (Bloch+FeigenbaumB)/(PlouffeB-ZetaP(3)) 4334953115420562 a007 Real Root Of 582*x^4-750*x^3+125*x^2-175*x-181 4334953117879647 r005 Re(z^2+c),c=-23/94+37/49*I,n=39 4334953137411631 r005 Im(z^2+c),c=5/18+14/47*I,n=7 4334953160831097 q001 1/230683 4334953168261411 r002 57th iterates of z^2 + 4334953168737737 m001 1/Rabbit*ln(Kolakoski)/RenyiParking 4334953187346550 m001 exp(Magata)^2/MadelungNaCl/Zeta(3) 4334953226997336 m001 (Riemann2ndZero-exp(Pi)*Weierstrass)/exp(Pi) 4334953240981999 r005 Im(z^2+c),c=-77/122+18/59*I,n=22 4334953255251953 m001 (-ln(Pi)+ZetaP(3))/(BesselJ(0,1)-exp(Pi)) 4334953258070788 r005 Im(z^2+c),c=2/9+21/52*I,n=42 4334953261984333 r005 Re(z^2+c),c=-3/5+16/63*I,n=48 4334953275085531 a001 29/12586269025*46368^(1/17) 4334953275109252 a001 29/32951280099*591286729879^(1/17) 4334953275109252 a001 29/20365011074*165580141^(1/17) 4334953277598207 a007 Real Root Of 430*x^4-824*x^3+423*x^2-215*x-255 4334953279644951 m001 Magata/(5^(1/2)-Psi(1,1/3)) 4334953281819571 r009 Im(z^3+c),c=-17/46+24/55*I,n=46 4334953285052691 r002 42th iterates of z^2 + 4334953304719893 m001 (KhinchinLevy+Landau)/(MertensB2+Otter) 4334953340796217 m001 arctan(1/3)/Ei(1,1)*Otter 4334953341960142 r009 Re(z^3+c),c=-43/70+5/17*I,n=25 4334953371843066 r005 Re(z^2+c),c=-69/118+13/50*I,n=26 4334953372336585 r009 Re(z^3+c),c=-43/90+10/29*I,n=5 4334953387320158 r002 57th iterates of z^2 + 4334953409775329 a001 7/3*1597^(17/24) 4334953411506340 m005 (1/3*5^(1/2)-2/3)/(8/11*3^(1/2)+5/9) 4334953415699772 m005 (-13/5+2/5*5^(1/2))/(-1/3+1/6*5^(1/2)) 4334953428126195 a007 Real Root Of 949*x^4-325*x^3+501*x^2-611*x-419 4334953440695492 m001 (Cahen-arctan(1/2))/PrimesInBinary 4334953458420256 a007 Real Root Of 226*x^4+770*x^3-989*x^2-190*x+679 4334953464696327 r009 Im(z^3+c),c=-27/94+57/64*I,n=4 4334953473346177 m001 (cos(1/5*Pi)+gamma(1))/(BesselI(1,2)+OneNinth) 4334953478637513 r002 28th iterates of z^2 + 4334953482465743 r005 Im(z^2+c),c=-1/118+11/20*I,n=24 4334953482606067 r009 Re(z^3+c),c=-1/42+14/15*I,n=14 4334953487670633 s002 sum(A243926[n]/(n*exp(pi*n)-1),n=1..infinity) 4334953496704761 g001 GAMMA(11/12,71/89) 4334953505177530 r005 Re(z^2+c),c=-33/52+13/60*I,n=37 4334953507711294 r005 Re(z^2+c),c=-21/34+8/69*I,n=63 4334953510989912 m005 (1/2*Pi+3/4)/(4*Zeta(3)+6/11) 4334953523902815 a007 Real Root Of -903*x^4-228*x^3-564*x^2-3*x+118 4334953553480301 a007 Real Root Of 239*x^4-392*x^3+812*x^2-849*x-561 4334953554849286 h001 (3/11*exp(2)+1/9)/(5/9*exp(2)+4/5) 4334953555954448 l006 ln(1712/2641) 4334953572079389 a007 Real Root Of -953*x^4+977*x^3+277*x^2+484*x+271 4334953577567730 a007 Real Root Of -142*x^4-800*x^3-559*x^2+958*x-367 4334953579865874 r005 Re(z^2+c),c=7/90+59/60*I,n=3 4334953588620041 r005 Re(z^2+c),c=-7/12+23/73*I,n=49 4334953601414052 q001 981/2263 4334953611503365 a007 Real Root Of 100*x^4+303*x^3-796*x^2-979*x+84 4334953616890613 m001 (Si(Pi)+GaussAGM)/(-Kolakoski+ZetaP(3)) 4334953618280531 r005 Re(z^2+c),c=-39/64+1/5*I,n=55 4334953635157932 a007 Real Root Of -215*x^4+462*x^3-105*x^2+546*x-247 4334953648554562 r002 28th iterates of z^2 + 4334953651334708 m005 (1/2*3^(1/2)+2/7)/(7/12*Catalan-4/5) 4334953668301664 a001 225851433717/1364*322^(1/6) 4334953676825880 m001 (Rabbit-ZetaP(4))/(arctan(1/3)-Grothendieck) 4334953679943022 m001 1/Paris*exp(Si(Pi))^2/GAMMA(7/24)^2 4334953690828570 a007 Real Root Of -740*x^4+966*x^3-586*x^2-888*x-170 4334953694118003 a007 Real Root Of 152*x^4+836*x^3+950*x^2+673*x-509 4334953702048654 r009 Re(z^3+c),c=-17/36+9/56*I,n=55 4334953706769572 a005 (1/cos(19/213*Pi))^1715 4334953715963001 r009 Im(z^3+c),c=-61/126+22/57*I,n=34 4334953724820546 r005 Im(z^2+c),c=33/118+10/29*I,n=60 4334953725403796 m004 -2+20/Pi-(5*Sqrt[5]*Pi)/E^(Sqrt[5]*Pi) 4334953744009524 a003 1/2+2*cos(8/27*Pi)-cos(1/30*Pi)-cos(7/30*Pi) 4334953745143943 l006 ln(28/2137) 4334953751127846 m001 1/Magata^2/LaplaceLimit^2/ln(Trott) 4334953772276312 r002 43th iterates of z^2 + 4334953773255392 r009 Im(z^3+c),c=-17/46+24/55*I,n=44 4334953792933503 r009 Re(z^3+c),c=-39/86+6/11*I,n=24 4334953810365951 r005 Re(z^2+c),c=-55/94+12/37*I,n=54 4334953815949429 a001 199/13*196418^(15/23) 4334953821967220 r002 14th iterates of z^2 + 4334953825997532 r005 Im(z^2+c),c=-1/98+17/30*I,n=28 4334953830103867 v003 sum((36+11*n^2-26*n)/n^(n-1),n=1..infinity) 4334953832434285 r002 45th iterates of z^2 + 4334953833372667 r005 Re(z^2+c),c=-41/74+13/33*I,n=51 4334953835046692 p004 log(20929/13567) 4334953870522166 m001 MasserGramainDelta^exp(-1/2*Pi)-Salem 4334953872418048 r002 11th iterates of z^2 + 4334953880727597 r005 Im(z^2+c),c=-1/38+7/12*I,n=53 4334953893994877 p001 sum(1/(488*n+241)/(8^n),n=0..infinity) 4334953897505030 a001 1568397607/1597*34^(8/19) 4334953917127400 m005 (27/8+3/8*5^(1/2))/(1/3*Catalan+2/3) 4334953925670196 m001 (ln(Pi)+Pi*csc(11/24*Pi)/GAMMA(13/24))/Rabbit 4334953927940427 b008 1/2+3^(-1/3)+Pi 4334953932482584 a001 225851433717/2207*322^(1/4) 4334953936114731 r005 Im(z^2+c),c=3/26+21/43*I,n=28 4334953936398436 r002 37th iterates of z^2 + 4334953948330226 a007 Real Root Of 311*x^4+156*x^3-797*x^2-738*x+446 4334953950621608 m004 -16+25*Sqrt[5]*Pi-25*Pi*Csc[Sqrt[5]*Pi] 4334953975655127 m001 (Rabbit+Robbin)/(FeigenbaumC+MertensB3) 4334953993832568 r002 43th iterates of z^2 + 4334954001645477 r005 Im(z^2+c),c=-151/122+14/39*I,n=7 4334954011107614 m001 ln(Pi)/MinimumGamma^2*cos(Pi/5) 4334954012789902 a001 141422324/55*377^(10/21) 4334954020650573 m001 sin(1/12*Pi)*Otter+FeigenbaumMu 4334954022669393 a007 Real Root Of 194*x^4+753*x^3-443*x^2-426*x-689 4334954035620554 a003 sin(Pi*17/78)*sin(Pi*25/104) 4334954044597011 s001 sum(exp(-Pi/3)^n*A161393[n],n=1..infinity) 4334954054802666 r002 17th iterates of z^2 + 4334954062944487 m005 (1/2*Pi+6)/(9/10*exp(1)-7/10) 4334954067041369 r005 Re(z^2+c),c=-43/74+17/39*I,n=54 4334954070174281 a007 Real Root Of 314*x^4-847*x^3+35*x^2-692*x+30 4334954079603868 r005 Im(z^2+c),c=9/118+16/27*I,n=54 4334954110911579 m009 (3/4*Psi(1,1/3)-6)/(3*Psi(1,3/4)-4) 4334954119329710 r005 Re(z^2+c),c=-77/114+5/16*I,n=13 4334954124538234 m001 Khintchine/exp(Artin)*GAMMA(1/24) 4334954124668902 m001 (Rabbit+Trott2nd)/(Ei(1)-DuboisRaymond) 4334954125816939 a007 Real Root Of -32*x^4+834*x^3+726*x^2+590*x-459 4334954145788703 r005 Re(z^2+c),c=-11/18+9/64*I,n=33 4334954149586254 r005 Re(z^2+c),c=-19/46+21/38*I,n=33 4334954150115346 r009 Im(z^3+c),c=-1/21+41/55*I,n=6 4334954158147679 a001 1/322*3^(17/56) 4334954163215282 r005 Re(z^2+c),c=-59/106+19/43*I,n=58 4334954170845019 m001 (GAMMA(23/24)+Landau)/(MertensB2+Sierpinski) 4334954187850084 a001 4106118243/4181*34^(8/19) 4334954197720779 a001 20365011074/521*521^(5/13) 4334954211584335 m001 Porter*(Magata-ZetaP(2)) 4334954222633548 m001 1/GAMMA(1/4)*ln(RenyiParking)*cos(1) 4334954227621461 r002 52th iterates of z^2 + 4334954230210859 a001 5374978561/5473*34^(8/19) 4334954235671185 g007 Psi(2,4/7)-Psi(2,9/11)-Psi(2,7/11)-Psi(2,9/10) 4334954236391213 a001 28143753123/28657*34^(8/19) 4334954237292915 a001 73681302247/75025*34^(8/19) 4334954237424471 a001 96450076809/98209*34^(8/19) 4334954237443665 a001 505019158607/514229*34^(8/19) 4334954237446465 a001 1322157322203/1346269*34^(8/19) 4334954237446874 a001 1730726404001/1762289*34^(8/19) 4334954237446933 a001 9062201101803/9227465*34^(8/19) 4334954237446942 a001 23725150497407/24157817*34^(8/19) 4334954237446947 a001 192933544679/196452*34^(8/19) 4334954237446970 a001 5600748293801/5702887*34^(8/19) 4334954237447126 a001 2139295485799/2178309*34^(8/19) 4334954237448196 a001 204284540899/208010*34^(8/19) 4334954237455527 a001 312119004989/317811*34^(8/19) 4334954237505777 a001 119218851371/121393*34^(8/19) 4334954237850197 a001 11384387281/11592*34^(8/19) 4334954237904495 a007 Real Root Of 748*x^4-81*x^3+823*x^2+223*x-91 4334954239502399 m001 (Magata-Stephens)/(Zeta(1,2)+BesselI(1,2)) 4334954239988137 a001 233/843*312119004989^(4/5) 4334954239988137 a001 233/843*(1/2+1/2*5^(1/2))^44 4334954239988137 a001 233/843*23725150497407^(11/16) 4334954239988137 a001 233/843*73681302247^(11/13) 4334954239988137 a001 233/843*10749957122^(11/12) 4334954239988137 a001 233/843*4106118243^(22/23) 4334954240038387 a001 377/521*2537720636^(14/15) 4334954240038387 a001 377/521*17393796001^(6/7) 4334954240038387 a001 377/521*45537549124^(14/17) 4334954240038387 a001 377/521*817138163596^(14/19) 4334954240038387 a001 377/521*14662949395604^(2/3) 4334954240038387 a001 377/521*(1/2+1/2*5^(1/2))^42 4334954240038387 a001 377/521*505019158607^(3/4) 4334954240038387 a001 377/521*192900153618^(7/9) 4334954240038387 a001 377/521*10749957122^(7/8) 4334954240038387 a001 377/521*4106118243^(21/23) 4334954240038387 a001 377/521*1568397607^(21/22) 4334954240210882 a001 17393796001/17711*34^(8/19) 4334954241593757 r005 Re(z^2+c),c=-17/30+27/73*I,n=57 4334954247308006 r002 49th iterates of z^2 + 4334954253474264 a007 Real Root Of 237*x^4+982*x^3+6*x^2+713*x-719 4334954256391259 a001 6643838879/6765*34^(8/19) 4334954269052201 h001 (5/8*exp(2)+1/10)/(1/11*exp(2)+5/12) 4334954270927174 r005 Im(z^2+c),c=-49/66+1/49*I,n=23 4334954272363930 m001 (Gompertz-StronglyCareFree)/(Pi+1) 4334954277283716 r005 Re(z^2+c),c=-57/94+6/55*I,n=24 4334954281561202 a007 Real Root Of 584*x^4+23*x^3-398*x^2-271*x-11 4334954287260894 l006 ln(6749/7048) 4334954292328818 r009 Re(z^3+c),c=-45/98+6/53*I,n=12 4334954300452116 m005 (1/2*2^(1/2)+4/7)/(7/8*gamma-4/5) 4334954312184602 l006 ln(5007/7724) 4334954314974671 r005 Re(z^2+c),c=-107/86+5/51*I,n=56 4334954317198522 r005 Re(z^2+c),c=17/114+17/35*I,n=16 4334954318685211 a001 29/121393*2^(49/57) 4334954321046131 a001 3524667*199^(10/11) 4334954323179813 r005 Re(z^2+c),c=41/114+13/49*I,n=32 4334954341655813 m001 Ei(1)^Tribonacci/RenyiParking 4334954356119470 m005 (1/2*Zeta(3)+1/11)/(2/9*exp(1)-4/9) 4334954361371252 m001 (Totient-ZetaP(3))/(gamma(3)+Khinchin) 4334954367293214 a001 33391061/34*34^(8/19) 4334954395376406 a003 cos(Pi*11/81)-cos(Pi*27/79) 4334954396208233 a007 Real Root Of -225*x^4+469*x^3-533*x^2+546*x+383 4334954398394763 r005 Re(z^2+c),c=-79/110+1/16*I,n=45 4334954399854212 r005 Im(z^2+c),c=-15/31+25/56*I,n=3 4334954400287294 m001 (Cahen+ZetaQ(2))/(ln(Pi)+arctan(1/2)) 4334954410228350 r005 Re(z^2+c),c=-5/42+23/29*I,n=57 4334954418290954 r005 Re(z^2+c),c=-35/58+11/40*I,n=58 4334954422839851 r005 Im(z^2+c),c=17/106+16/35*I,n=50 4334954428996533 r005 Im(z^2+c),c=-21/52+29/53*I,n=3 4334954431481004 r002 38th iterates of z^2 + 4334954433246934 m001 1/MertensB1^2*GolombDickman^2/ln(Zeta(5))^2 4334954443136555 h001 (5/9*exp(1)+5/7)/(4/7*exp(2)+10/11) 4334954459187830 r005 Im(z^2+c),c=35/106+17/43*I,n=56 4334954479493907 r005 Re(z^2+c),c=-18/29+3/62*I,n=62 4334954480554656 m001 exp(MadelungNaCl)^2*LaplaceLimit/Rabbit^2 4334954492792369 p001 sum((-1)^n/(233*n+201)/n/(5^n),n=1..infinity) 4334954497897348 r005 Im(z^2+c),c=9/86+26/53*I,n=27 4334954538875420 r002 46th iterates of z^2 + 4334954545995768 h001 (5/6*exp(1)+1/2)/(9/11*exp(2)+1/3) 4334954556584403 r009 Im(z^3+c),c=-23/74+29/62*I,n=8 4334954561541038 r002 51th iterates of z^2 + 4334954573207584 r005 Re(z^2+c),c=-37/60+3/40*I,n=34 4334954578669626 r005 Re(z^2+c),c=7/22+21/38*I,n=44 4334954583738097 r009 Im(z^3+c),c=-5/23+39/56*I,n=9 4334954586586615 m008 (4*Pi^5+3/4)/(3/4*Pi^3+5) 4334954589966221 r009 Im(z^3+c),c=-7/78+62/63*I,n=16 4334954590382887 r005 Re(z^2+c),c=-41/66+1/30*I,n=41 4334954601885956 r005 Re(z^2+c),c=55/126+4/17*I,n=11 4334954616057144 a007 Real Root Of 654*x^4+376*x^3+366*x^2-966*x-480 4334954622274840 r005 Im(z^2+c),c=-13/114+26/43*I,n=34 4334954638950958 m001 Trott/ln(LandauRamanujan)*Zeta(5)^2 4334954647354554 r009 Im(z^3+c),c=-3/17+32/59*I,n=2 4334954661217546 h001 (5/7*exp(1)+8/11)/(9/11*exp(2)+1/9) 4334954669680026 r005 Re(z^2+c),c=-43/78+17/45*I,n=41 4334954678904575 a007 Real Root Of 355*x^4+691*x^3+138*x^2-747*x-306 4334954686528856 m001 (2^(1/2)+5^(1/2))/(-gamma(2)+FeigenbaumB) 4334954690873458 h001 (8/11*exp(1)+7/9)/(1/10*exp(1)+4/11) 4334954692615795 a001 591286729879/5778*322^(1/4) 4334954702466706 a008 Real Root of x^3-x^2-2*x-54 4334954705102949 l006 ln(3295/5083) 4334954712048819 m005 (2^(1/2)+3/5)/(1/4*2^(1/2)-5) 4334954721185287 a001 1/615*34^(27/29) 4334954725335853 m004 (-275*Pi)/2-ProductLog[Sqrt[5]*Pi] 4334954737433236 a007 Real Root Of -998*x^4+652*x^3+105*x^2+400*x-211 4334954744168774 m003 -2-6*Coth[1/2+Sqrt[5]/2]+2/Log[1/2+Sqrt[5]/2] 4334954755273712 a003 cos(Pi*1/101)-cos(Pi*7/74) 4334954757183904 a007 Real Root Of 877*x^4-152*x^3-465*x^2-651*x+351 4334954759648402 r002 50th iterates of z^2 + 4334954766690715 a007 Real Root Of -236*x^4-937*x^3+469*x^2+190*x-980 4334954772404432 r005 Im(z^2+c),c=11/52+7/17*I,n=44 4334954773368618 r005 Re(z^2+c),c=-3/5+22/89*I,n=26 4334954803517758 a001 1548008755920/15127*322^(1/4) 4334954808636893 m005 (1/3*gamma+1/9)/(1/8*3^(1/2)-11/12) 4334954819698137 a001 4052739537881/39603*322^(1/4) 4334954822058822 a001 225749145909/2206*322^(1/4) 4334954822693052 r005 Re(z^2+c),c=3/29+31/50*I,n=45 4334954822812651 m001 1/TreeGrowth2nd^2/exp(Conway)^2/Zeta(1,2)^2 4334954823517806 a001 6557470319842/64079*322^(1/4) 4334954829698161 a001 2504730781961/24476*322^(1/4) 4334954832153392 s002 sum(A115025[n]/(n*exp(pi*n)+1),n=1..infinity) 4334954838522783 m001 Pi*(ln(2)/ln(10)/Zeta(1/2)-GAMMA(19/24)) 4334954838807527 m001 (arctan(1/2)+Grothendieck)/(Kac-OneNinth) 4334954839786873 a001 439204*1836311903^(11/17) 4334954839811467 a001 87403803*514229^(11/17) 4334954841157575 a007 Real Root Of 353*x^4+646*x^3+386*x^2-364*x+15 4334954843582026 r005 Im(z^2+c),c=19/126+26/57*I,n=18 4334954847903598 a007 Real Root Of 668*x^4-305*x^3+101*x^2-525*x-295 4334954864622842 m001 (-Kolakoski+Landau)/(2^(1/2)-GaussAGM) 4334954872058943 a001 956722026041/9349*322^(1/4) 4334954875872146 m001 (-Totient+Tribonacci)/(2^(1/3)-OneNinth) 4334954876284309 r009 Re(z^3+c),c=-33/70+4/25*I,n=63 4334954893168039 p003 LerchPhi(1/6,4,245/198) 4334954898030704 r005 Re(z^2+c),c=17/46+24/41*I,n=11 4334954901035719 m001 (Cahen+ZetaQ(3))/(Ei(1,1)+GAMMA(17/24)) 4334954924520715 r005 Re(z^2+c),c=-31/50+3/43*I,n=54 4334954930360791 r005 Re(z^2+c),c=-18/29+2/51*I,n=48 4334954951575633 r005 Re(z^2+c),c=-9/14+2/163*I,n=24 4334954988271970 a001 610/9349*18^(19/29) 4334955001801520 a007 Real Root Of -140*x^4-427*x^3+937*x^2+509*x-747 4334955004974637 p001 sum(1/(548*n+247)/(5^n),n=0..infinity) 4334955013705346 m005 (1/2*Zeta(3)-8/9)/(3/7*gamma+5/12) 4334955023892471 a005 (1/cos(4/87*Pi))^800 4334955029037172 m001 (LambertW(1)-gamma)/(MadelungNaCl+Stephens) 4334955030416700 r005 Im(z^2+c),c=13/70+27/62*I,n=60 4334955032510549 r005 Re(z^2+c),c=-9/14+61/202*I,n=63 4334955039678993 a005 (1/cos(11/203*Pi))^1524 4334955043157789 r009 Im(z^3+c),c=-21/52+13/31*I,n=33 4334955047956892 h001 (4/5*exp(1)+7/9)/(1/12*exp(1)+5/11) 4334955048586303 r009 Im(z^3+c),c=-11/29+19/44*I,n=28 4334955055773237 r002 27th iterates of z^2 + 4334955072568751 r005 Im(z^2+c),c=4/15+19/56*I,n=11 4334955074061495 r005 Re(z^2+c),c=-17/29+17/57*I,n=44 4334955081545659 a007 Real Root Of -37*x^4-10*x^3+776*x^2+714*x+764 4334955083011695 m001 (Chi(1)-exp(1/exp(1)))/(BesselI(1,1)+GaussAGM) 4334955095001544 a007 Real Root Of -48*x^4-17*x^3-979*x^2+726*x+499 4334955096255313 a007 Real Root Of 969*x^4+39*x^3+643*x^2-577*x-402 4334955108412108 l006 ln(4878/7525) 4334955119888640 r009 Re(z^3+c),c=-7/12+8/35*I,n=8 4334955127426680 a001 969323029/987*34^(8/19) 4334955129764859 m001 GAMMA(11/24)*Rabbit^2/exp(cos(Pi/5)) 4334955136802556 m001 1/exp(1)*exp(Sierpinski)^2*sin(Pi/12)^2 4334955138021960 a007 Real Root Of 163*x^4+627*x^3-474*x^2-511*x+208 4334955162404088 a001 365435296162/3571*322^(1/4) 4334955170316521 r009 Im(z^3+c),c=-17/46+24/55*I,n=43 4334955192677687 r005 Re(z^2+c),c=27/74+8/57*I,n=30 4334955203666834 r009 Im(z^3+c),c=-8/31+20/47*I,n=2 4334955210796145 r002 30th iterates of z^2 + 4334955215726183 a007 Real Root Of -849*x^4+769*x^3-884*x^2+545*x+495 4334955220536324 r009 Im(z^3+c),c=-21/46+13/56*I,n=3 4334955240273565 a007 Real Root Of -778*x^4+959*x^3+764*x^2+662*x+249 4334955240286918 r005 Re(z^2+c),c=-23/58+26/59*I,n=2 4334955254533578 r005 Re(z^2+c),c=21/82+20/37*I,n=55 4334955256150855 m005 (1/2*Pi+3)/(5/8*Pi-10/11) 4334955275050259 m001 CopelandErdos/(Psi(2,1/3)+RenyiParking) 4334955284571126 a007 Real Root Of 855*x^4+710*x^3+348*x^2-921*x-437 4334955293601439 r005 Im(z^2+c),c=11/42+6/17*I,n=25 4334955296416426 r005 Re(z^2+c),c=-13/56+55/63*I,n=3 4334955305943731 a007 Real Root Of 32*x^4-999*x^3-29*x^2-206*x+175 4334955311846858 m008 (1/3*Pi^4+2)/(1/4*Pi^3+1/5) 4334955314092907 l006 ln(6461/9967) 4334955320535231 m001 (BesselI(0,1)+Zeta(5))/(Cahen+FeigenbaumDelta) 4334955330258707 m001 (GAMMA(3/4)-GlaisherKinkelin)/(Mills+ZetaQ(3)) 4334955330886838 b008 -44+Tan[1+E] 4334955353149046 a001 1/6*7^(28/57) 4334955366107087 r005 Re(z^2+c),c=-45/74+9/47*I,n=42 4334955371720944 m001 (Totient-TwinPrimes)/(Zeta(1/2)+Conway) 4334955377465974 r005 Re(z^2+c),c=-5/8+59/200*I,n=14 4334955392279148 m001 LandauRamanujan^(Landau/ZetaP(3)) 4334955393349553 q001 1069/2466 4334955398661015 p004 log(21599/283) 4334955414151454 m001 (arctan(1/2)+Magata)/(MertensB2-Tetranacci) 4334955426187443 a001 63246219*521^(4/13) 4334955449576697 r002 46th iterates of z^2 + 4334955451482366 a001 2889/305*28657^(19/51) 4334955453451315 r005 Re(z^2+c),c=-5/8+76/243*I,n=50 4334955459089140 m009 (1/5*Psi(1,2/3)-1/5)/(1/2*Psi(1,1/3)-6) 4334955461092416 a001 4/930249*11^(53/55) 4334955461164378 a007 Real Root Of -494*x^4+20*x^3-931*x^2+594*x-24 4334955464369519 m001 FeigenbaumD+ln(2+3^(1/2))^MasserGramainDelta 4334955474058180 r002 36th iterates of z^2 + 4334955486234260 m001 (-GaussAGM+Landau)/(2^(1/3)-sin(1/5*Pi)) 4334955504718942 r009 Re(z^3+c),c=-53/102+9/43*I,n=21 4334955505982664 r002 34th iterates of z^2 + 4334955509475396 r005 Im(z^2+c),c=9/82+27/52*I,n=29 4334955512736762 r005 Im(z^2+c),c=-9/16+11/122*I,n=16 4334955513635720 r002 51th iterates of z^2 + 4334955518633134 a007 Real Root Of 65*x^4+169*x^3-638*x^2-766*x-518 4334955523796418 m005 (1/3*3^(1/2)+2/7)/(9/10*Zeta(3)+10/11) 4334955534283406 m001 (Thue+ZetaQ(2))/(FeigenbaumD-gamma) 4334955541600452 r005 Re(z^2+c),c=-39/94+19/31*I,n=3 4334955545153888 a007 Real Root Of 713*x^4-941*x^3-606*x^2+136*x+71 4334955549486967 r005 Re(z^2+c),c=17/98+37/63*I,n=27 4334955550495003 m001 (-GAMMA(13/24)+LaplaceLimit)/(1-GAMMA(3/4)) 4334955572301513 m001 (Chi(1)-Zeta(5))/(-GAMMA(11/12)+Gompertz) 4334955576196817 k001 Champernowne real with 62*n+371 4334955576206827 k005 Champernowne real with floor(sqrt(3)*(36*n+214)) 4334955578154876 r002 21th iterates of z^2 + 4334955590729990 r005 Im(z^2+c),c=-103/122+10/37*I,n=5 4334955592153875 b008 5+60*(4+Pi) 4334955597168162 r005 Re(z^2+c),c=-13/21+5/58*I,n=51 4334955615645664 m001 (LambertW(1)-MinimumGamma)/(Sarnak+Totient) 4334955616672391 r009 Re(z^3+c),c=-55/118+9/58*I,n=58 4334955641802128 r009 Im(z^3+c),c=-5/74+21/41*I,n=8 4334955645366128 a007 Real Root Of -478*x^4+665*x^3-160*x^2+295*x+229 4334955648930755 a001 15456/41*76^(1/31) 4334955681998394 a007 Real Root Of -714*x^4+631*x^3+318*x^2+464*x+218 4334955682557250 a007 Real Root Of 412*x^4-639*x^3+498*x^2+328*x-18 4334955685102532 m001 (cos(1)+LambertW(1))/(ln(3)+Backhouse) 4334955690771476 a001 10983760033/281*322^(5/12) 4334955707374788 h001 (7/9*exp(2)+1/9)/(2/11*exp(1)+6/7) 4334955714335127 m001 1/TreeGrowth2nd^2*Paris^2/exp(GAMMA(3/4))^2 4334955717320256 r005 Re(z^2+c),c=39/122+19/43*I,n=28 4334955729789022 a001 2207*6557470319842^(11/17) 4334955732691668 r005 Im(z^2+c),c=-53/82+1/52*I,n=26 4334955741156113 a007 Real Root Of 807*x^4+66*x^3-182*x^2-862*x+374 4334955743913159 r005 Re(z^2+c),c=4/27+11/23*I,n=53 4334955769496763 a007 Real Root Of 933*x^4+138*x^3+543*x^2-748*x-448 4334955782502425 r002 26th iterates of z^2 + 4334955789928987 m006 (5/6*exp(Pi)-2/5)/(3/4*Pi+2) 4334955790477108 r002 54th iterates of z^2 + 4334955792853925 s002 sum(A277199[n]/(n*exp(pi*n)+1),n=1..infinity) 4334955795429196 r002 28th iterates of z^2 + 4334955797203352 r005 Im(z^2+c),c=-7/36+33/46*I,n=56 4334955797260241 r009 Im(z^3+c),c=-59/122+19/53*I,n=27 4334955828938416 r005 Im(z^2+c),c=15/122+18/37*I,n=60 4334955833203760 a007 Real Root Of 261*x^4+999*x^3-548*x^2+324*x+915 4334955835387860 r005 Re(z^2+c),c=-29/46+5/58*I,n=29 4334955859193119 s003 concatenated sequence A092207 4334955861334925 m005 (15/28+1/4*5^(1/2))/(2/7*Zeta(3)-1/11) 4334955881215647 r005 Re(z^2+c),c=-17/29+13/41*I,n=44 4334955881969560 m001 ThueMorse^(ln(3)*Thue) 4334955889192052 s002 sum(A116077[n]/(n*exp(pi*n)+1),n=1..infinity) 4334955892356663 r005 Re(z^2+c),c=-9/14+20/97*I,n=30 4334955900431972 m001 (-Pi^(1/2)+FeigenbaumAlpha)/(cos(1)+ln(Pi)) 4334955904971300 a007 Real Root Of 505*x^4+293*x^3+817*x^2-857*x-519 4334955909429218 a007 Real Root Of 453*x^4-826*x^3+240*x^2-299*x-258 4334955913311474 r009 Re(z^3+c),c=-63/110+16/35*I,n=50 4334955927567279 r002 34th iterates of z^2 + 4334955928741970 r005 Im(z^2+c),c=23/90+10/27*I,n=63 4334955947896378 l006 ln(1583/2442) 4334955952766789 r002 40th iterates of z^2 + 4334955964426100 p001 sum(1/(409*n+232)/(64^n),n=0..infinity) 4334955967870581 r005 Re(z^2+c),c=-21/34+8/69*I,n=59 4334955998563541 a007 Real Root Of 218*x^4+841*x^3-282*x^2+652*x-348 4334955999009605 r005 Im(z^2+c),c=1/86+22/39*I,n=64 4334956030900843 a007 Real Root Of 271*x^4-74*x^3-339*x^2-25*x+71 4334956042961860 m005 (1/2*exp(1)+2/3)/(7/11*gamma+1/10) 4334956054801998 r005 Im(z^2+c),c=7/62+13/31*I,n=6 4334956066979307 r005 Im(z^2+c),c=13/44+21/64*I,n=58 4334956067685338 r005 Re(z^2+c),c=-21/34+22/73*I,n=52 4334956069904757 a007 Real Root Of 640*x^4-724*x^3-723*x^2-763*x+503 4334956075759949 a007 Real Root Of -765*x^4+314*x^3-894*x^2+866*x+596 4334956079089595 r002 63th iterates of z^2 + 4334956079089595 r002 63th iterates of z^2 + 4334956083134855 s002 sum(A282184[n]/(n^2*2^n+1),n=1..infinity) 4334956093967766 r002 56th iterates of z^2 + 4334956095895796 r009 Im(z^3+c),c=-1/126+48/61*I,n=22 4334956117625059 m005 (1/2*2^(1/2)+5/11)/(7/9*Catalan-4/9) 4334956120806197 p001 sum(1/(297*n+65)/n/(64^n),n=1..infinity) 4334956131288765 m005 (1/2*5^(1/2)+4/5)/(1/10*exp(1)-5/7) 4334956143045483 r005 Re(z^2+c),c=-21/34+11/107*I,n=41 4334956157271451 r009 Im(z^3+c),c=-14/29+17/42*I,n=30 4334956163377120 r005 Im(z^2+c),c=23/64+9/55*I,n=37 4334956165879480 r005 Re(z^2+c),c=21/106+10/31*I,n=8 4334956169226223 a007 Real Root Of -302*x^4-414*x^3+243*x^2+913*x-40 4334956183433817 s002 sum(A201545[n]/(16^n-1),n=1..infinity) 4334956209181086 r002 3th iterates of z^2 + 4334956216004616 r002 12th iterates of z^2 + 4334956229299550 a007 Real Root Of -800*x^4-45*x^3-734*x^2-105*x+117 4334956229856712 r005 Im(z^2+c),c=5/32+23/50*I,n=51 4334956243943831 r009 Im(z^3+c),c=-9/17+14/57*I,n=23 4334956248713645 m005 (1/2*Catalan+1/6)/(5*exp(1)+9/11) 4334956255738230 r005 Im(z^2+c),c=7/74+31/61*I,n=54 4334956262024282 a007 Real Root Of 820*x^4+659*x^3+283*x^2-691*x-328 4334956288061966 m001 (Porter-Riemann1stZero)/(Pi-Ei(1,1)) 4334956341294596 a001 2207/3*317811^(7/50) 4334956341469972 l006 ln(6907/7213) 4334956341469972 p004 log(7213/6907) 4334956344116935 b008 ArcSinh[23+E^E] 4334956345067539 r005 Re(z^2+c),c=11/102+4/17*I,n=19 4334956350138362 b008 CosIntegral[23/61] 4334956350138362 l003 Ci(23/61) 4334956350138362 l004 Ci(23/61) 4334956373295663 m001 (Kac+TreeGrowth2nd)/(exp(Pi)+3^(1/3)) 4334956395012745 a007 Real Root Of 178*x^4+573*x^3-709*x^2+850*x+828 4334956403808542 r005 Im(z^2+c),c=29/102+19/56*I,n=51 4334956415945264 a007 Real Root Of 364*x^4-587*x^3+94*x^2-802*x-426 4334956430771386 r009 Im(z^3+c),c=-23/102+19/39*I,n=20 4334956446763101 s002 sum(A037010[n]/(n*exp(pi*n)+1),n=1..infinity) 4334956454100570 a007 Real Root Of 100*x^4+434*x^3+84*x^2+470*x+500 4334956455203805 r002 22th iterates of z^2 + 4334956457268747 a007 Real Root Of -180*x^4+601*x^3-917*x^2+393*x+398 4334956459778730 r005 Re(z^2+c),c=17/58+5/63*I,n=5 4334956479124896 r005 Im(z^2+c),c=9/58+25/49*I,n=30 4334956479761192 r005 Im(z^2+c),c=-34/29+1/21*I,n=9 4334956503518956 a001 14662949395604/89*46368^(7/23) 4334956503641685 a001 505019158607/89*2971215073^(7/23) 4334956515794174 a001 1/72*(1/2*5^(1/2)+1/2)^16*4^(1/4) 4334956568694648 a007 Real Root Of 396*x^4+404*x^3+586*x^2-860*x-464 4334956597204850 m005 (-15/4+1/4*5^(1/2))/(1/7*5^(1/2)+5/12) 4334956601207802 m005 (1/2*Catalan-2/5)/(7/12*Zeta(3)+7/11) 4334956608061453 l006 ln(6203/9569) 4334956608512744 a007 Real Root Of -984*x^4+636*x^3+711*x^2+792*x-494 4334956613201608 m001 (gamma(3)-HardHexagonsEntropy)/(Pi-gamma(1)) 4334956614192896 r005 Im(z^2+c),c=-2/3+25/84*I,n=51 4334956614337890 r005 Re(z^2+c),c=-41/66+1/34*I,n=59 4334956625916211 h001 (1/8*exp(2)+7/10)/(5/12*exp(2)+2/3) 4334956629271170 r002 17th iterates of z^2 + 4334956648914325 r005 Re(z^2+c),c=-61/94+7/29*I,n=46 4334956649035452 m001 (Backhouse+2/3)/(GAMMA(5/24)+1/2) 4334956654654456 a001 53316291173/521*521^(3/13) 4334956665267005 h001 (7/10*exp(2)+8/11)/(3/10*exp(1)+6/11) 4334956668154231 r009 Im(z^3+c),c=-1/17+18/37*I,n=3 4334956673706003 m001 1/exp(GAMMA(17/24))^2/Niven*cos(Pi/12) 4334956688092029 p003 LerchPhi(1/32,5,179/240) 4334956698843407 r001 13i'th iterates of 2*x^2-1 of 4334956699621321 m001 (GolombDickman-Mills)/(Ei(1)-arctan(1/3)) 4334956700908041 r005 Im(z^2+c),c=19/94+8/19*I,n=58 4334956708264550 m001 1/GAMMA(3/4)^2*exp(GAMMA(1/24))^2*exp(1) 4334956720733522 m001 (-gamma(3)+FeigenbaumD)/(Chi(1)-Ei(1,1)) 4334956732548004 a007 Real Root Of -791*x^4+197*x^3+813*x^2+660*x-427 4334956740413306 r005 Re(z^2+c),c=-19/31+8/45*I,n=56 4334956773631554 r005 Im(z^2+c),c=4/21+16/37*I,n=33 4334956785500416 r002 29th iterates of z^2 + 4334956795318189 r002 12th iterates of z^2 + 4334956795645414 a007 Real Root Of -771*x^4+272*x^3+161*x^2+883*x+38 4334956802203670 r009 Im(z^3+c),c=-1/42+11/14*I,n=60 4334956803836362 m005 (-5/42+1/6*5^(1/2))/(2/11*3^(1/2)-9/10) 4334956820054664 r009 Im(z^3+c),c=-15/64+16/33*I,n=22 4334956831254294 m005 (1/42+1/6*5^(1/2))/(1/6*Zeta(3)+5/7) 4334956834260861 l006 ln(4620/7127) 4334956853936062 r002 3th iterates of z^2 + 4334956862758547 a007 Real Root Of 853*x^4+424*x^3+787*x^2-774*x-479 4334956867962833 a001 9349/55*225851433717^(10/21) 4334956882201547 r005 Re(z^2+c),c=-47/78+7/51*I,n=22 4334956891821627 r005 Re(z^2+c),c=-51/86+19/59*I,n=62 4334956898486902 r005 Im(z^2+c),c=-31/58+1/13*I,n=29 4334956905296204 r005 Re(z^2+c),c=-21/34+11/97*I,n=62 4334956909306306 m001 GAMMA(1/3)^2/exp(Riemann3rdZero)*GAMMA(5/24) 4334956912288691 a003 sin(Pi*19/102)*sin(Pi*27/94) 4334956912701386 q001 1157/2669 4334956917556451 a001 1149851/55*9227465^(10/21) 4334956924306525 m001 MinimumGamma*ReciprocalFibonacci-Stephens 4334956928850050 m005 (1/2*3^(1/2)-7/10)/(3/8*exp(1)-7/11) 4334956936445050 r005 Im(z^2+c),c=15/56+32/59*I,n=64 4334956942723405 m001 BesselK(1,1)*(RenyiParking-Trott2nd) 4334956945082541 m001 MadelungNaCl^2/ln(Cahen)^2/BesselK(1,1)^2 4334956950326889 r005 Re(z^2+c),c=-41/60+7/57*I,n=10 4334957002377338 m005 (1/3*gamma-2/5)/(4/5*5^(1/2)+3) 4334957032257107 a001 24476/233*13^(21/38) 4334957050341983 r009 Im(z^3+c),c=-17/46+24/55*I,n=41 4334957058877402 a007 Real Root Of -142*x^4-657*x^3-529*x^2+803*x+399 4334957059905411 r005 Im(z^2+c),c=9/62+13/28*I,n=20 4334957072863513 r002 34th iterates of z^2 + 4334957093554469 a007 Real Root Of 213*x^4+955*x^3+225*x^2+551*x+739 4334957101608584 m001 (MertensB3+Rabbit)/(GolombDickman-gamma) 4334957118230184 r005 Im(z^2+c),c=-31/52+17/45*I,n=3 4334957130629497 r005 Re(z^2+c),c=-21/34+13/112*I,n=61 4334957148285671 a008 Real Root of (1+6*x+6*x^2-6*x^3+x^5) 4334957152460362 a001 139583862445/1364*322^(1/4) 4334957156714800 a007 Real Root Of 2*x^4-432*x^3+197*x^2-726*x-387 4334957176334238 s002 sum(A088182[n]/(10^n-1),n=1..infinity) 4334957191165205 s002 sum(A172738[n]/((exp(n)-1)/n),n=1..infinity) 4334957202272993 m001 GAMMA(5/6)^2*GAMMA(2/3)^2/exp(Zeta(1/2))^2 4334957204824613 r009 Re(z^3+c),c=-55/118+9/58*I,n=51 4334957211332240 m001 (MasserGramainDelta+Sierpinski)/(ln(5)-Lehmer) 4334957229092943 r002 51i'th iterates of 2*x/(1-x^2) of 4334957233037742 b008 E^(1/(4*Sqrt[2]))+Pi 4334957238695005 a007 Real Root Of 73*x^4+153*x^3-743*x^2-359*x-909 4334957242635342 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)+GAMMA(5/6)*Porter 4334957245293442 m001 (2^(1/3)*GolombDickman-Shi(1))/GolombDickman 4334957255060939 a001 2/5473*2584^(1/46) 4334957283849037 a007 Real Root Of -248*x^4-991*x^3+448*x^2+389*x+116 4334957283878686 r005 Re(z^2+c),c=-23/38+13/63*I,n=18 4334957296267737 l006 ln(3037/4685) 4334957300610333 m005 (1/2*5^(1/2)+1/5)/(2*Zeta(3)+7/11) 4334957300675384 a007 Real Root Of 405*x^4-530*x^3+434*x^2+616*x+128 4334957305888858 r009 Im(z^3+c),c=-16/29+9/47*I,n=15 4334957321236289 m001 Shi(1)*(ln(2)+Magata) 4334957322725270 a007 Real Root Of -42*x^4-194*x^3+37*x^2+586*x+873 4334957330635516 a001 15127/1597*28657^(19/51) 4334957338028777 r009 Im(z^3+c),c=-41/126+27/58*I,n=9 4334957350610147 r005 Re(z^2+c),c=-11/18+20/101*I,n=54 4334957357153772 r002 11th iterates of z^2 + 4334957360117772 r005 Re(z^2+c),c=-71/106+9/37*I,n=31 4334957369703571 r002 25th iterates of z^2 + 4334957390099926 m001 1/sinh(1)/Paris*ln(sqrt(1+sqrt(3))) 4334957394757525 r005 Im(z^2+c),c=-3/5+29/73*I,n=10 4334957400540910 p001 sum((-1)^n/(437*n+277)/n/(32^n),n=1..infinity) 4334957405774195 a001 2207/144*8^(1/2) 4334957412395152 a007 Real Root Of -924*x^4-436*x^3+302*x^2+652*x+223 4334957416641495 a001 139583862445/2207*322^(1/3) 4334957421447435 m001 Si(Pi)+GAMMA(11/24)*GAMMA(17/24) 4334957424120245 b008 -45+Erfi[1] 4334957424487518 m001 (5^(1/2)+Si(Pi))/(Ei(1,1)+Sarnak) 4334957445639471 m001 1/Riemann3rdZero^2/Paris^2/ln(cos(1))^2 4334957484325897 m005 (23/30+1/6*5^(1/2))/(9/10*exp(1)+2/11) 4334957496823792 a007 Real Root Of 158*x^4+899*x^3+776*x^2-584*x+325 4334957506321037 a001 29/610*987^(36/55) 4334957510222124 a007 Real Root Of 168*x^4-53*x^3+343*x^2-988*x-503 4334957538558243 r002 41th iterates of z^2 + 4334957554075574 r005 Re(z^2+c),c=-23/38+5/22*I,n=49 4334957587756574 m001 (GAMMA(5/6)+ZetaQ(3))/(Pi-polylog(4,1/2)) 4334957601831521 r005 Re(z^2+c),c=41/126+8/23*I,n=33 4334957601942142 a007 Real Root Of -980*x^4+878*x^3-175*x^2+632*x-278 4334957604347826 a007 Real Root Of -136*x^4-491*x^3+700*x^2+955*x-986 4334957604800410 a001 39603/4181*28657^(19/51) 4334957613396033 a007 Real Root Of 240*x^4+958*x^3-410*x^2-18*x+915 4334957629860806 m005 (1/2*2^(1/2)+5)/(7/24+11/24*5^(1/2)) 4334957632803574 r009 Im(z^3+c),c=-5/32+32/45*I,n=9 4334957641095400 b008 -44+SinIntegral[2/3] 4334957649132112 a007 Real Root Of -581*x^4+498*x^3-9*x^2+43*x-37 4334957651629197 a001 416020/161*199^(30/31) 4334957653021499 m001 (Zeta(5)-AlladiGrinstead)/(FeigenbaumC-Mills) 4334957654971578 m001 (Pi-Zeta(1,2))/(LandauRamanujan-Niven) 4334957661689960 r002 54i'th iterates of 2*x/(1-x^2) of 4334957666558716 m001 ln(Porter)/PisotVijayaraghavan^2/Rabbit^2 4334957679924591 m001 (-MertensB3+QuadraticClass)/(2^(1/3)-Ei(1,1)) 4334957680979237 r005 Re(z^2+c),c=-57/82+5/54*I,n=35 4334957688439250 m005 (1/2*gamma+6/11)/(3/4*3^(1/2)+5/8) 4334957691218392 m005 (1/2*3^(1/2)+7/11)/(4/9*Zeta(3)-4) 4334957695142777 m001 (ln(3)-sin(1/12*Pi))/(MinimumGamma+PlouffeB) 4334957708261486 a005 (1/sin(101/233*Pi))^1846 4334957709123512 a007 Real Root Of 837*x^4-858*x^3+940*x^2-851*x-645 4334957710765434 r002 53th iterates of z^2 + 4334957727453858 r005 Im(z^2+c),c=31/110+6/17*I,n=29 4334957735913324 a007 Real Root Of 87*x^4+367*x^3+44*x^2+394*x+55 4334957744253437 a007 Real Root Of -666*x^4+86*x^3-467*x^2+929*x+521 4334957751025451 r005 Re(z^2+c),c=3/46+29/62*I,n=8 4334957758844777 r005 Re(z^2+c),c=-1/118+5/24*I,n=13 4334957765787460 a001 726103*18^(34/55) 4334957771545330 l006 ln(4491/6928) 4334957774243652 a001 6119/646*28657^(19/51) 4334957786852489 m005 (1/2*gamma-2/3)/(1/11*exp(1)+5/8) 4334957790182918 r005 Re(z^2+c),c=-39/58+13/55*I,n=59 4334957791957328 r005 Re(z^2+c),c=-41/66+1/30*I,n=53 4334957806004752 m001 Sarnak^gamma(2)/exp(Pi) 4334957814228867 l006 ln(115/8777) 4334957840456634 r009 Im(z^3+c),c=-43/126+10/23*I,n=4 4334957842726469 a007 Real Root Of -133*x^4-454*x^3-153*x^2+834*x+358 4334957875171259 r005 Re(z^2+c),c=-12/19+1/48*I,n=26 4334957877858290 a007 Real Root Of -508*x^4+555*x^3-730*x^2+629*x+473 4334957883121816 a001 86267571272/521*521^(2/13) 4334957902851026 m001 1/exp(Salem)/Robbin/Zeta(5)^2 4334957909289313 r009 Im(z^3+c),c=-53/110+16/57*I,n=7 4334957921218527 m001 MinimumGamma-Zeta(5)^BesselJ(0,1) 4334957935193622 a008 Real Root of (-4+5*x+9*x^2+4*x^4) 4334957945470400 m002 E^Pi/Pi^6+Pi^2/(2*Log[Pi]) 4334957955636574 m005 (1/3*Catalan+3/5)/(5/8*Catalan-4/11) 4334957956102554 m001 OneNinth*exp(GolombDickman)/arctan(1/2) 4334957956188337 a007 Real Root Of 565*x^4-607*x^3+434*x^2-270*x-268 4334957956384908 r005 Re(z^2+c),c=-7/12+23/124*I,n=16 4334957972745054 m001 (Zeta(3)-Ei(1,1))/(ErdosBorwein+TwinPrimes) 4334957974259965 r002 3th iterates of z^2 + 4334957975050793 m001 (Magata-ln(5))/PrimesInBinary 4334957990883768 r005 Im(z^2+c),c=-15/26+1/127*I,n=49 4334957994794812 m005 (1/2*Pi-5/6)/(7/12*Zeta(3)+1) 4334958001825333 m001 (Backhouse+GaussAGM)/(Psi(2,1/3)+BesselI(0,2)) 4334958014340619 l006 ln(5945/9171) 4334958015771393 r005 Re(z^2+c),c=-19/30+12/43*I,n=47 4334958021322141 r005 Re(z^2+c),c=-5/8+8/79*I,n=12 4334958042829670 r005 Re(z^2+c),c=-13/21+4/41*I,n=52 4334958046452625 r005 Re(z^2+c),c=-59/106+23/59*I,n=37 4334958050589698 a007 Real Root Of -81*x^4+771*x^3-978*x^2-730*x-67 4334958056135252 r009 Im(z^3+c),c=-3/7+7/16*I,n=13 4334958068128369 a001 29/28657*28657^(22/27) 4334958068272376 m006 (ln(Pi)+1/4)/(1/4*Pi^2+3/4) 4334958075813228 r005 Im(z^2+c),c=-17/18+54/209*I,n=14 4334958081064066 r005 Re(z^2+c),c=5/14+11/59*I,n=9 4334958117125350 h001 (1/6*exp(2)+6/7)/(5/8*exp(2)+1/5) 4334958143110545 s002 sum(A133697[n]/(n*2^n-1),n=1..infinity) 4334958146855173 a007 Real Root Of -929*x^4+293*x^3-393*x^2+882*x+39 4334958152302076 r002 39th iterates of z^2 + 4334958165390875 a001 267914296/521*1364^(14/15) 4334958165693338 a007 Real Root Of 123*x^4+403*x^3-440*x^2+767*x+987 4334958176775316 a001 182717648081/2889*322^(1/3) 4334958190721779 r005 Re(z^2+c),c=-13/21+5/54*I,n=42 4334958191178323 m005 (1/2*2^(1/2)+5/7)/(10/11*5^(1/2)-2) 4334958217270194 q001 1245/2872 4334958219613277 r005 Re(z^2+c),c=-27/44+7/38*I,n=45 4334958231969840 m005 (1/2*Pi+5/9)/(-14/33+9/22*5^(1/2)) 4334958234326894 m005 (1/2*exp(1)+6)/(-2/3+2/9*5^(1/2)) 4334958239554857 a007 Real Root Of -215*x^4-706*x^3+848*x^2-741*x-736 4334958240032484 r005 Im(z^2+c),c=-91/110+1/41*I,n=47 4334958242469273 a007 Real Root Of 140*x^4+697*x^3+400*x^2-73*x-493 4334958267920447 r009 Im(z^3+c),c=-25/64+26/61*I,n=39 4334958287544072 m001 Gompertz/(TravellingSalesman-gamma) 4334958287677368 a001 956722026041/15127*322^(1/3) 4334958303799312 l006 ln(7065/7378) 4334958303857760 a001 2504730781961/39603*322^(1/3) 4334958306218448 a001 3278735159921/51841*322^(1/3) 4334958306775730 a001 10610209857723/167761*322^(1/3) 4334958307677433 a001 4052739537881/64079*322^(1/3) 4334958313857792 a001 387002188980/6119*322^(1/3) 4334958320724175 a001 433494437/521*1364^(13/15) 4334958322658039 a001 103361/8*102334155^(4/21) 4334958322715620 a001 90481/48*2504730781961^(4/21) 4334958329751412 a001 54018521*1836311903^(9/17) 4334958329753149 a001 4106118243*514229^(9/17) 4334958329759997 a001 710647*6557470319842^(9/17) 4334958332103843 a001 4250681/48*4181^(4/21) 4334958338064676 m005 (1/2*gamma+8/11)/(7/9*Pi-1/10) 4334958347602685 r009 Re(z^3+c),c=-61/126+11/64*I,n=33 4334958348222711 r002 53th iterates of z^2 + 4334958356218609 a001 591286729879/9349*322^(1/3) 4334958361998775 r002 27th iterates of z^2 + 4334958370638863 b008 13*BesselJ[3,Pi] 4334958374843460 r009 Im(z^3+c),c=-2/13+25/49*I,n=7 4334958398816365 m005 (1/2*Zeta(3)+1/6)/(83/110+5/11*5^(1/2)) 4334958399641447 r005 Im(z^2+c),c=-1/54+37/64*I,n=7 4334958420751416 p001 sum((-1)^n/(294*n+23)/(24^n),n=0..infinity) 4334958439329145 m004 -6-Pi-5*Sqrt[5]*Pi+Tan[Sqrt[5]*Pi] 4334958446321667 a008 Real Root of (1+2*x+x^2+3*x^3+5*x^5) 4334958473003937 a001 144/4870847*199^(49/52) 4334958476057481 a001 701408733/521*1364^(4/5) 4334958476708468 r009 Im(z^3+c),c=-3/38+22/43*I,n=18 4334958487790131 m001 ln(TreeGrowth2nd)^2/Salem/GAMMA(1/12)^2 4334958492016896 a001 9349/987*28657^(19/51) 4334958493448737 r005 Re(z^2+c),c=5/74+9/61*I,n=10 4334958495877719 r005 Re(z^2+c),c=-45/74+8/31*I,n=49 4334958511813348 r005 Re(z^2+c),c=31/118+1/57*I,n=57 4334958518362767 r009 Re(z^3+c),c=-2/25+32/47*I,n=38 4334958534457210 r005 Im(z^2+c),c=-43/38+3/56*I,n=19 4334958534939224 m005 (1/2*2^(1/2)+6)/(11/10+1/5*5^(1/2)) 4334958551939539 a007 Real Root Of 940*x^4+190*x^3+527*x^2-718*x-428 4334958560800167 m002 5/Pi+2/Log[Pi]+Tanh[Pi] 4334958569228518 m001 1/PisotVijayaraghavan*exp(Artin)^2*exp(1) 4334958575272587 v002 sum(1/(5^n+(24*n^2-70*n+86)),n=1..infinity) 4334958577080934 a007 Real Root Of -165*x^4+641*x^3+222*x^2+456*x+214 4334958581955065 a007 Real Root Of 627*x^4+700*x^3+774*x^2-407*x-287 4334958600949417 m001 BesselJ(1,1)/(Bloch+Landau) 4334958608385823 r009 Im(z^3+c),c=-45/122+23/59*I,n=5 4334958613296990 r005 Im(z^2+c),c=2/11+25/57*I,n=54 4334958627678500 m001 (-Zeta(3)+sin(1/12*Pi))/(2^(1/3)+Catalan) 4334958631390792 a001 1134903170/521*1364^(11/15) 4334958640418620 h001 (3/4*exp(1)+2/11)/(1/12*exp(1)+2/7) 4334958646563987 a001 225851433717/3571*322^(1/3) 4334958669333424 r009 Im(z^3+c),c=-13/110+29/38*I,n=19 4334958669420517 a003 cos(Pi*1/8)*cos(Pi*41/119) 4334958672697817 r005 Im(z^2+c),c=11/46+5/13*I,n=32 4334958691799345 r002 23th iterates of z^2 + 4334958706536668 h001 (2/7*exp(2)+8/9)/(9/11*exp(2)+7/8) 4334958718447216 a003 cos(Pi*1/69)-sin(Pi*22/115) 4334958735485678 m001 cos(Pi/5)*Zeta(7)*ln(sin(Pi/5)) 4334958740564907 a007 Real Root Of 731*x^4-204*x^3-4*x^2-529*x-271 4334958759468266 r005 Re(z^2+c),c=-35/58+19/62*I,n=61 4334958760925437 m001 polylog(4,1/2)*BesselJ(0,1)^Robbin 4334958763144839 a007 Real Root Of -200*x^4-848*x^3+266*x^2+942*x+632 4334958764267436 l006 ln(1454/2243) 4334958772171417 r005 Im(z^2+c),c=21/118+23/44*I,n=45 4334958786724109 a001 1836311903/521*1364^(2/3) 4334958790681320 r002 29th iterates of z^2 + 4334958844946897 r009 Re(z^3+c),c=-13/22+28/61*I,n=11 4334958859436682 m005 (1/2*Zeta(3)-1/12)/(2/11*exp(1)+7/10) 4334958878708268 a001 13/11*29^(22/57) 4334958883654056 a007 Real Root Of -103*x^4-386*x^3+313*x^2+416*x+850 4334958899243378 a007 Real Root Of -307*x^4+844*x^3+929*x^2+887*x-617 4334958903532882 r005 Re(z^2+c),c=-23/38+10/41*I,n=64 4334958909814959 m001 (Zeta(5)+OrthogonalArrays)/(Paris-Robbin) 4334958917779885 a007 Real Root Of 98*x^4-982*x^3+274*x^2-542*x+260 4334958922136723 s002 sum(A073521[n]/((10^n-1)/n),n=1..infinity) 4334958927192777 m001 1/(2^(1/3))^2*Sierpinski^2/ln(GAMMA(1/3))^2 4334958942057431 a001 2971215073/521*1364^(3/5) 4334958946043792 m001 (Psi(2,1/3)+Chi(1))/(GAMMA(5/6)+Champernowne) 4334958949778498 m005 (1/2*2^(1/2)+1/9)/(73/60+3/10*5^(1/2)) 4334958987978044 h001 (-2*exp(2)-7)/(-9*exp(4)-11) 4334958996957137 m006 (3/Pi-5)/(4*exp(Pi)+3/4) 4334959000970540 m001 (Zeta(5)+GAMMA(1/24))/BesselI(1,1) 4334959006561823 a001 196418/3*9349^(51/53) 4334959013358672 r005 Re(z^2+c),c=-69/110+9/58*I,n=32 4334959014998752 m001 Mills-gamma(1)+Otter 4334959021213627 r005 Re(z^2+c),c=-19/31+10/59*I,n=61 4334959022495530 m002 -2+Pi^3+Cosh[Pi]*Log[Pi]+ProductLog[Pi] 4334959027452297 m001 1/GAMMA(7/12)/ln(GAMMA(1/6))/Zeta(1,2)^2 4334959043681523 m001 KhintchineLevy/Khintchine^2/ln(MinimumGamma) 4334959045430460 a007 Real Root Of 639*x^4-914*x^3+568*x^2-455*x-401 4334959055933296 a001 726103*39603^(32/53) 4334959062229053 r005 Re(z^2+c),c=-65/102+1/45*I,n=24 4334959080955409 a001 7/47*(1/2*5^(1/2)+1/2)^30*47^(5/7) 4334959084125157 r002 5th iterates of z^2 + 4334959090350452 r002 4th iterates of z^2 + 4334959097390759 a001 4807526976/521*1364^(8/15) 4334959103114891 r005 Re(z^2+c),c=-17/16+13/51*I,n=28 4334959111254419 r002 12th iterates of z^2 + 4334959111589524 a001 139583862445/521*521^(1/13) 4334959121581921 a001 9349/2*34^(12/19) 4334959123815895 l006 ln(87/6640) 4334959133131455 r005 Im(z^2+c),c=3/98+16/29*I,n=49 4334959144382113 m001 (BesselI(1,2)+Khinchin)/Paris 4334959153452423 r002 4th iterates of z^2 + 4334959164510385 a001 832040/3*5778^(45/53) 4334959167570585 r005 Im(z^2+c),c=-19/78+17/28*I,n=43 4334959174931800 a001 20365011074/843*322^(1/2) 4334959184940905 m001 (-OneNinth+Robbin)/(Psi(1,1/3)+Khinchin) 4334959216597526 r005 Re(z^2+c),c=21/122+17/63*I,n=4 4334959223879127 r005 Re(z^2+c),c=-9/16+37/59*I,n=6 4334959226006544 r005 Re(z^2+c),c=-33/25+6/61*I,n=8 4334959247619668 r009 Im(z^3+c),c=-37/114+27/58*I,n=9 4334959252724092 a001 7778742049/521*1364^(7/15) 4334959333907786 m001 GAMMA(3/4)/exp(-Pi)*GAMMA(7/12) 4334959333907786 m001 GAMMA(7/12)*GAMMA(3/4)*exp(Pi) 4334959333907786 m001 exp(Pi)*GAMMA(3/4)*GAMMA(7/12) 4334959337708807 r005 Im(z^2+c),c=-3/11+29/46*I,n=6 4334959340518432 r005 Re(z^2+c),c=-41/66+2/63*I,n=43 4334959348913320 p004 log(35291/22877) 4334959349593495 q001 1333/3075 4334959373275523 a003 cos(Pi*10/31)-cos(Pi*54/115) 4334959375338736 a007 Real Root Of -192*x^4-778*x^3+76*x^2-532*x+690 4334959386127623 r002 36th iterates of z^2 + 4334959386625224 r009 Im(z^3+c),c=-17/46+24/55*I,n=40 4334959408057431 a001 12586269025/521*1364^(2/5) 4334959417328703 a003 sin(Pi*17/118)*sin(Pi*49/107) 4334959428123962 r005 Im(z^2+c),c=19/64+14/43*I,n=60 4334959434494085 a007 Real Root Of 718*x^4-984*x^3-183*x^2-874*x-450 4334959436324249 r005 Re(z^2+c),c=5/102+5/18*I,n=3 4334959440062441 r009 Im(z^3+c),c=-13/118+30/59*I,n=18 4334959450018124 a001 233/2207*(1/2+1/2*5^(1/2))^46 4334959450018124 a001 233/2207*10749957122^(23/24) 4334959450076775 a001 987/521*2537720636^(8/9) 4334959450076775 a001 987/521*312119004989^(8/11) 4334959450076775 a001 987/521*(1/2+1/2*5^(1/2))^40 4334959450076775 a001 987/521*23725150497407^(5/8) 4334959450076775 a001 987/521*73681302247^(10/13) 4334959450076775 a001 987/521*28143753123^(4/5) 4334959450076775 a001 987/521*10749957122^(5/6) 4334959450076775 a001 987/521*4106118243^(20/23) 4334959450076775 a001 987/521*1568397607^(10/11) 4334959450076775 a001 987/521*599074578^(20/21) 4334959456207394 r002 28th iterates of z^2 + 4334959488748289 m001 1/exp(MadelungNaCl)^2/LandauRamanujan/Catalan 4334959489246366 m001 (GAMMA(2/3)-ZetaP(3))/(Pi-BesselK(0,1)) 4334959490207699 m001 (gamma(2)+ErdosBorwein)/(sin(1/5*Pi)-Ei(1,1)) 4334959506817126 r009 Im(z^3+c),c=-31/50+13/53*I,n=9 4334959506871859 b008 Cosh[E*(-3/2+Pi)] 4334959522780204 m001 1/GAMMA(5/12)^2*exp(Catalan)^2*Pi 4334959530933699 a007 Real Root Of 555*x^4-676*x^3+540*x^2-348*x-327 4334959548215841 l006 ln(5687/8773) 4334959551452464 r005 Re(z^2+c),c=31/114+1/37*I,n=24 4334959561327163 r005 Re(z^2+c),c=-31/50+4/63*I,n=50 4334959563390775 a001 20365011074/521*1364^(1/3) 4334959565170047 r002 35th iterates of z^2 + 4334959583678610 r005 Im(z^2+c),c=3/46+31/58*I,n=35 4334959587707716 r002 46th iterates of z^2 + 4334959596178703 m001 RenyiParking^2*ln(Rabbit)^2*TwinPrimes 4334959597445197 m001 (Backhouse-ZetaP(3))/Otter 4334959606073539 r002 48th iterates of z^2 + 4334959607742969 r002 4th iterates of z^2 + 4334959608188714 r002 57th iterates of z^2 + 4334959612528423 r009 Im(z^3+c),c=-7/82+23/45*I,n=15 4334959620601220 m001 ArtinRank2/(BesselI(0,2)^gamma) 4334959636041256 a001 10182505537/38*29^(1/7) 4334959641848839 r005 Re(z^2+c),c=-29/48+7/27*I,n=60 4334959642474557 m001 1/exp(GAMMA(5/24))^2/BesselK(1,1)^2/cos(Pi/12) 4334959643408499 m001 FeigenbaumD^GAMMA(13/24)*Thue 4334959644546371 a007 Real Root Of -879*x^4+137*x^3-531*x^2+293*x+269 4334959661887125 a001 29/6765*17711^(29/41) 4334959663779963 r002 36th iterates of z^2 + 4334959682482978 m001 ln(LaplaceLimit)^2/MertensB1*sin(Pi/12)^2 4334959692389359 r005 Im(z^2+c),c=-23/36+1/12*I,n=49 4334959693784250 r005 Im(z^2+c),c=7/82+31/56*I,n=18 4334959712224312 a007 Real Root Of -527*x^4+719*x^3-633*x^2+611*x+461 4334959715871618 p001 sum(1/(467*n+249)/(5^n),n=0..infinity) 4334959718724125 a001 63246219*1364^(4/15) 4334959734898157 r002 59th iterates of z^2 + 4334959745233344 s002 sum(A058625[n]/(n*exp(pi*n)+1),n=1..infinity) 4334959758748837 r005 Re(z^2+c),c=-14/23+5/23*I,n=42 4334959769270160 r005 Im(z^2+c),c=5/64+33/64*I,n=29 4334959770177960 p004 log(17783/233) 4334959782184370 a007 Real Root Of -317*x^4+78*x^3+548*x^2+784*x-438 4334959793116260 a001 726103*2207^(44/53) 4334959809448270 a001 192900153618/233*1836311903^(16/17) 4334959809448271 a001 87403803/233*6557470319842^(16/17) 4334959817495530 l006 ln(4233/6530) 4334959822133644 r005 Re(z^2+c),c=-13/34+11/19*I,n=9 4334959829049816 m002 -1+1/(4*Pi^3)+Tanh[Pi] 4334959842078692 r005 Re(z^2+c),c=2/15+23/50*I,n=38 4334959843204940 r002 61th iterates of z^2 + 4334959845007736 r002 22th iterates of z^2 + 4334959855082297 r005 Im(z^2+c),c=5/22+12/31*I,n=24 4334959872335464 a001 53316291173/322*123^(1/5) 4334959874057481 a001 53316291173/521*1364^(1/5) 4334959894751778 r005 Im(z^2+c),c=-5/8+17/39*I,n=36 4334959924170397 b008 -6+SinIntegral[9] 4334959938554032 r005 Im(z^2+c),c=11/46+17/44*I,n=55 4334959953744930 m001 (Khinchin+ZetaQ(4))/(Bloch-HardyLittlewoodC5) 4334959962637782 m001 (ln(gamma)+Zeta(1/2))/arctan(1/2) 4334959962637782 m001 (log(gamma)+Zeta(1/2))/arctan(1/2) 4334959971074434 a003 sin(Pi*23/113)*sin(Pi*22/85) 4334959971335585 g002 Psi(1/11)-Psi(7/12)-Psi(2/9)-Psi(1/9) 4334959974714899 m001 ZetaQ(4)^Lehmer*Pi*csc(11/24*Pi)/GAMMA(13/24) 4334959977829888 m001 (ln(3)+cos(1/12*Pi))/(FeigenbaumKappa+Magata) 4334959995493256 r005 Re(z^2+c),c=-9/14+4/61*I,n=16 4334960000056355 a001 692293112009/1597 4334960000755348 m001 (MertensB2-Trott)/(Zeta(1,2)+GAMMA(19/24)) 4334960008305689 r002 7th iterates of z^2 + 4334960010159104 m005 (-5/42+1/6*5^(1/2))/(2/7*gamma-3/4) 4334960014023449 m001 LaplaceLimit^2/ln(GaussKuzminWirsing)*Salem 4334960015449959 b008 CoshIntegral[3/4] 4334960015449959 l003 Chi(3/4) 4334960015449959 l004 Chi(3/4) 4334960020111774 a001 102334155/521*3571^(16/17) 4334960021709969 b008 -1/7+WeberE[1/2,1] 4334960029390842 a001 86267571272/521*1364^(2/15) 4334960031301110 r002 63th iterates of z^2 + 4334960040108387 a001 165580141/521*3571^(15/17) 4334960040975702 r009 Im(z^3+c),c=-2/21+26/51*I,n=12 4334960045451665 r005 Im(z^2+c),c=-3/29+17/29*I,n=19 4334960046294166 r009 Re(z^3+c),c=-1/22+8/63*I,n=2 4334960055824689 r009 Im(z^3+c),c=-8/13+29/49*I,n=14 4334960057256881 m001 KhinchinHarmonic^Niven/Gompertz 4334960060104999 a001 267914296/521*3571^(14/17) 4334960063218644 r005 Im(z^2+c),c=43/122+13/57*I,n=40 4334960079433170 r009 Im(z^3+c),c=-9/19+17/45*I,n=52 4334960080101611 a001 433494437/521*3571^(13/17) 4334960098509646 r002 54th iterates of z^2 + 4334960100098224 a001 701408733/521*3571^(12/17) 4334960117300295 r002 58th iterates of z^2 + 4334960120094837 a001 1134903170/521*3571^(11/17) 4334960125188296 r002 56th iterates of z^2 + 4334960130203229 a007 Real Root Of 260*x^4-880*x^3+303*x^2+251*x-29 4334960140091449 a001 1836311903/521*3571^(10/17) 4334960144393636 r005 Re(z^2+c),c=21/62+10/23*I,n=24 4334960144741823 a007 Real Root Of -194*x^4+455*x^3-898*x^2+906*x+41 4334960155834529 m001 3^(1/3)*QuadraticClass-Chi(1) 4334960160088062 a001 2971215073/521*3571^(9/17) 4334960161916115 r005 Re(z^2+c),c=-13/21+2/23*I,n=47 4334960170741336 a007 Real Root Of -450*x^4+917*x^3+108*x^2+636*x+346 4334960180084675 a001 4807526976/521*3571^(8/17) 4334960180278406 l006 ln(7223/7543) 4334960184724209 a001 139583862445/521*1364^(1/15) 4334960189073753 r005 Im(z^2+c),c=1/82+17/30*I,n=63 4334960200081288 a001 7778742049/521*3571^(7/17) 4334960210152301 a001 233/5778*45537549124^(16/17) 4334960210152301 a001 233/5778*14662949395604^(16/21) 4334960210152301 a001 233/5778*(1/2+1/2*5^(1/2))^48 4334960210152301 a001 233/5778*192900153618^(8/9) 4334960210152301 a001 233/5778*73681302247^(12/13) 4334960210211131 a001 2584/521*817138163596^(2/3) 4334960210211131 a001 2584/521*(1/2+1/2*5^(1/2))^38 4334960210211131 a001 2584/521*10749957122^(19/24) 4334960210211131 a001 2584/521*4106118243^(19/23) 4334960210211131 a001 2584/521*1568397607^(19/22) 4334960210211131 a001 2584/521*599074578^(19/21) 4334960210211131 a001 2584/521*228826127^(19/20) 4334960210504889 r005 Re(z^2+c),c=-11/18+23/123*I,n=59 4334960211379954 m001 Zeta(5)/GAMMA(1/4)^2*ln(gamma) 4334960213644717 r005 Im(z^2+c),c=7/27+7/19*I,n=37 4334960215947091 r004 Re(z^2+c),c=1/5+4/11*I,z(0)=exp(5/8*I*Pi),n=64 4334960220077901 a001 12586269025/521*3571^(6/17) 4334960223514766 m001 (3^(1/2)-Conway)/(Stephens+ThueMorse) 4334960240074514 a001 20365011074/521*3571^(5/17) 4334960260071127 a001 63246219*3571^(4/17) 4334960260186150 m001 (Pi^(1/2)-exp(1))/(Porter+TravellingSalesman) 4334960270710125 r005 Im(z^2+c),c=-41/34+6/43*I,n=38 4334960280067741 a001 53316291173/521*3571^(3/17) 4334960290100996 r005 Im(z^2+c),c=2/9+21/53*I,n=28 4334960290401817 a001 1812446897417/4181 4334960293071015 a001 39088169/521*9349^(18/19) 4334960294805474 r002 46th iterates of z^2 + 4334960295681380 a001 63245986/521*9349^(17/19) 4334960298291745 a001 102334155/521*9349^(16/19) 4334960299041994 r005 Im(z^2+c),c=2/13+30/53*I,n=61 4334960300064354 a001 86267571272/521*3571^(2/17) 4334960300902110 a001 165580141/521*9349^(15/19) 4334960303512474 a001 267914296/521*9349^(14/19) 4334960306122839 a001 433494437/521*9349^(13/19) 4334960308733204 a001 701408733/521*9349^(12/19) 4334960311343569 a001 1134903170/521*9349^(11/19) 4334960313953933 a001 1836311903/521*9349^(10/19) 4334960316564298 a001 2971215073/521*9349^(9/19) 4334960317377024 a001 39603/8*514229^(45/52) 4334960319174663 a001 4807526976/521*9349^(8/19) 4334960320060967 a001 139583862445/521*3571^(1/17) 4334960320848799 a007 Real Root Of 835*x^4+137*x^3+520*x^2+67*x-87 4334960321054406 a001 233/15127*312119004989^(10/11) 4334960321054406 a001 233/15127*(1/2+1/2*5^(1/2))^50 4334960321054406 a001 233/15127*3461452808002^(5/6) 4334960321113239 a001 6765/521*141422324^(12/13) 4334960321113239 a001 6765/521*2537720636^(4/5) 4334960321113239 a001 6765/521*45537549124^(12/17) 4334960321113239 a001 6765/521*14662949395604^(4/7) 4334960321113239 a001 6765/521*(1/2+1/2*5^(1/2))^36 4334960321113239 a001 6765/521*505019158607^(9/14) 4334960321113239 a001 6765/521*192900153618^(2/3) 4334960321113239 a001 6765/521*73681302247^(9/13) 4334960321113239 a001 6765/521*10749957122^(3/4) 4334960321113239 a001 6765/521*4106118243^(18/23) 4334960321113239 a001 6765/521*1568397607^(9/11) 4334960321113239 a001 6765/521*599074578^(6/7) 4334960321113239 a001 6765/521*228826127^(9/10) 4334960321113240 a001 6765/521*87403803^(18/19) 4334960321785028 a001 7778742049/521*9349^(7/19) 4334960324395392 a001 12586269025/521*9349^(6/19) 4334960327005757 a001 20365011074/521*9349^(5/19) 4334960329616122 a001 63246219*9349^(4/19) 4334960332226487 a001 53316291173/521*9349^(3/19) 4334960332762653 a001 2372523790121/5473 4334960333166058 a001 14930352/521*24476^(20/21) 4334960333510640 a001 24157817/521*24476^(19/21) 4334960333855214 a001 39088169/521*24476^(6/7) 4334960334199790 a001 63245986/521*24476^(17/21) 4334960334544366 a001 102334155/521*24476^(16/21) 4334960334836852 a001 86267571272/521*9349^(2/19) 4334960334888942 a001 165580141/521*24476^(5/7) 4334960335233518 a001 267914296/521*24476^(2/3) 4334960335578094 a001 433494437/521*24476^(13/21) 4334960335922670 a001 701408733/521*24476^(4/7) 4334960336267246 a001 1134903170/521*24476^(11/21) 4334960336611822 a001 1836311903/521*24476^(10/21) 4334960336956398 a001 2971215073/521*24476^(3/7) 4334960337234805 a001 233/39603*(1/2+1/2*5^(1/2))^52 4334960337234805 a001 233/39603*23725150497407^(13/16) 4334960337234805 a001 233/39603*505019158607^(13/14) 4334960337293639 a001 17711/521*45537549124^(2/3) 4334960337293639 a001 17711/521*(1/2+1/2*5^(1/2))^34 4334960337293639 a001 17711/521*10749957122^(17/24) 4334960337293639 a001 17711/521*4106118243^(17/23) 4334960337293639 a001 17711/521*1568397607^(17/22) 4334960337293639 a001 17711/521*599074578^(17/21) 4334960337293639 a001 17711/521*228826127^(17/20) 4334960337293639 a001 17711/521*87403803^(17/19) 4334960337293643 a001 17711/521*33385282^(17/18) 4334960337300974 a001 4807526976/521*24476^(8/21) 4334960337447216 a001 139583862445/521*9349^(1/19) 4334960337466134 a001 370248451/377*34^(8/19) 4334960337645550 a001 7778742049/521*24476^(1/3) 4334960337990125 a001 12586269025/521*24476^(2/7) 4334960338334701 a001 20365011074/521*24476^(5/21) 4334960338679277 a001 63246219*24476^(4/21) 4334960338943015 a001 12422695843309/28657 4334960339023853 a001 53316291173/521*24476^(1/7) 4334960339047724 a001 5702887/521*64079^(22/23) 4334960339093662 a001 9227465/521*64079^(21/23) 4334960339139549 a001 14930352/521*64079^(20/23) 4334960339185456 a001 24157817/521*64079^(19/23) 4334960339231355 a001 39088169/521*64079^(18/23) 4334960339277258 a001 63245986/521*64079^(17/23) 4334960339323159 a001 102334155/521*64079^(16/23) 4334960339368429 a001 86267571272/521*24476^(2/21) 4334960339369060 a001 165580141/521*64079^(15/23) 4334960339414962 a001 267914296/521*64079^(14/23) 4334960339460863 a001 433494437/521*64079^(13/23) 4334960339506764 a001 701408733/521*64079^(12/23) 4334960339552666 a001 1134903170/521*64079^(11/23) 4334960339595493 a001 233/103682*14662949395604^(6/7) 4334960339595493 a001 233/103682*(1/2+1/2*5^(1/2))^54 4334960339598567 a001 1836311903/521*64079^(10/23) 4334960339644469 a001 2971215073/521*64079^(9/23) 4334960339654327 a001 46368/521*(1/2+1/2*5^(1/2))^32 4334960339654327 a001 46368/521*23725150497407^(1/2) 4334960339654327 a001 46368/521*505019158607^(4/7) 4334960339654327 a001 46368/521*73681302247^(8/13) 4334960339654327 a001 46368/521*10749957122^(2/3) 4334960339654327 a001 46368/521*4106118243^(16/23) 4334960339654327 a001 46368/521*1568397607^(8/11) 4334960339654327 a001 46368/521*599074578^(16/21) 4334960339654327 a001 46368/521*228826127^(4/5) 4334960339654328 a001 46368/521*87403803^(16/19) 4334960339654331 a001 46368/521*33385282^(8/9) 4334960339654352 a001 46368/521*12752043^(16/17) 4334960339690370 a001 4807526976/521*64079^(8/23) 4334960339713005 a001 139583862445/521*24476^(1/21) 4334960339736271 a001 7778742049/521*64079^(7/23) 4334960339782173 a001 12586269025/521*64079^(6/23) 4334960339828074 a001 20365011074/521*64079^(5/23) 4334960339844718 a001 6504607989937/15005 4334960339873976 a001 63246219*64079^(4/23) 4334960339919877 a001 53316291173/521*64079^(3/23) 4334960339934354 a001 14930352/521*167761^(4/5) 4334960339939913 a001 233/271443*14662949395604^(8/9) 4334960339939913 a001 233/271443*(1/2+1/2*5^(1/2))^56 4334960339965164 a001 165580141/521*167761^(3/5) 4334960339965778 a001 86267571272/521*64079^(2/23) 4334960339976275 a001 42573212002873/98209 4334960339990163 a001 233/710647*(1/2+1/2*5^(1/2))^58 4334960339995468 a001 222916232067553/514229 4334960339995969 a001 1836311903/521*167761^(2/5) 4334960339997495 a001 233/1860498*14662949395604^(20/21) 4334960339997495 a001 233/1860498*(1/2+1/2*5^(1/2))^60 4334960339998269 a001 583602272196913/1346269 4334960339998564 a001 233/4870847*(1/2+1/2*5^(1/2))^62 4334960339998677 a001 763945292261593/1762289 4334960339998684 a001 233*7881196^(10/11) 4334960339998720 a001 233/12752043*(1/2+1/2*5^(1/2))^64 4334960339998738 a001 233*20633239^(6/7) 4334960339998747 a001 233*141422324^(10/13) 4334960339998747 a001 233*2537720636^(2/3) 4334960339998747 a001 233*45537549124^(10/17) 4334960339998747 a001 233*312119004989^(6/11) 4334960339998747 a001 233*14662949395604^(10/21) 4334960339998747 a001 233*(1/2+1/2*5^(1/2))^30 4334960339998747 a001 233*192900153618^(5/9) 4334960339998747 a001 233*28143753123^(3/5) 4334960339998747 a001 233*10749957122^(5/8) 4334960339998747 a001 233*4106118243^(15/23) 4334960339998747 a001 233*1568397607^(15/22) 4334960339998747 a001 233*599074578^(5/7) 4334960339998747 a001 233*228826127^(3/4) 4334960339998748 a001 233*87403803^(15/19) 4334960339998750 a001 233*33385282^(5/6) 4334960339998771 a001 233*12752043^(15/17) 4334960339998774 a001 2472178896849459/5702887 4334960339998817 a001 233/7881196*(1/2+1/2*5^(1/2))^63 4334960339998918 a001 233*4870847^(15/16) 4334960339998930 a001 944288312326273/2178309 4334960339999226 a001 233/3010349*(1/2+1/2*5^(1/2))^61 4334960340002026 a001 233/1149851*(1/2+1/2*5^(1/2))^59 4334960340007331 a001 137769808061807/317811 4334960340011680 a001 139583862445/521*64079^(1/23) 4334960340021220 a001 233/439204*14662949395604^(19/21) 4334960340021220 a001 233/439204*(1/2+1/2*5^(1/2))^57 4334960340026775 a001 20365011074/521*167761^(1/5) 4334960340037423 a001 2178309/521*439204^(8/9) 4334960340040113 a001 9227465/521*439204^(7/9) 4334960340042599 a001 39088169/521*439204^(2/3) 4334960340045096 a001 165580141/521*439204^(5/9) 4334960340047593 a001 701408733/521*439204^(4/9) 4334960340048989 a001 317811/521*20633239^(4/5) 4334960340048997 a001 317811/521*17393796001^(4/7) 4334960340048997 a001 317811/521*14662949395604^(4/9) 4334960340048997 a001 317811/521*(1/2+1/2*5^(1/2))^28 4334960340048997 a001 317811/521*505019158607^(1/2) 4334960340048997 a001 317811/521*73681302247^(7/13) 4334960340048997 a001 317811/521*10749957122^(7/12) 4334960340048997 a001 317811/521*4106118243^(14/23) 4334960340048997 a001 317811/521*1568397607^(7/11) 4334960340048997 a001 317811/521*599074578^(2/3) 4334960340048997 a001 317811/521*228826127^(7/10) 4334960340048998 a001 317811/521*87403803^(14/19) 4334960340049000 a001 317811/521*33385282^(7/9) 4334960340049019 a001 317811/521*12752043^(14/17) 4334960340049157 a001 317811/521*4870847^(7/8) 4334960340050090 a001 2971215073/521*439204^(1/3) 4334960340050166 a001 317811/521*1860498^(14/15) 4334960340052587 a001 12586269025/521*439204^(2/9) 4334960340055084 a001 53316291173/521*439204^(1/9) 4334960340056329 a001 832040/521*141422324^(2/3) 4334960340056329 a001 832040/521*(1/2+1/2*5^(1/2))^26 4334960340056329 a001 832040/521*73681302247^(1/2) 4334960340056329 a001 832040/521*10749957122^(13/24) 4334960340056329 a001 832040/521*4106118243^(13/23) 4334960340056329 a001 832040/521*1568397607^(13/22) 4334960340056329 a001 832040/521*599074578^(13/21) 4334960340056329 a001 832040/521*228826127^(13/20) 4334960340056329 a001 832040/521*87403803^(13/19) 4334960340056332 a001 832040/521*33385282^(13/18) 4334960340056349 a001 832040/521*12752043^(13/17) 4334960340056477 a001 832040/521*4870847^(13/16) 4334960340057348 a001 2178309/521*7881196^(8/11) 4334960340057398 a001 2178309/521*141422324^(8/13) 4334960340057398 a001 2178309/521*2537720636^(8/15) 4334960340057398 a001 2178309/521*45537549124^(8/17) 4334960340057398 a001 2178309/521*14662949395604^(8/21) 4334960340057398 a001 2178309/521*(1/2+1/2*5^(1/2))^24 4334960340057398 a001 2178309/521*192900153618^(4/9) 4334960340057398 a001 2178309/521*73681302247^(6/13) 4334960340057398 a001 2178309/521*10749957122^(1/2) 4334960340057398 a001 2178309/521*4106118243^(12/23) 4334960340057398 a001 2178309/521*1568397607^(6/11) 4334960340057398 a001 2178309/521*599074578^(4/7) 4334960340057398 a001 2178309/521*228826127^(3/5) 4334960340057399 a001 2178309/521*87403803^(12/19) 4334960340057401 a001 2178309/521*33385282^(2/3) 4334960340057414 a001 832040/521*1860498^(13/15) 4334960340057417 a001 2178309/521*12752043^(12/17) 4334960340057508 a001 5702887/521*7881196^(2/3) 4334960340057535 a001 2178309/521*4870847^(3/4) 4334960340057542 a001 39088169/521*7881196^(6/11) 4334960340057547 a001 9227465/521*7881196^(7/11) 4334960340057549 a001 165580141/521*7881196^(5/11) 4334960340057554 a001 5702887/521*312119004989^(2/5) 4334960340057554 a001 5702887/521*(1/2+1/2*5^(1/2))^22 4334960340057554 a001 5702887/521*10749957122^(11/24) 4334960340057554 a001 5702887/521*4106118243^(11/23) 4334960340057554 a001 5702887/521*1568397607^(1/2) 4334960340057554 a001 5702887/521*599074578^(11/21) 4334960340057554 a001 5702887/521*228826127^(11/20) 4334960340057555 a001 5702887/521*87403803^(11/19) 4334960340057556 a001 701408733/521*7881196^(4/11) 4334960340057557 a001 5702887/521*33385282^(11/18) 4334960340057558 a001 1134903170/521*7881196^(1/3) 4334960340057562 a001 2971215073/521*7881196^(3/11) 4334960340057568 a001 12586269025/521*7881196^(2/11) 4334960340057571 a001 14930352/521*20633239^(4/7) 4334960340057572 a001 5702887/521*12752043^(11/17) 4334960340057575 a001 53316291173/521*7881196^(1/11) 4334960340057577 a001 165580141/521*20633239^(3/7) 4334960340057577 a001 267914296/521*20633239^(2/5) 4334960340057577 a001 14930352/521*2537720636^(4/9) 4334960340057577 a001 14930352/521*(1/2+1/2*5^(1/2))^20 4334960340057577 a001 14930352/521*23725150497407^(5/16) 4334960340057577 a001 14930352/521*505019158607^(5/14) 4334960340057577 a001 14930352/521*73681302247^(5/13) 4334960340057577 a001 14930352/521*28143753123^(2/5) 4334960340057577 a001 14930352/521*10749957122^(5/12) 4334960340057577 a001 14930352/521*4106118243^(10/23) 4334960340057577 a001 14930352/521*1568397607^(5/11) 4334960340057577 a001 14930352/521*599074578^(10/21) 4334960340057577 a001 14930352/521*228826127^(1/2) 4334960340057577 a001 14930352/521*87403803^(10/19) 4334960340057578 a001 1836311903/521*20633239^(2/7) 4334960340057579 a001 7778742049/521*20633239^(1/5) 4334960340057579 a001 14930352/521*33385282^(5/9) 4334960340057580 a001 20365011074/521*20633239^(1/7) 4334960340057580 a001 39088169/521*141422324^(6/13) 4334960340057581 a001 39088169/521*2537720636^(2/5) 4334960340057581 a001 39088169/521*45537549124^(6/17) 4334960340057581 a001 39088169/521*14662949395604^(2/7) 4334960340057581 a001 39088169/521*(1/2+1/2*5^(1/2))^18 4334960340057581 a001 39088169/521*192900153618^(1/3) 4334960340057581 a001 39088169/521*10749957122^(3/8) 4334960340057581 a001 39088169/521*4106118243^(9/23) 4334960340057581 a001 39088169/521*1568397607^(9/22) 4334960340057581 a001 39088169/521*599074578^(3/7) 4334960340057581 a001 39088169/521*228826127^(9/20) 4334960340057581 a001 39088169/521*87403803^(9/19) 4334960340057581 a001 102334155/521*(1/2+1/2*5^(1/2))^16 4334960340057581 a001 102334155/521*23725150497407^(1/4) 4334960340057581 a001 102334155/521*73681302247^(4/13) 4334960340057581 a001 102334155/521*10749957122^(1/3) 4334960340057581 a001 102334155/521*4106118243^(8/23) 4334960340057581 a001 102334155/521*1568397607^(4/11) 4334960340057581 a001 102334155/521*599074578^(8/21) 4334960340057581 a001 701408733/521*141422324^(4/13) 4334960340057581 a001 433494437/521*141422324^(1/3) 4334960340057581 a001 165580141/521*141422324^(5/13) 4334960340057581 a001 2971215073/521*141422324^(3/13) 4334960340057581 a001 102334155/521*228826127^(2/5) 4334960340057581 a001 12586269025/521*141422324^(2/13) 4334960340057581 a001 53316291173/521*141422324^(1/13) 4334960340057581 a001 267914296/521*17393796001^(2/7) 4334960340057581 a001 267914296/521*14662949395604^(2/9) 4334960340057581 a001 267914296/521*(1/2+1/2*5^(1/2))^14 4334960340057581 a001 267914296/521*505019158607^(1/4) 4334960340057581 a001 267914296/521*10749957122^(7/24) 4334960340057581 a001 267914296/521*4106118243^(7/23) 4334960340057581 a001 267914296/521*1568397607^(7/22) 4334960340057581 a001 267914296/521*599074578^(1/3) 4334960340057581 a001 701408733/521*2537720636^(4/15) 4334960340057581 a001 701408733/521*45537549124^(4/17) 4334960340057581 a001 701408733/521*817138163596^(4/19) 4334960340057581 a001 701408733/521*14662949395604^(4/21) 4334960340057581 a001 701408733/521*(1/2+1/2*5^(1/2))^12 4334960340057581 a001 701408733/521*192900153618^(2/9) 4334960340057581 a001 701408733/521*73681302247^(3/13) 4334960340057581 a001 701408733/521*10749957122^(1/4) 4334960340057581 a001 701408733/521*4106118243^(6/23) 4334960340057581 a001 701408733/521*1568397607^(3/11) 4334960340057581 a001 1836311903/521*2537720636^(2/9) 4334960340057581 a001 1836311903/521*312119004989^(2/11) 4334960340057581 a001 1836311903/521*(1/2+1/2*5^(1/2))^10 4334960340057581 a001 1836311903/521*28143753123^(1/5) 4334960340057581 a001 1836311903/521*10749957122^(5/24) 4334960340057581 a001 1836311903/521*4106118243^(5/23) 4334960340057581 a001 12586269025/521*2537720636^(2/15) 4334960340057581 a001 20365011074/521*2537720636^(1/9) 4334960340057581 a001 53316291173/521*2537720636^(1/15) 4334960340057581 a001 4807526976/521*(1/2+1/2*5^(1/2))^8 4334960340057581 a001 4807526976/521*23725150497407^(1/8) 4334960340057581 a001 4807526976/521*505019158607^(1/7) 4334960340057581 a001 4807526976/521*73681302247^(2/13) 4334960340057581 a001 2971215073/521*2537720636^(1/5) 4334960340057581 a001 4807526976/521*10749957122^(1/6) 4334960340057581 a001 12586269025/521*45537549124^(2/17) 4334960340057581 a001 12586269025/521*14662949395604^(2/21) 4334960340057581 a001 12586269025/521*(1/2+1/2*5^(1/2))^6 4334960340057581 a001 63246219*(1/2+1/2*5^(1/2))^4 4334960340057581 a001 63246219*23725150497407^(1/16) 4334960340057581 a001 12586269025/521*10749957122^(1/8) 4334960340057581 a001 63246219*73681302247^(1/13) 4334960340057581 a001 86267571272/521*(1/2+1/2*5^(1/2))^2 4334960340057581 a001 225851433717/521 4334960340057581 a001 139583862445/1042+139583862445/1042*5^(1/2) 4334960340057581 a001 53316291173/521*45537549124^(1/17) 4334960340057581 a001 53316291173/521*14662949395604^(1/21) 4334960340057581 a001 53316291173/521*(1/2+1/2*5^(1/2))^3 4334960340057581 a001 53316291173/521*192900153618^(1/18) 4334960340057581 a001 86267571272/521*10749957122^(1/24) 4334960340057581 a001 20365011074/521*312119004989^(1/11) 4334960340057581 a001 20365011074/521*(1/2+1/2*5^(1/2))^5 4334960340057581 a001 63246219*10749957122^(1/12) 4334960340057581 a001 20365011074/521*28143753123^(1/10) 4334960340057581 a001 53316291173/521*10749957122^(1/16) 4334960340057581 a001 4807526976/521*4106118243^(4/23) 4334960340057581 a001 86267571272/521*4106118243^(1/23) 4334960340057581 a001 7778742049/521*17393796001^(1/7) 4334960340057581 a001 7778742049/521*14662949395604^(1/9) 4334960340057581 a001 7778742049/521*(1/2+1/2*5^(1/2))^7 4334960340057581 a001 63246219*4106118243^(2/23) 4334960340057581 a001 12586269025/521*4106118243^(3/23) 4334960340057581 a001 86267571272/521*1568397607^(1/22) 4334960340057581 a001 2971215073/521*45537549124^(3/17) 4334960340057581 a001 2971215073/521*14662949395604^(1/7) 4334960340057581 a001 2971215073/521*(1/2+1/2*5^(1/2))^9 4334960340057581 a001 2971215073/521*192900153618^(1/6) 4334960340057581 a001 2971215073/521*10749957122^(3/16) 4334960340057581 a001 1836311903/521*1568397607^(5/22) 4334960340057581 a001 63246219*1568397607^(1/11) 4334960340057581 a001 12586269025/521*1568397607^(3/22) 4334960340057581 a001 4807526976/521*1568397607^(2/11) 4334960340057581 a001 86267571272/521*599074578^(1/21) 4334960340057581 a001 1134903170/521*312119004989^(1/5) 4334960340057581 a001 1134903170/521*(1/2+1/2*5^(1/2))^11 4334960340057581 a001 53316291173/521*599074578^(1/14) 4334960340057581 a001 1134903170/521*1568397607^(1/4) 4334960340057581 a001 63246219*599074578^(2/21) 4334960340057581 a001 701408733/521*599074578^(2/7) 4334960340057581 a001 12586269025/521*599074578^(1/7) 4334960340057581 a001 7778742049/521*599074578^(1/6) 4334960340057581 a001 4807526976/521*599074578^(4/21) 4334960340057581 a001 1836311903/521*599074578^(5/21) 4334960340057581 a001 2971215073/521*599074578^(3/14) 4334960340057581 a001 86267571272/521*228826127^(1/20) 4334960340057581 a001 433494437/521*(1/2+1/2*5^(1/2))^13 4334960340057581 a001 433494437/521*73681302247^(1/4) 4334960340057581 a001 63246219*228826127^(1/10) 4334960340057581 a001 20365011074/521*228826127^(1/8) 4334960340057581 a001 12586269025/521*228826127^(3/20) 4334960340057581 a001 4807526976/521*228826127^(1/5) 4334960340057581 a001 267914296/521*228826127^(7/20) 4334960340057581 a001 1836311903/521*228826127^(1/4) 4334960340057581 a001 701408733/521*228826127^(3/10) 4334960340057581 a001 86267571272/521*87403803^(1/19) 4334960340057581 a001 165580141/521*2537720636^(1/3) 4334960340057581 a001 165580141/521*45537549124^(5/17) 4334960340057581 a001 165580141/521*312119004989^(3/11) 4334960340057581 a001 165580141/521*14662949395604^(5/21) 4334960340057581 a001 165580141/521*(1/2+1/2*5^(1/2))^15 4334960340057581 a001 165580141/521*192900153618^(5/18) 4334960340057581 a001 165580141/521*28143753123^(3/10) 4334960340057581 a001 165580141/521*10749957122^(5/16) 4334960340057581 a001 165580141/521*599074578^(5/14) 4334960340057581 a001 63246219*87403803^(2/19) 4334960340057581 a001 165580141/521*228826127^(3/8) 4334960340057581 a001 12586269025/521*87403803^(3/19) 4334960340057581 a001 4807526976/521*87403803^(4/19) 4334960340057581 a001 1836311903/521*87403803^(5/19) 4334960340057581 a001 102334155/521*87403803^(8/19) 4334960340057581 a001 701408733/521*87403803^(6/19) 4334960340057581 a001 267914296/521*87403803^(7/19) 4334960340057581 a001 86267571272/521*33385282^(1/18) 4334960340057581 a001 63245986/521*45537549124^(1/3) 4334960340057581 a001 63245986/521*(1/2+1/2*5^(1/2))^17 4334960340057581 a001 53316291173/521*33385282^(1/12) 4334960340057582 a001 63246219*33385282^(1/9) 4334960340057582 a001 12586269025/521*33385282^(1/6) 4334960340057582 a001 4807526976/521*33385282^(2/9) 4334960340057582 a001 2971215073/521*33385282^(1/4) 4334960340057582 a001 1836311903/521*33385282^(5/18) 4334960340057582 a001 701408733/521*33385282^(1/3) 4334960340057582 a001 39088169/521*33385282^(1/2) 4334960340057583 a001 24157817/521*817138163596^(1/3) 4334960340057583 a001 24157817/521*(1/2+1/2*5^(1/2))^19 4334960340057583 a001 267914296/521*33385282^(7/18) 4334960340057583 a001 86267571272/521*12752043^(1/17) 4334960340057583 a001 102334155/521*33385282^(4/9) 4334960340057583 a001 165580141/521*33385282^(5/12) 4334960340057583 a001 24157817/521*87403803^(1/2) 4334960340057584 a001 63246219*12752043^(2/17) 4334960340057585 a001 9227465/521*20633239^(3/5) 4334960340057586 a001 12586269025/521*12752043^(3/17) 4334960340057587 a001 4807526976/521*12752043^(4/17) 4334960340057589 a001 1836311903/521*12752043^(5/17) 4334960340057590 a001 701408733/521*12752043^(6/17) 4334960340057591 a001 9227465/521*141422324^(7/13) 4334960340057591 a001 9227465/521*2537720636^(7/15) 4334960340057591 a001 9227465/521*17393796001^(3/7) 4334960340057591 a001 9227465/521*45537549124^(7/17) 4334960340057591 a001 9227465/521*14662949395604^(1/3) 4334960340057591 a001 9227465/521*(1/2+1/2*5^(1/2))^21 4334960340057591 a001 9227465/521*192900153618^(7/18) 4334960340057591 a001 9227465/521*10749957122^(7/16) 4334960340057591 a001 9227465/521*599074578^(1/2) 4334960340057592 a001 267914296/521*12752043^(7/17) 4334960340057592 a001 86267571272/521*4870847^(1/16) 4334960340057593 a001 14930352/521*12752043^(10/17) 4334960340057594 a001 9227465/521*33385282^(7/12) 4334960340057594 a001 102334155/521*12752043^(8/17) 4334960340057595 a001 39088169/521*12752043^(9/17) 4334960340057595 a001 63245986/521*12752043^(1/2) 4334960340057604 a001 63246219*4870847^(1/8) 4334960340057615 a001 12586269025/521*4870847^(3/16) 4334960340057627 a001 4807526976/521*4870847^(1/4) 4334960340057638 a001 1836311903/521*4870847^(5/16) 4334960340057650 a001 701408733/521*4870847^(3/8) 4334960340057651 a001 3524578/521*(1/2+1/2*5^(1/2))^23 4334960340057651 a001 3524578/521*4106118243^(1/2) 4334960340057661 a001 267914296/521*4870847^(7/16) 4334960340057665 a001 86267571272/521*1860498^(1/15) 4334960340057672 a001 102334155/521*4870847^(1/2) 4334960340057680 a001 5702887/521*4870847^(11/16) 4334960340057683 a001 39088169/521*4870847^(9/16) 4334960340057691 a001 14930352/521*4870847^(5/8) 4334960340057706 a001 53316291173/521*1860498^(1/10) 4334960340057748 a001 63246219*1860498^(2/15) 4334960340057790 a001 20365011074/521*1860498^(1/6) 4334960340057832 a001 12586269025/521*1860498^(1/5) 4334960340057915 a001 4807526976/521*1860498^(4/15) 4334960340057957 a001 2971215073/521*1860498^(3/10) 4334960340057999 a001 1836311903/521*1860498^(1/3) 4334960340058052 a001 1346269/521*20633239^(5/7) 4334960340058059 a001 1346269/521*2537720636^(5/9) 4334960340058059 a001 1346269/521*312119004989^(5/11) 4334960340058059 a001 1346269/521*(1/2+1/2*5^(1/2))^25 4334960340058059 a001 1346269/521*3461452808002^(5/12) 4334960340058059 a001 1346269/521*28143753123^(1/2) 4334960340058059 a001 1346269/521*228826127^(5/8) 4334960340058082 a001 701408733/521*1860498^(2/5) 4334960340058165 a001 267914296/521*1860498^(7/15) 4334960340058194 a001 86267571272/521*710647^(1/14) 4334960340058207 a001 165580141/521*1860498^(1/2) 4334960340058249 a001 102334155/521*1860498^(8/15) 4334960340058332 a001 39088169/521*1860498^(3/5) 4334960340058400 a001 2178309/521*1860498^(4/5) 4334960340058412 a001 14930352/521*1860498^(2/3) 4334960340058468 a001 9227465/521*1860498^(7/10) 4334960340058473 a001 5702887/521*1860498^(11/15) 4334960340058807 a001 63246219*710647^(1/7) 4334960340059103 a001 1346269/521*1860498^(5/6) 4334960340059420 a001 12586269025/521*710647^(3/14) 4334960340059727 a001 7778742049/521*710647^(1/4) 4334960340060034 a001 4807526976/521*710647^(2/7) 4334960340060647 a001 1836311903/521*710647^(5/14) 4334960340060803 a001 514229/521*7881196^(9/11) 4334960340060860 a001 514229/521*141422324^(9/13) 4334960340060860 a001 514229/521*2537720636^(3/5) 4334960340060860 a001 514229/521*45537549124^(9/17) 4334960340060860 a001 514229/521*817138163596^(9/19) 4334960340060860 a001 514229/521*14662949395604^(3/7) 4334960340060860 a001 514229/521*(1/2+1/2*5^(1/2))^27 4334960340060860 a001 514229/521*192900153618^(1/2) 4334960340060860 a001 514229/521*10749957122^(9/16) 4334960340060860 a001 514229/521*599074578^(9/14) 4334960340060863 a001 514229/521*33385282^(3/4) 4334960340061260 a001 701408733/521*710647^(3/7) 4334960340061873 a001 267914296/521*710647^(1/2) 4334960340061987 a001 514229/521*1860498^(9/10) 4334960340062107 a001 86267571272/521*271443^(1/13) 4334960340062486 a001 102334155/521*710647^(4/7) 4334960340063099 a001 39088169/521*710647^(9/14) 4334960340063708 a001 14930352/521*710647^(5/7) 4334960340064029 a001 9227465/521*710647^(3/4) 4334960340064299 a001 5702887/521*710647^(11/14) 4334960340064299 a001 832040/521*710647^(13/14) 4334960340064756 a001 2178309/521*710647^(6/7) 4334960340066632 a001 63246219*271443^(2/13) 4334960340071158 a001 12586269025/521*271443^(3/13) 4334960340074383 a001 139583862445/521*103682^(1/24) 4334960340075684 a001 4807526976/521*271443^(4/13) 4334960340080054 a001 196418/521*(1/2+1/2*5^(1/2))^29 4334960340080054 a001 196418/521*1322157322203^(1/2) 4334960340080210 a001 1836311903/521*271443^(5/13) 4334960340084735 a001 701408733/521*271443^(6/13) 4334960340086998 a001 433494437/521*271443^(1/2) 4334960340089261 a001 267914296/521*271443^(7/13) 4334960340091186 a001 86267571272/521*103682^(1/12) 4334960340093786 a001 102334155/521*271443^(8/13) 4334960340098312 a001 39088169/521*271443^(9/13) 4334960340102834 a001 14930352/521*271443^(10/13) 4334960340107337 a001 5702887/521*271443^(11/13) 4334960340107988 a001 53316291173/521*103682^(1/8) 4334960340111707 a001 2178309/521*271443^(12/13) 4334960340124790 a001 63246219*103682^(1/6) 4334960340141592 a001 20365011074/521*103682^(5/24) 4334960340152776 a001 233/167761*(1/2+1/2*5^(1/2))^55 4334960340152776 a001 233/167761*3461452808002^(11/12) 4334960340158395 a001 12586269025/521*103682^(1/4) 4334960340175197 a001 7778742049/521*103682^(7/24) 4334960340183215 a001 139583862445/521*39603^(1/22) 4334960340191999 a001 4807526976/521*103682^(1/3) 4334960340208801 a001 2971215073/521*103682^(3/8) 4334960340211610 a001 75025/521*(1/2+1/2*5^(1/2))^31 4334960340211610 a001 75025/521*9062201101803^(1/2) 4334960340225603 a001 1836311903/521*103682^(5/12) 4334960340242406 a001 1134903170/521*103682^(11/24) 4334960340259208 a001 701408733/521*103682^(1/2) 4334960340276010 a001 433494437/521*103682^(13/24) 4334960340292812 a001 267914296/521*103682^(7/12) 4334960340308849 a001 86267571272/521*39603^(1/11) 4334960340309615 a001 165580141/521*103682^(5/8) 4334960340326417 a001 102334155/521*103682^(2/3) 4334960340343219 a001 63245986/521*103682^(17/24) 4334960340360021 a001 39088169/521*103682^(3/4) 4334960340376825 a001 24157817/521*103682^(19/24) 4334960340393622 a001 14930352/521*103682^(5/6) 4334960340402001 a001 2512543013297/5796 4334960340410438 a001 9227465/521*103682^(7/8) 4334960340427204 a001 5702887/521*103682^(11/12) 4334960340434482 a001 53316291173/521*39603^(3/22) 4334960340444102 a001 3524578/521*103682^(23/24) 4334960340560116 a001 63246219*39603^(2/11) 4334960340685750 a001 20365011074/521*39603^(5/22) 4334960340811383 a001 12586269025/521*39603^(3/11) 4334960340937017 a001 7778742049/521*39603^(7/22) 4334960341004798 a001 139583862445/521*15127^(1/20) 4334960341054479 a001 233/64079*(1/2+1/2*5^(1/2))^53 4334960341062651 a001 4807526976/521*39603^(4/11) 4334960341113313 a001 28657/521*141422324^(11/13) 4334960341113313 a001 28657/521*2537720636^(11/15) 4334960341113313 a001 28657/521*45537549124^(11/17) 4334960341113313 a001 28657/521*312119004989^(3/5) 4334960341113313 a001 28657/521*14662949395604^(11/21) 4334960341113313 a001 28657/521*(1/2+1/2*5^(1/2))^33 4334960341113313 a001 28657/521*192900153618^(11/18) 4334960341113313 a001 28657/521*10749957122^(11/16) 4334960341113313 a001 28657/521*1568397607^(3/4) 4334960341113313 a001 28657/521*599074578^(11/14) 4334960341113317 a001 28657/521*33385282^(11/12) 4334960341188285 a001 2971215073/521*39603^(9/22) 4334960341313918 a001 1836311903/521*39603^(5/11) 4334960341439552 a001 1134903170/521*39603^(1/2) 4334960341565186 a001 701408733/521*39603^(6/11) 4334960341671751 q001 1421/3278 4334960341690820 a001 433494437/521*39603^(13/22) 4334960341816453 a001 267914296/521*39603^(7/11) 4334960341942087 a001 165580141/521*39603^(15/22) 4334960341952015 a001 86267571272/521*15127^(1/10) 4334960342067721 a001 102334155/521*39603^(8/11) 4334960342193355 a001 63245986/521*39603^(17/22) 4334960342318988 a001 39088169/521*39603^(9/11) 4334960342444624 a001 24157817/521*39603^(19/22) 4334960342570252 a001 14930352/521*39603^(10/11) 4334960342695900 a001 9227465/521*39603^(21/22) 4334960342762689 a001 7677648263067/17711 4334960342899232 a001 53316291173/521*15127^(3/20) 4334960343846449 a001 63246219*15127^(1/5) 4334960344253181 a001 4/1597*34^(7/45) 4334960344793666 a001 20365011074/521*15127^(1/4) 4334960345740884 a001 12586269025/521*15127^(3/10) 4334960346688101 a001 7778742049/521*15127^(7/20) 4334960347234842 a001 233/24476*817138163596^(17/19) 4334960347234842 a001 233/24476*14662949395604^(17/21) 4334960347234842 a001 233/24476*(1/2+1/2*5^(1/2))^51 4334960347234842 a001 233/24476*192900153618^(17/18) 4334960347271273 a001 139583862445/521*5778^(1/18) 4334960347293676 a001 10946/521*2537720636^(7/9) 4334960347293676 a001 10946/521*17393796001^(5/7) 4334960347293676 a001 10946/521*312119004989^(7/11) 4334960347293676 a001 10946/521*14662949395604^(5/9) 4334960347293676 a001 10946/521*(1/2+1/2*5^(1/2))^35 4334960347293676 a001 10946/521*505019158607^(5/8) 4334960347293676 a001 10946/521*28143753123^(7/10) 4334960347293676 a001 10946/521*599074578^(5/6) 4334960347293676 a001 10946/521*228826127^(7/8) 4334960347635318 a001 4807526976/521*15127^(2/5) 4334960348582535 a001 2971215073/521*15127^(9/20) 4334960349529752 a001 1836311903/521*15127^(1/2) 4334960350476969 a001 1134903170/521*15127^(11/20) 4334960351424186 a001 701408733/521*15127^(3/5) 4334960352371403 a001 433494437/521*15127^(13/20) 4334960353318620 a001 267914296/521*15127^(7/10) 4334960354265837 a001 165580141/521*15127^(3/4) 4334960354484964 a001 86267571272/521*5778^(1/9) 4334960355213054 a001 102334155/521*15127^(4/5) 4334960356160272 a001 63245986/521*15127^(17/20) 4334960357107488 a001 39088169/521*15127^(9/10) 4334960358054707 a001 24157817/521*15127^(19/20) 4334960358943089 a001 53320012415/123 4334960360419120 r005 Re(z^2+c),c=-69/98+4/27*I,n=59 4334960361698656 a001 53316291173/521*5778^(1/6) 4334960364426922 a001 47/21*233^(57/59) 4334960368554733 l006 ln(2779/4287) 4334960368912347 a001 63246219*5778^(2/9) 4334960370719944 a001 4/89*2584^(15/52) 4334960376126039 a001 20365011074/521*5778^(5/18) 4334960376772028 r005 Im(z^2+c),c=-7/10+59/218*I,n=9 4334960383339731 a001 12586269025/521*5778^(1/3) 4334960389595678 a001 233/9349*14662949395604^(7/9) 4334960389595678 a001 233/9349*(1/2+1/2*5^(1/2))^49 4334960389595678 a001 233/9349*505019158607^(7/8) 4334960389654512 a001 4181/521*(1/2+1/2*5^(1/2))^37 4334960390553422 a001 7778742049/521*5778^(7/18) 4334960395681376 a001 139583862445/521*2207^(1/16) 4334960397767114 a001 4807526976/521*5778^(4/9) 4334960400209605 r005 Re(z^2+c),c=-7/74+9/11*I,n=30 4334960400279007 a001 11/196418*1346269^(49/51) 4334960400629914 r005 Im(z^2+c),c=-10/23+26/47*I,n=32 4334960404980805 a001 2971215073/521*5778^(1/2) 4334960405321265 r002 19th iterates of z^2 + 4334960412194497 a001 1836311903/521*5778^(5/9) 4334960419408189 a001 1134903170/521*5778^(11/18) 4334960426621880 a001 701408733/521*5778^(2/3) 4334960429513039 m001 ln(TwinPrimes)^2/FeigenbaumDelta*GAMMA(19/24) 4334960430049326 a007 Real Root Of -226*x^4+708*x^3-637*x^2+449*x+380 4334960433835572 a001 433494437/521*5778^(13/18) 4334960441049264 a001 267914296/521*5778^(7/9) 4334960443277053 r005 Re(z^2+c),c=-65/106+4/27*I,n=39 4334960444753158 m001 gamma^(BesselI(0,1)/FeigenbaumB) 4334960448262956 a001 165580141/521*5778^(5/6) 4334960450348707 m001 AlladiGrinstead/(BesselI(0,2)-ThueMorse) 4334960451305172 a001 86267571272/521*2207^(1/8) 4334960451671121 r002 21i'th iterates of 2*x/(1-x^2) of 4334960454336804 r005 Im(z^2+c),c=17/60+16/47*I,n=59 4334960455476647 a001 102334155/521*5778^(8/9) 4334960462690339 a001 63245986/521*5778^(17/18) 4334960469845201 a001 140019223176/323 4334960479728875 r009 Re(z^3+c),c=-4/9+11/19*I,n=4 4334960488703109 m001 1/Bloch^2*GaussAGM(1,1/sqrt(2))/ln(Catalan) 4334960491013996 r002 16th iterates of z^2 + 4334960506928968 a001 53316291173/521*2207^(3/16) 4334960534037604 r008 a(0)=0,K{-n^6,-17-48*n+42*n^2+n^3} 4334960534083413 a007 Real Root Of -303*x^4+614*x^3+751*x^2+954*x-594 4334960548590491 h001 (4/11*exp(2)+2/9)/(8/9*exp(2)+1/7) 4334960560548073 m001 (Magata-StolarskyHarborth)/(ln(2)+Zeta(1/2)) 4334960562552766 a001 63246219*2207^(1/4) 4334960571824770 r005 Re(z^2+c),c=7/27+1/64*I,n=60 4334960591068942 r002 13th iterates of z^2 + 4334960597999787 r002 26th iterates of z^2 + 4334960613081190 m001 (Cahen-exp(1))/(-Conway+Grothendieck) 4334960618176563 a001 20365011074/521*2207^(5/16) 4334960623907738 r005 Im(z^2+c),c=-19/25+9/14*I,n=4 4334960630697683 r005 Re(z^2+c),c=-41/66+1/54*I,n=51 4334960631874827 m001 TwinPrimes/exp(PisotVijayaraghavan)^2/OneNinth 4334960633419637 m001 (BesselK(0,1)*Khinchin-Otter)/BesselK(0,1) 4334960636621861 a001 21566892818/341*322^(1/3) 4334960650840340 m005 (-13/44+1/4*5^(1/2))/(6/7*gamma-5/9) 4334960650855717 m001 FeigenbaumKappa*(exp(Pi)+Psi(2,1/3)) 4334960673800362 a001 12586269025/521*2207^(3/8) 4334960674128535 a007 Real Root Of 913*x^4-232*x^3+181*x^2-694*x-386 4334960678486179 r005 Re(z^2+c),c=-21/34+5/46*I,n=51 4334960679941192 a001 233/3571*(1/2+1/2*5^(1/2))^47 4334960680000000 a001 1597/521*2537720636^(13/15) 4334960680000000 a001 1597/521*45537549124^(13/17) 4334960680000000 a001 1597/521*14662949395604^(13/21) 4334960680000000 a001 1597/521*(1/2+1/2*5^(1/2))^39 4334960680000000 a001 1597/521*192900153618^(13/18) 4334960680000000 a001 1597/521*73681302247^(3/4) 4334960680000000 a001 1597/521*10749957122^(13/16) 4334960680000000 a001 1597/521*599074578^(13/14) 4334960682342522 r009 Im(z^3+c),c=-9/106+23/45*I,n=20 4334960692078719 a007 Real Root Of -902*x^4+641*x^3+829*x^2+927*x-578 4334960706752773 a007 Real Root Of 401*x^4-530*x^3+116*x^2-814*x-432 4334960720369061 a005 (1/sin(106/221*Pi))^1841 4334960724015019 m001 (Psi(2,1/3)+Si(Pi))/(LambertW(1)+Robbin) 4334960729122230 a007 Real Root Of -301*x^4+263*x^3+805*x^2+595*x-420 4334960729424161 a001 7778742049/521*2207^(7/16) 4334960735747869 r002 38th iterates of z^2 + 4334960748959640 r002 49th iterates of z^2 + 4334960755541558 a008 Real Root of x^4-x^3-15*x^2+32*x-14 4334960769213154 m001 (Magata+Robbin)/(polylog(4,1/2)-Backhouse) 4334960774287862 b008 ArcSinh[37+2*EulerGamma] 4334960775772953 a001 139583862445/521*843^(1/14) 4334960783487148 m001 Kolakoski^BesselI(0,2)*Kolakoski^GAMMA(2/3) 4334960785047961 a001 4807526976/521*2207^(1/2) 4334960808778284 r005 Im(z^2+c),c=-19/90+21/34*I,n=61 4334960809255605 s002 sum(A119836[n]/(n*exp(pi*n)-1),n=1..infinity) 4334960818732014 r005 Re(z^2+c),c=-73/122+9/37*I,n=41 4334960822180727 m001 (GaussAGM+ThueMorse)/(ln(2)-FeigenbaumMu) 4334960824590498 r002 34th iterates of z^2 + 4334960825638767 r005 Im(z^2+c),c=11/94+20/41*I,n=35 4334960837329280 m005 (1/2*Catalan+2/11)/(2/9*Pi+7/9) 4334960840671762 a001 2971215073/521*2207^(9/16) 4334960847822432 a007 Real Root Of -41*x^4-46*x^3+567*x^2-171*x-665 4334960856735468 a007 Real Root Of 759*x^4+94*x^3+66*x^2-933*x-436 4334960871710133 r009 Im(z^3+c),c=-19/48+25/59*I,n=31 4334960891594089 r005 Im(z^2+c),c=10/29+11/19*I,n=57 4334960896295564 a001 1836311903/521*2207^(5/8) 4334960900803206 a001 86267571272/2207*322^(5/12) 4334960902315253 r005 Re(z^2+c),c=-41/66+2/55*I,n=34 4334960907036620 r005 Re(z^2+c),c=-17/30+37/101*I,n=17 4334960913234028 r002 54th iterates of z^2 + 4334960916670690 a005 (1/cos(7/90*Pi))^125 4334960926269166 a001 29/10946*2178309^(50/51) 4334960927245954 r005 Re(z^2+c),c=-9/38+9/11*I,n=19 4334960930500312 m001 (-exp(1/Pi)+GAMMA(5/6))/(gamma-ln(Pi)) 4334960936935210 l006 ln(4104/6331) 4334960937500000 r005 Re(z^2+c),c=-23/20+23/64*I,n=2 4334960939966811 r005 Re(z^2+c),c=-19/30+17/103*I,n=28 4334960941108807 a007 Real Root Of 168*x^4+752*x^3+314*x^2+719*x-851 4334960951919366 a001 1134903170/521*2207^(11/16) 4334960959079296 p001 sum((-1)^n/(216*n+23)/(32^n),n=0..infinity) 4334960964594320 a007 Real Root Of -735*x^4-927*x^3+480*x^2+838*x-352 4334960969877754 r005 Re(z^2+c),c=-61/62+8/37*I,n=24 4334960988136670 r005 Im(z^2+c),c=-4/3+45/182*I,n=4 4334960994759287 m001 1/ln(Niven)^2/FeigenbaumB/Paris^2 4334961007543169 a001 701408733/521*2207^(3/4) 4334961019570330 r002 7th iterates of z^2 + 4334961048269959 r002 62th iterates of z^2 + 4334961053892502 m001 (GAMMA(3/4)+exp(-1/2*Pi))/(Porter+Tribonacci) 4334961054764835 r005 Im(z^2+c),c=13/86+13/28*I,n=60 4334961062013436 p003 LerchPhi(1/6,4,509/230) 4334961063166972 a001 433494437/521*2207^(13/16) 4334961072809764 a007 Real Root Of 227*x^4+879*x^3-608*x^2-615*x+203 4334961076692452 m001 (cos(1)+Zeta(1/2))/(exp(1/Pi)+RenyiParking) 4334961089676873 r005 Im(z^2+c),c=1/34+24/43*I,n=46 4334961101111141 k007 concat of cont frac of 4334961102569837 r005 Re(z^2+c),c=-75/122+7/57*I,n=37 4334961102948228 a007 Real Root Of 360*x^4+402*x^3+917*x^2-696*x-454 4334961116164359 m001 (-FeigenbaumD+ZetaP(3))/(2^(1/3)-Zeta(3)) 4334961118790777 a001 267914296/521*2207^(7/8) 4334961126810522 r009 Re(z^3+c),c=-59/126+8/51*I,n=32 4334961130752425 r002 50th iterates of z^2 + 4334961157842263 m004 -5+150/Pi+125*Pi-Log[Sqrt[5]*Pi] 4334961161917452 m001 (-KhinchinLevy+PlouffeB)/(BesselI(0,1)+Artin) 4334961172475208 r005 Re(z^2+c),c=-43/62+13/45*I,n=48 4334961174414582 a001 165580141/521*2207^(15/16) 4334961193146382 m001 1/Magata^2/FeigenbaumAlpha^2/exp(gamma)^2 4334961207246376 m001 (Si(Pi)+GAMMA(17/24))/Sarnak 4334961207650364 m001 (-FeigenbaumB+Trott)/(Shi(1)+Chi(1)) 4334961207650364 m001 (FeigenbaumB-Trott)/Ei(1) 4334961209816439 r005 Im(z^2+c),c=-19/29+4/9*I,n=42 4334961211488369 a001 86267571272/521*843^(1/7) 4334961218040792 q001 1509/3481 4334961219961430 r005 Im(z^2+c),c=5/98+37/64*I,n=33 4334961220433018 m001 (gamma+ln(Pi))/(BesselI(1,1)+Magata) 4334961220972582 r005 Re(z^2+c),c=-41/66+2/35*I,n=45 4334961221992320 r005 Re(z^2+c),c=-9/13+16/63*I,n=52 4334961225753746 a007 Real Root Of -751*x^4+612*x^3+639*x^2+525*x-371 4334961227878160 l006 ln(5429/8375) 4334961229979736 a001 427860673399/987 4334961243513697 p003 LerchPhi(1/25,3,253/191) 4334961246142540 r005 Im(z^2+c),c=-1/74+30/53*I,n=30 4334961254473030 a007 Real Root Of 164*x^4+734*x^3+69*x^2-37*x+422 4334961272007132 s001 sum(exp(-2*Pi/5)^n*A020915[n],n=1..infinity) 4334961272007132 s002 sum(A020915[n]/(exp(2/5*pi*n)),n=1..infinity) 4334961274769841 p001 sum(1/(117*n+68)/n/(125^n),n=0..infinity) 4334961279063146 r005 Im(z^2+c),c=5/64+13/25*I,n=41 4334961282401069 r002 48th iterates of z^2 + 4334961292010606 r005 Re(z^2+c),c=-5/8+66/197*I,n=45 4334961294793857 r005 Im(z^2+c),c=31/126+19/51*I,n=29 4334961298474024 a007 Real Root Of 380*x^4-572*x^3-143*x^2-145*x-96 4334961312883049 r005 Re(z^2+c),c=-41/66+1/33*I,n=57 4334961314914717 r002 18th iterates of z^2 + 4334961326368886 m001 (BesselI(0,2)+Bloch)/(FeigenbaumB-Porter) 4334961346387396 r005 Im(z^2+c),c=-87/70+19/45*I,n=7 4334961357376170 r005 Im(z^2+c),c=-1/118+7/13*I,n=18 4334961374951061 r005 Re(z^2+c),c=-65/102+13/58*I,n=33 4334961375176842 r009 Im(z^3+c),c=-13/64+28/57*I,n=2 4334961386859359 a007 Real Root Of 169*x^4-434*x^3+269*x^2-577*x-342 4334961398209411 a007 Real Root Of -182*x^4-721*x^3+423*x^2+345*x-917 4334961404308066 r005 Re(z^2+c),c=1/52+10/37*I,n=6 4334961406092809 m005 (1/3*Pi+2/7)/(8/11*gamma-8/11) 4334961409062453 m001 (2^(1/3))^2*Sierpinski^2*ln(Ei(1))^2 4334961413923657 r005 Re(z^2+c),c=-18/29+2/43*I,n=58 4334961423816452 r002 8th iterates of z^2 + 4334961449127957 p004 log(33301/21587) 4334961449946275 a007 Real Root Of 645*x^4-202*x^3-766*x^2-696*x-197 4334961463664531 r005 Re(z^2+c),c=-61/94+10/47*I,n=37 4334961468355360 r009 Im(z^3+c),c=-13/44+27/58*I,n=15 4334961477771272 a007 Real Root Of 210*x^4+994*x^3+255*x^2-430*x+159 4334961482548757 r005 Im(z^2+c),c=3/50+26/49*I,n=46 4334961485786862 r009 Im(z^3+c),c=-13/40+27/58*I,n=9 4334961488976011 r005 Re(z^2+c),c=-12/19+3/25*I,n=27 4334961492662538 r005 Re(z^2+c),c=-25/42+9/34*I,n=14 4334961494030091 r002 21th iterates of z^2 + 4334961497114418 r005 Im(z^2+c),c=-43/90+32/55*I,n=24 4334961504169630 m001 1/Bloch*Artin^2/exp(GAMMA(1/6))^2 4334961506940551 m001 (Champernowne+Sarnak)/(ln(Pi)+AlladiGrinstead) 4334961510083729 m001 Riemann2ndZero^FibonacciFactorial+2^(1/2) 4334961522600445 r005 Re(z^2+c),c=21/110+15/26*I,n=3 4334961523892255 m001 exp(GAMMA(17/24))^2/CareFree*GAMMA(7/12)^2 4334961525105729 r002 64th iterates of z^2 + 4334961536445574 m001 (ln(3)+Paris)/(gamma-ln(2)/ln(10)) 4334961542348302 a001 1/843*(1/2*5^(1/2)+1/2)^8*76^(9/19) 4334961553398869 a007 Real Root Of -136*x^4-585*x^3+282*x^2+986*x-654 4334961565473544 p003 LerchPhi(1/100,1,151/65) 4334961587363581 m001 PrimesInBinary/Kolakoski^2/exp(exp(1)) 4334961589452352 a007 Real Root Of 239*x^4+945*x^3-282*x^2+586*x+422 4334961594556069 m001 (FellerTornier+GaussAGM)/(3^(1/2)-Zeta(1,2)) 4334961595765486 m001 (gamma(1)-gamma(2))/(GAMMA(5/6)-Sierpinski) 4334961620925305 m001 (Landau-ln(2)/ln(10))/(-Mills+RenyiParking) 4334961624496032 a007 Real Root Of -373*x^4+653*x^3-263*x^2+884*x+499 4334961629581433 r009 Re(z^3+c),c=-1/90+41/53*I,n=59 4334961631003755 m001 (ThueMorse-ZetaP(2))/(Champernowne+Kolakoski) 4334961647203829 a001 53316291173/521*843^(3/14) 4334961648029941 m001 MertensB1/Cahen/Zeta(1,2) 4334961658349709 r002 44th iterates of z^2 + 4334961660937638 a001 75283811239/1926*322^(5/12) 4334961676395852 l006 ln(59/4503) 4334961717864850 r002 48th iterates of z^2 + 4334961727293565 a007 Real Root Of -961*x^4-207*x^3-306*x^2+347*x+225 4334961731033207 r005 Re(z^2+c),c=3/70+19/54*I,n=5 4334961731651970 g001 Psi(2/11,1/116) 4334961739410919 a007 Real Root Of -963*x^4+680*x^3-222*x^2+701*x+435 4334961742164819 r005 Re(z^2+c),c=-23/38+2/49*I,n=17 4334961745074885 m001 1/exp(TwinPrimes)^2/TreeGrowth2nd^2*Pi 4334961765280043 r005 Re(z^2+c),c=1/102+17/23*I,n=24 4334961770102045 a001 17711/76*47^(41/54) 4334961771839779 a001 591286729879/15127*322^(5/12) 4334961771890786 r005 Re(z^2+c),c=-9/16+49/113*I,n=53 4334961788020184 a001 516002918640/13201*322^(5/12) 4334961790380874 a001 4052739537881/103682*322^(5/12) 4334961790725293 a001 3536736619241/90481*322^(5/12) 4334961790938157 a001 6557470319842/167761*322^(5/12) 4334961791283524 r005 Re(z^2+c),c=1/34+19/64*I,n=17 4334961791839860 a001 2504730781961/64079*322^(5/12) 4334961795803971 m004 55*Sqrt[5]*Pi+Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 4334961798020224 a001 956722026041/24476*322^(5/12) 4334961801659239 r005 Im(z^2+c),c=15/118+29/60*I,n=60 4334961802834851 a007 Real Root Of 469*x^4-759*x^3+186*x^2+70*x-83 4334961813711598 m001 1/ln(Riemann1stZero)*LaplaceLimit/gamma 4334961814757614 r002 55th iterates of z^2 + 4334961819696291 a001 6643838879*1836311903^(7/17) 4334961819696291 a001 228826127*6557470319842^(7/17) 4334961819697641 a001 192900153618*514229^(7/17) 4334961840381075 a001 365435296162/9349*322^(5/12) 4334961840885538 m005 (1/3*Pi+2/5)/(8/11*Catalan-1) 4334961842119191 r005 Re(z^2+c),c=-16/27+10/63*I,n=8 4334961842998759 m001 (Zeta(1,-1)+Backhouse)/(FeigenbaumMu-Lehmer) 4334961872200499 r005 Re(z^2+c),c=-17/30+25/83*I,n=19 4334961887412752 s002 sum(A131049[n]/(n*exp(pi*n)+1),n=1..infinity) 4334961897413478 r005 Im(z^2+c),c=11/126+28/55*I,n=37 4334961904904384 r005 Im(z^2+c),c=13/46+5/16*I,n=18 4334961906365032 m005 (1/3*Pi-2/11)/(3/8*Pi+9/11) 4334961915037424 r005 Im(z^2+c),c=-31/106+33/56*I,n=17 4334961921580393 r002 63th iterates of z^2 + 4334961930039114 m001 KhintchineLevy/ln(Kolakoski)^2*GAMMA(5/24)^2 4334961931369268 m001 Cahen/(GAMMA(3/4)+sin(1/12*Pi)) 4334961931369268 m001 Cahen/(GAMMA(3/4)+sin(Pi/12)) 4334961954624507 r005 Re(z^2+c),c=-49/82+10/37*I,n=44 4334961976420467 l006 ln(7381/7708) 4334961977818895 h001 (2/9*exp(1)+3/10)/(3/5*exp(1)+5/11) 4334961981815523 a007 Real Root Of -695*x^4+692*x^3+894*x^2+644*x-479 4334961997828447 q001 1597/3684 4334962009712521 a007 Real Root Of 29*x^4+55*x^3-570*x^2-946*x+850 4334962013539023 r009 Im(z^3+c),c=-23/38+35/51*I,n=8 4334962028489480 a007 Real Root Of -485*x^4+873*x^3+205*x^2+695*x+351 4334962031505521 r002 28th iterates of z^2 + 4334962066776155 r009 Im(z^3+c),c=-1/26+17/25*I,n=4 4334962069408292 r002 3th iterates of z^2 + 4334962082919332 a001 63246219*843^(2/7) 4334962082962126 r005 Im(z^2+c),c=17/98+29/57*I,n=34 4334962085992541 r005 Re(z^2+c),c=-33/86+23/45*I,n=9 4334962095148504 r002 61th iterates of z^2 + 4334962105669871 m005 (5/12+1/4*5^(1/2))/(3/5*5^(1/2)+10/11) 4334962109266418 m005 (1/2*gamma-5)/(83/99+1/9*5^(1/2)) 4334962120402286 a007 Real Root Of 129*x^4+596*x^3+163*x^2-146*x-699 4334962129032724 l006 ln(1325/2044) 4334962130726686 a001 139583862445/3571*322^(5/12) 4334962136652323 r005 Im(z^2+c),c=-7/10+64/237*I,n=9 4334962154182435 r005 Im(z^2+c),c=5/34+22/39*I,n=44 4334962158667557 m005 (1/2*Pi-5/8)/(8/11*5^(1/2)+5/9) 4334962158788974 s002 sum(A126851[n]/(n*exp(pi*n)+1),n=1..infinity) 4334962192676436 a007 Real Root Of 232*x^4-685*x^3-38*x^2-900*x-447 4334962203724005 m001 1/exp(Zeta(9))^2*FeigenbaumB/sin(Pi/12) 4334962204211257 m005 (1/2*Pi-3/10)/(8/9*Zeta(3)-4) 4334962214895565 m009 (4*Psi(1,3/4)-1/5)/(2*Catalan+1/4*Pi^2-2) 4334962216269958 s002 sum(A104995[n]/(n^3*exp(n)-1),n=1..infinity) 4334962217954923 m005 (1/2*Catalan-5/7)/(6*Catalan+5/12) 4334962218520331 m001 (GAMMA(2/3)-Ei(1,1))/(GAMMA(17/24)+MertensB3) 4334962250172729 r009 Im(z^3+c),c=-33/106+32/33*I,n=4 4334962254234309 r002 53th iterates of z^2 + 4334962255608373 m001 (2^(1/3)+3^(1/3))/(-GAMMA(17/24)+Robbin) 4334962258774397 m001 (ln(gamma)-Ei(1,1))/(Pi^(1/2)+HeathBrownMoroz) 4334962272014600 r002 50th iterates of z^2 + 4334962286144358 r005 Re(z^2+c),c=-61/90+1/37*I,n=22 4334962289161334 m001 (Psi(1,1/3)+GAMMA(5/6))/(Robbin+Tetranacci) 4334962300022271 a007 Real Root Of 231*x^4+924*x^3-143*x^2+818*x-70 4334962302509583 r009 Im(z^3+c),c=-31/64+11/19*I,n=57 4334962304915474 r005 Re(z^2+c),c=-151/114+2/63*I,n=22 4334962310041044 m001 StolarskyHarborth*(Psi(2,1/3)+Pi^(1/2)) 4334962311319859 b008 9*(3/2+Sqrt[11]) 4334962311386139 m005 (1/3*2^(1/2)+1/4)/(5/11*exp(1)+3/7) 4334962314197713 m005 (1/3*Catalan-1/6)/(1/6*2^(1/2)-5/9) 4334962321070539 r005 Re(z^2+c),c=-79/126+1/12*I,n=31 4334962326925114 m001 (Pi^(1/2)-Cahen)/(KhinchinHarmonic+Thue) 4334962333415358 m005 (1/2*Pi+5/11)/(1/11*5^(1/2)-1/4) 4334962336428358 r002 50th iterates of z^2 + 4334962337958075 r005 Re(z^2+c),c=-7/10+27/145*I,n=60 4334962359108329 r005 Im(z^2+c),c=-22/25+1/29*I,n=5 4334962359208350 m005 (1/2*gamma+1/9)/(1/4*gamma+7/9) 4334962360238956 m005 (1/2*2^(1/2)+8/11)/(4*gamma+1) 4334962360416420 r005 Re(z^2+c),c=-37/60+2/15*I,n=46 4334962388948223 r009 Im(z^3+c),c=-4/9+21/53*I,n=34 4334962398590169 r009 Re(z^3+c),c=-25/42+27/44*I,n=8 4334962409611835 r009 Re(z^3+c),c=-33/70+4/25*I,n=55 4334962415047858 a003 sin(Pi*7/64)/cos(Pi*13/60) 4334962417339220 r005 Re(z^2+c),c=-8/29+23/40*I,n=7 4334962420121327 r005 Re(z^2+c),c=15/38+1/3*I,n=47 4334962455320038 r005 Re(z^2+c),c=-23/86+28/45*I,n=44 4334962455734104 a003 sin(Pi*8/43)*sin(Pi*21/73) 4334962469926814 r009 Im(z^3+c),c=-47/106+24/49*I,n=18 4334962486759177 m001 (BesselI(1,1)-GAMMA(19/24))/(Lehmer-ZetaP(2)) 4334962505707612 r009 Re(z^3+c),c=-39/110+21/32*I,n=18 4334962506466941 r005 Re(z^2+c),c=-69/106+5/64*I,n=14 4334962509745748 m009 (Psi(1,2/3)-6)/(1/6*Psi(1,2/3)+1/6) 4334962518634879 a001 20365011074/521*843^(5/14) 4334962528053636 m001 KhinchinHarmonic^gamma+Otter 4334962556760915 q001 4/92273 4334962557380433 r005 Re(z^2+c),c=-71/118+13/61*I,n=32 4334962559034357 r005 Re(z^2+c),c=-1+17/66*I,n=12 4334962568148163 r005 Im(z^2+c),c=17/114+30/49*I,n=42 4334962569853943 a007 Real Root Of -49*x^4+557*x^3+258*x^2+979*x+42 4334962600915403 m001 BesselI(1,2)-LaplaceLimit+Magata 4334962601603023 r002 3th iterates of z^2 + 4334962607762438 r002 32th iterates of z^2 + 4334962609058295 m001 (FransenRobinson+Robbin)/(Sarnak+ZetaP(4)) 4334962659094924 a001 12586269025/843*322^(7/12) 4334962660638873 m001 (Psi(1,1/3)-ln(Pi))/(-Artin+Riemann2ndZero) 4334962662049234 r005 Im(z^2+c),c=11/58+25/58*I,n=42 4334962664555435 r005 Re(z^2+c),c=-11/18+13/48*I,n=47 4334962670000000 a001 233/1364*45537549124^(15/17) 4334962670000000 a001 233/1364*312119004989^(9/11) 4334962670000000 a001 233/1364*14662949395604^(5/7) 4334962670000000 a001 233/1364*(1/2+1/2*5^(1/2))^45 4334962670000000 a001 233/1364*192900153618^(5/6) 4334962670000000 a001 233/1364*28143753123^(9/10) 4334962670000000 a001 233/1364*10749957122^(15/16) 4334962670057581 a001 610/521*(1/2+1/2*5^(1/2))^41 4334962676526094 r005 Re(z^2+c),c=-18/29+1/17*I,n=51 4334962680337946 r005 Re(z^2+c),c=5/34+24/47*I,n=30 4334962696166709 q001 1685/3887 4334962697917763 a007 Real Root Of 466*x^4+266*x^3+206*x^2-837*x+286 4334962719153581 a007 Real Root Of 239*x^4+866*x^3-937*x^2-943*x-333 4334962733975332 m001 Ei(1,1)^(Pi^(1/2))*StronglyCareFree^(Pi^(1/2)) 4334962737888154 r005 Im(z^2+c),c=-61/48+1/31*I,n=57 4334962748029801 m005 (1/3*5^(1/2)-3/7)/(4/7*3^(1/2)-11/12) 4334962753433394 r009 Re(z^3+c),c=-27/64+4/47*I,n=7 4334962799176917 r005 Re(z^2+c),c=-21/34+3/43*I,n=36 4334962803215916 m009 (5*Psi(1,2/3)-1)/(5/6*Psi(1,2/3)+3/4) 4334962808571648 r009 Im(z^3+c),c=-1/118+11/14*I,n=20 4334962819132740 r005 Im(z^2+c),c=11/60+7/16*I,n=59 4334962823486265 m001 TreeGrowth2nd^Pi*(Pi*2^(1/2)/GAMMA(3/4))^Pi 4334962824581019 r005 Im(z^2+c),c=33/118+13/44*I,n=13 4334962828035719 r005 Im(z^2+c),c=-19/110+7/12*I,n=19 4334962828152221 a001 4250681/7*987^(13/21) 4334962854111631 r002 38th iterates of z^2 + 4334962856944565 r005 Re(z^2+c),c=-31/50+1/14*I,n=62 4334962858294675 m001 Ei(1)^2*ln(ArtinRank2)^2/Zeta(5)^2 4334962865356622 r005 Re(z^2+c),c=53/122+24/55*I,n=3 4334962867922992 m001 (exp(1)+LambertW(1))/(-Khinchin+Tetranacci) 4334962877904772 r005 Re(z^2+c),c=-31/50+2/57*I,n=31 4334962880366094 m001 1/exp(GlaisherKinkelin)/Si(Pi)/sin(Pi/5)^2 4334962882168149 l006 ln(6496/10021) 4334962897057704 a007 Real Root Of 166*x^4+667*x^3-432*x^2-743*x+612 4334962902083470 r005 Re(z^2+c),c=-11/18+10/67*I,n=27 4334962922415481 p003 LerchPhi(1/125,3,607/213) 4334962923053670 r005 Im(z^2+c),c=-31/94+17/29*I,n=44 4334962928036442 a007 Real Root Of 557*x^4-547*x^3-700*x^2+x+156 4334962929985168 h001 (3/5*exp(2)+8/11)/(3/10*exp(1)+3/8) 4334962935959747 h001 (5/9*exp(1)+3/7)/(1/2*exp(2)+7/9) 4334962941951595 a007 Real Root Of 942*x^4-656*x^3+515*x^2-105*x-229 4334962954066013 r005 Im(z^2+c),c=1/52+32/57*I,n=47 4334962954350470 a001 12586269025/521*843^(3/7) 4334962974214385 a001 47/75025*832040^(24/37) 4334962975519925 m005 (1/3*Catalan-1/7)/(7/12*Catalan-10/11) 4334962978693744 m001 1/Sierpinski^2/exp(Artin)*BesselK(0,1) 4334963000058495 r005 Re(z^2+c),c=-25/34+17/111*I,n=54 4334963024454457 m001 Lehmer^2/ln(Cahen)/FeigenbaumKappa^2 4334963024888435 r002 48th iterates of z^2 + 4334963043961989 r005 Re(z^2+c),c=-163/114+20/47*I,n=2 4334963047320060 r005 Re(z^2+c),c=-69/74+9/61*I,n=58 4334963075149080 l006 ln(5171/7977) 4334963100963263 m004 -13/3-Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 4334963103542430 m004 -13/3-Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 4334963118128158 r005 Im(z^2+c),c=7/78+18/35*I,n=42 4334963123950153 m009 (3/8*Pi^2+4/5)/(3/5*Psi(1,2/3)-4/5) 4334963128093378 r005 Im(z^2+c),c=5/86+18/31*I,n=40 4334963129940898 m002 4*Pi^2+(E^Pi*Coth[Pi])/6 4334963133771289 r005 Im(z^2+c),c=-25/38+11/31*I,n=3 4334963189878028 m001 Paris^(GaussKuzminWirsing/sin(1)) 4334963191385202 r002 51th iterates of z^2 + 4334963201657063 r002 27th iterates of z^2 + 4334963207508719 m001 1/exp(TreeGrowth2nd)^2/Paris^2*Zeta(7)^2 4334963244839565 r009 Im(z^3+c),c=-37/78+5/13*I,n=31 4334963255147412 m001 exp(Trott)*Robbin/cosh(1) 4334963261767715 m001 (BesselI(0,2)+FeigenbaumMu)/(Kac+Sarnak) 4334963269054178 r002 2th iterates of z^2 + 4334963273181033 m001 (Catalan+GAMMA(13/24))/(-Cahen+ZetaQ(2)) 4334963280809320 r005 Im(z^2+c),c=-3/25+29/48*I,n=14 4334963281213779 m002 6/Log[Pi]+Pi^3*Log[Pi]*ProductLog[Pi] 4334963285360855 r005 Re(z^2+c),c=-15/52+37/58*I,n=8 4334963286723606 r004 Re(z^2+c),c=9/26-2/9*I,z(0)=exp(5/12*I*Pi),n=8 4334963293813367 r002 8th iterates of z^2 + 4334963298290983 r005 Re(z^2+c),c=-21/34+5/42*I,n=50 4334963299394339 a001 23725150497407/233*1836311903^(14/17) 4334963299394339 a001 28143753123/233*6557470319842^(14/17) 4334963304958656 r005 Im(z^2+c),c=-13/14+55/202*I,n=17 4334963324589268 a001 103361/8*4807526976^(6/23) 4334963324628201 a001 16692641/72*75025^(6/23) 4334963325050887 r005 Im(z^2+c),c=5/74+29/55*I,n=64 4334963325183374 q001 1773/4090 4334963327838154 r009 Re(z^3+c),c=-23/44+16/61*I,n=34 4334963338049954 m001 (MertensB2+ThueMorse)/(Pi-FransenRobinson) 4334963339608621 m001 (ln(2)/ln(10)+GAMMA(5/6))/(FeigenbaumC+Porter) 4334963347096117 a007 Real Root Of -236*x^4-62*x^3-445*x^2+773*x+422 4334963361200541 a007 Real Root Of 168*x^4-47*x^3+105*x^2-248*x-137 4334963362109987 m005 (1/5*gamma-1/6)/(4*Pi-3/4) 4334963367134778 a007 Real Root Of -163*x^4-655*x^3+390*x^2+903*x+789 4334963370389122 r004 Re(z^2+c),c=-5/8-1/21*I,z(0)=-1,n=20 4334963371857003 a001 24476/21*24157817^(13/21) 4334963374494396 r002 15th iterates of z^2 + 4334963382970892 r002 8th iterates of z^2 + 4334963385064137 a007 Real Root Of -742*x^4-145*x^3-345*x^2+883*x+462 4334963385213848 r005 Im(z^2+c),c=-9/38+2/33*I,n=11 4334963386451529 a007 Real Root Of -408*x^4+583*x^3+424*x^2+883*x+365 4334963386753334 r005 Im(z^2+c),c=1/110+25/44*I,n=45 4334963390066105 a001 7778742049/521*843^(1/2) 4334963401099182 l006 ln(3846/5933) 4334963411714678 a001 3571/377*28657^(19/51) 4334963422015530 s002 sum(A034712[n]/(exp(pi*n)+1),n=1..infinity) 4334963423840555 m005 (1/2*Catalan+6)/(4/7*3^(1/2)+1/2) 4334963426891757 r009 Im(z^3+c),c=-43/126+22/43*I,n=6 4334963438496934 r009 Im(z^3+c),c=-5/9+8/39*I,n=27 4334963441437965 m001 Trott^exp(1/exp(1))/(Trott^(2^(1/3))) 4334963446270730 r005 Im(z^2+c),c=1/74+30/53*I,n=50 4334963450246598 s002 sum(A034712[n]/(exp(pi*n)),n=1..infinity) 4334963457203945 m001 (ln(2)+Rabbit)/(StronglyCareFree-ZetaP(2)) 4334963457889029 r002 63th iterates of z^2 + 4334963466249211 r005 Re(z^2+c),c=-59/114+29/64*I,n=47 4334963478477667 s002 sum(A034712[n]/(exp(pi*n)-1),n=1..infinity) 4334963496131108 r005 Im(z^2+c),c=17/90+16/37*I,n=43 4334963508927800 r009 Re(z^3+c),c=-11/21+13/62*I,n=21 4334963512964924 a007 Real Root Of 398*x^4-732*x^3-538*x^2-965*x+565 4334963513883629 m008 (1/2*Pi^5+3/4)/(1/3*Pi^4+3) 4334963518009600 b008 ArcSinh[ArcCsc[ArcSinh[5]]] 4334963521510155 a007 Real Root Of -18*x^4-762*x^3+802*x^2+409*x+843 4334963528726622 r009 Im(z^3+c),c=-71/114+20/39*I,n=12 4334963551897264 m005 (-25/44+1/4*5^(1/2))/(7/9*5^(1/2)+3/8) 4334963560589864 r002 26th iterates of z^2 + 4334963561705706 r005 Re(z^2+c),c=-41/66+1/40*I,n=49 4334963562744568 m005 (1/2*Zeta(3)-3/10)/(4/7*5^(1/2)-7/12) 4334963564348025 r009 Im(z^3+c),c=-33/74+17/43*I,n=41 4334963585552414 r009 Re(z^3+c),c=-33/70+4/25*I,n=60 4334963591393252 a007 Real Root Of 116*x^4+359*x^3-468*x^2+532*x-618 4334963602488218 m001 GAMMA(13/24)^(exp(1/Pi)/arctan(1/2)) 4334963604822114 a007 Real Root Of -540*x^4-594*x^3+121*x^2+237*x+10 4334963636463877 m001 (GAMMA(5/6)-Cahen)/(HardyLittlewoodC5+Rabbit) 4334963646061143 m005 (7/8+3/8*5^(1/2))/(1/3*Pi-5) 4334963665821645 l006 ln(6367/9822) 4334963672072585 r002 13th iterates of z^2 + 4334963680220330 m001 (ln(Pi)+Zeta(1,-1))/(Bloch+KomornikLoreti) 4334963697276532 l006 ln(7539/7873) 4334963702918921 s002 sum(A016495[n]/((exp(n)-1)/n),n=1..infinity) 4334963704715928 s002 sum(A004304[n]/(n*exp(pi*n)+1),n=1..infinity) 4334963713382629 m001 BesselK(0,1)-FeigenbaumMu^GAMMA(3/4) 4334963722480026 a001 2207/233*832040^(37/47) 4334963749658925 a001 38*1597^(1/56) 4334963758851991 r005 Re(z^2+c),c=-41/66+1/27*I,n=51 4334963763140289 a001 1/322*(1/2*5^(1/2)+1/2)^12*47^(8/21) 4334963781140004 m001 (ln(2^(1/2)+1)+gamma(2))/(CareFree+Mills) 4334963791289411 r009 Im(z^3+c),c=-9/106+23/45*I,n=22 4334963820617097 a007 Real Root Of -769*x^4+956*x^3+94*x^2+186*x+168 4334963822719364 a007 Real Root Of -182*x^4+803*x^3+526*x^2+639*x+250 4334963824221642 a001 139583862445/521*322^(1/12) 4334963825781784 a001 4807526976/521*843^(4/7) 4334963835197671 r005 Re(z^2+c),c=-13/21+3/11*I,n=25 4334963844462067 r002 4th iterates of z^2 + 4334963846144317 r009 Re(z^3+c),c=-6/11+6/23*I,n=27 4334963847771697 a007 Real Root Of 65*x^4+169*x^3-634*x^2-628*x+5 4334963850752327 m001 1/FeigenbaumD^2*exp(FeigenbaumC)*sqrt(5)^2 4334963863061225 m001 ln(GaussKuzminWirsing)*CopelandErdos*cosh(1) 4334963864838883 m001 (gamma+PlouffeB)/(-Riemann3rdZero+Sarnak) 4334963874814145 r002 44th iterates of z^2 + 4334963878456450 r002 50th iterates of z^2 + 4334963884689010 a007 Real Root Of -211*x^4-963*x^3-239*x^2-80*x+208 4334963900023993 m001 (Backhouse*PrimesInBinary+Trott2nd)/Backhouse 4334963913643637 b008 13/4+2^(2/17) 4334963916843270 r005 Re(z^2+c),c=-67/122+29/63*I,n=32 4334963927393812 r005 Re(z^2+c),c=-39/70+17/52*I,n=3 4334963929060612 m001 OneNinth*ZetaP(3)+PrimesInBinary 4334963939638540 h001 (2/11*exp(1)+2/11)/(3/11*exp(1)+9/11) 4334963939638540 m005 (2/3*exp(1)+2/3)/(exp(1)+3) 4334963963618564 a007 Real Root Of -722*x^4+962*x^3-427*x^2+994*x+615 4334963965796795 a003 sin(Pi*1/90)/cos(Pi*19/94) 4334964001584827 a007 Real Root Of -255*x^4+717*x^3-801*x^2+593*x+475 4334964012246132 r002 53th iterates of z^2 + 4334964047272377 r002 39th iterates of z^2 + 4334964057996148 r002 20th iterates of z^2 + 4334964062291061 r005 Im(z^2+c),c=-6/5+4/71*I,n=40 4334964069678274 l006 ln(2521/3889) 4334964069678274 p004 log(3889/2521) 4334964082732924 r002 11th iterates of z^2 + 4334964089404659 r009 Im(z^3+c),c=-19/56+22/49*I,n=11 4334964089528555 r009 Im(z^3+c),c=-1/29+11/14*I,n=34 4334964115909007 r005 Re(z^2+c),c=-41/31+1/22*I,n=42 4334964120786160 a001 53316291173/1364*322^(5/12) 4334964125369977 h001 (2/11*exp(1)+9/10)/(8/9*exp(1)+4/5) 4334964143883616 l006 ln(90/6869) 4334964158962746 r005 Re(z^2+c),c=-18/29+1/21*I,n=60 4334964162928427 m007 (-2/3*gamma-4/3*ln(2)-1/5)/(-5/6*gamma-3) 4334964164067643 s001 sum(exp(-2*Pi/5)^n*A020909[n],n=1..infinity) 4334964164067643 s002 sum(A020909[n]/(exp(2/5*pi*n)),n=1..infinity) 4334964175119682 h001 (3/11*exp(1)+4/5)/(2/5*exp(2)+3/5) 4334964182605460 s001 sum(exp(-2*Pi/5)^n*A094331[n],n=1..infinity) 4334964182605460 s002 sum(A094331[n]/(exp(2/5*pi*n)),n=1..infinity) 4334964183158476 a007 Real Root Of -731*x^4+487*x^3+410*x^2+984*x+415 4334964198066239 r005 Re(z^2+c),c=29/114+14/23*I,n=15 4334964209029193 a001 7/832040*610^(37/38) 4334964224699385 r005 Re(z^2+c),c=-49/34+1/62*I,n=8 4334964228067100 m001 (BesselK(1,1)+PlouffeB)/(BesselI(1,1)-cos(1)) 4334964246774590 r005 Im(z^2+c),c=1/20+20/39*I,n=19 4334964259175059 a001 1/7*(1/2*5^(1/2)+1/2)^29*4^(7/10) 4334964260681644 a007 Real Root Of -912*x^4+61*x^3-309*x^2+763*x+426 4334964261497506 a001 2971215073/521*843^(9/14) 4334964264911131 m001 TreeGrowth2nd^2/Conway^2/exp(cos(Pi/12)) 4334964272115105 a001 1134903170/199*199^(9/11) 4334964281134748 s002 sum(A212811[n]/(n^2*2^n+1),n=1..infinity) 4334964285124634 r002 60th iterates of z^2 + 4334964286340044 m001 1/Trott^2/Champernowne/exp(arctan(1/2)) 4334964294390986 a007 Real Root Of 532*x^4-550*x^3+637*x^2-27*x-195 4334964294743824 r005 Re(z^2+c),c=-15/26+15/44*I,n=52 4334964297060719 a007 Real Root Of 907*x^4+708*x^3-290*x^2-924*x-4 4334964301679051 a007 Real Root Of -224*x^4-975*x^3-18*x^2-212*x-904 4334964305320059 r005 Re(z^2+c),c=-18/25+1/25*I,n=26 4334964310800907 m001 (gamma(2)+gamma(3))/(Pi^(1/2)-Trott) 4334964328443951 a007 Real Root Of 609*x^4-783*x^3-444*x^2-725*x+440 4334964333326637 r005 Im(z^2+c),c=5/74+27/56*I,n=12 4334964337080315 r005 Im(z^2+c),c=-29/78+7/12*I,n=62 4334964381078551 m001 (LaplaceLimit+ZetaQ(3))/(ln(gamma)+CareFree) 4334964382904591 m001 (gamma(1)-FeigenbaumKappa)/(Rabbit+Sierpinski) 4334964384967717 a001 53316291173/2207*322^(1/2) 4334964394043960 s002 sum(A019022[n]/(n^3*pi^n+1),n=1..infinity) 4334964405037775 r005 Im(z^2+c),c=25/94+19/53*I,n=48 4334964407441256 m001 1/BesselJ(0,1)/exp(Riemann2ndZero)/sqrt(5) 4334964413286928 m001 (ln(gamma)-Gompertz)/(Porter+Salem) 4334964422167570 m005 (1/2*3^(1/2)-9/10)/(6*Zeta(3)+5/8) 4334964443354900 p001 sum((-1)^n/(448*n+23)/(16^n),n=0..infinity) 4334964456847887 m001 1/exp(Rabbit)^2/Conway*GAMMA(7/12)^2 4334964475192707 m005 (1/3*5^(1/2)-1/4)/(1/8*Pi+3/4) 4334964481886522 l006 ln(6238/9623) 4334964485202756 a007 Real Root Of 617*x^4-821*x^3+9*x^2-652*x-373 4334964487117398 r002 26th iterates of z^2 + 4334964498806202 r009 Re(z^3+c),c=-25/38+35/52*I,n=3 4334964503181278 r005 Re(z^2+c),c=-37/60+4/35*I,n=45 4334964535962390 r005 Re(z^2+c),c=-59/90+1/6*I,n=30 4334964544252919 r002 12th iterates of z^2 + 4334964546878597 r002 15th iterates of z^2 + 4334964552368200 r005 Im(z^2+c),c=3/11+19/54*I,n=54 4334964555825659 r002 22th iterates of z^2 + 4334964558757394 a001 1364/89*3^(53/56) 4334964558857482 a007 Real Root Of -690*x^4+992*x^3+426*x^2+218*x-231 4334964572095057 r009 Im(z^3+c),c=-17/25+7/38*I,n=2 4334964578273364 a007 Real Root Of -421*x^4+660*x^3+900*x^2+662*x-495 4334964591841689 r009 Re(z^3+c),c=-23/48+1/6*I,n=45 4334964593661394 r002 31th iterates of z^2 + 4334964607846677 a007 Real Root Of 160*x^4-714*x^3+338*x^2-832*x-488 4334964619089075 b008 Pi^(-1)+Pi*Zeta[Khinchin] 4334964623487385 r009 Im(z^3+c),c=-75/118+39/62*I,n=6 4334964639226338 r005 Re(z^2+c),c=-67/110+7/31*I,n=39 4334964640664780 m001 Pi/PrimesInBinary/ZetaP(3) 4334964646655915 a001 38/17*2^(43/45) 4334964675170692 m005 (1/2*5^(1/2)+3)/(7/12*2^(1/2)+1/8) 4334964676742719 a007 Real Root Of -652*x^4+703*x^3-857*x^2+815*x+37 4334964677893514 r002 24th iterates of z^2 + 4334964690814042 r005 Im(z^2+c),c=25/122+8/19*I,n=37 4334964694960351 m001 Catalan/(AlladiGrinstead+Conway) 4334964697213272 a001 1836311903/521*843^(5/7) 4334964708808038 m001 (TreeGrowth2nd+Trott2nd)/(Zeta(5)-ln(Pi)) 4334964729987559 r005 Im(z^2+c),c=-53/52+11/35*I,n=17 4334964739860897 a005 (1/sin(63/185*Pi))^99 4334964740968394 r009 Im(z^3+c),c=-37/64+29/64*I,n=13 4334964744604335 m001 FeigenbaumB/Lehmer/exp(sin(Pi/5))^2 4334964761460630 l006 ln(3717/5734) 4334964766474147 r009 Re(z^3+c),c=-9/106+5/8*I,n=12 4334964771178099 a007 Real Root Of 271*x^4+978*x^3-940*x^2-381*x-17 4334964774136693 a007 Real Root Of 234*x^4-953*x^3+345*x^2-26*x-162 4334964775257462 r002 29th iterates of z^2 + 4334964775740632 a007 Real Root Of -360*x^4+568*x^3-803*x^2+449*x-18 4334964778584505 m005 (1/2*2^(1/2)-1/8)/(6/11*2^(1/2)+4/7) 4334964791353652 r005 Re(z^2+c),c=-1/13+13/20*I,n=8 4334964820076679 r005 Re(z^2+c),c=-8/13+1/14*I,n=30 4334964829404966 s002 sum(A064288[n]/(n*exp(pi*n)+1),n=1..infinity) 4334964831761477 m001 FeigenbaumAlpha/(GAMMA(19/24)-Gompertz) 4334964850116751 r005 Re(z^2+c),c=-5/8+6/79*I,n=19 4334964889171429 a007 Real Root Of -274*x^4+777*x^3+936*x^2+331*x-373 4334964890030501 r002 39th iterates of z^2 + 4334964894488726 a007 Real Root Of 795*x^4-304*x^3-949*x^2-865*x+550 4334964900331363 h001 (4/11*exp(1)+5/11)/(5/12*exp(2)+1/4) 4334964902293700 a003 sin(Pi*15/91)*sin(Pi*18/53) 4334964914850352 a007 Real Root Of -2*x^4-867*x^3-5*x^2-849*x-66 4334964923869870 r005 Im(z^2+c),c=5/86+25/46*I,n=30 4334964930396357 p001 sum((-1)^n/(543*n+230)/(100^n),n=0..infinity) 4334964930816111 r002 59th iterates of z^2 + 4334964938871159 a007 Real Root Of -87*x^4+381*x^3-120*x^2+728*x-321 4334964942490536 a007 Real Root Of -673*x^4-287*x^3-197*x^2+978*x-42 4334964960917655 a001 34/167761*11^(13/41) 4334964975388192 r005 Im(z^2+c),c=11/58+25/54*I,n=15 4334964982223754 r002 3th iterates of z^2 + 4334964982431003 g002 Psi(5/11)+Psi(6/7)-Psi(4/7)-Psi(4/5) 4334965007882397 a007 Real Root Of -177*x^4-668*x^3+251*x^2-730*x+207 4334965011332480 r004 Im(z^2+c),c=1/7+9/19*I,z(0)=I,n=45 4334965033880334 r009 Re(z^3+c),c=-57/110+5/27*I,n=57 4334965053905479 m005 (3/28+1/4*5^(1/2))/(1/4*exp(1)+6/7) 4334965056058047 m005 (1/2*exp(1)+8/9)/(8/9*Catalan-6) 4334965064610175 m001 (ln(3)-FeigenbaumB)/(FeigenbaumMu-Otter) 4334965080236294 m005 (1/2*exp(1)-6/11)/(5/7*gamma-3/5) 4334965097095822 m001 (HardyLittlewoodC3-Paris)/(Robbin+Stephens) 4334965116433808 l006 ln(4913/7579) 4334965126106193 r005 Re(z^2+c),c=-11/18+10/69*I,n=35 4334965132929082 a001 1134903170/521*843^(11/14) 4334965136229644 r005 Re(z^2+c),c=-37/62+5/31*I,n=7 4334965143716409 p001 sum((-1)^n/(389*n+230)/(125^n),n=0..infinity) 4334965144145893 a007 Real Root Of -545*x^4+955*x^3+389*x^2+969*x+444 4334965145102760 a001 139583862445/5778*322^(1/2) 4334965146825743 m001 1/FeigenbaumAlpha/Cahen^2*ln(cos(Pi/5))^2 4334965162136444 r002 23th iterates of z^2 + 4334965180148938 m005 (3/5*2^(1/2)+4/5)/(1/6*exp(1)-5/6) 4334965180309218 r002 14th iterates of z^2 + 4334965183430447 r005 Im(z^2+c),c=5/27+17/39*I,n=55 4334965185368133 r004 Im(z^2+c),c=1/7-3/11*I,z(0)=exp(7/24*I*Pi),n=2 4334965191896000 r002 20th iterates of z^2 + 4334965201774393 r005 Re(z^2+c),c=-23/40+14/33*I,n=35 4334965238992786 m001 (Conway-FibonacciFactorial)/Pi^(1/2) 4334965256000925 r009 Im(z^3+c),c=-5/78+20/39*I,n=15 4334965256004991 a001 365435296162/15127*322^(1/2) 4334965268727230 r002 6th iterates of z^2 + 4334965272185409 a001 956722026041/39603*322^(1/2) 4334965274546100 a001 2504730781961/103682*322^(1/2) 4334965274890520 a001 6557470319842/271443*322^(1/2) 4334965274971827 a001 10610209857723/439204*322^(1/2) 4334965275103383 a001 4052739537881/167761*322^(1/2) 4334965276005087 a001 1548008755920/64079*322^(1/2) 4334965282185457 a001 591286729879/24476*322^(1/2) 4334965288133805 a003 cos(Pi*27/97)-cos(Pi*13/30) 4334965294857446 r009 Im(z^3+c),c=-61/126+18/47*I,n=28 4334965299434436 a007 Real Root Of 879*x^4-422*x^3+666*x^2-580*x-442 4334965309643978 a001 817138163596*1836311903^(5/17) 4334965309643978 a001 73681302247*6557470319842^(5/17) 4334965309644942 a001 9062201101803*514229^(5/17) 4334965320277437 r002 2th iterates of z^2 + 4334965324546342 a001 225851433717/9349*322^(1/2) 4334965332004072 r005 Im(z^2+c),c=11/126+19/36*I,n=35 4334965332416009 l006 ln(6109/9424) 4334965347036599 l006 ln(121/9235) 4334965347482899 l006 ln(7697/8038) 4334965348736626 r005 Re(z^2+c),c=-5/8+2/123*I,n=32 4334965357148769 a007 Real Root Of -484*x^4-181*x^3-574*x^2+943*x+519 4334965358309285 r005 Re(z^2+c),c=-65/106+9/56*I,n=50 4334965361068742 m002 -E^Pi+Pi^4+Log[Pi]+Pi^3*Sinh[Pi] 4334965363746002 m001 (GAMMA(13/24)+ArtinRank2)/(Psi(2,1/3)+Zeta(3)) 4334965366109691 r005 Im(z^2+c),c=1/17+27/50*I,n=37 4334965366246861 r002 10th iterates of z^2 + 4334965375242737 a007 Real Root Of -996*x^4+381*x^3-282*x^2+800*x+466 4334965380435926 r009 Re(z^3+c),c=-12/31+41/62*I,n=23 4334965384513072 m001 (2^(1/2))^gamma(1)+ReciprocalFibonacci 4334965404401654 r002 46th iterates of z^2 + 4334965405535953 m001 (Psi(1,1/3)+2^(1/2))/(-sin(1)+Stephens) 4334965422967005 m005 (2*exp(1)-1/5)/(1/2*Catalan+3/4) 4334965441771958 r005 Re(z^2+c),c=-41/64+6/55*I,n=27 4334965464698437 r002 58th iterates of z^2 + 4334965470185894 a001 2/9349*3^(9/14) 4334965475243915 h001 (7/10*exp(2)+4/5)/(3/11*exp(1)+7/11) 4334965486307670 r002 26th iterates of z^2 + 4334965492044249 s002 sum(A179236[n]/(n*exp(pi*n)+1),n=1..infinity) 4334965510250868 r005 Im(z^2+c),c=1/102+13/23*I,n=64 4334965541295731 m005 (2/3*Catalan+3)/(3/4*gamma+2/5) 4334965544694334 m001 (-ThueMorse+ZetaP(2))/(Catalan-Psi(1,1/3)) 4334965550218061 r005 Re(z^2+c),c=-21/34+3/26*I,n=57 4334965561462167 a007 Real Root Of -298*x^4+984*x^3-925*x^2+361*x+421 4334965568644936 a001 701408733/521*843^(6/7) 4334965580634727 r002 39th iterates of z^2 + 4334965595239748 r009 Im(z^3+c),c=-17/46+24/55*I,n=38 4334965596226847 k005 Champernowne real with floor(Pi*(20*n+118)) 4334965596226857 k001 Champernowne real with 63*n+370 4334965606873921 r009 Re(z^3+c),c=-31/70+3/43*I,n=8 4334965613204881 m001 1/Robbin*ln(CareFree)^2*GAMMA(7/12)^2 4334965614892186 a001 86267571272/3571*322^(1/2) 4334965621571762 r009 Re(z^3+c),c=-45/86+19/63*I,n=10 4334965625725837 r005 Im(z^2+c),c=1/42+29/53*I,n=31 4334965638075942 m001 GolombDickman/Pi^(1/2)/StolarskyHarborth 4334965643036319 h001 (-7*exp(4)-6)/(-6*exp(5)-5) 4334965660389962 r005 Re(z^2+c),c=8/27+4/63*I,n=7 4334965661870649 r002 61th iterates of z^2 + 4334965671941131 r005 Im(z^2+c),c=4/13+17/55*I,n=37 4334965674296544 r002 3th iterates of z^2 + 4334965675657448 r009 Im(z^3+c),c=-8/21+26/53*I,n=9 4334965693986242 r002 40th iterates of z^2 + 4334965696412731 k002 Champernowne real with 1/2*n^2+609/2*n-262 4334965724977112 r005 Im(z^2+c),c=-37/30+26/89*I,n=7 4334965736472495 r002 42th iterates of z^2 + 4334965776264449 r009 Im(z^3+c),c=-3/56+19/37*I,n=13 4334965777471625 a001 1/3*(1/2*5^(1/2)+1/2)^31*76^(20/23) 4334965781326167 a001 1364/3*75025^(11/18) 4334965793519018 m001 GAMMA(13/24)/exp(ArtinRank2)^2/Zeta(1,2) 4334965796712791 k002 Champernowne real with n^2+303*n-261 4334965802855359 r009 Re(z^3+c),c=-15/62+43/59*I,n=47 4334965837581422 r005 Re(z^2+c),c=17/74+19/39*I,n=55 4334965840952793 r005 Re(z^2+c),c=-19/30+11/71*I,n=23 4334965851159412 r002 18th iterates of z^2 + 4334965851272696 r005 Re(z^2+c),c=-11/18+18/89*I,n=52 4334965862881731 m001 exp(Rabbit)^2/GaussKuzminWirsing/Pi 4334965887622818 a007 Real Root Of -583*x^4+503*x^3-764*x^2+814*x+558 4334965889459184 m001 1/GAMMA(3/4)*Niven^2*ln(sin(Pi/12))^2 4334965892075707 r002 27th iterates of z^2 + 4334965897012851 k002 Champernowne real with 3/2*n^2+603/2*n-260 4334965902344875 m001 (CareFree-Champernowne)/(Lehmer+RenyiParking) 4334965903940452 a007 Real Root Of 485*x^4-928*x^3-594*x^2-445*x+363 4334965905261138 a007 Real Root Of -12*x^4+176*x^3+965*x^2-289*x-812 4334965911480854 a003 cos(Pi*51/115)-cos(Pi*43/94) 4334965911706565 r005 Re(z^2+c),c=-53/90+13/48*I,n=37 4334965912494062 r005 Re(z^2+c),c=-2/3+13/118*I,n=17 4334965921806585 r009 Im(z^3+c),c=-47/114+17/40*I,n=16 4334965934023073 r005 Im(z^2+c),c=-4/31+35/57*I,n=8 4334965938454600 r002 56th iterates of z^2 + 4334965944573830 r005 Re(z^2+c),c=-115/86+1/64*I,n=8 4334965961022499 a001 1597/18*199^(36/49) 4334965979312462 m005 (4/5*exp(1)-1/4)/(2/3*Catalan-1/6) 4334965980236236 a003 cos(Pi*1/30)*cos(Pi*36/101) 4334965997312911 k002 Champernowne real with 2*n^2+300*n-259 4334966003360584 r005 Im(z^2+c),c=17/60+23/62*I,n=32 4334966004360834 a001 433494437/521*843^(13/14) 4334966014332067 r009 Im(z^3+c),c=-29/86+14/31*I,n=15 4334966023070082 m001 (Paris+Rabbit)/(GAMMA(11/12)+AlladiGrinstead) 4334966032508503 r002 46th iterates of z^2 + 4334966037723701 m001 BesselI(1,2)-GAMMA(17/24)^LandauRamanujan2nd 4334966038218150 r005 Re(z^2+c),c=39/94+3/19*I,n=37 4334966097612971 k002 Champernowne real with 5/2*n^2+597/2*n-258 4334966105102747 r005 Im(z^2+c),c=-1/52+34/57*I,n=39 4334966120886989 a007 Real Root Of 486*x^4-992*x^3-890*x^2-868*x-307 4334966122656156 m001 (Kolakoski+Totient)/(gamma(1)+BesselI(1,1)) 4334966124626306 r005 Re(z^2+c),c=-41/66+1/39*I,n=52 4334966126331525 a005 (1/sin(90/227*Pi))^70 4334966128331067 r005 Im(z^2+c),c=1/86+5/9*I,n=38 4334966129924021 r009 Re(z^3+c),c=-9/110+31/44*I,n=62 4334966142175150 m001 RenyiParking^2*ln(Rabbit)/Riemann2ndZero^2 4334966143260848 a001 7778742049/843*322^(2/3) 4334966144875158 m006 (2*Pi+3)/(4*exp(2*Pi)-1/2) 4334966159765568 r005 Re(z^2+c),c=-7/10+48/233*I,n=49 4334966161111559 r002 11th iterates of z^2 + 4334966165122477 a003 cos(Pi*39/115)-cos(Pi*15/31) 4334966166367641 r005 Re(z^2+c),c=-5/6+72/191*I,n=4 4334966172061640 m005 (1/3*Catalan-1/6)/(7/8*Catalan-4) 4334966172743713 m003 -7/10+Sqrt[5]/64+Log[1/2+Sqrt[5]/2]^2 4334966175144826 r005 Im(z^2+c),c=-91/110+1/41*I,n=54 4334966183972808 m001 1/Pi^2*GAMMA(1/6)*ln(arctan(1/2)) 4334966197913031 k002 Champernowne real with 3*n^2+297*n-257 4334966219640505 l006 ln(1196/1845) 4334966225397461 a007 Real Root Of -615*x^4+949*x^3-230*x^2+936*x+548 4334966228365420 a007 Real Root Of -689*x^4+931*x^3+992*x^2+247*x-345 4334966279642975 r009 Im(z^3+c),c=-5/29+37/57*I,n=2 4334966296016257 a007 Real Root Of -848*x^4-106*x^3+624*x^2+935*x-484 4334966298213091 k002 Champernowne real with 7/2*n^2+591/2*n-256 4334966299177324 a007 Real Root Of -765*x^4+55*x^3+37*x^2+557*x+266 4334966302435332 r005 Re(z^2+c),c=-65/106+8/53*I,n=39 4334966308130098 r005 Im(z^2+c),c=-11/62+25/38*I,n=27 4334966308391284 p001 sum(1/(296*n+279)/(3^n),n=0..infinity) 4334966340940056 r009 Re(z^3+c),c=-29/110+31/48*I,n=7 4334966350282359 r005 Re(z^2+c),c=-39/74+12/35*I,n=15 4334966374123419 m005 (1/2*exp(1)-5)/(4*5^(1/2)-6/11) 4334966375929108 m001 (Chi(1)-gamma(1))/(MertensB1+Tribonacci) 4334966388143675 r009 Re(z^3+c),c=-59/110+5/36*I,n=54 4334966395583840 m001 (BesselI(0,2)+Totient)/(TwinPrimes+ZetaP(3)) 4334966398513151 k002 Champernowne real with 4*n^2+294*n-255 4334966400676431 r005 Re(z^2+c),c=11/102+40/53*I,n=5 4334966403005074 r009 Re(z^3+c),c=-43/118+1/23*I,n=27 4334966425008519 r009 Re(z^3+c),c=-43/118+1/23*I,n=26 4334966440026525 a001 163428234789/377 4334966468678370 m001 sinh(1)^exp(1/2)/ln(2)*ln(10) 4334966471987492 m006 (1/6/Pi+1)/(1/2*Pi-4) 4334966490666335 r005 Im(z^2+c),c=7/58+27/55*I,n=30 4334966493949328 m005 (1/2*5^(1/2)-9/10)/(95/22+7/22*5^(1/2)) 4334966498813211 k002 Champernowne real with 9/2*n^2+585/2*n-254 4334966507479075 a003 cos(Pi*29/85)*sin(Pi*35/97) 4334966508601122 r002 44th iterates of z^2 + 4334966527107067 a007 Real Root Of -605*x^4-208*x^3-215*x^2+674*x+337 4334966529789602 m006 (1/4*exp(Pi)-5)/(4/5*exp(Pi)-2/5) 4334966534259274 h001 (9/11*exp(1)+1/4)/(8/11*exp(2)+1/3) 4334966540307699 a007 Real Root Of -982*x^4+57*x^3+624*x^2+447*x-281 4334966540794150 r005 Im(z^2+c),c=15/58+25/64*I,n=8 4334966555827577 a007 Real Root Of 398*x^4-390*x^3+586*x^2-127*x-211 4334966570980121 g007 Psi(2,11/12)-Psi(2,2/11)-2*Psi(2,1/10) 4334966581195873 r009 Re(z^3+c),c=-43/118+1/23*I,n=28 4334966595852418 a007 Real Root Of -206*x^4-815*x^3+501*x^2+676*x-130 4334966598616442 m005 (1/2*Catalan+1/2)/(4/11*gamma+2) 4334966599113271 k002 Champernowne real with 5*n^2+291*n-253 4334966619486107 s002 sum(A199886[n]/(n*exp(pi*n)+1),n=1..infinity) 4334966628059831 b008 -43+Zeta[-1/5] 4334966644286133 r005 Re(z^2+c),c=-53/86+5/38*I,n=60 4334966657941177 r005 Im(z^2+c),c=19/70+13/37*I,n=39 4334966661757609 r005 Im(z^2+c),c=23/118+26/61*I,n=39 4334966671136266 r009 Im(z^3+c),c=-33/74+19/48*I,n=40 4334966671776487 m005 (1/2*Zeta(3)+5/8)/(1/7*Zeta(3)-5/11) 4334966677763578 p004 log(18251/11831) 4334966692228365 m001 exp(TreeGrowth2nd)*GolombDickman/sqrt(5) 4334966699413331 k002 Champernowne real with 11/2*n^2+579/2*n-252 4334966712873023 a007 Real Root Of -862*x^4+767*x^3-777*x^2-625*x-32 4334966716682185 m001 (ln(Pi)+arctan(1/3))/(GAMMA(5/6)-Porter) 4334966719961589 m005 (Pi+5)/(2/3*exp(1)-2) 4334966724929490 r005 Im(z^2+c),c=7/54+13/27*I,n=63 4334966735322839 r002 38th iterates of z^2 + 4334966742003697 m001 ln(2^(1/2)+1)^Lehmer+Magata 4334966746763234 s002 sum(A114605[n]/(2^n-1),n=1..infinity) 4334966752387065 a001 1/2207*(1/2*5^(1/2)+1/2)^10*76^(9/19) 4334966757209068 a007 Real Root Of 372*x^4-382*x^3+970*x^2-903*x-41 4334966777338149 m005 (1/2*2^(1/2)+5)/(5/12*2^(1/2)+8/11) 4334966779656446 r009 Re(z^3+c),c=-43/118+1/23*I,n=29 4334966781672054 r005 Im(z^2+c),c=13/66+14/33*I,n=39 4334966781945275 m001 1/Pi^2/exp(FeigenbaumB)/Zeta(7)^2 4334966784943348 r009 Im(z^3+c),c=-13/28+16/41*I,n=23 4334966787513595 r009 Re(z^3+c),c=-7/66+25/36*I,n=23 4334966789343217 a001 9062201101803/233*6557470319842^(12/17) 4334966791498353 a001 2207/89*514229^(26/35) 4334966791896313 m001 1/GAMMA(1/4)^2*MertensB1*exp(GAMMA(7/24)) 4334966793859600 p004 log(14561/9439) 4334966795796604 r005 Im(z^2+c),c=35/114+11/35*I,n=61 4334966799713391 k002 Champernowne real with 6*n^2+288*n-251 4334966805730819 r005 Im(z^2+c),c=1/28+21/37*I,n=43 4334966807945712 r005 Re(z^2+c),c=-65/122+19/43*I,n=8 4334966810001345 k002 Champernowne real with 13/2*n^2+573/2*n-250 4334966816869969 m001 GAMMA(13/24)^2/exp(Si(Pi))^2*cos(Pi/5)^2 4334966829556485 r009 Im(z^3+c),c=-4/7+27/59*I,n=27 4334966845666307 r005 Im(z^2+c),c=-11/86+7/12*I,n=22 4334966847581471 r002 10th iterates of z^2 + 4334966867122334 r004 Im(z^2+c),c=3/26+8/17*I,z(0)=I,n=23 4334966871270112 r002 30th iterates of z^2 + 4334966886762915 s001 sum(exp(-Pi/4)^n*A212169[n],n=1..infinity) 4334966889924490 a007 Real Root Of 945*x^4+974*x^3+715*x^2-269*x-205 4334966895771572 m001 (-ln(2+3^(1/2))+Backhouse)/(Ei(1,1)-cos(1)) 4334966900318618 r005 Re(z^2+c),c=-37/62+17/58*I,n=58 4334966900838664 m005 (1/2*gamma+5/12)/(4/9*3^(1/2)+6/7) 4334966907917436 r002 25i'th iterates of 2*x/(1-x^2) of 4334966910031351 k002 Champernowne real with 7*n^2+285*n-249 4334966918613561 r005 Im(z^2+c),c=27/86+18/61*I,n=33 4334966920300395 r005 Im(z^2+c),c=-21/62+15/26*I,n=22 4334966924843998 m001 (Artin+MinimumGamma)/(PrimesInBinary+ZetaQ(3)) 4334966926119074 a001 267913919*123^(1/10) 4334966927166462 m001 (Kac+OneNinth)/(sin(1/5*Pi)-BesselI(0,2)) 4334966929582714 r009 Re(z^3+c),c=-43/118+1/23*I,n=30 4334966931302836 l006 ln(7855/8203) 4334966931422455 m001 1/Zeta(5)^2/exp(BesselK(1,1))/sinh(1) 4334966951580704 b008 41+EulerGamma+Sqrt[Pi] 4334966960161468 r005 Im(z^2+c),c=1/21+27/55*I,n=12 4334966962123205 r002 29th iterates of z^2 + 4334966991375109 a001 377/4*11^(7/11) 4334966994155441 m001 (MasserGramain-Trott)/(gamma(2)-Backhouse) 4334966996390709 m001 (LaplaceLimit+Sierpinski)/(Champernowne+Kac) 4334967000075635 r009 Re(z^3+c),c=-43/118+1/23*I,n=25 4334967010061357 k002 Champernowne real with 15/2*n^2+567/2*n-248 4334967013632609 r005 Re(z^2+c),c=-79/126+17/55*I,n=61 4334967020445237 r009 Re(z^3+c),c=-43/118+1/23*I,n=31 4334967026764351 m005 (1/2*3^(1/2)-4)/(7/11*5^(1/2)-7/10) 4334967031494098 m005 (1/3*Catalan-1/10)/(4/11*Catalan-2/7) 4334967036169393 r002 48th iterates of z^2 + 4334967048768371 m001 1/ln(MinimumGamma)^2/CareFree*TreeGrowth2nd 4334967065110659 r009 Re(z^3+c),c=-43/118+1/23*I,n=32 4334967065655035 r009 Re(z^3+c),c=-43/118+1/23*I,n=41 4334967065711574 r009 Re(z^3+c),c=-43/118+1/23*I,n=40 4334967065748237 r009 Re(z^3+c),c=-43/118+1/23*I,n=42 4334967065867838 r009 Re(z^3+c),c=-43/118+1/23*I,n=43 4334967065963166 r009 Re(z^3+c),c=-43/118+1/23*I,n=44 4334967066023250 r009 Re(z^3+c),c=-43/118+1/23*I,n=45 4334967066054123 r009 Re(z^3+c),c=-43/118+1/23*I,n=46 4334967066057941 r009 Re(z^3+c),c=-43/118+1/23*I,n=55 4334967066057986 r009 Re(z^3+c),c=-43/118+1/23*I,n=56 4334967066058005 r009 Re(z^3+c),c=-43/118+1/23*I,n=54 4334967066058057 r009 Re(z^3+c),c=-43/118+1/23*I,n=57 4334967066058117 r009 Re(z^3+c),c=-43/118+1/23*I,n=58 4334967066058156 r009 Re(z^3+c),c=-43/118+1/23*I,n=59 4334967066058178 r009 Re(z^3+c),c=-43/118+1/23*I,n=60 4334967066058186 r009 Re(z^3+c),c=-43/118+1/23*I,n=64 4334967066058186 r009 Re(z^3+c),c=-43/118+1/23*I,n=61 4334967066058187 r009 Re(z^3+c),c=-43/118+1/23*I,n=63 4334967066058188 r009 Re(z^3+c),c=-43/118+1/23*I,n=62 4334967066058330 r009 Re(z^3+c),c=-43/118+1/23*I,n=53 4334967066059139 r009 Re(z^3+c),c=-43/118+1/23*I,n=52 4334967066060679 r009 Re(z^3+c),c=-43/118+1/23*I,n=51 4334967066063075 r009 Re(z^3+c),c=-43/118+1/23*I,n=50 4334967066065995 r009 Re(z^3+c),c=-43/118+1/23*I,n=49 4334967066066092 r009 Re(z^3+c),c=-43/118+1/23*I,n=47 4334967066068073 r009 Re(z^3+c),c=-43/118+1/23*I,n=48 4334967066149754 r009 Re(z^3+c),c=-43/118+1/23*I,n=39 4334967067325591 r009 Re(z^3+c),c=-43/118+1/23*I,n=38 4334967069599214 m001 gamma^2*exp(Khintchine)^2/sqrt(1+sqrt(3)) 4334967069664336 r009 Re(z^3+c),c=-43/118+1/23*I,n=37 4334967073448728 r009 Re(z^3+c),c=-43/118+1/23*I,n=36 4334967078329307 r009 Re(z^3+c),c=-43/118+1/23*I,n=35 4334967081045788 r009 Re(z^3+c),c=-43/118+1/23*I,n=33 4334967082433834 r009 Re(z^3+c),c=-43/118+1/23*I,n=34 4334967084345280 r005 Re(z^2+c),c=-3/5+28/101*I,n=42 4334967103403123 r005 Im(z^2+c),c=5/122+17/35*I,n=8 4334967105328099 r002 36th iterates of z^2 + 4334967110091363 k002 Champernowne real with 8*n^2+282*n-247 4334967110506820 p001 sum((-1)^n/(157*n+73)/n/(100^n),n=0..infinity) 4334967116777896 b008 1/3+3*ArcTan[1+Pi] 4334967124103089 a007 Real Root Of -743*x^4-107*x^3-597*x^2+146*x+193 4334967137356880 m002 -2+Tanh[Pi]+(Log[Pi]*Tanh[Pi])/2 4334967145987103 l006 ln(5851/9026) 4334967158183305 r002 62th iterates of z^2 + 4334967162923364 r002 64th iterates of z^2 + 4334967166864899 p003 LerchPhi(1/32,2,249/163) 4334967171736539 m001 (gamma(1)-Khinchin)/(Magata+Otter) 4334967194202311 a001 11/4181*3^(5/11) 4334967199228764 r005 Re(z^2+c),c=-69/74+9/61*I,n=50 4334967210121369 k002 Champernowne real with 17/2*n^2+561/2*n-246 4334967221012840 a007 Real Root Of -126*x^4-526*x^3+271*x^2+569*x-980 4334967221031422 r002 56th iterates of z^2 + 4334967222208601 r002 29th iterates of z^2 + 4334967225828671 a001 54018521/5*75025^(17/23) 4334967227295400 m001 (Rabbit+ZetaQ(3))/(Pi^(1/2)-ErdosBorwein) 4334967233493123 r005 Im(z^2+c),c=-71/98+16/63*I,n=33 4334967243977194 a001 39603/377*2178309^(13/51) 4334967244659196 a001 15127/5*4807526976^(17/23) 4334967258281293 r005 Re(z^2+c),c=-7/13+2/5*I,n=39 4334967261400322 m005 (1/2*Catalan-1/9)/(1/12*Zeta(3)+7/10) 4334967267690404 p001 sum((-1)^n/(599*n+23)/(12^n),n=0..infinity) 4334967268443088 m001 (Ei(1)+BesselI(0,2))/(FeigenbaumC-Tetranacci) 4334967272616858 m001 MinimumGamma+Tribonacci^(3^(1/2)) 4334967290220819 r002 14th iterates of z^2 + 4334967294135206 r005 Im(z^2+c),c=-9/14+37/105*I,n=14 4334967294601473 r009 Im(z^3+c),c=-9/106+23/45*I,n=24 4334967299926644 r002 57th iterates of z^2 + 4334967303958332 r005 Im(z^2+c),c=-33/50+6/13*I,n=17 4334967308325247 m001 1/MertensB1^2/Champernowne^2/exp(Kolakoski) 4334967308388503 a001 86267571272/521*322^(1/6) 4334967310151375 k002 Champernowne real with 9*n^2+279*n-245 4334967317225835 r002 9th iterates of z^2 + 4334967329093264 r005 Im(z^2+c),c=-65/86+1/45*I,n=28 4334967335549567 h001 (2/7*exp(2)+5/9)/(8/11*exp(2)+7/9) 4334967343256079 r005 Im(z^2+c),c=-11/106+22/37*I,n=32 4334967345071813 a007 Real Root Of -617*x^4-700*x^3+177*x^2+797*x+277 4334967350041108 m001 (QuadraticClass+Robbin)/(arctan(1/2)-OneNinth) 4334967372933474 m005 (1/2*exp(1)-4/9)/(5/6*3^(1/2)+2/3) 4334967383991500 l006 ln(4655/7181) 4334967388096132 r002 53th iterates of z^2 + 4334967410181381 k002 Champernowne real with 19/2*n^2+555/2*n-244 4334967416914840 m001 (1-GaussAGM)/(Otter+Thue) 4334967434221437 m001 (Niven-PlouffeB)/(exp(1/Pi)+MinimumGamma) 4334967463328235 p004 log(23431/307) 4334967465261173 m001 GAMMA(3/4)*(1-MasserGramain) 4334967466780879 r005 Im(z^2+c),c=1/18+19/30*I,n=30 4334967467068150 r002 54th iterates of z^2 + 4334967474042048 r005 Re(z^2+c),c=-41/66+2/49*I,n=33 4334967478670571 b008 -1/4+Log[98] 4334967493166106 m005 (1/2*Catalan-10/11)/(2/9*exp(1)-1/2) 4334967510211387 k002 Champernowne real with 10*n^2+276*n-243 4334967510597853 r002 38th iterates of z^2 + 4334967512200606 m001 (-sin(1/12*Pi)+Backhouse)/(gamma-ln(2)/ln(10)) 4334967512522523 a001 1/5778*(1/2*5^(1/2)+1/2)^12*76^(9/19) 4334967522486397 m006 (4*exp(Pi)+3/5)/(1/3*ln(Pi)-1/6) 4334967538641780 r009 Im(z^3+c),c=-39/82+7/19*I,n=20 4334967546935205 m005 (1/2*Catalan-8/9)/(3/5*Catalan+4/9) 4334967593837819 m001 (Porter-Weierstrass)/(KhinchinHarmonic+Landau) 4334967604103918 r005 Im(z^2+c),c=-7/10+10/143*I,n=41 4334967604953259 a001 32951280099/1364*322^(1/2) 4334967610241393 k002 Champernowne real with 21/2*n^2+549/2*n-242 4334967614178824 r002 11th iterates of z^2 + 4334967623424814 a001 1/15127*(1/2*5^(1/2)+1/2)^14*76^(9/19) 4334967624616569 m001 (FeigenbaumB+OneNinth)/(Backhouse-exp(Pi)) 4334967631737838 r009 Im(z^3+c),c=-10/19+5/17*I,n=53 4334967639605241 a001 1/39603*(1/2*5^(1/2)+1/2)^16*76^(9/19) 4334967643424921 a001 1/64079*(1/2*5^(1/2)+1/2)^17*76^(9/19) 4334967645458789 r005 Re(z^2+c),c=-37/58+7/38*I,n=24 4334967647538412 m004 5/24+Sin[Sqrt[5]*Pi]/3 4334967649605294 a001 1/24476*(1/2*5^(1/2)+1/2)^15*76^(9/19) 4334967679276602 r005 Im(z^2+c),c=13/114+23/55*I,n=6 4334967691966202 a001 1/9349*(1/2*5^(1/2)+1/2)^13*76^(9/19) 4334967705912741 r005 Re(z^2+c),c=-35/58+11/45*I,n=37 4334967707146162 r002 46i'th iterates of 2*x/(1-x^2) of 4334967707146162 r002 45i'th iterates of 2*x/(1-x^2) of 4334967710271399 k002 Champernowne real with 11*n^2+273*n-241 4334967715841639 r005 Re(z^2+c),c=-31/50+2/45*I,n=27 4334967717193569 r005 Re(z^2+c),c=-53/86+3/22*I,n=59 4334967726923058 m001 exp((3^(1/3)))^2/MinimumGamma^2/GAMMA(11/24) 4334967737052190 m001 (-Lehmer+MertensB2)/(2^(1/3)-BesselI(0,2)) 4334967743118113 m001 (exp(1/exp(1))+polylog(4,1/2))/(Salem-Sarnak) 4334967752434779 r005 Re(z^2+c),c=-5/7+1/103*I,n=32 4334967763064115 a007 Real Root Of 22*x^4+942*x^3-485*x^2+952*x+145 4334967768760604 s002 sum(A259183[n]/(n^3*2^n-1),n=1..infinity) 4334967769092390 a007 Real Root Of 23*x^4-307*x^3+375*x^2-463*x-297 4334967771928926 r005 Re(z^2+c),c=-73/118+1/32*I,n=29 4334967776497692 r002 56th iterates of z^2 + 4334967776620306 r005 Im(z^2+c),c=9/34+17/47*I,n=45 4334967777906930 a007 Real Root Of -880*x^4+795*x^3-449*x^2+546*x-186 4334967778128614 a007 Real Root Of 781*x^4-307*x^3-962*x^2-770*x+512 4334967785408076 a001 521/55*121393^(11/12) 4334967786582909 l006 ln(3459/5336) 4334967793287762 r005 Im(z^2+c),c=23/110+17/39*I,n=24 4334967793980056 r009 Im(z^3+c),c=-13/62+14/29*I,n=6 4334967794902512 r005 Re(z^2+c),c=-8/13+4/31*I,n=43 4334967807770370 a001 521/1548008755920*317811^(13/23) 4334967808095760 a007 Real Root Of 672*x^4-784*x^3-58*x^2-805*x+400 4334967810301405 k002 Champernowne real with 23/2*n^2+543/2*n-240 4334967815284209 r002 60th iterates of z^2 + 4334967820256995 r002 52th iterates of z^2 + 4334967823002267 m001 exp(-1/2*Pi)/FeigenbaumD/KomornikLoreti 4334967825608338 a007 Real Root Of 266*x^4+986*x^3-736*x^2-25*x+110 4334967831379901 m001 BesselK(0,1)^PlouffeB/GAMMA(7/12) 4334967840048754 m001 3^(1/2)/(arctan(1/3)^cos(1/5*Pi)) 4334967849727381 a007 Real Root Of 43*x^4-135*x^3+21*x^2-820*x+361 4334967864974779 m001 Chi(1)^FeigenbaumMu/FibonacciFactorial 4334967868003726 p004 log(35507/23017) 4334967869135029 a001 32951280099/2207*322^(7/12) 4334967877818423 r005 Re(z^2+c),c=-19/32+17/60*I,n=48 4334967887808724 a001 4/121393*144^(54/55) 4334967888949889 g002 Psi(6/7)+Psi(1/7)-Psi(7/12)-Psi(4/9) 4334967903330787 r002 60th iterates of z^2 + 4334967910331411 k002 Champernowne real with 12*n^2+270*n-239 4334967931849561 m005 (1/2*2^(1/2)-1/12)/(7/12*3^(1/2)+3/7) 4334967934252976 r005 Re(z^2+c),c=-65/106+8/57*I,n=9 4334967955106349 a007 Real Root Of 826*x^4-833*x^3+613*x^2-477*x-419 4334967956650932 s002 sum(A091665[n]/(n*exp(pi*n)+1),n=1..infinity) 4334967959315462 m001 1/GAMMA(23/24)*ln(Kolakoski)*GAMMA(5/24)^2 4334967960302176 s002 sum(A019905[n]/(n*exp(pi*n)+1),n=1..infinity) 4334967964814544 r002 19th iterates of z^2 + 4334967974608446 r009 Re(z^3+c),c=-39/82+5/52*I,n=7 4334967982312206 a001 1/3571*(1/2*5^(1/2)+1/2)^11*76^(9/19) 4334967985066444 r005 Im(z^2+c),c=5/118+32/59*I,n=49 4334967987228543 r005 Re(z^2+c),c=-41/66+1/55*I,n=51 4334967998402016 r002 11th iterates of z^2 + 4334968010361417 k002 Champernowne real with 25/2*n^2+537/2*n-238 4334968021846340 m001 1/exp(KhintchineHarmonic)^2/CareFree*Zeta(9) 4334968043301997 r002 3th iterates of z^2 + 4334968044603625 m004 55*Sqrt[5]*Pi+Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 4334968049582358 a007 Real Root Of -61*x^4+365*x^3-933*x^2+101*x+251 4334968058419553 r009 Im(z^3+c),c=-45/106+20/49*I,n=43 4334968058805633 a007 Real Root Of 836*x^4-496*x^3-279*x^2-827*x-376 4334968059245859 r005 Re(z^2+c),c=-5/4+69/133*I,n=2 4334968066491446 a007 Real Root Of -534*x^4+52*x^3-887*x^2+838*x+38 4334968067528258 m004 1/2+(5*Sqrt[5]*Pi)/(6*ProductLog[Sqrt[5]*Pi]) 4334968077997627 a008 Real Root of x^4-84*x+11 4334968092151999 r009 Im(z^3+c),c=-31/94+29/64*I,n=19 4334968102515645 m001 gamma(2)+RenyiParking^Psi(1,1/3) 4334968110391423 k002 Champernowne real with 13*n^2+267*n-237 4334968114101772 l006 ln(5722/8827) 4334968114683649 a001 55*18^(5/7) 4334968121005323 r005 Re(z^2+c),c=-53/118+22/51*I,n=2 4334968123050834 r009 Im(z^3+c),c=-5/17+7/15*I,n=23 4334968126414776 r005 Im(z^2+c),c=29/78+9/58*I,n=38 4334968128645674 m001 (Si(Pi)+FeigenbaumDelta)/(Kolakoski+Rabbit) 4334968132165395 r005 Im(z^2+c),c=25/74+4/21*I,n=16 4334968138148754 a007 Real Root Of 37*x^4-477*x^3+513*x^2-724*x+255 4334968143328905 a007 Real Root Of -165*x^4-885*x^3-720*x^2+70*x+7 4334968179522238 a007 Real Root Of 132*x^4-457*x^3-576*x^2-967*x+560 4334968186691456 r005 Re(z^2+c),c=-37/48+19/58*I,n=4 4334968187872872 r009 Re(z^3+c),c=-47/90+4/17*I,n=24 4334968200210484 a007 Real Root Of 728*x^4+389*x^3+617*x^2-413*x-289 4334968200293106 r009 Re(z^3+c),c=-59/106+2/27*I,n=5 4334968202954669 a007 Real Root Of 66*x^4-509*x^3+170*x^2-281*x+129 4334968210421429 k002 Champernowne real with 27/2*n^2+531/2*n-236 4334968222969614 m004 -1+(125*Cot[Sqrt[5]*Pi])/Pi+Tan[Sqrt[5]*Pi] 4334968250450523 m001 Si(Pi)^BesselI(0,1)/(Si(Pi)^Psi(1,1/3)) 4334968278661069 r005 Re(z^2+c),c=-45/82+19/47*I,n=58 4334968303256429 a005 (1/sin(110/233*Pi))^1579 4334968310451435 k002 Champernowne real with 14*n^2+264*n-235 4334968313749637 m002 -5+(6*Cosh[Pi])/(Pi^4*ProductLog[Pi]) 4334968323685523 a007 Real Root Of -662*x^4+537*x^3+988*x^2+661*x+168 4334968360447863 m001 (Niven-ThueMorse)/(sin(1/5*Pi)-FeigenbaumMu) 4334968393113318 a007 Real Root Of 108*x^4-594*x^3+379*x^2-668*x-413 4334968395958944 a001 17/682*11^(3/13) 4334968400717648 r009 Re(z^3+c),c=-13/29+5/36*I,n=18 4334968410481441 k002 Champernowne real with 29/2*n^2+525/2*n-234 4334968411571633 r009 Im(z^3+c),c=-55/106+29/49*I,n=12 4334968415339879 m001 (ln(2^(1/2)+1)-Weierstrass)/Zeta(1,2) 4334968431969618 r002 62th iterates of z^2 + 4334968445685368 r005 Re(z^2+c),c=-37/60+7/51*I,n=44 4334968452663357 l006 ln(8013/8368) 4334968459816707 r009 Re(z^3+c),c=-49/94+13/57*I,n=49 4334968459966186 r005 Im(z^2+c),c=1/6+9/20*I,n=30 4334968480698204 m001 exp(Rabbit)/CareFree*GAMMA(3/4)^2 4334968486160214 a007 Real Root Of 224*x^4+803*x^3-796*x^2-412*x-516 4334968490781182 a007 Real Root Of -949*x^4-532*x^3-38*x^2+516*x+221 4334968492494317 a007 Real Root Of -236*x^4-911*x^3+365*x^2-421*x+444 4334968498831450 a007 Real Root Of 636*x^4-291*x^3-868*x^2-855*x+535 4334968510511447 k002 Champernowne real with 15*n^2+261*n-233 4334968513372870 r002 43th iterates of z^2 + 4334968530851108 m001 BesselI(0,2)/(BesselK(1,1)^BesselI(0,1)) 4334968530988528 r005 Re(z^2+c),c=-21/52+18/41*I,n=2 4334968531441750 r002 42th iterates of z^2 + 4334968531779604 r005 Re(z^2+c),c=-7/10+37/212*I,n=40 4334968532943865 r009 Re(z^3+c),c=-55/118+9/58*I,n=63 4334968543096696 m001 1/PrimesInBinary*exp(Artin)^2/sinh(1) 4334968555842526 m001 1/exp(GAMMA(11/12))/Bloch*sin(Pi/5) 4334968568255245 r002 19th iterates of z^2 + 4334968569474838 r005 Re(z^2+c),c=-9/14+8/89*I,n=25 4334968587575167 m005 (-1/8+1/4*5^(1/2))/(7/12*Zeta(3)+3/10) 4334968590935121 r002 14th iterates of z^2 + 4334968594658911 a007 Real Root Of 214*x^4+990*x^3+484*x^2+710*x-941 4334968596594307 r005 Re(z^2+c),c=-57/58+10/43*I,n=26 4334968602667005 r002 17th iterates of z^2 + 4334968609296702 r005 Im(z^2+c),c=3/82+23/42*I,n=48 4334968610541453 k002 Champernowne real with 31/2*n^2+519/2*n-232 4334968614714986 l006 ln(2263/3491) 4334968617606958 r002 12th iterates of z^2 + 4334968629270683 a001 43133785636/2889*322^(7/12) 4334968639212898 r002 32th iterates of z^2 + 4334968646827330 r005 Re(z^2+c),c=1/36+12/41*I,n=10 4334968662099401 a007 Real Root Of -188*x^4-722*x^3+201*x^2-850*x+112 4334968662290450 m001 Catalan/(OneNinth+Riemann2ndZero) 4334968680230952 m001 (GAMMA(2/3)-LambertW(1))/(PlouffeB+Totient) 4334968682894146 r009 Im(z^3+c),c=-31/64+11/27*I,n=27 4334968692025825 r009 Re(z^3+c),c=-43/118+1/23*I,n=24 4334968698753581 r009 Re(z^3+c),c=-11/26+7/61*I,n=28 4334968700935500 a007 Real Root Of 451*x^4+83*x^3+207*x^2-625*x-319 4334968708722114 r002 22th iterates of z^2 + 4334968710571459 k002 Champernowne real with 16*n^2+258*n-231 4334968713344032 r009 Im(z^3+c),c=-17/46+24/55*I,n=37 4334968717948723 a003 cos(Pi*7/115)*cos(Pi*28/79) 4334968718225891 r005 Im(z^2+c),c=-135/118+2/43*I,n=5 4334968721198273 a007 Real Root Of -784*x^4+781*x^3-511*x^2+193*x+271 4334968739010402 r005 Im(z^2+c),c=3/74+29/53*I,n=60 4334968740173003 a001 32264490531/2161*322^(7/12) 4334968756353433 a001 591286729879/39603*322^(7/12) 4334968758714126 a001 774004377960/51841*322^(7/12) 4334968759058547 a001 4052739537881/271443*322^(7/12) 4334968759108797 a001 1515744265389/101521*322^(7/12) 4334968759139854 a001 3278735159921/219602*322^(7/12) 4334968759271411 a001 2504730781961/167761*322^(7/12) 4334968760173115 a001 956722026041/64079*322^(7/12) 4334968766353490 a001 182717648081/12238*322^(7/12) 4334968775372015 a003 sin(Pi*14/69)*sin(Pi*20/77) 4334968795592052 r005 Im(z^2+c),c=-6/29+43/59*I,n=62 4334968799594474 a001 23725150497407*6557470319842^(3/17) 4334968808714408 a001 139583862445/9349*322^(7/12) 4334968810601465 k002 Champernowne real with 33/2*n^2+513/2*n-230 4334968810621997 r002 15th iterates of z^2 + 4334968830744550 r005 Re(z^2+c),c=-9/110+19/30*I,n=5 4334968840053185 l006 ln(31/2366) 4334968842052337 r005 Im(z^2+c),c=11/78+17/36*I,n=50 4334968850808707 m005 (1/2*gamma+1/10)/(4/11*5^(1/2)+1/12) 4334968853822039 m005 (1/2*3^(1/2)-1/6)/(8/11*exp(1)-4/11) 4334968854437863 r005 Im(z^2+c),c=19/62+19/60*I,n=44 4334968854605381 a008 Real Root of x^3-79*x-261 4334968859562858 a007 Real Root Of -658*x^4-733*x^3-458*x^2+663*x+337 4334968868310550 a007 Real Root Of -149*x^4+339*x^3+435*x^2+821*x-460 4334968869743876 r002 51th iterates of z^2 + 4334968896544961 r009 Im(z^3+c),c=-7/62+32/63*I,n=12 4334968903074323 r005 Re(z^2+c),c=-21/34+13/114*I,n=55 4334968905699510 r005 Im(z^2+c),c=1/6+14/31*I,n=62 4334968910631471 k002 Champernowne real with 17*n^2+255*n-229 4334968915661920 m001 (2^(1/2)-Ei(1))/(GAMMA(11/12)+ZetaQ(2)) 4334968918651446 a001 233/3571*18^(19/29) 4334968925304496 a001 4/161*11^(13/56) 4334968930814023 a007 Real Root Of -160*x^4-68*x^3+31*x^2+596*x-253 4334968937429718 r002 35th iterates of z^2 + 4334968949828776 m001 1/(3^(1/3))/Salem^2*ln(BesselK(0,1)) 4334968951222111 a007 Real Root Of 441*x^4-712*x^3-730*x^2-953*x-40 4334968953225929 a007 Real Root Of 137*x^4+499*x^3-511*x^2-396*x+156 4334968968718525 r002 47th iterates of z^2 + 4334968973534184 r009 Re(z^3+c),c=-55/118+9/58*I,n=62 4334968977322858 r009 Im(z^3+c),c=-9/106+23/45*I,n=26 4334968982401889 m005 (1/2*gamma+2/5)/(5/8*Pi-3/8) 4334969006613671 r005 Re(z^2+c),c=-1/17+55/56*I,n=17 4334969008264462 r002 2th iterates of z^2 + 4334969010392794 a007 Real Root Of 753*x^4-884*x^3-389*x^2-271*x+236 4334969010661477 k002 Champernowne real with 35/2*n^2+507/2*n-228 4334969020245692 m001 (Zeta(1/2)+GAMMA(13/24))/(1-2^(1/2)) 4334969040837613 a001 29/8*10946^(1/52) 4334969045358680 r002 6th iterates of z^2 + 4334969052813113 r005 Im(z^2+c),c=-85/126+5/51*I,n=47 4334969054533971 r009 Im(z^3+c),c=-25/56+17/43*I,n=49 4334969063969035 r002 36th iterates of z^2 + 4334969069850748 a007 Real Root Of -453*x^4-835*x^3-146*x^2+941*x+41 4334969080239188 v002 sum(1/(5^n*(23*n^2-12*n+40)),n=1..infinity) 4334969084064358 p003 LerchPhi(1/125,1,457/197) 4334969086270254 r009 Im(z^3+c),c=-1/29+19/37*I,n=9 4334969088029622 r002 13th iterates of z^2 + 4334969099060487 a001 53316291173/3571*322^(7/12) 4334969100557160 h001 (1/6*exp(1)+3/8)/(5/9*exp(1)+2/5) 4334969100751674 r002 20th iterates of z^2 + 4334969108599748 s001 sum(exp(-Pi/2)^(n-1)*A107676[n],n=1..infinity) 4334969110691483 k002 Champernowne real with 18*n^2+252*n-227 4334969115947966 r005 Re(z^2+c),c=-57/94+8/31*I,n=44 4334969116897697 m001 exp(-Pi)^BesselI(0,1)*exp(Pi) 4334969116897697 m001 exp(-Pi)^BesselI(0,1)/exp(-Pi) 4334969126340344 m003 -29/5+(Sqrt[5]*Cosh[1/2+Sqrt[5]/2])/4 4334969126874590 l006 ln(5593/8628) 4334969131952926 r005 Re(z^2+c),c=-29/48+7/47*I,n=22 4334969132833645 r002 24th iterates of z^2 + 4334969134846494 r005 Re(z^2+c),c=-7/10+19/90*I,n=34 4334969145596718 r005 Re(z^2+c),c=-21/16+5/98*I,n=26 4334969146539827 m001 (Pi+sin(1/5*Pi))/(3^(1/3)-LandauRamanujan2nd) 4334969173204174 m001 (Landau+Thue)/(ln(gamma)-Khinchin) 4334969181041130 m001 GAMMA(3/4)^2*exp(GAMMA(17/24))^2/GAMMA(5/12)^2 4334969202950124 m001 1/Catalan^2*HardHexagonsEntropy*ln(sinh(1))^2 4334969207258230 s002 sum(A148684[n]/(n^3*exp(n)+1),n=1..infinity) 4334969210721489 k002 Champernowne real with 37/2*n^2+501/2*n-226 4334969219454291 m001 (-Zeta(1,-1)+ArtinRank2)/(Chi(1)-Zeta(5)) 4334969246063886 m001 LaplaceLimit^(Backhouse*HardHexagonsEntropy) 4334969265306927 s001 sum(exp(-Pi/3)^n*A047766[n],n=1..infinity) 4334969281496607 m001 1/FeigenbaumDelta/Conway/ln(cos(1))^2 4334969286035227 r009 Re(z^3+c),c=-17/36+9/56*I,n=60 4334969288830921 r005 Re(z^2+c),c=-1/110+40/59*I,n=5 4334969301141202 m005 (1/2*Catalan+9/10)/(47/20+7/20*5^(1/2)) 4334969305098831 r005 Re(z^2+c),c=-27/122+23/40*I,n=5 4334969310751495 k002 Champernowne real with 19*n^2+249*n-225 4334969311623500 r009 Re(z^3+c),c=-7/15+10/59*I,n=13 4334969336050606 a007 Real Root Of -314*x^4+890*x^3-611*x^2+352*x+351 4334969341475188 r005 Im(z^2+c),c=-7/10+37/137*I,n=9 4334969361812199 m001 1/ArtinRank2*FeigenbaumDelta*ln(sqrt(5))^2 4334969371574505 a007 Real Root Of 146*x^4-778*x^3+770*x^2-417*x-394 4334969386506438 r002 7th iterates of z^2 + 4334969393163685 r002 64th iterates of z^2 + 4334969394663662 r009 Im(z^3+c),c=-59/122+10/27*I,n=53 4334969394806351 r004 Re(z^2+c),c=1/7+13/16*I,z(0)=I,n=10 4334969397194252 r002 60th iterates of z^2 + 4334969400869989 r005 Re(z^2+c),c=-11/19+11/48*I,n=21 4334969403990927 r002 39th iterates of z^2 + 4334969410781501 k002 Champernowne real with 39/2*n^2+495/2*n-224 4334969410973016 m001 exp(MertensB1)/Conway^2*LambertW(1) 4334969413607782 a007 Real Root Of -914*x^4-638*x^3-213*x^2+832*x+381 4334969427317065 h001 (7/9*exp(1)+1/5)/(7/11*exp(2)+7/11) 4334969429797206 r002 53th iterates of z^2 + 4334969453417171 a008 Real Root of x^4-x^3-52*x^2+52*x+768 4334969454602516 m001 Robbin/(MasserGramainDelta^CareFree) 4334969469525951 m001 (-MinimumGamma+Robbin)/(Chi(1)-FeigenbaumD) 4334969472167936 r005 Re(z^2+c),c=-5/42+23/29*I,n=51 4334969474927783 l006 ln(3330/5137) 4334969478092751 r009 Im(z^3+c),c=-7/31+18/31*I,n=5 4334969484215087 r005 Re(z^2+c),c=-59/106+17/42*I,n=63 4334969495801671 r004 Re(z^2+c),c=-47/46+1/6*I,z(0)=-1,n=17 4334969503145902 r005 Re(z^2+c),c=-9/14+33/119*I,n=24 4334969510811507 k002 Champernowne real with 20*n^2+246*n-223 4334969515588447 a007 Real Root Of -390*x^4+522*x^3-602*x^2-347*x+19 4334969538040762 m001 (CareFree-DuboisRaymond)/Salem 4334969545658634 r009 Im(z^3+c),c=-53/110+11/32*I,n=5 4334969546835394 r005 Re(z^2+c),c=-43/64+5/23*I,n=43 4334969556398881 r005 Im(z^2+c),c=21/118+19/43*I,n=50 4334969569445049 r009 Im(z^3+c),c=-9/106+23/45*I,n=28 4334969599134410 m001 1/ln(GAMMA(7/24))^2/Conway^2*cos(Pi/12)^2 4334969605682649 r005 Im(z^2+c),c=-9/14+56/139*I,n=27 4334969609342903 b008 Sinh[1/11]/21 4334969610218966 r005 Re(z^2+c),c=-29/54+18/41*I,n=44 4334969610841513 k002 Champernowne real with 41/2*n^2+489/2*n-222 4334969614968342 r005 Im(z^2+c),c=5/29+7/15*I,n=27 4334969616354420 m005 (1/2*3^(1/2)+1/8)/(9/10*3^(1/2)+8/11) 4334969627429573 a001 1602508992/281*322^(3/4) 4334969632933723 a007 Real Root Of 374*x^4-416*x^3-459*x^2-390*x+276 4334969637324540 h001 (2/3*exp(2)+1/12)/(1/10*exp(2)+5/12) 4334969641259206 r005 Im(z^2+c),c=7/25+19/59*I,n=18 4334969653127178 a001 5778/89*4181^(39/50) 4334969659081662 a007 Real Root Of -121*x^4-615*x^3-293*x^2+265*x-715 4334969684976812 a007 Real Root Of -79*x^4-339*x^3-131*x^2-501*x+572 4334969705612789 r009 Im(z^3+c),c=-49/102+2/13*I,n=4 4334969710871519 k002 Champernowne real with 21*n^2+243*n-221 4334969714004693 m005 (1/3*gamma-3/7)/(8/11*gamma+1/8) 4334969717410125 r005 Re(z^2+c),c=-13/42+13/22*I,n=3 4334969729420298 r009 Im(z^3+c),c=-9/106+23/45*I,n=30 4334969737606211 m001 FeigenbaumMu+StronglyCareFree^GAMMA(11/12) 4334969742547893 r009 Im(z^3+c),c=-9/106+23/45*I,n=33 4334969745978548 r009 Im(z^3+c),c=-9/106+23/45*I,n=35 4334969748776851 r009 Im(z^3+c),c=-9/106+23/45*I,n=37 4334969749633944 m001 (StolarskyHarborth+Totient)/(Khinchin+Lehmer) 4334969750019079 r009 Im(z^3+c),c=-9/106+23/45*I,n=39 4334969750202858 r009 Im(z^3+c),c=-9/106+23/45*I,n=31 4334969750433397 r009 Im(z^3+c),c=-9/106+23/45*I,n=41 4334969750538366 r009 Im(z^3+c),c=-9/106+23/45*I,n=43 4334969750540282 r009 Im(z^3+c),c=-9/106+23/45*I,n=46 4334969750543046 r009 Im(z^3+c),c=-9/106+23/45*I,n=44 4334969750543564 r009 Im(z^3+c),c=-9/106+23/45*I,n=48 4334969750545751 r009 Im(z^3+c),c=-9/106+23/45*I,n=50 4334969750546658 r009 Im(z^3+c),c=-9/106+23/45*I,n=52 4334969750546944 r009 Im(z^3+c),c=-9/106+23/45*I,n=54 4334969750547008 r009 Im(z^3+c),c=-9/106+23/45*I,n=59 4334969750547008 r009 Im(z^3+c),c=-9/106+23/45*I,n=57 4334969750547011 r009 Im(z^3+c),c=-9/106+23/45*I,n=61 4334969750547012 r009 Im(z^3+c),c=-9/106+23/45*I,n=56 4334969750547012 r009 Im(z^3+c),c=-9/106+23/45*I,n=63 4334969750547014 r009 Im(z^3+c),c=-9/106+23/45*I,n=64 4334969750547015 r009 Im(z^3+c),c=-9/106+23/45*I,n=62 4334969750547017 r009 Im(z^3+c),c=-9/106+23/45*I,n=60 4334969750547020 r009 Im(z^3+c),c=-9/106+23/45*I,n=58 4334969750547035 r009 Im(z^3+c),c=-9/106+23/45*I,n=55 4334969750547181 r009 Im(z^3+c),c=-9/106+23/45*I,n=53 4334969750547707 r009 Im(z^3+c),c=-9/106+23/45*I,n=51 4334969750549170 r009 Im(z^3+c),c=-9/106+23/45*I,n=49 4334969750552110 r009 Im(z^3+c),c=-9/106+23/45*I,n=47 4334969750554251 r009 Im(z^3+c),c=-9/106+23/45*I,n=45 4334969750588377 r009 Im(z^3+c),c=-9/106+23/45*I,n=42 4334969750805387 r009 Im(z^3+c),c=-9/106+23/45*I,n=40 4334969751184784 r005 Im(z^2+c),c=-1/12+34/57*I,n=41 4334969751545779 r009 Im(z^3+c),c=-9/106+23/45*I,n=38 4334969753491986 r009 Im(z^3+c),c=-9/106+23/45*I,n=36 4334969757027210 r009 Im(z^3+c),c=-9/106+23/45*I,n=34 4334969757856663 r009 Im(z^3+c),c=-9/106+23/45*I,n=32 4334969765196415 r009 Im(z^3+c),c=-13/31+12/23*I,n=12 4334969773974677 m001 ln(GAMMA(5/6))^2*GAMMA(11/24)*GAMMA(7/12) 4334969779562787 r005 Im(z^2+c),c=15/122+18/37*I,n=54 4334969793444721 m001 arctan(1/3)*(KomornikLoreti-TreeGrowth2nd) 4334969800670183 p003 LerchPhi(1/256,1,229/99) 4334969810901525 k002 Champernowne real with 43/2*n^2+483/2*n-220 4334969823096186 r009 Im(z^3+c),c=-9/106+23/45*I,n=29 4334969835956741 a001 9/10182505537*8^(13/17) 4334969835958546 m001 Riemann2ndZero*exp(LandauRamanujan)^2/sqrt(5) 4334969839311462 r002 38th iterates of z^2 + 4334969879396619 b008 3*(2+Sqrt[155]) 4334969880797714 r005 Im(z^2+c),c=29/102+15/34*I,n=52 4334969887027587 r005 Re(z^2+c),c=-83/126+12/55*I,n=35 4334969894964454 m004 -125*Pi-6*Sqrt[5]*Pi+2*Sin[Sqrt[5]*Pi] 4334969907017823 r005 Re(z^2+c),c=-7/20+19/26*I,n=6 4334969910931531 k002 Champernowne real with 22*n^2+240*n-219 4334969915187739 l006 ln(8171/8533) 4334969917652694 l006 ln(4397/6783) 4334969926189517 r002 40th iterates of z^2 + 4334969926272125 r009 Im(z^3+c),c=-43/82+5/21*I,n=28 4334969934870137 m005 (1/6*Catalan-3/5)/(2*Catalan-4/5) 4334969945698431 a007 Real Root Of 292*x^4+47*x^3+481*x^2-577*x-347 4334969946185763 r005 Im(z^2+c),c=7/82+17/33*I,n=36 4334969958204971 g005 GAMMA(2/11)*GAMMA(3/4)/GAMMA(7/10)/GAMMA(6/7) 4334969971173514 m009 (4*Psi(1,3/4)-5/6)/(5/6*Psi(1,2/3)-2/5) 4334969972374365 a001 1/1364*(1/2*5^(1/2)+1/2)^9*76^(9/19) 4334969974871521 a001 (2+2^(1/2))^(43/36) 4334969976262449 m001 Pi-Psi(1,1/3)+2^(1/2)*Si(Pi) 4334969986179072 a007 Real Root Of 873*x^4-334*x^3-142*x^2-219*x+118 4334969999824887 a007 Real Root Of 52*x^4-749*x^3+854*x^2-396*x-395 4334970005936863 r005 Im(z^2+c),c=-69/58+3/52*I,n=19 4334970009466164 m001 (Stephens+ZetaP(3))/(2^(1/3)+Bloch) 4334970010961537 k002 Champernowne real with 45/2*n^2+477/2*n-218 4334970013897678 m001 Pi^(1/2)*(ln(2+3^(1/2))+GAMMA(5/6)) 4334970013897678 m001 sqrt(Pi)*(ln(2+sqrt(3))+GAMMA(5/6)) 4334970071860552 r002 55th iterates of z^2 + 4334970074524041 r009 Im(z^3+c),c=-29/70+37/61*I,n=14 4334970074971083 m001 (3^(1/2)-GAMMA(2/3))/(gamma(2)+QuadraticClass) 4334970080577951 r005 Im(z^2+c),c=-35/118+7/13*I,n=9 4334970100320321 r009 Re(z^3+c),c=-39/74+6/13*I,n=26 4334970101807760 m001 GAMMA(19/24)-HardyLittlewoodC3^LaplaceLimit 4334970102156090 m001 (ReciprocalLucas-exp(1)*Thue)/Thue 4334970110991543 k002 Champernowne real with 23*n^2+237*n-217 4334970117468348 r005 Im(z^2+c),c=1/78+32/53*I,n=45 4334970126727004 a007 Real Root Of -153*x^4-820*x^3-774*x^2-256*x+666 4334970128487416 m001 (3^(1/2)-FeigenbaumC)/(-ZetaP(4)+ZetaQ(2)) 4334970133497555 a007 Real Root Of -112*x^4-521*x^3-42*x^2+389*x-415 4334970140052370 r009 Re(z^3+c),c=-16/31+1/5*I,n=58 4334970142209143 r009 Im(z^3+c),c=-9/106+23/45*I,n=27 4334970145666420 a007 Real Root Of -603*x^4+231*x^3-598*x^2+684*x+449 4334970153014574 a007 Real Root Of 736*x^4-989*x^3+750*x^2+594*x+10 4334970159000478 r005 Re(z^2+c),c=-55/122+41/59*I,n=5 4334970163543932 r009 Re(z^3+c),c=-25/62+2/21*I,n=12 4334970163639771 r009 Im(z^3+c),c=-29/74+20/33*I,n=51 4334970170221188 r009 Re(z^3+c),c=-13/122+42/53*I,n=34 4334970179763933 m001 ZetaP(4)^Stephens*ZetaP(4)^MasserGramain 4334970181410716 m005 (1/3*Zeta(3)+1/5)/(5/9*2^(1/2)+3/5) 4334970183791712 a007 Real Root Of -407*x^4+455*x^3-934*x^2-948*x-184 4334970184235158 a007 Real Root Of 434*x^4-2*x^3-130*x^2-858*x-363 4334970187468561 l006 ln(5464/8429) 4334970189323282 r005 Re(z^2+c),c=-12/29+28/57*I,n=14 4334970204338248 r005 Im(z^2+c),c=19/118+26/57*I,n=60 4334970211021549 k002 Champernowne real with 47/2*n^2+471/2*n-216 4334970213243142 r005 Re(z^2+c),c=11/25+11/56*I,n=7 4334970224584261 m001 (2^(1/2)+Zeta(1,2))/(-Salem+ZetaP(4)) 4334970236525485 r009 Im(z^3+c),c=-11/26+15/37*I,n=21 4334970267158465 m001 2^(1/3)/(FransenRobinson+Paris) 4334970269664070 r005 Re(z^2+c),c=-43/70+9/53*I,n=39 4334970274205619 r002 11th iterates of z^2 + 4334970276267515 r005 Im(z^2+c),c=29/86+8/37*I,n=21 4334970277196618 a007 Real Root Of 200*x^4-387*x^3+999*x^2-689*x-525 4334970282847187 m001 exp(TwinPrimes)^2*Sierpinski^2/gamma 4334970283603584 r002 58th iterates of z^2 + 4334970286852821 a005 (1/sin(74/227*Pi))^404 4334970289633508 a003 sin(Pi*32/109)-sin(Pi*27/85) 4334970306930600 m001 1/exp(Catalan)/Conway/sin(1)^2 4334970307687097 r009 Im(z^3+c),c=-7/23+25/54*I,n=16 4334970311051555 k002 Champernowne real with 24*n^2+234*n-215 4334970316786108 m005 (2/5*Catalan+1/2)/(2*Catalan+1/6) 4334970323614534 r009 Im(z^3+c),c=-13/58+30/53*I,n=5 4334970324535681 b008 E^(2-2*Pi)*Pi 4334970324535681 m001 exp(1)^2/exp(Pi)^2*sqrt(Pi)^2 4334970338074719 m001 (Zeta(1,2)+Sarnak)/(ln(2^(1/2)+1)-exp(1/Pi)) 4334970341886240 r005 Re(z^2+c),c=7/27+1/64*I,n=59 4334970348487234 a007 Real Root Of 66*x^4+81*x^3-868*x^2+129*x+162 4334970360816868 r005 Re(z^2+c),c=-3/5+31/118*I,n=34 4334970363539904 r005 Re(z^2+c),c=-43/70+9/32*I,n=45 4334970369122266 l006 ln(6531/10075) 4334970369124313 a007 Real Root Of 2*x^4+866*x^3-431*x^2-33*x-786 4334970369197385 a007 Real Root Of -740*x^4+209*x^3-386*x^2+642*x+394 4334970402867761 m009 (3/5*Psi(1,1/3)+5)/(5/2*Pi^2+5/6) 4334970404060748 r005 Im(z^2+c),c=3/17+27/59*I,n=24 4334970411081561 k002 Champernowne real with 49/2*n^2+465/2*n-214 4334970412728166 m001 (-Conway+Lehmer)/(BesselI(0,1)+Artin) 4334970416012903 r002 55th iterates of z^2 + 4334970426244002 m001 KomornikLoreti/(Rabbit^Sierpinski) 4334970437140035 r001 50i'th iterates of 2*x^2-1 of 4334970441906142 r004 Re(z^2+c),c=-5/8+2/9*I,z(0)=-1,n=45 4334970450649975 r002 21th iterates of z^2 + 4334970458051816 r009 Re(z^3+c),c=-29/60+7/40*I,n=18 4334970463134731 a001 53316291173/199*76^(1/9) 4334970493019377 r009 Re(z^3+c),c=-55/114+9/53*I,n=54 4334970501213112 p002 log(12^(5/3)+17^(11/12)) 4334970510191635 a003 cos(Pi*11/115)-cos(Pi*27/83) 4334970511111567 k002 Champernowne real with 25*n^2+231*n-213 4334970523933317 p004 log(19157/251) 4334970525533815 r005 Re(z^2+c),c=-11/18+24/109*I,n=44 4334970531031390 r005 Re(z^2+c),c=-13/21+5/57*I,n=57 4334970542072996 a001 3020733700601/7*317811^(10/11) 4334970542080799 a001 199691526/7*12586269025^(10/11) 4334970542080799 a001 10525900321/3*63245986^(10/11) 4334970542080982 a001 4870847/21*2504730781961^(10/11) 4334970545727875 r005 Im(z^2+c),c=3/44+19/36*I,n=59 4334970563719941 a001 521*(1/2*5^(1/2)+1/2)^4*3^(3/17) 4334970573732754 r002 64th iterates of z^2 + 4334970592115575 m001 BesselJ(0,1)/(HardHexagonsEntropy^Niven) 4334970592261724 s001 sum(1/10^(n-1)*A213737[n]/n!^2,n=1..infinity) 4334970592430132 r009 Re(z^3+c),c=-47/78+7/30*I,n=31 4334970595045375 a007 Real Root Of -971*x^4+238*x^3+14*x^2+432*x-175 4334970602251111 m001 ln(GAMMA(1/6))*MadelungNaCl*Zeta(3)^2 4334970611141573 k002 Champernowne real with 51/2*n^2+459/2*n-212 4334970615346378 r009 Im(z^3+c),c=-23/60+23/53*I,n=10 4334970672672955 r005 Re(z^2+c),c=-11/18+51/115*I,n=10 4334970678477327 a001 64079/610*13^(21/38) 4334970694013591 m001 (Niven+Thue)/(Ei(1)-Conway) 4334970699160279 a007 Real Root Of 286*x^4+388*x^3-x^2-762*x-33 4334970711171579 k002 Champernowne real with 26*n^2+228*n-211 4334970714173295 a008 Real Root of (-2+x+8*x^2+2*x^4-6*x^8) 4334970714915791 m008 (1/6*Pi^2-1/3)/(Pi^3-3/4) 4334970715575244 r005 Im(z^2+c),c=-35/82+1/14*I,n=22 4334970736958483 a007 Real Root Of -108*x^4+914*x^3-908*x^2+803*x+597 4334970737172465 m001 (GAMMA(17/24)-Sarnak)/(ln(2)+BesselK(1,1)) 4334970744352889 m005 (1/2*Pi-4/7)/(2/11*3^(1/2)-6/11) 4334970753130305 m005 (1/2*Zeta(3)+5/11)/(3/10*gamma-5/12) 4334970759448539 r002 55th iterates of z^2 + 4334970760261014 a007 Real Root Of 201*x^4-258*x^3-16*x^2-761*x-355 4334970760984101 s002 sum(A155063[n]/(n*exp(pi*n)+1),n=1..infinity) 4334970769147924 r002 7th iterates of z^2 + 4334970779620152 m001 (Riemann2ndZero+ZetaQ(4))/(Lehmer-OneNinth) 4334970782778398 r002 9th iterates of z^2 + 4334970792558164 a001 53316291173/521*322^(1/4) 4334970797410016 m001 (3^(1/2)-Zeta(5))/(cos(1/5*Pi)+Kolakoski) 4334970798197097 r002 46th iterates of z^2 + 4334970800120280 a007 Real Root Of -742*x^4+267*x^3+771*x^2+608*x-404 4334970808050510 a007 Real Root Of 774*x^4-398*x^3+865*x^2-373*x-384 4334970811201585 k002 Champernowne real with 53/2*n^2+453/2*n-210 4334970816449715 r002 42th iterates of z^2 + 4334970820565479 r002 2th iterates of z^2 + 4334970821585764 m001 (GAMMA(19/24)+MertensB3)/(Ei(1)-ln(2+3^(1/2))) 4334970825004542 b008 Pi-16*Sinh[4] 4334970835474500 r009 Im(z^3+c),c=-41/90+15/64*I,n=3 4334970843623998 p001 sum((-1)^n/(72*n+23)/n/(24^n),n=0..infinity) 4334970854578228 r005 Im(z^2+c),c=19/62+21/62*I,n=30 4334970855383675 a007 Real Root Of -851*x^4-651*x^3-982*x^2+873*x+540 4334970859499009 m001 (ln(3)-sin(1/12*Pi))/(gamma(2)-Tetranacci) 4334970859876246 r005 Re(z^2+c),c=-5/8+15/124*I,n=10 4334970868520233 r005 Re(z^2+c),c=-23/30+55/109*I,n=2 4334970882469579 r009 Re(z^3+c),c=-1/42+14/15*I,n=12 4334970889302618 m005 (1/6*Catalan+1/5)/(-1/40+3/8*5^(1/2)) 4334970890894261 h001 (-2*exp(1)-8)/(-2*exp(-3)-3) 4334970900599253 m001 1/exp(arctan(1/2))/Khintchine/cos(1) 4334970911231591 k002 Champernowne real with 27*n^2+225*n-209 4334970916424890 r002 59th iterates of z^2 + 4334970928004356 r005 Re(z^2+c),c=-31/50+5/59*I,n=41 4334970929546777 b008 Pi+5*Coth[1/8] 4334970934168477 r005 Re(z^2+c),c=-23/44+23/49*I,n=47 4334970938759334 m001 arctan(1/3)^Tribonacci/((Pi^(1/2))^Tribonacci) 4334970949059478 m001 (GAMMA(7/12)-QuadraticClass)/(Rabbit-Thue) 4334970951957652 a007 Real Root Of 68*x^4-722*x^3-136*x^2-446*x-229 4334970983128677 m001 (ln(3)+GAMMA(7/12))/(ArtinRank2-Conway) 4334970984694749 h001 (-6*exp(1)-9)/(-9*exp(1/2)+9) 4334970987781167 m001 ln(Sierpinski)^2/Riemann3rdZero*Zeta(3) 4334970992827288 r005 Im(z^2+c),c=23/90+10/27*I,n=53 4334971001367497 r005 Re(z^2+c),c=7/52+17/40*I,n=5 4334971001997090 r005 Re(z^2+c),c=-31/50+1/14*I,n=58 4334971002283236 m001 Artin+ZetaP(4)^ln(3) 4334971003409308 a007 Real Root Of -141*x^4+672*x^3+596*x^2+628*x-434 4334971008460025 r009 Im(z^3+c),c=-10/31+21/46*I,n=20 4334971011261597 k002 Champernowne real with 55/2*n^2+447/2*n-208 4334971037601322 m001 (1-sin(1/5*Pi))/(Cahen+HardyLittlewoodC4) 4334971039757347 r005 Re(z^2+c),c=-63/106+13/56*I,n=32 4334971042598573 m001 (MertensB1+Sierpinski)/(1+2*Pi/GAMMA(5/6)) 4334971057708977 h001 (2/3*exp(1)+7/12)/(2/3*exp(2)+3/5) 4334971061071869 m005 (1/2*Pi+8/9)/(1/3*gamma+3/8) 4334971089123159 a001 10182505537/682*322^(7/12) 4334971100723424 r002 62th iterates of z^2 + 4334971111291603 k002 Champernowne real with 28*n^2+222*n-207 4334971112445550 m005 (1/2*5^(1/2)-5/8)/(1/9*5^(1/2)+8/9) 4334971166459287 v002 sum(1/(5^n*(29*n^2-61*n+85)),n=1..infinity) 4334971172976832 r009 Im(z^3+c),c=-9/106+23/45*I,n=25 4334971190307558 r002 25th iterates of z^2 + 4334971207902161 r002 52th iterates of z^2 + 4334971211321609 k002 Champernowne real with 57/2*n^2+441/2*n-206 4334971213095457 r002 45th iterates of z^2 + 4334971215984288 b008 -44+Sin[15] 4334971219649026 m006 (Pi^2-1)/(5/6*ln(Pi)-3) 4334971222176121 a007 Real Root Of -609*x^4+815*x^3+2*x^2+474*x+293 4334971223352787 a008 Real Root of x^4-2*x^3-38*x^2-72*x+836 4334971257025782 r002 29th iterates of z^2 + 4334971258910611 h001 (8/9*exp(1)+7/8)/(10/11*exp(2)+7/8) 4334971275496025 m005 (7/18+1/6*5^(1/2))/(3/11*Pi+9/10) 4334971276190590 m005 (1/3*2^(1/2)-1/10)/(3*Pi-6/7) 4334971282068792 a007 Real Root Of 185*x^4+657*x^3-542*x^2+428*x+231 4334971297685691 a007 Real Root Of -21*x^4-910*x^3+16*x^2+35*x-529 4334971298748966 a007 Real Root Of 270*x^4+990*x^3-726*x^2+204*x-172 4334971299352617 l006 ln(1067/1646) 4334971307359415 r009 Im(z^3+c),c=-23/78+17/31*I,n=5 4334971311351615 k002 Champernowne real with 29*n^2+219*n-205 4334971317884075 a008 Real Root of x^4-x^3-8*x^2-4*x-104 4334971321242797 a007 Real Root Of -181*x^4+329*x^3-534*x^2+760*x+463 4334971322224322 l006 ln(8329/8698) 4334971326687926 r002 41th iterates of z^2 + 4334971334722369 r005 Re(z^2+c),c=7/66+27/44*I,n=54 4334971337243934 r005 Im(z^2+c),c=-5/29+19/31*I,n=31 4334971341571752 b008 -5+(5/17)^(1/3) 4334971353305141 a001 20365011074/2207*322^(2/3) 4334971384920364 m002 -Pi^3-Pi^4-Pi^5+ProductLog[Pi]/Log[Pi] 4334971387548691 r005 Re(z^2+c),c=-41/62+9/46*I,n=6 4334971396622018 m001 Niven^2*exp(Bloch)/Zeta(5)^2 4334971397084231 r005 Re(z^2+c),c=-31/50+1/21*I,n=42 4334971411381621 k002 Champernowne real with 59/2*n^2+435/2*n-204 4334971414281375 m001 GAMMA(2/3)^2*Champernowne/exp(sqrt(1+sqrt(3))) 4334971419882440 r005 Im(z^2+c),c=35/114+11/30*I,n=38 4334971432129646 m005 (5/12+1/6*5^(1/2))/(3/5*3^(1/2)-6/7) 4334971448584641 r009 Im(z^3+c),c=-3/118+22/29*I,n=8 4334971449509209 a007 Real Root Of 800*x^4-221*x^3+287*x^2-281*x-222 4334971477815481 a003 cos(Pi*37/120)-sin(Pi*56/113) 4334971491342369 h001 (-8*exp(1/2)+5)/(-6*exp(1/2)-9) 4334971502641216 a005 (1/sin(74/171*Pi))^782 4334971503810390 r005 Im(z^2+c),c=25/102+20/53*I,n=19 4334971504169050 g007 Psi(2,5/9)+Psi(2,1/6)-Psi(2,7/10)-Psi(2,5/7) 4334971506710254 r009 Im(z^3+c),c=-8/17+8/21*I,n=44 4334971506959647 r005 Im(z^2+c),c=-3/17+38/63*I,n=33 4334971511411627 k002 Champernowne real with 30*n^2+216*n-203 4334971519223038 r005 Im(z^2+c),c=19/126+4/7*I,n=39 4334971526692564 r002 50th iterates of z^2 + 4334971551681305 m003 -1+Sqrt[5]/16+5/(2*Log[1/2+Sqrt[5]/2]) 4334971552054426 r002 11th iterates of z^2 + 4334971560340501 r005 Im(z^2+c),c=11/58+19/44*I,n=47 4334971568033451 a003 sin(Pi*9/67)/cos(Pi*39/83) 4334971570843885 m001 Zeta(1,2)-GAMMA(5/6)^Psi(1,1/3) 4334971590239164 m001 FransenRobinson*(HardHexagonsEntropy+ZetaR(2)) 4334971611441633 k002 Champernowne real with 61/2*n^2+429/2*n-202 4334971616094778 m001 (sin(1)+3^(1/3))/(FeigenbaumD+Sierpinski) 4334971620672278 m005 (1/3*gamma+1/2)/(7/8*Zeta(3)+6/11) 4334971624193291 m005 (1/2*Zeta(3)+10/11)/(2/11*Catalan+2/11) 4334971625220251 b008 ArcSinh[3*(10+E)] 4334971642086954 r005 Re(z^2+c),c=-21/34+9/85*I,n=49 4334971652655982 r005 Re(z^2+c),c=-67/74+11/27*I,n=6 4334971693083275 m001 (GolombDickman-Psi(2,1/3))/(-Totient+ZetaQ(2)) 4334971702267614 p004 log(33811/443) 4334971711471639 k002 Champernowne real with 31*n^2+213*n-201 4334971716376013 m005 (1/2*gamma+5/8)/(10/11*exp(1)-4/11) 4334971738820014 r009 Im(z^3+c),c=-25/64+26/61*I,n=38 4334971746497657 m006 (1/3*Pi^2+3/4)/(5/6/Pi+2/3) 4334971754204277 h001 (1/5*exp(2)+4/11)/(5/9*exp(2)+1/7) 4334971760040288 m001 (Porter-ZetaP(2))/(MertensB2+Mills) 4334971770837519 r005 Im(z^2+c),c=-7/60+19/32*I,n=11 4334971778260083 m004 -5-(75*Sqrt[5])/Pi+5*Pi-Sin[Sqrt[5]*Pi] 4334971779345926 r005 Im(z^2+c),c=-1/6+27/43*I,n=27 4334971790199110 r002 7th iterates of z^2 + 4334971811501645 k002 Champernowne real with 63/2*n^2+423/2*n-200 4334971825781797 r005 Re(z^2+c),c=-27/44+14/31*I,n=9 4334971841603899 m001 (Zeta(3)+ln(2+3^(1/2)))/(GAMMA(19/24)-Lehmer) 4334971843742102 a007 Real Root Of 214*x^4+962*x^3+213*x^2+335*x+245 4334971849016192 r005 Re(z^2+c),c=-27/44+4/43*I,n=30 4334971856915386 a008 Real Root of x^4-x^3-21*x^2-27*x+240 4334971860542518 r005 Re(z^2+c),c=-4/3+3/53*I,n=14 4334971881014221 m001 (CareFree+GlaisherKinkelin)/(Magata+Salem) 4334971884756230 r002 59th iterates of z^2 + 4334971893415994 r002 16th iterates of z^2 + 4334971906612681 r005 Im(z^2+c),c=-17/32+30/61*I,n=32 4334971911531651 k002 Champernowne real with 32*n^2+210*n-199 4334971916654705 m005 (1/2*Pi-2/3)/(7/12*exp(1)+1/2) 4334971928476570 p001 sum(1/(433*n+234)/(25^n),n=0..infinity) 4334971938342559 r005 Re(z^2+c),c=-17/32+1/31*I,n=5 4334971939226608 r002 46th iterates of z^2 + 4334971957880443 m005 (1/2*Zeta(3)+6/7)/(7/11*Zeta(3)-3/7) 4334971957976675 a007 Real Root Of 9*x^4+37*x^3+21*x^2+56*x-316 4334971981048817 r005 Re(z^2+c),c=-79/126+3/35*I,n=31 4334971981492401 r005 Im(z^2+c),c=9/58+7/15*I,n=30 4334971995835839 a001 2584/123*521^(15/31) 4334972011561657 k002 Champernowne real with 65/2*n^2+417/2*n-198 4334972015906971 r005 Im(z^2+c),c=-2/3+1/255*I,n=23 4334972018816722 m005 (1/3*Zeta(3)-1/7)/(3/8*Pi-7/12) 4334972035613470 r005 Re(z^2+c),c=-41/66+1/35*I,n=63 4334972046330046 r002 46th iterates of z^2 + 4334972047647500 a007 Real Root Of 107*x^4+236*x^3+932*x^2-236*x-262 4334972074514389 a001 2/1597*610^(21/38) 4334972086394126 r002 48th iterates of z^2 + 4334972096334581 m001 GAMMA(17/24)/(2^(1/3))^2*exp(Pi)^2 4334972107049313 m005 (1/2*Pi-4/5)/(6/11*3^(1/2)+5/6) 4334972107080861 m001 (arctan(1/2)-Zeta(1,2))/(Magata-ZetaP(3)) 4334972111591663 k002 Champernowne real with 33*n^2+207*n-197 4334972113441406 a001 53316291173/5778*322^(2/3) 4334972129778968 r009 Re(z^3+c),c=-57/118+8/47*I,n=49 4334972136164308 a001 591286729879/2207*123^(1/10) 4334972137292671 r005 Im(z^2+c),c=9/50+1/43*I,n=11 4334972168034016 l006 ln(127/9693) 4334972168252626 h001 (5/9*exp(1)+7/8)/(7/11*exp(2)+4/5) 4334972178387225 m002 -Sinh[Pi]/6+2*Pi*Tanh[Pi] 4334972200156951 s002 sum(A183367[n]/(n^2*10^n+1),n=1..infinity) 4334972200244293 b008 E+E^Gudermannian[1/2] 4334972211621669 k002 Champernowne real with 67/2*n^2+411/2*n-196 4334972212449504 r005 Im(z^2+c),c=29/98+13/40*I,n=51 4334972215359721 r009 Re(z^3+c),c=-43/118+1/23*I,n=23 4334972219007853 h001 (4/7*exp(1)+1/6)/(5/12*exp(2)+8/9) 4334972224343815 a001 139583862445/15127*322^(2/3) 4334972227664910 a001 710647/5*102334155^(17/21) 4334972231070972 r005 Re(z^2+c),c=25/66+6/19*I,n=52 4334972237138090 m005 (1/2*gamma-4/9)/(2/5*3^(1/2)-1/3) 4334972240051093 r005 Im(z^2+c),c=27/86+5/17*I,n=39 4334972240524259 a001 365435296162/39603*322^(2/3) 4334972242884953 a001 956722026041/103682*322^(2/3) 4334972243229374 a001 2504730781961/271443*322^(2/3) 4334972243279625 a001 6557470319842/710647*322^(2/3) 4334972243291487 a001 10610209857723/1149851*322^(2/3) 4334972243310681 a001 4052739537881/439204*322^(2/3) 4334972243442238 a001 140728068720/15251*322^(2/3) 4334972244343943 a001 591286729879/64079*322^(2/3) 4334972250524323 a001 7787980473/844*322^(2/3) 4334972254027825 m005 (1/2*Zeta(3)-7/9)/(-1/14+3/14*5^(1/2)) 4334972258700432 m005 (1/2*2^(1/2)-1/7)/(3/5*Pi-7/12) 4334972267806333 a001 2537720636/5*4181^(17/21) 4334972267841992 l006 ln(6273/9677) 4334972270036575 r005 Re(z^2+c),c=-4/31+57/64*I,n=21 4334972277804708 r005 Im(z^2+c),c=4/21+22/51*I,n=53 4334972287138513 m004 36+Sqrt[5]*Pi+Log[Sqrt[5]*Pi]/6 4334972291759458 r009 Re(z^3+c),c=-47/98+1/6*I,n=40 4334972292738477 r005 Im(z^2+c),c=-25/82+4/7*I,n=7 4334972292885276 a001 86267571272/9349*322^(2/3) 4334972294280504 a001 322/75025*377^(23/59) 4334972303790065 r009 Im(z^3+c),c=-65/126+17/50*I,n=63 4334972311651675 k002 Champernowne real with 34*n^2+204*n-195 4334972311877210 r009 Im(z^3+c),c=-5/26+19/26*I,n=16 4334972321050538 m001 GAMMA(17/24)/Magata^2*exp(Zeta(1,2)) 4334972366070723 r005 Re(z^2+c),c=-16/27+11/35*I,n=63 4334972377344139 r002 50th iterates of z^2 + 4334972377344139 r002 50th iterates of z^2 + 4334972385811846 r002 7th iterates of z^2 + 4334972391201503 p003 LerchPhi(1/32,1,217/92) 4334972411681681 k002 Champernowne real with 69/2*n^2+405/2*n-194 4334972415746182 m001 (Thue+ZetaP(4))/(BesselI(1,1)+Riemann2ndZero) 4334972428004866 a001 2/5473*610^(35/47) 4334972461554491 m001 Zeta(1/2)/exp(Tribonacci)^2*sinh(1) 4334972465202099 m001 exp(Pi)/GAMMA(3/4)*UniversalParabolic 4334972466339515 l006 ln(5206/8031) 4334972468179727 a001 6119/2*55^(2/23) 4334972486071141 r009 Im(z^3+c),c=-41/114+35/52*I,n=13 4334972494852637 r005 Im(z^2+c),c=5/54+28/55*I,n=52 4334972511711687 k002 Champernowne real with 35*n^2+201*n-193 4334972515543712 m001 (FeigenbaumC-Rabbit)/(Riemann3rdZero+Thue) 4334972516159492 r002 9th iterates of z^2 + 4334972520873123 m001 arctan(1/2)^2/ErdosBorwein*exp(sin(Pi/5))^2 4334972547206306 p003 LerchPhi(1/256,3,39/137) 4334972551237613 r002 54th iterates of z^2 + 4334972551912667 p004 log(22447/14551) 4334972560134005 m001 Riemann2ndZero^LaplaceLimit*Stephens 4334972561467206 a007 Real Root Of -337*x^4+111*x^3-532*x^2+916*x+518 4334972563340187 r005 Re(z^2+c),c=-25/56+22/47*I,n=19 4334972564000621 m002 (5*Sech[Pi])/Log[Pi]-Sinh[Pi]/Pi^3 4334972566525806 m001 GAMMA(1/4)*GAMMA(7/12)^BesselK(0,1) 4334972566525806 m001 Pi*2^(1/2)/GAMMA(3/4)*GAMMA(7/12)^BesselK(0,1) 4334972572229620 r002 41th iterates of z^2 + 4334972583231587 a001 32951280099/3571*322^(2/3) 4334972584410336 r005 Re(z^2+c),c=5/36+7/15*I,n=43 4334972590083383 r009 Im(z^3+c),c=-15/31+16/43*I,n=52 4334972601894959 a007 Real Root Of 158*x^4+651*x^3-245*x^2-422*x+11 4334972610773510 m005 (1/36+1/4*5^(1/2))/(7/12*3^(1/2)-7/8) 4334972611741693 k002 Champernowne real with 71/2*n^2+399/2*n-192 4334972613899868 r009 Re(z^3+c),c=-4/11+3/62*I,n=5 4334972655533608 a007 Real Root Of -176*x^4-816*x^3-154*x^2+535*x+892 4334972660915888 m009 (3/4*Psi(1,1/3)-5)/(8/3*Catalan+1/3*Pi^2+1/5) 4334972676872108 l006 ln(8487/8863) 4334972687801397 r009 Im(z^3+c),c=-21/110+21/41*I,n=3 4334972689919061 m001 (DuboisRaymond+GlaisherKinkelin)/Magata 4334972690031861 r005 Im(z^2+c),c=7/20+9/52*I,n=3 4334972690233556 m001 (ln(Pi)+GlaisherKinkelin)/(OneNinth+ZetaP(2)) 4334972690841636 r005 Im(z^2+c),c=-1/26+30/53*I,n=27 4334972698820684 b008 91*ArcCsc[21] 4334972711771699 k002 Champernowne real with 36*n^2+198*n-191 4334972715859462 m001 (-ErdosBorwein+Mills)/(2^(1/3)-LambertW(1)) 4334972740905121 r005 Im(z^2+c),c=31/98+13/40*I,n=29 4334972745071020 a007 Real Root Of -613*x^4+961*x^3+998*x^2+311*x-379 4334972745550932 a007 Real Root Of 847*x^4-974*x^3+353*x^2-663*x-463 4334972747893137 r005 Im(z^2+c),c=29/90+17/59*I,n=44 4334972749282734 m001 Zeta(1,-1)^2/Kolakoski^2 4334972756049296 r002 13th iterates of z^2 + 4334972767159014 r005 Re(z^2+c),c=35/122+19/35*I,n=23 4334972767179072 l006 ln(4139/6385) 4334972792300996 a007 Real Root Of -550*x^4-623*x^3-858*x^2+773*x+465 4334972808125507 m004 1+(Sec[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi])/18 4334972811801705 k002 Champernowne real with 73/2*n^2+393/2*n-190 4334972833166062 m001 Kolakoski^2*ln(Artin)^2*Rabbit 4334972865685963 r005 Im(z^2+c),c=-7/10+23/85*I,n=9 4334972868479705 a007 Real Root Of -215*x^4+141*x^3-623*x^2+491*x+349 4334972885799462 m005 (1/3*gamma-3/5)/(7/10*5^(1/2)-5/8) 4334972896300710 a001 86000486440/321*123^(1/10) 4334972911831711 k002 Champernowne real with 37*n^2+195*n-189 4334972914614672 h001 (-9*exp(-1)-2)/(-6*exp(3)-2) 4334972921038637 m001 (-FellerTornier+GlaisherKinkelin)/(1-exp(Pi)) 4334972928559881 m002 -Pi^3-6*E^Pi*Pi^3+ProductLog[Pi] 4334972932824480 r002 32th iterates of z^2 + 4334972945618714 m001 PrimesInBinary/(Tribonacci^gamma(1)) 4334972963110250 m001 1/exp(GAMMA(5/12))*Ei(1)^2/Pi^2 4334972968111165 a007 Real Root Of 508*x^4-970*x^3+308*x^2-990*x-584 4334972977579032 r005 Im(z^2+c),c=5/78+26/49*I,n=62 4334972997250881 m001 OrthogonalArrays*(Bloch-Weierstrass) 4334973007203139 a001 4052739537881/15127*123^(1/10) 4334973011861717 k002 Champernowne real with 75/2*n^2+387/2*n-188 4334973015368649 r005 Re(z^2+c),c=1/3+6/61*I,n=21 4334973018971653 a007 Real Root Of -457*x^4+592*x^3-596*x^2+622*x+446 4334973020326268 r002 19th iterates of z^2 + 4334973023383586 a001 3536736619241/13201*123^(1/10) 4334973025748839 a007 Real Root Of -240*x^4-940*x^3+581*x^2+495*x-594 4334973033383652 a001 3278735159921/12238*123^(1/10) 4334973034107859 r005 Re(z^2+c),c=-11/18+11/62*I,n=35 4334973036221065 m006 (4*ln(Pi)-2/3)/(1/6*exp(2*Pi)+1) 4334973046126473 b008 3*PolyGamma[0,3+Sqrt[3]] 4334973070224667 r002 10th iterates of z^2 + 4334973075744612 a001 2504730781961/9349*123^(1/10) 4334973078385491 r009 Im(z^3+c),c=-13/46+26/53*I,n=5 4334973085360164 r005 Im(z^2+c),c=-37/34+19/73*I,n=15 4334973087009331 a003 cos(Pi*25/71)*sin(Pi*18/43) 4334973111098784 m005 (1/2*5^(1/2)-3/8)/(1/3*2^(1/2)-3/10) 4334973111601098 a001 2971215073/843*322^(5/6) 4334973111891723 k002 Champernowne real with 38*n^2+192*n-187 4334973112563959 m001 (-ZetaQ(2)+ZetaQ(3))/(Catalan+Champernowne) 4334973130929263 p001 sum(1/(264*n+257)/(5^n),n=0..infinity) 4334973133239208 a001 567451585/38*11^(4/9) 4334973133532193 p001 sum(1/(425*n+231)/(256^n),n=0..infinity) 4334973145278011 r005 Im(z^2+c),c=19/78+19/49*I,n=30 4334973179399843 g007 Psi(2,5/8)+Psi(2,1/6)-Psi(2,6/7)-Psi(2,3/4) 4334973183510829 p004 log(34819/22571) 4334973189300116 m001 BesselJ(1,1)*(GolombDickman-ln(5)) 4334973207446937 a001 55/3*3^(47/60) 4334973211921729 k002 Champernowne real with 77/2*n^2+381/2*n-186 4334973212598353 r002 31th iterates of z^2 + 4334973214989224 a001 3/365435296162*365435296162^(1/16) 4334973214989224 a001 1/75283811239*165580141^(1/16) 4334973214998851 a001 3/139583862445*75025^(1/16) 4334973240010125 a007 Real Root Of 174*x^4+888*x^3+460*x^2-682*x-708 4334973242692127 l006 ln(96/7327) 4334973243695040 a003 sin(Pi*9/52)*sin(Pi*37/117) 4334973267402448 a001 38/98209*2178309^(23/36) 4334973277000255 l006 ln(3072/4739) 4334973288490664 h001 (1/3*exp(1)+7/8)/(5/11*exp(2)+3/4) 4334973292530395 m005 (1/2*Pi+4)/(1/2*Pi-2/7) 4334973293608911 a007 Real Root Of 997*x^4-967*x^3+701*x^2-319*x-384 4334973311951735 k002 Champernowne real with 39*n^2+189*n-185 4334973329290124 r005 Re(z^2+c),c=-25/38+4/17*I,n=46 4334973334627539 r004 Re(z^2+c),c=-19/34-7/20*I,z(0)=-1,n=17 4334973347390855 r005 Im(z^2+c),c=-89/90+19/55*I,n=3 4334973349022168 r005 Re(z^2+c),c=-67/114+1/4*I,n=30 4334973362175009 a001 199/18*(1/2*5^(1/2)+1/2)^28*18^(13/22) 4334973364794700 r002 50th iterates of z^2 + 4334973366090976 a001 956722026041/3571*123^(1/10) 4334973373603121 r009 Im(z^3+c),c=-11/28+17/40*I,n=29 4334973400872176 r005 Im(z^2+c),c=-5/34+40/59*I,n=23 4334973405283916 r009 Im(z^3+c),c=-5/18+29/61*I,n=11 4334973411981741 k002 Champernowne real with 79/2*n^2+375/2*n-184 4334973418401942 h001 (1/7*exp(1)+8/9)/(11/12*exp(1)+5/11) 4334973422892485 r005 Im(z^2+c),c=2/27+23/44*I,n=64 4334973434507770 r005 Im(z^2+c),c=-1+67/233*I,n=4 4334973449496851 a001 505019158607/610*1836311903^(16/17) 4334973449496851 a001 228826127/610*6557470319842^(16/17) 4334973450702420 a007 Real Root Of 258*x^4-500*x^3-27*x^2-395*x-216 4334973465710302 m005 (1/2*Pi+6/7)/(2/11*3^(1/2)-7/8) 4334973470704923 r005 Re(z^2+c),c=-51/82+3/59*I,n=39 4334973471512472 r005 Im(z^2+c),c=3/118+37/60*I,n=63 4334973474695233 r005 Re(z^2+c),c=-47/78+10/37*I,n=60 4334973512011747 k002 Champernowne real with 40*n^2+186*n-183 4334973566475828 a007 Real Root Of -227*x^4-975*x^3+69*x^2-17*x-634 4334973585150827 a007 Real Root Of -561*x^4+505*x^3-739*x^2+65*x+228 4334973599225258 m001 (Conway+FeigenbaumC)/(GAMMA(5/6)-Si(Pi)) 4334973612041753 k002 Champernowne real with 81/2*n^2+369/2*n-182 4334973666899543 a007 Real Root Of -162*x^4-515*x^3+621*x^2-831*x-17 4334973673879001 r009 Re(z^3+c),c=-43/118+1/23*I,n=18 4334973680521365 r005 Im(z^2+c),c=25/94+19/53*I,n=40 4334973692629519 l006 ln(5077/7832) 4334973710406809 r005 Im(z^2+c),c=-23/102+19/31*I,n=16 4334973712071759 k002 Champernowne real with 41*n^2+183*n-181 4334973719595362 r009 Im(z^3+c),c=-1/44+37/47*I,n=52 4334973724423993 r009 Im(z^3+c),c=-9/106+23/45*I,n=23 4334973727887096 a001 55/843*24476^(27/31) 4334973728065149 m006 (1/5*ln(Pi)-1/4)/(1/6*exp(Pi)+1) 4334973734429181 m001 (Shi(1)+arctan(1/3))/(-BesselJ(1,1)+Bloch) 4334973737542044 r005 Re(z^2+c),c=-31/52+5/44*I,n=14 4334973745760573 r002 39i'th iterates of 2*x/(1-x^2) of 4334973761374769 m005 (-25/44+1/4*5^(1/2))/(89/77+3/7*5^(1/2)) 4334973764022762 a007 Real Root Of -952*x^4+644*x^3-65*x^2+839*x+462 4334973775723159 r002 21th iterates of z^2 + 4334973784720776 r005 Re(z^2+c),c=-41/66+2/63*I,n=55 4334973805257993 r005 Re(z^2+c),c=1/8+27/58*I,n=19 4334973812101765 k002 Champernowne real with 83/2*n^2+363/2*n-180 4334973816602441 s002 sum(A104655[n]/(n^3*2^n-1),n=1..infinity) 4334973832781307 r005 Re(z^2+c),c=-11/18+13/60*I,n=48 4334973837469860 r005 Re(z^2+c),c=-17/27+4/39*I,n=29 4334973840094382 r009 Re(z^3+c),c=-14/29+7/41*I,n=36 4334973841460483 a003 sin(Pi*6/35)*sin(Pi*25/78) 4334973849798278 r002 55th iterates of z^2 + 4334973853094744 r005 Im(z^2+c),c=1/52+13/22*I,n=59 4334973855173773 r002 63th iterates of z^2 + 4334973860082483 r002 41th iterates of z^2 + 4334973890481240 r009 Im(z^3+c),c=-47/126+10/23*I,n=33 4334973912131771 k002 Champernowne real with 42*n^2+180*n-179 4334973930754406 m001 ln(arctan(1/2))^2*Cahen^2*sqrt(Pi) 4334973941375724 s002 sum(A280158[n]/((10^n+1)/n),n=1..infinity) 4334973949800587 m001 FransenRobinson*ReciprocalLucas-Salem 4334973952138184 a001 2/123*5778^(6/53) 4334973955925978 r005 Im(z^2+c),c=-14/17+1/42*I,n=43 4334973964591265 a007 Real Root Of -260*x^4+824*x^3+321*x^2+410*x-296 4334973968378528 b008 3*SphericalBesselY[1,1/12] 4334973982003543 l006 ln(8645/9028) 4334973988961877 r005 Im(z^2+c),c=17/126+21/44*I,n=64 4334974007465662 r009 Im(z^3+c),c=-3/11+9/19*I,n=20 4334974010297278 r005 Re(z^2+c),c=-75/122+7/54*I,n=31 4334974012161777 k002 Champernowne real with 85/2*n^2+357/2*n-178 4334974029626319 m006 (2/3*Pi-3/5)/(ln(Pi)-4/5) 4334974031904430 r005 Re(z^2+c),c=-21/34+8/81*I,n=36 4334974046967382 r002 16th iterates of z^2 + 4334974048365226 b008 (9*Sqrt[29/5])/5 4334974069277787 r001 29i'th iterates of 2*x^2-1 of 4334974077933543 a001 2889*17711^(58/59) 4334974080418084 r002 45th iterates of z^2 + 4334974087852763 r005 Re(z^2+c),c=-67/114+7/24*I,n=44 4334974088589578 r005 Im(z^2+c),c=-13/54+1/2*I,n=4 4334974095757544 s002 sum(A101372[n]/(n*exp(pi*n)+1),n=1..infinity) 4334974112191783 k002 Champernowne real with 43*n^2+177*n-177 4334974123710998 r005 Re(z^2+c),c=-83/122+17/50*I,n=50 4334974130133426 a001 1/2204*(1/2*5^(1/2)+1/2)^21*76^(11/13) 4334974132179049 r002 7th iterates of z^2 + 4334974132614552 m001 1/Robbin/Champernowne/ln(sin(Pi/5))^2 4334974137786465 r009 Re(z^3+c),c=-7/12+22/37*I,n=34 4334974142972877 a003 sin(Pi*13/93)/sin(Pi*7/16) 4334974154241188 r005 Im(z^2+c),c=5/102+29/54*I,n=42 4334974159078444 r005 Re(z^2+c),c=-37/60+8/63*I,n=62 4334974162072574 m005 (1/2*3^(1/2)-5/9)/(5*2^(1/2)+1/11) 4334974175800089 r005 Im(z^2+c),c=29/94+7/20*I,n=28 4334974190945076 s002 sum(A264053[n]/((3*n+1)!),n=1..infinity) 4334974201646265 r005 Im(z^2+c),c=-13/62+36/59*I,n=38 4334974203442459 r002 29th iterates of z^2 + 4334974212221789 k002 Champernowne real with 87/2*n^2+351/2*n-176 4334974220918939 m001 GAMMA(2/3)^Niven*KhinchinHarmonic^Niven 4334974223206922 a001 1836311903/199*199^(8/11) 4334974255906315 r002 48th iterates of z^2 + 4334974267203135 r005 Re(z^2+c),c=-13/21+4/33*I,n=42 4334974276730626 a001 63246219*322^(1/3) 4334974282332351 m005 (1/2*3^(1/2)-7/10)/(1/6*Zeta(3)-7/12) 4334974282491841 r009 Im(z^3+c),c=-13/82+27/53*I,n=7 4334974288767734 r002 13th iterates of z^2 + 4334974295017405 r002 26th iterates of z^2 + 4334974296140222 a008 Real Root of x^4-30*x^2-28*x+332 4334974298522629 a007 Real Root Of -348*x^4+212*x^3+588*x^2+135*x-174 4334974306132732 m001 (sin(1)-Robbin)/PrimesInBinary 4334974308296825 r005 Im(z^2+c),c=-41/114+38/61*I,n=55 4334974312251795 k002 Champernowne real with 44*n^2+174*n-175 4334974314570252 p003 LerchPhi(1/8,6,159/203) 4334974324576813 h001 (7/9*exp(1)+1/9)/(3/5*exp(2)+7/10) 4334974329444000 l006 ln(2005/3093) 4334974329682119 r004 Re(z^2+c),c=5/14+1/9*I,z(0)=exp(7/12*I*Pi),n=7 4334974342989635 m001 1/(3^(1/3))*Sierpinski^2*exp(sqrt(5)) 4334974345398779 r009 Re(z^3+c),c=-25/48+14/39*I,n=33 4334974359138831 m005 (1/2*3^(1/2)-10/11)/(18/35+3/14*5^(1/2)) 4334974361782861 a007 Real Root Of -456*x^4+481*x^3+245*x^2+733*x+327 4334974383247228 m005 (1/3*gamma+1/6)/(3/7*2^(1/2)+2/9) 4334974384250819 a007 Real Root Of 305*x^4+625*x^3-190*x^2-692*x+274 4334974392156228 r005 Im(z^2+c),c=15/58+24/53*I,n=46 4334974412281801 k002 Champernowne real with 89/2*n^2+345/2*n-174 4334974433653558 m001 1/GAMMA(19/24)^2/TreeGrowth2nd*exp(cos(Pi/12)) 4334974436881772 r009 Re(z^3+c),c=-51/106+10/59*I,n=26 4334974438644696 a001 76/433494437*13^(6/17) 4334974464787068 r005 Re(z^2+c),c=-61/46+3/55*I,n=30 4334974483806904 a007 Real Root Of 649*x^4-293*x^3+759*x^2+520*x+36 4334974497320392 r009 Im(z^3+c),c=-37/114+16/35*I,n=14 4334974502150848 a001 144/3571*76^(17/31) 4334974512311807 k002 Champernowne real with 45*n^2+171*n-173 4334974526077442 r005 Im(z^2+c),c=5/29+18/41*I,n=21 4334974533243413 r009 Re(z^3+c),c=-33/70+4/25*I,n=64 4334974566827189 r005 Im(z^2+c),c=17/126+19/40*I,n=31 4334974573295859 a001 1144206275/124*322^(2/3) 4334974579505676 m001 (Niven+Trott)/(Backhouse-Si(Pi)) 4334974592024689 m001 (3^(1/2)+ln(Pi))/(-FeigenbaumAlpha+Tribonacci) 4334974593947419 h001 (-4*exp(3/2)-7)/(-9*exp(2)+9) 4334974597763411 a007 Real Root Of -532*x^4-511*x^3-769*x^2+792*x+465 4334974599320862 s002 sum(A144738[n]/((exp(n)-1)/n),n=1..infinity) 4334974603036524 m001 1/Si(Pi)^2/Conway*exp(Robbin) 4334974604840970 r005 Re(z^2+c),c=5/17+2/47*I,n=31 4334974605878764 m001 (Pi+1)/((1+3^(1/2))^(1/2)-ArtinRank2) 4334974612341813 k002 Champernowne real with 91/2*n^2+339/2*n-172 4334974618090454 m001 ReciprocalFibonacci/(LandauRamanujan+Trott) 4334974619794286 a007 Real Root Of 965*x^4-572*x^3+853*x^2-992*x-671 4334974629665972 m001 (Kolakoski-MertensB2)/(GAMMA(23/24)-Bloch) 4334974631844317 m001 FeigenbaumD-Riemann2ndZero-Riemann3rdZero 4334974655174301 a007 Real Root Of -707*x^4+720*x^3+343*x^2+348*x-249 4334974664378501 m001 (PolyaRandomWalk3D+Salem)/(Landau+Otter) 4334974667257128 h001 (8/9*exp(1)+5/7)/(9/10*exp(2)+4/7) 4334974668048119 r005 Re(z^2+c),c=-27/44+2/47*I,n=21 4334974670163761 a001 521/1346269*832040^(9/26) 4334974670404684 r004 Im(z^2+c),c=3/22+7/17*I,z(0)=I,n=12 4334974676033580 m001 GaussKuzminWirsing*exp(DuboisRaymond)*sinh(1) 4334974678617011 r005 Im(z^2+c),c=27/118+29/60*I,n=44 4334974684756365 a007 Real Root Of 229*x^4-745*x^3-735*x^2-665*x+479 4334974685586925 r002 25th iterates of z^2 + 4334974697833557 a001 24476/21*6765^(7/47) 4334974712371819 k002 Champernowne real with 46*n^2+168*n-171 4334974726030937 r005 Im(z^2+c),c=-7/10+39/154*I,n=44 4334974729962351 s002 sum(A234427[n]/(n*10^n+1),n=1..infinity) 4334974731231278 s002 sum(A234427[n]/(n*10^n-1),n=1..infinity) 4334974735492496 a001 47/32951280099*139583862445^(5/16) 4334974735492497 a001 47/2971215073*63245986^(5/16) 4334974735822414 a001 47/267914296*28657^(5/16) 4334974740918464 a007 Real Root Of -380*x^4+846*x^3-444*x^2-41*x+148 4334974746830583 b008 1-35*(11+Sqrt[2]) 4334974751923888 a007 Real Root Of 60*x^4+254*x^3+83*x^2+530*x+241 4334974758923196 m001 MasserGramain^GAMMA(19/24)*Sarnak 4334974758997804 r005 Re(z^2+c),c=-3/5+3/10*I,n=63 4334974760591799 r002 8th iterates of z^2 + 4334974761767810 r009 Im(z^3+c),c=-2/23+28/37*I,n=44 4334974767587311 m001 (ln(2)*Rabbit+Sierpinski)/Rabbit 4334974777001183 m004 -3+(5*Cos[Sqrt[5]*Pi])/6-Log[Sqrt[5]*Pi] 4334974785452721 m005 (1/3*2^(1/2)+1/3)/(6*Pi-2/7) 4334974792609083 r002 36th iterates of z^2 + 4334974794334347 k006 concat of cont frac of 4334974808526035 r005 Re(z^2+c),c=-79/114+7/23*I,n=35 4334974812401825 k002 Champernowne real with 93/2*n^2+333/2*n-170 4334974837478053 a001 12586269025/2207*322^(3/4) 4334974851267220 r005 Re(z^2+c),c=-4/7+19/64*I,n=22 4334974857231282 r002 56th iterates of z^2 + 4334974859048713 r002 23th iterates of z^2 + 4334974869724077 m001 (ln(2^(1/2)+1)+Zeta(1,-1))/(GAMMA(23/24)+Kac) 4334974874261113 r005 Re(z^2+c),c=-69/110+1/14*I,n=29 4334974878979193 m001 ln(Robbin)/RenyiParking/GAMMA(5/6)^2 4334974899192093 m001 (FeigenbaumC-Sarnak)/(GAMMA(2/3)-ln(3)) 4334974908162464 m008 (1/3*Pi^2+1/5)/(1/4*Pi^5+4) 4334974912431831 k002 Champernowne real with 47*n^2+165*n-169 4334974918541547 r004 Re(z^2+c),c=-21/34+1/10*I,z(0)=-1,n=44 4334974927071348 m001 (Rabbit-Zeta(5)*Salem)/Salem 4334974940239506 m005 (1/2*Pi+7/12)/(1/11*gamma+4/9) 4334974944757100 a007 Real Root Of -319*x^4+851*x^3-915*x^2-225*x+155 4334974961966160 r005 Im(z^2+c),c=13/70+7/15*I,n=23 4334974980551840 r009 Re(z^3+c),c=-14/29+8/47*I,n=53 4334974982860918 l006 ln(4948/7633) 4334975003368520 m009 (1/6*Pi^2+2/3)/(8/3*Catalan+1/3*Pi^2-2/5) 4334975006840129 m003 -9/2+Sqrt[5]/16+ProductLog[1/2+Sqrt[5]/2]/30 4334975012461837 k002 Champernowne real with 95/2*n^2+327/2*n-168 4334975026284546 m001 ZetaP(4)/(CareFree-ln(2^(1/2)+1)) 4334975026510420 m001 (Ei(1)-FeigenbaumC)/(Gompertz+Riemann1stZero) 4334975033641906 s001 sum(exp(-2*Pi/3)^n*A067185[n],n=1..infinity) 4334975035913048 r005 Im(z^2+c),c=-22/29+14/39*I,n=6 4334975037558850 p001 sum((-1)^n/(328*n+227)/(25^n),n=0..infinity) 4334975039794310 r002 45th iterates of z^2 + 4334975054498289 m005 (1/2*3^(1/2)+2/7)/(4*2^(1/2)-3) 4334975075421568 m001 (Zeta(1/2)+Riemann3rdZero)^(2*Pi/GAMMA(5/6)) 4334975086993155 m001 exp(1/exp(1))*gamma(3)^DuboisRaymond 4334975112491843 k002 Champernowne real with 48*n^2+162*n-167 4334975112646776 a003 sin(Pi*13/115)/cos(Pi*11/54) 4334975116188853 a007 Real Root Of 468*x^4-681*x^3-902*x^2-691*x+508 4334975131137238 r005 Re(z^2+c),c=-41/66+1/56*I,n=51 4334975137772415 r005 Re(z^2+c),c=-11/16+18/97*I,n=26 4334975143351965 a007 Real Root Of -901*x^4+256*x^3+870*x^2+444*x-345 4334975144751174 m005 (1/3*2^(1/2)-1/10)/(7/16+3/16*5^(1/2)) 4334975147214857 r009 Im(z^3+c),c=-25/48+9/28*I,n=35 4334975153324066 r004 Im(z^2+c),c=-17/30+1/13*I,z(0)=-1,n=25 4334975161848606 m005 (1/3*Catalan+1/11)/(1/5*Pi+2/7) 4334975185460946 m001 (-OrthogonalArrays+PlouffeB)/(Chi(1)+Conway) 4334975198443191 m005 (1/2*Pi-5/6)/(139/154+5/14*5^(1/2)) 4334975204364451 m001 exp(Zeta(9))/Porter^2/cos(1)^2 4334975206874142 a007 Real Root Of 13*x^4+554*x^3-418*x^2-157*x+992 4334975212521849 k002 Champernowne real with 97/2*n^2+321/2*n-166 4334975217622544 r002 28th iterates of z^2 + 4334975223590247 m001 ZetaQ(3)^GlaisherKinkelin*ZetaQ(3)^Chi(1) 4334975225894442 a007 Real Root Of -595*x^4-237*x^3-872*x^2+174*x+241 4334975236332099 m001 GAMMA(1/24)^2*exp(OneNinth)/sqrt(2) 4334975238653238 m001 GAMMA(19/24)^2/exp(Magata)*GAMMA(7/24)^2 4334975240284851 l006 ln(8803/9193) 4334975251923059 r009 Im(z^3+c),c=-3/11+13/23*I,n=3 4334975252560132 r005 Im(z^2+c),c=-53/90+3/7*I,n=55 4334975257675467 r005 Re(z^2+c),c=-51/86+10/31*I,n=61 4334975259592763 a007 Real Root Of 674*x^4+211*x^3+755*x^2-857*x-520 4334975266487576 h001 (-exp(-1)+1)/(-8*exp(2/3)+1) 4334975270889910 a007 Real Root Of -800*x^4+876*x^3+471*x^2+889*x-517 4334975311973408 r005 Im(z^2+c),c=15/64+21/46*I,n=29 4334975312551855 k002 Champernowne real with 49*n^2+159*n-165 4334975320115552 a007 Real Root Of 471*x^4-367*x^3-342*x^2-643*x-261 4334975326505480 m001 Landau^ln(2)*Robbin 4334975338907727 s002 sum(A166336[n]/(exp(n)+1),n=1..infinity) 4334975342405411 l006 ln(65/4961) 4334975344069247 a007 Real Root Of -526*x^4+296*x^3+919*x^2+996*x-610 4334975351578103 r005 Re(z^2+c),c=-35/58+11/49*I,n=38 4334975356155607 a001 182717648081/682*123^(1/10) 4334975356772551 a007 Real Root Of 192*x^4-486*x^3+999*x^2+427*x-49 4334975363137390 r005 Re(z^2+c),c=-37/34+19/43*I,n=4 4334975369458128 q001 44/1015 4334975369458128 r002 2th iterates of z^2 + 4334975369458128 r002 2th iterates of z^2 + 4334975369458128 r002 2th iterates of z^2 + 4334975369458128 r005 Im(z^2+c),c=-51/58+4/7*I,n=2 4334975372312252 r002 3th iterates of z^2 + 4334975382072383 m008 (2/3*Pi+1/3)/(1/6*Pi^5+5) 4334975387476037 b008 13*Hyperfactorial[11/3] 4334975393241177 r005 Im(z^2+c),c=-6/13+3/41*I,n=21 4334975412581861 k002 Champernowne real with 99/2*n^2+315/2*n-164 4334975413099719 r002 27th iterates of z^2 + 4334975417307284 a007 Real Root Of 227*x^4-273*x^3-86*x^2-705*x+336 4334975428019208 l006 ln(2943/4540) 4334975439560294 a001 1322157322203/1597*1836311903^(16/17) 4334975439560294 a001 599074578/1597*6557470319842^(16/17) 4334975447199662 a007 Real Root Of -638*x^4+512*x^3+147*x^2+185*x-127 4334975454193995 r009 Im(z^3+c),c=-1/28+18/35*I,n=17 4334975459849093 a003 cos(Pi*19/49)+cos(Pi*42/89) 4334975465212231 r005 Re(z^2+c),c=-79/102+3/14*I,n=8 4334975468925931 a007 Real Root Of 705*x^4-832*x^3+753*x^2+674*x+58 4334975471722523 r005 Re(z^2+c),c=-11/18+36/115*I,n=61 4334975471880297 r005 Im(z^2+c),c=17/110+6/13*I,n=62 4334975475130583 r009 Im(z^3+c),c=-7/74+25/49*I,n=15 4334975476839282 r005 Re(z^2+c),c=-11/18+25/102*I,n=27 4334975488977285 r002 45th iterates of z^2 + 4334975489776636 m001 (ln(5)+Magata)/(StronglyCareFree-TwinPrimes) 4334975501814285 r002 46th iterates of z^2 + 4334975509140838 r009 Re(z^3+c),c=-10/19+11/37*I,n=36 4334975510977343 a003 sin(Pi*5/92)+sin(Pi*9/106) 4334975512611867 k002 Champernowne real with 50*n^2+156*n-163 4334975512919555 r005 Im(z^2+c),c=23/114+9/22*I,n=18 4334975518578702 m001 1/Niven^3*exp(BesselJ(0,1)) 4334975541265472 r005 Re(z^2+c),c=-41/66+1/20*I,n=47 4334975551272770 r002 45th iterates of z^2 + 4334975558562135 h001 (1/9*exp(1)+7/8)/(3/11*exp(2)+7/10) 4334975562384253 r002 27th iterates of z^2 + 4334975572955620 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)*Gompertz^Trott2nd 4334975585980256 r009 Im(z^3+c),c=-2/19+29/57*I,n=12 4334975590166117 r005 Im(z^2+c),c=-101/106+2/51*I,n=9 4334975592142421 r002 3th iterates of z^2 + 4334975592531433 a007 Real Root Of -401*x^4-140*x^3-538*x^2+667*x+393 4334975597614929 a001 10983760033/1926*322^(3/4) 4334975609242830 m005 (1/2*2^(1/2)-7/9)/(Catalan+5/7) 4334975612641873 k002 Champernowne real with 101/2*n^2+309/2*n-162 4334975616256897 k001 Champernowne real with 64*n+369 4334975616256897 k005 Champernowne real with floor(sqrt(3)*(37*n+213)) 4334975617132275 m001 (Sierpinski-Totient)/(ArtinRank2-FeigenbaumMu) 4334975626429461 r005 Re(z^2+c),c=-47/46+7/41*I,n=24 4334975626822157 r005 Im(z^2+c),c=-41/70+1/25*I,n=3 4334975665367233 a007 Real Root Of 16*x^4+708*x^3+629*x^2+187*x-528 4334975676531596 m002 -4-Pi^3/(4*E^Pi) 4334975677192451 r005 Re(z^2+c),c=-53/86+10/47*I,n=39 4334975681977388 r005 Re(z^2+c),c=-23/38+12/49*I,n=26 4334975685998571 a005 (1/sin(79/163*Pi))^1263 4334975694968672 m001 (1-Pi^(1/2))/(Niven+ZetaP(4)) 4334975708517427 a001 86267571272/15127*322^(3/4) 4334975712671879 k002 Champernowne real with 51*n^2+153*n-161 4334975724697884 a001 75283811239/13201*322^(3/4) 4334975725677282 h001 (1/4*exp(1)+7/12)/(6/7*exp(1)+7/12) 4334975727058581 a001 591286729879/103682*322^(3/4) 4334975727403002 a001 516002918640/90481*322^(3/4) 4334975727453252 a001 4052739537881/710647*322^(3/4) 4334975727460584 a001 3536736619241/620166*322^(3/4) 4334975727465115 a001 6557470319842/1149851*322^(3/4) 4334975727484309 a001 2504730781961/439204*322^(3/4) 4334975727615866 a001 956722026041/167761*322^(3/4) 4334975728517572 a001 365435296162/64079*322^(3/4) 4334975729906790 a001 3461452808002/4181*1836311903^(16/17) 4334975729906790 a001 1568397607/4181*6557470319842^(16/17) 4334975734697956 a001 139583862445/24476*322^(3/4) 4334975737350122 m001 StronglyCareFree-exp(1/Pi)-Zeta(1,-1) 4334975750191243 m001 (2^(1/2)+ln(5))/ArtinRank2 4334975751280652 r005 Re(z^2+c),c=-83/82+4/21*I,n=28 4334975763541853 r009 Im(z^3+c),c=-23/54+11/27*I,n=55 4334975769486713 m001 exp(Riemann2ndZero)/LaplaceLimit^2/sin(1)^2 4334975772267777 a001 9062201101803/10946*1836311903^(16/17) 4334975772267777 a001 4106118243/10946*6557470319842^(16/17) 4334975777058943 a001 53316291173/9349*322^(3/4) 4334975778448161 a001 23725150497407/28657*1836311903^(16/17) 4334975778448161 a001 10749957122/28657*6557470319842^(16/17) 4334975779349867 a001 28143753123/75025*6557470319842^(16/17) 4334975779481424 a001 73681302247/196418*6557470319842^(16/17) 4334975779500618 a001 192900153618/514229*6557470319842^(16/17) 4334975779503419 a001 505019158607/1346269*6557470319842^(16/17) 4334975779503827 a001 1322157322203/3524578*6557470319842^(16/17) 4334975779503887 a001 3461452808002/9227465*6557470319842^(16/17) 4334975779503896 a001 9062201101803/24157817*6557470319842^(16/17) 4334975779503897 a001 23725150497407/63245986*6557470319842^(16/17) 4334975779503898 a001 14662949395604/39088169*6557470319842^(16/17) 4334975779503901 a001 5600748293801/14930352*6557470319842^(16/17) 4334975779503924 a001 2139295485799/5702887*6557470319842^(16/17) 4334975779504080 a001 817138163596/2178309*6557470319842^(16/17) 4334975779505149 a001 28374454999/75640*6557470319842^(16/17) 4334975779512481 a001 119218851371/317811*6557470319842^(16/17) 4334975779562731 a001 45537549124/121393*6557470319842^(16/17) 4334975779907152 a001 17393796001/46368*6557470319842^(16/17) 4334975782267849 a001 14662949395604/17711*1836311903^(16/17) 4334975782267849 a001 6643838879/17711*6557470319842^(16/17) 4334975785910631 s003 concatenated sequence A142502 4334975789066690 m001 exp(1/2)/(Pi+Robbin) 4334975795409644 p001 sum((-1)^n/(338*n+21)/n/(64^n),n=1..infinity) 4334975798448306 a001 230701876/615*6557470319842^(16/17) 4334975798448306 a001 5600748293801/6765*1836311903^(16/17) 4334975800687407 m005 (1/2*Catalan+1/12)/(23/99+5/11*5^(1/2)) 4334975803874751 a001 2584/11*3^(29/52) 4334975812701885 k002 Champernowne real with 103/2*n^2+303/2*n-160 4334975814737708 a007 Real Root Of 117*x^4+443*x^3-234*x^2+173*x-82 4334975820300527 r002 7th iterates of z^2 + 4334975820842130 m001 (FeigenbaumMu-MertensB3)/(Salem-TwinPrimes) 4334975830651377 m001 exp(Trott)^2/FeigenbaumC*log(1+sqrt(2))^2 4334975834390183 r002 3th iterates of z^2 + 4334975856938777 m001 Sarnak^exp(-1/2*Pi)*arctan(1/2) 4334975875662182 r005 Im(z^2+c),c=31/98+14/43*I,n=19 4334975886331362 a007 Real Root Of 687*x^4+114*x^3-982*x^2-669*x+441 4334975893525435 r009 Im(z^3+c),c=-9/106+23/45*I,n=19 4334975909350813 a001 969323029/2584*6557470319842^(16/17) 4334975909350813 a001 2139295485799/2584*1836311903^(16/17) 4334975912731891 k002 Champernowne real with 52*n^2+150*n-159 4334975916827243 m001 GaussAGM^ZetaP(2)/(GaussAGM^Psi(2,1/3)) 4334975919970318 r002 21th iterates of z^2 + 4334975921507699 r005 Re(z^2+c),c=-79/126+7/39*I,n=32 4334975923589335 m001 PisotVijayaraghavan^ZetaP(4)/CopelandErdos 4334975946676696 b008 21/8+5^(1/3) 4334975962069548 a007 Real Root Of -203*x^4-949*x^3-329*x^2+16*x+631 4334975965177004 r009 Im(z^3+c),c=-23/98+32/33*I,n=39 4334975976914202 g006 Psi(1,10/11)+Psi(1,4/7)-Psi(1,5/12)-Psi(1,5/8) 4334975983321513 r009 Re(z^3+c),c=-7/90+24/37*I,n=40 4334975986626475 m001 exp(1)*(BesselK(0,1)+GAMMA(19/24)) 4334975995431347 r005 Im(z^2+c),c=27/86+17/56*I,n=22 4334975995564457 l006 ln(3881/5987) 4334975995564457 p004 log(5987/3881) 4334976001944926 r005 Re(z^2+c),c=-27/38+10/47*I,n=6 4334976012761897 k002 Champernowne real with 105/2*n^2+297/2*n-158 4334976032185505 r009 Im(z^3+c),c=-1/28+18/35*I,n=14 4334976038368723 r005 Re(z^2+c),c=-73/110+5/29*I,n=28 4334976043625154 r005 Im(z^2+c),c=3/14+7/17*I,n=38 4334976052693579 r002 3th iterates of z^2 + 4334976067405488 a001 20365011074/3571*322^(3/4) 4334976067726135 r005 Re(z^2+c),c=-7/10+16/177*I,n=37 4334976079222584 m001 Si(Pi)*Sierpinski-ZetaP(2) 4334976080593162 r002 3th iterates of z^2 + 4334976082570773 r005 Im(z^2+c),c=1/50+23/42*I,n=31 4334976112791903 k002 Champernowne real with 53*n^2+147*n-157 4334976116730167 r002 6th iterates of z^2 + 4334976117187226 m001 ln(BesselJ(1,1))^2*ArtinRank2^2*GAMMA(1/12)^2 4334976121090261 r005 Re(z^2+c),c=-47/78+3/23*I,n=10 4334976124208791 r005 Im(z^2+c),c=13/40+5/19*I,n=13 4334976141377379 r005 Re(z^2+c),c=-73/118+13/43*I,n=32 4334976155879720 r009 Im(z^3+c),c=-7/27+45/61*I,n=42 4334976159125460 m004 1+(E^(Sqrt[5]*Pi)*Sec[Sqrt[5]*Pi])/36 4334976161840637 r002 29th iterates of z^2 + 4334976170004092 r002 29th iterates of z^2 + 4334976180354428 a001 123/55*144^(34/57) 4334976185933405 r005 Im(z^2+c),c=13/40+7/29*I,n=8 4334976212821909 k002 Champernowne real with 107/2*n^2+291/2*n-156 4334976215515156 r002 53th iterates of z^2 + 4334976220991577 a007 Real Root Of 463*x^4-711*x^3-128*x^2+102*x-6 4334976231535401 s002 sum(A161522[n]/(n*2^n-1),n=1..infinity) 4334976241438012 r005 Im(z^2+c),c=13/118+19/39*I,n=23 4334976247540695 r005 Re(z^2+c),c=13/48+1/47*I,n=23 4334976247958202 r005 Im(z^2+c),c=-5/8+109/250*I,n=43 4334976262980596 m005 (1/2*Catalan+3/10)/(3/5*2^(1/2)+9/10) 4334976264237794 m001 1/ln(MertensB1)^2*Bloch*sqrt(1+sqrt(3)) 4334976264646428 r009 Im(z^3+c),c=-47/118+19/45*I,n=30 4334976269896968 a007 Real Root Of 740*x^4+610*x^3-84*x^2-646*x+220 4334976273675592 m001 Mills*(FeigenbaumD+HardyLittlewoodC3) 4334976297331866 h005 exp(cos(Pi*10/31)+sin(Pi*12/31)) 4334976309884559 r005 Im(z^2+c),c=7/32+20/49*I,n=38 4334976310115163 a001 233/521*(1/2+1/2*5^(1/2))^43 4334976312851915 k002 Champernowne real with 54*n^2+144*n-155 4334976315589289 r005 Im(z^2+c),c=-17/26+13/40*I,n=5 4334976321082701 a007 Real Root Of 968*x^4-831*x^3+781*x^2+276*x-129 4334976329441608 a007 Real Root Of 37*x^4+131*x^3-163*x^2-345*x-827 4334976342168647 l006 ln(4819/7434) 4334976353872637 a001 28657/47*199^(29/36) 4334976373743253 m001 (GAMMA(2/3)+FeigenbaumMu)/(Landau+Lehmer) 4334976388334927 a007 Real Root Of 726*x^4-520*x^3-66*x^2-836*x-418 4334976393518108 m001 (3^(1/2)+BesselK(1,1))/(-OneNinth+ZetaQ(2)) 4334976397577084 r009 Im(z^3+c),c=-3/58+18/35*I,n=8 4334976412881921 k002 Champernowne real with 109/2*n^2+285/2*n-154 4334976440416383 m002 Pi^3*Log[Pi]+(Pi^4*Csch[Pi])/ProductLog[Pi] 4334976446913934 r002 54th iterates of z^2 + 4334976449625981 a005 (1/cos(5/228*Pi))^1587 4334976454194210 l006 ln(8961/9358) 4334976475208044 m001 DuboisRaymond/BesselJ(0,1)*Niven 4334976481701182 r002 21th iterates of z^2 + 4334976497935544 r002 46th iterates of z^2 + 4334976500978365 m001 Riemann3rdZero^2/ln(Lehmer)*GAMMA(1/4) 4334976512911927 k002 Champernowne real with 55*n^2+141*n-153 4334976517164639 m001 (-MadelungNaCl+Trott2nd)/(3^(1/2)+5^(1/2)) 4334976522115107 r005 Re(z^2+c),c=-9/16+43/112*I,n=62 4334976526279556 a001 3/322*9349^(21/50) 4334976544360619 a001 3/322*24476^(19/50) 4334976553090493 p001 sum((-1)^n/(495*n+416)/n/(25^n),n=1..infinity) 4334976555161989 m001 Porter/(ln(2^(1/2)+1)+FeigenbaumAlpha) 4334976562804573 b008 Coth[(2+E)/E^3] 4334976564604103 m001 FeigenbaumC^(ErdosBorwein/LaplaceLimit) 4334976570059210 m001 (exp(Pi)+1)/(PlouffeB+StolarskyHarborth) 4334976571832325 m008 (1/4*Pi^2-4/5)/(4*Pi^6+5/6) 4334976575826944 l006 ln(5757/8881) 4334976577666847 m008 (4/5*Pi^3+1/4)/(2/3*Pi^2-4/5) 4334976595775424 a001 1836311903/843*322^(11/12) 4334976598518814 m001 Rabbit^OrthogonalArrays*Rabbit^MertensB2 4334976602403734 a001 2889/305*832040^(37/47) 4334976610186296 r009 Im(z^3+c),c=-1/27+18/35*I,n=12 4334976612941933 k002 Champernowne real with 111/2*n^2+279/2*n-152 4334976614510747 r005 Im(z^2+c),c=13/94+21/44*I,n=37 4334976616733023 r009 Im(z^3+c),c=-9/106+23/45*I,n=18 4334976617528816 a007 Real Root Of 489*x^4+176*x^3+947*x^2-863*x-555 4334976626226450 m001 Ei(1)^BesselJ(1,1)/(Ei(1)^MadelungNaCl) 4334976630314174 r009 Im(z^3+c),c=-23/54+11/27*I,n=52 4334976633584312 s002 sum(A156933[n]/(exp(pi*n)+1),n=1..infinity) 4334976639501522 m001 (Porter-ZetaP(4))/(CareFree+FeigenbaumAlpha) 4334976645204162 a007 Real Root Of 149*x^4+138*x^3+189*x^2-993*x-460 4334976649641205 m001 exp(cosh(1))*FransenRobinson^2*sinh(1) 4334976669488056 a001 370248451/987*6557470319842^(16/17) 4334976669488056 a001 817138163596/987*1836311903^(16/17) 4334976683381871 a001 12238*28657^(43/54) 4334976686955388 r002 55th iterates of z^2 + 4334976688121753 a007 Real Root Of 213*x^4+863*x^3-94*x^2+919*x+834 4334976691089956 r005 Re(z^2+c),c=11/30+19/60*I,n=5 4334976692366366 m005 (1/2*5^(1/2)+2/11)/(1/2*5^(1/2)-9/11) 4334976695785522 r004 Im(z^2+c),c=-2/5-1/13*I,z(0)=-1,n=10 4334976702231065 r005 Im(z^2+c),c=-27/50+25/53*I,n=49 4334976710945694 m001 (Gompertz+Lehmer)/(ln(5)-ErdosBorwein) 4334976712971939 k002 Champernowne real with 56*n^2+138*n-151 4334976733021216 m005 (1/2*3^(1/2)+1/11)/(8/9*Pi-5) 4334976733450763 m001 1/ln(cosh(1))/Zeta(1,2)^2*sqrt(1+sqrt(3)) 4334976733836778 a007 Real Root Of 654*x^4-564*x^3+472*x^2-575*x-407 4334976755973444 p001 sum((-1)^n/(282*n+23)/(25^n),n=0..infinity) 4334976757133637 r005 Re(z^2+c),c=-41/78+7/30*I,n=3 4334976761970983 m001 (ln(2)+Ei(1,1))/(Cahen+MinimumGamma) 4334976776881586 m001 (GAMMA(17/24)+Porter)/(Sarnak-TwinPrimes) 4334976777484590 r005 Im(z^2+c),c=-29/24+7/39*I,n=18 4334976779289237 m006 (3/Pi-4/5)/(2/3*exp(2*Pi)+2/5) 4334976788192869 m001 (Catalan-ln(gamma))/(ArtinRank2+FeigenbaumD) 4334976802328928 r005 Re(z^2+c),c=-71/126+11/37*I,n=24 4334976806725812 r009 Re(z^3+c),c=-3/64+8/47*I,n=7 4334976813001945 k002 Champernowne real with 113/2*n^2+273/2*n-150 4334976814534492 a005 (1/sin(55/127*Pi))^893 4334976816262295 r005 Im(z^2+c),c=11/86+14/29*I,n=62 4334976851620737 a007 Real Root Of -809*x^4+947*x^3+14*x^2+911*x+498 4334976871202060 r005 Re(z^2+c),c=-35/66+26/59*I,n=49 4334976875053756 r005 Re(z^2+c),c=29/66+17/53*I,n=14 4334976877295424 r002 56th iterates of z^2 + 4334976883087675 m002 -Cosh[Pi]/36+5/ProductLog[Pi] 4334976887858611 m001 (Thue+ZetaQ(2))/(gamma+GAMMA(7/12)) 4334976897135477 a007 Real Root Of -319*x^4+358*x^3+799*x^2+929*x+293 4334976904188345 r009 Im(z^3+c),c=-31/94+31/54*I,n=5 4334976913031951 k002 Champernowne real with 57*n^2+135*n-149 4334976913542677 r005 Re(z^2+c),c=-53/90+1/60*I,n=13 4334976915683130 r005 Re(z^2+c),c=-45/98+17/37*I,n=19 4334976918455824 a003 sin(Pi*14/95)*sin(Pi*41/97) 4334976921239573 m001 Zeta(1,-1)/Paris*Sierpinski 4334976939453901 a001 73681302247/610*6557470319842^(14/17) 4334976949253030 r002 32th iterates of z^2 + 4334976968196036 r009 Re(z^3+c),c=-3/64+8/47*I,n=9 4334976970195999 r009 Re(z^3+c),c=-3/64+8/47*I,n=11 4334976970202293 r009 Re(z^3+c),c=-3/64+8/47*I,n=12 4334976970202418 r009 Re(z^3+c),c=-3/64+8/47*I,n=14 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=16 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=19 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=21 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=23 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=26 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=28 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=30 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=31 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=33 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=35 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=38 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=40 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=41 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=42 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=39 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=37 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=36 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=34 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=32 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=29 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=27 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=25 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=24 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=22 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=20 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=18 4334976970202428 r009 Re(z^3+c),c=-3/64+8/47*I,n=17 4334976970202429 r009 Re(z^3+c),c=-3/64+8/47*I,n=15 4334976970202500 r009 Re(z^3+c),c=-3/64+8/47*I,n=13 4334976970345953 r009 Re(z^3+c),c=-3/64+8/47*I,n=10 4334976991453522 r009 Re(z^3+c),c=-3/64+8/47*I,n=8 4334977012969561 s002 sum(A200605[n]/(n^2*exp(n)+1),n=1..infinity) 4334977013061957 k002 Champernowne real with 115/2*n^2+267/2*n-148 4334977014338551 m002 -3+Pi^5+Pi^2*Log[Pi]*Sinh[Pi] 4334977019520831 r005 Re(z^2+c),c=-16/25+5/37*I,n=25 4334977024814093 r002 29th iterates of z^2 + 4334977029382969 r005 Re(z^2+c),c=-3/5+29/112*I,n=46 4334977041184711 r005 Re(z^2+c),c=-5/8+35/114*I,n=63 4334977089743651 m001 FeigenbaumDelta/exp(CopelandErdos)*sinh(1) 4334977100083497 r009 Im(z^3+c),c=-47/118+17/40*I,n=19 4334977103282117 m005 (1/2*Pi+3/11)/(4*Zeta(3)-5/9) 4334977106701652 b008 1+5*LogGamma[5/11] 4334977107896262 r005 Im(z^2+c),c=5/34+26/55*I,n=34 4334977113091963 k002 Champernowne real with 58*n^2+132*n-147 4334977113307167 r005 Re(z^2+c),c=-31/70+14/25*I,n=52 4334977142209876 m001 (-Ei(1)+1/2)/(exp(1)+1/2) 4334977147249375 a003 1/2+cos(2/9*Pi)-2*cos(7/15*Pi)-cos(2/7*Pi) 4334977151577978 r002 20th iterates of z^2 + 4334977153540881 a007 Real Root Of 808*x^4-40*x^3+583*x^2+100*x-98 4334977157895706 r009 Im(z^3+c),c=-12/31+26/43*I,n=37 4334977167210592 a007 Real Root Of -295*x^4-298*x^3+187*x^2+846*x-37 4334977183491191 m001 1/GAMMA(7/12)*Riemann2ndZero/exp(gamma)^2 4334977185140595 r002 61th iterates of z^2 + 4334977194914232 m008 (3/4*Pi^3-1/6)/(1/4*Pi^2-3) 4334977202826338 m001 Trott2nd^GAMMA(11/12)/polylog(4,1/2) 4334977213121969 k002 Champernowne real with 117/2*n^2+261/2*n-146 4334977214464800 m005 (-29/44+1/4*5^(1/2))/(1/7*Catalan+1/10) 4334977222544204 a007 Real Root Of 819*x^4-60*x^3+431*x^2-950*x-42 4334977225238926 m001 (Chi(1)-cos(1))/(sin(1/5*Pi)+Paris) 4334977229898835 m001 (-cos(1/5*Pi)+Pi^(1/2))/(Catalan-exp(Pi)) 4334977231542999 m001 (-ln(5)+FeigenbaumB)/(LambertW(1)+GAMMA(3/4)) 4334977233701783 m001 (MasserGramain+ZetaQ(3))/(Cahen-Kolakoski) 4334977235312088 r005 Im(z^2+c),c=13/54+14/37*I,n=19 4334977253326648 a007 Real Root Of -462*x^4-848*x^3-598*x^2+340*x+207 4334977262188572 r005 Im(z^2+c),c=1/44+9/16*I,n=56 4334977266153523 m002 -5/(Log[Pi]*ProductLog[Pi])+Pi^4*Sech[Pi] 4334977289849220 m001 (Si(Pi)+ln(2))/(arctan(1/2)+Champernowne) 4334977302525892 a001 6/34111385*46368^(16/17) 4334977302905426 a001 6/75283811239*165580141^(16/17) 4334977304534130 m001 Robbin/exp(MertensB1)/sinh(1) 4334977306929222 m001 GAMMA(11/24)*Si(Pi)*ln(GAMMA(5/6)) 4334977313151975 k002 Champernowne real with 59*n^2+129*n-145 4334977318184011 r009 Im(z^3+c),c=-3/86+18/35*I,n=13 4334977329313597 s002 sum(A278457[n]/(n*exp(pi*n)+1),n=1..infinity) 4334977340782488 r002 19th iterates of z^2 + 4334977345666082 r009 Im(z^3+c),c=-11/27+13/24*I,n=17 4334977347426981 a007 Real Root Of 890*x^4+381*x^3-932*x^2-356*x+267 4334977347762744 a001 843/233*2178309^(17/35) 4334977351118968 r005 Im(z^2+c),c=23/98+9/23*I,n=38 4334977355089226 m001 (Zeta(1,2)+GaussAGM)/(Shi(1)+ln(2+3^(1/2))) 4334977365945578 r002 5th iterates of z^2 + 4334977378486810 l006 ln(99/7556) 4334977381056587 r005 Re(z^2+c),c=31/122+17/27*I,n=4 4334977395628807 r005 Im(z^2+c),c=-15/14+11/223*I,n=14 4334977413181981 k002 Champernowne real with 119/2*n^2+255/2*n-144 4334977419492792 p001 sum(1/(421*n+238)/(12^n),n=0..infinity) 4334977425614032 m001 1/GAMMA(19/24)*ln(Artin)/GAMMA(5/24)^2 4334977427298284 r009 Im(z^3+c),c=-37/126+23/49*I,n=5 4334977427338304 m001 (2^(1/2))^Lehmer-Kolakoski 4334977447211212 m001 (Psi(1,1/3)-ZetaP(3))/(-ZetaP(4)+ZetaQ(2)) 4334977450932059 a007 Real Root Of 580*x^4+246*x^3+474*x^2-991*x+300 4334977455362803 m001 GAMMA(1/6)/BesselJ(0,1)/exp(sin(Pi/12))^2 4334977469118805 r002 23th iterates of z^2 + 4334977471492672 m001 1/GAMMA(3/4)^2*ln(Backhouse)/gamma 4334977475632140 r005 Re(z^2+c),c=-13/21+3/43*I,n=42 4334977482624890 h001 (-2*exp(-3)-3)/(-9*exp(2)-5) 4334977489014284 a001 76/5*5^(28/43) 4334977490739289 r009 Re(z^3+c),c=-3/64+8/47*I,n=6 4334977496373526 m005 (1/2*Zeta(3)-10/11)/(2/3*Catalan+1/10) 4334977497846234 m001 1/GAMMA(5/6)/GAMMA(1/6)*exp(Zeta(9)) 4334977513211987 k002 Champernowne real with 60*n^2+126*n-143 4334977528119700 m005 (1/3*Zeta(3)-1/10)/(1/3*2^(1/2)+2/9) 4334977529187793 r002 56th iterates of z^2 + 4334977537608567 r005 Im(z^2+c),c=19/62+1/28*I,n=46 4334977549796346 r009 Im(z^3+c),c=-17/38+17/44*I,n=19 4334977571230368 m005 (1/3*Zeta(3)-1/8)/(55/9+1/9*5^(1/2)) 4334977572243638 r009 Im(z^3+c),c=-23/54+13/34*I,n=6 4334977572393321 m006 (1/2/Pi+2/5)/(1/3*Pi^2-2) 4334977579320048 m003 43/10+(Sqrt[5]*Csc[1/2+Sqrt[5]/2])/64 4334977597753096 r005 Re(z^2+c),c=-1/27+6/61*I,n=7 4334977602359768 r005 Im(z^2+c),c=31/114+17/46*I,n=32 4334977610327476 r009 Re(z^3+c),c=-16/31+7/38*I,n=57 4334977612583046 a007 Real Root Of 198*x^4+969*x^3+639*x^2+547*x-621 4334977613241993 k002 Champernowne real with 121/2*n^2+249/2*n-142 4334977615608324 r002 29th iterates of z^2 + 4334977620327965 r005 Im(z^2+c),c=5/66+6/11*I,n=13 4334977626038049 l006 ln(9119/9523) 4334977631877586 r005 Re(z^2+c),c=-17/78+32/51*I,n=42 4334977668355528 b008 E+E^Sqrt[3/13] 4334977669190613 m005 (1/2*Zeta(3)-1/11)/(4/11*5^(1/2)+4/11) 4334977673577035 a007 Real Root Of -216*x^4-859*x^3+507*x^2+794*x+216 4334977675421598 r005 Im(z^2+c),c=1/17+31/58*I,n=52 4334977685395449 r002 43th iterates of z^2 + 4334977706408892 r009 Im(z^3+c),c=-23/54+11/27*I,n=54 4334977713271999 k002 Champernowne real with 61*n^2+123*n-141 4334977733956899 r002 51th iterates of z^2 + 4334977740830346 a001 1346269/11*4^(52/57) 4334977747329574 m001 GAMMA(11/12)*(KhinchinLevy-StronglyCareFree) 4334977753614149 m001 ln(Riemann1stZero)^2/DuboisRaymond*Zeta(3) 4334977756880341 r005 Im(z^2+c),c=1/46+31/55*I,n=56 4334977760905888 a001 20365011074/521*322^(5/12) 4334977776252591 l006 ln(938/1447) 4334977793067910 r009 Re(z^3+c),c=-17/36+9/56*I,n=63 4334977799901915 r009 Im(z^3+c),c=-9/106+23/45*I,n=21 4334977804779096 r005 Re(z^2+c),c=-51/74+5/18*I,n=26 4334977813302005 k002 Champernowne real with 123/2*n^2+243/2*n-140 4334977853327168 a001 514229/11*15127^(56/59) 4334977856754020 r005 Im(z^2+c),c=-11/38+32/63*I,n=4 4334977869466231 r002 29th iterates of z^2 + 4334977870755070 a001 1/305*514229^(13/35) 4334977887403138 a008 Real Root of x^4-x^3-16*x^2-3*x+42 4334977890462875 r005 Re(z^2+c),c=-37/54+1/58*I,n=24 4334977892185782 r005 Im(z^2+c),c=-7/10+47/174*I,n=9 4334977903225650 r002 59th iterates of z^2 + 4334977910394225 r002 49th iterates of z^2 + 4334977913332011 k002 Champernowne real with 62*n^2+120*n-139 4334977915767622 r005 Re(z^2+c),c=-17/30+4/41*I,n=7 4334977920365642 r005 Re(z^2+c),c=-21/34+11/94*I,n=52 4334977929437102 r009 Re(z^3+c),c=-29/74+4/49*I,n=17 4334977935322794 a007 Real Root Of -479*x^4+434*x^3-745*x^2-432*x+5 4334977944291995 r005 Re(z^2+c),c=-45/64+8/53*I,n=57 4334977950185444 r002 11th iterates of z^2 + 4334977958407341 a007 Real Root Of 199*x^4+797*x^3-433*x^2-833*x-823 4334978011856555 r005 Re(z^2+c),c=-53/98+3/7*I,n=59 4334978013362017 k002 Champernowne real with 125/2*n^2+237/2*n-138 4334978016371133 m001 (ln(5)-ln(2^(1/2)+1))/(gamma(1)-ErdosBorwein) 4334978026671959 a007 Real Root Of 189*x^4+963*x^3+537*x^2-224*x+643 4334978027089140 m001 (Riemann3rdZero+Trott2nd)/(LambertW(1)-ln(Pi)) 4334978032867437 r005 Im(z^2+c),c=29/110+14/39*I,n=39 4334978057471359 a001 7778742049/1364*322^(3/4) 4334978079041198 r005 Re(z^2+c),c=-21/16+2/33*I,n=22 4334978082727399 a007 Real Root Of -187*x^4-957*x^3-839*x^2-805*x+354 4334978086572554 a007 Real Root Of -153*x^4-470*x^3+936*x^2+491*x+282 4334978094523616 r005 Re(z^2+c),c=-17/30+9/55*I,n=10 4334978100882360 m001 1/Zeta(9)/exp(MertensB1)/sqrt(Pi) 4334978103970698 r002 8th iterates of z^2 + 4334978107199611 m005 (1/2*Catalan+9/10)/(5/12*exp(1)+2) 4334978111762724 r005 Re(z^2+c),c=-35/58+17/64*I,n=60 4334978113392023 k002 Champernowne real with 63*n^2+117*n-137 4334978143036252 r009 Re(z^3+c),c=-43/118+1/23*I,n=22 4334978143947811 a007 Real Root Of -461*x^4+928*x^3-973*x^2+462*x+475 4334978155809154 r002 52th iterates of z^2 + 4334978160357358 m001 (BesselI(0,1)+GAMMA(3/4))^ErdosBorwein 4334978164294315 a001 103682/55*377^(11/12) 4334978181254533 r009 Re(z^3+c),c=-1/44+57/58*I,n=8 4334978181500333 m001 (2^(1/2)-cos(1/12*Pi))/(Artin+TwinPrimes) 4334978184944959 r002 30th iterates of z^2 + 4334978199906848 a007 Real Root Of -435*x^4-323*x^3+391*x^2+997*x-464 4334978203165715 a003 sin(Pi*3/76)/cos(Pi*31/76) 4334978206983566 a007 Real Root Of -223*x^4-720*x^3+985*x^2-483*x-507 4334978213422029 k002 Champernowne real with 127/2*n^2+231/2*n-136 4334978219761886 m001 (ln(gamma)-sin(1/12*Pi))/(FeigenbaumMu-Niven) 4334978224822252 m001 HardyLittlewoodC3^KomornikLoreti-Trott 4334978227818928 r009 Im(z^3+c),c=-11/114+22/43*I,n=9 4334978229046043 s001 sum(exp(-Pi/2)^n*A280563[n],n=1..infinity) 4334978236367462 m001 (GaussAGM-Riemann2ndZero)/(Zeta(1,2)+Bloch) 4334978237438650 r002 13th iterates of z^2 + 4334978254817071 m005 (-29/6+1/6*5^(1/2))/(1/4*Catalan+4/5) 4334978258860638 a001 1/505019158607*4^(13/23) 4334978260106542 r002 12th iterates of z^2 + 4334978269166605 m001 1/ln(GAMMA(17/24))^2/Cahen^2*GAMMA(5/6) 4334978274361124 a007 Real Root Of 770*x^4-875*x^3-893*x^2-803*x+560 4334978276236059 h005 exp(cos(Pi*1/54)+cos(Pi*10/29)) 4334978276779781 m005 (1/2*Catalan+3)/(8/11*exp(1)+6) 4334978281580281 p003 LerchPhi(1/1024,4,228/185) 4334978285613868 m001 Zeta(9)^2/exp(GAMMA(17/24))^2/sqrt(Pi) 4334978289485378 m001 (CareFree-GolombDickman)/(Tribonacci+ZetaQ(3)) 4334978291339636 a007 Real Root Of 49*x^4-270*x^3+857*x^2-771*x-519 4334978291633878 a007 Real Root Of -193*x^4-788*x^3+424*x^2+960*x+157 4334978295869290 m001 (FeigenbaumDelta-GaussAGM)/(Rabbit+ZetaP(3)) 4334978306676015 m001 (OneNinth-TwinPrimes*Weierstrass)/Weierstrass 4334978308943691 r009 Re(z^3+c),c=-33/70+4/25*I,n=58 4334978313452035 k002 Champernowne real with 64*n^2+114*n-135 4334978313554396 r005 Re(z^2+c),c=-23/38+7/24*I,n=32 4334978315035793 r005 Re(z^2+c),c=-15/26+34/89*I,n=24 4334978321653766 a001 7778742049/2207*322^(5/6) 4334978345603950 a007 Real Root Of 78*x^4-983*x^3-908*x^2-879*x+629 4334978353929351 a007 Real Root Of -153*x^4-551*x^3+446*x^2-275*x-429 4334978387503227 a007 Real Root Of 251*x^4+943*x^3-589*x^2+72*x-438 4334978389177154 r009 Im(z^3+c),c=-17/38+15/38*I,n=59 4334978392767998 m001 ln(BesselK(1,1))*RenyiParking^2/cos(Pi/5)^2 4334978402135426 a001 1/76*(1/2*5^(1/2)+1/2)^19*521^(15/16) 4334978413482041 k002 Champernowne real with 129/2*n^2+225/2*n-134 4334978413670417 r005 Re(z^2+c),c=-1/102+19/30*I,n=9 4334978415987118 r009 Re(z^3+c),c=-29/102+41/52*I,n=3 4334978427105307 r005 Im(z^2+c),c=13/106+25/61*I,n=6 4334978438904086 r005 Im(z^2+c),c=17/58+21/64*I,n=47 4334978453639817 r002 5th iterates of z^2 + 4334978476526316 a007 Real Root Of 178*x^4+840*x^3+212*x^2-424*x-252 4334978478554546 m001 (2^(1/3))+RenyiParking*exp(sqrt(2)) 4334978481566053 a001 15127/1597*832040^(37/47) 4334978481938294 m005 (1/2*Catalan-2/5)/(83/154+5/14*5^(1/2)) 4334978488364481 r005 Im(z^2+c),c=29/98+18/55*I,n=63 4334978489081047 a001 29/2504730781961*89^(5/17) 4334978493594367 m005 (1/2*2^(1/2)+3)/(1/10*exp(1)+7/12) 4334978496977782 a007 Real Root Of -276*x^4+18*x^3-749*x^2+413*x+331 4334978513512047 k002 Champernowne real with 65*n^2+111*n-133 4334978526098096 r005 Re(z^2+c),c=7/25+1/42*I,n=44 4334978530518524 r005 Im(z^2+c),c=11/114+16/31*I,n=22 4334978538291302 m001 (gamma(3)+Khinchin)/(Landau+ZetaP(4)) 4334978561862150 r005 Re(z^2+c),c=-37/60+3/23*I,n=48 4334978561889363 a007 Real Root Of 500*x^4-240*x^3-489*x^2-516*x-169 4334978573443396 r009 Im(z^3+c),c=-10/19+10/33*I,n=60 4334978574530430 r009 Re(z^3+c),c=-10/29+25/33*I,n=12 4334978578459703 m001 LaplaceLimit/Bloch/exp(sin(Pi/5))^2 4334978596756595 r009 Im(z^3+c),c=-25/62+13/31*I,n=23 4334978601642301 r005 Im(z^2+c),c=31/126+1/53*I,n=4 4334978608469053 p003 LerchPhi(1/6,5,449/150) 4334978613542053 k002 Champernowne real with 131/2*n^2+219/2*n-132 4334978625710436 r002 33th iterates of z^2 + 4334978625912595 a001 1/46347*21^(11/48) 4334978631294946 r002 17th iterates of z^2 + 4334978637494383 a007 Real Root Of 324*x^4-447*x^3+117*x^2+258*x+42 4334978646534701 r002 13th iterates of z^2 + 4334978649398779 a007 Real Root Of -3*x^4+926*x^3-211*x^2+454*x+312 4334978652102885 r009 Im(z^3+c),c=-13/62+28/57*I,n=15 4334978689009024 r009 Re(z^3+c),c=-61/118+9/50*I,n=62 4334978707128784 a007 Real Root Of 980*x^4-246*x^3+348*x^2-948*x-531 4334978713572059 k002 Champernowne real with 66*n^2+108*n-131 4334978719713849 m002 6+3*Csch[Pi]-Sinh[Pi]/6 4334978722994831 r009 Im(z^3+c),c=-5/11+16/41*I,n=62 4334978724696112 m001 GAMMA(13/24)/sin(1/12*Pi)/MinimumGamma 4334978728857891 m001 (Ei(1,1)+ArtinRank2)/(HardyLittlewoodC5+Niven) 4334978737562253 a007 Real Root Of 676*x^4-469*x^3+264*x^2-469*x-315 4334978746223659 a001 2584/123*1364^(13/31) 4334978755732285 a001 39603/4181*832040^(37/47) 4334978757965667 l006 ln(9277/9688) 4334978771313223 r009 Im(z^3+c),c=-3/58+19/37*I,n=10 4334978794254519 a007 Real Root Of -425*x^4+433*x^3-86*x^2+548*x+304 4334978800132736 p004 log(31237/20249) 4334978803940501 r009 Im(z^3+c),c=-15/28+9/28*I,n=61 4334978810640619 r005 Re(z^2+c),c=-47/74+7/30*I,n=31 4334978813602065 k002 Champernowne real with 133/2*n^2+213/2*n-130 4334978839904433 r005 Re(z^2+c),c=-18/29+3/61*I,n=64 4334978849184898 r005 Re(z^2+c),c=-31/50+2/45*I,n=34 4334978849866024 l006 ln(6437/9930) 4334978851611840 m001 1/exp(Zeta(3))*BesselK(0,1)/cos(1)^2 4334978894747964 r002 27th iterates of z^2 + 4334978906943802 h001 (7/11*exp(2)+6/7)/(1/12*exp(2)+2/3) 4334978911610345 a008 Real Root of (-3-5*x+6*x^2+3*x^3-x^4+x^5) 4334978913632071 k002 Champernowne real with 67*n^2+105*n-129 4334978925176353 a001 6119/646*832040^(37/47) 4334978929518946 a001 192900153618/1597*6557470319842^(14/17) 4334978940372619 r005 Im(z^2+c),c=7/24+7/27*I,n=8 4334978946285572 r005 Re(z^2+c),c=-41/74+1/29*I,n=7 4334978973491699 r002 43th iterates of z^2 + 4334978987179705 m001 (Psi(2,1/3)+Si(Pi))/(BesselJ(0,1)+arctan(1/2)) 4334978996850592 a007 Real Root Of -694*x^4+626*x^3-163*x^2+667*x-285 4334979010462909 r002 46th iterates of z^2 + 4334979013662077 k002 Champernowne real with 135/2*n^2+207/2*n-128 4334979015178681 a005 (1/sin(77/197*Pi))^946 4334979019103331 a007 Real Root Of 116*x^4+349*x^3-818*x^2-714*x-257 4334979028703261 r005 Im(z^2+c),c=11/70+20/43*I,n=31 4334979032999200 l006 ln(5499/8483) 4334979036752023 m001 exp(exp(1))^2/FeigenbaumDelta*log(1+sqrt(2)) 4334979037758950 r005 Re(z^2+c),c=11/78+30/43*I,n=4 4334979050078247 m001 Lehmer/(Paris^Thue) 4334979067662597 a007 Real Root Of 863*x^4-847*x^3+822*x^2+279*x-133 4334979071815462 m005 (5/6*Catalan+2/5)/(3*gamma-2) 4334979081791253 a001 10182505537/2889*322^(5/6) 4334979087165216 a007 Real Root Of 204*x^4+679*x^3-963*x^2-273*x+186 4334979091279576 m001 (Tribonacci+ZetaQ(3))/(ln(2)+FeigenbaumMu) 4334979102271927 r002 8th iterates of z^2 + 4334979104853380 r005 Im(z^2+c),c=-5/24+31/50*I,n=61 4334979107151300 r005 Im(z^2+c),c=-3/118+31/53*I,n=23 4334979112281364 r002 28th iterates of z^2 + 4334979112348178 a001 39603/377*13^(21/38) 4334979113692083 k002 Champernowne real with 68*n^2+102*n-127 4334979139319581 r009 Re(z^3+c),c=-1/44+57/58*I,n=14 4334979139328710 r009 Re(z^3+c),c=-1/44+57/58*I,n=16 4334979139329084 r009 Re(z^3+c),c=-1/44+57/58*I,n=22 4334979139329084 r009 Re(z^3+c),c=-1/44+57/58*I,n=24 4334979139329084 r009 Re(z^3+c),c=-1/44+57/58*I,n=28 4334979139329084 r009 Re(z^3+c),c=-1/44+57/58*I,n=30 4334979139329084 r009 Re(z^3+c),c=-1/44+57/58*I,n=36 4334979139329084 r009 Re(z^3+c),c=-1/44+57/58*I,n=38 4334979139329084 r009 Re(z^3+c),c=-1/44+57/58*I,n=44 4334979139329084 r009 Re(z^3+c),c=-1/44+57/58*I,n=50 4334979139329084 r009 Re(z^3+c),c=-1/44+57/58*I,n=52 4334979139329084 r009 Re(z^3+c),c=-1/44+57/58*I,n=54 4334979139329084 r009 Re(z^3+c),c=-1/44+57/58*I,n=58 4334979139329084 r009 Re(z^3+c),c=-1/44+57/58*I,n=48 4334979139329084 r009 Re(z^3+c),c=-1/44+57/58*I,n=46 4334979139329084 r009 Re(z^3+c),c=-1/44+57/58*I,n=42 4334979139329084 r009 Re(z^3+c),c=-1/44+57/58*I,n=40 4334979139329084 r009 Re(z^3+c),c=-1/44+57/58*I,n=34 4334979139329084 r009 Re(z^3+c),c=-1/44+57/58*I,n=32 4334979139329084 r009 Re(z^3+c),c=-1/44+57/58*I,n=26 4334979139329084 r009 Re(z^3+c),c=-1/44+57/58*I,n=20 4334979139329094 r009 Re(z^3+c),c=-1/44+57/58*I,n=18 4334979139972506 r009 Re(z^3+c),c=-1/44+57/58*I,n=12 4334979144198358 r009 Re(z^3+c),c=-1/44+57/58*I,n=10 4334979154545568 r005 Im(z^2+c),c=23/94+13/36*I,n=8 4334979168470419 a007 Real Root Of 637*x^4-955*x^3-151*x^2+302*x+59 4334979182386346 r002 55th iterates of z^2 + 4334979192693840 a001 53316291173/15127*322^(5/6) 4334979200078123 r005 Re(z^2+c),c=-11/18+13/68*I,n=63 4334979203630929 m001 sin(1)*Psi(2,1/3)^Zeta(1,-1) 4334979204718373 r005 Im(z^2+c),c=15/94+14/31*I,n=29 4334979204989167 r002 53th iterates of z^2 + 4334979208874310 a001 139583862445/39603*322^(5/6) 4334979211235009 a001 182717648081/51841*322^(5/6) 4334979211579430 a001 956722026041/271443*322^(5/6) 4334979211629680 a001 2504730781961/710647*322^(5/6) 4334979211637012 a001 3278735159921/930249*322^(5/6) 4334979211638742 a001 10610209857723/3010349*322^(5/6) 4334979211641543 a001 4052739537881/1149851*322^(5/6) 4334979211660737 a001 387002188980/109801*322^(5/6) 4334979211792294 a001 591286729879/167761*322^(5/6) 4334979212694001 a001 225851433717/64079*322^(5/6) 4334979213722089 k002 Champernowne real with 137/2*n^2+201/2*n-126 4334979218874390 a001 21566892818/6119*322^(5/6) 4334979219432950 r005 Re(z^2+c),c=-21/38+20/51*I,n=53 4334979219865676 a001 505019158607/4181*6557470319842^(14/17) 4334979230079367 r009 Im(z^3+c),c=-14/29+17/46*I,n=47 4334979249998215 r005 Re(z^2+c),c=-16/27+12/43*I,n=44 4334979254161352 m005 (1/3*5^(1/2)+1/12)/(7/11*exp(1)+2/11) 4334979259335050 m005 (1/3*Zeta(3)+3/4)/(5/9*Pi+10/11) 4334979261235411 a001 32951280099/9349*322^(5/6) 4334979262226697 a001 1322157322203/10946*6557470319842^(14/17) 4334979263095880 m001 Psi(2,1/3)*(MertensB3-PisotVijayaraghavan) 4334979265208048 m005 (1/3*gamma-1/2)/(8/11*5^(1/2)-11/12) 4334979268407086 a001 3461452808002/28657*6557470319842^(14/17) 4334979269308793 a001 9062201101803/75025*6557470319842^(14/17) 4334979269440350 a001 23725150497407/196418*6557470319842^(14/17) 4334979269521657 a001 14662949395604/121393*6557470319842^(14/17) 4334979269866078 a001 5600748293801/46368*6557470319842^(14/17) 4334979272226777 a001 2139295485799/17711*6557470319842^(14/17) 4334979283070581 r005 Re(z^2+c),c=-19/34+30/97*I,n=24 4334979285341875 r009 Re(z^3+c),c=-5/11+7/52*I,n=12 4334979288407247 a001 817138163596/6765*6557470319842^(14/17) 4334979291457483 l006 ln(4561/7036) 4334979297576084 r005 Re(z^2+c),c=-61/106+15/43*I,n=50 4334979300031136 r005 Re(z^2+c),c=-7/10+12/239*I,n=20 4334979302258425 r005 Re(z^2+c),c=-5/38+16/23*I,n=42 4334979311263607 r002 19th iterates of z^2 + 4334979313752095 k002 Champernowne real with 69*n^2+99*n-125 4334979320169913 m001 (Pi*csc(5/12*Pi)/GAMMA(7/12))^GAMMA(3/4)-Otter 4334979325415139 r002 26th iterates of z^2 + 4334979330452706 m001 (-Trott+ZetaQ(4))/(Chi(1)+GlaisherKinkelin) 4334979338760775 a007 Real Root Of 22*x^4-222*x^3-287*x^2-763*x+402 4334979342438265 b008 5*Sqrt[Pi]*Tan[Sqrt[Pi]] 4334979351643274 r002 32th iterates of z^2 + 4334979354039637 m001 1/exp(Zeta(1,2))^2/ArtinRank2*arctan(1/2) 4334979376929779 m001 (GAMMA(13/24)+Gompertz)/(Landau-Trott2nd) 4334979392758087 p003 LerchPhi(1/256,2,49/102) 4334979399309843 a001 312119004989/2584*6557470319842^(14/17) 4334979403148988 m001 ln(Riemann3rdZero)/CareFree^2*Sierpinski^2 4334979403434266 h001 (1/8*exp(2)+1/7)/(2/9*exp(2)+9/11) 4334979405253434 m001 (-Artin+5)/(LambertW(1)+1/2) 4334979413782101 k002 Champernowne real with 139/2*n^2+195/2*n-124 4334979414896001 r009 Im(z^3+c),c=-17/40+19/53*I,n=5 4334979416818792 r009 Re(z^3+c),c=-6/13+37/59*I,n=3 4334979440680659 r005 Im(z^2+c),c=17/114+28/59*I,n=27 4334979441722340 r001 16i'th iterates of 2*x^2-1 of 4334979450886136 s002 sum(A063692[n]/(n*exp(pi*n)+1),n=1..infinity) 4334979455498364 r009 Im(z^3+c),c=-17/60+22/45*I,n=5 4334979474593322 r002 58th iterates of z^2 + 4334979480867863 a007 Real Root Of -241*x^4+562*x^3+166*x^2+821*x+379 4334979504742771 p004 log(30839/19991) 4334979506763294 r009 Im(z^3+c),c=-17/38+13/33*I,n=35 4334979510125412 m004 1+(Cosh[Sqrt[5]*Pi]*Sec[Sqrt[5]*Pi])/18 4334979513812107 k002 Champernowne real with 70*n^2+96*n-123 4334979526531142 r009 Im(z^3+c),c=-23/54+11/27*I,n=58 4334979532861772 r005 Im(z^2+c),c=-59/52+16/55*I,n=15 4334979535318110 r002 6th iterates of z^2 + 4334979536946702 r005 Im(z^2+c),c=19/106+13/29*I,n=27 4334979551582189 a001 12586269025/3571*322^(5/6) 4334979556651229 r005 Im(z^2+c),c=19/118+27/59*I,n=39 4334979560345229 m005 (1/2*2^(1/2)+4)/(3/11+4/11*5^(1/2)) 4334979567505071 m005 (1/2*Pi+2/11)/(5/11*gamma-2/3) 4334979570360350 r005 Re(z^2+c),c=-53/90+17/54*I,n=60 4334979582779766 r009 Im(z^3+c),c=-21/62+29/45*I,n=3 4334979588884527 m008 (5*Pi+5)/(1/2*Pi^6-3) 4334979589009304 m001 (1-exp(Pi))/(MadelungNaCl+ReciprocalFibonacci) 4334979603401471 m005 (1/2*Zeta(3)-1)/(2/9*Pi+2/9) 4334979613842113 k002 Champernowne real with 141/2*n^2+189/2*n-122 4334979628646445 a007 Real Root Of -938*x^4+883*x^3-220*x^2-197*x+61 4334979630888780 r005 Re(z^2+c),c=-21/32+1/27*I,n=20 4334979631895480 r005 Re(z^2+c),c=-13/18+6/79*I,n=51 4334979642953100 a001 9349/987*832040^(37/47) 4334979644266933 m001 (ln(2)-OneNinth)/(Totient+Trott) 4334979646158205 r005 Re(z^2+c),c=-18/29+3/14*I,n=33 4334979655501086 r009 Im(z^3+c),c=-23/106+11/20*I,n=5 4334979671194769 m001 (gamma(1)-BesselI(1,2))/(Otter+QuadraticClass) 4334979683746209 l006 ln(3623/5589) 4334979713872119 k002 Champernowne real with 71*n^2+93*n-121 4334979715324443 r009 Im(z^3+c),c=-63/118+7/24*I,n=64 4334979738562644 a007 Real Root Of 867*x^4+719*x^3+702*x^2-7*x-107 4334979752421022 a003 sin(Pi*16/111)*sin(Pi*37/81) 4334979794612511 a001 10946/123*3571^(6/31) 4334979807199293 m005 (1/2*exp(1)+5/8)/(7/11*5^(1/2)-6) 4334979813902125 k002 Champernowne real with 143/2*n^2+183/2*n-120 4334979817420323 a007 Real Root Of 900*x^4-361*x^3+421*x^2+33*x-126 4334979823028205 a001 55*9349^(7/31) 4334979830730559 m001 Mills*(FeigenbaumKappa+ReciprocalLucas) 4334979851170900 r005 Im(z^2+c),c=1/3+6/23*I,n=42 4334979851829087 a001 1/416020*1346269^(17/32) 4334979851982396 l006 ln(9435/9853) 4334979855449947 a001 28657/123*15127^(2/31) 4334979856460986 r005 Im(z^2+c),c=-9/14+33/76*I,n=50 4334979859857127 a007 Real Root Of 725*x^4-994*x^3-355*x^2-708*x+429 4334979860442287 m001 Trott/ln(Riemann3rdZero)/log(1+sqrt(2))^2 4334979866712713 m001 Otter+MadelungNaCl^Stephens 4334979878574580 r005 Im(z^2+c),c=-15/26+3/46*I,n=17 4334979879530561 r002 43th iterates of z^2 + 4334979885500746 h002 exp(11^(1/3)+10^(2/3)*11^(1/4)) 4334979889383426 a007 Real Root Of -243*x^4-899*x^3+439*x^2-938*x+262 4334979898297134 r002 9th iterates of z^2 + 4334979913617931 r005 Im(z^2+c),c=-11/18+9/104*I,n=24 4334979913932131 k002 Champernowne real with 72*n^2+90*n-119 4334979939561208 m002 Pi^3/5-(E^Pi*Csch[Pi])/ProductLog[Pi] 4334979952414718 m001 FeigenbaumD^BesselJ(1,1)*FransenRobinson 4334979966247804 r002 15i'th iterates of 2*x/(1-x^2) of 4334979967390599 l006 ln(6308/9731) 4334979967786471 r005 Im(z^2+c),c=23/122+23/53*I,n=29 4334979969790208 p003 LerchPhi(1/16,1,519/215) 4334979971953865 r009 Im(z^3+c),c=-61/118+17/52*I,n=31 4334979977035571 m004 -Log[Sqrt[5]*Pi]/5+(150*Tan[Sqrt[5]*Pi])/Pi 4334979980825110 r005 Re(z^2+c),c=-6/19+31/52*I,n=4 4334980001550889 m001 (Pi+gamma(3))/(ErdosBorwein-QuadraticClass) 4334980013962137 k002 Champernowne real with 145/2*n^2+177/2*n-118 4334980033396958 r002 11th iterates of z^2 + 4334980036837947 a007 Real Root Of -14*x^4+285*x^3+367*x^2+469*x-295 4334980042422311 r005 Im(z^2+c),c=4/19+12/29*I,n=50 4334980059995571 a001 18/121393*987^(14/17) 4334980072233304 h001 (2/7*exp(2)+1/6)/(5/8*exp(2)+7/11) 4334980074254840 m001 1/CareFree^2*DuboisRaymond^2/exp(Sierpinski)^2 4334980078073792 m001 OneNinth^Chi(1)*Ei(1,1)^Chi(1) 4334980094997702 r005 Re(z^2+c),c=-69/110+11/41*I,n=4 4334980096131968 r002 26th iterates of z^2 + 4334980096252028 h001 (1/10*exp(1)+7/8)/(2/3*exp(1)+5/6) 4334980110440116 m005 (1/2*Catalan-3/7)/(1/12*Pi+5/12) 4334980113992143 k002 Champernowne real with 73*n^2+87*n-117 4334980115861784 g005 GAMMA(1/9)*GAMMA(1/7)/GAMMA(6/7)/GAMMA(4/5) 4334980119233835 r002 47th iterates of z^2 + 4334980119233835 r002 47th iterates of z^2 + 4334980123736737 r005 Im(z^2+c),c=-53/36+13/35*I,n=3 4334980144945970 r002 23th iterates of z^2 + 4334980159447698 a001 119218851371/987*6557470319842^(14/17) 4334980161543401 r005 Im(z^2+c),c=27/86+17/60*I,n=29 4334980164054772 m001 1/GAMMA(19/24)/BesselJ(0,1)^2*ln(sin(1))^2 4334980170117577 m001 (5^(1/2)-Artin)/(Otter+Totient) 4334980176846331 a001 55/3571*39603^(30/31) 4334980205754189 a007 Real Root Of -164*x^4-493*x^3+797*x^2-539*x+440 4334980207158405 m001 1/Paris*Champernowne*exp(sqrt(Pi))^2 4334980214022149 k002 Champernowne real with 147/2*n^2+171/2*n-116 4334980224956725 m005 (2*gamma+2/5)/(2^(1/2)-5) 4334980225773947 a003 cos(Pi*10/101)*cos(Pi*36/103) 4334980235911354 m001 (GolombDickman+Kolakoski)/(5^(1/2)+Zeta(5)) 4334980236377250 m001 (2^(1/2)-GlaisherKinkelin)^ThueMorse 4334980241980642 r002 28th iterates of z^2 + 4334980243322549 r009 Im(z^3+c),c=-25/126+15/28*I,n=5 4334980243878151 a007 Real Root Of 266*x^4+213*x^3+37*x^2-233*x-100 4334980253907955 r005 Im(z^2+c),c=1/78+13/23*I,n=55 4334980256061198 m001 1/Si(Pi)^2/ln(Artin)/MertensB1^2 4334980257728393 a003 sin(Pi*6/55)/sin(Pi*24/85) 4334980270905098 m001 (-arctan(1/2)+FeigenbaumKappa)/(1+Shi(1)) 4334980271453541 r005 Im(z^2+c),c=23/86+4/15*I,n=4 4334980277441052 h001 (2/5*exp(2)+1/10)/(7/8*exp(2)+7/12) 4334980295174601 a007 Real Root Of 202*x^4+659*x^3-783*x^2+481*x-851 4334980296430864 m001 (-AlladiGrinstead+Khinchin)/(exp(1)+ln(5)) 4334980309744570 m001 (polylog(4,1/2)+Thue)/(Shi(1)-exp(1/Pi)) 4334980313978866 r005 Im(z^2+c),c=-23/29+25/61*I,n=4 4334980314052155 k002 Champernowne real with 74*n^2+84*n-115 4334980318104813 m005 (1/2*5^(1/2)-8/9)/(1/3*2^(1/2)-1) 4334980318861219 a001 123/1346269*2584^(28/57) 4334980347675580 a007 Real Root Of -76*x^4-233*x^3+519*x^2+562*x+541 4334980348755960 r002 24th iterates of z^2 + 4334980349951299 m001 (-Cahen+GlaisherKinkelin)/(BesselK(0,1)-Ei(1)) 4334980350125644 l006 ln(2685/4142) 4334980352192742 r005 Re(z^2+c),c=-13/21+1/54*I,n=33 4334980366455721 r005 Re(z^2+c),c=-19/32+11/38*I,n=51 4334980396665273 a007 Real Root Of 554*x^4-662*x^3+257*x^2+131*x-65 4334980412628455 r005 Re(z^2+c),c=-45/74+5/27*I,n=40 4334980414082161 k002 Champernowne real with 149/2*n^2+165/2*n-114 4334980417635778 a001 (2+2^(1/2))^(738/37) 4334980429413760 a001 23725150497407/610*6557470319842^(12/17) 4334980433826552 a001 1/843*(1/2*5^(1/2)+1/2)^31*3^(3/17) 4334980443221286 m001 FellerTornier*(Champernowne-Porter) 4334980443678032 m005 (-7/12+1/6*5^(1/2))/(6*Catalan-7/11) 4334980454069011 p004 log(35831/23227) 4334980454703539 m005 (4/5*exp(1)+1/3)/(1/4*Pi+5) 4334980467588181 r002 32th iterates of z^2 + 4334980476514590 m001 Khinchin^(ZetaQ(2)/ZetaQ(3)) 4334980477524803 a007 Real Root Of -40*x^4+700*x^3-786*x^2+570*x-155 4334980477864584 r005 Im(z^2+c),c=8/27+9/29*I,n=28 4334980482847489 r002 31th iterates of z^2 + 4334980485852071 m001 (GAMMA(3/4)-Ei(1,1))/(MinimumGamma+Thue) 4334980497353442 a007 Real Root Of 707*x^4-559*x^3+537*x^2-698*x-474 4334980500502871 r005 Im(z^2+c),c=1/94+35/59*I,n=62 4334980500630443 m001 cos(1)*(Artin-Salem) 4334980502230661 m001 (1+Kac)/(Kolakoski+Otter) 4334980506917726 a001 1/9348*(1/2*5^(1/2)+1/2)^13*123^(19/21) 4334980508486339 r005 Im(z^2+c),c=-5/78+31/56*I,n=17 4334980514112167 k002 Champernowne real with 75*n^2+81*n-113 4334980514303266 m006 (3/5*ln(Pi)-2/3)/(2*exp(Pi)+1/4) 4334980529572119 r009 Re(z^3+c),c=-55/118+9/58*I,n=64 4334980546269693 r005 Im(z^2+c),c=-23/110+31/50*I,n=35 4334980565120704 r002 56th iterates of z^2 + 4334980565120704 r002 56th iterates of z^2 + 4334980568042856 r002 10th iterates of z^2 + 4334980581575705 m001 (1-GAMMA(19/24))/(-FeigenbaumDelta+Robbin) 4334980589358101 a007 Real Root Of -765*x^4+997*x^3-199*x^2+423*x+329 4334980595405297 a007 Real Root Of -602*x^4+687*x^3-713*x^2+898*x-290 4334980607521100 a001 15127/144*89^(6/19) 4334980608353797 m001 (exp(1)+Chi(1))/(-exp(1/exp(1))+GolombDickman) 4334980614142173 k002 Champernowne real with 151/2*n^2+159/2*n-112 4334980626753424 m001 (Robbin-ZetaP(4))/(BesselK(1,1)+RenyiParking) 4334980626982326 a007 Real Root Of 868*x^4-907*x^3+307*x^2-214*x-255 4334980637042708 r005 Re(z^2+c),c=-7/12+25/87*I,n=33 4334980641329912 r002 36th iterates of z^2 + 4334980641999186 m001 (gamma(2)+Tribonacci)/(2^(1/3)-Chi(1)) 4334980655643601 r002 48th iterates of z^2 + 4334980673627907 a007 Real Root Of -184*x^4-738*x^3+126*x^2-431*x+622 4334980679254471 m001 2^(1/2)/(ln(5)+(1+3^(1/2))^(1/2)) 4334980679254471 m001 sqrt(2)/(ln(5)+sqrt(1+sqrt(3))) 4334980699044364 r005 Im(z^2+c),c=-11/23+2/27*I,n=28 4334980703105842 a003 sin(Pi*2/13)-sin(Pi*38/107) 4334980714172179 k002 Champernowne real with 76*n^2+78*n-111 4334980717461302 r005 Re(z^2+c),c=-3/52+44/63*I,n=19 4334980717727656 m008 (3/4*Pi^5-1/5)/(1/3*Pi^2+2) 4334980736136185 r005 Im(z^2+c),c=-11/26+22/39*I,n=39 4334980755057647 a007 Real Root Of -525*x^4+624*x^3-8*x^2+953*x+484 4334980761156520 r002 20th iterates of z^2 + 4334980781824591 r009 Im(z^3+c),c=-9/122+20/39*I,n=9 4334980792865578 a001 9/43133785636*12586269025^(14/17) 4334980792865636 a001 6/34111385*3524578^(14/17) 4334980814202185 k002 Champernowne real with 153/2*n^2+153/2*n-110 4334980861745851 a001 1/322*76^(14/23) 4334980862956914 r002 64th iterates of z^2 + 4334980867823256 r002 26th iterates of z^2 + 4334980874415557 m005 (1/3*Catalan-2/11)/(2/9*3^(1/2)-1/10) 4334980874609672 r002 35th iterates of z^2 + 4334980894866742 l006 ln(4432/6837) 4334980898864963 r005 Im(z^2+c),c=-5/44+25/41*I,n=44 4334980899337134 a003 cos(Pi*11/100)-sin(Pi*47/106) 4334980909961452 l006 ln(9593/10018) 4334980914232191 k002 Champernowne real with 77*n^2+75*n-109 4334980922988219 m001 1/GAMMA(11/12)*ln(Khintchine)^2/Zeta(1/2)^2 4334980929978692 a007 Real Root Of -203*x^4-947*x^3-216*x^2+319*x-16 4334980943755831 r005 Im(z^2+c),c=-9/16+1/128*I,n=51 4334980954192641 m001 (Magata-Mills)/(ln(2+3^(1/2))-FeigenbaumB) 4334980966077022 r002 55th iterates of z^2 + 4334980971907079 r009 Im(z^3+c),c=-3/58+19/37*I,n=16 4334980985220083 r002 21th iterates of z^2 + 4334981005974226 r005 Im(z^2+c),c=-73/56+1/43*I,n=12 4334981009714879 r002 21th iterates of z^2 + 4334981014262197 k002 Champernowne real with 155/2*n^2+147/2*n-108 4334981017049056 r005 Re(z^2+c),c=-19/26+44/109*I,n=7 4334981023501767 m001 1/Champernowne^2*ln(ErdosBorwein)/GAMMA(1/3)^2 4334981037269781 a001 2/123*322^(9/53) 4334981042600309 p003 LerchPhi(1/8,1,246/97) 4334981043311667 r005 Im(z^2+c),c=-61/106+5/48*I,n=14 4334981056674564 m001 (1+Catalan)/(gamma(3)+TreeGrowth2nd) 4334981059339689 m001 ln(TreeGrowth2nd)^2*MadelungNaCl/exp(1) 4334981061924295 m001 (LandauRamanujan2nd+Otter)/(3^(1/2)-Catalan) 4334981071836218 a007 Real Root Of 220*x^4+887*x^3-306*x^2+134*x+898 4334981080616964 r002 25th iterates of z^2 + 4334981086074048 r005 Im(z^2+c),c=13/44+9/28*I,n=33 4334981088571109 a007 Real Root Of 287*x^4-540*x^3+947*x^2-327*x-16 4334981091025516 r009 Re(z^3+c),c=-53/102+9/43*I,n=61 4334981101658584 m002 -Pi^4+4*Pi^8*Log[Pi] 4334981114292203 k002 Champernowne real with 78*n^2+72*n-107 4334981115836965 r005 Im(z^2+c),c=1/16+27/50*I,n=41 4334981118723774 r005 Re(z^2+c),c=-41/66+2/59*I,n=53 4334981122035249 r009 Im(z^3+c),c=-13/30+25/62*I,n=42 4334981131576531 l006 ln(6179/9532) 4334981131618004 r005 Im(z^2+c),c=-61/98+10/23*I,n=36 4334981133802295 m008 (4*Pi^6-3/5)/(Pi^2-1) 4334981135646849 r005 Im(z^2+c),c=1/26+31/55*I,n=26 4334981141104986 r005 Re(z^2+c),c=-51/94+19/61*I,n=10 4334981151668747 r005 Re(z^2+c),c=-29/50+13/44*I,n=35 4334981168664497 s002 sum(A181404[n]/(n^3*10^n-1),n=1..infinity) 4334981177729701 m001 (ln(2+3^(1/2))-MinimumGamma)/(Ei(1)+3^(1/3)) 4334981183956787 m001 (-GAMMA(23/24)+Bloch)/(Chi(1)+BesselJ(1,1)) 4334981187685991 g001 Psi(1/8,27/97) 4334981213819022 r009 Im(z^3+c),c=-15/28+1/3*I,n=49 4334981214322209 k002 Champernowne real with 157/2*n^2+141/2*n-106 4334981221624030 r005 Re(z^2+c),c=-15/26+37/117*I,n=40 4334981222363193 a007 Real Root Of 6*x^4-260*x^3-117*x^2-676*x+336 4334981236334463 r009 Re(z^3+c),c=-23/56+26/41*I,n=3 4334981245083950 a001 12586269025/521*322^(1/2) 4334981260676129 m005 (1/2*2^(1/2)+1/9)/(6/7*Zeta(3)+6/7) 4334981270983827 l006 ln(34/2595) 4334981276832432 a001 7/317811*75025^(25/37) 4334981285960068 r005 Im(z^2+c),c=13/46+21/61*I,n=18 4334981286650331 r002 11th iterates of z^2 + 4334981289959089 m005 (1/2*gamma-3/4)/(5/6*gamma+7/12) 4334981313184848 h001 (1/11*exp(2)+2/9)/(2/3*exp(1)+1/4) 4334981314352215 k002 Champernowne real with 79*n^2+69*n-105 4334981325898161 a008 Real Root of x^4-20*x^2-20*x-64 4334981333431743 r009 Im(z^3+c),c=-35/74+12/31*I,n=13 4334981357531954 p003 LerchPhi(1/10,1,589/237) 4334981369297258 r005 Re(z^2+c),c=-9/14+3/244*I,n=24 4334981407184304 a007 Real Root Of -552*x^4-906*x^3-577*x^2+498*x+270 4334981410284593 a007 Real Root Of 10*x^4-615*x^3+561*x^2-547*x-393 4334981414382221 k002 Champernowne real with 159/2*n^2+135/2*n-104 4334981414515346 h001 (-12*exp(4)-2)/(-7*exp(3)-11) 4334981417617255 r009 Re(z^3+c),c=-1/16+21/40*I,n=7 4334981429002777 r009 Im(z^3+c),c=-5/21+15/31*I,n=20 4334981436673799 r005 Re(z^2+c),c=9/25+4/23*I,n=16 4334981437556429 r009 Im(z^3+c),c=-5/11+16/41*I,n=61 4334981444560865 r005 Re(z^2+c),c=-12/17+8/49*I,n=8 4334981447901700 a001 1364/4052739537881*317811^(13/23) 4334981449210977 m001 (Niven+Tetranacci)/(BesselJ(0,1)-gamma(1)) 4334981453164841 a003 cos(Pi*4/89)-sin(Pi*36/91) 4334981469802431 r009 Im(z^3+c),c=-51/98+3/8*I,n=53 4334981470127499 a001 2/64079*29^(4/41) 4334981489318457 a007 Real Root Of 525*x^4+835*x^3+566*x^2-923*x-457 4334981499530222 r005 Im(z^2+c),c=-1/20+37/59*I,n=21 4334981511633859 s002 sum(A050477[n]/((exp(n)-1)/n),n=1..infinity) 4334981514412227 k002 Champernowne real with 80*n^2+66*n-103 4334981515645869 r009 Im(z^3+c),c=-57/122+18/47*I,n=44 4334981526341253 b008 -5+Sqrt[-1+3^(1/3)] 4334981533471572 m001 (Chi(1)+Totient)/(Trott2nd+Weierstrass) 4334981538958989 a007 Real Root Of 623*x^4+108*x^3-460*x^2-942*x+464 4334981541649660 a001 1201881744/341*322^(5/6) 4334981562535070 a007 Real Root Of 424*x^4-299*x^3-894*x^2-629*x-144 4334981570086308 r002 60th iterates of z^2 + 4334981585688844 r009 Im(z^3+c),c=-5/21+15/31*I,n=26 4334981603142725 r005 Im(z^2+c),c=5/58+18/35*I,n=52 4334981604474319 r002 31th iterates of z^2 + 4334981611491328 a007 Real Root Of 9*x^4+389*x^3-50*x^2-4*x+239 4334981614442233 k002 Champernowne real with 161/2*n^2+129/2*n-102 4334981616555009 m009 (3*Psi(1,1/3)-1/4)/(32*Catalan+4*Pi^2+1/2) 4334981638266289 r005 Re(z^2+c),c=-41/66+1/39*I,n=64 4334981641439908 a003 sin(Pi*12/83)*sin(Pi*32/71) 4334981648296875 r002 27th iterates of z^2 + 4334981648765999 a007 Real Root Of -929*x^4+466*x^3+454*x^2+691*x+285 4334981664982094 a001 47/3*514229^(7/9) 4334981667522665 m001 (2^(1/2)-sin(1))/(-exp(1/exp(1))+Champernowne) 4334981671248184 r002 14th iterates of z^2 + 4334981680079479 a007 Real Root Of -808*x^4+730*x^3+982*x^2+774*x-551 4334981685520325 m001 BesselK(0,1)/ln(2)*ln(10)/FellerTornier 4334981687127000 a007 Real Root Of 856*x^4+192*x^3-896*x^2-564*x+367 4334981687377047 m001 1/ln(CareFree)^2/FeigenbaumAlpha^2/sqrt(3)^2 4334981709280813 r009 Im(z^3+c),c=-1/102+17/33*I,n=12 4334981710908590 m009 (32/5*Catalan+4/5*Pi^2-1/5)/(3/10*Pi^2+1/6) 4334981714472239 k002 Champernowne real with 81*n^2+63*n-101 4334981723883265 r005 Re(z^2+c),c=-8/13+7/41*I,n=41 4334981728689989 m001 (Trott-ZetaQ(4))/(BesselI(1,1)-Khinchin) 4334981732090409 l006 ln(1747/2695) 4334981742496624 a007 Real Root Of 819*x^4+549*x^3-446*x^2-807*x+360 4334981748771089 b008 (-14+Tanh[3])/3 4334981749447908 m009 (5/6*Psi(1,1/3)-1/5)/(2/3*Psi(1,3/4)+1/5) 4334981752817607 r005 Re(z^2+c),c=-41/66+2/31*I,n=43 4334981754086509 r002 30th iterates of z^2 + 4334981763934014 m001 (LandauRamanujan-exp(1))/(TreeGrowth2nd+Trott) 4334981773613953 r005 Re(z^2+c),c=-3/4+47/246*I,n=8 4334981773993654 m001 (gamma(1)+GAMMA(7/12))/(Artin-Rabbit) 4334981775884344 r005 Re(z^2+c),c=-65/98+10/51*I,n=6 4334981779058553 r005 Re(z^2+c),c=-5/8+50/229*I,n=33 4334981791795843 r005 Im(z^2+c),c=31/94+17/56*I,n=52 4334981792794534 r005 Im(z^2+c),c=11/122+19/37*I,n=36 4334981805832279 a001 4807526976/2207*322^(11/12) 4334981814502245 k002 Champernowne real with 163/2*n^2+123/2*n-100 4334981871886228 r002 49th iterates of z^2 + 4334981875439384 r005 Re(z^2+c),c=-45/82+15/47*I,n=17 4334981879553400 a001 141422324/377*6557470319842^(16/17) 4334981879553401 a001 312119004989/377*1836311903^(16/17) 4334981900311339 m001 Zeta(3)^2/exp(Porter)^2/sqrt(Pi) 4334981907271593 a007 Real Root Of 562*x^4+197*x^3-217*x^2-286*x-87 4334981914532251 k002 Champernowne real with 82*n^2+60*n-99 4334981917023702 r002 21th iterates of z^2 + 4334981917609902 a007 Real Root Of 371*x^4+824*x^3+817*x^2-564*x-344 4334981942241704 p001 sum((-1)^n/(274*n+221)/(10^n),n=0..infinity) 4334981957545126 m005 (1/2*Pi+5/12)/(-37/90+7/18*5^(1/2)) 4334981971010879 a007 Real Root Of -761*x^4+865*x^3-419*x^2+332*x+320 4334981971254615 r005 Re(z^2+c),c=-71/58+23/63*I,n=5 4334981988352783 a005 (1/sin(55/136*Pi))^887 4334982014562257 k002 Champernowne real with 165/2*n^2+117/2*n-98 4334982017800397 r009 Re(z^3+c),c=-27/86+10/11*I,n=2 4334982019049975 r009 Im(z^3+c),c=-12/29+11/23*I,n=12 4334982021676171 a007 Real Root Of 325*x^4+429*x^3-359*x^2-916*x-39 4334982041009378 a007 Real Root Of 870*x^4-487*x^3-76*x^2-417*x+204 4334982044012834 a007 Real Root Of 60*x^4+9*x^3-964*x^2+680*x+608 4334982062229070 m001 OneNinth^2*exp(Riemann1stZero)*exp(1) 4334982062644193 r005 Re(z^2+c),c=-41/66+1/57*I,n=51 4334982065375692 m001 OneNinth^2*exp(Trott)^2/sqrt(1+sqrt(3))^2 4334982068531236 m005 (19/10+5/2*5^(1/2))/(gamma-3/4) 4334982075485497 p004 log(36559/479) 4334982092478676 r005 Re(z^2+c),c=-67/98+1/64*I,n=24 4334982103311590 m009 (1/2*Psi(1,1/3)-2/3)/(1/6*Psi(1,2/3)+1/2) 4334982109922425 h001 (-11*exp(1)-6)/(-exp(1)+11) 4334982109922425 m005 (1/2*exp(1)+3/11)/(5/11*exp(1)-5) 4334982114592263 k002 Champernowne real with 83*n^2+57*n-97 4334982137802956 m005 (1/2*Zeta(3)+8/9)/(7/12*3^(1/2)-2/3) 4334982146413988 m006 (5*exp(Pi)+2/5)/(5*exp(2*Pi)+5/6) 4334982154320136 m001 ln(LandauRamanujan)*Bloch^2/sinh(1)^2 4334982158052830 l006 ln(2532/2543) 4334982163353835 a001 5/124*64079^(26/31) 4334982163529575 a003 sin(Pi*25/118)*sin(Pi*27/109) 4334982182118013 s002 sum(A123209[n]/(n*exp(pi*n)+1),n=1..infinity) 4334982187408790 g005 1/GAMMA(9/11)/GAMMA(8/11)^2/GAMMA(5/7) 4334982204719596 m001 (Niven+Rabbit)/(Psi(2,1/3)-sin(1/5*Pi)) 4334982206294657 s002 sum(A123604[n]/(n*exp(pi*n)+1),n=1..infinity) 4334982214622269 k002 Champernowne real with 167/2*n^2+111/2*n-96 4334982232904387 a007 Real Root Of -542*x^4+154*x^3-540*x^2-381*x-32 4334982235127580 a007 Real Root Of 554*x^4+642*x^3-594*x^2-972*x-277 4334982242136322 s001 sum(exp(-Pi/2)^n*A281283[n],n=1..infinity) 4334982246964788 r005 Re(z^2+c),c=-41/62+11/64*I,n=34 4334982250200337 a001 610/123*5778^(16/31) 4334982250843141 p001 sum(1/(424*n+231)/(256^n),n=0..infinity) 4334982264072609 r002 38th iterates of z^2 + 4334982274939619 a007 Real Root Of 786*x^4+577*x^3-547*x^2-849*x-246 4334982278598309 a001 34/4870847*521^(33/50) 4334982287604619 r002 47th iterates of z^2 + 4334982305147347 h001 (2/9*exp(1)+5/11)/(2/9*exp(2)+4/5) 4334982314652275 k002 Champernowne real with 84*n^2+54*n-95 4334982330998208 a007 Real Root Of 196*x^4+605*x^3-920*x^2+701*x+397 4334982337952178 r009 Im(z^3+c),c=-45/122+27/49*I,n=8 4334982339952235 r005 Re(z^2+c),c=-43/54+8/55*I,n=18 4334982343239431 r005 Re(z^2+c),c=-2/3+25/136*I,n=21 4334982343556690 r002 44th iterates of z^2 + 4334982345408595 l006 ln(6050/9333) 4334982356380117 m001 (polylog(4,1/2)-Kac)/(Zeta(5)-Zeta(1/2)) 4334982358866700 r002 46th iterates of z^2 + 4334982363367565 m001 GaussKuzminWirsing+Paris^ln(2^(1/2)+1) 4334982366691509 b008 Pi+Sqrt[2]*Cos[12] 4334982370610422 r005 Im(z^2+c),c=17/106+11/24*I,n=38 4334982377412791 a007 Real Root Of -104*x^4-515*x^3-238*x^2+195*x+91 4334982385032987 r005 Re(z^2+c),c=-19/30+13/128*I,n=15 4334982397792753 r005 Re(z^2+c),c=-18/29+1/54*I,n=41 4334982412259725 s002 sum(A205762[n]/(10^n-1),n=1..infinity) 4334982414682281 k002 Champernowne real with 169/2*n^2+105/2*n-94 4334982439251159 m001 (-FeigenbaumB+TwinPrimes)/(cos(1)+Zeta(1,2)) 4334982445667166 r005 Im(z^2+c),c=-17/31+21/59*I,n=4 4334982468689552 r005 Re(z^2+c),c=-8/13+5/28*I,n=39 4334982472135833 m004 6+125*Pi+5*Sqrt[5]*Pi-Log[Sqrt[5]*Pi]/6 4334982491517486 r002 44th iterates of z^2 + 4334982495367292 r005 Re(z^2+c),c=15/86+37/63*I,n=3 4334982514712287 k002 Champernowne real with 85*n^2+51*n-93 4334982515724793 a007 Real Root Of 101*x^4+295*x^3-610*x^2+103*x+274 4334982521236632 r005 Re(z^2+c),c=-8/13+4/49*I,n=32 4334982527499384 r002 46th iterates of z^2 + 4334982532152167 m005 (1/2*Pi-5/9)/(7/10*Pi+1/7) 4334982545039161 r005 Im(z^2+c),c=27/106+21/59*I,n=17 4334982565970377 a001 12586269025/5778*322^(11/12) 4334982574434603 r002 27th iterates of z^2 + 4334982585547830 r002 35th iterates of z^2 + 4334982594413202 l006 ln(4303/6638) 4334982600227402 m001 (arctan(1/3)+CareFree)/(MertensB2+MertensB3) 4334982601307111 a007 Real Root Of 137*x^4-444*x^3+523*x^2-463*x-340 4334982608344487 m001 (ZetaP(2)+ZetaP(4))/(sin(1/5*Pi)-Rabbit) 4334982614742293 k002 Champernowne real with 171/2*n^2+99/2*n-92 4334982640644365 a007 Real Root Of 130*x^4+562*x^3+80*x^2+273*x-446 4334982646415485 a007 Real Root Of -156*x^4+923*x^3+457*x^2+234*x-257 4334982647346714 r005 Im(z^2+c),c=6/29+7/18*I,n=15 4334982663469955 r005 Im(z^2+c),c=-7/10+57/211*I,n=9 4334982663509152 r005 Re(z^2+c),c=-57/58*I,n=6 4334982676873053 a001 32951280099/15127*322^(11/12) 4334982693053536 a001 86267571272/39603*322^(11/12) 4334982695414237 a001 225851433717/103682*322^(11/12) 4334982695758658 a001 591286729879/271443*322^(11/12) 4334982695808909 a001 1548008755920/710647*322^(11/12) 4334982695816240 a001 4052739537881/1860498*322^(11/12) 4334982695817310 a001 2178309*322^(11/12) 4334982695817971 a001 6557470319842/3010349*322^(11/12) 4334982695820771 a001 2504730781961/1149851*322^(11/12) 4334982695839965 a001 956722026041/439204*322^(11/12) 4334982695971522 a001 365435296162/167761*322^(11/12) 4334982696686773 r005 Re(z^2+c),c=-3/5+23/88*I,n=59 4334982696873230 a001 139583862445/64079*322^(11/12) 4334982697902253 r005 Im(z^2+c),c=33/106+17/53*I,n=31 4334982699948107 a001 610/123*2207^(18/31) 4334982703053624 a001 53316291173/24476*322^(11/12) 4334982706563319 r009 Im(z^3+c),c=-51/118+5/17*I,n=2 4334982714772299 k002 Champernowne real with 86*n^2+48*n-91 4334982725403023 r002 28th iterates of z^2 + 4334982728230518 r005 Im(z^2+c),c=27/86+11/38*I,n=34 4334982731196531 r005 Re(z^2+c),c=-31/50+4/57*I,n=55 4334982737882215 r005 Re(z^2+c),c=-15/62+17/27*I,n=39 4334982745414679 a001 20365011074/9349*322^(11/12) 4334982754004095 r002 36th iterates of z^2 + 4334982758442933 r005 Re(z^2+c),c=-67/110+11/54*I,n=62 4334982769130422 r009 Im(z^3+c),c=-23/86+29/61*I,n=24 4334982777975115 r002 21th iterates of z^2 + 4334982784592480 r005 Im(z^2+c),c=29/94+15/38*I,n=55 4334982784795276 r005 Im(z^2+c),c=-55/102+28/57*I,n=31 4334982785599501 a007 Real Root Of -459*x^4+628*x^3-651*x^2-230*x+90 4334982789679730 a007 Real Root Of -4*x^4+334*x^3-689*x^2+238*x+260 4334982804497002 m001 Thue^GaussAGM*Thue^FeigenbaumDelta 4334982809395185 m001 BesselJ(1,1)/(BesselI(1,1)-arctan(1/2)) 4334982810808999 r002 39th iterates of z^2 + 4334982812498291 r002 21th iterates of z^2 + 4334982814802305 k002 Champernowne real with 173/2*n^2+93/2*n-90 4334982815473091 m005 (1/2*exp(1)-6/7)/(3/11*exp(1)+5/12) 4334982825599577 r005 Re(z^2+c),c=-19/29+25/57*I,n=37 4334982831875552 a007 Real Root Of 217*x^4+792*x^3-428*x^2+734*x-888 4334982832655059 r005 Re(z^2+c),c=-75/122+2/13*I,n=62 4334982832837559 r004 Im(z^2+c),c=1/26+6/11*I,z(0)=I,n=48 4334982837055621 m001 (Tetranacci+ZetaQ(4))/(exp(1)+3^(1/2)) 4334982848678118 r002 59th iterates of z^2 + 4334982853281907 m005 (1/2*2^(1/2)+1/5)/(8/9*Pi-7/10) 4334982855704610 m001 GAMMA(1/12)/GaussKuzminWirsing*ln(Pi) 4334982855704610 m001 ln(Pi)/GaussKuzminWirsing*GAMMA(1/12) 4334982857229142 r004 Im(z^2+c),c=-1/8-14/23*I,z(0)=I,n=60 4334982857472370 m005 (1/2*Catalan-7/10)/(7/11*Catalan+5) 4334982867076359 r002 4th iterates of z^2 + 4334982878269522 r009 Re(z^3+c),c=-1/18+17/50*I,n=5 4334982881425277 m001 (Zeta(5)+Zeta(1/2))/(cos(1/12*Pi)+Trott) 4334982885236382 r005 Re(z^2+c),c=11/86+19/29*I,n=14 4334982887469354 r005 Re(z^2+c),c=-3/4+4/77*I,n=36 4334982896654564 a007 Real Root Of -841*x^4+604*x^3-120*x^2-527*x-127 4334982903034831 m001 1/cos(Pi/5)*TwinPrimes^2*ln(sqrt(5)) 4334982903826545 m001 (2^(1/3))^BesselJ(0,1)+Pi 4334982903826545 m001 Pi+(2^(1/3))^BesselJ(0,1) 4334982907463817 r005 Re(z^2+c),c=-45/74+13/64*I,n=47 4334982910243229 r002 5th iterates of z^2 + 4334982914832311 k002 Champernowne real with 87*n^2+45*n-89 4334982924483344 m005 (23/28+1/4*5^(1/2))/(-9/56+3/14*5^(1/2)) 4334982929024137 a001 3/76*2^(5/37) 4334982934648029 a007 Real Root Of 895*x^4-406*x^3+689*x^2+148*x-130 4334982958390837 a007 Real Root Of 109*x^4-980*x^3+780*x^2+575*x+19 4334982976048137 r005 Re(z^2+c),c=-59/98+14/57*I,n=36 4334982990476486 r005 Re(z^2+c),c=-16/25+1/57*I,n=24 4334982997140898 r005 Re(z^2+c),c=5/74+9/61*I,n=11 4334982997895603 s002 sum(A025765[n]/(n^2*2^n+1),n=1..infinity) 4334983001051432 r005 Re(z^2+c),c=-67/94+7/59*I,n=56 4334983007374887 m001 GAMMA(5/24)*Khintchine/exp(Zeta(9)) 4334983014862317 k002 Champernowne real with 175/2*n^2+87/2*n-88 4334983019002021 m001 (Ei(1,1)+Zeta(1,-1))/(FeigenbaumB+ThueMorse) 4334983035761691 a001 7778742049/3571*322^(11/12) 4334983045336559 r009 Re(z^3+c),c=-23/48+1/6*I,n=36 4334983063934274 m001 (ln(2^(1/2)+1)-Ei(1,1))/(Lehmer-TreeGrowth2nd) 4334983078122435 r002 23th iterates of z^2 + 4334983084362347 r005 Im(z^2+c),c=41/122+7/26*I,n=63 4334983092045256 r005 Re(z^2+c),c=-9/8+172/227*I,n=2 4334983102522214 h001 (8/11*exp(1)+3/4)/(8/11*exp(2)+11/12) 4334983104614487 r002 20th iterates of z^2 + 4334983106836724 m005 (1/2*exp(1)+2/11)/(9/10*Pi+8/11) 4334983110583660 m005 (1/3*Catalan-2)/(3*2^(1/2)-1/3) 4334983114892323 k002 Champernowne real with 88*n^2+42*n-87 4334983130689245 m001 (FeigenbaumD+ZetaQ(3))/(2*Pi/GAMMA(5/6)+Cahen) 4334983135600971 m003 -13/3+(Sqrt[5]*Cos[1/2+Sqrt[5]/2])/64 4334983144298556 a007 Real Root Of 123*x^4+331*x^3-966*x^2-215*x+749 4334983183802017 l006 ln(2556/3943) 4334983185053205 r005 Re(z^2+c),c=-41/66+1/36*I,n=47 4334983186419916 r002 51th iterates of z^2 + 4334983208444538 a007 Real Root Of 51*x^4+306*x^3+545*x^2+699*x-294 4334983210631724 s002 sum(A131123[n]/(n*exp(n)-1),n=1..infinity) 4334983214922329 k002 Champernowne real with 177/2*n^2+81/2*n-86 4334983222791248 a001 123/75025*144^(9/46) 4334983236457888 r002 53th iterates of z^2 + 4334983243745371 m001 (Artin+ZetaP(2))/(3^(1/3)+arctan(1/2)) 4334983251020365 r005 Re(z^2+c),c=-31/50+1/62*I,n=37 4334983272119216 r005 Re(z^2+c),c=-41/70+11/34*I,n=54 4334983286492188 r002 25th iterates of z^2 + 4334983288081672 m001 FeigenbaumKappa*exp(Kolakoski)*Zeta(3)^2 4334983289571898 b008 Csch[10*Erfc[1]] 4334983293317466 r005 Im(z^2+c),c=17/62+13/37*I,n=52 4334983295740109 m001 (Zeta(3)-Artin)/(FeigenbaumAlpha-Lehmer) 4334983296262908 m006 (5/6*exp(Pi)+2)/(5*Pi^2-1/4) 4334983298651448 r005 Im(z^2+c),c=15/82+7/16*I,n=50 4334983305171389 a001 39603*610^(41/56) 4334983306845073 m001 (GaussAGM-MinimumGamma)/(gamma(2)+Backhouse) 4334983307855484 m001 (BesselJ(0,1)-Ei(1,1))/(Gompertz+LaplaceLimit) 4334983310575026 r009 Re(z^3+c),c=-5/13+1/12*I,n=2 4334983314952335 k002 Champernowne real with 89*n^2+39*n-85 4334983318083938 a007 Real Root Of 538*x^4-810*x^3+61*x^2-924*x-497 4334983343829932 r005 Im(z^2+c),c=-9/14+68/189*I,n=55 4334983359113166 a001 322/89*6557470319842^(17/24) 4334983369367987 r005 Im(z^2+c),c=-7/10+56/207*I,n=9 4334983379621746 r002 50th iterates of z^2 + 4334983380146337 m009 (1/3*Pi^2-1/5)/(2*Psi(1,2/3)+1) 4334983381844269 r009 Im(z^3+c),c=-13/28+17/42*I,n=23 4334983392773586 m005 (1/2*3^(1/2)-1/5)/(9/10*Zeta(3)+5/11) 4334983406023035 r009 Re(z^3+c),c=-5/56+41/60*I,n=25 4334983406753436 g005 GAMMA(5/7)/GAMMA(7/11)/GAMMA(4/11)/GAMMA(1/9) 4334983410668857 m001 (Paris+ThueMorse)/(GAMMA(11/12)+Champernowne) 4334983414982341 k002 Champernowne real with 179/2*n^2+75/2*n-84 4334983430525050 m001 (Lehmer+Magata)/(3^(1/2)-AlladiGrinstead) 4334983433835693 r002 17th iterates of z^2 + 4334983436856876 r002 19th iterates of z^2 + 4334983437970041 a001 3571/10610209857723*317811^(13/23) 4334983438827916 r002 35th iterates of z^2 + 4334983439053094 r009 Re(z^3+c),c=-13/27+6/41*I,n=4 4334983439341217 a007 Real Root Of -445*x^4+524*x^3-760*x^2+274*x+320 4334983440079042 m005 (1/3*gamma+1/11)/(1/4*2^(1/2)+3/10) 4334983455656920 a001 41/726103*4181^(11/45) 4334983460177743 a007 Real Root Of 227*x^4+306*x^3+398*x^2-923*x-458 4334983468853668 m005 (1/2*2^(1/2)+5)/(5/12*Catalan-1/4) 4334983470742251 r002 47th iterates of z^2 + 4334983471389583 r005 Re(z^2+c),c=-9/94+25/31*I,n=12 4334983473461250 r005 Re(z^2+c),c=-5/8+13/196*I,n=23 4334983478347850 a007 Real Root Of -163*x^4-606*x^3+529*x^2+369*x-146 4334983487256850 a007 Real Root Of -615*x^4-274*x^3-83*x^2+436*x+204 4334983491441281 r009 Re(z^3+c),c=-31/82+2/31*I,n=20 4334983492483804 r005 Re(z^2+c),c=-39/122+19/28*I,n=4 4334983502598964 a001 7*(1/2*5^(1/2)+1/2)^17*18^(4/21) 4334983515012347 k002 Champernowne real with 90*n^2+36*n-83 4334983518483115 m005 (1/2*Pi+3)/(5*5^(1/2)-7/11) 4334983520616797 r005 Im(z^2+c),c=37/114+39/56*I,n=4 4334983525518300 r009 Im(z^3+c),c=-23/54+11/27*I,n=61 4334983528634954 m001 (BesselJ(1,1)-Artin)/(Bloch-GolombDickman) 4334983529019476 r009 Re(z^3+c),c=-37/78+7/43*I,n=29 4334983533359079 r002 32th iterates of z^2 + 4334983535847019 r009 Im(z^3+c),c=-39/118+29/64*I,n=24 4334983548233465 r005 Im(z^2+c),c=15/58+18/49*I,n=59 4334983563792313 a007 Real Root Of 646*x^4-502*x^3+326*x^2-789*x-467 4334983566560110 m001 1/Trott*ln(Riemann2ndZero)*cosh(1) 4334983568090999 p001 sum((-1)^n/(558*n+223)/(8^n),n=0..infinity) 4334983576764686 r005 Im(z^2+c),c=17/58+7/22*I,n=28 4334983579736891 r009 Im(z^3+c),c=-7/19+21/31*I,n=8 4334983590441472 m001 (Lehmer-ZetaQ(4))/(Zeta(1,-1)+GAMMA(7/12)) 4334983593240251 r009 Re(z^3+c),c=-53/126+5/41*I,n=9 4334983595341391 m001 (Trott+ZetaP(2))/(Lehmer+PlouffeB) 4334983601289251 r005 Re(z^2+c),c=5/28+31/52*I,n=7 4334983608190327 r009 Im(z^3+c),c=-1/28+18/35*I,n=15 4334983612131681 l006 ln(5921/9134) 4334983612512505 a001 1/521*(1/2*5^(1/2)+1/2)^7*76^(9/19) 4334983615042353 k002 Champernowne real with 181/2*n^2+69/2*n-82 4334983628158639 m005 (1/2*3^(1/2)-6/7)/(3/4*3^(1/2)+3/4) 4334983642589022 r005 Re(z^2+c),c=-9/16+19/112*I,n=10 4334983646593855 r002 19th iterates of z^2 + 4334983648146653 s002 sum(A265876[n]/((2*n)!),n=1..infinity) 4334983655764999 r005 Re(z^2+c),c=-21/34+6/101*I,n=32 4334983656899848 r005 Re(z^2+c),c=-11/18+25/119*I,n=30 4334983659644568 r009 Re(z^3+c),c=-9/23+3/37*I,n=20 4334983660361103 r002 15th iterates of z^2 + 4334983663058626 m001 (Chi(1)-GAMMA(2/3))/(BesselI(1,1)+Kac) 4334983667474615 s002 sum(A123127[n]/(n^3*2^n+1),n=1..infinity) 4334983667642792 m001 3^(1/2)*GAMMA(23/24)/HardyLittlewoodC5 4334983679321054 m001 (StronglyCareFree-ZetaP(4))/(Zeta(5)+Stephens) 4334983696507467 a001 196418/47*3^(1/30) 4334983702389508 m001 (Zeta(1,-1)+OneNinth)/MertensB3 4334983705722846 m001 exp(1/exp(1))/(RenyiParking+Sierpinski) 4334983715072359 k002 Champernowne real with 91*n^2+33*n-81 4334983719551321 r005 Im(z^2+c),c=-1/7+31/46*I,n=53 4334983734777462 r005 Re(z^2+c),c=-6/19+11/17*I,n=4 4334983736658130 a001 123/514229*12586269025^(11/12) 4334983736661408 a001 1/831985*4052739537881^(11/12) 4334983739687265 m005 (11/28+1/4*5^(1/2))/(1/2*Pi+5/8) 4334983745442962 r005 Re(z^2+c),c=-5/8+7/221*I,n=28 4334983752550405 a007 Real Root Of -215*x^4-901*x^3+295*x^2+736*x+174 4334983753186740 r009 Im(z^3+c),c=-9/17+8/59*I,n=58 4334983761154254 a007 Real Root Of -844*x^4-815*x^3+229*x^2+735*x+239 4334983767082679 r009 Im(z^3+c),c=-4/19+25/46*I,n=5 4334983770840202 r009 Im(z^3+c),c=-1/6+22/29*I,n=26 4334983774340865 r005 Re(z^2+c),c=-47/82+15/44*I,n=40 4334983786491684 m005 (1/2*5^(1/2)+8/11)/(1/2*gamma-5/7) 4334983786822711 s002 sum(A219280[n]/(n^2*pi^n+1),n=1..infinity) 4334983789843347 r009 Im(z^3+c),c=-25/64+26/61*I,n=36 4334983801877938 m005 (1/2*Pi-2/11)/(2*Zeta(3)+4/5) 4334983814183614 a001 199/2504730781961*365435296162^(13/14) 4334983814183614 a001 199/4807526976*433494437^(13/14) 4334983814186649 a001 199/9227465*514229^(13/14) 4334983815102365 k002 Champernowne real with 183/2*n^2+63/2*n-80 4334983815653259 a007 Real Root Of 291*x^4+231*x^3+296*x^2-911*x-442 4334983834731896 r005 Re(z^2+c),c=15/52+23/40*I,n=31 4334983859098189 a007 Real Root Of 49*x^4+87*x^3-433*x^2+420*x-259 4334983863604797 r005 Re(z^2+c),c=-41/62+8/47*I,n=34 4334983866508562 a001 123/2584*39088169^(11/12) 4334983884640759 p004 log(10513/10067) 4334983902707368 m001 (BesselI(1,1)-Bloch*LandauRamanujan)/Bloch 4334983910417730 r005 Re(z^2+c),c=-35/66+13/42*I,n=13 4334983915132371 k002 Champernowne real with 92*n^2+30*n-79 4334983915855588 a007 Real Root Of -235*x^4-930*x^3+564*x^2+932*x+669 4334983921234643 r005 Im(z^2+c),c=-17/114+15/26*I,n=19 4334983937484008 l006 ln(3365/5191) 4334983943156271 r009 Re(z^3+c),c=-39/82+9/55*I,n=46 4334983943912725 r005 Re(z^2+c),c=-8/13+5/26*I,n=32 4334983945549110 m005 (1/2*Catalan+5/7)/(8/11*exp(1)+8/11) 4334983945914169 m001 (-BesselI(1,2)+Kac)/(2^(1/3)+cos(1/12*Pi)) 4334983950359664 r005 Im(z^2+c),c=13/82+17/37*I,n=42 4334983956650297 r005 Re(z^2+c),c=-27/44+3/56*I,n=19 4334983965744770 r005 Re(z^2+c),c=-13/21+5/47*I,n=46 4334983990824421 a007 Real Root Of 181*x^4+781*x^3-102*x^2-349*x+108 4334984015162377 k002 Champernowne real with 185/2*n^2+57/2*n-78 4334984020055127 m001 (1-5^(1/2))/(-HardyLittlewoodC4+Lehmer) 4334984057660923 a001 1364/3*987^(39/59) 4334984092698784 r005 Re(z^2+c),c=-53/86+7/50*I,n=53 4334984099677537 r009 Im(z^3+c),c=-6/13+22/45*I,n=24 4334984107585673 m001 StronglyCareFree^Psi(2,1/3)/Trott2nd 4334984115192383 k002 Champernowne real with 93*n^2+27*n-77 4334984118123395 m001 (MadelungNaCl-ZetaQ(3))/(ln(3)-ArtinRank2) 4334984122176302 r005 Re(z^2+c),c=29/106+1/39*I,n=28 4334984126672064 a007 Real Root Of -186*x^4-687*x^3+559*x^2+375*x+840 4334984140635128 a007 Real Root Of 391*x^4-745*x^3+580*x^2-451*x-379 4334984147287429 m005 (1/12+1/4*5^(1/2))/(6/11*gamma-1/6) 4334984165062169 m005 (1/2*3^(1/2)+2/9)/(3/4*5^(1/2)+5/6) 4334984174321583 a001 2971215073/199*199^(7/11) 4334984195152500 a007 Real Root Of 36*x^4-251*x^3+291*x^2-382*x-242 4334984203859942 a001 1364*(1/2*5^(1/2)+1/2)^2*3^(3/17) 4334984213498480 r005 Im(z^2+c),c=-11/18+4/87*I,n=13 4334984214493574 a007 Real Root Of 997*x^4-819*x^3-692*x^2-294*x+289 4334984215222389 k002 Champernowne real with 187/2*n^2+51/2*n-76 4334984215827109 m001 ln(2)/ln(10)*(1+BesselJ(1,1)) 4334984216739821 r009 Im(z^3+c),c=-7/110+20/39*I,n=17 4334984247076676 m005 (5*Catalan-1/6)/(-1/10+1/2*5^(1/2)) 4334984258040690 a007 Real Root Of 28*x^4-32*x^3-677*x^2+148*x+869 4334984262044843 a007 Real Root Of 633*x^4-655*x^3+800*x^2-106*x-272 4334984274815744 r005 Re(z^2+c),c=31/90+1/7*I,n=10 4334984282828540 a001 6/10983760033*4052739537881^(12/17) 4334984282828540 a001 6/34111385*1134903170^(12/17) 4334984282831065 a001 6/105937*317811^(12/17) 4334984294133716 a001 3/4*(1/2*5^(1/2)+1/2)^22*4^(3/11) 4334984315252395 k002 Champernowne real with 94*n^2+24*n-75 4334984315702692 m001 (ln(5)-Grothendieck)/(Kac+ReciprocalFibonacci) 4334984335447474 r002 17th iterates of z^2 + 4334984343580716 a007 Real Root Of -5*x^4+795*x^3+844*x^2+48*x-244 4334984354898425 r005 Im(z^2+c),c=-1/6+33/50*I,n=44 4334984358913519 r005 Im(z^2+c),c=10/29+5/36*I,n=27 4334984364055928 a007 Real Root Of -121*x^4-506*x^3-115*x^2-925*x-339 4334984379323393 a007 Real Root Of -810*x^4+463*x^3+838*x^2+460*x-366 4334984399010374 l006 ln(4174/6439) 4334984402943260 m001 (Ei(1)-Bloch)/(ReciprocalFibonacci-ZetaP(4)) 4334984413936656 a005 (1/cos(17/167*Pi))^1223 4334984415282401 k002 Champernowne real with 189/2*n^2+45/2*n-74 4334984431552968 r005 Re(z^2+c),c=-75/118+13/46*I,n=51 4334984443290941 r005 Im(z^2+c),c=17/118+25/59*I,n=10 4334984446221396 p003 LerchPhi(1/25,5,351/118) 4334984452004606 m001 GAMMA(19/24)-exp(1/exp(1))+CareFree 4334984454504932 r005 Im(z^2+c),c=25/122+37/42*I,n=3 4334984462101359 m001 arctan(1/3)+Porter^(Pi*2^(1/2)/GAMMA(3/4)) 4334984472229034 r005 Im(z^2+c),c=-14/17+8/37*I,n=8 4334984515312407 k002 Champernowne real with 95*n^2+21*n-73 4334984518183703 r005 Im(z^2+c),c=-13/48+19/30*I,n=31 4334984519149868 m004 (-125*Sec[Sqrt[5]*Pi])/Pi+5*Pi*Sin[Sqrt[5]*Pi] 4334984520574176 m005 (1/3*Zeta(3)+2/3)/(3*Catalan-2/7) 4334984527840257 a001 192900153618/5*832040^(13/19) 4334984527841114 a001 370248451/5*7778742049^(13/19) 4334984528713496 a007 Real Root Of 680*x^4-870*x^3-395*x^2-475*x+327 4334984539328686 r005 Re(z^2+c),c=-43/60+2/33*I,n=20 4334984540552177 a001 29/46368*8^(27/29) 4334984541951078 a007 Real Root Of -120*x^4-676*x^3-623*x^2+8*x-950 4334984545332344 r005 Im(z^2+c),c=-21/32+22/49*I,n=36 4334984553508491 a007 Real Root Of -524*x^4-629*x^3-6*x^2+844*x-295 4334984558838044 m001 1/GAMMA(5/12)^2/Trott*exp(GAMMA(7/12))^2 4334984562674885 a001 3571/377*832040^(37/47) 4334984569867351 r009 Re(z^3+c),c=-51/122+3/14*I,n=2 4334984571615716 m005 (1/5*2^(1/2)-2/3)/(11/2+3/2*5^(1/2)) 4334984573759985 r005 Re(z^2+c),c=-35/52+6/23*I,n=29 4334984580529620 r009 Im(z^3+c),c=-49/94+17/30*I,n=30 4334984584999918 m001 1/Khintchine/exp(ErdosBorwein)^2/sin(Pi/5)^2 4334984593019915 r002 3th iterates of z^2 + 4334984606686479 r002 64th iterates of z^2 + 4334984607778984 a007 Real Root Of 92*x^4+261*x^3-625*x^2-131*x-50 4334984610372175 m001 Lehmer^MertensB2*StolarskyHarborth^MertensB2 4334984614258838 l005 259081/8281/(exp(509/91)^2-1) 4334984615342413 k002 Champernowne real with 191/2*n^2+39/2*n-72 4334984622731247 r005 Re(z^2+c),c=-29/74+17/44*I,n=4 4334984623105147 r005 Im(z^2+c),c=-17/62+28/47*I,n=34 4334984626603089 m001 (-Ei(1,1)+GAMMA(17/24))/(exp(Pi)+3^(1/3)) 4334984634798363 r005 Re(z^2+c),c=-11/18+13/86*I,n=24 4334984641531199 r005 Re(z^2+c),c=-37/62+12/49*I,n=25 4334984658424470 r009 Re(z^3+c),c=-29/60+8/47*I,n=44 4334984664202198 m001 (Khinchin+Robbin)/(Zeta(1,-1)-Zeta(1,2)) 4334984667899916 a001 2207/6557470319842*317811^(13/23) 4334984670823378 a001 11/233*433494437^(5/22) 4334984670868959 a007 Real Root Of 173*x^4-417*x^3-90*x^2-807*x-373 4334984682048939 r005 Im(z^2+c),c=-17/44+11/19*I,n=59 4334984695598143 m005 (1/2*Catalan+1)/(6*gamma-1/10) 4334984710677274 l006 ln(4983/7687) 4334984715372419 k002 Champernowne real with 96*n^2+18*n-71 4334984729264813 a001 7778742049/521*322^(7/12) 4334984735275980 m009 (8*Catalan+Pi^2+1/5)/(4*Psi(1,1/3)-1/4) 4334984743779091 r005 Re(z^2+c),c=-9/106+34/57*I,n=2 4334984749800529 m001 1/Paris*exp(Niven)^2/sin(1)^2 4334984756097560 r002 2th iterates of z^2 + 4334984762300778 r005 Im(z^2+c),c=-43/118+28/53*I,n=4 4334984769234036 m001 1/sin(1)/GAMMA(19/24)^2*ln(sqrt(1+sqrt(3))) 4334984781547683 r009 Re(z^3+c),c=-55/118+9/58*I,n=56 4334984782449113 r005 Im(z^2+c),c=7/54+13/27*I,n=51 4334984788979427 r009 Im(z^3+c),c=-11/40+29/63*I,n=7 4334984794292146 r005 Re(z^2+c),c=-65/102+1/22*I,n=20 4334984796481306 r009 Re(z^3+c),c=-1/44+57/58*I,n=6 4334984812298498 r005 Re(z^2+c),c=-35/114+23/38*I,n=43 4334984815402425 k002 Champernowne real with 193/2*n^2+33/2*n-70 4334984816722767 r009 Re(z^3+c),c=-7/90+37/57*I,n=45 4334984817294399 r005 Re(z^2+c),c=39/110+8/37*I,n=2 4334984823265803 m001 FransenRobinson*(GlaisherKinkelin+MertensB1) 4334984826609501 r002 44th iterates of z^2 + 4334984841537604 m005 (1/3*Catalan+2/5)/(-27/56+1/7*5^(1/2)) 4334984845719977 a001 3571/55*8^(21/23) 4334984849707271 r005 Im(z^2+c),c=-39/86+29/61*I,n=3 4334984852807446 m001 1/Salem^2*Si(Pi)*exp(sinh(1)) 4334984853662658 r002 20th iterates of z^2 + 4334984859353214 m001 (AlladiGrinstead+Rabbit)/(3^(1/2)+Pi^(1/2)) 4334984860904194 a003 cos(Pi*5/69)*sin(Pi*16/109) 4334984869791250 m001 (gamma+MertensB2)/(1+exp(1)) 4334984873438410 r005 Im(z^2+c),c=2/21+30/59*I,n=50 4334984880147132 m001 Landau^MasserGramain*Landau^Sarnak 4334984892459959 m001 1/Ei(1)*OneNinth/ln(Pi)^2 4334984897762092 a007 Real Root Of 12*x^4+514*x^3-287*x^2-790*x+161 4334984900911870 r005 Im(z^2+c),c=1/62+21/38*I,n=35 4334984905382234 a005 (1/cos(11/116*Pi))^1566 4334984908189740 r005 Im(z^2+c),c=-1/62+15/28*I,n=14 4334984909121391 m001 1/ln(PrimesInBinary)/FeigenbaumDelta^2/Zeta(3) 4334984915432431 k002 Champernowne real with 97*n^2+15*n-69 4334984933292851 r002 12th iterates of z^2 + 4334984935279761 l006 ln(5792/8935) 4334984941006487 m008 (1/6*Pi^4+2/3)/(4*Pi^4+1/4) 4334984941038566 l006 ln(105/8014) 4334984948164604 r005 Re(z^2+c),c=-9/14+37/218*I,n=28 4334984961861085 a003 sin(Pi*1/36)-sin(Pi*19/109) 4334984977995570 m003 -13/3+(Sqrt[5]*Cot[1/2+Sqrt[5]/2])/64 4334984992576313 m001 (Bloch+GolombDickman)/(1+GAMMA(7/12)) 4334985003382302 a007 Real Root Of 619*x^4-800*x^3+52*x^2-794*x-441 4334985007991407 r002 12th iterates of z^2 + 4334985015462437 k002 Champernowne real with 195/2*n^2+27/2*n-68 4334985017884099 b008 1/27+SinIntegral[2/5] 4334985022815710 r005 Im(z^2+c),c=-15/14+95/252*I,n=3 4334985025830761 a001 2971215073/1364*322^(11/12) 4334985028831739 a007 Real Root Of -179*x^4-667*x^3+681*x^2+991*x+375 4334985053930340 r005 Im(z^2+c),c=-27/34+2/97*I,n=30 4334985062748897 r009 Im(z^3+c),c=-57/110+19/56*I,n=63 4334985088614784 m001 FeigenbaumC+Sierpinski-StolarskyHarborth 4334985100792923 r009 Im(z^3+c),c=-9/29+28/61*I,n=13 4334985110171044 r005 Re(z^2+c),c=3/50+6/17*I,n=16 4334985115492443 k002 Champernowne real with 98*n^2+12*n-67 4334985120066170 m001 (GlaisherKinkelin+MadelungNaCl)/(Rabbit-Trott) 4334985139724371 h001 (-2*exp(2)-9)/(-5*exp(7)-2) 4334985145238489 m001 1/Sierpinski^2*exp(MadelungNaCl)^2*Zeta(1,2)^2 4334985148505249 a007 Real Root Of 64*x^4-884*x^3-966*x^2-493*x+465 4334985151985454 r002 57th iterates of z^2 + 4334985170324668 a007 Real Root Of -235*x^4-726*x^3-947*x^2+701*x+431 4334985177935727 h001 (1/12*exp(1)+1/2)/(1/6*exp(2)+4/9) 4334985181427541 m004 -2+25*Pi-25*Pi*ProductLog[Sqrt[5]*Pi] 4334985182617045 m001 (ln(2)/ln(10)+Bloch)/(Gompertz+KhinchinLevy) 4334985190709188 r005 Im(z^2+c),c=29/114+13/35*I,n=46 4334985196847497 m001 (Thue-ZetaP(4))/(exp(-1/2*Pi)-Trott2nd) 4334985215522449 k002 Champernowne real with 197/2*n^2+21/2*n-66 4334985234384784 r005 Im(z^2+c),c=7/74+22/43*I,n=24 4334985248843851 b008 5*Sqrt[Zeta[2,Sqrt[Pi]]] 4334985249040853 r005 Re(z^2+c),c=-59/98+14/33*I,n=3 4334985256003022 m001 1/ln(DuboisRaymond)^2/Cahen*RenyiParking 4334985261578203 p001 sum((-1)^n/(445*n+226)/(16^n),n=0..infinity) 4334985266157291 r005 Re(z^2+c),c=5/44+22/53*I,n=11 4334985267107277 r002 28th iterates of z^2 + 4334985274092353 m001 (Magata-Riemann1stZero)/(Cahen+FeigenbaumC) 4334985274626303 r005 Im(z^2+c),c=-2/21+29/40*I,n=18 4334985277154138 a007 Real Root Of -356*x^4+948*x^3-877*x^2-36*x+239 4334985293158745 r009 Im(z^3+c),c=-3/86+19/37*I,n=9 4334985307604919 m001 exp(GAMMA(2/3))*Paris/log(1+sqrt(2)) 4334985315552455 k002 Champernowne real with 99*n^2+9*n-65 4334985323517528 r005 Re(z^2+c),c=9/32+1/55*I,n=20 4334985328899133 r005 Im(z^2+c),c=-5/42+31/53*I,n=5 4334985369517237 a001 45537549124/377*6557470319842^(14/17) 4334985372349400 a007 Real Root Of 934*x^4-317*x^3+485*x^2-815*x+255 4334985375140128 m008 (5/6*Pi^4-1/3)/(1/5*Pi^4-5/6) 4334985387699225 a007 Real Root Of 520*x^4-485*x^3+594*x^2-880*x+291 4334985415582461 k002 Champernowne real with 199/2*n^2+15/2*n-64 4334985423279125 r005 Re(z^2+c),c=-37/60+8/63*I,n=52 4334985423413759 r002 23th iterates of z^2 + 4334985428334801 m001 TreeGrowth2nd/MertensB1^2*ln(BesselJ(1,1))^2 4334985435272426 a001 521/5*832040^(56/59) 4334985436239131 a007 Real Root Of -184*x^4-756*x^3+185*x^2+172*x+661 4334985444131016 r005 Re(z^2+c),c=-31/50+2/37*I,n=46 4334985448897528 r005 Re(z^2+c),c=-59/94+1/45*I,n=28 4334985461947989 m001 (HardyLittlewoodC3-Si(Pi))/(Porter+Totient) 4334985464838044 m005 (1/4*5^(1/2)+3/4)/(2*3^(1/2)-4/9) 4334985474031149 m001 1/ln(GAMMA(1/12))/Lehmer^2/GAMMA(13/24)^2 4334985493932341 m001 (Sarnak-StronglyCareFree)/(Landau+Robbin) 4334985494499704 r005 Re(z^2+c),c=-19/27+1/41*I,n=26 4334985495488728 m001 (-GAMMA(3/4)+3)/(-BesselI(1,2)+2) 4334985497023158 a007 Real Root Of -739*x^4-275*x^3-107*x^2+591*x+280 4334985499233280 r002 35th iterates of z^2 + 4334985506539866 m005 (4/15+1/10*5^(1/2))/(3/5*exp(1)-1/2) 4334985510506266 h001 (1/8*exp(2)+1/8)/(7/12*exp(1)+5/6) 4334985515612467 k002 Champernowne real with 100*n^2+6*n-63 4334985519292188 m005 (1/2*Pi-4/7)/(4/9*Pi+10/11) 4334985529435099 r005 Im(z^2+c),c=-15/22+5/126*I,n=29 4334985529512182 a007 Real Root Of -225*x^4-970*x^3+147*x^2+507*x-127 4334985550038187 m001 Sierpinski^Grothendieck-ln(3) 4334985569615973 a007 Real Root Of 746*x^4-170*x^3+714*x^2-592*x-431 4334985586554207 m001 (Conway-ln(gamma)*ReciprocalLucas)/ln(gamma) 4334985587465991 a007 Real Root Of -15*x^4-670*x^3-843*x^2+577*x+107 4334985588552805 a003 cos(Pi*33/101)-cos(Pi*44/93) 4334985615642473 k002 Champernowne real with 201/2*n^2+9/2*n-62 4334985619024640 r009 Re(z^3+c),c=-10/21+6/37*I,n=19 4334985619856091 g006 Psi(1,2/7)-Psi(1,3/8)-Psi(1,4/5)-Psi(1,2/5) 4334985624873802 m001 (Sarnak+Trott2nd)/(sin(1/5*Pi)+ln(Pi)) 4334985636286937 k001 Champernowne real with 65*n+368 4334985643832648 r005 Im(z^2+c),c=-7/10+67/248*I,n=9 4334985646306967 k005 Champernowne real with floor(sqrt(3)*(38*n+212)) 4334985657156975 m005 (3/28+1/4*5^(1/2))/(6*gamma-5) 4334985659935037 m001 KomornikLoreti^Si(Pi)+OrthogonalArrays 4334985671540110 a007 Real Root Of 60*x^4-894*x^3-722*x^2-675*x+499 4334985679288680 m001 (Kolakoski-Lehmer)/(Zeta(1,2)+Bloch) 4334985681541487 r005 Im(z^2+c),c=15/106+17/36*I,n=52 4334985686403296 m005 (1/2*2^(1/2)-1/5)/(4/9*3^(1/2)+2/5) 4334985701014388 r002 56th iterates of z^2 + 4334985715672479 k002 Champernowne real with 101*n^2+3*n-61 4334985721150313 m001 (GAMMA(17/24)+ThueMorse)/(Si(Pi)+Zeta(1/2)) 4334985733886793 a007 Real Root Of -903*x^4+346*x^3-524*x^2+991*x-42 4334985734152536 m005 (1/2*exp(1)+1/4)/(2/11*Pi-1/5) 4334985752361343 h001 (1/9*exp(2)+1/2)/(11/12*exp(1)+5/9) 4334985757715106 r009 Im(z^3+c),c=-45/118+22/51*I,n=19 4334985769400869 m001 (Thue+ZetaP(2))/(BesselJ(1,1)+Sierpinski) 4334985777798619 a001 2207/610*2178309^(17/35) 4334985785108899 m001 (Pi^(1/2))^exp(Pi)*ZetaP(4) 4334985815702485 k002 Champernowne real with 203/2*n^2+3/2*n-60 4334985819440060 m001 Zeta(3)/Artin^2*exp(cos(Pi/5))^2 4334985820578414 m001 1/2*LambertW(1)*GAMMA(7/12) 4334985820578414 m001 1/exp(LambertW(1))*GAMMA(7/12)*sqrt(5)^2 4334985823898887 a008 Real Root of (-4+4*x+6*x^2-3*x^3-4*x^4+x^5) 4334985845433970 r002 49th iterates of z^2 + 4334985848454943 r009 Im(z^3+c),c=-51/106+19/51*I,n=61 4334985854663795 r005 Im(z^2+c),c=-17/40+33/59*I,n=57 4334985857574598 r005 Im(z^2+c),c=9/110+15/29*I,n=50 4334985867745204 r005 Re(z^2+c),c=-14/23+10/49*I,n=45 4334985874859764 m001 GAMMA(7/12)^Niven*Riemann2ndZero 4334985876315100 r009 Im(z^3+c),c=-25/78+16/35*I,n=23 4334985900153585 r002 62th iterates of z^2 + 4334985915732491 k002 Champernowne real with 102*n^2-59 4334985916068520 a007 Real Root Of 895*x^4-88*x^3-808*x^2-999*x-320 4334985920104662 r002 15th iterates of z^2 + 4334985922136401 r009 Im(z^3+c),c=-23/58+13/22*I,n=38 4334985922722748 r005 Im(z^2+c),c=-79/98+2/49*I,n=6 4334985929120484 r009 Re(z^3+c),c=-14/29+8/47*I,n=56 4334985933904241 a003 cos(Pi*4/25)-cos(Pi*40/113) 4334985936549791 r005 Re(z^2+c),c=-17/28+18/53*I,n=59 4334985940084767 p004 log(32647/21163) 4334985963795215 a007 Real Root Of -900*x^4+860*x^3+615*x^2+118*x-205 4334985980530676 a001 1/89*610^(13/14) 4334985981806466 a007 Real Root Of -162*x^4-547*x^3+659*x^2-196*x-585 4334986011016892 h001 (9/10*exp(1)+2/7)/(7/9*exp(2)+5/9) 4334986012820922 r005 Re(z^2+c),c=-41/66+1/41*I,n=49 4334986015762497 k002 Champernowne real with 205/2*n^2-3/2*n-58 4334986018627838 a007 Real Root Of -920*x^4-536*x^3-849*x^2-220*x+53 4334986026625405 a007 Real Root Of -688*x^4+85*x^3+6*x^2+445*x+223 4334986037599988 a007 Real Root Of -240*x^4+88*x^3+399*x^2+965*x-492 4334986039396266 r005 Re(z^2+c),c=-51/82+1/58*I,n=42 4334986045439284 a007 Real Root Of -64*x^4+432*x^3-352*x^2+400*x+277 4334986051219750 r005 Re(z^2+c),c=-7/15+16/31*I,n=21 4334986051559061 r005 Re(z^2+c),c=-7/10+54/199*I,n=18 4334986056617338 r005 Im(z^2+c),c=-9/70+31/50*I,n=11 4334986063173480 a003 sin(Pi*5/82)/cos(Pi*27/76) 4334986072476092 a005 (1/cos(5/57*Pi))^98 4334986074109130 r005 Re(z^2+c),c=-35/58+3/40*I,n=13 4334986076207839 r005 Im(z^2+c),c=-23/38+13/19*I,n=12 4334986095768574 m006 (2/5/Pi+1/3)/(1/5*exp(2*Pi)-5/6) 4334986101811564 m001 1/ln(Pi)*CareFree^2 4334986102039042 a007 Real Root Of 894*x^4-922*x^3+607*x^2-312*x-356 4334986102270956 m001 Si(Pi)^(2^(1/2))*Si(Pi)^cos(1/12*Pi) 4334986102270956 m001 Si(Pi)^sqrt(2)*Si(Pi)^cos(Pi/12) 4334986108455202 m001 arctan(1/2)^(2^(1/3))+ZetaQ(2) 4334986114205551 p003 LerchPhi(1/32,5,223/75) 4334986115792503 k002 Champernowne real with 103*n^2-3*n-57 4334986137680266 r005 Re(z^2+c),c=-3/5+33/107*I,n=30 4334986138598238 a001 64079/89*34^(28/55) 4334986140706756 r005 Im(z^2+c),c=-57/94+4/49*I,n=28 4334986143365150 r005 Re(z^2+c),c=-11/18+15/34*I,n=37 4334986143690880 r002 2th iterates of z^2 + 4334986155992881 m005 (5/66+1/6*5^(1/2))/(3/10*5^(1/2)+4/11) 4334986157147368 r002 45th iterates of z^2 + 4334986180402777 a001 1/72*(1/2+1/2*5^(1/2))^55 4334986186654703 r009 Re(z^3+c),c=-43/118+1/23*I,n=21 4334986193929548 a001 3571*3^(3/17) 4334986200486684 r005 Re(z^2+c),c=-13/21+4/39*I,n=48 4334986208214587 r002 48th iterates of z^2 + 4334986211905943 a007 Real Root Of -189*x^4-651*x^3+845*x^2+409*x-395 4334986212049250 a007 Real Root Of 186*x^4-601*x^3+139*x^2-786*x+357 4334986215272205 h001 (1/9*exp(2)+1/6)/(2/9*exp(2)+7/11) 4334986215822509 k002 Champernowne real with 207/2*n^2-9/2*n-56 4334986229211360 r005 Re(z^2+c),c=-27/44+25/56*I,n=3 4334986232347009 r005 Im(z^2+c),c=8/29+7/20*I,n=46 4334986248149859 r005 Im(z^2+c),c=7/44+29/63*I,n=34 4334986254890006 m001 HardyLittlewoodC4^MasserGramain/OneNinth 4334986266074703 r004 Re(z^2+c),c=1/5+4/11*I,z(0)=exp(5/8*I*Pi),n=58 4334986281899255 a001 1926/7*3^(12/29) 4334986293939532 r009 Re(z^3+c),c=-31/86+1/28*I,n=12 4334986295021621 m001 (Weierstrass+ZetaP(4))/(DuboisRaymond-Porter) 4334986297451799 r005 Re(z^2+c),c=-45/74+4/19*I,n=60 4334986305241353 s002 sum(A049953[n]/(n*exp(pi*n)+1),n=1..infinity) 4334986315852515 k002 Champernowne real with 104*n^2-6*n-55 4334986316119907 a007 Real Root Of 983*x^4-444*x^3+98*x^2-403*x-264 4334986318708812 l006 ln(809/1248) 4334986326600438 m001 (arctan(1/2)+LandauRamanujan2nd*Trott)/Trott 4334986327236959 r005 Im(z^2+c),c=13/82+11/24*I,n=47 4334986341956549 a008 Real Root of x^4-2*x^3-47*x^2-96*x-49 4334986345109588 r002 56th iterates of z^2 + 4334986356925367 m001 Paris^2*Khintchine*ln(GAMMA(1/4))^2 4334986357928716 m001 1/cos(Pi/12)^2/exp(CopelandErdos)^2/cosh(1) 4334986406540729 r005 Im(z^2+c),c=25/106+23/59*I,n=61 4334986415882521 k002 Champernowne real with 209/2*n^2-15/2*n-54 4334986423363614 m001 GAMMA(7/24)^2*ln(Paris)^2/sinh(1) 4334986430855010 a008 Real Root of x^3-x^2+47*x+304 4334986433896823 r009 Im(z^3+c),c=-23/54+11/27*I,n=64 4334986440306397 h001 (-exp(1)-6)/(-5*exp(6)+6) 4334986442925260 g001 Re(GAMMA(59/12+I*9/10)) 4334986447824599 r002 16th iterates of z^2 + 4334986451852350 m001 exp(Pi)^PlouffeB/(exp(Pi)^ZetaQ(3)) 4334986452883791 r005 Im(z^2+c),c=-77/74+15/53*I,n=23 4334986456481893 m004 -5-125*Pi-5*Sqrt[5]*Pi-Sin[Sqrt[5]*Pi] 4334986459201975 a007 Real Root Of 982*x^4+930*x^3+815*x^2-565*x-357 4334986473899010 r002 52th iterates of z^2 + 4334986478443541 r005 Re(z^2+c),c=-27/22+8/51*I,n=8 4334986478996165 r005 Im(z^2+c),c=-3/17+45/64*I,n=26 4334986482149273 r009 Im(z^3+c),c=-5/34+14/27*I,n=5 4334986489189990 r009 Im(z^3+c),c=-27/110+25/57*I,n=2 4334986508349386 r009 Im(z^3+c),c=-15/62+23/29*I,n=2 4334986515912527 k002 Champernowne real with 105*n^2-9*n-53 4334986533743262 r005 Re(z^2+c),c=-77/122+8/47*I,n=26 4334986533874021 a001 (1/2*5^(1/2)+1/2)^17*3^(3/17) 4334986535822941 r002 5th iterates of z^2 + 4334986585702327 r005 Im(z^2+c),c=9/34+16/43*I,n=32 4334986589788570 m008 (5/6*Pi^6-2/5)/(1/3*Pi+4/5) 4334986591822087 m001 (ln(2+3^(1/2))-ZetaP(4))/(Ei(1)+cos(1/12*Pi)) 4334986592305509 m001 (3^(1/2)-Psi(1,1/3))/(Conway+Kac) 4334986595725744 g007 -2*Psi(2,3/7)-Psi(2,1/5)-Psi(2,1/4) 4334986615858932 m001 (FeigenbaumMu-Psi(1,1/3))/(MasserGramain+Thue) 4334986615942533 k002 Champernowne real with 211/2*n^2-21/2*n-52 4334986629866737 r005 Im(z^2+c),c=-35/86+19/33*I,n=56 4334986632526940 a007 Real Root Of -595*x^4+567*x^3-297*x^2+316*x+260 4334986647221641 m001 1/TwinPrimes*Riemann2ndZero^2*ln(sqrt(5))^2 4334986667058040 m001 MertensB1*Champernowne^Thue 4334986669499385 r005 Im(z^2+c),c=-35/82+1/14*I,n=25 4334986685309956 r002 23th iterates of z^2 + 4334986686954216 a007 Real Root Of -43*x^4-59*x^3+617*x^2+352*x+310 4334986688147496 m001 exp((3^(1/3)))/Sierpinski^2/Zeta(1/2) 4334986698524798 l006 ln(71/5419) 4334986698524798 p004 log(5419/71) 4334986700564068 m001 GAMMA(19/24)*(exp(-1/2*Pi)-gamma) 4334986701188627 m005 (1/3*3^(1/2)-1/8)/(3/8*Catalan+7/10) 4334986702475061 a003 sin(Pi*14/111)/sin(Pi*36/103) 4334986703042103 a007 Real Root Of 236*x^4-189*x^3+479*x^2-918*x+315 4334986706853824 m001 (exp(1/Pi)+Robbin)/(LambertW(1)-Zeta(5)) 4334986715972539 k002 Champernowne real with 106*n^2-12*n-51 4334986721795428 a007 Real Root Of -498*x^4+434*x^3+735*x^2+863*x-530 4334986727612548 m001 1/exp(Sierpinski)/Paris*LambertW(1) 4334986738458732 s002 sum(A173423[n]/(pi^n+1),n=1..infinity) 4334986745530903 a007 Real Root Of 90*x^4+319*x^3-515*x^2-949*x-232 4334986748265847 r002 26th iterates of z^2 + 4334986765857778 m001 1/ln(sin(Pi/12))/CopelandErdos*sinh(1)^2 4334986768284496 m001 (Pi+GAMMA(2/3))/(ln(Pi)-OneNinth) 4334986775408650 a003 sin(Pi*3/55)*sin(Pi*9/110) 4334986780073772 m001 1/exp(log(2+sqrt(3)))/Artin/sqrt(1+sqrt(3)) 4334986784588713 a007 Real Root Of 504*x^4+8*x^3-752*x^2-404*x+298 4334986784921966 a007 Real Root Of -934*x^4-992*x^3+745*x^2+973*x-448 4334986786957285 m001 (Zeta(3)+(1+3^(1/2))^(1/2))/(Trott-ZetaP(4)) 4334986793433905 a007 Real Root Of 567*x^4+616*x^3+243*x^2-767*x-348 4334986801119253 a008 Real Root of x^4-40*x^2-76*x+728 4334986801848506 m001 (FeigenbaumD-FeigenbaumMu)/(KhinchinLevy+Thue) 4334986804328187 r002 2th iterates of z^2 + 4334986804738966 m001 BesselK(0,1)/BesselI(0,1)*Conway 4334986805253652 r005 Im(z^2+c),c=-5/8+13/189*I,n=25 4334986810285321 r009 Im(z^3+c),c=-41/106+17/39*I,n=7 4334986810587455 r009 Im(z^3+c),c=-1/38+23/45*I,n=7 4334986816002545 k002 Champernowne real with 213/2*n^2-27/2*n-50 4334986818164965 r002 15th iterates of z^2 + 4334986839043454 m001 (-MertensB3+Trott)/(3^(1/2)+ln(2+3^(1/2))) 4334986841078206 p001 sum((-1)^n/(257*n+229)/(64^n),n=0..infinity) 4334986848525643 r009 Im(z^3+c),c=-1/74+31/41*I,n=8 4334986851601029 r002 23th iterates of z^2 + 4334986872737083 a007 Real Root Of -79*x^4-16*x^3+242*x^2+502*x-259 4334986878983037 r002 34th iterates of z^2 + 4334986888626953 h001 (-2*exp(3/2)+5)/(-5*exp(3)+9) 4334986891197038 r005 Re(z^2+c),c=-65/106+7/47*I,n=39 4334986900789329 m001 exp(cos(Pi/5))^2/MertensB1^2*sin(Pi/5) 4334986902907820 a007 Real Root Of 308*x^4-528*x^3+603*x^2-770*x-501 4334986906286513 r009 Re(z^3+c),c=-55/118+9/58*I,n=61 4334986914668663 r005 Re(z^2+c),c=-29/46+13/60*I,n=37 4334986916032551 k002 Champernowne real with 107*n^2-15*n-49 4334986916562095 r005 Re(z^2+c),c=-29/48+4/15*I,n=45 4334986938870114 m001 DuboisRaymond^GaussKuzminWirsing-ZetaP(3) 4334986971677719 r005 Im(z^2+c),c=-15/118+17/22*I,n=3 4334986986154692 m001 HardyLittlewoodC3^GAMMA(19/24)/GAMMA(2/3) 4334986990280433 r005 Im(z^2+c),c=-7/36+11/15*I,n=5 4334986990627724 a007 Real Root Of 10*x^4+414*x^3-854*x^2-357*x+937 4334986990976830 m005 (1/2*Zeta(3)-1/9)/(10/11*3^(1/2)-4/9) 4334986991037439 r005 Im(z^2+c),c=35/102+8/39*I,n=28 4334986992276091 r009 Im(z^3+c),c=-1/28+18/35*I,n=19 4334987007728712 a001 5778/1597*2178309^(17/35) 4334987009832530 r002 9th iterates of z^2 + 4334987010155065 m001 (Pi^(1/2)+ThueMorse)/(3^(1/2)-5^(1/2)) 4334987013979901 a007 Real Root Of -298*x^4+540*x^3+312*x^2+415*x-272 4334987016062557 k002 Champernowne real with 215/2*n^2-33/2*n-48 4334987025049633 a001 2/17*5^(47/58) 4334987027227361 m001 (Grothendieck+Kac)/(gamma(2)+BesselI(1,1)) 4334987032268310 m001 (exp(1/Pi)-gamma(2))/(Bloch-TreeGrowth2nd) 4334987037656622 m001 Artin/GAMMA(5/6)/LandauRamanujan 4334987037656622 m001 Artin/LandauRamanujan/GAMMA(5/6) 4334987038919174 r009 Im(z^3+c),c=-7/36+16/33*I,n=6 4334987063862427 m009 (5*Psi(1,2/3)-3/4)/(3*Pi^2+4) 4334987075538990 r005 Im(z^2+c),c=25/106+27/55*I,n=64 4334987104075799 r009 Im(z^3+c),c=-1/60+32/57*I,n=4 4334987113646429 r009 Re(z^3+c),c=-3/74+44/47*I,n=7 4334987116092563 k002 Champernowne real with 108*n^2-18*n-47 4334987131327606 a007 Real Root Of -178*x^4-965*x^3-813*x^2+86*x-102 4334987157521709 a007 Real Root Of -429*x^4+43*x^3+339*x^2+655*x-336 4334987168533235 m005 (-1/12+1/4*5^(1/2))/(4*exp(1)+1/10) 4334987169605094 r009 Im(z^3+c),c=-17/56+5/11*I,n=5 4334987171918878 r005 Im(z^2+c),c=15/94+16/35*I,n=45 4334987187173189 a001 15127/4181*2178309^(17/35) 4334987192614025 r005 Im(z^2+c),c=1/24+20/37*I,n=42 4334987201449846 m005 (1/3*gamma+1/9)/(2/3*3^(1/2)-5/11) 4334987213353787 a001 39603/10946*2178309^(17/35) 4334987216122569 k002 Champernowne real with 217/2*n^2-39/2*n-46 4334987220008141 m001 (GAMMA(19/24)+Artin)/(PlouffeB-TreeGrowth2nd) 4334987221386159 r009 Re(z^3+c),c=-23/54+7/62*I,n=12 4334987227457376 r002 19th iterates of z^2 + 4334987227757665 m001 GAMMA(23/24)/Catalan^2/exp(Zeta(5)) 4334987229534287 a001 24476/6765*2178309^(17/35) 4334987233097595 r005 Re(z^2+c),c=-5/8+4/161*I,n=30 4334987236738824 a007 Real Root Of 862*x^4-714*x^3+89*x^2-812*x+363 4334987237792647 r005 Im(z^2+c),c=-29/48+9/20*I,n=13 4334987249286256 r005 Re(z^2+c),c=-16/27+13/38*I,n=51 4334987253661797 m001 (Si(Pi)+ln(Pi))/(Lehmer+Paris) 4334987253783393 m001 MertensB1/(BesselK(1,1)+HeathBrownMoroz) 4334987263021687 m001 GAMMA(3/4)*(FeigenbaumAlpha+MertensB2) 4334987263345776 a007 Real Root Of 526*x^4+236*x^3+952*x^2-297*x-307 4334987264974159 m001 (GolombDickman+Landau)/(Si(Pi)+sin(1)) 4334987269367628 r005 Re(z^2+c),c=-19/29+5/53*I,n=25 4334987273369169 r005 Im(z^2+c),c=-5/8+41/112*I,n=3 4334987277263073 r005 Re(z^2+c),c=-19/34+31/86*I,n=25 4334987277284918 r005 Im(z^2+c),c=7/90+29/56*I,n=36 4334987298075986 a001 9349/2584*2178309^(17/35) 4334987298768270 a007 Real Root Of -820*x^4+296*x^3+961*x^2+921*x-575 4334987299930689 m001 (ln(5)+GAMMA(5/6))^Backhouse 4334987313814851 m001 (gamma+LambertW(1))/(-exp(-1/2*Pi)+Bloch) 4334987316152575 k002 Champernowne real with 109*n^2-21*n-45 4334987317973917 a007 Real Root Of 4*x^4-175*x^3-767*x^2-703*x+463 4334987331422791 m005 (1/2*Pi+7/9)/(7/11*gamma-10/11) 4334987343336360 m001 GAMMA(5/12)*TwinPrimes/exp(sin(Pi/5))^2 4334987343536858 r009 Im(z^3+c),c=-55/106+21/47*I,n=6 4334987367982545 m005 (1/2*Catalan+1/12)/(5/8*Zeta(3)-2) 4334987372709733 h001 (2/9*exp(2)+1/7)/(4/9*exp(2)+5/6) 4334987374186034 m001 BesselI(0,1)/GAMMA(2/3)*arctan(1/2) 4334987379938797 m001 (-Conway+PlouffeB)/(BesselJ(0,1)+ln(Pi)) 4334987382080382 a007 Real Root Of -452*x^4+549*x^3+644*x^2+508*x-370 4334987391508681 r005 Re(z^2+c),c=-57/110+24/59*I,n=8 4334987397780122 r005 Re(z^2+c),c=4/29+20/43*I,n=58 4334987398703390 r002 27th iterates of z^2 + 4334987416182581 k002 Champernowne real with 219/2*n^2-45/2*n-44 4334987423860205 a001 2207*(1/2*5^(1/2)+1/2)*3^(3/17) 4334987447263249 r005 Im(z^2+c),c=13/70+28/55*I,n=30 4334987448792512 r009 Re(z^3+c),c=-43/82+15/53*I,n=33 4334987450315780 r002 16th iterates of z^2 + 4334987451679170 r009 Im(z^3+c),c=-8/31+11/23*I,n=21 4334987452722426 r009 Re(z^3+c),c=-3/64+8/47*I,n=5 4334987486434745 r009 Re(z^3+c),c=-39/64+21/44*I,n=39 4334987487468614 a007 Real Root Of 991*x^4+709*x^3-858*x^2-511*x+290 4334987493688467 r005 Im(z^2+c),c=7/58+24/49*I,n=44 4334987496015310 m005 (1/3*Pi-1/5)/(3/5*Zeta(3)-11/12) 4334987510367141 r002 5th iterates of z^2 + 4334987516212587 k002 Champernowne real with 110*n^2-24*n-43 4334987528084129 r002 52th iterates of z^2 + 4334987544132920 r002 32th iterates of z^2 + 4334987546730470 r005 Re(z^2+c),c=-27/44+16/55*I,n=43 4334987550144083 r005 Re(z^2+c),c=-7/122+43/64*I,n=36 4334987554066952 g001 Re(GAMMA(39/20+I*41/30)) 4334987565046572 s002 sum(A069875[n]/(n^3*2^n+1),n=1..infinity) 4334987575811998 a007 Real Root Of -54*x^4-43*x^3+600*x^2-939*x+221 4334987581962794 l006 ln(6343/9785) 4334987593052109 q001 1747/4030 4334987599239224 r009 Im(z^3+c),c=-45/118+28/57*I,n=9 4334987608609157 r002 50th iterates of z^2 + 4334987614942844 m005 (1/2*3^(1/2)+7/12)/(1/10*Zeta(3)-5/11) 4334987616242593 k002 Champernowne real with 221/2*n^2-51/2*n-42 4334987622943523 m001 (1+BesselI(0,1))/(-ArtinRank2+ZetaP(3)) 4334987641454037 m001 (GaussAGM+ThueMorse)/(3^(1/2)+ln(Pi)) 4334987643689952 a001 8/199*2207^(39/43) 4334987680489707 m001 1/BesselJ(0,1)*exp(ArtinRank2)*GAMMA(17/24)^2 4334987683251125 a007 Real Root Of 486*x^4-609*x^3+491*x^2-745*x-482 4334987685239685 r009 Re(z^3+c),c=-15/86+55/64*I,n=44 4334987687725215 g006 -Psi(1,9/10)-Psi(1,2/9)-Psi(1,5/7)-Psi(1,1/4) 4334987689084885 m001 LambertW(1)-ln(2)-HardyLittlewoodC4 4334987692625656 m001 (Zeta(1/2)+Artin)/(Landau+ReciprocalLucas) 4334987692809298 m001 (GAMMA(5/6)+Mills)/(ln(2^(1/2)+1)+Zeta(1,2)) 4334987697526956 m001 FeigenbaumC*(3^(1/2)+HardyLittlewoodC3) 4334987700204516 h001 (-7*exp(2/3)-3)/(-7*exp(3/2)-7) 4334987702600419 r009 Im(z^3+c),c=-3/44+22/41*I,n=4 4334987707164642 m001 (-Kolakoski+Trott)/(1-FransenRobinson) 4334987713751893 r009 Im(z^3+c),c=-17/46+24/55*I,n=35 4334987716272599 k002 Champernowne real with 111*n^2-27*n-41 4334987718248478 b008 3+40*Coth[E] 4334987722125198 v002 sum(1/(5^n+(2*n^2+18*n+15)),n=1..infinity) 4334987739908324 m005 (1/2*Catalan-7/9)/(3*exp(1)-7/9) 4334987741932858 m001 (ln(2)/ln(10)+Zeta(1,-1))/(Landau+Sierpinski) 4334987745421066 m005 (1/2*5^(1/2)-1/3)/(5/9*exp(1)+3/10) 4334987753838054 m001 AlladiGrinstead*CareFree^Grothendieck 4334987753937115 a007 Real Root Of -179*x^4-583*x^3+749*x^2-493*x-493 4334987754309214 r005 Re(z^2+c),c=-45/34+4/115*I,n=22 4334987758929785 r005 Re(z^2+c),c=-71/114+17/58*I,n=14 4334987762572734 m001 1/Bloch/Champernowne*ln(sqrt(1+sqrt(3)))^2 4334987766634351 l006 ln(5534/8537) 4334987767867878 a001 3571/987*2178309^(17/35) 4334987772794315 a001 1/829464*139583862445^(10/17) 4334987772853145 a001 18/121393*39088169^(10/17) 4334987777409170 r002 53th iterates of z^2 + 4334987784021671 r009 Re(z^3+c),c=-15/31+13/35*I,n=5 4334987795666683 r002 63th iterates of z^2 + 4334987797076080 m001 FeigenbaumC^2/MadelungNaCl/exp(Ei(1))^2 4334987798732296 m001 1/exp(sin(Pi/12))*FransenRobinson*sqrt(2)^2 4334987801700244 r002 14th iterates of z^2 + 4334987802511814 r009 Im(z^3+c),c=-7/15+18/47*I,n=40 4334987816302605 k002 Champernowne real with 223/2*n^2-57/2*n-40 4334987833087633 r009 Re(z^3+c),c=-1/44+41/54*I,n=13 4334987860152424 m001 (ln(2)/ln(10)+ln(3))/(Khinchin+Landau) 4334987864522525 m001 (cos(1)-gamma(1))/(Riemann1stZero+ZetaQ(3)) 4334987868429558 r009 Im(z^3+c),c=-25/106+31/64*I,n=17 4334987872678375 r005 Im(z^2+c),c=-61/50+5/44*I,n=7 4334987880443334 m001 1/cos(1)/GAMMA(1/24)*ln(gamma) 4334987880443334 m001 ln(gamma)/cos(1)/Pi/csc(1/24*Pi)*GAMMA(23/24) 4334987880443334 m001 log(gamma)/cos(1)/GAMMA(1/24) 4334987891883924 p001 sum((-1)^n/(600*n+23)/(12^n),n=0..infinity) 4334987907202546 m001 (-BesselJ(0,1)+Ei(1))/(Chi(1)-gamma) 4334987916332611 k002 Champernowne real with 112*n^2-30*n-39 4334987916513007 r005 Im(z^2+c),c=27/74+9/35*I,n=16 4334987919422724 r009 Re(z^3+c),c=-29/74+33/53*I,n=21 4334987990631968 a007 Real Root Of 419*x^4+509*x^3-594*x^2-825*x+413 4334987997955285 a007 Real Root Of -657*x^4-425*x^3-563*x^2+126*x+149 4334988011775434 a007 Real Root Of -952*x^4-762*x^3-929*x^2+265*x+261 4334988012233776 r005 Re(z^2+c),c=-18/29+2/53*I,n=38 4334988013415660 r002 24th iterates of z^2 + 4334988014543698 l006 ln(4725/7289) 4334988015553109 r009 Re(z^3+c),c=-17/48+43/44*I,n=3 4334988016362617 k002 Champernowne real with 225/2*n^2-63/2*n-38 4334988020341769 r005 Im(z^2+c),c=-1/114+32/57*I,n=34 4334988027004845 r002 49th iterates of z^2 + 4334988077152969 m005 (1/2*5^(1/2)-2/11)/(8/11*3^(1/2)+9/10) 4334988103981757 a003 cos(Pi*32/85)+cos(Pi*55/114) 4334988107953235 m001 (BesselI(0,1)+ln(gamma))/(1+3^(1/2))^(1/2) 4334988107953235 m001 (BesselI(0,1)+log(gamma))/sqrt(1+sqrt(3)) 4334988109363134 r009 Im(z^3+c),c=-39/118+26/59*I,n=7 4334988116392623 k002 Champernowne real with 113*n^2-33*n-37 4334988135785818 r009 Re(z^3+c),c=-39/106+1/19*I,n=7 4334988141846068 a007 Real Root Of 475*x^4+210*x^3+3*x^2-620*x-269 4334988142994526 r002 20th iterates of z^2 + 4334988150155904 b008 4+Sin[14/5] 4334988153326533 r005 Re(z^2+c),c=21/74+1/26*I,n=19 4334988160417818 r009 Im(z^3+c),c=-5/21+15/31*I,n=28 4334988163350278 m005 (1/2*gamma+8/11)/(2/7*Zeta(3)+2) 4334988166752529 m001 FeigenbaumMu+StronglyCareFree-Trott 4334988168374548 r009 Re(z^3+c),c=-31/54+16/35*I,n=23 4334988185599975 m001 (Porter+Trott)/(2^(1/3)-FeigenbaumDelta) 4334988193405126 r009 Im(z^3+c),c=-31/82+16/37*I,n=30 4334988193642815 m001 1/Paris*MadelungNaCl/ln(Ei(1))^2 4334988206572198 a007 Real Root Of -151*x^4-701*x^3-314*x^2-673*x-798 4334988213448476 a001 4807526976/521*322^(2/3) 4334988216422629 k002 Champernowne real with 227/2*n^2-69/2*n-36 4334988225164911 r005 Re(z^2+c),c=19/106+31/47*I,n=8 4334988227226643 m009 (2*Catalan+1/4*Pi^2-4)/(3/4*Psi(1,1/3)-2/3) 4334988229524132 r005 Im(z^2+c),c=-29/38+1/30*I,n=12 4334988229524810 a007 Real Root Of -233*x^4+881*x^3-984*x^2-678*x-29 4334988234735358 m001 PisotVijayaraghavan/Cahen/Weierstrass 4334988241442383 q001 1659/3827 4334988251185903 m001 (GolombDickman+ZetaQ(4))/(ln(5)+Zeta(1,-1)) 4334988256178082 r009 Re(z^3+c),c=-13/25+6/41*I,n=45 4334988259464693 m006 (2/5*exp(Pi)+3/4)/(Pi-5/6) 4334988262183799 r009 Re(z^3+c),c=-29/60+7/41*I,n=62 4334988266295739 m006 (5/6*exp(2*Pi)-4)/(3/5*ln(Pi)+1/3) 4334988267817095 r009 Im(z^3+c),c=-23/54+11/27*I,n=57 4334988271979926 m008 (Pi^5+4)/(1/4*Pi^3-3/5) 4334988305724764 r009 Re(z^3+c),c=-8/19+2/17*I,n=8 4334988312998666 a003 cos(Pi*8/107)*sin(Pi*5/34) 4334988313304418 s002 sum(A034116[n]/(n*exp(pi*n)-1),n=1..infinity) 4334988316452635 k002 Champernowne real with 114*n^2-36*n-35 4334988322089255 r005 Im(z^2+c),c=3/44+29/55*I,n=51 4334988334454472 m001 (Paris-ln(2)/ln(10))/(-PlouffeB+ZetaQ(3)) 4334988337403877 r005 Re(z^2+c),c=-16/27+11/48*I,n=25 4334988355945651 r005 Im(z^2+c),c=-11/16+35/101*I,n=57 4334988364883402 l006 ln(3916/6041) 4334988374397258 r005 Re(z^2+c),c=35/94+13/46*I,n=57 4334988383356788 r009 Re(z^3+c),c=-5/21+19/25*I,n=44 4334988391753954 m001 (Mills+OneNinth)/(5^(1/2)+GAMMA(23/24)) 4334988396279554 m002 -6-Pi^4+Pi^5/5-Log[Pi] 4334988401144088 r009 Im(z^3+c),c=-35/74+17/45*I,n=49 4334988405179349 m001 exp(1/Pi)/(Stephens-sin(1/12*Pi)) 4334988407189007 l006 ln(108/8243) 4334988416482641 k002 Champernowne real with 229/2*n^2-75/2*n-34 4334988425182949 r009 Im(z^3+c),c=-35/102+19/43*I,n=10 4334988443037158 m006 (4/5*exp(2*Pi)-1)/(5/6/Pi-1/6) 4334988445652320 m001 (Chi(1)+Conway)/(-Lehmer+Paris) 4334988450567249 r009 Re(z^3+c),c=-15/34+1/29*I,n=10 4334988461182044 r005 Im(z^2+c),c=13/118+28/61*I,n=13 4334988465106305 r004 Re(z^2+c),c=-11/18+3/14*I,z(0)=-1,n=38 4334988480765557 r005 Re(z^2+c),c=-11/18+11/60*I,n=55 4334988497645958 m006 (3*ln(Pi)-1/6)/(1/4/Pi-5/6) 4334988516512647 k002 Champernowne real with 115*n^2-39*n-33 4334988519441474 a007 Real Root Of -129*x^4-389*x^3+850*x^2+660*x+754 4334988528585479 a001 32951280099/322*123^(3/10) 4334988546860667 h001 (-exp(2)+7)/(-6*exp(5)-7) 4334988551446886 r009 Im(z^3+c),c=-11/98+31/61*I,n=17 4334988564596504 r005 Re(z^2+c),c=-23/42+7/19*I,n=34 4334988575844764 a007 Real Root Of -664*x^4+144*x^3-881*x^2+575*x+450 4334988579880704 r005 Re(z^2+c),c=3/22+23/48*I,n=27 4334988600854831 r002 8th iterates of z^2 + 4334988601718946 a007 Real Root Of 23*x^4+994*x^3-141*x^2-407*x-925 4334988605756719 m001 Trott2nd^(Artin/ln(5)) 4334988610546483 m002 -2+Log[Pi]/4+2*ProductLog[Pi] 4334988616542653 k002 Champernowne real with 231/2*n^2-81/2*n-32 4334988639079150 m001 (ln(2)/ln(10)+Otter)/(-Salem+Tetranacci) 4334988643669140 r005 Im(z^2+c),c=43/122+3/31*I,n=56 4334988647009940 r005 Im(z^2+c),c=1/17+13/23*I,n=4 4334988652155955 r005 Im(z^2+c),c=-9/14+64/147*I,n=29 4334988667037487 a001 6/329*10946^(10/17) 4334988678504194 r009 Im(z^3+c),c=-45/94+23/61*I,n=35 4334988682347799 a001 76*(1/2*5^(1/2)+1/2)^21*7^(10/23) 4334988686738112 a007 Real Root Of 12*x^4+510*x^3-462*x^2-879*x-727 4334988697169009 r005 Im(z^2+c),c=-27/74+37/63*I,n=57 4334988698255558 m006 (5*Pi+1/6)/(2/Pi-3/5) 4334988708422406 r005 Im(z^2+c),c=-23/106+8/11*I,n=38 4334988716572659 k002 Champernowne real with 116*n^2-42*n-31 4334988725932234 a007 Real Root Of 940*x^4+199*x^3-313*x^2-931*x+413 4334988749325283 r002 54th iterates of z^2 + 4334988755405022 r005 Re(z^2+c),c=-43/70+1/4*I,n=15 4334988759130299 r002 42th iterates of z^2 + 4334988783350458 r005 Re(z^2+c),c=-41/66+1/58*I,n=51 4334988808920351 a007 Real Root Of 255*x^4+968*x^3-755*x^2-893*x-878 4334988813629603 r002 10th iterates of z^2 + 4334988813629603 r002 10th iterates of z^2 + 4334988816602665 k002 Champernowne real with 233/2*n^2-87/2*n-30 4334988832223337 a003 cos(Pi*3/95)*cos(Pi*41/115) 4334988859483884 a001 505618944676/13*6557470319842^(12/17) 4334988863889352 a001 1/1364*(1/2*5^(1/2)+1/2)^32*3^(3/17) 4334988881061757 r002 2th iterates of z^2 + 4334988897665838 l006 ln(3107/4793) 4334988903452578 a007 Real Root Of -2*x^4-869*x^3-867*x^2+415*x-474 4334988909317359 a007 Real Root Of 314*x^4-548*x^3+842*x^2-37*x-230 4334988913168501 r002 46th iterates of z^2 + 4334988916632671 k002 Champernowne real with 117*n^2-45*n-29 4334988924668791 m005 (1/2*Pi+3/4)/(1/7*2^(1/2)+1/3) 4334988930343768 m001 (gamma(3)-Cahen)/(Riemann1stZero+TwinPrimes) 4334988935957302 r005 Im(z^2+c),c=-27/62+27/47*I,n=39 4334988962472406 q001 1571/3624 4334988977970576 m001 Zeta(3)/Lehmer/exp(cosh(1)) 4334988980896268 r005 Im(z^2+c),c=-7/122+25/42*I,n=51 4334988986239344 m001 (1+3^(1/3))/(Champernowne+TreeGrowth2nd) 4334988989567240 m009 (16/3*Catalan+2/3*Pi^2-6)/(1/6*Psi(1,2/3)+3/4) 4334988991404436 m001 (GAMMA(7/12)+Totient)/Robbin 4334988996310688 a001 139583862445/521*123^(1/10) 4334988999879560 m001 1/GAMMA(13/24)^2*exp(Sierpinski)*Zeta(1,2)^2 4334989013362100 a001 7/233*433494437^(1/4) 4334989013960810 r005 Re(z^2+c),c=-37/64+11/26*I,n=62 4334989014671529 m001 (GAMMA(3/4)+Magata)/(OneNinth-Salem) 4334989016662677 k002 Champernowne real with 235/2*n^2-93/2*n-28 4334989029675323 r002 30th iterates of z^2 + 4334989036876264 s002 sum(A207688[n]/(n^2*10^n+1),n=1..infinity) 4334989049455093 b008 42+Sqrt[Pi]*Tanh[1] 4334989054217233 r002 16th iterates of z^2 + 4334989065973889 r005 Re(z^2+c),c=-19/32+5/16*I,n=63 4334989067441771 m001 Niven^Otter/(gamma(2)^Otter) 4334989077973722 a007 Real Root Of -397*x^4+705*x^3-670*x^2+449*x+392 4334989080923215 r005 Re(z^2+c),c=-61/98+1/53*I,n=38 4334989083886489 r005 Im(z^2+c),c=-7/10+33/122*I,n=9 4334989100848276 r005 Re(z^2+c),c=-33/94+34/55*I,n=24 4334989104340925 r009 Re(z^3+c),c=-55/118+9/58*I,n=59 4334989108500227 r005 Re(z^2+c),c=-2/3+16/253*I,n=16 4334989109330089 a007 Real Root Of 276*x^4-923*x^3+916*x^2-159*x-326 4334989116692683 k002 Champernowne real with 118*n^2-48*n-27 4334989117486170 r009 Im(z^3+c),c=-17/46+24/55*I,n=34 4334989124961394 r009 Im(z^3+c),c=-47/126+21/38*I,n=6 4334989134386351 r009 Im(z^3+c),c=-43/98+16/37*I,n=16 4334989144752669 m001 Riemann2ndZero/exp(MertensB1)/GAMMA(11/24)^2 4334989146426747 s002 sum(A211050[n]/((2*n)!),n=1..infinity) 4334989151309839 m001 1/Catalan*Backhouse*exp(sqrt(1+sqrt(3)))^2 4334989156216639 r005 Re(z^2+c),c=47/122+38/61*I,n=6 4334989161673193 r005 Re(z^2+c),c=-53/94+13/46*I,n=19 4334989161862309 r009 Im(z^3+c),c=-27/98+31/45*I,n=29 4334989171578968 r002 9th iterates of z^2 + 4334989183807639 a007 Real Root Of 578*x^4+329*x^3-163*x^2-932*x-367 4334989185462326 r005 Re(z^2+c),c=-2/3+1/44*I,n=22 4334989188600005 m001 Riemann3rdZero/(OrthogonalArrays-MinimumGamma) 4334989202027577 m001 arctan(1/2)^2/Catalan^2*exp(sqrt(2))^2 4334989207102905 r005 Im(z^2+c),c=19/56+10/31*I,n=61 4334989214828881 a007 Real Root Of 312*x^4+402*x^3+806*x^2+207*x-40 4334989216722689 k002 Champernowne real with 237/2*n^2-99/2*n-26 4334989225998012 r004 Im(z^2+c),c=1/20+7/13*I,z(0)=I,n=53 4334989242724506 m001 (FransenRobinson-Weierstrass)/ZetaQ(2) 4334989244795788 m001 1/2*HardyLittlewoodC3^MertensB3*2^(2/3) 4334989246038868 a007 Real Root Of -173*x^4-524*x^3+816*x^2-763*x-235 4334989250347427 r002 55th iterates of z^2 + 4334989272471823 m005 (1/3*3^(1/2)-2/11)/(7/9*Catalan+1/5) 4334989282647807 r005 Im(z^2+c),c=35/106+19/64*I,n=12 4334989283674335 l006 ln(5405/8338) 4334989285920257 a001 832040/7*199^(11/45) 4334989291033164 m001 1/exp(PrimesInBinary)^2/FeigenbaumC^2*gamma^2 4334989306701550 r009 Im(z^3+c),c=-63/118+19/60*I,n=24 4334989314169150 m001 ((1+3^(1/2))^(1/2)-Chi(1))/(Pi^(1/2)+OneNinth) 4334989316752695 k002 Champernowne real with 119*n^2-51*n-25 4334989329794187 m001 (-gamma+ln(gamma))/(1-2^(1/3)) 4334989341019956 r002 36th iterates of z^2 + 4334989349863408 m001 1/GAMMA(23/24)^2/ln(OneNinth)*Zeta(7)^2 4334989352209178 m005 (5*gamma-4/5)/(2/3*exp(1)+3) 4334989355428099 r002 21th iterates of z^2 + 4334989358833860 m005 (1/2*2^(1/2)-3/11)/(1/9*exp(1)+7/10) 4334989381600155 m005 (1/2*5^(1/2)-5/7)/(4/5*2^(1/2)-1/5) 4334989412918093 a007 Real Root Of -49*x^4+36*x^3+935*x^2-675*x-260 4334989416782701 k002 Champernowne real with 239/2*n^2-105/2*n-24 4334989430353099 b008 ArcCsc[11]/21 4334989453768879 m006 (5/6*exp(2*Pi)-3)/(3*Pi+4/5) 4334989459709417 m001 1/ln(FeigenbaumB)^2/Si(Pi)^2/Riemann1stZero^2 4334989468973915 a007 Real Root Of 150*x^4+422*x^3-879*x^2+408*x-307 4334989472942844 m001 (Thue-ZetaP(2))/(cos(1/12*Pi)-Trott2nd) 4334989473773589 r002 33th iterates of z^2 + 4334989515994712 a007 Real Root Of 420*x^4-18*x^3-134*x^2-904*x-383 4334989516812707 k002 Champernowne real with 120*n^2-54*n-23 4334989519351060 a005 (1/cos(39/217*Pi))^36 4334989522842109 m001 Landau*RenyiParking^StronglyCareFree 4334989523313590 r002 25th iterates of z^2 + 4334989545311994 m001 1/ln(PrimesInBinary)/Backhouse^2*cos(Pi/5) 4334989570487020 m001 Trott/(sin(1/5*Pi)-Chi(1)) 4334989580513005 r005 Re(z^2+c),c=-57/94+17/59*I,n=54 4334989582835940 m005 (1/2*Pi-6/7)/(4/9*Pi+1/4) 4334989609497750 r005 Im(z^2+c),c=-19/56+1/15*I,n=16 4334989611279370 m001 ln(BesselK(0,1))/DuboisRaymond/GAMMA(23/24) 4334989612765289 r002 63th iterates of z^2 + 4334989618336196 r005 Re(z^2+c),c=-49/82+21/64*I,n=52 4334989629283892 m005 (1/2*exp(1)-1)/(43/60+1/20*5^(1/2)) 4334989636931579 a001 2/1322157322203*3^(23/24) 4334989641359734 r002 33th iterates of z^2 + 4334989667348445 r005 Im(z^2+c),c=11/50+19/42*I,n=13 4334989678893869 m001 ln(GAMMA(1/4))*Riemann1stZero*cosh(1)^2 4334989698832135 h001 (-7*exp(-1)+7)/(-6*exp(-1)-8) 4334989698832135 m005 (1/2*exp(1)-1/2)/(4/7*exp(1)+3/7) 4334989704313644 r005 Im(z^2+c),c=7/40+17/37*I,n=27 4334989707008202 r005 Im(z^2+c),c=25/114+15/37*I,n=58 4334989707894789 r002 53th iterates of z^2 + 4334989711188650 m001 Zeta(5)/ln((2^(1/3)))*cos(Pi/12) 4334989730057850 m001 GAMMA(11/24)^2*BesselJ(1,1)/ln(cos(1))^2 4334989739986530 m005 (1/3*3^(1/2)+1/12)/(4/11*2^(1/2)-2/3) 4334989769073370 q001 1483/3421 4334989779810326 p003 LerchPhi(1/25,2,127/83) 4334989781120130 r005 Im(z^2+c),c=-11/74+19/31*I,n=46 4334989802724907 r002 17th iterates of z^2 + 4334989805575268 l006 ln(2298/3545) 4334989821323002 m001 1/Riemann1stZero^2/Khintchine^2*exp(Catalan)^2 4334989825131139 a007 Real Root Of -775*x^4+505*x^3+955*x^2+948*x+300 4334989832611649 r009 Re(z^3+c),c=-71/114+28/51*I,n=13 4334989834885772 m001 (Ei(1,1)+TreeGrowth2nd)/(Shi(1)+arctan(1/2)) 4334989836506507 r009 Re(z^3+c),c=-1/62+50/63*I,n=53 4334989865393535 a007 Real Root Of -217*x^4+192*x^3-297*x^2+904*x+471 4334989865545841 m009 (1/4*Pi^2-1/6)/(3/5*Psi(1,1/3)-3/4) 4334989868296352 r009 Im(z^3+c),c=-8/25+16/35*I,n=19 4334989874044114 r002 12th iterates of z^2 + 4334989874044114 r002 12th iterates of z^2 + 4334989877966472 a001 843/2504730781961*317811^(13/23) 4334989882680490 a007 Real Root Of 362*x^4-790*x^3+550*x^2-421*x-363 4334989890651043 r005 Im(z^2+c),c=-29/52+5/64*I,n=35 4334989904358937 a007 Real Root Of -119*x^4-452*x^3+232*x^2-286*x-397 4334989909630655 a003 sin(Pi*12/91)/sin(Pi*36/95) 4334989923150355 a003 cos(Pi*13/62)*cos(Pi*35/111) 4334989929213733 m001 1/GAMMA(5/6)/ln(FibonacciFactorial) 4334989956691265 m001 1/sin(1)^2/GAMMA(11/12)*exp(sin(Pi/5))^2 4334989960521631 r005 Re(z^2+c),c=-17/27+17/62*I,n=49 4334989971747421 a007 Real Root Of 232*x^4+834*x^3-910*x^2-654*x+277 4334989976071828 a007 Real Root Of -903*x^4-716*x^3-479*x^2+753*x+390 4334989990223723 p004 log(23567/15277) 4334989992760232 h001 (1/9*exp(2)+2/5)/(5/7*exp(1)+7/8) 4334989994157523 m001 (5^(1/2)-Shi(1)*PrimesInBinary)/PrimesInBinary 4334990002276324 r005 Re(z^2+c),c=-8/13+9/62*I,n=62 4334990004723774 m005 (1/2*exp(1)+1/9)/(Pi+1/4) 4334990012656402 b008 4+ArcSinh[Pi^2]^(-1) 4334990014392383 r002 35th iterates of z^2 + 4334990017825052 s002 sum(A095751[n]/(exp(n)),n=1..infinity) 4334990034544806 r005 Im(z^2+c),c=33/94+11/61*I,n=16 4334990042905483 m001 1/ln(Paris)/GlaisherKinkelin^2*GAMMA(17/24)^2 4334990048440293 m005 (1/2*Catalan-3/10)/(1/9*gamma-3/7) 4334990062928233 r009 Im(z^3+c),c=-31/78+11/26*I,n=28 4334990079515368 r009 Im(z^3+c),c=-23/102+19/33*I,n=5 4334990088252858 r005 Im(z^2+c),c=-139/110+2/55*I,n=45 4334990094138091 s002 sum(A153574[n]/(n^3*pi^n+1),n=1..infinity) 4334990095501259 s002 sum(A153574[n]/(n^3*pi^n-1),n=1..infinity) 4334990115205806 r002 37th iterates of z^2 + 4334990115205806 r002 37th iterates of z^2 + 4334990123219256 m001 (LaplaceLimit+Sarnak)/(exp(Pi)+Psi(2,1/3)) 4334990136701844 r002 29th iterates of z^2 + 4334990149582813 r005 Re(z^2+c),c=-9/14+35/104*I,n=39 4334990195323926 m005 (1/2*3^(1/2)-1/2)/(-15/112+7/16*5^(1/2)) 4334990214004998 h001 (3/4*exp(2)+7/9)/(5/11*exp(1)+2/9) 4334990222629608 m001 (Riemann3rdZero-Trott2nd)/(Zeta(3)-Kac) 4334990231156038 r009 Im(z^3+c),c=-25/122+23/47*I,n=9 4334990234517974 h001 (-6*exp(8)+7)/(-exp(6)-9) 4334990244321635 p001 sum((-1)^n/(321*n+116)/n/(5^n),n=1..infinity) 4334990256654241 r005 Re(z^2+c),c=-8/11+7/58*I,n=12 4334990256714630 a007 Real Root Of 929*x^4-992*x^3-40*x^2-271*x+173 4334990269153642 l006 ln(6085/9387) 4334990293221386 a007 Real Root Of -420*x^4+359*x^3-400*x^2+124*x+173 4334990294047255 a007 Real Root Of -584*x^4-998*x^3-169*x^2+502*x+22 4334990302398423 r005 Im(z^2+c),c=-73/126+33/50*I,n=5 4334990307655587 m001 Lehmer*HardHexagonsEntropy^2*exp(Robbin)^2 4334990310329117 r002 23th iterates of z^2 + 4334990314826483 r005 Re(z^2+c),c=5/46+5/18*I,n=2 4334990342421606 r002 37th iterates of z^2 + 4334990343340656 r009 Im(z^3+c),c=-1/98+33/43*I,n=10 4334990354704064 m001 (Cahen-KhinchinLevy)/(Niven-ZetaP(2)) 4334990359102578 r005 Re(z^2+c),c=-39/64+1/12*I,n=20 4334990368029182 r005 Re(z^2+c),c=-11/20+6/17*I,n=29 4334990401578811 r002 13th iterates of z^2 + 4334990405287542 m001 (5^(1/2)-Bloch)/(Rabbit+ReciprocalFibonacci) 4334990409744966 r002 4th iterates of z^2 + 4334990410284709 r002 38th iterates of z^2 + 4334990411926596 m009 (1/4*Psi(1,1/3)+5/6)/(2/5*Psi(1,2/3)-2) 4334990424076182 m001 (1+Zeta(1,-1))/(Lehmer+MertensB3) 4334990425108509 m001 (-DuboisRaymond+FeigenbaumDelta)/(gamma-ln(5)) 4334990429509729 r005 Im(z^2+c),c=9/70+29/60*I,n=44 4334990435106976 h001 (5/6*exp(1)+10/11)/(7/8*exp(2)+6/7) 4334990437186760 r002 28th iterates of z^2 + 4334990438906426 a007 Real Root Of 946*x^4+189*x^3+598*x^2-878*x-511 4334990446453726 m001 Riemann3rdZero/FeigenbaumB/ln(2) 4334990452321641 a007 Real Root Of 816*x^4-884*x^3+460*x^2-959*x-603 4334990460860681 m005 (1/2*gamma-4)/(39/56+1/14*5^(1/2)) 4334990478726292 s002 sum(A122732[n]/(n^3*2^n-1),n=1..infinity) 4334990501403999 a001 9227465/3*29^(11/14) 4334990510977497 r005 Re(z^2+c),c=-31/50+1/14*I,n=64 4334990513892337 s002 sum(A276910[n]/(2^n+1),n=1..infinity) 4334990514635716 r005 Re(z^2+c),c=-33/94+32/55*I,n=34 4334990517930292 s002 sum(A276910[n]/(2^n-1),n=1..infinity) 4334990521575436 r005 Im(z^2+c),c=1/106+4/7*I,n=62 4334990527216468 r005 Im(z^2+c),c=19/64+11/34*I,n=38 4334990550458914 l006 ln(3787/5842) 4334990551982086 m001 (Magata-MertensB1)/(TravellingSalesman+Trott) 4334990573456762 m005 (1/2*3^(1/2)-9/10)/(2/5*3^(1/2)+1/11) 4334990577405042 r005 Im(z^2+c),c=-7/54+8/13*I,n=8 4334990591261167 r009 Im(z^3+c),c=-55/122+24/61*I,n=16 4334990593225094 b008 4+ProductLog[15]/6 4334990593471922 a007 Real Root Of -158*x^4-865*x^3-828*x^2-157*x+210 4334990594713236 m005 (-1/28+1/4*5^(1/2))/(1/2*Pi-4/11) 4334990603144650 a007 Real Root Of 255*x^4-405*x^3+590*x^2-171*x-227 4334990603269928 r005 Re(z^2+c),c=-5/8+53/181*I,n=13 4334990605723687 r002 35th iterates of z^2 + 4334990626975139 r009 Re(z^3+c),c=-7/106+23/47*I,n=16 4334990647866971 m001 (-HardHexagonsEntropy+Landau)/(1+cos(1/12*Pi)) 4334990649806157 r005 Im(z^2+c),c=9/29+20/61*I,n=39 4334990668015883 r005 Re(z^2+c),c=-5/8+47/213*I,n=17 4334990670520063 r005 Im(z^2+c),c=2/9+25/61*I,n=26 4334990673449770 r005 Re(z^2+c),c=-21/34+11/106*I,n=47 4334990677439403 q001 1395/3218 4334990680388482 r009 Im(z^3+c),c=-9/86+28/55*I,n=17 4334990680408022 m001 (BesselI(1,1)-FeigenbaumMu)/ln(2) 4334990688545830 m006 (2/3*exp(2*Pi)-1/2)/(1/2*ln(Pi)+1/4) 4334990694252077 r002 2th iterates of z^2 + 4334990711477311 a007 Real Root Of 236*x^4-705*x^3+415*x^2-79*x-178 4334990717747487 a007 Real Root Of -220*x^4-929*x^3+232*x^2+677*x+587 4334990723889567 r002 3th iterates of z^2 + 4334990725933369 m001 GAMMA(1/4)^2*exp(Si(Pi))/GAMMA(11/24) 4334990727833809 r005 Im(z^2+c),c=-11/78+43/64*I,n=38 4334990736330281 r005 Im(z^2+c),c=1/32+32/59*I,n=35 4334990745445339 m001 (Riemann2ndZero+Sarnak)/(3^(1/2)-Grothendieck) 4334990748874734 a007 Real Root Of -978*x^4+865*x^3+547*x^2+740*x+323 4334990752299310 a007 Real Root Of 258*x^4+842*x^3-977*x^2+952*x-32 4334990765197026 r005 Im(z^2+c),c=-49/74+17/48*I,n=32 4334990771667667 r009 Re(z^3+c),c=-5/122+35/57*I,n=3 4334990775196952 r005 Re(z^2+c),c=-33/32+5/39*I,n=20 4334990785529651 s002 sum(A207599[n]/((exp(n)-1)/n),n=1..infinity) 4334990787719003 r005 Re(z^2+c),c=-5/8+3/184*I,n=32 4334990790102099 a003 sin(Pi*7/34)*sin(Pi*23/90) 4334990791913546 r002 36th iterates of z^2 + 4334990805255665 r002 50th iterates of z^2 + 4334990809668007 r005 Im(z^2+c),c=19/70+19/54*I,n=44 4334990855052583 r005 Im(z^2+c),c=-7/18+7/12*I,n=3 4334990867239581 m001 1/Robbin*DuboisRaymond^2*ln(log(2+sqrt(3)))^2 4334990872453416 a007 Real Root Of 59*x^4+4*x^3+723*x^2-453*x-334 4334990874898362 l006 ln(5276/8139) 4334990876377110 g003 Im(GAMMA(289/60+I*(-143/60))) 4334990896251164 a001 47/2*75025^(3/55) 4334990901648221 r009 Im(z^3+c),c=-1/10+25/49*I,n=11 4334990919447612 r002 5th iterates of z^2 + 4334990926408858 a008 Real Root of x^4-x^3-19*x^2+22*x-10 4334990930042225 a003 cos(Pi*23/55)+cos(Pi*27/61) 4334990930922501 a007 Real Root Of -677*x^4+961*x^3-172*x^2+98*x+177 4334990955906107 r009 Im(z^3+c),c=-5/21+15/31*I,n=31 4334990955920695 a001 1/29*(1/2*5^(1/2)+1/2)^15*123^(6/13) 4334990975138087 r005 Re(z^2+c),c=-59/94+11/63*I,n=21 4334990987873841 a001 1364/377*2178309^(17/35) 4334990996809466 r005 Re(z^2+c),c=21/94+7/18*I,n=42 4334991002029313 h001 (-9*exp(3/2)+2)/(-3*exp(2/3)-3) 4334991002964446 r002 62th iterates of z^2 + 4334991033206645 m001 1/BesselK(0,1)/Salem^2*ln(sqrt(1+sqrt(3)))^2 4334991056927246 a007 Real Root Of 955*x^4-672*x^3-581*x^2-800*x+477 4334991090363080 r002 51th iterates of z^2 + 4334991097244449 m001 (-gamma(3)+GAMMA(13/24))/(arctan(1/2)-sin(1)) 4334991113502350 r002 58th iterates of z^2 + 4334991115423725 a007 Real Root Of -228*x^4-917*x^3+120*x^2-802*x+83 4334991117816808 r005 Re(z^2+c),c=45/122+15/52*I,n=12 4334991117908363 a007 Real Root Of 132*x^4+491*x^3-147*x^2+773*x-503 4334991118858804 r002 32th iterates of z^2 + 4334991127367197 r005 Im(z^2+c),c=3/10+26/55*I,n=5 4334991144039378 r005 Im(z^2+c),c=29/106+20/57*I,n=54 4334991154372046 a007 Real Root Of 59*x^4+291*x^3+189*x^2+380*x+966 4334991163774423 m001 gamma(1)+MasserGramainDelta+Sierpinski 4334991200816052 r005 Re(z^2+c),c=-9/17+11/25*I,n=64 4334991217179832 m005 (25/12+1/12*5^(1/2))/(1/6*2^(1/2)+5) 4334991225577103 s002 sum(A093806[n]/(exp(2*pi*n)+1),n=1..infinity) 4334991231209265 r002 40th iterates of z^2 + 4334991246798426 r002 33th iterates of z^2 + 4334991254344407 a007 Real Root Of -651*x^4+289*x^3-236*x^2-295*x-37 4334991263166149 a001 1/2576*53316291173^(8/17) 4334991278224991 m001 FeigenbaumKappa^BesselI(1,1)/Trott2nd 4334991282693440 m001 Niven/MadelungNaCl^2/ln(GAMMA(1/4)) 4334991286435192 b008 -1/2+Pi^2/E^5 4334991288430592 a007 Real Root Of 392*x^4-31*x^3-49*x^2-863*x+372 4334991294884735 m001 exp(gamma)/BesselI(0,1)*GAMMA(7/24) 4334991303561927 a005 (1/cos(7/176*Pi))^1070 4334991305910539 a003 cos(Pi*27/88)-cos(Pi*47/103) 4334991350556730 r005 Im(z^2+c),c=-41/34+13/120*I,n=28 4334991383520175 r005 Re(z^2+c),c=-11/30+35/57*I,n=13 4334991398657620 a007 Real Root Of 213*x^4+997*x^3+214*x^2-421*x+153 4334991408572817 m001 1/exp(FeigenbaumAlpha)^2/Cahen^2*GAMMA(1/3) 4334991408631893 m001 (Kolakoski+ZetaQ(4))/(AlladiGrinstead-Kac) 4334991446325554 r005 Im(z^2+c),c=31/86+11/42*I,n=35 4334991461316975 m001 (Pi+Psi(1,1/3))/cos(1)/BesselI(1,1) 4334991473067837 m001 LambertW(1)-Zeta(1/2)^ZetaQ(4) 4334991481040702 a001 1/76*(1/2*5^(1/2)+1/2)^19*1364^(13/16) 4334991498125507 m001 exp(1)^2/cos(Pi/12)^2/ln(sin(Pi/12))^2 4334991504025634 r009 Re(z^3+c),c=-13/38+21/31*I,n=13 4334991515557512 a007 Real Root Of 881*x^4+19*x^3+759*x^2-221*x-268 4334991524496830 m001 (Salem-TreeGrowth2nd)/(Zeta(5)+Robbin) 4334991525846272 a007 Real Root Of 367*x^4-388*x^3+928*x^2-646*x-499 4334991532998908 r002 53th iterates of z^2 + 4334991556342852 a003 cos(Pi*16/67)-cos(Pi*44/109) 4334991571171006 m001 (exp(1)+ln(Pi))/(-Conway+ThueMorse) 4334991572653940 a007 Real Root Of -71*x^4-19*x^3+101*x^2+526*x+210 4334991574299589 r009 Re(z^3+c),c=-10/19+19/56*I,n=41 4334991581880540 a007 Real Root Of -x^4+846*x^3-157*x^2+458*x+297 4334991590884809 a005 (1/cos(33/164*Pi))^39 4334991595334040 r005 Im(z^2+c),c=21/62+5/18*I,n=42 4334991602922812 b008 1/3+3^((-2*Pi)/3) 4334991607835610 r005 Re(z^2+c),c=-65/126+27/59*I,n=30 4334991613342768 r005 Re(z^2+c),c=-59/90+5/17*I,n=45 4334991616791251 h001 (3/11*exp(1)+8/11)/(10/11*exp(1)+11/12) 4334991622322677 a007 Real Root Of 704*x^4-969*x^3+551*x^2-133*x-265 4334991630824423 a007 Real Root Of 264*x^4+955*x^3-816*x^2-42*x-280 4334991632529913 m001 (-Kac+ZetaP(3))/(Psi(1,1/3)+HardyLittlewoodC4) 4334991646355580 r002 64th iterates of z^2 + 4334991656003952 r002 27th iterates of z^2 + 4334991671317136 p001 sum((-1)^n/(449*n+23)/(16^n),n=0..infinity) 4334991679167979 a001 1/774004377960*63245986^(17/24) 4334991682009966 r009 Im(z^3+c),c=-23/54+11/27*I,n=60 4334991682588597 r009 Im(z^3+c),c=-31/64+25/51*I,n=46 4334991683917728 r002 34th iterates of z^2 + 4334991685968908 l006 ln(37/2824) 4334991695675373 r005 Re(z^2+c),c=-65/106+3/20*I,n=39 4334991697634939 a001 2971215073/521*322^(3/4) 4334991700050892 l006 ln(1489/2297) 4334991700050892 p004 log(2297/1489) 4334991706968832 m005 (1/3*Catalan-3/7)/(7/12*Catalan-1/4) 4334991708126036 q001 1307/3015 4334991724831592 a007 Real Root Of -69*x^4-58*x^3+793*x^2-961*x+574 4334991731136624 m001 (Si(Pi)-ln(gamma))/(-GAMMA(23/24)+Bloch) 4334991746041305 m001 1/GAMMA(3/4)^2/exp(BesselK(1,1))/sin(1) 4334991754448196 r005 Im(z^2+c),c=-7/106+37/63*I,n=32 4334991763603953 h001 (1/12*exp(1)+5/8)/(3/5*exp(1)+1/3) 4334991769715274 a007 Real Root Of 53*x^4+205*x^3-52*x^2+46*x-840 4334991792554834 r005 Re(z^2+c),c=-75/118+10/39*I,n=40 4334991801445047 r002 60th iterates of z^2 + 4334991803570951 r005 Re(z^2+c),c=-71/98+11/37*I,n=11 4334991843183170 r009 Im(z^3+c),c=-23/50+12/31*I,n=47 4334991843289165 r005 Im(z^2+c),c=-39/58+5/36*I,n=18 4334991844575064 m001 (Porter+Thue)/(Psi(2,1/3)+MinimumGamma) 4334991855124056 m001 (-Thue+ZetaP(4))/(Shi(1)+RenyiParking) 4334991878031332 r005 Im(z^2+c),c=1/56+32/57*I,n=42 4334991908432674 a007 Real Root Of 208*x^4+960*x^3+353*x^2+315*x-517 4334991912202018 m001 Si(Pi)*MadelungNaCl+ln(3) 4334991912202018 m001 ln(3)+Si(Pi)*MadelungNaCl 4334991916169982 r009 Im(z^3+c),c=-15/32+11/29*I,n=39 4334991934657144 a007 Real Root Of 244*x^4-850*x^3-982*x^2-604*x+507 4334991935133222 m001 (Kac-cos(1))/(Kolakoski+Salem) 4334991937818846 m001 (KhinchinLevy+Tribonacci)^PisotVijayaraghavan 4334991939950444 r002 13th iterates of z^2 + 4334991951673961 r009 Im(z^3+c),c=-5/21+15/31*I,n=33 4334991956972103 r009 Im(z^3+c),c=-35/66+17/55*I,n=11 4334991964965260 r002 28th iterates of z^2 + 4334991967476159 r009 Re(z^3+c),c=-55/118+9/58*I,n=43 4334991979466533 r005 Re(z^2+c),c=-43/74+13/42*I,n=42 4334991987268745 m001 exp(Pi)^Zeta(3)-HardyLittlewoodC4 4334991992829042 r009 Im(z^3+c),c=-17/38+15/38*I,n=47 4334992013644282 m001 (GaussAGM-MasserGramainDelta)/BesselI(0,2) 4334992028002221 r009 Im(z^3+c),c=-9/31+7/15*I,n=12 4334992060630249 r009 Im(z^3+c),c=-23/54+11/27*I,n=63 4334992069093496 r002 37th iterates of z^2 + 4334992080767445 h001 (7/9*exp(1)+5/7)/(7/9*exp(2)+7/9) 4334992088224226 m001 (ln(2)*Niven+MasserGramainDelta)/ln(2) 4334992093266133 r009 Im(z^3+c),c=-23/54+11/27*I,n=62 4334992100944064 r005 Re(z^2+c),c=-69/52+1/55*I,n=30 4334992109497105 m001 Paris^PrimesInBinary/(Paris^ZetaQ(2)) 4334992111371788 r009 Im(z^3+c),c=-5/21+15/31*I,n=36 4334992115851829 r009 Im(z^3+c),c=-9/74+20/39*I,n=7 4334992128727360 r009 Im(z^3+c),c=-23/36+34/61*I,n=6 4334992131020439 r005 Im(z^2+c),c=-5/34+40/59*I,n=56 4334992139551231 r002 28th iterates of z^2 + 4334992143280650 m001 (Shi(1)-ln(2)/ln(10))/(MertensB2+Rabbit) 4334992152750228 a001 6/329*14930352^(8/17) 4334992154452542 m001 Riemann3rdZero^Rabbit*Riemann3rdZero^Salem 4334992156109500 r005 Im(z^2+c),c=-3/4+6/121*I,n=60 4334992161365817 r009 Im(z^3+c),c=-23/62+25/36*I,n=40 4334992179289260 m002 -4/E^Pi+3*Log[Pi]+ProductLog[Pi] 4334992192097648 m001 ln(2+3^(1/2))/CopelandErdos*StronglyCareFree 4334992214099267 r009 Im(z^3+c),c=-5/21+15/31*I,n=34 4334992214535801 g001 Psi(1/7,25/89) 4334992236411088 b008 -6+Log[37/7] 4334992236652709 r002 40th iterates of z^2 + 4334992238854260 r009 Im(z^3+c),c=-5/21+15/31*I,n=38 4334992240597495 r009 Im(z^3+c),c=-5/21+15/31*I,n=41 4334992240836897 r009 Im(z^3+c),c=-5/21+15/31*I,n=39 4334992244682788 r005 Re(z^2+c),c=-67/122+15/43*I,n=27 4334992249637221 r009 Im(z^3+c),c=-13/27+14/53*I,n=7 4334992252839205 r009 Im(z^3+c),c=-5/21+15/31*I,n=44 4334992253895050 r009 Im(z^3+c),c=-5/21+15/31*I,n=46 4334992254939840 r009 Im(z^3+c),c=-5/21+15/31*I,n=49 4334992255152470 r009 Im(z^3+c),c=-5/21+15/31*I,n=51 4334992255228832 r009 Im(z^3+c),c=-5/21+15/31*I,n=54 4334992255259793 r009 Im(z^3+c),c=-5/21+15/31*I,n=56 4334992255263672 r009 Im(z^3+c),c=-5/21+15/31*I,n=43 4334992255263763 r009 Im(z^3+c),c=-5/21+15/31*I,n=59 4334992255266269 r009 Im(z^3+c),c=-5/21+15/31*I,n=57 4334992255267557 r009 Im(z^3+c),c=-5/21+15/31*I,n=62 4334992255267608 r009 Im(z^3+c),c=-5/21+15/31*I,n=64 4334992255267638 r009 Im(z^3+c),c=-5/21+15/31*I,n=61 4334992255268670 r009 Im(z^3+c),c=-5/21+15/31*I,n=63 4334992255270196 r009 Im(z^3+c),c=-5/21+15/31*I,n=60 4334992255273106 r009 Im(z^3+c),c=-5/21+15/31*I,n=58 4334992255279946 r009 Im(z^3+c),c=-5/21+15/31*I,n=52 4334992255292502 r009 Im(z^3+c),c=-5/21+15/31*I,n=55 4334992255302988 r009 Im(z^3+c),c=-5/21+15/31*I,n=53 4334992255443482 r009 Im(z^3+c),c=-5/21+15/31*I,n=48 4334992255520158 r009 Im(z^3+c),c=-5/21+15/31*I,n=50 4334992255653197 r009 Im(z^3+c),c=-5/21+15/31*I,n=47 4334992257659970 r009 Im(z^3+c),c=-5/21+15/31*I,n=45 4334992261292935 r009 Im(z^3+c),c=-5/21+15/31*I,n=42 4334992262905504 m001 ln(Salem)*FeigenbaumAlpha^2/GAMMA(1/24) 4334992269804977 a007 Real Root Of 68*x^4+17*x^3-978*x^2+959*x-93 4334992274796707 m001 Trott*FibonacciFactorial^2*exp(GAMMA(13/24))^2 4334992276098095 r009 Im(z^3+c),c=-5/21+15/31*I,n=40 4334992277918090 a007 Real Root Of 184*x^4+710*x^3-637*x^2-941*x+752 4334992288194580 m001 (-2^(1/2)+1/2)/(3^(1/3)+2/3) 4334992293516380 s002 sum(A133602[n]/(n*exp(pi*n)+1),n=1..infinity) 4334992330507115 m005 (1/2*Zeta(3)+3/5)/(7/10*Pi+4/7) 4334992330999114 r009 Im(z^3+c),c=-5/21+15/31*I,n=37 4334992338209192 a007 Real Root Of -221*x^4-901*x^3+169*x^2-168*x+742 4334992342524067 r005 Re(z^2+c),c=-1+93/161*I,n=4 4334992345125026 r005 Re(z^2+c),c=-45/74+9/55*I,n=33 4334992356798758 r005 Im(z^2+c),c=1/29+7/13*I,n=32 4334992358530281 m001 ZetaP(4)*(BesselI(0,1)-FeigenbaumC) 4334992364246005 m005 (11/12+1/4*5^(1/2))/(8/9*2^(1/2)-11/12) 4334992380804380 a003 sin(Pi*15/76)*sin(Pi*26/97) 4334992398379335 s002 sum(A098219[n]/((exp(n)+1)*n),n=1..infinity) 4334992399760478 a007 Real Root Of -837*x^4+153*x^3+593*x^2+945*x-504 4334992400961215 r005 Im(z^2+c),c=-27/86+3/46*I,n=19 4334992402845029 r009 Im(z^3+c),c=-13/24+9/46*I,n=34 4334992403934487 r009 Re(z^3+c),c=-21/40+5/19*I,n=17 4334992409887227 m001 1/exp(LandauRamanujan)^2*Conway^2*Salem 4334992418386583 r009 Im(z^3+c),c=-5/21+15/31*I,n=35 4334992421377537 r005 Re(z^2+c),c=-41/66+9/44*I,n=37 4334992432285778 a005 (1/sin(38/185*Pi))^21 4334992432876352 m001 1/GAMMA(1/3)^2*FeigenbaumD^2/exp(Pi) 4334992437297508 a007 Real Root Of -447*x^4+493*x^3+233*x^2+431*x-255 4334992440886603 a007 Real Root Of -715*x^4+648*x^3-195*x^2+905*x+507 4334992447236664 r002 56th iterates of z^2 + 4334992452654126 a007 Real Root Of -221*x^4-852*x^3+297*x^2-772*x-290 4334992456694661 a007 Real Root Of -952*x^4+823*x^3-297*x^2+541*x+391 4334992467791757 r009 Re(z^3+c),c=-23/122+38/43*I,n=62 4334992477682919 a007 Real Root Of -168*x^4-929*x^3-869*x^2+87*x+356 4334992492150081 r002 63th iterates of z^2 + 4334992498061699 m001 Tribonacci*exp(Magata)^2*sin(Pi/12) 4334992500301497 r005 Re(z^2+c),c=-23/38+2/13*I,n=22 4334992501950182 r005 Re(z^2+c),c=-19/40+15/29*I,n=42 4334992503894282 r002 6th iterates of z^2 + 4334992503894282 r002 6th iterates of z^2 + 4334992513775424 a007 Real Root Of 611*x^4-155*x^3-951*x^2-222*x+266 4334992536267203 m005 (1/3*5^(1/2)-2/11)/(6*5^(1/2)-5/12) 4334992539884508 r002 54th iterates of z^2 + 4334992541930304 a007 Real Root Of -682*x^4+948*x^3+30*x^2+153*x+162 4334992544341257 b008 -8/15+ArcCsch[10] 4334992545884268 l006 ln(5147/7940) 4334992549991221 m001 exp(OneNinth)^2*Niven^2*Zeta(3) 4334992552489911 r005 Im(z^2+c),c=5/86+28/55*I,n=16 4334992562023451 m008 (1/4*Pi-1)/(1/2*Pi^4+4/5) 4334992568852057 r009 Re(z^3+c),c=-1/62+4/5*I,n=26 4334992584436453 r002 52th iterates of z^2 + 4334992592901430 a001 8/7*15127^(29/47) 4334992594069609 r009 Re(z^3+c),c=-7/13+11/54*I,n=23 4334992595331997 r005 Re(z^2+c),c=11/40+1/53*I,n=51 4334992601534039 r009 Im(z^3+c),c=-11/30+3/7*I,n=11 4334992609801336 m001 GAMMA(1/4)^ln(3)/(GAMMA(1/4)^MadelungNaCl) 4334992614271568 r005 Im(z^2+c),c=23/66+3/19*I,n=32 4334992623294115 m004 -10/3+Sqrt[5]*Pi*Cot[Sqrt[5]*Pi] 4334992627394304 r005 Re(z^2+c),c=35/118+3/61*I,n=19 4334992627599585 r009 Im(z^3+c),c=-3/74+25/48*I,n=6 4334992633930074 a001 843*(1/2*5^(1/2)+1/2)^3*3^(3/17) 4334992644124375 r005 Re(z^2+c),c=-11/18+10/43*I,n=46 4334992651810480 m001 CareFree+FeigenbaumD^Mills 4334992653571750 a001 2/89*34^(47/56) 4334992655343911 m001 Pi/Psi(2,1/3)+Ei(1)*sin(1/12*Pi) 4334992678104545 r002 44th iterates of z^2 + 4334992678104545 r002 44th iterates of z^2 + 4334992682042098 m001 1/Riemann1stZero^2/Artin*exp(sinh(1)) 4334992683760264 a001 19/208010*89^(17/49) 4334992710611188 b008 43+Sqrt[6]/7 4334992722138017 m001 (BesselJ(0,1)-ln(Pi))/ZetaQ(3) 4334992723110250 m001 Lehmer*Trott-TreeGrowth2nd 4334992725735781 r005 Im(z^2+c),c=5/54+18/35*I,n=29 4334992761725417 m001 Lehmer/(ReciprocalLucas^arctan(1/2)) 4334992781429298 a007 Real Root Of 835*x^4-352*x^3+328*x^2-997*x-552 4334992787225407 r009 Im(z^3+c),c=-23/54+11/27*I,n=49 4334992797894664 b008 CosIntegral[2/13]/3 4334992800943821 r005 Re(z^2+c),c=-53/90+15/61*I,n=30 4334992806802301 m005 (1/2*gamma+1/5)/(5*5^(1/2)+1/11) 4334992824614131 g001 abs(GAMMA(58/15+I*21/20)) 4334992836240492 r009 Im(z^3+c),c=-5/21+15/31*I,n=29 4334992842998336 m005 (1/2*2^(1/2)-3/11)/(1/7*2^(1/2)+4/5) 4334992869402954 m005 (1/2*3^(1/2)-6/11)/(1/8*Catalan+5/8) 4334992880916422 r005 Re(z^2+c),c=-51/82+1/47*I,n=40 4334992883027773 r005 Im(z^2+c),c=-1/56+15/26*I,n=46 4334992887624466 q001 1219/2812 4334992890183290 l006 ln(3658/5643) 4334992891282562 m005 (1/2*2^(1/2)-5/8)/(6*Pi+1/11) 4334992893428340 m001 (Psi(1,1/3)+Zeta(1,-1))/(Backhouse+GaussAGM) 4334992896680237 m001 (GlaisherKinkelin-Paris)/(Zeta(3)+GAMMA(7/12)) 4334992902234890 m001 (-GAMMA(7/12)+FransenRobinson)/(Si(Pi)+ln(3)) 4334992908960825 r009 Im(z^3+c),c=-5/24+28/57*I,n=16 4334992919411365 m001 (HardyLittlewoodC4+Weierstrass)^Magata 4334992936897400 m001 HardyLittlewoodC5^OneNinth-Weierstrass 4334992938238776 r005 Re(z^2+c),c=-71/118+12/37*I,n=55 4334992948276504 g007 Psi(2,6/11)-Psi(2,2/9)-Psi(2,4/7)-Psi(2,1/5) 4334992954115354 s001 sum(exp(-2*Pi/5)^n*A178527[n],n=1..infinity) 4334992954115354 s002 sum(A178527[n]/(exp(2/5*pi*n)),n=1..infinity) 4334992959209366 m005 (1/2*5^(1/2)-7/11)/(1/7*2^(1/2)+10/11) 4334992971873210 a007 Real Root Of 505*x^4+470*x^3+627*x^2-968*x-517 4334992983048761 m005 (1/2*5^(1/2)+9/10)/(11/12*Zeta(3)-7/11) 4334992989338340 r005 Re(z^2+c),c=-73/118+3/49*I,n=38 4334992999116028 a007 Real Root Of -713*x^4+977*x^3-666*x^2+450*x+425 4334993001363719 a007 Real Root Of -136*x^4-650*x^3-412*x^2-572*x+339 4334993006628383 a007 Real Root Of -167*x^4-898*x^3-609*x^2+522*x-472 4334993012116779 m005 (1/2*2^(1/2)-1/8)/(2/3*2^(1/2)+2/5) 4334993029470630 a007 Real Root Of -412*x^4-950*x^3-510*x^2+609*x+297 4334993087533516 m001 (1-BesselK(0,1))/(-cos(1/12*Pi)+FeigenbaumB) 4334993089334430 r005 Im(z^2+c),c=-79/66+7/38*I,n=21 4334993097001766 r009 Im(z^3+c),c=-5/21+15/31*I,n=32 4334993107604357 a007 Real Root Of -280*x^4-995*x^3+740*x^2-970*x-287 4334993115977122 r005 Im(z^2+c),c=-1/8+22/35*I,n=32 4334993116344239 r009 Im(z^3+c),c=-27/56+13/35*I,n=44 4334993121809134 r005 Re(z^2+c),c=-43/70+7/44*I,n=55 4334993123118261 r005 Re(z^2+c),c=-41/66+2/53*I,n=51 4334993127148482 a007 Real Root Of 299*x^4+5*x^3-593*x^2-977*x+524 4334993139072721 p003 LerchPhi(1/1024,6,13/166) 4334993139693955 p003 LerchPhi(1/512,6,13/166) 4334993140936494 p003 LerchPhi(1/256,6,13/166) 4334993143541163 p003 LerchPhi(1/125,6,13/166) 4334993144746396 r002 41th iterates of z^2 + 4334993144813825 p003 LerchPhi(1/100,6,13/166) 4334993148393720 p003 LerchPhi(1/64,6,13/166) 4334993158342016 p003 LerchPhi(1/32,6,13/166) 4334993161236318 m009 (3*Psi(1,2/3)-1/2)/(3/5*Psi(1,2/3)+1/6) 4334993163915730 p003 LerchPhi(1/25,6,13/166) 4334993165037338 m001 GAMMA(23/24)/GAMMA(2/3)/MadelungNaCl 4334993165037338 m001 GAMMA(23/24)/MadelungNaCl/GAMMA(2/3) 4334993177279705 h001 (5/7*exp(2)+7/8)/(3/8*exp(1)+2/5) 4334993178256976 p003 LerchPhi(1/16,6,13/166) 4334993191547312 p003 LerchPhi(1/12,6,13/166) 4334993194303250 l006 ln(5827/8989) 4334993196503028 m001 (sin(1/12*Pi)+HardyLittlewoodC4)/Mills 4334993202187522 p003 LerchPhi(1/10,6,13/166) 4334993202251834 s002 sum(A213892[n]/(n!^2),n=1..infinity) 4334993209600659 p001 sum(1/(505*n+233)/(32^n),n=0..infinity) 4334993213259229 a007 Real Root Of -399*x^4-92*x^3+210*x^2+408*x+144 4334993218161156 p003 LerchPhi(1/8,6,13/166) 4334993219691711 r009 Im(z^3+c),c=-25/66+19/44*I,n=26 4334993222921744 r005 Re(z^2+c),c=-43/42+13/55*I,n=48 4334993228914082 r009 Re(z^3+c),c=-83/122+21/41*I,n=20 4334993244819694 p003 LerchPhi(1/6,6,13/166) 4334993264173278 a005 (1/cos(23/140*Pi))^159 4334993266179086 p003 LerchPhi(1/5,6,13/166) 4334993270142869 a007 Real Root Of 178*x^4+839*x^3+151*x^2-826*x-930 4334993272167034 m001 (3^(1/2)+FellerTornier)/(-PlouffeB+ZetaQ(4)) 4334993286196843 r002 51th iterates of z^2 + 4334993293774752 m001 (Kac-TreeGrowth2nd)/(Pi+ln(Pi)) 4334993293823607 m001 LandauRamanujan^2/ln(Cahen)^2/FeigenbaumB^2 4334993298768934 r005 Im(z^2+c),c=3/10+15/47*I,n=43 4334993303024845 r005 Re(z^2+c),c=-3/5+19/85*I,n=27 4334993308756365 m001 (-Artin+Stephens)/(3^(1/2)-BesselI(0,1)) 4334993310440533 a001 1/76*(1/2*5^(1/2)+1/2)^28*3571^(3/16) 4334993316230664 r005 Im(z^2+c),c=19/66+17/40*I,n=21 4334993319577784 a007 Real Root Of -162*x^4-835*x^3-658*x^2-473*x-498 4334993329596448 a001 2/433494437*610^(17/24) 4334993337230192 r009 Im(z^3+c),c=-5/21+15/31*I,n=30 4334993344868699 r005 Im(z^2+c),c=-53/90+39/62*I,n=63 4334993351722106 r005 Re(z^2+c),c=-39/70+22/61*I,n=25 4334993351912509 p003 LerchPhi(1/3,6,13/166) 4334993360167238 a007 Real Root Of -596*x^4+743*x^3-871*x^2+673*x+537 4334993361692227 a001 726103/281*199^(30/31) 4334993368352285 r005 Im(z^2+c),c=-35/58+19/44*I,n=43 4334993369700663 r004 Re(z^2+c),c=1/5+4/11*I,z(0)=exp(5/8*I*Pi),n=60 4334993371014408 a001 1/76*(1/2*5^(1/2)+1/2)^22*24476^(7/16) 4334993371080392 a001 1/76*(1/2*5^(1/2)+1/2)^30*9349^(1/16) 4334993373850305 a001 1/76*(1/2*5^(1/2)+1/2)^24*64079^(5/16) 4334993378673918 r009 Im(z^3+c),c=-31/55*I,n=4 4334993398891314 r002 61th iterates of z^2 + 4334993398891314 r002 61th iterates of z^2 + 4334993410702400 b008 43+Csch[Sqrt[Pi]] 4334993415423199 m009 (-4+1/2*Pi^2)/(3/4*Psi(1,3/4)+1/4) 4334993417867906 r002 50th iterates of z^2 + 4334993423876083 r005 Re(z^2+c),c=-25/42+5/37*I,n=10 4334993450714045 m001 cosh(1)/exp((3^(1/3)))/sin(1) 4334993454937343 m001 gamma/RenyiParking/exp(gamma) 4334993459770063 p003 LerchPhi(1/2,6,13/166) 4334993464403314 r009 Im(z^3+c),c=-27/122+22/29*I,n=2 4334993466063790 a001 2/98209*317811^(7/29) 4334993469951703 r009 Im(z^3+c),c=-9/19+5/13*I,n=31 4334993476029452 a003 cos(Pi*30/119)*cos(Pi*32/111) 4334993476130524 r009 Im(z^3+c),c=-37/78+9/19*I,n=16 4334993476429709 a007 Real Root Of 828*x^4-230*x^3-50*x^2-114*x-88 4334993524348253 r009 Re(z^3+c),c=-49/102+7/45*I,n=9 4334993545492085 p001 sum(1/(499*n+436)/n/(25^n),n=1..infinity) 4334993548572110 m008 (5/6*Pi^3+4)/(2*Pi+3/5) 4334993551943692 h001 (3/10*exp(2)+5/7)/(9/10*exp(2)+1/9) 4334993552454956 m001 ArtinRank2/exp(FibonacciFactorial)^2/Salem^2 4334993560644345 a007 Real Root Of -223*x^4-944*x^3+168*x^2+339*x+162 4334993564812449 r005 Re(z^2+c),c=-21/34+9/79*I,n=58 4334993576711020 r002 50th iterates of z^2 + 4334993594397412 m001 (-Rabbit+Stephens)/(3^(1/2)+FeigenbaumKappa) 4334993595621915 a007 Real Root Of -931*x^4+24*x^3+522*x^2+575*x+186 4334993601973539 r002 7th iterates of z^2 + 4334993602106363 a007 Real Root Of 985*x^4-589*x^3+725*x^2+263*x-105 4334993602379065 r009 Re(z^3+c),c=-31/82+2/31*I,n=18 4334993605917505 b008 E-3*Tanh[1] 4334993622404041 a007 Real Root Of -933*x^4+275*x^3-525*x^2-60*x+128 4334993643939011 m001 (-BesselI(1,2)+ZetaP(3))/(2^(1/2)+Si(Pi)) 4334993650025025 m001 ln(FeigenbaumKappa)*Paris*Zeta(3)^2 4334993653628835 m001 Grothendieck*(GAMMA(5/6)+Conway) 4334993657314925 a007 Real Root Of -989*x^4+405*x^3-993*x^2+596*x-24 4334993675758652 s002 sum(A260655[n]/((2*n+1)!),n=1..infinity) 4334993681912198 m001 (ZetaP(2)+ZetaP(3))/(sin(1/12*Pi)-Niven) 4334993683003116 s001 sum(exp(-2*Pi/5)^n*A192974[n],n=1..infinity) 4334993683003116 s002 sum(A192974[n]/(exp(2/5*pi*n)),n=1..infinity) 4334993685330552 r005 Re(z^2+c),c=1/5+4/11*I,n=59 4334993698743647 r009 Re(z^3+c),c=-17/36+9/56*I,n=64 4334993702753565 r009 Re(z^3+c),c=-1/122+27/49*I,n=8 4334993707198949 l006 ln(2169/3346) 4334993707619839 r002 23th iterates of z^2 + 4334993711449699 r005 Re(z^2+c),c=-77/82+7/55*I,n=22 4334993737523563 m001 ArtinRank2^Salem*CareFree^Salem 4334993754626438 a007 Real Root Of -161*x^4-14*x^3+523*x^2+661*x-378 4334993781779333 m005 (19/20+1/4*5^(1/2))/(5/6*gamma+3) 4334993784558653 m005 (1/3*2^(1/2)-1/4)/(2/9*Catalan-5/7) 4334993785243345 r005 Im(z^2+c),c=-11/17+19/53*I,n=19 4334993789332074 m001 ln(FeigenbaumC)^2/Kolakoski^2*RenyiParking 4334993790660761 h001 (1/10*exp(1)+11/12)/(5/7*exp(1)+4/5) 4334993791966787 h001 (-4*exp(8)+3)/(-5*exp(4)-2) 4334993807120916 r005 Im(z^2+c),c=-7/26+12/19*I,n=61 4334993810735681 r009 Im(z^3+c),c=-23/54+11/27*I,n=41 4334993813504050 r002 48th iterates of z^2 + 4334993813514017 m005 (1/3*Pi+1/5)/(-17/28+1/7*5^(1/2)) 4334993815378454 r005 Re(z^2+c),c=-21/34+13/112*I,n=59 4334993815774024 r009 Re(z^3+c),c=-1/42+14/15*I,n=10 4334993817243512 a007 Real Root Of -693*x^4+58*x^3-861*x^2+812*x+543 4334993826088480 m001 GolombDickman/GAMMA(23/24)/OrthogonalArrays 4334993832898879 m001 1/sin(1)^2/exp(GAMMA(1/3))/sqrt(5) 4334993833166310 r009 Re(z^3+c),c=-43/118+1/23*I,n=20 4334993835663362 r005 Im(z^2+c),c=37/114+4/13*I,n=51 4334993852076649 p003 LerchPhi(1/1024,6,383/227) 4334993855165674 r002 47th iterates of z^2 + 4334993855963064 r005 Re(z^2+c),c=-17/54+20/33*I,n=24 4334993857307212 m001 (exp(1/Pi)+CareFree)/(Trott2nd+ZetaP(2)) 4334993858744188 a007 Real Root Of -2*x^4+238*x^3+800*x^2-988*x+778 4334993860116670 m001 GolombDickman^2/ln(ArtinRank2)^2/FeigenbaumB^2 4334993865202435 r005 Re(z^2+c),c=-16/25+4/41*I,n=17 4334993869480328 m001 (-ZetaP(2)+ZetaQ(2))/(5^(1/2)-ln(2+3^(1/2))) 4334993885085134 m001 (Otter+Weierstrass)/(5^(1/2)-exp(1/exp(1))) 4334993903807823 s002 sum(A107693[n]/((2*n)!),n=1..infinity) 4334993911902201 r005 Im(z^2+c),c=25/126+17/40*I,n=45 4334993912453921 h001 (11/12*exp(2)+1/2)/(1/5*exp(2)+1/5) 4334993912689523 a007 Real Root Of 576*x^4-539*x^3-429*x^2-484*x+314 4334993932831402 r005 Im(z^2+c),c=-109/94+11/29*I,n=5 4334993935168767 r002 19th iterates of z^2 + 4334993974257120 r005 Im(z^2+c),c=25/126+14/33*I,n=50 4334993980121317 r001 33i'th iterates of 2*x^2-1 of 4334993990355807 r009 Re(z^3+c),c=-5/66+37/51*I,n=53 4334993995155282 m005 (1/3*gamma+1/12)/(5/8*gamma+6) 4334994002940127 a007 Real Root Of 87*x^4-215*x^3-830*x^2-698*x+473 4334994019957421 r005 Re(z^2+c),c=-51/70+7/55*I,n=35 4334994024165149 m001 1/Zeta(5)/Ei(1)^2*ln(sinh(1)) 4334994051279716 m001 FeigenbaumDelta/(GAMMA(19/24)^arctan(1/2)) 4334994061205626 a007 Real Root Of -910*x^4+777*x^3+110*x^2+628*x+347 4334994071059807 a007 Real Root Of 672*x^4-514*x^3-865*x^2-642*x+459 4334994076530933 a001 28657/7*7^(1/34) 4334994093023325 r005 Re(z^2+c),c=-57/86+8/35*I,n=33 4334994115930442 a001 3461452808002/13*39088169^(9/11) 4334994115930442 a001 45537549124/13*7778742049^(9/11) 4334994115930442 a001 599074578/13*1548008755920^(9/11) 4334994123039090 p004 log(11087/7187) 4334994125459086 a001 4807526976/199*199^(6/11) 4334994129529995 m005 (1/3*gamma+1/11)/(-7/9+1/18*5^(1/2)) 4334994133789563 a007 Real Root Of 173*x^4+620*x^3-824*x^2-914*x+936 4334994137558377 r005 Re(z^2+c),c=41/110+9/29*I,n=58 4334994161319572 r005 Im(z^2+c),c=-1/52+25/42*I,n=23 4334994163087942 r002 61th iterates of z^2 + 4334994166255365 m001 (ln(gamma)+arctan(1/2))/(2^(1/2)+LambertW(1)) 4334994176418357 r005 Re(z^2+c),c=-25/82+32/55*I,n=5 4334994187235107 a007 Real Root Of -15*x^4-637*x^3+555*x^2-834*x+207 4334994188791139 r009 Im(z^3+c),c=-53/98+3/16*I,n=9 4334994216702241 r005 Im(z^2+c),c=-7/19+30/43*I,n=3 4334994223483565 m001 (Kac-ZetaQ(3))/(Ei(1)-Bloch) 4334994231609010 h005 exp(cos(Pi*17/54)+sin(Pi*17/46)) 4334994236611578 r005 Im(z^2+c),c=-13/70+22/31*I,n=35 4334994236997579 r009 Re(z^3+c),c=-43/118+1/23*I,n=19 4334994250670755 q001 1131/2609 4334994258296085 m005 (1/2*exp(1)+2)/(7/8*Pi+5) 4334994260756150 m001 HardyLittlewoodC4^(arctan(1/2)*GAMMA(7/12)) 4334994281047824 r002 14th iterates of z^2 + 4334994284349884 r002 42th iterates of z^2 + 4334994288134226 m005 (7/12+1/4*5^(1/2))/(4/11*2^(1/2)-7/9) 4334994295867123 r009 Im(z^3+c),c=-35/78+13/33*I,n=53 4334994298368237 h001 (3/11*exp(2)+3/5)/(7/9*exp(2)+2/7) 4334994301382123 r002 7th iterates of z^2 + 4334994302783458 l006 ln(5018/7741) 4334994312305135 m005 (1/3*exp(1)+1/4)/(3/5*Zeta(3)-5/11) 4334994313085691 r005 Im(z^2+c),c=21/74+17/50*I,n=51 4334994330569915 r009 Im(z^3+c),c=-21/50+5/12*I,n=19 4334994342628661 m001 (exp(1/Pi)-MadelungNaCl)/(MertensB2-ZetaP(3)) 4334994344128981 r005 Im(z^2+c),c=-9/58+34/53*I,n=39 4334994351152773 r002 12th iterates of z^2 + 4334994362676696 b008 Pi+ArcSinh[1/12+Sqrt[2]] 4334994368576285 r002 6th iterates of z^2 + 4334994372318382 a001 1/39596*(1/2*5^(1/2)+1/2)^32*521^(15/16) 4334994375793634 r002 51th iterates of z^2 + 4334994395759269 a007 Real Root Of -191*x^4-909*x^3-495*x^2-744*x-523 4334994428040035 m008 (1/5*Pi^5+4)/(5*Pi-2/3) 4334994433659573 r005 Re(z^2+c),c=-17/32+11/23*I,n=53 4334994434899012 a001 6/2255*139583862445^(14/19) 4334994445333358 m001 (Tetranacci-Totient)/(ln(2)+LaplaceLimit) 4334994448294427 a001 521/1346269*2584^(42/47) 4334994449227165 r004 Re(z^2+c),c=-21/34+1/9*I,z(0)=-1,n=27 4334994461860324 m001 (-ln(1+sqrt(2))+1/3)/(LandauRamanujan+1/2) 4334994462045472 m001 (Ei(1)+Zeta(1/2))/(Paris+ZetaQ(4)) 4334994473038696 r005 Im(z^2+c),c=7/78+4/7*I,n=52 4334994481925467 r005 Re(z^2+c),c=-23/38+11/49*I,n=41 4334994482594793 r005 Im(z^2+c),c=-59/102+3/38*I,n=30 4334994487124955 a007 Real Root Of -721*x^4-265*x^3-535*x^2+931*x+508 4334994488927898 p004 log(28927/379) 4334994496182288 r005 Re(z^2+c),c=-41/66+2/45*I,n=28 4334994500059749 a001 89/4106118243*4^(1/2) 4334994502006433 r002 19th iterates of z^2 + 4334994504623545 m001 (-3^(1/3)+MertensB2)/(Psi(1,1/3)-ln(2)) 4334994511618395 r005 Re(z^2+c),c=-3/5+27/103*I,n=57 4334994519218544 r005 Im(z^2+c),c=13/42+11/34*I,n=26 4334994536073365 r002 57th iterates of z^2 + 4334994543152625 m001 (ln(Pi)-arctan(1/3))/(Bloch-Robbin) 4334994553306865 r005 Im(z^2+c),c=-7/10+43/159*I,n=9 4334994556194918 r005 Im(z^2+c),c=-23/18+7/185*I,n=5 4334994559089176 m006 (2*Pi+3)/(3/4*ln(Pi)-3) 4334994568030997 a003 cos(Pi*4/113)*cos(Pi*35/72) 4334994571479800 r005 Re(z^2+c),c=11/126+17/43*I,n=22 4334994583581857 r002 56th iterates of z^2 + 4334994584879894 r009 Im(z^3+c),c=-53/118+20/51*I,n=21 4334994591210336 a007 Real Root Of -215*x^4-774*x^3+840*x^2+508*x-710 4334994594987115 r005 Im(z^2+c),c=-5/21+31/51*I,n=49 4334994600349006 r002 36i'th iterates of 2*x/(1-x^2) of 4334994603431873 r005 Im(z^2+c),c=8/27+15/44*I,n=4 4334994608086967 r005 Re(z^2+c),c=-1/6+23/39*I,n=5 4334994610933338 m001 (3^(1/3)-exp(1))/(-arctan(1/3)+Trott2nd) 4334994624591462 m002 -Pi^3+2*Csch[Pi]+Pi^5*Csch[Pi] 4334994633353706 r002 2th iterates of z^2 + 4334994638080891 r004 Re(z^2+c),c=-19/30-1/16*I,z(0)=-1,n=18 4334994639807148 m001 Zeta(9)^2*ln(Niven)*cos(Pi/5) 4334994644485171 m001 exp(GAMMA(13/24))/RenyiParking^2/GAMMA(5/12) 4334994645115888 m006 (1/2*exp(2*Pi)+3)/(2/5*ln(Pi)+1/6) 4334994656024714 r002 41th iterates of z^2 + 4334994656300562 r005 Re(z^2+c),c=-67/110+4/25*I,n=25 4334994663223278 r005 Im(z^2+c),c=17/58+21/64*I,n=51 4334994667641597 g006 Psi(1,1/5)-Psi(1,1/8)-Psi(1,6/7)-Psi(1,5/6) 4334994669531267 r005 Re(z^2+c),c=-39/64+10/51*I,n=53 4334994669926427 a007 Real Root Of -731*x^4+990*x^3-415*x^2+691*x+484 4334994671514547 g002 Psi(3/10)+Psi(3/8)-Psi(8/11)-Psi(8/9) 4334994673464150 m001 1/exp(BesselJ(0,1))^2*RenyiParking*GAMMA(1/3) 4334994675009305 r002 5th iterates of z^2 + 4334994677745833 m001 (FeigenbaumKappa-Psi(1,1/3))/(Mills+Rabbit) 4334994699402021 a007 Real Root Of -439*x^4+692*x^3+129*x^2+731*x-382 4334994704751786 m001 Pi*Psi(1,1/3)/cos(1)/GAMMA(2/3) 4334994720595908 a007 Real Root Of -942*x^4+711*x^3+47*x^2-130*x+26 4334994741809330 m004 2+125*Pi+30*Sqrt[5]*Pi-Cosh[Sqrt[5]*Pi] 4334994746059628 a007 Real Root Of 7*x^4+312*x^3+393*x^2+973*x+194 4334994752152868 r009 Re(z^3+c),c=-13/46+27/32*I,n=3 4334994755777345 r005 Re(z^2+c),c=-5/8+24/161*I,n=32 4334994756213690 l006 ln(2849/4395) 4334994758422532 r009 Im(z^3+c),c=-11/64+22/31*I,n=11 4334994766489906 r005 Im(z^2+c),c=7/30+20/51*I,n=55 4334994774048015 m005 (1/3*exp(1)-1/7)/(4/5*3^(1/2)+3/8) 4334994792171528 l006 ln(114/8701) 4334994811906565 a007 Real Root Of 435*x^4-876*x^3+803*x^2-47*x-258 4334994814658421 a007 Real Root Of -864*x^4+944*x^3-317*x^2+90*x+206 4334994828817902 a001 1/45537549124*18^(4/17) 4334994835789139 r005 Re(z^2+c),c=-33/62+1/22*I,n=5 4334994851736744 r005 Re(z^2+c),c=37/86+16/41*I,n=6 4334994871653686 a007 Real Root Of -437*x^4+457*x^3-354*x^2+687*x+417 4334994881140277 r009 Im(z^3+c),c=-14/29+10/39*I,n=7 4334994889058849 r002 48th iterates of z^2 + 4334994889825148 r009 Re(z^3+c),c=-1/23+1/25*I,n=3 4334994891729666 m001 (-sin(1/5*Pi)+Bloch)/(2^(1/3)+2^(1/2)) 4334994893968682 r005 Re(z^2+c),c=-25/42+3/10*I,n=39 4334994903502790 a007 Real Root Of -291*x^4+454*x^3+217*x^2+278*x-188 4334994905918658 r005 Im(z^2+c),c=5/21+12/31*I,n=45 4334994915808408 a007 Real Root Of -134*x^4-648*x^3-234*x^2+41*x-892 4334994916597694 a007 Real Root Of -102*x^4-238*x^3+703*x^2-739*x+218 4334994917051287 h001 (2/5*exp(2)+2/7)/(8/9*exp(2)+10/11) 4334994918227944 a007 Real Root Of 229*x^4+966*x^3-283*x^2-785*x-261 4334994935478778 m001 (Pi-AlladiGrinstead)^(3^(1/2)) 4334994938539616 a003 cos(Pi*34/95)/sin(Pi*33/70) 4334994940859197 r002 11th iterates of z^2 + 4334994942416734 r005 Im(z^2+c),c=4/15+14/39*I,n=59 4334994946783345 h001 (4/9*exp(1)+1/11)/(6/7*exp(1)+2/3) 4334994960473277 m001 1/Zeta(7)^2/ln(Zeta(3))^2/sin(Pi/12)^2 4334994961207529 a007 Real Root Of 592*x^4+795*x^3+491*x^2-931*x-452 4334994967868692 r005 Re(z^2+c),c=-3/5+29/104*I,n=51 4334994975537151 m001 (-CareFree+Kac)/(BesselI(0,1)-ln(gamma)) 4334994979116539 a001 76/55*46368^(53/55) 4334994979808750 a007 Real Root Of -408*x^4+995*x^3-974*x^2+797*x+624 4334994991475096 m001 (Conway-TwinPrimes)/(GAMMA(3/4)+sin(1/12*Pi)) 4334995002851927 r009 Re(z^3+c),c=-9/23+31/49*I,n=9 4334995019662917 r005 Re(z^2+c),c=-2/3+51/208*I,n=50 4334995020371208 r005 Re(z^2+c),c=-69/50+46/47*I,n=2 4334995025452744 r009 Im(z^3+c),c=-3/19+30/61*I,n=6 4334995036741639 r009 Im(z^3+c),c=-1/28+18/35*I,n=21 4334995045085693 p003 LerchPhi(1/5,4,377/170) 4334995059483595 m001 cosh(1)^2*ln(GAMMA(17/24))^2/sin(Pi/5)^2 4334995067318421 p001 sum((-1)^n/(179*n+99)/n/(8^n),n=0..infinity) 4334995076351920 m001 Pi*2^(1/2)/GAMMA(3/4)*gamma(1)+ArtinRank2 4334995086386808 m001 (LambertW(1)+BesselI(1,2))/(-Kac+Stephens) 4334995088856959 h001 (-5*exp(-2)+2)/(-7*exp(-2)+4) 4334995092461638 a007 Real Root Of 954*x^4-732*x^3-495*x^2+3*x+1 4334995112957625 l006 ln(6378/9839) 4334995118180855 m005 (1/2*gamma+1/5)/(-11/16+5/16*5^(1/2)) 4334995121276018 a007 Real Root Of 501*x^4-429*x^3-154*x^2-830*x+406 4334995149268604 m001 (StronglyCareFree-ZetaP(4))/(Pi-GAMMA(7/12)) 4334995149328140 r005 Re(z^2+c),c=-9/14+75/242*I,n=14 4334995174522382 m001 1/Khintchine^2*CopelandErdos*exp(Sierpinski) 4334995179557044 m005 (1/2*5^(1/2)+6/7)/(3/11*exp(1)-2/7) 4334995181824203 a001 1836311903/521*322^(5/6) 4334995189488429 r005 Im(z^2+c),c=-11/62+22/37*I,n=22 4334995212559619 m001 (cos(1/5*Pi)+Zeta(1/2))/(Cahen+Thue) 4334995215215363 m001 (Magata+MertensB3)/(Psi(1,1/3)+Chi(1)) 4334995219958449 m005 (1/2*exp(1)-1/11)/(3/7*Catalan-1/10) 4334995226085994 m001 (-polylog(4,1/2)+MinimumGamma)/(cos(1)-exp(1)) 4334995229240380 m003 -39/10+Sqrt[5]/16-ProductLog[1/2+Sqrt[5]/2]^2 4334995250631492 r005 Re(z^2+c),c=27/106+27/50*I,n=39 4334995250648736 r005 Im(z^2+c),c=1/50+24/43*I,n=58 4334995255409629 m001 (Stephens-FeigenbaumAlpha)^(5^(1/2)) 4334995263787356 m001 FeigenbaumB*exp(LaplaceLimit)^2*Salem^2 4334995265920905 r009 Im(z^3+c),c=-5/126+32/47*I,n=4 4334995268636650 m001 Ei(1,1)-sin(1)*StronglyCareFree 4334995271738680 a007 Real Root Of -16*x^4-672*x^3+937*x^2+35*x+251 4334995273209102 r005 Re(z^2+c),c=-5/8+3/68*I,n=24 4334995276516822 r005 Im(z^2+c),c=-3/17+19/27*I,n=5 4334995284155172 s002 sum(A231633[n]/((exp(n)+1)/n),n=1..infinity) 4334995291327977 m001 (Psi(2,1/3)-arctan(1/3))/(-Mills+Trott2nd) 4334995295945154 r005 Re(z^2+c),c=-41/66+1/59*I,n=51 4334995297643420 r009 Re(z^3+c),c=-51/118+5/43*I,n=12 4334995301355237 m001 (Catalan+sin(1/12*Pi))/(-Zeta(1,2)+Pi^(1/2)) 4334995311988572 m001 (sin(1)+polylog(4,1/2))/(Conway+FeigenbaumC) 4334995323980803 a001 4181/29*4^(27/34) 4334995347120579 m001 Zeta(3)/(exp(1)+Riemann3rdZero) 4334995352559578 r002 36th iterates of z^2 + 4334995354176184 r009 Im(z^3+c),c=-33/86+30/43*I,n=21 4334995354419706 r009 Im(z^3+c),c=-59/126+18/47*I,n=13 4334995363352157 a007 Real Root Of -274*x^4+751*x^3+523*x^2+884*x-533 4334995365647005 m005 (1/3*5^(1/2)+1/10)/(1/7*exp(1)-7/12) 4334995377255983 m001 1/ln(Bloch)*Backhouse*sqrt(5) 4334995394992595 r009 Im(z^3+c),c=-25/86+22/47*I,n=16 4334995400960866 l006 ln(3529/5444) 4334995404871531 a007 Real Root Of x^4+433*x^3-217*x^2-195*x-75 4334995410666895 r002 9th iterates of z^2 + 4334995412072835 a007 Real Root Of 506*x^4-634*x^3+166*x^2-928*x-503 4334995428655993 r004 Im(z^2+c),c=1/42-13/23*I,z(0)=I,n=53 4334995430229251 a007 Real Root Of -513*x^4-936*x^3-368*x^2+779*x-33 4334995430830484 r002 23th iterates of z^2 + 4334995450618860 m001 LambertW(1)^KhinchinLevy-ZetaP(4) 4334995474187730 r009 Im(z^3+c),c=-13/28+24/61*I,n=23 4334995475775961 a007 Real Root Of -592*x^4+879*x^3+847*x^2+742*x+255 4334995483625257 m001 ln(3)^Bloch*PrimesInBinary 4334995492944756 r009 Im(z^3+c),c=-11/27+17/39*I,n=10 4334995510401686 m005 (1/2*Zeta(3)+8/11)/(1/9*gamma+3) 4334995513713241 r005 Re(z^2+c),c=-41/118+21/34*I,n=43 4334995521547546 m001 (ln(Pi)-KhinchinHarmonic)^GAMMA(13/24) 4334995538702761 r009 Im(z^3+c),c=-7/82+31/61*I,n=5 4334995558789253 m001 BesselI(1,1)^Lehmer*Riemann2ndZero^Lehmer 4334995580442336 r002 19th iterates of z^2 + 4334995582415718 a001 139583862445/843*123^(1/5) 4334995604519091 a008 Real Root of x^4-3*x^2-62*x-28 4334995620082383 r009 Im(z^3+c),c=-65/126+16/49*I,n=46 4334995642722338 a001 6/329*2504730781961^(6/17) 4334995643855993 m001 (FeigenbaumDelta+MertensB3)/(Rabbit-Sarnak) 4334995647452639 a007 Real Root Of 966*x^4+474*x^3+872*x^2-795*x-504 4334995656316977 k001 Champernowne real with 66*n+367 4334995656316977 k005 Champernowne real with floor(Pi*(21*n+117)) 4334995662438950 r005 Re(z^2+c),c=-151/114+1/31*I,n=42 4334995665084204 m001 (-cos(1/12*Pi)+Paris)/(Zeta(1/2)-cos(1)) 4334995683916533 r002 46th iterates of z^2 + 4334995687488278 a007 Real Root Of -168*x^4-574*x^3+459*x^2-963*x-232 4334995726635109 r005 Re(z^2+c),c=-13/22+26/123*I,n=19 4334995732571949 m005 (1/2*exp(1)-1/12)/(1/5*Catalan+1/9) 4334995735602126 m001 (BesselK(0,1)+Bloch)/(-Kac+Khinchin) 4334995740265505 m001 LambertW(1)/Ei(1,1)/Gompertz 4334995740661157 r009 Re(z^3+c),c=-25/58+7/50*I,n=8 4334995742738366 a007 Real Root Of -354*x^4+359*x^3+917*x^2+189*x-271 4334995742762771 a007 Real Root Of -791*x^4+987*x^3-540*x^2+501*x+427 4334995763074479 a007 Real Root Of -801*x^4+955*x^3+244*x^2+216*x-189 4334995774728453 a007 Real Root Of 192*x^4+621*x^3-764*x^2+814*x+671 4334995777508672 m001 (LaplaceLimit+TwinPrimes)/(ln(5)+3^(1/3)) 4334995781422801 m001 1/(3^(1/3))^2*MadelungNaCl^2/ln(Zeta(3))^2 4334995789296963 h001 (1/3*exp(2)+6/11)/(11/12*exp(2)+1/6) 4334995795382292 h001 (11/12*exp(1)+3/5)/(7/8*exp(2)+2/3) 4334995795996901 r002 33th iterates of z^2 + 4334995816003304 r002 50th iterates of z^2 + 4334995837379161 l006 ln(4209/6493) 4334995840077392 r005 Re(z^2+c),c=-69/122+23/63*I,n=48 4334995843724023 q001 1043/2406 4334995865559650 r005 Im(z^2+c),c=5/86+35/58*I,n=14 4334995906756742 m001 (Pi*gamma(1)+BesselI(1,2))/Pi 4334995910245352 m005 (1/2*5^(1/2)-2/11)/(7/10*Catalan-6/7) 4334995912360375 a008 Real Root of x^4-2*x^3-14*x^2-49*x+24 4334995914346582 m005 (1/2*Pi+1/6)/(1/5*exp(1)-1/7) 4334995916304346 m005 (1/2*Pi-3/11)/(2/3*Pi+9/10) 4334995926432273 r005 Im(z^2+c),c=-13/18+3/118*I,n=57 4334995931872885 m001 2^(1/3)*GAMMA(3/4)*FransenRobinson 4334995949403503 m001 (-Backhouse+Salem)/(5^(1/2)-BesselI(1,2)) 4334995951351910 r005 Re(z^2+c),c=-29/48+12/47*I,n=62 4334995960894675 r009 Re(z^3+c),c=-23/78+39/55*I,n=4 4334995966287162 a001 1/7*47^(39/44) 4334995983300940 r009 Re(z^3+c),c=-1/23+1/25*I,n=4 4334996000587999 b008 Cos[ArcSinh[ArcTan[5]]] 4334996004307697 r002 36th iterates of z^2 + 4334996004781132 r009 Re(z^3+c),c=-1/23+1/25*I,n=7 4334996004781137 r009 Re(z^3+c),c=-1/23+1/25*I,n=8 4334996004781138 r009 Re(z^3+c),c=-1/23+1/25*I,n=12 4334996004781138 r009 Re(z^3+c),c=-1/23+1/25*I,n=13 4334996004781138 r009 Re(z^3+c),c=-1/23+1/25*I,n=16 4334996004781138 r009 Re(z^3+c),c=-1/23+1/25*I,n=17 4334996004781138 r009 Re(z^3+c),c=-1/23+1/25*I,n=20 4334996004781138 r009 Re(z^3+c),c=-1/23+1/25*I,n=21 4334996004781138 r009 Re(z^3+c),c=-1/23+1/25*I,n=24 4334996004781138 r009 Re(z^3+c),c=-1/23+1/25*I,n=19 4334996004781138 r009 Re(z^3+c),c=-1/23+1/25*I,n=18 4334996004781138 r009 Re(z^3+c),c=-1/23+1/25*I,n=15 4334996004781138 r009 Re(z^3+c),c=-1/23+1/25*I,n=14 4334996004781138 r009 Re(z^3+c),c=-1/23+1/25*I,n=11 4334996004781138 r009 Re(z^3+c),c=-1/23+1/25*I,n=10 4334996004781138 r009 Re(z^3+c),c=-1/23+1/25*I,n=9 4334996004783636 r009 Re(z^3+c),c=-1/23+1/25*I,n=6 4334996004869197 r009 Re(z^3+c),c=-1/23+1/25*I,n=5 4334996010167276 r005 Re(z^2+c),c=-13/22+18/113*I,n=18 4334996010613693 r001 5i'th iterates of 2*x^2-1 of 4334996011927988 a007 Real Root Of 929*x^4+241*x^3-127*x^2-952*x-402 4334996028980472 r005 Im(z^2+c),c=37/110+12/49*I,n=31 4334996036818642 r009 Re(z^3+c),c=-29/82+5/8*I,n=5 4334996046119084 m001 (-StolarskyHarborth+Trott)/(1+GolombDickman) 4334996047944892 a001 35355581/36*34^(8/19) 4334996048113405 r005 Im(z^2+c),c=2/17+31/63*I,n=44 4334996071027205 r005 Re(z^2+c),c=-37/56+10/49*I,n=19 4334996077699722 m001 exp(Magata)/LandauRamanujan^2*Catalan^2 4334996079109101 s002 sum(A103763[n]/(n*pi^n+1),n=1..infinity) 4334996082532894 r002 24th iterates of z^2 + 4334996094422569 a003 sin(Pi*13/101)/cos(Pi*4/29) 4334996104614738 a007 Real Root Of 637*x^4-895*x^3-5*x^2-73*x+83 4334996106394567 a001 3/45537549124*11^(11/14) 4334996111569386 r005 Im(z^2+c),c=-61/82+1/34*I,n=20 4334996111737061 r005 Re(z^2+c),c=-7/10+40/249*I,n=8 4334996120297946 r005 Re(z^2+c),c=-21/34+13/112*I,n=63 4334996138749689 r002 10th iterates of z^2 + 4334996138927088 p001 sum((-1)^n/(482*n+221)/n/(3^n),n=1..infinity) 4334996141666233 a007 Real Root Of -465*x^4+768*x^3-188*x^2+110*x+162 4334996144164312 r009 Im(z^3+c),c=-6/13+12/31*I,n=31 4334996152396568 l006 ln(4889/7542) 4334996161372438 r005 Re(z^2+c),c=5/13+17/61*I,n=12 4334996177950412 s002 sum(A163722[n]/(pi^n+1),n=1..infinity) 4334996190818856 a007 Real Root Of -207*x^4+785*x^3+600*x^2+848*x-537 4334996195907430 r005 Re(z^2+c),c=-41/66+1/39*I,n=62 4334996198160860 a005 (1/sin(44/125*Pi))^526 4334996205809927 r005 Im(z^2+c),c=-29/86+33/58*I,n=25 4334996210163717 r005 Re(z^2+c),c=-31/50+3/43*I,n=57 4334996213239149 m001 (cos(1/5*Pi)-GAMMA(13/24))/(Tetranacci-Trott) 4334996214857887 r005 Im(z^2+c),c=-11/10+34/141*I,n=26 4334996224435090 m001 ln(GolombDickman)*Si(Pi)^2*FeigenbaumD 4334996226514346 a007 Real Root Of -102*x^4+727*x^3-460*x^2+177*x+226 4334996228353716 r005 Im(z^2+c),c=19/64+10/31*I,n=47 4334996234435429 r005 Re(z^2+c),c=25/64+5/14*I,n=22 4334996258184510 r005 Re(z^2+c),c=-37/118+32/53*I,n=64 4334996260415772 a007 Real Root Of -962*x^4+240*x^3+328*x^2+487*x+203 4334996262637286 r005 Im(z^2+c),c=11/46+17/44*I,n=23 4334996269970461 r005 Re(z^2+c),c=-21/34+13/107*I,n=32 4334996284758966 l006 ln(77/5877) 4334996323718267 a007 Real Root Of -395*x^4+209*x^3+204*x^2+566*x+238 4334996343537431 h001 (-8*exp(2/3)+9)/(-exp(3/2)+6) 4334996344537737 r002 63th iterates of z^2 + 4334996347176461 a007 Real Root Of -650*x^4-645*x^3-942*x^2+405*x+323 4334996349378461 a005 (1/sin(3/7*Pi))^1418 4334996375458683 a007 Real Root Of -831*x^4+136*x^3+237*x^2+380*x-191 4334996390483879 l006 ln(5569/8591) 4334996392525284 m001 exp(1)/((1+3^(1/2))^(1/2)-GAMMA(23/24)) 4334996392525284 m001 exp(1)/(GAMMA(23/24)-sqrt(1+sqrt(3))) 4334996393586212 m002 -1+Pi^6/2-4*Sinh[Pi] 4334996414955679 s001 sum(exp(-Pi/2)^(n-1)*A285225[n],n=1..infinity) 4334996434750833 r002 25th iterates of z^2 + 4334996439929944 m001 (GAMMA(5/6)-Cahen)/(Kac-KhinchinHarmonic) 4334996445546985 m001 1/Ei(1)*TreeGrowth2nd/exp(Pi)^2 4334996456708046 r005 Re(z^2+c),c=-7/10+11/129*I,n=37 4334996470413100 r005 Im(z^2+c),c=-9/40+29/36*I,n=42 4334996475651429 a003 sin(Pi*7/38)*sin(Pi*30/103) 4334996485629165 a003 cos(Pi*5/77)-cos(Pi*37/117) 4334996498353626 r002 54th iterates of z^2 + 4334996501116930 h001 (2/5*exp(2)+4/5)/(3/11*exp(1)+1/8) 4334996534929277 a007 Real Root Of 924*x^4-822*x^3+130*x^2-256*x-235 4334996548159665 s002 sum(A160799[n]/(n*2^n-1),n=1..infinity) 4334996559078796 r009 Im(z^3+c),c=-9/22+5/12*I,n=39 4334996559368740 m001 (Bloch-Rabbit)/(Sarnak-ZetaP(3)) 4334996564320102 r005 Re(z^2+c),c=-5/8+9/104*I,n=14 4334996576755096 l006 ln(6249/9640) 4334996580116440 r005 Im(z^2+c),c=-79/118+25/54*I,n=21 4334996624532589 h001 (-9*exp(3)-5)/(-8*exp(3/2)-7) 4334996626156567 a007 Real Root Of -687*x^4+675*x^3-54*x^2+926*x-422 4334996629961145 a005 (1/sin(40/157*Pi))^53 4334996636643072 m001 ln(BesselK(1,1))/BesselJ(0,1)^2*sqrt(5)^2 4334996642365146 m001 (Salem+ZetaP(2))/(1-GolombDickman) 4334996646514696 m005 (1/3*Pi-3/7)/(3/4*5^(1/2)-1/4) 4334996652693618 m009 (3*Psi(1,2/3)-4/5)/(2*Psi(1,1/3)-5/6) 4334996655072314 a007 Real Root Of 177*x^4+855*x^3+420*x^2+119*x-232 4334996669921142 r005 Im(z^2+c),c=-29/66+7/50*I,n=4 4334996670355398 r002 11th iterates of z^2 + 4334996673954018 p001 sum(1/(116*n+69)/n/(125^n),n=0..infinity) 4334996676490835 a007 Real Root Of -823*x^4+170*x^3-103*x^2+989*x+491 4334996679699406 r005 Im(z^2+c),c=1/66+31/56*I,n=35 4334996688082235 r005 Re(z^2+c),c=-41/66+1/34*I,n=61 4334996692348803 r005 Re(z^2+c),c=-17/31+17/54*I,n=17 4334996698043996 r002 13th iterates of z^2 + 4334996722477723 r009 Re(z^3+c),c=-31/60+10/37*I,n=22 4334996728129060 m001 MinimumGamma*exp(LaplaceLimit)*GAMMA(7/12) 4334996728520342 r002 17th iterates of z^2 + 4334996730907756 r002 38th iterates of z^2 + 4334996740395462 a001 281/726103*832040^(9/26) 4334996757899447 m001 BesselK(1,1)^((2^(1/3))/BesselJ(0,1)) 4334996767118892 m001 Trott^Grothendieck*Trott^Backhouse 4334996767367476 m001 Chi(1)+gamma(1)+FeigenbaumMu 4334996768149794 r002 50th iterates of z^2 + 4334996772460341 r005 Re(z^2+c),c=-69/52+1/55*I,n=34 4334996777060924 r002 3th iterates of z^2 + 4334996792268354 r005 Im(z^2+c),c=1/48+35/62*I,n=49 4334996793516499 r005 Re(z^2+c),c=-11/18+22/117*I,n=34 4334996795535658 r005 Re(z^2+c),c=-63/106+5/43*I,n=14 4334996818826165 r005 Re(z^2+c),c=5/32+31/63*I,n=50 4334996819046008 r005 Re(z^2+c),c=-43/58+9/50*I,n=13 4334996819958140 a005 (1/cos(11/94*Pi))^787 4334996826764832 r005 Im(z^2+c),c=-5/44+19/31*I,n=53 4334996830878001 r005 Im(z^2+c),c=21/106+25/59*I,n=43 4334996833506264 r005 Im(z^2+c),c=1/5+23/54*I,n=32 4334996833892681 r005 Im(z^2+c),c=-7/10+53/196*I,n=9 4334996840607883 r005 Re(z^2+c),c=-5/56+17/26*I,n=41 4334996842549792 r005 Im(z^2+c),c=-7/10+10/37*I,n=9 4334996844744891 a007 Real Root Of 730*x^4-846*x^3-647*x^2+147*x+101 4334996850752985 r005 Re(z^2+c),c=-18/29+3/58*I,n=63 4334996862163598 a007 Real Root Of 249*x^4+939*x^3-542*x^2+210*x-343 4334996862528755 a007 Real Root Of -746*x^4-22*x^3+103*x^2+221*x+101 4334996868286775 r009 Im(z^3+c),c=-23/54+11/27*I,n=59 4334996885704516 r005 Re(z^2+c),c=23/122+23/63*I,n=14 4334996887880892 m001 GAMMA(23/24)^ln(Pi)*BesselK(0,1) 4334996894397961 a007 Real Root Of -91*x^4+366*x^3+23*x^2+958*x+444 4334996897834273 s002 sum(A192921[n]/(n*exp(pi*n)+1),n=1..infinity) 4334996898623309 r009 Im(z^3+c),c=-45/86+16/37*I,n=23 4334996903909186 m001 Riemann3rdZero*(Zeta(1,2)+LandauRamanujan) 4334996911325380 a007 Real Root Of 647*x^4+270*x^3-359*x^2-280*x+144 4334996930963954 r005 Im(z^2+c),c=-27/86+3/46*I,n=21 4334996947069255 m001 (Zeta(1,-1)-FeigenbaumB)/(GaussAGM+Porter) 4334996947780992 m001 (-LandauRamanujan+Paris)/(Chi(1)+ArtinRank2) 4334996954912317 m001 (Gompertz-ZetaQ(3))/FeigenbaumKappa 4334996963165467 b008 43+ProductLog[3]/3 4334996964194028 r005 Re(z^2+c),c=-41/66+7/44*I,n=26 4334996966207675 r005 Im(z^2+c),c=-8/9+21/88*I,n=8 4334996966412672 r002 38th iterates of z^2 + 4334996966412672 r002 38th iterates of z^2 + 4334996978740962 a007 Real Root Of -224*x^4-240*x^3+43*x^2+889*x-366 4334996995343338 a007 Real Root Of 103*x^4+355*x^3-348*x^2+199*x-52 4334997014918169 a007 Real Root Of -210*x^4-851*x^3+311*x^2+318*x+369 4334997015410362 m001 GAMMA(2/3)*Sierpinski+GaussAGM 4334997016136620 m001 (-GlaisherKinkelin+Trott2nd)/(1+Ei(1)) 4334997026694338 a007 Real Root Of 210*x^4-406*x^3+711*x^2-182*x-253 4334997042615261 b008 43+Sqrt[2]*ArcCsch[4] 4334997046566727 h001 (4/5*exp(2)+5/11)/(2/11*exp(2)+1/8) 4334997054509438 m005 (1/2*gamma-7/10)/(-5/18+1/6*5^(1/2)) 4334997055657842 a001 3571/8*225851433717^(2/23) 4334997058951628 s002 sum(A289818[n]/(n^2*2^n+1),n=1..infinity) 4334997087561453 r002 44th iterates of z^2 + 4334997101405849 a007 Real Root Of 53*x^4+174*x^3-153*x^2+489*x+453 4334997101917758 m001 ln(FeigenbaumC)/Artin^2*Zeta(9) 4334997108944706 r009 Im(z^3+c),c=-5/21+15/31*I,n=25 4334997116031621 a007 Real Root Of -820*x^4-653*x^3-317*x^2+802*x+383 4334997127231762 a003 cos(Pi*22/87)*cos(Pi*21/73) 4334997132143220 a001 341/36*28657^(19/51) 4334997149033837 r002 50th iterates of z^2 + 4334997165889935 b008 8+SphericalBesselY[1,1/21] 4334997173362122 m001 1/Catalan^2*ln(FeigenbaumD)^2*GAMMA(11/24)^2 4334997193026168 r005 Im(z^2+c),c=3/46+19/36*I,n=47 4334997203343921 m005 (1/2*Pi+5)/(7/8*Catalan+5/7) 4334997204692040 a007 Real Root Of -472*x^4+227*x^3-681*x^2+987*x+591 4334997219111134 m005 (2/5*exp(1)-1/5)/(29/24+3/8*5^(1/2)) 4334997253542867 a007 Real Root Of -767*x^4+182*x^3+267*x^2+575*x+241 4334997270977700 r002 51th iterates of z^2 + 4334997276116746 m002 Pi*Coth[Pi]+Log[Pi]+Log[Pi]/Pi^3 4334997304028861 a001 123/55*1548008755920^(16/21) 4334997307345946 r005 Re(z^2+c),c=-13/10+75/209*I,n=5 4334997337862426 m001 HardyLittlewoodC5^CareFree*StolarskyHarborth 4334997344731719 m005 (1/2*Zeta(3)-5/6)/(7/10*Catalan-6) 4334997346005818 a001 9349/8*3524578^(2/23) 4334997373116533 r004 Re(z^2+c),c=4/11-1/7*I,z(0)=exp(3/8*I*Pi),n=42 4334997373676514 a001 1/76*(1/2*5^(1/2)+1/2)^11*199^(2/21) 4334997387264063 r005 Re(z^2+c),c=-11/18+26/81*I,n=61 4334997388911651 m005 (1/2*5^(1/2)-1/3)/(5/7*2^(1/2)+4/5) 4334997389067935 r005 Im(z^2+c),c=9/56+21/41*I,n=23 4334997396465358 r009 Im(z^3+c),c=-53/118+29/61*I,n=15 4334997397592950 r002 22th iterates of z^2 + 4334997401406683 r002 7th iterates of z^2 + 4334997407899965 p004 log(21179/13729) 4334997418515426 r002 54th iterates of z^2 + 4334997422733862 h001 (2/7*exp(1)+3/10)/(1/4*exp(2)+7/11) 4334997428045161 m005 (1/2*3^(1/2)-2)/(7/12*Catalan-3/11) 4334997441816008 m001 ln(MertensB1)*DuboisRaymond/BesselK(1,1) 4334997451871431 r009 Im(z^3+c),c=-1/4+13/27*I,n=13 4334997456769554 r002 52th iterates of z^2 + 4334997471915721 r005 Im(z^2+c),c=11/60+7/16*I,n=64 4334997476616303 r005 Re(z^2+c),c=-53/86+6/53*I,n=39 4334997486024489 m005 (1/2*Catalan-8/9)/(1/3*3^(1/2)+5/12) 4334997489003210 h001 (8/11*exp(1)+5/8)/(4/5*exp(2)+1/11) 4334997501246443 m001 1/ln(Riemann2ndZero)/CareFree/Zeta(5)^2 4334997506990298 m001 (Conway-FeigenbaumD)/(HardyLittlewoodC4-Kac) 4334997509433777 r005 Im(z^2+c),c=-125/126+10/33*I,n=24 4334997528819234 r009 Re(z^3+c),c=-3/106+49/58*I,n=29 4334997539828179 a007 Real Root Of -146*x^4-363*x^3+975*x^2-939*x-405 4334997573297164 a007 Real Root Of 224*x^4+888*x^3-130*x^2+853*x-624 4334997612512788 m005 (1/2*gamma-1/8)/(3/8*Zeta(3)-5/11) 4334997618527801 m001 (Kac+ZetaQ(3))/(1+arctan(1/2)) 4334997620227203 a007 Real Root Of -896*x^4-787*x^3-886*x^2+429*x+320 4334997641261397 r002 51th iterates of z^2 + 4334997656564271 r002 26th iterates of z^2 + 4334997660639947 r005 Re(z^2+c),c=-31/50+5/56*I,n=39 4334997663696071 a007 Real Root Of 139*x^4+362*x^3-962*x^2+380*x+128 4334997664695470 a007 Real Root Of 163*x^4-285*x^3+749*x^2-838*x-533 4334997666288984 g006 Psi(1,3/11)+Psi(1,1/8)-Psi(1,9/10)-Psi(1,1/9) 4334997691049432 r002 6th iterates of z^2 + 4334997715205193 r002 21th iterates of z^2 + 4334997715761022 a007 Real Root Of 916*x^4-333*x^3-752*x^2-821*x+492 4334997719368369 r002 5th iterates of z^2 + 4334997719703579 a007 Real Root Of 318*x^4-523*x^3-989*x^2-417*x+398 4334997726582455 m001 1/FeigenbaumB^2/ln(Si(Pi))/cos(1) 4334997730367680 q001 955/2203 4334997739072788 l006 ln(117/8930) 4334997743351293 r005 Im(z^2+c),c=11/118+13/24*I,n=35 4334997750831039 r005 Im(z^2+c),c=5/34+19/41*I,n=29 4334997757708098 r002 4th iterates of z^2 + 4334997773941562 m001 OneNinth*PrimesInBinary*ln(GAMMA(1/3))^2 4334997776701507 r009 Re(z^3+c),c=-8/21+5/63*I,n=5 4334997782948590 r005 Im(z^2+c),c=-11/18+47/121*I,n=5 4334997784720914 r002 57th iterates of z^2 + 4334997791773203 m001 (-FeigenbaumMu+MertensB3)/(Chi(1)-arctan(1/3)) 4334997797296299 m001 Artin^(5^(1/2))+FellerTornier 4334997801552173 r005 Im(z^2+c),c=-19/118+29/42*I,n=32 4334997813091043 r002 64th iterates of z^2 + 4334997816345645 r005 Re(z^2+c),c=-21/34+11/105*I,n=12 4334997818543548 r005 Im(z^2+c),c=-4/31+36/59*I,n=49 4334997819800084 s002 sum(A156435[n]/(n*exp(pi*n)+1),n=1..infinity) 4334997826307989 r002 22th iterates of z^2 + 4334997828578338 a003 sin(Pi*7/37)*sin(Pi*31/110) 4334997830543117 a007 Real Root Of 90*x^4+204*x^3-775*x^2-52*x-826 4334997841895378 a007 Real Root Of 170*x^4+848*x^3+612*x^2+523*x-187 4334997857574946 p001 sum((-1)^n/(516*n+205)/(2^n),n=0..infinity) 4334997880391624 a001 7/377*610^(28/57) 4334997881681700 r005 Re(z^2+c),c=-23/38+11/47*I,n=63 4334997885688326 r002 55th iterates of z^2 + 4334997895724716 r005 Im(z^2+c),c=-7/10+63/233*I,n=9 4334997899233220 r005 Im(z^2+c),c=-61/52+23/52*I,n=3 4334997911060937 r005 Re(z^2+c),c=10/29+3/29*I,n=35 4334997912368728 a001 1/76*(1/2*5^(1/2)+1/2)^4*521^(13/21) 4334997917476676 m005 (1/3*Pi+3/5)/(11/12*gamma-10/11) 4334997927186395 a007 Real Root Of 242*x^4+913*x^3-756*x^2-672*x+209 4334997931234903 r005 Re(z^2+c),c=-19/31+7/44*I,n=44 4334997945994140 r005 Re(z^2+c),c=-2/3+55/227*I,n=31 4334997959756031 r005 Re(z^2+c),c=-11/54+31/48*I,n=16 4334997975716109 m001 exp(Rabbit)*KhintchineLevy/GAMMA(1/6) 4334997984488847 m001 (Stephens-ZetaQ(3))/(gamma(3)+Mills) 4334997987287303 r005 Re(z^2+c),c=-17/54+32/55*I,n=26 4334997989737544 r005 Im(z^2+c),c=41/122+8/31*I,n=32 4334998002098455 a007 Real Root Of -523*x^4-938*x^3-892*x^2+905*x+502 4334998004445682 m001 (ln(3)-Ei(1))/(RenyiParking-Sierpinski) 4334998027898553 a007 Real Root Of -200*x^4-558*x^3-773*x^2+983*x+533 4334998037091213 r002 49th iterates of z^2 + 4334998037091213 r002 49th iterates of z^2 + 4334998051557915 r005 Re(z^2+c),c=-41/66+9/62*I,n=36 4334998058227097 m001 BesselI(1,2)/(sin(Pi/5)+GAMMA(7/24)) 4334998060001547 m001 1/2*Pi*2^(1/2)*(3^(1/2)+Ei(1,1)) 4334998068050435 r005 Re(z^2+c),c=-37/56+5/53*I,n=25 4334998078782597 r002 5th iterates of z^2 + 4334998085516598 m001 exp(sqrt(2))^2/KhintchineHarmonic/sqrt(5) 4334998086715693 r009 Re(z^3+c),c=-37/90+4/39*I,n=21 4334998102261447 l006 ln(680/1049) 4334998106194738 r002 64th iterates of z^2 + 4334998107958562 r002 34th iterates of z^2 + 4334998107958562 r002 34th iterates of z^2 + 4334998112736666 m001 (-cos(1)+FeigenbaumKappa)/(Chi(1)-exp(1)) 4334998117502254 m001 Catalan*ln(GaussKuzminWirsing)^2*gamma^2 4334998124050569 a007 Real Root Of 319*x^4-473*x^3-137*x^2-685*x-321 4334998125374366 r005 Im(z^2+c),c=-33/118+33/47*I,n=6 4334998141186726 m005 (1/2*Zeta(3)+1/7)/(5/6*Zeta(3)+5/7) 4334998155933654 r005 Im(z^2+c),c=3/13+11/28*I,n=36 4334998165000691 a007 Real Root Of 314*x^4-805*x^3-812*x^2-505*x+426 4334998166366586 m005 (1/2*3^(1/2)-3/10)/(3/11*3^(1/2)+5/6) 4334998173745478 r005 Re(z^2+c),c=-19/29+11/64*I,n=28 4334998185812797 a001 317811/11*2^(24/41) 4334998196419209 r005 Re(z^2+c),c=-27/44+13/53*I,n=44 4334998223335817 m001 MertensB2/(FransenRobinson-BesselK(0,1)) 4334998226794103 a007 Real Root Of -914*x^4+142*x^3+990*x^2+802*x-513 4334998232145656 r009 Re(z^3+c),c=-12/25+6/41*I,n=4 4334998245863163 m001 sin(1/5*Pi)/MadelungNaCl/StronglyCareFree 4334998264892478 m001 (-Niven+Weierstrass)/(5^(1/2)+BesselK(1,1)) 4334998279431791 r002 40th iterates of z^2 + 4334998294042149 m001 (Kac+Khinchin)/(Salem-ThueMorse) 4334998295966475 g007 Psi(2,5/11)+Psi(2,2/5)-Psi(2,7/12)-Psi(2,2/7) 4334998308187790 a007 Real Root Of 72*x^4+388*x^3+492*x^2+553*x-667 4334998313488151 r005 Im(z^2+c),c=1/98+11/20*I,n=31 4334998343300904 m005 (1/2*gamma-1/10)/(2/11*3^(1/2)-3/4) 4334998365766473 r005 Re(z^2+c),c=-109/110+9/40*I,n=8 4334998367790613 r005 Re(z^2+c),c=15/56+11/25*I,n=29 4334998387267764 r009 Im(z^3+c),c=-14/31+20/51*I,n=53 4334998393292043 r009 Im(z^3+c),c=-9/23+7/16*I,n=4 4334998394481862 s002 sum(A033316[n]/(n*pi^n+1),n=1..infinity) 4334998410943591 r005 Im(z^2+c),c=-1/28+2/43*I,n=3 4334998414800839 a007 Real Root Of 767*x^4-549*x^3+792*x^2-333*x-365 4334998452399315 a008 Real Root of x^4-2*x^3-4*x^2-30*x+15 4334998454712290 r009 Im(z^3+c),c=-61/126+10/27*I,n=51 4334998466034791 r005 Re(z^2+c),c=-73/118+5/51*I,n=63 4334998467164286 r005 Re(z^2+c),c=-17/28+8/33*I,n=51 4334998478463023 m001 exp(Robbin)*Cahen^2*cos(1) 4334998497168737 m006 (1/5*exp(2*Pi)-5/6)/(5/6*Pi-1/6) 4334998507311695 m005 (19/44+1/4*5^(1/2))/(7/12*exp(1)+7/10) 4334998507396532 r002 28th iterates of z^2 + 4334998531931420 a007 Real Root Of 781*x^4+538*x^3+925*x^2-114*x-207 4334998542004474 m001 (2*Pi/GAMMA(5/6)+GAMMA(5/6))/(GaussAGM+Rabbit) 4334998545339579 a001 9349/21*225851433717^(19/24) 4334998550008228 a007 Real Root Of 678*x^4+340*x^3-380*x^2-990*x-354 4334998585748571 r005 Re(z^2+c),c=-75/122+7/46*I,n=42 4334998594936803 a001 29134601/7*2178309^(19/24) 4334998606353681 p004 log(29173/18911) 4334998613174064 a001 89/24476*3^(4/25) 4334998623699815 r009 Im(z^3+c),c=-19/70+9/19*I,n=15 4334998633928972 r005 Re(z^2+c),c=-7/12+16/41*I,n=31 4334998657211386 a007 Real Root Of -143*x^4+171*x^3+332*x^2+177*x-148 4334998659864990 m006 (1/2*exp(2*Pi)-1/5)/(3/5*Pi^2+1/4) 4334998666016267 a001 1134903170/521*322^(11/12) 4334998684332006 r005 Re(z^2+c),c=19/126+14/53*I,n=3 4334998694753673 m005 (1/2*3^(1/2)-1/12)/(6/7*5^(1/2)-1/9) 4334998710042464 r005 Im(z^2+c),c=1/82+19/36*I,n=18 4334998720792094 m005 (1/2*gamma-9/10)/(7/12*3^(1/2)+2/5) 4334998730710177 m001 ln(Riemann3rdZero)*GolombDickman/arctan(1/2) 4334998733437088 b008 Sqrt[2]*Sin[Pi^(-1)]^3 4334998767919374 m005 (1/2*2^(1/2)+2/11)/(2^(1/2)+7/11) 4334998775942566 a007 Real Root Of 313*x^4-941*x^3+930*x^2+474*x-57 4334998785429825 a007 Real Root Of -705*x^4-964*x^3-151*x^2+951*x+387 4334998809275682 s002 sum(A029029[n]/(n^2*2^n+1),n=1..infinity) 4334998813103989 r005 Im(z^2+c),c=1/32+14/25*I,n=47 4334998851349416 s002 sum(A222686[n]/((10^n-1)/n),n=1..infinity) 4334998852814572 p001 sum((-1)^n/(295*n+23)/(24^n),n=0..infinity) 4334998870496496 m001 1/GAMMA(13/24)^2/ln(Khintchine)^2/Zeta(1,2)^2 4334998874339125 m001 (BesselI(0,2)*Weierstrass-Pi)/Weierstrass 4334998886096286 a007 Real Root Of -360*x^4-236*x^3-723*x^2-333*x-15 4334998886535976 r009 Im(z^3+c),c=-1/28+18/35*I,n=23 4334998907642437 g007 Psi(2,4/7)+Psi(2,1/6)-Psi(2,9/11)-Psi(2,2/3) 4334998909453881 p001 sum((-1)^n/(493*n+218)/(5^n),n=0..infinity) 4334998941969435 r005 Im(z^2+c),c=27/94+20/59*I,n=48 4334998944325122 r005 Im(z^2+c),c=-17/30+39/79*I,n=25 4334998945474199 a001 1597/29*11^(37/43) 4334998954779397 r002 43th iterates of z^2 + 4334998961137831 m001 1/Riemann1stZero^2*exp(Bloch)*cos(1) 4334998964748921 r005 Re(z^2+c),c=-43/98+30/59*I,n=32 4334998969351362 m001 ln(gamma)+CareFree*HardHexagonsEntropy 4334998978169704 m005 (1/2*Catalan+5)/(6/11*Pi-5/11) 4334998983719500 r005 Re(z^2+c),c=-31/50+4/59*I,n=52 4334998983728892 r005 Re(z^2+c),c=41/110+6/19*I,n=52 4334999014852143 m002 -2+2*E^Pi-ProductLog[Pi]^(-1) 4334999038192636 r009 Im(z^3+c),c=-19/118+17/23*I,n=55 4334999039674578 m005 (1/2*Pi-11/12)/(5/8*Pi-5/11) 4334999054911752 m001 (Cahen-GolombDickman)/(Pi+2^(1/3)) 4334999085479379 h001 (1/6*exp(1)+7/11)/(5/7*exp(1)+4/7) 4334999085692752 a001 1/39606*(1/2*5^(1/2)+1/2)^19*322^(2/19) 4334999126862332 r002 24th iterates of z^2 + 4334999142523820 r005 Im(z^2+c),c=23/86+19/53*I,n=55 4334999153162568 m001 (OneNinth+Thue)/(GaussAGM+HardHexagonsEntropy) 4334999171497356 r005 Im(z^2+c),c=33/98+5/19*I,n=35 4334999189264920 r005 Re(z^2+c),c=-9/10+53/243*I,n=8 4334999189624220 r005 Re(z^2+c),c=-41/66+1/31*I,n=55 4334999197999449 m001 (Pi+1)/ln(3)+BesselI(1,1) 4334999203767383 r002 41th iterates of z^2 + 4334999205426952 r005 Re(z^2+c),c=-47/70+9/56*I,n=36 4334999212921840 r005 Im(z^2+c),c=1/23+25/43*I,n=34 4334999213299933 a007 Real Root Of -190*x^4-905*x^3-349*x^2+187*x+742 4334999232390332 r002 41th iterates of z^2 + 4334999243033391 a007 Real Root Of 850*x^4-93*x^3+696*x^2-675*x-461 4334999263113995 m005 (51/44+1/4*5^(1/2))/(5^(1/2)+19/11) 4334999264570909 r009 Im(z^3+c),c=-8/19+25/61*I,n=30 4334999265345927 r005 Im(z^2+c),c=23/122+17/39*I,n=36 4334999277573876 m001 ln(TreeGrowth2nd)*Backhouse*GAMMA(1/4) 4334999282944969 m005 (1/2*Zeta(3)+1/11)/(10/11*exp(1)-7/8) 4334999294566033 m001 GAMMA(17/24)^2/ln(Tribonacci)^2/GAMMA(23/24) 4334999301297381 r005 Re(z^2+c),c=-16/25+10/57*I,n=26 4334999310560237 m001 1/TwinPrimes*Artin/exp(GAMMA(17/24))^2 4334999316815384 m001 ZetaQ(3)^Khinchin/(ZetaQ(3)^BesselI(1,1)) 4334999321207762 r005 Im(z^2+c),c=9/64+26/55*I,n=61 4334999322259430 r005 Re(z^2+c),c=-2/3+20/207*I,n=27 4334999331920685 r005 Re(z^2+c),c=-7/12+20/79*I,n=15 4334999336501693 a007 Real Root Of 852*x^4-523*x^3-209*x^2-659*x+29 4334999337751213 a007 Real Root Of -849*x^4+688*x^3-348*x^2+841*x+516 4334999352363490 r005 Im(z^2+c),c=-7/58+38/61*I,n=56 4334999370645634 m001 (Tribonacci+Trott)/(PrimesInBinary-sin(1)) 4334999382250303 r005 Im(z^2+c),c=5/46+29/59*I,n=31 4334999415702958 a001 55/439204*11^(29/56) 4334999434173138 r002 57i'th iterates of 2*x/(1-x^2) of 4334999470648499 r002 55th iterates of z^2 + 4334999473252594 a001 1/843*(1/2*5^(1/2)+1/2)^14*47^(8/21) 4334999473613666 r002 26th iterates of z^2 + 4334999485648640 m001 (Gompertz-ZetaQ(4))/(exp(1/exp(1))+gamma(1)) 4334999492954922 r002 13th iterates of z^2 + 4334999494695297 r002 22th iterates of z^2 + 4334999504992456 r005 Im(z^2+c),c=-2/3+71/231*I,n=44 4334999518106375 m001 FeigenbaumMu/(StronglyCareFree^BesselJ(0,1)) 4334999518496623 r002 8th iterates of z^2 + 4334999528648885 a007 Real Root Of -364*x^4-78*x^3+195*x^2+984*x-444 4334999537858601 m002 Pi^3+2/Log[Pi]+Pi^2*ProductLog[Pi] 4334999547834629 m001 (Chi(1)-exp(Pi))/(FeigenbaumDelta+PlouffeB) 4334999556595858 r005 Re(z^2+c),c=-53/86+7/54*I,n=47 4334999575019169 m006 (3/4*Pi-1/5)/(1/5*Pi^2+3) 4334999575019169 m008 (3/4*Pi-1/5)/(1/5*Pi^2+3) 4334999583618460 r005 Re(z^2+c),c=-73/102+6/55*I,n=60 4334999587899621 a007 Real Root Of -186*x^4-896*x^3-217*x^2+575*x-736 4334999588741636 m001 (exp(Pi)+BesselI(1,2))/(Bloch+Paris) 4334999597168388 m005 (4*2^(1/2)-5)/(5/6*exp(1)-3/4) 4334999611562877 a007 Real Root Of 545*x^4-90*x^3-118*x^2-179*x-82 4334999614175023 r005 Re(z^2+c),c=-16/31+24/49*I,n=40 4334999617573878 m006 (4/5/Pi-2)/(3/4*exp(2*Pi)+1) 4334999666239547 a007 Real Root Of -47*x^4-13*x^3+874*x^2+100*x-452 4334999671634936 m001 (-Ei(1,1)+FeigenbaumC)/(1+exp(1)) 4334999673858238 r005 Re(z^2+c),c=-45/62+3/58*I,n=24 4334999674399426 m005 (1/2*exp(1)+2/9)/(3*Catalan+9/10) 4334999687837693 r002 46th iterates of z^2 + 4334999693462867 l006 ln(5991/9242) 4334999745031714 r005 Im(z^2+c),c=4/23+2/5*I,n=10 4334999750532099 m001 GAMMA(11/12)-Backhouse^Psi(1,1/3) 4334999752150450 a007 Real Root Of -912*x^4+401*x^3+117*x^2+518*x-247 4334999752158565 r005 Im(z^2+c),c=37/118+14/45*I,n=51 4334999755065002 r009 Re(z^3+c),c=-11/23+15/29*I,n=25 4334999760335434 m005 (1/2*Zeta(3)+1/12)/(1/3*5^(1/2)+5/6) 4334999767543316 a007 Real Root Of 47*x^4-393*x^3+416*x^2-920*x+351 4334999772868176 r002 8th iterates of z^2 + 4334999775324907 r002 25th iterates of z^2 + 4334999784591559 r009 Re(z^3+c),c=-5/106+11/62*I,n=7 4334999788454482 a007 Real Root Of 129*x^4+436*x^3-580*x^2-122*x+333 4334999798343445 m001 (FeigenbaumC-Rabbit)/(ln(Pi)+3^(1/3)) 4334999814369414 a007 Real Root Of 640*x^4+644*x^3-592*x^2-687*x+334 4334999817111386 m005 (1/2*Catalan-7/12)/(Pi-1/4) 4334999823438283 r005 Im(z^2+c),c=17/78+2/5*I,n=24 4334999834365685 b008 1/2-5*Sqrt[2]+Sqrt[5] 4334999842451745 r005 Re(z^2+c),c=-43/102+25/43*I,n=14 4334999865437294 s001 sum(exp(-2*Pi/5)^n*A213855[n],n=1..infinity) 4334999865437294 s002 sum(A213855[n]/(exp(2/5*pi*n)),n=1..infinity) 4334999879566665 r005 Re(z^2+c),c=-61/106+4/63*I,n=9 4334999882559911 m001 FeigenbaumDelta^FeigenbaumMu/BesselI(1,1) 4334999895264570 a007 Real Root Of -160*x^4-764*x^3-817*x^2+981*x+44 4334999897194155 l006 ln(5311/8193) 4334999914862453 a001 29/17711*1346269^(13/56) 4334999926640679 r002 13th iterates of z^2 + 4334999942307582 m001 Ei(1)^2/exp(CopelandErdos)/cos(Pi/5)^2 4334999942361494 r002 63th iterates of z^2 + 4334999954006080 s001 sum(exp(-Pi/2)^n*A281638[n],n=1..infinity) 4334999962956158 a001 2139295485799/89*21^(19/20) 4334999966610430 r002 35th iterates of z^2 + 4334999990260423 r005 Im(z^2+c),c=-67/98+6/59*I,n=14 4334999993939155 r005 Re(z^2+c),c=-21/34+7/67*I,n=39