4807500005722878 r005 Im(z^2+c),c=17/106+19/39*I,n=21 4807500013212195 l006 ln(4165/6736) 4807500022123466 m001 (GAMMA(13/24)-gamma)/(-Khinchin+Weierstrass) 4807500024343994 m001 (-exp(1)+ZetaQ(2))/(Psi(2,1/3)-ln(2)/ln(10)) 4807500041480245 a007 Real Root Of 569*x^4-290*x^3-737*x^2-528*x+426 4807500042723942 a007 Real Root Of 217*x^4+986*x^3-371*x^2-634*x-832 4807500070144621 m001 (Porter+RenyiParking)/(Artin-GaussAGM) 4807500073374852 r002 64th iterates of z^2 + 4807500088846138 m002 -5*Pi^6+6*Csch[Pi]-ProductLog[Pi] 4807500100092801 a007 Real Root Of 377*x^4-718*x^3-313*x^2-986*x+606 4807500115375438 m001 OrthogonalArrays^Landau/Riemann3rdZero 4807500120211208 m006 (3*exp(2*Pi)+3)/(2/5*Pi^2-3/5) 4807500134437678 m001 (Totient-ZetaP(4))/(ln(3)+GAMMA(7/12)) 4807500134959238 r009 Im(z^3+c),c=-37/94+17/30*I,n=33 4807500139238424 r008 a(0)=6,K{-n^6,-87+45*n^3+19*n^2+24*n} 4807500142782618 m001 ln(GAMMA(13/24))/Si(Pi)^2/sqrt(3)^2 4807500153213040 a007 Real Root Of 540*x^4-199*x^3+548*x^2-733*x-530 4807500172437841 m005 (1/2*Pi-5/12)/(1/3*Zeta(3)+2) 4807500176182964 a007 Real Root Of 162*x^4+902*x^3+644*x^2+151*x-471 4807500199532002 m001 KhintchineLevy*Lehmer*exp(GAMMA(1/6))^2 4807500227131375 a008 Real Root of (2+2*x-6*x^2-6*x^3-5*x^4+2*x^5) 4807500232344663 r005 Re(z^2+c),c=-13/21+16/51*I,n=13 4807500268674756 m001 (Bloch-ZetaQ(3))/(arctan(1/3)-GAMMA(17/24)) 4807500277522876 m001 1/exp(LaplaceLimit)*Backhouse^2*TreeGrowth2nd 4807500286477786 r002 53th iterates of z^2 + 4807500296656746 b008 EulerGamma+Pi^2^(1/3) 4807500296656746 m001 Pi^(2^(1/3))+gamma 4807500296656746 m001 gamma+Pi^(2^(1/3)) 4807500302268953 r005 Re(z^2+c),c=-83/122+7/57*I,n=41 4807500310311863 m001 (Psi(1,1/3)+BesselI(0,2))/(-Sierpinski+Trott) 4807500312637828 a001 38*610^(40/53) 4807500316412592 r002 18th iterates of z^2 + 4807500325130837 r002 28th iterates of z^2 + 4807500333115695 r008 a(0)=0,K{-n^6,-22-14*n+21*n^2+36*n^3} 4807500338725347 a007 Real Root Of -614*x^4+439*x^3-525*x^2-472*x-24 4807500341976138 m001 (Tetranacci-ZetaP(2))/(Pi+gamma(1)) 4807500346482318 m001 (CareFree+Conway)/(FeigenbaumB-PrimesInBinary) 4807500357039982 a007 Real Root Of 913*x^4-422*x^3-182*x^2-914*x-493 4807500376718695 l006 ln(4084/6605) 4807500432641073 a007 Real Root Of 316*x^4-94*x^3-319*x^2-197*x+162 4807500432923030 r009 Im(z^3+c),c=-1/86+7/9*I,n=50 4807500444643276 m004 2+(15*E^(Sqrt[5]*Pi))/Pi-Cosh[Sqrt[5]*Pi] 4807500457350239 r005 Im(z^2+c),c=-14/29+27/43*I,n=33 4807500460659180 m001 (-LaplaceLimit+Lehmer)/(2^(1/3)-exp(1)) 4807500465853444 a007 Real Root Of 463*x^4+134*x^3+319*x^2+334*x+77 4807500472929363 a007 Real Root Of -100*x^4+906*x^3-52*x^2+391*x+306 4807500481858864 r005 Im(z^2+c),c=31/126+23/51*I,n=64 4807500512559533 r005 Im(z^2+c),c=-7/26+51/56*I,n=3 4807500516070293 m002 -(Sinh[Pi]/Pi^2)+6*Tanh[Pi] 4807500534861779 b008 ArcSinh[LogBarnesG[E]] 4807500543638880 a001 365435296162/521*199^(4/11) 4807500550607439 r005 Im(z^2+c),c=-1/27+14/23*I,n=39 4807500551021965 r009 Re(z^3+c),c=-1/27+7/8*I,n=27 4807500553251875 a001 39603*28657^(9/37) 4807500566647862 r009 Im(z^3+c),c=-19/74+29/52*I,n=31 4807500578885931 p003 LerchPhi(1/6,1,446/189) 4807500582186899 m001 GAMMA(7/12)+FeigenbaumAlpha+StronglyCareFree 4807500589111471 r005 Re(z^2+c),c=35/102+2/21*I,n=37 4807500619442501 r005 Im(z^2+c),c=-37/58+11/29*I,n=5 4807500643724538 r002 13th iterates of z^2 + 4807500649462080 m001 (Pi-gamma*HardyLittlewoodC3)/gamma 4807500653391500 m001 (-arctan(1/2)+FeigenbaumDelta)/(Shi(1)-ln(Pi)) 4807500665803105 r009 Im(z^3+c),c=-17/90+31/54*I,n=21 4807500681010282 p001 sum(1/(456*n+265)/(2^n),n=0..infinity) 4807500693966619 a007 Real Root Of 244*x^4+951*x^3-958*x^2+386*x-673 4807500714379558 r009 Im(z^3+c),c=-43/98+27/50*I,n=52 4807500724148956 m005 (1/2*3^(1/2)-2/9)/(7/9*5^(1/2)-2/5) 4807500736746968 r005 Im(z^2+c),c=-7/10+13/57*I,n=54 4807500751500710 a005 (1/cos(4/153*Pi))^465 4807500754325773 h001 (4/7*exp(2)+9/10)/(3/10*exp(1)+1/4) 4807500754936160 l006 ln(4003/6474) 4807500822428657 m001 exp(1)*ErdosBorwein+BesselJ(1,1) 4807500841554671 a001 64079/377*8^(1/2) 4807500845909846 m005 (1/3*5^(1/2)+1/9)/(5^(1/2)-5/11) 4807500849171010 r009 Im(z^3+c),c=-29/64+31/64*I,n=60 4807500860004916 m005 (1/2*gamma+5/11)/(3/10*5^(1/2)+7/8) 4807500863090367 r005 Re(z^2+c),c=-45/86+22/45*I,n=18 4807500876950100 m001 OneNinth*LaplaceLimit*ln(BesselJ(1,1))^2 4807500890557606 a007 Real Root Of 218*x^4+213*x^3+537*x^2-680*x-439 4807500904902708 m001 (Zeta(1/2)-Robbin)/(Trott-ZetaP(2)) 4807500908153624 r009 Im(z^3+c),c=-11/34+22/41*I,n=36 4807500924834775 a007 Real Root Of 808*x^4+186*x^2-761*x-452 4807500938144507 r005 Re(z^2+c),c=-5/12+14/27*I,n=17 4807500953396598 r009 Im(z^3+c),c=-37/106+29/55*I,n=44 4807500962903852 a007 Real Root Of -798*x^4-800*x^3-590*x^2+135*x+155 4807500963647325 m001 Tribonacci^GaussKuzminWirsing/FeigenbaumAlpha 4807500973717705 b008 -10+E^(-2+E)+Pi 4807501010029690 m001 (TwinPrimes-ZetaQ(4))/(Grothendieck-ThueMorse) 4807501015819166 a007 Real Root Of -476*x^4+596*x^3-199*x^2+371*x+316 4807501020129015 k001 Champernowne real with 270*n+210 4807501021129115 k005 Champernowne real with floor(sqrt(2)*(191*n+149)) 4807501021129115 k005 Champernowne real with floor(Pi*(86*n+67)) 4807501070415849 m001 (Ei(1,1)-GAMMA(13/24))/(Magata-ZetaP(2)) 4807501076532437 r009 Im(z^3+c),c=-15/26+13/20*I,n=6 4807501077423014 r009 Im(z^3+c),c=-37/126+35/64*I,n=39 4807501104643592 a007 Real Root Of -622*x^4-455*x^3-701*x^2+633*x+449 4807501125054991 r002 53th iterates of z^2 + 4807501133322191 a007 Real Root Of 700*x^4-698*x^3-678*x^2+85*x+156 4807501134050308 m001 ln(GolombDickman)*FibonacciFactorial/Zeta(3) 4807501148402145 r009 Re(z^3+c),c=-11/126+39/59*I,n=55 4807501148776055 l006 ln(3922/6343) 4807501150952031 a007 Real Root Of -217*x^4-821*x^3+910*x^2-644*x+564 4807501151677558 a001 1/4092*(1/2*5^(1/2)+1/2)^15*3^(1/3) 4807501155179468 r005 Im(z^2+c),c=31/126+32/55*I,n=17 4807501168016873 r002 64th iterates of z^2 + 4807501205215167 r005 Re(z^2+c),c=37/114+2/27*I,n=15 4807501212024553 a007 Real Root Of -107*x^4-602*x^3-417*x^2-90*x-528 4807501220364066 r005 Re(z^2+c),c=11/58+12/35*I,n=51 4807501233460097 a007 Real Root Of -713*x^4+604*x^3-264*x^2+89*x+209 4807501236882204 m001 exp(1/exp(1))-sin(1/5*Pi)*GAMMA(13/24) 4807501236882204 m001 exp(1/exp(1))-sin(Pi/5)*GAMMA(13/24) 4807501251758969 a001 228826127/1597*4807526976^(6/23) 4807501251803530 a001 4106118243/1597*75025^(6/23) 4807501251808714 l006 ln(5462/5731) 4807501260621133 r009 Im(z^3+c),c=-2/17+24/41*I,n=15 4807501265041124 m001 (GAMMA(19/24)+Gompertz)/(Pi+cos(1)) 4807501279828616 r009 Im(z^3+c),c=-43/110+28/61*I,n=8 4807501289201821 r002 59th iterates of z^2 + 4807501302210220 m001 (FeigenbaumAlpha+Gompertz)/(Mills-Robbin) 4807501315177197 r005 Im(z^2+c),c=-17/62+3/43*I,n=15 4807501319163880 m001 (Conway-FeigenbaumB)/(Paris+QuadraticClass) 4807501328794587 m001 (HardyLittlewoodC4-exp(Pi))/Weierstrass 4807501333971122 m001 (FellerTornier-Totient)/(Pi-GAMMA(23/24)) 4807501334175583 m004 2+(15*E^(Sqrt[5]*Pi))/Pi-Sinh[Sqrt[5]*Pi] 4807501340922124 s002 sum(A183528[n]/(n*exp(n)+1),n=1..infinity) 4807501362776766 a005 (1/sin(98/237*Pi))^42 4807501366173054 a003 sin(Pi*15/103)-sin(Pi*40/107) 4807501375778443 m005 (1/2*Pi-11/12)/(2/3*Catalan+3/4) 4807501395008301 a007 Real Root Of -72*x^4-129*x^3+867*x^2-714*x+656 4807501399373202 s001 sum(exp(-Pi/2)^n*A107405[n],n=1..infinity) 4807501401250937 r009 Im(z^3+c),c=-5/19+35/62*I,n=15 4807501419996189 r005 Im(z^2+c),c=11/122+21/37*I,n=57 4807501430522802 r002 5th iterates of z^2 + 4807501457049260 r009 Im(z^3+c),c=-7/62+17/29*I,n=15 4807501465132250 r002 3th iterates of z^2 + 4807501471943442 r009 Re(z^3+c),c=-23/60+1/33*I,n=14 4807501480539178 a007 Real Root Of 625*x^4-259*x^3+252*x^2-99*x-168 4807501505528056 a001 29/13*317811^(2/33) 4807501523432077 m002 1/18+Pi^6/2 4807501550587059 r009 Im(z^3+c),c=-11/74+18/31*I,n=41 4807501559226728 l006 ln(3841/6212) 4807501560841350 r008 a(0)=5,K{-n^6,-1-59*n^3+7*n^2+58*n} 4807501573754136 a001 599074578/4181*4807526976^(6/23) 4807501573798698 a001 10749957122/4181*75025^(6/23) 4807501576292751 h001 (9/11*exp(2)+1/4)/(2/5*exp(1)+2/9) 4807501590085974 r009 Im(z^3+c),c=-13/29+19/39*I,n=57 4807501601893557 a007 Real Root Of -219*x^4+728*x^3+573*x^2+396*x-392 4807501618259995 r009 Im(z^3+c),c=-7/18+23/45*I,n=25 4807501620732602 a001 1568397607/10946*4807526976^(6/23) 4807501620777163 a001 28143753123/10946*75025^(6/23) 4807501623047101 r002 38th iterates of z^2 + 4807501627586668 a001 4106118243/28657*4807526976^(6/23) 4807501627631229 a001 73681302247/28657*75025^(6/23) 4807501628586662 a001 10749957122/75025*4807526976^(6/23) 4807501628631224 a001 192900153618/75025*75025^(6/23) 4807501628732560 a001 28143753123/196418*4807526976^(6/23) 4807501628753846 a001 73681302247/514229*4807526976^(6/23) 4807501628756951 a001 192900153618/1346269*4807526976^(6/23) 4807501628757404 a001 505019158607/3524578*4807526976^(6/23) 4807501628757470 a001 1322157322203/9227465*4807526976^(6/23) 4807501628757480 a001 3461452808002/24157817*4807526976^(6/23) 4807501628757481 a001 9062201101803/63245986*4807526976^(6/23) 4807501628757482 a001 23725150497407/165580141*4807526976^(6/23) 4807501628757482 a001 14662949395604/102334155*4807526976^(6/23) 4807501628757482 a001 5600748293801/39088169*4807526976^(6/23) 4807501628757486 a001 2139295485799/14930352*4807526976^(6/23) 4807501628757511 a001 817138163596/5702887*4807526976^(6/23) 4807501628757684 a001 312119004989/2178309*4807526976^(6/23) 4807501628758871 a001 119218851371/832040*4807526976^(6/23) 4807501628767001 a001 45537549124/317811*4807526976^(6/23) 4807501628777121 a001 505019158607/196418*75025^(6/23) 4807501628798407 a001 1322157322203/514229*75025^(6/23) 4807501628801513 a001 3461452808002/1346269*75025^(6/23) 4807501628801966 a001 9062201101803/3524578*75025^(6/23) 4807501628802032 a001 23725150497407/9227465*75025^(6/23) 4807501628802073 a001 14662949395604/5702887*75025^(6/23) 4807501628802246 a001 5600748293801/2178309*75025^(6/23) 4807501628803432 a001 2139295485799/832040*75025^(6/23) 4807501628811563 a001 817138163596/317811*75025^(6/23) 4807501628822729 a001 17393796001/121393*4807526976^(6/23) 4807501628867291 a001 312119004989/121393*75025^(6/23) 4807501629204693 a001 6643838879/46368*4807526976^(6/23) 4807501629249255 a001 119218851371/46368*75025^(6/23) 4807501631822713 a001 2537720636/17711*4807526976^(6/23) 4807501631867275 a001 45537549124/17711*75025^(6/23) 4807501641251728 r002 13th iterates of z^2 + 4807501649766891 a001 969323029/6765*4807526976^(6/23) 4807501649811452 a001 17393796001/6765*75025^(6/23) 4807501650873923 m002 -Pi^5/6+Cosh[Pi]/6+Tanh[Pi] 4807501669657282 a003 cos(Pi*38/115)-sin(Pi*47/104) 4807501686293477 r005 Re(z^2+c),c=-19/30+21/65*I,n=58 4807501693819826 m002 5*Pi^6+6*ProductLog[Pi]*Sech[Pi] 4807501702124943 h001 (11/12*exp(1)+9/11)/(1/10*exp(1)+5/12) 4807501706478539 a008 Real Root of (2+3*x-6*x^2-6*x^3+4*x^4+2*x^5) 4807501711962195 a007 Real Root Of 773*x^4+530*x^3+915*x^2-643*x-503 4807501724849871 m001 Zeta(1,2)*ln(Tribonacci)*sin(1) 4807501757109728 r002 62th iterates of z^2 + 4807501759346782 m001 BesselI(0,1)^BesselI(0,2)*FransenRobinson 4807501765463047 m006 (5/6*Pi^2+1)/(3/4*ln(Pi)-2/3) 4807501772758116 a001 370248451/2584*4807526976^(6/23) 4807501772802677 a001 6643838879/2584*75025^(6/23) 4807501793665775 h001 (1/12*exp(2)+11/12)/(3/8*exp(2)+5/12) 4807501802328013 r002 50th iterates of z^2 + 4807501821047397 m001 Tribonacci^2/Champernowne/ln(GAMMA(5/12))^2 4807501831781090 a007 Real Root Of 172*x^4+656*x^3-905*x^2-210*x+919 4807501858254434 a005 (1/cos(7/181*Pi))^1457 4807501859362311 m001 (Trott2nd+Thue)/(Khinchin-sin(1)) 4807501861053227 m003 5+Sqrt[5]/64-(3*ProductLog[1/2+Sqrt[5]/2])/10 4807501871000047 r009 Im(z^3+c),c=-1/30+36/61*I,n=13 4807501876995499 m005 (1/2*Pi-2)/(10/11*Zeta(3)-1/5) 4807501877791136 a001 76/2178309*34^(1/11) 4807501878071394 a007 Real Root Of 871*x^4-553*x^3+908*x^2-69*x-351 4807501917054125 r005 Re(z^2+c),c=-11/16+10/91*I,n=45 4807501922160510 a007 Real Root Of 192*x^4-927*x^3+674*x^2-651*x-582 4807501928622501 r008 a(0)=6,K{-n^6,-55-32*n+47*n^2+41*n^3} 4807501942662672 m001 (HardyLittlewoodC4+TwinPrimes)/(Pi-GAMMA(5/6)) 4807501952221724 r005 Im(z^2+c),c=-1/86+31/52*I,n=30 4807501961824784 m001 (cos(1)+RenyiParking)/GAMMA(1/3) 4807501980726607 r005 Re(z^2+c),c=-17/26+7/23*I,n=33 4807501982223379 p004 log(22159/181) 4807501987361695 l006 ln(3760/6081) 4807501988739093 s001 sum(exp(-Pi/2)^(n-1)*A179995[n],n=1..infinity) 4807501989304908 r005 Re(z^2+c),c=-2/3+23/182*I,n=28 4807501999786791 r002 28th iterates of z^2 + 4807502018868282 r005 Re(z^2+c),c=1/20+1/17*I,n=6 4807502025641314 m002 -5*Pi^6-ProductLog[Pi]+6*Sech[Pi] 4807502065036548 a007 Real Root Of 825*x^4-523*x^3+802*x^2+985*x+186 4807502067735211 m002 -6-Pi/E^Pi+Pi^2+ProductLog[Pi] 4807502094341282 r009 Im(z^3+c),c=-11/74+18/31*I,n=38 4807502098873220 m002 5*Pi^6+2/(Pi*Log[Pi]) 4807502107959750 m009 (3/10*Pi^2+2/3)/(16/5*Catalan+2/5*Pi^2+2/3) 4807502115926751 m001 FransenRobinson/(Landau^ln(2^(1/2)+1)) 4807502121960727 r002 3th iterates of z^2 + 4807502130004250 r009 Im(z^3+c),c=-11/74+18/31*I,n=43 4807502133846437 r005 Re(z^2+c),c=-9/13+1/47*I,n=41 4807502148358522 m001 (HardyLittlewoodC5+Landau)/(Chi(1)+ln(Pi)) 4807502151447992 r005 Re(z^2+c),c=-9/13+2/37*I,n=52 4807502179382882 r005 Re(z^2+c),c=-16/29+27/62*I,n=56 4807502190653663 a007 Real Root Of -854*x^4+629*x^3-514*x^2+769*x+604 4807502192743199 r009 Im(z^3+c),c=-4/17+9/16*I,n=18 4807502201930988 m001 (Zeta(3)-PolyaRandomWalk3D)/(Totient+ZetaP(2)) 4807502239764118 r002 39th iterates of z^2 + 4807502248959952 a007 Real Root Of 174*x^4-180*x^3-737*x^2-855*x-270 4807502255692583 h001 (-2*exp(3)+12)/(-exp(4)-4) 4807502266892578 m005 (1/2*Catalan-1/10)/(1/10*3^(1/2)+4/7) 4807502280420736 m001 (Psi(1,1/3)+Zeta(3))/(GAMMA(19/24)+Salem) 4807502283971136 r009 Im(z^3+c),c=-5/114+13/22*I,n=27 4807502295745261 m001 1/ln(Zeta(7))^2/GAMMA(5/12)/sqrt(2) 4807502319917412 m005 (1/2*5^(1/2)-3/11)/(3/5*5^(1/2)+5/12) 4807502343899937 r005 Re(z^2+c),c=-81/118+10/51*I,n=53 4807502353404366 a007 Real Root Of 131*x^4+650*x^3+210*x^2+690*x+710 4807502357920461 a007 Real Root Of -586*x^4+317*x^3-356*x^2+795*x+531 4807502372658468 r009 Im(z^3+c),c=-7/66+17/29*I,n=26 4807502392824300 a003 cos(Pi*39/116)-sin(Pi*43/101) 4807502393678576 r009 Im(z^3+c),c=-17/98+49/58*I,n=18 4807502396923443 a007 Real Root Of -131*x^4-423*x^3+817*x^2-767*x+406 4807502407549128 m001 (Robbin+Stephens)/(Pi-LambertW(1)) 4807502421898398 m001 (GAMMA(23/24)-Robbin)/(ln(gamma)-exp(-1/2*Pi)) 4807502434349010 l006 ln(3679/5950) 4807502446164835 a007 Real Root Of -117*x^4-551*x^3-75*x^2-469*x+754 4807502459339174 p001 sum(1/(364*n+213)/(16^n),n=0..infinity) 4807502467917077 q001 487/1013 4807502488322618 m001 exp(Paris)*LaplaceLimit^2/Zeta(7) 4807502491674243 a007 Real Root Of 224*x^4+840*x^3-942*x^2+766*x-866 4807502500090128 a001 1120148082521/233 4807502505469261 r002 43th iterates of z^2 + 4807502506753114 m001 exp(Ei(1))*Artin*GAMMA(11/24) 4807502522877983 a003 sin(Pi*14/101)-sin(Pi*43/120) 4807502544784571 r009 Im(z^3+c),c=-11/74+18/31*I,n=39 4807502553021360 a007 Real Root Of -587*x^4+691*x^3-627*x^2+418*x+454 4807502553855238 b008 1/3-5*E^(1/36) 4807502576790015 a007 Real Root Of -541*x^4-795*x^3-264*x^2+285*x-13 4807502585261643 m001 1/Tribonacci*Robbin/ln(BesselK(0,1))^2 4807502586960551 a003 sin(Pi*4/25)*sin(Pi*35/73) 4807502593695717 a007 Real Root Of 182*x^4+769*x^3-378*x^2+667*x+169 4807502603922921 r005 Re(z^2+c),c=-3/106+15/23*I,n=42 4807502615752683 a001 141422324/987*4807526976^(6/23) 4807502615797245 a001 2537720636/987*75025^(6/23) 4807502621434628 a007 Real Root Of -796*x^4-988*x^3+51*x^2+647*x+232 4807502630292184 a007 Real Root Of 510*x^4-984*x^3-716*x^2-835*x+649 4807502642938566 a007 Real Root Of -756*x^4+60*x^3+939*x^2+925*x-628 4807502646340086 a001 123*832040^(1/10) 4807502650323410 r009 Im(z^3+c),c=-25/98+30/53*I,n=15 4807502654673883 r002 52th iterates of z^2 + 4807502669211112 m001 (Riemann2ndZero+ThueMorse)/(Pi+ln(2+3^(1/2))) 4807502674654216 r009 Re(z^3+c),c=-7/86+34/53*I,n=15 4807502678203954 r005 Im(z^2+c),c=9/34+25/56*I,n=62 4807502693241945 r002 30th iterates of z^2 + 4807502701086857 m001 (ln(3)-Artin)/(MertensB3+ZetaP(3)) 4807502705282361 m001 (GAMMA(13/24)-Mills)/(RenyiParking-ZetaQ(2)) 4807502706854563 r005 Re(z^2+c),c=-7/10+26/241*I,n=43 4807502715724989 r005 Re(z^2+c),c=-2/3+27/202*I,n=12 4807502716363094 m001 ln(GolombDickman)/Champernowne*(2^(1/3)) 4807502730091563 m006 (2/3*Pi^2-1/4)/(4*Pi+3/5) 4807502730091563 m008 (2/3*Pi^2-1/4)/(4*Pi+3/5) 4807502731396941 r002 63th iterates of z^2 + 4807502732211889 r002 6th iterates of z^2 + 4807502746079321 r005 Im(z^2+c),c=-41/48+11/31*I,n=3 4807502753635784 a007 Real Root Of 255*x^4-299*x^3+386*x^2-938*x-587 4807502755993847 r009 Im(z^3+c),c=-13/50+13/23*I,n=15 4807502764606540 p001 sum(1/(313*n+130)/n/(5^n),n=1..infinity) 4807502785127249 m005 (1/2*Pi-1/2)/(5/7*exp(1)+2/7) 4807502795861299 a007 Real Root Of 880*x^4-221*x^3-684*x^2-752*x-275 4807502796076565 m005 (1/6+1/4*5^(1/2))/(4/7*Pi-2/7) 4807502814069933 m001 (Ei(1,1)-Riemann1stZero)^Gompertz 4807502821433180 a003 sin(Pi*13/68)*sin(Pi*34/105) 4807502829825583 m005 (1/2*Pi-6)/(-5/3+1/3*5^(1/2)) 4807502830747688 m001 (ln(2)+Zeta(1/2))/(ErdosBorwein-Trott) 4807502837572421 r009 Im(z^3+c),c=-11/74+18/31*I,n=45 4807502845048875 r009 Im(z^3+c),c=-47/118+24/41*I,n=43 4807502846550244 a001 7881196/377*2504730781961^(4/21) 4807502846550320 a001 54018521/377*102334155^(4/21) 4807502853253798 s002 sum(A068766[n]/(exp(pi*n)-1),n=1..infinity) 4807502857027152 a001 370248451/377*4181^(4/21) 4807502862763326 b008 2/7+Log[92] 4807502864184784 b008 KelvinKer[2,5/11] 4807502864184784 l003 KelvinKer(2,5/11) 4807502865326052 r005 Re(z^2+c),c=15/44+11/18*I,n=10 4807502879491367 a003 cos(Pi*4/47)-sin(Pi*9/56) 4807502883915813 b008 ExpIntegralEi[Pi+ArcCosh[1+Pi]] 4807502890189744 m001 1/Zeta(3)^2*Trott^2/exp(sqrt(2))^2 4807502890564451 r009 Im(z^3+c),c=-25/58+29/59*I,n=56 4807502898599920 m001 (arctan(1/2)+exp(gamma))/FeigenbaumDelta 4807502901461915 l006 ln(3598/5819) 4807502906884880 m001 (-Porter+Thue)/(LambertW(1)+ArtinRank2) 4807502923964297 a008 Real Root of x^4-x^3-31*x^2+29*x+154 4807502926098978 m001 (exp(Pi)+3^(1/3))/(-BesselI(1,1)+ZetaQ(2)) 4807502930651516 a001 1/76*(1/2*5^(1/2)+1/2)^16*4^(4/11) 4807502942401434 l006 ln(47/5754) 4807502958590742 r005 Re(z^2+c),c=-2/3+38/207*I,n=44 4807502965665870 m002 E^(2*Pi)/Pi^6+5*Pi^6 4807502980928160 r005 Im(z^2+c),c=-57/74+3/20*I,n=15 4807502986077078 m001 1/Paris^2/LandauRamanujan^2/ln(FeigenbaumC)^2 4807502997935565 a003 cos(Pi*4/39)/cos(Pi*38/87) 4807503019150320 r009 Im(z^3+c),c=-1/23+13/22*I,n=34 4807503057898126 g002 -ln(2)+1/2*Pi+Psi(9/11)+Psi(2/9) 4807503059825628 s001 sum(exp(-2*Pi)^n*A045057[n],n=1..infinity) 4807503063782958 a001 271443/233*89^(6/19) 4807503067045420 m001 exp(1/Pi)*Magata+Champernowne 4807503068003647 a007 Real Root Of 122*x^4+438*x^3-684*x^2+145*x+4 4807503075293341 m001 (-ln(2+3^(1/2))+GaussAGM)/(Chi(1)-Zeta(1,-1)) 4807503075873506 r009 Re(z^3+c),c=-1/27+7/8*I,n=29 4807503083014685 h001 (2/7*exp(1)+5/6)/(11/12*exp(1)+6/7) 4807503087917364 s002 sum(A043336[n]/(exp(2*pi*n)-1),n=1..infinity) 4807503096222720 a007 Real Root Of -157*x^4-521*x^3+972*x^2-834*x-499 4807503114920621 m001 (exp(1/Pi)-FeigenbaumKappa)/(Pi+ln(2^(1/2)+1)) 4807503122760397 r009 Im(z^3+c),c=-25/102+31/51*I,n=10 4807503131040562 a007 Real Root Of 149*x^4+556*x^3-638*x^2+646*x+38 4807503135246104 r002 3th iterates of z^2 + 4807503136349336 l006 ln(9259/9715) 4807503148969049 r005 Im(z^2+c),c=-65/54+9/49*I,n=17 4807503151835550 b008 1/107+Sqrt[2]/3 4807503157195302 r009 Im(z^3+c),c=-11/74+18/31*I,n=50 4807503189011668 r009 Im(z^3+c),c=-11/74+18/31*I,n=48 4807503194657489 r009 Im(z^3+c),c=-11/74+18/31*I,n=52 4807503210809277 m001 1/ln(GAMMA(5/12))^2/DuboisRaymond^2*Zeta(5) 4807503216566086 r005 Re(z^2+c),c=21/58+6/59*I,n=18 4807503223407425 m001 1/exp(1)^2*Salem*ln(gamma)^2 4807503228443085 r009 Im(z^3+c),c=-11/74+18/31*I,n=47 4807503231840244 r009 Im(z^3+c),c=-11/74+18/31*I,n=54 4807503235338269 r005 Re(z^2+c),c=-2/3+13/129*I,n=18 4807503244829013 r009 Im(z^3+c),c=-11/74+18/31*I,n=59 4807503245504750 r009 Im(z^3+c),c=-11/74+18/31*I,n=57 4807503246466118 a007 Real Root Of -841*x^4-77*x^3-719*x^2+288*x+341 4807503246804535 a007 Real Root Of -358*x^4+400*x^3+386*x^2+781*x-490 4807503247096097 r009 Im(z^3+c),c=-11/74+18/31*I,n=61 4807503249016559 r009 Im(z^3+c),c=-11/74+18/31*I,n=63 4807503249956418 r009 Im(z^3+c),c=-11/74+18/31*I,n=64 4807503250530040 r009 Im(z^3+c),c=-11/74+18/31*I,n=56 4807503251347485 r009 Im(z^3+c),c=-11/74+18/31*I,n=62 4807503253649579 r009 Im(z^3+c),c=-11/74+18/31*I,n=60 4807503255082342 r009 Im(z^3+c),c=-11/74+18/31*I,n=58 4807503256065693 r009 Im(z^3+c),c=-11/74+18/31*I,n=55 4807503260388644 m003 5/6+Tan[1/2+Sqrt[5]/2]/24 4807503279944135 r002 47th iterates of z^2 + 4807503280441344 m009 (4*Psi(1,1/3)-1/6)/(1/3*Psi(1,1/3)+5) 4807503284264927 r009 Im(z^3+c),c=-11/74+18/31*I,n=53 4807503325233599 r005 Re(z^2+c),c=-40/53*I,n=24 4807503326371341 r009 Im(z^3+c),c=-11/74+18/31*I,n=51 4807503342131581 r009 Im(z^3+c),c=-11/74+18/31*I,n=49 4807503357711810 r002 24th iterates of z^2 + 4807503361008837 m001 (ln(2^(1/2)+1)+MinimumGamma)/(Pi+3^(1/2)) 4807503362211338 m005 (2/5*Pi-1/6)/(4/5*Catalan-3) 4807503364938420 a003 cos(Pi*23/57)+cos(Pi*53/120) 4807503373638832 r005 Im(z^2+c),c=-69/122+2/23*I,n=60 4807503376306023 r005 Im(z^2+c),c=-15/17+16/45*I,n=3 4807503386442985 m001 (exp(1/Pi)-LaplaceLimit)/(Mills+ZetaP(3)) 4807503386537389 a007 Real Root Of 410*x^4-965*x^3-990*x^2+175*x+230 4807503390090943 l006 ln(3517/5688) 4807503410568725 r009 Im(z^3+c),c=-23/56+17/49*I,n=2 4807503423671914 r009 Im(z^3+c),c=-11/74+18/31*I,n=46 4807503426538195 r009 Re(z^3+c),c=-2/29+25/56*I,n=7 4807503434548226 a007 Real Root Of 610*x^4-37*x^3-259*x^2-433*x-185 4807503462202813 r005 Re(z^2+c),c=-43/114+26/51*I,n=7 4807503479882553 a007 Real Root Of 820*x^4+123*x^3+997*x^2-263*x-387 4807503479943731 m001 (GAMMA(17/24)-Gompertz)/(3^(1/3)+gamma(2)) 4807503484171562 m001 (3^(1/2)-arctan(1/3))/(-GAMMA(19/24)+Porter) 4807503486454274 r005 Re(z^2+c),c=-65/126+3/7*I,n=18 4807503508958795 a007 Real Root Of -204*x^4-735*x^3+997*x^2-952*x-316 4807503514935881 r008 a(0)=5,K{-n^6,59-37*n^3-29*n^2+12*n} 4807503515482967 r005 Im(z^2+c),c=13/42+10/27*I,n=53 4807503527751625 a007 Real Root Of -118*x^4-560*x^3-5*x^2-327*x-647 4807503533571388 h001 (10/11*exp(2)+4/11)/(1/12*exp(2)+6/7) 4807503545533034 a007 Real Root Of 191*x^4-754*x^3-235*x^2-710*x-381 4807503609669524 m001 (FransenRobinson+Otter)/(3^(1/2)-Si(Pi)) 4807503618363523 r005 Im(z^2+c),c=21/62+16/51*I,n=59 4807503635533889 a007 Real Root Of 31*x^4-934*x^3-790*x^2-816*x+677 4807503641324353 v003 sum((11/6*n^3-35/6*n+7)*n!/n^n,n=1..infinity) 4807503701180210 h001 (7/10*exp(2)+7/9)/(1/9*exp(2)+5/12) 4807503723083378 r002 6th iterates of z^2 + 4807503724356608 r009 Im(z^3+c),c=-19/60+25/29*I,n=2 4807503737668950 r009 Im(z^3+c),c=-29/74+28/55*I,n=59 4807503739166212 m001 exp(1/Pi)-gamma(1)+ReciprocalFibonacci 4807503754138357 a001 1/23184*6557470319842^(12/17) 4807503755686494 a007 Real Root Of -77*x^4+790*x^3-974*x^2+156*x+392 4807503772803635 a001 161/98209*317811^(4/15) 4807503772830566 a001 322/1346269*433494437^(4/15) 4807503772831085 a001 322/9227465*591286729879^(4/15) 4807503773275838 m002 5*Pi^6+6*Csch[Pi]*ProductLog[Pi] 4807503787802804 a008 Real Root of x^4-x^3-18*x^2+35*x-61 4807503792167701 a001 43133785636/161*322^(1/2) 4807503795605532 m001 BesselI(1,1)*TwinPrimes+OneNinth 4807503795605532 m001 TwinPrimes*BesselI(1,1)+OneNinth 4807503795891969 a007 Real Root Of -717*x^4+28*x^3-387*x^2+460*x+352 4807503815807663 m005 (-15/4+1/4*5^(1/2))/(1/5*gamma-2/11) 4807503845883958 m001 1/Kolakoski/ArtinRank2^2/exp(sin(1))^2 4807503862414783 a001 12586269025/843*521^(12/13) 4807503870104396 a001 3/199*1322157322203^(13/21) 4807503885771627 m001 (HardyLittlewoodC5+Mills)/FeigenbaumMu 4807503890905594 m001 (RenyiParking-Salem)/(Mills-PrimesInBinary) 4807503901757752 l006 ln(3436/5557) 4807503917321988 a001 4052739537881/2207*199^(2/11) 4807503942761157 m001 (ln(gamma)+exp(1/Pi))/(GAMMA(13/24)+ZetaP(4)) 4807503946670147 a007 Real Root Of 741*x^4+381*x^3+918*x^2-723*x-557 4807503959363220 a001 21/3010349*9349^(25/54) 4807503979549538 r005 Re(z^2+c),c=-79/118+8/39*I,n=7 4807503984328331 a001 21/4870847*64079^(23/54) 4807503986565968 r009 Im(z^3+c),c=-11/74+18/31*I,n=44 4807503997703603 r009 Im(z^3+c),c=-1/122+29/49*I,n=28 4807504021455736 m001 ln(MertensB1)/FibonacciFactorial*GAMMA(5/24) 4807504024485802 r005 Re(z^2+c),c=-9/14+40/133*I,n=32 4807504049391551 r005 Re(z^2+c),c=10/27+13/22*I,n=7 4807504074514291 a007 Real Root Of 180*x^4+644*x^3-987*x^2+556*x+890 4807504077573692 r009 Im(z^3+c),c=-2/11+23/40*I,n=32 4807504084861301 r005 Re(z^2+c),c=-20/29+1/18*I,n=46 4807504091981857 m001 (GAMMA(7/12)+1)/(2^(1/3)+4) 4807504097344040 r009 Re(z^3+c),c=-13/30+1/14*I,n=23 4807504102266698 r005 Re(z^2+c),c=11/58+12/35*I,n=46 4807504109851808 r005 Im(z^2+c),c=33/106+14/39*I,n=11 4807504129487857 m001 (3^(1/3)-Artin)/(Grothendieck+TreeGrowth2nd) 4807504138099061 r005 Im(z^2+c),c=-9/19+28/51*I,n=28 4807504147743687 m001 Salem/(Riemann3rdZero-Landau) 4807504155759299 a007 Real Root Of 128*x^4+741*x^3+703*x^2+375*x-485 4807504161978062 a007 Real Root Of 548*x^4-829*x^3+916*x^2-732*x-685 4807504162285824 r002 33th iterates of z^2 + 4807504172631957 a001 2/305*233^(26/33) 4807504192528062 a007 Real Root Of -94*x^4+646*x^3-640*x^2+271*x+355 4807504211061262 r009 Im(z^3+c),c=-23/48+25/42*I,n=28 4807504211064604 r002 11th iterates of z^2 + 4807504223353727 m005 (1/2*gamma+2/11)/(4/9*Catalan+4/7) 4807504238618607 s002 sum(A227775[n]/(n^3*10^n+1),n=1..infinity) 4807504249849327 a007 Real Root Of -506*x^4-67*x^3-166*x^2+439*x+269 4807504268454237 m001 (Tetranacci+ThueMorse)/(Zeta(1/2)-Magata) 4807504270642129 r009 Im(z^3+c),c=-11/78+25/43*I,n=4 4807504283211669 r009 Re(z^3+c),c=-8/15+10/39*I,n=9 4807504302018572 r005 Re(z^2+c),c=-13/18+5/63*I,n=22 4807504333703543 m001 (Si(Pi)+ReciprocalFibonacci)/Trott 4807504345983040 a003 cos(Pi*31/106)-cos(Pi*40/87) 4807504350313163 m001 FeigenbaumKappa-Landau^Ei(1,1) 4807504367948623 m001 GAMMA(5/12)/(MadelungNaCl^Zeta(1/2)) 4807504402897818 m001 1/exp(OneNinth)^2/Conway^2/Pi^2 4807504415190936 r009 Im(z^3+c),c=-19/70+31/56*I,n=34 4807504416900467 m001 1/Bloch^2/ln(Backhouse)^2/Robbin 4807504426112211 r005 Re(z^2+c),c=13/90+40/63*I,n=13 4807504432983420 m005 (1/2*exp(1)-3/7)/(3/4*2^(1/2)+7/8) 4807504436536177 r002 33th iterates of z^2 + 4807504438130948 l006 ln(3355/5426) 4807504457722757 r005 Re(z^2+c),c=9/118+15/49*I,n=3 4807504465093888 r009 Re(z^3+c),c=-29/56+23/56*I,n=24 4807504468627546 m001 (MasserGramain+Otter)/(RenyiParking+ZetaQ(4)) 4807504495881719 r005 Re(z^2+c),c=-7/10+19/125*I,n=30 4807504517689610 r002 58th iterates of z^2 + 4807504533650735 r009 Re(z^3+c),c=-35/74+10/17*I,n=28 4807504536098817 m001 Sierpinski^(Pi^(1/2))-Stephens 4807504539319332 m001 1/MinimumGamma^2/ln(MertensB1)*GAMMA(19/24)^2 4807504546961190 g007 Psi(2,8/9)+Psi(2,3/8)+Psi(2,3/5)-Psi(2,9/11) 4807504555490245 r005 Re(z^2+c),c=5/56+23/38*I,n=15 4807504561319551 a001 514229/11*9349^(13/51) 4807504562042644 m001 (Pi-3^(1/2))/(ln(Pi)+KomornikLoreti) 4807504563922562 s001 sum(exp(-4*Pi/5)^n*A175683[n],n=1..infinity) 4807504580670048 a007 Real Root Of -257*x^4+238*x^3-957*x^2-527*x+8 4807504583510126 a001 121393/11*15127^(20/51) 4807504589746614 m001 (Psi(1,1/3)-Zeta(5))/(-Ei(1)+Trott) 4807504598324675 r005 Im(z^2+c),c=9/26+9/29*I,n=53 4807504621770187 h001 (6/7*exp(2)+5/6)/(1/12*exp(2)+7/8) 4807504625059221 s001 sum(exp(-Pi)^(n-1)*A000913[n],n=1..infinity) 4807504637367938 m001 ln(Trott)^2*Si(Pi)^2/Zeta(1/2) 4807504654807634 a007 Real Root Of -785*x^4-435*x^3-424*x^2+914*x+531 4807504689838591 a007 Real Root Of -517*x^4-642*x^3+775*x^2+788*x-459 4807504691847187 m004 2-Cosh[Sqrt[5]*Pi]+(30*Cosh[Sqrt[5]*Pi])/Pi 4807504693113992 m001 (Zeta(1,-1)+GAMMA(5/6))/(ArtinRank2+Mills) 4807504712774849 r009 Im(z^3+c),c=-11/70+20/33*I,n=5 4807504721096230 m001 cos(Pi/12)^2/ln(DuboisRaymond)^2*sinh(1)^2 4807504722198693 r002 21th iterates of z^2 + 4807504722783402 m001 1/ln(GAMMA(7/12))*FransenRobinson^2*sin(Pi/12) 4807504736669776 r009 Im(z^3+c),c=-11/74+18/31*I,n=42 4807504739866591 a001 2207/3*10946^(23/33) 4807504746635405 a007 Real Root Of 86*x^4+418*x^3+175*x^2+553*x-880 4807504746997541 m001 (2^(1/2)+gamma)/(KhinchinLevy+Otter) 4807504750767839 r009 Re(z^3+c),c=-1/27+7/8*I,n=31 4807504756792820 s002 sum(A154012[n]/(pi^n-1),n=1..infinity) 4807504760316733 a001 3536736619241/1926*199^(2/11) 4807504764940737 r009 Re(z^3+c),c=-23/48+22/41*I,n=49 4807504774963295 m008 (4/5*Pi^6-2/5)/(1/6*Pi^6-1/3) 4807504787973290 r009 Im(z^3+c),c=-11/74+18/31*I,n=40 4807504803802132 r002 21th iterates of z^2 + 4807504804377393 r009 Im(z^3+c),c=-3/10+11/20*I,n=18 4807504804946744 m002 5*Pi^6+3/(5*ProductLog[Pi]) 4807504806560605 m001 GAMMA(13/24)-gamma-LandauRamanujan2nd 4807504813647437 r009 Im(z^3+c),c=-7/74+37/63*I,n=21 4807504816969704 r005 Re(z^2+c),c=-73/102+5/52*I,n=50 4807504819161727 r002 9th iterates of z^2 + 4807504819610164 h001 (7/9*exp(2)+4/5)/(1/5*exp(1)+9/11) 4807504829510574 r002 46th iterates of z^2 + 4807504836743811 r002 59th iterates of z^2 + 4807504842727536 r005 Re(z^2+c),c=-85/122+1/57*I,n=49 4807504860047631 a007 Real Root Of -401*x^4+265*x^3-438*x^2-21*x+142 4807504886286804 m001 Rabbit*(ArtinRank2-exp(1/Pi)) 4807504895458844 r002 51th iterates of z^2 + 4807504903967573 m002 2+Pi/ProductLog[Pi]-Sinh[Pi]/Pi^4 4807504916939573 m001 exp(gamma)/(GAMMA(1/3)+GAMMA(23/24)) 4807504927426596 m001 Cahen^Khinchin+ZetaP(3) 4807504959034230 r002 3th iterates of z^2 + 4807504966746277 a001 7/1926*18^(3/31) 4807504973125380 m001 (5^(1/2)-ln(5))/(FibonacciFactorial+ZetaP(4)) 4807504976984604 r009 Im(z^3+c),c=-41/110+1/63*I,n=10 4807505001044266 l006 ln(3274/5295) 4807505021683658 r005 Im(z^2+c),c=19/58+7/55*I,n=6 4807505022927597 r002 59th iterates of z^2 + 4807505031711040 b008 5-1/(9*EulerGamma) 4807505038649689 r002 29th iterates of z^2 + 4807505057177556 r002 34i'th iterates of 2*x/(1-x^2) of 4807505059092486 a001 121393/11*2207^(25/51) 4807505065156962 h001 (-exp(3)+2)/(-12*exp(1)-5) 4807505073734228 r009 Re(z^3+c),c=-67/126+29/46*I,n=2 4807505086330149 h001 (-8*exp(-3)-7)/(-exp(2)-8) 4807505088879328 m001 1/PrimesInBinary^2/ln(KhintchineLevy)*sqrt(2) 4807505092349769 q001 1/2080081 4807505097958800 r005 Re(z^2+c),c=-33/50+17/61*I,n=56 4807505133452918 r009 Re(z^3+c),c=-9/22+3/55*I,n=20 4807505144214852 m002 -5*Pi^4+E^Pi*Pi*Csch[Pi] 4807505145442634 m001 (Cahen-FeigenbaumC)/(Landau+Tetranacci) 4807505149237332 m001 GAMMA(11/12)^2*ln(Tribonacci)*sin(1)^2 4807505183126625 a005 (1/sin(82/225*Pi))^509 4807505186149627 r009 Im(z^3+c),c=-1/114+22/41*I,n=3 4807505191275488 a007 Real Root Of 378*x^4-615*x^3+333*x^2-415*x-365 4807505224795552 a001 20365011074/843*521^(11/13) 4807505230273072 m001 1/3/GAMMA(1/3)/sin(Pi/12) 4807505241375835 r002 37th iterates of z^2 + 4807505245401728 a007 Real Root Of 300*x^4-810*x^3+176*x^2-509*x+278 4807505251550999 r005 Im(z^2+c),c=21/94+1/61*I,n=16 4807505263010809 a007 Real Root Of 50*x^4+203*x^3-178*x^2-124*x-635 4807505273366063 r009 Im(z^3+c),c=-23/94+23/41*I,n=40 4807505281316286 a001 6557470319842/3571*199^(2/11) 4807505302764521 m001 (MertensB3-Porter)/(ln(Pi)+(1+3^(1/2))^(1/2)) 4807505320834704 a007 Real Root Of 629*x^4+87*x^3-444*x^2-380*x-104 4807505336269665 m001 PlouffeB/(polylog(4,1/2)+Bloch) 4807505360557352 m001 (Pi^(1/2)+MertensB1)/(BesselK(0,1)+gamma(3)) 4807505366557165 r009 Im(z^3+c),c=-13/21+11/23*I,n=31 4807505370740282 m001 (ln(2)-ln(5))/(Ei(1)+Trott) 4807505377547703 b008 1/3+Zeta[Sqrt[2],EulerGamma] 4807505394471213 r002 17th iterates of z^2 + 4807505398970800 m001 1/LambertW(1)/ln(FeigenbaumC)^2/Zeta(9) 4807505408245415 r005 Im(z^2+c),c=-9/82+5/8*I,n=8 4807505419496790 r002 22th iterates of z^2 + 4807505426591174 r005 Re(z^2+c),c=-5/8+82/227*I,n=19 4807505438384391 a001 12752043/55*317811^(8/19) 4807505438453617 a001 271443/55*2971215073^(8/19) 4807505439591691 a003 cos(Pi*6/41)-cos(Pi*4/11) 4807505446607739 m001 1/Zeta(9)*ln(CopelandErdos)/sqrt(3)^2 4807505465886528 a007 Real Root Of 299*x^4-840*x^3+329*x^2-927*x-631 4807505470446742 r002 19th iterates of z^2 + 4807505528468830 r009 Re(z^3+c),c=-1/27+7/8*I,n=33 4807505531835568 m001 FeigenbaumKappa/(exp(1/exp(1))+exp(1/Pi)) 4807505544598095 m001 1/ln(BesselJ(1,1))*ErdosBorwein^2*GAMMA(7/12) 4807505559219673 m001 (Salem+Trott2nd)/(Artin-GolombDickman) 4807505571064389 r009 Im(z^3+c),c=-19/78+29/53*I,n=2 4807505573290376 m001 1/Ei(1)^2*exp(ArtinRank2)^2/GAMMA(7/12)^2 4807505581379494 m004 2+(30*Cosh[Sqrt[5]*Pi])/Pi-Sinh[Sqrt[5]*Pi] 4807505583060265 m005 (1/3*2^(1/2)-2/9)/(1/5*Catalan+5) 4807505592517511 l006 ln(3193/5164) 4807505614166964 a003 sin(Pi*1/7)-sin(Pi*43/117) 4807505624909275 r005 Re(z^2+c),c=-11/8+31/166*I,n=2 4807505633592732 a007 Real Root Of 458*x^4-706*x^3+956*x^2-824*x-720 4807505635759202 r004 Re(z^2+c),c=-9/14+3/17*I,z(0)=-1,n=28 4807505641222547 a007 Real Root Of -564*x^4-305*x^3-569*x^2+818*x+521 4807505649027457 r004 Re(z^2+c),c=4/9-10/19*I,z(0)=exp(3/8*I*Pi),n=2 4807505657755322 h001 (4/11*exp(1)+3/7)/(7/9*exp(1)+5/6) 4807505661598188 q001 1486/3091 4807505662348607 a007 Real Root Of -76*x^4-143*x^3-843*x^2+312*x+333 4807505669656843 r009 Im(z^3+c),c=-25/86+37/56*I,n=7 4807505671688171 m001 (Magata+ZetaQ(2))/(BesselI(1,1)-GAMMA(17/24)) 4807505703411025 m001 1/ln(CareFree)^2/MertensB1*cosh(1) 4807505712719589 m005 (1/6*Catalan+2/5)/(3/5*Catalan+3/5) 4807505724497553 r009 Re(z^3+c),c=-8/17+4/35*I,n=20 4807505726862145 m001 (ln(5)-ErdosBorwein)/(GolombDickman-ZetaQ(2)) 4807505732993618 a007 Real Root Of 102*x^4-611*x^3+668*x^2+222*x-121 4807505737104641 a007 Real Root Of -527*x^4+987*x^3-417*x^2+166*x+314 4807505737347257 r009 Re(z^3+c),c=-29/60+3/35*I,n=37 4807505747939659 a007 Real Root Of -160*x^4+325*x^3+445*x^2+515*x-378 4807505750104796 h001 (2/9*exp(2)+2/5)/(5/11*exp(2)+8/9) 4807505810132232 r008 a(0)=5,K{-n^6,-43+45*n-n^2+5*n^3} 4807505810649675 r009 Re(z^3+c),c=-1/27+7/8*I,n=35 4807505838781564 m005 (25/36+1/4*5^(1/2))/(1/8*Pi-3) 4807505847268652 l006 ln(3797/3984) 4807505849052717 r005 Re(z^2+c),c=-25/52+16/31*I,n=46 4807505870516163 m001 (HardyLittlewoodC5-Salem)/(Ei(1,1)+exp(1/Pi)) 4807505873395565 r009 Im(z^3+c),c=-5/86+36/61*I,n=29 4807505879409848 r009 Re(z^3+c),c=-1/27+7/8*I,n=51 4807505879415380 r009 Re(z^3+c),c=-1/27+7/8*I,n=53 4807505879431053 r009 Re(z^3+c),c=-1/27+7/8*I,n=55 4807505879441171 r009 Re(z^3+c),c=-1/27+7/8*I,n=57 4807505879445804 r009 Re(z^3+c),c=-1/27+7/8*I,n=59 4807505879447463 r009 Re(z^3+c),c=-1/27+7/8*I,n=61 4807505879447898 r009 Re(z^3+c),c=-1/27+7/8*I,n=63 4807505879484938 r009 Re(z^3+c),c=-1/27+7/8*I,n=49 4807505879855351 r009 Re(z^3+c),c=-1/27+7/8*I,n=47 4807505880554108 r005 Re(z^2+c),c=29/126+17/44*I,n=24 4807505881030724 r009 Re(z^3+c),c=-1/27+7/8*I,n=45 4807505882531241 m006 (3/4*ln(Pi)+2)/(3/4/Pi-5/6) 4807505883918992 r009 Re(z^3+c),c=-1/27+7/8*I,n=43 4807505884208199 m001 sin(1/5*Pi)^Artin/Niven 4807505886338681 r009 Re(z^3+c),c=-1/27+7/8*I,n=37 4807505889328178 r009 Re(z^3+c),c=-1/27+7/8*I,n=41 4807505895084349 r009 Re(z^3+c),c=-1/27+7/8*I,n=39 4807505897336866 a007 Real Root Of 848*x^4-719*x^3+158*x^2+405*x+33 4807505910861144 r002 39th iterates of z^2 + 4807505917897597 r005 Re(z^2+c),c=-75/106+5/42*I,n=15 4807505934321757 r005 Im(z^2+c),c=-99/74+8/55*I,n=6 4807505946315462 a007 Real Root Of 482*x^4+165*x^3+611*x^2-708*x-489 4807505996996549 a007 Real Root Of 430*x^4-461*x^3+562*x^2-264*x-331 4807506001654792 m001 (3^(1/2)-sin(1))/(FibonacciFactorial+Kac) 4807506003931087 a007 Real Root Of 334*x^4-949*x^3+235*x^2-93*x+78 4807506010762699 r005 Re(z^2+c),c=-23/42+21/55*I,n=20 4807506013580123 s002 sum(A211595[n]/(10^n-1),n=1..infinity) 4807506021641585 m001 GAMMA(1/6)*ln(Si(Pi))^2/GAMMA(5/24) 4807506034239221 a001 34/710647*11^(51/53) 4807506067681873 r002 38th iterates of z^2 + 4807506068381067 r002 31th iterates of z^2 + 4807506081304417 m005 (1/2*exp(1)-2/11)/(5/8*exp(1)+3/4) 4807506095096580 r002 29th iterates of z^2 + 4807506117189056 m001 (Pi-exp(1))/(BesselI(0,1)-GAMMA(2/3)) 4807506132737985 m001 (GAMMA(23/24)-Trott)/(Zeta(1,2)-GAMMA(19/24)) 4807506136445261 m001 (Trott+ZetaP(2))/(sin(1/12*Pi)+CareFree) 4807506149781341 r009 Re(z^3+c),c=-3/56+3/16*I,n=2 4807506149886376 m001 (sin(1/5*Pi)-gamma(3))/(Kac+Lehmer) 4807506156396160 a007 Real Root Of 767*x^4-203*x^3-828*x^2-628*x-3 4807506160507958 a003 cos(Pi*3/118)*cos(Pi*35/103) 4807506160769303 l006 ln(54/6611) 4807506176447938 r009 Re(z^3+c),c=-3/58+2/3*I,n=11 4807506184721808 h001 (-8*exp(1)-5)/(-2*exp(1)+11) 4807506187655288 m001 (Zeta(1/2)+ZetaP(3))/(2^(1/3)+2^(1/2)) 4807506203250405 m005 (1/2*Pi+2/3)/(1/9*Catalan+4/11) 4807506214780777 l006 ln(3112/5033) 4807506224034254 r002 6th iterates of z^2 + 4807506241911581 m001 (-LaplaceLimit+Tribonacci)/(Chi(1)+ln(5)) 4807506245647247 r002 37th iterates of z^2 + 4807506251527654 r009 Im(z^3+c),c=-13/54+3/5*I,n=10 4807506287616425 p001 sum(1/(416*n+211)/(24^n),n=0..infinity) 4807506295787516 r002 6th iterates of z^2 + 4807506300545026 r009 Im(z^3+c),c=-41/110+22/43*I,n=24 4807506305328303 r005 Re(z^2+c),c=-7/10+3/203*I,n=57 4807506309216998 m001 (Shi(1)+GAMMA(7/12))/(FeigenbaumDelta+Rabbit) 4807506338952733 a007 Real Root Of 723*x^4-175*x^3-659*x^2-942*x+586 4807506346684945 a007 Real Root Of -818*x^4+562*x^3+13*x^2+851*x-41 4807506381208539 a001 610/521*47^(55/57) 4807506391242496 r009 Im(z^3+c),c=-27/106+14/25*I,n=20 4807506392207284 a007 Real Root Of 17*x^4+804*x^3-642*x^2-200*x-945 4807506412050981 r005 Re(z^2+c),c=-73/106+5/47*I,n=57 4807506415386988 r005 Im(z^2+c),c=-19/14+1/170*I,n=48 4807506416963233 a007 Real Root Of -330*x^4+752*x^3+274*x^2+299*x-273 4807506417651207 a001 1/322*(1/2*5^(1/2)+1/2)^11*76^(9/19) 4807506419212761 m001 (ln(2+3^(1/2))+GAMMA(19/24))/(Kac-OneNinth) 4807506423156466 m001 1/cos(1)*FibonacciFactorial^2*ln(sin(1)) 4807506432384226 a001 75640*843^(14/51) 4807506442069517 b008 7*KelvinKer[0,Sqrt[6]] 4807506455296622 a007 Real Root Of -573*x^4-409*x^3-296*x^2+939*x+505 4807506478167047 a007 Real Root Of -560*x^4+555*x^3-259*x^2+958*x+612 4807506491272747 m001 1/arctan(1/2)^2/FeigenbaumC^2*ln(sqrt(2)) 4807506519406122 m001 (Zeta(1,-1)-GaussAGM)/(MertensB3+RenyiParking) 4807506528370842 a005 (1/cos(19/172*Pi))^550 4807506535667511 r009 Im(z^3+c),c=-11/60+31/54*I,n=10 4807506536574390 m001 Robbin^(Pi*2^(1/2)/GAMMA(3/4))/(Robbin^Si(Pi)) 4807506538219898 l006 ln(6143/9935) 4807506539187007 m005 (1/2*5^(1/2)-1/5)/(1/12*gamma+1/7) 4807506545341781 r002 13th iterates of z^2 + 4807506550405960 r009 Im(z^3+c),c=-10/19+11/37*I,n=26 4807506569768525 m001 cos(1)^FibonacciFactorial+Trott 4807506570291018 r005 Im(z^2+c),c=6/25+11/25*I,n=35 4807506572760885 r005 Re(z^2+c),c=5/28+34/59*I,n=21 4807506587176707 a001 10983760033/281*521^(10/13) 4807506618559197 r005 Re(z^2+c),c=-9/14+59/214*I,n=52 4807506620398010 r002 29th iterates of z^2 + 4807506623118476 r009 Im(z^3+c),c=-2/11+23/40*I,n=36 4807506662437957 m006 (1/6*exp(2*Pi)-4)/(4/Pi+1/2) 4807506664792976 a007 Real Root Of 237*x^4-305*x^3-855*x^2-589*x+502 4807506666256084 a007 Real Root Of -816*x^4-416*x^3-900*x^2+513*x+452 4807506682130153 a007 Real Root Of 10*x^4-21*x^3-242*x^2+468*x+168 4807506697097796 h001 (1/2*exp(2)+5/12)/(1/10*exp(1)+7/12) 4807506698101890 r009 Im(z^3+c),c=-5/14+31/59*I,n=20 4807506698161737 r002 23th iterates of z^2 + 4807506704993087 a007 Real Root Of 20*x^4+941*x^3-988*x^2-109*x+299 4807506719690286 s002 sum(A223250[n]/(n^2*2^n+1),n=1..infinity) 4807506743451084 a007 Real Root Of -195*x^4-915*x^3+212*x^2+370*x-625 4807506748666185 m001 GAMMA(1/6)^BesselJ(1,1)+GAMMA(1/3) 4807506779446591 a007 Real Root Of 77*x^4+220*x^3-628*x^2+389*x-302 4807506793624202 r005 Im(z^2+c),c=-23/18+64/241*I,n=5 4807506797989043 r009 Im(z^3+c),c=-29/86+13/24*I,n=13 4807506799521804 r009 Im(z^3+c),c=-13/38+15/22*I,n=23 4807506800011889 m001 (Landau+Robbin)/(Pi-HardyLittlewoodC3) 4807506800385593 m006 (5*Pi^2-5/6)/(3*Pi+2/3) 4807506800385593 m008 (5*Pi^2-5/6)/(3*Pi+2/3) 4807506801000946 r005 Im(z^2+c),c=13/98+6/11*I,n=48 4807506825649318 r002 26th iterates of z^2 + 4807506852704633 m001 (PrimesInBinary+Salem)/(2^(1/2)+Ei(1)) 4807506853599988 m005 (1/2*5^(1/2)-5/11)/(2/3*Pi-5/7) 4807506860233565 m009 (4/3*Catalan+1/6*Pi^2-4/5)/(3/4*Psi(1,2/3)+2) 4807506870302547 l006 ln(3031/4902) 4807506886930212 a007 Real Root Of -430*x^4+784*x^3-500*x^2+371*x+404 4807506896815031 r002 32th iterates of z^2 + 4807506897556881 p003 LerchPhi(1/64,4,280/131) 4807506907991471 r009 Im(z^3+c),c=-10/23+24/49*I,n=50 4807506911553004 r009 Im(z^3+c),c=-11/38+37/60*I,n=15 4807506911664669 g007 2*Psi(2,1/3)-Psi(2,1/12)-Psi(2,1/9) 4807506944076226 a003 cos(Pi*10/103)-cos(Pi*35/102) 4807506946393913 r002 10th iterates of z^2 + 4807506949520561 s002 sum(A223250[n]/(n^2*2^n-1),n=1..infinity) 4807506970889610 m001 (gamma(1)-GAMMA(13/24))/(Pi+BesselK(0,1)) 4807507006541267 a007 Real Root Of 100*x^4-438*x^3-449*x^2-135*x+212 4807507007119700 m001 cos(1)*Chi(1)^TwinPrimes 4807507018898970 m005 (1/2*3^(1/2)-4)/(2/3*Catalan-6/11) 4807507019652871 r002 33th iterates of z^2 + 4807507039694199 p004 log(19477/12043) 4807507045895880 r002 31th iterates of z^2 + 4807507053283990 m001 (Stephens+TreeGrowth2nd)/(Bloch-Sierpinski) 4807507059494023 h001 (1/12*exp(2)+5/6)/(7/9*exp(1)+9/10) 4807507070407181 r005 Im(z^2+c),c=-5/8+11/124*I,n=44 4807507079786889 r005 Re(z^2+c),c=41/114+5/48*I,n=10 4807507081198569 a007 Real Root Of -188*x^4-999*x^3-614*x^2-622*x+624 4807507090143051 r005 Re(z^2+c),c=-5/16+34/57*I,n=13 4807507106835319 a003 cos(Pi*14/69)-cos(Pi*17/43) 4807507147645670 m001 (-Cahen+Stephens)/(Chi(1)+BesselI(1,1)) 4807507151715568 a007 Real Root Of 911*x^4+439*x^3+417*x^2-978*x+46 4807507155092114 a007 Real Root Of -546*x^4-455*x^3-573*x^2+210*x+212 4807507159146813 a007 Real Root Of -824*x^4+393*x^3-10*x^2+701*x+427 4807507182929206 r002 21th iterates of z^2 + 4807507189178144 a003 sin(Pi*5/76)*sin(Pi*7/93) 4807507197042630 a007 Real Root Of -894*x^4+566*x^3+468*x^2+960*x+464 4807507202626207 a007 Real Root Of -402*x^4+236*x^3-47*x^2+55*x+85 4807507203327979 h003 exp(Pi*(9*(12^(2/3)-4)^(1/2))) 4807507211379899 l006 ln(5981/9673) 4807507216546126 m001 Riemann2ndZero/exp(Porter)/Zeta(7) 4807507218479307 q001 999/2078 4807507225633485 r005 Re(z^2+c),c=-27/82+26/51*I,n=2 4807507229533600 a003 cos(Pi*31/88)-sin(Pi*25/66) 4807507247969625 m001 (GAMMA(11/12)+Totient)/(2^(1/2)-Catalan) 4807507250057503 r005 Re(z^2+c),c=-2/3+41/150*I,n=48 4807507262454861 m001 (Pi+2^(1/3))/(PlouffeB+TreeGrowth2nd) 4807507285482484 a007 Real Root Of -586*x^4+738*x^3-936*x^2+916*x+770 4807507304320570 r009 Re(z^3+c),c=-23/74+41/46*I,n=3 4807507377365608 m005 (1/3*Zeta(3)+2/7)/(7/11*Pi-4/7) 4807507382538561 r005 Re(z^2+c),c=-5/8+43/217*I,n=16 4807507397797737 a007 Real Root Of 404*x^4-546*x^3+310*x^2-566*x-426 4807507401959868 r005 Re(z^2+c),c=-20/27+5/29*I,n=10 4807507406119520 r009 Im(z^3+c),c=-73/126+8/17*I,n=34 4807507449974507 m001 (Otter-Tetranacci)/(FeigenbaumB+Mills) 4807507451224295 a001 199/8*14930352^(14/19) 4807507451286058 r005 Im(z^2+c),c=-25/26+7/24*I,n=6 4807507456057241 a001 233/322*18^(19/29) 4807507458824813 r005 Im(z^2+c),c=-25/34+7/50*I,n=23 4807507462636299 m005 (1/2*Pi+2/3)/(13/10+3/2*5^(1/2)) 4807507468223593 m002 Cosh[Pi]/Pi+6/(5*ProductLog[Pi]) 4807507484293139 m001 GAMMA(1/12)/Robbin/exp(GAMMA(17/24)) 4807507488307060 a001 2504730781961/1364*199^(2/11) 4807507497067256 r002 55th iterates of z^2 + 4807507499237277 a001 123/11*(1/2*5^(1/2)+1/2)^29*11^(11/20) 4807507531794204 r002 27th iterates of z^2 + 4807507547114992 a001 161/133957148*8^(2/3) 4807507547562204 a004 Fibonacci(5)/Lucas(6)/(1/2+sqrt(5)/2)^18 4807507555917782 m005 (1/2*Zeta(3)-3/7)/(5/11*3^(1/2)-3/7) 4807507556599594 r009 Im(z^3+c),c=-39/110+34/61*I,n=19 4807507561822414 l006 ln(2950/4771) 4807507569900994 r005 Im(z^2+c),c=43/122+7/46*I,n=26 4807507580169790 m001 1/ln((2^(1/3)))^2/Khintchine^2/cos(1) 4807507588094324 m005 (1/3*exp(1)+1/11)/(51/44+9/22*5^(1/2)) 4807507595287085 r009 Im(z^3+c),c=-29/86+31/57*I,n=13 4807507607692906 r002 2th iterates of z^2 + 4807507634221460 s001 sum(exp(-3*Pi)^(n-1)*A233674[n],n=1..infinity) 4807507636656520 r009 Im(z^3+c),c=-11/74+18/31*I,n=37 4807507638324459 a007 Real Root Of 755*x^4-366*x^3+817*x^2-822*x-665 4807507653979727 m001 (Zeta(3)-gamma(3))/(Pi^(1/2)+Sarnak) 4807507654129818 a007 Real Root Of -539*x^4+611*x^3+612*x^2+220*x+61 4807507656131987 a001 53316291173/322*322^(7/12) 4807507661571017 m005 (1/3*Zeta(3)-3/5)/(-3/4+3/20*5^(1/2)) 4807507666595532 m001 arctan(1/2)+GolombDickman*Trott2nd 4807507673909179 m001 (sin(1/5*Pi)+BesselI(1,1))/(exp(Pi)+sin(1)) 4807507685362257 a007 Real Root Of 409*x^4-849*x^3-189*x^2+26*x-60 4807507695861530 m001 exp((2^(1/3)))/Khintchine^2/Zeta(7)^2 4807507699175515 r009 Re(z^3+c),c=-1/27+35/46*I,n=62 4807507736251007 a007 Real Root Of -776*x^4+939*x^3-765*x^2-151*x+250 4807507749814605 r009 Im(z^3+c),c=-4/13+23/41*I,n=10 4807507751522096 m005 (1/3*3^(1/2)-3/5)/(1/6*3^(1/2)-5) 4807507759419584 m001 (gamma+Zeta(5))/(-ThueMorse+ZetaP(4)) 4807507775107594 a003 cos(Pi*7/75)-cos(Pi*40/117) 4807507780406621 r005 Im(z^2+c),c=-27/118+37/58*I,n=46 4807507798903806 m001 Artin^StolarskyHarborth-OrthogonalArrays 4807507803103610 m001 Zeta(5)/(Cahen-Thue) 4807507808529735 r005 Re(z^2+c),c=-19/30+6/119*I,n=11 4807507812055429 a007 Real Root Of -123*x^4-640*x^3-97*x^2+807*x+713 4807507815528267 m001 (BesselK(1,1)-HardyLittlewoodC5)^Tribonacci 4807507816804952 a003 cos(Pi*20/87)*cos(Pi*47/98) 4807507824655595 r005 Re(z^2+c),c=37/118+5/57*I,n=4 4807507829548413 r009 Re(z^3+c),c=-16/31+20/47*I,n=7 4807507847842550 a007 Real Root Of -639*x^4+434*x^3-163*x^2+671*x-299 4807507850660914 a001 2178309/76*11^(11/51) 4807507851841000 a007 Real Root Of -127*x^4-571*x^3+136*x^2-454*x-931 4807507866225719 a007 Real Root Of 547*x^4+580*x^3-787*x^2-921*x+531 4807507867386559 s002 sum(A064088[n]/(exp(pi*n)-1),n=1..infinity) 4807507868230788 r005 Re(z^2+c),c=-41/86+31/54*I,n=46 4807507887429094 r004 Im(z^2+c),c=-5/22+3/17*I,z(0)=-1,n=3 4807507892300031 m001 (Tetranacci-Trott2nd)/(ln(Pi)+FransenRobinson) 4807507898506325 a007 Real Root Of 786*x^4-308*x^3+482*x^2-681*x-515 4807507902590123 s002 sum(A239002[n]/(n*pi^n-1),n=1..infinity) 4807507907141300 r002 47th iterates of z^2 + 4807507922021179 l006 ln(5819/9411) 4807507939562455 a001 2/505019158607*3^(3/17) 4807507942180869 a007 Real Root Of 504*x^4-544*x^3+742*x^2+345*x-93 4807507949558248 a001 53316291173/843*521^(9/13) 4807507979355381 r009 Im(z^3+c),c=-55/102+13/47*I,n=62 4807507982952489 m001 (sin(1)+exp(1/Pi))/(ZetaP(2)+ZetaQ(3)) 4807507991549668 m001 (Ei(1,1)-FeigenbaumKappa)/(Lehmer-Otter) 4807508020151314 m001 1/exp(Niven)/FibonacciFactorial/GAMMA(7/24) 4807508039151928 r009 Im(z^3+c),c=-7/32+21/37*I,n=24 4807508044146498 r005 Im(z^2+c),c=-23/114+24/31*I,n=11 4807508058228223 a007 Real Root Of -49*x^4+83*x^3+326*x^2+439*x-293 4807508071151593 a007 Real Root Of 908*x^4+80*x^3-847*x^2-149*x+210 4807508080799291 m005 (1/2*Catalan+1/10)/(10/11*2^(1/2)-1/8) 4807508083240829 r005 Im(z^2+c),c=-13/14+45/164*I,n=17 4807508085997949 r009 Im(z^3+c),c=-29/82+31/58*I,n=22 4807508086372305 r002 44th iterates of z^2 + 4807508106760779 m001 1/gamma^2/exp(Niven)*log(1+sqrt(2)) 4807508133992728 m002 5*Pi^6+(Pi*ProductLog[Pi])/6 4807508166751943 r009 Im(z^3+c),c=-3/8+33/61*I,n=22 4807508170655552 a007 Real Root Of -106*x^4-595*x^3-377*x^2+337*x+844 4807508186639164 r002 18th iterates of z^2 + 4807508187340944 a007 Real Root Of 967*x^4+266*x^3+893*x^2+546*x+34 4807508196932202 s002 sum(A025417[n]/((10^n+1)/n),n=1..infinity) 4807508198734262 a001 3/39088169*8^(15/17) 4807508201593597 s002 sum(A182043[n]/(n^2*2^n+1),n=1..infinity) 4807508206010942 m001 Psi(1,1/3)/(2^(1/3)-ReciprocalFibonacci) 4807508219603309 r002 49th iterates of z^2 + 4807508223908275 m002 -2+5*Pi^4-4*ProductLog[Pi] 4807508224069088 m001 cos(1)^sin(1/5*Pi)*cos(1)^BesselK(1,1) 4807508224069088 m001 cos(1)^sin(Pi/5)*cos(1)^BesselK(1,1) 4807508246036753 m001 ln(Ei(1))*Cahen^2/GAMMA(1/24)^2 4807508255515329 h001 (11/12*exp(2)+5/8)/(1/10*exp(2)+4/5) 4807508278068669 a001 1120149428790/233 4807508282123284 a001 47/75025*8^(49/50) 4807508284419281 m006 (3/4*Pi^2-2)/(1/2*exp(Pi)-1/3) 4807508292389361 l006 ln(2869/4640) 4807508300529627 r002 5th iterates of z^2 + 4807508322789584 a003 cos(Pi*31/91)/sin(Pi*13/27) 4807508323692426 a007 Real Root Of -502*x^4-17*x^3-676*x^2+580*x+460 4807508331817519 r005 Re(z^2+c),c=-5/9+16/45*I,n=15 4807508338987157 r005 Re(z^2+c),c=-51/74+3/34*I,n=44 4807508339034296 r009 Im(z^3+c),c=-41/74+13/27*I,n=16 4807508341826371 a007 Real Root Of -822*x^4+654*x^3+19*x^2+813*x-424 4807508380657289 r002 49th iterates of z^2 + 4807508393731361 a001 54018521/377*4807526976^(6/23) 4807508393775925 a001 969323029/377*75025^(6/23) 4807508401519411 m002 -6+E^Pi/Pi^4+3/Pi 4807508407409903 m001 Zeta(1,2)^(Pi*csc(7/24*Pi)/GAMMA(17/24))/Niven 4807508416966494 m005 (1/2*2^(1/2)-6/11)/(2*gamma-9/11) 4807508418421078 v002 sum(1/(2^n+(6*n^2+29*n+17)),n=1..infinity) 4807508445071721 r002 60th iterates of z^2 + 4807508462040931 m001 FellerTornier/(ln(Pi)+2*Pi/GAMMA(5/6)) 4807508471896851 r009 Im(z^3+c),c=-7/16+26/53*I,n=48 4807508476678357 m001 (cos(1/12*Pi)+CopelandErdos)/(Shi(1)+3^(1/3)) 4807508486951008 a007 Real Root Of 690*x^4+394*x^3+867*x^2-24*x-205 4807508488107640 r002 57th iterates of z^2 + 4807508494564442 a001 322/28657*233^(4/15) 4807508496585790 h001 (-8*exp(4)+7)/(-3*exp(8)+3) 4807508498488940 a007 Real Root Of 741*x^4-353*x^3-274*x^2-856*x-427 4807508502636690 m005 (19/42+1/6*5^(1/2))/(7/9*Pi-8/11) 4807508523429557 m001 (Shi(1)+BesselK(1,1))/(Cahen+FransenRobinson) 4807508526239389 r005 Re(z^2+c),c=-25/102+37/57*I,n=10 4807508534669761 m001 cos(1)*BesselI(1,1)/HardyLittlewoodC3 4807508550152886 r009 Im(z^3+c),c=-23/94+23/41*I,n=39 4807508550225087 r005 Im(z^2+c),c=5/17+1/58*I,n=22 4807508562601520 r009 Im(z^3+c),c=-55/118+25/64*I,n=12 4807508567744865 r009 Im(z^3+c),c=-15/38+29/56*I,n=26 4807508571394624 m001 (cos(1)-GAMMA(1/12))/BesselI(0,2) 4807508580026326 a007 Real Root Of 816*x^4-103*x^3+231*x^2-983*x-581 4807508584249430 a001 192900153618*144^(11/17) 4807508601929762 a007 Real Root Of 184*x^4+886*x^3+68*x^2+296*x+9 4807508606439990 a001 1292/9*322^(9/43) 4807508624001363 b008 9/11+ArcSinh[27] 4807508629775143 m001 (GAMMA(23/24)+ZetaQ(2))/(5^(1/2)-gamma(2)) 4807508640488301 l006 ln(61/7468) 4807508644160967 a003 sin(Pi*1/50)+sin(Pi*7/51) 4807508656347621 m005 (1/2*gamma-1/4)/(6*2^(1/2)-5/11) 4807508658688224 r005 Im(z^2+c),c=-31/52+1/11*I,n=24 4807508661585711 r005 Re(z^2+c),c=-3/5+27/70*I,n=17 4807508668827670 m008 (1/4*Pi^4+1/3)/(5*Pi^2+2) 4807508673363795 l006 ln(5657/9149) 4807508675541148 a007 Real Root Of 11*x^4-335*x^3-923*x^2-959*x+711 4807508680885111 r009 Re(z^3+c),c=-19/29+13/27*I,n=2 4807508692224678 r005 Im(z^2+c),c=-69/52+2/63*I,n=48 4807508709411904 r005 Im(z^2+c),c=-157/114+13/63*I,n=5 4807508747326918 r009 Re(z^3+c),c=-5/13+2/63*I,n=13 4807508749170383 a003 sin(Pi*1/86)/cos(Pi*16/71) 4807508749602290 q001 1511/3143 4807508796824467 r009 Re(z^3+c),c=-5/82+47/63*I,n=29 4807508809666298 a007 Real Root Of 625*x^4-425*x^3+300*x^2-127*x-211 4807508822240283 m005 (1/2*Pi-7/8)/(5/6*Catalan-7/9) 4807508832491133 r005 Im(z^2+c),c=11/94+19/40*I,n=9 4807508837018530 m005 (1/3*exp(1)+1/7)/(5/6*exp(1)-1/12) 4807508839341848 r009 Im(z^3+c),c=-23/86+45/62*I,n=56 4807508839815657 r009 Re(z^3+c),c=-25/52+2/39*I,n=57 4807508843580470 m001 (cos(1)-ln(2)/ln(10))/(-Gompertz+Paris) 4807508844110218 m001 GAMMA(17/24)*GAMMA(1/24)*ln(log(1+sqrt(2)))^2 4807508859391741 r005 Im(z^2+c),c=17/64+22/53*I,n=41 4807508888215835 r005 Re(z^2+c),c=-13/22+47/125*I,n=41 4807508893587231 s002 sum(A185855[n]/(exp(2*pi*n)+1),n=1..infinity) 4807508908085831 a007 Real Root Of -149*x^4-727*x^3+22*x^2+196*x-753 4807508929053096 a007 Real Root Of -340*x^4+332*x^3-318*x^2+496*x+367 4807508929920809 r005 Re(z^2+c),c=-7/10+15/164*I,n=48 4807508931779862 r009 Re(z^3+c),c=-29/98+58/61*I,n=2 4807508938797368 m001 (Pi+BesselI(1,2))/(FellerTornier+Robbin) 4807508943057896 m001 (2^(1/2)-FeigenbaumKappa)/(Gompertz+Kac) 4807508977908345 a007 Real Root Of -92*x^4-239*x^3-395*x^2-122*x+11 4807508986170724 p003 LerchPhi(1/8,3,6/47) 4807508990806026 r005 Im(z^2+c),c=-43/118+5/9*I,n=4 4807508991658359 a001 1364/28657*377^(23/59) 4807508995135905 r009 Re(z^3+c),c=-35/102+29/41*I,n=38 4807509002419464 a007 Real Root Of -990*x^4-75*x^3-783*x^2+962*x+688 4807509007223152 r002 59th iterates of z^2 + 4807509015453532 r009 Im(z^3+c),c=-23/64+7/18*I,n=2 4807509055306390 m005 (1/2*gamma+3/5)/(3/10*Zeta(3)-6/11) 4807509057595663 r009 Im(z^3+c),c=-29/118+34/61*I,n=16 4807509059953867 r009 Im(z^3+c),c=-11/94+31/53*I,n=25 4807509065406696 l006 ln(2788/4509) 4807509094114844 m001 (ErdosBorwein-Magata)/(MertensB2-TwinPrimes) 4807509111174023 a007 Real Root Of 193*x^4+832*x^3-464*x^2+47*x+300 4807509116003676 r009 Im(z^3+c),c=-21/86+37/59*I,n=12 4807509121064377 a001 1120149625208/233 4807509132161468 r002 29th iterates of z^2 + 4807509133760282 p001 sum(1/(434*n+349)/n/(3^n),n=1..infinity) 4807509150452767 r005 Im(z^2+c),c=-11/34+35/57*I,n=14 4807509174141367 m005 (1/2*Catalan-1/11)/(5/12*Pi-6/11) 4807509175171081 a001 2504730781961/843*199^(1/11) 4807509178476235 m001 (GAMMA(2/3)+ln(2))/(arctan(1/3)-RenyiParking) 4807509182164431 r005 Re(z^2+c),c=-25/38+5/47*I,n=24 4807509192634727 r004 Im(z^2+c),c=-1/34+11/18*I,z(0)=I,n=52 4807509193723086 m001 (gamma(2)-GaussAGM)/(KhinchinHarmonic+Trott) 4807509194111037 m005 (1/2*exp(1)-1/5)/(7/8*5^(1/2)+5/11) 4807509218032752 a007 Real Root Of 189*x^4+760*x^3-722*x^2-241*x-985 4807509242468754 a007 Real Root Of -38*x^4-154*x^3+168*x^2+314*x+814 4807509244055793 a001 1120149653865/233 4807509249898895 m001 Zeta(1/2)*GaussKuzminWirsing*Trott 4807509256928473 m001 1/GAMMA(3/4)^2*FeigenbaumDelta^2/ln(gamma)^2 4807509264618025 a001 1120149658656/233 4807509265055793 a001 1120149658758/233 4807509265064377 a001 1120149658760/233 4807509265065236 a001 5600748293801/233*8^(1/3) 4807509265065236 a001 2/233*(1/2+1/2*5^(1/2))^61 4807509265068669 a001 1120149658761/233 4807509265090128 a001 1120149658766/233 4807509265236051 a001 1120149658800/233 4807509265776903 r009 Im(z^3+c),c=-7/31+17/29*I,n=10 4807509266236051 a001 1120149659033/233 4807509273090128 a001 1120149660630/233 4807509287372559 m001 1/GAMMA(1/4)/Khintchine^2/exp(Zeta(5))^2 4807509290602974 r002 6th iterates of z^2 + 4807509292265092 m002 -5*Pi^6+5*Csch[Pi]-Tanh[Pi] 4807509295550539 r009 Im(z^3+c),c=-9/34+5/9*I,n=40 4807509311940175 a001 86267571272/843*521^(8/13) 4807509320068669 a001 1120149671576/233 4807509335699350 r005 Im(z^2+c),c=-49/90+3/35*I,n=34 4807509354832136 r005 Im(z^2+c),c=13/50+1/2*I,n=21 4807509368857900 r009 Im(z^3+c),c=-11/15+11/59*I,n=2 4807509374959350 s002 sum(A227380[n]/((10^n-1)/n),n=1..infinity) 4807509382803607 m001 (-Totient+Tribonacci)/(LambertW(1)+Bloch) 4807509414456270 m005 (1/2*exp(1)+3)/(1/9*3^(1/2)+5/7) 4807509414869510 r009 Im(z^3+c),c=-43/122+31/58*I,n=22 4807509446384978 m002 Pi^6/2+2/(Pi^3*Log[Pi]) 4807509457625879 a001 1/141*17711^(25/58) 4807509469007534 l006 ln(5495/8887) 4807509470076526 m006 (4*exp(Pi)+5/6)/(2/3*exp(Pi)+4) 4807509474740804 r002 16th iterates of z^2 + 4807509475822236 s002 sum(A272223[n]/(n*2^n-1),n=1..infinity) 4807509495686434 m001 (Landau+PlouffeB)/(Artin+KhinchinHarmonic) 4807509513513683 r005 Im(z^2+c),c=-73/110+5/14*I,n=62 4807509545356842 r002 12th iterates of z^2 + 4807509570025613 m006 (4/5*Pi+1/3)/(1/6*ln(Pi)-1/4) 4807509570417421 b008 E^BesselY[0,2]+Pi 4807509587493778 m001 gamma^Otter/HardyLittlewoodC5 4807509590576131 r002 6th iterates of z^2 + 4807509625721539 r009 Im(z^3+c),c=-2/11+23/40*I,n=31 4807509640385644 a001 32951280099/2207*521^(12/13) 4807509642064377 a001 1120149746601/233 4807509655495269 r005 Re(z^2+c),c=-31/24+5/56*I,n=10 4807509658558243 m001 (ln(3)+gamma(2))/(polylog(4,1/2)+MadelungNaCl) 4807509680534600 m005 (1/2*gamma+5/6)/(7/8*3^(1/2)+9/11) 4807509712433017 m001 1/Paris*exp(ArtinRank2)^2*Trott^2 4807509740645576 a007 Real Root Of 734*x^4-828*x^3-958*x^2-327*x-67 4807509750511645 r005 Re(z^2+c),c=-29/114+11/18*I,n=10 4807509776557224 m005 (1/2*Pi-2/5)/(11/12*Pi-4/9) 4807509776615897 r002 23th iterates of z^2 + 4807509793585345 m001 (Pi+ln(2)/ln(10))/(Zeta(1,-1)+QuadraticClass) 4807509813172668 m001 (PolyaRandomWalk3D+Sarnak)/(Bloch-Khinchin) 4807509826599237 a001 439204/13*4807526976^(16/19) 4807509826627221 a001 969323029/13*514229^(16/19) 4807509828509878 a001 1/6624*55^(19/22) 4807509829116390 r002 13th iterates of z^2 + 4807509831549983 r002 4th iterates of z^2 + 4807509861547885 a001 29/10946*3^(32/59) 4807509883579481 m005 (1/2*Pi-6/7)/(7/8*3^(1/2)-3) 4807509884685070 l006 ln(2707/4378) 4807509886776799 r005 Re(z^2+c),c=-11/8+1/35*I,n=20 4807509888307363 r005 Im(z^2+c),c=-15/122+35/53*I,n=62 4807509889498669 m001 1/ln(Paris)^2*GolombDickman^2*Robbin 4807509896508012 r002 8th iterates of z^2 + 4807509919220535 r005 Im(z^2+c),c=-29/50+5/57*I,n=54 4807509922254345 r009 Im(z^3+c),c=-9/94+14/19*I,n=6 4807509948549937 a007 Real Root Of 148*x^4+810*x^3+469*x^2+180*x+969 4807509948999545 b008 E*(-180+Pi) 4807509988222144 a007 Real Root Of 19*x^4+918*x^3+217*x^2-125*x+583 4807509997743222 r005 Im(z^2+c),c=-3/4+32/129*I,n=7 4807510018277256 m005 (3/44+1/4*5^(1/2))/(1/3*3^(1/2)+8/11) 4807510027086182 r002 42th iterates of z^2 + 4807510033232240 m001 (cos(1/12*Pi)+ZetaP(4))/(exp(1)+ln(gamma)) 4807510033468153 g007 Psi(2,4/7)-Psi(2,7/12)-Psi(2,4/11)-Psi(2,5/7) 4807510042063142 b008 Pi*ArcTan[74/3] 4807510080765207 l006 ln(5929/6221) 4807510092620660 r009 Im(z^3+c),c=-25/98+28/47*I,n=7 4807510093607455 m001 (GAMMA(5/6)-Magata)/(arctan(1/2)+Zeta(1,2)) 4807510123280837 r005 Re(z^2+c),c=-10/17+9/25*I,n=27 4807510130838600 r005 Re(z^2+c),c=-61/86+2/33*I,n=28 4807510136875692 m001 (Ei(1,1)+BesselI(0,2))/(Pi+Psi(2,1/3)) 4807510138176260 r005 Im(z^2+c),c=-11/52+19/27*I,n=33 4807510178994285 a005 (1/sin(2/59*Pi))^12 4807510194030047 m002 -Pi^2/2+(ProductLog[Pi]*Sinh[Pi])/Pi^4 4807510197149504 r005 Re(z^2+c),c=-75/122+4/13*I,n=12 4807510204556088 a007 Real Root Of -157*x^4-886*x^3-632*x^2-90*x-406 4807510221259344 m001 (Sarnak-ln(2)*Magata)/Magata 4807510239040913 m006 (2/3*ln(Pi)+1/2)/(1/2*exp(2*Pi)-5) 4807510265991698 m001 (Zeta(3)+ln(gamma))/(FellerTornier+MertensB2) 4807510267270666 m001 FeigenbaumMu/(ZetaQ(4)^BesselJ(0,1)) 4807510272005751 r005 Re(z^2+c),c=-7/10+1/198*I,n=63 4807510275583651 r009 Im(z^3+c),c=-25/78+24/37*I,n=40 4807510280798836 r005 Re(z^2+c),c=-9/16+41/125*I,n=13 4807510282250613 r002 48th iterates of z^2 + 4807510312989582 l006 ln(5333/8625) 4807510323582750 m005 (1/2*exp(1)-5/7)/(3/11*exp(1)+3/5) 4807510365361605 r009 Im(z^3+c),c=-29/110+25/33*I,n=2 4807510374322056 r004 Im(z^2+c),c=3/34+13/24*I,z(0)=I,n=33 4807510374481608 m009 (2/5*Psi(1,2/3)+2)/(5*Psi(1,3/4)-6) 4807510388403866 a001 29/46368*2584^(21/38) 4807510394722990 r009 Re(z^3+c),c=-37/78+4/39*I,n=57 4807510423214773 m001 (Porter+Weierstrass)/(GAMMA(2/3)+Khinchin) 4807510427330354 a007 Real Root Of 77*x^4+308*x^3-106*x^2+754*x-834 4807510438239688 r005 Re(z^2+c),c=-17/25+5/61*I,n=22 4807510439861876 a007 Real Root Of -112*x^4-361*x^3+903*x^2+86*x-741 4807510444454490 m001 (gamma(1)+MasserGramain)/(BesselK(0,1)-cos(1)) 4807510454138013 a007 Real Root Of -128*x^4+702*x^3-219*x^2+621*x+434 4807510464604237 a007 Real Root Of -139*x^4+809*x^3-399*x^2+896*x-421 4807510475290637 r002 57th iterates of z^2 + 4807510483381393 a001 43133785636/2889*521^(12/13) 4807510483867862 r002 18th iterates of z^2 + 4807510521890708 a007 Real Root Of -532*x^4+563*x^3+893*x^2+573*x-516 4807510547288776 a007 Real Root Of -176*x^4+634*x^3-696*x^2-249*x+121 4807510550637705 r005 Im(z^2+c),c=9/46+17/43*I,n=3 4807510551481908 r009 Im(z^3+c),c=-3/8+31/60*I,n=48 4807510558334867 a003 sin(Pi*6/109)-sin(Pi*12/53) 4807510572442038 r005 Im(z^2+c),c=-3/82+35/58*I,n=23 4807510597492652 r002 60th iterates of z^2 + 4807510601122456 m001 (2^(1/3)-5^(1/2))/(BesselK(0,1)+ln(5)) 4807510606343389 a007 Real Root Of -651*x^4+384*x^3+278*x^2+919*x+455 4807510606372840 a001 32264490531/2161*521^(12/13) 4807510606953507 m001 (PisotVijayaraghavan+ThueMorse)/(Pi+Bloch) 4807510609672537 l006 ln(68/8325) 4807510615218877 m001 ln(Lehmer)/GlaisherKinkelin^2/Robbin 4807510624317051 a001 591286729879/39603*521^(12/13) 4807510626935076 a001 774004377960/51841*521^(12/13) 4807510627317041 a001 4052739537881/271443*521^(12/13) 4807510627372769 a001 1515744265389/101521*521^(12/13) 4807510627407210 a001 3278735159921/219602*521^(12/13) 4807510627553108 a001 2504730781961/167761*521^(12/13) 4807510628553104 a001 956722026041/64079*521^(12/13) 4807510635407183 a001 182717648081/12238*521^(12/13) 4807510674322488 a001 139583862445/843*521^(7/13) 4807510680739215 m001 (-Conway+ZetaP(3))/(1-BesselJ(0,1)) 4807510682385738 a001 139583862445/9349*521^(12/13) 4807510693075507 r002 53th iterates of z^2 + 4807510737846235 r002 15th iterates of z^2 + 4807510738084616 m001 HardHexagonsEntropy^2*Cahen/ln(sinh(1))^2 4807510740597970 r002 53th iterates of z^2 + 4807510747819257 m001 1/exp(BesselK(0,1))/Riemann1stZero/cos(Pi/12) 4807510754505296 l006 ln(2626/4247) 4807510756068881 m005 (1/3*2^(1/2)+2/9)/(9/11*2^(1/2)+2/7) 4807510771605176 m005 (1/3*3^(1/2)+1/7)/(3/11*Catalan-1/10) 4807510771896690 m001 (GAMMA(13/24)-cos(1))/(-Cahen+PrimesInBinary) 4807510797012388 r008 a(0)=0,K{-n^6,-34-28*n+63*n^2+20*n^3} 4807510808990412 r002 38th iterates of z^2 + 4807510847023098 m009 (3/4*Psi(1,3/4)+2)/(3*Psi(1,3/4)+1/2) 4807510848162060 a007 Real Root Of 474*x^4-166*x^3+962*x^2-395*x-456 4807510849678278 a007 Real Root Of 223*x^4+957*x^3-660*x^2-536*x-109 4807510863513750 m005 (1/3*Pi+2/5)/(5*Zeta(3)-3) 4807510865204408 a001 47/4052739537881*233^(6/23) 4807510874082444 h001 (-11*exp(2)-6)/(-3*exp(1)-10) 4807510874939775 r002 30th iterates of z^2 + 4807510888801490 m001 exp(GAMMA(5/12))*Khintchine*Zeta(1/2)^2 4807510889059115 m005 (23/28+1/4*5^(1/2))/(1/11*2^(1/2)-3) 4807510906261072 m002 -5*Pi^6+5*Sech[Pi]-Tanh[Pi] 4807510912758070 r002 33th iterates of z^2 + 4807510939540649 m002 -5*Pi^2+ProductLog[Pi]+Tanh[Pi]/5 4807510974247072 m005 (1/2*2^(1/2)+3/11)/(173/154+9/22*5^(1/2)) 4807510994510831 m001 Zeta(1,2)/BesselK(1,1)/exp(sin(Pi/5))^2 4807510999722877 r009 Im(z^3+c),c=-5/22+22/31*I,n=5 4807511001363227 a003 cos(Pi*13/77)*cos(Pi*29/93) 4807511002768051 a001 53316291173/2207*521^(11/13) 4807511004381566 a001 53316291173/3571*521^(12/13) 4807511019907660 m001 (-GAMMA(23/24)+ZetaQ(2))/(gamma+exp(1/exp(1))) 4807511020811603 a007 Real Root Of -965*x^4+227*x^3+121*x^2+909*x-44 4807511022129315 k001 Champernowne real with 271*n+209 4807511040663749 m001 Catalan^2*ln(Tribonacci)^2*cosh(1) 4807511044336102 a007 Real Root Of 979*x^4-687*x^3+358*x^2-305*x-358 4807511071126309 r005 Re(z^2+c),c=11/64+18/31*I,n=40 4807511097695227 a001 521/144*7778742049^(6/19) 4807511110626013 a008 Real Root of x^4-x^3-32*x^2-14*x+27 4807511121230779 r005 Re(z^2+c),c=-117/122+4/21*I,n=40 4807511121732162 r002 34th iterates of z^2 + 4807511126484522 r009 Im(z^3+c),c=-53/122+31/58*I,n=35 4807511130822613 r009 Im(z^3+c),c=-33/118+11/20*I,n=22 4807511132614976 m005 (1/2*exp(1)+4)/(4/7*3^(1/2)+1/8) 4807511145908907 a007 Real Root Of 248*x^4-256*x^3+802*x^2-730*x-578 4807511157149699 m001 (Chi(1)-gamma(3))/(GAMMA(13/24)+Paris) 4807511181668893 r002 29th iterates of z^2 + 4807511196267348 a001 1597/123*7^(37/55) 4807511199650833 a001 3571/75025*377^(23/59) 4807511209853042 l006 ln(5171/8363) 4807511209853042 p004 log(8363/5171) 4807511257183169 r005 Im(z^2+c),c=-6/5+2/31*I,n=63 4807511260067006 r009 Im(z^3+c),c=-1/23+13/22*I,n=32 4807511260801285 a007 Real Root Of 210*x^4-708*x^3-665*x^2-605*x+512 4807511277552386 m005 (1/2*3^(1/2)+1/2)/(7/10*Zeta(3)+2) 4807511296224709 m005 (1/3*5^(1/2)-1/3)/(9/11*Pi+6) 4807511304903789 s002 sum(A233739[n]/(n!^3),n=1..infinity) 4807511310526052 a007 Real Root Of 108*x^4+522*x^3+105*x^2+494*x+258 4807511311518208 m001 (Catalan-Shi(1))/(-Gompertz+Kac) 4807511354286063 r005 Re(z^2+c),c=-7/10+11/212*I,n=34 4807511354926633 m001 (-GAMMA(17/24)+Thue)/(Si(Pi)-cos(1/12*Pi)) 4807511359747405 r005 Im(z^2+c),c=-23/32+9/59*I,n=39 4807511361517078 s001 sum(exp(-2*Pi)^n*A195091[n],n=1..infinity) 4807511366958553 b008 AiryBi[-5/17] 4807511367540563 m001 1/LambertW(1)^2/BesselK(0,1)^2*exp(Zeta(7)) 4807511368700736 r009 Im(z^3+c),c=-27/56+2/29*I,n=55 4807511371535141 a001 34/73681302247*47^(14/23) 4807511398138639 b008 47+Erfc[-1/15] 4807511402626905 h001 (1/5*exp(1)+4/7)/(7/10*exp(1)+5/12) 4807511406901229 m003 49/10+(Sqrt[5]*Sec[1/2+Sqrt[5]/2])/512 4807511407241230 r002 14th iterates of z^2 + 4807511416021553 m001 MasserGramain-ln(3)*GAMMA(23/24) 4807511426154796 a007 Real Root Of 62*x^4+183*x^3-436*x^2+383*x-867 4807511430136102 m001 1/cos(Pi/5)*GAMMA(5/6)^2/ln(sqrt(Pi))^2 4807511444241097 s001 sum(1/10^(n-1)*A251992[n],n=1..infinity) 4807511444241097 s001 sum(1/10^n*A251992[n],n=1..infinity) 4807511444241097 s003 concatenated sequence A251992 4807511449690530 r005 Im(z^2+c),c=29/118+3/7*I,n=28 4807511450131623 r009 Im(z^3+c),c=-11/114+28/47*I,n=9 4807511450822617 s002 sum(A133562[n]/(n*2^n+1),n=1..infinity) 4807511491694676 r009 Im(z^3+c),c=-43/126+17/32*I,n=30 4807511520099378 a001 32951280099/322*322^(2/3) 4807511521792593 a001 9349/196418*377^(23/59) 4807511530413454 r005 Re(z^2+c),c=13/58+25/47*I,n=23 4807511560397137 a007 Real Root Of -32*x^4-64*x^3+588*x^2+880*x+623 4807511564979676 a007 Real Root Of -490*x^4-114*x^3-611*x^2+635*x+460 4807511568792443 a001 24476/514229*377^(23/59) 4807511575649628 a001 64079/1346269*377^(23/59) 4807511579457475 a001 591286729879/521*199^(3/11) 4807511579887602 a001 39603/832040*377^(23/59) 4807511596881110 r002 23th iterates of z^2 + 4807511597839947 a001 15127/317811*377^(23/59) 4807511618240812 p001 sum(1/(482*n+209)/(64^n),n=0..infinity) 4807511622121911 r009 Im(z^3+c),c=-23/78+20/37*I,n=14 4807511625316184 m005 (1/2*exp(1)-1/3)/(-17/88+2/11*5^(1/2)) 4807511627954062 m001 Champernowne+HeathBrownMoroz-ZetaP(4) 4807511630747646 a001 7/17711*365435296162^(11/14) 4807511678834466 a007 Real Root Of -660*x^4+101*x^3+669*x^2+616*x+188 4807511679693171 l006 ln(2545/4116) 4807511680706236 m001 Niven^ln(2)+ReciprocalFibonacci 4807511689309381 r009 Im(z^3+c),c=-19/44+17/35*I,n=43 4807511695822750 r005 Im(z^2+c),c=-17/62+3/43*I,n=17 4807511720887151 a001 5778/121393*377^(23/59) 4807511723977355 r005 Re(z^2+c),c=27/86+22/59*I,n=31 4807511734025450 r009 Im(z^3+c),c=-31/52+9/34*I,n=44 4807511737089201 q001 512/1065 4807511737089201 r005 Im(z^2+c),c=-31/30+32/71*I,n=2 4807511758819166 r002 46th iterates of z^2 + 4807511769144114 b008 Sqrt[7]+2*(-1/3+Sqrt[2]) 4807511775244406 m001 1/GAMMA(2/3)*exp(Artin)^2*GAMMA(7/24) 4807511778218973 m002 -4-5*Pi^6+3*Log[Pi] 4807511785641053 a001 17711/521*2^(1/2) 4807511797495403 p001 sum(1/(261*n+212)/(24^n),n=0..infinity) 4807511806172385 m001 (Chi(1)-ln(5))/(-FellerTornier+Tetranacci) 4807511816363582 r002 30th iterates of z^2 + 4807511820448495 m005 (1/3*Pi-1/6)/(9/10*3^(1/2)+3/11) 4807511822342447 m005 (1/3*3^(1/2)+2/11)/(5*Pi+1/12) 4807511829286817 s002 sum(A207796[n]/(n*pi^n+1),n=1..infinity) 4807511831607280 m001 MadelungNaCl^2*CareFree^2*exp(gamma)^2 4807511844788993 v002 sum(1/(5^n+(8*n^2+2*n+19)),n=1..infinity) 4807511844877093 s001 sum(exp(-Pi)^n*A175939[n],n=1..infinity) 4807511844877093 s002 sum(A175939[n]/(exp(pi*n)),n=1..infinity) 4807511845764038 a001 139583862445/5778*521^(11/13) 4807511849055793 a001 1120150260830/233 4807511851061537 r002 33th iterates of z^2 + 4807511851426801 r009 Re(z^3+c),c=-21/34+13/24*I,n=48 4807511856365931 r009 Im(z^3+c),c=-7/31+29/41*I,n=5 4807511864884722 r005 Im(z^2+c),c=-29/34+26/109*I,n=17 4807511865314016 m001 MertensB3/(cos(1/5*Pi)+ReciprocalLucas) 4807511883807844 r009 Im(z^3+c),c=-7/17+1/2*I,n=61 4807511899076292 a007 Real Root Of 104*x^4+262*x^3-999*x^2+522*x-844 4807511899477240 m001 (arctan(1/2)+exp(-1/2*Pi))^Tribonacci 4807511901684616 m001 (Champernowne-Kac)/(Kolakoski-Tribonacci) 4807511902105659 a007 Real Root Of -895*x^4-100*x^3+307*x^2+859*x-425 4807511903248420 a007 Real Root Of 118*x^4-27*x^3+298*x^2-822*x+323 4807511908669431 g007 -Psi(2,1/11)-Psi(2,1/10)-Psi(2,5/9)-Psi(2,1/4) 4807511914325515 m001 (Pi+1)/ln(2+3^(1/2))*GAMMA(7/12) 4807511917112468 r002 43th iterates of z^2 + 4807511920265823 p004 log(16333/10099) 4807511923974534 m001 1/GAMMA(1/6)*(3^(1/3))/exp(Zeta(1/2))^2 4807511933756748 r005 Im(z^2+c),c=-1/25+31/57*I,n=8 4807511938850780 a007 Real Root Of 121*x^4+546*x^3-77*x^2+540*x+408 4807511941581774 r005 Im(z^2+c),c=-69/62+14/33*I,n=3 4807511946638259 p003 LerchPhi(1/125,4,209/174) 4807511968315236 b008 37+Pi*Sec[5] 4807511968755520 a001 365435296162/15127*521^(11/13) 4807511986699736 a001 956722026041/39603*521^(11/13) 4807511987131273 r002 18th iterates of z^2 + 4807511989317762 a001 2504730781961/103682*521^(11/13) 4807511989699726 a001 6557470319842/271443*521^(11/13) 4807511989789896 a001 10610209857723/439204*521^(11/13) 4807511989935794 a001 4052739537881/167761*521^(11/13) 4807511990935791 a001 1548008755920/64079*521^(11/13) 4807511992364015 a007 Real Root Of -457*x^4+982*x^3-57*x^2+296*x+289 4807511997789871 a001 591286729879/24476*521^(11/13) 4807512008672534 h001 (2/9*exp(2)+6/7)/(1/11*exp(1)+3/11) 4807512014640438 a007 Real Root Of -171*x^4+120*x^3-517*x^2+855*x+553 4807512023636920 a001 34/521*18^(38/55) 4807512028703796 a007 Real Root Of 831*x^4-874*x^3+579*x^2+321*x-121 4807512036705187 a001 267913919*521^(6/13) 4807512044768439 a001 225851433717/9349*521^(11/13) 4807512057023600 r009 Im(z^3+c),c=-33/86+31/58*I,n=20 4807512074883297 l006 ln(8061/8458) 4807512085828966 m001 (gamma(2)+BesselI(1,1))/(Ei(1,1)-exp(1/Pi)) 4807512096516446 m001 cosh(1)/Salem^2/exp(sin(1)) 4807512102509721 m001 (2^(1/3)-Catalan)/(-GolombDickman+Totient) 4807512112095026 m001 (Ei(1)+ArtinRank2)/(FeigenbaumDelta+Sarnak) 4807512114682998 m001 exp(GAMMA(7/24))^2/Champernowne^2*cosh(1) 4807512146091578 r009 Re(z^3+c),c=-33/62+25/64*I,n=21 4807512146260785 r005 Im(z^2+c),c=-7/8+7/204*I,n=19 4807512154374765 r005 Im(z^2+c),c=-5/29+37/56*I,n=35 4807512164728744 l006 ln(5009/8101) 4807512164728744 p004 log(8101/5009) 4807512167174159 m001 (Salem-Trott)/(Zeta(5)-Kolakoski) 4807512175078778 a007 Real Root Of 844*x^4-951*x^3+521*x^2-840*x+344 4807512188210703 m002 5*Pi^6+6/(Pi^2*ProductLog[Pi]) 4807512205331400 m005 (3/28+1/4*5^(1/2))/(7/12*exp(1)-1/5) 4807512211272856 l006 ln(75/9182) 4807512219590815 a007 Real Root Of -136*x^4+671*x^3-233*x^2-43*x+115 4807512221539209 m001 2*Pi/GAMMA(5/6)-Paris-TwinPrimes 4807512228883053 r009 Im(z^3+c),c=-21/86+23/43*I,n=6 4807512238062109 m009 (3/5*Psi(1,3/4)+3/4)/(8/3*Catalan+1/3*Pi^2-1) 4807512244165850 a001 377/3010349*11^(23/41) 4807512245875349 m002 Pi^6/2+Log[Pi]^2/E^Pi 4807512268917950 r005 Re(z^2+c),c=13/34+9/52*I,n=62 4807512271840151 r005 Im(z^2+c),c=-13/10+3/154*I,n=3 4807512285290657 r002 30th iterates of z^2 + 4807512289959116 m005 (1/2*exp(1)-1/6)/(1/9*2^(1/2)+1/11) 4807512302461102 r002 43th iterates of z^2 + 4807512302783661 m001 exp(Pi)^ErdosBorwein/(exp(Pi)^Artin) 4807512305051286 m001 exp(sqrt(2))+LambertW(1)^Cahen 4807512308839906 m001 Pi/Psi(2,1/3)/gamma/gamma(3) 4807512340861708 m001 KhinchinHarmonic/PrimesInBinary/ZetaQ(3) 4807512346062685 r002 11th iterates of z^2 + 4807512349145999 a008 Real Root of x^4-x^3+27*x^2-145*x-350 4807512350612789 m001 Ei(1)*(ArtinRank2+Tribonacci) 4807512360251134 a007 Real Root Of 185*x^4+933*x^3+129*x^2-233*x+744 4807512365150843 a001 86267571272/2207*521^(10/13) 4807512366764359 a001 86267571272/3571*521^(11/13) 4807512367850208 m001 2*Pi/GAMMA(5/6)/Chi(1)*Sarnak 4807512370027258 a007 Real Root Of 221*x^4+946*x^3-625*x^2-369*x-269 4807512372054903 r009 Im(z^3+c),c=-41/66+12/25*I,n=13 4807512373739447 r009 Im(z^3+c),c=-23/94+23/41*I,n=47 4807512388295303 a001 956722026041/322*123^(1/10) 4807512402173374 m005 (1/2*2^(1/2)+1/7)/(7/10*3^(1/2)+5/9) 4807512414459923 r002 11th iterates of z^2 + 4807512422721663 a003 cos(Pi*21/116)*sin(Pi*23/119) 4807512430140012 a007 Real Root Of -761*x^4+342*x^3-358*x^2+436*x+371 4807512430583773 m002 -Pi^2/4+Pi^3/5+ProductLog[Pi] 4807512467594750 h001 (5/8*exp(2)+6/7)/(1/10*exp(2)+2/5) 4807512479645226 r002 2th iterates of z^2 + 4807512482162032 a001 7/3*144^(8/55) 4807512494121275 a007 Real Root Of -582*x^4+123*x^3-596*x^2+234*x+295 4807512495108907 a005 (1/cos(11/94*Pi))^56 4807512504650983 a001 47/20365011074*377^(9/10) 4807512516456572 r005 Re(z^2+c),c=-39/58+9/64*I,n=41 4807512537988595 m001 (-CareFree+MertensB1)/(3^(1/2)-GAMMA(13/24)) 4807512549402053 r002 39th iterates of z^2 + 4807512558049604 r002 41th iterates of z^2 + 4807512560488886 a007 Real Root Of 408*x^4+505*x^3+781*x^2+198*x-51 4807512564265229 a001 2207/46368*377^(23/59) 4807512573815273 m001 Ei(1)/BesselI(1,1)/ArtinRank2 4807512582645474 r002 38th iterates of z^2 + 4807512603576549 r005 Re(z^2+c),c=-37/32+18/59*I,n=26 4807512648231248 m001 sin(1)^2/ln(GAMMA(11/24))/sqrt(5) 4807512649741959 r005 Re(z^2+c),c=-7/27+40/51*I,n=9 4807512661231647 r005 Im(z^2+c),c=33/98+9/32*I,n=30 4807512665709050 l006 ln(2464/3985) 4807512670845836 r005 Re(z^2+c),c=-11/24+21/40*I,n=52 4807512686916541 r002 43th iterates of z^2 + 4807512701233771 a003 cos(Pi*11/93)*cos(Pi*37/113) 4807512722438068 r002 62th iterates of z^2 + 4807512760680774 r005 Im(z^2+c),c=-79/118+13/36*I,n=32 4807512762944570 a007 Real Root Of 192*x^4+940*x^3-48*x^2-662*x-189 4807512790090624 r009 Im(z^3+c),c=-49/106+23/56*I,n=15 4807512791635112 a007 Real Root Of -604*x^4-229*x^3-576*x^2+179*x+226 4807512817387046 a007 Real Root Of 208*x^4+882*x^3-793*x^2-889*x+947 4807512822721164 r002 3th iterates of z^2 + 4807512828660916 r009 Im(z^3+c),c=-23/94+23/41*I,n=44 4807512832089679 m001 exp(Niven)/Khintchine*GAMMA(1/24) 4807512838253189 h001 (1/6*exp(1)+3/4)/(3/10*exp(2)+2/7) 4807512842709488 r005 Re(z^2+c),c=-37/86+25/63*I,n=4 4807512860394459 a007 Real Root Of 996*x^4+201*x^3-786*x^2-894*x-279 4807512874697992 r005 Re(z^2+c),c=-19/14+4/113*I,n=42 4807512884118040 m001 1/exp(Niven)^2/LandauRamanujan^2/Salem 4807512889005684 m001 (Gompertz+Niven)/(cos(1/12*Pi)-exp(1/exp(1))) 4807512894826229 m001 PisotVijayaraghavan^(exp(Pi)*exp(1)) 4807512907673067 m001 1/BesselK(0,1)*ln(TwinPrimes)^2*GAMMA(19/24) 4807512911852258 r009 Im(z^3+c),c=-21/118+19/33*I,n=26 4807512916701746 a007 Real Root Of 745*x^4-96*x^3-472*x^2-376*x-17 4807512927171868 r009 Im(z^3+c),c=-23/50+21/46*I,n=36 4807512959360982 r005 Re(z^2+c),c=-41/64+23/52*I,n=38 4807512979593370 r002 30th iterates of z^2 + 4807512984779561 a007 Real Root Of -652*x^4+832*x^3-794*x^2-245*x+193 4807512998095309 a007 Real Root Of -666*x^4+520*x^3-951*x^2+917*x+754 4807513000040580 r002 37th iterates of z^2 + 4807513004144934 m001 Zeta(1/2)^2*ln(Bloch)/gamma^2 4807513010012338 a007 Real Root Of -637*x^4+646*x^3+148*x^2+855*x-483 4807513011580461 m001 (2^(1/3)+FransenRobinson)/(-Niven+Thue) 4807513012437561 m001 (Gompertz+Kac)/(exp(Pi)+BesselI(0,2)) 4807513020153106 m002 -5/Pi^2+5*Pi^6+ProductLog[Pi] 4807513020188871 m002 -1-5*Pi^6+5*Csch[Pi] 4807513037757077 a001 1/76*(1/2*5^(1/2)+1/2)^30*199^(9/16) 4807513039137516 m001 ln(PrimesInBinary)/KhintchineLevy/cosh(1) 4807513067285538 r005 Im(z^2+c),c=-5/9-7/81*I,n=50 4807513068490149 m001 (GAMMA(13/24)+Cahen)/Weierstrass 4807513075043135 r005 Im(z^2+c),c=-55/94+3/34*I,n=41 4807513076240363 m006 (2*Pi-5)/(1/2*exp(2*Pi)-5/6) 4807513084164767 r009 Im(z^3+c),c=-6/17+31/58*I,n=22 4807513092135022 m001 1/ln(TwinPrimes)/GolombDickman^2/GAMMA(17/24) 4807513101611446 r008 a(0)=5,K{-n^6,-76-27*n^3+85*n^2+24*n} 4807513127212984 a007 Real Root Of -698*x^4-820*x^3-23*x^2+467*x+176 4807513140547628 r005 Im(z^2+c),c=13/86+29/60*I,n=17 4807513156068035 r009 Im(z^3+c),c=-27/74+25/48*I,n=63 4807513162189891 r005 Im(z^2+c),c=-19/25+1/41*I,n=17 4807513166598207 r002 25th iterates of z^2 + 4807513183433461 l006 ln(4847/7839) 4807513208147069 a001 75283811239/1926*521^(10/13) 4807513211374967 a001 10182505537/682*521^(12/13) 4807513213089693 m001 Robbin^HardHexagonsEntropy-StolarskyHarborth 4807513223792032 m001 arctan(1/2)-sin(1/5*Pi)^OneNinth 4807513231544891 r002 12th iterates of z^2 + 4807513233018924 a007 Real Root Of -960*x^4-454*x^3+992*x^2+496*x-366 4807513250426821 a007 Real Root Of -252*x^4+31*x^3-832*x^2+374*x+389 4807513313237686 r009 Re(z^3+c),c=-1/27+7/8*I,n=23 4807513323888238 a007 Real Root Of -451*x^4+226*x^3-237*x^2-131*x+41 4807513330614138 p001 sum(1/(135*n+22)/(3^n),n=0..infinity) 4807513331138586 a001 591286729879/15127*521^(10/13) 4807513349082807 a001 516002918640/13201*521^(10/13) 4807513349693648 r005 Im(z^2+c),c=-59/114+3/38*I,n=15 4807513351700833 a001 4052739537881/103682*521^(10/13) 4807513352082798 a001 3536736619241/90481*521^(10/13) 4807513352318866 a001 6557470319842/167761*521^(10/13) 4807513353318863 a001 2504730781961/64079*521^(10/13) 4807513353859179 r009 Im(z^3+c),c=-5/21+34/57*I,n=10 4807513360172945 a001 956722026041/24476*521^(10/13) 4807513368574100 m001 (cos(1)+BesselI(1,1))/(FeigenbaumB+Porter) 4807513385879222 m001 Khinchin*(GAMMA(7/12)+MertensB1) 4807513387325129 r005 Re(z^2+c),c=-35/58+16/47*I,n=38 4807513389899450 a007 Real Root Of 19*x^4-603*x^3-326*x^2-251*x+262 4807513399088272 a001 365435296162/843*521^(5/13) 4807513407151527 a001 365435296162/9349*521^(10/13) 4807513415848097 m001 Zeta(1/2)^2*GAMMA(5/6)^2/exp(sqrt(3)) 4807513431690670 m001 1/GAMMA(17/24)*MertensB1^2/exp(Zeta(3))^2 4807513441770883 r005 Im(z^2+c),c=13/38+12/47*I,n=26 4807513446018979 a001 377/843*45537549124^(16/17) 4807513446018979 a001 377/843*14662949395604^(16/21) 4807513446018979 a001 377/843*(1/2+1/2*5^(1/2))^48 4807513446018979 a001 377/843*192900153618^(8/9) 4807513446018979 a001 377/843*73681302247^(12/13) 4807513452908480 r005 Im(z^2+c),c=-41/74+37/57*I,n=24 4807513453283610 m001 1/FeigenbaumKappa^2*ln(Magata)^2*sin(Pi/5) 4807513475044480 b008 43+ArcCosh[80] 4807513505237898 a007 Real Root Of -863*x^4+359*x^3-181*x^2+770*x+498 4807513510726361 h001 (11/12*exp(1)+4/9)/(1/11*exp(1)+4/11) 4807513511001797 r002 54th iterates of z^2 + 4807513513571618 r005 Im(z^2+c),c=5/118+19/34*I,n=11 4807513527548563 a007 Real Root Of 138*x^4+699*x^3-51*x^2-934*x+640 4807513536026655 r005 Re(z^2+c),c=-61/50+23/49*I,n=2 4807513539427273 l006 ln(82/10039) 4807513547352993 m005 (1/2*Zeta(3)-1/3)/(1/11*3^(1/2)-5/7) 4807513551669639 p003 LerchPhi(1/256,1,463/222) 4807513565809911 l003 sinh(2+20/73) 4807513565809911 l004 sinh(166/73) 4807513569998660 r005 Re(z^2+c),c=-81/122+9/35*I,n=28 4807513648192757 a001 72/161*76^(17/31) 4807513657903017 m005 (1/2*gamma+5/9)/(193/264+11/24*5^(1/2)) 4807513677589891 a007 Real Root Of -905*x^4-180*x^3+779*x^2+953*x+44 4807513683270900 a007 Real Root Of 154*x^4-678*x^3+989*x^2-293*x-453 4807513692142069 m001 Khinchin-Zeta(1/2)+Robbin 4807513718755695 l006 ln(2383/3854) 4807513727534021 a001 139583862445/2207*521^(9/13) 4807513729147537 a001 139583862445/3571*521^(10/13) 4807513733521684 r002 14th iterates of z^2 + 4807513736475652 r009 Re(z^3+c),c=-1/12+30/49*I,n=27 4807513759099032 r009 Im(z^3+c),c=-21/50+38/61*I,n=6 4807513769871378 m001 GAMMA(3/4)*(BesselJ(1,1)-FeigenbaumB) 4807513771511878 p004 log(36559/34843) 4807513776651056 r009 Im(z^3+c),c=-23/94+23/41*I,n=34 4807513785189669 r005 Im(z^2+c),c=-1/31+39/64*I,n=49 4807513786225397 r009 Im(z^3+c),c=-15/44+32/47*I,n=8 4807513794927279 r005 Re(z^2+c),c=11/58+12/35*I,n=52 4807513800052429 m001 Khinchin*ReciprocalLucas-arctan(1/2) 4807513800510840 m001 Conway^gamma(1)-MinimumGamma 4807513810602184 m001 (polylog(4,1/2)+KhinchinLevy)/(Khinchin+Thue) 4807513830950208 r009 Re(z^3+c),c=-3/118+31/35*I,n=18 4807513838979540 r001 3i'th iterates of 2*x^2-1 of 4807513864805465 a007 Real Root Of -205*x^4-879*x^3+465*x^2-48*x+860 4807513870899715 r008 a(0)=5,K{-n^6,10+5*n^3-22*n^2+16*n} 4807513875997498 r009 Im(z^3+c),c=-35/118+17/31*I,n=21 4807513898668887 a001 76*4052739537881^(1/7) 4807513906369326 r009 Im(z^3+c),c=-55/126+20/41*I,n=63 4807513915154028 m001 (Chi(1)+Zeta(1/2))/(-Conway+ZetaQ(3)) 4807513928491904 m002 E^Pi/(2*Pi^5)+Pi^(-4) 4807513935670704 a007 Real Root Of 485*x^4+938*x^3+346*x^2-995*x-480 4807513945186031 m001 (Psi(1,1/3)-gamma)/(OrthogonalArrays+Stephens) 4807513949873664 a005 (1/cos(13/175*Pi))^1649 4807513956147989 m001 1/LambertW(1)^2/ln(Lehmer)*cos(Pi/5) 4807513959614844 a007 Real Root Of 850*x^4+314*x^3-538*x^2-626*x+345 4807513981665948 r005 Im(z^2+c),c=-29/40+2/41*I,n=12 4807513996889489 a007 Real Root Of 114*x^4-51*x^3+756*x^2-207*x-286 4807514014672845 r005 Re(z^2+c),c=-7/10+9/119*I,n=56 4807514018865100 m005 (1/2*Zeta(3)-1/6)/(5/12*3^(1/2)+2/11) 4807514027332286 m001 Paris^FeigenbaumD*Paris^ln(5) 4807514027502740 s001 sum(exp(-2*Pi)^n*A185855[n],n=1..infinity) 4807514038828473 a007 Real Root Of -848*x^4+250*x^3-138*x^2+518*x+354 4807514041473789 r005 Re(z^2+c),c=-19/26+1/28*I,n=59 4807514046588342 r005 Re(z^2+c),c=-51/94+1/49*I,n=3 4807514055063797 r002 47th iterates of z^2 + 4807514057665799 r005 Re(z^2+c),c=-39/110+12/19*I,n=8 4807514068074135 r009 Re(z^3+c),c=-6/29+37/38*I,n=14 4807514093528399 m005 (1/2*Zeta(3)-3)/(4*Zeta(3)+2/11) 4807514098128399 r009 Im(z^3+c),c=-19/52+23/45*I,n=16 4807514110466137 r005 Re(z^2+c),c=-15/26+40/103*I,n=32 4807514133123118 r002 32th iterates of z^2 + 4807514147819613 a007 Real Root Of 909*x^4+229*x^3-463*x^2-748*x+37 4807514156512271 m001 1/sin(1)*arctan(1/2)^2/ln(sin(Pi/5)) 4807514162908233 a008 Real Root of x^3-x^2-88 4807514165046243 a007 Real Root Of 208*x^4+893*x^3-458*x^2+413*x+686 4807514168645739 p001 sum((-1)^n/(105*n+61)/n/(125^n),n=0..infinity) 4807514175389900 m001 (Trott-TwinPrimes)/(gamma(1)+exp(-1/2*Pi)) 4807514205310377 a007 Real Root Of 686*x^4+47*x^3-515*x^2-540*x-172 4807514218941771 r009 Im(z^3+c),c=-9/94+37/63*I,n=22 4807514219303745 r005 Re(z^2+c),c=-11/16+17/115*I,n=64 4807514234989470 a007 Real Root Of -121*x^4-165*x^3+446*x^2+794*x-460 4807514244576449 a007 Real Root Of -731*x^4+897*x^3-806*x^2+325 4807514251231848 m001 (-Riemann2ndZero+Stephens)/(2^(1/3)-GaussAGM) 4807514253292908 m005 (1/3*Pi+1/3)/(1/4*gamma+1/7) 4807514258751849 r005 Re(z^2+c),c=-25/46+2/41*I,n=3 4807514272588508 l006 ln(4685/7577) 4807514282264493 r005 Re(z^2+c),c=7/118+2/19*I,n=6 4807514301777793 m001 (Psi(1,1/3)-exp(1/exp(1)))/(GAMMA(19/24)+Kac) 4807514307817610 m005 (1/2*Zeta(3)+5)/(3/8*Zeta(3)+5/7) 4807514313097783 r005 Im(z^2+c),c=-89/126+5/31*I,n=25 4807514329036890 a003 sin(Pi*38/105)/cos(Pi*40/91) 4807514335311285 r009 Im(z^3+c),c=-27/52+35/59*I,n=12 4807514337420582 r005 Im(z^2+c),c=27/86+20/53*I,n=57 4807514353894920 m001 TwinPrimes^2*TreeGrowth2nd^2*ln(GAMMA(5/12))^2 4807514362783803 m005 (1/3*Pi+1/5)/(3/4*exp(1)+5/9) 4807514368574667 r005 Re(z^2+c),c=-35/48+1/24*I,n=42 4807514383433110 a007 Real Root Of 362*x^4-721*x^3+336*x^2-551*x-442 4807514400939809 m009 (6*Psi(1,2/3)+1)/(1/3*Psi(1,1/3)+2/3) 4807514409137851 r005 Re(z^2+c),c=-51/110+25/47*I,n=59 4807514433420133 m001 (ln(2+3^(1/2))+MertensB2)/(ThueMorse+ZetaP(4)) 4807514434427992 p001 sum(1/(232*n+209)/(100^n),n=0..infinity) 4807514450023513 a007 Real Root Of -724*x^4-884*x^3-984*x^2+539*x+427 4807514461115965 m006 (4/5*exp(2*Pi)+2/3)/(3*Pi-1/2) 4807514474665255 m001 (gamma+Conway)/(FibonacciFactorial+Khinchin) 4807514488518013 a007 Real Root Of -46*x^4+309*x^3-744*x^2-247*x+90 4807514497804604 m001 (Zeta(1/2)+Landau)/(cos(1/5*Pi)+ln(3)) 4807514520591685 h001 (-9*exp(1/2)-1)/(-5*exp(2)+4) 4807514530326363 r002 11th iterates of z^2 + 4807514536905958 a007 Real Root Of -826*x^4+176*x^3-203*x^2+858*x-341 4807514559783854 r005 Im(z^2+c),c=-41/30+1/55*I,n=4 4807514560865787 r005 Im(z^2+c),c=-119/90+1/19*I,n=21 4807514567186498 r009 Re(z^3+c),c=-45/86+7/17*I,n=5 4807514570530486 a001 182717648081/2889*521^(9/13) 4807514573534074 r009 Re(z^3+c),c=-5/12+3/49*I,n=34 4807514573758385 a001 32951280099/1364*521^(11/13) 4807514578681961 m001 (KhinchinLevy-Landau)/(Totient-ZetaQ(4)) 4807514603641988 r005 Re(z^2+c),c=-19/28+6/47*I,n=39 4807514605211182 a007 Real Root Of -182*x^4-865*x^3+25*x^2-256*x-701 4807514628888204 q001 1561/3247 4807514634184851 m002 -1-5*Pi^6+5*Sech[Pi] 4807514635328694 r005 Re(z^2+c),c=-5/8+27/163*I,n=16 4807514645624140 m001 1/LandauRamanujan^2*FransenRobinson 4807514650426498 a007 Real Root Of -596*x^4+739*x^3+171*x^2+483*x-322 4807514666349377 m001 TwinPrimes/CopelandErdos*exp(cos(1)) 4807514693522038 a001 956722026041/15127*521^(9/13) 4807514711466264 a001 2504730781961/39603*521^(9/13) 4807514714084291 a001 3278735159921/51841*521^(9/13) 4807514714702324 a001 10610209857723/167761*521^(9/13) 4807514715702321 a001 4052739537881/64079*521^(9/13) 4807514722013204 r005 Re(z^2+c),c=3/40+19/49*I,n=21 4807514722556406 a001 387002188980/6119*521^(9/13) 4807514736482751 a007 Real Root Of -837*x^4+377*x^3-311*x^2+960*x+620 4807514754786154 b008 9/13+SinhIntegral[E] 4807514756136074 r009 Re(z^3+c),c=-9/106+20/31*I,n=18 4807514757796646 r005 Re(z^2+c),c=29/78+19/63*I,n=18 4807514758822002 r009 Im(z^3+c),c=-1/90+29/49*I,n=24 4807514761471743 a001 591286729879/843*521^(4/13) 4807514764275949 m005 (1/3*Catalan-3/8)/(1/2*3^(1/2)+7/12) 4807514769535000 a001 591286729879/9349*521^(9/13) 4807514801719810 r005 Re(z^2+c),c=-15/22+17/114*I,n=58 4807514817815089 m001 (1+exp(-1/2*Pi))/(-Kolakoski+Landau) 4807514824794377 r009 Re(z^3+c),c=-9/16+5/21*I,n=11 4807514838114091 m001 1/exp(CareFree)^2*Conway/LaplaceLimit 4807514844561000 a007 Real Root Of 683*x^4-920*x^3-134*x^2-350*x-276 4807514845908889 l006 ln(2302/3723) 4807514870132016 m001 1/ln(GAMMA(1/12))^2*GlaisherKinkelin*sqrt(5) 4807514872397642 r002 13th iterates of z^2 + 4807514875286442 m001 log(1+sqrt(2))^2*MadelungNaCl/ln(sin(Pi/5))^2 4807514887884461 m001 (Stephens+StolarskyHarborth)/(Cahen+Sarnak) 4807514915995322 r005 Re(z^2+c),c=21/118+21/59*I,n=3 4807514920189901 a008 Real Root of x^3-4155*x-88640 4807514940651522 a003 sin(Pi*11/105)/cos(Pi*13/49) 4807514953148327 a001 6557470319842/2207*199^(1/11) 4807514980753870 a007 Real Root Of 2*x^4+960*x^3-722*x^2+271*x-913 4807515006590501 a007 Real Root Of 49*x^4-837*x^3-682*x^2-701*x-275 4807515014411707 r005 Re(z^2+c),c=7/44+22/39*I,n=62 4807515027411645 r009 Im(z^3+c),c=-4/9+27/56*I,n=58 4807515028125805 a001 11/987*2584^(8/43) 4807515038464962 r005 Im(z^2+c),c=-59/82+1/23*I,n=57 4807515045087751 a007 Real Root Of -79*x^4-322*x^3+391*x^2+570*x+125 4807515045910546 r005 Re(z^2+c),c=-16/23+1/22*I,n=54 4807515047065395 p003 LerchPhi(1/100,4,250/117) 4807515048111268 r002 22th iterates of z^2 + 4807515066744909 m001 GAMMA(19/24)^2*ln(BesselK(1,1))^2*GAMMA(2/3) 4807515089917585 a001 225851433717/2207*521^(8/13) 4807515091531102 a001 225851433717/3571*521^(9/13) 4807515094121646 a007 Real Root Of -641*x^4-358*x^3-231*x^2+304*x+194 4807515105971795 a007 Real Root Of -841*x^4-523*x^3+419*x^2+899*x-426 4807515112831279 r009 Im(z^3+c),c=-23/94+23/41*I,n=45 4807515117973277 r005 Im(z^2+c),c=-13/110+29/45*I,n=44 4807515154287570 a007 Real Root Of 277*x^4+304*x^3+580*x^2-653*x-429 4807515167997375 a007 Real Root Of 639*x^4+546*x^3-81*x^2-905*x+359 4807515177863730 m001 (-ErdosBorwein+Weierstrass)/(1+GAMMA(2/3)) 4807515194650566 s002 sum(A020482[n]/(2^n-1),n=1..infinity) 4807515194650602 s002 sum(A060308[n]/(2^n-1),n=1..infinity) 4807515194650602 s002 sum(A224911[n]/(2^n-1),n=1..infinity) 4807515194861333 a007 Real Root Of 597*x^4-732*x^3-767*x^2-647*x-247 4807515195867373 h001 (5/6*exp(2)+1/5)/(1/6*exp(2)+1/11) 4807515199010384 r005 Im(z^2+c),c=-87/98+16/53*I,n=5 4807515207555219 r005 Im(z^2+c),c=-11/26+16/29*I,n=29 4807515221869870 a007 Real Root Of 89*x^4+427*x^3-210*x^2-961*x+137 4807515252823652 m001 (ln(3)+FeigenbaumC)/(PlouffeB-PrimesInBinary) 4807515252933640 r009 Im(z^3+c),c=-23/94+23/41*I,n=49 4807515269976158 b008 -50+ArcSech[2/7] 4807515269976158 b008 5-(2*ArcCsch[2])/5 4807515269976158 b008 5-(2*ArcSinh[2])/15 4807515269976158 b008 5-ArcCosh[3/2]/5 4807515269976158 m003 1/2-Log[1/2+Sqrt[5]/2]/25 4807515276583825 r009 Re(z^3+c),c=-57/110+5/28*I,n=45 4807515308577940 a007 Real Root Of -163*x^4-772*x^3+71*x^2+118*x+218 4807515344597241 m001 Champernowne-RenyiParking^(3^(1/2)) 4807515355495647 r002 31th iterates of z^2 + 4807515370795164 a007 Real Root Of 137*x^4+596*x^3-150*x^2+810*x+402 4807515373624984 g005 Pi*2^(1/2)/GAMMA(7/11)/GAMMA(1/7) 4807515384069875 a001 10182505537/161*322^(3/4) 4807515384112670 s001 sum(exp(-Pi/3)^(n-1)*A029981[n],n=1..infinity) 4807515385511041 m005 (1/2*5^(1/2)+5)/(2/7*Pi+3/8) 4807515387689724 r005 Im(z^2+c),c=-5/8+1/96*I,n=34 4807515388350328 a007 Real Root Of 390*x^4-503*x^3-259*x^2-876*x-438 4807515389200124 m001 gamma^GAMMA(1/12)/(GAMMA(1/6)^GAMMA(1/12)) 4807515397446771 r009 Re(z^3+c),c=-57/118+1/9*I,n=56 4807515399996035 m001 (-KhinchinHarmonic+Lehmer)/(exp(Pi)+Chi(1)) 4807515439763815 l006 ln(4523/7315) 4807515440463930 m001 LandauRamanujan2nd/(Mills^TravellingSalesman) 4807515490386053 m001 (ZetaP(2)+ZetaP(3))/(Bloch+FeigenbaumB) 4807515498463712 a007 Real Root Of -83*x^4-416*x^3-53*x^2-64*x-969 4807515501895658 m008 (1/4*Pi-2/5)/(5/6*Pi^6+1/2) 4807515515633556 r009 Re(z^3+c),c=-67/126+11/51*I,n=64 4807515525126881 r009 Im(z^3+c),c=-43/110+31/59*I,n=23 4807515534621693 a007 Real Root Of -342*x^4+325*x^3+127*x^2+166*x-127 4807515547619216 g002 Psi(11/12)+Psi(10/11)+Psi(2/9)-Psi(7/11) 4807515555062621 r009 Im(z^3+c),c=-33/74+27/56*I,n=7 4807515557452203 m001 Pi^(cos(1/5*Pi)/Trott2nd) 4807515561239498 m002 Pi^6/2+ProductLog[Pi]/(6*Pi) 4807515583363665 m001 ln(Tribonacci)^2/ErdosBorwein*(3^(1/3))^2 4807515590405717 r005 Re(z^2+c),c=5/106+12/35*I,n=11 4807515602522658 r009 Re(z^3+c),c=-11/52+31/34*I,n=21 4807515602707039 r009 Im(z^3+c),c=-23/94+23/41*I,n=52 4807515608820009 b008 7*(13/2+E^(-1)) 4807515625712757 b008 ArcCosh[2+6*Pi^2] 4807515630341293 r005 Im(z^2+c),c=11/48+38/51*I,n=4 4807515651002911 m005 (3*Pi+1/6)/(2*2^(1/2)-5/6) 4807515663432906 h001 (7/9*exp(2)+5/11)/(3/7*exp(1)+1/8) 4807515671088581 m005 (1/2*Catalan-4/5)/(7/9*exp(1)+5) 4807515682758547 r005 Re(z^2+c),c=-5/7+3/83*I,n=49 4807515683304363 p004 log(36313/22453) 4807515684581446 a007 Real Root Of -786*x^4-50*x^3-651*x^2+358*x+359 4807515696797463 m005 (1/2*Zeta(3)+2/7)/(3/4*3^(1/2)+6/11) 4807515703326957 r005 Im(z^2+c),c=-57/46+2/51*I,n=16 4807515705297093 s002 sum(A111985[n]/(exp(pi*n)-1),n=1..infinity) 4807515705556634 m001 Lehmer/CareFree^2*ln(Zeta(9))^2 4807515709377383 a007 Real Root Of 419*x^4+761*x^3-65*x^2-795*x-305 4807515731425244 m005 (1/2*Catalan+1/8)/(3/8*Catalan-2/9) 4807515734739044 m001 FeigenbaumDelta/exp(Artin)/Sierpinski^2 4807515735674858 m002 -(Pi^2/E^Pi)+5*Pi^6+Tanh[Pi] 4807515746556229 r005 Re(z^2+c),c=-25/34+9/97*I,n=20 4807515756053477 a007 Real Root Of 16*x^4-825*x^3-902*x^2-898*x+731 4807515766310447 r005 Im(z^2+c),c=11/34+3/8*I,n=62 4807515766361073 r005 Re(z^2+c),c=-57/106+9/19*I,n=59 4807515768819070 m005 (-31/60+1/12*5^(1/2))/(5*2^(1/2)-1/5) 4807515797982650 r005 Re(z^2+c),c=-15/22+4/33*I,n=41 4807515799919616 a007 Real Root Of -979*x^4+35*x^3-30*x^2+162*x+141 4807515803128577 a007 Real Root Of -785*x^4+231*x^3+875*x^2+258*x-310 4807515804326135 m005 (1/2*Pi+6/7)/(2/7*2^(1/2)-10/11) 4807515839730059 r005 Im(z^2+c),c=7/22+13/27*I,n=9 4807515857954733 r002 4th iterates of z^2 + 4807515882992844 m001 1/GAMMA(1/4)/GAMMA(1/12)^2/ln(GAMMA(11/24))^2 4807515887097279 a007 Real Root Of -90*x^4-372*x^3+191*x^2-408*x+366 4807515888138794 a001 521/1346269*1597^(1/34) 4807515918383275 m001 (Bloch-Gompertz)/(ln(Pi)+exp(1/exp(1))) 4807515932914290 a001 591286729879/5778*521^(8/13) 4807515936142189 a001 53316291173/1364*521^(10/13) 4807515954369966 a001 1/48*6765^(36/41) 4807515955131481 m001 (-Pi^(1/2)+ZetaP(4))/(exp(1)+cos(1/5*Pi)) 4807515964775839 r005 Im(z^2+c),c=-79/82+17/55*I,n=4 4807515988431378 m001 PrimesInBinary*(ln(2)/ln(10)+Zeta(1/2)) 4807515997010749 a007 Real Root Of -940*x^4-197*x^3-602*x^2+933*x+616 4807516003126944 m005 (1/2*Pi+3/4)/(9/10*Pi+2) 4807516010739006 r009 Im(z^3+c),c=-53/118+27/56*I,n=25 4807516035135828 r009 Re(z^3+c),c=-2/5+2/37*I,n=7 4807516040329972 q001 1049/2182 4807516055276627 l006 ln(2221/3592) 4807516055905876 a001 1548008755920/15127*521^(8/13) 4807516060499145 r009 Im(z^3+c),c=-5/32+32/55*I,n=14 4807516073850107 a001 4052739537881/39603*521^(8/13) 4807516076468135 a001 225749145909/2206*521^(8/13) 4807516078086166 a001 6557470319842/64079*521^(8/13) 4807516083796546 r009 Im(z^3+c),c=-1/62+37/60*I,n=8 4807516084940252 a001 2504730781961/24476*521^(8/13) 4807516096645399 r002 6th iterates of z^2 + 4807516100341815 b008 1/81+ArcCoth[28] 4807516106103423 r009 Im(z^3+c),c=-11/62+19/33*I,n=24 4807516107375322 r002 59th iterates of z^2 + 4807516107951946 a007 Real Root Of -673*x^4+286*x^3+742*x^2+744*x-525 4807516109044574 m005 (1/2*Pi-6/11)/(10/11*5^(1/2)+1/10) 4807516123855601 a001 956722026041/843*521^(3/13) 4807516124891672 a007 Real Root Of -189*x^4-749*x^3+704*x^2-401*x-463 4807516131918860 a001 956722026041/9349*521^(8/13) 4807516132266935 a007 Real Root Of -814*x^4+646*x^3+452*x^2+793*x-514 4807516135269646 r005 Re(z^2+c),c=-85/122+3/35*I,n=59 4807516135308299 a007 Real Root Of 900*x^4+565*x^3+491*x^2-508*x-343 4807516142645610 m005 (1/2*Zeta(3)+5/8)/(3^(1/2)+9/11) 4807516149368450 r009 Im(z^3+c),c=-57/106+26/53*I,n=7 4807516150343841 r009 Im(z^3+c),c=-3/46+23/39*I,n=25 4807516153797931 h001 (3/4*exp(1)+2/5)/(5/8*exp(2)+5/11) 4807516175562764 r009 Im(z^3+c),c=-23/94+23/41*I,n=54 4807516187236175 a008 Real Root of (-2+x+6*x^2+2*x^4+9*x^8) 4807516190995533 r002 31th iterates of z^2 + 4807516192218211 m004 -2-ProductLog[Sqrt[5]*Pi]*Sec[Sqrt[5]*Pi]^2 4807516199086565 m002 5*Pi^6+(Log[Pi]*Tanh[Pi])/2 4807516200274041 m001 (ln(2)+arctan(1/2))/(BesselI(1,2)-FeigenbaumC) 4807516205748832 m005 (1/12+1/4*5^(1/2))/(4*Catalan-5) 4807516213677579 r005 Re(z^2+c),c=-7/9+32/89*I,n=4 4807516271933353 m001 1/FeigenbaumD*exp(KhintchineLevy)^2*Zeta(3) 4807516278651963 a001 1/1563*(1/2*5^(1/2)+1/2)^13*3^(1/3) 4807516290850660 a001 13/39603*7^(10/51) 4807516298429889 r009 Im(z^3+c),c=-1/106+29/49*I,n=26 4807516302419765 m005 (19/6+5/2*5^(1/2))/(5/6*2^(1/2)-3) 4807516304775687 h001 (5/9*exp(2)+1/9)/(1/5*exp(1)+1/3) 4807516317145756 a001 10610209857723/3571*199^(1/11) 4807516332376801 m001 Magata/ln(ArtinRank2)^2*FeigenbaumC 4807516347629964 m001 (Backhouse-DuboisRaymond)/(Pi-polylog(4,1/2)) 4807516367103579 a007 Real Root Of 784*x^4-855*x^3-596*x^2+175*x+85 4807516375480572 r009 Im(z^3+c),c=-23/94+23/41*I,n=57 4807516396231399 r009 Re(z^3+c),c=-3/7+31/54*I,n=9 4807516402991283 a007 Real Root Of 359*x^4-637*x^3+918*x^2-578*x-580 4807516431484780 p003 LerchPhi(1/8,3,624/223) 4807516440231962 m009 (4/5*Psi(1,1/3)-1/6)/(1/4*Psi(1,3/4)-4/5) 4807516452301536 a001 365435296162/2207*521^(7/13) 4807516453915053 a001 365435296162/3571*521^(8/13) 4807516477109339 r009 Im(z^3+c),c=-23/94+23/41*I,n=59 4807516484458829 r002 31th iterates of z^2 + 4807516485791932 r009 Re(z^3+c),c=-45/106+6/47*I,n=3 4807516507440472 r005 Re(z^2+c),c=-31/56+26/41*I,n=7 4807516530378773 m001 GAMMA(3/4)/(Lehmer-Pi) 4807516542575211 m001 BesselK(0,1)/(Kolakoski+StolarskyHarborth) 4807516542629390 r005 Re(z^2+c),c=25/126+25/47*I,n=40 4807516543525299 a008 Real Root of (2+x-6*x^2-2*x^4+x^5) 4807516553384690 r009 Im(z^3+c),c=-23/94+23/41*I,n=62 4807516556701200 r009 Im(z^3+c),c=-15/52+13/24*I,n=14 4807516565382594 m001 (CareFree+ZetaQ(2))/(cos(1)+Zeta(5)) 4807516567547599 r009 Im(z^3+c),c=-23/94+23/41*I,n=64 4807516577544087 r009 Im(z^3+c),c=-23/94+23/41*I,n=50 4807516589919824 a001 233/18*3571^(19/43) 4807516603980927 m001 sin(1)/Gompertz*Magata 4807516608411133 m001 1/Riemann2ndZero^2*Lehmer/exp(GAMMA(23/24)) 4807516622658596 r009 Im(z^3+c),c=-23/94+23/41*I,n=61 4807516630292532 m001 (Tetranacci+ZetaP(3))/(cos(1/12*Pi)+Magata) 4807516633462624 a003 cos(Pi*21/104)-cos(Pi*15/38) 4807516643511967 r009 Im(z^3+c),c=-23/94+23/41*I,n=60 4807516652516849 r009 Im(z^3+c),c=-23/94+23/41*I,n=63 4807516654211540 r009 Im(z^3+c),c=-23/62+29/55*I,n=20 4807516663388546 m001 (Ei(1,1)+Zeta(1,-1))/(Salem-ZetaQ(2)) 4807516668204436 m001 (-Salem+ZetaQ(3))/(exp(Pi)+ln(Pi)) 4807516668372279 r005 Im(z^2+c),c=23/90+17/37*I,n=63 4807516682193276 m005 (1/2*Pi-11/12)/(1/3*exp(1)+5/11) 4807516683023883 r009 Im(z^3+c),c=-23/94+23/41*I,n=55 4807516684278562 r009 Im(z^3+c),c=-7/31+36/43*I,n=4 4807516693654127 l006 ln(4361/7053) 4807516708398629 r005 Im(z^2+c),c=7/58+29/53*I,n=52 4807516713468875 a007 Real Root Of 881*x^4-613*x^3-105*x^2-640*x+353 4807516730779882 a007 Real Root Of -268*x^4+980*x^3+624*x^2+627*x+3 4807516734755526 a001 233/18*9349^(17/43) 4807516740668049 m001 1/Zeta(7)^2/exp(BesselK(0,1))^2/log(1+sqrt(2)) 4807516746026079 r009 Im(z^3+c),c=-23/94+23/41*I,n=56 4807516761496630 r008 a(0)=6,K{-n^6,-51-16*n+16*n^2+52*n^3} 4807516764203317 m002 -1+Pi/2+5*Pi^6 4807516782633753 r002 13i'th iterates of 2*x/(1-x^2) of 4807516787085912 m005 (1/2*Catalan-1/7)/(1/8*gamma+7/12) 4807516805550739 r009 Im(z^3+c),c=-23/94+23/41*I,n=58 4807516811817740 p003 LerchPhi(1/512,5,103/141) 4807516812832433 r002 7th iterates of z^2 + 4807516820181585 m005 (1/3*Pi-1/3)/(3/5*2^(1/2)+7/11) 4807516824417526 m001 (Psi(2,1/3)+Artin)/(-Cahen+Grothendieck) 4807516858344057 m001 (2^(1/2)-BesselJ(0,1))/(-Zeta(1,2)+ThueMorse) 4807516882189462 r009 Im(z^3+c),c=-19/58+34/53*I,n=33 4807516893093243 r002 5th iterates of z^2 + 4807516902544046 r005 Im(z^2+c),c=-1/10+29/47*I,n=32 4807516922012562 m001 (Shi(1)+Zeta(5))/(-Landau+OneNinth) 4807516942593239 r005 Re(z^2+c),c=-3/8+57/58*I,n=4 4807516950074823 r009 Re(z^3+c),c=-11/126+39/59*I,n=57 4807516965928205 a007 Real Root Of 924*x^4-872*x^3-566*x^2-542*x-276 4807516967982686 r002 41th iterates of z^2 + 4807516968487218 m001 (1+GAMMA(5/6))/(-CareFree+TwinPrimes) 4807516991238153 r009 Im(z^3+c),c=-17/70+33/58*I,n=8 4807516991918224 a001 9349/8*55^(6/17) 4807516999998933 p003 LerchPhi(1/25,5,539/185) 4807517021467276 a005 (1/sin(104/219*Pi))^1982 4807517026288258 m001 (Grothendieck+Porter)/(GAMMA(3/4)+ln(gamma)) 4807517027825455 a001 47/8*317811^(9/17) 4807517042796499 a007 Real Root Of 414*x^4-873*x^3-700*x^2-199*x-53 4807517118850279 a007 Real Root Of -568*x^4+460*x^3-392*x^2-283*x+36 4807517123161680 r009 Im(z^3+c),c=-13/58+35/36*I,n=14 4807517153196728 r002 29th iterates of z^2 + 4807517158500697 a003 cos(Pi*22/89)-cos(Pi*37/87) 4807517168936847 m005 (1/2*Zeta(3)+4)/(8/9*Catalan+1/7) 4807517171756196 r002 35th iterates of z^2 + 4807517174516087 a007 Real Root Of 488*x^4-608*x^3-25*x^2+8*x-84 4807517180620755 a007 Real Root Of -879*x^4+987*x^3+732*x^2+618*x-529 4807517216922244 a007 Real Root Of -205*x^4+179*x^3-851*x^2+313*x+378 4807517234532542 m001 GaussKuzminWirsing^(Zeta(5)*Lehmer) 4807517237080676 r005 Re(z^2+c),c=-3/94+17/21*I,n=35 4807517243748574 m002 -Pi^2/6-5*Pi^6+ProductLog[Pi] 4807517245852735 a001 29/17711*3^(50/51) 4807517263460862 a007 Real Root Of 148*x^4+555*x^3-652*x^2+601*x+568 4807517263960694 m002 5*Pi^6+(Log[Pi]*Sinh[Pi])/E^Pi 4807517272243334 a007 Real Root Of 234*x^4+227*x^3+499*x^2-629*x-405 4807517273258545 m005 (1/2*gamma-3/11)/(-31/60+1/12*5^(1/2)) 4807517280975045 m001 (-gamma(2)+CareFree)/(BesselI(0,1)+Ei(1,1)) 4807517290442234 r005 Re(z^2+c),c=41/110+10/27*I,n=32 4807517294856127 m006 (4/5/Pi-3)/(1/5*ln(Pi)-4/5) 4807517295298479 a001 956722026041/5778*521^(7/13) 4807517298526380 a001 21566892818/341*521^(9/13) 4807517344400831 a007 Real Root Of 839*x^4-369*x^3-802*x^2-881*x-324 4807517354207165 r005 Re(z^2+c),c=-2/3+35/176*I,n=46 4807517356194470 l006 ln(2140/3461) 4807517379652720 a001 39603/34*377^(37/59) 4807517380561765 r005 Re(z^2+c),c=-81/118+6/37*I,n=60 4807517384319088 r002 33th iterates of z^2 + 4807517386062098 m005 (13/6+3/2*5^(1/2))/(13/60+5/12*5^(1/2)) 4807517397734942 r009 Im(z^3+c),c=-23/94+23/41*I,n=53 4807517408318268 r009 Im(z^3+c),c=-23/94+23/41*I,n=51 4807517418290100 a001 2504730781961/15127*521^(7/13) 4807517429524098 q001 1586/3299 4807517436234337 a001 6557470319842/39603*521^(7/13) 4807517440470396 a001 10610209857723/64079*521^(7/13) 4807517442112634 m002 Pi^5/E^(2*Pi)+5*Pi^6 4807517447324484 a001 4052739537881/24476*521^(7/13) 4807517471973661 m001 (Paris-ZetaP(2))/(Zeta(5)-Pi^(1/2)) 4807517486239844 a001 516002918640/281*521^(2/13) 4807517488774698 p004 log(27791/227) 4807517494303106 a001 1548008755920/9349*521^(7/13) 4807517500689060 b008 ExpIntegralEi[-Sqrt[ArcCsch[3]]] 4807517504118749 r002 30th iterates of z^2 + 4807517507343881 r005 Re(z^2+c),c=-53/110+17/30*I,n=26 4807517510368553 r002 30th iterates of z^2 + 4807517523777414 r002 58th iterates of z^2 + 4807517526628887 a007 Real Root Of 113*x^4+317*x^3-871*x^2+902*x-672 4807517534550545 m001 LaplaceLimit*ZetaQ(3)+Weierstrass 4807517560607427 r005 Im(z^2+c),c=5/52+33/64*I,n=16 4807517583558234 a002 5^(7/4)-18^(6/7) 4807517595423819 m001 exp(OneNinth)^2/Sierpinski*Zeta(9) 4807517598960486 r009 Im(z^3+c),c=-11/28+4/7*I,n=33 4807517603265652 m001 Zeta(1/2)/Zeta(1,2)/exp(sin(Pi/5))^2 4807517608547123 r002 3th iterates of z^2 + 4807517613413009 m008 (5/6*Pi+3/4)/(3/4*Pi^4-3) 4807517620439444 l006 ln(2132/2237) 4807517620872647 r009 Im(z^3+c),c=-27/86+28/43*I,n=35 4807517621312795 m001 GAMMA(2/3)^GAMMA(1/4)/GolombDickman 4807517627004918 a001 2932585752473/610 4807517628585633 r009 Im(z^3+c),c=-21/46+25/58*I,n=15 4807517628832108 a007 Real Root Of -981*x^4+610*x^3-382*x^2-625*x-92 4807517632173923 a001 322/6765*233^(14/33) 4807517657836035 a001 2/13*10946^(21/34) 4807517658171499 r005 Re(z^2+c),c=1/64+16/43*I,n=4 4807517678974864 m001 (Ei(1)-FeigenbaumMu)/(Magata+ZetaP(4)) 4807517684039585 m001 OneNinth/exp(FeigenbaumKappa)*sqrt(3) 4807517721580818 r002 34th iterates of z^2 + 4807517747565291 r005 Re(z^2+c),c=-24/29+33/41*I,n=3 4807517751768589 m001 1/OneNinth^2/Kolakoski*exp(Ei(1))^2 4807517752992076 r002 53th iterates of z^2 + 4807517754556535 r005 Re(z^2+c),c=-61/114+17/40*I,n=25 4807517765894090 p004 log(34217/21157) 4807517777571157 m001 1/MinimumGamma^2*Khintchine/exp(GAMMA(1/6)) 4807517789878420 m003 -5+4*Cot[1/2+Sqrt[5]/2]+Sech[1/2+Sqrt[5]/2] 4807517799279434 a001 1602508992/281*1364^(14/15) 4807517804525421 a007 Real Root Of -165*x^4-844*x^3-278*x^2-290*x-609 4807517814685872 a001 591286729879/2207*521^(6/13) 4807517816299390 a001 591286729879/3571*521^(7/13) 4807517822053883 a007 Real Root Of -702*x^4+473*x^3+992*x^2+199*x-340 4807517831263218 m001 (Grothendieck+OrthogonalArrays)/LaplaceLimit 4807517841647524 a007 Real Root Of -684*x^4-947*x^3-681*x^2+920*x+531 4807517859582554 r002 32th iterates of z^2 + 4807517870880728 r009 Re(z^3+c),c=-1/122+37/61*I,n=23 4807517876797684 m001 (3^(1/2)+Zeta(3))/(-Cahen+CareFree) 4807517885134090 a007 Real Root Of 562*x^4-31*x^3+964*x^2-975*x-725 4807517894533004 r004 Im(z^2+c),c=-7/11+1/11*I,z(0)=-1,n=61 4807517899873473 b008 ArcCosh[2^(E+Pi)+Pi] 4807517909133728 m001 (sin(1)+GAMMA(19/24))/(-TreeGrowth2nd+Thue) 4807517909702087 a001 3461452808002*144^(9/17) 4807517911644118 a007 Real Root Of 211*x^4+925*x^3-296*x^2+786*x+688 4807517916063292 r009 Im(z^3+c),c=-25/86+29/53*I,n=20 4807517918355213 a005 (1/sin(67/210*Pi))^63 4807517919276579 r002 6th iterates of z^2 + 4807517927614217 r002 6th iterates of z^2 + 4807517931453887 m001 (sin(1)+cos(1))/(GAMMA(5/6)+KhinchinHarmonic) 4807517932480964 m001 (Psi(1,1/3)+Zeta(1,2))/(BesselI(1,1)+Totient) 4807517941662108 a007 Real Root Of 835*x^4-499*x^3+451*x^2-898*x-636 4807517956055438 a007 Real Root Of -765*x^4-519*x^3-404*x^2+731*x+428 4807517957007981 m001 1/ln(GAMMA(7/12))^2*BesselJ(1,1)^2/sqrt(5) 4807517964401111 r005 Re(z^2+c),c=11/58+12/35*I,n=56 4807517969070815 m005 (1/2*Catalan+1/3)/(4/5*5^(1/2)-1/7) 4807517969716786 r002 20th iterates of z^2 + 4807517971545827 a001 7778742049/843*1364^(13/15) 4807517975804816 m001 Khinchin^exp(1)/(Khinchin^GAMMA(5/6)) 4807517987562977 a001 76/123*(1/2*5^(1/2)+1/2)^8*123^(7/12) 4807518005418054 r005 Re(z^2+c),c=-16/23+9/47*I,n=39 4807518013111846 m005 (1/2*Zeta(3)+3/11)/(3/10*Pi+7/8) 4807518023327730 r009 Im(z^3+c),c=-13/34+16/31*I,n=26 4807518026560086 r009 Im(z^3+c),c=-11/24+25/54*I,n=30 4807518044295981 l006 ln(4199/6791) 4807518056142724 m001 1/ln(PisotVijayaraghavan)/Si(Pi)^2*arctan(1/2) 4807518060306357 m001 (-Cahen+MertensB2)/(GAMMA(2/3)-cos(1)) 4807518071098655 r005 Im(z^2+c),c=17/78+27/58*I,n=19 4807518071395413 a007 Real Root Of 601*x^4-106*x^3-534*x^2-940*x+555 4807518079342016 a007 Real Root Of 150*x^4+665*x^3-325*x^2-78*x+900 4807518085468783 r005 Re(z^2+c),c=-35/102+37/58*I,n=23 4807518087224531 r005 Im(z^2+c),c=27/118+13/28*I,n=51 4807518102005412 m001 GolombDickman*(Grothendieck-Niven) 4807518143812225 a001 12586269025/843*1364^(4/5) 4807518148726769 r009 Im(z^3+c),c=-14/31+11/29*I,n=5 4807518155677627 a001 124/5*13^(8/31) 4807518168992317 a007 Real Root Of 91*x^4+411*x^3-154*x^2-75*x+256 4807518173777622 a001 9349/5*377^(29/31) 4807518188603047 m006 (Pi-4)/(3/4*exp(Pi)+1/2) 4807518190222743 m001 (-GAMMA(19/24)+ZetaP(4))/(arctan(1/3)-exp(Pi)) 4807518190643793 a001 710647/610*89^(6/19) 4807518202095873 m001 LambertW(1)-Paris^Shi(1) 4807518208230673 r005 Im(z^2+c),c=-149/122+5/36*I,n=39 4807518209139447 r009 Im(z^3+c),c=-71/126+28/59*I,n=49 4807518221035835 r009 Im(z^3+c),c=-39/74+13/41*I,n=40 4807518229631919 a007 Real Root Of 895*x^4-536*x^3+766*x^2-47*x-307 4807518249856516 a007 Real Root Of -248*x^4-41*x^3-729*x^2+888*x-41 4807518264239781 a007 Real Root Of -151*x^4-804*x^3-350*x^2+38*x-402 4807518267627942 s002 sum(A187466[n]/(n^2*pi^n+1),n=1..infinity) 4807518269147398 r005 Re(z^2+c),c=-41/64+12/61*I,n=18 4807518279299599 r002 4th iterates of z^2 + 4807518290860960 a007 Real Root Of -160*x^4-669*x^3-854*x^2+810*x+521 4807518292090119 r002 32th iterates of z^2 + 4807518296549771 r002 27th iterates of z^2 + 4807518302550256 a007 Real Root Of 719*x^4-726*x^3-520*x^2-101*x+211 4807518307299975 r005 Re(z^2+c),c=9/40+14/51*I,n=4 4807518311211586 m001 (Pi-3^(1/2))/(FibonacciFactorial+Niven) 4807518316078630 a001 20365011074/843*1364^(11/15) 4807518318645201 m001 Pi*2^(1/2)/GAMMA(3/4)*Conway+StolarskyHarborth 4807518332819446 m002 Pi^6/2+Log[Pi]/20 4807518335178552 m001 FeigenbaumD*Bloch^2/exp((2^(1/3)))^2 4807518343694242 r002 2th iterates of z^2 + 4807518344864578 a001 843/17711*377^(23/59) 4807518356859458 r009 Im(z^3+c),c=-25/82+7/13*I,n=15 4807518360319355 r009 Im(z^3+c),c=-1/126+29/49*I,n=30 4807518363435924 s002 sum(A052493[n]/(n!^3),n=1..infinity) 4807518364114585 a003 cos(Pi*5/33)-cos(Pi*26/71) 4807518374784639 a007 Real Root Of -146*x^4-532*x^3+791*x^2-130*x-29 4807518376942145 r009 Im(z^3+c),c=-1/118+29/49*I,n=28 4807518388835492 a001 4181/76*18^(3/4) 4807518398398940 p004 log(13451/8317) 4807518408636636 m002 -6+Pi^2+ProductLog[Pi]/Log[Pi] 4807518413156083 m009 (1/4*Psi(1,3/4)-2)/(3/5*Psi(1,2/3)+1) 4807518414655661 a007 Real Root Of 590*x^4+782*x^3-269*x^2-897*x+375 4807518418049090 s001 sum(exp(-3*Pi/5)^n*A180404[n],n=1..infinity) 4807518452139175 r005 Re(z^2+c),c=-61/94+2/17*I,n=20 4807518461851550 r002 29th iterates of z^2 + 4807518483637329 r005 Re(z^2+c),c=11/58+12/35*I,n=55 4807518488345041 a001 10983760033/281*1364^(2/3) 4807518516853607 a007 Real Root Of 9*x^4-108*x^3+739*x^2-638*x-490 4807518519846960 m001 (cos(1)-sin(1/12*Pi))/(-Gompertz+Trott) 4807518522166366 r009 Re(z^3+c),c=-13/28+6/61*I,n=35 4807518524141596 a001 4052739537881/1364*199^(1/11) 4807518525867007 r005 Im(z^2+c),c=13/62+20/41*I,n=46 4807518553077877 a007 Real Root Of -24*x^4+202*x^3+821*x^2+593*x-496 4807518558442033 m006 (3/4*Pi+1/4)/(2/5*ln(Pi)-1) 4807518568152611 m002 3/Pi+(Pi^6*Sinh[Pi])/E^Pi 4807518569944931 m001 (BesselK(0,1)-GAMMA(23/24))/(Gompertz+Robbin) 4807518580071057 m003 -49/10+Sqrt[5]/16+Cot[1/2+Sqrt[5]/2] 4807518587912288 m001 1/sin(Pi/12)^2/exp(TreeGrowth2nd)*sqrt(5)^2 4807518592738330 a001 47/1548008755920*46368^(9/10) 4807518615054124 a007 Real Root Of 850*x^4+344*x^3+731*x^2-994*x-654 4807518621901988 a003 cos(Pi*41/118)-sin(Pi*43/110) 4807518626959503 a007 Real Root Of 213*x^4+890*x^3-681*x^2-212*x-169 4807518644101209 a003 sin(Pi*3/40)+sin(Pi*7/88) 4807518653076534 m005 (1/2*3^(1/2)+1/3)/(6/7*gamma+2) 4807518657683055 a001 86000486440/321*521^(6/13) 4807518659798811 a001 233/4*123^(25/57) 4807518660611458 a001 53316291173/843*1364^(3/5) 4807518660910956 a001 139583862445/1364*521^(8/13) 4807518663501078 r005 Re(z^2+c),c=-7/23+23/38*I,n=40 4807518666791761 a007 Real Root Of 138*x^4+689*x^3+28*x^2-394*x+299 4807518692349952 m002 5*Pi^6-Cosh[Pi]/E^Pi+ProductLog[Pi] 4807518696457980 a007 Real Root Of 134*x^4-964*x^3+446*x^2-278*x-351 4807518699292003 r009 Im(z^3+c),c=-11/74+18/31*I,n=35 4807518699571710 a007 Real Root Of 298*x^4-884*x^3-534*x^2-739*x+561 4807518709422476 r005 Im(z^2+c),c=-25/114+5/8*I,n=58 4807518729705044 r009 Re(z^3+c),c=-5/126+35/48*I,n=3 4807518732766138 m008 (3*Pi^3+2/5)/(2*Pi^4-1/2) 4807518742071072 r002 10th iterates of z^2 + 4807518742228439 r005 Re(z^2+c),c=7/23+14/33*I,n=42 4807518759467000 l006 ln(2059/3330) 4807518780674711 a001 4052739537881/15127*521^(6/13) 4807518795399194 a007 Real Root Of -616*x^4+726*x^3+454*x^2-16*x-145 4807518798618952 a001 3536736619241/13201*521^(6/13) 4807518809709103 a001 3278735159921/12238*521^(6/13) 4807518825542068 m001 HardHexagonsEntropy^Lehmer/(Paris^Lehmer) 4807518832877881 a001 86267571272/843*1364^(8/15) 4807518838645534 a007 Real Root Of 127*x^4+753*x^3+630*x^2-256*x+36 4807518848624474 a001 2504730781961/843*521^(1/13) 4807518850287486 m001 Gompertz/(BesselI(0,2)^MertensB1) 4807518856687738 a001 2504730781961/9349*521^(6/13) 4807518858202550 h001 (2/7*exp(1)+1/5)/(1/6*exp(2)+4/5) 4807518860237144 a007 Real Root Of -453*x^4-147*x^3-930*x^2+42*x+243 4807518868011886 a007 Real Root Of -42*x^4-195*x^3+34*x^2-2*x-27 4807518870833615 r005 Im(z^2+c),c=-27/122+38/63*I,n=15 4807518875222807 p003 LerchPhi(1/6,4,166/77) 4807518881151279 a007 Real Root Of -152*x^4-861*x^3-667*x^2-381*x-889 4807518881870209 a007 Real Root Of -779*x^4+654*x^3-175*x^2+302*x+15 4807518882187459 r005 Im(z^2+c),c=-89/78+19/43*I,n=3 4807518896647329 r005 Re(z^2+c),c=-5/7+2/75*I,n=60 4807518908915909 r002 15th iterates of z^2 + 4807518912890756 r002 17th iterates of z^2 + 4807518927030138 h001 (1/2*exp(2)+9/11)/(2/11*exp(1)+4/9) 4807518931576036 m001 1/Lehmer*ErdosBorwein^2*exp(Paris) 4807518952523293 r005 Re(z^2+c),c=1/122+13/49*I,n=14 4807518959652897 q001 4/83203 4807518965726608 r005 Re(z^2+c),c=9/56+19/62*I,n=27 4807518971409183 r005 Re(z^2+c),c=1/29+11/17*I,n=6 4807518984360444 m005 (1/2*Pi+1/9)/(1/9*gamma+2/7) 4807518992604399 m008 (Pi^4-5)/(2*Pi^6-3/5) 4807518997918016 a003 cos(Pi*7/113)/sin(Pi*7/107) 4807518998467165 r009 Re(z^3+c),c=-27/110+41/55*I,n=33 4807519000798239 r009 Im(z^3+c),c=-21/46+19/42*I,n=23 4807519005144311 a001 139583862445/843*1364^(7/15) 4807519024962033 r009 Re(z^3+c),c=-51/106+4/37*I,n=40 4807519032729664 a007 Real Root Of -748*x^4+261*x^3-809*x^2+672*x+579 4807519035367100 r005 Im(z^2+c),c=31/110+23/50*I,n=64 4807519071374397 m001 Shi(1)/FellerTornier*Porter 4807519078281903 a007 Real Root Of -134*x^4-616*x^3+15*x^2-496*x+403 4807519087400064 m001 1/GAMMA(7/12)*RenyiParking^2*ln(Zeta(5))^2 4807519093957298 p004 log(32933/269) 4807519114237181 a003 sin(Pi*17/118)/sin(Pi*4/11) 4807519114979457 p001 sum(1/(111*n+11)/n/(2^n),n=0..infinity) 4807519122577169 a007 Real Root Of -73*x^4+154*x^3+693*x^2+825*x-570 4807519138205434 m001 KomornikLoreti^GAMMA(17/24)*BesselI(0,2) 4807519138957515 r005 Im(z^2+c),c=7/54+14/25*I,n=51 4807519164269506 m005 (1/2*Zeta(3)-6/11)/(3/10*3^(1/2)+7/11) 4807519171865925 r002 17th iterates of z^2 + 4807519175629024 r005 Re(z^2+c),c=-5/8+43/187*I,n=23 4807519177070595 a001 956722026041/2207*521^(5/13) 4807519177410746 a001 267913919*1364^(2/5) 4807519178684113 a001 956722026041/3571*521^(6/13) 4807519180410064 s002 sum(A185855[n]/(exp(2*pi*n)-1),n=1..infinity) 4807519196285996 a007 Real Root Of 87*x^4+364*x^3-289*x^2-202*x-320 4807519208821134 m001 (Niven-Robbin)/(ln(Pi)+GAMMA(23/24)) 4807519219189856 r002 62th iterates of z^2 + 4807519221108630 r005 Re(z^2+c),c=-35/54+3/49*I,n=13 4807519224001359 a001 377/2207*312119004989^(10/11) 4807519224001359 a001 377/2207*(1/2+1/2*5^(1/2))^50 4807519224001359 a001 377/2207*3461452808002^(5/6) 4807519224010676 a001 329/281*(1/2+1/2*5^(1/2))^46 4807519224010676 a001 329/281*10749957122^(23/24) 4807519228722771 a007 Real Root Of -802*x^4+985*x^3-921*x^2+917*x+806 4807519229125214 r005 Re(z^2+c),c=9/32+27/64*I,n=17 4807519229706202 r005 Re(z^2+c),c=2/25+17/42*I,n=9 4807519248043478 a001 12586269025/322*322^(5/6) 4807519252085591 l006 ln(6096/9859) 4807519252364354 r005 Re(z^2+c),c=-16/29+38/63*I,n=6 4807519270434128 r005 Im(z^2+c),c=2/11+15/31*I,n=29 4807519284900773 r005 Re(z^2+c),c=13/36+3/29*I,n=58 4807519295316982 m001 (BesselK(0,1)+GAMMA(23/24))/(Otter+ZetaQ(2)) 4807519295518106 a001 322/55*55^(31/59) 4807519300505101 a007 Real Root Of 943*x^4-993*x^3-736*x^2-601*x+519 4807519318707540 r005 Im(z^2+c),c=-69/122+2/23*I,n=62 4807519332113481 p003 LerchPhi(1/1024,1,460/221) 4807519334621773 m001 1/exp(GAMMA(19/24))^2*Rabbit^2/Zeta(9) 4807519349677188 a001 365435296162/843*1364^(1/3) 4807519362868837 r009 Re(z^3+c),c=-17/38+9/44*I,n=2 4807519363547236 r002 41th iterates of z^2 + 4807519371952551 a007 Real Root Of -483*x^4-102*x^3-941*x^2-470*x+6 4807519388499752 r002 11th iterates of z^2 + 4807519396420134 m001 (Pi*ThueMorse-ln(Pi))/Pi 4807519401678199 m002 5*Pi^6+(Cosh[Pi]*Log[Pi])/E^Pi 4807519417706527 r005 Re(z^2+c),c=-11/26+18/37*I,n=2 4807519432898454 m001 OneNinth^exp(-1/2*Pi)-ZetaR(2) 4807519450272070 r009 Im(z^3+c),c=-5/11+13/29*I,n=20 4807519452976904 r002 27th iterates of z^2 + 4807519463598637 m002 -1+Pi^2/E^Pi-5*Pi^6 4807519465057543 a007 Real Root Of 223*x^4-699*x^3-605*x^2-446*x+420 4807519472154882 r002 58th iterates of z^2 + 4807519480429626 r005 Re(z^2+c),c=-9/14+41/192*I,n=21 4807519503336926 l006 ln(4037/6529) 4807519517515544 m001 Ei(1,1)/(BesselI(1,1)^exp(1/Pi)) 4807519521943636 a001 591286729879/843*1364^(4/15) 4807519536031442 r005 Im(z^2+c),c=-3/17+39/61*I,n=34 4807519538828199 r002 37th iterates of z^2 + 4807519567863774 r002 14th iterates of z^2 + 4807519569901470 a007 Real Root Of 500*x^4+220*x^3+947*x^2-137*x-287 4807519573473783 r002 56th iterates of z^2 + 4807519574273504 r005 Re(z^2+c),c=-17/30+32/79*I,n=46 4807519584820367 m005 (1/2*3^(1/2)-2/11)/(7/12*Catalan+8/9) 4807519594404632 a007 Real Root Of -39*x^4-81*x^3+648*x^2+478*x-846 4807519604004279 r009 Im(z^3+c),c=-23/94+23/41*I,n=48 4807519606979871 a007 Real Root Of 689*x^4+59*x^3+353*x^2-485*x-345 4807519626071318 m002 -1/2+5*Pi^6+ProductLog[Pi] 4807519630558866 a007 Real Root Of 184*x^4+756*x^3-816*x^2-949*x+10 4807519639118538 m001 exp(GAMMA(13/24))^2/GAMMA(1/24)^2/Zeta(9)^2 4807519654438452 m005 (-1/6+1/6*5^(1/2))/(8/11*2^(1/2)-3/5) 4807519661262196 a007 Real Root Of 765*x^4-918*x^3+592*x^2-997*x-759 4807519662681913 r009 Im(z^3+c),c=-17/78+30/53*I,n=18 4807519666523175 a003 sin(Pi*22/109)/cos(Pi*41/89) 4807519669021138 m002 Pi^6/2+6/(Pi^4*ProductLog[Pi]) 4807519681658251 m009 (6*Catalan+3/4*Pi^2-1)/(3/5*Psi(1,3/4)-4) 4807519691630151 m002 -2/Pi^6+6*Sech[Pi]-Tanh[Pi] 4807519694210090 a001 956722026041/843*1364^(1/5) 4807519723054854 m008 (4*Pi-2/3)/(1/4*Pi^4+2/5) 4807519739764951 r009 Im(z^3+c),c=-43/102+12/25*I,n=19 4807519739767198 r009 Im(z^3+c),c=-7/46+29/50*I,n=24 4807519741744911 a007 Real Root Of 124*x^4+425*x^3-771*x^2+429*x+867 4807519757971689 l006 ln(6015/9728) 4807519758227527 m006 (4*exp(2*Pi)-1/4)/(5/6*exp(2*Pi)-3/4) 4807519760511126 r009 Im(z^3+c),c=-49/86+13/38*I,n=4 4807519773948828 r005 Re(z^2+c),c=-5/7+21/109*I,n=8 4807519779211437 m001 (Zeta(5)-gamma)/(cos(1/12*Pi)+gamma(2)) 4807519790004065 r002 49th iterates of z^2 + 4807519806794584 v002 sum(1/(5^n*(3/2*n^2+99/2*n-5)),n=1..infinity) 4807519807310692 r005 Re(z^2+c),c=39/106+13/36*I,n=37 4807519811554383 m001 1/2*(Gompertz-Zeta(3))*2^(2/3) 4807519811694910 m001 (MertensB3-Sierpinski)/(ln(Pi)-Zeta(1/2)) 4807519811858567 m009 (1/2*Psi(1,2/3)-3)/(3*Psi(1,1/3)+1/4) 4807519813737823 r009 Im(z^3+c),c=-35/78+26/51*I,n=36 4807519824938735 s002 sum(A031465[n]/(exp(2*pi*n)-1),n=1..infinity) 4807519824938735 s002 sum(A045081[n]/(exp(2*pi*n)-1),n=1..infinity) 4807519837827788 a007 Real Root Of -713*x^4+92*x^3+223*x^2+165*x-103 4807519846041474 a005 (1/cos(10/211*Pi))^969 4807519847357349 r005 Im(z^2+c),c=-115/86+2/55*I,n=58 4807519848638901 m001 ln(GAMMA(5/24))^2*CopelandErdos/Zeta(5)^2 4807519850664643 m001 (Paris+Tribonacci)/(Shi(1)+Zeta(1/2)) 4807519856177005 a007 Real Root Of 6*x^4-586*x^3-269*x^2-611*x-297 4807519856185959 a001 1836311903/843*3571^(16/17) 4807519864704123 r002 12th iterates of z^2 + 4807519866476550 a001 516002918640/281*1364^(2/15) 4807519878362429 a001 2971215073/843*3571^(15/17) 4807519881890081 a007 Real Root Of 743*x^4-356*x^3+769*x^2-986*x-731 4807519884721115 s002 sum(A256822[n]/(exp(2*pi*n)-1),n=1..infinity) 4807519884804847 s002 sum(A172422[n]/(exp(2*pi*n)-1),n=1..infinity) 4807519895656262 a007 Real Root Of 591*x^4+117*x^3-517*x^2-957*x+535 4807519900538899 a001 1602508992/281*3571^(14/17) 4807519922715369 a001 7778742049/843*3571^(13/17) 4807519933508894 r009 Re(z^3+c),c=-17/36+32/57*I,n=48 4807519933559573 r002 5th iterates of z^2 + 4807519934832686 r009 Re(z^3+c),c=-13/86+44/61*I,n=37 4807519941465294 a001 55/322*39603^(30/31) 4807519943435667 m005 (1/2*Zeta(3)-3/7)/(1/8*Pi-3/7) 4807519944891839 a001 12586269025/843*3571^(12/17) 4807519967068310 a001 20365011074/843*3571^(11/17) 4807519989244780 a001 10983760033/281*3571^(10/17) 4807520002322761 m001 exp(MertensB1)*GolombDickman^2*GAMMA(7/24)^2 4807520011421250 a001 53316291173/843*3571^(9/17) 4807520015123123 m001 exp(GAMMA(2/3))/HardHexagonsEntropy*sqrt(3) 4807520020068016 a001 2504730781961/5778*521^(5/13) 4807520023295918 a001 225851433717/1364*521^(7/13) 4807520033597721 a001 86267571272/843*3571^(8/17) 4807520035026759 m001 HardyLittlewoodC5^(cos(1/12*Pi)/Salem) 4807520038743017 a001 2504730781961/843*1364^(1/15) 4807520043921878 r002 21th iterates of z^2 + 4807520044130894 r002 33th iterates of z^2 + 4807520052205190 r005 Im(z^2+c),c=-43/70+13/28*I,n=13 4807520055774192 a001 139583862445/843*3571^(7/17) 4807520066998788 a001 377/5778*(1/2+1/2*5^(1/2))^52 4807520066998788 a001 377/5778*23725150497407^(13/16) 4807520066998788 a001 377/5778*505019158607^(13/14) 4807520067008303 a001 2584/843*312119004989^(4/5) 4807520067008303 a001 2584/843*(1/2+1/2*5^(1/2))^44 4807520067008303 a001 2584/843*23725150497407^(11/16) 4807520067008303 a001 2584/843*73681302247^(11/13) 4807520067008303 a001 2584/843*10749957122^(11/12) 4807520067008303 a001 2584/843*4106118243^(22/23) 4807520071762580 m001 (-Niven+Riemann1stZero)/(Chi(1)+MadelungNaCl) 4807520077950663 a001 267913919*3571^(6/17) 4807520100127133 a001 365435296162/843*3571^(5/17) 4807520122303604 a001 591286729879/843*3571^(4/17) 4807520134115964 r002 57th iterates of z^2 + 4807520138193825 r002 17th iterates of z^2 + 4807520138805015 r005 Re(z^2+c),c=-7/10+29/242*I,n=61 4807520143059707 a001 6557470319842/15127*521^(5/13) 4807520143240823 q001 537/1117 4807520144480076 a001 956722026041/843*3571^(3/17) 4807520147999896 m001 (LaplaceLimit+OneNinth)^FransenRobinson 4807520152184217 a007 Real Root Of -272*x^4+289*x^3+654*x^2+363*x+70 4807520155996412 a001 20100241772221/4181 4807520158900855 a001 233802911/281*9349^(18/19) 4807520161154423 r009 Im(z^3+c),c=-19/50+23/44*I,n=25 4807520161795779 a001 1134903170/843*9349^(17/19) 4807520162388533 m001 (ln(2^(1/2)+1)+OneNinth)/(1+Shi(1)) 4807520164349778 a007 Real Root Of 101*x^4+336*x^3-554*x^2+926*x+638 4807520164690703 a001 1836311903/843*9349^(16/19) 4807520165699644 m006 (3/4/Pi+3/4)/(2/5*Pi+4/5) 4807520166656547 a001 516002918640/281*3571^(2/17) 4807520167585627 a001 2971215073/843*9349^(15/19) 4807520170480551 a001 1602508992/281*9349^(14/19) 4807520172094108 a001 10610209857723/24476*521^(5/13) 4807520173375475 a001 7778742049/843*9349^(13/19) 4807520176270400 a001 12586269025/843*9349^(12/19) 4807520179165324 a001 20365011074/843*9349^(11/19) 4807520182060248 a001 10983760033/281*9349^(10/19) 4807520184577204 a007 Real Root Of 731*x^4-852*x^3+6*x^2-395*x-325 4807520184955172 a001 53316291173/843*9349^(9/19) 4807520187850096 a001 86267571272/843*9349^(8/19) 4807520188528498 a007 Real Root Of -343*x^4+499*x^3-609*x^2+105*x+265 4807520188833018 a001 2504730781961/843*3571^(1/17) 4807520189990480 a001 377/15127*14662949395604^(6/7) 4807520189990480 a001 377/15127*(1/2+1/2*5^(1/2))^54 4807520189999999 a001 2255/281*2537720636^(14/15) 4807520189999999 a001 2255/281*17393796001^(6/7) 4807520189999999 a001 2255/281*45537549124^(14/17) 4807520189999999 a001 2255/281*817138163596^(14/19) 4807520189999999 a001 2255/281*14662949395604^(2/3) 4807520189999999 a001 2255/281*(1/2+1/2*5^(1/2))^42 4807520189999999 a001 2255/281*505019158607^(3/4) 4807520189999999 a001 2255/281*192900153618^(7/9) 4807520189999999 a001 2255/281*10749957122^(7/8) 4807520189999999 a001 2255/281*4106118243^(21/23) 4807520189999999 a001 2255/281*1568397607^(21/22) 4807520190745020 a001 139583862445/843*9349^(7/19) 4807520193554493 m001 (Pi*Conway-Sierpinski)/Pi 4807520193554493 m001 1+Conway-MasserGramainDelta 4807520193639944 a001 267913919*9349^(6/19) 4807520196534869 a001 365435296162/843*9349^(5/19) 4807520199429793 a001 591286729879/843*9349^(4/19) 4807520202324717 a001 956722026041/843*9349^(3/19) 4807520202975059 a001 4047932010905/842 4807520203366717 a001 267914296/843*24476^(20/21) 4807520203748856 a001 433494437/843*24476^(19/21) 4807520204130994 a001 233802911/281*24476^(6/7) 4807520204513133 a001 1134903170/843*24476^(17/21) 4807520204895271 a001 1836311903/843*24476^(16/21) 4807520205219641 a001 516002918640/281*9349^(2/19) 4807520205277410 a001 2971215073/843*24476^(5/7) 4807520205659549 a001 1602508992/281*24476^(2/3) 4807520205797927 r002 28th iterates of z^2 + 4807520206041687 a001 7778742049/843*24476^(13/21) 4807520206423826 a001 12586269025/843*24476^(4/7) 4807520206805965 a001 20365011074/843*24476^(11/21) 4807520207188103 a001 10983760033/281*24476^(10/21) 4807520207570242 a001 53316291173/843*24476^(3/7) 4807520207934727 a001 377/39603*14662949395604^(8/9) 4807520207934727 a001 377/39603*(1/2+1/2*5^(1/2))^56 4807520207944246 a001 17711/843*2537720636^(8/9) 4807520207944246 a001 17711/843*312119004989^(8/11) 4807520207944246 a001 17711/843*(1/2+1/2*5^(1/2))^40 4807520207944246 a001 17711/843*23725150497407^(5/8) 4807520207944246 a001 17711/843*73681302247^(10/13) 4807520207944246 a001 17711/843*28143753123^(4/5) 4807520207944246 a001 17711/843*10749957122^(5/6) 4807520207944246 a001 17711/843*4106118243^(20/23) 4807520207944246 a001 17711/843*1568397607^(10/11) 4807520207944246 a001 17711/843*599074578^(20/21) 4807520207952380 a001 86267571272/843*24476^(8/21) 4807520208114565 a001 2504730781961/843*9349^(1/19) 4807520208191273 a001 2537720636/233*34^(8/19) 4807520208334519 a001 139583862445/843*24476^(1/3) 4807520208716658 a001 267913919*24476^(2/7) 4807520209098796 a001 365435296162/843*24476^(5/21) 4807520209480935 a001 591286729879/843*24476^(4/21) 4807520209829151 a001 137769106653074/28657 4807520209863074 a001 956722026041/843*24476^(1/7) 4807520209889576 a001 34111385/281*64079^(22/23) 4807520209940481 a001 165580141/843*64079^(21/23) 4807520209991386 a001 267914296/843*64079^(20/23) 4807520210042291 a001 433494437/843*64079^(19/23) 4807520210093196 a001 233802911/281*64079^(18/23) 4807520210144102 a001 1134903170/843*64079^(17/23) 4807520210195007 a001 1836311903/843*64079^(16/23) 4807520210245212 a001 516002918640/281*24476^(2/21) 4807520210245912 a001 2971215073/843*64079^(15/23) 4807520210296817 a001 1602508992/281*64079^(14/23) 4807520210347722 a001 7778742049/843*64079^(13/23) 4807520210398627 a001 12586269025/843*64079^(12/23) 4807520210449533 a001 20365011074/843*64079^(11/23) 4807520210500438 a001 10983760033/281*64079^(10/23) 4807520210551343 a001 53316291173/843*64079^(9/23) 4807520210552757 a001 377/103682*(1/2+1/2*5^(1/2))^58 4807520210562276 a001 15456/281*817138163596^(2/3) 4807520210562276 a001 15456/281*(1/2+1/2*5^(1/2))^38 4807520210562276 a001 15456/281*10749957122^(19/24) 4807520210562276 a001 15456/281*4106118243^(19/23) 4807520210562276 a001 15456/281*1568397607^(19/22) 4807520210562276 a001 15456/281*599074578^(19/21) 4807520210562277 a001 15456/281*228826127^(19/20) 4807520210602248 a001 86267571272/843*64079^(8/23) 4807520210627351 a001 2504730781961/843*24476^(1/21) 4807520210653153 a001 139583862445/843*64079^(7/23) 4807520210704058 a001 267913919*64079^(6/23) 4807520210754964 a001 365435296162/843*64079^(5/23) 4807520210805869 a001 591286729879/843*64079^(4/23) 4807520210829150 a001 360684203817457/75025 4807520210856774 a001 956722026041/843*64079^(3/23) 4807520210872833 a001 267914296/843*167761^(4/5) 4807520210906997 a001 2971215073/843*167761^(3/5) 4807520210907679 a001 516002918640/281*64079^(2/23) 4807520210934722 a001 377/271443*14662949395604^(20/21) 4807520210934722 a001 377/271443*(1/2+1/2*5^(1/2))^60 4807520210941161 a001 10983760033/281*167761^(2/5) 4807520210944242 a001 121393/843*141422324^(12/13) 4807520210944242 a001 121393/843*2537720636^(4/5) 4807520210944242 a001 121393/843*45537549124^(12/17) 4807520210944242 a001 121393/843*14662949395604^(4/7) 4807520210944242 a001 121393/843*(1/2+1/2*5^(1/2))^36 4807520210944242 a001 121393/843*505019158607^(9/14) 4807520210944242 a001 121393/843*192900153618^(2/3) 4807520210944242 a001 121393/843*73681302247^(9/13) 4807520210944242 a001 121393/843*10749957122^(3/4) 4807520210944242 a001 121393/843*4106118243^(18/23) 4807520210944242 a001 121393/843*1568397607^(9/11) 4807520210944242 a001 121393/843*599074578^(6/7) 4807520210944242 a001 121393/843*228826127^(9/10) 4807520210944243 a001 121393/843*87403803^(18/19) 4807520210958584 a001 2504730781961/843*64079^(1/23) 4807520210975048 a001 944283504799297/196418 4807520210975325 a001 365435296162/843*167761^(1/5) 4807520210987336 a001 39088169/843*439204^(8/9) 4807520210990105 a001 165580141/843*439204^(7/9) 4807520210990450 a001 377/710647*(1/2+1/2*5^(1/2))^62 4807520210992875 a001 233802911/281*439204^(2/3) 4807520210995644 a001 2971215073/843*439204^(5/9) 4807520210996334 a001 2472166310580434/514229 4807520210998413 a001 12586269025/843*439204^(4/9) 4807520210998581 a001 377/1860498*(1/2+1/2*5^(1/2))^64 4807520210999970 a001 377*45537549124^(2/3) 4807520210999970 a001 377*(1/2+1/2*5^(1/2))^34 4807520210999970 a001 377*10749957122^(17/24) 4807520210999970 a001 377*4106118243^(17/23) 4807520210999970 a001 377*1568397607^(17/22) 4807520210999970 a001 377*599074578^(17/21) 4807520210999970 a001 377*228826127^(17/20) 4807520210999970 a001 377*87403803^(17/19) 4807520210999974 a001 377*33385282^(17/18) 4807520211001182 a001 53316291173/843*439204^(1/3) 4807520211001359 a001 4000049116361571/832040 4807520211003606 a001 377/1149851*(1/2+1/2*5^(1/2))^63 4807520211003951 a001 267913919*439204^(2/9) 4807520211006720 a001 956722026041/843*439204^(1/9) 4807520211008101 a001 832040/843*(1/2+1/2*5^(1/2))^32 4807520211008101 a001 832040/843*23725150497407^(1/2) 4807520211008101 a001 832040/843*505019158607^(4/7) 4807520211008101 a001 832040/843*73681302247^(8/13) 4807520211008101 a001 832040/843*10749957122^(2/3) 4807520211008101 a001 832040/843*4106118243^(16/23) 4807520211008101 a001 832040/843*1568397607^(8/11) 4807520211008101 a001 832040/843*599074578^(16/21) 4807520211008101 a001 832040/843*228826127^(4/5) 4807520211008101 a001 832040/843*87403803^(16/19) 4807520211008104 a001 832040/843*33385282^(8/9) 4807520211008128 a001 832040/843*12752043^(16/17) 4807520211009216 a001 726103/281*7881196^(10/11) 4807520211009277 a001 726103/281*20633239^(6/7) 4807520211009287 a001 726103/281*141422324^(10/13) 4807520211009287 a001 726103/281*2537720636^(2/3) 4807520211009287 a001 726103/281*45537549124^(10/17) 4807520211009287 a001 726103/281*312119004989^(6/11) 4807520211009287 a001 726103/281*14662949395604^(10/21) 4807520211009287 a001 726103/281*(1/2+1/2*5^(1/2))^30 4807520211009287 a001 726103/281*192900153618^(5/9) 4807520211009287 a001 726103/281*28143753123^(3/5) 4807520211009287 a001 726103/281*10749957122^(5/8) 4807520211009287 a001 726103/281*4106118243^(15/23) 4807520211009287 a001 726103/281*1568397607^(15/22) 4807520211009287 a001 726103/281*599074578^(5/7) 4807520211009287 a001 726103/281*228826127^(3/4) 4807520211009287 a001 726103/281*87403803^(15/19) 4807520211009290 a001 726103/281*33385282^(5/6) 4807520211009313 a001 726103/281*12752043^(15/17) 4807520211009432 a001 39088169/843*7881196^(8/11) 4807520211009437 a001 9227465/843*7881196^(9/11) 4807520211009438 a001 34111385/281*7881196^(2/3) 4807520211009440 a001 165580141/843*7881196^(7/11) 4807520211009447 a001 233802911/281*7881196^(6/11) 4807520211009451 a001 5702887/843*20633239^(4/5) 4807520211009454 a001 2971215073/843*7881196^(5/11) 4807520211009460 a001 5702887/843*17393796001^(4/7) 4807520211009460 a001 5702887/843*14662949395604^(4/9) 4807520211009460 a001 5702887/843*(1/2+1/2*5^(1/2))^28 4807520211009460 a001 5702887/843*505019158607^(1/2) 4807520211009460 a001 5702887/843*73681302247^(7/13) 4807520211009460 a001 5702887/843*10749957122^(7/12) 4807520211009460 a001 5702887/843*4106118243^(14/23) 4807520211009460 a001 5702887/843*1568397607^(7/11) 4807520211009460 a001 5702887/843*599074578^(2/3) 4807520211009460 a001 5702887/843*228826127^(7/10) 4807520211009460 a001 5702887/843*87403803^(14/19) 4807520211009461 a001 12586269025/843*7881196^(4/11) 4807520211009463 a001 5702887/843*33385282^(7/9) 4807520211009464 a001 20365011074/843*7881196^(1/3) 4807520211009468 a001 53316291173/843*7881196^(3/11) 4807520211009475 a001 267913919*7881196^(2/11) 4807520211009477 a001 726103/281*4870847^(15/16) 4807520211009482 a001 956722026041/843*7881196^(1/11) 4807520211009483 a001 165580141/843*20633239^(3/5) 4807520211009483 a001 267914296/843*20633239^(4/7) 4807520211009483 a001 24157817/843*20633239^(5/7) 4807520211009484 a001 5702887/843*12752043^(14/17) 4807520211009485 a001 2971215073/843*20633239^(3/7) 4807520211009485 a001 1602508992/281*20633239^(2/5) 4807520211009485 a001 4976784/281*141422324^(2/3) 4807520211009485 a001 4976784/281*(1/2+1/2*5^(1/2))^26 4807520211009485 a001 4976784/281*73681302247^(1/2) 4807520211009485 a001 4976784/281*10749957122^(13/24) 4807520211009485 a001 4976784/281*4106118243^(13/23) 4807520211009485 a001 4976784/281*1568397607^(13/22) 4807520211009485 a001 4976784/281*599074578^(13/21) 4807520211009485 a001 4976784/281*228826127^(13/20) 4807520211009486 a001 4976784/281*87403803^(13/19) 4807520211009486 a001 10983760033/281*20633239^(2/7) 4807520211009487 a001 139583862445/843*20633239^(1/5) 4807520211009488 a001 365435296162/843*20633239^(1/7) 4807520211009488 a001 4976784/281*33385282^(13/18) 4807520211009489 a001 39088169/843*141422324^(8/13) 4807520211009489 a001 39088169/843*2537720636^(8/15) 4807520211009489 a001 39088169/843*45537549124^(8/17) 4807520211009489 a001 39088169/843*14662949395604^(8/21) 4807520211009489 a001 39088169/843*(1/2+1/2*5^(1/2))^24 4807520211009489 a001 39088169/843*192900153618^(4/9) 4807520211009489 a001 39088169/843*73681302247^(6/13) 4807520211009489 a001 39088169/843*10749957122^(1/2) 4807520211009489 a001 39088169/843*4106118243^(12/23) 4807520211009489 a001 39088169/843*1568397607^(6/11) 4807520211009489 a001 39088169/843*599074578^(4/7) 4807520211009489 a001 39088169/843*228826127^(3/5) 4807520211009489 a001 39088169/843*87403803^(12/19) 4807520211009489 a001 233802911/281*141422324^(6/13) 4807520211009489 a001 165580141/843*141422324^(7/13) 4807520211009489 a001 2971215073/843*141422324^(5/13) 4807520211009489 a001 34111385/281*312119004989^(2/5) 4807520211009489 a001 34111385/281*(1/2+1/2*5^(1/2))^22 4807520211009489 a001 34111385/281*10749957122^(11/24) 4807520211009489 a001 34111385/281*4106118243^(11/23) 4807520211009489 a001 34111385/281*1568397607^(1/2) 4807520211009489 a001 34111385/281*599074578^(11/21) 4807520211009489 a001 7778742049/843*141422324^(1/3) 4807520211009489 a001 12586269025/843*141422324^(4/13) 4807520211009489 a001 53316291173/843*141422324^(3/13) 4807520211009489 a001 34111385/281*228826127^(11/20) 4807520211009489 a001 267913919*141422324^(2/13) 4807520211009489 a001 956722026041/843*141422324^(1/13) 4807520211009489 a001 267914296/843*2537720636^(4/9) 4807520211009489 a001 267914296/843*(1/2+1/2*5^(1/2))^20 4807520211009489 a001 267914296/843*23725150497407^(5/16) 4807520211009489 a001 267914296/843*505019158607^(5/14) 4807520211009489 a001 267914296/843*73681302247^(5/13) 4807520211009489 a001 267914296/843*28143753123^(2/5) 4807520211009489 a001 267914296/843*10749957122^(5/12) 4807520211009489 a001 267914296/843*4106118243^(10/23) 4807520211009489 a001 267914296/843*1568397607^(5/11) 4807520211009489 a001 267914296/843*599074578^(10/21) 4807520211009489 a001 233802911/281*2537720636^(2/5) 4807520211009489 a001 233802911/281*45537549124^(6/17) 4807520211009489 a001 233802911/281*14662949395604^(2/7) 4807520211009489 a001 233802911/281*(1/2+1/2*5^(1/2))^18 4807520211009489 a001 233802911/281*192900153618^(1/3) 4807520211009489 a001 233802911/281*10749957122^(3/8) 4807520211009489 a001 233802911/281*4106118243^(9/23) 4807520211009489 a001 233802911/281*1568397607^(9/22) 4807520211009489 a001 1836311903/843*(1/2+1/2*5^(1/2))^16 4807520211009489 a001 1836311903/843*23725150497407^(1/4) 4807520211009489 a001 1836311903/843*73681302247^(4/13) 4807520211009489 a001 1836311903/843*10749957122^(1/3) 4807520211009489 a001 12586269025/843*2537720636^(4/15) 4807520211009489 a001 1836311903/843*4106118243^(8/23) 4807520211009489 a001 10983760033/281*2537720636^(2/9) 4807520211009489 a001 53316291173/843*2537720636^(1/5) 4807520211009489 a001 2971215073/843*2537720636^(1/3) 4807520211009489 a001 267913919*2537720636^(2/15) 4807520211009489 a001 365435296162/843*2537720636^(1/9) 4807520211009489 a001 956722026041/843*2537720636^(1/15) 4807520211009489 a001 1602508992/281*17393796001^(2/7) 4807520211009489 a001 1602508992/281*14662949395604^(2/9) 4807520211009489 a001 1602508992/281*(1/2+1/2*5^(1/2))^14 4807520211009489 a001 1602508992/281*505019158607^(1/4) 4807520211009489 a001 1602508992/281*10749957122^(7/24) 4807520211009489 a001 12586269025/843*45537549124^(4/17) 4807520211009489 a001 12586269025/843*817138163596^(4/19) 4807520211009489 a001 12586269025/843*14662949395604^(4/21) 4807520211009489 a001 12586269025/843*(1/2+1/2*5^(1/2))^12 4807520211009489 a001 12586269025/843*192900153618^(2/9) 4807520211009489 a001 12586269025/843*73681302247^(3/13) 4807520211009489 a001 139583862445/843*17393796001^(1/7) 4807520211009489 a001 10983760033/281*312119004989^(2/11) 4807520211009489 a001 10983760033/281*(1/2+1/2*5^(1/2))^10 4807520211009489 a001 267913919*45537549124^(2/17) 4807520211009489 a001 956722026041/843*45537549124^(1/17) 4807520211009489 a001 86267571272/843*(1/2+1/2*5^(1/2))^8 4807520211009489 a001 86267571272/843*23725150497407^(1/8) 4807520211009489 a001 86267571272/843*505019158607^(1/7) 4807520211009489 a001 53316291173/843*45537549124^(3/17) 4807520211009489 a001 267913919*14662949395604^(2/21) 4807520211009489 a001 267913919*(1/2+1/2*5^(1/2))^6 4807520211009489 a001 516002918640/281*(1/2+1/2*5^(1/2))^2 4807520211009489 a001 4052739537881/843 4807520211009489 a001 2504730781961/1686+2504730781961/1686*5^(1/2) 4807520211009489 a001 956722026041/843*14662949395604^(1/21) 4807520211009489 a001 956722026041/843*(1/2+1/2*5^(1/2))^3 4807520211009489 a001 365435296162/843*312119004989^(1/11) 4807520211009489 a001 86267571272/843*73681302247^(2/13) 4807520211009489 a001 365435296162/843*(1/2+1/2*5^(1/2))^5 4807520211009489 a001 139583862445/843*14662949395604^(1/9) 4807520211009489 a001 139583862445/843*(1/2+1/2*5^(1/2))^7 4807520211009489 a001 591286729879/843*73681302247^(1/13) 4807520211009489 a001 10983760033/281*28143753123^(1/5) 4807520211009489 a001 53316291173/843*14662949395604^(1/7) 4807520211009489 a001 53316291173/843*(1/2+1/2*5^(1/2))^9 4807520211009489 a001 53316291173/843*192900153618^(1/6) 4807520211009489 a001 365435296162/843*28143753123^(1/10) 4807520211009489 a001 516002918640/281*10749957122^(1/24) 4807520211009489 a001 20365011074/843*312119004989^(1/5) 4807520211009489 a001 20365011074/843*(1/2+1/2*5^(1/2))^11 4807520211009489 a001 956722026041/843*10749957122^(1/16) 4807520211009489 a001 591286729879/843*10749957122^(1/12) 4807520211009489 a001 12586269025/843*10749957122^(1/4) 4807520211009489 a001 267913919*10749957122^(1/8) 4807520211009489 a001 86267571272/843*10749957122^(1/6) 4807520211009489 a001 10983760033/281*10749957122^(5/24) 4807520211009489 a001 53316291173/843*10749957122^(3/16) 4807520211009489 a001 516002918640/281*4106118243^(1/23) 4807520211009489 a001 7778742049/843*(1/2+1/2*5^(1/2))^13 4807520211009489 a001 7778742049/843*73681302247^(1/4) 4807520211009489 a001 591286729879/843*4106118243^(2/23) 4807520211009489 a001 267913919*4106118243^(3/23) 4807520211009489 a001 1602508992/281*4106118243^(7/23) 4807520211009489 a001 86267571272/843*4106118243^(4/23) 4807520211009489 a001 10983760033/281*4106118243^(5/23) 4807520211009489 a001 12586269025/843*4106118243^(6/23) 4807520211009489 a001 516002918640/281*1568397607^(1/22) 4807520211009489 a001 2971215073/843*45537549124^(5/17) 4807520211009489 a001 2971215073/843*312119004989^(3/11) 4807520211009489 a001 2971215073/843*14662949395604^(5/21) 4807520211009489 a001 2971215073/843*(1/2+1/2*5^(1/2))^15 4807520211009489 a001 2971215073/843*192900153618^(5/18) 4807520211009489 a001 2971215073/843*28143753123^(3/10) 4807520211009489 a001 2971215073/843*10749957122^(5/16) 4807520211009489 a001 591286729879/843*1568397607^(1/11) 4807520211009489 a001 267913919*1568397607^(3/22) 4807520211009489 a001 86267571272/843*1568397607^(2/11) 4807520211009489 a001 1836311903/843*1568397607^(4/11) 4807520211009489 a001 10983760033/281*1568397607^(5/22) 4807520211009489 a001 20365011074/843*1568397607^(1/4) 4807520211009489 a001 12586269025/843*1568397607^(3/11) 4807520211009489 a001 1602508992/281*1568397607^(7/22) 4807520211009489 a001 516002918640/281*599074578^(1/21) 4807520211009489 a001 1134903170/843*45537549124^(1/3) 4807520211009489 a001 1134903170/843*(1/2+1/2*5^(1/2))^17 4807520211009489 a001 956722026041/843*599074578^(1/14) 4807520211009489 a001 591286729879/843*599074578^(2/21) 4807520211009489 a001 267913919*599074578^(1/7) 4807520211009489 a001 139583862445/843*599074578^(1/6) 4807520211009489 a001 86267571272/843*599074578^(4/21) 4807520211009489 a001 53316291173/843*599074578^(3/14) 4807520211009489 a001 10983760033/281*599074578^(5/21) 4807520211009489 a001 233802911/281*599074578^(3/7) 4807520211009489 a001 12586269025/843*599074578^(2/7) 4807520211009489 a001 1602508992/281*599074578^(1/3) 4807520211009489 a001 516002918640/281*228826127^(1/20) 4807520211009489 a001 1836311903/843*599074578^(8/21) 4807520211009489 a001 2971215073/843*599074578^(5/14) 4807520211009489 a001 433494437/843*817138163596^(1/3) 4807520211009489 a001 433494437/843*(1/2+1/2*5^(1/2))^19 4807520211009489 a001 591286729879/843*228826127^(1/10) 4807520211009489 a001 365435296162/843*228826127^(1/8) 4807520211009489 a001 267913919*228826127^(3/20) 4807520211009489 a001 86267571272/843*228826127^(1/5) 4807520211009489 a001 10983760033/281*228826127^(1/4) 4807520211009489 a001 12586269025/843*228826127^(3/10) 4807520211009489 a001 1602508992/281*228826127^(7/20) 4807520211009489 a001 267914296/843*228826127^(1/2) 4807520211009489 a001 516002918640/281*87403803^(1/19) 4807520211009489 a001 2971215073/843*228826127^(3/8) 4807520211009489 a001 165580141/843*2537720636^(7/15) 4807520211009489 a001 165580141/843*17393796001^(3/7) 4807520211009489 a001 165580141/843*45537549124^(7/17) 4807520211009489 a001 165580141/843*14662949395604^(1/3) 4807520211009489 a001 165580141/843*(1/2+1/2*5^(1/2))^21 4807520211009489 a001 165580141/843*192900153618^(7/18) 4807520211009489 a001 165580141/843*10749957122^(7/16) 4807520211009489 a001 1836311903/843*228826127^(2/5) 4807520211009489 a001 233802911/281*228826127^(9/20) 4807520211009489 a001 165580141/843*599074578^(1/2) 4807520211009489 a001 591286729879/843*87403803^(2/19) 4807520211009490 a001 267913919*87403803^(3/19) 4807520211009490 a001 86267571272/843*87403803^(4/19) 4807520211009490 a001 10983760033/281*87403803^(5/19) 4807520211009490 a001 12586269025/843*87403803^(6/19) 4807520211009490 a001 1602508992/281*87403803^(7/19) 4807520211009490 a001 516002918640/281*33385282^(1/18) 4807520211009490 a001 63245986/843*(1/2+1/2*5^(1/2))^23 4807520211009490 a001 63245986/843*4106118243^(1/2) 4807520211009490 a001 1836311903/843*87403803^(8/19) 4807520211009490 a001 34111385/281*87403803^(11/19) 4807520211009490 a001 233802911/281*87403803^(9/19) 4807520211009490 a001 267914296/843*87403803^(10/19) 4807520211009490 a001 433494437/843*87403803^(1/2) 4807520211009490 a001 956722026041/843*33385282^(1/12) 4807520211009490 a001 591286729879/843*33385282^(1/9) 4807520211009490 a001 267913919*33385282^(1/6) 4807520211009490 a001 86267571272/843*33385282^(2/9) 4807520211009490 a001 53316291173/843*33385282^(1/4) 4807520211009491 a001 10983760033/281*33385282^(5/18) 4807520211009491 a001 12586269025/843*33385282^(1/3) 4807520211009491 a001 24157817/843*2537720636^(5/9) 4807520211009491 a001 24157817/843*312119004989^(5/11) 4807520211009491 a001 24157817/843*(1/2+1/2*5^(1/2))^25 4807520211009491 a001 24157817/843*3461452808002^(5/12) 4807520211009491 a001 24157817/843*28143753123^(1/2) 4807520211009491 a001 1602508992/281*33385282^(7/18) 4807520211009491 a001 24157817/843*228826127^(5/8) 4807520211009491 a001 516002918640/281*12752043^(1/17) 4807520211009491 a001 2971215073/843*33385282^(5/12) 4807520211009491 a001 1836311903/843*33385282^(4/9) 4807520211009492 a001 233802911/281*33385282^(1/2) 4807520211009492 a001 39088169/843*33385282^(2/3) 4807520211009492 a001 267914296/843*33385282^(5/9) 4807520211009492 a001 34111385/281*33385282^(11/18) 4807520211009492 a001 165580141/843*33385282^(7/12) 4807520211009493 a001 591286729879/843*12752043^(2/17) 4807520211009495 a001 267913919*12752043^(3/17) 4807520211009496 a001 86267571272/843*12752043^(4/17) 4807520211009498 a001 10983760033/281*12752043^(5/17) 4807520211009500 a001 12586269025/843*12752043^(6/17) 4807520211009501 a001 9227465/843*141422324^(9/13) 4807520211009501 a001 9227465/843*2537720636^(3/5) 4807520211009501 a001 9227465/843*45537549124^(9/17) 4807520211009501 a001 9227465/843*817138163596^(9/19) 4807520211009501 a001 9227465/843*14662949395604^(3/7) 4807520211009501 a001 9227465/843*(1/2+1/2*5^(1/2))^27 4807520211009501 a001 9227465/843*192900153618^(1/2) 4807520211009501 a001 9227465/843*10749957122^(9/16) 4807520211009501 a001 9227465/843*599074578^(9/14) 4807520211009502 a001 1602508992/281*12752043^(7/17) 4807520211009502 a001 516002918640/281*4870847^(1/16) 4807520211009503 a001 1836311903/843*12752043^(8/17) 4807520211009504 a001 9227465/843*33385282^(3/4) 4807520211009504 a001 1134903170/843*12752043^(1/2) 4807520211009505 a001 233802911/281*12752043^(9/17) 4807520211009507 a001 267914296/843*12752043^(10/17) 4807520211009508 a001 4976784/281*12752043^(13/17) 4807520211009508 a001 34111385/281*12752043^(11/17) 4807520211009510 a001 39088169/843*12752043^(12/17) 4807520211009515 a001 591286729879/843*4870847^(1/8) 4807520211009527 a001 267913919*4870847^(3/16) 4807520211009540 a001 86267571272/843*4870847^(1/4) 4807520211009553 a001 10983760033/281*4870847^(5/16) 4807520211009565 a001 12586269025/843*4870847^(3/8) 4807520211009567 a001 3524578/843*(1/2+1/2*5^(1/2))^29 4807520211009567 a001 3524578/843*1322157322203^(1/2) 4807520211009578 a001 1602508992/281*4870847^(7/16) 4807520211009582 a001 516002918640/281*1860498^(1/15) 4807520211009591 a001 1836311903/843*4870847^(1/2) 4807520211009603 a001 233802911/281*4870847^(9/16) 4807520211009616 a001 267914296/843*4870847^(5/8) 4807520211009628 a001 956722026041/843*1860498^(1/10) 4807520211009629 a001 34111385/281*4870847^(11/16) 4807520211009637 a001 5702887/843*4870847^(7/8) 4807520211009641 a001 39088169/843*4870847^(3/4) 4807520211009650 a001 4976784/281*4870847^(13/16) 4807520211009675 a001 591286729879/843*1860498^(2/15) 4807520211009721 a001 365435296162/843*1860498^(1/6) 4807520211009767 a001 267913919*1860498^(1/5) 4807520211009860 a001 86267571272/843*1860498^(4/15) 4807520211009906 a001 53316291173/843*1860498^(3/10) 4807520211009952 a001 10983760033/281*1860498^(1/3) 4807520211010020 a001 1346269/843*(1/2+1/2*5^(1/2))^31 4807520211010020 a001 1346269/843*9062201101803^(1/2) 4807520211010045 a001 12586269025/843*1860498^(2/5) 4807520211010138 a001 1602508992/281*1860498^(7/15) 4807520211010169 a001 516002918640/281*710647^(1/14) 4807520211010184 a001 2971215073/843*1860498^(1/2) 4807520211010230 a001 1836311903/843*1860498^(8/15) 4807520211010323 a001 233802911/281*1860498^(3/5) 4807520211010415 a001 267914296/843*1860498^(2/3) 4807520211010462 a001 165580141/843*1860498^(7/10) 4807520211010508 a001 34111385/281*1860498^(11/15) 4807520211010600 a001 39088169/843*1860498^(4/5) 4807520211010648 a001 24157817/843*1860498^(5/6) 4807520211010689 a001 4976784/281*1860498^(13/15) 4807520211010751 a001 9227465/843*1860498^(9/10) 4807520211010756 a001 5702887/843*1860498^(14/15) 4807520211010849 a001 591286729879/843*710647^(1/7) 4807520211011529 a001 267913919*710647^(3/14) 4807520211011869 a001 139583862445/843*710647^(1/4) 4807520211012209 a001 86267571272/843*710647^(2/7) 4807520211012889 a001 10983760033/281*710647^(5/14) 4807520211013125 a001 514229/843*141422324^(11/13) 4807520211013126 a001 514229/843*2537720636^(11/15) 4807520211013126 a001 514229/843*45537549124^(11/17) 4807520211013126 a001 514229/843*312119004989^(3/5) 4807520211013126 a001 514229/843*14662949395604^(11/21) 4807520211013126 a001 514229/843*(1/2+1/2*5^(1/2))^33 4807520211013126 a001 514229/843*192900153618^(11/18) 4807520211013126 a001 514229/843*10749957122^(11/16) 4807520211013126 a001 514229/843*1568397607^(3/4) 4807520211013126 a001 514229/843*599074578^(11/14) 4807520211013129 a001 514229/843*33385282^(11/12) 4807520211013569 a001 12586269025/843*710647^(3/7) 4807520211014249 a001 1602508992/281*710647^(1/2) 4807520211014508 a001 516002918640/281*271443^(1/13) 4807520211014929 a001 1836311903/843*710647^(4/7) 4807520211015609 a001 233802911/281*710647^(9/14) 4807520211016289 a001 267914296/843*710647^(5/7) 4807520211016629 a001 165580141/843*710647^(3/4) 4807520211016969 a001 34111385/281*710647^(11/14) 4807520211017648 a001 39088169/843*710647^(6/7) 4807520211018325 a001 4976784/281*710647^(13/14) 4807520211019527 a001 591286729879/843*271443^(2/13) 4807520211024547 a001 267913919*271443^(3/13) 4807520211024892 a001 377/439204*(1/2+1/2*5^(1/2))^61 4807520211028123 a001 2504730781961/843*103682^(1/24) 4807520211029566 a001 86267571272/843*271443^(4/13) 4807520211034412 a001 196418/843*2537720636^(7/9) 4807520211034412 a001 196418/843*17393796001^(5/7) 4807520211034412 a001 196418/843*312119004989^(7/11) 4807520211034412 a001 196418/843*14662949395604^(5/9) 4807520211034412 a001 196418/843*(1/2+1/2*5^(1/2))^35 4807520211034412 a001 196418/843*505019158607^(5/8) 4807520211034412 a001 196418/843*28143753123^(7/10) 4807520211034412 a001 196418/843*599074578^(5/6) 4807520211034412 a001 196418/843*228826127^(7/8) 4807520211034585 a001 10983760033/281*271443^(5/13) 4807520211039604 a001 12586269025/843*271443^(6/13) 4807520211042113 a001 7778742049/843*271443^(1/2) 4807520211044623 a001 1602508992/281*271443^(7/13) 4807520211046757 a001 516002918640/281*103682^(1/12) 4807520211049642 a001 1836311903/843*271443^(8/13) 4807520211054661 a001 233802911/281*271443^(9/13) 4807520211059680 a001 267914296/843*271443^(10/13) 4807520211064699 a001 34111385/281*271443^(11/13) 4807520211065217 a001 583599300981840/121393 4807520211065391 a001 956722026041/843*103682^(1/8) 4807520211069717 a001 39088169/843*271443^(12/13) 4807520211084025 a001 591286729879/843*103682^(1/6) 4807520211102659 a001 365435296162/843*103682^(5/24) 4807520211121293 a001 267913919*103682^(1/4) 4807520211139927 a001 139583862445/843*103682^(7/24) 4807520211148819 a001 2504730781961/843*39603^(1/22) 4807520211158560 a001 86267571272/843*103682^(1/3) 4807520211170790 a001 377/167761*(1/2+1/2*5^(1/2))^59 4807520211177194 a001 53316291173/843*103682^(3/8) 4807520211180310 a001 75025/843*(1/2+1/2*5^(1/2))^37 4807520211195828 a001 10983760033/281*103682^(5/12) 4807520211214462 a001 20365011074/843*103682^(11/24) 4807520211233096 a001 12586269025/843*103682^(1/2) 4807520211251730 a001 7778742049/843*103682^(13/24) 4807520211270364 a001 1602508992/281*103682^(7/12) 4807520211288148 a001 516002918640/281*39603^(1/11) 4807520211288998 a001 2971215073/843*103682^(5/8) 4807520211307631 a001 1836311903/843*103682^(2/3) 4807520211326265 a001 1134903170/843*103682^(17/24) 4807520211344899 a001 233802911/281*103682^(3/4) 4807520211363533 a001 433494437/843*103682^(19/24) 4807520211382167 a001 267914296/843*103682^(5/6) 4807520211400801 a001 165580141/843*103682^(7/8) 4807520211419435 a001 34111385/281*103682^(11/12) 4807520211427477 a001 956722026041/843*39603^(3/22) 4807520211438069 a001 63245986/843*103682^(23/24) 4807520211447183 a001 222915097164383/46368 4807520211566806 a001 591286729879/843*39603^(2/11) 4807520211706136 a001 365435296162/843*39603^(5/22) 4807520211845465 a001 267913919*39603^(3/11) 4807520211984794 a001 139583862445/843*39603^(7/22) 4807520212059964 a001 2504730781961/843*15127^(1/20) 4807520212124123 a001 86267571272/843*39603^(4/11) 4807520212170789 a001 377/64079*14662949395604^(19/21) 4807520212170789 a001 377/64079*(1/2+1/2*5^(1/2))^57 4807520212180308 a001 28657/843*2537720636^(13/15) 4807520212180308 a001 28657/843*45537549124^(13/17) 4807520212180308 a001 28657/843*14662949395604^(13/21) 4807520212180308 a001 28657/843*(1/2+1/2*5^(1/2))^39 4807520212180308 a001 28657/843*192900153618^(13/18) 4807520212180308 a001 28657/843*73681302247^(3/4) 4807520212180308 a001 28657/843*10749957122^(13/16) 4807520212180308 a001 28657/843*599074578^(13/14) 4807520212263453 a001 53316291173/843*39603^(9/22) 4807520212402782 a001 10983760033/281*39603^(5/11) 4807520212405380 r002 41th iterates of z^2 + 4807520212542111 a001 20365011074/843*39603^(1/2) 4807520212681440 a001 12586269025/843*39603^(6/11) 4807520212820770 a001 7778742049/843*39603^(13/22) 4807520212960099 a001 1602508992/281*39603^(7/11) 4807520213099428 a001 2971215073/843*39603^(15/22) 4807520213110438 a001 516002918640/281*15127^(1/10) 4807520213238757 a001 1836311903/843*39603^(8/11) 4807520213378086 a001 1134903170/843*39603^(17/22) 4807520213517416 a001 233802911/281*39603^(9/11) 4807520213656745 a001 433494437/843*39603^(19/22) 4807520213796074 a001 267914296/843*39603^(10/11) 4807520213935403 a001 165580141/843*39603^(21/22) 4807520214065213 a001 85145990511309/17711 4807520214160913 a001 956722026041/843*15127^(3/20) 4807520215211387 a001 591286729879/843*15127^(1/5) 4807520216261862 a001 365435296162/843*15127^(1/4) 4807520217312336 a001 267913919*15127^(3/10) 4807520217688115 m001 1/Sierpinski/CareFree*exp(sqrt(5))^2 4807520218362811 a001 139583862445/843*15127^(7/20) 4807520219009555 a001 2504730781961/843*5778^(1/18) 4807520219024881 a001 13/844*(1/2+1/2*5^(1/2))^55 4807520219024881 a001 13/844*3461452808002^(11/12) 4807520219034400 a001 10946/843*(1/2+1/2*5^(1/2))^41 4807520219072755 a001 4052739537881/9349*521^(5/13) 4807520219413285 a001 86267571272/843*15127^(2/5) 4807520220463760 a001 53316291173/843*15127^(9/20) 4807520221514234 a001 10983760033/281*15127^(1/2) 4807520222564709 a001 20365011074/843*15127^(11/20) 4807520222765685 r005 Re(z^2+c),c=-59/44+1/38*I,n=32 4807520223615183 a001 12586269025/843*15127^(3/5) 4807520224665658 a001 7778742049/843*15127^(13/20) 4807520225716132 a001 1602508992/281*15127^(7/10) 4807520226766607 a001 2971215073/843*15127^(3/4) 4807520227009621 a001 516002918640/281*5778^(1/9) 4807520227817081 a001 1836311903/843*15127^(4/5) 4807520228867556 a001 1134903170/843*15127^(17/20) 4807520229918030 a001 233802911/281*15127^(9/10) 4807520230968505 a001 433494437/843*15127^(19/20) 4807520232009460 a001 32522874369544/6765 4807520235009687 a001 956722026041/843*5778^(1/6) 4807520243009753 a001 591286729879/843*5778^(2/9) 4807520245090659 r002 8th iterates of z^2 + 4807520251009818 a001 365435296162/843*5778^(5/18) 4807520259009884 a001 267913919*5778^(1/3) 4807520266003529 a001 377/9349*(1/2+1/2*5^(1/2))^53 4807520266013048 a001 4181/843*(1/2+1/2*5^(1/2))^43 4807520267009950 a001 139583862445/843*5778^(7/18) 4807520272696909 a001 2504730781961/843*2207^(1/16) 4807520275010016 a001 86267571272/843*5778^(4/9) 4807520277668605 l006 ln(1978/3199) 4807520283010082 a001 53316291173/843*5778^(1/2) 4807520291010148 a001 10983760033/281*5778^(5/9) 4807520293131445 b008 (Pi*Gamma[1/5])/3 4807520299010214 a001 20365011074/843*5778^(11/18) 4807520305212732 r009 Im(z^3+c),c=-43/114+33/64*I,n=64 4807520307010280 a001 12586269025/843*5778^(2/3) 4807520315010346 a001 7778742049/843*5778^(13/18) 4807520323010412 a001 1602508992/281*5778^(7/9) 4807520330689722 r005 Re(z^2+c),c=-55/46+5/19*I,n=4 4807520331010478 a001 2971215073/843*5778^(5/6) 4807520334384330 a001 516002918640/281*2207^(1/8) 4807520339010544 a001 1836311903/843*5778^(8/9) 4807520341923645 m001 1/cos(1)*GAMMA(7/12)/exp(sqrt(Pi)) 4807520344394692 r009 Im(z^3+c),c=-7/54+7/12*I,n=28 4807520347010610 a001 1134903170/843*5778^(17/18) 4807520347073770 r009 Im(z^3+c),c=-11/28+27/53*I,n=43 4807520347508362 a007 Real Root Of 173*x^4+747*x^3-310*x^2+579*x+537 4807520350368819 a007 Real Root Of -415*x^4+34*x^3-306*x^2+918*x+538 4807520351964668 a003 sin(Pi*11/92)/cos(Pi*17/76) 4807520355001160 a001 12422632597323/2584 4807520376933281 a007 Real Root Of -319*x^4+889*x^3-725*x^2-84*x+243 4807520380223455 r009 Im(z^3+c),c=-12/31+6/11*I,n=25 4807520384052027 r005 Im(z^2+c),c=31/110+9/25*I,n=17 4807520395554786 m001 ZetaP(4)/(PlouffeB-HardyLittlewoodC3) 4807520396071752 a001 956722026041/843*2207^(3/16) 4807520397631004 a001 1860498/1597*89^(6/19) 4807520436355688 p004 log(31859/19699) 4807520452547737 m008 (4/5*Pi^6-2)/(1/6*Pi^6-2/3) 4807520455250604 a007 Real Root Of -10*x^4+758*x^3-957*x^2-29*x+292 4807520457759174 a001 591286729879/843*2207^(1/4) 4807520457873483 r005 Im(z^2+c),c=-2/3+37/108*I,n=5 4807520466353111 a007 Real Root Of -844*x^4+733*x^3+806*x^2+844*x+346 4807520466587516 r002 11th iterates of z^2 + 4807520474536485 m002 5*Pi^6+(Coth[Pi]*Log[Pi])/2 4807520481639522 m002 -4+5/(E^Pi*Log[Pi])-Tanh[Pi] 4807520492127096 m002 -Pi/2-5*Pi^6+Tanh[Pi] 4807520492545205 m001 1/Catalan/exp(FibonacciFactorial)*GAMMA(3/4)^2 4807520502708687 m001 LaplaceLimit/(FeigenbaumKappa^GAMMA(11/12)) 4807520519446597 a001 365435296162/843*2207^(5/16) 4807520519646274 m001 (HeathBrownMoroz-Salem)/(ln(2)+Zeta(1,2)) 4807520519966590 r005 Im(z^2+c),c=-61/94+5/58*I,n=38 4807520532289541 m005 (1/2*3^(1/2)+1/3)/(7/12*exp(1)+10/11) 4807520539455704 a001 1548008755920/2207*521^(4/13) 4807520541069222 a001 1548008755920/3571*521^(5/13) 4807520543460117 m001 FellerTornier^CareFree/Zeta(1,2) 4807520559792684 m002 5*Pi^6+ProductLog[Pi]-Sinh[Pi]/E^Pi 4807520572002751 a007 Real Root Of 808*x^4+922*x^3+657*x^2-315*x-244 4807520581134021 a001 267913919*2207^(3/8) 4807520588000000 a001 377/3571*817138163596^(17/19) 4807520588000000 a001 377/3571*14662949395604^(17/21) 4807520588000000 a001 377/3571*(1/2+1/2*5^(1/2))^51 4807520588000000 a001 377/3571*192900153618^(17/18) 4807520588009489 a001 1597/843*45537549124^(15/17) 4807520588009489 a001 1597/843*312119004989^(9/11) 4807520588009489 a001 1597/843*14662949395604^(5/7) 4807520588009489 a001 1597/843*(1/2+1/2*5^(1/2))^45 4807520588009489 a001 1597/843*192900153618^(5/6) 4807520588009489 a001 1597/843*28143753123^(9/10) 4807520588009489 a001 1597/843*10749957122^(15/16) 4807520591207698 a007 Real Root Of -413*x^4-271*x^3-353*x^2+989*x+549 4807520592717428 r009 Im(z^3+c),c=-7/38+39/55*I,n=16 4807520631684179 m005 (1/3*3^(1/2)+1/9)/(3^(1/2)-3/10) 4807520642770265 r009 Im(z^3+c),c=-23/94+23/41*I,n=46 4807520642821446 a001 139583862445/843*2207^(7/16) 4807520648669726 m001 (ln(Pi)-polylog(4,1/2))/(Mills-ZetaQ(4)) 4807520655323593 m005 (1/4*Catalan-5)/(1/3*gamma+4/5) 4807520662528080 r002 8th iterates of z^2 + 4807520685503041 a001 2139295485799/8*5702887^(7/9) 4807520685503064 a001 634430159/2*32951280099^(7/9) 4807520685503064 a001 73681302247/8*433494437^(7/9) 4807520685503065 a001 87403803/8*2504730781961^(7/9) 4807520689587261 s002 sum(A214610[n]/(n*exp(n)+1),n=1..infinity) 4807520690969087 m001 cos(1)^FeigenbaumC*ZetaR(2) 4807520694222782 a001 2504730781961/843*843^(1/14) 4807520694747542 a003 sin(Pi*1/78)*sin(Pi*4/105) 4807520695931224 m001 sin(Pi/12)^2/MinimumGamma*exp(sinh(1))^2 4807520704508871 a001 86267571272/843*2207^(1/2) 4807520715378641 a007 Real Root Of 134*x^4-122*x^3+35*x^2-847*x-436 4807520717788136 m001 (1-gamma)/(-Zeta(3)+FellerTornier) 4807520719212616 m001 Tribonacci^2/GaussKuzminWirsing^2*ln(Pi)^2 4807520719626267 a001 4870847/4181*89^(6/19) 4807520747064121 a007 Real Root Of 486*x^4-483*x^3+977*x^2+419*x-104 4807520757148130 a001 7881196/3*3524578^(22/23) 4807520761774699 m005 (1/2*exp(1)+7/9)/(7/10*2^(1/2)-6/11) 4807520765603318 m001 (ln(3)+FransenRobinson)/StolarskyHarborth 4807520766196297 a001 53316291173/843*2207^(9/16) 4807520766604747 a001 12752043/10946*89^(6/19) 4807520769960138 m005 (1/2*gamma+7/12)/(7/8*5^(1/2)-1/7) 4807520773458815 a001 33385282/28657*89^(6/19) 4807520774458810 a001 87403803/75025*89^(6/19) 4807520774604707 a001 228826127/196418*89^(6/19) 4807520774625993 a001 599074578/514229*89^(6/19) 4807520774629099 a001 1568397607/1346269*89^(6/19) 4807520774629552 a001 4106118243/3524578*89^(6/19) 4807520774629618 a001 10749957122/9227465*89^(6/19) 4807520774629628 a001 28143753123/24157817*89^(6/19) 4807520774629629 a001 73681302247/63245986*89^(6/19) 4807520774629629 a001 192900153618/165580141*89^(6/19) 4807520774629629 a001 505019158607/433494437*89^(6/19) 4807520774629629 a001 1322157322203/1134903170*89^(6/19) 4807520774629629 a001 3461452808002/2971215073*89^(6/19) 4807520774629629 a001 9062201101803/7778742049*89^(6/19) 4807520774629629 a001 23725150497407/20365011074*89^(6/19) 4807520774629629 a001 14662949395604/12586269025*89^(6/19) 4807520774629629 a001 5600748293801/4807526976*89^(6/19) 4807520774629629 a001 2139295485799/1836311903*89^(6/19) 4807520774629629 a001 817138163596/701408733*89^(6/19) 4807520774629629 a001 312119004989/267914296*89^(6/19) 4807520774629629 a001 119218851371/102334155*89^(6/19) 4807520774629630 a001 45537549124/39088169*89^(6/19) 4807520774629634 a001 17393796001/14930352*89^(6/19) 4807520774629659 a001 6643838879/5702887*89^(6/19) 4807520774629832 a001 2537720636/2178309*89^(6/19) 4807520774631018 a001 969323029/832040*89^(6/19) 4807520774639149 a001 370248451/317811*89^(6/19) 4807520774694877 a001 271444/233*89^(6/19) 4807520775076841 a001 54018521/46368*89^(6/19) 4807520777694862 a001 20633239/17711*89^(6/19) 4807520795639044 a001 7881196/6765*89^(6/19) 4807520796910887 m001 ln(Salem)^2*DuboisRaymond*Zeta(1,2) 4807520801500705 g001 GAMMA(3/7,37/62) 4807520804234648 r005 Re(z^2+c),c=11/74+31/53*I,n=35 4807520807219610 m001 (Ei(1,1)+TwinPrimes*ZetaR(2))/TwinPrimes 4807520811749723 l006 ln(5853/9466) 4807520825861229 a007 Real Root Of 385*x^4-841*x^3+623*x^2-52*x-283 4807520826022254 m001 (2^(1/3)-ln(2+3^(1/2)))/(-GAMMA(17/24)+Paris) 4807520827883724 a001 10983760033/281*2207^(5/8) 4807520840014991 r005 Re(z^2+c),c=-1/110+50/61*I,n=4 4807520886206606 r009 Im(z^3+c),c=-25/122+4/7*I,n=19 4807520888609154 p003 LerchPhi(1/3,1,533/192) 4807520889571152 a001 20365011074/843*2207^(11/16) 4807520918630306 a001 3010349/2584*89^(6/19) 4807520951258581 a001 12586269025/843*2207^(3/4) 4807520961059320 r009 Im(z^3+c),c=-33/70+11/36*I,n=2 4807520969529881 a007 Real Root Of 784*x^4-115*x^3+65*x^2-425*x-274 4807520970470098 m001 (Sarnak-ZetaQ(4))/(Ei(1,1)+GlaisherKinkelin) 4807520984639856 m006 (2/3*Pi-5)/(1/5*ln(Pi)-5/6) 4807520999185620 h001 (4/11*exp(2)+2/3)/(5/6*exp(2)+9/11) 4807521004800478 a001 305*29^(5/37) 4807521009299221 b008 Pi^(-1)-Csc[Pi/16] 4807521010712370 m002 5-Sinh[Pi]/60 4807521012946010 a001 7778742049/843*2207^(13/16) 4807521023129515 k005 Champernowne real with floor(sqrt(2)*(192*n+148)) 4807521023505670 r002 30th iterates of z^2 + 4807521024129615 k001 Champernowne real with 272*n+208 4807521042191131 m001 (Pi+Psi(2,1/3))/(1+3^(1/2))^(1/2)*GAMMA(7/12) 4807521044283327 r009 Im(z^3+c),c=-57/118+20/41*I,n=4 4807521057614443 m001 ln(5)+(5^(1/2))^exp(1/exp(1)) 4807521057614443 m001 ln(5)+sqrt(5)^exp(1/exp(1)) 4807521064067925 m001 GAMMA(3/4)/exp(Porter)/sin(Pi/5) 4807521074633440 a001 1602508992/281*2207^(7/8) 4807521079465415 m002 Pi^6/2+(2*Sech[Pi])/3 4807521084372281 l006 ln(3875/6267) 4807521087279759 r005 Im(z^2+c),c=1/126+9/16*I,n=18 4807521090880675 b008 5+LogIntegral[163] 4807521110666615 m008 (1/4*Pi^6+1/2)/(5*Pi^2+3/4) 4807521110967533 r009 Im(z^3+c),c=-27/70+21/41*I,n=42 4807521130438871 a003 sin(Pi*18/113)/sin(Pi*12/25) 4807521136320871 a001 2971215073/843*2207^(15/16) 4807521163210677 r005 Im(z^2+c),c=-29/31+1/24*I,n=18 4807521174274872 r005 Re(z^2+c),c=11/58+12/35*I,n=48 4807521174795506 a007 Real Root Of 364*x^4-671*x^3+404*x^2-513*x-434 4807521177436122 a001 516002918640/281*843^(1/7) 4807521186115097 r009 Im(z^3+c),c=-23/60+20/39*I,n=49 4807521190144513 m004 -6+150*Pi+(25*Log[Sqrt[5]*Pi])/Pi 4807521197998986 a001 4745023422425/987 4807521213592160 r005 Im(z^2+c),c=-2/3+1/12*I,n=42 4807521219515386 m001 (Psi(2,1/3)-cos(1))/(-MertensB3+ZetaP(3)) 4807521229698341 a007 Real Root Of -518*x^4+74*x^3-950*x^2+985*x+729 4807521241735950 m001 (GAMMA(11/12)-GAMMA(7/12))/(Backhouse-Bloch) 4807521264969269 a007 Real Root Of -686*x^4+122*x^3-685*x^2+x+209 4807521278021674 m001 Magata/MertensB1^2/ln(Riemann3rdZero)^2 4807521280391186 m001 Conway/Zeta(5)/MertensB1 4807521283933628 a003 cos(Pi*16/47)/sin(Pi*29/59) 4807521287544520 b008 43+ArcSinh[80] 4807521311736879 m001 (FeigenbaumAlpha-Grothendieck)^(5^(1/2)) 4807521314518515 m001 1/Kolakoski^2*ln(FransenRobinson)^2/Lehmer^2 4807521320676926 m001 Khinchin+ln(Pi)^GAMMA(1/6) 4807521320676926 m001 ln(Pi)^(2*Pi/GAMMA(5/6))+Khinchin 4807521323781691 a001 13/54018521*47^(7/9) 4807521324491172 r005 Re(z^2+c),c=11/58+12/35*I,n=60 4807521327775257 r009 Im(z^3+c),c=-73/102+34/63*I,n=3 4807521338971120 a003 cos(Pi*4/119)-sin(Pi*17/99) 4807521349960592 m001 (Backhouse*OneNinth+Landau)/Backhouse 4807521358838548 r005 Re(z^2+c),c=9/23+23/35*I,n=4 4807521360820614 l006 ln(5772/9335) 4807521365895070 r009 Im(z^3+c),c=-19/40+1/27*I,n=9 4807521382453364 a001 4052739537881/5778*521^(4/13) 4807521385681267 a001 182717648081/682*521^(6/13) 4807521393954409 h001 (2/7*exp(1)+3/8)/(2/3*exp(1)+7/12) 4807521436814944 a007 Real Root Of 146*x^4+693*x^3+48*x^2+410*x-127 4807521441186134 r009 Im(z^3+c),c=-9/94+37/63*I,n=19 4807521479007878 a001 46/141*28657^(18/37) 4807521490033207 m002 -5*Pi^6-ProductLog[Pi]+Tanh[Pi]/2 4807521505445089 a001 1515744265389/2161*521^(4/13) 4807521517715659 s001 sum(exp(-2*Pi/5)^n*A131534[n],n=1..infinity) 4807521517715659 s002 sum(A131534[n]/(exp(2/5*pi*n)),n=1..infinity) 4807521546989879 a007 Real Root Of -613*x^4+966*x^3-145*x^2-203*x+76 4807521547431336 m001 Thue*(Chi(1)-Psi(2,1/3)) 4807521572239795 a007 Real Root Of -135*x^4-530*x^3+493*x^2-396*x-74 4807521579705338 a001 199*(1/2*5^(1/2)+1/2)^14*3^(23/24) 4807521580155648 r005 Im(z^2+c),c=-17/62+3/43*I,n=19 4807521581458159 a001 6557470319842/9349*521^(4/13) 4807521589404083 a008 Real Root of x^4-16*x^2-24*x-49 4807521593149731 a001 610/4870847*11^(23/41) 4807521637702155 m005 (1/3*2^(1/2)-1/11)/(4/9*exp(1)-5/12) 4807521649596993 a007 Real Root Of -630*x^4+834*x^3-391*x^2+997*x+696 4807521652795262 a007 Real Root Of -995*x^4+4*x^3-886*x^2+253*x+380 4807521656457097 a007 Real Root Of -402*x^4+262*x^3-252*x^2+592*x-234 4807521660649512 a001 956722026041/843*843^(3/14) 4807521674305815 m001 GAMMA(23/24)/Sierpinski*ln(GAMMA(5/6)) 4807521698493318 m001 TreeGrowth2nd^exp(1)/(Stephens^exp(1)) 4807521710360026 r009 Im(z^3+c),c=-53/86+11/23*I,n=25 4807521736940592 r009 Im(z^3+c),c=-31/82+17/33*I,n=52 4807521748587858 m001 1/GAMMA(23/24)^2*MertensB1^2/ln(sin(Pi/12)) 4807521750591597 r009 Im(z^3+c),c=-19/106+23/40*I,n=20 4807521761625125 a001 1149851/987*89^(6/19) 4807521782258303 m001 Otter+Salem^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 4807521788954994 a007 Real Root Of 502*x^4+64*x^3-476*x^2-997*x-389 4807521839440789 a003 sin(Pi*14/87)*sin(Pi*6/13) 4807521852232679 p003 LerchPhi(1/64,1,267/127) 4807521878178062 r005 Re(z^2+c),c=-17/118+24/25*I,n=3 4807521879476579 r009 Im(z^3+c),c=-37/122+34/63*I,n=15 4807521884638154 r005 Im(z^2+c),c=7/29+25/51*I,n=21 4807521886913407 r009 Im(z^3+c),c=-63/118+23/62*I,n=52 4807521897203887 r005 Im(z^2+c),c=-157/122+1/23*I,n=53 4807521901841199 a001 2504730781961/2207*521^(3/13) 4807521903454718 a001 2504730781961/3571*521^(4/13) 4807521909485584 r009 Im(z^3+c),c=-1/25+28/47*I,n=10 4807521917326360 m001 ln(cos(Pi/12))/(3^(1/3))*sqrt(2)^2 4807521917779082 m001 (exp(1)+Zeta(5))/(-GAMMA(7/12)+RenyiParking) 4807521925521326 l006 ln(1897/3068) 4807521941260018 r009 Im(z^3+c),c=-9/106+10/17*I,n=30 4807521984181726 a007 Real Root Of 520*x^4-516*x^3-407*x^2-500*x+364 4807521989896106 a007 Real Root Of 183*x^4-665*x^3-48*x^2-946*x+530 4807521991829224 r002 41th iterates of z^2 + 4807521997205749 m001 (Paris-HardyLittlewoodC3)^Salem 4807522002535166 r009 Im(z^3+c),c=-1/14+29/51*I,n=5 4807522030516053 p003 LerchPhi(1/1024,9,19/105) 4807522031171803 p003 LerchPhi(1/256,9,19/105) 4807522032535812 p003 LerchPhi(1/100,9,19/105) 4807522033794957 p003 LerchPhi(1/64,9,19/105) 4807522036071086 m001 1/FeigenbaumB^2/CareFree^2/ln(FeigenbaumC) 4807522039251907 p003 LerchPhi(1/25,9,19/105) 4807522044290040 p003 LerchPhi(1/16,9,19/105) 4807522052688957 p003 LerchPhi(1/10,9,19/105) 4807522058289649 p003 LerchPhi(1/8,9,19/105) 4807522065385542 m001 Chi(1)-exp(1)*Zeta(1/2) 4807522075098540 p003 LerchPhi(1/5,9,19/105) 4807522077361316 a007 Real Root Of 377*x^4-984*x^3-295*x^2-721*x+504 4807522086310177 p003 LerchPhi(1/4,9,19/105) 4807522088902344 r002 19th iterates of z^2 + 4807522105006466 p003 LerchPhi(1/3,9,19/105) 4807522106444894 s001 sum(exp(-2*Pi/5)^n*A175409[n],n=1..infinity) 4807522106444894 s002 sum(A175409[n]/(exp(2/5*pi*n)),n=1..infinity) 4807522115605187 m001 1/ln(GAMMA(5/24))^2*Backhouse/sinh(1)^2 4807522126148531 a001 39603/5*55^(9/20) 4807522133497720 r009 Im(z^3+c),c=-6/23+37/55*I,n=24 4807522135148618 m001 1/2*GAMMA(2/3)^GaussAGM/Pi*3^(1/2)*GAMMA(2/3) 4807522137180002 a001 1/98209*21^(26/51) 4807522142437814 p003 LerchPhi(1/2,9,19/105) 4807522143862949 a001 591286729879/843*843^(2/7) 4807522148278132 r009 Im(z^3+c),c=-19/60+23/44*I,n=12 4807522152604998 r002 16th iterates of z^2 + 4807522153453372 m002 4/(3*E^Pi)+Pi^6/2 4807522193847345 r009 Re(z^3+c),c=-10/17+17/29*I,n=21 4807522196528598 r009 Re(z^3+c),c=-55/126+5/29*I,n=2 4807522202969869 m001 OrthogonalArrays*(ln(Pi)+BesselI(0,2)) 4807522237890685 r005 Im(z^2+c),c=1/4+25/54*I,n=38 4807522238847834 r002 63th iterates of z^2 + 4807522246894626 m001 (1-3^(1/2))/(-GAMMA(17/24)+FransenRobinson) 4807522255905461 a007 Real Root Of 108*x^4+443*x^3-182*x^2+869*x-84 4807522292081088 m001 (Zeta(5)-sin(1))/(-QuadraticClass+Weierstrass) 4807522299012598 b008 9*(-1+Gudermannian[4]) 4807522310157546 a007 Real Root Of 154*x^4+842*x^3+710*x^2+909*x-746 4807522317073209 h005 exp(sin(Pi*6/59)/cos(Pi*17/39)) 4807522338836148 m002 5*Pi^6+ProductLog[Pi]^2/2 4807522345469201 m001 log(2+sqrt(3))/ln(Riemann3rdZero)*sinh(1) 4807522362935526 m001 (Riemann1stZero+Thue)/(BesselI(1,1)-Gompertz) 4807522366367413 r009 Im(z^3+c),c=-1/56+39/56*I,n=8 4807522369230582 a007 Real Root Of -361*x^4+89*x^3-225*x^2+139*x+148 4807522379344489 a007 Real Root Of -172*x^4-946*x^3-484*x^2+515*x+428 4807522382997260 r009 Im(z^3+c),c=-35/82+30/53*I,n=23 4807522383890459 a007 Real Root Of 133*x^4+479*x^3-663*x^2+519*x-4 4807522385739471 r005 Im(z^2+c),c=-9/82+31/52*I,n=13 4807522394747938 m006 (4*Pi-3/4)/(2/5*ln(Pi)+2) 4807522398323240 r009 Im(z^3+c),c=-41/118+28/53*I,n=24 4807522412046847 r005 Re(z^2+c),c=-1/114+24/31*I,n=15 4807522417609529 r002 7th iterates of z^2 + 4807522424901849 r009 Im(z^3+c),c=-7/118+36/61*I,n=23 4807522439687418 p001 sum((-1)^n/(560*n+193)/(3^n),n=0..infinity) 4807522445457037 a007 Real Root Of -212*x^4-921*x^3+429*x^2-70*x+659 4807522464620045 r005 Im(z^2+c),c=7/90+24/43*I,n=23 4807522483345437 r005 Re(z^2+c),c=15/44+2/43*I,n=16 4807522506528869 l006 ln(5610/9073) 4807522535869601 p003 LerchPhi(1/10,5,270/233) 4807522568426456 a007 Real Root Of 882*x^4-928*x^3-431*x^2-941*x+608 4807522577523143 m005 (1/2*gamma+1/7)/(1/5*Catalan+5/7) 4807522590169934 l006 ln(8995/9438) 4807522596695351 a007 Real Root Of -243*x^4-985*x^3+900*x^2+10*x-394 4807522613842075 a007 Real Root Of -72*x^4+772*x^3-261*x^2+822*x-39 4807522615301403 a001 956722026041/521*199^(2/11) 4807522621474655 r009 Im(z^3+c),c=-53/122+26/53*I,n=44 4807522624859464 r008 a(0)=5,K{-n^6,-42-73*n^3+29*n^2+91*n} 4807522627076436 a001 365435296162/843*843^(5/14) 4807522631537262 a001 199/28657*20365011074^(21/22) 4807522634313537 m005 (1/2*gamma-5/8)/(3/11*gamma-6/7) 4807522656786298 a001 15127/89*514229^(21/22) 4807522658323907 m001 (FeigenbaumC-Lehmer)/(Pi-BesselI(1,1)) 4807522662461870 g006 Psi(1,7/8)+Psi(1,1/7)+Psi(1,1/4)-Psi(1,2/9) 4807522662533397 a007 Real Root Of 885*x^4+231*x^3+958*x^2-235*x-356 4807522675783492 r009 Re(z^3+c),c=-53/90+30/47*I,n=12 4807522676281643 r005 Re(z^2+c),c=43/126+1/11*I,n=14 4807522690065902 m001 (Totient-ZetaP(3))/(ln(3)+PisotVijayaraghavan) 4807522703509415 m005 (1/2*Catalan-3)/(7/9*Catalan-6) 4807522712634092 a007 Real Root Of -19*x^4+78*x^3+749*x^2-488*x-841 4807522717939256 m005 (3/5*exp(1)-5/6)/(5*exp(1)+3) 4807522718779120 r002 21th iterates of z^2 + 4807522724608182 m001 1/BesselK(0,1)/Conway/ln(cos(1))^2 4807522727210748 m001 (-3^(1/3)+2)/(TwinPrimes+1/2) 4807522744839097 a001 3278735159921/2889*521^(3/13) 4807522748067002 a001 591286729879/1364*521^(5/13) 4807522764868120 r002 32th iterates of z^2 + 4807522774022920 q001 1636/3403 4807522794997800 a001 377/1364*14662949395604^(7/9) 4807522794997800 a001 377/1364*(1/2+1/2*5^(1/2))^49 4807522794997800 a001 377/1364*505019158607^(7/8) 4807522795005931 a001 610/843*(1/2+1/2*5^(1/2))^47 4807522803370038 l006 ln(3713/6005) 4807522811654845 m001 (Kolakoski+ZetaQ(4))/(cos(1/5*Pi)-Cahen) 4807522820053976 a003 sin(Pi*5/33)/sin(Pi*37/92) 4807522832866895 r005 Im(z^2+c),c=-29/86+26/47*I,n=9 4807522849055918 r005 Re(z^2+c),c=11/58+12/35*I,n=64 4807522911987227 r009 Im(z^3+c),c=-13/114+34/59*I,n=6 4807522925298127 r005 Re(z^2+c),c=-17/12+6/127*I,n=6 4807522931846283 r005 Re(z^2+c),c=-27/40+4/21*I,n=50 4807522943843950 a001 10610209857723/9349*521^(3/13) 4807522953403932 a007 Real Root Of -175*x^4+815*x^3-987*x^2+235*x+441 4807522962259354 h001 (7/10*exp(1)+4/7)/(7/11*exp(2)+4/9) 4807522970904086 r002 38th iterates of z^2 + 4807522973897188 r005 Re(z^2+c),c=-23/34+12/101*I,n=32 4807522997319521 r009 Re(z^3+c),c=-31/90+43/61*I,n=33 4807522997987708 r002 10i'th iterates of 2*x/(1-x^2) of 4807523007343485 r005 Re(z^2+c),c=-21/31+5/37*I,n=45 4807523034777736 m001 ln(Riemann2ndZero)*Artin^2*GAMMA(5/6) 4807523037552971 r009 Im(z^3+c),c=-5/78+37/59*I,n=6 4807523041054759 m001 (ln(3)+ln(5))/(ln(2^(1/2)+1)-exp(1/exp(1))) 4807523044280909 r009 Im(z^3+c),c=-15/28+19/56*I,n=27 4807523050160985 m001 1/MadelungNaCl*Kolakoski^2/exp(Zeta(7))^2 4807523090735916 m001 (Otter-Robbin)/(2*Pi/GAMMA(5/6)-Kolakoski) 4807523097146809 m001 MinimumGamma*ln(Magata)*FeigenbaumD 4807523104559929 l006 ln(5529/8942) 4807523105555365 r009 Im(z^3+c),c=-2/11+23/40*I,n=34 4807523106235071 r005 Re(z^2+c),c=11/58+12/35*I,n=59 4807523110289971 a001 267913919*843^(3/7) 4807523112020186 a001 7778742049/322*322^(11/12) 4807523135143374 a001 199/2*5^(46/47) 4807523150978156 r002 15th iterates of z^2 + 4807523173148558 a003 cos(Pi*41/117)/sin(Pi*43/110) 4807523179873574 r009 Im(z^3+c),c=-19/36+5/26*I,n=12 4807523183541423 b008 EulerGamma+5*Pi^6 4807523199271443 m001 1/Riemann1stZero^2/Kolakoski/ln(Pi)^2 4807523203138598 a007 Real Root Of 964*x^4-573*x^3+271*x^2-483*x-410 4807523204723952 r005 Re(z^2+c),c=11/78+15/61*I,n=4 4807523205166216 a001 199/121393*4181^(4/31) 4807523221422050 r009 Re(z^3+c),c=-35/82+2/29*I,n=45 4807523231460055 m002 Pi^6/2+(2*Csch[Pi])/3 4807523241052359 m001 (Gompertz+Salem)/(arctan(1/2)-FeigenbaumB) 4807523255766039 r002 33th iterates of z^2 + 4807523256456826 a007 Real Root Of 78*x^4+238*x^3-712*x^2-286*x-140 4807523260103507 r005 Im(z^2+c),c=-5/29+11/15*I,n=23 4807523262138705 a003 sin(Pi*2/51)/cos(Pi*33/79) 4807523264227080 a001 4052739537881/2207*521^(2/13) 4807523265311739 r009 Im(z^3+c),c=-7/20+18/29*I,n=36 4807523265840599 a001 4052739537881/3571*521^(3/13) 4807523282672573 r008 a(0)=5,K{-n^6,6-67*n^3+35*n^2+31*n} 4807523295052071 r005 Re(z^2+c),c=4/11+4/39*I,n=58 4807523296070152 r002 8th iterates of z^2 + 4807523303887121 a001 7/317811*377^(5/38) 4807523320736533 p003 LerchPhi(1/2,3,362/121) 4807523321564260 m001 (exp(1/Pi)-polylog(4,1/2))/(Pi^(1/2)+Trott) 4807523323815081 r005 Re(z^2+c),c=11/58+12/35*I,n=61 4807523332825710 a007 Real Root Of 170*x^4+607*x^3-911*x^2+346*x-646 4807523353807202 m001 Shi(1)+Kolakoski+Otter 4807523355225457 r005 Re(z^2+c),c=25/74+3/64*I,n=24 4807523366264054 r008 a(0)=5,K{-n^6,34-70*n^3+58*n^2-17*n} 4807523366929312 r005 Im(z^2+c),c=-17/118+15/26*I,n=10 4807523368361764 m001 sin(Pi/5)^2*Tribonacci^2*exp(sqrt(2)) 4807523382397139 r002 64th iterates of z^2 + 4807523400002432 m001 (-Kac+TreeGrowth2nd)/(Shi(1)+FransenRobinson) 4807523404844385 m002 5*Pi^6+Sinh[Pi]/20 4807523405001639 a001 2932589277051/610 4807523410989603 r005 Re(z^2+c),c=33/94+43/44*I,n=2 4807523412057194 r009 Re(z^3+c),c=-7/13+15/41*I,n=30 4807523414357899 a003 cos(Pi*23/75)*sin(Pi*22/69) 4807523426089482 r009 Im(z^3+c),c=-7/23+31/57*I,n=19 4807523433283398 a007 Real Root Of -187*x^4-916*x^3-222*x^2-661*x+65 4807523435412927 m001 (Thue+ZetaP(2))/(BesselI(0,1)+MinimumGamma) 4807523441599954 a005 (1/sin(61/207*Pi))^161 4807523445909756 r005 Re(z^2+c),c=-51/98+26/57*I,n=14 4807523456341779 r005 Re(z^2+c),c=-5/28+52/61*I,n=36 4807523456973289 r008 a(0)=6,K{-n^6,-35+55*n^3+15*n^2-34*n} 4807523468911188 r005 Re(z^2+c),c=-67/102+10/49*I,n=40 4807523469618966 a007 Real Root Of 149*x^4-724*x^3+673*x^2-491*x-480 4807523470618980 a001 3571/89*6557470319842^(17/24) 4807523471218557 a007 Real Root Of 188*x^4-177*x^3-383*x^2-971*x-408 4807523476275386 r009 Re(z^3+c),c=-5/54+37/53*I,n=44 4807523481318866 r009 Im(z^3+c),c=-1/86+43/62*I,n=8 4807523485519564 m005 (1/15+1/6*5^(1/2))/(3^(1/2)-9/11) 4807523500904926 r005 Im(z^2+c),c=-35/66+4/47*I,n=35 4807523511496455 r009 Im(z^3+c),c=-67/110+35/58*I,n=3 4807523539030908 r005 Re(z^2+c),c=-167/122+1/35*I,n=6 4807523546694950 r005 Im(z^2+c),c=1/110+22/37*I,n=41 4807523560160245 b008 LogGamma[ArcCoth[123]] 4807523566106438 m001 (Pi-FibonacciFactorial)/(Magata+Stephens) 4807523577267046 a001 12586269025/2207*1364^(14/15) 4807523585522713 r005 Re(z^2+c),c=29/78+8/47*I,n=50 4807523586865104 m002 -Pi^2+5*Pi^6+Cosh[Pi]-Log[Pi] 4807523587611137 p003 LerchPhi(1/3,10,100/117) 4807523593503555 a001 139583862445/843*843^(1/2) 4807523605999431 r005 Im(z^2+c),c=-1/21+34/55*I,n=61 4807523611787427 a007 Real Root Of 311*x^4-810*x^3-395*x^2-529*x+419 4807523667539845 m001 (exp(1/exp(1))-Totient)/(Zeta(5)+ln(Pi)) 4807523677519349 m005 (1/2*5^(1/2)-6)/(3*exp(1)+2) 4807523682624808 a007 Real Root Of 164*x^4+772*x^3+55*x^2+690*x+220 4807523685839084 r009 Im(z^3+c),c=-1/42+22/37*I,n=12 4807523692165884 m001 (OneNinth+Robbin)/(gamma(2)-BesselI(1,2)) 4807523698862882 m001 (ArtinRank2-gamma)/(LaplaceLimit+Tribonacci) 4807523701351089 m001 Zeta(3)^2/exp(Magata)*Zeta(9)^2 4807523704486693 m004 -5*Pi+4*Log[Sqrt[5]*Pi]+(5*Log[Sqrt[5]*Pi])/Pi 4807523720373814 l006 ln(1816/2937) 4807523725040053 r009 Im(z^3+c),c=-1/38+29/54*I,n=3 4807523733178672 a008 Real Root of x^3-15*x-39 4807523748736121 r005 Im(z^2+c),c=-1/14+6/11*I,n=4 4807523749533645 a001 20365011074/2207*1364^(13/15) 4807523754874604 r005 Im(z^2+c),c=-69/122+2/23*I,n=54 4807523756520503 r009 Re(z^3+c),c=-15/31+5/53*I,n=55 4807523758901974 a007 Real Root Of -9*x^4+253*x^3-827*x^2-810*x-296 4807523765323919 r005 Im(z^2+c),c=-15/22+35/107*I,n=7 4807523780975032 m001 (FeigenbaumDelta+Lehmer)/(2^(1/3)+Zeta(1,-1)) 4807523791903850 r002 15th iterates of z^2 + 4807523793771678 a005 (1/sin(66/137*Pi))^955 4807523796929865 a003 cos(Pi*1/74)*cos(Pi*33/97) 4807523841515704 r005 Re(z^2+c),c=-3/5+11/35*I,n=19 4807523847619295 a001 12752043/89*63245986^(17/24) 4807523848402289 m001 Pi/exp(Pi)*(1-GAMMA(2/3)) 4807523855352203 r005 Re(z^2+c),c=11/58+12/35*I,n=63 4807523864986941 a007 Real Root Of -361*x^4+126*x^3-374*x^2+739*x+475 4807523885434129 r005 Im(z^2+c),c=-45/74+31/51*I,n=25 4807523892882372 a007 Real Root Of -112*x^4-348*x^3+977*x^2+488*x+926 4807523908884931 m001 BesselJ(0,1)^exp(1/Pi)/(Conway^exp(1/Pi)) 4807523917359350 m008 (2*Pi-2/5)/(4*Pi^5-1/3) 4807523921800251 a001 32951280099/2207*1364^(4/5) 4807523923138720 a007 Real Root Of 776*x^4+999*x^3+935*x^2-704*x-485 4807523925401517 r005 Im(z^2+c),c=-69/74+17/54*I,n=25 4807523931921101 r008 a(0)=5,K{-n^6,26+19*n+18*n^2-58*n^3} 4807523947934365 r005 Im(z^2+c),c=-17/82+3/46*I,n=8 4807523950606510 r008 a(0)=5,K{-n^6,-8-52*n^3-17*n^2+82*n} 4807523952069181 r005 Re(z^2+c),c=-13/19+4/43*I,n=40 4807523964119763 m001 1/GAMMA(3/4)*Conway^2*ln(cos(Pi/12)) 4807523967829354 r002 59th iterates of z^2 + 4807523986543174 a001 24476/233*28657^(19/51) 4807523989593933 r005 Re(z^2+c),c=7/23+1/25*I,n=28 4807524039880831 a007 Real Root Of -770*x^4-357*x^3+725*x^2+897*x-518 4807524059492563 q001 1099/2286 4807524071282588 r005 Im(z^2+c),c=2/19+9/17*I,n=19 4807524074986972 a001 2504730781961/843*322^(1/12) 4807524076717187 a001 86267571272/843*843^(4/7) 4807524078586805 m001 1/OneNinth^2/MertensB1*exp(GAMMA(1/3)) 4807524092314618 a005 (1/cos(8/133*Pi))^472 4807524094066863 a001 53316291173/2207*1364^(11/15) 4807524094452490 m001 Pi/Psi(2,1/3)*(exp(gamma)+Zeta(1,2)) 4807524107225217 a001 3536736619241/1926*521^(2/13) 4807524110453122 a001 956722026041/1364*521^(4/13) 4807524118926066 m001 (GaussAGM+PolyaRandomWalk3D)/(exp(Pi)+Conway) 4807524129846845 r005 Re(z^2+c),c=-19/29+8/35*I,n=29 4807524131759653 r002 39th iterates of z^2 + 4807524134023214 l006 ln(6863/7201) 4807524137222066 m001 FeigenbaumAlpha/(gamma(1)^Psi(2,1/3)) 4807524155636087 a007 Real Root Of 134*x^4-921*x^3-66*x^2-480*x-325 4807524170806933 m001 2/3/(Ei(1)^exp(sqrt(2))) 4807524180652216 m006 (1/4/Pi+5/6)/(2*Pi^2-3/4) 4807524194498115 h001 (-2*exp(-2)-5)/(-2*exp(3/2)-2) 4807524194560374 a007 Real Root Of -591*x^4+477*x^3-534*x^2-572*x-67 4807524210175139 r009 Im(z^3+c),c=-27/64+22/43*I,n=35 4807524212329522 a005 (1/sin(23/167*Pi))^23 4807524214993562 h001 (4/9*exp(1)+5/12)/(1/3*exp(2)+11/12) 4807524236757979 r002 16th iterates of z^2 + 4807524256118954 m001 1/exp(GAMMA(11/24))/TreeGrowth2nd*Zeta(1/2) 4807524266333481 a001 86267571272/2207*1364^(2/3) 4807524312001661 r005 Im(z^2+c),c=-7/10+6/161*I,n=5 4807524317532036 a007 Real Root Of 569*x^4-771*x^3+918*x^2-168*x-409 4807524321733545 m001 (Conway+ReciprocalLucas)/(ZetaP(4)-ZetaQ(3)) 4807524341803205 r009 Im(z^3+c),c=-25/106+39/56*I,n=16 4807524354197695 m002 -E^Pi/4+Pi^2/5-Tanh[Pi] 4807524354775670 l006 ln(5367/8680) 4807524355395867 m001 HardHexagonsEntropy*ZetaP(4)-sin(1/5*Pi) 4807524368869412 a003 sin(Pi*18/85)/cos(Pi*28/61) 4807524370991803 a001 586517973261/122 4807524380262853 m001 1/GAMMA(1/24)*ln(Salem)^2/GAMMA(7/12)^2 4807524388936065 a001 2932589877251/610 4807524389644415 p001 sum((-1)^n/(449*n+206)/(32^n),n=0..infinity) 4807524391554098 a001 1466294939424/305 4807524391936065 a001 2932589879081/610 4807524391991803 a001 586517975823/122 4807524392001311 a001 7331474697802/305*8^(1/3) 4807524392001311 a001 1/305*(1/2+1/2*5^(1/2))^63 4807524392001639 a001 2932589879121/610 4807524392004918 a001 2932589879123/610 4807524392026229 a001 1466294939568/305 4807524392172131 a001 586517975845/122 4807524393172131 a001 586517975967/122 4807524400026229 a001 1466294942008/305 4807524401779460 a001 1/17*34^(28/47) 4807524409845974 r002 16th iterates of z^2 + 4807524420265238 a001 10983760033/1926*1364^(14/15) 4807524438600105 a001 139583862445/2207*1364^(3/5) 4807524447004918 a001 2932589912673/610 4807524462365564 r009 Re(z^3+c),c=-51/106+5/56*I,n=39 4807524469970749 r009 Re(z^3+c),c=-37/66+14/31*I,n=9 4807524482411219 r005 Im(z^2+c),c=1/66+27/41*I,n=25 4807524483052118 m001 gamma*Cahen^PrimesInBinary 4807524495007905 a007 Real Root Of 502*x^4+58*x^3+275*x^2-412*x-282 4807524521637102 a003 cos(Pi*7/79)*cos(Pi*1/3) 4807524534976227 r008 a(0)=5,K{-n^6,52-8*n+13*n^2-52*n^3} 4807524535028738 r008 a(0)=5,K{-n^6,40-50*n^3+n^2+14*n} 4807524543257042 a001 86267571272/15127*1364^(14/15) 4807524546439692 m003 -5/8+(33*Sqrt[5])/64+Cos[1/2+Sqrt[5]/2] 4807524559930867 a001 53316291173/843*843^(9/14) 4807524561201305 a001 75283811239/13201*1364^(14/15) 4807524563092222 r005 Re(z^2+c),c=1/58+3/20*I,n=9 4807524563819337 a001 591286729879/103682*1364^(14/15) 4807524564201303 a001 516002918640/90481*1364^(14/15) 4807524564257031 a001 4052739537881/710647*1364^(14/15) 4807524564265162 a001 3536736619241/620166*1364^(14/15) 4807524564270187 a001 6557470319842/1149851*1364^(14/15) 4807524564291473 a001 2504730781961/439204*1364^(14/15) 4807524564437371 a001 956722026041/167761*1364^(14/15) 4807524565421967 m001 (sin(1/5*Pi)*Sierpinski+Mills)/sin(1/5*Pi) 4807524565437371 a001 365435296162/64079*1364^(14/15) 4807524568148752 m001 (Tribonacci-Trott)/(Pi+Robbin) 4807524572291469 a001 139583862445/24476*1364^(14/15) 4807524592531868 a001 53316291173/5778*1364^(13/15) 4807524598189342 r005 Re(z^2+c),c=-71/102+2/39*I,n=60 4807524605849658 r002 58th iterates of z^2 + 4807524610866735 a001 225851433717/2207*1364^(8/15) 4807524619270160 a001 53316291173/9349*1364^(14/15) 4807524626613346 a001 6557470319842/2207*521^(1/13) 4807524628226866 a001 6557470319842/3571*521^(2/13) 4807524645417876 r005 Re(z^2+c),c=-13/14+32/221*I,n=54 4807524668651457 r005 Re(z^2+c),c=-47/66+8/59*I,n=57 4807524671289364 m001 (Chi(1)*Otter-GAMMA(11/12))/Otter 4807524676197671 m005 (5/6*2^(1/2)-1/4)/(4/5*2^(1/2)+4/5) 4807524679212086 l006 ln(3551/5743) 4807524695328212 a005 (1/cos(28/223*Pi))^279 4807524699668765 m005 (1/2*Zeta(3)+9/11)/(4/9*2^(1/2)-1/3) 4807524702079848 s002 sum(A215412[n]/(n*exp(n)-1),n=1..infinity) 4807524707553908 r009 Im(z^3+c),c=-1/3+15/28*I,n=22 4807524715523676 a001 139583862445/15127*1364^(13/15) 4807524733467939 a001 365435296162/39603*1364^(13/15) 4807524733905413 a005 (1/sin(60/127*Pi))^1032 4807524736085972 a001 956722026041/103682*1364^(13/15) 4807524736467938 a001 2504730781961/271443*1364^(13/15) 4807524736523666 a001 6557470319842/710647*1364^(13/15) 4807524736536822 a001 10610209857723/1149851*1364^(13/15) 4807524736558108 a001 4052739537881/439204*1364^(13/15) 4807524736704006 a001 140728068720/15251*1364^(13/15) 4807524737704005 a001 591286729879/64079*1364^(13/15) 4807524742920955 m001 LambertW(1)/GAMMA(1/6)/ln(cos(Pi/5)) 4807524744558104 a001 7787980473/844*1364^(13/15) 4807524745832045 p002 log(18^(5/3)-3^(1/6)) 4807524750267736 r005 Re(z^2+c),c=11/58+12/35*I,n=62 4807524761014475 h001 (-8*exp(2)-8)/(-7*exp(3)+1) 4807524764798504 a001 43133785636/2889*1364^(4/5) 4807524769001639 a001 2932590109091/610 4807524783133371 a001 365435296162/2207*1364^(7/15) 4807524791536797 a001 86267571272/9349*1364^(13/15) 4807524793321514 m001 GAMMA(13/24)^OneNinth/Ei(1,1) 4807524793342428 r005 Im(z^2+c),c=-51/94+14/29*I,n=35 4807524794135304 m006 (3/5*Pi+1/6)/(3*ln(Pi)+5/6) 4807524818727831 m005 (1/2*Zeta(3)-7/9)/(4/9*gamma+1/9) 4807524820880511 r005 Re(z^2+c),c=-19/34+43/128*I,n=15 4807524841273264 v002 sum(1/(3^n+(15*n^2-10*n+34)),n=1..infinity) 4807524842896998 r002 17th iterates of z^2 + 4807524851755034 a007 Real Root Of 825*x^4-591*x^3-198*x^2-850*x+476 4807524854503643 r002 47th iterates of z^2 + 4807524858593616 r005 Im(z^2+c),c=-1/102+17/27*I,n=52 4807524869247265 s002 sum(A244512[n]/((3*n)!),n=1..infinity) 4807524869976534 r009 Re(z^3+c),c=-1/38+11/12*I,n=10 4807524875564481 r002 33th iterates of z^2 + 4807524877229334 a001 9349/8*5^(29/33) 4807524887419919 m002 -4+5*Pi^6+4*Log[Pi] 4807524887790316 a001 32264490531/2161*1364^(4/5) 4807524891945635 r008 a(0)=5,K{-n^6,32+40*n-24*n^2-43*n^3} 4807524905734580 a001 591286729879/39603*1364^(4/5) 4807524906272641 r009 Im(z^3+c),c=-11/64+29/41*I,n=18 4807524908352613 a001 774004377960/51841*1364^(4/5) 4807524908734579 a001 4052739537881/271443*1364^(4/5) 4807524908790307 a001 1515744265389/101521*1364^(4/5) 4807524908824749 a001 3278735159921/219602*1364^(4/5) 4807524908970647 a001 2504730781961/167761*1364^(4/5) 4807524909970646 a001 956722026041/64079*1364^(4/5) 4807524916824745 a001 182717648081/12238*1364^(4/5) 4807524937065146 a001 139583862445/5778*1364^(11/15) 4807524941266922 a001 20365011074/3571*1364^(14/15) 4807524947191968 l005 1050/97/(exp(525/97)+1) 4807524951915945 r005 Im(z^2+c),c=-17/62+3/43*I,n=21 4807524955400014 a001 591286729879/2207*1364^(2/5) 4807524955741256 r009 Re(z^3+c),c=-13/44+39/41*I,n=2 4807524961883423 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)/(Chi(1)+ZetaP(4)) 4807524963803440 a001 139583862445/9349*1364^(4/5) 4807524980697077 m005 (1/2*3^(1/2)+7/12)/(2/3*gamma-1/12) 4807524992138298 r002 29th iterates of z^2 + 4807524992336761 m002 Pi^3/E^(2*Pi)+Pi^6/2 4807525001999999 a001 987/2207*45537549124^(16/17) 4807525001999999 a001 987/2207*14662949395604^(16/21) 4807525001999999 a001 987/2207*(1/2+1/2*5^(1/2))^48 4807525001999999 a001 987/2207*192900153618^(8/9) 4807525001999999 a001 987/2207*73681302247^(12/13) 4807525007768824 m001 (-BesselK(1,1)+Thue)/(Si(Pi)-ln(2+3^(1/2))) 4807525008263851 m009 (1/4*Psi(1,3/4)+4/5)/(3*Pi^2+1/4) 4807525008619991 l006 ln(5286/8549) 4807525021862159 h001 (4/11*exp(2)+8/11)/(7/8*exp(2)+7/11) 4807525043144597 a001 10983760033/281*843^(5/7) 4807525046622023 r009 Im(z^3+c),c=-5/86+36/61*I,n=31 4807525056862743 r005 Re(z^2+c),c=-63/86+2/57*I,n=50 4807525057202080 r005 Re(z^2+c),c=-3/4+52/127*I,n=5 4807525060056962 a001 365435296162/15127*1364^(11/15) 4807525070377616 m006 (5/6*ln(Pi)+1/3)/(5*exp(2*Pi)+1/6) 4807525078001227 a001 956722026041/39603*1364^(11/15) 4807525079280663 r005 Im(z^2+c),c=-27/32+11/43*I,n=7 4807525080619260 a001 2504730781961/103682*1364^(11/15) 4807525081001226 a001 6557470319842/271443*1364^(11/15) 4807525081091396 a001 10610209857723/439204*1364^(11/15) 4807525081237294 a001 4052739537881/167761*1364^(11/15) 4807525082237294 a001 1548008755920/64079*1364^(11/15) 4807525088878671 r002 40th iterates of z^2 + 4807525089091393 a001 591286729879/24476*1364^(11/15) 4807525091717350 a003 cos(Pi*39/115)/cos(Pi*51/109) 4807525093889257 l005 sec(344/45) 4807525103589268 r005 Im(z^2+c),c=49/122+13/53*I,n=25 4807525107291496 a001 3/2*1346269^(53/59) 4807525108146396 a008 Real Root of x^4-x^3-7*x^2-170*x+556 4807525109331794 a001 75283811239/1926*1364^(2/3) 4807525113533570 a001 32951280099/3571*1364^(13/15) 4807525127666663 a001 956722026041/2207*1364^(1/3) 4807525136070089 a001 225851433717/9349*1364^(11/15) 4807525137714375 r002 59i'th iterates of 2*x/(1-x^2) of 4807525141564243 m001 (Si(Pi)+1)/(GAMMA(11/24)+4) 4807525146252833 m001 (Chi(1)-GolombDickman)/(Magata+MertensB2) 4807525153679883 r005 Re(z^2+c),c=-19/14+14/223*I,n=2 4807525155512172 r005 Re(z^2+c),c=3/23+16/35*I,n=21 4807525169005267 a007 Real Root Of -140*x^4+684*x^3-165*x^2-20*x+112 4807525195519665 m004 -1+25*Pi+Log[Sqrt[5]*Pi]^2-Sinh[Sqrt[5]*Pi] 4807525199595792 r005 Re(z^2+c),c=-41/64+13/30*I,n=3 4807525202149905 a007 Real Root Of 10*x^4+466*x^3-708*x^2+72*x+616 4807525217471616 h001 (-7*exp(3)-3)/(-exp(8)-6) 4807525232323615 a001 591286729879/15127*1364^(2/3) 4807525246400067 a007 Real Root Of -330*x^4-748*x^3-212*x^2+806*x+371 4807525250267880 a001 516002918640/13201*1364^(2/3) 4807525252885913 a001 4052739537881/103682*1364^(2/3) 4807525253267879 a001 3536736619241/90481*1364^(2/3) 4807525253503947 a001 6557470319842/167761*1364^(2/3) 4807525254503947 a001 2504730781961/64079*1364^(2/3) 4807525261358046 a001 956722026041/24476*1364^(2/3) 4807525263150680 m001 (Magata-ZetaQ(2))/ArtinRank2 4807525281598448 a001 182717648081/2889*1364^(3/5) 4807525285800224 a001 53316291173/3571*1364^(4/5) 4807525299933318 a001 1548008755920/2207*1364^(4/15) 4807525306631359 m001 1/2*Ei(1,1)/Pi*2^(1/2)*GAMMA(3/4)*Kolakoski 4807525308336744 a001 365435296162/9349*1364^(2/3) 4807525311201508 r005 Im(z^2+c),c=-8/17+16/27*I,n=41 4807525318554112 r009 Re(z^3+c),c=-31/70+2/25*I,n=30 4807525318946435 m001 1/(3^(1/3))^2*ln(FeigenbaumC)*sqrt(1+sqrt(3)) 4807525325615050 q001 1661/3455 4807525345018655 r009 Im(z^3+c),c=-11/24+20/43*I,n=33 4807525374780219 r005 Re(z^2+c),c=-75/122+7/25*I,n=15 4807525381006686 r005 Re(z^2+c),c=11/58+12/35*I,n=57 4807525382963513 h001 (1/11*exp(2)+3/7)/(3/4*exp(1)+1/4) 4807525387508522 m001 (FeigenbaumKappa-GolombDickman)/(Robbin+Thue) 4807525399015793 r005 Re(z^2+c),c=-75/106+9/38*I,n=58 4807525404590274 a001 956722026041/15127*1364^(3/5) 4807525405313086 r005 Im(z^2+c),c=-7/10+8/167*I,n=41 4807525405815147 h001 (4/9*exp(2)+3/11)/(11/12*exp(2)+5/8) 4807525412143163 a001 199/1346269*377^(27/46) 4807525422534540 a001 2504730781961/39603*1364^(3/5) 4807525425152573 a001 3278735159921/51841*1364^(3/5) 4807525425770607 a001 10610209857723/167761*1364^(3/5) 4807525426770606 a001 4052739537881/64079*1364^(3/5) 4807525433624706 a001 387002188980/6119*1364^(3/5) 4807525441079140 r004 Im(z^2+c),c=5/46+11/20*I,z(0)=I,n=54 4807525441330240 m008 (3*Pi^3-3/5)/(2*Pi^6-2/5) 4807525443512071 a008 Real Root of x^3-1767*x-26164 4807525453865109 a001 591286729879/5778*1364^(8/15) 4807525457537446 a003 cos(Pi*34/115)*sin(Pi*27/91) 4807525458066885 a001 86267571272/3571*1364^(11/15) 4807525472199979 a001 2504730781961/2207*1364^(1/5) 4807525472839629 a001 1134903780*521^(3/13) 4807525480603405 a001 591286729879/9349*1364^(3/5) 4807525490881866 m005 (1/2*Zeta(3)+2/7)/(4/9*exp(1)+7/11) 4807525499619033 r009 Im(z^3+c),c=-33/86+35/62*I,n=16 4807525510204081 r005 Re(z^2+c),c=-13/56+11/20*I,n=2 4807525517189998 r005 Im(z^2+c),c=-101/78+15/47*I,n=6 4807525519845414 a003 cos(Pi*13/46)*cos(Pi*49/103) 4807525526358375 a001 20365011074/843*843^(11/14) 4807525543972880 m001 (exp(1)-Salem)^(Pi*2^(1/2)/GAMMA(3/4)) 4807525551215301 r002 39th iterates of z^2 + 4807525565540298 m002 5*Pi^6+Cosh[Pi]/20 4807525576856939 a001 1548008755920/15127*1364^(8/15) 4807525594801205 a001 4052739537881/39603*1364^(8/15) 4807525597419239 a001 225749145909/2206*1364^(8/15) 4807525599037272 a001 6557470319842/64079*1364^(8/15) 4807525605891372 a001 2504730781961/24476*1364^(8/15) 4807525606627301 a007 Real Root Of 3*x^4-760*x^3-455*x^2-257*x+313 4807525611999373 a001 7677618402363/1597 4807525626131775 a001 956722026041/5778*1364^(7/15) 4807525630333552 a001 139583862445/3571*1364^(2/3) 4807525631662278 a007 Real Root Of 139*x^4-912*x^3+856*x^2-317*x-459 4807525632217591 m001 (-Zeta(1,2)+KomornikLoreti)/(2^(1/3)-ln(2)) 4807525634176043 a001 4807526976/2207*3571^(16/17) 4807525642085241 a001 322/55*701408733^(5/9) 4807525644466646 a001 4052739537881/2207*1364^(2/15) 4807525652870073 a001 956722026041/9349*1364^(8/15) 4807525656352539 a001 7778742049/2207*3571^(15/17) 4807525676591128 m005 (1/2*3^(1/2)-5)/(17/220+7/20*5^(1/2)) 4807525677934925 a007 Real Root Of -77*x^4-159*x^3+843*x^2-945*x-562 4807525677951319 a001 45537549124/89*610^(17/24) 4807525678258144 m001 (RenyiParking+ZetaQ(2))/(FeigenbaumB+GaussAGM) 4807525678529036 a001 12586269025/2207*3571^(14/17) 4807525682814466 l006 ln(1735/2806) 4807525688372204 s002 sum(A211671[n]/(exp(n)),n=1..infinity) 4807525693011920 r009 Im(z^3+c),c=-7/106+25/33*I,n=23 4807525700705533 a001 20365011074/2207*3571^(13/17) 4807525701163369 r002 46th iterates of z^2 + 4807525705823289 m005 (1/2*5^(1/2)-2/3)/(2/7*5^(1/2)+3/10) 4807525718895074 r002 56th iterates of z^2 + 4807525722882030 a001 32951280099/2207*3571^(12/17) 4807525732449591 m001 (Catalan-GAMMA(7/12))/(GaussAGM+TreeGrowth2nd) 4807525736782587 a007 Real Root Of -199*x^4-918*x^3+259*x^2+409*x+280 4807525745058526 a001 53316291173/2207*3571^(11/17) 4807525745496906 p003 LerchPhi(1/16,2,299/205) 4807525746819378 r002 12th iterates of z^2 + 4807525749123610 a001 2504730781961/15127*1364^(7/15) 4807525752437144 b008 5*(-37/3+E) 4807525760790255 a007 Real Root Of 256*x^4-378*x^3+482*x^2-4*x-169 4807525765914192 m005 (1/5*exp(1)+1/5)/(17/24+3/8*5^(1/2)) 4807525767067877 a001 6557470319842/39603*1364^(7/15) 4807525767235024 a001 86267571272/2207*3571^(10/17) 4807525771303944 a001 10610209857723/64079*1364^(7/15) 4807525773536825 b008 -1/2+E^5^Pi^(-1) 4807525773620131 m002 (E^Pi*Pi^6)/5+Pi^3*Sinh[Pi] 4807525778158044 a001 4052739537881/24476*1364^(7/15) 4807525789411521 a001 139583862445/2207*3571^(9/17) 4807525790558668 m005 (1/2*exp(1)-5/6)/(3/4*5^(1/2)-7/12) 4807525798398448 a001 86000486440/321*1364^(2/5) 4807525802600225 a001 225851433717/3571*1364^(3/5) 4807525811588018 a001 225851433717/2207*3571^(8/17) 4807525814746680 r005 Im(z^2+c),c=-17/62+3/43*I,n=23 4807525816733320 a001 6557470319842/2207*1364^(1/15) 4807525825136747 a001 1548008755920/9349*1364^(7/15) 4807525833764515 a001 365435296162/2207*3571^(7/17) 4807525841607925 r005 Re(z^2+c),c=-8/13+1/64*I,n=9 4807525844998442 a001 329/1926*312119004989^(10/11) 4807525844998442 a001 329/1926*(1/2+1/2*5^(1/2))^50 4807525844998442 a001 329/1926*3461452808002^(5/6) 4807525844998640 a001 2584/2207*(1/2+1/2*5^(1/2))^46 4807525844998640 a001 2584/2207*10749957122^(23/24) 4807525855941013 a001 591286729879/2207*3571^(6/17) 4807525865581404 m001 (-DuboisRaymond+Gompertz)/(Chi(1)-gamma(3)) 4807525873381481 m001 (Chi(1)+sin(1))/((1+3^(1/2))^(1/2)-Conway) 4807525878117510 a001 956722026041/2207*3571^(5/17) 4807525894811447 m002 Pi^6/2+Log[Pi]/(2*Pi^2) 4807525900294008 a001 1548008755920/2207*3571^(4/17) 4807525906772091 m006 (5/6*exp(Pi)+2/5)/(2/3*Pi+2) 4807525909232093 a007 Real Root Of 92*x^4-241*x^3-680*x^2-495*x+417 4807525909409892 r005 Re(z^2+c),c=-27/40+1/12*I,n=34 4807525921390287 a001 4052739537881/15127*1364^(2/5) 4807525922470506 a001 2504730781961/2207*3571^(3/17) 4807525933996173 a001 20100265930038/4181 4807525935641482 r009 Re(z^3+c),c=-55/126+21/37*I,n=42 4807525936891302 a001 1836311903/2207*9349^(18/19) 4807525939334555 a001 3536736619241/13201*1364^(2/5) 4807525939786230 a001 2971215073/2207*9349^(17/19) 4807525939787410 a007 Real Root Of -151*x^4-571*x^3+656*x^2-635*x-999 4807525942681157 a001 4807526976/2207*9349^(16/19) 4807525944647003 a001 4052739537881/2207*3571^(2/17) 4807525945576085 a001 7778742049/2207*9349^(15/19) 4807525948471013 a001 12586269025/2207*9349^(14/19) 4807525950424723 a001 3278735159921/12238*1364^(2/5) 4807525951365940 a001 20365011074/2207*9349^(13/19) 4807525951557093 r002 2th iterates of z^2 + 4807525951557093 r002 2th iterates of z^2 + 4807525951557093 r002 2th iterates of z^2 + 4807525954260868 a001 32951280099/2207*9349^(12/19) 4807525957155796 a001 53316291173/2207*9349^(11/19) 4807525960050723 a001 86267571272/2207*9349^(10/19) 4807525960910777 r005 Im(z^2+c),c=-109/106+3/59*I,n=4 4807525962945651 a001 139583862445/2207*9349^(9/19) 4807525965840578 a001 225851433717/2207*9349^(8/19) 4807525966823501 a001 6557470319842/2207*3571^(1/17) 4807525967193232 a008 Real Root of x^4-14*x^2-54*x+49 4807525967990282 a001 141/2161*(1/2+1/2*5^(1/2))^52 4807525967990282 a001 141/2161*23725150497407^(13/16) 4807525967990282 a001 141/2161*505019158607^(13/14) 4807525967990484 a001 6765/2207*312119004989^(4/5) 4807525967990484 a001 6765/2207*(1/2+1/2*5^(1/2))^44 4807525967990484 a001 6765/2207*23725150497407^(11/16) 4807525967990484 a001 6765/2207*73681302247^(11/13) 4807525967990484 a001 6765/2207*10749957122^(11/12) 4807525967990484 a001 6765/2207*4106118243^(22/23) 4807525968735506 a001 365435296162/2207*9349^(7/19) 4807525970665127 a001 2504730781961/5778*1364^(1/3) 4807525971630434 a001 591286729879/2207*9349^(6/19) 4807525974525361 a001 956722026041/2207*9349^(5/19) 4807525974866904 a001 365435296162/3571*1364^(8/15) 4807525977420289 a001 1548008755920/2207*9349^(4/19) 4807525977424189 a001 281/7*17711^(24/25) 4807525980315217 a001 2504730781961/2207*9349^(3/19) 4807525980974876 a001 52623179387751/10946 4807525981357218 a001 701408733/2207*24476^(20/21) 4807525981739357 a001 1134903170/2207*24476^(19/21) 4807525982121496 a001 1836311903/2207*24476^(6/7) 4807525982503635 a001 2971215073/2207*24476^(17/21) 4807525982885774 a001 4807526976/2207*24476^(16/21) 4807525983210144 a001 4052739537881/2207*9349^(2/19) 4807525983267913 a001 7778742049/2207*24476^(5/7) 4807525983650052 a001 12586269025/2207*24476^(2/3) 4807525984032191 a001 20365011074/2207*24476^(13/21) 4807525984414331 a001 32951280099/2207*24476^(4/7) 4807525984796470 a001 53316291173/2207*24476^(11/21) 4807525985178609 a001 86267571272/2207*24476^(10/21) 4807525985560748 a001 139583862445/2207*24476^(3/7) 4807525985934550 a001 329/13201*14662949395604^(6/7) 4807525985934550 a001 329/13201*(1/2+1/2*5^(1/2))^54 4807525985934753 a001 17711/2207*2537720636^(14/15) 4807525985934753 a001 17711/2207*17393796001^(6/7) 4807525985934753 a001 17711/2207*45537549124^(14/17) 4807525985934753 a001 17711/2207*817138163596^(14/19) 4807525985934753 a001 17711/2207*14662949395604^(2/3) 4807525985934753 a001 17711/2207*(1/2+1/2*5^(1/2))^42 4807525985934753 a001 17711/2207*505019158607^(3/4) 4807525985934753 a001 17711/2207*192900153618^(7/9) 4807525985934753 a001 17711/2207*10749957122^(7/8) 4807525985934753 a001 17711/2207*4106118243^(21/23) 4807525985934753 a001 17711/2207*1568397607^(21/22) 4807525985942887 a001 225851433717/2207*24476^(8/21) 4807525986105072 a001 6557470319842/2207*9349^(1/19) 4807525986325026 a001 365435296162/2207*24476^(1/3) 4807525986707165 a001 591286729879/2207*24476^(2/7) 4807525987089304 a001 956722026041/2207*24476^(5/21) 4807525987471443 a001 1548008755920/2207*24476^(4/21) 4807525987828977 a001 137769272233215/28657 4807525987853582 a001 2504730781961/2207*24476^(1/7) 4807525987880085 a001 267914296/2207*64079^(22/23) 4807525987930990 a001 433494437/2207*64079^(21/23) 4807525987981895 a001 701408733/2207*64079^(20/23) 4807525988032800 a001 1134903170/2207*64079^(19/23) 4807525988083705 a001 1836311903/2207*64079^(18/23) 4807525988134611 a001 2971215073/2207*64079^(17/23) 4807525988185516 a001 4807526976/2207*64079^(16/23) 4807525988235721 a001 4052739537881/2207*24476^(2/21) 4807525988236421 a001 7778742049/2207*64079^(15/23) 4807525988287326 a001 12586269025/2207*64079^(14/23) 4807525988338232 a001 20365011074/2207*64079^(13/23) 4807525988389137 a001 32951280099/2207*64079^(12/23) 4807525988440042 a001 53316291173/2207*64079^(11/23) 4807525988490947 a001 86267571272/2207*64079^(10/23) 4807525988541852 a001 139583862445/2207*64079^(9/23) 4807525988552583 a001 21/2206*14662949395604^(8/9) 4807525988552583 a001 21/2206*(1/2+1/2*5^(1/2))^56 4807525988552786 a001 46368/2207*2537720636^(8/9) 4807525988552786 a001 46368/2207*312119004989^(8/11) 4807525988552786 a001 46368/2207*(1/2+1/2*5^(1/2))^40 4807525988552786 a001 46368/2207*23725150497407^(5/8) 4807525988552786 a001 46368/2207*73681302247^(10/13) 4807525988552786 a001 46368/2207*28143753123^(4/5) 4807525988552786 a001 46368/2207*10749957122^(5/6) 4807525988552786 a001 46368/2207*4106118243^(20/23) 4807525988552786 a001 46368/2207*1568397607^(10/11) 4807525988552786 a001 46368/2207*599074578^(20/21) 4807525988592758 a001 225851433717/2207*64079^(8/23) 4807525988617860 a001 6557470319842/2207*24476^(1/21) 4807525988643663 a001 365435296162/2207*64079^(7/23) 4807525988694568 a001 591286729879/2207*64079^(6/23) 4807525988745473 a001 956722026041/2207*64079^(5/23) 4807525988796379 a001 1548008755920/2207*64079^(4/23) 4807525988828977 a001 360684637311894/75025 4807525988847284 a001 2504730781961/2207*64079^(3/23) 4807525988863343 a001 701408733/2207*167761^(4/5) 4807525988897507 a001 7778742049/2207*167761^(3/5) 4807525988898189 a001 4052739537881/2207*64079^(2/23) 4807525988931671 a001 86267571272/2207*167761^(2/5) 4807525988934549 a001 329/90481*(1/2+1/2*5^(1/2))^58 4807525988934752 a001 121393/2207*817138163596^(2/3) 4807525988934752 a001 121393/2207*(1/2+1/2*5^(1/2))^38 4807525988934752 a001 121393/2207*10749957122^(19/24) 4807525988934752 a001 121393/2207*4106118243^(19/23) 4807525988934752 a001 121393/2207*1568397607^(19/22) 4807525988934752 a001 121393/2207*599074578^(19/21) 4807525988934752 a001 121393/2207*228826127^(19/20) 4807525988949094 a001 6557470319842/2207*64079^(1/23) 4807525988965835 a001 956722026041/2207*167761^(1/5) 4807525988974875 a001 944284639702467/196418 4807525988977846 a001 102334155/2207*439204^(8/9) 4807525988980615 a001 433494437/2207*439204^(7/9) 4807525988983385 a001 1836311903/2207*439204^(2/3) 4807525988986154 a001 7778742049/2207*439204^(5/9) 4807525988988923 a001 32951280099/2207*439204^(4/9) 4807525988990277 a001 141/101521*14662949395604^(20/21) 4807525988990277 a001 141/101521*(1/2+1/2*5^(1/2))^60 4807525988990480 a001 317811/2207*141422324^(12/13) 4807525988990480 a001 317811/2207*2537720636^(4/5) 4807525988990480 a001 317811/2207*45537549124^(12/17) 4807525988990480 a001 317811/2207*14662949395604^(4/7) 4807525988990480 a001 317811/2207*(1/2+1/2*5^(1/2))^36 4807525988990480 a001 317811/2207*505019158607^(9/14) 4807525988990480 a001 317811/2207*192900153618^(2/3) 4807525988990480 a001 317811/2207*73681302247^(9/13) 4807525988990480 a001 317811/2207*10749957122^(3/4) 4807525988990480 a001 317811/2207*4106118243^(18/23) 4807525988990480 a001 317811/2207*1568397607^(9/11) 4807525988990480 a001 317811/2207*599074578^(6/7) 4807525988990480 a001 317811/2207*228826127^(9/10) 4807525988990481 a001 317811/2207*87403803^(18/19) 4807525988991692 a001 139583862445/2207*439204^(1/3) 4807525988994461 a001 591286729879/2207*439204^(2/9) 4807525988996161 a001 2472169281795507/514229 4807525988997230 a001 2504730781961/2207*439204^(1/9) 4807525988998408 a001 329/620166*(1/2+1/2*5^(1/2))^62 4807525988998611 a001 832040/2207*45537549124^(2/3) 4807525988998611 a001 832040/2207*(1/2+1/2*5^(1/2))^34 4807525988998611 a001 832040/2207*10749957122^(17/24) 4807525988998611 a001 832040/2207*4106118243^(17/23) 4807525988998611 a001 832040/2207*1568397607^(17/22) 4807525988998611 a001 832040/2207*599074578^(17/21) 4807525988998611 a001 832040/2207*228826127^(17/20) 4807525988998611 a001 832040/2207*87403803^(17/19) 4807525988998615 a001 832040/2207*33385282^(17/18) 4807525988999266 a001 6472223205684054/1346269 4807525988999594 a001 987/4870847*(1/2+1/2*5^(1/2))^64 4807525988999797 a001 987*(1/2+1/2*5^(1/2))^32 4807525988999797 a001 987*23725150497407^(1/2) 4807525988999797 a001 987*505019158607^(4/7) 4807525988999797 a001 987*73681302247^(8/13) 4807525988999797 a001 987*10749957122^(2/3) 4807525988999797 a001 987*4106118243^(16/23) 4807525988999797 a001 987*1568397607^(8/11) 4807525988999797 a001 987*599074578^(16/21) 4807525988999797 a001 987*228826127^(4/5) 4807525988999797 a001 987*87403803^(16/19) 4807525988999801 a001 987*33385282^(8/9) 4807525988999825 a001 987*12752043^(16/17) 4807525988999900 a001 5702887/2207*7881196^(10/11) 4807525988999938 a001 24157817/2207*7881196^(9/11) 4807525988999943 a001 102334155/2207*7881196^(8/11) 4807525988999948 a001 267914296/2207*7881196^(2/3) 4807525988999950 a001 433494437/2207*7881196^(7/11) 4807525988999957 a001 1836311903/2207*7881196^(6/11) 4807525988999960 a001 5702887/2207*20633239^(6/7) 4807525988999964 a001 7778742049/2207*7881196^(5/11) 4807525988999970 a001 5702887/2207*141422324^(10/13) 4807525988999970 a001 5702887/2207*2537720636^(2/3) 4807525988999970 a001 5702887/2207*45537549124^(10/17) 4807525988999970 a001 5702887/2207*312119004989^(6/11) 4807525988999970 a001 5702887/2207*14662949395604^(10/21) 4807525988999970 a001 5702887/2207*(1/2+1/2*5^(1/2))^30 4807525988999970 a001 5702887/2207*192900153618^(5/9) 4807525988999970 a001 5702887/2207*28143753123^(3/5) 4807525988999970 a001 5702887/2207*10749957122^(5/8) 4807525988999970 a001 5702887/2207*4106118243^(15/23) 4807525988999970 a001 5702887/2207*1568397607^(15/22) 4807525988999970 a001 5702887/2207*599074578^(5/7) 4807525988999970 a001 5702887/2207*228826127^(3/4) 4807525988999970 a001 5702887/2207*87403803^(15/19) 4807525988999971 a001 32951280099/2207*7881196^(4/11) 4807525988999974 a001 5702887/2207*33385282^(5/6) 4807525988999974 a001 53316291173/2207*7881196^(1/3) 4807525988999978 a001 139583862445/2207*7881196^(3/11) 4807525988999985 a001 591286729879/2207*7881196^(2/11) 4807525988999986 a001 14930352/2207*20633239^(4/5) 4807525988999992 a001 63245986/2207*20633239^(5/7) 4807525988999992 a001 2504730781961/2207*7881196^(1/11) 4807525988999993 a001 433494437/2207*20633239^(3/5) 4807525988999993 a001 701408733/2207*20633239^(4/7) 4807525988999995 a001 7778742049/2207*20633239^(3/7) 4807525988999995 a001 12586269025/2207*20633239^(2/5) 4807525988999995 a001 14930352/2207*17393796001^(4/7) 4807525988999995 a001 14930352/2207*14662949395604^(4/9) 4807525988999995 a001 14930352/2207*(1/2+1/2*5^(1/2))^28 4807525988999995 a001 14930352/2207*505019158607^(1/2) 4807525988999995 a001 14930352/2207*73681302247^(7/13) 4807525988999995 a001 14930352/2207*10749957122^(7/12) 4807525988999995 a001 14930352/2207*4106118243^(14/23) 4807525988999995 a001 14930352/2207*1568397607^(7/11) 4807525988999995 a001 14930352/2207*599074578^(2/3) 4807525988999995 a001 14930352/2207*228826127^(7/10) 4807525988999996 a001 14930352/2207*87403803^(14/19) 4807525988999996 a001 5702887/2207*12752043^(15/17) 4807525988999996 a001 86267571272/2207*20633239^(2/7) 4807525988999997 a001 365435296162/2207*20633239^(1/5) 4807525988999998 a001 956722026041/2207*20633239^(1/7) 4807525988999999 a001 14930352/2207*33385282^(7/9) 4807525988999999 a001 39088169/2207*141422324^(2/3) 4807525988999999 a001 39088169/2207*(1/2+1/2*5^(1/2))^26 4807525988999999 a001 39088169/2207*73681302247^(1/2) 4807525988999999 a001 39088169/2207*10749957122^(13/24) 4807525988999999 a001 39088169/2207*4106118243^(13/23) 4807525988999999 a001 39088169/2207*1568397607^(13/22) 4807525988999999 a001 39088169/2207*599074578^(13/21) 4807525988999999 a001 39088169/2207*228826127^(13/20) 4807525988999999 a001 102334155/2207*141422324^(8/13) 4807525988999999 a001 39088169/2207*87403803^(13/19) 4807525988999999 a001 433494437/2207*141422324^(7/13) 4807525988999999 a001 1836311903/2207*141422324^(6/13) 4807525988999999 a001 7778742049/2207*141422324^(5/13) 4807525988999999 a001 102334155/2207*2537720636^(8/15) 4807525988999999 a001 102334155/2207*45537549124^(8/17) 4807525988999999 a001 102334155/2207*14662949395604^(8/21) 4807525988999999 a001 102334155/2207*(1/2+1/2*5^(1/2))^24 4807525988999999 a001 102334155/2207*192900153618^(4/9) 4807525988999999 a001 102334155/2207*73681302247^(6/13) 4807525988999999 a001 102334155/2207*10749957122^(1/2) 4807525988999999 a001 102334155/2207*4106118243^(12/23) 4807525988999999 a001 102334155/2207*1568397607^(6/11) 4807525988999999 a001 102334155/2207*599074578^(4/7) 4807525988999999 a001 20365011074/2207*141422324^(1/3) 4807525988999999 a001 32951280099/2207*141422324^(4/13) 4807525988999999 a001 139583862445/2207*141422324^(3/13) 4807525988999999 a001 591286729879/2207*141422324^(2/13) 4807525988999999 a001 102334155/2207*228826127^(3/5) 4807525988999999 a001 2504730781961/2207*141422324^(1/13) 4807525988999999 a001 267914296/2207*312119004989^(2/5) 4807525988999999 a001 267914296/2207*(1/2+1/2*5^(1/2))^22 4807525988999999 a001 267914296/2207*10749957122^(11/24) 4807525988999999 a001 267914296/2207*4106118243^(11/23) 4807525988999999 a001 267914296/2207*1568397607^(1/2) 4807525988999999 a001 267914296/2207*599074578^(11/21) 4807525988999999 a001 701408733/2207*2537720636^(4/9) 4807525988999999 a001 701408733/2207*(1/2+1/2*5^(1/2))^20 4807525988999999 a001 701408733/2207*23725150497407^(5/16) 4807525988999999 a001 701408733/2207*505019158607^(5/14) 4807525988999999 a001 701408733/2207*73681302247^(5/13) 4807525988999999 a001 701408733/2207*28143753123^(2/5) 4807525988999999 a001 701408733/2207*10749957122^(5/12) 4807525988999999 a001 701408733/2207*4106118243^(10/23) 4807525988999999 a001 701408733/2207*1568397607^(5/11) 4807525988999999 a001 1836311903/2207*2537720636^(2/5) 4807525988999999 a001 1836311903/2207*45537549124^(6/17) 4807525988999999 a001 1836311903/2207*14662949395604^(2/7) 4807525988999999 a001 1836311903/2207*(1/2+1/2*5^(1/2))^18 4807525988999999 a001 1836311903/2207*192900153618^(1/3) 4807525988999999 a001 1836311903/2207*10749957122^(3/8) 4807525988999999 a001 7778742049/2207*2537720636^(1/3) 4807525988999999 a001 32951280099/2207*2537720636^(4/15) 4807525988999999 a001 1836311903/2207*4106118243^(9/23) 4807525988999999 a001 86267571272/2207*2537720636^(2/9) 4807525988999999 a001 139583862445/2207*2537720636^(1/5) 4807525988999999 a001 591286729879/2207*2537720636^(2/15) 4807525988999999 a001 956722026041/2207*2537720636^(1/9) 4807525988999999 a001 2504730781961/2207*2537720636^(1/15) 4807525988999999 a001 4807526976/2207*(1/2+1/2*5^(1/2))^16 4807525988999999 a001 4807526976/2207*23725150497407^(1/4) 4807525988999999 a001 4807526976/2207*73681302247^(4/13) 4807525988999999 a001 4807526976/2207*10749957122^(1/3) 4807525988999999 a001 12586269025/2207*17393796001^(2/7) 4807525988999999 a001 12586269025/2207*14662949395604^(2/9) 4807525988999999 a001 12586269025/2207*(1/2+1/2*5^(1/2))^14 4807525988999999 a001 365435296162/2207*17393796001^(1/7) 4807525988999999 a001 32951280099/2207*45537549124^(4/17) 4807525988999999 a001 32951280099/2207*817138163596^(4/19) 4807525988999999 a001 32951280099/2207*14662949395604^(4/21) 4807525988999999 a001 32951280099/2207*(1/2+1/2*5^(1/2))^12 4807525988999999 a001 32951280099/2207*192900153618^(2/9) 4807525988999999 a001 32951280099/2207*73681302247^(3/13) 4807525988999999 a001 139583862445/2207*45537549124^(3/17) 4807525988999999 a001 591286729879/2207*45537549124^(2/17) 4807525988999999 a001 2504730781961/2207*45537549124^(1/17) 4807525988999999 a001 86267571272/2207*(1/2+1/2*5^(1/2))^10 4807525988999999 a001 225851433717/2207*(1/2+1/2*5^(1/2))^8 4807525988999999 a001 225851433717/2207*23725150497407^(1/8) 4807525988999999 a001 225851433717/2207*505019158607^(1/7) 4807525988999999 a001 1548008755920/2207*(1/2+1/2*5^(1/2))^4 4807525988999999 a001 1548008755920/2207*23725150497407^(1/16) 4807525989000000 a001 2504730781961/2207*14662949395604^(1/21) 4807525989000000 a001 365435296162/2207*14662949395604^(1/9) 4807525989000000 a001 139583862445/2207*14662949395604^(1/7) 4807525989000000 a001 139583862445/2207*(1/2+1/2*5^(1/2))^9 4807525989000000 a001 139583862445/2207*192900153618^(1/6) 4807525989000000 a001 225851433717/2207*73681302247^(2/13) 4807525989000000 a001 53316291173/2207*312119004989^(1/5) 4807525989000000 a001 53316291173/2207*(1/2+1/2*5^(1/2))^11 4807525989000000 a001 956722026041/2207*28143753123^(1/10) 4807525989000000 a001 86267571272/2207*28143753123^(1/5) 4807525989000000 a001 4052739537881/2207*10749957122^(1/24) 4807525989000000 a001 20365011074/2207*(1/2+1/2*5^(1/2))^13 4807525989000000 a001 20365011074/2207*73681302247^(1/4) 4807525989000000 a001 2504730781961/2207*10749957122^(1/16) 4807525989000000 a001 1548008755920/2207*10749957122^(1/12) 4807525989000000 a001 591286729879/2207*10749957122^(1/8) 4807525989000000 a001 12586269025/2207*10749957122^(7/24) 4807525989000000 a001 225851433717/2207*10749957122^(1/6) 4807525989000000 a001 139583862445/2207*10749957122^(3/16) 4807525989000000 a001 86267571272/2207*10749957122^(5/24) 4807525989000000 a001 32951280099/2207*10749957122^(1/4) 4807525989000000 a001 4052739537881/2207*4106118243^(1/23) 4807525989000000 a001 7778742049/2207*45537549124^(5/17) 4807525989000000 a001 7778742049/2207*312119004989^(3/11) 4807525989000000 a001 7778742049/2207*14662949395604^(5/21) 4807525989000000 a001 7778742049/2207*(1/2+1/2*5^(1/2))^15 4807525989000000 a001 7778742049/2207*192900153618^(5/18) 4807525989000000 a001 7778742049/2207*28143753123^(3/10) 4807525989000000 a001 1548008755920/2207*4106118243^(2/23) 4807525989000000 a001 7778742049/2207*10749957122^(5/16) 4807525989000000 a001 591286729879/2207*4106118243^(3/23) 4807525989000000 a001 225851433717/2207*4106118243^(4/23) 4807525989000000 a001 4807526976/2207*4106118243^(8/23) 4807525989000000 a001 86267571272/2207*4106118243^(5/23) 4807525989000000 a001 32951280099/2207*4106118243^(6/23) 4807525989000000 a001 12586269025/2207*4106118243^(7/23) 4807525989000000 a001 4052739537881/2207*1568397607^(1/22) 4807525989000000 a001 2971215073/2207*45537549124^(1/3) 4807525989000000 a001 2971215073/2207*(1/2+1/2*5^(1/2))^17 4807525989000000 a001 1548008755920/2207*1568397607^(1/11) 4807525989000000 a001 591286729879/2207*1568397607^(3/22) 4807525989000000 a001 225851433717/2207*1568397607^(2/11) 4807525989000000 a001 86267571272/2207*1568397607^(5/22) 4807525989000000 a001 53316291173/2207*1568397607^(1/4) 4807525989000000 a001 1836311903/2207*1568397607^(9/22) 4807525989000000 a001 32951280099/2207*1568397607^(3/11) 4807525989000000 a001 12586269025/2207*1568397607^(7/22) 4807525989000000 a001 4052739537881/2207*599074578^(1/21) 4807525989000000 a001 4807526976/2207*1568397607^(4/11) 4807525989000000 a001 1134903170/2207*817138163596^(1/3) 4807525989000000 a001 1134903170/2207*(1/2+1/2*5^(1/2))^19 4807525989000000 a001 2504730781961/2207*599074578^(1/14) 4807525989000000 a001 1548008755920/2207*599074578^(2/21) 4807525989000000 a001 591286729879/2207*599074578^(1/7) 4807525989000000 a001 365435296162/2207*599074578^(1/6) 4807525989000000 a001 225851433717/2207*599074578^(4/21) 4807525989000000 a001 139583862445/2207*599074578^(3/14) 4807525989000000 a001 86267571272/2207*599074578^(5/21) 4807525989000000 a001 32951280099/2207*599074578^(2/7) 4807525989000000 a001 701408733/2207*599074578^(10/21) 4807525989000000 a001 12586269025/2207*599074578^(1/3) 4807525989000000 a001 4052739537881/2207*228826127^(1/20) 4807525989000000 a001 433494437/2207*2537720636^(7/15) 4807525989000000 a001 7778742049/2207*599074578^(5/14) 4807525989000000 a001 4807526976/2207*599074578^(8/21) 4807525989000000 a001 433494437/2207*17393796001^(3/7) 4807525989000000 a001 433494437/2207*45537549124^(7/17) 4807525989000000 a001 433494437/2207*14662949395604^(1/3) 4807525989000000 a001 433494437/2207*(1/2+1/2*5^(1/2))^21 4807525989000000 a001 433494437/2207*192900153618^(7/18) 4807525989000000 a001 433494437/2207*10749957122^(7/16) 4807525989000000 a001 1836311903/2207*599074578^(3/7) 4807525989000000 a001 1548008755920/2207*228826127^(1/10) 4807525989000000 a001 956722026041/2207*228826127^(1/8) 4807525989000000 a001 433494437/2207*599074578^(1/2) 4807525989000000 a001 591286729879/2207*228826127^(3/20) 4807525989000000 a001 225851433717/2207*228826127^(1/5) 4807525989000000 a001 86267571272/2207*228826127^(1/4) 4807525989000000 a001 32951280099/2207*228826127^(3/10) 4807525989000000 a001 12586269025/2207*228826127^(7/20) 4807525989000000 a001 4052739537881/2207*87403803^(1/19) 4807525989000000 a001 7778742049/2207*228826127^(3/8) 4807525989000000 a001 165580141/2207*(1/2+1/2*5^(1/2))^23 4807525989000000 a001 165580141/2207*4106118243^(1/2) 4807525989000000 a001 4807526976/2207*228826127^(2/5) 4807525989000000 a001 267914296/2207*228826127^(11/20) 4807525989000000 a001 1836311903/2207*228826127^(9/20) 4807525989000000 a001 701408733/2207*228826127^(1/2) 4807525989000000 a001 1548008755920/2207*87403803^(2/19) 4807525989000000 a001 591286729879/2207*87403803^(3/19) 4807525989000000 a001 225851433717/2207*87403803^(4/19) 4807525989000000 a001 86267571272/2207*87403803^(5/19) 4807525989000000 a001 32951280099/2207*87403803^(6/19) 4807525989000000 a001 12586269025/2207*87403803^(7/19) 4807525989000000 a001 4052739537881/2207*33385282^(1/18) 4807525989000000 a001 63245986/2207*2537720636^(5/9) 4807525989000000 a001 63245986/2207*312119004989^(5/11) 4807525989000000 a001 63245986/2207*(1/2+1/2*5^(1/2))^25 4807525989000000 a001 63245986/2207*3461452808002^(5/12) 4807525989000000 a001 63245986/2207*28143753123^(1/2) 4807525989000000 a001 4807526976/2207*87403803^(8/19) 4807525989000000 a001 63245986/2207*228826127^(5/8) 4807525989000000 a001 1836311903/2207*87403803^(9/19) 4807525989000000 a001 102334155/2207*87403803^(12/19) 4807525989000000 a001 1134903170/2207*87403803^(1/2) 4807525989000000 a001 701408733/2207*87403803^(10/19) 4807525989000000 a001 267914296/2207*87403803^(11/19) 4807525989000000 a001 2504730781961/2207*33385282^(1/12) 4807525989000000 a001 1548008755920/2207*33385282^(1/9) 4807525989000000 a001 591286729879/2207*33385282^(1/6) 4807525989000000 a001 225851433717/2207*33385282^(2/9) 4807525989000001 a001 139583862445/2207*33385282^(1/4) 4807525989000001 a001 86267571272/2207*33385282^(5/18) 4807525989000001 a001 32951280099/2207*33385282^(1/3) 4807525989000001 a001 24157817/2207*141422324^(9/13) 4807525989000001 a001 24157817/2207*2537720636^(3/5) 4807525989000001 a001 24157817/2207*45537549124^(9/17) 4807525989000001 a001 24157817/2207*817138163596^(9/19) 4807525989000001 a001 24157817/2207*14662949395604^(3/7) 4807525989000001 a001 24157817/2207*(1/2+1/2*5^(1/2))^27 4807525989000001 a001 24157817/2207*192900153618^(1/2) 4807525989000001 a001 24157817/2207*10749957122^(9/16) 4807525989000001 a001 24157817/2207*599074578^(9/14) 4807525989000001 a001 12586269025/2207*33385282^(7/18) 4807525989000001 a001 4052739537881/2207*12752043^(1/17) 4807525989000001 a001 7778742049/2207*33385282^(5/12) 4807525989000001 a001 4807526976/2207*33385282^(4/9) 4807525989000002 a001 1836311903/2207*33385282^(1/2) 4807525989000002 a001 701408733/2207*33385282^(5/9) 4807525989000002 a001 39088169/2207*33385282^(13/18) 4807525989000002 a001 433494437/2207*33385282^(7/12) 4807525989000002 a001 267914296/2207*33385282^(11/18) 4807525989000002 a001 102334155/2207*33385282^(2/3) 4807525989000003 a001 1548008755920/2207*12752043^(2/17) 4807525989000004 a001 24157817/2207*33385282^(3/4) 4807525989000005 a001 591286729879/2207*12752043^(3/17) 4807525989000006 a001 225851433717/2207*12752043^(4/17) 4807525989000008 a001 86267571272/2207*12752043^(5/17) 4807525989000010 a001 32951280099/2207*12752043^(6/17) 4807525989000011 a001 9227465/2207*(1/2+1/2*5^(1/2))^29 4807525989000011 a001 9227465/2207*1322157322203^(1/2) 4807525989000012 a001 12586269025/2207*12752043^(7/17) 4807525989000012 a001 4052739537881/2207*4870847^(1/16) 4807525989000013 a001 4807526976/2207*12752043^(8/17) 4807525989000014 a001 2971215073/2207*12752043^(1/2) 4807525989000015 a001 1836311903/2207*12752043^(9/17) 4807525989000017 a001 701408733/2207*12752043^(10/17) 4807525989000019 a001 267914296/2207*12752043^(11/17) 4807525989000020 a001 14930352/2207*12752043^(14/17) 4807525989000020 a001 102334155/2207*12752043^(12/17) 4807525989000021 a001 39088169/2207*12752043^(13/17) 4807525989000025 a001 1548008755920/2207*4870847^(1/8) 4807525989000037 a001 591286729879/2207*4870847^(3/16) 4807525989000050 a001 225851433717/2207*4870847^(1/4) 4807525989000063 a001 86267571272/2207*4870847^(5/16) 4807525989000075 a001 32951280099/2207*4870847^(3/8) 4807525989000077 a001 3524578/2207*(1/2+1/2*5^(1/2))^31 4807525989000077 a001 3524578/2207*9062201101803^(1/2) 4807525989000088 a001 12586269025/2207*4870847^(7/16) 4807525989000092 a001 4052739537881/2207*1860498^(1/15) 4807525989000101 a001 4807526976/2207*4870847^(1/2) 4807525989000113 a001 1836311903/2207*4870847^(9/16) 4807525989000126 a001 701408733/2207*4870847^(5/8) 4807525989000138 a001 2504730781961/2207*1860498^(1/10) 4807525989000139 a001 267914296/2207*4870847^(11/16) 4807525989000151 a001 102334155/2207*4870847^(3/4) 4807525989000160 a001 5702887/2207*4870847^(15/16) 4807525989000164 a001 39088169/2207*4870847^(13/16) 4807525989000172 a001 14930352/2207*4870847^(7/8) 4807525989000185 a001 1548008755920/2207*1860498^(2/15) 4807525989000231 a001 956722026041/2207*1860498^(1/6) 4807525989000277 a001 591286729879/2207*1860498^(1/5) 4807525989000327 a001 987/3010349*(1/2+1/2*5^(1/2))^63 4807525989000370 a001 225851433717/2207*1860498^(4/15) 4807525989000416 a001 139583862445/2207*1860498^(3/10) 4807525989000462 a001 86267571272/2207*1860498^(1/3) 4807525989000530 a001 1346269/2207*141422324^(11/13) 4807525989000530 a001 1346269/2207*2537720636^(11/15) 4807525989000530 a001 1346269/2207*45537549124^(11/17) 4807525989000530 a001 1346269/2207*312119004989^(3/5) 4807525989000530 a001 1346269/2207*817138163596^(11/19) 4807525989000530 a001 1346269/2207*14662949395604^(11/21) 4807525989000530 a001 1346269/2207*(1/2+1/2*5^(1/2))^33 4807525989000530 a001 1346269/2207*192900153618^(11/18) 4807525989000530 a001 1346269/2207*10749957122^(11/16) 4807525989000530 a001 1346269/2207*1568397607^(3/4) 4807525989000530 a001 1346269/2207*599074578^(11/14) 4807525989000534 a001 1346269/2207*33385282^(11/12) 4807525989000555 a001 32951280099/2207*1860498^(2/5) 4807525989000648 a001 12586269025/2207*1860498^(7/15) 4807525989000679 a001 4052739537881/2207*710647^(1/14) 4807525989000694 a001 7778742049/2207*1860498^(1/2) 4807525989000740 a001 4807526976/2207*1860498^(8/15) 4807525989000833 a001 1836311903/2207*1860498^(3/5) 4807525989000925 a001 701408733/2207*1860498^(2/3) 4807525989000972 a001 433494437/2207*1860498^(7/10) 4807525989001018 a001 267914296/2207*1860498^(11/15) 4807525989001111 a001 102334155/2207*1860498^(4/5) 4807525989001157 a001 63245986/2207*1860498^(5/6) 4807525989001186 a001 4000053923888547/832040 4807525989001203 a001 39088169/2207*1860498^(13/15) 4807525989001251 a001 24157817/2207*1860498^(9/10) 4807525989001291 a001 14930352/2207*1860498^(14/15) 4807525989001359 a001 1548008755920/2207*710647^(1/7) 4807525989002039 a001 591286729879/2207*710647^(3/14) 4807525989002379 a001 365435296162/2207*710647^(1/4) 4807525989002719 a001 225851433717/2207*710647^(2/7) 4807525989003399 a001 86267571272/2207*710647^(5/14) 4807525989003433 a001 987/1149851*(1/2+1/2*5^(1/2))^61 4807525989003636 a001 514229/2207*2537720636^(7/9) 4807525989003636 a001 514229/2207*17393796001^(5/7) 4807525989003636 a001 514229/2207*312119004989^(7/11) 4807525989003636 a001 514229/2207*14662949395604^(5/9) 4807525989003636 a001 514229/2207*(1/2+1/2*5^(1/2))^35 4807525989003636 a001 514229/2207*505019158607^(5/8) 4807525989003636 a001 514229/2207*28143753123^(7/10) 4807525989003636 a001 514229/2207*599074578^(5/6) 4807525989003636 a001 514229/2207*228826127^(7/8) 4807525989004079 a001 32951280099/2207*710647^(3/7) 4807525989004759 a001 12586269025/2207*710647^(1/2) 4807525989005019 a001 4052739537881/2207*271443^(1/13) 4807525989005439 a001 4807526976/2207*710647^(4/7) 4807525989006119 a001 1836311903/2207*710647^(9/14) 4807525989006799 a001 701408733/2207*710647^(5/7) 4807525989007139 a001 433494437/2207*710647^(3/4) 4807525989007479 a001 267914296/2207*710647^(11/14) 4807525989008159 a001 102334155/2207*710647^(6/7) 4807525989008838 a001 39088169/2207*710647^(13/14) 4807525989009316 a001 509294880697680/105937 4807525989010038 a001 1548008755920/2207*271443^(2/13) 4807525989015057 a001 591286729879/2207*271443^(3/13) 4807525989018633 a001 6557470319842/2207*103682^(1/24) 4807525989020076 a001 225851433717/2207*271443^(4/13) 4807525989024719 a001 987/439204*(1/2+1/2*5^(1/2))^59 4807525989024922 a001 196418/2207*(1/2+1/2*5^(1/2))^37 4807525989025095 a001 86267571272/2207*271443^(5/13) 4807525989030114 a001 32951280099/2207*271443^(6/13) 4807525989032623 a001 20365011074/2207*271443^(1/2) 4807525989035133 a001 12586269025/2207*271443^(7/13) 4807525989037267 a001 4052739537881/2207*103682^(1/12) 4807525989040152 a001 4807526976/2207*271443^(8/13) 4807525989045171 a001 1836311903/2207*271443^(9/13) 4807525989050190 a001 701408733/2207*271443^(10/13) 4807525989055209 a001 267914296/2207*271443^(11/13) 4807525989055901 a001 2504730781961/2207*103682^(1/8) 4807525989060228 a001 102334155/2207*271443^(12/13) 4807525989065044 a001 583600002390573/121393 4807525989074535 a001 1548008755920/2207*103682^(1/6) 4807525989093169 a001 956722026041/2207*103682^(5/24) 4807525989111803 a001 591286729879/2207*103682^(1/4) 4807525989130437 a001 365435296162/2207*103682^(7/24) 4807525989139329 a001 6557470319842/2207*39603^(1/22) 4807525989149071 a001 225851433717/2207*103682^(1/3) 4807525989167705 a001 139583862445/2207*103682^(3/8) 4807525989170617 a001 987/167761*14662949395604^(19/21) 4807525989170617 a001 987/167761*(1/2+1/2*5^(1/2))^57 4807525989170820 a001 75025/2207*2537720636^(13/15) 4807525989170820 a001 75025/2207*45537549124^(13/17) 4807525989170820 a001 75025/2207*14662949395604^(13/21) 4807525989170820 a001 75025/2207*(1/2+1/2*5^(1/2))^39 4807525989170820 a001 75025/2207*192900153618^(13/18) 4807525989170820 a001 75025/2207*73681302247^(3/4) 4807525989170820 a001 75025/2207*10749957122^(13/16) 4807525989170820 a001 75025/2207*599074578^(13/14) 4807525989186338 a001 86267571272/2207*103682^(5/12) 4807525989204972 a001 53316291173/2207*103682^(11/24) 4807525989223606 a001 32951280099/2207*103682^(1/2) 4807525989242240 a001 20365011074/2207*103682^(13/24) 4807525989260874 a001 12586269025/2207*103682^(7/12) 4807525989278658 a001 4052739537881/2207*39603^(1/11) 4807525989279508 a001 7778742049/2207*103682^(5/8) 4807525989298142 a001 4807526976/2207*103682^(2/3) 4807525989316776 a001 2971215073/2207*103682^(17/24) 4807525989335410 a001 1836311903/2207*103682^(3/4) 4807525989354044 a001 1134903170/2207*103682^(19/24) 4807525989372677 a001 701408733/2207*103682^(5/6) 4807525989391311 a001 433494437/2207*103682^(7/8) 4807525989409945 a001 267914296/2207*103682^(11/12) 4807525989417988 a001 2504730781961/2207*39603^(3/22) 4807525989428579 a001 165580141/2207*103682^(23/24) 4807525989557317 a001 1548008755920/2207*39603^(2/11) 4807525989696647 a001 956722026041/2207*39603^(5/22) 4807525989835976 a001 591286729879/2207*39603^(3/11) 4807525989975305 a001 365435296162/2207*39603^(7/22) 4807525990050475 a001 6557470319842/2207*15127^(1/20) 4807525990114635 a001 225851433717/2207*39603^(4/11) 4807525990170617 a001 987/64079*(1/2+1/2*5^(1/2))^55 4807525990170617 a001 987/64079*3461452808002^(11/12) 4807525990170820 a001 28657/2207*(1/2+1/2*5^(1/2))^41 4807525990253964 a001 139583862445/2207*39603^(9/22) 4807525990393294 a001 86267571272/2207*39603^(5/11) 4807525990532623 a001 53316291173/2207*39603^(1/2) 4807525990613520 a001 10610209857723/3571*521^(1/13) 4807525990671952 a001 32951280099/2207*39603^(6/11) 4807525990811282 a001 20365011074/2207*39603^(13/22) 4807525990950611 a001 12586269025/2207*39603^(7/11) 4807525991089941 a001 7778742049/2207*39603^(15/22) 4807525991100951 a001 4052739537881/2207*15127^(1/10) 4807525991229270 a001 4807526976/2207*39603^(8/11) 4807525991368599 a001 2971215073/2207*39603^(17/22) 4807525991507929 a001 1836311903/2207*39603^(9/11) 4807525991647258 a001 1134903170/2207*39603^(19/22) 4807525991786588 a001 701408733/2207*39603^(10/11) 4807525991925917 a001 433494437/2207*39603^(21/22) 4807525992065044 a001 85146092845464/17711 4807525992151427 a001 2504730781961/2207*15127^(3/20) 4807525993201903 a001 1548008755920/2207*15127^(1/5) 4807525994252378 a001 956722026041/2207*15127^(1/4) 4807525995302854 a001 591286729879/2207*15127^(3/10) 4807525996353330 a001 365435296162/2207*15127^(7/20) 4807525997000075 a001 6557470319842/2207*5778^(1/18) 4807525997024718 a001 987/24476*(1/2+1/2*5^(1/2))^53 4807525997024920 a001 10946/2207*(1/2+1/2*5^(1/2))^43 4807525997385048 r005 Im(z^2+c),c=-17/62+3/43*I,n=25 4807525997403427 a001 2504730781961/9349*1364^(2/5) 4807525997403806 a001 225851433717/2207*15127^(2/5) 4807525998454281 a001 139583862445/2207*15127^(9/20) 4807525998898696 r005 Re(z^2+c),c=-2/3+41/165*I,n=51 4807525999504757 a001 86267571272/2207*15127^(1/2) 4807526000555233 a001 53316291173/2207*15127^(11/20) 4807526001080113 s002 sum(A149152[n]/(pi^n+1),n=1..infinity) 4807526001605709 a001 32951280099/2207*15127^(3/5) 4807526002656184 a001 20365011074/2207*15127^(13/20) 4807526003706660 a001 12586269025/2207*15127^(7/10) 4807526004757136 a001 7778742049/2207*15127^(3/4) 4807526005000150 a001 4052739537881/2207*5778^(1/9) 4807526005807612 a001 4807526976/2207*15127^(4/5) 4807526006858087 a001 2971215073/2207*15127^(17/20) 4807526007908563 a001 1836311903/2207*15127^(9/10) 4807526008959039 a001 1134903170/2207*15127^(19/20) 4807526009572201 a001 12586269025/843*843^(6/7) 4807526010009312 a001 10840971152571/2255 4807526013000226 a001 2504730781961/2207*5778^(1/6) 4807526019424775 h001 (3/8*exp(1)+7/9)/(3/7*exp(2)+4/7) 4807526020585946 r009 Im(z^3+c),c=-51/118+15/29*I,n=17 4807526021000301 a001 1548008755920/2207*5778^(2/9) 4807526025576192 r005 Re(z^2+c),c=-7/12+25/88*I,n=3 4807526029000377 a001 956722026041/2207*5778^(5/18) 4807526029289663 r005 Im(z^2+c),c=-17/62+3/43*I,n=27 4807526030392809 r009 Im(z^3+c),c=-43/94+9/19*I,n=54 4807526033141591 r005 Im(z^2+c),c=-17/62+3/43*I,n=30 4807526033242717 r005 Im(z^2+c),c=-17/62+3/43*I,n=32 4807526033334113 r005 Im(z^2+c),c=-17/62+3/43*I,n=34 4807526033365057 r005 Im(z^2+c),c=-17/62+3/43*I,n=36 4807526033372945 r005 Im(z^2+c),c=-17/62+3/43*I,n=38 4807526033374609 r005 Im(z^2+c),c=-17/62+3/43*I,n=40 4807526033374898 r005 Im(z^2+c),c=-17/62+3/43*I,n=42 4807526033374933 r005 Im(z^2+c),c=-17/62+3/43*I,n=45 4807526033374934 r005 Im(z^2+c),c=-17/62+3/43*I,n=47 4807526033374935 r005 Im(z^2+c),c=-17/62+3/43*I,n=49 4807526033374935 r005 Im(z^2+c),c=-17/62+3/43*I,n=51 4807526033374935 r005 Im(z^2+c),c=-17/62+3/43*I,n=53 4807526033374935 r005 Im(z^2+c),c=-17/62+3/43*I,n=55 4807526033374935 r005 Im(z^2+c),c=-17/62+3/43*I,n=57 4807526033374935 r005 Im(z^2+c),c=-17/62+3/43*I,n=60 4807526033374935 r005 Im(z^2+c),c=-17/62+3/43*I,n=62 4807526033374935 r005 Im(z^2+c),c=-17/62+3/43*I,n=64 4807526033374935 r005 Im(z^2+c),c=-17/62+3/43*I,n=59 4807526033374935 r005 Im(z^2+c),c=-17/62+3/43*I,n=63 4807526033374935 r005 Im(z^2+c),c=-17/62+3/43*I,n=61 4807526033374935 r005 Im(z^2+c),c=-17/62+3/43*I,n=58 4807526033374935 r005 Im(z^2+c),c=-17/62+3/43*I,n=56 4807526033374935 r005 Im(z^2+c),c=-17/62+3/43*I,n=54 4807526033374935 r005 Im(z^2+c),c=-17/62+3/43*I,n=52 4807526033374935 r005 Im(z^2+c),c=-17/62+3/43*I,n=50 4807526033374935 r005 Im(z^2+c),c=-17/62+3/43*I,n=44 4807526033374936 r005 Im(z^2+c),c=-17/62+3/43*I,n=48 4807526033374937 r005 Im(z^2+c),c=-17/62+3/43*I,n=46 4807526033374943 r005 Im(z^2+c),c=-17/62+3/43*I,n=43 4807526033375052 r005 Im(z^2+c),c=-17/62+3/43*I,n=41 4807526033375766 r005 Im(z^2+c),c=-17/62+3/43*I,n=39 4807526033379470 r005 Im(z^2+c),c=-17/62+3/43*I,n=37 4807526033395509 r005 Im(z^2+c),c=-17/62+3/43*I,n=35 4807526033417348 r005 Im(z^2+c),c=-17/62+3/43*I,n=29 4807526033446896 r002 61th iterates of z^2 + 4807526033451355 r005 Im(z^2+c),c=-17/62+3/43*I,n=33 4807526033576484 r005 Im(z^2+c),c=-17/62+3/43*I,n=31 4807526034291451 r005 Im(z^2+c),c=-17/62+3/43*I,n=28 4807526037000452 a001 591286729879/2207*5778^(1/3) 4807526043772969 m001 Ei(1)^(GAMMA(7/12)*ErdosBorwein) 4807526044003422 a001 987/9349*817138163596^(17/19) 4807526044003422 a001 987/9349*14662949395604^(17/21) 4807526044003422 a001 987/9349*(1/2+1/2*5^(1/2))^51 4807526044003422 a001 987/9349*192900153618^(17/18) 4807526044003624 a001 4181/2207*45537549124^(15/17) 4807526044003624 a001 4181/2207*312119004989^(9/11) 4807526044003624 a001 4181/2207*14662949395604^(5/7) 4807526044003624 a001 4181/2207*(1/2+1/2*5^(1/2))^45 4807526044003624 a001 4181/2207*192900153618^(5/6) 4807526044003624 a001 4181/2207*28143753123^(9/10) 4807526044003624 a001 4181/2207*10749957122^(15/16) 4807526044896731 m006 (5/6/Pi-5/6)/(4*Pi-3/4) 4807526045000528 a001 365435296162/2207*5778^(7/18) 4807526046390174 r005 Im(z^2+c),c=-17/62+3/43*I,n=26 4807526050687494 a001 6557470319842/2207*2207^(1/16) 4807526053000603 a001 225851433717/2207*5778^(4/9) 4807526061000679 a001 139583862445/2207*5778^(1/2) 4807526062690363 m001 BesselK(1,1)^Zeta(1,2)-GAMMA(5/6) 4807526069000754 a001 86267571272/2207*5778^(5/9) 4807526077000830 a001 53316291173/2207*5778^(11/18) 4807526085000905 a001 32951280099/2207*5778^(2/3) 4807526093000981 a001 20365011074/2207*5778^(13/18) 4807526093656970 a001 6557470319842/15127*1364^(1/3) 4807526094166282 r009 Im(z^3+c),c=-31/66+29/60*I,n=45 4807526094501833 m001 1/ln(Riemann1stZero)/CopelandErdos/gamma^2 4807526101001056 a001 12586269025/2207*5778^(7/9) 4807526109001132 a001 7778742049/2207*5778^(5/6) 4807526112374988 a001 4052739537881/2207*2207^(1/8) 4807526117001208 a001 4807526976/2207*5778^(8/9) 4807526122691407 a001 10610209857723/24476*1364^(1/3) 4807526123939398 a007 Real Root Of -94*x^4+30*x^3-182*x^2+844*x+41 4807526124819893 r005 Im(z^2+c),c=-17/62+3/43*I,n=24 4807526125001283 a001 2971215073/2207*5778^(17/18) 4807526127843625 r002 36th iterates of z^2 + 4807526132952609 m001 (Chi(1)*FeigenbaumMu+Zeta(5))/Chi(1) 4807526133001160 a001 12422647527675/2584 4807526140796959 a007 Real Root Of -5*x^4+134*x^3-981*x^2+202*x+339 4807526142931812 a001 4052739537881/5778*1364^(4/15) 4807526147133589 a001 591286729879/3571*1364^(7/15) 4807526168607740 r005 Im(z^2+c),c=-41/74+26/53*I,n=6 4807526169670113 a001 4052739537881/9349*1364^(1/3) 4807526172327660 r005 Re(z^2+c),c=3/34+20/49*I,n=31 4807526174062484 a001 2504730781961/2207*2207^(3/16) 4807526175791375 m001 (Si(Pi)+Pi^(1/2))/(MasserGramain+OneNinth) 4807526176666875 a007 Real Root Of 964*x^4-176*x^3+239*x^2-41*x-146 4807526178440235 m001 Khinchin*(5^(1/2))^Sarnak 4807526187238361 r005 Im(z^2+c),c=-75/106+1/3*I,n=25 4807526205743736 m001 Pi*2^(1/2)/GAMMA(3/4)*GAMMA(17/24)+ZetaR(2) 4807526210500578 a007 Real Root Of 102*x^4+646*x^3+789*x^2+84*x-539 4807526225237716 s001 sum(exp(-Pi/4)^(n-1)*A262709[n],n=1..infinity) 4807526226291814 m001 (BesselK(1,1)+CareFree)/(BesselJ(0,1)-Zeta(5)) 4807526235749981 a001 1548008755920/2207*2207^(1/4) 4807526265923660 a001 1515744265389/2161*1364^(4/15) 4807526266092878 m001 (KomornikLoreti-Stephens)/(ln(Pi)+exp(1/Pi)) 4807526275349990 r009 Im(z^3+c),c=-33/98+33/62*I,n=35 4807526282765334 m001 (gamma+cos(1/12*Pi))/(-FellerTornier+ZetaQ(4)) 4807526289397064 a007 Real Root Of -133*x^4+750*x^3-194*x^2+482*x+367 4807526297437478 a001 956722026041/2207*2207^(5/16) 4807526301507966 a007 Real Root Of 415*x^4-529*x^3-326*x^2-855*x+523 4807526303483461 a007 Real Root Of 863*x^4-56*x^3+261*x^2-631*x-416 4807526307437362 r005 Re(z^2+c),c=-95/118+10/33*I,n=6 4807526307656961 m001 (Zeta(5)+Backhouse)/(PolyaRandomWalk3D-Thue) 4807526315198504 a001 3278735159921/2889*1364^(1/5) 4807526316932826 m001 exp(FeigenbaumB)*Backhouse^2*Paris 4807526319400281 a001 956722026041/3571*1364^(2/5) 4807526320873822 r009 Im(z^3+c),c=-37/82+14/29*I,n=25 4807526322830168 r002 11th iterates of z^2 + 4807526333509098 b008 ArcCosh[117/2+E] 4807526341936805 a001 6557470319842/9349*1364^(4/15) 4807526347434524 a007 Real Root Of 610*x^4+405*x^3-59*x^2-335*x-135 4807526349610434 a001 322/1597*233^(32/55) 4807526352160920 r009 Im(z^3+c),c=-11/40+21/38*I,n=31 4807526359124976 a001 591286729879/2207*2207^(3/8) 4807526361604722 a007 Real Root Of 420*x^4-898*x^3+747*x^2+85*x-254 4807526366000280 a001 987/3571*14662949395604^(7/9) 4807526366000280 a001 987/3571*(1/2+1/2*5^(1/2))^49 4807526366000280 a001 987/3571*505019158607^(7/8) 4807526366000453 a001 1597/2207*(1/2+1/2*5^(1/2))^47 4807526370076503 h001 (9/10*exp(1)+2/9)/(2/3*exp(2)+5/8) 4807526371378546 m001 Salem*ln(Riemann1stZero)*cosh(1) 4807526378324176 l006 ln(5124/8287) 4807526383006782 a007 Real Root Of -147*x^4+911*x^3-468*x^2-481*x-14 4807526403473249 a007 Real Root Of 429*x^4-143*x^3+779*x^2-252*x-340 4807526420812475 a001 365435296162/2207*2207^(7/16) 4807526429588363 m001 (-BesselI(1,1)+Kac)/(LambertW(1)-ln(2)) 4807526440217427 m001 (-Sarnak+ZetaQ(3))/(2^(1/2)-gamma(1)) 4807526452175103 r005 Im(z^2+c),c=21/64+27/41*I,n=5 4807526454852811 r009 Im(z^3+c),c=-5/34+35/57*I,n=9 4807526454998121 a001 7677619748632/1597 4807526464791615 m001 FeigenbaumD+LaplaceLimit+MinimumGamma 4807526472213872 a001 6557470319842/2207*843^(1/14) 4807526474752391 r002 37th iterates of z^2 + 4807526477174596 a001 12586269025/5778*3571^(16/17) 4807526482499974 a001 225851433717/2207*2207^(1/2) 4807526484778736 m001 PisotVijayaraghavan-GaussKuzminWirsing-cos(1) 4807526485313193 r005 Re(z^2+c),c=-7/10+19/244*I,n=21 4807526487465201 a001 3536736619241/1926*1364^(2/15) 4807526491666979 a001 1548008755920/3571*1364^(1/3) 4807526492786076 a001 7778742049/843*843^(13/14) 4807526499351096 a001 10182505537/2889*3571^(15/17) 4807526499818397 r004 Re(z^2+c),c=-9/14+1/17*I,z(0)=-1,n=6 4807526502699817 a001 2207/89*233^(31/57) 4807526514203504 a001 10610209857723/9349*1364^(1/5) 4807526520806752 m001 (Stephens+ZetaP(2))/(FeigenbaumB+Mills) 4807526521527597 a001 10983760033/1926*3571^(14/17) 4807526530705380 r005 Im(z^2+c),c=-17/62+3/43*I,n=22 4807526543704098 a001 53316291173/5778*3571^(13/17) 4807526544187475 a001 139583862445/2207*2207^(9/16) 4807526565880598 a001 43133785636/2889*3571^(12/17) 4807526569253440 m001 (Artin+Champernowne)/MertensB2 4807526577989981 a001 7677619945050/1597 4807526580377553 m001 RenyiParking/exp(Backhouse)/GAMMA(1/4) 4807526581879132 a008 Real Root of (-2+2*x+6*x^2-7*x^4+9*x^8) 4807526585987542 a008 Real Root of x^4-x^2-62*x-213 4807526588057099 a001 139583862445/5778*3571^(11/17) 4807526594353926 r005 Re(z^2+c),c=-17/46+21/32*I,n=12 4807526595934251 a001 7677619973707/1597 4807526598552285 a001 7677619977888/1597 4807526598934251 a001 7677619978498/1597 4807526598989981 a001 7677619978587/1597 4807526598998121 a001 7677619978600/1597 4807526598999373 a001 7677619978602/1597 4807526599003130 a001 7677619978608/1597 4807526599024420 a001 7677619978642/1597 4807526599170319 a001 7677619978875/1597 4807526600166452 a001 32951280099/15127*3571^(16/17) 4807526600170319 a001 7677619980472/1597 4807526604770396 m005 (1/3*Pi+1/2)/(exp(1)+1/2) 4807526605874976 a001 86267571272/2207*2207^(5/8) 4807526607024420 a001 7677619991418/1597 4807526610233600 a001 75283811239/1926*3571^(10/17) 4807526618110723 a001 86267571272/39603*3571^(16/17) 4807526620728756 a001 225851433717/103682*3571^(16/17) 4807526621110722 a001 591286729879/271443*3571^(16/17) 4807526621166450 a001 1548008755920/710647*3571^(16/17) 4807526621174581 a001 4052739537881/1860498*3571^(16/17) 4807526621175767 a001 2178309*3571^(16/17) 4807526621176500 a001 6557470319842/3010349*3571^(16/17) 4807526621179606 a001 2504730781961/1149851*3571^(16/17) 4807526621200892 a001 956722026041/439204*3571^(16/17) 4807526621346790 a001 365435296162/167761*3571^(16/17) 4807526622342953 a001 53316291173/15127*3571^(15/17) 4807526622346790 a001 139583862445/64079*3571^(16/17) 4807526629200892 a001 53316291173/24476*3571^(16/17) 4807526632410101 a001 182717648081/2889*3571^(9/17) 4807526640287224 a001 139583862445/39603*3571^(15/17) 4807526642905257 a001 182717648081/51841*3571^(15/17) 4807526643287223 a001 956722026041/271443*3571^(15/17) 4807526643342952 a001 2504730781961/710647*3571^(15/17) 4807526643351082 a001 3278735159921/930249*3571^(15/17) 4807526643353002 a001 10610209857723/3010349*3571^(15/17) 4807526643356107 a001 4052739537881/1149851*3571^(15/17) 4807526643377393 a001 387002188980/109801*3571^(15/17) 4807526643523291 a001 591286729879/167761*3571^(15/17) 4807526644519454 a001 86267571272/15127*3571^(14/17) 4807526644523291 a001 225851433717/64079*3571^(15/17) 4807526650168676 m005 (1/2*gamma-1/6)/(exp(1)-2/11) 4807526651377393 a001 21566892818/6119*3571^(15/17) 4807526654003130 a001 7677620066443/1597 4807526654586602 a001 591286729879/5778*3571^(8/17) 4807526656391116 m005 (2/5*exp(1)-4/5)/(1/6*2^(1/2)-5/6) 4807526662463725 a001 75283811239/13201*3571^(14/17) 4807526663933682 a001 2504730781961/3571*1364^(4/15) 4807526665081759 a001 591286729879/103682*3571^(14/17) 4807526665463725 a001 516002918640/90481*3571^(14/17) 4807526665519453 a001 4052739537881/710647*3571^(14/17) 4807526665527583 a001 3536736619241/620166*3571^(14/17) 4807526665532608 a001 6557470319842/1149851*3571^(14/17) 4807526665553895 a001 2504730781961/439204*3571^(14/17) 4807526665699793 a001 956722026041/167761*3571^(14/17) 4807526666695955 a001 139583862445/15127*3571^(13/17) 4807526666699793 a001 365435296162/64079*3571^(14/17) 4807526667562478 a001 53316291173/2207*2207^(11/16) 4807526673553894 a001 139583862445/24476*3571^(14/17) 4807526676179603 a001 20365011074/9349*3571^(16/17) 4807526676763103 a001 956722026041/5778*3571^(7/17) 4807526680854980 r005 Re(z^2+c),c=-5/8+37/242*I,n=14 4807526684640226 a001 365435296162/39603*3571^(13/17) 4807526687258260 a001 956722026041/103682*3571^(13/17) 4807526687640226 a001 2504730781961/271443*3571^(13/17) 4807526687695954 a001 6557470319842/710647*3571^(13/17) 4807526687709110 a001 10610209857723/1149851*3571^(13/17) 4807526687730396 a001 4052739537881/439204*3571^(13/17) 4807526687876294 a001 140728068720/15251*3571^(13/17) 4807526687997230 a001 1292/2889*45537549124^(16/17) 4807526687997230 a001 1292/2889*14662949395604^(16/21) 4807526687997230 a001 1292/2889*(1/2+1/2*5^(1/2))^48 4807526687997230 a001 1292/2889*192900153618^(8/9) 4807526687997230 a001 1292/2889*73681302247^(12/13) 4807526688872457 a001 32264490531/2161*3571^(12/17) 4807526688876294 a001 591286729879/64079*3571^(13/17) 4807526693988818 r002 48th iterates of z^2 + 4807526695730395 a001 7787980473/844*3571^(13/17) 4807526696124793 r009 Im(z^3+c),c=-63/110+9/19*I,n=13 4807526698356104 a001 32951280099/9349*3571^(15/17) 4807526698939605 a001 86000486440/321*3571^(6/17) 4807526701584355 p003 LerchPhi(1/125,1,389/186) 4807526702977392 m001 (MinimumGamma-PlouffeB)/(Kac-MasserGramain) 4807526706816727 a001 591286729879/39603*3571^(12/17) 4807526707353244 m001 (gamma(1)*GAMMA(17/24)-Magata)/gamma(1) 4807526709434761 a001 774004377960/51841*3571^(12/17) 4807526709816727 a001 4052739537881/271443*3571^(12/17) 4807526709872455 a001 1515744265389/101521*3571^(12/17) 4807526709906897 a001 3278735159921/219602*3571^(12/17) 4807526710052795 a001 2504730781961/167761*3571^(12/17) 4807526711048958 a001 365435296162/15127*3571^(11/17) 4807526711052795 a001 956722026041/64079*3571^(12/17) 4807526717906897 a001 182717648081/12238*3571^(12/17) 4807526720532605 a001 53316291173/9349*3571^(14/17) 4807526721116106 a001 2504730781961/5778*3571^(5/17) 4807526728993229 a001 956722026041/39603*3571^(11/17) 4807526729249981 a001 32951280099/2207*2207^(3/4) 4807526731611263 a001 2504730781961/103682*3571^(11/17) 4807526731993229 a001 6557470319842/271443*3571^(11/17) 4807526732083399 a001 10610209857723/439204*3571^(11/17) 4807526732229297 a001 4052739537881/167761*3571^(11/17) 4807526733225460 a001 591286729879/15127*3571^(10/17) 4807526733229297 a001 1548008755920/64079*3571^(11/17) 4807526734390650 l006 ln(3389/5481) 4807526740083398 a001 591286729879/24476*3571^(11/17) 4807526741726745 a007 Real Root Of -371*x^4+800*x^3-573*x^2+449*x+457 4807526742709107 a001 86267571272/9349*3571^(13/17) 4807526743292608 a001 4052739537881/5778*3571^(4/17) 4807526745990679 a007 Real Root Of -971*x^4-454*x^3+805*x^2+558*x-352 4807526748527729 a003 sin(Pi*10/63)/sin(Pi*36/77) 4807526751169731 a001 516002918640/13201*3571^(10/17) 4807526753787764 a001 4052739537881/103682*3571^(10/17) 4807526753996218 m001 1/ln(Riemann1stZero)/Lehmer^2/sqrt(5) 4807526754169730 a001 3536736619241/90481*3571^(10/17) 4807526754405798 a001 6557470319842/167761*3571^(10/17) 4807526755401961 a001 956722026041/15127*3571^(9/17) 4807526755405798 a001 2504730781961/64079*3571^(10/17) 4807526760648859 r005 Im(z^2+c),c=1/13+32/61*I,n=8 4807526762259900 a001 956722026041/24476*3571^(10/17) 4807526764885609 a001 139583862445/9349*3571^(12/17) 4807526765469109 a001 3278735159921/2889*3571^(3/17) 4807526769091801 a001 3010349*34^(11/14) 4807526773346232 a001 2504730781961/39603*3571^(9/17) 4807526775964266 a001 3278735159921/51841*3571^(9/17) 4807526776582300 a001 10610209857723/167761*3571^(9/17) 4807526776994977 a001 20100269454616/4181 4807526777578463 a001 1548008755920/15127*3571^(8/17) 4807526777582300 a001 4052739537881/64079*3571^(9/17) 4807526779889909 a001 267084832/321*9349^(18/19) 4807526782641204 r009 Im(z^3+c),c=-37/64+5/22*I,n=11 4807526782784837 a001 7778742049/5778*9349^(17/19) 4807526784436402 a001 387002188980/6119*3571^(9/17) 4807526785679765 a001 12586269025/5778*9349^(16/19) 4807526787062110 a001 225851433717/9349*3571^(11/17) 4807526787645611 a001 3536736619241/1926*3571^(2/17) 4807526788574693 a001 10182505537/2889*9349^(15/19) 4807526788811070 m001 (Chi(1)*BesselJ(0,1)-FeigenbaumDelta)/Chi(1) 4807526788860577 a007 Real Root Of -911*x^4+434*x^3-822*x^2+279*x+421 4807526790937484 a001 20365011074/2207*2207^(13/16) 4807526791469621 a001 10983760033/1926*9349^(14/19) 4807526794364549 a001 53316291173/5778*9349^(13/19) 4807526795522734 a001 4052739537881/39603*3571^(8/17) 4807526797259477 a001 43133785636/2889*9349^(12/19) 4807526798140768 a001 225749145909/2206*3571^(8/17) 4807526799754965 a001 2504730781961/15127*3571^(7/17) 4807526799758802 a001 6557470319842/64079*3571^(8/17) 4807526800154405 a001 139583862445/5778*9349^(11/19) 4807526803049334 a001 75283811239/1926*9349^(10/19) 4807526804129663 a007 Real Root Of -845*x^4-420*x^3-546*x^2+606*x+416 4807526805944262 a001 182717648081/2889*9349^(9/19) 4807526806612904 a001 2504730781961/24476*3571^(8/17) 4807526808839190 a001 591286729879/5778*9349^(8/19) 4807526809238612 a001 365435296162/9349*3571^(10/17) 4807526810989092 a001 2584/15127*312119004989^(10/11) 4807526810989092 a001 2584/15127*(1/2+1/2*5^(1/2))^50 4807526810989092 a001 2584/15127*3461452808002^(5/6) 4807526810989096 a001 2255/1926*(1/2+1/2*5^(1/2))^46 4807526810989096 a001 2255/1926*10749957122^(23/24) 4807526811734118 a001 956722026041/5778*9349^(7/19) 4807526814629046 a001 86000486440/321*9349^(6/19) 4807526817523974 a001 2504730781961/5778*9349^(5/19) 4807526817699236 a001 6557470319842/39603*3571^(7/17) 4807526820418902 a001 4052739537881/5778*9349^(4/19) 4807526821931467 a001 4052739537881/15127*3571^(6/17) 4807526821935304 a001 10610209857723/64079*3571^(7/17) 4807526823313831 a001 3278735159921/2889*9349^(3/19) 4807526823973689 a001 26311594307608/5473 4807526824355832 a001 1836311903/5778*24476^(20/21) 4807526824737971 a001 2971215073/5778*24476^(19/21) 4807526825120110 a001 267084832/321*24476^(6/7) 4807526825502249 a001 7778742049/5778*24476^(17/21) 4807526825884389 a001 12586269025/5778*24476^(16/21) 4807526826208759 a001 3536736619241/1926*9349^(2/19) 4807526826266528 a001 10182505537/2889*24476^(5/7) 4807526826648667 a001 10983760033/1926*24476^(2/3) 4807526827030806 a001 53316291173/5778*24476^(13/21) 4807526827412945 a001 43133785636/2889*24476^(4/7) 4807526827795084 a001 139583862445/5778*24476^(11/21) 4807526828177223 a001 75283811239/1926*24476^(10/21) 4807526828559363 a001 182717648081/2889*24476^(3/7) 4807526828789405 a001 4052739537881/24476*3571^(7/17) 4807526828933363 a001 2584/39603*(1/2+1/2*5^(1/2))^52 4807526828933363 a001 2584/39603*23725150497407^(13/16) 4807526828933363 a001 2584/39603*505019158607^(13/14) 4807526828933367 a001 17711/5778*312119004989^(4/5) 4807526828933367 a001 17711/5778*(1/2+1/2*5^(1/2))^44 4807526828933367 a001 17711/5778*23725150497407^(11/16) 4807526828933367 a001 17711/5778*73681302247^(11/13) 4807526828933367 a001 17711/5778*10749957122^(11/12) 4807526828933367 a001 17711/5778*4106118243^(22/23) 4807526828941502 a001 591286729879/5778*24476^(8/21) 4807526829323641 a001 956722026041/5778*24476^(1/3) 4807526829705780 a001 86000486440/321*24476^(2/7) 4807526830087919 a001 2504730781961/5778*24476^(5/21) 4807526830470058 a001 4052739537881/5778*24476^(4/21) 4807526830827790 a001 137769296391032/28657 4807526830852197 a001 3278735159921/2889*24476^(1/7) 4807526830878700 a001 233802911/1926*64079^(22/23) 4807526830929605 a001 567451585/2889*64079^(21/23) 4807526830980510 a001 1836311903/5778*64079^(20/23) 4807526831031416 a001 2971215073/5778*64079^(19/23) 4807526831082321 a001 267084832/321*64079^(18/23) 4807526831133226 a001 7778742049/5778*64079^(17/23) 4807526831184131 a001 12586269025/5778*64079^(16/23) 4807526831234337 a001 3536736619241/1926*24476^(2/21) 4807526831235036 a001 10182505537/2889*64079^(15/23) 4807526831285942 a001 10983760033/1926*64079^(14/23) 4807526831336847 a001 53316291173/5778*64079^(13/23) 4807526831387752 a001 43133785636/2889*64079^(12/23) 4807526831415114 a001 591286729879/9349*3571^(9/17) 4807526831438657 a001 139583862445/5778*64079^(11/23) 4807526831489563 a001 75283811239/1926*64079^(10/23) 4807526831540468 a001 182717648081/2889*64079^(9/23) 4807526831551397 a001 1292/51841*14662949395604^(6/7) 4807526831551397 a001 1292/51841*(1/2+1/2*5^(1/2))^54 4807526831551401 a001 2576/321*2537720636^(14/15) 4807526831551401 a001 2576/321*17393796001^(6/7) 4807526831551401 a001 2576/321*45537549124^(14/17) 4807526831551401 a001 2576/321*817138163596^(14/19) 4807526831551401 a001 2576/321*14662949395604^(2/3) 4807526831551401 a001 2576/321*(1/2+1/2*5^(1/2))^42 4807526831551401 a001 2576/321*505019158607^(3/4) 4807526831551401 a001 2576/321*192900153618^(7/9) 4807526831551401 a001 2576/321*10749957122^(7/8) 4807526831551401 a001 2576/321*4106118243^(21/23) 4807526831551401 a001 2576/321*1568397607^(21/22) 4807526831591373 a001 591286729879/5778*64079^(8/23) 4807526831642278 a001 956722026041/5778*64079^(7/23) 4807526831693184 a001 86000486440/321*64079^(6/23) 4807526831744089 a001 2504730781961/5778*64079^(5/23) 4807526831794994 a001 4052739537881/5778*64079^(4/23) 4807526831827790 a001 72136940111576/15005 4807526831845899 a001 3278735159921/2889*64079^(3/23) 4807526831861959 a001 1836311903/5778*167761^(4/5) 4807526831896123 a001 10182505537/2889*167761^(3/5) 4807526831896804 a001 3536736619241/1926*64079^(2/23) 4807526831930287 a001 75283811239/1926*167761^(2/5) 4807526831933363 a001 2584/271443*14662949395604^(8/9) 4807526831933363 a001 2584/271443*(1/2+1/2*5^(1/2))^56 4807526831933367 a001 121393/5778*2537720636^(8/9) 4807526831933367 a001 121393/5778*312119004989^(8/11) 4807526831933367 a001 121393/5778*(1/2+1/2*5^(1/2))^40 4807526831933367 a001 121393/5778*23725150497407^(5/8) 4807526831933367 a001 121393/5778*73681302247^(10/13) 4807526831933367 a001 121393/5778*28143753123^(4/5) 4807526831933367 a001 121393/5778*10749957122^(5/6) 4807526831933367 a001 121393/5778*4106118243^(20/23) 4807526831933367 a001 121393/5778*1568397607^(10/11) 4807526831933367 a001 121393/5778*599074578^(20/21) 4807526831964451 a001 2504730781961/5778*167761^(1/5) 4807526831973688 a001 27773082508312/5777 4807526831976462 a001 133957148/2889*439204^(8/9) 4807526831979231 a001 567451585/2889*439204^(7/9) 4807526831982000 a001 267084832/321*439204^(2/3) 4807526831984769 a001 10182505537/2889*439204^(5/9) 4807526831987538 a001 43133785636/2889*439204^(4/9) 4807526831989091 a001 2584/710647*(1/2+1/2*5^(1/2))^58 4807526831989095 a001 105937/1926*817138163596^(2/3) 4807526831989095 a001 105937/1926*(1/2+1/2*5^(1/2))^38 4807526831989095 a001 105937/1926*10749957122^(19/24) 4807526831989095 a001 105937/1926*4106118243^(19/23) 4807526831989095 a001 105937/1926*1568397607^(19/22) 4807526831989095 a001 105937/1926*599074578^(19/21) 4807526831989096 a001 105937/1926*228826127^(19/20) 4807526831990307 a001 182717648081/2889*439204^(1/3) 4807526831993077 a001 86000486440/321*439204^(2/9) 4807526831994975 a001 2472169715289944/514229 4807526831995846 a001 3278735159921/2889*439204^(1/9) 4807526831997222 a001 1292/930249*14662949395604^(20/21) 4807526831997222 a001 1292/930249*(1/2+1/2*5^(1/2))^60 4807526831997226 a001 416020/2889*141422324^(12/13) 4807526831997226 a001 416020/2889*2537720636^(4/5) 4807526831997226 a001 416020/2889*45537549124^(12/17) 4807526831997226 a001 416020/2889*14662949395604^(4/7) 4807526831997226 a001 416020/2889*(1/2+1/2*5^(1/2))^36 4807526831997226 a001 416020/2889*505019158607^(9/14) 4807526831997226 a001 416020/2889*192900153618^(2/3) 4807526831997226 a001 416020/2889*73681302247^(9/13) 4807526831997226 a001 416020/2889*10749957122^(3/4) 4807526831997226 a001 416020/2889*4106118243^(18/23) 4807526831997226 a001 416020/2889*1568397607^(9/11) 4807526831997226 a001 416020/2889*599074578^(6/7) 4807526831997226 a001 416020/2889*228826127^(9/10) 4807526831997227 a001 416020/2889*87403803^(18/19) 4807526831998080 a001 6472224340587224/1346269 4807526831998408 a001 2584/4870847*(1/2+1/2*5^(1/2))^62 4807526831998412 a001 726103/1926*45537549124^(2/3) 4807526831998412 a001 726103/1926*(1/2+1/2*5^(1/2))^34 4807526831998412 a001 726103/1926*10749957122^(17/24) 4807526831998412 a001 726103/1926*4106118243^(17/23) 4807526831998412 a001 726103/1926*1568397607^(17/22) 4807526831998412 a001 726103/1926*599074578^(17/21) 4807526831998412 a001 726103/1926*228826127^(17/20) 4807526831998413 a001 726103/1926*87403803^(17/19) 4807526831998416 a001 726103/1926*33385282^(17/18) 4807526831998533 a001 8472251653235864/1762289 4807526831998540 a001 2584*7881196^(10/11) 4807526831998552 a001 31622993/2889*7881196^(9/11) 4807526831998559 a001 133957148/2889*7881196^(8/11) 4807526831998563 a001 233802911/1926*7881196^(2/3) 4807526831998566 a001 567451585/2889*7881196^(7/11) 4807526831998573 a001 267084832/321*7881196^(6/11) 4807526831998580 a001 10182505537/2889*7881196^(5/11) 4807526831998581 a001 2584/12752043*(1/2+1/2*5^(1/2))^64 4807526831998585 a001 5702887/5778*(1/2+1/2*5^(1/2))^32 4807526831998585 a001 5702887/5778*23725150497407^(1/2) 4807526831998585 a001 5702887/5778*505019158607^(4/7) 4807526831998585 a001 5702887/5778*73681302247^(8/13) 4807526831998585 a001 5702887/5778*10749957122^(2/3) 4807526831998585 a001 5702887/5778*4106118243^(16/23) 4807526831998585 a001 5702887/5778*1568397607^(8/11) 4807526831998585 a001 5702887/5778*599074578^(16/21) 4807526831998585 a001 5702887/5778*228826127^(4/5) 4807526831998586 a001 5702887/5778*87403803^(16/19) 4807526831998587 a001 43133785636/2889*7881196^(4/11) 4807526831998589 a001 139583862445/5778*7881196^(1/3) 4807526831998589 a001 5702887/5778*33385282^(8/9) 4807526831998594 a001 182717648081/2889*7881196^(3/11) 4807526831998601 a001 86000486440/321*7881196^(2/11) 4807526831998601 a001 2584*20633239^(6/7) 4807526831998605 a001 39088169/5778*20633239^(4/5) 4807526831998607 a001 165580141/5778*20633239^(5/7) 4807526831998608 a001 3278735159921/2889*7881196^(1/11) 4807526831998608 a001 567451585/2889*20633239^(3/5) 4807526831998608 a001 1836311903/5778*20633239^(4/7) 4807526831998610 a001 10182505537/2889*20633239^(3/7) 4807526831998610 a001 10983760033/1926*20633239^(2/5) 4807526831998610 a001 2584*141422324^(10/13) 4807526831998611 a001 2584*2537720636^(2/3) 4807526831998611 a001 2584*45537549124^(10/17) 4807526831998611 a001 2584*312119004989^(6/11) 4807526831998611 a001 2584*14662949395604^(10/21) 4807526831998611 a001 2584*(1/2+1/2*5^(1/2))^30 4807526831998611 a001 2584*192900153618^(5/9) 4807526831998611 a001 2584*28143753123^(3/5) 4807526831998611 a001 2584*10749957122^(5/8) 4807526831998611 a001 2584*4106118243^(15/23) 4807526831998611 a001 2584*1568397607^(15/22) 4807526831998611 a001 2584*599074578^(5/7) 4807526831998611 a001 2584*228826127^(3/4) 4807526831998611 a001 2584*87403803^(15/19) 4807526831998612 a001 75283811239/1926*20633239^(2/7) 4807526831998613 a001 956722026041/5778*20633239^(1/5) 4807526831998613 a001 5702887/5778*12752043^(16/17) 4807526831998613 a001 2504730781961/5778*20633239^(1/7) 4807526831998614 a001 2584*33385282^(5/6) 4807526831998614 a001 39088169/5778*17393796001^(4/7) 4807526831998614 a001 39088169/5778*14662949395604^(4/9) 4807526831998614 a001 39088169/5778*(1/2+1/2*5^(1/2))^28 4807526831998614 a001 39088169/5778*73681302247^(7/13) 4807526831998614 a001 39088169/5778*10749957122^(7/12) 4807526831998614 a001 39088169/5778*4106118243^(14/23) 4807526831998614 a001 39088169/5778*1568397607^(7/11) 4807526831998614 a001 39088169/5778*599074578^(2/3) 4807526831998614 a001 39088169/5778*228826127^(7/10) 4807526831998615 a001 34111385/1926*141422324^(2/3) 4807526831998615 a001 39088169/5778*87403803^(14/19) 4807526831998615 a001 133957148/2889*141422324^(8/13) 4807526831998615 a001 567451585/2889*141422324^(7/13) 4807526831998615 a001 267084832/321*141422324^(6/13) 4807526831998615 a001 10182505537/2889*141422324^(5/13) 4807526831998615 a001 34111385/1926*(1/2+1/2*5^(1/2))^26 4807526831998615 a001 34111385/1926*73681302247^(1/2) 4807526831998615 a001 34111385/1926*10749957122^(13/24) 4807526831998615 a001 34111385/1926*4106118243^(13/23) 4807526831998615 a001 34111385/1926*1568397607^(13/22) 4807526831998615 a001 34111385/1926*599074578^(13/21) 4807526831998615 a001 53316291173/5778*141422324^(1/3) 4807526831998615 a001 43133785636/2889*141422324^(4/13) 4807526831998615 a001 182717648081/2889*141422324^(3/13) 4807526831998615 a001 86000486440/321*141422324^(2/13) 4807526831998615 a001 34111385/1926*228826127^(13/20) 4807526831998615 a001 3278735159921/2889*141422324^(1/13) 4807526831998615 a001 133957148/2889*2537720636^(8/15) 4807526831998615 a001 133957148/2889*45537549124^(8/17) 4807526831998615 a001 133957148/2889*14662949395604^(8/21) 4807526831998615 a001 133957148/2889*(1/2+1/2*5^(1/2))^24 4807526831998615 a001 133957148/2889*192900153618^(4/9) 4807526831998615 a001 133957148/2889*73681302247^(6/13) 4807526831998615 a001 133957148/2889*10749957122^(1/2) 4807526831998615 a001 133957148/2889*4106118243^(12/23) 4807526831998615 a001 133957148/2889*1568397607^(6/11) 4807526831998615 a001 133957148/2889*599074578^(4/7) 4807526831998615 a001 233802911/1926*312119004989^(2/5) 4807526831998615 a001 233802911/1926*(1/2+1/2*5^(1/2))^22 4807526831998615 a001 233802911/1926*10749957122^(11/24) 4807526831998615 a001 233802911/1926*4106118243^(11/23) 4807526831998615 a001 233802911/1926*1568397607^(1/2) 4807526831998615 a001 1836311903/5778*2537720636^(4/9) 4807526831998615 a001 267084832/321*2537720636^(2/5) 4807526831998615 a001 1836311903/5778*(1/2+1/2*5^(1/2))^20 4807526831998615 a001 1836311903/5778*23725150497407^(5/16) 4807526831998615 a001 1836311903/5778*505019158607^(5/14) 4807526831998615 a001 1836311903/5778*73681302247^(5/13) 4807526831998615 a001 1836311903/5778*28143753123^(2/5) 4807526831998615 a001 1836311903/5778*10749957122^(5/12) 4807526831998615 a001 10182505537/2889*2537720636^(1/3) 4807526831998615 a001 43133785636/2889*2537720636^(4/15) 4807526831998615 a001 75283811239/1926*2537720636^(2/9) 4807526831998615 a001 1836311903/5778*4106118243^(10/23) 4807526831998615 a001 182717648081/2889*2537720636^(1/5) 4807526831998615 a001 86000486440/321*2537720636^(2/15) 4807526831998615 a001 2504730781961/5778*2537720636^(1/9) 4807526831998615 a001 3278735159921/2889*2537720636^(1/15) 4807526831998615 a001 267084832/321*45537549124^(6/17) 4807526831998615 a001 267084832/321*14662949395604^(2/7) 4807526831998615 a001 267084832/321*(1/2+1/2*5^(1/2))^18 4807526831998615 a001 267084832/321*192900153618^(1/3) 4807526831998615 a001 267084832/321*10749957122^(3/8) 4807526831998615 a001 12586269025/5778*(1/2+1/2*5^(1/2))^16 4807526831998615 a001 12586269025/5778*23725150497407^(1/4) 4807526831998615 a001 12586269025/5778*73681302247^(4/13) 4807526831998615 a001 10983760033/1926*17393796001^(2/7) 4807526831998615 a001 956722026041/5778*17393796001^(1/7) 4807526831998615 a001 10983760033/1926*14662949395604^(2/9) 4807526831998615 a001 10983760033/1926*(1/2+1/2*5^(1/2))^14 4807526831998615 a001 43133785636/2889*45537549124^(4/17) 4807526831998615 a001 182717648081/2889*45537549124^(3/17) 4807526831998615 a001 86000486440/321*45537549124^(2/17) 4807526831998615 a001 3278735159921/2889*45537549124^(1/17) 4807526831998615 a001 43133785636/2889*14662949395604^(4/21) 4807526831998615 a001 43133785636/2889*(1/2+1/2*5^(1/2))^12 4807526831998615 a001 75283811239/1926*312119004989^(2/11) 4807526831998615 a001 75283811239/1926*(1/2+1/2*5^(1/2))^10 4807526831998615 a001 2504730781961/5778*312119004989^(1/11) 4807526831998615 a001 4052739537881/5778*(1/2+1/2*5^(1/2))^4 4807526831998615 a001 591286729879/5778*505019158607^(1/7) 4807526831998615 a001 3536736619241/1926*(1/2+1/2*5^(1/2))^2 4807526831998615 a001 3278735159921/2889*14662949395604^(1/21) 4807526831998615 a001 3278735159921/2889*(1/2+1/2*5^(1/2))^3 4807526831998615 a001 2504730781961/5778*(1/2+1/2*5^(1/2))^5 4807526831998615 a001 182717648081/2889*817138163596^(3/19) 4807526831998615 a001 182717648081/2889*14662949395604^(1/7) 4807526831998615 a001 182717648081/2889*192900153618^(1/6) 4807526831998615 a001 139583862445/5778*312119004989^(1/5) 4807526831998615 a001 139583862445/5778*(1/2+1/2*5^(1/2))^11 4807526831998615 a001 4052739537881/5778*73681302247^(1/13) 4807526831998615 a001 43133785636/2889*73681302247^(3/13) 4807526831998615 a001 591286729879/5778*73681302247^(2/13) 4807526831998615 a001 53316291173/5778*73681302247^(1/4) 4807526831998615 a001 2504730781961/5778*28143753123^(1/10) 4807526831998615 a001 75283811239/1926*28143753123^(1/5) 4807526831998615 a001 10182505537/2889*45537549124^(5/17) 4807526831998615 a001 3536736619241/1926*10749957122^(1/24) 4807526831998615 a001 10182505537/2889*312119004989^(3/11) 4807526831998615 a001 10182505537/2889*14662949395604^(5/21) 4807526831998615 a001 10182505537/2889*(1/2+1/2*5^(1/2))^15 4807526831998615 a001 10182505537/2889*192900153618^(5/18) 4807526831998615 a001 3278735159921/2889*10749957122^(1/16) 4807526831998615 a001 4052739537881/5778*10749957122^(1/12) 4807526831998615 a001 10182505537/2889*28143753123^(3/10) 4807526831998615 a001 86000486440/321*10749957122^(1/8) 4807526831998615 a001 591286729879/5778*10749957122^(1/6) 4807526831998615 a001 12586269025/5778*10749957122^(1/3) 4807526831998615 a001 182717648081/2889*10749957122^(3/16) 4807526831998615 a001 75283811239/1926*10749957122^(5/24) 4807526831998615 a001 43133785636/2889*10749957122^(1/4) 4807526831998615 a001 10983760033/1926*10749957122^(7/24) 4807526831998615 a001 3536736619241/1926*4106118243^(1/23) 4807526831998615 a001 7778742049/5778*45537549124^(1/3) 4807526831998615 a001 10182505537/2889*10749957122^(5/16) 4807526831998615 a001 7778742049/5778*(1/2+1/2*5^(1/2))^17 4807526831998615 a001 4052739537881/5778*4106118243^(2/23) 4807526831998615 a001 86000486440/321*4106118243^(3/23) 4807526831998615 a001 591286729879/5778*4106118243^(4/23) 4807526831998615 a001 75283811239/1926*4106118243^(5/23) 4807526831998615 a001 267084832/321*4106118243^(9/23) 4807526831998615 a001 43133785636/2889*4106118243^(6/23) 4807526831998615 a001 10983760033/1926*4106118243^(7/23) 4807526831998615 a001 3536736619241/1926*1568397607^(1/22) 4807526831998615 a001 12586269025/5778*4106118243^(8/23) 4807526831998615 a001 2971215073/5778*817138163596^(1/3) 4807526831998615 a001 2971215073/5778*(1/2+1/2*5^(1/2))^19 4807526831998615 a001 4052739537881/5778*1568397607^(1/11) 4807526831998615 a001 86000486440/321*1568397607^(3/22) 4807526831998615 a001 591286729879/5778*1568397607^(2/11) 4807526831998615 a001 567451585/2889*2537720636^(7/15) 4807526831998615 a001 75283811239/1926*1568397607^(5/22) 4807526831998615 a001 139583862445/5778*1568397607^(1/4) 4807526831998615 a001 43133785636/2889*1568397607^(3/11) 4807526831998615 a001 1836311903/5778*1568397607^(5/11) 4807526831998615 a001 10983760033/1926*1568397607^(7/22) 4807526831998615 a001 3536736619241/1926*599074578^(1/21) 4807526831998615 a001 12586269025/5778*1568397607^(4/11) 4807526831998615 a001 567451585/2889*17393796001^(3/7) 4807526831998615 a001 567451585/2889*45537549124^(7/17) 4807526831998615 a001 567451585/2889*14662949395604^(1/3) 4807526831998615 a001 567451585/2889*(1/2+1/2*5^(1/2))^21 4807526831998615 a001 567451585/2889*192900153618^(7/18) 4807526831998615 a001 267084832/321*1568397607^(9/22) 4807526831998615 a001 567451585/2889*10749957122^(7/16) 4807526831998615 a001 3278735159921/2889*599074578^(1/14) 4807526831998615 a001 4052739537881/5778*599074578^(2/21) 4807526831998615 a001 86000486440/321*599074578^(1/7) 4807526831998615 a001 956722026041/5778*599074578^(1/6) 4807526831998615 a001 591286729879/5778*599074578^(4/21) 4807526831998615 a001 182717648081/2889*599074578^(3/14) 4807526831998615 a001 75283811239/1926*599074578^(5/21) 4807526831998615 a001 43133785636/2889*599074578^(2/7) 4807526831998615 a001 10983760033/1926*599074578^(1/3) 4807526831998615 a001 3536736619241/1926*228826127^(1/20) 4807526831998615 a001 10182505537/2889*599074578^(5/14) 4807526831998615 a001 233802911/1926*599074578^(11/21) 4807526831998615 a001 12586269025/5778*599074578^(8/21) 4807526831998615 a001 433494437/5778*(1/2+1/2*5^(1/2))^23 4807526831998615 a001 433494437/5778*4106118243^(1/2) 4807526831998615 a001 267084832/321*599074578^(3/7) 4807526831998615 a001 1836311903/5778*599074578^(10/21) 4807526831998615 a001 567451585/2889*599074578^(1/2) 4807526831998615 a001 4052739537881/5778*228826127^(1/10) 4807526831998615 a001 2504730781961/5778*228826127^(1/8) 4807526831998615 a001 86000486440/321*228826127^(3/20) 4807526831998615 a001 591286729879/5778*228826127^(1/5) 4807526831998615 a001 75283811239/1926*228826127^(1/4) 4807526831998615 a001 43133785636/2889*228826127^(3/10) 4807526831998615 a001 10983760033/1926*228826127^(7/20) 4807526831998615 a001 3536736619241/1926*87403803^(1/19) 4807526831998615 a001 10182505537/2889*228826127^(3/8) 4807526831998615 a001 165580141/5778*2537720636^(5/9) 4807526831998615 a001 165580141/5778*312119004989^(5/11) 4807526831998615 a001 165580141/5778*(1/2+1/2*5^(1/2))^25 4807526831998615 a001 165580141/5778*3461452808002^(5/12) 4807526831998615 a001 165580141/5778*28143753123^(1/2) 4807526831998615 a001 12586269025/5778*228826127^(2/5) 4807526831998615 a001 267084832/321*228826127^(9/20) 4807526831998615 a001 133957148/2889*228826127^(3/5) 4807526831998615 a001 1836311903/5778*228826127^(1/2) 4807526831998615 a001 233802911/1926*228826127^(11/20) 4807526831998615 a001 4052739537881/5778*87403803^(2/19) 4807526831998615 a001 31622993/2889*141422324^(9/13) 4807526831998615 a001 165580141/5778*228826127^(5/8) 4807526831998615 a001 86000486440/321*87403803^(3/19) 4807526831998615 a001 591286729879/5778*87403803^(4/19) 4807526831998615 a001 75283811239/1926*87403803^(5/19) 4807526831998615 a001 43133785636/2889*87403803^(6/19) 4807526831998615 a001 10983760033/1926*87403803^(7/19) 4807526831998615 a001 3536736619241/1926*33385282^(1/18) 4807526831998615 a001 31622993/2889*2537720636^(3/5) 4807526831998615 a001 31622993/2889*45537549124^(9/17) 4807526831998615 a001 31622993/2889*817138163596^(9/19) 4807526831998615 a001 31622993/2889*14662949395604^(3/7) 4807526831998615 a001 31622993/2889*(1/2+1/2*5^(1/2))^27 4807526831998615 a001 31622993/2889*192900153618^(1/2) 4807526831998615 a001 31622993/2889*10749957122^(9/16) 4807526831998615 a001 31622993/2889*599074578^(9/14) 4807526831998615 a001 12586269025/5778*87403803^(8/19) 4807526831998615 a001 267084832/321*87403803^(9/19) 4807526831998615 a001 2971215073/5778*87403803^(1/2) 4807526831998615 a001 1836311903/5778*87403803^(10/19) 4807526831998615 a001 34111385/1926*87403803^(13/19) 4807526831998615 a001 3278735159921/2889*33385282^(1/12) 4807526831998615 a001 233802911/1926*87403803^(11/19) 4807526831998615 a001 133957148/2889*87403803^(12/19) 4807526831998615 a001 4052739537881/5778*33385282^(1/9) 4807526831998616 a001 86000486440/321*33385282^(1/6) 4807526831998616 a001 591286729879/5778*33385282^(2/9) 4807526831998616 a001 182717648081/2889*33385282^(1/4) 4807526831998616 a001 75283811239/1926*33385282^(5/18) 4807526831998616 a001 43133785636/2889*33385282^(1/3) 4807526831998617 a001 24157817/5778*(1/2+1/2*5^(1/2))^29 4807526831998617 a001 24157817/5778*1322157322203^(1/2) 4807526831998617 a001 10983760033/1926*33385282^(7/18) 4807526831998617 a001 3536736619241/1926*12752043^(1/17) 4807526831998617 a001 10182505537/2889*33385282^(5/12) 4807526831998617 a001 12586269025/5778*33385282^(4/9) 4807526831998617 a001 267084832/321*33385282^(1/2) 4807526831998617 a001 1836311903/5778*33385282^(5/9) 4807526831998617 a001 567451585/2889*33385282^(7/12) 4807526831998618 a001 233802911/1926*33385282^(11/18) 4807526831998618 a001 39088169/5778*33385282^(7/9) 4807526831998618 a001 133957148/2889*33385282^(2/3) 4807526831998618 a001 34111385/1926*33385282^(13/18) 4807526831998618 a001 31622993/2889*33385282^(3/4) 4807526831998618 a001 4052739537881/5778*12752043^(2/17) 4807526831998620 a001 86000486440/321*12752043^(3/17) 4807526831998622 a001 591286729879/5778*12752043^(4/17) 4807526831998624 a001 75283811239/1926*12752043^(5/17) 4807526831998625 a001 43133785636/2889*12752043^(6/17) 4807526831998626 a001 9227465/5778*(1/2+1/2*5^(1/2))^31 4807526831998626 a001 9227465/5778*9062201101803^(1/2) 4807526831998627 a001 10983760033/1926*12752043^(7/17) 4807526831998628 a001 3536736619241/1926*4870847^(1/16) 4807526831998629 a001 12586269025/5778*12752043^(8/17) 4807526831998630 a001 7778742049/5778*12752043^(1/2) 4807526831998631 a001 267084832/321*12752043^(9/17) 4807526831998632 a001 1836311903/5778*12752043^(10/17) 4807526831998634 a001 233802911/1926*12752043^(11/17) 4807526831998636 a001 133957148/2889*12752043^(12/17) 4807526831998637 a001 2584*12752043^(15/17) 4807526831998637 a001 34111385/1926*12752043^(13/17) 4807526831998639 a001 39088169/5778*12752043^(14/17) 4807526831998640 a001 27416782272356232/5702887 4807526831998640 a001 4052739537881/5778*4870847^(1/8) 4807526831998653 a001 86000486440/321*4870847^(3/16) 4807526831998666 a001 591286729879/5778*4870847^(1/4) 4807526831998678 a001 75283811239/1926*4870847^(5/16) 4807526831998688 a001 646/1970299*(1/2+1/2*5^(1/2))^63 4807526831998691 a001 43133785636/2889*4870847^(3/8) 4807526831998692 a001 1762289/2889*141422324^(11/13) 4807526831998692 a001 1762289/2889*2537720636^(11/15) 4807526831998692 a001 1762289/2889*45537549124^(11/17) 4807526831998692 a001 1762289/2889*312119004989^(3/5) 4807526831998692 a001 1762289/2889*14662949395604^(11/21) 4807526831998692 a001 1762289/2889*(1/2+1/2*5^(1/2))^33 4807526831998692 a001 1762289/2889*192900153618^(11/18) 4807526831998692 a001 1762289/2889*10749957122^(11/16) 4807526831998692 a001 1762289/2889*1568397607^(3/4) 4807526831998692 a001 1762289/2889*599074578^(11/14) 4807526831998696 a001 1762289/2889*33385282^(11/12) 4807526831998704 a001 10983760033/1926*4870847^(7/16) 4807526831998708 a001 3536736619241/1926*1860498^(1/15) 4807526831998716 a001 12586269025/5778*4870847^(1/2) 4807526831998729 a001 267084832/321*4870847^(9/16) 4807526831998742 a001 1836311903/5778*4870847^(5/8) 4807526831998754 a001 3278735159921/2889*1860498^(1/10) 4807526831998754 a001 233802911/1926*4870847^(11/16) 4807526831998767 a001 133957148/2889*4870847^(3/4) 4807526831998779 a001 34111385/1926*4870847^(13/16) 4807526831998792 a001 39088169/5778*4870847^(7/8) 4807526831998800 a001 4052739537881/5778*1860498^(2/15) 4807526831998801 a001 2584*4870847^(15/16) 4807526831998813 a001 10472278965884504/2178309 4807526831998846 a001 2504730781961/5778*1860498^(1/6) 4807526831998893 a001 86000486440/321*1860498^(1/5) 4807526831998985 a001 591286729879/5778*1860498^(4/15) 4807526831999032 a001 182717648081/2889*1860498^(3/10) 4807526831999078 a001 75283811239/1926*1860498^(1/3) 4807526831999141 a001 2584/3010349*(1/2+1/2*5^(1/2))^61 4807526831999145 a001 1346269/5778*2537720636^(7/9) 4807526831999145 a001 1346269/5778*17393796001^(5/7) 4807526831999145 a001 1346269/5778*312119004989^(7/11) 4807526831999145 a001 1346269/5778*14662949395604^(5/9) 4807526831999145 a001 1346269/5778*(1/2+1/2*5^(1/2))^35 4807526831999145 a001 1346269/5778*505019158607^(5/8) 4807526831999145 a001 1346269/5778*28143753123^(7/10) 4807526831999145 a001 1346269/5778*599074578^(5/6) 4807526831999146 a001 1346269/5778*228826127^(7/8) 4807526831999170 a001 43133785636/2889*1860498^(2/5) 4807526831999263 a001 10983760033/1926*1860498^(7/15) 4807526831999295 a001 3536736619241/1926*710647^(1/14) 4807526831999309 a001 10182505537/2889*1860498^(1/2) 4807526831999356 a001 12586269025/5778*1860498^(8/15) 4807526831999448 a001 267084832/321*1860498^(3/5) 4807526831999541 a001 1836311903/5778*1860498^(2/3) 4807526831999587 a001 567451585/2889*1860498^(7/10) 4807526831999633 a001 233802911/1926*1860498^(11/15) 4807526831999726 a001 133957148/2889*1860498^(4/5) 4807526831999772 a001 165580141/5778*1860498^(5/6) 4807526831999819 a001 34111385/1926*1860498^(13/15) 4807526831999865 a001 31622993/2889*1860498^(9/10) 4807526831999911 a001 39088169/5778*1860498^(14/15) 4807526831999975 a001 4052739537881/5778*710647^(1/7) 4807526832000655 a001 86000486440/321*710647^(3/14) 4807526832000995 a001 956722026041/5778*710647^(1/4) 4807526832001335 a001 591286729879/5778*710647^(2/7) 4807526832002015 a001 75283811239/1926*710647^(5/14) 4807526832002247 a001 2584/1149851*(1/2+1/2*5^(1/2))^59 4807526832002251 a001 514229/5778*(1/2+1/2*5^(1/2))^37 4807526832002695 a001 43133785636/2889*710647^(3/7) 4807526832003375 a001 10983760033/1926*710647^(1/2) 4807526832003634 a001 3536736619241/1926*271443^(1/13) 4807526832004055 a001 12586269025/5778*710647^(4/7) 4807526832004735 a001 267084832/321*710647^(9/14) 4807526832005415 a001 1836311903/5778*710647^(5/7) 4807526832005755 a001 567451585/2889*710647^(3/4) 4807526832006095 a001 233802911/1926*710647^(11/14) 4807526832006774 a001 133957148/2889*710647^(6/7) 4807526832007454 a001 34111385/1926*710647^(13/14) 4807526832008130 a001 1527884910007336/317811 4807526832008653 a001 4052739537881/5778*271443^(2/13) 4807526832013672 a001 86000486440/321*271443^(3/13) 4807526832018691 a001 591286729879/5778*271443^(4/13) 4807526832023533 a001 34/5779*14662949395604^(19/21) 4807526832023533 a001 34/5779*(1/2+1/2*5^(1/2))^57 4807526832023537 a001 98209/2889*2537720636^(13/15) 4807526832023537 a001 98209/2889*45537549124^(13/17) 4807526832023537 a001 98209/2889*14662949395604^(13/21) 4807526832023537 a001 98209/2889*(1/2+1/2*5^(1/2))^39 4807526832023537 a001 98209/2889*192900153618^(13/18) 4807526832023537 a001 98209/2889*73681302247^(3/4) 4807526832023537 a001 98209/2889*10749957122^(13/16) 4807526832023537 a001 98209/2889*599074578^(13/14) 4807526832023710 a001 75283811239/1926*271443^(5/13) 4807526832028729 a001 43133785636/2889*271443^(6/13) 4807526832031239 a001 53316291173/5778*271443^(1/2) 4807526832033748 a001 10983760033/1926*271443^(7/13) 4807526832035883 a001 3536736619241/1926*103682^(1/12) 4807526832038767 a001 12586269025/5778*271443^(8/13) 4807526832043786 a001 267084832/321*271443^(9/13) 4807526832048805 a001 1836311903/5778*271443^(10/13) 4807526832053824 a001 233802911/1926*271443^(11/13) 4807526832054517 a001 3278735159921/2889*103682^(1/8) 4807526832058843 a001 133957148/2889*271443^(12/13) 4807526832063858 a001 583600104724728/121393 4807526832073151 a001 4052739537881/5778*103682^(1/6) 4807526832091784 a001 2504730781961/5778*103682^(5/24) 4807526832110418 a001 86000486440/321*103682^(1/4) 4807526832129052 a001 956722026041/5778*103682^(7/24) 4807526832147686 a001 591286729879/5778*103682^(1/3) 4807526832166320 a001 182717648081/2889*103682^(3/8) 4807526832169431 a001 2584/167761*(1/2+1/2*5^(1/2))^55 4807526832169431 a001 2584/167761*3461452808002^(11/12) 4807526832169435 a001 75025/5778*(1/2+1/2*5^(1/2))^41 4807526832184954 a001 75283811239/1926*103682^(5/12) 4807526832203588 a001 139583862445/5778*103682^(11/24) 4807526832222222 a001 43133785636/2889*103682^(1/2) 4807526832240856 a001 53316291173/5778*103682^(13/24) 4807526832259490 a001 10983760033/1926*103682^(7/12) 4807526832277274 a001 3536736619241/1926*39603^(1/11) 4807526832278123 a001 10182505537/2889*103682^(5/8) 4807526832296757 a001 12586269025/5778*103682^(2/3) 4807526832315391 a001 7778742049/5778*103682^(17/24) 4807526832334025 a001 267084832/321*103682^(3/4) 4807526832352659 a001 2971215073/5778*103682^(19/24) 4807526832371293 a001 1836311903/5778*103682^(5/6) 4807526832389927 a001 567451585/2889*103682^(7/8) 4807526832408561 a001 233802911/1926*103682^(11/12) 4807526832416603 a001 3278735159921/2889*39603^(3/22) 4807526832427195 a001 433494437/5778*103682^(23/24) 4807526832445824 a001 6966106380214/1449 4807526832555933 a001 4052739537881/5778*39603^(2/11) 4807526832695262 a001 2504730781961/5778*39603^(5/22) 4807526832834592 a001 86000486440/321*39603^(3/11) 4807526832973921 a001 956722026041/5778*39603^(7/22) 4807526833113250 a001 591286729879/5778*39603^(4/11) 4807526833169431 a001 2584/64079*(1/2+1/2*5^(1/2))^53 4807526833169435 a001 28657/5778*(1/2+1/2*5^(1/2))^43 4807526833252580 a001 182717648081/2889*39603^(9/22) 4807526833391909 a001 75283811239/1926*39603^(5/11) 4807526833531239 a001 139583862445/5778*39603^(1/2) 4807526833670568 a001 43133785636/2889*39603^(6/11) 4807526833809898 a001 53316291173/5778*39603^(13/22) 4807526833949227 a001 10983760033/1926*39603^(7/11) 4807526834088556 a001 10182505537/2889*39603^(15/22) 4807526834099567 a001 3536736619241/1926*15127^(1/10) 4807526834227886 a001 12586269025/5778*39603^(8/11) 4807526834367215 a001 7778742049/5778*39603^(17/22) 4807526834506545 a001 267084832/321*39603^(9/11) 4807526834606772 m005 (1/3*exp(1)-2/5)/(5/11*Catalan+7/11) 4807526834645874 a001 2971215073/5778*39603^(19/22) 4807526834785204 a001 1836311903/5778*39603^(10/11) 4807526834924533 a001 567451585/2889*39603^(21/22) 4807526835063858 a001 85146107775816/17711 4807526835150043 a001 3278735159921/2889*15127^(3/20) 4807526835226522 a001 2504730781961/1364*521^(2/13) 4807526836200392 a001 4052739537881/3571*1364^(1/5) 4807526836200519 a001 4052739537881/5778*15127^(1/5) 4807526837250995 a001 2504730781961/5778*15127^(1/4) 4807526838301471 a001 86000486440/321*15127^(3/10) 4807526839351947 a001 956722026041/5778*15127^(7/20) 4807526839875738 a001 3536736619241/13201*3571^(6/17) 4807526840023533 a001 646/6119*817138163596^(17/19) 4807526840023533 a001 646/6119*14662949395604^(17/21) 4807526840023533 a001 646/6119*(1/2+1/2*5^(1/2))^51 4807526840023533 a001 646/6119*192900153618^(17/18) 4807526840023537 a001 5473/2889*45537549124^(15/17) 4807526840023537 a001 5473/2889*312119004989^(9/11) 4807526840023537 a001 5473/2889*14662949395604^(5/7) 4807526840023537 a001 5473/2889*(1/2+1/2*5^(1/2))^45 4807526840023537 a001 5473/2889*192900153618^(5/6) 4807526840023537 a001 5473/2889*28143753123^(9/10) 4807526840023537 a001 5473/2889*10749957122^(15/16) 4807526840402422 a001 591286729879/5778*15127^(2/5) 4807526841452898 a001 182717648081/2889*15127^(9/20) 4807526842503374 a001 75283811239/1926*15127^(1/2) 4807526843553850 a001 139583862445/5778*15127^(11/20) 4807526844107969 a001 6557470319842/15127*3571^(5/17) 4807526844604326 a001 43133785636/2889*15127^(3/5) 4807526845654802 a001 53316291173/5778*15127^(13/20) 4807526846705278 a001 10983760033/1926*15127^(7/10) 4807526847755754 a001 10182505537/2889*15127^(3/4) 4807526847998769 a001 3536736619241/1926*5778^(1/9) 4807526848107174 m005 (1/3*gamma-1/8)/(16/15+3/20*5^(1/2)) 4807526848806230 a001 12586269025/5778*15127^(4/5) 4807526849856706 a001 7778742049/5778*15127^(17/20) 4807526850907182 a001 267084832/321*15127^(9/10) 4807526850965908 a001 3278735159921/12238*3571^(6/17) 4807526851957658 a001 2971215073/5778*15127^(19/20) 4807526852624988 a001 12586269025/2207*2207^(7/8) 4807526853008130 a001 591325802920/123 4807526853591616 a001 956722026041/9349*3571^(8/17) 4807526855998845 a001 3278735159921/2889*5778^(1/6) 4807526863998922 a001 4052739537881/5778*5778^(2/9) 4807526866284471 a001 1515744265389/2161*3571^(4/17) 4807526871998999 a001 2504730781961/5778*5778^(5/18) 4807526872473271 r009 Im(z^3+c),c=-47/66+6/31*I,n=2 4807526873142410 a001 10610209857723/24476*3571^(5/17) 4807526875768118 a001 1548008755920/9349*3571^(7/17) 4807526878742550 m001 ln(Lehmer)^2*FransenRobinson*Riemann3rdZero^2 4807526879999076 a001 86000486440/321*5778^(1/3) 4807526884984860 m001 (ln(2)*Landau+Otter)/ln(2) 4807526887002246 a001 2584/9349*14662949395604^(7/9) 4807526887002246 a001 2584/9349*(1/2+1/2*5^(1/2))^49 4807526887002246 a001 2584/9349*505019158607^(7/8) 4807526887002249 a001 4181/5778*(1/2+1/2*5^(1/2))^47 4807526887798567 r001 21i'th iterates of 2*x^2-1 of 4807526887999153 a001 956722026041/5778*5778^(7/18) 4807526895999230 a001 591286729879/5778*5778^(4/9) 4807526896483957 r005 Im(z^2+c),c=13/110+19/35*I,n=8 4807526897944621 a001 2504730781961/9349*3571^(6/17) 4807526899986845 a001 20100269968845/4181 4807526901640101 m001 PisotVijayaraghavan^Niven/ReciprocalFibonacci 4807526902881772 a001 12586269025/15127*9349^(18/19) 4807526903999307 a001 182717648081/2889*5778^(1/2) 4807526905776701 a001 20365011074/15127*9349^(17/19) 4807526908671629 a001 32951280099/15127*9349^(16/19) 4807526909185919 a008 Real Root of x^4+12*x^2-70*x-475 4807526911566557 a001 53316291173/15127*9349^(15/19) 4807526911999384 a001 75283811239/1926*5778^(5/9) 4807526914312494 a001 7778742049/2207*2207^(15/16) 4807526914461485 a001 86267571272/15127*9349^(14/19) 4807526916048000 g001 GAMMA(2/3,74/117) 4807526916233136 a001 1/123*(1/2*5^(1/2)+1/2)^4*199^(16/19) 4807526917356413 a001 139583862445/15127*9349^(13/19) 4807526917931116 a001 20100270043870/4181 4807526919999461 a001 139583862445/5778*5778^(11/18) 4807526920121123 a001 4052739537881/9349*3571^(5/17) 4807526920251342 a001 32264490531/2161*9349^(12/19) 4807526920549150 a001 20100270054816/4181 4807526920576757 r002 37th iterates of z^2 + 4807526920826044 a001 10983760033/13201*9349^(18/19) 4807526920931116 a001 20100270056413/4181 4807526920986845 a001 20100270056646/4181 4807526920994977 a001 20100270056680/4181 4807526920996173 a001 20100270056685/4181 4807526920996412 a001 20100270056686/4181 4807526920996890 a001 20100270056688/4181 4807526921021286 a001 20100270056790/4181 4807526921167184 a001 20100270057400/4181 4807526922167184 a001 20100270061581/4181 4807526923146270 a001 365435296162/15127*9349^(11/19) 4807526923444078 a001 43133785636/51841*9349^(18/19) 4807526923720972 a001 53316291173/39603*9349^(17/19) 4807526923826044 a001 75283811239/90481*9349^(18/19) 4807526923881772 a001 591286729879/710647*9349^(18/19) 4807526923889903 a001 832040*9349^(18/19) 4807526923891089 a001 4052739537881/4870847*9349^(18/19) 4807526923891262 a001 3536736619241/4250681*9349^(18/19) 4807526923891369 a001 3278735159921/3940598*9349^(18/19) 4807526923891822 a001 2504730781961/3010349*9349^(18/19) 4807526923894928 a001 956722026041/1149851*9349^(18/19) 4807526923916214 a001 182717648081/219602*9349^(18/19) 4807526924062112 a001 139583862445/167761*9349^(18/19) 4807526925062112 a001 53316291173/64079*9349^(18/19) 4807526926041198 a001 591286729879/15127*9349^(10/19) 4807526926339006 a001 139583862445/103682*9349^(17/19) 4807526926615900 a001 86267571272/39603*9349^(16/19) 4807526926720972 a001 365435296162/271443*9349^(17/19) 4807526926776700 a001 956722026041/710647*9349^(17/19) 4807526926784831 a001 2504730781961/1860498*9349^(17/19) 4807526926786017 a001 6557470319842/4870847*9349^(17/19) 4807526926786297 a001 10610209857723/7881196*9349^(17/19) 4807526926786750 a001 1346269*9349^(17/19) 4807526926789856 a001 1548008755920/1149851*9349^(17/19) 4807526926811142 a001 591286729879/439204*9349^(17/19) 4807526926957040 a001 225851433717/167761*9349^(17/19) 4807526927957040 a001 86267571272/64079*9349^(17/19) 4807526927999538 a001 43133785636/2889*5778^(2/3) 4807526928936126 a001 956722026041/15127*9349^(9/19) 4807526929021286 a001 20100270090238/4181 4807526929233934 a001 225851433717/103682*9349^(16/19) 4807526929510829 a001 139583862445/39603*9349^(15/19) 4807526929615900 a001 591286729879/271443*9349^(16/19) 4807526929671628 a001 1548008755920/710647*9349^(16/19) 4807526929679759 a001 4052739537881/1860498*9349^(16/19) 4807526929680945 a001 2178309*9349^(16/19) 4807526929681678 a001 6557470319842/3010349*9349^(16/19) 4807526929684784 a001 2504730781961/1149851*9349^(16/19) 4807526929706070 a001 956722026041/439204*9349^(16/19) 4807526929851968 a001 365435296162/167761*9349^(16/19) 4807526930851968 a001 139583862445/64079*9349^(16/19) 4807526931831054 a001 1548008755920/15127*9349^(8/19) 4807526931916214 a001 10182505537/12238*9349^(18/19) 4807526932128863 a001 182717648081/51841*9349^(15/19) 4807526932405757 a001 75283811239/13201*9349^(14/19) 4807526932510829 a001 956722026041/271443*9349^(15/19) 4807526932566557 a001 2504730781961/710647*9349^(15/19) 4807526932574687 a001 3278735159921/930249*9349^(15/19) 4807526932576607 a001 10610209857723/3010349*9349^(15/19) 4807526932579712 a001 4052739537881/1149851*9349^(15/19) 4807526932600999 a001 387002188980/109801*9349^(15/19) 4807526932746897 a001 591286729879/167761*9349^(15/19) 4807526933746897 a001 225851433717/64079*9349^(15/19) 4807526933980961 a001 6765/15127*45537549124^(16/17) 4807526933980961 a001 6765/15127*14662949395604^(16/21) 4807526933980961 a001 6765/15127*(1/2+1/2*5^(1/2))^48 4807526933980961 a001 6765/15127*192900153618^(8/9) 4807526933980961 a001 6765/15127*73681302247^(12/13) 4807526934725983 a001 2504730781961/15127*9349^(7/19) 4807526934811142 a001 32951280099/24476*9349^(17/19) 4807526935023791 a001 591286729879/103682*9349^(14/19) 4807526935300685 a001 365435296162/39603*9349^(13/19) 4807526935405757 a001 516002918640/90481*9349^(14/19) 4807526935461485 a001 4052739537881/710647*9349^(14/19) 4807526935469616 a001 3536736619241/620166*9349^(14/19) 4807526935474641 a001 6557470319842/1149851*9349^(14/19) 4807526935495927 a001 2504730781961/439204*9349^(14/19) 4807526935641825 a001 956722026041/167761*9349^(14/19) 4807526935999614 a001 53316291173/5778*5778^(13/18) 4807526936641825 a001 365435296162/64079*9349^(14/19) 4807526937620911 a001 4052739537881/15127*9349^(6/19) 4807526937706070 a001 53316291173/24476*9349^(16/19) 4807526937918719 a001 956722026041/103682*9349^(13/19) 4807526938195613 a001 591286729879/39603*9349^(12/19) 4807526938300685 a001 2504730781961/271443*9349^(13/19) 4807526938356413 a001 6557470319842/710647*9349^(13/19) 4807526938369569 a001 10610209857723/1149851*9349^(13/19) 4807526938390855 a001 4052739537881/439204*9349^(13/19) 4807526938536753 a001 140728068720/15251*9349^(13/19) 4807526939331156 a001 34/11*11^(7/38) 4807526939536753 a001 591286729879/64079*9349^(13/19) 4807526940515839 a001 6557470319842/15127*9349^(5/19) 4807526940600998 a001 21566892818/6119*9349^(15/19) 4807526940813647 a001 774004377960/51841*9349^(12/19) 4807526941090541 a001 956722026041/39603*9349^(11/19) 4807526941195613 a001 4052739537881/271443*9349^(12/19) 4807526941251341 a001 1515744265389/101521*9349^(12/19) 4807526941285783 a001 3278735159921/219602*9349^(12/19) 4807526941431681 a001 2504730781961/167761*9349^(12/19) 4807526942297625 a001 6557470319842/9349*3571^(4/17) 4807526942431681 a001 956722026041/64079*9349^(12/19) 4807526943410767 a001 1515744265389/2161*9349^(4/19) 4807526943495927 a001 139583862445/24476*9349^(14/19) 4807526943708575 a001 2504730781961/103682*9349^(11/19) 4807526943985470 a001 516002918640/13201*9349^(10/19) 4807526943999691 a001 10983760033/1926*5778^(7/9) 4807526944090541 a001 6557470319842/271443*9349^(11/19) 4807526944178039 r002 41th iterates of z^2 + 4807526944180711 a001 10610209857723/439204*9349^(11/19) 4807526944326609 a001 4052739537881/167761*9349^(11/19) 4807526945326609 a001 1548008755920/64079*9349^(11/19) 4807526946390855 a001 7787980473/844*9349^(13/19) 4807526946603504 a001 4052739537881/103682*9349^(10/19) 4807526946880398 a001 2504730781961/39603*9349^(9/19) 4807526946965558 a001 4047937689345/842 4807526946985470 a001 3536736619241/90481*9349^(10/19) 4807526947221538 a001 6557470319842/167761*9349^(10/19) 4807526947347697 a001 686789568/2161*24476^(20/21) 4807526947434511 r002 8th iterates of z^2 + 4807526947729836 a001 7778742049/15127*24476^(19/21) 4807526948111975 a001 12586269025/15127*24476^(6/7) 4807526948221538 a001 2504730781961/64079*9349^(10/19) 4807526948494114 a001 20365011074/15127*24476^(17/21) 4807526948876254 a001 32951280099/15127*24476^(16/21) 4807526949258393 a001 53316291173/15127*24476^(5/7) 4807526949285783 a001 182717648081/12238*9349^(12/19) 4807526949498432 a001 3278735159921/51841*9349^(9/19) 4807526949640532 a001 86267571272/15127*24476^(2/3) 4807526949775326 a001 4052739537881/39603*9349^(8/19) 4807526950022671 a001 139583862445/15127*24476^(13/21) 4807526950116466 a001 10610209857723/167761*9349^(9/19) 4807526950404810 a001 32264490531/2161*24476^(4/7) 4807526950786949 a001 365435296162/15127*24476^(11/21) 4807526951116466 a001 4052739537881/64079*9349^(9/19) 4807526951169089 a001 591286729879/15127*24476^(10/21) 4807526951551228 a001 956722026041/15127*24476^(3/7) 4807526951925232 a001 2255/13201*312119004989^(10/11) 4807526951925232 a001 2255/13201*(1/2+1/2*5^(1/2))^50 4807526951925232 a001 2255/13201*3461452808002^(5/6) 4807526951925233 a001 17711/15127*(1/2+1/2*5^(1/2))^46 4807526951925233 a001 17711/15127*10749957122^(23/24) 4807526951933367 a001 1548008755920/15127*24476^(8/21) 4807526951999768 a001 10182505537/2889*5778^(5/6) 4807526952180711 a001 591286729879/24476*9349^(11/19) 4807526952315506 a001 2504730781961/15127*24476^(1/3) 4807526952393360 a001 225749145909/2206*9349^(8/19) 4807526952670254 a001 6557470319842/39603*9349^(7/19) 4807526952697645 a001 4052739537881/15127*24476^(2/7) 4807526953079784 a001 6557470319842/15127*24476^(5/21) 4807526953461923 a001 1515744265389/2161*24476^(4/21) 4807526953819660 a001 137769299915610/28657 4807526953870565 a001 1836311903/15127*64079^(22/23) 4807526953921470 a001 2971215073/15127*64079^(21/23) 4807526953972375 a001 686789568/2161*64079^(20/23) 4807526954011394 a001 6557470319842/64079*9349^(8/19) 4807526954023281 a001 7778742049/15127*64079^(19/23) 4807526954074186 a001 12586269025/15127*64079^(18/23) 4807526954125091 a001 20365011074/15127*64079^(17/23) 4807526954175996 a001 32951280099/15127*64079^(16/23) 4807526954226902 a001 53316291173/15127*64079^(15/23) 4807526954277807 a001 86267571272/15127*64079^(14/23) 4807526954328712 a001 139583862445/15127*64079^(13/23) 4807526954379617 a001 32264490531/2161*64079^(12/23) 4807526954430523 a001 365435296162/15127*64079^(11/23) 4807526954481428 a001 591286729879/15127*64079^(10/23) 4807526954532333 a001 956722026041/15127*64079^(9/23) 4807526954543266 a001 6765/103682*(1/2+1/2*5^(1/2))^52 4807526954543266 a001 6765/103682*23725150497407^(13/16) 4807526954543266 a001 6765/103682*505019158607^(13/14) 4807526954543267 a001 6624/2161*312119004989^(4/5) 4807526954543267 a001 6624/2161*(1/2+1/2*5^(1/2))^44 4807526954543267 a001 6624/2161*23725150497407^(11/16) 4807526954543267 a001 6624/2161*73681302247^(11/13) 4807526954543267 a001 6624/2161*10749957122^(11/12) 4807526954543267 a001 6624/2161*4106118243^(22/23) 4807526954583238 a001 1548008755920/15127*64079^(8/23) 4807526954634143 a001 2504730781961/15127*64079^(7/23) 4807526954685049 a001 4052739537881/15127*64079^(6/23) 4807526954735954 a001 6557470319842/15127*64079^(5/23) 4807526954786859 a001 1515744265389/2161*64079^(4/23) 4807526954819660 a001 72136941957069/15005 4807526954853824 a001 686789568/2161*167761^(4/5) 4807526954887988 a001 53316291173/15127*167761^(3/5) 4807526954922152 a001 591286729879/15127*167761^(2/5) 4807526954925232 a001 2255/90481*14662949395604^(6/7) 4807526954925232 a001 2255/90481*(1/2+1/2*5^(1/2))^54 4807526954925233 a001 121393/15127*2537720636^(14/15) 4807526954925233 a001 121393/15127*17393796001^(6/7) 4807526954925233 a001 121393/15127*45537549124^(14/17) 4807526954925233 a001 121393/15127*817138163596^(14/19) 4807526954925233 a001 121393/15127*14662949395604^(2/3) 4807526954925233 a001 121393/15127*(1/2+1/2*5^(1/2))^42 4807526954925233 a001 121393/15127*505019158607^(3/4) 4807526954925233 a001 121393/15127*192900153618^(7/9) 4807526954925233 a001 121393/15127*10749957122^(7/8) 4807526954925233 a001 121393/15127*4106118243^(21/23) 4807526954925233 a001 121393/15127*1568397607^(21/22) 4807526954956316 a001 6557470319842/15127*167761^(1/5) 4807526954965558 a001 944284829440425/196418 4807526954968327 a001 701408733/15127*439204^(8/9) 4807526954971096 a001 2971215073/15127*439204^(7/9) 4807526954973865 a001 12586269025/15127*439204^(2/3) 4807526954976634 a001 53316291173/15127*439204^(5/9) 4807526954979403 a001 32264490531/2161*439204^(4/9) 4807526954980961 a001 6765/710647*14662949395604^(8/9) 4807526954980961 a001 6765/710647*(1/2+1/2*5^(1/2))^56 4807526954980961 a001 317811/15127*2537720636^(8/9) 4807526954980961 a001 317811/15127*312119004989^(8/11) 4807526954980961 a001 317811/15127*(1/2+1/2*5^(1/2))^40 4807526954980961 a001 317811/15127*23725150497407^(5/8) 4807526954980961 a001 317811/15127*73681302247^(10/13) 4807526954980961 a001 317811/15127*28143753123^(4/5) 4807526954980961 a001 317811/15127*10749957122^(5/6) 4807526954980961 a001 317811/15127*4106118243^(20/23) 4807526954980961 a001 317811/15127*1568397607^(10/11) 4807526954980961 a001 317811/15127*599074578^(20/21) 4807526954982173 a001 956722026041/15127*439204^(1/3) 4807526954984942 a001 4052739537881/15127*439204^(2/9) 4807526954986844 a001 2472169778535930/514229 4807526954989091 a001 55/15126*(1/2+1/2*5^(1/2))^58 4807526954989091 a001 832040/15127*817138163596^(2/3) 4807526954989091 a001 832040/15127*(1/2+1/2*5^(1/2))^38 4807526954989091 a001 832040/15127*10749957122^(19/24) 4807526954989091 a001 832040/15127*4106118243^(19/23) 4807526954989091 a001 832040/15127*1568397607^(19/22) 4807526954989091 a001 832040/15127*599074578^(19/21) 4807526954989091 a001 832040/15127*228826127^(19/20) 4807526954989950 a001 6472224506167365/1346269 4807526954990277 a001 311187/2161*141422324^(12/13) 4807526954990277 a001 6765/4870847*14662949395604^(20/21) 4807526954990277 a001 6765/4870847*(1/2+1/2*5^(1/2))^60 4807526954990277 a001 311187/2161*2537720636^(4/5) 4807526954990277 a001 311187/2161*45537549124^(12/17) 4807526954990277 a001 311187/2161*14662949395604^(4/7) 4807526954990277 a001 311187/2161*(1/2+1/2*5^(1/2))^36 4807526954990277 a001 311187/2161*505019158607^(9/14) 4807526954990277 a001 311187/2161*192900153618^(2/3) 4807526954990277 a001 311187/2161*73681302247^(9/13) 4807526954990277 a001 311187/2161*10749957122^(3/4) 4807526954990277 a001 311187/2161*4106118243^(18/23) 4807526954990277 a001 311187/2161*1568397607^(9/11) 4807526954990277 a001 311187/2161*599074578^(6/7) 4807526954990278 a001 311187/2161*228826127^(9/10) 4807526954990278 a001 311187/2161*87403803^(18/19) 4807526954990403 a001 16944503739966165/3524578 4807526954990409 a001 39088169/15127*7881196^(10/11) 4807526954990417 a001 165580141/15127*7881196^(9/11) 4807526954990424 a001 701408733/15127*7881196^(8/11) 4807526954990428 a001 1836311903/15127*7881196^(2/3) 4807526954990431 a001 2971215073/15127*7881196^(7/11) 4807526954990438 a001 12586269025/15127*7881196^(6/11) 4807526954990445 a001 53316291173/15127*7881196^(5/11) 4807526954990450 a001 2255/4250681*(1/2+1/2*5^(1/2))^62 4807526954990451 a001 5702887/15127*45537549124^(2/3) 4807526954990451 a001 5702887/15127*(1/2+1/2*5^(1/2))^34 4807526954990451 a001 5702887/15127*10749957122^(17/24) 4807526954990451 a001 5702887/15127*4106118243^(17/23) 4807526954990451 a001 5702887/15127*1568397607^(17/22) 4807526954990451 a001 5702887/15127*599074578^(17/21) 4807526954990451 a001 5702887/15127*228826127^(17/20) 4807526954990451 a001 5702887/15127*87403803^(17/19) 4807526954990452 a001 32264490531/2161*7881196^(4/11) 4807526954990454 a001 365435296162/15127*7881196^(1/3) 4807526954990455 a001 5702887/15127*33385282^(17/18) 4807526954990459 a001 956722026041/15127*7881196^(3/11) 4807526954990466 a001 4052739537881/15127*7881196^(2/11) 4807526954990469 a001 682481334057402/141961 4807526954990470 a001 39088169/15127*20633239^(6/7) 4807526954990471 a001 6765*20633239^(4/5) 4807526954990472 a001 433494437/15127*20633239^(5/7) 4807526954990473 a001 2971215073/15127*20633239^(3/5) 4807526954990474 a001 686789568/2161*20633239^(4/7) 4807526954990475 a001 53316291173/15127*20633239^(3/7) 4807526954990476 a001 86267571272/15127*20633239^(2/5) 4807526954990476 a001 6765/33385282*(1/2+1/2*5^(1/2))^64 4807526954990476 a001 14930352/15127*(1/2+1/2*5^(1/2))^32 4807526954990476 a001 14930352/15127*23725150497407^(1/2) 4807526954990476 a001 14930352/15127*505019158607^(4/7) 4807526954990476 a001 14930352/15127*73681302247^(8/13) 4807526954990476 a001 14930352/15127*10749957122^(2/3) 4807526954990476 a001 14930352/15127*4106118243^(16/23) 4807526954990476 a001 14930352/15127*1568397607^(8/11) 4807526954990476 a001 14930352/15127*599074578^(16/21) 4807526954990476 a001 14930352/15127*228826127^(4/5) 4807526954990476 a001 14930352/15127*87403803^(16/19) 4807526954990477 a001 591286729879/15127*20633239^(2/7) 4807526954990478 a001 2504730781961/15127*20633239^(1/5) 4807526954990478 a001 6557470319842/15127*20633239^(1/7) 4807526954990479 a001 39088169/15127*141422324^(10/13) 4807526954990479 a001 39088169/15127*2537720636^(2/3) 4807526954990479 a001 39088169/15127*45537549124^(10/17) 4807526954990479 a001 39088169/15127*312119004989^(6/11) 4807526954990479 a001 39088169/15127*14662949395604^(10/21) 4807526954990479 a001 39088169/15127*(1/2+1/2*5^(1/2))^30 4807526954990479 a001 39088169/15127*192900153618^(5/9) 4807526954990479 a001 39088169/15127*28143753123^(3/5) 4807526954990479 a001 39088169/15127*10749957122^(5/8) 4807526954990479 a001 39088169/15127*4106118243^(15/23) 4807526954990479 a001 39088169/15127*1568397607^(15/22) 4807526954990479 a001 39088169/15127*599074578^(5/7) 4807526954990480 a001 39088169/15127*228826127^(3/4) 4807526954990480 a001 14930352/15127*33385282^(8/9) 4807526954990480 a001 267914296/15127*141422324^(2/3) 4807526954990480 a001 701408733/15127*141422324^(8/13) 4807526954990480 a001 39088169/15127*87403803^(15/19) 4807526954990480 a001 165580141/15127*141422324^(9/13) 4807526954990480 a001 2971215073/15127*141422324^(7/13) 4807526954990480 a001 12586269025/15127*141422324^(6/13) 4807526954990480 a001 53316291173/15127*141422324^(5/13) 4807526954990480 a001 6765*17393796001^(4/7) 4807526954990480 a001 6765*14662949395604^(4/9) 4807526954990480 a001 6765*(1/2+1/2*5^(1/2))^28 4807526954990480 a001 6765*505019158607^(1/2) 4807526954990480 a001 6765*73681302247^(7/13) 4807526954990480 a001 6765*10749957122^(7/12) 4807526954990480 a001 6765*4106118243^(14/23) 4807526954990480 a001 6765*1568397607^(7/11) 4807526954990480 a001 6765*599074578^(2/3) 4807526954990480 a001 139583862445/15127*141422324^(1/3) 4807526954990480 a001 32264490531/2161*141422324^(4/13) 4807526954990480 a001 956722026041/15127*141422324^(3/13) 4807526954990480 a001 4052739537881/15127*141422324^(2/13) 4807526954990480 a001 6765*228826127^(7/10) 4807526954990480 a001 267914296/15127*(1/2+1/2*5^(1/2))^26 4807526954990480 a001 267914296/15127*73681302247^(1/2) 4807526954990480 a001 267914296/15127*10749957122^(13/24) 4807526954990480 a001 267914296/15127*4106118243^(13/23) 4807526954990480 a001 267914296/15127*1568397607^(13/22) 4807526954990480 a001 267914296/15127*599074578^(13/21) 4807526954990480 a001 701408733/15127*2537720636^(8/15) 4807526954990480 a001 701408733/15127*45537549124^(8/17) 4807526954990480 a001 701408733/15127*14662949395604^(8/21) 4807526954990480 a001 701408733/15127*(1/2+1/2*5^(1/2))^24 4807526954990480 a001 701408733/15127*192900153618^(4/9) 4807526954990480 a001 701408733/15127*73681302247^(6/13) 4807526954990480 a001 701408733/15127*10749957122^(1/2) 4807526954990480 a001 701408733/15127*4106118243^(12/23) 4807526954990480 a001 701408733/15127*1568397607^(6/11) 4807526954990480 a001 686789568/2161*2537720636^(4/9) 4807526954990480 a001 12586269025/15127*2537720636^(2/5) 4807526954990480 a001 1836311903/15127*312119004989^(2/5) 4807526954990480 a001 1836311903/15127*(1/2+1/2*5^(1/2))^22 4807526954990480 a001 1836311903/15127*10749957122^(11/24) 4807526954990480 a001 53316291173/15127*2537720636^(1/3) 4807526954990480 a001 2971215073/15127*2537720636^(7/15) 4807526954990480 a001 32264490531/2161*2537720636^(4/15) 4807526954990480 a001 591286729879/15127*2537720636^(2/9) 4807526954990480 a001 956722026041/15127*2537720636^(1/5) 4807526954990480 a001 1836311903/15127*4106118243^(11/23) 4807526954990480 a001 4052739537881/15127*2537720636^(2/15) 4807526954990480 a001 6557470319842/15127*2537720636^(1/9) 4807526954990480 a001 686789568/2161*(1/2+1/2*5^(1/2))^20 4807526954990480 a001 686789568/2161*23725150497407^(5/16) 4807526954990480 a001 686789568/2161*505019158607^(5/14) 4807526954990480 a001 686789568/2161*73681302247^(5/13) 4807526954990480 a001 686789568/2161*28143753123^(2/5) 4807526954990480 a001 686789568/2161*10749957122^(5/12) 4807526954990480 a001 12586269025/15127*45537549124^(6/17) 4807526954990480 a001 12586269025/15127*14662949395604^(2/7) 4807526954990480 a001 12586269025/15127*(1/2+1/2*5^(1/2))^18 4807526954990480 a001 12586269025/15127*192900153618^(1/3) 4807526954990480 a001 86267571272/15127*17393796001^(2/7) 4807526954990480 a001 2504730781961/15127*17393796001^(1/7) 4807526954990480 a001 32951280099/15127*(1/2+1/2*5^(1/2))^16 4807526954990480 a001 32951280099/15127*23725150497407^(1/4) 4807526954990480 a001 32951280099/15127*73681302247^(4/13) 4807526954990480 a001 32264490531/2161*45537549124^(4/17) 4807526954990480 a001 956722026041/15127*45537549124^(3/17) 4807526954990480 a001 53316291173/15127*45537549124^(5/17) 4807526954990480 a001 86267571272/15127*(1/2+1/2*5^(1/2))^14 4807526954990480 a001 32264490531/2161*(1/2+1/2*5^(1/2))^12 4807526954990480 a001 591286729879/15127*312119004989^(2/11) 4807526954990480 a001 591286729879/15127*(1/2+1/2*5^(1/2))^10 4807526954990480 a001 1548008755920/15127*(1/2+1/2*5^(1/2))^8 4807526954990480 a001 1548008755920/15127*23725150497407^(1/8) 4807526954990480 a001 4052739537881/15127*(1/2+1/2*5^(1/2))^6 4807526954990480 a001 1515744265389/2161*(1/2+1/2*5^(1/2))^4 4807526954990480 a001 1515744265389/2161*23725150497407^(1/16) 4807526954990480 a001 6557470319842/15127*(1/2+1/2*5^(1/2))^5 4807526954990480 a001 2504730781961/15127*(1/2+1/2*5^(1/2))^7 4807526954990480 a001 956722026041/15127*(1/2+1/2*5^(1/2))^9 4807526954990480 a001 1548008755920/15127*505019158607^(1/7) 4807526954990480 a001 32264490531/2161*192900153618^(2/9) 4807526954990480 a001 139583862445/15127*(1/2+1/2*5^(1/2))^13 4807526954990480 a001 1515744265389/2161*73681302247^(1/13) 4807526954990480 a001 1548008755920/15127*73681302247^(2/13) 4807526954990480 a001 32264490531/2161*73681302247^(3/13) 4807526954990480 a001 139583862445/15127*73681302247^(1/4) 4807526954990480 a001 53316291173/15127*312119004989^(3/11) 4807526954990480 a001 53316291173/15127*14662949395604^(5/21) 4807526954990480 a001 53316291173/15127*(1/2+1/2*5^(1/2))^15 4807526954990480 a001 53316291173/15127*192900153618^(5/18) 4807526954990480 a001 6557470319842/15127*28143753123^(1/10) 4807526954990480 a001 591286729879/15127*28143753123^(1/5) 4807526954990480 a001 20365011074/15127*45537549124^(1/3) 4807526954990480 a001 53316291173/15127*28143753123^(3/10) 4807526954990480 a001 20365011074/15127*(1/2+1/2*5^(1/2))^17 4807526954990480 a001 1515744265389/2161*10749957122^(1/12) 4807526954990480 a001 4052739537881/15127*10749957122^(1/8) 4807526954990480 a001 1548008755920/15127*10749957122^(1/6) 4807526954990480 a001 956722026041/15127*10749957122^(3/16) 4807526954990480 a001 591286729879/15127*10749957122^(5/24) 4807526954990480 a001 12586269025/15127*10749957122^(3/8) 4807526954990480 a001 32264490531/2161*10749957122^(1/4) 4807526954990480 a001 86267571272/15127*10749957122^(7/24) 4807526954990480 a001 32951280099/15127*10749957122^(1/3) 4807526954990480 a001 53316291173/15127*10749957122^(5/16) 4807526954990480 a001 7778742049/15127*817138163596^(1/3) 4807526954990480 a001 7778742049/15127*(1/2+1/2*5^(1/2))^19 4807526954990480 a001 1515744265389/2161*4106118243^(2/23) 4807526954990480 a001 4052739537881/15127*4106118243^(3/23) 4807526954990480 a001 1548008755920/15127*4106118243^(4/23) 4807526954990480 a001 591286729879/15127*4106118243^(5/23) 4807526954990480 a001 32264490531/2161*4106118243^(6/23) 4807526954990480 a001 686789568/2161*4106118243^(10/23) 4807526954990480 a001 86267571272/15127*4106118243^(7/23) 4807526954990480 a001 32951280099/15127*4106118243^(8/23) 4807526954990480 a001 2971215073/15127*17393796001^(3/7) 4807526954990480 a001 12586269025/15127*4106118243^(9/23) 4807526954990480 a001 2971215073/15127*45537549124^(7/17) 4807526954990480 a001 2971215073/15127*14662949395604^(1/3) 4807526954990480 a001 2971215073/15127*(1/2+1/2*5^(1/2))^21 4807526954990480 a001 2971215073/15127*192900153618^(7/18) 4807526954990480 a001 2971215073/15127*10749957122^(7/16) 4807526954990480 a001 1515744265389/2161*1568397607^(1/11) 4807526954990480 a001 4052739537881/15127*1568397607^(3/22) 4807526954990480 a001 1548008755920/15127*1568397607^(2/11) 4807526954990480 a001 591286729879/15127*1568397607^(5/22) 4807526954990480 a001 365435296162/15127*1568397607^(1/4) 4807526954990480 a001 32264490531/2161*1568397607^(3/11) 4807526954990480 a001 86267571272/15127*1568397607^(7/22) 4807526954990480 a001 1836311903/15127*1568397607^(1/2) 4807526954990480 a001 32951280099/15127*1568397607^(4/11) 4807526954990480 a001 1134903170/15127*(1/2+1/2*5^(1/2))^23 4807526954990480 a001 12586269025/15127*1568397607^(9/22) 4807526954990480 a001 686789568/2161*1568397607^(5/11) 4807526954990480 a001 1134903170/15127*4106118243^(1/2) 4807526954990480 a001 1515744265389/2161*599074578^(2/21) 4807526954990480 a001 4052739537881/15127*599074578^(1/7) 4807526954990480 a001 2504730781961/15127*599074578^(1/6) 4807526954990480 a001 1548008755920/15127*599074578^(4/21) 4807526954990480 a001 956722026041/15127*599074578^(3/14) 4807526954990480 a001 591286729879/15127*599074578^(5/21) 4807526954990480 a001 32264490531/2161*599074578^(2/7) 4807526954990480 a001 86267571272/15127*599074578^(1/3) 4807526954990480 a001 433494437/15127*2537720636^(5/9) 4807526954990480 a001 53316291173/15127*599074578^(5/14) 4807526954990480 a001 32951280099/15127*599074578^(8/21) 4807526954990480 a001 433494437/15127*312119004989^(5/11) 4807526954990480 a001 433494437/15127*(1/2+1/2*5^(1/2))^25 4807526954990480 a001 433494437/15127*3461452808002^(5/12) 4807526954990480 a001 433494437/15127*28143753123^(1/2) 4807526954990480 a001 701408733/15127*599074578^(4/7) 4807526954990480 a001 12586269025/15127*599074578^(3/7) 4807526954990480 a001 686789568/2161*599074578^(10/21) 4807526954990480 a001 1836311903/15127*599074578^(11/21) 4807526954990480 a001 2971215073/15127*599074578^(1/2) 4807526954990480 a001 1515744265389/2161*228826127^(1/10) 4807526954990480 a001 6557470319842/15127*228826127^(1/8) 4807526954990480 a001 4052739537881/15127*228826127^(3/20) 4807526954990480 a001 1548008755920/15127*228826127^(1/5) 4807526954990480 a001 591286729879/15127*228826127^(1/4) 4807526954990480 a001 32264490531/2161*228826127^(3/10) 4807526954990480 a001 86267571272/15127*228826127^(7/20) 4807526954990480 a001 53316291173/15127*228826127^(3/8) 4807526954990480 a001 165580141/15127*2537720636^(3/5) 4807526954990480 a001 165580141/15127*45537549124^(9/17) 4807526954990480 a001 165580141/15127*817138163596^(9/19) 4807526954990480 a001 165580141/15127*14662949395604^(3/7) 4807526954990480 a001 165580141/15127*(1/2+1/2*5^(1/2))^27 4807526954990480 a001 165580141/15127*192900153618^(1/2) 4807526954990480 a001 165580141/15127*10749957122^(9/16) 4807526954990480 a001 32951280099/15127*228826127^(2/5) 4807526954990480 a001 12586269025/15127*228826127^(9/20) 4807526954990480 a001 165580141/15127*599074578^(9/14) 4807526954990480 a001 686789568/2161*228826127^(1/2) 4807526954990480 a001 267914296/15127*228826127^(13/20) 4807526954990480 a001 1836311903/15127*228826127^(11/20) 4807526954990480 a001 701408733/15127*228826127^(3/5) 4807526954990480 a001 433494437/15127*228826127^(5/8) 4807526954990480 a001 1515744265389/2161*87403803^(2/19) 4807526954990480 a001 4052739537881/15127*87403803^(3/19) 4807526954990480 a001 1548008755920/15127*87403803^(4/19) 4807526954990480 a001 591286729879/15127*87403803^(5/19) 4807526954990480 a001 32264490531/2161*87403803^(6/19) 4807526954990480 a001 86267571272/15127*87403803^(7/19) 4807526954990480 a001 63245986/15127*(1/2+1/2*5^(1/2))^29 4807526954990480 a001 63245986/15127*1322157322203^(1/2) 4807526954990480 a001 32951280099/15127*87403803^(8/19) 4807526954990480 a001 12586269025/15127*87403803^(9/19) 4807526954990480 a001 7778742049/15127*87403803^(1/2) 4807526954990480 a001 686789568/2161*87403803^(10/19) 4807526954990480 a001 1836311903/15127*87403803^(11/19) 4807526954990480 a001 6765*87403803^(14/19) 4807526954990480 a001 701408733/15127*87403803^(12/19) 4807526954990481 a001 267914296/15127*87403803^(13/19) 4807526954990481 a001 1515744265389/2161*33385282^(1/9) 4807526954990481 a001 4052739537881/15127*33385282^(1/6) 4807526954990481 a001 1548008755920/15127*33385282^(2/9) 4807526954990481 a001 956722026041/15127*33385282^(1/4) 4807526954990481 a001 591286729879/15127*33385282^(5/18) 4807526954990482 a001 32264490531/2161*33385282^(1/3) 4807526954990482 a001 24157817/15127*(1/2+1/2*5^(1/2))^31 4807526954990482 a001 24157817/15127*9062201101803^(1/2) 4807526954990482 a001 86267571272/15127*33385282^(7/18) 4807526954990482 a001 53316291173/15127*33385282^(5/12) 4807526954990482 a001 32951280099/15127*33385282^(4/9) 4807526954990482 a001 12586269025/15127*33385282^(1/2) 4807526954990482 a001 686789568/2161*33385282^(5/9) 4807526954990483 a001 2971215073/15127*33385282^(7/12) 4807526954990483 a001 1836311903/15127*33385282^(11/18) 4807526954990483 a001 701408733/15127*33385282^(2/3) 4807526954990483 a001 39088169/15127*33385282^(5/6) 4807526954990483 a001 267914296/15127*33385282^(13/18) 4807526954990483 a001 6765*33385282^(7/9) 4807526954990483 a001 165580141/15127*33385282^(3/4) 4807526954990484 a001 1515744265389/2161*12752043^(2/17) 4807526954990484 a001 7975341076388455/1658928 4807526954990485 a001 4052739537881/15127*12752043^(3/17) 4807526954990487 a001 1548008755920/15127*12752043^(4/17) 4807526954990489 a001 591286729879/15127*12752043^(5/17) 4807526954990491 a001 32264490531/2161*12752043^(6/17) 4807526954990491 a001 9227465/15127*141422324^(11/13) 4807526954990491 a001 615/1875749*(1/2+1/2*5^(1/2))^63 4807526954990491 a001 9227465/15127*2537720636^(11/15) 4807526954990491 a001 9227465/15127*45537549124^(11/17) 4807526954990491 a001 9227465/15127*312119004989^(3/5) 4807526954990491 a001 9227465/15127*817138163596^(11/19) 4807526954990491 a001 9227465/15127*14662949395604^(11/21) 4807526954990491 a001 9227465/15127*(1/2+1/2*5^(1/2))^33 4807526954990491 a001 9227465/15127*192900153618^(11/18) 4807526954990491 a001 9227465/15127*10749957122^(11/16) 4807526954990491 a001 9227465/15127*1568397607^(3/4) 4807526954990491 a001 9227465/15127*599074578^(11/14) 4807526954990492 a001 86267571272/15127*12752043^(7/17) 4807526954990494 a001 32951280099/15127*12752043^(8/17) 4807526954990495 a001 20365011074/15127*12752043^(1/2) 4807526954990495 a001 9227465/15127*33385282^(11/12) 4807526954990496 a001 12586269025/15127*12752043^(9/17) 4807526954990497 a001 686789568/2161*12752043^(10/17) 4807526954990499 a001 1836311903/15127*12752043^(11/17) 4807526954990501 a001 701408733/15127*12752043^(12/17) 4807526954990503 a001 267914296/15127*12752043^(13/17) 4807526954990504 a001 14930352/15127*12752043^(16/17) 4807526954990504 a001 6765*12752043^(14/17) 4807526954990505 a001 1515744265389/2161*4870847^(1/8) 4807526954990506 a001 39088169/15127*12752043^(15/17) 4807526954990510 a001 27416782973764965/5702887 4807526954990518 a001 4052739537881/15127*4870847^(3/16) 4807526954990531 a001 1548008755920/15127*4870847^(1/4) 4807526954990543 a001 591286729879/15127*4870847^(5/16) 4807526954990556 a001 32264490531/2161*4870847^(3/8) 4807526954990557 a001 6765/7881196*(1/2+1/2*5^(1/2))^61 4807526954990557 a001 3524578/15127*2537720636^(7/9) 4807526954990557 a001 3524578/15127*17393796001^(5/7) 4807526954990557 a001 3524578/15127*312119004989^(7/11) 4807526954990557 a001 3524578/15127*14662949395604^(5/9) 4807526954990557 a001 3524578/15127*(1/2+1/2*5^(1/2))^35 4807526954990557 a001 3524578/15127*505019158607^(5/8) 4807526954990557 a001 3524578/15127*28143753123^(7/10) 4807526954990558 a001 3524578/15127*599074578^(5/6) 4807526954990558 a001 3524578/15127*228826127^(7/8) 4807526954990569 a001 86267571272/15127*4870847^(7/16) 4807526954990581 a001 32951280099/15127*4870847^(1/2) 4807526954990594 a001 12586269025/15127*4870847^(9/16) 4807526954990607 a001 686789568/2161*4870847^(5/8) 4807526954990619 a001 1836311903/15127*4870847^(11/16) 4807526954990632 a001 701408733/15127*4870847^(3/4) 4807526954990645 a001 267914296/15127*4870847^(13/16) 4807526954990657 a001 6765*4870847^(7/8) 4807526954990665 a001 1515744265389/2161*1860498^(2/15) 4807526954990669 a001 39088169/15127*4870847^(15/16) 4807526954990683 a001 3490759744599600/726103 4807526954990712 a001 6557470319842/15127*1860498^(1/6) 4807526954990758 a001 4052739537881/15127*1860498^(1/5) 4807526954990850 a001 1548008755920/15127*1860498^(4/15) 4807526954990897 a001 956722026041/15127*1860498^(3/10) 4807526954990943 a001 591286729879/15127*1860498^(1/3) 4807526954991011 a001 6765/3010349*(1/2+1/2*5^(1/2))^59 4807526954991011 a001 1346269/15127*(1/2+1/2*5^(1/2))^37 4807526954991036 a001 32264490531/2161*1860498^(2/5) 4807526954991128 a001 86267571272/15127*1860498^(7/15) 4807526954991175 a001 53316291173/15127*1860498^(1/2) 4807526954991221 a001 32951280099/15127*1860498^(8/15) 4807526954991313 a001 12586269025/15127*1860498^(3/5) 4807526954991406 a001 686789568/2161*1860498^(2/3) 4807526954991452 a001 2971215073/15127*1860498^(7/10) 4807526954991499 a001 1836311903/15127*1860498^(11/15) 4807526954991591 a001 701408733/15127*1860498^(4/5) 4807526954991637 a001 433494437/15127*1860498^(5/6) 4807526954991684 a001 267914296/15127*1860498^(13/15) 4807526954991730 a001 165580141/15127*1860498^(9/10) 4807526954991776 a001 6765*1860498^(14/15) 4807526954991840 a001 1515744265389/2161*710647^(1/7) 4807526954991869 a001 72728267775117/15128 4807526954992520 a001 4052739537881/15127*710647^(3/14) 4807526954992860 a001 2504730781961/15127*710647^(1/4) 4807526954993200 a001 1548008755920/15127*710647^(2/7) 4807526954993880 a001 591286729879/15127*710647^(5/14) 4807526954994116 a001 6765/1149851*14662949395604^(19/21) 4807526954994116 a001 6765/1149851*(1/2+1/2*5^(1/2))^57 4807526954994116 a001 514229/15127*2537720636^(13/15) 4807526954994116 a001 514229/15127*45537549124^(13/17) 4807526954994116 a001 514229/15127*14662949395604^(13/21) 4807526954994116 a001 514229/15127*(1/2+1/2*5^(1/2))^39 4807526954994116 a001 514229/15127*192900153618^(13/18) 4807526954994116 a001 514229/15127*73681302247^(3/4) 4807526954994116 a001 514229/15127*10749957122^(13/16) 4807526954994116 a001 514229/15127*599074578^(13/14) 4807526954994560 a001 32264490531/2161*710647^(3/7) 4807526954995240 a001 86267571272/15127*710647^(1/2) 4807526954995920 a001 32951280099/15127*710647^(4/7) 4807526954996600 a001 12586269025/15127*710647^(9/14) 4807526954997280 a001 686789568/2161*710647^(5/7) 4807526954997620 a001 2971215073/15127*710647^(3/4) 4807526954997960 a001 1836311903/15127*710647^(11/14) 4807526954998640 a001 701408733/15127*710647^(6/7) 4807526954999320 a001 267914296/15127*710647^(13/14) 4807526955000518 a001 1515744265389/2161*271443^(2/13) 4807526955005537 a001 4052739537881/15127*271443^(3/13) 4807526955010556 a001 1548008755920/15127*271443^(4/13) 4807526955015402 a001 6765/439204*(1/2+1/2*5^(1/2))^55 4807526955015402 a001 6765/439204*3461452808002^(11/12) 4807526955015402 a001 196418/15127*(1/2+1/2*5^(1/2))^41 4807526955015575 a001 591286729879/15127*271443^(5/13) 4807526955020594 a001 32264490531/2161*271443^(6/13) 4807526955023104 a001 139583862445/15127*271443^(1/2) 4807526955025613 a001 86267571272/15127*271443^(7/13) 4807526955030632 a001 32951280099/15127*271443^(8/13) 4807526955035652 a001 12586269025/15127*271443^(9/13) 4807526955040671 a001 686789568/2161*271443^(10/13) 4807526955045690 a001 1836311903/15127*271443^(11/13) 4807526955050709 a001 701408733/15127*271443^(12/13) 4807526955055728 a001 583600119655080/121393 4807526955065016 a001 1515744265389/2161*103682^(1/6) 4807526955075640 a001 956722026041/24476*9349^(10/19) 4807526955083650 a001 6557470319842/15127*103682^(5/24) 4807526955102283 a001 4052739537881/15127*103682^(1/4) 4807526955120917 a001 2504730781961/15127*103682^(7/24) 4807526955139551 a001 1548008755920/15127*103682^(1/3) 4807526955158185 a001 956722026041/15127*103682^(3/8) 4807526955161300 a001 615/15251*(1/2+1/2*5^(1/2))^53 4807526955161300 a001 75025/15127*(1/2+1/2*5^(1/2))^43 4807526955176819 a001 591286729879/15127*103682^(5/12) 4807526955195453 a001 365435296162/15127*103682^(11/24) 4807526955214087 a001 32264490531/2161*103682^(1/2) 4807526955232721 a001 139583862445/15127*103682^(13/24) 4807526955251355 a001 86267571272/15127*103682^(7/12) 4807526955269989 a001 53316291173/15127*103682^(5/8) 4807526955288622 a001 32951280099/15127*103682^(2/3) 4807526955307256 a001 20365011074/15127*103682^(17/24) 4807526955325890 a001 12586269025/15127*103682^(3/4) 4807526955344524 a001 7778742049/15127*103682^(19/24) 4807526955363158 a001 686789568/2161*103682^(5/6) 4807526955373625 a001 3536736619241/1926*2207^(1/8) 4807526955381792 a001 2971215073/15127*103682^(7/8) 4807526955400426 a001 1836311903/15127*103682^(11/12) 4807526955419060 a001 1134903170/15127*103682^(23/24) 4807526955427794 a001 4052739537881/2207*843^(1/7) 4807526955437694 a001 24768378874415/5152 4807526955547798 a001 1515744265389/2161*39603^(2/11) 4807526955565183 a001 3536736619241/13201*9349^(6/19) 4807526955687127 a001 6557470319842/15127*39603^(5/22) 4807526955826457 a001 4052739537881/15127*39603^(3/11) 4807526955965786 a001 2504730781961/15127*39603^(7/22) 4807526956105116 a001 1548008755920/15127*39603^(4/11) 4807526956161300 a001 6765/64079*817138163596^(17/19) 4807526956161300 a001 6765/64079*14662949395604^(17/21) 4807526956161300 a001 6765/64079*(1/2+1/2*5^(1/2))^51 4807526956161300 a001 6765/64079*192900153618^(17/18) 4807526956161300 a001 28657/15127*45537549124^(15/17) 4807526956161300 a001 28657/15127*312119004989^(9/11) 4807526956161300 a001 28657/15127*14662949395604^(5/7) 4807526956161300 a001 28657/15127*(1/2+1/2*5^(1/2))^45 4807526956161300 a001 28657/15127*192900153618^(5/6) 4807526956161300 a001 28657/15127*28143753123^(9/10) 4807526956161300 a001 28657/15127*10749957122^(15/16) 4807526956244445 a001 956722026041/15127*39603^(9/22) 4807526956383774 a001 591286729879/15127*39603^(5/11) 4807526956523104 a001 365435296162/15127*39603^(1/2) 4807526956662433 a001 32264490531/2161*39603^(6/11) 4807526956801763 a001 139583862445/15127*39603^(13/22) 4807526956906322 a001 10610209857723/64079*9349^(7/19) 4807526956941092 a001 86267571272/15127*39603^(7/11) 4807526957080422 a001 53316291173/15127*39603^(15/22) 4807526957219751 a001 32951280099/15127*39603^(8/11) 4807526957359080 a001 20365011074/15127*39603^(17/22) 4807526957498410 a001 12586269025/15127*39603^(9/11) 4807526957637739 a001 7778742049/15127*39603^(19/22) 4807526957777069 a001 686789568/2161*39603^(10/11) 4807526957916398 a001 2971215073/15127*39603^(21/22) 4807526957970568 a001 387002188980/6119*9349^(9/19) 4807526958055728 a001 85146109954125/17711 4807526959192384 a001 1515744265389/2161*15127^(1/5) 4807526959999845 a001 12586269025/5778*5778^(8/9) 4807526960242860 a001 6557470319842/15127*15127^(1/4) 4807526960865496 a001 2504730781961/24476*9349^(8/19) 4807526961293336 a001 4052739537881/15127*15127^(3/10) 4807526962343812 a001 2504730781961/15127*15127^(7/20) 4807526963015402 a001 6765/24476*14662949395604^(7/9) 4807526963015402 a001 6765/24476*(1/2+1/2*5^(1/2))^49 4807526963015402 a001 6765/24476*505019158607^(7/8) 4807526963015402 a001 10946/15127*(1/2+1/2*5^(1/2))^47 4807526963394288 a001 1548008755920/15127*15127^(2/5) 4807526963760424 a001 4052739537881/24476*9349^(7/19) 4807526964444764 a001 956722026041/15127*15127^(9/20) 4807526964474128 a001 10610209857723/9349*3571^(3/17) 4807526964909830 a001 52623190157903/10946 4807526965291969 a001 12586269025/39603*24476^(20/21) 4807526965495240 a001 591286729879/15127*15127^(1/2) 4807526965674108 a001 20365011074/39603*24476^(19/21) 4807526966056247 a001 10983760033/13201*24476^(6/7) 4807526966438386 a001 53316291173/39603*24476^(17/21) 4807526966545716 a001 365435296162/15127*15127^(11/20) 4807526966655352 a001 3278735159921/12238*9349^(6/19) 4807526966820525 a001 86267571272/39603*24476^(16/21) 4807526967202665 a001 139583862445/39603*24476^(5/7) 4807526967527864 a001 26311595093280/5473 4807526967584804 a001 75283811239/13201*24476^(2/3) 4807526967596192 a001 32264490531/2161*15127^(3/5) 4807526967909830 a001 52623190190741/10946 4807526967910003 a001 32951280099/103682*24476^(20/21) 4807526967965558 a001 4047937707027/842 4807526967966943 a001 365435296162/39603*24476^(13/21) 4807526967973689 a001 26311595095720/5473 4807526967974876 a001 52623190191453/10946 4807526967975059 a001 4047937707035/842 4807526967975150 a001 26311595095728/5473 4807526967975607 a001 52623190191461/10946 4807526967978713 a001 52623190191495/10946 4807526967999922 a001 7778742049/5778*5778^(17/18) 4807526968145898 a001 52623190193325/10946 4807526968291969 a001 86267571272/271443*24476^(20/21) 4807526968292142 a001 53316291173/103682*24476^(19/21) 4807526968347697 a001 317811*24476^(20/21) 4807526968349082 a001 591286729879/39603*24476^(4/7) 4807526968355827 a001 591286729879/1860498*24476^(20/21) 4807526968357014 a001 1548008755920/4870847*24476^(20/21) 4807526968357187 a001 4052739537881/12752043*24476^(20/21) 4807526968357212 a001 1515744265389/4769326*24476^(20/21) 4807526968357228 a001 6557470319842/20633239*24476^(20/21) 4807526968357294 a001 2504730781961/7881196*24476^(20/21) 4807526968357747 a001 956722026041/3010349*24476^(20/21) 4807526968360852 a001 365435296162/1149851*24476^(20/21) 4807526968382139 a001 139583862445/439204*24476^(20/21) 4807526968528037 a001 53316291173/167761*24476^(20/21) 4807526968646668 a001 139583862445/15127*15127^(13/20) 4807526968674108 a001 139583862445/271443*24476^(19/21) 4807526968674281 a001 43133785636/51841*24476^(6/7) 4807526968729836 a001 365435296162/710647*24476^(19/21) 4807526968731221 a001 956722026041/39603*24476^(11/21) 4807526968737967 a001 956722026041/1860498*24476^(19/21) 4807526968739153 a001 2504730781961/4870847*24476^(19/21) 4807526968739326 a001 6557470319842/12752043*24476^(19/21) 4807526968739367 a001 10610209857723/20633239*24476^(19/21) 4807526968739433 a001 4052739537881/7881196*24476^(19/21) 4807526968739886 a001 1548008755920/3010349*24476^(19/21) 4807526968742992 a001 514229*24476^(19/21) 4807526968764278 a001 225851433717/439204*24476^(19/21) 4807526968910176 a001 86267571272/167761*24476^(19/21) 4807526969056247 a001 75283811239/90481*24476^(6/7) 4807526969056420 a001 139583862445/103682*24476^(17/21) 4807526969111975 a001 591286729879/710647*24476^(6/7) 4807526969113360 a001 516002918640/13201*24476^(10/21) 4807526969120106 a001 832040*24476^(6/7) 4807526969121292 a001 4052739537881/4870847*24476^(6/7) 4807526969121465 a001 3536736619241/4250681*24476^(6/7) 4807526969121572 a001 3278735159921/3940598*24476^(6/7) 4807526969122025 a001 2504730781961/3010349*24476^(6/7) 4807526969125131 a001 956722026041/1149851*24476^(6/7) 4807526969145898 a001 52623190204271/10946 4807526969146417 a001 182717648081/219602*24476^(6/7) 4807526969292315 a001 139583862445/167761*24476^(6/7) 4807526969438386 a001 365435296162/271443*24476^(17/21) 4807526969438559 a001 225851433717/103682*24476^(16/21) 4807526969494114 a001 956722026041/710647*24476^(17/21) 4807526969495499 a001 2504730781961/39603*24476^(3/7) 4807526969502245 a001 2504730781961/1860498*24476^(17/21) 4807526969503431 a001 6557470319842/4870847*24476^(17/21) 4807526969503711 a001 10610209857723/7881196*24476^(17/21) 4807526969504164 a001 1346269*24476^(17/21) 4807526969507270 a001 1548008755920/1149851*24476^(17/21) 4807526969528037 a001 20365011074/64079*24476^(20/21) 4807526969528556 a001 591286729879/439204*24476^(17/21) 4807526969550281 a001 10610209857723/24476*9349^(5/19) 4807526969674454 a001 225851433717/167761*24476^(17/21) 4807526969697144 a001 86267571272/15127*15127^(7/10) 4807526969820525 a001 591286729879/271443*24476^(16/21) 4807526969820699 a001 182717648081/51841*24476^(5/7) 4807526969869504 a001 17711/39603*45537549124^(16/17) 4807526969869504 a001 17711/39603*14662949395604^(16/21) 4807526969869504 a001 17711/39603*(1/2+1/2*5^(1/2))^48 4807526969869504 a001 17711/39603*192900153618^(8/9) 4807526969869504 a001 17711/39603*73681302247^(12/13) 4807526969876253 a001 1548008755920/710647*24476^(16/21) 4807526969877639 a001 4052739537881/39603*24476^(8/21) 4807526969884384 a001 4052739537881/1860498*24476^(16/21) 4807526969885570 a001 2178309*24476^(16/21) 4807526969886303 a001 6557470319842/3010349*24476^(16/21) 4807526969889409 a001 2504730781961/1149851*24476^(16/21) 4807526969910176 a001 32951280099/64079*24476^(19/21) 4807526969910695 a001 956722026041/439204*24476^(16/21) 4807526970056593 a001 365435296162/167761*24476^(16/21) 4807526970202665 a001 956722026041/271443*24476^(5/7) 4807526970202838 a001 591286729879/103682*24476^(2/3) 4807526970258393 a001 2504730781961/710647*24476^(5/7) 4807526970259778 a001 6557470319842/39603*24476^(1/3) 4807526970266523 a001 3278735159921/930249*24476^(5/7) 4807526970268443 a001 10610209857723/3010349*24476^(5/7) 4807526970271548 a001 4052739537881/1149851*24476^(5/7) 4807526970292315 a001 53316291173/64079*24476^(6/7) 4807526970292834 a001 387002188980/109801*24476^(5/7) 4807526970438732 a001 591286729879/167761*24476^(5/7) 4807526970584804 a001 516002918640/90481*24476^(2/3) 4807526970584977 a001 956722026041/103682*24476^(13/21) 4807526970640532 a001 4052739537881/710647*24476^(2/3) 4807526970641917 a001 3536736619241/13201*24476^(2/7) 4807526970648662 a001 3536736619241/620166*24476^(2/3) 4807526970653687 a001 6557470319842/1149851*24476^(2/3) 4807526970674454 a001 86267571272/64079*24476^(17/21) 4807526970674974 a001 2504730781961/439204*24476^(2/3) 4807526970747620 a001 53316291173/15127*15127^(3/4) 4807526970820872 a001 956722026041/167761*24476^(2/3) 4807526970966943 a001 2504730781961/271443*24476^(13/21) 4807526970967116 a001 774004377960/51841*24476^(4/7) 4807526971022671 a001 6557470319842/710647*24476^(13/21) 4807526971035827 a001 10610209857723/1149851*24476^(13/21) 4807526971056593 a001 139583862445/64079*24476^(16/21) 4807526971057113 a001 4052739537881/439204*24476^(13/21) 4807526971203011 a001 140728068720/15251*24476^(13/21) 4807526971349082 a001 4052739537881/271443*24476^(4/7) 4807526971349255 a001 2504730781961/103682*24476^(11/21) 4807526971404810 a001 1515744265389/101521*24476^(4/7) 4807526971438732 a001 225851433717/64079*24476^(5/7) 4807526971439252 a001 3278735159921/219602*24476^(4/7) 4807526971585150 a001 2504730781961/167761*24476^(4/7) 4807526971731221 a001 6557470319842/271443*24476^(11/21) 4807526971731394 a001 4052739537881/103682*24476^(10/21) 4807526971763932 a001 137769300429839/28657 4807526971798096 a001 32951280099/15127*15127^(4/5) 4807526971814837 a001 1602508992/13201*64079^(22/23) 4807526971820872 a001 365435296162/64079*24476^(2/3) 4807526971821391 a001 10610209857723/439204*24476^(11/21) 4807526971865742 a001 7778742049/39603*64079^(21/23) 4807526971916647 a001 12586269025/39603*64079^(20/23) 4807526971967289 a001 4052739537881/167761*24476^(11/21) 4807526971967552 a001 20365011074/39603*64079^(19/23) 4807526972018458 a001 10983760033/13201*64079^(18/23) 4807526972069363 a001 53316291173/39603*64079^(17/23) 4807526972113360 a001 3536736619241/90481*24476^(10/21) 4807526972113533 a001 3278735159921/51841*24476^(3/7) 4807526972120268 a001 86267571272/39603*64079^(16/23) 4807526972171173 a001 139583862445/39603*64079^(15/23) 4807526972203011 a001 591286729879/64079*24476^(13/21) 4807526972222079 a001 75283811239/13201*64079^(14/23) 4807526972272984 a001 365435296162/39603*64079^(13/23) 4807526972323889 a001 591286729879/39603*64079^(12/23) 4807526972349428 a001 6557470319842/167761*24476^(10/21) 4807526972374794 a001 956722026041/39603*64079^(11/23) 4807526972425700 a001 516002918640/13201*64079^(10/23) 4807526972476605 a001 2504730781961/39603*64079^(9/23) 4807526972487538 a001 17711/103682*312119004989^(10/11) 4807526972487538 a001 17711/103682*(1/2+1/2*5^(1/2))^50 4807526972487538 a001 17711/103682*3461452808002^(5/6) 4807526972487538 a001 15456/13201*(1/2+1/2*5^(1/2))^46 4807526972487538 a001 15456/13201*10749957122^(23/24) 4807526972495673 a001 225749145909/2206*24476^(8/21) 4807526972527510 a001 4052739537881/39603*64079^(8/23) 4807526972578415 a001 6557470319842/39603*64079^(7/23) 4807526972585150 a001 956722026041/64079*24476^(4/7) 4807526972629321 a001 3536736619241/13201*64079^(6/23) 4807526972731567 a001 10610209857723/167761*24476^(3/7) 4807526972763932 a001 360684711131614/75025 4807526972798096 a001 12586269025/39603*167761^(4/5) 4807526972832260 a001 139583862445/39603*167761^(3/5) 4807526972848572 a001 20365011074/15127*15127^(17/20) 4807526972866424 a001 516002918640/13201*167761^(2/5) 4807526972869504 a001 17711/271443*(1/2+1/2*5^(1/2))^52 4807526972869504 a001 17711/271443*23725150497407^(13/16) 4807526972869504 a001 17711/271443*505019158607^(13/14) 4807526972869504 a001 121393/39603*312119004989^(4/5) 4807526972869504 a001 121393/39603*(1/2+1/2*5^(1/2))^44 4807526972869504 a001 121393/39603*23725150497407^(11/16) 4807526972869504 a001 121393/39603*73681302247^(11/13) 4807526972869504 a001 121393/39603*10749957122^(11/12) 4807526972869504 a001 121393/39603*4106118243^(22/23) 4807526972909830 a001 944284832965003/196418 4807526972912599 a001 1836311903/39603*439204^(8/9) 4807526972915368 a001 7778742049/39603*439204^(7/9) 4807526972918137 a001 10983760033/13201*439204^(2/3) 4807526972920906 a001 139583862445/39603*439204^(5/9) 4807526972923675 a001 591286729879/39603*439204^(4/9) 4807526972925232 a001 17711/710647*14662949395604^(6/7) 4807526972925232 a001 17711/710647*(1/2+1/2*5^(1/2))^54 4807526972925232 a001 105937/13201*2537720636^(14/15) 4807526972925232 a001 105937/13201*17393796001^(6/7) 4807526972925232 a001 105937/13201*45537549124^(14/17) 4807526972925232 a001 105937/13201*817138163596^(14/19) 4807526972925232 a001 105937/13201*14662949395604^(2/3) 4807526972925232 a001 105937/13201*(1/2+1/2*5^(1/2))^42 4807526972925232 a001 105937/13201*505019158607^(3/4) 4807526972925232 a001 105937/13201*192900153618^(7/9) 4807526972925232 a001 105937/13201*10749957122^(7/8) 4807526972925232 a001 105937/13201*4106118243^(21/23) 4807526972925232 a001 105937/13201*1568397607^(21/22) 4807526972926444 a001 2504730781961/39603*439204^(1/3) 4807526972929214 a001 3536736619241/13201*439204^(2/9) 4807526972931116 a001 2472169787763395/514229 4807526972933363 a001 17711/1860498*14662949395604^(8/9) 4807526972933363 a001 17711/1860498*(1/2+1/2*5^(1/2))^56 4807526972933363 a001 832040/39603*2537720636^(8/9) 4807526972933363 a001 832040/39603*312119004989^(8/11) 4807526972933363 a001 832040/39603*(1/2+1/2*5^(1/2))^40 4807526972933363 a001 832040/39603*23725150497407^(5/8) 4807526972933363 a001 832040/39603*73681302247^(10/13) 4807526972933363 a001 832040/39603*28143753123^(4/5) 4807526972933363 a001 832040/39603*10749957122^(5/6) 4807526972933363 a001 832040/39603*4106118243^(20/23) 4807526972933363 a001 832040/39603*1568397607^(10/11) 4807526972933363 a001 832040/39603*599074578^(20/21) 4807526972934221 a001 6472224530325182/1346269 4807526972934549 a001 17711/4870847*(1/2+1/2*5^(1/2))^58 4807526972934549 a001 726103/13201*817138163596^(2/3) 4807526972934549 a001 726103/13201*(1/2+1/2*5^(1/2))^38 4807526972934549 a001 726103/13201*10749957122^(19/24) 4807526972934549 a001 726103/13201*4106118243^(19/23) 4807526972934549 a001 726103/13201*1568397607^(19/22) 4807526972934549 a001 726103/13201*599074578^(19/21) 4807526972934549 a001 726103/13201*228826127^(19/20) 4807526972934675 a001 190387683182159/39602 4807526972934681 a001 34111385/13201*7881196^(10/11) 4807526972934689 a001 433494437/39603*7881196^(9/11) 4807526972934696 a001 1836311903/39603*7881196^(8/11) 4807526972934700 a001 1602508992/13201*7881196^(2/3) 4807526972934703 a001 7778742049/39603*7881196^(7/11) 4807526972934710 a001 10983760033/13201*7881196^(6/11) 4807526972934717 a001 139583862445/39603*7881196^(5/11) 4807526972934722 a001 5702887/39603*141422324^(12/13) 4807526972934722 a001 17711/12752043*14662949395604^(20/21) 4807526972934722 a001 17711/12752043*(1/2+1/2*5^(1/2))^60 4807526972934722 a001 5702887/39603*2537720636^(4/5) 4807526972934722 a001 5702887/39603*45537549124^(12/17) 4807526972934722 a001 5702887/39603*14662949395604^(4/7) 4807526972934722 a001 5702887/39603*(1/2+1/2*5^(1/2))^36 4807526972934722 a001 5702887/39603*505019158607^(9/14) 4807526972934722 a001 5702887/39603*192900153618^(2/3) 4807526972934722 a001 5702887/39603*73681302247^(9/13) 4807526972934722 a001 5702887/39603*10749957122^(3/4) 4807526972934722 a001 5702887/39603*4106118243^(18/23) 4807526972934722 a001 5702887/39603*1568397607^(9/11) 4807526972934722 a001 5702887/39603*599074578^(6/7) 4807526972934722 a001 5702887/39603*228826127^(9/10) 4807526972934723 a001 5702887/39603*87403803^(18/19) 4807526972934724 a001 591286729879/39603*7881196^(4/11) 4807526972934726 a001 956722026041/39603*7881196^(1/3) 4807526972934731 a001 2504730781961/39603*7881196^(3/11) 4807526972934738 a001 3536736619241/13201*7881196^(2/11) 4807526972934741 a001 44361286879311271/9227465 4807526972934742 a001 34111385/13201*20633239^(6/7) 4807526972934743 a001 267914296/39603*20633239^(4/5) 4807526972934744 a001 1134903170/39603*20633239^(5/7) 4807526972934745 a001 7778742049/39603*20633239^(3/5) 4807526972934745 a001 12586269025/39603*20633239^(4/7) 4807526972934747 a001 139583862445/39603*20633239^(3/7) 4807526972934747 a001 75283811239/13201*20633239^(2/5) 4807526972934748 a001 17711/33385282*(1/2+1/2*5^(1/2))^62 4807526972934748 a001 4976784/13201*45537549124^(2/3) 4807526972934748 a001 4976784/13201*(1/2+1/2*5^(1/2))^34 4807526972934748 a001 4976784/13201*10749957122^(17/24) 4807526972934748 a001 4976784/13201*4106118243^(17/23) 4807526972934748 a001 4976784/13201*1568397607^(17/22) 4807526972934748 a001 4976784/13201*599074578^(17/21) 4807526972934748 a001 4976784/13201*228826127^(17/20) 4807526972934748 a001 4976784/13201*87403803^(17/19) 4807526972934749 a001 516002918640/13201*20633239^(2/7) 4807526972934750 a001 6557470319842/39603*20633239^(1/5) 4807526972934750 a001 116139356834721662/24157817 4807526972934751 a001 39088169/39603*(1/2+1/2*5^(1/2))^32 4807526972934751 a001 39088169/39603*23725150497407^(1/2) 4807526972934751 a001 39088169/39603*505019158607^(4/7) 4807526972934751 a001 39088169/39603*73681302247^(8/13) 4807526972934751 a001 39088169/39603*10749957122^(2/3) 4807526972934751 a001 39088169/39603*4106118243^(16/23) 4807526972934751 a001 39088169/39603*1568397607^(8/11) 4807526972934751 a001 39088169/39603*599074578^(16/21) 4807526972934751 a001 39088169/39603*228826127^(4/5) 4807526972934752 a001 34111385/13201*141422324^(10/13) 4807526972934752 a001 4976784/13201*33385282^(17/18) 4807526972934752 a001 17711*141422324^(2/3) 4807526972934752 a001 433494437/39603*141422324^(9/13) 4807526972934752 a001 1836311903/39603*141422324^(8/13) 4807526972934752 a001 7778742049/39603*141422324^(7/13) 4807526972934752 a001 10983760033/13201*141422324^(6/13) 4807526972934752 a001 39088169/39603*87403803^(16/19) 4807526972934752 a001 139583862445/39603*141422324^(5/13) 4807526972934752 a001 34111385/13201*2537720636^(2/3) 4807526972934752 a001 34111385/13201*45537549124^(10/17) 4807526972934752 a001 34111385/13201*312119004989^(6/11) 4807526972934752 a001 34111385/13201*14662949395604^(10/21) 4807526972934752 a001 34111385/13201*(1/2+1/2*5^(1/2))^30 4807526972934752 a001 34111385/13201*192900153618^(5/9) 4807526972934752 a001 34111385/13201*28143753123^(3/5) 4807526972934752 a001 34111385/13201*10749957122^(5/8) 4807526972934752 a001 34111385/13201*4106118243^(15/23) 4807526972934752 a001 34111385/13201*1568397607^(15/22) 4807526972934752 a001 34111385/13201*599074578^(5/7) 4807526972934752 a001 365435296162/39603*141422324^(1/3) 4807526972934752 a001 591286729879/39603*141422324^(4/13) 4807526972934752 a001 2504730781961/39603*141422324^(3/13) 4807526972934752 a001 3536736619241/13201*141422324^(2/13) 4807526972934752 a001 34111385/13201*228826127^(3/4) 4807526972934752 a001 267914296/39603*17393796001^(4/7) 4807526972934752 a001 267914296/39603*14662949395604^(4/9) 4807526972934752 a001 267914296/39603*(1/2+1/2*5^(1/2))^28 4807526972934752 a001 267914296/39603*505019158607^(1/2) 4807526972934752 a001 267914296/39603*73681302247^(7/13) 4807526972934752 a001 267914296/39603*10749957122^(7/12) 4807526972934752 a001 267914296/39603*4106118243^(14/23) 4807526972934752 a001 267914296/39603*1568397607^(7/11) 4807526972934752 a001 267914296/39603*599074578^(2/3) 4807526972934752 a001 17711*(1/2+1/2*5^(1/2))^26 4807526972934752 a001 17711*73681302247^(1/2) 4807526972934752 a001 17711*10749957122^(13/24) 4807526972934752 a001 17711*4106118243^(13/23) 4807526972934752 a001 17711*1568397607^(13/22) 4807526972934752 a001 1836311903/39603*2537720636^(8/15) 4807526972934752 a001 12586269025/39603*2537720636^(4/9) 4807526972934752 a001 7778742049/39603*2537720636^(7/15) 4807526972934752 a001 10983760033/13201*2537720636^(2/5) 4807526972934752 a001 1836311903/39603*45537549124^(8/17) 4807526972934752 a001 1836311903/39603*14662949395604^(8/21) 4807526972934752 a001 1836311903/39603*(1/2+1/2*5^(1/2))^24 4807526972934752 a001 1836311903/39603*192900153618^(4/9) 4807526972934752 a001 1836311903/39603*73681302247^(6/13) 4807526972934752 a001 1836311903/39603*10749957122^(1/2) 4807526972934752 a001 139583862445/39603*2537720636^(1/3) 4807526972934752 a001 591286729879/39603*2537720636^(4/15) 4807526972934752 a001 516002918640/13201*2537720636^(2/9) 4807526972934752 a001 2504730781961/39603*2537720636^(1/5) 4807526972934752 a001 1836311903/39603*4106118243^(12/23) 4807526972934752 a001 3536736619241/13201*2537720636^(2/15) 4807526972934752 a001 1602508992/13201*312119004989^(2/5) 4807526972934752 a001 1602508992/13201*(1/2+1/2*5^(1/2))^22 4807526972934752 a001 1602508992/13201*10749957122^(11/24) 4807526972934752 a001 12586269025/39603*(1/2+1/2*5^(1/2))^20 4807526972934752 a001 12586269025/39603*23725150497407^(5/16) 4807526972934752 a001 12586269025/39603*505019158607^(5/14) 4807526972934752 a001 12586269025/39603*73681302247^(5/13) 4807526972934752 a001 75283811239/13201*17393796001^(2/7) 4807526972934752 a001 12586269025/39603*28143753123^(2/5) 4807526972934752 a001 6557470319842/39603*17393796001^(1/7) 4807526972934752 a001 10983760033/13201*45537549124^(6/17) 4807526972934752 a001 10983760033/13201*14662949395604^(2/7) 4807526972934752 a001 10983760033/13201*(1/2+1/2*5^(1/2))^18 4807526972934752 a001 10983760033/13201*192900153618^(1/3) 4807526972934752 a001 139583862445/39603*45537549124^(5/17) 4807526972934752 a001 591286729879/39603*45537549124^(4/17) 4807526972934752 a001 53316291173/39603*45537549124^(1/3) 4807526972934752 a001 2504730781961/39603*45537549124^(3/17) 4807526972934752 a001 3536736619241/13201*45537549124^(2/17) 4807526972934752 a001 86267571272/39603*(1/2+1/2*5^(1/2))^16 4807526972934752 a001 86267571272/39603*23725150497407^(1/4) 4807526972934752 a001 75283811239/13201*(1/2+1/2*5^(1/2))^14 4807526972934752 a001 591286729879/39603*817138163596^(4/19) 4807526972934752 a001 2504730781961/39603*817138163596^(3/19) 4807526972934752 a001 516002918640/13201*(1/2+1/2*5^(1/2))^10 4807526972934752 a001 4052739537881/39603*23725150497407^(1/8) 4807526972934752 a001 3536736619241/13201*(1/2+1/2*5^(1/2))^6 4807526972934752 a001 2504730781961/39603*14662949395604^(1/7) 4807526972934752 a001 2504730781961/39603*(1/2+1/2*5^(1/2))^9 4807526972934752 a001 956722026041/39603*(1/2+1/2*5^(1/2))^11 4807526972934752 a001 591286729879/39603*192900153618^(2/9) 4807526972934752 a001 139583862445/39603*312119004989^(3/11) 4807526972934752 a001 139583862445/39603*14662949395604^(5/21) 4807526972934752 a001 139583862445/39603*(1/2+1/2*5^(1/2))^15 4807526972934752 a001 139583862445/39603*192900153618^(5/18) 4807526972934752 a001 4052739537881/39603*73681302247^(2/13) 4807526972934752 a001 86267571272/39603*73681302247^(4/13) 4807526972934752 a001 591286729879/39603*73681302247^(3/13) 4807526972934752 a001 365435296162/39603*73681302247^(1/4) 4807526972934752 a001 516002918640/13201*28143753123^(1/5) 4807526972934752 a001 139583862445/39603*28143753123^(3/10) 4807526972934752 a001 20365011074/39603*817138163596^(1/3) 4807526972934752 a001 20365011074/39603*(1/2+1/2*5^(1/2))^19 4807526972934752 a001 3536736619241/13201*10749957122^(1/8) 4807526972934752 a001 4052739537881/39603*10749957122^(1/6) 4807526972934752 a001 2504730781961/39603*10749957122^(3/16) 4807526972934752 a001 516002918640/13201*10749957122^(5/24) 4807526972934752 a001 7778742049/39603*17393796001^(3/7) 4807526972934752 a001 591286729879/39603*10749957122^(1/4) 4807526972934752 a001 12586269025/39603*10749957122^(5/12) 4807526972934752 a001 75283811239/13201*10749957122^(7/24) 4807526972934752 a001 139583862445/39603*10749957122^(5/16) 4807526972934752 a001 86267571272/39603*10749957122^(1/3) 4807526972934752 a001 10983760033/13201*10749957122^(3/8) 4807526972934752 a001 7778742049/39603*45537549124^(7/17) 4807526972934752 a001 7778742049/39603*14662949395604^(1/3) 4807526972934752 a001 7778742049/39603*(1/2+1/2*5^(1/2))^21 4807526972934752 a001 7778742049/39603*192900153618^(7/18) 4807526972934752 a001 7778742049/39603*10749957122^(7/16) 4807526972934752 a001 3536736619241/13201*4106118243^(3/23) 4807526972934752 a001 4052739537881/39603*4106118243^(4/23) 4807526972934752 a001 516002918640/13201*4106118243^(5/23) 4807526972934752 a001 591286729879/39603*4106118243^(6/23) 4807526972934752 a001 75283811239/13201*4106118243^(7/23) 4807526972934752 a001 1602508992/13201*4106118243^(11/23) 4807526972934752 a001 86267571272/39603*4106118243^(8/23) 4807526972934752 a001 2971215073/39603*(1/2+1/2*5^(1/2))^23 4807526972934752 a001 10983760033/13201*4106118243^(9/23) 4807526972934752 a001 12586269025/39603*4106118243^(10/23) 4807526972934752 a001 2971215073/39603*4106118243^(1/2) 4807526972934752 a001 3536736619241/13201*1568397607^(3/22) 4807526972934752 a001 1134903170/39603*2537720636^(5/9) 4807526972934752 a001 4052739537881/39603*1568397607^(2/11) 4807526972934752 a001 516002918640/13201*1568397607^(5/22) 4807526972934752 a001 956722026041/39603*1568397607^(1/4) 4807526972934752 a001 591286729879/39603*1568397607^(3/11) 4807526972934752 a001 75283811239/13201*1568397607^(7/22) 4807526972934752 a001 86267571272/39603*1568397607^(4/11) 4807526972934752 a001 1134903170/39603*312119004989^(5/11) 4807526972934752 a001 1134903170/39603*(1/2+1/2*5^(1/2))^25 4807526972934752 a001 1134903170/39603*3461452808002^(5/12) 4807526972934752 a001 1134903170/39603*28143753123^(1/2) 4807526972934752 a001 1836311903/39603*1568397607^(6/11) 4807526972934752 a001 10983760033/13201*1568397607^(9/22) 4807526972934752 a001 12586269025/39603*1568397607^(5/11) 4807526972934752 a001 1602508992/13201*1568397607^(1/2) 4807526972934752 a001 3536736619241/13201*599074578^(1/7) 4807526972934752 a001 6557470319842/39603*599074578^(1/6) 4807526972934752 a001 4052739537881/39603*599074578^(4/21) 4807526972934752 a001 2504730781961/39603*599074578^(3/14) 4807526972934752 a001 516002918640/13201*599074578^(5/21) 4807526972934752 a001 591286729879/39603*599074578^(2/7) 4807526972934752 a001 75283811239/13201*599074578^(1/3) 4807526972934752 a001 433494437/39603*2537720636^(3/5) 4807526972934752 a001 139583862445/39603*599074578^(5/14) 4807526972934752 a001 86267571272/39603*599074578^(8/21) 4807526972934752 a001 433494437/39603*45537549124^(9/17) 4807526972934752 a001 433494437/39603*817138163596^(9/19) 4807526972934752 a001 433494437/39603*14662949395604^(3/7) 4807526972934752 a001 433494437/39603*(1/2+1/2*5^(1/2))^27 4807526972934752 a001 433494437/39603*192900153618^(1/2) 4807526972934752 a001 433494437/39603*10749957122^(9/16) 4807526972934752 a001 10983760033/13201*599074578^(3/7) 4807526972934752 a001 17711*599074578^(13/21) 4807526972934752 a001 12586269025/39603*599074578^(10/21) 4807526972934752 a001 7778742049/39603*599074578^(1/2) 4807526972934752 a001 1602508992/13201*599074578^(11/21) 4807526972934752 a001 1836311903/39603*599074578^(4/7) 4807526972934752 a001 433494437/39603*599074578^(9/14) 4807526972934752 a001 3536736619241/13201*228826127^(3/20) 4807526972934752 a001 4052739537881/39603*228826127^(1/5) 4807526972934752 a001 516002918640/13201*228826127^(1/4) 4807526972934752 a001 591286729879/39603*228826127^(3/10) 4807526972934752 a001 75283811239/13201*228826127^(7/20) 4807526972934752 a001 139583862445/39603*228826127^(3/8) 4807526972934752 a001 165580141/39603*(1/2+1/2*5^(1/2))^29 4807526972934752 a001 165580141/39603*1322157322203^(1/2) 4807526972934752 a001 86267571272/39603*228826127^(2/5) 4807526972934752 a001 10983760033/13201*228826127^(9/20) 4807526972934752 a001 12586269025/39603*228826127^(1/2) 4807526972934752 a001 1602508992/13201*228826127^(11/20) 4807526972934752 a001 267914296/39603*228826127^(7/10) 4807526972934752 a001 1836311903/39603*228826127^(3/5) 4807526972934752 a001 17711*228826127^(13/20) 4807526972934752 a001 1134903170/39603*228826127^(5/8) 4807526972934752 a001 3536736619241/13201*87403803^(3/19) 4807526972934752 a001 4052739537881/39603*87403803^(4/19) 4807526972934752 a001 516002918640/13201*87403803^(5/19) 4807526972934752 a001 591286729879/39603*87403803^(6/19) 4807526972934752 a001 75283811239/13201*87403803^(7/19) 4807526972934752 a001 63245986/39603*(1/2+1/2*5^(1/2))^31 4807526972934752 a001 63245986/39603*9062201101803^(1/2) 4807526972934752 a001 86267571272/39603*87403803^(8/19) 4807526972934752 a001 10983760033/13201*87403803^(9/19) 4807526972934752 a001 20365011074/39603*87403803^(1/2) 4807526972934752 a001 12586269025/39603*87403803^(10/19) 4807526972934752 a001 1602508992/13201*87403803^(11/19) 4807526972934752 a001 1836311903/39603*87403803^(12/19) 4807526972934752 a001 34111385/13201*87403803^(15/19) 4807526972934752 a001 17711*87403803^(13/19) 4807526972934752 a001 267914296/39603*87403803^(14/19) 4807526972934753 a001 187917426790132053/39088169 4807526972934753 a001 3536736619241/13201*33385282^(1/6) 4807526972934753 a001 4052739537881/39603*33385282^(2/9) 4807526972934753 a001 2504730781961/39603*33385282^(1/4) 4807526972934753 a001 516002918640/13201*33385282^(5/18) 4807526972934753 a001 591286729879/39603*33385282^(1/3) 4807526972934753 a001 24157817/39603*141422324^(11/13) 4807526972934754 a001 24157817/39603*2537720636^(11/15) 4807526972934754 a001 24157817/39603*45537549124^(11/17) 4807526972934754 a001 24157817/39603*312119004989^(3/5) 4807526972934754 a001 24157817/39603*817138163596^(11/19) 4807526972934754 a001 24157817/39603*14662949395604^(11/21) 4807526972934754 a001 24157817/39603*(1/2+1/2*5^(1/2))^33 4807526972934754 a001 24157817/39603*192900153618^(11/18) 4807526972934754 a001 24157817/39603*10749957122^(11/16) 4807526972934754 a001 24157817/39603*1568397607^(3/4) 4807526972934754 a001 24157817/39603*599074578^(11/14) 4807526972934754 a001 75283811239/13201*33385282^(7/18) 4807526972934754 a001 139583862445/39603*33385282^(5/12) 4807526972934754 a001 86267571272/39603*33385282^(4/9) 4807526972934754 a001 10983760033/13201*33385282^(1/2) 4807526972934754 a001 12586269025/39603*33385282^(5/9) 4807526972934754 a001 7778742049/39603*33385282^(7/12) 4807526972934755 a001 1602508992/13201*33385282^(11/18) 4807526972934755 a001 1836311903/39603*33385282^(2/3) 4807526972934755 a001 17711*33385282^(13/18) 4807526972934755 a001 39088169/39603*33385282^(8/9) 4807526972934755 a001 433494437/39603*33385282^(3/4) 4807526972934755 a001 267914296/39603*33385282^(7/9) 4807526972934755 a001 34111385/13201*33385282^(5/6) 4807526972934756 a001 71778069955410391/14930352 4807526972934757 a001 3536736619241/13201*12752043^(3/17) 4807526972934758 a001 24157817/39603*33385282^(11/12) 4807526972934759 a001 4052739537881/39603*12752043^(4/17) 4807526972934761 a001 516002918640/13201*12752043^(5/17) 4807526972934762 a001 591286729879/39603*12752043^(6/17) 4807526972934763 a001 17711/20633239*(1/2+1/2*5^(1/2))^61 4807526972934763 a001 9227465/39603*2537720636^(7/9) 4807526972934763 a001 9227465/39603*17393796001^(5/7) 4807526972934763 a001 9227465/39603*312119004989^(7/11) 4807526972934763 a001 9227465/39603*14662949395604^(5/9) 4807526972934763 a001 9227465/39603*(1/2+1/2*5^(1/2))^35 4807526972934763 a001 9227465/39603*505019158607^(5/8) 4807526972934763 a001 9227465/39603*28143753123^(7/10) 4807526972934763 a001 9227465/39603*599074578^(5/6) 4807526972934763 a001 9227465/39603*228826127^(7/8) 4807526972934764 a001 75283811239/13201*12752043^(7/17) 4807526972934766 a001 86267571272/39603*12752043^(8/17) 4807526972934767 a001 53316291173/39603*12752043^(1/2) 4807526972934768 a001 10983760033/13201*12752043^(9/17) 4807526972934769 a001 12586269025/39603*12752043^(10/17) 4807526972934771 a001 1602508992/13201*12752043^(11/17) 4807526972934773 a001 1836311903/39603*12752043^(12/17) 4807526972934775 a001 17711*12752043^(13/17) 4807526972934776 a001 267914296/39603*12752043^(14/17) 4807526972934778 a001 34111385/13201*12752043^(15/17) 4807526972934779 a001 39088169/39603*12752043^(16/17) 4807526972934781 a001 27416783076099120/5702887 4807526972934790 a001 3536736619241/13201*4870847^(3/16) 4807526972934803 a001 4052739537881/39603*4870847^(1/4) 4807526972934815 a001 516002918640/13201*4870847^(5/16) 4807526972934828 a001 591286729879/39603*4870847^(3/8) 4807526972934829 a001 89/39604*(1/2+1/2*5^(1/2))^59 4807526972934829 a001 3524578/39603*(1/2+1/2*5^(1/2))^37 4807526972934841 a001 75283811239/13201*4870847^(7/16) 4807526972934853 a001 86267571272/39603*4870847^(1/2) 4807526972934866 a001 10983760033/13201*4870847^(9/16) 4807526972934879 a001 12586269025/39603*4870847^(5/8) 4807526972934891 a001 1602508992/13201*4870847^(11/16) 4807526972934904 a001 1836311903/39603*4870847^(3/4) 4807526972934917 a001 17711*4870847^(13/16) 4807526972934929 a001 267914296/39603*4870847^(7/8) 4807526972934942 a001 34111385/13201*4870847^(15/16) 4807526972934955 a001 10472279272886969/2178309 4807526972935030 a001 3536736619241/13201*1860498^(1/5) 4807526972935122 a001 4052739537881/39603*1860498^(4/15) 4807526972935169 a001 2504730781961/39603*1860498^(3/10) 4807526972935215 a001 516002918640/13201*1860498^(1/3) 4807526972935282 a001 17711/3010349*14662949395604^(19/21) 4807526972935282 a001 17711/3010349*(1/2+1/2*5^(1/2))^57 4807526972935282 a001 1346269/39603*2537720636^(13/15) 4807526972935282 a001 1346269/39603*45537549124^(13/17) 4807526972935282 a001 1346269/39603*14662949395604^(13/21) 4807526972935282 a001 1346269/39603*(1/2+1/2*5^(1/2))^39 4807526972935282 a001 1346269/39603*192900153618^(13/18) 4807526972935282 a001 1346269/39603*73681302247^(3/4) 4807526972935282 a001 1346269/39603*10749957122^(13/16) 4807526972935282 a001 1346269/39603*599074578^(13/14) 4807526972935307 a001 591286729879/39603*1860498^(2/5) 4807526972935400 a001 75283811239/13201*1860498^(7/15) 4807526972935446 a001 139583862445/39603*1860498^(1/2) 4807526972935493 a001 86267571272/39603*1860498^(8/15) 4807526972935585 a001 10983760033/13201*1860498^(3/5) 4807526972935678 a001 12586269025/39603*1860498^(2/3) 4807526972935724 a001 7778742049/39603*1860498^(7/10) 4807526972935770 a001 1602508992/13201*1860498^(11/15) 4807526972935863 a001 1836311903/39603*1860498^(4/5) 4807526972935909 a001 1134903170/39603*1860498^(5/6) 4807526972935956 a001 17711*1860498^(13/15) 4807526972936002 a001 433494437/39603*1860498^(9/10) 4807526972936048 a001 267914296/39603*1860498^(14/15) 4807526972936141 a001 4000054742561787/832040 4807526972936792 a001 3536736619241/13201*710647^(3/14) 4807526972937132 a001 6557470319842/39603*710647^(1/4) 4807526972937472 a001 4052739537881/39603*710647^(2/7) 4807526972938152 a001 516002918640/13201*710647^(5/14) 4807526972938388 a001 17711/1149851*(1/2+1/2*5^(1/2))^55 4807526972938388 a001 17711/1149851*3461452808002^(11/12) 4807526972938388 a001 514229/39603*(1/2+1/2*5^(1/2))^41 4807526972938832 a001 591286729879/39603*710647^(3/7) 4807526972939512 a001 75283811239/13201*710647^(1/2) 4807526972940192 a001 86267571272/39603*710647^(4/7) 4807526972940872 a001 10983760033/13201*710647^(9/14) 4807526972941552 a001 12586269025/39603*710647^(5/7) 4807526972941892 a001 7778742049/39603*710647^(3/4) 4807526972942232 a001 1602508992/13201*710647^(11/14) 4807526972942911 a001 1836311903/39603*710647^(6/7) 4807526972943591 a001 17711*710647^(13/14) 4807526972944271 a001 1527884954798392/317811 4807526972949809 a001 3536736619241/13201*271443^(3/13) 4807526972954828 a001 4052739537881/39603*271443^(4/13) 4807526972959674 a001 17711/439204*(1/2+1/2*5^(1/2))^53 4807526972959674 a001 196418/39603*(1/2+1/2*5^(1/2))^43 4807526972959847 a001 516002918640/13201*271443^(5/13) 4807526972964866 a001 591286729879/39603*271443^(6/13) 4807526972967289 a001 1548008755920/64079*24476^(11/21) 4807526972967376 a001 365435296162/39603*271443^(1/2) 4807526972969885 a001 75283811239/13201*271443^(7/13) 4807526972974904 a001 86267571272/39603*271443^(8/13) 4807526972979923 a001 10983760033/13201*271443^(9/13) 4807526972984942 a001 12586269025/39603*271443^(10/13) 4807526972989961 a001 1602508992/13201*271443^(11/13) 4807526972994980 a001 1836311903/39603*271443^(12/13) 4807526973046555 a001 3536736619241/13201*103682^(1/4) 4807526973065189 a001 6557470319842/39603*103682^(7/24) 4807526973083823 a001 4052739537881/39603*103682^(1/3) 4807526973102457 a001 2504730781961/39603*103682^(3/8) 4807526973105572 a001 17711/167761*817138163596^(17/19) 4807526973105572 a001 17711/167761*14662949395604^(17/21) 4807526973105572 a001 17711/167761*(1/2+1/2*5^(1/2))^51 4807526973105572 a001 17711/167761*192900153618^(17/18) 4807526973105572 a001 75025/39603*45537549124^(15/17) 4807526973105572 a001 75025/39603*312119004989^(9/11) 4807526973105572 a001 75025/39603*14662949395604^(5/7) 4807526973105572 a001 75025/39603*(1/2+1/2*5^(1/2))^45 4807526973105572 a001 75025/39603*192900153618^(5/6) 4807526973105572 a001 75025/39603*28143753123^(9/10) 4807526973105572 a001 75025/39603*10749957122^(15/16) 4807526973121091 a001 516002918640/13201*103682^(5/12) 4807526973139725 a001 956722026041/39603*103682^(11/24) 4807526973158359 a001 591286729879/39603*103682^(1/2) 4807526973176993 a001 365435296162/39603*103682^(13/24) 4807526973195627 a001 75283811239/13201*103682^(7/12) 4807526973214260 a001 139583862445/39603*103682^(5/8) 4807526973232894 a001 86267571272/39603*103682^(2/3) 4807526973251528 a001 53316291173/39603*103682^(17/24) 4807526973270162 a001 10983760033/13201*103682^(3/4) 4807526973288796 a001 20365011074/39603*103682^(19/24) 4807526973307430 a001 12586269025/39603*103682^(5/6) 4807526973326064 a001 7778742049/39603*103682^(7/8) 4807526973344698 a001 1602508992/13201*103682^(11/12) 4807526973349428 a001 2504730781961/64079*24476^(10/21) 4807526973363332 a001 2971215073/39603*103682^(23/24) 4807526973381966 a001 222915410701775/46368 4807526973582584 m002 -5+Pi^2-Sinh[Pi]/(6*Pi^3) 4807526973731567 a001 4052739537881/64079*24476^(3/7) 4807526973770729 a001 3536736619241/13201*39603^(3/11) 4807526973899048 a001 12586269025/15127*15127^(9/10) 4807526973910058 a001 6557470319842/39603*39603^(7/22) 4807526974049387 a001 4052739537881/39603*39603^(4/11) 4807526974105572 a001 17711/64079*14662949395604^(7/9) 4807526974105572 a001 17711/64079*(1/2+1/2*5^(1/2))^49 4807526974105572 a001 17711/64079*505019158607^(7/8) 4807526974105572 a001 28657/39603*(1/2+1/2*5^(1/2))^47 4807526974113707 a001 6557470319842/64079*24476^(8/21) 4807526974188717 a001 2504730781961/39603*39603^(9/22) 4807526974328046 a001 516002918640/13201*39603^(5/11) 4807526974381966 a001 137769300504864/28657 4807526974432871 a001 12586269025/103682*64079^(22/23) 4807526974467376 a001 956722026041/39603*39603^(1/2) 4807526974483776 a001 10182505537/51841*64079^(21/23) 4807526974495846 a001 10610209857723/64079*24476^(1/3) 4807526974534681 a001 32951280099/103682*64079^(20/23) 4807526974585586 a001 53316291173/103682*64079^(19/23) 4807526974606705 a001 591286729879/39603*39603^(6/11) 4807526974636492 a001 43133785636/51841*64079^(18/23) 4807526974687397 a001 139583862445/103682*64079^(17/23) 4807526974738302 a001 225851433717/103682*64079^(16/23) 4807526974746035 a001 365435296162/39603*39603^(13/22) 4807526974763932 a001 137769300515810/28657 4807526974789207 a001 182717648081/51841*64079^(15/23) 4807526974814837 a001 121393*64079^(22/23) 4807526974819660 a001 137769300517407/28657 4807526974827790 a001 137769300517640/28657 4807526974828977 a001 137769300517674/28657 4807526974829151 a001 137769300517679/28657 4807526974829186 a001 137769300517680/28657 4807526974829256 a001 137769300517682/28657 4807526974829710 a001 137769300517695/28657 4807526974832815 a001 137769300517784/28657 4807526974840113 a001 591286729879/103682*64079^(14/23) 4807526974854101 a001 137769300518394/28657 4807526974865742 a001 53316291173/271443*64079^(21/23) 4807526974870565 a001 86267571272/710647*64079^(22/23) 4807526974878695 a001 75283811239/620166*64079^(22/23) 4807526974879882 a001 591286729879/4870847*64079^(22/23) 4807526974880055 a001 516002918640/4250681*64079^(22/23) 4807526974880080 a001 4052739537881/33385282*64079^(22/23) 4807526974880084 a001 3536736619241/29134601*64079^(22/23) 4807526974880086 a001 6557470319842/54018521*64079^(22/23) 4807526974880096 a001 2504730781961/20633239*64079^(22/23) 4807526974880162 a001 956722026041/7881196*64079^(22/23) 4807526974880615 a001 365435296162/3010349*64079^(22/23) 4807526974883720 a001 139583862445/1149851*64079^(22/23) 4807526974885364 a001 75283811239/13201*39603^(7/11) 4807526974891018 a001 956722026041/103682*64079^(13/23) 4807526974905007 a001 53316291173/439204*64079^(22/23) 4807526974916647 a001 86267571272/271443*64079^(20/23) 4807526974921470 a001 139583862445/710647*64079^(21/23) 4807526974929601 a001 182717648081/930249*64079^(21/23) 4807526974930787 a001 956722026041/4870847*64079^(21/23) 4807526974930960 a001 2504730781961/12752043*64079^(21/23) 4807526974930985 a001 3278735159921/16692641*64079^(21/23) 4807526974930991 a001 10610209857723/54018521*64079^(21/23) 4807526974931001 a001 4052739537881/20633239*64079^(21/23) 4807526974931067 a001 387002188980/1970299*64079^(21/23) 4807526974931520 a001 591286729879/3010349*64079^(21/23) 4807526974934626 a001 225851433717/1149851*64079^(21/23) 4807526974941923 a001 774004377960/51841*64079^(12/23) 4807526974949524 a001 7778742049/15127*15127^(19/20) 4807526974955912 a001 196418*64079^(21/23) 4807526974967552 a001 139583862445/271443*64079^(19/23) 4807526974972375 a001 317811*64079^(20/23) 4807526974980506 a001 591286729879/1860498*64079^(20/23) 4807526974981692 a001 1548008755920/4870847*64079^(20/23) 4807526974981865 a001 4052739537881/12752043*64079^(20/23) 4807526974981890 a001 1515744265389/4769326*64079^(20/23) 4807526974981906 a001 6557470319842/20633239*64079^(20/23) 4807526974981972 a001 2504730781961/7881196*64079^(20/23) 4807526974982425 a001 956722026041/3010349*64079^(20/23) 4807526974985531 a001 365435296162/1149851*64079^(20/23) 4807526974992828 a001 2504730781961/103682*64079^(11/23) 4807526975006817 a001 139583862445/439204*64079^(20/23) 4807526975018458 a001 75283811239/90481*64079^(18/23) 4807526975023281 a001 365435296162/710647*64079^(19/23) 4807526975024693 a001 139583862445/39603*39603^(15/22) 4807526975031411 a001 956722026041/1860498*64079^(19/23) 4807526975032597 a001 2504730781961/4870847*64079^(19/23) 4807526975032770 a001 6557470319842/12752043*64079^(19/23) 4807526975032811 a001 10610209857723/20633239*64079^(19/23) 4807526975032877 a001 4052739537881/7881196*64079^(19/23) 4807526975033331 a001 1548008755920/3010349*64079^(19/23) 4807526975036436 a001 514229*64079^(19/23) 4807526975043734 a001 4052739537881/103682*64079^(10/23) 4807526975050905 a001 20365011074/167761*64079^(22/23) 4807526975057722 a001 225851433717/439204*64079^(19/23) 4807526975069363 a001 365435296162/271443*64079^(17/23) 4807526975074186 a001 591286729879/710647*64079^(18/23) 4807526975082316 a001 832040*64079^(18/23) 4807526975083503 a001 4052739537881/4870847*64079^(18/23) 4807526975083676 a001 3536736619241/4250681*64079^(18/23) 4807526975083783 a001 3278735159921/3940598*64079^(18/23) 4807526975084236 a001 2504730781961/3010349*64079^(18/23) 4807526975087341 a001 956722026041/1149851*64079^(18/23) 4807526975094639 a001 3278735159921/51841*64079^(9/23) 4807526975101810 a001 32951280099/167761*64079^(21/23) 4807526975105572 a001 23184/51841*45537549124^(16/17) 4807526975105572 a001 23184/51841*14662949395604^(16/21) 4807526975105572 a001 23184/51841*(1/2+1/2*5^(1/2))^48 4807526975105572 a001 23184/51841*192900153618^(8/9) 4807526975105572 a001 23184/51841*73681302247^(12/13) 4807526975108628 a001 182717648081/219602*64079^(18/23) 4807526975120268 a001 591286729879/271443*64079^(16/23) 4807526975125091 a001 956722026041/710647*64079^(17/23) 4807526975133222 a001 2504730781961/1860498*64079^(17/23) 4807526975134408 a001 6557470319842/4870847*64079^(17/23) 4807526975134688 a001 10610209857723/7881196*64079^(17/23) 4807526975135141 a001 1346269*64079^(17/23) 4807526975138247 a001 1548008755920/1149851*64079^(17/23) 4807526975145544 a001 225749145909/2206*64079^(8/23) 4807526975152715 a001 53316291173/167761*64079^(20/23) 4807526975159533 a001 591286729879/439204*64079^(17/23) 4807526975164023 a001 86267571272/39603*39603^(8/11) 4807526975171173 a001 956722026041/271443*64079^(15/23) 4807526975175996 a001 1548008755920/710647*64079^(16/23) 4807526975184127 a001 4052739537881/1860498*64079^(16/23) 4807526975185313 a001 2178309*64079^(16/23) 4807526975186046 a001 6557470319842/3010349*64079^(16/23) 4807526975189152 a001 2504730781961/1149851*64079^(16/23) 4807526975203620 a001 86267571272/167761*64079^(19/23) 4807526975210438 a001 956722026041/439204*64079^(16/23) 4807526975222079 a001 516002918640/90481*64079^(14/23) 4807526975226901 a001 2504730781961/710647*64079^(15/23) 4807526975235032 a001 3278735159921/930249*64079^(15/23) 4807526975236951 a001 10610209857723/3010349*64079^(15/23) 4807526975240057 a001 4052739537881/1149851*64079^(15/23) 4807526975254526 a001 139583862445/167761*64079^(18/23) 4807526975261343 a001 387002188980/109801*64079^(15/23) 4807526975272984 a001 2504730781961/271443*64079^(13/23) 4807526975277807 a001 4052739537881/710647*64079^(14/23) 4807526975285937 a001 3536736619241/620166*64079^(14/23) 4807526975290962 a001 6557470319842/1149851*64079^(14/23) 4807526975303352 a001 53316291173/39603*39603^(17/22) 4807526975305431 a001 225851433717/167761*64079^(17/23) 4807526975312249 a001 2504730781961/439204*64079^(14/23) 4807526975323889 a001 4052739537881/271443*64079^(12/23) 4807526975328712 a001 6557470319842/710647*64079^(13/23) 4807526975341868 a001 10610209857723/1149851*64079^(13/23) 4807526975356336 a001 365435296162/167761*64079^(16/23) 4807526975363154 a001 4052739537881/439204*64079^(13/23) 4807526975374794 a001 6557470319842/271443*64079^(11/23) 4807526975379617 a001 1515744265389/101521*64079^(12/23) 4807526975381966 a001 360684711328032/75025 4807526975407241 a001 591286729879/167761*64079^(15/23) 4807526975414059 a001 3278735159921/219602*64079^(12/23) 4807526975416130 a001 32951280099/103682*167761^(4/5) 4807526975425700 a001 3536736619241/90481*64079^(10/23) 4807526975442682 a001 10983760033/13201*39603^(9/11) 4807526975450294 a001 182717648081/51841*167761^(3/5) 4807526975458147 a001 956722026041/167761*64079^(14/23) 4807526975464964 a001 10610209857723/439204*64079^(11/23) 4807526975484458 a001 4052739537881/103682*167761^(2/5) 4807526975487538 a001 15456/90481*312119004989^(10/11) 4807526975487538 a001 15456/90481*(1/2+1/2*5^(1/2))^50 4807526975487538 a001 15456/90481*3461452808002^(5/6) 4807526975487538 a001 121393/103682*(1/2+1/2*5^(1/2))^46 4807526975487538 a001 121393/103682*10749957122^(23/24) 4807526975509052 a001 140728068720/15251*64079^(13/23) 4807526975527864 a001 472142416739616/98209 4807526975530633 a001 46368*439204^(8/9) 4807526975533402 a001 10182505537/51841*439204^(7/9) 4807526975536171 a001 43133785636/51841*439204^(2/3) 4807526975538940 a001 182717648081/51841*439204^(5/9) 4807526975541709 a001 774004377960/51841*439204^(4/9) 4807526975543266 a001 6624/101521*(1/2+1/2*5^(1/2))^52 4807526975543266 a001 6624/101521*23725150497407^(13/16) 4807526975543266 a001 6624/101521*505019158607^(13/14) 4807526975543266 a001 317811/103682*312119004989^(4/5) 4807526975543266 a001 317811/103682*(1/2+1/2*5^(1/2))^44 4807526975543266 a001 317811/103682*23725150497407^(11/16) 4807526975543266 a001 317811/103682*73681302247^(11/13) 4807526975543266 a001 317811/103682*10749957122^(11/12) 4807526975543266 a001 317811/103682*4106118243^(22/23) 4807526975544478 a001 3278735159921/51841*439204^(1/3) 4807526975549150 a001 2472169789109664/514229 4807526975551397 a001 416020/51841*2537720636^(14/15) 4807526975551397 a001 2576/103361*14662949395604^(6/7) 4807526975551397 a001 2576/103361*(1/2+1/2*5^(1/2))^54 4807526975551397 a001 416020/51841*17393796001^(6/7) 4807526975551397 a001 416020/51841*45537549124^(14/17) 4807526975551397 a001 416020/51841*817138163596^(14/19) 4807526975551397 a001 416020/51841*14662949395604^(2/3) 4807526975551397 a001 416020/51841*(1/2+1/2*5^(1/2))^42 4807526975551397 a001 416020/51841*505019158607^(3/4) 4807526975551397 a001 416020/51841*192900153618^(7/9) 4807526975551397 a001 416020/51841*10749957122^(7/8) 4807526975551397 a001 416020/51841*4106118243^(21/23) 4807526975551397 a001 416020/51841*1568397607^(21/22) 4807526975552255 a001 6472224533849760/1346269 4807526975552583 a001 46347/2206*2537720636^(8/9) 4807526975552583 a001 46368/4870847*14662949395604^(8/9) 4807526975552583 a001 46368/4870847*(1/2+1/2*5^(1/2))^56 4807526975552583 a001 46347/2206*312119004989^(8/11) 4807526975552583 a001 46347/2206*(1/2+1/2*5^(1/2))^40 4807526975552583 a001 46347/2206*23725150497407^(5/8) 4807526975552583 a001 46347/2206*73681302247^(10/13) 4807526975552583 a001 46347/2206*28143753123^(4/5) 4807526975552583 a001 46347/2206*10749957122^(5/6) 4807526975552583 a001 46347/2206*4106118243^(20/23) 4807526975552583 a001 46347/2206*1568397607^(10/11) 4807526975552583 a001 46347/2206*599074578^(20/21) 4807526975552709 a001 8472251906219808/1762289 4807526975552716 a001 133957148/51841*7881196^(10/11) 4807526975552723 a001 567451585/51841*7881196^(9/11) 4807526975552730 a001 46368*7881196^(8/11) 4807526975552734 a001 12586269025/103682*7881196^(2/3) 4807526975552737 a001 10182505537/51841*7881196^(7/11) 4807526975552744 a001 43133785636/51841*7881196^(6/11) 4807526975552751 a001 182717648081/51841*7881196^(5/11) 4807526975552756 a001 15456/4250681*(1/2+1/2*5^(1/2))^58 4807526975552756 a001 5702887/103682*817138163596^(2/3) 4807526975552756 a001 5702887/103682*(1/2+1/2*5^(1/2))^38 4807526975552756 a001 5702887/103682*10749957122^(19/24) 4807526975552756 a001 5702887/103682*4106118243^(19/23) 4807526975552756 a001 5702887/103682*1568397607^(19/22) 4807526975552756 a001 5702887/103682*599074578^(19/21) 4807526975552756 a001 5702887/103682*228826127^(19/20) 4807526975552758 a001 774004377960/51841*7881196^(4/11) 4807526975552760 a001 2504730781961/103682*7881196^(1/3) 4807526975552765 a001 3278735159921/51841*7881196^(3/11) 4807526975552775 a001 44361286903469088/9227465 4807526975552776 a001 133957148/51841*20633239^(6/7) 4807526975552777 a001 701408733/103682*20633239^(4/5) 4807526975552778 a001 2971215073/103682*20633239^(5/7) 4807526975552779 a001 10182505537/51841*20633239^(3/5) 4807526975552779 a001 32951280099/103682*20633239^(4/7) 4807526975552781 a001 182717648081/51841*20633239^(3/7) 4807526975552781 a001 7465176/51841*141422324^(12/13) 4807526975552781 a001 591286729879/103682*20633239^(2/5) 4807526975552782 a001 7465176/51841*2537720636^(4/5) 4807526975552782 a001 144/103681*14662949395604^(20/21) 4807526975552782 a001 144/103681*(1/2+1/2*5^(1/2))^60 4807526975552782 a001 7465176/51841*45537549124^(12/17) 4807526975552782 a001 7465176/51841*14662949395604^(4/7) 4807526975552782 a001 7465176/51841*(1/2+1/2*5^(1/2))^36 4807526975552782 a001 7465176/51841*505019158607^(9/14) 4807526975552782 a001 7465176/51841*192900153618^(2/3) 4807526975552782 a001 7465176/51841*73681302247^(9/13) 4807526975552782 a001 7465176/51841*10749957122^(3/4) 4807526975552782 a001 7465176/51841*4106118243^(18/23) 4807526975552782 a001 7465176/51841*1568397607^(9/11) 4807526975552782 a001 7465176/51841*599074578^(6/7) 4807526975552782 a001 7465176/51841*228826127^(9/10) 4807526975552782 a001 7465176/51841*87403803^(18/19) 4807526975552783 a001 4052739537881/103682*20633239^(2/7) 4807526975552784 a001 116139356897967648/24157817 4807526975552785 a001 39088169/103682*45537549124^(2/3) 4807526975552785 a001 39088169/103682*(1/2+1/2*5^(1/2))^34 4807526975552785 a001 39088169/103682*10749957122^(17/24) 4807526975552785 a001 39088169/103682*4106118243^(17/23) 4807526975552785 a001 39088169/103682*1568397607^(17/22) 4807526975552785 a001 39088169/103682*599074578^(17/21) 4807526975552785 a001 39088169/103682*228826127^(17/20) 4807526975552786 a001 152028391895216928/31622993 4807526975552786 a001 133957148/51841*141422324^(10/13) 4807526975552786 a001 567451585/51841*141422324^(9/13) 4807526975552786 a001 1836311903/103682*141422324^(2/3) 4807526975552786 a001 46368*141422324^(8/13) 4807526975552786 a001 10182505537/51841*141422324^(7/13) 4807526975552786 a001 43133785636/51841*141422324^(6/13) 4807526975552786 a001 182717648081/51841*141422324^(5/13) 4807526975552786 a001 102334155/103682*(1/2+1/2*5^(1/2))^32 4807526975552786 a001 102334155/103682*23725150497407^(1/2) 4807526975552786 a001 102334155/103682*505019158607^(4/7) 4807526975552786 a001 102334155/103682*73681302247^(8/13) 4807526975552786 a001 102334155/103682*10749957122^(2/3) 4807526975552786 a001 102334155/103682*4106118243^(16/23) 4807526975552786 a001 102334155/103682*1568397607^(8/11) 4807526975552786 a001 102334155/103682*599074578^(16/21) 4807526975552786 a001 956722026041/103682*141422324^(1/3) 4807526975552786 a001 774004377960/51841*141422324^(4/13) 4807526975552786 a001 39088169/103682*87403803^(17/19) 4807526975552786 a001 3278735159921/51841*141422324^(3/13) 4807526975552786 a001 102334155/103682*228826127^(4/5) 4807526975552786 a001 133957148/51841*2537720636^(2/3) 4807526975552786 a001 133957148/51841*45537549124^(10/17) 4807526975552786 a001 133957148/51841*312119004989^(6/11) 4807526975552786 a001 133957148/51841*14662949395604^(10/21) 4807526975552786 a001 133957148/51841*(1/2+1/2*5^(1/2))^30 4807526975552786 a001 133957148/51841*192900153618^(5/9) 4807526975552786 a001 133957148/51841*28143753123^(3/5) 4807526975552786 a001 133957148/51841*10749957122^(5/8) 4807526975552786 a001 133957148/51841*4106118243^(15/23) 4807526975552786 a001 133957148/51841*1568397607^(15/22) 4807526975552786 a001 133957148/51841*599074578^(5/7) 4807526975552786 a001 701408733/103682*17393796001^(4/7) 4807526975552786 a001 701408733/103682*14662949395604^(4/9) 4807526975552786 a001 701408733/103682*(1/2+1/2*5^(1/2))^28 4807526975552786 a001 701408733/103682*505019158607^(1/2) 4807526975552786 a001 701408733/103682*73681302247^(7/13) 4807526975552786 a001 701408733/103682*10749957122^(7/12) 4807526975552786 a001 701408733/103682*4106118243^(14/23) 4807526975552786 a001 701408733/103682*1568397607^(7/11) 4807526975552786 a001 46368*2537720636^(8/15) 4807526975552786 a001 10182505537/51841*2537720636^(7/15) 4807526975552786 a001 32951280099/103682*2537720636^(4/9) 4807526975552786 a001 2971215073/103682*2537720636^(5/9) 4807526975552786 a001 43133785636/51841*2537720636^(2/5) 4807526975552786 a001 1836311903/103682*(1/2+1/2*5^(1/2))^26 4807526975552786 a001 1836311903/103682*73681302247^(1/2) 4807526975552786 a001 1836311903/103682*10749957122^(13/24) 4807526975552786 a001 182717648081/51841*2537720636^(1/3) 4807526975552786 a001 774004377960/51841*2537720636^(4/15) 4807526975552786 a001 4052739537881/103682*2537720636^(2/9) 4807526975552786 a001 3278735159921/51841*2537720636^(1/5) 4807526975552786 a001 1836311903/103682*4106118243^(13/23) 4807526975552786 a001 46368*45537549124^(8/17) 4807526975552786 a001 46368*14662949395604^(8/21) 4807526975552786 a001 46368*(1/2+1/2*5^(1/2))^24 4807526975552786 a001 46368*192900153618^(4/9) 4807526975552786 a001 46368*73681302247^(6/13) 4807526975552786 a001 46368*10749957122^(1/2) 4807526975552786 a001 12586269025/103682*312119004989^(2/5) 4807526975552786 a001 12586269025/103682*(1/2+1/2*5^(1/2))^22 4807526975552786 a001 591286729879/103682*17393796001^(2/7) 4807526975552786 a001 10182505537/51841*17393796001^(3/7) 4807526975552786 a001 43133785636/51841*45537549124^(6/17) 4807526975552786 a001 32951280099/103682*(1/2+1/2*5^(1/2))^20 4807526975552786 a001 32951280099/103682*23725150497407^(5/16) 4807526975552786 a001 32951280099/103682*505019158607^(5/14) 4807526975552786 a001 139583862445/103682*45537549124^(1/3) 4807526975552786 a001 182717648081/51841*45537549124^(5/17) 4807526975552786 a001 32951280099/103682*73681302247^(5/13) 4807526975552786 a001 3278735159921/51841*45537549124^(3/17) 4807526975552786 a001 43133785636/51841*14662949395604^(2/7) 4807526975552786 a001 43133785636/51841*(1/2+1/2*5^(1/2))^18 4807526975552786 a001 43133785636/51841*192900153618^(1/3) 4807526975552786 a001 225851433717/103682*(1/2+1/2*5^(1/2))^16 4807526975552786 a001 225851433717/103682*23725150497407^(1/4) 4807526975552786 a001 4052739537881/103682*312119004989^(2/11) 4807526975552786 a001 182717648081/51841*312119004989^(3/11) 4807526975552786 a001 591286729879/103682*(1/2+1/2*5^(1/2))^14 4807526975552786 a001 774004377960/51841*(1/2+1/2*5^(1/2))^12 4807526975552786 a001 4052739537881/103682*(1/2+1/2*5^(1/2))^10 4807526975552786 a001 225749145909/2206*(1/2+1/2*5^(1/2))^8 4807526975552786 a001 225749145909/2206*23725150497407^(1/8) 4807526975552786 a001 3278735159921/51841*(1/2+1/2*5^(1/2))^9 4807526975552786 a001 2504730781961/103682*(1/2+1/2*5^(1/2))^11 4807526975552786 a001 956722026041/103682*(1/2+1/2*5^(1/2))^13 4807526975552786 a001 225749145909/2206*505019158607^(1/7) 4807526975552786 a001 182717648081/51841*14662949395604^(5/21) 4807526975552786 a001 182717648081/51841*192900153618^(5/18) 4807526975552786 a001 139583862445/103682*(1/2+1/2*5^(1/2))^17 4807526975552786 a001 225749145909/2206*73681302247^(2/13) 4807526975552786 a001 774004377960/51841*73681302247^(3/13) 4807526975552786 a001 956722026041/103682*73681302247^(1/4) 4807526975552786 a001 225851433717/103682*73681302247^(4/13) 4807526975552786 a001 53316291173/103682*817138163596^(1/3) 4807526975552786 a001 53316291173/103682*(1/2+1/2*5^(1/2))^19 4807526975552786 a001 4052739537881/103682*28143753123^(1/5) 4807526975552786 a001 10182505537/51841*45537549124^(7/17) 4807526975552786 a001 32951280099/103682*28143753123^(2/5) 4807526975552786 a001 182717648081/51841*28143753123^(3/10) 4807526975552786 a001 10182505537/51841*14662949395604^(1/3) 4807526975552786 a001 10182505537/51841*(1/2+1/2*5^(1/2))^21 4807526975552786 a001 10182505537/51841*192900153618^(7/18) 4807526975552786 a001 225749145909/2206*10749957122^(1/6) 4807526975552786 a001 3278735159921/51841*10749957122^(3/16) 4807526975552786 a001 4052739537881/103682*10749957122^(5/24) 4807526975552786 a001 774004377960/51841*10749957122^(1/4) 4807526975552786 a001 591286729879/103682*10749957122^(7/24) 4807526975552786 a001 12586269025/103682*10749957122^(11/24) 4807526975552786 a001 182717648081/51841*10749957122^(5/16) 4807526975552786 a001 225851433717/103682*10749957122^(1/3) 4807526975552786 a001 43133785636/51841*10749957122^(3/8) 4807526975552786 a001 7778742049/103682*(1/2+1/2*5^(1/2))^23 4807526975552786 a001 32951280099/103682*10749957122^(5/12) 4807526975552786 a001 10182505537/51841*10749957122^(7/16) 4807526975552786 a001 225749145909/2206*4106118243^(4/23) 4807526975552786 a001 4052739537881/103682*4106118243^(5/23) 4807526975552786 a001 774004377960/51841*4106118243^(6/23) 4807526975552786 a001 591286729879/103682*4106118243^(7/23) 4807526975552786 a001 225851433717/103682*4106118243^(8/23) 4807526975552786 a001 46368*4106118243^(12/23) 4807526975552786 a001 2971215073/103682*312119004989^(5/11) 4807526975552786 a001 2971215073/103682*(1/2+1/2*5^(1/2))^25 4807526975552786 a001 2971215073/103682*3461452808002^(5/12) 4807526975552786 a001 43133785636/51841*4106118243^(9/23) 4807526975552786 a001 2971215073/103682*28143753123^(1/2) 4807526975552786 a001 32951280099/103682*4106118243^(10/23) 4807526975552786 a001 12586269025/103682*4106118243^(11/23) 4807526975552786 a001 7778742049/103682*4106118243^(1/2) 4807526975552786 a001 567451585/51841*2537720636^(3/5) 4807526975552786 a001 225749145909/2206*1568397607^(2/11) 4807526975552786 a001 4052739537881/103682*1568397607^(5/22) 4807526975552786 a001 2504730781961/103682*1568397607^(1/4) 4807526975552786 a001 774004377960/51841*1568397607^(3/11) 4807526975552786 a001 591286729879/103682*1568397607^(7/22) 4807526975552786 a001 225851433717/103682*1568397607^(4/11) 4807526975552786 a001 567451585/51841*45537549124^(9/17) 4807526975552786 a001 567451585/51841*817138163596^(9/19) 4807526975552786 a001 567451585/51841*14662949395604^(3/7) 4807526975552786 a001 567451585/51841*(1/2+1/2*5^(1/2))^27 4807526975552786 a001 567451585/51841*192900153618^(1/2) 4807526975552786 a001 567451585/51841*10749957122^(9/16) 4807526975552786 a001 43133785636/51841*1568397607^(9/22) 4807526975552786 a001 1836311903/103682*1568397607^(13/22) 4807526975552786 a001 32951280099/103682*1568397607^(5/11) 4807526975552786 a001 12586269025/103682*1568397607^(1/2) 4807526975552786 a001 46368*1568397607^(6/11) 4807526975552786 a001 225749145909/2206*599074578^(4/21) 4807526975552786 a001 3278735159921/51841*599074578^(3/14) 4807526975552786 a001 4052739537881/103682*599074578^(5/21) 4807526975552786 a001 774004377960/51841*599074578^(2/7) 4807526975552786 a001 591286729879/103682*599074578^(1/3) 4807526975552786 a001 182717648081/51841*599074578^(5/14) 4807526975552786 a001 225851433717/103682*599074578^(8/21) 4807526975552786 a001 433494437/103682*(1/2+1/2*5^(1/2))^29 4807526975552786 a001 433494437/103682*1322157322203^(1/2) 4807526975552786 a001 43133785636/51841*599074578^(3/7) 4807526975552786 a001 32951280099/103682*599074578^(10/21) 4807526975552786 a001 10182505537/51841*599074578^(1/2) 4807526975552786 a001 701408733/103682*599074578^(2/3) 4807526975552786 a001 12586269025/103682*599074578^(11/21) 4807526975552786 a001 46368*599074578^(4/7) 4807526975552786 a001 1836311903/103682*599074578^(13/21) 4807526975552786 a001 567451585/51841*599074578^(9/14) 4807526975552786 a001 225749145909/2206*228826127^(1/5) 4807526975552786 a001 4052739537881/103682*228826127^(1/4) 4807526975552786 a001 774004377960/51841*228826127^(3/10) 4807526975552786 a001 591286729879/103682*228826127^(7/20) 4807526975552786 a001 182717648081/51841*228826127^(3/8) 4807526975552786 a001 165580141/103682*(1/2+1/2*5^(1/2))^31 4807526975552786 a001 165580141/103682*9062201101803^(1/2) 4807526975552786 a001 225851433717/103682*228826127^(2/5) 4807526975552786 a001 31622993/51841*141422324^(11/13) 4807526975552786 a001 43133785636/51841*228826127^(9/20) 4807526975552786 a001 32951280099/103682*228826127^(1/2) 4807526975552786 a001 12586269025/103682*228826127^(11/20) 4807526975552786 a001 46368*228826127^(3/5) 4807526975552786 a001 133957148/51841*228826127^(3/4) 4807526975552786 a001 2971215073/103682*228826127^(5/8) 4807526975552786 a001 1836311903/103682*228826127^(13/20) 4807526975552786 a001 701408733/103682*228826127^(7/10) 4807526975552786 a001 23427343365852384/4873055 4807526975552786 a001 225749145909/2206*87403803^(4/19) 4807526975552786 a001 4052739537881/103682*87403803^(5/19) 4807526975552786 a001 774004377960/51841*87403803^(6/19) 4807526975552786 a001 591286729879/103682*87403803^(7/19) 4807526975552786 a001 31622993/51841*2537720636^(11/15) 4807526975552786 a001 31622993/51841*45537549124^(11/17) 4807526975552786 a001 31622993/51841*312119004989^(3/5) 4807526975552786 a001 31622993/51841*14662949395604^(11/21) 4807526975552786 a001 31622993/51841*(1/2+1/2*5^(1/2))^33 4807526975552786 a001 31622993/51841*192900153618^(11/18) 4807526975552786 a001 31622993/51841*10749957122^(11/16) 4807526975552786 a001 31622993/51841*1568397607^(3/4) 4807526975552786 a001 31622993/51841*599074578^(11/14) 4807526975552786 a001 225851433717/103682*87403803^(8/19) 4807526975552786 a001 43133785636/51841*87403803^(9/19) 4807526975552786 a001 53316291173/103682*87403803^(1/2) 4807526975552786 a001 32951280099/103682*87403803^(10/19) 4807526975552786 a001 12586269025/103682*87403803^(11/19) 4807526975552786 a001 46368*87403803^(12/19) 4807526975552786 a001 1836311903/103682*87403803^(13/19) 4807526975552786 a001 102334155/103682*87403803^(16/19) 4807526975552786 a001 701408733/103682*87403803^(14/19) 4807526975552786 a001 133957148/51841*87403803^(15/19) 4807526975552787 a001 187917426892466208/39088169 4807526975552787 a001 225749145909/2206*33385282^(2/9) 4807526975552787 a001 3278735159921/51841*33385282^(1/4) 4807526975552787 a001 4052739537881/103682*33385282^(5/18) 4807526975552787 a001 774004377960/51841*33385282^(1/3) 4807526975552788 a001 24157817/103682*2537720636^(7/9) 4807526975552788 a001 24157817/103682*17393796001^(5/7) 4807526975552788 a001 24157817/103682*312119004989^(7/11) 4807526975552788 a001 24157817/103682*14662949395604^(5/9) 4807526975552788 a001 24157817/103682*(1/2+1/2*5^(1/2))^35 4807526975552788 a001 24157817/103682*505019158607^(5/8) 4807526975552788 a001 24157817/103682*28143753123^(7/10) 4807526975552788 a001 24157817/103682*599074578^(5/6) 4807526975552788 a001 591286729879/103682*33385282^(7/18) 4807526975552788 a001 24157817/103682*228826127^(7/8) 4807526975552788 a001 182717648081/51841*33385282^(5/12) 4807526975552788 a001 225851433717/103682*33385282^(4/9) 4807526975552788 a001 43133785636/51841*33385282^(1/2) 4807526975552788 a001 32951280099/103682*33385282^(5/9) 4807526975552788 a001 10182505537/51841*33385282^(7/12) 4807526975552789 a001 12586269025/103682*33385282^(11/18) 4807526975552789 a001 46368*33385282^(2/3) 4807526975552789 a001 1836311903/103682*33385282^(13/18) 4807526975552789 a001 567451585/51841*33385282^(3/4) 4807526975552789 a001 701408733/103682*33385282^(7/9) 4807526975552789 a001 39088169/103682*33385282^(17/18) 4807526975552789 a001 133957148/51841*33385282^(5/6) 4807526975552790 a001 102334155/103682*33385282^(8/9) 4807526975552790 a001 31622993/51841*33385282^(11/12) 4807526975552790 a001 166152939802080/34561 4807526975552793 a001 225749145909/2206*12752043^(4/17) 4807526975552795 a001 4052739537881/103682*12752043^(5/17) 4807526975552796 a001 774004377960/51841*12752043^(6/17) 4807526975552797 a001 46368/20633239*(1/2+1/2*5^(1/2))^59 4807526975552797 a001 9227465/103682*(1/2+1/2*5^(1/2))^37 4807526975552798 a001 591286729879/103682*12752043^(7/17) 4807526975552800 a001 225851433717/103682*12752043^(8/17) 4807526975552801 a001 139583862445/103682*12752043^(1/2) 4807526975552802 a001 43133785636/51841*12752043^(9/17) 4807526975552803 a001 32951280099/103682*12752043^(10/17) 4807526975552805 a001 12586269025/103682*12752043^(11/17) 4807526975552807 a001 46368*12752043^(12/17) 4807526975552809 a001 1836311903/103682*12752043^(13/17) 4807526975552810 a001 701408733/103682*12752043^(14/17) 4807526975552812 a001 133957148/51841*12752043^(15/17) 4807526975552814 a001 102334155/103682*12752043^(16/17) 4807526975552815 a001 27416783091029472/5702887 4807526975552837 a001 225749145909/2206*4870847^(1/4) 4807526975552849 a001 4052739537881/103682*4870847^(5/16) 4807526975552862 a001 774004377960/51841*4870847^(3/8) 4807526975552863 a001 1762289/51841*2537720636^(13/15) 4807526975552863 a001 11592/1970299*14662949395604^(19/21) 4807526975552863 a001 11592/1970299*(1/2+1/2*5^(1/2))^57 4807526975552863 a001 1762289/51841*45537549124^(13/17) 4807526975552863 a001 1762289/51841*14662949395604^(13/21) 4807526975552863 a001 1762289/51841*(1/2+1/2*5^(1/2))^39 4807526975552863 a001 1762289/51841*192900153618^(13/18) 4807526975552863 a001 1762289/51841*73681302247^(3/4) 4807526975552863 a001 1762289/51841*10749957122^(13/16) 4807526975552863 a001 1762289/51841*599074578^(13/14) 4807526975552875 a001 591286729879/103682*4870847^(7/16) 4807526975552887 a001 225851433717/103682*4870847^(1/2) 4807526975552900 a001 43133785636/51841*4870847^(9/16) 4807526975552913 a001 32951280099/103682*4870847^(5/8) 4807526975552925 a001 12586269025/103682*4870847^(11/16) 4807526975552938 a001 46368*4870847^(3/4) 4807526975552951 a001 1836311903/103682*4870847^(13/16) 4807526975552963 a001 701408733/103682*4870847^(7/8) 4807526975552976 a001 133957148/51841*4870847^(15/16) 4807526975552989 a001 498679965647136/103729 4807526975553156 a001 225749145909/2206*1860498^(4/15) 4807526975553203 a001 3278735159921/51841*1860498^(3/10) 4807526975553249 a001 4052739537881/103682*1860498^(1/3) 4807526975553316 a001 46368/3010349*(1/2+1/2*5^(1/2))^55 4807526975553316 a001 46368/3010349*3461452808002^(11/12) 4807526975553316 a001 1346269/103682*(1/2+1/2*5^(1/2))^41 4807526975553341 a001 774004377960/51841*1860498^(2/5) 4807526975553434 a001 591286729879/103682*1860498^(7/15) 4807526975553480 a001 182717648081/51841*1860498^(1/2) 4807526975553527 a001 225851433717/103682*1860498^(8/15) 4807526975553619 a001 43133785636/51841*1860498^(3/5) 4807526975553712 a001 32951280099/103682*1860498^(2/3) 4807526975553758 a001 10182505537/51841*1860498^(7/10) 4807526975553804 a001 12586269025/103682*1860498^(11/15) 4807526975553897 a001 46368*1860498^(4/5) 4807526975553943 a001 2971215073/103682*1860498^(5/6) 4807526975553990 a001 1836311903/103682*1860498^(13/15) 4807526975554036 a001 567451585/51841*1860498^(9/10) 4807526975554082 a001 701408733/103682*1860498^(14/15) 4807526975554175 a001 500006843092512/104005 4807526975555506 a001 225749145909/2206*710647^(2/7) 4807526975556186 a001 4052739537881/103682*710647^(5/14) 4807526975556422 a001 46368/1149851*(1/2+1/2*5^(1/2))^53 4807526975556422 a001 514229/103682*(1/2+1/2*5^(1/2))^43 4807526975556866 a001 774004377960/51841*710647^(3/7) 4807526975557546 a001 591286729879/103682*710647^(1/2) 4807526975558226 a001 225851433717/103682*710647^(4/7) 4807526975558906 a001 43133785636/51841*710647^(9/14) 4807526975559586 a001 32951280099/103682*710647^(5/7) 4807526975559926 a001 10182505537/51841*710647^(3/4) 4807526975559957 a001 2504730781961/167761*64079^(12/23) 4807526975560266 a001 12586269025/103682*710647^(11/14) 4807526975560945 a001 46368*710647^(6/7) 4807526975561625 a001 1836311903/103682*710647^(13/14) 4807526975562305 a001 509294985210144/105937 4807526975572862 a001 225749145909/2206*271443^(4/13) 4807526975577708 a001 11592/109801*817138163596^(17/19) 4807526975577708 a001 11592/109801*14662949395604^(17/21) 4807526975577708 a001 11592/109801*(1/2+1/2*5^(1/2))^51 4807526975577708 a001 11592/109801*192900153618^(17/18) 4807526975577708 a001 98209/51841*45537549124^(15/17) 4807526975577708 a001 98209/51841*312119004989^(9/11) 4807526975577708 a001 98209/51841*14662949395604^(5/7) 4807526975577708 a001 98209/51841*(1/2+1/2*5^(1/2))^45 4807526975577708 a001 98209/51841*192900153618^(5/6) 4807526975577708 a001 98209/51841*28143753123^(9/10) 4807526975577708 a001 98209/51841*10749957122^(15/16) 4807526975577881 a001 4052739537881/103682*271443^(5/13) 4807526975582011 a001 20365011074/39603*39603^(19/22) 4807526975582900 a001 774004377960/51841*271443^(6/13) 4807526975585410 a001 956722026041/103682*271443^(1/2) 4807526975587919 a001 591286729879/103682*271443^(7/13) 4807526975592938 a001 225851433717/103682*271443^(8/13) 4807526975597957 a001 43133785636/51841*271443^(9/13) 4807526975602976 a001 32951280099/103682*271443^(10/13) 4807526975607995 a001 12586269025/103682*271443^(11/13) 4807526975610862 a001 4052739537881/167761*64079^(11/23) 4807526975613014 a001 46368*271443^(12/13) 4807526975618033 a001 583600122151200/121393 4807526975661768 a001 6557470319842/167761*64079^(10/23) 4807526975701857 a001 225749145909/2206*103682^(1/3) 4807526975712673 a001 10610209857723/167761*64079^(9/23) 4807526975720491 a001 3278735159921/51841*103682^(3/8) 4807526975721341 a001 12586269025/39603*39603^(10/11) 4807526975723606 a001 46368/167761*14662949395604^(7/9) 4807526975723606 a001 46368/167761*(1/2+1/2*5^(1/2))^49 4807526975723606 a001 46368/167761*505019158607^(7/8) 4807526975723606 a001 75025/103682*(1/2+1/2*5^(1/2))^47 4807526975739125 a001 4052739537881/103682*103682^(5/12) 4807526975757759 a001 2504730781961/103682*103682^(11/24) 4807526975763932 a001 360684711356689/75025 4807526975776393 a001 774004377960/51841*103682^(1/2) 4807526975795027 a001 956722026041/103682*103682^(13/24) 4807526975798096 a001 86267571272/271443*167761^(4/5) 4807526975813661 a001 591286729879/103682*103682^(7/12) 4807526975819660 a001 72136942272174/15005 4807526975827790 a001 72136942272296/15005 4807526975828977 a001 360684711361569/75025 4807526975829150 a001 360684711361582/75025 4807526975829176 a001 360684711361584/75025 4807526975829190 a001 72136942272317/15005 4807526975829256 a001 72136942272318/15005 4807526975829710 a001 360684711361624/75025 4807526975832260 a001 956722026041/271443*167761^(3/5) 4807526975832294 a001 182717648081/51841*103682^(5/8) 4807526975832815 a001 360684711361857/75025 4807526975850928 a001 225851433717/103682*103682^(2/3) 4807526975853824 a001 317811*167761^(4/5) 4807526975854101 a001 360684711363454/75025 4807526975860670 a001 7778742049/39603*39603^(21/22) 4807526975861954 a001 591286729879/1860498*167761^(4/5) 4807526975863141 a001 1548008755920/4870847*167761^(4/5) 4807526975863314 a001 4052739537881/12752043*167761^(4/5) 4807526975863339 a001 1515744265389/4769326*167761^(4/5) 4807526975863354 a001 6557470319842/20633239*167761^(4/5) 4807526975863421 a001 2504730781961/7881196*167761^(4/5) 4807526975863874 a001 956722026041/3010349*167761^(4/5) 4807526975866424 a001 3536736619241/90481*167761^(2/5) 4807526975866979 a001 365435296162/1149851*167761^(4/5) 4807526975869504 a001 121393/271443*45537549124^(16/17) 4807526975869504 a001 121393/271443*14662949395604^(16/21) 4807526975869504 a001 121393/271443*(1/2+1/2*5^(1/2))^48 4807526975869504 a001 121393/271443*192900153618^(8/9) 4807526975869504 a001 121393/271443*73681302247^(12/13) 4807526975869562 a001 139583862445/103682*103682^(17/24) 4807526975887988 a001 2504730781961/710647*167761^(3/5) 4807526975888196 a001 43133785636/51841*103682^(3/4) 4807526975888266 a001 139583862445/439204*167761^(4/5) 4807526975896118 a001 3278735159921/930249*167761^(3/5) 4807526975898038 a001 10610209857723/3010349*167761^(3/5) 4807526975901143 a001 4052739537881/1149851*167761^(3/5) 4807526975906830 a001 53316291173/103682*103682^(19/24) 4807526975909830 a001 944284833554257/196418 4807526975912599 a001 12586269025/271443*439204^(8/9) 4807526975915368 a001 53316291173/271443*439204^(7/9) 4807526975918137 a001 75283811239/90481*439204^(2/3) 4807526975920906 a001 956722026041/271443*439204^(5/9) 4807526975922430 a001 387002188980/109801*167761^(3/5) 4807526975923675 a001 4052739537881/271443*439204^(4/9) 4807526975925232 a001 121393/710647*(1/2+1/2*5^(1/2))^50 4807526975925232 a001 121393/710647*3461452808002^(5/6) 4807526975925232 a001 105937/90481*(1/2+1/2*5^(1/2))^46 4807526975925232 a001 105937/90481*10749957122^(23/24) 4807526975925464 a001 32951280099/103682*103682^(5/6) 4807526975931116 a001 2472169789306082/514229 4807526975933363 a001 121393/1860498*(1/2+1/2*5^(1/2))^52 4807526975933363 a001 121393/1860498*23725150497407^(13/16) 4807526975933363 a001 121393/1860498*505019158607^(13/14) 4807526975933363 a001 832040/271443*312119004989^(4/5) 4807526975933363 a001 832040/271443*(1/2+1/2*5^(1/2))^44 4807526975933363 a001 832040/271443*23725150497407^(11/16) 4807526975933363 a001 832040/271443*73681302247^(11/13) 4807526975933363 a001 832040/271443*10749957122^(11/12) 4807526975933363 a001 832040/271443*4106118243^(22/23) 4807526975934221 a001 6472224534363989/1346269 4807526975934549 a001 726103/90481*2537720636^(14/15) 4807526975934549 a001 726103/90481*17393796001^(6/7) 4807526975934549 a001 726103/90481*45537549124^(14/17) 4807526975934549 a001 121393/4870847*14662949395604^(6/7) 4807526975934549 a001 121393/4870847*(1/2+1/2*5^(1/2))^54 4807526975934549 a001 726103/90481*817138163596^(14/19) 4807526975934549 a001 726103/90481*14662949395604^(2/3) 4807526975934549 a001 726103/90481*(1/2+1/2*5^(1/2))^42 4807526975934549 a001 726103/90481*505019158607^(3/4) 4807526975934549 a001 726103/90481*192900153618^(7/9) 4807526975934549 a001 726103/90481*10749957122^(7/8) 4807526975934549 a001 726103/90481*4106118243^(21/23) 4807526975934549 a001 726103/90481*1568397607^(21/22) 4807526975934675 a001 190387683300965/39602 4807526975934682 a001 233802911/90481*7881196^(10/11) 4807526975934689 a001 2971215073/271443*7881196^(9/11) 4807526975934696 a001 12586269025/271443*7881196^(8/11) 4807526975934700 a001 121393*7881196^(2/3) 4807526975934703 a001 53316291173/271443*7881196^(7/11) 4807526975934710 a001 75283811239/90481*7881196^(6/11) 4807526975934717 a001 956722026041/271443*7881196^(5/11) 4807526975934722 a001 5702887/271443*2537720636^(8/9) 4807526975934722 a001 121393/12752043*14662949395604^(8/9) 4807526975934722 a001 121393/12752043*(1/2+1/2*5^(1/2))^56 4807526975934722 a001 5702887/271443*312119004989^(8/11) 4807526975934722 a001 5702887/271443*(1/2+1/2*5^(1/2))^40 4807526975934722 a001 5702887/271443*23725150497407^(5/8) 4807526975934722 a001 5702887/271443*73681302247^(10/13) 4807526975934722 a001 5702887/271443*28143753123^(4/5) 4807526975934722 a001 5702887/271443*10749957122^(5/6) 4807526975934722 a001 5702887/271443*4106118243^(20/23) 4807526975934722 a001 5702887/271443*1568397607^(10/11) 4807526975934722 a001 5702887/271443*599074578^(20/21) 4807526975934724 a001 4052739537881/271443*7881196^(4/11) 4807526975934726 a001 6557470319842/271443*7881196^(1/3) 4807526975934741 a001 44361286906993666/9227465 4807526975934742 a001 233802911/90481*20633239^(6/7) 4807526975934743 a001 1836311903/271443*20633239^(4/5) 4807526975934744 a001 7778742049/271443*20633239^(5/7) 4807526975934745 a001 53316291173/271443*20633239^(3/5) 4807526975934745 a001 86267571272/271443*20633239^(4/7) 4807526975934747 a001 956722026041/271443*20633239^(3/7) 4807526975934747 a001 516002918640/90481*20633239^(2/5) 4807526975934748 a001 121393/33385282*(1/2+1/2*5^(1/2))^58 4807526975934748 a001 4976784/90481*817138163596^(2/3) 4807526975934748 a001 4976784/90481*(1/2+1/2*5^(1/2))^38 4807526975934748 a001 4976784/90481*10749957122^(19/24) 4807526975934748 a001 4976784/90481*4106118243^(19/23) 4807526975934748 a001 4976784/90481*1568397607^(19/22) 4807526975934748 a001 4976784/90481*599074578^(19/21) 4807526975934748 a001 4976784/90481*228826127^(19/20) 4807526975934749 a001 3536736619241/90481*20633239^(2/7) 4807526975934750 a001 116139356907195113/24157817 4807526975934751 a001 39088169/271443*141422324^(12/13) 4807526975934751 a001 39088169/271443*2537720636^(4/5) 4807526975934751 a001 39088169/271443*45537549124^(12/17) 4807526975934751 a001 121393/87403803*14662949395604^(20/21) 4807526975934751 a001 39088169/271443*14662949395604^(4/7) 4807526975934751 a001 39088169/271443*(1/2+1/2*5^(1/2))^36 4807526975934751 a001 39088169/271443*505019158607^(9/14) 4807526975934751 a001 39088169/271443*192900153618^(2/3) 4807526975934751 a001 39088169/271443*73681302247^(9/13) 4807526975934751 a001 39088169/271443*10749957122^(3/4) 4807526975934751 a001 39088169/271443*4106118243^(18/23) 4807526975934751 a001 39088169/271443*1568397607^(9/11) 4807526975934751 a001 39088169/271443*599074578^(6/7) 4807526975934751 a001 39088169/271443*228826127^(9/10) 4807526975934752 a001 1304964737401681/271442 4807526975934752 a001 233802911/90481*141422324^(10/13) 4807526975934752 a001 165580141/271443*141422324^(11/13) 4807526975934752 a001 2971215073/271443*141422324^(9/13) 4807526975934752 a001 1602508992/90481*141422324^(2/3) 4807526975934752 a001 12586269025/271443*141422324^(8/13) 4807526975934752 a001 53316291173/271443*141422324^(7/13) 4807526975934752 a001 75283811239/90481*141422324^(6/13) 4807526975934752 a001 956722026041/271443*141422324^(5/13) 4807526975934752 a001 34111385/90481*45537549124^(2/3) 4807526975934752 a001 34111385/90481*(1/2+1/2*5^(1/2))^34 4807526975934752 a001 34111385/90481*10749957122^(17/24) 4807526975934752 a001 34111385/90481*4106118243^(17/23) 4807526975934752 a001 34111385/90481*1568397607^(17/22) 4807526975934752 a001 34111385/90481*599074578^(17/21) 4807526975934752 a001 2504730781961/271443*141422324^(1/3) 4807526975934752 a001 4052739537881/271443*141422324^(4/13) 4807526975934752 a001 796030994536579906/165580141 4807526975934752 a001 39088169/271443*87403803^(18/19) 4807526975934752 a001 34111385/90481*228826127^(17/20) 4807526975934752 a001 267914296/271443*(1/2+1/2*5^(1/2))^32 4807526975934752 a001 267914296/271443*23725150497407^(1/2) 4807526975934752 a001 267914296/271443*505019158607^(4/7) 4807526975934752 a001 267914296/271443*73681302247^(8/13) 4807526975934752 a001 267914296/271443*10749957122^(2/3) 4807526975934752 a001 267914296/271443*4106118243^(16/23) 4807526975934752 a001 267914296/271443*1568397607^(8/11) 4807526975934752 a001 267914296/271443*599074578^(16/21) 4807526975934752 a001 233802911/90481*2537720636^(2/3) 4807526975934752 a001 233802911/90481*45537549124^(10/17) 4807526975934752 a001 233802911/90481*312119004989^(6/11) 4807526975934752 a001 233802911/90481*14662949395604^(10/21) 4807526975934752 a001 233802911/90481*(1/2+1/2*5^(1/2))^30 4807526975934752 a001 233802911/90481*192900153618^(5/9) 4807526975934752 a001 233802911/90481*28143753123^(3/5) 4807526975934752 a001 233802911/90481*10749957122^(5/8) 4807526975934752 a001 233802911/90481*4106118243^(15/23) 4807526975934752 a001 233802911/90481*1568397607^(15/22) 4807526975934752 a001 12586269025/271443*2537720636^(8/15) 4807526975934752 a001 7778742049/271443*2537720636^(5/9) 4807526975934752 a001 53316291173/271443*2537720636^(7/15) 4807526975934752 a001 2971215073/271443*2537720636^(3/5) 4807526975934752 a001 86267571272/271443*2537720636^(4/9) 4807526975934752 a001 75283811239/90481*2537720636^(2/5) 4807526975934752 a001 1836311903/271443*17393796001^(4/7) 4807526975934752 a001 1836311903/271443*14662949395604^(4/9) 4807526975934752 a001 1836311903/271443*(1/2+1/2*5^(1/2))^28 4807526975934752 a001 1836311903/271443*505019158607^(1/2) 4807526975934752 a001 1836311903/271443*73681302247^(7/13) 4807526975934752 a001 1836311903/271443*10749957122^(7/12) 4807526975934752 a001 956722026041/271443*2537720636^(1/3) 4807526975934752 a001 4052739537881/271443*2537720636^(4/15) 4807526975934752 a001 3536736619241/90481*2537720636^(2/9) 4807526975934752 a001 1836311903/271443*4106118243^(14/23) 4807526975934752 a001 1602508992/90481*(1/2+1/2*5^(1/2))^26 4807526975934752 a001 1602508992/90481*73681302247^(1/2) 4807526975934752 a001 1602508992/90481*10749957122^(13/24) 4807526975934752 a001 12586269025/271443*45537549124^(8/17) 4807526975934752 a001 53316291173/271443*17393796001^(3/7) 4807526975934752 a001 12586269025/271443*14662949395604^(8/21) 4807526975934752 a001 12586269025/271443*(1/2+1/2*5^(1/2))^24 4807526975934752 a001 12586269025/271443*192900153618^(4/9) 4807526975934752 a001 12586269025/271443*73681302247^(6/13) 4807526975934752 a001 516002918640/90481*17393796001^(2/7) 4807526975934752 a001 121393*312119004989^(2/5) 4807526975934752 a001 121393*(1/2+1/2*5^(1/2))^22 4807526975934752 a001 75283811239/90481*45537549124^(6/17) 4807526975934752 a001 365435296162/271443*45537549124^(1/3) 4807526975934752 a001 956722026041/271443*45537549124^(5/17) 4807526975934752 a001 53316291173/271443*45537549124^(7/17) 4807526975934752 a001 4052739537881/271443*45537549124^(4/17) 4807526975934752 a001 86267571272/271443*(1/2+1/2*5^(1/2))^20 4807526975934752 a001 86267571272/271443*23725150497407^(5/16) 4807526975934752 a001 75283811239/90481*14662949395604^(2/7) 4807526975934752 a001 75283811239/90481*(1/2+1/2*5^(1/2))^18 4807526975934752 a001 956722026041/271443*312119004989^(3/11) 4807526975934752 a001 3536736619241/90481*312119004989^(2/11) 4807526975934752 a001 516002918640/90481*14662949395604^(2/9) 4807526975934752 a001 516002918640/90481*(1/2+1/2*5^(1/2))^14 4807526975934752 a001 4052739537881/271443*14662949395604^(4/21) 4807526975934752 a001 3536736619241/90481*(1/2+1/2*5^(1/2))^10 4807526975934752 a001 2504730781961/271443*(1/2+1/2*5^(1/2))^13 4807526975934752 a001 4052739537881/271443*192900153618^(2/9) 4807526975934752 a001 956722026041/271443*192900153618^(5/18) 4807526975934752 a001 139583862445/271443*817138163596^(1/3) 4807526975934752 a001 139583862445/271443*(1/2+1/2*5^(1/2))^19 4807526975934752 a001 4052739537881/271443*73681302247^(3/13) 4807526975934752 a001 86267571272/271443*73681302247^(5/13) 4807526975934752 a001 2504730781961/271443*73681302247^(1/4) 4807526975934752 a001 591286729879/271443*73681302247^(4/13) 4807526975934752 a001 53316291173/271443*14662949395604^(1/3) 4807526975934752 a001 53316291173/271443*(1/2+1/2*5^(1/2))^21 4807526975934752 a001 53316291173/271443*192900153618^(7/18) 4807526975934752 a001 3536736619241/90481*28143753123^(1/5) 4807526975934752 a001 956722026041/271443*28143753123^(3/10) 4807526975934752 a001 86267571272/271443*28143753123^(2/5) 4807526975934752 a001 20365011074/271443*(1/2+1/2*5^(1/2))^23 4807526975934752 a001 3536736619241/90481*10749957122^(5/24) 4807526975934752 a001 4052739537881/271443*10749957122^(1/4) 4807526975934752 a001 516002918640/90481*10749957122^(7/24) 4807526975934752 a001 956722026041/271443*10749957122^(5/16) 4807526975934752 a001 591286729879/271443*10749957122^(1/3) 4807526975934752 a001 12586269025/271443*10749957122^(1/2) 4807526975934752 a001 75283811239/90481*10749957122^(3/8) 4807526975934752 a001 7778742049/271443*312119004989^(5/11) 4807526975934752 a001 7778742049/271443*(1/2+1/2*5^(1/2))^25 4807526975934752 a001 7778742049/271443*3461452808002^(5/12) 4807526975934752 a001 86267571272/271443*10749957122^(5/12) 4807526975934752 a001 121393*10749957122^(11/24) 4807526975934752 a001 53316291173/271443*10749957122^(7/16) 4807526975934752 a001 7778742049/271443*28143753123^(1/2) 4807526975934752 a001 3536736619241/90481*4106118243^(5/23) 4807526975934752 a001 4052739537881/271443*4106118243^(6/23) 4807526975934752 a001 516002918640/90481*4106118243^(7/23) 4807526975934752 a001 591286729879/271443*4106118243^(8/23) 4807526975934752 a001 2971215073/271443*45537549124^(9/17) 4807526975934752 a001 2971215073/271443*817138163596^(9/19) 4807526975934752 a001 2971215073/271443*14662949395604^(3/7) 4807526975934752 a001 2971215073/271443*(1/2+1/2*5^(1/2))^27 4807526975934752 a001 2971215073/271443*192900153618^(1/2) 4807526975934752 a001 75283811239/90481*4106118243^(9/23) 4807526975934752 a001 1602508992/90481*4106118243^(13/23) 4807526975934752 a001 86267571272/271443*4106118243^(10/23) 4807526975934752 a001 2971215073/271443*10749957122^(9/16) 4807526975934752 a001 121393*4106118243^(11/23) 4807526975934752 a001 12586269025/271443*4106118243^(12/23) 4807526975934752 a001 20365011074/271443*4106118243^(1/2) 4807526975934752 a001 3536736619241/90481*1568397607^(5/22) 4807526975934752 a001 6557470319842/271443*1568397607^(1/4) 4807526975934752 a001 4052739537881/271443*1568397607^(3/11) 4807526975934752 a001 516002918640/90481*1568397607^(7/22) 4807526975934752 a001 591286729879/271443*1568397607^(4/11) 4807526975934752 a001 1134903170/271443*(1/2+1/2*5^(1/2))^29 4807526975934752 a001 1134903170/271443*1322157322203^(1/2) 4807526975934752 a001 75283811239/90481*1568397607^(9/22) 4807526975934752 a001 86267571272/271443*1568397607^(5/11) 4807526975934752 a001 1836311903/271443*1568397607^(7/11) 4807526975934752 a001 121393*1568397607^(1/2) 4807526975934752 a001 12586269025/271443*1568397607^(6/11) 4807526975934752 a001 1602508992/90481*1568397607^(13/22) 4807526975934752 a001 3536736619241/90481*599074578^(5/21) 4807526975934752 a001 4052739537881/271443*599074578^(2/7) 4807526975934752 a001 516002918640/90481*599074578^(1/3) 4807526975934752 a001 956722026041/271443*599074578^(5/14) 4807526975934752 a001 591286729879/271443*599074578^(8/21) 4807526975934752 a001 433494437/271443*(1/2+1/2*5^(1/2))^31 4807526975934752 a001 433494437/271443*9062201101803^(1/2) 4807526975934752 a001 75283811239/90481*599074578^(3/7) 4807526975934752 a001 86267571272/271443*599074578^(10/21) 4807526975934752 a001 53316291173/271443*599074578^(1/2) 4807526975934752 a001 121393*599074578^(11/21) 4807526975934752 a001 233802911/90481*599074578^(5/7) 4807526975934752 a001 12586269025/271443*599074578^(4/7) 4807526975934752 a001 1602508992/90481*599074578^(13/21) 4807526975934752 a001 1836311903/271443*599074578^(2/3) 4807526975934752 a001 2971215073/271443*599074578^(9/14) 4807526975934752 a001 1288005205258568139/267914296 4807526975934752 a001 3536736619241/90481*228826127^(1/4) 4807526975934752 a001 4052739537881/271443*228826127^(3/10) 4807526975934752 a001 516002918640/90481*228826127^(7/20) 4807526975934752 a001 956722026041/271443*228826127^(3/8) 4807526975934752 a001 165580141/271443*2537720636^(11/15) 4807526975934752 a001 165580141/271443*45537549124^(11/17) 4807526975934752 a001 165580141/271443*312119004989^(3/5) 4807526975934752 a001 165580141/271443*14662949395604^(11/21) 4807526975934752 a001 165580141/271443*(1/2+1/2*5^(1/2))^33 4807526975934752 a001 165580141/271443*192900153618^(11/18) 4807526975934752 a001 165580141/271443*10749957122^(11/16) 4807526975934752 a001 165580141/271443*1568397607^(3/4) 4807526975934752 a001 591286729879/271443*228826127^(2/5) 4807526975934752 a001 75283811239/90481*228826127^(9/20) 4807526975934752 a001 165580141/271443*599074578^(11/14) 4807526975934752 a001 86267571272/271443*228826127^(1/2) 4807526975934752 a001 121393*228826127^(11/20) 4807526975934752 a001 12586269025/271443*228826127^(3/5) 4807526975934752 a001 7778742049/271443*228826127^(5/8) 4807526975934752 a001 1602508992/90481*228826127^(13/20) 4807526975934752 a001 267914296/271443*228826127^(4/5) 4807526975934752 a001 1836311903/271443*228826127^(7/10) 4807526975934752 a001 233802911/90481*228826127^(3/4) 4807526975934752 a001 491974210721988233/102334155 4807526975934752 a001 3536736619241/90481*87403803^(5/19) 4807526975934752 a001 4052739537881/271443*87403803^(6/19) 4807526975934752 a001 516002918640/90481*87403803^(7/19) 4807526975934752 a001 63245986/271443*2537720636^(7/9) 4807526975934752 a001 63245986/271443*17393796001^(5/7) 4807526975934752 a001 63245986/271443*312119004989^(7/11) 4807526975934752 a001 63245986/271443*14662949395604^(5/9) 4807526975934752 a001 63245986/271443*(1/2+1/2*5^(1/2))^35 4807526975934752 a001 63245986/271443*505019158607^(5/8) 4807526975934752 a001 63245986/271443*28143753123^(7/10) 4807526975934752 a001 63245986/271443*599074578^(5/6) 4807526975934752 a001 591286729879/271443*87403803^(8/19) 4807526975934752 a001 75283811239/90481*87403803^(9/19) 4807526975934752 a001 139583862445/271443*87403803^(1/2) 4807526975934752 a001 63245986/271443*228826127^(7/8) 4807526975934752 a001 86267571272/271443*87403803^(10/19) 4807526975934752 a001 121393*87403803^(11/19) 4807526975934752 a001 12586269025/271443*87403803^(12/19) 4807526975934752 a001 1602508992/90481*87403803^(13/19) 4807526975934752 a001 1836311903/271443*87403803^(14/19) 4807526975934752 a001 34111385/90481*87403803^(17/19) 4807526975934752 a001 233802911/90481*87403803^(15/19) 4807526975934752 a001 267914296/271443*87403803^(16/19) 4807526975934753 a001 187917426907396560/39088169 4807526975934753 a001 3536736619241/90481*33385282^(5/18) 4807526975934753 a001 4052739537881/271443*33385282^(1/3) 4807526975934754 a001 24157817/271443*(1/2+1/2*5^(1/2))^37 4807526975934754 a001 516002918640/90481*33385282^(7/18) 4807526975934754 a001 956722026041/271443*33385282^(5/12) 4807526975934754 a001 591286729879/271443*33385282^(4/9) 4807526975934754 a001 75283811239/90481*33385282^(1/2) 4807526975934754 a001 86267571272/271443*33385282^(5/9) 4807526975934754 a001 53316291173/271443*33385282^(7/12) 4807526975934755 a001 121393*33385282^(11/18) 4807526975934755 a001 12586269025/271443*33385282^(2/3) 4807526975934755 a001 1602508992/90481*33385282^(13/18) 4807526975934755 a001 2971215073/271443*33385282^(3/4) 4807526975934755 a001 1836311903/271443*33385282^(7/9) 4807526975934756 a001 233802911/90481*33385282^(5/6) 4807526975934756 a001 267914296/271443*33385282^(8/9) 4807526975934756 a001 34111385/90481*33385282^(17/18) 4807526975934756 a001 165580141/271443*33385282^(11/12) 4807526975934756 a001 71778070000201447/14930352 4807526975934761 a001 3536736619241/90481*12752043^(5/17) 4807526975934762 a001 4052739537881/271443*12752043^(6/17) 4807526975934763 a001 9227465/271443*2537720636^(13/15) 4807526975934763 a001 9227465/271443*45537549124^(13/17) 4807526975934763 a001 121393/20633239*14662949395604^(19/21) 4807526975934763 a001 121393/20633239*(1/2+1/2*5^(1/2))^57 4807526975934763 a001 9227465/271443*14662949395604^(13/21) 4807526975934763 a001 9227465/271443*(1/2+1/2*5^(1/2))^39 4807526975934763 a001 9227465/271443*192900153618^(13/18) 4807526975934763 a001 9227465/271443*73681302247^(3/4) 4807526975934763 a001 9227465/271443*10749957122^(13/16) 4807526975934763 a001 9227465/271443*599074578^(13/14) 4807526975934764 a001 516002918640/90481*12752043^(7/17) 4807526975934766 a001 591286729879/271443*12752043^(8/17) 4807526975934767 a001 365435296162/271443*12752043^(1/2) 4807526975934768 a001 75283811239/90481*12752043^(9/17) 4807526975934769 a001 86267571272/271443*12752043^(10/17) 4807526975934771 a001 121393*12752043^(11/17) 4807526975934773 a001 12586269025/271443*12752043^(12/17) 4807526975934775 a001 1602508992/90481*12752043^(13/17) 4807526975934776 a001 1836311903/271443*12752043^(14/17) 4807526975934778 a001 233802911/90481*12752043^(15/17) 4807526975934780 a001 267914296/271443*12752043^(16/17) 4807526975934781 a001 27416783093207781/5702887 4807526975934815 a001 3536736619241/90481*4870847^(5/16) 4807526975934828 a001 4052739537881/271443*4870847^(3/8) 4807526975934829 a001 121393/7881196*(1/2+1/2*5^(1/2))^55 4807526975934829 a001 121393/7881196*3461452808002^(11/12) 4807526975934829 a001 3524578/271443*(1/2+1/2*5^(1/2))^41 4807526975934841 a001 516002918640/90481*4870847^(7/16) 4807526975934853 a001 591286729879/271443*4870847^(1/2) 4807526975934866 a001 75283811239/90481*4870847^(9/16) 4807526975934879 a001 86267571272/271443*4870847^(5/8) 4807526975934891 a001 121393*4870847^(11/16) 4807526975934904 a001 12586269025/271443*4870847^(3/4) 4807526975934917 a001 1602508992/90481*4870847^(13/16) 4807526975934929 a001 1836311903/271443*4870847^(7/8) 4807526975934942 a001 233802911/90481*4870847^(15/16) 4807526975934955 a001 10472279279421896/2178309 4807526975935215 a001 3536736619241/90481*1860498^(1/3) 4807526975935282 a001 121393/3010349*(1/2+1/2*5^(1/2))^53 4807526975935282 a001 1346269/271443*(1/2+1/2*5^(1/2))^43 4807526975935307 a001 4052739537881/271443*1860498^(2/5) 4807526975935400 a001 516002918640/90481*1860498^(7/15) 4807526975935446 a001 956722026041/271443*1860498^(1/2) 4807526975935493 a001 591286729879/271443*1860498^(8/15) 4807526975935585 a001 75283811239/90481*1860498^(3/5) 4807526975935678 a001 86267571272/271443*1860498^(2/3) 4807526975935724 a001 53316291173/271443*1860498^(7/10) 4807526975935770 a001 121393*1860498^(11/15) 4807526975935863 a001 12586269025/271443*1860498^(4/5) 4807526975935909 a001 7778742049/271443*1860498^(5/6) 4807526975935956 a001 1602508992/90481*1860498^(13/15) 4807526975936002 a001 2971215073/271443*1860498^(9/10) 4807526975936048 a001 1836311903/271443*1860498^(14/15) 4807526975936141 a001 4000054745057907/832040 4807526975938152 a001 3536736619241/90481*710647^(5/14) 4807526975938388 a001 514229/271443*45537549124^(15/17) 4807526975938388 a001 121393/1149851*817138163596^(17/19) 4807526975938388 a001 121393/1149851*14662949395604^(17/21) 4807526975938388 a001 121393/1149851*(1/2+1/2*5^(1/2))^51 4807526975938388 a001 121393/1149851*192900153618^(17/18) 4807526975938388 a001 514229/271443*312119004989^(9/11) 4807526975938388 a001 514229/271443*14662949395604^(5/7) 4807526975938388 a001 514229/271443*(1/2+1/2*5^(1/2))^45 4807526975938388 a001 514229/271443*192900153618^(5/6) 4807526975938388 a001 514229/271443*28143753123^(9/10) 4807526975938388 a001 514229/271443*10749957122^(15/16) 4807526975938832 a001 4052739537881/271443*710647^(3/7) 4807526975939512 a001 516002918640/90481*710647^(1/2) 4807526975940192 a001 591286729879/271443*710647^(4/7) 4807526975940872 a001 75283811239/90481*710647^(9/14) 4807526975941552 a001 86267571272/271443*710647^(5/7) 4807526975941892 a001 53316291173/271443*710647^(3/4) 4807526975942232 a001 121393*710647^(11/14) 4807526975942911 a001 12586269025/271443*710647^(6/7) 4807526975943591 a001 1602508992/90481*710647^(13/14) 4807526975944098 a001 10182505537/51841*103682^(7/8) 4807526975944271 a001 1527884955751825/317811 4807526975959674 a001 121393/439204*14662949395604^(7/9) 4807526975959674 a001 121393/439204*(1/2+1/2*5^(1/2))^49 4807526975959674 a001 121393/439204*505019158607^(7/8) 4807526975959674 a001 196418/271443*(1/2+1/2*5^(1/2))^47 4807526975959847 a001 3536736619241/90481*271443^(5/13) 4807526975962732 a001 12586269025/103682*103682^(11/12) 4807526975964866 a001 4052739537881/271443*271443^(6/13) 4807526975965558 a001 944284833565203/196418 4807526975967376 a001 2504730781961/271443*271443^(1/2) 4807526975968327 a001 32951280099/710647*439204^(8/9) 4807526975969885 a001 516002918640/90481*271443^(7/13) 4807526975971096 a001 139583862445/710647*439204^(7/9) 4807526975973688 a001 27773083340200/5777 4807526975973865 a001 591286729879/710647*439204^(2/3) 4807526975974875 a001 944284833567033/196418 4807526975974904 a001 591286729879/271443*271443^(8/13) 4807526975975048 a001 944284833567067/196418 4807526975975073 a001 27773083340208/5777 4807526975975078 a001 944284833567073/196418 4807526975975088 a001 944284833567075/196418 4807526975975155 a001 472142416783544/98209 4807526975975608 a001 944284833567177/196418 4807526975976457 a001 43133785636/930249*439204^(8/9) 4807526975976634 a001 2504730781961/710647*439204^(5/9) 4807526975977644 a001 225851433717/4870847*439204^(8/9) 4807526975977817 a001 591286729879/12752043*439204^(8/9) 4807526975977842 a001 774004377960/16692641*439204^(8/9) 4807526975977846 a001 4052739537881/87403803*439204^(8/9) 4807526975977846 a001 225749145909/4868641*439204^(8/9) 4807526975977847 a001 3278735159921/70711162*439204^(8/9) 4807526975977848 a001 2504730781961/54018521*439204^(8/9) 4807526975977858 a001 956722026041/20633239*439204^(8/9) 4807526975977924 a001 182717648081/3940598*439204^(8/9) 4807526975978377 a001 139583862445/3010349*439204^(8/9) 4807526975978713 a001 944284833567787/196418 4807526975979227 a001 182717648081/930249*439204^(7/9) 4807526975979403 a001 1515744265389/101521*439204^(4/9) 4807526975979923 a001 75283811239/90481*271443^(9/13) 4807526975980413 a001 956722026041/4870847*439204^(7/9) 4807526975980586 a001 2504730781961/12752043*439204^(7/9) 4807526975980611 a001 3278735159921/16692641*439204^(7/9) 4807526975980617 a001 10610209857723/54018521*439204^(7/9) 4807526975980627 a001 4052739537881/20633239*439204^(7/9) 4807526975980693 a001 387002188980/1970299*439204^(7/9) 4807526975980961 a001 317811/710647*45537549124^(16/17) 4807526975980961 a001 317811/710647*14662949395604^(16/21) 4807526975980961 a001 317811/710647*(1/2+1/2*5^(1/2))^48 4807526975980961 a001 317811/710647*192900153618^(8/9) 4807526975980961 a001 317811/710647*73681302247^(12/13) 4807526975981146 a001 591286729879/3010349*439204^(7/9) 4807526975981366 a001 7778742049/103682*103682^(23/24) 4807526975981482 a001 53316291173/1149851*439204^(8/9) 4807526975981996 a001 832040*439204^(2/3) 4807526975983182 a001 4052739537881/4870847*439204^(2/3) 4807526975983355 a001 3536736619241/4250681*439204^(2/3) 4807526975983462 a001 3278735159921/3940598*439204^(2/3) 4807526975983915 a001 2504730781961/3010349*439204^(2/3) 4807526975984252 a001 225851433717/1149851*439204^(7/9) 4807526975984765 a001 3278735159921/930249*439204^(5/9) 4807526975984942 a001 86267571272/271443*271443^(10/13) 4807526975986684 a001 10610209857723/3010349*439204^(5/9) 4807526975986844 a001 2472169789334739/514229 4807526975987021 a001 956722026041/1149851*439204^(2/3) 4807526975989091 a001 105937/620166*312119004989^(10/11) 4807526975989091 a001 105937/620166*(1/2+1/2*5^(1/2))^50 4807526975989091 a001 105937/620166*3461452808002^(5/6) 4807526975989091 a001 832040/710647*(1/2+1/2*5^(1/2))^46 4807526975989091 a001 832040/710647*10749957122^(23/24) 4807526975989790 a001 4052739537881/1149851*439204^(5/9) 4807526975989950 a001 6472224534439014/1346269 4807526975989961 a001 121393*271443^(11/13) 4807526975990277 a001 311187/101521*312119004989^(4/5) 4807526975990277 a001 317811/4870847*(1/2+1/2*5^(1/2))^52 4807526975990277 a001 317811/4870847*23725150497407^(13/16) 4807526975990277 a001 317811/4870847*505019158607^(13/14) 4807526975990277 a001 311187/101521*(1/2+1/2*5^(1/2))^44 4807526975990277 a001 311187/101521*23725150497407^(11/16) 4807526975990277 a001 311187/101521*73681302247^(11/13) 4807526975990277 a001 311187/101521*10749957122^(11/12) 4807526975990277 a001 311187/101521*4106118243^(22/23) 4807526975990403 a001 16944503813982303/3524578 4807526975990410 a001 1836311903/710647*7881196^(10/11) 4807526975990417 a001 7778742049/710647*7881196^(9/11) 4807526975990424 a001 32951280099/710647*7881196^(8/11) 4807526975990428 a001 86267571272/710647*7881196^(2/3) 4807526975990431 a001 139583862445/710647*7881196^(7/11) 4807526975990438 a001 591286729879/710647*7881196^(6/11) 4807526975990445 a001 2504730781961/710647*7881196^(5/11) 4807526975990450 a001 5702887/710647*2537720636^(14/15) 4807526975990450 a001 5702887/710647*17393796001^(6/7) 4807526975990450 a001 5702887/710647*45537549124^(14/17) 4807526975990450 a001 105937/4250681*14662949395604^(6/7) 4807526975990450 a001 105937/4250681*(1/2+1/2*5^(1/2))^54 4807526975990450 a001 5702887/710647*14662949395604^(2/3) 4807526975990450 a001 5702887/710647*(1/2+1/2*5^(1/2))^42 4807526975990450 a001 5702887/710647*505019158607^(3/4) 4807526975990450 a001 5702887/710647*192900153618^(7/9) 4807526975990450 a001 5702887/710647*10749957122^(7/8) 4807526975990450 a001 5702887/710647*4106118243^(21/23) 4807526975990450 a001 5702887/710647*1568397607^(21/22) 4807526975990452 a001 1515744265389/101521*7881196^(4/11) 4807526975990469 a001 682481337038583/141961 4807526975990470 a001 1836311903/710647*20633239^(6/7) 4807526975990471 a001 686789568/101521*20633239^(4/5) 4807526975990472 a001 20365011074/710647*20633239^(5/7) 4807526975990473 a001 139583862445/710647*20633239^(3/5) 4807526975990474 a001 317811*20633239^(4/7) 4807526975990475 a001 2504730781961/710647*20633239^(3/7) 4807526975990475 a001 4052739537881/710647*20633239^(2/5) 4807526975990476 a001 14930352/710647*2537720636^(8/9) 4807526975990476 a001 14930352/710647*312119004989^(8/11) 4807526975990476 a001 317811/33385282*14662949395604^(8/9) 4807526975990476 a001 317811/33385282*(1/2+1/2*5^(1/2))^56 4807526975990476 a001 14930352/710647*(1/2+1/2*5^(1/2))^40 4807526975990476 a001 14930352/710647*23725150497407^(5/8) 4807526975990476 a001 14930352/710647*73681302247^(10/13) 4807526975990476 a001 14930352/710647*28143753123^(4/5) 4807526975990476 a001 14930352/710647*10749957122^(5/6) 4807526975990476 a001 14930352/710647*4106118243^(20/23) 4807526975990476 a001 14930352/710647*1568397607^(10/11) 4807526975990476 a001 14930352/710647*599074578^(20/21) 4807526975990478 a001 116139356908541382/24157817 4807526975990479 a001 39088169/710647*817138163596^(2/3) 4807526975990479 a001 39088169/710647*(1/2+1/2*5^(1/2))^38 4807526975990479 a001 39088169/710647*10749957122^(19/24) 4807526975990479 a001 39088169/710647*4106118243^(19/23) 4807526975990479 a001 39088169/710647*1568397607^(19/22) 4807526975990479 a001 39088169/710647*599074578^(19/21) 4807526975990479 a001 39088169/710647*228826127^(19/20) 4807526975990480 a001 14619165/101521*141422324^(12/13) 4807526975990480 a001 304056783818116251/63245986 4807526975990480 a001 433494437/710647*141422324^(11/13) 4807526975990480 a001 1836311903/710647*141422324^(10/13) 4807526975990480 a001 7778742049/710647*141422324^(9/13) 4807526975990480 a001 12586269025/710647*141422324^(2/3) 4807526975990480 a001 32951280099/710647*141422324^(8/13) 4807526975990480 a001 139583862445/710647*141422324^(7/13) 4807526975990480 a001 591286729879/710647*141422324^(6/13) 4807526975990480 a001 2504730781961/710647*141422324^(5/13) 4807526975990480 a001 14619165/101521*2537720636^(4/5) 4807526975990480 a001 14619165/101521*45537549124^(12/17) 4807526975990480 a001 317811/228826127*14662949395604^(20/21) 4807526975990480 a001 14619165/101521*14662949395604^(4/7) 4807526975990480 a001 14619165/101521*(1/2+1/2*5^(1/2))^36 4807526975990480 a001 14619165/101521*505019158607^(9/14) 4807526975990480 a001 14619165/101521*192900153618^(2/3) 4807526975990480 a001 14619165/101521*73681302247^(9/13) 4807526975990480 a001 14619165/101521*10749957122^(3/4) 4807526975990480 a001 14619165/101521*4106118243^(18/23) 4807526975990480 a001 14619165/101521*1568397607^(9/11) 4807526975990480 a001 14619165/101521*599074578^(6/7) 4807526975990480 a001 6557470319842/710647*141422324^(1/3) 4807526975990480 a001 1515744265389/101521*141422324^(4/13) 4807526975990480 a001 796030994545807371/165580141 4807526975990480 a001 267914296/710647*45537549124^(2/3) 4807526975990480 a001 267914296/710647*(1/2+1/2*5^(1/2))^34 4807526975990480 a001 267914296/710647*10749957122^(17/24) 4807526975990480 a001 267914296/710647*4106118243^(17/23) 4807526975990480 a001 267914296/710647*1568397607^(17/22) 4807526975990480 a001 14619165/101521*228826127^(9/10) 4807526975990480 a001 2084036199819305862/433494437 4807526975990480 a001 267914296/710647*599074578^(17/21) 4807526975990480 a001 701408733/710647*(1/2+1/2*5^(1/2))^32 4807526975990480 a001 701408733/710647*23725150497407^(1/2) 4807526975990480 a001 701408733/710647*505019158607^(4/7) 4807526975990480 a001 701408733/710647*73681302247^(8/13) 4807526975990480 a001 701408733/710647*10749957122^(2/3) 4807526975990480 a001 701408733/710647*4106118243^(16/23) 4807526975990480 a001 1836311903/710647*2537720636^(2/3) 4807526975990480 a001 701408733/710647*1568397607^(8/11) 4807526975990480 a001 7778742049/710647*2537720636^(3/5) 4807526975990480 a001 20365011074/710647*2537720636^(5/9) 4807526975990480 a001 32951280099/710647*2537720636^(8/15) 4807526975990480 a001 139583862445/710647*2537720636^(7/15) 4807526975990480 a001 317811*2537720636^(4/9) 4807526975990480 a001 591286729879/710647*2537720636^(2/5) 4807526975990480 a001 1836311903/710647*45537549124^(10/17) 4807526975990480 a001 1836311903/710647*312119004989^(6/11) 4807526975990480 a001 1836311903/710647*14662949395604^(10/21) 4807526975990480 a001 1836311903/710647*(1/2+1/2*5^(1/2))^30 4807526975990480 a001 1836311903/710647*192900153618^(5/9) 4807526975990480 a001 1836311903/710647*28143753123^(3/5) 4807526975990480 a001 1836311903/710647*10749957122^(5/8) 4807526975990480 a001 2504730781961/710647*2537720636^(1/3) 4807526975990480 a001 1515744265389/101521*2537720636^(4/15) 4807526975990480 a001 1836311903/710647*4106118243^(15/23) 4807526975990480 a001 686789568/101521*17393796001^(4/7) 4807526975990480 a001 686789568/101521*14662949395604^(4/9) 4807526975990480 a001 686789568/101521*(1/2+1/2*5^(1/2))^28 4807526975990480 a001 686789568/101521*73681302247^(7/13) 4807526975990480 a001 686789568/101521*10749957122^(7/12) 4807526975990480 a001 139583862445/710647*17393796001^(3/7) 4807526975990480 a001 12586269025/710647*(1/2+1/2*5^(1/2))^26 4807526975990480 a001 12586269025/710647*73681302247^(1/2) 4807526975990480 a001 4052739537881/710647*17393796001^(2/7) 4807526975990480 a001 32951280099/710647*45537549124^(8/17) 4807526975990480 a001 139583862445/710647*45537549124^(7/17) 4807526975990480 a001 32951280099/710647*14662949395604^(8/21) 4807526975990480 a001 32951280099/710647*(1/2+1/2*5^(1/2))^24 4807526975990480 a001 32951280099/710647*192900153618^(4/9) 4807526975990480 a001 591286729879/710647*45537549124^(6/17) 4807526975990480 a001 956722026041/710647*45537549124^(1/3) 4807526975990480 a001 2504730781961/710647*45537549124^(5/17) 4807526975990480 a001 1515744265389/101521*45537549124^(4/17) 4807526975990480 a001 32951280099/710647*73681302247^(6/13) 4807526975990480 a001 86267571272/710647*312119004989^(2/5) 4807526975990480 a001 86267571272/710647*(1/2+1/2*5^(1/2))^22 4807526975990480 a001 317811*(1/2+1/2*5^(1/2))^20 4807526975990480 a001 2504730781961/710647*312119004989^(3/11) 4807526975990480 a001 591286729879/710647*(1/2+1/2*5^(1/2))^18 4807526975990480 a001 1515744265389/101521*817138163596^(4/19) 4807526975990480 a001 1548008755920/710647*(1/2+1/2*5^(1/2))^16 4807526975990480 a001 4052739537881/710647*(1/2+1/2*5^(1/2))^14 4807526975990480 a001 1515744265389/101521*14662949395604^(4/21) 4807526975990480 a001 1515744265389/101521*(1/2+1/2*5^(1/2))^12 4807526975990480 a001 6557470319842/710647*(1/2+1/2*5^(1/2))^13 4807526975990480 a001 2504730781961/710647*(1/2+1/2*5^(1/2))^15 4807526975990480 a001 956722026041/710647*(1/2+1/2*5^(1/2))^17 4807526975990480 a001 4052739537881/710647*505019158607^(1/4) 4807526975990480 a001 1515744265389/101521*192900153618^(2/9) 4807526975990480 a001 2504730781961/710647*192900153618^(5/18) 4807526975990480 a001 139583862445/710647*14662949395604^(1/3) 4807526975990480 a001 139583862445/710647*(1/2+1/2*5^(1/2))^21 4807526975990480 a001 139583862445/710647*192900153618^(7/18) 4807526975990480 a001 1515744265389/101521*73681302247^(3/13) 4807526975990480 a001 6557470319842/710647*73681302247^(1/4) 4807526975990480 a001 1548008755920/710647*73681302247^(4/13) 4807526975990480 a001 317811*73681302247^(5/13) 4807526975990480 a001 53316291173/710647*(1/2+1/2*5^(1/2))^23 4807526975990480 a001 20365011074/710647*312119004989^(5/11) 4807526975990480 a001 20365011074/710647*(1/2+1/2*5^(1/2))^25 4807526975990480 a001 20365011074/710647*3461452808002^(5/12) 4807526975990480 a001 317811*28143753123^(2/5) 4807526975990480 a001 20365011074/710647*28143753123^(1/2) 4807526975990480 a001 1515744265389/101521*10749957122^(1/4) 4807526975990480 a001 4052739537881/710647*10749957122^(7/24) 4807526975990480 a001 2504730781961/710647*10749957122^(5/16) 4807526975990480 a001 1548008755920/710647*10749957122^(1/3) 4807526975990480 a001 7778742049/710647*45537549124^(9/17) 4807526975990480 a001 591286729879/710647*10749957122^(3/8) 4807526975990480 a001 7778742049/710647*817138163596^(9/19) 4807526975990480 a001 7778742049/710647*14662949395604^(3/7) 4807526975990480 a001 7778742049/710647*(1/2+1/2*5^(1/2))^27 4807526975990480 a001 7778742049/710647*192900153618^(1/2) 4807526975990480 a001 12586269025/710647*10749957122^(13/24) 4807526975990480 a001 317811*10749957122^(5/12) 4807526975990480 a001 139583862445/710647*10749957122^(7/16) 4807526975990480 a001 86267571272/710647*10749957122^(11/24) 4807526975990480 a001 32951280099/710647*10749957122^(1/2) 4807526975990480 a001 7778742049/710647*10749957122^(9/16) 4807526975990480 a001 1515744265389/101521*4106118243^(6/23) 4807526975990480 a001 4052739537881/710647*4106118243^(7/23) 4807526975990480 a001 1548008755920/710647*4106118243^(8/23) 4807526975990480 a001 2971215073/710647*(1/2+1/2*5^(1/2))^29 4807526975990480 a001 2971215073/710647*1322157322203^(1/2) 4807526975990480 a001 591286729879/710647*4106118243^(9/23) 4807526975990480 a001 317811*4106118243^(10/23) 4807526975990480 a001 686789568/101521*4106118243^(14/23) 4807526975990480 a001 86267571272/710647*4106118243^(11/23) 4807526975990480 a001 53316291173/710647*4106118243^(1/2) 4807526975990480 a001 32951280099/710647*4106118243^(12/23) 4807526975990480 a001 12586269025/710647*4106118243^(13/23) 4807526975990480 a001 1515744265389/101521*1568397607^(3/11) 4807526975990480 a001 4052739537881/710647*1568397607^(7/22) 4807526975990480 a001 1548008755920/710647*1568397607^(4/11) 4807526975990480 a001 1134903170/710647*(1/2+1/2*5^(1/2))^31 4807526975990480 a001 1134903170/710647*9062201101803^(1/2) 4807526975990480 a001 591286729879/710647*1568397607^(9/22) 4807526975990480 a001 317811*1568397607^(5/11) 4807526975990480 a001 86267571272/710647*1568397607^(1/2) 4807526975990480 a001 1836311903/710647*1568397607^(15/22) 4807526975990480 a001 32951280099/710647*1568397607^(6/11) 4807526975990480 a001 12586269025/710647*1568397607^(13/22) 4807526975990480 a001 686789568/101521*1568397607^(7/11) 4807526975990480 a001 1124013801697601451/233802911 4807526975990480 a001 1515744265389/101521*599074578^(2/7) 4807526975990480 a001 4052739537881/710647*599074578^(1/3) 4807526975990480 a001 433494437/710647*2537720636^(11/15) 4807526975990480 a001 2504730781961/710647*599074578^(5/14) 4807526975990480 a001 1548008755920/710647*599074578^(8/21) 4807526975990480 a001 433494437/710647*45537549124^(11/17) 4807526975990480 a001 433494437/710647*312119004989^(3/5) 4807526975990480 a001 433494437/710647*817138163596^(11/19) 4807526975990480 a001 433494437/710647*14662949395604^(11/21) 4807526975990480 a001 433494437/710647*(1/2+1/2*5^(1/2))^33 4807526975990480 a001 433494437/710647*192900153618^(11/18) 4807526975990480 a001 433494437/710647*10749957122^(11/16) 4807526975990480 a001 591286729879/710647*599074578^(3/7) 4807526975990480 a001 317811*599074578^(10/21) 4807526975990480 a001 433494437/710647*1568397607^(3/4) 4807526975990480 a001 139583862445/710647*599074578^(1/2) 4807526975990480 a001 86267571272/710647*599074578^(11/21) 4807526975990480 a001 32951280099/710647*599074578^(4/7) 4807526975990480 a001 701408733/710647*599074578^(16/21) 4807526975990480 a001 12586269025/710647*599074578^(13/21) 4807526975990480 a001 7778742049/710647*599074578^(9/14) 4807526975990480 a001 686789568/101521*599074578^(2/3) 4807526975990480 a001 1836311903/710647*599074578^(5/7) 4807526975990480 a001 3416459430433683/710648 4807526975990480 a001 433494437/710647*599074578^(11/14) 4807526975990480 a001 1515744265389/101521*228826127^(3/10) 4807526975990480 a001 4052739537881/710647*228826127^(7/20) 4807526975990480 a001 2504730781961/710647*228826127^(3/8) 4807526975990480 a001 165580141/710647*2537720636^(7/9) 4807526975990480 a001 165580141/710647*17393796001^(5/7) 4807526975990480 a001 165580141/710647*312119004989^(7/11) 4807526975990480 a001 165580141/710647*14662949395604^(5/9) 4807526975990480 a001 165580141/710647*(1/2+1/2*5^(1/2))^35 4807526975990480 a001 165580141/710647*505019158607^(5/8) 4807526975990480 a001 165580141/710647*28143753123^(7/10) 4807526975990480 a001 1548008755920/710647*228826127^(2/5) 4807526975990480 a001 591286729879/710647*228826127^(9/20) 4807526975990480 a001 317811*228826127^(1/2) 4807526975990480 a001 165580141/710647*599074578^(5/6) 4807526975990480 a001 86267571272/710647*228826127^(11/20) 4807526975990480 a001 32951280099/710647*228826127^(3/5) 4807526975990480 a001 20365011074/710647*228826127^(5/8) 4807526975990480 a001 12586269025/710647*228826127^(13/20) 4807526975990480 a001 686789568/101521*228826127^(7/10) 4807526975990480 a001 267914296/710647*228826127^(17/20) 4807526975990480 a001 1836311903/710647*228826127^(3/4) 4807526975990480 a001 701408733/710647*228826127^(4/5) 4807526975990480 a001 72723460565808/15127 4807526975990480 a001 165580141/710647*228826127^(7/8) 4807526975990480 a001 1515744265389/101521*87403803^(6/19) 4807526975990480 a001 4052739537881/710647*87403803^(7/19) 4807526975990480 a001 63245986/710647*(1/2+1/2*5^(1/2))^37 4807526975990480 a001 1548008755920/710647*87403803^(8/19) 4807526975990480 a001 591286729879/710647*87403803^(9/19) 4807526975990480 a001 365435296162/710647*87403803^(1/2) 4807526975990480 a001 317811*87403803^(10/19) 4807526975990480 a001 86267571272/710647*87403803^(11/19) 4807526975990480 a001 32951280099/710647*87403803^(12/19) 4807526975990480 a001 12586269025/710647*87403803^(13/19) 4807526975990480 a001 686789568/101521*87403803^(14/19) 4807526975990481 a001 1836311903/710647*87403803^(15/19) 4807526975990481 a001 14619165/101521*87403803^(18/19) 4807526975990481 a001 701408733/710647*87403803^(16/19) 4807526975990481 a001 267914296/710647*87403803^(17/19) 4807526975990481 a001 187917426909574869/39088169 4807526975990481 a001 1515744265389/101521*33385282^(1/3) 4807526975990482 a001 24157817/710647*2537720636^(13/15) 4807526975990482 a001 24157817/710647*45537549124^(13/17) 4807526975990482 a001 317811/54018521*14662949395604^(19/21) 4807526975990482 a001 24157817/710647*14662949395604^(13/21) 4807526975990482 a001 24157817/710647*(1/2+1/2*5^(1/2))^39 4807526975990482 a001 24157817/710647*192900153618^(13/18) 4807526975990482 a001 24157817/710647*73681302247^(3/4) 4807526975990482 a001 24157817/710647*10749957122^(13/16) 4807526975990482 a001 24157817/710647*599074578^(13/14) 4807526975990482 a001 4052739537881/710647*33385282^(7/18) 4807526975990482 a001 2504730781961/710647*33385282^(5/12) 4807526975990482 a001 1548008755920/710647*33385282^(4/9) 4807526975990482 a001 591286729879/710647*33385282^(1/2) 4807526975990482 a001 317811*33385282^(5/9) 4807526975990483 a001 139583862445/710647*33385282^(7/12) 4807526975990483 a001 86267571272/710647*33385282^(11/18) 4807526975990483 a001 32951280099/710647*33385282^(2/3) 4807526975990483 a001 12586269025/710647*33385282^(13/18) 4807526975990483 a001 7778742049/710647*33385282^(3/4) 4807526975990483 a001 686789568/101521*33385282^(7/9) 4807526975990484 a001 1836311903/710647*33385282^(5/6) 4807526975990484 a001 701408733/710647*33385282^(8/9) 4807526975990484 a001 433494437/710647*33385282^(11/12) 4807526975990484 a001 267914296/710647*33385282^(17/18) 4807526975990484 a001 7975341111225943/1658928 4807526975990490 a001 1515744265389/101521*12752043^(6/17) 4807526975990491 a001 10959/711491*(1/2+1/2*5^(1/2))^55 4807526975990491 a001 10959/711491*3461452808002^(11/12) 4807526975990491 a001 9227465/710647*(1/2+1/2*5^(1/2))^41 4807526975990492 a001 4052739537881/710647*12752043^(7/17) 4807526975990494 a001 1548008755920/710647*12752043^(8/17) 4807526975990495 a001 956722026041/710647*12752043^(1/2) 4807526975990496 a001 591286729879/710647*12752043^(9/17) 4807526975990497 a001 317811*12752043^(10/17) 4807526975990499 a001 86267571272/710647*12752043^(11/17) 4807526975990501 a001 32951280099/710647*12752043^(12/17) 4807526975990503 a001 12586269025/710647*12752043^(13/17) 4807526975990504 a001 686789568/101521*12752043^(14/17) 4807526975990506 a001 1836311903/710647*12752043^(15/17) 4807526975990508 a001 701408733/710647*12752043^(16/17) 4807526975990510 a001 27416783093525592/5702887 4807526975990556 a001 1515744265389/101521*4870847^(3/8) 4807526975990557 a001 317811/7881196*(1/2+1/2*5^(1/2))^53 4807526975990557 a001 3524578/710647*(1/2+1/2*5^(1/2))^43 4807526975990569 a001 4052739537881/710647*4870847^(7/16) 4807526975990581 a001 1548008755920/710647*4870847^(1/2) 4807526975990594 a001 591286729879/710647*4870847^(9/16) 4807526975990607 a001 317811*4870847^(5/8) 4807526975990619 a001 86267571272/710647*4870847^(11/16) 4807526975990632 a001 32951280099/710647*4870847^(3/4) 4807526975990645 a001 12586269025/710647*4870847^(13/16) 4807526975990657 a001 686789568/101521*4870847^(7/8) 4807526975990670 a001 1836311903/710647*4870847^(15/16) 4807526975990683 a001 3490759759847763/726103 4807526975991011 a001 1346269/710647*45537549124^(15/17) 4807526975991011 a001 1346269/710647*312119004989^(9/11) 4807526975991011 a001 317811/3010349*817138163596^(17/19) 4807526975991011 a001 317811/3010349*14662949395604^(17/21) 4807526975991011 a001 317811/3010349*(1/2+1/2*5^(1/2))^51 4807526975991011 a001 1346269/710647*14662949395604^(5/7) 4807526975991011 a001 1346269/710647*(1/2+1/2*5^(1/2))^45 4807526975991011 a001 317811/3010349*192900153618^(17/18) 4807526975991011 a001 1346269/710647*192900153618^(5/6) 4807526975991011 a001 1346269/710647*28143753123^(9/10) 4807526975991011 a001 1346269/710647*10749957122^(15/16) 4807526975991036 a001 1515744265389/101521*1860498^(2/5) 4807526975991128 a001 4052739537881/710647*1860498^(7/15) 4807526975991174 a001 2504730781961/710647*1860498^(1/2) 4807526975991221 a001 1548008755920/710647*1860498^(8/15) 4807526975991313 a001 591286729879/710647*1860498^(3/5) 4807526975991406 a001 317811*1860498^(2/3) 4807526975991452 a001 139583862445/710647*1860498^(7/10) 4807526975991499 a001 86267571272/710647*1860498^(11/15) 4807526975991591 a001 32951280099/710647*1860498^(4/5) 4807526975991637 a001 20365011074/710647*1860498^(5/6) 4807526975991684 a001 12586269025/710647*1860498^(13/15) 4807526975991730 a001 7778742049/710647*1860498^(9/10) 4807526975991776 a001 686789568/101521*1860498^(14/15) 4807526975991869 a001 72728268092805/15128 4807526975994116 a001 317811/1149851*14662949395604^(7/9) 4807526975994116 a001 317811/1149851*(1/2+1/2*5^(1/2))^49 4807526975994116 a001 514229/710647*(1/2+1/2*5^(1/2))^47 4807526975994116 a001 317811/1149851*505019158607^(7/8) 4807526975994560 a001 1515744265389/101521*710647^(3/7) 4807526975994975 a001 2472169789338920/514229 4807526975994980 a001 12586269025/271443*271443^(12/13) 4807526975995240 a001 4052739537881/710647*710647^(1/2) 4807526975995920 a001 1548008755920/710647*710647^(4/7) 4807526975996161 a001 2472169789339530/514229 4807526975996334 a001 2472169789339619/514229 4807526975996359 a001 2472169789339632/514229 4807526975996363 a001 2472169789339634/514229 4807526975996365 a001 2472169789339635/514229 4807526975996375 a001 2472169789339640/514229 4807526975996441 a001 2472169789339674/514229 4807526975996600 a001 591286729879/710647*710647^(9/14) 4807526975996894 a001 2472169789339907/514229 4807526975997222 a001 416020/930249*45537549124^(16/17) 4807526975997222 a001 416020/930249*14662949395604^(16/21) 4807526975997222 a001 416020/930249*(1/2+1/2*5^(1/2))^48 4807526975997222 a001 416020/930249*192900153618^(8/9) 4807526975997222 a001 416020/930249*73681302247^(12/13) 4807526975997280 a001 317811*710647^(5/7) 4807526975997620 a001 139583862445/710647*710647^(3/4) 4807526975997960 a001 86267571272/710647*710647^(11/14) 4807526975998080 a001 6472224534449960/1346269 4807526975998408 a001 832040/4870847*312119004989^(10/11) 4807526975998408 a001 832040/4870847*(1/2+1/2*5^(1/2))^50 4807526975998408 a001 832040/4870847*3461452808002^(5/6) 4807526975998408 a001 726103/620166*(1/2+1/2*5^(1/2))^46 4807526975998408 a001 726103/620166*10749957122^(23/24) 4807526975998533 a001 8472251907005480/1762289 4807526975998540 a001 267084832/103361*7881196^(10/11) 4807526975998547 a001 10182505537/930249*7881196^(9/11) 4807526975998554 a001 43133785636/930249*7881196^(8/11) 4807526975998559 a001 75283811239/620166*7881196^(2/3) 4807526975998561 a001 182717648081/930249*7881196^(7/11) 4807526975998568 a001 832040*7881196^(6/11) 4807526975998575 a001 3278735159921/930249*7881196^(5/11) 4807526975998581 a001 5702887/1860498*312119004989^(4/5) 4807526975998581 a001 832040/12752043*(1/2+1/2*5^(1/2))^52 4807526975998581 a001 832040/12752043*23725150497407^(13/16) 4807526975998581 a001 5702887/1860498*(1/2+1/2*5^(1/2))^44 4807526975998581 a001 5702887/1860498*23725150497407^(11/16) 4807526975998581 a001 832040/12752043*505019158607^(13/14) 4807526975998581 a001 5702887/1860498*73681302247^(11/13) 4807526975998581 a001 5702887/1860498*10749957122^(11/12) 4807526975998581 a001 5702887/1860498*4106118243^(22/23) 4807526975998599 a001 8872257381516584/1845493 4807526975998601 a001 267084832/103361*20633239^(6/7) 4807526975998602 a001 12586269025/1860498*20633239^(4/5) 4807526975998603 a001 53316291173/1860498*20633239^(5/7) 4807526975998604 a001 182717648081/930249*20633239^(3/5) 4807526975998604 a001 591286729879/1860498*20633239^(4/7) 4807526975998606 a001 3278735159921/930249*20633239^(3/7) 4807526975998606 a001 3536736619241/620166*20633239^(2/5) 4807526975998606 a001 829464/103361*2537720636^(14/15) 4807526975998606 a001 829464/103361*17393796001^(6/7) 4807526975998606 a001 829464/103361*45537549124^(14/17) 4807526975998606 a001 829464/103361*817138163596^(14/19) 4807526975998606 a001 416020/16692641*14662949395604^(6/7) 4807526975998606 a001 416020/16692641*(1/2+1/2*5^(1/2))^54 4807526975998606 a001 829464/103361*(1/2+1/2*5^(1/2))^42 4807526975998606 a001 829464/103361*505019158607^(3/4) 4807526975998606 a001 829464/103361*192900153618^(7/9) 4807526975998606 a001 829464/103361*10749957122^(7/8) 4807526975998606 a001 829464/103361*4106118243^(21/23) 4807526975998606 a001 829464/103361*1568397607^(21/22) 4807526975998609 a001 116139356908737800/24157817 4807526975998610 a001 39088169/1860498*2537720636^(8/9) 4807526975998610 a001 39088169/1860498*312119004989^(8/11) 4807526975998610 a001 832040/87403803*14662949395604^(8/9) 4807526975998610 a001 39088169/1860498*(1/2+1/2*5^(1/2))^40 4807526975998610 a001 39088169/1860498*23725150497407^(5/8) 4807526975998610 a001 39088169/1860498*73681302247^(10/13) 4807526975998610 a001 39088169/1860498*28143753123^(4/5) 4807526975998610 a001 39088169/1860498*10749957122^(5/6) 4807526975998610 a001 39088169/1860498*4106118243^(20/23) 4807526975998610 a001 39088169/1860498*1568397607^(10/11) 4807526975998610 a001 39088169/1860498*599074578^(20/21) 4807526975998610 a001 152028391909315240/31622993 4807526975998610 a001 133957148/930249*141422324^(12/13) 4807526975998610 a001 567451585/930249*141422324^(11/13) 4807526975998610 a001 267084832/103361*141422324^(10/13) 4807526975998610 a001 10182505537/930249*141422324^(9/13) 4807526975998610 a001 10983760033/620166*141422324^(2/3) 4807526975998610 a001 43133785636/930249*141422324^(8/13) 4807526975998610 a001 182717648081/930249*141422324^(7/13) 4807526975998611 a001 832040*141422324^(6/13) 4807526975998611 a001 3278735159921/930249*141422324^(5/13) 4807526975998611 a001 831985/15126*817138163596^(2/3) 4807526975998611 a001 831985/15126*(1/2+1/2*5^(1/2))^38 4807526975998611 a001 831985/15126*10749957122^(19/24) 4807526975998611 a001 831985/15126*4106118243^(19/23) 4807526975998611 a001 831985/15126*1568397607^(19/22) 4807526975998611 a001 831985/15126*599074578^(19/21) 4807526975998611 a001 796030994547153640/165580141 4807526975998611 a001 133957148/930249*2537720636^(4/5) 4807526975998611 a001 133957148/930249*45537549124^(12/17) 4807526975998611 a001 416020/299537289*14662949395604^(20/21) 4807526975998611 a001 133957148/930249*14662949395604^(4/7) 4807526975998611 a001 133957148/930249*(1/2+1/2*5^(1/2))^36 4807526975998611 a001 133957148/930249*505019158607^(9/14) 4807526975998611 a001 133957148/930249*192900153618^(2/3) 4807526975998611 a001 133957148/930249*73681302247^(9/13) 4807526975998611 a001 133957148/930249*10749957122^(3/4) 4807526975998611 a001 133957148/930249*4106118243^(18/23) 4807526975998611 a001 133957148/930249*1568397607^(9/11) 4807526975998611 a001 2084036199822830440/433494437 4807526975998611 a001 831985/15126*228826127^(19/20) 4807526975998611 a001 233802911/620166*45537549124^(2/3) 4807526975998611 a001 233802911/620166*(1/2+1/2*5^(1/2))^34 4807526975998611 a001 233802911/620166*10749957122^(17/24) 4807526975998611 a001 133957148/930249*599074578^(6/7) 4807526975998611 a001 233802911/620166*4106118243^(17/23) 4807526975998611 a001 526140559780264/109441 4807526975998611 a001 267084832/103361*2537720636^(2/3) 4807526975998611 a001 10182505537/930249*2537720636^(3/5) 4807526975998611 a001 233802911/620166*1568397607^(17/22) 4807526975998611 a001 53316291173/1860498*2537720636^(5/9) 4807526975998611 a001 43133785636/930249*2537720636^(8/15) 4807526975998611 a001 182717648081/930249*2537720636^(7/15) 4807526975998611 a001 591286729879/1860498*2537720636^(4/9) 4807526975998611 a001 832040*2537720636^(2/5) 4807526975998611 a001 1836311903/1860498*(1/2+1/2*5^(1/2))^32 4807526975998611 a001 1836311903/1860498*23725150497407^(1/2) 4807526975998611 a001 1836311903/1860498*505019158607^(4/7) 4807526975998611 a001 1836311903/1860498*73681302247^(8/13) 4807526975998611 a001 1836311903/1860498*10749957122^(2/3) 4807526975998611 a001 3278735159921/930249*2537720636^(1/3) 4807526975998611 a001 1836311903/1860498*4106118243^(16/23) 4807526975998611 a001 267084832/103361*45537549124^(10/17) 4807526975998611 a001 267084832/103361*312119004989^(6/11) 4807526975998611 a001 267084832/103361*14662949395604^(10/21) 4807526975998611 a001 267084832/103361*(1/2+1/2*5^(1/2))^30 4807526975998611 a001 267084832/103361*192900153618^(5/9) 4807526975998611 a001 267084832/103361*28143753123^(3/5) 4807526975998611 a001 267084832/103361*10749957122^(5/8) 4807526975998611 a001 12586269025/1860498*17393796001^(4/7) 4807526975998611 a001 182717648081/930249*17393796001^(3/7) 4807526975998611 a001 12586269025/1860498*14662949395604^(4/9) 4807526975998611 a001 12586269025/1860498*(1/2+1/2*5^(1/2))^28 4807526975998611 a001 12586269025/1860498*73681302247^(7/13) 4807526975998611 a001 3536736619241/620166*17393796001^(2/7) 4807526975998611 a001 43133785636/930249*45537549124^(8/17) 4807526975998611 a001 182717648081/930249*45537549124^(7/17) 4807526975998611 a001 10983760033/620166*(1/2+1/2*5^(1/2))^26 4807526975998611 a001 832040*45537549124^(6/17) 4807526975998611 a001 2504730781961/1860498*45537549124^(1/3) 4807526975998611 a001 3278735159921/930249*45537549124^(5/17) 4807526975998611 a001 10983760033/620166*73681302247^(1/2) 4807526975998611 a001 43133785636/930249*14662949395604^(8/21) 4807526975998611 a001 43133785636/930249*(1/2+1/2*5^(1/2))^24 4807526975998611 a001 43133785636/930249*192900153618^(4/9) 4807526975998611 a001 75283811239/620166*312119004989^(2/5) 4807526975998611 a001 75283811239/620166*(1/2+1/2*5^(1/2))^22 4807526975998611 a001 3278735159921/930249*312119004989^(3/11) 4807526975998611 a001 591286729879/1860498*(1/2+1/2*5^(1/2))^20 4807526975998611 a001 591286729879/1860498*23725150497407^(5/16) 4807526975998611 a001 832040*(1/2+1/2*5^(1/2))^18 4807526975998611 a001 4052739537881/1860498*(1/2+1/2*5^(1/2))^16 4807526975998611 a001 3536736619241/620166*14662949395604^(2/9) 4807526975998611 a001 3536736619241/620166*(1/2+1/2*5^(1/2))^14 4807526975998611 a001 3278735159921/930249*(1/2+1/2*5^(1/2))^15 4807526975998611 a001 2504730781961/1860498*(1/2+1/2*5^(1/2))^17 4807526975998611 a001 956722026041/1860498*(1/2+1/2*5^(1/2))^19 4807526975998611 a001 591286729879/1860498*505019158607^(5/14) 4807526975998611 a001 182717648081/930249*14662949395604^(1/3) 4807526975998611 a001 3278735159921/930249*192900153618^(5/18) 4807526975998611 a001 832040*192900153618^(1/3) 4807526975998611 a001 139583862445/1860498*(1/2+1/2*5^(1/2))^23 4807526975998611 a001 182717648081/930249*192900153618^(7/18) 4807526975998611 a001 4052739537881/1860498*73681302247^(4/13) 4807526975998611 a001 43133785636/930249*73681302247^(6/13) 4807526975998611 a001 53316291173/1860498*312119004989^(5/11) 4807526975998611 a001 591286729879/1860498*73681302247^(5/13) 4807526975998611 a001 53316291173/1860498*(1/2+1/2*5^(1/2))^25 4807526975998611 a001 53316291173/1860498*3461452808002^(5/12) 4807526975998611 a001 10182505537/930249*45537549124^(9/17) 4807526975998611 a001 3278735159921/930249*28143753123^(3/10) 4807526975998611 a001 10182505537/930249*817138163596^(9/19) 4807526975998611 a001 10182505537/930249*14662949395604^(3/7) 4807526975998611 a001 10182505537/930249*(1/2+1/2*5^(1/2))^27 4807526975998611 a001 10182505537/930249*192900153618^(1/2) 4807526975998611 a001 591286729879/1860498*28143753123^(2/5) 4807526975998611 a001 53316291173/1860498*28143753123^(1/2) 4807526975998611 a001 3536736619241/620166*10749957122^(7/24) 4807526975998611 a001 3278735159921/930249*10749957122^(5/16) 4807526975998611 a001 4052739537881/1860498*10749957122^(1/3) 4807526975998611 a001 832040*10749957122^(3/8) 4807526975998611 a001 7778742049/1860498*(1/2+1/2*5^(1/2))^29 4807526975998611 a001 7778742049/1860498*1322157322203^(1/2) 4807526975998611 a001 591286729879/1860498*10749957122^(5/12) 4807526975998611 a001 12586269025/1860498*10749957122^(7/12) 4807526975998611 a001 182717648081/930249*10749957122^(7/16) 4807526975998611 a001 75283811239/620166*10749957122^(11/24) 4807526975998611 a001 43133785636/930249*10749957122^(1/2) 4807526975998611 a001 10983760033/620166*10749957122^(13/24) 4807526975998611 a001 10182505537/930249*10749957122^(9/16) 4807526975998611 a001 3536736619241/620166*4106118243^(7/23) 4807526975998611 a001 4052739537881/1860498*4106118243^(8/23) 4807526975998611 a001 2971215073/1860498*(1/2+1/2*5^(1/2))^31 4807526975998611 a001 2971215073/1860498*9062201101803^(1/2) 4807526975998611 a001 832040*4106118243^(9/23) 4807526975998611 a001 591286729879/1860498*4106118243^(10/23) 4807526975998611 a001 75283811239/620166*4106118243^(11/23) 4807526975998611 a001 139583862445/1860498*4106118243^(1/2) 4807526975998611 a001 267084832/103361*4106118243^(15/23) 4807526975998611 a001 43133785636/930249*4106118243^(12/23) 4807526975998611 a001 10983760033/620166*4106118243^(13/23) 4807526975998611 a001 12586269025/1860498*4106118243^(14/23) 4807526975998611 a001 567451585/930249*2537720636^(11/15) 4807526975998611 a001 8828119010019844920/1836311903 4807526975998611 a001 3536736619241/620166*1568397607^(7/22) 4807526975998611 a001 4052739537881/1860498*1568397607^(4/11) 4807526975998611 a001 567451585/930249*45537549124^(11/17) 4807526975998611 a001 567451585/930249*312119004989^(3/5) 4807526975998611 a001 567451585/930249*14662949395604^(11/21) 4807526975998611 a001 567451585/930249*(1/2+1/2*5^(1/2))^33 4807526975998611 a001 567451585/930249*192900153618^(11/18) 4807526975998611 a001 567451585/930249*10749957122^(11/16) 4807526975998611 a001 832040*1568397607^(9/22) 4807526975998611 a001 591286729879/1860498*1568397607^(5/11) 4807526975998611 a001 75283811239/620166*1568397607^(1/2) 4807526975998611 a001 43133785636/930249*1568397607^(6/11) 4807526975998611 a001 1836311903/1860498*1568397607^(8/11) 4807526975998611 a001 10983760033/620166*1568397607^(13/22) 4807526975998611 a001 12586269025/1860498*1568397607^(7/11) 4807526975998611 a001 267084832/103361*1568397607^(15/22) 4807526975998611 a001 3372041405098507240/701408733 4807526975998611 a001 567451585/930249*1568397607^(3/4) 4807526975998611 a001 3536736619241/620166*599074578^(1/3) 4807526975998611 a001 433494437/1860498*2537720636^(7/9) 4807526975998611 a001 3278735159921/930249*599074578^(5/14) 4807526975998611 a001 4052739537881/1860498*599074578^(8/21) 4807526975998611 a001 433494437/1860498*17393796001^(5/7) 4807526975998611 a001 433494437/1860498*312119004989^(7/11) 4807526975998611 a001 433494437/1860498*14662949395604^(5/9) 4807526975998611 a001 433494437/1860498*(1/2+1/2*5^(1/2))^35 4807526975998611 a001 433494437/1860498*505019158607^(5/8) 4807526975998611 a001 433494437/1860498*28143753123^(7/10) 4807526975998611 a001 832040*599074578^(3/7) 4807526975998611 a001 591286729879/1860498*599074578^(10/21) 4807526975998611 a001 182717648081/930249*599074578^(1/2) 4807526975998611 a001 75283811239/620166*599074578^(11/21) 4807526975998611 a001 43133785636/930249*599074578^(4/7) 4807526975998611 a001 10983760033/620166*599074578^(13/21) 4807526975998611 a001 10182505537/930249*599074578^(9/14) 4807526975998611 a001 233802911/620166*599074578^(17/21) 4807526975998611 a001 12586269025/1860498*599074578^(2/3) 4807526975998611 a001 267084832/103361*599074578^(5/7) 4807526975998611 a001 1836311903/1860498*599074578^(16/21) 4807526975998611 a001 567451585/930249*599074578^(11/14) 4807526975998611 a001 161000650659459600/33489287 4807526975998611 a001 433494437/1860498*599074578^(5/6) 4807526975998611 a001 3536736619241/620166*228826127^(7/20) 4807526975998611 a001 3278735159921/930249*228826127^(3/8) 4807526975998611 a001 165580141/1860498*(1/2+1/2*5^(1/2))^37 4807526975998611 a001 4052739537881/1860498*228826127^(2/5) 4807526975998611 a001 832040*228826127^(9/20) 4807526975998611 a001 591286729879/1860498*228826127^(1/2) 4807526975998611 a001 75283811239/620166*228826127^(11/20) 4807526975998611 a001 43133785636/930249*228826127^(3/5) 4807526975998611 a001 53316291173/1860498*228826127^(5/8) 4807526975998611 a001 10983760033/620166*228826127^(13/20) 4807526975998611 a001 12586269025/1860498*228826127^(7/10) 4807526975998611 a001 267084832/103361*228826127^(3/4) 4807526975998611 a001 133957148/930249*228826127^(9/10) 4807526975998611 a001 1836311903/1860498*228826127^(4/5) 4807526975998611 a001 233802911/620166*228826127^(17/20) 4807526975998611 a001 433494437/1860498*228826127^(7/8) 4807526975998611 a001 8944985649609512/1860621 4807526975998611 a001 3536736619241/620166*87403803^(7/19) 4807526975998611 a001 31622993/930249*2537720636^(13/15) 4807526975998611 a001 31622993/930249*45537549124^(13/17) 4807526975998611 a001 208010/35355581*14662949395604^(19/21) 4807526975998611 a001 31622993/930249*14662949395604^(13/21) 4807526975998611 a001 31622993/930249*(1/2+1/2*5^(1/2))^39 4807526975998611 a001 31622993/930249*192900153618^(13/18) 4807526975998611 a001 31622993/930249*73681302247^(3/4) 4807526975998611 a001 31622993/930249*10749957122^(13/16) 4807526975998611 a001 31622993/930249*599074578^(13/14) 4807526975998611 a001 4052739537881/1860498*87403803^(8/19) 4807526975998611 a001 832040*87403803^(9/19) 4807526975998611 a001 956722026041/1860498*87403803^(1/2) 4807526975998611 a001 591286729879/1860498*87403803^(10/19) 4807526975998611 a001 75283811239/620166*87403803^(11/19) 4807526975998611 a001 43133785636/930249*87403803^(12/19) 4807526975998611 a001 10983760033/620166*87403803^(13/19) 4807526975998611 a001 12586269025/1860498*87403803^(14/19) 4807526975998611 a001 267084832/103361*87403803^(15/19) 4807526975998611 a001 1836311903/1860498*87403803^(16/19) 4807526975998611 a001 233802911/620166*87403803^(17/19) 4807526975998611 a001 133957148/930249*87403803^(18/19) 4807526975998611 a001 187917426909892680/39088169 4807526975998612 a001 832040/54018521*3461452808002^(11/12) 4807526975998612 a001 24157817/1860498*(1/2+1/2*5^(1/2))^41 4807526975998612 a001 3536736619241/620166*33385282^(7/18) 4807526975998612 a001 3278735159921/930249*33385282^(5/12) 4807526975998613 a001 4052739537881/1860498*33385282^(4/9) 4807526975998613 a001 832040*33385282^(1/2) 4807526975998613 a001 591286729879/1860498*33385282^(5/9) 4807526975998613 a001 182717648081/930249*33385282^(7/12) 4807526975998613 a001 75283811239/620166*33385282^(11/18) 4807526975998614 a001 43133785636/930249*33385282^(2/3) 4807526975998614 a001 10983760033/620166*33385282^(13/18) 4807526975998614 a001 10182505537/930249*33385282^(3/4) 4807526975998614 a001 12586269025/1860498*33385282^(7/9) 4807526975998614 a001 267084832/103361*33385282^(5/6) 4807526975998614 a001 1836311903/1860498*33385282^(8/9) 4807526975998615 a001 567451585/930249*33385282^(11/12) 4807526975998615 a001 233802911/620166*33385282^(17/18) 4807526975998615 a001 13888945433660/2889 4807526975998622 a001 75640/1875749*(1/2+1/2*5^(1/2))^53 4807526975998622 a001 9227465/1860498*(1/2+1/2*5^(1/2))^43 4807526975998623 a001 3536736619241/620166*12752043^(7/17) 4807526975998625 a001 4052739537881/1860498*12752043^(8/17) 4807526975998625 a001 2504730781961/1860498*12752043^(1/2) 4807526975998626 a001 832040*12752043^(9/17) 4807526975998628 a001 591286729879/1860498*12752043^(10/17) 4807526975998630 a001 75283811239/620166*12752043^(11/17) 4807526975998631 a001 43133785636/930249*12752043^(12/17) 4807526975998633 a001 10983760033/620166*12752043^(13/17) 4807526975998635 a001 12586269025/1860498*12752043^(14/17) 4807526975998637 a001 267084832/103361*12752043^(15/17) 4807526975998638 a001 1836311903/1860498*12752043^(16/17) 4807526975998640 a001 32951280099/710647*710647^(6/7) 4807526975998640 a001 27416783093571960/5702887 4807526975998688 a001 1762289/930249*45537549124^(15/17) 4807526975998688 a001 1762289/930249*312119004989^(9/11) 4807526975998688 a001 208010/1970299*817138163596^(17/19) 4807526975998688 a001 208010/1970299*14662949395604^(17/21) 4807526975998688 a001 208010/1970299*(1/2+1/2*5^(1/2))^51 4807526975998688 a001 1762289/930249*14662949395604^(5/7) 4807526975998688 a001 1762289/930249*(1/2+1/2*5^(1/2))^45 4807526975998688 a001 1762289/930249*192900153618^(5/6) 4807526975998688 a001 208010/1970299*192900153618^(17/18) 4807526975998688 a001 1762289/930249*28143753123^(9/10) 4807526975998688 a001 1762289/930249*10749957122^(15/16) 4807526975998699 a001 3536736619241/620166*4870847^(7/16) 4807526975998712 a001 4052739537881/1860498*4870847^(1/2) 4807526975998725 a001 832040*4870847^(9/16) 4807526975998737 a001 591286729879/1860498*4870847^(5/8) 4807526975998750 a001 75283811239/620166*4870847^(11/16) 4807526975998763 a001 43133785636/930249*4870847^(3/4) 4807526975998775 a001 10983760033/620166*4870847^(13/16) 4807526975998788 a001 12586269025/1860498*4870847^(7/8) 4807526975998801 a001 267084832/103361*4870847^(15/16) 4807526975998813 a001 10472279279561000/2178309 4807526975999141 a001 832040/3010349*14662949395604^(7/9) 4807526975999141 a001 832040/3010349*(1/2+1/2*5^(1/2))^49 4807526975999141 a001 1346269/1860498*(1/2+1/2*5^(1/2))^47 4807526975999141 a001 832040/3010349*505019158607^(7/8) 4807526975999259 a001 3536736619241/620166*1860498^(7/15) 4807526975999266 a001 6472224534451557/1346269 4807526975999305 a001 3278735159921/930249*1860498^(1/2) 4807526975999320 a001 12586269025/710647*710647^(13/14) 4807526975999351 a001 4052739537881/1860498*1860498^(8/15) 4807526975999439 a001 6472224534451790/1346269 4807526975999444 a001 832040*1860498^(3/5) 4807526975999465 a001 6472224534451824/1346269 4807526975999468 a001 6472224534451829/1346269 4807526975999469 a001 6472224534451830/1346269 4807526975999471 a001 6472224534451832/1346269 4807526975999480 a001 6472224534451845/1346269 4807526975999537 a001 591286729879/1860498*1860498^(2/3) 4807526975999546 a001 6472224534451934/1346269 4807526975999583 a001 182717648081/930249*1860498^(7/10) 4807526975999594 a001 2178309/4870847*45537549124^(16/17) 4807526975999594 a001 2178309/4870847*14662949395604^(16/21) 4807526975999594 a001 2178309/4870847*(1/2+1/2*5^(1/2))^48 4807526975999594 a001 2178309/4870847*192900153618^(8/9) 4807526975999594 a001 2178309/4870847*73681302247^(12/13) 4807526975999629 a001 75283811239/620166*1860498^(11/15) 4807526975999719 a001 16944503814015141/3524578 4807526975999722 a001 43133785636/930249*1860498^(4/5) 4807526975999727 a001 12586269025/4870847*7881196^(10/11) 4807526975999734 a001 53316291173/4870847*7881196^(9/11) 4807526975999741 a001 225851433717/4870847*7881196^(8/11) 4807526975999745 a001 591286729879/4870847*7881196^(2/3) 4807526975999748 a001 956722026041/4870847*7881196^(7/11) 4807526975999755 a001 4052739537881/4870847*7881196^(6/11) 4807526975999767 a001 726103/4250681*312119004989^(10/11) 4807526975999767 a001 726103/4250681*(1/2+1/2*5^(1/2))^50 4807526975999767 a001 5702887/4870847*(1/2+1/2*5^(1/2))^46 4807526975999767 a001 726103/4250681*3461452808002^(5/6) 4807526975999767 a001 5702887/4870847*10749957122^(23/24) 4807526975999768 a001 53316291173/1860498*1860498^(5/6) 4807526975999786 a001 44361286907593866/9227465 4807526975999787 a001 12586269025/4870847*20633239^(6/7) 4807526975999788 a001 32951280099/4870847*20633239^(4/5) 4807526975999789 a001 139583862445/4870847*20633239^(5/7) 4807526975999790 a001 956722026041/4870847*20633239^(3/5) 4807526975999790 a001 1548008755920/4870847*20633239^(4/7) 4807526975999793 a001 14930352/4870847*312119004989^(4/5) 4807526975999793 a001 311187/4769326*(1/2+1/2*5^(1/2))^52 4807526975999793 a001 311187/4769326*23725150497407^(13/16) 4807526975999793 a001 14930352/4870847*(1/2+1/2*5^(1/2))^44 4807526975999793 a001 14930352/4870847*23725150497407^(11/16) 4807526975999793 a001 14930352/4870847*73681302247^(11/13) 4807526975999793 a001 14930352/4870847*10749957122^(11/12) 4807526975999793 a001 14930352/4870847*4106118243^(22/23) 4807526975999795 a001 116139356908766457/24157817 4807526975999796 a001 39088169/4870847*2537720636^(14/15) 4807526975999796 a001 39088169/4870847*17393796001^(6/7) 4807526975999796 a001 39088169/4870847*45537549124^(14/17) 4807526975999796 a001 39088169/4870847*817138163596^(14/19) 4807526975999796 a001 39088169/4870847*14662949395604^(2/3) 4807526975999796 a001 39088169/4870847*(1/2+1/2*5^(1/2))^42 4807526975999796 a001 39088169/4870847*505019158607^(3/4) 4807526975999796 a001 39088169/4870847*192900153618^(7/9) 4807526975999796 a001 39088169/4870847*10749957122^(7/8) 4807526975999796 a001 39088169/4870847*4106118243^(21/23) 4807526975999796 a001 39088169/4870847*1568397607^(21/22) 4807526975999797 a001 304056783818705505/63245986 4807526975999797 a001 701408733/4870847*141422324^(12/13) 4807526975999797 a001 2971215073/4870847*141422324^(11/13) 4807526975999797 a001 12586269025/4870847*141422324^(10/13) 4807526975999797 a001 53316291173/4870847*141422324^(9/13) 4807526975999797 a001 86267571272/4870847*141422324^(2/3) 4807526975999797 a001 225851433717/4870847*141422324^(8/13) 4807526975999797 a001 956722026041/4870847*141422324^(7/13) 4807526975999797 a001 4052739537881/4870847*141422324^(6/13) 4807526975999797 a001 102334155/4870847*2537720636^(8/9) 4807526975999797 a001 102334155/4870847*312119004989^(8/11) 4807526975999797 a001 102334155/4870847*(1/2+1/2*5^(1/2))^40 4807526975999797 a001 102334155/4870847*23725150497407^(5/8) 4807526975999797 a001 102334155/4870847*73681302247^(10/13) 4807526975999797 a001 102334155/4870847*28143753123^(4/5) 4807526975999797 a001 102334155/4870847*10749957122^(5/6) 4807526975999797 a001 102334155/4870847*4106118243^(20/23) 4807526975999797 a001 102334155/4870847*1568397607^(10/11) 4807526975999797 a001 102334155/4870847*599074578^(20/21) 4807526975999797 a001 796030994547350058/165580141 4807526975999797 a001 267914296/4870847*817138163596^(2/3) 4807526975999797 a001 267914296/4870847*(1/2+1/2*5^(1/2))^38 4807526975999797 a001 267914296/4870847*10749957122^(19/24) 4807526975999797 a001 267914296/4870847*4106118243^(19/23) 4807526975999797 a001 267914296/4870847*1568397607^(19/22) 4807526975999797 a001 2084036199823344669/433494437 4807526975999797 a001 701408733/4870847*2537720636^(4/5) 4807526975999797 a001 701408733/4870847*45537549124^(12/17) 4807526975999797 a001 311187/224056801*14662949395604^(20/21) 4807526975999797 a001 701408733/4870847*14662949395604^(4/7) 4807526975999797 a001 701408733/4870847*(1/2+1/2*5^(1/2))^36 4807526975999797 a001 701408733/4870847*192900153618^(2/3) 4807526975999797 a001 701408733/4870847*73681302247^(9/13) 4807526975999797 a001 701408733/4870847*10749957122^(3/4) 4807526975999797 a001 701408733/4870847*4106118243^(18/23) 4807526975999797 a001 267914296/4870847*599074578^(19/21) 4807526975999797 a001 5456077604922683949/1134903170 4807526975999797 a001 12586269025/4870847*2537720636^(2/3) 4807526975999797 a001 53316291173/4870847*2537720636^(3/5) 4807526975999797 a001 2971215073/4870847*2537720636^(11/15) 4807526975999797 a001 139583862445/4870847*2537720636^(5/9) 4807526975999797 a001 225851433717/4870847*2537720636^(8/15) 4807526975999797 a001 701408733/4870847*1568397607^(9/11) 4807526975999797 a001 956722026041/4870847*2537720636^(7/15) 4807526975999797 a001 1548008755920/4870847*2537720636^(4/9) 4807526975999797 a001 4052739537881/4870847*2537720636^(2/5) 4807526975999797 a001 1836311903/4870847*45537549124^(2/3) 4807526975999797 a001 1836311903/4870847*(1/2+1/2*5^(1/2))^34 4807526975999797 a001 1836311903/4870847*10749957122^(17/24) 4807526975999797 a001 14284196614944707178/2971215073 4807526975999797 a001 1836311903/4870847*4106118243^(17/23) 4807526975999797 a001 4807526976/4870847*(1/2+1/2*5^(1/2))^32 4807526975999797 a001 4807526976/4870847*23725150497407^(1/2) 4807526975999797 a001 4807526976/4870847*505019158607^(4/7) 4807526975999797 a001 4807526976/4870847*73681302247^(8/13) 4807526975999797 a001 4807526976/4870847*10749957122^(2/3) 4807526975999797 a001 32951280099/4870847*17393796001^(4/7) 4807526975999797 a001 12586269025/4870847*45537549124^(10/17) 4807526975999797 a001 956722026041/4870847*17393796001^(3/7) 4807526975999797 a001 12586269025/4870847*312119004989^(6/11) 4807526975999797 a001 12586269025/4870847*14662949395604^(10/21) 4807526975999797 a001 12586269025/4870847*(1/2+1/2*5^(1/2))^30 4807526975999797 a001 12586269025/4870847*192900153618^(5/9) 4807526975999797 a001 12586269025/4870847*28143753123^(3/5) 4807526975999797 a001 225851433717/4870847*45537549124^(8/17) 4807526975999797 a001 956722026041/4870847*45537549124^(7/17) 4807526975999797 a001 32951280099/4870847*14662949395604^(4/9) 4807526975999797 a001 32951280099/4870847*(1/2+1/2*5^(1/2))^28 4807526975999797 a001 32951280099/4870847*505019158607^(1/2) 4807526975999797 a001 4052739537881/4870847*45537549124^(6/17) 4807526975999797 a001 6557470319842/4870847*45537549124^(1/3) 4807526975999797 a001 32951280099/4870847*73681302247^(7/13) 4807526975999797 a001 86267571272/4870847*(1/2+1/2*5^(1/2))^26 4807526975999797 a001 591286729879/4870847*312119004989^(2/5) 4807526975999797 a001 225851433717/4870847*14662949395604^(8/21) 4807526975999797 a001 225851433717/4870847*(1/2+1/2*5^(1/2))^24 4807526975999797 a001 1548008755920/4870847*(1/2+1/2*5^(1/2))^20 4807526975999797 a001 1548008755920/4870847*23725150497407^(5/16) 4807526975999797 a001 4052739537881/4870847*(1/2+1/2*5^(1/2))^18 4807526975999797 a001 2178309*(1/2+1/2*5^(1/2))^16 4807526975999797 a001 2178309*23725150497407^(1/4) 4807526975999797 a001 6557470319842/4870847*(1/2+1/2*5^(1/2))^17 4807526975999797 a001 956722026041/4870847*(1/2+1/2*5^(1/2))^21 4807526975999797 a001 1548008755920/4870847*505019158607^(5/14) 4807526975999797 a001 365435296162/4870847*(1/2+1/2*5^(1/2))^23 4807526975999797 a001 139583862445/4870847*312119004989^(5/11) 4807526975999797 a001 225851433717/4870847*192900153618^(4/9) 4807526975999797 a001 4052739537881/4870847*192900153618^(1/3) 4807526975999797 a001 139583862445/4870847*(1/2+1/2*5^(1/2))^25 4807526975999797 a001 139583862445/4870847*3461452808002^(5/12) 4807526975999797 a001 956722026041/4870847*192900153618^(7/18) 4807526975999797 a001 2178309*73681302247^(4/13) 4807526975999797 a001 86267571272/4870847*73681302247^(1/2) 4807526975999797 a001 53316291173/4870847*817138163596^(9/19) 4807526975999797 a001 53316291173/4870847*14662949395604^(3/7) 4807526975999797 a001 53316291173/4870847*(1/2+1/2*5^(1/2))^27 4807526975999797 a001 1548008755920/4870847*73681302247^(5/13) 4807526975999797 a001 225851433717/4870847*73681302247^(6/13) 4807526975999797 a001 53316291173/4870847*192900153618^(1/2) 4807526975999797 a001 20365011074/4870847*(1/2+1/2*5^(1/2))^29 4807526975999797 a001 20365011074/4870847*1322157322203^(1/2) 4807526975999797 a001 1548008755920/4870847*28143753123^(2/5) 4807526975999797 a001 139583862445/4870847*28143753123^(1/2) 4807526975999797 a001 2178309*10749957122^(1/3) 4807526975999797 a001 4052739537881/4870847*10749957122^(3/8) 4807526975999797 a001 7778742049/4870847*(1/2+1/2*5^(1/2))^31 4807526975999797 a001 7778742049/4870847*9062201101803^(1/2) 4807526975999797 a001 1548008755920/4870847*10749957122^(5/12) 4807526975999797 a001 956722026041/4870847*10749957122^(7/16) 4807526975999797 a001 591286729879/4870847*10749957122^(11/24) 4807526975999797 a001 12586269025/4870847*10749957122^(5/8) 4807526975999797 a001 225851433717/4870847*10749957122^(1/2) 4807526975999797 a001 86267571272/4870847*10749957122^(13/24) 4807526975999797 a001 32951280099/4870847*10749957122^(7/12) 4807526975999797 a001 53316291173/4870847*10749957122^(9/16) 4807526975999797 a001 7805577718664887/1623616 4807526975999797 a001 2178309*4106118243^(8/23) 4807526975999797 a001 2971215073/4870847*45537549124^(11/17) 4807526975999797 a001 2971215073/4870847*312119004989^(3/5) 4807526975999797 a001 2971215073/4870847*14662949395604^(11/21) 4807526975999797 a001 2971215073/4870847*(1/2+1/2*5^(1/2))^33 4807526975999797 a001 2971215073/4870847*192900153618^(11/18) 4807526975999797 a001 4052739537881/4870847*4106118243^(9/23) 4807526975999797 a001 1548008755920/4870847*4106118243^(10/23) 4807526975999797 a001 591286729879/4870847*4106118243^(11/23) 4807526975999797 a001 2971215073/4870847*10749957122^(11/16) 4807526975999797 a001 365435296162/4870847*4106118243^(1/2) 4807526975999797 a001 225851433717/4870847*4106118243^(12/23) 4807526975999797 a001 4807526976/4870847*4106118243^(16/23) 4807526975999797 a001 86267571272/4870847*4106118243^(13/23) 4807526975999797 a001 1134903170/4870847*2537720636^(7/9) 4807526975999797 a001 32951280099/4870847*4106118243^(14/23) 4807526975999797 a001 12586269025/4870847*4106118243^(15/23) 4807526975999797 a001 8828119010022023229/1836311903 4807526975999797 a001 2178309*1568397607^(4/11) 4807526975999797 a001 1134903170/4870847*17393796001^(5/7) 4807526975999797 a001 1134903170/4870847*312119004989^(7/11) 4807526975999797 a001 1134903170/4870847*14662949395604^(5/9) 4807526975999797 a001 1134903170/4870847*(1/2+1/2*5^(1/2))^35 4807526975999797 a001 1134903170/4870847*505019158607^(5/8) 4807526975999797 a001 1134903170/4870847*28143753123^(7/10) 4807526975999797 a001 4052739537881/4870847*1568397607^(9/22) 4807526975999797 a001 1548008755920/4870847*1568397607^(5/11) 4807526975999797 a001 591286729879/4870847*1568397607^(1/2) 4807526975999797 a001 225851433717/4870847*1568397607^(6/11) 4807526975999797 a001 86267571272/4870847*1568397607^(13/22) 4807526975999797 a001 1836311903/4870847*1568397607^(17/22) 4807526975999797 a001 32951280099/4870847*1568397607^(7/11) 4807526975999797 a001 12586269025/4870847*1568397607^(15/22) 4807526975999797 a001 4807526976/4870847*1568397607^(8/11) 4807526975999797 a001 2971215073/4870847*1568397607^(3/4) 4807526975999797 a001 1124013801699779760/233802911 4807526975999797 a001 2178309*599074578^(8/21) 4807526975999797 a001 433494437/4870847*(1/2+1/2*5^(1/2))^37 4807526975999797 a001 4052739537881/4870847*599074578^(3/7) 4807526975999797 a001 1548008755920/4870847*599074578^(10/21) 4807526975999797 a001 956722026041/4870847*599074578^(1/2) 4807526975999797 a001 591286729879/4870847*599074578^(11/21) 4807526975999797 a001 225851433717/4870847*599074578^(4/7) 4807526975999797 a001 86267571272/4870847*599074578^(13/21) 4807526975999797 a001 53316291173/4870847*599074578^(9/14) 4807526975999797 a001 32951280099/4870847*599074578^(2/3) 4807526975999797 a001 701408733/4870847*599074578^(6/7) 4807526975999797 a001 12586269025/4870847*599074578^(5/7) 4807526975999797 a001 4807526976/4870847*599074578^(16/21) 4807526975999797 a001 1836311903/4870847*599074578^(17/21) 4807526975999797 a001 2971215073/4870847*599074578^(11/14) 4807526975999797 a001 1134903170/4870847*599074578^(5/6) 4807526975999797 a001 1288005205275994611/267914296 4807526975999797 a001 165580141/4870847*2537720636^(13/15) 4807526975999797 a001 165580141/4870847*45537549124^(13/17) 4807526975999797 a001 2178309/370248451*14662949395604^(19/21) 4807526975999797 a001 165580141/4870847*14662949395604^(13/21) 4807526975999797 a001 165580141/4870847*(1/2+1/2*5^(1/2))^39 4807526975999797 a001 165580141/4870847*192900153618^(13/18) 4807526975999797 a001 165580141/4870847*73681302247^(3/4) 4807526975999797 a001 165580141/4870847*10749957122^(13/16) 4807526975999797 a001 2178309*228826127^(2/5) 4807526975999797 a001 4052739537881/4870847*228826127^(9/20) 4807526975999797 a001 1548008755920/4870847*228826127^(1/2) 4807526975999797 a001 165580141/4870847*599074578^(13/14) 4807526975999797 a001 591286729879/4870847*228826127^(11/20) 4807526975999797 a001 225851433717/4870847*228826127^(3/5) 4807526975999797 a001 139583862445/4870847*228826127^(5/8) 4807526975999797 a001 86267571272/4870847*228826127^(13/20) 4807526975999797 a001 32951280099/4870847*228826127^(7/10) 4807526975999797 a001 12586269025/4870847*228826127^(3/4) 4807526975999797 a001 4807526976/4870847*228826127^(4/5) 4807526975999797 a001 267914296/4870847*228826127^(19/20) 4807526975999797 a001 1836311903/4870847*228826127^(17/20) 4807526975999797 a001 701408733/4870847*228826127^(9/10) 4807526975999797 a001 1134903170/4870847*228826127^(7/8) 4807526975999797 a001 23427343368030693/4873055 4807526975999797 a001 63245986/4870847*(1/2+1/2*5^(1/2))^41 4807526975999797 a001 2178309/141422324*3461452808002^(11/12) 4807526975999797 a001 2178309*87403803^(8/19) 4807526975999797 a001 4052739537881/4870847*87403803^(9/19) 4807526975999797 a001 2504730781961/4870847*87403803^(1/2) 4807526975999797 a001 1548008755920/4870847*87403803^(10/19) 4807526975999797 a001 591286729879/4870847*87403803^(11/19) 4807526975999797 a001 225851433717/4870847*87403803^(12/19) 4807526975999797 a001 86267571272/4870847*87403803^(13/19) 4807526975999797 a001 32951280099/4870847*87403803^(14/19) 4807526975999797 a001 12586269025/4870847*87403803^(15/19) 4807526975999797 a001 4807526976/4870847*87403803^(16/19) 4807526975999797 a001 1836311903/4870847*87403803^(17/19) 4807526975999797 a001 701408733/4870847*87403803^(18/19) 4807526975999797 a001 187917426909939048/39088169 4807526975999799 a001 24157817/4870847*(1/2+1/2*5^(1/2))^43 4807526975999799 a001 2178309*33385282^(4/9) 4807526975999799 a001 4052739537881/4870847*33385282^(1/2) 4807526975999799 a001 1548008755920/4870847*33385282^(5/9) 4807526975999799 a001 956722026041/4870847*33385282^(7/12) 4807526975999800 a001 591286729879/4870847*33385282^(11/18) 4807526975999800 a001 225851433717/4870847*33385282^(2/3) 4807526975999800 a001 86267571272/4870847*33385282^(13/18) 4807526975999800 a001 53316291173/4870847*33385282^(3/4) 4807526975999800 a001 32951280099/4870847*33385282^(7/9) 4807526975999800 a001 12586269025/4870847*33385282^(5/6) 4807526975999801 a001 4807526976/4870847*33385282^(8/9) 4807526975999801 a001 2971215073/4870847*33385282^(11/12) 4807526975999801 a001 1836311903/4870847*33385282^(17/18) 4807526975999801 a001 7975341111241399/1658928 4807526975999808 a001 9227465/4870847*45537549124^(15/17) 4807526975999808 a001 9227465/4870847*312119004989^(9/11) 4807526975999808 a001 2178309/20633239*817138163596^(17/19) 4807526975999808 a001 2178309/20633239*14662949395604^(17/21) 4807526975999808 a001 2178309/20633239*(1/2+1/2*5^(1/2))^51 4807526975999808 a001 9227465/4870847*(1/2+1/2*5^(1/2))^45 4807526975999808 a001 9227465/4870847*192900153618^(5/6) 4807526975999808 a001 2178309/20633239*192900153618^(17/18) 4807526975999808 a001 9227465/4870847*28143753123^(9/10) 4807526975999808 a001 9227465/4870847*10749957122^(15/16) 4807526975999811 a001 2178309*12752043^(8/17) 4807526975999812 a001 6557470319842/4870847*12752043^(1/2) 4807526975999813 a001 4052739537881/4870847*12752043^(9/17) 4807526975999814 a001 1548008755920/4870847*12752043^(10/17) 4807526975999814 a001 10983760033/620166*1860498^(13/15) 4807526975999816 a001 591286729879/4870847*12752043^(11/17) 4807526975999818 a001 225851433717/4870847*12752043^(12/17) 4807526975999819 a001 86267571272/4870847*12752043^(13/17) 4807526975999821 a001 32951280099/4870847*12752043^(14/17) 4807526975999823 a001 12586269025/4870847*12752043^(15/17) 4807526975999825 a001 4807526976/4870847*12752043^(16/17) 4807526975999826 a001 27416783093578725/5702887 4807526975999861 a001 10182505537/930249*1860498^(9/10) 4807526975999874 a001 2178309/7881196*14662949395604^(7/9) 4807526975999874 a001 2178309/7881196*(1/2+1/2*5^(1/2))^49 4807526975999874 a001 3524578/4870847*(1/2+1/2*5^(1/2))^47 4807526975999874 a001 2178309/7881196*505019158607^(7/8) 4807526975999893 a001 16944503814015751/3524578 4807526975999898 a001 2178309*4870847^(1/2) 4807526975999900 a001 10983760033/4250681*7881196^(10/11) 4807526975999907 a001 139583862445/12752043*7881196^(9/11) 4807526975999907 a001 12586269025/1860498*1860498^(14/15) 4807526975999911 a001 4052739537881/4870847*4870847^(9/16) 4807526975999914 a001 591286729879/12752043*7881196^(8/11) 4807526975999918 a001 8472251907007920/1762289 4807526975999918 a001 516002918640/4250681*7881196^(2/3) 4807526975999921 a001 2504730781961/12752043*7881196^(7/11) 4807526975999921 a001 16944503814015853/3524578 4807526975999922 a001 16944503814015855/3524578 4807526975999922 a001 8472251907007928/1762289 4807526975999924 a001 1548008755920/4870847*4870847^(5/8) 4807526975999924 a001 190387683303549/39602 4807526975999925 a001 43133785636/16692641*7881196^(10/11) 4807526975999928 a001 3536736619241/4250681*7881196^(6/11) 4807526975999929 a001 75283811239/29134601*7881196^(10/11) 4807526975999929 a001 591286729879/228826127*7881196^(10/11) 4807526975999929 a001 86000486440/33281921*7881196^(10/11) 4807526975999929 a001 4052739537881/1568397607*7881196^(10/11) 4807526975999929 a001 3536736619241/1368706081*7881196^(10/11) 4807526975999929 a001 3278735159921/1268860318*7881196^(10/11) 4807526975999929 a001 2504730781961/969323029*7881196^(10/11) 4807526975999929 a001 956722026041/370248451*7881196^(10/11) 4807526975999929 a001 182717648081/70711162*7881196^(10/11) 4807526975999931 a001 139583862445/54018521*7881196^(10/11) 4807526975999932 a001 182717648081/16692641*7881196^(9/11) 4807526975999933 a001 16944503814015895/3524578 4807526975999936 a001 956722026041/87403803*7881196^(9/11) 4807526975999936 a001 2504730781961/228826127*7881196^(9/11) 4807526975999936 a001 3278735159921/299537289*7881196^(9/11) 4807526975999936 a001 591286729879/4870847*4870847^(11/16) 4807526975999936 a001 10610209857723/969323029*7881196^(9/11) 4807526975999936 a001 4052739537881/370248451*7881196^(9/11) 4807526975999936 a001 387002188980/35355581*7881196^(9/11) 4807526975999938 a001 591286729879/54018521*7881196^(9/11) 4807526975999939 a001 774004377960/16692641*7881196^(8/11) 4807526975999940 a001 5702887/12752043*45537549124^(16/17) 4807526975999940 a001 5702887/12752043*14662949395604^(16/21) 4807526975999940 a001 5702887/12752043*(1/2+1/2*5^(1/2))^48 4807526975999940 a001 5702887/12752043*192900153618^(8/9) 4807526975999940 a001 5702887/12752043*73681302247^(12/13) 4807526975999940 a001 53316291173/20633239*7881196^(10/11) 4807526975999943 a001 4052739537881/87403803*7881196^(8/11) 4807526975999943 a001 225749145909/4868641*7881196^(8/11) 4807526975999943 a001 3278735159921/70711162*7881196^(8/11) 4807526975999944 a001 4052739537881/33385282*7881196^(2/3) 4807526975999945 a001 2504730781961/54018521*7881196^(8/11) 4807526975999946 a001 3278735159921/16692641*7881196^(7/11) 4807526975999947 a001 3536736619241/29134601*7881196^(2/3) 4807526975999947 a001 7787980473/711491*7881196^(9/11) 4807526975999949 a001 225851433717/4870847*4870847^(3/4) 4807526975999950 a001 6557470319842/54018521*7881196^(2/3) 4807526975999952 a001 10610209857723/54018521*7881196^(7/11) 4807526975999955 a001 956722026041/20633239*7881196^(8/11) 4807526975999959 a001 3412406685199651/709805 4807526975999959 a001 2504730781961/20633239*7881196^(2/3) 4807526975999960 a001 10983760033/4250681*20633239^(6/7) 4807526975999961 a001 86267571272/12752043*20633239^(4/5) 4807526975999962 a001 86267571272/4870847*4870847^(13/16) 4807526975999962 a001 4052739537881/20633239*7881196^(7/11) 4807526975999962 a001 365435296162/12752043*20633239^(5/7) 4807526975999963 a001 2504730781961/12752043*20633239^(3/5) 4807526975999963 a001 4052739537881/12752043*20633239^(4/7) 4807526975999966 a001 5702887/33385282*312119004989^(10/11) 4807526975999966 a001 5702887/33385282*(1/2+1/2*5^(1/2))^50 4807526975999966 a001 4976784/4250681*(1/2+1/2*5^(1/2))^46 4807526975999966 a001 5702887/33385282*3461452808002^(5/6) 4807526975999966 a001 4976784/4250681*10749957122^(23/24) 4807526975999968 a001 116139356908770638/24157817 4807526975999969 a001 39088169/12752043*312119004989^(4/5) 4807526975999969 a001 39088169/12752043*(1/2+1/2*5^(1/2))^44 4807526975999969 a001 39088169/12752043*23725150497407^(11/16) 4807526975999969 a001 5702887/87403803*505019158607^(13/14) 4807526975999969 a001 39088169/12752043*73681302247^(11/13) 4807526975999969 a001 39088169/12752043*10749957122^(11/12) 4807526975999969 a001 39088169/12752043*4106118243^(22/23) 4807526975999970 a001 304056783818716451/63245986 4807526975999970 a001 1836311903/12752043*141422324^(12/13) 4807526975999970 a001 7778742049/12752043*141422324^(11/13) 4807526975999970 a001 10983760033/4250681*141422324^(10/13) 4807526975999970 a001 139583862445/12752043*141422324^(9/13) 4807526975999970 a001 75283811239/4250681*141422324^(2/3) 4807526975999970 a001 591286729879/12752043*141422324^(8/13) 4807526975999970 a001 2504730781961/12752043*141422324^(7/13) 4807526975999970 a001 3536736619241/4250681*141422324^(6/13) 4807526975999970 a001 34111385/4250681*2537720636^(14/15) 4807526975999970 a001 34111385/4250681*17393796001^(6/7) 4807526975999970 a001 34111385/4250681*45537549124^(14/17) 4807526975999970 a001 34111385/4250681*817138163596^(14/19) 4807526975999970 a001 5702887/228826127*14662949395604^(6/7) 4807526975999970 a001 34111385/4250681*14662949395604^(2/3) 4807526975999970 a001 34111385/4250681*(1/2+1/2*5^(1/2))^42 4807526975999970 a001 34111385/4250681*505019158607^(3/4) 4807526975999970 a001 34111385/4250681*192900153618^(7/9) 4807526975999970 a001 34111385/4250681*10749957122^(7/8) 4807526975999970 a001 34111385/4250681*4106118243^(21/23) 4807526975999970 a001 34111385/4250681*1568397607^(21/22) 4807526975999970 a001 796030994547378715/165580141 4807526975999970 a001 267914296/12752043*2537720636^(8/9) 4807526975999970 a001 267914296/12752043*312119004989^(8/11) 4807526975999970 a001 5702887/599074578*14662949395604^(8/9) 4807526975999970 a001 267914296/12752043*(1/2+1/2*5^(1/2))^40 4807526975999970 a001 267914296/12752043*23725150497407^(5/8) 4807526975999970 a001 267914296/12752043*73681302247^(10/13) 4807526975999970 a001 267914296/12752043*28143753123^(4/5) 4807526975999970 a001 267914296/12752043*10749957122^(5/6) 4807526975999970 a001 267914296/12752043*4106118243^(20/23) 4807526975999970 a001 267914296/12752043*1568397607^(10/11) 4807526975999970 a001 2084036199823419694/433494437 4807526975999970 a001 233802911/4250681*817138163596^(2/3) 4807526975999970 a001 233802911/4250681*(1/2+1/2*5^(1/2))^38 4807526975999970 a001 233802911/4250681*10749957122^(19/24) 4807526975999970 a001 233802911/4250681*4106118243^(19/23) 4807526975999970 a001 1836311903/12752043*2537720636^(4/5) 4807526975999970 a001 5456077604922880367/1134903170 4807526975999970 a001 267914296/12752043*599074578^(20/21) 4807526975999970 a001 7778742049/12752043*2537720636^(11/15) 4807526975999970 a001 10983760033/4250681*2537720636^(2/3) 4807526975999970 a001 2971215073/12752043*2537720636^(7/9) 4807526975999970 a001 139583862445/12752043*2537720636^(3/5) 4807526975999970 a001 365435296162/12752043*2537720636^(5/9) 4807526975999970 a001 591286729879/12752043*2537720636^(8/15) 4807526975999970 a001 2504730781961/12752043*2537720636^(7/15) 4807526975999970 a001 4052739537881/12752043*2537720636^(4/9) 4807526975999970 a001 3536736619241/4250681*2537720636^(2/5) 4807526975999970 a001 1836311903/12752043*45537549124^(12/17) 4807526975999970 a001 1836311903/12752043*14662949395604^(4/7) 4807526975999970 a001 1836311903/12752043*(1/2+1/2*5^(1/2))^36 4807526975999970 a001 1836311903/12752043*505019158607^(9/14) 4807526975999970 a001 1836311903/12752043*192900153618^(2/3) 4807526975999970 a001 1836311903/12752043*73681302247^(9/13) 4807526975999970 a001 233802911/4250681*1568397607^(19/22) 4807526975999970 a001 1836311903/12752043*10749957122^(3/4) 4807526975999970 a001 14284196614945221407/2971215073 4807526975999970 a001 1836311903/12752043*4106118243^(18/23) 4807526975999970 a001 1602508992/4250681*45537549124^(2/3) 4807526975999970 a001 1602508992/4250681*(1/2+1/2*5^(1/2))^34 4807526975999970 a001 2876654787685598758/598364773 4807526975999970 a001 1602508992/4250681*10749957122^(17/24) 4807526975999970 a001 86267571272/12752043*17393796001^(4/7) 4807526975999970 a001 2504730781961/12752043*17393796001^(3/7) 4807526975999970 a001 12586269025/12752043*(1/2+1/2*5^(1/2))^32 4807526975999970 a001 12586269025/12752043*23725150497407^(1/2) 4807526975999970 a001 12586269025/12752043*505019158607^(4/7) 4807526975999970 a001 12586269025/12752043*73681302247^(8/13) 4807526975999970 a001 10983760033/4250681*45537549124^(10/17) 4807526975999970 a001 139583862445/12752043*45537549124^(9/17) 4807526975999970 a001 591286729879/12752043*45537549124^(8/17) 4807526975999970 a001 2504730781961/12752043*45537549124^(7/17) 4807526975999970 a001 10983760033/4250681*312119004989^(6/11) 4807526975999970 a001 10983760033/4250681*14662949395604^(10/21) 4807526975999970 a001 10983760033/4250681*(1/2+1/2*5^(1/2))^30 4807526975999970 a001 3536736619241/4250681*45537549124^(6/17) 4807526975999970 a001 10983760033/4250681*192900153618^(5/9) 4807526975999970 a001 86267571272/12752043*14662949395604^(4/9) 4807526975999970 a001 86267571272/12752043*(1/2+1/2*5^(1/2))^28 4807526975999970 a001 516002918640/4250681*312119004989^(2/5) 4807526975999970 a001 75283811239/4250681*(1/2+1/2*5^(1/2))^26 4807526975999970 a001 365435296162/12752043*312119004989^(5/11) 4807526975999970 a001 591286729879/12752043*(1/2+1/2*5^(1/2))^24 4807526975999970 a001 516002918640/4250681*(1/2+1/2*5^(1/2))^22 4807526975999970 a001 4052739537881/12752043*(1/2+1/2*5^(1/2))^20 4807526975999970 a001 3536736619241/4250681*14662949395604^(2/7) 4807526975999970 a001 3536736619241/4250681*(1/2+1/2*5^(1/2))^18 4807526975999970 a001 5702887*(1/2+1/2*5^(1/2))^14 4807526975999970 a001 2504730781961/12752043*14662949395604^(1/3) 4807526975999970 a001 2504730781961/12752043*(1/2+1/2*5^(1/2))^21 4807526975999970 a001 956722026041/12752043*(1/2+1/2*5^(1/2))^23 4807526975999970 a001 4052739537881/12752043*505019158607^(5/14) 4807526975999970 a001 365435296162/12752043*(1/2+1/2*5^(1/2))^25 4807526975999970 a001 365435296162/12752043*3461452808002^(5/12) 4807526975999970 a001 3536736619241/4250681*192900153618^(1/3) 4807526975999970 a001 139583862445/12752043*817138163596^(9/19) 4807526975999970 a001 139583862445/12752043*14662949395604^(3/7) 4807526975999970 a001 139583862445/12752043*(1/2+1/2*5^(1/2))^27 4807526975999970 a001 591286729879/12752043*192900153618^(4/9) 4807526975999970 a001 139583862445/12752043*192900153618^(1/2) 4807526975999970 a001 53316291173/12752043*(1/2+1/2*5^(1/2))^29 4807526975999970 a001 53316291173/12752043*1322157322203^(1/2) 4807526975999970 a001 4052739537881/12752043*73681302247^(5/13) 4807526975999970 a001 86267571272/12752043*73681302247^(7/13) 4807526975999970 a001 591286729879/12752043*73681302247^(6/13) 4807526975999970 a001 75283811239/4250681*73681302247^(1/2) 4807526975999970 a001 20365011074/12752043*(1/2+1/2*5^(1/2))^31 4807526975999970 a001 20365011074/12752043*9062201101803^(1/2) 4807526975999970 a001 4052739537881/12752043*28143753123^(2/5) 4807526975999970 a001 10983760033/4250681*28143753123^(3/5) 4807526975999970 a001 365435296162/12752043*28143753123^(1/2) 4807526975999970 a001 60508827864880346301/12586269025 4807526975999970 a001 7778742049/12752043*45537549124^(11/17) 4807526975999970 a001 3536736619241/4250681*10749957122^(3/8) 4807526975999970 a001 7778742049/12752043*312119004989^(3/5) 4807526975999970 a001 7778742049/12752043*14662949395604^(11/21) 4807526975999970 a001 7778742049/12752043*(1/2+1/2*5^(1/2))^33 4807526975999970 a001 7778742049/12752043*192900153618^(11/18) 4807526975999970 a001 4052739537881/12752043*10749957122^(5/12) 4807526975999970 a001 2504730781961/12752043*10749957122^(7/16) 4807526975999970 a001 516002918640/4250681*10749957122^(11/24) 4807526975999970 a001 591286729879/12752043*10749957122^(1/2) 4807526975999970 a001 12586269025/12752043*10749957122^(2/3) 4807526975999970 a001 75283811239/4250681*10749957122^(13/24) 4807526975999970 a001 139583862445/12752043*10749957122^(9/16) 4807526975999970 a001 86267571272/12752043*10749957122^(7/12) 4807526975999970 a001 10983760033/4250681*10749957122^(5/8) 4807526975999970 a001 23112315624967562447/4807526976 4807526975999970 a001 7778742049/12752043*10749957122^(11/16) 4807526975999970 a001 2971215073/12752043*17393796001^(5/7) 4807526975999970 a001 2971215073/12752043*312119004989^(7/11) 4807526975999970 a001 2971215073/12752043*14662949395604^(5/9) 4807526975999970 a001 2971215073/12752043*(1/2+1/2*5^(1/2))^35 4807526975999970 a001 2971215073/12752043*505019158607^(5/8) 4807526975999970 a001 3536736619241/4250681*4106118243^(9/23) 4807526975999970 a001 2971215073/12752043*28143753123^(7/10) 4807526975999970 a001 4052739537881/12752043*4106118243^(10/23) 4807526975999970 a001 516002918640/4250681*4106118243^(11/23) 4807526975999970 a001 956722026041/12752043*4106118243^(1/2) 4807526975999970 a001 591286729879/12752043*4106118243^(12/23) 4807526975999970 a001 75283811239/4250681*4106118243^(13/23) 4807526975999970 a001 1602508992/4250681*4106118243^(17/23) 4807526975999970 a001 86267571272/12752043*4106118243^(14/23) 4807526975999970 a001 10983760033/4250681*4106118243^(15/23) 4807526975999970 a001 12586269025/12752043*4106118243^(16/23) 4807526975999970 a001 8828119010022341040/1836311903 4807526975999970 a001 1134903170/12752043*(1/2+1/2*5^(1/2))^37 4807526975999970 a001 3536736619241/4250681*1568397607^(9/22) 4807526975999970 a001 4052739537881/12752043*1568397607^(5/11) 4807526975999970 a001 516002918640/4250681*1568397607^(1/2) 4807526975999970 a001 591286729879/12752043*1568397607^(6/11) 4807526975999970 a001 75283811239/4250681*1568397607^(13/22) 4807526975999970 a001 86267571272/12752043*1568397607^(7/11) 4807526975999970 a001 1836311903/12752043*1568397607^(9/11) 4807526975999970 a001 10983760033/4250681*1568397607^(15/22) 4807526975999970 a001 12586269025/12752043*1568397607^(8/11) 4807526975999970 a001 1602508992/4250681*1568397607^(17/22) 4807526975999970 a001 7778742049/12752043*1568397607^(3/4) 4807526975999970 a001 3372041405099460673/701408733 4807526975999970 a001 433494437/12752043*2537720636^(13/15) 4807526975999970 a001 433494437/12752043*45537549124^(13/17) 4807526975999970 a001 5702887/969323029*14662949395604^(19/21) 4807526975999970 a001 433494437/12752043*14662949395604^(13/21) 4807526975999970 a001 433494437/12752043*(1/2+1/2*5^(1/2))^39 4807526975999970 a001 433494437/12752043*192900153618^(13/18) 4807526975999970 a001 433494437/12752043*73681302247^(3/4) 4807526975999970 a001 433494437/12752043*10749957122^(13/16) 4807526975999970 a001 3536736619241/4250681*599074578^(3/7) 4807526975999970 a001 4052739537881/12752043*599074578^(10/21) 4807526975999970 a001 2504730781961/12752043*599074578^(1/2) 4807526975999970 a001 516002918640/4250681*599074578^(11/21) 4807526975999970 a001 591286729879/12752043*599074578^(4/7) 4807526975999970 a001 75283811239/4250681*599074578^(13/21) 4807526975999970 a001 139583862445/12752043*599074578^(9/14) 4807526975999970 a001 86267571272/12752043*599074578^(2/3) 4807526975999970 a001 10983760033/4250681*599074578^(5/7) 4807526975999970 a001 233802911/4250681*599074578^(19/21) 4807526975999970 a001 12586269025/12752043*599074578^(16/21) 4807526975999970 a001 7778742049/12752043*599074578^(11/14) 4807526975999970 a001 1602508992/4250681*599074578^(17/21) 4807526975999970 a001 1836311903/12752043*599074578^(6/7) 4807526975999970 a001 2971215073/12752043*599074578^(5/6) 4807526975999970 a001 3416459430440427/710648 4807526975999970 a001 433494437/12752043*599074578^(13/14) 4807526975999970 a001 165580141/12752043*(1/2+1/2*5^(1/2))^41 4807526975999970 a001 5702887/370248451*3461452808002^(11/12) 4807526975999970 a001 3536736619241/4250681*228826127^(9/20) 4807526975999970 a001 4052739537881/12752043*228826127^(1/2) 4807526975999970 a001 516002918640/4250681*228826127^(11/20) 4807526975999970 a001 591286729879/12752043*228826127^(3/5) 4807526975999970 a001 365435296162/12752043*228826127^(5/8) 4807526975999970 a001 75283811239/4250681*228826127^(13/20) 4807526975999970 a001 86267571272/12752043*228826127^(7/10) 4807526975999970 a001 10983760033/4250681*228826127^(3/4) 4807526975999970 a001 12586269025/12752043*228826127^(4/5) 4807526975999970 a001 1602508992/4250681*228826127^(17/20) 4807526975999970 a001 2971215073/12752043*228826127^(7/8) 4807526975999970 a001 1836311903/12752043*228826127^(9/10) 4807526975999970 a001 233802911/4250681*228826127^(19/20) 4807526975999970 a001 491974210728662264/102334155 4807526975999970 a001 63245986/12752043*(1/2+1/2*5^(1/2))^43 4807526975999970 a001 3536736619241/4250681*87403803^(9/19) 4807526975999970 a001 6557470319842/12752043*87403803^(1/2) 4807526975999970 a001 4052739537881/12752043*87403803^(10/19) 4807526975999970 a001 516002918640/4250681*87403803^(11/19) 4807526975999970 a001 591286729879/12752043*87403803^(12/19) 4807526975999970 a001 75283811239/4250681*87403803^(13/19) 4807526975999970 a001 86267571272/12752043*87403803^(14/19) 4807526975999970 a001 10983760033/4250681*87403803^(15/19) 4807526975999970 a001 12586269025/12752043*87403803^(16/19) 4807526975999970 a001 1602508992/4250681*87403803^(17/19) 4807526975999971 a001 1836311903/12752043*87403803^(18/19) 4807526975999971 a001 187917426909945813/39088169 4807526975999972 a001 24157817/12752043*45537549124^(15/17) 4807526975999972 a001 24157817/12752043*312119004989^(9/11) 4807526975999972 a001 5702887/54018521*817138163596^(17/19) 4807526975999972 a001 5702887/54018521*14662949395604^(17/21) 4807526975999972 a001 24157817/12752043*14662949395604^(5/7) 4807526975999972 a001 24157817/12752043*(1/2+1/2*5^(1/2))^45 4807526975999972 a001 24157817/12752043*192900153618^(5/6) 4807526975999972 a001 5702887/54018521*192900153618^(17/18) 4807526975999972 a001 24157817/12752043*28143753123^(9/10) 4807526975999972 a001 24157817/12752043*10749957122^(15/16) 4807526975999972 a001 3536736619241/4250681*33385282^(1/2) 4807526975999972 a001 4052739537881/12752043*33385282^(5/9) 4807526975999972 a001 2504730781961/12752043*33385282^(7/12) 4807526975999973 a001 516002918640/4250681*33385282^(11/18) 4807526975999973 a001 591286729879/12752043*33385282^(2/3) 4807526975999973 a001 75283811239/4250681*33385282^(13/18) 4807526975999973 a001 139583862445/12752043*33385282^(3/4) 4807526975999973 a001 86267571272/12752043*33385282^(7/9) 4807526975999974 a001 10983760033/4250681*33385282^(5/6) 4807526975999974 a001 12586269025/12752043*33385282^(8/9) 4807526975999974 a001 7778742049/12752043*33385282^(11/12) 4807526975999974 a001 1602508992/4250681*33385282^(17/18) 4807526975999974 a001 32951280099/4870847*4870847^(7/8) 4807526975999974 a001 71778070001175175/14930352 4807526975999981 a001 5702887/20633239*14662949395604^(7/9) 4807526975999981 a001 5702887/20633239*(1/2+1/2*5^(1/2))^49 4807526975999981 a001 9227465/12752043*(1/2+1/2*5^(1/2))^47 4807526975999981 a001 5702887/20633239*505019158607^(7/8) 4807526975999984 a001 44361286907595696/9227465 4807526975999986 a001 43133785636/16692641*20633239^(6/7) 4807526975999986 a001 3536736619241/4250681*12752043^(9/17) 4807526975999986 a001 32264490531/4769326*20633239^(4/5) 4807526975999987 a001 12586269025/4870847*4870847^(15/16) 4807526975999987 a001 956722026041/33385282*20633239^(5/7) 4807526975999987 a001 4052739537881/12752043*12752043^(10/17) 4807526975999988 a001 8872257381519146/1845493 4807526975999988 a001 8872257381519147/1845493 4807526975999988 a001 3412406685199672/709805 4807526975999988 a001 3278735159921/16692641*20633239^(3/5) 4807526975999988 a001 44361286907595738/9227465 4807526975999989 a001 1515744265389/4769326*20633239^(4/7) 4807526975999989 a001 516002918640/4250681*12752043^(11/17) 4807526975999989 a001 75283811239/29134601*20633239^(6/7) 4807526975999990 a001 591286729879/228826127*20633239^(6/7) 4807526975999990 a001 86000486440/33281921*20633239^(6/7) 4807526975999990 a001 4052739537881/1568397607*20633239^(6/7) 4807526975999990 a001 3536736619241/1368706081*20633239^(6/7) 4807526975999990 a001 3278735159921/1268860318*20633239^(6/7) 4807526975999990 a001 2504730781961/969323029*20633239^(6/7) 4807526975999990 a001 591286729879/87403803*20633239^(4/5) 4807526975999990 a001 44361286907595751/9227465 4807526975999990 a001 956722026041/370248451*20633239^(6/7) 4807526975999990 a001 182717648081/70711162*20633239^(6/7) 4807526975999990 a001 1548008755920/228826127*20633239^(4/5) 4807526975999990 a001 4052739537881/599074578*20633239^(4/5) 4807526975999990 a001 1515744265389/224056801*20633239^(4/5) 4807526975999990 a001 6557470319842/969323029*20633239^(4/5) 4807526975999991 a001 2504730781961/370248451*20633239^(4/5) 4807526975999991 a001 956722026041/141422324*20633239^(4/5) 4807526975999991 a001 2504730781961/87403803*20633239^(5/7) 4807526975999991 a001 591286729879/12752043*12752043^(12/17) 4807526975999991 a001 7465176/16692641*45537549124^(16/17) 4807526975999991 a001 7465176/16692641*14662949395604^(16/21) 4807526975999991 a001 7465176/16692641*(1/2+1/2*5^(1/2))^48 4807526975999991 a001 7465176/16692641*192900153618^(8/9) 4807526975999991 a001 7465176/16692641*73681302247^(12/13) 4807526975999991 a001 6557470319842/228826127*20633239^(5/7) 4807526975999991 a001 139583862445/54018521*20633239^(6/7) 4807526975999991 a001 10610209857723/370248451*20633239^(5/7) 4807526975999992 a001 4052739537881/141422324*20633239^(5/7) 4807526975999992 a001 365435296162/54018521*20633239^(4/5) 4807526975999993 a001 75283811239/4250681*12752043^(13/17) 4807526975999993 a001 1548008755920/54018521*20633239^(5/7) 4807526975999994 a001 116139356908771248/24157817 4807526975999994 a001 86267571272/12752043*12752043^(14/17) 4807526975999994 a001 10610209857723/54018521*20633239^(3/5) 4807526975999995 a001 4976784/29134601*312119004989^(10/11) 4807526975999995 a001 39088169/33385282*(1/2+1/2*5^(1/2))^46 4807526975999995 a001 4976784/29134601*3461452808002^(5/6) 4807526975999995 a001 39088169/33385282*10749957122^(23/24) 4807526975999995 a001 152028391909359024/31622993 4807526975999995 a001 14930208/103681*141422324^(12/13) 4807526975999995 a001 10182505537/16692641*141422324^(11/13) 4807526975999995 a001 43133785636/16692641*141422324^(10/13) 4807526975999995 a001 182717648081/16692641*141422324^(9/13) 4807526975999995 a001 591286729879/33385282*141422324^(2/3) 4807526975999995 a001 774004377960/16692641*141422324^(8/13) 4807526975999995 a001 3278735159921/16692641*141422324^(7/13) 4807526975999995 a001 14619165/4769326*312119004989^(4/5) 4807526975999995 a001 14619165/4769326*(1/2+1/2*5^(1/2))^44 4807526975999995 a001 14619165/4769326*23725150497407^(11/16) 4807526975999995 a001 14930352/228826127*23725150497407^(13/16) 4807526975999995 a001 14619165/4769326*73681302247^(11/13) 4807526975999995 a001 14619165/4769326*10749957122^(11/12) 4807526975999995 a001 14619165/4769326*4106118243^(22/23) 4807526975999995 a001 796030994547382896/165580141 4807526975999995 a001 133957148/16692641*2537720636^(14/15) 4807526975999995 a001 133957148/16692641*17393796001^(6/7) 4807526975999995 a001 133957148/16692641*45537549124^(14/17) 4807526975999995 a001 133957148/16692641*14662949395604^(2/3) 4807526975999995 a001 133957148/16692641*(1/2+1/2*5^(1/2))^42 4807526975999995 a001 133957148/16692641*505019158607^(3/4) 4807526975999995 a001 133957148/16692641*192900153618^(7/9) 4807526975999995 a001 133957148/16692641*10749957122^(7/8) 4807526975999995 a001 133957148/16692641*4106118243^(21/23) 4807526975999995 a001 133957148/16692641*1568397607^(21/22) 4807526975999995 a001 2084036199823430640/433494437 4807526975999995 a001 701408733/33385282*2537720636^(8/9) 4807526975999995 a001 701408733/33385282*312119004989^(8/11) 4807526975999995 a001 14930352/1568397607*14662949395604^(8/9) 4807526975999995 a001 701408733/33385282*(1/2+1/2*5^(1/2))^40 4807526975999995 a001 701408733/33385282*23725150497407^(5/8) 4807526975999995 a001 701408733/33385282*73681302247^(10/13) 4807526975999995 a001 701408733/33385282*28143753123^(4/5) 4807526975999995 a001 701408733/33385282*10749957122^(5/6) 4807526975999995 a001 701408733/33385282*4106118243^(20/23) 4807526975999995 a001 160472870733026736/33379505 4807526975999995 a001 14930208/103681*2537720636^(4/5) 4807526975999995 a001 7778742049/33385282*2537720636^(7/9) 4807526975999995 a001 10182505537/16692641*2537720636^(11/15) 4807526975999995 a001 43133785636/16692641*2537720636^(2/3) 4807526975999995 a001 182717648081/16692641*2537720636^(3/5) 4807526975999995 a001 956722026041/33385282*2537720636^(5/9) 4807526975999995 a001 774004377960/16692641*2537720636^(8/15) 4807526975999995 a001 3278735159921/16692641*2537720636^(7/15) 4807526975999995 a001 1515744265389/4769326*2537720636^(4/9) 4807526975999995 a001 1836311903/33385282*817138163596^(2/3) 4807526975999995 a001 1836311903/33385282*(1/2+1/2*5^(1/2))^38 4807526975999995 a001 1836311903/33385282*10749957122^(19/24) 4807526975999995 a001 701408733/33385282*1568397607^(10/11) 4807526975999995 a001 14284196614945296432/2971215073 4807526975999995 a001 1836311903/33385282*4106118243^(19/23) 4807526975999995 a001 14930208/103681*45537549124^(12/17) 4807526975999995 a001 7465176/5374978561*14662949395604^(20/21) 4807526975999995 a001 14930208/103681*14662949395604^(4/7) 4807526975999995 a001 14930208/103681*(1/2+1/2*5^(1/2))^36 4807526975999995 a001 14930208/103681*505019158607^(9/14) 4807526975999995 a001 14930208/103681*192900153618^(2/3) 4807526975999995 a001 14930208/103681*73681302247^(9/13) 4807526975999995 a001 37396512239912980272/7778742049 4807526975999995 a001 14930208/103681*10749957122^(3/4) 4807526975999995 a001 32264490531/4769326*17393796001^(4/7) 4807526975999995 a001 12586269025/33385282*45537549124^(2/3) 4807526975999995 a001 3278735159921/16692641*17393796001^(3/7) 4807526975999995 a001 12586269025/33385282*(1/2+1/2*5^(1/2))^34 4807526975999995 a001 48952670052396822192/10182505537 4807526975999995 a001 43133785636/16692641*45537549124^(10/17) 4807526975999995 a001 182717648081/16692641*45537549124^(9/17) 4807526975999995 a001 774004377960/16692641*45537549124^(8/17) 4807526975999995 a001 3278735159921/16692641*45537549124^(7/17) 4807526975999995 a001 32951280099/33385282*(1/2+1/2*5^(1/2))^32 4807526975999995 a001 32951280099/33385282*23725150497407^(1/2) 4807526975999995 a001 32951280099/33385282*505019158607^(4/7) 4807526975999995 a001 32951280099/33385282*73681302247^(8/13) 4807526975999995 a001 43133785636/16692641*312119004989^(6/11) 4807526975999995 a001 43133785636/16692641*14662949395604^(10/21) 4807526975999995 a001 43133785636/16692641*(1/2+1/2*5^(1/2))^30 4807526975999995 a001 43133785636/16692641*192900153618^(5/9) 4807526975999995 a001 956722026041/33385282*312119004989^(5/11) 4807526975999995 a001 32264490531/4769326*14662949395604^(4/9) 4807526975999995 a001 32264490531/4769326*(1/2+1/2*5^(1/2))^28 4807526975999995 a001 4052739537881/33385282*(1/2+1/2*5^(1/2))^22 4807526975999995 a001 1515744265389/4769326*(1/2+1/2*5^(1/2))^20 4807526975999995 a001 1515744265389/4769326*23725150497407^(5/16) 4807526975999995 a001 14930352*(1/2+1/2*5^(1/2))^12 4807526975999995 a001 3278735159921/16692641*(1/2+1/2*5^(1/2))^21 4807526975999995 a001 2504730781961/33385282*(1/2+1/2*5^(1/2))^23 4807526975999995 a001 182717648081/16692641*817138163596^(9/19) 4807526975999995 a001 1515744265389/4769326*505019158607^(5/14) 4807526975999995 a001 182717648081/16692641*(1/2+1/2*5^(1/2))^27 4807526975999995 a001 139583862445/33385282*(1/2+1/2*5^(1/2))^29 4807526975999995 a001 3278735159921/16692641*192900153618^(7/18) 4807526975999995 a001 139583862445/33385282*1322157322203^(1/2) 4807526975999995 a001 774004377960/16692641*192900153618^(4/9) 4807526975999995 a001 182717648081/16692641*192900153618^(1/2) 4807526975999995 a001 53316291173/33385282*(1/2+1/2*5^(1/2))^31 4807526975999995 a001 53316291173/33385282*9062201101803^(1/2) 4807526975999995 a001 1515744265389/4769326*73681302247^(5/13) 4807526975999995 a001 774004377960/16692641*73681302247^(6/13) 4807526975999995 a001 591286729879/33385282*73681302247^(1/2) 4807526975999995 a001 32264490531/4769326*73681302247^(7/13) 4807526975999995 a001 10182505537/16692641*45537549124^(11/17) 4807526975999995 a001 52804722656558102832/10983760033 4807526975999995 a001 10182505537/16692641*312119004989^(3/5) 4807526975999995 a001 10182505537/16692641*14662949395604^(11/21) 4807526975999995 a001 10182505537/16692641*(1/2+1/2*5^(1/2))^33 4807526975999995 a001 10182505537/16692641*192900153618^(11/18) 4807526975999995 a001 1515744265389/4769326*28143753123^(2/5) 4807526975999995 a001 956722026041/33385282*28143753123^(1/2) 4807526975999995 a001 43133785636/16692641*28143753123^(3/5) 4807526975999995 a001 7778742049/33385282*17393796001^(5/7) 4807526975999995 a001 60508827864880664112/12586269025 4807526975999995 a001 7778742049/33385282*312119004989^(7/11) 4807526975999995 a001 7778742049/33385282*14662949395604^(5/9) 4807526975999995 a001 7778742049/33385282*(1/2+1/2*5^(1/2))^35 4807526975999995 a001 7778742049/33385282*505019158607^(5/8) 4807526975999995 a001 1515744265389/4769326*10749957122^(5/12) 4807526975999995 a001 3278735159921/16692641*10749957122^(7/16) 4807526975999995 a001 4052739537881/33385282*10749957122^(11/24) 4807526975999995 a001 7778742049/33385282*28143753123^(7/10) 4807526975999995 a001 774004377960/16692641*10749957122^(1/2) 4807526975999995 a001 591286729879/33385282*10749957122^(13/24) 4807526975999995 a001 12586269025/33385282*10749957122^(17/24) 4807526975999995 a001 182717648081/16692641*10749957122^(9/16) 4807526975999995 a001 32264490531/4769326*10749957122^(7/12) 4807526975999995 a001 43133785636/16692641*10749957122^(5/8) 4807526975999995 a001 32951280099/33385282*10749957122^(2/3) 4807526975999995 a001 10182505537/16692641*10749957122^(11/16) 4807526975999995 a001 40125547960013340/8346401 4807526975999995 a001 567451585/16692641*2537720636^(13/15) 4807526975999995 a001 2971215073/33385282*(1/2+1/2*5^(1/2))^37 4807526975999995 a001 1515744265389/4769326*4106118243^(10/23) 4807526975999995 a001 4052739537881/33385282*4106118243^(11/23) 4807526975999995 a001 2504730781961/33385282*4106118243^(1/2) 4807526975999995 a001 774004377960/16692641*4106118243^(12/23) 4807526975999995 a001 591286729879/33385282*4106118243^(13/23) 4807526975999995 a001 32264490531/4769326*4106118243^(14/23) 4807526975999995 a001 14930208/103681*4106118243^(18/23) 4807526975999995 a001 43133785636/16692641*4106118243^(15/23) 4807526975999995 a001 32951280099/33385282*4106118243^(16/23) 4807526975999995 a001 12586269025/33385282*4106118243^(17/23) 4807526975999995 a001 8828119010022387408/1836311903 4807526975999995 a001 567451585/16692641*45537549124^(13/17) 4807526975999995 a001 196452/33391061*14662949395604^(19/21) 4807526975999995 a001 567451585/16692641*14662949395604^(13/21) 4807526975999995 a001 567451585/16692641*(1/2+1/2*5^(1/2))^39 4807526975999995 a001 567451585/16692641*192900153618^(13/18) 4807526975999995 a001 567451585/16692641*73681302247^(3/4) 4807526975999995 a001 567451585/16692641*10749957122^(13/16) 4807526975999995 a001 1515744265389/4769326*1568397607^(5/11) 4807526975999995 a001 4052739537881/33385282*1568397607^(1/2) 4807526975999995 a001 774004377960/16692641*1568397607^(6/11) 4807526975999995 a001 591286729879/33385282*1568397607^(13/22) 4807526975999995 a001 32264490531/4769326*1568397607^(7/11) 4807526975999995 a001 43133785636/16692641*1568397607^(15/22) 4807526975999995 a001 1836311903/33385282*1568397607^(19/22) 4807526975999995 a001 32951280099/33385282*1568397607^(8/11) 4807526975999995 a001 10182505537/16692641*1568397607^(3/4) 4807526975999995 a001 12586269025/33385282*1568397607^(17/22) 4807526975999995 a001 14930208/103681*1568397607^(9/11) 4807526975999995 a001 1124013801699826128/233802911 4807526975999995 a001 433494437/33385282*(1/2+1/2*5^(1/2))^41 4807526975999995 a001 14930352/969323029*3461452808002^(11/12) 4807526975999995 a001 1515744265389/4769326*599074578^(10/21) 4807526975999995 a001 3278735159921/16692641*599074578^(1/2) 4807526975999995 a001 4052739537881/33385282*599074578^(11/21) 4807526975999995 a001 774004377960/16692641*599074578^(4/7) 4807526975999995 a001 591286729879/33385282*599074578^(13/21) 4807526975999995 a001 182717648081/16692641*599074578^(9/14) 4807526975999995 a001 32264490531/4769326*599074578^(2/3) 4807526975999995 a001 43133785636/16692641*599074578^(5/7) 4807526975999995 a001 32951280099/33385282*599074578^(16/21) 4807526975999995 a001 10182505537/16692641*599074578^(11/14) 4807526975999995 a001 701408733/33385282*599074578^(20/21) 4807526975999995 a001 12586269025/33385282*599074578^(17/21) 4807526975999995 a001 7778742049/33385282*599074578^(5/6) 4807526975999995 a001 14930208/103681*599074578^(6/7) 4807526975999995 a001 1836311903/33385282*599074578^(19/21) 4807526975999995 a001 567451585/16692641*599074578^(13/14) 4807526975999995 a001 161000650659505968/33489287 4807526975999995 a001 165580141/33385282*(1/2+1/2*5^(1/2))^43 4807526975999995 a001 1515744265389/4769326*228826127^(1/2) 4807526975999995 a001 4052739537881/33385282*228826127^(11/20) 4807526975999995 a001 774004377960/16692641*228826127^(3/5) 4807526975999995 a001 956722026041/33385282*228826127^(5/8) 4807526975999995 a001 591286729879/33385282*228826127^(13/20) 4807526975999995 a001 32264490531/4769326*228826127^(7/10) 4807526975999995 a001 43133785636/16692641*228826127^(3/4) 4807526975999995 a001 32951280099/33385282*228826127^(4/5) 4807526975999995 a001 12586269025/33385282*228826127^(17/20) 4807526975999995 a001 7778742049/33385282*228826127^(7/8) 4807526975999995 a001 14930208/103681*228826127^(9/10) 4807526975999995 a001 1836311903/33385282*228826127^(19/20) 4807526975999995 a001 163991403576221616/34111385 4807526975999995 a001 31622993/16692641*45537549124^(15/17) 4807526975999995 a001 31622993/16692641*312119004989^(9/11) 4807526975999995 a001 3732588/35355581*817138163596^(17/19) 4807526975999995 a001 3732588/35355581*14662949395604^(17/21) 4807526975999995 a001 31622993/16692641*14662949395604^(5/7) 4807526975999995 a001 31622993/16692641*(1/2+1/2*5^(1/2))^45 4807526975999995 a001 31622993/16692641*192900153618^(5/6) 4807526975999995 a001 3732588/35355581*192900153618^(17/18) 4807526975999995 a001 31622993/16692641*28143753123^(9/10) 4807526975999995 a001 31622993/16692641*10749957122^(15/16) 4807526975999996 a001 1515744265389/4769326*87403803^(10/19) 4807526975999996 a001 4052739537881/33385282*87403803^(11/19) 4807526975999996 a001 774004377960/16692641*87403803^(12/19) 4807526975999996 a001 591286729879/33385282*87403803^(13/19) 4807526975999996 a001 32264490531/4769326*87403803^(14/19) 4807526975999996 a001 43133785636/16692641*87403803^(15/19) 4807526975999996 a001 32951280099/33385282*87403803^(16/19) 4807526975999996 a001 12586269025/33385282*87403803^(17/19) 4807526975999996 a001 14930208/103681*87403803^(18/19) 4807526975999996 a001 187917426909946800/39088169 4807526975999996 a001 10983760033/4250681*12752043^(15/17) 4807526975999997 a001 14930352/54018521*14662949395604^(7/9) 4807526975999997 a001 24157817/33385282*(1/2+1/2*5^(1/2))^47 4807526975999997 a001 14930352/54018521*505019158607^(7/8) 4807526975999997 a001 116139356908771337/24157817 4807526975999998 a001 1515744265389/4769326*33385282^(5/9) 4807526975999998 a001 3278735159921/16692641*33385282^(7/12) 4807526975999998 a001 12586269025/12752043*12752043^(16/17) 4807526975999998 a001 116139356908771350/24157817 4807526975999998 a001 4052739537881/33385282*33385282^(11/18) 4807526975999998 a001 116139356908771352/24157817 4807526975999998 a001 116139356908771353/24157817 4807526975999998 a001 774004377960/16692641*33385282^(2/3) 4807526975999998 a001 116139356908771358/24157817 4807526975999998 a001 39088169/87403803*45537549124^(16/17) 4807526975999998 a001 39088169/87403803*14662949395604^(16/21) 4807526975999998 a001 39088169/87403803*192900153618^(8/9) 4807526975999998 a001 39088169/87403803*73681302247^(12/13) 4807526975999998 a001 591286729879/33385282*33385282^(13/18) 4807526975999998 a001 182717648081/16692641*33385282^(3/4) 4807526975999999 a001 32264490531/4769326*33385282^(7/9) 4807526975999999 a001 304056783818718281/63245986 4807526975999999 a001 12586269025/87403803*141422324^(12/13) 4807526975999999 a001 53316291173/87403803*141422324^(11/13) 4807526975999999 a001 75283811239/29134601*141422324^(10/13) 4807526975999999 a001 956722026041/87403803*141422324^(9/13) 4807526975999999 a001 516002918640/29134601*141422324^(2/3) 4807526975999999 a001 4052739537881/87403803*141422324^(8/13) 4807526975999999 a001 39088169/228826127*312119004989^(10/11) 4807526975999999 a001 39088169/228826127*3461452808002^(5/6) 4807526975999999 a001 34111385/29134601*10749957122^(23/24) 4807526975999999 a001 43133785636/16692641*33385282^(5/6) 4807526975999999 a001 796030994547383506/165580141 4807526975999999 a001 267914296/87403803*312119004989^(4/5) 4807526975999999 a001 267914296/87403803*23725150497407^(11/16) 4807526975999999 a001 39088169/599074578*23725150497407^(13/16) 4807526975999999 a001 39088169/599074578*505019158607^(13/14) 4807526975999999 a001 267914296/87403803*73681302247^(11/13) 4807526975999999 a001 267914296/87403803*10749957122^(11/12) 4807526975999999 a001 267914296/87403803*4106118243^(22/23) 4807526975999999 a001 2084036199823432237/433494437 4807526975999999 a001 233802911/29134601*2537720636^(14/15) 4807526975999999 a001 233802911/29134601*17393796001^(6/7) 4807526975999999 a001 233802911/29134601*45537549124^(14/17) 4807526975999999 a001 39088169/1568397607*14662949395604^(6/7) 4807526975999999 a001 233802911/29134601*14662949395604^(2/3) 4807526975999999 a001 233802911/29134601*505019158607^(3/4) 4807526975999999 a001 233802911/29134601*192900153618^(7/9) 4807526975999999 a001 233802911/29134601*10749957122^(7/8) 4807526975999999 a001 233802911/29134601*4106118243^(21/23) 4807526975999999 a001 1836311903/87403803*2537720636^(8/9) 4807526975999999 a001 1091215520984582641/226980634 4807526975999999 a001 12586269025/87403803*2537720636^(4/5) 4807526975999999 a001 20365011074/87403803*2537720636^(7/9) 4807526975999999 a001 53316291173/87403803*2537720636^(11/15) 4807526975999999 a001 2971215073/87403803*2537720636^(13/15) 4807526975999999 a001 75283811239/29134601*2537720636^(2/3) 4807526975999999 a001 956722026041/87403803*2537720636^(3/5) 4807526975999999 a001 2504730781961/87403803*2537720636^(5/9) 4807526975999999 a001 4052739537881/87403803*2537720636^(8/15) 4807526975999999 a001 1836311903/87403803*312119004989^(8/11) 4807526975999999 a001 1836311903/87403803*23725150497407^(5/8) 4807526975999999 a001 1836311903/87403803*73681302247^(10/13) 4807526975999999 a001 1836311903/87403803*28143753123^(4/5) 4807526975999999 a001 1836311903/87403803*10749957122^(5/6) 4807526975999999 a001 14284196614945307378/2971215073 4807526975999999 a001 233802911/29134601*1568397607^(21/22) 4807526975999999 a001 1602508992/29134601*817138163596^(2/3) 4807526975999999 a001 1836311903/87403803*4106118243^(20/23) 4807526975999999 a001 37396512239913008929/7778742049 4807526975999999 a001 591286729879/87403803*17393796001^(4/7) 4807526975999999 a001 20365011074/87403803*17393796001^(5/7) 4807526975999999 a001 1602508992/29134601*10749957122^(19/24) 4807526975999999 a001 12586269025/87403803*45537549124^(12/17) 4807526975999999 a001 39088169/28143753123*14662949395604^(20/21) 4807526975999999 a001 12586269025/87403803*14662949395604^(4/7) 4807526975999999 a001 12586269025/87403803*505019158607^(9/14) 4807526975999999 a001 12586269025/87403803*192900153618^(2/3) 4807526975999999 a001 12586269025/87403803*73681302247^(9/13) 4807526975999999 a001 10983760033/29134601*45537549124^(2/3) 4807526975999999 a001 97905340104793719409/20365011074 4807526975999999 a001 75283811239/29134601*45537549124^(10/17) 4807526975999999 a001 956722026041/87403803*45537549124^(9/17) 4807526975999999 a001 53316291173/87403803*45537549124^(11/17) 4807526975999999 a001 4052739537881/87403803*45537549124^(8/17) 4807526975999999 a001 256319508074468149298/53316291173 4807526975999999 a001 86267571272/87403803*23725150497407^(1/2) 4807526975999999 a001 86267571272/87403803*505019158607^(4/7) 4807526975999999 a001 75283811239/29134601*312119004989^(6/11) 4807526975999999 a001 2504730781961/87403803*312119004989^(5/11) 4807526975999999 a001 3536736619241/29134601*312119004989^(2/5) 4807526975999999 a001 75283811239/29134601*14662949395604^(10/21) 4807526975999999 a001 39088169*(1/2+1/2*5^(1/2))^10 4807526975999999 a001 2504730781961/87403803*3461452808002^(5/12) 4807526975999999 a001 591286729879/87403803*505019158607^(1/2) 4807526975999999 a001 365435296162/87403803*1322157322203^(1/2) 4807526975999999 a001 139583862445/87403803*9062201101803^(1/2) 4807526975999999 a001 75283811239/29134601*192900153618^(5/9) 4807526975999999 a001 4052739537881/87403803*192900153618^(4/9) 4807526975999999 a001 414733676044142579187/86267571272 4807526975999999 a001 53316291173/87403803*312119004989^(3/5) 4807526975999999 a001 53316291173/87403803*14662949395604^(11/21) 4807526975999999 a001 4052739537881/87403803*73681302247^(6/13) 4807526975999999 a001 53316291173/87403803*192900153618^(11/18) 4807526975999999 a001 516002918640/29134601*73681302247^(1/2) 4807526975999999 a001 591286729879/87403803*73681302247^(7/13) 4807526975999999 a001 158414167969674429889/32951280099 4807526975999999 a001 20365011074/87403803*312119004989^(7/11) 4807526975999999 a001 20365011074/87403803*14662949395604^(5/9) 4807526975999999 a001 20365011074/87403803*505019158607^(5/8) 4807526975999999 a001 2504730781961/87403803*28143753123^(1/2) 4807526975999999 a001 75283811239/29134601*28143753123^(3/5) 4807526975999999 a001 1100160506634194736/228841255 4807526975999999 a001 20365011074/87403803*28143753123^(7/10) 4807526975999999 a001 3536736619241/29134601*10749957122^(11/24) 4807526975999999 a001 4052739537881/87403803*10749957122^(1/2) 4807526975999999 a001 516002918640/29134601*10749957122^(13/24) 4807526975999999 a001 956722026041/87403803*10749957122^(9/16) 4807526975999999 a001 591286729879/87403803*10749957122^(7/12) 4807526975999999 a001 12586269025/87403803*10749957122^(3/4) 4807526975999999 a001 75283811239/29134601*10749957122^(5/8) 4807526975999999 a001 86267571272/87403803*10749957122^(2/3) 4807526975999999 a001 10983760033/29134601*10749957122^(17/24) 4807526975999999 a001 53316291173/87403803*10749957122^(11/16) 4807526975999999 a001 23112315624967701551/4807526976 4807526975999999 a001 2971215073/87403803*45537549124^(13/17) 4807526975999999 a001 39088169/6643838879*14662949395604^(19/21) 4807526975999999 a001 2971215073/87403803*14662949395604^(13/21) 4807526975999999 a001 2971215073/87403803*192900153618^(13/18) 4807526975999999 a001 2971215073/87403803*73681302247^(3/4) 4807526975999999 a001 3536736619241/29134601*4106118243^(11/23) 4807526975999999 a001 6557470319842/87403803*4106118243^(1/2) 4807526975999999 a001 2971215073/87403803*10749957122^(13/16) 4807526975999999 a001 4052739537881/87403803*4106118243^(12/23) 4807526975999999 a001 516002918640/29134601*4106118243^(13/23) 4807526975999999 a001 591286729879/87403803*4106118243^(14/23) 4807526975999999 a001 75283811239/29134601*4106118243^(15/23) 4807526975999999 a001 1602508992/29134601*4106118243^(19/23) 4807526975999999 a001 86267571272/87403803*4106118243^(16/23) 4807526975999999 a001 10983760033/29134601*4106118243^(17/23) 4807526975999999 a001 12586269025/87403803*4106118243^(18/23) 4807526975999999 a001 8828119010022394173/1836311903 4807526975999999 a001 39088169/2537720636*3461452808002^(11/12) 4807526975999999 a001 3536736619241/29134601*1568397607^(1/2) 4807526975999999 a001 4052739537881/87403803*1568397607^(6/11) 4807526975999999 a001 516002918640/29134601*1568397607^(13/22) 4807526975999999 a001 591286729879/87403803*1568397607^(7/11) 4807526975999999 a001 75283811239/29134601*1568397607^(15/22) 4807526975999999 a001 86267571272/87403803*1568397607^(8/11) 4807526975999999 a001 53316291173/87403803*1568397607^(3/4) 4807526975999999 a001 1836311903/87403803*1568397607^(10/11) 4807526975999999 a001 10983760033/29134601*1568397607^(17/22) 4807526975999999 a001 12586269025/87403803*1568397607^(9/11) 4807526975999999 a001 1602508992/29134601*1568397607^(19/22) 4807526975999999 a001 3372041405099480968/701408733 4807526975999999 a001 3536736619241/29134601*599074578^(11/21) 4807526975999999 a001 4052739537881/87403803*599074578^(4/7) 4807526975999999 a001 516002918640/29134601*599074578^(13/21) 4807526975999999 a001 956722026041/87403803*599074578^(9/14) 4807526975999999 a001 591286729879/87403803*599074578^(2/3) 4807526975999999 a001 75283811239/29134601*599074578^(5/7) 4807526975999999 a001 86267571272/87403803*599074578^(16/21) 4807526975999999 a001 53316291173/87403803*599074578^(11/14) 4807526975999999 a001 10983760033/29134601*599074578^(17/21) 4807526975999999 a001 20365011074/87403803*599074578^(5/6) 4807526975999999 a001 12586269025/87403803*599074578^(6/7) 4807526975999999 a001 1602508992/29134601*599074578^(19/21) 4807526975999999 a001 1836311903/87403803*599074578^(20/21) 4807526975999999 a001 2971215073/87403803*599074578^(13/14) 4807526975999999 a001 1288005205276048731/267914296 4807526975999999 a001 165580141/87403803*45537549124^(15/17) 4807526975999999 a001 165580141/87403803*312119004989^(9/11) 4807526975999999 a001 39088169/370248451*817138163596^(17/19) 4807526975999999 a001 39088169/370248451*14662949395604^(17/21) 4807526975999999 a001 165580141/87403803*14662949395604^(5/7) 4807526975999999 a001 165580141/87403803*192900153618^(5/6) 4807526975999999 a001 39088169/370248451*192900153618^(17/18) 4807526975999999 a001 165580141/87403803*28143753123^(9/10) 4807526975999999 a001 165580141/87403803*10749957122^(15/16) 4807526975999999 a001 3536736619241/29134601*228826127^(11/20) 4807526975999999 a001 4052739537881/87403803*228826127^(3/5) 4807526975999999 a001 2504730781961/87403803*228826127^(5/8) 4807526975999999 a001 516002918640/29134601*228826127^(13/20) 4807526975999999 a001 591286729879/87403803*228826127^(7/10) 4807526975999999 a001 75283811239/29134601*228826127^(3/4) 4807526975999999 a001 86267571272/87403803*228826127^(4/5) 4807526975999999 a001 10983760033/29134601*228826127^(17/20) 4807526975999999 a001 20365011074/87403803*228826127^(7/8) 4807526975999999 a001 12586269025/87403803*228826127^(9/10) 4807526975999999 a001 1602508992/29134601*228826127^(19/20) 4807526975999999 a001 8944985649612095/1860621 4807526975999999 a001 32951280099/33385282*33385282^(8/9) 4807526975999999 a001 39088169/141422324*14662949395604^(7/9) 4807526975999999 a001 39088169/141422324*505019158607^(7/8) 4807526975999999 a001 10182505537/16692641*33385282^(11/12) 4807526975999999 a001 304056783818718315/63245986 4807526975999999 a001 32951280099/228826127*141422324^(12/13) 4807526975999999 a001 139583862445/228826127*141422324^(11/13) 4807526975999999 a001 591286729879/228826127*141422324^(10/13) 4807526975999999 a001 3536736619241/29134601*87403803^(11/19) 4807526975999999 a001 2504730781961/228826127*141422324^(9/13) 4807526975999999 a001 152028391909359160/31622993 4807526975999999 a001 4052739537881/228826127*141422324^(2/3) 4807526975999999 a001 225749145909/4868641*141422324^(8/13) 4807526975999999 a001 12586269025/33385282*33385282^(17/18) 4807526975999999 a001 304056783818718321/63245986 4807526975999999 a001 43133785636/299537289*141422324^(12/13) 4807526975999999 a001 4052739537881/87403803*87403803^(12/19) 4807526975999999 a001 32264490531/224056801*141422324^(12/13) 4807526975999999 a001 591286729879/4106118243*141422324^(12/13) 4807526975999999 a001 774004377960/5374978561*141422324^(12/13) 4807526975999999 a001 4052739537881/28143753123*141422324^(12/13) 4807526975999999 a001 1515744265389/10525900321*141422324^(12/13) 4807526975999999 a001 3278735159921/22768774562*141422324^(12/13) 4807526975999999 a001 2504730781961/17393796001*141422324^(12/13) 4807526975999999 a001 956722026041/6643838879*141422324^(12/13) 4807526975999999 a001 182717648081/1268860318*141422324^(12/13) 4807526975999999 a001 182717648081/299537289*141422324^(11/13) 4807526975999999 a001 139583862445/969323029*141422324^(12/13) 4807526975999999 a001 304056783818718323/63245986 4807526975999999 a001 956722026041/1568397607*141422324^(11/13) 4807526975999999 a001 2504730781961/4106118243*141422324^(11/13) 4807526975999999 a001 3278735159921/5374978561*141422324^(11/13) 4807526975999999 a001 10610209857723/17393796001*141422324^(11/13) 4807526975999999 a001 4052739537881/6643838879*141422324^(11/13) 4807526975999999 a001 1134903780/1860499*141422324^(11/13) 4807526975999999 a001 516002918640/29134601*87403803^(13/19) 4807526975999999 a001 86000486440/33281921*141422324^(10/13) 4807526975999999 a001 591286729879/969323029*141422324^(11/13) 4807526975999999 a001 4052739537881/1568397607*141422324^(10/13) 4807526975999999 a001 53316291173/370248451*141422324^(12/13) 4807526975999999 a001 3536736619241/1368706081*141422324^(10/13) 4807526975999999 a001 3278735159921/1268860318*141422324^(10/13) 4807526975999999 a001 102334155/228826127*45537549124^(16/17) 4807526975999999 a001 102334155/228826127*14662949395604^(16/21) 4807526975999999 a001 102334155/228826127*192900153618^(8/9) 4807526975999999 a001 102334155/228826127*73681302247^(12/13) 4807526975999999 a001 3278735159921/299537289*141422324^(9/13) 4807526975999999 a001 2504730781961/969323029*141422324^(10/13) 4807526975999999 a001 3536736619241/199691526*141422324^(2/3) 4807526975999999 a001 225851433717/370248451*141422324^(11/13) 4807526975999999 a001 591286729879/87403803*87403803^(14/19) 4807526975999999 a001 10610209857723/969323029*141422324^(9/13) 4807526975999999 a001 956722026041/370248451*141422324^(10/13) 4807526975999999 a001 75283811239/29134601*87403803^(15/19) 4807526975999999 a001 4052739537881/370248451*141422324^(9/13) 4807526975999999 a001 796030994547383595/165580141 4807526975999999 a001 6557470319842/370248451*141422324^(2/3) 4807526975999999 a001 34111385/199691526*312119004989^(10/11) 4807526975999999 a001 34111385/199691526*3461452808002^(5/6) 4807526975999999 a001 267914296/228826127*10749957122^(23/24) 4807526975999999 a001 86267571272/87403803*87403803^(16/19) 4807526975999999 a001 2084036199823432470/433494437 4807526975999999 a001 701408733/228826127*312119004989^(4/5) 4807526975999999 a001 701408733/228826127*23725150497407^(11/16) 4807526975999999 a001 14619165/224056801*23725150497407^(13/16) 4807526975999999 a001 14619165/224056801*505019158607^(13/14) 4807526975999999 a001 701408733/228826127*73681302247^(11/13) 4807526975999999 a001 701408733/228826127*10749957122^(11/12) 4807526975999999 a001 701408733/228826127*4106118243^(22/23) 4807526975999999 a001 1836311903/228826127*2537720636^(14/15) 4807526975999999 a001 1091215520984582763/226980634 4807526975999999 a001 102287808/4868641*2537720636^(8/9) 4807526975999999 a001 7778742049/228826127*2537720636^(13/15) 4807526975999999 a001 32951280099/228826127*2537720636^(4/5) 4807526975999999 a001 53316291173/228826127*2537720636^(7/9) 4807526975999999 a001 139583862445/228826127*2537720636^(11/15) 4807526975999999 a001 591286729879/228826127*2537720636^(2/3) 4807526975999999 a001 2504730781961/228826127*2537720636^(3/5) 4807526975999999 a001 6557470319842/228826127*2537720636^(5/9) 4807526975999999 a001 225749145909/4868641*2537720636^(8/15) 4807526975999999 a001 1836311903/228826127*17393796001^(6/7) 4807526975999999 a001 1836311903/228826127*45537549124^(14/17) 4807526975999999 a001 1836311903/228826127*817138163596^(14/19) 4807526975999999 a001 1836311903/228826127*14662949395604^(2/3) 4807526975999999 a001 1836311903/228826127*505019158607^(3/4) 4807526975999999 a001 1836311903/228826127*192900153618^(7/9) 4807526975999999 a001 1836311903/228826127*10749957122^(7/8) 4807526975999999 a001 14284196614945308975/2971215073 4807526975999999 a001 102287808/4868641*312119004989^(8/11) 4807526975999999 a001 102334155/10749957122*14662949395604^(8/9) 4807526975999999 a001 102287808/4868641*23725150497407^(5/8) 4807526975999999 a001 102287808/4868641*73681302247^(10/13) 4807526975999999 a001 102287808/4868641*28143753123^(4/5) 4807526975999999 a001 1836311903/228826127*4106118243^(21/23) 4807526975999999 a001 37396512239913013110/7778742049 4807526975999999 a001 53316291173/228826127*17393796001^(5/7) 4807526975999999 a001 1548008755920/228826127*17393796001^(4/7) 4807526975999999 a001 102287808/4868641*10749957122^(5/6) 4807526975999999 a001 12586269025/228826127*817138163596^(2/3) 4807526975999999 a001 32951280099/228826127*45537549124^(12/17) 4807526975999999 a001 97905340104793730355/20365011074 4807526975999999 a001 86267571272/228826127*45537549124^(2/3) 4807526975999999 a001 139583862445/228826127*45537549124^(11/17) 4807526975999999 a001 591286729879/228826127*45537549124^(10/17) 4807526975999999 a001 2504730781961/228826127*45537549124^(9/17) 4807526975999999 a001 225749145909/4868641*45537549124^(8/17) 4807526975999999 a001 14619165/10525900321*14662949395604^(20/21) 4807526975999999 a001 32951280099/228826127*505019158607^(9/14) 4807526975999999 a001 32951280099/228826127*192900153618^(2/3) 4807526975999999 a001 256319508074468177955/53316291173 4807526975999999 a001 32951280099/228826127*73681302247^(9/13) 4807526975999999 a001 134210636823722160702/27916772489 4807526975999999 a001 6557470319842/228826127*312119004989^(5/11) 4807526975999999 a001 591286729879/228826127*14662949395604^(10/21) 4807526975999999 a001 1548008755920/228826127*14662949395604^(4/9) 4807526975999999 a001 225749145909/4868641*14662949395604^(8/21) 4807526975999999 a001 102334155*(1/2+1/2*5^(1/2))^8 4807526975999999 a001 2504730781961/228826127*14662949395604^(3/7) 4807526975999999 a001 1548008755920/228826127*505019158607^(1/2) 4807526975999999 a001 139583862445/228826127*312119004989^(3/5) 4807526975999999 a001 139583862445/228826127*817138163596^(11/19) 4807526975999999 a001 139583862445/228826127*14662949395604^(11/21) 4807526975999999 a001 225749145909/4868641*192900153618^(4/9) 4807526975999999 a001 139583862445/228826127*192900153618^(11/18) 4807526975999999 a001 53316291173/228826127*312119004989^(7/11) 4807526975999999 a001 53316291173/228826127*14662949395604^(5/9) 4807526975999999 a001 53316291173/228826127*505019158607^(5/8) 4807526975999999 a001 225749145909/4868641*73681302247^(6/13) 4807526975999999 a001 4052739537881/228826127*73681302247^(1/2) 4807526975999999 a001 1548008755920/228826127*73681302247^(7/13) 4807526975999999 a001 225851433717/228826127*73681302247^(8/13) 4807526975999999 a001 52804722656558149200/10983760033 4807526975999999 a001 6557470319842/228826127*28143753123^(1/2) 4807526975999999 a001 591286729879/228826127*28143753123^(3/5) 4807526975999999 a001 53316291173/228826127*28143753123^(7/10) 4807526975999999 a001 1100160506634194859/228841255 4807526975999999 a001 7778742049/228826127*45537549124^(13/17) 4807526975999999 a001 102334155/17393796001*14662949395604^(19/21) 4807526975999999 a001 7778742049/228826127*14662949395604^(13/21) 4807526975999999 a001 7778742049/228826127*192900153618^(13/18) 4807526975999999 a001 7778742049/228826127*73681302247^(3/4) 4807526975999999 a001 225749145909/4868641*10749957122^(1/2) 4807526975999999 a001 4052739537881/228826127*10749957122^(13/24) 4807526975999999 a001 2504730781961/228826127*10749957122^(9/16) 4807526975999999 a001 1548008755920/228826127*10749957122^(7/12) 4807526975999999 a001 591286729879/228826127*10749957122^(5/8) 4807526975999999 a001 12586269025/228826127*10749957122^(19/24) 4807526975999999 a001 225851433717/228826127*10749957122^(2/3) 4807526975999999 a001 139583862445/228826127*10749957122^(11/16) 4807526975999999 a001 86267571272/228826127*10749957122^(17/24) 4807526975999999 a001 32951280099/228826127*10749957122^(3/4) 4807526975999999 a001 366862152777265145/76309952 4807526975999999 a001 7778742049/228826127*10749957122^(13/16) 4807526975999999 a001 102334155/6643838879*3461452808002^(11/12) 4807526975999999 a001 225749145909/4868641*4106118243^(12/23) 4807526975999999 a001 4052739537881/228826127*4106118243^(13/23) 4807526975999999 a001 1548008755920/228826127*4106118243^(14/23) 4807526975999999 a001 591286729879/228826127*4106118243^(15/23) 4807526975999999 a001 225851433717/228826127*4106118243^(16/23) 4807526975999999 a001 102287808/4868641*4106118243^(20/23) 4807526975999999 a001 86267571272/228826127*4106118243^(17/23) 4807526975999999 a001 32951280099/228826127*4106118243^(18/23) 4807526975999999 a001 12586269025/228826127*4106118243^(19/23) 4807526975999999 a001 8828119010022395160/1836311903 4807526975999999 a001 225749145909/4868641*1568397607^(6/11) 4807526975999999 a001 4052739537881/228826127*1568397607^(13/22) 4807526975999999 a001 1548008755920/228826127*1568397607^(7/11) 4807526975999999 a001 591286729879/228826127*1568397607^(15/22) 4807526975999999 a001 225851433717/228826127*1568397607^(8/11) 4807526975999999 a001 139583862445/228826127*1568397607^(3/4) 4807526975999999 a001 86267571272/228826127*1568397607^(17/22) 4807526975999999 a001 1836311903/228826127*1568397607^(21/22) 4807526975999999 a001 32951280099/228826127*1568397607^(9/11) 4807526975999999 a001 12586269025/228826127*1568397607^(19/22) 4807526975999999 a001 102287808/4868641*1568397607^(10/11) 4807526975999999 a001 1124013801699827115/233802911 4807526975999999 a001 433494437/228826127*45537549124^(15/17) 4807526975999999 a001 433494437/228826127*312119004989^(9/11) 4807526975999999 a001 102334155/969323029*817138163596^(17/19) 4807526975999999 a001 102334155/969323029*14662949395604^(17/21) 4807526975999999 a001 433494437/228826127*14662949395604^(5/7) 4807526975999999 a001 433494437/228826127*192900153618^(5/6) 4807526975999999 a001 102334155/969323029*192900153618^(17/18) 4807526975999999 a001 433494437/228826127*28143753123^(9/10) 4807526975999999 a001 433494437/228826127*10749957122^(15/16) 4807526975999999 a001 225749145909/4868641*599074578^(4/7) 4807526975999999 a001 4052739537881/228826127*599074578^(13/21) 4807526975999999 a001 2504730781961/228826127*599074578^(9/14) 4807526975999999 a001 1548008755920/228826127*599074578^(2/3) 4807526975999999 a001 591286729879/228826127*599074578^(5/7) 4807526975999999 a001 225851433717/228826127*599074578^(16/21) 4807526975999999 a001 139583862445/228826127*599074578^(11/14) 4807526975999999 a001 86267571272/228826127*599074578^(17/21) 4807526975999999 a001 53316291173/228826127*599074578^(5/6) 4807526975999999 a001 32951280099/228826127*599074578^(6/7) 4807526975999999 a001 12586269025/228826127*599074578^(19/21) 4807526975999999 a001 7778742049/228826127*599074578^(13/14) 4807526975999999 a001 102287808/4868641*599074578^(20/21) 4807526975999999 a001 1288005205276048875/267914296 4807526975999999 a001 10983760033/29134601*87403803^(17/19) 4807526975999999 a001 102334155/370248451*14662949395604^(7/9) 4807526975999999 a001 102334155/370248451*505019158607^(7/8) 4807526975999999 a001 796030994547383608/165580141 4807526975999999 a001 225749145909/4868641*228826127^(3/5) 4807526975999999 a001 796030994547383610/165580141 4807526975999999 a001 6557470319842/228826127*228826127^(5/8) 4807526975999999 a001 12586269025/87403803*87403803^(18/19) 4807526975999999 a001 4052739537881/228826127*228826127^(13/20) 4807526975999999 a001 796030994547383611/165580141 4807526975999999 a001 1548008755920/228826127*228826127^(7/10) 4807526975999999 a001 133957148/299537289*45537549124^(16/17) 4807526975999999 a001 133957148/299537289*14662949395604^(16/21) 4807526975999999 a001 133957148/299537289*192900153618^(8/9) 4807526975999999 a001 133957148/299537289*73681302247^(12/13) 4807526975999999 a001 591286729879/228826127*228826127^(3/4) 4807526975999999 a001 2084036199823432504/433494437 4807526975999999 a001 225851433717/228826127*228826127^(4/5) 4807526975999999 a001 267914296/1568397607*312119004989^(10/11) 4807526975999999 a001 267914296/1568397607*3461452808002^(5/6) 4807526975999999 a001 233802911/199691526*10749957122^(23/24) 4807526975999999 a001 2728038802461456952/567451585 4807526975999999 a001 267084832/33281921*2537720636^(14/15) 4807526975999999 a001 12586269025/599074578*2537720636^(8/9) 4807526975999999 a001 10182505537/299537289*2537720636^(13/15) 4807526975999999 a001 43133785636/299537289*2537720636^(4/5) 4807526975999999 a001 139583862445/599074578*2537720636^(7/9) 4807526975999999 a001 182717648081/299537289*2537720636^(11/15) 4807526975999999 a001 86000486440/33281921*2537720636^(2/3) 4807526975999999 a001 3278735159921/299537289*2537720636^(3/5) 4807526975999999 a001 86267571272/228826127*228826127^(17/20) 4807526975999999 a001 1836311903/599074578*312119004989^(4/5) 4807526975999999 a001 1836311903/599074578*23725150497407^(11/16) 4807526975999999 a001 267914296/4106118243*23725150497407^(13/16) 4807526975999999 a001 1836311903/599074578*73681302247^(11/13) 4807526975999999 a001 1836311903/599074578*10749957122^(11/12) 4807526975999999 a001 14284196614945309208/2971215073 4807526975999999 a001 267084832/33281921*17393796001^(6/7) 4807526975999999 a001 267084832/33281921*45537549124^(14/17) 4807526975999999 a001 267084832/33281921*817138163596^(14/19) 4807526975999999 a001 133957148/5374978561*14662949395604^(6/7) 4807526975999999 a001 267084832/33281921*505019158607^(3/4) 4807526975999999 a001 267084832/33281921*192900153618^(7/9) 4807526975999999 a001 2876654787685616440/598364773 4807526975999999 a001 1836311903/599074578*4106118243^(22/23) 4807526975999999 a001 139583862445/599074578*17393796001^(5/7) 4807526975999999 a001 4052739537881/599074578*17393796001^(4/7) 4807526975999999 a001 12586269025/599074578*312119004989^(8/11) 4807526975999999 a001 267914296/28143753123*14662949395604^(8/9) 4807526975999999 a001 12586269025/599074578*23725150497407^(5/8) 4807526975999999 a001 12586269025/599074578*73681302247^(10/13) 4807526975999999 a001 267084832/33281921*10749957122^(7/8) 4807526975999999 a001 48952670052396865976/10182505537 4807526975999999 a001 43133785636/299537289*45537549124^(12/17) 4807526975999999 a001 267913919/710646*45537549124^(2/3) 4807526975999999 a001 182717648081/299537289*45537549124^(11/17) 4807526975999999 a001 86000486440/33281921*45537549124^(10/17) 4807526975999999 a001 3278735159921/299537289*45537549124^(9/17) 4807526975999999 a001 12586269025/599074578*28143753123^(4/5) 4807526975999999 a001 10983760033/199691526*817138163596^(2/3) 4807526975999999 a001 256319508074468182136/53316291173 4807526975999999 a001 133957148/96450076809*14662949395604^(20/21) 4807526975999999 a001 43133785636/299537289*505019158607^(9/14) 4807526975999999 a001 43133785636/299537289*192900153618^(2/3) 4807526975999999 a001 86000486440/33281921*312119004989^(6/11) 4807526975999999 a001 182717648081/299537289*312119004989^(3/5) 4807526975999999 a001 3278735159921/299537289*14662949395604^(3/7) 4807526975999999 a001 2504730781961/599074578*1322157322203^(1/2) 4807526975999999 a001 2842626904444117708008/591286729879 4807526975999999 a001 139583862445/599074578*312119004989^(7/11) 4807526975999999 a001 139583862445/599074578*14662949395604^(5/9) 4807526975999999 a001 139583862445/599074578*505019158607^(5/8) 4807526975999999 a001 3278735159921/299537289*192900153618^(1/2) 4807526975999999 a001 86000486440/33281921*192900153618^(5/9) 4807526975999999 a001 182717648081/299537289*192900153618^(11/18) 4807526975999999 a001 51841709505517829040/10783446409 4807526975999999 a001 3536736619241/199691526*73681302247^(1/2) 4807526975999999 a001 4052739537881/599074578*73681302247^(7/13) 4807526975999999 a001 43133785636/299537289*73681302247^(9/13) 4807526975999999 a001 591286729879/599074578*73681302247^(8/13) 4807526975999999 a001 10182505537/299537289*45537549124^(13/17) 4807526975999999 a001 158414167969674450184/32951280099 4807526975999999 a001 66978574/11384387281*14662949395604^(19/21) 4807526975999999 a001 10182505537/299537289*14662949395604^(13/21) 4807526975999999 a001 10182505537/299537289*192900153618^(13/18) 4807526975999999 a001 10182505537/299537289*73681302247^(3/4) 4807526975999999 a001 86000486440/33281921*28143753123^(3/5) 4807526975999999 a001 139583862445/599074578*28143753123^(7/10) 4807526975999999 a001 60508827864880718232/12586269025 4807526975999999 a001 9238424/599786069*3461452808002^(11/12) 4807526975999999 a001 3536736619241/199691526*10749957122^(13/24) 4807526975999999 a001 3278735159921/299537289*10749957122^(9/16) 4807526975999999 a001 4052739537881/599074578*10749957122^(7/12) 4807526975999999 a001 86000486440/33281921*10749957122^(5/8) 4807526975999999 a001 591286729879/599074578*10749957122^(2/3) 4807526975999999 a001 12586269025/599074578*10749957122^(5/6) 4807526975999999 a001 267913919/710646*10749957122^(17/24) 4807526975999999 a001 43133785636/299537289*10749957122^(3/4) 4807526975999999 a001 10983760033/199691526*10749957122^(19/24) 4807526975999999 a001 10182505537/299537289*10749957122^(13/16) 4807526975999999 a001 361129931640120383/75117609 4807526975999999 a001 3536736619241/199691526*4106118243^(13/23) 4807526975999999 a001 4052739537881/599074578*4106118243^(14/23) 4807526975999999 a001 86000486440/33281921*4106118243^(15/23) 4807526975999999 a001 591286729879/599074578*4106118243^(16/23) 4807526975999999 a001 267913919/710646*4106118243^(17/23) 4807526975999999 a001 267084832/33281921*4106118243^(21/23) 4807526975999999 a001 43133785636/299537289*4106118243^(18/23) 4807526975999999 a001 10983760033/199691526*4106118243^(19/23) 4807526975999999 a001 12586269025/599074578*4106118243^(20/23) 4807526975999999 a001 8828119010022395304/1836311903 4807526975999999 a001 567451585/299537289*45537549124^(15/17) 4807526975999999 a001 567451585/299537289*312119004989^(9/11) 4807526975999999 a001 66978574/634430159*817138163596^(17/19) 4807526975999999 a001 66978574/634430159*14662949395604^(17/21) 4807526975999999 a001 567451585/299537289*14662949395604^(5/7) 4807526975999999 a001 567451585/299537289*192900153618^(5/6) 4807526975999999 a001 567451585/299537289*28143753123^(9/10) 4807526975999999 a001 567451585/299537289*10749957122^(15/16) 4807526975999999 a001 3536736619241/199691526*1568397607^(13/22) 4807526975999999 a001 4052739537881/599074578*1568397607^(7/11) 4807526975999999 a001 86000486440/33281921*1568397607^(15/22) 4807526975999999 a001 591286729879/599074578*1568397607^(8/11) 4807526975999999 a001 182717648081/299537289*1568397607^(3/4) 4807526975999999 a001 267913919/710646*1568397607^(17/22) 4807526975999999 a001 43133785636/299537289*1568397607^(9/11) 4807526975999999 a001 10983760033/199691526*1568397607^(19/22) 4807526975999999 a001 12586269025/599074578*1568397607^(10/11) 4807526975999999 a001 267084832/33281921*1568397607^(21/22) 4807526975999999 a001 53316291173/228826127*228826127^(7/8) 4807526975999999 a001 3372041405099481400/701408733 4807526975999999 a001 32951280099/228826127*228826127^(9/10) 4807526975999999 a001 267914296/969323029*14662949395604^(7/9) 4807526975999999 a001 267914296/969323029*505019158607^(7/8) 4807526975999999 a001 2084036199823432509/433494437 4807526975999999 a001 3536736619241/199691526*599074578^(13/21) 4807526975999999 a001 3278735159921/299537289*599074578^(9/14) 4807526975999999 a001 2084036199823432510/433494437 4807526975999999 a001 12586269025/228826127*228826127^(19/20) 4807526975999999 a001 4052739537881/599074578*599074578^(2/3) 4807526975999999 a001 701408733/1568397607*45537549124^(16/17) 4807526975999999 a001 701408733/1568397607*14662949395604^(16/21) 4807526975999999 a001 701408733/1568397607*192900153618^(8/9) 4807526975999999 a001 701408733/1568397607*73681302247^(12/13) 4807526975999999 a001 86000486440/33281921*599074578^(5/7) 4807526975999999 a001 591286729879/599074578*599074578^(16/21) 4807526975999999 a001 182717648081/299537289*599074578^(11/14) 4807526975999999 a001 5456077604922913917/1134903170 4807526975999999 a001 12586269025/1568397607*2537720636^(14/15) 4807526975999999 a001 32951280099/1568397607*2537720636^(8/9) 4807526975999999 a001 53316291173/1568397607*2537720636^(13/15) 4807526975999999 a001 32264490531/224056801*2537720636^(4/5) 4807526975999999 a001 267913919/710646*599074578^(17/21) 4807526975999999 a001 365435296162/1568397607*2537720636^(7/9) 4807526975999999 a001 956722026041/1568397607*2537720636^(11/15) 4807526975999999 a001 4052739537881/1568397607*2537720636^(2/3) 4807526975999999 a001 233802911/1368706081*312119004989^(10/11) 4807526975999999 a001 233802911/1368706081*3461452808002^(5/6) 4807526975999999 a001 139583862445/599074578*599074578^(5/6) 4807526975999999 a001 1836311903/1568397607*10749957122^(23/24) 4807526975999999 a001 14284196614945309242/2971215073 4807526975999999 a001 686789568/224056801*312119004989^(4/5) 4807526975999999 a001 686789568/224056801*23725150497407^(11/16) 4807526975999999 a001 701408733/10749957122*23725150497407^(13/16) 4807526975999999 a001 686789568/224056801*73681302247^(11/13) 4807526975999999 a001 12586269025/1568397607*17393796001^(6/7) 4807526975999999 a001 37396512239913013809/7778742049 4807526975999999 a001 365435296162/1568397607*17393796001^(5/7) 4807526975999999 a001 1515744265389/224056801*17393796001^(4/7) 4807526975999999 a001 12586269025/1568397607*45537549124^(14/17) 4807526975999999 a001 233802911/9381251041*14662949395604^(6/7) 4807526975999999 a001 12586269025/1568397607*14662949395604^(2/3) 4807526975999999 a001 12586269025/1568397607*505019158607^(3/4) 4807526975999999 a001 12586269025/1568397607*192900153618^(7/9) 4807526975999999 a001 686789568/224056801*10749957122^(11/12) 4807526975999999 a001 97905340104793732185/20365011074 4807526975999999 a001 32264490531/224056801*45537549124^(12/17) 4807526975999999 a001 591286729879/1568397607*45537549124^(2/3) 4807526975999999 a001 956722026041/1568397607*45537549124^(11/17) 4807526975999999 a001 53316291173/1568397607*45537549124^(13/17) 4807526975999999 a001 4052739537881/1568397607*45537549124^(10/17) 4807526975999999 a001 32951280099/1568397607*312119004989^(8/11) 4807526975999999 a001 32951280099/1568397607*23725150497407^(5/8) 4807526975999999 a001 256319508074468182746/53316291173 4807526975999999 a001 32951280099/1568397607*73681302247^(10/13) 4807526975999999 a001 86267571272/1568397607*817138163596^(2/3) 4807526975999999 a001 7539923417063042877/1568358005 4807526975999999 a001 4052739537881/1568397607*312119004989^(6/11) 4807526975999999 a001 365435296162/1568397607*312119004989^(7/11) 4807526975999999 a001 1756840044281364265413/365435296162 4807526975999999 a001 1515744265389/224056801*14662949395604^(4/9) 4807526975999999 a001 701408733*(1/2+1/2*5^(1/2))^4 4807526975999999 a001 2504730781961/1568397607*9062201101803^(1/2) 4807526975999999 a001 1548008755920/1568397607*505019158607^(4/7) 4807526975999999 a001 361928953387584483120/75283811239 4807526975999999 a001 32264490531/224056801*192900153618^(2/3) 4807526975999999 a001 956722026041/1568397607*192900153618^(11/18) 4807526975999999 a001 414733676044142633307/86267571272 4807526975999999 a001 701408733/119218851371*14662949395604^(19/21) 4807526975999999 a001 53316291173/1568397607*14662949395604^(13/21) 4807526975999999 a001 53316291173/1568397607*192900153618^(13/18) 4807526975999999 a001 1515744265389/224056801*73681302247^(7/13) 4807526975999999 a001 1548008755920/1568397607*73681302247^(8/13) 4807526975999999 a001 32264490531/224056801*73681302247^(9/13) 4807526975999999 a001 52804722656558150187/10983760033 4807526975999999 a001 53316291173/1568397607*73681302247^(3/4) 4807526975999999 a001 701408733/45537549124*3461452808002^(11/12) 4807526975999999 a001 4052739537881/1568397607*28143753123^(3/5) 4807526975999999 a001 32951280099/1568397607*28143753123^(4/5) 4807526975999999 a001 365435296162/1568397607*28143753123^(7/10) 4807526975999999 a001 60508827864880718376/12586269025 4807526975999999 a001 1515744265389/224056801*10749957122^(7/12) 4807526975999999 a001 4052739537881/1568397607*10749957122^(5/8) 4807526975999999 a001 1548008755920/1568397607*10749957122^(2/3) 4807526975999999 a001 956722026041/1568397607*10749957122^(11/16) 4807526975999999 a001 591286729879/1568397607*10749957122^(17/24) 4807526975999999 a001 12586269025/1568397607*10749957122^(7/8) 4807526975999999 a001 32264490531/224056801*10749957122^(3/4) 4807526975999999 a001 86267571272/1568397607*10749957122^(19/24) 4807526975999999 a001 32951280099/1568397607*10749957122^(5/6) 4807526975999999 a001 53316291173/1568397607*10749957122^(13/16) 4807526975999999 a001 43133785636/299537289*599074578^(6/7) 4807526975999999 a001 2568035069440856063/534169664 4807526975999999 a001 2971215073/1568397607*45537549124^(15/17) 4807526975999999 a001 2971215073/1568397607*312119004989^(9/11) 4807526975999999 a001 701408733/6643838879*817138163596^(17/19) 4807526975999999 a001 701408733/6643838879*14662949395604^(17/21) 4807526975999999 a001 2971215073/1568397607*14662949395604^(5/7) 4807526975999999 a001 2971215073/1568397607*192900153618^(5/6) 4807526975999999 a001 701408733/6643838879*192900153618^(17/18) 4807526975999999 a001 2971215073/1568397607*28143753123^(9/10) 4807526975999999 a001 2971215073/1568397607*10749957122^(15/16) 4807526975999999 a001 1515744265389/224056801*4106118243^(14/23) 4807526975999999 a001 4052739537881/1568397607*4106118243^(15/23) 4807526975999999 a001 1548008755920/1568397607*4106118243^(16/23) 4807526975999999 a001 591286729879/1568397607*4106118243^(17/23) 4807526975999999 a001 32264490531/224056801*4106118243^(18/23) 4807526975999999 a001 686789568/224056801*4106118243^(22/23) 4807526975999999 a001 86267571272/1568397607*4106118243^(19/23) 4807526975999999 a001 32951280099/1568397607*4106118243^(20/23) 4807526975999999 a001 12586269025/1568397607*4106118243^(21/23) 4807526975999999 a001 8828119010022395325/1836311903 4807526975999999 a001 10983760033/199691526*599074578^(19/21) 4807526975999999 a001 701408733/2537720636*14662949395604^(7/9) 4807526975999999 a001 701408733/2537720636*505019158607^(7/8) 4807526975999999 a001 10983760033/1368706081*2537720636^(14/15) 4807526975999999 a001 10182505537/299537289*599074578^(13/14) 4807526975999999 a001 86267571272/4106118243*2537720636^(8/9) 4807526975999999 a001 139583862445/4106118243*2537720636^(13/15) 4807526975999999 a001 5456077604922913919/1134903170 4807526975999999 a001 591286729879/4106118243*2537720636^(4/5) 4807526975999999 a001 956722026041/4106118243*2537720636^(7/9) 4807526975999999 a001 2504730781961/4106118243*2537720636^(11/15) 4807526975999999 a001 3536736619241/1368706081*2537720636^(2/3) 4807526975999999 a001 43133785636/5374978561*2537720636^(14/15) 4807526975999999 a001 1515744265389/224056801*1568397607^(7/11) 4807526975999999 a001 225851433717/10749957122*2537720636^(8/9) 4807526975999999 a001 75283811239/9381251041*2537720636^(14/15) 4807526975999999 a001 591286729879/73681302247*2537720636^(14/15) 4807526975999999 a001 86000486440/10716675201*2537720636^(14/15) 4807526975999999 a001 4052739537881/505019158607*2537720636^(14/15) 4807526975999999 a001 3536736619241/440719107401*2537720636^(14/15) 4807526975999999 a001 3278735159921/408569081798*2537720636^(14/15) 4807526975999999 a001 2504730781961/312119004989*2537720636^(14/15) 4807526975999999 a001 956722026041/119218851371*2537720636^(14/15) 4807526975999999 a001 182717648081/22768774562*2537720636^(14/15) 4807526975999999 a001 182717648081/5374978561*2537720636^(13/15) 4807526975999999 a001 139583862445/17393796001*2537720636^(14/15) 4807526975999999 a001 591286729879/28143753123*2537720636^(8/9) 4807526975999999 a001 1548008755920/73681302247*2537720636^(8/9) 4807526975999999 a001 4052739537881/192900153618*2537720636^(8/9) 4807526975999999 a001 225749145909/10745088481*2537720636^(8/9) 4807526975999999 a001 6557470319842/312119004989*2537720636^(8/9) 4807526975999999 a001 2504730781961/119218851371*2537720636^(8/9) 4807526975999999 a001 956722026041/45537549124*2537720636^(8/9) 4807526975999999 a001 956722026041/28143753123*2537720636^(13/15) 4807526975999999 a001 2504730781961/73681302247*2537720636^(13/15) 4807526975999999 a001 365435296162/17393796001*2537720636^(8/9) 4807526975999999 a001 3278735159921/96450076809*2537720636^(13/15) 4807526975999999 a001 10610209857723/312119004989*2537720636^(13/15) 4807526975999999 a001 4052739537881/119218851371*2537720636^(13/15) 4807526975999999 a001 387002188980/11384387281*2537720636^(13/15) 4807526975999999 a001 12586269025/599074578*599074578^(20/21) 4807526975999999 a001 774004377960/5374978561*2537720636^(4/5) 4807526975999999 a001 591286729879/17393796001*2537720636^(13/15) 4807526975999999 a001 2504730781961/10749957122*2537720636^(7/9) 4807526975999999 a001 4052739537881/1568397607*1568397607^(15/22) 4807526975999999 a001 4052739537881/28143753123*2537720636^(4/5) 4807526975999999 a001 1515744265389/10525900321*2537720636^(4/5) 4807526975999999 a001 3278735159921/22768774562*2537720636^(4/5) 4807526975999999 a001 3278735159921/5374978561*2537720636^(11/15) 4807526975999999 a001 53316291173/6643838879*2537720636^(14/15) 4807526975999999 a001 6557470319842/28143753123*2537720636^(7/9) 4807526975999999 a001 2504730781961/17393796001*2537720636^(4/5) 4807526975999999 a001 10610209857723/45537549124*2537720636^(7/9) 4807526975999999 a001 1836311903/4106118243*45537549124^(16/17) 4807526975999999 a001 1836311903/4106118243*14662949395604^(16/21) 4807526975999999 a001 1836311903/4106118243*192900153618^(8/9) 4807526975999999 a001 1836311903/4106118243*73681302247^(12/13) 4807526975999999 a001 4052739537881/17393796001*2537720636^(7/9) 4807526975999999 a001 139583862445/6643838879*2537720636^(8/9) 4807526975999999 a001 225851433717/6643838879*2537720636^(13/15) 4807526975999999 a001 1548008755920/1568397607*1568397607^(8/11) 4807526975999999 a001 10610209857723/17393796001*2537720636^(11/15) 4807526975999999 a001 956722026041/1568397607*1568397607^(3/4) 4807526975999999 a001 956722026041/6643838879*2537720636^(4/5) 4807526975999999 a001 1548008755920/6643838879*2537720636^(7/9) 4807526975999999 a001 591286729879/1568397607*1568397607^(17/22) 4807526975999999 a001 4052739537881/6643838879*2537720636^(11/15) 4807526975999999 a001 14284196614945309247/2971215073 4807526975999999 a001 32264490531/224056801*1568397607^(9/11) 4807526975999999 a001 1836311903/10749957122*312119004989^(10/11) 4807526975999999 a001 1836311903/10749957122*3461452808002^(5/6) 4807526975999999 a001 10983760033/1368706081*17393796001^(6/7) 4807526975999999 a001 37396512239913013822/7778742049 4807526975999999 a001 956722026041/4106118243*17393796001^(5/7) 4807526975999999 a001 12586269025/4106118243*312119004989^(4/5) 4807526975999999 a001 12586269025/4106118243*23725150497407^(11/16) 4807526975999999 a001 1836311903/28143753123*23725150497407^(13/16) 4807526975999999 a001 12586269025/4106118243*73681302247^(11/13) 4807526975999999 a001 10983760033/1368706081*45537549124^(14/17) 4807526975999999 a001 97905340104793732219/20365011074 4807526975999999 a001 1602508992/1368706081*10749957122^(23/24) 4807526975999999 a001 139583862445/4106118243*45537549124^(13/17) 4807526975999999 a001 591286729879/4106118243*45537549124^(12/17) 4807526975999999 a001 516002918640/1368706081*45537549124^(2/3) 4807526975999999 a001 2504730781961/4106118243*45537549124^(11/17) 4807526975999999 a001 3536736619241/1368706081*45537549124^(10/17) 4807526975999999 a001 10983760033/1368706081*817138163596^(14/19) 4807526975999999 a001 10983760033/1368706081*14662949395604^(2/3) 4807526975999999 a001 10983760033/1368706081*505019158607^(3/4) 4807526975999999 a001 10983760033/1368706081*192900153618^(7/9) 4807526975999999 a001 256319508074468182835/53316291173 4807526975999999 a001 86267571272/4106118243*312119004989^(8/11) 4807526975999999 a001 1836311903/192900153618*14662949395604^(8/9) 4807526975999999 a001 86267571272/4106118243*23725150497407^(5/8) 4807526975999999 a001 2504730781961/4106118243*312119004989^(3/5) 4807526975999999 a001 3536736619241/1368706081*312119004989^(6/11) 4807526975999999 a001 1756840044281364266023/365435296162 4807526975999999 a001 591286729879/4106118243*14662949395604^(4/7) 4807526975999999 a001 12041560801895081679326/2504730781961 4807526975999999 a001 1836311903*(1/2+1/2*5^(1/2))^2 4807526975999999 a001 1085786860162753449737/225851433717 4807526975999999 a001 1836311903/312119004989*14662949395604^(19/21) 4807526975999999 a001 139583862445/4106118243*14662949395604^(13/21) 4807526975999999 a001 3536736619241/1368706081*192900153618^(5/9) 4807526975999999 a001 2504730781961/4106118243*192900153618^(11/18) 4807526975999999 a001 591286729879/4106118243*192900153618^(2/3) 4807526975999999 a001 414733676044142633451/86267571272 4807526975999999 a001 139583862445/4106118243*192900153618^(13/18) 4807526975999999 a001 1836311903/119218851371*3461452808002^(11/12) 4807526975999999 a001 4052739537881/4106118243*73681302247^(8/13) 4807526975999999 a001 86267571272/4106118243*73681302247^(10/13) 4807526975999999 a001 591286729879/4106118243*73681302247^(9/13) 4807526975999999 a001 139583862445/4106118243*73681302247^(3/4) 4807526975999999 a001 158414167969674450616/32951280099 4807526975999999 a001 3536736619241/1368706081*28143753123^(3/5) 4807526975999999 a001 956722026041/4106118243*28143753123^(7/10) 4807526975999999 a001 86267571272/4106118243*28143753123^(4/5) 4807526975999999 a001 60508827864880718397/12586269025 4807526975999999 a001 7778742049/4106118243*45537549124^(15/17) 4807526975999999 a001 7778742049/4106118243*312119004989^(9/11) 4807526975999999 a001 1836311903/17393796001*817138163596^(17/19) 4807526975999999 a001 1836311903/17393796001*14662949395604^(17/21) 4807526975999999 a001 7778742049/4106118243*14662949395604^(5/7) 4807526975999999 a001 7778742049/4106118243*192900153618^(5/6) 4807526975999999 a001 1836311903/17393796001*192900153618^(17/18) 4807526975999999 a001 86267571272/1568397607*1568397607^(19/22) 4807526975999999 a001 7778742049/4106118243*28143753123^(9/10) 4807526975999999 a001 3536736619241/1368706081*10749957122^(5/8) 4807526975999999 a001 4052739537881/4106118243*10749957122^(2/3) 4807526975999999 a001 2504730781961/4106118243*10749957122^(11/16) 4807526975999999 a001 516002918640/1368706081*10749957122^(17/24) 4807526975999999 a001 591286729879/4106118243*10749957122^(3/4) 4807526975999999 a001 12586269025/4106118243*10749957122^(11/12) 4807526975999999 a001 75283811239/1368706081*10749957122^(19/24) 4807526975999999 a001 139583862445/4106118243*10749957122^(13/16) 4807526975999999 a001 86267571272/4106118243*10749957122^(5/6) 4807526975999999 a001 10983760033/1368706081*10749957122^(7/8) 4807526975999999 a001 23112315624967704575/4807526976 4807526975999999 a001 7778742049/4106118243*10749957122^(15/16) 4807526975999999 a001 32951280099/1568397607*1568397607^(10/11) 4807526975999999 a001 1836311903/6643838879*14662949395604^(7/9) 4807526975999999 a001 1836311903/6643838879*505019158607^(7/8) 4807526975999999 a001 3536736619241/1368706081*4106118243^(15/23) 4807526975999999 a001 12586269025/1568397607*1568397607^(21/22) 4807526975999999 a001 4052739537881/4106118243*4106118243^(16/23) 4807526975999999 a001 2403763488/5374978561*45537549124^(16/17) 4807526975999999 a001 2403763488/5374978561*14662949395604^(16/21) 4807526975999999 a001 2403763488/5374978561*192900153618^(8/9) 4807526975999999 a001 2403763488/5374978561*73681302247^(12/13) 4807526975999999 a001 516002918640/1368706081*4106118243^(17/23) 4807526975999999 a001 591286729879/4106118243*4106118243^(18/23) 4807526975999999 a001 43133785636/5374978561*17393796001^(6/7) 4807526975999999 a001 2504730781961/10749957122*17393796001^(5/7) 4807526975999999 a001 75283811239/1368706081*4106118243^(19/23) 4807526975999999 a001 1602508992/9381251041*312119004989^(10/11) 4807526975999999 a001 1602508992/9381251041*3461452808002^(5/6) 4807526975999999 a001 43133785636/5374978561*45537549124^(14/17) 4807526975999999 a001 182717648081/5374978561*45537549124^(13/17) 4807526975999999 a001 774004377960/5374978561*45537549124^(12/17) 4807526975999999 a001 4052739537881/10749957122*45537549124^(2/3) 4807526975999999 a001 3278735159921/5374978561*45537549124^(11/17) 4807526975999999 a001 32951280099/10749957122*312119004989^(4/5) 4807526975999999 a001 32951280099/10749957122*23725150497407^(11/16) 4807526975999999 a001 686789568/10525900321*23725150497407^(13/16) 4807526975999999 a001 686789568/10525900321*505019158607^(13/14) 4807526975999999 a001 32951280099/10749957122*73681302247^(11/13) 4807526975999999 a001 267084832/10716675201*14662949395604^(6/7) 4807526975999999 a001 43133785636/5374978561*14662949395604^(2/3) 4807526975999999 a001 43133785636/5374978561*505019158607^(3/4) 4807526975999999 a001 225851433717/10749957122*312119004989^(8/11) 4807526975999999 a001 2504730781961/10749957122*312119004989^(7/11) 4807526975999999 a001 102287808/10745088481*14662949395604^(8/9) 4807526976000000 a001 1201881744/204284540899*14662949395604^(19/21) 4807526976000000 a001 182717648081/5374978561*14662949395604^(13/21) 4807526976000000 a001 2504730781961/10749957122*505019158607^(5/8) 4807526976000000 a001 4807526976/312119004989*3461452808002^(11/12) 4807526976000000 a001 3278735159921/5374978561*192900153618^(11/18) 4807526976000000 a001 774004377960/5374978561*192900153618^(2/3) 4807526976000000 a001 182717648081/5374978561*192900153618^(13/18) 4807526976000000 a001 10182505537/5374978561*45537549124^(15/17) 4807526976000000 a001 4807525989/4870846*73681302247^(8/13) 4807526976000000 a001 774004377960/5374978561*73681302247^(9/13) 4807526976000000 a001 225851433717/10749957122*73681302247^(10/13) 4807526976000000 a001 182717648081/5374978561*73681302247^(3/4) 4807526976000000 a001 10182505537/5374978561*312119004989^(9/11) 4807526976000000 a001 1201881744/11384387281*817138163596^(17/19) 4807526976000000 a001 1201881744/11384387281*14662949395604^(17/21) 4807526976000000 a001 10182505537/5374978561*14662949395604^(5/7) 4807526976000000 a001 10182505537/5374978561*192900153618^(5/6) 4807526976000000 a001 1201881744/11384387281*192900153618^(17/18) 4807526976000000 a001 2504730781961/10749957122*28143753123^(7/10) 4807526976000000 a001 86267571272/4106118243*4106118243^(20/23) 4807526976000000 a001 225851433717/10749957122*28143753123^(4/5) 4807526976000000 a001 10182505537/5374978561*28143753123^(9/10) 4807526976000000 a001 4807526976/17393796001*14662949395604^(7/9) 4807526976000000 a001 4807526976/17393796001*505019158607^(7/8) 4807526976000000 a001 10983760033/1368706081*4106118243^(21/23) 4807526976000000 a001 75283811239/9381251041*17393796001^(6/7) 4807526976000000 a001 12586269025/4106118243*4106118243^(22/23) 4807526976000000 a001 6557470319842/28143753123*17393796001^(5/7) 4807526976000000 a001 591286729879/73681302247*17393796001^(6/7) 4807526976000000 a001 12586269025/28143753123*45537549124^(16/17) 4807526976000000 a001 4807525989/4870846*10749957122^(2/3) 4807526976000000 a001 86000486440/10716675201*17393796001^(6/7) 4807526976000000 a001 4052739537881/505019158607*17393796001^(6/7) 4807526976000000 a001 3536736619241/440719107401*17393796001^(6/7) 4807526976000000 a001 3278735159921/408569081798*17393796001^(6/7) 4807526976000000 a001 2504730781961/312119004989*17393796001^(6/7) 4807526976000000 a001 956722026041/119218851371*17393796001^(6/7) 4807526976000000 a001 3278735159921/5374978561*10749957122^(11/16) 4807526976000000 a001 12586269025/28143753123*14662949395604^(16/21) 4807526976000000 a001 12586269025/28143753123*192900153618^(8/9) 4807526976000000 a001 12586269025/28143753123*73681302247^(12/13) 4807526976000000 a001 182717648081/22768774562*17393796001^(6/7) 4807526976000000 a001 158414167969674450625/32951280099 4807526976000000 a001 774004377960/5374978561*10749957122^(3/4) 4807526976000000 a001 10610209857723/45537549124*17393796001^(5/7) 4807526976000000 a001 591286729879/10749957122*10749957122^(19/24) 4807526976000000 a001 75283811239/9381251041*45537549124^(14/17) 4807526976000000 a001 956722026041/28143753123*45537549124^(13/17) 4807526976000000 a001 12586269025/10749957122*10749957122^(23/24) 4807526976000000 a001 182717648081/5374978561*10749957122^(13/16) 4807526976000000 a001 53316291173/28143753123*45537549124^(15/17) 4807526976000000 a001 4052739537881/28143753123*45537549124^(12/17) 4807526976000000 a001 3536736619241/9381251041*45537549124^(2/3) 4807526976000000 a001 12586269025/73681302247*312119004989^(10/11) 4807526976000000 a001 12586269025/73681302247*3461452808002^(5/6) 4807526976000000 a001 414733676044142633475/86267571272 4807526976000000 a001 86267571272/28143753123*312119004989^(4/5) 4807526976000000 a001 86267571272/28143753123*23725150497407^(11/16) 4807526976000000 a001 1085786860162753449800/225851433717 4807526976000000 a001 591286729879/28143753123*312119004989^(8/11) 4807526976000000 a001 12586269025/505019158607*14662949395604^(6/7) 4807526976000000 a001 12585437040/228811001*817138163596^(2/3) 4807526976000000 a001 4052739537881/28143753123*14662949395604^(4/7) 4807526976000000 a001 12041560801895081680025/2504730781961 4807526976000000 a001 4052739537881/28143753123*505019158607^(9/14) 4807526976000000 a001 1756840044281364266125/365435296162 4807526976000000 a001 75283811239/9381251041*192900153618^(7/9) 4807526976000000 a001 4052739537881/28143753123*192900153618^(2/3) 4807526976000000 a001 134210636823722163265/27916772489 4807526976000000 a001 12586269025/119218851371*817138163596^(17/19) 4807526976000000 a001 53316291173/28143753123*14662949395604^(5/7) 4807526976000000 a001 53316291173/28143753123*192900153618^(5/6) 4807526976000000 a001 12586269025/119218851371*192900153618^(17/18) 4807526976000000 a001 4052739537881/28143753123*73681302247^(9/13) 4807526976000000 a001 86267571272/28143753123*73681302247^(11/13) 4807526976000000 a001 956722026041/28143753123*73681302247^(3/4) 4807526976000000 a001 591286729879/28143753123*73681302247^(10/13) 4807526976000000 a001 43133785636/5374978561*10749957122^(7/8) 4807526976000000 a001 32951280099/10749957122*10749957122^(11/12) 4807526976000000 a001 256319508074468182850/53316291173 4807526976000000 a001 32951280099/73681302247*45537549124^(16/17) 4807526976000000 a001 12586269025/45537549124*14662949395604^(7/9) 4807526976000000 a001 12586269025/45537549124*505019158607^(7/8) 4807526976000000 a001 139583862445/73681302247*45537549124^(15/17) 4807526976000000 a001 591286729879/73681302247*45537549124^(14/17) 4807526976000000 a001 2504730781961/73681302247*45537549124^(13/17) 4807526976000000 a001 1515744265389/10525900321*45537549124^(12/17) 4807526976000000 a001 43133785636/96450076809*45537549124^(16/17) 4807526976000000 a001 225851433717/505019158607*45537549124^(16/17) 4807526976000000 a001 591286729879/1322157322203*45537549124^(16/17) 4807526976000000 a001 182717648081/408569081798*45537549124^(16/17) 4807526976000000 a001 139583862445/312119004989*45537549124^(16/17) 4807526976000000 a001 86000486440/10716675201*45537549124^(14/17) 4807526976000000 a001 591286729879/312119004989*45537549124^(15/17) 4807526976000000 a001 4052739537881/505019158607*45537549124^(14/17) 4807526976000000 a001 3278735159921/96450076809*45537549124^(13/17) 4807526976000000 a001 3278735159921/408569081798*45537549124^(14/17) 4807526976000000 a001 2504730781961/312119004989*45537549124^(14/17) 4807526976000000 a001 6557470319842/28143753123*28143753123^(7/10) 4807526976000000 a001 32951280099/73681302247*14662949395604^(16/21) 4807526976000000 a001 361928953387584483267/75283811239 4807526976000000 a001 225851433717/119218851371*45537549124^(15/17) 4807526976000000 a001 32951280099/73681302247*192900153618^(8/9) 4807526976000000 a001 956722026041/119218851371*45537549124^(14/17) 4807526976000000 a001 53316291173/119218851371*45537549124^(16/17) 4807526976000000 a001 4052739537881/119218851371*45537549124^(13/17) 4807526976000000 a001 591286729879/28143753123*28143753123^(4/5) 4807526976000000 a001 10983760033/64300051206*312119004989^(10/11) 4807526976000000 a001 10983760033/64300051206*3461452808002^(5/6) 4807526976000000 a001 32951280099/73681302247*73681302247^(12/13) 4807526976000000 a001 32264490531/10525900321*312119004989^(4/5) 4807526976000000 a001 1548008755920/73681302247*312119004989^(8/11) 4807526976000000 a001 32264490531/10525900321*23725150497407^(11/16) 4807526976000000 a001 10983760033/440719107401*14662949395604^(6/7) 4807526976000000 a001 1515744265389/10525900321*14662949395604^(4/7) 4807526976000000 a001 1515744265389/10525900321*505019158607^(9/14) 4807526976000000 a001 32951280099/312119004989*817138163596^(17/19) 4807526976000000 a001 139583862445/73681302247*14662949395604^(5/7) 4807526976000000 a001 1515744265389/10525900321*192900153618^(2/3) 4807526976000000 a001 2504730781961/73681302247*192900153618^(13/18) 4807526976000000 a001 139583862445/73681302247*192900153618^(5/6) 4807526976000000 a001 32951280099/312119004989*192900153618^(17/18) 4807526976000000 a001 1756840044281364266127/365435296162 4807526976000000 a001 32951280099/119218851371*505019158607^(7/8) 4807526976000000 a001 10182505537/5374978561*10749957122^(15/16) 4807526976000000 a001 1515744265389/10525900321*73681302247^(9/13) 4807526976000000 a001 43133785636/96450076809*14662949395604^(16/21) 4807526976000000 a001 465130865823099981124/96750547245 4807526976000000 a001 2504730781961/73681302247*73681302247^(3/4) 4807526976000000 a001 1548008755920/73681302247*73681302247^(10/13) 4807526976000000 a001 86267571272/505019158607*312119004989^(10/11) 4807526976000000 a001 591286729879/192900153618*312119004989^(4/5) 4807526976000000 a001 182717648081/96450076809*312119004989^(9/11) 4807526976000000 a001 32264490531/10525900321*73681302247^(11/13) 4807526976000000 a001 19483654655064681378024/4052739537881 4807526976000000 a001 1135099622/192933544679*14662949395604^(19/21) 4807526976000000 a001 21566892818/204284540899*817138163596^(17/19) 4807526976000000 a001 12041560801895081680040/2504730781961 4807526976000000 a001 1548008755920/505019158607*312119004989^(4/5) 4807526976000000 a001 225749145909/10745088481*312119004989^(8/11) 4807526976000000 a001 1515744265389/494493258286*312119004989^(4/5) 4807526976000000 a001 182717648081/96450076809*192900153618^(5/6) 4807526976000000 a001 139583862445/505019158607*14662949395604^(7/9) 4807526976000000 a001 4052739537881/505019158607*192900153618^(7/9) 4807526976000000 a001 591286729879/1322157322203*192900153618^(8/9) 4807526976000000 a001 182717648081/408569081798*192900153618^(8/9) 4807526976000000 a001 21566892818/11384387281*45537549124^(15/17) 4807526976000000 a001 2504730781961/312119004989*192900153618^(7/9) 4807526976000000 a001 591286729879/312119004989*192900153618^(5/6) 4807526976000000 a001 4599466948725481982056/956722026041 4807526976000000 a001 53316291173/192900153618*14662949395604^(7/9) 4807526976000000 a001 139583862445/312119004989*192900153618^(8/9) 4807526976000000 a001 53316291173/192900153618*505019158607^(7/8) 4807526976000000 a001 225851433717/119218851371*312119004989^(9/11) 4807526976000000 a001 2504730781961/119218851371*312119004989^(8/11) 4807526976000000 a001 12041560801895081680041/2504730781961 4807526976000000 a001 6557470319842/119218851371*817138163596^(2/3) 4807526976000000 a001 31525215456959763058067/6557470319842 4807526976000000 a001 19483654655064681378026/4052739537881 4807526976000000 a001 956722026041/119218851371*505019158607^(3/4) 4807526976000000 a001 53316291173/817138163596*505019158607^(13/14) 4807526976000000 a001 53316291173/312119004989*3461452808002^(5/6) 4807526976000000 a001 1488418770633919939597/309601751184 4807526976000000 a001 182717648081/22768774562*45537549124^(14/17) 4807526976000000 a001 225851433717/119218851371*192900153618^(5/6) 4807526976000000 a001 53316291173/505019158607*192900153618^(17/18) 4807526976000000 a001 3278735159921/96450076809*73681302247^(3/4) 4807526976000000 a001 4052739537881/192900153618*73681302247^(10/13) 4807526976000000 a001 591286729879/192900153618*73681302247^(11/13) 4807526976000000 a001 225749145909/10745088481*73681302247^(10/13) 4807526976000000 a001 2842626904444117715929/591286729879 4807526976000000 a001 3278735159921/22768774562*45537549124^(12/17) 4807526976000000 a001 10610209857723/312119004989*73681302247^(3/4) 4807526976000000 a001 1548008755920/505019158607*73681302247^(11/13) 4807526976000000 a001 1515744265389/494493258286*73681302247^(11/13) 4807526976000000 a001 2504730781961/817138163596*73681302247^(11/13) 4807526976000000 a001 225851433717/505019158607*73681302247^(12/13) 4807526976000000 a001 956722026041/312119004989*73681302247^(11/13) 4807526976000000 a001 591286729879/1322157322203*73681302247^(12/13) 4807526976000000 a001 182717648081/408569081798*73681302247^(12/13) 4807526976000000 a001 139583862445/312119004989*73681302247^(12/13) 4807526976000000 a001 4052739537881/119218851371*73681302247^(3/4) 4807526976000000 a001 2504730781961/119218851371*73681302247^(10/13) 4807526976000000 a001 365435296162/119218851371*73681302247^(11/13) 4807526976000000 a001 671053184118610816326/139583862445 4807526976000000 a001 20365011074/73681302247*14662949395604^(7/9) 4807526976000000 a001 20365011074/73681302247*505019158607^(7/8) 4807526976000000 a001 53316291173/119218851371*73681302247^(12/13) 4807526976000000 a001 21566892818/11384387281*312119004989^(9/11) 4807526976000000 a001 10182505537/96450076809*817138163596^(17/19) 4807526976000000 a001 10182505537/96450076809*14662949395604^(17/21) 4807526976000000 a001 21566892818/11384387281*14662949395604^(5/7) 4807526976000000 a001 10610209857723/45537549124*312119004989^(7/11) 4807526976000000 a001 21566892818/11384387281*192900153618^(5/6) 4807526976000000 a001 10182505537/96450076809*192900153618^(17/18) 4807526976000000 a001 12041560801895081680046/2504730781961 4807526976000000 a001 10182505537/408569081798*14662949395604^(6/7) 4807526976000000 a001 20365011074/312119004989*505019158607^(13/14) 4807526976000000 a001 3278735159921/22768774562*192900153618^(2/3) 4807526976000000 a001 387002188980/11384387281*192900153618^(13/18) 4807526976000000 a001 182717648081/22768774562*192900153618^(7/9) 4807526976000000 a001 10182505537/22768774562*45537549124^(16/17) 4807526976000000 a001 20365011074/119218851371*312119004989^(10/11) 4807526976000000 a001 20365011074/119218851371*3461452808002^(5/6) 4807526976000000 a001 1085786860162753449802/225851433717 4807526976000000 a001 3278735159921/22768774562*73681302247^(9/13) 4807526976000000 a001 387002188980/11384387281*73681302247^(3/4) 4807526976000000 a001 956722026041/45537549124*73681302247^(10/13) 4807526976000000 a001 139583862445/45537549124*73681302247^(11/13) 4807526976000000 a001 1548008755920/73681302247*28143753123^(4/5) 4807526976000000 a001 4052739537881/17393796001*17393796001^(5/7) 4807526976000000 a001 139583862445/73681302247*28143753123^(9/10) 4807526976000000 a001 10182505537/22768774562*14662949395604^(16/21) 4807526976000000 a001 10182505537/22768774562*192900153618^(8/9) 4807526976000000 a001 103683419011035658369/21566892818 4807526976000000 a001 225749145909/10745088481*28143753123^(4/5) 4807526976000000 a001 6557470319842/312119004989*28143753123^(4/5) 4807526976000000 a001 2504730781961/119218851371*28143753123^(4/5) 4807526976000000 a001 182717648081/96450076809*28143753123^(9/10) 4807526976000000 a001 956722026041/505019158607*28143753123^(9/10) 4807526976000000 a001 10182505537/22768774562*73681302247^(12/13) 4807526976000000 a001 591286729879/312119004989*28143753123^(9/10) 4807526976000000 a001 225851433717/119218851371*28143753123^(9/10) 4807526976000000 a001 10610209857723/45537549124*28143753123^(7/10) 4807526976000000 a001 956722026041/45537549124*28143753123^(4/5) 4807526976000000 a001 97905340104793732225/20365011074 4807526976000000 a001 21566892818/11384387281*28143753123^(9/10) 4807526976000000 a001 7778742049/28143753123*14662949395604^(7/9) 4807526976000000 a001 7778742049/28143753123*505019158607^(7/8) 4807526976000000 a001 32951280099/17393796001*45537549124^(15/17) 4807526976000000 a001 139583862445/17393796001*45537549124^(14/17) 4807526976000000 a001 591286729879/17393796001*45537549124^(13/17) 4807526976000000 a001 2504730781961/17393796001*45537549124^(12/17) 4807526976000000 a001 6557470319842/17393796001*45537549124^(2/3) 4807526976000000 a001 10610209857723/17393796001*45537549124^(11/17) 4807526976000000 a001 256319508074468182851/53316291173 4807526976000000 a001 32951280099/17393796001*312119004989^(9/11) 4807526976000000 a001 7778742049/73681302247*817138163596^(17/19) 4807526976000000 a001 7778742049/73681302247*14662949395604^(17/21) 4807526976000000 a001 32951280099/17393796001*14662949395604^(5/7) 4807526976000000 a001 32951280099/17393796001*192900153618^(5/6) 4807526976000000 a001 7778742049/73681302247*192900153618^(17/18) 4807526976000000 a001 671053184118610816328/139583862445 4807526976000000 a001 4052739537881/17393796001*312119004989^(7/11) 4807526976000000 a001 10610209857723/17393796001*312119004989^(3/5) 4807526976000000 a001 4052739537881/17393796001*14662949395604^(5/9) 4807526976000000 a001 365435296162/17393796001*23725150497407^(5/8) 4807526976000000 a001 139583862445/17393796001*14662949395604^(2/3) 4807526976000000 a001 139583862445/17393796001*505019158607^(3/4) 4807526976000000 a001 139583862445/17393796001*192900153618^(7/9) 4807526976000000 a001 53316291173/17393796001*312119004989^(4/5) 4807526976000000 a001 53316291173/17393796001*23725150497407^(11/16) 4807526976000000 a001 7778742049/119218851371*23725150497407^(13/16) 4807526976000000 a001 7778742049/119218851371*505019158607^(13/14) 4807526976000000 a001 414733676044142633477/86267571272 4807526976000000 a001 2504730781961/17393796001*73681302247^(9/13) 4807526976000000 a001 591286729879/17393796001*73681302247^(3/4) 4807526976000000 a001 365435296162/17393796001*73681302247^(10/13) 4807526976000000 a001 53316291173/17393796001*73681302247^(11/13) 4807526976000000 a001 7778742049/45537549124*312119004989^(10/11) 4807526976000000 a001 7778742049/45537549124*3461452808002^(5/6) 4807526976000000 a001 158414167969674450626/32951280099 4807526976000000 a001 4052739537881/17393796001*28143753123^(7/10) 4807526976000000 a001 32951280099/17393796001*28143753123^(9/10) 4807526976000000 a001 365435296162/17393796001*28143753123^(4/5) 4807526976000000 a001 3536736619241/9381251041*10749957122^(17/24) 4807526976000000 a001 4052739537881/28143753123*10749957122^(3/4) 4807526976000000 a001 12585437040/228811001*10749957122^(19/24) 4807526976000000 a001 956722026041/28143753123*10749957122^(13/16) 4807526976000000 a001 591286729879/28143753123*10749957122^(5/6) 4807526976000000 a001 7778742049/17393796001*45537549124^(16/17) 4807526976000000 a001 1515744265389/10525900321*10749957122^(3/4) 4807526976000000 a001 7778742049/17393796001*14662949395604^(16/21) 4807526976000000 a001 7778742049/17393796001*192900153618^(8/9) 4807526976000000 a001 86267571272/28143753123*10749957122^(11/12) 4807526976000000 a001 4052739537881/73681302247*10749957122^(19/24) 4807526976000000 a001 7778742049/17393796001*73681302247^(12/13) 4807526976000000 a001 3536736619241/64300051206*10749957122^(19/24) 4807526976000000 a001 10983760033/9381251041*10749957122^(23/24) 4807526976000000 a001 2504730781961/73681302247*10749957122^(13/16) 4807526976000000 a001 53316291173/28143753123*10749957122^(15/16) 4807526976000000 a001 3278735159921/22768774562*10749957122^(3/4) 4807526976000000 a001 3278735159921/96450076809*10749957122^(13/16) 4807526976000000 a001 1548008755920/73681302247*10749957122^(5/6) 4807526976000000 a001 4052739537881/119218851371*10749957122^(13/16) 4807526976000000 a001 4052739537881/192900153618*10749957122^(5/6) 4807526976000000 a001 225749145909/10745088481*10749957122^(5/6) 4807526976000000 a001 6557470319842/312119004989*10749957122^(5/6) 4807526976000000 a001 2504730781961/119218851371*10749957122^(5/6) 4807526976000000 a001 2504730781961/45537549124*10749957122^(19/24) 4807526976000000 a001 591286729879/73681302247*10749957122^(7/8) 4807526976000000 a001 387002188980/11384387281*10749957122^(13/16) 4807526976000000 a001 86000486440/10716675201*10749957122^(7/8) 4807526976000000 a001 4052739537881/505019158607*10749957122^(7/8) 4807526976000000 a001 3536736619241/440719107401*10749957122^(7/8) 4807526976000000 a001 3278735159921/408569081798*10749957122^(7/8) 4807526976000000 a001 2504730781961/312119004989*10749957122^(7/8) 4807526976000000 a001 956722026041/119218851371*10749957122^(7/8) 4807526976000000 a001 956722026041/45537549124*10749957122^(5/6) 4807526976000000 a001 32264490531/10525900321*10749957122^(11/12) 4807526976000000 a001 60508827864880718401/12586269025 4807526976000000 a001 591286729879/192900153618*10749957122^(11/12) 4807526976000000 a001 1548008755920/505019158607*10749957122^(11/12) 4807526976000000 a001 1515744265389/494493258286*10749957122^(11/12) 4807526976000000 a001 139583862445/73681302247*10749957122^(15/16) 4807526976000000 a001 956722026041/312119004989*10749957122^(11/12) 4807526976000000 a001 365435296162/119218851371*10749957122^(11/12) 4807526976000000 a001 182717648081/22768774562*10749957122^(7/8) 4807526976000000 a001 86267571272/73681302247*10749957122^(23/24) 4807526976000000 a001 182717648081/96450076809*10749957122^(15/16) 4807526976000000 a001 956722026041/505019158607*10749957122^(15/16) 4807526976000000 a001 591286729879/312119004989*10749957122^(15/16) 4807526976000000 a001 225851433717/119218851371*10749957122^(15/16) 4807526976000000 a001 75283811239/64300051206*10749957122^(23/24) 4807526976000000 a001 365435296162/312119004989*10749957122^(23/24) 4807526976000000 a001 139583862445/119218851371*10749957122^(23/24) 4807526976000000 a001 139583862445/45537549124*10749957122^(11/12) 4807526976000000 a001 21566892818/11384387281*10749957122^(15/16) 4807526976000000 a001 10749957122/5*5^(1/2) 4807526976000000 a001 53316291173/45537549124*10749957122^(23/24) 4807526976000000 a001 10610209857723/17393796001*10749957122^(11/16) 4807526976000000 a001 6557470319842/17393796001*10749957122^(17/24) 4807526976000000 a001 2504730781961/17393796001*10749957122^(3/4) 4807526976000000 a001 956722026041/17393796001*10749957122^(19/24) 4807526976000000 a001 591286729879/17393796001*10749957122^(13/16) 4807526976000000 a001 365435296162/17393796001*10749957122^(5/6) 4807526976000000 a001 10182505537/1268860318*2537720636^(14/15) 4807526976000000 a001 139583862445/17393796001*10749957122^(7/8) 4807526976000000 a001 32951280099/17393796001*10749957122^(15/16) 4807526976000000 a001 53316291173/17393796001*10749957122^(11/12) 4807526976000000 a001 20365011074/17393796001*10749957122^(23/24) 4807526976000000 a001 2971215073/10749957122*14662949395604^(7/9) 4807526976000000 a001 2971215073/10749957122*505019158607^(7/8) 4807526976000000 a001 53316291173/2537720636*2537720636^(8/9) 4807526976000000 a001 37396512239913013825/7778742049 4807526976000000 a001 53316291173/6643838879*17393796001^(6/7) 4807526976000000 a001 1548008755920/6643838879*17393796001^(5/7) 4807526976000000 a001 1135099622/33391061*2537720636^(13/15) 4807526976000000 a001 12586269025/6643838879*45537549124^(15/17) 4807526976000000 a001 12586269025/6643838879*312119004989^(9/11) 4807526976000000 a001 2971215073/28143753123*817138163596^(17/19) 4807526976000000 a001 12586269025/6643838879*14662949395604^(5/7) 4807526976000000 a001 12586269025/6643838879*192900153618^(5/6) 4807526976000000 a001 2971215073/28143753123*192900153618^(17/18) 4807526976000000 a001 97905340104793732227/20365011074 4807526976000000 a001 225851433717/6643838879*45537549124^(13/17) 4807526976000000 a001 956722026041/6643838879*45537549124^(12/17) 4807526976000000 a001 53316291173/6643838879*45537549124^(14/17) 4807526976000000 a001 2504730781961/6643838879*45537549124^(2/3) 4807526976000000 a001 4052739537881/6643838879*45537549124^(11/17) 4807526976000000 a001 12586269025/6643838879*28143753123^(9/10) 4807526976000000 a001 256319508074468182856/53316291173 4807526976000000 a001 2971215073/192900153618*3461452808002^(11/12) 4807526976000000 a001 671053184118610816341/139583862445 4807526976000000 a001 1548008755920/6643838879*312119004989^(7/11) 4807526976000000 a001 2971215073/505019158607*14662949395604^(19/21) 4807526976000000 a001 225851433717/6643838879*14662949395604^(13/21) 4807526976000000 a001 1756840044281364266167/365435296162 4807526976000000 a001 1548008755920/6643838879*14662949395604^(5/9) 4807526976000000 a001 12041560801895081680313/2504730781961 4807526976000000 a001 10610209857723/6643838879*9062201101803^(1/2) 4807526976000000 a001 1085786860162753449826/225851433717 4807526976000000 a001 2971215073/312119004989*14662949395604^(8/9) 4807526976000000 a001 139583862445/6643838879*23725150497407^(5/8) 4807526976000000 a001 225851433717/6643838879*192900153618^(13/18) 4807526976000000 a001 4052739537881/6643838879*192900153618^(11/18) 4807526976000000 a001 414733676044142633485/86267571272 4807526976000000 a001 53316291173/6643838879*817138163596^(14/19) 4807526976000000 a001 2971215073/119218851371*14662949395604^(6/7) 4807526976000000 a001 53316291173/6643838879*505019158607^(3/4) 4807526976000000 a001 53316291173/6643838879*192900153618^(7/9) 4807526976000000 a001 6557470319842/6643838879*73681302247^(8/13) 4807526976000000 a001 956722026041/6643838879*73681302247^(9/13) 4807526976000000 a001 225851433717/6643838879*73681302247^(3/4) 4807526976000000 a001 139583862445/6643838879*73681302247^(10/13) 4807526976000000 a001 158414167969674450629/32951280099 4807526976000000 a001 20365011074/6643838879*312119004989^(4/5) 4807526976000000 a001 20365011074/6643838879*23725150497407^(11/16) 4807526976000000 a001 2971215073/45537549124*23725150497407^(13/16) 4807526976000000 a001 2971215073/45537549124*505019158607^(13/14) 4807526976000000 a001 20365011074/6643838879*73681302247^(11/13) 4807526976000000 a001 1548008755920/6643838879*28143753123^(7/10) 4807526976000000 a001 139583862445/6643838879*28143753123^(4/5) 4807526976000000 a001 60508827864880718402/12586269025 4807526976000000 a001 2971215073/17393796001*312119004989^(10/11) 4807526976000000 a001 2971215073/17393796001*3461452808002^(5/6) 4807526976000000 a001 6557470319842/6643838879*10749957122^(2/3) 4807526976000000 a001 4052739537881/6643838879*10749957122^(11/16) 4807526976000000 a001 2504730781961/6643838879*10749957122^(17/24) 4807526976000000 a001 956722026041/6643838879*10749957122^(3/4) 4807526976000000 a001 12586269025/6643838879*10749957122^(15/16) 4807526976000000 a001 365435296162/6643838879*10749957122^(19/24) 4807526976000000 a001 225851433717/6643838879*10749957122^(13/16) 4807526976000000 a001 139583862445/6643838879*10749957122^(5/6) 4807526976000000 a001 53316291173/6643838879*10749957122^(7/8) 4807526976000000 a001 182717648081/1268860318*2537720636^(4/5) 4807526976000000 a001 20365011074/6643838879*10749957122^(11/12) 4807526976000000 a001 4807525989/4870846*4106118243^(16/23) 4807526976000000 a001 7778742049/6643838879*10749957122^(23/24) 4807526976000000 a001 591286729879/2537720636*2537720636^(7/9) 4807526976000000 a001 23112315624967704577/4807526976 4807526976000000 a001 4052739537881/10749957122*4106118243^(17/23) 4807526976000000 a001 774004377960/5374978561*4106118243^(18/23) 4807526976000000 a001 591286729879/10749957122*4106118243^(19/23) 4807526976000000 a001 1134903780/1860499*2537720636^(11/15) 4807526976000000 a001 3536736619241/9381251041*4106118243^(17/23) 4807526976000000 a001 225851433717/10749957122*4106118243^(20/23) 4807526976000000 a001 2971215073/6643838879*45537549124^(16/17) 4807526976000000 a001 4052739537881/28143753123*4106118243^(18/23) 4807526976000000 a001 2971215073/6643838879*14662949395604^(16/21) 4807526976000000 a001 2971215073/6643838879*192900153618^(8/9) 4807526976000000 a001 43133785636/5374978561*4106118243^(21/23) 4807526976000000 a001 2971215073/6643838879*73681302247^(12/13) 4807526976000000 a001 1515744265389/10525900321*4106118243^(18/23) 4807526976000000 a001 3278735159921/22768774562*4106118243^(18/23) 4807526976000000 a001 6557470319842/17393796001*4106118243^(17/23) 4807526976000000 a001 12585437040/228811001*4106118243^(19/23) 4807526976000000 a001 32951280099/10749957122*4106118243^(22/23) 4807526976000000 a001 4052739537881/73681302247*4106118243^(19/23) 4807526976000000 a001 3536736619241/64300051206*4106118243^(19/23) 4807526976000000 a001 6557470319842/119218851371*4106118243^(19/23) 4807526976000000 a001 2504730781961/45537549124*4106118243^(19/23) 4807526976000000 a001 2504730781961/17393796001*4106118243^(18/23) 4807526976000000 a001 591286729879/28143753123*4106118243^(20/23) 4807526976000000 a001 1548008755920/73681302247*4106118243^(20/23) 4807526976000000 a001 4052739537881/192900153618*4106118243^(20/23) 4807526976000000 a001 225749145909/10745088481*4106118243^(20/23) 4807526976000000 a001 6557470319842/312119004989*4106118243^(20/23) 4807526976000000 a001 2504730781961/119218851371*4106118243^(20/23) 4807526976000000 a001 3278735159921/1268860318*2537720636^(2/3) 4807526976000000 a001 956722026041/45537549124*4106118243^(20/23) 4807526976000000 a001 956722026041/17393796001*4106118243^(19/23) 4807526976000000 a001 75283811239/9381251041*4106118243^(21/23) 4807526976000000 a001 591286729879/73681302247*4106118243^(21/23) 4807526976000000 a001 86000486440/10716675201*4106118243^(21/23) 4807526976000000 a001 4052739537881/505019158607*4106118243^(21/23) 4807526976000000 a001 3278735159921/408569081798*4106118243^(21/23) 4807526976000000 a001 2504730781961/312119004989*4106118243^(21/23) 4807526976000000 a001 956722026041/119218851371*4106118243^(21/23) 4807526976000000 a001 182717648081/22768774562*4106118243^(21/23) 4807526976000000 a001 365435296162/17393796001*4106118243^(20/23) 4807526976000000 a001 86267571272/28143753123*4106118243^(22/23) 4807526976000000 a001 32264490531/10525900321*4106118243^(22/23) 4807526976000000 a001 591286729879/192900153618*4106118243^(22/23) 4807526976000000 a001 1548008755920/505019158607*4106118243^(22/23) 4807526976000000 a001 1515744265389/494493258286*4106118243^(22/23) 4807526976000000 a001 2504730781961/817138163596*4106118243^(22/23) 4807526976000000 a001 956722026041/312119004989*4106118243^(22/23) 4807526976000000 a001 365435296162/119218851371*4106118243^(22/23) 4807526976000000 a001 139583862445/45537549124*4106118243^(22/23) 4807526976000000 a001 139583862445/17393796001*4106118243^(21/23) 4807526976000000 a001 53316291173/17393796001*4106118243^(22/23) 4807526976000000 a001 6557470319842/6643838879*4106118243^(16/23) 4807526976000000 a001 2504730781961/6643838879*4106118243^(17/23) 4807526976000000 a001 956722026041/6643838879*4106118243^(18/23) 4807526976000000 a001 365435296162/6643838879*4106118243^(19/23) 4807526976000000 a001 139583862445/6643838879*4106118243^(20/23) 4807526976000000 a001 53316291173/6643838879*4106118243^(21/23) 4807526976000000 a001 20365011074/6643838879*4106118243^(22/23) 4807526976000000 a001 1134903170/4106118243*14662949395604^(7/9) 4807526976000000 a001 1134903170/4106118243*505019158607^(7/8) 4807526976000000 a001 8828119010022395329/1836311903 4807526976000000 a001 14284196614945309250/2971215073 4807526976000000 a001 1201881744/634430159*45537549124^(15/17) 4807526976000000 a001 1201881744/634430159*312119004989^(9/11) 4807526976000000 a001 567451585/5374978561*817138163596^(17/19) 4807526976000000 a001 1201881744/634430159*14662949395604^(5/7) 4807526976000000 a001 1201881744/634430159*192900153618^(5/6) 4807526976000000 a001 567451585/5374978561*192900153618^(17/18) 4807526976000000 a001 1201881744/634430159*28143753123^(9/10) 4807526976000000 a001 37396512239913013830/7778742049 4807526976000000 a001 591286729879/2537720636*17393796001^(5/7) 4807526976000000 a001 10182505537/1268860318*17393796001^(6/7) 4807526976000000 a001 1201881744/634430159*10749957122^(15/16) 4807526976000000 a001 48952670052396866120/10182505537 4807526976000000 a001 1135099622/33391061*45537549124^(13/17) 4807526976000000 a001 182717648081/1268860318*45537549124^(12/17) 4807526976000000 a001 956722026041/2537720636*45537549124^(2/3) 4807526976000000 a001 1134903780/1860499*45537549124^(11/17) 4807526976000000 a001 3278735159921/1268860318*45537549124^(10/17) 4807526976000000 a001 1134903170/73681302247*3461452808002^(11/12) 4807526976000000 a001 256319508074468182890/53316291173 4807526976000000 a001 567451585/96450076809*14662949395604^(19/21) 4807526976000000 a001 1135099622/33391061*14662949395604^(13/21) 4807526976000000 a001 134210636823722163286/27916772489 4807526976000000 a001 1135099622/33391061*192900153618^(13/18) 4807526976000000 a001 1134903780/1860499*312119004989^(3/5) 4807526976000000 a001 1134903780/1860499*817138163596^(11/19) 4807526976000000 a001 1134903780/1860499*14662949395604^(11/21) 4807526976000000 a001 1134903170*(1/2+1/2*5^(1/2))^3 4807526976000000 a001 10610209857723/2537720636*1322157322203^(1/2) 4807526976000000 a001 182717648081/1268860318*505019158607^(9/14) 4807526976000000 a001 139583862445/2537720636*817138163596^(2/3) 4807526976000000 a001 3278735159921/1268860318*192900153618^(5/9) 4807526976000000 a001 1134903780/1860499*192900153618^(11/18) 4807526976000000 a001 182717648081/1268860318*192900153618^(2/3) 4807526976000000 a001 6099024647707979905/1268640754 4807526976000000 a001 53316291173/2537720636*312119004989^(8/11) 4807526976000000 a001 1134903170/119218851371*14662949395604^(8/9) 4807526976000000 a001 10182505537/1268860318*45537549124^(14/17) 4807526976000000 a001 1135099622/33391061*73681302247^(3/4) 4807526976000000 a001 2504730781961/2537720636*73681302247^(8/13) 4807526976000000 a001 182717648081/1268860318*73681302247^(9/13) 4807526976000000 a001 158414167969674450650/32951280099 4807526976000000 a001 53316291173/2537720636*73681302247^(10/13) 4807526976000000 a001 10182505537/1268860318*817138163596^(14/19) 4807526976000000 a001 10182505537/1268860318*14662949395604^(2/3) 4807526976000000 a001 10182505537/1268860318*505019158607^(3/4) 4807526976000000 a001 10182505537/1268860318*192900153618^(7/9) 4807526976000000 a001 3278735159921/1268860318*28143753123^(3/5) 4807526976000000 a001 591286729879/2537720636*28143753123^(7/10) 4807526976000000 a001 53316291173/2537720636*28143753123^(4/5) 4807526976000000 a001 12101765572976143682/2517253805 4807526976000000 a001 7778742049/2537720636*312119004989^(4/5) 4807526976000000 a001 7778742049/2537720636*23725150497407^(11/16) 4807526976000000 a001 1134903170/17393796001*23725150497407^(13/16) 4807526976000000 a001 1134903170/17393796001*505019158607^(13/14) 4807526976000000 a001 7778742049/2537720636*73681302247^(11/13) 4807526976000000 a001 3278735159921/1268860318*10749957122^(5/8) 4807526976000000 a001 2504730781961/2537720636*10749957122^(2/3) 4807526976000000 a001 1134903780/1860499*10749957122^(11/16) 4807526976000000 a001 956722026041/2537720636*10749957122^(17/24) 4807526976000000 a001 182717648081/1268860318*10749957122^(3/4) 4807526976000000 a001 139583862445/2537720636*10749957122^(19/24) 4807526976000000 a001 1135099622/33391061*10749957122^(13/16) 4807526976000000 a001 53316291173/2537720636*10749957122^(5/6) 4807526976000000 a001 10182505537/1268860318*10749957122^(7/8) 4807526976000000 a001 5778078906241926145/1201881744 4807526976000000 a001 7778742049/2537720636*10749957122^(11/12) 4807526976000000 a001 1134903170/6643838879*312119004989^(10/11) 4807526976000000 a001 1134903170/6643838879*3461452808002^(5/6) 4807526976000000 a001 2971215073/2537720636*10749957122^(23/24) 4807526976000000 a001 3278735159921/1268860318*4106118243^(15/23) 4807526976000000 a001 2504730781961/2537720636*4106118243^(16/23) 4807526976000000 a001 956722026041/2537720636*4106118243^(17/23) 4807526976000000 a001 182717648081/1268860318*4106118243^(18/23) 4807526976000000 a001 139583862445/2537720636*4106118243^(19/23) 4807526976000000 a001 53316291173/2537720636*4106118243^(20/23) 4807526976000000 a001 10182505537/1268860318*4106118243^(21/23) 4807526976000000 a001 7778742049/2537720636*4106118243^(22/23) 4807526976000000 a001 3536736619241/1368706081*1568397607^(15/22) 4807526976000000 a001 8828119010022395330/1836311903 4807526976000000 a001 4052739537881/4106118243*1568397607^(8/11) 4807526976000000 a001 2504730781961/4106118243*1568397607^(3/4) 4807526976000000 a001 516002918640/1368706081*1568397607^(17/22) 4807526976000000 a001 591286729879/4106118243*1568397607^(9/11) 4807526976000000 a001 4807525989/4870846*1568397607^(8/11) 4807526976000000 a001 3372041405099481409/701408733 4807526976000000 a001 75283811239/1368706081*1568397607^(19/22) 4807526976000000 a001 3278735159921/5374978561*1568397607^(3/4) 4807526976000000 a001 4052739537881/10749957122*1568397607^(17/22) 4807526976000000 a001 10610209857723/17393796001*1568397607^(3/4) 4807526976000000 a001 567451585/1268860318*45537549124^(16/17) 4807526976000000 a001 86267571272/4106118243*1568397607^(10/11) 4807526976000000 a001 567451585/1268860318*14662949395604^(16/21) 4807526976000000 a001 567451585/1268860318*192900153618^(8/9) 4807526976000000 a001 567451585/1268860318*73681302247^(12/13) 4807526976000000 a001 3536736619241/9381251041*1568397607^(17/22) 4807526976000000 a001 6557470319842/17393796001*1568397607^(17/22) 4807526976000000 a001 6557470319842/6643838879*1568397607^(8/11) 4807526976000000 a001 774004377960/5374978561*1568397607^(9/11) 4807526976000000 a001 4052739537881/6643838879*1568397607^(3/4) 4807526976000000 a001 10983760033/1368706081*1568397607^(21/22) 4807526976000000 a001 4052739537881/28143753123*1568397607^(9/11) 4807526976000000 a001 1515744265389/10525900321*1568397607^(9/11) 4807526976000000 a001 3278735159921/22768774562*1568397607^(9/11) 4807526976000000 a001 2504730781961/17393796001*1568397607^(9/11) 4807526976000000 a001 2504730781961/6643838879*1568397607^(17/22) 4807526976000000 a001 591286729879/10749957122*1568397607^(19/22) 4807526976000000 a001 12585437040/228811001*1568397607^(19/22) 4807526976000000 a001 4052739537881/73681302247*1568397607^(19/22) 4807526976000000 a001 3536736619241/64300051206*1568397607^(19/22) 4807526976000000 a001 6557470319842/119218851371*1568397607^(19/22) 4807526976000000 a001 2504730781961/45537549124*1568397607^(19/22) 4807526976000000 a001 956722026041/17393796001*1568397607^(19/22) 4807526976000000 a001 956722026041/6643838879*1568397607^(9/11) 4807526976000000 a001 225851433717/10749957122*1568397607^(10/11) 4807526976000000 a001 591286729879/28143753123*1568397607^(10/11) 4807526976000000 a001 1548008755920/73681302247*1568397607^(10/11) 4807526976000000 a001 4052739537881/192900153618*1568397607^(10/11) 4807526976000000 a001 225749145909/10745088481*1568397607^(10/11) 4807526976000000 a001 6557470319842/312119004989*1568397607^(10/11) 4807526976000000 a001 2504730781961/119218851371*1568397607^(10/11) 4807526976000000 a001 956722026041/45537549124*1568397607^(10/11) 4807526976000000 a001 365435296162/17393796001*1568397607^(10/11) 4807526976000000 a001 365435296162/6643838879*1568397607^(19/22) 4807526976000000 a001 43133785636/5374978561*1568397607^(21/22) 4807526976000000 a001 75283811239/9381251041*1568397607^(21/22) 4807526976000000 a001 591286729879/73681302247*1568397607^(21/22) 4807526976000000 a001 86000486440/10716675201*1568397607^(21/22) 4807526976000000 a001 4052739537881/505019158607*1568397607^(21/22) 4807526976000000 a001 3278735159921/408569081798*1568397607^(21/22) 4807526976000000 a001 2504730781961/312119004989*1568397607^(21/22) 4807526976000000 a001 956722026041/119218851371*1568397607^(21/22) 4807526976000000 a001 182717648081/22768774562*1568397607^(21/22) 4807526976000000 a001 139583862445/17393796001*1568397607^(21/22) 4807526976000000 a001 139583862445/6643838879*1568397607^(10/11) 4807526976000000 a001 53316291173/6643838879*1568397607^(21/22) 4807526976000000 a001 3278735159921/1268860318*1568397607^(15/22) 4807526976000000 a001 2504730781961/2537720636*1568397607^(8/11) 4807526976000000 a001 1134903780/1860499*1568397607^(3/4) 4807526976000000 a001 956722026041/2537720636*1568397607^(17/22) 4807526976000000 a001 182717648081/1268860318*1568397607^(9/11) 4807526976000000 a001 139583862445/2537720636*1568397607^(19/22) 4807526976000000 a001 53316291173/2537720636*1568397607^(10/11) 4807526976000000 a001 10182505537/1268860318*1568397607^(21/22) 4807526976000000 a001 3372041405099481410/701408733 4807526976000000 a001 433494437/1568397607*14662949395604^(7/9) 4807526976000000 a001 433494437/1568397607*505019158607^(7/8) 4807526976000000 a001 1091215520984582785/226980634 4807526976000000 a001 7778742049/969323029*2537720636^(14/15) 4807526976000000 a001 20365011074/969323029*2537720636^(8/9) 4807526976000000 a001 32951280099/969323029*2537720636^(13/15) 4807526976000000 a001 139583862445/969323029*2537720636^(4/5) 4807526976000000 a001 225851433717/969323029*2537720636^(7/9) 4807526976000000 a001 591286729879/969323029*2537720636^(11/15) 4807526976000000 a001 2504730781961/969323029*2537720636^(2/3) 4807526976000000 a001 10610209857723/969323029*2537720636^(3/5) 4807526976000000 a001 1836311903/969323029*45537549124^(15/17) 4807526976000000 a001 1836311903/969323029*312119004989^(9/11) 4807526976000000 a001 433494437/4106118243*817138163596^(17/19) 4807526976000000 a001 433494437/4106118243*14662949395604^(17/21) 4807526976000000 a001 1836311903/969323029*14662949395604^(5/7) 4807526976000000 a001 1836311903/969323029*192900153618^(5/6) 4807526976000000 a001 433494437/4106118243*192900153618^(17/18) 4807526976000000 a001 1836311903/969323029*28143753123^(9/10) 4807526976000000 a001 1836311903/969323029*10749957122^(15/16) 4807526976000000 a001 14284196614945309263/2971215073 4807526976000000 a001 37396512239913013864/7778742049 4807526976000000 a001 225851433717/969323029*17393796001^(5/7) 4807526976000000 a001 6557470319842/969323029*17393796001^(4/7) 4807526976000000 a001 433494437/28143753123*3461452808002^(11/12) 4807526976000000 a001 32951280099/969323029*45537549124^(13/17) 4807526976000000 a001 97905340104793732329/20365011074 4807526976000000 a001 139583862445/969323029*45537549124^(12/17) 4807526976000000 a001 365435296162/969323029*45537549124^(2/3) 4807526976000000 a001 591286729879/969323029*45537549124^(11/17) 4807526976000000 a001 2504730781961/969323029*45537549124^(10/17) 4807526976000000 a001 10610209857723/969323029*45537549124^(9/17) 4807526976000000 a001 433494437/73681302247*14662949395604^(19/21) 4807526976000000 a001 32951280099/969323029*14662949395604^(13/21) 4807526976000000 a001 32951280099/969323029*192900153618^(13/18) 4807526976000000 a001 256319508074468183123/53316291173 4807526976000000 a001 32951280099/969323029*73681302247^(3/4) 4807526976000000 a001 225851433717/969323029*312119004989^(7/11) 4807526976000000 a001 134210636823722163408/27916772489 4807526976000000 a001 591286729879/969323029*312119004989^(3/5) 4807526976000000 a001 225851433717/969323029*14662949395604^(5/9) 4807526976000000 a001 1756840044281364267997/365435296162 4807526976000000 a001 10610209857723/969323029*817138163596^(9/19) 4807526976000000 a001 10610209857723/969323029*14662949395604^(3/7) 4807526976000000 a001 433494437*(1/2+1/2*5^(1/2))^5 4807526976000000 a001 2504730781961/969323029*14662949395604^(10/21) 4807526976000000 a001 1085786860162753450957/225851433717 4807526976000000 a001 139583862445/969323029*14662949395604^(4/7) 4807526976000000 a001 139583862445/969323029*505019158607^(9/14) 4807526976000000 a001 10610209857723/969323029*192900153618^(1/2) 4807526976000000 a001 591286729879/969323029*192900153618^(11/18) 4807526976000000 a001 414733676044142633917/86267571272 4807526976000000 a001 139583862445/969323029*192900153618^(2/3) 4807526976000000 a001 53316291173/969323029*817138163596^(2/3) 4807526976000000 a001 6557470319842/969323029*73681302247^(7/13) 4807526976000000 a001 956722026041/969323029*73681302247^(8/13) 4807526976000000 a001 139583862445/969323029*73681302247^(9/13) 4807526976000000 a001 158414167969674450794/32951280099 4807526976000000 a001 7778742049/969323029*17393796001^(6/7) 4807526976000000 a001 20365011074/969323029*312119004989^(8/11) 4807526976000000 a001 20365011074/969323029*23725150497407^(5/8) 4807526976000000 a001 20365011074/969323029*73681302247^(10/13) 4807526976000000 a001 2504730781961/969323029*28143753123^(3/5) 4807526976000000 a001 225851433717/969323029*28143753123^(7/10) 4807526976000000 a001 12101765572976143693/2517253805 4807526976000000 a001 20365011074/969323029*28143753123^(4/5) 4807526976000000 a001 7778742049/969323029*45537549124^(14/17) 4807526976000000 a001 7778742049/969323029*817138163596^(14/19) 4807526976000000 a001 433494437/17393796001*14662949395604^(6/7) 4807526976000000 a001 7778742049/969323029*14662949395604^(2/3) 4807526976000000 a001 7778742049/969323029*505019158607^(3/4) 4807526976000000 a001 7778742049/969323029*192900153618^(7/9) 4807526976000000 a001 10610209857723/969323029*10749957122^(9/16) 4807526976000000 a001 6557470319842/969323029*10749957122^(7/12) 4807526976000000 a001 2504730781961/969323029*10749957122^(5/8) 4807526976000000 a001 956722026041/969323029*10749957122^(2/3) 4807526976000000 a001 591286729879/969323029*10749957122^(11/16) 4807526976000000 a001 365435296162/969323029*10749957122^(17/24) 4807526976000000 a001 139583862445/969323029*10749957122^(3/4) 4807526976000000 a001 32951280099/969323029*10749957122^(13/16) 4807526976000000 a001 53316291173/969323029*10749957122^(19/24) 4807526976000000 a001 20365011074/969323029*10749957122^(5/6) 4807526976000000 a001 23112315624967704601/4807526976 4807526976000000 a001 7778742049/969323029*10749957122^(7/8) 4807526976000000 a001 2971215073/969323029*312119004989^(4/5) 4807526976000000 a001 2971215073/969323029*23725150497407^(11/16) 4807526976000000 a001 433494437/6643838879*23725150497407^(13/16) 4807526976000000 a001 2971215073/969323029*73681302247^(11/13) 4807526976000000 a001 2971215073/969323029*10749957122^(11/12) 4807526976000000 a001 6557470319842/969323029*4106118243^(14/23) 4807526976000000 a001 2504730781961/969323029*4106118243^(15/23) 4807526976000000 a001 956722026041/969323029*4106118243^(16/23) 4807526976000000 a001 365435296162/969323029*4106118243^(17/23) 4807526976000000 a001 139583862445/969323029*4106118243^(18/23) 4807526976000000 a001 53316291173/969323029*4106118243^(19/23) 4807526976000000 a001 20365011074/969323029*4106118243^(20/23) 4807526976000000 a001 7778742049/969323029*4106118243^(21/23) 4807526976000000 a001 8828119010022395338/1836311903 4807526976000000 a001 2971215073/969323029*4106118243^(22/23) 4807526976000000 a001 433494437/2537720636*312119004989^(10/11) 4807526976000000 a001 433494437/2537720636*3461452808002^(5/6) 4807526976000000 a001 1134903170/969323029*10749957122^(23/24) 4807526976000000 a001 6557470319842/969323029*1568397607^(7/11) 4807526976000000 a001 2504730781961/969323029*1568397607^(15/22) 4807526976000000 a001 956722026041/969323029*1568397607^(8/11) 4807526976000000 a001 591286729879/969323029*1568397607^(3/4) 4807526976000000 a001 365435296162/969323029*1568397607^(17/22) 4807526976000000 a001 139583862445/969323029*1568397607^(9/11) 4807526976000000 a001 53316291173/969323029*1568397607^(19/22) 4807526976000000 a001 20365011074/969323029*1568397607^(10/11) 4807526976000000 a001 1515744265389/224056801*599074578^(2/3) 4807526976000000 a001 7778742049/969323029*1568397607^(21/22) 4807526976000000 a001 3372041405099481413/701408733 4807526976000000 a001 4052739537881/1568397607*599074578^(5/7) 4807526976000000 a001 1548008755920/1568397607*599074578^(16/21) 4807526976000000 a001 956722026041/1568397607*599074578^(11/14) 4807526976000000 a001 591286729879/1568397607*599074578^(17/21) 4807526976000000 a001 365435296162/1568397607*599074578^(5/6) 4807526976000000 a001 3536736619241/1368706081*599074578^(5/7) 4807526976000000 a001 32264490531/224056801*599074578^(6/7) 4807526976000000 a001 4052739537881/4106118243*599074578^(16/21) 4807526976000000 a001 4807525989/4870846*599074578^(16/21) 4807526976000000 a001 86267571272/1568397607*599074578^(19/21) 4807526976000000 a001 433494437/969323029*45537549124^(16/17) 4807526976000000 a001 433494437/969323029*14662949395604^(16/21) 4807526976000000 a001 433494437/969323029*192900153618^(8/9) 4807526976000000 a001 433494437/969323029*73681302247^(12/13) 4807526976000000 a001 2504730781961/4106118243*599074578^(11/14) 4807526976000000 a001 3278735159921/1268860318*599074578^(5/7) 4807526976000000 a001 6557470319842/6643838879*599074578^(16/21) 4807526976000000 a001 3278735159921/5374978561*599074578^(11/14) 4807526976000000 a001 53316291173/1568397607*599074578^(13/14) 4807526976000000 a001 10610209857723/17393796001*599074578^(11/14) 4807526976000000 a001 516002918640/1368706081*599074578^(17/21) 4807526976000000 a001 4052739537881/6643838879*599074578^(11/14) 4807526976000000 a001 32951280099/1568397607*599074578^(20/21) 4807526976000000 a001 4052739537881/10749957122*599074578^(17/21) 4807526976000000 a001 3536736619241/9381251041*599074578^(17/21) 4807526976000000 a001 6557470319842/17393796001*599074578^(17/21) 4807526976000000 a001 956722026041/4106118243*599074578^(5/6) 4807526976000000 a001 2504730781961/2537720636*599074578^(16/21) 4807526976000000 a001 2504730781961/6643838879*599074578^(17/21) 4807526976000000 a001 2504730781961/10749957122*599074578^(5/6) 4807526976000000 a001 1288005205276048899/267914296 4807526976000000 a001 6557470319842/28143753123*599074578^(5/6) 4807526976000000 a001 10610209857723/45537549124*599074578^(5/6) 4807526976000000 a001 4052739537881/17393796001*599074578^(5/6) 4807526976000000 a001 591286729879/4106118243*599074578^(6/7) 4807526976000000 a001 1134903780/1860499*599074578^(11/14) 4807526976000000 a001 1548008755920/6643838879*599074578^(5/6) 4807526976000000 a001 774004377960/5374978561*599074578^(6/7) 4807526976000000 a001 4052739537881/28143753123*599074578^(6/7) 4807526976000000 a001 1515744265389/10525900321*599074578^(6/7) 4807526976000000 a001 3278735159921/22768774562*599074578^(6/7) 4807526976000000 a001 2504730781961/17393796001*599074578^(6/7) 4807526976000000 a001 956722026041/2537720636*599074578^(17/21) 4807526976000000 a001 956722026041/6643838879*599074578^(6/7) 4807526976000000 a001 75283811239/1368706081*599074578^(19/21) 4807526976000000 a001 591286729879/2537720636*599074578^(5/6) 4807526976000000 a001 591286729879/10749957122*599074578^(19/21) 4807526976000000 a001 12585437040/228811001*599074578^(19/21) 4807526976000000 a001 4052739537881/73681302247*599074578^(19/21) 4807526976000000 a001 3536736619241/64300051206*599074578^(19/21) 4807526976000000 a001 6557470319842/119218851371*599074578^(19/21) 4807526976000000 a001 2504730781961/45537549124*599074578^(19/21) 4807526976000000 a001 956722026041/17393796001*599074578^(19/21) 4807526976000000 a001 139583862445/4106118243*599074578^(13/14) 4807526976000000 a001 182717648081/1268860318*599074578^(6/7) 4807526976000000 a001 365435296162/6643838879*599074578^(19/21) 4807526976000000 a001 182717648081/5374978561*599074578^(13/14) 4807526976000000 a001 956722026041/28143753123*599074578^(13/14) 4807526976000000 a001 2504730781961/73681302247*599074578^(13/14) 4807526976000000 a001 3278735159921/96450076809*599074578^(13/14) 4807526976000000 a001 10610209857723/312119004989*599074578^(13/14) 4807526976000000 a001 4052739537881/119218851371*599074578^(13/14) 4807526976000000 a001 387002188980/11384387281*599074578^(13/14) 4807526976000000 a001 591286729879/17393796001*599074578^(13/14) 4807526976000000 a001 86267571272/4106118243*599074578^(20/21) 4807526976000000 a001 225851433717/6643838879*599074578^(13/14) 4807526976000000 a001 225851433717/10749957122*599074578^(20/21) 4807526976000000 a001 591286729879/28143753123*599074578^(20/21) 4807526976000000 a001 1548008755920/73681302247*599074578^(20/21) 4807526976000000 a001 4052739537881/192900153618*599074578^(20/21) 4807526976000000 a001 225749145909/10745088481*599074578^(20/21) 4807526976000000 a001 6557470319842/312119004989*599074578^(20/21) 4807526976000000 a001 2504730781961/119218851371*599074578^(20/21) 4807526976000000 a001 956722026041/45537549124*599074578^(20/21) 4807526976000000 a001 365435296162/17393796001*599074578^(20/21) 4807526976000000 a001 139583862445/2537720636*599074578^(19/21) 4807526976000000 a001 139583862445/6643838879*599074578^(20/21) 4807526976000000 a001 1135099622/33391061*599074578^(13/14) 4807526976000000 a001 53316291173/2537720636*599074578^(20/21) 4807526976000000 a001 10610209857723/969323029*599074578^(9/14) 4807526976000000 a001 6557470319842/969323029*599074578^(2/3) 4807526976000000 a001 2504730781961/969323029*599074578^(5/7) 4807526976000000 a001 322001301319012225/66978574 4807526976000000 a001 956722026041/969323029*599074578^(16/21) 4807526976000000 a001 591286729879/969323029*599074578^(11/14) 4807526976000000 a001 365435296162/969323029*599074578^(17/21) 4807526976000000 a001 225851433717/969323029*599074578^(5/6) 4807526976000000 a001 139583862445/969323029*599074578^(6/7) 4807526976000000 a001 53316291173/969323029*599074578^(19/21) 4807526976000000 a001 32951280099/969323029*599074578^(13/14) 4807526976000000 a001 20365011074/969323029*599074578^(20/21) 4807526976000000 a001 10182505537/70711162*141422324^(12/13) 4807526976000000 a001 1288005205276048901/267914296 4807526976000000 a001 165580141/599074578*14662949395604^(7/9) 4807526976000000 a001 165580141/599074578*505019158607^(7/8) 4807526976000000 a001 2084036199823432525/433494437 4807526976000000 a001 701408733/370248451*45537549124^(15/17) 4807526976000000 a001 701408733/370248451*312119004989^(9/11) 4807526976000000 a001 165580141/1568397607*817138163596^(17/19) 4807526976000000 a001 165580141/1568397607*14662949395604^(17/21) 4807526976000000 a001 165580141/1568397607*192900153618^(17/18) 4807526976000000 a001 701408733/370248451*28143753123^(9/10) 4807526976000000 a001 701408733/370248451*10749957122^(15/16) 4807526976000000 a001 5456077604922913959/1134903170 4807526976000000 a001 12586269025/370248451*2537720636^(13/15) 4807526976000000 a001 7778742049/370248451*2537720636^(8/9) 4807526976000000 a001 53316291173/370248451*2537720636^(4/5) 4807526976000000 a001 2971215073/370248451*2537720636^(14/15) 4807526976000000 a001 86267571272/370248451*2537720636^(7/9) 4807526976000000 a001 225851433717/370248451*2537720636^(11/15) 4807526976000000 a001 956722026041/370248451*2537720636^(2/3) 4807526976000000 a001 4052739537881/370248451*2537720636^(3/5) 4807526976000000 a001 10610209857723/370248451*2537720636^(5/9) 4807526976000000 a001 14284196614945309352/2971215073 4807526976000000 a001 165580141/10749957122*3461452808002^(11/12) 4807526976000000 a001 2876654787685616469/598364773 4807526976000000 a001 86267571272/370248451*17393796001^(5/7) 4807526976000000 a001 2504730781961/370248451*17393796001^(4/7) 4807526976000000 a001 12586269025/370248451*45537549124^(13/17) 4807526976000000 a001 165580141/28143753123*14662949395604^(19/21) 4807526976000000 a001 12586269025/370248451*14662949395604^(13/21) 4807526976000000 a001 12586269025/370248451*192900153618^(13/18) 4807526976000000 a001 12586269025/370248451*73681302247^(3/4) 4807526976000000 a001 97905340104793732939/20365011074 4807526976000000 a001 225851433717/370248451*45537549124^(11/17) 4807526976000000 a001 139583862445/370248451*45537549124^(2/3) 4807526976000000 a001 956722026041/370248451*45537549124^(10/17) 4807526976000000 a001 53316291173/370248451*45537549124^(12/17) 4807526976000000 a001 4052739537881/370248451*45537549124^(9/17) 4807526976000000 a001 256319508074468184720/53316291173 4807526976000000 a001 86267571272/370248451*312119004989^(7/11) 4807526976000000 a001 86267571272/370248451*14662949395604^(5/9) 4807526976000000 a001 86267571272/370248451*505019158607^(5/8) 4807526976000000 a001 225851433717/370248451*312119004989^(3/5) 4807526976000000 a001 956722026041/370248451*312119004989^(6/11) 4807526976000000 a001 10610209857723/370248451*312119004989^(5/11) 4807526976000000 a001 225851433717/370248451*14662949395604^(11/21) 4807526976000000 a001 1756840044281364278943/365435296162 4807526976000000 a001 165580141*(1/2+1/2*5^(1/2))^7 4807526976000000 a001 10610209857723/370248451*3461452808002^(5/12) 4807526976000000 a001 1548008755920/370248451*1322157322203^(1/2) 4807526976000000 a001 365435296162/370248451*505019158607^(4/7) 4807526976000000 a001 225851433717/370248451*192900153618^(11/18) 4807526976000000 a001 956722026041/370248451*192900153618^(5/9) 4807526976000000 a001 414733676044142636501/86267571272 4807526976000000 a001 165580141/119218851371*14662949395604^(20/21) 4807526976000000 a001 53316291173/370248451*505019158607^(9/14) 4807526976000000 a001 53316291173/370248451*192900153618^(2/3) 4807526976000000 a001 6557470319842/370248451*73681302247^(1/2) 4807526976000000 a001 2504730781961/370248451*73681302247^(7/13) 4807526976000000 a001 365435296162/370248451*73681302247^(8/13) 4807526976000000 a001 158414167969674451781/32951280099 4807526976000000 a001 53316291173/370248451*73681302247^(9/13) 4807526976000000 a001 20365011074/370248451*817138163596^(2/3) 4807526976000000 a001 10610209857723/370248451*28143753123^(1/2) 4807526976000000 a001 956722026041/370248451*28143753123^(3/5) 4807526976000000 a001 86267571272/370248451*28143753123^(7/10) 4807526976000000 a001 60508827864880718842/12586269025 4807526976000000 a001 7778742049/370248451*312119004989^(8/11) 4807526976000000 a001 165580141/17393796001*14662949395604^(8/9) 4807526976000000 a001 7778742049/370248451*73681302247^(10/13) 4807526976000000 a001 7778742049/370248451*28143753123^(4/5) 4807526976000000 a001 6557470319842/370248451*10749957122^(13/24) 4807526976000000 a001 4052739537881/370248451*10749957122^(9/16) 4807526976000000 a001 2504730781961/370248451*10749957122^(7/12) 4807526976000000 a001 956722026041/370248451*10749957122^(5/8) 4807526976000000 a001 12586269025/370248451*10749957122^(13/16) 4807526976000000 a001 225851433717/370248451*10749957122^(11/16) 4807526976000000 a001 139583862445/370248451*10749957122^(17/24) 4807526976000000 a001 53316291173/370248451*10749957122^(3/4) 4807526976000000 a001 20365011074/370248451*10749957122^(19/24) 4807526976000000 a001 23112315624967704745/4807526976 4807526976000000 a001 7778742049/370248451*10749957122^(5/6) 4807526976000000 a001 2971215073/370248451*17393796001^(6/7) 4807526976000000 a001 2971215073/370248451*45537549124^(14/17) 4807526976000000 a001 2971215073/370248451*817138163596^(14/19) 4807526976000000 a001 165580141/6643838879*14662949395604^(6/7) 4807526976000000 a001 2971215073/370248451*14662949395604^(2/3) 4807526976000000 a001 2971215073/370248451*505019158607^(3/4) 4807526976000000 a001 2971215073/370248451*192900153618^(7/9) 4807526976000000 a001 2971215073/370248451*10749957122^(7/8) 4807526976000000 a001 6557470319842/370248451*4106118243^(13/23) 4807526976000000 a001 2504730781961/370248451*4106118243^(14/23) 4807526976000000 a001 956722026041/370248451*4106118243^(15/23) 4807526976000000 a001 365435296162/370248451*4106118243^(16/23) 4807526976000000 a001 139583862445/370248451*4106118243^(17/23) 4807526976000000 a001 53316291173/370248451*4106118243^(18/23) 4807526976000000 a001 20365011074/370248451*4106118243^(19/23) 4807526976000000 a001 7778742049/370248451*4106118243^(20/23) 4807526976000000 a001 8828119010022395393/1836311903 4807526976000000 a001 2971215073/370248451*4106118243^(21/23) 4807526976000000 a001 1134903170/370248451*312119004989^(4/5) 4807526976000000 a001 1134903170/370248451*23725150497407^(11/16) 4807526976000000 a001 165580141/2537720636*23725150497407^(13/16) 4807526976000000 a001 165580141/2537720636*505019158607^(13/14) 4807526976000000 a001 1134903170/370248451*73681302247^(11/13) 4807526976000000 a001 1134903170/370248451*10749957122^(11/12) 4807526976000000 a001 1134903170/370248451*4106118243^(22/23) 4807526976000000 a001 6557470319842/370248451*1568397607^(13/22) 4807526976000000 a001 2504730781961/370248451*1568397607^(7/11) 4807526976000000 a001 956722026041/370248451*1568397607^(15/22) 4807526976000000 a001 365435296162/370248451*1568397607^(8/11) 4807526976000000 a001 225851433717/370248451*1568397607^(3/4) 4807526976000000 a001 139583862445/370248451*1568397607^(17/22) 4807526976000000 a001 53316291173/370248451*1568397607^(9/11) 4807526976000000 a001 20365011074/370248451*1568397607^(19/22) 4807526976000000 a001 7778742049/370248451*1568397607^(10/11) 4807526976000000 a001 21566892818/35355581*141422324^(11/13) 4807526976000000 a001 3372041405099481434/701408733 4807526976000000 a001 2971215073/370248451*1568397607^(21/22) 4807526976000000 a001 165580141/969323029*312119004989^(10/11) 4807526976000000 a001 165580141/969323029*3461452808002^(5/6) 4807526976000000 a001 433494437/370248451*10749957122^(23/24) 4807526976000000 a001 6557470319842/370248451*599074578^(13/21) 4807526976000000 a001 4052739537881/370248451*599074578^(9/14) 4807526976000000 a001 2504730781961/370248451*599074578^(2/3) 4807526976000000 a001 956722026041/370248451*599074578^(5/7) 4807526976000000 a001 365435296162/370248451*599074578^(16/21) 4807526976000000 a001 225851433717/370248451*599074578^(11/14) 4807526976000000 a001 139583862445/370248451*599074578^(17/21) 4807526976000000 a001 86267571272/370248451*599074578^(5/6) 4807526976000000 a001 3536736619241/199691526*228826127^(13/20) 4807526976000000 a001 53316291173/370248451*599074578^(6/7) 4807526976000000 a001 20365011074/370248451*599074578^(19/21) 4807526976000000 a001 12586269025/370248451*599074578^(13/14) 4807526976000000 a001 7778742049/370248451*599074578^(20/21) 4807526976000000 a001 99077323482772993/20608792 4807526976000000 a001 4052739537881/599074578*228826127^(7/10) 4807526976000000 a001 86000486440/33281921*228826127^(3/4) 4807526976000000 a001 182717648081/70711162*141422324^(10/13) 4807526976000000 a001 591286729879/599074578*228826127^(4/5) 4807526976000000 a001 1515744265389/224056801*228826127^(7/10) 4807526976000000 a001 267913919/710646*228826127^(17/20) 4807526976000000 a001 4052739537881/1568397607*228826127^(3/4) 4807526976000000 a001 139583862445/599074578*228826127^(7/8) 4807526976000000 a001 3536736619241/1368706081*228826127^(3/4) 4807526976000000 a001 43133785636/299537289*228826127^(9/10) 4807526976000000 a001 6557470319842/969323029*228826127^(7/10) 4807526976000000 a001 3278735159921/1268860318*228826127^(3/4) 4807526976000000 a001 165580141/370248451*45537549124^(16/17) 4807526976000000 a001 165580141/370248451*14662949395604^(16/21) 4807526976000000 a001 165580141/370248451*192900153618^(8/9) 4807526976000000 a001 165580141/370248451*73681302247^(12/13) 4807526976000000 a001 1548008755920/1568397607*228826127^(4/5) 4807526976000000 a001 4052739537881/4106118243*228826127^(4/5) 4807526976000000 a001 4807525989/4870846*228826127^(4/5) 4807526976000000 a001 6557470319842/6643838879*228826127^(4/5) 4807526976000000 a001 10983760033/199691526*228826127^(19/20) 4807526976000000 a001 387002188980/35355581*141422324^(9/13) 4807526976000000 a001 2504730781961/969323029*228826127^(3/4) 4807526976000000 a001 2504730781961/2537720636*228826127^(4/5) 4807526976000000 a001 591286729879/1568397607*228826127^(17/20) 4807526976000000 a001 516002918640/1368706081*228826127^(17/20) 4807526976000000 a001 4052739537881/10749957122*228826127^(17/20) 4807526976000000 a001 3536736619241/9381251041*228826127^(17/20) 4807526976000000 a001 6557470319842/17393796001*228826127^(17/20) 4807526976000000 a001 491974210728665288/102334155 4807526976000000 a001 2504730781961/6643838879*228826127^(17/20) 4807526976000000 a001 365435296162/1568397607*228826127^(7/8) 4807526976000000 a001 956722026041/969323029*228826127^(4/5) 4807526976000000 a001 956722026041/2537720636*228826127^(17/20) 4807526976000000 a001 956722026041/4106118243*228826127^(7/8) 4807526976000000 a001 2504730781961/141422324*141422324^(2/3) 4807526976000000 a001 2504730781961/10749957122*228826127^(7/8) 4807526976000000 a001 6557470319842/28143753123*228826127^(7/8) 4807526976000000 a001 10610209857723/45537549124*228826127^(7/8) 4807526976000000 a001 4052739537881/17393796001*228826127^(7/8) 4807526976000000 a001 1548008755920/6643838879*228826127^(7/8) 4807526976000000 a001 32264490531/224056801*228826127^(9/10) 4807526976000000 a001 591286729879/2537720636*228826127^(7/8) 4807526976000000 a001 591286729879/4106118243*228826127^(9/10) 4807526976000000 a001 774004377960/5374978561*228826127^(9/10) 4807526976000000 a001 4052739537881/28143753123*228826127^(9/10) 4807526976000000 a001 1515744265389/10525900321*228826127^(9/10) 4807526976000000 a001 3278735159921/22768774562*228826127^(9/10) 4807526976000000 a001 2504730781961/17393796001*228826127^(9/10) 4807526976000000 a001 956722026041/6643838879*228826127^(9/10) 4807526976000000 a001 365435296162/969323029*228826127^(17/20) 4807526976000000 a001 182717648081/1268860318*228826127^(9/10) 4807526976000000 a001 86267571272/1568397607*228826127^(19/20) 4807526976000000 a001 225851433717/969323029*228826127^(7/8) 4807526976000000 a001 75283811239/1368706081*228826127^(19/20) 4807526976000000 a001 591286729879/10749957122*228826127^(19/20) 4807526976000000 a001 12585437040/228811001*228826127^(19/20) 4807526976000000 a001 4052739537881/73681302247*228826127^(19/20) 4807526976000000 a001 3536736619241/64300051206*228826127^(19/20) 4807526976000000 a001 6557470319842/119218851371*228826127^(19/20) 4807526976000000 a001 2504730781961/45537549124*228826127^(19/20) 4807526976000000 a001 956722026041/17393796001*228826127^(19/20) 4807526976000000 a001 365435296162/6643838879*228826127^(19/20) 4807526976000000 a001 139583862445/969323029*228826127^(9/10) 4807526976000000 a001 163991403576221763/34111385 4807526976000000 a001 139583862445/2537720636*228826127^(19/20) 4807526976000000 a001 53316291173/969323029*228826127^(19/20) 4807526976000000 a001 3278735159921/70711162*141422324^(8/13) 4807526976000000 a001 10610209857723/370248451*228826127^(5/8) 4807526976000000 a001 6557470319842/370248451*228826127^(13/20) 4807526976000000 a001 98394842145733058/20466831 4807526976000000 a001 2504730781961/370248451*228826127^(7/10) 4807526976000000 a001 956722026041/370248451*228826127^(3/4) 4807526976000000 a001 365435296162/370248451*228826127^(4/5) 4807526976000000 a001 139583862445/370248451*228826127^(17/20) 4807526976000000 a001 86267571272/370248451*228826127^(7/8) 4807526976000000 a001 53316291173/370248451*228826127^(9/10) 4807526976000000 a001 20365011074/370248451*228826127^(19/20) 4807526976000000 a001 491974210728665293/102334155 4807526976000000 a001 63245986/228826127*14662949395604^(7/9) 4807526976000000 a001 63245986/228826127*505019158607^(7/8) 4807526976000000 a001 796030994547383650/165580141 4807526976000000 a001 66978574/35355581*45537549124^(15/17) 4807526976000000 a001 66978574/35355581*312119004989^(9/11) 4807526976000000 a001 31622993/299537289*817138163596^(17/19) 4807526976000000 a001 31622993/299537289*14662949395604^(17/21) 4807526976000000 a001 66978574/35355581*192900153618^(5/6) 4807526976000000 a001 31622993/299537289*192900153618^(17/18) 4807526976000000 a001 66978574/35355581*28143753123^(9/10) 4807526976000000 a001 66978574/35355581*10749957122^(15/16) 4807526976000000 a001 2084036199823432614/433494437 4807526976000000 a001 160472870733026888/33379505 4807526976000000 a001 1201881744/35355581*2537720636^(13/15) 4807526976000000 a001 10182505537/70711162*2537720636^(4/5) 4807526976000000 a001 63246219/271444*2537720636^(7/9) 4807526976000000 a001 2971215073/141422324*2537720636^(8/9) 4807526976000000 a001 21566892818/35355581*2537720636^(11/15) 4807526976000000 a001 182717648081/70711162*2537720636^(2/3) 4807526976000000 a001 387002188980/35355581*2537720636^(3/5) 4807526976000000 a001 4052739537881/141422324*2537720636^(5/9) 4807526976000000 a001 3278735159921/70711162*2537720636^(8/15) 4807526976000000 a001 63245986/4106118243*3461452808002^(11/12) 4807526976000000 a001 14284196614945309962/2971215073 4807526976000000 a001 1201881744/35355581*45537549124^(13/17) 4807526976000000 a001 31622993/5374978561*14662949395604^(19/21) 4807526976000000 a001 1201881744/35355581*14662949395604^(13/21) 4807526976000000 a001 1201881744/35355581*192900153618^(13/18) 4807526976000000 a001 1201881744/35355581*73681302247^(3/4) 4807526976000000 a001 37396512239913015694/7778742049 4807526976000000 a001 63246219/271444*17393796001^(5/7) 4807526976000000 a001 956722026041/141422324*17393796001^(4/7) 4807526976000000 a001 1201881744/35355581*10749957122^(13/16) 4807526976000000 a001 48952670052396868560/10182505537 4807526976000000 a001 21566892818/35355581*45537549124^(11/17) 4807526976000000 a001 182717648081/70711162*45537549124^(10/17) 4807526976000000 a001 387002188980/35355581*45537549124^(9/17) 4807526976000000 a001 53316291173/141422324*45537549124^(2/3) 4807526976000000 a001 3278735159921/70711162*45537549124^(8/17) 4807526976000000 a001 63246219/271444*312119004989^(7/11) 4807526976000000 a001 63246219/271444*14662949395604^(5/9) 4807526976000000 a001 63246219/271444*505019158607^(5/8) 4807526976000000 a001 256319508074468195666/53316291173 4807526976000000 a001 21566892818/35355581*312119004989^(3/5) 4807526976000000 a001 21566892818/35355581*14662949395604^(11/21) 4807526976000000 a001 21566892818/35355581*192900153618^(11/18) 4807526976000000 a001 4052739537881/141422324*312119004989^(5/11) 4807526976000000 a001 182717648081/70711162*312119004989^(6/11) 4807526976000000 a001 225851433717/141422324*9062201101803^(1/2) 4807526976000000 a001 591286729879/141422324*1322157322203^(1/2) 4807526976000000 a001 63245986*(1/2+1/2*5^(1/2))^9 4807526976000000 a001 3278735159921/70711162*14662949395604^(8/21) 4807526976000000 a001 182717648081/70711162*14662949395604^(10/21) 4807526976000000 a001 139583862445/141422324*23725150497407^(1/2) 4807526976000000 a001 3278735159921/70711162*192900153618^(4/9) 4807526976000000 a001 139583862445/141422324*505019158607^(4/7) 4807526976000000 a001 182717648081/70711162*192900153618^(5/9) 4807526976000000 a001 6099024647707980209/1268640754 4807526976000000 a001 3278735159921/70711162*73681302247^(6/13) 4807526976000000 a001 2504730781961/141422324*73681302247^(1/2) 4807526976000000 a001 956722026041/141422324*73681302247^(7/13) 4807526976000000 a001 139583862445/141422324*73681302247^(8/13) 4807526976000000 a001 10182505537/70711162*45537549124^(12/17) 4807526976000000 a001 679889132917057762/141421803 4807526976000000 a001 10182505537/70711162*14662949395604^(4/7) 4807526976000000 a001 10182505537/70711162*505019158607^(9/14) 4807526976000000 a001 10182505537/70711162*192900153618^(2/3) 4807526976000000 a001 10182505537/70711162*73681302247^(9/13) 4807526976000000 a001 4052739537881/141422324*28143753123^(1/2) 4807526976000000 a001 63246219/271444*28143753123^(7/10) 4807526976000000 a001 182717648081/70711162*28143753123^(3/5) 4807526976000000 a001 60508827864880721426/12586269025 4807526976000000 a001 7778742049/141422324*817138163596^(2/3) 4807526976000000 a001 3278735159921/70711162*10749957122^(1/2) 4807526976000000 a001 2504730781961/141422324*10749957122^(13/24) 4807526976000000 a001 387002188980/35355581*10749957122^(9/16) 4807526976000000 a001 956722026041/141422324*10749957122^(7/12) 4807526976000000 a001 182717648081/70711162*10749957122^(5/8) 4807526976000000 a001 139583862445/141422324*10749957122^(2/3) 4807526976000000 a001 21566892818/35355581*10749957122^(11/16) 4807526976000000 a001 53316291173/141422324*10749957122^(17/24) 4807526976000000 a001 10182505537/70711162*10749957122^(3/4) 4807526976000000 a001 5778078906241926433/1201881744 4807526976000000 a001 7778742049/141422324*10749957122^(19/24) 4807526976000000 a001 567451585/70711162*2537720636^(14/15) 4807526976000000 a001 2971215073/141422324*312119004989^(8/11) 4807526976000000 a001 63245986/6643838879*14662949395604^(8/9) 4807526976000000 a001 2971215073/141422324*23725150497407^(5/8) 4807526976000000 a001 2971215073/141422324*73681302247^(10/13) 4807526976000000 a001 2971215073/141422324*28143753123^(4/5) 4807526976000000 a001 10610209857723/141422324*4106118243^(1/2) 4807526976000000 a001 2971215073/141422324*10749957122^(5/6) 4807526976000000 a001 3278735159921/70711162*4106118243^(12/23) 4807526976000000 a001 2504730781961/141422324*4106118243^(13/23) 4807526976000000 a001 956722026041/141422324*4106118243^(14/23) 4807526976000000 a001 182717648081/70711162*4106118243^(15/23) 4807526976000000 a001 139583862445/141422324*4106118243^(16/23) 4807526976000000 a001 53316291173/141422324*4106118243^(17/23) 4807526976000000 a001 10182505537/70711162*4106118243^(18/23) 4807526976000000 a001 7778742049/141422324*4106118243^(19/23) 4807526976000000 a001 8828119010022395770/1836311903 4807526976000000 a001 2971215073/141422324*4106118243^(20/23) 4807526976000000 a001 567451585/70711162*17393796001^(6/7) 4807526976000000 a001 567451585/70711162*45537549124^(14/17) 4807526976000000 a001 31622993/1268860318*14662949395604^(6/7) 4807526976000000 a001 567451585/70711162*14662949395604^(2/3) 4807526976000000 a001 567451585/70711162*505019158607^(3/4) 4807526976000000 a001 567451585/70711162*192900153618^(7/9) 4807526976000000 a001 567451585/70711162*10749957122^(7/8) 4807526976000000 a001 567451585/70711162*4106118243^(21/23) 4807526976000000 a001 3278735159921/70711162*1568397607^(6/11) 4807526976000000 a001 2504730781961/141422324*1568397607^(13/22) 4807526976000000 a001 956722026041/141422324*1568397607^(7/11) 4807526976000000 a001 182717648081/70711162*1568397607^(15/22) 4807526976000000 a001 139583862445/141422324*1568397607^(8/11) 4807526976000000 a001 21566892818/35355581*1568397607^(3/4) 4807526976000000 a001 53316291173/141422324*1568397607^(17/22) 4807526976000000 a001 10182505537/70711162*1568397607^(9/11) 4807526976000000 a001 7778742049/141422324*1568397607^(19/22) 4807526976000000 a001 2971215073/141422324*1568397607^(10/11) 4807526976000000 a001 3372041405099481578/701408733 4807526976000000 a001 567451585/70711162*1568397607^(21/22) 4807526976000000 a001 433494437/141422324*312119004989^(4/5) 4807526976000000 a001 433494437/141422324*23725150497407^(11/16) 4807526976000000 a001 63245986/969323029*23725150497407^(13/16) 4807526976000000 a001 63245986/969323029*505019158607^(13/14) 4807526976000000 a001 433494437/141422324*73681302247^(11/13) 4807526976000000 a001 433494437/141422324*10749957122^(11/12) 4807526976000000 a001 433494437/141422324*4106118243^(22/23) 4807526976000000 a001 3278735159921/70711162*599074578^(4/7) 4807526976000000 a001 2504730781961/141422324*599074578^(13/21) 4807526976000000 a001 387002188980/35355581*599074578^(9/14) 4807526976000000 a001 956722026041/141422324*599074578^(2/3) 4807526976000000 a001 182717648081/70711162*599074578^(5/7) 4807526976000000 a001 139583862445/141422324*599074578^(16/21) 4807526976000000 a001 21566892818/35355581*599074578^(11/14) 4807526976000000 a001 53316291173/141422324*599074578^(17/21) 4807526976000000 a001 63246219/271444*599074578^(5/6) 4807526976000000 a001 10182505537/70711162*599074578^(6/7) 4807526976000000 a001 7778742049/141422324*599074578^(19/21) 4807526976000000 a001 1201881744/35355581*599074578^(13/14) 4807526976000000 a001 2971215073/141422324*599074578^(20/21) 4807526976000000 a001 322001301319012241/66978574 4807526976000000 a001 63245986/370248451*312119004989^(10/11) 4807526976000000 a001 63245986/370248451*3461452808002^(5/6) 4807526976000000 a001 165580141/141422324*10749957122^(23/24) 4807526976000000 a001 3278735159921/70711162*228826127^(3/5) 4807526976000000 a001 4052739537881/141422324*228826127^(5/8) 4807526976000000 a001 2504730781961/141422324*228826127^(13/20) 4807526976000000 a001 956722026041/141422324*228826127^(7/10) 4807526976000000 a001 225749145909/4868641*87403803^(12/19) 4807526976000000 a001 182717648081/70711162*228826127^(3/4) 4807526976000000 a001 139583862445/141422324*228826127^(4/5) 4807526976000000 a001 53316291173/141422324*228826127^(17/20) 4807526976000000 a001 63246219/271444*228826127^(7/8) 4807526976000000 a001 10182505537/70711162*228826127^(9/10) 4807526976000000 a001 7778742049/141422324*228826127^(19/20) 4807526976000000 a001 491974210728665314/102334155 4807526976000000 a001 4052739537881/228826127*87403803^(13/19) 4807526976000000 a001 1548008755920/228826127*87403803^(14/19) 4807526976000000 a001 591286729879/228826127*87403803^(15/19) 4807526976000000 a001 3536736619241/199691526*87403803^(13/19) 4807526976000000 a001 225851433717/228826127*87403803^(16/19) 4807526976000000 a001 4052739537881/599074578*87403803^(14/19) 4807526976000000 a001 1515744265389/224056801*87403803^(14/19) 4807526976000000 a001 6557470319842/370248451*87403803^(13/19) 4807526976000000 a001 6557470319842/969323029*87403803^(14/19) 4807526976000000 a001 86267571272/228826127*87403803^(17/19) 4807526976000000 a001 31622993/70711162*45537549124^(16/17) 4807526976000000 a001 31622993/70711162*14662949395604^(16/21) 4807526976000000 a001 31622993/70711162*192900153618^(8/9) 4807526976000000 a001 31622993/70711162*73681302247^(12/13) 4807526976000000 a001 86000486440/33281921*87403803^(15/19) 4807526976000000 a001 4052739537881/1568397607*87403803^(15/19) 4807526976000000 a001 3536736619241/1368706081*87403803^(15/19) 4807526976000000 a001 3278735159921/1268860318*87403803^(15/19) 4807526976000000 a001 2504730781961/370248451*87403803^(14/19) 4807526976000000 a001 2504730781961/969323029*87403803^(15/19) 4807526976000000 a001 32951280099/228826127*87403803^(18/19) 4807526976000000 a001 591286729879/599074578*87403803^(16/19) 4807526976000000 a001 1548008755920/1568397607*87403803^(16/19) 4807526976000000 a001 4052739537881/4106118243*87403803^(16/19) 4807526976000000 a001 4807525989/4870846*87403803^(16/19) 4807526976000000 a001 6557470319842/6643838879*87403803^(16/19) 4807526976000000 a001 2504730781961/2537720636*87403803^(16/19) 4807526976000000 a001 956722026041/370248451*87403803^(15/19) 4807526976000000 a001 956722026041/969323029*87403803^(16/19) 4807526976000000 a001 187917426909946965/39088169 4807526976000000 a001 267913919/710646*87403803^(17/19) 4807526976000000 a001 591286729879/1568397607*87403803^(17/19) 4807526976000000 a001 516002918640/1368706081*87403803^(17/19) 4807526976000000 a001 4052739537881/10749957122*87403803^(17/19) 4807526976000000 a001 3536736619241/9381251041*87403803^(17/19) 4807526976000000 a001 6557470319842/17393796001*87403803^(17/19) 4807526976000000 a001 2504730781961/6643838879*87403803^(17/19) 4807526976000000 a001 956722026041/2537720636*87403803^(17/19) 4807526976000000 a001 365435296162/370248451*87403803^(16/19) 4807526976000000 a001 365435296162/969323029*87403803^(17/19) 4807526976000000 a001 43133785636/299537289*87403803^(18/19) 4807526976000000 a001 32264490531/224056801*87403803^(18/19) 4807526976000000 a001 591286729879/4106118243*87403803^(18/19) 4807526976000000 a001 774004377960/5374978561*87403803^(18/19) 4807526976000000 a001 4052739537881/28143753123*87403803^(18/19) 4807526976000000 a001 1515744265389/10525900321*87403803^(18/19) 4807526976000000 a001 3278735159921/22768774562*87403803^(18/19) 4807526976000000 a001 2504730781961/17393796001*87403803^(18/19) 4807526976000000 a001 956722026041/6643838879*87403803^(18/19) 4807526976000000 a001 182717648081/1268860318*87403803^(18/19) 4807526976000000 a001 139583862445/370248451*87403803^(17/19) 4807526976000000 a001 139583862445/969323029*87403803^(18/19) 4807526976000000 a001 187917426909946968/39088169 4807526976000000 a001 53316291173/370248451*87403803^(18/19) 4807526976000000 a001 3278735159921/70711162*87403803^(12/19) 4807526976000000 a001 187917426909946969/39088169 4807526976000000 a001 187917426909946970/39088169 4807526976000000 a001 2504730781961/141422324*87403803^(13/19) 4807526976000000 a001 956722026041/141422324*87403803^(14/19) 4807526976000000 a001 182717648081/70711162*87403803^(15/19) 4807526976000000 a001 139583862445/141422324*87403803^(16/19) 4807526976000000 a001 53316291173/141422324*87403803^(17/19) 4807526976000000 a001 10182505537/70711162*87403803^(18/19) 4807526976000000 a001 187917426909946978/39088169 4807526976000001 a001 24157817/87403803*14662949395604^(7/9) 4807526976000001 a001 24157817/87403803*505019158607^(7/8) 4807526976000001 a001 304056783818718425/63245986 4807526976000001 a001 7778742049/54018521*141422324^(12/13) 4807526976000001 a001 32951280099/54018521*141422324^(11/13) 4807526976000001 a001 139583862445/54018521*141422324^(10/13) 4807526976000001 a001 591286729879/54018521*141422324^(9/13) 4807526976000001 a001 956722026041/54018521*141422324^(2/3) 4807526976000001 a001 2504730781961/54018521*141422324^(8/13) 4807526976000001 a001 10610209857723/54018521*141422324^(7/13) 4807526976000001 a001 102334155/54018521*45537549124^(15/17) 4807526976000001 a001 102334155/54018521*312119004989^(9/11) 4807526976000001 a001 24157817/228826127*817138163596^(17/19) 4807526976000001 a001 24157817/228826127*14662949395604^(17/21) 4807526976000001 a001 102334155/54018521*14662949395604^(5/7) 4807526976000001 a001 102334155/54018521*192900153618^(5/6) 4807526976000001 a001 24157817/228826127*192900153618^(17/18) 4807526976000001 a001 102334155/54018521*28143753123^(9/10) 4807526976000001 a001 102334155/54018521*10749957122^(15/16) 4807526976000001 a001 796030994547383883/165580141 4807526976000001 a001 53316291173/20633239*20633239^(6/7) 4807526976000001 a001 2084036199823433224/433494437 4807526976000001 a001 24157817/1568397607*3461452808002^(11/12) 4807526976000001 a001 1836311903/54018521*2537720636^(13/15) 4807526976000001 a001 5456077604922915789/1134903170 4807526976000001 a001 12586269025/54018521*2537720636^(7/9) 4807526976000001 a001 7778742049/54018521*2537720636^(4/5) 4807526976000001 a001 32951280099/54018521*2537720636^(11/15) 4807526976000001 a001 139583862445/54018521*2537720636^(2/3) 4807526976000001 a001 591286729879/54018521*2537720636^(3/5) 4807526976000001 a001 1548008755920/54018521*2537720636^(5/9) 4807526976000001 a001 2504730781961/54018521*2537720636^(8/15) 4807526976000001 a001 10610209857723/54018521*2537720636^(7/15) 4807526976000001 a001 1836311903/54018521*45537549124^(13/17) 4807526976000001 a001 24157817/4106118243*14662949395604^(19/21) 4807526976000001 a001 1836311903/54018521*14662949395604^(13/21) 4807526976000001 a001 1836311903/54018521*192900153618^(13/18) 4807526976000001 a001 1836311903/54018521*73681302247^(3/4) 4807526976000001 a001 1836311903/54018521*10749957122^(13/16) 4807526976000001 a001 14284196614945314143/2971215073 4807526976000001 a001 12586269025/54018521*17393796001^(5/7) 4807526976000001 a001 37396512239913026640/7778742049 4807526976000001 a001 365435296162/54018521*17393796001^(4/7) 4807526976000001 a001 10610209857723/54018521*17393796001^(3/7) 4807526976000001 a001 12586269025/54018521*312119004989^(7/11) 4807526976000001 a001 12586269025/54018521*14662949395604^(5/9) 4807526976000001 a001 12586269025/54018521*505019158607^(5/8) 4807526976000001 a001 32951280099/54018521*45537549124^(11/17) 4807526976000001 a001 97905340104793765777/20365011074 4807526976000001 a001 12586269025/54018521*28143753123^(7/10) 4807526976000001 a001 139583862445/54018521*45537549124^(10/17) 4807526976000001 a001 591286729879/54018521*45537549124^(9/17) 4807526976000001 a001 2504730781961/54018521*45537549124^(8/17) 4807526976000001 a001 10610209857723/54018521*45537549124^(7/17) 4807526976000001 a001 32951280099/54018521*312119004989^(3/5) 4807526976000001 a001 32951280099/54018521*817138163596^(11/19) 4807526976000001 a001 32951280099/54018521*14662949395604^(11/21) 4807526976000001 a001 32951280099/54018521*192900153618^(11/18) 4807526976000001 a001 256319508074468270691/53316291173 4807526976000001 a001 86267571272/54018521*9062201101803^(1/2) 4807526976000001 a001 1548008755920/54018521*312119004989^(5/11) 4807526976000001 a001 591286729879/54018521*817138163596^(9/19) 4807526976000001 a001 10610209857723/54018521*14662949395604^(1/3) 4807526976000001 a001 24157817*(1/2+1/2*5^(1/2))^11 4807526976000001 a001 2504730781961/54018521*14662949395604^(8/21) 4807526976000001 a001 139583862445/54018521*312119004989^(6/11) 4807526976000001 a001 139583862445/54018521*14662949395604^(10/21) 4807526976000001 a001 10610209857723/54018521*192900153618^(7/18) 4807526976000001 a001 2504730781961/54018521*192900153618^(4/9) 4807526976000001 a001 591286729879/54018521*192900153618^(1/2) 4807526976000001 a001 139583862445/54018521*192900153618^(5/9) 4807526976000001 a001 53316291173/54018521*23725150497407^(1/2) 4807526976000001 a001 53316291173/54018521*505019158607^(4/7) 4807526976000001 a001 2504730781961/54018521*73681302247^(6/13) 4807526976000001 a001 956722026041/54018521*73681302247^(1/2) 4807526976000001 a001 365435296162/54018521*73681302247^(7/13) 4807526976000001 a001 20365011074/54018521*45537549124^(2/3) 4807526976000001 a001 158414167969674504914/32951280099 4807526976000001 a001 1548008755920/54018521*28143753123^(1/2) 4807526976000001 a001 139583862445/54018521*28143753123^(3/5) 4807526976000001 a001 60508827864880739137/12586269025 4807526976000001 a001 7778742049/54018521*45537549124^(12/17) 4807526976000001 a001 24157817/17393796001*14662949395604^(20/21) 4807526976000001 a001 7778742049/54018521*505019158607^(9/14) 4807526976000001 a001 7778742049/54018521*192900153618^(2/3) 4807526976000001 a001 7778742049/54018521*73681302247^(9/13) 4807526976000001 a001 10610209857723/54018521*10749957122^(7/16) 4807526976000001 a001 6557470319842/54018521*10749957122^(11/24) 4807526976000001 a001 2504730781961/54018521*10749957122^(1/2) 4807526976000001 a001 956722026041/54018521*10749957122^(13/24) 4807526976000001 a001 591286729879/54018521*10749957122^(9/16) 4807526976000001 a001 365435296162/54018521*10749957122^(7/12) 4807526976000001 a001 139583862445/54018521*10749957122^(5/8) 4807526976000001 a001 32951280099/54018521*10749957122^(11/16) 4807526976000001 a001 53316291173/54018521*10749957122^(2/3) 4807526976000001 a001 20365011074/54018521*10749957122^(17/24) 4807526976000001 a001 23112315624967712497/4807526976 4807526976000001 a001 7778742049/54018521*10749957122^(3/4) 4807526976000001 a001 1134903170/54018521*2537720636^(8/9) 4807526976000001 a001 2971215073/54018521*817138163596^(2/3) 4807526976000001 a001 6557470319842/54018521*4106118243^(11/23) 4807526976000001 a001 2971215073/54018521*10749957122^(19/24) 4807526976000001 a001 4052739537881/54018521*4106118243^(1/2) 4807526976000001 a001 2504730781961/54018521*4106118243^(12/23) 4807526976000001 a001 956722026041/54018521*4106118243^(13/23) 4807526976000001 a001 365435296162/54018521*4106118243^(14/23) 4807526976000001 a001 139583862445/54018521*4106118243^(15/23) 4807526976000001 a001 53316291173/54018521*4106118243^(16/23) 4807526976000001 a001 20365011074/54018521*4106118243^(17/23) 4807526976000001 a001 7778742049/54018521*4106118243^(18/23) 4807526976000001 a001 8828119010022398354/1836311903 4807526976000001 a001 2971215073/54018521*4106118243^(19/23) 4807526976000001 a001 1134903170/54018521*312119004989^(8/11) 4807526976000001 a001 24157817/2537720636*14662949395604^(8/9) 4807526976000001 a001 1134903170/54018521*23725150497407^(5/8) 4807526976000001 a001 1134903170/54018521*73681302247^(10/13) 4807526976000001 a001 1134903170/54018521*28143753123^(4/5) 4807526976000001 a001 1134903170/54018521*10749957122^(5/6) 4807526976000001 a001 6557470319842/54018521*1568397607^(1/2) 4807526976000001 a001 1134903170/54018521*4106118243^(20/23) 4807526976000001 a001 2504730781961/54018521*1568397607^(6/11) 4807526976000001 a001 956722026041/54018521*1568397607^(13/22) 4807526976000001 a001 365435296162/54018521*1568397607^(7/11) 4807526976000001 a001 139583862445/54018521*1568397607^(15/22) 4807526976000001 a001 53316291173/54018521*1568397607^(8/11) 4807526976000001 a001 32951280099/54018521*1568397607^(3/4) 4807526976000001 a001 20365011074/54018521*1568397607^(17/22) 4807526976000001 a001 7778742049/54018521*1568397607^(9/11) 4807526976000001 a001 2971215073/54018521*1568397607^(19/22) 4807526976000001 a001 37888105675275085/7880997 4807526976000001 a001 1134903170/54018521*1568397607^(10/11) 4807526976000001 a001 433494437/54018521*2537720636^(14/15) 4807526976000001 a001 433494437/54018521*17393796001^(6/7) 4807526976000001 a001 433494437/54018521*45537549124^(14/17) 4807526976000001 a001 433494437/54018521*817138163596^(14/19) 4807526976000001 a001 24157817/969323029*14662949395604^(6/7) 4807526976000001 a001 433494437/54018521*14662949395604^(2/3) 4807526976000001 a001 433494437/54018521*192900153618^(7/9) 4807526976000001 a001 433494437/54018521*10749957122^(7/8) 4807526976000001 a001 433494437/54018521*4106118243^(21/23) 4807526976000001 a001 10610209857723/54018521*599074578^(1/2) 4807526976000001 a001 433494437/54018521*1568397607^(21/22) 4807526976000001 a001 6557470319842/54018521*599074578^(11/21) 4807526976000001 a001 2504730781961/54018521*599074578^(4/7) 4807526976000001 a001 956722026041/54018521*599074578^(13/21) 4807526976000001 a001 591286729879/54018521*599074578^(9/14) 4807526976000001 a001 365435296162/54018521*599074578^(2/3) 4807526976000001 a001 139583862445/54018521*599074578^(5/7) 4807526976000001 a001 53316291173/54018521*599074578^(16/21) 4807526976000001 a001 32951280099/54018521*599074578^(11/14) 4807526976000001 a001 20365011074/54018521*599074578^(17/21) 4807526976000001 a001 12586269025/54018521*599074578^(5/6) 4807526976000001 a001 7778742049/54018521*599074578^(6/7) 4807526976000001 a001 1836311903/54018521*599074578^(13/14) 4807526976000001 a001 2971215073/54018521*599074578^(19/21) 4807526976000001 a001 1288005205276049341/267914296 4807526976000001 a001 1134903170/54018521*599074578^(20/21) 4807526976000001 a001 165580141/54018521*312119004989^(4/5) 4807526976000001 a001 165580141/54018521*23725150497407^(11/16) 4807526976000001 a001 24157817/370248451*23725150497407^(13/16) 4807526976000001 a001 24157817/370248451*505019158607^(13/14) 4807526976000001 a001 165580141/54018521*73681302247^(11/13) 4807526976000001 a001 165580141/54018521*10749957122^(11/12) 4807526976000001 a001 165580141/54018521*4106118243^(22/23) 4807526976000001 a001 6557470319842/54018521*228826127^(11/20) 4807526976000001 a001 2504730781961/54018521*228826127^(3/5) 4807526976000001 a001 1548008755920/54018521*228826127^(5/8) 4807526976000001 a001 956722026041/54018521*228826127^(13/20) 4807526976000001 a001 365435296162/54018521*228826127^(7/10) 4807526976000001 a001 139583862445/54018521*228826127^(3/4) 4807526976000001 a001 53316291173/54018521*228826127^(4/5) 4807526976000001 a001 20365011074/54018521*228826127^(17/20) 4807526976000001 a001 12586269025/54018521*228826127^(7/8) 4807526976000001 a001 7778742049/54018521*228826127^(9/10) 4807526976000001 a001 2971215073/54018521*228826127^(19/20) 4807526976000001 a001 491974210728665458/102334155 4807526976000001 a001 24157817/141422324*312119004989^(10/11) 4807526976000001 a001 24157817/141422324*3461452808002^(5/6) 4807526976000001 a001 63245986/54018521*10749957122^(23/24) 4807526976000002 a001 3536736619241/29134601*33385282^(11/18) 4807526976000002 a001 6557470319842/54018521*87403803^(11/19) 4807526976000002 a001 2504730781961/54018521*87403803^(12/19) 4807526976000002 a001 956722026041/54018521*87403803^(13/19) 4807526976000002 a001 365435296162/54018521*87403803^(14/19) 4807526976000002 a001 139583862445/54018521*87403803^(15/19) 4807526976000002 a001 53316291173/54018521*87403803^(16/19) 4807526976000002 a001 20365011074/54018521*87403803^(17/19) 4807526976000002 a001 7778742049/54018521*87403803^(18/19) 4807526976000002 a001 4052739537881/87403803*33385282^(2/3) 4807526976000002 a001 139583862445/20633239*20633239^(4/5) 4807526976000002 a001 187917426909947033/39088169 4807526976000002 a001 516002918640/29134601*33385282^(13/18) 4807526976000002 a001 956722026041/87403803*33385282^(3/4) 4807526976000002 a001 591286729879/87403803*33385282^(7/9) 4807526976000002 a001 225749145909/4868641*33385282^(2/3) 4807526976000002 a001 75283811239/29134601*33385282^(5/6) 4807526976000003 a001 4052739537881/228826127*33385282^(13/18) 4807526976000003 a001 3536736619241/199691526*33385282^(13/18) 4807526976000003 a001 3278735159921/70711162*33385282^(2/3) 4807526976000003 a001 2504730781961/228826127*33385282^(3/4) 4807526976000003 a001 6557470319842/370248451*33385282^(13/18) 4807526976000003 a001 86267571272/87403803*33385282^(8/9) 4807526976000003 a001 3278735159921/299537289*33385282^(3/4) 4807526976000003 a001 591286729879/20633239*20633239^(5/7) 4807526976000003 a001 10610209857723/969323029*33385282^(3/4) 4807526976000003 a001 1548008755920/228826127*33385282^(7/9) 4807526976000003 a001 4052739537881/370248451*33385282^(3/4) 4807526976000003 a001 24157817/54018521*45537549124^(16/17) 4807526976000003 a001 24157817/54018521*14662949395604^(16/21) 4807526976000003 a001 24157817/54018521*192900153618^(8/9) 4807526976000003 a001 24157817/54018521*73681302247^(12/13) 4807526976000003 a001 53316291173/87403803*33385282^(11/12) 4807526976000003 a001 4052739537881/599074578*33385282^(7/9) 4807526976000003 a001 1515744265389/224056801*33385282^(7/9) 4807526976000003 a001 2504730781961/141422324*33385282^(13/18) 4807526976000003 a001 6557470319842/969323029*33385282^(7/9) 4807526976000003 a001 2504730781961/370248451*33385282^(7/9) 4807526976000003 a001 10983760033/29134601*33385282^(17/18) 4807526976000003 a001 387002188980/35355581*33385282^(3/4) 4807526976000003 a001 591286729879/228826127*33385282^(5/6) 4807526976000003 a001 86000486440/33281921*33385282^(5/6) 4807526976000003 a001 4052739537881/1568397607*33385282^(5/6) 4807526976000003 a001 3536736619241/1368706081*33385282^(5/6) 4807526976000003 a001 956722026041/141422324*33385282^(7/9) 4807526976000003 a001 3278735159921/1268860318*33385282^(5/6) 4807526976000003 a001 2504730781961/969323029*33385282^(5/6) 4807526976000003 a001 956722026041/370248451*33385282^(5/6) 4807526976000003 a001 71778070001175607/14930352 4807526976000003 a001 225851433717/228826127*33385282^(8/9) 4807526976000003 a001 591286729879/599074578*33385282^(8/9) 4807526976000003 a001 1548008755920/1568397607*33385282^(8/9) 4807526976000003 a001 4052739537881/4106118243*33385282^(8/9) 4807526976000003 a001 4807525989/4870846*33385282^(8/9) 4807526976000003 a001 6557470319842/6643838879*33385282^(8/9) 4807526976000003 a001 182717648081/70711162*33385282^(5/6) 4807526976000003 a001 2504730781961/2537720636*33385282^(8/9) 4807526976000003 a001 956722026041/969323029*33385282^(8/9) 4807526976000003 a001 139583862445/228826127*33385282^(11/12) 4807526976000003 a001 365435296162/370248451*33385282^(8/9) 4807526976000003 a001 182717648081/299537289*33385282^(11/12) 4807526976000003 a001 956722026041/1568397607*33385282^(11/12) 4807526976000003 a001 2504730781961/4106118243*33385282^(11/12) 4807526976000003 a001 3278735159921/5374978561*33385282^(11/12) 4807526976000003 a001 10610209857723/17393796001*33385282^(11/12) 4807526976000003 a001 4052739537881/6643838879*33385282^(11/12) 4807526976000003 a001 1134903780/1860499*33385282^(11/12) 4807526976000003 a001 591286729879/969323029*33385282^(11/12) 4807526976000003 a001 86267571272/228826127*33385282^(17/18) 4807526976000003 a001 225851433717/370248451*33385282^(11/12) 4807526976000004 a001 267913919/710646*33385282^(17/18) 4807526976000004 a001 591286729879/1568397607*33385282^(17/18) 4807526976000004 a001 516002918640/1368706081*33385282^(17/18) 4807526976000004 a001 4052739537881/10749957122*33385282^(17/18) 4807526976000004 a001 3536736619241/9381251041*33385282^(17/18) 4807526976000004 a001 6557470319842/17393796001*33385282^(17/18) 4807526976000004 a001 2504730781961/6643838879*33385282^(17/18) 4807526976000004 a001 139583862445/141422324*33385282^(8/9) 4807526976000004 a001 956722026041/2537720636*33385282^(17/18) 4807526976000004 a001 365435296162/969323029*33385282^(17/18) 4807526976000004 a001 139583862445/370248451*33385282^(17/18) 4807526976000004 a001 10610209857723/54018521*33385282^(7/12) 4807526976000004 a001 21566892818/35355581*33385282^(11/12) 4807526976000004 a001 7975341111241735/1658928 4807526976000004 a001 6557470319842/54018521*33385282^(11/18) 4807526976000004 a001 4486129375073476/933147 4807526976000004 a001 53316291173/141422324*33385282^(17/18) 4807526976000004 a001 71778070001175617/14930352 4807526976000004 a001 4052739537881/20633239*20633239^(3/5) 4807526976000004 a001 2504730781961/54018521*33385282^(2/3) 4807526976000004 a001 1055559852958465/219564 4807526976000004 a001 956722026041/54018521*33385282^(13/18) 4807526976000004 a001 6557470319842/20633239*20633239^(4/7) 4807526976000004 a001 591286729879/54018521*33385282^(3/4) 4807526976000005 a001 365435296162/54018521*33385282^(7/9) 4807526976000005 a001 139583862445/54018521*33385282^(5/6) 4807526976000005 a001 53316291173/54018521*33385282^(8/9) 4807526976000005 a001 32951280099/54018521*33385282^(11/12) 4807526976000005 a001 20365011074/54018521*33385282^(17/18) 4807526976000005 a001 71778070001175641/14930352 4807526976000006 a001 9227465/33385282*14662949395604^(7/9) 4807526976000006 a001 9227465/33385282*(1/2+1/2*5^(1/2))^49 4807526976000006 a001 14930352/20633239*(1/2+1/2*5^(1/2))^47 4807526976000006 a001 9227465/33385282*505019158607^(7/8) 4807526976000007 a001 10182505537/3940598*7881196^(10/11) 4807526976000009 a001 116139356908771625/24157817 4807526976000010 a001 39088169/20633239*45537549124^(15/17) 4807526976000010 a001 39088169/20633239*312119004989^(9/11) 4807526976000010 a001 9227465/87403803*817138163596^(17/19) 4807526976000010 a001 9227465/87403803*14662949395604^(17/21) 4807526976000010 a001 39088169/20633239*14662949395604^(5/7) 4807526976000010 a001 39088169/20633239*(1/2+1/2*5^(1/2))^45 4807526976000010 a001 39088169/20633239*192900153618^(5/6) 4807526976000010 a001 39088169/20633239*28143753123^(9/10) 4807526976000010 a001 39088169/20633239*10749957122^(15/16) 4807526976000011 a001 1304964737419395/271442 4807526976000011 a001 2971215073/20633239*141422324^(12/13) 4807526976000011 a001 1144206275/1875749*141422324^(11/13) 4807526976000011 a001 53316291173/20633239*141422324^(10/13) 4807526976000011 a001 7787980473/711491*141422324^(9/13) 4807526976000011 a001 365435296162/20633239*141422324^(2/3) 4807526976000011 a001 956722026041/20633239*141422324^(8/13) 4807526976000011 a001 4052739537881/20633239*141422324^(7/13) 4807526976000011 a001 9303105/1875749*(1/2+1/2*5^(1/2))^43 4807526976000011 a001 796030994547385480/165580141 4807526976000011 a001 9238424/711491*(1/2+1/2*5^(1/2))^41 4807526976000011 a001 9227465/599074578*3461452808002^(11/12) 4807526976000011 a001 2084036199823437405/433494437 4807526976000011 a001 701408733/20633239*2537720636^(13/15) 4807526976000011 a001 701408733/20633239*45537549124^(13/17) 4807526976000011 a001 701408733/20633239*14662949395604^(13/21) 4807526976000011 a001 701408733/20633239*(1/2+1/2*5^(1/2))^39 4807526976000011 a001 701408733/20633239*192900153618^(13/18) 4807526976000011 a001 701408733/20633239*73681302247^(3/4) 4807526976000011 a001 701408733/20633239*10749957122^(13/16) 4807526976000011 a001 1091215520984585347/226980634 4807526976000011 a001 4807526976/20633239*2537720636^(7/9) 4807526976000011 a001 1144206275/1875749*2537720636^(11/15) 4807526976000011 a001 53316291173/20633239*2537720636^(2/3) 4807526976000011 a001 2971215073/20633239*2537720636^(4/5) 4807526976000011 a001 7787980473/711491*2537720636^(3/5) 4807526976000011 a001 591286729879/20633239*2537720636^(5/9) 4807526976000011 a001 956722026041/20633239*2537720636^(8/15) 4807526976000011 a001 4052739537881/20633239*2537720636^(7/15) 4807526976000011 a001 6557470319842/20633239*2537720636^(4/9) 4807526976000011 a001 1836311903/20633239*(1/2+1/2*5^(1/2))^37 4807526976000011 a001 14284196614945342800/2971215073 4807526976000011 a001 4807526976/20633239*17393796001^(5/7) 4807526976000011 a001 4807526976/20633239*312119004989^(7/11) 4807526976000011 a001 4807526976/20633239*14662949395604^(5/9) 4807526976000011 a001 4807526976/20633239*(1/2+1/2*5^(1/2))^35 4807526976000011 a001 4807526976/20633239*505019158607^(5/8) 4807526976000011 a001 4807526976/20633239*28143753123^(7/10) 4807526976000011 a001 2876654787685623205/598364773 4807526976000011 a001 139583862445/20633239*17393796001^(4/7) 4807526976000011 a001 1144206275/1875749*45537549124^(11/17) 4807526976000011 a001 4052739537881/20633239*17393796001^(3/7) 4807526976000011 a001 1144206275/1875749*312119004989^(3/5) 4807526976000011 a001 1144206275/1875749*14662949395604^(11/21) 4807526976000011 a001 1144206275/1875749*(1/2+1/2*5^(1/2))^33 4807526976000011 a001 1144206275/1875749*192900153618^(11/18) 4807526976000011 a001 97905340104793962195/20365011074 4807526976000011 a001 7787980473/711491*45537549124^(9/17) 4807526976000011 a001 956722026041/20633239*45537549124^(8/17) 4807526976000011 a001 53316291173/20633239*45537549124^(10/17) 4807526976000011 a001 4052739537881/20633239*45537549124^(7/17) 4807526976000011 a001 32951280099/20633239*(1/2+1/2*5^(1/2))^31 4807526976000011 a001 32951280099/20633239*9062201101803^(1/2) 4807526976000011 a001 86267571272/20633239*(1/2+1/2*5^(1/2))^29 4807526976000011 a001 86267571272/20633239*1322157322203^(1/2) 4807526976000011 a001 591286729879/20633239*312119004989^(5/11) 4807526976000011 a001 2504730781961/20633239*312119004989^(2/5) 4807526976000011 a001 7787980473/711491*14662949395604^(3/7) 4807526976000011 a001 7787980473/711491*(1/2+1/2*5^(1/2))^27 4807526976000011 a001 591286729879/20633239*(1/2+1/2*5^(1/2))^25 4807526976000011 a001 10610209857723/20633239*817138163596^(1/3) 4807526976000011 a001 140728068720/1875749*(1/2+1/2*5^(1/2))^23 4807526976000011 a001 4052739537881/20633239*(1/2+1/2*5^(1/2))^21 4807526976000011 a001 10610209857723/20633239*(1/2+1/2*5^(1/2))^19 4807526976000011 a001 6557470319842/20633239*(1/2+1/2*5^(1/2))^20 4807526976000011 a001 2504730781961/20633239*(1/2+1/2*5^(1/2))^22 4807526976000011 a001 956722026041/20633239*(1/2+1/2*5^(1/2))^24 4807526976000011 a001 6557470319842/20633239*505019158607^(5/14) 4807526976000011 a001 139583862445/20633239*14662949395604^(4/9) 4807526976000011 a001 139583862445/20633239*(1/2+1/2*5^(1/2))^28 4807526976000011 a001 956722026041/20633239*192900153618^(4/9) 4807526976000011 a001 53316291173/20633239*312119004989^(6/11) 4807526976000011 a001 53316291173/20633239*14662949395604^(10/21) 4807526976000011 a001 53316291173/20633239*(1/2+1/2*5^(1/2))^30 4807526976000011 a001 6557470319842/20633239*73681302247^(5/13) 4807526976000011 a001 53316291173/20633239*192900153618^(5/9) 4807526976000011 a001 365435296162/20633239*73681302247^(1/2) 4807526976000011 a001 139583862445/20633239*73681302247^(7/13) 4807526976000011 a001 20365011074/20633239*(1/2+1/2*5^(1/2))^32 4807526976000011 a001 20365011074/20633239*23725150497407^(1/2) 4807526976000011 a001 20365011074/20633239*505019158607^(4/7) 4807526976000011 a001 6557470319842/20633239*28143753123^(2/5) 4807526976000011 a001 20365011074/20633239*73681302247^(8/13) 4807526976000011 a001 591286729879/20633239*28143753123^(1/2) 4807526976000011 a001 53316291173/20633239*28143753123^(3/5) 4807526976000011 a001 12101765572976172106/2517253805 4807526976000011 a001 7778742049/20633239*45537549124^(2/3) 4807526976000011 a001 7778742049/20633239*(1/2+1/2*5^(1/2))^34 4807526976000011 a001 6557470319842/20633239*10749957122^(5/12) 4807526976000011 a001 4052739537881/20633239*10749957122^(7/16) 4807526976000011 a001 2504730781961/20633239*10749957122^(11/24) 4807526976000011 a001 956722026041/20633239*10749957122^(1/2) 4807526976000011 a001 1144206275/1875749*10749957122^(11/16) 4807526976000011 a001 365435296162/20633239*10749957122^(13/24) 4807526976000011 a001 7787980473/711491*10749957122^(9/16) 4807526976000011 a001 139583862445/20633239*10749957122^(7/12) 4807526976000011 a001 53316291173/20633239*10749957122^(5/8) 4807526976000011 a001 20365011074/20633239*10749957122^(2/3) 4807526976000011 a001 23112315624967758865/4807526976 4807526976000011 a001 7778742049/20633239*10749957122^(17/24) 4807526976000011 a001 2971215073/20633239*45537549124^(12/17) 4807526976000011 a001 2971215073/20633239*14662949395604^(4/7) 4807526976000011 a001 2971215073/20633239*(1/2+1/2*5^(1/2))^36 4807526976000011 a001 2971215073/20633239*505019158607^(9/14) 4807526976000011 a001 2971215073/20633239*192900153618^(2/3) 4807526976000011 a001 2971215073/20633239*73681302247^(9/13) 4807526976000011 a001 6557470319842/20633239*4106118243^(10/23) 4807526976000011 a001 2504730781961/20633239*4106118243^(11/23) 4807526976000011 a001 2971215073/20633239*10749957122^(3/4) 4807526976000011 a001 140728068720/1875749*4106118243^(1/2) 4807526976000011 a001 956722026041/20633239*4106118243^(12/23) 4807526976000011 a001 365435296162/20633239*4106118243^(13/23) 4807526976000011 a001 139583862445/20633239*4106118243^(14/23) 4807526976000011 a001 53316291173/20633239*4106118243^(15/23) 4807526976000011 a001 20365011074/20633239*4106118243^(16/23) 4807526976000011 a001 7778742049/20633239*4106118243^(17/23) 4807526976000011 a001 8828119010022416065/1836311903 4807526976000011 a001 2971215073/20633239*4106118243^(18/23) 4807526976000011 a001 1134903170/20633239*817138163596^(2/3) 4807526976000011 a001 1134903170/20633239*(1/2+1/2*5^(1/2))^38 4807526976000011 a001 1134903170/20633239*10749957122^(19/24) 4807526976000011 a001 6557470319842/20633239*1568397607^(5/11) 4807526976000011 a001 2504730781961/20633239*1568397607^(1/2) 4807526976000011 a001 1134903170/20633239*4106118243^(19/23) 4807526976000011 a001 956722026041/20633239*1568397607^(6/11) 4807526976000011 a001 365435296162/20633239*1568397607^(13/22) 4807526976000011 a001 139583862445/20633239*1568397607^(7/11) 4807526976000011 a001 53316291173/20633239*1568397607^(15/22) 4807526976000011 a001 20365011074/20633239*1568397607^(8/11) 4807526976000011 a001 1144206275/1875749*1568397607^(3/4) 4807526976000011 a001 7778742049/20633239*1568397607^(17/22) 4807526976000011 a001 2971215073/20633239*1568397607^(9/11) 4807526976000011 a001 3372041405099489330/701408733 4807526976000011 a001 1134903170/20633239*1568397607^(19/22) 4807526976000011 a001 433494437/20633239*2537720636^(8/9) 4807526976000011 a001 433494437/20633239*312119004989^(8/11) 4807526976000011 a001 9227465/969323029*14662949395604^(8/9) 4807526976000011 a001 433494437/20633239*(1/2+1/2*5^(1/2))^40 4807526976000011 a001 433494437/20633239*23725150497407^(5/8) 4807526976000011 a001 433494437/20633239*73681302247^(10/13) 4807526976000011 a001 433494437/20633239*28143753123^(4/5) 4807526976000011 a001 433494437/20633239*10749957122^(5/6) 4807526976000011 a001 433494437/20633239*4106118243^(20/23) 4807526976000011 a001 6557470319842/20633239*599074578^(10/21) 4807526976000011 a001 4052739537881/20633239*599074578^(1/2) 4807526976000011 a001 433494437/20633239*1568397607^(10/11) 4807526976000011 a001 2504730781961/20633239*599074578^(11/21) 4807526976000011 a001 956722026041/20633239*599074578^(4/7) 4807526976000011 a001 365435296162/20633239*599074578^(13/21) 4807526976000011 a001 7787980473/711491*599074578^(9/14) 4807526976000011 a001 139583862445/20633239*599074578^(2/3) 4807526976000011 a001 53316291173/20633239*599074578^(5/7) 4807526976000011 a001 20365011074/20633239*599074578^(16/21) 4807526976000011 a001 701408733/20633239*599074578^(13/14) 4807526976000011 a001 1144206275/1875749*599074578^(11/14) 4807526976000011 a001 7778742049/20633239*599074578^(17/21) 4807526976000011 a001 4807526976/20633239*599074578^(5/6) 4807526976000011 a001 2971215073/20633239*599074578^(6/7) 4807526976000011 a001 1134903170/20633239*599074578^(19/21) 4807526976000011 a001 99077323482773225/20608792 4807526976000011 a001 433494437/20633239*599074578^(20/21) 4807526976000011 a001 165580141/20633239*2537720636^(14/15) 4807526976000011 a001 165580141/20633239*17393796001^(6/7) 4807526976000011 a001 165580141/20633239*45537549124^(14/17) 4807526976000011 a001 165580141/20633239*817138163596^(14/19) 4807526976000011 a001 165580141/20633239*14662949395604^(2/3) 4807526976000011 a001 165580141/20633239*(1/2+1/2*5^(1/2))^42 4807526976000011 a001 165580141/20633239*505019158607^(3/4) 4807526976000011 a001 165580141/20633239*192900153618^(7/9) 4807526976000011 a001 165580141/20633239*10749957122^(7/8) 4807526976000011 a001 165580141/20633239*4106118243^(21/23) 4807526976000011 a001 165580141/20633239*1568397607^(21/22) 4807526976000011 a001 6557470319842/20633239*228826127^(1/2) 4807526976000011 a001 2504730781961/20633239*228826127^(11/20) 4807526976000011 a001 956722026041/20633239*228826127^(3/5) 4807526976000011 a001 591286729879/20633239*228826127^(5/8) 4807526976000011 a001 365435296162/20633239*228826127^(13/20) 4807526976000011 a001 139583862445/20633239*228826127^(7/10) 4807526976000011 a001 53316291173/20633239*228826127^(3/4) 4807526976000011 a001 20365011074/20633239*228826127^(4/5) 4807526976000011 a001 7778742049/20633239*228826127^(17/20) 4807526976000011 a001 4807526976/20633239*228826127^(7/8) 4807526976000011 a001 2971215073/20633239*228826127^(9/10) 4807526976000011 a001 1134903170/20633239*228826127^(19/20) 4807526976000011 a001 98394842145733289/20466831 4807526976000011 a001 63245986/20633239*312119004989^(4/5) 4807526976000011 a001 63245986/20633239*(1/2+1/2*5^(1/2))^44 4807526976000011 a001 63245986/20633239*23725150497407^(11/16) 4807526976000011 a001 9227465/141422324*23725150497407^(13/16) 4807526976000011 a001 63245986/20633239*73681302247^(11/13) 4807526976000011 a001 63245986/20633239*10749957122^(11/12) 4807526976000011 a001 63245986/20633239*4106118243^(22/23) 4807526976000011 a001 10610209857723/20633239*87403803^(1/2) 4807526976000011 a001 6557470319842/20633239*87403803^(10/19) 4807526976000011 a001 2504730781961/20633239*87403803^(11/19) 4807526976000011 a001 956722026041/20633239*87403803^(12/19) 4807526976000011 a001 365435296162/20633239*87403803^(13/19) 4807526976000011 a001 139583862445/20633239*87403803^(14/19) 4807526976000011 a001 53316291173/20633239*87403803^(15/19) 4807526976000011 a001 20365011074/20633239*87403803^(16/19) 4807526976000011 a001 7778742049/20633239*87403803^(17/19) 4807526976000011 a001 2971215073/20633239*87403803^(18/19) 4807526976000011 a001 187917426909947410/39088169 4807526976000012 a001 9227465/54018521*312119004989^(10/11) 4807526976000012 a001 24157817/20633239*(1/2+1/2*5^(1/2))^46 4807526976000012 a001 9227465/54018521*3461452808002^(5/6) 4807526976000012 a001 24157817/20633239*10749957122^(23/24) 4807526976000013 a001 1515744265389/4769326*12752043^(10/17) 4807526976000013 a001 6557470319842/20633239*33385282^(5/9) 4807526976000013 a001 4052739537881/20633239*33385282^(7/12) 4807526976000013 a001 2504730781961/20633239*33385282^(11/18) 4807526976000014 a001 21566892818/1970299*7881196^(9/11) 4807526976000014 a001 956722026041/20633239*33385282^(2/3) 4807526976000014 a001 365435296162/20633239*33385282^(13/18) 4807526976000014 a001 7787980473/711491*33385282^(3/4) 4807526976000014 a001 139583862445/20633239*33385282^(7/9) 4807526976000014 a001 4052739537881/33385282*12752043^(11/17) 4807526976000014 a001 53316291173/20633239*33385282^(5/6) 4807526976000015 a001 20365011074/20633239*33385282^(8/9) 4807526976000015 a001 1144206275/1875749*33385282^(11/12) 4807526976000015 a001 7778742049/20633239*33385282^(17/18) 4807526976000015 a001 71778070001175785/14930352 4807526976000016 a001 774004377960/16692641*12752043^(12/17) 4807526976000018 a001 591286729879/33385282*12752043^(13/17) 4807526976000018 a001 3536736619241/29134601*12752043^(11/17) 4807526976000020 a001 32264490531/4769326*12752043^(14/17) 4807526976000020 a001 4052739537881/87403803*12752043^(12/17) 4807526976000020 a001 225749145909/4868641*12752043^(12/17) 4807526976000020 a001 6557470319842/54018521*12752043^(11/17) 4807526976000021 a001 182717648081/3940598*7881196^(8/11) 4807526976000021 a001 3278735159921/70711162*12752043^(12/17) 4807526976000021 a001 43133785636/16692641*12752043^(15/17) 4807526976000021 a001 516002918640/29134601*12752043^(13/17) 4807526976000022 a001 4052739537881/228826127*12752043^(13/17) 4807526976000022 a001 2504730781961/54018521*12752043^(12/17) 4807526976000022 a001 9227465/20633239*45537549124^(16/17) 4807526976000022 a001 9227465/20633239*14662949395604^(16/21) 4807526976000022 a001 9227465/20633239*(1/2+1/2*5^(1/2))^48 4807526976000022 a001 9227465/20633239*192900153618^(8/9) 4807526976000022 a001 9227465/20633239*73681302247^(12/13) 4807526976000022 a001 3536736619241/199691526*12752043^(13/17) 4807526976000022 a001 6557470319842/370248451*12752043^(13/17) 4807526976000022 a001 2504730781961/141422324*12752043^(13/17) 4807526976000023 a001 32951280099/33385282*12752043^(16/17) 4807526976000023 a001 591286729879/87403803*12752043^(14/17) 4807526976000024 a001 1548008755920/228826127*12752043^(14/17) 4807526976000024 a001 956722026041/54018521*12752043^(13/17) 4807526976000024 a001 4052739537881/599074578*12752043^(14/17) 4807526976000024 a001 1515744265389/224056801*12752043^(14/17) 4807526976000024 a001 6557470319842/969323029*12752043^(14/17) 4807526976000024 a001 2504730781961/370248451*12752043^(14/17) 4807526976000024 a001 956722026041/141422324*12752043^(14/17) 4807526976000025 a001 27416783093579856/5702887 4807526976000025 a001 75283811239/29134601*12752043^(15/17) 4807526976000025 a001 956722026041/7881196*7881196^(2/3) 4807526976000025 a001 591286729879/228826127*12752043^(15/17) 4807526976000025 a001 365435296162/54018521*12752043^(14/17) 4807526976000026 a001 86000486440/33281921*12752043^(15/17) 4807526976000026 a001 4052739537881/1568397607*12752043^(15/17) 4807526976000026 a001 3536736619241/1368706081*12752043^(15/17) 4807526976000026 a001 3278735159921/1268860318*12752043^(15/17) 4807526976000026 a001 2504730781961/969323029*12752043^(15/17) 4807526976000026 a001 956722026041/370248451*12752043^(15/17) 4807526976000026 a001 182717648081/70711162*12752043^(15/17) 4807526976000027 a001 86267571272/87403803*12752043^(16/17) 4807526976000027 a001 225851433717/228826127*12752043^(16/17) 4807526976000027 a001 139583862445/54018521*12752043^(15/17) 4807526976000027 a001 591286729879/599074578*12752043^(16/17) 4807526976000027 a001 1548008755920/1568397607*12752043^(16/17) 4807526976000027 a001 4052739537881/4106118243*12752043^(16/17) 4807526976000027 a001 4807525989/4870846*12752043^(16/17) 4807526976000027 a001 6557470319842/6643838879*12752043^(16/17) 4807526976000027 a001 2504730781961/2537720636*12752043^(16/17) 4807526976000027 a001 956722026041/969323029*12752043^(16/17) 4807526976000027 a001 365435296162/370248451*12752043^(16/17) 4807526976000028 a001 139583862445/141422324*12752043^(16/17) 4807526976000028 a001 387002188980/1970299*7881196^(7/11) 4807526976000028 a001 6557470319842/20633239*12752043^(10/17) 4807526976000028 a001 27416783093579877/5702887 4807526976000029 a001 27416783093579880/5702887 4807526976000029 a001 53316291173/54018521*12752043^(16/17) 4807526976000029 a001 27416783093579881/5702887 4807526976000029 a001 27416783093579882/5702887 4807526976000030 a001 2504730781961/20633239*12752043^(11/17) 4807526976000031 a001 27416783093579890/5702887 4807526976000032 a001 956722026041/20633239*12752043^(12/17) 4807526976000033 a001 365435296162/20633239*12752043^(13/17) 4807526976000035 a001 3278735159921/3940598*7881196^(6/11) 4807526976000035 a001 139583862445/20633239*12752043^(14/17) 4807526976000037 a001 53316291173/20633239*12752043^(15/17) 4807526976000039 a001 20365011074/20633239*12752043^(16/17) 4807526976000040 a001 27416783093579945/5702887 4807526976000047 a001 3524578/12752043*14662949395604^(7/9) 4807526976000047 a001 3524578/12752043*(1/2+1/2*5^(1/2))^49 4807526976000047 a001 5702887/7881196*(1/2+1/2*5^(1/2))^47 4807526976000047 a001 3524578/12752043*505019158607^(7/8) 4807526976000066 a001 8872257381519290/1845493 4807526976000067 a001 10182505537/3940598*20633239^(6/7) 4807526976000068 a001 53316291173/7881196*20633239^(4/5) 4807526976000069 a001 225851433717/7881196*20633239^(5/7) 4807526976000070 a001 387002188980/1970299*20633239^(3/5) 4807526976000070 a001 2504730781961/7881196*20633239^(4/7) 4807526976000073 a001 3732588/1970299*45537549124^(15/17) 4807526976000073 a001 3732588/1970299*312119004989^(9/11) 4807526976000073 a001 1762289/16692641*817138163596^(17/19) 4807526976000073 a001 1762289/16692641*14662949395604^(17/21) 4807526976000073 a001 3732588/1970299*14662949395604^(5/7) 4807526976000073 a001 1762289/16692641*(1/2+1/2*5^(1/2))^51 4807526976000073 a001 3732588/1970299*(1/2+1/2*5^(1/2))^45 4807526976000073 a001 1762289/16692641*192900153618^(17/18) 4807526976000073 a001 3732588/1970299*28143753123^(9/10) 4807526976000073 a001 3732588/1970299*10749957122^(15/16) 4807526976000075 a001 116139356908773222/24157817 4807526976000076 a001 39088169/7881196*(1/2+1/2*5^(1/2))^43 4807526976000077 a001 152028391909361608/31622993 4807526976000077 a001 567451585/3940598*141422324^(12/13) 4807526976000077 a001 1201881744/1970299*141422324^(11/13) 4807526976000077 a001 10182505537/3940598*141422324^(10/13) 4807526976000077 a001 21566892818/1970299*141422324^(9/13) 4807526976000077 a001 139583862445/7881196*141422324^(2/3) 4807526976000077 a001 182717648081/3940598*141422324^(8/13) 4807526976000077 a001 387002188980/1970299*141422324^(7/13) 4807526976000077 a001 3278735159921/3940598*141422324^(6/13) 4807526976000077 a001 102334155/7881196*(1/2+1/2*5^(1/2))^41 4807526976000077 a001 3524578/228826127*3461452808002^(11/12) 4807526976000077 a001 796030994547396426/165580141 4807526976000077 a001 66978574/1970299*2537720636^(13/15) 4807526976000077 a001 66978574/1970299*45537549124^(13/17) 4807526976000077 a001 1762289/299537289*14662949395604^(19/21) 4807526976000077 a001 66978574/1970299*14662949395604^(13/21) 4807526976000077 a001 66978574/1970299*(1/2+1/2*5^(1/2))^39 4807526976000077 a001 66978574/1970299*192900153618^(13/18) 4807526976000077 a001 66978574/1970299*73681302247^(3/4) 4807526976000077 a001 66978574/1970299*10749957122^(13/16) 4807526976000077 a001 2084036199823466062/433494437 4807526976000077 a001 3524667/39604*(1/2+1/2*5^(1/2))^37 4807526976000077 a001 66978574/1970299*599074578^(13/14) 4807526976000077 a001 1836311903/7881196*2537720636^(7/9) 4807526976000077 a001 8944389516267216/1860497 4807526976000077 a001 1201881744/1970299*2537720636^(11/15) 4807526976000077 a001 10182505537/3940598*2537720636^(2/3) 4807526976000077 a001 21566892818/1970299*2537720636^(3/5) 4807526976000077 a001 225851433717/7881196*2537720636^(5/9) 4807526976000077 a001 182717648081/3940598*2537720636^(8/15) 4807526976000077 a001 387002188980/1970299*2537720636^(7/15) 4807526976000077 a001 2504730781961/7881196*2537720636^(4/9) 4807526976000077 a001 3278735159921/3940598*2537720636^(2/5) 4807526976000077 a001 1836311903/7881196*17393796001^(5/7) 4807526976000077 a001 1836311903/7881196*312119004989^(7/11) 4807526976000077 a001 1836311903/7881196*14662949395604^(5/9) 4807526976000077 a001 1836311903/7881196*(1/2+1/2*5^(1/2))^35 4807526976000077 a001 1836311903/7881196*505019158607^(5/8) 4807526976000077 a001 1836311903/7881196*28143753123^(7/10) 4807526976000077 a001 14284196614945539218/2971215073 4807526976000077 a001 1201881744/1970299*45537549124^(11/17) 4807526976000077 a001 1201881744/1970299*312119004989^(3/5) 4807526976000077 a001 1201881744/1970299*817138163596^(11/19) 4807526976000077 a001 1201881744/1970299*14662949395604^(11/21) 4807526976000077 a001 1201881744/1970299*(1/2+1/2*5^(1/2))^33 4807526976000077 a001 1201881744/1970299*192900153618^(11/18) 4807526976000077 a001 37396512239913615894/7778742049 4807526976000077 a001 1201881744/1970299*10749957122^(11/16) 4807526976000077 a001 53316291173/7881196*17393796001^(4/7) 4807526976000077 a001 387002188980/1970299*17393796001^(3/7) 4807526976000077 a001 12586269025/7881196*(1/2+1/2*5^(1/2))^31 4807526976000077 a001 12586269025/7881196*9062201101803^(1/2) 4807526976000077 a001 21566892818/1970299*45537549124^(9/17) 4807526976000077 a001 182717648081/3940598*45537549124^(8/17) 4807526976000077 a001 387002188980/1970299*45537549124^(7/17) 4807526976000077 a001 32951280099/7881196*(1/2+1/2*5^(1/2))^29 4807526976000077 a001 32951280099/7881196*1322157322203^(1/2) 4807526976000077 a001 3278735159921/3940598*45537549124^(6/17) 4807526976000077 a001 10610209857723/7881196*45537549124^(1/3) 4807526976000077 a001 21566892818/1970299*817138163596^(9/19) 4807526976000077 a001 21566892818/1970299*14662949395604^(3/7) 4807526976000077 a001 21566892818/1970299*(1/2+1/2*5^(1/2))^27 4807526976000077 a001 21566892818/1970299*192900153618^(1/2) 4807526976000077 a001 225851433717/7881196*312119004989^(5/11) 4807526976000077 a001 225851433717/7881196*(1/2+1/2*5^(1/2))^25 4807526976000077 a001 225851433717/7881196*3461452808002^(5/12) 4807526976000077 a001 4052739537881/7881196*817138163596^(1/3) 4807526976000077 a001 387002188980/1970299*(1/2+1/2*5^(1/2))^21 4807526976000077 a001 4052739537881/7881196*(1/2+1/2*5^(1/2))^19 4807526976000077 a001 10610209857723/7881196*(1/2+1/2*5^(1/2))^17 4807526976000077 a001 3524578*(1/2+1/2*5^(1/2))^15 4807526976000077 a001 3278735159921/3940598*(1/2+1/2*5^(1/2))^18 4807526976000077 a001 2504730781961/7881196*(1/2+1/2*5^(1/2))^20 4807526976000077 a001 2504730781961/7881196*23725150497407^(5/16) 4807526976000077 a001 956722026041/7881196*(1/2+1/2*5^(1/2))^22 4807526976000077 a001 2504730781961/7881196*505019158607^(5/14) 4807526976000077 a001 182717648081/3940598*14662949395604^(8/21) 4807526976000077 a001 3278735159921/3940598*192900153618^(1/3) 4807526976000077 a001 139583862445/7881196*(1/2+1/2*5^(1/2))^26 4807526976000077 a001 387002188980/1970299*192900153618^(7/18) 4807526976000077 a001 182717648081/3940598*192900153618^(4/9) 4807526976000077 a001 53316291173/7881196*14662949395604^(4/9) 4807526976000077 a001 53316291173/7881196*(1/2+1/2*5^(1/2))^28 4807526976000077 a001 2504730781961/7881196*73681302247^(5/13) 4807526976000077 a001 53316291173/7881196*505019158607^(1/2) 4807526976000077 a001 182717648081/3940598*73681302247^(6/13) 4807526976000077 a001 139583862445/7881196*73681302247^(1/2) 4807526976000077 a001 53316291173/7881196*73681302247^(7/13) 4807526976000077 a001 10182505537/3940598*45537549124^(10/17) 4807526976000077 a001 10182505537/3940598*312119004989^(6/11) 4807526976000077 a001 10182505537/3940598*14662949395604^(10/21) 4807526976000077 a001 10182505537/3940598*(1/2+1/2*5^(1/2))^30 4807526976000077 a001 10182505537/3940598*192900153618^(5/9) 4807526976000077 a001 2504730781961/7881196*28143753123^(2/5) 4807526976000077 a001 225851433717/7881196*28143753123^(1/2) 4807526976000077 a001 10182505537/3940598*28143753123^(3/5) 4807526976000077 a001 3278735159921/3940598*10749957122^(3/8) 4807526976000077 a001 7778742049/7881196*(1/2+1/2*5^(1/2))^32 4807526976000077 a001 7778742049/7881196*23725150497407^(1/2) 4807526976000077 a001 7778742049/7881196*505019158607^(4/7) 4807526976000077 a001 7778742049/7881196*73681302247^(8/13) 4807526976000077 a001 2504730781961/7881196*10749957122^(5/12) 4807526976000077 a001 387002188980/1970299*10749957122^(7/16) 4807526976000077 a001 956722026041/7881196*10749957122^(11/24) 4807526976000077 a001 182717648081/3940598*10749957122^(1/2) 4807526976000077 a001 139583862445/7881196*10749957122^(13/24) 4807526976000077 a001 21566892818/1970299*10749957122^(9/16) 4807526976000077 a001 53316291173/7881196*10749957122^(7/12) 4807526976000077 a001 10182505537/3940598*10749957122^(5/8) 4807526976000077 a001 5778078906242019169/1201881744 4807526976000077 a001 7778742049/7881196*10749957122^(2/3) 4807526976000077 a001 2971215073/7881196*45537549124^(2/3) 4807526976000077 a001 2971215073/7881196*(1/2+1/2*5^(1/2))^34 4807526976000077 a001 3278735159921/3940598*4106118243^(9/23) 4807526976000077 a001 2504730781961/7881196*4106118243^(10/23) 4807526976000077 a001 956722026041/7881196*4106118243^(11/23) 4807526976000077 a001 2971215073/7881196*10749957122^(17/24) 4807526976000077 a001 591286729879/7881196*4106118243^(1/2) 4807526976000077 a001 182717648081/3940598*4106118243^(12/23) 4807526976000077 a001 567451585/3940598*2537720636^(4/5) 4807526976000077 a001 139583862445/7881196*4106118243^(13/23) 4807526976000077 a001 53316291173/7881196*4106118243^(14/23) 4807526976000077 a001 10182505537/3940598*4106118243^(15/23) 4807526976000077 a001 7778742049/7881196*4106118243^(16/23) 4807526976000077 a001 8828119010022537458/1836311903 4807526976000077 a001 2971215073/7881196*4106118243^(17/23) 4807526976000077 a001 567451585/3940598*45537549124^(12/17) 4807526976000077 a001 1762289/1268860318*14662949395604^(20/21) 4807526976000077 a001 567451585/3940598*14662949395604^(4/7) 4807526976000077 a001 567451585/3940598*(1/2+1/2*5^(1/2))^36 4807526976000077 a001 567451585/3940598*505019158607^(9/14) 4807526976000077 a001 567451585/3940598*192900153618^(2/3) 4807526976000077 a001 567451585/3940598*73681302247^(9/13) 4807526976000077 a001 567451585/3940598*10749957122^(3/4) 4807526976000077 a001 3278735159921/3940598*1568397607^(9/22) 4807526976000077 a001 2504730781961/7881196*1568397607^(5/11) 4807526976000077 a001 567451585/3940598*4106118243^(18/23) 4807526976000077 a001 956722026041/7881196*1568397607^(1/2) 4807526976000077 a001 182717648081/3940598*1568397607^(6/11) 4807526976000077 a001 139583862445/7881196*1568397607^(13/22) 4807526976000077 a001 53316291173/7881196*1568397607^(7/11) 4807526976000077 a001 10182505537/3940598*1568397607^(15/22) 4807526976000077 a001 1201881744/1970299*1568397607^(3/4) 4807526976000077 a001 7778742049/7881196*1568397607^(8/11) 4807526976000077 a001 2971215073/7881196*1568397607^(17/22) 4807526976000077 a001 37888105675275682/7880997 4807526976000077 a001 567451585/3940598*1568397607^(9/11) 4807526976000077 a001 433494437/7881196*817138163596^(2/3) 4807526976000077 a001 433494437/7881196*(1/2+1/2*5^(1/2))^38 4807526976000077 a001 433494437/7881196*10749957122^(19/24) 4807526976000077 a001 433494437/7881196*4106118243^(19/23) 4807526976000077 a001 3278735159921/3940598*599074578^(3/7) 4807526976000077 a001 2504730781961/7881196*599074578^(10/21) 4807526976000077 a001 387002188980/1970299*599074578^(1/2) 4807526976000077 a001 433494437/7881196*1568397607^(19/22) 4807526976000077 a001 956722026041/7881196*599074578^(11/21) 4807526976000077 a001 182717648081/3940598*599074578^(4/7) 4807526976000077 a001 139583862445/7881196*599074578^(13/21) 4807526976000077 a001 21566892818/1970299*599074578^(9/14) 4807526976000077 a001 53316291173/7881196*599074578^(2/3) 4807526976000077 a001 10182505537/3940598*599074578^(5/7) 4807526976000077 a001 7778742049/7881196*599074578^(16/21) 4807526976000077 a001 1201881744/1970299*599074578^(11/14) 4807526976000077 a001 1836311903/7881196*599074578^(5/6) 4807526976000077 a001 2971215073/7881196*599074578^(17/21) 4807526976000077 a001 567451585/3940598*599074578^(6/7) 4807526976000077 a001 322001301319017409/66978574 4807526976000077 a001 433494437/7881196*599074578^(19/21) 4807526976000077 a001 165580141/7881196*2537720636^(8/9) 4807526976000077 a001 165580141/7881196*312119004989^(8/11) 4807526976000077 a001 3524578/370248451*14662949395604^(8/9) 4807526976000077 a001 165580141/7881196*(1/2+1/2*5^(1/2))^40 4807526976000077 a001 165580141/7881196*23725150497407^(5/8) 4807526976000077 a001 165580141/7881196*73681302247^(10/13) 4807526976000077 a001 165580141/7881196*28143753123^(4/5) 4807526976000077 a001 165580141/7881196*10749957122^(5/6) 4807526976000077 a001 165580141/7881196*4106118243^(20/23) 4807526976000077 a001 165580141/7881196*1568397607^(10/11) 4807526976000077 a001 3278735159921/3940598*228826127^(9/20) 4807526976000077 a001 2504730781961/7881196*228826127^(1/2) 4807526976000077 a001 165580141/7881196*599074578^(20/21) 4807526976000077 a001 956722026041/7881196*228826127^(11/20) 4807526976000077 a001 182717648081/3940598*228826127^(3/5) 4807526976000077 a001 225851433717/7881196*228826127^(5/8) 4807526976000077 a001 139583862445/7881196*228826127^(13/20) 4807526976000077 a001 53316291173/7881196*228826127^(7/10) 4807526976000077 a001 10182505537/3940598*228826127^(3/4) 4807526976000077 a001 7778742049/7881196*228826127^(4/5) 4807526976000077 a001 2971215073/7881196*228826127^(17/20) 4807526976000077 a001 1836311903/7881196*228826127^(7/8) 4807526976000077 a001 567451585/3940598*228826127^(9/10) 4807526976000077 a001 98394842145734642/20466831 4807526976000077 a001 433494437/7881196*228826127^(19/20) 4807526976000077 a001 31622993/3940598*2537720636^(14/15) 4807526976000077 a001 31622993/3940598*17393796001^(6/7) 4807526976000077 a001 31622993/3940598*45537549124^(14/17) 4807526976000077 a001 31622993/3940598*817138163596^(14/19) 4807526976000077 a001 1762289/70711162*14662949395604^(6/7) 4807526976000077 a001 31622993/3940598*(1/2+1/2*5^(1/2))^42 4807526976000077 a001 31622993/3940598*505019158607^(3/4) 4807526976000077 a001 31622993/3940598*192900153618^(7/9) 4807526976000077 a001 31622993/3940598*10749957122^(7/8) 4807526976000077 a001 31622993/3940598*4106118243^(21/23) 4807526976000077 a001 31622993/3940598*1568397607^(21/22) 4807526976000077 a001 3278735159921/3940598*87403803^(9/19) 4807526976000077 a001 4052739537881/7881196*87403803^(1/2) 4807526976000077 a001 2504730781961/7881196*87403803^(10/19) 4807526976000077 a001 956722026041/7881196*87403803^(11/19) 4807526976000077 a001 182717648081/3940598*87403803^(12/19) 4807526976000077 a001 139583862445/7881196*87403803^(13/19) 4807526976000077 a001 53316291173/7881196*87403803^(14/19) 4807526976000077 a001 10182505537/3940598*87403803^(15/19) 4807526976000077 a001 7778742049/7881196*87403803^(16/19) 4807526976000077 a001 2971215073/7881196*87403803^(17/19) 4807526976000077 a001 567451585/3940598*87403803^(18/19) 4807526976000078 a001 187917426909949994/39088169 4807526976000079 a001 24157817/7881196*312119004989^(4/5) 4807526976000079 a001 24157817/7881196*(1/2+1/2*5^(1/2))^44 4807526976000079 a001 3524578/54018521*23725150497407^(13/16) 4807526976000079 a001 24157817/7881196*23725150497407^(11/16) 4807526976000079 a001 3524578/54018521*505019158607^(13/14) 4807526976000079 a001 24157817/7881196*73681302247^(11/13) 4807526976000079 a001 24157817/7881196*10749957122^(11/12) 4807526976000079 a001 24157817/7881196*4106118243^(22/23) 4807526976000079 a001 3278735159921/3940598*33385282^(1/2) 4807526976000079 a001 2504730781961/7881196*33385282^(5/9) 4807526976000079 a001 387002188980/1970299*33385282^(7/12) 4807526976000080 a001 956722026041/7881196*33385282^(11/18) 4807526976000080 a001 182717648081/3940598*33385282^(2/3) 4807526976000080 a001 139583862445/7881196*33385282^(13/18) 4807526976000080 a001 21566892818/1970299*33385282^(3/4) 4807526976000080 a001 53316291173/7881196*33385282^(7/9) 4807526976000080 a001 10182505537/3940598*33385282^(5/6) 4807526976000081 a001 7778742049/7881196*33385282^(8/9) 4807526976000081 a001 1201881744/1970299*33385282^(11/12) 4807526976000081 a001 2971215073/7881196*33385282^(17/18) 4807526976000081 a001 17944517500294193/3732588 4807526976000084 a001 3536736619241/4250681*4870847^(9/16) 4807526976000088 a001 3524578/20633239*312119004989^(10/11) 4807526976000088 a001 3524578/20633239*(1/2+1/2*5^(1/2))^50 4807526976000088 a001 9227465/7881196*(1/2+1/2*5^(1/2))^46 4807526976000088 a001 3524578/20633239*3461452808002^(5/6) 4807526976000088 a001 9227465/7881196*10749957122^(23/24) 4807526976000092 a001 10610209857723/7881196*12752043^(1/2) 4807526976000093 a001 3278735159921/3940598*12752043^(9/17) 4807526976000094 a001 2504730781961/7881196*12752043^(10/17) 4807526976000096 a001 956722026041/7881196*12752043^(11/17) 4807526976000097 a001 4052739537881/12752043*4870847^(5/8) 4807526976000098 a001 182717648081/3940598*12752043^(12/17) 4807526976000100 a001 139583862445/7881196*12752043^(13/17) 4807526976000101 a001 53316291173/7881196*12752043^(14/17) 4807526976000103 a001 10182505537/3940598*12752043^(15/17) 4807526976000105 a001 7778742049/7881196*12752043^(16/17) 4807526976000106 a001 27416783093580322/5702887 4807526976000109 a001 516002918640/4250681*4870847^(11/16) 4807526976000122 a001 1515744265389/4769326*4870847^(5/8) 4807526976000122 a001 591286729879/12752043*4870847^(3/4) 4807526976000134 a001 4052739537881/33385282*4870847^(11/16) 4807526976000135 a001 75283811239/4250681*4870847^(13/16) 4807526976000137 a001 6557470319842/20633239*4870847^(5/8) 4807526976000138 a001 3536736619241/29134601*4870847^(11/16) 4807526976000140 a001 6557470319842/54018521*4870847^(11/16) 4807526976000147 a001 774004377960/16692641*4870847^(3/4) 4807526976000147 a001 86267571272/12752043*4870847^(7/8) 4807526976000150 a001 2504730781961/20633239*4870847^(11/16) 4807526976000151 a001 4052739537881/87403803*4870847^(3/4) 4807526976000151 a001 225749145909/4868641*4870847^(3/4) 4807526976000152 a001 3278735159921/70711162*4870847^(3/4) 4807526976000153 a001 2504730781961/54018521*4870847^(3/4) 4807526976000154 a001 1762289/3940598*45537549124^(16/17) 4807526976000154 a001 1762289/3940598*14662949395604^(16/21) 4807526976000154 a001 1762289/3940598*(1/2+1/2*5^(1/2))^48 4807526976000154 a001 1762289/3940598*192900153618^(8/9) 4807526976000154 a001 1762289/3940598*73681302247^(12/13) 4807526976000160 a001 591286729879/33385282*4870847^(13/16) 4807526976000160 a001 10983760033/4250681*4870847^(15/16) 4807526976000163 a001 956722026041/20633239*4870847^(3/4) 4807526976000164 a001 516002918640/29134601*4870847^(13/16) 4807526976000164 a001 4052739537881/228826127*4870847^(13/16) 4807526976000164 a001 3536736619241/199691526*4870847^(13/16) 4807526976000164 a001 6557470319842/370248451*4870847^(13/16) 4807526976000164 a001 2504730781961/141422324*4870847^(13/16) 4807526976000166 a001 956722026041/54018521*4870847^(13/16) 4807526976000172 a001 32264490531/4769326*4870847^(7/8) 4807526976000173 a001 10472279279563961/2178309 4807526976000175 a001 365435296162/20633239*4870847^(13/16) 4807526976000176 a001 591286729879/87403803*4870847^(7/8) 4807526976000177 a001 1548008755920/228826127*4870847^(7/8) 4807526976000177 a001 4052739537881/599074578*4870847^(7/8) 4807526976000177 a001 1515744265389/224056801*4870847^(7/8) 4807526976000177 a001 6557470319842/969323029*4870847^(7/8) 4807526976000177 a001 2504730781961/370248451*4870847^(7/8) 4807526976000177 a001 956722026041/141422324*4870847^(7/8) 4807526976000178 a001 365435296162/54018521*4870847^(7/8) 4807526976000185 a001 43133785636/16692641*4870847^(15/16) 4807526976000188 a001 139583862445/20633239*4870847^(7/8) 4807526976000189 a001 75283811239/29134601*4870847^(15/16) 4807526976000189 a001 591286729879/228826127*4870847^(15/16) 4807526976000189 a001 86000486440/33281921*4870847^(15/16) 4807526976000189 a001 4052739537881/1568397607*4870847^(15/16) 4807526976000189 a001 3536736619241/1368706081*4870847^(15/16) 4807526976000189 a001 3278735159921/1268860318*4870847^(15/16) 4807526976000189 a001 2504730781961/969323029*4870847^(15/16) 4807526976000190 a001 956722026041/370248451*4870847^(15/16) 4807526976000190 a001 182717648081/70711162*4870847^(15/16) 4807526976000191 a001 3278735159921/3940598*4870847^(9/16) 4807526976000191 a001 139583862445/54018521*4870847^(15/16) 4807526976000198 a001 3490759759854672/726103 4807526976000201 a001 53316291173/20633239*4870847^(15/16) 4807526976000201 a001 10472279279564024/2178309 4807526976000202 a001 498679965693525/103729 4807526976000202 a001 10472279279564026/2178309 4807526976000204 a001 2504730781961/7881196*4870847^(5/8) 4807526976000204 a001 10472279279564029/2178309 4807526976000213 a001 10472279279564050/2178309 4807526976000216 a001 956722026041/7881196*4870847^(11/16) 4807526976000229 a001 182717648081/3940598*4870847^(3/4) 4807526976000242 a001 139583862445/7881196*4870847^(13/16) 4807526976000254 a001 53316291173/7881196*4870847^(7/8) 4807526976000267 a001 10182505537/3940598*4870847^(15/16) 4807526976000280 a001 10472279279564194/2178309 4807526976000327 a001 1346269/4870847*14662949395604^(7/9) 4807526976000327 a001 1346269/4870847*(1/2+1/2*5^(1/2))^49 4807526976000327 a001 2178309/3010349*(1/2+1/2*5^(1/2))^47 4807526976000327 a001 1346269/4870847*505019158607^(7/8) 4807526976000453 a001 16944503814017725/3524578 4807526976000460 a001 7778742049/3010349*7881196^(10/11) 4807526976000467 a001 32951280099/3010349*7881196^(9/11) 4807526976000474 a001 139583862445/3010349*7881196^(8/11) 4807526976000478 a001 365435296162/3010349*7881196^(2/3) 4807526976000481 a001 591286729879/3010349*7881196^(7/11) 4807526976000488 a001 2504730781961/3010349*7881196^(6/11) 4807526976000495 a001 10610209857723/3010349*7881196^(5/11) 4807526976000500 a001 5702887/3010349*45537549124^(15/17) 4807526976000500 a001 5702887/3010349*312119004989^(9/11) 4807526976000500 a001 1346269/12752043*817138163596^(17/19) 4807526976000500 a001 1346269/12752043*14662949395604^(17/21) 4807526976000500 a001 1346269/12752043*(1/2+1/2*5^(1/2))^51 4807526976000500 a001 5702887/3010349*(1/2+1/2*5^(1/2))^45 4807526976000500 a001 5702887/3010349*192900153618^(5/6) 4807526976000500 a001 1346269/12752043*192900153618^(17/18) 4807526976000500 a001 5702887/3010349*28143753123^(9/10) 4807526976000500 a001 5702887/3010349*10749957122^(15/16) 4807526976000519 a001 44361286907600631/9227465 4807526976000520 a001 7778742049/3010349*20633239^(6/7) 4807526976000521 a001 20365011074/3010349*20633239^(4/5) 4807526976000522 a001 86267571272/3010349*20633239^(5/7) 4807526976000523 a001 591286729879/3010349*20633239^(3/5) 4807526976000524 a001 956722026041/3010349*20633239^(4/7) 4807526976000525 a001 10610209857723/3010349*20633239^(3/7) 4807526976000526 a001 1346269/33385282*(1/2+1/2*5^(1/2))^53 4807526976000526 a001 14930352/3010349*(1/2+1/2*5^(1/2))^43 4807526976000528 a001 116139356908784168/24157817 4807526976000529 a001 39088169/3010349*(1/2+1/2*5^(1/2))^41 4807526976000529 a001 1346269/87403803*3461452808002^(11/12) 4807526976000530 a001 304056783818751873/63245986 4807526976000530 a001 433494437/3010349*141422324^(12/13) 4807526976000530 a001 1836311903/3010349*141422324^(11/13) 4807526976000530 a001 7778742049/3010349*141422324^(10/13) 4807526976000530 a001 32951280099/3010349*141422324^(9/13) 4807526976000530 a001 53316291173/3010349*141422324^(2/3) 4807526976000530 a001 139583862445/3010349*141422324^(8/13) 4807526976000530 a001 591286729879/3010349*141422324^(7/13) 4807526976000530 a001 2504730781961/3010349*141422324^(6/13) 4807526976000530 a001 102334155/3010349*2537720636^(13/15) 4807526976000530 a001 10610209857723/3010349*141422324^(5/13) 4807526976000530 a001 102334155/3010349*45537549124^(13/17) 4807526976000530 a001 1346269/228826127*14662949395604^(19/21) 4807526976000530 a001 102334155/3010349*14662949395604^(13/21) 4807526976000530 a001 102334155/3010349*(1/2+1/2*5^(1/2))^39 4807526976000530 a001 102334155/3010349*192900153618^(13/18) 4807526976000530 a001 102334155/3010349*73681302247^(3/4) 4807526976000530 a001 102334155/3010349*10749957122^(13/16) 4807526976000530 a001 102334155/3010349*599074578^(13/14) 4807526976000530 a001 796030994547471451/165580141 4807526976000530 a001 267914296/3010349*(1/2+1/2*5^(1/2))^37 4807526976000530 a001 2084036199823662480/433494437 4807526976000530 a001 701408733/3010349*2537720636^(7/9) 4807526976000530 a001 701408733/3010349*17393796001^(5/7) 4807526976000530 a001 701408733/3010349*312119004989^(7/11) 4807526976000530 a001 701408733/3010349*14662949395604^(5/9) 4807526976000530 a001 701408733/3010349*(1/2+1/2*5^(1/2))^35 4807526976000530 a001 701408733/3010349*505019158607^(5/8) 4807526976000530 a001 701408733/3010349*28143753123^(7/10) 4807526976000530 a001 1836311903/3010349*2537720636^(11/15) 4807526976000530 a001 5456077604923515989/1134903170 4807526976000530 a001 7778742049/3010349*2537720636^(2/3) 4807526976000530 a001 32951280099/3010349*2537720636^(3/5) 4807526976000530 a001 86267571272/3010349*2537720636^(5/9) 4807526976000530 a001 139583862445/3010349*2537720636^(8/15) 4807526976000530 a001 591286729879/3010349*2537720636^(7/15) 4807526976000530 a001 956722026041/3010349*2537720636^(4/9) 4807526976000530 a001 2504730781961/3010349*2537720636^(2/5) 4807526976000530 a001 1836311903/3010349*45537549124^(11/17) 4807526976000530 a001 1836311903/3010349*312119004989^(3/5) 4807526976000530 a001 1836311903/3010349*14662949395604^(11/21) 4807526976000530 a001 1836311903/3010349*(1/2+1/2*5^(1/2))^33 4807526976000530 a001 1836311903/3010349*192900153618^(11/18) 4807526976000530 a001 1836311903/3010349*10749957122^(11/16) 4807526976000530 a001 10610209857723/3010349*2537720636^(1/3) 4807526976000530 a001 14284196614946885487/2971215073 4807526976000530 a001 4807526976/3010349*(1/2+1/2*5^(1/2))^31 4807526976000530 a001 4807526976/3010349*9062201101803^(1/2) 4807526976000530 a001 591286729879/3010349*17393796001^(3/7) 4807526976000530 a001 20365011074/3010349*17393796001^(4/7) 4807526976000530 a001 12586269025/3010349*(1/2+1/2*5^(1/2))^29 4807526976000530 a001 12586269025/3010349*1322157322203^(1/2) 4807526976000530 a001 32951280099/3010349*45537549124^(9/17) 4807526976000530 a001 139583862445/3010349*45537549124^(8/17) 4807526976000530 a001 591286729879/3010349*45537549124^(7/17) 4807526976000530 a001 32951280099/3010349*817138163596^(9/19) 4807526976000530 a001 32951280099/3010349*14662949395604^(3/7) 4807526976000530 a001 32951280099/3010349*(1/2+1/2*5^(1/2))^27 4807526976000530 a001 2504730781961/3010349*45537549124^(6/17) 4807526976000530 a001 1346269*45537549124^(1/3) 4807526976000530 a001 10610209857723/3010349*45537549124^(5/17) 4807526976000530 a001 86267571272/3010349*312119004989^(5/11) 4807526976000530 a001 86267571272/3010349*(1/2+1/2*5^(1/2))^25 4807526976000530 a001 86267571272/3010349*3461452808002^(5/12) 4807526976000530 a001 225851433717/3010349*(1/2+1/2*5^(1/2))^23 4807526976000530 a001 10610209857723/3010349*312119004989^(3/11) 4807526976000530 a001 1548008755920/3010349*817138163596^(1/3) 4807526976000530 a001 591286729879/3010349*14662949395604^(1/3) 4807526976000530 a001 1548008755920/3010349*(1/2+1/2*5^(1/2))^19 4807526976000530 a001 1346269*(1/2+1/2*5^(1/2))^17 4807526976000530 a001 10610209857723/3010349*14662949395604^(5/21) 4807526976000530 a001 10610209857723/3010349*(1/2+1/2*5^(1/2))^15 4807526976000530 a001 2504730781961/3010349*(1/2+1/2*5^(1/2))^18 4807526976000530 a001 10610209857723/3010349*192900153618^(5/18) 4807526976000530 a001 591286729879/3010349*192900153618^(7/18) 4807526976000530 a001 139583862445/3010349*14662949395604^(8/21) 4807526976000530 a001 139583862445/3010349*(1/2+1/2*5^(1/2))^24 4807526976000530 a001 139583862445/3010349*192900153618^(4/9) 4807526976000530 a001 6557470319842/3010349*73681302247^(4/13) 4807526976000530 a001 53316291173/3010349*(1/2+1/2*5^(1/2))^26 4807526976000530 a001 956722026041/3010349*73681302247^(5/13) 4807526976000530 a001 139583862445/3010349*73681302247^(6/13) 4807526976000530 a001 53316291173/3010349*73681302247^(1/2) 4807526976000530 a001 10610209857723/3010349*28143753123^(3/10) 4807526976000530 a001 20365011074/3010349*14662949395604^(4/9) 4807526976000530 a001 20365011074/3010349*(1/2+1/2*5^(1/2))^28 4807526976000530 a001 20365011074/3010349*505019158607^(1/2) 4807526976000530 a001 956722026041/3010349*28143753123^(2/5) 4807526976000530 a001 20365011074/3010349*73681302247^(7/13) 4807526976000530 a001 86267571272/3010349*28143753123^(1/2) 4807526976000530 a001 10610209857723/3010349*10749957122^(5/16) 4807526976000530 a001 6557470319842/3010349*10749957122^(1/3) 4807526976000530 a001 7778742049/3010349*45537549124^(10/17) 4807526976000530 a001 2504730781961/3010349*10749957122^(3/8) 4807526976000530 a001 7778742049/3010349*312119004989^(6/11) 4807526976000530 a001 7778742049/3010349*14662949395604^(10/21) 4807526976000530 a001 7778742049/3010349*(1/2+1/2*5^(1/2))^30 4807526976000530 a001 7778742049/3010349*192900153618^(5/9) 4807526976000530 a001 956722026041/3010349*10749957122^(5/12) 4807526976000530 a001 591286729879/3010349*10749957122^(7/16) 4807526976000530 a001 365435296162/3010349*10749957122^(11/24) 4807526976000530 a001 7778742049/3010349*28143753123^(3/5) 4807526976000530 a001 139583862445/3010349*10749957122^(1/2) 4807526976000530 a001 32951280099/3010349*10749957122^(9/16) 4807526976000530 a001 53316291173/3010349*10749957122^(13/24) 4807526976000530 a001 20365011074/3010349*10749957122^(7/12) 4807526976000530 a001 7778742049/3010349*10749957122^(5/8) 4807526976000530 a001 6557470319842/3010349*4106118243^(8/23) 4807526976000530 a001 2971215073/3010349*(1/2+1/2*5^(1/2))^32 4807526976000530 a001 2971215073/3010349*23725150497407^(1/2) 4807526976000530 a001 2971215073/3010349*505019158607^(4/7) 4807526976000530 a001 2971215073/3010349*73681302247^(8/13) 4807526976000530 a001 2504730781961/3010349*4106118243^(9/23) 4807526976000530 a001 956722026041/3010349*4106118243^(10/23) 4807526976000530 a001 365435296162/3010349*4106118243^(11/23) 4807526976000530 a001 2971215073/3010349*10749957122^(2/3) 4807526976000530 a001 225851433717/3010349*4106118243^(1/2) 4807526976000530 a001 139583862445/3010349*4106118243^(12/23) 4807526976000530 a001 53316291173/3010349*4106118243^(13/23) 4807526976000530 a001 20365011074/3010349*4106118243^(14/23) 4807526976000530 a001 7778742049/3010349*4106118243^(15/23) 4807526976000530 a001 8828119010023369498/1836311903 4807526976000530 a001 2971215073/3010349*4106118243^(16/23) 4807526976000530 a001 6557470319842/3010349*1568397607^(4/11) 4807526976000530 a001 1134903170/3010349*45537549124^(2/3) 4807526976000530 a001 1134903170/3010349*(1/2+1/2*5^(1/2))^34 4807526976000530 a001 1134903170/3010349*10749957122^(17/24) 4807526976000530 a001 2504730781961/3010349*1568397607^(9/22) 4807526976000530 a001 956722026041/3010349*1568397607^(5/11) 4807526976000530 a001 1134903170/3010349*4106118243^(17/23) 4807526976000530 a001 365435296162/3010349*1568397607^(1/2) 4807526976000530 a001 139583862445/3010349*1568397607^(6/11) 4807526976000530 a001 53316291173/3010349*1568397607^(13/22) 4807526976000530 a001 1836311903/3010349*1568397607^(3/4) 4807526976000530 a001 20365011074/3010349*1568397607^(7/11) 4807526976000530 a001 7778742049/3010349*1568397607^(15/22) 4807526976000530 a001 2971215073/3010349*1568397607^(8/11) 4807526976000530 a001 3372041405099853509/701408733 4807526976000530 a001 1134903170/3010349*1568397607^(17/22) 4807526976000530 a001 433494437/3010349*2537720636^(4/5) 4807526976000530 a001 10610209857723/3010349*599074578^(5/14) 4807526976000530 a001 6557470319842/3010349*599074578^(8/21) 4807526976000530 a001 433494437/3010349*45537549124^(12/17) 4807526976000530 a001 1346269/969323029*14662949395604^(20/21) 4807526976000530 a001 433494437/3010349*14662949395604^(4/7) 4807526976000530 a001 433494437/3010349*(1/2+1/2*5^(1/2))^36 4807526976000530 a001 433494437/3010349*192900153618^(2/3) 4807526976000530 a001 433494437/3010349*73681302247^(9/13) 4807526976000530 a001 433494437/3010349*10749957122^(3/4) 4807526976000530 a001 433494437/3010349*4106118243^(18/23) 4807526976000530 a001 2504730781961/3010349*599074578^(3/7) 4807526976000530 a001 956722026041/3010349*599074578^(10/21) 4807526976000530 a001 591286729879/3010349*599074578^(1/2) 4807526976000530 a001 433494437/3010349*1568397607^(9/11) 4807526976000530 a001 365435296162/3010349*599074578^(11/21) 4807526976000530 a001 139583862445/3010349*599074578^(4/7) 4807526976000530 a001 53316291173/3010349*599074578^(13/21) 4807526976000530 a001 32951280099/3010349*599074578^(9/14) 4807526976000530 a001 20365011074/3010349*599074578^(2/3) 4807526976000530 a001 701408733/3010349*599074578^(5/6) 4807526976000530 a001 7778742049/3010349*599074578^(5/7) 4807526976000530 a001 1836311903/3010349*599074578^(11/14) 4807526976000530 a001 2971215073/3010349*599074578^(16/21) 4807526976000530 a001 1134903170/3010349*599074578^(17/21) 4807526976000530 a001 1288005205276191029/267914296 4807526976000530 a001 433494437/3010349*599074578^(6/7) 4807526976000530 a001 10610209857723/3010349*228826127^(3/8) 4807526976000530 a001 165580141/3010349*817138163596^(2/3) 4807526976000530 a001 165580141/3010349*(1/2+1/2*5^(1/2))^38 4807526976000530 a001 165580141/3010349*10749957122^(19/24) 4807526976000530 a001 165580141/3010349*4106118243^(19/23) 4807526976000530 a001 6557470319842/3010349*228826127^(2/5) 4807526976000530 a001 165580141/3010349*1568397607^(19/22) 4807526976000530 a001 2504730781961/3010349*228826127^(9/20) 4807526976000530 a001 956722026041/3010349*228826127^(1/2) 4807526976000530 a001 165580141/3010349*599074578^(19/21) 4807526976000530 a001 365435296162/3010349*228826127^(11/20) 4807526976000530 a001 139583862445/3010349*228826127^(3/5) 4807526976000530 a001 86267571272/3010349*228826127^(5/8) 4807526976000530 a001 53316291173/3010349*228826127^(13/20) 4807526976000530 a001 20365011074/3010349*228826127^(7/10) 4807526976000530 a001 7778742049/3010349*228826127^(3/4) 4807526976000530 a001 2971215073/3010349*228826127^(4/5) 4807526976000530 a001 701408733/3010349*228826127^(7/8) 4807526976000530 a001 1134903170/3010349*228826127^(17/20) 4807526976000530 a001 433494437/3010349*228826127^(9/10) 4807526976000530 a001 491974210728719578/102334155 4807526976000530 a001 165580141/3010349*228826127^(19/20) 4807526976000530 a001 63245986/3010349*2537720636^(8/9) 4807526976000530 a001 63245986/3010349*312119004989^(8/11) 4807526976000530 a001 1346269/141422324*14662949395604^(8/9) 4807526976000530 a001 63245986/3010349*(1/2+1/2*5^(1/2))^40 4807526976000530 a001 63245986/3010349*23725150497407^(5/8) 4807526976000530 a001 63245986/3010349*73681302247^(10/13) 4807526976000530 a001 63245986/3010349*28143753123^(4/5) 4807526976000530 a001 63245986/3010349*10749957122^(5/6) 4807526976000530 a001 63245986/3010349*4106118243^(20/23) 4807526976000530 a001 63245986/3010349*1568397607^(10/11) 4807526976000530 a001 63245986/3010349*599074578^(20/21) 4807526976000530 a001 6557470319842/3010349*87403803^(8/19) 4807526976000530 a001 2504730781961/3010349*87403803^(9/19) 4807526976000530 a001 1548008755920/3010349*87403803^(1/2) 4807526976000530 a001 956722026041/3010349*87403803^(10/19) 4807526976000530 a001 365435296162/3010349*87403803^(11/19) 4807526976000530 a001 139583862445/3010349*87403803^(12/19) 4807526976000530 a001 53316291173/3010349*87403803^(13/19) 4807526976000530 a001 20365011074/3010349*87403803^(14/19) 4807526976000531 a001 7778742049/3010349*87403803^(15/19) 4807526976000531 a001 2971215073/3010349*87403803^(16/19) 4807526976000531 a001 1134903170/3010349*87403803^(17/19) 4807526976000531 a001 433494437/3010349*87403803^(18/19) 4807526976000531 a001 187917426909967705/39088169 4807526976000532 a001 24157817/3010349*2537720636^(14/15) 4807526976000532 a001 24157817/3010349*17393796001^(6/7) 4807526976000532 a001 24157817/3010349*45537549124^(14/17) 4807526976000532 a001 1346269/54018521*14662949395604^(6/7) 4807526976000532 a001 24157817/3010349*(1/2+1/2*5^(1/2))^42 4807526976000532 a001 24157817/3010349*505019158607^(3/4) 4807526976000532 a001 24157817/3010349*192900153618^(7/9) 4807526976000532 a001 24157817/3010349*10749957122^(7/8) 4807526976000532 a001 24157817/3010349*4106118243^(21/23) 4807526976000532 a001 24157817/3010349*1568397607^(21/22) 4807526976000532 a001 10610209857723/3010349*33385282^(5/12) 4807526976000532 a001 6557470319842/3010349*33385282^(4/9) 4807526976000532 a001 2504730781961/3010349*33385282^(1/2) 4807526976000532 a001 956722026041/3010349*33385282^(5/9) 4807526976000533 a001 591286729879/3010349*33385282^(7/12) 4807526976000533 a001 365435296162/3010349*33385282^(11/18) 4807526976000533 a001 139583862445/3010349*33385282^(2/3) 4807526976000533 a001 53316291173/3010349*33385282^(13/18) 4807526976000533 a001 32951280099/3010349*33385282^(3/4) 4807526976000533 a001 20365011074/3010349*33385282^(7/9) 4807526976000534 a001 7778742049/3010349*33385282^(5/6) 4807526976000534 a001 2971215073/3010349*33385282^(8/9) 4807526976000534 a001 1836311903/3010349*33385282^(11/12) 4807526976000534 a001 1134903170/3010349*33385282^(17/18) 4807526976000534 a001 71778070001183537/14930352 4807526976000538 a001 2178309*1860498^(8/15) 4807526976000541 a001 9227465/3010349*312119004989^(4/5) 4807526976000541 a001 1346269/20633239*(1/2+1/2*5^(1/2))^52 4807526976000541 a001 1346269/20633239*23725150497407^(13/16) 4807526976000541 a001 9227465/3010349*(1/2+1/2*5^(1/2))^44 4807526976000541 a001 1346269/20633239*505019158607^(13/14) 4807526976000541 a001 9227465/3010349*73681302247^(11/13) 4807526976000541 a001 9227465/3010349*10749957122^(11/12) 4807526976000541 a001 9227465/3010349*4106118243^(22/23) 4807526976000544 a001 6557470319842/3010349*12752043^(8/17) 4807526976000545 a001 1346269*12752043^(1/2) 4807526976000546 a001 2504730781961/3010349*12752043^(9/17) 4807526976000547 a001 956722026041/3010349*12752043^(10/17) 4807526976000549 a001 365435296162/3010349*12752043^(11/17) 4807526976000551 a001 139583862445/3010349*12752043^(12/17) 4807526976000553 a001 53316291173/3010349*12752043^(13/17) 4807526976000554 a001 20365011074/3010349*12752043^(14/17) 4807526976000556 a001 7778742049/3010349*12752043^(15/17) 4807526976000558 a001 2971215073/3010349*12752043^(16/17) 4807526976000560 a001 17167678831298/3571 4807526976000607 a001 1346269/7881196*312119004989^(10/11) 4807526976000607 a001 1346269/7881196*(1/2+1/2*5^(1/2))^50 4807526976000607 a001 3524578/3010349*(1/2+1/2*5^(1/2))^46 4807526976000607 a001 1346269/7881196*3461452808002^(5/6) 4807526976000607 a001 3524578/3010349*10749957122^(23/24) 4807526976000630 a001 4052739537881/4870847*1860498^(3/5) 4807526976000631 a001 6557470319842/3010349*4870847^(1/2) 4807526976000644 a001 2504730781961/3010349*4870847^(9/16) 4807526976000657 a001 956722026041/3010349*4870847^(5/8) 4807526976000669 a001 365435296162/3010349*4870847^(11/16) 4807526976000682 a001 139583862445/3010349*4870847^(3/4) 4807526976000695 a001 53316291173/3010349*4870847^(13/16) 4807526976000707 a001 20365011074/3010349*4870847^(7/8) 4807526976000720 a001 7778742049/3010349*4870847^(15/16) 4807526976000723 a001 1548008755920/4870847*1860498^(2/3) 4807526976000733 a001 10472279279565181/2178309 4807526976000769 a001 956722026041/4870847*1860498^(7/10) 4807526976000803 a001 3536736619241/4250681*1860498^(3/5) 4807526976000815 a001 591286729879/4870847*1860498^(11/15) 4807526976000896 a001 4052739537881/12752043*1860498^(2/3) 4807526976000908 a001 225851433717/4870847*1860498^(4/5) 4807526976000910 a001 3278735159921/3940598*1860498^(3/5) 4807526976000921 a001 1515744265389/4769326*1860498^(2/3) 4807526976000937 a001 6557470319842/20633239*1860498^(2/3) 4807526976000942 a001 2504730781961/12752043*1860498^(7/10) 4807526976000954 a001 139583862445/4870847*1860498^(5/6) 4807526976000967 a001 3278735159921/16692641*1860498^(7/10) 4807526976000973 a001 10610209857723/54018521*1860498^(7/10) 4807526976000983 a001 4052739537881/20633239*1860498^(7/10) 4807526976000988 a001 516002918640/4250681*1860498^(11/15) 4807526976001001 a001 86267571272/4870847*1860498^(13/15) 4807526976001003 a001 2504730781961/7881196*1860498^(2/3) 4807526976001014 a001 4052739537881/33385282*1860498^(11/15) 4807526976001017 a001 3536736619241/29134601*1860498^(11/15) 4807526976001020 a001 6557470319842/54018521*1860498^(11/15) 4807526976001029 a001 2504730781961/20633239*1860498^(11/15) 4807526976001047 a001 53316291173/4870847*1860498^(9/10) 4807526976001049 a001 387002188980/1970299*1860498^(7/10) 4807526976001061 a001 1346269/3010349*45537549124^(16/17) 4807526976001061 a001 1346269/3010349*14662949395604^(16/21) 4807526976001061 a001 1346269/3010349*(1/2+1/2*5^(1/2))^48 4807526976001061 a001 1346269/3010349*192900153618^(8/9) 4807526976001061 a001 1346269/3010349*73681302247^(12/13) 4807526976001081 a001 591286729879/12752043*1860498^(4/5) 4807526976001093 a001 32951280099/4870847*1860498^(14/15) 4807526976001095 a001 956722026041/7881196*1860498^(11/15) 4807526976001106 a001 774004377960/16692641*1860498^(4/5) 4807526976001110 a001 4052739537881/87403803*1860498^(4/5) 4807526976001111 a001 225749145909/4868641*1860498^(4/5) 4807526976001111 a001 3278735159921/70711162*1860498^(4/5) 4807526976001112 a001 2504730781961/54018521*1860498^(4/5) 4807526976001122 a001 956722026041/20633239*1860498^(4/5) 4807526976001127 a001 365435296162/12752043*1860498^(5/6) 4807526976001153 a001 956722026041/33385282*1860498^(5/6) 4807526976001156 a001 2504730781961/87403803*1860498^(5/6) 4807526976001157 a001 6557470319842/228826127*1860498^(5/6) 4807526976001157 a001 10610209857723/370248451*1860498^(5/6) 4807526976001157 a001 4052739537881/141422324*1860498^(5/6) 4807526976001159 a001 1548008755920/54018521*1860498^(5/6) 4807526976001168 a001 591286729879/20633239*1860498^(5/6) 4807526976001174 a001 75283811239/4250681*1860498^(13/15) 4807526976001186 a001 4000054745112027/832040 4807526976001188 a001 182717648081/3940598*1860498^(4/5) 4807526976001199 a001 591286729879/33385282*1860498^(13/15) 4807526976001203 a001 516002918640/29134601*1860498^(13/15) 4807526976001203 a001 4052739537881/228826127*1860498^(13/15) 4807526976001203 a001 3536736619241/199691526*1860498^(13/15) 4807526976001203 a001 6557470319842/370248451*1860498^(13/15) 4807526976001203 a001 2504730781961/141422324*1860498^(13/15) 4807526976001205 a001 956722026041/54018521*1860498^(13/15) 4807526976001214 a001 365435296162/20633239*1860498^(13/15) 4807526976001220 a001 139583862445/12752043*1860498^(9/10) 4807526976001224 a001 10610209857723/3010349*1860498^(1/2) 4807526976001234 a001 225851433717/7881196*1860498^(5/6) 4807526976001245 a001 182717648081/16692641*1860498^(9/10) 4807526976001249 a001 956722026041/87403803*1860498^(9/10) 4807526976001249 a001 2504730781961/228826127*1860498^(9/10) 4807526976001249 a001 3278735159921/299537289*1860498^(9/10) 4807526976001249 a001 10610209857723/969323029*1860498^(9/10) 4807526976001250 a001 4052739537881/370248451*1860498^(9/10) 4807526976001250 a001 387002188980/35355581*1860498^(9/10) 4807526976001251 a001 591286729879/54018521*1860498^(9/10) 4807526976001261 a001 7787980473/711491*1860498^(9/10) 4807526976001266 a001 86267571272/12752043*1860498^(14/15) 4807526976001271 a001 6557470319842/3010349*1860498^(8/15) 4807526976001281 a001 139583862445/7881196*1860498^(13/15) 4807526976001291 a001 32264490531/4769326*1860498^(14/15) 4807526976001295 a001 591286729879/87403803*1860498^(14/15) 4807526976001296 a001 1548008755920/228826127*1860498^(14/15) 4807526976001296 a001 4052739537881/599074578*1860498^(14/15) 4807526976001296 a001 1515744265389/224056801*1860498^(14/15) 4807526976001296 a001 6557470319842/969323029*1860498^(14/15) 4807526976001296 a001 2504730781961/370248451*1860498^(14/15) 4807526976001296 a001 956722026041/141422324*1860498^(14/15) 4807526976001297 a001 365435296162/54018521*1860498^(14/15) 4807526976001307 a001 139583862445/20633239*1860498^(14/15) 4807526976001327 a001 21566892818/1970299*1860498^(9/10) 4807526976001359 a001 4000054745112171/832040 4807526976001363 a001 2504730781961/3010349*1860498^(3/5) 4807526976001373 a001 53316291173/7881196*1860498^(14/15) 4807526976001384 a001 500006843139024/104005 4807526976001388 a001 72728268092949/15128 4807526976001389 a001 1000013686278049/208010 4807526976001390 a001 4000054745112197/832040 4807526976001400 a001 800010949022441/166408 4807526976001456 a001 956722026041/3010349*1860498^(2/3) 4807526976001466 a001 3278733397633/682 4807526976001502 a001 591286729879/3010349*1860498^(7/10) 4807526976001549 a001 365435296162/3010349*1860498^(11/15) 4807526976001641 a001 139583862445/3010349*1860498^(4/5) 4807526976001687 a001 86267571272/3010349*1860498^(5/6) 4807526976001734 a001 53316291173/3010349*1860498^(13/15) 4807526976001780 a001 32951280099/3010349*1860498^(9/10) 4807526976001826 a001 20365011074/3010349*1860498^(14/15) 4807526976001919 a001 4000054745112637/832040 4807526976002247 a001 514229/1860498*14662949395604^(7/9) 4807526976002247 a001 514229/1860498*(1/2+1/2*5^(1/2))^49 4807526976002247 a001 832040/1149851*(1/2+1/2*5^(1/2))^47 4807526976002247 a001 514229/1860498*505019158607^(7/8) 4807526976002769 a001 10182505537/219602*439204^(8/9) 4807526976003105 a001 6472224534456725/1346269 4807526976003370 a001 3536736619241/620166*710647^(1/2) 4807526976003433 a001 2178309/1149851*45537549124^(15/17) 4807526976003433 a001 2178309/1149851*312119004989^(9/11) 4807526976003433 a001 514229/4870847*817138163596^(17/19) 4807526976003433 a001 514229/4870847*14662949395604^(17/21) 4807526976003433 a001 514229/4870847*(1/2+1/2*5^(1/2))^51 4807526976003433 a001 2178309/1149851*14662949395604^(5/7) 4807526976003433 a001 2178309/1149851*(1/2+1/2*5^(1/2))^45 4807526976003433 a001 2178309/1149851*192900153618^(5/6) 4807526976003433 a001 2178309/1149851*28143753123^(9/10) 4807526976003433 a001 2178309/1149851*10749957122^(15/16) 4807526976003558 a001 16944503814028671/3524578 4807526976003565 a001 2971215073/1149851*7881196^(10/11) 4807526976003572 a001 12586269025/1149851*7881196^(9/11) 4807526976003579 a001 53316291173/1149851*7881196^(8/11) 4807526976003584 a001 139583862445/1149851*7881196^(2/3) 4807526976003586 a001 225851433717/1149851*7881196^(7/11) 4807526976003593 a001 956722026041/1149851*7881196^(6/11) 4807526976003600 a001 4052739537881/1149851*7881196^(5/11) 4807526976003606 a001 514229/12752043*(1/2+1/2*5^(1/2))^53 4807526976003606 a001 5702887/1149851*(1/2+1/2*5^(1/2))^43 4807526976003624 a001 44361286907629288/9227465 4807526976003626 a001 2971215073/1149851*20633239^(6/7) 4807526976003627 a001 7778742049/1149851*20633239^(4/5) 4807526976003628 a001 32951280099/1149851*20633239^(5/7) 4807526976003629 a001 225851433717/1149851*20633239^(3/5) 4807526976003629 a001 365435296162/1149851*20633239^(4/7) 4807526976003631 a001 4052739537881/1149851*20633239^(3/7) 4807526976003631 a001 6557470319842/1149851*20633239^(2/5) 4807526976003631 a001 514229/33385282*(1/2+1/2*5^(1/2))^55 4807526976003631 a001 514229/33385282*3461452808002^(11/12) 4807526976003631 a001 14930352/1149851*(1/2+1/2*5^(1/2))^41 4807526976003634 a001 116139356908859193/24157817 4807526976003635 a001 39088169/1149851*2537720636^(13/15) 4807526976003635 a001 39088169/1149851*45537549124^(13/17) 4807526976003635 a001 514229/87403803*14662949395604^(19/21) 4807526976003635 a001 39088169/1149851*14662949395604^(13/21) 4807526976003635 a001 39088169/1149851*(1/2+1/2*5^(1/2))^39 4807526976003635 a001 39088169/1149851*192900153618^(13/18) 4807526976003635 a001 39088169/1149851*73681302247^(3/4) 4807526976003635 a001 39088169/1149851*10749957122^(13/16) 4807526976003635 a001 39088169/1149851*599074578^(13/14) 4807526976003635 a001 304056783818948291/63245986 4807526976003635 a001 701408733/1149851*141422324^(11/13) 4807526976003635 a001 165580141/1149851*141422324^(12/13) 4807526976003635 a001 2971215073/1149851*141422324^(10/13) 4807526976003635 a001 12586269025/1149851*141422324^(9/13) 4807526976003635 a001 20365011074/1149851*141422324^(2/3) 4807526976003635 a001 53316291173/1149851*141422324^(8/13) 4807526976003635 a001 225851433717/1149851*141422324^(7/13) 4807526976003636 a001 956722026041/1149851*141422324^(6/13) 4807526976003636 a001 4052739537881/1149851*141422324^(5/13) 4807526976003636 a001 102334155/1149851*(1/2+1/2*5^(1/2))^37 4807526976003636 a001 10610209857723/1149851*141422324^(1/3) 4807526976003636 a001 796030994547985680/165580141 4807526976003636 a001 267914296/1149851*2537720636^(7/9) 4807526976003636 a001 267914296/1149851*17393796001^(5/7) 4807526976003636 a001 267914296/1149851*312119004989^(7/11) 4807526976003636 a001 267914296/1149851*14662949395604^(5/9) 4807526976003636 a001 267914296/1149851*(1/2+1/2*5^(1/2))^35 4807526976003636 a001 267914296/1149851*505019158607^(5/8) 4807526976003636 a001 267914296/1149851*28143753123^(7/10) 4807526976003636 a001 2084036199825008749/433494437 4807526976003636 a001 701408733/1149851*2537720636^(11/15) 4807526976003636 a001 267914296/1149851*599074578^(5/6) 4807526976003636 a001 701408733/1149851*45537549124^(11/17) 4807526976003636 a001 701408733/1149851*312119004989^(3/5) 4807526976003636 a001 701408733/1149851*817138163596^(11/19) 4807526976003636 a001 701408733/1149851*14662949395604^(11/21) 4807526976003636 a001 701408733/1149851*(1/2+1/2*5^(1/2))^33 4807526976003636 a001 701408733/1149851*192900153618^(11/18) 4807526976003636 a001 701408733/1149851*10749957122^(11/16) 4807526976003636 a001 5456077604927040567/1134903170 4807526976003636 a001 701408733/1149851*1568397607^(3/4) 4807526976003636 a001 12586269025/1149851*2537720636^(3/5) 4807526976003636 a001 32951280099/1149851*2537720636^(5/9) 4807526976003636 a001 53316291173/1149851*2537720636^(8/15) 4807526976003636 a001 2971215073/1149851*2537720636^(2/3) 4807526976003636 a001 225851433717/1149851*2537720636^(7/15) 4807526976003636 a001 365435296162/1149851*2537720636^(4/9) 4807526976003636 a001 956722026041/1149851*2537720636^(2/5) 4807526976003636 a001 1836311903/1149851*(1/2+1/2*5^(1/2))^31 4807526976003636 a001 1836311903/1149851*9062201101803^(1/2) 4807526976003636 a001 4052739537881/1149851*2537720636^(1/3) 4807526976003636 a001 4807526976/1149851*(1/2+1/2*5^(1/2))^29 4807526976003636 a001 4807526976/1149851*1322157322203^(1/2) 4807526976003636 a001 12586269025/1149851*45537549124^(9/17) 4807526976003636 a001 225851433717/1149851*17393796001^(3/7) 4807526976003636 a001 12586269025/1149851*817138163596^(9/19) 4807526976003636 a001 12586269025/1149851*14662949395604^(3/7) 4807526976003636 a001 12586269025/1149851*(1/2+1/2*5^(1/2))^27 4807526976003636 a001 12586269025/1149851*192900153618^(1/2) 4807526976003636 a001 6557470319842/1149851*17393796001^(2/7) 4807526976003636 a001 225851433717/1149851*45537549124^(7/17) 4807526976003636 a001 32951280099/1149851*312119004989^(5/11) 4807526976003636 a001 32951280099/1149851*(1/2+1/2*5^(1/2))^25 4807526976003636 a001 32951280099/1149851*3461452808002^(5/12) 4807526976003636 a001 956722026041/1149851*45537549124^(6/17) 4807526976003636 a001 1548008755920/1149851*45537549124^(1/3) 4807526976003636 a001 53316291173/1149851*45537549124^(8/17) 4807526976003636 a001 4052739537881/1149851*45537549124^(5/17) 4807526976003636 a001 86267571272/1149851*(1/2+1/2*5^(1/2))^23 4807526976003636 a001 225851433717/1149851*14662949395604^(1/3) 4807526976003636 a001 225851433717/1149851*(1/2+1/2*5^(1/2))^21 4807526976003636 a001 4052739537881/1149851*312119004989^(3/11) 4807526976003636 a001 1548008755920/1149851*(1/2+1/2*5^(1/2))^17 4807526976003636 a001 4052739537881/1149851*14662949395604^(5/21) 4807526976003636 a001 10610209857723/1149851*(1/2+1/2*5^(1/2))^13 4807526976003636 a001 6557470319842/1149851*(1/2+1/2*5^(1/2))^14 4807526976003636 a001 2504730781961/1149851*(1/2+1/2*5^(1/2))^16 4807526976003636 a001 2504730781961/1149851*23725150497407^(1/4) 4807526976003636 a001 956722026041/1149851*(1/2+1/2*5^(1/2))^18 4807526976003636 a001 6557470319842/1149851*505019158607^(1/4) 4807526976003636 a001 139583862445/1149851*312119004989^(2/5) 4807526976003636 a001 225851433717/1149851*192900153618^(7/18) 4807526976003636 a001 139583862445/1149851*(1/2+1/2*5^(1/2))^22 4807526976003636 a001 10610209857723/1149851*73681302247^(1/4) 4807526976003636 a001 2504730781961/1149851*73681302247^(4/13) 4807526976003636 a001 53316291173/1149851*14662949395604^(8/21) 4807526976003636 a001 53316291173/1149851*(1/2+1/2*5^(1/2))^24 4807526976003636 a001 365435296162/1149851*73681302247^(5/13) 4807526976003636 a001 53316291173/1149851*192900153618^(4/9) 4807526976003636 a001 53316291173/1149851*73681302247^(6/13) 4807526976003636 a001 32951280099/1149851*28143753123^(1/2) 4807526976003636 a001 20365011074/1149851*(1/2+1/2*5^(1/2))^26 4807526976003636 a001 365435296162/1149851*28143753123^(2/5) 4807526976003636 a001 20365011074/1149851*73681302247^(1/2) 4807526976003636 a001 7778742049/1149851*17393796001^(4/7) 4807526976003636 a001 6557470319842/1149851*10749957122^(7/24) 4807526976003636 a001 4052739537881/1149851*10749957122^(5/16) 4807526976003636 a001 2504730781961/1149851*10749957122^(1/3) 4807526976003636 a001 956722026041/1149851*10749957122^(3/8) 4807526976003636 a001 7778742049/1149851*14662949395604^(4/9) 4807526976003636 a001 7778742049/1149851*(1/2+1/2*5^(1/2))^28 4807526976003636 a001 7778742049/1149851*505019158607^(1/2) 4807526976003636 a001 7778742049/1149851*73681302247^(7/13) 4807526976003636 a001 12586269025/1149851*10749957122^(9/16) 4807526976003636 a001 365435296162/1149851*10749957122^(5/12) 4807526976003636 a001 225851433717/1149851*10749957122^(7/16) 4807526976003636 a001 139583862445/1149851*10749957122^(11/24) 4807526976003636 a001 53316291173/1149851*10749957122^(1/2) 4807526976003636 a001 20365011074/1149851*10749957122^(13/24) 4807526976003636 a001 7778742049/1149851*10749957122^(7/12) 4807526976003636 a001 6557470319842/1149851*4106118243^(7/23) 4807526976003636 a001 2504730781961/1149851*4106118243^(8/23) 4807526976003636 a001 2971215073/1149851*45537549124^(10/17) 4807526976003636 a001 2971215073/1149851*312119004989^(6/11) 4807526976003636 a001 2971215073/1149851*14662949395604^(10/21) 4807526976003636 a001 2971215073/1149851*(1/2+1/2*5^(1/2))^30 4807526976003636 a001 2971215073/1149851*192900153618^(5/9) 4807526976003636 a001 956722026041/1149851*4106118243^(9/23) 4807526976003636 a001 2971215073/1149851*28143753123^(3/5) 4807526976003636 a001 365435296162/1149851*4106118243^(10/23) 4807526976003636 a001 2971215073/1149851*10749957122^(5/8) 4807526976003636 a001 139583862445/1149851*4106118243^(11/23) 4807526976003636 a001 86267571272/1149851*4106118243^(1/2) 4807526976003636 a001 53316291173/1149851*4106118243^(12/23) 4807526976003636 a001 20365011074/1149851*4106118243^(13/23) 4807526976003636 a001 7778742049/1149851*4106118243^(14/23) 4807526976003636 a001 2971215073/1149851*4106118243^(15/23) 4807526976003636 a001 6557470319842/1149851*1568397607^(7/22) 4807526976003636 a001 2504730781961/1149851*1568397607^(4/11) 4807526976003636 a001 1134903170/1149851*(1/2+1/2*5^(1/2))^32 4807526976003636 a001 1134903170/1149851*23725150497407^(1/2) 4807526976003636 a001 1134903170/1149851*505019158607^(4/7) 4807526976003636 a001 1134903170/1149851*73681302247^(8/13) 4807526976003636 a001 1134903170/1149851*10749957122^(2/3) 4807526976003636 a001 956722026041/1149851*1568397607^(9/22) 4807526976003636 a001 365435296162/1149851*1568397607^(5/11) 4807526976003636 a001 1134903170/1149851*4106118243^(16/23) 4807526976003636 a001 139583862445/1149851*1568397607^(1/2) 4807526976003636 a001 53316291173/1149851*1568397607^(6/11) 4807526976003636 a001 20365011074/1149851*1568397607^(13/22) 4807526976003636 a001 7778742049/1149851*1568397607^(7/11) 4807526976003636 a001 2971215073/1149851*1568397607^(15/22) 4807526976003636 a001 3372041405102031818/701408733 4807526976003636 a001 1134903170/1149851*1568397607^(8/11) 4807526976003636 a001 6557470319842/1149851*599074578^(1/3) 4807526976003636 a001 4052739537881/1149851*599074578^(5/14) 4807526976003636 a001 2504730781961/1149851*599074578^(8/21) 4807526976003636 a001 433494437/1149851*45537549124^(2/3) 4807526976003636 a001 433494437/1149851*(1/2+1/2*5^(1/2))^34 4807526976003636 a001 433494437/1149851*10749957122^(17/24) 4807526976003636 a001 433494437/1149851*4106118243^(17/23) 4807526976003636 a001 956722026041/1149851*599074578^(3/7) 4807526976003636 a001 365435296162/1149851*599074578^(10/21) 4807526976003636 a001 433494437/1149851*1568397607^(17/22) 4807526976003636 a001 225851433717/1149851*599074578^(1/2) 4807526976003636 a001 139583862445/1149851*599074578^(11/21) 4807526976003636 a001 53316291173/1149851*599074578^(4/7) 4807526976003636 a001 20365011074/1149851*599074578^(13/21) 4807526976003636 a001 701408733/1149851*599074578^(11/14) 4807526976003636 a001 12586269025/1149851*599074578^(9/14) 4807526976003636 a001 7778742049/1149851*599074578^(2/3) 4807526976003636 a001 2971215073/1149851*599074578^(5/7) 4807526976003636 a001 1134903170/1149851*599074578^(16/21) 4807526976003636 a001 1288005205277023069/267914296 4807526976003636 a001 433494437/1149851*599074578^(17/21) 4807526976003636 a001 6557470319842/1149851*228826127^(7/20) 4807526976003636 a001 4052739537881/1149851*228826127^(3/8) 4807526976003636 a001 165580141/1149851*2537720636^(4/5) 4807526976003636 a001 165580141/1149851*45537549124^(12/17) 4807526976003636 a001 514229/370248451*14662949395604^(20/21) 4807526976003636 a001 165580141/1149851*14662949395604^(4/7) 4807526976003636 a001 165580141/1149851*(1/2+1/2*5^(1/2))^36 4807526976003636 a001 165580141/1149851*505019158607^(9/14) 4807526976003636 a001 165580141/1149851*192900153618^(2/3) 4807526976003636 a001 165580141/1149851*73681302247^(9/13) 4807526976003636 a001 165580141/1149851*10749957122^(3/4) 4807526976003636 a001 165580141/1149851*4106118243^(18/23) 4807526976003636 a001 165580141/1149851*1568397607^(9/11) 4807526976003636 a001 2504730781961/1149851*228826127^(2/5) 4807526976003636 a001 956722026041/1149851*228826127^(9/20) 4807526976003636 a001 365435296162/1149851*228826127^(1/2) 4807526976003636 a001 165580141/1149851*599074578^(6/7) 4807526976003636 a001 139583862445/1149851*228826127^(11/20) 4807526976003636 a001 53316291173/1149851*228826127^(3/5) 4807526976003636 a001 32951280099/1149851*228826127^(5/8) 4807526976003636 a001 20365011074/1149851*228826127^(13/20) 4807526976003636 a001 7778742049/1149851*228826127^(7/10) 4807526976003636 a001 267914296/1149851*228826127^(7/8) 4807526976003636 a001 2971215073/1149851*228826127^(3/4) 4807526976003636 a001 1134903170/1149851*228826127^(4/5) 4807526976003636 a001 433494437/1149851*228826127^(17/20) 4807526976003636 a001 491974210729037389/102334155 4807526976003636 a001 165580141/1149851*228826127^(9/10) 4807526976003636 a001 6557470319842/1149851*87403803^(7/19) 4807526976003636 a001 63245986/1149851*817138163596^(2/3) 4807526976003636 a001 63245986/1149851*(1/2+1/2*5^(1/2))^38 4807526976003636 a001 63245986/1149851*10749957122^(19/24) 4807526976003636 a001 63245986/1149851*4106118243^(19/23) 4807526976003636 a001 63245986/1149851*1568397607^(19/22) 4807526976003636 a001 63245986/1149851*599074578^(19/21) 4807526976003636 a001 2504730781961/1149851*87403803^(8/19) 4807526976003636 a001 956722026041/1149851*87403803^(9/19) 4807526976003636 a001 514229*87403803^(1/2) 4807526976003636 a001 63245986/1149851*228826127^(19/20) 4807526976003636 a001 365435296162/1149851*87403803^(10/19) 4807526976003636 a001 139583862445/1149851*87403803^(11/19) 4807526976003636 a001 53316291173/1149851*87403803^(12/19) 4807526976003636 a001 20365011074/1149851*87403803^(13/19) 4807526976003636 a001 7778742049/1149851*87403803^(14/19) 4807526976003636 a001 2971215073/1149851*87403803^(15/19) 4807526976003636 a001 1134903170/1149851*87403803^(16/19) 4807526976003636 a001 433494437/1149851*87403803^(17/19) 4807526976003636 a001 44945569698658/9349 4807526976003636 a001 165580141/1149851*87403803^(18/19) 4807526976003637 a001 24157817/1149851*2537720636^(8/9) 4807526976003637 a001 24157817/1149851*312119004989^(8/11) 4807526976003637 a001 514229/54018521*14662949395604^(8/9) 4807526976003637 a001 24157817/1149851*(1/2+1/2*5^(1/2))^40 4807526976003637 a001 24157817/1149851*23725150497407^(5/8) 4807526976003637 a001 24157817/1149851*73681302247^(10/13) 4807526976003637 a001 24157817/1149851*28143753123^(4/5) 4807526976003637 a001 24157817/1149851*10749957122^(5/6) 4807526976003637 a001 24157817/1149851*4106118243^(20/23) 4807526976003637 a001 24157817/1149851*1568397607^(10/11) 4807526976003637 a001 24157817/1149851*599074578^(20/21) 4807526976003637 a001 6557470319842/1149851*33385282^(7/18) 4807526976003637 a001 4052739537881/1149851*33385282^(5/12) 4807526976003638 a001 2504730781961/1149851*33385282^(4/9) 4807526976003638 a001 956722026041/1149851*33385282^(1/2) 4807526976003638 a001 365435296162/1149851*33385282^(5/9) 4807526976003638 a001 225851433717/1149851*33385282^(7/12) 4807526976003638 a001 139583862445/1149851*33385282^(11/18) 4807526976003638 a001 53316291173/1149851*33385282^(2/3) 4807526976003639 a001 20365011074/1149851*33385282^(13/18) 4807526976003639 a001 12586269025/1149851*33385282^(3/4) 4807526976003639 a001 7778742049/1149851*33385282^(7/9) 4807526976003639 a001 2971215073/1149851*33385282^(5/6) 4807526976003639 a001 1134903170/1149851*33385282^(8/9) 4807526976003640 a001 701408733/1149851*33385282^(11/12) 4807526976003640 a001 433494437/1149851*33385282^(17/18) 4807526976003640 a001 71778070001229905/14930352 4807526976003647 a001 9227465/1149851*2537720636^(14/15) 4807526976003647 a001 9227465/1149851*17393796001^(6/7) 4807526976003647 a001 9227465/1149851*45537549124^(14/17) 4807526976003647 a001 514229/20633239*14662949395604^(6/7) 4807526976003647 a001 514229/20633239*(1/2+1/2*5^(1/2))^54 4807526976003647 a001 9227465/1149851*14662949395604^(2/3) 4807526976003647 a001 9227465/1149851*(1/2+1/2*5^(1/2))^42 4807526976003647 a001 9227465/1149851*505019158607^(3/4) 4807526976003647 a001 9227465/1149851*192900153618^(7/9) 4807526976003647 a001 9227465/1149851*10749957122^(7/8) 4807526976003647 a001 9227465/1149851*4106118243^(21/23) 4807526976003647 a001 9227465/1149851*1568397607^(21/22) 4807526976003648 a001 6557470319842/1149851*12752043^(7/17) 4807526976003650 a001 2504730781961/1149851*12752043^(8/17) 4807526976003650 a001 1548008755920/1149851*12752043^(1/2) 4807526976003651 a001 956722026041/1149851*12752043^(9/17) 4807526976003653 a001 365435296162/1149851*12752043^(10/17) 4807526976003655 a001 139583862445/1149851*12752043^(11/17) 4807526976003656 a001 53316291173/1149851*12752043^(12/17) 4807526976003658 a001 20365011074/1149851*12752043^(13/17) 4807526976003660 a001 7778742049/1149851*12752043^(14/17) 4807526976003662 a001 2971215073/1149851*12752043^(15/17) 4807526976003663 a001 1134903170/1149851*12752043^(16/17) 4807526976003665 a001 27416783093600617/5702887 4807526976003713 a001 3524578/1149851*312119004989^(4/5) 4807526976003713 a001 514229/7881196*(1/2+1/2*5^(1/2))^52 4807526976003713 a001 514229/7881196*23725150497407^(13/16) 4807526976003713 a001 3524578/1149851*(1/2+1/2*5^(1/2))^44 4807526976003713 a001 3524578/1149851*23725150497407^(11/16) 4807526976003713 a001 3524578/1149851*73681302247^(11/13) 4807526976003713 a001 3524578/1149851*10749957122^(11/12) 4807526976003713 a001 3524578/1149851*4106118243^(22/23) 4807526976003724 a001 6557470319842/1149851*4870847^(7/16) 4807526976003737 a001 2504730781961/1149851*4870847^(1/2) 4807526976003750 a001 956722026041/1149851*4870847^(9/16) 4807526976003762 a001 365435296162/1149851*4870847^(5/8) 4807526976003775 a001 139583862445/1149851*4870847^(11/16) 4807526976003788 a001 53316291173/1149851*4870847^(3/4) 4807526976003800 a001 20365011074/1149851*4870847^(13/16) 4807526976003813 a001 7778742049/1149851*4870847^(7/8) 4807526976003826 a001 2971215073/1149851*4870847^(15/16) 4807526976003838 a001 10472279279571946/2178309 4807526976004050 a001 4052739537881/1860498*710647^(4/7) 4807526976004166 a001 514229/3010349*312119004989^(10/11) 4807526976004166 a001 514229/3010349*(1/2+1/2*5^(1/2))^50 4807526976004166 a001 514229/3010349*3461452808002^(5/6) 4807526976004166 a001 1346269/1149851*(1/2+1/2*5^(1/2))^46 4807526976004166 a001 1346269/1149851*10749957122^(23/24) 4807526976004284 a001 6557470319842/1149851*1860498^(7/15) 4807526976004330 a001 4052739537881/1149851*1860498^(1/2) 4807526976004376 a001 2504730781961/1149851*1860498^(8/15) 4807526976004469 a001 956722026041/1149851*1860498^(3/5) 4807526976004562 a001 365435296162/1149851*1860498^(2/3) 4807526976004608 a001 225851433717/1149851*1860498^(7/10) 4807526976004654 a001 139583862445/1149851*1860498^(11/15) 4807526976004730 a001 832040*710647^(9/14) 4807526976004747 a001 53316291173/1149851*1860498^(4/5) 4807526976004793 a001 32951280099/1149851*1860498^(5/6) 4807526976004839 a001 20365011074/1149851*1860498^(13/15) 4807526976004886 a001 12586269025/1149851*1860498^(9/10) 4807526976004932 a001 7778742049/1149851*1860498^(14/15) 4807526976005024 a001 4000054745115221/832040 4807526976005237 a001 2178309*710647^(4/7) 4807526976005410 a001 591286729879/1860498*710647^(5/7) 4807526976005538 a001 196418*439204^(7/9) 4807526976005750 a001 182717648081/930249*710647^(3/4) 4807526976005917 a001 4052739537881/4870847*710647^(9/14) 4807526976005970 a001 6557470319842/3010349*710647^(4/7) 4807526976006090 a001 3536736619241/4250681*710647^(9/14) 4807526976006090 a001 75283811239/620166*710647^(11/14) 4807526976006197 a001 3278735159921/3940598*710647^(9/14) 4807526976006597 a001 1548008755920/4870847*710647^(5/7) 4807526976006650 a001 2504730781961/3010349*710647^(9/14) 4807526976006770 a001 4052739537881/12752043*710647^(5/7) 4807526976006770 a001 43133785636/930249*710647^(6/7) 4807526976006795 a001 1515744265389/4769326*710647^(5/7) 4807526976006810 a001 6557470319842/20633239*710647^(5/7) 4807526976006877 a001 2504730781961/7881196*710647^(5/7) 4807526976006936 a001 956722026041/4870847*710647^(3/4) 4807526976007110 a001 2504730781961/12752043*710647^(3/4) 4807526976007135 a001 3278735159921/16692641*710647^(3/4) 4807526976007141 a001 10610209857723/54018521*710647^(3/4) 4807526976007150 a001 4052739537881/20633239*710647^(3/4) 4807526976007217 a001 387002188980/1970299*710647^(3/4) 4807526976007272 a001 514229/1149851*45537549124^(16/17) 4807526976007272 a001 514229/1149851*14662949395604^(16/21) 4807526976007272 a001 514229/1149851*(1/2+1/2*5^(1/2))^48 4807526976007272 a001 514229/1149851*192900153618^(8/9) 4807526976007272 a001 514229/1149851*73681302247^(12/13) 4807526976007276 a001 591286729879/4870847*710647^(11/14) 4807526976007330 a001 956722026041/3010349*710647^(5/7) 4807526976007450 a001 516002918640/4250681*710647^(11/14) 4807526976007450 a001 10983760033/620166*710647^(13/14) 4807526976007475 a001 4052739537881/33385282*710647^(11/14) 4807526976007478 a001 3536736619241/29134601*710647^(11/14) 4807526976007481 a001 6557470319842/54018521*710647^(11/14) 4807526976007490 a001 2504730781961/20633239*710647^(11/14) 4807526976007557 a001 956722026041/7881196*710647^(11/14) 4807526976007670 a001 591286729879/3010349*710647^(3/4) 4807526976007956 a001 225851433717/4870847*710647^(6/7) 4807526976008010 a001 365435296162/3010349*710647^(11/14) 4807526976008130 a001 591286729879/12752043*710647^(6/7) 4807526976008130 a001 1527884955772120/317811 4807526976008155 a001 774004377960/16692641*710647^(6/7) 4807526976008158 a001 4052739537881/87403803*710647^(6/7) 4807526976008159 a001 225749145909/4868641*710647^(6/7) 4807526976008159 a001 3278735159921/70711162*710647^(6/7) 4807526976008161 a001 2504730781961/54018521*710647^(6/7) 4807526976008170 a001 956722026041/20633239*710647^(6/7) 4807526976008236 a001 182717648081/3940598*710647^(6/7) 4807526976008307 a001 182717648081/219602*439204^(2/3) 4807526976008395 a001 6557470319842/1149851*710647^(1/2) 4807526976008636 a001 86267571272/4870847*710647^(13/14) 4807526976008690 a001 139583862445/3010349*710647^(6/7) 4807526976008809 a001 75283811239/4250681*710647^(13/14) 4807526976008835 a001 591286729879/33385282*710647^(13/14) 4807526976008838 a001 516002918640/29134601*710647^(13/14) 4807526976008839 a001 4052739537881/228826127*710647^(13/14) 4807526976008839 a001 3536736619241/199691526*710647^(13/14) 4807526976008839 a001 6557470319842/370248451*710647^(13/14) 4807526976008839 a001 2504730781961/141422324*710647^(13/14) 4807526976008841 a001 956722026041/54018521*710647^(13/14) 4807526976008850 a001 365435296162/20633239*710647^(13/14) 4807526976008916 a001 139583862445/7881196*710647^(13/14) 4807526976009075 a001 2504730781961/1149851*710647^(4/7) 4807526976009316 a001 509294985257499/105937 4807526976009370 a001 53316291173/3010349*710647^(13/14) 4807526976009489 a001 4052745240776/843 4807526976009515 a001 509294985257520/105937 4807526976009518 a001 1527884955772561/317811 4807526976009521 a001 1527884955772562/317811 4807526976009530 a001 117529611982505/24447 4807526976009596 a001 1527884955772586/317811 4807526976009755 a001 956722026041/1149851*710647^(9/14) 4807526976010049 a001 1527884955772730/317811 4807526976010435 a001 365435296162/1149851*710647^(5/7) 4807526976010775 a001 225851433717/1149851*710647^(3/4) 4807526976011076 a001 387002188980/109801*439204^(5/9) 4807526976011115 a001 139583862445/1149851*710647^(11/14) 4807526976011795 a001 53316291173/1149851*710647^(6/7) 4807526976012475 a001 20365011074/1149851*710647^(13/14) 4807526976013155 a001 1527884955773717/317811 4807526976013845 a001 3278735159921/219602*439204^(4/9) 4807526976015402 a001 196418/710647*14662949395604^(7/9) 4807526976015402 a001 196418/710647*(1/2+1/2*5^(1/2))^49 4807526976015402 a001 196418/710647*505019158607^(7/8) 4807526976015402 a001 317811/439204*(1/2+1/2*5^(1/2))^47 4807526976020594 a001 1515744265389/101521*271443^(6/13) 4807526976021286 a001 2472169789352450/514229 4807526976023104 a001 6557470319842/710647*271443^(1/2) 4807526976023533 a001 208010/109801*45537549124^(15/17) 4807526976023533 a001 98209/930249*817138163596^(17/19) 4807526976023533 a001 98209/930249*14662949395604^(17/21) 4807526976023533 a001 98209/930249*(1/2+1/2*5^(1/2))^51 4807526976023533 a001 208010/109801*312119004989^(9/11) 4807526976023533 a001 98209/930249*192900153618^(17/18) 4807526976023533 a001 208010/109801*14662949395604^(5/7) 4807526976023533 a001 208010/109801*(1/2+1/2*5^(1/2))^45 4807526976023533 a001 208010/109801*192900153618^(5/6) 4807526976023533 a001 208010/109801*28143753123^(9/10) 4807526976023533 a001 208010/109801*10749957122^(15/16) 4807526976024391 a001 6472224534485382/1346269 4807526976024719 a001 196418/4870847*(1/2+1/2*5^(1/2))^53 4807526976024719 a001 2178309/439204*(1/2+1/2*5^(1/2))^43 4807526976024844 a001 8472251907051848/1762289 4807526976024851 a001 567451585/219602*7881196^(10/11) 4807526976024859 a001 1201881744/109801*7881196^(9/11) 4807526976024866 a001 10182505537/219602*7881196^(8/11) 4807526976024870 a001 53316291173/439204*7881196^(2/3) 4807526976024873 a001 196418*7881196^(7/11) 4807526976024880 a001 182717648081/219602*7881196^(6/11) 4807526976024887 a001 387002188980/109801*7881196^(5/11) 4807526976024892 a001 196418/12752043*(1/2+1/2*5^(1/2))^55 4807526976024892 a001 196418/12752043*3461452808002^(11/12) 4807526976024892 a001 5702887/439204*(1/2+1/2*5^(1/2))^41 4807526976024894 a001 3278735159921/219602*7881196^(4/11) 4807526976024896 a001 10610209857723/439204*7881196^(1/3) 4807526976024911 a001 3412406685217362/709805 4807526976024912 a001 567451585/219602*20633239^(6/7) 4807526976024913 a001 2971215073/439204*20633239^(4/5) 4807526976024914 a001 12586269025/439204*20633239^(5/7) 4807526976024915 a001 196418*20633239^(3/5) 4807526976024915 a001 139583862445/439204*20633239^(4/7) 4807526976024917 a001 387002188980/109801*20633239^(3/7) 4807526976024917 a001 2504730781961/439204*20633239^(2/5) 4807526976024918 a001 196452/5779*2537720636^(13/15) 4807526976024918 a001 196452/5779*45537549124^(13/17) 4807526976024918 a001 98209/16692641*14662949395604^(19/21) 4807526976024918 a001 98209/16692641*(1/2+1/2*5^(1/2))^57 4807526976024918 a001 196452/5779*14662949395604^(13/21) 4807526976024918 a001 196452/5779*(1/2+1/2*5^(1/2))^39 4807526976024918 a001 196452/5779*192900153618^(13/18) 4807526976024918 a001 196452/5779*73681302247^(3/4) 4807526976024918 a001 196452/5779*10749957122^(13/16) 4807526976024918 a001 196452/5779*599074578^(13/14) 4807526976024920 a001 116139356909373422/24157817 4807526976024921 a001 39088169/439204*(1/2+1/2*5^(1/2))^37 4807526976024922 a001 152028391910147280/31622993 4807526976024922 a001 66978574/109801*141422324^(11/13) 4807526976024922 a001 567451585/219602*141422324^(10/13) 4807526976024922 a001 1201881744/109801*141422324^(9/13) 4807526976024922 a001 7778742049/439204*141422324^(2/3) 4807526976024922 a001 10182505537/219602*141422324^(8/13) 4807526976024922 a001 196418*141422324^(7/13) 4807526976024922 a001 182717648081/219602*141422324^(6/13) 4807526976024922 a001 387002188980/109801*141422324^(5/13) 4807526976024922 a001 102334155/439204*2537720636^(7/9) 4807526976024922 a001 102334155/439204*17393796001^(5/7) 4807526976024922 a001 102334155/439204*312119004989^(7/11) 4807526976024922 a001 102334155/439204*14662949395604^(5/9) 4807526976024922 a001 102334155/439204*(1/2+1/2*5^(1/2))^35 4807526976024922 a001 102334155/439204*505019158607^(5/8) 4807526976024922 a001 102334155/439204*28143753123^(7/10) 4807526976024922 a001 102334155/439204*599074578^(5/6) 4807526976024922 a001 4052739537881/439204*141422324^(1/3) 4807526976024922 a001 3278735159921/219602*141422324^(4/13) 4807526976024922 a001 796030994551510258/165580141 4807526976024922 a001 66978574/109801*2537720636^(11/15) 4807526976024922 a001 66978574/109801*45537549124^(11/17) 4807526976024922 a001 66978574/109801*312119004989^(3/5) 4807526976024922 a001 66978574/109801*14662949395604^(11/21) 4807526976024922 a001 66978574/109801*(1/2+1/2*5^(1/2))^33 4807526976024922 a001 66978574/109801*192900153618^(11/18) 4807526976024922 a001 66978574/109801*10749957122^(11/16) 4807526976024922 a001 66978574/109801*1568397607^(3/4) 4807526976024922 a001 102334155/439204*228826127^(7/8) 4807526976024922 a001 2084036199834236214/433494437 4807526976024922 a001 66978574/109801*599074578^(11/14) 4807526976024922 a001 701408733/439204*(1/2+1/2*5^(1/2))^31 4807526976024922 a001 701408733/439204*9062201101803^(1/2) 4807526976024922 a001 1201881744/109801*2537720636^(3/5) 4807526976024922 a001 12586269025/439204*2537720636^(5/9) 4807526976024922 a001 10182505537/219602*2537720636^(8/15) 4807526976024922 a001 196418*2537720636^(7/15) 4807526976024922 a001 139583862445/439204*2537720636^(4/9) 4807526976024922 a001 182717648081/219602*2537720636^(2/5) 4807526976024922 a001 1836311903/439204*(1/2+1/2*5^(1/2))^29 4807526976024922 a001 1836311903/439204*1322157322203^(1/2) 4807526976024922 a001 387002188980/109801*2537720636^(1/3) 4807526976024922 a001 3278735159921/219602*2537720636^(4/15) 4807526976024922 a001 1201881744/109801*45537549124^(9/17) 4807526976024922 a001 1201881744/109801*817138163596^(9/19) 4807526976024922 a001 1201881744/109801*14662949395604^(3/7) 4807526976024922 a001 1201881744/109801*(1/2+1/2*5^(1/2))^27 4807526976024922 a001 1201881744/109801*192900153618^(1/2) 4807526976024922 a001 1201881744/109801*10749957122^(9/16) 4807526976024922 a001 196418*17393796001^(3/7) 4807526976024922 a001 12586269025/439204*312119004989^(5/11) 4807526976024922 a001 12586269025/439204*(1/2+1/2*5^(1/2))^25 4807526976024922 a001 12586269025/439204*3461452808002^(5/12) 4807526976024922 a001 2504730781961/439204*17393796001^(2/7) 4807526976024922 a001 12586269025/439204*28143753123^(1/2) 4807526976024922 a001 196418*45537549124^(7/17) 4807526976024922 a001 32951280099/439204*(1/2+1/2*5^(1/2))^23 4807526976024922 a001 182717648081/219602*45537549124^(6/17) 4807526976024922 a001 591286729879/439204*45537549124^(1/3) 4807526976024922 a001 387002188980/109801*45537549124^(5/17) 4807526976024922 a001 3278735159921/219602*45537549124^(4/17) 4807526976024922 a001 196418*14662949395604^(1/3) 4807526976024922 a001 196418*(1/2+1/2*5^(1/2))^21 4807526976024922 a001 196418*192900153618^(7/18) 4807526976024922 a001 225851433717/439204*817138163596^(1/3) 4807526976024922 a001 225851433717/439204*(1/2+1/2*5^(1/2))^19 4807526976024922 a001 387002188980/109801*312119004989^(3/11) 4807526976024922 a001 10610209857723/439204*312119004989^(1/5) 4807526976024922 a001 387002188980/109801*(1/2+1/2*5^(1/2))^15 4807526976024922 a001 4052739537881/439204*(1/2+1/2*5^(1/2))^13 4807526976024922 a001 10610209857723/439204*(1/2+1/2*5^(1/2))^11 4807526976024922 a001 3278735159921/219602*14662949395604^(4/21) 4807526976024922 a001 3278735159921/219602*(1/2+1/2*5^(1/2))^12 4807526976024922 a001 2504730781961/439204*14662949395604^(2/9) 4807526976024922 a001 2504730781961/439204*(1/2+1/2*5^(1/2))^14 4807526976024922 a001 182717648081/219602*14662949395604^(2/7) 4807526976024922 a001 182717648081/219602*(1/2+1/2*5^(1/2))^18 4807526976024922 a001 139583862445/439204*(1/2+1/2*5^(1/2))^20 4807526976024922 a001 139583862445/439204*23725150497407^(5/16) 4807526976024922 a001 182717648081/219602*192900153618^(1/3) 4807526976024922 a001 139583862445/439204*505019158607^(5/14) 4807526976024922 a001 3278735159921/219602*73681302247^(3/13) 4807526976024922 a001 4052739537881/439204*73681302247^(1/4) 4807526976024922 a001 956722026041/439204*73681302247^(4/13) 4807526976024922 a001 53316291173/439204*312119004989^(2/5) 4807526976024922 a001 53316291173/439204*(1/2+1/2*5^(1/2))^22 4807526976024922 a001 139583862445/439204*73681302247^(5/13) 4807526976024922 a001 10182505537/219602*45537549124^(8/17) 4807526976024922 a001 387002188980/109801*28143753123^(3/10) 4807526976024922 a001 10182505537/219602*14662949395604^(8/21) 4807526976024922 a001 10182505537/219602*(1/2+1/2*5^(1/2))^24 4807526976024922 a001 10182505537/219602*192900153618^(4/9) 4807526976024922 a001 139583862445/439204*28143753123^(2/5) 4807526976024922 a001 10182505537/219602*73681302247^(6/13) 4807526976024922 a001 3278735159921/219602*10749957122^(1/4) 4807526976024922 a001 2504730781961/439204*10749957122^(7/24) 4807526976024922 a001 387002188980/109801*10749957122^(5/16) 4807526976024922 a001 956722026041/439204*10749957122^(1/3) 4807526976024922 a001 182717648081/219602*10749957122^(3/8) 4807526976024922 a001 7778742049/439204*(1/2+1/2*5^(1/2))^26 4807526976024922 a001 7778742049/439204*73681302247^(1/2) 4807526976024922 a001 139583862445/439204*10749957122^(5/12) 4807526976024922 a001 196418*10749957122^(7/16) 4807526976024922 a001 53316291173/439204*10749957122^(11/24) 4807526976024922 a001 10182505537/219602*10749957122^(1/2) 4807526976024922 a001 7778742049/439204*10749957122^(13/24) 4807526976024922 a001 3278735159921/219602*4106118243^(6/23) 4807526976024922 a001 2504730781961/439204*4106118243^(7/23) 4807526976024922 a001 956722026041/439204*4106118243^(8/23) 4807526976024922 a001 2971215073/439204*17393796001^(4/7) 4807526976024922 a001 2971215073/439204*14662949395604^(4/9) 4807526976024922 a001 2971215073/439204*(1/2+1/2*5^(1/2))^28 4807526976024922 a001 2971215073/439204*73681302247^(7/13) 4807526976024922 a001 182717648081/219602*4106118243^(9/23) 4807526976024922 a001 139583862445/439204*4106118243^(10/23) 4807526976024922 a001 2971215073/439204*10749957122^(7/12) 4807526976024922 a001 53316291173/439204*4106118243^(11/23) 4807526976024922 a001 32951280099/439204*4106118243^(1/2) 4807526976024922 a001 10182505537/219602*4106118243^(12/23) 4807526976024922 a001 7778742049/439204*4106118243^(13/23) 4807526976024922 a001 567451585/219602*2537720636^(2/3) 4807526976024922 a001 2971215073/439204*4106118243^(14/23) 4807526976024922 a001 10610209857723/439204*1568397607^(1/4) 4807526976024922 a001 3278735159921/219602*1568397607^(3/11) 4807526976024922 a001 2504730781961/439204*1568397607^(7/22) 4807526976024922 a001 956722026041/439204*1568397607^(4/11) 4807526976024922 a001 567451585/219602*45537549124^(10/17) 4807526976024922 a001 567451585/219602*312119004989^(6/11) 4807526976024922 a001 567451585/219602*14662949395604^(10/21) 4807526976024922 a001 567451585/219602*(1/2+1/2*5^(1/2))^30 4807526976024922 a001 567451585/219602*192900153618^(5/9) 4807526976024922 a001 567451585/219602*28143753123^(3/5) 4807526976024922 a001 567451585/219602*10749957122^(5/8) 4807526976024922 a001 182717648081/219602*1568397607^(9/22) 4807526976024922 a001 139583862445/439204*1568397607^(5/11) 4807526976024922 a001 567451585/219602*4106118243^(15/23) 4807526976024922 a001 53316291173/439204*1568397607^(1/2) 4807526976024922 a001 10182505537/219602*1568397607^(6/11) 4807526976024922 a001 7778742049/439204*1568397607^(13/22) 4807526976024922 a001 2971215073/439204*1568397607^(7/11) 4807526976024922 a001 567451585/219602*1568397607^(15/22) 4807526976024922 a001 3278735159921/219602*599074578^(2/7) 4807526976024922 a001 2504730781961/439204*599074578^(1/3) 4807526976024922 a001 387002188980/109801*599074578^(5/14) 4807526976024922 a001 956722026041/439204*599074578^(8/21) 4807526976024922 a001 433494437/439204*(1/2+1/2*5^(1/2))^32 4807526976024922 a001 433494437/439204*23725150497407^(1/2) 4807526976024922 a001 433494437/439204*505019158607^(4/7) 4807526976024922 a001 433494437/439204*73681302247^(8/13) 4807526976024922 a001 433494437/439204*10749957122^(2/3) 4807526976024922 a001 433494437/439204*4106118243^(16/23) 4807526976024922 a001 182717648081/219602*599074578^(3/7) 4807526976024922 a001 139583862445/439204*599074578^(10/21) 4807526976024922 a001 433494437/439204*1568397607^(8/11) 4807526976024922 a001 196418*599074578^(1/2) 4807526976024922 a001 53316291173/439204*599074578^(11/21) 4807526976024922 a001 10182505537/219602*599074578^(4/7) 4807526976024922 a001 7778742049/439204*599074578^(13/21) 4807526976024922 a001 1201881744/109801*599074578^(9/14) 4807526976024922 a001 2971215073/439204*599074578^(2/3) 4807526976024922 a001 567451585/219602*599074578^(5/7) 4807526976024922 a001 58834515132593/12238 4807526976024922 a001 433494437/439204*599074578^(16/21) 4807526976024922 a001 31622993/219602*141422324^(12/13) 4807526976024922 a001 3278735159921/219602*228826127^(3/10) 4807526976024922 a001 2504730781961/439204*228826127^(7/20) 4807526976024922 a001 387002188980/109801*228826127^(3/8) 4807526976024922 a001 165580141/439204*45537549124^(2/3) 4807526976024922 a001 165580141/439204*(1/2+1/2*5^(1/2))^34 4807526976024922 a001 165580141/439204*10749957122^(17/24) 4807526976024922 a001 165580141/439204*4106118243^(17/23) 4807526976024922 a001 165580141/439204*1568397607^(17/22) 4807526976024922 a001 956722026041/439204*228826127^(2/5) 4807526976024922 a001 182717648081/219602*228826127^(9/20) 4807526976024922 a001 139583862445/439204*228826127^(1/2) 4807526976024922 a001 165580141/439204*599074578^(17/21) 4807526976024922 a001 53316291173/439204*228826127^(11/20) 4807526976024922 a001 10182505537/219602*228826127^(3/5) 4807526976024922 a001 12586269025/439204*228826127^(5/8) 4807526976024922 a001 7778742049/439204*228826127^(13/20) 4807526976024922 a001 2971215073/439204*228826127^(7/10) 4807526976024922 a001 567451585/219602*228826127^(3/4) 4807526976024922 a001 433494437/439204*228826127^(4/5) 4807526976024922 a001 491974210731215698/102334155 4807526976024922 a001 165580141/439204*228826127^(17/20) 4807526976024922 a001 3278735159921/219602*87403803^(6/19) 4807526976024922 a001 2504730781961/439204*87403803^(7/19) 4807526976024922 a001 31622993/219602*2537720636^(4/5) 4807526976024922 a001 31622993/219602*45537549124^(12/17) 4807526976024922 a001 98209/70711162*14662949395604^(20/21) 4807526976024922 a001 31622993/219602*14662949395604^(4/7) 4807526976024922 a001 31622993/219602*(1/2+1/2*5^(1/2))^36 4807526976024922 a001 31622993/219602*505019158607^(9/14) 4807526976024922 a001 31622993/219602*192900153618^(2/3) 4807526976024922 a001 31622993/219602*73681302247^(9/13) 4807526976024922 a001 31622993/219602*10749957122^(3/4) 4807526976024922 a001 31622993/219602*4106118243^(18/23) 4807526976024922 a001 31622993/219602*1568397607^(9/11) 4807526976024922 a001 31622993/219602*599074578^(6/7) 4807526976024922 a001 956722026041/439204*87403803^(8/19) 4807526976024922 a001 182717648081/219602*87403803^(9/19) 4807526976024922 a001 225851433717/439204*87403803^(1/2) 4807526976024922 a001 31622993/219602*228826127^(9/10) 4807526976024922 a001 139583862445/439204*87403803^(10/19) 4807526976024922 a001 53316291173/439204*87403803^(11/19) 4807526976024922 a001 10182505537/219602*87403803^(12/19) 4807526976024922 a001 7778742049/439204*87403803^(13/19) 4807526976024922 a001 2971215073/439204*87403803^(14/19) 4807526976024922 a001 567451585/219602*87403803^(15/19) 4807526976024922 a001 433494437/439204*87403803^(16/19) 4807526976024922 a001 165580141/439204*87403803^(17/19) 4807526976024922 a001 187917426910921138/39088169 4807526976024923 a001 31622993/219602*87403803^(18/19) 4807526976024923 a001 3278735159921/219602*33385282^(1/3) 4807526976024924 a001 24157817/439204*817138163596^(2/3) 4807526976024924 a001 24157817/439204*(1/2+1/2*5^(1/2))^38 4807526976024924 a001 24157817/439204*10749957122^(19/24) 4807526976024924 a001 24157817/439204*4106118243^(19/23) 4807526976024924 a001 24157817/439204*1568397607^(19/22) 4807526976024924 a001 24157817/439204*599074578^(19/21) 4807526976024924 a001 2504730781961/439204*33385282^(7/18) 4807526976024924 a001 24157817/439204*228826127^(19/20) 4807526976024924 a001 387002188980/109801*33385282^(5/12) 4807526976024924 a001 956722026041/439204*33385282^(4/9) 4807526976024924 a001 182717648081/219602*33385282^(1/2) 4807526976024924 a001 139583862445/439204*33385282^(5/9) 4807526976024924 a001 196418*33385282^(7/12) 4807526976024924 a001 53316291173/439204*33385282^(11/18) 4807526976024925 a001 10182505537/219602*33385282^(2/3) 4807526976024925 a001 7778742049/439204*33385282^(13/18) 4807526976024925 a001 1201881744/109801*33385282^(3/4) 4807526976024925 a001 2971215073/439204*33385282^(7/9) 4807526976024925 a001 567451585/219602*33385282^(5/6) 4807526976024926 a001 433494437/439204*33385282^(8/9) 4807526976024926 a001 66978574/109801*33385282^(11/12) 4807526976024926 a001 165580141/439204*33385282^(17/18) 4807526976024926 a001 1055559852963937/219564 4807526976024932 a001 3278735159921/219602*12752043^(6/17) 4807526976024933 a001 9227465/439204*2537720636^(8/9) 4807526976024933 a001 196418/20633239*14662949395604^(8/9) 4807526976024933 a001 196418/20633239*(1/2+1/2*5^(1/2))^56 4807526976024933 a001 9227465/439204*312119004989^(8/11) 4807526976024933 a001 9227465/439204*(1/2+1/2*5^(1/2))^40 4807526976024933 a001 9227465/439204*23725150497407^(5/8) 4807526976024933 a001 9227465/439204*73681302247^(10/13) 4807526976024933 a001 9227465/439204*28143753123^(4/5) 4807526976024933 a001 9227465/439204*10749957122^(5/6) 4807526976024933 a001 9227465/439204*4106118243^(20/23) 4807526976024933 a001 9227465/439204*1568397607^(10/11) 4807526976024933 a001 9227465/439204*599074578^(20/21) 4807526976024934 a001 2504730781961/439204*12752043^(7/17) 4807526976024936 a001 956722026041/439204*12752043^(8/17) 4807526976024937 a001 591286729879/439204*12752043^(1/2) 4807526976024938 a001 182717648081/219602*12752043^(9/17) 4807526976024939 a001 139583862445/439204*12752043^(10/17) 4807526976024941 a001 53316291173/439204*12752043^(11/17) 4807526976024943 a001 10182505537/219602*12752043^(12/17) 4807526976024944 a001 7778742049/439204*12752043^(13/17) 4807526976024946 a001 2971215073/439204*12752043^(14/17) 4807526976024948 a001 567451585/219602*12752043^(15/17) 4807526976024950 a001 433494437/439204*12752043^(16/17) 4807526976024951 a001 27416783093722010/5702887 4807526976024998 a001 3278735159921/219602*4870847^(3/8) 4807526976024999 a001 1762289/219602*2537720636^(14/15) 4807526976024999 a001 1762289/219602*17393796001^(6/7) 4807526976024999 a001 1762289/219602*45537549124^(14/17) 4807526976024999 a001 98209/3940598*14662949395604^(6/7) 4807526976024999 a001 98209/3940598*(1/2+1/2*5^(1/2))^54 4807526976024999 a001 1762289/219602*817138163596^(14/19) 4807526976024999 a001 1762289/219602*14662949395604^(2/3) 4807526976024999 a001 1762289/219602*(1/2+1/2*5^(1/2))^42 4807526976024999 a001 1762289/219602*505019158607^(3/4) 4807526976024999 a001 1762289/219602*192900153618^(7/9) 4807526976024999 a001 1762289/219602*10749957122^(7/8) 4807526976024999 a001 1762289/219602*4106118243^(21/23) 4807526976024999 a001 1762289/219602*1568397607^(21/22) 4807526976025011 a001 2504730781961/439204*4870847^(7/16) 4807526976025023 a001 956722026041/439204*4870847^(1/2) 4807526976025036 a001 182717648081/219602*4870847^(9/16) 4807526976025049 a001 139583862445/439204*4870847^(5/8) 4807526976025061 a001 53316291173/439204*4870847^(11/16) 4807526976025074 a001 10182505537/219602*4870847^(3/4) 4807526976025086 a001 7778742049/439204*4870847^(13/16) 4807526976025099 a001 2971215073/439204*4870847^(7/8) 4807526976025112 a001 567451585/219602*4870847^(15/16) 4807526976025124 a001 10472279279618314/2178309 4807526976025452 a001 196418/3010349*(1/2+1/2*5^(1/2))^52 4807526976025452 a001 196418/3010349*23725150497407^(13/16) 4807526976025452 a001 196418/3010349*505019158607^(13/14) 4807526976025452 a001 1346269/439204*312119004989^(4/5) 4807526976025452 a001 1346269/439204*(1/2+1/2*5^(1/2))^44 4807526976025452 a001 1346269/439204*23725150497407^(11/16) 4807526976025452 a001 1346269/439204*73681302247^(11/13) 4807526976025452 a001 1346269/439204*10749957122^(11/12) 4807526976025452 a001 1346269/439204*4106118243^(22/23) 4807526976025477 a001 3278735159921/219602*1860498^(2/5) 4807526976025570 a001 2504730781961/439204*1860498^(7/15) 4807526976025613 a001 4052739537881/710647*271443^(7/13) 4807526976025616 a001 387002188980/109801*1860498^(1/2) 4807526976025663 a001 956722026041/439204*1860498^(8/15) 4807526976025755 a001 182717648081/219602*1860498^(3/5) 4807526976025848 a001 139583862445/439204*1860498^(2/3) 4807526976025894 a001 196418*1860498^(7/10) 4807526976025940 a001 53316291173/439204*1860498^(11/15) 4807526976026033 a001 10182505537/219602*1860498^(4/5) 4807526976026079 a001 12586269025/439204*1860498^(5/6) 4807526976026126 a001 7778742049/439204*1860498^(13/15) 4807526976026172 a001 1201881744/109801*1860498^(9/10) 4807526976026218 a001 2971215073/439204*1860498^(14/15) 4807526976026311 a001 1000013686283233/208010 4807526976028558 a001 196418/1149851*312119004989^(10/11) 4807526976028558 a001 196418/1149851*(1/2+1/2*5^(1/2))^50 4807526976028558 a001 196418/1149851*3461452808002^(5/6) 4807526976028558 a001 514229/439204*(1/2+1/2*5^(1/2))^46 4807526976028558 a001 514229/439204*10749957122^(23/24) 4807526976029002 a001 3278735159921/219602*710647^(3/7) 4807526976029682 a001 2504730781961/439204*710647^(1/2) 4807526976030362 a001 956722026041/439204*710647^(4/7) 4807526976030632 a001 1548008755920/710647*271443^(8/13) 4807526976031042 a001 182717648081/219602*710647^(9/14) 4807526976031721 a001 139583862445/439204*710647^(5/7) 4807526976032061 a001 196418*710647^(3/4) 4807526976032401 a001 53316291173/439204*710647^(11/14) 4807526976033081 a001 10182505537/219602*710647^(6/7) 4807526976033744 a001 3536736619241/620166*271443^(7/13) 4807526976033761 a001 7778742049/439204*710647^(13/14) 4807526976034164 a001 53316291173/167761*167761^(4/5) 4807526976034441 a001 117529611983114/24447 4807526976035651 a001 591286729879/710647*271443^(9/13) 4807526976036259 a001 10610209857723/1149851*271443^(1/2) 4807526976038763 a001 4052739537881/1860498*271443^(8/13) 4807526976038769 a001 6557470319842/1149851*271443^(7/13) 4807526976039949 a001 2178309*271443^(8/13) 4807526976040670 a001 317811*271443^(10/13) 4807526976040682 a001 6557470319842/3010349*271443^(8/13) 4807526976043782 a001 832040*271443^(9/13) 4807526976043788 a001 2504730781961/1149851*271443^(8/13) 4807526976044968 a001 4052739537881/4870847*271443^(9/13) 4807526976045141 a001 3536736619241/4250681*271443^(9/13) 4807526976045248 a001 3278735159921/3940598*271443^(9/13) 4807526976045690 a001 86267571272/710647*271443^(11/13) 4807526976045701 a001 2504730781961/3010349*271443^(9/13) 4807526976048801 a001 591286729879/1860498*271443^(10/13) 4807526976048807 a001 956722026041/1149851*271443^(9/13) 4807526976049844 a001 98209/219602*45537549124^(16/17) 4807526976049844 a001 98209/219602*14662949395604^(16/21) 4807526976049844 a001 98209/219602*(1/2+1/2*5^(1/2))^48 4807526976049844 a001 98209/219602*192900153618^(8/9) 4807526976049844 a001 98209/219602*73681302247^(12/13) 4807526976049987 a001 1548008755920/4870847*271443^(10/13) 4807526976050160 a001 4052739537881/12752043*271443^(10/13) 4807526976050186 a001 1515744265389/4769326*271443^(10/13) 4807526976050201 a001 6557470319842/20633239*271443^(10/13) 4807526976050267 a001 2504730781961/7881196*271443^(10/13) 4807526976050709 a001 32951280099/710647*271443^(12/13) 4807526976050720 a001 956722026041/3010349*271443^(10/13) 4807526976050905 a001 7778742049/64079*64079^(22/23) 4807526976053820 a001 75283811239/620166*271443^(11/13) 4807526976053826 a001 365435296162/1149851*271443^(10/13) 4807526976055006 a001 591286729879/4870847*271443^(11/13) 4807526976055036 a001 3278735159921/219602*271443^(6/13) 4807526976055179 a001 516002918640/4250681*271443^(11/13) 4807526976055205 a001 4052739537881/33385282*271443^(11/13) 4807526976055208 a001 3536736619241/29134601*271443^(11/13) 4807526976055211 a001 6557470319842/54018521*271443^(11/13) 4807526976055220 a001 2504730781961/20633239*271443^(11/13) 4807526976055286 a001 956722026041/7881196*271443^(11/13) 4807526976055728 a001 583600122204333/121393 4807526976055739 a001 365435296162/3010349*271443^(11/13) 4807526976057546 a001 4052739537881/439204*271443^(1/2) 4807526976058839 a001 43133785636/930249*271443^(12/13) 4807526976058845 a001 139583862445/1149851*271443^(11/13) 4807526976060025 a001 225851433717/4870847*271443^(12/13) 4807526976060055 a001 2504730781961/439204*271443^(7/13) 4807526976060198 a001 591286729879/12752043*271443^(12/13) 4807526976060224 a001 774004377960/16692641*271443^(12/13) 4807526976060227 a001 4052739537881/87403803*271443^(12/13) 4807526976060228 a001 225749145909/4868641*271443^(12/13) 4807526976060228 a001 3278735159921/70711162*271443^(12/13) 4807526976060230 a001 2504730781961/54018521*271443^(12/13) 4807526976060239 a001 956722026041/20633239*271443^(12/13) 4807526976060305 a001 182717648081/3940598*271443^(12/13) 4807526976060759 a001 139583862445/3010349*271443^(12/13) 4807526976063858 a001 583600122205320/121393 4807526976063864 a001 53316291173/1149851*271443^(12/13) 4807526976065044 a001 583600122205464/121393 4807526976065074 a001 956722026041/439204*271443^(8/13) 4807526976065217 a001 583600122205485/121393 4807526976065242 a001 583600122205488/121393 4807526976065250 a001 583600122205489/121393 4807526976065259 a001 2504721554530/521 4807526976065325 a001 583600122205498/121393 4807526976065778 a001 583600122205553/121393 4807526976068328 a001 591286729879/167761*167761^(3/5) 4807526976068883 a001 583600122205930/121393 4807526976070093 a001 182717648081/219602*271443^(9/13) 4807526976075112 a001 139583862445/439204*271443^(10/13) 4807526976080131 a001 53316291173/439204*271443^(11/13) 4807526976085150 a001 10182505537/219602*271443^(12/13) 4807526976090169 a001 583600122208514/121393 4807526976101810 a001 12586269025/64079*64079^(21/23) 4807526976102492 a001 6557470319842/167761*167761^(2/5) 4807526976105572 a001 75025/271443*14662949395604^(7/9) 4807526976105572 a001 75025/271443*(1/2+1/2*5^(1/2))^49 4807526976105572 a001 75025/271443*505019158607^(7/8) 4807526976105572 a001 121393/167761*(1/2+1/2*5^(1/2))^47 4807526976121091 a001 3536736619241/90481*103682^(5/12) 4807526976139725 a001 6557470319842/271443*103682^(11/24) 4807526976145898 a001 944284833600625/196418 4807526976148667 a001 7778742049/167761*439204^(8/9) 4807526976151436 a001 32951280099/167761*439204^(7/9) 4807526976152715 a001 20365011074/64079*64079^(20/23) 4807526976154205 a001 139583862445/167761*439204^(2/3) 4807526976156974 a001 591286729879/167761*439204^(5/9) 4807526976158359 a001 4052739537881/271443*103682^(1/2) 4807526976159743 a001 2504730781961/167761*439204^(4/9) 4807526976161300 a001 75025/710647*817138163596^(17/19) 4807526976161300 a001 75025/710647*14662949395604^(17/21) 4807526976161300 a001 75025/710647*(1/2+1/2*5^(1/2))^51 4807526976161300 a001 75025/710647*192900153618^(17/18) 4807526976161300 a001 317811/167761*45537549124^(15/17) 4807526976161300 a001 317811/167761*312119004989^(9/11) 4807526976161300 a001 317811/167761*14662949395604^(5/7) 4807526976161300 a001 317811/167761*(1/2+1/2*5^(1/2))^45 4807526976161300 a001 317811/167761*192900153618^(5/6) 4807526976161300 a001 317811/167761*28143753123^(9/10) 4807526976161300 a001 317811/167761*10749957122^(15/16) 4807526976162512 a001 10610209857723/167761*439204^(1/3) 4807526976167184 a001 2472169789427475/514229 4807526976169431 a001 75025/1860498*(1/2+1/2*5^(1/2))^53 4807526976169431 a001 75640/15251*(1/2+1/2*5^(1/2))^43 4807526976170289 a001 6472224534681800/1346269 4807526976170617 a001 75025/4870847*(1/2+1/2*5^(1/2))^55 4807526976170617 a001 75025/4870847*3461452808002^(11/12) 4807526976170617 a001 2178309/167761*(1/2+1/2*5^(1/2))^41 4807526976170742 a001 16944503814617925/3524578 4807526976170750 a001 433494437/167761*7881196^(10/11) 4807526976170757 a001 1836311903/167761*7881196^(9/11) 4807526976170764 a001 7778742049/167761*7881196^(8/11) 4807526976170768 a001 20365011074/167761*7881196^(2/3) 4807526976170771 a001 32951280099/167761*7881196^(7/11) 4807526976170778 a001 139583862445/167761*7881196^(6/11) 4807526976170785 a001 591286729879/167761*7881196^(5/11) 4807526976170790 a001 5702887/167761*2537720636^(13/15) 4807526976170790 a001 75025/12752043*14662949395604^(19/21) 4807526976170790 a001 75025/12752043*(1/2+1/2*5^(1/2))^57 4807526976170790 a001 5702887/167761*45537549124^(13/17) 4807526976170790 a001 5702887/167761*14662949395604^(13/21) 4807526976170790 a001 5702887/167761*(1/2+1/2*5^(1/2))^39 4807526976170790 a001 5702887/167761*192900153618^(13/18) 4807526976170790 a001 5702887/167761*73681302247^(3/4) 4807526976170790 a001 5702887/167761*10749957122^(13/16) 4807526976170790 a001 5702887/167761*599074578^(13/14) 4807526976170792 a001 2504730781961/167761*7881196^(4/11) 4807526976170794 a001 4052739537881/167761*7881196^(1/3) 4807526976170799 a001 10610209857723/167761*7881196^(3/11) 4807526976170809 a001 8872257381834395/1845493 4807526976170810 a001 433494437/167761*20633239^(6/7) 4807526976170811 a001 1134903170/167761*20633239^(4/5) 4807526976170812 a001 4807526976/167761*20633239^(5/7) 4807526976170813 a001 32951280099/167761*20633239^(3/5) 4807526976170813 a001 53316291173/167761*20633239^(4/7) 4807526976170815 a001 591286729879/167761*20633239^(3/7) 4807526976170815 a001 956722026041/167761*20633239^(2/5) 4807526976170816 a001 75025/33385282*(1/2+1/2*5^(1/2))^59 4807526976170816 a001 14930352/167761*(1/2+1/2*5^(1/2))^37 4807526976170817 a001 6557470319842/167761*20633239^(2/7) 4807526976170818 a001 116139356912898000/24157817 4807526976170819 a001 39088169/167761*2537720636^(7/9) 4807526976170819 a001 39088169/167761*17393796001^(5/7) 4807526976170819 a001 39088169/167761*312119004989^(7/11) 4807526976170819 a001 39088169/167761*14662949395604^(5/9) 4807526976170819 a001 39088169/167761*(1/2+1/2*5^(1/2))^35 4807526976170819 a001 39088169/167761*505019158607^(5/8) 4807526976170819 a001 39088169/167761*28143753123^(7/10) 4807526976170819 a001 39088169/167761*599074578^(5/6) 4807526976170819 a001 39088169/167761*228826127^(7/8) 4807526976170820 a001 9303105/15251*141422324^(11/13) 4807526976170820 a001 304056783829522025/63245986 4807526976170820 a001 433494437/167761*141422324^(10/13) 4807526976170820 a001 1836311903/167761*141422324^(9/13) 4807526976170820 a001 2971215073/167761*141422324^(2/3) 4807526976170820 a001 7778742049/167761*141422324^(8/13) 4807526976170820 a001 32951280099/167761*141422324^(7/13) 4807526976170820 a001 139583862445/167761*141422324^(6/13) 4807526976170820 a001 591286729879/167761*141422324^(5/13) 4807526976170820 a001 9303105/15251*2537720636^(11/15) 4807526976170820 a001 9303105/15251*45537549124^(11/17) 4807526976170820 a001 9303105/15251*312119004989^(3/5) 4807526976170820 a001 9303105/15251*14662949395604^(11/21) 4807526976170820 a001 9303105/15251*(1/2+1/2*5^(1/2))^33 4807526976170820 a001 9303105/15251*192900153618^(11/18) 4807526976170820 a001 9303105/15251*10749957122^(11/16) 4807526976170820 a001 9303105/15251*1568397607^(3/4) 4807526976170820 a001 9303105/15251*599074578^(11/14) 4807526976170820 a001 140728068720/15251*141422324^(1/3) 4807526976170820 a001 2504730781961/167761*141422324^(4/13) 4807526976170820 a001 10610209857723/167761*141422324^(3/13) 4807526976170820 a001 796030994575668075/165580141 4807526976170820 a001 267914296/167761*(1/2+1/2*5^(1/2))^31 4807526976170820 a001 267914296/167761*9062201101803^(1/2) 4807526976170820 a001 701408733/167761*(1/2+1/2*5^(1/2))^29 4807526976170820 a001 701408733/167761*1322157322203^(1/2) 4807526976170820 a001 1836311903/167761*2537720636^(3/5) 4807526976170820 a001 4807526976/167761*2537720636^(5/9) 4807526976170820 a001 7778742049/167761*2537720636^(8/15) 4807526976170820 a001 32951280099/167761*2537720636^(7/15) 4807526976170820 a001 53316291173/167761*2537720636^(4/9) 4807526976170820 a001 139583862445/167761*2537720636^(2/5) 4807526976170820 a001 1836311903/167761*45537549124^(9/17) 4807526976170820 a001 1836311903/167761*817138163596^(9/19) 4807526976170820 a001 1836311903/167761*14662949395604^(3/7) 4807526976170820 a001 1836311903/167761*(1/2+1/2*5^(1/2))^27 4807526976170820 a001 1836311903/167761*192900153618^(1/2) 4807526976170820 a001 1836311903/167761*10749957122^(9/16) 4807526976170820 a001 591286729879/167761*2537720636^(1/3) 4807526976170820 a001 2504730781961/167761*2537720636^(4/15) 4807526976170820 a001 6557470319842/167761*2537720636^(2/9) 4807526976170820 a001 10610209857723/167761*2537720636^(1/5) 4807526976170820 a001 4807526976/167761*312119004989^(5/11) 4807526976170820 a001 4807526976/167761*(1/2+1/2*5^(1/2))^25 4807526976170820 a001 4807526976/167761*3461452808002^(5/12) 4807526976170820 a001 4807526976/167761*28143753123^(1/2) 4807526976170820 a001 32951280099/167761*17393796001^(3/7) 4807526976170820 a001 75025*(1/2+1/2*5^(1/2))^23 4807526976170820 a001 956722026041/167761*17393796001^(2/7) 4807526976170820 a001 32951280099/167761*45537549124^(7/17) 4807526976170820 a001 32951280099/167761*14662949395604^(1/3) 4807526976170820 a001 32951280099/167761*(1/2+1/2*5^(1/2))^21 4807526976170820 a001 32951280099/167761*192900153618^(7/18) 4807526976170820 a001 225851433717/167761*45537549124^(1/3) 4807526976170820 a001 139583862445/167761*45537549124^(6/17) 4807526976170820 a001 591286729879/167761*45537549124^(5/17) 4807526976170820 a001 2504730781961/167761*45537549124^(4/17) 4807526976170820 a001 10610209857723/167761*45537549124^(3/17) 4807526976170820 a001 86267571272/167761*817138163596^(1/3) 4807526976170820 a001 86267571272/167761*(1/2+1/2*5^(1/2))^19 4807526976170820 a001 225851433717/167761*(1/2+1/2*5^(1/2))^17 4807526976170820 a001 591286729879/167761*312119004989^(3/11) 4807526976170820 a001 6557470319842/167761*312119004989^(2/11) 4807526976170820 a001 591286729879/167761*(1/2+1/2*5^(1/2))^15 4807526976170820 a001 2504730781961/167761*817138163596^(4/19) 4807526976170820 a001 140728068720/15251*(1/2+1/2*5^(1/2))^13 4807526976170820 a001 4052739537881/167761*(1/2+1/2*5^(1/2))^11 4807526976170820 a001 10610209857723/167761*14662949395604^(1/7) 4807526976170820 a001 10610209857723/167761*(1/2+1/2*5^(1/2))^9 4807526976170820 a001 6557470319842/167761*(1/2+1/2*5^(1/2))^10 4807526976170820 a001 2504730781961/167761*(1/2+1/2*5^(1/2))^12 4807526976170820 a001 956722026041/167761*(1/2+1/2*5^(1/2))^14 4807526976170820 a001 10610209857723/167761*192900153618^(1/6) 4807526976170820 a001 2504730781961/167761*192900153618^(2/9) 4807526976170820 a001 591286729879/167761*192900153618^(5/18) 4807526976170820 a001 139583862445/167761*14662949395604^(2/7) 4807526976170820 a001 139583862445/167761*(1/2+1/2*5^(1/2))^18 4807526976170820 a001 139583862445/167761*192900153618^(1/3) 4807526976170820 a001 2504730781961/167761*73681302247^(3/13) 4807526976170820 a001 140728068720/15251*73681302247^(1/4) 4807526976170820 a001 365435296162/167761*73681302247^(4/13) 4807526976170820 a001 53316291173/167761*(1/2+1/2*5^(1/2))^20 4807526976170820 a001 53316291173/167761*23725150497407^(5/16) 4807526976170820 a001 53316291173/167761*505019158607^(5/14) 4807526976170820 a001 53316291173/167761*73681302247^(5/13) 4807526976170820 a001 6557470319842/167761*28143753123^(1/5) 4807526976170820 a001 591286729879/167761*28143753123^(3/10) 4807526976170820 a001 20365011074/167761*312119004989^(2/5) 4807526976170820 a001 20365011074/167761*(1/2+1/2*5^(1/2))^22 4807526976170820 a001 53316291173/167761*28143753123^(2/5) 4807526976170820 a001 10610209857723/167761*10749957122^(3/16) 4807526976170820 a001 6557470319842/167761*10749957122^(5/24) 4807526976170820 a001 2504730781961/167761*10749957122^(1/4) 4807526976170820 a001 956722026041/167761*10749957122^(7/24) 4807526976170820 a001 591286729879/167761*10749957122^(5/16) 4807526976170820 a001 365435296162/167761*10749957122^(1/3) 4807526976170820 a001 7778742049/167761*45537549124^(8/17) 4807526976170820 a001 139583862445/167761*10749957122^(3/8) 4807526976170820 a001 7778742049/167761*14662949395604^(8/21) 4807526976170820 a001 7778742049/167761*(1/2+1/2*5^(1/2))^24 4807526976170820 a001 7778742049/167761*192900153618^(4/9) 4807526976170820 a001 7778742049/167761*73681302247^(6/13) 4807526976170820 a001 32951280099/167761*10749957122^(7/16) 4807526976170820 a001 53316291173/167761*10749957122^(5/12) 4807526976170820 a001 20365011074/167761*10749957122^(11/24) 4807526976170820 a001 7778742049/167761*10749957122^(1/2) 4807526976170820 a001 6557470319842/167761*4106118243^(5/23) 4807526976170820 a001 2504730781961/167761*4106118243^(6/23) 4807526976170820 a001 956722026041/167761*4106118243^(7/23) 4807526976170820 a001 365435296162/167761*4106118243^(8/23) 4807526976170820 a001 2971215073/167761*(1/2+1/2*5^(1/2))^26 4807526976170820 a001 2971215073/167761*73681302247^(1/2) 4807526976170820 a001 139583862445/167761*4106118243^(9/23) 4807526976170820 a001 53316291173/167761*4106118243^(10/23) 4807526976170820 a001 2971215073/167761*10749957122^(13/24) 4807526976170820 a001 75025*4106118243^(1/2) 4807526976170820 a001 20365011074/167761*4106118243^(11/23) 4807526976170820 a001 7778742049/167761*4106118243^(12/23) 4807526976170820 a001 2971215073/167761*4106118243^(13/23) 4807526976170820 a001 6557470319842/167761*1568397607^(5/22) 4807526976170820 a001 4052739537881/167761*1568397607^(1/4) 4807526976170820 a001 2504730781961/167761*1568397607^(3/11) 4807526976170820 a001 956722026041/167761*1568397607^(7/22) 4807526976170820 a001 365435296162/167761*1568397607^(4/11) 4807526976170820 a001 1134903170/167761*17393796001^(4/7) 4807526976170820 a001 1134903170/167761*14662949395604^(4/9) 4807526976170820 a001 1134903170/167761*(1/2+1/2*5^(1/2))^28 4807526976170820 a001 1134903170/167761*73681302247^(7/13) 4807526976170820 a001 1134903170/167761*10749957122^(7/12) 4807526976170820 a001 139583862445/167761*1568397607^(9/22) 4807526976170820 a001 53316291173/167761*1568397607^(5/11) 4807526976170820 a001 1134903170/167761*4106118243^(14/23) 4807526976170820 a001 20365011074/167761*1568397607^(1/2) 4807526976170820 a001 7778742049/167761*1568397607^(6/11) 4807526976170820 a001 2971215073/167761*1568397607^(13/22) 4807526976170820 a001 1134903170/167761*1568397607^(7/11) 4807526976170820 a001 10610209857723/167761*599074578^(3/14) 4807526976170820 a001 6557470319842/167761*599074578^(5/21) 4807526976170820 a001 2504730781961/167761*599074578^(2/7) 4807526976170820 a001 956722026041/167761*599074578^(1/3) 4807526976170820 a001 433494437/167761*2537720636^(2/3) 4807526976170820 a001 591286729879/167761*599074578^(5/14) 4807526976170820 a001 365435296162/167761*599074578^(8/21) 4807526976170820 a001 433494437/167761*45537549124^(10/17) 4807526976170820 a001 433494437/167761*312119004989^(6/11) 4807526976170820 a001 433494437/167761*14662949395604^(10/21) 4807526976170820 a001 433494437/167761*(1/2+1/2*5^(1/2))^30 4807526976170820 a001 433494437/167761*192900153618^(5/9) 4807526976170820 a001 433494437/167761*28143753123^(3/5) 4807526976170820 a001 433494437/167761*10749957122^(5/8) 4807526976170820 a001 433494437/167761*4106118243^(15/23) 4807526976170820 a001 139583862445/167761*599074578^(3/7) 4807526976170820 a001 53316291173/167761*599074578^(10/21) 4807526976170820 a001 433494437/167761*1568397607^(15/22) 4807526976170820 a001 32951280099/167761*599074578^(1/2) 4807526976170820 a001 20365011074/167761*599074578^(11/21) 4807526976170820 a001 7778742049/167761*599074578^(4/7) 4807526976170820 a001 1836311903/167761*599074578^(9/14) 4807526976170820 a001 2971215073/167761*599074578^(13/21) 4807526976170820 a001 1134903170/167761*599074578^(2/3) 4807526976170820 a001 433494437/167761*599074578^(5/7) 4807526976170820 a001 6557470319842/167761*228826127^(1/4) 4807526976170820 a001 2504730781961/167761*228826127^(3/10) 4807526976170820 a001 956722026041/167761*228826127^(7/20) 4807526976170820 a001 591286729879/167761*228826127^(3/8) 4807526976170820 a001 165580141/167761*(1/2+1/2*5^(1/2))^32 4807526976170820 a001 165580141/167761*23725150497407^(1/2) 4807526976170820 a001 165580141/167761*505019158607^(4/7) 4807526976170820 a001 165580141/167761*73681302247^(8/13) 4807526976170820 a001 165580141/167761*10749957122^(2/3) 4807526976170820 a001 165580141/167761*4106118243^(16/23) 4807526976170820 a001 165580141/167761*1568397607^(8/11) 4807526976170820 a001 365435296162/167761*228826127^(2/5) 4807526976170820 a001 139583862445/167761*228826127^(9/20) 4807526976170820 a001 165580141/167761*599074578^(16/21) 4807526976170820 a001 53316291173/167761*228826127^(1/2) 4807526976170820 a001 20365011074/167761*228826127^(11/20) 4807526976170820 a001 7778742049/167761*228826127^(3/5) 4807526976170820 a001 4807526976/167761*228826127^(5/8) 4807526976170820 a001 2971215073/167761*228826127^(13/20) 4807526976170820 a001 1134903170/167761*228826127^(7/10) 4807526976170820 a001 433494437/167761*228826127^(3/4) 4807526976170820 a001 98394842149229210/20466831 4807526976170820 a001 165580141/167761*228826127^(4/5) 4807526976170820 a001 6557470319842/167761*87403803^(5/19) 4807526976170820 a001 2504730781961/167761*87403803^(6/19) 4807526976170820 a001 956722026041/167761*87403803^(7/19) 4807526976170820 a001 63245986/167761*45537549124^(2/3) 4807526976170820 a001 63245986/167761*(1/2+1/2*5^(1/2))^34 4807526976170820 a001 63245986/167761*10749957122^(17/24) 4807526976170820 a001 63245986/167761*4106118243^(17/23) 4807526976170820 a001 63245986/167761*1568397607^(17/22) 4807526976170820 a001 63245986/167761*599074578^(17/21) 4807526976170820 a001 365435296162/167761*87403803^(8/19) 4807526976170820 a001 139583862445/167761*87403803^(9/19) 4807526976170820 a001 86267571272/167761*87403803^(1/2) 4807526976170820 a001 63245986/167761*228826127^(17/20) 4807526976170820 a001 53316291173/167761*87403803^(10/19) 4807526976170820 a001 20365011074/167761*87403803^(11/19) 4807526976170820 a001 7778742049/167761*87403803^(12/19) 4807526976170820 a001 2971215073/167761*87403803^(13/19) 4807526976170820 a001 1134903170/167761*87403803^(14/19) 4807526976170820 a001 433494437/167761*87403803^(15/19) 4807526976170820 a001 165580141/167761*87403803^(16/19) 4807526976170821 a001 187917426916624025/39088169 4807526976170821 a001 63245986/167761*87403803^(17/19) 4807526976170821 a001 10610209857723/167761*33385282^(1/4) 4807526976170821 a001 6557470319842/167761*33385282^(5/18) 4807526976170821 a001 24157817/167761*141422324^(12/13) 4807526976170821 a001 2504730781961/167761*33385282^(1/3) 4807526976170822 a001 24157817/167761*2537720636^(4/5) 4807526976170822 a001 75025/54018521*14662949395604^(20/21) 4807526976170822 a001 24157817/167761*45537549124^(12/17) 4807526976170822 a001 24157817/167761*14662949395604^(4/7) 4807526976170822 a001 24157817/167761*(1/2+1/2*5^(1/2))^36 4807526976170822 a001 24157817/167761*505019158607^(9/14) 4807526976170822 a001 24157817/167761*192900153618^(2/3) 4807526976170822 a001 24157817/167761*73681302247^(9/13) 4807526976170822 a001 24157817/167761*10749957122^(3/4) 4807526976170822 a001 24157817/167761*4106118243^(18/23) 4807526976170822 a001 24157817/167761*1568397607^(9/11) 4807526976170822 a001 24157817/167761*599074578^(6/7) 4807526976170822 a001 956722026041/167761*33385282^(7/18) 4807526976170822 a001 24157817/167761*228826127^(9/10) 4807526976170822 a001 591286729879/167761*33385282^(5/12) 4807526976170822 a001 365435296162/167761*33385282^(4/9) 4807526976170822 a001 139583862445/167761*33385282^(1/2) 4807526976170822 a001 24157817/167761*87403803^(18/19) 4807526976170822 a001 53316291173/167761*33385282^(5/9) 4807526976170822 a001 32951280099/167761*33385282^(7/12) 4807526976170823 a001 20365011074/167761*33385282^(11/18) 4807526976170823 a001 7778742049/167761*33385282^(2/3) 4807526976170823 a001 2971215073/167761*33385282^(13/18) 4807526976170823 a001 1836311903/167761*33385282^(3/4) 4807526976170823 a001 1134903170/167761*33385282^(7/9) 4807526976170823 a001 433494437/167761*33385282^(5/6) 4807526976170824 a001 9303105/15251*33385282^(11/12) 4807526976170824 a001 165580141/167761*33385282^(8/9) 4807526976170824 a001 71778070003726025/14930352 4807526976170824 a001 63245986/167761*33385282^(17/18) 4807526976170829 a001 6557470319842/167761*12752043^(5/17) 4807526976170830 a001 2504730781961/167761*12752043^(6/17) 4807526976170831 a001 75025/20633239*(1/2+1/2*5^(1/2))^58 4807526976170831 a001 9227465/167761*817138163596^(2/3) 4807526976170831 a001 9227465/167761*(1/2+1/2*5^(1/2))^38 4807526976170831 a001 9227465/167761*10749957122^(19/24) 4807526976170831 a001 9227465/167761*4106118243^(19/23) 4807526976170831 a001 9227465/167761*1568397607^(19/22) 4807526976170831 a001 9227465/167761*599074578^(19/21) 4807526976170831 a001 9227465/167761*228826127^(19/20) 4807526976170832 a001 956722026041/167761*12752043^(7/17) 4807526976170834 a001 365435296162/167761*12752043^(8/17) 4807526976170835 a001 225851433717/167761*12752043^(1/2) 4807526976170836 a001 139583862445/167761*12752043^(9/17) 4807526976170837 a001 53316291173/167761*12752043^(10/17) 4807526976170839 a001 20365011074/167761*12752043^(11/17) 4807526976170841 a001 7778742049/167761*12752043^(12/17) 4807526976170843 a001 2971215073/167761*12752043^(13/17) 4807526976170844 a001 1134903170/167761*12752043^(14/17) 4807526976170846 a001 433494437/167761*12752043^(15/17) 4807526976170848 a001 165580141/167761*12752043^(16/17) 4807526976170849 a001 27416783094554050/5702887 4807526976170883 a001 6557470319842/167761*4870847^(5/16) 4807526976170896 a001 2504730781961/167761*4870847^(3/8) 4807526976170897 a001 3524578/167761*2537720636^(8/9) 4807526976170897 a001 75025/7881196*14662949395604^(8/9) 4807526976170897 a001 75025/7881196*(1/2+1/2*5^(1/2))^56 4807526976170897 a001 3524578/167761*312119004989^(8/11) 4807526976170897 a001 3524578/167761*(1/2+1/2*5^(1/2))^40 4807526976170897 a001 3524578/167761*23725150497407^(5/8) 4807526976170897 a001 3524578/167761*73681302247^(10/13) 4807526976170897 a001 3524578/167761*28143753123^(4/5) 4807526976170897 a001 3524578/167761*10749957122^(5/6) 4807526976170897 a001 3524578/167761*4106118243^(20/23) 4807526976170897 a001 3524578/167761*1568397607^(10/11) 4807526976170897 a001 3524578/167761*599074578^(20/21) 4807526976170909 a001 956722026041/167761*4870847^(7/16) 4807526976170921 a001 365435296162/167761*4870847^(1/2) 4807526976170934 a001 139583862445/167761*4870847^(9/16) 4807526976170947 a001 53316291173/167761*4870847^(5/8) 4807526976170959 a001 20365011074/167761*4870847^(11/16) 4807526976170972 a001 7778742049/167761*4870847^(3/4) 4807526976170985 a001 2971215073/167761*4870847^(13/16) 4807526976170997 a001 1134903170/167761*4870847^(7/8) 4807526976171010 a001 433494437/167761*4870847^(15/16) 4807526976171023 a001 10472279279936125/2178309 4807526976171237 a001 10610209857723/167761*1860498^(3/10) 4807526976171283 a001 6557470319842/167761*1860498^(1/3) 4807526976171350 a001 1346269/167761*2537720636^(14/15) 4807526976171350 a001 1346269/167761*17393796001^(6/7) 4807526976171350 a001 75025/3010349*14662949395604^(6/7) 4807526976171350 a001 75025/3010349*(1/2+1/2*5^(1/2))^54 4807526976171350 a001 1346269/167761*45537549124^(14/17) 4807526976171350 a001 1346269/167761*817138163596^(14/19) 4807526976171350 a001 1346269/167761*14662949395604^(2/3) 4807526976171350 a001 1346269/167761*(1/2+1/2*5^(1/2))^42 4807526976171350 a001 1346269/167761*505019158607^(3/4) 4807526976171350 a001 1346269/167761*192900153618^(7/9) 4807526976171350 a001 1346269/167761*10749957122^(7/8) 4807526976171350 a001 1346269/167761*4106118243^(21/23) 4807526976171350 a001 1346269/167761*1568397607^(21/22) 4807526976171375 a001 2504730781961/167761*1860498^(2/5) 4807526976171468 a001 956722026041/167761*1860498^(7/15) 4807526976171514 a001 591286729879/167761*1860498^(1/2) 4807526976171561 a001 365435296162/167761*1860498^(8/15) 4807526976171653 a001 139583862445/167761*1860498^(3/5) 4807526976171746 a001 53316291173/167761*1860498^(2/3) 4807526976171792 a001 32951280099/167761*1860498^(7/10) 4807526976171838 a001 20365011074/167761*1860498^(11/15) 4807526976171931 a001 7778742049/167761*1860498^(4/5) 4807526976171977 a001 4807526976/167761*1860498^(5/6) 4807526976172024 a001 2971215073/167761*1860498^(13/15) 4807526976172070 a001 1836311903/167761*1860498^(9/10) 4807526976172116 a001 1134903170/167761*1860498^(14/15) 4807526976172209 a001 800010949050865/166408 4807526976174220 a001 6557470319842/167761*710647^(5/14) 4807526976174456 a001 75025/1149851*(1/2+1/2*5^(1/2))^52 4807526976174456 a001 75025/1149851*23725150497407^(13/16) 4807526976174456 a001 75025/1149851*505019158607^(13/14) 4807526976174456 a001 514229/167761*312119004989^(4/5) 4807526976174456 a001 514229/167761*(1/2+1/2*5^(1/2))^44 4807526976174456 a001 514229/167761*23725150497407^(11/16) 4807526976174456 a001 514229/167761*73681302247^(11/13) 4807526976174456 a001 514229/167761*10749957122^(11/12) 4807526976174456 a001 514229/167761*4106118243^(22/23) 4807526976174900 a001 2504730781961/167761*710647^(3/7) 4807526976175580 a001 956722026041/167761*710647^(1/2) 4807526976176260 a001 365435296162/167761*710647^(4/7) 4807526976176940 a001 139583862445/167761*710647^(9/14) 4807526976176993 a001 2504730781961/271443*103682^(13/24) 4807526976177620 a001 53316291173/167761*710647^(5/7) 4807526976177960 a001 32951280099/167761*710647^(3/4) 4807526976178299 a001 20365011074/167761*710647^(11/14) 4807526976178979 a001 7778742049/167761*710647^(6/7) 4807526976179659 a001 2971215073/167761*710647^(13/14) 4807526976180339 a001 1527884955826850/317811 4807526976195627 a001 516002918640/90481*103682^(7/12) 4807526976195742 a001 75025/439204*312119004989^(10/11) 4807526976195742 a001 75025/439204*(1/2+1/2*5^(1/2))^50 4807526976195742 a001 75025/439204*3461452808002^(5/6) 4807526976195742 a001 196418/167761*(1/2+1/2*5^(1/2))^46 4807526976195742 a001 196418/167761*10749957122^(23/24) 4807526976195915 a001 6557470319842/167761*271443^(5/13) 4807526976200934 a001 2504730781961/167761*271443^(6/13) 4807526976203444 a001 140728068720/15251*271443^(1/2) 4807526976203620 a001 32951280099/64079*64079^(19/23) 4807526976205953 a001 956722026041/167761*271443^(7/13) 4807526976210972 a001 365435296162/167761*271443^(8/13) 4807526976214087 a001 1515744265389/101521*103682^(1/2) 4807526976214260 a001 956722026041/271443*103682^(5/8) 4807526976215991 a001 139583862445/167761*271443^(9/13) 4807526976221010 a001 53316291173/167761*271443^(10/13) 4807526976226029 a001 20365011074/167761*271443^(11/13) 4807526976229895 a001 10610209857723/439204*103682^(11/24) 4807526976231048 a001 7778742049/167761*271443^(12/13) 4807526976232721 a001 6557470319842/710647*103682^(13/24) 4807526976232894 a001 591286729879/271443*103682^(2/3) 4807526976236067 a001 583600122226225/121393 4807526976245876 a001 10610209857723/1149851*103682^(13/24) 4807526976248529 a001 3278735159921/219602*103682^(1/2) 4807526976251355 a001 4052739537881/710647*103682^(7/12) 4807526976251528 a001 365435296162/271443*103682^(17/24) 4807526976254526 a001 53316291173/64079*64079^(18/23) 4807526976259485 a001 3536736619241/620166*103682^(7/12) 4807526976264510 a001 6557470319842/1149851*103682^(7/12) 4807526976267163 a001 4052739537881/439204*103682^(13/24) 4807526976269989 a001 2504730781961/710647*103682^(5/8) 4807526976270162 a001 75283811239/90481*103682^(3/4) 4807526976278119 a001 3278735159921/930249*103682^(5/8) 4807526976280039 a001 10610209857723/3010349*103682^(5/8) 4807526976283144 a001 4052739537881/1149851*103682^(5/8) 4807526976285796 a001 2504730781961/439204*103682^(7/12) 4807526976288622 a001 1548008755920/710647*103682^(2/3) 4807526976288796 a001 139583862445/271443*103682^(19/24) 4807526976296753 a001 4052739537881/1860498*103682^(2/3) 4807526976297939 a001 2178309*103682^(2/3) 4807526976298672 a001 6557470319842/3010349*103682^(2/3) 4807526976301778 a001 2504730781961/1149851*103682^(2/3) 4807526976304430 a001 387002188980/109801*103682^(5/8) 4807526976305431 a001 86267571272/64079*64079^(17/23) 4807526976307256 a001 956722026041/710647*103682^(17/24) 4807526976307430 a001 86267571272/271443*103682^(5/6) 4807526976315387 a001 2504730781961/1860498*103682^(17/24) 4807526976316573 a001 6557470319842/4870847*103682^(17/24) 4807526976316853 a001 10610209857723/7881196*103682^(17/24) 4807526976317306 a001 1346269*103682^(17/24) 4807526976320412 a001 1548008755920/1149851*103682^(17/24) 4807526976323064 a001 956722026041/439204*103682^(2/3) 4807526976325890 a001 591286729879/710647*103682^(3/4) 4807526976326064 a001 53316291173/271443*103682^(7/8) 4807526976334021 a001 832040*103682^(3/4) 4807526976335207 a001 4052739537881/4870847*103682^(3/4) 4807526976335380 a001 3536736619241/4250681*103682^(3/4) 4807526976335487 a001 3278735159921/3940598*103682^(3/4) 4807526976335940 a001 2504730781961/3010349*103682^(3/4) 4807526976338525 a001 10610209857723/167761*103682^(3/8) 4807526976339046 a001 956722026041/1149851*103682^(3/4) 4807526976341640 a001 75025/167761*45537549124^(16/17) 4807526976341640 a001 75025/167761*14662949395604^(16/21) 4807526976341640 a001 75025/167761*(1/2+1/2*5^(1/2))^48 4807526976341640 a001 75025/167761*192900153618^(8/9) 4807526976341640 a001 75025/167761*73681302247^(12/13) 4807526976341698 a001 591286729879/439204*103682^(17/24) 4807526976344524 a001 365435296162/710647*103682^(19/24) 4807526976344698 a001 121393*103682^(11/12) 4807526976352655 a001 956722026041/1860498*103682^(19/24) 4807526976353841 a001 2504730781961/4870847*103682^(19/24) 4807526976354014 a001 6557470319842/12752043*103682^(19/24) 4807526976354055 a001 10610209857723/20633239*103682^(19/24) 4807526976354121 a001 4052739537881/7881196*103682^(19/24) 4807526976354574 a001 1548008755920/3010349*103682^(19/24) 4807526976356336 a001 139583862445/64079*64079^(16/23) 4807526976357159 a001 6557470319842/167761*103682^(5/12) 4807526976357680 a001 514229*103682^(19/24) 4807526976360332 a001 182717648081/219602*103682^(3/4) 4807526976363158 a001 317811*103682^(5/6) 4807526976363332 a001 20365011074/271443*103682^(23/24) 4807526976371289 a001 591286729879/1860498*103682^(5/6) 4807526976372475 a001 1548008755920/4870847*103682^(5/6) 4807526976372648 a001 4052739537881/12752043*103682^(5/6) 4807526976372673 a001 1515744265389/4769326*103682^(5/6) 4807526976372689 a001 6557470319842/20633239*103682^(5/6) 4807526976372755 a001 2504730781961/7881196*103682^(5/6) 4807526976373208 a001 956722026041/3010349*103682^(5/6) 4807526976375793 a001 4052739537881/167761*103682^(11/24) 4807526976376314 a001 365435296162/1149851*103682^(5/6) 4807526976378966 a001 225851433717/439204*103682^(19/24) 4807526976381792 a001 139583862445/710647*103682^(7/8) 4807526976381966 a001 222915410840879/46368 4807526976382139 a001 7778742049/24476*24476^(20/21) 4807526976389923 a001 182717648081/930249*103682^(7/8) 4807526976391109 a001 956722026041/4870847*103682^(7/8) 4807526976391282 a001 2504730781961/12752043*103682^(7/8) 4807526976391307 a001 3278735159921/16692641*103682^(7/8) 4807526976391313 a001 10610209857723/54018521*103682^(7/8) 4807526976391323 a001 4052739537881/20633239*103682^(7/8) 4807526976391389 a001 387002188980/1970299*103682^(7/8) 4807526976391842 a001 591286729879/3010349*103682^(7/8) 4807526976394427 a001 2504730781961/167761*103682^(1/2) 4807526976394948 a001 225851433717/1149851*103682^(7/8) 4807526976397600 a001 139583862445/439204*103682^(5/6) 4807526976400426 a001 86267571272/710647*103682^(11/12) 4807526976407241 a001 225851433717/64079*64079^(15/23) 4807526976408556 a001 75283811239/620166*103682^(11/12) 4807526976409743 a001 591286729879/4870847*103682^(11/12) 4807526976409916 a001 516002918640/4250681*103682^(11/12) 4807526976409941 a001 4052739537881/33385282*103682^(11/12) 4807526976409945 a001 3536736619241/29134601*103682^(11/12) 4807526976409947 a001 6557470319842/54018521*103682^(11/12) 4807526976409957 a001 2504730781961/20633239*103682^(11/12) 4807526976410023 a001 956722026041/7881196*103682^(11/12) 4807526976410476 a001 365435296162/3010349*103682^(11/12) 4807526976413061 a001 140728068720/15251*103682^(13/24) 4807526976413581 a001 139583862445/1149851*103682^(11/12) 4807526976416234 a001 196418*103682^(7/8) 4807526976419060 a001 53316291173/710647*103682^(23/24) 4807526976427190 a001 139583862445/1860498*103682^(23/24) 4807526976428377 a001 365435296162/4870847*103682^(23/24) 4807526976428550 a001 956722026041/12752043*103682^(23/24) 4807526976428575 a001 2504730781961/33385282*103682^(23/24) 4807526976428579 a001 6557470319842/87403803*103682^(23/24) 4807526976428579 a001 10610209857723/141422324*103682^(23/24) 4807526976428581 a001 4052739537881/54018521*103682^(23/24) 4807526976428590 a001 140728068720/1875749*103682^(23/24) 4807526976428657 a001 591286729879/7881196*103682^(23/24) 4807526976429110 a001 225851433717/3010349*103682^(23/24) 4807526976431694 a001 956722026041/167761*103682^(7/12) 4807526976432215 a001 86267571272/1149851*103682^(23/24) 4807526976434868 a001 53316291173/439204*103682^(11/12) 4807526976437694 a001 24768378982607/5152 4807526976445824 a001 6966106588870/1449 4807526976447183 a001 222915410843903/46368 4807526976447204 a001 774011843208/161 4807526976447226 a001 222915410843905/46368 4807526976447291 a001 55728852710977/11592 4807526976447744 a001 222915410843929/46368 4807526976450328 a001 591286729879/167761*103682^(5/8) 4807526976450849 a001 222915410844073/46368 4807526976453502 a001 32951280099/439204*103682^(23/24) 4807526976458147 a001 365435296162/64079*64079^(14/23) 4807526976468962 a001 365435296162/167761*103682^(2/3) 4807526976472135 a001 55728852711265/11592 4807526976487596 a001 225851433717/167761*103682^(17/24) 4807526976506230 a001 139583862445/167761*103682^(3/4) 4807526976509052 a001 591286729879/64079*64079^(13/23) 4807526976524864 a001 86267571272/167761*103682^(19/24) 4807526976543498 a001 53316291173/167761*103682^(5/6) 4807526976559957 a001 956722026041/64079*64079^(12/23) 4807526976562132 a001 32951280099/167761*103682^(7/8) 4807526976580766 a001 20365011074/167761*103682^(11/12) 4807526976599400 a001 75025*103682^(23/24) 4807526976610862 a001 1548008755920/64079*64079^(11/23) 4807526976618033 a001 222915410851825/46368 4807526976661768 a001 2504730781961/64079*64079^(10/23) 4807526976667421 a001 225749145909/2206*39603^(4/11) 4807526976712673 a001 4052739537881/64079*64079^(9/23) 4807526976723606 a001 28657/103682*14662949395604^(7/9) 4807526976723606 a001 28657/103682*(1/2+1/2*5^(1/2))^49 4807526976723606 a001 28657/103682*505019158607^(7/8) 4807526976723606 a001 46368/64079*(1/2+1/2*5^(1/2))^47 4807526976763578 a001 6557470319842/64079*64079^(8/23) 4807526976764278 a001 12586269025/24476*24476^(19/21) 4807526976806751 a001 3278735159921/51841*39603^(9/22) 4807526976814483 a001 10610209857723/64079*64079^(7/23) 4807526976946080 a001 4052739537881/103682*39603^(5/11) 4807526977034164 a001 20365011074/64079*167761^(4/5) 4807526977068328 a001 225851433717/64079*167761^(3/5) 4807526977085410 a001 2504730781961/103682*39603^(1/2) 4807526977102492 a001 2504730781961/64079*167761^(2/5) 4807526977105572 a001 28657/271443*817138163596^(17/19) 4807526977105572 a001 28657/271443*14662949395604^(17/21) 4807526977105572 a001 28657/271443*(1/2+1/2*5^(1/2))^51 4807526977105572 a001 28657/271443*192900153618^(17/18) 4807526977105572 a001 121393/64079*45537549124^(15/17) 4807526977105572 a001 121393/64079*312119004989^(9/11) 4807526977105572 a001 121393/64079*14662949395604^(5/7) 4807526977105572 a001 121393/64079*(1/2+1/2*5^(1/2))^45 4807526977105572 a001 121393/64079*192900153618^(5/6) 4807526977105572 a001 121393/64079*28143753123^(9/10) 4807526977105572 a001 121393/64079*10749957122^(15/16) 4807526977145898 a001 944284833797043/196418 4807526977146417 a001 10182505537/12238*24476^(6/7) 4807526977148667 a001 2971215073/64079*439204^(8/9) 4807526977151436 a001 12586269025/64079*439204^(7/9) 4807526977154205 a001 53316291173/64079*439204^(2/3) 4807526977156974 a001 225851433717/64079*439204^(5/9) 4807526977159743 a001 956722026041/64079*439204^(4/9) 4807526977161300 a001 28657/710647*(1/2+1/2*5^(1/2))^53 4807526977161300 a001 317811/64079*(1/2+1/2*5^(1/2))^43 4807526977162512 a001 4052739537881/64079*439204^(1/3) 4807526977167184 a001 2472169789941704/514229 4807526977169431 a001 28657/1860498*(1/2+1/2*5^(1/2))^55 4807526977169431 a001 28657/1860498*3461452808002^(11/12) 4807526977169431 a001 832040/64079*(1/2+1/2*5^(1/2))^41 4807526977170289 a001 6472224536028069/1346269 4807526977170617 a001 2178309/64079*2537720636^(13/15) 4807526977170617 a001 28657/4870847*14662949395604^(19/21) 4807526977170617 a001 28657/4870847*(1/2+1/2*5^(1/2))^57 4807526977170617 a001 2178309/64079*45537549124^(13/17) 4807526977170617 a001 2178309/64079*14662949395604^(13/21) 4807526977170617 a001 2178309/64079*(1/2+1/2*5^(1/2))^39 4807526977170617 a001 2178309/64079*192900153618^(13/18) 4807526977170617 a001 2178309/64079*73681302247^(3/4) 4807526977170617 a001 2178309/64079*10749957122^(13/16) 4807526977170617 a001 2178309/64079*599074578^(13/14) 4807526977170742 a001 16944503818142503/3524578 4807526977170750 a001 165580141/64079*7881196^(10/11) 4807526977170757 a001 701408733/64079*7881196^(9/11) 4807526977170764 a001 2971215073/64079*7881196^(8/11) 4807526977170768 a001 7778742049/64079*7881196^(2/3) 4807526977170771 a001 12586269025/64079*7881196^(7/11) 4807526977170778 a001 53316291173/64079*7881196^(6/11) 4807526977170785 a001 225851433717/64079*7881196^(5/11) 4807526977170790 a001 28657/12752043*(1/2+1/2*5^(1/2))^59 4807526977170790 a001 5702887/64079*(1/2+1/2*5^(1/2))^37 4807526977170792 a001 956722026041/64079*7881196^(4/11) 4807526977170794 a001 1548008755920/64079*7881196^(1/3) 4807526977170799 a001 4052739537881/64079*7881196^(3/11) 4807526977170809 a001 8872257383679888/1845493 4807526977170810 a001 165580141/64079*20633239^(6/7) 4807526977170811 a001 433494437/64079*20633239^(4/5) 4807526977170812 a001 28657*20633239^(5/7) 4807526977170813 a001 12586269025/64079*20633239^(3/5) 4807526977170813 a001 20365011074/64079*20633239^(4/7) 4807526977170815 a001 225851433717/64079*20633239^(3/7) 4807526977170815 a001 365435296162/64079*20633239^(2/5) 4807526977170816 a001 14930352/64079*2537720636^(7/9) 4807526977170816 a001 28657/33385282*(1/2+1/2*5^(1/2))^61 4807526977170816 a001 14930352/64079*17393796001^(5/7) 4807526977170816 a001 14930352/64079*312119004989^(7/11) 4807526977170816 a001 14930352/64079*14662949395604^(5/9) 4807526977170816 a001 14930352/64079*(1/2+1/2*5^(1/2))^35 4807526977170816 a001 14930352/64079*505019158607^(5/8) 4807526977170816 a001 14930352/64079*28143753123^(7/10) 4807526977170816 a001 14930352/64079*599074578^(5/6) 4807526977170816 a001 14930352/64079*228826127^(7/8) 4807526977170817 a001 2504730781961/64079*20633239^(2/7) 4807526977170818 a001 10610209857723/64079*20633239^(1/5) 4807526977170818 a001 116139356937055817/24157817 4807526977170819 a001 39088169/64079*141422324^(11/13) 4807526977170819 a001 39088169/64079*2537720636^(11/15) 4807526977170819 a001 39088169/64079*45537549124^(11/17) 4807526977170819 a001 39088169/64079*312119004989^(3/5) 4807526977170819 a001 39088169/64079*14662949395604^(11/21) 4807526977170819 a001 39088169/64079*(1/2+1/2*5^(1/2))^33 4807526977170819 a001 39088169/64079*192900153618^(11/18) 4807526977170819 a001 39088169/64079*10749957122^(11/16) 4807526977170819 a001 39088169/64079*1568397607^(3/4) 4807526977170819 a001 39088169/64079*599074578^(11/14) 4807526977170820 a001 304056783892768011/63245986 4807526977170820 a001 701408733/64079*141422324^(9/13) 4807526977170820 a001 1134903170/64079*141422324^(2/3) 4807526977170820 a001 165580141/64079*141422324^(10/13) 4807526977170820 a001 2971215073/64079*141422324^(8/13) 4807526977170820 a001 12586269025/64079*141422324^(7/13) 4807526977170820 a001 53316291173/64079*141422324^(6/13) 4807526977170820 a001 225851433717/64079*141422324^(5/13) 4807526977170820 a001 102334155/64079*(1/2+1/2*5^(1/2))^31 4807526977170820 a001 102334155/64079*9062201101803^(1/2) 4807526977170820 a001 591286729879/64079*141422324^(1/3) 4807526977170820 a001 956722026041/64079*141422324^(4/13) 4807526977170820 a001 4052739537881/64079*141422324^(3/13) 4807526977170820 a001 267914296/64079*(1/2+1/2*5^(1/2))^29 4807526977170820 a001 267914296/64079*1322157322203^(1/2) 4807526977170820 a001 701408733/64079*2537720636^(3/5) 4807526977170820 a001 701408733/64079*45537549124^(9/17) 4807526977170820 a001 701408733/64079*817138163596^(9/19) 4807526977170820 a001 701408733/64079*14662949395604^(3/7) 4807526977170820 a001 701408733/64079*(1/2+1/2*5^(1/2))^27 4807526977170820 a001 701408733/64079*192900153618^(1/2) 4807526977170820 a001 701408733/64079*10749957122^(9/16) 4807526977170820 a001 28657*2537720636^(5/9) 4807526977170820 a001 12586269025/64079*2537720636^(7/15) 4807526977170820 a001 20365011074/64079*2537720636^(4/9) 4807526977170820 a001 53316291173/64079*2537720636^(2/5) 4807526977170820 a001 2971215073/64079*2537720636^(8/15) 4807526977170820 a001 28657*312119004989^(5/11) 4807526977170820 a001 28657*(1/2+1/2*5^(1/2))^25 4807526977170820 a001 28657*3461452808002^(5/12) 4807526977170820 a001 28657*28143753123^(1/2) 4807526977170820 a001 225851433717/64079*2537720636^(1/3) 4807526977170820 a001 956722026041/64079*2537720636^(4/15) 4807526977170820 a001 2504730781961/64079*2537720636^(2/9) 4807526977170820 a001 4052739537881/64079*2537720636^(1/5) 4807526977170820 a001 4807526976/64079*(1/2+1/2*5^(1/2))^23 4807526977170820 a001 12586269025/64079*17393796001^(3/7) 4807526977170820 a001 12586269025/64079*45537549124^(7/17) 4807526977170820 a001 12586269025/64079*14662949395604^(1/3) 4807526977170820 a001 12586269025/64079*(1/2+1/2*5^(1/2))^21 4807526977170820 a001 12586269025/64079*192900153618^(7/18) 4807526977170820 a001 365435296162/64079*17393796001^(2/7) 4807526977170820 a001 10610209857723/64079*17393796001^(1/7) 4807526977170820 a001 86267571272/64079*45537549124^(1/3) 4807526977170820 a001 32951280099/64079*817138163596^(1/3) 4807526977170820 a001 32951280099/64079*(1/2+1/2*5^(1/2))^19 4807526977170820 a001 225851433717/64079*45537549124^(5/17) 4807526977170820 a001 956722026041/64079*45537549124^(4/17) 4807526977170820 a001 53316291173/64079*45537549124^(6/17) 4807526977170820 a001 4052739537881/64079*45537549124^(3/17) 4807526977170820 a001 86267571272/64079*(1/2+1/2*5^(1/2))^17 4807526977170820 a001 225851433717/64079*312119004989^(3/11) 4807526977170820 a001 225851433717/64079*(1/2+1/2*5^(1/2))^15 4807526977170820 a001 1548008755920/64079*312119004989^(1/5) 4807526977170820 a001 1548008755920/64079*(1/2+1/2*5^(1/2))^11 4807526977170820 a001 4052739537881/64079*(1/2+1/2*5^(1/2))^9 4807526977170820 a001 10610209857723/64079*14662949395604^(1/9) 4807526977170820 a001 10610209857723/64079*(1/2+1/2*5^(1/2))^7 4807526977170820 a001 6557470319842/64079*(1/2+1/2*5^(1/2))^8 4807526977170820 a001 2504730781961/64079*(1/2+1/2*5^(1/2))^10 4807526977170820 a001 956722026041/64079*(1/2+1/2*5^(1/2))^12 4807526977170820 a001 365435296162/64079*(1/2+1/2*5^(1/2))^14 4807526977170820 a001 365435296162/64079*505019158607^(1/4) 4807526977170820 a001 225851433717/64079*192900153618^(5/18) 4807526977170820 a001 956722026041/64079*192900153618^(2/9) 4807526977170820 a001 139583862445/64079*(1/2+1/2*5^(1/2))^16 4807526977170820 a001 139583862445/64079*23725150497407^(1/4) 4807526977170820 a001 6557470319842/64079*73681302247^(2/13) 4807526977170820 a001 956722026041/64079*73681302247^(3/13) 4807526977170820 a001 591286729879/64079*73681302247^(1/4) 4807526977170820 a001 139583862445/64079*73681302247^(4/13) 4807526977170820 a001 53316291173/64079*14662949395604^(2/7) 4807526977170820 a001 53316291173/64079*(1/2+1/2*5^(1/2))^18 4807526977170820 a001 53316291173/64079*192900153618^(1/3) 4807526977170820 a001 2504730781961/64079*28143753123^(1/5) 4807526977170820 a001 225851433717/64079*28143753123^(3/10) 4807526977170820 a001 20365011074/64079*(1/2+1/2*5^(1/2))^20 4807526977170820 a001 20365011074/64079*23725150497407^(5/16) 4807526977170820 a001 20365011074/64079*505019158607^(5/14) 4807526977170820 a001 20365011074/64079*73681302247^(5/13) 4807526977170820 a001 20365011074/64079*28143753123^(2/5) 4807526977170820 a001 6557470319842/64079*10749957122^(1/6) 4807526977170820 a001 4052739537881/64079*10749957122^(3/16) 4807526977170820 a001 2504730781961/64079*10749957122^(5/24) 4807526977170820 a001 956722026041/64079*10749957122^(1/4) 4807526977170820 a001 12586269025/64079*10749957122^(7/16) 4807526977170820 a001 365435296162/64079*10749957122^(7/24) 4807526977170820 a001 225851433717/64079*10749957122^(5/16) 4807526977170820 a001 139583862445/64079*10749957122^(1/3) 4807526977170820 a001 7778742049/64079*312119004989^(2/5) 4807526977170820 a001 7778742049/64079*(1/2+1/2*5^(1/2))^22 4807526977170820 a001 53316291173/64079*10749957122^(3/8) 4807526977170820 a001 20365011074/64079*10749957122^(5/12) 4807526977170820 a001 7778742049/64079*10749957122^(11/24) 4807526977170820 a001 6557470319842/64079*4106118243^(4/23) 4807526977170820 a001 2504730781961/64079*4106118243^(5/23) 4807526977170820 a001 956722026041/64079*4106118243^(6/23) 4807526977170820 a001 365435296162/64079*4106118243^(7/23) 4807526977170820 a001 139583862445/64079*4106118243^(8/23) 4807526977170820 a001 4807526976/64079*4106118243^(1/2) 4807526977170820 a001 2971215073/64079*45537549124^(8/17) 4807526977170820 a001 2971215073/64079*14662949395604^(8/21) 4807526977170820 a001 2971215073/64079*(1/2+1/2*5^(1/2))^24 4807526977170820 a001 2971215073/64079*192900153618^(4/9) 4807526977170820 a001 2971215073/64079*73681302247^(6/13) 4807526977170820 a001 53316291173/64079*4106118243^(9/23) 4807526977170820 a001 20365011074/64079*4106118243^(10/23) 4807526977170820 a001 2971215073/64079*10749957122^(1/2) 4807526977170820 a001 7778742049/64079*4106118243^(11/23) 4807526977170820 a001 2971215073/64079*4106118243^(12/23) 4807526977170820 a001 6557470319842/64079*1568397607^(2/11) 4807526977170820 a001 2504730781961/64079*1568397607^(5/22) 4807526977170820 a001 1548008755920/64079*1568397607^(1/4) 4807526977170820 a001 956722026041/64079*1568397607^(3/11) 4807526977170820 a001 365435296162/64079*1568397607^(7/22) 4807526977170820 a001 139583862445/64079*1568397607^(4/11) 4807526977170820 a001 1134903170/64079*(1/2+1/2*5^(1/2))^26 4807526977170820 a001 1134903170/64079*73681302247^(1/2) 4807526977170820 a001 1134903170/64079*10749957122^(13/24) 4807526977170820 a001 53316291173/64079*1568397607^(9/22) 4807526977170820 a001 20365011074/64079*1568397607^(5/11) 4807526977170820 a001 1134903170/64079*4106118243^(13/23) 4807526977170820 a001 7778742049/64079*1568397607^(1/2) 4807526977170820 a001 2971215073/64079*1568397607^(6/11) 4807526977170820 a001 1134903170/64079*1568397607^(13/22) 4807526977170820 a001 10610209857723/64079*599074578^(1/6) 4807526977170820 a001 6557470319842/64079*599074578^(4/21) 4807526977170820 a001 4052739537881/64079*599074578^(3/14) 4807526977170820 a001 2504730781961/64079*599074578^(5/21) 4807526977170820 a001 956722026041/64079*599074578^(2/7) 4807526977170820 a001 365435296162/64079*599074578^(1/3) 4807526977170820 a001 225851433717/64079*599074578^(5/14) 4807526977170820 a001 139583862445/64079*599074578^(8/21) 4807526977170820 a001 433494437/64079*17393796001^(4/7) 4807526977170820 a001 433494437/64079*14662949395604^(4/9) 4807526977170820 a001 433494437/64079*(1/2+1/2*5^(1/2))^28 4807526977170820 a001 433494437/64079*73681302247^(7/13) 4807526977170820 a001 433494437/64079*10749957122^(7/12) 4807526977170820 a001 433494437/64079*4106118243^(14/23) 4807526977170820 a001 53316291173/64079*599074578^(3/7) 4807526977170820 a001 433494437/64079*1568397607^(7/11) 4807526977170820 a001 20365011074/64079*599074578^(10/21) 4807526977170820 a001 701408733/64079*599074578^(9/14) 4807526977170820 a001 12586269025/64079*599074578^(1/2) 4807526977170820 a001 7778742049/64079*599074578^(11/21) 4807526977170820 a001 2971215073/64079*599074578^(4/7) 4807526977170820 a001 1134903170/64079*599074578^(13/21) 4807526977170820 a001 433494437/64079*599074578^(2/3) 4807526977170820 a001 6557470319842/64079*228826127^(1/5) 4807526977170820 a001 2504730781961/64079*228826127^(1/4) 4807526977170820 a001 956722026041/64079*228826127^(3/10) 4807526977170820 a001 365435296162/64079*228826127^(7/20) 4807526977170820 a001 225851433717/64079*228826127^(3/8) 4807526977170820 a001 165580141/64079*2537720636^(2/3) 4807526977170820 a001 165580141/64079*45537549124^(10/17) 4807526977170820 a001 165580141/64079*312119004989^(6/11) 4807526977170820 a001 165580141/64079*14662949395604^(10/21) 4807526977170820 a001 165580141/64079*(1/2+1/2*5^(1/2))^30 4807526977170820 a001 165580141/64079*192900153618^(5/9) 4807526977170820 a001 165580141/64079*28143753123^(3/5) 4807526977170820 a001 165580141/64079*10749957122^(5/8) 4807526977170820 a001 165580141/64079*4106118243^(15/23) 4807526977170820 a001 165580141/64079*1568397607^(15/22) 4807526977170820 a001 139583862445/64079*228826127^(2/5) 4807526977170820 a001 53316291173/64079*228826127^(9/20) 4807526977170820 a001 165580141/64079*599074578^(5/7) 4807526977170820 a001 20365011074/64079*228826127^(1/2) 4807526977170820 a001 7778742049/64079*228826127^(11/20) 4807526977170820 a001 2971215073/64079*228826127^(3/5) 4807526977170820 a001 28657*228826127^(5/8) 4807526977170820 a001 1134903170/64079*228826127^(13/20) 4807526977170820 a001 433494437/64079*228826127^(7/10) 4807526977170820 a001 165580141/64079*228826127^(3/4) 4807526977170820 a001 6557470319842/64079*87403803^(4/19) 4807526977170820 a001 2504730781961/64079*87403803^(5/19) 4807526977170820 a001 956722026041/64079*87403803^(6/19) 4807526977170820 a001 365435296162/64079*87403803^(7/19) 4807526977170820 a001 63245986/64079*(1/2+1/2*5^(1/2))^32 4807526977170820 a001 63245986/64079*23725150497407^(1/2) 4807526977170820 a001 63245986/64079*505019158607^(4/7) 4807526977170820 a001 63245986/64079*73681302247^(8/13) 4807526977170820 a001 63245986/64079*10749957122^(2/3) 4807526977170820 a001 63245986/64079*4106118243^(16/23) 4807526977170820 a001 63245986/64079*1568397607^(8/11) 4807526977170820 a001 63245986/64079*599074578^(16/21) 4807526977170820 a001 139583862445/64079*87403803^(8/19) 4807526977170820 a001 53316291173/64079*87403803^(9/19) 4807526977170820 a001 63245986/64079*228826127^(4/5) 4807526977170820 a001 32951280099/64079*87403803^(1/2) 4807526977170820 a001 20365011074/64079*87403803^(10/19) 4807526977170820 a001 7778742049/64079*87403803^(11/19) 4807526977170820 a001 2971215073/64079*87403803^(12/19) 4807526977170820 a001 1134903170/64079*87403803^(13/19) 4807526977170820 a001 433494437/64079*87403803^(14/19) 4807526977170820 a001 165580141/64079*87403803^(15/19) 4807526977170821 a001 187917426955712194/39088169 4807526977170821 a001 63245986/64079*87403803^(16/19) 4807526977170821 a001 6557470319842/64079*33385282^(2/9) 4807526977170821 a001 4052739537881/64079*33385282^(1/4) 4807526977170821 a001 2504730781961/64079*33385282^(5/18) 4807526977170821 a001 956722026041/64079*33385282^(1/3) 4807526977170822 a001 24157817/64079*45537549124^(2/3) 4807526977170822 a001 24157817/64079*(1/2+1/2*5^(1/2))^34 4807526977170822 a001 24157817/64079*10749957122^(17/24) 4807526977170822 a001 24157817/64079*4106118243^(17/23) 4807526977170822 a001 24157817/64079*1568397607^(17/22) 4807526977170822 a001 24157817/64079*599074578^(17/21) 4807526977170822 a001 365435296162/64079*33385282^(7/18) 4807526977170822 a001 24157817/64079*228826127^(17/20) 4807526977170822 a001 225851433717/64079*33385282^(5/12) 4807526977170822 a001 139583862445/64079*33385282^(4/9) 4807526977170822 a001 53316291173/64079*33385282^(1/2) 4807526977170822 a001 24157817/64079*87403803^(17/19) 4807526977170822 a001 20365011074/64079*33385282^(5/9) 4807526977170822 a001 12586269025/64079*33385282^(7/12) 4807526977170823 a001 7778742049/64079*33385282^(11/18) 4807526977170823 a001 2971215073/64079*33385282^(2/3) 4807526977170823 a001 1134903170/64079*33385282^(13/18) 4807526977170823 a001 701408733/64079*33385282^(3/4) 4807526977170823 a001 39088169/64079*33385282^(11/12) 4807526977170823 a001 433494437/64079*33385282^(7/9) 4807526977170824 a001 165580141/64079*33385282^(5/6) 4807526977170824 a001 63245986/64079*33385282^(8/9) 4807526977170824 a001 71778070018656377/14930352 4807526977170826 a001 24157817/64079*33385282^(17/18) 4807526977170827 a001 6557470319842/64079*12752043^(4/17) 4807526977170829 a001 2504730781961/64079*12752043^(5/17) 4807526977170830 a001 956722026041/64079*12752043^(6/17) 4807526977170831 a001 9227465/64079*141422324^(12/13) 4807526977170831 a001 9227465/64079*2537720636^(4/5) 4807526977170831 a001 28657/20633239*14662949395604^(20/21) 4807526977170831 a001 28657/20633239*(1/2+1/2*5^(1/2))^60 4807526977170831 a001 9227465/64079*45537549124^(12/17) 4807526977170831 a001 9227465/64079*14662949395604^(4/7) 4807526977170831 a001 9227465/64079*(1/2+1/2*5^(1/2))^36 4807526977170831 a001 9227465/64079*505019158607^(9/14) 4807526977170831 a001 9227465/64079*192900153618^(2/3) 4807526977170831 a001 9227465/64079*73681302247^(9/13) 4807526977170831 a001 9227465/64079*10749957122^(3/4) 4807526977170831 a001 9227465/64079*4106118243^(18/23) 4807526977170831 a001 9227465/64079*1568397607^(9/11) 4807526977170831 a001 9227465/64079*599074578^(6/7) 4807526977170831 a001 9227465/64079*228826127^(9/10) 4807526977170832 a001 9227465/64079*87403803^(18/19) 4807526977170832 a001 365435296162/64079*12752043^(7/17) 4807526977170834 a001 139583862445/64079*12752043^(8/17) 4807526977170835 a001 86267571272/64079*12752043^(1/2) 4807526977170836 a001 53316291173/64079*12752043^(9/17) 4807526977170837 a001 20365011074/64079*12752043^(10/17) 4807526977170839 a001 7778742049/64079*12752043^(11/17) 4807526977170841 a001 2971215073/64079*12752043^(12/17) 4807526977170843 a001 1134903170/64079*12752043^(13/17) 4807526977170844 a001 433494437/64079*12752043^(14/17) 4807526977170846 a001 165580141/64079*12752043^(15/17) 4807526977170848 a001 63245986/64079*12752043^(16/17) 4807526977170849 a001 27416783100256937/5702887 4807526977170871 a001 6557470319842/64079*4870847^(1/4) 4807526977170883 a001 2504730781961/64079*4870847^(5/16) 4807526977170896 a001 956722026041/64079*4870847^(3/8) 4807526977170897 a001 28657/7881196*(1/2+1/2*5^(1/2))^58 4807526977170897 a001 3524578/64079*817138163596^(2/3) 4807526977170897 a001 3524578/64079*(1/2+1/2*5^(1/2))^38 4807526977170897 a001 3524578/64079*10749957122^(19/24) 4807526977170897 a001 3524578/64079*4106118243^(19/23) 4807526977170897 a001 3524578/64079*1568397607^(19/22) 4807526977170897 a001 3524578/64079*599074578^(19/21) 4807526977170897 a001 3524578/64079*228826127^(19/20) 4807526977170909 a001 365435296162/64079*4870847^(7/16) 4807526977170921 a001 139583862445/64079*4870847^(1/2) 4807526977170934 a001 53316291173/64079*4870847^(9/16) 4807526977170947 a001 20365011074/64079*4870847^(5/8) 4807526977170959 a001 7778742049/64079*4870847^(11/16) 4807526977170972 a001 2971215073/64079*4870847^(3/4) 4807526977170985 a001 1134903170/64079*4870847^(13/16) 4807526977170997 a001 433494437/64079*4870847^(7/8) 4807526977171010 a001 165580141/64079*4870847^(15/16) 4807526977171023 a001 10472279282114434/2178309 4807526977171190 a001 6557470319842/64079*1860498^(4/15) 4807526977171237 a001 4052739537881/64079*1860498^(3/10) 4807526977171283 a001 2504730781961/64079*1860498^(1/3) 4807526977171350 a001 1346269/64079*2537720636^(8/9) 4807526977171350 a001 28657/3010349*14662949395604^(8/9) 4807526977171350 a001 28657/3010349*(1/2+1/2*5^(1/2))^56 4807526977171350 a001 1346269/64079*312119004989^(8/11) 4807526977171350 a001 1346269/64079*(1/2+1/2*5^(1/2))^40 4807526977171350 a001 1346269/64079*23725150497407^(5/8) 4807526977171350 a001 1346269/64079*73681302247^(10/13) 4807526977171350 a001 1346269/64079*28143753123^(4/5) 4807526977171350 a001 1346269/64079*10749957122^(5/6) 4807526977171350 a001 1346269/64079*4106118243^(20/23) 4807526977171350 a001 1346269/64079*1568397607^(10/11) 4807526977171350 a001 1346269/64079*599074578^(20/21) 4807526977171375 a001 956722026041/64079*1860498^(2/5) 4807526977171468 a001 365435296162/64079*1860498^(7/15) 4807526977171514 a001 225851433717/64079*1860498^(1/2) 4807526977171561 a001 139583862445/64079*1860498^(8/15) 4807526977171653 a001 53316291173/64079*1860498^(3/5) 4807526977171746 a001 20365011074/64079*1860498^(2/3) 4807526977171792 a001 12586269025/64079*1860498^(7/10) 4807526977171838 a001 7778742049/64079*1860498^(11/15) 4807526977171931 a001 2971215073/64079*1860498^(4/5) 4807526977171977 a001 28657*1860498^(5/6) 4807526977172024 a001 1134903170/64079*1860498^(13/15) 4807526977172070 a001 701408733/64079*1860498^(9/10) 4807526977172116 a001 433494437/64079*1860498^(14/15) 4807526977172209 a001 800010949217273/166408 4807526977173200 a001 10610209857723/64079*710647^(1/4) 4807526977173540 a001 6557470319842/64079*710647^(2/7) 4807526977174220 a001 2504730781961/64079*710647^(5/14) 4807526977174456 a001 514229/64079*2537720636^(14/15) 4807526977174456 a001 28657/1149851*14662949395604^(6/7) 4807526977174456 a001 28657/1149851*(1/2+1/2*5^(1/2))^54 4807526977174456 a001 514229/64079*17393796001^(6/7) 4807526977174456 a001 514229/64079*45537549124^(14/17) 4807526977174456 a001 514229/64079*817138163596^(14/19) 4807526977174456 a001 514229/64079*14662949395604^(2/3) 4807526977174456 a001 514229/64079*(1/2+1/2*5^(1/2))^42 4807526977174456 a001 514229/64079*505019158607^(3/4) 4807526977174456 a001 514229/64079*192900153618^(7/9) 4807526977174456 a001 514229/64079*10749957122^(7/8) 4807526977174456 a001 514229/64079*4106118243^(21/23) 4807526977174456 a001 514229/64079*1568397607^(21/22) 4807526977174900 a001 956722026041/64079*710647^(3/7) 4807526977175580 a001 365435296162/64079*710647^(1/2) 4807526977176260 a001 139583862445/64079*710647^(4/7) 4807526977176940 a001 53316291173/64079*710647^(9/14) 4807526977177620 a001 20365011074/64079*710647^(5/7) 4807526977177960 a001 12586269025/64079*710647^(3/4) 4807526977178299 a001 7778742049/64079*710647^(11/14) 4807526977178979 a001 2971215073/64079*710647^(6/7) 4807526977179659 a001 1134903170/64079*710647^(13/14) 4807526977180339 a001 1527884956144661/317811 4807526977190896 a001 6557470319842/64079*271443^(4/13) 4807526977195742 a001 28657/439204*(1/2+1/2*5^(1/2))^52 4807526977195742 a001 28657/439204*23725150497407^(13/16) 4807526977195742 a001 28657/439204*505019158607^(13/14) 4807526977195742 a001 196418/64079*312119004989^(4/5) 4807526977195742 a001 196418/64079*(1/2+1/2*5^(1/2))^44 4807526977195742 a001 196418/64079*23725150497407^(11/16) 4807526977195742 a001 196418/64079*73681302247^(11/13) 4807526977195742 a001 196418/64079*10749957122^(11/12) 4807526977195742 a001 196418/64079*4106118243^(22/23) 4807526977195915 a001 2504730781961/64079*271443^(5/13) 4807526977200934 a001 956722026041/64079*271443^(6/13) 4807526977203444 a001 591286729879/64079*271443^(1/2) 4807526977205953 a001 365435296162/64079*271443^(7/13) 4807526977210972 a001 139583862445/64079*271443^(8/13) 4807526977215991 a001 53316291173/64079*271443^(9/13) 4807526977221010 a001 20365011074/64079*271443^(10/13) 4807526977224739 a001 774004377960/51841*39603^(6/11) 4807526977226029 a001 7778742049/64079*271443^(11/13) 4807526977231048 a001 2971215073/64079*271443^(12/13) 4807526977236067 a001 583600122347618/121393 4807526977301257 a001 10610209857723/64079*103682^(7/24) 4807526977319891 a001 6557470319842/64079*103682^(1/3) 4807526977328046 a001 3536736619241/90481*39603^(5/11) 4807526977338525 a001 4052739537881/64079*103682^(3/8) 4807526977341640 a001 28657/167761*312119004989^(10/11) 4807526977341640 a001 28657/167761*(1/2+1/2*5^(1/2))^50 4807526977341640 a001 28657/167761*3461452808002^(5/6) 4807526977341640 a001 75025/64079*(1/2+1/2*5^(1/2))^46 4807526977341640 a001 75025/64079*10749957122^(23/24) 4807526977357159 a001 2504730781961/64079*103682^(5/12) 4807526977364069 a001 956722026041/103682*39603^(13/22) 4807526977375793 a001 1548008755920/64079*103682^(11/24) 4807526977394427 a001 956722026041/64079*103682^(1/2) 4807526977413061 a001 591286729879/64079*103682^(13/24) 4807526977424785 a001 10610209857723/167761*39603^(9/22) 4807526977431694 a001 365435296162/64079*103682^(7/12) 4807526977450328 a001 225851433717/64079*103682^(5/8) 4807526977467376 a001 6557470319842/271443*39603^(1/2) 4807526977468962 a001 139583862445/64079*103682^(2/3) 4807526977487596 a001 86267571272/64079*103682^(17/24) 4807526977503398 a001 591286729879/103682*39603^(7/11) 4807526977506230 a001 53316291173/64079*103682^(3/4) 4807526977524864 a001 32951280099/64079*103682^(19/24) 4807526977528556 a001 32951280099/24476*24476^(17/21) 4807526977543498 a001 20365011074/64079*103682^(5/6) 4807526977557546 a001 10610209857723/439204*39603^(1/2) 4807526977562132 a001 12586269025/64079*103682^(7/8) 4807526977564114 a001 6557470319842/167761*39603^(5/11) 4807526977580766 a001 7778742049/64079*103682^(11/12) 4807526977599400 a001 4807526976/64079*103682^(23/24) 4807526977606705 a001 4052739537881/271443*39603^(6/11) 4807526977618033 a001 222915410898193/46368 4807526977642727 a001 182717648081/51841*39603^(15/22) 4807526977662433 a001 1515744265389/101521*39603^(6/11) 4807526977696875 a001 3278735159921/219602*39603^(6/11) 4807526977703444 a001 4052739537881/167761*39603^(1/2) 4807526977746035 a001 2504730781961/271443*39603^(13/22) 4807526977782057 a001 225851433717/103682*39603^(8/11) 4807526977801763 a001 6557470319842/710647*39603^(13/22) 4807526977814918 a001 10610209857723/1149851*39603^(13/22) 4807526977836205 a001 4052739537881/439204*39603^(13/22) 4807526977842773 a001 2504730781961/167761*39603^(6/11) 4807526977885364 a001 516002918640/90481*39603^(7/11) 4807526977910695 a001 53316291173/24476*24476^(16/21) 4807526977921386 a001 139583862445/103682*39603^(17/22) 4807526977941092 a001 4052739537881/710647*39603^(7/11) 4807526977949223 a001 3536736619241/620166*39603^(7/11) 4807526977954248 a001 6557470319842/1149851*39603^(7/11) 4807526977975534 a001 2504730781961/439204*39603^(7/11) 4807526977982103 a001 140728068720/15251*39603^(13/22) 4807526978024693 a001 956722026041/271443*39603^(15/22) 4807526978060716 a001 43133785636/51841*39603^(9/11) 4807526978080422 a001 2504730781961/710647*39603^(15/22) 4807526978088552 a001 3278735159921/930249*39603^(15/22) 4807526978090472 a001 10610209857723/3010349*39603^(15/22) 4807526978093577 a001 4052739537881/1149851*39603^(15/22) 4807526978114863 a001 387002188980/109801*39603^(15/22) 4807526978121432 a001 956722026041/167761*39603^(7/11) 4807526978146126 a001 10610209857723/64079*39603^(7/22) 4807526978164023 a001 591286729879/271443*39603^(8/11) 4807526978200045 a001 53316291173/103682*39603^(19/22) 4807526978219751 a001 1548008755920/710647*39603^(8/11) 4807526978227882 a001 4052739537881/1860498*39603^(8/11) 4807526978229068 a001 2178309*39603^(8/11) 4807526978229801 a001 6557470319842/3010349*39603^(8/11) 4807526978232907 a001 2504730781961/1149851*39603^(8/11) 4807526978254193 a001 956722026041/439204*39603^(8/11) 4807526978260761 a001 591286729879/167761*39603^(15/22) 4807526978285455 a001 6557470319842/64079*39603^(4/11) 4807526978292834 a001 21566892818/6119*24476^(5/7) 4807526978303352 a001 365435296162/271443*39603^(17/22) 4807526978339375 a001 32951280099/103682*39603^(10/11) 4807526978341640 a001 28657/64079*45537549124^(16/17) 4807526978341640 a001 28657/64079*14662949395604^(16/21) 4807526978341640 a001 28657/64079*(1/2+1/2*5^(1/2))^48 4807526978341640 a001 28657/64079*192900153618^(8/9) 4807526978341640 a001 28657/64079*73681302247^(12/13) 4807526978359080 a001 956722026041/710647*39603^(17/22) 4807526978367211 a001 2504730781961/1860498*39603^(17/22) 4807526978368397 a001 6557470319842/4870847*39603^(17/22) 4807526978368677 a001 10610209857723/7881196*39603^(17/22) 4807526978369130 a001 1346269*39603^(17/22) 4807526978372236 a001 1548008755920/1149851*39603^(17/22) 4807526978393522 a001 591286729879/439204*39603^(17/22) 4807526978400091 a001 365435296162/167761*39603^(8/11) 4807526978424785 a001 4052739537881/64079*39603^(9/22) 4807526978442682 a001 75283811239/90481*39603^(9/11) 4807526978478704 a001 10182505537/51841*39603^(21/22) 4807526978498410 a001 591286729879/710647*39603^(9/11) 4807526978506540 a001 832040*39603^(9/11) 4807526978507727 a001 4052739537881/4870847*39603^(9/11) 4807526978507900 a001 3536736619241/4250681*39603^(9/11) 4807526978508007 a001 3278735159921/3940598*39603^(9/11) 4807526978508460 a001 2504730781961/3010349*39603^(9/11) 4807526978511565 a001 956722026041/1149851*39603^(9/11) 4807526978532852 a001 182717648081/219602*39603^(9/11) 4807526978539420 a001 225851433717/167761*39603^(17/22) 4807526978564114 a001 2504730781961/64079*39603^(5/11) 4807526978582011 a001 139583862445/271443*39603^(19/22) 4807526978618033 a001 85146110318304/17711 4807526978637739 a001 365435296162/710647*39603^(19/22) 4807526978645870 a001 956722026041/1860498*39603^(19/22) 4807526978647056 a001 2504730781961/4870847*39603^(19/22) 4807526978647229 a001 6557470319842/12752043*39603^(19/22) 4807526978647270 a001 10610209857723/20633239*39603^(19/22) 4807526978647336 a001 4052739537881/7881196*39603^(19/22) 4807526978647789 a001 1548008755920/3010349*39603^(19/22) 4807526978650895 a001 514229*39603^(19/22) 4807526978672181 a001 225851433717/439204*39603^(19/22) 4807526978674974 a001 139583862445/24476*24476^(2/3) 4807526978678750 a001 139583862445/167761*39603^(9/11) 4807526978703444 a001 1548008755920/64079*39603^(1/2) 4807526978721341 a001 86267571272/271443*39603^(10/11) 4807526978777069 a001 317811*39603^(10/11) 4807526978785199 a001 591286729879/1860498*39603^(10/11) 4807526978786386 a001 1548008755920/4870847*39603^(10/11) 4807526978786559 a001 4052739537881/12752043*39603^(10/11) 4807526978786584 a001 1515744265389/4769326*39603^(10/11) 4807526978786600 a001 6557470319842/20633239*39603^(10/11) 4807526978786666 a001 2504730781961/7881196*39603^(10/11) 4807526978787119 a001 956722026041/3010349*39603^(10/11) 4807526978790224 a001 365435296162/1149851*39603^(10/11) 4807526978811511 a001 139583862445/439204*39603^(10/11) 4807526978818079 a001 86267571272/167761*39603^(19/22) 4807526978842773 a001 956722026041/64079*39603^(6/11) 4807526978860670 a001 53316291173/271443*39603^(21/22) 4807526978894928 a001 7778742049/9349*9349^(18/19) 4807526978916398 a001 139583862445/710647*39603^(21/22) 4807526978924529 a001 182717648081/930249*39603^(21/22) 4807526978925715 a001 956722026041/4870847*39603^(21/22) 4807526978925888 a001 2504730781961/12752043*39603^(21/22) 4807526978925913 a001 3278735159921/16692641*39603^(21/22) 4807526978925919 a001 10610209857723/54018521*39603^(21/22) 4807526978925929 a001 4052739537881/20633239*39603^(21/22) 4807526978925995 a001 387002188980/1970299*39603^(21/22) 4807526978926448 a001 591286729879/3010349*39603^(21/22) 4807526978929554 a001 225851433717/1149851*39603^(21/22) 4807526978950840 a001 196418*39603^(21/22) 4807526978957409 a001 53316291173/167761*39603^(10/11) 4807526978982103 a001 591286729879/64079*39603^(13/22) 4807526979055728 a001 85146110326056/17711 4807526979057113 a001 7787980473/844*24476^(13/21) 4807526979063858 a001 85146110326200/17711 4807526979065044 a001 85146110326221/17711 4807526979065213 a001 85146110326224/17711 4807526979065270 a001 85146110326225/17711 4807526979065326 a001 956697868834/199 4807526979065778 a001 85146110326234/17711 4807526979068883 a001 85146110326289/17711 4807526979090169 a001 85146110326666/17711 4807526979096738 a001 32951280099/167761*39603^(21/22) 4807526979121432 a001 365435296162/64079*39603^(7/11) 4807526979236067 a001 85146110329250/17711 4807526979237608 a001 3536736619241/13201*15127^(3/10) 4807526979260761 a001 225851433717/64079*39603^(15/22) 4807526979400091 a001 139583862445/64079*39603^(8/11) 4807526979439252 a001 182717648081/12238*24476^(4/7) 4807526979539420 a001 86267571272/64079*39603^(17/22) 4807526979678750 a001 53316291173/64079*39603^(9/11) 4807526979818079 a001 32951280099/64079*39603^(19/22) 4807526979821391 a001 591286729879/24476*24476^(11/21) 4807526979957409 a001 20365011074/64079*39603^(10/11) 4807526980096738 a001 12586269025/64079*39603^(21/22) 4807526980203530 a001 956722026041/24476*24476^(10/21) 4807526980236067 a001 85146110346961/17711 4807526980288084 a001 6557470319842/39603*15127^(7/20) 4807526980585669 a001 387002188980/6119*24476^(3/7) 4807526980959674 a001 10946/39603*14662949395604^(7/9) 4807526980959674 a001 10946/39603*(1/2+1/2*5^(1/2))^49 4807526980959674 a001 10946/39603*505019158607^(7/8) 4807526980959674 a001 17711/24476*(1/2+1/2*5^(1/2))^47 4807526980967809 a001 2504730781961/24476*24476^(8/21) 4807526981338560 a001 4052739537881/39603*15127^(2/5) 4807526981349948 a001 4052739537881/24476*24476^(1/3) 4807526981368746 m001 Bloch/(Artin-FeigenbaumKappa) 4807526981732087 a001 3278735159921/12238*24476^(2/7) 4807526981789856 a001 12586269025/9349*9349^(17/19) 4807526982086825 h001 (3/11*exp(1)+5/7)/(2/7*exp(2)+11/12) 4807526982114226 a001 10610209857723/24476*24476^(5/21) 4807526982389036 a001 2504730781961/39603*15127^(9/20) 4807526982854101 a001 137769300747650/28657 4807526982905007 a001 2971215073/24476*64079^(22/23) 4807526982955912 a001 1201881744/6119*64079^(21/23) 4807526983006817 a001 7778742049/24476*64079^(20/23) 4807526983057722 a001 12586269025/24476*64079^(19/23) 4807526983108628 a001 10182505537/12238*64079^(18/23) 4807526983159533 a001 32951280099/24476*64079^(17/23) 4807526983210438 a001 53316291173/24476*64079^(16/23) 4807526983261343 a001 21566892818/6119*64079^(15/23) 4807526983312249 a001 139583862445/24476*64079^(14/23) 4807526983363154 a001 7787980473/844*64079^(13/23) 4807526983414059 a001 182717648081/12238*64079^(12/23) 4807526983439512 a001 516002918640/13201*15127^(1/2) 4807526983464964 a001 591286729879/24476*64079^(11/23) 4807526983515870 a001 956722026041/24476*64079^(10/23) 4807526983566775 a001 387002188980/6119*64079^(9/23) 4807526983577708 a001 5473/51841*817138163596^(17/19) 4807526983577708 a001 5473/51841*14662949395604^(17/21) 4807526983577708 a001 5473/51841*(1/2+1/2*5^(1/2))^51 4807526983577708 a001 5473/51841*192900153618^(17/18) 4807526983577708 a001 11592/6119*45537549124^(15/17) 4807526983577708 a001 11592/6119*312119004989^(9/11) 4807526983577708 a001 11592/6119*14662949395604^(5/7) 4807526983577708 a001 11592/6119*(1/2+1/2*5^(1/2))^45 4807526983577708 a001 11592/6119*192900153618^(5/6) 4807526983577708 a001 11592/6119*28143753123^(9/10) 4807526983577708 a001 11592/6119*10749957122^(15/16) 4807526983617680 a001 2504730781961/24476*64079^(8/23) 4807526983668585 a001 4052739537881/24476*64079^(7/23) 4807526983719490 a001 3278735159921/12238*64079^(6/23) 4807526983770396 a001 10610209857723/24476*64079^(5/23) 4807526983854101 a001 360684711963654/75025 4807526983888266 a001 7778742049/24476*167761^(4/5) 4807526983922430 a001 21566892818/6119*167761^(3/5) 4807526983956594 a001 225749145909/2206*15127^(2/5) 4807526983956594 a001 956722026041/24476*167761^(2/5) 4807526983959674 a001 10946/271443*(1/2+1/2*5^(1/2))^53 4807526983959674 a001 121393/24476*(1/2+1/2*5^(1/2))^43 4807526983990758 a001 10610209857723/24476*167761^(1/5) 4807526984002769 a001 567451585/12238*439204^(8/9) 4807526984005538 a001 1201881744/6119*439204^(7/9) 4807526984008307 a001 10182505537/12238*439204^(2/3) 4807526984011076 a001 21566892818/6119*439204^(5/9) 4807526984013845 a001 182717648081/12238*439204^(4/9) 4807526984015402 a001 10946/710647*(1/2+1/2*5^(1/2))^55 4807526984015402 a001 10946/710647*3461452808002^(11/12) 4807526984015402 a001 10959/844*(1/2+1/2*5^(1/2))^41 4807526984016614 a001 387002188980/6119*439204^(1/3) 4807526984019384 a001 3278735159921/12238*439204^(2/9) 4807526984021286 a001 2472169793466282/514229 4807526984023533 a001 5473/930249*14662949395604^(19/21) 4807526984023533 a001 5473/930249*(1/2+1/2*5^(1/2))^57 4807526984023533 a001 208010/6119*2537720636^(13/15) 4807526984023533 a001 208010/6119*45537549124^(13/17) 4807526984023533 a001 208010/6119*14662949395604^(13/21) 4807526984023533 a001 208010/6119*(1/2+1/2*5^(1/2))^39 4807526984023533 a001 208010/6119*192900153618^(13/18) 4807526984023533 a001 208010/6119*73681302247^(3/4) 4807526984023533 a001 208010/6119*10749957122^(13/16) 4807526984023533 a001 208010/6119*599074578^(13/14) 4807526984024391 a001 6472224545255534/1346269 4807526984024719 a001 10946/4870847*(1/2+1/2*5^(1/2))^59 4807526984024719 a001 2178309/24476*(1/2+1/2*5^(1/2))^37 4807526984024844 a001 8472251921150160/1762289 4807526984024852 a001 31622993/12238*7881196^(10/11) 4807526984024859 a001 10946*7881196^(9/11) 4807526984024866 a001 567451585/12238*7881196^(8/11) 4807526984024870 a001 2971215073/24476*7881196^(2/3) 4807526984024873 a001 1201881744/6119*7881196^(7/11) 4807526984024880 a001 10182505537/12238*7881196^(6/11) 4807526984024887 a001 21566892818/6119*7881196^(5/11) 4807526984024892 a001 10946/12752043*(1/2+1/2*5^(1/2))^61 4807526984024892 a001 5702887/24476*2537720636^(7/9) 4807526984024892 a001 5702887/24476*17393796001^(5/7) 4807526984024892 a001 5702887/24476*312119004989^(7/11) 4807526984024892 a001 5702887/24476*14662949395604^(5/9) 4807526984024892 a001 5702887/24476*(1/2+1/2*5^(1/2))^35 4807526984024892 a001 5702887/24476*505019158607^(5/8) 4807526984024892 a001 5702887/24476*28143753123^(7/10) 4807526984024892 a001 5702887/24476*599074578^(5/6) 4807526984024892 a001 5702887/24476*228826127^(7/8) 4807526984024894 a001 182717648081/12238*7881196^(4/11) 4807526984024896 a001 591286729879/24476*7881196^(1/3) 4807526984024901 a001 387002188980/6119*7881196^(3/11) 4807526984024908 a001 3278735159921/12238*7881196^(2/11) 4807526984024911 a001 3412406690895802/709805 4807526984024912 a001 31622993/12238*20633239^(6/7) 4807526984024913 a001 165580141/24476*20633239^(4/5) 4807526984024914 a001 701408733/24476*20633239^(5/7) 4807526984024915 a001 1201881744/6119*20633239^(3/5) 4807526984024915 a001 7778742049/24476*20633239^(4/7) 4807526984024917 a001 21566892818/6119*20633239^(3/7) 4807526984024917 a001 139583862445/24476*20633239^(2/5) 4807526984024917 a001 3732588/6119*141422324^(11/13) 4807526984024918 a001 5473/16692641*(1/2+1/2*5^(1/2))^63 4807526984024918 a001 3732588/6119*2537720636^(11/15) 4807526984024918 a001 3732588/6119*45537549124^(11/17) 4807526984024918 a001 3732588/6119*312119004989^(3/5) 4807526984024918 a001 3732588/6119*817138163596^(11/19) 4807526984024918 a001 3732588/6119*14662949395604^(11/21) 4807526984024918 a001 3732588/6119*(1/2+1/2*5^(1/2))^33 4807526984024918 a001 3732588/6119*192900153618^(11/18) 4807526984024918 a001 3732588/6119*10749957122^(11/16) 4807526984024918 a001 3732588/6119*1568397607^(3/4) 4807526984024918 a001 3732588/6119*599074578^(11/14) 4807526984024919 a001 956722026041/24476*20633239^(2/7) 4807526984024920 a001 4052739537881/24476*20633239^(1/5) 4807526984024920 a001 116139357102635958/24157817 4807526984024920 a001 10610209857723/24476*20633239^(1/7) 4807526984024921 a001 39088169/24476*(1/2+1/2*5^(1/2))^31 4807526984024921 a001 39088169/24476*9062201101803^(1/2) 4807526984024922 a001 3732588/6119*33385282^(11/12) 4807526984024922 a001 10946*141422324^(9/13) 4807526984024922 a001 433494437/24476*141422324^(2/3) 4807526984024922 a001 567451585/12238*141422324^(8/13) 4807526984024922 a001 1201881744/6119*141422324^(7/13) 4807526984024922 a001 10182505537/12238*141422324^(6/13) 4807526984024922 a001 21566892818/6119*141422324^(5/13) 4807526984024922 a001 102334155/24476*(1/2+1/2*5^(1/2))^29 4807526984024922 a001 102334155/24476*1322157322203^(1/2) 4807526984024922 a001 7787980473/844*141422324^(1/3) 4807526984024922 a001 182717648081/12238*141422324^(4/13) 4807526984024922 a001 387002188980/6119*141422324^(3/13) 4807526984024922 a001 3278735159921/12238*141422324^(2/13) 4807526984024922 a001 10946*2537720636^(3/5) 4807526984024922 a001 10946*45537549124^(9/17) 4807526984024922 a001 10946*817138163596^(9/19) 4807526984024922 a001 10946*14662949395604^(3/7) 4807526984024922 a001 10946*(1/2+1/2*5^(1/2))^27 4807526984024922 a001 10946*192900153618^(1/2) 4807526984024922 a001 10946*10749957122^(9/16) 4807526984024922 a001 10946*599074578^(9/14) 4807526984024922 a001 701408733/24476*2537720636^(5/9) 4807526984024922 a001 701408733/24476*312119004989^(5/11) 4807526984024922 a001 701408733/24476*(1/2+1/2*5^(1/2))^25 4807526984024922 a001 701408733/24476*3461452808002^(5/12) 4807526984024922 a001 701408733/24476*28143753123^(1/2) 4807526984024922 a001 1201881744/6119*2537720636^(7/15) 4807526984024922 a001 7778742049/24476*2537720636^(4/9) 4807526984024922 a001 10182505537/12238*2537720636^(2/5) 4807526984024922 a001 1836311903/24476*(1/2+1/2*5^(1/2))^23 4807526984024922 a001 21566892818/6119*2537720636^(1/3) 4807526984024922 a001 182717648081/12238*2537720636^(4/15) 4807526984024922 a001 956722026041/24476*2537720636^(2/9) 4807526984024922 a001 387002188980/6119*2537720636^(1/5) 4807526984024922 a001 1836311903/24476*4106118243^(1/2) 4807526984024922 a001 3278735159921/12238*2537720636^(2/15) 4807526984024922 a001 10610209857723/24476*2537720636^(1/9) 4807526984024922 a001 1201881744/6119*17393796001^(3/7) 4807526984024922 a001 1201881744/6119*45537549124^(7/17) 4807526984024922 a001 1201881744/6119*14662949395604^(1/3) 4807526984024922 a001 1201881744/6119*(1/2+1/2*5^(1/2))^21 4807526984024922 a001 1201881744/6119*192900153618^(7/18) 4807526984024922 a001 1201881744/6119*10749957122^(7/16) 4807526984024922 a001 12586269025/24476*817138163596^(1/3) 4807526984024922 a001 12586269025/24476*(1/2+1/2*5^(1/2))^19 4807526984024922 a001 139583862445/24476*17393796001^(2/7) 4807526984024922 a001 4052739537881/24476*17393796001^(1/7) 4807526984024922 a001 32951280099/24476*45537549124^(1/3) 4807526984024922 a001 32951280099/24476*(1/2+1/2*5^(1/2))^17 4807526984024922 a001 21566892818/6119*45537549124^(5/17) 4807526984024922 a001 182717648081/12238*45537549124^(4/17) 4807526984024922 a001 387002188980/6119*45537549124^(3/17) 4807526984024922 a001 3278735159921/12238*45537549124^(2/17) 4807526984024922 a001 21566892818/6119*312119004989^(3/11) 4807526984024922 a001 21566892818/6119*14662949395604^(5/21) 4807526984024922 a001 21566892818/6119*(1/2+1/2*5^(1/2))^15 4807526984024922 a001 7787980473/844*(1/2+1/2*5^(1/2))^13 4807526984024922 a001 10610209857723/24476*312119004989^(1/11) 4807526984024922 a001 10610209857723/24476*(1/2+1/2*5^(1/2))^5 4807526984024922 a001 3278735159921/12238*(1/2+1/2*5^(1/2))^6 4807526984024922 a001 2504730781961/24476*(1/2+1/2*5^(1/2))^8 4807526984024922 a001 2504730781961/24476*23725150497407^(1/8) 4807526984024922 a001 956722026041/24476*(1/2+1/2*5^(1/2))^10 4807526984024922 a001 182717648081/12238*817138163596^(4/19) 4807526984024922 a001 182717648081/12238*14662949395604^(4/21) 4807526984024922 a001 182717648081/12238*192900153618^(2/9) 4807526984024922 a001 139583862445/24476*14662949395604^(2/9) 4807526984024922 a001 139583862445/24476*(1/2+1/2*5^(1/2))^14 4807526984024922 a001 139583862445/24476*505019158607^(1/4) 4807526984024922 a001 2504730781961/24476*73681302247^(2/13) 4807526984024922 a001 7787980473/844*73681302247^(1/4) 4807526984024922 a001 182717648081/12238*73681302247^(3/13) 4807526984024922 a001 53316291173/24476*23725150497407^(1/4) 4807526984024922 a001 10610209857723/24476*28143753123^(1/10) 4807526984024922 a001 53316291173/24476*73681302247^(4/13) 4807526984024922 a001 956722026041/24476*28143753123^(1/5) 4807526984024922 a001 10182505537/12238*45537549124^(6/17) 4807526984024922 a001 21566892818/6119*28143753123^(3/10) 4807526984024922 a001 10182505537/12238*14662949395604^(2/7) 4807526984024922 a001 10182505537/12238*(1/2+1/2*5^(1/2))^18 4807526984024922 a001 10182505537/12238*192900153618^(1/3) 4807526984024922 a001 3278735159921/12238*10749957122^(1/8) 4807526984024922 a001 2504730781961/24476*10749957122^(1/6) 4807526984024922 a001 387002188980/6119*10749957122^(3/16) 4807526984024922 a001 956722026041/24476*10749957122^(5/24) 4807526984024922 a001 182717648081/12238*10749957122^(1/4) 4807526984024922 a001 139583862445/24476*10749957122^(7/24) 4807526984024922 a001 21566892818/6119*10749957122^(5/16) 4807526984024922 a001 53316291173/24476*10749957122^(1/3) 4807526984024922 a001 7778742049/24476*(1/2+1/2*5^(1/2))^20 4807526984024922 a001 7778742049/24476*23725150497407^(5/16) 4807526984024922 a001 7778742049/24476*505019158607^(5/14) 4807526984024922 a001 7778742049/24476*73681302247^(5/13) 4807526984024922 a001 10182505537/12238*10749957122^(3/8) 4807526984024922 a001 7778742049/24476*28143753123^(2/5) 4807526984024922 a001 7778742049/24476*10749957122^(5/12) 4807526984024922 a001 3278735159921/12238*4106118243^(3/23) 4807526984024922 a001 2504730781961/24476*4106118243^(4/23) 4807526984024922 a001 956722026041/24476*4106118243^(5/23) 4807526984024922 a001 182717648081/12238*4106118243^(6/23) 4807526984024922 a001 139583862445/24476*4106118243^(7/23) 4807526984024922 a001 53316291173/24476*4106118243^(8/23) 4807526984024922 a001 2971215073/24476*312119004989^(2/5) 4807526984024922 a001 2971215073/24476*(1/2+1/2*5^(1/2))^22 4807526984024922 a001 10182505537/12238*4106118243^(9/23) 4807526984024922 a001 2971215073/24476*10749957122^(11/24) 4807526984024922 a001 7778742049/24476*4106118243^(10/23) 4807526984024922 a001 2971215073/24476*4106118243^(11/23) 4807526984024922 a001 3278735159921/12238*1568397607^(3/22) 4807526984024922 a001 567451585/12238*2537720636^(8/15) 4807526984024922 a001 2504730781961/24476*1568397607^(2/11) 4807526984024922 a001 956722026041/24476*1568397607^(5/22) 4807526984024922 a001 591286729879/24476*1568397607^(1/4) 4807526984024922 a001 182717648081/12238*1568397607^(3/11) 4807526984024922 a001 139583862445/24476*1568397607^(7/22) 4807526984024922 a001 53316291173/24476*1568397607^(4/11) 4807526984024922 a001 567451585/12238*45537549124^(8/17) 4807526984024922 a001 567451585/12238*14662949395604^(8/21) 4807526984024922 a001 567451585/12238*(1/2+1/2*5^(1/2))^24 4807526984024922 a001 567451585/12238*192900153618^(4/9) 4807526984024922 a001 567451585/12238*73681302247^(6/13) 4807526984024922 a001 567451585/12238*10749957122^(1/2) 4807526984024922 a001 10182505537/12238*1568397607^(9/22) 4807526984024922 a001 567451585/12238*4106118243^(12/23) 4807526984024922 a001 7778742049/24476*1568397607^(5/11) 4807526984024922 a001 2971215073/24476*1568397607^(1/2) 4807526984024922 a001 567451585/12238*1568397607^(6/11) 4807526984024922 a001 3278735159921/12238*599074578^(1/7) 4807526984024922 a001 4052739537881/24476*599074578^(1/6) 4807526984024922 a001 2504730781961/24476*599074578^(4/21) 4807526984024922 a001 387002188980/6119*599074578^(3/14) 4807526984024922 a001 956722026041/24476*599074578^(5/21) 4807526984024922 a001 182717648081/12238*599074578^(2/7) 4807526984024922 a001 139583862445/24476*599074578^(1/3) 4807526984024922 a001 21566892818/6119*599074578^(5/14) 4807526984024922 a001 53316291173/24476*599074578^(8/21) 4807526984024922 a001 433494437/24476*(1/2+1/2*5^(1/2))^26 4807526984024922 a001 433494437/24476*73681302247^(1/2) 4807526984024922 a001 433494437/24476*10749957122^(13/24) 4807526984024922 a001 433494437/24476*4106118243^(13/23) 4807526984024922 a001 10182505537/12238*599074578^(3/7) 4807526984024922 a001 433494437/24476*1568397607^(13/22) 4807526984024922 a001 7778742049/24476*599074578^(10/21) 4807526984024922 a001 1201881744/6119*599074578^(1/2) 4807526984024922 a001 2971215073/24476*599074578^(11/21) 4807526984024922 a001 567451585/12238*599074578^(4/7) 4807526984024922 a001 10610209857723/24476*228826127^(1/8) 4807526984024922 a001 433494437/24476*599074578^(13/21) 4807526984024922 a001 3278735159921/12238*228826127^(3/20) 4807526984024922 a001 2504730781961/24476*228826127^(1/5) 4807526984024922 a001 956722026041/24476*228826127^(1/4) 4807526984024922 a001 182717648081/12238*228826127^(3/10) 4807526984024922 a001 139583862445/24476*228826127^(7/20) 4807526984024922 a001 21566892818/6119*228826127^(3/8) 4807526984024922 a001 165580141/24476*17393796001^(4/7) 4807526984024922 a001 165580141/24476*14662949395604^(4/9) 4807526984024922 a001 165580141/24476*(1/2+1/2*5^(1/2))^28 4807526984024922 a001 165580141/24476*505019158607^(1/2) 4807526984024922 a001 165580141/24476*73681302247^(7/13) 4807526984024922 a001 165580141/24476*10749957122^(7/12) 4807526984024922 a001 165580141/24476*4106118243^(14/23) 4807526984024922 a001 165580141/24476*1568397607^(7/11) 4807526984024922 a001 53316291173/24476*228826127^(2/5) 4807526984024922 a001 10182505537/12238*228826127^(9/20) 4807526984024922 a001 165580141/24476*599074578^(2/3) 4807526984024922 a001 7778742049/24476*228826127^(1/2) 4807526984024922 a001 2971215073/24476*228826127^(11/20) 4807526984024922 a001 701408733/24476*228826127^(5/8) 4807526984024922 a001 31622993/12238*141422324^(10/13) 4807526984024922 a001 567451585/12238*228826127^(3/5) 4807526984024922 a001 433494437/24476*228826127^(13/20) 4807526984024922 a001 165580141/24476*228826127^(7/10) 4807526984024922 a001 3278735159921/12238*87403803^(3/19) 4807526984024922 a001 2504730781961/24476*87403803^(4/19) 4807526984024922 a001 956722026041/24476*87403803^(5/19) 4807526984024922 a001 182717648081/12238*87403803^(6/19) 4807526984024922 a001 139583862445/24476*87403803^(7/19) 4807526984024922 a001 31622993/12238*2537720636^(2/3) 4807526984024922 a001 31622993/12238*45537549124^(10/17) 4807526984024922 a001 31622993/12238*312119004989^(6/11) 4807526984024922 a001 31622993/12238*14662949395604^(10/21) 4807526984024922 a001 31622993/12238*(1/2+1/2*5^(1/2))^30 4807526984024922 a001 31622993/12238*192900153618^(5/9) 4807526984024922 a001 31622993/12238*28143753123^(3/5) 4807526984024922 a001 31622993/12238*10749957122^(5/8) 4807526984024922 a001 31622993/12238*4106118243^(15/23) 4807526984024922 a001 31622993/12238*1568397607^(15/22) 4807526984024922 a001 31622993/12238*599074578^(5/7) 4807526984024922 a001 53316291173/24476*87403803^(8/19) 4807526984024922 a001 10182505537/12238*87403803^(9/19) 4807526984024922 a001 31622993/12238*228826127^(3/4) 4807526984024922 a001 12586269025/24476*87403803^(1/2) 4807526984024922 a001 7778742049/24476*87403803^(10/19) 4807526984024922 a001 2971215073/24476*87403803^(11/19) 4807526984024922 a001 567451585/12238*87403803^(12/19) 4807526984024922 a001 433494437/24476*87403803^(13/19) 4807526984024922 a001 165580141/24476*87403803^(14/19) 4807526984024923 a001 3278735159921/12238*33385282^(1/6) 4807526984024923 a001 31622993/12238*87403803^(15/19) 4807526984024923 a001 2504730781961/24476*33385282^(2/9) 4807526984024923 a001 387002188980/6119*33385282^(1/4) 4807526984024923 a001 956722026041/24476*33385282^(5/18) 4807526984024923 a001 182717648081/12238*33385282^(1/3) 4807526984024924 a001 24157817/24476*(1/2+1/2*5^(1/2))^32 4807526984024924 a001 24157817/24476*23725150497407^(1/2) 4807526984024924 a001 24157817/24476*505019158607^(4/7) 4807526984024924 a001 24157817/24476*73681302247^(8/13) 4807526984024924 a001 24157817/24476*10749957122^(2/3) 4807526984024924 a001 24157817/24476*4106118243^(16/23) 4807526984024924 a001 24157817/24476*1568397607^(8/11) 4807526984024924 a001 24157817/24476*599074578^(16/21) 4807526984024924 a001 139583862445/24476*33385282^(7/18) 4807526984024924 a001 24157817/24476*228826127^(4/5) 4807526984024924 a001 21566892818/6119*33385282^(5/12) 4807526984024924 a001 53316291173/24476*33385282^(4/9) 4807526984024924 a001 10182505537/12238*33385282^(1/2) 4807526984024924 a001 24157817/24476*87403803^(16/19) 4807526984024924 a001 7778742049/24476*33385282^(5/9) 4807526984024924 a001 1201881744/6119*33385282^(7/12) 4807526984024925 a001 2971215073/24476*33385282^(11/18) 4807526984024925 a001 567451585/12238*33385282^(2/3) 4807526984024925 a001 433494437/24476*33385282^(13/18) 4807526984024925 a001 10946*33385282^(3/4) 4807526984024925 a001 165580141/24476*33385282^(7/9) 4807526984024926 a001 31622993/12238*33385282^(5/6) 4807526984024926 a001 1055559854720449/219564 4807526984024927 a001 3278735159921/12238*12752043^(3/17) 4807526984024927 a001 24157817/24476*33385282^(8/9) 4807526984024929 a001 2504730781961/24476*12752043^(4/17) 4807526984024931 a001 956722026041/24476*12752043^(5/17) 4807526984024932 a001 182717648081/12238*12752043^(6/17) 4807526984024933 a001 10946/20633239*(1/2+1/2*5^(1/2))^62 4807526984024933 a001 9227465/24476*45537549124^(2/3) 4807526984024933 a001 9227465/24476*(1/2+1/2*5^(1/2))^34 4807526984024933 a001 9227465/24476*10749957122^(17/24) 4807526984024933 a001 9227465/24476*4106118243^(17/23) 4807526984024933 a001 9227465/24476*1568397607^(17/22) 4807526984024933 a001 9227465/24476*599074578^(17/21) 4807526984024933 a001 9227465/24476*228826127^(17/20) 4807526984024934 a001 9227465/24476*87403803^(17/19) 4807526984024934 a001 139583862445/24476*12752043^(7/17) 4807526984024936 a001 53316291173/24476*12752043^(8/17) 4807526984024937 a001 32951280099/24476*12752043^(1/2) 4807526984024937 a001 9227465/24476*33385282^(17/18) 4807526984024938 a001 10182505537/12238*12752043^(9/17) 4807526984024939 a001 7778742049/24476*12752043^(10/17) 4807526984024941 a001 2971215073/24476*12752043^(11/17) 4807526984024943 a001 567451585/12238*12752043^(12/17) 4807526984024944 a001 433494437/24476*12752043^(13/17) 4807526984024946 a001 165580141/24476*12752043^(14/17) 4807526984024948 a001 31622993/12238*12752043^(15/17) 4807526984024951 a001 24157817/24476*12752043^(16/17) 4807526984024951 a001 27416783139345106/5702887 4807526984024960 a001 3278735159921/12238*4870847^(3/16) 4807526984024973 a001 2504730781961/24476*4870847^(1/4) 4807526984024985 a001 956722026041/24476*4870847^(5/16) 4807526984024998 a001 182717648081/12238*4870847^(3/8) 4807526984024999 a001 1762289/12238*141422324^(12/13) 4807526984024999 a001 5473/3940598*14662949395604^(20/21) 4807526984024999 a001 5473/3940598*(1/2+1/2*5^(1/2))^60 4807526984024999 a001 1762289/12238*2537720636^(4/5) 4807526984024999 a001 1762289/12238*45537549124^(12/17) 4807526984024999 a001 1762289/12238*14662949395604^(4/7) 4807526984024999 a001 1762289/12238*(1/2+1/2*5^(1/2))^36 4807526984024999 a001 1762289/12238*505019158607^(9/14) 4807526984024999 a001 1762289/12238*192900153618^(2/3) 4807526984024999 a001 1762289/12238*73681302247^(9/13) 4807526984024999 a001 1762289/12238*10749957122^(3/4) 4807526984024999 a001 1762289/12238*4106118243^(18/23) 4807526984024999 a001 1762289/12238*1568397607^(9/11) 4807526984024999 a001 1762289/12238*599074578^(6/7) 4807526984024999 a001 1762289/12238*228826127^(9/10) 4807526984025000 a001 1762289/12238*87403803^(18/19) 4807526984025011 a001 139583862445/24476*4870847^(7/16) 4807526984025023 a001 53316291173/24476*4870847^(1/2) 4807526984025036 a001 10182505537/12238*4870847^(9/16) 4807526984025049 a001 7778742049/24476*4870847^(5/8) 4807526984025061 a001 2971215073/24476*4870847^(11/16) 4807526984025074 a001 567451585/12238*4870847^(3/4) 4807526984025087 a001 433494437/24476*4870847^(13/16) 4807526984025099 a001 165580141/24476*4870847^(7/8) 4807526984025112 a001 31622993/12238*4870847^(15/16) 4807526984025124 a001 10472279297044786/2178309 4807526984025153 a001 10610209857723/24476*1860498^(1/6) 4807526984025200 a001 3278735159921/12238*1860498^(1/5) 4807526984025292 a001 2504730781961/24476*1860498^(4/15) 4807526984025339 a001 387002188980/6119*1860498^(3/10) 4807526984025385 a001 956722026041/24476*1860498^(1/3) 4807526984025452 a001 10946/3010349*(1/2+1/2*5^(1/2))^58 4807526984025452 a001 1346269/24476*817138163596^(2/3) 4807526984025452 a001 1346269/24476*(1/2+1/2*5^(1/2))^38 4807526984025452 a001 1346269/24476*10749957122^(19/24) 4807526984025452 a001 1346269/24476*4106118243^(19/23) 4807526984025452 a001 1346269/24476*1568397607^(19/22) 4807526984025452 a001 1346269/24476*599074578^(19/21) 4807526984025452 a001 1346269/24476*228826127^(19/20) 4807526984025477 a001 182717648081/12238*1860498^(2/5) 4807526984025570 a001 139583862445/24476*1860498^(7/15) 4807526984025616 a001 21566892818/6119*1860498^(1/2) 4807526984025663 a001 53316291173/24476*1860498^(8/15) 4807526984025755 a001 10182505537/12238*1860498^(3/5) 4807526984025848 a001 7778742049/24476*1860498^(2/3) 4807526984025894 a001 1201881744/6119*1860498^(7/10) 4807526984025940 a001 2971215073/24476*1860498^(11/15) 4807526984026033 a001 567451585/12238*1860498^(4/5) 4807526984026079 a001 701408733/24476*1860498^(5/6) 4807526984026126 a001 433494437/24476*1860498^(13/15) 4807526984026172 a001 10946*1860498^(9/10) 4807526984026218 a001 165580141/24476*1860498^(14/15) 4807526984026311 a001 1000013687947313/208010 4807526984026962 a001 3278735159921/12238*710647^(3/14) 4807526984027302 a001 4052739537881/24476*710647^(1/4) 4807526984027642 a001 2504730781961/24476*710647^(2/7) 4807526984028322 a001 956722026041/24476*710647^(5/14) 4807526984028558 a001 10946/1149851*14662949395604^(8/9) 4807526984028558 a001 10946/1149851*(1/2+1/2*5^(1/2))^56 4807526984028558 a001 514229/24476*2537720636^(8/9) 4807526984028558 a001 514229/24476*312119004989^(8/11) 4807526984028558 a001 514229/24476*(1/2+1/2*5^(1/2))^40 4807526984028558 a001 514229/24476*23725150497407^(5/8) 4807526984028558 a001 514229/24476*73681302247^(10/13) 4807526984028558 a001 514229/24476*28143753123^(4/5) 4807526984028558 a001 514229/24476*10749957122^(5/6) 4807526984028558 a001 514229/24476*4106118243^(20/23) 4807526984028558 a001 514229/24476*1568397607^(10/11) 4807526984028558 a001 514229/24476*599074578^(20/21) 4807526984029002 a001 182717648081/12238*710647^(3/7) 4807526984029682 a001 139583862445/24476*710647^(1/2) 4807526984030362 a001 53316291173/24476*710647^(4/7) 4807526984031042 a001 10182505537/12238*710647^(9/14) 4807526984031722 a001 7778742049/24476*710647^(5/7) 4807526984032061 a001 1201881744/6119*710647^(3/4) 4807526984032401 a001 2971215073/24476*710647^(11/14) 4807526984033081 a001 567451585/12238*710647^(6/7) 4807526984033761 a001 433494437/24476*710647^(13/14) 4807526984034441 a001 117529612178690/24447 4807526984039979 a001 3278735159921/12238*271443^(3/13) 4807526984044998 a001 2504730781961/24476*271443^(4/13) 4807526984049844 a001 5473/219602*14662949395604^(6/7) 4807526984049844 a001 5473/219602*(1/2+1/2*5^(1/2))^54 4807526984049844 a001 98209/12238*2537720636^(14/15) 4807526984049844 a001 98209/12238*17393796001^(6/7) 4807526984049844 a001 98209/12238*45537549124^(14/17) 4807526984049844 a001 98209/12238*817138163596^(14/19) 4807526984049844 a001 98209/12238*14662949395604^(2/3) 4807526984049844 a001 98209/12238*(1/2+1/2*5^(1/2))^42 4807526984049844 a001 98209/12238*505019158607^(3/4) 4807526984049844 a001 98209/12238*192900153618^(7/9) 4807526984049844 a001 98209/12238*10749957122^(7/8) 4807526984049844 a001 98209/12238*4106118243^(21/23) 4807526984049844 a001 98209/12238*1568397607^(21/22) 4807526984050017 a001 956722026041/24476*271443^(5/13) 4807526984055036 a001 182717648081/12238*271443^(6/13) 4807526984057546 a001 7787980473/844*271443^(1/2) 4807526984060055 a001 139583862445/24476*271443^(7/13) 4807526984065074 a001 53316291173/24476*271443^(8/13) 4807526984070093 a001 10182505537/12238*271443^(9/13) 4807526984075112 a001 7778742049/24476*271443^(10/13) 4807526984080131 a001 2971215073/24476*271443^(11/13) 4807526984085150 a001 567451585/12238*271443^(12/13) 4807526984090169 a001 583600123179658/121393 4807526984118091 a001 10610209857723/24476*103682^(5/24) 4807526984136725 a001 3278735159921/12238*103682^(1/4) 4807526984155359 a001 4052739537881/24476*103682^(7/24) 4807526984173993 a001 2504730781961/24476*103682^(1/3) 4807526984192627 a001 387002188980/6119*103682^(3/8) 4807526984195742 a001 10946/167761*(1/2+1/2*5^(1/2))^52 4807526984195742 a001 10946/167761*23725150497407^(13/16) 4807526984195742 a001 10946/167761*505019158607^(13/14) 4807526984195742 a001 75025/24476*312119004989^(4/5) 4807526984195742 a001 75025/24476*(1/2+1/2*5^(1/2))^44 4807526984195742 a001 75025/24476*23725150497407^(11/16) 4807526984195742 a001 75025/24476*73681302247^(11/13) 4807526984195742 a001 75025/24476*10749957122^(11/12) 4807526984195742 a001 75025/24476*4106118243^(22/23) 4807526984211261 a001 956722026041/24476*103682^(5/12) 4807526984229895 a001 591286729879/24476*103682^(11/24) 4807526984248529 a001 182717648081/12238*103682^(1/2) 4807526984267163 a001 7787980473/844*103682^(13/24) 4807526984285796 a001 139583862445/24476*103682^(7/12) 4807526984304430 a001 21566892818/6119*103682^(5/8) 4807526984323064 a001 53316291173/24476*103682^(2/3) 4807526984341698 a001 32951280099/24476*103682^(17/24) 4807526984360332 a001 10182505537/12238*103682^(3/4) 4807526984378966 a001 12586269025/24476*103682^(19/24) 4807526984397600 a001 7778742049/24476*103682^(5/6) 4807526984416234 a001 1201881744/6119*103682^(7/8) 4807526984434868 a001 2971215073/24476*103682^(11/12) 4807526984453502 a001 1836311903/24476*103682^(23/24) 4807526984472135 a001 55728852804001/11592 4807526984489988 a001 956722026041/39603*15127^(11/20) 4807526984524152 a001 10610209857723/64079*15127^(7/20) 4807526984684784 a001 20365011074/9349*9349^(16/19) 4807526984721569 a001 10610209857723/24476*39603^(5/22) 4807526984860898 a001 3278735159921/12238*39603^(3/11) 4807526985000228 a001 4052739537881/24476*39603^(7/22) 4807526985007070 a001 3278735159921/51841*15127^(9/20) 4807526985139557 a001 2504730781961/24476*39603^(4/11) 4807526985195742 a001 10946/64079*312119004989^(10/11) 4807526985195742 a001 10946/64079*(1/2+1/2*5^(1/2))^50 4807526985195742 a001 10946/64079*3461452808002^(5/6) 4807526985195742 a001 28657/24476*(1/2+1/2*5^(1/2))^46 4807526985195742 a001 28657/24476*10749957122^(23/24) 4807526985278887 a001 387002188980/6119*39603^(9/22) 4807526985418216 a001 956722026041/24476*39603^(5/11) 4807526985540464 a001 591286729879/39603*15127^(3/5) 4807526985557546 a001 591286729879/24476*39603^(1/2) 4807526985574628 a001 6557470319842/64079*15127^(2/5) 4807526985625104 a001 10610209857723/167761*15127^(9/20) 4807526985696875 a001 182717648081/12238*39603^(6/11) 4807526985836205 a001 7787980473/844*39603^(13/22) 4807526985975534 a001 139583862445/24476*39603^(7/11) 4807526986057546 a001 4052739537881/103682*15127^(1/2) 4807526986114863 a001 21566892818/6119*39603^(15/22) 4807526986254193 a001 53316291173/24476*39603^(8/11) 4807526986393522 a001 32951280099/24476*39603^(17/22) 4807526986439512 a001 3536736619241/90481*15127^(1/2) 4807526986532852 a001 10182505537/12238*39603^(9/11) 4807526986590940 a001 365435296162/39603*15127^(13/20) 4807526986625104 a001 4052739537881/64079*15127^(9/20) 4807526986672181 a001 12586269025/24476*39603^(19/22) 4807526986675580 a001 6557470319842/167761*15127^(1/2) 4807526986811511 a001 7778742049/24476*39603^(10/11) 4807526986950840 a001 1201881744/6119*39603^(21/22) 4807526986990788 a001 1515744265389/2161*5778^(2/9) 4807526987090169 a001 85146110468354/17711 4807526987108022 a001 2504730781961/103682*15127^(11/20) 4807526987489988 a001 6557470319842/271443*15127^(11/20) 4807526987579712 a001 32951280099/9349*9349^(15/19) 4807526987580158 a001 10610209857723/439204*15127^(11/20) 4807526987641416 a001 75283811239/13201*15127^(7/10) 4807526987675580 a001 2504730781961/64079*15127^(1/2) 4807526987726056 a001 4052739537881/167761*15127^(11/20) 4807526988158498 a001 774004377960/51841*15127^(3/5) 4807526988540464 a001 4052739537881/271443*15127^(3/5) 4807526988596192 a001 1515744265389/101521*15127^(3/5) 4807526988630634 a001 3278735159921/219602*15127^(3/5) 4807526988691892 a001 139583862445/39603*15127^(3/4) 4807526988726056 a001 1548008755920/64079*15127^(11/20) 4807526988776532 a001 2504730781961/167761*15127^(3/5) 4807526989208974 a001 956722026041/103682*15127^(13/20) 4807526989277302 a001 10610209857723/24476*15127^(1/4) 4807526989590940 a001 2504730781961/271443*15127^(13/20) 4807526989646668 a001 6557470319842/710647*15127^(13/20) 4807526989659823 a001 10610209857723/1149851*15127^(13/20) 4807526989681110 a001 4052739537881/439204*15127^(13/20) 4807526989742367 a001 86267571272/39603*15127^(4/5) 4807526989776532 a001 956722026041/64079*15127^(3/5) 4807526989827008 a001 140728068720/15251*15127^(13/20) 4807526990259450 a001 591286729879/103682*15127^(7/10) 4807526990327778 a001 3278735159921/12238*15127^(3/10) 4807526990474641 a001 53316291173/9349*9349^(14/19) 4807526990641416 a001 516002918640/90481*15127^(7/10) 4807526990697144 a001 4052739537881/710647*15127^(7/10) 4807526990705274 a001 3536736619241/620166*15127^(7/10) 4807526990710299 a001 6557470319842/1149851*15127^(7/10) 4807526990731585 a001 2504730781961/439204*15127^(7/10) 4807526990792843 a001 53316291173/39603*15127^(17/20) 4807526990827008 a001 591286729879/64079*15127^(13/20) 4807526990877484 a001 956722026041/167761*15127^(7/10) 4807526991309926 a001 182717648081/51841*15127^(3/4) 4807526991378254 a001 4052739537881/24476*15127^(7/20) 4807526991691892 a001 956722026041/271443*15127^(3/4) 4807526991747620 a001 2504730781961/710647*15127^(3/4) 4807526991755750 a001 3278735159921/930249*15127^(3/4) 4807526991757670 a001 10610209857723/3010349*15127^(3/4) 4807526991760775 a001 4052739537881/1149851*15127^(3/4) 4807526991782061 a001 387002188980/109801*15127^(3/4) 4807526991843319 a001 10983760033/13201*15127^(9/10) 4807526991877484 a001 365435296162/64079*15127^(7/10) 4807526991927960 a001 591286729879/167761*15127^(3/4) 4807526992049844 a001 5473/12238*45537549124^(16/17) 4807526992049844 a001 5473/12238*14662949395604^(16/21) 4807526992049844 a001 5473/12238*(1/2+1/2*5^(1/2))^48 4807526992049844 a001 5473/12238*192900153618^(8/9) 4807526992049844 a001 5473/12238*73681302247^(12/13) 4807526992360401 a001 225851433717/103682*15127^(4/5) 4807526992428730 a001 2504730781961/24476*15127^(2/5) 4807526992742368 a001 591286729879/271443*15127^(4/5) 4807526992798096 a001 1548008755920/710647*15127^(4/5) 4807526992806226 a001 4052739537881/1860498*15127^(4/5) 4807526992807412 a001 2178309*15127^(4/5) 4807526992808146 a001 6557470319842/3010349*15127^(4/5) 4807526992811251 a001 2504730781961/1149851*15127^(4/5) 4807526992832537 a001 956722026041/439204*15127^(4/5) 4807526992893795 a001 20365011074/39603*15127^(19/20) 4807526992927960 a001 225851433717/64079*15127^(3/4) 4807526992978435 a001 365435296162/167761*15127^(4/5) 4807526993369569 a001 86267571272/9349*9349^(13/19) 4807526993410877 a001 139583862445/103682*15127^(17/20) 4807526993479206 a001 387002188980/6119*15127^(9/20) 4807526993792843 a001 365435296162/271443*15127^(17/20) 4807526993848572 a001 956722026041/710647*15127^(17/20) 4807526993856702 a001 2504730781961/1860498*15127^(17/20) 4807526993857888 a001 6557470319842/4870847*15127^(17/20) 4807526993858168 a001 10610209857723/7881196*15127^(17/20) 4807526993858622 a001 1346269*15127^(17/20) 4807526993861727 a001 1548008755920/1149851*15127^(17/20) 4807526993883013 a001 591286729879/439204*15127^(17/20) 4807526993944271 a001 32522920114033/6765 4807526993978435 a001 139583862445/64079*15127^(4/5) 4807526994028911 a001 225851433717/167761*15127^(17/20) 4807526994461353 a001 43133785636/51841*15127^(9/10) 4807526994529682 a001 956722026041/24476*15127^(1/2) 4807526994843319 a001 75283811239/90481*15127^(9/10) 4807526994899048 a001 591286729879/710647*15127^(9/10) 4807526994907178 a001 832040*15127^(9/10) 4807526994908364 a001 4052739537881/4870847*15127^(9/10) 4807526994908537 a001 3536736619241/4250681*15127^(9/10) 4807526994908644 a001 3278735159921/3940598*15127^(9/10) 4807526994909098 a001 2504730781961/3010349*15127^(9/10) 4807526994912203 a001 956722026041/1149851*15127^(9/10) 4807526994933489 a001 182717648081/219602*15127^(9/10) 4807526994990865 a001 6557470319842/15127*5778^(5/18) 4807526995028911 a001 86267571272/64079*15127^(17/20) 4807526995079387 a001 139583862445/167761*15127^(9/10) 4807526995511829 a001 53316291173/103682*15127^(19/20) 4807526995580158 a001 591286729879/24476*15127^(11/20) 4807526995893795 a001 139583862445/271443*15127^(19/20) 4807526995949524 a001 365435296162/710647*15127^(19/20) 4807526995957654 a001 956722026041/1860498*15127^(19/20) 4807526995958840 a001 2504730781961/4870847*15127^(19/20) 4807526995959013 a001 6557470319842/12752043*15127^(19/20) 4807526995959054 a001 10610209857723/20633239*15127^(19/20) 4807526995959120 a001 4052739537881/7881196*15127^(19/20) 4807526995959574 a001 1548008755920/3010349*15127^(19/20) 4807526995962679 a001 514229*15127^(19/20) 4807526995983965 a001 225851433717/439204*15127^(19/20) 4807526996079387 a001 53316291173/64079*15127^(9/10) 4807526996129863 a001 86267571272/167761*15127^(19/20) 4807526996264497 a001 139583862445/9349*9349^(12/19) 4807526996562305 a001 10840973377248/2255 4807526996630634 a001 182717648081/12238*15127^(3/5) 4807526996944271 a001 32522920134328/6765 4807526997008130 a001 591325820632/123 4807526997009312 a001 10840973378256/2255 4807526997009460 a001 32522920134769/6765 4807526997009608 a001 6504584026954/1353 4807526997010051 a001 32522920134773/6765 4807526997013155 a001 32522920134794/6765 4807526997034441 a001 32522920134938/6765 4807526997129863 a001 32951280099/64079*15127^(19/20) 4807526997180339 a001 6504584027185/1353 4807526997681110 a001 7787980473/844*15127^(13/20) 4807526998176502 a001 7778742049/3571*3571^(16/17) 4807526998180339 a001 6504584028538/1353 4807526998731586 a001 139583862445/24476*15127^(7/10) 4807526999159425 a001 225851433717/9349*9349^(11/19) 4807526999782062 a001 21566892818/6119*15127^(3/4) 4807527000832537 a001 53316291173/24476*15127^(4/5) 4807527001815252 m001 1/LandauRamanujan^2/exp(Cahen)^2*Zeta(7)^2 4807527001883013 a001 32951280099/24476*15127^(17/20) 4807527002054354 a001 365435296162/9349*9349^(10/19) 4807527002933489 a001 10182505537/12238*15127^(9/10) 4807527002990942 a001 4052739537881/15127*5778^(1/3) 4807527003983965 a001 12586269025/24476*15127^(19/20) 4807527004949282 a001 591286729879/9349*9349^(9/19) 4807527005034441 a001 32522920189058/6765 4807527006158374 r005 Re(z^2+c),c=-7/10+5/193*I,n=47 4807527007844210 a001 956722026041/9349*9349^(8/19) 4807527008282677 m001 sqrt(2)^GAMMA(1/6)*Zeta(1,2)^GAMMA(1/6) 4807527008467109 a001 6557470319842/3571*1364^(2/15) 4807527009994116 a001 4181/15127*14662949395604^(7/9) 4807527009994116 a001 4181/15127*(1/2+1/2*5^(1/2))^49 4807527009994116 a001 4181/15127*505019158607^(7/8) 4807527009994117 a001 6765/9349*(1/2+1/2*5^(1/2))^47 4807527010739138 a001 1548008755920/9349*9349^(7/19) 4807527010991019 a001 2504730781961/15127*5778^(7/18) 4807527013634067 a001 2504730781961/9349*9349^(6/19) 4807527016528995 a001 4052739537881/9349*9349^(5/19) 4807527017061132 a001 3278735159921/2889*2207^(3/16) 4807527018991097 a001 1548008755920/15127*5778^(4/9) 4807527019423923 a001 6557470319842/9349*9349^(4/19) 4807527020353005 a001 12586269025/3571*3571^(15/17) 4807527020935214 a001 3536736619241/13201*5778^(1/3) 4807527021657207 r005 Im(z^2+c),c=-5/6+49/128*I,n=4 4807527022318851 a001 10610209857723/9349*9349^(3/19) 4807527022978713 a001 52623190793525/10946 4807527023360853 a001 2971215073/9349*24476^(20/21) 4807527023742992 a001 4807526976/9349*24476^(19/21) 4807527024025307 a001 10610209857723/24476*5778^(5/18) 4807527024125131 a001 7778742049/9349*24476^(6/7) 4807527024507270 a001 12586269025/9349*24476^(17/21) 4807527024889410 a001 20365011074/9349*24476^(16/21) 4807527025271549 a001 32951280099/9349*24476^(5/7) 4807527025653688 a001 53316291173/9349*24476^(2/3) 4807527026035827 a001 86267571272/9349*24476^(13/21) 4807527026417966 a001 139583862445/9349*24476^(4/7) 4807527026800105 a001 225851433717/9349*24476^(11/21) 4807527026991174 a001 956722026041/15127*5778^(1/2) 4807527027182245 a001 365435296162/9349*24476^(10/21) 4807527027564384 a001 591286729879/9349*24476^(3/7) 4807527027938388 a001 4181/39603*817138163596^(17/19) 4807527027938388 a001 4181/39603*14662949395604^(17/21) 4807527027938388 a001 4181/39603*(1/2+1/2*5^(1/2))^51 4807527027938388 a001 4181/39603*192900153618^(17/18) 4807527027938389 a001 17711/9349*45537549124^(15/17) 4807527027938389 a001 17711/9349*312119004989^(9/11) 4807527027938389 a001 17711/9349*14662949395604^(5/7) 4807527027938389 a001 17711/9349*(1/2+1/2*5^(1/2))^45 4807527027938389 a001 17711/9349*192900153618^(5/6) 4807527027938389 a001 17711/9349*28143753123^(9/10) 4807527027938389 a001 17711/9349*10749957122^(15/16) 4807527027946523 a001 956722026041/9349*24476^(8/21) 4807527028328662 a001 1548008755920/9349*24476^(1/3) 4807527028710801 a001 2504730781961/9349*24476^(2/7) 4807527028935291 a001 6557470319842/39603*5778^(7/18) 4807527029092940 a001 4052739537881/9349*24476^(5/21) 4807527029475080 a001 6557470319842/9349*24476^(4/21) 4807527029832815 a001 137769302093919/28657 4807527029857219 a001 10610209857723/9349*24476^(1/7) 4807527029883721 a001 1134903170/9349*64079^(22/23) 4807527029934626 a001 1836311903/9349*64079^(21/23) 4807527029985532 a001 2971215073/9349*64079^(20/23) 4807527030036437 a001 4807526976/9349*64079^(19/23) 4807527030087342 a001 7778742049/9349*64079^(18/23) 4807527030138247 a001 12586269025/9349*64079^(17/23) 4807527030189152 a001 20365011074/9349*64079^(16/23) 4807527030240058 a001 32951280099/9349*64079^(15/23) 4807527030290963 a001 53316291173/9349*64079^(14/23) 4807527030341868 a001 86267571272/9349*64079^(13/23) 4807527030392773 a001 139583862445/9349*64079^(12/23) 4807527030443679 a001 225851433717/9349*64079^(11/23) 4807527030494584 a001 365435296162/9349*64079^(10/23) 4807527030545489 a001 591286729879/9349*64079^(9/23) 4807527030556422 a001 4181/103682*(1/2+1/2*5^(1/2))^53 4807527030556423 a001 46368/9349*(1/2+1/2*5^(1/2))^43 4807527030596394 a001 956722026041/9349*64079^(8/23) 4807527030647300 a001 1548008755920/9349*64079^(7/23) 4807527030698205 a001 2504730781961/9349*64079^(6/23) 4807527030749110 a001 4052739537881/9349*64079^(5/23) 4807527030800015 a001 6557470319842/9349*64079^(4/23) 4807527030832815 a001 360684715488232/75025 4807527030850921 a001 10610209857723/9349*64079^(3/23) 4807527030866980 a001 2971215073/9349*167761^(4/5) 4807527030901144 a001 32951280099/9349*167761^(3/5) 4807527030935308 a001 365435296162/9349*167761^(2/5) 4807527030938388 a001 4181/271443*(1/2+1/2*5^(1/2))^55 4807527030938388 a001 4181/271443*3461452808002^(11/12) 4807527030938389 a001 121393/9349*(1/2+1/2*5^(1/2))^41 4807527030969472 a001 4052739537881/9349*167761^(1/5) 4807527030978713 a001 944284844370777/196418 4807527030981483 a001 433494437/9349*439204^(8/9) 4807527030984252 a001 1836311903/9349*439204^(7/9) 4807527030987021 a001 7778742049/9349*439204^(2/3) 4807527030989790 a001 32951280099/9349*439204^(5/9) 4807527030992560 a001 139583862445/9349*439204^(4/9) 4807527030994116 a001 4181/710647*14662949395604^(19/21) 4807527030994116 a001 4181/710647*(1/2+1/2*5^(1/2))^57 4807527030994117 a001 317811/9349*2537720636^(13/15) 4807527030994117 a001 317811/9349*45537549124^(13/17) 4807527030994117 a001 317811/9349*14662949395604^(13/21) 4807527030994117 a001 317811/9349*(1/2+1/2*5^(1/2))^39 4807527030994117 a001 317811/9349*192900153618^(13/18) 4807527030994117 a001 317811/9349*73681302247^(3/4) 4807527030994117 a001 317811/9349*10749957122^(13/16) 4807527030994117 a001 317811/9349*599074578^(13/14) 4807527030995329 a001 591286729879/9349*439204^(1/3) 4807527030998098 a001 2504730781961/9349*439204^(2/9) 4807527031000867 a001 10610209857723/9349*439204^(1/9) 4807527031002247 a001 4181/1860498*(1/2+1/2*5^(1/2))^59 4807527031002247 a001 832040/9349*(1/2+1/2*5^(1/2))^37 4807527031003105 a001 6472224608501520/1346269 4807527031003433 a001 4181/4870847*(1/2+1/2*5^(1/2))^61 4807527031003434 a001 2178309/9349*2537720636^(7/9) 4807527031003434 a001 2178309/9349*17393796001^(5/7) 4807527031003434 a001 2178309/9349*312119004989^(7/11) 4807527031003434 a001 2178309/9349*14662949395604^(5/9) 4807527031003434 a001 2178309/9349*(1/2+1/2*5^(1/2))^35 4807527031003434 a001 2178309/9349*505019158607^(5/8) 4807527031003434 a001 2178309/9349*28143753123^(7/10) 4807527031003434 a001 2178309/9349*599074578^(5/6) 4807527031003434 a001 2178309/9349*228826127^(7/8) 4807527031003558 a001 16944504007880461/3524578 4807527031003568 a001 24157817/9349*7881196^(10/11) 4807527031003573 a001 102334155/9349*7881196^(9/11) 4807527031003580 a001 433494437/9349*7881196^(8/11) 4807527031003585 a001 1134903170/9349*7881196^(2/3) 4807527031003587 a001 1836311903/9349*7881196^(7/11) 4807527031003594 a001 7778742049/9349*7881196^(6/11) 4807527031003601 a001 32951280099/9349*7881196^(5/11) 4807527031003606 a001 4181/12752043*(1/2+1/2*5^(1/2))^63 4807527031003606 a001 5702887/9349*141422324^(11/13) 4807527031003607 a001 5702887/9349*2537720636^(11/15) 4807527031003607 a001 5702887/9349*45537549124^(11/17) 4807527031003607 a001 5702887/9349*312119004989^(3/5) 4807527031003607 a001 5702887/9349*817138163596^(11/19) 4807527031003607 a001 5702887/9349*14662949395604^(11/21) 4807527031003607 a001 5702887/9349*(1/2+1/2*5^(1/2))^33 4807527031003607 a001 5702887/9349*192900153618^(11/18) 4807527031003607 a001 5702887/9349*10749957122^(11/16) 4807527031003607 a001 5702887/9349*1568397607^(3/4) 4807527031003607 a001 5702887/9349*599074578^(11/14) 4807527031003608 a001 139583862445/9349*7881196^(4/11) 4807527031003610 a001 225851433717/9349*7881196^(1/3) 4807527031003611 a001 5702887/9349*33385282^(11/12) 4807527031003615 a001 591286729879/9349*7881196^(3/11) 4807527031003622 a001 2504730781961/9349*7881196^(2/11) 4807527031003624 a001 44361287415139863/9227465 4807527031003627 a001 63245986/9349*20633239^(4/5) 4807527031003628 a001 267914296/9349*20633239^(5/7) 4807527031003628 a001 24157817/9349*20633239^(6/7) 4807527031003629 a001 10610209857723/9349*7881196^(1/11) 4807527031003629 a001 1836311903/9349*20633239^(3/5) 4807527031003630 a001 2971215073/9349*20633239^(4/7) 4807527031003631 a001 32951280099/9349*20633239^(3/7) 4807527031003632 a001 53316291173/9349*20633239^(2/5) 4807527031003632 a001 14930352/9349*(1/2+1/2*5^(1/2))^31 4807527031003632 a001 14930352/9349*9062201101803^(1/2) 4807527031003633 a001 365435296162/9349*20633239^(2/7) 4807527031003634 a001 1548008755920/9349*20633239^(1/5) 4807527031003635 a001 4052739537881/9349*20633239^(1/7) 4807527031003636 a001 4181*(1/2+1/2*5^(1/2))^29 4807527031003636 a001 4181*1322157322203^(1/2) 4807527031003636 a001 102334155/9349*141422324^(9/13) 4807527031003636 a001 433494437/9349*141422324^(8/13) 4807527031003636 a001 1836311903/9349*141422324^(7/13) 4807527031003636 a001 165580141/9349*141422324^(2/3) 4807527031003636 a001 7778742049/9349*141422324^(6/13) 4807527031003636 a001 32951280099/9349*141422324^(5/13) 4807527031003636 a001 102334155/9349*2537720636^(3/5) 4807527031003636 a001 102334155/9349*45537549124^(9/17) 4807527031003636 a001 102334155/9349*817138163596^(9/19) 4807527031003636 a001 102334155/9349*14662949395604^(3/7) 4807527031003636 a001 102334155/9349*(1/2+1/2*5^(1/2))^27 4807527031003636 a001 102334155/9349*192900153618^(1/2) 4807527031003636 a001 102334155/9349*10749957122^(9/16) 4807527031003636 a001 102334155/9349*599074578^(9/14) 4807527031003636 a001 86267571272/9349*141422324^(1/3) 4807527031003636 a001 139583862445/9349*141422324^(4/13) 4807527031003636 a001 591286729879/9349*141422324^(3/13) 4807527031003636 a001 2504730781961/9349*141422324^(2/13) 4807527031003636 a001 10610209857723/9349*141422324^(1/13) 4807527031003636 a001 267914296/9349*2537720636^(5/9) 4807527031003636 a001 267914296/9349*312119004989^(5/11) 4807527031003636 a001 267914296/9349*(1/2+1/2*5^(1/2))^25 4807527031003636 a001 267914296/9349*3461452808002^(5/12) 4807527031003636 a001 267914296/9349*28143753123^(1/2) 4807527031003636 a001 701408733/9349*(1/2+1/2*5^(1/2))^23 4807527031003636 a001 701408733/9349*4106118243^(1/2) 4807527031003636 a001 1836311903/9349*2537720636^(7/15) 4807527031003636 a001 1836311903/9349*17393796001^(3/7) 4807527031003636 a001 1836311903/9349*45537549124^(7/17) 4807527031003636 a001 1836311903/9349*14662949395604^(1/3) 4807527031003636 a001 1836311903/9349*(1/2+1/2*5^(1/2))^21 4807527031003636 a001 1836311903/9349*192900153618^(7/18) 4807527031003636 a001 7778742049/9349*2537720636^(2/5) 4807527031003636 a001 1836311903/9349*10749957122^(7/16) 4807527031003636 a001 32951280099/9349*2537720636^(1/3) 4807527031003636 a001 2971215073/9349*2537720636^(4/9) 4807527031003636 a001 139583862445/9349*2537720636^(4/15) 4807527031003636 a001 365435296162/9349*2537720636^(2/9) 4807527031003636 a001 591286729879/9349*2537720636^(1/5) 4807527031003636 a001 2504730781961/9349*2537720636^(2/15) 4807527031003636 a001 4052739537881/9349*2537720636^(1/9) 4807527031003636 a001 10610209857723/9349*2537720636^(1/15) 4807527031003636 a001 4807526976/9349*817138163596^(1/3) 4807527031003636 a001 4807526976/9349*(1/2+1/2*5^(1/2))^19 4807527031003636 a001 12586269025/9349*45537549124^(1/3) 4807527031003636 a001 12586269025/9349*(1/2+1/2*5^(1/2))^17 4807527031003636 a001 53316291173/9349*17393796001^(2/7) 4807527031003636 a001 1548008755920/9349*17393796001^(1/7) 4807527031003636 a001 32951280099/9349*45537549124^(5/17) 4807527031003636 a001 32951280099/9349*312119004989^(3/11) 4807527031003636 a001 32951280099/9349*14662949395604^(5/21) 4807527031003636 a001 32951280099/9349*(1/2+1/2*5^(1/2))^15 4807527031003636 a001 32951280099/9349*192900153618^(5/18) 4807527031003636 a001 139583862445/9349*45537549124^(4/17) 4807527031003636 a001 591286729879/9349*45537549124^(3/17) 4807527031003636 a001 2504730781961/9349*45537549124^(2/17) 4807527031003636 a001 10610209857723/9349*45537549124^(1/17) 4807527031003636 a001 86267571272/9349*(1/2+1/2*5^(1/2))^13 4807527031003636 a001 225851433717/9349*312119004989^(1/5) 4807527031003636 a001 225851433717/9349*(1/2+1/2*5^(1/2))^11 4807527031003636 a001 4052739537881/9349*312119004989^(1/11) 4807527031003636 a001 591286729879/9349*(1/2+1/2*5^(1/2))^9 4807527031003636 a001 1548008755920/9349*14662949395604^(1/9) 4807527031003636 a001 1548008755920/9349*(1/2+1/2*5^(1/2))^7 4807527031003636 a001 4052739537881/9349*(1/2+1/2*5^(1/2))^5 4807527031003636 a001 10610209857723/9349*14662949395604^(1/21) 4807527031003636 a001 10610209857723/9349*(1/2+1/2*5^(1/2))^3 4807527031003636 a001 6557470319842/9349*(1/2+1/2*5^(1/2))^4 4807527031003636 a001 2504730781961/9349*(1/2+1/2*5^(1/2))^6 4807527031003636 a001 956722026041/9349*(1/2+1/2*5^(1/2))^8 4807527031003636 a001 956722026041/9349*23725150497407^(1/8) 4807527031003636 a001 10610209857723/9349*192900153618^(1/18) 4807527031003636 a001 365435296162/9349*(1/2+1/2*5^(1/2))^10 4807527031003636 a001 591286729879/9349*192900153618^(1/6) 4807527031003636 a001 139583862445/9349*817138163596^(4/19) 4807527031003636 a001 139583862445/9349*14662949395604^(4/21) 4807527031003636 a001 139583862445/9349*(1/2+1/2*5^(1/2))^12 4807527031003636 a001 139583862445/9349*192900153618^(2/9) 4807527031003636 a001 86267571272/9349*73681302247^(1/4) 4807527031003636 a001 956722026041/9349*73681302247^(2/13) 4807527031003636 a001 139583862445/9349*73681302247^(3/13) 4807527031003636 a001 53316291173/9349*14662949395604^(2/9) 4807527031003636 a001 53316291173/9349*(1/2+1/2*5^(1/2))^14 4807527031003636 a001 53316291173/9349*505019158607^(1/4) 4807527031003636 a001 4052739537881/9349*28143753123^(1/10) 4807527031003636 a001 32951280099/9349*28143753123^(3/10) 4807527031003636 a001 365435296162/9349*28143753123^(1/5) 4807527031003636 a001 20365011074/9349*(1/2+1/2*5^(1/2))^16 4807527031003636 a001 20365011074/9349*23725150497407^(1/4) 4807527031003636 a001 20365011074/9349*73681302247^(4/13) 4807527031003636 a001 10610209857723/9349*10749957122^(1/16) 4807527031003636 a001 6557470319842/9349*10749957122^(1/12) 4807527031003636 a001 2504730781961/9349*10749957122^(1/8) 4807527031003636 a001 956722026041/9349*10749957122^(1/6) 4807527031003636 a001 591286729879/9349*10749957122^(3/16) 4807527031003636 a001 365435296162/9349*10749957122^(5/24) 4807527031003636 a001 139583862445/9349*10749957122^(1/4) 4807527031003636 a001 32951280099/9349*10749957122^(5/16) 4807527031003636 a001 53316291173/9349*10749957122^(7/24) 4807527031003636 a001 7778742049/9349*45537549124^(6/17) 4807527031003636 a001 7778742049/9349*14662949395604^(2/7) 4807527031003636 a001 7778742049/9349*(1/2+1/2*5^(1/2))^18 4807527031003636 a001 7778742049/9349*192900153618^(1/3) 4807527031003636 a001 20365011074/9349*10749957122^(1/3) 4807527031003636 a001 6557470319842/9349*4106118243^(2/23) 4807527031003636 a001 7778742049/9349*10749957122^(3/8) 4807527031003636 a001 2504730781961/9349*4106118243^(3/23) 4807527031003636 a001 956722026041/9349*4106118243^(4/23) 4807527031003636 a001 365435296162/9349*4106118243^(5/23) 4807527031003636 a001 139583862445/9349*4106118243^(6/23) 4807527031003636 a001 53316291173/9349*4106118243^(7/23) 4807527031003636 a001 20365011074/9349*4106118243^(8/23) 4807527031003636 a001 2971215073/9349*(1/2+1/2*5^(1/2))^20 4807527031003636 a001 2971215073/9349*23725150497407^(5/16) 4807527031003636 a001 2971215073/9349*505019158607^(5/14) 4807527031003636 a001 2971215073/9349*73681302247^(5/13) 4807527031003636 a001 2971215073/9349*28143753123^(2/5) 4807527031003636 a001 2971215073/9349*10749957122^(5/12) 4807527031003636 a001 7778742049/9349*4106118243^(9/23) 4807527031003636 a001 6557470319842/9349*1568397607^(1/11) 4807527031003636 a001 2971215073/9349*4106118243^(10/23) 4807527031003636 a001 2504730781961/9349*1568397607^(3/22) 4807527031003636 a001 956722026041/9349*1568397607^(2/11) 4807527031003636 a001 365435296162/9349*1568397607^(5/22) 4807527031003636 a001 225851433717/9349*1568397607^(1/4) 4807527031003636 a001 139583862445/9349*1568397607^(3/11) 4807527031003636 a001 53316291173/9349*1568397607^(7/22) 4807527031003636 a001 20365011074/9349*1568397607^(4/11) 4807527031003636 a001 1134903170/9349*312119004989^(2/5) 4807527031003636 a001 1134903170/9349*(1/2+1/2*5^(1/2))^22 4807527031003636 a001 1134903170/9349*10749957122^(11/24) 4807527031003636 a001 7778742049/9349*1568397607^(9/22) 4807527031003636 a001 1134903170/9349*4106118243^(11/23) 4807527031003636 a001 10610209857723/9349*599074578^(1/14) 4807527031003636 a001 2971215073/9349*1568397607^(5/11) 4807527031003636 a001 6557470319842/9349*599074578^(2/21) 4807527031003636 a001 1134903170/9349*1568397607^(1/2) 4807527031003636 a001 2504730781961/9349*599074578^(1/7) 4807527031003636 a001 1548008755920/9349*599074578^(1/6) 4807527031003636 a001 956722026041/9349*599074578^(4/21) 4807527031003636 a001 591286729879/9349*599074578^(3/14) 4807527031003636 a001 365435296162/9349*599074578^(5/21) 4807527031003636 a001 139583862445/9349*599074578^(2/7) 4807527031003636 a001 53316291173/9349*599074578^(1/3) 4807527031003636 a001 433494437/9349*2537720636^(8/15) 4807527031003636 a001 32951280099/9349*599074578^(5/14) 4807527031003636 a001 20365011074/9349*599074578^(8/21) 4807527031003636 a001 433494437/9349*45537549124^(8/17) 4807527031003636 a001 433494437/9349*14662949395604^(8/21) 4807527031003636 a001 433494437/9349*(1/2+1/2*5^(1/2))^24 4807527031003636 a001 433494437/9349*192900153618^(4/9) 4807527031003636 a001 433494437/9349*73681302247^(6/13) 4807527031003636 a001 433494437/9349*10749957122^(1/2) 4807527031003636 a001 433494437/9349*4106118243^(12/23) 4807527031003636 a001 7778742049/9349*599074578^(3/7) 4807527031003636 a001 433494437/9349*1568397607^(6/11) 4807527031003636 a001 1836311903/9349*599074578^(1/2) 4807527031003636 a001 2971215073/9349*599074578^(10/21) 4807527031003636 a001 1134903170/9349*599074578^(11/21) 4807527031003636 a001 6557470319842/9349*228826127^(1/10) 4807527031003636 a001 4052739537881/9349*228826127^(1/8) 4807527031003636 a001 433494437/9349*599074578^(4/7) 4807527031003636 a001 2504730781961/9349*228826127^(3/20) 4807527031003636 a001 956722026041/9349*228826127^(1/5) 4807527031003636 a001 365435296162/9349*228826127^(1/4) 4807527031003636 a001 139583862445/9349*228826127^(3/10) 4807527031003636 a001 53316291173/9349*228826127^(7/20) 4807527031003636 a001 32951280099/9349*228826127^(3/8) 4807527031003636 a001 165580141/9349*(1/2+1/2*5^(1/2))^26 4807527031003636 a001 165580141/9349*73681302247^(1/2) 4807527031003636 a001 165580141/9349*10749957122^(13/24) 4807527031003636 a001 165580141/9349*4106118243^(13/23) 4807527031003636 a001 165580141/9349*1568397607^(13/22) 4807527031003636 a001 20365011074/9349*228826127^(2/5) 4807527031003636 a001 7778742049/9349*228826127^(9/20) 4807527031003636 a001 165580141/9349*599074578^(13/21) 4807527031003636 a001 267914296/9349*228826127^(5/8) 4807527031003636 a001 2971215073/9349*228826127^(1/2) 4807527031003636 a001 1134903170/9349*228826127^(11/20) 4807527031003636 a001 433494437/9349*228826127^(3/5) 4807527031003636 a001 6557470319842/9349*87403803^(2/19) 4807527031003636 a001 165580141/9349*228826127^(13/20) 4807527031003636 a001 2504730781961/9349*87403803^(3/19) 4807527031003636 a001 956722026041/9349*87403803^(4/19) 4807527031003636 a001 365435296162/9349*87403803^(5/19) 4807527031003636 a001 139583862445/9349*87403803^(6/19) 4807527031003636 a001 53316291173/9349*87403803^(7/19) 4807527031003636 a001 63245986/9349*17393796001^(4/7) 4807527031003636 a001 63245986/9349*14662949395604^(4/9) 4807527031003636 a001 63245986/9349*(1/2+1/2*5^(1/2))^28 4807527031003636 a001 63245986/9349*505019158607^(1/2) 4807527031003636 a001 63245986/9349*73681302247^(7/13) 4807527031003636 a001 63245986/9349*10749957122^(7/12) 4807527031003636 a001 63245986/9349*4106118243^(14/23) 4807527031003636 a001 63245986/9349*1568397607^(7/11) 4807527031003637 a001 63245986/9349*599074578^(2/3) 4807527031003637 a001 20365011074/9349*87403803^(8/19) 4807527031003637 a001 7778742049/9349*87403803^(9/19) 4807527031003637 a001 63245986/9349*228826127^(7/10) 4807527031003637 a001 4807526976/9349*87403803^(1/2) 4807527031003637 a001 2971215073/9349*87403803^(10/19) 4807527031003637 a001 10610209857723/9349*33385282^(1/12) 4807527031003637 a001 1134903170/9349*87403803^(11/19) 4807527031003637 a001 433494437/9349*87403803^(12/19) 4807527031003637 a001 165580141/9349*87403803^(13/19) 4807527031003637 a001 6557470319842/9349*33385282^(1/9) 4807527031003637 a001 63245986/9349*87403803^(14/19) 4807527031003637 a001 2504730781961/9349*33385282^(1/6) 4807527031003637 a001 956722026041/9349*33385282^(2/9) 4807527031003637 a001 591286729879/9349*33385282^(1/4) 4807527031003637 a001 365435296162/9349*33385282^(5/18) 4807527031003638 a001 139583862445/9349*33385282^(1/3) 4807527031003638 a001 24157817/9349*141422324^(10/13) 4807527031003638 a001 24157817/9349*2537720636^(2/3) 4807527031003638 a001 24157817/9349*45537549124^(10/17) 4807527031003638 a001 24157817/9349*312119004989^(6/11) 4807527031003638 a001 24157817/9349*14662949395604^(10/21) 4807527031003638 a001 24157817/9349*(1/2+1/2*5^(1/2))^30 4807527031003638 a001 24157817/9349*192900153618^(5/9) 4807527031003638 a001 24157817/9349*28143753123^(3/5) 4807527031003638 a001 24157817/9349*10749957122^(5/8) 4807527031003638 a001 24157817/9349*4106118243^(15/23) 4807527031003638 a001 24157817/9349*1568397607^(15/22) 4807527031003638 a001 24157817/9349*599074578^(5/7) 4807527031003638 a001 53316291173/9349*33385282^(7/18) 4807527031003638 a001 24157817/9349*228826127^(3/4) 4807527031003638 a001 32951280099/9349*33385282^(5/12) 4807527031003638 a001 20365011074/9349*33385282^(4/9) 4807527031003638 a001 24157817/9349*87403803^(15/19) 4807527031003638 a001 7778742049/9349*33385282^(1/2) 4807527031003639 a001 2971215073/9349*33385282^(5/9) 4807527031003639 a001 1836311903/9349*33385282^(7/12) 4807527031003639 a001 1134903170/9349*33385282^(11/18) 4807527031003639 a001 433494437/9349*33385282^(2/3) 4807527031003639 a001 102334155/9349*33385282^(3/4) 4807527031003639 a001 165580141/9349*33385282^(13/18) 4807527031003640 a001 6557470319842/9349*12752043^(2/17) 4807527031003640 a001 63245986/9349*33385282^(7/9) 4807527031003641 a001 2504730781961/9349*12752043^(3/17) 4807527031003641 a001 24157817/9349*33385282^(5/6) 4807527031003643 a001 956722026041/9349*12752043^(4/17) 4807527031003645 a001 365435296162/9349*12752043^(5/17) 4807527031003647 a001 139583862445/9349*12752043^(6/17) 4807527031003647 a001 4181/20633239*(1/2+1/2*5^(1/2))^64 4807527031003648 a001 9227465/9349*(1/2+1/2*5^(1/2))^32 4807527031003648 a001 9227465/9349*23725150497407^(1/2) 4807527031003648 a001 9227465/9349*505019158607^(4/7) 4807527031003648 a001 9227465/9349*73681302247^(8/13) 4807527031003648 a001 9227465/9349*10749957122^(2/3) 4807527031003648 a001 9227465/9349*4106118243^(16/23) 4807527031003648 a001 9227465/9349*1568397607^(8/11) 4807527031003648 a001 9227465/9349*599074578^(16/21) 4807527031003648 a001 9227465/9349*228826127^(4/5) 4807527031003648 a001 9227465/9349*87403803^(16/19) 4807527031003648 a001 53316291173/9349*12752043^(7/17) 4807527031003650 a001 20365011074/9349*12752043^(8/17) 4807527031003651 a001 12586269025/9349*12752043^(1/2) 4807527031003651 a001 9227465/9349*33385282^(8/9) 4807527031003652 a001 7778742049/9349*12752043^(9/17) 4807527031003654 a001 2971215073/9349*12752043^(10/17) 4807527031003655 a001 1134903170/9349*12752043^(11/17) 4807527031003657 a001 433494437/9349*12752043^(12/17) 4807527031003659 a001 165580141/9349*12752043^(13/17) 4807527031003661 a001 63245986/9349*12752043^(14/17) 4807527031003662 a001 6557470319842/9349*4870847^(1/8) 4807527031003664 a001 24157817/9349*12752043^(15/17) 4807527031003665 a001 27416783407259402/5702887 4807527031003674 a001 2504730781961/9349*4870847^(3/16) 4807527031003675 a001 9227465/9349*12752043^(16/17) 4807527031003687 a001 956722026041/9349*4870847^(1/4) 4807527031003700 a001 365435296162/9349*4870847^(5/16) 4807527031003712 a001 139583862445/9349*4870847^(3/8) 4807527031003713 a001 4181/7881196*(1/2+1/2*5^(1/2))^62 4807527031003714 a001 3524578/9349*45537549124^(2/3) 4807527031003714 a001 3524578/9349*(1/2+1/2*5^(1/2))^34 4807527031003714 a001 3524578/9349*10749957122^(17/24) 4807527031003714 a001 3524578/9349*4106118243^(17/23) 4807527031003714 a001 3524578/9349*1568397607^(17/22) 4807527031003714 a001 3524578/9349*599074578^(17/21) 4807527031003714 a001 3524578/9349*228826127^(17/20) 4807527031003714 a001 3524578/9349*87403803^(17/19) 4807527031003718 a001 3524578/9349*33385282^(17/18) 4807527031003725 a001 53316291173/9349*4870847^(7/16) 4807527031003738 a001 20365011074/9349*4870847^(1/2) 4807527031003750 a001 7778742049/9349*4870847^(9/16) 4807527031003763 a001 2971215073/9349*4870847^(5/8) 4807527031003775 a001 10610209857723/9349*1860498^(1/10) 4807527031003776 a001 1134903170/9349*4870847^(11/16) 4807527031003788 a001 433494437/9349*4870847^(3/4) 4807527031003801 a001 165580141/9349*4870847^(13/16) 4807527031003814 a001 63245986/9349*4870847^(7/8) 4807527031003821 a001 6557470319842/9349*1860498^(2/15) 4807527031003828 a001 24157817/9349*4870847^(15/16) 4807527031003838 a001 10472279399378941/2178309 4807527031003868 a001 4052739537881/9349*1860498^(1/6) 4807527031003914 a001 2504730781961/9349*1860498^(1/5) 4807527031004007 a001 956722026041/9349*1860498^(4/15) 4807527031004053 a001 591286729879/9349*1860498^(3/10) 4807527031004099 a001 365435296162/9349*1860498^(1/3) 4807527031004166 a001 4181/3010349*14662949395604^(20/21) 4807527031004166 a001 4181/3010349*(1/2+1/2*5^(1/2))^60 4807527031004167 a001 1346269/9349*141422324^(12/13) 4807527031004167 a001 1346269/9349*2537720636^(4/5) 4807527031004167 a001 1346269/9349*45537549124^(12/17) 4807527031004167 a001 1346269/9349*14662949395604^(4/7) 4807527031004167 a001 1346269/9349*(1/2+1/2*5^(1/2))^36 4807527031004167 a001 1346269/9349*505019158607^(9/14) 4807527031004167 a001 1346269/9349*192900153618^(2/3) 4807527031004167 a001 1346269/9349*73681302247^(9/13) 4807527031004167 a001 1346269/9349*10749957122^(3/4) 4807527031004167 a001 1346269/9349*4106118243^(18/23) 4807527031004167 a001 1346269/9349*1568397607^(9/11) 4807527031004167 a001 1346269/9349*599074578^(6/7) 4807527031004167 a001 1346269/9349*228826127^(9/10) 4807527031004167 a001 1346269/9349*87403803^(18/19) 4807527031004192 a001 139583862445/9349*1860498^(2/5) 4807527031004284 a001 53316291173/9349*1860498^(7/15) 4807527031004331 a001 32951280099/9349*1860498^(1/2) 4807527031004377 a001 20365011074/9349*1860498^(8/15) 4807527031004470 a001 7778742049/9349*1860498^(3/5) 4807527031004562 a001 2971215073/9349*1860498^(2/3) 4807527031004608 a001 1836311903/9349*1860498^(7/10) 4807527031004655 a001 1134903170/9349*1860498^(11/15) 4807527031004747 a001 433494437/9349*1860498^(4/5) 4807527031004794 a001 267914296/9349*1860498^(5/6) 4807527031004840 a001 165580141/9349*1860498^(13/15) 4807527031004886 a001 102334155/9349*1860498^(9/10) 4807527031004933 a001 63245986/9349*1860498^(14/15) 4807527031004996 a001 6557470319842/9349*710647^(1/7) 4807527031005024 a001 4000054790877421/832040 4807527031005676 a001 2504730781961/9349*710647^(3/14) 4807527031006016 a001 1548008755920/9349*710647^(1/4) 4807527031006356 a001 956722026041/9349*710647^(2/7) 4807527031007036 a001 365435296162/9349*710647^(5/14) 4807527031007272 a001 4181/1149851*(1/2+1/2*5^(1/2))^58 4807527031007272 a001 514229/9349*817138163596^(2/3) 4807527031007272 a001 514229/9349*(1/2+1/2*5^(1/2))^38 4807527031007272 a001 514229/9349*10749957122^(19/24) 4807527031007272 a001 514229/9349*4106118243^(19/23) 4807527031007272 a001 514229/9349*1568397607^(19/22) 4807527031007272 a001 514229/9349*599074578^(19/21) 4807527031007272 a001 514229/9349*228826127^(19/20) 4807527031007716 a001 139583862445/9349*710647^(3/7) 4807527031008396 a001 53316291173/9349*710647^(1/2) 4807527031009076 a001 20365011074/9349*710647^(4/7) 4807527031009756 a001 7778742049/9349*710647^(9/14) 4807527031010436 a001 2971215073/9349*710647^(5/7) 4807527031010776 a001 1836311903/9349*710647^(3/4) 4807527031011116 a001 1134903170/9349*710647^(11/14) 4807527031011796 a001 433494437/9349*710647^(6/7) 4807527031012476 a001 165580141/9349*710647^(13/14) 4807527031013155 a001 1527884973253322/317811 4807527031013674 a001 6557470319842/9349*271443^(2/13) 4807527031018693 a001 2504730781961/9349*271443^(3/13) 4807527031023712 a001 956722026041/9349*271443^(4/13) 4807527031028558 a001 4181/439204*14662949395604^(8/9) 4807527031028558 a001 4181/439204*(1/2+1/2*5^(1/2))^56 4807527031028559 a001 196418/9349*2537720636^(8/9) 4807527031028559 a001 196418/9349*312119004989^(8/11) 4807527031028559 a001 196418/9349*(1/2+1/2*5^(1/2))^40 4807527031028559 a001 196418/9349*23725150497407^(5/8) 4807527031028559 a001 196418/9349*73681302247^(10/13) 4807527031028559 a001 196418/9349*28143753123^(4/5) 4807527031028559 a001 196418/9349*10749957122^(5/6) 4807527031028559 a001 196418/9349*4106118243^(20/23) 4807527031028559 a001 196418/9349*1568397607^(10/11) 4807527031028559 a001 196418/9349*599074578^(20/21) 4807527031028731 a001 365435296162/9349*271443^(5/13) 4807527031033751 a001 139583862445/9349*271443^(6/13) 4807527031036260 a001 86267571272/9349*271443^(1/2) 4807527031038770 a001 53316291173/9349*271443^(7/13) 4807527031043789 a001 20365011074/9349*271443^(8/13) 4807527031048808 a001 7778742049/9349*271443^(9/13) 4807527031053827 a001 2971215073/9349*271443^(10/13) 4807527031058846 a001 1134903170/9349*271443^(11/13) 4807527031059538 a001 10610209857723/9349*103682^(1/8) 4807527031063865 a001 433494437/9349*271443^(12/13) 4807527031068883 a001 583600128882545/121393 4807527031078172 a001 6557470319842/9349*103682^(1/6) 4807527031096806 a001 4052739537881/9349*103682^(5/24) 4807527031115440 a001 2504730781961/9349*103682^(1/4) 4807527031134074 a001 1548008755920/9349*103682^(7/24) 4807527031152707 a001 956722026041/9349*103682^(1/3) 4807527031171341 a001 591286729879/9349*103682^(3/8) 4807527031174456 a001 4181/167761*14662949395604^(6/7) 4807527031174456 a001 4181/167761*(1/2+1/2*5^(1/2))^54 4807527031174457 a001 75025/9349*2537720636^(14/15) 4807527031174457 a001 75025/9349*17393796001^(6/7) 4807527031174457 a001 75025/9349*45537549124^(14/17) 4807527031174457 a001 75025/9349*817138163596^(14/19) 4807527031174457 a001 75025/9349*14662949395604^(2/3) 4807527031174457 a001 75025/9349*(1/2+1/2*5^(1/2))^42 4807527031174457 a001 75025/9349*505019158607^(3/4) 4807527031174457 a001 75025/9349*192900153618^(7/9) 4807527031174457 a001 75025/9349*10749957122^(7/8) 4807527031174457 a001 75025/9349*4106118243^(21/23) 4807527031174457 a001 75025/9349*1568397607^(21/22) 4807527031189975 a001 365435296162/9349*103682^(5/12) 4807527031208609 a001 225851433717/9349*103682^(11/24) 4807527031227243 a001 139583862445/9349*103682^(1/2) 4807527031245877 a001 86267571272/9349*103682^(13/24) 4807527031264511 a001 53316291173/9349*103682^(7/12) 4807527031283145 a001 32951280099/9349*103682^(5/8) 4807527031301779 a001 20365011074/9349*103682^(2/3) 4807527031320413 a001 12586269025/9349*103682^(17/24) 4807527031339046 a001 7778742049/9349*103682^(3/4) 4807527031357680 a001 4807526976/9349*103682^(19/24) 4807527031376314 a001 2971215073/9349*103682^(5/6) 4807527031394948 a001 1836311903/9349*103682^(7/8) 4807527031413582 a001 1134903170/9349*103682^(11/12) 4807527031421625 a001 10610209857723/9349*39603^(3/22) 4807527031432216 a001 701408733/9349*103682^(23/24) 4807527031450849 a001 222915413394313/46368 4807527031560954 a001 6557470319842/9349*39603^(2/11) 4807527031700283 a001 4052739537881/9349*39603^(5/22) 4807527031839613 a001 2504730781961/9349*39603^(3/11) 4807527031978942 a001 1548008755920/9349*39603^(7/22) 4807527032025384 a001 3278735159921/12238*5778^(1/3) 4807527032118272 a001 956722026041/9349*39603^(4/11) 4807527032174456 a001 4181/64079*(1/2+1/2*5^(1/2))^52 4807527032174456 a001 4181/64079*23725150497407^(13/16) 4807527032174456 a001 4181/64079*505019158607^(13/14) 4807527032174457 a001 28657/9349*312119004989^(4/5) 4807527032174457 a001 28657/9349*(1/2+1/2*5^(1/2))^44 4807527032174457 a001 28657/9349*23725150497407^(11/16) 4807527032174457 a001 28657/9349*73681302247^(11/13) 4807527032174457 a001 28657/9349*10749957122^(11/12) 4807527032174457 a001 28657/9349*4106118243^(22/23) 4807527032257601 a001 591286729879/9349*39603^(9/22) 4807527032396931 a001 365435296162/9349*39603^(5/11) 4807527032536260 a001 225851433717/9349*39603^(1/2) 4807527032675589 a001 139583862445/9349*39603^(6/11) 4807527032814919 a001 86267571272/9349*39603^(13/22) 4807527032954248 a001 53316291173/9349*39603^(7/11) 4807527033093578 a001 32951280099/9349*39603^(15/22) 4807527033171360 a001 10610209857723/64079*5778^(7/18) 4807527033232907 a001 20365011074/9349*39603^(8/11) 4807527033372237 a001 12586269025/9349*39603^(17/22) 4807527033511566 a001 7778742049/9349*39603^(9/11) 4807527033650896 a001 4807526976/9349*39603^(19/22) 4807527033790225 a001 2971215073/9349*39603^(10/11) 4807527033929554 a001 1836311903/9349*39603^(21/22) 4807527034068883 a001 85146111300394/17711 4807527034155064 a001 10610209857723/9349*15127^(3/20) 4807527034991251 a001 591286729879/15127*5778^(5/9) 4807527035205540 a001 6557470319842/9349*15127^(1/5) 4807527036256016 a001 4052739537881/9349*15127^(1/4) 4807527036935369 a001 4052739537881/39603*5778^(4/9) 4807527037306492 a001 2504730781961/9349*15127^(3/10) 4807527038356968 a001 1548008755920/9349*15127^(7/20) 4807527039028558 a001 4181/24476*312119004989^(10/11) 4807527039028558 a001 4181/24476*(1/2+1/2*5^(1/2))^50 4807527039028558 a001 4181/24476*3461452808002^(5/6) 4807527039028559 a001 10946/9349*(1/2+1/2*5^(1/2))^46 4807527039028559 a001 10946/9349*10749957122^(23/24) 4807527039407444 a001 956722026041/9349*15127^(2/5) 4807527039553403 a001 225749145909/2206*5778^(4/9) 4807527040025462 a001 4052739537881/24476*5778^(7/18) 4807527040457920 a001 591286729879/9349*15127^(9/20) 4807527041171437 a001 6557470319842/64079*5778^(4/9) 4807527041508396 a001 365435296162/9349*15127^(1/2) 4807527042529508 a001 20365011074/3571*3571^(14/17) 4807527042558872 a001 225851433717/9349*15127^(11/20) 4807527042991328 a001 365435296162/15127*5778^(11/18) 4807527043609348 a001 139583862445/9349*15127^(3/5) 4807527044659824 a001 86267571272/9349*15127^(13/20) 4807527044935446 a001 2504730781961/39603*5778^(1/2) 4807527045710300 a001 53316291173/9349*15127^(7/10) 4807527046760776 a001 32951280099/9349*15127^(3/4) 4807527047553480 a001 3278735159921/51841*5778^(1/2) 4807527047811252 a001 20365011074/9349*15127^(4/5) 4807527048025539 a001 2504730781961/24476*5778^(4/9) 4807527048171514 a001 10610209857723/167761*5778^(1/2) 4807527048861728 a001 12586269025/9349*15127^(17/20) 4807527049171514 a001 4052739537881/64079*5778^(1/2) 4807527049912204 a001 7778742049/9349*15127^(9/10) 4807527050962680 a001 4807526976/9349*15127^(19/20) 4807527050991405 a001 32264490531/2161*5778^(2/3) 4807527052013155 a001 32522920506869/6765 4807527052935523 a001 516002918640/13201*5778^(5/9) 4807527055003868 a001 10610209857723/9349*5778^(1/6) 4807527055553557 a001 4052739537881/103682*5778^(5/9) 4807527055935523 a001 3536736619241/90481*5778^(5/9) 4807527056025616 a001 387002188980/6119*5778^(1/2) 4807527056171591 a001 6557470319842/167761*5778^(5/9) 4807527057171591 a001 2504730781961/64079*5778^(5/9) 4807527058991482 a001 139583862445/15127*5778^(13/18) 4807527059810027 r009 Im(z^3+c),c=-29/52+11/23*I,n=64 4807527060935600 a001 956722026041/39603*5778^(11/18) 4807527063003945 a001 6557470319842/9349*5778^(2/9) 4807527063553634 a001 2504730781961/103682*5778^(11/18) 4807527063935600 a001 6557470319842/271443*5778^(11/18) 4807527064025693 a001 956722026041/24476*5778^(5/9) 4807527064025770 a001 10610209857723/439204*5778^(11/18) 4807527064171668 a001 4052739537881/167761*5778^(11/18) 4807527064706011 a001 32951280099/3571*3571^(13/17) 4807527065171668 a001 1548008755920/64079*5778^(11/18) 4807527066991559 a001 86267571272/15127*5778^(7/9) 4807527068935677 a001 591286729879/39603*5778^(2/3) 4807527069304891 m001 (ReciprocalLucas+Salem)/(GAMMA(13/24)-Niven) 4807527069334975 l006 ln(4731/4964) 4807527071004022 a001 4052739537881/9349*5778^(5/18) 4807527071553711 a001 774004377960/51841*5778^(2/3) 4807527071935677 a001 4052739537881/271443*5778^(2/3) 4807527071991405 a001 1515744265389/101521*5778^(2/3) 4807527072025770 a001 591286729879/24476*5778^(11/18) 4807527072025847 a001 3278735159921/219602*5778^(2/3) 4807527072171745 a001 2504730781961/167761*5778^(2/3) 4807527073171745 a001 956722026041/64079*5778^(2/3) 4807527073366961 r009 Re(z^3+c),c=-31/78+41/59*I,n=58 4807527074991637 a001 53316291173/15127*5778^(5/6) 4807527076935754 a001 365435296162/39603*5778^(13/18) 4807527077231408 m002 -5+6/Pi^3-Tanh[Pi]/Pi^6 4807527078748639 a001 4052739537881/5778*2207^(1/4) 4807527079004099 a001 2504730781961/9349*5778^(1/3) 4807527079553789 a001 956722026041/103682*5778^(13/18) 4807527079935755 a001 2504730781961/271443*5778^(13/18) 4807527079991483 a001 6557470319842/710647*5778^(13/18) 4807527080004638 a001 10610209857723/1149851*5778^(13/18) 4807527080025847 a001 182717648081/12238*5778^(2/3) 4807527080025925 a001 4052739537881/439204*5778^(13/18) 4807527080171823 a001 140728068720/15251*5778^(13/18) 4807527081171823 a001 591286729879/64079*5778^(13/18) 4807527082991714 a001 32951280099/15127*5778^(8/9) 4807527084935832 a001 75283811239/13201*5778^(7/9) 4807527086007273 a001 4181/9349*45537549124^(16/17) 4807527086007273 a001 4181/9349*14662949395604^(16/21) 4807527086007273 a001 4181/9349*(1/2+1/2*5^(1/2))^48 4807527086007273 a001 4181/9349*192900153618^(8/9) 4807527086007273 a001 4181/9349*73681302247^(12/13) 4807527086882514 a001 53316291173/3571*3571^(12/17) 4807527087004176 a001 1548008755920/9349*5778^(7/18) 4807527087553866 a001 591286729879/103682*5778^(7/9) 4807527087935832 a001 516002918640/90481*5778^(7/9) 4807527087991560 a001 4052739537881/710647*5778^(7/9) 4807527087999690 a001 3536736619241/620166*5778^(7/9) 4807527088004715 a001 6557470319842/1149851*5778^(7/9) 4807527088025925 a001 7787980473/844*5778^(13/18) 4807527088026002 a001 2504730781961/439204*5778^(7/9) 4807527088171900 a001 956722026041/167761*5778^(7/9) 4807527089171900 a001 365435296162/64079*5778^(7/9) 4807527090991791 a001 20365011074/15127*5778^(17/18) 4807527092935909 a001 139583862445/39603*5778^(5/6) 4807527095004254 a001 956722026041/9349*5778^(4/9) 4807527095553943 a001 182717648081/51841*5778^(5/6) 4807527095935909 a001 956722026041/271443*5778^(5/6) 4807527095991637 a001 2504730781961/710647*5778^(5/6) 4807527095999768 a001 3278735159921/930249*5778^(5/6) 4807527096001687 a001 10610209857723/3010349*5778^(5/6) 4807527096004793 a001 4052739537881/1149851*5778^(5/6) 4807527096026002 a001 139583862445/24476*5778^(7/9) 4807527096026079 a001 387002188980/109801*5778^(5/6) 4807527096171977 a001 591286729879/167761*5778^(5/6) 4807527096176204 l006 ln(5043/8156) 4807527097171977 a001 225851433717/64079*5778^(5/6) 4807527098991873 a001 12422650023795/2584 4807527100935986 a001 86267571272/39603*5778^(8/9) 4807527103004331 a001 591286729879/9349*5778^(1/2) 4807527103554020 a001 225851433717/103682*5778^(8/9) 4807527103685149 a007 Real Root Of -523*x^4+696*x^3+160*x^2+249*x+188 4807527103935986 a001 591286729879/271443*5778^(8/9) 4807527103991714 a001 1548008755920/710647*5778^(8/9) 4807527103999845 a001 4052739537881/1860498*5778^(8/9) 4807527104001031 a001 2178309*5778^(8/9) 4807527104001764 a001 6557470319842/3010349*5778^(8/9) 4807527104004870 a001 2504730781961/1149851*5778^(8/9) 4807527104026079 a001 21566892818/6119*5778^(5/6) 4807527104026156 a001 956722026041/439204*5778^(8/9) 4807527104172054 a001 365435296162/167761*5778^(8/9) 4807527105172054 a001 139583862445/64079*5778^(8/9) 4807527106057495 a001 341/2*10946^(41/48) 4807527108936063 a001 53316291173/39603*5778^(17/18) 4807527109059017 a001 86267571272/3571*3571^(11/17) 4807527110880036 r005 Re(z^2+c),c=11/58+12/35*I,n=58 4807527111004408 a001 365435296162/9349*5778^(5/9) 4807527111554097 a001 139583862445/103682*5778^(17/18) 4807527111936064 a001 365435296162/271443*5778^(17/18) 4807527111991792 a001 956722026041/710647*5778^(17/18) 4807527111999922 a001 2504730781961/1860498*5778^(17/18) 4807527112001108 a001 6557470319842/4870847*5778^(17/18) 4807527112001389 a001 10610209857723/7881196*5778^(17/18) 4807527112001842 a001 1346269*5778^(17/18) 4807527112004947 a001 1548008755920/1149851*5778^(17/18) 4807527112026156 a001 53316291173/24476*5778^(8/9) 4807527112026233 a001 591286729879/439204*5778^(17/18) 4807527112172132 a001 225851433717/167761*5778^(17/18) 4807527113172132 a001 86267571272/64079*5778^(17/18) 4807527116845727 r005 Im(z^2+c),c=3/32+6/11*I,n=30 4807527116936145 a001 12422650070163/2584 4807527119004486 a001 225851433717/9349*5778^(11/18) 4807527119554179 a001 1552831259616/323 4807527119936145 a001 12422650077915/2584 4807527119991873 a001 12422650078059/2584 4807527120001160 a001 12422650078083/2584 4807527120001547 a001 3105662519521/646 4807527120001934 a001 12422650078085/2584 4807527120005030 a001 12422650078093/2584 4807527120026234 a001 32951280099/24476*5778^(17/18) 4807527120172213 a001 12422650078525/2584 4807527121172213 a001 12422650081109/2584 4807527127004563 a001 139583862445/9349*5778^(2/3) 4807527131235521 a001 139583862445/3571*3571^(10/17) 4807527135004640 a001 86267571272/9349*5778^(13/18) 4807527140436147 a001 2504730781961/5778*2207^(5/16) 4807527143004717 a001 53316291173/9349*5778^(7/9) 4807527148266721 a001 7778742049/1364*1364^(14/15) 4807527149214763 m005 (7/24+1/6*5^(1/2))/(10/11*gamma+6/7) 4807527151004795 a001 32951280099/9349*5778^(5/6) 4807527152977711 m001 (arctan(1/2)-Khinchin)/(MertensB1-Sarnak) 4807527153412024 a001 225851433717/3571*3571^(9/17) 4807527159004872 a001 20365011074/9349*5778^(8/9) 4807527164314974 r005 Im(z^2+c),c=-3/25+49/52*I,n=3 4807527167004949 a001 12586269025/9349*5778^(17/18) 4807527167954111 r009 Im(z^3+c),c=-39/86+1/2*I,n=51 4807527170306198 r005 Re(z^2+c),c=-37/56+9/40*I,n=47 4807527175005030 a001 12422650220213/2584 4807527175174907 m006 (3/5*Pi^2+5/6)/(3/5*exp(Pi)+1/6) 4807527175588528 a001 365435296162/3571*3571^(8/17) 4807527180733831 a001 10610209857723/3571*1364^(1/15) 4807527194521004 r009 Im(z^3+c),c=-1/19+36/61*I,n=18 4807527197765031 a001 591286729879/3571*3571^(7/17) 4807527201740511 a001 1515744265389/2161*2207^(1/4) 4807527202123656 a001 86000486440/321*2207^(3/8) 4807527208999134 a001 1597/5778*14662949395604^(7/9) 4807527208999134 a001 1597/5778*(1/2+1/2*5^(1/2))^49 4807527208999134 a001 1597/5778*505019158607^(7/8) 4807527208999159 a001 2584/3571*(1/2+1/2*5^(1/2))^47 4807527209955317 m001 (exp(-1/2*Pi)+5)/(-GAMMA(1/12)+2/3) 4807527211033463 r005 Re(z^2+c),c=-31/54+10/41*I,n=10 4807527211603939 s001 sum(exp(-2*Pi/3)^n*A289037[n],n=1..infinity) 4807527216066161 a001 10610209857723/9349*2207^(3/16) 4807527219701654 m001 (Si(Pi)-gamma)/(-sin(1/5*Pi)+FellerTornier) 4807527219941535 a001 956722026041/3571*3571^(6/17) 4807527240794927 r002 30th iterates of z^2 + 4807527242118039 a001 1548008755920/3571*3571^(5/17) 4807527249577344 r009 Re(z^3+c),c=-1/26+41/53*I,n=52 4807527260153622 r005 Im(z^2+c),c=-4/5+47/109*I,n=4 4807527263428020 a001 6557470319842/15127*2207^(5/16) 4807527263811166 a001 956722026041/5778*2207^(7/16) 4807527264294543 a001 2504730781961/3571*3571^(4/17) 4807527266106415 r002 16th iterates of z^2 + 4807527273666278 a007 Real Root Of 524*x^4+332*x^3-438*x^2-895*x+44 4807527277753671 a001 6557470319842/9349*2207^(1/4) 4807527284677444 r005 Im(z^2+c),c=-3/86+17/27*I,n=10 4807527286471047 a001 4052739537881/3571*3571^(3/17) 4807527292462464 a001 10610209857723/24476*2207^(5/16) 4807527297996890 a001 20100271632925/4181 4807527300891848 a001 2971215073/3571*9349^(18/19) 4807527303786776 a001 4807526976/3571*9349^(17/19) 4807527304811700 a007 Real Root Of 116*x^4+727*x^3+665*x^2-656*x+291 4807527306681704 a001 7778742049/3571*9349^(16/19) 4807527308647551 a001 6557470319842/3571*3571^(2/17) 4807527309576633 a001 12586269025/3571*9349^(15/19) 4807527312332637 m001 Bloch^Zeta(1,2)-FeigenbaumAlpha 4807527312471561 a001 20365011074/3571*9349^(14/19) 4807527315366490 a001 32951280099/3571*9349^(13/19) 4807527318261418 a001 53316291173/3571*9349^(12/19) 4807527318275758 r002 30th iterates of z^2 + 4807527320533448 a001 1144206275/124*1364^(13/15) 4807527321156347 a001 86267571272/3571*9349^(11/19) 4807527322163586 r002 43th iterates of z^2 + 4807527324051275 a001 139583862445/3571*9349^(10/19) 4807527325115531 a001 4052739537881/15127*2207^(3/8) 4807527325498676 a001 591286729879/5778*2207^(1/2) 4807527326946203 a001 225851433717/3571*9349^(9/19) 4807527329841132 a001 365435296162/3571*9349^(8/19) 4807527330824055 a001 10610209857723/3571*3571^(1/17) 4807527330847731 r009 Im(z^3+c),c=-11/74+18/31*I,n=31 4807527331991009 a001 1597/15127*817138163596^(17/19) 4807527331991009 a001 1597/15127*14662949395604^(17/21) 4807527331991009 a001 1597/15127*(1/2+1/2*5^(1/2))^51 4807527331991009 a001 1597/15127*192900153618^(17/18) 4807527331991038 a001 6765/3571*45537549124^(15/17) 4807527331991038 a001 6765/3571*312119004989^(9/11) 4807527331991038 a001 6765/3571*14662949395604^(5/7) 4807527331991038 a001 6765/3571*(1/2+1/2*5^(1/2))^45 4807527331991038 a001 6765/3571*192900153618^(5/6) 4807527331991038 a001 6765/3571*28143753123^(9/10) 4807527331991038 a001 6765/3571*10749957122^(15/16) 4807527332736060 a001 591286729879/3571*9349^(7/19) 4807527335630989 a001 956722026041/3571*9349^(6/19) 4807527338525917 a001 1548008755920/3571*9349^(5/19) 4807527339441181 a001 4052739537881/9349*2207^(5/16) 4807527341420846 a001 2504730781961/3571*9349^(4/19) 4807527343059804 a001 3536736619241/13201*2207^(3/8) 4807527344315774 a001 4052739537881/3571*9349^(3/19) 4807527344975607 a001 52623194318103/10946 4807527345357776 a001 1134903170/3571*24476^(20/21) 4807527345739915 a001 1836311903/3571*24476^(19/21) 4807527346122054 a001 2971215073/3571*24476^(6/7) 4807527346504193 a001 4807526976/3571*24476^(17/21) 4807527346886333 a001 7778742049/3571*24476^(16/21) 4807527347210703 a001 6557470319842/3571*9349^(2/19) 4807527347268472 a001 12586269025/3571*24476^(5/7) 4807527347650611 a001 20365011074/3571*24476^(2/3) 4807527348032750 a001 32951280099/3571*24476^(13/21) 4807527348414889 a001 53316291173/3571*24476^(4/7) 4807527348797028 a001 86267571272/3571*24476^(11/21) 4807527349179168 a001 139583862445/3571*24476^(10/21) 4807527349561307 a001 225851433717/3571*24476^(3/7) 4807527349935282 a001 1597/39603*(1/2+1/2*5^(1/2))^53 4807527349935312 a001 17711/3571*(1/2+1/2*5^(1/2))^43 4807527349943446 a001 365435296162/3571*24476^(8/21) 4807527350105631 a001 10610209857723/3571*9349^(1/19) 4807527350325585 a001 591286729879/3571*24476^(1/3) 4807527350707724 a001 956722026041/3571*24476^(2/7) 4807527351089864 a001 1548008755920/3571*24476^(5/21) 4807527351472003 a001 2504730781961/3571*24476^(4/21) 4807527351829710 a001 137769311321384/28657 4807527351854142 a001 4052739537881/3571*24476^(1/7) 4807527351880644 a001 433494437/3571*64079^(22/23) 4807527351931550 a001 701408733/3571*64079^(21/23) 4807527351982455 a001 1134903170/3571*64079^(20/23) 4807527352033360 a001 1836311903/3571*64079^(19/23) 4807527352084265 a001 2971215073/3571*64079^(18/23) 4807527352135171 a001 4807526976/3571*64079^(17/23) 4807527352186076 a001 7778742049/3571*64079^(16/23) 4807527352236281 a001 6557470319842/3571*24476^(2/21) 4807527352236981 a001 12586269025/3571*64079^(15/23) 4807527352287886 a001 20365011074/3571*64079^(14/23) 4807527352338791 a001 32951280099/3571*64079^(13/23) 4807527352389697 a001 53316291173/3571*64079^(12/23) 4807527352440602 a001 86267571272/3571*64079^(11/23) 4807527352491507 a001 139583862445/3571*64079^(10/23) 4807527352542412 a001 225851433717/3571*64079^(9/23) 4807527352553316 a001 1597/103682*(1/2+1/2*5^(1/2))^55 4807527352553316 a001 1597/103682*3461452808002^(11/12) 4807527352553346 a001 46368/3571*(1/2+1/2*5^(1/2))^41 4807527352593318 a001 365435296162/3571*64079^(8/23) 4807527352618420 a001 10610209857723/3571*24476^(1/21) 4807527352644223 a001 591286729879/3571*64079^(7/23) 4807527352695128 a001 956722026041/3571*64079^(6/23) 4807527352746033 a001 1548008755920/3571*64079^(5/23) 4807527352796939 a001 2504730781961/3571*64079^(4/23) 4807527352829710 a001 360684739646049/75025 4807527352847844 a001 4052739537881/3571*64079^(3/23) 4807527352863903 a001 1134903170/3571*167761^(4/5) 4807527352898067 a001 12586269025/3571*167761^(3/5) 4807527352898749 a001 6557470319842/3571*64079^(2/23) 4807527352932231 a001 139583862445/3571*167761^(2/5) 4807527352935282 a001 1597/271443*14662949395604^(19/21) 4807527352935282 a001 1597/271443*(1/2+1/2*5^(1/2))^57 4807527352935312 a001 121393/3571*2537720636^(13/15) 4807527352935312 a001 121393/3571*45537549124^(13/17) 4807527352935312 a001 121393/3571*14662949395604^(13/21) 4807527352935312 a001 121393/3571*(1/2+1/2*5^(1/2))^39 4807527352935312 a001 121393/3571*192900153618^(13/18) 4807527352935312 a001 121393/3571*73681302247^(3/4) 4807527352935312 a001 121393/3571*10749957122^(13/16) 4807527352935312 a001 121393/3571*599074578^(13/14) 4807527352949654 a001 10610209857723/3571*64079^(1/23) 4807527352966395 a001 1548008755920/3571*167761^(1/5) 4807527352975608 a001 944284907616763/196418 4807527352978406 a001 165580141/3571*439204^(8/9) 4807527352981176 a001 701408733/3571*439204^(7/9) 4807527352983945 a001 2971215073/3571*439204^(2/3) 4807527352986714 a001 12586269025/3571*439204^(5/9) 4807527352989483 a001 53316291173/3571*439204^(4/9) 4807527352991011 a001 1597/710647*(1/2+1/2*5^(1/2))^59 4807527352991040 a001 317811/3571*(1/2+1/2*5^(1/2))^37 4807527352992252 a001 225851433717/3571*439204^(1/3) 4807527352995021 a001 956722026041/3571*439204^(2/9) 4807527352996894 a001 2472169983204240/514229 4807527352997790 a001 4052739537881/3571*439204^(1/9) 4807527352999141 a001 1597/1860498*(1/2+1/2*5^(1/2))^61 4807527352999171 a001 832040/3571*2537720636^(7/9) 4807527352999171 a001 832040/3571*17393796001^(5/7) 4807527352999171 a001 832040/3571*312119004989^(7/11) 4807527352999171 a001 832040/3571*14662949395604^(5/9) 4807527352999171 a001 832040/3571*(1/2+1/2*5^(1/2))^35 4807527352999171 a001 832040/3571*505019158607^(5/8) 4807527352999171 a001 832040/3571*28143753123^(7/10) 4807527352999171 a001 832040/3571*599074578^(5/6) 4807527352999171 a001 832040/3571*228826127^(7/8) 4807527353000327 a001 1597/4870847*(1/2+1/2*5^(1/2))^63 4807527353000357 a001 2178309/3571*141422324^(11/13) 4807527353000357 a001 2178309/3571*2537720636^(11/15) 4807527353000357 a001 2178309/3571*45537549124^(11/17) 4807527353000357 a001 2178309/3571*312119004989^(3/5) 4807527353000357 a001 2178309/3571*14662949395604^(11/21) 4807527353000357 a001 2178309/3571*(1/2+1/2*5^(1/2))^33 4807527353000357 a001 2178309/3571*192900153618^(11/18) 4807527353000357 a001 2178309/3571*10749957122^(11/16) 4807527353000357 a001 2178309/3571*1568397607^(3/4) 4807527353000357 a001 2178309/3571*599074578^(11/14) 4807527353000361 a001 2178309/3571*33385282^(11/12) 4807527353000453 a001 16944505142783631/3524578 4807527353000496 a001 39088169/3571*7881196^(9/11) 4807527353000500 a001 9227465/3571*7881196^(10/11) 4807527353000503 a001 165580141/3571*7881196^(8/11) 4807527353000508 a001 433494437/3571*7881196^(2/3) 4807527353000510 a001 701408733/3571*7881196^(7/11) 4807527353000517 a001 2971215073/3571*7881196^(6/11) 4807527353000524 a001 12586269025/3571*7881196^(5/11) 4807527353000530 a001 1597*(1/2+1/2*5^(1/2))^31 4807527353000530 a001 1597*9062201101803^(1/2) 4807527353000531 a001 53316291173/3571*7881196^(4/11) 4807527353000534 a001 86267571272/3571*7881196^(1/3) 4807527353000538 a001 225851433717/3571*7881196^(3/11) 4807527353000545 a001 956722026041/3571*7881196^(2/11) 4807527353000551 a001 102334155/3571*20633239^(5/7) 4807527353000552 a001 24157817/3571*20633239^(4/5) 4807527353000553 a001 4052739537881/3571*7881196^(1/11) 4807527353000553 a001 701408733/3571*20633239^(3/5) 4807527353000553 a001 1134903170/3571*20633239^(4/7) 4807527353000555 a001 12586269025/3571*20633239^(3/7) 4807527353000555 a001 20365011074/3571*20633239^(2/5) 4807527353000555 a001 14930352/3571*(1/2+1/2*5^(1/2))^29 4807527353000555 a001 14930352/3571*1322157322203^(1/2) 4807527353000556 a001 139583862445/3571*20633239^(2/7) 4807527353000557 a001 591286729879/3571*20633239^(1/5) 4807527353000558 a001 1548008755920/3571*20633239^(1/7) 4807527353000559 a001 39088169/3571*141422324^(9/13) 4807527353000559 a001 39088169/3571*2537720636^(3/5) 4807527353000559 a001 39088169/3571*45537549124^(9/17) 4807527353000559 a001 39088169/3571*817138163596^(9/19) 4807527353000559 a001 39088169/3571*14662949395604^(3/7) 4807527353000559 a001 39088169/3571*(1/2+1/2*5^(1/2))^27 4807527353000559 a001 39088169/3571*192900153618^(1/2) 4807527353000559 a001 39088169/3571*10749957122^(9/16) 4807527353000559 a001 39088169/3571*599074578^(9/14) 4807527353000559 a001 701408733/3571*141422324^(7/13) 4807527353000559 a001 165580141/3571*141422324^(8/13) 4807527353000559 a001 2971215073/3571*141422324^(6/13) 4807527353000559 a001 12586269025/3571*141422324^(5/13) 4807527353000559 a001 102334155/3571*2537720636^(5/9) 4807527353000559 a001 102334155/3571*312119004989^(5/11) 4807527353000559 a001 102334155/3571*(1/2+1/2*5^(1/2))^25 4807527353000559 a001 102334155/3571*3461452808002^(5/12) 4807527353000559 a001 102334155/3571*28143753123^(1/2) 4807527353000559 a001 32951280099/3571*141422324^(1/3) 4807527353000559 a001 53316291173/3571*141422324^(4/13) 4807527353000560 a001 225851433717/3571*141422324^(3/13) 4807527353000560 a001 956722026041/3571*141422324^(2/13) 4807527353000560 a001 102334155/3571*228826127^(5/8) 4807527353000560 a001 4052739537881/3571*141422324^(1/13) 4807527353000560 a001 267914296/3571*(1/2+1/2*5^(1/2))^23 4807527353000560 a001 267914296/3571*4106118243^(1/2) 4807527353000560 a001 701408733/3571*2537720636^(7/15) 4807527353000560 a001 701408733/3571*17393796001^(3/7) 4807527353000560 a001 701408733/3571*45537549124^(7/17) 4807527353000560 a001 701408733/3571*14662949395604^(1/3) 4807527353000560 a001 701408733/3571*(1/2+1/2*5^(1/2))^21 4807527353000560 a001 701408733/3571*192900153618^(7/18) 4807527353000560 a001 701408733/3571*10749957122^(7/16) 4807527353000560 a001 1836311903/3571*817138163596^(1/3) 4807527353000560 a001 1836311903/3571*(1/2+1/2*5^(1/2))^19 4807527353000560 a001 12586269025/3571*2537720636^(1/3) 4807527353000560 a001 53316291173/3571*2537720636^(4/15) 4807527353000560 a001 2971215073/3571*2537720636^(2/5) 4807527353000560 a001 139583862445/3571*2537720636^(2/9) 4807527353000560 a001 225851433717/3571*2537720636^(1/5) 4807527353000560 a001 956722026041/3571*2537720636^(2/15) 4807527353000560 a001 1548008755920/3571*2537720636^(1/9) 4807527353000560 a001 4052739537881/3571*2537720636^(1/15) 4807527353000560 a001 4807526976/3571*45537549124^(1/3) 4807527353000560 a001 4807526976/3571*(1/2+1/2*5^(1/2))^17 4807527353000560 a001 12586269025/3571*45537549124^(5/17) 4807527353000560 a001 12586269025/3571*312119004989^(3/11) 4807527353000560 a001 12586269025/3571*14662949395604^(5/21) 4807527353000560 a001 12586269025/3571*(1/2+1/2*5^(1/2))^15 4807527353000560 a001 12586269025/3571*192900153618^(5/18) 4807527353000560 a001 12586269025/3571*28143753123^(3/10) 4807527353000560 a001 591286729879/3571*17393796001^(1/7) 4807527353000560 a001 20365011074/3571*17393796001^(2/7) 4807527353000560 a001 32951280099/3571*(1/2+1/2*5^(1/2))^13 4807527353000560 a001 32951280099/3571*73681302247^(1/4) 4807527353000560 a001 225851433717/3571*45537549124^(3/17) 4807527353000560 a001 956722026041/3571*45537549124^(2/17) 4807527353000560 a001 86267571272/3571*312119004989^(1/5) 4807527353000560 a001 4052739537881/3571*45537549124^(1/17) 4807527353000560 a001 86267571272/3571*(1/2+1/2*5^(1/2))^11 4807527353000560 a001 225851433717/3571*(1/2+1/2*5^(1/2))^9 4807527353000560 a001 1548008755920/3571*312119004989^(1/11) 4807527353000560 a001 1548008755920/3571*(1/2+1/2*5^(1/2))^5 4807527353000560 a001 4052739537881/3571*(1/2+1/2*5^(1/2))^3 4807527353000560 a001 2504730781961/3571*(1/2+1/2*5^(1/2))^4 4807527353000560 a001 2504730781961/3571*23725150497407^(1/16) 4807527353000560 a001 225851433717/3571*192900153618^(1/6) 4807527353000560 a001 365435296162/3571*505019158607^(1/7) 4807527353000560 a001 139583862445/3571*312119004989^(2/11) 4807527353000560 a001 139583862445/3571*(1/2+1/2*5^(1/2))^10 4807527353000560 a001 2504730781961/3571*73681302247^(1/13) 4807527353000560 a001 365435296162/3571*73681302247^(2/13) 4807527353000560 a001 53316291173/3571*817138163596^(4/19) 4807527353000560 a001 53316291173/3571*14662949395604^(4/21) 4807527353000560 a001 53316291173/3571*(1/2+1/2*5^(1/2))^12 4807527353000560 a001 53316291173/3571*192900153618^(2/9) 4807527353000560 a001 53316291173/3571*73681302247^(3/13) 4807527353000560 a001 1548008755920/3571*28143753123^(1/10) 4807527353000560 a001 139583862445/3571*28143753123^(1/5) 4807527353000560 a001 6557470319842/3571*10749957122^(1/24) 4807527353000560 a001 20365011074/3571*14662949395604^(2/9) 4807527353000560 a001 20365011074/3571*(1/2+1/2*5^(1/2))^14 4807527353000560 a001 4052739537881/3571*10749957122^(1/16) 4807527353000560 a001 2504730781961/3571*10749957122^(1/12) 4807527353000560 a001 956722026041/3571*10749957122^(1/8) 4807527353000560 a001 12586269025/3571*10749957122^(5/16) 4807527353000560 a001 365435296162/3571*10749957122^(1/6) 4807527353000560 a001 225851433717/3571*10749957122^(3/16) 4807527353000560 a001 139583862445/3571*10749957122^(5/24) 4807527353000560 a001 53316291173/3571*10749957122^(1/4) 4807527353000560 a001 6557470319842/3571*4106118243^(1/23) 4807527353000560 a001 20365011074/3571*10749957122^(7/24) 4807527353000560 a001 7778742049/3571*(1/2+1/2*5^(1/2))^16 4807527353000560 a001 7778742049/3571*23725150497407^(1/4) 4807527353000560 a001 7778742049/3571*73681302247^(4/13) 4807527353000560 a001 2504730781961/3571*4106118243^(2/23) 4807527353000560 a001 7778742049/3571*10749957122^(1/3) 4807527353000560 a001 956722026041/3571*4106118243^(3/23) 4807527353000560 a001 365435296162/3571*4106118243^(4/23) 4807527353000560 a001 139583862445/3571*4106118243^(5/23) 4807527353000560 a001 53316291173/3571*4106118243^(6/23) 4807527353000560 a001 6557470319842/3571*1568397607^(1/22) 4807527353000560 a001 20365011074/3571*4106118243^(7/23) 4807527353000560 a001 2971215073/3571*45537549124^(6/17) 4807527353000560 a001 2971215073/3571*14662949395604^(2/7) 4807527353000560 a001 2971215073/3571*(1/2+1/2*5^(1/2))^18 4807527353000560 a001 2971215073/3571*192900153618^(1/3) 4807527353000560 a001 7778742049/3571*4106118243^(8/23) 4807527353000560 a001 2971215073/3571*10749957122^(3/8) 4807527353000560 a001 2504730781961/3571*1568397607^(1/11) 4807527353000560 a001 2971215073/3571*4106118243^(9/23) 4807527353000560 a001 956722026041/3571*1568397607^(3/22) 4807527353000560 a001 365435296162/3571*1568397607^(2/11) 4807527353000560 a001 1134903170/3571*2537720636^(4/9) 4807527353000560 a001 139583862445/3571*1568397607^(5/22) 4807527353000560 a001 86267571272/3571*1568397607^(1/4) 4807527353000560 a001 53316291173/3571*1568397607^(3/11) 4807527353000560 a001 20365011074/3571*1568397607^(7/22) 4807527353000560 a001 6557470319842/3571*599074578^(1/21) 4807527353000560 a001 7778742049/3571*1568397607^(4/11) 4807527353000560 a001 1134903170/3571*(1/2+1/2*5^(1/2))^20 4807527353000560 a001 1134903170/3571*23725150497407^(5/16) 4807527353000560 a001 1134903170/3571*505019158607^(5/14) 4807527353000560 a001 1134903170/3571*73681302247^(5/13) 4807527353000560 a001 1134903170/3571*28143753123^(2/5) 4807527353000560 a001 1134903170/3571*10749957122^(5/12) 4807527353000560 a001 1134903170/3571*4106118243^(10/23) 4807527353000560 a001 2971215073/3571*1568397607^(9/22) 4807527353000560 a001 4052739537881/3571*599074578^(1/14) 4807527353000560 a001 2504730781961/3571*599074578^(2/21) 4807527353000560 a001 1134903170/3571*1568397607^(5/11) 4807527353000560 a001 956722026041/3571*599074578^(1/7) 4807527353000560 a001 591286729879/3571*599074578^(1/6) 4807527353000560 a001 365435296162/3571*599074578^(4/21) 4807527353000560 a001 225851433717/3571*599074578^(3/14) 4807527353000560 a001 139583862445/3571*599074578^(5/21) 4807527353000560 a001 53316291173/3571*599074578^(2/7) 4807527353000560 a001 20365011074/3571*599074578^(1/3) 4807527353000560 a001 6557470319842/3571*228826127^(1/20) 4807527353000560 a001 701408733/3571*599074578^(1/2) 4807527353000560 a001 12586269025/3571*599074578^(5/14) 4807527353000560 a001 433494437/3571*312119004989^(2/5) 4807527353000560 a001 433494437/3571*(1/2+1/2*5^(1/2))^22 4807527353000560 a001 7778742049/3571*599074578^(8/21) 4807527353000560 a001 433494437/3571*10749957122^(11/24) 4807527353000560 a001 433494437/3571*4106118243^(11/23) 4807527353000560 a001 2971215073/3571*599074578^(3/7) 4807527353000560 a001 433494437/3571*1568397607^(1/2) 4807527353000560 a001 1134903170/3571*599074578^(10/21) 4807527353000560 a001 2504730781961/3571*228826127^(1/10) 4807527353000560 a001 1548008755920/3571*228826127^(1/8) 4807527353000560 a001 433494437/3571*599074578^(11/21) 4807527353000560 a001 956722026041/3571*228826127^(3/20) 4807527353000560 a001 365435296162/3571*228826127^(1/5) 4807527353000560 a001 139583862445/3571*228826127^(1/4) 4807527353000560 a001 53316291173/3571*228826127^(3/10) 4807527353000560 a001 20365011074/3571*228826127^(7/20) 4807527353000560 a001 6557470319842/3571*87403803^(1/19) 4807527353000560 a001 12586269025/3571*228826127^(3/8) 4807527353000560 a001 165580141/3571*2537720636^(8/15) 4807527353000560 a001 165580141/3571*45537549124^(8/17) 4807527353000560 a001 165580141/3571*14662949395604^(8/21) 4807527353000560 a001 165580141/3571*(1/2+1/2*5^(1/2))^24 4807527353000560 a001 165580141/3571*192900153618^(4/9) 4807527353000560 a001 165580141/3571*73681302247^(6/13) 4807527353000560 a001 165580141/3571*10749957122^(1/2) 4807527353000560 a001 165580141/3571*4106118243^(12/23) 4807527353000560 a001 165580141/3571*1568397607^(6/11) 4807527353000560 a001 7778742049/3571*228826127^(2/5) 4807527353000560 a001 2971215073/3571*228826127^(9/20) 4807527353000560 a001 165580141/3571*599074578^(4/7) 4807527353000560 a001 1134903170/3571*228826127^(1/2) 4807527353000560 a001 433494437/3571*228826127^(11/20) 4807527353000560 a001 2504730781961/3571*87403803^(2/19) 4807527353000560 a001 63245986/3571*141422324^(2/3) 4807527353000560 a001 165580141/3571*228826127^(3/5) 4807527353000560 a001 956722026041/3571*87403803^(3/19) 4807527353000560 a001 365435296162/3571*87403803^(4/19) 4807527353000560 a001 139583862445/3571*87403803^(5/19) 4807527353000560 a001 53316291173/3571*87403803^(6/19) 4807527353000560 a001 20365011074/3571*87403803^(7/19) 4807527353000560 a001 6557470319842/3571*33385282^(1/18) 4807527353000560 a001 63245986/3571*(1/2+1/2*5^(1/2))^26 4807527353000560 a001 63245986/3571*73681302247^(1/2) 4807527353000560 a001 63245986/3571*10749957122^(13/24) 4807527353000560 a001 63245986/3571*4106118243^(13/23) 4807527353000560 a001 63245986/3571*1568397607^(13/22) 4807527353000560 a001 63245986/3571*599074578^(13/21) 4807527353000560 a001 7778742049/3571*87403803^(8/19) 4807527353000560 a001 2971215073/3571*87403803^(9/19) 4807527353000560 a001 63245986/3571*228826127^(13/20) 4807527353000560 a001 1836311903/3571*87403803^(1/2) 4807527353000560 a001 1134903170/3571*87403803^(10/19) 4807527353000560 a001 4052739537881/3571*33385282^(1/12) 4807527353000560 a001 433494437/3571*87403803^(11/19) 4807527353000560 a001 165580141/3571*87403803^(12/19) 4807527353000560 a001 2504730781961/3571*33385282^(1/9) 4807527353000560 a001 63245986/3571*87403803^(13/19) 4807527353000560 a001 956722026041/3571*33385282^(1/6) 4807527353000561 a001 365435296162/3571*33385282^(2/9) 4807527353000561 a001 225851433717/3571*33385282^(1/4) 4807527353000561 a001 139583862445/3571*33385282^(5/18) 4807527353000561 a001 53316291173/3571*33385282^(1/3) 4807527353000561 a001 9227465/3571*20633239^(6/7) 4807527353000561 a001 24157817/3571*17393796001^(4/7) 4807527353000561 a001 24157817/3571*14662949395604^(4/9) 4807527353000561 a001 24157817/3571*(1/2+1/2*5^(1/2))^28 4807527353000561 a001 24157817/3571*505019158607^(1/2) 4807527353000561 a001 24157817/3571*73681302247^(7/13) 4807527353000561 a001 24157817/3571*10749957122^(7/12) 4807527353000561 a001 24157817/3571*4106118243^(14/23) 4807527353000561 a001 24157817/3571*1568397607^(7/11) 4807527353000561 a001 24157817/3571*599074578^(2/3) 4807527353000561 a001 20365011074/3571*33385282^(7/18) 4807527353000561 a001 24157817/3571*228826127^(7/10) 4807527353000561 a001 6557470319842/3571*12752043^(1/17) 4807527353000561 a001 12586269025/3571*33385282^(5/12) 4807527353000561 a001 7778742049/3571*33385282^(4/9) 4807527353000562 a001 24157817/3571*87403803^(14/19) 4807527353000562 a001 2971215073/3571*33385282^(1/2) 4807527353000562 a001 1134903170/3571*33385282^(5/9) 4807527353000562 a001 701408733/3571*33385282^(7/12) 4807527353000562 a001 39088169/3571*33385282^(3/4) 4807527353000562 a001 433494437/3571*33385282^(11/18) 4807527353000562 a001 165580141/3571*33385282^(2/3) 4807527353000563 a001 63245986/3571*33385282^(13/18) 4807527353000563 a001 2504730781961/3571*12752043^(2/17) 4807527353000565 a001 24157817/3571*33385282^(7/9) 4807527353000565 a001 956722026041/3571*12752043^(3/17) 4807527353000567 a001 365435296162/3571*12752043^(4/17) 4807527353000568 a001 139583862445/3571*12752043^(5/17) 4807527353000570 a001 53316291173/3571*12752043^(6/17) 4807527353000571 a001 9227465/3571*141422324^(10/13) 4807527353000571 a001 9227465/3571*2537720636^(2/3) 4807527353000571 a001 9227465/3571*45537549124^(10/17) 4807527353000571 a001 9227465/3571*312119004989^(6/11) 4807527353000571 a001 9227465/3571*14662949395604^(10/21) 4807527353000571 a001 9227465/3571*(1/2+1/2*5^(1/2))^30 4807527353000571 a001 9227465/3571*192900153618^(5/9) 4807527353000571 a001 9227465/3571*28143753123^(3/5) 4807527353000571 a001 9227465/3571*10749957122^(5/8) 4807527353000571 a001 9227465/3571*4106118243^(15/23) 4807527353000571 a001 9227465/3571*1568397607^(15/22) 4807527353000571 a001 9227465/3571*599074578^(5/7) 4807527353000571 a001 9227465/3571*228826127^(3/4) 4807527353000571 a001 9227465/3571*87403803^(15/19) 4807527353000572 a001 20365011074/3571*12752043^(7/17) 4807527353000572 a001 6557470319842/3571*4870847^(1/16) 4807527353000573 a001 7778742049/3571*12752043^(8/17) 4807527353000574 a001 4807526976/3571*12752043^(1/2) 4807527353000574 a001 9227465/3571*33385282^(5/6) 4807527353000575 a001 2971215073/3571*12752043^(9/17) 4807527353000577 a001 1134903170/3571*12752043^(10/17) 4807527353000579 a001 433494437/3571*12752043^(11/17) 4807527353000580 a001 165580141/3571*12752043^(12/17) 4807527353000582 a001 63245986/3571*12752043^(13/17) 4807527353000585 a001 2504730781961/3571*4870847^(1/8) 4807527353000586 a001 24157817/3571*12752043^(14/17) 4807527353000597 a001 9227465/3571*12752043^(15/17) 4807527353000598 a001 956722026041/3571*4870847^(3/16) 4807527353000607 a001 1597/7881196*(1/2+1/2*5^(1/2))^64 4807527353000610 a001 365435296162/3571*4870847^(1/4) 4807527353000623 a001 139583862445/3571*4870847^(5/16) 4807527353000636 a001 53316291173/3571*4870847^(3/8) 4807527353000637 a001 3524578/3571*(1/2+1/2*5^(1/2))^32 4807527353000637 a001 3524578/3571*23725150497407^(1/2) 4807527353000637 a001 3524578/3571*505019158607^(4/7) 4807527353000637 a001 3524578/3571*73681302247^(8/13) 4807527353000637 a001 3524578/3571*10749957122^(2/3) 4807527353000637 a001 3524578/3571*4106118243^(16/23) 4807527353000637 a001 3524578/3571*1568397607^(8/11) 4807527353000637 a001 3524578/3571*599074578^(16/21) 4807527353000637 a001 3524578/3571*228826127^(4/5) 4807527353000637 a001 3524578/3571*87403803^(16/19) 4807527353000641 a001 3524578/3571*33385282^(8/9) 4807527353000648 a001 20365011074/3571*4870847^(7/16) 4807527353000652 a001 6557470319842/3571*1860498^(1/15) 4807527353000661 a001 7778742049/3571*4870847^(1/2) 4807527353000665 a001 3524578/3571*12752043^(16/17) 4807527353000674 a001 2971215073/3571*4870847^(9/16) 4807527353000686 a001 1134903170/3571*4870847^(5/8) 4807527353000698 a001 4052739537881/3571*1860498^(1/10) 4807527353000699 a001 433494437/3571*4870847^(11/16) 4807527353000712 a001 165580141/3571*4870847^(3/4) 4807527353000724 a001 63245986/3571*4870847^(13/16) 4807527353000733 a001 10472280100787674/2178309 4807527353000739 a001 24157817/3571*4870847^(7/8) 4807527353000745 a001 2504730781961/3571*1860498^(2/15) 4807527353000761 a001 9227465/3571*4870847^(15/16) 4807527353000791 a001 1548008755920/3571*1860498^(1/6) 4807527353000837 a001 956722026041/3571*1860498^(1/5) 4807527353000930 a001 365435296162/3571*1860498^(4/15) 4807527353000976 a001 225851433717/3571*1860498^(3/10) 4807527353001023 a001 139583862445/3571*1860498^(1/3) 4807527353001061 a001 1597/3010349*(1/2+1/2*5^(1/2))^62 4807527353001090 a001 1346269/3571*45537549124^(2/3) 4807527353001090 a001 1346269/3571*(1/2+1/2*5^(1/2))^34 4807527353001090 a001 1346269/3571*10749957122^(17/24) 4807527353001090 a001 1346269/3571*4106118243^(17/23) 4807527353001090 a001 1346269/3571*1568397607^(17/22) 4807527353001090 a001 1346269/3571*599074578^(17/21) 4807527353001090 a001 1346269/3571*228826127^(17/20) 4807527353001091 a001 1346269/3571*87403803^(17/19) 4807527353001094 a001 1346269/3571*33385282^(17/18) 4807527353001115 a001 53316291173/3571*1860498^(2/5) 4807527353001208 a001 20365011074/3571*1860498^(7/15) 4807527353001240 a001 6557470319842/3571*710647^(1/14) 4807527353001254 a001 12586269025/3571*1860498^(1/2) 4807527353001300 a001 7778742049/3571*1860498^(8/15) 4807527353001393 a001 2971215073/3571*1860498^(3/5) 4807527353001485 a001 1134903170/3571*1860498^(2/3) 4807527353001532 a001 701408733/3571*1860498^(7/10) 4807527353001578 a001 433494437/3571*1860498^(11/15) 4807527353001671 a001 165580141/3571*1860498^(4/5) 4807527353001717 a001 102334155/3571*1860498^(5/6) 4807527353001763 a001 63245986/3571*1860498^(13/15) 4807527353001809 a001 39088169/3571*1860498^(9/10) 4807527353001857 a001 24157817/3571*1860498^(14/15) 4807527353001919 a001 4000055058791717/832040 4807527353001919 a001 2504730781961/3571*710647^(1/7) 4807527353002599 a001 956722026041/3571*710647^(3/14) 4807527353002939 a001 591286729879/3571*710647^(1/4) 4807527353003279 a001 365435296162/3571*710647^(2/7) 4807527353003959 a001 139583862445/3571*710647^(5/14) 4807527353004166 a001 1597/1149851*14662949395604^(20/21) 4807527353004166 a001 1597/1149851*(1/2+1/2*5^(1/2))^60 4807527353004195 a001 514229/3571*141422324^(12/13) 4807527353004196 a001 514229/3571*2537720636^(4/5) 4807527353004196 a001 514229/3571*45537549124^(12/17) 4807527353004196 a001 514229/3571*14662949395604^(4/7) 4807527353004196 a001 514229/3571*(1/2+1/2*5^(1/2))^36 4807527353004196 a001 514229/3571*505019158607^(9/14) 4807527353004196 a001 514229/3571*192900153618^(2/3) 4807527353004196 a001 514229/3571*73681302247^(9/13) 4807527353004196 a001 514229/3571*10749957122^(3/4) 4807527353004196 a001 514229/3571*4106118243^(18/23) 4807527353004196 a001 514229/3571*1568397607^(9/11) 4807527353004196 a001 514229/3571*599074578^(6/7) 4807527353004196 a001 514229/3571*228826127^(9/10) 4807527353004196 a001 514229/3571*87403803^(18/19) 4807527353004639 a001 53316291173/3571*710647^(3/7) 4807527353005319 a001 20365011074/3571*710647^(1/2) 4807527353005579 a001 6557470319842/3571*271443^(1/13) 4807527353005999 a001 7778742049/3571*710647^(4/7) 4807527353006679 a001 2971215073/3571*710647^(9/14) 4807527353007359 a001 1134903170/3571*710647^(5/7) 4807527353007699 a001 701408733/3571*710647^(3/4) 4807527353008039 a001 433494437/3571*710647^(11/14) 4807527353008719 a001 165580141/3571*710647^(6/7) 4807527353009399 a001 63245986/3571*710647^(13/14) 4807527353010049 a001 1527885075587477/317811 4807527353010598 a001 2504730781961/3571*271443^(2/13) 4807527353015617 a001 956722026041/3571*271443^(3/13) 4807527353019193 a001 10610209857723/3571*103682^(1/24) 4807527353020636 a001 365435296162/3571*271443^(4/13) 4807527353025452 a001 1597/439204*(1/2+1/2*5^(1/2))^58 4807527353025482 a001 196418/3571*817138163596^(2/3) 4807527353025482 a001 196418/3571*(1/2+1/2*5^(1/2))^38 4807527353025482 a001 196418/3571*10749957122^(19/24) 4807527353025482 a001 196418/3571*4106118243^(19/23) 4807527353025482 a001 196418/3571*1568397607^(19/22) 4807527353025482 a001 196418/3571*599074578^(19/21) 4807527353025482 a001 196418/3571*228826127^(19/20) 4807527353025655 a001 139583862445/3571*271443^(5/13) 4807527353030674 a001 53316291173/3571*271443^(6/13) 4807527353033183 a001 32951280099/3571*271443^(1/2) 4807527353035693 a001 20365011074/3571*271443^(7/13) 4807527353037827 a001 6557470319842/3571*103682^(1/12) 4807527353040712 a001 7778742049/3571*271443^(8/13) 4807527353045731 a001 2971215073/3571*271443^(9/13) 4807527353050750 a001 1134903170/3571*271443^(10/13) 4807527353055769 a001 433494437/3571*271443^(11/13) 4807527353056461 a001 4052739537881/3571*103682^(1/8) 4807527353060788 a001 165580141/3571*271443^(12/13) 4807527353065778 a001 583600167970714/121393 4807527353075095 a001 2504730781961/3571*103682^(1/6) 4807527353093729 a001 1548008755920/3571*103682^(5/24) 4807527353112363 a001 956722026041/3571*103682^(1/4) 4807527353130997 a001 591286729879/3571*103682^(7/24) 4807527353139889 a001 10610209857723/3571*39603^(1/22) 4807527353149631 a001 365435296162/3571*103682^(1/3) 4807527353168265 a001 225851433717/3571*103682^(3/8) 4807527353171350 a001 1597/167761*14662949395604^(8/9) 4807527353171350 a001 1597/167761*(1/2+1/2*5^(1/2))^56 4807527353171380 a001 75025/3571*2537720636^(8/9) 4807527353171380 a001 75025/3571*312119004989^(8/11) 4807527353171380 a001 75025/3571*(1/2+1/2*5^(1/2))^40 4807527353171380 a001 75025/3571*23725150497407^(5/8) 4807527353171380 a001 75025/3571*73681302247^(10/13) 4807527353171380 a001 75025/3571*28143753123^(4/5) 4807527353171380 a001 75025/3571*10749957122^(5/6) 4807527353171380 a001 75025/3571*4106118243^(20/23) 4807527353171380 a001 75025/3571*1568397607^(10/11) 4807527353171380 a001 75025/3571*599074578^(20/21) 4807527353186899 a001 139583862445/3571*103682^(5/12) 4807527353205532 a001 86267571272/3571*103682^(11/24) 4807527353224166 a001 53316291173/3571*103682^(1/2) 4807527353242800 a001 32951280099/3571*103682^(13/24) 4807527353261434 a001 20365011074/3571*103682^(7/12) 4807527353279218 a001 6557470319842/3571*39603^(1/11) 4807527353280068 a001 12586269025/3571*103682^(5/8) 4807527353298702 a001 7778742049/3571*103682^(2/3) 4807527353317336 a001 4807526976/3571*103682^(17/24) 4807527353335970 a001 2971215073/3571*103682^(3/4) 4807527353354604 a001 1836311903/3571*103682^(19/24) 4807527353373238 a001 1134903170/3571*103682^(5/6) 4807527353391871 a001 701408733/3571*103682^(7/8) 4807527353410505 a001 433494437/3571*103682^(11/12) 4807527353418548 a001 4052739537881/3571*39603^(3/22) 4807527353429139 a001 267914296/3571*103682^(23/24) 4807527353447744 a001 222915428324665/46368 4807527353557877 a001 2504730781961/3571*39603^(2/11) 4807527353592239 r009 Im(z^3+c),c=-21/58+29/54*I,n=17 4807527353697207 a001 1548008755920/3571*39603^(5/22) 4807527353836536 a001 956722026041/3571*39603^(3/11) 4807527353975866 a001 591286729879/3571*39603^(7/22) 4807527354051036 a001 10610209857723/3571*15127^(1/20) 4807527354115195 a001 365435296162/3571*39603^(4/11) 4807527354149975 a001 3278735159921/12238*2207^(3/8) 4807527354171350 a001 1597/64079*14662949395604^(6/7) 4807527354171350 a001 1597/64079*(1/2+1/2*5^(1/2))^54 4807527354171380 a001 28657/3571*2537720636^(14/15) 4807527354171380 a001 28657/3571*17393796001^(6/7) 4807527354171380 a001 28657/3571*45537549124^(14/17) 4807527354171380 a001 28657/3571*817138163596^(14/19) 4807527354171380 a001 28657/3571*14662949395604^(2/3) 4807527354171380 a001 28657/3571*(1/2+1/2*5^(1/2))^42 4807527354171380 a001 28657/3571*505019158607^(3/4) 4807527354171380 a001 28657/3571*192900153618^(7/9) 4807527354171380 a001 28657/3571*10749957122^(7/8) 4807527354171380 a001 28657/3571*4106118243^(21/23) 4807527354171380 a001 28657/3571*1568397607^(21/22) 4807527354254525 a001 225851433717/3571*39603^(9/22) 4807527354393854 a001 139583862445/3571*39603^(5/11) 4807527354533183 a001 86267571272/3571*39603^(1/2) 4807527354672513 a001 53316291173/3571*39603^(6/11) 4807527354811842 a001 32951280099/3571*39603^(13/22) 4807527354951172 a001 20365011074/3571*39603^(7/11) 4807527355090501 a001 12586269025/3571*39603^(15/22) 4807527355101512 a001 6557470319842/3571*15127^(1/10) 4807527355229831 a001 7778742049/3571*39603^(8/11) 4807527355369160 a001 4807526976/3571*39603^(17/22) 4807527355508490 a001 2971215073/3571*39603^(9/11) 4807527355647819 a001 1836311903/3571*39603^(19/22) 4807527355787148 a001 1134903170/3571*39603^(10/11) 4807527355926478 a001 701408733/3571*39603^(21/22) 4807527356065778 a001 85146117003281/17711 4807527356151988 a001 4052739537881/3571*15127^(3/20) 4807527357202464 a001 2504730781961/3571*15127^(1/5) 4807527358252940 a001 1548008755920/3571*15127^(1/4) 4807527359066936 a007 Real Root Of 149*x^4+753*x^3+256*x^2+279*x-500 4807527359303416 a001 956722026041/3571*15127^(3/10) 4807527360353892 a001 591286729879/3571*15127^(7/20) 4807527361000637 a001 10610209857723/3571*5778^(1/18) 4807527361025453 a001 1597/24476*(1/2+1/2*5^(1/2))^52 4807527361025453 a001 1597/24476*23725150497407^(13/16) 4807527361025453 a001 1597/24476*505019158607^(13/14) 4807527361025483 a001 10946/3571*312119004989^(4/5) 4807527361025483 a001 10946/3571*(1/2+1/2*5^(1/2))^44 4807527361025483 a001 10946/3571*23725150497407^(11/16) 4807527361025483 a001 10946/3571*73681302247^(11/13) 4807527361025483 a001 10946/3571*10749957122^(11/12) 4807527361025483 a001 10946/3571*4106118243^(22/23) 4807527361404368 a001 365435296162/3571*15127^(2/5) 4807527361582963 m001 (FeigenbaumB+FeigenbaumC)/(OneNinth-Robbin) 4807527362256453 m001 (arctan(1/3)+Conway)/(5^(1/2)+ln(Pi)) 4807527362454844 a001 225851433717/3571*15127^(9/20) 4807527363505320 a001 139583862445/3571*15127^(1/2) 4807527364555796 a001 86267571272/3571*15127^(11/20) 4807527365606272 a001 53316291173/3571*15127^(3/5) 4807527365714554 a007 Real Root Of -160*x^4-848*x^3-525*x^2-869*x-799 4807527366656748 a001 32951280099/3571*15127^(13/20) 4807527367707224 a001 20365011074/3571*15127^(7/10) 4807527368757700 a001 12586269025/3571*15127^(3/4) 4807527369000715 a001 6557470319842/3571*5778^(1/9) 4807527369808176 a001 7778742049/3571*15127^(4/5) 4807527370858653 a001 4807526976/3571*15127^(17/20) 4807527371909129 a001 2971215073/3571*15127^(9/10) 4807527372959605 a001 1836311903/3571*15127^(19/20) 4807527374010051 a001 32522922685178/6765 4807527376849345 a007 Real Root Of -743*x^4+969*x^3-685*x^2+269*x+435 4807527377000793 a001 4052739537881/3571*5778^(1/6) 4807527382648039 r002 12th iterates of z^2 + 4807527385000870 a001 2504730781961/3571*5778^(2/9) 4807527386803042 a001 2504730781961/15127*2207^(7/16) 4807527387186187 a001 182717648081/2889*2207^(9/16) 4807527393000948 a001 1548008755920/3571*5778^(5/18) 4807527401001026 a001 956722026041/3571*5778^(1/3) 4807527401128693 a001 2504730781961/9349*2207^(3/8) 4807527403279619 m001 Niven^HardyLittlewoodC5/(Niven^Grothendieck) 4807527404747315 a001 6557470319842/39603*2207^(7/16) 4807527407594469 r002 64th iterates of z^2 + 4807527408004171 a001 1597/9349*312119004989^(10/11) 4807527408004171 a001 1597/9349*(1/2+1/2*5^(1/2))^50 4807527408004171 a001 1597/9349*3461452808002^(5/6) 4807527408004200 a001 4181/3571*(1/2+1/2*5^(1/2))^46 4807527408004200 a001 4181/3571*10749957122^(23/24) 4807527408983384 a001 10610209857723/64079*2207^(7/16) 4807527409001104 a001 591286729879/3571*5778^(7/18) 4807527414688071 a001 10610209857723/3571*2207^(1/16) 4807527415555579 m006 (1/4*ln(Pi)-3)/(1/6*Pi^2+4) 4807527415837486 a001 4052739537881/24476*2207^(7/16) 4807527417001181 a001 365435296162/3571*5778^(4/9) 4807527422311332 a007 Real Root Of -746*x^4+608*x^3+921*x^2+835*x-642 4807527425001259 a001 225851433717/3571*5778^(1/2) 4807527433001337 a001 139583862445/3571*5778^(5/9) 4807527434583906 a003 cos(Pi*1/44)-sin(Pi*14/81) 4807527438641764 a001 2504730781961/2207*843^(3/14) 4807527441001415 a001 86267571272/3571*5778^(11/18) 4807527448490554 a001 1548008755920/15127*2207^(1/2) 4807527448873699 a001 75283811239/1926*2207^(5/8) 4807527449001493 a001 53316291173/3571*5778^(2/3) 4807527449621797 r009 Im(z^3+c),c=-17/44+18/35*I,n=34 4807527453332154 a007 Real Root Of -37*x^4-270*x^3-315*x^2+787*x+828 4807527457001570 a001 32951280099/3571*5778^(13/18) 4807527462816205 a001 1548008755920/9349*2207^(7/16) 4807527465001648 a001 20365011074/3571*5778^(7/9) 4807527466434828 a001 4052739537881/39603*2207^(1/2) 4807527469052862 a001 225749145909/2206*2207^(1/2) 4807527470111478 r009 Im(z^3+c),c=-23/94+23/41*I,n=43 4807527470670896 a001 6557470319842/64079*2207^(1/2) 4807527473001726 a001 12586269025/3571*5778^(5/6) 4807527474840479 r002 34th iterates of z^2 + 4807527476375583 a001 6557470319842/3571*2207^(1/8) 4807527477524999 a001 2504730781961/24476*2207^(1/2) 4807527481001804 a001 7778742049/3571*5778^(8/9) 4807527482871749 s002 sum(A182048[n]/(n*exp(n)+1),n=1..infinity) 4807527484422971 a007 Real Root Of 142*x^4-759*x^3+253*x^2-592*x-435 4807527489001882 a001 4807526976/3571*5778^(17/18) 4807527492800182 a001 10182505537/682*1364^(4/5) 4807527493446573 a008 Real Root of (-2+6*x^2+6*x^3-x^4) 4807527497001934 a001 12422651052253/2584 4807527510178067 a001 956722026041/15127*2207^(9/16) 4807527510561212 a001 139583862445/5778*2207^(11/16) 4807527516190291 a002 11^(6/7)-13^(3/7) 4807527524503718 a001 956722026041/9349*2207^(1/2) 4807527527867160 r009 Im(z^3+c),c=-31/64+25/56*I,n=39 4807527528122341 a001 2504730781961/39603*2207^(9/16) 4807527530740375 a001 3278735159921/51841*2207^(9/16) 4807527531358409 a001 10610209857723/167761*2207^(9/16) 4807527532358409 a001 4052739537881/64079*2207^(9/16) 4807527532784576 r005 Im(z^2+c),c=-19/34+11/127*I,n=45 4807527538063097 a001 4052739537881/3571*2207^(3/16) 4807527539212512 a001 387002188980/6119*2207^(9/16) 4807527539605530 a001 439204/377*89^(6/19) 4807527541470275 s002 sum(A251855[n]/(pi^n+1),n=1..infinity) 4807527553983541 m001 Pi-(Psi(1,1/3)-cos(1))/Zeta(3) 4807527571865580 a001 591286729879/15127*2207^(5/8) 4807527572248726 a001 43133785636/2889*2207^(3/4) 4807527586191232 a001 591286729879/9349*2207^(9/16) 4807527587354104 m001 ln(GAMMA(19/24))/MertensB1/GAMMA(5/6)^2 4807527589809854 a001 516002918640/13201*2207^(5/8) 4807527591324233 m001 1/LandauRamanujan*exp(Si(Pi))/log(2+sqrt(3))^2 4807527592427889 a001 4052739537881/103682*2207^(5/8) 4807527592809855 a001 3536736619241/90481*2207^(5/8) 4807527593045923 a001 6557470319842/167761*2207^(5/8) 4807527594045923 a001 2504730781961/64079*2207^(5/8) 4807527599750611 a001 2504730781961/3571*2207^(1/4) 4807527600900026 a001 956722026041/24476*2207^(5/8) 4807527628396683 m001 OneNinth^2/ln(FibonacciFactorial)^2/gamma 4807527630953589 r005 Re(z^2+c),c=13/62+25/62*I,n=12 4807527633553095 a001 365435296162/15127*2207^(11/16) 4807527633936240 a001 53316291173/5778*2207^(13/16) 4807527638271211 r002 8th iterates of z^2 + 4807527638385125 h001 (3/10*exp(1)+1/4)/(1/2*exp(1)+6/7) 4807527638385125 m005 (1/2*exp(1)+5/12)/(1/12*exp(1)+1/7) 4807527640843869 m001 (2^(1/2)-gamma)/(BesselI(0,1)+Weierstrass) 4807527647878746 a001 365435296162/9349*2207^(5/8) 4807527651497369 a001 956722026041/39603*2207^(11/16) 4807527653118633 r009 Im(z^3+c),c=-11/64+29/46*I,n=9 4807527654115403 a001 2504730781961/103682*2207^(11/16) 4807527654497369 a001 6557470319842/271443*2207^(11/16) 4807527654587539 a001 10610209857723/439204*2207^(11/16) 4807527654733437 a001 4052739537881/167761*2207^(11/16) 4807527655733438 a001 1548008755920/64079*2207^(11/16) 4807527661438125 a001 1548008755920/3571*2207^(5/16) 4807527662587541 a001 591286729879/24476*2207^(11/16) 4807527665066921 a001 32951280099/1364*1364^(11/15) 4807527673626048 a007 Real Root Of -636*x^4+827*x^3+51*x^2+712*x-412 4807527674320072 r009 Im(z^3+c),c=-1/5+4/7*I,n=31 4807527676981642 a007 Real Root Of 170*x^4+996*x^3+919*x^2+379*x+440 4807527691862640 p003 LerchPhi(1/5,1,430/177) 4807527694264958 m001 (Cahen+Kac)/(1+GAMMA(13/24)) 4807527695240610 a001 32264490531/2161*2207^(3/4) 4807527695623755 a001 10983760033/1926*2207^(7/8) 4807527709566262 a001 225851433717/9349*2207^(11/16) 4807527713184884 a001 591286729879/39603*2207^(3/4) 4807527715802919 a001 774004377960/51841*2207^(3/4) 4807527716184885 a001 4052739537881/271443*2207^(3/4) 4807527716240613 a001 1515744265389/101521*2207^(3/4) 4807527716275055 a001 3278735159921/219602*2207^(3/4) 4807527716420953 a001 2504730781961/167761*2207^(3/4) 4807527717403225 m005 (1/2*2^(1/2)+3/4)/(7/9*exp(1)+11/12) 4807527717420953 a001 956722026041/64079*2207^(3/4) 4807527723125641 a001 956722026041/3571*2207^(3/8) 4807527724275056 a001 182717648081/12238*2207^(3/4) 4807527724639848 a007 Real Root Of 191*x^4+739*x^3-834*x^2+26*x-515 4807527730001120 a001 1597/3571*45537549124^(16/17) 4807527730001120 a001 1597/3571*14662949395604^(16/21) 4807527730001120 a001 1597/3571*(1/2+1/2*5^(1/2))^48 4807527730001120 a001 1597/3571*192900153618^(8/9) 4807527730001120 a001 1597/3571*73681302247^(12/13) 4807527738633348 r005 Re(z^2+c),c=-7/10+5/211*I,n=49 4807527749486286 a007 Real Root Of -670*x^4+696*x^3-924*x^2-588*x+44 4807527754232804 r002 43th iterates of z^2 + 4807527756928126 a001 139583862445/15127*2207^(13/16) 4807527757311271 a001 10182505537/2889*2207^(15/16) 4807527769542466 l006 ln(7/857) 4807527769542466 p004 log(857/7) 4807527771253778 a001 139583862445/9349*2207^(3/4) 4807527774872401 a001 365435296162/39603*2207^(13/16) 4807527777490435 a001 956722026041/103682*2207^(13/16) 4807527777872401 a001 2504730781961/271443*2207^(13/16) 4807527777928129 a001 6557470319842/710647*2207^(13/16) 4807527777941285 a001 10610209857723/1149851*2207^(13/16) 4807527777962571 a001 4052739537881/439204*2207^(13/16) 4807527778108469 a001 140728068720/15251*2207^(13/16) 4807527779108469 a001 591286729879/64079*2207^(13/16) 4807527784813157 a001 591286729879/3571*2207^(7/16) 4807527785962572 a001 7787980473/844*2207^(13/16) 4807527786881265 r009 Im(z^3+c),c=-15/62+29/52*I,n=14 4807527798426579 a001 3536736619241/1926*843^(1/7) 4807527799042385 m001 1/ln(ErdosBorwein)*Backhouse^2*Zeta(5)^2 4807527801539777 q001 562/1169 4807527804873694 a007 Real Root Of -162*x^4+527*x^3-336*x^2+896*x-403 4807527816107004 r009 Im(z^3+c),c=-25/54+25/56*I,n=20 4807527817811386 m001 GAMMA(23/24)/exp(Magata)*sqrt(2) 4807527818615643 a001 86267571272/15127*2207^(7/8) 4807527818998986 a001 4745029957352/987 4807527830671372 m001 Pi/Psi(2,1/3)*(sin(1)+gamma(3)) 4807527832941295 a001 86267571272/9349*2207^(13/16) 4807527836214570 a001 10610209857723/3571*843^(1/14) 4807527836559918 a001 75283811239/13201*2207^(7/8) 4807527837333667 a001 53316291173/1364*1364^(2/3) 4807527837464702 l006 ln(1654/2675) 4807527839177952 a001 591286729879/103682*2207^(7/8) 4807527839559918 a001 516002918640/90481*2207^(7/8) 4807527839615646 a001 4052739537881/710647*2207^(7/8) 4807527839623777 a001 3536736619241/620166*2207^(7/8) 4807527839628802 a001 6557470319842/1149851*2207^(7/8) 4807527839650088 a001 2504730781961/439204*2207^(7/8) 4807527839795986 a001 956722026041/167761*2207^(7/8) 4807527840795986 a001 365435296162/64079*2207^(7/8) 4807527843141563 r005 Im(z^2+c),c=-13/11+3/46*I,n=25 4807527846500674 a001 365435296162/3571*2207^(1/2) 4807527847154774 r005 Im(z^2+c),c=-95/74+17/36*I,n=4 4807527847650090 a001 139583862445/24476*2207^(7/8) 4807527858647427 r009 Im(z^3+c),c=-7/54+7/12*I,n=26 4807527860392697 r005 Re(z^2+c),c=-27/26+13/112*I,n=10 4807527880303160 a001 53316291173/15127*2207^(15/16) 4807527882389496 r005 Im(z^2+c),c=-55/82+3/23*I,n=25 4807527894628812 a001 53316291173/9349*2207^(7/8) 4807527898247435 a001 139583862445/39603*2207^(15/16) 4807527900865470 a001 182717648081/51841*2207^(15/16) 4807527901247436 a001 956722026041/271443*2207^(15/16) 4807527901303164 a001 2504730781961/710647*2207^(15/16) 4807527901311295 a001 3278735159921/930249*2207^(15/16) 4807527901313214 a001 10610209857723/3010349*2207^(15/16) 4807527901316320 a001 4052739537881/1149851*2207^(15/16) 4807527901337606 a001 387002188980/109801*2207^(15/16) 4807527901483504 a001 591286729879/167761*2207^(15/16) 4807527902483504 a001 225851433717/64079*2207^(15/16) 4807527907376272 a001 199/987*987^(23/50) 4807527908188192 a001 225851433717/3571*2207^(9/16) 4807527909337607 a001 21566892818/6119*2207^(15/16) 4807527921855783 a001 1548008755920/2207*843^(2/7) 4807527938967559 a001 516002918640/281*322^(1/6) 4807527941162201 r005 Im(z^2+c),c=15/122+5/9*I,n=63 4807527941990881 a001 1581676692915/329 4807527944934057 r005 Im(z^2+c),c=17/62+21/52*I,n=37 4807527956316331 a001 32951280099/9349*2207^(15/16) 4807527959935157 a001 4745030096456/987 4807527962935157 a001 4745030099417/987 4807527962990881 a001 1581676699824/329 4807527962998986 a001 4745030099480/987 4807527963000405 a001 2/987*(1/2+1/2*5^(1/2))^64 4807527963000405 a001 23725150497407/987*8^(1/3) 4807527963001013 a001 4745030099482/987 4807527963004052 a001 4745030099485/987 4807527963025329 a001 4745030099506/987 4807527963171225 a001 4745030099650/987 4807527964171225 a001 4745030100637/987 4807527968267345 m001 (Lehmer-Salem)/(gamma(3)-Champernowne) 4807527969875711 a001 139583862445/3571*2207^(5/8) 4807527971025329 a001 4745030107402/987 4807527974900148 r005 Im(z^2+c),c=-3/98+11/18*I,n=40 4807527980651084 r005 Re(z^2+c),c=-51/74+1/10*I,n=55 4807527988246039 r005 Re(z^2+c),c=-2/3+9/53*I,n=37 4807527995352959 a007 Real Root Of x^4-76*x^3-242*x^2+584*x-578 4807528000000000 r005 Im(z^2+c),c=9/40+8/25*I,n=3 4807528000782149 a003 sin(Pi*8/89)-sin(Pi*14/51) 4807528009600419 a001 21566892818/341*1364^(3/5) 4807528018004052 a001 4745030153770/987 4807528020244967 a007 Real Root Of 12*x^4-364*x^3+6*x^2-827*x+436 4807528031563230 a001 86267571272/3571*2207^(11/16) 4807528033503466 m001 (GAMMA(2/3)+Ei(1,1))/(5^(1/2)+Zeta(5)) 4807528034988118 r009 Im(z^3+c),c=-2/21+37/63*I,n=28 4807528060725945 r005 Re(z^2+c),c=-15/22+1/75*I,n=33 4807528070065864 m005 (1/2*Catalan-9/10)/(1/40+2/5*5^(1/2)) 4807528093250751 a001 53316291173/3571*2207^(3/4) 4807528105464478 v003 sum((n^3+4*n^2-14*n+20)/n^(n-2),n=1..infinity) 4807528121725801 p004 log(21269/13151) 4807528127008055 m005 (1/2*Zeta(3)-2/3)/(79/220+9/20*5^(1/2)) 4807528137744881 m001 gamma(2)*Lehmer^Totient 4807528138280523 m001 (MertensB2-TwinPrimes)/(CopelandErdos+Landau) 4807528153491072 r009 Re(z^3+c),c=-27/74+38/39*I,n=3 4807528154938272 a001 32951280099/3571*2207^(13/16) 4807528155997226 a007 Real Root Of -212*x^4+997*x^3+152*x^2+550*x-399 4807528167281719 r005 Im(z^2+c),c=-15/106+25/26*I,n=3 4807528168368821 r002 6th iterates of z^2 + 4807528181867178 a001 139583862445/1364*1364^(8/15) 4807528187394333 r009 Im(z^3+c),c=-27/52+12/19*I,n=6 4807528188868540 r005 Im(z^2+c),c=-37/34+7/114*I,n=3 4807528197613801 a001 4052739537881/1364*521^(1/13) 4807528197997682 r009 Im(z^3+c),c=-5/98+13/22*I,n=17 4807528215023536 m001 1/Bloch^2*exp(FeigenbaumDelta)*Zeta(9)^2 4807528216625794 a001 20365011074/3571*2207^(7/8) 4807528218123520 r002 36th iterates of z^2 + 4807528222285328 r005 Im(z^2+c),c=-155/122+5/28*I,n=6 4807528231442149 r002 6th iterates of z^2 + 4807528258619490 a007 Real Root Of 786*x^4-618*x^3+775*x^2-352*x-459 4807528261040521 r009 Re(z^3+c),c=-43/114+39/58*I,n=3 4807528278313316 a001 12586269025/3571*2207^(15/16) 4807528281640634 a001 3278735159921/2889*843^(3/14) 4807528281773819 a007 Real Root Of 181*x^4+164*x^3+378*x^2-818*x+278 4807528282061874 r005 Im(z^2+c),c=-17/62+3/43*I,n=20 4807528291832385 a007 Real Root Of 364*x^4-574*x^3+629*x^2-213*x-331 4807528319428628 a001 6557470319842/3571*843^(1/7) 4807528323097134 r005 Re(z^2+c),c=-25/52+18/35*I,n=16 4807528323251268 m001 1/ln(Kolakoski)*ArtinRank2^2/TreeGrowth2nd 4807528330743933 r009 Im(z^3+c),c=-1/23+13/22*I,n=30 4807528331091669 b008 15*Pi+Sech[Pi^(-1)] 4807528338387318 a001 7778742049/521*521^(12/13) 4807528340001013 a001 4745030471581/987 4807528346894409 m002 5*Pi^6+2/(3*Log[Pi]) 4807528351200060 m005 (1/2*gamma-5/8)/(2/5*Catalan+1/3) 4807528352286945 m005 (1/2*Zeta(3)+3/7)/(3/5*5^(1/2)+4/5) 4807528354133942 a001 225851433717/1364*1364^(7/15) 4807528355034360 r005 Im(z^2+c),c=-11/74+1/17*I,n=3 4807528359955017 r009 Re(z^3+c),c=-10/19+13/62*I,n=28 4807528377323928 a007 Real Root Of -744*x^4+735*x^3-805*x^2-937*x-143 4807528378294735 m001 (FeigenbaumB+Magata)/(cos(1/5*Pi)-gamma(1)) 4807528384528567 s002 sum(A251855[n]/(pi^n),n=1..infinity) 4807528386571840 r005 Re(z^2+c),c=-47/70+13/62*I,n=46 4807528405069850 a001 956722026041/2207*843^(5/14) 4807528411490908 a007 Real Root Of -410*x^4+872*x^3-855*x^2+825*x-274 4807528431855759 m001 1/ln(GAMMA(3/4))/Robbin^2/GAMMA(7/12)^2 4807528450887752 a003 cos(Pi*27/89)*sin(Pi*24/77) 4807528480645715 a001 10610209857723/9349*843^(3/14) 4807528486993267 s002 sum(A065125[n]/(n^3*exp(n)+1),n=1..infinity) 4807528495661287 r009 Im(z^3+c),c=-35/78+11/23*I,n=62 4807528526400713 a001 182717648081/682*1364^(2/5) 4807528526968532 m001 (ln(Pi)-MertensB3*Totient)/MertensB3 4807528528464633 h001 (-9*exp(3)-9)/(-7*exp(-2)-3) 4807528529209045 m001 (ln(2)-MasserGramain)/(Mills-OrthogonalArrays) 4807528530814004 m001 MinimumGamma*Otter^ln(3) 4807528572999546 a001 610/2207*14662949395604^(7/9) 4807528572999546 a001 610/2207*(1/2+1/2*5^(1/2))^49 4807528572999546 a001 610/2207*505019158607^(7/8) 4807528573000733 a001 987/1364*(1/2+1/2*5^(1/2))^47 4807528581689260 m001 (-Mills+ZetaP(4))/(5^(1/2)+arctan(1/3)) 4807528603356449 l006 ln(4881/7894) 4807528607645263 s002 sum(A065125[n]/(n^3*exp(n)-1),n=1..infinity) 4807528628494224 r009 Im(z^3+c),c=-3/50+13/22*I,n=15 4807528639206493 r005 Im(z^2+c),c=29/98+19/49*I,n=57 4807528661839276 r009 Im(z^3+c),c=-29/82+10/19*I,n=28 4807528668284664 m001 (-exp(-1/2*Pi)+MertensB1)/(Psi(1,1/3)+Shi(1)) 4807528697301174 a007 Real Root Of -654*x^4+843*x^3-465*x^2-48*x+213 4807528697713609 m001 FeigenbaumMu+FibonacciFactorial+Trott 4807528698023388 m001 (-Backhouse+Landau)/(Shi(1)+sin(1)) 4807528698667489 a001 591286729879/1364*1364^(1/3) 4807528700232939 m004 -3-25*Pi+Sinh[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi]/5 4807528703398007 m004 -14/5-25*Pi+Sinh[Sqrt[5]*Pi] 4807528706495826 a007 Real Root Of 307*x^4-805*x^3-285*x^2-801*x+524 4807528716762469 a007 Real Root Of 345*x^4-154*x^3+595*x^2-81*x-212 4807528749112240 m001 (BesselJ(0,1)-Cahen)/(-FellerTornier+Stephens) 4807528752206098 p003 LerchPhi(1/16,5,57/196) 4807528753697895 a001 9349/144*832040^(6/19) 4807528760422416 m001 Cahen^2/exp(Backhouse)^2*MinimumGamma^2 4807528764854737 a001 4052739537881/5778*843^(2/7) 4807528765079922 r002 4th iterates of z^2 + 4807528768368325 a007 Real Root Of -555*x^4+564*x^3-753*x^2+278*x+400 4807528768490173 a001 1926/7*2584^(23/35) 4807528773247415 r009 Im(z^3+c),c=-2/5+10/21*I,n=4 4807528799694558 r005 Im(z^2+c),c=-17/62+3/43*I,n=14 4807528802642735 a001 4052739537881/3571*843^(3/14) 4807528808521805 m008 (5*Pi^5+3/5)/(Pi^3+5/6) 4807528811419878 m001 (Landau+ThueMorse)/(ArtinRank2-Khinchin) 4807528821440980 s001 sum(exp(-Pi/3)^(n-1)*A008569[n],n=1..infinity) 4807528823433581 r005 Im(z^2+c),c=1/8+32/61*I,n=24 4807528845389120 s002 sum(A084077[n]/(exp(pi*n)+1),n=1..infinity) 4807528852082720 r002 59th iterates of z^2 + 4807528870546674 m005 (3/4*2^(1/2)+5)/(3/4*2^(1/2)+1/5) 4807528870934272 a001 956722026041/1364*1364^(4/15) 4807528887846652 a001 1515744265389/2161*843^(2/7) 4807528888283966 a001 591286729879/2207*843^(3/7) 4807528895438080 s002 sum(A087361[n]/((pi^n+1)/n),n=1..infinity) 4807528897841242 r009 Im(z^3+c),c=-13/58+30/53*I,n=33 4807528911692701 h001 (1/2*exp(1)+2/9)/(10/11*exp(1)+9/11) 4807528911692701 m005 (1/2*exp(1)+2/9)/(10/11*exp(1)+9/11) 4807528916344343 r009 Im(z^3+c),c=-77/90+5/33*I,n=2 4807528952780170 a007 Real Root Of -526*x^4+899*x^3+381*x^2+464*x+263 4807528963859838 a001 6557470319842/9349*843^(2/7) 4807528978476742 r002 4th iterates of z^2 + 4807528986849029 r005 Re(z^2+c),c=-37/66+39/64*I,n=41 4807528991373959 m005 (1/2*2^(1/2)-1/5)/(7/12*Pi-7/9) 4807528995294900 a007 Real Root Of -66*x^4+934*x^3-710*x^2-57*x+244 4807528995914514 l006 ln(3227/5219) 4807529020380542 r005 Re(z^2+c),c=-35/52+9/53*I,n=39 4807529027408703 r005 Re(z^2+c),c=1/17+37/58*I,n=56 4807529032332142 r005 Im(z^2+c),c=9/82+31/56*I,n=51 4807529043201061 a001 1134903780*1364^(1/5) 4807529047366741 a007 Real Root Of -693*x^4+563*x^3-400*x^2+339*x+355 4807529054261751 h001 (-3*exp(8)+5)/(-5*exp(1)-5) 4807529063362747 r005 Re(z^2+c),c=19/74+34/61*I,n=39 4807529080538046 a007 Real Root Of 846*x^4+896*x^3+41*x^2-863*x-370 4807529084169644 r009 Im(z^3+c),c=-9/34+5/9*I,n=43 4807529093434938 r009 Im(z^3+c),c=-5/86+36/61*I,n=36 4807529109254094 r002 6th iterates of z^2 + 4807529111116714 a001 29/2504730781961*317811^(5/17) 4807529123644697 r002 44th iterates of z^2 + 4807529153261991 a007 Real Root Of 195*x^4+800*x^3-783*x^2-694*x-514 4807529178658141 r002 64th iterates of z^2 + 4807529182999373 a001 7677624105250/1597 4807529196849302 m005 (5/6*2^(1/2)+4/5)/(1/5*gamma+4) 4807529205177246 a001 2971215073/1364*3571^(16/17) 4807529215467857 a001 2504730781961/1364*1364^(2/15) 4807529221855455 r002 54th iterates of z^2 + 4807529227353759 a001 1201881744/341*3571^(15/17) 4807529227634838 s002 sum(A251855[n]/(pi^n-1),n=1..infinity) 4807529248068889 a001 2504730781961/5778*843^(5/14) 4807529249530272 a001 7778742049/1364*3571^(14/17) 4807529256321776 r009 Re(z^3+c),c=-59/126+4/41*I,n=14 4807529260032226 m001 (Backhouse-RenyiParking)/(Trott2nd-ZetaP(3)) 4807529261565234 m005 (1/2*gamma+3/10)/(4/9*3^(1/2)+5/11) 4807529271706785 a001 1144206275/124*3571^(13/17) 4807529281645373 a007 Real Root Of -963*x^4-616*x^3-872*x^2+105*x+7 4807529285856891 a001 2504730781961/3571*843^(2/7) 4807529293883298 a001 10182505537/682*3571^(12/17) 4807529304041707 r009 Im(z^3+c),c=-55/98+10/21*I,n=31 4807529316059812 a001 32951280099/1364*3571^(11/17) 4807529326163212 r005 Im(z^2+c),c=1/7+29/62*I,n=9 4807529332501219 m001 (-Zeta(3)+TreeGrowth2nd)/(1-sin(1)) 4807529338236325 a001 53316291173/1364*3571^(10/17) 4807529360412839 a001 21566892818/341*3571^(9/17) 4807529371060816 a001 6557470319842/15127*843^(5/14) 4807529371498130 a001 365435296162/2207*843^(1/2) 4807529382589352 a001 139583862445/1364*3571^(8/17) 4807529387734658 a001 4052739537881/1364*1364^(1/15) 4807529395096980 l006 ln(4800/7763) 4807529397282466 r009 Im(z^3+c),c=-5/86+36/61*I,n=34 4807529398488552 a001 1/4870847*11^(11/31) 4807529400095272 a001 10610209857723/24476*843^(5/14) 4807529404765866 a001 225851433717/1364*3571^(7/17) 4807529406328466 m001 (BesselJ(0,1)-BesselJ(1,1))/(-Landau+PlouffeB) 4807529415998615 a001 305/2889*817138163596^(17/19) 4807529415998615 a001 305/2889*14662949395604^(17/21) 4807529415998615 a001 305/2889*(1/2+1/2*5^(1/2))^51 4807529415998615 a001 305/2889*192900153618^(17/18) 4807529416000000 a001 646/341*45537549124^(15/17) 4807529416000000 a001 646/341*312119004989^(9/11) 4807529416000000 a001 646/341*14662949395604^(5/7) 4807529416000000 a001 646/341*(1/2+1/2*5^(1/2))^45 4807529416000000 a001 646/341*192900153618^(5/6) 4807529416000000 a001 646/341*28143753123^(9/10) 4807529416000000 a001 646/341*10749957122^(15/16) 4807529425585910 m005 (1/2*Catalan+7/12)/(gamma-5/9) 4807529426942380 a001 182717648081/682*3571^(6/17) 4807529431289859 m001 (BesselI(0,1)+Conway)/(-Landau+ZetaQ(3)) 4807529431419924 r005 Im(z^2+c),c=-13/70+47/63*I,n=62 4807529437730692 m001 (LaplaceLimit+PlouffeB)/(Zeta(3)-FeigenbaumMu) 4807529447074010 a001 4052739537881/9349*843^(5/14) 4807529449118894 a001 591286729879/1364*3571^(5/17) 4807529454361359 m005 (1/2*gamma+2/9)/(5/8*exp(1)-7/11) 4807529459995784 a008 Real Root of x^4-x^3-12*x^2+99*x+108 4807529471295408 a001 956722026041/1364*3571^(4/17) 4807529473542143 a001 5^(40/41) 4807529473542143 b008 5^(40/41) 4807529479906267 r005 Re(z^2+c),c=-175/122+20/53*I,n=2 4807529493433794 a001 4/17711*2584^(5/52) 4807529493471922 a001 1134903780*3571^(3/17) 4807529504996412 a001 20100280860390/4181 4807529507892730 a001 567451585/682*9349^(18/19) 4807529510787660 a001 1836311903/1364*9349^(17/19) 4807529512573754 r002 8th iterates of z^2 + 4807529513682589 a001 2971215073/1364*9349^(16/19) 4807529515648437 a001 2504730781961/1364*3571^(2/17) 4807529516577519 a001 1201881744/341*9349^(15/19) 4807529519472449 a001 7778742049/1364*9349^(14/19) 4807529520924133 r009 Re(z^3+c),c=-11/118+37/51*I,n=37 4807529522367379 a001 1144206275/124*9349^(13/19) 4807529525262308 a001 10182505537/682*9349^(12/19) 4807529528157238 a001 32951280099/1364*9349^(11/19) 4807529531052168 a001 53316291173/1364*9349^(10/19) 4807529533947098 a001 21566892818/341*9349^(9/19) 4807529536842028 a001 139583862445/1364*9349^(8/19) 4807529537824951 a001 4052739537881/1364*3571^(1/17) 4807529538990546 a001 610/15127*(1/2+1/2*5^(1/2))^53 4807529538991935 a001 615/124*(1/2+1/2*5^(1/2))^43 4807529539736957 a001 225851433717/1364*9349^(7/19) 4807529542631887 a001 182717648081/682*9349^(6/19) 4807529545526817 a001 591286729879/1364*9349^(5/19) 4807529548421747 a001 956722026041/1364*9349^(4/19) 4807529548563256 m002 -Pi^6/2+ProductLog[Pi]/Log[Pi]-Tanh[Pi] 4807529551316676 a001 1134903780*9349^(3/19) 4807529551975150 a001 26311609237960/5473 4807529552358678 a001 433494437/1364*24476^(20/21) 4807529552740818 a001 701408733/1364*24476^(19/21) 4807529553122957 a001 567451585/682*24476^(6/7) 4807529553505097 a001 1836311903/1364*24476^(17/21) 4807529553887236 a001 2971215073/1364*24476^(16/21) 4807529554211606 a001 2504730781961/1364*9349^(2/19) 4807529554269375 a001 1201881744/341*24476^(5/7) 4807529554651515 a001 7778742049/1364*24476^(2/3) 4807529555033654 a001 1144206275/124*24476^(13/21) 4807529555415793 a001 10182505537/682*24476^(4/7) 4807529555797933 a001 32951280099/1364*24476^(11/21) 4807529556180072 a001 53316291173/1364*24476^(10/21) 4807529556562211 a001 21566892818/341*24476^(3/7) 4807529556934828 a001 610/39603*(1/2+1/2*5^(1/2))^55 4807529556934828 a001 610/39603*3461452808002^(11/12) 4807529556936217 a001 17711/1364*(1/2+1/2*5^(1/2))^41 4807529556944351 a001 139583862445/1364*24476^(8/21) 4807529557106536 a001 4052739537881/1364*9349^(1/19) 4807529557326490 a001 225851433717/1364*24476^(1/3) 4807529557708630 a001 182717648081/682*24476^(2/7) 4807529558090769 a001 591286729879/1364*24476^(5/21) 4807529558472908 a001 956722026041/1364*24476^(4/21) 4807529558829256 a001 137769374567370/28657 4807529558855048 a001 1134903780*24476^(1/7) 4807529558881550 a001 165580141/1364*64079^(22/23) 4807529558932455 a001 66978574/341*64079^(21/23) 4807529558983361 a001 433494437/1364*64079^(20/23) 4807529559034266 a001 701408733/1364*64079^(19/23) 4807529559085171 a001 567451585/682*64079^(18/23) 4807529559136076 a001 1836311903/1364*64079^(17/23) 4807529559186982 a001 2971215073/1364*64079^(16/23) 4807529559237187 a001 2504730781961/1364*24476^(2/21) 4807529559237887 a001 1201881744/341*64079^(15/23) 4807529559288792 a001 7778742049/1364*64079^(14/23) 4807529559339697 a001 1144206275/124*64079^(13/23) 4807529559390603 a001 10182505537/682*64079^(12/23) 4807529559441508 a001 32951280099/1364*64079^(11/23) 4807529559492413 a001 53316291173/1364*64079^(10/23) 4807529559543318 a001 21566892818/341*64079^(9/23) 4807529559552863 a001 305/51841*14662949395604^(19/21) 4807529559552863 a001 305/51841*(1/2+1/2*5^(1/2))^57 4807529559554252 a001 11592/341*2537720636^(13/15) 4807529559554252 a001 11592/341*45537549124^(13/17) 4807529559554252 a001 11592/341*14662949395604^(13/21) 4807529559554252 a001 11592/341*(1/2+1/2*5^(1/2))^39 4807529559554252 a001 11592/341*192900153618^(13/18) 4807529559554252 a001 11592/341*73681302247^(3/4) 4807529559554252 a001 11592/341*10749957122^(13/16) 4807529559554252 a001 11592/341*599074578^(13/14) 4807529559594224 a001 139583862445/1364*64079^(8/23) 4807529559619326 a001 4052739537881/1364*24476^(1/21) 4807529559645129 a001 225851433717/1364*64079^(7/23) 4807529559696034 a001 182717648081/682*64079^(6/23) 4807529559746939 a001 591286729879/1364*64079^(5/23) 4807529559797845 a001 956722026041/1364*64079^(4/23) 4807529559829256 a001 72136981045238/15005 4807529559848750 a001 1134903780*64079^(3/23) 4807529559864809 a001 433494437/1364*167761^(4/5) 4807529559898973 a001 1201881744/341*167761^(3/5) 4807529559899655 a001 2504730781961/1364*64079^(2/23) 4807529559933138 a001 53316291173/1364*167761^(2/5) 4807529559934829 a001 610/271443*(1/2+1/2*5^(1/2))^59 4807529559936218 a001 121393/1364*(1/2+1/2*5^(1/2))^37 4807529559950561 a001 4052739537881/1364*64079^(1/23) 4807529559967302 a001 591286729879/1364*167761^(1/5) 4807529559975155 a001 472142670555600/98209 4807529559979313 a001 31622993/682*439204^(8/9) 4807529559982082 a001 66978574/341*439204^(7/9) 4807529559984851 a001 567451585/682*439204^(2/3) 4807529559987620 a001 1201881744/341*439204^(5/9) 4807529559990389 a001 10182505537/682*439204^(4/9) 4807529559990557 a001 610/710647*(1/2+1/2*5^(1/2))^61 4807529559991946 a001 317811/1364*2537720636^(7/9) 4807529559991946 a001 317811/1364*17393796001^(5/7) 4807529559991946 a001 317811/1364*312119004989^(7/11) 4807529559991946 a001 317811/1364*14662949395604^(5/9) 4807529559991946 a001 317811/1364*(1/2+1/2*5^(1/2))^35 4807529559991946 a001 317811/1364*505019158607^(5/8) 4807529559991946 a001 317811/1364*28143753123^(7/10) 4807529559991946 a001 317811/1364*599074578^(5/6) 4807529559991946 a001 317811/1364*228826127^(7/8) 4807529559993158 a001 21566892818/341*439204^(1/3) 4807529559995927 a001 182717648081/682*439204^(2/9) 4807529559996441 a001 2472171118107410/514229 4807529559998688 a001 305/930249*(1/2+1/2*5^(1/2))^63 4807529559998697 a001 1134903780*439204^(1/9) 4807529559999546 a001 6472228013211030/1346269 4807529560000077 a001 610*141422324^(11/13) 4807529560000077 a001 610*2537720636^(11/15) 4807529560000077 a001 610*45537549124^(11/17) 4807529560000077 a001 610*312119004989^(3/5) 4807529560000077 a001 610*817138163596^(11/19) 4807529560000077 a001 610*14662949395604^(11/21) 4807529560000077 a001 610*(1/2+1/2*5^(1/2))^33 4807529560000077 a001 610*192900153618^(11/18) 4807529560000077 a001 610*10749957122^(11/16) 4807529560000077 a001 610*1568397607^(3/4) 4807529560000077 a001 610*599074578^(11/14) 4807529560000081 a001 610*33385282^(11/12) 4807529560000607 a001 610/3010349*(1/2+1/2*5^(1/2))^64 4807529560001263 a001 2178309/1364*(1/2+1/2*5^(1/2))^31 4807529560001263 a001 2178309/1364*9062201101803^(1/2) 4807529560001398 a001 3732588/341*7881196^(9/11) 4807529560001410 a001 31622993/682*7881196^(8/11) 4807529560001414 a001 165580141/1364*7881196^(2/3) 4807529560001417 a001 66978574/341*7881196^(7/11) 4807529560001424 a001 567451585/682*7881196^(6/11) 4807529560001431 a001 1201881744/341*7881196^(5/11) 4807529560001436 a001 5702887/1364*(1/2+1/2*5^(1/2))^29 4807529560001436 a001 5702887/1364*1322157322203^(1/2) 4807529560001438 a001 10182505537/682*7881196^(4/11) 4807529560001440 a001 32951280099/1364*7881196^(1/3) 4807529560001445 a001 21566892818/341*7881196^(3/11) 4807529560001452 a001 182717648081/682*7881196^(2/11) 4807529560001457 a001 39088169/1364*20633239^(5/7) 4807529560001459 a001 1134903780*7881196^(1/11) 4807529560001459 a001 66978574/341*20633239^(3/5) 4807529560001459 a001 433494437/1364*20633239^(4/7) 4807529560001461 a001 1201881744/341*20633239^(3/7) 4807529560001461 a001 7778742049/1364*20633239^(2/5) 4807529560001461 a001 3732588/341*141422324^(9/13) 4807529560001461 a001 3732588/341*2537720636^(3/5) 4807529560001461 a001 3732588/341*45537549124^(9/17) 4807529560001461 a001 3732588/341*817138163596^(9/19) 4807529560001461 a001 3732588/341*14662949395604^(3/7) 4807529560001461 a001 3732588/341*(1/2+1/2*5^(1/2))^27 4807529560001461 a001 3732588/341*192900153618^(1/2) 4807529560001461 a001 3732588/341*10749957122^(9/16) 4807529560001461 a001 3732588/341*599074578^(9/14) 4807529560001463 a001 53316291173/1364*20633239^(2/7) 4807529560001464 a001 225851433717/1364*20633239^(1/5) 4807529560001464 a001 591286729879/1364*20633239^(1/7) 4807529560001465 a001 3732588/341*33385282^(3/4) 4807529560001465 a001 39088169/1364*2537720636^(5/9) 4807529560001465 a001 39088169/1364*312119004989^(5/11) 4807529560001465 a001 39088169/1364*(1/2+1/2*5^(1/2))^25 4807529560001465 a001 39088169/1364*3461452808002^(5/12) 4807529560001465 a001 39088169/1364*28143753123^(1/2) 4807529560001465 a001 39088169/1364*228826127^(5/8) 4807529560001466 a001 66978574/341*141422324^(7/13) 4807529560001466 a001 567451585/682*141422324^(6/13) 4807529560001466 a001 1201881744/341*141422324^(5/13) 4807529560001466 a001 9303105/124*(1/2+1/2*5^(1/2))^23 4807529560001466 a001 9303105/124*4106118243^(1/2) 4807529560001466 a001 1144206275/124*141422324^(1/3) 4807529560001466 a001 10182505537/682*141422324^(4/13) 4807529560001466 a001 21566892818/341*141422324^(3/13) 4807529560001466 a001 182717648081/682*141422324^(2/13) 4807529560001466 a001 1134903780*141422324^(1/13) 4807529560001466 a001 66978574/341*2537720636^(7/15) 4807529560001466 a001 66978574/341*17393796001^(3/7) 4807529560001466 a001 66978574/341*45537549124^(7/17) 4807529560001466 a001 66978574/341*14662949395604^(1/3) 4807529560001466 a001 66978574/341*(1/2+1/2*5^(1/2))^21 4807529560001466 a001 66978574/341*192900153618^(7/18) 4807529560001466 a001 66978574/341*10749957122^(7/16) 4807529560001466 a001 66978574/341*599074578^(1/2) 4807529560001466 a001 701408733/1364*817138163596^(1/3) 4807529560001466 a001 701408733/1364*(1/2+1/2*5^(1/2))^19 4807529560001466 a001 1201881744/341*2537720636^(1/3) 4807529560001466 a001 1836311903/1364*45537549124^(1/3) 4807529560001466 a001 1836311903/1364*(1/2+1/2*5^(1/2))^17 4807529560001466 a001 10182505537/682*2537720636^(4/15) 4807529560001466 a001 53316291173/1364*2537720636^(2/9) 4807529560001466 a001 21566892818/341*2537720636^(1/5) 4807529560001466 a001 182717648081/682*2537720636^(2/15) 4807529560001466 a001 591286729879/1364*2537720636^(1/9) 4807529560001466 a001 1134903780*2537720636^(1/15) 4807529560001466 a001 1201881744/341*45537549124^(5/17) 4807529560001466 a001 1201881744/341*312119004989^(3/11) 4807529560001466 a001 1201881744/341*14662949395604^(5/21) 4807529560001466 a001 1201881744/341*(1/2+1/2*5^(1/2))^15 4807529560001466 a001 1201881744/341*192900153618^(5/18) 4807529560001466 a001 1201881744/341*28143753123^(3/10) 4807529560001466 a001 1201881744/341*10749957122^(5/16) 4807529560001466 a001 1144206275/124*(1/2+1/2*5^(1/2))^13 4807529560001466 a001 1144206275/124*73681302247^(1/4) 4807529560001466 a001 225851433717/1364*17393796001^(1/7) 4807529560001466 a001 32951280099/1364*312119004989^(1/5) 4807529560001466 a001 32951280099/1364*(1/2+1/2*5^(1/2))^11 4807529560001466 a001 21566892818/341*45537549124^(3/17) 4807529560001466 a001 182717648081/682*45537549124^(2/17) 4807529560001466 a001 1134903780*45537549124^(1/17) 4807529560001466 a001 21566892818/341*817138163596^(3/19) 4807529560001466 a001 21566892818/341*(1/2+1/2*5^(1/2))^9 4807529560001466 a001 21566892818/341*192900153618^(1/6) 4807529560001466 a001 225851433717/1364*14662949395604^(1/9) 4807529560001466 a001 225851433717/1364*(1/2+1/2*5^(1/2))^7 4807529560001466 a001 591286729879/1364*312119004989^(1/11) 4807529560001466 a001 1134903780*14662949395604^(1/21) 4807529560001466 a001 1134903780*(1/2+1/2*5^(1/2))^3 4807529560001466 a001 956722026041/1364*(1/2+1/2*5^(1/2))^4 4807529560001466 a001 1134903780*192900153618^(1/18) 4807529560001466 a001 182717648081/682*(1/2+1/2*5^(1/2))^6 4807529560001466 a001 139583862445/1364*(1/2+1/2*5^(1/2))^8 4807529560001466 a001 139583862445/1364*23725150497407^(1/8) 4807529560001466 a001 139583862445/1364*505019158607^(1/7) 4807529560001466 a001 956722026041/1364*73681302247^(1/13) 4807529560001466 a001 139583862445/1364*73681302247^(2/13) 4807529560001466 a001 53316291173/1364*312119004989^(2/11) 4807529560001466 a001 53316291173/1364*(1/2+1/2*5^(1/2))^10 4807529560001466 a001 591286729879/1364*28143753123^(1/10) 4807529560001466 a001 53316291173/1364*28143753123^(1/5) 4807529560001466 a001 2504730781961/1364*10749957122^(1/24) 4807529560001466 a001 10182505537/682*45537549124^(4/17) 4807529560001466 a001 10182505537/682*817138163596^(4/19) 4807529560001466 a001 10182505537/682*14662949395604^(4/21) 4807529560001466 a001 10182505537/682*(1/2+1/2*5^(1/2))^12 4807529560001466 a001 10182505537/682*192900153618^(2/9) 4807529560001466 a001 10182505537/682*73681302247^(3/13) 4807529560001466 a001 1134903780*10749957122^(1/16) 4807529560001466 a001 956722026041/1364*10749957122^(1/12) 4807529560001466 a001 182717648081/682*10749957122^(1/8) 4807529560001466 a001 139583862445/1364*10749957122^(1/6) 4807529560001466 a001 21566892818/341*10749957122^(3/16) 4807529560001466 a001 53316291173/1364*10749957122^(5/24) 4807529560001466 a001 7778742049/1364*17393796001^(2/7) 4807529560001466 a001 2504730781961/1364*4106118243^(1/23) 4807529560001466 a001 10182505537/682*10749957122^(1/4) 4807529560001466 a001 7778742049/1364*14662949395604^(2/9) 4807529560001466 a001 7778742049/1364*(1/2+1/2*5^(1/2))^14 4807529560001466 a001 7778742049/1364*505019158607^(1/4) 4807529560001466 a001 956722026041/1364*4106118243^(2/23) 4807529560001466 a001 7778742049/1364*10749957122^(7/24) 4807529560001466 a001 182717648081/682*4106118243^(3/23) 4807529560001466 a001 139583862445/1364*4106118243^(4/23) 4807529560001466 a001 53316291173/1364*4106118243^(5/23) 4807529560001466 a001 10182505537/682*4106118243^(6/23) 4807529560001466 a001 2504730781961/1364*1568397607^(1/22) 4807529560001466 a001 7778742049/1364*4106118243^(7/23) 4807529560001466 a001 2971215073/1364*(1/2+1/2*5^(1/2))^16 4807529560001466 a001 2971215073/1364*23725150497407^(1/4) 4807529560001466 a001 2971215073/1364*73681302247^(4/13) 4807529560001466 a001 2971215073/1364*10749957122^(1/3) 4807529560001466 a001 956722026041/1364*1568397607^(1/11) 4807529560001466 a001 2971215073/1364*4106118243^(8/23) 4807529560001466 a001 182717648081/682*1568397607^(3/22) 4807529560001466 a001 139583862445/1364*1568397607^(2/11) 4807529560001466 a001 53316291173/1364*1568397607^(5/22) 4807529560001466 a001 567451585/682*2537720636^(2/5) 4807529560001466 a001 32951280099/1364*1568397607^(1/4) 4807529560001466 a001 10182505537/682*1568397607^(3/11) 4807529560001466 a001 7778742049/1364*1568397607^(7/22) 4807529560001466 a001 2504730781961/1364*599074578^(1/21) 4807529560001466 a001 567451585/682*45537549124^(6/17) 4807529560001466 a001 567451585/682*14662949395604^(2/7) 4807529560001466 a001 567451585/682*(1/2+1/2*5^(1/2))^18 4807529560001466 a001 567451585/682*192900153618^(1/3) 4807529560001466 a001 567451585/682*10749957122^(3/8) 4807529560001466 a001 2971215073/1364*1568397607^(4/11) 4807529560001466 a001 567451585/682*4106118243^(9/23) 4807529560001466 a001 1134903780*599074578^(1/14) 4807529560001466 a001 956722026041/1364*599074578^(2/21) 4807529560001466 a001 567451585/682*1568397607^(9/22) 4807529560001466 a001 182717648081/682*599074578^(1/7) 4807529560001466 a001 225851433717/1364*599074578^(1/6) 4807529560001466 a001 139583862445/1364*599074578^(4/21) 4807529560001466 a001 21566892818/341*599074578^(3/14) 4807529560001466 a001 53316291173/1364*599074578^(5/21) 4807529560001466 a001 10182505537/682*599074578^(2/7) 4807529560001466 a001 7778742049/1364*599074578^(1/3) 4807529560001466 a001 2504730781961/1364*228826127^(1/20) 4807529560001466 a001 1201881744/341*599074578^(5/14) 4807529560001466 a001 433494437/1364*2537720636^(4/9) 4807529560001466 a001 433494437/1364*(1/2+1/2*5^(1/2))^20 4807529560001466 a001 433494437/1364*23725150497407^(5/16) 4807529560001466 a001 433494437/1364*505019158607^(5/14) 4807529560001466 a001 433494437/1364*73681302247^(5/13) 4807529560001466 a001 433494437/1364*28143753123^(2/5) 4807529560001466 a001 433494437/1364*10749957122^(5/12) 4807529560001466 a001 2971215073/1364*599074578^(8/21) 4807529560001466 a001 433494437/1364*4106118243^(10/23) 4807529560001466 a001 433494437/1364*1568397607^(5/11) 4807529560001466 a001 567451585/682*599074578^(3/7) 4807529560001466 a001 956722026041/1364*228826127^(1/10) 4807529560001466 a001 591286729879/1364*228826127^(1/8) 4807529560001466 a001 433494437/1364*599074578^(10/21) 4807529560001466 a001 182717648081/682*228826127^(3/20) 4807529560001466 a001 139583862445/1364*228826127^(1/5) 4807529560001466 a001 53316291173/1364*228826127^(1/4) 4807529560001466 a001 10182505537/682*228826127^(3/10) 4807529560001466 a001 7778742049/1364*228826127^(7/20) 4807529560001466 a001 2504730781961/1364*87403803^(1/19) 4807529560001466 a001 1201881744/341*228826127^(3/8) 4807529560001466 a001 165580141/1364*312119004989^(2/5) 4807529560001466 a001 165580141/1364*(1/2+1/2*5^(1/2))^22 4807529560001466 a001 165580141/1364*10749957122^(11/24) 4807529560001466 a001 165580141/1364*4106118243^(11/23) 4807529560001466 a001 165580141/1364*1568397607^(1/2) 4807529560001466 a001 2971215073/1364*228826127^(2/5) 4807529560001466 a001 567451585/682*228826127^(9/20) 4807529560001466 a001 165580141/1364*599074578^(11/21) 4807529560001466 a001 433494437/1364*228826127^(1/2) 4807529560001466 a001 956722026041/1364*87403803^(2/19) 4807529560001466 a001 165580141/1364*228826127^(11/20) 4807529560001466 a001 31622993/682*141422324^(8/13) 4807529560001466 a001 182717648081/682*87403803^(3/19) 4807529560001466 a001 139583862445/1364*87403803^(4/19) 4807529560001466 a001 53316291173/1364*87403803^(5/19) 4807529560001466 a001 10182505537/682*87403803^(6/19) 4807529560001466 a001 7778742049/1364*87403803^(7/19) 4807529560001466 a001 2504730781961/1364*33385282^(1/18) 4807529560001466 a001 31622993/682*2537720636^(8/15) 4807529560001466 a001 31622993/682*45537549124^(8/17) 4807529560001466 a001 31622993/682*14662949395604^(8/21) 4807529560001466 a001 31622993/682*(1/2+1/2*5^(1/2))^24 4807529560001466 a001 31622993/682*192900153618^(4/9) 4807529560001466 a001 31622993/682*73681302247^(6/13) 4807529560001466 a001 31622993/682*10749957122^(1/2) 4807529560001466 a001 31622993/682*4106118243^(12/23) 4807529560001466 a001 31622993/682*1568397607^(6/11) 4807529560001466 a001 31622993/682*599074578^(4/7) 4807529560001466 a001 2971215073/1364*87403803^(8/19) 4807529560001466 a001 31622993/682*228826127^(3/5) 4807529560001466 a001 567451585/682*87403803^(9/19) 4807529560001466 a001 701408733/1364*87403803^(1/2) 4807529560001466 a001 433494437/1364*87403803^(10/19) 4807529560001466 a001 1134903780*33385282^(1/12) 4807529560001466 a001 165580141/1364*87403803^(11/19) 4807529560001466 a001 956722026041/1364*33385282^(1/9) 4807529560001466 a001 31622993/682*87403803^(12/19) 4807529560001466 a001 182717648081/682*33385282^(1/6) 4807529560001467 a001 139583862445/1364*33385282^(2/9) 4807529560001467 a001 21566892818/341*33385282^(1/4) 4807529560001467 a001 53316291173/1364*33385282^(5/18) 4807529560001467 a001 10182505537/682*33385282^(1/3) 4807529560001467 a001 24157817/1364*141422324^(2/3) 4807529560001467 a001 24157817/1364*(1/2+1/2*5^(1/2))^26 4807529560001467 a001 24157817/1364*73681302247^(1/2) 4807529560001467 a001 24157817/1364*10749957122^(13/24) 4807529560001467 a001 24157817/1364*4106118243^(13/23) 4807529560001467 a001 24157817/1364*1568397607^(13/22) 4807529560001467 a001 24157817/1364*599074578^(13/21) 4807529560001467 a001 7778742049/1364*33385282^(7/18) 4807529560001467 a001 24157817/1364*228826127^(13/20) 4807529560001468 a001 2504730781961/1364*12752043^(1/17) 4807529560001468 a001 1201881744/341*33385282^(5/12) 4807529560001468 a001 2971215073/1364*33385282^(4/9) 4807529560001468 a001 24157817/1364*87403803^(13/19) 4807529560001468 a001 567451585/682*33385282^(1/2) 4807529560001468 a001 9227465/1364*20633239^(4/5) 4807529560001468 a001 433494437/1364*33385282^(5/9) 4807529560001468 a001 66978574/341*33385282^(7/12) 4807529560001468 a001 165580141/1364*33385282^(11/18) 4807529560001469 a001 31622993/682*33385282^(2/3) 4807529560001469 a001 956722026041/1364*12752043^(2/17) 4807529560001471 a001 24157817/1364*33385282^(13/18) 4807529560001471 a001 182717648081/682*12752043^(3/17) 4807529560001473 a001 139583862445/1364*12752043^(4/17) 4807529560001473 a001 1762289/682*7881196^(10/11) 4807529560001474 a001 53316291173/1364*12752043^(5/17) 4807529560001476 a001 10182505537/682*12752043^(6/17) 4807529560001477 a001 9227465/1364*17393796001^(4/7) 4807529560001477 a001 9227465/1364*14662949395604^(4/9) 4807529560001477 a001 9227465/1364*(1/2+1/2*5^(1/2))^28 4807529560001477 a001 9227465/1364*73681302247^(7/13) 4807529560001477 a001 9227465/1364*10749957122^(7/12) 4807529560001477 a001 9227465/1364*4106118243^(14/23) 4807529560001477 a001 9227465/1364*1568397607^(7/11) 4807529560001477 a001 9227465/1364*599074578^(2/3) 4807529560001477 a001 9227465/1364*228826127^(7/10) 4807529560001478 a001 9227465/1364*87403803^(14/19) 4807529560001478 a001 7778742049/1364*12752043^(7/17) 4807529560001478 a001 2504730781961/1364*4870847^(1/16) 4807529560001480 a001 2971215073/1364*12752043^(8/17) 4807529560001480 a001 9227465/1364*33385282^(7/9) 4807529560001481 a001 1836311903/1364*12752043^(1/2) 4807529560001481 a001 567451585/682*12752043^(9/17) 4807529560001483 a001 433494437/1364*12752043^(10/17) 4807529560001485 a001 165580141/1364*12752043^(11/17) 4807529560001487 a001 31622993/682*12752043^(12/17) 4807529560001490 a001 24157817/1364*12752043^(13/17) 4807529560001491 a001 956722026041/1364*4870847^(1/8) 4807529560001501 a001 9227465/1364*12752043^(14/17) 4807529560001504 a001 182717648081/682*4870847^(3/16) 4807529560001516 a001 139583862445/1364*4870847^(1/4) 4807529560001529 a001 53316291173/1364*4870847^(5/16) 4807529560001533 a001 1762289/682*20633239^(6/7) 4807529560001542 a001 10182505537/682*4870847^(3/8) 4807529560001543 a001 1762289/682*141422324^(10/13) 4807529560001543 a001 1762289/682*2537720636^(2/3) 4807529560001543 a001 1762289/682*45537549124^(10/17) 4807529560001543 a001 1762289/682*312119004989^(6/11) 4807529560001543 a001 1762289/682*14662949395604^(10/21) 4807529560001543 a001 1762289/682*(1/2+1/2*5^(1/2))^30 4807529560001543 a001 1762289/682*192900153618^(5/9) 4807529560001543 a001 1762289/682*28143753123^(3/5) 4807529560001543 a001 1762289/682*10749957122^(5/8) 4807529560001543 a001 1762289/682*4106118243^(15/23) 4807529560001543 a001 1762289/682*1568397607^(15/22) 4807529560001543 a001 1762289/682*599074578^(5/7) 4807529560001543 a001 1762289/682*228826127^(3/4) 4807529560001544 a001 1762289/682*87403803^(15/19) 4807529560001547 a001 1762289/682*33385282^(5/6) 4807529560001554 a001 7778742049/1364*4870847^(7/16) 4807529560001558 a001 2504730781961/1364*1860498^(1/15) 4807529560001567 a001 2971215073/1364*4870847^(1/2) 4807529560001569 a001 1762289/682*12752043^(15/17) 4807529560001580 a001 567451585/682*4870847^(9/16) 4807529560001592 a001 433494437/1364*4870847^(5/8) 4807529560001605 a001 1134903780*1860498^(1/10) 4807529560001605 a001 165580141/1364*4870847^(11/16) 4807529560001618 a001 31622993/682*4870847^(3/4) 4807529560001632 a001 24157817/1364*4870847^(13/16) 4807529560001651 a001 956722026041/1364*1860498^(2/15) 4807529560001654 a001 9227465/1364*4870847^(7/8) 4807529560001697 a001 591286729879/1364*1860498^(1/6) 4807529560001733 a001 1762289/682*4870847^(15/16) 4807529560001744 a001 182717648081/682*1860498^(1/5) 4807529560001836 a001 139583862445/1364*1860498^(4/15) 4807529560001882 a001 21566892818/341*1860498^(3/10) 4807529560001929 a001 53316291173/1364*1860498^(1/3) 4807529560001996 a001 1346269/1364*(1/2+1/2*5^(1/2))^32 4807529560001996 a001 1346269/1364*23725150497407^(1/2) 4807529560001996 a001 1346269/1364*505019158607^(4/7) 4807529560001996 a001 1346269/1364*73681302247^(8/13) 4807529560001996 a001 1346269/1364*10749957122^(2/3) 4807529560001996 a001 1346269/1364*4106118243^(16/23) 4807529560001996 a001 1346269/1364*1568397607^(8/11) 4807529560001996 a001 1346269/1364*599074578^(16/21) 4807529560001996 a001 1346269/1364*228826127^(4/5) 4807529560001997 a001 1346269/1364*87403803^(16/19) 4807529560002000 a001 1346269/1364*33385282^(8/9) 4807529560002021 a001 10182505537/682*1860498^(2/5) 4807529560002024 a001 1346269/1364*12752043^(16/17) 4807529560002114 a001 7778742049/1364*1860498^(7/15) 4807529560002146 a001 2504730781961/1364*710647^(1/14) 4807529560002160 a001 1201881744/341*1860498^(1/2) 4807529560002207 a001 2971215073/1364*1860498^(8/15) 4807529560002299 a001 567451585/682*1860498^(3/5) 4807529560002392 a001 433494437/1364*1860498^(2/3) 4807529560002438 a001 66978574/341*1860498^(7/10) 4807529560002484 a001 165580141/1364*1860498^(11/15) 4807529560002577 a001 31622993/682*1860498^(4/5) 4807529560002623 a001 39088169/1364*1860498^(5/6) 4807529560002671 a001 24157817/1364*1860498^(13/15) 4807529560002711 a001 3732588/341*1860498^(9/10) 4807529560002773 a001 9227465/1364*1860498^(14/15) 4807529560002826 a001 956722026041/1364*710647^(1/7) 4807529560003506 a001 182717648081/682*710647^(3/14) 4807529560003713 a001 610/1149851*(1/2+1/2*5^(1/2))^62 4807529560003846 a001 225851433717/1364*710647^(1/4) 4807529560004186 a001 139583862445/1364*710647^(2/7) 4807529560004866 a001 53316291173/1364*710647^(5/14) 4807529560005102 a001 514229/1364*45537549124^(2/3) 4807529560005102 a001 514229/1364*(1/2+1/2*5^(1/2))^34 4807529560005102 a001 514229/1364*10749957122^(17/24) 4807529560005102 a001 514229/1364*4106118243^(17/23) 4807529560005102 a001 514229/1364*1568397607^(17/22) 4807529560005102 a001 514229/1364*599074578^(17/21) 4807529560005102 a001 514229/1364*228826127^(17/20) 4807529560005102 a001 514229/1364*87403803^(17/19) 4807529560005106 a001 514229/1364*33385282^(17/18) 4807529560005546 a001 10182505537/682*710647^(3/7) 4807529560006226 a001 7778742049/1364*710647^(1/2) 4807529560006485 a001 2504730781961/1364*271443^(1/13) 4807529560006905 a001 2971215073/1364*710647^(4/7) 4807529560007585 a001 567451585/682*710647^(9/14) 4807529560008265 a001 433494437/1364*710647^(5/7) 4807529560008605 a001 66978574/341*710647^(3/4) 4807529560008945 a001 165580141/1364*710647^(11/14) 4807529560009596 a001 1527885776996210/317811 4807529560009626 a001 31622993/682*710647^(6/7) 4807529560010307 a001 24157817/1364*710647^(13/14) 4807529560011504 a001 956722026041/1364*271443^(2/13) 4807529560016523 a001 182717648081/682*271443^(3/13) 4807529560020100 a001 4052739537881/1364*103682^(1/24) 4807529560021542 a001 139583862445/1364*271443^(4/13) 4807529560024999 a001 305/219602*14662949395604^(20/21) 4807529560024999 a001 305/219602*(1/2+1/2*5^(1/2))^60 4807529560026388 a001 98209/682*141422324^(12/13) 4807529560026388 a001 98209/682*2537720636^(4/5) 4807529560026388 a001 98209/682*45537549124^(12/17) 4807529560026388 a001 98209/682*14662949395604^(4/7) 4807529560026388 a001 98209/682*(1/2+1/2*5^(1/2))^36 4807529560026388 a001 98209/682*505019158607^(9/14) 4807529560026388 a001 98209/682*192900153618^(2/3) 4807529560026388 a001 98209/682*73681302247^(9/13) 4807529560026388 a001 98209/682*10749957122^(3/4) 4807529560026388 a001 98209/682*4106118243^(18/23) 4807529560026388 a001 98209/682*1568397607^(9/11) 4807529560026388 a001 98209/682*599074578^(6/7) 4807529560026388 a001 98209/682*228826127^(9/10) 4807529560026389 a001 98209/682*87403803^(18/19) 4807529560026561 a001 53316291173/1364*271443^(5/13) 4807529560031580 a001 10182505537/682*271443^(6/13) 4807529560034090 a001 1144206275/124*271443^(1/2) 4807529560036599 a001 7778742049/1364*271443^(7/13) 4807529560038734 a001 2504730781961/1364*103682^(1/12) 4807529560041618 a001 2971215073/1364*271443^(8/13) 4807529560046637 a001 567451585/682*271443^(9/13) 4807529560051656 a001 433494437/1364*271443^(10/13) 4807529560056675 a001 165580141/1364*271443^(11/13) 4807529560057368 a001 1134903780*103682^(1/8) 4807529560061695 a001 31622993/682*271443^(12/13) 4807529560065325 a001 583600435885010/121393 4807529560076001 a001 956722026041/1364*103682^(1/6) 4807529560094635 a001 591286729879/1364*103682^(5/24) 4807529560113269 a001 182717648081/682*103682^(1/4) 4807529560131903 a001 225851433717/1364*103682^(7/24) 4807529560140795 a001 4052739537881/1364*39603^(1/22) 4807529560150537 a001 139583862445/1364*103682^(1/3) 4807529560169171 a001 21566892818/341*103682^(3/8) 4807529560170897 a001 610/167761*(1/2+1/2*5^(1/2))^58 4807529560172286 a001 75025/1364*817138163596^(2/3) 4807529560172286 a001 75025/1364*(1/2+1/2*5^(1/2))^38 4807529560172286 a001 75025/1364*10749957122^(19/24) 4807529560172286 a001 75025/1364*4106118243^(19/23) 4807529560172286 a001 75025/1364*1568397607^(19/22) 4807529560172286 a001 75025/1364*599074578^(19/21) 4807529560172286 a001 75025/1364*228826127^(19/20) 4807529560187805 a001 53316291173/1364*103682^(5/12) 4807529560206439 a001 32951280099/1364*103682^(11/24) 4807529560225073 a001 10182505537/682*103682^(1/2) 4807529560243707 a001 1144206275/124*103682^(13/24) 4807529560262341 a001 7778742049/1364*103682^(7/12) 4807529560280125 a001 2504730781961/1364*39603^(1/11) 4807529560280974 a001 1201881744/341*103682^(5/8) 4807529560299608 a001 2971215073/1364*103682^(2/3) 4807529560318242 a001 1836311903/1364*103682^(17/24) 4807529560336876 a001 567451585/682*103682^(3/4) 4807529560355510 a001 701408733/1364*103682^(19/24) 4807529560374144 a001 433494437/1364*103682^(5/6) 4807529560392778 a001 66978574/341*103682^(7/8) 4807529560411412 a001 165580141/1364*103682^(11/12) 4807529560419454 a001 1134903780*39603^(3/22) 4807529560430046 a001 9303105/124*103682^(23/24) 4807529560447291 a001 55728882664705/11592 4807529560558784 a001 956722026041/1364*39603^(2/11) 4807529560698113 a001 591286729879/1364*39603^(5/22) 4807529560837443 a001 182717648081/682*39603^(3/11) 4807529560976772 a001 225851433717/1364*39603^(7/22) 4807529561051942 a001 4052739537881/1364*15127^(1/20) 4807529561116102 a001 139583862445/1364*39603^(4/11) 4807529561170898 a001 610/64079*14662949395604^(8/9) 4807529561170898 a001 610/64079*(1/2+1/2*5^(1/2))^56 4807529561172287 a001 28657/1364*2537720636^(8/9) 4807529561172287 a001 28657/1364*312119004989^(8/11) 4807529561172287 a001 28657/1364*(1/2+1/2*5^(1/2))^40 4807529561172287 a001 28657/1364*23725150497407^(5/8) 4807529561172287 a001 28657/1364*73681302247^(10/13) 4807529561172287 a001 28657/1364*28143753123^(4/5) 4807529561172287 a001 28657/1364*10749957122^(5/6) 4807529561172287 a001 28657/1364*4106118243^(20/23) 4807529561172287 a001 28657/1364*1568397607^(10/11) 4807529561172287 a001 28657/1364*599074578^(20/21) 4807529561255431 a001 21566892818/341*39603^(9/22) 4807529561394761 a001 53316291173/1364*39603^(5/11) 4807529561534090 a001 32951280099/1364*39603^(1/2) 4807529561673420 a001 10182505537/682*39603^(6/11) 4807529561812749 a001 1144206275/124*39603^(13/22) 4807529561952079 a001 7778742049/1364*39603^(7/11) 4807529562091408 a001 1201881744/341*39603^(15/22) 4807529562102419 a001 2504730781961/1364*15127^(1/10) 4807529562230738 a001 2971215073/1364*39603^(8/11) 4807529562369406 r009 Im(z^3+c),c=-5/86+36/61*I,n=38 4807529562370067 a001 1836311903/1364*39603^(17/22) 4807529562509397 a001 567451585/682*39603^(9/11) 4807529562648726 a001 701408733/1364*39603^(19/22) 4807529562788056 a001 433494437/1364*39603^(10/11) 4807529562927385 a001 66978574/341*39603^(21/22) 4807529563065326 a001 956698383050/199 4807529563152895 a001 1134903780*15127^(3/20) 4807529564203372 a001 956722026041/1364*15127^(1/5) 4807529565253848 a001 591286729879/1364*15127^(1/4) 4807529566304325 a001 182717648081/682*15127^(3/10) 4807529567354802 a001 225851433717/1364*15127^(7/20) 4807529568001547 a001 4052739537881/1364*5778^(1/18) 4807529568025004 a001 305/12238*14662949395604^(6/7) 4807529568025004 a001 305/12238*(1/2+1/2*5^(1/2))^54 4807529568026392 a001 5473/682*2537720636^(14/15) 4807529568026392 a001 5473/682*17393796001^(6/7) 4807529568026392 a001 5473/682*45537549124^(14/17) 4807529568026392 a001 5473/682*817138163596^(14/19) 4807529568026392 a001 5473/682*14662949395604^(2/3) 4807529568026392 a001 5473/682*(1/2+1/2*5^(1/2))^42 4807529568026392 a001 5473/682*505019158607^(3/4) 4807529568026392 a001 5473/682*192900153618^(7/9) 4807529568026392 a001 5473/682*10749957122^(7/8) 4807529568026392 a001 5473/682*4106118243^(21/23) 4807529568026392 a001 5473/682*1568397607^(21/22) 4807529568405278 a001 139583862445/1364*15127^(2/5) 4807529569455755 a001 21566892818/341*15127^(9/20) 4807529570506231 a001 53316291173/1364*15127^(1/2) 4807529571556708 a001 32951280099/1364*15127^(11/20) 4807529572607184 a001 10182505537/682*15127^(3/5) 4807529573657661 a001 1144206275/124*15127^(13/20) 4807529574708137 a001 7778742049/1364*15127^(7/10) 4807529575758614 a001 1201881744/341*15127^(3/4) 4807529576001628 a001 2504730781961/1364*5778^(1/9) 4807529576809090 a001 2971215073/1364*15127^(4/5) 4807529577859567 a001 1836311903/1364*15127^(17/20) 4807529578910043 a001 567451585/682*15127^(9/10) 4807529579960520 a001 701408733/1364*15127^(19/20) 4807529581009608 a001 6504587523106/1353 4807529584001710 a001 1134903780*5778^(1/6) 4807529585220630 b008 -18*E+Sech[EulerGamma] 4807529592001791 a001 956722026041/1364*5778^(2/9) 4807529600001873 a001 591286729879/1364*5778^(5/18) 4807529608001954 a001 182717648081/682*5778^(1/3) 4807529615003743 a001 610/9349*(1/2+1/2*5^(1/2))^52 4807529615003743 a001 610/9349*23725150497407^(13/16) 4807529615003743 a001 610/9349*505019158607^(13/14) 4807529615005131 a001 4181/1364*312119004989^(4/5) 4807529615005131 a001 4181/1364*(1/2+1/2*5^(1/2))^44 4807529615005131 a001 4181/1364*23725150497407^(11/16) 4807529615005131 a001 4181/1364*73681302247^(11/13) 4807529615005131 a001 4181/1364*10749957122^(11/12) 4807529615005131 a001 4181/1364*4106118243^(22/23) 4807529616002035 a001 225851433717/1364*5778^(7/18) 4807529621689006 a001 4052739537881/1364*2207^(1/16) 4807529624002117 a001 139583862445/1364*5778^(4/9) 4807529625258074 m005 (1/2*exp(1)-1/7)/(6/7*exp(1)+1/5) 4807529628824429 a007 Real Root Of 94*x^4+534*x^3+422*x^2+302*x+820 4807529632002198 a001 21566892818/341*5778^(1/2) 4807529640002280 a001 53316291173/1364*5778^(5/9) 4807529640306832 r002 25th iterates of z^2 + 4807529642240384 r009 Im(z^3+c),c=-75/118+1/46*I,n=2 4807529646432739 r002 46th iterates of z^2 + 4807529648002361 a001 32951280099/1364*5778^(11/18) 4807529656002443 a001 10182505537/682*5778^(2/3) 4807529660023671 a007 Real Root Of -783*x^4-751*x^3-422*x^2+645*x+366 4807529664002524 a001 1144206275/124*5778^(13/18) 4807529672002606 a001 7778742049/1364*5778^(7/9) 4807529680002687 a001 1201881744/341*5778^(5/6) 4807529683376546 a001 2504730781961/1364*2207^(1/8) 4807529688002769 a001 2971215073/1364*5778^(8/9) 4807529696002850 a001 1836311903/1364*5778^(17/18) 4807529700775023 a001 12586269025/521*521^(11/13) 4807529704001547 a001 3105664188785/646 4807529708067734 m001 1/Sierpinski^2/ln(RenyiParking)^2*exp(1) 4807529718107475 r009 Im(z^3+c),c=-55/122+13/25*I,n=30 4807529718392227 r005 Im(z^2+c),c=-5/4+4/175*I,n=10 4807529723014408 r005 Im(z^2+c),c=-3/17+45/61*I,n=20 4807529726180336 r002 30th iterates of z^2 + 4807529731283089 a001 86000486440/321*843^(3/7) 4807529733549428 m001 (Bloch-Riemann1stZero)/(Zeta(3)+GAMMA(13/24)) 4807529745064088 a001 1134903780*2207^(3/16) 4807529745141578 a007 Real Root Of -99*x^4-478*x^3-88*x^2-345*x+147 4807529762211949 a001 521/3*5^(31/49) 4807529766238562 r005 Im(z^2+c),c=-11/20+5/58*I,n=37 4807529766922804 m005 (25/36+1/4*5^(1/2))/(9/11*5^(1/2)+7/9) 4807529768204389 m005 (1/2*Zeta(3)-4/11)/(2/7*exp(1)-8/11) 4807529769071095 a001 1548008755920/3571*843^(5/14) 4807529770462139 r005 Re(z^2+c),c=-41/64+19/51*I,n=59 4807529778629821 r002 7th iterates of z^2 + 4807529779336214 r005 Re(z^2+c),c=-23/32+2/53*I,n=44 4807529784945644 a007 Real Root Of 473*x^3-302*x^2+338*x+17 4807529786843557 m001 (Stephens-ZetaQ(2))/(cos(1/5*Pi)-Ei(1)) 4807529794932013 r009 Re(z^3+c),c=-35/82+2/29*I,n=30 4807529799995838 m005 (1/3*gamma-2/9)/(2/9*Catalan+5/12) 4807529802936767 r005 Im(z^2+c),c=27/118+26/55*I,n=63 4807529805243094 r009 Re(z^3+c),c=-23/98+24/25*I,n=23 4807529805796280 m001 (arctan(1/3)*PlouffeB+ZetaQ(4))/arctan(1/3) 4807529806751630 a001 956722026041/1364*2207^(1/4) 4807529817635663 l006 ln(7330/7691) 4807529823255747 r005 Re(z^2+c),c=-19/14+8/73*I,n=4 4807529835012702 r009 Im(z^3+c),c=-8/27+35/64*I,n=23 4807529845307725 r005 Im(z^2+c),c=7/34+26/49*I,n=3 4807529850849473 r008 a(0)=6,K{-n^6,-19+58*n^3+14*n^2-52*n} 4807529851425385 h001 (-6*exp(5)+7)/(-9*exp(3)-3) 4807529852982126 a001 6557470319842/2207*322^(1/12) 4807529854275029 a001 4052739537881/15127*843^(3/7) 4807529854712343 a001 225851433717/2207*843^(4/7) 4807529859050347 r009 Re(z^3+c),c=-7/15+5/51*I,n=47 4807529866833919 r005 Im(z^2+c),c=9/25+14/53*I,n=43 4807529868439173 a001 591286729879/1364*2207^(5/16) 4807529872219311 a001 3536736619241/13201*843^(3/7) 4807529876471532 r005 Im(z^2+c),c=-5/102+23/37*I,n=24 4807529883309488 a001 3278735159921/12238*843^(3/7) 4807529910393420 r009 Re(z^3+c),c=-4/21+39/59*I,n=6 4807529914338615 r009 Im(z^3+c),c=-17/54+26/49*I,n=10 4807529917405182 b008 1/3+5/E^(1/9) 4807529930126717 a001 182717648081/682*2207^(3/8) 4807529930288231 a001 2504730781961/9349*843^(3/7) 4807529935255906 a007 Real Root Of -657*x^4+53*x^3+481*x^2+406*x+125 4807529937000840 a001 610/3571*312119004989^(10/11) 4807529937000840 a001 610/3571*(1/2+1/2*5^(1/2))^50 4807529937000840 a001 610/3571*3461452808002^(5/6) 4807529937002199 a001 1597/1364*(1/2+1/2*5^(1/2))^46 4807529937002199 a001 1597/1364*10749957122^(23/24) 4807529949469916 s002 sum(A087361[n]/((pi^n-1)/n),n=1..infinity) 4807529951876251 r005 Re(z^2+c),c=-41/64+3/41*I,n=11 4807529952805787 a007 Real Root Of -200*x^4-574*x^3-749*x^2+988*x+595 4807529953512365 m002 -3+6*Pi^6-Pi^6*Tanh[Pi] 4807529955691080 m002 -Pi+5*Pi^6+4/ProductLog[Pi] 4807529967893213 m008 (5/6*Pi^3+2/3)/(4/5*Pi+3) 4807529983495137 r005 Im(z^2+c),c=-55/122+32/59*I,n=39 4807529991814262 a001 225851433717/1364*2207^(7/16) 4807530007281814 m001 (Pi+GAMMA(11/12)*FeigenbaumC)/GAMMA(11/12) 4807530011503742 a007 Real Root Of -556*x^4+948*x^3+219*x^2+983*x+557 4807530013477839 m001 Pi*2^(1/3)+Shi(1)-exp(-1/2*Pi) 4807530036799453 a007 Real Root Of 21*x^4+991*x^3-882*x^2+524*x-930 4807530043215698 a001 4052739537881/1364*843^(1/14) 4807530051481043 a007 Real Root Of 229*x^4+934*x^3-595*x^2+833*x-791 4807530052965750 g005 GAMMA(10/11)*GAMMA(5/8)*GAMMA(3/7)/GAMMA(1/7) 4807530053501807 a001 139583862445/1364*2207^(1/2) 4807530071130703 r009 Im(z^3+c),c=-5/86+36/61*I,n=40 4807530078793708 m001 OneNinth^ln(gamma)+OrthogonalArrays 4807530085390484 h001 (3/8*exp(1)+1/10)/(5/9*exp(1)+9/11) 4807530093917907 r009 Re(z^3+c),c=-53/102+11/47*I,n=19 4807530097530679 a007 Real Root Of -89*x^4-250*x^3+834*x^2-192*x-435 4807530111879286 r009 Im(z^3+c),c=-41/118+24/47*I,n=5 4807530115189353 a001 21566892818/341*2207^(9/16) 4807530118988550 m001 exp(GAMMA(1/3))*FransenRobinson*sinh(1) 4807530125045530 a007 Real Root Of -656*x^4-306*x^3-732*x^2+765*x+538 4807530138020549 a007 Real Root Of 583*x^4-315*x^3+835*x^2-994*x-737 4807530147125540 r009 Im(z^3+c),c=-43/118+19/40*I,n=4 4807530163601726 b008 Sqrt[3]*E+Sech[3] 4807530164865763 a007 Real Root Of 156*x^4-91*x^3+113*x^2-450*x+192 4807530172623810 a007 Real Root Of -133*x^4-632*x^3-157*x^2-909*x+81 4807530176876900 a001 53316291173/1364*2207^(5/8) 4807530177273265 a007 Real Root Of -89*x^4-327*x^3+620*x^2+589*x-290 4807530205113796 q001 1711/3559 4807530214017349 l006 ln(1573/2544) 4807530214497338 a001 956722026041/5778*843^(1/2) 4807530227698364 m001 (Psi(1,1/3)+Ei(1))/(-FeigenbaumAlpha+ZetaQ(3)) 4807530238564448 a001 32951280099/1364*2207^(11/16) 4807530250597513 a005 (1/cos(25/228*Pi))^102 4807530251082011 m001 ln(gamma)/(ZetaQ(4)-ln(Pi)) 4807530252285348 a001 956722026041/3571*843^(3/7) 4807530273544091 r009 Re(z^3+c),c=-29/62+5/62*I,n=33 4807530290675937 r002 49th iterates of z^2 + 4807530300251997 a001 10182505537/682*2207^(3/4) 4807530310952700 r005 Im(z^2+c),c=7/44+20/39*I,n=25 4807530329951012 p001 sum(1/(575*n+214)/(10^n),n=0..infinity) 4807530337489290 a001 2504730781961/15127*843^(1/2) 4807530337926604 a001 139583862445/2207*843^(9/14) 4807530346329622 a001 521/21*591286729879^(13/21) 4807530355433575 a001 6557470319842/39603*843^(1/2) 4807530359669646 a001 10610209857723/64079*843^(1/2) 4807530361939546 a001 1144206275/124*2207^(13/16) 4807530366523752 a001 4052739537881/24476*843^(1/2) 4807530376980978 r002 7th iterates of z^2 + 4807530390863280 m001 Landau^HardyLittlewoodC3*Landau^BesselI(1,1) 4807530413502500 a001 1548008755920/9349*843^(1/2) 4807530423627096 a001 7778742049/1364*2207^(7/8) 4807530434721959 r009 Im(z^3+c),c=-5/86+36/61*I,n=42 4807530436300934 p001 sum(1/(402*n+271)/(2^n),n=0..infinity) 4807530443670216 m001 (gamma+GAMMA(19/24))/(-Bloch+OneNinth) 4807530446029282 m001 1/Porter^2*Paris*exp(sinh(1))^2 4807530465203850 p004 log(25309/15649) 4807530485314647 a001 1201881744/341*2207^(15/16) 4807530486587219 m001 1/2*BesselI(1,1)/sin(Pi/5) 4807530511447354 r009 Im(z^3+c),c=-9/31+23/43*I,n=12 4807530514391339 a007 Real Root Of 991*x^4-271*x^3+379*x^2-631*x-474 4807530518762052 m001 1/ln(GAMMA(1/6))^2/Robbin*Zeta(1,2) 4807530526429978 a001 2504730781961/1364*843^(1/7) 4807530528884559 r005 Im(z^2+c),c=-30/29+3/58*I,n=3 4807530541364346 r005 Re(z^2+c),c=1/114+4/15*I,n=12 4807530547001013 a001 4745032649890/987 4807530577817150 r005 Re(z^2+c),c=-79/122+15/41*I,n=51 4807530611263838 r002 31th iterates of z^2 + 4807530612734447 r009 Re(z^3+c),c=-41/86+1/10*I,n=44 4807530633454007 r009 Im(z^3+c),c=-5/122+13/22*I,n=18 4807530644999705 r002 31th iterates of z^2 + 4807530653607695 r009 Im(z^3+c),c=-5/86+36/61*I,n=44 4807530659610744 r009 Im(z^3+c),c=-3/14+29/51*I,n=22 4807530660942426 m005 (1/3*gamma-1/2)/(7/12*gamma-3/11) 4807530668552151 a007 Real Root Of 746*x^4-150*x^3+648*x^2+219*x-101 4807530680920608 r002 16th iterates of z^2 + 4807530692018678 r005 Re(z^2+c),c=-17/29+16/37*I,n=42 4807530697711636 a001 591286729879/5778*843^(4/7) 4807530714824595 a007 Real Root Of 878*x^4+954*x^3-690*x^2-887*x+433 4807530719543761 a007 Real Root Of 172*x^4-918*x^3-115*x^2-540*x+379 4807530729601809 a007 Real Root Of 93*x^4-611*x^3-69*x^2-279*x+213 4807530735499650 a001 591286729879/3571*843^(1/2) 4807530737651022 m005 (1/3*exp(1)+1/7)/(2*Zeta(3)-2/9) 4807530749926195 a001 8/199*2^(8/31) 4807530764823139 a007 Real Root Of 177*x^4+896*x^3+232*x^2+148*x+357 4807530771859905 r009 Im(z^3+c),c=-5/86+36/61*I,n=46 4807530785167689 h001 (2/3*exp(2)+1/4)/(2/7*exp(1)+3/10) 4807530790610497 r002 14th iterates of z^2 + 4807530817231111 m001 1/MadelungNaCl^2*ln(MertensB1)^2/GAMMA(3/4) 4807530820703600 a001 1548008755920/15127*843^(4/7) 4807530821140914 a001 86267571272/2207*843^(5/7) 4807530830447842 r009 Im(z^3+c),c=-5/86+36/61*I,n=48 4807530838100963 m005 (1/2*Pi+9/10)/(1/6*Zeta(3)-5/7) 4807530838647886 a001 4052739537881/39603*843^(4/7) 4807530841265923 a001 225749145909/2206*843^(4/7) 4807530842202794 a007 Real Root Of 980*x^4+230*x^3-423*x^2-824*x+416 4807530842883958 a001 6557470319842/64079*843^(4/7) 4807530844370263 m001 (-Zeta(1,-1)+ZetaP(2))/(LambertW(1)-Si(Pi)) 4807530846374000 a001 439204*514229^(15/17) 4807530846897318 l006 ln(6211/10045) 4807530848927230 m001 (2^(1/2)-GaussAGM)/(-MertensB1+Porter) 4807530849738065 a001 2504730781961/24476*843^(4/7) 4807530857162148 r009 Im(z^3+c),c=-5/86+36/61*I,n=50 4807530868241784 r009 Im(z^3+c),c=-5/86+36/61*I,n=52 4807530872251981 r009 Im(z^3+c),c=-5/86+36/61*I,n=57 4807530872267282 r009 Im(z^3+c),c=-5/86+36/61*I,n=54 4807530872331941 r009 Im(z^3+c),c=-5/86+36/61*I,n=59 4807530872520099 r009 Im(z^3+c),c=-5/86+36/61*I,n=61 4807530872676617 r009 Im(z^3+c),c=-5/86+36/61*I,n=63 4807530872733680 r009 Im(z^3+c),c=-5/86+36/61*I,n=55 4807530873044535 r009 Im(z^3+c),c=-5/86+36/61*I,n=64 4807530873173205 r009 Im(z^3+c),c=-5/86+36/61*I,n=62 4807530873352890 r009 Im(z^3+c),c=-5/86+36/61*I,n=60 4807530873405802 r009 Im(z^3+c),c=-5/86+36/61*I,n=56 4807530873517420 r009 Im(z^3+c),c=-5/86+36/61*I,n=58 4807530874976009 r009 Im(z^3+c),c=-5/86+36/61*I,n=53 4807530881794163 r009 Im(z^3+c),c=-5/86+36/61*I,n=51 4807530896716817 a001 956722026041/9349*843^(4/7) 4807530899229207 r009 Im(z^3+c),c=-5/86+36/61*I,n=49 4807530903104581 r005 Im(z^2+c),c=41/122+7/23*I,n=33 4807530903978181 r002 28th iterates of z^2 + 4807530918324533 m001 (ln(2)-exp(1/exp(1)))/(GAMMA(13/24)-ZetaP(4)) 4807530925554924 m001 (Si(Pi)+BesselJ(0,1))/(Zeta(1,-1)+Rabbit) 4807530926207646 r002 29th iterates of z^2 + 4807530939217115 r009 Im(z^3+c),c=-5/86+36/61*I,n=47 4807530951950905 a007 Real Root Of 745*x^4-78*x^3-512*x^2-786*x-308 4807530954874098 m002 -5-Pi^(-6)+6/Pi^3 4807531001223188 r002 7th iterates of z^2 + 4807531004116857 m001 (Salem+Thue)/(2*Pi/GAMMA(5/6)-MertensB3) 4807531007656385 r005 Re(z^2+c),c=-7/10+16/119*I,n=55 4807531009644307 a001 1134903780*843^(3/14) 4807531021642208 m009 (1/2*Psi(1,1/3)-1/5)/(2*Psi(1,3/4)+5) 4807531023311402 r009 Im(z^3+c),c=-5/86+36/61*I,n=45 4807531026129915 k001 Champernowne real with 273*n+207 4807531026129915 k005 Champernowne real with floor(sqrt(2)*(193*n+147)) 4807531027130015 k005 Champernowne real with floor(Pi*(87*n+66)) 4807531033847149 m002 5*Pi^6+Sinh[Pi]/(2*Pi^2) 4807531058410036 r009 Im(z^3+c),c=-27/70+28/51*I,n=19 4807531061541593 l006 ln(4638/7501) 4807531063163114 a001 20365011074/521*521^(10/13) 4807531066025190 a007 Real Root Of 164*x^4-245*x^3+633*x^2-950*x-639 4807531105538976 m005 (2/5*Pi+3)/(11/2+3/2*5^(1/2)) 4807531106364092 m001 exp(Si(Pi))^2*Champernowne^2*log(1+sqrt(2))^2 4807531110186787 r002 2th iterates of z^2 + 4807531112729047 a007 Real Root Of -738*x^4+199*x^3+811*x^2+992*x+351 4807531123006739 r005 Im(z^2+c),c=13/50+17/40*I,n=45 4807531123213221 p004 log(34961/21617) 4807531128071477 r005 Re(z^2+c),c=-61/114+41/47*I,n=3 4807531134569375 m001 cos(1/5*Pi)/BesselJ(1,1)*MertensB1 4807531139080318 r009 Im(z^3+c),c=-1/122+29/49*I,n=30 4807531150669190 m001 (CopelandErdos+GaussAGM)/(5^(1/2)+gamma(2)) 4807531151707515 a007 Real Root Of 877*x^4+37*x^3+747*x^2-72*x-250 4807531170196814 a007 Real Root Of 603*x^4-771*x^3-688*x^2-544*x+474 4807531180687976 m002 5*Pi^6+Pi/(5*ProductLog[Pi]) 4807531180925982 a001 182717648081/2889*843^(9/14) 4807531186077744 r009 Im(z^3+c),c=-5/86+36/61*I,n=43 4807531201261272 m001 (Pi+ln(2)/ln(10))/(Champernowne+Lehmer) 4807531202695061 a007 Real Root Of 865*x^4-808*x^3+529*x^2-39*x-277 4807531207389464 m001 (exp(1)+OrthogonalArrays)/(-Thue+ZetaQ(4)) 4807531216983782 a001 10610209857723/3571*322^(1/12) 4807531218714000 a001 365435296162/3571*843^(4/7) 4807531233075704 r009 Im(z^3+c),c=-1/126+29/49*I,n=32 4807531249973448 a007 Real Root Of 853*x^4+547*x^3+628*x^2-568*x-403 4807531274815584 r009 Im(z^3+c),c=-35/82+10/19*I,n=18 4807531301908259 p001 sum((-1)^n/(561*n+295)/n/(24^n),n=1..infinity) 4807531303917959 a001 956722026041/15127*843^(9/14) 4807531304355273 a001 53316291173/2207*843^(11/14) 4807531320043673 m006 (1/2*ln(Pi)+1/5)/(4/Pi+1/3) 4807531321862247 a001 2504730781961/39603*843^(9/14) 4807531324480283 a001 3278735159921/51841*843^(9/14) 4807531325098318 a001 10610209857723/167761*843^(9/14) 4807531325897004 p001 sum((-1)^n/(455*n+207)/(64^n),n=0..infinity) 4807531326098319 a001 4052739537881/64079*843^(9/14) 4807531331954401 r009 Im(z^3+c),c=-7/110+17/25*I,n=6 4807531332233940 m001 ln(2)-(Pi*csc(1/24*Pi)/GAMMA(23/24))^cos(1) 4807531332233940 m001 ln(2)-GAMMA(1/24)^cos(1) 4807531332952427 a001 387002188980/6119*843^(9/14) 4807531335204890 r002 55th iterates of z^2 + 4807531336459297 r005 Re(z^2+c),c=11/58+12/35*I,n=54 4807531339459219 r009 Im(z^3+c),c=-5/86+36/61*I,n=33 4807531349275476 r005 Re(z^2+c),c=-9/11+12/23*I,n=5 4807531350295713 m001 Trott^2*Rabbit^2*exp(GAMMA(5/24)) 4807531379931184 a001 591286729879/9349*843^(9/14) 4807531380753138 q001 1149/2390 4807531390729938 m001 BesselK(1,1)/ln(GolombDickman)^2*sqrt(Pi) 4807531396890764 r005 Re(z^2+c),c=-16/29+6/43*I,n=3 4807531406435601 m001 (2^(1/2)+LambertW(1))/(-GAMMA(11/12)+Cahen) 4807531406616076 a003 sin(Pi*19/119)*sin(Pi*44/89) 4807531414203244 r009 Im(z^3+c),c=-10/27+14/27*I,n=60 4807531432767122 r009 Im(z^3+c),c=-51/118+27/55*I,n=56 4807531443157345 a007 Real Root Of 16*x^4+768*x^3-53*x^2+220*x-823 4807531456395543 a007 Real Root Of 144*x^4+65*x^3-490*x^2-563*x+369 4807531472726172 r009 Im(z^3+c),c=-5/86+36/61*I,n=41 4807531473848550 r009 Im(z^3+c),c=-5/62+31/53*I,n=10 4807531487068895 a007 Real Root Of 877*x^4-720*x^3-88*x^2-650*x-419 4807531492858685 a001 956722026041/1364*843^(2/7) 4807531493297817 r009 Im(z^3+c),c=-41/90+23/47*I,n=60 4807531496040514 a001 7/514229*514229^(34/35) 4807531496502621 l006 ln(3065/4957) 4807531518881420 m001 (Kac+Trott2nd)/(cos(1/5*Pi)-ln(gamma)) 4807531524249569 a007 Real Root Of -196*x^4-989*x^3-17*x^2+947*x-246 4807531529002702 r005 Re(z^2+c),c=-21/20+1/48*I,n=8 4807531540951034 a005 (1/cos(11/135*Pi))^1090 4807531552670131 m005 (1/3*Pi+1/8)/(13/9+4/9*5^(1/2)) 4807531571482878 m001 (BesselI(1,1)+Conway)/(cos(1/12*Pi)-gamma) 4807531573436700 a007 Real Root Of -24*x^4+320*x^3+938*x^2+653*x-565 4807531573635251 a007 Real Root Of -93*x^4-437*x^3-104*x^2-847*x-546 4807531579825556 m005 (1/2*5^(1/2)-1/12)/(5/11*exp(1)+11/12) 4807531587828187 m005 (1/2*exp(1)-9/10)/(2/3*exp(1)-6/7) 4807531618329571 a007 Real Root Of 210*x^4-287*x^3-139*x^2-25*x-23 4807531621720744 r009 Im(z^3+c),c=-11/74+18/31*I,n=33 4807531638747158 h001 (1/8*exp(1)+2/3)/(5/9*exp(1)+7/12) 4807531654078978 a007 Real Root Of 196*x^4-448*x^3-272*x^2-87*x+144 4807531658374847 a007 Real Root Of -14*x^4+115*x^3+259*x^2+410*x-269 4807531664140377 a001 75283811239/1926*843^(5/7) 4807531664916368 m001 (Chi(1)+sin(1/5*Pi))/(-gamma(2)+Otter) 4807531691224862 r009 Im(z^3+c),c=-8/15+13/37*I,n=21 4807531700336391 a007 Real Root Of 839*x^4-634*x^3+269*x^2-802*x-563 4807531701928398 a001 225851433717/3571*843^(9/14) 4807531704330045 a007 Real Root Of 28*x^4-159*x^3+35*x^2-316*x+160 4807531710173291 r002 50th iterates of z^2 + 4807531715760574 m001 GAMMA(2/3)^ThueMorse/CopelandErdos 4807531720539800 a007 Real Root Of -922*x^4+624*x^3-853*x^2+246*x+434 4807531724572531 r009 Im(z^3+c),c=-1/12+10/17*I,n=20 4807531729257035 r005 Re(z^2+c),c=-8/23+13/21*I,n=53 4807531733925746 m001 (KomornikLoreti-Rabbit)/(Zeta(1,2)-Conway) 4807531765866117 h001 (2/5*exp(2)+1/6)/(4/5*exp(2)+7/12) 4807531785188443 r002 59th iterates of z^2 + 4807531787132366 a001 591286729879/15127*843^(5/7) 4807531787569680 a001 32951280099/2207*843^(6/7) 4807531802951253 a001 956722026041/843*322^(1/4) 4807531805076656 a001 516002918640/13201*843^(5/7) 4807531807694692 a001 4052739537881/103682*843^(5/7) 4807531808076659 a001 3536736619241/90481*843^(5/7) 4807531808094729 a007 Real Root Of -456*x^4-621*x^3+733*x^2+938*x-527 4807531808312727 a001 6557470319842/167761*843^(5/7) 4807531809312728 a001 2504730781961/64079*843^(5/7) 4807531816166837 a001 956722026041/24476*843^(5/7) 4807531851851851 r002 3th iterates of z^2 + 4807531854197163 m001 ln(Paris)/Backhouse^2*BesselJ(1,1) 4807531856179325 r005 Im(z^2+c),c=-9/46+29/35*I,n=8 4807531863145598 a001 365435296162/9349*843^(5/7) 4807531872053004 p003 LerchPhi(1/2,5,445/149) 4807531900767759 a003 cos(Pi*1/76)-sin(Pi*17/98) 4807531903760882 a007 Real Root Of 983*x^4-67*x^3-383*x^2-698*x-307 4807531905186947 h001 (9/10*exp(1)+11/12)/(11/12*exp(2)+2/9) 4807531910275643 m001 Otter*(KhinchinLevy+TreeGrowth2nd) 4807531915364443 r009 Im(z^3+c),c=-5/86+36/61*I,n=39 4807531927583363 r005 Im(z^2+c),c=-115/86+8/25*I,n=4 4807531930851849 r005 Im(z^2+c),c=-29/46+5/13*I,n=46 4807531931833291 a001 610/843*18^(19/29) 4807531932973735 m001 (Khinchin+OneNinth)/(CareFree-Champernowne) 4807531939194997 l006 ln(4557/7370) 4807531964826964 m002 -4+2/(Pi^2*ProductLog[Pi])-Tanh[Pi] 4807531976048931 b008 EulerGamma*ArcCsch[2]^(1/4) 4807531976073111 a001 591286729879/1364*843^(5/14) 4807531978605250 a007 Real Root Of 864*x^4-279*x^3-939*x^2-838*x-263 4807532013846121 r005 Re(z^2+c),c=3/28+24/31*I,n=2 4807532015040232 m005 (1/3*Pi+3/4)/(2/7*Catalan-4) 4807532020811141 a003 cos(Pi*7/67)*cos(Pi*38/115) 4807532021266542 m002 -(E^Pi/Pi)+5*Pi^4+ProductLog[Pi] 4807532033340930 m001 CopelandErdos*exp(Cahen)/cos(Pi/12)^2 4807532033812655 m001 (Niven-Riemann2ndZero)/(Khinchin+MertensB3) 4807532036073397 m001 (MasserGramain+TreeGrowth2nd)/(Shi(1)+Zeta(3)) 4807532037768879 m005 (25/36+1/4*5^(1/2))/(7/12*Zeta(3)-8/11) 4807532064249495 m008 (5/6*Pi-3/4)/(2/5*Pi^6+4) 4807532069624764 a007 Real Root Of 182*x^4+703*x^3-742*x^2+411*x+17 4807532070484693 g007 Psi(2,3/8)+Psi(2,3/7)-Psi(2,7/12)-Psi(2,7/10) 4807532071556309 r009 Im(z^3+c),c=-67/126+11/48*I,n=8 4807532096546953 a005 (1/sin(27/58*Pi))^1442 4807532114434357 a007 Real Root Of 438*x^4-906*x^3+243*x^2-735*x-36 4807532122254199 r005 Re(z^2+c),c=-65/102+17/58*I,n=57 4807532125366821 a005 (1/cos(1/77*Pi))^1886 4807532128468486 m002 E^Pi/(4*Pi^2)+5*Pi^6 4807532144002932 a001 305/682*45537549124^(16/17) 4807532144002932 a001 305/682*14662949395604^(16/21) 4807532144002932 a001 305/682*(1/2+1/2*5^(1/2))^48 4807532144002932 a001 305/682*192900153618^(8/9) 4807532144002932 a001 305/682*73681302247^(12/13) 4807532147354820 a001 139583862445/5778*843^(11/14) 4807532163505145 l006 ln(6049/9783) 4807532169984106 r002 16th iterates of z^2 + 4807532171036021 a007 Real Root Of 184*x^4-996*x^3-999*x^2-577*x-167 4807532178744676 h001 (-8*exp(-3)-1)/(-exp(3)-9) 4807532185142845 a001 139583862445/3571*843^(5/7) 4807532189578634 r002 13th iterates of z^2 + 4807532189578634 r002 13th iterates of z^2 + 4807532197825120 r005 Re(z^2+c),c=-67/82+29/37*I,n=3 4807532207203244 r009 Re(z^3+c),c=-9/16+5/21*I,n=39 4807532228310034 m001 (MertensB2+Paris)/((1+3^(1/2))^(1/2)+CareFree) 4807532234873048 a007 Real Root Of -87*x^4+742*x^3+692*x^2+350*x-406 4807532270346822 a001 365435296162/15127*843^(11/14) 4807532270552165 r009 Re(z^3+c),c=-65/122+35/41*I,n=2 4807532270784136 a001 20365011074/2207*843^(13/14) 4807532281905527 a007 Real Root Of -811*x^4-508*x^3-555*x^2+969*x+581 4807532288291113 a001 956722026041/39603*843^(11/14) 4807532290909150 a001 2504730781961/103682*843^(11/14) 4807532291291117 a001 6557470319842/271443*843^(11/14) 4807532291381287 a001 10610209857723/439204*843^(11/14) 4807532291527185 a001 4052739537881/167761*843^(11/14) 4807532292527186 a001 1548008755920/64079*843^(11/14) 4807532299381295 a001 591286729879/24476*843^(11/14) 4807532307217762 r009 Re(z^3+c),c=-21/40+23/61*I,n=19 4807532307269471 m006 (ln(Pi)+5/6)/(2/5*Pi^2+1/6) 4807532314190766 m001 1/GAMMA(1/6)*ln(Robbin)/cosh(1) 4807532325189964 r005 Re(z^2+c),c=-20/29+5/36*I,n=56 4807532343557990 m001 (exp(1/exp(1))+GAMMA(7/12))/(Chi(1)-Ei(1,1)) 4807532345485282 r002 26th iterates of z^2 + 4807532346360062 a001 225851433717/9349*843^(11/14) 4807532369114337 a007 Real Root Of 145*x^4+576*x^3-443*x^2+716*x+226 4807532379740389 m002 2/3+(E^Pi*ProductLog[Pi])/6 4807532400928076 r008 a(0)=6,K{-n^6,-17-51*n+9*n^2+60*n^3} 4807532420481569 r002 2th iterates of z^2 + 4807532425551591 a001 63246219*521^(9/13) 4807532431252826 r005 Re(z^2+c),c=15/58+19/41*I,n=35 4807532431376557 r005 Re(z^2+c),c=-9/14+48/193*I,n=5 4807532445851733 r005 Im(z^2+c),c=15/56+25/58*I,n=50 4807532446687083 r002 10th iterates of z^2 + 4807532447580062 a001 228826127*34^(4/19) 4807532449204978 r009 Im(z^3+c),c=-5/86+36/61*I,n=37 4807532449897840 r005 Im(z^2+c),c=-67/102+4/47*I,n=42 4807532455027400 r009 Im(z^3+c),c=-47/118+20/39*I,n=29 4807532455407191 m001 (Pi^(1/2)+Mills)/(Chi(1)+2*Pi/GAMMA(5/6)) 4807532459287585 a001 182717648081/682*843^(3/7) 4807532462664776 r005 Re(z^2+c),c=35/118+16/43*I,n=27 4807532498385549 r009 Im(z^3+c),c=-19/52+27/52*I,n=27 4807532507354473 r005 Re(z^2+c),c=-11/16+20/89*I,n=59 4807532515485572 m005 (1/2*Pi-1)/(5/11*3^(1/2)+2/5) 4807532522975722 a007 Real Root Of 128*x^4+449*x^3-804*x^2+47*x+323 4807532528189155 m001 exp(MertensB1)/Champernowne^2/BesselK(0,1)^2 4807532539462752 q001 1736/3611 4807532567881981 a007 Real Root Of 71*x^4+154*x^3-797*x^2+380*x-568 4807532584154273 r005 Im(z^2+c),c=-14/31+32/57*I,n=38 4807532585817970 r009 Im(z^3+c),c=-5/86+36/61*I,n=32 4807532592711737 a001 377/11*7^(4/23) 4807532614265921 r009 Im(z^3+c),c=-29/90+15/28*I,n=18 4807532630569312 a001 43133785636/2889*843^(6/7) 4807532630791958 a007 Real Root Of 442*x^4+310*x^3-795*x^2-893*x+555 4807532643213193 r009 Im(z^3+c),c=-1/114+28/47*I,n=12 4807532654712215 m005 (1/2*2^(1/2)+2)/(3/5*exp(1)+4) 4807532658892583 r005 Re(z^2+c),c=-9/14+67/243*I,n=52 4807532668357341 a001 86267571272/3571*843^(11/14) 4807532682138287 r009 Im(z^3+c),c=-5/86+36/61*I,n=35 4807532696876604 a007 Real Root Of -138*x^4+958*x^3-435*x^2+694*x+548 4807532711813960 a007 Real Root Of -98*x^4+988*x^3-974*x^2+890*x+768 4807532712386263 a007 Real Root Of 266*x^4-241*x^3+294*x^2-932*x-557 4807532715689484 a007 Real Root Of 3*x^4+100*x^3+962*x^2-332*x-371 4807532721825302 r005 Re(z^2+c),c=31/122+26/57*I,n=23 4807532728201063 h001 (7/11*exp(1)+1/11)/(5/11*exp(2)+3/7) 4807532736889687 a007 Real Root Of -724*x^4-909*x^3+647*x^2+876*x-431 4807532741443452 m005 (1/3*5^(1/2)-2/11)/(1/3*Pi+1/8) 4807532753561326 a001 32264490531/2161*843^(6/7) 4807532754007957 a001 1812439848261/377 4807532771505619 a001 591286729879/39603*843^(6/7) 4807532774123656 a001 774004377960/51841*843^(6/7) 4807532774505623 a001 4052739537881/271443*843^(6/7) 4807532774561351 a001 1515744265389/101521*843^(6/7) 4807532774595793 a001 3278735159921/219602*843^(6/7) 4807532774741691 a001 2504730781961/167761*843^(6/7) 4807532775741692 a001 956722026041/64079*843^(6/7) 4807532782595803 a001 182717648081/12238*843^(6/7) 4807532784768381 r005 Re(z^2+c),c=-151/126+2/11*I,n=43 4807532788513104 m001 1/exp((3^(1/3)))/FeigenbaumDelta*GAMMA(7/24)^2 4807532789465146 r005 Re(z^2+c),c=11/58+12/35*I,n=50 4807532807340209 a001 29/20365011074*987^(3/17) 4807532824944389 a007 Real Root Of -192*x^4+46*x^3+328*x^2+606*x-362 4807532829574574 a001 139583862445/9349*843^(6/7) 4807532848613255 l006 ln(1492/2413) 4807532865342728 a007 Real Root Of 969*x^4-908*x^3+735*x^2-625*x-623 4807532879894600 m001 ln(gamma)*ln(Pi)*LandauRamanujan 4807532879894600 m001 log(gamma)*ln(Pi)*LandauRamanujan 4807532893722800 r005 Im(z^2+c),c=11/38+22/57*I,n=43 4807532899888838 m001 (exp(1/Pi)+Cahen)/(Champernowne-Landau) 4807532905071288 r002 39th iterates of z^2 + 4807532922893261 r005 Re(z^2+c),c=-5/8+5/32*I,n=12 4807532930686340 a007 Real Root Of 694*x^4-911*x^3+648*x^2-445*x-502 4807532941727776 r009 Im(z^3+c),c=-1/40+46/63*I,n=10 4807532942502109 a001 225851433717/1364*843^(1/2) 4807532943868982 r009 Im(z^3+c),c=-57/118+26/63*I,n=28 4807532981516948 a001 29/365435296162*12586269025^(3/17) 4807532981516961 a001 29/86267571272*3524578^(3/17) 4807533001296916 r002 20th iterates of z^2 + 4807533011785451 m001 GAMMA(3/4)/(FransenRobinson-sin(1/12*Pi)) 4807533026211742 m001 exp(GAMMA(5/24))*GAMMA(23/24)*gamma 4807533037075813 p003 LerchPhi(1/2,2,73/45) 4807533043849815 r009 Im(z^3+c),c=-41/86+16/37*I,n=34 4807533044435017 r002 16th iterates of z^2 + 4807533073586237 a007 Real Root Of 693*x^4-761*x^3+22*x^2-725*x+391 4807533074570946 a007 Real Root Of -688*x^4+416*x^3+115*x^2+696*x+391 4807533100971044 a007 Real Root Of -549*x^4+344*x^3+646*x^2+634*x-463 4807533101530508 m003 3/2+(15*Sqrt[5])/16+Sinh[1/2+Sqrt[5]/2]/2 4807533113783853 a001 53316291173/5778*843^(13/14) 4807533137566558 m005 (1/2*Catalan-1/9)/(13/8+5/2*5^(1/2)) 4807533151571885 a001 53316291173/3571*843^(6/7) 4807533151845806 a007 Real Root Of -39*x^4+625*x^3+863*x^2+926*x-712 4807533177103693 m004 (-125*Sqrt[5])/Pi-125*Pi+Tan[Sqrt[5]*Pi] 4807533182499356 a007 Real Root Of 268*x^4-37*x^3-605*x^2-604*x+420 4807533183062262 r009 Im(z^3+c),c=-17/126+32/55*I,n=17 4807533193167975 a003 cos(Pi*6/91)*sin(Pi*17/104) 4807533196417041 r005 Im(z^2+c),c=-53/86+19/44*I,n=21 4807533203715167 r002 19th iterates of z^2 + 4807533222288466 m005 (1/2*exp(1)+1/5)/(1/11*exp(1)-4/7) 4807533223089823 m002 5*Pi^6+Cosh[Pi]/(2*Pi^2) 4807533231720623 m001 (GAMMA(13/24)-Sarnak)/(3^(1/3)+arctan(1/2)) 4807533232869761 b008 7*ArcCsc[Pi]^(1/3) 4807533234621934 r009 Im(z^3+c),c=-27/74+25/48*I,n=59 4807533236775879 a001 139583862445/15127*843^(13/14) 4807533254720174 a001 365435296162/39603*843^(13/14) 4807533257338211 a001 956722026041/103682*843^(13/14) 4807533257720178 a001 2504730781961/271443*843^(13/14) 4807533257775906 a001 6557470319842/710647*843^(13/14) 4807533257789062 a001 10610209857723/1149851*843^(13/14) 4807533257810348 a001 4052739537881/439204*843^(13/14) 4807533257956246 a001 140728068720/15251*843^(13/14) 4807533258956247 a001 591286729879/64079*843^(13/14) 4807533260181617 r005 Re(z^2+c),c=-13/10+17/254*I,n=14 4807533265810358 a001 7787980473/844*843^(13/14) 4807533291904351 m002 -2*Coth[Pi]*Csch[Pi]+5*Tanh[Pi] 4807533296381219 r009 Re(z^3+c),c=-45/94+6/55*I,n=45 4807533302822096 a007 Real Root Of 410*x^4-390*x^3+417*x^2-990*x+401 4807533303126560 a001 18/5*1597^(2/51) 4807533312789134 a001 86267571272/9349*843^(13/14) 4807533325360088 a007 Real Root Of 13*x^4+614*x^3-523*x^2+212*x-983 4807533327585115 h001 (3/5*exp(1)+7/10)/(6/11*exp(2)+9/11) 4807533336404461 a007 Real Root Of -180*x^4-791*x^3+375*x^2+51*x-160 4807533337958236 m001 1/exp(Zeta(3))*FeigenbaumDelta/cos(1)^2 4807533349496019 m001 ln(2)/StronglyCareFree*ZetaQ(2) 4807533388075623 r009 Re(z^3+c),c=-33/70+1/7*I,n=7 4807533416461948 a003 cos(Pi*30/91)-sin(Pi*21/46) 4807533423986462 a001 4052739537881/1364*322^(1/12) 4807533425716681 a001 139583862445/1364*843^(4/7) 4807533476033853 a007 Real Root Of 909*x^4-275*x^3+28*x^2-498*x-325 4807533491890392 a007 Real Root Of 71*x^4+127*x^3-879*x^2+521*x-995 4807533510543295 r009 Im(z^3+c),c=-19/82+39/44*I,n=15 4807533534548734 a007 Real Root Of 19*x^4-15*x^3-448*x^2+188*x-558 4807533543280484 m001 exp(exp(1))^2/BesselK(0,1)*log(1+sqrt(2)) 4807533547941029 r009 Im(z^3+c),c=-9/46+11/17*I,n=9 4807533548052682 h002 exp(5^(12/7)+5^(2/5)) 4807533548052682 h007 exp(5^(12/7)+5^(2/5)) 4807533548358055 r002 11th iterates of z^2 + 4807533552122828 a007 Real Root Of 171*x^4+791*x^3-291*x^2-767*x-416 4807533552574300 l006 ln(5887/9521) 4807533556711249 m002 Pi^6/2+(5*Log[Pi])/Pi^4 4807533558198662 r009 Im(z^3+c),c=-43/118+25/48*I,n=38 4807533560599347 a007 Real Root Of -24*x^4+528*x^3-560*x^2+877*x+611 4807533576478792 r005 Im(z^2+c),c=-67/110+23/63*I,n=25 4807533579944562 a007 Real Root Of -746*x^4+474*x^3-296*x^2+464*x+384 4807533583730190 m009 (4*Catalan+1/2*Pi^2+3/4)/(2/3*Psi(1,3/4)+1/4) 4807533585369742 a007 Real Root Of 918*x^4-859*x^3+181*x^2-640*x-494 4807533591951243 m001 1/cos(1)^2*ln(GlaisherKinkelin)/sqrt(Pi) 4807533597007957 a001 1812440166072/377 4807533617688610 a007 Real Root Of -633*x^4+833*x^3-988*x^2+635*x+660 4807533617720538 a007 Real Root Of 493*x^4-558*x^3+926*x^2-694*x-636 4807533625053905 r005 Re(z^2+c),c=-71/106+5/22*I,n=19 4807533634786478 a001 32951280099/3571*843^(13/14) 4807533635676855 r009 Im(z^3+c),c=-1/29+39/53*I,n=10 4807533651170664 a001 1548008755920/521*199^(1/11) 4807533687778807 a007 Real Root Of 835*x^4-233*x^3+422*x^2-547*x-431 4807533716967357 a001 4052739537881/2207*322^(1/6) 4807533719290686 r009 Im(z^3+c),c=-1/32+13/22*I,n=15 4807533719355284 a007 Real Root Of 144*x^4-983*x^3-490*x^2-872*x+634 4807533721069741 r002 19th iterates of z^2 + 4807533737944297 a001 1812440219205/377 4807533739778366 a007 Real Root Of 747*x^4+425*x^3+512*x^2+233*x+1 4807533740562334 a001 1812440220192/377 4807533740944297 a001 1812440220336/377 4807533741007957 a001 1812440220360/377 4807533741009549 a001 2/377*(1/2+1/2*5^(1/2))^62 4807533741009549 a001 9062201101803/377*8^(1/3) 4807533741010610 a001 1812440220361/377 4807533741013262 a001 1812440220362/377 4807533741180371 a001 1812440220425/377 4807533742180371 a001 1812440220802/377 4807533773188294 b008 2*Sqrt[5]+SinhIntegral[1/3] 4807533776965569 m005 (1/2*Pi-4/11)/(6/7*Pi-2/11) 4807533779777463 a007 Real Root Of 172*x^4+905*x^3+490*x^2+376*x-839 4807533787940454 a001 53316291173/521*521^(8/13) 4807533791552645 l006 ln(4395/7108) 4807533796013262 a001 1812440241097/377 4807533828424871 m005 (3/28+1/4*5^(1/2))/(7/9*2^(1/2)+2/7) 4807533833660534 a007 Real Root Of 932*x^4-862*x^3+929*x^2-854*x+39 4807533856831998 r009 Im(z^3+c),c=-15/64+30/47*I,n=12 4807533861671805 r005 Im(z^2+c),c=-51/62+1/38*I,n=39 4807533879290669 m008 (1/3*Pi^6+5/6)/(2*Pi+2/5) 4807533886392484 a007 Real Root Of 240*x^4+950*x^3-838*x^2+620*x-297 4807533903561515 a007 Real Root Of -135*x^4-481*x^3+691*x^2-653*x-441 4807533908931301 a001 21566892818/341*843^(9/14) 4807533911827082 m001 (ln(3)-Stephens)^GAMMA(5/6) 4807533922151328 m001 (Rabbit-Stephens)/(ln(2+3^(1/2))+Porter) 4807533922157569 r009 Im(z^3+c),c=-29/122+31/55*I,n=20 4807533937843667 r009 Im(z^3+c),c=-17/60+11/20*I,n=11 4807533945352850 l003 BesselJ(2,11/56) 4807533951554481 m003 -6+Sqrt[5]/8+2*Sec[1/2+Sqrt[5]/2] 4807533960172950 r009 Im(z^3+c),c=-19/78+32/51*I,n=12 4807533968756522 m001 (cos(1/12*Pi)*Bloch-exp(Pi))/Bloch 4807533976518829 m001 1/Zeta(5)^2*KhintchineLevy^2/exp(Zeta(9)) 4807533986576663 r009 Im(z^3+c),c=-3/7+21/41*I,n=38 4807533986817620 a007 Real Root Of 808*x^4-161*x^3+280*x^2-658*x+31 4807533992946787 m006 (1/6*Pi^2+1/4)/(Pi+4/5) 4807533992946787 m008 (1/6*Pi^2+1/4)/(Pi+4/5) 4807533999480052 a003 sin(Pi*15/91)*sin(Pi*47/111) 4807534003846876 m001 (Ei(1,1)-Zeta(1,-1))/(cos(1/5*Pi)-ln(5)) 4807534006349817 r005 Re(z^2+c),c=9/56+19/62*I,n=28 4807534013972451 r005 Re(z^2+c),c=-59/86+3/35*I,n=17 4807534034765955 m001 ln(Pi)-Sarnak^BesselI(0,1) 4807534034885169 m005 (1/2*exp(1)+1/10)/(5/6*2^(1/2)-7/8) 4807534042992308 m001 ln(MinimumGamma)^2*Si(Pi)^2*Paris^2 4807534052472650 a007 Real Root Of -18*x^4-873*x^3-370*x^2-112*x+436 4807534060090509 r005 Im(z^2+c),c=-33/106+28/47*I,n=7 4807534066540263 r002 50th iterates of z^2 + 4807534079395469 m001 GaussAGM^Sierpinski/Conway 4807534083715825 m001 (-KhinchinHarmonic+Robbin)/(1-GAMMA(3/4)) 4807534090842735 m004 -1+25*Pi-Cosh[Sqrt[5]*Pi]+Log[Sqrt[5]*Pi]^2 4807534095772034 r002 9th iterates of z^2 + 4807534102991514 r005 Re(z^2+c),c=-16/23+5/27*I,n=56 4807534109707171 m001 (-CareFree+GaussAGM)/(5^(1/2)+Bloch) 4807534118010610 a001 1812440362490/377 4807534128469777 h001 (-7*exp(1)+6)/(-5*exp(4)+2) 4807534152992702 a007 Real Root Of 597*x^4-538*x^3-622*x^2-437*x-158 4807534156588429 a007 Real Root Of 321*x^4-908*x^3-449*x^2-871*x-433 4807534164306747 m005 (2/5*gamma-1/3)/(3/5*exp(1)+1/2) 4807534178264051 m001 gamma(2)/Pi/csc(1/24*Pi)*GAMMA(23/24)/Thue 4807534184191074 r005 Re(z^2+c),c=-37/56+5/39*I,n=26 4807534226421877 m002 -Pi^4/4+E^Pi*Pi*Tanh[Pi] 4807534239068475 r005 Re(z^2+c),c=-3/110+1/6*I,n=8 4807534259982989 r005 Re(z^2+c),c=3/40+8/53*I,n=4 4807534276177333 l006 ln(2903/4695) 4807534284508890 a007 Real Root Of 147*x^4+541*x^3-761*x^2+323*x+729 4807534290967528 m005 (1/2*Zeta(3)+2/9)/(7/9*Catalan+1) 4807534293682409 r005 Im(z^2+c),c=-8/15+4/47*I,n=30 4807534293864044 r009 Im(z^3+c),c=-1/114+29/49*I,n=28 4807534318548806 a001 2/121393*514229^(43/55) 4807534326652726 r005 Re(z^2+c),c=-43/60+6/31*I,n=8 4807534329995826 b008 8/5+33^(1/3) 4807534330500119 m005 (1/2*5^(1/2)+1/12)/(5/8*exp(1)+4/5) 4807534335616913 a007 Real Root Of 173*x^4+818*x^3+107*x^2+911*x+384 4807534338578744 m002 -5+5*Pi^6+6/ProductLog[Pi] 4807534338805848 r009 Im(z^3+c),c=-1/24+13/22*I,n=16 4807534344888811 a003 cos(Pi*15/86)/cos(Pi*39/88) 4807534349617038 r005 Im(z^2+c),c=-17/62+3/43*I,n=18 4807534360000425 r005 Re(z^2+c),c=-2/3+49/237*I,n=55 4807534363762120 a001 11/5*5^(17/35) 4807534385547506 r005 Re(z^2+c),c=25/118+7/19*I,n=44 4807534390350602 a003 cos(Pi*12/73)/cos(Pi*42/95) 4807534392145970 a001 53316291173/1364*843^(5/7) 4807534414267090 m006 (1/2*Pi^2-3)/(3/4*exp(2*Pi)+5/6) 4807534441254816 r005 Re(z^2+c),c=-31/42+2/51*I,n=48 4807534443780951 a007 Real Root Of -393*x^4+831*x^3+808*x^2+836*x-660 4807534450553561 r002 35th iterates of z^2 + 4807534465404194 m001 (Sierpinski-Tetranacci)/(Zeta(3)-Zeta(1,-1)) 4807534480451475 r005 Re(z^2+c),c=-75/106+1/33*I,n=51 4807534482697358 r005 Re(z^2+c),c=13/102+30/47*I,n=17 4807534507367989 a007 Real Root Of -30*x^4+857*x^3+752*x^2+991*x+46 4807534524669481 r002 9th iterates of z^2 + 4807534528238224 r005 Re(z^2+c),c=-39/56+2/45*I,n=56 4807534532982460 m001 (CopelandErdos-Riemann2ndZero)^polylog(4,1/2) 4807534549257898 g007 14*Zeta(3)-Psi(2,4/11)-Psi(2,2/11)-Psi(2,2/7) 4807534552787466 r005 Im(z^2+c),c=-41/98+1/10*I,n=6 4807534559967328 a001 3536736619241/1926*322^(1/6) 4807534576743733 a007 Real Root Of 104*x^4+508*x^3+234*x^2+792*x-710 4807534581796707 r009 Im(z^3+c),c=-25/74+22/41*I,n=13 4807534583666133 m001 1/Zeta(1,2)^2/Catalan^2/exp(Zeta(5)) 4807534586817819 m001 gamma(3)/(Zeta(1,-1)+Lehmer) 4807534608481599 a003 cos(Pi*8/101)-cos(Pi*7/55) 4807534609180090 r009 Re(z^3+c),c=-3/34+29/42*I,n=34 4807534609777323 m005 (1/3*2^(1/2)+1/4)/(gamma-8/11) 4807534609912813 m001 (2^(1/2)+Zeta(3))/(-LandauRamanujan+Rabbit) 4807534627404174 b008 LogGamma[ArcCsc[123]] 4807534629507406 r002 25th iterates of z^2 + 4807534641392537 r005 Im(z^2+c),c=-69/122+2/23*I,n=64 4807534654349719 m005 (1/2*3^(1/2)+10/11)/(7/9*gamma-9/11) 4807534674428759 r005 Re(z^2+c),c=-16/23+11/34*I,n=24 4807534674941108 r005 Re(z^2+c),c=11/58+12/35*I,n=53 4807534676402615 r002 48th iterates of z^2 + 4807534716797314 a001 20633239*514229^(13/17) 4807534717466055 a007 Real Root Of -566*x^4+920*x^3+681*x^2+393*x+164 4807534719578675 m005 (1/2*3^(1/2)-1/12)/(7/9*5^(1/2)-1/9) 4807534719859798 a001 39603*1836311903^(13/17) 4807534724442204 r005 Im(z^2+c),c=-5/27+11/13*I,n=13 4807534725595210 a007 Real Root Of 134*x^4-943*x^3+472*x^2-599*x-509 4807534738274991 r005 Im(z^2+c),c=-11/54+3/46*I,n=6 4807534768543598 g001 abs(GAMMA(-4/3+I*49/60)) 4807534769901348 l006 ln(4314/6977) 4807534787471979 r002 20th iterates of z^2 + 4807534803137093 a007 Real Root Of -154*x^4-670*x^3+202*x^2-835*x-865 4807534807534807 q001 587/1221 4807534808828270 a007 Real Root Of 981*x^4-749*x^3+489*x^2-787*x-627 4807534820409826 l006 ln(2599/2727) 4807534847169264 r005 Re(z^2+c),c=-13/66+7/11*I,n=31 4807534851007962 r009 Im(z^3+c),c=-15/58+29/52*I,n=25 4807534860999498 r005 Re(z^2+c),c=-137/102+1/54*I,n=12 4807534875360687 a001 32951280099/1364*843^(11/14) 4807534905084941 r005 Im(z^2+c),c=-59/114+27/58*I,n=3 4807534906339720 r005 Re(z^2+c),c=-29/30+73/109*I,n=2 4807534910531694 r002 32th iterates of z^2 + 4807534922155294 r009 Im(z^3+c),c=-45/122+27/52*I,n=12 4807534937874009 r009 Im(z^3+c),c=-10/31+21/38*I,n=6 4807534961510820 m005 (1/2*Catalan-1/3)/(6/7*Pi-1/10) 4807534963440560 r005 Re(z^2+c),c=-15/58+38/61*I,n=38 4807534971822379 a003 sin(Pi*14/95)/sin(Pi*11/29) 4807534987405411 h001 (4/7*exp(1)+7/8)/(2/3*exp(2)+1/8) 4807534991848708 m001 cos(Pi/12)*exp(GAMMA(11/12))*sqrt(3) 4807535020256066 l006 ln(5725/9259) 4807535034679238 r002 34th iterates of z^2 + 4807535074574514 r005 Re(z^2+c),c=-13/10+17/214*I,n=8 4807535080970110 a001 6557470319842/3571*322^(1/6) 4807535095852179 m001 ln(Kolakoski)/ArtinRank2^2*Zeta(7)^2 4807535103260775 r002 23th iterates of z^2 + 4807535112747922 m001 ln(Riemann2ndZero)*Backhouse*Trott 4807535112952227 a007 Real Root Of -614*x^4+724*x^3+699*x^2+686*x-539 4807535120322928 r002 15th iterates of z^2 + 4807535126852365 m001 gamma(2)^Zeta(3)*BesselI(0,1) 4807535128275293 p004 log(32341/19997) 4807535150329704 a001 86267571272/521*521^(7/13) 4807535202561784 r009 Im(z^3+c),c=-73/126+4/15*I,n=12 4807535224240115 m001 (Zeta(5)-KhinchinHarmonic)/(Trott2nd-ZetaP(3)) 4807535237467650 r009 Re(z^3+c),c=-33/82+5/63*I,n=3 4807535244665178 m009 (1/5*Psi(1,2/3)+1/6)/(1/3*Psi(1,2/3)+3/5) 4807535250505524 a001 123/17711*514229^(39/58) 4807535267588333 a001 1/2*3571^(24/43) 4807535275290003 r005 Im(z^2+c),c=6/25+11/21*I,n=63 4807535298766509 a007 Real Root Of 469*x^4+519*x^3+23*x^2-556*x-240 4807535326469833 a007 Real Root Of 822*x^4+974*x^3+554*x^2-757*x+35 4807535329130806 m005 (1/2*5^(1/2)-1/8)/(2/11*5^(1/2)-1/5) 4807535335161781 a001 6643838879/610*34^(8/19) 4807535340977666 r002 24th iterates of z^2 + 4807535350044163 s002 sum(A065936[n]/(n*exp(pi*n)-1),n=1..infinity) 4807535354323668 a007 Real Root Of -870*x^4-515*x^3-713*x^2+210*x+255 4807535358575454 a001 10182505537/682*843^(6/7) 4807535363399827 a007 Real Root Of 53*x^4+111*x^3-656*x^2+19*x-725 4807535378161317 r005 Im(z^2+c),c=-13/122+23/37*I,n=23 4807535390566367 a007 Real Root Of 240*x^4+712*x^3+930*x^2+70*x-115 4807535402404713 r002 17th iterates of z^2 + 4807535406593156 m001 1/exp(GAMMA(1/24))*ArtinRank2/Zeta(1,2) 4807535408066147 r002 31th iterates of z^2 + 4807535408935733 a008 Real Root of x^3-x^2-30*x-10 4807535415748940 m001 FeigenbaumMu+OrthogonalArrays*QuadraticClass 4807535428811072 a007 Real Root Of -989*x^4-661*x^3-892*x^2-673*x-138 4807535435781633 r009 Re(z^3+c),c=-3/34+39/58*I,n=62 4807535471019211 a007 Real Root Of -404*x^4-336*x^3-754*x^2+910*x+596 4807535471953053 r009 Re(z^3+c),c=-3/40+23/45*I,n=23 4807535479086756 r009 Im(z^3+c),c=-23/94+23/41*I,n=41 4807535496488828 r009 Re(z^3+c),c=-27/46+34/59*I,n=33 4807535497782820 m001 (Psi(2,1/3)+Shi(1))/(-Artin+MertensB1) 4807535502834600 a001 1597/2207*18^(19/29) 4807535508221103 r009 Im(z^3+c),c=-35/82+30/61*I,n=58 4807535513097115 m009 (1/12*Pi^2+6)/(2*Psi(1,1/3)-6) 4807535517063356 b008 1/90+Csch[3/2] 4807535528605477 a007 Real Root Of -206*x^4-825*x^3+647*x^2-555*x+751 4807535535595423 r005 Im(z^2+c),c=6/19+11/32*I,n=41 4807535536436227 a001 18/89*89^(12/17) 4807535549146878 m001 (FibonacciFactorial+ZetaQ(3))/(3^(1/2)+Chi(1)) 4807535549568028 r005 Im(z^2+c),c=27/98+17/45*I,n=20 4807535560008252 r005 Im(z^2+c),c=-11/16+14/41*I,n=50 4807535575371940 a007 Real Root Of 197*x^4+932*x^3-265*x^2-994*x-330 4807535579484398 r009 Im(z^3+c),c=-31/60+28/61*I,n=18 4807535594340373 r009 Im(z^3+c),c=-35/118+16/29*I,n=16 4807535604518180 m001 (Pi^(1/2)-Paris)/(Zeta(3)+BesselI(0,2)) 4807535648313875 a007 Real Root Of 95*x^4+366*x^3-570*x^2-596*x+229 4807535651552616 a007 Real Root Of -846*x^4-31*x^3-185*x^2+338*x+247 4807535658330226 m001 (-sqrt(1+sqrt(3))+1/2)/(-BesselK(1,1)+3) 4807535666938052 a001 591286729879/843*322^(1/3) 4807535671347652 a001 7/1346269*20365011074^(17/22) 4807535672877945 a007 Real Root Of 254*x^4-935*x^3+449*x^2-220*x-327 4807535679144084 r002 48th iterates of z^2 + 4807535697109200 m001 (2^(1/3)+Zeta(1,2))/(-MertensB2+Niven) 4807535714795378 a007 Real Root Of 972*x^4-750*x^3+282*x^2-750*x-561 4807535716829743 r002 61th iterates of z^2 + 4807535737494211 h001 (-exp(1)+8)/(-exp(7)-2) 4807535763285216 a001 1/140728068720*7778742049^(19/24) 4807535763420449 a001 11/165580141*75025^(19/24) 4807535776389919 m001 (ln(2)-exp(-1/2*Pi))/(GaussAGM+ZetaP(3)) 4807535785051448 m002 -2+Pi^5/6-Tanh[Pi]/ProductLog[Pi] 4807535785692069 l006 ln(1411/2282) 4807535794668852 r009 Im(z^3+c),c=-5/86+40/61*I,n=6 4807535809265654 a007 Real Root Of 970*x^4-917*x^3-160*x^2-999*x-597 4807535836840548 r009 Im(z^3+c),c=-41/118+31/59*I,n=26 4807535839725309 m001 (GAMMA(2/3)-MertensB1)/(Niven+Riemann2ndZero) 4807535841790268 a001 1144206275/124*843^(13/14) 4807535846682272 m001 1/ln(Catalan)*ArtinRank2/sqrt(1+sqrt(3)) 4807535850625978 a001 11/610*34^(27/29) 4807535877303127 r009 Re(z^3+c),c=-29/74+1/25*I,n=28 4807535888840744 m005 (21/4+1/4*5^(1/2))/(3/7*5^(1/2)+1/4) 4807535890473509 r009 Im(z^3+c),c=-5/13+16/31*I,n=26 4807535894552694 r002 10th iterates of z^2 + 4807535898861218 m001 GAMMA(1/12)*PrimesInBinary^2/exp(sqrt(2)) 4807535940271251 r009 Im(z^3+c),c=-41/90+15/31*I,n=31 4807535950502293 r002 57th iterates of z^2 + 4807535969557698 r009 Re(z^3+c),c=-53/118+4/47*I,n=44 4807535994940730 a007 Real Root Of -297*x^4+485*x^3-887*x^2+793*x+656 4807535995424735 a007 Real Root Of 658*x^4-697*x^3+997*x^2-443*x-556 4807535996879617 m001 (Pi-GAMMA(17/24))/(Khinchin+Salem) 4807535997705722 m001 exp(Robbin)^2*Backhouse*Zeta(1,2)^2 4807536001288313 m001 1/ln(Robbin)^2/CopelandErdos*GAMMA(11/24) 4807536005962252 m005 (1/2*3^(1/2)-5/9)/(1/2*Catalan+6) 4807536013415642 m001 (-MertensB1+Paris)/(Catalan-gamma) 4807536023837387 a001 4181/5778*18^(19/29) 4807536030017535 a007 Real Root Of 266*x^4-46*x^3-838*x^2-446*x+399 4807536033920661 r005 Re(z^2+c),c=-45/74+5/28*I,n=12 4807536053067874 m001 (ln(2^(1/2)+1)+Pi^(1/2))/(Landau+ZetaQ(3)) 4807536064457734 r009 Im(z^3+c),c=-27/52+14/39*I,n=37 4807536073913971 a007 Real Root Of -929*x^4-432*x^3+947*x^2+746*x-38 4807536086365431 r005 Im(z^2+c),c=23/74+7/19*I,n=59 4807536099850684 a001 10946/15127*18^(19/29) 4807536108127913 a001 123/4181*1346269^(13/36) 4807536110940875 a001 28657/39603*18^(19/29) 4807536112558912 a001 75025/103682*18^(19/29) 4807536112794981 a001 196418/271443*18^(19/29) 4807536112829423 a001 514229/710647*18^(19/29) 4807536112834448 a001 1346269/1860498*18^(19/29) 4807536112835634 a001 2178309/3010349*18^(19/29) 4807536112837553 a001 832040/1149851*18^(19/29) 4807536112850709 a001 317811/439204*18^(19/29) 4807536112940879 a001 121393/167761*18^(19/29) 4807536113558914 a001 46368/64079*18^(19/29) 4807536117794990 a001 17711/24476*18^(19/29) 4807536132404868 m001 LambertW(1)+gamma(2)-ZetaP(4) 4807536146829488 a001 6765/9349*18^(19/29) 4807536147792090 r009 Re(z^3+c),c=-21/52+3/59*I,n=31 4807536154123747 a001 1346269/4*18^(23/25) 4807536160225423 r009 Im(z^3+c),c=-5/21+25/42*I,n=3 4807536162260110 m001 (LambertW(1)-cos(1))/(-Ei(1)+Tribonacci) 4807536165553959 r002 57th iterates of z^2 + 4807536173403718 r002 48th iterates of z^2 + 4807536185011402 a001 199/34*10946^(12/53) 4807536221219138 a007 Real Root Of -581*x^4+729*x^3+575*x^2+449*x+195 4807536225132349 r009 Im(z^3+c),c=-29/49*I,n=25 4807536234984949 a007 Real Root Of 73*x^4-651*x^3-638*x^2-514*x+463 4807536240610267 m001 Si(Pi)^LambertW(1)*ZetaR(2)^LambertW(1) 4807536242042529 r009 Re(z^3+c),c=-23/66+44/63*I,n=3 4807536243276562 m005 (3/4*2^(1/2)-1)/(4/5*gamma+4/5) 4807536263367933 r002 11th iterates of z^2 + 4807536276366268 h001 (1/3*exp(2)+5/6)/(11/12*exp(2)+1/12) 4807536289583093 r005 Re(z^2+c),c=-61/86+1/35*I,n=60 4807536290739251 a007 Real Root Of 856*x^4+726*x^3+675*x^2-549*x-385 4807536301527647 a007 Real Root Of -981*x^4+713*x^3-834*x^2+20*x+334 4807536307549883 r005 Re(z^2+c),c=-17/14+29/101*I,n=6 4807536315512529 r005 Re(z^2+c),c=-67/102+4/37*I,n=18 4807536325013262 a001 1812441194530/377 4807536325368004 m001 1/Porter^2/Magata^2*ln(sqrt(2))^2 4807536325733923 p001 sum(1/(401*n+39)/n/(5^n),n=1..infinity) 4807536337829176 m001 1/BesselJ(0,1)/ErdosBorwein/exp(sqrt(2))^2 4807536339248365 r002 9i'th iterates of 2*x/(1-x^2) of 4807536345834909 a001 2584/3571*18^(19/29) 4807536376517969 r004 Re(z^2+c),c=-23/34+3/16*I,z(0)=-1,n=49 4807536376672995 r009 Im(z^3+c),c=-23/94+27/49*I,n=11 4807536406165518 m003 17/3+Sqrt[5]/16-Sin[1/2+Sqrt[5]/2] 4807536412700171 m001 (ln(gamma)+KomornikLoreti)/(Trott2nd-ZetaQ(4)) 4807536417290419 m001 LandauRamanujan^2*exp(Cahen)^2/TreeGrowth2nd 4807536428150049 a007 Real Root Of -525*x^4+57*x^3+529*x^2+964*x-564 4807536468958432 m001 (FeigenbaumAlpha-PrimesInBinary)/(Pi+Zeta(3)) 4807536469945134 m005 (1/2*Catalan+5/6)/(3/5*Catalan-9/11) 4807536471727709 s002 sum(A257812[n]/(10^n+1),n=1..infinity) 4807536476573827 r005 Re(z^2+c),c=-11/16+18/125*I,n=54 4807536480790066 m001 FeigenbaumDelta/ln(2)*ln(10)/FellerTornier 4807536481637033 r005 Re(z^2+c),c=-11/16+7/109*I,n=46 4807536484340819 a007 Real Root Of 590*x^4-254*x^3+345*x^2+209*x-39 4807536486421567 a007 Real Root Of 507*x^4-529*x^3+741*x^2-630*x-560 4807536489019624 a001 521/5*317811^(7/58) 4807536496408811 r005 Im(z^2+c),c=-11/118+37/62*I,n=8 4807536504715312 m002 -(Pi^6/ProductLog[Pi])+5*Pi^6*Sech[Pi] 4807536512719339 a001 139583862445/521*521^(6/13) 4807536514236790 a007 Real Root Of -971*x^4+250*x^3-140*x^2+860*x-357 4807536515411624 r005 Re(z^2+c),c=-5/9-59/85*I,n=5 4807536544817029 m001 1/GAMMA(19/24)^2/ln(BesselJ(0,1))*sqrt(Pi) 4807536547545538 h001 (2/3*exp(1)+9/10)/(5/7*exp(2)+4/11) 4807536548963111 m001 1/GAMMA(13/24)^2*exp(Sierpinski)/GAMMA(23/24) 4807536557279752 a003 cos(Pi*1/32)/cos(Pi*49/113) 4807536573418255 l006 ln(5563/8997) 4807536596486557 r009 Im(z^3+c),c=-3/46+33/56*I,n=18 4807536618328327 m005 (2*Catalan-1/6)/(4*Catalan-1/5) 4807536631095147 r009 Im(z^3+c),c=-17/64+28/51*I,n=11 4807536644675381 m001 (-Grothendieck+PlouffeB)/(2^(1/2)+Conway) 4807536670604350 a001 1/532*(1/2*5^(1/2)+1/2)*7^(4/17) 4807536698797255 m008 (5*Pi^5-1)/(Pi^3+4/5) 4807536720123410 a001 233/1860498*11^(23/41) 4807536728331407 r005 Im(z^2+c),c=-23/18+2/95*I,n=16 4807536731523061 p001 sum((-1)^n/(615*n+202)/(8^n),n=0..infinity) 4807536739210188 r005 Re(z^2+c),c=-55/118+19/37*I,n=12 4807536755120273 a007 Real Root Of 105*x^4+332*x^3-887*x^2-134*x+657 4807536801354397 r005 Im(z^2+c),c=-65/98+8/23*I,n=34 4807536801741105 r005 Im(z^2+c),c=-13/58+3/43*I,n=4 4807536841116133 l006 ln(4152/6715) 4807536849080417 a001 3/55*13^(28/33) 4807536851891190 a001 29/1134903170*46368^(1/17) 4807536851917497 a001 29/2971215073*591286729879^(1/17) 4807536851917497 a001 29/1836311903*165580141^(1/17) 4807536859262466 a007 Real Root Of 781*x^4-799*x^3+725*x^2-445*x-512 4807536885729469 r005 Re(z^2+c),c=-13/22+41/114*I,n=38 4807536911750243 r002 45th iterates of z^2 + 4807536919327880 m001 cos(Pi/5)^GAMMA(11/24)-ln(Pi) 4807536936922674 b008 3*2^(1/2-Pi) 4807536955218173 m002 -4/Pi^2+5*Pi^6+Tanh[Pi] 4807536960706528 a007 Real Root Of 902*x^4-982*x^3-838*x^2+20*x+46 4807536969857445 m001 (-Zeta(1,2)+1)/(-cos(1)+1/2) 4807536972000346 m001 exp(Pi)*FeigenbaumMu*LandauRamanujan2nd 4807536992293395 a003 sin(Pi*22/103)/cos(Pi*50/109) 4807537003184186 m005 (1/2+1/6*5^(1/2))/(8/11*3^(1/2)+5/9) 4807537012113055 q001 1786/3715 4807537020719299 m001 1/Pi*exp(Bloch)^2*sin(Pi/5) 4807537027178102 m005 (1/4*Pi-1)/(4*Catalan+4/5) 4807537080751517 r005 Im(z^2+c),c=-119/90+1/30*I,n=38 4807537098048518 r005 Re(z^2+c),c=-9/14+33/206*I,n=20 4807537101095880 r002 10th iterates of z^2 + 4807537124662426 h001 (5/11*exp(2)+2/11)/(9/10*exp(2)+5/7) 4807537124818214 r009 Im(z^3+c),c=-25/56+13/27*I,n=55 4807537138305019 m009 (48*Catalan+6*Pi^2+1/3)/(5/6*Psi(1,2/3)-2/5) 4807537139470169 p001 sum(1/(475*n+181)/n/(32^n),n=1..infinity) 4807537152147945 a003 cos(Pi*11/96)*sin(Pi*17/99) 4807537156059401 r004 Im(z^2+c),c=3/14+7/15*I,z(0)=I,n=50 4807537178043787 r005 Im(z^2+c),c=25/106+19/42*I,n=30 4807537187531192 m002 -Pi^6+Pi^6*Log[Pi]^3 4807537189096067 a007 Real Root Of 673*x^4-994*x^3+378*x^2+428*x-28 4807537200627560 h001 (4/5*exp(2)+1/8)/(1/7*exp(2)+1/5) 4807537216645356 m001 (Zeta(1/2)-FellerTornier)/(Pi+LambertW(1)) 4807537218779643 r002 21th iterates of z^2 + 4807537220390823 r005 Re(z^2+c),c=-11/25+33/59*I,n=43 4807537248856934 a007 Real Root Of 158*x^4-658*x^3+635*x^2-588*x-511 4807537268473143 m001 GAMMA(5/6)*OneNinth/exp(arctan(1/2))^2 4807537268991807 r009 Im(z^3+c),c=-1/126+29/49*I,n=34 4807537276397818 a007 Real Root Of -38*x^4-66*x^3+373*x^2-735*x+811 4807537287974564 a001 2504730781961/1364*322^(1/6) 4807537288770291 r002 10th iterates of z^2 + 4807537295106160 m006 (1/5/Pi-1/6)/(4*exp(2*Pi)+3/5) 4807537298595861 a005 (1/cos(10/119*Pi))^1873 4807537313041521 m001 BesselJ(0,1)^2/Riemann2ndZero*ln(sin(1)) 4807537321475089 p001 sum((-1)^n/(380*n+251)/n/(3^n),n=1..infinity) 4807537332016806 r005 Re(z^2+c),c=-19/31+12/53*I,n=14 4807537332132497 r005 Re(z^2+c),c=-49/106+33/61*I,n=55 4807537384422677 l006 ln(2741/4433) 4807537387101106 r009 Im(z^3+c),c=-7/25+16/29*I,n=21 4807537388571219 m001 GAMMA(11/24)^2*Tribonacci^2/exp(cos(Pi/12)) 4807537402140349 r005 Re(z^2+c),c=-27/38+3/41*I,n=64 4807537468728548 m001 (OneNinth+ZetaP(2))/(cos(1)+GolombDickman) 4807537469525230 r002 61th iterates of z^2 + 4807537471508025 r002 24th iterates of z^2 + 4807537475698017 m005 (1/2*2^(1/2)+8/11)/(5/11*5^(1/2)-4) 4807537496575214 r002 49th iterates of z^2 + 4807537509246970 r009 Im(z^3+c),c=-5/66+39/64*I,n=6 4807537510984133 r005 Re(z^2+c),c=3/13+7/18*I,n=41 4807537517307441 m002 -1+5/Pi+5*Pi^6 4807537520432985 r009 Re(z^3+c),c=-15/32+6/61*I,n=55 4807537525113998 a001 15127/144*4181^(36/49) 4807537537775687 m001 (Psi(1,1/3)+2^(1/3))^MasserGramain 4807537542164993 a001 17393796001/1597*34^(8/19) 4807537553358825 p003 LerchPhi(1/5,4,111/92) 4807537565269312 m001 GAMMA(11/24)^2/GAMMA(1/4)^2/ln(arctan(1/2))^2 4807537567299402 a007 Real Root Of 733*x^4-852*x^3-6*x^2-958*x-593 4807537568797982 m001 (Kolakoski+LaplaceLimit)/(Conway-ErdosBorwein) 4807537576133808 g006 2*Psi(1,1/5)-Psi(1,5/6)-Psi(1,4/5) 4807537580955695 a001 2504730781961/2207*322^(1/4) 4807537594541241 m008 (1/6*Pi^3-1/6)/(2/5*Pi^3-2) 4807537595556009 m004 -3-25*Pi+Cosh[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi]/5 4807537598721078 m004 -14/5-25*Pi+Cosh[Sqrt[5]*Pi] 4807537629344819 r005 Im(z^2+c),c=-17/78+2/29*I,n=4 4807537647389386 r002 48th iterates of z^2 + 4807537663124080 m008 (2*Pi^4-3/5)/(1/3*Pi^2+3/4) 4807537667604234 m001 (Shi(1)+BesselI(0,2))/(-ArtinRank2+CareFree) 4807537670017875 a001 1568397607/55*377^(10/21) 4807537709839074 a001 987/1364*18^(19/29) 4807537742563238 m001 (GAMMA(2/3)+GAMMA(13/24))/(MertensB3-Rabbit) 4807537745086590 m002 -5+4/E^Pi+6/Pi^5 4807537751032900 m001 (2^(1/3)-Bloch)/(-Trott+ZetaP(3)) 4807537761718699 s002 sum(A108893[n]/((exp(n)-1)/n),n=1..infinity) 4807537761721189 r009 Im(z^3+c),c=-6/19+31/58*I,n=17 4807537768076231 m001 (Cahen+Sierpinski)/(arctan(1/2)+exp(-1/2*Pi)) 4807537770280440 a007 Real Root Of 612*x^4-616*x^3+617*x^2-714*x-587 4807537799900627 h001 (-7*exp(-1)-1)/(-2*exp(1)-2) 4807537801917882 r002 36th iterates of z^2 + 4807537810072988 r009 Im(z^3+c),c=-19/31+13/46*I,n=19 4807537818187299 r005 Re(z^2+c),c=-73/114+10/51*I,n=18 4807537824564017 r002 20th iterates of z^2 + 4807537864162591 a001 45537549124/4181*34^(8/19) 4807537875109360 a001 225851433717/521*521^(5/13) 4807537876326854 r002 4th iterates of z^2 + 4807537885834031 r009 Re(z^3+c),c=-9/118+33/56*I,n=11 4807537889750729 r009 Im(z^3+c),c=-37/90+1/2*I,n=56 4807537896220485 m005 (1/2*2^(1/2)-2/5)/(-23/60+1/5*5^(1/2)) 4807537911141411 a001 119218851371/10946*34^(8/19) 4807537913839904 m001 (-Tetranacci+Thue)/(Catalan-exp(Pi)) 4807537916884701 m001 (2^(1/3)+BesselJ(1,1))/(-Paris+ZetaP(2)) 4807537917995529 a001 312119004989/28657*34^(8/19) 4807537918995531 a001 817138163596/75025*34^(8/19) 4807537919141429 a001 2139295485799/196418*34^(8/19) 4807537919162715 a001 5600748293801/514229*34^(8/19) 4807537919165821 a001 14662949395604/1346269*34^(8/19) 4807537919166554 a001 23725150497407/2178309*34^(8/19) 4807537919167740 a001 9062201101803/832040*34^(8/19) 4807537919175871 a001 3461452808002/317811*34^(8/19) 4807537919231599 a001 1322157322203/121393*34^(8/19) 4807537919613566 a001 505019158607/46368*34^(8/19) 4807537921152043 m002 -11+5*Pi^6+Cosh[Pi] 4807537921984578 a001 233/843*14662949395604^(7/9) 4807537921984578 a001 233/843*(1/2+1/2*5^(1/2))^49 4807537921984578 a001 233/843*505019158607^(7/8) 4807537922040307 a001 377/521*(1/2+1/2*5^(1/2))^47 4807537922231606 a001 192900153618/17711*34^(8/19) 4807537930856999 m001 (Kolakoski-cos(1))/(Weierstrass+ZetaQ(2)) 4807537938539269 l006 ln(4071/6584) 4807537940175919 a001 73681302247/6765*34^(8/19) 4807537961804947 r002 6th iterates of z^2 + 4807537963636063 h001 (1/11*exp(2)+3/5)/(3/10*exp(2)+3/7) 4807537972307230 m001 (Mills-ZetaQ(4))/(ln(2)-Magata) 4807537972793160 a007 Real Root Of 16*x^4+764*x^3-259*x^2-433*x-672 4807537976531661 m001 (ln(Pi)+Champernowne)/(MinimumGamma+Salem) 4807537997439752 b008 E+EulerGamma+ArcTan[17] 4807538001170782 a001 29/10946*2^(49/57) 4807538004298018 h001 (3/8*exp(1)+10/11)/(4/9*exp(2)+8/11) 4807538007683654 b008 5*EulerGamma^(1/14) 4807538011879271 a001 7778742049/199*199^(10/11) 4807538058980209 h001 (6/7*exp(1)+1/7)/(7/12*exp(2)+5/6) 4807538063168073 a001 28143753123/2584*34^(8/19) 4807538063470557 r009 Re(z^3+c),c=-11/31+28/37*I,n=9 4807538070050996 a003 cos(Pi*22/69)-cos(Pi*13/27) 4807538083906263 r005 Re(z^2+c),c=-23/66+38/59*I,n=25 4807538091419406 q001 1199/2494 4807538091419406 r002 2th iterates of z^2 + 4807538095236769 m001 (Paris+ZetaP(2))/(ln(gamma)-Gompertz) 4807538103671199 r002 48th iterates of z^2 + 4807538133981853 m005 (1/2*5^(1/2)+6/7)/(2*5^(1/2)-4/11) 4807538138433915 r005 Re(z^2+c),c=-79/126+19/63*I,n=44 4807538142605419 m001 (1+3^(1/2))^(1/2)/(5^(1/2)+Zeta(3)) 4807538142605419 m001 sqrt(1+sqrt(3))/(sqrt(5)+Zeta(3)) 4807538146235242 r009 Re(z^3+c),c=-59/114+15/61*I,n=14 4807538167847155 a008 Real Root of x^4-x^3-29*x^2+5*x+49 4807538173366383 r005 Im(z^2+c),c=-13/74+29/46*I,n=57 4807538190989774 m001 (Rabbit+ZetaP(4))/(sin(1)+Kolakoski) 4807538195313207 r005 Re(z^2+c),c=-3/5+33/107*I,n=4 4807538210143064 r002 35th iterates of z^2 + 4807538219752658 l006 ln(5401/8735) 4807538219928848 q001 3/62402 4807538221249165 a007 Real Root Of 800*x^4-969*x^3+338*x^2-313*x-379 4807538224206789 r009 Im(z^3+c),c=-17/78+39/47*I,n=4 4807538224355105 m001 (-Champernowne+Thue)/(Si(Pi)-arctan(1/3)) 4807538229352980 r005 Im(z^2+c),c=-46/31+1/22*I,n=6 4807538247374095 m001 (-Backhouse+Lehmer)/(5^(1/2)-BesselJ(1,1)) 4807538268537117 h001 (1/11*exp(1)+3/4)/(3/7*exp(1)+10/11) 4807538276274204 s002 sum(A112998[n]/(pi^n-1),n=1..infinity) 4807538277679020 m001 (GAMMA(17/24)+Backhouse)/(Ei(1)-Psi(2,1/3)) 4807538303433251 m001 (polylog(4,1/2)+FeigenbaumB)/FransenRobinson 4807538354113604 m001 exp(GAMMA(2/3))^2*MertensB1*GAMMA(3/4) 4807538369240756 b008 InverseJacobiCS[4,-2]/5 4807538375285848 m005 (1/2*Zeta(3)-5/7)/(5/11*exp(1)-1) 4807538418363052 m005 (2*gamma+1/4)/(-11/3+1/3*5^(1/2)) 4807538423956343 a001 3278735159921/2889*322^(1/4) 4807538425073394 a007 Real Root Of -116*x^4-583*x^3+12*x^2+606*x-178 4807538432970666 m001 1/Niven/Si(Pi)/ln(GAMMA(11/24)) 4807538460433790 m001 1/FeigenbaumDelta^2/Conway^2*exp(gamma) 4807538461579023 m001 exp(Cahen)*GaussAGM(1,1/sqrt(2))/FeigenbaumC^2 4807538480557676 m002 5*Pi^6+6*Log[Pi]*Sech[Pi] 4807538481447856 r005 Im(z^2+c),c=5/22+24/47*I,n=58 4807538517487966 r005 Re(z^2+c),c=-19/40+15/26*I,n=56 4807538520500470 r009 Im(z^3+c),c=-9/26+28/53*I,n=28 4807538525614327 r005 Re(z^2+c),c=-31/98+18/35*I,n=2 4807538570808393 a001 7/1346269*121393^(42/43) 4807538575201174 h001 (7/10*exp(2)+10/11)/(3/7*exp(1)+1/10) 4807538577704993 r005 Im(z^2+c),c=11/54+1/2*I,n=34 4807538579171550 a001 24476*6557470319842^(11/17) 4807538582018062 a003 sin(Pi*5/64)-sin(Pi*17/66) 4807538586006508 r009 Im(z^3+c),c=-11/26+22/45*I,n=37 4807538587196694 a001 4870847*1836311903^(11/17) 4807538587198845 a001 969323029*514229^(11/17) 4807538588516402 m001 (FeigenbaumD-Kac)/(Zeta(1/2)+Backhouse) 4807538600793087 a007 Real Root Of -653*x^4-200*x^3-944*x^2+901*x+664 4807538612344763 r005 Re(z^2+c),c=-11/17+1/38*I,n=15 4807538613222887 m001 (-cos(1/5*Pi)+GaussAGM)/(Psi(2,1/3)+Si(Pi)) 4807538614523484 m001 1/BesselJ(0,1)^2/MadelungNaCl/ln(GAMMA(3/4)) 4807538616556388 a003 sin(Pi*7/38)*sin(Pi*27/79) 4807538622961844 a001 10610209857723/9349*322^(1/4) 4807538641570502 r005 Im(z^2+c),c=-11/18+6/55*I,n=18 4807538649399436 m001 1/ln(Kolakoski)/MertensB1^2/GAMMA(1/12)^2 4807538670290817 b008 ArcSinh[99]/11 4807538678644820 m001 (Ei(1,1)-FransenRobinson)/(OneNinth-ZetaQ(2)) 4807538680345537 r002 54th iterates of z^2 + 4807538722024247 m005 (-17/28+1/4*5^(1/2))/(5/8*Catalan+3/7) 4807538760551803 a007 Real Root Of 129*x^4+775*x^3+833*x^2+420*x-30 4807538761390123 r005 Re(z^2+c),c=-25/78+11/18*I,n=5 4807538763643050 m002 Pi^6/2+Sinh[Pi]/(2*Pi^4) 4807538768887851 r009 Im(z^3+c),c=-1/94+16/27*I,n=16 4807538778426796 a007 Real Root Of -100*x^4-458*x^3+200*x^2+612*x+848 4807538794933080 m001 FeigenbaumDelta+ZetaR(2)^Zeta(5) 4807538797130004 r005 Re(z^2+c),c=-5/8+61/190*I,n=40 4807538815197026 a007 Real Root Of -745*x^4+729*x^3-656*x^2+706*x-229 4807538887780473 m001 Pi^2/GaussKuzminWirsing^2*ln(cos(Pi/5))^2 4807538888219529 g002 Psi(5/9)+Psi(1/8)-Psi(5/12)-Psi(4/11) 4807538906169004 a001 10749957122/987*34^(8/19) 4807538910906394 a007 Real Root Of -50*x^4+220*x^3+939*x^2+743*x-596 4807538910958800 a007 Real Root Of -969*x^4-433*x^3+659*x^2+823*x+38 4807538912423914 m002 5*Pi^6+2/(Pi*ProductLog[Pi]) 4807538935509236 r005 Re(z^2+c),c=-7/10+1/199*I,n=63 4807538937066226 r002 4th iterates of z^2 + 4807538944959544 a001 4052739537881/3571*322^(1/4) 4807538954719399 m006 (3/5*ln(Pi)+3/5)/(5*exp(2*Pi)-3/4) 4807538972326755 r005 Im(z^2+c),c=-117/106+11/35*I,n=7 4807538976348392 m002 -5/3-5*Pi^6+ProductLog[Pi] 4807538977098204 a007 Real Root Of 505*x^4-576*x^3-71*x^2-679*x-401 4807539001986054 m001 BesselI(1,2)/(Sarnak+Sierpinski) 4807539005320023 m005 (1/2*gamma+1/6)/(6/7*Zeta(3)-1/12) 4807539007681555 r009 Re(z^3+c),c=-11/23+2/19*I,n=56 4807539011068237 r005 Im(z^2+c),c=23/94+20/43*I,n=46 4807539033245953 r005 Re(z^2+c),c=-17/26+5/98*I,n=15 4807539043892601 r005 Im(z^2+c),c=-13/18+39/109*I,n=45 4807539045661799 a007 Real Root Of -462*x^4+947*x^3-460*x^2-612*x-58 4807539057778714 a007 Real Root Of -817*x^4+351*x^3-658*x^2+791*x+615 4807539064680899 h001 (7/11*exp(2)+1/10)/(2/7*exp(1)+2/9) 4807539080519306 l006 ln(1330/2151) 4807539083464645 m001 (-MertensB3+Paris)/(3^(1/2)+GaussAGM) 4807539084807573 r005 Im(z^2+c),c=-53/114+4/57*I,n=9 4807539085998547 r004 Im(z^2+c),c=-31/46+2/21*I,z(0)=-1,n=59 4807539087797045 r005 Im(z^2+c),c=-3/16+32/43*I,n=24 4807539096090353 a003 sin(Pi*9/47)*sin(Pi*21/65) 4807539096159971 r005 Im(z^2+c),c=13/64+19/39*I,n=53 4807539096513911 m001 (3^(1/3)-exp(1/exp(1)))/(PlouffeB+Trott2nd) 4807539109520338 a007 Real Root Of 203*x^4+59*x^3+597*x^2-14*x-149 4807539112116190 m001 1/Sierpinski*ln(DuboisRaymond)^2*arctan(1/2) 4807539118582240 h001 (4/5*exp(1)+7/11)/(7/9*exp(2)+1/10) 4807539122159318 m007 (-5*gamma+1/6)/(-2/5*gamma-6/5*ln(2)+1/5*Pi+1) 4807539126405112 m001 (ln(5)-ln(Pi))/(3^(1/3)-PlouffeB) 4807539128110324 m001 (LaplaceLimit-MertensB1)/(Zeta(1/2)+Kac) 4807539134980672 r009 Im(z^3+c),c=-1/102+29/49*I,n=26 4807539138030616 r009 Im(z^3+c),c=-3/16+41/64*I,n=9 4807539155826917 q001 1811/3767 4807539162993663 m001 1/Zeta(1/2)*exp(GAMMA(11/24))*Zeta(7)^2 4807539165622721 r002 64th iterates of z^2 + 4807539170457920 m001 (GAMMA(13/24)-ThueMorse)/(GAMMA(2/3)-ln(5)) 4807539183471892 a008 Real Root of (-1+2*x-2*x^2+9*x^4+7*x^8) 4807539188315735 m009 (3*Psi(1,2/3)-1/3)/(2/3*Psi(1,2/3)-1/5) 4807539190254742 r005 Re(z^2+c),c=-43/70+5/49*I,n=7 4807539200468687 m001 1/Sierpinski*ln(Rabbit)*GAMMA(1/4) 4807539202294536 r002 8th iterates of z^2 + 4807539207185462 m005 (1/3*5^(1/2)-1/12)/(3/4*5^(1/2)-3/10) 4807539211369455 r002 18th iterates of z^2 + 4807539237499768 a001 365435296162/521*521^(4/13) 4807539257341483 a001 24476/3*317811^(7/50) 4807539257768597 l006 ln(8264/8671) 4807539265713181 r005 Re(z^2+c),c=-55/78+1/27*I,n=48 4807539269214803 r005 Re(z^2+c),c=15/86+18/35*I,n=51 4807539276382186 a001 8/167761*11^(53/55) 4807539286289842 a007 Real Root Of 559*x^4+874*x^3+889*x^2-349*x-306 4807539295125274 m001 Zeta(1,2)/exp(TreeGrowth2nd)^2/cos(Pi/5) 4807539331287977 p004 log(29983/18539) 4807539345801820 b008 7*(-1/2+8^Pi) 4807539349977563 r005 Re(z^2+c),c=-65/126+8/15*I,n=55 4807539352429777 a007 Real Root Of -525*x^4+729*x^3-883*x^2-331*x+154 4807539378827409 s002 sum(A104375[n]/(n*exp(n)+1),n=1..infinity) 4807539400064267 a007 Real Root Of -504*x^4+770*x^3+994*x^2+461*x-510 4807539403319387 m001 PrimesInBinary^(LambertW(1)*Porter) 4807539432210083 p004 log(21379/13219) 4807539449515275 a007 Real Root Of -905*x^4+319*x^3-839*x^2+660*x+595 4807539474224716 r002 2th iterates of z^2 + 4807539477592854 m001 Pi*Niven+ln(gamma) 4807539484976737 a001 514229/123*76^(1/31) 4807539501994757 a007 Real Root Of 322*x^4-789*x^3+976*x^2-309*x-479 4807539507691435 r005 Re(z^2+c),c=-15/31+31/55*I,n=46 4807539516197658 r005 Im(z^2+c),c=6/17+4/17*I,n=32 4807539520807246 p004 log(17077/10559) 4807539528486136 a007 Real Root Of -141*x^4-687*x^3-199*x^2-628*x+565 4807539530927956 a001 365435296162/843*322^(5/12) 4807539531470211 r005 Im(z^2+c),c=27/122+11/24*I,n=34 4807539537023028 m005 (1/3*Zeta(3)-1/11)/(3/8*exp(1)-3/8) 4807539540515320 a007 Real Root Of -355*x^4+442*x^3-350*x^2+518*x+398 4807539551020963 s002 sum(A233305[n]/(n*10^n+1),n=1..infinity) 4807539554655158 h001 (1/9*exp(1)+6/7)/(2/7*exp(2)+3/10) 4807539560440605 r009 Im(z^3+c),c=-13/30+29/53*I,n=62 4807539562459987 h001 (4/11*exp(2)+5/8)/(6/7*exp(2)+5/9) 4807539572259911 m002 -7+3*Sech[Pi]+Sinh[Pi] 4807539586418972 r009 Im(z^3+c),c=-29/74+26/51*I,n=43 4807539593591888 a007 Real Root Of 635*x^4-569*x^3+628*x^2-145*x-312 4807539605198494 m001 GAMMA(2/3)^2/ln(GAMMA(19/24))/cosh(1)^2 4807539614444917 a007 Real Root Of 923*x^4-985*x^3-311*x^2-487*x-321 4807539656890478 a007 Real Root Of 668*x^4-83*x^3+505*x^2-552*x-427 4807539657709184 m005 (1/2*Pi+5/9)/(7/11*5^(1/2)+3) 4807539661687801 r005 Re(z^2+c),c=-19/56+19/31*I,n=4 4807539678505942 r009 Re(z^3+c),c=-67/94+29/34*I,n=2 4807539678913894 h001 (5/6*exp(1)+9/11)/(7/9*exp(2)+2/3) 4807539697894332 a001 843/2*13^(2/39) 4807539702536150 h001 (3/7*exp(2)+1/5)/(10/11*exp(2)+2/7) 4807539704850187 a007 Real Root Of 185*x^4+816*x^3-245*x^2+563*x+214 4807539744296040 m001 (-Ei(1)+ZetaP(2))/(5^(1/2)+BesselJ(0,1)) 4807539761506868 r009 Im(z^3+c),c=-21/82+14/25*I,n=12 4807539768153650 m001 1/GAMMA(5/6)*FeigenbaumAlpha/exp(GAMMA(7/12)) 4807539796380126 m001 (exp(1/exp(1))+BesselJ(1,1))/(exp(1)+Zeta(3)) 4807539796884675 m001 (Bloch+ZetaP(3))/(ln(2^(1/2)+1)+arctan(1/2)) 4807539836645777 r005 Re(z^2+c),c=-39/62+11/27*I,n=59 4807539854841597 a007 Real Root Of -140*x^4+415*x^3+548*x^2+93*x-210 4807539861294682 p004 log(23629/193) 4807539872726345 m002 E^Pi/(4*Pi^4)+Pi^6/2 4807539879621617 a007 Real Root Of -104*x^4-353*x^3+595*x^2-410*x+609 4807539923593983 m008 (Pi^6-2/5)/(2*Pi^2+1/4) 4807539944357858 a007 Real Root Of -531*x^4+347*x^3+477*x^2+958*x-581 4807539947973318 r002 39i'th iterates of 2*x/(1-x^2) of 4807539967902443 l006 ln(5239/8473) 4807539973963699 r005 Re(z^2+c),c=7/102+11/29*I,n=16 4807539983764065 r009 Im(z^3+c),c=-31/114+29/53*I,n=12 4807539990718140 r005 Re(z^2+c),c=-53/74+1/35*I,n=56 4807539998201157 r009 Im(z^3+c),c=-33/98+25/47*I,n=50 4807540002047222 m004 -5-Sinh[Sqrt[5]*Pi]+30*Pi*Tan[Sqrt[5]*Pi] 4807540045156509 g004 Re(GAMMA(-1/10+I*71/15)) 4807540055528568 m001 Zeta(3)^MertensB2*HardyLittlewoodC5^MertensB2 4807540057245605 r005 Im(z^2+c),c=15/44+3/10*I,n=45 4807540069334834 a003 cos(Pi*1/104)/cos(Pi*13/30) 4807540071558831 m005 (1/2*5^(1/2)+4/5)/(7/12*3^(1/2)-5) 4807540092922997 r009 Im(z^3+c),c=-1/126+29/49*I,n=36 4807540100854342 r005 Im(z^2+c),c=-83/78+2/37*I,n=11 4807540101946378 r009 Re(z^3+c),c=-11/42+47/64*I,n=61 4807540113803452 a007 Real Root Of 701*x^4-981*x^3+101*x^2-89*x+91 4807540119092952 m001 (Bloch-Totient)/(Zeta(1,-1)-GAMMA(13/24)) 4807540146399222 m001 (Rabbit-Tetranacci)/(Zeta(5)-FeigenbaumMu) 4807540146995385 r009 Im(z^3+c),c=-9/34+5/9*I,n=45 4807540168947328 r005 Re(z^2+c),c=-23/27+41/48*I,n=3 4807540179158231 m005 (1/3*Pi-1/3)/(1/2*2^(1/2)+7/9) 4807540181626405 m001 (Conway+ZetaP(4))/(ln(3)+Pi^(1/2)) 4807540190041110 a007 Real Root Of -90*x^4-636*x^3-933*x^2+125*x-427 4807540205387427 a007 Real Root Of -727*x^4+939*x^3+95*x^2+193*x+214 4807540221065952 r009 Im(z^3+c),c=-19/32+11/23*I,n=43 4807540227511043 s002 sum(A271978[n]/(n^2*pi^n+1),n=1..infinity) 4807540229310394 r002 41th iterates of z^2 + 4807540235468278 s002 sum(A267042[n]/(n*pi^n+1),n=1..infinity) 4807540248481463 a007 Real Root Of 169*x^4-397*x^3-467*x^2-27*x+156 4807540250042636 a007 Real Root Of 722*x^4-453*x^3-299*x^2-535*x-277 4807540252529976 a007 Real Root Of -565*x^4+672*x^3-424*x^2+44*x+224 4807540269826082 l006 ln(3909/6322) 4807540271294909 r009 Im(z^3+c),c=-1/118+22/41*I,n=3 4807540272055606 r002 38th iterates of z^2 + 4807540274764939 r005 Re(z^2+c),c=-23/34+42/95*I,n=15 4807540282966131 a007 Real Root Of 79*x^4-915*x^3+13*x^2-153*x+168 4807540295158213 a007 Real Root Of 107*x^4+483*x^3+79*x^2+984*x-585 4807540297931778 m001 (Psi(1,1/3)+PlouffeB)/(Totient+Thue) 4807540306107526 r002 3th iterates of z^2 + 4807540340278666 r002 8th iterates of z^2 + 4807540343311100 a007 Real Root Of -948*x^4-372*x^3+395*x^2+744*x-357 4807540349864124 r005 Re(z^2+c),c=11/126+7/38*I,n=14 4807540361457533 a007 Real Root Of 728*x^4-912*x^3+551*x^2+178*x-182 4807540364173288 a001 281/726103*1597^(1/34) 4807540367107410 a007 Real Root Of -38*x^4-100*x^3+273*x^2-681*x-396 4807540391204489 m006 (3*exp(Pi)+2/3)/(2/5*ln(Pi)+1) 4807540398978677 a007 Real Root Of -305*x^4-782*x^3-817*x^2-40*x+99 4807540402172958 a007 Real Root Of -371*x^4-596*x^3-156*x^2+995*x+468 4807540408423824 a007 Real Root Of -924*x^4+701*x^3+157*x^2+102*x+140 4807540416085192 a007 Real Root Of 794*x^4-835*x^3-653*x^2-66*x-16 4807540432414833 a001 5600748293801/89*2971215073^(7/23) 4807540437867204 a001 6119/36*8^(1/2) 4807540444504495 m001 (BesselI(1,1)-GAMMA(1/3))/GAMMA(5/24) 4807540445892149 a001 1/72*(1/2*5^(1/2)+1/2)^21*4^(1/4) 4807540461240592 a001 5/5600748293801*29^(1/2) 4807540467089011 r009 Im(z^3+c),c=-21/74+11/20*I,n=33 4807540497676425 g007 Psi(2,5/8)+Psi(2,1/6)+Psi(2,1/3)+14*Zeta(3) 4807540518160744 r009 Im(z^3+c),c=-1/7+30/49*I,n=9 4807540534482308 a007 Real Root Of -585*x^4+802*x^3+685*x^2+711*x-558 4807540542889497 m005 (1/3*gamma+3/5)/(7/9*5^(1/2)-1/11) 4807540546524091 a007 Real Root Of 125*x^4+434*x^3-829*x^2-127*x 4807540555035938 m001 (GolombDickman+Kac)/(GAMMA(3/4)+exp(1/Pi)) 4807540569307257 m005 (1/2*Catalan+2/5)/(5/6*Pi-5/6) 4807540599890561 a001 591286729879/521*521^(3/13) 4807540610919054 r002 64th iterates of z^2 + 4807540617330558 m001 (MinimumGamma+Paris)/(2^(1/2)+FeigenbaumC) 4807540617745042 m001 (Lehmer-Niven)/(Tribonacci+Weierstrass) 4807540636090373 r009 Im(z^3+c),c=-31/118+31/55*I,n=13 4807540656320812 m005 (1/2*Pi-2/3)/(5/12*gamma-3/7) 4807540669702750 r005 Re(z^2+c),c=-4/3+14/75*I,n=6 4807540671834565 m001 (Kac+ZetaP(2))/(BesselK(1,1)-GolombDickman) 4807540676658214 p001 sum(1/(553*n+325)/n/(24^n),n=1..infinity) 4807540679762122 a007 Real Root Of -897*x^4-138*x^3+941*x^2+600*x-31 4807540680229410 a001 2/2178309*610^(41/42) 4807540683141952 m002 -1+4/Pi^2-5*Pi^6 4807540696874569 r009 Re(z^3+c),c=-7/22+39/55*I,n=10 4807540697664997 m002 5*Pi^6+6*Csch[Pi]*Log[Pi] 4807540698840961 h001 (6/7*exp(2)+7/9)/(1/8*exp(2)+5/9) 4807540700870317 m002 -5-E^Pi/4+6*Tanh[Pi] 4807540718339741 r005 Im(z^2+c),c=-2/29+28/47*I,n=23 4807540722549140 r002 62th iterates of z^2 + 4807540732468478 r005 Im(z^2+c),c=-11/122+23/36*I,n=60 4807540750111646 r005 Re(z^2+c),c=23/60+1/4*I,n=31 4807540755598238 a001 521/10610209857723*377^(17/22) 4807540768045683 r002 3th iterates of z^2 + 4807540773826445 a007 Real Root Of -680*x^4+115*x^3+220*x^2+821*x-422 4807540808846288 m001 1/exp(sin(Pi/12))^2*GAMMA(11/12)^2/sinh(1)^2 4807540827398633 h001 (8/11*exp(1)+2/3)/(8/11*exp(2)+1/8) 4807540828731883 m001 (Zeta(3)-ln(2))/(Grothendieck-Sarnak) 4807540847098444 r005 Re(z^2+c),c=-11/16+13/96*I,n=60 4807540859143515 r002 6th iterates of z^2 + 4807540861507018 m001 (FellerTornier+LaplaceLimit)/(ln(3)-Conway) 4807540865973414 a007 Real Root Of -880*x^4-393*x^3-924*x^2+310*x+17 4807540869990940 r005 Re(z^2+c),c=-21/44+17/48*I,n=4 4807540882460796 m001 (Shi(1)*Backhouse-ln(5))/Backhouse 4807540883156004 l006 ln(2579/4171) 4807540887729299 r009 Im(z^3+c),c=-19/82+37/64*I,n=12 4807540891457007 a001 12752043/55*9227465^(10/21) 4807540891904187 a001 103682/55*225851433717^(10/21) 4807540931268148 a001 76/3*2178309^(27/40) 4807540938989864 m001 (FransenRobinson+Thue)/(BesselJ(0,1)-sin(1)) 4807540942165202 r005 Re(z^2+c),c=-4/7+23/78*I,n=10 4807540942503588 m001 (Backhouse-FeigenbaumKappa)/(Khinchin-Lehmer) 4807540971661903 m001 exp(Niven)/FibonacciFactorial/cos(Pi/12)^2 4807540974678767 r005 Re(z^2+c),c=-51/106+28/45*I,n=31 4807540981809640 m002 Pi^6/2+Cosh[Pi]/(2*Pi^4) 4807541004040635 a007 Real Root Of 421*x^4-141*x^3+675*x^2-716*x-36 4807541028130215 k001 Champernowne real with 274*n+206 4807541030344855 a007 Real Root Of -971*x^4+919*x^3-285*x^2+565*x-256 4807541031458544 m001 (Conway-KomornikLoreti)/(GAMMA(3/4)-Ei(1,1)) 4807541066385556 a007 Real Root Of 535*x^4-985*x^3+120*x^2-741*x-522 4807541070099558 r008 a(0)=7,K{-n^6,6-9*n^3+7*n^2-5*n} 4807541071386383 r002 4th iterates of z^2 + 4807541072456286 m001 FeigenbaumDelta^sin(1/12*Pi)*FellerTornier 4807541081998051 m001 (arctan(1/3)-exp(1/Pi))/(GAMMA(7/12)+Robbin) 4807541083729385 m001 (ln(3)+arctan(1/3))/(HeathBrownMoroz-Otter) 4807541086504005 m001 (exp(1/Pi)+Bloch)/(ln(gamma)-Zeta(1,-1)) 4807541095468061 r005 Im(z^2+c),c=-12/25+13/24*I,n=23 4807541102720502 m001 1/ln(Zeta(3))/MertensB1^2/sqrt(1+sqrt(3)) 4807541110884236 r002 62th iterates of z^2 + 4807541122046966 m001 Otter^(FeigenbaumD/Si(Pi)) 4807541129474706 r005 Im(z^2+c),c=31/114+20/51*I,n=24 4807541137940212 a007 Real Root Of 340*x^4-137*x^3-326*x^2-203*x+170 4807541149496502 r002 6th iterates of z^2 + 4807541151965771 a001 1134903780*322^(1/4) 4807541155590959 r005 Im(z^2+c),c=25/102+19/48*I,n=15 4807541156663353 m001 (3^(1/2)+ln(2))/(-GAMMA(5/6)+GolombDickman) 4807541166922213 a007 Real Root Of 363*x^4-179*x^3-329*x^2-636*x-269 4807541184564473 m001 1/exp(Zeta(7))^2*Artin*cos(Pi/12) 4807541189155973 r009 Im(z^3+c),c=-1/16+25/43*I,n=7 4807541194170708 a001 1/311187*3^(11/30) 4807541209976489 m001 KomornikLoreti^TreeGrowth2nd/Khinchin 4807541224455880 m005 (1/2*Pi-3/8)/(10/11*5^(1/2)+5/11) 4807541241162608 q001 612/1273 4807541245231220 m002 -5/Pi-5*Pi^6+Tanh[Pi] 4807541247735381 r009 Im(z^3+c),c=-16/17+7/53*I,n=2 4807541249782449 a007 Real Root Of -785*x^4+294*x^3+188*x^2+815*x-426 4807541254463815 r002 37th iterates of z^2 + 4807541270824171 a007 Real Root Of 410*x^4+479*x^3+713*x^2-544*x-395 4807541293548840 l006 ln(5665/5944) 4807541302240018 m001 TravellingSalesman-polylog(4,1/2)*ZetaP(2) 4807541306262449 l003 cosh(2+27/107) 4807541306262449 l004 cosh(241/107) 4807541306521160 m001 gamma(1)^ReciprocalLucas+Weierstrass 4807541323125842 r002 14th iterates of z^2 + 4807541329945312 a001 29/610*17711^(29/41) 4807541336347876 m001 1/GAMMA(5/12)^2/ln(Khintchine)*arctan(1/2)^2 4807541347721348 r009 Im(z^3+c),c=-5/21+27/47*I,n=12 4807541365854551 r005 Im(z^2+c),c=25/106+9/20*I,n=43 4807541374618140 s002 sum(A182383[n]/(n*2^n-1),n=1..infinity) 4807541388324957 m001 (Pi*csc(5/24*Pi)/GAMMA(19/24)-Conway)/Cahen 4807541395884455 m001 ln(cos(1))/FibonacciFactorial^2*sinh(1) 4807541407084556 r005 Im(z^2+c),c=19/78+15/29*I,n=31 4807541411027495 r009 Im(z^3+c),c=-1/126+29/49*I,n=38 4807541429883097 a007 Real Root Of -999*x^4+832*x^3+22*x^2+840*x-448 4807541443443847 a007 Real Root Of 195*x^4+846*x^3-359*x^2+570*x+874 4807541444947138 a001 1548008755920/2207*322^(1/3) 4807541450701751 m005 (1/2*Catalan+7/12)/(4*gamma-1/7) 4807541456409008 a001 38/17*196418^(26/59) 4807541457510694 m001 Robbin^2*exp(PisotVijayaraghavan)*cos(1)^2 4807541470888198 p003 LerchPhi(1/10,2,307/209) 4807541478906410 r005 Im(z^2+c),c=-8/27+26/43*I,n=42 4807541493560151 r009 Im(z^3+c),c=-43/114+33/64*I,n=54 4807541509109733 a007 Real Root Of -551*x^4+935*x^3-207*x^2+944*x+635 4807541509463872 l006 ln(3828/6191) 4807541533718308 r005 Im(z^2+c),c=35/118+28/57*I,n=53 4807541558813738 r002 4th iterates of z^2 + 4807541571393002 r002 31th iterates of z^2 + 4807541588930209 b008 2+47*Sech[1/5] 4807541598093426 r002 10th iterates of z^2 + 4807541614506755 m001 (Lehmer-PlouffeB)/(Artin-FransenRobinson) 4807541616089398 r002 57th iterates of z^2 + 4807541659556734 m001 BesselJ(0,1)/exp(MertensB1)/GAMMA(3/4) 4807541663031228 m008 (4/5*Pi^3-3/5)/(5*Pi^2+1) 4807541731527595 b008 3*Sqrt[2]*E^(1/8) 4807541737930198 r005 Re(z^2+c),c=-16/23+1/41*I,n=43 4807541738919776 s002 sum(A080272[n]/(n*exp(pi*n)-1),n=1..infinity) 4807541752899684 a007 Real Root Of -208*x^4-893*x^3+625*x^2+392*x-675 4807541756549517 h001 (7/8*exp(1)+4/11)/(2/3*exp(2)+7/9) 4807541763138009 m005 (1/2*Pi-9/10)/(-57/88+5/22*5^(1/2)) 4807541781828916 r005 Im(z^2+c),c=3/7+3/8*I,n=10 4807541791117175 m001 (sin(1)+Paris)/(-Porter+Riemann2ndZero) 4807541803886239 b008 5-3*Sqrt[313] 4807541808855802 a007 Real Root Of -240*x^4-991*x^3+806*x^2+285*x+832 4807541827613944 l006 ln(5077/8211) 4807541835952343 m001 (Ei(1,1)+cos(1/12*Pi))/(CopelandErdos+Trott) 4807541881053910 r002 59th iterates of z^2 + 4807541906353381 m001 (Mills-Sarnak)/(sin(1/5*Pi)+GolombDickman) 4807541935464553 a007 Real Root Of 379*x^4+976*x^3+987*x^2-957*x-600 4807541935553069 m001 (Shi(1)+exp(-1/2*Pi))/(Pi^(1/2)+Thue) 4807541954792824 r009 Im(z^3+c),c=-55/114+20/57*I,n=9 4807541962281741 a001 956722026041/521*521^(2/13) 4807541987213398 r002 14th iterates of z^2 + 4807542011321917 a007 Real Root Of -651*x^4-349*x^3-631*x^2+12*x+2 4807542017798521 m001 (Landau+LandauRamanujan2nd)/(Zeta(5)+Conway) 4807542022566432 r009 Im(z^3+c),c=-1/28+37/62*I,n=10 4807542023657967 r005 Re(z^2+c),c=-37/118+37/62*I,n=26 4807542024744224 r009 Im(z^3+c),c=-1/126+29/49*I,n=40 4807542082641008 m001 1/Sierpinski^2/ln(Riemann1stZero)/Trott^2 4807542099381519 a005 (1/cos(7/227*Pi))^824 4807542102991803 a001 586520136565/122 4807542121860496 a007 Real Root Of 785*x^4-825*x^3-774*x^2-708*x+569 4807542158052891 m001 Conway/BesselI(0,1)*FeigenbaumDelta 4807542163082458 m001 exp(KhintchineLevy)*Si(Pi)^2/GAMMA(7/12)^2 4807542166281284 a003 sin(Pi*35/118)/cos(Pi*46/103) 4807542167057886 m008 (1/5*Pi^3+3)/(2*Pi^2-3/5) 4807542193370101 m001 GAMMA(2/3)*CareFree^Otter 4807542205429181 r002 4th iterates of z^2 + 4807542210538234 r004 Im(z^2+c),c=3/8+3/22*I,z(0)=exp(7/12*I*Pi),n=9 4807542232390585 r009 Re(z^3+c),c=-8/15+1/3*I,n=49 4807542239952742 m002 -2/5+5*Pi^6+Tanh[Pi] 4807542242876251 m002 -3+5*Pi^6+Pi*Log[Pi] 4807542242892695 m001 (Paris-Sierpinski)/(polylog(4,1/2)-MertensB2) 4807542254988014 v002 sum(1/(2^n+(11*n^2-11*n+64)),n=1..infinity) 4807542260779841 a001 4/987*2584^(1/46) 4807542275322925 a001 2971215073/521*1364^(14/15) 4807542276020615 m001 GAMMA(1/24)/Riemann2ndZero/exp(Zeta(1/2)) 4807542280545404 a003 cos(Pi*17/95)-cos(Pi*8/21) 4807542287948463 a001 4052739537881/5778*322^(1/3) 4807542290562807 r009 Re(z^3+c),c=-11/18+15/53*I,n=20 4807542304497696 m001 GAMMA(1/3)^2*BesselJ(0,1)*exp(sqrt(5))^2 4807542305254091 a007 Real Root Of -101*x^4-374*x^3+448*x^2-412*x+61 4807542309738781 r009 Im(z^3+c),c=-1/126+29/49*I,n=42 4807542312629825 a001 29/2584*28657^(22/27) 4807542316915503 r009 Re(z^3+c),c=-25/48+25/64*I,n=4 4807542324584733 r005 Re(z^2+c),c=-8/31+40/63*I,n=22 4807542330265705 r009 Re(z^3+c),c=-1/9+13/19*I,n=17 4807542346220678 r004 Im(z^2+c),c=-1/24+2/3*I,z(0)=exp(7/8*I*Pi),n=5 4807542353326777 m001 FeigenbaumDelta+OneNinth*GAMMA(17/24) 4807542353326777 m001 GAMMA(17/24)*OneNinth+FeigenbaumDelta 4807542382645980 a001 76/2178309*55^(2/25) 4807542386197006 r009 Im(z^3+c),c=-55/126+12/25*I,n=22 4807542392588018 m001 (GAMMA(23/24)+KhinchinLevy)/(Pi-Zeta(1/2)) 4807542392865691 a007 Real Root Of -604*x^4-208*x^3+74*x^2+309*x-15 4807542401353350 r009 Re(z^3+c),c=-33/64+15/56*I,n=5 4807542402210826 m002 -(Pi^6/E^Pi)+5*Coth[Pi]-Sinh[Pi] 4807542410940724 a001 1515744265389/2161*322^(1/3) 4807542412047449 m005 (1/3*Zeta(3)+1/10)/(4/9*exp(1)-1/6) 4807542419051884 m005 (1/3*Zeta(3)-1/12)/(6/7*Catalan-1/8) 4807542436127669 m005 (3/5*Catalan+1/2)/(1/5*Catalan+2) 4807542436372777 a001 7/377*514229^(17/22) 4807542441707944 r009 Im(z^3+c),c=-1/126+29/49*I,n=44 4807542444651408 m002 Pi^6/2+ProductLog[Pi]/18 4807542447590194 a001 4807526976/521*1364^(13/15) 4807542449732962 a001 3010349/144*2504730781961^(4/21) 4807542449733481 a001 20633239/144*102334155^(4/21) 4807542457601477 a001 7881196*6557470319842^(9/17) 4807542457601554 a001 599074578*1836311903^(9/17) 4807542457603479 a001 45537549124*514229^(9/17) 4807542459981723 r009 Im(z^3+c),c=-11/78+32/55*I,n=27 4807542460210409 a001 35355581/36*4181^(4/21) 4807542471350754 a008 Real Root of x^4-x^3-12*x^2+73*x-17 4807542474259164 m001 (Pi+exp(1))/(cos(1/5*Pi)+HardyLittlewoodC5) 4807542481054238 r005 Im(z^2+c),c=-51/70+7/19*I,n=3 4807542486765925 m001 exp(1/exp(1))^(BesselK(0,1)/Paris) 4807542486954124 a001 6557470319842/9349*322^(1/3) 4807542493546943 h001 (1/5*exp(1)+6/7)/(3/8*exp(2)+1/7) 4807542497689602 m001 (Rabbit-Salem)/(Artin+Gompertz) 4807542502630609 r009 Im(z^3+c),c=-1/126+29/49*I,n=46 4807542506687727 m001 1/MinimumGamma/ln(KhintchineLevy)*Zeta(3) 4807542519718324 a007 Real Root Of 2*x^4+961*x^3-245*x^2-258*x-483 4807542530661873 r009 Im(z^3+c),c=-1/126+29/49*I,n=48 4807542535266989 m005 (4/5*exp(1)+1/6)/(3/5*gamma-5/6) 4807542539827607 l006 ln(79/9672) 4807542543512686 r009 Im(z^3+c),c=-1/126+29/49*I,n=50 4807542548078829 m001 1/Salem^2/ln(PrimesInBinary)*BesselJ(0,1)^2 4807542549380609 r009 Im(z^3+c),c=-1/126+29/49*I,n=52 4807542550477984 m008 (Pi^2+4)/(3*Pi^6+4/5) 4807542552048172 r009 Im(z^3+c),c=-1/126+29/49*I,n=54 4807542552472902 m001 exp(GAMMA(1/6))^2/Champernowne^2/cos(Pi/12)^2 4807542552879558 a008 Real Root of x^4-x^3-15*x^2+2*x-86 4807542553254853 r009 Im(z^3+c),c=-1/126+29/49*I,n=56 4807542553797649 r009 Im(z^3+c),c=-1/126+29/49*I,n=58 4807542554040254 r009 Im(z^3+c),c=-1/126+29/49*I,n=60 4807542554147885 r009 Im(z^3+c),c=-1/126+29/49*I,n=62 4807542554195222 r009 Im(z^3+c),c=-1/126+29/49*I,n=64 4807542554285537 r009 Im(z^3+c),c=-1/126+29/49*I,n=63 4807542554357000 r009 Im(z^3+c),c=-1/126+29/49*I,n=61 4807542554518754 r009 Im(z^3+c),c=-1/126+29/49*I,n=59 4807542554881949 r009 Im(z^3+c),c=-1/126+29/49*I,n=57 4807542555691863 r009 Im(z^3+c),c=-1/126+29/49*I,n=55 4807542557487170 r009 Im(z^3+c),c=-1/126+29/49*I,n=53 4807542558399811 a007 Real Root Of -800*x^4+792*x^3+215*x^2+470*x+307 4807542559162582 m001 (Totient+ZetaP(2))/(exp(Pi)+Riemann1stZero) 4807542561445877 r009 Im(z^3+c),c=-1/126+29/49*I,n=51 4807542563934444 r005 Re(z^2+c),c=7/60+17/55*I,n=4 4807542565355954 r009 Im(z^3+c),c=-45/118+28/47*I,n=5 4807542570134186 r009 Im(z^3+c),c=-1/126+29/49*I,n=49 4807542584010844 a005 (1/cos(17/144*Pi))^55 4807542589122783 r009 Im(z^3+c),c=-1/126+29/49*I,n=47 4807542616496163 a001 36/109801*199^(49/52) 4807542616634726 m005 (1/2*3^(1/2)+3/10)/(10/11*3^(1/2)-4) 4807542619857470 a001 7778742049/521*1364^(4/5) 4807542623241309 r005 Re(z^2+c),c=-29/44+1/44*I,n=19 4807542625991951 m001 (HeathBrownMoroz+Salem)/(exp(Pi)+GAMMA(2/3)) 4807542626385700 r009 Im(z^3+c),c=-23/74+33/61*I,n=33 4807542630465492 r009 Im(z^3+c),c=-1/126+29/49*I,n=45 4807542634682642 m001 (GlaisherKinkelin+Niven)/(Backhouse-GaussAGM) 4807542643773958 a007 Real Root Of 590*x^4-301*x^3+847*x^2-895*x-691 4807542644376692 m001 (2^(1/2))^Kolakoski/Trott2nd 4807542675009335 m006 (1/3*Pi^2+5/6)/(3/5/Pi+2/3) 4807542691466519 m005 (1/2*3^(1/2)-1/3)/(5*5^(1/2)-1/10) 4807542696282213 r005 Re(z^2+c),c=4/27+3/8*I,n=38 4807542700699395 r001 24i'th iterates of 2*x^2-1 of 4807542704157305 r005 Im(z^2+c),c=11/126+26/49*I,n=19 4807542705504535 r005 Re(z^2+c),c=11/126+19/62*I,n=29 4807542715061177 a007 Real Root Of 367*x^4-983*x^3-500*x^2-659*x+522 4807542720166746 r009 Im(z^3+c),c=-1/126+29/49*I,n=43 4807542758520996 r005 Im(z^2+c),c=5/48+20/37*I,n=26 4807542758895243 r005 Im(z^2+c),c=11/102+19/33*I,n=64 4807542761779913 m001 TwinPrimes^2/Paris/ln(GAMMA(2/3))^2 4807542792124752 a001 12586269025/521*1364^(11/15) 4807542797282462 a007 Real Root Of -947*x^4-861*x^3-676*x^2+427*x+22 4807542802696727 l006 ln(1249/2020) 4807542807788500 r009 Im(z^3+c),c=-51/118+21/43*I,n=58 4807542808952083 a001 2504730781961/3571*322^(1/3) 4807542826824258 r002 30th iterates of z^2 + 4807542831377971 p001 sum((-1)^n/(218*n+207)/(100^n),n=0..infinity) 4807542836214725 s002 sum(A258985[n]/(n^3*pi^n+1),n=1..infinity) 4807542837057393 a007 Real Root Of 378*x^4-736*x^3+691*x^2-425*x-466 4807542841050075 m001 ln(GAMMA(2/3))/Paris^2*cosh(1) 4807542860889754 r005 Re(z^2+c),c=-7/10+25/191*I,n=13 4807542870001986 m005 (5*Catalan+1/2)/(4*Pi-2) 4807542873949397 m001 (HardyLittlewoodC3+Trott2nd)/(Chi(1)+cos(1)) 4807542908498185 m001 (ln(gamma)-FeigenbaumD)/(MertensB3-TwinPrimes) 4807542911992647 a007 Real Root Of -200*x^4+981*x^3+787*x^2+193*x-373 4807542914172361 r009 Im(z^3+c),c=-1/126+29/49*I,n=41 4807542962382245 m005 (1/2*Zeta(3)+7/11)/(1/3*gamma-1/6) 4807542964392040 a001 20365011074/521*1364^(2/3) 4807542975957459 r009 Im(z^3+c),c=-13/34+27/44*I,n=55 4807542977858369 a007 Real Root Of -561*x^4+780*x^3+239*x^2+904*x+496 4807542979986426 r005 Re(z^2+c),c=43/122+4/35*I,n=26 4807542980326767 r009 Re(z^3+c),c=-45/86+17/63*I,n=14 4807542992726837 a005 (1/sin(46/171*Pi))^53 4807542996901500 m001 exp(Kolakoski)/KhintchineHarmonic^2*Robbin 4807542997656536 r005 Re(z^2+c),c=-15/23+14/59*I,n=47 4807543000276474 r002 43th iterates of z^2 + 4807543010799185 m001 (ln(3)-Zeta(1,2))/(MadelungNaCl-Niven) 4807543016949275 m005 (1/3*gamma+1/2)/(7/10*5^(1/2)-1/8) 4807543018875211 m001 TwinPrimes^2*exp(CareFree)/GAMMA(2/3)^2 4807543027020390 a001 11/317811*610^(16/39) 4807543050580556 a007 Real Root Of 353*x^4-311*x^3-979*x^2-622*x+541 4807543051896925 m001 (Kac-KhinchinLevy)/(sin(1/5*Pi)-CareFree) 4807543066056304 a005 (1/cos(26/219*Pi))^216 4807543087667700 m001 Khintchine/Backhouse^2*ln(MinimumGamma) 4807543089616782 a003 sin(Pi*1/45)-sin(Pi*18/97) 4807543092761815 m001 (Zeta(3)+ln(5))/(polylog(4,1/2)-Stephens) 4807543096045670 m005 (1/2*gamma+3/5)/(11/12+5/12*5^(1/2)) 4807543097993260 m005 (-25/44+1/4*5^(1/2))/(1/8*Pi-7/12) 4807543099112062 r005 Re(z^2+c),c=-11/26+32/57*I,n=32 4807543101920013 h001 (3/11*exp(2)+5/12)/(3/5*exp(2)+5/8) 4807543104259556 m001 (Ei(1,1)-Si(Pi))/(BesselJ(1,1)+Otter) 4807543105282927 r002 30th iterates of z^2 + 4807543107090006 a007 Real Root Of -220*x^4-842*x^3+971*x^2-215*x+487 4807543120705202 m001 (Ei(1,1)-ln(2)/ln(10))/(BesselI(1,2)+OneNinth) 4807543123598771 r009 Im(z^3+c),c=-19/52+12/23*I,n=31 4807543131698782 m002 18-E^(2*Pi)/ProductLog[Pi] 4807543136659334 a001 63246219*1364^(3/5) 4807543162481712 m001 (-FeigenbaumD+Trott)/(Psi(2,1/3)-arctan(1/2)) 4807543164910020 m001 1/Rabbit*Kolakoski^2*ln(GAMMA(11/12)) 4807543165648030 r002 49th iterates of z^2 + 4807543167220062 m001 (Niven-Sierpinski)/(Cahen+KhinchinLevy) 4807543174752318 m005 (1/3*Zeta(3)+2/11)/(4/5*Zeta(3)+1/4) 4807543184921816 m001 MadelungNaCl/(BesselI(0,2)+FeigenbaumKappa) 4807543208170676 a001 726103*9349^(51/53) 4807543217194574 r009 Re(z^3+c),c=-14/29+4/37*I,n=43 4807543220440100 l006 ln(8731/9161) 4807543220440100 p004 log(9161/8731) 4807543227533575 m001 (Sarnak-Sierpinski)/(FellerTornier-Rabbit) 4807543227952897 r005 Re(z^2+c),c=-71/118+22/59*I,n=57 4807543247168954 m001 (FeigenbaumKappa+LaplaceLimit)^(5^(1/2)) 4807543255217456 a007 Real Root Of -205*x^4-772*x^3+892*x^2-651*x-18 4807543258962901 a007 Real Root Of -762*x^4-663*x^3-422*x^2+887*x+491 4807543268703183 r005 Im(z^2+c),c=1/23+27/50*I,n=15 4807543270472746 q001 1861/3871 4807543270984734 a007 Real Root Of x^4+481*x^3+118*x^2-52*x+34 4807543298735508 m006 (1/2*exp(Pi)+4)/(3/4/Pi+3) 4807543308926634 a001 53316291173/521*1364^(8/15) 4807543324673307 a001 1548008755920/521*521^(1/13) 4807543332533028 r009 Im(z^3+c),c=-1/126+29/49*I,n=39 4807543348882662 m001 Cahen^BesselJ(0,1)/ZetaR(2) 4807543350638626 a003 sin(Pi*9/64)/cos(Pi*13/86) 4807543356634521 m001 1/Riemann2ndZero*Kolakoski^2/exp(Catalan)^2 4807543364332155 m002 -3+4*Pi^6+Pi^6*Coth[Pi] 4807543376469364 r005 Im(z^2+c),c=15/52+16/43*I,n=26 4807543391206084 a001 51841*34^(12/19) 4807543394920966 a001 267913919*322^(1/2) 4807543402904696 r005 Im(z^2+c),c=1/106+26/41*I,n=59 4807543408604597 r009 Im(z^3+c),c=-5/27+27/47*I,n=23 4807543412946780 a007 Real Root Of 238*x^4-398*x^3+473*x^2-611*x-460 4807543422778360 r002 4th iterates of z^2 + 4807543423189239 h001 (-6*exp(1/3)+9)/(-7*exp(1)+6) 4807543443426855 r009 Im(z^3+c),c=-31/114+31/50*I,n=3 4807543452023989 a007 Real Root Of 497*x^4-816*x^3+921*x^2-557*x-29 4807543452972992 a007 Real Root Of -360*x^4+890*x^3+277*x^2+633*x-448 4807543455183104 m001 (3^(1/2)+exp(1/Pi))/MasserGramain 4807543457930767 r002 25th iterates of z^2 + 4807543479404481 m001 (Psi(1,1/3)+1)/(-HardyLittlewoodC4+ZetaP(4)) 4807543481193941 a001 86267571272/521*1364^(7/15) 4807543482785250 r005 Im(z^2+c),c=9/118+14/25*I,n=36 4807543484908406 r002 16th iterates of z^2 + 4807543504447792 a007 Real Root Of -174*x^4-763*x^3+463*x^2+422*x-504 4807543508293066 r009 Re(z^3+c),c=-33/62+21/59*I,n=2 4807543532392357 a007 Real Root Of -174*x^4-889*x^3-392*x^2-582*x+430 4807543538834739 r002 35th iterates of z^2 + 4807543549567611 m005 (1/2*3^(1/2)-7/8)/(6*Pi-2/11) 4807543556437477 a001 2/843*3^(9/14) 4807543561296817 a007 Real Root Of 551*x^4-350*x^3+721*x^2-206*x-334 4807543573831195 a007 Real Root Of -369*x^4+18*x^3-343*x^2+441*x+313 4807543582165238 s001 sum(exp(-Pi/2)^(n-1)*A103579[n],n=1..infinity) 4807543582254933 m005 (-11/4+1/4*5^(1/2))/(-12/35+5/14*5^(1/2)) 4807543588837589 r002 30th iterates of z^2 + 4807543603029127 s001 sum(exp(-2*Pi/5)^n*A137517[n],n=1..infinity) 4807543603029127 s002 sum(A137517[n]/(exp(2/5*pi*n)),n=1..infinity) 4807543605826976 l006 ln(6164/9969) 4807543627039364 m005 (1/2*3^(1/2)-1/5)/(5/8*gamma-2/9) 4807543628487752 r009 Re(z^3+c),c=-29/64+5/57*I,n=64 4807543639348072 m001 Robbin^2*exp(MadelungNaCl)^2*gamma^2 4807543653461253 a001 139583862445/521*1364^(2/5) 4807543655423785 p003 LerchPhi(1/12,5,168/145) 4807543657277505 m001 BesselI(1,2)*OneNinth^FeigenbaumDelta 4807543657277505 m001 OneNinth^FeigenbaumDelta*BesselI(1,2) 4807543660126620 m001 1/ln(GAMMA(1/4))*Robbin^2*sqrt(2) 4807543687081772 a007 Real Root Of -571*x^4+398*x^3+653*x^2+847*x+331 4807543688293900 a007 Real Root Of -580*x^4+579*x^3-952*x^2+174*x+399 4807543699996375 a001 233/2207*817138163596^(17/19) 4807543699996375 a001 233/2207*14662949395604^(17/21) 4807543699996375 a001 233/2207*(1/2+1/2*5^(1/2))^51 4807543699996375 a001 233/2207*192900153618^(17/18) 4807543700061420 a001 987/521*45537549124^(15/17) 4807543700061420 a001 987/521*312119004989^(9/11) 4807543700061420 a001 987/521*14662949395604^(5/7) 4807543700061420 a001 987/521*(1/2+1/2*5^(1/2))^45 4807543700061420 a001 987/521*192900153618^(5/6) 4807543700061420 a001 987/521*28143753123^(9/10) 4807543700061420 a001 987/521*10749957122^(15/16) 4807543701947582 s002 sum(A123226[n]/(n^3*pi^n-1),n=1..infinity) 4807543712084514 r005 Re(z^2+c),c=-7/10+6/155*I,n=64 4807543718737503 a007 Real Root Of 227*x^4+883*x^3-995*x^2-164*x-938 4807543731122254 m002 5*Pi^6+(3*Tanh[Pi])/5 4807543743521365 m001 BesselK(0,1)/exp(Si(Pi))^2*arctan(1/2) 4807543747203601 m001 (-ErdosBorwein+MertensB3)/(Ei(1)-Psi(2,1/3)) 4807543756163348 m001 FeigenbaumKappa*Sarnak-MinimumGamma 4807543759768468 m001 (Stephens-ZetaP(3))/(Bloch-Mills) 4807543762176267 r002 60th iterates of z^2 + 4807543765697649 r009 Im(z^3+c),c=-31/70+19/39*I,n=57 4807543774942835 m001 1/Ei(1)^2/MadelungNaCl*ln(sqrt(3))^2 4807543783207964 m001 Ei(1)/(exp(-1/2*Pi)^Lehmer) 4807543797509922 a001 7/34*3^(44/57) 4807543809918457 l006 ln(4915/7949) 4807543824165792 m001 polylog(4,1/2)/(PrimesInBinary+Robbin) 4807543825728572 a001 225851433717/521*1364^(1/3) 4807543828371557 r005 Re(z^2+c),c=11/48+24/55*I,n=4 4807543848295046 h001 (1/3*exp(2)+5/7)/(2/11*exp(1)+1/6) 4807543848814298 s002 sum(A129770[n]/(16^n),n=1..infinity) 4807543860254070 r009 Im(z^3+c),c=-31/56+25/52*I,n=28 4807543870560920 r009 Im(z^3+c),c=-1/122+29/49*I,n=32 4807543896699955 r009 Im(z^3+c),c=-5/86+36/61*I,n=30 4807543906299189 a001 225851433717/76*29^(1/7) 4807543907207440 p001 sum(1/(343*n+227)/(5^n),n=0..infinity) 4807543917174263 r005 Re(z^2+c),c=1/78+49/64*I,n=10 4807543921324765 m008 (3/5*Pi^6+5)/(4*Pi^3-3) 4807543951093621 m001 (Trott2nd-ZetaQ(2))/ln(gamma) 4807543972154369 a003 sin(Pi*17/86)*sin(Pi*13/42) 4807543975815915 l006 ln(72/8815) 4807543997995897 a001 365435296162/521*1364^(4/15) 4807543998318458 r009 Im(z^3+c),c=-8/23+13/25*I,n=5 4807544012942057 a007 Real Root Of -24*x^4+495*x^3-483*x^2+628*x-244 4807544018915537 m005 (5*gamma-2/3)/(1/5*Pi-1/6) 4807544027344303 r005 Im(z^2+c),c=-7/114+14/25*I,n=8 4807544037589293 r005 Re(z^2+c),c=-15/26+1/44*I,n=5 4807544041497195 m001 (Psi(1,1/3)+Trott)/Riemann2ndZero 4807544044480799 b008 -5+Sech[Sqrt[2*E]] 4807544053042167 r009 Re(z^3+c),c=-13/25+20/53*I,n=12 4807544060910611 b008 E^(1/3)-E^5/3 4807544092110203 m001 1/Riemann3rdZero^2/Conway/ln(GAMMA(23/24)) 4807544092324678 a008 Real Root of x^4-x^3-27*x^2+35*x+147 4807544093923656 m005 (1/2*2^(1/2)-7/8)/(3/8*Zeta(3)-4/5) 4807544098610516 a001 969323029/233*6557470319842^(16/17) 4807544098610516 a001 2139295485799/233*1836311903^(16/17) 4807544120572417 a007 Real Root Of -688*x^4+602*x^3+11*x^2+291*x+241 4807544129184162 a007 Real Root Of -55*x^4+903*x^3+103*x^2+790*x-501 4807544147111838 b008 5*Tanh[1/104] 4807544149851257 b008 5*ArcCot[104] 4807544153077173 l006 ln(3666/5929) 4807544156864721 r009 Im(z^3+c),c=-7/15+13/29*I,n=36 4807544164397277 s001 sum(exp(-Pi/2)^n*A124351[n],n=1..infinity) 4807544164477128 m001 FeigenbaumC+KhinchinHarmonic*Niven 4807544168353482 a001 591286729879/322*123^(1/5) 4807544169489235 r005 Re(z^2+c),c=-63/94+10/39*I,n=63 4807544170263228 a001 591286729879/521*1364^(1/5) 4807544181478042 b008 1+Sqrt[Pi]+Sqrt[1+Pi] 4807544195966410 r002 3th iterates of z^2 + 4807544196551346 r005 Im(z^2+c),c=13/40+5/16*I,n=19 4807544204428284 r009 Im(z^3+c),c=-1/94+19/33*I,n=7 4807544232233158 r009 Im(z^3+c),c=-1/126+29/49*I,n=37 4807544235126792 r005 Im(z^2+c),c=4/27+26/47*I,n=19 4807544246562260 b008 5*Erf[Sqrt[-1+Pi]] 4807544253070432 a005 (1/sin(59/149*Pi))^664 4807544261954222 m001 (BesselK(0,1)+ln(3))/(Sierpinski+Stephens) 4807544264819091 q001 1249/2598 4807544266935763 r005 Re(z^2+c),c=17/106+11/36*I,n=16 4807544270979934 a007 Real Root Of -823*x^4+492*x^3-886*x^2+307*x+451 4807544309998121 a001 7677648263067/1597 4807544326082102 p004 log(15767/9749) 4807544332239922 a001 1134903170/521*3571^(16/17) 4807544341735347 m001 Pi+2^(1/3)+BesselK(0,1)/Zeta(5) 4807544342530565 a001 956722026041/521*1364^(2/15) 4807544344202999 h001 (3/4*exp(2)+1/6)/(2/9*exp(1)+7/12) 4807544354416505 a001 1836311903/521*3571^(15/17) 4807544369374472 a007 Real Root Of 234*x^4+961*x^3-603*x^2+831*x-287 4807544374761361 r005 Re(z^2+c),c=-33/56+10/33*I,n=3 4807544376593088 a001 2971215073/521*3571^(14/17) 4807544379527559 p004 log(34403/281) 4807544381010111 m001 exp(Paris)^2*Bloch^2*BesselK(0,1)^2 4807544396330450 m001 LambertW(1)^2/exp(PrimesInBinary)^2/cos(1)^2 4807544398769671 a001 4807526976/521*3571^(13/17) 4807544409361943 a007 Real Root Of -887*x^4+179*x^3+289*x^2+277*x-14 4807544415071063 m001 ZetaQ(2)^(LambertW(1)*FeigenbaumC) 4807544420946254 a001 7778742049/521*3571^(12/17) 4807544430345797 l006 ln(6083/9838) 4807544443122837 a001 12586269025/521*3571^(11/17) 4807544455886840 m001 1/FeigenbaumKappa^2*ln(Sierpinski)/Zeta(5)^2 4807544456468524 r005 Re(z^2+c),c=19/50+8/43*I,n=10 4807544465299420 a001 20365011074/521*3571^(10/17) 4807544474776198 a007 Real Root Of -911*x^4-85*x^3+968*x^2+292*x-306 4807544484868999 m001 Magata*(HardyLittlewoodC3+StronglyCareFree) 4807544487292521 a007 Real Root Of 905*x^4+299*x^3-631*x^2-794*x-251 4807544487476003 a001 63246219*3571^(9/17) 4807544491745726 a007 Real Root Of 289*x^4-342*x^3+392*x^2-106*x-195 4807544494812699 m008 (3/5*Pi^3-5/6)/(2/5*Pi^4-2) 4807544509652587 a001 53316291173/521*3571^(8/17) 4807544514797909 a001 1548008755920/521*1364^(1/15) 4807544531829171 a001 86267571272/521*3571^(7/17) 4807544534283452 m001 1/2*Porter^TwinPrimes/Pi*3^(1/2)*GAMMA(2/3) 4807544535114455 a007 Real Root Of 814*x^4-725*x^3+405*x^2-787*x-596 4807544542998096 a001 233/5778*(1/2+1/2*5^(1/2))^53 4807544543063339 a001 2584/521*(1/2+1/2*5^(1/2))^43 4807544554005754 a001 139583862445/521*3571^(6/17) 4807544576182338 a001 225851433717/521*3571^(5/17) 4807544578122418 r009 Re(z^3+c),c=-39/86+16/29*I,n=51 4807544594200732 a007 Real Root Of 64*x^4+418*x^3+489*x^2-x+951 4807544598358922 a001 365435296162/521*3571^(4/17) 4807544603490178 r002 53th iterates of z^2 + 4807544604271954 r009 Re(z^3+c),c=-25/122+39/55*I,n=36 4807544620535506 a001 591286729879/521*3571^(3/17) 4807544620544725 r005 Re(z^2+c),c=-143/106+1/23*I,n=18 4807544621877585 p003 LerchPhi(1/10,6,161/66) 4807544631996173 a001 20100344106376/4181 4807544634956359 a001 433494437/521*9349^(18/19) 4807544637851298 a001 701408733/521*9349^(17/19) 4807544640746236 a001 1134903170/521*9349^(16/19) 4807544642712090 a001 956722026041/521*3571^(2/17) 4807544643641175 a001 1836311903/521*9349^(15/19) 4807544646536114 a001 2971215073/521*9349^(14/19) 4807544648628692 a007 Real Root Of 174*x^4+813*x^3+46*x^2+713*x-248 4807544649431053 a001 4807526976/521*9349^(13/19) 4807544652325992 a001 7778742049/521*9349^(12/19) 4807544655220931 a001 12586269025/521*9349^(11/19) 4807544658115870 a001 20365011074/521*9349^(10/19) 4807544659553564 m001 (2^(1/3)-Psi(1,1/3))/(ln(2)+ln(Pi)) 4807544661010809 a001 63246219*9349^(9/19) 4807544663905747 a001 53316291173/521*9349^(8/19) 4807544664487024 r009 Re(z^3+c),c=-3/34+10/21*I,n=4 4807544664888674 a001 1548008755920/521*3571^(1/17) 4807544665990414 a001 233/15127*(1/2+1/2*5^(1/2))^55 4807544665990414 a001 233/15127*3461452808002^(11/12) 4807544666055662 a001 6765/521*(1/2+1/2*5^(1/2))^41 4807544666800686 a001 86267571272/521*9349^(7/19) 4807544667164524 m001 (-Magata+Thue)/(3^(1/2)-Zeta(3)) 4807544669695625 a001 139583862445/521*9349^(6/19) 4807544672590564 a001 225851433717/521*9349^(5/19) 4807544675485503 a001 365435296162/521*9349^(4/19) 4807544676016038 m001 (Paris+ThueMorse)/(Champernowne-KhinchinLevy) 4807544678380442 a001 591286729879/521*9349^(3/19) 4807544678975059 a001 4047952619697/842 4807544679422447 a001 165580141/521*24476^(20/21) 4807544679804588 a001 267914296/521*24476^(19/21) 4807544680186728 a001 433494437/521*24476^(6/7) 4807544680568869 a001 701408733/521*24476^(17/21) 4807544680951010 a001 1134903170/521*24476^(16/21) 4807544681275381 a001 956722026041/521*9349^(2/19) 4807544681333150 a001 1836311903/521*24476^(5/7) 4807544681715291 a001 2971215073/521*24476^(2/3) 4807544682097431 a001 4807526976/521*24476^(13/21) 4807544682479572 a001 7778742049/521*24476^(4/7) 4807544682861712 a001 12586269025/521*24476^(11/21) 4807544683243853 a001 20365011074/521*24476^(10/21) 4807544683625994 a001 63246219*24476^(3/7) 4807544683934752 a001 233/39603*14662949395604^(19/21) 4807544683934752 a001 233/39603*(1/2+1/2*5^(1/2))^57 4807544684000000 a001 17711/521*2537720636^(13/15) 4807544684000000 a001 17711/521*45537549124^(13/17) 4807544684000000 a001 17711/521*14662949395604^(13/21) 4807544684000000 a001 17711/521*(1/2+1/2*5^(1/2))^39 4807544684000000 a001 17711/521*192900153618^(13/18) 4807544684000000 a001 17711/521*73681302247^(3/4) 4807544684000000 a001 17711/521*10749957122^(13/16) 4807544684000000 a001 17711/521*599074578^(13/14) 4807544684008134 a001 53316291173/521*24476^(8/21) 4807544684170320 a001 1548008755920/521*9349^(1/19) 4807544684191300 a001 4106118243/377*34^(8/19) 4807544684390275 a001 86267571272/521*24476^(1/3) 4807544684772415 a001 139583862445/521*24476^(2/7) 4807544685154556 a001 225851433717/521*24476^(5/21) 4807544685536696 a001 365435296162/521*24476^(4/21) 4807544685829186 a001 137769808061807/28657 4807544685918837 a001 591286729879/521*24476^(1/7) 4807544685945340 a001 63245986/521*64079^(22/23) 4807544685996245 a001 102334155/521*64079^(21/23) 4807544686047150 a001 165580141/521*64079^(20/23) 4807544686098056 a001 267914296/521*64079^(19/23) 4807544686148961 a001 433494437/521*64079^(18/23) 4807544686199866 a001 701408733/521*64079^(17/23) 4807544686250772 a001 1134903170/521*64079^(16/23) 4807544686300977 a001 956722026041/521*24476^(2/21) 4807544686301677 a001 1836311903/521*64079^(15/23) 4807544686352583 a001 2971215073/521*64079^(14/23) 4807544686403488 a001 4807526976/521*64079^(13/23) 4807544686454394 a001 7778742049/521*64079^(12/23) 4807544686505299 a001 12586269025/521*64079^(11/23) 4807544686552796 a001 233/103682*(1/2+1/2*5^(1/2))^59 4807544686556204 a001 20365011074/521*64079^(10/23) 4807544686607110 a001 63246219*64079^(9/23) 4807544686618043 a001 46368/521*(1/2+1/2*5^(1/2))^37 4807544686658015 a001 53316291173/521*64079^(8/23) 4807544686683118 a001 1548008755920/521*24476^(1/21) 4807544686708921 a001 86267571272/521*64079^(7/23) 4807544686759826 a001 139583862445/521*64079^(6/23) 4807544686810732 a001 225851433717/521*64079^(5/23) 4807544686829190 a001 72137208025872/15005 4807544686861637 a001 365435296162/521*64079^(4/23) 4807544686912542 a001 591286729879/521*64079^(3/23) 4807544686928602 a001 165580141/521*167761^(4/5) 4807544686934763 a001 233/271443*(1/2+1/2*5^(1/2))^61 4807544686962766 a001 1836311903/521*167761^(3/5) 4807544686963448 a001 956722026041/521*64079^(2/23) 4807544686975088 a001 944288312326273/196418 4807544686990491 a001 233/710647*(1/2+1/2*5^(1/2))^63 4807544686996375 a001 2472178896849459/514229 4807544686996930 a001 20365011074/521*167761^(2/5) 4807544687000011 a001 233*2537720636^(7/9) 4807544687000011 a001 233*17393796001^(5/7) 4807544687000011 a001 233*312119004989^(7/11) 4807544687000011 a001 233*14662949395604^(5/9) 4807544687000011 a001 233*(1/2+1/2*5^(1/2))^35 4807544687000011 a001 233*505019158607^(5/8) 4807544687000011 a001 233*28143753123^(7/10) 4807544687000011 a001 233*599074578^(5/6) 4807544687000011 a001 233*228826127^(7/8) 4807544687003647 a001 233/1149851*(1/2+1/2*5^(1/2))^64 4807544687009530 a001 117530044963322/24447 4807544687014353 a001 1548008755920/521*64079^(1/23) 4807544687024933 a001 233/439204*(1/2+1/2*5^(1/2))^62 4807544687031094 a001 225851433717/521*167761^(1/5) 4807544687043107 a001 24157817/521*439204^(8/9) 4807544687045874 a001 102334155/521*439204^(7/9) 4807544687048644 a001 433494437/521*439204^(2/3) 4807544687051413 a001 1836311903/521*439204^(5/9) 4807544687054182 a001 7778742049/521*439204^(4/9) 4807544687055739 a001 317811/521*141422324^(11/13) 4807544687055739 a001 317811/521*2537720636^(11/15) 4807544687055739 a001 317811/521*45537549124^(11/17) 4807544687055739 a001 317811/521*312119004989^(3/5) 4807544687055739 a001 317811/521*817138163596^(11/19) 4807544687055739 a001 317811/521*14662949395604^(11/21) 4807544687055739 a001 317811/521*(1/2+1/2*5^(1/2))^33 4807544687055739 a001 317811/521*192900153618^(11/18) 4807544687055739 a001 317811/521*10749957122^(11/16) 4807544687055739 a001 317811/521*1568397607^(3/4) 4807544687055739 a001 317811/521*599074578^(11/14) 4807544687055743 a001 317811/521*33385282^(11/12) 4807544687056951 a001 63246219*439204^(1/3) 4807544687059720 a001 139583862445/521*439204^(2/9) 4807544687062489 a001 591286729879/521*439204^(1/9) 4807544687063870 a001 832040/521*(1/2+1/2*5^(1/2))^31 4807544687063870 a001 832040/521*9062201101803^(1/2) 4807544687065056 a001 2178309/521*(1/2+1/2*5^(1/2))^29 4807544687065056 a001 2178309/521*1322157322203^(1/2) 4807544687065166 a001 5702887/521*7881196^(9/11) 4807544687065204 a001 24157817/521*7881196^(8/11) 4807544687065207 a001 63245986/521*7881196^(2/3) 4807544687065209 a001 102334155/521*7881196^(7/11) 4807544687065216 a001 433494437/521*7881196^(6/11) 4807544687065223 a001 1836311903/521*7881196^(5/11) 4807544687065229 a001 5702887/521*141422324^(9/13) 4807544687065229 a001 5702887/521*2537720636^(3/5) 4807544687065229 a001 5702887/521*45537549124^(9/17) 4807544687065229 a001 5702887/521*817138163596^(9/19) 4807544687065229 a001 5702887/521*14662949395604^(3/7) 4807544687065229 a001 5702887/521*(1/2+1/2*5^(1/2))^27 4807544687065229 a001 5702887/521*192900153618^(1/2) 4807544687065229 a001 5702887/521*10749957122^(9/16) 4807544687065229 a001 5702887/521*599074578^(9/14) 4807544687065230 a001 7778742049/521*7881196^(4/11) 4807544687065232 a001 5702887/521*33385282^(3/4) 4807544687065233 a001 12586269025/521*7881196^(1/3) 4807544687065238 a001 63246219*7881196^(3/11) 4807544687065245 a001 139583862445/521*7881196^(2/11) 4807544687065246 a001 14930352/521*20633239^(5/7) 4807544687065252 a001 591286729879/521*7881196^(1/11) 4807544687065252 a001 102334155/521*20633239^(3/5) 4807544687065252 a001 165580141/521*20633239^(4/7) 4807544687065254 a001 1836311903/521*20633239^(3/7) 4807544687065254 a001 2971215073/521*20633239^(2/5) 4807544687065254 a001 14930352/521*2537720636^(5/9) 4807544687065254 a001 14930352/521*312119004989^(5/11) 4807544687065254 a001 14930352/521*(1/2+1/2*5^(1/2))^25 4807544687065254 a001 14930352/521*3461452808002^(5/12) 4807544687065254 a001 14930352/521*28143753123^(1/2) 4807544687065254 a001 14930352/521*228826127^(5/8) 4807544687065255 a001 20365011074/521*20633239^(2/7) 4807544687065256 a001 86267571272/521*20633239^(1/5) 4807544687065257 a001 225851433717/521*20633239^(1/7) 4807544687065258 a001 39088169/521*(1/2+1/2*5^(1/2))^23 4807544687065258 a001 39088169/521*4106118243^(1/2) 4807544687065258 a001 102334155/521*141422324^(7/13) 4807544687065259 a001 433494437/521*141422324^(6/13) 4807544687065259 a001 1836311903/521*141422324^(5/13) 4807544687065259 a001 102334155/521*2537720636^(7/15) 4807544687065259 a001 102334155/521*17393796001^(3/7) 4807544687065259 a001 102334155/521*45537549124^(7/17) 4807544687065259 a001 102334155/521*14662949395604^(1/3) 4807544687065259 a001 102334155/521*(1/2+1/2*5^(1/2))^21 4807544687065259 a001 102334155/521*192900153618^(7/18) 4807544687065259 a001 102334155/521*10749957122^(7/16) 4807544687065259 a001 102334155/521*599074578^(1/2) 4807544687065259 a001 4807526976/521*141422324^(1/3) 4807544687065259 a001 7778742049/521*141422324^(4/13) 4807544687065259 a001 63246219*141422324^(3/13) 4807544687065259 a001 139583862445/521*141422324^(2/13) 4807544687065259 a001 591286729879/521*141422324^(1/13) 4807544687065259 a001 267914296/521*817138163596^(1/3) 4807544687065259 a001 267914296/521*(1/2+1/2*5^(1/2))^19 4807544687065259 a001 701408733/521*45537549124^(1/3) 4807544687065259 a001 701408733/521*(1/2+1/2*5^(1/2))^17 4807544687065259 a001 1836311903/521*2537720636^(1/3) 4807544687065259 a001 1836311903/521*45537549124^(5/17) 4807544687065259 a001 1836311903/521*312119004989^(3/11) 4807544687065259 a001 1836311903/521*14662949395604^(5/21) 4807544687065259 a001 1836311903/521*(1/2+1/2*5^(1/2))^15 4807544687065259 a001 1836311903/521*192900153618^(5/18) 4807544687065259 a001 1836311903/521*28143753123^(3/10) 4807544687065259 a001 1836311903/521*10749957122^(5/16) 4807544687065259 a001 7778742049/521*2537720636^(4/15) 4807544687065259 a001 20365011074/521*2537720636^(2/9) 4807544687065259 a001 63246219*2537720636^(1/5) 4807544687065259 a001 139583862445/521*2537720636^(2/15) 4807544687065259 a001 225851433717/521*2537720636^(1/9) 4807544687065259 a001 591286729879/521*2537720636^(1/15) 4807544687065259 a001 4807526976/521*(1/2+1/2*5^(1/2))^13 4807544687065259 a001 4807526976/521*73681302247^(1/4) 4807544687065259 a001 12586269025/521*312119004989^(1/5) 4807544687065259 a001 12586269025/521*(1/2+1/2*5^(1/2))^11 4807544687065259 a001 86267571272/521*17393796001^(1/7) 4807544687065259 a001 63246219*45537549124^(3/17) 4807544687065259 a001 63246219*817138163596^(3/19) 4807544687065259 a001 63246219*14662949395604^(1/7) 4807544687065259 a001 63246219*(1/2+1/2*5^(1/2))^9 4807544687065259 a001 63246219*192900153618^(1/6) 4807544687065259 a001 139583862445/521*45537549124^(2/17) 4807544687065259 a001 591286729879/521*45537549124^(1/17) 4807544687065259 a001 86267571272/521*14662949395604^(1/9) 4807544687065259 a001 86267571272/521*(1/2+1/2*5^(1/2))^7 4807544687065259 a001 225851433717/521*312119004989^(1/11) 4807544687065259 a001 225851433717/521*(1/2+1/2*5^(1/2))^5 4807544687065259 a001 591286729879/521*14662949395604^(1/21) 4807544687065259 a001 591286729879/521*(1/2+1/2*5^(1/2))^3 4807544687065259 a001 774004377960/521+774004377960/521*5^(1/2) 4807544687065259 a001 2504730781961/521 4807544687065259 a001 365435296162/521*23725150497407^(1/16) 4807544687065259 a001 139583862445/521*14662949395604^(2/21) 4807544687065259 a001 139583862445/521*(1/2+1/2*5^(1/2))^6 4807544687065259 a001 365435296162/521*73681302247^(1/13) 4807544687065259 a001 53316291173/521*(1/2+1/2*5^(1/2))^8 4807544687065259 a001 53316291173/521*23725150497407^(1/8) 4807544687065259 a001 53316291173/521*505019158607^(1/7) 4807544687065259 a001 53316291173/521*73681302247^(2/13) 4807544687065259 a001 225851433717/521*28143753123^(1/10) 4807544687065259 a001 956722026041/521*10749957122^(1/24) 4807544687065259 a001 20365011074/521*312119004989^(2/11) 4807544687065259 a001 20365011074/521*(1/2+1/2*5^(1/2))^10 4807544687065259 a001 591286729879/521*10749957122^(1/16) 4807544687065259 a001 365435296162/521*10749957122^(1/12) 4807544687065259 a001 20365011074/521*28143753123^(1/5) 4807544687065259 a001 139583862445/521*10749957122^(1/8) 4807544687065259 a001 63246219*10749957122^(3/16) 4807544687065259 a001 53316291173/521*10749957122^(1/6) 4807544687065259 a001 20365011074/521*10749957122^(5/24) 4807544687065259 a001 956722026041/521*4106118243^(1/23) 4807544687065259 a001 7778742049/521*45537549124^(4/17) 4807544687065259 a001 7778742049/521*817138163596^(4/19) 4807544687065259 a001 7778742049/521*14662949395604^(4/21) 4807544687065259 a001 7778742049/521*(1/2+1/2*5^(1/2))^12 4807544687065259 a001 7778742049/521*192900153618^(2/9) 4807544687065259 a001 7778742049/521*73681302247^(3/13) 4807544687065259 a001 365435296162/521*4106118243^(2/23) 4807544687065259 a001 7778742049/521*10749957122^(1/4) 4807544687065259 a001 139583862445/521*4106118243^(3/23) 4807544687065259 a001 53316291173/521*4106118243^(4/23) 4807544687065259 a001 20365011074/521*4106118243^(5/23) 4807544687065259 a001 956722026041/521*1568397607^(1/22) 4807544687065259 a001 7778742049/521*4106118243^(6/23) 4807544687065259 a001 2971215073/521*17393796001^(2/7) 4807544687065259 a001 2971215073/521*14662949395604^(2/9) 4807544687065259 a001 2971215073/521*(1/2+1/2*5^(1/2))^14 4807544687065259 a001 2971215073/521*10749957122^(7/24) 4807544687065259 a001 365435296162/521*1568397607^(1/11) 4807544687065259 a001 2971215073/521*4106118243^(7/23) 4807544687065259 a001 139583862445/521*1568397607^(3/22) 4807544687065259 a001 53316291173/521*1568397607^(2/11) 4807544687065259 a001 20365011074/521*1568397607^(5/22) 4807544687065259 a001 12586269025/521*1568397607^(1/4) 4807544687065259 a001 7778742049/521*1568397607^(3/11) 4807544687065259 a001 956722026041/521*599074578^(1/21) 4807544687065259 a001 2971215073/521*1568397607^(7/22) 4807544687065259 a001 1134903170/521*(1/2+1/2*5^(1/2))^16 4807544687065259 a001 1134903170/521*23725150497407^(1/4) 4807544687065259 a001 1134903170/521*73681302247^(4/13) 4807544687065259 a001 1134903170/521*10749957122^(1/3) 4807544687065259 a001 1134903170/521*4106118243^(8/23) 4807544687065259 a001 591286729879/521*599074578^(1/14) 4807544687065259 a001 365435296162/521*599074578^(2/21) 4807544687065259 a001 1134903170/521*1568397607^(4/11) 4807544687065259 a001 139583862445/521*599074578^(1/7) 4807544687065259 a001 86267571272/521*599074578^(1/6) 4807544687065259 a001 53316291173/521*599074578^(4/21) 4807544687065259 a001 63246219*599074578^(3/14) 4807544687065259 a001 20365011074/521*599074578^(5/21) 4807544687065259 a001 7778742049/521*599074578^(2/7) 4807544687065259 a001 1836311903/521*599074578^(5/14) 4807544687065259 a001 2971215073/521*599074578^(1/3) 4807544687065259 a001 956722026041/521*228826127^(1/20) 4807544687065259 a001 433494437/521*2537720636^(2/5) 4807544687065259 a001 433494437/521*45537549124^(6/17) 4807544687065259 a001 433494437/521*14662949395604^(2/7) 4807544687065259 a001 433494437/521*(1/2+1/2*5^(1/2))^18 4807544687065259 a001 433494437/521*192900153618^(1/3) 4807544687065259 a001 433494437/521*10749957122^(3/8) 4807544687065259 a001 433494437/521*4106118243^(9/23) 4807544687065259 a001 1134903170/521*599074578^(8/21) 4807544687065259 a001 433494437/521*1568397607^(9/22) 4807544687065259 a001 365435296162/521*228826127^(1/10) 4807544687065259 a001 433494437/521*599074578^(3/7) 4807544687065259 a001 225851433717/521*228826127^(1/8) 4807544687065259 a001 139583862445/521*228826127^(3/20) 4807544687065259 a001 53316291173/521*228826127^(1/5) 4807544687065259 a001 20365011074/521*228826127^(1/4) 4807544687065259 a001 7778742049/521*228826127^(3/10) 4807544687065259 a001 2971215073/521*228826127^(7/20) 4807544687065259 a001 956722026041/521*87403803^(1/19) 4807544687065259 a001 1836311903/521*228826127^(3/8) 4807544687065259 a001 165580141/521*2537720636^(4/9) 4807544687065259 a001 165580141/521*(1/2+1/2*5^(1/2))^20 4807544687065259 a001 165580141/521*23725150497407^(5/16) 4807544687065259 a001 165580141/521*505019158607^(5/14) 4807544687065259 a001 165580141/521*73681302247^(5/13) 4807544687065259 a001 165580141/521*28143753123^(2/5) 4807544687065259 a001 165580141/521*10749957122^(5/12) 4807544687065259 a001 165580141/521*4106118243^(10/23) 4807544687065259 a001 165580141/521*1568397607^(5/11) 4807544687065259 a001 1134903170/521*228826127^(2/5) 4807544687065259 a001 165580141/521*599074578^(10/21) 4807544687065259 a001 433494437/521*228826127^(9/20) 4807544687065259 a001 365435296162/521*87403803^(2/19) 4807544687065259 a001 165580141/521*228826127^(1/2) 4807544687065259 a001 139583862445/521*87403803^(3/19) 4807544687065259 a001 53316291173/521*87403803^(4/19) 4807544687065259 a001 20365011074/521*87403803^(5/19) 4807544687065259 a001 7778742049/521*87403803^(6/19) 4807544687065259 a001 2971215073/521*87403803^(7/19) 4807544687065259 a001 956722026041/521*33385282^(1/18) 4807544687065259 a001 63245986/521*312119004989^(2/5) 4807544687065259 a001 63245986/521*(1/2+1/2*5^(1/2))^22 4807544687065259 a001 63245986/521*10749957122^(11/24) 4807544687065259 a001 63245986/521*4106118243^(11/23) 4807544687065259 a001 63245986/521*1568397607^(1/2) 4807544687065259 a001 63245986/521*599074578^(11/21) 4807544687065259 a001 1134903170/521*87403803^(8/19) 4807544687065259 a001 63245986/521*228826127^(11/20) 4807544687065259 a001 267914296/521*87403803^(1/2) 4807544687065259 a001 433494437/521*87403803^(9/19) 4807544687065259 a001 591286729879/521*33385282^(1/12) 4807544687065259 a001 165580141/521*87403803^(10/19) 4807544687065259 a001 365435296162/521*33385282^(1/9) 4807544687065259 a001 63245986/521*87403803^(11/19) 4807544687065259 a001 139583862445/521*33385282^(1/6) 4807544687065260 a001 53316291173/521*33385282^(2/9) 4807544687065260 a001 63246219*33385282^(1/4) 4807544687065260 a001 20365011074/521*33385282^(5/18) 4807544687065260 a001 7778742049/521*33385282^(1/3) 4807544687065260 a001 24157817/521*141422324^(8/13) 4807544687065260 a001 24157817/521*2537720636^(8/15) 4807544687065260 a001 24157817/521*45537549124^(8/17) 4807544687065260 a001 24157817/521*14662949395604^(8/21) 4807544687065260 a001 24157817/521*(1/2+1/2*5^(1/2))^24 4807544687065260 a001 24157817/521*192900153618^(4/9) 4807544687065260 a001 24157817/521*73681302247^(6/13) 4807544687065260 a001 24157817/521*10749957122^(1/2) 4807544687065260 a001 24157817/521*4106118243^(12/23) 4807544687065260 a001 24157817/521*1568397607^(6/11) 4807544687065260 a001 24157817/521*599074578^(4/7) 4807544687065260 a001 2971215073/521*33385282^(7/18) 4807544687065260 a001 24157817/521*228826127^(3/5) 4807544687065260 a001 956722026041/521*12752043^(1/17) 4807544687065260 a001 1836311903/521*33385282^(5/12) 4807544687065261 a001 1134903170/521*33385282^(4/9) 4807544687065261 a001 24157817/521*87403803^(12/19) 4807544687065261 a001 433494437/521*33385282^(1/2) 4807544687065261 a001 102334155/521*33385282^(7/12) 4807544687065261 a001 165580141/521*33385282^(5/9) 4807544687065261 a001 63245986/521*33385282^(11/18) 4807544687065262 a001 365435296162/521*12752043^(2/17) 4807544687065263 a001 24157817/521*33385282^(2/3) 4807544687065264 a001 139583862445/521*12752043^(3/17) 4807544687065266 a001 53316291173/521*12752043^(4/17) 4807544687065267 a001 20365011074/521*12752043^(5/17) 4807544687065269 a001 7778742049/521*12752043^(6/17) 4807544687065270 a001 9227465/521*141422324^(2/3) 4807544687065270 a001 9227465/521*(1/2+1/2*5^(1/2))^26 4807544687065270 a001 9227465/521*73681302247^(1/2) 4807544687065270 a001 9227465/521*10749957122^(13/24) 4807544687065270 a001 9227465/521*4106118243^(13/23) 4807544687065270 a001 9227465/521*1568397607^(13/22) 4807544687065270 a001 9227465/521*599074578^(13/21) 4807544687065270 a001 9227465/521*228826127^(13/20) 4807544687065270 a001 9227465/521*87403803^(13/19) 4807544687065271 a001 2971215073/521*12752043^(7/17) 4807544687065271 a001 956722026041/521*4870847^(1/16) 4807544687065273 a001 1134903170/521*12752043^(8/17) 4807544687065273 a001 9227465/521*33385282^(13/18) 4807544687065273 a001 701408733/521*12752043^(1/2) 4807544687065274 a001 433494437/521*12752043^(9/17) 4807544687065276 a001 165580141/521*12752043^(10/17) 4807544687065278 a001 63245986/521*12752043^(11/17) 4807544687065281 a001 24157817/521*12752043^(12/17) 4807544687065284 a001 365435296162/521*4870847^(1/8) 4807544687065293 a001 9227465/521*12752043^(13/17) 4807544687065297 a001 139583862445/521*4870847^(3/16) 4807544687065309 a001 53316291173/521*4870847^(1/4) 4807544687065322 a001 20365011074/521*4870847^(5/16) 4807544687065327 a001 3524578/521*20633239^(4/5) 4807544687065335 a001 7778742049/521*4870847^(3/8) 4807544687065336 a001 3524578/521*17393796001^(4/7) 4807544687065336 a001 3524578/521*14662949395604^(4/9) 4807544687065336 a001 3524578/521*(1/2+1/2*5^(1/2))^28 4807544687065336 a001 3524578/521*505019158607^(1/2) 4807544687065336 a001 3524578/521*73681302247^(7/13) 4807544687065336 a001 3524578/521*10749957122^(7/12) 4807544687065336 a001 3524578/521*4106118243^(14/23) 4807544687065336 a001 3524578/521*1568397607^(7/11) 4807544687065336 a001 3524578/521*599074578^(2/3) 4807544687065336 a001 3524578/521*228826127^(7/10) 4807544687065336 a001 3524578/521*87403803^(14/19) 4807544687065339 a001 3524578/521*33385282^(7/9) 4807544687065347 a001 2971215073/521*4870847^(7/16) 4807544687065351 a001 956722026041/521*1860498^(1/15) 4807544687065360 a001 1134903170/521*4870847^(1/2) 4807544687065360 a001 3524578/521*12752043^(14/17) 4807544687065373 a001 433494437/521*4870847^(9/16) 4807544687065385 a001 165580141/521*4870847^(5/8) 4807544687065398 a001 591286729879/521*1860498^(1/10) 4807544687065398 a001 63245986/521*4870847^(11/16) 4807544687065412 a001 24157817/521*4870847^(3/4) 4807544687065435 a001 9227465/521*4870847^(13/16) 4807544687065444 a001 365435296162/521*1860498^(2/15) 4807544687065490 a001 225851433717/521*1860498^(1/6) 4807544687065513 a001 3524578/521*4870847^(7/8) 4807544687065536 a001 139583862445/521*1860498^(1/5) 4807544687065629 a001 53316291173/521*1860498^(4/15) 4807544687065675 a001 63246219*1860498^(3/10) 4807544687065719 a001 1346269/521*7881196^(10/11) 4807544687065722 a001 20365011074/521*1860498^(1/3) 4807544687065779 a001 1346269/521*20633239^(6/7) 4807544687065789 a001 1346269/521*141422324^(10/13) 4807544687065789 a001 1346269/521*2537720636^(2/3) 4807544687065789 a001 1346269/521*45537549124^(10/17) 4807544687065789 a001 1346269/521*312119004989^(6/11) 4807544687065789 a001 1346269/521*14662949395604^(10/21) 4807544687065789 a001 1346269/521*(1/2+1/2*5^(1/2))^30 4807544687065789 a001 1346269/521*192900153618^(5/9) 4807544687065789 a001 1346269/521*28143753123^(3/5) 4807544687065789 a001 1346269/521*10749957122^(5/8) 4807544687065789 a001 1346269/521*4106118243^(15/23) 4807544687065789 a001 1346269/521*1568397607^(15/22) 4807544687065789 a001 1346269/521*599074578^(5/7) 4807544687065789 a001 1346269/521*228826127^(3/4) 4807544687065790 a001 1346269/521*87403803^(15/19) 4807544687065793 a001 1346269/521*33385282^(5/6) 4807544687065814 a001 7778742049/521*1860498^(2/5) 4807544687065815 a001 1346269/521*12752043^(15/17) 4807544687065907 a001 2971215073/521*1860498^(7/15) 4807544687065939 a001 956722026041/521*710647^(1/14) 4807544687065953 a001 1836311903/521*1860498^(1/2) 4807544687065979 a001 1346269/521*4870847^(15/16) 4807544687065999 a001 1134903170/521*1860498^(8/15) 4807544687066092 a001 433494437/521*1860498^(3/5) 4807544687066185 a001 165580141/521*1860498^(2/3) 4807544687066231 a001 102334155/521*1860498^(7/10) 4807544687066277 a001 63245986/521*1860498^(11/15) 4807544687066371 a001 24157817/521*1860498^(4/5) 4807544687066412 a001 14930352/521*1860498^(5/6) 4807544687066474 a001 9227465/521*1860498^(13/15) 4807544687066479 a001 5702887/521*1860498^(9/10) 4807544687066619 a001 365435296162/521*710647^(1/7) 4807544687066632 a001 3524578/521*1860498^(14/15) 4807544687067299 a001 139583862445/521*710647^(3/14) 4807544687067638 a001 86267571272/521*710647^(1/4) 4807544687067978 a001 53316291173/521*710647^(2/7) 4807544687068658 a001 20365011074/521*710647^(5/14) 4807544687068895 a001 514229/521*(1/2+1/2*5^(1/2))^32 4807544687068895 a001 514229/521*23725150497407^(1/2) 4807544687068895 a001 514229/521*505019158607^(4/7) 4807544687068895 a001 514229/521*73681302247^(8/13) 4807544687068895 a001 514229/521*10749957122^(2/3) 4807544687068895 a001 514229/521*4106118243^(16/23) 4807544687068895 a001 514229/521*1568397607^(8/11) 4807544687068895 a001 514229/521*599074578^(16/21) 4807544687068895 a001 514229/521*228826127^(4/5) 4807544687068895 a001 514229/521*87403803^(16/19) 4807544687068899 a001 514229/521*33385282^(8/9) 4807544687068923 a001 514229/521*12752043^(16/17) 4807544687069338 a001 7778742049/521*710647^(3/7) 4807544687070018 a001 2971215073/521*710647^(1/2) 4807544687070278 a001 956722026041/521*271443^(1/13) 4807544687070698 a001 1134903170/521*710647^(4/7) 4807544687071378 a001 433494437/521*710647^(9/14) 4807544687072058 a001 165580141/521*710647^(5/7) 4807544687072398 a001 102334155/521*710647^(3/4) 4807544687072738 a001 63245986/521*710647^(11/14) 4807544687073420 a001 24157817/521*710647^(6/7) 4807544687074109 a001 9227465/521*710647^(13/14) 4807544687075297 a001 365435296162/521*271443^(2/13) 4807544687080316 a001 139583862445/521*271443^(3/13) 4807544687083893 a001 1548008755920/521*103682^(1/24) 4807544687085335 a001 53316291173/521*271443^(4/13) 4807544687090181 a001 196418/521*45537549124^(2/3) 4807544687090181 a001 196418/521*(1/2+1/2*5^(1/2))^34 4807544687090181 a001 196418/521*10749957122^(17/24) 4807544687090181 a001 196418/521*4106118243^(17/23) 4807544687090181 a001 196418/521*1568397607^(17/22) 4807544687090181 a001 196418/521*599074578^(17/21) 4807544687090181 a001 196418/521*228826127^(17/20) 4807544687090182 a001 196418/521*87403803^(17/19) 4807544687090185 a001 196418/521*33385282^(17/18) 4807544687090354 a001 20365011074/521*271443^(5/13) 4807544687095373 a001 7778742049/521*271443^(6/13) 4807544687097883 a001 4807526976/521*271443^(1/2) 4807544687100392 a001 2971215073/521*271443^(7/13) 4807544687102527 a001 956722026041/521*103682^(1/12) 4807544687105411 a001 1134903170/521*271443^(8/13) 4807544687110430 a001 433494437/521*271443^(9/13) 4807544687115449 a001 165580141/521*271443^(10/13) 4807544687120469 a001 63245986/521*271443^(11/13) 4807544687121161 a001 591286729879/521*103682^(1/8) 4807544687125489 a001 24157817/521*271443^(12/13) 4807544687139794 a001 365435296162/521*103682^(1/6) 4807544687158428 a001 225851433717/521*103682^(5/24) 4807544687170832 a001 233/167761*14662949395604^(20/21) 4807544687170832 a001 233/167761*(1/2+1/2*5^(1/2))^60 4807544687177062 a001 139583862445/521*103682^(1/4) 4807544687195696 a001 86267571272/521*103682^(7/24) 4807544687204589 a001 1548008755920/521*39603^(1/22) 4807544687214330 a001 53316291173/521*103682^(1/3) 4807544687232964 a001 63246219*103682^(3/8) 4807544687236079 a001 75025/521*141422324^(12/13) 4807544687236080 a001 75025/521*2537720636^(4/5) 4807544687236080 a001 75025/521*45537549124^(12/17) 4807544687236080 a001 75025/521*14662949395604^(4/7) 4807544687236080 a001 75025/521*(1/2+1/2*5^(1/2))^36 4807544687236080 a001 75025/521*505019158607^(9/14) 4807544687236080 a001 75025/521*192900153618^(2/3) 4807544687236080 a001 75025/521*73681302247^(9/13) 4807544687236080 a001 75025/521*10749957122^(3/4) 4807544687236080 a001 75025/521*4106118243^(18/23) 4807544687236080 a001 75025/521*1568397607^(9/11) 4807544687236080 a001 75025/521*599074578^(6/7) 4807544687236080 a001 75025/521*228826127^(9/10) 4807544687236080 a001 75025/521*87403803^(18/19) 4807544687251598 a001 20365011074/521*103682^(5/12) 4807544687270232 a001 12586269025/521*103682^(11/24) 4807544687288866 a001 7778742049/521*103682^(1/2) 4807544687307500 a001 4807526976/521*103682^(13/24) 4807544687326134 a001 2971215073/521*103682^(7/12) 4807544687343919 a001 956722026041/521*39603^(1/11) 4807544687344768 a001 1836311903/521*103682^(5/8) 4807544687363402 a001 1134903170/521*103682^(2/3) 4807544687382036 a001 701408733/521*103682^(17/24) 4807544687400670 a001 433494437/521*103682^(3/4) 4807544687419304 a001 267914296/521*103682^(19/24) 4807544687437938 a001 165580141/521*103682^(5/6) 4807544687447226 a001 222916232067553/46368 4807544687456572 a001 102334155/521*103682^(7/8) 4807544687475206 a001 63245986/521*103682^(11/12) 4807544687483248 a001 591286729879/521*39603^(3/22) 4807544687493839 a001 39088169/521*103682^(23/24) 4807544687622578 a001 365435296162/521*39603^(2/11) 4807544687761908 a001 225851433717/521*39603^(5/22) 4807544687901238 a001 139583862445/521*39603^(3/11) 4807544688040568 a001 86267571272/521*39603^(7/22) 4807544688115738 a001 1548008755920/521*15127^(1/20) 4807544688170835 a001 233/64079*(1/2+1/2*5^(1/2))^58 4807544688179898 a001 53316291173/521*39603^(4/11) 4807544688236083 a001 28657/521*817138163596^(2/3) 4807544688236083 a001 28657/521*(1/2+1/2*5^(1/2))^38 4807544688236083 a001 28657/521*10749957122^(19/24) 4807544688236083 a001 28657/521*4106118243^(19/23) 4807544688236083 a001 28657/521*1568397607^(19/22) 4807544688236083 a001 28657/521*599074578^(19/21) 4807544688236083 a001 28657/521*228826127^(19/20) 4807544688319228 a001 63246219*39603^(9/22) 4807544688458558 a001 20365011074/521*39603^(5/11) 4807544688597888 a001 12586269025/521*39603^(1/2) 4807544688737218 a001 7778742049/521*39603^(6/11) 4807544688876548 a001 4807526976/521*39603^(13/22) 4807544689015878 a001 2971215073/521*39603^(7/11) 4807544689155208 a001 1836311903/521*39603^(15/22) 4807544689166218 a001 956722026041/521*15127^(1/10) 4807544689294538 a001 1134903170/521*39603^(8/11) 4807544689433868 a001 701408733/521*39603^(17/22) 4807544689573198 a001 433494437/521*39603^(9/11) 4807544689712528 a001 267914296/521*39603^(19/22) 4807544689851858 a001 165580141/521*39603^(10/11) 4807544689991187 a001 102334155/521*39603^(21/22) 4807544690065270 a001 85146424005746/17711 4807544690216698 a001 591286729879/521*15127^(3/20) 4807544691267178 a001 365435296162/521*15127^(1/5) 4807544692317658 a001 225851433717/521*15127^(1/4) 4807544693368138 a001 139583862445/521*15127^(3/10) 4807544694418618 a001 86267571272/521*15127^(7/20) 4807544695024963 a001 233/24476*14662949395604^(8/9) 4807544695024963 a001 233/24476*(1/2+1/2*5^(1/2))^56 4807544695065365 a001 1548008755920/521*5778^(1/18) 4807544695090211 a001 10946/521*2537720636^(8/9) 4807544695090211 a001 10946/521*312119004989^(8/11) 4807544695090211 a001 10946/521*(1/2+1/2*5^(1/2))^40 4807544695090211 a001 10946/521*23725150497407^(5/8) 4807544695090211 a001 10946/521*73681302247^(10/13) 4807544695090211 a001 10946/521*28143753123^(4/5) 4807544695090211 a001 10946/521*10749957122^(5/6) 4807544695090211 a001 10946/521*4106118243^(20/23) 4807544695090211 a001 10946/521*1568397607^(10/11) 4807544695090211 a001 10946/521*599074578^(20/21) 4807544695469097 a001 53316291173/521*15127^(2/5) 4807544696519577 a001 63246219*15127^(9/20) 4807544697570057 a001 20365011074/521*15127^(1/2) 4807544698620537 a001 12586269025/521*15127^(11/20) 4807544699269756 m001 (5^(1/2)-Zeta(1,2))/(-MasserGramain+Mills) 4807544699671017 a001 7778742049/521*15127^(3/5) 4807544700721497 a001 4807526976/521*15127^(13/20) 4807544701771976 a001 2971215073/521*15127^(7/10) 4807544702822456 a001 1836311903/521*15127^(3/4) 4807544703065472 a001 956722026041/521*5778^(1/9) 4807544703872936 a001 1134903170/521*15127^(4/5) 4807544704923416 a001 701408733/521*15127^(17/20) 4807544705973896 a001 433494437/521*15127^(9/10) 4807544707024376 a001 267914296/521*15127^(19/20) 4807544708009608 a001 6504607989937/1353 4807544711065578 a001 591286729879/521*5778^(1/6) 4807544719065685 a001 365435296162/521*5778^(2/9) 4807544726819932 r009 Im(z^3+c),c=-19/50+41/61*I,n=23 4807544727065791 a001 225851433717/521*5778^(5/18) 4807544735065898 a001 139583862445/521*5778^(1/3) 4807544739552497 r005 Re(z^2+c),c=-3/28+52/63*I,n=45 4807544741443005 m001 (gamma(2)+HardyLittlewoodC3)/(1+ln(2)/ln(10)) 4807544742003850 a001 233/9349*14662949395604^(6/7) 4807544742003850 a001 233/9349*(1/2+1/2*5^(1/2))^54 4807544742069097 a001 4181/521*2537720636^(14/15) 4807544742069097 a001 4181/521*17393796001^(6/7) 4807544742069097 a001 4181/521*45537549124^(14/17) 4807544742069097 a001 4181/521*817138163596^(14/19) 4807544742069097 a001 4181/521*14662949395604^(2/3) 4807544742069097 a001 4181/521*(1/2+1/2*5^(1/2))^42 4807544742069097 a001 4181/521*505019158607^(3/4) 4807544742069097 a001 4181/521*192900153618^(7/9) 4807544742069097 a001 4181/521*10749957122^(7/8) 4807544742069097 a001 4181/521*4106118243^(21/23) 4807544742069097 a001 4181/521*1568397607^(21/22) 4807544743066005 a001 86267571272/521*5778^(7/18) 4807544748752993 a001 1548008755920/521*2207^(1/16) 4807544749200539 p001 sum(1/(481*n+209)/(64^n),n=0..infinity) 4807544751066111 a001 53316291173/521*5778^(4/9) 4807544756942025 a001 11/17711*1346269^(49/51) 4807544759066218 a001 63246219*5778^(1/2) 4807544767066324 a001 20365011074/521*5778^(5/9) 4807544775066431 a001 12586269025/521*5778^(11/18) 4807544783066538 a001 7778742049/521*5778^(2/3) 4807544789055236 a003 cos(Pi*28/81)/sin(Pi*8/19) 4807544790199540 m008 (5*Pi^4-1/4)/(1/3*Pi^5-3/4) 4807544791066644 a001 4807526976/521*5778^(13/18) 4807544791455524 m005 (1/2*exp(1)-6/7)/(37/44+1/11*5^(1/2)) 4807544799066751 a001 2971215073/521*5778^(7/9) 4807544800287648 r002 36th iterates of z^2 + 4807544807066858 a001 1836311903/521*5778^(5/6) 4807544810330329 r002 12th iterates of z^2 + 4807544810440727 a001 956722026041/521*2207^(1/8) 4807544815066965 a001 1134903170/521*5778^(8/9) 4807544823067071 a001 701408733/521*5778^(17/18) 4807544823114653 r009 Re(z^3+c),c=-15/106+19/34*I,n=4 4807544831001934 a001 12422695843309/2584 4807544846429805 r009 Re(z^3+c),c=-47/110+1/14*I,n=20 4807544850894717 l006 ln(2417/3909) 4807544856907388 r009 Im(z^3+c),c=-9/34+5/9*I,n=48 4807544869276977 r005 Im(z^2+c),c=-13/24+5/12*I,n=7 4807544872128463 a001 591286729879/521*2207^(3/16) 4807544888040947 a007 Real Root Of x^4-511*x^3-192*x^2-395*x+291 4807544888475249 m001 (Sarnak-Tribonacci)/(HardyLittlewoodC3-Otter) 4807544930362895 r005 Re(z^2+c),c=41/114+7/48*I,n=4 4807544933816199 a001 365435296162/521*2207^(1/4) 4807544966939168 r009 Im(z^3+c),c=-23/50+23/49*I,n=60 4807544990508854 m001 Robbin/(Conway-gamma(1)) 4807544991477427 a003 sin(Pi*11/54)*sin(Pi*14/47) 4807544995503936 a001 225851433717/521*2207^(5/16) 4807545004346488 r009 Im(z^3+c),c=-17/44+22/43*I,n=59 4807545004838410 b008 ArcCot[12*Sqrt[3]] 4807545014161927 r002 63th iterates of z^2 + 4807545015960085 a001 956722026041/1364*322^(1/3) 4807545021886025 m001 (gamma(3)+QuadraticClass)/(ln(2)+ln(Pi)) 4807545045191531 r009 Re(z^3+c),c=-29/70+5/62*I,n=5 4807545048595143 r009 Im(z^3+c),c=-43/110+27/53*I,n=53 4807545057191674 a001 139583862445/521*2207^(3/8) 4807545058495313 r005 Im(z^2+c),c=25/86+5/13*I,n=43 4807545064001960 a001 233/3571*(1/2+1/2*5^(1/2))^52 4807545064001960 a001 233/3571*23725150497407^(13/16) 4807545064001960 a001 233/3571*505019158607^(13/14) 4807545064067178 a001 1597/521*312119004989^(4/5) 4807545064067178 a001 1597/521*(1/2+1/2*5^(1/2))^44 4807545064067178 a001 1597/521*23725150497407^(11/16) 4807545064067178 a001 1597/521*73681302247^(11/13) 4807545064067178 a001 1597/521*10749957122^(11/12) 4807545064067178 a001 1597/521*4106118243^(22/23) 4807545074002917 r002 8th iterates of z^2 + 4807545091093291 r009 Im(z^3+c),c=-35/106+13/20*I,n=48 4807545091732333 r005 Im(z^2+c),c=-9/8+85/256*I,n=7 4807545113464640 a007 Real Root Of -730*x^4+611*x^3+353*x^2+103*x-160 4807545117911560 r009 Im(z^3+c),c=-9/106+10/17*I,n=32 4807545118879413 a001 86267571272/521*2207^(7/16) 4807545130405912 m001 GAMMA(1/3)^2/Niven/exp(sqrt(5))^2 4807545131969047 r005 Re(z^2+c),c=-3/52+23/34*I,n=11 4807545170281011 a001 1548008755920/521*843^(1/14) 4807545180567153 a001 53316291173/521*2207^(1/2) 4807545181536697 a001 1/208010*233^(49/58) 4807545182093894 a007 Real Root Of -170*x^4-824*x^3+40*x^2+224*x-594 4807545184245930 m001 1/FeigenbaumDelta/Artin*exp(GAMMA(5/12)) 4807545199225045 r005 Re(z^2+c),c=-9/118+24/35*I,n=31 4807545218045259 r009 Im(z^3+c),c=-8/21+33/62*I,n=20 4807545232773686 r005 Im(z^2+c),c=-73/110+3/26*I,n=37 4807545235128404 m001 RenyiParking^GlaisherKinkelin-exp(-1/2*Pi) 4807545238055053 r009 Im(z^3+c),c=-1/118+29/49*I,n=30 4807545242209223 a007 Real Root Of -469*x^4-172*x^3-513*x^2+598*x+412 4807545242254893 a001 63246219*2207^(9/16) 4807545245985215 q001 1886/3923 4807545254574826 m001 (MadelungNaCl-Rabbit)/(HardyLittlewoodC5-Kac) 4807545254970060 r005 Im(z^2+c),c=-23/94+24/37*I,n=40 4807545267074766 m001 sqrt(2)^2*ln(cos(Pi/12))^2/sqrt(5)^2 4807545271374066 a007 Real Root Of -872*x^4+658*x^3+894*x^2+268*x-362 4807545272743024 m006 (3/5*ln(Pi)-5/6)/(1/3*Pi+2) 4807545277119138 l006 ln(6002/9707) 4807545286445792 m001 (ln(Pi)+Zeta(1,-1))/(CareFree+MertensB3) 4807545300231220 r005 Im(z^2+c),c=23/122+4/9*I,n=14 4807545303942634 a001 20365011074/521*2207^(5/8) 4807545308941686 a001 956722026041/2207*322^(5/12) 4807545347043143 m002 5*Pi^6+(Pi*Log[Pi])/6 4807545348300972 r002 24th iterates of z^2 + 4807545352268415 m001 (BesselI(1,1)-FransenRobinson)/(Rabbit-Salem) 4807545365630376 a001 12586269025/521*2207^(11/16) 4807545380807561 p001 sum((-1)^n/(335*n+199)/(8^n),n=0..infinity) 4807545398199445 a007 Real Root Of -493*x^4+490*x^3-127*x^2-19*x+101 4807545402290885 r005 Im(z^2+c),c=-45/34+2/63*I,n=24 4807545404972942 a007 Real Root Of -705*x^4+682*x^3-286*x^2+236*x+293 4807545415706320 a007 Real Root Of -139*x^4-540*x^3+466*x^2-671*x+254 4807545416532017 m001 (exp(1/Pi)-BesselK(1,1))/(3^(1/3)-Zeta(1,-1)) 4807545421446505 r002 4th iterates of z^2 + 4807545427318119 a001 7778742049/521*2207^(3/4) 4807545430671750 r005 Im(z^2+c),c=-19/118+44/61*I,n=23 4807545437314458 s002 sum(A275403[n]/(n^2*2^n+1),n=1..infinity) 4807545453035211 b008 5-E^(3/4)/11 4807545462175595 m006 (1/2*Pi^2-1/2)/(5/6*Pi^2+1) 4807545462175595 m008 (1/2*Pi^2-1/2)/(5/6*Pi^2+1) 4807545462175595 m009 (3*Pi^2-3)/(1/2*Pi^2+3/5) 4807545473850112 r008 a(0)=5,K{-n^6,5-67*n^3+35*n^2+32*n} 4807545476525515 r009 Im(z^3+c),c=-1/98+34/55*I,n=8 4807545489005862 a001 4807526976/521*2207^(13/16) 4807545492590503 a007 Real Root Of -803*x^4+911*x^3-729*x^2-332*x+153 4807545498060809 m005 (1/2*Catalan-1/4)/(5/12*exp(1)-7/10) 4807545499518492 m001 1/ln(Tribonacci)*TreeGrowth2nd/GAMMA(3/4)^2 4807545509554631 r005 Im(z^2+c),c=-7/118+28/33*I,n=6 4807545525498506 r002 3th iterates of z^2 + 4807545534608216 r005 Re(z^2+c),c=-83/126+1/48*I,n=19 4807545535448969 m001 Artin*(Zeta(1/2)+ZetaP(3)) 4807545547663732 m005 (1/2*2^(1/2)-1/4)/(3*Pi+1/12) 4807545550693606 a001 2971215073/521*2207^(7/8) 4807545551070461 a003 sin(Pi*2/33)-sin(Pi*9/118) 4807545552224782 r005 Im(z^2+c),c=-13/10+41/112*I,n=6 4807545558178328 r008 a(0)=5,K{-n^6,33-70*n^3+58*n^2-16*n} 4807545564478800 l006 ln(3585/5798) 4807545594987203 r005 Re(z^2+c),c=-17/78+43/47*I,n=4 4807545605850121 m005 (1/3*gamma-1/9)/(6*exp(1)+3/5) 4807545612381352 a001 1836311903/521*2207^(15/16) 4807545613968858 s002 sum(A045178[n]/(n^3*10^n+1),n=1..infinity) 4807545618647677 m001 (2^(1/3)+Shi(1))/(-ln(Pi)+LaplaceLimit) 4807545628296598 r005 Re(z^2+c),c=-9/10+39/220*I,n=12 4807545634627586 m005 (1/3*3^(1/2)-1/12)/(3/11*Catalan+7/9) 4807545634825491 p004 log(28463/27127) 4807545643219401 r009 Im(z^3+c),c=-7/74+25/42*I,n=9 4807545653496812 a001 956722026041/521*843^(1/7) 4807545655080317 m001 1/Rabbit^2*Lehmer/ln(GAMMA(13/24))^2 4807545669778294 m001 HardyLittlewoodC3^Sarnak/(MadelungNaCl^Sarnak) 4807545672327004 m001 1/Niven^2*exp(Artin)^2*Robbin 4807545674004052 a001 4745047580242/987 4807545694550020 b008 LogGamma[1/123] 4807545699888719 r009 Im(z^3+c),c=-23/64+16/31*I,n=21 4807545715432398 r009 Im(z^3+c),c=-39/64+15/31*I,n=43 4807545720028873 m002 36-Log[Pi]+Log[Pi]*Sinh[Pi] 4807545721091236 l006 ln(65/7958) 4807545731707317 r002 2th iterates of z^2 + 4807545738733790 r005 Re(z^2+c),c=-43/94+31/61*I,n=29 4807545787599814 s002 sum(A005837[n]/(n*exp(n)+1),n=1..infinity) 4807545798399699 r005 Im(z^2+c),c=1/26+46/61*I,n=6 4807545808889873 r005 Re(z^2+c),c=3/20+29/45*I,n=41 4807545817590527 a007 Real Root Of -954*x^4-214*x^3-489*x^2+738*x+495 4807545826235810 a001 47/89*46368^(28/33) 4807545833260244 r009 Im(z^3+c),c=-13/98+13/23*I,n=6 4807545836815527 r008 a(0)=5,K{-n^6,-1-59*n^3+8*n^2+57*n} 4807545857419426 r005 Re(z^2+c),c=-49/102+25/52*I,n=2 4807545861767000 a003 cos(Pi*22/63)/sin(Pi*37/93) 4807545873993418 s002 sum(A281709[n]/(exp(pi*n)+1),n=1..infinity) 4807545878812040 a007 Real Root Of 426*x^4+95*x^3+987*x^2-900*x-673 4807545900509599 a008 Real Root of x^4-2*x^3+27*x^2-26*x-811 4807545913508371 r005 Im(z^2+c),c=-13/102+35/52*I,n=38 4807545917065950 m001 (gamma*BesselK(0,1)+exp(gamma))/BesselK(0,1) 4807545918769597 r002 14th iterates of z^2 + 4807545923836029 r009 Im(z^3+c),c=-11/60+27/47*I,n=22 4807545927351225 l006 ln(4753/7687) 4807545928531867 m001 (Cahen+FeigenbaumD)^Mills 4807545944581571 r005 Im(z^2+c),c=-11/27+4/51*I,n=14 4807545947482931 r009 Im(z^3+c),c=-27/74+25/48*I,n=62 4807545948990831 a005 (1/cos(11/125*Pi))^219 4807545950067124 a007 Real Root Of -117*x^4+334*x^3+909*x^2+855*x-652 4807545956714877 m001 ArtinRank2/FransenRobinson^2/ln(Zeta(3)) 4807545967876522 m002 -3/5-5*Pi^6 4807545995609016 r005 Re(z^2+c),c=-29/122+31/47*I,n=24 4807546017862154 a007 Real Root Of -980*x^4-186*x^3+320*x^2+791*x+338 4807546020426100 a001 1/843*(1/2*5^(1/2)+1/2)^13*76^(9/19) 4807546032781430 a007 Real Root Of 614*x^4-390*x^3+16*x^2-329*x-238 4807546044486875 r009 Im(z^3+c),c=-17/82+23/41*I,n=11 4807546078680065 r009 Im(z^3+c),c=-25/78+37/52*I,n=18 4807546086589080 m001 ln(2^(1/2)+1)/(gamma(3)+FeigenbaumC) 4807546088575354 r009 Im(z^3+c),c=-51/118+15/31*I,n=37 4807546102774616 m001 ln(Catalan)^2*Bloch*GAMMA(1/12)^2 4807546128868276 r008 a(0)=5,K{-n^6,25+20*n+18*n^2-58*n^3} 4807546136712661 a001 591286729879/521*843^(3/14) 4807546147060329 l006 ln(5921/9576) 4807546151624547 b008 215*Sqrt[5] 4807546151943689 a001 2504730781961/5778*322^(5/12) 4807546152652020 m001 CareFree/(Ei(1,1)^BesselI(0,1)) 4807546159730731 a007 Real Root Of -292*x^4+932*x^3+680*x^2+682*x-573 4807546162122267 r009 Im(z^3+c),c=-1/126+29/49*I,n=35 4807546163262299 a001 (5+5^(1/2))^(317/74) 4807546169241269 r009 Im(z^3+c),c=-7/82+10/17*I,n=21 4807546188688307 r005 Im(z^2+c),c=-12/31+1/13*I,n=16 4807546191737001 r009 Im(z^3+c),c=-23/52+31/58*I,n=60 4807546197302239 r008 a(0)=4,K{-n^6,7+2*n^3-4*n^2-6*n} 4807546213907378 m001 (Catalan+BesselJ(0,1))/(-Artin+Sarnak) 4807546224719087 r005 Re(z^2+c),c=13/46+19/40*I,n=20 4807546230175863 a007 Real Root Of -175*x^4-912*x^3-568*x^2-954*x+688 4807546235401500 r009 Im(z^3+c),c=-7/110+13/22*I,n=11 4807546236375776 a007 Real Root Of 858*x^4+95*x^3+143*x^2-95*x-114 4807546262895475 m005 (1/2*Zeta(3)-3/11)/(7/11*Catalan+1/10) 4807546266387379 r005 Im(z^2+c),c=-63/94+20/57*I,n=33 4807546274936049 a001 6557470319842/15127*322^(5/12) 4807546276099054 a001 98209/38*47^(41/54) 4807546276470360 a007 Real Root Of 36*x^4-510*x^3-23*x^2-237*x+174 4807546281924126 r005 Im(z^2+c),c=1/19+32/53*I,n=41 4807546303970607 a001 10610209857723/24476*322^(5/12) 4807546322458466 r005 Re(z^2+c),c=-17/32+39/61*I,n=12 4807546323017176 a007 Real Root Of 162*x^4+640*x^3-715*x^2-352*x-592 4807546328009733 a001 2537720636*6557470319842^(7/17) 4807546328009733 a001 73681302247*1836311903^(7/17) 4807546328011230 a001 2139295485799*514229^(7/17) 4807546332212998 a001 29/987*2178309^(50/51) 4807546334098989 m001 1/Zeta(3)/exp(Rabbit)*sinh(1) 4807546350949510 a001 4052739537881/9349*322^(5/12) 4807546358177059 a007 Real Root Of -15*x^4+57*x^3+504*x^2-376*x+890 4807546388424062 a007 Real Root Of -516*x^4-435*x^3+618*x^2+627*x+3 4807546390031749 p003 LerchPhi(1/32,1,32/153) 4807546392092542 r005 Re(z^2+c),c=-15/22+16/105*I,n=52 4807546395295410 r005 Im(z^2+c),c=11/102+15/28*I,n=27 4807546397972262 p001 sum(1/(461*n+382)/n/(25^n),n=1..infinity) 4807546421272800 r005 Im(z^2+c),c=2/7+11/45*I,n=3 4807546430949980 p002 log(1/6*(3+13^(1/2))^(1/2)*6^(1/2)) 4807546451257575 s002 sum(A281769[n]/((2^n+1)/n),n=1..infinity) 4807546481267271 h001 (3/11*exp(1)+5/12)/(3/5*exp(1)+7/9) 4807546483893883 r005 Re(z^2+c),c=-59/46+3/44*I,n=14 4807546516131204 m001 FeigenbaumAlpha/log(gamma)*GAMMA(11/12) 4807546516131204 m001 GAMMA(11/12)*FeigenbaumAlpha/ln(gamma) 4807546516131204 m001 GAMMA(11/12)/ln(gamma)*FeigenbaumAlpha 4807546528713332 r009 Im(z^3+c),c=-25/48+5/19*I,n=15 4807546581724131 a007 Real Root Of 919*x^4-773*x^3+711*x^2-380*x-482 4807546595563749 m002 Pi^6/2+(5*Sinh[Pi])/Pi^6 4807546598370990 a007 Real Root Of -293*x^4+254*x^3+536*x^2+829*x-535 4807546619928559 a001 365435296162/521*843^(2/7) 4807546629214645 r005 Im(z^2+c),c=37/110+7/32*I,n=9 4807546629297993 m008 (4*Pi^2-1/3)/(5/6*Pi^4+1/4) 4807546672040442 a007 Real Root Of -x^4-480*x^3+362*x^2-389*x+147 4807546672947728 a001 1548008755920/3571*322^(5/12) 4807546679111548 a007 Real Root Of -812*x^4+663*x^3-654*x^2-743*x-89 4807546686811285 m008 (3*Pi+5/6)/(2/3*Pi^3+2/3) 4807546688041680 m001 (Zeta(1,2)-GAMMA(5/6))/(GAMMA(11/12)-Kac) 4807546713046134 r005 Re(z^2+c),c=13/82+19/37*I,n=45 4807546721258947 m001 1/log(2+sqrt(3))^2*Si(Pi)^2/exp(sqrt(2)) 4807546746310282 m002 Pi^6/2+2/(Pi^3*ProductLog[Pi]) 4807546746783296 b008 LogIntegral[6+Log[3]] 4807546751267783 s002 sum(A274355[n]/(exp(n)),n=1..infinity) 4807546752899666 m001 (1-BesselK(0,1))/(-Landau+MadelungNaCl) 4807546755093794 m005 (1/2*Catalan+3/10)/(2/7*exp(1)+4/5) 4807546756610361 r005 Re(z^2+c),c=-23/48+29/62*I,n=16 4807546780726691 l006 ln(3066/3217) 4807546804759498 r009 Im(z^3+c),c=-23/86+26/47*I,n=16 4807546821552559 r005 Im(z^2+c),c=3/29+17/35*I,n=6 4807546842738431 a007 Real Root Of 15*x^4-260*x^3-717*x^2-882*x-288 4807546850396761 a007 Real Root Of 950*x^4+650*x^3+330*x^2-431*x-262 4807546852855192 r005 Re(z^2+c),c=29/118+20/51*I,n=8 4807546863372062 r005 Re(z^2+c),c=7/106+25/34*I,n=5 4807546865393290 r005 Re(z^2+c),c=-1/52+9/13*I,n=5 4807546874897336 a003 cos(Pi*17/78)-cos(Pi*32/79) 4807546892217296 r005 Re(z^2+c),c=19/126+29/53*I,n=49 4807546896699574 r005 Re(z^2+c),c=5/34+14/29*I,n=40 4807546907508875 r002 59th iterates of z^2 + 4807546939741593 r009 Im(z^3+c),c=-5/62+16/27*I,n=11 4807546979734772 m006 (3/4*Pi^2+5)/(2/3*Pi^2-4) 4807546979734772 m008 (3/4*Pi^2+5)/(2/3*Pi^2-4) 4807546987045807 r009 Im(z^3+c),c=-41/106+26/53*I,n=16 4807547005868772 s002 sum(A197891[n]/(n^2*2^n+1),n=1..infinity) 4807547025329007 a007 Real Root Of -413*x^4+717*x^3-201*x^2+971*x+615 4807547041133371 l006 ln(1168/1889) 4807547041595873 r005 Im(z^2+c),c=-23/86+23/40*I,n=7 4807547046879049 h001 (-5*exp(2/3)+1)/(-9*exp(3)-1) 4807547058896416 a001 377/521*18^(19/29) 4807547067317538 r005 Im(z^2+c),c=13/54+7/17*I,n=19 4807547097620530 r008 a(0)=5,K{-n^6,31+41*n-24*n^2-43*n^3} 4807547103144506 a001 225851433717/521*843^(5/14) 4807547147841803 m001 (Backhouse+Grothendieck)/(LaplaceLimit+Trott) 4807547148455226 a001 1926/7*1346269^(15/41) 4807547151387380 r002 6th iterates of z^2 + 4807547169811320 q001 637/1325 4807547173891555 m009 (3/5*Psi(1,1/3)-5/6)/(1/12*Pi^2-5/6) 4807547174906231 m005 (1/2*exp(1)+3/10)/(1/6*Zeta(3)-6/11) 4807547187976975 r009 Im(z^3+c),c=-53/90+20/43*I,n=26 4807547203836783 m001 (RenyiParking+Robbin)/(Magata-PlouffeB) 4807547218318375 m008 (2/5*Pi^5-5)/(4/5*Pi^5-3/5) 4807547235670667 m005 (1/3*3^(1/2)-2/9)/(45/7+3/7*5^(1/2)) 4807547258917082 a001 139583862445/843*322^(7/12) 4807547271010997 a001 233/1364*312119004989^(10/11) 4807547271010997 a001 233/1364*(1/2+1/2*5^(1/2))^50 4807547271010997 a001 233/1364*3461452808002^(5/6) 4807547271074856 a001 610/521*(1/2+1/2*5^(1/2))^46 4807547271074856 a001 610/521*10749957122^(23/24) 4807547298418682 r005 Re(z^2+c),c=-33/50+9/43*I,n=36 4807547302250285 r009 Im(z^3+c),c=-19/60+7/13*I,n=28 4807547305970012 m005 (1/3*Pi-1/6)/(7/8*5^(1/2)-1/8) 4807547315504351 m001 (-FeigenbaumD+Lehmer)/(1-BesselI(1,1)) 4807547318607481 m005 (1/2*gamma-6)/(9/10*Catalan+4/11) 4807547318660417 a008 Real Root of x^4-2*x^3+x^2-36*x-162 4807547328113361 m006 (1/2*Pi+1)/(5/6/Pi-4/5) 4807547339778731 r008 a(0)=0,K{-n^6,-44+17*n-9*n^2+16*n^3} 4807547343344143 r009 Im(z^3+c),c=-3/5+5/21*I,n=18 4807547349033365 r005 Re(z^2+c),c=-81/118+2/61*I,n=31 4807547350935326 a007 Real Root Of -92*x^4-277*x^3+983*x^2+795*x-531 4807547356442677 h001 (1/11*exp(1)+9/10)/(5/7*exp(1)+4/9) 4807547374046206 r005 Im(z^2+c),c=-20/27+1/14*I,n=4 4807547398823311 m005 (1/2*5^(1/2)+2/9)/(6/7*2^(1/2)-4) 4807547412057939 r002 9th iterates of z^2 + 4807547424326617 m001 FeigenbaumC^(Zeta(5)*FeigenbaumAlpha) 4807547443199870 a001 24476/233*832040^(37/47) 4807547446404468 a001 141422324/21*987^(13/21) 4807547477331981 m001 (Bloch+Cahen)/(3^(1/2)+sin(1/5*Pi)) 4807547484009691 m001 ln(Pi)/(TreeGrowth2nd^MadelungNaCl) 4807547493236991 s002 sum(A188788[n]/(n^2*2^n+1),n=1..infinity) 4807547544169855 r002 19th iterates of z^2 + 4807547549232864 m001 TravellingSalesman^Zeta(1,2)-exp(1/Pi) 4807547562498256 h001 (2/11*exp(2)+1/8)/(10/11*exp(1)+7/12) 4807547580012048 m001 ln(3)/(exp(1/2)^sqrt(1+sqrt(3))) 4807547586360501 a001 139583862445/521*843^(3/7) 4807547594458818 s002 sum(A256948[n]/(exp(2*pi*n)+1),n=1..infinity) 4807547595428556 h001 (1/3*exp(2)+7/9)/(9/10*exp(2)+1/11) 4807547596398539 a007 Real Root Of -518*x^4-337*x^3-969*x^2+867*x+631 4807547621740649 m006 (Pi^2+3)/(5*exp(2*Pi)-1/2) 4807547623448207 m001 (Trott-ZetaP(4))/(MasserGramain+Sarnak) 4807547629570351 a001 47/6765*832040^(24/37) 4807547629594728 r009 Im(z^3+c),c=-27/62+28/53*I,n=38 4807547637176259 a007 Real Root Of -607*x^4-192*x^3+959*x^2+358*x-340 4807547680097371 r009 Re(z^3+c),c=-14/27+25/62*I,n=38 4807547690579883 r005 Im(z^2+c),c=-53/46+11/31*I,n=7 4807547694993157 r005 Im(z^2+c),c=5/122+37/61*I,n=34 4807547702652159 m005 (4*Catalan+4/5)/(5/6*2^(1/2)-1/4) 4807547705807154 a007 Real Root Of 192*x^4-823*x^3+534*x^2-630*x-528 4807547714216356 a007 Real Root Of -14*x^4-669*x^3+189*x^2-285*x+228 4807547727939965 m002 4+(8*Tanh[Pi])/Pi^2 4807547737775231 r005 Re(z^2+c),c=-17/28+4/23*I,n=5 4807547750937029 r005 Im(z^2+c),c=-17/62+3/43*I,n=16 4807547766171756 r009 Re(z^3+c),c=-43/94+4/49*I,n=27 4807547767722253 a005 (1/sin(71/149*Pi))^1421 4807547770828131 a005 (1/cos(25/209*Pi))^913 4807547774546754 m001 exp(-1/2*Pi)+BesselI(0,2)^Si(Pi) 4807547781370422 a007 Real Root Of 324*x^4-4*x^3+803*x^2+34*x-187 4807547787348177 r005 Im(z^2+c),c=-3/25+16/27*I,n=13 4807547806629451 a007 Real Root Of 21*x^4+9*x^3-283*x^2+753*x-57 4807547887635674 l006 ln(58/7101) 4807547942634836 m001 (-Magata+MertensB2)/(Kolakoski-ln(2)/ln(10)) 4807547959136103 m001 (-Artin+StronglyCareFree)/(gamma+sin(1/12*Pi)) 4807547960356501 l006 ln(5759/9314) 4807547969020015 a001 312119004989/233*6557470319842^(14/17) 4807547973419225 r002 6th iterates of z^2 + 4807547996960219 a001 20633239/144*4807526976^(6/23) 4807547997004793 a001 370248451/144*75025^(6/23) 4807548042556439 m001 (gamma*FeigenbaumD-sin(1/12*Pi))/FeigenbaumD 4807548046260644 m005 (1/2*5^(1/2)+5/9)/(3*Zeta(3)-1/8) 4807548048621767 r009 Im(z^3+c),c=-31/94+31/58*I,n=47 4807548056906732 r002 27th iterates of z^2 + 4807548057472546 a001 90481/7*24157817^(13/21) 4807548063800375 m005 (19/44+1/4*5^(1/2))/(7/8*3^(1/2)+6/11) 4807548069576545 a001 86267571272/521*843^(1/2) 4807548107680091 r009 Im(z^3+c),c=-9/34+5/9*I,n=50 4807548108494302 r002 26th iterates of z^2 + 4807548110444936 r005 Re(z^2+c),c=-19/20+1/17*I,n=16 4807548113697628 a007 Real Root Of -219*x^4-918*x^3+709*x^2+350*x+280 4807548119340353 r009 Im(z^3+c),c=-27/74+25/48*I,n=60 4807548121727868 r009 Im(z^3+c),c=-7/62+25/43*I,n=12 4807548127051935 r005 Re(z^2+c),c=-5/9+19/27*I,n=5 4807548136683130 m001 Magata+(Pi*2^(1/2)/GAMMA(3/4))^MertensB1 4807548145480022 m001 KhintchineLevy*Bloch^2/ln(gamma) 4807548168235720 r002 26th iterates of z^2 + 4807548182212034 m001 ZetaR(2)/(3^(1/2)+FeigenbaumKappa) 4807548184044332 r005 Im(z^2+c),c=-75/98+24/43*I,n=4 4807548185680705 a007 Real Root Of -895*x^4+372*x^3-849*x^2+305*x+432 4807548194216783 l006 ln(4591/7425) 4807548200636070 m005 (1/3*Zeta(3)-3/4)/(3*exp(1)-8/9) 4807548213000440 m002 5*Pi^6+(3*Coth[Pi])/5 4807548221091175 a007 Real Root Of -185*x^4-916*x^3-274*x^2-687*x+74 4807548237230497 g005 GAMMA(3/7)*GAMMA(2/7)*GAMMA(5/6)/GAMMA(7/12) 4807548244774753 m001 (Paris+Porter)/(ln(2)/ln(10)+Otter) 4807548255514653 a007 Real Root Of 730*x^4-506*x^3+672*x^2+180*x-164 4807548257937515 a007 Real Root Of -533*x^4+825*x^3-437*x^2-720*x-125 4807548263007872 m001 exp(FeigenbaumB)*Si(Pi)^2/GAMMA(13/24) 4807548268983093 h001 (-8*exp(2)+1)/(-2*exp(1/3)+4) 4807548270461490 a001 9/416020*17711^(4/49) 4807548274446075 r005 Re(z^2+c),c=-27/44+22/59*I,n=57 4807548280995735 m006 (2*Pi+4)/(4*exp(2*Pi)-3) 4807548282483197 m005 (1/2*Zeta(3)+3/10)/(7/11*Pi-1/8) 4807548286133157 r005 Re(z^2+c),c=31/110+1/62*I,n=55 4807548298084351 r005 Re(z^2+c),c=-17/26+9/16*I,n=5 4807548302309765 m001 (Salem+Weierstrass)^Zeta(1/2) 4807548320212345 m001 (ZetaP(4)-ZetaQ(2))/(cos(1/5*Pi)-GAMMA(17/24)) 4807548342299681 r005 Re(z^2+c),c=5/58+13/46*I,n=18 4807548348608243 m001 (BesselK(1,1)+2)/(exp(-1/2*Pi)+1/3) 4807548352057231 a007 Real Root Of 149*x^4-554*x^3-658*x^2-373*x+385 4807548375044333 m002 5*Pi^6+2/Log[Pi]-Log[Pi] 4807548378516111 m001 (Zeta(5)-cos(1/12*Pi))/(Sarnak-Stephens) 4807548387720512 m001 (GAMMA(5/6)+TravellingSalesman)/(Pi+ln(2)) 4807548404996570 m001 1/Lehmer^2/exp(HardHexagonsEntropy)/Porter 4807548417305412 r005 Im(z^2+c),c=-57/94+25/61*I,n=3 4807548440724965 r009 Im(z^3+c),c=-31/94+31/58*I,n=41 4807548441153244 m001 (Pi+exp(1))/(BesselK(0,1)-GAMMA(13/24)) 4807548449876172 r005 Re(z^2+c),c=-9/16+71/94*I,n=5 4807548471526412 m005 (1/2*3^(1/2)+8/11)/(1/10*Pi+3) 4807548473652657 a001 39603/377*28657^(19/51) 4807548475130557 r005 Re(z^2+c),c=-17/18+11/123*I,n=20 4807548483322154 a001 1/322*(1/2*5^(1/2)+1/2)^17*47^(8/21) 4807548484075927 r002 26th iterates of z^2 + 4807548488267737 r005 Im(z^2+c),c=13/42+18/55*I,n=22 4807548520978442 r005 Im(z^2+c),c=-23/29+15/49*I,n=6 4807548534644312 m001 (-3^(1/2)+DuboisRaymond)/(exp(Pi)+Psi(2,1/3)) 4807548547120118 m001 (Zeta(1,2)+Artin)/(Gompertz+Stephens) 4807548551062413 a001 1548008755920/521*322^(1/12) 4807548552792637 a001 53316291173/521*843^(4/7) 4807548558176103 m001 (sin(1)+gamma(1))/(GaussAGM+LandauRamanujan) 4807548563341459 r009 Im(z^3+c),c=-17/70+27/43*I,n=12 4807548564706005 m001 (1+Artin)/(FeigenbaumD+ZetaP(3)) 4807548564860109 m005 (1/3*5^(1/2)-1/8)/(1/4*exp(1)-2/3) 4807548583563170 m001 1/ln(cos(Pi/12))*Zeta(7)*sqrt(1+sqrt(3)) 4807548586855469 m005 (1/2*5^(1/2)+1/5)/(Pi-2/5) 4807548587673201 l006 ln(3423/5536) 4807548596149470 a007 Real Root Of -793*x^4+300*x^3+364*x^2+575*x+268 4807548597379400 m001 (BesselJ(1,1)-Zeta(3)*MertensB1)/MertensB1 4807548600677134 r002 55th iterates of z^2 + 4807548610221027 r005 Im(z^2+c),c=15/82+20/39*I,n=62 4807548616263161 r002 41th iterates of z^2 + 4807548630590803 m001 (Catalan-Mills)/(Trott2nd+ZetaQ(2)) 4807548631018413 m005 (1/3*3^(1/2)+1/4)/(31/44+5/11*5^(1/2)) 4807548636669417 m001 1/GAMMA(1/6)*Magata^2/ln(cosh(1)) 4807548652058903 h001 (4/9*exp(2)+6/7)/(1/4*exp(1)+2/11) 4807548652620040 h001 (4/5*exp(2)+2/5)/(3/11*exp(1)+4/7) 4807548703586411 a007 Real Root Of 20*x^4+976*x^3+705*x^2+408*x+261 4807548708809691 r005 Re(z^2+c),c=-19/14+15/239*I,n=2 4807548722403126 a007 Real Root Of 36*x^4-461*x^3-47*x^2-334*x-16 4807548740307587 r002 45th iterates of z^2 + 4807548742186492 m005 (7/24+1/6*5^(1/2))/(Catalan-7/9) 4807548754569812 r009 Im(z^3+c),c=-65/118+27/56*I,n=19 4807548766166078 m001 (Mills+QuadraticClass)/(Ei(1,1)+CopelandErdos) 4807548782321336 a003 sin(Pi*6/71)/cos(Pi*37/117) 4807548784798599 r005 Im(z^2+c),c=-39/58+3/32*I,n=64 4807548791121948 a007 Real Root Of 729*x^4-434*x^3+966*x^2-698*x-646 4807548793150413 m001 (gamma(1)-gamma)/(polylog(4,1/2)+GaussAGM) 4807548793413323 m001 (cos(1/12*Pi)+AlladiGrinstead)/(1-Zeta(5)) 4807548802713801 r002 48th iterates of z^2 + 4807548806391713 a007 Real Root Of -807*x^4+993*x^3+681*x^2+604*x-515 4807548811884974 r005 Re(z^2+c),c=-31/48+17/61*I,n=59 4807548843036394 m002 Pi^6/2+(5*Cosh[Pi])/Pi^6 4807548860885924 r002 3th iterates of z^2 + 4807548879774470 a003 sin(Pi*14/99)/sin(Pi*25/71) 4807548879957503 a001 591286729879/1364*322^(5/12) 4807548888393960 m001 GAMMA(3/4)/(LambertW(1)-Lehmer) 4807548888393960 m001 GAMMA(3/4)/(Lehmer-LambertW(1)) 4807548897370292 m004 -5-Cosh[Sqrt[5]*Pi]+30*Pi*Tan[Sqrt[5]*Pi] 4807548897698124 r009 Im(z^3+c),c=-15/64+31/55*I,n=29 4807548905806057 l006 ln(5678/9183) 4807548908782746 a007 Real Root Of 277*x^4+94*x^3+968*x^2-546*x+24 4807548908900075 r009 Re(z^3+c),c=-45/122+45/46*I,n=3 4807548934036172 r005 Im(z^2+c),c=-27/56+2/37*I,n=5 4807548944518051 r005 Re(z^2+c),c=-71/102+8/57*I,n=54 4807548977648317 a001 7/75025*610^(37/38) 4807548991642499 r009 Im(z^3+c),c=-21/122+26/43*I,n=9 4807548999295022 r005 Im(z^2+c),c=17/106+15/23*I,n=21 4807549006497857 a007 Real Root Of -838*x^4-919*x^3-721*x^2+249*x+229 4807549019187319 r002 3th iterates of z^2 + 4807549022244220 r005 Im(z^2+c),c=-47/70+10/23*I,n=8 4807549029364854 m001 KomornikLoreti/(Pi+Stephens) 4807549036008778 a001 63246219*843^(9/14) 4807549043953315 q001 1936/4027 4807549047783875 a001 12586269025/199*199^(9/11) 4807549053066565 r005 Im(z^2+c),c=-2/3+20/217*I,n=61 4807549062725922 r002 61th iterates of z^2 + 4807549069786488 m001 (Psi(1,1/3)+ln(5))/(Bloch+ReciprocalLucas) 4807549089891777 a007 Real Root Of -356*x^4+472*x^3-79*x^2+739*x+445 4807549096760994 m005 (1/3*Pi-2/9)/(5/6*Zeta(3)+5/7) 4807549099867056 a007 Real Root Of -117*x^4-798*x^3-993*x^2+823*x+738 4807549101565997 r005 Re(z^2+c),c=-17/18+11/123*I,n=24 4807549123847569 r005 Re(z^2+c),c=-13/20+7/47*I,n=22 4807549124257473 m001 3^(1/2)/(GAMMA(13/24)+ReciprocalLucas) 4807549129353560 r009 Im(z^3+c),c=-23/48+19/44*I,n=28 4807549135163647 r009 Im(z^3+c),c=-6/19+20/37*I,n=18 4807549137125932 r002 18th iterates of z^2 + 4807549144097079 m001 (TwinPrimes+ZetaP(2))/(ln(5)+CareFree) 4807549144968440 a007 Real Root Of 588*x^4-206*x^3+421*x^2-525*x-404 4807549150865987 r005 Re(z^2+c),c=-19/28+8/33*I,n=42 4807549172939340 a001 591286729879/2207*322^(1/2) 4807549176210007 m001 Artin^(3^(1/2))*arctan(1/2)^(3^(1/2)) 4807549176210007 m001 Artin^sqrt(3)*arctan(1/2)^sqrt(3) 4807549178378756 m001 (Bloch-MadelungNaCl)/(BesselI(0,2)+Artin) 4807549184082137 m001 (-FeigenbaumB+Salem)/(GAMMA(5/6)-Shi(1)) 4807549196128082 r005 Re(z^2+c),c=-55/78+13/23*I,n=3 4807549197568473 m005 (1/3*Catalan-2/9)/(11/12*Catalan+8/9) 4807549201172072 a007 Real Root Of 285*x^4-680*x^3+350*x^2-217*x-276 4807549207250285 r009 Im(z^3+c),c=-9/34+5/9*I,n=53 4807549223634593 r009 Re(z^3+c),c=-51/98+13/37*I,n=8 4807549224607163 r005 Re(z^2+c),c=-77/114+7/54*I,n=11 4807549259305135 m001 Ei(1)*(BesselJ(1,1)-PrimesInBinary) 4807549261967637 a001 3/514229*2584^(47/55) 4807549262108275 m001 PlouffeB^(Chi(1)*Salem) 4807549274948346 m001 (Robbin-Weierstrass)/(exp(-1/2*Pi)-Gompertz) 4807549296299729 a007 Real Root Of 174*x^4+813*x^3-292*x^2-789*x+343 4807549300105080 r005 Im(z^2+c),c=5/94+13/23*I,n=11 4807549314531916 r002 7th iterates of z^2 + 4807549349935907 p003 LerchPhi(1/125,6,465/191) 4807549365051907 g002 Psi(1/10)+Psi(3/5)-Psi(1/9)-Psi(1/7) 4807549388719015 l006 ln(2255/3647) 4807549397841323 m005 (1/3*exp(1)+1/7)/(9/10*2^(1/2)+10/11) 4807549400301844 m001 (-ln(5)+HardHexagonsEntropy)/(exp(1)+3^(1/2)) 4807549413449405 m001 (Kolakoski-Riemann1stZero)/(ZetaP(2)-ZetaP(3)) 4807549420922052 a007 Real Root Of 575*x^4-554*x^3+592*x^2-239*x-344 4807549427249310 r005 Re(z^2+c),c=-61/114+16/47*I,n=8 4807549432688184 m001 (GAMMA(1/3)+2)/(-GAMMA(13/24)+2/3) 4807549448836078 a007 Real Root Of -941*x^4-303*x^3-488*x^2+280*x+264 4807549449392312 a003 cos(Pi*5/93)*cos(Pi*25/74) 4807549460753334 r009 Im(z^3+c),c=-7/40+34/59*I,n=35 4807549462143170 m001 (Cahen+MertensB1)/(ln(2)-ln(2^(1/2)+1)) 4807549483332394 m002 20+E^Pi+Pi^2/2 4807549484598349 m001 (3^(1/3)-Conway)/(FransenRobinson+ZetaP(4)) 4807549489488286 m001 Zeta(5)*(GAMMA(13/24)-Salem) 4807549496327782 h001 (1/10*exp(2)+9/10)/(4/9*exp(2)+1/8) 4807549497477653 r002 7th iterates of z^2 + 4807549506899141 a002 10^(1/12)+6^(5/7) 4807549514236779 r009 Im(z^3+c),c=-5/114+13/22*I,n=29 4807549516363195 m001 (GaussAGM+Stephens)/(3^(1/2)+Zeta(3)) 4807549518448448 a007 Real Root Of -207*x^4-892*x^3+610*x^2+656*x+518 4807549519224967 a001 20365011074/521*843^(5/7) 4807549524914724 m001 (3^(1/3)-BesselI(0,1))/(sin(1/12*Pi)+OneNinth) 4807549527532503 m001 1/BesselK(1,1)*(3^(1/3))*ln(Zeta(9)) 4807549542823377 m001 (Chi(1)-LandauRamanujan*Otter)/Otter 4807549566836711 m001 gamma/((1+3^(1/2))^(1/2)-ZetaP(2)) 4807549566883716 g002 Psi(4/9)+Psi(7/8)+Psi(3/8)-Psi(7/9) 4807549569036577 r005 Im(z^2+c),c=-25/18+36/173*I,n=5 4807549584550056 v002 sum(1/(2^n+(7/2*n^2+53/2*n+33)),n=1..infinity) 4807549612410125 r009 Im(z^3+c),c=-21/62+17/32*I,n=43 4807549617019414 r002 48th iterates of z^2 + 4807549621751682 r005 Re(z^2+c),c=39/98+17/54*I,n=7 4807549628389377 r009 Im(z^3+c),c=-7/32+32/55*I,n=12 4807549678885185 a007 Real Root Of 984*x^4+511*x^3+751*x^2-954*x-628 4807549700521240 m005 (1/2*Pi-5/8)/(7/10*Catalan-4/9) 4807549713686461 m001 (GAMMA(7/24)-ln(3))/ThueMorse 4807549713686461 m001 (Pi*csc(7/24*Pi)/GAMMA(17/24)-ln(3))/ThueMorse 4807549721676787 m006 (4/5*exp(Pi)-2/5)/(3*ln(Pi)+1/3) 4807549752591866 p001 sum((-1)^n/(459*n+202)/(10^n),n=0..infinity) 4807549774379033 r009 Im(z^3+c),c=-16/29+39/46*I,n=3 4807549779990702 r009 Im(z^3+c),c=-7/74+24/41*I,n=14 4807549780479373 m001 Paris^2*CareFree^2*ln(GAMMA(1/24))^2 4807549780695852 m002 Cosh[Pi]/5+(Cosh[Pi]*ProductLog[Pi])/5 4807549787129107 h001 (2/11*exp(2)+5/8)/(1/2*exp(2)+2/5) 4807549789417311 r002 10th iterates of z^2 + 4807549790497169 a001 34/15127*11^(13/41) 4807549792861531 a007 Real Root Of 152*x^4+885*x^3+860*x^2+566*x-16 4807549796080321 r005 Re(z^2+c),c=-59/122+10/19*I,n=11 4807549809196325 r005 Im(z^2+c),c=-35/52+1/28*I,n=9 4807549809351789 m001 (Stephens-ZetaQ(3))/(Pi^(1/2)-Lehmer) 4807549828957400 r009 Im(z^3+c),c=-1/122+29/49*I,n=34 4807549838938034 m001 Tribonacci*ln(TreeGrowth2nd)/Pi 4807549853933001 r005 Im(z^2+c),c=-17/26+12/121*I,n=26 4807549858251714 r009 Re(z^3+c),c=-61/114+20/47*I,n=5 4807549858800069 a003 cos(Pi*33/101)*sin(Pi*25/66) 4807549878620684 l006 ln(5597/9052) 4807549889209715 r005 Im(z^2+c),c=-23/94+25/42*I,n=10 4807549900866667 m005 (1/2*Pi-9/11)/(3/10*exp(1)+3/4) 4807549910270124 b008 5-1/(3*Sqrt[3]) 4807549914476805 a007 Real Root Of 297*x^4-859*x^3+668*x^2-868*x-683 4807549919925428 a007 Real Root Of -198*x^4-810*x^3+830*x^2+583*x-614 4807549922456037 m001 1/ln(GlaisherKinkelin)/Artin/sqrt(5) 4807549929409402 s002 sum(A275403[n]/(n^2*2^n-1),n=1..infinity) 4807549940017300 r002 56th iterates of z^2 + 4807549941475159 m005 (1/3*Catalan-3/4)/(7/12*2^(1/2)+1/10) 4807549962855077 m005 (1/2*gamma+9/10)/(3/11*3^(1/2)+2) 4807549962990377 q001 1299/2702 4807549981569084 r005 Im(z^2+c),c=-73/110+13/51*I,n=13 4807550002441205 a001 12586269025/521*843^(11/14) 4807550015942021 a001 86000486440/321*322^(1/2) 4807550022007086 a007 Real Root Of 972*x^4-638*x^3+69*x^2-845*x-545 4807550022593265 a007 Real Root Of -187*x^4-854*x^3+62*x^2-808*x-316 4807550031425916 r005 Re(z^2+c),c=-13/22+14/115*I,n=5 4807550049808518 r009 Im(z^3+c),c=-23/122+35/61*I,n=28 4807550058533567 a007 Real Root Of 482*x^4+752*x^3-73*x^2-692*x-258 4807550064187496 b008 1/14+ArcCosh[57] 4807550073924057 r002 7th iterates of z^2 + 4807550077801031 a001 199*1346269^(1/16) 4807550078923312 m001 Ei(1,1)*(ln(5)+LandauRamanujan2nd) 4807550082173188 a003 cos(Pi*32/109)-cos(Pi*41/89) 4807550089871480 m001 1/FeigenbaumD/exp(KhintchineHarmonic)*exp(1)^2 4807550099487577 a007 Real Root Of -21*x^4-105*x^3-921*x^2+952*x+660 4807550121914389 a001 1/72*1836311903^(12/17) 4807550122961355 r005 Re(z^2+c),c=49/102+11/13*I,n=2 4807550128609307 m001 BesselK(1,1)-KhinchinHarmonic+LaplaceLimit 4807550132560897 r005 Im(z^2+c),c=-17/14+5/246*I,n=16 4807550138934480 a001 4052739537881/15127*322^(1/2) 4807550142679405 a007 Real Root Of -980*x^4-314*x^3+645*x^2+589*x-345 4807550146549848 s002 sum(A198533[n]/((pi^n+1)/n),n=1..infinity) 4807550152313546 m001 1/2-OneNinth^sqrt(Pi) 4807550153639626 r009 Im(z^3+c),c=-9/34+5/9*I,n=55 4807550156878838 a001 3536736619241/13201*322^(1/2) 4807550167969061 a001 3278735159921/12238*322^(1/2) 4807550182240527 r005 Re(z^2+c),c=-11/18+23/75*I,n=28 4807550193755027 m001 (3^(1/3))/exp(TreeGrowth2nd)/GAMMA(11/24) 4807550198421027 a001 9062201101803*1836311903^(5/17) 4807550198421027 a001 817138163596*6557470319842^(5/17) 4807550204435631 r005 Im(z^2+c),c=-151/126+3/62*I,n=18 4807550209179696 l006 ln(3342/5405) 4807550214948002 a001 2504730781961/9349*322^(1/2) 4807550226953725 r009 Im(z^3+c),c=-23/52+19/40*I,n=38 4807550253711389 a003 sin(Pi*5/73)*sin(Pi*6/83) 4807550284509960 r009 Im(z^3+c),c=-7/40+34/59*I,n=32 4807550291849771 r009 Im(z^3+c),c=-1/126+29/49*I,n=33 4807550304326442 m001 (ln(gamma)+gamma(3))/(Cahen-Grothendieck) 4807550310349932 r005 Re(z^2+c),c=-49/74+8/41*I,n=7 4807550343004295 p003 LerchPhi(1/10,3,92/155) 4807550372553702 a007 Real Root Of 767*x^4-621*x^3+239*x^2-141*x-233 4807550403834534 r009 Im(z^3+c),c=-9/34+5/9*I,n=58 4807550405276433 r005 Re(z^2+c),c=-49/82+7/48*I,n=5 4807550415184450 s001 sum(exp(-Pi/4)^n*A064256[n],n=1..infinity) 4807550415346623 a007 Real Root Of 765*x^4+362*x^3+967*x^2-397*x-415 4807550427018308 m001 PisotVijayaraghavan*ln(Niven)^2*GAMMA(5/6)^2 4807550439950294 m001 (-Zeta(1,-1)+GAMMA(13/24))/(exp(1)+Zeta(5)) 4807550450479850 a007 Real Root Of -451*x^4+562*x^3+371*x^2+171*x+83 4807550456135975 m002 6+Pi^5+Pi^6+Pi^5*Sinh[Pi] 4807550457449235 m001 (-Pi^(1/2)+Trott)/(Catalan+ln(gamma)) 4807550483036927 a007 Real Root Of 444*x^4-271*x^3-749*x^2-494*x+417 4807550483654934 r009 Im(z^3+c),c=-17/44+22/43*I,n=62 4807550484661193 m001 (Stephens+Totient)/(Catalan-polylog(4,1/2)) 4807550485657492 a001 7778742049/521*843^(6/7) 4807550495601196 r009 Im(z^3+c),c=-13/42+13/24*I,n=39 4807550497309236 a007 Real Root Of -478*x^4+473*x^3-820*x^2-72*x+233 4807550523756446 r005 Im(z^2+c),c=29/64+20/47*I,n=4 4807550534022802 m001 (arctan(1/2)+PlouffeB)/(cos(1/5*Pi)+ln(Pi)) 4807550536946478 a001 956722026041/3571*322^(1/2) 4807550540743236 a001 17711/18*199^(36/49) 4807550547499778 a007 Real Root Of 232*x^4+9*x^3+646*x^2-556*x-428 4807550554627593 m004 125*Pi+(25*Sqrt[5]*Pi)/2+Cos[Sqrt[5]*Pi]/3 4807550577448801 r002 18th iterates of z^2 + 4807550605583851 a007 Real Root Of 472*x^4-264*x^3+106*x^2-626*x-380 4807550617177392 r009 Im(z^3+c),c=-29/114+19/34*I,n=25 4807550622218312 a008 Real Root of (1+2*x-6*x^2-3*x^3-5*x^4+x^5) 4807550626912530 l006 ln(4429/7163) 4807550648910996 l006 ln(51/6244) 4807550663033808 a007 Real Root Of 100*x^4+321*x^3-788*x^2-231*x-649 4807550671486300 a007 Real Root Of 27*x^4-973*x^3-557*x^2-874*x-401 4807550673868657 a007 Real Root Of 940*x^4-373*x^3+562*x^2-964*x-685 4807550677181823 r009 Im(z^3+c),c=-9/34+5/9*I,n=60 4807550687649417 r009 Im(z^3+c),c=-45/122+13/24*I,n=17 4807550694009008 a007 Real Root Of -863*x^4+517*x^3-893*x^2-29*x+296 4807550697805362 r009 Re(z^3+c),c=-11/32+58/61*I,n=3 4807550698313927 a007 Real Root Of 73*x^4-882*x^3-487*x^2-554*x+473 4807550702138896 s002 sum(A147262[n]/(pi^n+1),n=1..infinity) 4807550703966715 r002 48th iterates of z^2 + 4807550732096593 r009 Im(z^3+c),c=-9/34+5/9*I,n=63 4807550749715349 m004 -5+25*Pi+4*Log[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi] 4807550761791862 m001 HeathBrownMoroz^(GAMMA(23/24)*OneNinth) 4807550770143587 r005 Re(z^2+c),c=-2/3+73/254*I,n=5 4807550779207602 a007 Real Root Of -145*x^4+997*x^3+530*x^2+807*x+384 4807550790664817 m001 (-sin(Pi/12)+1/3)/(GAMMA(1/12)+4) 4807550792335148 m001 (Shi(1)+BesselI(0,2))/(-GAMMA(7/12)+GaussAGM) 4807550803000825 a008 Real Root of x^4-27*x^2-20*x+186 4807550811678570 r002 16th iterates of z^2 + 4807550812863118 m001 Rabbit/exp(MinimumGamma)^2*(2^(1/3)) 4807550825377112 a007 Real Root Of -763*x^4+534*x^3-473*x^2+879*x+632 4807550834824983 a003 cos(Pi*24/71)*sin(Pi*13/29) 4807550844794567 m001 (Pi-exp(1))/(FeigenbaumKappa-Weierstrass) 4807550846792645 a001 24476/89*514229^(26/35) 4807550855055374 r005 Im(z^2+c),c=29/66+7/48*I,n=3 4807550855080504 m005 (1/2*2^(1/2)+2/9)/(5/11*5^(1/2)+11/12) 4807550862919619 r009 Im(z^3+c),c=-9/34+5/9*I,n=61 4807550870311350 q001 1961/4079 4807550872489800 r009 Im(z^3+c),c=-33/62+27/55*I,n=46 4807550880005910 l006 ln(5516/8921) 4807550909284771 r002 19th iterates of z^2 + 4807550920867213 r009 Im(z^3+c),c=-9/34+5/9*I,n=56 4807550941314521 a007 Real Root Of -120*x^4-674*x^3-228*x^2+967*x-870 4807550947788508 m005 (1/2*5^(1/2)-2/3)/(4*5^(1/2)+4/9) 4807550951202650 r009 Im(z^3+c),c=-9/34+5/9*I,n=64 4807550952065575 r009 Im(z^3+c),c=-9/34+5/9*I,n=62 4807550954916790 r009 Im(z^3+c),c=-13/34+8/15*I,n=20 4807550968873827 a001 4807526976/521*843^(13/14) 4807550978718990 a007 Real Root Of -436*x^4+36*x^3-795*x^2-206*x+112 4807551029130315 k005 Champernowne real with floor(sqrt(2)*(194*n+146)) 4807551030130515 k001 Champernowne real with 275*n+205 4807551047850892 m001 KhinchinHarmonic/(FeigenbaumD^Mills) 4807551054573477 m001 MertensB1^HeathBrownMoroz-polylog(4,1/2) 4807551058303438 h001 (-7*exp(1/3)-2)/(-9*exp(-3)-2) 4807551063124929 r002 16th iterates of z^2 + 4807551069869673 m001 (Landau-MertensB3)/(Porter+ZetaP(3)) 4807551079897200 a007 Real Root Of -441*x^4+925*x^3-474*x^2-811*x-154 4807551089809872 a001 1/322*2^(29/46) 4807551093444827 r009 Im(z^3+c),c=-1/26+7/9*I,n=28 4807551106930658 a003 cos(Pi*22/67)-cos(Pi*47/96) 4807551119914946 m005 (1/2*Catalan+5/11)/(11/12*Zeta(3)-3) 4807551122812049 m001 1/ln(Tribonacci)^2/CareFree^2/GAMMA(5/6) 4807551122916304 a001 86267571272/843*322^(2/3) 4807551123932823 m001 (Paris+Riemann3rdZero)/(2^(1/3)-Grothendieck) 4807551133015897 m001 gamma(1)^(3^(1/2)*Salem) 4807551136182567 m005 (1/2*gamma-5/6)/(11/12*5^(1/2)-11/12) 4807551151812522 a007 Real Root Of 186*x^4+947*x^3+243*x^2-213*x-774 4807551180829032 m001 1/GAMMA(19/24)/ln(Bloch)^2/Pi 4807551189992697 r009 Im(z^3+c),c=-9/34+5/9*I,n=57 4807551192935084 r009 Re(z^3+c),c=-15/31+15/28*I,n=61 4807551199374487 a007 Real Root Of -678*x^4+979*x^3+89*x^2+438*x+335 4807551214508028 r005 Re(z^2+c),c=-57/110+19/43*I,n=28 4807551215857751 r002 35th iterates of z^2 + 4807551216161100 r009 Im(z^3+c),c=-9/34+5/9*I,n=59 4807551220952369 a007 Real Root Of -193*x^4-850*x^3+395*x^2+232*x+637 4807551223913724 r009 Im(z^3+c),c=-1/5+4/7*I,n=28 4807551239486147 r009 Im(z^3+c),c=-9/34+5/9*I,n=51 4807551241508953 m001 (Psi(1,1/3)+FeigenbaumD)/(-Khinchin+Trott2nd) 4807551255371686 r005 Im(z^2+c),c=17/50+33/59*I,n=41 4807551271791565 m001 BesselI(0,1)*(sin(1)+Otter) 4807551272614022 r009 Im(z^3+c),c=-33/62+27/55*I,n=43 4807551278123749 m001 (Landau-Rabbit)/(Pi+FellerTornier) 4807551279306254 a007 Real Root Of 791*x^4-345*x^3+789*x^2-335*x-424 4807551280045968 r005 Re(z^2+c),c=-19/30+25/108*I,n=5 4807551304434114 a007 Real Root Of 493*x^4-701*x^3+840*x^2+864*x+117 4807551320728050 m001 ln(Porter)^2/LandauRamanujan*Riemann3rdZero 4807551323234388 r002 35th iterates of z^2 + 4807551329990563 a007 Real Root Of -798*x^4-131*x^3+485*x^2+541*x-315 4807551333756843 m001 (gamma(3)+Paris)/(Riemann2ndZero-ZetaP(4)) 4807551334035414 m001 (Cahen+OneNinth)/(ln(3)+arctan(1/2)) 4807551335661567 r009 Im(z^3+c),c=-41/98+18/37*I,n=28 4807551341211739 m001 Si(Pi)*ln(Artin)^2*FeigenbaumD 4807551368462870 r005 Re(z^2+c),c=11/38+7/22*I,n=4 4807551370431194 r009 Re(z^3+c),c=-15/74+53/59*I,n=16 4807551378191826 m005 (1/3*exp(1)+1/9)/(9/11*Pi-5/11) 4807551386055868 a007 Real Root Of -388*x^4-511*x^3-509*x^2+914*x+521 4807551389975785 m001 Shi(1)^Tribonacci*HardyLittlewoodC3^Tribonacci 4807551400290233 a007 Real Root Of -165*x^4+671*x^3-463*x^2+142*x-27 4807551418812234 r002 47th iterates of z^2 + 4807551426118409 r005 Re(z^2+c),c=27/110+19/47*I,n=62 4807551444637894 m002 -Pi^2+5*Pi^6-ProductLog[Pi]+Sinh[Pi] 4807551475048022 m001 1/Trott^2/LaplaceLimit*exp(TwinPrimes)^2 4807551478846173 m001 (Zeta(3)-cos(1))/(Robbin+TravellingSalesman) 4807551480193592 m001 GAMMA(7/24)/BesselK(1,1)^2*exp(sqrt(3)) 4807551491267824 l006 ln(6599/6924) 4807551504690868 m001 (exp(gamma)+1/3)/(-BesselK(1,1)+5) 4807551506811479 r002 62i'th iterates of 2*x/(1-x^2) of 4807551528090499 m001 Zeta(3)/ThueMorse*ZetaQ(4) 4807551538918746 r005 Re(z^2+c),c=-29/62+30/59*I,n=39 4807551542663896 r002 3th iterates of z^2 + 4807551548434233 a007 Real Root Of -386*x^4-759*x^3-86*x^2+788*x+38 4807551549521757 r005 Re(z^2+c),c=-15/22+2/89*I,n=31 4807551563892605 h001 (-7*exp(2)+2)/(-5*exp(3)-3) 4807551564670175 h001 (-7*exp(2)+4)/(-4*exp(3/2)+8) 4807551565837577 m005 (1/3*exp(1)-1/12)/(1/2*gamma-2) 4807551575267580 s002 sum(A147262[n]/(pi^n),n=1..infinity) 4807551602006314 a007 Real Root Of -641*x^4+870*x^3-816*x^2+702*x+657 4807551624584448 r005 Re(z^2+c),c=-11/8+14/55*I,n=4 4807551628672477 m002 5*Pi^6+(6*Tanh[Pi])/Pi^2 4807551631310121 a005 (1/cos(30/239*Pi))^135 4807551631447367 r009 Im(z^3+c),c=-47/110+31/63*I,n=48 4807551632310690 r005 Re(z^2+c),c=-2/3+3/232*I,n=23 4807551650559864 p004 log(35291/21821) 4807551660108870 m001 Rabbit*exp(Conway)*Tribonacci 4807551692646101 b008 17*E^(9/2)*Pi 4807551704163566 r005 Im(z^2+c),c=13/50+20/47*I,n=37 4807551708370779 m001 sin(1)/ln(KhintchineHarmonic)^2*sqrt(Pi) 4807551715146924 r002 2th iterates of z^2 + 4807551730087747 g002 Psi(4/11)+Psi(1/5)-Psi(3/7)-Psi(4/5) 4807551734887072 m005 (1/2*2^(1/2)-4/9)/(1/10*exp(1)-9/11) 4807551740938016 r005 Re(z^2+c),c=-77/74+5/46*I,n=16 4807551758472292 m005 (1/3*Catalan+3/7)/(3/4*Zeta(3)+5/8) 4807551768614091 r009 Re(z^3+c),c=-11/27+2/37*I,n=23 4807551792203392 m005 (1/2*5^(1/2)-1/7)/(2*2^(1/2)-4/5) 4807551798447630 a001 1/2207*(1/2*5^(1/2)+1/2)^15*76^(9/19) 4807551822478926 m001 (Grothendieck+Kac)/(BesselI(0,1)-BesselJ(0,1)) 4807551827732567 r005 Im(z^2+c),c=-85/98+1/30*I,n=17 4807551832912053 r002 11th iterates of z^2 + 4807551849790722 h005 exp(cos(Pi*1/31)+sin(Pi*8/41)) 4807551852034200 r005 Re(z^2+c),c=-23/34+26/57*I,n=26 4807551860376298 m001 (gamma(1)+GlaisherKinkelin)/(Salem+Totient) 4807551866817096 m005 (1/2*exp(1)+3/10)/(23/112+1/16*5^(1/2)) 4807551869327950 a007 Real Root Of 777*x^4-129*x^3+646*x^2-917*x-646 4807551886506723 r002 22th iterates of z^2 + 4807551889010315 m004 -4+(5*Sqrt[5])/Pi-5*Sqrt[5]*Pi*Sec[Sqrt[5]*Pi] 4807551911239128 l006 ln(1087/1758) 4807551960653427 r005 Im(z^2+c),c=-113/82+1/46*I,n=44 4807551962990577 a007 Real Root Of -751*x^4-106*x^3-652*x^2-362*x+5 4807551964583667 m001 GaussKuzminWirsing/Backhouse^2/ln(sin(1))^2 4807551970231184 m001 (Zeta(3)-sin(1/5*Pi))/(Zeta(1/2)+MertensB3) 4807551970698175 a001 15127/89*3^(53/56) 4807551970799494 a007 Real Root Of -990*x^4-440*x^3-896*x^2+420*x+413 4807551975703170 r009 Im(z^3+c),c=-1/110+29/49*I,n=28 4807551984757126 r005 Re(z^2+c),c=-39/98+22/39*I,n=28 4807551991119381 a001 2504730781961/843*123^(1/10) 4807552000000000 r005 Im(z^2+c),c=7/25+23/25*I,n=3 4807552005906779 r009 Im(z^3+c),c=-9/34+5/9*I,n=52 4807552036331309 a003 sin(Pi*19/79)*sin(Pi*23/93) 4807552040052730 p001 sum((-1)^n/(471*n+197)/(5^n),n=0..infinity) 4807552046561032 r009 Im(z^3+c),c=-29/74+27/53*I,n=46 4807552068173475 m001 gamma+gamma(1)*PisotVijayaraghavan 4807552069174515 m001 (sin(1)-sin(1/5*Pi))/(-Conway+FeigenbaumC) 4807552083304023 a007 Real Root Of -579*x^4-801*x^3-612*x^2+721*x+430 4807552098180180 m001 Zeta(5)*ln(GAMMA(19/24))/sin(Pi/5)^2 4807552101656281 r005 Im(z^2+c),c=29/98+17/38*I,n=12 4807552106835499 r002 31th iterates of z^2 + 4807552127057298 a007 Real Root Of -263*x^4+585*x^3+207*x^2+535*x-356 4807552146490591 s002 sum(A005365[n]/((2^n+1)/n),n=1..infinity) 4807552146649229 a007 Real Root Of 74*x^4-794*x^3-836*x^2-883*x+702 4807552159111295 r002 2th iterates of z^2 + 4807552167663389 r005 Re(z^2+c),c=-2/3+64/131*I,n=3 4807552176412478 a007 Real Root Of -294*x^4+531*x^3-105*x^2+986*x+573 4807552180800720 r009 Im(z^3+c),c=-7/50+17/30*I,n=8 4807552182656482 m001 (Khinchin+MertensB1)/(Ei(1,1)-FeigenbaumB) 4807552191084731 a007 Real Root Of -772*x^4+217*x^3-970*x^2+340*x+453 4807552212367825 r009 Im(z^3+c),c=-9/34+5/9*I,n=54 4807552216960070 m005 (1/3*5^(1/2)-2/3)/(3/10*Catalan-1/9) 4807552242378172 r005 Im(z^2+c),c=5/36+26/49*I,n=34 4807552243721931 a007 Real Root Of -327*x^4+189*x^3+106*x^2+911*x-466 4807552263288195 a007 Real Root Of -404*x^4+842*x^3+302*x^2+670*x-33 4807552267607346 r009 Re(z^3+c),c=-13/30+5/61*I,n=12 4807552269791409 m001 1/exp(GAMMA(3/4))^2*FeigenbaumB*sin(Pi/12)^2 4807552287025746 p004 log(24481/15137) 4807552288244392 r002 42th iterates of z^2 + 4807552293410857 m001 GlaisherKinkelin^2*DuboisRaymond*ln(Magata)^2 4807552295428210 r005 Im(z^2+c),c=-57/94+3/34*I,n=40 4807552299488018 a007 Real Root Of -823*x^4+220*x^3-564*x^2-376*x+18 4807552306955851 m001 1/sin(1)/Zeta(7)^2*exp(sqrt(2)) 4807552313255425 r005 Re(z^2+c),c=-9/14+28/121*I,n=27 4807552323205338 a001 167761/5*4807526976^(17/23) 4807552323502418 a001 599074578/5*75025^(17/23) 4807552329876950 r005 Re(z^2+c),c=41/114+8/63*I,n=47 4807552336287797 a007 Real Root Of -140*x^4-435*x^3+974*x^2-883*x-305 4807552339432480 a007 Real Root Of -804*x^4+796*x^3-255*x^2+459*x+411 4807552343768482 a008 Real Root of x^4-2*x^3-14*x^2+2*x+2 4807552361974844 m001 (1+gamma(2))/(CareFree+FeigenbaumKappa) 4807552363665177 a007 Real Root Of 20*x^4+954*x^3-374*x^2-619*x+126 4807552369355590 m008 (3*Pi^3+5/6)/(2*Pi^4+2/5) 4807552396329598 m001 Ei(1)^BesselK(1,1)/(Ei(1)^MadelungNaCl) 4807552408989448 m001 ErdosBorwein^GAMMA(23/24)*Otter 4807552410255891 r005 Im(z^2+c),c=-7/12+15/31*I,n=40 4807552415062673 a001 956722026041/521*322^(1/6) 4807552428638701 m001 1/exp((2^(1/3)))/Conway/GAMMA(5/12)^2 4807552438468898 p004 log(17449/10789) 4807552445891314 m001 (Magata-MasserGramain)/(Paris+PlouffeB) 4807552465827107 a007 Real Root Of 722*x^4-519*x^3+21*x^2-992*x-578 4807552466213645 h001 (-exp(3)+4)/(-6*exp(4)-7) 4807552490419587 p003 LerchPhi(1/6,6,118/225) 4807552533786171 r009 Im(z^3+c),c=-9/62+39/59*I,n=9 4807552554820382 m001 (-MasserGramainDelta+Robbin)/(Chi(1)-Gompertz) 4807552561420772 m001 (BesselK(0,1)+Artin)/(Kolakoski+Thue) 4807552578926036 g007 2*Psi(2,5/11)+Psi(2,4/11)-Psi(2,3/8) 4807552591973206 r009 Im(z^3+c),c=-59/126+9/20*I,n=39 4807552608303495 a007 Real Root Of 323*x^4-986*x^3-66*x^2-107*x+159 4807552610765679 r009 Im(z^3+c),c=-1/122+29/49*I,n=36 4807552634942379 r009 Re(z^3+c),c=-27/58+5/52*I,n=43 4807552641450771 a001 1/5778*(1/2*5^(1/2)+1/2)^17*76^(9/19) 4807552643898468 m001 (-DuboisRaymond+ZetaP(4))/(sin(1)+ln(5)) 4807552650689905 q001 662/1377 4807552667491411 a007 Real Root Of -663*x^4+932*x^3+330*x^2+868*x+480 4807552672481227 a007 Real Root Of 130*x^4+646*x^3+73*x^2-134*x+4 4807552679329903 m001 (Rabbit-ZetaQ(2))/(GAMMA(5/6)+CopelandErdos) 4807552680066416 a007 Real Root Of 700*x^4+360*x^3+974*x^2-598*x-510 4807552711352312 a007 Real Root Of 749*x^4-54*x^3-51*x^2-869*x-452 4807552717317194 r005 Im(z^2+c),c=8/29+12/29*I,n=38 4807552743958028 a001 182717648081/682*322^(1/2) 4807552747660110 m008 (1/4*Pi^5+1/6)/(1/6*Pi^6-3/4) 4807552759770938 r005 Re(z^2+c),c=31/70+12/43*I,n=3 4807552764443296 a001 1/15127*(1/2*5^(1/2)+1/2)^19*76^(9/19) 4807552774442010 p001 sum(1/(383*n+216)/(10^n),n=0..infinity) 4807552776779130 r009 Im(z^3+c),c=-11/118+29/49*I,n=6 4807552780700601 a001 1/33*(1/2*5^(1/2)+1/2)^4*11^(7/20) 4807552782387664 a001 1/39603*(1/2*5^(1/2)+1/2)^21*76^(9/19) 4807552784185392 a003 cos(Pi*15/112)-cos(Pi*39/109) 4807552786623755 a001 1/64079*(1/2*5^(1/2)+1/2)^22*76^(9/19) 4807552787378946 r009 Im(z^3+c),c=-3/13+32/57*I,n=16 4807552793477894 a001 1/24476*(1/2*5^(1/2)+1/2)^20*76^(9/19) 4807552797982373 a007 Real Root Of 116*x^4+600*x^3+301*x^2+327*x-682 4807552805688272 r009 Im(z^3+c),c=-9/34+5/9*I,n=46 4807552831218284 r005 Im(z^2+c),c=-33/50+19/49*I,n=3 4807552840456861 a001 1/9349*(1/2*5^(1/2)+1/2)^18*76^(9/19) 4807552840637793 r005 Re(z^2+c),c=-19/18+57/212*I,n=20 4807552840863322 m005 (1/2*Zeta(3)+3/7)/(5/7*exp(1)+1/5) 4807552844485467 r005 Im(z^2+c),c=-37/34+5/89*I,n=9 4807552844787002 m001 (-ln(5)+ReciprocalFibonacci)/(Shi(1)-ln(2)) 4807552846099322 r001 28i'th iterates of 2*x^2-1 of 4807552846777676 m001 Pi*2^(1/3)+GAMMA(3/4)*ln(2) 4807552851283877 m001 ln(2^(1/2)+1)*Stephens^ln(3) 4807552863980303 r002 64th iterates of z^2 + 4807552867209582 r005 Im(z^2+c),c=-47/64+8/37*I,n=26 4807552869840573 m005 (1/2*Zeta(3)-1/7)/(1/9*gamma+8/9) 4807552874113055 a003 2^(1/2)-2*cos(2/15*Pi)+cos(4/27*Pi) 4807552883618131 m006 (2/5*ln(Pi)+1/3)/(5*Pi+3/4) 4807552892188926 a003 cos(Pi*41/119)/sin(Pi*40/93) 4807552902934458 r009 Im(z^3+c),c=-15/34+29/60*I,n=53 4807552906665002 a007 Real Root Of -922*x^4+538*x^3+32*x^2+111*x+155 4807552909746192 m001 1/ln(cos(Pi/5))/GAMMA(7/12)^2*cosh(1)^2 4807552913468492 m001 (-LaplaceLimit+Lehmer)/(BesselJ(0,1)+ln(2)) 4807552923200912 a001 123/233*39088169^(11/12) 4807552929521014 m005 (1/2*Pi-1/2)/(8/11*Catalan-8/9) 4807552939263018 m001 (2^(1/3))^2/ln(Robbin)^2/BesselJ(1,1)^2 4807552941386417 h001 (-9*exp(1)+9)/(-3*exp(2)-10) 4807552947884402 m005 (1/2*3^(1/2)+8/11)/(5/12*gamma+1/11) 4807552968885651 a001 521/139583862445*317811^(13/23) 4807552972308994 m005 (25/42+1/6*5^(1/2))/(3/4*3^(1/2)+5/7) 4807552973675033 l006 ln(5354/8659) 4807552976205897 s002 sum(A136480[n]/(pi^n),n=1..infinity) 4807552989554179 r005 Re(z^2+c),c=-15/31+35/62*I,n=16 4807552998542690 b008 Sqrt[E]+2*E^2*Pi 4807553023140461 m001 (3^(1/3)-LambertW(1))/(-GAMMA(17/24)+Porter) 4807553036797977 r005 Re(z^2+c),c=-1/18+35/57*I,n=4 4807553036940100 a001 365435296162/2207*322^(7/12) 4807553044898091 g007 Psi(2,1/9)+Psi(2,1/3)-Psi(2,7/11)-Psi(2,1/8) 4807553049559332 a001 2/5473*144^(54/55) 4807553063820492 m008 (2*Pi^5+1/4)/(1/6*Pi+3/4) 4807553082118241 a007 Real Root Of -766*x^4+904*x^3-34*x^2-404*x-45 4807553117048132 r005 Re(z^2+c),c=-17/26+47/108*I,n=30 4807553133721575 r002 39th iterates of z^2 + 4807553134422973 m001 (exp(Pi)+GAMMA(11/24))^Zeta(3) 4807553162455513 a001 1/3571*(1/2*5^(1/2)+1/2)^16*76^(9/19) 4807553169448150 a007 Real Root Of -898*x^4+805*x^3-914*x^2-459*x+128 4807553187300170 r005 Im(z^2+c),c=45/122+17/56*I,n=50 4807553187863687 s002 sum(A147262[n]/(pi^n-1),n=1..infinity) 4807553216053979 r005 Im(z^2+c),c=-67/118+5/53*I,n=18 4807553234615729 h005 exp(cos(Pi*3/35)+cos(Pi*12/41)) 4807553244326018 l006 ln(4267/6901) 4807553255807698 m001 (Totient+Trott)/(Zeta(5)+Pi^(1/2)) 4807553265942648 m002 Pi^6/2+Log[Pi]/(6*Pi) 4807553285194791 m001 1/exp(FeigenbaumC)^2*GolombDickman*sqrt(3)^2 4807553291657479 a007 Real Root Of 160*x^4+844*x^3+211*x^2-807*x-446 4807553295217086 r005 Re(z^2+c),c=-2/3+23/122*I,n=35 4807553326548456 a001 15127/3*75025^(11/18) 4807553330438149 a001 75025/123*18^(5/7) 4807553332889552 m001 (-Tribonacci+Thue)/(gamma+MinimumGamma) 4807553338526962 m001 (Backhouse-FeigenbaumKappa)/(Kac+Porter) 4807553340354495 m001 FeigenbaumDelta*GAMMA(23/24)^ln(Pi) 4807553340354495 m001 GAMMA(23/24)^ln(Pi)*FeigenbaumDelta 4807553350993304 r005 Im(z^2+c),c=-1/34+13/20*I,n=32 4807553360163104 r009 Re(z^3+c),c=-25/52+4/35*I,n=38 4807553363380149 m002 -2+4*Pi-Cosh[Pi]+ProductLog[Pi] 4807553373407739 r005 Im(z^2+c),c=5/48+10/17*I,n=27 4807553380364223 r009 Im(z^3+c),c=-13/48+28/51*I,n=11 4807553395179812 a007 Real Root Of -196*x^4-973*x^3-230*x^2-330*x+316 4807553409576154 m005 (2/3*2^(1/2)-4)/(1/2*exp(1)+5) 4807553428409410 r002 19th iterates of z^2 + 4807553429535579 r005 Re(z^2+c),c=-41/122+11/18*I,n=39 4807553430378052 r005 Im(z^2+c),c=-3/62+21/34*I,n=55 4807553441702956 m001 FeigenbaumD^sin(1/12*Pi)/Khinchin 4807553454922899 r009 Im(z^3+c),c=-7/94+45/64*I,n=6 4807553458817811 a007 Real Root Of -104*x^4-369*x^3+457*x^2-795*x+170 4807553474933504 r002 3th iterates of z^2 + 4807553491946445 r002 46th iterates of z^2 + 4807553492797016 r009 Im(z^3+c),c=-29/82+31/59*I,n=49 4807553494272814 h001 (4/9*exp(1)+1/10)/(7/10*exp(1)+9/11) 4807553502307844 r002 45th iterates of z^2 + 4807553509363827 s002 sum(A027103[n]/(exp(pi*n)+1),n=1..infinity) 4807553528202932 r005 Re(z^2+c),c=-39/74+33/64*I,n=7 4807553537312334 r005 Re(z^2+c),c=-13/21+27/59*I,n=24 4807553560078848 r002 30th iterates of z^2 + 4807553565883585 a001 1/7*89^(47/60) 4807553571536249 m001 (StronglyCareFree+ZetaQ(2))/(ln(gamma)-Salem) 4807553572539041 r002 8th iterates of z^2 + 4807553594151087 a007 Real Root Of -140*x^4+969*x^3+551*x^2+743*x+345 4807553595292105 a007 Real Root Of 884*x^4-665*x^3+877*x^2-250*x-444 4807553603772823 p004 log(33179/271) 4807553618836900 m001 (FeigenbaumDelta+MadelungNaCl)/(PlouffeB+Thue) 4807553632594195 r005 Re(z^2+c),c=-7/6+106/129*I,n=2 4807553637083668 m001 BesselI(1,2)*Pi^(1/2)*Niven 4807553652745819 r009 Im(z^3+c),c=-23/126+23/40*I,n=23 4807553657772266 r009 Re(z^3+c),c=-11/26+1/14*I,n=13 4807553659798865 r009 Im(z^3+c),c=-15/98+29/50*I,n=27 4807553680188350 r002 45i'th iterates of 2*x/(1-x^2) of 4807553690115684 r002 45th iterates of z^2 + 4807553700006936 l006 ln(3180/5143) 4807553714035181 m001 ln(gamma)^GAMMA(3/4)/(ln(gamma)^gamma(3)) 4807553714940610 r002 41th iterates of z^2 + 4807553724911897 a007 Real Root Of -773*x^4+545*x^3-706*x^2+443*x+478 4807553731841760 r005 Re(z^2+c),c=-85/126+11/64*I,n=52 4807553753604804 r005 Re(z^2+c),c=-67/98+20/63*I,n=4 4807553770931294 a007 Real Root Of 168*x^4+719*x^3-233*x^2+877*x-251 4807553771736803 a007 Real Root Of 501*x^4-943*x^3+344*x^2+439*x 4807553773008570 a007 Real Root Of 854*x^4+378*x^3+682*x^2+273*x-30 4807553808400480 h001 (-5*exp(4)+9)/(-5*exp(7)-8) 4807553822004007 r002 31th iterates of z^2 + 4807553831269369 p004 log(23957/14813) 4807553836369804 r005 Re(z^2+c),c=-7/10+43/221*I,n=23 4807553847485272 m005 (-13/24+1/8*5^(1/2))/(1/6*exp(1)+5) 4807553848156995 r009 Im(z^3+c),c=-43/114+33/64*I,n=61 4807553855367567 m002 -Pi^3-(E^Pi*Pi^4)/5+ProductLog[Pi] 4807553863359088 a003 cos(Pi*5/41)/cos(Pi*39/89) 4807553864713035 a007 Real Root Of -214*x^4-670*x^3-765*x^2+535*x+371 4807553868664973 m002 -5*Pi^6-Log[Pi]+ProductLog[Pi]/2 4807553879943459 a001 956722026041/5778*322^(7/12) 4807553880135943 r005 Re(z^2+c),c=-7/10+29/245*I,n=38 4807553887355415 r002 26th iterates of z^2 + 4807553889244410 m001 (-Pi^(1/2)+Rabbit)/(Zeta(5)-exp(Pi)) 4807553891379910 v002 sum(1/(2^n+(27/2*n^2+45/2*n+4)),n=1..infinity) 4807553894978376 m002 -6/Pi^2-5*Pi^6 4807553898281556 m005 (-11/60+5/12*5^(1/2))/(4*Pi+3) 4807553902455903 m001 ln(Riemann2ndZero)^2*Si(Pi)^2/Robbin 4807553903610925 a007 Real Root Of -19*x^4-921*x^3-353*x^2+501*x-598 4807553906177680 r009 Im(z^3+c),c=-1/122+29/49*I,n=38 4807553944831949 m001 (-Trott2nd+Thue)/(3^(1/2)-gamma(3)) 4807553977086007 r005 Re(z^2+c),c=-19/60+19/32*I,n=15 4807553983067019 s002 sum(A076515[n]/(n*2^n-1),n=1..infinity) 4807553989443871 r002 11th iterates of z^2 + 4807553991730032 r009 Im(z^3+c),c=-23/94+23/41*I,n=38 4807553992328738 a001 1/72*6557470319842^(10/17) 4807553994974153 r002 52th iterates of z^2 + 4807554002936016 a001 2504730781961/15127*322^(7/12) 4807554004964926 r009 Re(z^3+c),c=-57/106+10/27*I,n=46 4807554012895308 m001 (Backhouse-Cahen)/(cos(1/5*Pi)+ln(2^(1/2)+1)) 4807554013772082 a007 Real Root Of -152*x^4+752*x^3+618*x^2+378*x-400 4807554016401263 a005 (1/cos(8/85*Pi))^762 4807554020880389 a001 6557470319842/39603*322^(7/12) 4807554023003375 a007 Real Root Of 477*x^4-257*x^3+924*x^2-109*x-320 4807554025116480 a001 10610209857723/64079*322^(7/12) 4807554031970621 a001 4052739537881/24476*322^(7/12) 4807554045708332 m001 1/Pi^2/ln(DuboisRaymond)*log(1+sqrt(2))^2 4807554052381413 m001 (ln(2)+2)/(BesselK(1,1)+5) 4807554061662180 r002 61th iterates of z^2 + 4807554068544423 r005 Re(z^2+c),c=-79/114+3/61*I,n=48 4807554068751559 l006 ln(5273/8528) 4807554070142354 m005 (1/2*Catalan+4/11)/(23/20+1/4*5^(1/2)) 4807554078949600 a001 1548008755920/9349*322^(7/12) 4807554083375729 s002 sum(A164500[n]/(n*pi^n+1),n=1..infinity) 4807554117729754 r005 Im(z^2+c),c=-11/25+13/22*I,n=8 4807554117985695 m005 (4*exp(1)+1/5)/(-5/12+1/12*5^(1/2)) 4807554123108832 m001 (3^(1/2)-Psi(2,1/3))/(GAMMA(5/6)+ZetaQ(2)) 4807554124301839 r005 Im(z^2+c),c=-31/50+21/53*I,n=19 4807554130253289 m001 exp(GAMMA(3/4))^2/Magata/sin(1)^2 4807554135436648 r002 29th iterates of z^2 + 4807554171345691 r005 Im(z^2+c),c=-1/56+32/45*I,n=54 4807554171787649 h001 (9/10*exp(2)+7/10)/(1/11*exp(2)+6/7) 4807554173260373 r005 Im(z^2+c),c=-25/21+5/13*I,n=5 4807554195232225 a007 Real Root Of -482*x^4+218*x^3-722*x^2-164*x+138 4807554209157933 r009 Im(z^3+c),c=-4/17+22/39*I,n=20 4807554216646471 r009 Im(z^3+c),c=-39/118+31/58*I,n=29 4807554217260415 r009 Im(z^3+c),c=-45/122+22/49*I,n=5 4807554221497197 r005 Im(z^2+c),c=-35/26+6/127*I,n=49 4807554224790897 r009 Im(z^3+c),c=-5/62+33/56*I,n=17 4807554225670850 a005 (1/sin(64/189*Pi))^320 4807554234428122 a007 Real Root Of -942*x^4+925*x^3+410*x^2+765*x-515 4807554237071788 r009 Im(z^3+c),c=-13/42+13/24*I,n=42 4807554268599009 m009 (1/6*Psi(1,2/3)-3/4)/(1/3*Psi(1,2/3)-6) 4807554278373062 a007 Real Root Of 993*x^4-975*x^3-941*x^2-872*x+692 4807554283101060 m001 GAMMA(1/12)*ln(Bloch)*GAMMA(1/6) 4807554288762272 l006 ln(44/5387) 4807554295703634 r002 61th iterates of z^2 + 4807554332652023 r005 Re(z^2+c),c=-73/106+10/63*I,n=45 4807554345713406 r009 Im(z^3+c),c=-29/114+36/49*I,n=2 4807554349126722 a007 Real Root Of -490*x^4-367*x^3-962*x^2+610*x+501 4807554350982948 m001 (BesselI(0,2)-FeigenbaumB)/ln(2)*ln(10) 4807554387667386 p003 LerchPhi(1/256,6,241/99) 4807554400948335 a001 591286729879/3571*322^(7/12) 4807554407580017 r001 39i'th iterates of 2*x^2-1 of 4807554407628004 v002 sum(1/(5^n+(19/2*n^2+33/2*n)),n=1..infinity) 4807554426900043 r005 Im(z^2+c),c=1/12+33/56*I,n=30 4807554429839946 r002 25th iterates of z^2 + 4807554461136978 a007 Real Root Of -610*x^4+141*x^3+379*x^2+373*x-250 4807554464432174 a007 Real Root Of -160*x^4-650*x^3+790*x^2+935*x-518 4807554477843221 g003 Im(GAMMA(-9/2+I*(-203/60))) 4807554486857691 r002 30th iterates of z^2 + 4807554495517731 a007 Real Root Of -955*x^4+824*x^3+14*x^2+823*x+535 4807554495939323 r005 Im(z^2+c),c=21/82+1/41*I,n=3 4807554507763034 r009 Im(z^3+c),c=-1/122+29/49*I,n=40 4807554523580654 s002 sum(A245328[n]/(n^2*2^n+1),n=1..infinity) 4807554528251208 r005 Re(z^2+c),c=-41/62+1/10*I,n=20 4807554538239363 m001 (ln(gamma)-ln(2))/(GAMMA(5/6)+Backhouse) 4807554568783704 m001 Zeta(1,2)*polylog(4,1/2)^GAMMA(1/12) 4807554575074305 r009 Im(z^3+c),c=-1/86+29/49*I,n=24 4807554595655154 r005 Re(z^2+c),c=-47/122+34/53*I,n=11 4807554601890019 p001 sum(1/(390*n+211)/(25^n),n=0..infinity) 4807554610746333 m005 (1/2*gamma+5/7)/(5*gamma-4/5) 4807554626948854 a007 Real Root Of 86*x^4+290*x^3-751*x^2-746*x+54 4807554629003756 l006 ln(2093/3385) 4807554630593132 r009 Im(z^3+c),c=-21/62+9/10*I,n=2 4807554644950734 m001 ((1+3^(1/2))^(1/2)+Salem)/(GAMMA(5/6)-cos(1)) 4807554678774951 m001 Catalan*(KhinchinLevy-Robbin) 4807554683952805 m001 ln(2^(1/2)+1)*(Psi(2,1/3)+Stephens) 4807554685851575 a007 Real Root Of -853*x^4+286*x^3-33*x^2+602*x-268 4807554692044623 m001 (GAMMA(19/24)-Otter)/(Pi+BesselI(1,1)) 4807554702075807 r009 Re(z^3+c),c=-9/20+21/38*I,n=46 4807554721044700 r002 47th iterates of z^2 + 4807554740287527 r009 Re(z^3+c),c=-25/52+2/39*I,n=43 4807554758666570 r009 Im(z^3+c),c=-11/46+35/61*I,n=12 4807554775083089 r009 Im(z^3+c),c=-7/82+23/39*I,n=15 4807554777154428 r009 Im(z^3+c),c=-9/34+5/9*I,n=47 4807554786316791 r009 Im(z^3+c),c=-1/122+29/49*I,n=42 4807554794531015 m001 ln(FeigenbaumB)^2/GolombDickman^2*GAMMA(1/6) 4807554795110933 s002 sum(A286554[n]/(pi^n),n=1..infinity) 4807554796999568 r002 60th iterates of z^2 + 4807554806195138 r009 Re(z^3+c),c=-7/13+8/13*I,n=22 4807554809785990 a003 cos(Pi*37/112)-sin(Pi*19/42) 4807554822192313 a003 sin(Pi*16/89)*sin(Pi*38/107) 4807554837033819 m001 (PolyaRandomWalk3D+Totient)/(2^(1/3)-ln(5)) 4807554837428840 m001 1/Catalan^2/BesselJ(0,1)/exp(sin(Pi/5))^2 4807554842673218 m001 arctan(1/2)/exp(MinimumGamma)/sqrt(5) 4807554852865332 m005 (3/5*Catalan+2)/(-43/60+1/12*5^(1/2)) 4807554866143025 m005 (1/2*3^(1/2)-7/10)/(2*2^(1/2)+5/8) 4807554887114813 m001 (2*Pi/GAMMA(5/6))^(GAMMA(3/4)/Totient) 4807554890455161 a007 Real Root Of 70*x^4+114*x^3-907*x^2+633*x-720 4807554914443213 a007 Real Root Of -149*x^4-616*x^3+307*x^2-758*x+408 4807554914887699 r009 Im(z^3+c),c=-1/122+29/49*I,n=44 4807554933313273 h001 (9/11*exp(1)+4/9)/(5/7*exp(2)+3/11) 4807554945134615 r005 Re(z^2+c),c=-57/106+17/35*I,n=13 4807554945881157 a007 Real Root Of -86*x^4+895*x^3+588*x^2+429*x-437 4807554964586521 r005 Im(z^2+c),c=-45/44+15/49*I,n=4 4807554968279259 a007 Real Root Of -839*x^4+824*x^3+718*x^2+438*x+181 4807554974027578 r009 Im(z^3+c),c=-1/122+29/49*I,n=46 4807554977002460 r005 Re(z^2+c),c=-23/31+1/22*I,n=44 4807554986918631 a001 53316291173/843*322^(3/4) 4807554995008753 m001 Niven/exp(Si(Pi))/GAMMA(1/6) 4807555001128430 r009 Im(z^3+c),c=-1/122+29/49*I,n=48 4807555001634980 r002 58th iterates of z^2 + 4807555007029850 m004 -75/Pi+25*Pi*Tan[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 4807555013496003 r009 Im(z^3+c),c=-1/122+29/49*I,n=50 4807555019114058 r009 Im(z^3+c),c=-1/122+29/49*I,n=52 4807555021652956 r009 Im(z^3+c),c=-1/122+29/49*I,n=54 4807555022793641 r009 Im(z^3+c),c=-1/122+29/49*I,n=56 4807555023302708 r009 Im(z^3+c),c=-1/122+29/49*I,n=58 4807555023528135 r009 Im(z^3+c),c=-1/122+29/49*I,n=60 4807555023627046 r009 Im(z^3+c),c=-1/122+29/49*I,n=62 4807555023669969 r009 Im(z^3+c),c=-1/122+29/49*I,n=64 4807555023749509 r009 Im(z^3+c),c=-1/122+29/49*I,n=63 4807555023814766 r009 Im(z^3+c),c=-1/122+29/49*I,n=61 4807555023964276 r009 Im(z^3+c),c=-1/122+29/49*I,n=59 4807555024303391 r009 Im(z^3+c),c=-1/122+29/49*I,n=57 4807555025066103 r009 Im(z^3+c),c=-1/122+29/49*I,n=55 4807555026769219 r009 Im(z^3+c),c=-1/122+29/49*I,n=53 4807555030548533 r009 Im(z^3+c),c=-1/122+29/49*I,n=51 4807555034274074 r002 36th iterates of z^2 + 4807555038889170 r009 Im(z^3+c),c=-1/122+29/49*I,n=49 4807555047923128 r009 Im(z^3+c),c=-3/8+28/53*I,n=22 4807555057206848 r009 Im(z^3+c),c=-1/122+29/49*I,n=47 4807555058241112 r005 Re(z^2+c),c=-19/28+1/26*I,n=25 4807555063949656 a007 Real Root Of 42*x^4-50*x^3-349*x^2-986*x+558 4807555084744143 m003 4+Sin[1/2+Sqrt[5]/2]/2+Tanh[1/2+Sqrt[5]/2]/3 4807555097260836 r009 Im(z^3+c),c=-1/122+29/49*I,n=45 4807555102489333 a007 Real Root Of -866*x^4+639*x^3+162*x^2+978*x+550 4807555102919211 a007 Real Root Of 199*x^4+870*x^3-560*x^2-634*x+261 4807555118657837 a007 Real Root Of -882*x^4+397*x^3-401*x^2+437*x+394 4807555124196771 m005 (1/3*Pi-1/3)/(6/7*Zeta(3)+5/11) 4807555125839911 a007 Real Root Of 121*x^4-311*x^3-955*x^2-770*x+619 4807555127442859 a007 Real Root Of 762*x^4-273*x^3+876*x^2-442*x-486 4807555145903222 p004 log(36973/22861) 4807555158741697 r009 Im(z^3+c),c=-13/56+11/17*I,n=2 4807555184499041 r009 Im(z^3+c),c=-1/122+29/49*I,n=43 4807555186938656 b008 Pi+2*ArcCot[10/11] 4807555197996372 l006 ln(5192/8397) 4807555201337202 a005 (1/sin(90/193*Pi))^280 4807555218178804 a001 18/1836311903*8^(13/17) 4807555227199114 a007 Real Root Of 932*x^4-479*x^3+645*x^2-732*x-604 4807555236983939 a007 Real Root Of -25*x^4+352*x^3+434*x^2+345*x+106 4807555238774055 q001 1349/2806 4807555238774055 r002 2th iterates of z^2 + 4807555242974838 h005 exp(cos(Pi*2/49)/cos(Pi*27/56)) 4807555246676340 m001 (ln(2)/ln(10)+exp(1))/(ln(gamma)+Landau) 4807555275523861 g006 Psi(1,3/11)+Psi(1,8/9)+Psi(1,1/6)-Psi(1,5/11) 4807555310095515 r002 39th iterates of z^2 + 4807555316275308 m005 (1/2*Pi+3/5)/(6/7*3^(1/2)-6) 4807555318947641 a007 Real Root Of 836*x^4+910*x^3+338*x^2-762*x-388 4807555323088920 r005 Re(z^2+c),c=-47/34+3/100*I,n=6 4807555335442160 r009 Im(z^3+c),c=-29/74+21/41*I,n=34 4807555338307112 m002 Pi^2/12+4*Tanh[Pi] 4807555344033447 m001 exp(Pi)*GaussAGM(1,1/sqrt(2))^2/sin(Pi/5)^2 4807555352498182 r009 Re(z^3+c),c=-8/15+3/10*I,n=32 4807555355657219 a007 Real Root Of -801*x^4-729*x^3+266*x^2+576*x+27 4807555369468267 a001 1/1364*(1/2*5^(1/2)+1/2)^14*76^(9/19) 4807555373822770 r009 Im(z^3+c),c=-1/122+29/49*I,n=41 4807555385924463 r009 Re(z^3+c),c=-5/11+2/23*I,n=33 4807555389514577 r005 Im(z^2+c),c=7/19+16/41*I,n=5 4807555408150767 a007 Real Root Of -604*x^4+423*x^3-731*x^2+609*x+541 4807555414570282 r005 Re(z^2+c),c=23/118+15/34*I,n=13 4807555424937082 s002 sum(A120479[n]/(n!^3),n=1..infinity) 4807555426477067 m001 GAMMA(13/24)/BesselJ(0,1)^2*exp(cos(1)) 4807555429077624 m001 (ln(5)+5)/exp(1/Pi) 4807555437691623 r002 10th iterates of z^2 + 4807555452819982 r005 Re(z^2+c),c=-41/90+17/32*I,n=39 4807555455728473 a007 Real Root Of -149*x^4-525*x^3+830*x^2-334*x+470 4807555463978389 r009 Im(z^3+c),c=-1/4+33/59*I,n=26 4807555510747365 a007 Real Root Of -614*x^4+771*x^3+338*x^2+174*x+124 4807555522041893 a007 Real Root Of 239*x^4-534*x^3-112*x^2-881*x+496 4807555543061838 r005 Re(z^2+c),c=-31/48+15/64*I,n=32 4807555551024825 m001 cos(1/12*Pi)-Sarnak^(5^(1/2)) 4807555572756926 r005 Re(z^2+c),c=-23/34+1/85*I,n=29 4807555579158705 l006 ln(3533/3707) 4807555580456716 a007 Real Root Of -143*x^4-592*x^3+335*x^2-688*x-441 4807555582282106 l006 ln(3099/5012) 4807555593812141 m005 (1/2*Pi+7/10)/(1/6*Catalan-5/8) 4807555597726518 a007 Real Root Of 601*x^4-553*x^3-463*x^2-132*x-50 4807555605172939 h001 (1/4*exp(1)+2/7)/(4/7*exp(1)+5/11) 4807555609255026 r009 Im(z^3+c),c=-33/62+27/55*I,n=49 4807555620883047 r005 Im(z^2+c),c=-18/31+4/47*I,n=23 4807555669470968 r009 Im(z^3+c),c=-17/32+8/45*I,n=60 4807555673492618 m001 1/3*(ln(5)-3^(1/3)*HardyLittlewoodC3)*3^(2/3) 4807555690268149 r009 Im(z^3+c),c=-7/122+36/61*I,n=24 4807555722499813 r005 Im(z^2+c),c=-63/50+1/54*I,n=24 4807555738854379 m001 polylog(4,1/2)/sin(1/5*Pi)/FeigenbaumC 4807555748876445 r009 Im(z^3+c),c=-11/32+13/19*I,n=38 4807555749986393 r005 Im(z^2+c),c=-37/82+5/62*I,n=30 4807555752573721 r005 Re(z^2+c),c=-33/34+29/53*I,n=4 4807555753207341 r002 31th iterates of z^2 + 4807555753741012 m001 1/cosh(1)/GAMMA(17/24)/exp(sinh(1))^2 4807555756067050 m009 (3/5*Psi(1,3/4)+6)/(5*Psi(1,2/3)+1/3) 4807555756590281 m006 (4*exp(2*Pi)+1/6)/(5/6*exp(2*Pi)-2/3) 4807555757362013 r005 Re(z^2+c),c=-11/16+12/91*I,n=12 4807555768393836 r009 Im(z^3+c),c=-11/32+13/19*I,n=43 4807555769264650 a005 (1/cos(32/229*Pi))^270 4807555783336758 r009 Im(z^3+c),c=-1/122+29/49*I,n=39 4807555784388193 r009 Im(z^3+c),c=-11/32+13/19*I,n=48 4807555784897243 r002 21th iterates of z^2 + 4807555787928735 r009 Im(z^3+c),c=-11/32+13/19*I,n=53 4807555788318914 r009 Im(z^3+c),c=-11/32+13/19*I,n=63 4807555788330030 r009 Im(z^3+c),c=-11/32+13/19*I,n=58 4807555789644548 m001 (KomornikLoreti+MinimumGamma)^MertensB3 4807555795889349 m005 (5/66+1/6*5^(1/2))/(4/5*Catalan+1/5) 4807555818353961 r005 Re(z^2+c),c=-55/86+3/8*I,n=7 4807555823810452 a007 Real Root Of 225*x^4-357*x^3-495*x^2-794*x-319 4807555826822876 a005 (1/cos(15/173*Pi))^1758 4807555832337091 h002 exp(17^(3/2)-11^(7/12)) 4807555832337091 h007 exp(17^(3/2)-11^(7/12)) 4807555854924030 r002 24th iterates of z^2 + 4807555886647242 r009 Im(z^3+c),c=-41/106+23/45*I,n=47 4807555898530424 a007 Real Root Of 144*x^4+669*x^3-10*x^2+361*x-621 4807555906998807 r005 Re(z^2+c),c=-53/94+25/61*I,n=23 4807555913729853 a001 591286729879/199*76^(1/9) 4807555925804589 r009 Im(z^3+c),c=-19/70+37/63*I,n=8 4807555929768665 a007 Real Root Of 466*x^4-174*x^3+682*x^2-668*x-523 4807555929945057 m001 1/GAMMA(1/24)*ln(Catalan)*GAMMA(17/24) 4807555949571372 r009 Im(z^3+c),c=-9/34+5/9*I,n=49 4807555951937668 r002 8th iterates of z^2 + 4807555960542665 r005 Re(z^2+c),c=-61/94+6/43*I,n=22 4807555975284815 m001 (KhinchinLevy+TwinPrimes)/(5^(1/2)-Si(Pi)) 4807555976894182 m001 (Rabbit+Salem)/(BesselJ(1,1)-FeigenbaumB) 4807555978321451 a007 Real Root Of 373*x^4-35*x^3+374*x^2-403*x-304 4807556001282383 a001 54018521/21*2504730781961^(10/11) 4807556001282384 a001 6643838879/21*12586269025^(10/11) 4807556001282384 a001 817138163596/21*63245986^(10/11) 4807556004253271 m005 (5/6*Pi+2/5)/(-4/15+2/5*5^(1/2)) 4807556009694523 a007 Real Root Of -48*x^4-334*x^3-759*x^2+799*x+525 4807556010587515 m001 Ei(1)*(HardyLittlewoodC4-ZetaQ(2)) 4807556012131236 r009 Im(z^3+c),c=-41/90+24/49*I,n=60 4807556012855865 m005 (1/2*Catalan-6/11)/(7/10*exp(1)-1/12) 4807556024500830 m001 Pi^Bloch/FeigenbaumMu 4807556025280560 a001 521*(1/2*5^(1/2)+1/2)^9*3^(3/17) 4807556040905052 m001 Kolakoski^2/CareFree*ln(Paris)^2 4807556068326307 l006 ln(4105/6639) 4807556078353715 a007 Real Root Of 12*x^4+589*x^3+561*x^2-984*x-178 4807556078781083 m005 (1/3*Catalan-2/9)/(7/12*exp(1)+1/7) 4807556079435699 a007 Real Root Of 994*x^4+40*x^3+898*x^2-946*x-711 4807556081402176 r009 Im(z^3+c),c=-11/32+13/19*I,n=33 4807556090227066 a007 Real Root Of -838*x^4+960*x^3-262*x^2-676*x-113 4807556099284543 a007 Real Root Of -615*x^4+509*x^3-931*x^2+862*x+719 4807556100679680 r005 Re(z^2+c),c=-9/14+41/145*I,n=59 4807556106516344 r005 Re(z^2+c),c=-51/74+6/59*I,n=57 4807556113286007 a003 cos(Pi*31/95)-sin(Pi*33/67) 4807556137258170 m005 (1/2*5^(1/2)-3)/(1/8*Zeta(3)-1/9) 4807556150554403 r005 Im(z^2+c),c=9/94+20/37*I,n=13 4807556169764504 m002 5*Pi^6+(6*Coth[Pi])/Pi^2 4807556189287162 m001 (ln(2)+KomornikLoreti)/(Lehmer-ZetaP(4)) 4807556214255924 r002 8th iterates of z^2 + 4807556217419323 a007 Real Root Of -696*x^4+578*x^3+164*x^2-26*x+51 4807556219848600 r009 Im(z^3+c),c=-37/126+35/64*I,n=24 4807556224927506 m001 exp(Pi)^sinh(1)/GaussAGM 4807556238171791 r005 Im(z^2+c),c=-7/8+3/85*I,n=9 4807556244970297 r009 Im(z^3+c),c=-12/25+17/54*I,n=6 4807556250530091 a007 Real Root Of 521*x^4-950*x^3+859*x^2-360*x-505 4807556255332457 m001 Gompertz/((1+3^(1/2))^(1/2)-ThueMorse) 4807556279066039 a001 591286729879/521*322^(1/4) 4807556281974617 m001 (CareFree+MertensB2)/(ln(3)+Zeta(1/2)) 4807556310878656 r005 Re(z^2+c),c=-21/44+35/61*I,n=61 4807556349731184 m009 (1/6*Psi(1,1/3)-1/6)/(5/6*Psi(1,2/3)+3/5) 4807556359589148 m001 (2^(1/2)+polylog(4,1/2))/(Khinchin+MertensB3) 4807556359623745 r009 Im(z^3+c),c=-5/54+46/61*I,n=61 4807556363033981 l006 ln(5111/8266) 4807556389706737 a007 Real Root Of 204*x^4+966*x^3-90*x^2-176*x-404 4807556402369426 m001 (3^(1/2)+ln(3))/(-Conway+TravellingSalesman) 4807556404801095 r002 13th iterates of z^2 + 4807556416989394 r009 Im(z^3+c),c=-9/56+39/62*I,n=9 4807556418550582 a007 Real Root Of -903*x^4-122*x^3-409*x^2+37*x+147 4807556429669610 r009 Im(z^3+c),c=-47/122+22/43*I,n=44 4807556436113513 a007 Real Root Of 429*x^4+454*x^3+314*x^2-418*x-246 4807556436366919 m001 GAMMA(1/4)^LandauRamanujan/GAMMA(1/6) 4807556446492684 r009 Im(z^3+c),c=-33/64+23/63*I,n=41 4807556471815330 m001 (exp(1/Pi)-sin(1))/(GAMMA(11/12)+ZetaQ(2)) 4807556471985464 r002 18th iterates of z^2 + 4807556488964471 m005 (1/2*Zeta(3)+1/11)/(67/132+5/12*5^(1/2)) 4807556495611778 b008 E^(Csch[1]/2)*Pi 4807556501635237 r002 16th iterates of z^2 + 4807556509861607 p003 LerchPhi(1/12,6,456/187) 4807556525362293 a007 Real Root Of 955*x^4-173*x^3+475*x^2-287*x-318 4807556560806577 l006 ln(6117/9893) 4807556580513686 l006 ln(81/9917) 4807556590355572 r009 Im(z^3+c),c=-33/64+7/53*I,n=42 4807556593087518 m001 (Cahen-ZetaP(3))/(Zeta(1,-1)-AlladiGrinstead) 4807556603612323 a007 Real Root Of -122*x^4-596*x^3-49*x^2+85*x+488 4807556606216691 a003 cos(Pi*7/93)/cos(Pi*47/108) 4807556607961658 a001 225851433717/1364*322^(7/12) 4807556613303075 p003 LerchPhi(1/25,1,494/231) 4807556614183319 r009 Im(z^3+c),c=-9/64+32/55*I,n=28 4807556623326870 h001 (-2*exp(3/2)-8)/(-4*exp(-1)+5) 4807556631375536 b008 9/2+KelvinBei[1,1] 4807556639835750 r002 13th iterates of z^2 + 4807556639835750 r002 13th iterates of z^2 + 4807556646766463 h001 (2/7*exp(2)+4/11)/(3/5*exp(2)+5/7) 4807556652518976 r009 Im(z^3+c),c=-13/38+19/36*I,n=21 4807556660088601 a007 Real Root Of 207*x^4-868*x^3+9*x^2-172*x+166 4807556666429953 r009 Im(z^3+c),c=-1/122+29/49*I,n=37 4807556666789125 r009 Im(z^3+c),c=-31/86+27/52*I,n=16 4807556667749621 a007 Real Root Of -740*x^4+854*x^3+522*x^2+728*x-526 4807556668381656 a008 Real Root of x^4-2*x^3-13*x^2-13*x+51 4807556674060466 m001 exp(1)/Khinchin*Weierstrass 4807556680087846 s002 sum(A075020[n]/(n*exp(pi*n)-1),n=1..infinity) 4807556680190272 s002 sum(A138962[n]/(n*exp(pi*n)-1),n=1..infinity) 4807556681465975 a001 29/2178309*987^(41/48) 4807556700149489 m005 (2/5*gamma+4/5)/(1/4*gamma+2) 4807556700149489 m007 (-2/5*gamma-4/5)/(-1/4*gamma-2) 4807556702046879 m001 (HardyLittlewoodC5-ZetaP(2))/ln(2^(1/2)+1) 4807556706693736 r005 Im(z^2+c),c=17/74+24/47*I,n=11 4807556723917661 m001 Pi*GAMMA(19/24)/ZetaP(4) 4807556728853368 a001 9349/233*2178309^(17/35) 4807556729890677 m001 (Riemann2ndZero-Trott2nd)/(Pi+GAMMA(3/4)) 4807556751101739 b008 -7+3^(5+E) 4807556753147369 a003 cos(Pi*7/18)+cos(Pi*36/79) 4807556757968626 m005 (1/2*Zeta(3)+4)/(5/11*gamma-1/6) 4807556760304399 a007 Real Root Of -975*x^4+427*x^3-404*x^2+73*x+228 4807556761158888 b008 LogGamma[ArcCsch[123]] 4807556768572383 m001 1/MinimumGamma^2/exp(Artin)/sin(Pi/12)^2 4807556768763624 m001 (Zeta(5)-DuboisRaymond)/(Salem+Stephens) 4807556768925291 r009 Im(z^3+c),c=-23/52+14/29*I,n=56 4807556788485314 r002 7th iterates of z^2 + 4807556795877469 m001 (MasserGramain-Robbin)/(ln(5)+ErdosBorwein) 4807556798042346 a007 Real Root Of -16*x^4+676*x^3-223*x^2+479*x-253 4807556798448901 r005 Re(z^2+c),c=-79/118+4/47*I,n=26 4807556806811125 m001 (Grothendieck-gamma)/(Riemann3rdZero+ZetaQ(2)) 4807556808419751 m001 BesselJ(1,1)*ln(FeigenbaumB)^2/GAMMA(7/24) 4807556808955762 m001 (Gompertz+Landau)/(Mills-Riemann3rdZero) 4807556810528609 a001 1/2*1346269^(11/34) 4807556833963270 a007 Real Root Of 109*x^4+477*x^3-227*x^2+117*x+584 4807556835231412 s002 sum(A240916[n]/((2*n)!),n=1..infinity) 4807556837428363 m001 (2^(1/3)-Kac)/(Landau+StronglyCareFree) 4807556845276629 r009 Im(z^3+c),c=-3/70+23/38*I,n=8 4807556867197373 r002 61th iterates of z^2 + 4807556880572170 m001 (Chi(1)+sin(1/12*Pi))/(Niven+Stephens) 4807556900943966 a001 225851433717/2207*322^(2/3) 4807556903206786 m001 (-FeigenbaumKappa+Kac)/(Catalan+BesselK(1,1)) 4807556924879774 m009 (6*Psi(1,2/3)+3)/(2/5*Pi^2+1/2) 4807556928748612 m003 3/2+Sqrt[5]/8+(5*Sinh[1/2+Sqrt[5]/2])/4 4807556930105135 m001 TreeGrowth2nd^2/Rabbit*exp(LambertW(1)) 4807556933680282 r009 Im(z^3+c),c=-1/58+23/39*I,n=13 4807556964554225 a007 Real Root Of 144*x^4+501*x^3-817*x^2+691*x+950 4807556974225872 h001 (1/5*exp(1)+5/6)/(7/9*exp(1)+3/4) 4807556979875051 m001 (1+FeigenbaumMu)/(PlouffeB+Weierstrass) 4807556985936292 a007 Real Root Of -564*x^4-384*x^3-614*x^2+461*x+351 4807556990982719 m005 (1/2*3^(1/2)-5/7)/(7/8*exp(1)+7/9) 4807556992979539 r009 Im(z^3+c),c=-11/118+13/22*I,n=13 4807557013587936 h001 (1/4*exp(1)+6/7)/(9/10*exp(1)+3/4) 4807557021311922 r005 Re(z^2+c),c=-5/7+8/77*I,n=46 4807557027002378 r005 Re(z^2+c),c=-71/102+19/40*I,n=30 4807557032703881 r009 Im(z^3+c),c=-9/106+10/17*I,n=34 4807557046885941 m001 Magata/Artin/Ei(1) 4807557060905904 m001 (2^(1/3)*ZetaQ(3)+HardyLittlewoodC5)/ZetaQ(3) 4807557061666983 m002 -1+2*E^Pi+3/ProductLog[Pi] 4807557078595590 m005 (1/2*2^(1/2)+5)/(4/11*Zeta(3)+3/4) 4807557087203100 m001 (Shi(1)+Landau)/(-PrimesInBinary+RenyiParking) 4807557089349451 r005 Im(z^2+c),c=-16/29+2/27*I,n=15 4807557101012490 r009 Re(z^3+c),c=-1/86+39/61*I,n=14 4807557106585091 a007 Real Root Of 195*x^4+978*x^3-22*x^2-896*x+704 4807557108428187 r009 Im(z^3+c),c=-27/94+19/26*I,n=11 4807557113897473 p001 sum((-1)^n/(517*n+305)/n/(25^n),n=1..infinity) 4807557114382635 a003 cos(Pi*6/17)-sin(Pi*43/114) 4807557119912412 m001 1/TreeGrowth2nd^2*Artin^2*exp(Ei(1)) 4807557139815615 r005 Re(z^2+c),c=41/106+19/52*I,n=30 4807557143206228 r002 31th iterates of z^2 + 4807557144393884 m001 Pi*Totient/ZetaQ(3) 4807557162221477 r009 Re(z^3+c),c=-21/52+3/59*I,n=29 4807557175950716 a007 Real Root Of 517*x^4-951*x^3-794*x^2-679*x+588 4807557179821912 a007 Real Root Of -471*x^4+403*x^3-306*x^2+722*x-296 4807557191624165 m001 1/ln(Zeta(3))*Catalan*cos(Pi/12) 4807557192719117 m001 (RenyiParking+ZetaP(3))/(GAMMA(3/4)+ln(2)) 4807557206597778 h001 (9/11*exp(2)+5/7)/(1/3*exp(1)+1/2) 4807557212911553 r009 Im(z^3+c),c=-9/46+36/55*I,n=5 4807557215086223 r002 60th iterates of z^2 + 4807557231111435 a007 Real Root Of -625*x^4+859*x^3+201*x^2+981*x+554 4807557236340499 r005 Re(z^2+c),c=-73/106+8/49*I,n=46 4807557255897444 r005 Re(z^2+c),c=11/126+7/38*I,n=12 4807557262937431 r005 Re(z^2+c),c=9/38+24/49*I,n=8 4807557267127328 m001 (-gamma(2)+GAMMA(5/6))/(exp(Pi)+cos(1)) 4807557291539514 a007 Real Root Of 550*x^4-272*x^3+505*x^2+321*x-22 4807557292522434 m005 (1/2*gamma+7/12)/(5/9*5^(1/2)+4/7) 4807557295695062 r009 Im(z^3+c),c=-29/126+35/62*I,n=28 4807557305019271 a008 Real Root of x^4-x^3-28*x^2+10*x+176 4807557311635887 m001 (exp(-1/2*Pi)+Magata*ZetaR(2))/ZetaR(2) 4807557357909023 a007 Real Root Of -609*x^4+505*x^3-783*x^2+136*x+335 4807557366633132 r009 Im(z^3+c),c=-33/62+27/55*I,n=64 4807557375068995 m001 (Mills-OneNinth)/(Riemann3rdZero-ZetaP(4)) 4807557377699724 a001 13*4^(50/53) 4807557392648900 m005 (1/3*5^(1/2)+1/5)/(11/12*5^(1/2)-1/12) 4807557403273289 r009 Im(z^3+c),c=-33/62+27/55*I,n=61 4807557408633829 m001 sin(1)^(FransenRobinson/Robbin) 4807557426409010 r009 Im(z^3+c),c=-55/82+16/31*I,n=22 4807557427459627 a007 Real Root Of -464*x^4-229*x^3+521*x^2+867*x-487 4807557461739821 r009 Im(z^3+c),c=-10/27+14/27*I,n=51 4807557464213677 a007 Real Root Of 742*x^4-46*x^3+550*x^2-175*x-256 4807557489527395 m005 (1/2*5^(1/2)-1/8)/(-24/35+3/14*5^(1/2)) 4807557491375186 m005 (1/2*gamma+3/4)/(11/12*Catalan-3) 4807557507899489 r009 Im(z^3+c),c=-15/38+32/63*I,n=57 4807557514415148 a007 Real Root Of 520*x^4-352*x^3-967*x^2-485*x+468 4807557515048102 m001 (ln(2+3^(1/2))-Zeta(1,2))/(Conway-GaussAGM) 4807557521689600 r009 Im(z^3+c),c=-7/40+34/59*I,n=37 4807557541645149 m005 (1/2*Pi-7/10)/(1/10*Catalan-3/11) 4807557565593532 l006 ln(1006/1627) 4807557566013066 r002 63th iterates of z^2 + 4807557566247337 a007 Real Root Of -520*x^4+137*x^3-483*x^2+7*x+158 4807557568231784 a007 Real Root Of -486*x^4+776*x^3+943*x^2+297*x-421 4807557576364376 m009 (2*Pi^2-4/5)/(16*Catalan+2*Pi^2+5) 4807557584867744 r005 Re(z^2+c),c=-31/34+19/99*I,n=28 4807557585741027 r009 Im(z^3+c),c=-9/20+27/52*I,n=30 4807557620824441 h001 (5/7*exp(1)+5/12)/(6/11*exp(2)+7/8) 4807557638573445 a007 Real Root Of 477*x^4-848*x^3-225*x^2+143*x+52 4807557670400106 m005 (1/2*Zeta(3)+8/9)/(7/10*Pi+9/10) 4807557670860724 s002 sum(A106642[n]/((2^n+1)/n),n=1..infinity) 4807557693427100 a007 Real Root Of -38*x^4-5*x^3+970*x^2+699*x+685 4807557699307977 r009 Re(z^3+c),c=-3/70+28/31*I,n=3 4807557715865348 r005 Re(z^2+c),c=-57/94+7/22*I,n=22 4807557721175696 r002 44th iterates of z^2 + 4807557729044760 a007 Real Root Of -10*x^4-466*x^3+708*x^2-79*x-580 4807557732680195 q001 687/1429 4807557737694294 m001 (GAMMA(5/6)-Pi^(1/2))/(GAMMA(17/24)+ZetaQ(2)) 4807557743948002 a001 591286729879/5778*322^(2/3) 4807557758694568 a001 28657/123*521^(15/31) 4807557765963622 m001 (DuboisRaymond+Kolakoski)/(1+Shi(1)) 4807557769148086 a001 6557470319842/2207*123^(1/10) 4807557777657896 r005 Im(z^2+c),c=-59/46+1/44*I,n=50 4807557779422004 m001 1/Tribonacci^2*Kolakoski*ln(Trott)^2 4807557797273573 r009 Im(z^3+c),c=-33/62+27/55*I,n=58 4807557806089438 a007 Real Root Of -422*x^4-49*x^3-446*x^2+555*x+387 4807557807524952 m001 (3^(1/2)-Catalan)/(GAMMA(17/24)+ThueMorse) 4807557814098503 r009 Im(z^3+c),c=-1/118+29/49*I,n=32 4807557831721438 a007 Real Root Of -20*x^4+362*x^3-722*x^2-589*x-75 4807557837721938 r005 Re(z^2+c),c=-13/14+32/221*I,n=56 4807557840243754 m001 exp(sqrt(2))+cos(1)^Lehmer 4807557843430106 r005 Re(z^2+c),c=-25/18+48/197*I,n=2 4807557855784524 m006 (3*Pi-1/5)/(3/4*ln(Pi)-2/3) 4807557857141987 r002 26th iterates of z^2 + 4807557861590431 m001 (BesselI(0,1)-gamma(2))/(KhinchinLevy+Porter) 4807557866940658 a001 1548008755920/15127*322^(2/3) 4807557870614212 a001 7881196/5*102334155^(17/21) 4807557877944268 m001 (GaussAGM-ReciprocalLucas)/(Zeta(3)+ln(Pi)) 4807557879842692 a001 161/72*377^(4/31) 4807557881461834 r009 Im(z^3+c),c=-33/98+25/47*I,n=45 4807557883592527 r009 Re(z^3+c),c=-33/58+22/61*I,n=20 4807557884885045 a001 4052739537881/39603*322^(2/3) 4807557887503096 a001 225749145909/2206*322^(2/3) 4807557889121140 a001 6557470319842/64079*322^(2/3) 4807557895975286 a001 2504730781961/24476*322^(2/3) 4807557897943307 m001 (-BesselK(1,1)+ZetaP(4))/(2^(1/2)-arctan(1/3)) 4807557905402730 r009 Re(z^3+c),c=-51/118+3/41*I,n=21 4807557915141329 a001 28143753123/5*4181^(17/21) 4807557929357822 r002 36th iterates of z^2 + 4807557932751781 r009 Im(z^3+c),c=-5/11+25/52*I,n=58 4807557939241407 s002 sum(A048598[n]/(exp(n)-1),n=1..infinity) 4807557941226080 r005 Re(z^2+c),c=47/126+10/53*I,n=53 4807557942954303 a001 956722026041/9349*322^(2/3) 4807557956994080 r009 Re(z^3+c),c=-11/122+30/43*I,n=64 4807557965682112 a001 322/6765*377^(23/59) 4807557992164394 m005 (1/2*Zeta(3)+1/10)/(1/6*3^(1/2)-1/7) 4807557995946608 m005 (5/6*Catalan-5/6)/(2/5*Pi+1/5) 4807558005585618 r009 Im(z^3+c),c=-29/90+34/39*I,n=2 4807558018049192 r002 12th iterates of z^2 + 4807558057800072 h001 (1/10*exp(1)+5/9)/(1/9*exp(2)+9/10) 4807558060201008 r005 Re(z^2+c),c=-53/90+15/62*I,n=6 4807558073202106 a005 (1/cos(14/191*Pi))^403 4807558087499839 a007 Real Root Of -198*x^4-911*x^3+49*x^2-755*x-218 4807558089408362 r005 Re(z^2+c),c=-71/102+2/53*I,n=35 4807558092877233 b008 -49+BesselK[0,1/2] 4807558113334970 r009 Im(z^3+c),c=-23/118+11/19*I,n=9 4807558114388148 p003 LerchPhi(1/16,1,263/121) 4807558145449051 a001 271443/8*55^(2/23) 4807558163330683 r005 Im(z^2+c),c=-45/94+17/32*I,n=36 4807558163360989 m001 (Stephens-ZetaQ(4))/(KomornikLoreti-Lehmer) 4807558180871023 a007 Real Root Of 802*x^4+876*x^3+203*x^2-845*x-41 4807558191082832 m005 (1/2*3^(1/2)-6)/(1/2*gamma-2/11) 4807558224436061 a007 Real Root Of 356*x^4+277*x^3+845*x^2-792*x-40 4807558229650550 a007 Real Root Of 36*x^4+94*x^3-510*x^2-492*x+636 4807558236104998 m001 (sin(1)+gamma(2))/(Champernowne+ErdosBorwein) 4807558243966427 r002 40th iterates of z^2 + 4807558253089010 a007 Real Root Of 161*x^4-220*x^3+227*x^2-858*x-498 4807558264953296 a001 365435296162/3571*322^(2/3) 4807558287568294 r009 Im(z^3+c),c=-33/62+27/55*I,n=52 4807558305707132 r005 Re(z^2+c),c=-26/19+1/24*I,n=37 4807558329319380 r002 37th iterates of z^2 + 4807558332911328 r005 Re(z^2+c),c=29/122+25/63*I,n=48 4807558341022034 r005 Re(z^2+c),c=-9/14+62/243*I,n=43 4807558372718580 m001 1/(2^(1/3))/MadelungNaCl^2/ln(GAMMA(11/12)) 4807558377788738 a003 sin(Pi*43/115)-sin(Pi*41/97) 4807558381793722 m001 1/cos(Pi/5)*ln(BesselJ(1,1))^2*gamma 4807558389645173 r002 11th iterates of z^2 + 4807558403667063 a008 Real Root of x^4-x^3-93*x^2+84*x+1908 4807558416678128 r005 Im(z^2+c),c=-51/106+12/23*I,n=8 4807558428666887 m001 (ln(2)-exp(-1/2*Pi))/(MinimumGamma-ZetaP(2)) 4807558429044051 r005 Re(z^2+c),c=29/110+16/37*I,n=15 4807558436589777 m001 GAMMA(7/12)/ln(ErdosBorwein)^2/sqrt(2) 4807558436700337 r005 Re(z^2+c),c=-43/66+5/44*I,n=18 4807558438058400 r002 28th iterates of z^2 + 4807558444596046 r009 Im(z^3+c),c=-33/62+27/55*I,n=55 4807558445812355 a007 Real Root Of -444*x^4+553*x^3+905*x^2+982*x-719 4807558515418762 a007 Real Root Of -851*x^4-711*x^3-573*x^2+566*x+371 4807558522747672 m001 (Chi(1)+sin(1/5*Pi))/(exp(1/Pi)+BesselI(1,2)) 4807558530801440 m001 ln(FeigenbaumB)*GaussKuzminWirsing/OneNinth^2 4807558565370641 r009 Im(z^3+c),c=-1/122+29/49*I,n=35 4807558566846408 r005 Re(z^2+c),c=15/58+27/62*I,n=34 4807558589958193 m001 1/GAMMA(5/24)*ln((3^(1/3)))*gamma 4807558595036410 m009 (2/5*Pi^2+1/5)/(1/5*Psi(1,2/3)+1/4) 4807558597714638 l006 ln(5955/9631) 4807558647528251 m002 5*Pi^6+Sinh[Pi]/(6*Pi) 4807558650050306 r002 18th iterates of z^2 + 4807558685982741 a007 Real Root Of -166*x^4-819*x^3-6*x^2+511*x+268 4807558688272549 r002 63th iterates of z^2 + 4807558693146027 m005 (1/2*Catalan-6)/(1/7*5^(1/2)+5/6) 4807558728267226 a007 Real Root Of -163*x^4-841*x^3-335*x^2-248*x+176 4807558785483427 m005 (1/2*Pi+2/9)/(5/11*3^(1/2)-3/4) 4807558803098483 m001 FeigenbaumKappa-Kolakoski^LandauRamanujan2nd 4807558807517379 l006 ln(4949/8004) 4807558810209486 b008 FresnelC[2/21+E] 4807558826607581 r005 Im(z^2+c),c=19/102+6/13*I,n=18 4807558834222851 r009 Im(z^3+c),c=-11/24+14/29*I,n=52 4807558835251127 r009 Im(z^3+c),c=-17/98+34/59*I,n=22 4807558837488166 r005 Re(z^2+c),c=-23/18+213/233*I,n=2 4807558850924064 a001 10983760033/281*322^(5/6) 4807558857620835 a001 2207/5*2504730781961^(17/21) 4807558874921094 a001 12586269025/76*11^(4/9) 4807558883538284 a001 4181/4*11^(7/11) 4807558889277128 a005 (1/cos(15/131*Pi))^894 4807558901705830 m001 1/Zeta(9)*exp(LambertW(1))*sqrt(1+sqrt(3))^2 4807558930164396 m008 (3*Pi^3-1/2)/(1/5*Pi^6+1/6) 4807558930804617 a007 Real Root Of 149*x^4+636*x^3-276*x^2+502*x-133 4807558946031743 r009 Im(z^3+c),c=-19/98+13/24*I,n=6 4807558958238507 r005 Im(z^2+c),c=1/52+7/8*I,n=3 4807558965583253 a001 1/10983760033*365435296162^(1/16) 4807558965583253 a001 3/20365011074*165580141^(1/16) 4807558965593929 a001 3/12586269025*75025^(1/16) 4807558971230208 r002 39th iterates of z^2 + 4807559011715413 m001 KomornikLoreti-Porter^ArtinRank2 4807559012219700 a008 Real Root of x^4-12*x^2-32*x-103 4807559026800599 a001 76/17711*2178309^(23/36) 4807559040467072 r009 Im(z^3+c),c=-39/94+19/37*I,n=32 4807559056068162 a007 Real Root Of 771*x^4+742*x^3+498*x^2-953*x-532 4807559061499958 r005 Re(z^2+c),c=37/102+7/59*I,n=56 4807559071688339 b008 -4+Cosh[2+Sqrt[7]] 4807559074464127 m001 BesselI(1,2)^TwinPrimes-Tribonacci 4807559082258317 m008 (5/6*Pi^5-1/5)/(1/6*Pi^5+2) 4807559087835994 a001 4/987*610^(35/47) 4807559101230563 a007 Real Root Of -876*x^4+911*x^3+260*x^2+412*x+286 4807559108477417 a001 11/377*3^(5/11) 4807559108891219 r009 Im(z^3+c),c=-1/126+29/49*I,n=31 4807559124376444 l006 ln(3943/6377) 4807559132190463 m001 (Robbin-ZetaQ(3))/(ln(Pi)-FeigenbaumAlpha) 4807559133157663 a001 10610209857723/3571*123^(1/10) 4807559133243442 m001 GAMMA(1/24)*ln(KhintchineHarmonic)/exp(1) 4807559134997730 m001 (Magata-Paris)/(ln(2)-GolombDickman) 4807559151734668 a007 Real Root Of 355*x^4-660*x^3-610*x^2-406*x+21 4807559156766830 r002 24th iterates of z^2 + 4807559160200904 l006 ln(7533/7904) 4807559168384246 r002 17th iterates of z^2 + 4807559168534698 a007 Real Root Of -395*x^4+920*x^3-752*x^2-71*x+263 4807559180800240 r002 16th iterates of z^2 + 4807559181315898 l004 Pi/cosh(817/92*Pi) 4807559181315898 l004 Pi/sinh(817/92*Pi) 4807559183896741 m001 (Zeta(1/2)+sin(1/12*Pi))/(exp(Pi)+Si(Pi)) 4807559191749572 a007 Real Root Of -538*x^4+529*x^3+623*x^2+963*x-637 4807559193679277 r009 Im(z^3+c),c=-9/52+35/58*I,n=9 4807559196302622 r009 Re(z^3+c),c=-1/64+48/61*I,n=53 4807559225656195 a001 1268860318/305*6557470319842^(16/17) 4807559225656195 a001 5600748293801/610*1836311903^(16/17) 4807559250168507 a007 Real Root Of 460*x^4+315*x^3+580*x^2-708*x-464 4807559293829214 m001 (MinimumGamma+Rabbit)/(FeigenbaumC+Khinchin) 4807559295087236 r002 18th iterates of z^2 + 4807559297893495 r005 Im(z^2+c),c=-131/110+1/16*I,n=18 4807559305832855 l006 ln(37/4530) 4807559321964340 r005 Im(z^2+c),c=27/98+24/55*I,n=31 4807559327975522 a007 Real Root Of -228*x^4-920*x^3+973*x^2+683*x+365 4807559329787755 r009 Im(z^3+c),c=-11/32+13/19*I,n=28 4807559337222816 m002 -1+Pi^6/Log[Pi]-Pi^3*Sinh[Pi] 4807559345514781 a001 29/514229*1597^(43/47) 4807559369754851 m006 (2/3*Pi+1/6)/(2*exp(Pi)+3/4) 4807559373903719 s001 sum(exp(-Pi/3)^n*A047036[n],n=1..infinity) 4807559380295204 r005 Re(z^2+c),c=19/98+8/23*I,n=38 4807559405013553 m001 (Ei(1)-GAMMA(17/24))/(HardyLittlewoodC5+Thue) 4807559425751392 m005 (1/2*5^(1/2)+9/10)/(2/9*5^(1/2)-11/12) 4807559426423200 r009 Im(z^3+c),c=-53/118+14/29*I,n=13 4807559437824939 m005 (3/8+1/4*5^(1/2))/(2/3*2^(1/2)+1) 4807559443710309 m001 (Zeta(5)+Ei(1))/(3^(1/3)-FeigenbaumB) 4807559443849901 p004 log(15877/9817) 4807559456215619 m001 (GAMMA(17/24)+Tribonacci)/(Si(Pi)-Zeta(3)) 4807559459287079 a007 Real Root Of 740*x^4-209*x^3+581*x^2+50*x-173 4807559463182375 a007 Real Root Of 122*x^4+495*x^3-444*x^2-143*x-595 4807559465750431 a007 Real Root Of 338*x^4-720*x^3-251*x^2-574*x-316 4807559470259304 m001 (exp(-1/2*Pi)+Niven)/(ThueMorse-ZetaP(2)) 4807559471517194 r009 Im(z^3+c),c=-2/21+37/63*I,n=20 4807559484340624 a007 Real Root Of -941*x^4+207*x^3-140*x^2+812*x+496 4807559487904481 a007 Real Root Of 741*x^4-849*x^3-979*x^2-495*x+519 4807559489610974 m005 (1/2*2^(1/2)-1/7)/(67/99+2/9*5^(1/2)) 4807559490143882 m005 (1/2*exp(1)-2/7)/(10/11*5^(1/2)+1/5) 4807559492970945 a007 Real Root Of -107*x^4+924*x^3+199*x^2+491*x-379 4807559502145979 m001 1/MadelungNaCl/Artin^2*ln(Rabbit)^2 4807559509738951 a007 Real Root Of -916*x^4+799*x^3+98*x^2+393*x+304 4807559526562795 r005 Re(z^2+c),c=-13/98+32/47*I,n=3 4807559531931086 r009 Im(z^3+c),c=-11/58+13/18*I,n=45 4807559553739618 r009 Re(z^3+c),c=-15/34+5/63*I,n=48 4807559580639058 m001 ln(Ei(1))/BesselK(1,1)*GAMMA(5/12)^2 4807559592493429 m006 (1/6*ln(Pi)-1/4)/(4*Pi-1/4) 4807559615506227 m001 (-Kac+Magata)/(gamma+HeathBrownMoroz) 4807559623550878 r005 Re(z^2+c),c=29/82+6/11*I,n=3 4807559627700514 r009 Im(z^3+c),c=-7/102+36/61*I,n=17 4807559629231707 r009 Im(z^3+c),c=-5/18+16/29*I,n=37 4807559630563841 m002 Pi^6/2+(6*Tanh[Pi])/Pi^4 4807559631503427 a007 Real Root Of -381*x^4+518*x^3-6*x^2+665*x+399 4807559638224003 r002 56th iterates of z^2 + 4807559645038420 m004 -5+25*Pi-Cosh[Sqrt[5]*Pi]+4*Log[Sqrt[5]*Pi] 4807559658300668 l006 ln(2937/4750) 4807559665731120 a007 Real Root Of 228*x^4+963*x^3-467*x^2+751*x-388 4807559681740718 m001 (2^(1/3))^Khinchin*Sierpinski 4807559689691762 r002 3th iterates of z^2 + 4807559689984591 m003 48+(Sqrt[5]*Coth[1/2+Sqrt[5]/2])/32 4807559691847512 m008 (1/4*Pi^3+1)/(3/5*Pi^3-2/5) 4807559719783706 r009 Re(z^3+c),c=-27/58+4/41*I,n=27 4807559728308786 a007 Real Root Of -240*x^4+261*x^3-152*x^2+803*x+463 4807559739570908 m001 (ln(2+3^(1/2))+Trott2nd*ZetaQ(4))/Trott2nd 4807559743212769 r009 Re(z^3+c),c=-43/90+2/19*I,n=64 4807559759373026 m001 (Khinchin+Totient)/(gamma(2)+HeathBrownMoroz) 4807559763654012 m008 (5*Pi+3)/(4*Pi^4-1/2) 4807559778007617 r005 Re(z^2+c),c=-14/23+11/35*I,n=33 4807559784094382 a007 Real Root Of -225*x^4+484*x^3-167*x^2+956*x+564 4807559794793958 m001 (FeigenbaumD-Shi(1))/(MertensB1+ZetaP(4)) 4807559812205423 p004 log(22123/13679) 4807559833845005 r009 Im(z^3+c),c=-7/16+19/39*I,n=53 4807559850301437 r009 Im(z^3+c),c=-25/82+19/35*I,n=30 4807559852316156 r005 Im(z^2+c),c=-12/23+31/58*I,n=37 4807559859804036 m001 (BesselI(1,2)+2*Pi/GAMMA(5/6))/(Otter-Porter) 4807559893761127 m008 (1/3*Pi^5-3/4)/(3/4*Pi-1/4) 4807559937267029 m001 KomornikLoreti-MadelungNaCl*RenyiParking 4807559944735757 a001 123/5*233^(30/31) 4807559953983133 m002 -4+5*Pi^4-2*Log[Pi] 4807559964646181 m001 GAMMA(1/3)/FeigenbaumAlpha*ln(cos(Pi/5))^2 4807559979024329 m005 (3/5*gamma-5/6)/(3/5*gamma+2/3) 4807559979024329 m007 (-3/5*gamma+5/6)/(-3/5*gamma-2/3) 4807559980493724 a001 1/2204*(1/2*5^(1/2)+1/2)^26*76^(11/13) 4807559995615898 r005 Re(z^2+c),c=-23/40+18/47*I,n=25 4807559998923997 m001 Zeta(9)/exp(GAMMA(17/24))*log(2+sqrt(3))^2 4807560009994741 m001 GAMMA(17/24)^ln(3)/(FeigenbaumAlpha^ln(3)) 4807560015874981 a003 sin(Pi*1/67)+sin(Pi*1/7) 4807560037026065 r009 Im(z^3+c),c=-9/34+5/9*I,n=41 4807560051830526 r005 Im(z^2+c),c=-11/28+21/40*I,n=6 4807560056590478 r009 Im(z^3+c),c=-11/23+4/9*I,n=34 4807560056838642 r002 53th iterates of z^2 + 4807560059656170 r005 Re(z^2+c),c=3/34+25/41*I,n=61 4807560069302529 r005 Re(z^2+c),c=-2/3+22/237*I,n=28 4807560080449768 r009 Im(z^3+c),c=-33/98+25/47*I,n=44 4807560083713813 a001 20365011074/199*199^(8/11) 4807560090770494 l006 ln(4868/7873) 4807560114328284 m006 (3/4*ln(Pi)-3/5)/(2/3/Pi-3/4) 4807560133813524 r002 57th iterates of z^2 + 4807560137457044 q001 1399/2910 4807560143072510 a001 365435296162/521*322^(1/3) 4807560145259361 a007 Real Root Of -786*x^4+147*x^3-298*x^2+374*x+307 4807560146375267 m001 exp(Ei(1))/HardHexagonsEntropy*Zeta(7) 4807560181296178 m005 (1/2*3^(1/2)+7/12)/(8/9*Pi+2/9) 4807560197140471 r009 Im(z^3+c),c=-5/18+16/29*I,n=34 4807560200635764 a007 Real Root Of -57*x^4-225*x^3+352*x^2+735*x+846 4807560233824352 m009 (1/5*Pi^2-5)/(2*Psi(1,2/3)+1/6) 4807560241364078 m008 (2*Pi^5+1)/(1/4*Pi^3+5) 4807560243007286 m001 Cahen^(Zeta(5)/GolombDickman) 4807560247090837 m001 5^(1/2)-ErdosBorwein^KhinchinLevy 4807560250214168 m005 (1/2*Zeta(3)+1/6)/(76/77+3/11*5^(1/2)) 4807560259573534 a007 Real Root Of -959*x^4-174*x^3+867*x^2+874*x+40 4807560270548883 r002 9th iterates of z^2 + 4807560271401407 r002 3th iterates of z^2 + 4807560284530996 r002 21th iterates of z^2 + 4807560294784344 m005 (1/2*Zeta(3)+4/5)/(7/9*exp(1)+4/5) 4807560315379709 a007 Real Root Of -134*x^4-707*x^3-186*x^2+376*x-870 4807560322637966 a001 76/39088169*13^(6/17) 4807560327877661 a007 Real Root Of -183*x^4-941*x^3-415*x^2-589*x-42 4807560365504531 m001 MadelungNaCl^2/ln(CareFree)^2*GAMMA(11/24) 4807560395902675 a003 cos(Pi*5/107)*cos(Pi*22/65) 4807560404518950 r009 Im(z^3+c),c=-41/50+9/56*I,n=2 4807560415497642 h001 (2/3*exp(1)+3/8)/(5/9*exp(2)+4/9) 4807560419320618 r005 Re(z^2+c),c=-35/34+10/63*I,n=42 4807560428815700 r005 Re(z^2+c),c=-55/78+1/48*I,n=61 4807560429531570 r009 Im(z^3+c),c=-25/56+27/56*I,n=10 4807560435379856 r009 Im(z^3+c),c=-33/70+29/59*I,n=49 4807560436633546 s002 sum(A252029[n]/((10^n+1)/n),n=1..infinity) 4807560444201701 r005 Re(z^2+c),c=-21/34+12/73*I,n=12 4807560446215590 m001 (CareFree+ZetaQ(2))/(1+gamma) 4807560453375017 a003 cos(Pi*36/109)*sin(Pi*15/38) 4807560459731751 r009 Im(z^3+c),c=-15/46+7/13*I,n=24 4807560468335566 m001 (KhinchinLevy+MadelungNaCl)/(Cahen-CareFree) 4807560471968393 a001 139583862445/1364*322^(2/3) 4807560480635937 a007 Real Root Of 367*x^4-44*x^3+629*x^2-539*x-429 4807560483755534 s004 Continued Fraction of A302151 4807560485034009 b008 (1+E^(1/17)/2)*Pi 4807560492187907 m002 5*Pi^6+(Log[Pi]*ProductLog[Pi])/2 4807560501424129 m005 (1/2*Zeta(3)+1/7)/(10/11*Zeta(3)+5/11) 4807560501968576 m001 (5^(1/2)-Shi(1))/(CareFree+MadelungNaCl) 4807560522891445 a003 cos(Pi*21/85)*cos(Pi*9/34) 4807560524248707 a003 cos(Pi*14/97)*cos(Pi*33/103) 4807560526607657 m001 MadelungNaCl^LaplaceLimit+ReciprocalFibonacci 4807560532765534 m001 (Landau+ZetaQ(4))/(Backhouse-FellerTornier) 4807560551461977 m005 (1/3*3^(1/2)+1/9)/(5/7*Catalan+7/9) 4807560559470077 r005 Re(z^2+c),c=-83/122+5/41*I,n=47 4807560575984272 a007 Real Root Of 681*x^4-218*x^3+228*x^2-769*x-483 4807560579462322 a001 1/233*832040^(9/26) 4807560580987168 l003 BesselY(1,8/59) 4807560588895083 a007 Real Root Of -229*x^4+823*x^3+449*x^2+753*x-545 4807560598091215 m001 1/GlaisherKinkelin^2/exp(Si(Pi))*Rabbit^2 4807560623954241 a007 Real Root Of -927*x^4+600*x^3+372*x^2+994*x-581 4807560625387024 m001 (Pi+exp(Pi)+sin(1))*Pi^(1/2) 4807560630911385 a007 Real Root Of 187*x^4+790*x^3-472*x^2+364*x+546 4807560651847221 a001 47/2971215073*139583862445^(5/16) 4807560651847221 a001 47/267914296*63245986^(5/16) 4807560652213103 a001 47/24157817*28657^(5/16) 4807560663324126 m002 5*Pi^6-Log[Pi]/3+Tanh[Pi] 4807560670779882 r005 Re(z^2+c),c=43/126+5/54*I,n=22 4807560695238886 r005 Im(z^2+c),c=-21/29+7/23*I,n=5 4807560711452386 a007 Real Root Of 273*x^4-761*x^3-659*x^2+63*x+192 4807560731916747 r009 Im(z^3+c),c=-9/23+27/53*I,n=60 4807560735865226 r005 Im(z^2+c),c=21/82+8/29*I,n=3 4807560745279852 m001 (CopelandErdos+Robbin)/(Tribonacci+Trott2nd) 4807560745786632 r002 17th iterates of z^2 + 4807560748545641 l006 ln(1931/3123) 4807560751574333 a007 Real Root Of 49*x^4-147*x^3-587*x^2-228*x+259 4807560756726474 a007 Real Root Of 309*x^4-453*x^3+296*x^2-403*x-329 4807560764950937 a001 139583862445/2207*322^(3/4) 4807560833588168 a007 Real Root Of 542*x^4+934*x^3-476*x^2-898*x+409 4807560835239242 m002 -6+E^Pi/(2*Pi^4)+ProductLog[Pi] 4807560845523610 r009 Im(z^3+c),c=-1/114+29/49*I,n=30 4807560856287898 a007 Real Root Of -206*x^4-899*x^3+292*x^2-627*x+388 4807560883343081 r008 a(0)=5,K{-n^6,9-7*n^3-7*n^2+9*n} 4807560898314599 r002 14th iterates of z^2 + 4807560923722699 r005 Re(z^2+c),c=-13/22+29/91*I,n=24 4807560940097818 m002 5*Pi^6+Cosh[Pi]/(6*Pi) 4807560962038991 p003 LerchPhi(1/25,5,141/193) 4807560972623677 m001 Riemann2ndZero^ln(5)/(Ei(1)^ln(5)) 4807560990279449 a007 Real Root Of -51*x^4+520*x^3+931*x^2+272*x-401 4807560999196115 a007 Real Root Of 56*x^4+301*x^3+186*x^2-42*x-970 4807561009901566 m008 (4/5*Pi^6+1/4)/(1/6*Pi^6-1/5) 4807561011564120 r009 Im(z^3+c),c=-27/70+1/54*I,n=5 4807561019777913 m005 (1/2*5^(1/2)-7/8)/(6/11*3^(1/2)-6) 4807561025050153 m001 (cos(1)+ArtinRank2)/(-FeigenbaumB+Magata) 4807561032130815 k005 Champernowne real with floor(sqrt(2)*(195*n+145)) 4807561032130815 k001 Champernowne real with 276*n+204 4807561033292200 m001 FeigenbaumD*(ln(2)+ln(3)) 4807561033555929 a003 cos(Pi*10/73)-cos(Pi*17/100) 4807561065101543 a007 Real Root Of 902*x^4+205*x^3-933*x^2-373*x+324 4807561081803988 a007 Real Root Of 686*x^4-921*x^3-774*x^2-498*x+484 4807561083331601 a007 Real Root Of 325*x^4-819*x^3-865*x^2-679*x+600 4807561089624613 b008 59*Cos[Pi^2]^2 4807561105722049 m005 (1/3*2^(1/2)-1/10)/(5/8*5^(1/2)-5/8) 4807561145133780 a007 Real Root Of 578*x^4+888*x^3+34*x^2-497*x-179 4807561152526450 r009 Im(z^3+c),c=-41/122+20/29*I,n=30 4807561163682472 m002 5*Csch[Pi]+5/(Pi^4*ProductLog[Pi]) 4807561165406515 m005 (4/5*gamma-5)/(2/3*Catalan+1/3) 4807561171180052 r009 Im(z^3+c),c=-29/118+39/64*I,n=10 4807561178619911 r002 58th iterates of z^2 + 4807561195001545 g002 gamma+2*ln(2)+Psi(2/11)+Psi(2/5)-Psi(7/12) 4807561205061280 a007 Real Root Of 929*x^4+850*x^3+864*x^2-487*x-389 4807561205118403 m001 (sin(1/5*Pi)+BesselI(1,1))/(Pi^(1/2)+Kac) 4807561219383230 r009 Re(z^3+c),c=-41/94+36/61*I,n=6 4807561252069016 a007 Real Root Of 292*x^4-993*x^3+367*x^2+740*x+145 4807561254591118 m005 (1/2*3^(1/2)-5)/(5/12*exp(1)-3/11) 4807561271160618 m001 GAMMA(23/24)*(Cahen-ZetaP(3)) 4807561279757151 a008 Real Root of x^4-2*x^3-12*x^2-28*x+100 4807561285523386 m001 (2*Pi/GAMMA(5/6)-gamma)/(-MadelungNaCl+Rabbit) 4807561329458552 r002 59th iterates of z^2 + 4807561340173159 a001 4052739537881/1364*123^(1/10) 4807561355288102 m005 (1/2*gamma+1/6)/(3/8*2^(1/2)+5/12) 4807561362264413 m001 (Zeta(5)-gamma(1))/(Riemann3rdZero-Tetranacci) 4807561386974379 a003 sin(Pi*10/83)/cos(Pi*19/86) 4807561417045236 r005 Im(z^2+c),c=-17/14+11/149*I,n=15 4807561417450843 l006 ln(4787/7742) 4807561417815570 a007 Real Root Of 163*x^4+735*x^3-219*x^2-6*x-371 4807561426364096 r005 Im(z^2+c),c=-53/110+38/59*I,n=30 4807561432670374 a001 14662949395604/1597*1836311903^(16/17) 4807561432670374 a001 6643838879/1597*6557470319842^(16/17) 4807561433601711 m001 1/GAMMA(11/12)/exp(Robbin)/Zeta(7)^2 4807561437311174 m001 StronglyCareFree/Sierpinski/GolombDickman 4807561484890164 r005 Re(z^2+c),c=-17/27+17/63*I,n=32 4807561496812799 m001 (GAMMA(5/6)-Si(Pi))/(-Conway+FransenRobinson) 4807561503398926 m001 (ln(2+3^(1/2))+exp(1/Pi))/(OneNinth+ZetaP(2)) 4807561548967415 r009 Im(z^3+c),c=-13/29+13/27*I,n=37 4807561579052693 a007 Real Root Of -151*x^4-706*x^3+36*x^2-157*x+629 4807561580010830 m001 (-Thue+ZetaQ(4))/(BesselI(0,1)+polylog(4,1/2)) 4807561581504906 r002 28th iterates of z^2 + 4807561581660222 m001 ln(BesselJ(1,1))^2*FeigenbaumC^2*GAMMA(5/12) 4807561589351308 m001 ln(TreeGrowth2nd)^2*Sierpinski/GAMMA(1/4) 4807561596695847 r009 Re(z^3+c),c=-13/23+17/43*I,n=2 4807561597769718 r005 Re(z^2+c),c=-25/38+9/40*I,n=49 4807561602516404 r009 Re(z^3+c),c=-3/40+23/45*I,n=25 4807561607955650 a001 182717648081/2889*322^(3/4) 4807561615054557 r002 49th iterates of z^2 + 4807561630224161 r002 60th iterates of z^2 + 4807561653639825 r005 Im(z^2+c),c=1/14+36/59*I,n=4 4807561668306996 m001 (Conway-DuboisRaymond)/(FeigenbaumC+PlouffeB) 4807561684138809 b008 Pi*JacobiSC[1,1/17] 4807561687962656 r005 Re(z^2+c),c=-53/78+4/47*I,n=38 4807561693075964 m001 FellerTornier^Zeta(1/2)-HardyLittlewoodC5 4807561702291637 m005 (1/2*exp(1)-8/9)/(3/5*Catalan+3/7) 4807561730948405 a001 956722026041/15127*322^(3/4) 4807561734039143 r002 3th iterates of z^2 + 4807561734236852 r002 4th iterates of z^2 + 4807561737229656 s002 sum(A252538[n]/(2^n+1),n=1..infinity) 4807561738611287 r005 Re(z^2+c),c=-2/3+54/223*I,n=29 4807561748678503 m004 -E^(Sqrt[5]*Pi)+15625*Pi+Sinh[Sqrt[5]*Pi]/5 4807561748892807 a001 2504730781961/39603*322^(3/4) 4807561749829701 r005 Im(z^2+c),c=-13/122+41/64*I,n=43 4807561751510860 a001 3278735159921/51841*322^(3/4) 4807561752128898 a001 10610209857723/167761*322^(3/4) 4807561753128905 a001 4052739537881/64079*322^(3/4) 4807561754279938 r009 Im(z^3+c),c=-47/110+29/59*I,n=58 4807561754669573 a001 17393796001/4181*6557470319842^(16/17) 4807561759983057 a001 387002188980/6119*322^(3/4) 4807561766469149 m004 -E^(Sqrt[5]*Pi)+15625*Pi+Cosh[Sqrt[5]*Pi]/5 4807561785842077 h001 (5/11*exp(2)+1/9)/(10/11*exp(2)+1/2) 4807561787711477 a007 Real Root Of -199*x^4-791*x^3+674*x^2-429*x+772 4807561800604906 r005 Im(z^2+c),c=-63/110+31/64*I,n=63 4807561801648626 a001 22768774562/5473*6557470319842^(16/17) 4807561806962111 a001 591286729879/9349*322^(3/4) 4807561807184379 a007 Real Root Of -268*x^4+84*x^3+997*x^2+621*x-524 4807561808502778 a001 119218851371/28657*6557470319842^(16/17) 4807561809502785 a001 312119004989/75025*6557470319842^(16/17) 4807561809648684 a001 408569081798/98209*6557470319842^(16/17) 4807561809669971 a001 2139295485799/514229*6557470319842^(16/17) 4807561809673076 a001 5600748293801/1346269*6557470319842^(16/17) 4807561809673529 a001 7331474697802/1762289*6557470319842^(16/17) 4807561809673636 a001 23725150497407/5702887*6557470319842^(16/17) 4807561809673809 a001 3020733700601/726103*6557470319842^(16/17) 4807561809674996 a001 1730726404001/416020*6557470319842^(16/17) 4807561809683126 a001 440719107401/105937*6557470319842^(16/17) 4807561809738855 a001 505019158607/121393*6557470319842^(16/17) 4807561810120824 a001 10716675201/2576*6557470319842^(16/17) 4807561812738877 a001 73681302247/17711*6557470319842^(16/17) 4807561817595333 m008 (4/5*Pi^3+4/5)/(1/4*Pi^2-3) 4807561830683279 a001 228811001/55*6557470319842^(16/17) 4807561831406046 m002 48+E^Pi/Pi^5 4807561869711303 l006 ln(2856/4619) 4807561913021494 a007 Real Root Of 18*x^4+872*x^3+329*x^2+482*x+446 4807561920059528 r002 6th iterates of z^2 + 4807561926811803 m002 -6/Pi^4-Pi^6/2 4807561953676043 a001 23725150497407/2584*1836311903^(16/17) 4807561953676043 a001 5374978561/1292*6557470319842^(16/17) 4807561959891315 m001 (Bloch+LandauRamanujan2nd)/(Chi(1)+GAMMA(2/3)) 4807561977531255 r005 Im(z^2+c),c=-1/17+24/41*I,n=7 4807561981874564 a001 28657/11*3^(29/52) 4807561986247408 m009 (1/4*Psi(1,2/3)-1/4)/(8/3*Catalan+1/3*Pi^2+5) 4807562003302128 m001 Zeta(3)/exp(Porter)*log(2+sqrt(3))^2 4807562005397767 r005 Re(z^2+c),c=-11/58+37/59*I,n=8 4807562006267632 m001 (BesselJ(0,1)-CopelandErdos)/(Kac+PlouffeB) 4807562012397008 p001 sum((-1)^n/(353*n+202)/(12^n),n=0..infinity) 4807562037271998 m005 (35/44+1/4*5^(1/2))/(7/11*Pi+9/11) 4807562041124900 m001 1/GAMMA(1/6)/ln(CareFree)*Zeta(1,2) 4807562042625218 m001 (1+Catalan)/(2/3*Pi*3^(1/2)/GAMMA(2/3)+Mills) 4807562045113399 m005 (1/3*Catalan+1/6)/(9/16+3/16*5^(1/2)) 4807562066689989 a003 cos(Pi*1/87)-cos(Pi*1/66) 4807562087739681 r009 Re(z^3+c),c=-41/86+4/7*I,n=19 4807562088288900 r009 Im(z^3+c),c=-1/23+13/22*I,n=28 4807562089462788 r009 Re(z^3+c),c=-31/82+37/56*I,n=23 4807562093706183 b008 Log[3/5+E^(-4)] 4807562105366527 r005 Re(z^2+c),c=11/126+7/38*I,n=17 4807562107380957 m001 1/GAMMA(1/6)*Bloch^2*ln(cos(Pi/12))^2 4807562114244281 r002 34th iterates of z^2 + 4807562117857088 a007 Real Root Of 481*x^4-174*x^3-128*x^2-921*x+466 4807562128961364 a001 225851433717/3571*322^(3/4) 4807562131030917 p003 LerchPhi(1/10,4,466/217) 4807562134502019 r009 Re(z^3+c),c=-43/90+4/39*I,n=54 4807562142468291 a003 cos(Pi*25/97)-cos(Pi*42/97) 4807562144502277 r005 Re(z^2+c),c=11/126+7/38*I,n=18 4807562146029518 r009 Im(z^3+c),c=-9/106+10/17*I,n=36 4807562191458064 m001 (Zeta(1/2)+Salem)^LandauRamanujan2nd 4807562212625476 m003 2+4*Cot[1/2+Sqrt[5]/2]+3*Sin[1/2+Sqrt[5]/2] 4807562237418822 r002 23th iterates of z^2 + 4807562238030736 m001 3^(1/2)+(Pi^(1/2))^ReciprocalLucas 4807562240385792 a001 1/36*233^(52/55) 4807562244828378 m001 (Magata+Trott)/(Conway-Lehmer) 4807562246900340 r009 Im(z^3+c),c=-1/17+23/39*I,n=18 4807562254001316 m001 (-FeigenbaumAlpha+Otter)/(2^(1/3)-GAMMA(2/3)) 4807562276682378 m001 HardyLittlewoodC3^(ErdosBorwein/gamma(2)) 4807562279404106 r002 51th iterates of z^2 + 4807562291974852 r005 Re(z^2+c),c=-81/64+47/52*I,n=2 4807562299753273 a007 Real Root Of -208*x^4-926*x^3+289*x^2-395*x-359 4807562302530558 a007 Real Root Of 959*x^4-199*x^3+518*x^2-549*x-457 4807562310908809 a007 Real Root Of -49*x^4-251*x^3-286*x^2-895*x+593 4807562311401021 r005 Re(z^2+c),c=-79/114+5/49*I,n=63 4807562313511705 m001 (-GAMMA(7/12)+Cahen)/(1+sin(1)) 4807562318354408 m005 (1/3*3^(1/2)+1/10)/(5/9*5^(1/2)+1/6) 4807562323156319 l006 ln(4000/4197) 4807562326869806 r009 Re(z^3+c),c=-3/10+18/19*I,n=2 4807562355096867 a007 Real Root Of -933*x^4-627*x^3-291*x^2+438*x+258 4807562371069346 a007 Real Root Of 256*x^4-473*x^3+147*x^2+223*x+7 4807562372128597 m001 Chi(1)^GolombDickman-PrimesInBinary 4807562383881838 r005 Re(z^2+c),c=13/48+1/39*I,n=10 4807562386503852 r002 6th iterates of z^2 + 4807562398130518 a001 233/521*45537549124^(16/17) 4807562398130518 a001 233/521*14662949395604^(16/21) 4807562398130518 a001 233/521*(1/2+1/2*5^(1/2))^48 4807562398130518 a001 233/521*192900153618^(8/9) 4807562398130518 a001 233/521*73681302247^(12/13) 4807562411759509 m001 (Shi(1)-ln(5))/(-Backhouse+HardyLittlewoodC4) 4807562434041972 r005 Re(z^2+c),c=5/86+13/36*I,n=30 4807562442303398 l006 ln(3781/6115) 4807562445477952 a001 317811/47*199^(29/36) 4807562457798784 q001 712/1481 4807562467307247 r005 Re(z^2+c),c=-77/114+7/48*I,n=43 4807562481983439 r002 28th iterates of z^2 + 4807562503759881 m001 (Zeta(5)+exp(-1/2*Pi))/(Robbin+Tetranacci) 4807562521123835 m001 GAMMA(23/24)-CareFree^(3^(1/2)) 4807562528452808 m006 (1/2*Pi^2+2)/(3*Pi+5) 4807562528452808 m008 (1/2*Pi^2+2)/(3*Pi+5) 4807562531092010 s002 sum(A281769[n]/((2^n-1)/n),n=1..infinity) 4807562534096027 r005 Im(z^2+c),c=-53/118+19/35*I,n=39 4807562537178004 r002 19th iterates of z^2 + 4807562544741632 r005 Re(z^2+c),c=11/122+4/21*I,n=11 4807562550805939 r005 Re(z^2+c),c=-6/25+23/36*I,n=12 4807562558664875 m001 exp(BesselK(0,1))*TwinPrimes^2/sinh(1)^2 4807562569238308 a007 Real Root Of -500*x^4-156*x^3+471*x^2+997*x-49 4807562584292208 r002 18th iterates of z^2 + 4807562600611783 l006 ln(67/8203) 4807562602720046 r009 Re(z^3+c),c=-23/48+6/59*I,n=55 4807562614660454 a007 Real Root Of -620*x^4+793*x^3+744*x^2+803*x-613 4807562628369363 a007 Real Root Of 929*x^4-614*x^3+870*x^2-672*x-642 4807562637890228 r009 Im(z^3+c),c=-1/122+29/49*I,n=33 4807562640163239 m001 Riemann1stZero/Rabbit*exp(log(1+sqrt(2))) 4807562644486192 r005 Im(z^2+c),c=35/114+16/55*I,n=9 4807562678640679 m001 Weierstrass/MasserGramain/GAMMA(7/12) 4807562681667643 b008 Sqrt[Pi]+Pi*Erf[3/2] 4807562682533702 r009 Im(z^3+c),c=-49/106+19/39*I,n=22 4807562714932602 a001 20365011074/843*322^(11/12) 4807562725340817 a007 Real Root Of 554*x^4-865*x^3+199*x^2-868*x-589 4807562726469746 r005 Im(z^2+c),c=1/66+7/11*I,n=33 4807562768110401 r005 Im(z^2+c),c=29/74+29/53*I,n=4 4807562776441968 r005 Re(z^2+c),c=-73/126+19/60*I,n=17 4807562789800837 l006 ln(4706/7611) 4807562794440933 m001 GAMMA(5/6)^(ArtinRank2/ZetaQ(2)) 4807562796681163 a001 3020733700601/329*1836311903^(16/17) 4807562796681163 a001 1368706081/329*6557470319842^(16/17) 4807562819912365 m001 (BesselJ(0,1)+Magata)/(Thue+ZetaQ(3)) 4807562831810494 r005 Re(z^2+c),c=-37/52+2/63*I,n=53 4807562834396358 r005 Re(z^2+c),c=-25/36+11/62*I,n=58 4807562839246423 m001 exp(GAMMA(3/4))/Rabbit*Zeta(9) 4807562848377734 r009 Im(z^3+c),c=-25/54+19/40*I,n=36 4807562862051321 r002 7th iterates of z^2 + 4807562868898225 a007 Real Root Of 86*x^4+283*x^3-482*x^2+895*x+948 4807562891793299 r005 Im(z^2+c),c=-69/82+1/33*I,n=18 4807562897410957 m001 Salem*(FeigenbaumD+OrthogonalArrays) 4807562898819343 a007 Real Root Of -40*x^4-4*x^3+984*x^2+465*x+416 4807562906308370 r002 7th iterates of z^2 + 4807562936025378 a007 Real Root Of -385*x^4-706*x^3+27*x^2+874*x-42 4807562938110440 r004 Im(z^2+c),c=5/24+5/13*I,z(0)=I,n=4 4807562942626185 r009 Im(z^3+c),c=-45/106+25/51*I,n=23 4807562943966622 r009 Re(z^3+c),c=-35/66+9/34*I,n=26 4807562950528870 m001 Conway^HardHexagonsEntropy+ReciprocalFibonacci 4807562969259781 r002 59th iterates of z^2 + 4807562970568855 m001 (Cahen+Riemann1stZero)/(5^(1/2)+Chi(1)) 4807562972706396 a007 Real Root Of 206*x^4+803*x^3-876*x^2-40*x-764 4807562991450636 r009 Im(z^3+c),c=-9/106+10/17*I,n=41 4807562992484122 r002 39th iterates of z^2 + 4807562994377469 r005 Re(z^2+c),c=-81/110+2/15*I,n=63 4807563002186656 a007 Real Root Of 862*x^4-592*x^3+662*x^2-537*x-523 4807563003845704 r009 Im(z^3+c),c=-9/106+10/17*I,n=39 4807563011948318 m001 (Paris+ZetaP(3))/(MadelungNaCl-Psi(2,1/3)) 4807563023132000 l006 ln(5631/9107) 4807563036491508 b008 Zeta[Sech[2/31]] 4807563041284735 r009 Re(z^3+c),c=-29/70+2/51*I,n=11 4807563072168276 r009 Im(z^3+c),c=-17/118+25/43*I,n=23 4807563073181733 a007 Real Root Of -612*x^4+780*x^3-424*x^2-371*x+39 4807563081312373 a007 Real Root Of -538*x^4+345*x^3-360*x^2+846*x+557 4807563089291532 r009 Im(z^3+c),c=-11/29+19/37*I,n=35 4807563096077874 a001 408569081798/305*6557470319842^(14/17) 4807563097985001 m005 (1/2*gamma+7/12)/(1/2*exp(1)+5/11) 4807563099163810 m001 (Salem+ZetaP(4))/(Cahen+ReciprocalLucas) 4807563132333880 r005 Re(z^2+c),c=-7/10+2/217*I,n=61 4807563133434522 r009 Im(z^3+c),c=-8/23+41/57*I,n=33 4807563137291709 a007 Real Root Of -676*x^4+856*x^3-209*x^2+989*x+655 4807563140301763 p004 log(30313/18743) 4807563147166054 r002 6th iterates of z^2 + 4807563158619149 m005 (1/2*Zeta(3)+2)/(5*Zeta(3)-3/5) 4807563162029856 m001 (Sarnak+Trott2nd)/(Catalan+MasserGramain) 4807563171215548 r002 60th iterates of z^2 + 4807563181959033 p002 log(18^(5/3)-6^(1/10)) 4807563183675234 r009 Im(z^3+c),c=-9/106+10/17*I,n=43 4807563219805811 a007 Real Root Of 126*x^4+465*x^3-766*x^2-377*x+252 4807563223987709 a001 1/4870847*199^(28/47) 4807563225268014 r005 Re(z^2+c),c=-2/3+36/239*I,n=37 4807563233083181 r002 9th iterates of z^2 + 4807563263701953 r002 29th iterates of z^2 + 4807563267348875 m001 (GAMMA(11/12)-exp(1/exp(1)))/AlladiGrinstead 4807563273235855 m001 (Pi^(1/2)+GAMMA(7/12))/(ArtinRank2-Trott) 4807563277766145 m005 (1/3*Catalan-2/9)/(8/11*2^(1/2)+7/10) 4807563285340220 r002 7th iterates of z^2 + 4807563296256497 m001 1/ln(GAMMA(13/24))^2*Salem 4807563300860432 a003 cos(Pi*23/65)/sin(Pi*28/75) 4807563303119757 a007 Real Root Of 68*x^4+222*x^3-662*x^2-842*x-405 4807563332510094 r009 Re(z^3+c),c=-29/74+1/25*I,n=37 4807563348996090 a007 Real Root Of -173*x^4+299*x^3-189*x^2+821*x-375 4807563359424460 r009 Im(z^3+c),c=-9/106+10/17*I,n=45 4807563363151865 m005 (1/2*Zeta(3)+7/9)/(5/6*Pi+1/4) 4807563374880042 m008 (1/6*Pi^3+5/6)/(4*Pi^3+4/5) 4807563383645013 a007 Real Root Of 398*x^4-635*x^3+772*x^2+65*x-239 4807563386474036 m005 (-5/28+1/4*5^(1/2))/(5/11*Catalan+3/8) 4807563400568708 r005 Im(z^2+c),c=37/126+20/49*I,n=50 4807563409161095 a007 Real Root Of 479*x^4-381*x^3+231*x^2-432*x-329 4807563409351662 r002 37th iterates of z^2 + 4807563426882071 h001 (2/11*exp(2)+5/6)/(1/2*exp(2)+5/6) 4807563429374186 m001 OneNinth^ZetaP(2)*Tribonacci^ZetaP(2) 4807563429636060 r005 Re(z^2+c),c=-7/29+36/43*I,n=28 4807563432557745 m009 (Psi(1,3/4)+3/4)/(1/3*Psi(1,3/4)+6) 4807563432962755 r005 Re(z^2+c),c=-19/106+52/63*I,n=50 4807563449554304 r005 Re(z^2+c),c=-25/42+16/63*I,n=12 4807563456358432 m001 (ln(3)+DuboisRaymond)/(Si(Pi)+Chi(1)) 4807563457996617 a007 Real Root Of 201*x^4+969*x^3+16*x^2-21*x-173 4807563459385227 r002 48th iterates of z^2 + 4807563470971998 r009 Im(z^3+c),c=-9/106+10/17*I,n=47 4807563481006045 a007 Real Root Of -646*x^4+891*x^3+9*x^2-731*x-220 4807563494793318 a001 38/17*377^(15/29) 4807563498730870 a001 18/9227465*46368^(16/17) 4807563499151792 a001 9/10182505537*165580141^(16/17) 4807563504664853 m001 ln(Ei(1))^2/Catalan^2*Pi^2 4807563508460988 s002 sum(A128427[n]/(2^n+1),n=1..infinity) 4807563511215344 r009 Im(z^3+c),c=-37/98+33/64*I,n=48 4807563511930294 m001 (Mills-Weierstrass)/(Artin+FeigenbaumKappa) 4807563528796992 r009 Im(z^3+c),c=-9/106+10/17*I,n=49 4807563529333640 r002 9th iterates of z^2 + 4807563535093599 a007 Real Root Of 286*x^4-924*x^3+314*x^2-261*x-316 4807563553838369 r009 Im(z^3+c),c=-9/106+10/17*I,n=51 4807563558436549 r009 Im(z^3+c),c=-9/106+10/17*I,n=56 4807563558590356 r009 Im(z^3+c),c=-9/106+10/17*I,n=54 4807563559325249 r009 Im(z^3+c),c=-9/106+10/17*I,n=58 4807563559666496 a007 Real Root Of -66*x^4+820*x^3+772*x^2-25*x-254 4807563560161074 r009 Im(z^3+c),c=-9/106+10/17*I,n=60 4807563560697721 r009 Im(z^3+c),c=-9/106+10/17*I,n=62 4807563560978252 r009 Im(z^3+c),c=-9/106+10/17*I,n=64 4807563561412866 r009 Im(z^3+c),c=-9/106+10/17*I,n=63 4807563561809618 r009 Im(z^3+c),c=-9/106+10/17*I,n=61 4807563562384821 r009 Im(z^3+c),c=-9/106+10/17*I,n=53 4807563562500261 r009 Im(z^3+c),c=-9/106+10/17*I,n=59 4807563562844439 r009 Im(z^3+c),c=-9/106+10/17*I,n=52 4807563563427963 r009 Im(z^3+c),c=-9/106+10/17*I,n=57 4807563564020783 r009 Im(z^3+c),c=-9/106+10/17*I,n=55 4807563577552814 r009 Im(z^3+c),c=-11/23+3/46*I,n=20 4807563577702673 m001 ln(BesselJ(1,1))*Paris^2*BesselK(1,1) 4807563577968346 m001 1/ln(OneNinth)^2*CopelandErdos/Pi^2 4807563578045219 r009 Im(z^3+c),c=-9/106+10/17*I,n=50 4807563586585338 a007 Real Root Of 196*x^4+886*x^3-453*x^2-711*x+798 4807563586599995 m001 (-Zeta(1,2)+HeathBrownMoroz)/(Catalan+Zeta(5)) 4807563617014982 r009 Im(z^3+c),c=-9/106+10/17*I,n=48 4807563644922617 m001 exp(PisotVijayaraghavan)*Si(Pi)^2/FeigenbaumD 4807563653636505 a007 Real Root Of 199*x^4+993*x^3+331*x^2+710*x-204 4807563684875736 a007 Real Root Of -632*x^4+805*x^3+673*x^2+554*x+234 4807563687248062 r009 Im(z^3+c),c=-1/118+29/49*I,n=34 4807563699129544 r009 Im(z^3+c),c=-9/106+10/17*I,n=46 4807563707002635 m001 (gamma(3)+Totient)/(exp(1)-gamma(1)) 4807563720897643 r005 Im(z^2+c),c=-9/14+74/199*I,n=37 4807563740654728 m001 GaussAGM^(Conway/arctan(1/3)) 4807563751817399 r005 Im(z^2+c),c=5/29+11/23*I,n=21 4807563752162454 r002 16th iterates of z^2 + 4807563756373742 r005 Re(z^2+c),c=11/126+7/38*I,n=22 4807563771084317 m001 1/GAMMA(1/3)*Lehmer^2/exp(sqrt(1+sqrt(3)))^2 4807563774130598 r005 Re(z^2+c),c=11/126+7/38*I,n=19 4807563776168166 m001 (-Artin+PolyaRandomWalk3D)/(3^(1/2)-Zeta(5)) 4807563777438990 r005 Re(z^2+c),c=11/126+7/38*I,n=23 4807563777706368 r005 Re(z^2+c),c=-35/54+12/49*I,n=45 4807563779402889 m001 cos(1)^2*exp(Conway)/sqrt(5) 4807563781530723 m001 (Psi(2,1/3)+ZetaQ(3))^cos(1/12*Pi) 4807563794541482 r005 Re(z^2+c),c=11/126+7/38*I,n=27 4807563795032242 r005 Re(z^2+c),c=11/126+7/38*I,n=28 4807563795168407 r005 Re(z^2+c),c=11/126+7/38*I,n=32 4807563795170273 r005 Re(z^2+c),c=11/126+7/38*I,n=31 4807563795176495 r005 Re(z^2+c),c=11/126+7/38*I,n=33 4807563795176788 r005 Re(z^2+c),c=11/126+7/38*I,n=36 4807563795176871 r005 Re(z^2+c),c=11/126+7/38*I,n=37 4807563795176964 r005 Re(z^2+c),c=11/126+7/38*I,n=41 4807563795176966 r005 Re(z^2+c),c=11/126+7/38*I,n=42 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=46 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=45 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=47 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=50 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=51 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=55 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=56 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=60 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=59 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=61 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=64 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=63 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=62 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=58 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=57 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=54 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=52 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=53 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=49 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=48 4807563795176967 r005 Re(z^2+c),c=11/126+7/38*I,n=44 4807563795176968 r005 Re(z^2+c),c=11/126+7/38*I,n=43 4807563795176969 r005 Re(z^2+c),c=11/126+7/38*I,n=40 4807563795176980 r005 Re(z^2+c),c=11/126+7/38*I,n=38 4807563795176987 r005 Re(z^2+c),c=11/126+7/38*I,n=39 4807563795177321 r005 Re(z^2+c),c=11/126+7/38*I,n=35 4807563795178378 r005 Re(z^2+c),c=11/126+7/38*I,n=34 4807563795218433 r005 Re(z^2+c),c=11/126+7/38*I,n=30 4807563795260597 r005 Re(z^2+c),c=11/126+7/38*I,n=29 4807563795305361 r005 Re(z^2+c),c=11/126+7/38*I,n=26 4807563798571759 r005 Re(z^2+c),c=11/126+7/38*I,n=24 4807563798940928 r005 Re(z^2+c),c=11/126+7/38*I,n=25 4807563800695109 m001 FeigenbaumC*Porter*exp((3^(1/3)))^2 4807563809621325 p003 LerchPhi(1/6,1,387/164) 4807563835053835 m001 (arctan(1/3)+Artin)/(MertensB2+ThueMorse) 4807563836633851 m001 Pi+(1+3^(1/2))/GAMMA(13/24) 4807563843408283 r009 Im(z^3+c),c=-9/106+10/17*I,n=44 4807563846288309 r009 Im(z^3+c),c=-9/106+10/17*I,n=37 4807563846889326 a007 Real Root Of 246*x^4-142*x^3+137*x^2-550*x-325 4807563853765184 r005 Re(z^2+c),c=11/126+7/38*I,n=21 4807563865297235 r009 Im(z^3+c),c=-9/106+10/17*I,n=38 4807563866016611 r009 Im(z^3+c),c=-5/66+33/56*I,n=19 4807563873563008 s002 sum(A266970[n]/(10^n-1),n=1..infinity) 4807563887899138 a001 1/75640*75025^(29/31) 4807563892941183 r002 4th iterates of z^2 + 4807563899809888 m004 -2*Csc[Sqrt[5]*Pi]+(25*Pi*Log[Sqrt[5]*Pi])/3 4807563902126876 m001 (Zeta(5)-DuboisRaymond)/(Totient+ThueMorse) 4807563905922520 m001 Artin^Zeta(1/2)+BesselK(1,1) 4807563905922520 m001 BesselK(1,1)+Artin^Zeta(1/2) 4807563932324819 m001 (Robbin-Trott)/(Gompertz-Riemann1stZero) 4807563937058308 r005 Im(z^2+c),c=2/23+22/37*I,n=61 4807563939258163 h001 (7/9*exp(2)+8/11)/(5/11*exp(1)+1/9) 4807563939807955 r002 29th iterates of z^2 + 4807563942236438 r002 3th iterates of z^2 + 4807563946177892 r005 Re(z^2+c),c=-27/52+17/31*I,n=10 4807563953909336 m001 BesselJ(1,1)-Thue^Landau 4807563961577053 a003 sin(Pi*19/119)*sin(Pi*45/91) 4807563966183822 r009 Re(z^3+c),c=-29/74+1/25*I,n=36 4807563976973745 a007 Real Root Of -477*x^4+512*x^3-839*x^2-63*x+246 4807563978221256 r002 48th iterates of z^2 + 4807563985781288 g007 Psi(2,7/12)+Psi(2,5/6)-Psi(2,5/11)-Psi(13/10) 4807563990693324 a007 Real Root Of 68*x^4-887*x^3+18*x^2-486*x-340 4807564007082087 a001 225851433717/521*322^(5/12) 4807564017148962 a005 (1/cos(47/198*Pi))^132 4807564026552959 r002 3th iterates of z^2 + 4807564038394505 m001 (MadelungNaCl+Paris)/(GAMMA(3/4)-ln(5)) 4807564040395400 r009 Im(z^3+c),c=-9/106+10/17*I,n=42 4807564041797536 p001 sum((-1)^n/(201*n+2)/n/(10^n),n=1..infinity) 4807564054293362 g003 Im(GAMMA(-223/60+I*(-41/15))) 4807564080648011 r005 Re(z^2+c),c=11/126+7/38*I,n=20 4807564081156676 r005 Im(z^2+c),c=-51/64+1/38*I,n=20 4807564081808516 r009 Im(z^3+c),c=-9/34+5/9*I,n=42 4807564094574215 a007 Real Root Of 99*x^4-349*x^3+530*x^2-575*x-443 4807564095768407 m005 (1/2*Catalan+1/8)/(5/7*2^(1/2)-8/9) 4807564111249446 a007 Real Root Of -716*x^4+985*x^3-205*x^2+108*x+247 4807564112520250 a008 Real Root of x^4-x^3-27*x^2-5*x+225 4807564118463147 a007 Real Root Of 181*x^4+657*x^3-936*x^2+286*x-678 4807564127949328 r002 4th iterates of z^2 + 4807564134814434 m001 1/cos(Pi/12)^2/ln(Pi)^2*sin(Pi/5) 4807564135761314 a007 Real Root Of 9*x^4+433*x^3+18*x^2+127*x-26 4807564151639931 m001 (ln(Pi)+exp(1/2)*exp(sqrt(2)))/exp(1/2) 4807564161809230 m005 (5/4+1/4*5^(1/2))/(5/8*Zeta(3)-3/8) 4807564174382616 a001 3571/2*75025^(3/34) 4807564176098764 r009 Im(z^3+c),c=-9/106+10/17*I,n=40 4807564182901232 s002 sum(A158328[n]/(pi^n+1),n=1..infinity) 4807564196898616 a001 2/5*2^(13/49) 4807564197813382 r002 45th iterates of z^2 + 4807564210219973 l006 ln(925/1496) 4807564211178294 r002 64th iterates of z^2 + 4807564213491453 r005 Im(z^2+c),c=-21/26+21/124*I,n=18 4807564231652033 m002 Pi^6/2+(6*Coth[Pi])/Pi^4 4807564246062612 m001 (MertensB1-Paris)/(GAMMA(13/24)+MadelungNaCl) 4807564246208686 m001 BesselJZeros(0,1)*(GolombDickman+exp(1/Pi)) 4807564265418048 m001 1/3*ln(Pi)*(2^(1/3)) 4807564265418048 m001 ln(Pi)*(2^(1/3))/sqrt(3)^2 4807564281442808 r005 Im(z^2+c),c=17/50+34/61*I,n=40 4807564305962193 a007 Real Root Of 793*x^4-852*x^3-731*x^2-975*x+690 4807564318448253 a007 Real Root Of 147*x^4-205*x^3-500*x^2-675*x+455 4807564322052676 r005 Re(z^2+c),c=-19/34+42/97*I,n=54 4807564329983402 p003 LerchPhi(1/100,1,400/191) 4807564335978235 a001 21566892818/341*322^(3/4) 4807564342441395 h001 (7/8*exp(1)+7/9)/(7/9*exp(2)+9/11) 4807564343893887 r009 Re(z^3+c),c=-19/40+29/56*I,n=49 4807564346806677 a007 Real Root Of 198*x^4+776*x^3-654*x^2+913*x-40 4807564391247905 m002 1+5*Pi^6-Log[Pi]/3 4807564422267433 a007 Real Root Of 832*x^4-890*x^3-274*x^2-728*x-430 4807564434180895 a007 Real Root Of -859*x^4+639*x^3-61*x^2+649*x+443 4807564453995855 a001 1149851/55*377^(11/12) 4807564467209928 m001 GlaisherKinkelin+Magata*MertensB2 4807564469317942 p003 LerchPhi(1/32,3,475/172) 4807564495091400 r002 14th iterates of z^2 + 4807564498216543 r002 35th iterates of z^2 + 4807564499690579 a007 Real Root Of -435*x^4+821*x^3+438*x^2+817*x-562 4807564504154022 r005 Im(z^2+c),c=29/110+19/31*I,n=28 4807564516645951 a007 Real Root Of -217*x^4-850*x^3+915*x^2-114*x-224 4807564517461815 a007 Real Root Of -717*x^4+304*x^3-208*x^2+883*x-42 4807564532182361 r005 Im(z^2+c),c=-61/94+6/61*I,n=41 4807564543940735 r009 Re(z^3+c),c=-47/114+33/52*I,n=34 4807564552997871 r005 Im(z^2+c),c=-16/25+23/61*I,n=55 4807564558733808 a007 Real Root Of -179*x^4+517*x^3-366*x^2+301*x-108 4807564559322368 a001 1/45537549124*4^(13/23) 4807564572734942 r002 23th iterates of z^2 + 4807564572995900 m003 7/2+Sqrt[5]/2+ProductLog[1/2+Sqrt[5]/2]/4 4807564574332668 r009 Im(z^3+c),c=-41/118+20/39*I,n=5 4807564579864951 r002 31th iterates of z^2 + 4807564615653342 m001 (ln(2)/ln(10)+exp(1/exp(1)))/(-Artin+Trott) 4807564620121084 m005 (15/28+1/4*5^(1/2))/(3*gamma+6/11) 4807564628961014 a001 86267571272/2207*322^(5/6) 4807564654513891 a007 Real Root Of 980*x^4-214*x^3-92*x^2-71*x-89 4807564659892130 r002 23th iterates of z^2 + 4807564672193595 r005 Re(z^2+c),c=11/58+12/35*I,n=49 4807564690957933 r009 Re(z^3+c),c=-47/98+7/64*I,n=28 4807564691077678 r009 Re(z^3+c),c=-8/21+1/36*I,n=20 4807564698075646 q001 1449/3014 4807564706002738 m001 Catalan*ln(GolombDickman)*GAMMA(11/12)^2 4807564718216542 a001 1/76*(1/2*5^(1/2)+1/2)^24*521^(15/16) 4807564740957808 a007 Real Root Of -997*x^4+727*x^3+455*x^2+893*x-562 4807564747655655 r002 31th iterates of z^2 + 4807564775019197 m001 (GAMMA(2/3)-sin(1/12*Pi))/(GAMMA(5/6)-Magata) 4807564775500365 r009 Im(z^3+c),c=-35/86+43/60*I,n=15 4807564777553907 a007 Real Root Of 482*x^4-960*x^3+307*x^2-773*x-575 4807564779289703 a007 Real Root Of 178*x^4+753*x^3-485*x^2+93*x+240 4807564785497992 b008 Pi+59*Tanh[1] 4807564795813156 r001 51i'th iterates of 2*x^2-1 of 4807564800142267 a007 Real Root Of 84*x^4-315*x^3+586*x^2-464*x-398 4807564804583202 a007 Real Root Of -611*x^4-258*x^3-545*x^2+984*x+603 4807564814640713 a001 1/7787980473*89^(5/17) 4807564816045854 r009 Im(z^3+c),c=-1/98+29/49*I,n=26 4807564822044175 m006 (3*ln(Pi)+3/5)/(5/6*Pi^2+1/6) 4807564843098415 a007 Real Root Of -187*x^4+181*x^3+373*x^2+459*x-317 4807564845470156 r009 Im(z^3+c),c=-43/90+28/57*I,n=10 4807564849318913 m001 (ln(3)-ln(Pi))/(Ei(1,1)-Champernowne) 4807564855640954 b008 5+CosIntegral[ExpIntegralEi[2]] 4807564855968455 m007 (-4/5*gamma+2/5)/(-3*gamma-9*ln(2)-3/2*Pi-1/6) 4807564858904602 r005 Im(z^2+c),c=31/86+17/54*I,n=22 4807564861388040 r009 Im(z^3+c),c=-7/40+34/59*I,n=33 4807564861908262 a003 sin(Pi*6/101)/sin(Pi*14/111) 4807564863948154 s002 sum(A285911[n]/(n^3*pi^n+1),n=1..infinity) 4807564876346155 a007 Real Root Of -123*x^4+979*x^3+806*x^2+549*x+193 4807564889270000 r009 Im(z^3+c),c=-29/122+21/37*I,n=15 4807564890352533 a007 Real Root Of 486*x^4-100*x^3+843*x^2-749*x-592 4807564892784275 r005 Re(z^2+c),c=-27/62+29/57*I,n=12 4807564893789880 m001 (Magata+Tetranacci)/((1+3^(1/2))^(1/2)-Landau) 4807564893797726 r005 Re(z^2+c),c=3/11+23/41*I,n=31 4807564898423418 a007 Real Root Of 140*x^4-471*x^3+756*x^2-600*x-523 4807564901076617 r009 Im(z^3+c),c=-21/52+16/39*I,n=5 4807564906862815 b008 5*Sqrt[3*ArcCot[Pi]] 4807564925598254 m002 -6+(Pi^6*Sech[Pi]^2)/6 4807564925702463 r005 Re(z^2+c),c=-17/30+33/74*I,n=40 4807564941138633 a007 Real Root Of 603*x^4-885*x^3-633*x^2-438*x+423 4807564965543278 r009 Re(z^3+c),c=-17/62+40/59*I,n=16 4807564966364101 a001 47/196418*21^(11/48) 4807564968480173 a001 11/89*6765^(22/53) 4807564999971083 m001 (CareFree-exp(1/Pi))^FeigenbaumC 4807565019241198 r005 Im(z^2+c),c=-55/94+14/29*I,n=49 4807565037819406 g001 exp(-52/71) 4807565037819406 l003 GAMMA(1,52/71) 4807565040182948 m001 (Kac-OneNinth)/(Paris-Salem) 4807565042406278 s002 sum(A286966[n]/(n^3*pi^n-1),n=1..infinity) 4807565076139171 h001 (7/11*exp(1)+7/8)/(5/8*exp(2)+4/5) 4807565090320301 a007 Real Root Of 843*x^4-248*x^3+468*x^2-533*x-437 4807565094889921 m001 (DuboisRaymond+Tetranacci)/(Trott-ZetaP(2)) 4807565111113711 r005 Im(z^2+c),c=15/82+26/49*I,n=31 4807565125242874 r002 11th iterates of z^2 + 4807565135371909 a007 Real Root Of 872*x^4-848*x^3+770*x^2-508*x-563 4807565137204085 l006 ln(8467/8884) 4807565158724835 a007 Real Root Of 664*x^4-802*x^3-786*x^2-172*x+318 4807565161229068 a007 Real Root Of 664*x^4-736*x^3+73*x^2-682*x-462 4807565174575268 r005 Re(z^2+c),c=27/118+29/60*I,n=41 4807565210307366 h001 (-4*exp(-2)-7)/(-6*exp(2/3)-4) 4807565228828017 r005 Im(z^2+c),c=-3/23+11/19*I,n=10 4807565241145603 r009 Im(z^3+c),c=-19/34+17/41*I,n=8 4807565244989605 a001 28657/123*1364^(13/31) 4807565246699613 a007 Real Root Of 10*x^4+473*x^3-354*x^2+898*x-511 4807565250151614 r009 Im(z^3+c),c=-17/60+11/20*I,n=30 4807565278497221 r005 Im(z^2+c),c=-55/48+2/33*I,n=28 4807565286030590 r005 Re(z^2+c),c=-29/44+5/29*I,n=22 4807565300049600 r001 9i'th iterates of 2*x^2-1 of 4807565303093829 a001 2139295485799/1597*6557470319842^(14/17) 4807565308619208 p004 log(29527/18257) 4807565309147896 m005 (1/2*2^(1/2)+4/5)/(1/5*exp(1)-6/7) 4807565314962837 m001 GAMMA(19/24)/CareFree/ln(sqrt(2)) 4807565327626890 m001 Pi*2^(1/2)/GAMMA(3/4)+Ei(1)^MertensB1 4807565333249881 r009 Im(z^3+c),c=-17/70+41/58*I,n=33 4807565362654173 s001 sum(exp(-Pi/3)^n*A088578[n],n=1..infinity) 4807565378060729 r002 35th iterates of z^2 + 4807565384100236 a007 Real Root Of 928*x^4-706*x^3-762*x^2-961*x+667 4807565419025224 r002 11th iterates of z^2 + 4807565432471129 l006 ln(5469/8845) 4807565454865664 p001 sum((-1)^n/(183*n+170)/(2^n),n=0..infinity) 4807565455982571 m001 1/GAMMA(1/24)^2*Cahen*exp(sqrt(2)) 4807565465834435 r002 29th iterates of z^2 + 4807565466798162 r009 Re(z^3+c),c=-25/52+29/49*I,n=49 4807565471966405 a001 75283811239/1926*322^(5/6) 4807565481890575 m008 (4/5*Pi^6+1/4)/(5*Pi^3+5) 4807565484195471 a007 Real Root Of -16*x^4-767*x^3+107*x^2+38*x+140 4807565484339034 s002 sum(A041240[n]/(exp(n)+1),n=1..infinity) 4807565485596148 m001 1/exp(GAMMA(5/12))/FeigenbaumC^2/exp(1)^2 4807565492278218 a007 Real Root Of 917*x^4-758*x^3-259*x^2-278*x-207 4807565512792978 a007 Real Root Of -140*x^4+24*x^3-646*x^2+881*x+583 4807565516069477 a007 Real Root Of 936*x^4-176*x^3+957*x^2+351*x-122 4807565560865708 r002 5th iterates of z^2 + 4807565574496038 m001 (-MinimumGamma+Stephens)/(Si(Pi)+gamma(2)) 4807565582458547 s002 sum(A041240[n]/(exp(n)),n=1..infinity) 4807565594959258 a001 591286729879/15127*322^(5/6) 4807565596558540 r005 Im(z^2+c),c=-31/58+36/61*I,n=17 4807565596940766 g002 -Psi(9/11)-Psi(8/9)-Psi(4/9)-Psi(6/7) 4807565612903674 a001 516002918640/13201*322^(5/6) 4807565615521730 a001 4052739537881/103682*322^(5/6) 4807565615903699 a001 3536736619241/90481*322^(5/6) 4807565616139768 a001 6557470319842/167761*322^(5/6) 4807565617139777 a001 2504730781961/64079*322^(5/6) 4807565617827549 a007 Real Root Of -185*x^4-746*x^3+593*x^2-441*x+108 4807565623098711 r005 Im(z^2+c),c=-45/86+4/45*I,n=16 4807565623993934 a001 956722026041/24476*322^(5/6) 4807565625093287 a001 5600748293801/4181*6557470319842^(14/17) 4807565636900006 r005 Re(z^2+c),c=-11/18+37/125*I,n=28 4807565639363332 m005 (1/2*exp(1)-7/10)/(3/10*Pi+3/7) 4807565653257092 r009 Im(z^3+c),c=-31/64+7/16*I,n=50 4807565663587593 m001 Catalan/Riemann1stZero*exp(Zeta(9))^2 4807565670973026 a001 365435296162/9349*322^(5/6) 4807565672072378 a001 7331474697802/5473*6557470319842^(14/17) 4807565679616564 p003 LerchPhi(1/512,5,381/131) 4807565681278839 l006 ln(4544/7349) 4807565683162637 a001 23725150497407/17711*6557470319842^(14/17) 4807565695997091 s002 sum(A041240[n]/(exp(n)-1),n=1..infinity) 4807565696407295 m008 (5*Pi^2-1/2)/(1/3*Pi^5-2/5) 4807565701107054 a001 3020733700601/2255*6557470319842^(14/17) 4807565712743385 m001 (Ei(1)+Zeta(1/2))/(DuboisRaymond+Rabbit) 4807565713961767 r009 Im(z^3+c),c=-43/114+18/35*I,n=32 4807565720102523 a007 Real Root Of -180*x^4-281*x^3-961*x^2+390*x+388 4807565729680886 a007 Real Root Of -726*x^4+983*x^3+599*x^2+358*x-381 4807565746077001 h001 (5/9*exp(1)+1/8)/(4/11*exp(2)+5/7) 4807565770244285 m001 Si(Pi)*(Pi-1)+sin(1) 4807565781500007 r002 56th iterates of z^2 + 4807565802241925 m001 1/ln(Zeta(9))^2/GAMMA(5/24)/sinh(1) 4807565805270698 r005 Re(z^2+c),c=-57/98+13/53*I,n=6 4807565824099918 a001 1730726404001/1292*6557470319842^(14/17) 4807565835358904 a007 Real Root Of -771*x^4-129*x^3+825*x^2+424*x-339 4807565840758620 m001 BesselJ(0,1)^Porter-DuboisRaymond 4807565841978155 a007 Real Root Of -857*x^4-189*x^3+802*x^2+898*x-45 4807565897064009 m001 1/Champernowne*Artin^2*ln(GAMMA(7/12)) 4807565900157496 r005 Re(z^2+c),c=-5/8+69/199*I,n=20 4807565912155564 m001 (PlouffeB+Weierstrass)/(5^(1/2)-sin(1/12*Pi)) 4807565921973979 m001 (-Zeta(1,-1)+Landau)/(BesselK(0,1)-Ei(1)) 4807565925041387 a007 Real Root Of 210*x^4+903*x^3-662*x^2-806*x-418 4807565931348327 r005 Im(z^2+c),c=7/24+13/32*I,n=59 4807565936355754 a003 cos(Pi*37/109)*sin(Pi*36/77) 4807565938743139 r002 51th iterates of z^2 + 4807565963682637 r005 Im(z^2+c),c=9/74+28/57*I,n=13 4807565980255650 m001 (Gompertz+PrimesInBinary)/(Ei(1)+exp(-1/2*Pi)) 4807565992972537 a001 139583862445/3571*322^(5/6) 4807566019306918 a007 Real Root Of 276*x^4-13*x^3+958*x^2+592*x+47 4807566028013557 a007 Real Root Of -945*x^4+600*x^3-972*x^2+763*x+39 4807566042915658 r002 20th iterates of z^2 + 4807566043409942 m001 (DuboisRaymond+Kac)/(MasserGramain-PlouffeB) 4807566057274784 l006 ln(3619/5853) 4807566059200205 m006 (1/3*ln(Pi)-5)/(2/5/Pi+5/6) 4807566067001557 r002 4th iterates of z^2 + 4807566068182129 r005 Re(z^2+c),c=-15/22+13/106*I,n=49 4807566093667586 m001 (Backhouse-GolombDickman)/(Zeta(5)+ln(2)) 4807566112641339 m001 gamma^(Chi(1)*BesselI(1,2)) 4807566114143406 r008 a(0)=5,K{-n^6,15-10*n+4*n^3} 4807566119418164 s002 sum(A254800[n]/(n^2*2^n-1),n=1..infinity) 4807566120976392 r005 Im(z^2+c),c=-79/118+6/61*I,n=28 4807566137564537 a007 Real Root Of 331*x^4-971*x^3-768*x^2-965*x-412 4807566150940989 m003 5-(E^(1/2+Sqrt[5]/2)*Sech[1/2+Sqrt[5]/2])/10 4807566151912153 g007 2*Psi(2,2/11)-Psi(2,9/11)-Psi(2,2/9) 4807566192219970 b008 57*(3/5)^(1/3) 4807566198136650 m002 -(Pi^3*Coth[Pi])+3*Pi^5*Sech[Pi] 4807566201214962 a007 Real Root Of 508*x^4-902*x^3-879*x^2+13*x+270 4807566210766179 m001 (ln(gamma)+Pi^(1/2))/(CareFree+Tribonacci) 4807566222893077 r005 Im(z^2+c),c=-16/15+13/40*I,n=8 4807566231867897 m001 (3^(1/3)+Stephens)^(5^(1/2)) 4807566234969960 m001 cos(1)*GAMMA(17/24)+exp(sqrt(2)) 4807566254407058 a001 121393/123*3571^(6/31) 4807566261628259 m005 (1/2*Catalan+1/3)/(5/12*5^(1/2)+5/7) 4807566271030924 m005 (1/3*gamma+2/9)/(11/12*gamma+1/3) 4807566278824642 m005 (1/2*Zeta(3)+4)/(5/9*gamma+7/11) 4807566282419806 p003 LerchPhi(1/16,6,380/229) 4807566302672979 m001 BesselK(0,1)^FeigenbaumKappa-MertensB1 4807566308030853 r009 Im(z^3+c),c=-41/90+22/45*I,n=60 4807566315191294 a001 75025/123*9349^(7/31) 4807566315869079 m001 (BesselK(1,1)+Porter)/(gamma(2)+BesselJ(1,1)) 4807566325779239 a001 2/75025*1346269^(17/32) 4807566328786694 a001 105937/41*15127^(2/31) 4807566334067726 r005 Im(z^2+c),c=-107/90+3/47*I,n=63 4807566349760850 m001 (OneNinth-Sarnak)/(GAMMA(2/3)+gamma(1)) 4807566356693341 r005 Re(z^2+c),c=-61/64+1/33*I,n=10 4807566361798451 r005 Im(z^2+c),c=5/42+28/51*I,n=52 4807566380526330 r005 Re(z^2+c),c=29/90+26/47*I,n=19 4807566380754964 a001 55*5778^(16/31) 4807566393190182 m004 -75/Pi+25*Pi*Tan[Sqrt[5]*Pi] 4807566394265523 a007 Real Root Of 101*x^4-449*x^3-832*x^2-379*x+419 4807566399662020 m001 LambertW(1)^ln(2)/OrthogonalArrays 4807566400148126 a007 Real Root Of 263*x^4+186*x^3+6*x^2-930*x+411 4807566405609435 p003 LerchPhi(1/1024,5,189/103) 4807566409052250 a007 Real Root Of -132*x^4-564*x^3+397*x^2+119*x-759 4807566415668099 m001 ln(5)^Zeta(5)/Magata 4807566422759906 r009 Im(z^3+c),c=-1/118+29/49*I,n=36 4807566423041022 a007 Real Root Of 886*x^4+943*x^3+899*x^2-303*x-296 4807566439538300 m005 (-11/36+1/4*5^(1/2))/(2*5^(1/2)+4/5) 4807566449747365 m001 1/GAMMA(1/6)/exp(Champernowne)^2/cos(1)^2 4807566457852777 a007 Real Root Of -240*x^4-963*x^3+971*x^2+100*x-759 4807566462810097 a007 Real Root Of -201*x^4-962*x^3-185*x^2-894*x+458 4807566476850272 m008 (Pi^6-3/4)/(2*Pi^4+5) 4807566519145667 m001 1/ln(GolombDickman)^2*GlaisherKinkelin/Zeta(3) 4807566521903298 a007 Real Root Of 604*x^4-80*x^3-525*x^2-310*x+247 4807566529403898 s001 sum(exp(-Pi/2)^(n-1)*A005589[n],n=1..infinity) 4807566529403904 s001 sum(exp(-Pi/2)^(n-1)*A052360[n],n=1..infinity) 4807566533652596 r009 Re(z^3+c),c=-79/122+19/40*I,n=2 4807566546348538 s002 sum(A050172[n]/(n*exp(n)+1),n=1..infinity) 4807566548721381 a001 9/5473*987^(14/17) 4807566554793174 m005 (1/2*2^(1/2)-9/11)/(3/7*5^(1/2)-8/11) 4807566556770082 a007 Real Root Of 737*x^4-889*x^3-897*x^2-142*x+335 4807566557223442 a007 Real Root Of 819*x^4-184*x^3-772*x^2-734*x+508 4807566560484859 r002 41th iterates of z^2 + 4807566565989133 m001 (polylog(4,1/2)-GAMMA(5/6))/(Thue+ThueMorse) 4807566579006876 r005 Re(z^2+c),c=37/114+16/25*I,n=4 4807566597252429 s002 sum(A171146[n]/(pi^n),n=1..infinity) 4807566608495298 h002 exp(12^(5/12)-14^(1/12)) 4807566608495298 h007 exp(12^(5/12)-14^(1/12)) 4807566619956464 r005 Im(z^2+c),c=-5/106+12/19*I,n=46 4807566625004965 m001 RenyiParking^2*LaplaceLimit/ln(Catalan)^2 4807566634786619 a007 Real Root Of 169*x^4+795*x^3-200*x^2-710*x-733 4807566657559484 a007 Real Root Of 175*x^4-916*x^3-561*x^2+21*x+212 4807566657666860 h001 (1/12*exp(2)+4/7)/(7/8*exp(1)+1/11) 4807566663226883 v002 sum(1/(2^n+(16*n^2-13*n+47)),n=1..infinity) 4807566664157511 l006 ln(30/3673) 4807566666373635 m005 (1/2*gamma-9/11)/(3/4*Zeta(3)+1/5) 4807566666452341 h001 (1/3*exp(1)+8/9)/(5/11*exp(2)+3/8) 4807566667105716 a001 440719107401/329*6557470319842^(14/17) 4807566673457012 m002 -2+5*Pi^6+3/Log[Pi] 4807566677597516 m001 exp(GAMMA(3/4))^2*FeigenbaumC^2/cos(Pi/5) 4807566686183713 a001 (2+2^(1/2))^(605/42) 4807566691471328 l006 ln(2694/4357) 4807566700355977 m005 (3/28+1/4*5^(1/2))/(10/11*2^(1/2)+1/10) 4807566702563594 a007 Real Root Of 133*x^4-65*x^3+36*x^2-691*x+324 4807566703042277 r005 Im(z^2+c),c=-5/46+17/27*I,n=31 4807566704163969 m001 (BesselI(0,1)+FeigenbaumDelta)/Champernowne 4807566709550654 a003 cos(Pi*38/89)*cos(Pi*51/118) 4807566713535172 m001 (BesselK(0,1)+CareFree)/(MertensB2+Mills) 4807566727400753 m001 (LambertW(1)-gamma(2))/(RenyiParking+ZetaP(2)) 4807566742151589 m002 Pi^6/2+Sinh[Pi]/(6*Pi^3) 4807566748795305 m001 (HeathBrownMoroz-sin(1))/MadelungNaCl 4807566772224812 a007 Real Root Of -972*x^4-503*x^3-642*x^2+983*x+617 4807566781377339 r005 Re(z^2+c),c=-29/86+13/22*I,n=31 4807566798644179 a007 Real Root Of -954*x^4-761*x^3-519*x^2+954*x+545 4807566799937296 r005 Re(z^2+c),c=1/20+1/17*I,n=7 4807566823801466 a007 Real Root Of -946*x^4+527*x^3+764*x^2+629*x-487 4807566827801049 m002 -1-Pi^6/2+ProductLog[Pi]/Log[Pi] 4807566843963799 a001 123/121393*2584^(28/57) 4807566857862589 m005 (4/5*2^(1/2)-1/6)/(2/5*Pi+3/4) 4807566862361382 q001 737/1533 4807566866965573 a007 Real Root Of -855*x^4-175*x^3+729*x^2+565*x-375 4807566879532614 a001 55*2207^(18/31) 4807566892776742 m005 (1/2*exp(1)-7/11)/(3/5*3^(1/2)-8/9) 4807566897954546 m002 5*Pi^6+2/(3*ProductLog[Pi]) 4807566912818616 r002 43th iterates of z^2 + 4807566915163131 m003 -9/2+Sqrt[5]/4096-Tanh[1/2+Sqrt[5]/2]/3 4807566928233011 m005 (1/2*exp(1)+4/5)/(5/9*Catalan-5) 4807566931348767 r009 Im(z^3+c),c=-9/106+10/17*I,n=35 4807566960293058 m009 (2/5*Pi^2-1/2)/(3/4*Psi(1,1/3)-2/5) 4807566984760927 m001 FeigenbaumC^2*Khintchine*ln((2^(1/3)))^2 4807567023184911 m001 Porter*ln(Conway)/cos(Pi/5) 4807567042752963 a007 Real Root Of -897*x^4-634*x^3+370*x^2+855*x+303 4807567050276534 a007 Real Root Of 331*x^4-266*x^3-746*x^2-822*x-270 4807567052455882 a001 1/9348*(1/2*5^(1/2)+1/2)^18*123^(19/21) 4807567067611526 r009 Im(z^3+c),c=-49/94+11/30*I,n=62 4807567072193833 r004 Im(z^2+c),c=-4/7-3/7*I,z(0)=exp(1/24*I*Pi),n=9 4807567086131227 a008 Real Root of x^4-57*x^2-30*x+639 4807567098986773 m002 -Pi/6+5*Pi^6+Log[Pi] 4807567099837179 a007 Real Root Of 720*x^4-562*x^3+809*x^2-514*x-535 4807567116515553 r009 Im(z^3+c),c=-3/82+31/53*I,n=9 4807567125390435 s002 sum(A285911[n]/(n^3*pi^n-1),n=1..infinity) 4807567125830793 r002 12th iterates of z^2 + 4807567142846218 a001 167761/144*89^(6/19) 4807567155621691 m001 (Pi+3^(1/2))/(ln(2^(1/2)+1)-Ei(1)) 4807567157571277 a003 cos(Pi*11/79)*sin(Pi*13/73) 4807567163494741 r009 Im(z^3+c),c=-3/98+13/22*I,n=15 4807567170961497 a007 Real Root Of 83*x^4-790*x^3+573*x^2-645*x+261 4807567172444449 r005 Re(z^2+c),c=-7/10+1/200*I,n=63 4807567195894566 a007 Real Root Of -124*x^4+196*x^3+184*x^2+799*x+370 4807567202754167 m001 (Champernowne-Khinchin)/(Mills-Tribonacci) 4807567205102293 r005 Re(z^2+c),c=-11/16+1/86*I,n=39 4807567205734639 l006 ln(4463/7218) 4807567213068059 m001 (Robbin+Trott)/(GolombDickman-LandauRamanujan) 4807567220999514 a007 Real Root Of 862*x^4-687*x^3+849*x^2+332*x-159 4807567223399677 m001 (-exp(-1/2*Pi)+ZetaP(3))/(BesselI(0,1)-gamma) 4807567264568690 s001 sum(exp(-Pi)^n*A182459[n],n=1..infinity) 4807567264568690 s002 sum(A182459[n]/(exp(pi*n)),n=1..infinity) 4807567272953860 r005 Im(z^2+c),c=-13/22+1/113*I,n=48 4807567301757200 m001 GAMMA(11/24)/GAMMA(1/3)/exp(GAMMA(2/3))^2 4807567323745621 a007 Real Root Of 945*x^4-928*x^3+477*x^2+112*x-210 4807567326118586 a007 Real Root Of 69*x^4+153*x^3-917*x^2-460*x-876 4807567331234688 a001 3/832040*17711^(1/34) 4807567334676523 r005 Im(z^2+c),c=-107/82+19/58*I,n=6 4807567351551117 m001 (GAMMA(23/24)+Backhouse)/(Chi(1)-GAMMA(2/3)) 4807567351744236 a007 Real Root Of 654*x^4-772*x^3-707*x^2-143*x+283 4807567351978230 r009 Re(z^3+c),c=-11/27+3/53*I,n=14 4807567369576910 a001 18/7778742049*12586269025^(14/17) 4807567369576962 a001 18/9227465*3524578^(14/17) 4807567376762840 m001 (ln(Pi)*FeigenbaumC+Magata)/ln(Pi) 4807567387557971 r009 Im(z^3+c),c=-7/40+34/59*I,n=39 4807567388995682 r009 Im(z^3+c),c=-23/50+33/64*I,n=42 4807567428042937 l006 ln(6232/10079) 4807567434966097 r005 Im(z^2+c),c=23/110+9/20*I,n=22 4807567437710100 a007 Real Root Of -918*x^4+909*x^3-508*x^2+951*x+47 4807567445966303 a001 1/322*(1/2*5^(1/2)+1/2)^5*76^(14/23) 4807567457288065 m005 (5*gamma-1/4)/(2*Pi-4/5) 4807567458707958 r002 35th iterates of z^2 + 4807567459294404 a007 Real Root Of 171*x^4+959*x^3+519*x^2-837*x-807 4807567467349540 m001 (exp(Pi)+FeigenbaumC)/(KomornikLoreti+Magata) 4807567495359898 m001 ln(Salem)*Kolakoski/FeigenbaumD 4807567498386257 r009 Im(z^3+c),c=-23/82+27/34*I,n=2 4807567511139904 a007 Real Root Of -374*x^4+734*x^3+131*x^2+928*x-538 4807567512367775 r009 Re(z^3+c),c=-29/74+1/25*I,n=38 4807567515445442 r005 Im(z^2+c),c=-37/44+1/34*I,n=25 4807567542744759 b008 117/56+E 4807567547105578 a007 Real Root Of -44*x^4-201*x^3-677*x^2+675*x+461 4807567547782700 m001 LandauRamanujan/(exp(1/exp(1))^(2^(1/3))) 4807567569440415 m001 (Magata-ZetaP(2))/(Cahen-LandauRamanujan2nd) 4807567573826438 m001 (ln(Pi)+cos(1/12*Pi))/(KhinchinHarmonic-Mills) 4807567576253524 m005 (1/2*2^(1/2)-5/7)/(3/4*exp(1)-6/11) 4807567583223329 a007 Real Root Of 555*x^4-494*x^3+945*x^2-959*x-764 4807567586430893 r002 19th iterates of z^2 + 4807567626032657 r005 Im(z^2+c),c=-11/21+5/59*I,n=25 4807567647530975 r005 Re(z^2+c),c=11/122+19/46*I,n=19 4807567651241308 a007 Real Root Of 877*x^4-320*x^3-144*x^2-682*x-377 4807567654350585 r009 Im(z^3+c),c=-9/17+31/63*I,n=28 4807567655744460 m001 (Salem-ln(Pi)*Sarnak)/Sarnak 4807567657058744 l006 ln(4467/4687) 4807567666132324 a007 Real Root Of 826*x^4-134*x^3+960*x^2-930*x-728 4807567666955823 r002 45th iterates of z^2 + 4807567681029067 a007 Real Root Of -402*x^4+115*x^3-601*x^2+528*x+427 4807567693245739 r009 Im(z^3+c),c=-1/118+29/49*I,n=38 4807567708165343 a007 Real Root Of 370*x^4-945*x^3-268*x^2-659*x+464 4807567710990580 m001 Khintchine/ln(Artin)^2*sqrt(3) 4807567712403211 m001 1/Salem^2/exp(Niven)/sqrt(1+sqrt(3))^2 4807567729111321 r008 a(0)=5,K{-n^6,14-70*n^3+49*n^2+12*n} 4807567750635500 m001 (Cahen+Lehmer)/(3^(1/3)+GAMMA(5/6)) 4807567763058631 m005 (1/12+1/6*5^(1/2))/(3/5*2^(1/2)+1/10) 4807567776364854 m005 (2*Catalan+1/4)/(4*Catalan+2/3) 4807567787306234 m001 (GAMMA(5/6)+Pi^(1/2))/(Lehmer+Trott) 4807567803136925 a007 Real Root Of -493*x^4+176*x^3+623*x^2+89*x-180 4807567811315536 r009 Re(z^3+c),c=-59/122+6/49*I,n=31 4807567813813074 r005 Re(z^2+c),c=-5/8+65/201*I,n=49 4807567820074643 m008 (3*Pi^2+1/5)/(1/5*Pi^5+4/5) 4807567827669686 b008 LogGamma[ArcCot[123]] 4807567836826444 a007 Real Root Of 135*x^4+535*x^3-494*x^2+151*x-526 4807567843010788 a007 Real Root Of -32*x^4-198*x^3-104*x^2+676*x+747 4807567848215079 r009 Im(z^3+c),c=-43/110+26/51*I,n=48 4807567854232082 a003 cos(Pi*2/119)-cos(Pi*33/101) 4807567855616971 m005 (1/3*Pi-1/3)/(3/4*Zeta(3)+7/12) 4807567871094770 a001 139583862445/521*322^(1/2) 4807567882307207 r009 Im(z^3+c),c=-25/58+31/64*I,n=37 4807567905124026 a001 7/28657*75025^(25/37) 4807567944628068 m001 (BesselI(0,2)+Artin)/(GolombDickman-Salem) 4807567975498442 a001 1/2889*29^(4/41) 4807567988903249 l006 ln(1769/2861) 4807568005691431 m001 (LambertW(1)-ln(2))/(exp(1/exp(1))+Salem) 4807568016733394 m005 (1/3*5^(1/2)+1/4)/(9/11*Pi-1/2) 4807568022448409 m001 (gamma(1)+PlouffeB)/(Ei(1)-Shi(1)) 4807568022448409 m001 (gamma(1)+PlouffeB)/Chi(1) 4807568022510959 r002 4th iterates of z^2 + 4807568026977821 a007 Real Root Of -126*x^4-309*x^3-754*x^2+970*x+613 4807568041892327 m001 (Lehmer*Sarnak-arctan(1/2))/Sarnak 4807568048783028 a007 Real Root Of -143*x^4+672*x^3-376*x^2+942*x-433 4807568049802208 r005 Im(z^2+c),c=1/5+31/63*I,n=53 4807568066424544 r005 Im(z^2+c),c=-113/114+19/59*I,n=25 4807568074885579 r005 Re(z^2+c),c=-51/82+18/61*I,n=24 4807568081425341 m009 (1/2*Psi(1,2/3)-1)/(1/6*Psi(1,2/3)-2/5) 4807568096023101 a001 682/182717648081*317811^(13/23) 4807568103925522 r005 Im(z^2+c),c=-55/78+8/49*I,n=35 4807568128358811 r005 Re(z^2+c),c=-141/118+2/7*I,n=13 4807568141087518 r009 Re(z^3+c),c=-7/90+21/41*I,n=8 4807568149706169 p003 LerchPhi(1/512,1,327/157) 4807568162822423 m005 (1/2*Catalan-1/2)/(1/6*gamma+7/9) 4807568166874588 r002 60th iterates of z^2 + 4807568181803190 r002 15th iterates of z^2 + 4807568184036546 r009 Re(z^3+c),c=-3/40+23/45*I,n=27 4807568199991182 a001 53316291173/1364*322^(5/6) 4807568201893997 r005 Re(z^2+c),c=-29/42+3/44*I,n=50 4807568221246350 a007 Real Root Of 30*x^4-29*x^3-830*x^2-35*x-233 4807568238782771 m005 (1/2*Catalan-4/5)/(1/5*2^(1/2)+3/7) 4807568240363424 r009 Re(z^3+c),c=-35/102+41/58*I,n=43 4807568242483507 r005 Re(z^2+c),c=-79/114+1/53*I,n=43 4807568281514019 r009 Im(z^3+c),c=-1/118+29/49*I,n=40 4807568282476677 h001 (11/12*exp(1)+7/8)/(10/11*exp(2)+2/7) 4807568292605559 m001 LambertW(1)-ZetaP(3)^OrthogonalArrays 4807568304810808 r002 63th iterates of z^2 + 4807568305985958 m001 (Ei(1,1)-LandauRamanujan)/(MertensB2+Paris) 4807568309209663 m001 BesselK(1,1)^2/exp(Riemann3rdZero)*cos(Pi/12) 4807568320187655 p001 sum((-1)^n/(482*n+421)/n/(2^n),n=1..infinity) 4807568334413913 r009 Im(z^3+c),c=-27/44+13/27*I,n=55 4807568337416015 r002 24th iterates of z^2 + 4807568338962933 r002 3th iterates of z^2 + 4807568351105601 a007 Real Root Of 453*x^4-480*x^3+699*x^2+281*x-104 4807568375835131 m001 1/Zeta(1,2)/TreeGrowth2nd/exp(cos(Pi/5))^2 4807568381672529 m002 5*Pi^6-Cosh[Pi]/Pi^3+Tanh[Pi] 4807568394169784 a007 Real Root Of -111*x^4-571*x^3-105*x^2+429*x+338 4807568399873561 r009 Re(z^3+c),c=-7/12+20/31*I,n=29 4807568404177362 a008 Real Root of (1+2*x-5*x^2-5*x^3+4*x^4+x^5) 4807568423680614 a007 Real Root Of 662*x^4-659*x^3-5*x^2-854*x-518 4807568433185919 r009 Im(z^3+c),c=-21/46+21/44*I,n=57 4807568434942604 r005 Re(z^2+c),c=-19/30+24/83*I,n=48 4807568435577157 r009 Im(z^3+c),c=-7/50+31/54*I,n=10 4807568466976084 a007 Real Root Of 160*x^4-570*x^3+688*x^2-947*x+44 4807568478192997 r001 31i'th iterates of 2*x^2-1 of 4807568480140468 m005 (1/2*Catalan-5/11)/(5/12*Catalan+1/3) 4807568492974196 a001 53316291173/2207*322^(11/12) 4807568495846853 a008 Real Root of x^3-306*x-1360 4807568500632084 a007 Real Root Of 636*x^4+26*x^3+972*x^2-870*x-674 4807568531075864 m005 (1/2*gamma+2/11)/(5/6*2^(1/2)-1/5) 4807568534205643 a005 (1/cos(6/127*Pi))^1600 4807568553002237 r009 Im(z^3+c),c=-1/118+29/49*I,n=42 4807568557149270 l006 ln(6151/9948) 4807568559346564 r009 Re(z^3+c),c=-47/98+6/59*I,n=55 4807568563339206 m001 (Paris+Stephens)/(ln(Pi)-GAMMA(17/24)) 4807568573430217 s002 sum(A286170[n]/(n^3*pi^n-1),n=1..infinity) 4807568574732173 a001 3461452808002/377*1836311903^(16/17) 4807568574732173 a001 1568397607/377*6557470319842^(16/17) 4807568592374636 a007 Real Root Of -947*x^4-36*x^3-88*x^2+360*x+240 4807568592940596 r005 Re(z^2+c),c=-37/62+16/61*I,n=12 4807568614779777 r009 Im(z^3+c),c=-7/40+34/59*I,n=42 4807568622085065 m001 ((2^(1/3))*exp(-Pi)-TwinPrimes)/(2^(1/3)) 4807568622085065 m001 1/2*(2^(1/3)*exp(-Pi)-TwinPrimes)*2^(2/3) 4807568628384330 m001 (Artin-exp(1))/(FeigenbaumMu+Mills) 4807568637924160 m002 Pi^6/2+Tanh[Pi]/16 4807568652333358 r009 Im(z^3+c),c=-8/31+34/61*I,n=34 4807568667589321 r009 Re(z^3+c),c=-3/40+23/45*I,n=30 4807568668817189 r005 Im(z^2+c),c=-28/27+3/58*I,n=12 4807568670344428 r005 Re(z^2+c),c=11/58+12/35*I,n=35 4807568671851286 a007 Real Root Of -117*x^4-647*x^3-415*x^2-115*x-352 4807568677419062 r005 Im(z^2+c),c=-37/31+15/61*I,n=53 4807568677847954 r009 Im(z^3+c),c=-1/118+29/49*I,n=44 4807568686109355 r002 44th iterates of z^2 + 4807568705616443 m001 Ei(1,1)*(FibonacciFactorial-exp(Pi)) 4807568735035026 r009 Im(z^3+c),c=-1/118+29/49*I,n=46 4807568737219324 m001 FeigenbaumKappa*ln(Robbin)^2*(3^(1/3))^2 4807568752279796 r005 Re(z^2+c),c=-9/14+16/121*I,n=14 4807568753211680 r009 Im(z^3+c),c=-21/62+17/32*I,n=41 4807568758148004 r002 20th iterates of z^2 + 4807568761117563 r009 Im(z^3+c),c=-1/118+29/49*I,n=48 4807568763507190 m001 (Zeta(1,2)+GAMMA(23/24))/(Salem+TwinPrimes) 4807568772956698 r009 Im(z^3+c),c=-1/118+29/49*I,n=50 4807568778301761 r009 Im(z^3+c),c=-1/118+29/49*I,n=52 4807568780700224 r009 Im(z^3+c),c=-1/118+29/49*I,n=54 4807568781768948 r009 Im(z^3+c),c=-1/118+29/49*I,n=56 4807568782241279 r009 Im(z^3+c),c=-1/118+29/49*I,n=58 4807568782448016 r009 Im(z^3+c),c=-1/118+29/49*I,n=60 4807568782537450 r009 Im(z^3+c),c=-1/118+29/49*I,n=62 4807568782575583 r009 Im(z^3+c),c=-1/118+29/49*I,n=64 4807568782643457 r009 Im(z^3+c),c=-1/118+29/49*I,n=63 4807568782701974 r009 Im(z^3+c),c=-1/118+29/49*I,n=61 4807568782838170 r009 Im(z^3+c),c=-1/118+29/49*I,n=59 4807568783151071 r009 Im(z^3+c),c=-1/118+29/49*I,n=57 4807568783862344 r009 Im(z^3+c),c=-1/118+29/49*I,n=55 4807568785464884 r009 Im(z^3+c),c=-1/118+29/49*I,n=53 4807568786548441 l006 ln(4382/7087) 4807568789048299 r009 Im(z^3+c),c=-1/118+29/49*I,n=51 4807568789805453 r009 Re(z^3+c),c=-35/82+2/29*I,n=43 4807568790952415 m003 1+(25*Sqrt[5])/64+Sinh[1/2+Sqrt[5]/2]^2/2 4807568797008915 r009 Im(z^3+c),c=-1/118+29/49*I,n=49 4807568804487055 r002 34th iterates of z^2 + 4807568805849673 r009 Re(z^3+c),c=-3/40+23/45*I,n=32 4807568814592599 r009 Im(z^3+c),c=-1/118+29/49*I,n=47 4807568848433752 a007 Real Root Of -682*x^4+609*x^3-587*x^2+352*x+409 4807568852339374 p001 sum((-1)^n/(439*n+416)/n/(24^n),n=1..infinity) 4807568853235529 r009 Im(z^3+c),c=-1/118+29/49*I,n=45 4807568866364912 r002 61th iterates of z^2 + 4807568872553383 r009 Re(z^3+c),c=-57/110+17/59*I,n=9 4807568902048958 r009 Im(z^3+c),c=-3/31+27/46*I,n=18 4807568915960959 p001 sum((-1)^n/(349*n+205)/(25^n),n=0..infinity) 4807568917042732 r009 Re(z^3+c),c=-3/40+23/45*I,n=34 4807568919180956 r002 23th iterates of z^2 + 4807568935120861 r002 41th iterates of z^2 + 4807568937774741 r009 Im(z^3+c),c=-1/118+29/49*I,n=43 4807568954457985 q001 1499/3118 4807568955145815 r009 Re(z^3+c),c=-3/40+23/45*I,n=28 4807568964576033 m001 1/exp(RenyiParking)*Porter/Zeta(3)^2 4807568967656076 r009 Re(z^3+c),c=-3/40+23/45*I,n=36 4807568975083833 a007 Real Root Of -99*x^4-272*x^3+939*x^2-342*x-685 4807568976509700 r005 Re(z^2+c),c=-75/118+17/63*I,n=41 4807568985625758 r009 Re(z^3+c),c=-3/40+23/45*I,n=38 4807568990836104 r009 Re(z^3+c),c=-3/40+23/45*I,n=40 4807568991932446 r009 Re(z^3+c),c=-3/40+23/45*I,n=45 4807568991932927 r009 Re(z^3+c),c=-3/40+23/45*I,n=43 4807568991980623 r009 Re(z^3+c),c=-3/40+23/45*I,n=47 4807568992000856 r009 Re(z^3+c),c=-3/40+23/45*I,n=42 4807568992008896 r009 Re(z^3+c),c=-3/40+23/45*I,n=49 4807568992020397 r009 Re(z^3+c),c=-3/40+23/45*I,n=51 4807568992024165 r009 Re(z^3+c),c=-3/40+23/45*I,n=53 4807568992025164 r009 Re(z^3+c),c=-3/40+23/45*I,n=55 4807568992025289 r009 Re(z^3+c),c=-3/40+23/45*I,n=58 4807568992025302 r009 Re(z^3+c),c=-3/40+23/45*I,n=60 4807568992025316 r009 Re(z^3+c),c=-3/40+23/45*I,n=62 4807568992025323 r009 Re(z^3+c),c=-3/40+23/45*I,n=64 4807568992025333 r009 Re(z^3+c),c=-3/40+23/45*I,n=63 4807568992025343 r009 Re(z^3+c),c=-3/40+23/45*I,n=61 4807568992025350 r009 Re(z^3+c),c=-3/40+23/45*I,n=56 4807568992025353 r009 Re(z^3+c),c=-3/40+23/45*I,n=57 4807568992025359 r009 Re(z^3+c),c=-3/40+23/45*I,n=59 4807568992025812 r009 Re(z^3+c),c=-3/40+23/45*I,n=54 4807568992027811 r009 Re(z^3+c),c=-3/40+23/45*I,n=52 4807568992034558 r009 Re(z^3+c),c=-3/40+23/45*I,n=50 4807568992053160 r009 Re(z^3+c),c=-3/40+23/45*I,n=48 4807568992092668 r009 Re(z^3+c),c=-3/40+23/45*I,n=46 4807568992135898 r009 Re(z^3+c),c=-3/40+23/45*I,n=44 4807568992394311 r009 Re(z^3+c),c=-3/40+23/45*I,n=41 4807568994962964 r009 Re(z^3+c),c=-3/40+23/45*I,n=39 4807569004896087 r009 Re(z^3+c),c=-3/40+23/45*I,n=37 4807569017304883 a001 17/219602*521^(33/50) 4807569020399128 m001 (Cahen+ReciprocalLucas)/(Pi+BesselI(0,2)) 4807569030906471 p003 LerchPhi(1/256,1,390/187) 4807569035839238 r009 Re(z^3+c),c=-3/40+23/45*I,n=35 4807569065010211 m002 Pi^6/2+Cosh[Pi]/(6*Pi^3) 4807569066591461 r002 18th iterates of z^2 + 4807569113843091 r009 Re(z^3+c),c=-3/40+23/45*I,n=33 4807569121431030 m001 GaussKuzminWirsing-Kolakoski^GAMMA(11/12) 4807569121964274 r009 Im(z^3+c),c=-1/118+29/49*I,n=41 4807569123839704 r002 43th iterates of z^2 + 4807569124941344 r002 39th iterates of z^2 + 4807569129110995 a007 Real Root Of 592*x^4-885*x^3+675*x^2-934*x-735 4807569137056241 m004 150/Pi+(Log[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/4 4807569159313970 m001 1/sin(1)^2/GAMMA(7/24)*exp(sinh(1))^2 4807569160408927 r009 Im(z^3+c),c=-7/40+34/59*I,n=44 4807569163068480 a007 Real Root Of 479*x^4-547*x^3-72*x^2-537*x+310 4807569165193465 m001 FeigenbaumC/ln(2)/ln(gamma) 4807569173236951 m001 (ln(2^(1/2)+1)+Zeta(1,2))/(Artin+Kolakoski) 4807569202906794 a007 Real Root Of -202*x^4-796*x^3+794*x^2-176*x+262 4807569231871832 m005 (1/2*2^(1/2)-2/3)/(7/10*Catalan+1/5) 4807569232498109 r009 Im(z^3+c),c=-10/21+19/50*I,n=12 4807569242838282 a007 Real Root Of 950*x^4-572*x^3-50*x^2-65*x-134 4807569253821477 r009 Im(z^3+c),c=-31/90+22/35*I,n=41 4807569254279107 r009 Re(z^3+c),c=-3/40+23/45*I,n=31 4807569282717294 r008 a(0)=5,K{-n^6,28+41*n-19*n^2-45*n^3} 4807569291815898 a001 2207/55*144^(2/55) 4807569294849896 r009 Re(z^3+c),c=-3/40+23/45*I,n=29 4807569302230696 r005 Re(z^2+c),c=-19/14+16/255*I,n=2 4807569314492358 a007 Real Root Of 174*x^4+699*x^3-658*x^2+129*x+548 4807569326553895 l006 ln(2613/4226) 4807569329402930 a001 3/2*144^(30/43) 4807569335980265 a001 139583862445/5778*322^(11/12) 4807569372549964 r002 56th iterates of z^2 + 4807569384989739 r009 Im(z^3+c),c=-33/62+27/55*I,n=40 4807569412625542 g006 Psi(1,5/8)+Psi(1,2/7)+Psi(1,1/6)-Psi(1,4/9) 4807569426548080 r009 Im(z^3+c),c=-29/52+11/23*I,n=43 4807569433570244 a007 Real Root Of -108*x^4-325*x^3+887*x^2-329*x-502 4807569437718754 r002 63th iterates of z^2 + 4807569440786018 r005 Re(z^2+c),c=-69/98+1/37*I,n=51 4807569456474407 r009 Im(z^3+c),c=-57/94+12/41*I,n=29 4807569458973217 a001 365435296162/15127*322^(11/12) 4807569461123932 m001 (ln(3)-PlouffeB)/(Riemann1stZero-Salem) 4807569476917648 a001 956722026041/39603*322^(11/12) 4807569479535705 a001 2504730781961/103682*322^(11/12) 4807569479917674 a001 6557470319842/271443*322^(11/12) 4807569480007845 a001 10610209857723/439204*322^(11/12) 4807569480153744 a001 4052739537881/167761*322^(11/12) 4807569481153753 a001 1548008755920/64079*322^(11/12) 4807569481482657 a007 Real Root Of 176*x^4+771*x^3-254*x^2+365*x-723 4807569488007916 a001 591286729879/24476*322^(11/12) 4807569507946646 h001 (1/5*exp(1)+2/5)/(5/11*exp(1)+8/11) 4807569513370899 a007 Real Root Of 97*x^4+511*x^3+385*x^2+861*x+204 4807569519712039 r005 Re(z^2+c),c=-13/14+32/221*I,n=52 4807569521770150 r009 Im(z^3+c),c=-1/118+29/49*I,n=39 4807569534987045 a001 225851433717/9349*322^(11/12) 4807569594303785 r009 Re(z^3+c),c=-37/86+1/14*I,n=33 4807569610302676 a007 Real Root Of 568*x^4-887*x^3+454*x^2-589*x-517 4807569619248113 s002 sum(A135272[n]/(exp(2*pi*n)+1),n=1..infinity) 4807569619574068 r005 Re(z^2+c),c=-34/25+1/31*I,n=26 4807569631859819 a007 Real Root Of 53*x^4-135*x^3+646*x^2-449*x-383 4807569640186888 r005 Im(z^2+c),c=-7/8+53/224*I,n=24 4807569641732417 r005 Im(z^2+c),c=7/118+33/56*I,n=63 4807569671600438 r009 Im(z^3+c),c=-61/94+20/41*I,n=9 4807569694297456 r009 Re(z^3+c),c=-19/122+27/38*I,n=28 4807569716389774 l006 ln(6070/9817) 4807569740274056 m009 (1/3*Pi^2+5/6)/(4/5*Psi(1,1/3)+1/2) 4807569771038120 m005 (1/3*gamma+3/5)/(6/11*5^(1/2)+3/7) 4807569775387702 m002 5*Pi^6-Sinh[Pi]/Pi^3+Tanh[Pi] 4807569783043349 m005 (1/2*3^(1/2)-4/7)/(1/8*Catalan-8/11) 4807569819099586 r008 a(0)=5,K{-n^6,58-42*n^3-13*n^2+2*n} 4807569821228928 a007 Real Root Of 461*x^4-372*x^3+890*x^2-874*x+40 4807569845949739 r005 Re(z^2+c),c=-25/34+7/78*I,n=58 4807569856792153 s001 sum(exp(-2*Pi/3)^n*A169796[n],n=1..infinity) 4807569856986816 a001 86267571272/3571*322^(11/12) 4807569859444784 m001 (Catalan-gamma)/(-HardyLittlewoodC3+Totient) 4807569859812844 r009 Im(z^3+c),c=-1/18+35/48*I,n=8 4807569866685650 r002 7th iterates of z^2 + 4807569874674542 m001 ln(2)^ZetaQ(4)/exp(-1/2*Pi) 4807569875409464 m005 (1/2*Catalan+2/7)/(6/11*Pi-1/6) 4807569875723561 b008 E*ArcSinh[CosIntegral[1/2]] 4807569916284469 p003 LerchPhi(1/10,6,269/238) 4807569926562934 l006 ln(9401/9864) 4807569926597559 r005 Im(z^2+c),c=17/114+19/36*I,n=32 4807569938522068 r009 Im(z^3+c),c=-9/34+5/9*I,n=44 4807569942203299 r009 Im(z^3+c),c=-11/52+33/58*I,n=31 4807569947435321 m001 Weierstrass^KhinchinHarmonic/LambertW(1) 4807569966997417 a007 Real Root Of -481*x^4+182*x^3-692*x^2+980*x+677 4807569986588944 m001 CopelandErdos/Conway/exp(PisotVijayaraghavan) 4807569989850618 m001 (Robbin+ZetaQ(3))/(5^(1/2)-sin(1)) 4807569992162559 m001 Pi/(Otter^(3^(1/2))) 4807570000904195 r005 Im(z^2+c),c=-15/32+24/43*I,n=17 4807570003332240 m001 (ln(2)+BesselJ(1,1))/CopelandErdos 4807570007968640 r008 a(0)=5,K{-n^6,32-35*n^3-47*n^2+55*n} 4807570011050207 l006 ln(3457/5591) 4807570011050207 p004 log(5591/3457) 4807570022268826 a007 Real Root Of 497*x^4-915*x^3+555*x^2+286*x-119 4807570022335417 m005 (1/2*exp(1)-2/11)/(7/8*Pi-3/10) 4807570023723430 r005 Re(z^2+c),c=-23/50+31/58*I,n=49 4807570032670981 m001 Zeta(7)^2/exp(GAMMA(5/12))^2*gamma^2 4807570035291712 a007 Real Root Of -20*x^4+660*x^3-306*x^2+392*x-190 4807570045812917 r002 10th iterates of z^2 + 4807570049346223 r002 28th iterates of z^2 + 4807570081146923 m001 (Cahen-FeigenbaumB)/(Zeta(3)-cos(1/5*Pi)) 4807570083027473 r002 23th iterates of z^2 + 4807570085586303 a001 1/55*144^(9/46) 4807570090125188 m005 (1/2*3^(1/2)+3)/(2/15+3/10*5^(1/2)) 4807570105013075 m001 GAMMA(2/3)+cos(1/12*Pi)-Tribonacci 4807570109977326 m001 (Zeta(5)+sin(1/5*Pi))/(Kolakoski+Sierpinski) 4807570113347344 a007 Real Root Of -761*x^4+278*x^3+155*x^2+531*x+291 4807570132674828 m001 (Sarnak-Thue)/(gamma(2)-FransenRobinson) 4807570144253079 r009 Im(z^3+c),c=-7/40+34/59*I,n=46 4807570150423492 a007 Real Root Of -201*x^4-815*x^3+779*x^2+179*x-330 4807570161841056 r005 Re(z^2+c),c=21/58+2/19*I,n=58 4807570168198363 a003 cos(Pi*4/43)/cos(Pi*41/94) 4807570214362082 m001 (-ZetaQ(3)+ZetaQ(4))/(Artin-Si(Pi)) 4807570226335779 r008 a(0)=5,K{-n^6,68-38*n^3-20*n^2-5*n} 4807570233669095 r009 Re(z^3+c),c=-2/7+2/3*I,n=12 4807570257062033 r005 Re(z^2+c),c=-4/3+15/254*I,n=18 4807570268209871 r005 Im(z^2+c),c=-1/4+34/45*I,n=32 4807570281848720 r009 Im(z^3+c),c=-4/25+17/27*I,n=9 4807570295055857 m001 exp(1)^(2^(1/3))+GlaisherKinkelin 4807570303042711 a001 3571/956722026041*317811^(13/23) 4807570322632636 a001 123/196418*4181^(11/45) 4807570352183104 r002 42th iterates of z^2 + 4807570353610102 m001 Porter^2*ln(Lehmer)^2/GAMMA(3/4) 4807570368160270 r009 Im(z^3+c),c=-7/48+18/31*I,n=19 4807570370256945 r005 Im(z^2+c),c=-85/118+3/55*I,n=10 4807570374717285 a001 7*(1/2*5^(1/2)+1/2)^22*18^(4/21) 4807570386627418 r009 Im(z^3+c),c=-1/118+29/49*I,n=37 4807570408518242 r005 Re(z^2+c),c=-19/29+15/64*I,n=49 4807570410759366 r009 Im(z^3+c),c=-7/40+34/59*I,n=49 4807570426904373 l006 ln(4301/6956) 4807570430234970 r009 Im(z^3+c),c=-3/98+10/17*I,n=11 4807570432156659 m001 (ZetaP(4)-ZetaQ(3))/(Artin-KomornikLoreti) 4807570434318528 r009 Im(z^3+c),c=-7/40+34/59*I,n=51 4807570434347473 r002 43th iterates of z^2 + 4807570437122094 r009 Im(z^3+c),c=-41/110+22/43*I,n=15 4807570490389625 a007 Real Root Of 881*x^4-385*x^3-123*x^2-827*x-459 4807570496613270 a001 1/521*(1/2*5^(1/2)+1/2)^12*76^(9/19) 4807570496761687 m009 (3/4*Psi(1,3/4)-3/5)/(1/4*Pi^2+1/4) 4807570515195273 m001 ln(2)/MinimumGamma/Paris 4807570517425568 h001 (1/7*exp(2)+7/12)/(4/9*exp(2)+1/8) 4807570520380288 m005 (1/3*Zeta(3)-1/2)/(2/11*Pi-7/9) 4807570524448696 s001 sum(exp(-3*Pi/5)^n*A257475[n],n=1..infinity) 4807570529396814 r009 Im(z^3+c),c=-7/40+34/59*I,n=53 4807570546263632 m001 Ei(1,1)^(RenyiParking/ZetaR(2)) 4807570551334201 r001 51i'th iterates of 2*x^2-1 of 4807570553686022 m001 1/Catalan^2/Tribonacci*exp(Zeta(9))^2 4807570560831527 r005 Re(z^2+c),c=-67/98+8/39*I,n=63 4807570570224313 r009 Im(z^3+c),c=-7/40+34/59*I,n=58 4807570571432744 r009 Im(z^3+c),c=-7/40+34/59*I,n=56 4807570578115705 a007 Real Root Of -837*x^4-686*x^3-426*x^2+387*x+253 4807570579070044 r009 Im(z^3+c),c=-7/40+34/59*I,n=60 4807570584878721 r009 Im(z^3+c),c=-7/40+34/59*I,n=63 4807570585027085 a007 Real Root Of -624*x^4-22*x^3+198*x^2+890*x+413 4807570585541172 r009 Im(z^3+c),c=-7/40+34/59*I,n=62 4807570587574590 r009 Im(z^3+c),c=-7/40+34/59*I,n=64 4807570588807564 r009 Im(z^3+c),c=-7/40+34/59*I,n=55 4807570588996141 r009 Im(z^3+c),c=-7/40+34/59*I,n=61 4807570589739985 a001 46347*3^(1/30) 4807570596678994 r009 Im(z^3+c),c=-25/48+11/30*I,n=33 4807570597417150 r009 Im(z^3+c),c=-7/40+34/59*I,n=59 4807570599658945 p001 sum(1/(439*n+239)/(3^n),n=0..infinity) 4807570603627412 r009 Im(z^3+c),c=-7/40+34/59*I,n=57 4807570606322715 r009 Im(z^3+c),c=-7/40+34/59*I,n=54 4807570609988736 r009 Im(z^3+c),c=-45/122+22/43*I,n=15 4807570625042533 a001 9349/2504730781961*317811^(13/23) 4807570634296502 a001 123/9227465*4052739537881^(11/12) 4807570634743731 a001 41/15456*12586269025^(11/12) 4807570643491004 m005 (1/3*2^(1/2)+1/8)/(5/7*Catalan-2/3) 4807570648464204 b008 14*E^EulerGamma+E^Pi 4807570654660551 r005 Re(z^2+c),c=-19/20+1/17*I,n=26 4807570663085911 r005 Im(z^2+c),c=-19/46+4/51*I,n=27 4807570667704799 a005 (1/cos(4/125*Pi))^1220 4807570670163909 a007 Real Root Of 152*x^4+693*x^3-187*x^2+163*x+911 4807570672021674 a001 12238/3278735159921*317811^(13/23) 4807570675239865 r009 Im(z^3+c),c=-7/40+34/59*I,n=48 4807570679758242 a007 Real Root Of 593*x^4+63*x^3+724*x^2+441*x+20 4807570683111944 a001 13201/3536736619241*317811^(13/23) 4807570689161742 r009 Im(z^3+c),c=-7/40+34/59*I,n=52 4807570694437682 r009 Im(z^3+c),c=-7/40+34/59*I,n=47 4807570694602019 a001 7/2504730781961*2^(18/23) 4807570701056379 a001 15127/4052739537881*317811^(13/23) 4807570701303912 a001 123/34*2^(16/39) 4807570706322799 l006 ln(5145/8321) 4807570714553226 m001 (ln(5)*exp(1/Pi)+GAMMA(5/24))/exp(1/Pi) 4807570720269958 a001 199/433494437*433494437^(13/14) 4807570720269958 a001 199/225851433717*365435296162^(13/14) 4807570720274723 a001 199/832040*514229^(13/14) 4807570724244232 r005 Im(z^2+c),c=-3/86+13/21*I,n=26 4807570728449930 r005 Re(z^2+c),c=-29/54+7/19*I,n=8 4807570734865000 r005 Im(z^2+c),c=-5/9+5/58*I,n=28 4807570738852956 g003 abs(GAMMA(-131/30+I*(-17/15))) 4807570740466460 r005 Re(z^2+c),c=-19/20+1/17*I,n=24 4807570766269000 r002 30th iterates of z^2 + 4807570770479172 r009 Im(z^3+c),c=-7/40+34/59*I,n=50 4807570795870104 r009 Im(z^3+c),c=-7/40+34/59*I,n=40 4807570799249110 a001 5778/55*121393^(11/12) 4807570807253547 a007 Real Root Of -897*x^4+874*x^3-643*x^2+498*x-140 4807570824049367 a001 321/86000486440*317811^(13/23) 4807570840173712 r005 Re(z^2+c),c=-49/82+11/35*I,n=13 4807570876142350 h001 (4/5*exp(2)+6/11)/(1/12*exp(2)+8/11) 4807570890557431 a007 Real Root Of 498*x^4-672*x^3+870*x^2-642*x-611 4807570896783112 a003 sin(Pi*11/71)/sin(Pi*43/101) 4807570904800787 r009 Im(z^3+c),c=-17/50+26/49*I,n=42 4807570906987120 l006 ln(5989/9686) 4807570918389370 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=23 4807570935494338 m001 (gamma+gamma(1))/(-MinimumGamma+ThueMorse) 4807570937668699 a007 Real Root Of x^4+480*x^3-363*x^2+471*x+348 4807570951341221 a007 Real Root Of -352*x^4+905*x^3+774*x^2+804*x+327 4807570967876522 m002 1/16+Pi^6/2 4807570970762578 r002 40th iterates of z^2 + 4807570977917981 q001 762/1585 4807571006514232 r005 Im(z^2+c),c=-11/16+39/80*I,n=6 4807571009541240 s001 sum(exp(-Pi/2)^n*A223998[n],n=1..infinity) 4807571010472220 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=25 4807571013762243 s002 sum(A080268[n]/(n^3*pi^n+1),n=1..infinity) 4807571015338822 s002 sum(A080268[n]/(n^3*pi^n-1),n=1..infinity) 4807571027078397 a007 Real Root Of 176*x^4+930*x^3+469*x^2+349*x+157 4807571033131015 k005 Champernowne real with floor(Pi*(88*n+65)) 4807571034131115 k001 Champernowne real with 277*n+203 4807571056443498 a007 Real Root Of 587*x^4-207*x^3+866*x^2+363*x-80 4807571059149611 r005 Re(z^2+c),c=-25/34+4/121*I,n=54 4807571060091830 p003 LerchPhi(1/100,6,87/77) 4807571069514376 r002 39th iterates of z^2 + 4807571079430156 r009 Im(z^3+c),c=-49/114+16/35*I,n=17 4807571088815204 a003 sin(Pi*14/87)-sin(Pi*32/77) 4807571119669085 a001 32951280099/199*199^(7/11) 4807571131324658 r005 Re(z^2+c),c=-17/26+5/32*I,n=10 4807571152427627 a001 1364*(1/2*5^(1/2)+1/2)^7*3^(3/17) 4807571153674443 m001 (gamma(1)+Sarnak)^Niven 4807571157234431 r002 42th iterates of z^2 + 4807571160537191 m002 -5*Pi^6+6*Csch[Pi]-Log[Pi] 4807571183048636 g006 Psi(1,5/11)+Psi(1,5/8)-Psi(1,7/9)-Psi(1,7/8) 4807571188361083 r002 3th iterates of z^2 + 4807571201165821 m001 1/ln(Pi)^3*Khintchine^2 4807571210174993 r005 Re(z^2+c),c=-19/20+1/17*I,n=28 4807571226023449 h001 (-8*exp(8)+3)/(-exp(4)+5) 4807571235737037 r009 Im(z^3+c),c=-3/106+29/49*I,n=16 4807571238827594 a001 18/28657*317811^(12/17) 4807571240005133 a001 18/9227465*1134903170^(12/17) 4807571240005144 a001 18/2971215073*4052739537881^(12/17) 4807571246389864 m001 (BesselK(0,1)-ln(Pi))/(MasserGramain+Thue) 4807571252542776 a001 3/4*(1/2*5^(1/2)+1/2)^27*4^(3/11) 4807571270471888 p004 log(13781/8521) 4807571282554629 r005 Re(z^2+c),c=-15/22+4/31*I,n=37 4807571294394404 m001 ln(2^(1/2)+1)^GAMMA(13/24)*Otter^GAMMA(13/24) 4807571300179911 r009 Im(z^3+c),c=-41/118+19/36*I,n=39 4807571335532304 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=27 4807571350148174 r009 Im(z^3+c),c=-1/122+29/49*I,n=31 4807571353482411 r005 Im(z^2+c),c=-77/102+1/57*I,n=39 4807571353701457 r005 Re(z^2+c),c=11/126+7/38*I,n=16 4807571359842178 r002 3th iterates of z^2 + 4807571365501314 a007 Real Root Of 442*x^4-460*x^3-60*x^2-928*x-507 4807571378201450 a005 (1/sin(93/193*Pi))^967 4807571381393277 m001 (KomornikLoreti+PlouffeB)/(Artin-BesselK(0,1)) 4807571382377602 r009 Im(z^3+c),c=-1/70+29/49*I,n=22 4807571387504654 r009 Im(z^3+c),c=-27/70+22/43*I,n=47 4807571389242695 r002 44th iterates of z^2 + 4807571406001193 m001 1/ln(LaplaceLimit)*Artin^2*sqrt(2) 4807571440563454 r005 Re(z^2+c),c=-19/20+1/17*I,n=30 4807571456774994 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=29 4807571456970616 r005 Re(z^2+c),c=-7/27+39/64*I,n=16 4807571463902586 r005 Re(z^2+c),c=1/20+1/17*I,n=11 4807571464165087 r005 Re(z^2+c),c=1/20+1/17*I,n=12 4807571464263418 r002 46th iterates of z^2 + 4807571465122860 r005 Re(z^2+c),c=-19/20+1/17*I,n=40 4807571465128162 r005 Re(z^2+c),c=1/20+1/17*I,n=13 4807571465202468 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=39 4807571465234227 r002 54th iterates of z^2 + 4807571465234809 r002 56th iterates of z^2 + 4807571465238573 r005 Re(z^2+c),c=-19/20+1/17*I,n=42 4807571465254247 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=37 4807571465273534 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=41 4807571465286946 r005 Re(z^2+c),c=-19/20+1/17*I,n=38 4807571465288380 r002 58th iterates of z^2 + 4807571465300506 r005 Re(z^2+c),c=-19/20+1/17*I,n=44 4807571465306490 r005 Re(z^2+c),c=1/20+1/17*I,n=14 4807571465306899 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=43 4807571465309753 r002 60th iterates of z^2 + 4807571465311729 r005 Re(z^2+c),c=-19/20+1/17*I,n=54 4807571465311745 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=53 4807571465311749 r005 Re(z^2+c),c=-19/20+1/17*I,n=56 4807571465311759 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=55 4807571465311760 r005 Re(z^2+c),c=1/20+1/17*I,n=18 4807571465311765 r005 Re(z^2+c),c=-19/20+1/17*I,n=58 4807571465311766 r005 Re(z^2+c),c=1/20+1/17*I,n=19 4807571465311768 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=57 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=20 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=25 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=26 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=27 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=32 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=33 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=31 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=34 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=38 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=39 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=40 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=41 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=45 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=46 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=47 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=52 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=53 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=54 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=55 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=56 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=57 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=58 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=59 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=60 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=61 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=62 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=63 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=64 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=51 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=50 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=49 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=48 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=44 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=43 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=42 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=37 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=36 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=35 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=30 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=29 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=28 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=24 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=23 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=21 4807571465311769 r005 Re(z^2+c),c=1/20+1/17*I,n=22 4807571465311770 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=63 4807571465311770 r005 Re(z^2+c),c=-19/20+1/17*I,n=64 4807571465311770 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=59 4807571465311770 r005 Re(z^2+c),c=-19/20+1/17*I,n=60 4807571465311770 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=61 4807571465311770 r005 Re(z^2+c),c=-19/20+1/17*I,n=62 4807571465311779 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=51 4807571465311808 r005 Re(z^2+c),c=-19/20+1/17*I,n=52 4807571465311837 r005 Re(z^2+c),c=1/20+1/17*I,n=17 4807571465312065 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=49 4807571465312359 r005 Re(z^2+c),c=-19/20+1/17*I,n=50 4807571465312531 r002 64th iterates of z^2 + 4807571465312637 r005 Re(z^2+c),c=1/20+1/17*I,n=16 4807571465312913 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=47 4807571465313193 r002 62th iterates of z^2 + 4807571465313467 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=45 4807571465313834 r005 Re(z^2+c),c=-19/20+1/17*I,n=48 4807571465314244 r005 Re(z^2+c),c=-19/20+1/17*I,n=46 4807571465315562 r005 Re(z^2+c),c=1/20+1/17*I,n=15 4807571465793542 r002 52th iterates of z^2 + 4807571466213563 b008 Cos[2/3+ArcTan[6]] 4807571466216649 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=35 4807571467188597 r005 Re(z^2+c),c=-19/20+1/17*I,n=36 4807571468145687 r002 50th iterates of z^2 + 4807571469710461 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=33 4807571470373675 a001 29/4181*8^(27/29) 4807571472146628 r002 48th iterates of z^2 + 4807571473444397 r005 Re(z^2+c),c=-19/20+1/17*I,n=34 4807571474273260 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=31 4807571478430869 r005 Re(z^2+c),c=5/24+4/11*I,n=29 4807571479743133 r005 Re(z^2+c),c=-19/20+1/17*I,n=32 4807571483810602 a007 Real Root Of 846*x^4-651*x^3-542*x^2-879*x+575 4807571488253066 r009 Im(z^3+c),c=-7/40+34/59*I,n=45 4807571498751321 r005 Re(z^2+c),c=1/20+1/17*I,n=10 4807571500457226 m005 (9/4+5/2*5^(1/2))/(5*Pi+3/5) 4807571508273781 m001 (gamma(3)+QuadraticClass)/(1+Chi(1)) 4807571511727303 a001 2139295485799/5*832040^(13/19) 4807571511728253 a001 4106118243/5*7778742049^(13/19) 4807571520760203 m005 (1/3*3^(1/2)+1/7)/(5*Pi-8/11) 4807571525773813 r005 Re(z^2+c),c=-19/14+1/88*I,n=8 4807571562285096 r002 7th iterates of z^2 + 4807571565785832 h001 (1/8*exp(1)+5/11)/(5/11*exp(1)+5/12) 4807571583389793 a007 Real Root Of 153*x^4+501*x^3-976*x^2+581*x-712 4807571602277042 s002 sum(A069918[n]/(pi^n),n=1..infinity) 4807571607803674 m005 (1/2*Pi-5/6)/(2/7*Pi+7/11) 4807571617497061 m001 (MertensB2-ThueMorse)/(Zeta(1,-1)-GAMMA(5/6)) 4807571619325213 m004 (2*Sqrt[5])/(3*Pi)+(Sqrt[5]*Pi)/E^(Sqrt[5]*Pi) 4807571634444123 a007 Real Root Of -190*x^4-915*x^3+100*x^2+630*x+544 4807571639127118 a001 2584/123*843^(25/31) 4807571647113561 m001 (ln(2+3^(1/2))-Kac)/(MertensB1+Salem) 4807571658385915 h001 (7/8*exp(2)+7/12)/(1/10*exp(2)+8/11) 4807571663733282 r009 Im(z^3+c),c=-69/122+9/19*I,n=61 4807571667055844 a001 2207/591286729879*317811^(13/23) 4807571668742457 r002 12th iterates of z^2 + 4807571688755391 m001 ln(OneNinth)^2/Artin^2/exp(1)^2 4807571693254475 r009 Im(z^3+c),c=-1/106+29/49*I,n=28 4807571697525092 r008 a(0)=5,K{-n^6,92-24*n^3-50*n^2-13*n} 4807571708770581 r009 Im(z^3+c),c=-3/70+13/22*I,n=24 4807571723068110 a001 89/7*47^(19/55) 4807571735110558 a001 86267571272/521*322^(7/12) 4807571745440441 m005 (1/3*exp(1)-1/11)/(7/12*5^(1/2)-3) 4807571751732070 r002 48i'th iterates of 2*x/(1-x^2) of 4807571764681834 r005 Re(z^2+c),c=1/20+1/17*I,n=9 4807571777835496 m001 ln(5)*OneNinth+HardyLittlewoodC4 4807571800237295 r005 Im(z^2+c),c=-13/70+47/63*I,n=50 4807571801069046 l006 ln(53/6489) 4807571801355010 b008 Log[Pi]*Sech[1]^2 4807571801355010 m001 1/cosh(1)^2*ln(Pi) 4807571817225802 a007 Real Root Of 625*x^4+x^3-493*x^2-413*x+279 4807571821960451 a007 Real Root Of 528*x^4+171*x^3+250*x^2-493*x-304 4807571823576017 m009 (1/4*Psi(1,1/3)+1/2)/(1/3*Pi^2+3) 4807571825399643 l004 Pi/cosh(178/59*Pi) 4807571835149106 m001 (Pi+2^(1/3))/(FeigenbaumKappa-TreeGrowth2nd) 4807571843658139 a007 Real Root Of 666*x^4-998*x^3+132*x^2+27*x-164 4807571847596953 m001 LambertW(1)+Zeta(1/2)+ThueMorse 4807571850823622 h003 exp(Pi*(12*12^(1/12)-4)) 4807571852291000 s001 sum(1/10^(n-1)*A028295[n],n=1..infinity) 4807571852291000 s001 sum(1/10^n*A028295[n],n=1..infinity) 4807571862282129 a007 Real Root Of 144*x^4+252*x^3+19*x^2-472*x-211 4807571863683822 r005 Im(z^2+c),c=19/62+16/59*I,n=9 4807571868754982 m001 (cos(1/5*Pi)+ln(5))/(GAMMA(5/6)-Kac) 4807571874123907 m001 Tribonacci/ln(Riemann3rdZero)*sin(1) 4807571875282859 r009 Re(z^3+c),c=-3/40+23/45*I,n=26 4807571880452120 h001 (-7*exp(1)+9)/(-7*exp(8)+8) 4807571881691763 l004 Pi/sinh(178/59*Pi) 4807571882218044 m001 1/RenyiParking^2/ln(FeigenbaumC)^2/Zeta(7)^2 4807571899987880 m001 (FeigenbaumC+KhinchinLevy)/(ln(Pi)-Pi^(1/2)) 4807571902917943 a001 12238/305*2178309^(17/35) 4807571907284858 m001 (Bloch-cos(1))/(-PisotVijayaraghavan+Porter) 4807571911206892 r002 62th iterates of z^2 + 4807571913396442 a003 cos(Pi*13/44)-cos(Pi*55/119) 4807571913448785 a007 Real Root Of 87*x^4-257*x^3+470*x^2-846*x+322 4807571924166468 m001 (exp(1/Pi)-Stephens)/(3^(1/3)+Ei(1,1)) 4807571925636624 m001 (Ei(1)-GaussKuzminWirsing)/(Kac-Lehmer) 4807571930428829 a001 39603/377*832040^(37/47) 4807571939492906 r009 Re(z^3+c),c=-3/38+19/34*I,n=17 4807571944083648 m002 5*Pi^6+(Pi*Tanh[Pi])/5 4807571944179071 r005 Im(z^2+c),c=29/102+19/50*I,n=30 4807571961179752 r009 Im(z^3+c),c=-1/122+22/41*I,n=3 4807571970179622 g005 GAMMA(7/12)*GAMMA(7/11)*GAMMA(8/9)*GAMMA(3/7) 4807571971232549 r009 Re(z^3+c),c=-57/94+27/61*I,n=5 4807571971904326 m001 (-gamma(3)+Conway)/(Chi(1)-LambertW(1)) 4807571974529144 a007 Real Root Of -125*x^4-575*x^3+269*x^2+773*x+382 4807571981259934 l006 ln(4934/5177) 4807571993494035 r009 Im(z^3+c),c=-7/40+34/59*I,n=41 4807572000793719 a007 Real Root Of 692*x^4-188*x^3+135*x^2-791*x+333 4807572012332008 m001 1/ln(GAMMA(11/24))*GAMMA(11/12)*sqrt(3)^2 4807572019541040 r005 Im(z^2+c),c=21/62+13/41*I,n=63 4807572029700090 r002 21th iterates of z^2 + 4807572032296477 a007 Real Root Of 560*x^4-98*x^3-367*x^2-795*x+448 4807572064007234 a001 32951280099/1364*322^(11/12) 4807572071627304 m001 GAMMA(5/6)*exp(GAMMA(19/24))*log(2+sqrt(3)) 4807572109596308 m002 1+5*Pi^6-Cosh[Pi]/Pi^3 4807572130231029 l006 ln(844/1365) 4807572135222081 r002 3th iterates of z^2 + 4807572141105212 a001 1/2*322^(34/43) 4807572172181178 r005 Im(z^2+c),c=-18/29+13/32*I,n=10 4807572174385830 r009 Im(z^3+c),c=-47/122+19/37*I,n=37 4807572174486616 m001 OneNinth*(FeigenbaumAlpha+ReciprocalLucas) 4807572185811463 a007 Real Root Of 167*x^4+890*x^3+230*x^2-981*x-350 4807572188537225 a007 Real Root Of -191*x^4-479*x^3-608*x^2+338*x+260 4807572202245353 m001 Pi*2^(1/2)/GAMMA(3/4)+ln(2)*Niven 4807572206418289 a007 Real Root Of -979*x^4-371*x^3+256*x^2+125*x+12 4807572238419735 r009 Re(z^3+c),c=-11/18+32/49*I,n=5 4807572244330671 a001 39603/55*8^(21/23) 4807572245370352 m001 ln(Zeta(5))*Riemann2ndZero^2*sqrt(3)^2 4807572251563164 r009 Im(z^3+c),c=-1/118+29/49*I,n=35 4807572259301505 m001 sin(1/12*Pi)^HardyLittlewoodC3/QuadraticClass 4807572266379318 r005 Re(z^2+c),c=-133/102+59/63*I,n=2 4807572292357812 m001 (-MertensB3+MinimumGamma)/(Si(Pi)+FeigenbaumB) 4807572306075687 a007 Real Root Of 6*x^4+287*x^3-50*x^2+975*x+837 4807572314276131 r002 11th iterates of z^2 + 4807572315680601 r002 37th iterates of z^2 + 4807572344598501 s002 sum(A045800[n]/(n*2^n+1),n=1..infinity) 4807572373217580 r005 Im(z^2+c),c=27/122+28/57*I,n=11 4807572382382893 r005 Re(z^2+c),c=33/86+13/49*I,n=52 4807572386756186 r005 Re(z^2+c),c=1/20+1/17*I,n=8 4807572445161377 a001 505019158607/377*6557470319842^(14/17) 4807572450006235 r009 Im(z^3+c),c=-7/40+34/59*I,n=43 4807572464667734 s001 sum(exp(-Pi/3)^(n-1)*A285283[n],n=1..infinity) 4807572466442774 a007 Real Root Of -480*x^4+955*x^3+44*x^2+787*x-469 4807572468963355 m001 GAMMA(2/3)*ln(Trott)^2*log(2+sqrt(3))^2 4807572476432459 m001 HardyLittlewoodC3^BesselI(1,1)/ln(5) 4807572504306553 m001 GAMMA(11/12)^2/Kolakoski^2*exp(Zeta(9)) 4807572505587694 r002 52th iterates of z^2 + 4807572513849950 r002 30th iterates of z^2 + 4807572515745896 m001 1/exp(Rabbit)^2*LaplaceLimit^2*GAMMA(5/12)^2 4807572530543090 r002 6th iterates of z^2 + 4807572532590954 r009 Im(z^3+c),c=-11/70+37/56*I,n=7 4807572540145366 m001 1/Khintchine^2*Si(Pi)^2*exp(Trott) 4807572560845174 a008 Real Root of x^4+40*x^2-144*x-2151 4807572614892139 m005 (1/3*Zeta(3)+1/11)/(5/8*5^(1/2)-3/8) 4807572616579917 m001 GAMMA(11/12)*(Pi+ln(2)/ln(10))+GAMMA(19/24) 4807572617775521 r009 Im(z^3+c),c=-5/22+13/23*I,n=28 4807572621496794 r002 38th iterates of z^2 + 4807572631180657 a003 cos(Pi*18/109)*cos(Pi*26/83) 4807572636601085 a007 Real Root Of 469*x^4+472*x^3+319*x^2-823*x-442 4807572649510859 r009 Re(z^3+c),c=-37/82+5/58*I,n=48 4807572660843058 a007 Real Root Of 172*x^4-247*x^3+816*x^2-272*x-356 4807572682242876 m001 Riemann2ndZero/(HardyLittlewoodC5+Trott2nd) 4807572683229002 r009 Re(z^3+c),c=-23/58+2/45*I,n=30 4807572704918140 m001 GAMMA(1/4)*BesselI(1,1)*GAMMA(1/24) 4807572721221564 r002 64th iterates of z^2 + 4807572721413743 m003 1/2+Sqrt[5]/512+Cos[1/2+Sqrt[5]/2]/2 4807572742716268 a001 199/1597*610^(13/14) 4807572776884218 r002 53th iterates of z^2 + 4807572779478915 r005 Im(z^2+c),c=-3/5+1/100*I,n=28 4807572839932035 a007 Real Root Of -809*x^4+471*x^3-691*x^2+975*x+724 4807572853087248 b008 4+Sqrt[15/23] 4807572853303482 m004 150*Pi+(5*Sqrt[5]*Pi)/4+Cos[Sqrt[5]*Pi] 4807572872340153 r002 17th iterates of z^2 + 4807572881403957 r002 11th iterates of z^2 + 4807572888254805 a007 Real Root Of 745*x^4-371*x^3-33*x^2-852*x-483 4807572918192923 a007 Real Root Of 188*x^4+971*x^3+270*x^2-229*x+123 4807572920536362 m001 (FeigenbaumDelta+Mills)/(Niven-Riemann1stZero) 4807572923125165 m001 (MadelungNaCl*Trott-Thue)/MadelungNaCl 4807572933355714 a003 cos(Pi*12/89)-cos(Pi*24/67) 4807572936064556 q001 1549/3222 4807572936431407 r002 40th iterates of z^2 + 4807572943283765 g005 1/Pi/csc(5/12*Pi)*GAMMA(5/7)*GAMMA(3/4) 4807572955348432 a007 Real Root Of -858*x^4+775*x^3-629*x^2+147*x+348 4807572971179284 m002 -4-5*Pi^6+Pi*ProductLog[Pi] 4807572977285736 a007 Real Root Of 632*x^4-654*x^3+916*x^2-813*x-709 4807573003857746 a007 Real Root Of -207*x^4-918*x^3+464*x^2+547*x+480 4807573005044577 r009 Im(z^3+c),c=-27/64+6/11*I,n=45 4807573006578988 m001 (Conway+Otter)/(2^(1/3)-Artin) 4807573006593683 r009 Im(z^3+c),c=-6/13+2/43*I,n=38 4807573008448583 h001 (-8*exp(-2)+9)/(-8*exp(3)-4) 4807573035573541 m002 6-(25*Log[Pi])/24 4807573037429739 r009 Im(z^3+c),c=-3/8+17/33*I,n=30 4807573041720520 m006 (4/Pi-1/4)/(5/6*exp(Pi)+2) 4807573044433752 a007 Real Root Of -715*x^4+736*x^3-969*x^2-237*x+230 4807573046392199 r005 Re(z^2+c),c=-3/94+37/57*I,n=12 4807573097332367 m002 -5*Pi^6-Log[Pi]+6*Sech[Pi] 4807573099185929 a007 Real Root Of 235*x^4-983*x^3-116*x^2-726*x-444 4807573105208589 r009 Re(z^3+c),c=-29/74+1/25*I,n=35 4807573107097164 r005 Im(z^2+c),c=-37/102+4/53*I,n=14 4807573126098320 m001 Grothendieck*(BesselJ(1,1)-Rabbit) 4807573140482706 r005 Re(z^2+c),c=-7/10+19/235*I,n=61 4807573154292776 a007 Real Root Of 131*x^4+490*x^3-759*x^2-450*x-154 4807573155742629 r005 Re(z^2+c),c=-2/3+42/109*I,n=11 4807573181582580 m001 (Zeta(3)+HardHexagonsEntropy)/cos(1) 4807573203036422 a007 Real Root Of 551*x^4-160*x^3-603*x^2-219*x+233 4807573205403246 a007 Real Root Of -123*x^4-442*x^3+565*x^2-720*x+73 4807573228513679 m004 (3*Sqrt[5])/Pi+(Sqrt[5]*Pi)/4+Tan[Sqrt[5]*Pi] 4807573241561803 m001 Kolakoski*KhintchineHarmonic*ln(cos(Pi/12)) 4807573244221793 m001 AlladiGrinstead*Kolakoski*RenyiParking 4807573250029921 r009 Im(z^3+c),c=-1/114+29/49*I,n=32 4807573268577134 r009 Re(z^3+c),c=-29/74+1/25*I,n=39 4807573271332536 a007 Real Root Of -642*x^4+18*x^3-309*x^2+219*x+213 4807573288124832 m005 (-3/20+1/4*5^(1/2))/(1/3*Catalan+6/11) 4807573295919458 a007 Real Root Of -372*x^4+458*x^3-740*x^2+795*x+624 4807573296434933 h002 exp(11^(5/3)+12^(3/2)) 4807573296434933 h007 exp(11^(5/3)+12^(3/2)) 4807573305985057 r002 27th iterates of z^2 + 4807573311834931 a001 64079/21*3^(12/29) 4807573317611173 r002 25th iterates of z^2 + 4807573319439972 m001 (exp(-1/2*Pi)-Conway)/(Zeta(5)-cos(1/5*Pi)) 4807573319672233 r002 24th iterates of z^2 + 4807573336192823 r002 53th iterates of z^2 + 4807573336846104 r005 Re(z^2+c),c=-33/64+22/35*I,n=7 4807573340042285 r002 17th iterates of z^2 + 4807573344447222 a001 1/72*(1/2+1/2*5^(1/2))^60 4807573357585405 r009 Im(z^3+c),c=-4/27+15/23*I,n=9 4807573359448640 a001 3571*(1/2*5^(1/2)+1/2)^5*3^(3/17) 4807573361014709 s002 sum(A038045[n]/(pi^n+1),n=1..infinity) 4807573370393614 m001 (ln(2)/ln(10)-sin(1/12*Pi))/(-Paris+Trott) 4807573387482937 l006 ln(5827/9424) 4807573403866440 r002 6th iterates of z^2 + 4807573409706913 r005 Im(z^2+c),c=-25/38+24/59*I,n=49 4807573413545246 a005 (1/cos(37/117*Pi))^14 4807573436844053 m001 Shi(1)/exp(1)/cos(1/5*Pi) 4807573441910456 m001 Gompertz/(GAMMA(17/24)^Thue) 4807573443297300 m005 (1/3*gamma-1/6)/(3/10*2^(1/2)+1/9) 4807573453832248 m005 (1/2*2^(1/2)-1/4)/(37/220+7/20*5^(1/2)) 4807573454636963 r005 Re(z^2+c),c=-37/58+11/58*I,n=18 4807573455984891 m001 (sin(1)+arctan(1/3))/(Zeta(1,-1)+Sierpinski) 4807573463766337 m005 (1/3*Pi-1/10)/(85/84+3/7*5^(1/2)) 4807573482601991 m005 (1/2*Pi+3/5)/(3*2^(1/2)+3/11) 4807573503311481 m002 1+5*Pi^6-Sinh[Pi]/Pi^3 4807573516495111 m006 (5/6*exp(2*Pi)-3/5)/(Pi^2-3/5) 4807573529237002 m001 (-MertensB2+MertensB3)/(2^(1/2)-Kolakoski) 4807573533550123 r008 a(0)=6,K{-n^6,53+93*n^3-55*n^2-90*n} 4807573581698941 m001 GAMMA(17/24)/Artin/TravellingSalesman 4807573585083512 r005 Re(z^2+c),c=-11/23+15/26*I,n=26 4807573588877293 m001 FellerTornier^(HardyLittlewoodC4/Weierstrass) 4807573595325277 a001 15127/3*987^(39/59) 4807573600431067 l006 ln(4983/8059) 4807573607392295 m001 (CopelandErdos-Otter)/(cos(1/5*Pi)-exp(1/Pi)) 4807573654211828 a007 Real Root Of 640*x^4+371*x^3+382*x^2-455*x-300 4807573656806223 a007 Real Root Of -604*x^4-457*x^3-99*x^2+149*x+76 4807573656822022 a007 Real Root Of 579*x^4+304*x^3+679*x^2-176*x-10 4807573681448667 a001 9349*(1/2*5^(1/2)+1/2)^3*3^(3/17) 4807573696050200 r002 64th iterates of z^2 + 4807573728427837 a001 24476*(1/2*5^(1/2)+1/2)*3^(3/17) 4807573734023344 r005 Im(z^2+c),c=-7/102+47/54*I,n=12 4807573735451071 r002 36th iterates of z^2 + 4807573736452838 a001 (1/2*5^(1/2)+1/2)^22*3^(3/17) 4807573739103280 r005 Re(z^2+c),c=-81/118+9/49*I,n=57 4807573739518115 a001 39603*3^(3/17) 4807573742114177 m001 (GAMMA(13/24)+Khinchin)/(Psi(1,1/3)-ln(3)) 4807573757462562 a001 15127*(1/2*5^(1/2)+1/2)^2*3^(3/17) 4807573760356151 r005 Re(z^2+c),c=-37/98+37/54*I,n=6 4807573768628990 h001 (1/5*exp(2)+1/11)/(1/3*exp(2)+4/5) 4807573771777105 a007 Real Root Of -208*x^4+831*x^3+676*x^2+596*x-524 4807573828703074 m001 (GaussKuzminWirsing+Robbin)/(CareFree+Conway) 4807573828790020 l006 ln(76/9305) 4807573830770169 m001 (Conway+ZetaQ(3))/(exp(1/exp(1))+GAMMA(17/24)) 4807573842601801 r009 Im(z^3+c),c=-45/98+8/17*I,n=60 4807573858150393 r002 36th iterates of z^2 + 4807573866860814 r009 Im(z^3+c),c=-5/114+13/22*I,n=31 4807573876262647 m001 (ThueMorse+ZetaQ(3))/(arctan(1/2)-Totient) 4807573880455627 a001 5778*(1/2*5^(1/2)+1/2)^4*3^(3/17) 4807573900225395 l006 ln(4139/6694) 4807573907914801 a003 cos(Pi*31/116)*cos(Pi*52/109) 4807573929068517 a003 sin(Pi*38/105)-sin(Pi*34/93) 4807573933655264 a007 Real Root Of -138*x^4-492*x^3+862*x^2+32*x-719 4807573940796982 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=21 4807573949173389 a003 cos(Pi*30/89)-sin(Pi*30/71) 4807573949269060 m001 ReciprocalFibonacci^MertensB2+Conway 4807573954320449 a007 Real Root Of -16*x^4+719*x^3+559*x^2+636*x-514 4807573970140251 m001 (RenyiParking+ThueMorse)/(Kac+KomornikLoreti) 4807573971799296 r005 Im(z^2+c),c=23/70+21/59*I,n=35 4807573971954635 r002 4th iterates of z^2 + 4807573974513181 r001 9i'th iterates of 2*x^2-1 of 4807573979822654 a007 Real Root Of 2*x^4+963*x^3+712*x^2-971*x+716 4807573992234228 m005 (1/2*gamma-9/11)/(1/9*3^(1/2)+10/11) 4807574011800916 m001 exp(1/exp(1))/(GAMMA(19/24)+FeigenbaumC) 4807574031423603 r005 Re(z^2+c),c=3/52+7/11*I,n=61 4807574040180323 a007 Real Root Of 163*x^4+744*x^3-356*x^2-805*x-46 4807574047472418 a007 Real Root Of -649*x^4-452*x^3-600*x^2+526*x+376 4807574048405079 r009 Im(z^3+c),c=-15/34+15/31*I,n=56 4807574055013204 a008 Real Root of 1/312*x^3+19/312*x^2-29/104*x-11/26 4807574062381561 a007 Real Root Of 228*x^4-723*x^3+129*x^2-459*x-343 4807574069349983 g001 abs(GAMMA(143/60+I*43/10)) 4807574072402644 a007 Real Root Of 283*x^4-279*x^3-999*x^2-924*x+691 4807574082550791 r005 Re(z^2+c),c=-67/50+1/44*I,n=24 4807574097031426 m001 (-Landau+LaplaceLimit)/(2^(1/3)+GAMMA(3/4)) 4807574106403078 m002 -4+E^Pi/5+5*Pi^6 4807574115800864 r005 Im(z^2+c),c=13/82+5/11*I,n=10 4807574122915005 r005 Im(z^2+c),c=-5/58+27/46*I,n=8 4807574126543841 a001 47/13*13^(1/9) 4807574173510017 m005 (1/2*Pi-1/11)/(8/9*Pi+2/7) 4807574183766914 r005 Im(z^2+c),c=-59/98+4/45*I,n=62 4807574184528496 r005 Re(z^2+c),c=-71/114+15/62*I,n=23 4807574189492383 a007 Real Root Of 657*x^4+41*x^3+6*x^2-412*x-230 4807574200396788 m001 (Zeta(1,2)+LandauRamanujan)/(Pi+arctan(1/2)) 4807574207275320 r005 Im(z^2+c),c=-79/62+12/61*I,n=9 4807574244491444 r009 Im(z^3+c),c=-31/126+41/59*I,n=35 4807574251642460 r009 Im(z^3+c),c=-4/27+18/31*I,n=24 4807574286407240 m002 -Pi/5-5*Pi^6 4807574299837258 r002 49th iterates of z^2 + 4807574300102824 a007 Real Root Of 883*x^4+613*x^3+461*x^2-785*x-463 4807574305475337 a007 Real Root Of 315*x^4+171*x^3+832*x^2-786*x-568 4807574319367464 r005 Im(z^2+c),c=-1/102+25/42*I,n=37 4807574319547242 r009 Im(z^3+c),c=-37/110+33/62*I,n=25 4807574327143289 a003 cos(Pi*8/71)-cos(Pi*15/43) 4807574328966078 m001 TravellingSalesman/(Backhouse^GAMMA(11/12)) 4807574330260206 r002 64th iterates of z^2 + 4807574343235873 r009 Re(z^3+c),c=-27/118+29/35*I,n=5 4807574351157515 m005 (1/2*Pi-7/9)/(3/8*3^(1/2)+1) 4807574351229651 a008 Real Root of (-4+4*x+8*x^2+4*x^4+5*x^8) 4807574353601746 l006 ln(3295/5329) 4807574360440413 a007 Real Root Of -688*x^4-414*x^3-890*x^2-600*x-92 4807574363362310 r002 42th iterates of z^2 + 4807574380469059 m001 1/LambertW(1)*ln(GAMMA(11/12))^2*cos(Pi/12)^2 4807574380520437 l003 hypergeom([1,1,3/2],[2/3,1/3],101/108) 4807574420957879 a003 sin(Pi*11/113)-sin(Pi*2/7) 4807574424118677 r002 6th iterates of z^2 + 4807574435044598 m005 (1/3*Zeta(3)+1/7)/(2/11*exp(1)+7/11) 4807574475258158 r009 Im(z^3+c),c=-15/98+41/64*I,n=9 4807574477650474 m001 GAMMA(1/6)^2*FeigenbaumKappa*ln(Pi) 4807574479125767 a003 cos(Pi*2/13)*sin(Pi*19/104) 4807574500258411 m001 (-AlladiGrinstead+Trott)/(Shi(1)-exp(1)) 4807574503631320 r002 6th iterates of z^2 + 4807574517575313 m001 1/ln(GAMMA(17/24))^2*GAMMA(1/3)*GAMMA(5/6) 4807574523982438 m001 Bloch^2*exp(Backhouse)^2*GAMMA(19/24) 4807574533566910 m005 (1/3*gamma+2/5)/(1/8*2^(1/2)-3/10) 4807574567027272 m001 1/MadelungNaCl^3*ln(GAMMA(19/24))^2 4807574571263915 m001 HeathBrownMoroz/Conway*PlouffeB 4807574585083936 m001 (BesselK(0,1)+CareFree)/(-MertensB1+Trott2nd) 4807574598341809 r005 Re(z^2+c),c=-15/26+27/109*I,n=6 4807574608115787 r005 Im(z^2+c),c=-13/90+37/53*I,n=8 4807574618217928 m001 (Robbin+StronglyCareFree)/(GAMMA(17/24)+Niven) 4807574625531624 m005 (1/3*Catalan-1/9)/(1/10*2^(1/2)-2/11) 4807574637249441 r005 Im(z^2+c),c=-11/86+43/64*I,n=20 4807574643325295 m001 1/BesselJ(0,1)*Trott^2/exp(sqrt(3))^2 4807574644035745 r005 Re(z^2+c),c=-45/62+3/26*I,n=41 4807574650629556 m008 (5/6*Pi^2+1)/(1/5*Pi^6-2/5) 4807574664094569 r009 Re(z^3+c),c=-55/98+7/31*I,n=3 4807574680181044 l006 ln(5746/9293) 4807574695648444 m001 BesselI(1,2)*GAMMA(13/24)^(5^(1/2)) 4807574695648444 m001 BesselI(1,2)*GAMMA(13/24)^sqrt(5) 4807574718724322 m001 (MertensB1+ZetaP(3))/(gamma(1)-GaussAGM) 4807574723462641 a001 2207*(1/2*5^(1/2)+1/2)^6*3^(3/17) 4807574724288722 m001 (Si(Pi)+Zeta(5))/(FeigenbaumDelta+Totient) 4807574730152940 r009 Im(z^3+c),c=-4/27+31/43*I,n=22 4807574734492105 r005 Re(z^2+c),c=-12/29+5/12*I,n=4 4807574747546939 r002 17th iterates of z^2 + 4807574748878742 a007 Real Root Of -905*x^4+703*x^3+407*x^2+540*x+292 4807574770928628 r002 3th iterates of z^2 + 4807574771214781 r002 3th iterates of z^2 + 4807574780425009 r008 a(0)=5,K{-n^6,26+11*n^3+15*n^2-46*n} 4807574780606799 m001 OrthogonalArrays^ln(Pi)*FransenRobinson^ln(Pi) 4807574783939941 r008 a(0)=0,K{-n^6,13-18*n^3+66*n^2-38*n} 4807574793305474 r009 Im(z^3+c),c=-37/110+10/19*I,n=9 4807574796284330 r005 Re(z^2+c),c=13/44+22/39*I,n=59 4807574806570774 r002 6th iterates of z^2 + 4807574807483402 p001 sum(1/(170*n+21)/(12^n),n=0..infinity) 4807574812707554 a007 Real Root Of -272*x^4+895*x^3-746*x^2-265*x+159 4807574832009773 q001 787/1637 4807574832950506 a007 Real Root Of -633*x^4+797*x^3-951*x^2+347*x+509 4807574861452765 a007 Real Root Of -212*x^4-847*x^3+828*x^2-174*x-839 4807574876139850 a003 cos(Pi*18/119)-cos(Pi*41/112) 4807574879173955 r005 Im(z^2+c),c=3/52+21/32*I,n=20 4807574881506138 r005 Re(z^2+c),c=-69/118+4/43*I,n=5 4807574882817251 r005 Im(z^2+c),c=-97/114+11/54*I,n=14 4807574892502373 r005 Im(z^2+c),c=-8/21+27/44*I,n=28 4807574906979270 m001 exp(Khintchine)^2*Bloch^2*Zeta(9)^2 4807574925035771 r002 29th iterates of z^2 + 4807574927157950 r009 Im(z^3+c),c=-9/106+10/17*I,n=33 4807574929113171 m001 PrimesInBinary^Backhouse*3^(1/2) 4807574933932828 m001 polylog(4,1/2)/(Psi(2,1/3)^Lehmer) 4807574942827094 r005 Re(z^2+c),c=-37/62+13/63*I,n=8 4807574947525009 m001 (1+3^(1/2))^(1/2)/LambertW(1)*ZetaQ(4) 4807574957892997 r002 11th iterates of z^2 + 4807574970696034 a007 Real Root Of -130*x^4-578*x^3+365*x^2+632*x-177 4807574999991950 r005 Im(z^2+c),c=-9/50+39/61*I,n=63 4807575007579886 m001 (Otter+Stephens)/(FellerTornier-Shi(1)) 4807575019461462 m001 1/exp(Rabbit)/Paris/Zeta(5) 4807575027398109 m001 (Totient+Trott2nd)/(sin(1/12*Pi)+Sierpinski) 4807575035671902 m001 exp(Pi)/((Pi*csc(1/12*Pi)/GAMMA(11/12))^Cahen) 4807575035671902 m001 exp(Pi)/(GAMMA(1/12)^Cahen) 4807575038743251 m001 (ln(3)+exp(1/Pi))/(FeigenbaumDelta+PlouffeB) 4807575066717286 r005 Im(z^2+c),c=4/29+34/63*I,n=60 4807575072669522 r009 Im(z^3+c),c=-5/86+36/61*I,n=28 4807575091329817 r009 Im(z^3+c),c=-11/32+13/19*I,n=23 4807575092471297 h001 (-3*exp(1)-3)/(-12*exp(3)+9) 4807575099460932 m005 (1/2*Catalan+3/4)/(-5/11+1/11*5^(1/2)) 4807575102411492 a001 9/5473*39088169^(10/17) 4807575104226993 m001 CareFree*FeigenbaumDelta*MinimumGamma 4807575109145480 m001 (DuboisRaymond-FellerTornier)/(Lehmer-Thue) 4807575110205972 a007 Real Root Of -530*x^4+36*x^3+894*x^2+692*x-515 4807575110435964 a001 18/1346269*139583862445^(10/17) 4807575113378684 r005 Re(z^2+c),c=-41/30+83/112*I,n=2 4807575114348284 r005 Re(z^2+c),c=11/126+19/62*I,n=28 4807575119217660 l006 ln(2451/3964) 4807575168491470 r009 Im(z^3+c),c=-19/46+19/44*I,n=8 4807575177915874 a007 Real Root Of 164*x^4+787*x^3-96*x^2-470*x-201 4807575185072538 b008 1/4+11*Erfc[EulerGamma] 4807575191281157 r009 Im(z^3+c),c=-29/86+25/46*I,n=13 4807575214131675 r005 Re(z^2+c),c=-17/118+39/47*I,n=12 4807575219798596 m001 (gamma+GAMMA(11/12))/(-Magata+Trott) 4807575227520825 r005 Im(z^2+c),c=-15/14+80/251*I,n=7 4807575228693126 r005 Re(z^2+c),c=-7/10+7/169*I,n=46 4807575264675992 a007 Real Root Of 186*x^4+806*x^3-326*x^2+568*x+464 4807575271087230 m005 (1/2*5^(1/2)+8/11)/(1/7*Zeta(3)-5/9) 4807575284159227 m001 GAMMA(5/6)*ArtinRank2^2*exp(sqrt(5))^2 4807575291235855 r009 Im(z^3+c),c=-33/74+27/55*I,n=51 4807575297902321 m002 Pi^5*Csch[Pi]+6*Pi*Log[Pi] 4807575298530628 m001 1/ln(GolombDickman)/Cahen^2*Zeta(1,2) 4807575303988205 m005 (1/2*exp(1)+6)/(41/56+5/14*5^(1/2)) 4807575310862326 s002 sum(A106655[n]/(n!^2),n=1..infinity) 4807575310906189 m005 (1/2*Zeta(3)+11/12)/(5/9*gamma-7/11) 4807575359367976 a007 Real Root Of 852*x^4-692*x^3+709*x^2-586*x-568 4807575386181643 a007 Real Root Of -103*x^4-302*x^3+783*x^2-633*x+325 4807575389434006 m005 (1/2*gamma+5/12)/(9/10*5^(1/2)-6/11) 4807575390713071 r005 Re(z^2+c),c=-7/10+4/105*I,n=56 4807575393907287 a007 Real Root Of 628*x^4-740*x^3+480*x^2-323*x-382 4807575397298590 g007 -Psi(2,7/9)-Psi(2,6/7)-Psi(2,2/5)-Psi(2,2/3) 4807575412841619 r005 Re(z^2+c),c=-7/10+1/28*I,n=39 4807575417054154 r009 Re(z^3+c),c=-8/17+1/14*I,n=48 4807575421930258 r005 Re(z^2+c),c=-13/14+32/221*I,n=46 4807575439981780 r002 20th iterates of z^2 + 4807575449972608 p001 sum(1/(347*n+215)/(12^n),n=0..infinity) 4807575455966266 m001 (GAMMA(23/24)-cos(1))/(-Artin+Weierstrass) 4807575472199166 r009 Im(z^3+c),c=-25/82+23/42*I,n=18 4807575485042609 a001 13201/329*2178309^(17/35) 4807575497195706 r005 Re(z^2+c),c=-13/46+29/55*I,n=2 4807575514854593 r009 Re(z^3+c),c=-55/118+3/31*I,n=61 4807575557672812 l006 ln(5401/5667) 4807575562102685 r005 Im(z^2+c),c=-5/8+21/233*I,n=64 4807575566146551 a007 Real Root Of 587*x^4-782*x^3-352*x^2-774*x-409 4807575599129452 a001 53316291173/521*322^(2/3) 4807575605551072 h001 (7/9*exp(1)+3/10)/(5/9*exp(2)+11/12) 4807575623605079 r005 Im(z^2+c),c=17/122+20/37*I,n=41 4807575623906364 m001 Paris/LaplaceLimit^2*exp(FeigenbaumD)^2 4807575630469947 r005 Re(z^2+c),c=-27/26+19/51*I,n=9 4807575639614045 r009 Im(z^3+c),c=-4/23+23/40*I,n=11 4807575652051580 m005 (1/2*exp(1)-1/8)/(7/8*Pi-2/11) 4807575656628063 a007 Real Root Of -557*x^4-671*x^3+848*x^2+789*x-471 4807575657343968 m005 (1/3*gamma+1/7)/(7/8*3^(1/2)-9/11) 4807575673877584 p004 log(36779/22741) 4807575706567990 a001 1364/317811*832040^(9/26) 4807575707836611 m005 (1/2*gamma+5/11)/(5*Pi-1/4) 4807575716318924 a007 Real Root Of 261*x^4-638*x^3-787*x^2-96*x+285 4807575717442989 s002 sum(A175684[n]/((3*n+1)!),n=1..infinity) 4807575740879626 l006 ln(4058/6563) 4807575741632872 r009 Re(z^3+c),c=-14/27+16/45*I,n=8 4807575747521860 r005 Im(z^2+c),c=-33/62+37/58*I,n=6 4807575769182867 a007 Real Root Of -819*x^4+291*x^3-109*x^2+540*x-223 4807575779607671 m005 (1/3*5^(1/2)-1/3)/(1/11*Pi+4/7) 4807575791913587 h001 (3/10*exp(2)+1/11)/(5/8*exp(2)+2/11) 4807575793126807 a007 Real Root Of -212*x^4-995*x^3+279*x^2+947*x+794 4807575803551747 r009 Re(z^3+c),c=-6/11+33/52*I,n=14 4807575809479852 a007 Real Root Of 33*x^4-206*x^3+79*x^2-227*x+112 4807575834339371 m001 1/CareFree^2*exp(GlaisherKinkelin)*Robbin 4807575834890675 a001 199/233*9227465^(7/13) 4807575836973355 g006 Psi(1,4/11)-Psi(1,7/9)-Psi(1,4/7)-Psi(1,1/7) 4807575846532888 r005 Re(z^2+c),c=-43/54+12/47*I,n=8 4807575850469291 r005 Im(z^2+c),c=49/122+33/53*I,n=7 4807575854676891 m001 (1+gamma(3))/(MasserGramainDelta+MertensB1) 4807575859565492 a001 38*144^(24/47) 4807575886145110 m005 (1/2*Pi-4/5)/(6/7*Catalan+9/11) 4807575923026381 a007 Real Root Of 327*x^4-699*x^3+516*x^2+265*x-87 4807575945238053 r005 Im(z^2+c),c=15/118+36/55*I,n=15 4807575948621744 a001 182717648081/161*123^(3/10) 4807575964757063 m009 (1/5*Psi(1,2/3)-4)/(16/5*Catalan+2/5*Pi^2+1/6) 4807575966960121 b008 4+19*E^Sin[1] 4807575970172933 a007 Real Root Of 801*x^4-184*x^3+891*x^2+277*x-136 4807575997339720 r002 57th iterates of z^2 + 4807576009845807 l006 ln(5665/9162) 4807576011137475 r009 Re(z^3+c),c=-55/102+27/44*I,n=19 4807576013552206 a003 cos(Pi*25/77)-cos(Pi*38/111) 4807576029868683 r005 Re(z^2+c),c=-15/26+8/25*I,n=13 4807576032646740 p003 LerchPhi(1/32,2,306/211) 4807576045474493 m001 (Zeta(1,-1)+BesselI(1,2))/(Otter+ZetaQ(3)) 4807576053370429 m005 (1/3*Pi+1/11)/(7/11*gamma+2) 4807576079131925 r009 Im(z^3+c),c=-31/82+17/33*I,n=43 4807576089941517 r002 51th iterates of z^2 + 4807576091463450 m001 (gamma(2)+GaussAGM)/(LandauRamanujan-Lehmer) 4807576092087127 m001 (arctan(1/3)+Pi^(1/2))/(Landau-OneNinth) 4807576099956239 a007 Real Root Of 106*x^4+545*x^3+49*x^2-641*x-281 4807576119146770 a001 76*(1/2*5^(1/2)+1/2)^26*7^(10/23) 4807576134734889 a007 Real Root Of 261*x^4-134*x^3-698*x^2-430*x+369 4807576158199638 r005 Re(z^2+c),c=-31/106+35/58*I,n=5 4807576165859866 a007 Real Root Of 784*x^4+408*x^3+411*x^2-80*x-130 4807576174474920 r002 47th iterates of z^2 + 4807576175678972 r005 Im(z^2+c),c=2/9+4/7*I,n=3 4807576177833923 a007 Real Root Of 770*x^4-618*x^3+939*x^2-485*x-560 4807576194416292 a007 Real Root Of 820*x^4-120*x^3+216*x^2-837*x+322 4807576207743887 a007 Real Root Of -151*x^4-744*x^3-212*x^2-527*x+360 4807576220446660 r005 Re(z^2+c),c=-83/122+1/38*I,n=29 4807576226343108 r005 Im(z^2+c),c=-77/114+2/51*I,n=21 4807576242685439 m001 ln(FeigenbaumC)/Magata^2/Trott 4807576261189135 r009 Im(z^3+c),c=-1/118+29/49*I,n=33 4807576270459416 m005 (1/2*Catalan-2)/(8/9*Pi-6) 4807576275807554 m005 (1/2*5^(1/2)-9/11)/(5/11*gamma-1/5) 4807576280138663 g001 Re(GAMMA(9/4+I*47/12)) 4807576283572344 r005 Re(z^2+c),c=-11/18+34/103*I,n=35 4807576310504435 v002 sum(1/(3^n+(n^2+13*n+41)),n=1..infinity) 4807576324510594 m001 1/exp(FeigenbaumD)/Sierpinski^2/GAMMA(5/12) 4807576342074083 m001 (exp(1/Pi)-Artin)/(Backhouse+Kac) 4807576345813094 r002 48th iterates of z^2 + 4807576346877811 r009 Re(z^3+c),c=-37/90+2/35*I,n=24 4807576349895619 m001 (Kac+MertensB2)/(cos(1/5*Pi)-arctan(1/2)) 4807576352323071 a007 Real Root Of 43*x^4+259*x^3+21*x^2-945*x+780 4807576363326127 a007 Real Root Of 540*x^4-782*x^3+440*x^2+523*x+34 4807576365911887 r009 Im(z^3+c),c=-13/122+17/29*I,n=24 4807576375131269 r005 Im(z^2+c),c=-21/32+10/27*I,n=17 4807576385726803 m005 (1/2*exp(1)+4/9)/(1/9*5^(1/2)-4) 4807576408133183 r005 Im(z^2+c),c=-1/94+28/45*I,n=36 4807576428022712 r002 30th iterates of z^2 + 4807576434607031 r009 Im(z^3+c),c=-11/32+26/49*I,n=24 4807576455432300 a003 sin(Pi*23/110)/cos(Pi*17/37) 4807576458401046 m005 (11/12+1/6*5^(1/2))/(5/6*exp(1)+5/12) 4807576467336949 a001 1548008755920/521*123^(1/10) 4807576479116729 a007 Real Root Of -858*x^4+584*x^3-150*x^2+956*x+605 4807576486247255 a001 7/233*6557470319842^(1/4) 4807576497460816 r002 63th iterates of z^2 + 4807576500520484 r009 Im(z^3+c),c=-27/106+33/59*I,n=18 4807576512660894 r005 Im(z^2+c),c=13/118+19/34*I,n=47 4807576530385788 h001 (7/8*exp(2)+5/12)/(1/6*exp(2)+1/5) 4807576535853083 p001 sum(1/(156*n+115)/n/(8^n),n=0..infinity) 4807576575130662 a007 Real Root Of -630*x^4+871*x^3+369*x^2+879*x-571 4807576577475202 a007 Real Root Of -599*x^4+176*x^3+151*x^2+86*x+58 4807576578193477 a003 sin(Pi*2/37)+sin(Pi*11/109) 4807576580947589 m001 1/sin(1)*exp(CareFree)*sqrt(2)^2 4807576584449569 a007 Real Root Of -914*x^4+941*x^3-151*x^2+641*x-329 4807576608496420 m001 (-StronglyCareFree+TwinPrimes)/(1-Magata) 4807576628111262 a001 1364*121393^(30/43) 4807576634540970 r002 4th iterates of z^2 + 4807576637495509 m002 5*Pi^6+(Pi*Coth[Pi])/5 4807576646740286 r005 Re(z^2+c),c=-1/54+47/64*I,n=40 4807576667445945 a003 cos(Pi*13/75)-cos(Pi*17/45) 4807576668671076 q001 1599/3326 4807576677152981 a008 Real Root of x^4-x^3+27*x^2-99*x-54 4807576685440129 m001 GAMMA(2/3)^2/ln(KhintchineHarmonic)*Zeta(1/2) 4807576689039776 l006 ln(1607/2599) 4807576690856801 m001 1/Robbin/Conway^2*ln(GAMMA(11/12)) 4807576712007236 r005 Re(z^2+c),c=1/13+19/31*I,n=33 4807576712645916 r005 Im(z^2+c),c=1/3+41/47*I,n=3 4807576716362548 r009 Im(z^3+c),c=-21/64+35/53*I,n=13 4807576740943727 q001 2/41601 4807576756495077 m001 (KomornikLoreti+TwinPrimes)/(Conway-Kolakoski) 4807576768876023 r005 Im(z^2+c),c=11/40+5/12*I,n=59 4807576775453967 r009 Re(z^3+c),c=-11/34+16/23*I,n=13 4807576778687263 r005 Re(z^2+c),c=-37/60+1/33*I,n=9 4807576779067836 r002 3th iterates of z^2 + 4807576785644392 m005 (1/2*Pi+1/2)/(3/10*2^(1/2)-3/7) 4807576801506098 s002 sum(A039713[n]/(2^n-1),n=1..infinity) 4807576826080072 m001 (exp(Pi)-ln(2))/FeigenbaumDelta 4807576837310371 a007 Real Root Of 740*x^4+563*x^3+629*x^2-486*x-356 4807576851439074 r009 Re(z^3+c),c=-1/27+7/8*I,n=21 4807576857343987 m005 (1/2*3^(1/2)+10/11)/(2/11*exp(1)-1/8) 4807576867581343 r008 a(0)=5,K{-n^6,48-48*n-60*n^2+36*n^3} 4807576887217197 a007 Real Root Of 101*x^4+414*x^3-219*x^2+684*x+398 4807576898967649 a001 3/2504730781961*832040^(14/23) 4807576900026143 a003 sin(Pi*32/79)/cos(Pi*39/79) 4807576921753672 m001 (3^(1/3)-ln(3))/TravellingSalesman 4807576925614878 r005 Re(z^2+c),c=-19/20+1/17*I,n=22 4807576937419059 r002 38th iterates of z^2 + 4807576959684547 r005 Re(z^2+c),c=-7/12+37/86*I,n=22 4807576965549280 r009 Im(z^3+c),c=-13/46+16/29*I,n=16 4807576974615216 m003 -1+(17*Sqrt[5])/1024+3*Log[1/2+Sqrt[5]/2] 4807576995523612 r005 Im(z^2+c),c=-11/16+12/121*I,n=64 4807576998363277 a003 sin(Pi*3/28)/cos(Pi*29/112) 4807577002735299 r009 Im(z^3+c),c=-11/58+29/51*I,n=13 4807577006056570 r002 53th iterates of z^2 + 4807577053597276 r005 Im(z^2+c),c=13/38+21/58*I,n=4 4807577055606494 a007 Real Root Of 61*x^4-678*x^3+720*x^2-676*x-570 4807577091239146 m001 (ln(3)+ln(Pi))/(Mills+ReciprocalFibonacci) 4807577101236217 h001 (5/8*exp(2)+4/9)/(1/6*exp(1)+3/5) 4807577107495353 m001 FeigenbaumD/(Trott2nd^(3^(1/3))) 4807577122234663 r009 Im(z^3+c),c=-39/98+18/29*I,n=13 4807577128255625 v002 sum(1/(5^n+(16*n^2-33*n+48)),n=1..infinity) 4807577133767490 h001 (-exp(-2)-4)/(-8*exp(-3)+9) 4807577141668794 m001 (Zeta(5)+Trott)/(2^(1/2)+BesselJ(0,1)) 4807577147070350 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=15 4807577177621239 r005 Re(z^2+c),c=-19/14+7/201*I,n=42 4807577177796405 a001 2/119218851371*3^(23/24) 4807577198836813 h001 (1/3*exp(1)+1/10)/(5/11*exp(1)+6/7) 4807577198836813 m005 (1/3*exp(1)+1/10)/(5/11*exp(1)+6/7) 4807577205673920 r002 40th iterates of z^2 + 4807577206521083 m001 (Khinchin+5)/(ln(3)+1/2) 4807577214433048 a001 322*1836311903^(15/17) 4807577231777855 m001 (Tetranacci+ZetaQ(2))/(GAMMA(11/12)-Cahen) 4807577234859435 a007 Real Root Of -16*x^4+113*x^3+799*x^2-669*x-580 4807577236761454 r005 Im(z^2+c),c=25/122+27/59*I,n=7 4807577240458436 m001 (PlouffeB-Totient)/(Pi^(1/2)-FeigenbaumMu) 4807577242435510 r002 4th iterates of z^2 + 4807577246529492 p004 log(34649/283) 4807577247586545 r002 35th iterates of z^2 + 4807577264212368 a007 Real Root Of -327*x^4-239*x^3-521*x^2+199*x+207 4807577267064708 r002 56th iterates of z^2 + 4807577278639101 m001 (Cahen+CareFree)/(2^(1/2)-3^(1/3)) 4807577278852942 r005 Im(z^2+c),c=-17/44+24/29*I,n=3 4807577279434077 m001 (Robbin+ZetaP(2))/(GlaisherKinkelin+MertensB2) 4807577296705914 b008 1/3+Erf[Sech[E]] 4807577307349995 r002 45th iterates of z^2 + 4807577312604486 a007 Real Root Of 68*x^4-850*x^3-965*x^2-772*x+685 4807577315325107 m001 (1-2^(1/3))/(Psi(2,1/3)+Shi(1)) 4807577315701961 m001 1/ln(BesselK(0,1))*Bloch*log(1+sqrt(2)) 4807577319866418 m001 KhinchinLevy/(BesselI(0,1)+Zeta(3)) 4807577327806122 r005 Re(z^2+c),c=-65/56+31/64*I,n=2 4807577336418602 r009 Re(z^3+c),c=-31/64+4/43*I,n=26 4807577342347139 a007 Real Root Of -229*x^4+450*x^3-272*x^2+551*x+390 4807577345625731 r005 Re(z^2+c),c=-37/54+1/56*I,n=35 4807577359909292 r005 Im(z^2+c),c=3/13+27/61*I,n=31 4807577366588212 m001 (GAMMA(11/12)*FeigenbaumMu+Mills)/GAMMA(11/12) 4807577368964465 a003 cos(Pi*12/109)*sin(Pi*7/41) 4807577373677063 r009 Im(z^3+c),c=-29/66+25/52*I,n=41 4807577377910964 r005 Re(z^2+c),c=7/18+5/18*I,n=28 4807577378085903 l006 ln(5584/9031) 4807577398327576 m001 (gamma(2)-ZetaQ(4))/(Ei(1)+arctan(1/2)) 4807577423498893 a007 Real Root Of 384*x^4-532*x^3+241*x^2-199*x-231 4807577424832118 a007 Real Root Of -40*x^4+318*x^3+539*x^2+612*x-452 4807577425094233 r009 Re(z^3+c),c=-1/17+24/61*I,n=3 4807577429107474 m001 (2^(1/3)+BesselI(0,2))/(-Gompertz+MertensB3) 4807577445108197 a001 1/267913919*317811^(13/23) 4807577445758135 m008 (3/4*Pi^4+3/5)/(1/2*Pi^5+1/5) 4807577465182701 m005 (1/3*2^(1/2)+2/5)/(-31/60+3/20*5^(1/2)) 4807577489722685 r002 6th iterates of z^2 + 4807577529165699 r009 Im(z^3+c),c=-7/102+33/56*I,n=20 4807577541398322 r009 Im(z^3+c),c=-37/102+12/23*I,n=55 4807577546759318 m001 (LambertW(1)-exp(1))/(-KomornikLoreti+Totient) 4807577550699945 m001 (-Pi^(1/2)+Porter)/(2^(1/3)-Ei(1)) 4807577567589569 m001 1/exp(MinimumGamma)*FransenRobinson/GAMMA(2/3) 4807577579143390 m005 (1/2*5^(1/2)+4/7)/(-13/33+1/3*5^(1/2)) 4807577580190359 a007 Real Root Of -916*x^4+103*x^3-636*x^2-812*x-183 4807577607492791 r005 Re(z^2+c),c=-77/106+4/53*I,n=27 4807577612343653 m004 -100/Pi+125*Pi+25*Pi*ProductLog[Sqrt[5]*Pi] 4807577617078850 p004 log(17981/17137) 4807577630837900 h001 (3/8*exp(2)+2/11)/(3/4*exp(2)+3/5) 4807577655086603 r009 Re(z^3+c),c=-17/46+2/3*I,n=43 4807577655130912 r002 14th iterates of z^2 + 4807577656511116 l006 ln(3977/6432) 4807577663175106 m001 BesselJ(0,1)+sin(1/12*Pi)-Landau 4807577666363704 m002 6+Pi^3+(3*Cosh[Pi])/Pi 4807577667262579 r005 Re(z^2+c),c=-79/126+9/25*I,n=35 4807577676902541 m002 -6-5*Pi^6+5*ProductLog[Pi] 4807577694971647 m001 (Trott-Thue)/(GAMMA(7/12)+CopelandErdos) 4807577699696761 a007 Real Root Of -905*x^4+304*x^3+340*x^2+236*x+117 4807577706383915 r002 32th iterates of z^2 + 4807577716633021 r009 Re(z^3+c),c=-47/78+19/34*I,n=9 4807577725526140 m001 GlaisherKinkelin*(cos(1)+Zeta(1,-1)) 4807577725896745 r009 Im(z^3+c),c=-1/56+29/49*I,n=20 4807577743686851 m001 1/ln(GAMMA(2/3))*FeigenbaumKappa*Zeta(5)^2 4807577750771302 m001 Stephens/(ln(gamma)+MadelungNaCl) 4807577762125293 m001 CareFree/exp(GolombDickman)*GAMMA(5/6)^2 4807577767145900 r004 Re(z^2+c),c=-1/6+9/14*I,z(0)=exp(7/8*I*Pi),n=3 4807577779368534 m004 -75/Pi+25*Pi*Coth[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 4807577786438023 a007 Real Root Of 727*x^4-14*x^3+868*x^2-957*x+44 4807577789144898 m001 BesselK(0,1)^2/CopelandErdos*ln(Ei(1)) 4807577804514733 r002 9th iterates of z^2 + 4807577833261452 m001 (MinimumGamma-Paris)/(GAMMA(7/12)+Mills) 4807577837569586 m001 (GAMMA(5/6)-Rabbit)/(Zeta(5)+Zeta(1,-1)) 4807577857738173 a007 Real Root Of -734*x^4+78*x^3+724*x^2+431*x-344 4807577861113067 m002 5*Pi^6-Log[Pi]/Pi+Tanh[Pi] 4807577873611353 r002 56th iterates of z^2 + 4807577879198788 r005 Re(z^2+c),c=-25/38+7/36*I,n=23 4807577886940680 a007 Real Root Of 113*x^4-790*x^3+201*x^2-534*x-397 4807577892849629 r009 Im(z^3+c),c=-1/126+29/49*I,n=29 4807577897884780 a003 cos(Pi*18/53)-sin(Pi*12/29) 4807577913582963 a001 3571/832040*832040^(9/26) 4807577917102723 r009 Re(z^3+c),c=-12/29+3/58*I,n=11 4807577941762059 r005 Im(z^2+c),c=-47/48+17/46*I,n=3 4807577971167368 m001 exp(Catalan)^2/Champernowne/GAMMA(23/24)^2 4807577973033610 r009 Im(z^3+c),c=-6/17+29/57*I,n=13 4807577976519021 p001 sum(1/(480*n+209)/(64^n),n=0..infinity) 4807578018543504 a007 Real Root Of 243*x^4+233*x^3+11*x^2-728*x-35 4807578030075997 a003 sin(Pi*8/77)/cos(Pi*19/71) 4807578040428686 a007 Real Root Of 403*x^4-179*x^3-454*x^2-457*x+323 4807578045738189 m001 (ErdosBorwein-FeigenbaumB)/(ln(3)+Zeta(1,2)) 4807578047117061 h001 (3/5*exp(1)+10/11)/(7/10*exp(2)+1/9) 4807578053218579 m001 (2^(1/2)-AlladiGrinstead)/(Gompertz+Robbin) 4807578054593674 m006 (3/5*exp(Pi)-3)/(1/6*Pi-3/4) 4807578055506157 m001 (BesselI(1,2)+Paris)/(PolyaRandomWalk3D+Trott) 4807578057129000 r005 Re(z^2+c),c=-2/3+5/26*I,n=23 4807578074888142 m001 (arctan(1/3)-Rabbit)/(sin(1/5*Pi)+Ei(1,1)) 4807578079594399 m001 (Kac+Robbin)/(Pi-arctan(1/2)) 4807578082364789 m001 BesselI(1,2)^(2^(1/3))*GAMMA(1/3) 4807578093692410 m001 (Chi(1)+CareFree)/(-FeigenbaumKappa+MertensB2) 4807578096855626 m005 (1/2*Pi-3/7)/(-9/28+1/4*5^(1/2)) 4807578111323820 r009 Im(z^3+c),c=-7/38+23/40*I,n=21 4807578115435232 r005 Im(z^2+c),c=-15/122+35/53*I,n=35 4807578122711638 a007 Real Root Of 974*x^4-857*x^3+775*x^2+188*x-236 4807578125242371 m002 -5-5*Pi^6+5/Log[Pi] 4807578125543446 r005 Re(z^2+c),c=-16/25+9/43*I,n=27 4807578136510998 a001 34111385*29^(11/14) 4807578145315570 r005 Re(z^2+c),c=-5/52+37/50*I,n=21 4807578155096234 r005 Re(z^2+c),c=-13/18+4/105*I,n=51 4807578159615658 r002 49th iterates of z^2 + 4807578164637439 m001 ln(FeigenbaumKappa)^2*Kolakoski/GAMMA(7/12) 4807578170811724 m001 (Kolakoski+Niven)/(Cahen-Champernowne) 4807578184558076 r009 Im(z^3+c),c=-1/110+29/49*I,n=30 4807578187264991 a007 Real Root Of 186*x^4+39*x^3+632*x^2-217*x-256 4807578196909499 m005 (1/3*Zeta(3)+1/8)/(7/11*exp(1)-7/11) 4807578197406584 m001 CareFree/(BesselI(0,2)^arctan(1/2)) 4807578197637556 r002 6th iterates of z^2 + 4807578212406766 r009 Im(z^3+c),c=-7/40+34/59*I,n=38 4807578235582108 a001 9349/2178309*832040^(9/26) 4807578246913686 r005 Im(z^2+c),c=13/74+22/39*I,n=63 4807578249714141 m005 (1/3*2^(1/2)-1/6)/(5/9*Catalan+1/8) 4807578252191193 r002 13th iterates of z^2 + 4807578254480700 a007 Real Root Of 134*x^4+427*x^3-816*x^2+924*x-834 4807578255471013 m001 exp(BesselK(0,1))*LandauRamanujan^2*cos(1) 4807578283711171 r005 Re(z^2+c),c=-41/66+17/59*I,n=30 4807578289639934 a008 Real Root of x^3+11*x-164 4807578291011756 m001 GAMMA(11/12)/(sin(1)+GAMMA(2/3)) 4807578294943375 r009 Im(z^3+c),c=-13/106+7/12*I,n=14 4807578312513782 l006 ln(2370/3833) 4807578314346277 r002 41th iterates of z^2 + 4807578317491356 r002 50th iterates of z^2 + 4807578345823537 a003 sin(Pi*28/97)/cos(Pi*47/105) 4807578346066514 r005 Im(z^2+c),c=-41/98+23/41*I,n=27 4807578351072790 r002 62th iterates of z^2 + 4807578359081054 m001 1/GaussKuzminWirsing^2/ln(Conway)*Trott^2 4807578371038109 r009 Re(z^3+c),c=-53/118+5/58*I,n=30 4807578385341003 a007 Real Root Of 537*x^4+100*x^3-635*x^2-570*x+381 4807578389668136 r009 Re(z^3+c),c=-21/46+3/31*I,n=22 4807578389879230 m001 (ln(5)-BesselI(1,1))/(FeigenbaumB+Totient) 4807578392652133 a001 2584/7*47^(2/3) 4807578393276333 r002 46th iterates of z^2 + 4807578403646885 r005 Re(z^2+c),c=-37/50+9/47*I,n=19 4807578414145701 r009 Im(z^3+c),c=-35/122+35/52*I,n=39 4807578423256390 m005 (1/3*5^(1/2)-1/4)/(6/7*2^(1/2)-2/11) 4807578426616794 m005 (1/2*gamma+1/7)/(1/9*gamma+5/6) 4807578430601977 p004 log(35731/22093) 4807578431440509 r009 Re(z^3+c),c=-29/74+1/25*I,n=40 4807578434588524 a001 5778/1346269*832040^(9/26) 4807578440821186 r002 37th iterates of z^2 + 4807578446927707 m002 Pi^3+25*Log[Pi]-Sinh[Pi] 4807578448786264 q001 812/1689 4807578458655723 r009 Im(z^3+c),c=-1/46+34/59*I,n=7 4807578465701377 r009 Im(z^3+c),c=-49/118+21/43*I,n=28 4807578466360876 m005 (-1/28+1/4*5^(1/2))/(5/8*Pi-7/8) 4807578466989475 r002 57th iterates of z^2 + 4807578501239267 m001 LandauRamanujan/(GAMMA(5/24)+GAMMA(1/12)) 4807578501348783 l006 ln(23/2816) 4807578519357712 p004 log(20399/12613) 4807578524768117 a003 sin(Pi*5/52)/sin(Pi*24/113) 4807578530695443 r005 Im(z^2+c),c=11/90+14/25*I,n=63 4807578560190270 r005 Im(z^2+c),c=-11/10+9/157*I,n=14 4807578564833779 l006 ln(5868/6157) 4807578587741029 m001 1/GAMMA(1/3)^2/exp(BesselJ(1,1))^2/Zeta(3) 4807578589564853 r005 Im(z^2+c),c=-39/122+4/55*I,n=14 4807578589602082 a007 Real Root Of -727*x^4-399*x^3-346*x^2+856*x+486 4807578597196280 r005 Im(z^2+c),c=-7/62+9/14*I,n=61 4807578608730150 a007 Real Root Of -117*x^4+579*x^3-101*x^2+285*x+14 4807578615800129 m001 Lehmer^KhinchinHarmonic/GaussAGM 4807578634502395 m005 (1/2*3^(1/2)-1/4)/(5*exp(1)-7/9) 4807578640577750 a001 1/29*(1/2*5^(1/2)+1/2)^20*123^(6/13) 4807578656924006 r009 Re(z^3+c),c=-11/126+39/59*I,n=59 4807578658350195 a007 Real Root Of -87*x^4-451*x^3-31*x^2+704*x+463 4807578658367179 m006 (2*exp(2*Pi)+3/5)/(1/5*ln(Pi)+2) 4807578661071753 r009 Im(z^3+c),c=-37/102+12/23*I,n=53 4807578666878193 m009 (8*Catalan+Pi^2-1/4)/(3/5*Psi(1,3/4)+2) 4807578677578578 m001 Pi/(Psi(1,1/3)*LambertW(1)+cos(1/5*Pi)) 4807578688282911 h001 (1/6*exp(1)+6/11)/(8/11*exp(1)+1/10) 4807578701407019 r009 Re(z^3+c),c=-13/126+37/51*I,n=59 4807578732987612 m005 (1/2*3^(1/2)-1/6)/(2/3*3^(1/2)+3/10) 4807578740838811 m002 3-Log[Pi]+(Pi^6*Tanh[Pi])/2 4807578741005578 r009 Im(z^3+c),c=-45/122+27/52*I,n=53 4807578744395352 a007 Real Root Of 68*x^4+168*x^3-679*x^2+283*x-604 4807578780935069 m001 1/(3^(1/3))/ln(MertensB1)/Zeta(5)^2 4807578786604724 l006 ln(5503/8900) 4807578788625316 r002 34th iterates of z^2 + 4807578795167671 r009 Re(z^3+c),c=-11/23+3/34*I,n=33 4807578798659396 a003 sin(Pi*16/97)-sin(Pi*37/86) 4807578806435769 a001 521/3*3^(38/41) 4807578807612773 h001 (-3*exp(2)+7)/(-3*exp(1)+5) 4807578814504939 r005 Re(z^2+c),c=-47/42+17/56*I,n=23 4807578815554477 a007 Real Root Of 790*x^4-372*x^3-990*x^2-791*x-235 4807578817683939 m001 (Paris-PolyaRandomWalk3D)/(Zeta(3)-Niven) 4807578822916559 a007 Real Root Of 175*x^4+943*x^3+605*x^2+740*x+872 4807578856208801 r005 Re(z^2+c),c=-41/56+21/34*I,n=3 4807578861216817 a007 Real Root Of -116*x^4-529*x^3-44*x^2-989*x-551 4807578870305682 a007 Real Root Of -281*x^4+320*x^3+704*x^2+923*x-627 4807578873586452 r005 Re(z^2+c),c=-5/21+25/38*I,n=6 4807578873698945 m001 (Pi-BesselI(1,1))/(Champernowne+ThueMorse) 4807578877103502 m001 (Conway+ZetaP(2))/(GAMMA(3/4)-BesselI(1,2)) 4807578897686034 g002 Psi(6/11)+Psi(1/9)+Psi(7/8)-Psi(1/12) 4807578913709300 m001 (Sarnak+Trott)/(ln(2)+GaussAGM) 4807578916170729 a007 Real Root Of -944*x^4+179*x^3-37*x^2+435*x+288 4807578925866731 a001 18/4181*53316291173^(8/17) 4807578937695826 a007 Real Root Of -643*x^4+338*x^3+829*x^2+510*x-440 4807578944381738 r005 Im(z^2+c),c=-59/98+4/45*I,n=60 4807578974056440 a003 sin(Pi*5/87)/cos(Pi*45/119) 4807578974683910 m001 (Psi(2,1/3)+gamma)/(-Gompertz+Rabbit) 4807578981965142 m005 (1/3*2^(1/2)+1/2)/(Zeta(3)-1) 4807578986824123 m001 (-Pi^(1/2)+Riemann1stZero)/(ln(3)-sin(1)) 4807579010761794 m001 (Tribonacci-ZetaP(3))/(FeigenbaumMu-OneNinth) 4807579017256042 m005 (31/44+1/4*5^(1/2))/(9/10*exp(1)+2/11) 4807579019608707 r005 Im(z^2+c),c=13/98+23/42*I,n=60 4807579025090342 a007 Real Root Of -154*x^4-747*x^3-191*x^2-756*x+43 4807579029155664 r009 Im(z^3+c),c=-1/114+29/49*I,n=34 4807579041127948 a008 Real Root of x^4-x^3-12*x^2+9*x-189 4807579052224250 q001 1/2080049 4807579052422540 r002 2th iterates of z^2 + 4807579091301057 m001 1/exp(GAMMA(2/3))*RenyiParking^2*gamma^2 4807579101163826 m001 (arctan(1/2)+ArtinRank2)/(Stephens+Tribonacci) 4807579109658406 r002 23th iterates of z^2 + 4807579145237180 l006 ln(3133/5067) 4807579179089689 a007 Real Root Of -500*x^4+819*x^3-479*x^2+178*x+314 4807579186200831 m006 (2*exp(2*Pi)+1/3)/(5/6*exp(Pi)+3) 4807579222042297 m005 (1/2*Pi-2/11)/(4/9*gamma-6/11) 4807579222944762 a001 1/76*(1/2*5^(1/2)+1/2)^24*1364^(13/16) 4807579223385972 r009 Im(z^3+c),c=-19/118+29/47*I,n=9 4807579239800246 a007 Real Root Of 191*x^4+923*x^3-156*x^2-906*x-222 4807579246853975 m001 (GAMMA(13/24)-FeigenbaumB)/(Zeta(1/2)-Ei(1,1)) 4807579252023980 m001 (Catalan-Lehmer)/(Robbin+Trott) 4807579277593230 a001 2207/514229*832040^(9/26) 4807579287947518 a003 sin(Pi*20/111)*sin(Pi*23/65) 4807579293661829 a007 Real Root Of -124*x^4-378*x^3+879*x^2-978*x-779 4807579294055419 m001 Tribonacci^2*exp(FeigenbaumB)^2*GAMMA(13/24)^2 4807579299425164 r002 59th iterates of z^2 + 4807579301420667 m001 exp(GAMMA(5/12))*PrimesInBinary*sinh(1)^2 4807579323247016 m002 -4+(5*Sinh[Pi])/Pi^5-Tanh[Pi] 4807579323351709 m001 exp(BesselJ(1,1))^2*Riemann1stZero^2/Zeta(9) 4807579326811826 r002 14th iterates of z^2 + 4807579330313978 m005 (1/3*exp(1)-1/9)/(3/7*Pi-3) 4807579337815288 a007 Real Root Of 47*x^4+292*x^3+372*x^2-522*x-307 4807579339980250 r005 Re(z^2+c),c=-15/31+24/53*I,n=16 4807579342930179 m005 (1/2*3^(1/2)-3/11)/(4/7*Catalan-2/5) 4807579361567488 a008 Real Root of x^4-2*x^3-12*x^2-2*x-25 4807579368734548 r005 Im(z^2+c),c=-1/56+20/33*I,n=46 4807579374840385 p004 log(27803/17191) 4807579379753187 r005 Im(z^2+c),c=-17/29+27/64*I,n=9 4807579380853519 a007 Real Root Of 14*x^4-790*x^3-980*x^2-132*x+377 4807579409387008 r002 6th iterates of z^2 + 4807579425173619 m001 1/Porter/Niven/ln(Zeta(7)) 4807579427327901 r005 Im(z^2+c),c=-47/110+37/64*I,n=3 4807579430145512 m005 (1/3*3^(1/2)+2/3)/(8/9*5^(1/2)+3/5) 4807579435868666 r005 Re(z^2+c),c=-61/114+17/50*I,n=8 4807579441233449 m005 (1/3*Pi-2/5)/(4/11*Zeta(3)+10/11) 4807579442671279 a001 2/139583862445*63245986^(17/24) 4807579463151451 a001 63246219*322^(3/4) 4807579469615880 a007 Real Root Of 704*x^4-548*x^3+133*x^2-496*x+231 4807579497813263 m001 Rabbit*ArtinRank2*ln(GAMMA(1/3))^2 4807579510536179 r002 51th iterates of z^2 + 4807579532723545 m001 (5^(1/2)-GAMMA(3/4))/Riemann2ndZero 4807579539352563 m001 GAMMA(5/24)*(BesselI(1,1)-GAMMA(1/12)) 4807579541762956 m001 (Zeta(5)+2)/(ln(2+sqrt(3))+5) 4807579547193724 h001 (8/11*exp(2)+7/9)/(1/4*exp(1)+3/5) 4807579555509808 m007 (-4*gamma-3/4)/(-5/6*gamma-5/3*ln(2)+1) 4807579558849204 m001 1/Niven*Si(Pi)*exp(Ei(1))^2 4807579574915896 a007 Real Root Of -663*x^4+770*x^3+907*x^2+560*x-529 4807579575131267 a007 Real Root Of 206*x^4+860*x^3-414*x^2+953*x-335 4807579575202001 a001 47/144*514229^(9/44) 4807579591372218 a007 Real Root Of 138*x^4+549*x^3-539*x^2-125*x-860 4807579595230985 r005 Re(z^2+c),c=23/126+26/45*I,n=35 4807579611222811 r002 35th iterates of z^2 + 4807579616205541 r002 59th iterates of z^2 + 4807579630126584 r005 Im(z^2+c),c=-61/98+5/54*I,n=37 4807579641644459 a007 Real Root Of 812*x^4+208*x^3+768*x^2-196*x-292 4807579643838932 m001 (exp(-1/2*Pi)-Zeta(1,2))/(Landau+Tribonacci) 4807579651796297 l006 ln(3896/6301) 4807579655054754 m001 PisotVijayaraghavan-Stephens^HardyLittlewoodC4 4807579657266529 r005 Im(z^2+c),c=13/30+13/38*I,n=5 4807579665493112 m001 (-ThueMorse+TwinPrimes)/(GAMMA(11/12)-cos(1)) 4807579678177789 r005 Im(z^2+c),c=-11/25+27/49*I,n=14 4807579692865151 m001 gamma^(2^(1/3))/(gamma^gamma(1)) 4807579702980457 a007 Real Root Of 529*x^4-989*x^3-115*x^2-297*x+251 4807579727117904 m005 (-19/4+1/4*5^(1/2))/(1/11*3^(1/2)+5/7) 4807579731370134 r005 Re(z^2+c),c=-15/22+8/117*I,n=38 4807579761583272 r002 2th iterates of z^2 + 4807579765186866 r002 63th iterates of z^2 + 4807579785604614 r005 Re(z^2+c),c=-63/86+10/59*I,n=29 4807579786624453 r005 Im(z^2+c),c=3/14+21/40*I,n=51 4807579802500375 a007 Real Root Of 427*x^4+300*x^3+902*x^2-959*x-659 4807579808678319 h001 (7/9*exp(2)+9/10)/(5/12*exp(1)+1/4) 4807579817150213 m001 (Trott-TwinPrimes)/(ln(5)-sin(1/12*Pi)) 4807579831401721 r009 Im(z^3+c),c=-45/94+25/56*I,n=39 4807579833160429 r005 Re(z^2+c),c=-19/14+7/241*I,n=54 4807579861807071 m001 (Pi^(1/2)-cos(1))/(Sarnak+Tribonacci) 4807579888861194 a007 Real Root Of -184*x^4+661*x^3+337*x^2+806*x-529 4807579893785544 a001 9/305*139583862445^(14/19) 4807579894562607 m005 (-13/44+1/4*5^(1/2))/(4/11*Zeta(3)+1/9) 4807579912691950 r002 17th iterates of z^2 + 4807579919726665 r002 26th iterates of z^2 + 4807579936716195 h001 (6/7*exp(2)+5/12)/(2/9*exp(1)+4/5) 4807579937931371 r002 39th iterates of z^2 + 4807579965296327 m001 (ln(gamma)+OneNinth)/(Trott-ZetaQ(4)) 4807579967229009 a001 161/416020*1597^(1/34) 4807579981123727 m001 1/GAMMA(1/12)*Tribonacci/exp(Zeta(3)) 4807579992437990 l006 ln(4659/7535) 4807579993942008 m009 (2*Psi(1,1/3)-1/6)/(1/3*Psi(1,1/3)+4/5) 4807579997965381 r002 33th iterates of z^2 + 4807579998357187 a007 Real Root Of -548*x^4+480*x^3-993*x^2+474*x+540 4807580000319260 a007 Real Root Of -480*x^4+451*x^3+55*x^2+971*x-504 4807580013869791 m001 Ei(1,1)^(ArtinRank2/exp(1/exp(1))) 4807580046396500 r002 29th iterates of z^2 + 4807580054428015 m001 1/GAMMA(17/24)*ln(Conway)^2*Zeta(1,2)^2 4807580055283867 a007 Real Root Of -61*x^4-191*x^3+325*x^2-923*x-586 4807580075076747 r009 Im(z^3+c),c=-41/94+26/53*I,n=48 4807580079404729 r005 Im(z^2+c),c=-9/14+8/91*I,n=29 4807580084092460 a007 Real Root Of -861*x^4+756*x^3-778*x^2+822*x+705 4807580110056603 a007 Real Root Of 570*x^4-686*x^3-376*x^2-196*x-114 4807580123480663 m001 Psi(1,1/3)^Conway/(polylog(4,1/2)^Conway) 4807580123742135 m001 AlladiGrinstead^arctan(1/3)*AlladiGrinstead^Pi 4807580148436682 s002 sum(A240919[n]/(n*2^n+1),n=1..infinity) 4807580163879413 r005 Re(z^2+c),c=-2/3+20/223*I,n=26 4807580174927113 q001 1649/3430 4807580174927113 r002 2th iterates of z^2 + 4807580178370424 r009 Im(z^3+c),c=-21/64+20/39*I,n=10 4807580179797065 r002 17th iterates of z^2 + 4807580181483436 a007 Real Root Of -21*x^4+51*x^3+775*x^2+30*x-883 4807580194610424 a003 cos(Pi*4/63)-sin(Pi*34/89) 4807580195212403 a007 Real Root Of 699*x^4-883*x^3-356*x^2-191*x-145 4807580199638534 a005 (1/cos(19/213*Pi))^1544 4807580212277193 m001 (ln(5)+cos(1/12*Pi))/(sin(1/12*Pi)-Kolakoski) 4807580214378902 m002 Pi^6/2+Tanh[Pi]/(5*Pi) 4807580226573083 m001 5^(1/2)-FeigenbaumAlpha+RenyiParking 4807580226573083 m001 FeigenbaumAlpha-RenyiParking-sqrt(5) 4807580232127623 r002 18th iterates of z^2 + 4807580237207447 l006 ln(5422/8769) 4807580256397847 r002 45th iterates of z^2 + 4807580262701058 r005 Re(z^2+c),c=-73/110+1/49*I,n=21 4807580264884493 r005 Re(z^2+c),c=-12/25+32/63*I,n=36 4807580286322289 m005 (-5/8+1/4*5^(1/2))/(5/8*Catalan+4/5) 4807580304174438 p004 log(27541/17029) 4807580305755204 b008 (-3+E)/(E+Pi) 4807580309684324 a007 Real Root Of -295*x^4-42*x^3-256*x^2+975*x+539 4807580313787032 m001 sin(1)^2*GAMMA(5/24)/ln(sqrt(5))^2 4807580318784805 r002 18th iterates of z^2 + 4807580355417839 r002 30th iterates of z^2 + 4807580369429718 r005 Re(z^2+c),c=-59/86+10/59*I,n=58 4807580371971196 m001 (FeigenbaumB+Kac)/(GAMMA(3/4)-GAMMA(7/12)) 4807580394885540 m005 (1/4+5/12*5^(1/2))/(1/2*Catalan+2) 4807580397419849 m001 1/GAMMA(1/3)/ln(Tribonacci)/GAMMA(5/6)^2 4807580410455862 m001 (PrimesInBinary+ZetaQ(2))^cos(1/12*Pi) 4807580413688691 r005 Re(z^2+c),c=-11/18+9/46*I,n=14 4807580421585924 l006 ln(6185/10003) 4807580427694949 a001 34/3010349*3571^(37/50) 4807580432024694 m001 (cos(1)-gamma)/(OneNinth+TwinPrimes) 4807580454374695 s002 sum(A064984[n]/(n*pi^n-1),n=1..infinity) 4807580460877281 v003 sum((n^2+n-1)/(n!+1),n=1..infinity) 4807580491059204 m005 (1/3*3^(1/2)+3/5)/(7/9*gamma+2) 4807580501518667 a001 843*(1/2*5^(1/2)+1/2)^8*3^(3/17) 4807580502125706 m005 (1/3*3^(1/2)-1/11)/(3/10*exp(1)-11/12) 4807580512472095 a007 Real Root Of 195*x^4+957*x^3+292*x^2+890*x-301 4807580535537904 r005 Im(z^2+c),c=-9/17+13/21*I,n=33 4807580539280074 p003 LerchPhi(1/10,5,59/128) 4807580545676773 a007 Real Root Of 769*x^4-379*x^3+459*x^2+635*x+116 4807580550561017 m001 (BesselI(0,2)+Artin)/(Psi(2,1/3)+gamma(1)) 4807580556591971 r005 Re(z^2+c),c=-61/102+27/61*I,n=24 4807580556608983 a001 76/75025*89^(17/49) 4807580557890088 a003 cos(Pi*16/47)/sin(Pi*57/116) 4807580563505172 m001 (RenyiParking+ZetaP(4))/(gamma(1)-Paris) 4807580569548172 r002 4th iterates of z^2 + 4807580579592366 r002 28th iterates of z^2 + 4807580586789261 r005 Re(z^2+c),c=-79/122+13/62*I,n=18 4807580601619162 r005 Im(z^2+c),c=29/94+6/23*I,n=9 4807580634366563 r009 Re(z^3+c),c=-33/70+7/60*I,n=20 4807580650330600 a007 Real Root Of -263*x^4+917*x^3+661*x^2+448*x-456 4807580686987403 m001 ln(GAMMA(1/6))/Tribonacci^2/GAMMA(11/12) 4807580706142985 a001 34/1149851*64079^(23/50) 4807580713561147 m001 GAMMA(17/24)-Zeta(1,2)+Sierpinski 4807580714477992 m001 (-GAMMA(2/3)+ZetaP(4))/(5^(1/2)+BesselK(0,1)) 4807580727146320 a001 199/5*34^(3/56) 4807580732665318 r005 Re(z^2+c),c=-7/10+33/140*I,n=20 4807580750885404 r009 Im(z^3+c),c=-19/48+25/49*I,n=34 4807580751080844 a007 Real Root Of -760*x^4-682*x^3-962*x^2+840*x+591 4807580789393465 r002 17th iterates of z^2 + 4807580791962503 a003 cos(2/15*Pi)+2*cos(2/21*Pi)+2*cos(1/24*Pi) 4807580795858037 r009 Re(z^3+c),c=-29/74+1/25*I,n=49 4807580813108229 r005 Re(z^2+c),c=45/118+11/38*I,n=7 4807580819676880 m004 3+125*Pi+25*Pi*Cot[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi] 4807580836685671 m001 MasserGramain*FellerTornier^MertensB1 4807580856568612 r009 Re(z^3+c),c=-29/74+1/25*I,n=50 4807580864961577 m001 (Robbin-Salem)/(CopelandErdos+GaussAGM) 4807580866042265 r009 Re(z^3+c),c=-1/24+38/43*I,n=3 4807580871554969 a007 Real Root Of -88*x^4+552*x^3-408*x^2+979*x+631 4807580881836591 m001 (-Kac+MertensB2)/(ln(2)/ln(10)-ln(gamma)) 4807580885349674 m001 arctan(1/2)*Ei(1)^2/exp(sqrt(Pi))^2 4807580885858291 r009 Re(z^3+c),c=-29/74+1/25*I,n=48 4807580888720022 h001 (-9*exp(1/2)+5)/(-9*exp(1)+4) 4807580894303388 m001 1/Rabbit/Conway^2/ln(TwinPrimes)^2 4807580901028208 a007 Real Root Of 121*x^4-62*x^3-445*x^2-742*x+460 4807580924562599 a001 4/2178309*610^(28/55) 4807580929086086 m005 (1/3*exp(1)-3/4)/(3/11*exp(1)-5/12) 4807580929583782 m001 (HardyLittlewoodC5-Kolakoski*Mills)/Mills 4807580940191586 a007 Real Root Of -748*x^4+504*x^3-536*x^2-8*x+216 4807580940914687 m001 (Kac+Lehmer)/(ln(2^(1/2)+1)+(1+3^(1/2))^(1/2)) 4807580955189358 a005 (1/cos(16/71*Pi))^123 4807580984380383 r009 Re(z^3+c),c=-29/74+1/25*I,n=51 4807580995564657 a007 Real Root Of 995*x^4+522*x^3+450*x^2-372*x-278 4807581003056481 r005 Im(z^2+c),c=2/13+1/2*I,n=24 4807581035131215 k005 Champernowne real with floor(sqrt(2)*(196*n+144)) 4807581036131415 k001 Champernowne real with 278*n+202 4807581054136581 a007 Real Root Of -387*x^4+951*x^3-558*x^2+692*x+588 4807581059628911 r009 Im(z^3+c),c=-1/4+13/23*I,n=12 4807581070958204 m001 Kolakoski*Porter*ThueMorse 4807581084776456 r009 Im(z^3+c),c=-39/110+21/40*I,n=42 4807581092654780 r002 15th iterates of z^2 + 4807581099397048 a007 Real Root Of 709*x^4-415*x^3+550*x^2+566*x+61 4807581106421502 r005 Re(z^2+c),c=33/118+35/62*I,n=35 4807581116579823 r009 Re(z^3+c),c=-29/74+1/25*I,n=52 4807581123672991 m001 Backhouse/GAMMA(5/6)/FeigenbaumD 4807581128634242 l006 ln(6335/6647) 4807581132270389 r009 Re(z^3+c),c=-23/48+29/50*I,n=16 4807581148810071 m005 (1/3*2^(1/2)-1/3)/(1/12*3^(1/2)+1/7) 4807581150756693 m005 (1/2*Zeta(3)-3/10)/(4*3^(1/2)-2/3) 4807581158683921 m008 (2/3*Pi+1/4)/(5*Pi^4+3/5) 4807581176208704 a007 Real Root Of -174*x^4+201*x^3+279*x^2+917*x+408 4807581185991248 m001 FellerTornier-gamma(2)+ZetaR(2) 4807581208391651 m001 FeigenbaumDelta/Champernowne^2/exp(Si(Pi)) 4807581209723840 r009 Re(z^3+c),c=-29/74+1/25*I,n=47 4807581217746238 r009 Re(z^3+c),c=-29/74+1/25*I,n=53 4807581220704477 r009 Re(z^3+c),c=-29/74+1/25*I,n=61 4807581220879383 r009 Re(z^3+c),c=-29/74+1/25*I,n=62 4807581223369840 m003 480+ProductLog[1/2+Sqrt[5]/2] 4807581223436527 r009 Re(z^3+c),c=-29/74+1/25*I,n=63 4807581224964658 r009 Re(z^3+c),c=-29/74+1/25*I,n=60 4807581226650304 r009 Re(z^3+c),c=-29/74+1/25*I,n=64 4807581227716522 a007 Real Root Of -846*x^4-456*x^3-885*x^2-360*x+26 4807581232677361 m001 ln(Zeta(3))^2*GAMMA(1/24)/sqrt(1+sqrt(3)) 4807581233836806 r009 Im(z^3+c),c=-31/110+17/31*I,n=19 4807581235361978 r009 Re(z^3+c),c=-29/74+1/25*I,n=59 4807581240542277 m001 sqrt(5)^cos(Pi/12)/(BesselJ(1,1)^cos(Pi/12)) 4807581241283785 r009 Im(z^3+c),c=-11/26+37/64*I,n=64 4807581252170522 r009 Re(z^3+c),c=-29/74+1/25*I,n=58 4807581272927653 r009 Re(z^3+c),c=-29/74+1/25*I,n=57 4807581273024499 a001 2/39088169*610^(17/24) 4807581276349016 r009 Re(z^3+c),c=-29/74+1/25*I,n=54 4807581281053343 a001 15127/377*2178309^(17/35) 4807581289288911 m001 Paris^exp(-1/2*Pi)-ln(3) 4807581291306932 r009 Re(z^3+c),c=-29/74+1/25*I,n=56 4807581292760339 r005 Re(z^2+c),c=-67/62+1/4*I,n=26 4807581296844112 r009 Re(z^3+c),c=-29/74+1/25*I,n=55 4807581301761294 r005 Im(z^2+c),c=4/19+31/60*I,n=55 4807581315925992 a007 Real Root Of -462*x^4+446*x^3-933*x^2-318*x+137 4807581318957721 a001 1/76*(1/2*5^(1/2)+1/2)^27*24476^(7/16) 4807581321303659 m001 GAMMA(23/24)*Paris-LandauRamanujan2nd 4807581322102778 a001 1/76*(1/2*5^(1/2)+1/2)^29*64079^(5/16) 4807581326333936 a007 Real Root Of 240*x^4-892*x^3+820*x^2-76*x-338 4807581329697491 a007 Real Root Of 298*x^4-818*x^3+816*x^2-879*x-718 4807581364640022 r009 Im(z^3+c),c=-39/70+23/49*I,n=19 4807581369711832 m001 (Si(Pi)+ln(2^(1/2)+1))/(3^(1/2)-Psi(2,1/3)) 4807581371461638 r002 17th iterates of z^2 + 4807581377656303 r005 Re(z^2+c),c=-19/26+4/51*I,n=61 4807581389435844 r005 Im(z^2+c),c=-53/98+28/47*I,n=32 4807581392534146 a007 Real Root Of 103*x^4+302*x^3-889*x^2+71*x-577 4807581394822445 m005 (1/2*Zeta(3)-5/12)/(1/5*Pi-2/3) 4807581395979988 m001 (Mills-Trott2nd)/(sin(1/5*Pi)-arctan(1/3)) 4807581401013895 m002 5*Pi^6+(E^Pi*Sech[Pi])/Pi 4807581415549386 r005 Im(z^2+c),c=4/25+31/59*I,n=25 4807581427459306 a001 4/17711*317811^(7/29) 4807581438087291 m001 ln(GAMMA(17/24))*FeigenbaumKappa*sqrt(2) 4807581455433613 r002 58th iterates of z^2 + 4807581498349215 m001 exp(1/Pi)*(Artin-Sarnak) 4807581500851487 r002 36th iterates of z^2 + 4807581503428308 r009 Im(z^3+c),c=-29/60+2/29*I,n=13 4807581515549149 m001 Champernowne^(TreeGrowth2nd/HeathBrownMoroz) 4807581520379559 m008 (2/5*Pi^4-2)/(4/5*Pi^6-1/4) 4807581520506904 m001 Artin^Catalan*Zeta(3)^Catalan 4807581521245677 m005 (1/3*Catalan-2/9)/(9/11*2^(1/2)+4/7) 4807581545873955 r005 Im(z^2+c),c=1/24+17/27*I,n=30 4807581565677765 r002 23th iterates of z^2 + 4807581571044791 r009 Im(z^3+c),c=-23/82+27/49*I,n=33 4807581589036846 m002 1+5*Pi^6-Log[Pi]/Pi 4807581609374934 a007 Real Root Of 109*x^4+469*x^3-473*x^2-925*x+371 4807581609925662 a007 Real Root Of -69*x^4-427*x^3-240*x^2+895*x-737 4807581632968981 r002 32th iterates of z^2 + 4807581651570691 a007 Real Root Of 712*x^4-176*x^3-734*x^2-630*x+32 4807581660678269 m001 (ln(2)-Ei(1,1))/(GAMMA(7/12)-Landau) 4807581662926498 a003 cos(Pi*1/105)/cos(Pi*13/30) 4807581671789641 r009 Im(z^3+c),c=-23/44+25/58*I,n=27 4807581672113063 a007 Real Root Of 328*x^4-555*x^3+482*x^2+47*x-168 4807581700120372 r005 Im(z^2+c),c=1/64+20/21*I,n=5 4807581713635484 r009 Im(z^3+c),c=-1/114+29/49*I,n=36 4807581716755731 r005 Re(z^2+c),c=11/126+7/38*I,n=15 4807581731780652 a007 Real Root Of 101*x^4-560*x^3-152*x^2+2*x+91 4807581731808761 l006 ln(763/1234) 4807581765942344 r005 Im(z^2+c),c=-67/122+1/2*I,n=43 4807581783325827 r002 7th iterates of z^2 + 4807581788546054 r009 Im(z^3+c),c=-17/38+21/44*I,n=53 4807581797729293 m001 ln(2)*Lehmer+GAMMA(5/24) 4807581797729293 m001 ln(2)*Lehmer+Pi*csc(5/24*Pi)/GAMMA(19/24) 4807581800857542 r002 7th iterates of z^2 + 4807581806473436 r005 Re(z^2+c),c=-8/13+13/53*I,n=19 4807581811231494 r005 Im(z^2+c),c=-19/18+71/200*I,n=9 4807581811338568 r009 Re(z^3+c),c=-29/74+1/25*I,n=46 4807581832355755 r009 Im(z^3+c),c=-29/94+26/47*I,n=16 4807581840779387 h001 (4/7*exp(1)+7/10)/(1/9*exp(1)+1/6) 4807581842251158 a007 Real Root Of 683*x^4-894*x^3+115*x^2-47*x-185 4807581849511774 q001 837/1741 4807581850951970 r009 Im(z^3+c),c=-3/40+23/39*I,n=17 4807581870518735 r005 Re(z^2+c),c=-49/106+15/41*I,n=4 4807581880808288 h001 (8/11*exp(2)+9/10)/(1/7*exp(1)+11/12) 4807581898559754 r005 Im(z^2+c),c=-61/78+1/55*I,n=60 4807581926823959 m001 sin(1/12*Pi)^(Pi^(1/2))/Ei(1) 4807581926823959 m001 sin(Pi/12)^sqrt(Pi)/Ei(1) 4807581928079731 a007 Real Root Of 851*x^4-967*x^3+490*x^2-892*x-695 4807581928924216 m002 Pi^6/2+Log[Pi]/18 4807581930924031 a007 Real Root Of 894*x^4-381*x^3-715*x^2-693*x+493 4807581954785196 a007 Real Root Of -189*x^4-793*x^3+759*x^2+827*x-718 4807581956577344 m001 PlouffeB*Magata^ZetaQ(3) 4807581962451465 r009 Im(z^3+c),c=-21/46+1/36*I,n=47 4807581963988670 r009 Re(z^3+c),c=-29/74+1/25*I,n=41 4807581971591867 r005 Re(z^2+c),c=-2/3+12/65*I,n=46 4807582031223028 a007 Real Root Of -52*x^4-66*x^3+769*x^2-540*x+75 4807582041285703 a007 Real Root Of 15*x^4+715*x^3-278*x^2+809*x-528 4807582064619311 m001 (MertensB3-Otter)/(ln(2)+FeigenbaumD) 4807582071727274 m008 (3/5*Pi^5+3/4)/(1/5*Pi-2/3) 4807582077032742 r002 23th iterates of z^2 + 4807582078574612 a007 Real Root Of -780*x^4+777*x^3-284*x^2-694*x-140 4807582086279204 b008 (7*Log[31])/5 4807582098596897 m001 1/GAMMA(19/24)^2*exp(Robbin)^2/LambertW(1) 4807582099745571 m005 (-29/44+1/4*5^(1/2))/(5/9*exp(1)+4/7) 4807582100207182 a001 317811/7*7^(1/34) 4807582106138905 m001 (Otter+RenyiParking)/(gamma(1)-ArtinRank2) 4807582107696598 r005 Re(z^2+c),c=-17/26+31/105*I,n=44 4807582112569347 p004 log(34421/21283) 4807582127854135 m001 1/ln(BesselJ(0,1))^2/Trott/GAMMA(1/3) 4807582145082261 a001 6643838879/13*1548008755920^(9/11) 4807582145082261 a001 505019158607/13*7778742049^(9/11) 4807582155649690 a001 53316291173/199*199^(6/11) 4807582162249778 m001 exp(exp(1))^2/FransenRobinson*sin(Pi/5) 4807582167590797 r005 Im(z^2+c),c=-35/118+30/49*I,n=6 4807582168010624 a007 Real Root Of -668*x^4-148*x^3-5*x^2+956*x+480 4807582178511227 r002 58th iterates of z^2 + 4807582201584201 r005 Re(z^2+c),c=-5/98+49/61*I,n=43 4807582202707738 r009 Im(z^3+c),c=-10/27+23/44*I,n=28 4807582209323951 r005 Re(z^2+c),c=-13/14+32/221*I,n=64 4807582219985665 a001 377/1149851*199^(49/52) 4807582221131463 r005 Re(z^2+c),c=1/98+19/30*I,n=61 4807582243996245 s002 sum(A059502[n]/(16^n),n=1..infinity) 4807582256481080 r005 Re(z^2+c),c=-15/61*I,n=9 4807582256631049 r004 Im(z^2+c),c=-9/7+2/21*I,z(0)=-1,n=7 4807582265872437 a007 Real Root Of 129*x^4+646*x^3+253*x^2+752*x+637 4807582271646881 m001 TwinPrimes/(Mills^KhinchinLevy) 4807582321483566 a007 Real Root Of -188*x^4-682*x^3+986*x^2-461*x-357 4807582328979063 a007 Real Root Of 106*x^4+691*x^3+823*x^2-227*x+43 4807582331463921 m002 -Pi+3*Sech[Pi]-Sinh[Pi]/6 4807582334439247 m001 (-ln(3)+Trott2nd)/(Catalan-ln(2)) 4807582337425577 r005 Im(z^2+c),c=-11/74+41/58*I,n=26 4807582341789087 b008 Log[4+12*Pi^2] 4807582346466270 r002 37th iterates of z^2 + 4807582363303323 r005 Re(z^2+c),c=11/24+19/52*I,n=6 4807582368177620 r002 29th iterates of z^2 + 4807582399417191 h001 (5/11*exp(1)+4/11)/(3/8*exp(2)+5/9) 4807582410873203 m002 4+Tanh[Pi]^2/(Log[Pi]*ProductLog[Pi]) 4807582413752954 h005 exp(cos(Pi*2/51)+sin(Pi*10/51)) 4807582428334274 r005 Im(z^2+c),c=-39/34+19/93*I,n=56 4807582449655724 m001 Kolakoski*(Gompertz+ZetaQ(3)) 4807582452210470 r002 29th iterates of z^2 + 4807582474236218 m001 Otter/(BesselJ(1,1)+ZetaP(3)) 4807582513745347 a001 1/233*2584^(42/47) 4807582535587330 r005 Im(z^2+c),c=-9/40+45/62*I,n=29 4807582571088190 a001 89/370248451*4^(1/2) 4807582582989471 r005 Re(z^2+c),c=-29/46+15/47*I,n=31 4807582587648889 m002 1/(5*Pi)+Pi^6/2 4807582598386313 a007 Real Root Of 700*x^4-598*x^3-513*x^2-656*x+463 4807582615460073 a007 Real Root Of 451*x^4-650*x^3-377*x^2-919*x-451 4807582621903919 m005 (1/3*Zeta(3)+1/3)/(7/9*Pi-11/12) 4807582627578597 a007 Real Root Of 96*x^4+246*x^3-950*x^2+527*x+542 4807582636399258 a001 2/317811*4181^(13/25) 4807582642522370 r009 Re(z^3+c),c=-29/74+1/25*I,n=45 4807582647208839 r009 Im(z^3+c),c=-47/98+5/21*I,n=3 4807582689899406 m005 (1/2*Zeta(3)-2/9)/(1/8*3^(1/2)+4/7) 4807582691677042 m005 (3*gamma-4)/(exp(1)+2) 4807582695132236 m001 (Lehmer-gamma(2))^exp(1/exp(1)) 4807582719322868 r005 Im(z^2+c),c=3/8+13/57*I,n=11 4807582740604250 m001 (Catalan+BesselK(0,1))/(-Otter+ZetaP(3)) 4807582756406896 m001 (-KhinchinHarmonic+Otter)/(Shi(1)-Zeta(1/2)) 4807582774917777 r005 Im(z^2+c),c=-3/17+34/59*I,n=10 4807582790984910 r009 Re(z^3+c),c=-7/30+49/52*I,n=59 4807582791469367 m001 BesselJ(1,1)/Riemann1stZero/ln(sqrt(5))^2 4807582796296373 a007 Real Root Of -845*x^4+26*x^3+322*x^2+889*x+401 4807582802595672 b008 ArcCoth[20+Sqrt[2/3]] 4807582834000402 r005 Re(z^2+c),c=-35/52+7/41*I,n=24 4807582834951551 r005 Re(z^2+c),c=-7/10+59/219*I,n=51 4807582864603019 a007 Real Root Of 18*x^4+855*x^3-482*x^2+796*x+590 4807582872882000 m001 (TwinPrimes+ZetaP(2))/(exp(Pi)-gamma(3)) 4807582882851881 p004 log(34159/21121) 4807582901694990 m002 Pi^2+Sinh[Pi]/6+Pi*Sinh[Pi] 4807582913364309 m001 (Psi(1,1/3)+cos(1))/(-sin(1/5*Pi)+cos(1/5*Pi)) 4807582935686570 a001 1/4106118243*18^(4/17) 4807582937582966 m001 (1-arctan(1/2))/(-Sarnak+Tribonacci) 4807582956663460 r009 Im(z^3+c),c=-1/114+29/49*I,n=38 4807582981560790 a007 Real Root Of -498*x^4+840*x^3-313*x^2+644*x-304 4807582999061710 m001 (Kac+PolyaRandomWalk3D)/(ln(gamma)+Zeta(1/2)) 4807583022048104 r009 Re(z^3+c),c=-3/70+39/64*I,n=2 4807583027699779 m001 (Shi(1)+ln(Pi))/(Pi^(1/2)+FransenRobinson) 4807583030515542 m005 (1/2*Zeta(3)-1/7)/(227/264+1/24*5^(1/2)) 4807583040389146 a003 sin(Pi*11/87)/cos(Pi*37/78) 4807583042114763 r009 Re(z^3+c),c=-71/114+29/64*I,n=2 4807583042147386 m001 (cos(Pi/12)-GAMMA(7/24))/BesselJ(1,1) 4807583066701697 m005 (1/5*2^(1/2)+3/4)/(73/60+5/12*5^(1/2)) 4807583071349191 s002 sum(A198533[n]/((pi^n-1)/n),n=1..infinity) 4807583077272345 l006 ln(6023/9741) 4807583098617754 a007 Real Root Of 592*x^4-747*x^3+515*x^2-606*x-525 4807583109969568 m002 -Cosh[Pi]+Cosh[Pi]*Log[Pi]+Pi*Tanh[Pi] 4807583128077460 a008 Real Root of (-1+6*x^2+3*x^3-x^4) 4807583139416347 r009 Im(z^3+c),c=-25/118+32/57*I,n=8 4807583143645926 a007 Real Root Of 149*x^4+857*x^3+789*x^2+581*x+188 4807583145616561 r002 40th iterates of z^2 + 4807583149770098 r005 Re(z^2+c),c=-9/14+37/231*I,n=20 4807583150285234 a003 cos(Pi*18/97)/cos(Pi*4/9) 4807583151191546 r002 26th iterates of z^2 + 4807583158694937 r002 2th iterates of z^2 + 4807583199675586 m004 25*Pi+500*Pi*Csch[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi] 4807583237898348 m005 (-2/3+1/4*5^(1/2))/(7/9*5^(1/2)+1/2) 4807583243900301 m004 25*Pi+500*Pi*Sech[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi] 4807583261062126 r009 Im(z^3+c),c=-21/40+10/51*I,n=12 4807583272441287 l006 ln(5260/8507) 4807583285048181 p001 sum(1/(487*n+210)/(32^n),n=0..infinity) 4807583290250986 m005 (1/2*3^(1/2)-7/8)/(11/12*exp(1)-5/8) 4807583290655159 r002 11th iterates of z^2 + 4807583313218590 s001 sum(exp(-Pi)^n*A186268[n],n=1..infinity) 4807583313218590 s002 sum(A186268[n]/(exp(pi*n)),n=1..infinity) 4807583314306401 a007 Real Root Of 419*x^4-662*x^3-600*x^2-668*x+511 4807583327176557 a001 20365011074/521*322^(5/6) 4807583330951951 r005 Im(z^2+c),c=29/122+25/61*I,n=10 4807583336642944 r005 Re(z^2+c),c=13/70+10/31*I,n=4 4807583340392660 l006 ln(6802/7137) 4807583352374691 r009 Im(z^3+c),c=-41/106+24/47*I,n=35 4807583360524919 r009 Im(z^3+c),c=-51/110+11/24*I,n=45 4807583365925327 m001 1/ln(Rabbit)/Khintchine^2/sin(1) 4807583366784909 r005 Re(z^2+c),c=-37/102+33/64*I,n=7 4807583367984804 r005 Im(z^2+c),c=-22/31+6/47*I,n=25 4807583406775101 r002 60th iterates of z^2 + 4807583407644071 r009 Im(z^3+c),c=-9/94+37/63*I,n=24 4807583408950257 a007 Real Root Of -958*x^4+213*x^3-460*x^2-849*x-227 4807583417002768 a007 Real Root Of -170*x^4+211*x^3-861*x^2+885*x+657 4807583418068114 r009 Im(z^3+c),c=-17/60+11/20*I,n=29 4807583418384231 a007 Real Root Of -43*x^4-176*x^3-39*x^2-922*x-117 4807583422206234 m001 1/GAMMA(1/3)^2*PrimesInBinary/ln(cos(Pi/12))^2 4807583429379141 a001 46368/29*4^(27/34) 4807583431584735 a007 Real Root Of 31*x^4-602*x^3+311*x^2-850*x+402 4807583432478411 a007 Real Root Of 13*x^4+634*x^3+454*x^2+977*x-728 4807583442228851 a007 Real Root Of 189*x^4+798*x^3-402*x^2+510*x-550 4807583442732784 a007 Real Root Of -927*x^4-762*x^3-331*x^2+642*x+350 4807583449856155 r009 Im(z^3+c),c=-29/82+31/59*I,n=52 4807583459591363 r005 Re(z^2+c),c=-55/78+3/61*I,n=33 4807583460677857 m001 (exp(1/Pi)+Cahen)^(5^(1/2)) 4807583460677857 m001 (exp(1/Pi)+Cahen)^sqrt(5) 4807583468995133 r002 24th iterates of z^2 + 4807583474816072 q001 1699/3534 4807583474993807 a007 Real Root Of 741*x^4-506*x^3+948*x^2+316*x-163 4807583477372621 r005 Im(z^2+c),c=-4/23+8/15*I,n=4 4807583480384080 m001 1/Porter^2*exp(Paris)*Zeta(1,2) 4807583482292661 m004 -5*Pi-(19*Sqrt[5]*Pi)/4+Tanh[Sqrt[5]*Pi] 4807583483030264 a001 1292/161*7^(23/25) 4807583492077424 m001 1/exp(PrimesInBinary)/Backhouse^2*cosh(1) 4807583509093264 r009 Re(z^3+c),c=-29/74+1/25*I,n=44 4807583511094607 a007 Real Root Of 861*x^4+424*x^3-967*x^2-748*x+490 4807583516302640 r005 Im(z^2+c),c=-59/82+4/35*I,n=39 4807583526537024 m001 ln(GAMMA(1/4))^2/Trott*Pi 4807583530272376 r009 Im(z^3+c),c=-1/114+29/49*I,n=40 4807583533838333 l006 ln(4497/7273) 4807583534444557 r009 Im(z^3+c),c=-2/21+37/63*I,n=30 4807583538978269 m005 (1/2*3^(1/2)-2/9)/(5*exp(1)-1/5) 4807583543438175 a007 Real Root Of 553*x^4+239*x^3+336*x^2-839*x-484 4807583545782364 a007 Real Root Of -754*x^4+799*x^3-630*x^2+722*x-250 4807583573021588 a007 Real Root Of 169*x^4+260*x^3+117*x^2-607*x-299 4807583573080047 m001 (Zeta(5)-cos(1))/(-MertensB2+ZetaQ(4)) 4807583576312646 m005 (3/20+1/4*5^(1/2))/(4/7*2^(1/2)+2/3) 4807583583678456 m001 ln(BesselJ(0,1))/RenyiParking^2*Zeta(9)^2 4807583586650013 a007 Real Root Of -843*x^4-650*x^3-847*x^2-334*x+8 4807583611429087 r002 19th iterates of z^2 + 4807583613166466 m005 (1/2*Catalan-2/7)/(10/11*Pi+8/11) 4807583654368632 r005 Re(z^2+c),c=-5/8+55/208*I,n=30 4807583673323765 m001 (Lehmer+Thue)/(GAMMA(7/12)-FibonacciFactorial) 4807583674327585 p001 sum((-1)^n/(177*n+74)/n/(8^n),n=0..infinity) 4807583696744100 a007 Real Root Of 547*x^4-403*x^3+653*x^2-464*x-448 4807583698302778 r002 3th iterates of z^2 + 4807583700116912 a001 3/101521*2^(33/47) 4807583702334600 m001 GAMMA(3/4)^2/BesselK(0,1)/exp(Zeta(9))^2 4807583703676627 a007 Real Root Of 149*x^4+595*x^3-482*x^2+689*x+971 4807583711200502 r009 Re(z^3+c),c=-29/74+1/25*I,n=42 4807583713134976 m001 Zeta(9)^2*MinimumGamma*ln(sqrt(Pi))^2 4807583729187546 r005 Re(z^2+c),c=-49/90+35/54*I,n=8 4807583771439354 a001 516002918640/281*123^(1/5) 4807583778724121 m002 5*Pi^6+(E^Pi*Csch[Pi])/Pi 4807583781122125 m001 (sin(1/5*Pi)+ln(Pi))/(Pi^(1/2)+FeigenbaumC) 4807583788599723 s002 sum(A016914[n]/(exp(pi*n)+1),n=1..infinity) 4807583793988724 r009 Im(z^3+c),c=-1/114+29/49*I,n=42 4807583795700339 r009 Im(z^3+c),c=-37/94+31/63*I,n=19 4807583803519367 a007 Real Root Of 156*x^4+871*x^3+567*x^2-270*x-956 4807583809439989 a007 Real Root Of -918*x^4+39*x^3-820*x^2-447*x+28 4807583834044491 r005 Re(z^2+c),c=-101/90+19/63*I,n=11 4807583837617167 r009 Im(z^3+c),c=-1/90+7/12*I,n=9 4807583838932660 m001 (MertensB1+Otter)/(Zeta(1,-1)+GaussAGM) 4807583843660739 m001 1/Lehmer/GaussKuzminWirsing^2*exp(cos(Pi/12)) 4807583886341049 r005 Re(z^2+c),c=-45/64+1/12*I,n=57 4807583896189523 m001 Khintchine*FeigenbaumDelta^2*ln(TreeGrowth2nd) 4807583902062332 l006 ln(3734/6039) 4807583914705372 r002 14th iterates of z^2 + 4807583914740128 r009 Im(z^3+c),c=-1/114+29/49*I,n=44 4807583924884573 m001 (2^(1/2)+Si(Pi))/(-GAMMA(23/24)+Niven) 4807583951531641 r009 Im(z^3+c),c=-11/34+32/61*I,n=9 4807583960970270 m001 (CareFree+Lehmer)/(3^(1/2)+cos(1/12*Pi)) 4807583969782725 r009 Im(z^3+c),c=-1/114+29/49*I,n=46 4807583991049314 r002 37th iterates of z^2 + 4807583994748010 r009 Im(z^3+c),c=-1/114+29/49*I,n=48 4807584003175624 b008 3+Sinh[Gamma[2/3]] 4807584006007922 r009 Im(z^3+c),c=-1/114+29/49*I,n=50 4807584011054063 r009 Im(z^3+c),c=-1/114+29/49*I,n=52 4807584013298917 r009 Im(z^3+c),c=-1/114+29/49*I,n=54 4807584014289019 r009 Im(z^3+c),c=-1/114+29/49*I,n=56 4807584014721260 r009 Im(z^3+c),c=-1/114+29/49*I,n=58 4807584014907628 r009 Im(z^3+c),c=-1/114+29/49*I,n=60 4807584014986748 r009 Im(z^3+c),c=-1/114+29/49*I,n=62 4807584015019675 r009 Im(z^3+c),c=-1/114+29/49*I,n=64 4807584015074903 r009 Im(z^3+c),c=-1/114+29/49*I,n=63 4807584015108574 m001 (Artin-BesselJ(1,1))/exp(1/Pi) 4807584015126090 r009 Im(z^3+c),c=-1/114+29/49*I,n=61 4807584015247785 r009 Im(z^3+c),c=-1/114+29/49*I,n=59 4807584015532097 r009 Im(z^3+c),c=-1/114+29/49*I,n=57 4807584016187203 r009 Im(z^3+c),c=-1/114+29/49*I,n=55 4807584017679794 r009 Im(z^3+c),c=-1/114+29/49*I,n=53 4807584021048815 r009 Im(z^3+c),c=-1/114+29/49*I,n=51 4807584025109863 r005 Re(z^2+c),c=-45/82+17/32*I,n=25 4807584028593098 r009 Im(z^3+c),c=-1/114+29/49*I,n=49 4807584028659462 a007 Real Root Of -385*x^4+968*x^3-919*x^2-284*x+204 4807584039770652 r009 Re(z^3+c),c=-29/74+1/25*I,n=43 4807584045371858 r009 Im(z^3+c),c=-1/114+29/49*I,n=47 4807584057308337 r005 Re(z^2+c),c=-61/90+23/45*I,n=3 4807584082465924 r009 Im(z^3+c),c=-1/114+29/49*I,n=45 4807584090036983 m001 sin(1/5*Pi)/cos(1/5*Pi)*Robbin 4807584091844159 m002 -5/Pi^2+5*Pi^6+Log[Pi] 4807584146845113 a007 Real Root Of -658*x^4+346*x^3-881*x^2+921*x+720 4807584164039950 r009 Im(z^3+c),c=-1/114+29/49*I,n=43 4807584166531911 a008 Real Root of x^3-x^2-317*x+1436 4807584228971676 l006 ln(62/7591) 4807584247618367 r002 6th iterates of z^2 + 4807584264436096 r009 Im(z^3+c),c=-17/30+13/51*I,n=30 4807584287719120 a001 1568397607/144*34^(8/19) 4807584302317594 a007 Real Root Of -48*x^4-363*x^3-595*x^2+226*x+145 4807584313173903 m001 (Rabbit-Tribonacci)/(GAMMA(3/4)+Zeta(1/2)) 4807584313575498 r005 Re(z^2+c),c=-29/48+17/29*I,n=5 4807584323566770 r005 Re(z^2+c),c=-1/106+11/50*I,n=6 4807584323670191 h001 (4/5*exp(1)+5/8)/(5/7*exp(2)+6/11) 4807584330288185 r005 Im(z^2+c),c=25/78+7/20*I,n=60 4807584339613708 m001 (BesselI(0,1)+CareFree)/HardyLittlewoodC5 4807584342584256 r009 Im(z^3+c),c=-1/114+29/49*I,n=41 4807584344971065 m001 ln(FeigenbaumB)^2/Kolakoski/log(1+sqrt(2)) 4807584347357195 r005 Im(z^2+c),c=-47/56+16/59*I,n=6 4807584352540803 a001 1/1368706081*11^(11/14) 4807584353887810 m002 -5*Pi^6+ProductLog[Pi]/3-Tanh[Pi] 4807584359049074 r005 Im(z^2+c),c=-35/52+4/41*I,n=53 4807584371300173 m001 (gamma(2)+Rabbit)/(Catalan+cos(1)) 4807584386320305 a007 Real Root Of -457*x^4+741*x^3+825*x^2+889*x-676 4807584393593577 a007 Real Root Of -170*x^4-781*x^3+9*x^2-679*x+560 4807584431123068 r009 Im(z^3+c),c=-29/52+28/59*I,n=19 4807584451468183 m001 ((1+3^(1/2))^(1/2)+Kac)/(Magata+MertensB3) 4807584459417852 l006 ln(2971/4805) 4807584479447605 m001 (-cos(1)+HardyLittlewoodC3)/(Shi(1)+Catalan) 4807584492479617 a007 Real Root Of 111*x^4+649*x^3+683*x^2+479*x-665 4807584512177157 m005 (1/2*Pi+9/11)/(1/11*gamma+4/9) 4807584535259075 m005 (1/2*Zeta(3)+3/10)/(7/9*gamma-7/11) 4807584545587069 m006 (4*exp(2*Pi)+1/2)/(5/6*exp(2*Pi)-3/5) 4807584556715744 r005 Re(z^2+c),c=6/23+21/37*I,n=31 4807584591294019 r009 Im(z^3+c),c=-11/27+26/51*I,n=32 4807584594473063 r002 12th iterates of z^2 + 4807584601230725 r009 Im(z^3+c),c=-57/118+14/45*I,n=6 4807584606350300 m005 (1/3*5^(1/2)-3/7)/(5/9*5^(1/2)-7/12) 4807584608581926 m001 (FeigenbaumAlpha+Paris)/(Ei(1,1)+arctan(1/3)) 4807584610145432 r002 47th iterates of z^2 + 4807584622110371 g007 2*Psi(2,3/7)-Psi(2,3/11)-Psi(2,1/6) 4807584635363137 m001 (OneNinth-Sarnak)/(ln(3)-FibonacciFactorial) 4807584643652436 r002 8th iterates of z^2 + 4807584646905792 a007 Real Root Of -572*x^4+3*x^3+856*x^2+708*x-508 4807584695605806 a007 Real Root Of 465*x^4-129*x^3-411*x^2-711*x-286 4807584714470543 a007 Real Root Of -476*x^4+283*x^3-47*x^2+610*x+361 4807584718023492 r005 Re(z^2+c),c=-5/8+71/214*I,n=53 4807584720926245 r005 Re(z^2+c),c=1/21+2/47*I,n=2 4807584727898684 m001 2*Pi/GAMMA(5/6)/(MertensB3-ZetaP(3)) 4807584731707438 r009 Im(z^3+c),c=-1/114+29/49*I,n=39 4807584734323844 r009 Re(z^3+c),c=-21/52+3/59*I,n=18 4807584734694019 a007 Real Root Of 153*x^4-808*x^3+349*x^2-283*x+137 4807584761123511 r005 Im(z^2+c),c=-65/56+1/11*I,n=3 4807584765484614 a007 Real Root Of 195*x^4+823*x^3-572*x^2-130*x-125 4807584771184179 r002 10th iterates of z^2 + 4807584778098185 r009 Re(z^3+c),c=-4/9+4/49*I,n=48 4807584786031427 m005 (1/2*5^(1/2)+3/10)/(4*Catalan-5/7) 4807584788557268 a007 Real Root Of 100*x^4+333*x^3-651*x^2+239*x-223 4807584790548296 r005 Re(z^2+c),c=-9/14+12/43*I,n=52 4807584805998769 a007 Real Root Of -968*x^4-153*x^3+792*x^2+628*x-32 4807584823423701 a003 sin(Pi*13/92)/sin(Pi*32/91) 4807584834947005 a007 Real Root Of 240*x^4+132*x^3+646*x^2-946*x+278 4807584858188736 r009 Im(z^3+c),c=-1/118+29/49*I,n=31 4807584861264813 l006 ln(5179/8376) 4807584878826838 a005 (1/cos(8/135*Pi))^1279 4807584883913147 a007 Real Root Of -659*x^4+794*x^3+703*x^2+491*x+197 4807584919793841 m001 (Trott-ZetaQ(4))/(Zeta(3)+Rabbit) 4807584969799352 m002 5*Pi^6+(2*Coth[Pi])/Pi 4807584973631021 r009 Re(z^3+c),c=-53/114+5/52*I,n=40 4807584977866713 h001 (-exp(3/2)+9)/(-8*exp(-3)-9) 4807584986894961 r005 Im(z^2+c),c=-91/66+8/63*I,n=8 4807584988848131 r009 Im(z^3+c),c=-23/64+23/44*I,n=35 4807584997117515 r005 Re(z^2+c),c=29/114+24/43*I,n=55 4807585002214718 m001 (-exp(1/2)+1/3)/(5^(1/2)+1/2) 4807585009102851 a007 Real Root Of 687*x^4-148*x^3+799*x^2-874*x-658 4807585018356459 m001 1/ln(BesselK(0,1))/DuboisRaymond*cos(Pi/5) 4807585023336443 r005 Re(z^2+c),c=-19/14+9/254*I,n=42 4807585027678692 r005 Re(z^2+c),c=5/23+19/47*I,n=13 4807585040580154 h001 (9/10*exp(2)+1/10)/(2/9*exp(1)+4/5) 4807585043076431 r009 Im(z^3+c),c=-11/78+32/55*I,n=23 4807585052983825 q001 862/1793 4807585055633444 a001 843/196418*832040^(9/26) 4807585060804183 r009 Im(z^3+c),c=-4/29+36/59*I,n=9 4807585066544308 r005 Re(z^2+c),c=-61/114+21/62*I,n=8 4807585071120930 r009 Im(z^3+c),c=-55/106+9/29*I,n=7 4807585085387686 a007 Real Root Of 204*x^4-729*x^3+407*x^2-934*x-635 4807585089302881 m001 (Paris+ZetaQ(4))/(BesselI(0,2)-exp(Pi)) 4807585125984588 m001 exp(gamma)*(sqrt(2)+GAMMA(17/24)) 4807585137787004 v002 sum(1/(5^n*(20*n^2-26*n+53)),n=1..infinity) 4807585157846243 r009 Re(z^3+c),c=-21/40+9/46*I,n=44 4807585165308880 r009 Im(z^3+c),c=-1/17+36/61*I,n=25 4807585171587238 r005 Re(z^2+c),c=-65/122+11/34*I,n=4 4807585176115140 a007 Real Root Of -208*x^4-892*x^3+473*x^2-235*x-64 4807585189258031 m005 (1/2*exp(1)-5/11)/(1/5*Zeta(3)-3/7) 4807585194191578 m005 (1/2*gamma+1/4)/(5/9*Pi-5/8) 4807585208586120 m001 GolombDickman^Backhouse*GolombDickman^Paris 4807585221600375 m005 (1/2*gamma+2/11)/(7/11*5^(1/2)-4/9) 4807585228077333 s002 sum(A219637[n]/(pi^n-1),n=1..infinity) 4807585230973954 m008 (2/5*Pi^6+4/5)/(5/6*Pi^6+2/5) 4807585252634474 r005 Re(z^2+c),c=-35/64+13/38*I,n=13 4807585257733636 r005 Re(z^2+c),c=11/98+9/13*I,n=3 4807585267960315 l006 ln(7269/7627) 4807585292827671 r009 Re(z^3+c),c=-47/106+3/37*I,n=40 4807585296584675 r002 6th iterates of z^2 + 4807585299127383 m001 (2^(1/3))^2/MinimumGamma*exp(Ei(1))^2 4807585319090002 a007 Real Root Of 727*x^4-536*x^3+669*x^2-131*x-316 4807585344170644 m002 -5+2/Pi^2-Tanh[Pi]/Pi^4 4807585353899140 a007 Real Root Of 71*x^4+171*x^3-887*x^2-236*x+439 4807585355372214 m001 (Riemann3rdZero-ZetaP(4))/(KhinchinLevy-Niven) 4807585359770238 a007 Real Root Of -292*x^4+302*x^3+940*x^2+982*x+304 4807585384356994 r009 Re(z^3+c),c=-8/31+36/49*I,n=40 4807585386335788 r002 44th iterates of z^2 + 4807585395740702 m007 (-1/2*gamma-ln(2)+4/5)/(-1/2*gamma+2/3) 4807585401974625 l006 ln(2208/3571) 4807585407828095 a003 cos(Pi*23/99)*cos(Pi*35/73) 4807585412494491 r002 19th iterates of z^2 + 4807585412964795 r009 Im(z^3+c),c=-13/82+21/34*I,n=9 4807585421975946 m001 ZetaP(2)*(Ei(1,1)-GlaisherKinkelin) 4807585423713431 r009 Re(z^3+c),c=-3/40+23/45*I,n=24 4807585432458780 r009 Im(z^3+c),c=-19/64+29/43*I,n=7 4807585441397510 r005 Re(z^2+c),c=-9/110+43/57*I,n=48 4807585447690668 a007 Real Root Of 832*x^4-541*x^3+436*x^2-511*x-451 4807585459649285 m002 (Pi^6*Log[Pi])/E^Pi+6*Sech[Pi] 4807585486532586 m001 CopelandErdos*Trott2nd-ZetaQ(4) 4807585514511463 r002 24th iterates of z^2 + 4807585536379453 r009 Im(z^3+c),c=-15/56+38/61*I,n=7 4807585559371470 r009 Re(z^3+c),c=-4/9+4/49*I,n=58 4807585566107749 m001 arctan(1/3)*GAMMA(2/3)^PisotVijayaraghavan 4807585576483526 r009 Im(z^3+c),c=-1/114+29/49*I,n=37 4807585580469802 r005 Im(z^2+c),c=-29/26+4/69*I,n=16 4807585582639191 m001 FeigenbaumB^BesselK(1,1)-PrimesInBinary 4807585593491479 r005 Im(z^2+c),c=-5/22+37/63*I,n=10 4807585597515051 r009 Im(z^3+c),c=-5/98+7/13*I,n=3 4807585608855092 a007 Real Root Of -827*x^4+847*x^3+169*x^2+324*x+255 4807585611815387 r005 Re(z^2+c),c=-13/14+11/76*I,n=34 4807585620986981 r009 Im(z^3+c),c=-37/86+27/55*I,n=51 4807585633198908 a007 Real Root Of 626*x^4-706*x^3-415*x^2-934*x-465 4807585635273165 r002 30th iterates of z^2 + 4807585662684618 m001 (BesselK(1,1)-Gompertz)/(Grothendieck-Kac) 4807585663334057 p003 LerchPhi(1/5,1,447/184) 4807585678989251 r009 Im(z^3+c),c=-41/118+23/45*I,n=5 4807585691616355 r005 Im(z^2+c),c=1/30+53/56*I,n=5 4807585708374379 r005 Re(z^2+c),c=-13/27+16/33*I,n=26 4807585710899273 m001 (Bloch-Cahen)/(FeigenbaumMu-ZetaQ(4)) 4807585716406753 p003 LerchPhi(1/16,3,355/128) 4807585716957544 r005 Im(z^2+c),c=-9/38+5/8*I,n=58 4807585731286030 m001 Trott*(Pi*2^(1/2)/GAMMA(3/4)+cos(1/5*Pi)) 4807585757978018 a001 1/76*(1/2*5^(1/2)+1/2)^16*199^(2/21) 4807585768162813 r005 Re(z^2+c),c=-41/62+2/63*I,n=19 4807585773909412 m001 (-gamma(3)+GAMMA(7/12))/(Shi(1)-exp(1/Pi)) 4807585781307892 m001 (Sarnak+ZetaP(3))/(BesselI(1,1)+Conway) 4807585782742274 a001 51841/4*3524578^(2/23) 4807585785360334 a001 39603/8*225851433717^(2/23) 4807585788790301 a001 2/29*123^(23/57) 4807585805729004 a007 Real Root Of -233*x^4+448*x^3+437*x^2+927*x-584 4807585819917673 a007 Real Root Of -239*x^4-935*x^3+842*x^2-985*x-416 4807585826697039 m006 (Pi^2-1/2)/(2*Pi^2-1/4) 4807585826697039 m008 (Pi^2-1/2)/(2*Pi^2-1/4) 4807585826697039 m009 (Pi^2-1/2)/(2*Pi^2-1/4) 4807585830847389 r009 Im(z^3+c),c=-5/114+13/22*I,n=33 4807585830888248 m001 cos(1/12*Pi)/exp(-1/2*Pi)*MertensB2 4807585858059431 r005 Re(z^2+c),c=-8/31+39/64*I,n=16 4807585860481544 r002 8th iterates of z^2 + 4807585864385474 m001 (Zeta(1,2)-GAMMA(13/24))/(CareFree-Rabbit) 4807585879766123 l006 ln(5861/9479) 4807585879766123 p004 log(9479/5861) 4807585892921405 a007 Real Root Of -190*x^4-827*x^3+336*x^2-420*x-180 4807585935732161 m001 (ln(3)+FeigenbaumAlpha)^GAMMA(3/4) 4807585996740365 m005 (1/2*5^(1/2)+7/9)/(1/12*3^(1/2)+1/4) 4807585999320168 s001 sum(exp(-Pi/4)^n*A089324[n],n=1..infinity) 4807586003058530 a007 Real Root Of -189*x^4-791*x^3+438*x^2-407*x+991 4807586031160551 r005 Im(z^2+c),c=-5/4+96/181*I,n=3 4807586056732016 a008 Real Root of x^5+2*x^3-6*x^2+7*x+5 4807586062233053 m006 (5*exp(2*Pi)+3/4)/(1/2*Pi+4) 4807586064993297 a007 Real Root Of -153*x^4-914*x^3-628*x^2+947*x-760 4807586072303660 a007 Real Root Of 948*x^4-984*x^3+433*x^2-289*x-399 4807586082609211 r009 Re(z^3+c),c=-27/58+3/37*I,n=8 4807586089427858 r005 Re(z^2+c),c=-9/94+23/31*I,n=6 4807586097102854 m005 (1/3*5^(1/2)+2/7)/(5/11*exp(1)+10/11) 4807586117667639 a007 Real Root Of 220*x^4+917*x^3-896*x^2-871*x+891 4807586120784675 a007 Real Root Of 615*x^4+201*x^3+520*x^2-121*x-7 4807586135043075 m001 (Otter+PlouffeB)/(Lehmer-Mills) 4807586136334764 r009 Re(z^3+c),c=-35/86+1/18*I,n=13 4807586136389266 r005 Im(z^2+c),c=-79/78+11/36*I,n=4 4807586137564494 a001 89/2207*3^(4/25) 4807586139026107 r005 Re(z^2+c),c=-73/118+17/54*I,n=42 4807586165398228 a007 Real Root Of -146*x^4-571*x^3+774*x^2+882*x+897 4807586168559879 l006 ln(3653/5908) 4807586177936461 m001 (Conway+Landau)/(Thue-Weierstrass) 4807586195234187 a007 Real Root Of 638*x^4-333*x^3-537*x^2-622*x-246 4807586197392194 r005 Im(z^2+c),c=-5/44+33/52*I,n=26 4807586205101633 a007 Real Root Of 158*x^4+560*x^3-985*x^2-284*x-778 4807586213013318 m009 (2/3*Psi(1,1/3)-2/5)/(4*Psi(1,3/4)+3) 4807586213442626 m001 Ei(1)/FransenRobinson/OrthogonalArrays 4807586223367277 r002 35th iterates of z^2 + 4807586224684981 a003 sin(Pi*10/53)*sin(Pi*32/97) 4807586228132760 m001 (PlouffeB+Porter)/(FeigenbaumKappa+Khinchin) 4807586234158151 m001 Porter^2*LandauRamanujan^2/exp(GAMMA(1/6)) 4807586273973105 p004 log(25969/16057) 4807586297391116 r002 32th iterates of z^2 + 4807586301286254 a007 Real Root Of -39*x^4-111*x^3-778*x^2+939*x+621 4807586325984560 r002 5th iterates of z^2 + 4807586335813416 m002 5/Pi^3+Coth[Pi]/Pi 4807586339282041 r009 Im(z^3+c),c=-37/86+19/35*I,n=57 4807586348325740 a007 Real Root Of 496*x^4-444*x^3-632*x^2-853*x+579 4807586355396838 a001 1/76*(1/2*5^(1/2)+1/2)^9*521^(13/21) 4807586362115008 r002 39th iterates of z^2 + 4807586370945462 a007 Real Root Of -28*x^4+848*x^3-554*x^2-64*x+193 4807586374703066 m005 (1/2*Zeta(3)+1/10)/(1/2*Zeta(3)+6/7) 4807586383920518 a001 305/9*11^(7/48) 4807586397601452 m001 (Zeta(1,2)-Landau)/(MadelungNaCl+MertensB3) 4807586401019991 a007 Real Root Of 20*x^4+962*x^3+38*x^2+692*x-922 4807586403209467 a007 Real Root Of 969*x^4+880*x^3+537*x^2-135*x-143 4807586419434169 r009 Im(z^3+c),c=-41/94+30/61*I,n=45 4807586426708201 r009 Im(z^3+c),c=-23/122+35/61*I,n=24 4807586436563281 p004 log(30643/18947) 4807586443412716 m001 (ln(2)+3^(1/3))/(Magata+MertensB2) 4807586464025774 a007 Real Root Of -402*x^4+457*x^3-555*x^2-596*x-86 4807586464211855 r005 Re(z^2+c),c=-2/3+66/161*I,n=9 4807586476874390 a007 Real Root Of -137*x^4-662*x^3-22*x^2+177*x+986 4807586483578043 r002 60th iterates of z^2 + 4807586495246631 r002 49th iterates of z^2 + 4807586500576385 l006 ln(5098/8245) 4807586511104962 m005 (1/2*exp(1)-3/11)/(2/7*Pi-7/8) 4807586519138633 a003 sin(Pi*9/73)/sin(Pi*21/73) 4807586531208924 m001 (Pi+Psi(1,1/3))*arctan(1/3)*GAMMA(5/6) 4807586562914816 m001 (FeigenbaumD+ZetaP(2))/(Psi(1,1/3)-Psi(2,1/3)) 4807586572838246 s002 sum(A205595[n]/(exp(2*pi*n)+1),n=1..infinity) 4807586576847951 r002 19th iterates of z^2 + 4807586579708005 m001 1/arctan(1/2)^2*Trott/exp(sinh(1))^2 4807586586036283 q001 1749/3638 4807586587094613 r005 Im(z^2+c),c=-38/31+3/20*I,n=59 4807586592260590 m001 (Gompertz+Lehmer)/(exp(Pi)+BesselI(1,2)) 4807586605447445 s001 sum(exp(-2*Pi/5)^n*A205829[n],n=1..infinity) 4807586605447445 s002 sum(A205829[n]/(exp(2/5*pi*n)),n=1..infinity) 4807586614416139 a001 29/832040*377^(49/59) 4807586614704024 m001 Kolakoski*GlaisherKinkelin/ln(cos(Pi/5)) 4807586675395706 m001 1/RenyiParking*exp(Artin)^2/sin(Pi/5) 4807586678383668 m002 -5*Pi^6+5*Csch[Pi]-ProductLog[Pi] 4807586688814958 a007 Real Root Of -954*x^4-648*x^3-998*x^2-825*x-187 4807586707353730 a007 Real Root Of 182*x^4+748*x^3-751*x^2-821*x-699 4807586709800490 r002 16th iterates of z^2 + 4807586711119578 a007 Real Root Of -576*x^4-765*x^3-145*x^2+950*x+436 4807586719641714 a007 Real Root Of -906*x^4+655*x^3+412*x^2+351*x+16 4807586726160809 m004 6/5+100*Pi*ProductLog[Sqrt[5]*Pi] 4807586744066883 r009 Im(z^3+c),c=-5/98+36/61*I,n=16 4807586747450788 m005 (1/3*gamma-3/4)/(3/5*5^(1/2)-2/11) 4807586768344140 m001 (Chi(1)+Zeta(5))/(-cos(1/12*Pi)+Stephens) 4807586768815363 m005 (1/2*exp(1)+6/11)/(4/5*Zeta(3)+3) 4807586770553129 m001 1/Zeta(5)/exp(CareFree)*Zeta(7) 4807586782689614 m001 LambertW(1)+exp(1)^exp(1/exp(1)) 4807586799055616 m001 (Zeta(1,2)-GAMMA(7/24))^GAMMA(5/6) 4807586799396159 m001 (2^(1/3))^BesselJZeros(0,1)/GAMMA(1/4) 4807586800097260 r005 Im(z^2+c),c=-59/110+1/36*I,n=4 4807586812522297 a007 Real Root Of 118*x^4+568*x^3+86*x^2+237*x-770 4807586813795006 r002 39th iterates of z^2 + 4807586828895722 m001 (Mills+ZetaP(4))/(Artin+FeigenbaumAlpha) 4807586848953794 a007 Real Root Of -509*x^4+408*x^3-411*x^2+157*x+243 4807586886600367 r009 Im(z^3+c),c=-39/74+19/60*I,n=40 4807586887294918 a007 Real Root Of -681*x^4+767*x^3+819*x^2+709*x-579 4807586921043694 m005 (1/2*gamma+6)/(8/9*gamma-1/2) 4807586926003238 a007 Real Root Of 860*x^4+642*x^3-936*x^2-851*x+43 4807586943826779 a007 Real Root Of 111*x^4+748*x^3+964*x^2-135*x+889 4807586945989167 m001 FeigenbaumAlpha^ZetaP(3)-ln(2) 4807586962804544 l006 ln(7736/8117) 4807586966340260 s002 sum(A181935[n]/(pi^n),n=1..infinity) 4807586980642507 a007 Real Root Of -792*x^4-134*x^3-502*x^2+361*x+317 4807586987128880 a003 cos(Pi*15/101)-cos(Pi*31/85) 4807587023863255 m001 1/exp(BesselJ(1,1))*FeigenbaumD^2*Zeta(5) 4807587071982209 r002 61th iterates of z^2 + 4807587092449792 a007 Real Root Of 949*x^4-374*x^3-733*x^2-950*x+617 4807587097246096 a007 Real Root Of 34*x^4+209*x^3+302*x^2+262*x-660 4807587103729140 r002 49th iterates of z^2 + 4807587112376433 a001 969323029/21*2178309^(19/24) 4807587112823813 a001 103682/21*225851433717^(19/24) 4807587114514328 r005 Im(z^2+c),c=-75/62+4/39*I,n=17 4807587115750646 r009 Im(z^3+c),c=-19/34+21/44*I,n=31 4807587117982638 a007 Real Root Of -197*x^4-786*x^3+921*x^2+709*x+22 4807587121057829 a001 17711/29*11^(37/43) 4807587128205961 m005 (1/2*3^(1/2)+3/7)/(2/5*3^(1/2)+2) 4807587147248551 r009 Im(z^3+c),c=-43/126+29/55*I,n=20 4807587148048459 r002 44th iterates of z^2 + 4807587171659913 a007 Real Root Of -840*x^4+500*x^3+526*x^2+871*x-551 4807587191204767 a001 12586269025/521*322^(11/12) 4807587191816365 r005 Im(z^2+c),c=-21/46+27/40*I,n=5 4807587193244644 g006 -Psi(1,6/7)-Psi(1,1/5)-Psi(1,3/4)-Psi(1,1/4) 4807587199307194 r002 14th iterates of z^2 + 4807587249351511 m001 FeigenbaumC*(BesselI(1,2)+MertensB2) 4807587262025979 m001 (3^(1/2)-BesselI(0,1))/(Kolakoski+ZetaP(3)) 4807587311038564 m006 (4/5/Pi+4)/(1/6*exp(2*Pi)-3/4) 4807587314023004 m001 PrimesInBinary^2/Bloch/ln(log(2+sqrt(3)))^2 4807587320816215 r009 Im(z^3+c),c=-33/62+5/22*I,n=11 4807587339923254 l006 ln(1445/2337) 4807587340618845 p003 LerchPhi(1/3,1,347/125) 4807587341006080 r005 Re(z^2+c),c=-16/23+11/58*I,n=55 4807587377528857 p003 LerchPhi(1/12,5,57/196) 4807587381922192 b008 ArcSin[6*ArcCoth[13]] 4807587403948053 r009 Im(z^3+c),c=-1/114+29/49*I,n=35 4807587416080284 r009 Im(z^3+c),c=-53/122+31/60*I,n=41 4807587418235449 m001 (Trott+Weierstrass)/(Si(Pi)-sin(1)) 4807587421966571 m005 (1/2*Catalan+5/9)/(7/10*Pi-1/11) 4807587429434147 a007 Real Root Of -782*x^4-228*x^3-9*x^2+105*x+69 4807587434836652 m005 (31/10+5/2*5^(1/2))/(1/3*gamma-2) 4807587435030461 r005 Im(z^2+c),c=-5/8+22/249*I,n=42 4807587436162419 r005 Re(z^2+c),c=-2/3+12/131*I,n=22 4807587449592742 m008 (4/5*Pi-3/5)/(2/5*Pi^4+5/6) 4807587457462197 r005 Re(z^2+c),c=-19/28+7/44*I,n=50 4807587481610944 r002 10th iterates of z^2 + 4807587507437688 a007 Real Root Of -239*x^4+554*x^3+979*x^2+861*x-689 4807587519908820 a007 Real Root Of 153*x^4-799*x^3-824*x^2-185*x+360 4807587526574327 m001 GAMMA(2/3)/(Landau-ReciprocalFibonacci) 4807587531451461 a007 Real Root Of 597*x^4-891*x^3+358*x^2-683*x-542 4807587533553456 r009 Im(z^3+c),c=-49/90+17/35*I,n=19 4807587556189650 b008 6+35*ProductLog[4] 4807587557084175 r002 6th iterates of z^2 + 4807587564507480 m002 5*Pi^6+Sinh[Pi]/18 4807587581854882 b008 LogBarnesG[16+E*Pi] 4807587583824373 r004 Re(z^2+c),c=-19/20+1/17*I,z(0)=-1,n=19 4807587584374225 m001 (MertensB1+StronglyCareFree)/(Shi(1)-sin(1)) 4807587588215705 r005 Im(z^2+c),c=25/102+17/39*I,n=28 4807587606785184 l006 ln(39/4775) 4807587614941865 a007 Real Root Of -905*x^4-8*x^3-523*x^2+979*x+639 4807587650817194 a001 13/4*47^(6/59) 4807587651966740 r002 5th iterates of z^2 + 4807587654790831 a007 Real Root Of -219*x^4-952*x^3+675*x^2+755*x-764 4807587656633121 a001 1/39606*(1/2*5^(1/2)+1/2)^24*322^(2/19) 4807587667758263 r002 38th iterates of z^2 + 4807587685056850 m001 GAMMA(11/24)*ln(Rabbit)/GAMMA(19/24)^2 4807587689793230 m001 (FeigenbaumKappa+Trott)/(Zeta(3)+GAMMA(13/24)) 4807587692533044 a007 Real Root Of -997*x^4+584*x^3-887*x^2+996*x+802 4807587706409739 r005 Im(z^2+c),c=3/44+4/7*I,n=46 4807587716870945 m005 (1/2*Zeta(3)-7/9)/(7/12*Catalan-1/6) 4807587722215907 m005 (1/2*exp(1)+1)/(2/3*5^(1/2)-1) 4807587736240414 a001 11/21*55^(26/47) 4807587740305981 r005 Re(z^2+c),c=-31/66+34/59*I,n=46 4807587741892163 m005 (1/2*3^(1/2)-1/5)/(7/12*3^(1/2)+3/8) 4807587764657987 p004 log(32587/20149) 4807587784316242 a007 Real Root Of -190*x^4-801*x^3+372*x^2-872*x-296 4807587839439583 r005 Im(z^2+c),c=-17/62+37/59*I,n=35 4807587855138791 r009 Re(z^3+c),c=-9/98+7/10*I,n=48 4807587859303298 m001 StronglyCareFree/(HardyLittlewoodC4+Mills) 4807587859497136 r005 Re(z^2+c),c=-109/82+2/35*I,n=22 4807587867180922 a007 Real Root Of 216*x^4+819*x^3-823*x^2+995*x-578 4807587894340998 r005 Im(z^2+c),c=17/46+9/49*I,n=48 4807587904034084 a007 Real Root Of 863*x^4-443*x^3-721*x^2-945*x-383 4807587922227386 r005 Im(z^2+c),c=9/44+30/61*I,n=60 4807587941699304 r009 Re(z^3+c),c=-17/50+35/37*I,n=3 4807587968788551 r002 6th iterates of z^2 + 4807587970798295 r002 40th iterates of z^2 + 4807587973884285 m001 (Zeta(5)-Artin)/(FeigenbaumC-ZetaP(2)) 4807587984192381 r009 Im(z^3+c),c=-23/94+23/43*I,n=6 4807587988791937 a007 Real Root Of -128*x^4+153*x^3-270*x^2+793*x-329 4807587998056912 a001 987/3010349*199^(49/52) 4807588005275998 m001 (Gompertz+LandauRamanujan2nd)/(sin(1)+ln(5)) 4807588018060530 p003 LerchPhi(1/256,1,46/221) 4807588019529838 a001 55/39603*11^(29/56) 4807588028020098 a003 cos(Pi*40/117)/sin(Pi*49/107) 4807588030944260 r002 32th iterates of z^2 + 4807588032539504 m005 (1/2*exp(1)-1/10)/(4/5*exp(1)+4/9) 4807588051683173 m001 GAMMA(23/24)/(GAMMA(2/3)^Psi(1,1/3)) 4807588073438595 r002 42th iterates of z^2 + 4807588075880758 q001 887/1845 4807588079489163 a007 Real Root Of -70*x^4-274*x^3+124*x^2-856*x-33 4807588081811590 m002 -1-5*Pi^6+ProductLog[Pi]/3 4807588086443572 a001 1/843*(1/2*5^(1/2)+1/2)^19*47^(8/21) 4807588091251225 m001 (Zeta(1,-1)+FellerTornier)/(Landau-Stephens) 4807588094079372 r009 Im(z^3+c),c=-13/114+24/41*I,n=24 4807588095156194 a001 15127/144*28657^(19/51) 4807588111036840 m001 (BesselK(1,1)+Artin)/(Riemann2ndZero-Sarnak) 4807588113098999 a007 Real Root Of 277*x^4-702*x^3-241*x^2-489*x+354 4807588122566038 g007 Psi(2,3/7)+Psi(2,2/5)-Psi(2,5/7)-Psi(2,4/5) 4807588122660970 m005 (1/2*Pi+3)/(11/12*Catalan+1/9) 4807588126784660 p003 LerchPhi(1/256,5,605/208) 4807588129252743 r002 24th iterates of z^2 + 4807588133867041 a007 Real Root Of 474*x^4-426*x^3+737*x^2+52*x-218 4807588179009957 r005 Re(z^2+c),c=-4/7+30/97*I,n=15 4807588180465646 r002 3th iterates of z^2 + 4807588182867799 r009 Re(z^3+c),c=-25/52+29/49*I,n=25 4807588190353021 m001 GlaisherKinkelin^GAMMA(2/3)+Magata 4807588192783076 r009 Re(z^3+c),c=-5/52+37/55*I,n=23 4807588192821395 l006 ln(5017/8114) 4807588195356096 m001 ln(GAMMA(5/6))/(2^(1/3))*sqrt(5)^2 4807588196125793 a001 29/1597*1346269^(13/56) 4807588208943634 a007 Real Root Of 237*x^4+932*x^3-954*x^2+375*x+807 4807588209373016 r009 Re(z^3+c),c=-25/64+3/55*I,n=4 4807588213089766 a007 Real Root Of -386*x^4+258*x^3-703*x^2+300*x+356 4807588215891844 r005 Im(z^2+c),c=-11/17+2/23*I,n=16 4807588218349378 m001 (Kolakoski+PlouffeB)/(Trott2nd-ZetaQ(2)) 4807588228958009 r005 Im(z^2+c),c=19/122+33/62*I,n=64 4807588241708049 r009 Im(z^3+c),c=-7/82+31/53*I,n=12 4807588247765301 a008 Real Root of (-4+2*x+4*x^2+3*x^3+4*x^4-x^5) 4807588251420399 a007 Real Root Of -516*x^4-404*x^3-716*x^2+788*x+527 4807588253493958 a005 (1/cos(31/166*Pi))^147 4807588266118928 r005 Re(z^2+c),c=-45/44+2/11*I,n=22 4807588292379648 m002 -5*Pi^6-ProductLog[Pi]+5*Sech[Pi] 4807588314571748 a007 Real Root Of -654*x^4+337*x^3+346*x^2+879*x+415 4807588317634270 a007 Real Root Of 788*x^4+847*x^3+126*x^2-499*x-217 4807588320735978 a007 Real Root Of -74*x^4-152*x^3+847*x^2-739*x-488 4807588330012685 r005 Im(z^2+c),c=-5/48+12/17*I,n=6 4807588341542403 m005 (1/3*Zeta(3)+1/12)/(1/8*5^(1/2)+8/11) 4807588351000561 r009 Re(z^3+c),c=-29/70+3/50*I,n=22 4807588366054454 r002 32th iterates of z^2 + 4807588372239662 a007 Real Root Of -894*x^4+907*x^3-53*x^2+275*x+293 4807588383409468 a007 Real Root Of 931*x^4-x^3+858*x^2-60*x-277 4807588384022571 a007 Real Root Of 72*x^4+279*x^3-402*x^2-430*x-237 4807588390261960 m001 BesselI(1,1)*FeigenbaumB^QuadraticClass 4807588394696590 m001 exp(FeigenbaumKappa)*Champernowne*Zeta(9)^2 4807588404823320 m005 (1/2*Zeta(3)+1/12)/(-5/12+1/4*5^(1/2)) 4807588424222432 m001 exp(Si(Pi))/Conway/Zeta(7)^2 4807588429409701 m001 1/exp(GAMMA(1/12))^2*Bloch/Zeta(7) 4807588446483500 m001 1/MinimumGamma/LaplaceLimit^2/exp(sin(Pi/5))^2 4807588447390555 r005 Re(z^2+c),c=-59/86+6/55*I,n=53 4807588456941161 a007 Real Root Of 195*x^4-579*x^3-622*x^2-884*x+44 4807588462968891 m005 (1/2*2^(1/2)+7/9)/(4*gamma-2) 4807588463666452 r009 Re(z^3+c),c=-47/74+13/28*I,n=9 4807588464672458 l006 ln(8203/8607) 4807588471286442 p003 LerchPhi(1/10,1,313/140) 4807588504489689 r005 Re(z^2+c),c=-37/106+17/29*I,n=12 4807588512612042 b008 ArcCoth[18]+ArcSech[Catalan] 4807588517690499 r009 Im(z^3+c),c=-37/90+29/51*I,n=50 4807588537848758 l006 ln(3572/5777) 4807588551463735 r005 Re(z^2+c),c=-9/110+43/57*I,n=51 4807588569105783 m001 (3^(1/2)+Zeta(5))/Stephens 4807588570200324 r005 Re(z^2+c),c=-61/86+5/47*I,n=44 4807588593939943 m002 Pi^6/2+(2*Tanh[Pi])/Pi^3 4807588596141927 m001 (-Ei(1,1)+Robbin)/(cos(1)+Zeta(1/2)) 4807588605294401 m001 (2^(1/3))^polylog(4,1/2)-MasserGramain 4807588619995526 b008 2/3+Pi+Tanh[4] 4807588624383814 a007 Real Root Of 303*x^4+192*x^3+432*x^2-712*x-437 4807588629533146 a001 23725150497407/89*21^(19/20) 4807588634939126 r002 42th iterates of z^2 + 4807588656268950 a007 Real Root Of -650*x^4-246*x^3-972*x^2+730*x+583 4807588673458962 s002 sum(A286430[n]/(n*pi^n-1),n=1..infinity) 4807588701516003 m001 1/ln(BesselK(0,1))/Backhouse/GAMMA(17/24)^2 4807588714798811 a007 Real Root Of -75*x^4-336*x^3-401*x^2+746*x+418 4807588745590304 m006 (4/5*ln(Pi)+1/4)/(5/Pi+5/6) 4807588748114885 m001 (Psi(1,1/3)+ln(Pi))/(KhinchinHarmonic+Lehmer) 4807588764894099 m002 E^Pi/36+5*Pi^6 4807588769537653 a007 Real Root Of -560*x^4-754*x^3-338*x^2+455*x+243 4807588773144394 r002 29th iterates of z^2 + 4807588793744285 m001 (HeathBrownMoroz-Rabbit)/(Trott2nd-ZetaP(3)) 4807588794516860 r005 Re(z^2+c),c=-9/14+49/207*I,n=32 4807588802016488 a003 cos(Pi*9/119)*sin(Pi*14/85) 4807588812180744 a007 Real Root Of 14*x^4+668*x^3-243*x^2+21*x+129 4807588828195824 r002 6th iterates of z^2 + 4807588841586646 l006 ln(5699/9217) 4807588847383950 a007 Real Root Of -881*x^4+482*x^3+574*x^2+892*x-568 4807588847436140 r009 Re(z^3+c),c=-57/110+7/41*I,n=56 4807588849178818 r009 Im(z^3+c),c=-7/40+34/59*I,n=34 4807588859394547 r009 Im(z^3+c),c=-47/122+21/41*I,n=54 4807588864678810 a007 Real Root Of 733*x^4-469*x^3+483*x^2-281*x-338 4807588867760296 a007 Real Root Of 510*x^4-748*x^3+470*x^2-948*x+403 4807588876438221 m001 BesselI(1,2)/(Kolakoski-arctan(1/2)) 4807588876709845 h001 (-12*exp(2)+8)/(-3*exp(4)-4) 4807588881036930 r005 Re(z^2+c),c=-17/27+7/17*I,n=45 4807588888756246 r009 Im(z^3+c),c=-7/40+34/59*I,n=36 4807588893275758 a007 Real Root Of 863*x^4+355*x^3-146*x^2-645*x-283 4807588923411381 m005 (-19/36+1/4*5^(1/2))/(3/10*Catalan+3/8) 4807588941596822 r002 37th iterates of z^2 + 4807588941921343 r005 Re(z^2+c),c=13/110+9/20*I,n=47 4807588963561307 b008 E^(4/3)+Cosh[1/6] 4807588970467412 r009 Re(z^3+c),c=-8/15+5/23*I,n=51 4807589006457085 m001 (Psi(2,1/3)+FeigenbaumB)/(-Niven+Stephens) 4807589023868098 r002 8th iterates of z^2 + 4807589040920133 s002 sum(A195725[n]/(16^n-1),n=1..infinity) 4807589060170278 a007 Real Root Of -909*x^4-87*x^3-510*x^2-116*x+101 4807589075938757 r005 Im(z^2+c),c=-2/3+1/174*I,n=35 4807589078992866 r009 Im(z^3+c),c=-10/27+14/27*I,n=57 4807589089430248 m001 1/exp(FeigenbaumAlpha)^2*GAMMA(1/3)^2 4807589100429387 a007 Real Root Of 111*x^4-374*x^3-233*x^2-51*x+114 4807589100948468 m005 (1/2*Catalan-1/10)/(6/7*Zeta(3)-2/7) 4807589109927536 m001 (MertensB3-TravellingSalesman)/GAMMA(17/24) 4807589111302663 s002 sum(A033113[n]/(exp(n)-1),n=1..infinity) 4807589115427633 r005 Im(z^2+c),c=-5/7+19/61*I,n=55 4807589133738123 m001 (LambertW(1)+OneNinth)/(-Paris+Riemann1stZero) 4807589134728837 r002 48th iterates of z^2 + 4807589148062421 a007 Real Root Of 923*x^4-155*x^3-464*x^2-580*x+354 4807589150172485 s002 sum(A289391[n]/(n^3*exp(n)+1),n=1..infinity) 4807589154024763 m001 (Zeta(1,-1)-GlaisherKinkelin)/(Mills+Niven) 4807589171784781 r005 Re(z^2+c),c=5/106+19/31*I,n=27 4807589181915556 r009 Re(z^3+c),c=-29/62+4/41*I,n=64 4807589185024589 s002 sum(A289391[n]/(n^3*exp(n)-1),n=1..infinity) 4807589186075397 m009 (Pi^2-5/6)/(1/3*Psi(1,2/3)-5/6) 4807589187992112 m005 (1/2*Catalan-7/11)/(3/10*exp(1)-4/9) 4807589204338068 m004 (25*Pi*Cos[Sqrt[5]*Pi]^2*Sin[Sqrt[5]*Pi])/6 4807589227213367 r005 Im(z^2+c),c=-10/27+18/31*I,n=35 4807589227715275 a007 Real Root Of 2*x^4+963*x^3+714*x^2+694*x+585 4807589237246943 m008 (Pi^5-1)/(3/5*Pi^4+5) 4807589243906198 a007 Real Root Of 242*x^4+966*x^3-836*x^2+612*x+326 4807589253588104 r002 22th iterates of z^2 + 4807589255390881 a007 Real Root Of 333*x^4+384*x^3+331*x^2-812*x-442 4807589261629813 r002 39th iterates of z^2 + 4807589266437642 a007 Real Root Of -209*x^4-816*x^3+753*x^2-949*x-989 4807589275784990 m005 (-1/44+1/4*5^(1/2))/(5/12*gamma+7/8) 4807589276414494 r005 Re(z^2+c),c=-9/14+26/189*I,n=20 4807589288132775 a007 Real Root Of 467*x^4+688*x^3+872*x^2-470*x-376 4807589290314227 r005 Re(z^2+c),c=-77/106+4/57*I,n=29 4807589293203358 a007 Real Root Of 378*x^4-993*x^3+566*x^2-538*x-520 4807589296960099 r009 Im(z^3+c),c=-3/19+21/34*I,n=9 4807589312269774 m005 (31/28+1/4*5^(1/2))/(7/12*Catalan-4) 4807589321277736 a007 Real Root Of 168*x^4+671*x^3-671*x^2-131*x-308 4807589326577956 p003 LerchPhi(1/125,1,412/197) 4807589330820609 r005 Re(z^2+c),c=-7/10+17/195*I,n=50 4807589330852612 m002 -5/6+(Pi^6*Cosh[Pi])/E^Pi 4807589348883450 m005 (37/36+1/4*5^(1/2))/(7/9*Pi+6/7) 4807589351672068 l006 ln(2127/3440) 4807589356319182 r009 Im(z^3+c),c=-7/44+15/26*I,n=15 4807589362074506 a001 1597/4870847*199^(49/52) 4807589374216843 a007 Real Root Of -937*x^4-552*x^3-472*x^2+354*x+268 4807589383034773 m001 1/GAMMA(1/4)^2/MertensB1^2/exp(Pi) 4807589394848008 r005 Im(z^2+c),c=-13/24+18/37*I,n=43 4807589398954434 a005 (1/sin(83/211*Pi))^269 4807589403903204 a007 Real Root Of -513*x^4-219*x^3-927*x^2-9*x+213 4807589406295572 a007 Real Root Of -529*x^4-624*x^3+25*x^2+917*x+394 4807589406891971 m001 (exp(1/exp(1))+gamma(1))/(MinimumGamma-Salem) 4807589416075851 h001 (1/8*exp(1)+2/3)/(2/11*exp(2)+3/4) 4807589418024332 r009 Im(z^3+c),c=-9/86+17/29*I,n=21 4807589429000271 m005 (1/3*3^(1/2)-3/5)/(19/14+3/2*5^(1/2)) 4807589438652786 r002 62th iterates of z^2 + 4807589441241903 r002 6th iterates of z^2 + 4807589447655352 r005 Im(z^2+c),c=31/102+24/61*I,n=33 4807589451929594 p004 log(27793/227) 4807589453452840 s002 sum(A045034[n]/(exp(2*pi*n)+1),n=1..infinity) 4807589454925615 r009 Im(z^3+c),c=-4/11+13/25*I,n=32 4807589456712062 a007 Real Root Of 443*x^4-854*x^3+10*x^2-539*x-380 4807589475084430 m005 (1/2*Pi+4)/(8/11*exp(1)-9/11) 4807589524318546 q001 1799/3742 4807589524430030 a007 Real Root Of 25*x^4-558*x^3+128*x^2-48*x-116 4807589526064793 a007 Real Root Of -60*x^4-288*x^3-123*x^2-486*x+557 4807589547171973 m001 1/GAMMA(1/6)^2/BesselJ(1,1)^2/ln(cos(Pi/12)) 4807589549506256 a001 4052739537881/2207*123^(1/5) 4807589625579559 r002 8th iterates of z^2 + 4807589664858078 m001 (Mills-Rabbit)/(3^(1/3)-FeigenbaumD) 4807589674053852 r002 38th iterates of z^2 + 4807589682072143 a007 Real Root Of 133*x^4-574*x^3+225*x^2-566*x-395 4807589682201206 m001 (-GAMMA(17/24)+Artin)/(Shi(1)+Chi(1)) 4807589682201206 m001 (Artin-GAMMA(17/24))/Ei(1) 4807589712286363 r009 Im(z^3+c),c=-25/94+28/51*I,n=11 4807589716822179 m005 (1/2*2^(1/2)+5/7)/(7/8*5^(1/2)+1) 4807589747740880 r001 16i'th iterates of 2*x^2-1 of 4807589750627318 r005 Re(z^2+c),c=-81/58+10/37*I,n=2 4807589753394499 s002 sum(A037377[n]/((2^n+1)/n),n=1..infinity) 4807589753590687 a003 cos(Pi*29/79)/cos(Pi*44/93) 4807589753805352 r005 Im(z^2+c),c=2/23+29/51*I,n=6 4807589762181908 r005 Re(z^2+c),c=-123/98+4/37*I,n=20 4807589762202583 m002 -6+E^Pi+Pi^3-Log[Pi]+ProductLog[Pi] 4807589764041005 m002 5*Pi^6-Cosh[Pi]/E^Pi+Log[Pi] 4807589776372750 r005 Re(z^2+c),c=5/27+13/33*I,n=6 4807589783436255 m001 (Artin+Mills)/(2^(1/3)-ln(5)) 4807589784581892 m001 Stephens/(GAMMA(3/4)-Trott2nd) 4807589796252564 m002 Pi^6/2+(E^Pi*Sech[Pi])/Pi^3 4807589797560509 m001 (-MadelungNaCl+PrimesInBinary)/(1+Pi^(1/2)) 4807589804747432 l006 ln(8670/9097) 4807589822571780 a007 Real Root Of 263*x^4+379*x^3-267*x^2-964*x+469 4807589825884382 r005 Im(z^2+c),c=21/50+13/46*I,n=7 4807589834538583 a008 Real Root of x^3-x^2-4*x+115 4807589840845585 m001 (Zeta(1/2)+GAMMA(11/12))/(Stephens-TwinPrimes) 4807589856625932 a007 Real Root Of 181*x^4+836*x^3-70*x^2+632*x+859 4807589883181833 m001 Salem/exp(MadelungNaCl)*GAMMA(1/24) 4807589883566603 m001 (ln(2)/ln(10)-ln(3))/(GAMMA(17/24)+Artin) 4807589887150209 a008 Real Root of (2+6*x+12*x^2+17*x^3) 4807589894723255 r005 Re(z^2+c),c=13/122+10/23*I,n=24 4807589896338865 r009 Re(z^3+c),c=-7/118+38/63*I,n=4 4807589909172256 r005 Re(z^2+c),c=-12/25+29/57*I,n=36 4807589913719072 r002 9th iterates of z^2 + 4807589918680287 a007 Real Root Of 146*x^4+903*x^3+931*x^2-64*x+519 4807589921673812 m001 (-Cahen+Mills)/(Shi(1)+arctan(1/3)) 4807589924339461 m001 1/exp(GlaisherKinkelin)^2/Artin*GAMMA(7/12)^2 4807589940605751 l006 ln(4936/7983) 4807589944175030 r009 Im(z^3+c),c=-1/122+29/49*I,n=29 4807589944260471 a007 Real Root Of 728*x^4-33*x^3-962*x^2-734*x+540 4807589950114883 r005 Re(z^2+c),c=-41/50+21/40*I,n=5 4807589952820932 r009 Im(z^3+c),c=-7/17+17/33*I,n=18 4807589954401794 m001 (Cahen-MertensB3)/(Ei(1,1)-(1+3^(1/2))^(1/2)) 4807589965280717 m002 5*Pi^6+Cosh[Pi]/18 4807590008598977 m001 exp(PisotVijayaraghavan)*Khintchine^2*sqrt(Pi) 4807590008717189 r005 Re(z^2+c),c=-2/27+43/64*I,n=31 4807590017363702 a007 Real Root Of 602*x^4-568*x^3-154*x^2-685*x-389 4807590022159553 r009 Im(z^3+c),c=-3/8+23/42*I,n=17 4807590037331126 r005 Im(z^2+c),c=23/78+1/3*I,n=17 4807590049310089 m001 (GolombDickman-Robbin)/(Sarnak+ZetaQ(2)) 4807590074743040 m001 (GAMMA(7/12)+Gompertz)/(Lehmer-MertensB2) 4807590079939802 r002 30th iterates of z^2 + 4807590080080528 r009 Re(z^3+c),c=-61/118+14/33*I,n=7 4807590092525047 r005 Re(z^2+c),c=-27/38+4/61*I,n=27 4807590092563954 r005 Re(z^2+c),c=-37/94+23/40*I,n=23 4807590092728055 m001 (3^(1/3)+Ei(1,1))/(GAMMA(7/12)+Tetranacci) 4807590101229365 m001 (LambertW(1)+PrimesInBinary)/(exp(1)-exp(Pi)) 4807590114508377 m004 250/Pi+(Sqrt[5]*Pi)/4-Sinh[Sqrt[5]*Pi] 4807590141374811 a007 Real Root Of -186*x^4-711*x^3+915*x^2+92*x-348 4807590162793399 m002 5*Pi^6+(3*ProductLog[Pi])/5 4807590165006825 r009 Im(z^3+c),c=-43/106+1/2*I,n=36 4807590169913595 r005 Re(z^2+c),c=-101/106+12/55*I,n=16 4807590174074509 r005 Re(z^2+c),c=-67/50+2/31*I,n=34 4807590183266391 a001 123/2*10610209857723^(21/23) 4807590195838215 p001 sum(1/(272*n+21)/(8^n),n=0..infinity) 4807590275175927 m008 (1/4*Pi-3/5)/(2/5*Pi^4-2/5) 4807590277612148 m001 1/Trott^2/exp(Cahen)*Zeta(5)^2 4807590292703993 r002 64th iterates of z^2 + 4807590317267256 r005 Im(z^2+c),c=13/56+20/43*I,n=63 4807590327199242 m001 (FibonacciFactorial-gamma)/(Salem+ZetaP(3)) 4807590332469466 a005 (1/sin(77/239*Pi))^205 4807590346952262 r005 Im(z^2+c),c=9/44+27/64*I,n=7 4807590348807461 r009 Re(z^3+c),c=-1/122+11/19*I,n=16 4807590354573957 r008 a(0)=5,K{-n^6,33-70*n^3+59*n^2-17*n} 4807590368494249 m001 BesselK(0,1)-Weierstrass^PisotVijayaraghavan 4807590373321321 a001 5778/5*832040^(56/59) 4807590386551596 l006 ln(2809/4543) 4807590389013214 r005 Re(z^2+c),c=-37/66+14/57*I,n=8 4807590390965591 r005 Re(z^2+c),c=-45/64+1/52*I,n=59 4807590392516016 a001 3536736619241/1926*123^(1/5) 4807590399149259 r009 Im(z^3+c),c=-1/110+29/49*I,n=32 4807590420655542 s002 sum(A019438[n]/(n*exp(n)+1),n=1..infinity) 4807590440138888 r009 Re(z^3+c),c=-57/106+19/63*I,n=47 4807590443226305 m001 (exp(Pi)-gamma*PlouffeB)/PlouffeB 4807590444368823 s002 sum(A241383[n]/(n^2*exp(n)-1),n=1..infinity) 4807590444601534 m001 Weierstrass/Thue/Pi/csc(1/12*Pi)*GAMMA(11/12) 4807590447663914 r009 Im(z^3+c),c=-3/98+11/18*I,n=8 4807590466258818 r002 39th iterates of z^2 + 4807590466813652 r005 Im(z^2+c),c=-101/86+13/47*I,n=16 4807590486923534 m001 (DuboisRaymond+KomornikLoreti)/(1-sin(1/5*Pi)) 4807590506152651 s002 sum(A005365[n]/((2^n-1)/n),n=1..infinity) 4807590533060735 m001 (1+Zeta(1,2))/(TreeGrowth2nd+Thue) 4807590537458053 a007 Real Root Of -177*x^4-657*x^3+832*x^2-522*x-189 4807590538659446 a003 sin(Pi*13/96)/cos(Pi*6/35) 4807590551771288 m005 (1/2*Catalan+2)/(-3/16+5/16*5^(1/2)) 4807590599058382 a007 Real Root Of 156*x^4+873*x^3+764*x^2+904*x+357 4807590643893679 m001 GAMMA(13/24)-KhinchinLevy*KomornikLoreti 4807590645277867 r005 Im(z^2+c),c=-17/52+35/62*I,n=6 4807590649647551 a007 Real Root Of -715*x^4+907*x^3-460*x^2-868*x-172 4807590652680835 m005 (4*2^(1/2)-1/4)/(1/2*Catalan+2/3) 4807590653052576 a007 Real Root Of 30*x^4-176*x^3-582*x^2-960*x+614 4807590654991084 s002 sum(A204225[n]/((3*n)!),n=1..infinity) 4807590678978614 r002 53th iterates of z^2 + 4807590688550577 a007 Real Root Of 896*x^4-667*x^3-132*x^2-960*x-553 4807590697762371 m002 -1/2+5*Pi^6+Log[Pi] 4807590702648082 a007 Real Root Of -493*x^4+239*x^3-555*x^2-277*x+48 4807590706001592 a001 377/11*29^(40/51) 4807590715028749 m008 (1/5*Pi^3-4/5)/(1/6*Pi^4-5) 4807590735042541 s001 sum(exp(-2*Pi/5)^n*A200478[n],n=1..infinity) 4807590735042541 s002 sum(A200478[n]/(exp(2/5*pi*n)),n=1..infinity) 4807590735939636 s001 sum(exp(-2*Pi/5)^n*A021848[n],n=1..infinity) 4807590735939636 s002 sum(A021848[n]/(exp(2/5*pi*n)),n=1..infinity) 4807590744297037 r009 Im(z^3+c),c=-13/74+35/64*I,n=6 4807590750397339 r005 Im(z^2+c),c=-81/118+4/35*I,n=14 4807590764199972 a007 Real Root Of 100*x^4+415*x^3-285*x^2+79*x-340 4807590788810036 r005 Im(z^2+c),c=-17/24+14/53*I,n=9 4807590795867096 r005 Re(z^2+c),c=-33/64+11/21*I,n=52 4807590825220283 r002 24th iterates of z^2 + 4807590850538718 r005 Im(z^2+c),c=-69/122+2/23*I,n=53 4807590872653185 m001 ThueMorse*FransenRobinson^ZetaR(2) 4807590882699237 r005 Re(z^2+c),c=-47/114+23/42*I,n=20 4807590883203903 r009 Re(z^3+c),c=-7/60+45/62*I,n=51 4807590886034325 a001 7/233*46368^(8/31) 4807590898791757 m001 1/exp(GAMMA(5/6))*Porter/Pi^2 4807590901943370 m002 -1+Pi^2/6+5*Pi^6 4807590913524849 a001 6557470319842/3571*123^(1/5) 4807590919715891 m001 exp(GAMMA(1/24))^2/CareFree*sqrt(2) 4807590919871976 m001 (-GAMMA(19/24)+MertensB1)/(3^(1/2)-Zeta(1,-1)) 4807590924142985 r009 Im(z^3+c),c=-25/74+25/47*I,n=25 4807590933052187 q001 912/1897 4807590937241552 r008 a(0)=5,K{-n^6,25+19*n+19*n^2-58*n^3} 4807590943289396 m001 (PlouffeB-Salem)/(Backhouse+HeathBrownMoroz) 4807590951127283 r002 27th iterates of z^2 + 4807590952359159 r002 60th iterates of z^2 + 4807590960755968 a003 cos(Pi*7/103)-cos(Pi*10/83) 4807590967150829 r002 26th iterates of z^2 + 4807590974431389 r009 Re(z^3+c),c=-11/126+39/59*I,n=53 4807590975626942 r002 19th iterates of z^2 + 4807590998565186 m002 -2/Pi^3-Pi^6/2 4807591007837600 l006 ln(9137/9587) 4807591007837600 p004 log(9587/9137) 4807591017083986 l006 ln(3491/5646) 4807591022878667 a005 (1/cos(16/235*Pi))^168 4807591023125213 m001 (3^(1/2)-GaussAGM)/(Tribonacci+Trott2nd) 4807591025200849 r005 Re(z^2+c),c=-51/86+11/35*I,n=3 4807591038131615 k005 Champernowne real with floor(sqrt(2)*(197*n+143)) 4807591038131715 k001 Champernowne real with 279*n+201 4807591051025608 m001 FeigenbaumDelta*GAMMA(11/12)^cos(1) 4807591051025608 m001 GAMMA(11/12)^cos(1)*FeigenbaumDelta 4807591071836230 a007 Real Root Of -101*x^4-256*x^3+869*x^2-994*x+645 4807591111646837 r008 a(0)=5,K{-n^6,1-51*n^3-14*n^2+69*n} 4807591122059313 a007 Real Root Of 81*x^4+388*x^3-59*x^2-164*x+418 4807591122287269 m005 (1/2*2^(1/2)-1/11)/(exp(1)-4) 4807591130821655 a007 Real Root Of 817*x^4-946*x^3+921*x^2+253*x-240 4807591134064646 m008 (4*Pi^5+1/3)/(5/6*Pi^5-1/3) 4807591171572151 r002 63th iterates of z^2 + 4807591196197704 a007 Real Root Of 218*x^4+988*x^3-429*x^2-856*x-873 4807591202161408 r005 Im(z^2+c),c=15/56+20/43*I,n=53 4807591202915158 a007 Real Root Of 126*x^4+719*x^3+468*x^2-512*x-695 4807591229393502 m001 1/(2^(1/3))^2*PrimesInBinary*ln(Zeta(3)) 4807591230430848 m001 (Weierstrass+ZetaP(3))/(BesselK(0,1)-Pi^(1/2)) 4807591232913477 a001 987/4*2^(51/53) 4807591253091349 a007 Real Root Of 341*x^4-875*x^3-138*x^2-333*x+271 4807591291318814 a007 Real Root Of 49*x^4+324*x^3+512*x^2+437*x+93 4807591307209440 r002 23th iterates of z^2 + 4807591326305729 m002 -2-Pi+5*Pi^4-Log[Pi] 4807591326825292 a003 cos(Pi*21/106)/cos(Pi*33/74) 4807591327116514 h001 (-10*exp(1)+8)/(-11*exp(1)-10) 4807591329229084 m001 GAMMA(1/6)^2/Si(Pi)*exp(GAMMA(11/12)) 4807591331321660 a007 Real Root Of -859*x^4+957*x^3-461*x^2+924*x+703 4807591333627295 r002 11th iterates of z^2 + 4807591342981249 r005 Re(z^2+c),c=-9/110+43/57*I,n=60 4807591344225638 r009 Im(z^3+c),c=-1/114+29/49*I,n=33 4807591346535523 r005 Re(z^2+c),c=2/9+11/25*I,n=18 4807591359884269 r005 Re(z^2+c),c=-25/122+29/46*I,n=25 4807591373536653 a007 Real Root Of -702*x^4+402*x^3+26*x^2+736*x+430 4807591391592385 r005 Re(z^2+c),c=-67/94+2/37*I,n=33 4807591395266235 r009 Re(z^3+c),c=-21/40+22/53*I,n=35 4807591404236306 m001 (1-GAMMA(3/4))/(-Pi^(1/2)+Conway) 4807591412015979 m005 (-1/6+1/4*5^(1/2))/(4/5*Catalan+1/12) 4807591412478850 r009 Im(z^3+c),c=-37/102+17/33*I,n=16 4807591414488548 l006 ln(55/6734) 4807591434002503 m001 DuboisRaymond^(ln(3)/Lehmer) 4807591437341896 a001 1/36*34^(7/45) 4807591439764175 r009 Im(z^3+c),c=-5/114+13/22*I,n=35 4807591441518538 l006 ln(4173/6749) 4807591451867312 a001 89/47*521^(7/47) 4807591475657986 a007 Real Root Of -167*x^4+511*x^3+150*x^2+989*x-558 4807591476653117 a007 Real Root Of 910*x^4-784*x^3+769*x^2-596*x-600 4807591515339345 r005 Re(z^2+c),c=-9/94+37/43*I,n=30 4807591520794071 r005 Im(z^2+c),c=-13/70+47/63*I,n=59 4807591530655171 a007 Real Root Of 40*x^4-468*x^3+952*x^2-191*x-366 4807591538525589 a007 Real Root Of -987*x^4-842*x^3+17*x^2+532*x+211 4807591553084027 r005 Im(z^2+c),c=21/94+23/48*I,n=49 4807591563786994 m004 3*ProductLog[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi]^2/2 4807591569101333 a001 305/930249*199^(49/52) 4807591572339768 h001 (-exp(3)+2)/(-7*exp(4)+6) 4807591574830967 p004 log(35951/22229) 4807591587710379 m005 (1/2*2^(1/2)-2/11)/(5/6*Zeta(3)+1/11) 4807591594388682 r005 Im(z^2+c),c=-75/62+7/58*I,n=24 4807591618411705 m001 Ei(1,1)-ln(gamma)*PlouffeB 4807591620908071 r005 Im(z^2+c),c=11/34+19/54*I,n=42 4807591622717458 m001 MertensB2/(Khinchin^StronglyCareFree) 4807591623641005 r005 Re(z^2+c),c=-85/122+13/55*I,n=6 4807591631483737 m002 5*Pi^6+Log[Pi]-Sinh[Pi]/E^Pi 4807591634162321 r002 4th iterates of z^2 + 4807591635003704 m001 ArtinRank2^GAMMA(13/24)-MertensB2 4807591637148254 m001 Psi(1,1/3)/(CareFree+HardHexagonsEntropy) 4807591654973984 p004 log(22453/13883) 4807591656842297 m001 (ln(Pi)+GolombDickman)/(OneNinth-PlouffeB) 4807591661604776 m005 (41/36+1/4*5^(1/2))/(1/10*exp(1)-5/8) 4807591662301343 a007 Real Root Of 318*x^4-859*x^3-933*x^2-967*x+759 4807591674849617 r005 Im(z^2+c),c=15/56+28/61*I,n=51 4807591676819889 a007 Real Root Of -878*x^4+788*x^3-861*x^2+492*x+570 4807591692664484 m001 (-LandauRamanujan+Tetranacci)/(exp(Pi)+Shi(1)) 4807591698154005 m001 1/ln(Robbin)^2*ArtinRank2*Trott^2 4807591701285096 a007 Real Root Of 777*x^4-401*x^3+315*x^2-643*x-468 4807591712365373 r002 41th iterates of z^2 + 4807591740228554 a007 Real Root Of 286*x^4-694*x^3+943*x^2-278*x-444 4807591743251040 h001 (-7*exp(6)-6)/(-4*exp(5)+5) 4807591746709263 l006 ln(4855/7852) 4807591751190717 r008 a(0)=5,K{-n^6,27+42*n-19*n^2-45*n^3} 4807591765669771 m001 1/exp(GAMMA(1/24))^2/Catalan^2*cos(Pi/12) 4807591772068660 m001 FeigenbaumC^FeigenbaumAlpha+MertensB1 4807591792770608 h001 (11/12*exp(1)+9/11)/(5/6*exp(2)+8/11) 4807591794064202 r005 Im(z^2+c),c=31/114+22/51*I,n=14 4807591817267654 a007 Real Root Of 54*x^4-97*x^3+31*x^2-121*x-79 4807591867850554 h001 (5/11*exp(1)+4/7)/(5/11*exp(2)+2/5) 4807591868341119 m001 MertensB1^(2^(1/2))/((5^(1/2))^(2^(1/2))) 4807591873008137 r005 Im(z^2+c),c=-39/50+15/52*I,n=5 4807591876561721 r005 Re(z^2+c),c=-9/110+43/57*I,n=63 4807591886190306 r005 Im(z^2+c),c=-37/54+9/26*I,n=32 4807591886970966 r005 Re(z^2+c),c=-13/14+32/221*I,n=62 4807591900540006 a001 196418/7*521^(37/45) 4807591915527084 r009 Im(z^3+c),c=-9/106+10/17*I,n=31 4807591924809016 a007 Real Root Of 938*x^4+296*x^3+799*x^2-566*x-474 4807591926899948 r008 a(0)=5,K{-n^6,31+40*n-23*n^2-43*n^3} 4807591933662332 r005 Re(z^2+c),c=-9/110+43/57*I,n=57 4807591939836040 r002 32th iterates of z^2 + 4807591947473662 a007 Real Root Of -63*x^4-128*x^3+789*x^2-177*x+345 4807591954332508 r009 Im(z^3+c),c=-9/50+35/61*I,n=10 4807591970414236 r002 18th iterates of z^2 + 4807591976718449 l006 ln(5537/8955) 4807591991311574 h001 (2/3*exp(1)+2/7)/(6/11*exp(2)+1/3) 4807592019601396 m001 exp(LaplaceLimit)/Cahen^2*GAMMA(23/24) 4807592033926179 r005 Re(z^2+c),c=-77/90+15/62*I,n=37 4807592043216011 r005 Re(z^2+c),c=3/28+12/19*I,n=38 4807592046864295 a007 Real Root Of -169*x^4+486*x^3+78*x^2+312*x-213 4807592048390444 r002 11th iterates of z^2 + 4807592070412573 a007 Real Root Of -925*x^4+501*x^3+528*x^2+353*x-298 4807592086082303 a007 Real Root Of 565*x^4-272*x^3-72*x^2-945*x+471 4807592091035827 a008 Real Root of (14+17*x-18*x^2+15*x^3) 4807592093925859 l006 ln(9604/10077) 4807592094998656 m004 25*Pi-Cosh[Sqrt[5]*Pi]+500*Pi*Csch[Sqrt[5]*Pi] 4807592103292951 r002 8th iterates of z^2 + 4807592108770985 r009 Im(z^3+c),c=-9/34+5/9*I,n=36 4807592112665632 m002 Pi^3+Pi^5+Cosh[Pi]*ProductLog[Pi]*Sinh[Pi] 4807592113296169 r002 57th iterates of z^2 + 4807592120101359 m001 1/exp(GAMMA(3/4))/Khintchine*GAMMA(5/24) 4807592136655988 r005 Re(z^2+c),c=-53/94+23/57*I,n=34 4807592139223372 m004 25*Pi-Cosh[Sqrt[5]*Pi]+500*Pi*Sech[Sqrt[5]*Pi] 4807592151060708 a007 Real Root Of 268*x^4-277*x^3+230*x^2-611*x-392 4807592156280207 l006 ln(6219/10058) 4807592167349834 m005 (1/2*exp(1)-2)/(5/11*Catalan+11/12) 4807592205376708 m002 Pi^6/2+(E^Pi*Csch[Pi])/Pi^3 4807592208693534 a007 Real Root Of -359*x^4-449*x^3-207*x^2+940*x-335 4807592222875410 a008 Real Root of x^4-x^3-11*x^2+20*x-265 4807592240268453 r005 Re(z^2+c),c=-77/114+7/60*I,n=32 4807592268877303 a007 Real Root Of 143*x^4-230*x^3+182*x^2-616*x+272 4807592276823291 r005 Re(z^2+c),c=-35/54+11/42*I,n=39 4807592303692147 q001 1849/3846 4807592303991908 s001 sum(exp(-2*Pi/3)^n*A194420[n],n=1..infinity) 4807592337577239 r005 Im(z^2+c),c=-13/70+47/63*I,n=38 4807592339858638 r002 59th iterates of z^2 + 4807592346108809 r002 47th iterates of z^2 + 4807592347887465 m005 (1/3*2^(1/2)+1/6)/(gamma+3/4) 4807592350232396 r002 62th iterates of z^2 + 4807592357809396 a007 Real Root Of -187*x^4+61*x^3+650*x^2+339*x-310 4807592366771646 r005 Im(z^2+c),c=13/40+19/54*I,n=40 4807592374639103 a008 Real Root of x^5-12*x^4-59*x^3+146*x^2+168*x-144 4807592401613832 r009 Im(z^3+c),c=-9/74+18/31*I,n=12 4807592429162064 a007 Real Root Of 82*x^4+344*x^3-111*x^2+774*x+706 4807592459945831 m005 (1/5*exp(1)-3/4)/(1/2*Pi-2) 4807592482949206 a003 sin(Pi*5/72)/sin(Pi*11/74) 4807592483195945 r008 a(0)=5,K{-n^6,31-35*n^3-47*n^2+56*n} 4807592513750480 r005 Re(z^2+c),c=31/126+34/61*I,n=43 4807592518141328 m001 cos(Pi/12)*ln(MinimumGamma)^2*sin(Pi/5)^2 4807592550367767 m008 (Pi^6+5)/(2/3*Pi^5-3) 4807592552293282 m005 (1/3*5^(1/2)-3/7)/(5/12*2^(1/2)+6) 4807592561724261 m002 -5*Pi^6-Log[Pi]+Tanh[Pi]/2 4807592583491271 m001 1/ln(Catalan)/(2^(1/3))^2*sin(Pi/12)^2 4807592635815727 a007 Real Root Of 385*x^4-602*x^3+613*x^2-761*x-595 4807592638921066 a007 Real Root Of 363*x^4+154*x^3-673*x^2-782*x+495 4807592647857743 r005 Im(z^2+c),c=1/17+23/37*I,n=34 4807592654410996 m004 125*Pi+(25*Sqrt[5]*Pi)/2+Tanh[Sqrt[5]*Pi]/4 4807592659721555 m001 Psi(1,1/3)*FeigenbaumDelta-Zeta(1,2) 4807592682050153 a007 Real Root Of 379*x^4+146*x^3+918*x^2-790*x-596 4807592701621621 m001 (Ei(1,1)-sin(1))/(QuadraticClass+ThueMorse) 4807592716815910 r009 Im(z^3+c),c=-1/11+36/47*I,n=8 4807592719260379 r002 5th iterates of z^2 + 4807592723886397 s002 sum(A184204[n]/(n*exp(pi*n)+1),n=1..infinity) 4807592726985498 m002 -6+5*Pi^4-Log[Pi]/4 4807592745702980 r005 Re(z^2+c),c=-53/82+4/23*I,n=20 4807592746617739 r005 Re(z^2+c),c=-79/110+6/35*I,n=27 4807592756428401 h001 (-3*exp(-3)-6)/(-4*exp(2/3)-5) 4807592761721807 r005 Re(z^2+c),c=-2/3+2/155*I,n=23 4807592767354303 a007 Real Root Of -141*x^4+197*x^3+360*x^2+679*x-424 4807592767762055 r005 Im(z^2+c),c=-11/106+28/45*I,n=38 4807592773150921 a001 4052739537881/2*(1/2+1/2*5^(1/2))^64 4807592773150921 a001 10610209857723/2*(1/2+1/2*5^(1/2))^62 4807592773150921 a001 3278735159921*(1/2+1/2*5^(1/2))^63 4807592784029576 m001 GlaisherKinkelin^2*exp(Si(Pi))^2*FeigenbaumD^2 4807592791407053 r009 Im(z^3+c),c=-39/86+27/61*I,n=17 4807592796988238 m001 (-Salem+ZetaQ(3))/(Chi(1)+BesselI(1,2)) 4807592820147169 a007 Real Root Of 179*x^4+738*x^3-684*x^2-313*x+686 4807592820521839 m005 (1/2*Catalan+4/7)/(7/12*exp(1)+5/9) 4807592832896183 a001 2584/3*29^(24/47) 4807592835145228 r002 4th iterates of z^2 + 4807592837116892 r002 44th iterates of z^2 + 4807592850975598 r009 Im(z^3+c),c=-5/31+22/35*I,n=9 4807592854625606 a001 377/843*76^(17/31) 4807592868460684 a003 cos(Pi*37/113)-sin(Pi*46/97) 4807592869976630 m001 (-KhinchinLevy+Otter)/(2^(1/2)-Grothendieck) 4807592879818988 m006 (2/5*exp(Pi)+3/5)/(1/5*Pi-5/6) 4807592895032996 m001 1/Zeta(9)/Lehmer^2*exp(sqrt(2))^2 4807592900829064 m001 (Catalan-Zeta(5))/(Salem+Totient) 4807592903260543 m001 1/ln(GAMMA(2/3))/Robbin/Zeta(5) 4807592903904765 r009 Re(z^3+c),c=-37/58+7/15*I,n=2 4807592923441931 r005 Re(z^2+c),c=-79/110+2/35*I,n=30 4807592923734324 r005 Im(z^2+c),c=-91/74+2/25*I,n=15 4807592934666096 s002 sum(A021162[n]/((2^n-1)/n),n=1..infinity) 4807592935937669 a007 Real Root Of 376*x^4-163*x^3+597*x^2-971*x-643 4807592942422316 r005 Re(z^2+c),c=-41/46+13/63*I,n=54 4807592961080407 r005 Re(z^2+c),c=1/18+25/41*I,n=34 4807592968414027 m002 Pi^6/2+(3*Sech[Pi])/4 4807592969037882 m007 (-4/5*gamma+1)/(-1/3*gamma-ln(2)+1/6*Pi+1/4) 4807592979803884 s002 sum(A003863[n]/(n^2*pi^n+1),n=1..infinity) 4807593006864681 m001 (OrthogonalArrays-StronglyCareFree)/Mills 4807593031048163 a007 Real Root Of 4*x^4+197*x^3+221*x^2-241*x-543 4807593047507068 r009 Re(z^3+c),c=-13/18+39/56*I,n=2 4807593050887701 r002 43th iterates of z^2 + 4807593062057848 m001 exp(GAMMA(1/3))/GaussKuzminWirsing*Zeta(9) 4807593071469728 r005 Re(z^2+c),c=33/106+4/49*I,n=5 4807593092451619 r009 Im(z^3+c),c=-5/44+24/41*I,n=26 4807593096982379 a007 Real Root Of 833*x^4+36*x^3+653*x^2-386*x-377 4807593097781599 r005 Im(z^2+c),c=-16/31+4/31*I,n=8 4807593109038733 r009 Im(z^3+c),c=-1/5+4/7*I,n=33 4807593114489355 m001 Artin/(StolarskyHarborth-Thue) 4807593120554934 a001 2504730781961/1364*123^(1/5) 4807593121793433 m002 -(Pi^2/E^Pi)+5*Pi^6+ProductLog[Pi] 4807593124995881 m001 sin(1)*LandauRamanujan*RenyiParking 4807593124995881 m001 sin(1)*RenyiParking*LandauRamanujan 4807593137476426 m002 -6*Pi^3-Pi^5+Pi^2*Log[Pi] 4807593165020167 r009 Im(z^3+c),c=-12/31+22/43*I,n=43 4807593166082209 r005 Im(z^2+c),c=1/78+10/11*I,n=6 4807593167770329 h001 (-3*exp(3)+5)/(-3*exp(-3)-1) 4807593180657297 r005 Re(z^2+c),c=-20/31+13/45*I,n=14 4807593183386657 a003 sin(Pi*7/48)/sin(Pi*29/78) 4807593191655628 a001 86267571272/199*199^(5/11) 4807593193909917 m005 (1/2*Zeta(3)-3/7)/(-73/110+3/22*5^(1/2)) 4807593194636890 r005 Im(z^2+c),c=3/11+33/59*I,n=52 4807593200340763 m009 (4/5*Psi(1,1/3)-1)/(5*Psi(1,2/3)-3/5) 4807593233441258 a007 Real Root Of 414*x^4+506*x^3+170*x^2-571*x+27 4807593235918080 m002 16+Pi^3+ProductLog[Pi]*Tanh[Pi] 4807593246599602 m001 (Cahen+MinimumGamma)/(Zeta(3)-GAMMA(13/24)) 4807593265324778 a007 Real Root Of 502*x^4+604*x^3+158*x^2-921*x-439 4807593265660813 m001 (Conway-Gompertz)/(Riemann1stZero+Stephens) 4807593269628061 a003 sin(Pi*13/93)-sin(Pi*35/97) 4807593287438469 a001 3/9349*123^(9/16) 4807593288448150 m001 (ln(3)-Pi^(1/2))/(Kac+StronglyCareFree) 4807593288489688 r005 Re(z^2+c),c=-2/3+11/50*I,n=55 4807593295624139 a007 Real Root Of -519*x^4+642*x^3-970*x^2+871*x+742 4807593376712705 a007 Real Root Of 320*x^4-878*x^3-542*x^2-818*x+599 4807593387917105 a003 sin(Pi*3/103)/sin(Pi*7/115) 4807593412188231 m002 Pi^6/2+(2*Coth[Pi])/Pi^3 4807593419889810 r005 Im(z^2+c),c=-79/114+4/39*I,n=62 4807593420639269 r005 Re(z^2+c),c=3/19+29/54*I,n=16 4807593421002530 r009 Im(z^3+c),c=-63/118+16/53*I,n=60 4807593459420762 m001 Catalan*exp(Cahen)/GAMMA(1/4) 4807593489921541 a007 Real Root Of 139*x^4-651*x^3-832*x^2-37*x+275 4807593506037748 l006 ln(71/8693) 4807593506037748 p004 log(8693/71) 4807593512417254 r009 Im(z^3+c),c=-19/54+32/61*I,n=29 4807593523436173 r005 Re(z^2+c),c=-43/64+1/30*I,n=23 4807593526463470 b008 3*ProductLog[1/24]^2 4807593546045755 a001 199/196418*2504730781961^(7/13) 4807593548169080 b008 -1+Pi*KelvinBer[2,2] 4807593565513446 r009 Re(z^3+c),c=-29/74+1/25*I,n=34 4807593567080488 a001 199/6765*4807526976^(7/13) 4807593572010153 m001 GAMMA(2/3)-Lehmer^sin(1/12*Pi) 4807593572010153 m001 GAMMA(2/3)-Lehmer^sin(Pi/12) 4807593583993131 r002 21th iterates of z^2 + 4807593594907073 r009 Im(z^3+c),c=-31/70+27/56*I,n=49 4807593595080991 g007 Psi(2,1/7)+14*Zeta(3)-Psi(2,7/10)-Psi(2,2/9) 4807593598291705 r002 45th iterates of z^2 + 4807593607409017 m005 (1/2*5^(1/2)+10/11)/(1/8*3^(1/2)+4) 4807593607813400 r008 a(0)=5,K{-n^6,-8-28*n+58*n^2-15*n^3} 4807593614100403 l006 ln(682/1103) 4807593616174151 r005 Re(z^2+c),c=-25/78+17/29*I,n=15 4807593619397661 r005 Re(z^2+c),c=-17/25+1/62*I,n=31 4807593628649460 r009 Im(z^3+c),c=-39/106+26/43*I,n=26 4807593637456140 r005 Re(z^2+c),c=-67/102+17/60*I,n=46 4807593637762955 q001 937/1949 4807593643348650 m001 (Psi(1,1/3)-cos(1/12*Pi))/(Lehmer+Mills) 4807593667263787 r005 Im(z^2+c),c=-65/74+12/41*I,n=7 4807593675890771 a007 Real Root Of -963*x^4+912*x^3+33*x^2+313*x-208 4807593681457074 m001 ZetaQ(4)^Psi(1,1/3)/(exp(-Pi)^Psi(1,1/3)) 4807593681457074 m001 exp(Pi)^Psi(1,1/3)*ZetaQ(4)^Psi(1,1/3) 4807593693231273 a007 Real Root Of -658*x^4+795*x^3-810*x^2-717*x-34 4807593702180508 r005 Re(z^2+c),c=-7/6+61/222*I,n=16 4807593723151166 m001 CareFree^FeigenbaumAlpha/(CareFree^ThueMorse) 4807593743414773 r005 Re(z^2+c),c=-107/106+6/23*I,n=64 4807593744694180 r005 Re(z^2+c),c=-83/118+3/16*I,n=40 4807593747999587 m005 (1/2*2^(1/2)-2/11)/(6/11*gamma+7/9) 4807593763562427 a007 Real Root Of 865*x^4-853*x^3+996*x^2-530*x-626 4807593771288375 r009 Im(z^3+c),c=-1/102+29/49*I,n=28 4807593797731813 r005 Im(z^2+c),c=-8/9+21/59*I,n=3 4807593799224308 r009 Im(z^3+c),c=-29/52+11/23*I,n=61 4807593820103347 m001 Artin^BesselI(1,2)/(Lehmer^BesselI(1,2)) 4807593828328548 a003 -1+2*cos(8/27*Pi)-cos(4/15*Pi)+cos(2/21*Pi) 4807593834022587 r009 Im(z^3+c),c=-1/94+29/49*I,n=26 4807593834044292 a007 Real Root Of 387*x^4-876*x^3+328*x^2+347*x-27 4807593835080249 m001 (GAMMA(5/6)+Bloch)/(FeigenbaumDelta-Totient) 4807593835776847 m005 (1/2*2^(1/2)+2/11)/(2/9*3^(1/2)-1/5) 4807593838609514 m001 (Kolakoski-QuadraticClass*ZetaQ(4))/ZetaQ(4) 4807593841773593 a007 Real Root Of -662*x^4+963*x^3-899*x^2+268*x+479 4807593842892599 r005 Im(z^2+c),c=33/106+11/31*I,n=40 4807593861329690 a007 Real Root Of -966*x^4+343*x^3-46*x^2+382*x+284 4807593864515659 a001 1/2207*(1/2*5^(1/2)+1/2)^21*47^(8/21) 4807593867221702 r005 Re(z^2+c),c=-9/110+43/57*I,n=54 4807593878191149 a007 Real Root Of 907*x^4-699*x^3+677*x^2-265*x-410 4807593882881585 m001 (Khinchin-Paris)/(polylog(4,1/2)-GAMMA(11/12)) 4807593884834022 r005 Re(z^2+c),c=-47/66+6/49*I,n=62 4807593906160297 m001 1/GAMMA(1/6)^2/ln(ArtinRank2)^2*GAMMA(5/24)^2 4807593919677090 m005 (1/2*exp(1)-8/9)/(1/6*Pi+5/11) 4807593941381206 r009 Im(z^3+c),c=-5/114+13/22*I,n=37 4807593977609336 r009 Im(z^3+c),c=-43/106+34/63*I,n=25 4807593982134603 a007 Real Root Of 14*x^4+672*x^3-71*x^2-953*x+150 4807593995495946 m001 sin(1/5*Pi)*arctan(1/2)^MertensB1 4807594000603942 m001 ln(Porter)^2*KhintchineLevy/GAMMA(1/4) 4807594003736889 a007 Real Root Of -421*x^4+447*x^3-476*x^2+451*x+399 4807594006472882 h001 (2/5*exp(1)+5/6)/(5/11*exp(2)+7/11) 4807594052780124 r005 Re(z^2+c),c=-9/110+43/57*I,n=42 4807594058505058 m003 -7/12+Sqrt[5]/16+Tanh[1/2+Sqrt[5]/2] 4807594063284614 r005 Im(z^2+c),c=1/102+11/18*I,n=64 4807594080817705 r005 Re(z^2+c),c=-81/110+5/43*I,n=19 4807594082540996 m005 (1/2*Zeta(3)-1/6)/(7/9*gamma+5/11) 4807594123617964 r005 Re(z^2+c),c=-27/38+21/61*I,n=19 4807594123932228 m005 (1/2*gamma-3/7)/(5/9*Catalan-4/5) 4807594130403507 m005 (1/2*5^(1/2)+1/9)/(6/11*Zeta(3)-2/5) 4807594139980292 r002 26th iterates of z^2 + 4807594145968961 r009 Im(z^3+c),c=-11/34+33/59*I,n=16 4807594176650478 m002 3/(2*E^Pi)+Pi^6/2 4807594210816829 m001 (MertensB2+Mills)/(Robbin-ZetaP(3)) 4807594215659124 r002 15th iterates of z^2 + 4807594221373546 m001 HeathBrownMoroz^(Pi^(1/2)*Riemann2ndZero) 4807594225169217 m001 (gamma(3)-Cahen)/(Thue+Weierstrass) 4807594228906189 r009 Im(z^3+c),c=-3/25+35/53*I,n=4 4807594285213472 m005 (1/2*Pi+8/9)/(5/154+3/14*5^(1/2)) 4807594326790833 m005 (1/2*exp(1)+5/6)/(1/6*exp(1)-10/11) 4807594352686844 p001 sum((-1)^n/(362*n+201)/(10^n),n=0..infinity) 4807594358744565 r005 Re(z^2+c),c=-61/114+18/53*I,n=8 4807594359180292 m005 (1/2*5^(1/2)+1/4)/(2*gamma-4) 4807594361379639 m001 BesselJ(1,1)^ln(2^(1/2)+1)*BesselJ(1,1)^Trott 4807594375144668 r005 Im(z^2+c),c=-35/122+29/43*I,n=6 4807594379256399 m001 1/ln(MertensB1)/Artin/PrimesInBinary 4807594380434383 h001 (-5*exp(3/2)+9)/(-6*exp(3/2)-1) 4807594397835558 a007 Real Root Of 726*x^4+961*x^3+861*x^2-208*x-231 4807594436360249 m001 Tribonacci^Kolakoski*Tribonacci^Grothendieck 4807594437899601 m001 (Salem+Tribonacci)/(ln(Pi)-polylog(4,1/2)) 4807594438952293 a003 sin(Pi*19/119)*sin(Pi*46/93) 4807594447152095 a007 Real Root Of -423*x^4-162*x^3-24*x^2+865*x+426 4807594474037105 m001 (Zeta(3)+Salem)/(Stephens-StolarskyHarborth) 4807594484024184 r002 3th iterates of z^2 + 4807594486923156 r009 Im(z^3+c),c=-3/28+17/29*I,n=22 4807594500690438 r002 45th iterates of z^2 + 4807594514021825 a007 Real Root Of 157*x^4+736*x^3+96*x^2+712*x-884 4807594515090024 r005 Re(z^2+c),c=-5/8+37/133*I,n=26 4807594517204437 a003 sin(Pi*3/32)/sin(Pi*13/63) 4807594519019814 r005 Im(z^2+c),c=-9/13+16/47*I,n=41 4807594523793211 r009 Re(z^3+c),c=-33/58+4/11*I,n=21 4807594534499297 a001 2207/89*17711^(7/13) 4807594538623066 r009 Re(z^3+c),c=-11/29+38/55*I,n=8 4807594554391379 r005 Re(z^2+c),c=-69/106+8/33*I,n=47 4807594562462859 r002 10th iterates of z^2 + 4807594578549733 m001 (-arctan(1/3)+Conway)/(exp(1)-exp(Pi)) 4807594581932645 a007 Real Root Of 384*x^4-943*x^3-797*x^2+x+268 4807594582251454 r005 Re(z^2+c),c=-61/114+20/59*I,n=8 4807594603963338 r005 Re(z^2+c),c=11/58+12/35*I,n=44 4807594606214033 m001 (sin(Pi/5)+1/3)/(Catalan+1) 4807594628631125 m001 GAMMA(3/4)*Sierpinski+GAMMA(13/24) 4807594629867149 m002 -Pi^2/6-5*Pi^6+Tanh[Pi] 4807594658556158 m002 -Pi^2+5*Pi^6+Cosh[Pi]-ProductLog[Pi] 4807594699229917 r009 Im(z^3+c),c=-15/94+11/19*I,n=27 4807594705513691 s001 sum(exp(-Pi/3)^n*A186573[n],n=1..infinity) 4807594707526177 a001 1/5778*(1/2*5^(1/2)+1/2)^23*47^(8/21) 4807594732066567 m003 Tan[1/2+Sqrt[5]/2]^2+36*Tanh[1/2+Sqrt[5]/2] 4807594737468358 m002 -Pi^6/2+ProductLog[Pi]^(-1)-Tanh[Pi] 4807594750198957 r002 22th iterates of z^2 + 4807594768675572 a007 Real Root Of -344*x^4-248*x^3+361*x^2+390*x-225 4807594769063186 r002 38th iterates of z^2 + 4807594769791158 g001 GAMMA(9/10,25/36) 4807594778366155 b008 5-EulerGamma/3 4807594785324130 r002 41th iterates of z^2 + 4807594787294987 r002 30th iterates of z^2 + 4807594819802692 m001 1/Trott*FeigenbaumKappa^2/exp((2^(1/3))) 4807594823374197 r009 Im(z^3+c),c=-29/82+21/40*I,n=37 4807594825071628 r005 Im(z^2+c),c=11/94+11/20*I,n=45 4807594830519778 a001 1/15127*(1/2*5^(1/2)+1/2)^25*47^(8/21) 4807594848464303 a001 1/39603*(1/2*5^(1/2)+1/2)^27*47^(8/21) 4807594851529594 a001 (1/2*5^(1/2)+1/2)^5*47^(8/21) 4807594851746829 r005 Re(z^2+c),c=-57/98+10/33*I,n=17 4807594852700431 a001 1/64079*(1/2*5^(1/2)+1/2)^28*47^(8/21) 4807594854062087 p003 LerchPhi(1/1024,4,251/209) 4807594854973183 r005 Re(z^2+c),c=-51/94+1/50*I,n=3 4807594859554630 a001 1/24476*(1/2*5^(1/2)+1/2)^26*47^(8/21) 4807594864213787 r002 28th iterates of z^2 + 4807594867705796 r009 Re(z^3+c),c=-55/122+4/61*I,n=22 4807594883815757 r009 Im(z^3+c),c=-9/34+5/9*I,n=37 4807594892533558 p001 sum(1/(460*n+383)/n/(25^n),n=1..infinity) 4807594906534008 a001 1/9349*(1/2*5^(1/2)+1/2)^24*47^(8/21) 4807594908189720 r005 Re(z^2+c),c=-7/10+2/117*I,n=55 4807594931777420 a007 Real Root Of -751*x^4+693*x^3+482*x^2+791*x+386 4807594935704010 m001 ln(Zeta(7))^2/CopelandErdos^2/sin(Pi/12) 4807594936708860 q001 1899/3950 4807594945275971 r009 Re(z^3+c),c=-43/98+5/43*I,n=4 4807594979997934 m001 (Pi^(1/2)-FransenRobinson)/(ln(2)-Zeta(1/2)) 4807594991222004 r005 Re(z^2+c),c=-7/10+1/201*I,n=63 4807594993302081 r009 Im(z^3+c),c=-5/114+13/22*I,n=39 4807595003876400 a007 Real Root Of -759*x^4+515*x^3+683*x^2+236*x-288 4807595031306422 m001 (FransenRobinson-Psi(2,1/3))/(Landau+Robbin) 4807595035225349 m005 (1/2*Zeta(3)-2/9)/(3/4*2^(1/2)-3/11) 4807595042254984 m001 ln(TwinPrimes)/Khintchine/LambertW(1)^2 4807595051802010 r002 10th iterates of z^2 + 4807595053380113 p001 sum(1/(379*n+21)/(6^n),n=0..infinity) 4807595061726856 a001 76/17711*3^(3/29) 4807595065559950 r002 47th iterates of z^2 + 4807595075134997 r009 Im(z^3+c),c=-10/21+20/49*I,n=18 4807595097977833 m001 (gamma(1)+Magata)/(MasserGramain-Totient) 4807595100838575 m001 Stephens*(Catalan-StolarskyHarborth) 4807595101169549 m001 Riemann2ndZero/StolarskyHarborth/ZetaQ(2) 4807595102471088 r002 28th iterates of z^2 + 4807595105308657 r005 Im(z^2+c),c=-125/98+7/47*I,n=9 4807595110911111 l006 ln(6057/9796) 4807595132584361 m001 1/GAMMA(5/6)/Sierpinski^2*ln(Zeta(5)) 4807595135174458 h001 (7/11*exp(2)+1/8)/(2/9*exp(1)+2/5) 4807595147040333 m001 (BesselI(0,2)-exp(gamma))/Zeta(5) 4807595151969041 a007 Real Root Of -874*x^4+310*x^3-475*x^2-4*x+189 4807595207029786 r009 Re(z^3+c),c=-9/20+3/44*I,n=22 4807595213871091 a007 Real Root Of 121*x^4+146*x^3+502*x^2+142*x-38 4807595216212472 a007 Real Root Of -67*x^4-162*x^3+764*x^2-163*x-651 4807595217272206 m001 (HeathBrownMoroz+Robbin)^Grothendieck 4807595220125748 r005 Im(z^2+c),c=5/26+33/61*I,n=18 4807595228535477 a001 1/3571*(1/2*5^(1/2)+1/2)^22*47^(8/21) 4807595241136571 m001 (Kolakoski-ln(2^(1/2)+1)*ZetaQ(4))/ZetaQ(4) 4807595246300841 r005 Re(z^2+c),c=-85/126+9/41*I,n=47 4807595247510720 r002 12th iterates of z^2 + 4807595255330679 a001 1/15129*(1/2*5^(1/2)+1/2)^15*123^(8/23) 4807595261708476 m001 cos(1/12*Pi)/ln(2^(1/2)+1)/BesselI(0,2) 4807595261708476 m001 cos(Pi/12)/ln(1+sqrt(2))/BesselI(0,2) 4807595263816569 a007 Real Root Of -18*x^4-872*x^3-309*x^2+464*x-530 4807595269133459 r009 Im(z^3+c),c=-7/74+37/63*I,n=23 4807595280615584 r005 Re(z^2+c),c=-2/3+21/139*I,n=33 4807595286743788 r002 46th iterates of z^2 + 4807595289602282 m005 (1/3*gamma-1/8)/(Zeta(3)+1/5) 4807595294642276 r005 Re(z^2+c),c=19/110+19/59*I,n=22 4807595300832007 l006 ln(5375/8693) 4807595315851505 r002 52th iterates of z^2 + 4807595326939751 a001 7778742049/322*18^(5/21) 4807595338679418 g005 GAMMA(5/9)/GAMMA(5/8)/GAMMA(4/7)/GAMMA(3/5) 4807595346476170 r005 Re(z^2+c),c=-15/22+12/91*I,n=12 4807595379001376 r009 Im(z^3+c),c=-8/19+17/32*I,n=37 4807595388815519 m001 (PlouffeB-Porter)/(Zeta(1/2)-BesselK(1,1)) 4807595389407997 m002 Pi^6/2+(3*Csch[Pi])/4 4807595400651753 r009 Re(z^3+c),c=-15/34+2/27*I,n=22 4807595402168929 r009 Im(z^3+c),c=-5/114+13/22*I,n=41 4807595403137264 r002 41th iterates of z^2 + 4807595416269587 r002 2th iterates of z^2 + 4807595433644388 a007 Real Root Of -275*x^4+768*x^3+594*x^2+766*x+331 4807595447134082 r005 Im(z^2+c),c=5/58+3/4*I,n=6 4807595460837322 r009 Im(z^3+c),c=-9/32+27/49*I,n=28 4807595464240735 m002 2-Cosh[Pi]/Pi^4+4*Sinh[Pi] 4807595482876866 m001 (ThueMorse+TwinPrimes)/(arctan(1/3)-Paris) 4807595487076244 m001 1/Salem^2*ln(KhintchineLevy)^2/TreeGrowth2nd 4807595493889761 a003 sin(Pi*19/108)*sin(Pi*7/19) 4807595514211098 m001 (Artin+FeigenbaumC)/(MertensB2-Stephens) 4807595521193182 r005 Re(z^2+c),c=-13/14+32/221*I,n=58 4807595531013864 r009 Im(z^3+c),c=-5/114+13/22*I,n=46 4807595535091545 r009 Im(z^3+c),c=-5/114+13/22*I,n=48 4807595542322168 r009 Im(z^3+c),c=-5/114+13/22*I,n=50 4807595542480055 r009 Im(z^3+c),c=-5/114+13/22*I,n=43 4807595545458360 r009 Im(z^3+c),c=-5/114+13/22*I,n=44 4807595545952579 l006 ln(4693/7590) 4807595546434994 a008 Real Root of x^4-x^3-26*x^2+6*x+149 4807595548200267 r009 Im(z^3+c),c=-5/114+13/22*I,n=52 4807595552063132 r009 Im(z^3+c),c=-5/114+13/22*I,n=54 4807595554338246 r009 Im(z^3+c),c=-5/114+13/22*I,n=56 4807595555584483 r009 Im(z^3+c),c=-5/114+13/22*I,n=58 4807595556229914 r009 Im(z^3+c),c=-5/114+13/22*I,n=60 4807595556397846 a007 Real Root Of -213*x^4+760*x^3-658*x^2+801*x+633 4807595556548295 r009 Im(z^3+c),c=-5/114+13/22*I,n=62 4807595556698172 r009 Im(z^3+c),c=-5/114+13/22*I,n=64 4807595556980837 r009 Im(z^3+c),c=-5/114+13/22*I,n=63 4807595557200575 r009 Im(z^3+c),c=-5/114+13/22*I,n=61 4807595557656552 r009 Im(z^3+c),c=-5/114+13/22*I,n=59 4807595558559168 r009 Im(z^3+c),c=-5/114+13/22*I,n=57 4807595560256112 r009 Im(z^3+c),c=-5/114+13/22*I,n=55 4807595563252417 r009 Im(z^3+c),c=-5/114+13/22*I,n=53 4807595568101760 r009 Im(z^3+c),c=-5/114+13/22*I,n=51 4807595568917332 m005 (1/2*Pi-11/12)/(3/10*Zeta(3)+1) 4807595574881527 r009 Im(z^3+c),c=-5/114+13/22*I,n=49 4807595576669152 m006 (2*Pi^2+1/4)/(4/5*ln(Pi)-1/2) 4807595579434096 r009 Im(z^3+c),c=-5/114+13/22*I,n=45 4807595581536765 r009 Im(z^3+c),c=-5/114+13/22*I,n=47 4807595581859441 a007 Real Root Of -134*x^4-558*x^3+414*x^2-127*x-599 4807595585270479 a008 Real Root of (-4+5*x+8*x^2-5*x^4+5*x^8) 4807595590190942 m003 19/4+(3*Sqrt[5])/64+Cos[1/2+Sqrt[5]/2] 4807595600098174 r005 Im(z^2+c),c=-13/70+47/63*I,n=32 4807595603781796 p004 log(36847/22783) 4807595604235323 m005 (1/2*Catalan+7/8)/(10/11*Pi-1/12) 4807595621254079 r009 Im(z^3+c),c=-5/114+13/22*I,n=42 4807595637185036 r009 Re(z^3+c),c=-35/64+18/47*I,n=23 4807595647355001 r005 Im(z^2+c),c=13/54+11/24*I,n=63 4807595689003656 m001 (BesselK(0,1)+Cahen)/(1-exp(Pi)) 4807595693167164 r002 22th iterates of z^2 + 4807595732332643 m001 (HardyLittlewoodC4+MertensB3)/(exp(1)+ln(2)) 4807595739726238 p004 log(12611/103) 4807595771722139 m002 -(E^Pi/Pi^2)+2*Pi^3-Cosh[Pi] 4807595776666283 m001 (5^(1/2)+gamma)/(-Zeta(3)+KomornikLoreti) 4807595780461149 m001 (Psi(1,1/3)+ln(2))^TwinPrimes 4807595791561526 m001 1/Zeta(3)^2/ln(Rabbit)*cosh(1)^2 4807595861271857 r009 Re(z^3+c),c=-2/23+23/35*I,n=47 4807595865718642 r009 Im(z^3+c),c=-5/114+13/22*I,n=40 4807595874430025 l006 ln(4011/6487) 4807595881802622 m002 -5*Pi^6+4*Csch[Pi]-Tanh[Pi] 4807595895435909 m001 1/GAMMA(3/4)/ln(MinimumGamma)*sqrt(5) 4807595898300387 m001 Paris^2/exp(Cahen)^2/RenyiParking^2 4807595900846424 a007 Real Root Of -46*x^4+371*x^3-842*x^2+509*x+483 4807595917223493 a007 Real Root Of -454*x^4-506*x^3-962*x^2+929*x+637 4807595955086333 r009 Im(z^3+c),c=-41/114+23/44*I,n=34 4807595984419558 m001 Gompertz/MadelungNaCl/Rabbit 4807595998153000 r002 8th iterates of z^2 + 4807596001245306 a007 Real Root Of 293*x^4-517*x^3-201*x^2-891*x-455 4807596019497488 a001 1/5473*46368^(7/23) 4807596020694344 m005 (1/3*Zeta(3)+1/4)/(145/198+5/18*5^(1/2)) 4807596022988587 r009 Re(z^3+c),c=-31/66+6/61*I,n=56 4807596027668155 a001 2/317811*2971215073^(7/23) 4807596056457020 a007 Real Root Of 4*x^4+204*x^3+581*x^2+895*x-184 4807596074242881 r009 Im(z^3+c),c=-1/110+29/49*I,n=34 4807596088752555 r001 32i'th iterates of 2*x^2-1 of 4807596119316813 m008 (1/3*Pi^3+2/3)/(3/4*Pi^5-2/3) 4807596120857131 r009 Re(z^3+c),c=-23/86+7/10*I,n=37 4807596123633232 r009 Im(z^3+c),c=-17/70+35/58*I,n=10 4807596132701247 a007 Real Root Of -467*x^4-354*x^3+383*x^2+896*x-455 4807596140792930 r001 64i'th iterates of 2*x^2-1 of 4807596142644877 m001 GAMMA(11/12)^2*Trott^2/exp(Zeta(9)) 4807596152384570 m005 (1/2*5^(1/2)+3/8)/(2/5*5^(1/2)-4) 4807596181448262 r005 Re(z^2+c),c=-59/82+4/49*I,n=60 4807596187113994 m001 (GAMMA(17/24)-Bloch)/(FeigenbaumB+Thue) 4807596201899050 q001 962/2001 4807596224949467 m001 (Otter-Paris)/(gamma(3)-Gompertz) 4807596228386514 a007 Real Root Of 533*x^4-598*x^3-629*x^2-288*x-88 4807596249880363 p004 log(12527/11939) 4807596266263022 a007 Real Root Of 813*x^4+649*x^3+958*x^2-766*x-561 4807596267797888 r005 Re(z^2+c),c=7/26+33/59*I,n=19 4807596274433389 m001 (Conway-ZetaQ(2))/(Ei(1)+CareFree) 4807596275395872 a007 Real Root Of 543*x^4-875*x^3+290*x^2-62*x+31 4807596290663051 r005 Re(z^2+c),c=-7/10+1/82*I,n=59 4807596305045435 m005 (4*2^(1/2)-3/4)/(4*exp(1)-2/3) 4807596307628314 a007 Real Root Of -890*x^4+179*x^3-542*x^2-457*x-27 4807596337495387 l006 ln(3329/5384) 4807596345958051 a007 Real Root Of 294*x^4-917*x^3-70*x^2+134*x-37 4807596418374436 r009 Im(z^3+c),c=-15/58+34/61*I,n=30 4807596424984079 r002 7th iterates of z^2 + 4807596427057312 r005 Re(z^2+c),c=-13/27+15/26*I,n=6 4807596459133399 r009 Re(z^3+c),c=-10/23+3/40*I,n=33 4807596468456858 a001 19/208010*1346269^(17/28) 4807596482845890 a007 Real Root Of -650*x^4+965*x^3+516*x^2-116*x-136 4807596495777782 m001 PrimesInBinary*ln(Paris)/Riemann1stZero^2 4807596497833185 r005 Im(z^2+c),c=-8/15+26/41*I,n=4 4807596520505637 a001 1/167732*(1/2*5^(1/2)+1/2)^30*2207^(4/21) 4807596529295425 r009 Im(z^3+c),c=-5/114+13/22*I,n=38 4807596532652038 r009 Im(z^3+c),c=-21/86+23/41*I,n=24 4807596547504689 a001 5600748293801/5*591286729879^(11/15) 4807596587604209 r005 Im(z^2+c),c=-17/14+10/157*I,n=57 4807596595101923 r002 30th iterates of z^2 + 4807596601085033 r005 Re(z^2+c),c=17/46+7/47*I,n=37 4807596606351220 a007 Real Root Of 167*x^4+710*x^3-585*x^2-833*x-803 4807596616460609 m002 -(Pi^6/Log[Pi])+Pi^3*Sinh[Pi]+Tanh[Pi] 4807596626985117 a003 sin(Pi*23/102)/cos(Pi*37/81) 4807596627319447 r005 Re(z^2+c),c=-41/64+5/19*I,n=43 4807596647095952 r005 Im(z^2+c),c=25/94+23/63*I,n=11 4807596648297780 l006 ln(5976/9665) 4807596658731465 m005 (1/3*Zeta(3)-2/7)/(5/8*Catalan-1/3) 4807596679116113 m001 ln(2+3^(1/2))*MertensB3*Trott2nd 4807596685585572 r009 Re(z^3+c),c=-19/106+31/40*I,n=7 4807596696764060 r002 60th iterates of z^2 + 4807596713729073 l004 sinh(242/53) 4807596715000882 a007 Real Root Of -243*x^4-380*x^3-801*x^2+722*x+503 4807596761912605 r009 Im(z^3+c),c=-65/114+15/32*I,n=61 4807596780944478 m005 (1/2*5^(1/2)+3)/(5/11*Pi-4/7) 4807596784769016 r009 Re(z^3+c),c=-7/90+6/11*I,n=25 4807596801234275 m001 exp(Ei(1))^2/FeigenbaumAlpha*exp(1) 4807596805702558 r009 Im(z^3+c),c=-27/98+29/54*I,n=6 4807596814253706 r009 Im(z^3+c),c=-17/66+29/52*I,n=22 4807596826009412 m005 (1/2*2^(1/2)+1/7)/(3/4*5^(1/2)+1/11) 4807596829420017 m001 (LambertW(1)-sin(1))/(Zeta(5)+FeigenbaumDelta) 4807596839400782 m005 (1/3+1/4*5^(1/2))/(9/10*2^(1/2)+7/12) 4807596851077625 m005 (1/2*Zeta(3)-8/9)/(8/9*5^(1/2)+4) 4807596851272425 m001 ln(2)*FeigenbaumD*Sierpinski 4807596855317613 a001 521/14930352*3^(7/24) 4807596867931214 r005 Re(z^2+c),c=-5/8+54/251*I,n=5 4807596882329166 a005 (1/cos(17/142*Pi))^117 4807596891416138 r005 Im(z^2+c),c=-7/6+73/216*I,n=8 4807596900677612 a007 Real Root Of 284*x^4-302*x^3+334*x^2-473*x+22 4807596902137935 r009 Im(z^3+c),c=-5/98+36/61*I,n=14 4807596906440510 m004 -25/6+Sqrt[5]*Pi+Log[Sqrt[5]*Pi] 4807596933933611 m005 (1/2*exp(1)+10/11)/(6*Catalan-7/9) 4807596939837642 m001 (QuadraticClass-Trott)/(ln(Pi)-Otter) 4807596944747064 r002 9th iterates of z^2 + 4807596969871477 r005 Re(z^2+c),c=-1+4/57*I,n=8 4807596986373700 r002 58th iterates of z^2 + 4807596987275893 m001 (2^(1/3)-Bloch)/(FibonacciFactorial+ThueMorse) 4807596992512483 m005 (1/2*5^(1/2)+1/12)/(7/8*Pi-1/4) 4807597018554894 a007 Real Root Of -21*x^4-990*x^3+962*x^2+948*x-496 4807597038751678 h001 (1/4*exp(2)+5/12)/(5/8*exp(2)+1/11) 4807597039178448 l006 ln(2647/4281) 4807597053021986 a007 Real Root Of -133*x^4-519*x^3+553*x^2+43*x+805 4807597058096017 a007 Real Root Of -853*x^4-765*x^3-135*x^2+848*x+41 4807597061228298 m001 BesselK(1,1)*HardHexagonsEntropy*ln(sqrt(Pi)) 4807597064746857 a007 Real Root Of -830*x^4-682*x^3-277*x^2+743*x-35 4807597073201843 a008 Real Root of 1/649*x^3-25/649*x^2+2/59*x-1/649 4807597076146527 a007 Real Root Of -924*x^4-331*x^3-430*x^2+500*x+25 4807597078104176 a007 Real Root Of -201*x^4+464*x^3+562*x^2+479*x-401 4807597087458533 r005 Re(z^2+c),c=-23/30+10/37*I,n=6 4807597087674270 a007 Real Root Of 907*x^4-906*x^3+447*x^2+159*x-176 4807597088240427 a007 Real Root Of 403*x^4-187*x^3+790*x^2-412*x+18 4807597098123924 r002 41th iterates of z^2 + 4807597114902610 m001 (Zeta(3)-GolombDickman)/(Kac+Stephens) 4807597125524325 a003 cos(Pi*26/77)*sin(Pi*4/9) 4807597125954503 r005 Re(z^2+c),c=43/114+7/34*I,n=15 4807597130532963 a007 Real Root Of -480*x^4-360*x^3+148*x^2+523*x-220 4807597144722232 s002 sum(A159748[n]/(pi^n-1),n=1..infinity) 4807597153030230 r005 Im(z^2+c),c=11/62+19/37*I,n=62 4807597172999406 m002 -5*Pi^6+4*Sech[Pi]-Tanh[Pi] 4807597189992892 a007 Real Root Of -968*x^4-533*x^3-49*x^2+354*x+174 4807597192069763 m001 FeigenbaumMu^GAMMA(5/6)+BesselK(1,1) 4807597223634302 m001 exp(1/exp(1))*cos(1)^KomornikLoreti 4807597229753997 a001 1/76*(1/2*5^(1/2)+1/2)^13*3571^(5/21) 4807597231660933 m001 HardyLittlewoodC4*HeathBrownMoroz*KhinchinLevy 4807597257380383 a007 Real Root Of -474*x^4-513*x^3-91*x^2+787*x-275 4807597275434902 r009 Im(z^3+c),c=-31/94+31/58*I,n=42 4807597293324753 a001 1/76*(1/2*5^(1/2)+1/2)^8*9349^(10/21) 4807597315469405 m001 (exp(1/Pi)+GlaisherKinkelin)^ErdosBorwein 4807597318046187 a007 Real Root Of -399*x^4+603*x^3+395*x^2+493*x-374 4807597318516876 a001 1/1149652*(1/2*5^(1/2)+1/2)^18*15127^(20/21) 4807597318904048 a001 1/76*(1/2*5^(1/2)+1/2)^5*64079^(11/21) 4807597319663310 a001 1/76*(1/2*5^(1/2)+1/2)^16*39603^(1/21) 4807597320074885 a001 1/4870004*(1/2*5^(1/2)+1/2)^28*64079^(11/21) 4807597343044241 r005 Im(z^2+c),c=19/86+18/55*I,n=3 4807597348329194 a001 1/710524*(1/2*5^(1/2)+1/2)^27*9349^(10/21) 4807597371294863 m001 (ln(gamma)-Ei(1,1))/(BesselI(1,2)+ZetaQ(3)) 4807597379929928 r005 Re(z^2+c),c=-45/118+25/42*I,n=55 4807597393874945 m005 (3/8+1/4*5^(1/2))/(6/7*Pi-3/4) 4807597397159679 b008 5*(-1+ArcCoth[26]) 4807597399848828 r009 Im(z^3+c),c=-37/126+41/50*I,n=2 4807597409933934 m001 (GAMMA(13/24)+Thue)/(Pi+Psi(2,1/3)) 4807597419451353 a007 Real Root Of 128*x^4+707*x^3+436*x^2+79*x+484 4807597434632461 q001 1949/4054 4807597435567543 a001 1/1364*(1/2*5^(1/2)+1/2)^20*47^(8/21) 4807597435891759 a007 Real Root Of -878*x^4+781*x^3-912*x^2-365*x+169 4807597480677101 m001 (DuboisRaymond-sin(1))/(-Khinchin+Totient) 4807597484674725 m001 (Thue-ZetaQ(4))/(Grothendieck+HeathBrownMoroz) 4807597507520118 a001 1/76*(1/2*5^(1/2)+1/2)^14*2207^(4/21) 4807597510274441 m001 gamma^(GAMMA(1/3)*GAMMA(1/4)) 4807597516925842 a007 Real Root Of -603*x^4+877*x^3+331*x^2+580*x+332 4807597521030548 r009 Im(z^3+c),c=-1/106+29/49*I,n=30 4807597540436660 r005 Im(z^2+c),c=8/25+16/45*I,n=64 4807597545662136 l006 ln(4612/7459) 4807597551553483 m001 (Niven-PlouffeB)/(Sierpinski-Trott2nd) 4807597561454383 a007 Real Root Of 405*x^4-506*x^3-556*x^2-239*x+278 4807597562004818 m001 1/Zeta(9)^2*FeigenbaumKappa^2*exp(cos(Pi/12)) 4807597568921283 m001 exp(1)/FeigenbaumC*exp(sinh(1)) 4807597571089789 a007 Real Root Of -629*x^4+766*x^3-503*x^2-443*x+22 4807597598392116 r005 Re(z^2+c),c=25/94+25/59*I,n=28 4807597606760066 a001 1/271396*(1/2*5^(1/2)+1/2)^30*3571^(5/21) 4807597609812220 m005 (5/6*Pi+5/6)/(1/5*gamma-5/6) 4807597620679683 m005 (1/2*exp(1)-7/10)/(3/10*exp(1)+5/9) 4807597633136094 r002 2th iterates of z^2 + 4807597637766902 h005 exp(cos(Pi*11/39)+sin(Pi*12/31)) 4807597640858714 h001 (-8*exp(3/2)+4)/(-3*exp(3)-6) 4807597640920032 a001 1364/317811*2584^(42/47) 4807597645389136 r002 6th iterates of z^2 + 4807597648064524 a007 Real Root Of -44*x^4-103*x^3+302*x^2-946*x+532 4807597688375315 a007 Real Root Of 857*x^4+217*x^3-190*x^2-481*x-209 4807597689914547 r005 Re(z^2+c),c=-55/114+17/30*I,n=16 4807597695268223 m001 GAMMA(7/12)-MertensB2^exp(1/Pi) 4807597697509725 r002 29th iterates of z^2 + 4807597715236390 s002 sum(A153585[n]/(n*pi^n-1),n=1..infinity) 4807597727429609 r009 Im(z^3+c),c=-29/126+35/62*I,n=26 4807597730185807 r005 Im(z^2+c),c=-21/32+7/19*I,n=17 4807597731850124 a007 Real Root Of -305*x^4+911*x^3-72*x^2+996*x+613 4807597732302476 r009 Re(z^3+c),c=-1/118+41/64*I,n=31 4807597735902871 r005 Re(z^2+c),c=-23/82+18/29*I,n=7 4807597741496253 r002 52th iterates of z^2 + 4807597748284407 r002 3th iterates of z^2 + 4807597755716438 m001 (-ln(2^(1/2)+1)+FeigenbaumKappa)/(1-ln(3)) 4807597761533588 r009 Im(z^3+c),c=-31/118+29/50*I,n=8 4807597765811039 a007 Real Root Of -184*x^4-765*x^3+679*x^2+347*x-736 4807597779596267 r009 Re(z^3+c),c=-5/17+20/21*I,n=2 4807597795994260 m001 1/exp(Magata)/CareFree^2*FeigenbaumD^2 4807597823738150 r002 10th iterates of z^2 + 4807597827485085 a007 Real Root Of 152*x^4+771*x^3+378*x^2+968*x+389 4807597828191893 r009 Re(z^3+c),c=-35/82+2/29*I,n=44 4807597840740536 r009 Im(z^3+c),c=-13/118+61/62*I,n=24 4807597871973931 r005 Im(z^2+c),c=8/25+22/43*I,n=4 4807597874717088 a007 Real Root Of -991*x^4+229*x^3+198*x^2+760*x+398 4807597890608091 r005 Im(z^2+c),c=17/70+27/59*I,n=63 4807597893183483 r009 Im(z^3+c),c=-41/126+23/41*I,n=16 4807597896954943 m001 (-Kolakoski+ThueMorse)/(Shi(1)-Si(Pi)) 4807597897250119 r009 Im(z^3+c),c=-9/40+30/53*I,n=20 4807597902490643 r009 Im(z^3+c),c=-23/52+18/37*I,n=60 4807597912432496 m001 (2^(1/3)-Ei(1,1))/(-Cahen+FransenRobinson) 4807597927193556 r009 Im(z^3+c),c=-23/52+14/29*I,n=55 4807597930501076 a007 Real Root Of -410*x^4-128*x^3+319*x^2+702*x+33 4807597932024990 m002 5*Pi^6+E^Pi/(Pi^3*Log[Pi]) 4807597989751697 m001 (cos(1/12*Pi)*MadelungNaCl+Otter)/cos(1/12*Pi) 4807597997931041 m005 (1/2*Pi+2/7)/(3/11*Pi-9/11) 4807598015212231 m001 (Kolakoski+ZetaP(3))/(2^(1/2)+BesselK(1,1)) 4807598061290342 a005 (1/sin(69/149*Pi))^233 4807598073183683 m009 (2/5*Psi(1,2/3)+3)/(16/5*Catalan+2/5*Pi^2-6) 4807598075918338 r005 Re(z^2+c),c=-43/70+11/19*I,n=5 4807598082022817 m001 1/FeigenbaumKappa/Sierpinski^2/exp(exp(1))^2 4807598088245949 m001 (GAMMA(3/4)+gamma(2))/(ArtinRank2+FeigenbaumC) 4807598164924343 r009 Im(z^3+c),c=-5/114+13/22*I,n=36 4807598167259583 a001 11/610*987^(10/21) 4807598177591881 r005 Re(z^2+c),c=19/50+5/21*I,n=8 4807598190982190 a001 123/55*10946^(33/40) 4807598207519308 m001 1/ln(GAMMA(1/6))/MinimumGamma^2/LambertW(1) 4807598209333119 m001 (Khinchin+ZetaP(3))/(Pi+FransenRobinson) 4807598217055600 a007 Real Root Of 908*x^4+808*x^3+884*x^2-366*x-339 4807598226178713 b008 -51+5^(2/3) 4807598226362575 r009 Re(z^3+c),c=-47/98+35/61*I,n=28 4807598226844326 r005 Re(z^2+c),c=-7/10+4/207*I,n=53 4807598227886882 r009 Re(z^3+c),c=-27/64+4/55*I,n=11 4807598227932996 l006 ln(1965/3178) 4807598237371738 m001 (2^(1/3))^2*ln(FeigenbaumD)^2/LambertW(1)^2 4807598252521187 r002 21th iterates of z^2 + 4807598272725854 r002 23th iterates of z^2 + 4807598290552681 a007 Real Root Of -58*x^4-192*x^3+396*x^2-292*x-907 4807598297530483 m001 (Bloch+CareFree)/(Landau-Riemann3rdZero) 4807598308931160 r009 Im(z^3+c),c=-43/122+13/24*I,n=5 4807598315556303 r002 30th iterates of z^2 + 4807598318214974 m001 arctan(1/2)*QuadraticClass*Salem 4807598322021149 r002 12th iterates of z^2 + 4807598325509704 r005 Im(z^2+c),c=-115/86+8/55*I,n=6 4807598331793717 m005 (1/2*5^(1/2)+3/10)/(2*Zeta(3)+6/11) 4807598349703622 m001 (Ei(1,1)-DuboisRaymond)^exp(1/exp(1)) 4807598351533077 m001 exp(sin(1))/cos(1)^2/sqrt(1+sqrt(3)) 4807598356404459 a003 cos(Pi*31/87)-sin(Pi*41/111) 4807598403611589 r005 Re(z^2+c),c=-29/40+5/62*I,n=25 4807598405060256 r005 Re(z^2+c),c=-61/114+19/56*I,n=8 4807598414555426 a007 Real Root Of 360*x^4-105*x^3+17*x^2-702*x+326 4807598418520912 a007 Real Root Of -145*x^4-643*x^3+127*x^2-570*x+336 4807598425474190 a001 9/305*987^(17/42) 4807598442650773 a007 Real Root Of 182*x^4+737*x^3-751*x^2-273*x+713 4807598462128530 r005 Im(z^2+c),c=29/102+21/53*I,n=30 4807598475037202 m009 (3/5*Psi(1,3/4)-2/5)/(1/4*Psi(1,2/3)-1) 4807598489191882 m001 (Zeta(5)-exp(1/Pi))/(CareFree-ZetaQ(4)) 4807598499079586 m006 (3*Pi-1/4)/(5/6*exp(Pi)-1/5) 4807598505665912 m005 (1/2*2^(1/2)-1/5)/(8/11*5^(1/2)-4/7) 4807598516718921 m005 (1/2*Zeta(3)-11/12)/(4/9*gamma+2/5) 4807598517086334 m001 (Ei(1)+FellerTornier)/(Khinchin+Tetranacci) 4807598518847067 m001 Pi*2^(1/2)/GAMMA(3/4)+(2^(1/3))^Sarnak 4807598529814329 r002 62i'th iterates of 2*x/(1-x^2) of 4807598547527118 p003 LerchPhi(1/25,5,227/196) 4807598561007694 m001 GAMMA(2/3)^2/GAMMA(1/3)^2*ln(cosh(1))^2 4807598577415729 r009 Im(z^3+c),c=-53/118+15/31*I,n=63 4807598604454386 r009 Im(z^3+c),c=-15/122+14/19*I,n=30 4807598610892363 m001 ln(5)+(2*Pi/GAMMA(5/6))^(5^(1/2)) 4807598610892363 m001 ln(5)+GAMMA(1/6)^sqrt(5) 4807598630072360 r005 Re(z^2+c),c=-53/82+5/22*I,n=34 4807598636142230 q001 987/2053 4807598640025565 a007 Real Root Of -887*x^4+626*x^3-112*x^2+433*x+351 4807598645412107 r009 Im(z^3+c),c=-9/16+29/61*I,n=64 4807598654997654 r005 Im(z^2+c),c=-7/12+28/65*I,n=21 4807598660076932 r002 60th iterates of z^2 + 4807598666948372 r002 64th iterates of z^2 + 4807598673791266 m002 5*Pi^6+(6*ProductLog[Pi])/Pi^2 4807598681203307 m005 (1/3*gamma-2/9)/(1/10*Zeta(3)+1/2) 4807598695619675 m001 (MertensB1+Mills)/(Paris-ReciprocalFibonacci) 4807598702296809 r009 Im(z^3+c),c=-1/110+29/49*I,n=36 4807598714005593 r009 Im(z^3+c),c=-29/122+17/30*I,n=2 4807598719886705 m005 (25/42+1/6*5^(1/2))/(1/12*Catalan+1/8) 4807598736816276 r005 Re(z^2+c),c=-65/114+3/5*I,n=8 4807598757129810 a007 Real Root Of 999*x^4-927*x^3-11*x^2-867*x+469 4807598806051030 h001 (-4*exp(4)+6)/(-8*exp(4)-5) 4807598812860955 r009 Re(z^3+c),c=-5/62+15/26*I,n=14 4807598821018526 r009 Re(z^3+c),c=-4/9+4/49*I,n=64 4807598830829965 a003 cos(Pi*13/68)*sin(Pi*20/101) 4807598831545697 l006 ln(5213/8431) 4807598867074435 r009 Im(z^3+c),c=-23/90+17/23*I,n=23 4807598874970354 a003 sin(Pi*13/73)/cos(Pi*33/71) 4807598881293518 r009 Re(z^3+c),c=-27/64+3/46*I,n=35 4807598901412688 r009 Im(z^3+c),c=-17/70+32/57*I,n=31 4807598903870506 m001 exp(Trott)*FeigenbaumD*sqrt(Pi) 4807598924303945 m001 (gamma(1)-FibonacciFactorial)/(Khinchin-Otter) 4807598929402496 r005 Re(z^2+c),c=-27/46+13/36*I,n=17 4807598944938751 r005 Re(z^2+c),c=-19/18+177/241*I,n=2 4807598953798578 r005 Re(z^2+c),c=-15/22+10/121*I,n=40 4807598960601040 m001 (Backhouse-Chi(1))/(Kac+TwinPrimes) 4807598965209354 r005 Im(z^2+c),c=1/36+36/61*I,n=48 4807598978151202 r005 Re(z^2+c),c=-11/8+45/241*I,n=2 4807598980229525 r005 Im(z^2+c),c=-15/94+31/51*I,n=22 4807599009831447 m004 250/Pi+(Sqrt[5]*Pi)/4-Cosh[Sqrt[5]*Pi] 4807599010941457 a007 Real Root Of -191*x^4+391*x^3-279*x^2+137*x+184 4807599023287623 a007 Real Root Of 114*x^4+557*x^3-182*x^2-877*x+983 4807599035098291 r002 11th iterates of z^2 + 4807599036750666 a007 Real Root Of 195*x^4-6*x^3+582*x^2-577*x-423 4807599047357457 m001 exp(BesselJ(1,1))*Robbin^2/sqrt(2) 4807599075851665 r009 Im(z^3+c),c=-23/64+21/40*I,n=28 4807599085651791 a007 Real Root Of -248*x^4+188*x^3-379*x^2+662*x+440 4807599102542746 r005 Re(z^2+c),c=-23/38+19/56*I,n=38 4807599102603467 r005 Re(z^2+c),c=-11/16+9/122*I,n=46 4807599105154550 r002 44th iterates of z^2 + 4807599108011043 m001 GAMMA(17/24)^(2/3)+GAMMA(1/4) 4807599111881675 h001 (-3*exp(-2)+3)/(-exp(1/3)-4) 4807599123180047 a007 Real Root Of -924*x^4-375*x^3-858*x^2+156*x+281 4807599136911134 a007 Real Root Of 350*x^4+91*x^3+952*x^2-656*x-544 4807599139858851 r002 26th iterates of z^2 + 4807599146647262 r005 Re(z^2+c),c=-101/106+2/59*I,n=12 4807599154426009 r009 Im(z^3+c),c=-7/18+24/47*I,n=46 4807599165097851 m001 1/GAMMA(1/6)^2/ln(GAMMA(1/24))/GAMMA(5/12) 4807599191717618 a007 Real Root Of -273*x^4+677*x^3+633*x^2+647*x-518 4807599196723929 l006 ln(3248/5253) 4807599203049526 m001 HeathBrownMoroz^RenyiParking/MinimumGamma 4807599210792992 m001 (Porter+ZetaQ(3))/(ln(5)-Zeta(1/2)) 4807599211591041 m008 (3/5*Pi^2-2)/(5/6*Pi^4+2/5) 4807599215837426 m001 1/LambertW(1)^2*exp(TreeGrowth2nd)/Zeta(9)^2 4807599224637479 r005 Re(z^2+c),c=11/52+31/61*I,n=31 4807599227667611 a007 Real Root Of -962*x^4+259*x^3-444*x^2+431*x+390 4807599243883979 m005 (1/2*exp(1)-2)/(1/4*3^(1/2)+9/10) 4807599252035052 r005 Im(z^2+c),c=-39/31+5/49*I,n=3 4807599261138267 a003 sin(Pi*1/54)*sin(Pi*22/71) 4807599272732319 r009 Im(z^3+c),c=-1/8+34/45*I,n=34 4807599295046465 m002 -1+5*Pi^2-Pi*Csch[Pi] 4807599307941283 r005 Re(z^2+c),c=-31/48+15/58*I,n=45 4807599319229105 r005 Re(z^2+c),c=-67/98+2/27*I,n=42 4807599331584873 r002 10th iterates of z^2 + 4807599338373921 m009 (Psi(1,1/3)+2)/(1/6*Psi(1,1/3)+5/6) 4807599343459366 r005 Im(z^2+c),c=31/118+11/26*I,n=33 4807599347617748 r009 Im(z^3+c),c=-4/31+37/61*I,n=9 4807599349661688 a001 832040/123*76^(24/53) 4807599353306897 m001 ZetaP(3)^ReciprocalFibonacci/Lehmer 4807599354218173 a001 76/89*2178309^(23/53) 4807599355637507 a007 Real Root Of 638*x^4-362*x^3+815*x^2-581*x-542 4807599358619849 a005 (1/cos(13/146*Pi))^330 4807599366914032 a007 Real Root Of -474*x^4+914*x^3+505*x^2-54*x-167 4807599406642221 m005 (1/2*exp(1)+10/11)/(7/12*2^(1/2)-7/9) 4807599410672835 a007 Real Root Of 192*x^4+738*x^3-868*x^2+279*x+840 4807599423680799 m001 1/exp(GAMMA(3/4))*FeigenbaumAlpha/GAMMA(7/12) 4807599433812180 r008 a(0)=5,K{-n^6,-74-32*n^3+62*n^2+37*n} 4807599448194495 m001 Conway/gamma(1)*Khinchin 4807599452332139 a007 Real Root Of -876*x^4+817*x^3+993*x^2-130*x-211 4807599463269644 r009 Im(z^3+c),c=-5/29+15/26*I,n=23 4807599487155312 a007 Real Root Of 524*x^4-228*x^3+228*x^2-651*x-419 4807599487975809 a001 1/29*(1/2*5^(1/2)+1/2)^24*47^(1/13) 4807599499086162 p004 log(15467/14741) 4807599504050197 r005 Im(z^2+c),c=-49/46+22/63*I,n=8 4807599523475678 m001 1/GAMMA(1/24)*BesselJ(1,1)^2/ln(GAMMA(1/6)) 4807599525536082 m001 (1-ln(3))/(Conway+RenyiParking) 4807599532503087 m005 (1/3*3^(1/2)-1/4)/(25/4+1/4*5^(1/2)) 4807599543208178 a003 sin(Pi*11/49)*sin(Pi*25/94) 4807599578430459 m001 (LaplaceLimit-Niven)/(Riemann2ndZero+Robbin) 4807599583747931 s002 sum(A138477[n]/((2^n-1)/n),n=1..infinity) 4807599592230787 r005 Im(z^2+c),c=-103/82+7/19*I,n=7 4807599596771708 m001 (BesselK(0,1)-ln(3))/(-Zeta(1,2)+Bloch) 4807599599825844 s002 sum(A091662[n]/(n^2*exp(n)+1),n=1..infinity) 4807599599825844 s002 sum(A063006[n]/(n^2*exp(n)+1),n=1..infinity) 4807599600390547 m005 (-19/4+1/4*5^(1/2))/(3/8*3^(1/2)+2/9) 4807599609726401 m002 -1-5*Pi^6+4*Csch[Pi] 4807599616868279 l006 ln(4531/7328) 4807599617709118 a007 Real Root Of 150*x^4+586*x^3-778*x^2-767*x-722 4807599625648233 a007 Real Root Of 20*x^4+953*x^3-402*x^2+380*x+694 4807599638788787 m001 AlladiGrinstead/(Grothendieck-Paris) 4807599653091071 r002 61th iterates of z^2 + 4807599673646499 m001 1/Rabbit^2/GlaisherKinkelin/ln(Riemann3rdZero) 4807599685170443 r005 Re(z^2+c),c=-57/94+11/64*I,n=5 4807599685895071 m001 ln(3)+GAMMA(23/24)+FeigenbaumD 4807599725120557 r005 Re(z^2+c),c=-16/23+2/41*I,n=58 4807599730890922 a007 Real Root Of 60*x^4-499*x^3+858*x^2-436*x-23 4807599773687552 r009 Im(z^3+c),c=-13/34+19/37*I,n=51 4807599778758066 a007 Real Root Of -197*x^4-918*x^3-42*x^2-759*x+555 4807599798610125 r002 12th iterates of z^2 + 4807599802340511 a007 Real Root Of -694*x^4-540*x^3-559*x^2+326*x+263 4807599813176356 r005 Im(z^2+c),c=5/28+29/61*I,n=21 4807599814063564 r009 Im(z^3+c),c=-1/114+29/49*I,n=31 4807599841677463 r005 Re(z^2+c),c=-11/21+18/55*I,n=4 4807599847945075 a001 3571/832040*2584^(42/47) 4807599851582556 l006 ln(5814/9403) 4807599851760805 m001 (Pi-5^(1/2))/(GAMMA(19/24)+Rabbit) 4807599851785960 m001 (cos(1)+arctan(1/3))/(-FeigenbaumAlpha+Rabbit) 4807599866869103 r005 Im(z^2+c),c=11/62+1/38*I,n=12 4807599869693940 r005 Re(z^2+c),c=-17/22+13/38*I,n=7 4807599887751476 m001 (Ei(1,1)-OneNinth)/(GAMMA(3/4)+ln(3)) 4807599905333472 r005 Re(z^2+c),c=-7/12+9/106*I,n=5 4807599907531262 b008 Sqrt[2]/3+2*Erfc[2] 4807599913578182 r002 43th iterates of z^2 + 4807599914986879 r009 Im(z^3+c),c=-1/110+29/49*I,n=38 4807599933732371 m006 (4*ln(Pi)+2)/(3/5*exp(Pi)-1/5) 4807599945529794 m001 (GAMMA(2/3)+arctan(1/2))/(Artin+Magata) 4807599952531557 a007 Real Root Of 194*x^4+918*x^3-139*x^2-384*x-264 4807599954868608 m001 (gamma+GolombDickman)/(exp(Pi)+Si(Pi)) 4807599967773945 r009 Im(z^3+c),c=-23/62+61/64*I,n=2